xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision fd589a8f)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include "trace.h"
24 
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30 	int ret;
31 
32 	ret = trace_seq_printf(s, "# compressed entry header\n");
33 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36 	ret = trace_seq_printf(s, "\n");
37 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38 			       RINGBUF_TYPE_PADDING);
39 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 			       RINGBUF_TYPE_TIME_EXTEND);
41 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43 
44 	return ret;
45 }
46 
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114 
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132 
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143 
144 enum {
145 	RB_BUFFERS_ON_BIT	= 0,
146 	RB_BUFFERS_DISABLED_BIT	= 1,
147 };
148 
149 enum {
150 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
151 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153 
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155 
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157 
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169 
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183 
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194 
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200 	return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203 
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT		4U
206 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
208 
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211 
212 enum {
213 	RB_LEN_TIME_EXTEND = 8,
214 	RB_LEN_TIME_STAMP = 16,
215 };
216 
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
220 }
221 
222 static void rb_event_set_padding(struct ring_buffer_event *event)
223 {
224 	/* padding has a NULL time_delta */
225 	event->type_len = RINGBUF_TYPE_PADDING;
226 	event->time_delta = 0;
227 }
228 
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len)
235 		length = event->type_len * RB_ALIGNMENT;
236 	else
237 		length = event->array[0];
238 	return length + RB_EVNT_HDR_SIZE;
239 }
240 
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245 	switch (event->type_len) {
246 	case RINGBUF_TYPE_PADDING:
247 		if (rb_null_event(event))
248 			/* undefined */
249 			return -1;
250 		return  event->array[0] + RB_EVNT_HDR_SIZE;
251 
252 	case RINGBUF_TYPE_TIME_EXTEND:
253 		return RB_LEN_TIME_EXTEND;
254 
255 	case RINGBUF_TYPE_TIME_STAMP:
256 		return RB_LEN_TIME_STAMP;
257 
258 	case RINGBUF_TYPE_DATA:
259 		return rb_event_data_length(event);
260 	default:
261 		BUG();
262 	}
263 	/* not hit */
264 	return 0;
265 }
266 
267 /**
268  * ring_buffer_event_length - return the length of the event
269  * @event: the event to get the length of
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length = rb_event_length(event);
274 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275 		return length;
276 	length -= RB_EVNT_HDR_SIZE;
277 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278                 length -= sizeof(event->array[0]);
279 	return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282 
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288 	/* If length is in len field, then array[0] has the data */
289 	if (event->type_len)
290 		return (void *)&event->array[0];
291 	/* Otherwise length is in array[0] and array[1] has the data */
292 	return (void *)&event->array[1];
293 }
294 
295 /**
296  * ring_buffer_event_data - return the data of the event
297  * @event: the event to get the data from
298  */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301 	return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304 
305 #define for_each_buffer_cpu(buffer, cpu)		\
306 	for_each_cpu(cpu, buffer->cpumask)
307 
308 #define TS_SHIFT	27
309 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST	(~TS_MASK)
311 
312 struct buffer_data_page {
313 	u64		 time_stamp;	/* page time stamp */
314 	local_t		 commit;	/* write committed index */
315 	unsigned char	 data[];	/* data of buffer page */
316 };
317 
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327 	struct list_head list;		/* list of buffer pages */
328 	local_t		 write;		/* index for next write */
329 	unsigned	 read;		/* index for next read */
330 	local_t		 entries;	/* entries on this page */
331 	struct buffer_data_page *page;	/* Actual data page */
332 };
333 
334 /*
335  * The buffer page counters, write and entries, must be reset
336  * atomically when crossing page boundaries. To synchronize this
337  * update, two counters are inserted into the number. One is
338  * the actual counter for the write position or count on the page.
339  *
340  * The other is a counter of updaters. Before an update happens
341  * the update partition of the counter is incremented. This will
342  * allow the updater to update the counter atomically.
343  *
344  * The counter is 20 bits, and the state data is 12.
345  */
346 #define RB_WRITE_MASK		0xfffff
347 #define RB_WRITE_INTCNT		(1 << 20)
348 
349 static void rb_init_page(struct buffer_data_page *bpage)
350 {
351 	local_set(&bpage->commit, 0);
352 }
353 
354 /**
355  * ring_buffer_page_len - the size of data on the page.
356  * @page: The page to read
357  *
358  * Returns the amount of data on the page, including buffer page header.
359  */
360 size_t ring_buffer_page_len(void *page)
361 {
362 	return local_read(&((struct buffer_data_page *)page)->commit)
363 		+ BUF_PAGE_HDR_SIZE;
364 }
365 
366 /*
367  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368  * this issue out.
369  */
370 static void free_buffer_page(struct buffer_page *bpage)
371 {
372 	free_page((unsigned long)bpage->page);
373 	kfree(bpage);
374 }
375 
376 /*
377  * We need to fit the time_stamp delta into 27 bits.
378  */
379 static inline int test_time_stamp(u64 delta)
380 {
381 	if (delta & TS_DELTA_TEST)
382 		return 1;
383 	return 0;
384 }
385 
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
387 
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390 
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393 
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396 	struct buffer_data_page field;
397 	int ret;
398 
399 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 			       "offset:0;\tsize:%u;\n",
401 			       (unsigned int)sizeof(field.time_stamp));
402 
403 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
404 			       "offset:%u;\tsize:%u;\n",
405 			       (unsigned int)offsetof(typeof(field), commit),
406 			       (unsigned int)sizeof(field.commit));
407 
408 	ret = trace_seq_printf(s, "\tfield: char data;\t"
409 			       "offset:%u;\tsize:%u;\n",
410 			       (unsigned int)offsetof(typeof(field), data),
411 			       (unsigned int)BUF_PAGE_SIZE);
412 
413 	return ret;
414 }
415 
416 /*
417  * head_page == tail_page && head == tail then buffer is empty.
418  */
419 struct ring_buffer_per_cpu {
420 	int				cpu;
421 	struct ring_buffer		*buffer;
422 	spinlock_t			reader_lock;	/* serialize readers */
423 	raw_spinlock_t			lock;
424 	struct lock_class_key		lock_key;
425 	struct list_head		*pages;
426 	struct buffer_page		*head_page;	/* read from head */
427 	struct buffer_page		*tail_page;	/* write to tail */
428 	struct buffer_page		*commit_page;	/* committed pages */
429 	struct buffer_page		*reader_page;
430 	local_t				commit_overrun;
431 	local_t				overrun;
432 	local_t				entries;
433 	local_t				committing;
434 	local_t				commits;
435 	unsigned long			read;
436 	u64				write_stamp;
437 	u64				read_stamp;
438 	atomic_t			record_disabled;
439 };
440 
441 struct ring_buffer {
442 	unsigned			pages;
443 	unsigned			flags;
444 	int				cpus;
445 	atomic_t			record_disabled;
446 	cpumask_var_t			cpumask;
447 
448 	struct lock_class_key		*reader_lock_key;
449 
450 	struct mutex			mutex;
451 
452 	struct ring_buffer_per_cpu	**buffers;
453 
454 #ifdef CONFIG_HOTPLUG_CPU
455 	struct notifier_block		cpu_notify;
456 #endif
457 	u64				(*clock)(void);
458 };
459 
460 struct ring_buffer_iter {
461 	struct ring_buffer_per_cpu	*cpu_buffer;
462 	unsigned long			head;
463 	struct buffer_page		*head_page;
464 	u64				read_stamp;
465 };
466 
467 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
468 #define RB_WARN_ON(b, cond)						\
469 	({								\
470 		int _____ret = unlikely(cond);				\
471 		if (_____ret) {						\
472 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
473 				struct ring_buffer_per_cpu *__b =	\
474 					(void *)b;			\
475 				atomic_inc(&__b->buffer->record_disabled); \
476 			} else						\
477 				atomic_inc(&b->record_disabled);	\
478 			WARN_ON(1);					\
479 		}							\
480 		_____ret;						\
481 	})
482 
483 /* Up this if you want to test the TIME_EXTENTS and normalization */
484 #define DEBUG_SHIFT 0
485 
486 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
487 {
488 	/* shift to debug/test normalization and TIME_EXTENTS */
489 	return buffer->clock() << DEBUG_SHIFT;
490 }
491 
492 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
493 {
494 	u64 time;
495 
496 	preempt_disable_notrace();
497 	time = rb_time_stamp(buffer, cpu);
498 	preempt_enable_no_resched_notrace();
499 
500 	return time;
501 }
502 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
503 
504 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
505 				      int cpu, u64 *ts)
506 {
507 	/* Just stupid testing the normalize function and deltas */
508 	*ts >>= DEBUG_SHIFT;
509 }
510 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
511 
512 /*
513  * Making the ring buffer lockless makes things tricky.
514  * Although writes only happen on the CPU that they are on,
515  * and they only need to worry about interrupts. Reads can
516  * happen on any CPU.
517  *
518  * The reader page is always off the ring buffer, but when the
519  * reader finishes with a page, it needs to swap its page with
520  * a new one from the buffer. The reader needs to take from
521  * the head (writes go to the tail). But if a writer is in overwrite
522  * mode and wraps, it must push the head page forward.
523  *
524  * Here lies the problem.
525  *
526  * The reader must be careful to replace only the head page, and
527  * not another one. As described at the top of the file in the
528  * ASCII art, the reader sets its old page to point to the next
529  * page after head. It then sets the page after head to point to
530  * the old reader page. But if the writer moves the head page
531  * during this operation, the reader could end up with the tail.
532  *
533  * We use cmpxchg to help prevent this race. We also do something
534  * special with the page before head. We set the LSB to 1.
535  *
536  * When the writer must push the page forward, it will clear the
537  * bit that points to the head page, move the head, and then set
538  * the bit that points to the new head page.
539  *
540  * We also don't want an interrupt coming in and moving the head
541  * page on another writer. Thus we use the second LSB to catch
542  * that too. Thus:
543  *
544  * head->list->prev->next        bit 1          bit 0
545  *                              -------        -------
546  * Normal page                     0              0
547  * Points to head page             0              1
548  * New head page                   1              0
549  *
550  * Note we can not trust the prev pointer of the head page, because:
551  *
552  * +----+       +-----+        +-----+
553  * |    |------>|  T  |---X--->|  N  |
554  * |    |<------|     |        |     |
555  * +----+       +-----+        +-----+
556  *   ^                           ^ |
557  *   |          +-----+          | |
558  *   +----------|  R  |----------+ |
559  *              |     |<-----------+
560  *              +-----+
561  *
562  * Key:  ---X-->  HEAD flag set in pointer
563  *         T      Tail page
564  *         R      Reader page
565  *         N      Next page
566  *
567  * (see __rb_reserve_next() to see where this happens)
568  *
569  *  What the above shows is that the reader just swapped out
570  *  the reader page with a page in the buffer, but before it
571  *  could make the new header point back to the new page added
572  *  it was preempted by a writer. The writer moved forward onto
573  *  the new page added by the reader and is about to move forward
574  *  again.
575  *
576  *  You can see, it is legitimate for the previous pointer of
577  *  the head (or any page) not to point back to itself. But only
578  *  temporarially.
579  */
580 
581 #define RB_PAGE_NORMAL		0UL
582 #define RB_PAGE_HEAD		1UL
583 #define RB_PAGE_UPDATE		2UL
584 
585 
586 #define RB_FLAG_MASK		3UL
587 
588 /* PAGE_MOVED is not part of the mask */
589 #define RB_PAGE_MOVED		4UL
590 
591 /*
592  * rb_list_head - remove any bit
593  */
594 static struct list_head *rb_list_head(struct list_head *list)
595 {
596 	unsigned long val = (unsigned long)list;
597 
598 	return (struct list_head *)(val & ~RB_FLAG_MASK);
599 }
600 
601 /*
602  * rb_is_head_page - test if the give page is the head page
603  *
604  * Because the reader may move the head_page pointer, we can
605  * not trust what the head page is (it may be pointing to
606  * the reader page). But if the next page is a header page,
607  * its flags will be non zero.
608  */
609 static int inline
610 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
611 		struct buffer_page *page, struct list_head *list)
612 {
613 	unsigned long val;
614 
615 	val = (unsigned long)list->next;
616 
617 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
618 		return RB_PAGE_MOVED;
619 
620 	return val & RB_FLAG_MASK;
621 }
622 
623 /*
624  * rb_is_reader_page
625  *
626  * The unique thing about the reader page, is that, if the
627  * writer is ever on it, the previous pointer never points
628  * back to the reader page.
629  */
630 static int rb_is_reader_page(struct buffer_page *page)
631 {
632 	struct list_head *list = page->list.prev;
633 
634 	return rb_list_head(list->next) != &page->list;
635 }
636 
637 /*
638  * rb_set_list_to_head - set a list_head to be pointing to head.
639  */
640 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
641 				struct list_head *list)
642 {
643 	unsigned long *ptr;
644 
645 	ptr = (unsigned long *)&list->next;
646 	*ptr |= RB_PAGE_HEAD;
647 	*ptr &= ~RB_PAGE_UPDATE;
648 }
649 
650 /*
651  * rb_head_page_activate - sets up head page
652  */
653 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
654 {
655 	struct buffer_page *head;
656 
657 	head = cpu_buffer->head_page;
658 	if (!head)
659 		return;
660 
661 	/*
662 	 * Set the previous list pointer to have the HEAD flag.
663 	 */
664 	rb_set_list_to_head(cpu_buffer, head->list.prev);
665 }
666 
667 static void rb_list_head_clear(struct list_head *list)
668 {
669 	unsigned long *ptr = (unsigned long *)&list->next;
670 
671 	*ptr &= ~RB_FLAG_MASK;
672 }
673 
674 /*
675  * rb_head_page_dactivate - clears head page ptr (for free list)
676  */
677 static void
678 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
679 {
680 	struct list_head *hd;
681 
682 	/* Go through the whole list and clear any pointers found. */
683 	rb_list_head_clear(cpu_buffer->pages);
684 
685 	list_for_each(hd, cpu_buffer->pages)
686 		rb_list_head_clear(hd);
687 }
688 
689 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
690 			    struct buffer_page *head,
691 			    struct buffer_page *prev,
692 			    int old_flag, int new_flag)
693 {
694 	struct list_head *list;
695 	unsigned long val = (unsigned long)&head->list;
696 	unsigned long ret;
697 
698 	list = &prev->list;
699 
700 	val &= ~RB_FLAG_MASK;
701 
702 	ret = cmpxchg((unsigned long *)&list->next,
703 		      val | old_flag, val | new_flag);
704 
705 	/* check if the reader took the page */
706 	if ((ret & ~RB_FLAG_MASK) != val)
707 		return RB_PAGE_MOVED;
708 
709 	return ret & RB_FLAG_MASK;
710 }
711 
712 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
713 				   struct buffer_page *head,
714 				   struct buffer_page *prev,
715 				   int old_flag)
716 {
717 	return rb_head_page_set(cpu_buffer, head, prev,
718 				old_flag, RB_PAGE_UPDATE);
719 }
720 
721 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
722 				 struct buffer_page *head,
723 				 struct buffer_page *prev,
724 				 int old_flag)
725 {
726 	return rb_head_page_set(cpu_buffer, head, prev,
727 				old_flag, RB_PAGE_HEAD);
728 }
729 
730 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
731 				   struct buffer_page *head,
732 				   struct buffer_page *prev,
733 				   int old_flag)
734 {
735 	return rb_head_page_set(cpu_buffer, head, prev,
736 				old_flag, RB_PAGE_NORMAL);
737 }
738 
739 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
740 			       struct buffer_page **bpage)
741 {
742 	struct list_head *p = rb_list_head((*bpage)->list.next);
743 
744 	*bpage = list_entry(p, struct buffer_page, list);
745 }
746 
747 static struct buffer_page *
748 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
749 {
750 	struct buffer_page *head;
751 	struct buffer_page *page;
752 	struct list_head *list;
753 	int i;
754 
755 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
756 		return NULL;
757 
758 	/* sanity check */
759 	list = cpu_buffer->pages;
760 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
761 		return NULL;
762 
763 	page = head = cpu_buffer->head_page;
764 	/*
765 	 * It is possible that the writer moves the header behind
766 	 * where we started, and we miss in one loop.
767 	 * A second loop should grab the header, but we'll do
768 	 * three loops just because I'm paranoid.
769 	 */
770 	for (i = 0; i < 3; i++) {
771 		do {
772 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
773 				cpu_buffer->head_page = page;
774 				return page;
775 			}
776 			rb_inc_page(cpu_buffer, &page);
777 		} while (page != head);
778 	}
779 
780 	RB_WARN_ON(cpu_buffer, 1);
781 
782 	return NULL;
783 }
784 
785 static int rb_head_page_replace(struct buffer_page *old,
786 				struct buffer_page *new)
787 {
788 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
789 	unsigned long val;
790 	unsigned long ret;
791 
792 	val = *ptr & ~RB_FLAG_MASK;
793 	val |= RB_PAGE_HEAD;
794 
795 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
796 
797 	return ret == val;
798 }
799 
800 /*
801  * rb_tail_page_update - move the tail page forward
802  *
803  * Returns 1 if moved tail page, 0 if someone else did.
804  */
805 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
806 			       struct buffer_page *tail_page,
807 			       struct buffer_page *next_page)
808 {
809 	struct buffer_page *old_tail;
810 	unsigned long old_entries;
811 	unsigned long old_write;
812 	int ret = 0;
813 
814 	/*
815 	 * The tail page now needs to be moved forward.
816 	 *
817 	 * We need to reset the tail page, but without messing
818 	 * with possible erasing of data brought in by interrupts
819 	 * that have moved the tail page and are currently on it.
820 	 *
821 	 * We add a counter to the write field to denote this.
822 	 */
823 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
824 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
825 
826 	/*
827 	 * Just make sure we have seen our old_write and synchronize
828 	 * with any interrupts that come in.
829 	 */
830 	barrier();
831 
832 	/*
833 	 * If the tail page is still the same as what we think
834 	 * it is, then it is up to us to update the tail
835 	 * pointer.
836 	 */
837 	if (tail_page == cpu_buffer->tail_page) {
838 		/* Zero the write counter */
839 		unsigned long val = old_write & ~RB_WRITE_MASK;
840 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
841 
842 		/*
843 		 * This will only succeed if an interrupt did
844 		 * not come in and change it. In which case, we
845 		 * do not want to modify it.
846 		 *
847 		 * We add (void) to let the compiler know that we do not care
848 		 * about the return value of these functions. We use the
849 		 * cmpxchg to only update if an interrupt did not already
850 		 * do it for us. If the cmpxchg fails, we don't care.
851 		 */
852 		(void)local_cmpxchg(&next_page->write, old_write, val);
853 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
854 
855 		/*
856 		 * No need to worry about races with clearing out the commit.
857 		 * it only can increment when a commit takes place. But that
858 		 * only happens in the outer most nested commit.
859 		 */
860 		local_set(&next_page->page->commit, 0);
861 
862 		old_tail = cmpxchg(&cpu_buffer->tail_page,
863 				   tail_page, next_page);
864 
865 		if (old_tail == tail_page)
866 			ret = 1;
867 	}
868 
869 	return ret;
870 }
871 
872 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
873 			  struct buffer_page *bpage)
874 {
875 	unsigned long val = (unsigned long)bpage;
876 
877 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
878 		return 1;
879 
880 	return 0;
881 }
882 
883 /**
884  * rb_check_list - make sure a pointer to a list has the last bits zero
885  */
886 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
887 			 struct list_head *list)
888 {
889 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
890 		return 1;
891 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
892 		return 1;
893 	return 0;
894 }
895 
896 /**
897  * check_pages - integrity check of buffer pages
898  * @cpu_buffer: CPU buffer with pages to test
899  *
900  * As a safety measure we check to make sure the data pages have not
901  * been corrupted.
902  */
903 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
904 {
905 	struct list_head *head = cpu_buffer->pages;
906 	struct buffer_page *bpage, *tmp;
907 
908 	rb_head_page_deactivate(cpu_buffer);
909 
910 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
911 		return -1;
912 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
913 		return -1;
914 
915 	if (rb_check_list(cpu_buffer, head))
916 		return -1;
917 
918 	list_for_each_entry_safe(bpage, tmp, head, list) {
919 		if (RB_WARN_ON(cpu_buffer,
920 			       bpage->list.next->prev != &bpage->list))
921 			return -1;
922 		if (RB_WARN_ON(cpu_buffer,
923 			       bpage->list.prev->next != &bpage->list))
924 			return -1;
925 		if (rb_check_list(cpu_buffer, &bpage->list))
926 			return -1;
927 	}
928 
929 	rb_head_page_activate(cpu_buffer);
930 
931 	return 0;
932 }
933 
934 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
935 			     unsigned nr_pages)
936 {
937 	struct buffer_page *bpage, *tmp;
938 	unsigned long addr;
939 	LIST_HEAD(pages);
940 	unsigned i;
941 
942 	WARN_ON(!nr_pages);
943 
944 	for (i = 0; i < nr_pages; i++) {
945 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
946 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
947 		if (!bpage)
948 			goto free_pages;
949 
950 		rb_check_bpage(cpu_buffer, bpage);
951 
952 		list_add(&bpage->list, &pages);
953 
954 		addr = __get_free_page(GFP_KERNEL);
955 		if (!addr)
956 			goto free_pages;
957 		bpage->page = (void *)addr;
958 		rb_init_page(bpage->page);
959 	}
960 
961 	/*
962 	 * The ring buffer page list is a circular list that does not
963 	 * start and end with a list head. All page list items point to
964 	 * other pages.
965 	 */
966 	cpu_buffer->pages = pages.next;
967 	list_del(&pages);
968 
969 	rb_check_pages(cpu_buffer);
970 
971 	return 0;
972 
973  free_pages:
974 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
975 		list_del_init(&bpage->list);
976 		free_buffer_page(bpage);
977 	}
978 	return -ENOMEM;
979 }
980 
981 static struct ring_buffer_per_cpu *
982 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
983 {
984 	struct ring_buffer_per_cpu *cpu_buffer;
985 	struct buffer_page *bpage;
986 	unsigned long addr;
987 	int ret;
988 
989 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
990 				  GFP_KERNEL, cpu_to_node(cpu));
991 	if (!cpu_buffer)
992 		return NULL;
993 
994 	cpu_buffer->cpu = cpu;
995 	cpu_buffer->buffer = buffer;
996 	spin_lock_init(&cpu_buffer->reader_lock);
997 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
998 	cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
999 
1000 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1001 			    GFP_KERNEL, cpu_to_node(cpu));
1002 	if (!bpage)
1003 		goto fail_free_buffer;
1004 
1005 	rb_check_bpage(cpu_buffer, bpage);
1006 
1007 	cpu_buffer->reader_page = bpage;
1008 	addr = __get_free_page(GFP_KERNEL);
1009 	if (!addr)
1010 		goto fail_free_reader;
1011 	bpage->page = (void *)addr;
1012 	rb_init_page(bpage->page);
1013 
1014 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1015 
1016 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1017 	if (ret < 0)
1018 		goto fail_free_reader;
1019 
1020 	cpu_buffer->head_page
1021 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1022 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1023 
1024 	rb_head_page_activate(cpu_buffer);
1025 
1026 	return cpu_buffer;
1027 
1028  fail_free_reader:
1029 	free_buffer_page(cpu_buffer->reader_page);
1030 
1031  fail_free_buffer:
1032 	kfree(cpu_buffer);
1033 	return NULL;
1034 }
1035 
1036 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1037 {
1038 	struct list_head *head = cpu_buffer->pages;
1039 	struct buffer_page *bpage, *tmp;
1040 
1041 	free_buffer_page(cpu_buffer->reader_page);
1042 
1043 	rb_head_page_deactivate(cpu_buffer);
1044 
1045 	if (head) {
1046 		list_for_each_entry_safe(bpage, tmp, head, list) {
1047 			list_del_init(&bpage->list);
1048 			free_buffer_page(bpage);
1049 		}
1050 		bpage = list_entry(head, struct buffer_page, list);
1051 		free_buffer_page(bpage);
1052 	}
1053 
1054 	kfree(cpu_buffer);
1055 }
1056 
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 static int rb_cpu_notify(struct notifier_block *self,
1059 			 unsigned long action, void *hcpu);
1060 #endif
1061 
1062 /**
1063  * ring_buffer_alloc - allocate a new ring_buffer
1064  * @size: the size in bytes per cpu that is needed.
1065  * @flags: attributes to set for the ring buffer.
1066  *
1067  * Currently the only flag that is available is the RB_FL_OVERWRITE
1068  * flag. This flag means that the buffer will overwrite old data
1069  * when the buffer wraps. If this flag is not set, the buffer will
1070  * drop data when the tail hits the head.
1071  */
1072 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1073 					struct lock_class_key *key)
1074 {
1075 	struct ring_buffer *buffer;
1076 	int bsize;
1077 	int cpu;
1078 
1079 	/* keep it in its own cache line */
1080 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1081 			 GFP_KERNEL);
1082 	if (!buffer)
1083 		return NULL;
1084 
1085 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1086 		goto fail_free_buffer;
1087 
1088 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1089 	buffer->flags = flags;
1090 	buffer->clock = trace_clock_local;
1091 	buffer->reader_lock_key = key;
1092 
1093 	/* need at least two pages */
1094 	if (buffer->pages < 2)
1095 		buffer->pages = 2;
1096 
1097 	/*
1098 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1099 	 * in early initcall, it will not be notified of secondary cpus.
1100 	 * In that off case, we need to allocate for all possible cpus.
1101 	 */
1102 #ifdef CONFIG_HOTPLUG_CPU
1103 	get_online_cpus();
1104 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1105 #else
1106 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1107 #endif
1108 	buffer->cpus = nr_cpu_ids;
1109 
1110 	bsize = sizeof(void *) * nr_cpu_ids;
1111 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1112 				  GFP_KERNEL);
1113 	if (!buffer->buffers)
1114 		goto fail_free_cpumask;
1115 
1116 	for_each_buffer_cpu(buffer, cpu) {
1117 		buffer->buffers[cpu] =
1118 			rb_allocate_cpu_buffer(buffer, cpu);
1119 		if (!buffer->buffers[cpu])
1120 			goto fail_free_buffers;
1121 	}
1122 
1123 #ifdef CONFIG_HOTPLUG_CPU
1124 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1125 	buffer->cpu_notify.priority = 0;
1126 	register_cpu_notifier(&buffer->cpu_notify);
1127 #endif
1128 
1129 	put_online_cpus();
1130 	mutex_init(&buffer->mutex);
1131 
1132 	return buffer;
1133 
1134  fail_free_buffers:
1135 	for_each_buffer_cpu(buffer, cpu) {
1136 		if (buffer->buffers[cpu])
1137 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1138 	}
1139 	kfree(buffer->buffers);
1140 
1141  fail_free_cpumask:
1142 	free_cpumask_var(buffer->cpumask);
1143 	put_online_cpus();
1144 
1145  fail_free_buffer:
1146 	kfree(buffer);
1147 	return NULL;
1148 }
1149 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1150 
1151 /**
1152  * ring_buffer_free - free a ring buffer.
1153  * @buffer: the buffer to free.
1154  */
1155 void
1156 ring_buffer_free(struct ring_buffer *buffer)
1157 {
1158 	int cpu;
1159 
1160 	get_online_cpus();
1161 
1162 #ifdef CONFIG_HOTPLUG_CPU
1163 	unregister_cpu_notifier(&buffer->cpu_notify);
1164 #endif
1165 
1166 	for_each_buffer_cpu(buffer, cpu)
1167 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1168 
1169 	put_online_cpus();
1170 
1171 	kfree(buffer->buffers);
1172 	free_cpumask_var(buffer->cpumask);
1173 
1174 	kfree(buffer);
1175 }
1176 EXPORT_SYMBOL_GPL(ring_buffer_free);
1177 
1178 void ring_buffer_set_clock(struct ring_buffer *buffer,
1179 			   u64 (*clock)(void))
1180 {
1181 	buffer->clock = clock;
1182 }
1183 
1184 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1185 
1186 static void
1187 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1188 {
1189 	struct buffer_page *bpage;
1190 	struct list_head *p;
1191 	unsigned i;
1192 
1193 	atomic_inc(&cpu_buffer->record_disabled);
1194 	synchronize_sched();
1195 
1196 	rb_head_page_deactivate(cpu_buffer);
1197 
1198 	for (i = 0; i < nr_pages; i++) {
1199 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1200 			return;
1201 		p = cpu_buffer->pages->next;
1202 		bpage = list_entry(p, struct buffer_page, list);
1203 		list_del_init(&bpage->list);
1204 		free_buffer_page(bpage);
1205 	}
1206 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1207 		return;
1208 
1209 	rb_reset_cpu(cpu_buffer);
1210 
1211 	rb_check_pages(cpu_buffer);
1212 
1213 	atomic_dec(&cpu_buffer->record_disabled);
1214 
1215 }
1216 
1217 static void
1218 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1219 		struct list_head *pages, unsigned nr_pages)
1220 {
1221 	struct buffer_page *bpage;
1222 	struct list_head *p;
1223 	unsigned i;
1224 
1225 	atomic_inc(&cpu_buffer->record_disabled);
1226 	synchronize_sched();
1227 
1228 	spin_lock_irq(&cpu_buffer->reader_lock);
1229 	rb_head_page_deactivate(cpu_buffer);
1230 
1231 	for (i = 0; i < nr_pages; i++) {
1232 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1233 			return;
1234 		p = pages->next;
1235 		bpage = list_entry(p, struct buffer_page, list);
1236 		list_del_init(&bpage->list);
1237 		list_add_tail(&bpage->list, cpu_buffer->pages);
1238 	}
1239 	rb_reset_cpu(cpu_buffer);
1240 	spin_unlock_irq(&cpu_buffer->reader_lock);
1241 
1242 	rb_check_pages(cpu_buffer);
1243 
1244 	atomic_dec(&cpu_buffer->record_disabled);
1245 }
1246 
1247 /**
1248  * ring_buffer_resize - resize the ring buffer
1249  * @buffer: the buffer to resize.
1250  * @size: the new size.
1251  *
1252  * The tracer is responsible for making sure that the buffer is
1253  * not being used while changing the size.
1254  * Note: We may be able to change the above requirement by using
1255  *  RCU synchronizations.
1256  *
1257  * Minimum size is 2 * BUF_PAGE_SIZE.
1258  *
1259  * Returns -1 on failure.
1260  */
1261 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1262 {
1263 	struct ring_buffer_per_cpu *cpu_buffer;
1264 	unsigned nr_pages, rm_pages, new_pages;
1265 	struct buffer_page *bpage, *tmp;
1266 	unsigned long buffer_size;
1267 	unsigned long addr;
1268 	LIST_HEAD(pages);
1269 	int i, cpu;
1270 
1271 	/*
1272 	 * Always succeed at resizing a non-existent buffer:
1273 	 */
1274 	if (!buffer)
1275 		return size;
1276 
1277 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1278 	size *= BUF_PAGE_SIZE;
1279 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1280 
1281 	/* we need a minimum of two pages */
1282 	if (size < BUF_PAGE_SIZE * 2)
1283 		size = BUF_PAGE_SIZE * 2;
1284 
1285 	if (size == buffer_size)
1286 		return size;
1287 
1288 	mutex_lock(&buffer->mutex);
1289 	get_online_cpus();
1290 
1291 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1292 
1293 	if (size < buffer_size) {
1294 
1295 		/* easy case, just free pages */
1296 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1297 			goto out_fail;
1298 
1299 		rm_pages = buffer->pages - nr_pages;
1300 
1301 		for_each_buffer_cpu(buffer, cpu) {
1302 			cpu_buffer = buffer->buffers[cpu];
1303 			rb_remove_pages(cpu_buffer, rm_pages);
1304 		}
1305 		goto out;
1306 	}
1307 
1308 	/*
1309 	 * This is a bit more difficult. We only want to add pages
1310 	 * when we can allocate enough for all CPUs. We do this
1311 	 * by allocating all the pages and storing them on a local
1312 	 * link list. If we succeed in our allocation, then we
1313 	 * add these pages to the cpu_buffers. Otherwise we just free
1314 	 * them all and return -ENOMEM;
1315 	 */
1316 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1317 		goto out_fail;
1318 
1319 	new_pages = nr_pages - buffer->pages;
1320 
1321 	for_each_buffer_cpu(buffer, cpu) {
1322 		for (i = 0; i < new_pages; i++) {
1323 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1324 						  cache_line_size()),
1325 					    GFP_KERNEL, cpu_to_node(cpu));
1326 			if (!bpage)
1327 				goto free_pages;
1328 			list_add(&bpage->list, &pages);
1329 			addr = __get_free_page(GFP_KERNEL);
1330 			if (!addr)
1331 				goto free_pages;
1332 			bpage->page = (void *)addr;
1333 			rb_init_page(bpage->page);
1334 		}
1335 	}
1336 
1337 	for_each_buffer_cpu(buffer, cpu) {
1338 		cpu_buffer = buffer->buffers[cpu];
1339 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1340 	}
1341 
1342 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1343 		goto out_fail;
1344 
1345  out:
1346 	buffer->pages = nr_pages;
1347 	put_online_cpus();
1348 	mutex_unlock(&buffer->mutex);
1349 
1350 	return size;
1351 
1352  free_pages:
1353 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1354 		list_del_init(&bpage->list);
1355 		free_buffer_page(bpage);
1356 	}
1357 	put_online_cpus();
1358 	mutex_unlock(&buffer->mutex);
1359 	return -ENOMEM;
1360 
1361 	/*
1362 	 * Something went totally wrong, and we are too paranoid
1363 	 * to even clean up the mess.
1364 	 */
1365  out_fail:
1366 	put_online_cpus();
1367 	mutex_unlock(&buffer->mutex);
1368 	return -1;
1369 }
1370 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1371 
1372 static inline void *
1373 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1374 {
1375 	return bpage->data + index;
1376 }
1377 
1378 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1379 {
1380 	return bpage->page->data + index;
1381 }
1382 
1383 static inline struct ring_buffer_event *
1384 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1385 {
1386 	return __rb_page_index(cpu_buffer->reader_page,
1387 			       cpu_buffer->reader_page->read);
1388 }
1389 
1390 static inline struct ring_buffer_event *
1391 rb_iter_head_event(struct ring_buffer_iter *iter)
1392 {
1393 	return __rb_page_index(iter->head_page, iter->head);
1394 }
1395 
1396 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1397 {
1398 	return local_read(&bpage->write) & RB_WRITE_MASK;
1399 }
1400 
1401 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1402 {
1403 	return local_read(&bpage->page->commit);
1404 }
1405 
1406 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1407 {
1408 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1409 }
1410 
1411 /* Size is determined by what has been commited */
1412 static inline unsigned rb_page_size(struct buffer_page *bpage)
1413 {
1414 	return rb_page_commit(bpage);
1415 }
1416 
1417 static inline unsigned
1418 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1419 {
1420 	return rb_page_commit(cpu_buffer->commit_page);
1421 }
1422 
1423 static inline unsigned
1424 rb_event_index(struct ring_buffer_event *event)
1425 {
1426 	unsigned long addr = (unsigned long)event;
1427 
1428 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1429 }
1430 
1431 static inline int
1432 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1433 		   struct ring_buffer_event *event)
1434 {
1435 	unsigned long addr = (unsigned long)event;
1436 	unsigned long index;
1437 
1438 	index = rb_event_index(event);
1439 	addr &= PAGE_MASK;
1440 
1441 	return cpu_buffer->commit_page->page == (void *)addr &&
1442 		rb_commit_index(cpu_buffer) == index;
1443 }
1444 
1445 static void
1446 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1447 {
1448 	unsigned long max_count;
1449 
1450 	/*
1451 	 * We only race with interrupts and NMIs on this CPU.
1452 	 * If we own the commit event, then we can commit
1453 	 * all others that interrupted us, since the interruptions
1454 	 * are in stack format (they finish before they come
1455 	 * back to us). This allows us to do a simple loop to
1456 	 * assign the commit to the tail.
1457 	 */
1458  again:
1459 	max_count = cpu_buffer->buffer->pages * 100;
1460 
1461 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1462 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1463 			return;
1464 		if (RB_WARN_ON(cpu_buffer,
1465 			       rb_is_reader_page(cpu_buffer->tail_page)))
1466 			return;
1467 		local_set(&cpu_buffer->commit_page->page->commit,
1468 			  rb_page_write(cpu_buffer->commit_page));
1469 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1470 		cpu_buffer->write_stamp =
1471 			cpu_buffer->commit_page->page->time_stamp;
1472 		/* add barrier to keep gcc from optimizing too much */
1473 		barrier();
1474 	}
1475 	while (rb_commit_index(cpu_buffer) !=
1476 	       rb_page_write(cpu_buffer->commit_page)) {
1477 
1478 		local_set(&cpu_buffer->commit_page->page->commit,
1479 			  rb_page_write(cpu_buffer->commit_page));
1480 		RB_WARN_ON(cpu_buffer,
1481 			   local_read(&cpu_buffer->commit_page->page->commit) &
1482 			   ~RB_WRITE_MASK);
1483 		barrier();
1484 	}
1485 
1486 	/* again, keep gcc from optimizing */
1487 	barrier();
1488 
1489 	/*
1490 	 * If an interrupt came in just after the first while loop
1491 	 * and pushed the tail page forward, we will be left with
1492 	 * a dangling commit that will never go forward.
1493 	 */
1494 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1495 		goto again;
1496 }
1497 
1498 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1499 {
1500 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1501 	cpu_buffer->reader_page->read = 0;
1502 }
1503 
1504 static void rb_inc_iter(struct ring_buffer_iter *iter)
1505 {
1506 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1507 
1508 	/*
1509 	 * The iterator could be on the reader page (it starts there).
1510 	 * But the head could have moved, since the reader was
1511 	 * found. Check for this case and assign the iterator
1512 	 * to the head page instead of next.
1513 	 */
1514 	if (iter->head_page == cpu_buffer->reader_page)
1515 		iter->head_page = rb_set_head_page(cpu_buffer);
1516 	else
1517 		rb_inc_page(cpu_buffer, &iter->head_page);
1518 
1519 	iter->read_stamp = iter->head_page->page->time_stamp;
1520 	iter->head = 0;
1521 }
1522 
1523 /**
1524  * ring_buffer_update_event - update event type and data
1525  * @event: the even to update
1526  * @type: the type of event
1527  * @length: the size of the event field in the ring buffer
1528  *
1529  * Update the type and data fields of the event. The length
1530  * is the actual size that is written to the ring buffer,
1531  * and with this, we can determine what to place into the
1532  * data field.
1533  */
1534 static void
1535 rb_update_event(struct ring_buffer_event *event,
1536 			 unsigned type, unsigned length)
1537 {
1538 	event->type_len = type;
1539 
1540 	switch (type) {
1541 
1542 	case RINGBUF_TYPE_PADDING:
1543 	case RINGBUF_TYPE_TIME_EXTEND:
1544 	case RINGBUF_TYPE_TIME_STAMP:
1545 		break;
1546 
1547 	case 0:
1548 		length -= RB_EVNT_HDR_SIZE;
1549 		if (length > RB_MAX_SMALL_DATA)
1550 			event->array[0] = length;
1551 		else
1552 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1553 		break;
1554 	default:
1555 		BUG();
1556 	}
1557 }
1558 
1559 /*
1560  * rb_handle_head_page - writer hit the head page
1561  *
1562  * Returns: +1 to retry page
1563  *           0 to continue
1564  *          -1 on error
1565  */
1566 static int
1567 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1568 		    struct buffer_page *tail_page,
1569 		    struct buffer_page *next_page)
1570 {
1571 	struct buffer_page *new_head;
1572 	int entries;
1573 	int type;
1574 	int ret;
1575 
1576 	entries = rb_page_entries(next_page);
1577 
1578 	/*
1579 	 * The hard part is here. We need to move the head
1580 	 * forward, and protect against both readers on
1581 	 * other CPUs and writers coming in via interrupts.
1582 	 */
1583 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1584 				       RB_PAGE_HEAD);
1585 
1586 	/*
1587 	 * type can be one of four:
1588 	 *  NORMAL - an interrupt already moved it for us
1589 	 *  HEAD   - we are the first to get here.
1590 	 *  UPDATE - we are the interrupt interrupting
1591 	 *           a current move.
1592 	 *  MOVED  - a reader on another CPU moved the next
1593 	 *           pointer to its reader page. Give up
1594 	 *           and try again.
1595 	 */
1596 
1597 	switch (type) {
1598 	case RB_PAGE_HEAD:
1599 		/*
1600 		 * We changed the head to UPDATE, thus
1601 		 * it is our responsibility to update
1602 		 * the counters.
1603 		 */
1604 		local_add(entries, &cpu_buffer->overrun);
1605 
1606 		/*
1607 		 * The entries will be zeroed out when we move the
1608 		 * tail page.
1609 		 */
1610 
1611 		/* still more to do */
1612 		break;
1613 
1614 	case RB_PAGE_UPDATE:
1615 		/*
1616 		 * This is an interrupt that interrupt the
1617 		 * previous update. Still more to do.
1618 		 */
1619 		break;
1620 	case RB_PAGE_NORMAL:
1621 		/*
1622 		 * An interrupt came in before the update
1623 		 * and processed this for us.
1624 		 * Nothing left to do.
1625 		 */
1626 		return 1;
1627 	case RB_PAGE_MOVED:
1628 		/*
1629 		 * The reader is on another CPU and just did
1630 		 * a swap with our next_page.
1631 		 * Try again.
1632 		 */
1633 		return 1;
1634 	default:
1635 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1636 		return -1;
1637 	}
1638 
1639 	/*
1640 	 * Now that we are here, the old head pointer is
1641 	 * set to UPDATE. This will keep the reader from
1642 	 * swapping the head page with the reader page.
1643 	 * The reader (on another CPU) will spin till
1644 	 * we are finished.
1645 	 *
1646 	 * We just need to protect against interrupts
1647 	 * doing the job. We will set the next pointer
1648 	 * to HEAD. After that, we set the old pointer
1649 	 * to NORMAL, but only if it was HEAD before.
1650 	 * otherwise we are an interrupt, and only
1651 	 * want the outer most commit to reset it.
1652 	 */
1653 	new_head = next_page;
1654 	rb_inc_page(cpu_buffer, &new_head);
1655 
1656 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1657 				    RB_PAGE_NORMAL);
1658 
1659 	/*
1660 	 * Valid returns are:
1661 	 *  HEAD   - an interrupt came in and already set it.
1662 	 *  NORMAL - One of two things:
1663 	 *            1) We really set it.
1664 	 *            2) A bunch of interrupts came in and moved
1665 	 *               the page forward again.
1666 	 */
1667 	switch (ret) {
1668 	case RB_PAGE_HEAD:
1669 	case RB_PAGE_NORMAL:
1670 		/* OK */
1671 		break;
1672 	default:
1673 		RB_WARN_ON(cpu_buffer, 1);
1674 		return -1;
1675 	}
1676 
1677 	/*
1678 	 * It is possible that an interrupt came in,
1679 	 * set the head up, then more interrupts came in
1680 	 * and moved it again. When we get back here,
1681 	 * the page would have been set to NORMAL but we
1682 	 * just set it back to HEAD.
1683 	 *
1684 	 * How do you detect this? Well, if that happened
1685 	 * the tail page would have moved.
1686 	 */
1687 	if (ret == RB_PAGE_NORMAL) {
1688 		/*
1689 		 * If the tail had moved passed next, then we need
1690 		 * to reset the pointer.
1691 		 */
1692 		if (cpu_buffer->tail_page != tail_page &&
1693 		    cpu_buffer->tail_page != next_page)
1694 			rb_head_page_set_normal(cpu_buffer, new_head,
1695 						next_page,
1696 						RB_PAGE_HEAD);
1697 	}
1698 
1699 	/*
1700 	 * If this was the outer most commit (the one that
1701 	 * changed the original pointer from HEAD to UPDATE),
1702 	 * then it is up to us to reset it to NORMAL.
1703 	 */
1704 	if (type == RB_PAGE_HEAD) {
1705 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1706 					      tail_page,
1707 					      RB_PAGE_UPDATE);
1708 		if (RB_WARN_ON(cpu_buffer,
1709 			       ret != RB_PAGE_UPDATE))
1710 			return -1;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 static unsigned rb_calculate_event_length(unsigned length)
1717 {
1718 	struct ring_buffer_event event; /* Used only for sizeof array */
1719 
1720 	/* zero length can cause confusions */
1721 	if (!length)
1722 		length = 1;
1723 
1724 	if (length > RB_MAX_SMALL_DATA)
1725 		length += sizeof(event.array[0]);
1726 
1727 	length += RB_EVNT_HDR_SIZE;
1728 	length = ALIGN(length, RB_ALIGNMENT);
1729 
1730 	return length;
1731 }
1732 
1733 static inline void
1734 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1735 	      struct buffer_page *tail_page,
1736 	      unsigned long tail, unsigned long length)
1737 {
1738 	struct ring_buffer_event *event;
1739 
1740 	/*
1741 	 * Only the event that crossed the page boundary
1742 	 * must fill the old tail_page with padding.
1743 	 */
1744 	if (tail >= BUF_PAGE_SIZE) {
1745 		local_sub(length, &tail_page->write);
1746 		return;
1747 	}
1748 
1749 	event = __rb_page_index(tail_page, tail);
1750 	kmemcheck_annotate_bitfield(event, bitfield);
1751 
1752 	/*
1753 	 * If this event is bigger than the minimum size, then
1754 	 * we need to be careful that we don't subtract the
1755 	 * write counter enough to allow another writer to slip
1756 	 * in on this page.
1757 	 * We put in a discarded commit instead, to make sure
1758 	 * that this space is not used again.
1759 	 *
1760 	 * If we are less than the minimum size, we don't need to
1761 	 * worry about it.
1762 	 */
1763 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1764 		/* No room for any events */
1765 
1766 		/* Mark the rest of the page with padding */
1767 		rb_event_set_padding(event);
1768 
1769 		/* Set the write back to the previous setting */
1770 		local_sub(length, &tail_page->write);
1771 		return;
1772 	}
1773 
1774 	/* Put in a discarded event */
1775 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1776 	event->type_len = RINGBUF_TYPE_PADDING;
1777 	/* time delta must be non zero */
1778 	event->time_delta = 1;
1779 
1780 	/* Set write to end of buffer */
1781 	length = (tail + length) - BUF_PAGE_SIZE;
1782 	local_sub(length, &tail_page->write);
1783 }
1784 
1785 static struct ring_buffer_event *
1786 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1787 	     unsigned long length, unsigned long tail,
1788 	     struct buffer_page *commit_page,
1789 	     struct buffer_page *tail_page, u64 *ts)
1790 {
1791 	struct ring_buffer *buffer = cpu_buffer->buffer;
1792 	struct buffer_page *next_page;
1793 	int ret;
1794 
1795 	next_page = tail_page;
1796 
1797 	rb_inc_page(cpu_buffer, &next_page);
1798 
1799 	/*
1800 	 * If for some reason, we had an interrupt storm that made
1801 	 * it all the way around the buffer, bail, and warn
1802 	 * about it.
1803 	 */
1804 	if (unlikely(next_page == commit_page)) {
1805 		local_inc(&cpu_buffer->commit_overrun);
1806 		goto out_reset;
1807 	}
1808 
1809 	/*
1810 	 * This is where the fun begins!
1811 	 *
1812 	 * We are fighting against races between a reader that
1813 	 * could be on another CPU trying to swap its reader
1814 	 * page with the buffer head.
1815 	 *
1816 	 * We are also fighting against interrupts coming in and
1817 	 * moving the head or tail on us as well.
1818 	 *
1819 	 * If the next page is the head page then we have filled
1820 	 * the buffer, unless the commit page is still on the
1821 	 * reader page.
1822 	 */
1823 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1824 
1825 		/*
1826 		 * If the commit is not on the reader page, then
1827 		 * move the header page.
1828 		 */
1829 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1830 			/*
1831 			 * If we are not in overwrite mode,
1832 			 * this is easy, just stop here.
1833 			 */
1834 			if (!(buffer->flags & RB_FL_OVERWRITE))
1835 				goto out_reset;
1836 
1837 			ret = rb_handle_head_page(cpu_buffer,
1838 						  tail_page,
1839 						  next_page);
1840 			if (ret < 0)
1841 				goto out_reset;
1842 			if (ret)
1843 				goto out_again;
1844 		} else {
1845 			/*
1846 			 * We need to be careful here too. The
1847 			 * commit page could still be on the reader
1848 			 * page. We could have a small buffer, and
1849 			 * have filled up the buffer with events
1850 			 * from interrupts and such, and wrapped.
1851 			 *
1852 			 * Note, if the tail page is also the on the
1853 			 * reader_page, we let it move out.
1854 			 */
1855 			if (unlikely((cpu_buffer->commit_page !=
1856 				      cpu_buffer->tail_page) &&
1857 				     (cpu_buffer->commit_page ==
1858 				      cpu_buffer->reader_page))) {
1859 				local_inc(&cpu_buffer->commit_overrun);
1860 				goto out_reset;
1861 			}
1862 		}
1863 	}
1864 
1865 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1866 	if (ret) {
1867 		/*
1868 		 * Nested commits always have zero deltas, so
1869 		 * just reread the time stamp
1870 		 */
1871 		*ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1872 		next_page->page->time_stamp = *ts;
1873 	}
1874 
1875  out_again:
1876 
1877 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1878 
1879 	/* fail and let the caller try again */
1880 	return ERR_PTR(-EAGAIN);
1881 
1882  out_reset:
1883 	/* reset write */
1884 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1885 
1886 	return NULL;
1887 }
1888 
1889 static struct ring_buffer_event *
1890 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1891 		  unsigned type, unsigned long length, u64 *ts)
1892 {
1893 	struct buffer_page *tail_page, *commit_page;
1894 	struct ring_buffer_event *event;
1895 	unsigned long tail, write;
1896 
1897 	commit_page = cpu_buffer->commit_page;
1898 	/* we just need to protect against interrupts */
1899 	barrier();
1900 	tail_page = cpu_buffer->tail_page;
1901 	write = local_add_return(length, &tail_page->write);
1902 
1903 	/* set write to only the index of the write */
1904 	write &= RB_WRITE_MASK;
1905 	tail = write - length;
1906 
1907 	/* See if we shot pass the end of this buffer page */
1908 	if (write > BUF_PAGE_SIZE)
1909 		return rb_move_tail(cpu_buffer, length, tail,
1910 				    commit_page, tail_page, ts);
1911 
1912 	/* We reserved something on the buffer */
1913 
1914 	event = __rb_page_index(tail_page, tail);
1915 	kmemcheck_annotate_bitfield(event, bitfield);
1916 	rb_update_event(event, type, length);
1917 
1918 	/* The passed in type is zero for DATA */
1919 	if (likely(!type))
1920 		local_inc(&tail_page->entries);
1921 
1922 	/*
1923 	 * If this is the first commit on the page, then update
1924 	 * its timestamp.
1925 	 */
1926 	if (!tail)
1927 		tail_page->page->time_stamp = *ts;
1928 
1929 	return event;
1930 }
1931 
1932 static inline int
1933 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1934 		  struct ring_buffer_event *event)
1935 {
1936 	unsigned long new_index, old_index;
1937 	struct buffer_page *bpage;
1938 	unsigned long index;
1939 	unsigned long addr;
1940 
1941 	new_index = rb_event_index(event);
1942 	old_index = new_index + rb_event_length(event);
1943 	addr = (unsigned long)event;
1944 	addr &= PAGE_MASK;
1945 
1946 	bpage = cpu_buffer->tail_page;
1947 
1948 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1949 		unsigned long write_mask =
1950 			local_read(&bpage->write) & ~RB_WRITE_MASK;
1951 		/*
1952 		 * This is on the tail page. It is possible that
1953 		 * a write could come in and move the tail page
1954 		 * and write to the next page. That is fine
1955 		 * because we just shorten what is on this page.
1956 		 */
1957 		old_index += write_mask;
1958 		new_index += write_mask;
1959 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1960 		if (index == old_index)
1961 			return 1;
1962 	}
1963 
1964 	/* could not discard */
1965 	return 0;
1966 }
1967 
1968 static int
1969 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1970 		  u64 *ts, u64 *delta)
1971 {
1972 	struct ring_buffer_event *event;
1973 	static int once;
1974 	int ret;
1975 
1976 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1977 		printk(KERN_WARNING "Delta way too big! %llu"
1978 		       " ts=%llu write stamp = %llu\n",
1979 		       (unsigned long long)*delta,
1980 		       (unsigned long long)*ts,
1981 		       (unsigned long long)cpu_buffer->write_stamp);
1982 		WARN_ON(1);
1983 	}
1984 
1985 	/*
1986 	 * The delta is too big, we to add a
1987 	 * new timestamp.
1988 	 */
1989 	event = __rb_reserve_next(cpu_buffer,
1990 				  RINGBUF_TYPE_TIME_EXTEND,
1991 				  RB_LEN_TIME_EXTEND,
1992 				  ts);
1993 	if (!event)
1994 		return -EBUSY;
1995 
1996 	if (PTR_ERR(event) == -EAGAIN)
1997 		return -EAGAIN;
1998 
1999 	/* Only a commited time event can update the write stamp */
2000 	if (rb_event_is_commit(cpu_buffer, event)) {
2001 		/*
2002 		 * If this is the first on the page, then it was
2003 		 * updated with the page itself. Try to discard it
2004 		 * and if we can't just make it zero.
2005 		 */
2006 		if (rb_event_index(event)) {
2007 			event->time_delta = *delta & TS_MASK;
2008 			event->array[0] = *delta >> TS_SHIFT;
2009 		} else {
2010 			/* try to discard, since we do not need this */
2011 			if (!rb_try_to_discard(cpu_buffer, event)) {
2012 				/* nope, just zero it */
2013 				event->time_delta = 0;
2014 				event->array[0] = 0;
2015 			}
2016 		}
2017 		cpu_buffer->write_stamp = *ts;
2018 		/* let the caller know this was the commit */
2019 		ret = 1;
2020 	} else {
2021 		/* Try to discard the event */
2022 		if (!rb_try_to_discard(cpu_buffer, event)) {
2023 			/* Darn, this is just wasted space */
2024 			event->time_delta = 0;
2025 			event->array[0] = 0;
2026 		}
2027 		ret = 0;
2028 	}
2029 
2030 	*delta = 0;
2031 
2032 	return ret;
2033 }
2034 
2035 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2036 {
2037 	local_inc(&cpu_buffer->committing);
2038 	local_inc(&cpu_buffer->commits);
2039 }
2040 
2041 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2042 {
2043 	unsigned long commits;
2044 
2045 	if (RB_WARN_ON(cpu_buffer,
2046 		       !local_read(&cpu_buffer->committing)))
2047 		return;
2048 
2049  again:
2050 	commits = local_read(&cpu_buffer->commits);
2051 	/* synchronize with interrupts */
2052 	barrier();
2053 	if (local_read(&cpu_buffer->committing) == 1)
2054 		rb_set_commit_to_write(cpu_buffer);
2055 
2056 	local_dec(&cpu_buffer->committing);
2057 
2058 	/* synchronize with interrupts */
2059 	barrier();
2060 
2061 	/*
2062 	 * Need to account for interrupts coming in between the
2063 	 * updating of the commit page and the clearing of the
2064 	 * committing counter.
2065 	 */
2066 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2067 	    !local_read(&cpu_buffer->committing)) {
2068 		local_inc(&cpu_buffer->committing);
2069 		goto again;
2070 	}
2071 }
2072 
2073 static struct ring_buffer_event *
2074 rb_reserve_next_event(struct ring_buffer *buffer,
2075 		      struct ring_buffer_per_cpu *cpu_buffer,
2076 		      unsigned long length)
2077 {
2078 	struct ring_buffer_event *event;
2079 	u64 ts, delta = 0;
2080 	int commit = 0;
2081 	int nr_loops = 0;
2082 
2083 	rb_start_commit(cpu_buffer);
2084 
2085 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2086 	/*
2087 	 * Due to the ability to swap a cpu buffer from a buffer
2088 	 * it is possible it was swapped before we committed.
2089 	 * (committing stops a swap). We check for it here and
2090 	 * if it happened, we have to fail the write.
2091 	 */
2092 	barrier();
2093 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2094 		local_dec(&cpu_buffer->committing);
2095 		local_dec(&cpu_buffer->commits);
2096 		return NULL;
2097 	}
2098 #endif
2099 
2100 	length = rb_calculate_event_length(length);
2101  again:
2102 	/*
2103 	 * We allow for interrupts to reenter here and do a trace.
2104 	 * If one does, it will cause this original code to loop
2105 	 * back here. Even with heavy interrupts happening, this
2106 	 * should only happen a few times in a row. If this happens
2107 	 * 1000 times in a row, there must be either an interrupt
2108 	 * storm or we have something buggy.
2109 	 * Bail!
2110 	 */
2111 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2112 		goto out_fail;
2113 
2114 	ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
2115 
2116 	/*
2117 	 * Only the first commit can update the timestamp.
2118 	 * Yes there is a race here. If an interrupt comes in
2119 	 * just after the conditional and it traces too, then it
2120 	 * will also check the deltas. More than one timestamp may
2121 	 * also be made. But only the entry that did the actual
2122 	 * commit will be something other than zero.
2123 	 */
2124 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2125 		   rb_page_write(cpu_buffer->tail_page) ==
2126 		   rb_commit_index(cpu_buffer))) {
2127 		u64 diff;
2128 
2129 		diff = ts - cpu_buffer->write_stamp;
2130 
2131 		/* make sure this diff is calculated here */
2132 		barrier();
2133 
2134 		/* Did the write stamp get updated already? */
2135 		if (unlikely(ts < cpu_buffer->write_stamp))
2136 			goto get_event;
2137 
2138 		delta = diff;
2139 		if (unlikely(test_time_stamp(delta))) {
2140 
2141 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2142 			if (commit == -EBUSY)
2143 				goto out_fail;
2144 
2145 			if (commit == -EAGAIN)
2146 				goto again;
2147 
2148 			RB_WARN_ON(cpu_buffer, commit < 0);
2149 		}
2150 	}
2151 
2152  get_event:
2153 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2154 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2155 		goto again;
2156 
2157 	if (!event)
2158 		goto out_fail;
2159 
2160 	if (!rb_event_is_commit(cpu_buffer, event))
2161 		delta = 0;
2162 
2163 	event->time_delta = delta;
2164 
2165 	return event;
2166 
2167  out_fail:
2168 	rb_end_commit(cpu_buffer);
2169 	return NULL;
2170 }
2171 
2172 #ifdef CONFIG_TRACING
2173 
2174 #define TRACE_RECURSIVE_DEPTH 16
2175 
2176 static int trace_recursive_lock(void)
2177 {
2178 	current->trace_recursion++;
2179 
2180 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2181 		return 0;
2182 
2183 	/* Disable all tracing before we do anything else */
2184 	tracing_off_permanent();
2185 
2186 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2187 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2188 		    current->trace_recursion,
2189 		    hardirq_count() >> HARDIRQ_SHIFT,
2190 		    softirq_count() >> SOFTIRQ_SHIFT,
2191 		    in_nmi());
2192 
2193 	WARN_ON_ONCE(1);
2194 	return -1;
2195 }
2196 
2197 static void trace_recursive_unlock(void)
2198 {
2199 	WARN_ON_ONCE(!current->trace_recursion);
2200 
2201 	current->trace_recursion--;
2202 }
2203 
2204 #else
2205 
2206 #define trace_recursive_lock()		(0)
2207 #define trace_recursive_unlock()	do { } while (0)
2208 
2209 #endif
2210 
2211 static DEFINE_PER_CPU(int, rb_need_resched);
2212 
2213 /**
2214  * ring_buffer_lock_reserve - reserve a part of the buffer
2215  * @buffer: the ring buffer to reserve from
2216  * @length: the length of the data to reserve (excluding event header)
2217  *
2218  * Returns a reseverd event on the ring buffer to copy directly to.
2219  * The user of this interface will need to get the body to write into
2220  * and can use the ring_buffer_event_data() interface.
2221  *
2222  * The length is the length of the data needed, not the event length
2223  * which also includes the event header.
2224  *
2225  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2226  * If NULL is returned, then nothing has been allocated or locked.
2227  */
2228 struct ring_buffer_event *
2229 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2230 {
2231 	struct ring_buffer_per_cpu *cpu_buffer;
2232 	struct ring_buffer_event *event;
2233 	int cpu, resched;
2234 
2235 	if (ring_buffer_flags != RB_BUFFERS_ON)
2236 		return NULL;
2237 
2238 	if (atomic_read(&buffer->record_disabled))
2239 		return NULL;
2240 
2241 	/* If we are tracing schedule, we don't want to recurse */
2242 	resched = ftrace_preempt_disable();
2243 
2244 	if (trace_recursive_lock())
2245 		goto out_nocheck;
2246 
2247 	cpu = raw_smp_processor_id();
2248 
2249 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2250 		goto out;
2251 
2252 	cpu_buffer = buffer->buffers[cpu];
2253 
2254 	if (atomic_read(&cpu_buffer->record_disabled))
2255 		goto out;
2256 
2257 	if (length > BUF_MAX_DATA_SIZE)
2258 		goto out;
2259 
2260 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2261 	if (!event)
2262 		goto out;
2263 
2264 	/*
2265 	 * Need to store resched state on this cpu.
2266 	 * Only the first needs to.
2267 	 */
2268 
2269 	if (preempt_count() == 1)
2270 		per_cpu(rb_need_resched, cpu) = resched;
2271 
2272 	return event;
2273 
2274  out:
2275 	trace_recursive_unlock();
2276 
2277  out_nocheck:
2278 	ftrace_preempt_enable(resched);
2279 	return NULL;
2280 }
2281 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2282 
2283 static void
2284 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2285 		      struct ring_buffer_event *event)
2286 {
2287 	/*
2288 	 * The event first in the commit queue updates the
2289 	 * time stamp.
2290 	 */
2291 	if (rb_event_is_commit(cpu_buffer, event))
2292 		cpu_buffer->write_stamp += event->time_delta;
2293 }
2294 
2295 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2296 		      struct ring_buffer_event *event)
2297 {
2298 	local_inc(&cpu_buffer->entries);
2299 	rb_update_write_stamp(cpu_buffer, event);
2300 	rb_end_commit(cpu_buffer);
2301 }
2302 
2303 /**
2304  * ring_buffer_unlock_commit - commit a reserved
2305  * @buffer: The buffer to commit to
2306  * @event: The event pointer to commit.
2307  *
2308  * This commits the data to the ring buffer, and releases any locks held.
2309  *
2310  * Must be paired with ring_buffer_lock_reserve.
2311  */
2312 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2313 			      struct ring_buffer_event *event)
2314 {
2315 	struct ring_buffer_per_cpu *cpu_buffer;
2316 	int cpu = raw_smp_processor_id();
2317 
2318 	cpu_buffer = buffer->buffers[cpu];
2319 
2320 	rb_commit(cpu_buffer, event);
2321 
2322 	trace_recursive_unlock();
2323 
2324 	/*
2325 	 * Only the last preempt count needs to restore preemption.
2326 	 */
2327 	if (preempt_count() == 1)
2328 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2329 	else
2330 		preempt_enable_no_resched_notrace();
2331 
2332 	return 0;
2333 }
2334 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2335 
2336 static inline void rb_event_discard(struct ring_buffer_event *event)
2337 {
2338 	/* array[0] holds the actual length for the discarded event */
2339 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2340 	event->type_len = RINGBUF_TYPE_PADDING;
2341 	/* time delta must be non zero */
2342 	if (!event->time_delta)
2343 		event->time_delta = 1;
2344 }
2345 
2346 /*
2347  * Decrement the entries to the page that an event is on.
2348  * The event does not even need to exist, only the pointer
2349  * to the page it is on. This may only be called before the commit
2350  * takes place.
2351  */
2352 static inline void
2353 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2354 		   struct ring_buffer_event *event)
2355 {
2356 	unsigned long addr = (unsigned long)event;
2357 	struct buffer_page *bpage = cpu_buffer->commit_page;
2358 	struct buffer_page *start;
2359 
2360 	addr &= PAGE_MASK;
2361 
2362 	/* Do the likely case first */
2363 	if (likely(bpage->page == (void *)addr)) {
2364 		local_dec(&bpage->entries);
2365 		return;
2366 	}
2367 
2368 	/*
2369 	 * Because the commit page may be on the reader page we
2370 	 * start with the next page and check the end loop there.
2371 	 */
2372 	rb_inc_page(cpu_buffer, &bpage);
2373 	start = bpage;
2374 	do {
2375 		if (bpage->page == (void *)addr) {
2376 			local_dec(&bpage->entries);
2377 			return;
2378 		}
2379 		rb_inc_page(cpu_buffer, &bpage);
2380 	} while (bpage != start);
2381 
2382 	/* commit not part of this buffer?? */
2383 	RB_WARN_ON(cpu_buffer, 1);
2384 }
2385 
2386 /**
2387  * ring_buffer_commit_discard - discard an event that has not been committed
2388  * @buffer: the ring buffer
2389  * @event: non committed event to discard
2390  *
2391  * Sometimes an event that is in the ring buffer needs to be ignored.
2392  * This function lets the user discard an event in the ring buffer
2393  * and then that event will not be read later.
2394  *
2395  * This function only works if it is called before the the item has been
2396  * committed. It will try to free the event from the ring buffer
2397  * if another event has not been added behind it.
2398  *
2399  * If another event has been added behind it, it will set the event
2400  * up as discarded, and perform the commit.
2401  *
2402  * If this function is called, do not call ring_buffer_unlock_commit on
2403  * the event.
2404  */
2405 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2406 				struct ring_buffer_event *event)
2407 {
2408 	struct ring_buffer_per_cpu *cpu_buffer;
2409 	int cpu;
2410 
2411 	/* The event is discarded regardless */
2412 	rb_event_discard(event);
2413 
2414 	cpu = smp_processor_id();
2415 	cpu_buffer = buffer->buffers[cpu];
2416 
2417 	/*
2418 	 * This must only be called if the event has not been
2419 	 * committed yet. Thus we can assume that preemption
2420 	 * is still disabled.
2421 	 */
2422 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2423 
2424 	rb_decrement_entry(cpu_buffer, event);
2425 	if (rb_try_to_discard(cpu_buffer, event))
2426 		goto out;
2427 
2428 	/*
2429 	 * The commit is still visible by the reader, so we
2430 	 * must still update the timestamp.
2431 	 */
2432 	rb_update_write_stamp(cpu_buffer, event);
2433  out:
2434 	rb_end_commit(cpu_buffer);
2435 
2436 	trace_recursive_unlock();
2437 
2438 	/*
2439 	 * Only the last preempt count needs to restore preemption.
2440 	 */
2441 	if (preempt_count() == 1)
2442 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2443 	else
2444 		preempt_enable_no_resched_notrace();
2445 
2446 }
2447 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2448 
2449 /**
2450  * ring_buffer_write - write data to the buffer without reserving
2451  * @buffer: The ring buffer to write to.
2452  * @length: The length of the data being written (excluding the event header)
2453  * @data: The data to write to the buffer.
2454  *
2455  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2456  * one function. If you already have the data to write to the buffer, it
2457  * may be easier to simply call this function.
2458  *
2459  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2460  * and not the length of the event which would hold the header.
2461  */
2462 int ring_buffer_write(struct ring_buffer *buffer,
2463 			unsigned long length,
2464 			void *data)
2465 {
2466 	struct ring_buffer_per_cpu *cpu_buffer;
2467 	struct ring_buffer_event *event;
2468 	void *body;
2469 	int ret = -EBUSY;
2470 	int cpu, resched;
2471 
2472 	if (ring_buffer_flags != RB_BUFFERS_ON)
2473 		return -EBUSY;
2474 
2475 	if (atomic_read(&buffer->record_disabled))
2476 		return -EBUSY;
2477 
2478 	resched = ftrace_preempt_disable();
2479 
2480 	cpu = raw_smp_processor_id();
2481 
2482 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2483 		goto out;
2484 
2485 	cpu_buffer = buffer->buffers[cpu];
2486 
2487 	if (atomic_read(&cpu_buffer->record_disabled))
2488 		goto out;
2489 
2490 	if (length > BUF_MAX_DATA_SIZE)
2491 		goto out;
2492 
2493 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2494 	if (!event)
2495 		goto out;
2496 
2497 	body = rb_event_data(event);
2498 
2499 	memcpy(body, data, length);
2500 
2501 	rb_commit(cpu_buffer, event);
2502 
2503 	ret = 0;
2504  out:
2505 	ftrace_preempt_enable(resched);
2506 
2507 	return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(ring_buffer_write);
2510 
2511 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2512 {
2513 	struct buffer_page *reader = cpu_buffer->reader_page;
2514 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2515 	struct buffer_page *commit = cpu_buffer->commit_page;
2516 
2517 	/* In case of error, head will be NULL */
2518 	if (unlikely(!head))
2519 		return 1;
2520 
2521 	return reader->read == rb_page_commit(reader) &&
2522 		(commit == reader ||
2523 		 (commit == head &&
2524 		  head->read == rb_page_commit(commit)));
2525 }
2526 
2527 /**
2528  * ring_buffer_record_disable - stop all writes into the buffer
2529  * @buffer: The ring buffer to stop writes to.
2530  *
2531  * This prevents all writes to the buffer. Any attempt to write
2532  * to the buffer after this will fail and return NULL.
2533  *
2534  * The caller should call synchronize_sched() after this.
2535  */
2536 void ring_buffer_record_disable(struct ring_buffer *buffer)
2537 {
2538 	atomic_inc(&buffer->record_disabled);
2539 }
2540 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2541 
2542 /**
2543  * ring_buffer_record_enable - enable writes to the buffer
2544  * @buffer: The ring buffer to enable writes
2545  *
2546  * Note, multiple disables will need the same number of enables
2547  * to truely enable the writing (much like preempt_disable).
2548  */
2549 void ring_buffer_record_enable(struct ring_buffer *buffer)
2550 {
2551 	atomic_dec(&buffer->record_disabled);
2552 }
2553 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2554 
2555 /**
2556  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2557  * @buffer: The ring buffer to stop writes to.
2558  * @cpu: The CPU buffer to stop
2559  *
2560  * This prevents all writes to the buffer. Any attempt to write
2561  * to the buffer after this will fail and return NULL.
2562  *
2563  * The caller should call synchronize_sched() after this.
2564  */
2565 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2566 {
2567 	struct ring_buffer_per_cpu *cpu_buffer;
2568 
2569 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2570 		return;
2571 
2572 	cpu_buffer = buffer->buffers[cpu];
2573 	atomic_inc(&cpu_buffer->record_disabled);
2574 }
2575 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2576 
2577 /**
2578  * ring_buffer_record_enable_cpu - enable writes to the buffer
2579  * @buffer: The ring buffer to enable writes
2580  * @cpu: The CPU to enable.
2581  *
2582  * Note, multiple disables will need the same number of enables
2583  * to truely enable the writing (much like preempt_disable).
2584  */
2585 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2586 {
2587 	struct ring_buffer_per_cpu *cpu_buffer;
2588 
2589 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2590 		return;
2591 
2592 	cpu_buffer = buffer->buffers[cpu];
2593 	atomic_dec(&cpu_buffer->record_disabled);
2594 }
2595 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2596 
2597 /**
2598  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2599  * @buffer: The ring buffer
2600  * @cpu: The per CPU buffer to get the entries from.
2601  */
2602 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2603 {
2604 	struct ring_buffer_per_cpu *cpu_buffer;
2605 	unsigned long ret;
2606 
2607 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2608 		return 0;
2609 
2610 	cpu_buffer = buffer->buffers[cpu];
2611 	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2612 		- cpu_buffer->read;
2613 
2614 	return ret;
2615 }
2616 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2617 
2618 /**
2619  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2620  * @buffer: The ring buffer
2621  * @cpu: The per CPU buffer to get the number of overruns from
2622  */
2623 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2624 {
2625 	struct ring_buffer_per_cpu *cpu_buffer;
2626 	unsigned long ret;
2627 
2628 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2629 		return 0;
2630 
2631 	cpu_buffer = buffer->buffers[cpu];
2632 	ret = local_read(&cpu_buffer->overrun);
2633 
2634 	return ret;
2635 }
2636 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2637 
2638 /**
2639  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2640  * @buffer: The ring buffer
2641  * @cpu: The per CPU buffer to get the number of overruns from
2642  */
2643 unsigned long
2644 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2645 {
2646 	struct ring_buffer_per_cpu *cpu_buffer;
2647 	unsigned long ret;
2648 
2649 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2650 		return 0;
2651 
2652 	cpu_buffer = buffer->buffers[cpu];
2653 	ret = local_read(&cpu_buffer->commit_overrun);
2654 
2655 	return ret;
2656 }
2657 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2658 
2659 /**
2660  * ring_buffer_entries - get the number of entries in a buffer
2661  * @buffer: The ring buffer
2662  *
2663  * Returns the total number of entries in the ring buffer
2664  * (all CPU entries)
2665  */
2666 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2667 {
2668 	struct ring_buffer_per_cpu *cpu_buffer;
2669 	unsigned long entries = 0;
2670 	int cpu;
2671 
2672 	/* if you care about this being correct, lock the buffer */
2673 	for_each_buffer_cpu(buffer, cpu) {
2674 		cpu_buffer = buffer->buffers[cpu];
2675 		entries += (local_read(&cpu_buffer->entries) -
2676 			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2677 	}
2678 
2679 	return entries;
2680 }
2681 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2682 
2683 /**
2684  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2685  * @buffer: The ring buffer
2686  *
2687  * Returns the total number of overruns in the ring buffer
2688  * (all CPU entries)
2689  */
2690 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2691 {
2692 	struct ring_buffer_per_cpu *cpu_buffer;
2693 	unsigned long overruns = 0;
2694 	int cpu;
2695 
2696 	/* if you care about this being correct, lock the buffer */
2697 	for_each_buffer_cpu(buffer, cpu) {
2698 		cpu_buffer = buffer->buffers[cpu];
2699 		overruns += local_read(&cpu_buffer->overrun);
2700 	}
2701 
2702 	return overruns;
2703 }
2704 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2705 
2706 static void rb_iter_reset(struct ring_buffer_iter *iter)
2707 {
2708 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2709 
2710 	/* Iterator usage is expected to have record disabled */
2711 	if (list_empty(&cpu_buffer->reader_page->list)) {
2712 		iter->head_page = rb_set_head_page(cpu_buffer);
2713 		if (unlikely(!iter->head_page))
2714 			return;
2715 		iter->head = iter->head_page->read;
2716 	} else {
2717 		iter->head_page = cpu_buffer->reader_page;
2718 		iter->head = cpu_buffer->reader_page->read;
2719 	}
2720 	if (iter->head)
2721 		iter->read_stamp = cpu_buffer->read_stamp;
2722 	else
2723 		iter->read_stamp = iter->head_page->page->time_stamp;
2724 }
2725 
2726 /**
2727  * ring_buffer_iter_reset - reset an iterator
2728  * @iter: The iterator to reset
2729  *
2730  * Resets the iterator, so that it will start from the beginning
2731  * again.
2732  */
2733 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2734 {
2735 	struct ring_buffer_per_cpu *cpu_buffer;
2736 	unsigned long flags;
2737 
2738 	if (!iter)
2739 		return;
2740 
2741 	cpu_buffer = iter->cpu_buffer;
2742 
2743 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2744 	rb_iter_reset(iter);
2745 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2746 }
2747 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2748 
2749 /**
2750  * ring_buffer_iter_empty - check if an iterator has no more to read
2751  * @iter: The iterator to check
2752  */
2753 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2754 {
2755 	struct ring_buffer_per_cpu *cpu_buffer;
2756 
2757 	cpu_buffer = iter->cpu_buffer;
2758 
2759 	return iter->head_page == cpu_buffer->commit_page &&
2760 		iter->head == rb_commit_index(cpu_buffer);
2761 }
2762 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2763 
2764 static void
2765 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2766 		     struct ring_buffer_event *event)
2767 {
2768 	u64 delta;
2769 
2770 	switch (event->type_len) {
2771 	case RINGBUF_TYPE_PADDING:
2772 		return;
2773 
2774 	case RINGBUF_TYPE_TIME_EXTEND:
2775 		delta = event->array[0];
2776 		delta <<= TS_SHIFT;
2777 		delta += event->time_delta;
2778 		cpu_buffer->read_stamp += delta;
2779 		return;
2780 
2781 	case RINGBUF_TYPE_TIME_STAMP:
2782 		/* FIXME: not implemented */
2783 		return;
2784 
2785 	case RINGBUF_TYPE_DATA:
2786 		cpu_buffer->read_stamp += event->time_delta;
2787 		return;
2788 
2789 	default:
2790 		BUG();
2791 	}
2792 	return;
2793 }
2794 
2795 static void
2796 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2797 			  struct ring_buffer_event *event)
2798 {
2799 	u64 delta;
2800 
2801 	switch (event->type_len) {
2802 	case RINGBUF_TYPE_PADDING:
2803 		return;
2804 
2805 	case RINGBUF_TYPE_TIME_EXTEND:
2806 		delta = event->array[0];
2807 		delta <<= TS_SHIFT;
2808 		delta += event->time_delta;
2809 		iter->read_stamp += delta;
2810 		return;
2811 
2812 	case RINGBUF_TYPE_TIME_STAMP:
2813 		/* FIXME: not implemented */
2814 		return;
2815 
2816 	case RINGBUF_TYPE_DATA:
2817 		iter->read_stamp += event->time_delta;
2818 		return;
2819 
2820 	default:
2821 		BUG();
2822 	}
2823 	return;
2824 }
2825 
2826 static struct buffer_page *
2827 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2828 {
2829 	struct buffer_page *reader = NULL;
2830 	unsigned long flags;
2831 	int nr_loops = 0;
2832 	int ret;
2833 
2834 	local_irq_save(flags);
2835 	__raw_spin_lock(&cpu_buffer->lock);
2836 
2837  again:
2838 	/*
2839 	 * This should normally only loop twice. But because the
2840 	 * start of the reader inserts an empty page, it causes
2841 	 * a case where we will loop three times. There should be no
2842 	 * reason to loop four times (that I know of).
2843 	 */
2844 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2845 		reader = NULL;
2846 		goto out;
2847 	}
2848 
2849 	reader = cpu_buffer->reader_page;
2850 
2851 	/* If there's more to read, return this page */
2852 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2853 		goto out;
2854 
2855 	/* Never should we have an index greater than the size */
2856 	if (RB_WARN_ON(cpu_buffer,
2857 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2858 		goto out;
2859 
2860 	/* check if we caught up to the tail */
2861 	reader = NULL;
2862 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2863 		goto out;
2864 
2865 	/*
2866 	 * Reset the reader page to size zero.
2867 	 */
2868 	local_set(&cpu_buffer->reader_page->write, 0);
2869 	local_set(&cpu_buffer->reader_page->entries, 0);
2870 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2871 
2872  spin:
2873 	/*
2874 	 * Splice the empty reader page into the list around the head.
2875 	 */
2876 	reader = rb_set_head_page(cpu_buffer);
2877 	cpu_buffer->reader_page->list.next = reader->list.next;
2878 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2879 
2880 	/*
2881 	 * cpu_buffer->pages just needs to point to the buffer, it
2882 	 *  has no specific buffer page to point to. Lets move it out
2883 	 *  of our way so we don't accidently swap it.
2884 	 */
2885 	cpu_buffer->pages = reader->list.prev;
2886 
2887 	/* The reader page will be pointing to the new head */
2888 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2889 
2890 	/*
2891 	 * Here's the tricky part.
2892 	 *
2893 	 * We need to move the pointer past the header page.
2894 	 * But we can only do that if a writer is not currently
2895 	 * moving it. The page before the header page has the
2896 	 * flag bit '1' set if it is pointing to the page we want.
2897 	 * but if the writer is in the process of moving it
2898 	 * than it will be '2' or already moved '0'.
2899 	 */
2900 
2901 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2902 
2903 	/*
2904 	 * If we did not convert it, then we must try again.
2905 	 */
2906 	if (!ret)
2907 		goto spin;
2908 
2909 	/*
2910 	 * Yeah! We succeeded in replacing the page.
2911 	 *
2912 	 * Now make the new head point back to the reader page.
2913 	 */
2914 	reader->list.next->prev = &cpu_buffer->reader_page->list;
2915 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2916 
2917 	/* Finally update the reader page to the new head */
2918 	cpu_buffer->reader_page = reader;
2919 	rb_reset_reader_page(cpu_buffer);
2920 
2921 	goto again;
2922 
2923  out:
2924 	__raw_spin_unlock(&cpu_buffer->lock);
2925 	local_irq_restore(flags);
2926 
2927 	return reader;
2928 }
2929 
2930 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2931 {
2932 	struct ring_buffer_event *event;
2933 	struct buffer_page *reader;
2934 	unsigned length;
2935 
2936 	reader = rb_get_reader_page(cpu_buffer);
2937 
2938 	/* This function should not be called when buffer is empty */
2939 	if (RB_WARN_ON(cpu_buffer, !reader))
2940 		return;
2941 
2942 	event = rb_reader_event(cpu_buffer);
2943 
2944 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2945 		cpu_buffer->read++;
2946 
2947 	rb_update_read_stamp(cpu_buffer, event);
2948 
2949 	length = rb_event_length(event);
2950 	cpu_buffer->reader_page->read += length;
2951 }
2952 
2953 static void rb_advance_iter(struct ring_buffer_iter *iter)
2954 {
2955 	struct ring_buffer *buffer;
2956 	struct ring_buffer_per_cpu *cpu_buffer;
2957 	struct ring_buffer_event *event;
2958 	unsigned length;
2959 
2960 	cpu_buffer = iter->cpu_buffer;
2961 	buffer = cpu_buffer->buffer;
2962 
2963 	/*
2964 	 * Check if we are at the end of the buffer.
2965 	 */
2966 	if (iter->head >= rb_page_size(iter->head_page)) {
2967 		/* discarded commits can make the page empty */
2968 		if (iter->head_page == cpu_buffer->commit_page)
2969 			return;
2970 		rb_inc_iter(iter);
2971 		return;
2972 	}
2973 
2974 	event = rb_iter_head_event(iter);
2975 
2976 	length = rb_event_length(event);
2977 
2978 	/*
2979 	 * This should not be called to advance the header if we are
2980 	 * at the tail of the buffer.
2981 	 */
2982 	if (RB_WARN_ON(cpu_buffer,
2983 		       (iter->head_page == cpu_buffer->commit_page) &&
2984 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2985 		return;
2986 
2987 	rb_update_iter_read_stamp(iter, event);
2988 
2989 	iter->head += length;
2990 
2991 	/* check for end of page padding */
2992 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2993 	    (iter->head_page != cpu_buffer->commit_page))
2994 		rb_advance_iter(iter);
2995 }
2996 
2997 static struct ring_buffer_event *
2998 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
2999 {
3000 	struct ring_buffer_event *event;
3001 	struct buffer_page *reader;
3002 	int nr_loops = 0;
3003 
3004  again:
3005 	/*
3006 	 * We repeat when a timestamp is encountered. It is possible
3007 	 * to get multiple timestamps from an interrupt entering just
3008 	 * as one timestamp is about to be written, or from discarded
3009 	 * commits. The most that we can have is the number on a single page.
3010 	 */
3011 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3012 		return NULL;
3013 
3014 	reader = rb_get_reader_page(cpu_buffer);
3015 	if (!reader)
3016 		return NULL;
3017 
3018 	event = rb_reader_event(cpu_buffer);
3019 
3020 	switch (event->type_len) {
3021 	case RINGBUF_TYPE_PADDING:
3022 		if (rb_null_event(event))
3023 			RB_WARN_ON(cpu_buffer, 1);
3024 		/*
3025 		 * Because the writer could be discarding every
3026 		 * event it creates (which would probably be bad)
3027 		 * if we were to go back to "again" then we may never
3028 		 * catch up, and will trigger the warn on, or lock
3029 		 * the box. Return the padding, and we will release
3030 		 * the current locks, and try again.
3031 		 */
3032 		return event;
3033 
3034 	case RINGBUF_TYPE_TIME_EXTEND:
3035 		/* Internal data, OK to advance */
3036 		rb_advance_reader(cpu_buffer);
3037 		goto again;
3038 
3039 	case RINGBUF_TYPE_TIME_STAMP:
3040 		/* FIXME: not implemented */
3041 		rb_advance_reader(cpu_buffer);
3042 		goto again;
3043 
3044 	case RINGBUF_TYPE_DATA:
3045 		if (ts) {
3046 			*ts = cpu_buffer->read_stamp + event->time_delta;
3047 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3048 							 cpu_buffer->cpu, ts);
3049 		}
3050 		return event;
3051 
3052 	default:
3053 		BUG();
3054 	}
3055 
3056 	return NULL;
3057 }
3058 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3059 
3060 static struct ring_buffer_event *
3061 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3062 {
3063 	struct ring_buffer *buffer;
3064 	struct ring_buffer_per_cpu *cpu_buffer;
3065 	struct ring_buffer_event *event;
3066 	int nr_loops = 0;
3067 
3068 	if (ring_buffer_iter_empty(iter))
3069 		return NULL;
3070 
3071 	cpu_buffer = iter->cpu_buffer;
3072 	buffer = cpu_buffer->buffer;
3073 
3074  again:
3075 	/*
3076 	 * We repeat when a timestamp is encountered.
3077 	 * We can get multiple timestamps by nested interrupts or also
3078 	 * if filtering is on (discarding commits). Since discarding
3079 	 * commits can be frequent we can get a lot of timestamps.
3080 	 * But we limit them by not adding timestamps if they begin
3081 	 * at the start of a page.
3082 	 */
3083 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3084 		return NULL;
3085 
3086 	if (rb_per_cpu_empty(cpu_buffer))
3087 		return NULL;
3088 
3089 	event = rb_iter_head_event(iter);
3090 
3091 	switch (event->type_len) {
3092 	case RINGBUF_TYPE_PADDING:
3093 		if (rb_null_event(event)) {
3094 			rb_inc_iter(iter);
3095 			goto again;
3096 		}
3097 		rb_advance_iter(iter);
3098 		return event;
3099 
3100 	case RINGBUF_TYPE_TIME_EXTEND:
3101 		/* Internal data, OK to advance */
3102 		rb_advance_iter(iter);
3103 		goto again;
3104 
3105 	case RINGBUF_TYPE_TIME_STAMP:
3106 		/* FIXME: not implemented */
3107 		rb_advance_iter(iter);
3108 		goto again;
3109 
3110 	case RINGBUF_TYPE_DATA:
3111 		if (ts) {
3112 			*ts = iter->read_stamp + event->time_delta;
3113 			ring_buffer_normalize_time_stamp(buffer,
3114 							 cpu_buffer->cpu, ts);
3115 		}
3116 		return event;
3117 
3118 	default:
3119 		BUG();
3120 	}
3121 
3122 	return NULL;
3123 }
3124 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3125 
3126 static inline int rb_ok_to_lock(void)
3127 {
3128 	/*
3129 	 * If an NMI die dumps out the content of the ring buffer
3130 	 * do not grab locks. We also permanently disable the ring
3131 	 * buffer too. A one time deal is all you get from reading
3132 	 * the ring buffer from an NMI.
3133 	 */
3134 	if (likely(!in_nmi()))
3135 		return 1;
3136 
3137 	tracing_off_permanent();
3138 	return 0;
3139 }
3140 
3141 /**
3142  * ring_buffer_peek - peek at the next event to be read
3143  * @buffer: The ring buffer to read
3144  * @cpu: The cpu to peak at
3145  * @ts: The timestamp counter of this event.
3146  *
3147  * This will return the event that will be read next, but does
3148  * not consume the data.
3149  */
3150 struct ring_buffer_event *
3151 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3152 {
3153 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3154 	struct ring_buffer_event *event;
3155 	unsigned long flags;
3156 	int dolock;
3157 
3158 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3159 		return NULL;
3160 
3161 	dolock = rb_ok_to_lock();
3162  again:
3163 	local_irq_save(flags);
3164 	if (dolock)
3165 		spin_lock(&cpu_buffer->reader_lock);
3166 	event = rb_buffer_peek(cpu_buffer, ts);
3167 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3168 		rb_advance_reader(cpu_buffer);
3169 	if (dolock)
3170 		spin_unlock(&cpu_buffer->reader_lock);
3171 	local_irq_restore(flags);
3172 
3173 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3174 		goto again;
3175 
3176 	return event;
3177 }
3178 
3179 /**
3180  * ring_buffer_iter_peek - peek at the next event to be read
3181  * @iter: The ring buffer iterator
3182  * @ts: The timestamp counter of this event.
3183  *
3184  * This will return the event that will be read next, but does
3185  * not increment the iterator.
3186  */
3187 struct ring_buffer_event *
3188 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3189 {
3190 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3191 	struct ring_buffer_event *event;
3192 	unsigned long flags;
3193 
3194  again:
3195 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3196 	event = rb_iter_peek(iter, ts);
3197 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3198 
3199 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3200 		goto again;
3201 
3202 	return event;
3203 }
3204 
3205 /**
3206  * ring_buffer_consume - return an event and consume it
3207  * @buffer: The ring buffer to get the next event from
3208  *
3209  * Returns the next event in the ring buffer, and that event is consumed.
3210  * Meaning, that sequential reads will keep returning a different event,
3211  * and eventually empty the ring buffer if the producer is slower.
3212  */
3213 struct ring_buffer_event *
3214 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3215 {
3216 	struct ring_buffer_per_cpu *cpu_buffer;
3217 	struct ring_buffer_event *event = NULL;
3218 	unsigned long flags;
3219 	int dolock;
3220 
3221 	dolock = rb_ok_to_lock();
3222 
3223  again:
3224 	/* might be called in atomic */
3225 	preempt_disable();
3226 
3227 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228 		goto out;
3229 
3230 	cpu_buffer = buffer->buffers[cpu];
3231 	local_irq_save(flags);
3232 	if (dolock)
3233 		spin_lock(&cpu_buffer->reader_lock);
3234 
3235 	event = rb_buffer_peek(cpu_buffer, ts);
3236 	if (event)
3237 		rb_advance_reader(cpu_buffer);
3238 
3239 	if (dolock)
3240 		spin_unlock(&cpu_buffer->reader_lock);
3241 	local_irq_restore(flags);
3242 
3243  out:
3244 	preempt_enable();
3245 
3246 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3247 		goto again;
3248 
3249 	return event;
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3252 
3253 /**
3254  * ring_buffer_read_start - start a non consuming read of the buffer
3255  * @buffer: The ring buffer to read from
3256  * @cpu: The cpu buffer to iterate over
3257  *
3258  * This starts up an iteration through the buffer. It also disables
3259  * the recording to the buffer until the reading is finished.
3260  * This prevents the reading from being corrupted. This is not
3261  * a consuming read, so a producer is not expected.
3262  *
3263  * Must be paired with ring_buffer_finish.
3264  */
3265 struct ring_buffer_iter *
3266 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3267 {
3268 	struct ring_buffer_per_cpu *cpu_buffer;
3269 	struct ring_buffer_iter *iter;
3270 	unsigned long flags;
3271 
3272 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273 		return NULL;
3274 
3275 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3276 	if (!iter)
3277 		return NULL;
3278 
3279 	cpu_buffer = buffer->buffers[cpu];
3280 
3281 	iter->cpu_buffer = cpu_buffer;
3282 
3283 	atomic_inc(&cpu_buffer->record_disabled);
3284 	synchronize_sched();
3285 
3286 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3287 	__raw_spin_lock(&cpu_buffer->lock);
3288 	rb_iter_reset(iter);
3289 	__raw_spin_unlock(&cpu_buffer->lock);
3290 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3291 
3292 	return iter;
3293 }
3294 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3295 
3296 /**
3297  * ring_buffer_finish - finish reading the iterator of the buffer
3298  * @iter: The iterator retrieved by ring_buffer_start
3299  *
3300  * This re-enables the recording to the buffer, and frees the
3301  * iterator.
3302  */
3303 void
3304 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3305 {
3306 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3307 
3308 	atomic_dec(&cpu_buffer->record_disabled);
3309 	kfree(iter);
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3312 
3313 /**
3314  * ring_buffer_read - read the next item in the ring buffer by the iterator
3315  * @iter: The ring buffer iterator
3316  * @ts: The time stamp of the event read.
3317  *
3318  * This reads the next event in the ring buffer and increments the iterator.
3319  */
3320 struct ring_buffer_event *
3321 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3322 {
3323 	struct ring_buffer_event *event;
3324 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3325 	unsigned long flags;
3326 
3327 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3328  again:
3329 	event = rb_iter_peek(iter, ts);
3330 	if (!event)
3331 		goto out;
3332 
3333 	if (event->type_len == RINGBUF_TYPE_PADDING)
3334 		goto again;
3335 
3336 	rb_advance_iter(iter);
3337  out:
3338 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3339 
3340 	return event;
3341 }
3342 EXPORT_SYMBOL_GPL(ring_buffer_read);
3343 
3344 /**
3345  * ring_buffer_size - return the size of the ring buffer (in bytes)
3346  * @buffer: The ring buffer.
3347  */
3348 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3349 {
3350 	return BUF_PAGE_SIZE * buffer->pages;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_size);
3353 
3354 static void
3355 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3356 {
3357 	rb_head_page_deactivate(cpu_buffer);
3358 
3359 	cpu_buffer->head_page
3360 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3361 	local_set(&cpu_buffer->head_page->write, 0);
3362 	local_set(&cpu_buffer->head_page->entries, 0);
3363 	local_set(&cpu_buffer->head_page->page->commit, 0);
3364 
3365 	cpu_buffer->head_page->read = 0;
3366 
3367 	cpu_buffer->tail_page = cpu_buffer->head_page;
3368 	cpu_buffer->commit_page = cpu_buffer->head_page;
3369 
3370 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3371 	local_set(&cpu_buffer->reader_page->write, 0);
3372 	local_set(&cpu_buffer->reader_page->entries, 0);
3373 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3374 	cpu_buffer->reader_page->read = 0;
3375 
3376 	local_set(&cpu_buffer->commit_overrun, 0);
3377 	local_set(&cpu_buffer->overrun, 0);
3378 	local_set(&cpu_buffer->entries, 0);
3379 	local_set(&cpu_buffer->committing, 0);
3380 	local_set(&cpu_buffer->commits, 0);
3381 	cpu_buffer->read = 0;
3382 
3383 	cpu_buffer->write_stamp = 0;
3384 	cpu_buffer->read_stamp = 0;
3385 
3386 	rb_head_page_activate(cpu_buffer);
3387 }
3388 
3389 /**
3390  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3391  * @buffer: The ring buffer to reset a per cpu buffer of
3392  * @cpu: The CPU buffer to be reset
3393  */
3394 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3395 {
3396 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3397 	unsigned long flags;
3398 
3399 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3400 		return;
3401 
3402 	atomic_inc(&cpu_buffer->record_disabled);
3403 
3404 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3405 
3406 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3407 		goto out;
3408 
3409 	__raw_spin_lock(&cpu_buffer->lock);
3410 
3411 	rb_reset_cpu(cpu_buffer);
3412 
3413 	__raw_spin_unlock(&cpu_buffer->lock);
3414 
3415  out:
3416 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3417 
3418 	atomic_dec(&cpu_buffer->record_disabled);
3419 }
3420 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3421 
3422 /**
3423  * ring_buffer_reset - reset a ring buffer
3424  * @buffer: The ring buffer to reset all cpu buffers
3425  */
3426 void ring_buffer_reset(struct ring_buffer *buffer)
3427 {
3428 	int cpu;
3429 
3430 	for_each_buffer_cpu(buffer, cpu)
3431 		ring_buffer_reset_cpu(buffer, cpu);
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3434 
3435 /**
3436  * rind_buffer_empty - is the ring buffer empty?
3437  * @buffer: The ring buffer to test
3438  */
3439 int ring_buffer_empty(struct ring_buffer *buffer)
3440 {
3441 	struct ring_buffer_per_cpu *cpu_buffer;
3442 	unsigned long flags;
3443 	int dolock;
3444 	int cpu;
3445 	int ret;
3446 
3447 	dolock = rb_ok_to_lock();
3448 
3449 	/* yes this is racy, but if you don't like the race, lock the buffer */
3450 	for_each_buffer_cpu(buffer, cpu) {
3451 		cpu_buffer = buffer->buffers[cpu];
3452 		local_irq_save(flags);
3453 		if (dolock)
3454 			spin_lock(&cpu_buffer->reader_lock);
3455 		ret = rb_per_cpu_empty(cpu_buffer);
3456 		if (dolock)
3457 			spin_unlock(&cpu_buffer->reader_lock);
3458 		local_irq_restore(flags);
3459 
3460 		if (!ret)
3461 			return 0;
3462 	}
3463 
3464 	return 1;
3465 }
3466 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3467 
3468 /**
3469  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3470  * @buffer: The ring buffer
3471  * @cpu: The CPU buffer to test
3472  */
3473 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3474 {
3475 	struct ring_buffer_per_cpu *cpu_buffer;
3476 	unsigned long flags;
3477 	int dolock;
3478 	int ret;
3479 
3480 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3481 		return 1;
3482 
3483 	dolock = rb_ok_to_lock();
3484 
3485 	cpu_buffer = buffer->buffers[cpu];
3486 	local_irq_save(flags);
3487 	if (dolock)
3488 		spin_lock(&cpu_buffer->reader_lock);
3489 	ret = rb_per_cpu_empty(cpu_buffer);
3490 	if (dolock)
3491 		spin_unlock(&cpu_buffer->reader_lock);
3492 	local_irq_restore(flags);
3493 
3494 	return ret;
3495 }
3496 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3497 
3498 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3499 /**
3500  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3501  * @buffer_a: One buffer to swap with
3502  * @buffer_b: The other buffer to swap with
3503  *
3504  * This function is useful for tracers that want to take a "snapshot"
3505  * of a CPU buffer and has another back up buffer lying around.
3506  * it is expected that the tracer handles the cpu buffer not being
3507  * used at the moment.
3508  */
3509 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3510 			 struct ring_buffer *buffer_b, int cpu)
3511 {
3512 	struct ring_buffer_per_cpu *cpu_buffer_a;
3513 	struct ring_buffer_per_cpu *cpu_buffer_b;
3514 	int ret = -EINVAL;
3515 
3516 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3517 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3518 		goto out;
3519 
3520 	/* At least make sure the two buffers are somewhat the same */
3521 	if (buffer_a->pages != buffer_b->pages)
3522 		goto out;
3523 
3524 	ret = -EAGAIN;
3525 
3526 	if (ring_buffer_flags != RB_BUFFERS_ON)
3527 		goto out;
3528 
3529 	if (atomic_read(&buffer_a->record_disabled))
3530 		goto out;
3531 
3532 	if (atomic_read(&buffer_b->record_disabled))
3533 		goto out;
3534 
3535 	cpu_buffer_a = buffer_a->buffers[cpu];
3536 	cpu_buffer_b = buffer_b->buffers[cpu];
3537 
3538 	if (atomic_read(&cpu_buffer_a->record_disabled))
3539 		goto out;
3540 
3541 	if (atomic_read(&cpu_buffer_b->record_disabled))
3542 		goto out;
3543 
3544 	/*
3545 	 * We can't do a synchronize_sched here because this
3546 	 * function can be called in atomic context.
3547 	 * Normally this will be called from the same CPU as cpu.
3548 	 * If not it's up to the caller to protect this.
3549 	 */
3550 	atomic_inc(&cpu_buffer_a->record_disabled);
3551 	atomic_inc(&cpu_buffer_b->record_disabled);
3552 
3553 	ret = -EBUSY;
3554 	if (local_read(&cpu_buffer_a->committing))
3555 		goto out_dec;
3556 	if (local_read(&cpu_buffer_b->committing))
3557 		goto out_dec;
3558 
3559 	buffer_a->buffers[cpu] = cpu_buffer_b;
3560 	buffer_b->buffers[cpu] = cpu_buffer_a;
3561 
3562 	cpu_buffer_b->buffer = buffer_a;
3563 	cpu_buffer_a->buffer = buffer_b;
3564 
3565 	ret = 0;
3566 
3567 out_dec:
3568 	atomic_dec(&cpu_buffer_a->record_disabled);
3569 	atomic_dec(&cpu_buffer_b->record_disabled);
3570 out:
3571 	return ret;
3572 }
3573 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3574 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3575 
3576 /**
3577  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3578  * @buffer: the buffer to allocate for.
3579  *
3580  * This function is used in conjunction with ring_buffer_read_page.
3581  * When reading a full page from the ring buffer, these functions
3582  * can be used to speed up the process. The calling function should
3583  * allocate a few pages first with this function. Then when it
3584  * needs to get pages from the ring buffer, it passes the result
3585  * of this function into ring_buffer_read_page, which will swap
3586  * the page that was allocated, with the read page of the buffer.
3587  *
3588  * Returns:
3589  *  The page allocated, or NULL on error.
3590  */
3591 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3592 {
3593 	struct buffer_data_page *bpage;
3594 	unsigned long addr;
3595 
3596 	addr = __get_free_page(GFP_KERNEL);
3597 	if (!addr)
3598 		return NULL;
3599 
3600 	bpage = (void *)addr;
3601 
3602 	rb_init_page(bpage);
3603 
3604 	return bpage;
3605 }
3606 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3607 
3608 /**
3609  * ring_buffer_free_read_page - free an allocated read page
3610  * @buffer: the buffer the page was allocate for
3611  * @data: the page to free
3612  *
3613  * Free a page allocated from ring_buffer_alloc_read_page.
3614  */
3615 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3616 {
3617 	free_page((unsigned long)data);
3618 }
3619 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3620 
3621 /**
3622  * ring_buffer_read_page - extract a page from the ring buffer
3623  * @buffer: buffer to extract from
3624  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3625  * @len: amount to extract
3626  * @cpu: the cpu of the buffer to extract
3627  * @full: should the extraction only happen when the page is full.
3628  *
3629  * This function will pull out a page from the ring buffer and consume it.
3630  * @data_page must be the address of the variable that was returned
3631  * from ring_buffer_alloc_read_page. This is because the page might be used
3632  * to swap with a page in the ring buffer.
3633  *
3634  * for example:
3635  *	rpage = ring_buffer_alloc_read_page(buffer);
3636  *	if (!rpage)
3637  *		return error;
3638  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3639  *	if (ret >= 0)
3640  *		process_page(rpage, ret);
3641  *
3642  * When @full is set, the function will not return true unless
3643  * the writer is off the reader page.
3644  *
3645  * Note: it is up to the calling functions to handle sleeps and wakeups.
3646  *  The ring buffer can be used anywhere in the kernel and can not
3647  *  blindly call wake_up. The layer that uses the ring buffer must be
3648  *  responsible for that.
3649  *
3650  * Returns:
3651  *  >=0 if data has been transferred, returns the offset of consumed data.
3652  *  <0 if no data has been transferred.
3653  */
3654 int ring_buffer_read_page(struct ring_buffer *buffer,
3655 			  void **data_page, size_t len, int cpu, int full)
3656 {
3657 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3658 	struct ring_buffer_event *event;
3659 	struct buffer_data_page *bpage;
3660 	struct buffer_page *reader;
3661 	unsigned long flags;
3662 	unsigned int commit;
3663 	unsigned int read;
3664 	u64 save_timestamp;
3665 	int ret = -1;
3666 
3667 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3668 		goto out;
3669 
3670 	/*
3671 	 * If len is not big enough to hold the page header, then
3672 	 * we can not copy anything.
3673 	 */
3674 	if (len <= BUF_PAGE_HDR_SIZE)
3675 		goto out;
3676 
3677 	len -= BUF_PAGE_HDR_SIZE;
3678 
3679 	if (!data_page)
3680 		goto out;
3681 
3682 	bpage = *data_page;
3683 	if (!bpage)
3684 		goto out;
3685 
3686 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3687 
3688 	reader = rb_get_reader_page(cpu_buffer);
3689 	if (!reader)
3690 		goto out_unlock;
3691 
3692 	event = rb_reader_event(cpu_buffer);
3693 
3694 	read = reader->read;
3695 	commit = rb_page_commit(reader);
3696 
3697 	/*
3698 	 * If this page has been partially read or
3699 	 * if len is not big enough to read the rest of the page or
3700 	 * a writer is still on the page, then
3701 	 * we must copy the data from the page to the buffer.
3702 	 * Otherwise, we can simply swap the page with the one passed in.
3703 	 */
3704 	if (read || (len < (commit - read)) ||
3705 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3706 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3707 		unsigned int rpos = read;
3708 		unsigned int pos = 0;
3709 		unsigned int size;
3710 
3711 		if (full)
3712 			goto out_unlock;
3713 
3714 		if (len > (commit - read))
3715 			len = (commit - read);
3716 
3717 		size = rb_event_length(event);
3718 
3719 		if (len < size)
3720 			goto out_unlock;
3721 
3722 		/* save the current timestamp, since the user will need it */
3723 		save_timestamp = cpu_buffer->read_stamp;
3724 
3725 		/* Need to copy one event at a time */
3726 		do {
3727 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3728 
3729 			len -= size;
3730 
3731 			rb_advance_reader(cpu_buffer);
3732 			rpos = reader->read;
3733 			pos += size;
3734 
3735 			event = rb_reader_event(cpu_buffer);
3736 			size = rb_event_length(event);
3737 		} while (len > size);
3738 
3739 		/* update bpage */
3740 		local_set(&bpage->commit, pos);
3741 		bpage->time_stamp = save_timestamp;
3742 
3743 		/* we copied everything to the beginning */
3744 		read = 0;
3745 	} else {
3746 		/* update the entry counter */
3747 		cpu_buffer->read += rb_page_entries(reader);
3748 
3749 		/* swap the pages */
3750 		rb_init_page(bpage);
3751 		bpage = reader->page;
3752 		reader->page = *data_page;
3753 		local_set(&reader->write, 0);
3754 		local_set(&reader->entries, 0);
3755 		reader->read = 0;
3756 		*data_page = bpage;
3757 	}
3758 	ret = read;
3759 
3760  out_unlock:
3761 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3762 
3763  out:
3764 	return ret;
3765 }
3766 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3767 
3768 #ifdef CONFIG_TRACING
3769 static ssize_t
3770 rb_simple_read(struct file *filp, char __user *ubuf,
3771 	       size_t cnt, loff_t *ppos)
3772 {
3773 	unsigned long *p = filp->private_data;
3774 	char buf[64];
3775 	int r;
3776 
3777 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3778 		r = sprintf(buf, "permanently disabled\n");
3779 	else
3780 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3781 
3782 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3783 }
3784 
3785 static ssize_t
3786 rb_simple_write(struct file *filp, const char __user *ubuf,
3787 		size_t cnt, loff_t *ppos)
3788 {
3789 	unsigned long *p = filp->private_data;
3790 	char buf[64];
3791 	unsigned long val;
3792 	int ret;
3793 
3794 	if (cnt >= sizeof(buf))
3795 		return -EINVAL;
3796 
3797 	if (copy_from_user(&buf, ubuf, cnt))
3798 		return -EFAULT;
3799 
3800 	buf[cnt] = 0;
3801 
3802 	ret = strict_strtoul(buf, 10, &val);
3803 	if (ret < 0)
3804 		return ret;
3805 
3806 	if (val)
3807 		set_bit(RB_BUFFERS_ON_BIT, p);
3808 	else
3809 		clear_bit(RB_BUFFERS_ON_BIT, p);
3810 
3811 	(*ppos)++;
3812 
3813 	return cnt;
3814 }
3815 
3816 static const struct file_operations rb_simple_fops = {
3817 	.open		= tracing_open_generic,
3818 	.read		= rb_simple_read,
3819 	.write		= rb_simple_write,
3820 };
3821 
3822 
3823 static __init int rb_init_debugfs(void)
3824 {
3825 	struct dentry *d_tracer;
3826 
3827 	d_tracer = tracing_init_dentry();
3828 
3829 	trace_create_file("tracing_on", 0644, d_tracer,
3830 			    &ring_buffer_flags, &rb_simple_fops);
3831 
3832 	return 0;
3833 }
3834 
3835 fs_initcall(rb_init_debugfs);
3836 #endif
3837 
3838 #ifdef CONFIG_HOTPLUG_CPU
3839 static int rb_cpu_notify(struct notifier_block *self,
3840 			 unsigned long action, void *hcpu)
3841 {
3842 	struct ring_buffer *buffer =
3843 		container_of(self, struct ring_buffer, cpu_notify);
3844 	long cpu = (long)hcpu;
3845 
3846 	switch (action) {
3847 	case CPU_UP_PREPARE:
3848 	case CPU_UP_PREPARE_FROZEN:
3849 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3850 			return NOTIFY_OK;
3851 
3852 		buffer->buffers[cpu] =
3853 			rb_allocate_cpu_buffer(buffer, cpu);
3854 		if (!buffer->buffers[cpu]) {
3855 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3856 			     cpu);
3857 			return NOTIFY_OK;
3858 		}
3859 		smp_wmb();
3860 		cpumask_set_cpu(cpu, buffer->cpumask);
3861 		break;
3862 	case CPU_DOWN_PREPARE:
3863 	case CPU_DOWN_PREPARE_FROZEN:
3864 		/*
3865 		 * Do nothing.
3866 		 *  If we were to free the buffer, then the user would
3867 		 *  lose any trace that was in the buffer.
3868 		 */
3869 		break;
3870 	default:
3871 		break;
3872 	}
3873 	return NOTIFY_OK;
3874 }
3875 #endif
3876