1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/spinlock.h> 9 #include <linux/debugfs.h> 10 #include <linux/uaccess.h> 11 #include <linux/hardirq.h> 12 #include <linux/kmemcheck.h> 13 #include <linux/module.h> 14 #include <linux/percpu.h> 15 #include <linux/mutex.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/hash.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/fs.h> 22 23 #include <asm/local.h> 24 #include "trace.h" 25 26 /* 27 * The ring buffer header is special. We must manually up keep it. 28 */ 29 int ring_buffer_print_entry_header(struct trace_seq *s) 30 { 31 int ret; 32 33 ret = trace_seq_printf(s, "# compressed entry header\n"); 34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 36 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 37 ret = trace_seq_printf(s, "\n"); 38 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 39 RINGBUF_TYPE_PADDING); 40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 41 RINGBUF_TYPE_TIME_EXTEND); 42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 44 45 return ret; 46 } 47 48 /* 49 * The ring buffer is made up of a list of pages. A separate list of pages is 50 * allocated for each CPU. A writer may only write to a buffer that is 51 * associated with the CPU it is currently executing on. A reader may read 52 * from any per cpu buffer. 53 * 54 * The reader is special. For each per cpu buffer, the reader has its own 55 * reader page. When a reader has read the entire reader page, this reader 56 * page is swapped with another page in the ring buffer. 57 * 58 * Now, as long as the writer is off the reader page, the reader can do what 59 * ever it wants with that page. The writer will never write to that page 60 * again (as long as it is out of the ring buffer). 61 * 62 * Here's some silly ASCII art. 63 * 64 * +------+ 65 * |reader| RING BUFFER 66 * |page | 67 * +------+ +---+ +---+ +---+ 68 * | |-->| |-->| | 69 * +---+ +---+ +---+ 70 * ^ | 71 * | | 72 * +---------------+ 73 * 74 * 75 * +------+ 76 * |reader| RING BUFFER 77 * |page |------------------v 78 * +------+ +---+ +---+ +---+ 79 * | |-->| |-->| | 80 * +---+ +---+ +---+ 81 * ^ | 82 * | | 83 * +---------------+ 84 * 85 * 86 * +------+ 87 * |reader| RING BUFFER 88 * |page |------------------v 89 * +------+ +---+ +---+ +---+ 90 * ^ | |-->| |-->| | 91 * | +---+ +---+ +---+ 92 * | | 93 * | | 94 * +------------------------------+ 95 * 96 * 97 * +------+ 98 * |buffer| RING BUFFER 99 * |page |------------------v 100 * +------+ +---+ +---+ +---+ 101 * ^ | | | |-->| | 102 * | New +---+ +---+ +---+ 103 * | Reader------^ | 104 * | page | 105 * +------------------------------+ 106 * 107 * 108 * After we make this swap, the reader can hand this page off to the splice 109 * code and be done with it. It can even allocate a new page if it needs to 110 * and swap that into the ring buffer. 111 * 112 * We will be using cmpxchg soon to make all this lockless. 113 * 114 */ 115 116 /* 117 * A fast way to enable or disable all ring buffers is to 118 * call tracing_on or tracing_off. Turning off the ring buffers 119 * prevents all ring buffers from being recorded to. 120 * Turning this switch on, makes it OK to write to the 121 * ring buffer, if the ring buffer is enabled itself. 122 * 123 * There's three layers that must be on in order to write 124 * to the ring buffer. 125 * 126 * 1) This global flag must be set. 127 * 2) The ring buffer must be enabled for recording. 128 * 3) The per cpu buffer must be enabled for recording. 129 * 130 * In case of an anomaly, this global flag has a bit set that 131 * will permantly disable all ring buffers. 132 */ 133 134 /* 135 * Global flag to disable all recording to ring buffers 136 * This has two bits: ON, DISABLED 137 * 138 * ON DISABLED 139 * ---- ---------- 140 * 0 0 : ring buffers are off 141 * 1 0 : ring buffers are on 142 * X 1 : ring buffers are permanently disabled 143 */ 144 145 enum { 146 RB_BUFFERS_ON_BIT = 0, 147 RB_BUFFERS_DISABLED_BIT = 1, 148 }; 149 150 enum { 151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 153 }; 154 155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 156 157 /* Used for individual buffers (after the counter) */ 158 #define RB_BUFFER_OFF (1 << 20) 159 160 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 161 162 /** 163 * tracing_off_permanent - permanently disable ring buffers 164 * 165 * This function, once called, will disable all ring buffers 166 * permanently. 167 */ 168 void tracing_off_permanent(void) 169 { 170 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 171 } 172 173 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 174 #define RB_ALIGNMENT 4U 175 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 176 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 177 178 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 179 # define RB_FORCE_8BYTE_ALIGNMENT 0 180 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 181 #else 182 # define RB_FORCE_8BYTE_ALIGNMENT 1 183 # define RB_ARCH_ALIGNMENT 8U 184 #endif 185 186 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 187 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 188 189 enum { 190 RB_LEN_TIME_EXTEND = 8, 191 RB_LEN_TIME_STAMP = 16, 192 }; 193 194 #define skip_time_extend(event) \ 195 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 196 197 static inline int rb_null_event(struct ring_buffer_event *event) 198 { 199 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 200 } 201 202 static void rb_event_set_padding(struct ring_buffer_event *event) 203 { 204 /* padding has a NULL time_delta */ 205 event->type_len = RINGBUF_TYPE_PADDING; 206 event->time_delta = 0; 207 } 208 209 static unsigned 210 rb_event_data_length(struct ring_buffer_event *event) 211 { 212 unsigned length; 213 214 if (event->type_len) 215 length = event->type_len * RB_ALIGNMENT; 216 else 217 length = event->array[0]; 218 return length + RB_EVNT_HDR_SIZE; 219 } 220 221 /* 222 * Return the length of the given event. Will return 223 * the length of the time extend if the event is a 224 * time extend. 225 */ 226 static inline unsigned 227 rb_event_length(struct ring_buffer_event *event) 228 { 229 switch (event->type_len) { 230 case RINGBUF_TYPE_PADDING: 231 if (rb_null_event(event)) 232 /* undefined */ 233 return -1; 234 return event->array[0] + RB_EVNT_HDR_SIZE; 235 236 case RINGBUF_TYPE_TIME_EXTEND: 237 return RB_LEN_TIME_EXTEND; 238 239 case RINGBUF_TYPE_TIME_STAMP: 240 return RB_LEN_TIME_STAMP; 241 242 case RINGBUF_TYPE_DATA: 243 return rb_event_data_length(event); 244 default: 245 BUG(); 246 } 247 /* not hit */ 248 return 0; 249 } 250 251 /* 252 * Return total length of time extend and data, 253 * or just the event length for all other events. 254 */ 255 static inline unsigned 256 rb_event_ts_length(struct ring_buffer_event *event) 257 { 258 unsigned len = 0; 259 260 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 261 /* time extends include the data event after it */ 262 len = RB_LEN_TIME_EXTEND; 263 event = skip_time_extend(event); 264 } 265 return len + rb_event_length(event); 266 } 267 268 /** 269 * ring_buffer_event_length - return the length of the event 270 * @event: the event to get the length of 271 * 272 * Returns the size of the data load of a data event. 273 * If the event is something other than a data event, it 274 * returns the size of the event itself. With the exception 275 * of a TIME EXTEND, where it still returns the size of the 276 * data load of the data event after it. 277 */ 278 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 279 { 280 unsigned length; 281 282 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 283 event = skip_time_extend(event); 284 285 length = rb_event_length(event); 286 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 287 return length; 288 length -= RB_EVNT_HDR_SIZE; 289 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 290 length -= sizeof(event->array[0]); 291 return length; 292 } 293 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 294 295 /* inline for ring buffer fast paths */ 296 static void * 297 rb_event_data(struct ring_buffer_event *event) 298 { 299 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 300 event = skip_time_extend(event); 301 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 302 /* If length is in len field, then array[0] has the data */ 303 if (event->type_len) 304 return (void *)&event->array[0]; 305 /* Otherwise length is in array[0] and array[1] has the data */ 306 return (void *)&event->array[1]; 307 } 308 309 /** 310 * ring_buffer_event_data - return the data of the event 311 * @event: the event to get the data from 312 */ 313 void *ring_buffer_event_data(struct ring_buffer_event *event) 314 { 315 return rb_event_data(event); 316 } 317 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 318 319 #define for_each_buffer_cpu(buffer, cpu) \ 320 for_each_cpu(cpu, buffer->cpumask) 321 322 #define TS_SHIFT 27 323 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 324 #define TS_DELTA_TEST (~TS_MASK) 325 326 /* Flag when events were overwritten */ 327 #define RB_MISSED_EVENTS (1 << 31) 328 /* Missed count stored at end */ 329 #define RB_MISSED_STORED (1 << 30) 330 331 struct buffer_data_page { 332 u64 time_stamp; /* page time stamp */ 333 local_t commit; /* write committed index */ 334 unsigned char data[]; /* data of buffer page */ 335 }; 336 337 /* 338 * Note, the buffer_page list must be first. The buffer pages 339 * are allocated in cache lines, which means that each buffer 340 * page will be at the beginning of a cache line, and thus 341 * the least significant bits will be zero. We use this to 342 * add flags in the list struct pointers, to make the ring buffer 343 * lockless. 344 */ 345 struct buffer_page { 346 struct list_head list; /* list of buffer pages */ 347 local_t write; /* index for next write */ 348 unsigned read; /* index for next read */ 349 local_t entries; /* entries on this page */ 350 unsigned long real_end; /* real end of data */ 351 struct buffer_data_page *page; /* Actual data page */ 352 }; 353 354 /* 355 * The buffer page counters, write and entries, must be reset 356 * atomically when crossing page boundaries. To synchronize this 357 * update, two counters are inserted into the number. One is 358 * the actual counter for the write position or count on the page. 359 * 360 * The other is a counter of updaters. Before an update happens 361 * the update partition of the counter is incremented. This will 362 * allow the updater to update the counter atomically. 363 * 364 * The counter is 20 bits, and the state data is 12. 365 */ 366 #define RB_WRITE_MASK 0xfffff 367 #define RB_WRITE_INTCNT (1 << 20) 368 369 static void rb_init_page(struct buffer_data_page *bpage) 370 { 371 local_set(&bpage->commit, 0); 372 } 373 374 /** 375 * ring_buffer_page_len - the size of data on the page. 376 * @page: The page to read 377 * 378 * Returns the amount of data on the page, including buffer page header. 379 */ 380 size_t ring_buffer_page_len(void *page) 381 { 382 return local_read(&((struct buffer_data_page *)page)->commit) 383 + BUF_PAGE_HDR_SIZE; 384 } 385 386 /* 387 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 388 * this issue out. 389 */ 390 static void free_buffer_page(struct buffer_page *bpage) 391 { 392 free_page((unsigned long)bpage->page); 393 kfree(bpage); 394 } 395 396 /* 397 * We need to fit the time_stamp delta into 27 bits. 398 */ 399 static inline int test_time_stamp(u64 delta) 400 { 401 if (delta & TS_DELTA_TEST) 402 return 1; 403 return 0; 404 } 405 406 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 407 408 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 409 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 410 411 int ring_buffer_print_page_header(struct trace_seq *s) 412 { 413 struct buffer_data_page field; 414 int ret; 415 416 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 417 "offset:0;\tsize:%u;\tsigned:%u;\n", 418 (unsigned int)sizeof(field.time_stamp), 419 (unsigned int)is_signed_type(u64)); 420 421 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 422 "offset:%u;\tsize:%u;\tsigned:%u;\n", 423 (unsigned int)offsetof(typeof(field), commit), 424 (unsigned int)sizeof(field.commit), 425 (unsigned int)is_signed_type(long)); 426 427 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 428 "offset:%u;\tsize:%u;\tsigned:%u;\n", 429 (unsigned int)offsetof(typeof(field), commit), 430 1, 431 (unsigned int)is_signed_type(long)); 432 433 ret = trace_seq_printf(s, "\tfield: char data;\t" 434 "offset:%u;\tsize:%u;\tsigned:%u;\n", 435 (unsigned int)offsetof(typeof(field), data), 436 (unsigned int)BUF_PAGE_SIZE, 437 (unsigned int)is_signed_type(char)); 438 439 return ret; 440 } 441 442 /* 443 * head_page == tail_page && head == tail then buffer is empty. 444 */ 445 struct ring_buffer_per_cpu { 446 int cpu; 447 atomic_t record_disabled; 448 struct ring_buffer *buffer; 449 raw_spinlock_t reader_lock; /* serialize readers */ 450 arch_spinlock_t lock; 451 struct lock_class_key lock_key; 452 struct list_head *pages; 453 struct buffer_page *head_page; /* read from head */ 454 struct buffer_page *tail_page; /* write to tail */ 455 struct buffer_page *commit_page; /* committed pages */ 456 struct buffer_page *reader_page; 457 unsigned long lost_events; 458 unsigned long last_overrun; 459 local_t entries_bytes; 460 local_t commit_overrun; 461 local_t overrun; 462 local_t entries; 463 local_t committing; 464 local_t commits; 465 unsigned long read; 466 unsigned long read_bytes; 467 u64 write_stamp; 468 u64 read_stamp; 469 }; 470 471 struct ring_buffer { 472 unsigned pages; 473 unsigned flags; 474 int cpus; 475 atomic_t record_disabled; 476 cpumask_var_t cpumask; 477 478 struct lock_class_key *reader_lock_key; 479 480 struct mutex mutex; 481 482 struct ring_buffer_per_cpu **buffers; 483 484 #ifdef CONFIG_HOTPLUG_CPU 485 struct notifier_block cpu_notify; 486 #endif 487 u64 (*clock)(void); 488 }; 489 490 struct ring_buffer_iter { 491 struct ring_buffer_per_cpu *cpu_buffer; 492 unsigned long head; 493 struct buffer_page *head_page; 494 struct buffer_page *cache_reader_page; 495 unsigned long cache_read; 496 u64 read_stamp; 497 }; 498 499 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 500 #define RB_WARN_ON(b, cond) \ 501 ({ \ 502 int _____ret = unlikely(cond); \ 503 if (_____ret) { \ 504 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 505 struct ring_buffer_per_cpu *__b = \ 506 (void *)b; \ 507 atomic_inc(&__b->buffer->record_disabled); \ 508 } else \ 509 atomic_inc(&b->record_disabled); \ 510 WARN_ON(1); \ 511 } \ 512 _____ret; \ 513 }) 514 515 /* Up this if you want to test the TIME_EXTENTS and normalization */ 516 #define DEBUG_SHIFT 0 517 518 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 519 { 520 /* shift to debug/test normalization and TIME_EXTENTS */ 521 return buffer->clock() << DEBUG_SHIFT; 522 } 523 524 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 525 { 526 u64 time; 527 528 preempt_disable_notrace(); 529 time = rb_time_stamp(buffer); 530 preempt_enable_no_resched_notrace(); 531 532 return time; 533 } 534 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 535 536 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 537 int cpu, u64 *ts) 538 { 539 /* Just stupid testing the normalize function and deltas */ 540 *ts >>= DEBUG_SHIFT; 541 } 542 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 543 544 /* 545 * Making the ring buffer lockless makes things tricky. 546 * Although writes only happen on the CPU that they are on, 547 * and they only need to worry about interrupts. Reads can 548 * happen on any CPU. 549 * 550 * The reader page is always off the ring buffer, but when the 551 * reader finishes with a page, it needs to swap its page with 552 * a new one from the buffer. The reader needs to take from 553 * the head (writes go to the tail). But if a writer is in overwrite 554 * mode and wraps, it must push the head page forward. 555 * 556 * Here lies the problem. 557 * 558 * The reader must be careful to replace only the head page, and 559 * not another one. As described at the top of the file in the 560 * ASCII art, the reader sets its old page to point to the next 561 * page after head. It then sets the page after head to point to 562 * the old reader page. But if the writer moves the head page 563 * during this operation, the reader could end up with the tail. 564 * 565 * We use cmpxchg to help prevent this race. We also do something 566 * special with the page before head. We set the LSB to 1. 567 * 568 * When the writer must push the page forward, it will clear the 569 * bit that points to the head page, move the head, and then set 570 * the bit that points to the new head page. 571 * 572 * We also don't want an interrupt coming in and moving the head 573 * page on another writer. Thus we use the second LSB to catch 574 * that too. Thus: 575 * 576 * head->list->prev->next bit 1 bit 0 577 * ------- ------- 578 * Normal page 0 0 579 * Points to head page 0 1 580 * New head page 1 0 581 * 582 * Note we can not trust the prev pointer of the head page, because: 583 * 584 * +----+ +-----+ +-----+ 585 * | |------>| T |---X--->| N | 586 * | |<------| | | | 587 * +----+ +-----+ +-----+ 588 * ^ ^ | 589 * | +-----+ | | 590 * +----------| R |----------+ | 591 * | |<-----------+ 592 * +-----+ 593 * 594 * Key: ---X--> HEAD flag set in pointer 595 * T Tail page 596 * R Reader page 597 * N Next page 598 * 599 * (see __rb_reserve_next() to see where this happens) 600 * 601 * What the above shows is that the reader just swapped out 602 * the reader page with a page in the buffer, but before it 603 * could make the new header point back to the new page added 604 * it was preempted by a writer. The writer moved forward onto 605 * the new page added by the reader and is about to move forward 606 * again. 607 * 608 * You can see, it is legitimate for the previous pointer of 609 * the head (or any page) not to point back to itself. But only 610 * temporarially. 611 */ 612 613 #define RB_PAGE_NORMAL 0UL 614 #define RB_PAGE_HEAD 1UL 615 #define RB_PAGE_UPDATE 2UL 616 617 618 #define RB_FLAG_MASK 3UL 619 620 /* PAGE_MOVED is not part of the mask */ 621 #define RB_PAGE_MOVED 4UL 622 623 /* 624 * rb_list_head - remove any bit 625 */ 626 static struct list_head *rb_list_head(struct list_head *list) 627 { 628 unsigned long val = (unsigned long)list; 629 630 return (struct list_head *)(val & ~RB_FLAG_MASK); 631 } 632 633 /* 634 * rb_is_head_page - test if the given page is the head page 635 * 636 * Because the reader may move the head_page pointer, we can 637 * not trust what the head page is (it may be pointing to 638 * the reader page). But if the next page is a header page, 639 * its flags will be non zero. 640 */ 641 static inline int 642 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 643 struct buffer_page *page, struct list_head *list) 644 { 645 unsigned long val; 646 647 val = (unsigned long)list->next; 648 649 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 650 return RB_PAGE_MOVED; 651 652 return val & RB_FLAG_MASK; 653 } 654 655 /* 656 * rb_is_reader_page 657 * 658 * The unique thing about the reader page, is that, if the 659 * writer is ever on it, the previous pointer never points 660 * back to the reader page. 661 */ 662 static int rb_is_reader_page(struct buffer_page *page) 663 { 664 struct list_head *list = page->list.prev; 665 666 return rb_list_head(list->next) != &page->list; 667 } 668 669 /* 670 * rb_set_list_to_head - set a list_head to be pointing to head. 671 */ 672 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 673 struct list_head *list) 674 { 675 unsigned long *ptr; 676 677 ptr = (unsigned long *)&list->next; 678 *ptr |= RB_PAGE_HEAD; 679 *ptr &= ~RB_PAGE_UPDATE; 680 } 681 682 /* 683 * rb_head_page_activate - sets up head page 684 */ 685 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 686 { 687 struct buffer_page *head; 688 689 head = cpu_buffer->head_page; 690 if (!head) 691 return; 692 693 /* 694 * Set the previous list pointer to have the HEAD flag. 695 */ 696 rb_set_list_to_head(cpu_buffer, head->list.prev); 697 } 698 699 static void rb_list_head_clear(struct list_head *list) 700 { 701 unsigned long *ptr = (unsigned long *)&list->next; 702 703 *ptr &= ~RB_FLAG_MASK; 704 } 705 706 /* 707 * rb_head_page_dactivate - clears head page ptr (for free list) 708 */ 709 static void 710 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 711 { 712 struct list_head *hd; 713 714 /* Go through the whole list and clear any pointers found. */ 715 rb_list_head_clear(cpu_buffer->pages); 716 717 list_for_each(hd, cpu_buffer->pages) 718 rb_list_head_clear(hd); 719 } 720 721 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 722 struct buffer_page *head, 723 struct buffer_page *prev, 724 int old_flag, int new_flag) 725 { 726 struct list_head *list; 727 unsigned long val = (unsigned long)&head->list; 728 unsigned long ret; 729 730 list = &prev->list; 731 732 val &= ~RB_FLAG_MASK; 733 734 ret = cmpxchg((unsigned long *)&list->next, 735 val | old_flag, val | new_flag); 736 737 /* check if the reader took the page */ 738 if ((ret & ~RB_FLAG_MASK) != val) 739 return RB_PAGE_MOVED; 740 741 return ret & RB_FLAG_MASK; 742 } 743 744 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 745 struct buffer_page *head, 746 struct buffer_page *prev, 747 int old_flag) 748 { 749 return rb_head_page_set(cpu_buffer, head, prev, 750 old_flag, RB_PAGE_UPDATE); 751 } 752 753 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 754 struct buffer_page *head, 755 struct buffer_page *prev, 756 int old_flag) 757 { 758 return rb_head_page_set(cpu_buffer, head, prev, 759 old_flag, RB_PAGE_HEAD); 760 } 761 762 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 763 struct buffer_page *head, 764 struct buffer_page *prev, 765 int old_flag) 766 { 767 return rb_head_page_set(cpu_buffer, head, prev, 768 old_flag, RB_PAGE_NORMAL); 769 } 770 771 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 772 struct buffer_page **bpage) 773 { 774 struct list_head *p = rb_list_head((*bpage)->list.next); 775 776 *bpage = list_entry(p, struct buffer_page, list); 777 } 778 779 static struct buffer_page * 780 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 781 { 782 struct buffer_page *head; 783 struct buffer_page *page; 784 struct list_head *list; 785 int i; 786 787 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 788 return NULL; 789 790 /* sanity check */ 791 list = cpu_buffer->pages; 792 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 793 return NULL; 794 795 page = head = cpu_buffer->head_page; 796 /* 797 * It is possible that the writer moves the header behind 798 * where we started, and we miss in one loop. 799 * A second loop should grab the header, but we'll do 800 * three loops just because I'm paranoid. 801 */ 802 for (i = 0; i < 3; i++) { 803 do { 804 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 805 cpu_buffer->head_page = page; 806 return page; 807 } 808 rb_inc_page(cpu_buffer, &page); 809 } while (page != head); 810 } 811 812 RB_WARN_ON(cpu_buffer, 1); 813 814 return NULL; 815 } 816 817 static int rb_head_page_replace(struct buffer_page *old, 818 struct buffer_page *new) 819 { 820 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 821 unsigned long val; 822 unsigned long ret; 823 824 val = *ptr & ~RB_FLAG_MASK; 825 val |= RB_PAGE_HEAD; 826 827 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 828 829 return ret == val; 830 } 831 832 /* 833 * rb_tail_page_update - move the tail page forward 834 * 835 * Returns 1 if moved tail page, 0 if someone else did. 836 */ 837 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 838 struct buffer_page *tail_page, 839 struct buffer_page *next_page) 840 { 841 struct buffer_page *old_tail; 842 unsigned long old_entries; 843 unsigned long old_write; 844 int ret = 0; 845 846 /* 847 * The tail page now needs to be moved forward. 848 * 849 * We need to reset the tail page, but without messing 850 * with possible erasing of data brought in by interrupts 851 * that have moved the tail page and are currently on it. 852 * 853 * We add a counter to the write field to denote this. 854 */ 855 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 856 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 857 858 /* 859 * Just make sure we have seen our old_write and synchronize 860 * with any interrupts that come in. 861 */ 862 barrier(); 863 864 /* 865 * If the tail page is still the same as what we think 866 * it is, then it is up to us to update the tail 867 * pointer. 868 */ 869 if (tail_page == cpu_buffer->tail_page) { 870 /* Zero the write counter */ 871 unsigned long val = old_write & ~RB_WRITE_MASK; 872 unsigned long eval = old_entries & ~RB_WRITE_MASK; 873 874 /* 875 * This will only succeed if an interrupt did 876 * not come in and change it. In which case, we 877 * do not want to modify it. 878 * 879 * We add (void) to let the compiler know that we do not care 880 * about the return value of these functions. We use the 881 * cmpxchg to only update if an interrupt did not already 882 * do it for us. If the cmpxchg fails, we don't care. 883 */ 884 (void)local_cmpxchg(&next_page->write, old_write, val); 885 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 886 887 /* 888 * No need to worry about races with clearing out the commit. 889 * it only can increment when a commit takes place. But that 890 * only happens in the outer most nested commit. 891 */ 892 local_set(&next_page->page->commit, 0); 893 894 old_tail = cmpxchg(&cpu_buffer->tail_page, 895 tail_page, next_page); 896 897 if (old_tail == tail_page) 898 ret = 1; 899 } 900 901 return ret; 902 } 903 904 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 905 struct buffer_page *bpage) 906 { 907 unsigned long val = (unsigned long)bpage; 908 909 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 910 return 1; 911 912 return 0; 913 } 914 915 /** 916 * rb_check_list - make sure a pointer to a list has the last bits zero 917 */ 918 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 919 struct list_head *list) 920 { 921 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 922 return 1; 923 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 924 return 1; 925 return 0; 926 } 927 928 /** 929 * check_pages - integrity check of buffer pages 930 * @cpu_buffer: CPU buffer with pages to test 931 * 932 * As a safety measure we check to make sure the data pages have not 933 * been corrupted. 934 */ 935 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 936 { 937 struct list_head *head = cpu_buffer->pages; 938 struct buffer_page *bpage, *tmp; 939 940 rb_head_page_deactivate(cpu_buffer); 941 942 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 943 return -1; 944 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 945 return -1; 946 947 if (rb_check_list(cpu_buffer, head)) 948 return -1; 949 950 list_for_each_entry_safe(bpage, tmp, head, list) { 951 if (RB_WARN_ON(cpu_buffer, 952 bpage->list.next->prev != &bpage->list)) 953 return -1; 954 if (RB_WARN_ON(cpu_buffer, 955 bpage->list.prev->next != &bpage->list)) 956 return -1; 957 if (rb_check_list(cpu_buffer, &bpage->list)) 958 return -1; 959 } 960 961 rb_head_page_activate(cpu_buffer); 962 963 return 0; 964 } 965 966 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 967 unsigned nr_pages) 968 { 969 struct buffer_page *bpage, *tmp; 970 LIST_HEAD(pages); 971 unsigned i; 972 973 WARN_ON(!nr_pages); 974 975 for (i = 0; i < nr_pages; i++) { 976 struct page *page; 977 /* 978 * __GFP_NORETRY flag makes sure that the allocation fails 979 * gracefully without invoking oom-killer and the system is 980 * not destabilized. 981 */ 982 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 983 GFP_KERNEL | __GFP_NORETRY, 984 cpu_to_node(cpu_buffer->cpu)); 985 if (!bpage) 986 goto free_pages; 987 988 rb_check_bpage(cpu_buffer, bpage); 989 990 list_add(&bpage->list, &pages); 991 992 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 993 GFP_KERNEL | __GFP_NORETRY, 0); 994 if (!page) 995 goto free_pages; 996 bpage->page = page_address(page); 997 rb_init_page(bpage->page); 998 } 999 1000 /* 1001 * The ring buffer page list is a circular list that does not 1002 * start and end with a list head. All page list items point to 1003 * other pages. 1004 */ 1005 cpu_buffer->pages = pages.next; 1006 list_del(&pages); 1007 1008 rb_check_pages(cpu_buffer); 1009 1010 return 0; 1011 1012 free_pages: 1013 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1014 list_del_init(&bpage->list); 1015 free_buffer_page(bpage); 1016 } 1017 return -ENOMEM; 1018 } 1019 1020 static struct ring_buffer_per_cpu * 1021 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) 1022 { 1023 struct ring_buffer_per_cpu *cpu_buffer; 1024 struct buffer_page *bpage; 1025 struct page *page; 1026 int ret; 1027 1028 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1029 GFP_KERNEL, cpu_to_node(cpu)); 1030 if (!cpu_buffer) 1031 return NULL; 1032 1033 cpu_buffer->cpu = cpu; 1034 cpu_buffer->buffer = buffer; 1035 raw_spin_lock_init(&cpu_buffer->reader_lock); 1036 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1037 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1038 1039 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1040 GFP_KERNEL, cpu_to_node(cpu)); 1041 if (!bpage) 1042 goto fail_free_buffer; 1043 1044 rb_check_bpage(cpu_buffer, bpage); 1045 1046 cpu_buffer->reader_page = bpage; 1047 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1048 if (!page) 1049 goto fail_free_reader; 1050 bpage->page = page_address(page); 1051 rb_init_page(bpage->page); 1052 1053 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1054 1055 ret = rb_allocate_pages(cpu_buffer, buffer->pages); 1056 if (ret < 0) 1057 goto fail_free_reader; 1058 1059 cpu_buffer->head_page 1060 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1061 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1062 1063 rb_head_page_activate(cpu_buffer); 1064 1065 return cpu_buffer; 1066 1067 fail_free_reader: 1068 free_buffer_page(cpu_buffer->reader_page); 1069 1070 fail_free_buffer: 1071 kfree(cpu_buffer); 1072 return NULL; 1073 } 1074 1075 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1076 { 1077 struct list_head *head = cpu_buffer->pages; 1078 struct buffer_page *bpage, *tmp; 1079 1080 free_buffer_page(cpu_buffer->reader_page); 1081 1082 rb_head_page_deactivate(cpu_buffer); 1083 1084 if (head) { 1085 list_for_each_entry_safe(bpage, tmp, head, list) { 1086 list_del_init(&bpage->list); 1087 free_buffer_page(bpage); 1088 } 1089 bpage = list_entry(head, struct buffer_page, list); 1090 free_buffer_page(bpage); 1091 } 1092 1093 kfree(cpu_buffer); 1094 } 1095 1096 #ifdef CONFIG_HOTPLUG_CPU 1097 static int rb_cpu_notify(struct notifier_block *self, 1098 unsigned long action, void *hcpu); 1099 #endif 1100 1101 /** 1102 * ring_buffer_alloc - allocate a new ring_buffer 1103 * @size: the size in bytes per cpu that is needed. 1104 * @flags: attributes to set for the ring buffer. 1105 * 1106 * Currently the only flag that is available is the RB_FL_OVERWRITE 1107 * flag. This flag means that the buffer will overwrite old data 1108 * when the buffer wraps. If this flag is not set, the buffer will 1109 * drop data when the tail hits the head. 1110 */ 1111 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1112 struct lock_class_key *key) 1113 { 1114 struct ring_buffer *buffer; 1115 int bsize; 1116 int cpu; 1117 1118 /* keep it in its own cache line */ 1119 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1120 GFP_KERNEL); 1121 if (!buffer) 1122 return NULL; 1123 1124 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1125 goto fail_free_buffer; 1126 1127 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1128 buffer->flags = flags; 1129 buffer->clock = trace_clock_local; 1130 buffer->reader_lock_key = key; 1131 1132 /* need at least two pages */ 1133 if (buffer->pages < 2) 1134 buffer->pages = 2; 1135 1136 /* 1137 * In case of non-hotplug cpu, if the ring-buffer is allocated 1138 * in early initcall, it will not be notified of secondary cpus. 1139 * In that off case, we need to allocate for all possible cpus. 1140 */ 1141 #ifdef CONFIG_HOTPLUG_CPU 1142 get_online_cpus(); 1143 cpumask_copy(buffer->cpumask, cpu_online_mask); 1144 #else 1145 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1146 #endif 1147 buffer->cpus = nr_cpu_ids; 1148 1149 bsize = sizeof(void *) * nr_cpu_ids; 1150 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1151 GFP_KERNEL); 1152 if (!buffer->buffers) 1153 goto fail_free_cpumask; 1154 1155 for_each_buffer_cpu(buffer, cpu) { 1156 buffer->buffers[cpu] = 1157 rb_allocate_cpu_buffer(buffer, cpu); 1158 if (!buffer->buffers[cpu]) 1159 goto fail_free_buffers; 1160 } 1161 1162 #ifdef CONFIG_HOTPLUG_CPU 1163 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1164 buffer->cpu_notify.priority = 0; 1165 register_cpu_notifier(&buffer->cpu_notify); 1166 #endif 1167 1168 put_online_cpus(); 1169 mutex_init(&buffer->mutex); 1170 1171 return buffer; 1172 1173 fail_free_buffers: 1174 for_each_buffer_cpu(buffer, cpu) { 1175 if (buffer->buffers[cpu]) 1176 rb_free_cpu_buffer(buffer->buffers[cpu]); 1177 } 1178 kfree(buffer->buffers); 1179 1180 fail_free_cpumask: 1181 free_cpumask_var(buffer->cpumask); 1182 put_online_cpus(); 1183 1184 fail_free_buffer: 1185 kfree(buffer); 1186 return NULL; 1187 } 1188 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1189 1190 /** 1191 * ring_buffer_free - free a ring buffer. 1192 * @buffer: the buffer to free. 1193 */ 1194 void 1195 ring_buffer_free(struct ring_buffer *buffer) 1196 { 1197 int cpu; 1198 1199 get_online_cpus(); 1200 1201 #ifdef CONFIG_HOTPLUG_CPU 1202 unregister_cpu_notifier(&buffer->cpu_notify); 1203 #endif 1204 1205 for_each_buffer_cpu(buffer, cpu) 1206 rb_free_cpu_buffer(buffer->buffers[cpu]); 1207 1208 put_online_cpus(); 1209 1210 kfree(buffer->buffers); 1211 free_cpumask_var(buffer->cpumask); 1212 1213 kfree(buffer); 1214 } 1215 EXPORT_SYMBOL_GPL(ring_buffer_free); 1216 1217 void ring_buffer_set_clock(struct ring_buffer *buffer, 1218 u64 (*clock)(void)) 1219 { 1220 buffer->clock = clock; 1221 } 1222 1223 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1224 1225 static void 1226 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) 1227 { 1228 struct buffer_page *bpage; 1229 struct list_head *p; 1230 unsigned i; 1231 1232 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1233 rb_head_page_deactivate(cpu_buffer); 1234 1235 for (i = 0; i < nr_pages; i++) { 1236 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1237 goto out; 1238 p = cpu_buffer->pages->next; 1239 bpage = list_entry(p, struct buffer_page, list); 1240 list_del_init(&bpage->list); 1241 free_buffer_page(bpage); 1242 } 1243 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1244 goto out; 1245 1246 rb_reset_cpu(cpu_buffer); 1247 rb_check_pages(cpu_buffer); 1248 1249 out: 1250 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1251 } 1252 1253 static void 1254 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, 1255 struct list_head *pages, unsigned nr_pages) 1256 { 1257 struct buffer_page *bpage; 1258 struct list_head *p; 1259 unsigned i; 1260 1261 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1262 rb_head_page_deactivate(cpu_buffer); 1263 1264 for (i = 0; i < nr_pages; i++) { 1265 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 1266 goto out; 1267 p = pages->next; 1268 bpage = list_entry(p, struct buffer_page, list); 1269 list_del_init(&bpage->list); 1270 list_add_tail(&bpage->list, cpu_buffer->pages); 1271 } 1272 rb_reset_cpu(cpu_buffer); 1273 rb_check_pages(cpu_buffer); 1274 1275 out: 1276 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1277 } 1278 1279 /** 1280 * ring_buffer_resize - resize the ring buffer 1281 * @buffer: the buffer to resize. 1282 * @size: the new size. 1283 * 1284 * Minimum size is 2 * BUF_PAGE_SIZE. 1285 * 1286 * Returns -1 on failure. 1287 */ 1288 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) 1289 { 1290 struct ring_buffer_per_cpu *cpu_buffer; 1291 unsigned nr_pages, rm_pages, new_pages; 1292 struct buffer_page *bpage, *tmp; 1293 unsigned long buffer_size; 1294 LIST_HEAD(pages); 1295 int i, cpu; 1296 1297 /* 1298 * Always succeed at resizing a non-existent buffer: 1299 */ 1300 if (!buffer) 1301 return size; 1302 1303 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1304 size *= BUF_PAGE_SIZE; 1305 buffer_size = buffer->pages * BUF_PAGE_SIZE; 1306 1307 /* we need a minimum of two pages */ 1308 if (size < BUF_PAGE_SIZE * 2) 1309 size = BUF_PAGE_SIZE * 2; 1310 1311 if (size == buffer_size) 1312 return size; 1313 1314 atomic_inc(&buffer->record_disabled); 1315 1316 /* Make sure all writers are done with this buffer. */ 1317 synchronize_sched(); 1318 1319 mutex_lock(&buffer->mutex); 1320 get_online_cpus(); 1321 1322 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1323 1324 if (size < buffer_size) { 1325 1326 /* easy case, just free pages */ 1327 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) 1328 goto out_fail; 1329 1330 rm_pages = buffer->pages - nr_pages; 1331 1332 for_each_buffer_cpu(buffer, cpu) { 1333 cpu_buffer = buffer->buffers[cpu]; 1334 rb_remove_pages(cpu_buffer, rm_pages); 1335 } 1336 goto out; 1337 } 1338 1339 /* 1340 * This is a bit more difficult. We only want to add pages 1341 * when we can allocate enough for all CPUs. We do this 1342 * by allocating all the pages and storing them on a local 1343 * link list. If we succeed in our allocation, then we 1344 * add these pages to the cpu_buffers. Otherwise we just free 1345 * them all and return -ENOMEM; 1346 */ 1347 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) 1348 goto out_fail; 1349 1350 new_pages = nr_pages - buffer->pages; 1351 1352 for_each_buffer_cpu(buffer, cpu) { 1353 for (i = 0; i < new_pages; i++) { 1354 struct page *page; 1355 /* 1356 * __GFP_NORETRY flag makes sure that the allocation 1357 * fails gracefully without invoking oom-killer and 1358 * the system is not destabilized. 1359 */ 1360 bpage = kzalloc_node(ALIGN(sizeof(*bpage), 1361 cache_line_size()), 1362 GFP_KERNEL | __GFP_NORETRY, 1363 cpu_to_node(cpu)); 1364 if (!bpage) 1365 goto free_pages; 1366 list_add(&bpage->list, &pages); 1367 page = alloc_pages_node(cpu_to_node(cpu), 1368 GFP_KERNEL | __GFP_NORETRY, 0); 1369 if (!page) 1370 goto free_pages; 1371 bpage->page = page_address(page); 1372 rb_init_page(bpage->page); 1373 } 1374 } 1375 1376 for_each_buffer_cpu(buffer, cpu) { 1377 cpu_buffer = buffer->buffers[cpu]; 1378 rb_insert_pages(cpu_buffer, &pages, new_pages); 1379 } 1380 1381 if (RB_WARN_ON(buffer, !list_empty(&pages))) 1382 goto out_fail; 1383 1384 out: 1385 buffer->pages = nr_pages; 1386 put_online_cpus(); 1387 mutex_unlock(&buffer->mutex); 1388 1389 atomic_dec(&buffer->record_disabled); 1390 1391 return size; 1392 1393 free_pages: 1394 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1395 list_del_init(&bpage->list); 1396 free_buffer_page(bpage); 1397 } 1398 put_online_cpus(); 1399 mutex_unlock(&buffer->mutex); 1400 atomic_dec(&buffer->record_disabled); 1401 return -ENOMEM; 1402 1403 /* 1404 * Something went totally wrong, and we are too paranoid 1405 * to even clean up the mess. 1406 */ 1407 out_fail: 1408 put_online_cpus(); 1409 mutex_unlock(&buffer->mutex); 1410 atomic_dec(&buffer->record_disabled); 1411 return -1; 1412 } 1413 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1414 1415 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1416 { 1417 mutex_lock(&buffer->mutex); 1418 if (val) 1419 buffer->flags |= RB_FL_OVERWRITE; 1420 else 1421 buffer->flags &= ~RB_FL_OVERWRITE; 1422 mutex_unlock(&buffer->mutex); 1423 } 1424 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1425 1426 static inline void * 1427 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1428 { 1429 return bpage->data + index; 1430 } 1431 1432 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1433 { 1434 return bpage->page->data + index; 1435 } 1436 1437 static inline struct ring_buffer_event * 1438 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1439 { 1440 return __rb_page_index(cpu_buffer->reader_page, 1441 cpu_buffer->reader_page->read); 1442 } 1443 1444 static inline struct ring_buffer_event * 1445 rb_iter_head_event(struct ring_buffer_iter *iter) 1446 { 1447 return __rb_page_index(iter->head_page, iter->head); 1448 } 1449 1450 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1451 { 1452 return local_read(&bpage->write) & RB_WRITE_MASK; 1453 } 1454 1455 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1456 { 1457 return local_read(&bpage->page->commit); 1458 } 1459 1460 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1461 { 1462 return local_read(&bpage->entries) & RB_WRITE_MASK; 1463 } 1464 1465 /* Size is determined by what has been committed */ 1466 static inline unsigned rb_page_size(struct buffer_page *bpage) 1467 { 1468 return rb_page_commit(bpage); 1469 } 1470 1471 static inline unsigned 1472 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1473 { 1474 return rb_page_commit(cpu_buffer->commit_page); 1475 } 1476 1477 static inline unsigned 1478 rb_event_index(struct ring_buffer_event *event) 1479 { 1480 unsigned long addr = (unsigned long)event; 1481 1482 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1483 } 1484 1485 static inline int 1486 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1487 struct ring_buffer_event *event) 1488 { 1489 unsigned long addr = (unsigned long)event; 1490 unsigned long index; 1491 1492 index = rb_event_index(event); 1493 addr &= PAGE_MASK; 1494 1495 return cpu_buffer->commit_page->page == (void *)addr && 1496 rb_commit_index(cpu_buffer) == index; 1497 } 1498 1499 static void 1500 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1501 { 1502 unsigned long max_count; 1503 1504 /* 1505 * We only race with interrupts and NMIs on this CPU. 1506 * If we own the commit event, then we can commit 1507 * all others that interrupted us, since the interruptions 1508 * are in stack format (they finish before they come 1509 * back to us). This allows us to do a simple loop to 1510 * assign the commit to the tail. 1511 */ 1512 again: 1513 max_count = cpu_buffer->buffer->pages * 100; 1514 1515 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1516 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1517 return; 1518 if (RB_WARN_ON(cpu_buffer, 1519 rb_is_reader_page(cpu_buffer->tail_page))) 1520 return; 1521 local_set(&cpu_buffer->commit_page->page->commit, 1522 rb_page_write(cpu_buffer->commit_page)); 1523 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1524 cpu_buffer->write_stamp = 1525 cpu_buffer->commit_page->page->time_stamp; 1526 /* add barrier to keep gcc from optimizing too much */ 1527 barrier(); 1528 } 1529 while (rb_commit_index(cpu_buffer) != 1530 rb_page_write(cpu_buffer->commit_page)) { 1531 1532 local_set(&cpu_buffer->commit_page->page->commit, 1533 rb_page_write(cpu_buffer->commit_page)); 1534 RB_WARN_ON(cpu_buffer, 1535 local_read(&cpu_buffer->commit_page->page->commit) & 1536 ~RB_WRITE_MASK); 1537 barrier(); 1538 } 1539 1540 /* again, keep gcc from optimizing */ 1541 barrier(); 1542 1543 /* 1544 * If an interrupt came in just after the first while loop 1545 * and pushed the tail page forward, we will be left with 1546 * a dangling commit that will never go forward. 1547 */ 1548 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1549 goto again; 1550 } 1551 1552 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1553 { 1554 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1555 cpu_buffer->reader_page->read = 0; 1556 } 1557 1558 static void rb_inc_iter(struct ring_buffer_iter *iter) 1559 { 1560 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1561 1562 /* 1563 * The iterator could be on the reader page (it starts there). 1564 * But the head could have moved, since the reader was 1565 * found. Check for this case and assign the iterator 1566 * to the head page instead of next. 1567 */ 1568 if (iter->head_page == cpu_buffer->reader_page) 1569 iter->head_page = rb_set_head_page(cpu_buffer); 1570 else 1571 rb_inc_page(cpu_buffer, &iter->head_page); 1572 1573 iter->read_stamp = iter->head_page->page->time_stamp; 1574 iter->head = 0; 1575 } 1576 1577 /* Slow path, do not inline */ 1578 static noinline struct ring_buffer_event * 1579 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1580 { 1581 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1582 1583 /* Not the first event on the page? */ 1584 if (rb_event_index(event)) { 1585 event->time_delta = delta & TS_MASK; 1586 event->array[0] = delta >> TS_SHIFT; 1587 } else { 1588 /* nope, just zero it */ 1589 event->time_delta = 0; 1590 event->array[0] = 0; 1591 } 1592 1593 return skip_time_extend(event); 1594 } 1595 1596 /** 1597 * ring_buffer_update_event - update event type and data 1598 * @event: the even to update 1599 * @type: the type of event 1600 * @length: the size of the event field in the ring buffer 1601 * 1602 * Update the type and data fields of the event. The length 1603 * is the actual size that is written to the ring buffer, 1604 * and with this, we can determine what to place into the 1605 * data field. 1606 */ 1607 static void 1608 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1609 struct ring_buffer_event *event, unsigned length, 1610 int add_timestamp, u64 delta) 1611 { 1612 /* Only a commit updates the timestamp */ 1613 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 1614 delta = 0; 1615 1616 /* 1617 * If we need to add a timestamp, then we 1618 * add it to the start of the resevered space. 1619 */ 1620 if (unlikely(add_timestamp)) { 1621 event = rb_add_time_stamp(event, delta); 1622 length -= RB_LEN_TIME_EXTEND; 1623 delta = 0; 1624 } 1625 1626 event->time_delta = delta; 1627 length -= RB_EVNT_HDR_SIZE; 1628 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 1629 event->type_len = 0; 1630 event->array[0] = length; 1631 } else 1632 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1633 } 1634 1635 /* 1636 * rb_handle_head_page - writer hit the head page 1637 * 1638 * Returns: +1 to retry page 1639 * 0 to continue 1640 * -1 on error 1641 */ 1642 static int 1643 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1644 struct buffer_page *tail_page, 1645 struct buffer_page *next_page) 1646 { 1647 struct buffer_page *new_head; 1648 int entries; 1649 int type; 1650 int ret; 1651 1652 entries = rb_page_entries(next_page); 1653 1654 /* 1655 * The hard part is here. We need to move the head 1656 * forward, and protect against both readers on 1657 * other CPUs and writers coming in via interrupts. 1658 */ 1659 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1660 RB_PAGE_HEAD); 1661 1662 /* 1663 * type can be one of four: 1664 * NORMAL - an interrupt already moved it for us 1665 * HEAD - we are the first to get here. 1666 * UPDATE - we are the interrupt interrupting 1667 * a current move. 1668 * MOVED - a reader on another CPU moved the next 1669 * pointer to its reader page. Give up 1670 * and try again. 1671 */ 1672 1673 switch (type) { 1674 case RB_PAGE_HEAD: 1675 /* 1676 * We changed the head to UPDATE, thus 1677 * it is our responsibility to update 1678 * the counters. 1679 */ 1680 local_add(entries, &cpu_buffer->overrun); 1681 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1682 1683 /* 1684 * The entries will be zeroed out when we move the 1685 * tail page. 1686 */ 1687 1688 /* still more to do */ 1689 break; 1690 1691 case RB_PAGE_UPDATE: 1692 /* 1693 * This is an interrupt that interrupt the 1694 * previous update. Still more to do. 1695 */ 1696 break; 1697 case RB_PAGE_NORMAL: 1698 /* 1699 * An interrupt came in before the update 1700 * and processed this for us. 1701 * Nothing left to do. 1702 */ 1703 return 1; 1704 case RB_PAGE_MOVED: 1705 /* 1706 * The reader is on another CPU and just did 1707 * a swap with our next_page. 1708 * Try again. 1709 */ 1710 return 1; 1711 default: 1712 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1713 return -1; 1714 } 1715 1716 /* 1717 * Now that we are here, the old head pointer is 1718 * set to UPDATE. This will keep the reader from 1719 * swapping the head page with the reader page. 1720 * The reader (on another CPU) will spin till 1721 * we are finished. 1722 * 1723 * We just need to protect against interrupts 1724 * doing the job. We will set the next pointer 1725 * to HEAD. After that, we set the old pointer 1726 * to NORMAL, but only if it was HEAD before. 1727 * otherwise we are an interrupt, and only 1728 * want the outer most commit to reset it. 1729 */ 1730 new_head = next_page; 1731 rb_inc_page(cpu_buffer, &new_head); 1732 1733 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1734 RB_PAGE_NORMAL); 1735 1736 /* 1737 * Valid returns are: 1738 * HEAD - an interrupt came in and already set it. 1739 * NORMAL - One of two things: 1740 * 1) We really set it. 1741 * 2) A bunch of interrupts came in and moved 1742 * the page forward again. 1743 */ 1744 switch (ret) { 1745 case RB_PAGE_HEAD: 1746 case RB_PAGE_NORMAL: 1747 /* OK */ 1748 break; 1749 default: 1750 RB_WARN_ON(cpu_buffer, 1); 1751 return -1; 1752 } 1753 1754 /* 1755 * It is possible that an interrupt came in, 1756 * set the head up, then more interrupts came in 1757 * and moved it again. When we get back here, 1758 * the page would have been set to NORMAL but we 1759 * just set it back to HEAD. 1760 * 1761 * How do you detect this? Well, if that happened 1762 * the tail page would have moved. 1763 */ 1764 if (ret == RB_PAGE_NORMAL) { 1765 /* 1766 * If the tail had moved passed next, then we need 1767 * to reset the pointer. 1768 */ 1769 if (cpu_buffer->tail_page != tail_page && 1770 cpu_buffer->tail_page != next_page) 1771 rb_head_page_set_normal(cpu_buffer, new_head, 1772 next_page, 1773 RB_PAGE_HEAD); 1774 } 1775 1776 /* 1777 * If this was the outer most commit (the one that 1778 * changed the original pointer from HEAD to UPDATE), 1779 * then it is up to us to reset it to NORMAL. 1780 */ 1781 if (type == RB_PAGE_HEAD) { 1782 ret = rb_head_page_set_normal(cpu_buffer, next_page, 1783 tail_page, 1784 RB_PAGE_UPDATE); 1785 if (RB_WARN_ON(cpu_buffer, 1786 ret != RB_PAGE_UPDATE)) 1787 return -1; 1788 } 1789 1790 return 0; 1791 } 1792 1793 static unsigned rb_calculate_event_length(unsigned length) 1794 { 1795 struct ring_buffer_event event; /* Used only for sizeof array */ 1796 1797 /* zero length can cause confusions */ 1798 if (!length) 1799 length = 1; 1800 1801 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 1802 length += sizeof(event.array[0]); 1803 1804 length += RB_EVNT_HDR_SIZE; 1805 length = ALIGN(length, RB_ARCH_ALIGNMENT); 1806 1807 return length; 1808 } 1809 1810 static inline void 1811 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 1812 struct buffer_page *tail_page, 1813 unsigned long tail, unsigned long length) 1814 { 1815 struct ring_buffer_event *event; 1816 1817 /* 1818 * Only the event that crossed the page boundary 1819 * must fill the old tail_page with padding. 1820 */ 1821 if (tail >= BUF_PAGE_SIZE) { 1822 /* 1823 * If the page was filled, then we still need 1824 * to update the real_end. Reset it to zero 1825 * and the reader will ignore it. 1826 */ 1827 if (tail == BUF_PAGE_SIZE) 1828 tail_page->real_end = 0; 1829 1830 local_sub(length, &tail_page->write); 1831 return; 1832 } 1833 1834 event = __rb_page_index(tail_page, tail); 1835 kmemcheck_annotate_bitfield(event, bitfield); 1836 1837 /* account for padding bytes */ 1838 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 1839 1840 /* 1841 * Save the original length to the meta data. 1842 * This will be used by the reader to add lost event 1843 * counter. 1844 */ 1845 tail_page->real_end = tail; 1846 1847 /* 1848 * If this event is bigger than the minimum size, then 1849 * we need to be careful that we don't subtract the 1850 * write counter enough to allow another writer to slip 1851 * in on this page. 1852 * We put in a discarded commit instead, to make sure 1853 * that this space is not used again. 1854 * 1855 * If we are less than the minimum size, we don't need to 1856 * worry about it. 1857 */ 1858 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 1859 /* No room for any events */ 1860 1861 /* Mark the rest of the page with padding */ 1862 rb_event_set_padding(event); 1863 1864 /* Set the write back to the previous setting */ 1865 local_sub(length, &tail_page->write); 1866 return; 1867 } 1868 1869 /* Put in a discarded event */ 1870 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 1871 event->type_len = RINGBUF_TYPE_PADDING; 1872 /* time delta must be non zero */ 1873 event->time_delta = 1; 1874 1875 /* Set write to end of buffer */ 1876 length = (tail + length) - BUF_PAGE_SIZE; 1877 local_sub(length, &tail_page->write); 1878 } 1879 1880 /* 1881 * This is the slow path, force gcc not to inline it. 1882 */ 1883 static noinline struct ring_buffer_event * 1884 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 1885 unsigned long length, unsigned long tail, 1886 struct buffer_page *tail_page, u64 ts) 1887 { 1888 struct buffer_page *commit_page = cpu_buffer->commit_page; 1889 struct ring_buffer *buffer = cpu_buffer->buffer; 1890 struct buffer_page *next_page; 1891 int ret; 1892 1893 next_page = tail_page; 1894 1895 rb_inc_page(cpu_buffer, &next_page); 1896 1897 /* 1898 * If for some reason, we had an interrupt storm that made 1899 * it all the way around the buffer, bail, and warn 1900 * about it. 1901 */ 1902 if (unlikely(next_page == commit_page)) { 1903 local_inc(&cpu_buffer->commit_overrun); 1904 goto out_reset; 1905 } 1906 1907 /* 1908 * This is where the fun begins! 1909 * 1910 * We are fighting against races between a reader that 1911 * could be on another CPU trying to swap its reader 1912 * page with the buffer head. 1913 * 1914 * We are also fighting against interrupts coming in and 1915 * moving the head or tail on us as well. 1916 * 1917 * If the next page is the head page then we have filled 1918 * the buffer, unless the commit page is still on the 1919 * reader page. 1920 */ 1921 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 1922 1923 /* 1924 * If the commit is not on the reader page, then 1925 * move the header page. 1926 */ 1927 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 1928 /* 1929 * If we are not in overwrite mode, 1930 * this is easy, just stop here. 1931 */ 1932 if (!(buffer->flags & RB_FL_OVERWRITE)) 1933 goto out_reset; 1934 1935 ret = rb_handle_head_page(cpu_buffer, 1936 tail_page, 1937 next_page); 1938 if (ret < 0) 1939 goto out_reset; 1940 if (ret) 1941 goto out_again; 1942 } else { 1943 /* 1944 * We need to be careful here too. The 1945 * commit page could still be on the reader 1946 * page. We could have a small buffer, and 1947 * have filled up the buffer with events 1948 * from interrupts and such, and wrapped. 1949 * 1950 * Note, if the tail page is also the on the 1951 * reader_page, we let it move out. 1952 */ 1953 if (unlikely((cpu_buffer->commit_page != 1954 cpu_buffer->tail_page) && 1955 (cpu_buffer->commit_page == 1956 cpu_buffer->reader_page))) { 1957 local_inc(&cpu_buffer->commit_overrun); 1958 goto out_reset; 1959 } 1960 } 1961 } 1962 1963 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 1964 if (ret) { 1965 /* 1966 * Nested commits always have zero deltas, so 1967 * just reread the time stamp 1968 */ 1969 ts = rb_time_stamp(buffer); 1970 next_page->page->time_stamp = ts; 1971 } 1972 1973 out_again: 1974 1975 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1976 1977 /* fail and let the caller try again */ 1978 return ERR_PTR(-EAGAIN); 1979 1980 out_reset: 1981 /* reset write */ 1982 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1983 1984 return NULL; 1985 } 1986 1987 static struct ring_buffer_event * 1988 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 1989 unsigned long length, u64 ts, 1990 u64 delta, int add_timestamp) 1991 { 1992 struct buffer_page *tail_page; 1993 struct ring_buffer_event *event; 1994 unsigned long tail, write; 1995 1996 /* 1997 * If the time delta since the last event is too big to 1998 * hold in the time field of the event, then we append a 1999 * TIME EXTEND event ahead of the data event. 2000 */ 2001 if (unlikely(add_timestamp)) 2002 length += RB_LEN_TIME_EXTEND; 2003 2004 tail_page = cpu_buffer->tail_page; 2005 write = local_add_return(length, &tail_page->write); 2006 2007 /* set write to only the index of the write */ 2008 write &= RB_WRITE_MASK; 2009 tail = write - length; 2010 2011 /* See if we shot pass the end of this buffer page */ 2012 if (unlikely(write > BUF_PAGE_SIZE)) 2013 return rb_move_tail(cpu_buffer, length, tail, 2014 tail_page, ts); 2015 2016 /* We reserved something on the buffer */ 2017 2018 event = __rb_page_index(tail_page, tail); 2019 kmemcheck_annotate_bitfield(event, bitfield); 2020 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2021 2022 local_inc(&tail_page->entries); 2023 2024 /* 2025 * If this is the first commit on the page, then update 2026 * its timestamp. 2027 */ 2028 if (!tail) 2029 tail_page->page->time_stamp = ts; 2030 2031 /* account for these added bytes */ 2032 local_add(length, &cpu_buffer->entries_bytes); 2033 2034 return event; 2035 } 2036 2037 static inline int 2038 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2039 struct ring_buffer_event *event) 2040 { 2041 unsigned long new_index, old_index; 2042 struct buffer_page *bpage; 2043 unsigned long index; 2044 unsigned long addr; 2045 2046 new_index = rb_event_index(event); 2047 old_index = new_index + rb_event_ts_length(event); 2048 addr = (unsigned long)event; 2049 addr &= PAGE_MASK; 2050 2051 bpage = cpu_buffer->tail_page; 2052 2053 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2054 unsigned long write_mask = 2055 local_read(&bpage->write) & ~RB_WRITE_MASK; 2056 unsigned long event_length = rb_event_length(event); 2057 /* 2058 * This is on the tail page. It is possible that 2059 * a write could come in and move the tail page 2060 * and write to the next page. That is fine 2061 * because we just shorten what is on this page. 2062 */ 2063 old_index += write_mask; 2064 new_index += write_mask; 2065 index = local_cmpxchg(&bpage->write, old_index, new_index); 2066 if (index == old_index) { 2067 /* update counters */ 2068 local_sub(event_length, &cpu_buffer->entries_bytes); 2069 return 1; 2070 } 2071 } 2072 2073 /* could not discard */ 2074 return 0; 2075 } 2076 2077 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2078 { 2079 local_inc(&cpu_buffer->committing); 2080 local_inc(&cpu_buffer->commits); 2081 } 2082 2083 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2084 { 2085 unsigned long commits; 2086 2087 if (RB_WARN_ON(cpu_buffer, 2088 !local_read(&cpu_buffer->committing))) 2089 return; 2090 2091 again: 2092 commits = local_read(&cpu_buffer->commits); 2093 /* synchronize with interrupts */ 2094 barrier(); 2095 if (local_read(&cpu_buffer->committing) == 1) 2096 rb_set_commit_to_write(cpu_buffer); 2097 2098 local_dec(&cpu_buffer->committing); 2099 2100 /* synchronize with interrupts */ 2101 barrier(); 2102 2103 /* 2104 * Need to account for interrupts coming in between the 2105 * updating of the commit page and the clearing of the 2106 * committing counter. 2107 */ 2108 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2109 !local_read(&cpu_buffer->committing)) { 2110 local_inc(&cpu_buffer->committing); 2111 goto again; 2112 } 2113 } 2114 2115 static struct ring_buffer_event * 2116 rb_reserve_next_event(struct ring_buffer *buffer, 2117 struct ring_buffer_per_cpu *cpu_buffer, 2118 unsigned long length) 2119 { 2120 struct ring_buffer_event *event; 2121 u64 ts, delta; 2122 int nr_loops = 0; 2123 int add_timestamp; 2124 u64 diff; 2125 2126 rb_start_commit(cpu_buffer); 2127 2128 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2129 /* 2130 * Due to the ability to swap a cpu buffer from a buffer 2131 * it is possible it was swapped before we committed. 2132 * (committing stops a swap). We check for it here and 2133 * if it happened, we have to fail the write. 2134 */ 2135 barrier(); 2136 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2137 local_dec(&cpu_buffer->committing); 2138 local_dec(&cpu_buffer->commits); 2139 return NULL; 2140 } 2141 #endif 2142 2143 length = rb_calculate_event_length(length); 2144 again: 2145 add_timestamp = 0; 2146 delta = 0; 2147 2148 /* 2149 * We allow for interrupts to reenter here and do a trace. 2150 * If one does, it will cause this original code to loop 2151 * back here. Even with heavy interrupts happening, this 2152 * should only happen a few times in a row. If this happens 2153 * 1000 times in a row, there must be either an interrupt 2154 * storm or we have something buggy. 2155 * Bail! 2156 */ 2157 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2158 goto out_fail; 2159 2160 ts = rb_time_stamp(cpu_buffer->buffer); 2161 diff = ts - cpu_buffer->write_stamp; 2162 2163 /* make sure this diff is calculated here */ 2164 barrier(); 2165 2166 /* Did the write stamp get updated already? */ 2167 if (likely(ts >= cpu_buffer->write_stamp)) { 2168 delta = diff; 2169 if (unlikely(test_time_stamp(delta))) { 2170 int local_clock_stable = 1; 2171 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2172 local_clock_stable = sched_clock_stable; 2173 #endif 2174 WARN_ONCE(delta > (1ULL << 59), 2175 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2176 (unsigned long long)delta, 2177 (unsigned long long)ts, 2178 (unsigned long long)cpu_buffer->write_stamp, 2179 local_clock_stable ? "" : 2180 "If you just came from a suspend/resume,\n" 2181 "please switch to the trace global clock:\n" 2182 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2183 add_timestamp = 1; 2184 } 2185 } 2186 2187 event = __rb_reserve_next(cpu_buffer, length, ts, 2188 delta, add_timestamp); 2189 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2190 goto again; 2191 2192 if (!event) 2193 goto out_fail; 2194 2195 return event; 2196 2197 out_fail: 2198 rb_end_commit(cpu_buffer); 2199 return NULL; 2200 } 2201 2202 #ifdef CONFIG_TRACING 2203 2204 #define TRACE_RECURSIVE_DEPTH 16 2205 2206 /* Keep this code out of the fast path cache */ 2207 static noinline void trace_recursive_fail(void) 2208 { 2209 /* Disable all tracing before we do anything else */ 2210 tracing_off_permanent(); 2211 2212 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2213 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2214 trace_recursion_buffer(), 2215 hardirq_count() >> HARDIRQ_SHIFT, 2216 softirq_count() >> SOFTIRQ_SHIFT, 2217 in_nmi()); 2218 2219 WARN_ON_ONCE(1); 2220 } 2221 2222 static inline int trace_recursive_lock(void) 2223 { 2224 trace_recursion_inc(); 2225 2226 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH)) 2227 return 0; 2228 2229 trace_recursive_fail(); 2230 2231 return -1; 2232 } 2233 2234 static inline void trace_recursive_unlock(void) 2235 { 2236 WARN_ON_ONCE(!trace_recursion_buffer()); 2237 2238 trace_recursion_dec(); 2239 } 2240 2241 #else 2242 2243 #define trace_recursive_lock() (0) 2244 #define trace_recursive_unlock() do { } while (0) 2245 2246 #endif 2247 2248 /** 2249 * ring_buffer_lock_reserve - reserve a part of the buffer 2250 * @buffer: the ring buffer to reserve from 2251 * @length: the length of the data to reserve (excluding event header) 2252 * 2253 * Returns a reseverd event on the ring buffer to copy directly to. 2254 * The user of this interface will need to get the body to write into 2255 * and can use the ring_buffer_event_data() interface. 2256 * 2257 * The length is the length of the data needed, not the event length 2258 * which also includes the event header. 2259 * 2260 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2261 * If NULL is returned, then nothing has been allocated or locked. 2262 */ 2263 struct ring_buffer_event * 2264 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2265 { 2266 struct ring_buffer_per_cpu *cpu_buffer; 2267 struct ring_buffer_event *event; 2268 int cpu; 2269 2270 if (ring_buffer_flags != RB_BUFFERS_ON) 2271 return NULL; 2272 2273 /* If we are tracing schedule, we don't want to recurse */ 2274 preempt_disable_notrace(); 2275 2276 if (atomic_read(&buffer->record_disabled)) 2277 goto out_nocheck; 2278 2279 if (trace_recursive_lock()) 2280 goto out_nocheck; 2281 2282 cpu = raw_smp_processor_id(); 2283 2284 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2285 goto out; 2286 2287 cpu_buffer = buffer->buffers[cpu]; 2288 2289 if (atomic_read(&cpu_buffer->record_disabled)) 2290 goto out; 2291 2292 if (length > BUF_MAX_DATA_SIZE) 2293 goto out; 2294 2295 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2296 if (!event) 2297 goto out; 2298 2299 return event; 2300 2301 out: 2302 trace_recursive_unlock(); 2303 2304 out_nocheck: 2305 preempt_enable_notrace(); 2306 return NULL; 2307 } 2308 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2309 2310 static void 2311 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2312 struct ring_buffer_event *event) 2313 { 2314 u64 delta; 2315 2316 /* 2317 * The event first in the commit queue updates the 2318 * time stamp. 2319 */ 2320 if (rb_event_is_commit(cpu_buffer, event)) { 2321 /* 2322 * A commit event that is first on a page 2323 * updates the write timestamp with the page stamp 2324 */ 2325 if (!rb_event_index(event)) 2326 cpu_buffer->write_stamp = 2327 cpu_buffer->commit_page->page->time_stamp; 2328 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2329 delta = event->array[0]; 2330 delta <<= TS_SHIFT; 2331 delta += event->time_delta; 2332 cpu_buffer->write_stamp += delta; 2333 } else 2334 cpu_buffer->write_stamp += event->time_delta; 2335 } 2336 } 2337 2338 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2339 struct ring_buffer_event *event) 2340 { 2341 local_inc(&cpu_buffer->entries); 2342 rb_update_write_stamp(cpu_buffer, event); 2343 rb_end_commit(cpu_buffer); 2344 } 2345 2346 /** 2347 * ring_buffer_unlock_commit - commit a reserved 2348 * @buffer: The buffer to commit to 2349 * @event: The event pointer to commit. 2350 * 2351 * This commits the data to the ring buffer, and releases any locks held. 2352 * 2353 * Must be paired with ring_buffer_lock_reserve. 2354 */ 2355 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2356 struct ring_buffer_event *event) 2357 { 2358 struct ring_buffer_per_cpu *cpu_buffer; 2359 int cpu = raw_smp_processor_id(); 2360 2361 cpu_buffer = buffer->buffers[cpu]; 2362 2363 rb_commit(cpu_buffer, event); 2364 2365 trace_recursive_unlock(); 2366 2367 preempt_enable_notrace(); 2368 2369 return 0; 2370 } 2371 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2372 2373 static inline void rb_event_discard(struct ring_buffer_event *event) 2374 { 2375 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2376 event = skip_time_extend(event); 2377 2378 /* array[0] holds the actual length for the discarded event */ 2379 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2380 event->type_len = RINGBUF_TYPE_PADDING; 2381 /* time delta must be non zero */ 2382 if (!event->time_delta) 2383 event->time_delta = 1; 2384 } 2385 2386 /* 2387 * Decrement the entries to the page that an event is on. 2388 * The event does not even need to exist, only the pointer 2389 * to the page it is on. This may only be called before the commit 2390 * takes place. 2391 */ 2392 static inline void 2393 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2394 struct ring_buffer_event *event) 2395 { 2396 unsigned long addr = (unsigned long)event; 2397 struct buffer_page *bpage = cpu_buffer->commit_page; 2398 struct buffer_page *start; 2399 2400 addr &= PAGE_MASK; 2401 2402 /* Do the likely case first */ 2403 if (likely(bpage->page == (void *)addr)) { 2404 local_dec(&bpage->entries); 2405 return; 2406 } 2407 2408 /* 2409 * Because the commit page may be on the reader page we 2410 * start with the next page and check the end loop there. 2411 */ 2412 rb_inc_page(cpu_buffer, &bpage); 2413 start = bpage; 2414 do { 2415 if (bpage->page == (void *)addr) { 2416 local_dec(&bpage->entries); 2417 return; 2418 } 2419 rb_inc_page(cpu_buffer, &bpage); 2420 } while (bpage != start); 2421 2422 /* commit not part of this buffer?? */ 2423 RB_WARN_ON(cpu_buffer, 1); 2424 } 2425 2426 /** 2427 * ring_buffer_commit_discard - discard an event that has not been committed 2428 * @buffer: the ring buffer 2429 * @event: non committed event to discard 2430 * 2431 * Sometimes an event that is in the ring buffer needs to be ignored. 2432 * This function lets the user discard an event in the ring buffer 2433 * and then that event will not be read later. 2434 * 2435 * This function only works if it is called before the the item has been 2436 * committed. It will try to free the event from the ring buffer 2437 * if another event has not been added behind it. 2438 * 2439 * If another event has been added behind it, it will set the event 2440 * up as discarded, and perform the commit. 2441 * 2442 * If this function is called, do not call ring_buffer_unlock_commit on 2443 * the event. 2444 */ 2445 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2446 struct ring_buffer_event *event) 2447 { 2448 struct ring_buffer_per_cpu *cpu_buffer; 2449 int cpu; 2450 2451 /* The event is discarded regardless */ 2452 rb_event_discard(event); 2453 2454 cpu = smp_processor_id(); 2455 cpu_buffer = buffer->buffers[cpu]; 2456 2457 /* 2458 * This must only be called if the event has not been 2459 * committed yet. Thus we can assume that preemption 2460 * is still disabled. 2461 */ 2462 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2463 2464 rb_decrement_entry(cpu_buffer, event); 2465 if (rb_try_to_discard(cpu_buffer, event)) 2466 goto out; 2467 2468 /* 2469 * The commit is still visible by the reader, so we 2470 * must still update the timestamp. 2471 */ 2472 rb_update_write_stamp(cpu_buffer, event); 2473 out: 2474 rb_end_commit(cpu_buffer); 2475 2476 trace_recursive_unlock(); 2477 2478 preempt_enable_notrace(); 2479 2480 } 2481 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2482 2483 /** 2484 * ring_buffer_write - write data to the buffer without reserving 2485 * @buffer: The ring buffer to write to. 2486 * @length: The length of the data being written (excluding the event header) 2487 * @data: The data to write to the buffer. 2488 * 2489 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2490 * one function. If you already have the data to write to the buffer, it 2491 * may be easier to simply call this function. 2492 * 2493 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2494 * and not the length of the event which would hold the header. 2495 */ 2496 int ring_buffer_write(struct ring_buffer *buffer, 2497 unsigned long length, 2498 void *data) 2499 { 2500 struct ring_buffer_per_cpu *cpu_buffer; 2501 struct ring_buffer_event *event; 2502 void *body; 2503 int ret = -EBUSY; 2504 int cpu; 2505 2506 if (ring_buffer_flags != RB_BUFFERS_ON) 2507 return -EBUSY; 2508 2509 preempt_disable_notrace(); 2510 2511 if (atomic_read(&buffer->record_disabled)) 2512 goto out; 2513 2514 cpu = raw_smp_processor_id(); 2515 2516 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2517 goto out; 2518 2519 cpu_buffer = buffer->buffers[cpu]; 2520 2521 if (atomic_read(&cpu_buffer->record_disabled)) 2522 goto out; 2523 2524 if (length > BUF_MAX_DATA_SIZE) 2525 goto out; 2526 2527 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2528 if (!event) 2529 goto out; 2530 2531 body = rb_event_data(event); 2532 2533 memcpy(body, data, length); 2534 2535 rb_commit(cpu_buffer, event); 2536 2537 ret = 0; 2538 out: 2539 preempt_enable_notrace(); 2540 2541 return ret; 2542 } 2543 EXPORT_SYMBOL_GPL(ring_buffer_write); 2544 2545 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2546 { 2547 struct buffer_page *reader = cpu_buffer->reader_page; 2548 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2549 struct buffer_page *commit = cpu_buffer->commit_page; 2550 2551 /* In case of error, head will be NULL */ 2552 if (unlikely(!head)) 2553 return 1; 2554 2555 return reader->read == rb_page_commit(reader) && 2556 (commit == reader || 2557 (commit == head && 2558 head->read == rb_page_commit(commit))); 2559 } 2560 2561 /** 2562 * ring_buffer_record_disable - stop all writes into the buffer 2563 * @buffer: The ring buffer to stop writes to. 2564 * 2565 * This prevents all writes to the buffer. Any attempt to write 2566 * to the buffer after this will fail and return NULL. 2567 * 2568 * The caller should call synchronize_sched() after this. 2569 */ 2570 void ring_buffer_record_disable(struct ring_buffer *buffer) 2571 { 2572 atomic_inc(&buffer->record_disabled); 2573 } 2574 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2575 2576 /** 2577 * ring_buffer_record_enable - enable writes to the buffer 2578 * @buffer: The ring buffer to enable writes 2579 * 2580 * Note, multiple disables will need the same number of enables 2581 * to truly enable the writing (much like preempt_disable). 2582 */ 2583 void ring_buffer_record_enable(struct ring_buffer *buffer) 2584 { 2585 atomic_dec(&buffer->record_disabled); 2586 } 2587 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2588 2589 /** 2590 * ring_buffer_record_off - stop all writes into the buffer 2591 * @buffer: The ring buffer to stop writes to. 2592 * 2593 * This prevents all writes to the buffer. Any attempt to write 2594 * to the buffer after this will fail and return NULL. 2595 * 2596 * This is different than ring_buffer_record_disable() as 2597 * it works like an on/off switch, where as the disable() verison 2598 * must be paired with a enable(). 2599 */ 2600 void ring_buffer_record_off(struct ring_buffer *buffer) 2601 { 2602 unsigned int rd; 2603 unsigned int new_rd; 2604 2605 do { 2606 rd = atomic_read(&buffer->record_disabled); 2607 new_rd = rd | RB_BUFFER_OFF; 2608 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2609 } 2610 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 2611 2612 /** 2613 * ring_buffer_record_on - restart writes into the buffer 2614 * @buffer: The ring buffer to start writes to. 2615 * 2616 * This enables all writes to the buffer that was disabled by 2617 * ring_buffer_record_off(). 2618 * 2619 * This is different than ring_buffer_record_enable() as 2620 * it works like an on/off switch, where as the enable() verison 2621 * must be paired with a disable(). 2622 */ 2623 void ring_buffer_record_on(struct ring_buffer *buffer) 2624 { 2625 unsigned int rd; 2626 unsigned int new_rd; 2627 2628 do { 2629 rd = atomic_read(&buffer->record_disabled); 2630 new_rd = rd & ~RB_BUFFER_OFF; 2631 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2632 } 2633 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 2634 2635 /** 2636 * ring_buffer_record_is_on - return true if the ring buffer can write 2637 * @buffer: The ring buffer to see if write is enabled 2638 * 2639 * Returns true if the ring buffer is in a state that it accepts writes. 2640 */ 2641 int ring_buffer_record_is_on(struct ring_buffer *buffer) 2642 { 2643 return !atomic_read(&buffer->record_disabled); 2644 } 2645 2646 /** 2647 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2648 * @buffer: The ring buffer to stop writes to. 2649 * @cpu: The CPU buffer to stop 2650 * 2651 * This prevents all writes to the buffer. Any attempt to write 2652 * to the buffer after this will fail and return NULL. 2653 * 2654 * The caller should call synchronize_sched() after this. 2655 */ 2656 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2657 { 2658 struct ring_buffer_per_cpu *cpu_buffer; 2659 2660 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2661 return; 2662 2663 cpu_buffer = buffer->buffers[cpu]; 2664 atomic_inc(&cpu_buffer->record_disabled); 2665 } 2666 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2667 2668 /** 2669 * ring_buffer_record_enable_cpu - enable writes to the buffer 2670 * @buffer: The ring buffer to enable writes 2671 * @cpu: The CPU to enable. 2672 * 2673 * Note, multiple disables will need the same number of enables 2674 * to truly enable the writing (much like preempt_disable). 2675 */ 2676 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2677 { 2678 struct ring_buffer_per_cpu *cpu_buffer; 2679 2680 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2681 return; 2682 2683 cpu_buffer = buffer->buffers[cpu]; 2684 atomic_dec(&cpu_buffer->record_disabled); 2685 } 2686 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2687 2688 /* 2689 * The total entries in the ring buffer is the running counter 2690 * of entries entered into the ring buffer, minus the sum of 2691 * the entries read from the ring buffer and the number of 2692 * entries that were overwritten. 2693 */ 2694 static inline unsigned long 2695 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 2696 { 2697 return local_read(&cpu_buffer->entries) - 2698 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 2699 } 2700 2701 /** 2702 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 2703 * @buffer: The ring buffer 2704 * @cpu: The per CPU buffer to read from. 2705 */ 2706 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 2707 { 2708 unsigned long flags; 2709 struct ring_buffer_per_cpu *cpu_buffer; 2710 struct buffer_page *bpage; 2711 unsigned long ret; 2712 2713 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2714 return 0; 2715 2716 cpu_buffer = buffer->buffers[cpu]; 2717 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2718 /* 2719 * if the tail is on reader_page, oldest time stamp is on the reader 2720 * page 2721 */ 2722 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2723 bpage = cpu_buffer->reader_page; 2724 else 2725 bpage = rb_set_head_page(cpu_buffer); 2726 ret = bpage->page->time_stamp; 2727 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2728 2729 return ret; 2730 } 2731 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 2732 2733 /** 2734 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 2735 * @buffer: The ring buffer 2736 * @cpu: The per CPU buffer to read from. 2737 */ 2738 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 2739 { 2740 struct ring_buffer_per_cpu *cpu_buffer; 2741 unsigned long ret; 2742 2743 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2744 return 0; 2745 2746 cpu_buffer = buffer->buffers[cpu]; 2747 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 2748 2749 return ret; 2750 } 2751 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 2752 2753 /** 2754 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2755 * @buffer: The ring buffer 2756 * @cpu: The per CPU buffer to get the entries from. 2757 */ 2758 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2759 { 2760 struct ring_buffer_per_cpu *cpu_buffer; 2761 2762 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2763 return 0; 2764 2765 cpu_buffer = buffer->buffers[cpu]; 2766 2767 return rb_num_of_entries(cpu_buffer); 2768 } 2769 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 2770 2771 /** 2772 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 2773 * @buffer: The ring buffer 2774 * @cpu: The per CPU buffer to get the number of overruns from 2775 */ 2776 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 2777 { 2778 struct ring_buffer_per_cpu *cpu_buffer; 2779 unsigned long ret; 2780 2781 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2782 return 0; 2783 2784 cpu_buffer = buffer->buffers[cpu]; 2785 ret = local_read(&cpu_buffer->overrun); 2786 2787 return ret; 2788 } 2789 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 2790 2791 /** 2792 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 2793 * @buffer: The ring buffer 2794 * @cpu: The per CPU buffer to get the number of overruns from 2795 */ 2796 unsigned long 2797 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 2798 { 2799 struct ring_buffer_per_cpu *cpu_buffer; 2800 unsigned long ret; 2801 2802 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2803 return 0; 2804 2805 cpu_buffer = buffer->buffers[cpu]; 2806 ret = local_read(&cpu_buffer->commit_overrun); 2807 2808 return ret; 2809 } 2810 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 2811 2812 /** 2813 * ring_buffer_entries - get the number of entries in a buffer 2814 * @buffer: The ring buffer 2815 * 2816 * Returns the total number of entries in the ring buffer 2817 * (all CPU entries) 2818 */ 2819 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 2820 { 2821 struct ring_buffer_per_cpu *cpu_buffer; 2822 unsigned long entries = 0; 2823 int cpu; 2824 2825 /* if you care about this being correct, lock the buffer */ 2826 for_each_buffer_cpu(buffer, cpu) { 2827 cpu_buffer = buffer->buffers[cpu]; 2828 entries += rb_num_of_entries(cpu_buffer); 2829 } 2830 2831 return entries; 2832 } 2833 EXPORT_SYMBOL_GPL(ring_buffer_entries); 2834 2835 /** 2836 * ring_buffer_overruns - get the number of overruns in buffer 2837 * @buffer: The ring buffer 2838 * 2839 * Returns the total number of overruns in the ring buffer 2840 * (all CPU entries) 2841 */ 2842 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 2843 { 2844 struct ring_buffer_per_cpu *cpu_buffer; 2845 unsigned long overruns = 0; 2846 int cpu; 2847 2848 /* if you care about this being correct, lock the buffer */ 2849 for_each_buffer_cpu(buffer, cpu) { 2850 cpu_buffer = buffer->buffers[cpu]; 2851 overruns += local_read(&cpu_buffer->overrun); 2852 } 2853 2854 return overruns; 2855 } 2856 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 2857 2858 static void rb_iter_reset(struct ring_buffer_iter *iter) 2859 { 2860 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2861 2862 /* Iterator usage is expected to have record disabled */ 2863 if (list_empty(&cpu_buffer->reader_page->list)) { 2864 iter->head_page = rb_set_head_page(cpu_buffer); 2865 if (unlikely(!iter->head_page)) 2866 return; 2867 iter->head = iter->head_page->read; 2868 } else { 2869 iter->head_page = cpu_buffer->reader_page; 2870 iter->head = cpu_buffer->reader_page->read; 2871 } 2872 if (iter->head) 2873 iter->read_stamp = cpu_buffer->read_stamp; 2874 else 2875 iter->read_stamp = iter->head_page->page->time_stamp; 2876 iter->cache_reader_page = cpu_buffer->reader_page; 2877 iter->cache_read = cpu_buffer->read; 2878 } 2879 2880 /** 2881 * ring_buffer_iter_reset - reset an iterator 2882 * @iter: The iterator to reset 2883 * 2884 * Resets the iterator, so that it will start from the beginning 2885 * again. 2886 */ 2887 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 2888 { 2889 struct ring_buffer_per_cpu *cpu_buffer; 2890 unsigned long flags; 2891 2892 if (!iter) 2893 return; 2894 2895 cpu_buffer = iter->cpu_buffer; 2896 2897 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2898 rb_iter_reset(iter); 2899 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2900 } 2901 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 2902 2903 /** 2904 * ring_buffer_iter_empty - check if an iterator has no more to read 2905 * @iter: The iterator to check 2906 */ 2907 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 2908 { 2909 struct ring_buffer_per_cpu *cpu_buffer; 2910 2911 cpu_buffer = iter->cpu_buffer; 2912 2913 return iter->head_page == cpu_buffer->commit_page && 2914 iter->head == rb_commit_index(cpu_buffer); 2915 } 2916 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 2917 2918 static void 2919 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2920 struct ring_buffer_event *event) 2921 { 2922 u64 delta; 2923 2924 switch (event->type_len) { 2925 case RINGBUF_TYPE_PADDING: 2926 return; 2927 2928 case RINGBUF_TYPE_TIME_EXTEND: 2929 delta = event->array[0]; 2930 delta <<= TS_SHIFT; 2931 delta += event->time_delta; 2932 cpu_buffer->read_stamp += delta; 2933 return; 2934 2935 case RINGBUF_TYPE_TIME_STAMP: 2936 /* FIXME: not implemented */ 2937 return; 2938 2939 case RINGBUF_TYPE_DATA: 2940 cpu_buffer->read_stamp += event->time_delta; 2941 return; 2942 2943 default: 2944 BUG(); 2945 } 2946 return; 2947 } 2948 2949 static void 2950 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 2951 struct ring_buffer_event *event) 2952 { 2953 u64 delta; 2954 2955 switch (event->type_len) { 2956 case RINGBUF_TYPE_PADDING: 2957 return; 2958 2959 case RINGBUF_TYPE_TIME_EXTEND: 2960 delta = event->array[0]; 2961 delta <<= TS_SHIFT; 2962 delta += event->time_delta; 2963 iter->read_stamp += delta; 2964 return; 2965 2966 case RINGBUF_TYPE_TIME_STAMP: 2967 /* FIXME: not implemented */ 2968 return; 2969 2970 case RINGBUF_TYPE_DATA: 2971 iter->read_stamp += event->time_delta; 2972 return; 2973 2974 default: 2975 BUG(); 2976 } 2977 return; 2978 } 2979 2980 static struct buffer_page * 2981 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 2982 { 2983 struct buffer_page *reader = NULL; 2984 unsigned long overwrite; 2985 unsigned long flags; 2986 int nr_loops = 0; 2987 int ret; 2988 2989 local_irq_save(flags); 2990 arch_spin_lock(&cpu_buffer->lock); 2991 2992 again: 2993 /* 2994 * This should normally only loop twice. But because the 2995 * start of the reader inserts an empty page, it causes 2996 * a case where we will loop three times. There should be no 2997 * reason to loop four times (that I know of). 2998 */ 2999 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3000 reader = NULL; 3001 goto out; 3002 } 3003 3004 reader = cpu_buffer->reader_page; 3005 3006 /* If there's more to read, return this page */ 3007 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3008 goto out; 3009 3010 /* Never should we have an index greater than the size */ 3011 if (RB_WARN_ON(cpu_buffer, 3012 cpu_buffer->reader_page->read > rb_page_size(reader))) 3013 goto out; 3014 3015 /* check if we caught up to the tail */ 3016 reader = NULL; 3017 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3018 goto out; 3019 3020 /* 3021 * Reset the reader page to size zero. 3022 */ 3023 local_set(&cpu_buffer->reader_page->write, 0); 3024 local_set(&cpu_buffer->reader_page->entries, 0); 3025 local_set(&cpu_buffer->reader_page->page->commit, 0); 3026 cpu_buffer->reader_page->real_end = 0; 3027 3028 spin: 3029 /* 3030 * Splice the empty reader page into the list around the head. 3031 */ 3032 reader = rb_set_head_page(cpu_buffer); 3033 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3034 cpu_buffer->reader_page->list.prev = reader->list.prev; 3035 3036 /* 3037 * cpu_buffer->pages just needs to point to the buffer, it 3038 * has no specific buffer page to point to. Lets move it out 3039 * of our way so we don't accidentally swap it. 3040 */ 3041 cpu_buffer->pages = reader->list.prev; 3042 3043 /* The reader page will be pointing to the new head */ 3044 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3045 3046 /* 3047 * We want to make sure we read the overruns after we set up our 3048 * pointers to the next object. The writer side does a 3049 * cmpxchg to cross pages which acts as the mb on the writer 3050 * side. Note, the reader will constantly fail the swap 3051 * while the writer is updating the pointers, so this 3052 * guarantees that the overwrite recorded here is the one we 3053 * want to compare with the last_overrun. 3054 */ 3055 smp_mb(); 3056 overwrite = local_read(&(cpu_buffer->overrun)); 3057 3058 /* 3059 * Here's the tricky part. 3060 * 3061 * We need to move the pointer past the header page. 3062 * But we can only do that if a writer is not currently 3063 * moving it. The page before the header page has the 3064 * flag bit '1' set if it is pointing to the page we want. 3065 * but if the writer is in the process of moving it 3066 * than it will be '2' or already moved '0'. 3067 */ 3068 3069 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3070 3071 /* 3072 * If we did not convert it, then we must try again. 3073 */ 3074 if (!ret) 3075 goto spin; 3076 3077 /* 3078 * Yeah! We succeeded in replacing the page. 3079 * 3080 * Now make the new head point back to the reader page. 3081 */ 3082 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3083 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3084 3085 /* Finally update the reader page to the new head */ 3086 cpu_buffer->reader_page = reader; 3087 rb_reset_reader_page(cpu_buffer); 3088 3089 if (overwrite != cpu_buffer->last_overrun) { 3090 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3091 cpu_buffer->last_overrun = overwrite; 3092 } 3093 3094 goto again; 3095 3096 out: 3097 arch_spin_unlock(&cpu_buffer->lock); 3098 local_irq_restore(flags); 3099 3100 return reader; 3101 } 3102 3103 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3104 { 3105 struct ring_buffer_event *event; 3106 struct buffer_page *reader; 3107 unsigned length; 3108 3109 reader = rb_get_reader_page(cpu_buffer); 3110 3111 /* This function should not be called when buffer is empty */ 3112 if (RB_WARN_ON(cpu_buffer, !reader)) 3113 return; 3114 3115 event = rb_reader_event(cpu_buffer); 3116 3117 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3118 cpu_buffer->read++; 3119 3120 rb_update_read_stamp(cpu_buffer, event); 3121 3122 length = rb_event_length(event); 3123 cpu_buffer->reader_page->read += length; 3124 } 3125 3126 static void rb_advance_iter(struct ring_buffer_iter *iter) 3127 { 3128 struct ring_buffer_per_cpu *cpu_buffer; 3129 struct ring_buffer_event *event; 3130 unsigned length; 3131 3132 cpu_buffer = iter->cpu_buffer; 3133 3134 /* 3135 * Check if we are at the end of the buffer. 3136 */ 3137 if (iter->head >= rb_page_size(iter->head_page)) { 3138 /* discarded commits can make the page empty */ 3139 if (iter->head_page == cpu_buffer->commit_page) 3140 return; 3141 rb_inc_iter(iter); 3142 return; 3143 } 3144 3145 event = rb_iter_head_event(iter); 3146 3147 length = rb_event_length(event); 3148 3149 /* 3150 * This should not be called to advance the header if we are 3151 * at the tail of the buffer. 3152 */ 3153 if (RB_WARN_ON(cpu_buffer, 3154 (iter->head_page == cpu_buffer->commit_page) && 3155 (iter->head + length > rb_commit_index(cpu_buffer)))) 3156 return; 3157 3158 rb_update_iter_read_stamp(iter, event); 3159 3160 iter->head += length; 3161 3162 /* check for end of page padding */ 3163 if ((iter->head >= rb_page_size(iter->head_page)) && 3164 (iter->head_page != cpu_buffer->commit_page)) 3165 rb_advance_iter(iter); 3166 } 3167 3168 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3169 { 3170 return cpu_buffer->lost_events; 3171 } 3172 3173 static struct ring_buffer_event * 3174 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3175 unsigned long *lost_events) 3176 { 3177 struct ring_buffer_event *event; 3178 struct buffer_page *reader; 3179 int nr_loops = 0; 3180 3181 again: 3182 /* 3183 * We repeat when a time extend is encountered. 3184 * Since the time extend is always attached to a data event, 3185 * we should never loop more than once. 3186 * (We never hit the following condition more than twice). 3187 */ 3188 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3189 return NULL; 3190 3191 reader = rb_get_reader_page(cpu_buffer); 3192 if (!reader) 3193 return NULL; 3194 3195 event = rb_reader_event(cpu_buffer); 3196 3197 switch (event->type_len) { 3198 case RINGBUF_TYPE_PADDING: 3199 if (rb_null_event(event)) 3200 RB_WARN_ON(cpu_buffer, 1); 3201 /* 3202 * Because the writer could be discarding every 3203 * event it creates (which would probably be bad) 3204 * if we were to go back to "again" then we may never 3205 * catch up, and will trigger the warn on, or lock 3206 * the box. Return the padding, and we will release 3207 * the current locks, and try again. 3208 */ 3209 return event; 3210 3211 case RINGBUF_TYPE_TIME_EXTEND: 3212 /* Internal data, OK to advance */ 3213 rb_advance_reader(cpu_buffer); 3214 goto again; 3215 3216 case RINGBUF_TYPE_TIME_STAMP: 3217 /* FIXME: not implemented */ 3218 rb_advance_reader(cpu_buffer); 3219 goto again; 3220 3221 case RINGBUF_TYPE_DATA: 3222 if (ts) { 3223 *ts = cpu_buffer->read_stamp + event->time_delta; 3224 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3225 cpu_buffer->cpu, ts); 3226 } 3227 if (lost_events) 3228 *lost_events = rb_lost_events(cpu_buffer); 3229 return event; 3230 3231 default: 3232 BUG(); 3233 } 3234 3235 return NULL; 3236 } 3237 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3238 3239 static struct ring_buffer_event * 3240 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3241 { 3242 struct ring_buffer *buffer; 3243 struct ring_buffer_per_cpu *cpu_buffer; 3244 struct ring_buffer_event *event; 3245 int nr_loops = 0; 3246 3247 cpu_buffer = iter->cpu_buffer; 3248 buffer = cpu_buffer->buffer; 3249 3250 /* 3251 * Check if someone performed a consuming read to 3252 * the buffer. A consuming read invalidates the iterator 3253 * and we need to reset the iterator in this case. 3254 */ 3255 if (unlikely(iter->cache_read != cpu_buffer->read || 3256 iter->cache_reader_page != cpu_buffer->reader_page)) 3257 rb_iter_reset(iter); 3258 3259 again: 3260 if (ring_buffer_iter_empty(iter)) 3261 return NULL; 3262 3263 /* 3264 * We repeat when a time extend is encountered. 3265 * Since the time extend is always attached to a data event, 3266 * we should never loop more than once. 3267 * (We never hit the following condition more than twice). 3268 */ 3269 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3270 return NULL; 3271 3272 if (rb_per_cpu_empty(cpu_buffer)) 3273 return NULL; 3274 3275 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3276 rb_inc_iter(iter); 3277 goto again; 3278 } 3279 3280 event = rb_iter_head_event(iter); 3281 3282 switch (event->type_len) { 3283 case RINGBUF_TYPE_PADDING: 3284 if (rb_null_event(event)) { 3285 rb_inc_iter(iter); 3286 goto again; 3287 } 3288 rb_advance_iter(iter); 3289 return event; 3290 3291 case RINGBUF_TYPE_TIME_EXTEND: 3292 /* Internal data, OK to advance */ 3293 rb_advance_iter(iter); 3294 goto again; 3295 3296 case RINGBUF_TYPE_TIME_STAMP: 3297 /* FIXME: not implemented */ 3298 rb_advance_iter(iter); 3299 goto again; 3300 3301 case RINGBUF_TYPE_DATA: 3302 if (ts) { 3303 *ts = iter->read_stamp + event->time_delta; 3304 ring_buffer_normalize_time_stamp(buffer, 3305 cpu_buffer->cpu, ts); 3306 } 3307 return event; 3308 3309 default: 3310 BUG(); 3311 } 3312 3313 return NULL; 3314 } 3315 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3316 3317 static inline int rb_ok_to_lock(void) 3318 { 3319 /* 3320 * If an NMI die dumps out the content of the ring buffer 3321 * do not grab locks. We also permanently disable the ring 3322 * buffer too. A one time deal is all you get from reading 3323 * the ring buffer from an NMI. 3324 */ 3325 if (likely(!in_nmi())) 3326 return 1; 3327 3328 tracing_off_permanent(); 3329 return 0; 3330 } 3331 3332 /** 3333 * ring_buffer_peek - peek at the next event to be read 3334 * @buffer: The ring buffer to read 3335 * @cpu: The cpu to peak at 3336 * @ts: The timestamp counter of this event. 3337 * @lost_events: a variable to store if events were lost (may be NULL) 3338 * 3339 * This will return the event that will be read next, but does 3340 * not consume the data. 3341 */ 3342 struct ring_buffer_event * 3343 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3344 unsigned long *lost_events) 3345 { 3346 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3347 struct ring_buffer_event *event; 3348 unsigned long flags; 3349 int dolock; 3350 3351 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3352 return NULL; 3353 3354 dolock = rb_ok_to_lock(); 3355 again: 3356 local_irq_save(flags); 3357 if (dolock) 3358 raw_spin_lock(&cpu_buffer->reader_lock); 3359 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3360 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3361 rb_advance_reader(cpu_buffer); 3362 if (dolock) 3363 raw_spin_unlock(&cpu_buffer->reader_lock); 3364 local_irq_restore(flags); 3365 3366 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3367 goto again; 3368 3369 return event; 3370 } 3371 3372 /** 3373 * ring_buffer_iter_peek - peek at the next event to be read 3374 * @iter: The ring buffer iterator 3375 * @ts: The timestamp counter of this event. 3376 * 3377 * This will return the event that will be read next, but does 3378 * not increment the iterator. 3379 */ 3380 struct ring_buffer_event * 3381 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3382 { 3383 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3384 struct ring_buffer_event *event; 3385 unsigned long flags; 3386 3387 again: 3388 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3389 event = rb_iter_peek(iter, ts); 3390 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3391 3392 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3393 goto again; 3394 3395 return event; 3396 } 3397 3398 /** 3399 * ring_buffer_consume - return an event and consume it 3400 * @buffer: The ring buffer to get the next event from 3401 * @cpu: the cpu to read the buffer from 3402 * @ts: a variable to store the timestamp (may be NULL) 3403 * @lost_events: a variable to store if events were lost (may be NULL) 3404 * 3405 * Returns the next event in the ring buffer, and that event is consumed. 3406 * Meaning, that sequential reads will keep returning a different event, 3407 * and eventually empty the ring buffer if the producer is slower. 3408 */ 3409 struct ring_buffer_event * 3410 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3411 unsigned long *lost_events) 3412 { 3413 struct ring_buffer_per_cpu *cpu_buffer; 3414 struct ring_buffer_event *event = NULL; 3415 unsigned long flags; 3416 int dolock; 3417 3418 dolock = rb_ok_to_lock(); 3419 3420 again: 3421 /* might be called in atomic */ 3422 preempt_disable(); 3423 3424 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3425 goto out; 3426 3427 cpu_buffer = buffer->buffers[cpu]; 3428 local_irq_save(flags); 3429 if (dolock) 3430 raw_spin_lock(&cpu_buffer->reader_lock); 3431 3432 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3433 if (event) { 3434 cpu_buffer->lost_events = 0; 3435 rb_advance_reader(cpu_buffer); 3436 } 3437 3438 if (dolock) 3439 raw_spin_unlock(&cpu_buffer->reader_lock); 3440 local_irq_restore(flags); 3441 3442 out: 3443 preempt_enable(); 3444 3445 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3446 goto again; 3447 3448 return event; 3449 } 3450 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3451 3452 /** 3453 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3454 * @buffer: The ring buffer to read from 3455 * @cpu: The cpu buffer to iterate over 3456 * 3457 * This performs the initial preparations necessary to iterate 3458 * through the buffer. Memory is allocated, buffer recording 3459 * is disabled, and the iterator pointer is returned to the caller. 3460 * 3461 * Disabling buffer recordng prevents the reading from being 3462 * corrupted. This is not a consuming read, so a producer is not 3463 * expected. 3464 * 3465 * After a sequence of ring_buffer_read_prepare calls, the user is 3466 * expected to make at least one call to ring_buffer_prepare_sync. 3467 * Afterwards, ring_buffer_read_start is invoked to get things going 3468 * for real. 3469 * 3470 * This overall must be paired with ring_buffer_finish. 3471 */ 3472 struct ring_buffer_iter * 3473 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3474 { 3475 struct ring_buffer_per_cpu *cpu_buffer; 3476 struct ring_buffer_iter *iter; 3477 3478 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3479 return NULL; 3480 3481 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3482 if (!iter) 3483 return NULL; 3484 3485 cpu_buffer = buffer->buffers[cpu]; 3486 3487 iter->cpu_buffer = cpu_buffer; 3488 3489 atomic_inc(&cpu_buffer->record_disabled); 3490 3491 return iter; 3492 } 3493 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3494 3495 /** 3496 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3497 * 3498 * All previously invoked ring_buffer_read_prepare calls to prepare 3499 * iterators will be synchronized. Afterwards, read_buffer_read_start 3500 * calls on those iterators are allowed. 3501 */ 3502 void 3503 ring_buffer_read_prepare_sync(void) 3504 { 3505 synchronize_sched(); 3506 } 3507 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3508 3509 /** 3510 * ring_buffer_read_start - start a non consuming read of the buffer 3511 * @iter: The iterator returned by ring_buffer_read_prepare 3512 * 3513 * This finalizes the startup of an iteration through the buffer. 3514 * The iterator comes from a call to ring_buffer_read_prepare and 3515 * an intervening ring_buffer_read_prepare_sync must have been 3516 * performed. 3517 * 3518 * Must be paired with ring_buffer_finish. 3519 */ 3520 void 3521 ring_buffer_read_start(struct ring_buffer_iter *iter) 3522 { 3523 struct ring_buffer_per_cpu *cpu_buffer; 3524 unsigned long flags; 3525 3526 if (!iter) 3527 return; 3528 3529 cpu_buffer = iter->cpu_buffer; 3530 3531 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3532 arch_spin_lock(&cpu_buffer->lock); 3533 rb_iter_reset(iter); 3534 arch_spin_unlock(&cpu_buffer->lock); 3535 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3536 } 3537 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3538 3539 /** 3540 * ring_buffer_finish - finish reading the iterator of the buffer 3541 * @iter: The iterator retrieved by ring_buffer_start 3542 * 3543 * This re-enables the recording to the buffer, and frees the 3544 * iterator. 3545 */ 3546 void 3547 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3548 { 3549 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3550 3551 atomic_dec(&cpu_buffer->record_disabled); 3552 kfree(iter); 3553 } 3554 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3555 3556 /** 3557 * ring_buffer_read - read the next item in the ring buffer by the iterator 3558 * @iter: The ring buffer iterator 3559 * @ts: The time stamp of the event read. 3560 * 3561 * This reads the next event in the ring buffer and increments the iterator. 3562 */ 3563 struct ring_buffer_event * 3564 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3565 { 3566 struct ring_buffer_event *event; 3567 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3568 unsigned long flags; 3569 3570 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3571 again: 3572 event = rb_iter_peek(iter, ts); 3573 if (!event) 3574 goto out; 3575 3576 if (event->type_len == RINGBUF_TYPE_PADDING) 3577 goto again; 3578 3579 rb_advance_iter(iter); 3580 out: 3581 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3582 3583 return event; 3584 } 3585 EXPORT_SYMBOL_GPL(ring_buffer_read); 3586 3587 /** 3588 * ring_buffer_size - return the size of the ring buffer (in bytes) 3589 * @buffer: The ring buffer. 3590 */ 3591 unsigned long ring_buffer_size(struct ring_buffer *buffer) 3592 { 3593 return BUF_PAGE_SIZE * buffer->pages; 3594 } 3595 EXPORT_SYMBOL_GPL(ring_buffer_size); 3596 3597 static void 3598 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3599 { 3600 rb_head_page_deactivate(cpu_buffer); 3601 3602 cpu_buffer->head_page 3603 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3604 local_set(&cpu_buffer->head_page->write, 0); 3605 local_set(&cpu_buffer->head_page->entries, 0); 3606 local_set(&cpu_buffer->head_page->page->commit, 0); 3607 3608 cpu_buffer->head_page->read = 0; 3609 3610 cpu_buffer->tail_page = cpu_buffer->head_page; 3611 cpu_buffer->commit_page = cpu_buffer->head_page; 3612 3613 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3614 local_set(&cpu_buffer->reader_page->write, 0); 3615 local_set(&cpu_buffer->reader_page->entries, 0); 3616 local_set(&cpu_buffer->reader_page->page->commit, 0); 3617 cpu_buffer->reader_page->read = 0; 3618 3619 local_set(&cpu_buffer->commit_overrun, 0); 3620 local_set(&cpu_buffer->entries_bytes, 0); 3621 local_set(&cpu_buffer->overrun, 0); 3622 local_set(&cpu_buffer->entries, 0); 3623 local_set(&cpu_buffer->committing, 0); 3624 local_set(&cpu_buffer->commits, 0); 3625 cpu_buffer->read = 0; 3626 cpu_buffer->read_bytes = 0; 3627 3628 cpu_buffer->write_stamp = 0; 3629 cpu_buffer->read_stamp = 0; 3630 3631 cpu_buffer->lost_events = 0; 3632 cpu_buffer->last_overrun = 0; 3633 3634 rb_head_page_activate(cpu_buffer); 3635 } 3636 3637 /** 3638 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3639 * @buffer: The ring buffer to reset a per cpu buffer of 3640 * @cpu: The CPU buffer to be reset 3641 */ 3642 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3643 { 3644 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3645 unsigned long flags; 3646 3647 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3648 return; 3649 3650 atomic_inc(&cpu_buffer->record_disabled); 3651 3652 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3653 3654 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3655 goto out; 3656 3657 arch_spin_lock(&cpu_buffer->lock); 3658 3659 rb_reset_cpu(cpu_buffer); 3660 3661 arch_spin_unlock(&cpu_buffer->lock); 3662 3663 out: 3664 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3665 3666 atomic_dec(&cpu_buffer->record_disabled); 3667 } 3668 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3669 3670 /** 3671 * ring_buffer_reset - reset a ring buffer 3672 * @buffer: The ring buffer to reset all cpu buffers 3673 */ 3674 void ring_buffer_reset(struct ring_buffer *buffer) 3675 { 3676 int cpu; 3677 3678 for_each_buffer_cpu(buffer, cpu) 3679 ring_buffer_reset_cpu(buffer, cpu); 3680 } 3681 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3682 3683 /** 3684 * rind_buffer_empty - is the ring buffer empty? 3685 * @buffer: The ring buffer to test 3686 */ 3687 int ring_buffer_empty(struct ring_buffer *buffer) 3688 { 3689 struct ring_buffer_per_cpu *cpu_buffer; 3690 unsigned long flags; 3691 int dolock; 3692 int cpu; 3693 int ret; 3694 3695 dolock = rb_ok_to_lock(); 3696 3697 /* yes this is racy, but if you don't like the race, lock the buffer */ 3698 for_each_buffer_cpu(buffer, cpu) { 3699 cpu_buffer = buffer->buffers[cpu]; 3700 local_irq_save(flags); 3701 if (dolock) 3702 raw_spin_lock(&cpu_buffer->reader_lock); 3703 ret = rb_per_cpu_empty(cpu_buffer); 3704 if (dolock) 3705 raw_spin_unlock(&cpu_buffer->reader_lock); 3706 local_irq_restore(flags); 3707 3708 if (!ret) 3709 return 0; 3710 } 3711 3712 return 1; 3713 } 3714 EXPORT_SYMBOL_GPL(ring_buffer_empty); 3715 3716 /** 3717 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 3718 * @buffer: The ring buffer 3719 * @cpu: The CPU buffer to test 3720 */ 3721 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 3722 { 3723 struct ring_buffer_per_cpu *cpu_buffer; 3724 unsigned long flags; 3725 int dolock; 3726 int ret; 3727 3728 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3729 return 1; 3730 3731 dolock = rb_ok_to_lock(); 3732 3733 cpu_buffer = buffer->buffers[cpu]; 3734 local_irq_save(flags); 3735 if (dolock) 3736 raw_spin_lock(&cpu_buffer->reader_lock); 3737 ret = rb_per_cpu_empty(cpu_buffer); 3738 if (dolock) 3739 raw_spin_unlock(&cpu_buffer->reader_lock); 3740 local_irq_restore(flags); 3741 3742 return ret; 3743 } 3744 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3745 3746 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3747 /** 3748 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3749 * @buffer_a: One buffer to swap with 3750 * @buffer_b: The other buffer to swap with 3751 * 3752 * This function is useful for tracers that want to take a "snapshot" 3753 * of a CPU buffer and has another back up buffer lying around. 3754 * it is expected that the tracer handles the cpu buffer not being 3755 * used at the moment. 3756 */ 3757 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 3758 struct ring_buffer *buffer_b, int cpu) 3759 { 3760 struct ring_buffer_per_cpu *cpu_buffer_a; 3761 struct ring_buffer_per_cpu *cpu_buffer_b; 3762 int ret = -EINVAL; 3763 3764 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 3765 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 3766 goto out; 3767 3768 /* At least make sure the two buffers are somewhat the same */ 3769 if (buffer_a->pages != buffer_b->pages) 3770 goto out; 3771 3772 ret = -EAGAIN; 3773 3774 if (ring_buffer_flags != RB_BUFFERS_ON) 3775 goto out; 3776 3777 if (atomic_read(&buffer_a->record_disabled)) 3778 goto out; 3779 3780 if (atomic_read(&buffer_b->record_disabled)) 3781 goto out; 3782 3783 cpu_buffer_a = buffer_a->buffers[cpu]; 3784 cpu_buffer_b = buffer_b->buffers[cpu]; 3785 3786 if (atomic_read(&cpu_buffer_a->record_disabled)) 3787 goto out; 3788 3789 if (atomic_read(&cpu_buffer_b->record_disabled)) 3790 goto out; 3791 3792 /* 3793 * We can't do a synchronize_sched here because this 3794 * function can be called in atomic context. 3795 * Normally this will be called from the same CPU as cpu. 3796 * If not it's up to the caller to protect this. 3797 */ 3798 atomic_inc(&cpu_buffer_a->record_disabled); 3799 atomic_inc(&cpu_buffer_b->record_disabled); 3800 3801 ret = -EBUSY; 3802 if (local_read(&cpu_buffer_a->committing)) 3803 goto out_dec; 3804 if (local_read(&cpu_buffer_b->committing)) 3805 goto out_dec; 3806 3807 buffer_a->buffers[cpu] = cpu_buffer_b; 3808 buffer_b->buffers[cpu] = cpu_buffer_a; 3809 3810 cpu_buffer_b->buffer = buffer_a; 3811 cpu_buffer_a->buffer = buffer_b; 3812 3813 ret = 0; 3814 3815 out_dec: 3816 atomic_dec(&cpu_buffer_a->record_disabled); 3817 atomic_dec(&cpu_buffer_b->record_disabled); 3818 out: 3819 return ret; 3820 } 3821 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 3822 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 3823 3824 /** 3825 * ring_buffer_alloc_read_page - allocate a page to read from buffer 3826 * @buffer: the buffer to allocate for. 3827 * 3828 * This function is used in conjunction with ring_buffer_read_page. 3829 * When reading a full page from the ring buffer, these functions 3830 * can be used to speed up the process. The calling function should 3831 * allocate a few pages first with this function. Then when it 3832 * needs to get pages from the ring buffer, it passes the result 3833 * of this function into ring_buffer_read_page, which will swap 3834 * the page that was allocated, with the read page of the buffer. 3835 * 3836 * Returns: 3837 * The page allocated, or NULL on error. 3838 */ 3839 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 3840 { 3841 struct buffer_data_page *bpage; 3842 struct page *page; 3843 3844 page = alloc_pages_node(cpu_to_node(cpu), 3845 GFP_KERNEL | __GFP_NORETRY, 0); 3846 if (!page) 3847 return NULL; 3848 3849 bpage = page_address(page); 3850 3851 rb_init_page(bpage); 3852 3853 return bpage; 3854 } 3855 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 3856 3857 /** 3858 * ring_buffer_free_read_page - free an allocated read page 3859 * @buffer: the buffer the page was allocate for 3860 * @data: the page to free 3861 * 3862 * Free a page allocated from ring_buffer_alloc_read_page. 3863 */ 3864 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 3865 { 3866 free_page((unsigned long)data); 3867 } 3868 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 3869 3870 /** 3871 * ring_buffer_read_page - extract a page from the ring buffer 3872 * @buffer: buffer to extract from 3873 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 3874 * @len: amount to extract 3875 * @cpu: the cpu of the buffer to extract 3876 * @full: should the extraction only happen when the page is full. 3877 * 3878 * This function will pull out a page from the ring buffer and consume it. 3879 * @data_page must be the address of the variable that was returned 3880 * from ring_buffer_alloc_read_page. This is because the page might be used 3881 * to swap with a page in the ring buffer. 3882 * 3883 * for example: 3884 * rpage = ring_buffer_alloc_read_page(buffer); 3885 * if (!rpage) 3886 * return error; 3887 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 3888 * if (ret >= 0) 3889 * process_page(rpage, ret); 3890 * 3891 * When @full is set, the function will not return true unless 3892 * the writer is off the reader page. 3893 * 3894 * Note: it is up to the calling functions to handle sleeps and wakeups. 3895 * The ring buffer can be used anywhere in the kernel and can not 3896 * blindly call wake_up. The layer that uses the ring buffer must be 3897 * responsible for that. 3898 * 3899 * Returns: 3900 * >=0 if data has been transferred, returns the offset of consumed data. 3901 * <0 if no data has been transferred. 3902 */ 3903 int ring_buffer_read_page(struct ring_buffer *buffer, 3904 void **data_page, size_t len, int cpu, int full) 3905 { 3906 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3907 struct ring_buffer_event *event; 3908 struct buffer_data_page *bpage; 3909 struct buffer_page *reader; 3910 unsigned long missed_events; 3911 unsigned long flags; 3912 unsigned int commit; 3913 unsigned int read; 3914 u64 save_timestamp; 3915 int ret = -1; 3916 3917 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3918 goto out; 3919 3920 /* 3921 * If len is not big enough to hold the page header, then 3922 * we can not copy anything. 3923 */ 3924 if (len <= BUF_PAGE_HDR_SIZE) 3925 goto out; 3926 3927 len -= BUF_PAGE_HDR_SIZE; 3928 3929 if (!data_page) 3930 goto out; 3931 3932 bpage = *data_page; 3933 if (!bpage) 3934 goto out; 3935 3936 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3937 3938 reader = rb_get_reader_page(cpu_buffer); 3939 if (!reader) 3940 goto out_unlock; 3941 3942 event = rb_reader_event(cpu_buffer); 3943 3944 read = reader->read; 3945 commit = rb_page_commit(reader); 3946 3947 /* Check if any events were dropped */ 3948 missed_events = cpu_buffer->lost_events; 3949 3950 /* 3951 * If this page has been partially read or 3952 * if len is not big enough to read the rest of the page or 3953 * a writer is still on the page, then 3954 * we must copy the data from the page to the buffer. 3955 * Otherwise, we can simply swap the page with the one passed in. 3956 */ 3957 if (read || (len < (commit - read)) || 3958 cpu_buffer->reader_page == cpu_buffer->commit_page) { 3959 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 3960 unsigned int rpos = read; 3961 unsigned int pos = 0; 3962 unsigned int size; 3963 3964 if (full) 3965 goto out_unlock; 3966 3967 if (len > (commit - read)) 3968 len = (commit - read); 3969 3970 /* Always keep the time extend and data together */ 3971 size = rb_event_ts_length(event); 3972 3973 if (len < size) 3974 goto out_unlock; 3975 3976 /* save the current timestamp, since the user will need it */ 3977 save_timestamp = cpu_buffer->read_stamp; 3978 3979 /* Need to copy one event at a time */ 3980 do { 3981 /* We need the size of one event, because 3982 * rb_advance_reader only advances by one event, 3983 * whereas rb_event_ts_length may include the size of 3984 * one or two events. 3985 * We have already ensured there's enough space if this 3986 * is a time extend. */ 3987 size = rb_event_length(event); 3988 memcpy(bpage->data + pos, rpage->data + rpos, size); 3989 3990 len -= size; 3991 3992 rb_advance_reader(cpu_buffer); 3993 rpos = reader->read; 3994 pos += size; 3995 3996 if (rpos >= commit) 3997 break; 3998 3999 event = rb_reader_event(cpu_buffer); 4000 /* Always keep the time extend and data together */ 4001 size = rb_event_ts_length(event); 4002 } while (len >= size); 4003 4004 /* update bpage */ 4005 local_set(&bpage->commit, pos); 4006 bpage->time_stamp = save_timestamp; 4007 4008 /* we copied everything to the beginning */ 4009 read = 0; 4010 } else { 4011 /* update the entry counter */ 4012 cpu_buffer->read += rb_page_entries(reader); 4013 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4014 4015 /* swap the pages */ 4016 rb_init_page(bpage); 4017 bpage = reader->page; 4018 reader->page = *data_page; 4019 local_set(&reader->write, 0); 4020 local_set(&reader->entries, 0); 4021 reader->read = 0; 4022 *data_page = bpage; 4023 4024 /* 4025 * Use the real_end for the data size, 4026 * This gives us a chance to store the lost events 4027 * on the page. 4028 */ 4029 if (reader->real_end) 4030 local_set(&bpage->commit, reader->real_end); 4031 } 4032 ret = read; 4033 4034 cpu_buffer->lost_events = 0; 4035 4036 commit = local_read(&bpage->commit); 4037 /* 4038 * Set a flag in the commit field if we lost events 4039 */ 4040 if (missed_events) { 4041 /* If there is room at the end of the page to save the 4042 * missed events, then record it there. 4043 */ 4044 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4045 memcpy(&bpage->data[commit], &missed_events, 4046 sizeof(missed_events)); 4047 local_add(RB_MISSED_STORED, &bpage->commit); 4048 commit += sizeof(missed_events); 4049 } 4050 local_add(RB_MISSED_EVENTS, &bpage->commit); 4051 } 4052 4053 /* 4054 * This page may be off to user land. Zero it out here. 4055 */ 4056 if (commit < BUF_PAGE_SIZE) 4057 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4058 4059 out_unlock: 4060 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4061 4062 out: 4063 return ret; 4064 } 4065 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4066 4067 #ifdef CONFIG_HOTPLUG_CPU 4068 static int rb_cpu_notify(struct notifier_block *self, 4069 unsigned long action, void *hcpu) 4070 { 4071 struct ring_buffer *buffer = 4072 container_of(self, struct ring_buffer, cpu_notify); 4073 long cpu = (long)hcpu; 4074 4075 switch (action) { 4076 case CPU_UP_PREPARE: 4077 case CPU_UP_PREPARE_FROZEN: 4078 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4079 return NOTIFY_OK; 4080 4081 buffer->buffers[cpu] = 4082 rb_allocate_cpu_buffer(buffer, cpu); 4083 if (!buffer->buffers[cpu]) { 4084 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4085 cpu); 4086 return NOTIFY_OK; 4087 } 4088 smp_wmb(); 4089 cpumask_set_cpu(cpu, buffer->cpumask); 4090 break; 4091 case CPU_DOWN_PREPARE: 4092 case CPU_DOWN_PREPARE_FROZEN: 4093 /* 4094 * Do nothing. 4095 * If we were to free the buffer, then the user would 4096 * lose any trace that was in the buffer. 4097 */ 4098 break; 4099 default: 4100 break; 4101 } 4102 return NOTIFY_OK; 4103 } 4104 #endif 4105