xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision fea88a0c)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include <asm/local.h>
24 #include "trace.h"
25 
26 /*
27  * The ring buffer header is special. We must manually up keep it.
28  */
29 int ring_buffer_print_entry_header(struct trace_seq *s)
30 {
31 	int ret;
32 
33 	ret = trace_seq_printf(s, "# compressed entry header\n");
34 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
35 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
36 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
37 	ret = trace_seq_printf(s, "\n");
38 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
39 			       RINGBUF_TYPE_PADDING);
40 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 			       RINGBUF_TYPE_TIME_EXTEND);
42 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
43 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
44 
45 	return ret;
46 }
47 
48 /*
49  * The ring buffer is made up of a list of pages. A separate list of pages is
50  * allocated for each CPU. A writer may only write to a buffer that is
51  * associated with the CPU it is currently executing on.  A reader may read
52  * from any per cpu buffer.
53  *
54  * The reader is special. For each per cpu buffer, the reader has its own
55  * reader page. When a reader has read the entire reader page, this reader
56  * page is swapped with another page in the ring buffer.
57  *
58  * Now, as long as the writer is off the reader page, the reader can do what
59  * ever it wants with that page. The writer will never write to that page
60  * again (as long as it is out of the ring buffer).
61  *
62  * Here's some silly ASCII art.
63  *
64  *   +------+
65  *   |reader|          RING BUFFER
66  *   |page  |
67  *   +------+        +---+   +---+   +---+
68  *                   |   |-->|   |-->|   |
69  *                   +---+   +---+   +---+
70  *                     ^               |
71  *                     |               |
72  *                     +---------------+
73  *
74  *
75  *   +------+
76  *   |reader|          RING BUFFER
77  *   |page  |------------------v
78  *   +------+        +---+   +---+   +---+
79  *                   |   |-->|   |-->|   |
80  *                   +---+   +---+   +---+
81  *                     ^               |
82  *                     |               |
83  *                     +---------------+
84  *
85  *
86  *   +------+
87  *   |reader|          RING BUFFER
88  *   |page  |------------------v
89  *   +------+        +---+   +---+   +---+
90  *      ^            |   |-->|   |-->|   |
91  *      |            +---+   +---+   +---+
92  *      |                              |
93  *      |                              |
94  *      +------------------------------+
95  *
96  *
97  *   +------+
98  *   |buffer|          RING BUFFER
99  *   |page  |------------------v
100  *   +------+        +---+   +---+   +---+
101  *      ^            |   |   |   |-->|   |
102  *      |   New      +---+   +---+   +---+
103  *      |  Reader------^               |
104  *      |   page                       |
105  *      +------------------------------+
106  *
107  *
108  * After we make this swap, the reader can hand this page off to the splice
109  * code and be done with it. It can even allocate a new page if it needs to
110  * and swap that into the ring buffer.
111  *
112  * We will be using cmpxchg soon to make all this lockless.
113  *
114  */
115 
116 /*
117  * A fast way to enable or disable all ring buffers is to
118  * call tracing_on or tracing_off. Turning off the ring buffers
119  * prevents all ring buffers from being recorded to.
120  * Turning this switch on, makes it OK to write to the
121  * ring buffer, if the ring buffer is enabled itself.
122  *
123  * There's three layers that must be on in order to write
124  * to the ring buffer.
125  *
126  * 1) This global flag must be set.
127  * 2) The ring buffer must be enabled for recording.
128  * 3) The per cpu buffer must be enabled for recording.
129  *
130  * In case of an anomaly, this global flag has a bit set that
131  * will permantly disable all ring buffers.
132  */
133 
134 /*
135  * Global flag to disable all recording to ring buffers
136  *  This has two bits: ON, DISABLED
137  *
138  *  ON   DISABLED
139  * ---- ----------
140  *   0      0        : ring buffers are off
141  *   1      0        : ring buffers are on
142  *   X      1        : ring buffers are permanently disabled
143  */
144 
145 enum {
146 	RB_BUFFERS_ON_BIT	= 0,
147 	RB_BUFFERS_DISABLED_BIT	= 1,
148 };
149 
150 enum {
151 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
152 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
153 };
154 
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156 
157 /* Used for individual buffers (after the counter) */
158 #define RB_BUFFER_OFF		(1 << 20)
159 
160 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161 
162 /**
163  * tracing_off_permanent - permanently disable ring buffers
164  *
165  * This function, once called, will disable all ring buffers
166  * permanently.
167  */
168 void tracing_off_permanent(void)
169 {
170 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
171 }
172 
173 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
174 #define RB_ALIGNMENT		4U
175 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
176 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
177 
178 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
179 # define RB_FORCE_8BYTE_ALIGNMENT	0
180 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
181 #else
182 # define RB_FORCE_8BYTE_ALIGNMENT	1
183 # define RB_ARCH_ALIGNMENT		8U
184 #endif
185 
186 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
187 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
188 
189 enum {
190 	RB_LEN_TIME_EXTEND = 8,
191 	RB_LEN_TIME_STAMP = 16,
192 };
193 
194 #define skip_time_extend(event) \
195 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
196 
197 static inline int rb_null_event(struct ring_buffer_event *event)
198 {
199 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
200 }
201 
202 static void rb_event_set_padding(struct ring_buffer_event *event)
203 {
204 	/* padding has a NULL time_delta */
205 	event->type_len = RINGBUF_TYPE_PADDING;
206 	event->time_delta = 0;
207 }
208 
209 static unsigned
210 rb_event_data_length(struct ring_buffer_event *event)
211 {
212 	unsigned length;
213 
214 	if (event->type_len)
215 		length = event->type_len * RB_ALIGNMENT;
216 	else
217 		length = event->array[0];
218 	return length + RB_EVNT_HDR_SIZE;
219 }
220 
221 /*
222  * Return the length of the given event. Will return
223  * the length of the time extend if the event is a
224  * time extend.
225  */
226 static inline unsigned
227 rb_event_length(struct ring_buffer_event *event)
228 {
229 	switch (event->type_len) {
230 	case RINGBUF_TYPE_PADDING:
231 		if (rb_null_event(event))
232 			/* undefined */
233 			return -1;
234 		return  event->array[0] + RB_EVNT_HDR_SIZE;
235 
236 	case RINGBUF_TYPE_TIME_EXTEND:
237 		return RB_LEN_TIME_EXTEND;
238 
239 	case RINGBUF_TYPE_TIME_STAMP:
240 		return RB_LEN_TIME_STAMP;
241 
242 	case RINGBUF_TYPE_DATA:
243 		return rb_event_data_length(event);
244 	default:
245 		BUG();
246 	}
247 	/* not hit */
248 	return 0;
249 }
250 
251 /*
252  * Return total length of time extend and data,
253  *   or just the event length for all other events.
254  */
255 static inline unsigned
256 rb_event_ts_length(struct ring_buffer_event *event)
257 {
258 	unsigned len = 0;
259 
260 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
261 		/* time extends include the data event after it */
262 		len = RB_LEN_TIME_EXTEND;
263 		event = skip_time_extend(event);
264 	}
265 	return len + rb_event_length(event);
266 }
267 
268 /**
269  * ring_buffer_event_length - return the length of the event
270  * @event: the event to get the length of
271  *
272  * Returns the size of the data load of a data event.
273  * If the event is something other than a data event, it
274  * returns the size of the event itself. With the exception
275  * of a TIME EXTEND, where it still returns the size of the
276  * data load of the data event after it.
277  */
278 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
279 {
280 	unsigned length;
281 
282 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
283 		event = skip_time_extend(event);
284 
285 	length = rb_event_length(event);
286 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
287 		return length;
288 	length -= RB_EVNT_HDR_SIZE;
289 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
290                 length -= sizeof(event->array[0]);
291 	return length;
292 }
293 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
294 
295 /* inline for ring buffer fast paths */
296 static void *
297 rb_event_data(struct ring_buffer_event *event)
298 {
299 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
300 		event = skip_time_extend(event);
301 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
302 	/* If length is in len field, then array[0] has the data */
303 	if (event->type_len)
304 		return (void *)&event->array[0];
305 	/* Otherwise length is in array[0] and array[1] has the data */
306 	return (void *)&event->array[1];
307 }
308 
309 /**
310  * ring_buffer_event_data - return the data of the event
311  * @event: the event to get the data from
312  */
313 void *ring_buffer_event_data(struct ring_buffer_event *event)
314 {
315 	return rb_event_data(event);
316 }
317 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
318 
319 #define for_each_buffer_cpu(buffer, cpu)		\
320 	for_each_cpu(cpu, buffer->cpumask)
321 
322 #define TS_SHIFT	27
323 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
324 #define TS_DELTA_TEST	(~TS_MASK)
325 
326 /* Flag when events were overwritten */
327 #define RB_MISSED_EVENTS	(1 << 31)
328 /* Missed count stored at end */
329 #define RB_MISSED_STORED	(1 << 30)
330 
331 struct buffer_data_page {
332 	u64		 time_stamp;	/* page time stamp */
333 	local_t		 commit;	/* write committed index */
334 	unsigned char	 data[];	/* data of buffer page */
335 };
336 
337 /*
338  * Note, the buffer_page list must be first. The buffer pages
339  * are allocated in cache lines, which means that each buffer
340  * page will be at the beginning of a cache line, and thus
341  * the least significant bits will be zero. We use this to
342  * add flags in the list struct pointers, to make the ring buffer
343  * lockless.
344  */
345 struct buffer_page {
346 	struct list_head list;		/* list of buffer pages */
347 	local_t		 write;		/* index for next write */
348 	unsigned	 read;		/* index for next read */
349 	local_t		 entries;	/* entries on this page */
350 	unsigned long	 real_end;	/* real end of data */
351 	struct buffer_data_page *page;	/* Actual data page */
352 };
353 
354 /*
355  * The buffer page counters, write and entries, must be reset
356  * atomically when crossing page boundaries. To synchronize this
357  * update, two counters are inserted into the number. One is
358  * the actual counter for the write position or count on the page.
359  *
360  * The other is a counter of updaters. Before an update happens
361  * the update partition of the counter is incremented. This will
362  * allow the updater to update the counter atomically.
363  *
364  * The counter is 20 bits, and the state data is 12.
365  */
366 #define RB_WRITE_MASK		0xfffff
367 #define RB_WRITE_INTCNT		(1 << 20)
368 
369 static void rb_init_page(struct buffer_data_page *bpage)
370 {
371 	local_set(&bpage->commit, 0);
372 }
373 
374 /**
375  * ring_buffer_page_len - the size of data on the page.
376  * @page: The page to read
377  *
378  * Returns the amount of data on the page, including buffer page header.
379  */
380 size_t ring_buffer_page_len(void *page)
381 {
382 	return local_read(&((struct buffer_data_page *)page)->commit)
383 		+ BUF_PAGE_HDR_SIZE;
384 }
385 
386 /*
387  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
388  * this issue out.
389  */
390 static void free_buffer_page(struct buffer_page *bpage)
391 {
392 	free_page((unsigned long)bpage->page);
393 	kfree(bpage);
394 }
395 
396 /*
397  * We need to fit the time_stamp delta into 27 bits.
398  */
399 static inline int test_time_stamp(u64 delta)
400 {
401 	if (delta & TS_DELTA_TEST)
402 		return 1;
403 	return 0;
404 }
405 
406 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
407 
408 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
409 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
410 
411 int ring_buffer_print_page_header(struct trace_seq *s)
412 {
413 	struct buffer_data_page field;
414 	int ret;
415 
416 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
417 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
418 			       (unsigned int)sizeof(field.time_stamp),
419 			       (unsigned int)is_signed_type(u64));
420 
421 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
422 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
423 			       (unsigned int)offsetof(typeof(field), commit),
424 			       (unsigned int)sizeof(field.commit),
425 			       (unsigned int)is_signed_type(long));
426 
427 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
428 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
429 			       (unsigned int)offsetof(typeof(field), commit),
430 			       1,
431 			       (unsigned int)is_signed_type(long));
432 
433 	ret = trace_seq_printf(s, "\tfield: char data;\t"
434 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
435 			       (unsigned int)offsetof(typeof(field), data),
436 			       (unsigned int)BUF_PAGE_SIZE,
437 			       (unsigned int)is_signed_type(char));
438 
439 	return ret;
440 }
441 
442 /*
443  * head_page == tail_page && head == tail then buffer is empty.
444  */
445 struct ring_buffer_per_cpu {
446 	int				cpu;
447 	atomic_t			record_disabled;
448 	struct ring_buffer		*buffer;
449 	raw_spinlock_t			reader_lock;	/* serialize readers */
450 	arch_spinlock_t			lock;
451 	struct lock_class_key		lock_key;
452 	struct list_head		*pages;
453 	struct buffer_page		*head_page;	/* read from head */
454 	struct buffer_page		*tail_page;	/* write to tail */
455 	struct buffer_page		*commit_page;	/* committed pages */
456 	struct buffer_page		*reader_page;
457 	unsigned long			lost_events;
458 	unsigned long			last_overrun;
459 	local_t				entries_bytes;
460 	local_t				commit_overrun;
461 	local_t				overrun;
462 	local_t				entries;
463 	local_t				committing;
464 	local_t				commits;
465 	unsigned long			read;
466 	unsigned long			read_bytes;
467 	u64				write_stamp;
468 	u64				read_stamp;
469 };
470 
471 struct ring_buffer {
472 	unsigned			pages;
473 	unsigned			flags;
474 	int				cpus;
475 	atomic_t			record_disabled;
476 	cpumask_var_t			cpumask;
477 
478 	struct lock_class_key		*reader_lock_key;
479 
480 	struct mutex			mutex;
481 
482 	struct ring_buffer_per_cpu	**buffers;
483 
484 #ifdef CONFIG_HOTPLUG_CPU
485 	struct notifier_block		cpu_notify;
486 #endif
487 	u64				(*clock)(void);
488 };
489 
490 struct ring_buffer_iter {
491 	struct ring_buffer_per_cpu	*cpu_buffer;
492 	unsigned long			head;
493 	struct buffer_page		*head_page;
494 	struct buffer_page		*cache_reader_page;
495 	unsigned long			cache_read;
496 	u64				read_stamp;
497 };
498 
499 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
500 #define RB_WARN_ON(b, cond)						\
501 	({								\
502 		int _____ret = unlikely(cond);				\
503 		if (_____ret) {						\
504 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
505 				struct ring_buffer_per_cpu *__b =	\
506 					(void *)b;			\
507 				atomic_inc(&__b->buffer->record_disabled); \
508 			} else						\
509 				atomic_inc(&b->record_disabled);	\
510 			WARN_ON(1);					\
511 		}							\
512 		_____ret;						\
513 	})
514 
515 /* Up this if you want to test the TIME_EXTENTS and normalization */
516 #define DEBUG_SHIFT 0
517 
518 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
519 {
520 	/* shift to debug/test normalization and TIME_EXTENTS */
521 	return buffer->clock() << DEBUG_SHIFT;
522 }
523 
524 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
525 {
526 	u64 time;
527 
528 	preempt_disable_notrace();
529 	time = rb_time_stamp(buffer);
530 	preempt_enable_no_resched_notrace();
531 
532 	return time;
533 }
534 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
535 
536 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
537 				      int cpu, u64 *ts)
538 {
539 	/* Just stupid testing the normalize function and deltas */
540 	*ts >>= DEBUG_SHIFT;
541 }
542 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
543 
544 /*
545  * Making the ring buffer lockless makes things tricky.
546  * Although writes only happen on the CPU that they are on,
547  * and they only need to worry about interrupts. Reads can
548  * happen on any CPU.
549  *
550  * The reader page is always off the ring buffer, but when the
551  * reader finishes with a page, it needs to swap its page with
552  * a new one from the buffer. The reader needs to take from
553  * the head (writes go to the tail). But if a writer is in overwrite
554  * mode and wraps, it must push the head page forward.
555  *
556  * Here lies the problem.
557  *
558  * The reader must be careful to replace only the head page, and
559  * not another one. As described at the top of the file in the
560  * ASCII art, the reader sets its old page to point to the next
561  * page after head. It then sets the page after head to point to
562  * the old reader page. But if the writer moves the head page
563  * during this operation, the reader could end up with the tail.
564  *
565  * We use cmpxchg to help prevent this race. We also do something
566  * special with the page before head. We set the LSB to 1.
567  *
568  * When the writer must push the page forward, it will clear the
569  * bit that points to the head page, move the head, and then set
570  * the bit that points to the new head page.
571  *
572  * We also don't want an interrupt coming in and moving the head
573  * page on another writer. Thus we use the second LSB to catch
574  * that too. Thus:
575  *
576  * head->list->prev->next        bit 1          bit 0
577  *                              -------        -------
578  * Normal page                     0              0
579  * Points to head page             0              1
580  * New head page                   1              0
581  *
582  * Note we can not trust the prev pointer of the head page, because:
583  *
584  * +----+       +-----+        +-----+
585  * |    |------>|  T  |---X--->|  N  |
586  * |    |<------|     |        |     |
587  * +----+       +-----+        +-----+
588  *   ^                           ^ |
589  *   |          +-----+          | |
590  *   +----------|  R  |----------+ |
591  *              |     |<-----------+
592  *              +-----+
593  *
594  * Key:  ---X-->  HEAD flag set in pointer
595  *         T      Tail page
596  *         R      Reader page
597  *         N      Next page
598  *
599  * (see __rb_reserve_next() to see where this happens)
600  *
601  *  What the above shows is that the reader just swapped out
602  *  the reader page with a page in the buffer, but before it
603  *  could make the new header point back to the new page added
604  *  it was preempted by a writer. The writer moved forward onto
605  *  the new page added by the reader and is about to move forward
606  *  again.
607  *
608  *  You can see, it is legitimate for the previous pointer of
609  *  the head (or any page) not to point back to itself. But only
610  *  temporarially.
611  */
612 
613 #define RB_PAGE_NORMAL		0UL
614 #define RB_PAGE_HEAD		1UL
615 #define RB_PAGE_UPDATE		2UL
616 
617 
618 #define RB_FLAG_MASK		3UL
619 
620 /* PAGE_MOVED is not part of the mask */
621 #define RB_PAGE_MOVED		4UL
622 
623 /*
624  * rb_list_head - remove any bit
625  */
626 static struct list_head *rb_list_head(struct list_head *list)
627 {
628 	unsigned long val = (unsigned long)list;
629 
630 	return (struct list_head *)(val & ~RB_FLAG_MASK);
631 }
632 
633 /*
634  * rb_is_head_page - test if the given page is the head page
635  *
636  * Because the reader may move the head_page pointer, we can
637  * not trust what the head page is (it may be pointing to
638  * the reader page). But if the next page is a header page,
639  * its flags will be non zero.
640  */
641 static inline int
642 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
643 		struct buffer_page *page, struct list_head *list)
644 {
645 	unsigned long val;
646 
647 	val = (unsigned long)list->next;
648 
649 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
650 		return RB_PAGE_MOVED;
651 
652 	return val & RB_FLAG_MASK;
653 }
654 
655 /*
656  * rb_is_reader_page
657  *
658  * The unique thing about the reader page, is that, if the
659  * writer is ever on it, the previous pointer never points
660  * back to the reader page.
661  */
662 static int rb_is_reader_page(struct buffer_page *page)
663 {
664 	struct list_head *list = page->list.prev;
665 
666 	return rb_list_head(list->next) != &page->list;
667 }
668 
669 /*
670  * rb_set_list_to_head - set a list_head to be pointing to head.
671  */
672 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
673 				struct list_head *list)
674 {
675 	unsigned long *ptr;
676 
677 	ptr = (unsigned long *)&list->next;
678 	*ptr |= RB_PAGE_HEAD;
679 	*ptr &= ~RB_PAGE_UPDATE;
680 }
681 
682 /*
683  * rb_head_page_activate - sets up head page
684  */
685 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
686 {
687 	struct buffer_page *head;
688 
689 	head = cpu_buffer->head_page;
690 	if (!head)
691 		return;
692 
693 	/*
694 	 * Set the previous list pointer to have the HEAD flag.
695 	 */
696 	rb_set_list_to_head(cpu_buffer, head->list.prev);
697 }
698 
699 static void rb_list_head_clear(struct list_head *list)
700 {
701 	unsigned long *ptr = (unsigned long *)&list->next;
702 
703 	*ptr &= ~RB_FLAG_MASK;
704 }
705 
706 /*
707  * rb_head_page_dactivate - clears head page ptr (for free list)
708  */
709 static void
710 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
711 {
712 	struct list_head *hd;
713 
714 	/* Go through the whole list and clear any pointers found. */
715 	rb_list_head_clear(cpu_buffer->pages);
716 
717 	list_for_each(hd, cpu_buffer->pages)
718 		rb_list_head_clear(hd);
719 }
720 
721 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
722 			    struct buffer_page *head,
723 			    struct buffer_page *prev,
724 			    int old_flag, int new_flag)
725 {
726 	struct list_head *list;
727 	unsigned long val = (unsigned long)&head->list;
728 	unsigned long ret;
729 
730 	list = &prev->list;
731 
732 	val &= ~RB_FLAG_MASK;
733 
734 	ret = cmpxchg((unsigned long *)&list->next,
735 		      val | old_flag, val | new_flag);
736 
737 	/* check if the reader took the page */
738 	if ((ret & ~RB_FLAG_MASK) != val)
739 		return RB_PAGE_MOVED;
740 
741 	return ret & RB_FLAG_MASK;
742 }
743 
744 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
745 				   struct buffer_page *head,
746 				   struct buffer_page *prev,
747 				   int old_flag)
748 {
749 	return rb_head_page_set(cpu_buffer, head, prev,
750 				old_flag, RB_PAGE_UPDATE);
751 }
752 
753 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
754 				 struct buffer_page *head,
755 				 struct buffer_page *prev,
756 				 int old_flag)
757 {
758 	return rb_head_page_set(cpu_buffer, head, prev,
759 				old_flag, RB_PAGE_HEAD);
760 }
761 
762 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
763 				   struct buffer_page *head,
764 				   struct buffer_page *prev,
765 				   int old_flag)
766 {
767 	return rb_head_page_set(cpu_buffer, head, prev,
768 				old_flag, RB_PAGE_NORMAL);
769 }
770 
771 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
772 			       struct buffer_page **bpage)
773 {
774 	struct list_head *p = rb_list_head((*bpage)->list.next);
775 
776 	*bpage = list_entry(p, struct buffer_page, list);
777 }
778 
779 static struct buffer_page *
780 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
781 {
782 	struct buffer_page *head;
783 	struct buffer_page *page;
784 	struct list_head *list;
785 	int i;
786 
787 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
788 		return NULL;
789 
790 	/* sanity check */
791 	list = cpu_buffer->pages;
792 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
793 		return NULL;
794 
795 	page = head = cpu_buffer->head_page;
796 	/*
797 	 * It is possible that the writer moves the header behind
798 	 * where we started, and we miss in one loop.
799 	 * A second loop should grab the header, but we'll do
800 	 * three loops just because I'm paranoid.
801 	 */
802 	for (i = 0; i < 3; i++) {
803 		do {
804 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
805 				cpu_buffer->head_page = page;
806 				return page;
807 			}
808 			rb_inc_page(cpu_buffer, &page);
809 		} while (page != head);
810 	}
811 
812 	RB_WARN_ON(cpu_buffer, 1);
813 
814 	return NULL;
815 }
816 
817 static int rb_head_page_replace(struct buffer_page *old,
818 				struct buffer_page *new)
819 {
820 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
821 	unsigned long val;
822 	unsigned long ret;
823 
824 	val = *ptr & ~RB_FLAG_MASK;
825 	val |= RB_PAGE_HEAD;
826 
827 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
828 
829 	return ret == val;
830 }
831 
832 /*
833  * rb_tail_page_update - move the tail page forward
834  *
835  * Returns 1 if moved tail page, 0 if someone else did.
836  */
837 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
838 			       struct buffer_page *tail_page,
839 			       struct buffer_page *next_page)
840 {
841 	struct buffer_page *old_tail;
842 	unsigned long old_entries;
843 	unsigned long old_write;
844 	int ret = 0;
845 
846 	/*
847 	 * The tail page now needs to be moved forward.
848 	 *
849 	 * We need to reset the tail page, but without messing
850 	 * with possible erasing of data brought in by interrupts
851 	 * that have moved the tail page and are currently on it.
852 	 *
853 	 * We add a counter to the write field to denote this.
854 	 */
855 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
856 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
857 
858 	/*
859 	 * Just make sure we have seen our old_write and synchronize
860 	 * with any interrupts that come in.
861 	 */
862 	barrier();
863 
864 	/*
865 	 * If the tail page is still the same as what we think
866 	 * it is, then it is up to us to update the tail
867 	 * pointer.
868 	 */
869 	if (tail_page == cpu_buffer->tail_page) {
870 		/* Zero the write counter */
871 		unsigned long val = old_write & ~RB_WRITE_MASK;
872 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
873 
874 		/*
875 		 * This will only succeed if an interrupt did
876 		 * not come in and change it. In which case, we
877 		 * do not want to modify it.
878 		 *
879 		 * We add (void) to let the compiler know that we do not care
880 		 * about the return value of these functions. We use the
881 		 * cmpxchg to only update if an interrupt did not already
882 		 * do it for us. If the cmpxchg fails, we don't care.
883 		 */
884 		(void)local_cmpxchg(&next_page->write, old_write, val);
885 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
886 
887 		/*
888 		 * No need to worry about races with clearing out the commit.
889 		 * it only can increment when a commit takes place. But that
890 		 * only happens in the outer most nested commit.
891 		 */
892 		local_set(&next_page->page->commit, 0);
893 
894 		old_tail = cmpxchg(&cpu_buffer->tail_page,
895 				   tail_page, next_page);
896 
897 		if (old_tail == tail_page)
898 			ret = 1;
899 	}
900 
901 	return ret;
902 }
903 
904 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
905 			  struct buffer_page *bpage)
906 {
907 	unsigned long val = (unsigned long)bpage;
908 
909 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
910 		return 1;
911 
912 	return 0;
913 }
914 
915 /**
916  * rb_check_list - make sure a pointer to a list has the last bits zero
917  */
918 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
919 			 struct list_head *list)
920 {
921 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
922 		return 1;
923 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
924 		return 1;
925 	return 0;
926 }
927 
928 /**
929  * check_pages - integrity check of buffer pages
930  * @cpu_buffer: CPU buffer with pages to test
931  *
932  * As a safety measure we check to make sure the data pages have not
933  * been corrupted.
934  */
935 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
936 {
937 	struct list_head *head = cpu_buffer->pages;
938 	struct buffer_page *bpage, *tmp;
939 
940 	rb_head_page_deactivate(cpu_buffer);
941 
942 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
943 		return -1;
944 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
945 		return -1;
946 
947 	if (rb_check_list(cpu_buffer, head))
948 		return -1;
949 
950 	list_for_each_entry_safe(bpage, tmp, head, list) {
951 		if (RB_WARN_ON(cpu_buffer,
952 			       bpage->list.next->prev != &bpage->list))
953 			return -1;
954 		if (RB_WARN_ON(cpu_buffer,
955 			       bpage->list.prev->next != &bpage->list))
956 			return -1;
957 		if (rb_check_list(cpu_buffer, &bpage->list))
958 			return -1;
959 	}
960 
961 	rb_head_page_activate(cpu_buffer);
962 
963 	return 0;
964 }
965 
966 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
967 			     unsigned nr_pages)
968 {
969 	struct buffer_page *bpage, *tmp;
970 	LIST_HEAD(pages);
971 	unsigned i;
972 
973 	WARN_ON(!nr_pages);
974 
975 	for (i = 0; i < nr_pages; i++) {
976 		struct page *page;
977 		/*
978 		 * __GFP_NORETRY flag makes sure that the allocation fails
979 		 * gracefully without invoking oom-killer and the system is
980 		 * not destabilized.
981 		 */
982 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
983 				    GFP_KERNEL | __GFP_NORETRY,
984 				    cpu_to_node(cpu_buffer->cpu));
985 		if (!bpage)
986 			goto free_pages;
987 
988 		rb_check_bpage(cpu_buffer, bpage);
989 
990 		list_add(&bpage->list, &pages);
991 
992 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
993 					GFP_KERNEL | __GFP_NORETRY, 0);
994 		if (!page)
995 			goto free_pages;
996 		bpage->page = page_address(page);
997 		rb_init_page(bpage->page);
998 	}
999 
1000 	/*
1001 	 * The ring buffer page list is a circular list that does not
1002 	 * start and end with a list head. All page list items point to
1003 	 * other pages.
1004 	 */
1005 	cpu_buffer->pages = pages.next;
1006 	list_del(&pages);
1007 
1008 	rb_check_pages(cpu_buffer);
1009 
1010 	return 0;
1011 
1012  free_pages:
1013 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1014 		list_del_init(&bpage->list);
1015 		free_buffer_page(bpage);
1016 	}
1017 	return -ENOMEM;
1018 }
1019 
1020 static struct ring_buffer_per_cpu *
1021 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1022 {
1023 	struct ring_buffer_per_cpu *cpu_buffer;
1024 	struct buffer_page *bpage;
1025 	struct page *page;
1026 	int ret;
1027 
1028 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1029 				  GFP_KERNEL, cpu_to_node(cpu));
1030 	if (!cpu_buffer)
1031 		return NULL;
1032 
1033 	cpu_buffer->cpu = cpu;
1034 	cpu_buffer->buffer = buffer;
1035 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1036 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1037 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1038 
1039 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1040 			    GFP_KERNEL, cpu_to_node(cpu));
1041 	if (!bpage)
1042 		goto fail_free_buffer;
1043 
1044 	rb_check_bpage(cpu_buffer, bpage);
1045 
1046 	cpu_buffer->reader_page = bpage;
1047 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1048 	if (!page)
1049 		goto fail_free_reader;
1050 	bpage->page = page_address(page);
1051 	rb_init_page(bpage->page);
1052 
1053 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1054 
1055 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1056 	if (ret < 0)
1057 		goto fail_free_reader;
1058 
1059 	cpu_buffer->head_page
1060 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1061 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1062 
1063 	rb_head_page_activate(cpu_buffer);
1064 
1065 	return cpu_buffer;
1066 
1067  fail_free_reader:
1068 	free_buffer_page(cpu_buffer->reader_page);
1069 
1070  fail_free_buffer:
1071 	kfree(cpu_buffer);
1072 	return NULL;
1073 }
1074 
1075 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077 	struct list_head *head = cpu_buffer->pages;
1078 	struct buffer_page *bpage, *tmp;
1079 
1080 	free_buffer_page(cpu_buffer->reader_page);
1081 
1082 	rb_head_page_deactivate(cpu_buffer);
1083 
1084 	if (head) {
1085 		list_for_each_entry_safe(bpage, tmp, head, list) {
1086 			list_del_init(&bpage->list);
1087 			free_buffer_page(bpage);
1088 		}
1089 		bpage = list_entry(head, struct buffer_page, list);
1090 		free_buffer_page(bpage);
1091 	}
1092 
1093 	kfree(cpu_buffer);
1094 }
1095 
1096 #ifdef CONFIG_HOTPLUG_CPU
1097 static int rb_cpu_notify(struct notifier_block *self,
1098 			 unsigned long action, void *hcpu);
1099 #endif
1100 
1101 /**
1102  * ring_buffer_alloc - allocate a new ring_buffer
1103  * @size: the size in bytes per cpu that is needed.
1104  * @flags: attributes to set for the ring buffer.
1105  *
1106  * Currently the only flag that is available is the RB_FL_OVERWRITE
1107  * flag. This flag means that the buffer will overwrite old data
1108  * when the buffer wraps. If this flag is not set, the buffer will
1109  * drop data when the tail hits the head.
1110  */
1111 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1112 					struct lock_class_key *key)
1113 {
1114 	struct ring_buffer *buffer;
1115 	int bsize;
1116 	int cpu;
1117 
1118 	/* keep it in its own cache line */
1119 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1120 			 GFP_KERNEL);
1121 	if (!buffer)
1122 		return NULL;
1123 
1124 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1125 		goto fail_free_buffer;
1126 
1127 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1128 	buffer->flags = flags;
1129 	buffer->clock = trace_clock_local;
1130 	buffer->reader_lock_key = key;
1131 
1132 	/* need at least two pages */
1133 	if (buffer->pages < 2)
1134 		buffer->pages = 2;
1135 
1136 	/*
1137 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1138 	 * in early initcall, it will not be notified of secondary cpus.
1139 	 * In that off case, we need to allocate for all possible cpus.
1140 	 */
1141 #ifdef CONFIG_HOTPLUG_CPU
1142 	get_online_cpus();
1143 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1144 #else
1145 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1146 #endif
1147 	buffer->cpus = nr_cpu_ids;
1148 
1149 	bsize = sizeof(void *) * nr_cpu_ids;
1150 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1151 				  GFP_KERNEL);
1152 	if (!buffer->buffers)
1153 		goto fail_free_cpumask;
1154 
1155 	for_each_buffer_cpu(buffer, cpu) {
1156 		buffer->buffers[cpu] =
1157 			rb_allocate_cpu_buffer(buffer, cpu);
1158 		if (!buffer->buffers[cpu])
1159 			goto fail_free_buffers;
1160 	}
1161 
1162 #ifdef CONFIG_HOTPLUG_CPU
1163 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1164 	buffer->cpu_notify.priority = 0;
1165 	register_cpu_notifier(&buffer->cpu_notify);
1166 #endif
1167 
1168 	put_online_cpus();
1169 	mutex_init(&buffer->mutex);
1170 
1171 	return buffer;
1172 
1173  fail_free_buffers:
1174 	for_each_buffer_cpu(buffer, cpu) {
1175 		if (buffer->buffers[cpu])
1176 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1177 	}
1178 	kfree(buffer->buffers);
1179 
1180  fail_free_cpumask:
1181 	free_cpumask_var(buffer->cpumask);
1182 	put_online_cpus();
1183 
1184  fail_free_buffer:
1185 	kfree(buffer);
1186 	return NULL;
1187 }
1188 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1189 
1190 /**
1191  * ring_buffer_free - free a ring buffer.
1192  * @buffer: the buffer to free.
1193  */
1194 void
1195 ring_buffer_free(struct ring_buffer *buffer)
1196 {
1197 	int cpu;
1198 
1199 	get_online_cpus();
1200 
1201 #ifdef CONFIG_HOTPLUG_CPU
1202 	unregister_cpu_notifier(&buffer->cpu_notify);
1203 #endif
1204 
1205 	for_each_buffer_cpu(buffer, cpu)
1206 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1207 
1208 	put_online_cpus();
1209 
1210 	kfree(buffer->buffers);
1211 	free_cpumask_var(buffer->cpumask);
1212 
1213 	kfree(buffer);
1214 }
1215 EXPORT_SYMBOL_GPL(ring_buffer_free);
1216 
1217 void ring_buffer_set_clock(struct ring_buffer *buffer,
1218 			   u64 (*clock)(void))
1219 {
1220 	buffer->clock = clock;
1221 }
1222 
1223 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1224 
1225 static void
1226 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1227 {
1228 	struct buffer_page *bpage;
1229 	struct list_head *p;
1230 	unsigned i;
1231 
1232 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1233 	rb_head_page_deactivate(cpu_buffer);
1234 
1235 	for (i = 0; i < nr_pages; i++) {
1236 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1237 			goto out;
1238 		p = cpu_buffer->pages->next;
1239 		bpage = list_entry(p, struct buffer_page, list);
1240 		list_del_init(&bpage->list);
1241 		free_buffer_page(bpage);
1242 	}
1243 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1244 		goto out;
1245 
1246 	rb_reset_cpu(cpu_buffer);
1247 	rb_check_pages(cpu_buffer);
1248 
1249 out:
1250 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1251 }
1252 
1253 static void
1254 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1255 		struct list_head *pages, unsigned nr_pages)
1256 {
1257 	struct buffer_page *bpage;
1258 	struct list_head *p;
1259 	unsigned i;
1260 
1261 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1262 	rb_head_page_deactivate(cpu_buffer);
1263 
1264 	for (i = 0; i < nr_pages; i++) {
1265 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1266 			goto out;
1267 		p = pages->next;
1268 		bpage = list_entry(p, struct buffer_page, list);
1269 		list_del_init(&bpage->list);
1270 		list_add_tail(&bpage->list, cpu_buffer->pages);
1271 	}
1272 	rb_reset_cpu(cpu_buffer);
1273 	rb_check_pages(cpu_buffer);
1274 
1275 out:
1276 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1277 }
1278 
1279 /**
1280  * ring_buffer_resize - resize the ring buffer
1281  * @buffer: the buffer to resize.
1282  * @size: the new size.
1283  *
1284  * Minimum size is 2 * BUF_PAGE_SIZE.
1285  *
1286  * Returns -1 on failure.
1287  */
1288 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1289 {
1290 	struct ring_buffer_per_cpu *cpu_buffer;
1291 	unsigned nr_pages, rm_pages, new_pages;
1292 	struct buffer_page *bpage, *tmp;
1293 	unsigned long buffer_size;
1294 	LIST_HEAD(pages);
1295 	int i, cpu;
1296 
1297 	/*
1298 	 * Always succeed at resizing a non-existent buffer:
1299 	 */
1300 	if (!buffer)
1301 		return size;
1302 
1303 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1304 	size *= BUF_PAGE_SIZE;
1305 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1306 
1307 	/* we need a minimum of two pages */
1308 	if (size < BUF_PAGE_SIZE * 2)
1309 		size = BUF_PAGE_SIZE * 2;
1310 
1311 	if (size == buffer_size)
1312 		return size;
1313 
1314 	atomic_inc(&buffer->record_disabled);
1315 
1316 	/* Make sure all writers are done with this buffer. */
1317 	synchronize_sched();
1318 
1319 	mutex_lock(&buffer->mutex);
1320 	get_online_cpus();
1321 
1322 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1323 
1324 	if (size < buffer_size) {
1325 
1326 		/* easy case, just free pages */
1327 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1328 			goto out_fail;
1329 
1330 		rm_pages = buffer->pages - nr_pages;
1331 
1332 		for_each_buffer_cpu(buffer, cpu) {
1333 			cpu_buffer = buffer->buffers[cpu];
1334 			rb_remove_pages(cpu_buffer, rm_pages);
1335 		}
1336 		goto out;
1337 	}
1338 
1339 	/*
1340 	 * This is a bit more difficult. We only want to add pages
1341 	 * when we can allocate enough for all CPUs. We do this
1342 	 * by allocating all the pages and storing them on a local
1343 	 * link list. If we succeed in our allocation, then we
1344 	 * add these pages to the cpu_buffers. Otherwise we just free
1345 	 * them all and return -ENOMEM;
1346 	 */
1347 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1348 		goto out_fail;
1349 
1350 	new_pages = nr_pages - buffer->pages;
1351 
1352 	for_each_buffer_cpu(buffer, cpu) {
1353 		for (i = 0; i < new_pages; i++) {
1354 			struct page *page;
1355 			/*
1356 			 * __GFP_NORETRY flag makes sure that the allocation
1357 			 * fails gracefully without invoking oom-killer and
1358 			 * the system is not destabilized.
1359 			 */
1360 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1361 						  cache_line_size()),
1362 					    GFP_KERNEL | __GFP_NORETRY,
1363 					    cpu_to_node(cpu));
1364 			if (!bpage)
1365 				goto free_pages;
1366 			list_add(&bpage->list, &pages);
1367 			page = alloc_pages_node(cpu_to_node(cpu),
1368 						GFP_KERNEL | __GFP_NORETRY, 0);
1369 			if (!page)
1370 				goto free_pages;
1371 			bpage->page = page_address(page);
1372 			rb_init_page(bpage->page);
1373 		}
1374 	}
1375 
1376 	for_each_buffer_cpu(buffer, cpu) {
1377 		cpu_buffer = buffer->buffers[cpu];
1378 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1379 	}
1380 
1381 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1382 		goto out_fail;
1383 
1384  out:
1385 	buffer->pages = nr_pages;
1386 	put_online_cpus();
1387 	mutex_unlock(&buffer->mutex);
1388 
1389 	atomic_dec(&buffer->record_disabled);
1390 
1391 	return size;
1392 
1393  free_pages:
1394 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1395 		list_del_init(&bpage->list);
1396 		free_buffer_page(bpage);
1397 	}
1398 	put_online_cpus();
1399 	mutex_unlock(&buffer->mutex);
1400 	atomic_dec(&buffer->record_disabled);
1401 	return -ENOMEM;
1402 
1403 	/*
1404 	 * Something went totally wrong, and we are too paranoid
1405 	 * to even clean up the mess.
1406 	 */
1407  out_fail:
1408 	put_online_cpus();
1409 	mutex_unlock(&buffer->mutex);
1410 	atomic_dec(&buffer->record_disabled);
1411 	return -1;
1412 }
1413 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1414 
1415 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1416 {
1417 	mutex_lock(&buffer->mutex);
1418 	if (val)
1419 		buffer->flags |= RB_FL_OVERWRITE;
1420 	else
1421 		buffer->flags &= ~RB_FL_OVERWRITE;
1422 	mutex_unlock(&buffer->mutex);
1423 }
1424 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1425 
1426 static inline void *
1427 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1428 {
1429 	return bpage->data + index;
1430 }
1431 
1432 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1433 {
1434 	return bpage->page->data + index;
1435 }
1436 
1437 static inline struct ring_buffer_event *
1438 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1439 {
1440 	return __rb_page_index(cpu_buffer->reader_page,
1441 			       cpu_buffer->reader_page->read);
1442 }
1443 
1444 static inline struct ring_buffer_event *
1445 rb_iter_head_event(struct ring_buffer_iter *iter)
1446 {
1447 	return __rb_page_index(iter->head_page, iter->head);
1448 }
1449 
1450 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1451 {
1452 	return local_read(&bpage->write) & RB_WRITE_MASK;
1453 }
1454 
1455 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1456 {
1457 	return local_read(&bpage->page->commit);
1458 }
1459 
1460 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1461 {
1462 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1463 }
1464 
1465 /* Size is determined by what has been committed */
1466 static inline unsigned rb_page_size(struct buffer_page *bpage)
1467 {
1468 	return rb_page_commit(bpage);
1469 }
1470 
1471 static inline unsigned
1472 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1473 {
1474 	return rb_page_commit(cpu_buffer->commit_page);
1475 }
1476 
1477 static inline unsigned
1478 rb_event_index(struct ring_buffer_event *event)
1479 {
1480 	unsigned long addr = (unsigned long)event;
1481 
1482 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1483 }
1484 
1485 static inline int
1486 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1487 		   struct ring_buffer_event *event)
1488 {
1489 	unsigned long addr = (unsigned long)event;
1490 	unsigned long index;
1491 
1492 	index = rb_event_index(event);
1493 	addr &= PAGE_MASK;
1494 
1495 	return cpu_buffer->commit_page->page == (void *)addr &&
1496 		rb_commit_index(cpu_buffer) == index;
1497 }
1498 
1499 static void
1500 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1501 {
1502 	unsigned long max_count;
1503 
1504 	/*
1505 	 * We only race with interrupts and NMIs on this CPU.
1506 	 * If we own the commit event, then we can commit
1507 	 * all others that interrupted us, since the interruptions
1508 	 * are in stack format (they finish before they come
1509 	 * back to us). This allows us to do a simple loop to
1510 	 * assign the commit to the tail.
1511 	 */
1512  again:
1513 	max_count = cpu_buffer->buffer->pages * 100;
1514 
1515 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1516 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1517 			return;
1518 		if (RB_WARN_ON(cpu_buffer,
1519 			       rb_is_reader_page(cpu_buffer->tail_page)))
1520 			return;
1521 		local_set(&cpu_buffer->commit_page->page->commit,
1522 			  rb_page_write(cpu_buffer->commit_page));
1523 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1524 		cpu_buffer->write_stamp =
1525 			cpu_buffer->commit_page->page->time_stamp;
1526 		/* add barrier to keep gcc from optimizing too much */
1527 		barrier();
1528 	}
1529 	while (rb_commit_index(cpu_buffer) !=
1530 	       rb_page_write(cpu_buffer->commit_page)) {
1531 
1532 		local_set(&cpu_buffer->commit_page->page->commit,
1533 			  rb_page_write(cpu_buffer->commit_page));
1534 		RB_WARN_ON(cpu_buffer,
1535 			   local_read(&cpu_buffer->commit_page->page->commit) &
1536 			   ~RB_WRITE_MASK);
1537 		barrier();
1538 	}
1539 
1540 	/* again, keep gcc from optimizing */
1541 	barrier();
1542 
1543 	/*
1544 	 * If an interrupt came in just after the first while loop
1545 	 * and pushed the tail page forward, we will be left with
1546 	 * a dangling commit that will never go forward.
1547 	 */
1548 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1549 		goto again;
1550 }
1551 
1552 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1553 {
1554 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1555 	cpu_buffer->reader_page->read = 0;
1556 }
1557 
1558 static void rb_inc_iter(struct ring_buffer_iter *iter)
1559 {
1560 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1561 
1562 	/*
1563 	 * The iterator could be on the reader page (it starts there).
1564 	 * But the head could have moved, since the reader was
1565 	 * found. Check for this case and assign the iterator
1566 	 * to the head page instead of next.
1567 	 */
1568 	if (iter->head_page == cpu_buffer->reader_page)
1569 		iter->head_page = rb_set_head_page(cpu_buffer);
1570 	else
1571 		rb_inc_page(cpu_buffer, &iter->head_page);
1572 
1573 	iter->read_stamp = iter->head_page->page->time_stamp;
1574 	iter->head = 0;
1575 }
1576 
1577 /* Slow path, do not inline */
1578 static noinline struct ring_buffer_event *
1579 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1580 {
1581 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1582 
1583 	/* Not the first event on the page? */
1584 	if (rb_event_index(event)) {
1585 		event->time_delta = delta & TS_MASK;
1586 		event->array[0] = delta >> TS_SHIFT;
1587 	} else {
1588 		/* nope, just zero it */
1589 		event->time_delta = 0;
1590 		event->array[0] = 0;
1591 	}
1592 
1593 	return skip_time_extend(event);
1594 }
1595 
1596 /**
1597  * ring_buffer_update_event - update event type and data
1598  * @event: the even to update
1599  * @type: the type of event
1600  * @length: the size of the event field in the ring buffer
1601  *
1602  * Update the type and data fields of the event. The length
1603  * is the actual size that is written to the ring buffer,
1604  * and with this, we can determine what to place into the
1605  * data field.
1606  */
1607 static void
1608 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1609 		struct ring_buffer_event *event, unsigned length,
1610 		int add_timestamp, u64 delta)
1611 {
1612 	/* Only a commit updates the timestamp */
1613 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1614 		delta = 0;
1615 
1616 	/*
1617 	 * If we need to add a timestamp, then we
1618 	 * add it to the start of the resevered space.
1619 	 */
1620 	if (unlikely(add_timestamp)) {
1621 		event = rb_add_time_stamp(event, delta);
1622 		length -= RB_LEN_TIME_EXTEND;
1623 		delta = 0;
1624 	}
1625 
1626 	event->time_delta = delta;
1627 	length -= RB_EVNT_HDR_SIZE;
1628 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1629 		event->type_len = 0;
1630 		event->array[0] = length;
1631 	} else
1632 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1633 }
1634 
1635 /*
1636  * rb_handle_head_page - writer hit the head page
1637  *
1638  * Returns: +1 to retry page
1639  *           0 to continue
1640  *          -1 on error
1641  */
1642 static int
1643 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1644 		    struct buffer_page *tail_page,
1645 		    struct buffer_page *next_page)
1646 {
1647 	struct buffer_page *new_head;
1648 	int entries;
1649 	int type;
1650 	int ret;
1651 
1652 	entries = rb_page_entries(next_page);
1653 
1654 	/*
1655 	 * The hard part is here. We need to move the head
1656 	 * forward, and protect against both readers on
1657 	 * other CPUs and writers coming in via interrupts.
1658 	 */
1659 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1660 				       RB_PAGE_HEAD);
1661 
1662 	/*
1663 	 * type can be one of four:
1664 	 *  NORMAL - an interrupt already moved it for us
1665 	 *  HEAD   - we are the first to get here.
1666 	 *  UPDATE - we are the interrupt interrupting
1667 	 *           a current move.
1668 	 *  MOVED  - a reader on another CPU moved the next
1669 	 *           pointer to its reader page. Give up
1670 	 *           and try again.
1671 	 */
1672 
1673 	switch (type) {
1674 	case RB_PAGE_HEAD:
1675 		/*
1676 		 * We changed the head to UPDATE, thus
1677 		 * it is our responsibility to update
1678 		 * the counters.
1679 		 */
1680 		local_add(entries, &cpu_buffer->overrun);
1681 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1682 
1683 		/*
1684 		 * The entries will be zeroed out when we move the
1685 		 * tail page.
1686 		 */
1687 
1688 		/* still more to do */
1689 		break;
1690 
1691 	case RB_PAGE_UPDATE:
1692 		/*
1693 		 * This is an interrupt that interrupt the
1694 		 * previous update. Still more to do.
1695 		 */
1696 		break;
1697 	case RB_PAGE_NORMAL:
1698 		/*
1699 		 * An interrupt came in before the update
1700 		 * and processed this for us.
1701 		 * Nothing left to do.
1702 		 */
1703 		return 1;
1704 	case RB_PAGE_MOVED:
1705 		/*
1706 		 * The reader is on another CPU and just did
1707 		 * a swap with our next_page.
1708 		 * Try again.
1709 		 */
1710 		return 1;
1711 	default:
1712 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1713 		return -1;
1714 	}
1715 
1716 	/*
1717 	 * Now that we are here, the old head pointer is
1718 	 * set to UPDATE. This will keep the reader from
1719 	 * swapping the head page with the reader page.
1720 	 * The reader (on another CPU) will spin till
1721 	 * we are finished.
1722 	 *
1723 	 * We just need to protect against interrupts
1724 	 * doing the job. We will set the next pointer
1725 	 * to HEAD. After that, we set the old pointer
1726 	 * to NORMAL, but only if it was HEAD before.
1727 	 * otherwise we are an interrupt, and only
1728 	 * want the outer most commit to reset it.
1729 	 */
1730 	new_head = next_page;
1731 	rb_inc_page(cpu_buffer, &new_head);
1732 
1733 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1734 				    RB_PAGE_NORMAL);
1735 
1736 	/*
1737 	 * Valid returns are:
1738 	 *  HEAD   - an interrupt came in and already set it.
1739 	 *  NORMAL - One of two things:
1740 	 *            1) We really set it.
1741 	 *            2) A bunch of interrupts came in and moved
1742 	 *               the page forward again.
1743 	 */
1744 	switch (ret) {
1745 	case RB_PAGE_HEAD:
1746 	case RB_PAGE_NORMAL:
1747 		/* OK */
1748 		break;
1749 	default:
1750 		RB_WARN_ON(cpu_buffer, 1);
1751 		return -1;
1752 	}
1753 
1754 	/*
1755 	 * It is possible that an interrupt came in,
1756 	 * set the head up, then more interrupts came in
1757 	 * and moved it again. When we get back here,
1758 	 * the page would have been set to NORMAL but we
1759 	 * just set it back to HEAD.
1760 	 *
1761 	 * How do you detect this? Well, if that happened
1762 	 * the tail page would have moved.
1763 	 */
1764 	if (ret == RB_PAGE_NORMAL) {
1765 		/*
1766 		 * If the tail had moved passed next, then we need
1767 		 * to reset the pointer.
1768 		 */
1769 		if (cpu_buffer->tail_page != tail_page &&
1770 		    cpu_buffer->tail_page != next_page)
1771 			rb_head_page_set_normal(cpu_buffer, new_head,
1772 						next_page,
1773 						RB_PAGE_HEAD);
1774 	}
1775 
1776 	/*
1777 	 * If this was the outer most commit (the one that
1778 	 * changed the original pointer from HEAD to UPDATE),
1779 	 * then it is up to us to reset it to NORMAL.
1780 	 */
1781 	if (type == RB_PAGE_HEAD) {
1782 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1783 					      tail_page,
1784 					      RB_PAGE_UPDATE);
1785 		if (RB_WARN_ON(cpu_buffer,
1786 			       ret != RB_PAGE_UPDATE))
1787 			return -1;
1788 	}
1789 
1790 	return 0;
1791 }
1792 
1793 static unsigned rb_calculate_event_length(unsigned length)
1794 {
1795 	struct ring_buffer_event event; /* Used only for sizeof array */
1796 
1797 	/* zero length can cause confusions */
1798 	if (!length)
1799 		length = 1;
1800 
1801 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1802 		length += sizeof(event.array[0]);
1803 
1804 	length += RB_EVNT_HDR_SIZE;
1805 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1806 
1807 	return length;
1808 }
1809 
1810 static inline void
1811 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1812 	      struct buffer_page *tail_page,
1813 	      unsigned long tail, unsigned long length)
1814 {
1815 	struct ring_buffer_event *event;
1816 
1817 	/*
1818 	 * Only the event that crossed the page boundary
1819 	 * must fill the old tail_page with padding.
1820 	 */
1821 	if (tail >= BUF_PAGE_SIZE) {
1822 		/*
1823 		 * If the page was filled, then we still need
1824 		 * to update the real_end. Reset it to zero
1825 		 * and the reader will ignore it.
1826 		 */
1827 		if (tail == BUF_PAGE_SIZE)
1828 			tail_page->real_end = 0;
1829 
1830 		local_sub(length, &tail_page->write);
1831 		return;
1832 	}
1833 
1834 	event = __rb_page_index(tail_page, tail);
1835 	kmemcheck_annotate_bitfield(event, bitfield);
1836 
1837 	/* account for padding bytes */
1838 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
1839 
1840 	/*
1841 	 * Save the original length to the meta data.
1842 	 * This will be used by the reader to add lost event
1843 	 * counter.
1844 	 */
1845 	tail_page->real_end = tail;
1846 
1847 	/*
1848 	 * If this event is bigger than the minimum size, then
1849 	 * we need to be careful that we don't subtract the
1850 	 * write counter enough to allow another writer to slip
1851 	 * in on this page.
1852 	 * We put in a discarded commit instead, to make sure
1853 	 * that this space is not used again.
1854 	 *
1855 	 * If we are less than the minimum size, we don't need to
1856 	 * worry about it.
1857 	 */
1858 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1859 		/* No room for any events */
1860 
1861 		/* Mark the rest of the page with padding */
1862 		rb_event_set_padding(event);
1863 
1864 		/* Set the write back to the previous setting */
1865 		local_sub(length, &tail_page->write);
1866 		return;
1867 	}
1868 
1869 	/* Put in a discarded event */
1870 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1871 	event->type_len = RINGBUF_TYPE_PADDING;
1872 	/* time delta must be non zero */
1873 	event->time_delta = 1;
1874 
1875 	/* Set write to end of buffer */
1876 	length = (tail + length) - BUF_PAGE_SIZE;
1877 	local_sub(length, &tail_page->write);
1878 }
1879 
1880 /*
1881  * This is the slow path, force gcc not to inline it.
1882  */
1883 static noinline struct ring_buffer_event *
1884 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1885 	     unsigned long length, unsigned long tail,
1886 	     struct buffer_page *tail_page, u64 ts)
1887 {
1888 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1889 	struct ring_buffer *buffer = cpu_buffer->buffer;
1890 	struct buffer_page *next_page;
1891 	int ret;
1892 
1893 	next_page = tail_page;
1894 
1895 	rb_inc_page(cpu_buffer, &next_page);
1896 
1897 	/*
1898 	 * If for some reason, we had an interrupt storm that made
1899 	 * it all the way around the buffer, bail, and warn
1900 	 * about it.
1901 	 */
1902 	if (unlikely(next_page == commit_page)) {
1903 		local_inc(&cpu_buffer->commit_overrun);
1904 		goto out_reset;
1905 	}
1906 
1907 	/*
1908 	 * This is where the fun begins!
1909 	 *
1910 	 * We are fighting against races between a reader that
1911 	 * could be on another CPU trying to swap its reader
1912 	 * page with the buffer head.
1913 	 *
1914 	 * We are also fighting against interrupts coming in and
1915 	 * moving the head or tail on us as well.
1916 	 *
1917 	 * If the next page is the head page then we have filled
1918 	 * the buffer, unless the commit page is still on the
1919 	 * reader page.
1920 	 */
1921 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1922 
1923 		/*
1924 		 * If the commit is not on the reader page, then
1925 		 * move the header page.
1926 		 */
1927 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1928 			/*
1929 			 * If we are not in overwrite mode,
1930 			 * this is easy, just stop here.
1931 			 */
1932 			if (!(buffer->flags & RB_FL_OVERWRITE))
1933 				goto out_reset;
1934 
1935 			ret = rb_handle_head_page(cpu_buffer,
1936 						  tail_page,
1937 						  next_page);
1938 			if (ret < 0)
1939 				goto out_reset;
1940 			if (ret)
1941 				goto out_again;
1942 		} else {
1943 			/*
1944 			 * We need to be careful here too. The
1945 			 * commit page could still be on the reader
1946 			 * page. We could have a small buffer, and
1947 			 * have filled up the buffer with events
1948 			 * from interrupts and such, and wrapped.
1949 			 *
1950 			 * Note, if the tail page is also the on the
1951 			 * reader_page, we let it move out.
1952 			 */
1953 			if (unlikely((cpu_buffer->commit_page !=
1954 				      cpu_buffer->tail_page) &&
1955 				     (cpu_buffer->commit_page ==
1956 				      cpu_buffer->reader_page))) {
1957 				local_inc(&cpu_buffer->commit_overrun);
1958 				goto out_reset;
1959 			}
1960 		}
1961 	}
1962 
1963 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1964 	if (ret) {
1965 		/*
1966 		 * Nested commits always have zero deltas, so
1967 		 * just reread the time stamp
1968 		 */
1969 		ts = rb_time_stamp(buffer);
1970 		next_page->page->time_stamp = ts;
1971 	}
1972 
1973  out_again:
1974 
1975 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1976 
1977 	/* fail and let the caller try again */
1978 	return ERR_PTR(-EAGAIN);
1979 
1980  out_reset:
1981 	/* reset write */
1982 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1983 
1984 	return NULL;
1985 }
1986 
1987 static struct ring_buffer_event *
1988 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1989 		  unsigned long length, u64 ts,
1990 		  u64 delta, int add_timestamp)
1991 {
1992 	struct buffer_page *tail_page;
1993 	struct ring_buffer_event *event;
1994 	unsigned long tail, write;
1995 
1996 	/*
1997 	 * If the time delta since the last event is too big to
1998 	 * hold in the time field of the event, then we append a
1999 	 * TIME EXTEND event ahead of the data event.
2000 	 */
2001 	if (unlikely(add_timestamp))
2002 		length += RB_LEN_TIME_EXTEND;
2003 
2004 	tail_page = cpu_buffer->tail_page;
2005 	write = local_add_return(length, &tail_page->write);
2006 
2007 	/* set write to only the index of the write */
2008 	write &= RB_WRITE_MASK;
2009 	tail = write - length;
2010 
2011 	/* See if we shot pass the end of this buffer page */
2012 	if (unlikely(write > BUF_PAGE_SIZE))
2013 		return rb_move_tail(cpu_buffer, length, tail,
2014 				    tail_page, ts);
2015 
2016 	/* We reserved something on the buffer */
2017 
2018 	event = __rb_page_index(tail_page, tail);
2019 	kmemcheck_annotate_bitfield(event, bitfield);
2020 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2021 
2022 	local_inc(&tail_page->entries);
2023 
2024 	/*
2025 	 * If this is the first commit on the page, then update
2026 	 * its timestamp.
2027 	 */
2028 	if (!tail)
2029 		tail_page->page->time_stamp = ts;
2030 
2031 	/* account for these added bytes */
2032 	local_add(length, &cpu_buffer->entries_bytes);
2033 
2034 	return event;
2035 }
2036 
2037 static inline int
2038 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2039 		  struct ring_buffer_event *event)
2040 {
2041 	unsigned long new_index, old_index;
2042 	struct buffer_page *bpage;
2043 	unsigned long index;
2044 	unsigned long addr;
2045 
2046 	new_index = rb_event_index(event);
2047 	old_index = new_index + rb_event_ts_length(event);
2048 	addr = (unsigned long)event;
2049 	addr &= PAGE_MASK;
2050 
2051 	bpage = cpu_buffer->tail_page;
2052 
2053 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2054 		unsigned long write_mask =
2055 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2056 		unsigned long event_length = rb_event_length(event);
2057 		/*
2058 		 * This is on the tail page. It is possible that
2059 		 * a write could come in and move the tail page
2060 		 * and write to the next page. That is fine
2061 		 * because we just shorten what is on this page.
2062 		 */
2063 		old_index += write_mask;
2064 		new_index += write_mask;
2065 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2066 		if (index == old_index) {
2067 			/* update counters */
2068 			local_sub(event_length, &cpu_buffer->entries_bytes);
2069 			return 1;
2070 		}
2071 	}
2072 
2073 	/* could not discard */
2074 	return 0;
2075 }
2076 
2077 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2078 {
2079 	local_inc(&cpu_buffer->committing);
2080 	local_inc(&cpu_buffer->commits);
2081 }
2082 
2083 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2084 {
2085 	unsigned long commits;
2086 
2087 	if (RB_WARN_ON(cpu_buffer,
2088 		       !local_read(&cpu_buffer->committing)))
2089 		return;
2090 
2091  again:
2092 	commits = local_read(&cpu_buffer->commits);
2093 	/* synchronize with interrupts */
2094 	barrier();
2095 	if (local_read(&cpu_buffer->committing) == 1)
2096 		rb_set_commit_to_write(cpu_buffer);
2097 
2098 	local_dec(&cpu_buffer->committing);
2099 
2100 	/* synchronize with interrupts */
2101 	barrier();
2102 
2103 	/*
2104 	 * Need to account for interrupts coming in between the
2105 	 * updating of the commit page and the clearing of the
2106 	 * committing counter.
2107 	 */
2108 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2109 	    !local_read(&cpu_buffer->committing)) {
2110 		local_inc(&cpu_buffer->committing);
2111 		goto again;
2112 	}
2113 }
2114 
2115 static struct ring_buffer_event *
2116 rb_reserve_next_event(struct ring_buffer *buffer,
2117 		      struct ring_buffer_per_cpu *cpu_buffer,
2118 		      unsigned long length)
2119 {
2120 	struct ring_buffer_event *event;
2121 	u64 ts, delta;
2122 	int nr_loops = 0;
2123 	int add_timestamp;
2124 	u64 diff;
2125 
2126 	rb_start_commit(cpu_buffer);
2127 
2128 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2129 	/*
2130 	 * Due to the ability to swap a cpu buffer from a buffer
2131 	 * it is possible it was swapped before we committed.
2132 	 * (committing stops a swap). We check for it here and
2133 	 * if it happened, we have to fail the write.
2134 	 */
2135 	barrier();
2136 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2137 		local_dec(&cpu_buffer->committing);
2138 		local_dec(&cpu_buffer->commits);
2139 		return NULL;
2140 	}
2141 #endif
2142 
2143 	length = rb_calculate_event_length(length);
2144  again:
2145 	add_timestamp = 0;
2146 	delta = 0;
2147 
2148 	/*
2149 	 * We allow for interrupts to reenter here and do a trace.
2150 	 * If one does, it will cause this original code to loop
2151 	 * back here. Even with heavy interrupts happening, this
2152 	 * should only happen a few times in a row. If this happens
2153 	 * 1000 times in a row, there must be either an interrupt
2154 	 * storm or we have something buggy.
2155 	 * Bail!
2156 	 */
2157 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2158 		goto out_fail;
2159 
2160 	ts = rb_time_stamp(cpu_buffer->buffer);
2161 	diff = ts - cpu_buffer->write_stamp;
2162 
2163 	/* make sure this diff is calculated here */
2164 	barrier();
2165 
2166 	/* Did the write stamp get updated already? */
2167 	if (likely(ts >= cpu_buffer->write_stamp)) {
2168 		delta = diff;
2169 		if (unlikely(test_time_stamp(delta))) {
2170 			int local_clock_stable = 1;
2171 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2172 			local_clock_stable = sched_clock_stable;
2173 #endif
2174 			WARN_ONCE(delta > (1ULL << 59),
2175 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2176 				  (unsigned long long)delta,
2177 				  (unsigned long long)ts,
2178 				  (unsigned long long)cpu_buffer->write_stamp,
2179 				  local_clock_stable ? "" :
2180 				  "If you just came from a suspend/resume,\n"
2181 				  "please switch to the trace global clock:\n"
2182 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2183 			add_timestamp = 1;
2184 		}
2185 	}
2186 
2187 	event = __rb_reserve_next(cpu_buffer, length, ts,
2188 				  delta, add_timestamp);
2189 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2190 		goto again;
2191 
2192 	if (!event)
2193 		goto out_fail;
2194 
2195 	return event;
2196 
2197  out_fail:
2198 	rb_end_commit(cpu_buffer);
2199 	return NULL;
2200 }
2201 
2202 #ifdef CONFIG_TRACING
2203 
2204 #define TRACE_RECURSIVE_DEPTH 16
2205 
2206 /* Keep this code out of the fast path cache */
2207 static noinline void trace_recursive_fail(void)
2208 {
2209 	/* Disable all tracing before we do anything else */
2210 	tracing_off_permanent();
2211 
2212 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2213 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2214 		    trace_recursion_buffer(),
2215 		    hardirq_count() >> HARDIRQ_SHIFT,
2216 		    softirq_count() >> SOFTIRQ_SHIFT,
2217 		    in_nmi());
2218 
2219 	WARN_ON_ONCE(1);
2220 }
2221 
2222 static inline int trace_recursive_lock(void)
2223 {
2224 	trace_recursion_inc();
2225 
2226 	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2227 		return 0;
2228 
2229 	trace_recursive_fail();
2230 
2231 	return -1;
2232 }
2233 
2234 static inline void trace_recursive_unlock(void)
2235 {
2236 	WARN_ON_ONCE(!trace_recursion_buffer());
2237 
2238 	trace_recursion_dec();
2239 }
2240 
2241 #else
2242 
2243 #define trace_recursive_lock()		(0)
2244 #define trace_recursive_unlock()	do { } while (0)
2245 
2246 #endif
2247 
2248 /**
2249  * ring_buffer_lock_reserve - reserve a part of the buffer
2250  * @buffer: the ring buffer to reserve from
2251  * @length: the length of the data to reserve (excluding event header)
2252  *
2253  * Returns a reseverd event on the ring buffer to copy directly to.
2254  * The user of this interface will need to get the body to write into
2255  * and can use the ring_buffer_event_data() interface.
2256  *
2257  * The length is the length of the data needed, not the event length
2258  * which also includes the event header.
2259  *
2260  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2261  * If NULL is returned, then nothing has been allocated or locked.
2262  */
2263 struct ring_buffer_event *
2264 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2265 {
2266 	struct ring_buffer_per_cpu *cpu_buffer;
2267 	struct ring_buffer_event *event;
2268 	int cpu;
2269 
2270 	if (ring_buffer_flags != RB_BUFFERS_ON)
2271 		return NULL;
2272 
2273 	/* If we are tracing schedule, we don't want to recurse */
2274 	preempt_disable_notrace();
2275 
2276 	if (atomic_read(&buffer->record_disabled))
2277 		goto out_nocheck;
2278 
2279 	if (trace_recursive_lock())
2280 		goto out_nocheck;
2281 
2282 	cpu = raw_smp_processor_id();
2283 
2284 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2285 		goto out;
2286 
2287 	cpu_buffer = buffer->buffers[cpu];
2288 
2289 	if (atomic_read(&cpu_buffer->record_disabled))
2290 		goto out;
2291 
2292 	if (length > BUF_MAX_DATA_SIZE)
2293 		goto out;
2294 
2295 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2296 	if (!event)
2297 		goto out;
2298 
2299 	return event;
2300 
2301  out:
2302 	trace_recursive_unlock();
2303 
2304  out_nocheck:
2305 	preempt_enable_notrace();
2306 	return NULL;
2307 }
2308 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2309 
2310 static void
2311 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2312 		      struct ring_buffer_event *event)
2313 {
2314 	u64 delta;
2315 
2316 	/*
2317 	 * The event first in the commit queue updates the
2318 	 * time stamp.
2319 	 */
2320 	if (rb_event_is_commit(cpu_buffer, event)) {
2321 		/*
2322 		 * A commit event that is first on a page
2323 		 * updates the write timestamp with the page stamp
2324 		 */
2325 		if (!rb_event_index(event))
2326 			cpu_buffer->write_stamp =
2327 				cpu_buffer->commit_page->page->time_stamp;
2328 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2329 			delta = event->array[0];
2330 			delta <<= TS_SHIFT;
2331 			delta += event->time_delta;
2332 			cpu_buffer->write_stamp += delta;
2333 		} else
2334 			cpu_buffer->write_stamp += event->time_delta;
2335 	}
2336 }
2337 
2338 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2339 		      struct ring_buffer_event *event)
2340 {
2341 	local_inc(&cpu_buffer->entries);
2342 	rb_update_write_stamp(cpu_buffer, event);
2343 	rb_end_commit(cpu_buffer);
2344 }
2345 
2346 /**
2347  * ring_buffer_unlock_commit - commit a reserved
2348  * @buffer: The buffer to commit to
2349  * @event: The event pointer to commit.
2350  *
2351  * This commits the data to the ring buffer, and releases any locks held.
2352  *
2353  * Must be paired with ring_buffer_lock_reserve.
2354  */
2355 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2356 			      struct ring_buffer_event *event)
2357 {
2358 	struct ring_buffer_per_cpu *cpu_buffer;
2359 	int cpu = raw_smp_processor_id();
2360 
2361 	cpu_buffer = buffer->buffers[cpu];
2362 
2363 	rb_commit(cpu_buffer, event);
2364 
2365 	trace_recursive_unlock();
2366 
2367 	preempt_enable_notrace();
2368 
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2372 
2373 static inline void rb_event_discard(struct ring_buffer_event *event)
2374 {
2375 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2376 		event = skip_time_extend(event);
2377 
2378 	/* array[0] holds the actual length for the discarded event */
2379 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2380 	event->type_len = RINGBUF_TYPE_PADDING;
2381 	/* time delta must be non zero */
2382 	if (!event->time_delta)
2383 		event->time_delta = 1;
2384 }
2385 
2386 /*
2387  * Decrement the entries to the page that an event is on.
2388  * The event does not even need to exist, only the pointer
2389  * to the page it is on. This may only be called before the commit
2390  * takes place.
2391  */
2392 static inline void
2393 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2394 		   struct ring_buffer_event *event)
2395 {
2396 	unsigned long addr = (unsigned long)event;
2397 	struct buffer_page *bpage = cpu_buffer->commit_page;
2398 	struct buffer_page *start;
2399 
2400 	addr &= PAGE_MASK;
2401 
2402 	/* Do the likely case first */
2403 	if (likely(bpage->page == (void *)addr)) {
2404 		local_dec(&bpage->entries);
2405 		return;
2406 	}
2407 
2408 	/*
2409 	 * Because the commit page may be on the reader page we
2410 	 * start with the next page and check the end loop there.
2411 	 */
2412 	rb_inc_page(cpu_buffer, &bpage);
2413 	start = bpage;
2414 	do {
2415 		if (bpage->page == (void *)addr) {
2416 			local_dec(&bpage->entries);
2417 			return;
2418 		}
2419 		rb_inc_page(cpu_buffer, &bpage);
2420 	} while (bpage != start);
2421 
2422 	/* commit not part of this buffer?? */
2423 	RB_WARN_ON(cpu_buffer, 1);
2424 }
2425 
2426 /**
2427  * ring_buffer_commit_discard - discard an event that has not been committed
2428  * @buffer: the ring buffer
2429  * @event: non committed event to discard
2430  *
2431  * Sometimes an event that is in the ring buffer needs to be ignored.
2432  * This function lets the user discard an event in the ring buffer
2433  * and then that event will not be read later.
2434  *
2435  * This function only works if it is called before the the item has been
2436  * committed. It will try to free the event from the ring buffer
2437  * if another event has not been added behind it.
2438  *
2439  * If another event has been added behind it, it will set the event
2440  * up as discarded, and perform the commit.
2441  *
2442  * If this function is called, do not call ring_buffer_unlock_commit on
2443  * the event.
2444  */
2445 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2446 				struct ring_buffer_event *event)
2447 {
2448 	struct ring_buffer_per_cpu *cpu_buffer;
2449 	int cpu;
2450 
2451 	/* The event is discarded regardless */
2452 	rb_event_discard(event);
2453 
2454 	cpu = smp_processor_id();
2455 	cpu_buffer = buffer->buffers[cpu];
2456 
2457 	/*
2458 	 * This must only be called if the event has not been
2459 	 * committed yet. Thus we can assume that preemption
2460 	 * is still disabled.
2461 	 */
2462 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2463 
2464 	rb_decrement_entry(cpu_buffer, event);
2465 	if (rb_try_to_discard(cpu_buffer, event))
2466 		goto out;
2467 
2468 	/*
2469 	 * The commit is still visible by the reader, so we
2470 	 * must still update the timestamp.
2471 	 */
2472 	rb_update_write_stamp(cpu_buffer, event);
2473  out:
2474 	rb_end_commit(cpu_buffer);
2475 
2476 	trace_recursive_unlock();
2477 
2478 	preempt_enable_notrace();
2479 
2480 }
2481 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2482 
2483 /**
2484  * ring_buffer_write - write data to the buffer without reserving
2485  * @buffer: The ring buffer to write to.
2486  * @length: The length of the data being written (excluding the event header)
2487  * @data: The data to write to the buffer.
2488  *
2489  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2490  * one function. If you already have the data to write to the buffer, it
2491  * may be easier to simply call this function.
2492  *
2493  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2494  * and not the length of the event which would hold the header.
2495  */
2496 int ring_buffer_write(struct ring_buffer *buffer,
2497 			unsigned long length,
2498 			void *data)
2499 {
2500 	struct ring_buffer_per_cpu *cpu_buffer;
2501 	struct ring_buffer_event *event;
2502 	void *body;
2503 	int ret = -EBUSY;
2504 	int cpu;
2505 
2506 	if (ring_buffer_flags != RB_BUFFERS_ON)
2507 		return -EBUSY;
2508 
2509 	preempt_disable_notrace();
2510 
2511 	if (atomic_read(&buffer->record_disabled))
2512 		goto out;
2513 
2514 	cpu = raw_smp_processor_id();
2515 
2516 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2517 		goto out;
2518 
2519 	cpu_buffer = buffer->buffers[cpu];
2520 
2521 	if (atomic_read(&cpu_buffer->record_disabled))
2522 		goto out;
2523 
2524 	if (length > BUF_MAX_DATA_SIZE)
2525 		goto out;
2526 
2527 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2528 	if (!event)
2529 		goto out;
2530 
2531 	body = rb_event_data(event);
2532 
2533 	memcpy(body, data, length);
2534 
2535 	rb_commit(cpu_buffer, event);
2536 
2537 	ret = 0;
2538  out:
2539 	preempt_enable_notrace();
2540 
2541 	return ret;
2542 }
2543 EXPORT_SYMBOL_GPL(ring_buffer_write);
2544 
2545 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2546 {
2547 	struct buffer_page *reader = cpu_buffer->reader_page;
2548 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2549 	struct buffer_page *commit = cpu_buffer->commit_page;
2550 
2551 	/* In case of error, head will be NULL */
2552 	if (unlikely(!head))
2553 		return 1;
2554 
2555 	return reader->read == rb_page_commit(reader) &&
2556 		(commit == reader ||
2557 		 (commit == head &&
2558 		  head->read == rb_page_commit(commit)));
2559 }
2560 
2561 /**
2562  * ring_buffer_record_disable - stop all writes into the buffer
2563  * @buffer: The ring buffer to stop writes to.
2564  *
2565  * This prevents all writes to the buffer. Any attempt to write
2566  * to the buffer after this will fail and return NULL.
2567  *
2568  * The caller should call synchronize_sched() after this.
2569  */
2570 void ring_buffer_record_disable(struct ring_buffer *buffer)
2571 {
2572 	atomic_inc(&buffer->record_disabled);
2573 }
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2575 
2576 /**
2577  * ring_buffer_record_enable - enable writes to the buffer
2578  * @buffer: The ring buffer to enable writes
2579  *
2580  * Note, multiple disables will need the same number of enables
2581  * to truly enable the writing (much like preempt_disable).
2582  */
2583 void ring_buffer_record_enable(struct ring_buffer *buffer)
2584 {
2585 	atomic_dec(&buffer->record_disabled);
2586 }
2587 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2588 
2589 /**
2590  * ring_buffer_record_off - stop all writes into the buffer
2591  * @buffer: The ring buffer to stop writes to.
2592  *
2593  * This prevents all writes to the buffer. Any attempt to write
2594  * to the buffer after this will fail and return NULL.
2595  *
2596  * This is different than ring_buffer_record_disable() as
2597  * it works like an on/off switch, where as the disable() verison
2598  * must be paired with a enable().
2599  */
2600 void ring_buffer_record_off(struct ring_buffer *buffer)
2601 {
2602 	unsigned int rd;
2603 	unsigned int new_rd;
2604 
2605 	do {
2606 		rd = atomic_read(&buffer->record_disabled);
2607 		new_rd = rd | RB_BUFFER_OFF;
2608 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2609 }
2610 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2611 
2612 /**
2613  * ring_buffer_record_on - restart writes into the buffer
2614  * @buffer: The ring buffer to start writes to.
2615  *
2616  * This enables all writes to the buffer that was disabled by
2617  * ring_buffer_record_off().
2618  *
2619  * This is different than ring_buffer_record_enable() as
2620  * it works like an on/off switch, where as the enable() verison
2621  * must be paired with a disable().
2622  */
2623 void ring_buffer_record_on(struct ring_buffer *buffer)
2624 {
2625 	unsigned int rd;
2626 	unsigned int new_rd;
2627 
2628 	do {
2629 		rd = atomic_read(&buffer->record_disabled);
2630 		new_rd = rd & ~RB_BUFFER_OFF;
2631 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2632 }
2633 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2634 
2635 /**
2636  * ring_buffer_record_is_on - return true if the ring buffer can write
2637  * @buffer: The ring buffer to see if write is enabled
2638  *
2639  * Returns true if the ring buffer is in a state that it accepts writes.
2640  */
2641 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2642 {
2643 	return !atomic_read(&buffer->record_disabled);
2644 }
2645 
2646 /**
2647  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2648  * @buffer: The ring buffer to stop writes to.
2649  * @cpu: The CPU buffer to stop
2650  *
2651  * This prevents all writes to the buffer. Any attempt to write
2652  * to the buffer after this will fail and return NULL.
2653  *
2654  * The caller should call synchronize_sched() after this.
2655  */
2656 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2657 {
2658 	struct ring_buffer_per_cpu *cpu_buffer;
2659 
2660 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2661 		return;
2662 
2663 	cpu_buffer = buffer->buffers[cpu];
2664 	atomic_inc(&cpu_buffer->record_disabled);
2665 }
2666 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2667 
2668 /**
2669  * ring_buffer_record_enable_cpu - enable writes to the buffer
2670  * @buffer: The ring buffer to enable writes
2671  * @cpu: The CPU to enable.
2672  *
2673  * Note, multiple disables will need the same number of enables
2674  * to truly enable the writing (much like preempt_disable).
2675  */
2676 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2677 {
2678 	struct ring_buffer_per_cpu *cpu_buffer;
2679 
2680 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2681 		return;
2682 
2683 	cpu_buffer = buffer->buffers[cpu];
2684 	atomic_dec(&cpu_buffer->record_disabled);
2685 }
2686 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2687 
2688 /*
2689  * The total entries in the ring buffer is the running counter
2690  * of entries entered into the ring buffer, minus the sum of
2691  * the entries read from the ring buffer and the number of
2692  * entries that were overwritten.
2693  */
2694 static inline unsigned long
2695 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2696 {
2697 	return local_read(&cpu_buffer->entries) -
2698 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2699 }
2700 
2701 /**
2702  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2703  * @buffer: The ring buffer
2704  * @cpu: The per CPU buffer to read from.
2705  */
2706 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2707 {
2708 	unsigned long flags;
2709 	struct ring_buffer_per_cpu *cpu_buffer;
2710 	struct buffer_page *bpage;
2711 	unsigned long ret;
2712 
2713 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2714 		return 0;
2715 
2716 	cpu_buffer = buffer->buffers[cpu];
2717 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2718 	/*
2719 	 * if the tail is on reader_page, oldest time stamp is on the reader
2720 	 * page
2721 	 */
2722 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2723 		bpage = cpu_buffer->reader_page;
2724 	else
2725 		bpage = rb_set_head_page(cpu_buffer);
2726 	ret = bpage->page->time_stamp;
2727 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2728 
2729 	return ret;
2730 }
2731 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2732 
2733 /**
2734  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2735  * @buffer: The ring buffer
2736  * @cpu: The per CPU buffer to read from.
2737  */
2738 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2739 {
2740 	struct ring_buffer_per_cpu *cpu_buffer;
2741 	unsigned long ret;
2742 
2743 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2744 		return 0;
2745 
2746 	cpu_buffer = buffer->buffers[cpu];
2747 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2748 
2749 	return ret;
2750 }
2751 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2752 
2753 /**
2754  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2755  * @buffer: The ring buffer
2756  * @cpu: The per CPU buffer to get the entries from.
2757  */
2758 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2759 {
2760 	struct ring_buffer_per_cpu *cpu_buffer;
2761 
2762 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2763 		return 0;
2764 
2765 	cpu_buffer = buffer->buffers[cpu];
2766 
2767 	return rb_num_of_entries(cpu_buffer);
2768 }
2769 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2770 
2771 /**
2772  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2773  * @buffer: The ring buffer
2774  * @cpu: The per CPU buffer to get the number of overruns from
2775  */
2776 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2777 {
2778 	struct ring_buffer_per_cpu *cpu_buffer;
2779 	unsigned long ret;
2780 
2781 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2782 		return 0;
2783 
2784 	cpu_buffer = buffer->buffers[cpu];
2785 	ret = local_read(&cpu_buffer->overrun);
2786 
2787 	return ret;
2788 }
2789 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2790 
2791 /**
2792  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2793  * @buffer: The ring buffer
2794  * @cpu: The per CPU buffer to get the number of overruns from
2795  */
2796 unsigned long
2797 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2798 {
2799 	struct ring_buffer_per_cpu *cpu_buffer;
2800 	unsigned long ret;
2801 
2802 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2803 		return 0;
2804 
2805 	cpu_buffer = buffer->buffers[cpu];
2806 	ret = local_read(&cpu_buffer->commit_overrun);
2807 
2808 	return ret;
2809 }
2810 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2811 
2812 /**
2813  * ring_buffer_entries - get the number of entries in a buffer
2814  * @buffer: The ring buffer
2815  *
2816  * Returns the total number of entries in the ring buffer
2817  * (all CPU entries)
2818  */
2819 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2820 {
2821 	struct ring_buffer_per_cpu *cpu_buffer;
2822 	unsigned long entries = 0;
2823 	int cpu;
2824 
2825 	/* if you care about this being correct, lock the buffer */
2826 	for_each_buffer_cpu(buffer, cpu) {
2827 		cpu_buffer = buffer->buffers[cpu];
2828 		entries += rb_num_of_entries(cpu_buffer);
2829 	}
2830 
2831 	return entries;
2832 }
2833 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2834 
2835 /**
2836  * ring_buffer_overruns - get the number of overruns in buffer
2837  * @buffer: The ring buffer
2838  *
2839  * Returns the total number of overruns in the ring buffer
2840  * (all CPU entries)
2841  */
2842 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2843 {
2844 	struct ring_buffer_per_cpu *cpu_buffer;
2845 	unsigned long overruns = 0;
2846 	int cpu;
2847 
2848 	/* if you care about this being correct, lock the buffer */
2849 	for_each_buffer_cpu(buffer, cpu) {
2850 		cpu_buffer = buffer->buffers[cpu];
2851 		overruns += local_read(&cpu_buffer->overrun);
2852 	}
2853 
2854 	return overruns;
2855 }
2856 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2857 
2858 static void rb_iter_reset(struct ring_buffer_iter *iter)
2859 {
2860 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2861 
2862 	/* Iterator usage is expected to have record disabled */
2863 	if (list_empty(&cpu_buffer->reader_page->list)) {
2864 		iter->head_page = rb_set_head_page(cpu_buffer);
2865 		if (unlikely(!iter->head_page))
2866 			return;
2867 		iter->head = iter->head_page->read;
2868 	} else {
2869 		iter->head_page = cpu_buffer->reader_page;
2870 		iter->head = cpu_buffer->reader_page->read;
2871 	}
2872 	if (iter->head)
2873 		iter->read_stamp = cpu_buffer->read_stamp;
2874 	else
2875 		iter->read_stamp = iter->head_page->page->time_stamp;
2876 	iter->cache_reader_page = cpu_buffer->reader_page;
2877 	iter->cache_read = cpu_buffer->read;
2878 }
2879 
2880 /**
2881  * ring_buffer_iter_reset - reset an iterator
2882  * @iter: The iterator to reset
2883  *
2884  * Resets the iterator, so that it will start from the beginning
2885  * again.
2886  */
2887 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2888 {
2889 	struct ring_buffer_per_cpu *cpu_buffer;
2890 	unsigned long flags;
2891 
2892 	if (!iter)
2893 		return;
2894 
2895 	cpu_buffer = iter->cpu_buffer;
2896 
2897 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2898 	rb_iter_reset(iter);
2899 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2900 }
2901 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2902 
2903 /**
2904  * ring_buffer_iter_empty - check if an iterator has no more to read
2905  * @iter: The iterator to check
2906  */
2907 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2908 {
2909 	struct ring_buffer_per_cpu *cpu_buffer;
2910 
2911 	cpu_buffer = iter->cpu_buffer;
2912 
2913 	return iter->head_page == cpu_buffer->commit_page &&
2914 		iter->head == rb_commit_index(cpu_buffer);
2915 }
2916 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2917 
2918 static void
2919 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2920 		     struct ring_buffer_event *event)
2921 {
2922 	u64 delta;
2923 
2924 	switch (event->type_len) {
2925 	case RINGBUF_TYPE_PADDING:
2926 		return;
2927 
2928 	case RINGBUF_TYPE_TIME_EXTEND:
2929 		delta = event->array[0];
2930 		delta <<= TS_SHIFT;
2931 		delta += event->time_delta;
2932 		cpu_buffer->read_stamp += delta;
2933 		return;
2934 
2935 	case RINGBUF_TYPE_TIME_STAMP:
2936 		/* FIXME: not implemented */
2937 		return;
2938 
2939 	case RINGBUF_TYPE_DATA:
2940 		cpu_buffer->read_stamp += event->time_delta;
2941 		return;
2942 
2943 	default:
2944 		BUG();
2945 	}
2946 	return;
2947 }
2948 
2949 static void
2950 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2951 			  struct ring_buffer_event *event)
2952 {
2953 	u64 delta;
2954 
2955 	switch (event->type_len) {
2956 	case RINGBUF_TYPE_PADDING:
2957 		return;
2958 
2959 	case RINGBUF_TYPE_TIME_EXTEND:
2960 		delta = event->array[0];
2961 		delta <<= TS_SHIFT;
2962 		delta += event->time_delta;
2963 		iter->read_stamp += delta;
2964 		return;
2965 
2966 	case RINGBUF_TYPE_TIME_STAMP:
2967 		/* FIXME: not implemented */
2968 		return;
2969 
2970 	case RINGBUF_TYPE_DATA:
2971 		iter->read_stamp += event->time_delta;
2972 		return;
2973 
2974 	default:
2975 		BUG();
2976 	}
2977 	return;
2978 }
2979 
2980 static struct buffer_page *
2981 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2982 {
2983 	struct buffer_page *reader = NULL;
2984 	unsigned long overwrite;
2985 	unsigned long flags;
2986 	int nr_loops = 0;
2987 	int ret;
2988 
2989 	local_irq_save(flags);
2990 	arch_spin_lock(&cpu_buffer->lock);
2991 
2992  again:
2993 	/*
2994 	 * This should normally only loop twice. But because the
2995 	 * start of the reader inserts an empty page, it causes
2996 	 * a case where we will loop three times. There should be no
2997 	 * reason to loop four times (that I know of).
2998 	 */
2999 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3000 		reader = NULL;
3001 		goto out;
3002 	}
3003 
3004 	reader = cpu_buffer->reader_page;
3005 
3006 	/* If there's more to read, return this page */
3007 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3008 		goto out;
3009 
3010 	/* Never should we have an index greater than the size */
3011 	if (RB_WARN_ON(cpu_buffer,
3012 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3013 		goto out;
3014 
3015 	/* check if we caught up to the tail */
3016 	reader = NULL;
3017 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3018 		goto out;
3019 
3020 	/*
3021 	 * Reset the reader page to size zero.
3022 	 */
3023 	local_set(&cpu_buffer->reader_page->write, 0);
3024 	local_set(&cpu_buffer->reader_page->entries, 0);
3025 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3026 	cpu_buffer->reader_page->real_end = 0;
3027 
3028  spin:
3029 	/*
3030 	 * Splice the empty reader page into the list around the head.
3031 	 */
3032 	reader = rb_set_head_page(cpu_buffer);
3033 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3034 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3035 
3036 	/*
3037 	 * cpu_buffer->pages just needs to point to the buffer, it
3038 	 *  has no specific buffer page to point to. Lets move it out
3039 	 *  of our way so we don't accidentally swap it.
3040 	 */
3041 	cpu_buffer->pages = reader->list.prev;
3042 
3043 	/* The reader page will be pointing to the new head */
3044 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3045 
3046 	/*
3047 	 * We want to make sure we read the overruns after we set up our
3048 	 * pointers to the next object. The writer side does a
3049 	 * cmpxchg to cross pages which acts as the mb on the writer
3050 	 * side. Note, the reader will constantly fail the swap
3051 	 * while the writer is updating the pointers, so this
3052 	 * guarantees that the overwrite recorded here is the one we
3053 	 * want to compare with the last_overrun.
3054 	 */
3055 	smp_mb();
3056 	overwrite = local_read(&(cpu_buffer->overrun));
3057 
3058 	/*
3059 	 * Here's the tricky part.
3060 	 *
3061 	 * We need to move the pointer past the header page.
3062 	 * But we can only do that if a writer is not currently
3063 	 * moving it. The page before the header page has the
3064 	 * flag bit '1' set if it is pointing to the page we want.
3065 	 * but if the writer is in the process of moving it
3066 	 * than it will be '2' or already moved '0'.
3067 	 */
3068 
3069 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3070 
3071 	/*
3072 	 * If we did not convert it, then we must try again.
3073 	 */
3074 	if (!ret)
3075 		goto spin;
3076 
3077 	/*
3078 	 * Yeah! We succeeded in replacing the page.
3079 	 *
3080 	 * Now make the new head point back to the reader page.
3081 	 */
3082 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3083 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3084 
3085 	/* Finally update the reader page to the new head */
3086 	cpu_buffer->reader_page = reader;
3087 	rb_reset_reader_page(cpu_buffer);
3088 
3089 	if (overwrite != cpu_buffer->last_overrun) {
3090 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3091 		cpu_buffer->last_overrun = overwrite;
3092 	}
3093 
3094 	goto again;
3095 
3096  out:
3097 	arch_spin_unlock(&cpu_buffer->lock);
3098 	local_irq_restore(flags);
3099 
3100 	return reader;
3101 }
3102 
3103 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3104 {
3105 	struct ring_buffer_event *event;
3106 	struct buffer_page *reader;
3107 	unsigned length;
3108 
3109 	reader = rb_get_reader_page(cpu_buffer);
3110 
3111 	/* This function should not be called when buffer is empty */
3112 	if (RB_WARN_ON(cpu_buffer, !reader))
3113 		return;
3114 
3115 	event = rb_reader_event(cpu_buffer);
3116 
3117 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3118 		cpu_buffer->read++;
3119 
3120 	rb_update_read_stamp(cpu_buffer, event);
3121 
3122 	length = rb_event_length(event);
3123 	cpu_buffer->reader_page->read += length;
3124 }
3125 
3126 static void rb_advance_iter(struct ring_buffer_iter *iter)
3127 {
3128 	struct ring_buffer_per_cpu *cpu_buffer;
3129 	struct ring_buffer_event *event;
3130 	unsigned length;
3131 
3132 	cpu_buffer = iter->cpu_buffer;
3133 
3134 	/*
3135 	 * Check if we are at the end of the buffer.
3136 	 */
3137 	if (iter->head >= rb_page_size(iter->head_page)) {
3138 		/* discarded commits can make the page empty */
3139 		if (iter->head_page == cpu_buffer->commit_page)
3140 			return;
3141 		rb_inc_iter(iter);
3142 		return;
3143 	}
3144 
3145 	event = rb_iter_head_event(iter);
3146 
3147 	length = rb_event_length(event);
3148 
3149 	/*
3150 	 * This should not be called to advance the header if we are
3151 	 * at the tail of the buffer.
3152 	 */
3153 	if (RB_WARN_ON(cpu_buffer,
3154 		       (iter->head_page == cpu_buffer->commit_page) &&
3155 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3156 		return;
3157 
3158 	rb_update_iter_read_stamp(iter, event);
3159 
3160 	iter->head += length;
3161 
3162 	/* check for end of page padding */
3163 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3164 	    (iter->head_page != cpu_buffer->commit_page))
3165 		rb_advance_iter(iter);
3166 }
3167 
3168 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3169 {
3170 	return cpu_buffer->lost_events;
3171 }
3172 
3173 static struct ring_buffer_event *
3174 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3175 	       unsigned long *lost_events)
3176 {
3177 	struct ring_buffer_event *event;
3178 	struct buffer_page *reader;
3179 	int nr_loops = 0;
3180 
3181  again:
3182 	/*
3183 	 * We repeat when a time extend is encountered.
3184 	 * Since the time extend is always attached to a data event,
3185 	 * we should never loop more than once.
3186 	 * (We never hit the following condition more than twice).
3187 	 */
3188 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3189 		return NULL;
3190 
3191 	reader = rb_get_reader_page(cpu_buffer);
3192 	if (!reader)
3193 		return NULL;
3194 
3195 	event = rb_reader_event(cpu_buffer);
3196 
3197 	switch (event->type_len) {
3198 	case RINGBUF_TYPE_PADDING:
3199 		if (rb_null_event(event))
3200 			RB_WARN_ON(cpu_buffer, 1);
3201 		/*
3202 		 * Because the writer could be discarding every
3203 		 * event it creates (which would probably be bad)
3204 		 * if we were to go back to "again" then we may never
3205 		 * catch up, and will trigger the warn on, or lock
3206 		 * the box. Return the padding, and we will release
3207 		 * the current locks, and try again.
3208 		 */
3209 		return event;
3210 
3211 	case RINGBUF_TYPE_TIME_EXTEND:
3212 		/* Internal data, OK to advance */
3213 		rb_advance_reader(cpu_buffer);
3214 		goto again;
3215 
3216 	case RINGBUF_TYPE_TIME_STAMP:
3217 		/* FIXME: not implemented */
3218 		rb_advance_reader(cpu_buffer);
3219 		goto again;
3220 
3221 	case RINGBUF_TYPE_DATA:
3222 		if (ts) {
3223 			*ts = cpu_buffer->read_stamp + event->time_delta;
3224 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3225 							 cpu_buffer->cpu, ts);
3226 		}
3227 		if (lost_events)
3228 			*lost_events = rb_lost_events(cpu_buffer);
3229 		return event;
3230 
3231 	default:
3232 		BUG();
3233 	}
3234 
3235 	return NULL;
3236 }
3237 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3238 
3239 static struct ring_buffer_event *
3240 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3241 {
3242 	struct ring_buffer *buffer;
3243 	struct ring_buffer_per_cpu *cpu_buffer;
3244 	struct ring_buffer_event *event;
3245 	int nr_loops = 0;
3246 
3247 	cpu_buffer = iter->cpu_buffer;
3248 	buffer = cpu_buffer->buffer;
3249 
3250 	/*
3251 	 * Check if someone performed a consuming read to
3252 	 * the buffer. A consuming read invalidates the iterator
3253 	 * and we need to reset the iterator in this case.
3254 	 */
3255 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3256 		     iter->cache_reader_page != cpu_buffer->reader_page))
3257 		rb_iter_reset(iter);
3258 
3259  again:
3260 	if (ring_buffer_iter_empty(iter))
3261 		return NULL;
3262 
3263 	/*
3264 	 * We repeat when a time extend is encountered.
3265 	 * Since the time extend is always attached to a data event,
3266 	 * we should never loop more than once.
3267 	 * (We never hit the following condition more than twice).
3268 	 */
3269 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3270 		return NULL;
3271 
3272 	if (rb_per_cpu_empty(cpu_buffer))
3273 		return NULL;
3274 
3275 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3276 		rb_inc_iter(iter);
3277 		goto again;
3278 	}
3279 
3280 	event = rb_iter_head_event(iter);
3281 
3282 	switch (event->type_len) {
3283 	case RINGBUF_TYPE_PADDING:
3284 		if (rb_null_event(event)) {
3285 			rb_inc_iter(iter);
3286 			goto again;
3287 		}
3288 		rb_advance_iter(iter);
3289 		return event;
3290 
3291 	case RINGBUF_TYPE_TIME_EXTEND:
3292 		/* Internal data, OK to advance */
3293 		rb_advance_iter(iter);
3294 		goto again;
3295 
3296 	case RINGBUF_TYPE_TIME_STAMP:
3297 		/* FIXME: not implemented */
3298 		rb_advance_iter(iter);
3299 		goto again;
3300 
3301 	case RINGBUF_TYPE_DATA:
3302 		if (ts) {
3303 			*ts = iter->read_stamp + event->time_delta;
3304 			ring_buffer_normalize_time_stamp(buffer,
3305 							 cpu_buffer->cpu, ts);
3306 		}
3307 		return event;
3308 
3309 	default:
3310 		BUG();
3311 	}
3312 
3313 	return NULL;
3314 }
3315 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3316 
3317 static inline int rb_ok_to_lock(void)
3318 {
3319 	/*
3320 	 * If an NMI die dumps out the content of the ring buffer
3321 	 * do not grab locks. We also permanently disable the ring
3322 	 * buffer too. A one time deal is all you get from reading
3323 	 * the ring buffer from an NMI.
3324 	 */
3325 	if (likely(!in_nmi()))
3326 		return 1;
3327 
3328 	tracing_off_permanent();
3329 	return 0;
3330 }
3331 
3332 /**
3333  * ring_buffer_peek - peek at the next event to be read
3334  * @buffer: The ring buffer to read
3335  * @cpu: The cpu to peak at
3336  * @ts: The timestamp counter of this event.
3337  * @lost_events: a variable to store if events were lost (may be NULL)
3338  *
3339  * This will return the event that will be read next, but does
3340  * not consume the data.
3341  */
3342 struct ring_buffer_event *
3343 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3344 		 unsigned long *lost_events)
3345 {
3346 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3347 	struct ring_buffer_event *event;
3348 	unsigned long flags;
3349 	int dolock;
3350 
3351 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3352 		return NULL;
3353 
3354 	dolock = rb_ok_to_lock();
3355  again:
3356 	local_irq_save(flags);
3357 	if (dolock)
3358 		raw_spin_lock(&cpu_buffer->reader_lock);
3359 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3360 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3361 		rb_advance_reader(cpu_buffer);
3362 	if (dolock)
3363 		raw_spin_unlock(&cpu_buffer->reader_lock);
3364 	local_irq_restore(flags);
3365 
3366 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3367 		goto again;
3368 
3369 	return event;
3370 }
3371 
3372 /**
3373  * ring_buffer_iter_peek - peek at the next event to be read
3374  * @iter: The ring buffer iterator
3375  * @ts: The timestamp counter of this event.
3376  *
3377  * This will return the event that will be read next, but does
3378  * not increment the iterator.
3379  */
3380 struct ring_buffer_event *
3381 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3382 {
3383 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3384 	struct ring_buffer_event *event;
3385 	unsigned long flags;
3386 
3387  again:
3388 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3389 	event = rb_iter_peek(iter, ts);
3390 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3391 
3392 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3393 		goto again;
3394 
3395 	return event;
3396 }
3397 
3398 /**
3399  * ring_buffer_consume - return an event and consume it
3400  * @buffer: The ring buffer to get the next event from
3401  * @cpu: the cpu to read the buffer from
3402  * @ts: a variable to store the timestamp (may be NULL)
3403  * @lost_events: a variable to store if events were lost (may be NULL)
3404  *
3405  * Returns the next event in the ring buffer, and that event is consumed.
3406  * Meaning, that sequential reads will keep returning a different event,
3407  * and eventually empty the ring buffer if the producer is slower.
3408  */
3409 struct ring_buffer_event *
3410 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3411 		    unsigned long *lost_events)
3412 {
3413 	struct ring_buffer_per_cpu *cpu_buffer;
3414 	struct ring_buffer_event *event = NULL;
3415 	unsigned long flags;
3416 	int dolock;
3417 
3418 	dolock = rb_ok_to_lock();
3419 
3420  again:
3421 	/* might be called in atomic */
3422 	preempt_disable();
3423 
3424 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425 		goto out;
3426 
3427 	cpu_buffer = buffer->buffers[cpu];
3428 	local_irq_save(flags);
3429 	if (dolock)
3430 		raw_spin_lock(&cpu_buffer->reader_lock);
3431 
3432 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3433 	if (event) {
3434 		cpu_buffer->lost_events = 0;
3435 		rb_advance_reader(cpu_buffer);
3436 	}
3437 
3438 	if (dolock)
3439 		raw_spin_unlock(&cpu_buffer->reader_lock);
3440 	local_irq_restore(flags);
3441 
3442  out:
3443 	preempt_enable();
3444 
3445 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3446 		goto again;
3447 
3448 	return event;
3449 }
3450 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3451 
3452 /**
3453  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3454  * @buffer: The ring buffer to read from
3455  * @cpu: The cpu buffer to iterate over
3456  *
3457  * This performs the initial preparations necessary to iterate
3458  * through the buffer.  Memory is allocated, buffer recording
3459  * is disabled, and the iterator pointer is returned to the caller.
3460  *
3461  * Disabling buffer recordng prevents the reading from being
3462  * corrupted. This is not a consuming read, so a producer is not
3463  * expected.
3464  *
3465  * After a sequence of ring_buffer_read_prepare calls, the user is
3466  * expected to make at least one call to ring_buffer_prepare_sync.
3467  * Afterwards, ring_buffer_read_start is invoked to get things going
3468  * for real.
3469  *
3470  * This overall must be paired with ring_buffer_finish.
3471  */
3472 struct ring_buffer_iter *
3473 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3474 {
3475 	struct ring_buffer_per_cpu *cpu_buffer;
3476 	struct ring_buffer_iter *iter;
3477 
3478 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3479 		return NULL;
3480 
3481 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3482 	if (!iter)
3483 		return NULL;
3484 
3485 	cpu_buffer = buffer->buffers[cpu];
3486 
3487 	iter->cpu_buffer = cpu_buffer;
3488 
3489 	atomic_inc(&cpu_buffer->record_disabled);
3490 
3491 	return iter;
3492 }
3493 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3494 
3495 /**
3496  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3497  *
3498  * All previously invoked ring_buffer_read_prepare calls to prepare
3499  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3500  * calls on those iterators are allowed.
3501  */
3502 void
3503 ring_buffer_read_prepare_sync(void)
3504 {
3505 	synchronize_sched();
3506 }
3507 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3508 
3509 /**
3510  * ring_buffer_read_start - start a non consuming read of the buffer
3511  * @iter: The iterator returned by ring_buffer_read_prepare
3512  *
3513  * This finalizes the startup of an iteration through the buffer.
3514  * The iterator comes from a call to ring_buffer_read_prepare and
3515  * an intervening ring_buffer_read_prepare_sync must have been
3516  * performed.
3517  *
3518  * Must be paired with ring_buffer_finish.
3519  */
3520 void
3521 ring_buffer_read_start(struct ring_buffer_iter *iter)
3522 {
3523 	struct ring_buffer_per_cpu *cpu_buffer;
3524 	unsigned long flags;
3525 
3526 	if (!iter)
3527 		return;
3528 
3529 	cpu_buffer = iter->cpu_buffer;
3530 
3531 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3532 	arch_spin_lock(&cpu_buffer->lock);
3533 	rb_iter_reset(iter);
3534 	arch_spin_unlock(&cpu_buffer->lock);
3535 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3536 }
3537 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3538 
3539 /**
3540  * ring_buffer_finish - finish reading the iterator of the buffer
3541  * @iter: The iterator retrieved by ring_buffer_start
3542  *
3543  * This re-enables the recording to the buffer, and frees the
3544  * iterator.
3545  */
3546 void
3547 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3548 {
3549 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3550 
3551 	atomic_dec(&cpu_buffer->record_disabled);
3552 	kfree(iter);
3553 }
3554 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3555 
3556 /**
3557  * ring_buffer_read - read the next item in the ring buffer by the iterator
3558  * @iter: The ring buffer iterator
3559  * @ts: The time stamp of the event read.
3560  *
3561  * This reads the next event in the ring buffer and increments the iterator.
3562  */
3563 struct ring_buffer_event *
3564 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3565 {
3566 	struct ring_buffer_event *event;
3567 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3568 	unsigned long flags;
3569 
3570 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3571  again:
3572 	event = rb_iter_peek(iter, ts);
3573 	if (!event)
3574 		goto out;
3575 
3576 	if (event->type_len == RINGBUF_TYPE_PADDING)
3577 		goto again;
3578 
3579 	rb_advance_iter(iter);
3580  out:
3581 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3582 
3583 	return event;
3584 }
3585 EXPORT_SYMBOL_GPL(ring_buffer_read);
3586 
3587 /**
3588  * ring_buffer_size - return the size of the ring buffer (in bytes)
3589  * @buffer: The ring buffer.
3590  */
3591 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3592 {
3593 	return BUF_PAGE_SIZE * buffer->pages;
3594 }
3595 EXPORT_SYMBOL_GPL(ring_buffer_size);
3596 
3597 static void
3598 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3599 {
3600 	rb_head_page_deactivate(cpu_buffer);
3601 
3602 	cpu_buffer->head_page
3603 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3604 	local_set(&cpu_buffer->head_page->write, 0);
3605 	local_set(&cpu_buffer->head_page->entries, 0);
3606 	local_set(&cpu_buffer->head_page->page->commit, 0);
3607 
3608 	cpu_buffer->head_page->read = 0;
3609 
3610 	cpu_buffer->tail_page = cpu_buffer->head_page;
3611 	cpu_buffer->commit_page = cpu_buffer->head_page;
3612 
3613 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3614 	local_set(&cpu_buffer->reader_page->write, 0);
3615 	local_set(&cpu_buffer->reader_page->entries, 0);
3616 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3617 	cpu_buffer->reader_page->read = 0;
3618 
3619 	local_set(&cpu_buffer->commit_overrun, 0);
3620 	local_set(&cpu_buffer->entries_bytes, 0);
3621 	local_set(&cpu_buffer->overrun, 0);
3622 	local_set(&cpu_buffer->entries, 0);
3623 	local_set(&cpu_buffer->committing, 0);
3624 	local_set(&cpu_buffer->commits, 0);
3625 	cpu_buffer->read = 0;
3626 	cpu_buffer->read_bytes = 0;
3627 
3628 	cpu_buffer->write_stamp = 0;
3629 	cpu_buffer->read_stamp = 0;
3630 
3631 	cpu_buffer->lost_events = 0;
3632 	cpu_buffer->last_overrun = 0;
3633 
3634 	rb_head_page_activate(cpu_buffer);
3635 }
3636 
3637 /**
3638  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3639  * @buffer: The ring buffer to reset a per cpu buffer of
3640  * @cpu: The CPU buffer to be reset
3641  */
3642 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3643 {
3644 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3645 	unsigned long flags;
3646 
3647 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3648 		return;
3649 
3650 	atomic_inc(&cpu_buffer->record_disabled);
3651 
3652 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3653 
3654 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3655 		goto out;
3656 
3657 	arch_spin_lock(&cpu_buffer->lock);
3658 
3659 	rb_reset_cpu(cpu_buffer);
3660 
3661 	arch_spin_unlock(&cpu_buffer->lock);
3662 
3663  out:
3664 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3665 
3666 	atomic_dec(&cpu_buffer->record_disabled);
3667 }
3668 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3669 
3670 /**
3671  * ring_buffer_reset - reset a ring buffer
3672  * @buffer: The ring buffer to reset all cpu buffers
3673  */
3674 void ring_buffer_reset(struct ring_buffer *buffer)
3675 {
3676 	int cpu;
3677 
3678 	for_each_buffer_cpu(buffer, cpu)
3679 		ring_buffer_reset_cpu(buffer, cpu);
3680 }
3681 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3682 
3683 /**
3684  * rind_buffer_empty - is the ring buffer empty?
3685  * @buffer: The ring buffer to test
3686  */
3687 int ring_buffer_empty(struct ring_buffer *buffer)
3688 {
3689 	struct ring_buffer_per_cpu *cpu_buffer;
3690 	unsigned long flags;
3691 	int dolock;
3692 	int cpu;
3693 	int ret;
3694 
3695 	dolock = rb_ok_to_lock();
3696 
3697 	/* yes this is racy, but if you don't like the race, lock the buffer */
3698 	for_each_buffer_cpu(buffer, cpu) {
3699 		cpu_buffer = buffer->buffers[cpu];
3700 		local_irq_save(flags);
3701 		if (dolock)
3702 			raw_spin_lock(&cpu_buffer->reader_lock);
3703 		ret = rb_per_cpu_empty(cpu_buffer);
3704 		if (dolock)
3705 			raw_spin_unlock(&cpu_buffer->reader_lock);
3706 		local_irq_restore(flags);
3707 
3708 		if (!ret)
3709 			return 0;
3710 	}
3711 
3712 	return 1;
3713 }
3714 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3715 
3716 /**
3717  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3718  * @buffer: The ring buffer
3719  * @cpu: The CPU buffer to test
3720  */
3721 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3722 {
3723 	struct ring_buffer_per_cpu *cpu_buffer;
3724 	unsigned long flags;
3725 	int dolock;
3726 	int ret;
3727 
3728 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3729 		return 1;
3730 
3731 	dolock = rb_ok_to_lock();
3732 
3733 	cpu_buffer = buffer->buffers[cpu];
3734 	local_irq_save(flags);
3735 	if (dolock)
3736 		raw_spin_lock(&cpu_buffer->reader_lock);
3737 	ret = rb_per_cpu_empty(cpu_buffer);
3738 	if (dolock)
3739 		raw_spin_unlock(&cpu_buffer->reader_lock);
3740 	local_irq_restore(flags);
3741 
3742 	return ret;
3743 }
3744 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3745 
3746 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3747 /**
3748  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3749  * @buffer_a: One buffer to swap with
3750  * @buffer_b: The other buffer to swap with
3751  *
3752  * This function is useful for tracers that want to take a "snapshot"
3753  * of a CPU buffer and has another back up buffer lying around.
3754  * it is expected that the tracer handles the cpu buffer not being
3755  * used at the moment.
3756  */
3757 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3758 			 struct ring_buffer *buffer_b, int cpu)
3759 {
3760 	struct ring_buffer_per_cpu *cpu_buffer_a;
3761 	struct ring_buffer_per_cpu *cpu_buffer_b;
3762 	int ret = -EINVAL;
3763 
3764 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3765 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3766 		goto out;
3767 
3768 	/* At least make sure the two buffers are somewhat the same */
3769 	if (buffer_a->pages != buffer_b->pages)
3770 		goto out;
3771 
3772 	ret = -EAGAIN;
3773 
3774 	if (ring_buffer_flags != RB_BUFFERS_ON)
3775 		goto out;
3776 
3777 	if (atomic_read(&buffer_a->record_disabled))
3778 		goto out;
3779 
3780 	if (atomic_read(&buffer_b->record_disabled))
3781 		goto out;
3782 
3783 	cpu_buffer_a = buffer_a->buffers[cpu];
3784 	cpu_buffer_b = buffer_b->buffers[cpu];
3785 
3786 	if (atomic_read(&cpu_buffer_a->record_disabled))
3787 		goto out;
3788 
3789 	if (atomic_read(&cpu_buffer_b->record_disabled))
3790 		goto out;
3791 
3792 	/*
3793 	 * We can't do a synchronize_sched here because this
3794 	 * function can be called in atomic context.
3795 	 * Normally this will be called from the same CPU as cpu.
3796 	 * If not it's up to the caller to protect this.
3797 	 */
3798 	atomic_inc(&cpu_buffer_a->record_disabled);
3799 	atomic_inc(&cpu_buffer_b->record_disabled);
3800 
3801 	ret = -EBUSY;
3802 	if (local_read(&cpu_buffer_a->committing))
3803 		goto out_dec;
3804 	if (local_read(&cpu_buffer_b->committing))
3805 		goto out_dec;
3806 
3807 	buffer_a->buffers[cpu] = cpu_buffer_b;
3808 	buffer_b->buffers[cpu] = cpu_buffer_a;
3809 
3810 	cpu_buffer_b->buffer = buffer_a;
3811 	cpu_buffer_a->buffer = buffer_b;
3812 
3813 	ret = 0;
3814 
3815 out_dec:
3816 	atomic_dec(&cpu_buffer_a->record_disabled);
3817 	atomic_dec(&cpu_buffer_b->record_disabled);
3818 out:
3819 	return ret;
3820 }
3821 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3822 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3823 
3824 /**
3825  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3826  * @buffer: the buffer to allocate for.
3827  *
3828  * This function is used in conjunction with ring_buffer_read_page.
3829  * When reading a full page from the ring buffer, these functions
3830  * can be used to speed up the process. The calling function should
3831  * allocate a few pages first with this function. Then when it
3832  * needs to get pages from the ring buffer, it passes the result
3833  * of this function into ring_buffer_read_page, which will swap
3834  * the page that was allocated, with the read page of the buffer.
3835  *
3836  * Returns:
3837  *  The page allocated, or NULL on error.
3838  */
3839 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
3840 {
3841 	struct buffer_data_page *bpage;
3842 	struct page *page;
3843 
3844 	page = alloc_pages_node(cpu_to_node(cpu),
3845 				GFP_KERNEL | __GFP_NORETRY, 0);
3846 	if (!page)
3847 		return NULL;
3848 
3849 	bpage = page_address(page);
3850 
3851 	rb_init_page(bpage);
3852 
3853 	return bpage;
3854 }
3855 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3856 
3857 /**
3858  * ring_buffer_free_read_page - free an allocated read page
3859  * @buffer: the buffer the page was allocate for
3860  * @data: the page to free
3861  *
3862  * Free a page allocated from ring_buffer_alloc_read_page.
3863  */
3864 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3865 {
3866 	free_page((unsigned long)data);
3867 }
3868 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3869 
3870 /**
3871  * ring_buffer_read_page - extract a page from the ring buffer
3872  * @buffer: buffer to extract from
3873  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3874  * @len: amount to extract
3875  * @cpu: the cpu of the buffer to extract
3876  * @full: should the extraction only happen when the page is full.
3877  *
3878  * This function will pull out a page from the ring buffer and consume it.
3879  * @data_page must be the address of the variable that was returned
3880  * from ring_buffer_alloc_read_page. This is because the page might be used
3881  * to swap with a page in the ring buffer.
3882  *
3883  * for example:
3884  *	rpage = ring_buffer_alloc_read_page(buffer);
3885  *	if (!rpage)
3886  *		return error;
3887  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3888  *	if (ret >= 0)
3889  *		process_page(rpage, ret);
3890  *
3891  * When @full is set, the function will not return true unless
3892  * the writer is off the reader page.
3893  *
3894  * Note: it is up to the calling functions to handle sleeps and wakeups.
3895  *  The ring buffer can be used anywhere in the kernel and can not
3896  *  blindly call wake_up. The layer that uses the ring buffer must be
3897  *  responsible for that.
3898  *
3899  * Returns:
3900  *  >=0 if data has been transferred, returns the offset of consumed data.
3901  *  <0 if no data has been transferred.
3902  */
3903 int ring_buffer_read_page(struct ring_buffer *buffer,
3904 			  void **data_page, size_t len, int cpu, int full)
3905 {
3906 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3907 	struct ring_buffer_event *event;
3908 	struct buffer_data_page *bpage;
3909 	struct buffer_page *reader;
3910 	unsigned long missed_events;
3911 	unsigned long flags;
3912 	unsigned int commit;
3913 	unsigned int read;
3914 	u64 save_timestamp;
3915 	int ret = -1;
3916 
3917 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3918 		goto out;
3919 
3920 	/*
3921 	 * If len is not big enough to hold the page header, then
3922 	 * we can not copy anything.
3923 	 */
3924 	if (len <= BUF_PAGE_HDR_SIZE)
3925 		goto out;
3926 
3927 	len -= BUF_PAGE_HDR_SIZE;
3928 
3929 	if (!data_page)
3930 		goto out;
3931 
3932 	bpage = *data_page;
3933 	if (!bpage)
3934 		goto out;
3935 
3936 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3937 
3938 	reader = rb_get_reader_page(cpu_buffer);
3939 	if (!reader)
3940 		goto out_unlock;
3941 
3942 	event = rb_reader_event(cpu_buffer);
3943 
3944 	read = reader->read;
3945 	commit = rb_page_commit(reader);
3946 
3947 	/* Check if any events were dropped */
3948 	missed_events = cpu_buffer->lost_events;
3949 
3950 	/*
3951 	 * If this page has been partially read or
3952 	 * if len is not big enough to read the rest of the page or
3953 	 * a writer is still on the page, then
3954 	 * we must copy the data from the page to the buffer.
3955 	 * Otherwise, we can simply swap the page with the one passed in.
3956 	 */
3957 	if (read || (len < (commit - read)) ||
3958 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3959 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3960 		unsigned int rpos = read;
3961 		unsigned int pos = 0;
3962 		unsigned int size;
3963 
3964 		if (full)
3965 			goto out_unlock;
3966 
3967 		if (len > (commit - read))
3968 			len = (commit - read);
3969 
3970 		/* Always keep the time extend and data together */
3971 		size = rb_event_ts_length(event);
3972 
3973 		if (len < size)
3974 			goto out_unlock;
3975 
3976 		/* save the current timestamp, since the user will need it */
3977 		save_timestamp = cpu_buffer->read_stamp;
3978 
3979 		/* Need to copy one event at a time */
3980 		do {
3981 			/* We need the size of one event, because
3982 			 * rb_advance_reader only advances by one event,
3983 			 * whereas rb_event_ts_length may include the size of
3984 			 * one or two events.
3985 			 * We have already ensured there's enough space if this
3986 			 * is a time extend. */
3987 			size = rb_event_length(event);
3988 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3989 
3990 			len -= size;
3991 
3992 			rb_advance_reader(cpu_buffer);
3993 			rpos = reader->read;
3994 			pos += size;
3995 
3996 			if (rpos >= commit)
3997 				break;
3998 
3999 			event = rb_reader_event(cpu_buffer);
4000 			/* Always keep the time extend and data together */
4001 			size = rb_event_ts_length(event);
4002 		} while (len >= size);
4003 
4004 		/* update bpage */
4005 		local_set(&bpage->commit, pos);
4006 		bpage->time_stamp = save_timestamp;
4007 
4008 		/* we copied everything to the beginning */
4009 		read = 0;
4010 	} else {
4011 		/* update the entry counter */
4012 		cpu_buffer->read += rb_page_entries(reader);
4013 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4014 
4015 		/* swap the pages */
4016 		rb_init_page(bpage);
4017 		bpage = reader->page;
4018 		reader->page = *data_page;
4019 		local_set(&reader->write, 0);
4020 		local_set(&reader->entries, 0);
4021 		reader->read = 0;
4022 		*data_page = bpage;
4023 
4024 		/*
4025 		 * Use the real_end for the data size,
4026 		 * This gives us a chance to store the lost events
4027 		 * on the page.
4028 		 */
4029 		if (reader->real_end)
4030 			local_set(&bpage->commit, reader->real_end);
4031 	}
4032 	ret = read;
4033 
4034 	cpu_buffer->lost_events = 0;
4035 
4036 	commit = local_read(&bpage->commit);
4037 	/*
4038 	 * Set a flag in the commit field if we lost events
4039 	 */
4040 	if (missed_events) {
4041 		/* If there is room at the end of the page to save the
4042 		 * missed events, then record it there.
4043 		 */
4044 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4045 			memcpy(&bpage->data[commit], &missed_events,
4046 			       sizeof(missed_events));
4047 			local_add(RB_MISSED_STORED, &bpage->commit);
4048 			commit += sizeof(missed_events);
4049 		}
4050 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4051 	}
4052 
4053 	/*
4054 	 * This page may be off to user land. Zero it out here.
4055 	 */
4056 	if (commit < BUF_PAGE_SIZE)
4057 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4058 
4059  out_unlock:
4060 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4061 
4062  out:
4063 	return ret;
4064 }
4065 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4066 
4067 #ifdef CONFIG_HOTPLUG_CPU
4068 static int rb_cpu_notify(struct notifier_block *self,
4069 			 unsigned long action, void *hcpu)
4070 {
4071 	struct ring_buffer *buffer =
4072 		container_of(self, struct ring_buffer, cpu_notify);
4073 	long cpu = (long)hcpu;
4074 
4075 	switch (action) {
4076 	case CPU_UP_PREPARE:
4077 	case CPU_UP_PREPARE_FROZEN:
4078 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4079 			return NOTIFY_OK;
4080 
4081 		buffer->buffers[cpu] =
4082 			rb_allocate_cpu_buffer(buffer, cpu);
4083 		if (!buffer->buffers[cpu]) {
4084 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4085 			     cpu);
4086 			return NOTIFY_OK;
4087 		}
4088 		smp_wmb();
4089 		cpumask_set_cpu(cpu, buffer->cpumask);
4090 		break;
4091 	case CPU_DOWN_PREPARE:
4092 	case CPU_DOWN_PREPARE_FROZEN:
4093 		/*
4094 		 * Do nothing.
4095 		 *  If we were to free the buffer, then the user would
4096 		 *  lose any trace that was in the buffer.
4097 		 */
4098 		break;
4099 	default:
4100 		break;
4101 	}
4102 	return NOTIFY_OK;
4103 }
4104 #endif
4105