1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/ftrace_irq.h> 9 #include <linux/spinlock.h> 10 #include <linux/debugfs.h> 11 #include <linux/uaccess.h> 12 #include <linux/hardirq.h> 13 #include <linux/kmemcheck.h> 14 #include <linux/module.h> 15 #include <linux/percpu.h> 16 #include <linux/mutex.h> 17 #include <linux/init.h> 18 #include <linux/hash.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/fs.h> 22 23 #include "trace.h" 24 25 /* 26 * The ring buffer header is special. We must manually up keep it. 27 */ 28 int ring_buffer_print_entry_header(struct trace_seq *s) 29 { 30 int ret; 31 32 ret = trace_seq_printf(s, "# compressed entry header\n"); 33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 35 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 36 ret = trace_seq_printf(s, "\n"); 37 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 38 RINGBUF_TYPE_PADDING); 39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 40 RINGBUF_TYPE_TIME_EXTEND); 41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 43 44 return ret; 45 } 46 47 /* 48 * The ring buffer is made up of a list of pages. A separate list of pages is 49 * allocated for each CPU. A writer may only write to a buffer that is 50 * associated with the CPU it is currently executing on. A reader may read 51 * from any per cpu buffer. 52 * 53 * The reader is special. For each per cpu buffer, the reader has its own 54 * reader page. When a reader has read the entire reader page, this reader 55 * page is swapped with another page in the ring buffer. 56 * 57 * Now, as long as the writer is off the reader page, the reader can do what 58 * ever it wants with that page. The writer will never write to that page 59 * again (as long as it is out of the ring buffer). 60 * 61 * Here's some silly ASCII art. 62 * 63 * +------+ 64 * |reader| RING BUFFER 65 * |page | 66 * +------+ +---+ +---+ +---+ 67 * | |-->| |-->| | 68 * +---+ +---+ +---+ 69 * ^ | 70 * | | 71 * +---------------+ 72 * 73 * 74 * +------+ 75 * |reader| RING BUFFER 76 * |page |------------------v 77 * +------+ +---+ +---+ +---+ 78 * | |-->| |-->| | 79 * +---+ +---+ +---+ 80 * ^ | 81 * | | 82 * +---------------+ 83 * 84 * 85 * +------+ 86 * |reader| RING BUFFER 87 * |page |------------------v 88 * +------+ +---+ +---+ +---+ 89 * ^ | |-->| |-->| | 90 * | +---+ +---+ +---+ 91 * | | 92 * | | 93 * +------------------------------+ 94 * 95 * 96 * +------+ 97 * |buffer| RING BUFFER 98 * |page |------------------v 99 * +------+ +---+ +---+ +---+ 100 * ^ | | | |-->| | 101 * | New +---+ +---+ +---+ 102 * | Reader------^ | 103 * | page | 104 * +------------------------------+ 105 * 106 * 107 * After we make this swap, the reader can hand this page off to the splice 108 * code and be done with it. It can even allocate a new page if it needs to 109 * and swap that into the ring buffer. 110 * 111 * We will be using cmpxchg soon to make all this lockless. 112 * 113 */ 114 115 /* 116 * A fast way to enable or disable all ring buffers is to 117 * call tracing_on or tracing_off. Turning off the ring buffers 118 * prevents all ring buffers from being recorded to. 119 * Turning this switch on, makes it OK to write to the 120 * ring buffer, if the ring buffer is enabled itself. 121 * 122 * There's three layers that must be on in order to write 123 * to the ring buffer. 124 * 125 * 1) This global flag must be set. 126 * 2) The ring buffer must be enabled for recording. 127 * 3) The per cpu buffer must be enabled for recording. 128 * 129 * In case of an anomaly, this global flag has a bit set that 130 * will permantly disable all ring buffers. 131 */ 132 133 /* 134 * Global flag to disable all recording to ring buffers 135 * This has two bits: ON, DISABLED 136 * 137 * ON DISABLED 138 * ---- ---------- 139 * 0 0 : ring buffers are off 140 * 1 0 : ring buffers are on 141 * X 1 : ring buffers are permanently disabled 142 */ 143 144 enum { 145 RB_BUFFERS_ON_BIT = 0, 146 RB_BUFFERS_DISABLED_BIT = 1, 147 }; 148 149 enum { 150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 152 }; 153 154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 155 156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 157 158 /** 159 * tracing_on - enable all tracing buffers 160 * 161 * This function enables all tracing buffers that may have been 162 * disabled with tracing_off. 163 */ 164 void tracing_on(void) 165 { 166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 167 } 168 EXPORT_SYMBOL_GPL(tracing_on); 169 170 /** 171 * tracing_off - turn off all tracing buffers 172 * 173 * This function stops all tracing buffers from recording data. 174 * It does not disable any overhead the tracers themselves may 175 * be causing. This function simply causes all recording to 176 * the ring buffers to fail. 177 */ 178 void tracing_off(void) 179 { 180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 181 } 182 EXPORT_SYMBOL_GPL(tracing_off); 183 184 /** 185 * tracing_off_permanent - permanently disable ring buffers 186 * 187 * This function, once called, will disable all ring buffers 188 * permanently. 189 */ 190 void tracing_off_permanent(void) 191 { 192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 193 } 194 195 /** 196 * tracing_is_on - show state of ring buffers enabled 197 */ 198 int tracing_is_on(void) 199 { 200 return ring_buffer_flags == RB_BUFFERS_ON; 201 } 202 EXPORT_SYMBOL_GPL(tracing_is_on); 203 204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 205 #define RB_ALIGNMENT 4U 206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 208 209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 211 212 enum { 213 RB_LEN_TIME_EXTEND = 8, 214 RB_LEN_TIME_STAMP = 16, 215 }; 216 217 static inline int rb_null_event(struct ring_buffer_event *event) 218 { 219 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 220 } 221 222 static void rb_event_set_padding(struct ring_buffer_event *event) 223 { 224 /* padding has a NULL time_delta */ 225 event->type_len = RINGBUF_TYPE_PADDING; 226 event->time_delta = 0; 227 } 228 229 static unsigned 230 rb_event_data_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len) 235 length = event->type_len * RB_ALIGNMENT; 236 else 237 length = event->array[0]; 238 return length + RB_EVNT_HDR_SIZE; 239 } 240 241 /* inline for ring buffer fast paths */ 242 static unsigned 243 rb_event_length(struct ring_buffer_event *event) 244 { 245 switch (event->type_len) { 246 case RINGBUF_TYPE_PADDING: 247 if (rb_null_event(event)) 248 /* undefined */ 249 return -1; 250 return event->array[0] + RB_EVNT_HDR_SIZE; 251 252 case RINGBUF_TYPE_TIME_EXTEND: 253 return RB_LEN_TIME_EXTEND; 254 255 case RINGBUF_TYPE_TIME_STAMP: 256 return RB_LEN_TIME_STAMP; 257 258 case RINGBUF_TYPE_DATA: 259 return rb_event_data_length(event); 260 default: 261 BUG(); 262 } 263 /* not hit */ 264 return 0; 265 } 266 267 /** 268 * ring_buffer_event_length - return the length of the event 269 * @event: the event to get the length of 270 */ 271 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 272 { 273 unsigned length = rb_event_length(event); 274 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 275 return length; 276 length -= RB_EVNT_HDR_SIZE; 277 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 278 length -= sizeof(event->array[0]); 279 return length; 280 } 281 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 282 283 /* inline for ring buffer fast paths */ 284 static void * 285 rb_event_data(struct ring_buffer_event *event) 286 { 287 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 288 /* If length is in len field, then array[0] has the data */ 289 if (event->type_len) 290 return (void *)&event->array[0]; 291 /* Otherwise length is in array[0] and array[1] has the data */ 292 return (void *)&event->array[1]; 293 } 294 295 /** 296 * ring_buffer_event_data - return the data of the event 297 * @event: the event to get the data from 298 */ 299 void *ring_buffer_event_data(struct ring_buffer_event *event) 300 { 301 return rb_event_data(event); 302 } 303 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 304 305 #define for_each_buffer_cpu(buffer, cpu) \ 306 for_each_cpu(cpu, buffer->cpumask) 307 308 #define TS_SHIFT 27 309 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 310 #define TS_DELTA_TEST (~TS_MASK) 311 312 struct buffer_data_page { 313 u64 time_stamp; /* page time stamp */ 314 local_t commit; /* write committed index */ 315 unsigned char data[]; /* data of buffer page */ 316 }; 317 318 /* 319 * Note, the buffer_page list must be first. The buffer pages 320 * are allocated in cache lines, which means that each buffer 321 * page will be at the beginning of a cache line, and thus 322 * the least significant bits will be zero. We use this to 323 * add flags in the list struct pointers, to make the ring buffer 324 * lockless. 325 */ 326 struct buffer_page { 327 struct list_head list; /* list of buffer pages */ 328 local_t write; /* index for next write */ 329 unsigned read; /* index for next read */ 330 local_t entries; /* entries on this page */ 331 struct buffer_data_page *page; /* Actual data page */ 332 }; 333 334 /* 335 * The buffer page counters, write and entries, must be reset 336 * atomically when crossing page boundaries. To synchronize this 337 * update, two counters are inserted into the number. One is 338 * the actual counter for the write position or count on the page. 339 * 340 * The other is a counter of updaters. Before an update happens 341 * the update partition of the counter is incremented. This will 342 * allow the updater to update the counter atomically. 343 * 344 * The counter is 20 bits, and the state data is 12. 345 */ 346 #define RB_WRITE_MASK 0xfffff 347 #define RB_WRITE_INTCNT (1 << 20) 348 349 static void rb_init_page(struct buffer_data_page *bpage) 350 { 351 local_set(&bpage->commit, 0); 352 } 353 354 /** 355 * ring_buffer_page_len - the size of data on the page. 356 * @page: The page to read 357 * 358 * Returns the amount of data on the page, including buffer page header. 359 */ 360 size_t ring_buffer_page_len(void *page) 361 { 362 return local_read(&((struct buffer_data_page *)page)->commit) 363 + BUF_PAGE_HDR_SIZE; 364 } 365 366 /* 367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 368 * this issue out. 369 */ 370 static void free_buffer_page(struct buffer_page *bpage) 371 { 372 free_page((unsigned long)bpage->page); 373 kfree(bpage); 374 } 375 376 /* 377 * We need to fit the time_stamp delta into 27 bits. 378 */ 379 static inline int test_time_stamp(u64 delta) 380 { 381 if (delta & TS_DELTA_TEST) 382 return 1; 383 return 0; 384 } 385 386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 387 388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 390 391 /* Max number of timestamps that can fit on a page */ 392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP) 393 394 int ring_buffer_print_page_header(struct trace_seq *s) 395 { 396 struct buffer_data_page field; 397 int ret; 398 399 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 400 "offset:0;\tsize:%u;\n", 401 (unsigned int)sizeof(field.time_stamp)); 402 403 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 404 "offset:%u;\tsize:%u;\n", 405 (unsigned int)offsetof(typeof(field), commit), 406 (unsigned int)sizeof(field.commit)); 407 408 ret = trace_seq_printf(s, "\tfield: char data;\t" 409 "offset:%u;\tsize:%u;\n", 410 (unsigned int)offsetof(typeof(field), data), 411 (unsigned int)BUF_PAGE_SIZE); 412 413 return ret; 414 } 415 416 /* 417 * head_page == tail_page && head == tail then buffer is empty. 418 */ 419 struct ring_buffer_per_cpu { 420 int cpu; 421 struct ring_buffer *buffer; 422 spinlock_t reader_lock; /* serialize readers */ 423 raw_spinlock_t lock; 424 struct lock_class_key lock_key; 425 struct list_head *pages; 426 struct buffer_page *head_page; /* read from head */ 427 struct buffer_page *tail_page; /* write to tail */ 428 struct buffer_page *commit_page; /* committed pages */ 429 struct buffer_page *reader_page; 430 local_t commit_overrun; 431 local_t overrun; 432 local_t entries; 433 local_t committing; 434 local_t commits; 435 unsigned long read; 436 u64 write_stamp; 437 u64 read_stamp; 438 atomic_t record_disabled; 439 }; 440 441 struct ring_buffer { 442 unsigned pages; 443 unsigned flags; 444 int cpus; 445 atomic_t record_disabled; 446 cpumask_var_t cpumask; 447 448 struct lock_class_key *reader_lock_key; 449 450 struct mutex mutex; 451 452 struct ring_buffer_per_cpu **buffers; 453 454 #ifdef CONFIG_HOTPLUG_CPU 455 struct notifier_block cpu_notify; 456 #endif 457 u64 (*clock)(void); 458 }; 459 460 struct ring_buffer_iter { 461 struct ring_buffer_per_cpu *cpu_buffer; 462 unsigned long head; 463 struct buffer_page *head_page; 464 u64 read_stamp; 465 }; 466 467 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 468 #define RB_WARN_ON(b, cond) \ 469 ({ \ 470 int _____ret = unlikely(cond); \ 471 if (_____ret) { \ 472 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 473 struct ring_buffer_per_cpu *__b = \ 474 (void *)b; \ 475 atomic_inc(&__b->buffer->record_disabled); \ 476 } else \ 477 atomic_inc(&b->record_disabled); \ 478 WARN_ON(1); \ 479 } \ 480 _____ret; \ 481 }) 482 483 /* Up this if you want to test the TIME_EXTENTS and normalization */ 484 #define DEBUG_SHIFT 0 485 486 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu) 487 { 488 /* shift to debug/test normalization and TIME_EXTENTS */ 489 return buffer->clock() << DEBUG_SHIFT; 490 } 491 492 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 493 { 494 u64 time; 495 496 preempt_disable_notrace(); 497 time = rb_time_stamp(buffer, cpu); 498 preempt_enable_no_resched_notrace(); 499 500 return time; 501 } 502 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 503 504 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 505 int cpu, u64 *ts) 506 { 507 /* Just stupid testing the normalize function and deltas */ 508 *ts >>= DEBUG_SHIFT; 509 } 510 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 511 512 /* 513 * Making the ring buffer lockless makes things tricky. 514 * Although writes only happen on the CPU that they are on, 515 * and they only need to worry about interrupts. Reads can 516 * happen on any CPU. 517 * 518 * The reader page is always off the ring buffer, but when the 519 * reader finishes with a page, it needs to swap its page with 520 * a new one from the buffer. The reader needs to take from 521 * the head (writes go to the tail). But if a writer is in overwrite 522 * mode and wraps, it must push the head page forward. 523 * 524 * Here lies the problem. 525 * 526 * The reader must be careful to replace only the head page, and 527 * not another one. As described at the top of the file in the 528 * ASCII art, the reader sets its old page to point to the next 529 * page after head. It then sets the page after head to point to 530 * the old reader page. But if the writer moves the head page 531 * during this operation, the reader could end up with the tail. 532 * 533 * We use cmpxchg to help prevent this race. We also do something 534 * special with the page before head. We set the LSB to 1. 535 * 536 * When the writer must push the page forward, it will clear the 537 * bit that points to the head page, move the head, and then set 538 * the bit that points to the new head page. 539 * 540 * We also don't want an interrupt coming in and moving the head 541 * page on another writer. Thus we use the second LSB to catch 542 * that too. Thus: 543 * 544 * head->list->prev->next bit 1 bit 0 545 * ------- ------- 546 * Normal page 0 0 547 * Points to head page 0 1 548 * New head page 1 0 549 * 550 * Note we can not trust the prev pointer of the head page, because: 551 * 552 * +----+ +-----+ +-----+ 553 * | |------>| T |---X--->| N | 554 * | |<------| | | | 555 * +----+ +-----+ +-----+ 556 * ^ ^ | 557 * | +-----+ | | 558 * +----------| R |----------+ | 559 * | |<-----------+ 560 * +-----+ 561 * 562 * Key: ---X--> HEAD flag set in pointer 563 * T Tail page 564 * R Reader page 565 * N Next page 566 * 567 * (see __rb_reserve_next() to see where this happens) 568 * 569 * What the above shows is that the reader just swapped out 570 * the reader page with a page in the buffer, but before it 571 * could make the new header point back to the new page added 572 * it was preempted by a writer. The writer moved forward onto 573 * the new page added by the reader and is about to move forward 574 * again. 575 * 576 * You can see, it is legitimate for the previous pointer of 577 * the head (or any page) not to point back to itself. But only 578 * temporarially. 579 */ 580 581 #define RB_PAGE_NORMAL 0UL 582 #define RB_PAGE_HEAD 1UL 583 #define RB_PAGE_UPDATE 2UL 584 585 586 #define RB_FLAG_MASK 3UL 587 588 /* PAGE_MOVED is not part of the mask */ 589 #define RB_PAGE_MOVED 4UL 590 591 /* 592 * rb_list_head - remove any bit 593 */ 594 static struct list_head *rb_list_head(struct list_head *list) 595 { 596 unsigned long val = (unsigned long)list; 597 598 return (struct list_head *)(val & ~RB_FLAG_MASK); 599 } 600 601 /* 602 * rb_is_head_page - test if the give page is the head page 603 * 604 * Because the reader may move the head_page pointer, we can 605 * not trust what the head page is (it may be pointing to 606 * the reader page). But if the next page is a header page, 607 * its flags will be non zero. 608 */ 609 static int inline 610 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 611 struct buffer_page *page, struct list_head *list) 612 { 613 unsigned long val; 614 615 val = (unsigned long)list->next; 616 617 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 618 return RB_PAGE_MOVED; 619 620 return val & RB_FLAG_MASK; 621 } 622 623 /* 624 * rb_is_reader_page 625 * 626 * The unique thing about the reader page, is that, if the 627 * writer is ever on it, the previous pointer never points 628 * back to the reader page. 629 */ 630 static int rb_is_reader_page(struct buffer_page *page) 631 { 632 struct list_head *list = page->list.prev; 633 634 return rb_list_head(list->next) != &page->list; 635 } 636 637 /* 638 * rb_set_list_to_head - set a list_head to be pointing to head. 639 */ 640 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 641 struct list_head *list) 642 { 643 unsigned long *ptr; 644 645 ptr = (unsigned long *)&list->next; 646 *ptr |= RB_PAGE_HEAD; 647 *ptr &= ~RB_PAGE_UPDATE; 648 } 649 650 /* 651 * rb_head_page_activate - sets up head page 652 */ 653 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 654 { 655 struct buffer_page *head; 656 657 head = cpu_buffer->head_page; 658 if (!head) 659 return; 660 661 /* 662 * Set the previous list pointer to have the HEAD flag. 663 */ 664 rb_set_list_to_head(cpu_buffer, head->list.prev); 665 } 666 667 static void rb_list_head_clear(struct list_head *list) 668 { 669 unsigned long *ptr = (unsigned long *)&list->next; 670 671 *ptr &= ~RB_FLAG_MASK; 672 } 673 674 /* 675 * rb_head_page_dactivate - clears head page ptr (for free list) 676 */ 677 static void 678 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 679 { 680 struct list_head *hd; 681 682 /* Go through the whole list and clear any pointers found. */ 683 rb_list_head_clear(cpu_buffer->pages); 684 685 list_for_each(hd, cpu_buffer->pages) 686 rb_list_head_clear(hd); 687 } 688 689 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 690 struct buffer_page *head, 691 struct buffer_page *prev, 692 int old_flag, int new_flag) 693 { 694 struct list_head *list; 695 unsigned long val = (unsigned long)&head->list; 696 unsigned long ret; 697 698 list = &prev->list; 699 700 val &= ~RB_FLAG_MASK; 701 702 ret = cmpxchg((unsigned long *)&list->next, 703 val | old_flag, val | new_flag); 704 705 /* check if the reader took the page */ 706 if ((ret & ~RB_FLAG_MASK) != val) 707 return RB_PAGE_MOVED; 708 709 return ret & RB_FLAG_MASK; 710 } 711 712 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 713 struct buffer_page *head, 714 struct buffer_page *prev, 715 int old_flag) 716 { 717 return rb_head_page_set(cpu_buffer, head, prev, 718 old_flag, RB_PAGE_UPDATE); 719 } 720 721 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 722 struct buffer_page *head, 723 struct buffer_page *prev, 724 int old_flag) 725 { 726 return rb_head_page_set(cpu_buffer, head, prev, 727 old_flag, RB_PAGE_HEAD); 728 } 729 730 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 731 struct buffer_page *head, 732 struct buffer_page *prev, 733 int old_flag) 734 { 735 return rb_head_page_set(cpu_buffer, head, prev, 736 old_flag, RB_PAGE_NORMAL); 737 } 738 739 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 740 struct buffer_page **bpage) 741 { 742 struct list_head *p = rb_list_head((*bpage)->list.next); 743 744 *bpage = list_entry(p, struct buffer_page, list); 745 } 746 747 static struct buffer_page * 748 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 749 { 750 struct buffer_page *head; 751 struct buffer_page *page; 752 struct list_head *list; 753 int i; 754 755 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 756 return NULL; 757 758 /* sanity check */ 759 list = cpu_buffer->pages; 760 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 761 return NULL; 762 763 page = head = cpu_buffer->head_page; 764 /* 765 * It is possible that the writer moves the header behind 766 * where we started, and we miss in one loop. 767 * A second loop should grab the header, but we'll do 768 * three loops just because I'm paranoid. 769 */ 770 for (i = 0; i < 3; i++) { 771 do { 772 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 773 cpu_buffer->head_page = page; 774 return page; 775 } 776 rb_inc_page(cpu_buffer, &page); 777 } while (page != head); 778 } 779 780 RB_WARN_ON(cpu_buffer, 1); 781 782 return NULL; 783 } 784 785 static int rb_head_page_replace(struct buffer_page *old, 786 struct buffer_page *new) 787 { 788 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 789 unsigned long val; 790 unsigned long ret; 791 792 val = *ptr & ~RB_FLAG_MASK; 793 val |= RB_PAGE_HEAD; 794 795 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 796 797 return ret == val; 798 } 799 800 /* 801 * rb_tail_page_update - move the tail page forward 802 * 803 * Returns 1 if moved tail page, 0 if someone else did. 804 */ 805 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 806 struct buffer_page *tail_page, 807 struct buffer_page *next_page) 808 { 809 struct buffer_page *old_tail; 810 unsigned long old_entries; 811 unsigned long old_write; 812 int ret = 0; 813 814 /* 815 * The tail page now needs to be moved forward. 816 * 817 * We need to reset the tail page, but without messing 818 * with possible erasing of data brought in by interrupts 819 * that have moved the tail page and are currently on it. 820 * 821 * We add a counter to the write field to denote this. 822 */ 823 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 824 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 825 826 /* 827 * Just make sure we have seen our old_write and synchronize 828 * with any interrupts that come in. 829 */ 830 barrier(); 831 832 /* 833 * If the tail page is still the same as what we think 834 * it is, then it is up to us to update the tail 835 * pointer. 836 */ 837 if (tail_page == cpu_buffer->tail_page) { 838 /* Zero the write counter */ 839 unsigned long val = old_write & ~RB_WRITE_MASK; 840 unsigned long eval = old_entries & ~RB_WRITE_MASK; 841 842 /* 843 * This will only succeed if an interrupt did 844 * not come in and change it. In which case, we 845 * do not want to modify it. 846 * 847 * We add (void) to let the compiler know that we do not care 848 * about the return value of these functions. We use the 849 * cmpxchg to only update if an interrupt did not already 850 * do it for us. If the cmpxchg fails, we don't care. 851 */ 852 (void)local_cmpxchg(&next_page->write, old_write, val); 853 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 854 855 /* 856 * No need to worry about races with clearing out the commit. 857 * it only can increment when a commit takes place. But that 858 * only happens in the outer most nested commit. 859 */ 860 local_set(&next_page->page->commit, 0); 861 862 old_tail = cmpxchg(&cpu_buffer->tail_page, 863 tail_page, next_page); 864 865 if (old_tail == tail_page) 866 ret = 1; 867 } 868 869 return ret; 870 } 871 872 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 873 struct buffer_page *bpage) 874 { 875 unsigned long val = (unsigned long)bpage; 876 877 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 878 return 1; 879 880 return 0; 881 } 882 883 /** 884 * rb_check_list - make sure a pointer to a list has the last bits zero 885 */ 886 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 887 struct list_head *list) 888 { 889 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 890 return 1; 891 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 892 return 1; 893 return 0; 894 } 895 896 /** 897 * check_pages - integrity check of buffer pages 898 * @cpu_buffer: CPU buffer with pages to test 899 * 900 * As a safety measure we check to make sure the data pages have not 901 * been corrupted. 902 */ 903 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 904 { 905 struct list_head *head = cpu_buffer->pages; 906 struct buffer_page *bpage, *tmp; 907 908 rb_head_page_deactivate(cpu_buffer); 909 910 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 911 return -1; 912 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 913 return -1; 914 915 if (rb_check_list(cpu_buffer, head)) 916 return -1; 917 918 list_for_each_entry_safe(bpage, tmp, head, list) { 919 if (RB_WARN_ON(cpu_buffer, 920 bpage->list.next->prev != &bpage->list)) 921 return -1; 922 if (RB_WARN_ON(cpu_buffer, 923 bpage->list.prev->next != &bpage->list)) 924 return -1; 925 if (rb_check_list(cpu_buffer, &bpage->list)) 926 return -1; 927 } 928 929 rb_head_page_activate(cpu_buffer); 930 931 return 0; 932 } 933 934 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 935 unsigned nr_pages) 936 { 937 struct buffer_page *bpage, *tmp; 938 unsigned long addr; 939 LIST_HEAD(pages); 940 unsigned i; 941 942 WARN_ON(!nr_pages); 943 944 for (i = 0; i < nr_pages; i++) { 945 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 946 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); 947 if (!bpage) 948 goto free_pages; 949 950 rb_check_bpage(cpu_buffer, bpage); 951 952 list_add(&bpage->list, &pages); 953 954 addr = __get_free_page(GFP_KERNEL); 955 if (!addr) 956 goto free_pages; 957 bpage->page = (void *)addr; 958 rb_init_page(bpage->page); 959 } 960 961 /* 962 * The ring buffer page list is a circular list that does not 963 * start and end with a list head. All page list items point to 964 * other pages. 965 */ 966 cpu_buffer->pages = pages.next; 967 list_del(&pages); 968 969 rb_check_pages(cpu_buffer); 970 971 return 0; 972 973 free_pages: 974 list_for_each_entry_safe(bpage, tmp, &pages, list) { 975 list_del_init(&bpage->list); 976 free_buffer_page(bpage); 977 } 978 return -ENOMEM; 979 } 980 981 static struct ring_buffer_per_cpu * 982 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) 983 { 984 struct ring_buffer_per_cpu *cpu_buffer; 985 struct buffer_page *bpage; 986 unsigned long addr; 987 int ret; 988 989 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 990 GFP_KERNEL, cpu_to_node(cpu)); 991 if (!cpu_buffer) 992 return NULL; 993 994 cpu_buffer->cpu = cpu; 995 cpu_buffer->buffer = buffer; 996 spin_lock_init(&cpu_buffer->reader_lock); 997 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 998 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; 999 1000 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1001 GFP_KERNEL, cpu_to_node(cpu)); 1002 if (!bpage) 1003 goto fail_free_buffer; 1004 1005 rb_check_bpage(cpu_buffer, bpage); 1006 1007 cpu_buffer->reader_page = bpage; 1008 addr = __get_free_page(GFP_KERNEL); 1009 if (!addr) 1010 goto fail_free_reader; 1011 bpage->page = (void *)addr; 1012 rb_init_page(bpage->page); 1013 1014 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1015 1016 ret = rb_allocate_pages(cpu_buffer, buffer->pages); 1017 if (ret < 0) 1018 goto fail_free_reader; 1019 1020 cpu_buffer->head_page 1021 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1022 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1023 1024 rb_head_page_activate(cpu_buffer); 1025 1026 return cpu_buffer; 1027 1028 fail_free_reader: 1029 free_buffer_page(cpu_buffer->reader_page); 1030 1031 fail_free_buffer: 1032 kfree(cpu_buffer); 1033 return NULL; 1034 } 1035 1036 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1037 { 1038 struct list_head *head = cpu_buffer->pages; 1039 struct buffer_page *bpage, *tmp; 1040 1041 free_buffer_page(cpu_buffer->reader_page); 1042 1043 rb_head_page_deactivate(cpu_buffer); 1044 1045 if (head) { 1046 list_for_each_entry_safe(bpage, tmp, head, list) { 1047 list_del_init(&bpage->list); 1048 free_buffer_page(bpage); 1049 } 1050 bpage = list_entry(head, struct buffer_page, list); 1051 free_buffer_page(bpage); 1052 } 1053 1054 kfree(cpu_buffer); 1055 } 1056 1057 #ifdef CONFIG_HOTPLUG_CPU 1058 static int rb_cpu_notify(struct notifier_block *self, 1059 unsigned long action, void *hcpu); 1060 #endif 1061 1062 /** 1063 * ring_buffer_alloc - allocate a new ring_buffer 1064 * @size: the size in bytes per cpu that is needed. 1065 * @flags: attributes to set for the ring buffer. 1066 * 1067 * Currently the only flag that is available is the RB_FL_OVERWRITE 1068 * flag. This flag means that the buffer will overwrite old data 1069 * when the buffer wraps. If this flag is not set, the buffer will 1070 * drop data when the tail hits the head. 1071 */ 1072 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1073 struct lock_class_key *key) 1074 { 1075 struct ring_buffer *buffer; 1076 int bsize; 1077 int cpu; 1078 1079 /* keep it in its own cache line */ 1080 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1081 GFP_KERNEL); 1082 if (!buffer) 1083 return NULL; 1084 1085 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1086 goto fail_free_buffer; 1087 1088 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1089 buffer->flags = flags; 1090 buffer->clock = trace_clock_local; 1091 buffer->reader_lock_key = key; 1092 1093 /* need at least two pages */ 1094 if (buffer->pages < 2) 1095 buffer->pages = 2; 1096 1097 /* 1098 * In case of non-hotplug cpu, if the ring-buffer is allocated 1099 * in early initcall, it will not be notified of secondary cpus. 1100 * In that off case, we need to allocate for all possible cpus. 1101 */ 1102 #ifdef CONFIG_HOTPLUG_CPU 1103 get_online_cpus(); 1104 cpumask_copy(buffer->cpumask, cpu_online_mask); 1105 #else 1106 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1107 #endif 1108 buffer->cpus = nr_cpu_ids; 1109 1110 bsize = sizeof(void *) * nr_cpu_ids; 1111 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1112 GFP_KERNEL); 1113 if (!buffer->buffers) 1114 goto fail_free_cpumask; 1115 1116 for_each_buffer_cpu(buffer, cpu) { 1117 buffer->buffers[cpu] = 1118 rb_allocate_cpu_buffer(buffer, cpu); 1119 if (!buffer->buffers[cpu]) 1120 goto fail_free_buffers; 1121 } 1122 1123 #ifdef CONFIG_HOTPLUG_CPU 1124 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1125 buffer->cpu_notify.priority = 0; 1126 register_cpu_notifier(&buffer->cpu_notify); 1127 #endif 1128 1129 put_online_cpus(); 1130 mutex_init(&buffer->mutex); 1131 1132 return buffer; 1133 1134 fail_free_buffers: 1135 for_each_buffer_cpu(buffer, cpu) { 1136 if (buffer->buffers[cpu]) 1137 rb_free_cpu_buffer(buffer->buffers[cpu]); 1138 } 1139 kfree(buffer->buffers); 1140 1141 fail_free_cpumask: 1142 free_cpumask_var(buffer->cpumask); 1143 put_online_cpus(); 1144 1145 fail_free_buffer: 1146 kfree(buffer); 1147 return NULL; 1148 } 1149 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1150 1151 /** 1152 * ring_buffer_free - free a ring buffer. 1153 * @buffer: the buffer to free. 1154 */ 1155 void 1156 ring_buffer_free(struct ring_buffer *buffer) 1157 { 1158 int cpu; 1159 1160 get_online_cpus(); 1161 1162 #ifdef CONFIG_HOTPLUG_CPU 1163 unregister_cpu_notifier(&buffer->cpu_notify); 1164 #endif 1165 1166 for_each_buffer_cpu(buffer, cpu) 1167 rb_free_cpu_buffer(buffer->buffers[cpu]); 1168 1169 put_online_cpus(); 1170 1171 kfree(buffer->buffers); 1172 free_cpumask_var(buffer->cpumask); 1173 1174 kfree(buffer); 1175 } 1176 EXPORT_SYMBOL_GPL(ring_buffer_free); 1177 1178 void ring_buffer_set_clock(struct ring_buffer *buffer, 1179 u64 (*clock)(void)) 1180 { 1181 buffer->clock = clock; 1182 } 1183 1184 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1185 1186 static void 1187 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) 1188 { 1189 struct buffer_page *bpage; 1190 struct list_head *p; 1191 unsigned i; 1192 1193 atomic_inc(&cpu_buffer->record_disabled); 1194 synchronize_sched(); 1195 1196 rb_head_page_deactivate(cpu_buffer); 1197 1198 for (i = 0; i < nr_pages; i++) { 1199 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1200 return; 1201 p = cpu_buffer->pages->next; 1202 bpage = list_entry(p, struct buffer_page, list); 1203 list_del_init(&bpage->list); 1204 free_buffer_page(bpage); 1205 } 1206 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1207 return; 1208 1209 rb_reset_cpu(cpu_buffer); 1210 1211 rb_check_pages(cpu_buffer); 1212 1213 atomic_dec(&cpu_buffer->record_disabled); 1214 1215 } 1216 1217 static void 1218 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, 1219 struct list_head *pages, unsigned nr_pages) 1220 { 1221 struct buffer_page *bpage; 1222 struct list_head *p; 1223 unsigned i; 1224 1225 atomic_inc(&cpu_buffer->record_disabled); 1226 synchronize_sched(); 1227 1228 spin_lock_irq(&cpu_buffer->reader_lock); 1229 rb_head_page_deactivate(cpu_buffer); 1230 1231 for (i = 0; i < nr_pages; i++) { 1232 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 1233 return; 1234 p = pages->next; 1235 bpage = list_entry(p, struct buffer_page, list); 1236 list_del_init(&bpage->list); 1237 list_add_tail(&bpage->list, cpu_buffer->pages); 1238 } 1239 rb_reset_cpu(cpu_buffer); 1240 spin_unlock_irq(&cpu_buffer->reader_lock); 1241 1242 rb_check_pages(cpu_buffer); 1243 1244 atomic_dec(&cpu_buffer->record_disabled); 1245 } 1246 1247 /** 1248 * ring_buffer_resize - resize the ring buffer 1249 * @buffer: the buffer to resize. 1250 * @size: the new size. 1251 * 1252 * The tracer is responsible for making sure that the buffer is 1253 * not being used while changing the size. 1254 * Note: We may be able to change the above requirement by using 1255 * RCU synchronizations. 1256 * 1257 * Minimum size is 2 * BUF_PAGE_SIZE. 1258 * 1259 * Returns -1 on failure. 1260 */ 1261 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) 1262 { 1263 struct ring_buffer_per_cpu *cpu_buffer; 1264 unsigned nr_pages, rm_pages, new_pages; 1265 struct buffer_page *bpage, *tmp; 1266 unsigned long buffer_size; 1267 unsigned long addr; 1268 LIST_HEAD(pages); 1269 int i, cpu; 1270 1271 /* 1272 * Always succeed at resizing a non-existent buffer: 1273 */ 1274 if (!buffer) 1275 return size; 1276 1277 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1278 size *= BUF_PAGE_SIZE; 1279 buffer_size = buffer->pages * BUF_PAGE_SIZE; 1280 1281 /* we need a minimum of two pages */ 1282 if (size < BUF_PAGE_SIZE * 2) 1283 size = BUF_PAGE_SIZE * 2; 1284 1285 if (size == buffer_size) 1286 return size; 1287 1288 mutex_lock(&buffer->mutex); 1289 get_online_cpus(); 1290 1291 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1292 1293 if (size < buffer_size) { 1294 1295 /* easy case, just free pages */ 1296 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) 1297 goto out_fail; 1298 1299 rm_pages = buffer->pages - nr_pages; 1300 1301 for_each_buffer_cpu(buffer, cpu) { 1302 cpu_buffer = buffer->buffers[cpu]; 1303 rb_remove_pages(cpu_buffer, rm_pages); 1304 } 1305 goto out; 1306 } 1307 1308 /* 1309 * This is a bit more difficult. We only want to add pages 1310 * when we can allocate enough for all CPUs. We do this 1311 * by allocating all the pages and storing them on a local 1312 * link list. If we succeed in our allocation, then we 1313 * add these pages to the cpu_buffers. Otherwise we just free 1314 * them all and return -ENOMEM; 1315 */ 1316 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) 1317 goto out_fail; 1318 1319 new_pages = nr_pages - buffer->pages; 1320 1321 for_each_buffer_cpu(buffer, cpu) { 1322 for (i = 0; i < new_pages; i++) { 1323 bpage = kzalloc_node(ALIGN(sizeof(*bpage), 1324 cache_line_size()), 1325 GFP_KERNEL, cpu_to_node(cpu)); 1326 if (!bpage) 1327 goto free_pages; 1328 list_add(&bpage->list, &pages); 1329 addr = __get_free_page(GFP_KERNEL); 1330 if (!addr) 1331 goto free_pages; 1332 bpage->page = (void *)addr; 1333 rb_init_page(bpage->page); 1334 } 1335 } 1336 1337 for_each_buffer_cpu(buffer, cpu) { 1338 cpu_buffer = buffer->buffers[cpu]; 1339 rb_insert_pages(cpu_buffer, &pages, new_pages); 1340 } 1341 1342 if (RB_WARN_ON(buffer, !list_empty(&pages))) 1343 goto out_fail; 1344 1345 out: 1346 buffer->pages = nr_pages; 1347 put_online_cpus(); 1348 mutex_unlock(&buffer->mutex); 1349 1350 return size; 1351 1352 free_pages: 1353 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1354 list_del_init(&bpage->list); 1355 free_buffer_page(bpage); 1356 } 1357 put_online_cpus(); 1358 mutex_unlock(&buffer->mutex); 1359 return -ENOMEM; 1360 1361 /* 1362 * Something went totally wrong, and we are too paranoid 1363 * to even clean up the mess. 1364 */ 1365 out_fail: 1366 put_online_cpus(); 1367 mutex_unlock(&buffer->mutex); 1368 return -1; 1369 } 1370 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1371 1372 static inline void * 1373 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1374 { 1375 return bpage->data + index; 1376 } 1377 1378 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1379 { 1380 return bpage->page->data + index; 1381 } 1382 1383 static inline struct ring_buffer_event * 1384 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1385 { 1386 return __rb_page_index(cpu_buffer->reader_page, 1387 cpu_buffer->reader_page->read); 1388 } 1389 1390 static inline struct ring_buffer_event * 1391 rb_iter_head_event(struct ring_buffer_iter *iter) 1392 { 1393 return __rb_page_index(iter->head_page, iter->head); 1394 } 1395 1396 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1397 { 1398 return local_read(&bpage->write) & RB_WRITE_MASK; 1399 } 1400 1401 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1402 { 1403 return local_read(&bpage->page->commit); 1404 } 1405 1406 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1407 { 1408 return local_read(&bpage->entries) & RB_WRITE_MASK; 1409 } 1410 1411 /* Size is determined by what has been commited */ 1412 static inline unsigned rb_page_size(struct buffer_page *bpage) 1413 { 1414 return rb_page_commit(bpage); 1415 } 1416 1417 static inline unsigned 1418 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1419 { 1420 return rb_page_commit(cpu_buffer->commit_page); 1421 } 1422 1423 static inline unsigned 1424 rb_event_index(struct ring_buffer_event *event) 1425 { 1426 unsigned long addr = (unsigned long)event; 1427 1428 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1429 } 1430 1431 static inline int 1432 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1433 struct ring_buffer_event *event) 1434 { 1435 unsigned long addr = (unsigned long)event; 1436 unsigned long index; 1437 1438 index = rb_event_index(event); 1439 addr &= PAGE_MASK; 1440 1441 return cpu_buffer->commit_page->page == (void *)addr && 1442 rb_commit_index(cpu_buffer) == index; 1443 } 1444 1445 static void 1446 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1447 { 1448 unsigned long max_count; 1449 1450 /* 1451 * We only race with interrupts and NMIs on this CPU. 1452 * If we own the commit event, then we can commit 1453 * all others that interrupted us, since the interruptions 1454 * are in stack format (they finish before they come 1455 * back to us). This allows us to do a simple loop to 1456 * assign the commit to the tail. 1457 */ 1458 again: 1459 max_count = cpu_buffer->buffer->pages * 100; 1460 1461 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1462 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1463 return; 1464 if (RB_WARN_ON(cpu_buffer, 1465 rb_is_reader_page(cpu_buffer->tail_page))) 1466 return; 1467 local_set(&cpu_buffer->commit_page->page->commit, 1468 rb_page_write(cpu_buffer->commit_page)); 1469 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1470 cpu_buffer->write_stamp = 1471 cpu_buffer->commit_page->page->time_stamp; 1472 /* add barrier to keep gcc from optimizing too much */ 1473 barrier(); 1474 } 1475 while (rb_commit_index(cpu_buffer) != 1476 rb_page_write(cpu_buffer->commit_page)) { 1477 1478 local_set(&cpu_buffer->commit_page->page->commit, 1479 rb_page_write(cpu_buffer->commit_page)); 1480 RB_WARN_ON(cpu_buffer, 1481 local_read(&cpu_buffer->commit_page->page->commit) & 1482 ~RB_WRITE_MASK); 1483 barrier(); 1484 } 1485 1486 /* again, keep gcc from optimizing */ 1487 barrier(); 1488 1489 /* 1490 * If an interrupt came in just after the first while loop 1491 * and pushed the tail page forward, we will be left with 1492 * a dangling commit that will never go forward. 1493 */ 1494 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1495 goto again; 1496 } 1497 1498 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1499 { 1500 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1501 cpu_buffer->reader_page->read = 0; 1502 } 1503 1504 static void rb_inc_iter(struct ring_buffer_iter *iter) 1505 { 1506 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1507 1508 /* 1509 * The iterator could be on the reader page (it starts there). 1510 * But the head could have moved, since the reader was 1511 * found. Check for this case and assign the iterator 1512 * to the head page instead of next. 1513 */ 1514 if (iter->head_page == cpu_buffer->reader_page) 1515 iter->head_page = rb_set_head_page(cpu_buffer); 1516 else 1517 rb_inc_page(cpu_buffer, &iter->head_page); 1518 1519 iter->read_stamp = iter->head_page->page->time_stamp; 1520 iter->head = 0; 1521 } 1522 1523 /** 1524 * ring_buffer_update_event - update event type and data 1525 * @event: the even to update 1526 * @type: the type of event 1527 * @length: the size of the event field in the ring buffer 1528 * 1529 * Update the type and data fields of the event. The length 1530 * is the actual size that is written to the ring buffer, 1531 * and with this, we can determine what to place into the 1532 * data field. 1533 */ 1534 static void 1535 rb_update_event(struct ring_buffer_event *event, 1536 unsigned type, unsigned length) 1537 { 1538 event->type_len = type; 1539 1540 switch (type) { 1541 1542 case RINGBUF_TYPE_PADDING: 1543 case RINGBUF_TYPE_TIME_EXTEND: 1544 case RINGBUF_TYPE_TIME_STAMP: 1545 break; 1546 1547 case 0: 1548 length -= RB_EVNT_HDR_SIZE; 1549 if (length > RB_MAX_SMALL_DATA) 1550 event->array[0] = length; 1551 else 1552 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1553 break; 1554 default: 1555 BUG(); 1556 } 1557 } 1558 1559 /* 1560 * rb_handle_head_page - writer hit the head page 1561 * 1562 * Returns: +1 to retry page 1563 * 0 to continue 1564 * -1 on error 1565 */ 1566 static int 1567 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1568 struct buffer_page *tail_page, 1569 struct buffer_page *next_page) 1570 { 1571 struct buffer_page *new_head; 1572 int entries; 1573 int type; 1574 int ret; 1575 1576 entries = rb_page_entries(next_page); 1577 1578 /* 1579 * The hard part is here. We need to move the head 1580 * forward, and protect against both readers on 1581 * other CPUs and writers coming in via interrupts. 1582 */ 1583 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1584 RB_PAGE_HEAD); 1585 1586 /* 1587 * type can be one of four: 1588 * NORMAL - an interrupt already moved it for us 1589 * HEAD - we are the first to get here. 1590 * UPDATE - we are the interrupt interrupting 1591 * a current move. 1592 * MOVED - a reader on another CPU moved the next 1593 * pointer to its reader page. Give up 1594 * and try again. 1595 */ 1596 1597 switch (type) { 1598 case RB_PAGE_HEAD: 1599 /* 1600 * We changed the head to UPDATE, thus 1601 * it is our responsibility to update 1602 * the counters. 1603 */ 1604 local_add(entries, &cpu_buffer->overrun); 1605 1606 /* 1607 * The entries will be zeroed out when we move the 1608 * tail page. 1609 */ 1610 1611 /* still more to do */ 1612 break; 1613 1614 case RB_PAGE_UPDATE: 1615 /* 1616 * This is an interrupt that interrupt the 1617 * previous update. Still more to do. 1618 */ 1619 break; 1620 case RB_PAGE_NORMAL: 1621 /* 1622 * An interrupt came in before the update 1623 * and processed this for us. 1624 * Nothing left to do. 1625 */ 1626 return 1; 1627 case RB_PAGE_MOVED: 1628 /* 1629 * The reader is on another CPU and just did 1630 * a swap with our next_page. 1631 * Try again. 1632 */ 1633 return 1; 1634 default: 1635 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1636 return -1; 1637 } 1638 1639 /* 1640 * Now that we are here, the old head pointer is 1641 * set to UPDATE. This will keep the reader from 1642 * swapping the head page with the reader page. 1643 * The reader (on another CPU) will spin till 1644 * we are finished. 1645 * 1646 * We just need to protect against interrupts 1647 * doing the job. We will set the next pointer 1648 * to HEAD. After that, we set the old pointer 1649 * to NORMAL, but only if it was HEAD before. 1650 * otherwise we are an interrupt, and only 1651 * want the outer most commit to reset it. 1652 */ 1653 new_head = next_page; 1654 rb_inc_page(cpu_buffer, &new_head); 1655 1656 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1657 RB_PAGE_NORMAL); 1658 1659 /* 1660 * Valid returns are: 1661 * HEAD - an interrupt came in and already set it. 1662 * NORMAL - One of two things: 1663 * 1) We really set it. 1664 * 2) A bunch of interrupts came in and moved 1665 * the page forward again. 1666 */ 1667 switch (ret) { 1668 case RB_PAGE_HEAD: 1669 case RB_PAGE_NORMAL: 1670 /* OK */ 1671 break; 1672 default: 1673 RB_WARN_ON(cpu_buffer, 1); 1674 return -1; 1675 } 1676 1677 /* 1678 * It is possible that an interrupt came in, 1679 * set the head up, then more interrupts came in 1680 * and moved it again. When we get back here, 1681 * the page would have been set to NORMAL but we 1682 * just set it back to HEAD. 1683 * 1684 * How do you detect this? Well, if that happened 1685 * the tail page would have moved. 1686 */ 1687 if (ret == RB_PAGE_NORMAL) { 1688 /* 1689 * If the tail had moved passed next, then we need 1690 * to reset the pointer. 1691 */ 1692 if (cpu_buffer->tail_page != tail_page && 1693 cpu_buffer->tail_page != next_page) 1694 rb_head_page_set_normal(cpu_buffer, new_head, 1695 next_page, 1696 RB_PAGE_HEAD); 1697 } 1698 1699 /* 1700 * If this was the outer most commit (the one that 1701 * changed the original pointer from HEAD to UPDATE), 1702 * then it is up to us to reset it to NORMAL. 1703 */ 1704 if (type == RB_PAGE_HEAD) { 1705 ret = rb_head_page_set_normal(cpu_buffer, next_page, 1706 tail_page, 1707 RB_PAGE_UPDATE); 1708 if (RB_WARN_ON(cpu_buffer, 1709 ret != RB_PAGE_UPDATE)) 1710 return -1; 1711 } 1712 1713 return 0; 1714 } 1715 1716 static unsigned rb_calculate_event_length(unsigned length) 1717 { 1718 struct ring_buffer_event event; /* Used only for sizeof array */ 1719 1720 /* zero length can cause confusions */ 1721 if (!length) 1722 length = 1; 1723 1724 if (length > RB_MAX_SMALL_DATA) 1725 length += sizeof(event.array[0]); 1726 1727 length += RB_EVNT_HDR_SIZE; 1728 length = ALIGN(length, RB_ALIGNMENT); 1729 1730 return length; 1731 } 1732 1733 static inline void 1734 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 1735 struct buffer_page *tail_page, 1736 unsigned long tail, unsigned long length) 1737 { 1738 struct ring_buffer_event *event; 1739 1740 /* 1741 * Only the event that crossed the page boundary 1742 * must fill the old tail_page with padding. 1743 */ 1744 if (tail >= BUF_PAGE_SIZE) { 1745 local_sub(length, &tail_page->write); 1746 return; 1747 } 1748 1749 event = __rb_page_index(tail_page, tail); 1750 kmemcheck_annotate_bitfield(event, bitfield); 1751 1752 /* 1753 * If this event is bigger than the minimum size, then 1754 * we need to be careful that we don't subtract the 1755 * write counter enough to allow another writer to slip 1756 * in on this page. 1757 * We put in a discarded commit instead, to make sure 1758 * that this space is not used again. 1759 * 1760 * If we are less than the minimum size, we don't need to 1761 * worry about it. 1762 */ 1763 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 1764 /* No room for any events */ 1765 1766 /* Mark the rest of the page with padding */ 1767 rb_event_set_padding(event); 1768 1769 /* Set the write back to the previous setting */ 1770 local_sub(length, &tail_page->write); 1771 return; 1772 } 1773 1774 /* Put in a discarded event */ 1775 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 1776 event->type_len = RINGBUF_TYPE_PADDING; 1777 /* time delta must be non zero */ 1778 event->time_delta = 1; 1779 1780 /* Set write to end of buffer */ 1781 length = (tail + length) - BUF_PAGE_SIZE; 1782 local_sub(length, &tail_page->write); 1783 } 1784 1785 static struct ring_buffer_event * 1786 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 1787 unsigned long length, unsigned long tail, 1788 struct buffer_page *commit_page, 1789 struct buffer_page *tail_page, u64 *ts) 1790 { 1791 struct ring_buffer *buffer = cpu_buffer->buffer; 1792 struct buffer_page *next_page; 1793 int ret; 1794 1795 next_page = tail_page; 1796 1797 rb_inc_page(cpu_buffer, &next_page); 1798 1799 /* 1800 * If for some reason, we had an interrupt storm that made 1801 * it all the way around the buffer, bail, and warn 1802 * about it. 1803 */ 1804 if (unlikely(next_page == commit_page)) { 1805 local_inc(&cpu_buffer->commit_overrun); 1806 goto out_reset; 1807 } 1808 1809 /* 1810 * This is where the fun begins! 1811 * 1812 * We are fighting against races between a reader that 1813 * could be on another CPU trying to swap its reader 1814 * page with the buffer head. 1815 * 1816 * We are also fighting against interrupts coming in and 1817 * moving the head or tail on us as well. 1818 * 1819 * If the next page is the head page then we have filled 1820 * the buffer, unless the commit page is still on the 1821 * reader page. 1822 */ 1823 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 1824 1825 /* 1826 * If the commit is not on the reader page, then 1827 * move the header page. 1828 */ 1829 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 1830 /* 1831 * If we are not in overwrite mode, 1832 * this is easy, just stop here. 1833 */ 1834 if (!(buffer->flags & RB_FL_OVERWRITE)) 1835 goto out_reset; 1836 1837 ret = rb_handle_head_page(cpu_buffer, 1838 tail_page, 1839 next_page); 1840 if (ret < 0) 1841 goto out_reset; 1842 if (ret) 1843 goto out_again; 1844 } else { 1845 /* 1846 * We need to be careful here too. The 1847 * commit page could still be on the reader 1848 * page. We could have a small buffer, and 1849 * have filled up the buffer with events 1850 * from interrupts and such, and wrapped. 1851 * 1852 * Note, if the tail page is also the on the 1853 * reader_page, we let it move out. 1854 */ 1855 if (unlikely((cpu_buffer->commit_page != 1856 cpu_buffer->tail_page) && 1857 (cpu_buffer->commit_page == 1858 cpu_buffer->reader_page))) { 1859 local_inc(&cpu_buffer->commit_overrun); 1860 goto out_reset; 1861 } 1862 } 1863 } 1864 1865 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 1866 if (ret) { 1867 /* 1868 * Nested commits always have zero deltas, so 1869 * just reread the time stamp 1870 */ 1871 *ts = rb_time_stamp(buffer, cpu_buffer->cpu); 1872 next_page->page->time_stamp = *ts; 1873 } 1874 1875 out_again: 1876 1877 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1878 1879 /* fail and let the caller try again */ 1880 return ERR_PTR(-EAGAIN); 1881 1882 out_reset: 1883 /* reset write */ 1884 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1885 1886 return NULL; 1887 } 1888 1889 static struct ring_buffer_event * 1890 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 1891 unsigned type, unsigned long length, u64 *ts) 1892 { 1893 struct buffer_page *tail_page, *commit_page; 1894 struct ring_buffer_event *event; 1895 unsigned long tail, write; 1896 1897 commit_page = cpu_buffer->commit_page; 1898 /* we just need to protect against interrupts */ 1899 barrier(); 1900 tail_page = cpu_buffer->tail_page; 1901 write = local_add_return(length, &tail_page->write); 1902 1903 /* set write to only the index of the write */ 1904 write &= RB_WRITE_MASK; 1905 tail = write - length; 1906 1907 /* See if we shot pass the end of this buffer page */ 1908 if (write > BUF_PAGE_SIZE) 1909 return rb_move_tail(cpu_buffer, length, tail, 1910 commit_page, tail_page, ts); 1911 1912 /* We reserved something on the buffer */ 1913 1914 event = __rb_page_index(tail_page, tail); 1915 kmemcheck_annotate_bitfield(event, bitfield); 1916 rb_update_event(event, type, length); 1917 1918 /* The passed in type is zero for DATA */ 1919 if (likely(!type)) 1920 local_inc(&tail_page->entries); 1921 1922 /* 1923 * If this is the first commit on the page, then update 1924 * its timestamp. 1925 */ 1926 if (!tail) 1927 tail_page->page->time_stamp = *ts; 1928 1929 return event; 1930 } 1931 1932 static inline int 1933 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 1934 struct ring_buffer_event *event) 1935 { 1936 unsigned long new_index, old_index; 1937 struct buffer_page *bpage; 1938 unsigned long index; 1939 unsigned long addr; 1940 1941 new_index = rb_event_index(event); 1942 old_index = new_index + rb_event_length(event); 1943 addr = (unsigned long)event; 1944 addr &= PAGE_MASK; 1945 1946 bpage = cpu_buffer->tail_page; 1947 1948 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 1949 unsigned long write_mask = 1950 local_read(&bpage->write) & ~RB_WRITE_MASK; 1951 /* 1952 * This is on the tail page. It is possible that 1953 * a write could come in and move the tail page 1954 * and write to the next page. That is fine 1955 * because we just shorten what is on this page. 1956 */ 1957 old_index += write_mask; 1958 new_index += write_mask; 1959 index = local_cmpxchg(&bpage->write, old_index, new_index); 1960 if (index == old_index) 1961 return 1; 1962 } 1963 1964 /* could not discard */ 1965 return 0; 1966 } 1967 1968 static int 1969 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 1970 u64 *ts, u64 *delta) 1971 { 1972 struct ring_buffer_event *event; 1973 static int once; 1974 int ret; 1975 1976 if (unlikely(*delta > (1ULL << 59) && !once++)) { 1977 printk(KERN_WARNING "Delta way too big! %llu" 1978 " ts=%llu write stamp = %llu\n", 1979 (unsigned long long)*delta, 1980 (unsigned long long)*ts, 1981 (unsigned long long)cpu_buffer->write_stamp); 1982 WARN_ON(1); 1983 } 1984 1985 /* 1986 * The delta is too big, we to add a 1987 * new timestamp. 1988 */ 1989 event = __rb_reserve_next(cpu_buffer, 1990 RINGBUF_TYPE_TIME_EXTEND, 1991 RB_LEN_TIME_EXTEND, 1992 ts); 1993 if (!event) 1994 return -EBUSY; 1995 1996 if (PTR_ERR(event) == -EAGAIN) 1997 return -EAGAIN; 1998 1999 /* Only a commited time event can update the write stamp */ 2000 if (rb_event_is_commit(cpu_buffer, event)) { 2001 /* 2002 * If this is the first on the page, then it was 2003 * updated with the page itself. Try to discard it 2004 * and if we can't just make it zero. 2005 */ 2006 if (rb_event_index(event)) { 2007 event->time_delta = *delta & TS_MASK; 2008 event->array[0] = *delta >> TS_SHIFT; 2009 } else { 2010 /* try to discard, since we do not need this */ 2011 if (!rb_try_to_discard(cpu_buffer, event)) { 2012 /* nope, just zero it */ 2013 event->time_delta = 0; 2014 event->array[0] = 0; 2015 } 2016 } 2017 cpu_buffer->write_stamp = *ts; 2018 /* let the caller know this was the commit */ 2019 ret = 1; 2020 } else { 2021 /* Try to discard the event */ 2022 if (!rb_try_to_discard(cpu_buffer, event)) { 2023 /* Darn, this is just wasted space */ 2024 event->time_delta = 0; 2025 event->array[0] = 0; 2026 } 2027 ret = 0; 2028 } 2029 2030 *delta = 0; 2031 2032 return ret; 2033 } 2034 2035 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2036 { 2037 local_inc(&cpu_buffer->committing); 2038 local_inc(&cpu_buffer->commits); 2039 } 2040 2041 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2042 { 2043 unsigned long commits; 2044 2045 if (RB_WARN_ON(cpu_buffer, 2046 !local_read(&cpu_buffer->committing))) 2047 return; 2048 2049 again: 2050 commits = local_read(&cpu_buffer->commits); 2051 /* synchronize with interrupts */ 2052 barrier(); 2053 if (local_read(&cpu_buffer->committing) == 1) 2054 rb_set_commit_to_write(cpu_buffer); 2055 2056 local_dec(&cpu_buffer->committing); 2057 2058 /* synchronize with interrupts */ 2059 barrier(); 2060 2061 /* 2062 * Need to account for interrupts coming in between the 2063 * updating of the commit page and the clearing of the 2064 * committing counter. 2065 */ 2066 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2067 !local_read(&cpu_buffer->committing)) { 2068 local_inc(&cpu_buffer->committing); 2069 goto again; 2070 } 2071 } 2072 2073 static struct ring_buffer_event * 2074 rb_reserve_next_event(struct ring_buffer *buffer, 2075 struct ring_buffer_per_cpu *cpu_buffer, 2076 unsigned long length) 2077 { 2078 struct ring_buffer_event *event; 2079 u64 ts, delta = 0; 2080 int commit = 0; 2081 int nr_loops = 0; 2082 2083 rb_start_commit(cpu_buffer); 2084 2085 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2086 /* 2087 * Due to the ability to swap a cpu buffer from a buffer 2088 * it is possible it was swapped before we committed. 2089 * (committing stops a swap). We check for it here and 2090 * if it happened, we have to fail the write. 2091 */ 2092 barrier(); 2093 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2094 local_dec(&cpu_buffer->committing); 2095 local_dec(&cpu_buffer->commits); 2096 return NULL; 2097 } 2098 #endif 2099 2100 length = rb_calculate_event_length(length); 2101 again: 2102 /* 2103 * We allow for interrupts to reenter here and do a trace. 2104 * If one does, it will cause this original code to loop 2105 * back here. Even with heavy interrupts happening, this 2106 * should only happen a few times in a row. If this happens 2107 * 1000 times in a row, there must be either an interrupt 2108 * storm or we have something buggy. 2109 * Bail! 2110 */ 2111 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2112 goto out_fail; 2113 2114 ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu); 2115 2116 /* 2117 * Only the first commit can update the timestamp. 2118 * Yes there is a race here. If an interrupt comes in 2119 * just after the conditional and it traces too, then it 2120 * will also check the deltas. More than one timestamp may 2121 * also be made. But only the entry that did the actual 2122 * commit will be something other than zero. 2123 */ 2124 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page && 2125 rb_page_write(cpu_buffer->tail_page) == 2126 rb_commit_index(cpu_buffer))) { 2127 u64 diff; 2128 2129 diff = ts - cpu_buffer->write_stamp; 2130 2131 /* make sure this diff is calculated here */ 2132 barrier(); 2133 2134 /* Did the write stamp get updated already? */ 2135 if (unlikely(ts < cpu_buffer->write_stamp)) 2136 goto get_event; 2137 2138 delta = diff; 2139 if (unlikely(test_time_stamp(delta))) { 2140 2141 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta); 2142 if (commit == -EBUSY) 2143 goto out_fail; 2144 2145 if (commit == -EAGAIN) 2146 goto again; 2147 2148 RB_WARN_ON(cpu_buffer, commit < 0); 2149 } 2150 } 2151 2152 get_event: 2153 event = __rb_reserve_next(cpu_buffer, 0, length, &ts); 2154 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2155 goto again; 2156 2157 if (!event) 2158 goto out_fail; 2159 2160 if (!rb_event_is_commit(cpu_buffer, event)) 2161 delta = 0; 2162 2163 event->time_delta = delta; 2164 2165 return event; 2166 2167 out_fail: 2168 rb_end_commit(cpu_buffer); 2169 return NULL; 2170 } 2171 2172 #ifdef CONFIG_TRACING 2173 2174 #define TRACE_RECURSIVE_DEPTH 16 2175 2176 static int trace_recursive_lock(void) 2177 { 2178 current->trace_recursion++; 2179 2180 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH)) 2181 return 0; 2182 2183 /* Disable all tracing before we do anything else */ 2184 tracing_off_permanent(); 2185 2186 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2187 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2188 current->trace_recursion, 2189 hardirq_count() >> HARDIRQ_SHIFT, 2190 softirq_count() >> SOFTIRQ_SHIFT, 2191 in_nmi()); 2192 2193 WARN_ON_ONCE(1); 2194 return -1; 2195 } 2196 2197 static void trace_recursive_unlock(void) 2198 { 2199 WARN_ON_ONCE(!current->trace_recursion); 2200 2201 current->trace_recursion--; 2202 } 2203 2204 #else 2205 2206 #define trace_recursive_lock() (0) 2207 #define trace_recursive_unlock() do { } while (0) 2208 2209 #endif 2210 2211 static DEFINE_PER_CPU(int, rb_need_resched); 2212 2213 /** 2214 * ring_buffer_lock_reserve - reserve a part of the buffer 2215 * @buffer: the ring buffer to reserve from 2216 * @length: the length of the data to reserve (excluding event header) 2217 * 2218 * Returns a reseverd event on the ring buffer to copy directly to. 2219 * The user of this interface will need to get the body to write into 2220 * and can use the ring_buffer_event_data() interface. 2221 * 2222 * The length is the length of the data needed, not the event length 2223 * which also includes the event header. 2224 * 2225 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2226 * If NULL is returned, then nothing has been allocated or locked. 2227 */ 2228 struct ring_buffer_event * 2229 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2230 { 2231 struct ring_buffer_per_cpu *cpu_buffer; 2232 struct ring_buffer_event *event; 2233 int cpu, resched; 2234 2235 if (ring_buffer_flags != RB_BUFFERS_ON) 2236 return NULL; 2237 2238 if (atomic_read(&buffer->record_disabled)) 2239 return NULL; 2240 2241 /* If we are tracing schedule, we don't want to recurse */ 2242 resched = ftrace_preempt_disable(); 2243 2244 if (trace_recursive_lock()) 2245 goto out_nocheck; 2246 2247 cpu = raw_smp_processor_id(); 2248 2249 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2250 goto out; 2251 2252 cpu_buffer = buffer->buffers[cpu]; 2253 2254 if (atomic_read(&cpu_buffer->record_disabled)) 2255 goto out; 2256 2257 if (length > BUF_MAX_DATA_SIZE) 2258 goto out; 2259 2260 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2261 if (!event) 2262 goto out; 2263 2264 /* 2265 * Need to store resched state on this cpu. 2266 * Only the first needs to. 2267 */ 2268 2269 if (preempt_count() == 1) 2270 per_cpu(rb_need_resched, cpu) = resched; 2271 2272 return event; 2273 2274 out: 2275 trace_recursive_unlock(); 2276 2277 out_nocheck: 2278 ftrace_preempt_enable(resched); 2279 return NULL; 2280 } 2281 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2282 2283 static void 2284 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2285 struct ring_buffer_event *event) 2286 { 2287 /* 2288 * The event first in the commit queue updates the 2289 * time stamp. 2290 */ 2291 if (rb_event_is_commit(cpu_buffer, event)) 2292 cpu_buffer->write_stamp += event->time_delta; 2293 } 2294 2295 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2296 struct ring_buffer_event *event) 2297 { 2298 local_inc(&cpu_buffer->entries); 2299 rb_update_write_stamp(cpu_buffer, event); 2300 rb_end_commit(cpu_buffer); 2301 } 2302 2303 /** 2304 * ring_buffer_unlock_commit - commit a reserved 2305 * @buffer: The buffer to commit to 2306 * @event: The event pointer to commit. 2307 * 2308 * This commits the data to the ring buffer, and releases any locks held. 2309 * 2310 * Must be paired with ring_buffer_lock_reserve. 2311 */ 2312 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2313 struct ring_buffer_event *event) 2314 { 2315 struct ring_buffer_per_cpu *cpu_buffer; 2316 int cpu = raw_smp_processor_id(); 2317 2318 cpu_buffer = buffer->buffers[cpu]; 2319 2320 rb_commit(cpu_buffer, event); 2321 2322 trace_recursive_unlock(); 2323 2324 /* 2325 * Only the last preempt count needs to restore preemption. 2326 */ 2327 if (preempt_count() == 1) 2328 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2329 else 2330 preempt_enable_no_resched_notrace(); 2331 2332 return 0; 2333 } 2334 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2335 2336 static inline void rb_event_discard(struct ring_buffer_event *event) 2337 { 2338 /* array[0] holds the actual length for the discarded event */ 2339 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2340 event->type_len = RINGBUF_TYPE_PADDING; 2341 /* time delta must be non zero */ 2342 if (!event->time_delta) 2343 event->time_delta = 1; 2344 } 2345 2346 /* 2347 * Decrement the entries to the page that an event is on. 2348 * The event does not even need to exist, only the pointer 2349 * to the page it is on. This may only be called before the commit 2350 * takes place. 2351 */ 2352 static inline void 2353 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2354 struct ring_buffer_event *event) 2355 { 2356 unsigned long addr = (unsigned long)event; 2357 struct buffer_page *bpage = cpu_buffer->commit_page; 2358 struct buffer_page *start; 2359 2360 addr &= PAGE_MASK; 2361 2362 /* Do the likely case first */ 2363 if (likely(bpage->page == (void *)addr)) { 2364 local_dec(&bpage->entries); 2365 return; 2366 } 2367 2368 /* 2369 * Because the commit page may be on the reader page we 2370 * start with the next page and check the end loop there. 2371 */ 2372 rb_inc_page(cpu_buffer, &bpage); 2373 start = bpage; 2374 do { 2375 if (bpage->page == (void *)addr) { 2376 local_dec(&bpage->entries); 2377 return; 2378 } 2379 rb_inc_page(cpu_buffer, &bpage); 2380 } while (bpage != start); 2381 2382 /* commit not part of this buffer?? */ 2383 RB_WARN_ON(cpu_buffer, 1); 2384 } 2385 2386 /** 2387 * ring_buffer_commit_discard - discard an event that has not been committed 2388 * @buffer: the ring buffer 2389 * @event: non committed event to discard 2390 * 2391 * Sometimes an event that is in the ring buffer needs to be ignored. 2392 * This function lets the user discard an event in the ring buffer 2393 * and then that event will not be read later. 2394 * 2395 * This function only works if it is called before the the item has been 2396 * committed. It will try to free the event from the ring buffer 2397 * if another event has not been added behind it. 2398 * 2399 * If another event has been added behind it, it will set the event 2400 * up as discarded, and perform the commit. 2401 * 2402 * If this function is called, do not call ring_buffer_unlock_commit on 2403 * the event. 2404 */ 2405 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2406 struct ring_buffer_event *event) 2407 { 2408 struct ring_buffer_per_cpu *cpu_buffer; 2409 int cpu; 2410 2411 /* The event is discarded regardless */ 2412 rb_event_discard(event); 2413 2414 cpu = smp_processor_id(); 2415 cpu_buffer = buffer->buffers[cpu]; 2416 2417 /* 2418 * This must only be called if the event has not been 2419 * committed yet. Thus we can assume that preemption 2420 * is still disabled. 2421 */ 2422 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2423 2424 rb_decrement_entry(cpu_buffer, event); 2425 if (rb_try_to_discard(cpu_buffer, event)) 2426 goto out; 2427 2428 /* 2429 * The commit is still visible by the reader, so we 2430 * must still update the timestamp. 2431 */ 2432 rb_update_write_stamp(cpu_buffer, event); 2433 out: 2434 rb_end_commit(cpu_buffer); 2435 2436 trace_recursive_unlock(); 2437 2438 /* 2439 * Only the last preempt count needs to restore preemption. 2440 */ 2441 if (preempt_count() == 1) 2442 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2443 else 2444 preempt_enable_no_resched_notrace(); 2445 2446 } 2447 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2448 2449 /** 2450 * ring_buffer_write - write data to the buffer without reserving 2451 * @buffer: The ring buffer to write to. 2452 * @length: The length of the data being written (excluding the event header) 2453 * @data: The data to write to the buffer. 2454 * 2455 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2456 * one function. If you already have the data to write to the buffer, it 2457 * may be easier to simply call this function. 2458 * 2459 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2460 * and not the length of the event which would hold the header. 2461 */ 2462 int ring_buffer_write(struct ring_buffer *buffer, 2463 unsigned long length, 2464 void *data) 2465 { 2466 struct ring_buffer_per_cpu *cpu_buffer; 2467 struct ring_buffer_event *event; 2468 void *body; 2469 int ret = -EBUSY; 2470 int cpu, resched; 2471 2472 if (ring_buffer_flags != RB_BUFFERS_ON) 2473 return -EBUSY; 2474 2475 if (atomic_read(&buffer->record_disabled)) 2476 return -EBUSY; 2477 2478 resched = ftrace_preempt_disable(); 2479 2480 cpu = raw_smp_processor_id(); 2481 2482 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2483 goto out; 2484 2485 cpu_buffer = buffer->buffers[cpu]; 2486 2487 if (atomic_read(&cpu_buffer->record_disabled)) 2488 goto out; 2489 2490 if (length > BUF_MAX_DATA_SIZE) 2491 goto out; 2492 2493 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2494 if (!event) 2495 goto out; 2496 2497 body = rb_event_data(event); 2498 2499 memcpy(body, data, length); 2500 2501 rb_commit(cpu_buffer, event); 2502 2503 ret = 0; 2504 out: 2505 ftrace_preempt_enable(resched); 2506 2507 return ret; 2508 } 2509 EXPORT_SYMBOL_GPL(ring_buffer_write); 2510 2511 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2512 { 2513 struct buffer_page *reader = cpu_buffer->reader_page; 2514 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2515 struct buffer_page *commit = cpu_buffer->commit_page; 2516 2517 /* In case of error, head will be NULL */ 2518 if (unlikely(!head)) 2519 return 1; 2520 2521 return reader->read == rb_page_commit(reader) && 2522 (commit == reader || 2523 (commit == head && 2524 head->read == rb_page_commit(commit))); 2525 } 2526 2527 /** 2528 * ring_buffer_record_disable - stop all writes into the buffer 2529 * @buffer: The ring buffer to stop writes to. 2530 * 2531 * This prevents all writes to the buffer. Any attempt to write 2532 * to the buffer after this will fail and return NULL. 2533 * 2534 * The caller should call synchronize_sched() after this. 2535 */ 2536 void ring_buffer_record_disable(struct ring_buffer *buffer) 2537 { 2538 atomic_inc(&buffer->record_disabled); 2539 } 2540 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2541 2542 /** 2543 * ring_buffer_record_enable - enable writes to the buffer 2544 * @buffer: The ring buffer to enable writes 2545 * 2546 * Note, multiple disables will need the same number of enables 2547 * to truely enable the writing (much like preempt_disable). 2548 */ 2549 void ring_buffer_record_enable(struct ring_buffer *buffer) 2550 { 2551 atomic_dec(&buffer->record_disabled); 2552 } 2553 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2554 2555 /** 2556 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2557 * @buffer: The ring buffer to stop writes to. 2558 * @cpu: The CPU buffer to stop 2559 * 2560 * This prevents all writes to the buffer. Any attempt to write 2561 * to the buffer after this will fail and return NULL. 2562 * 2563 * The caller should call synchronize_sched() after this. 2564 */ 2565 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2566 { 2567 struct ring_buffer_per_cpu *cpu_buffer; 2568 2569 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2570 return; 2571 2572 cpu_buffer = buffer->buffers[cpu]; 2573 atomic_inc(&cpu_buffer->record_disabled); 2574 } 2575 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2576 2577 /** 2578 * ring_buffer_record_enable_cpu - enable writes to the buffer 2579 * @buffer: The ring buffer to enable writes 2580 * @cpu: The CPU to enable. 2581 * 2582 * Note, multiple disables will need the same number of enables 2583 * to truely enable the writing (much like preempt_disable). 2584 */ 2585 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2586 { 2587 struct ring_buffer_per_cpu *cpu_buffer; 2588 2589 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2590 return; 2591 2592 cpu_buffer = buffer->buffers[cpu]; 2593 atomic_dec(&cpu_buffer->record_disabled); 2594 } 2595 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2596 2597 /** 2598 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2599 * @buffer: The ring buffer 2600 * @cpu: The per CPU buffer to get the entries from. 2601 */ 2602 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2603 { 2604 struct ring_buffer_per_cpu *cpu_buffer; 2605 unsigned long ret; 2606 2607 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2608 return 0; 2609 2610 cpu_buffer = buffer->buffers[cpu]; 2611 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun)) 2612 - cpu_buffer->read; 2613 2614 return ret; 2615 } 2616 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 2617 2618 /** 2619 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 2620 * @buffer: The ring buffer 2621 * @cpu: The per CPU buffer to get the number of overruns from 2622 */ 2623 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 2624 { 2625 struct ring_buffer_per_cpu *cpu_buffer; 2626 unsigned long ret; 2627 2628 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2629 return 0; 2630 2631 cpu_buffer = buffer->buffers[cpu]; 2632 ret = local_read(&cpu_buffer->overrun); 2633 2634 return ret; 2635 } 2636 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 2637 2638 /** 2639 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 2640 * @buffer: The ring buffer 2641 * @cpu: The per CPU buffer to get the number of overruns from 2642 */ 2643 unsigned long 2644 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 2645 { 2646 struct ring_buffer_per_cpu *cpu_buffer; 2647 unsigned long ret; 2648 2649 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2650 return 0; 2651 2652 cpu_buffer = buffer->buffers[cpu]; 2653 ret = local_read(&cpu_buffer->commit_overrun); 2654 2655 return ret; 2656 } 2657 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 2658 2659 /** 2660 * ring_buffer_entries - get the number of entries in a buffer 2661 * @buffer: The ring buffer 2662 * 2663 * Returns the total number of entries in the ring buffer 2664 * (all CPU entries) 2665 */ 2666 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 2667 { 2668 struct ring_buffer_per_cpu *cpu_buffer; 2669 unsigned long entries = 0; 2670 int cpu; 2671 2672 /* if you care about this being correct, lock the buffer */ 2673 for_each_buffer_cpu(buffer, cpu) { 2674 cpu_buffer = buffer->buffers[cpu]; 2675 entries += (local_read(&cpu_buffer->entries) - 2676 local_read(&cpu_buffer->overrun)) - cpu_buffer->read; 2677 } 2678 2679 return entries; 2680 } 2681 EXPORT_SYMBOL_GPL(ring_buffer_entries); 2682 2683 /** 2684 * ring_buffer_overrun_cpu - get the number of overruns in buffer 2685 * @buffer: The ring buffer 2686 * 2687 * Returns the total number of overruns in the ring buffer 2688 * (all CPU entries) 2689 */ 2690 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 2691 { 2692 struct ring_buffer_per_cpu *cpu_buffer; 2693 unsigned long overruns = 0; 2694 int cpu; 2695 2696 /* if you care about this being correct, lock the buffer */ 2697 for_each_buffer_cpu(buffer, cpu) { 2698 cpu_buffer = buffer->buffers[cpu]; 2699 overruns += local_read(&cpu_buffer->overrun); 2700 } 2701 2702 return overruns; 2703 } 2704 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 2705 2706 static void rb_iter_reset(struct ring_buffer_iter *iter) 2707 { 2708 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2709 2710 /* Iterator usage is expected to have record disabled */ 2711 if (list_empty(&cpu_buffer->reader_page->list)) { 2712 iter->head_page = rb_set_head_page(cpu_buffer); 2713 if (unlikely(!iter->head_page)) 2714 return; 2715 iter->head = iter->head_page->read; 2716 } else { 2717 iter->head_page = cpu_buffer->reader_page; 2718 iter->head = cpu_buffer->reader_page->read; 2719 } 2720 if (iter->head) 2721 iter->read_stamp = cpu_buffer->read_stamp; 2722 else 2723 iter->read_stamp = iter->head_page->page->time_stamp; 2724 } 2725 2726 /** 2727 * ring_buffer_iter_reset - reset an iterator 2728 * @iter: The iterator to reset 2729 * 2730 * Resets the iterator, so that it will start from the beginning 2731 * again. 2732 */ 2733 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 2734 { 2735 struct ring_buffer_per_cpu *cpu_buffer; 2736 unsigned long flags; 2737 2738 if (!iter) 2739 return; 2740 2741 cpu_buffer = iter->cpu_buffer; 2742 2743 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2744 rb_iter_reset(iter); 2745 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2746 } 2747 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 2748 2749 /** 2750 * ring_buffer_iter_empty - check if an iterator has no more to read 2751 * @iter: The iterator to check 2752 */ 2753 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 2754 { 2755 struct ring_buffer_per_cpu *cpu_buffer; 2756 2757 cpu_buffer = iter->cpu_buffer; 2758 2759 return iter->head_page == cpu_buffer->commit_page && 2760 iter->head == rb_commit_index(cpu_buffer); 2761 } 2762 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 2763 2764 static void 2765 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2766 struct ring_buffer_event *event) 2767 { 2768 u64 delta; 2769 2770 switch (event->type_len) { 2771 case RINGBUF_TYPE_PADDING: 2772 return; 2773 2774 case RINGBUF_TYPE_TIME_EXTEND: 2775 delta = event->array[0]; 2776 delta <<= TS_SHIFT; 2777 delta += event->time_delta; 2778 cpu_buffer->read_stamp += delta; 2779 return; 2780 2781 case RINGBUF_TYPE_TIME_STAMP: 2782 /* FIXME: not implemented */ 2783 return; 2784 2785 case RINGBUF_TYPE_DATA: 2786 cpu_buffer->read_stamp += event->time_delta; 2787 return; 2788 2789 default: 2790 BUG(); 2791 } 2792 return; 2793 } 2794 2795 static void 2796 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 2797 struct ring_buffer_event *event) 2798 { 2799 u64 delta; 2800 2801 switch (event->type_len) { 2802 case RINGBUF_TYPE_PADDING: 2803 return; 2804 2805 case RINGBUF_TYPE_TIME_EXTEND: 2806 delta = event->array[0]; 2807 delta <<= TS_SHIFT; 2808 delta += event->time_delta; 2809 iter->read_stamp += delta; 2810 return; 2811 2812 case RINGBUF_TYPE_TIME_STAMP: 2813 /* FIXME: not implemented */ 2814 return; 2815 2816 case RINGBUF_TYPE_DATA: 2817 iter->read_stamp += event->time_delta; 2818 return; 2819 2820 default: 2821 BUG(); 2822 } 2823 return; 2824 } 2825 2826 static struct buffer_page * 2827 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 2828 { 2829 struct buffer_page *reader = NULL; 2830 unsigned long flags; 2831 int nr_loops = 0; 2832 int ret; 2833 2834 local_irq_save(flags); 2835 __raw_spin_lock(&cpu_buffer->lock); 2836 2837 again: 2838 /* 2839 * This should normally only loop twice. But because the 2840 * start of the reader inserts an empty page, it causes 2841 * a case where we will loop three times. There should be no 2842 * reason to loop four times (that I know of). 2843 */ 2844 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 2845 reader = NULL; 2846 goto out; 2847 } 2848 2849 reader = cpu_buffer->reader_page; 2850 2851 /* If there's more to read, return this page */ 2852 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 2853 goto out; 2854 2855 /* Never should we have an index greater than the size */ 2856 if (RB_WARN_ON(cpu_buffer, 2857 cpu_buffer->reader_page->read > rb_page_size(reader))) 2858 goto out; 2859 2860 /* check if we caught up to the tail */ 2861 reader = NULL; 2862 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 2863 goto out; 2864 2865 /* 2866 * Reset the reader page to size zero. 2867 */ 2868 local_set(&cpu_buffer->reader_page->write, 0); 2869 local_set(&cpu_buffer->reader_page->entries, 0); 2870 local_set(&cpu_buffer->reader_page->page->commit, 0); 2871 2872 spin: 2873 /* 2874 * Splice the empty reader page into the list around the head. 2875 */ 2876 reader = rb_set_head_page(cpu_buffer); 2877 cpu_buffer->reader_page->list.next = reader->list.next; 2878 cpu_buffer->reader_page->list.prev = reader->list.prev; 2879 2880 /* 2881 * cpu_buffer->pages just needs to point to the buffer, it 2882 * has no specific buffer page to point to. Lets move it out 2883 * of our way so we don't accidently swap it. 2884 */ 2885 cpu_buffer->pages = reader->list.prev; 2886 2887 /* The reader page will be pointing to the new head */ 2888 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 2889 2890 /* 2891 * Here's the tricky part. 2892 * 2893 * We need to move the pointer past the header page. 2894 * But we can only do that if a writer is not currently 2895 * moving it. The page before the header page has the 2896 * flag bit '1' set if it is pointing to the page we want. 2897 * but if the writer is in the process of moving it 2898 * than it will be '2' or already moved '0'. 2899 */ 2900 2901 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 2902 2903 /* 2904 * If we did not convert it, then we must try again. 2905 */ 2906 if (!ret) 2907 goto spin; 2908 2909 /* 2910 * Yeah! We succeeded in replacing the page. 2911 * 2912 * Now make the new head point back to the reader page. 2913 */ 2914 reader->list.next->prev = &cpu_buffer->reader_page->list; 2915 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 2916 2917 /* Finally update the reader page to the new head */ 2918 cpu_buffer->reader_page = reader; 2919 rb_reset_reader_page(cpu_buffer); 2920 2921 goto again; 2922 2923 out: 2924 __raw_spin_unlock(&cpu_buffer->lock); 2925 local_irq_restore(flags); 2926 2927 return reader; 2928 } 2929 2930 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 2931 { 2932 struct ring_buffer_event *event; 2933 struct buffer_page *reader; 2934 unsigned length; 2935 2936 reader = rb_get_reader_page(cpu_buffer); 2937 2938 /* This function should not be called when buffer is empty */ 2939 if (RB_WARN_ON(cpu_buffer, !reader)) 2940 return; 2941 2942 event = rb_reader_event(cpu_buffer); 2943 2944 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 2945 cpu_buffer->read++; 2946 2947 rb_update_read_stamp(cpu_buffer, event); 2948 2949 length = rb_event_length(event); 2950 cpu_buffer->reader_page->read += length; 2951 } 2952 2953 static void rb_advance_iter(struct ring_buffer_iter *iter) 2954 { 2955 struct ring_buffer *buffer; 2956 struct ring_buffer_per_cpu *cpu_buffer; 2957 struct ring_buffer_event *event; 2958 unsigned length; 2959 2960 cpu_buffer = iter->cpu_buffer; 2961 buffer = cpu_buffer->buffer; 2962 2963 /* 2964 * Check if we are at the end of the buffer. 2965 */ 2966 if (iter->head >= rb_page_size(iter->head_page)) { 2967 /* discarded commits can make the page empty */ 2968 if (iter->head_page == cpu_buffer->commit_page) 2969 return; 2970 rb_inc_iter(iter); 2971 return; 2972 } 2973 2974 event = rb_iter_head_event(iter); 2975 2976 length = rb_event_length(event); 2977 2978 /* 2979 * This should not be called to advance the header if we are 2980 * at the tail of the buffer. 2981 */ 2982 if (RB_WARN_ON(cpu_buffer, 2983 (iter->head_page == cpu_buffer->commit_page) && 2984 (iter->head + length > rb_commit_index(cpu_buffer)))) 2985 return; 2986 2987 rb_update_iter_read_stamp(iter, event); 2988 2989 iter->head += length; 2990 2991 /* check for end of page padding */ 2992 if ((iter->head >= rb_page_size(iter->head_page)) && 2993 (iter->head_page != cpu_buffer->commit_page)) 2994 rb_advance_iter(iter); 2995 } 2996 2997 static struct ring_buffer_event * 2998 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) 2999 { 3000 struct ring_buffer_event *event; 3001 struct buffer_page *reader; 3002 int nr_loops = 0; 3003 3004 again: 3005 /* 3006 * We repeat when a timestamp is encountered. It is possible 3007 * to get multiple timestamps from an interrupt entering just 3008 * as one timestamp is about to be written, or from discarded 3009 * commits. The most that we can have is the number on a single page. 3010 */ 3011 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3012 return NULL; 3013 3014 reader = rb_get_reader_page(cpu_buffer); 3015 if (!reader) 3016 return NULL; 3017 3018 event = rb_reader_event(cpu_buffer); 3019 3020 switch (event->type_len) { 3021 case RINGBUF_TYPE_PADDING: 3022 if (rb_null_event(event)) 3023 RB_WARN_ON(cpu_buffer, 1); 3024 /* 3025 * Because the writer could be discarding every 3026 * event it creates (which would probably be bad) 3027 * if we were to go back to "again" then we may never 3028 * catch up, and will trigger the warn on, or lock 3029 * the box. Return the padding, and we will release 3030 * the current locks, and try again. 3031 */ 3032 return event; 3033 3034 case RINGBUF_TYPE_TIME_EXTEND: 3035 /* Internal data, OK to advance */ 3036 rb_advance_reader(cpu_buffer); 3037 goto again; 3038 3039 case RINGBUF_TYPE_TIME_STAMP: 3040 /* FIXME: not implemented */ 3041 rb_advance_reader(cpu_buffer); 3042 goto again; 3043 3044 case RINGBUF_TYPE_DATA: 3045 if (ts) { 3046 *ts = cpu_buffer->read_stamp + event->time_delta; 3047 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3048 cpu_buffer->cpu, ts); 3049 } 3050 return event; 3051 3052 default: 3053 BUG(); 3054 } 3055 3056 return NULL; 3057 } 3058 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3059 3060 static struct ring_buffer_event * 3061 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3062 { 3063 struct ring_buffer *buffer; 3064 struct ring_buffer_per_cpu *cpu_buffer; 3065 struct ring_buffer_event *event; 3066 int nr_loops = 0; 3067 3068 if (ring_buffer_iter_empty(iter)) 3069 return NULL; 3070 3071 cpu_buffer = iter->cpu_buffer; 3072 buffer = cpu_buffer->buffer; 3073 3074 again: 3075 /* 3076 * We repeat when a timestamp is encountered. 3077 * We can get multiple timestamps by nested interrupts or also 3078 * if filtering is on (discarding commits). Since discarding 3079 * commits can be frequent we can get a lot of timestamps. 3080 * But we limit them by not adding timestamps if they begin 3081 * at the start of a page. 3082 */ 3083 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3084 return NULL; 3085 3086 if (rb_per_cpu_empty(cpu_buffer)) 3087 return NULL; 3088 3089 event = rb_iter_head_event(iter); 3090 3091 switch (event->type_len) { 3092 case RINGBUF_TYPE_PADDING: 3093 if (rb_null_event(event)) { 3094 rb_inc_iter(iter); 3095 goto again; 3096 } 3097 rb_advance_iter(iter); 3098 return event; 3099 3100 case RINGBUF_TYPE_TIME_EXTEND: 3101 /* Internal data, OK to advance */ 3102 rb_advance_iter(iter); 3103 goto again; 3104 3105 case RINGBUF_TYPE_TIME_STAMP: 3106 /* FIXME: not implemented */ 3107 rb_advance_iter(iter); 3108 goto again; 3109 3110 case RINGBUF_TYPE_DATA: 3111 if (ts) { 3112 *ts = iter->read_stamp + event->time_delta; 3113 ring_buffer_normalize_time_stamp(buffer, 3114 cpu_buffer->cpu, ts); 3115 } 3116 return event; 3117 3118 default: 3119 BUG(); 3120 } 3121 3122 return NULL; 3123 } 3124 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3125 3126 static inline int rb_ok_to_lock(void) 3127 { 3128 /* 3129 * If an NMI die dumps out the content of the ring buffer 3130 * do not grab locks. We also permanently disable the ring 3131 * buffer too. A one time deal is all you get from reading 3132 * the ring buffer from an NMI. 3133 */ 3134 if (likely(!in_nmi())) 3135 return 1; 3136 3137 tracing_off_permanent(); 3138 return 0; 3139 } 3140 3141 /** 3142 * ring_buffer_peek - peek at the next event to be read 3143 * @buffer: The ring buffer to read 3144 * @cpu: The cpu to peak at 3145 * @ts: The timestamp counter of this event. 3146 * 3147 * This will return the event that will be read next, but does 3148 * not consume the data. 3149 */ 3150 struct ring_buffer_event * 3151 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) 3152 { 3153 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3154 struct ring_buffer_event *event; 3155 unsigned long flags; 3156 int dolock; 3157 3158 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3159 return NULL; 3160 3161 dolock = rb_ok_to_lock(); 3162 again: 3163 local_irq_save(flags); 3164 if (dolock) 3165 spin_lock(&cpu_buffer->reader_lock); 3166 event = rb_buffer_peek(cpu_buffer, ts); 3167 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3168 rb_advance_reader(cpu_buffer); 3169 if (dolock) 3170 spin_unlock(&cpu_buffer->reader_lock); 3171 local_irq_restore(flags); 3172 3173 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3174 goto again; 3175 3176 return event; 3177 } 3178 3179 /** 3180 * ring_buffer_iter_peek - peek at the next event to be read 3181 * @iter: The ring buffer iterator 3182 * @ts: The timestamp counter of this event. 3183 * 3184 * This will return the event that will be read next, but does 3185 * not increment the iterator. 3186 */ 3187 struct ring_buffer_event * 3188 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3189 { 3190 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3191 struct ring_buffer_event *event; 3192 unsigned long flags; 3193 3194 again: 3195 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3196 event = rb_iter_peek(iter, ts); 3197 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3198 3199 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3200 goto again; 3201 3202 return event; 3203 } 3204 3205 /** 3206 * ring_buffer_consume - return an event and consume it 3207 * @buffer: The ring buffer to get the next event from 3208 * 3209 * Returns the next event in the ring buffer, and that event is consumed. 3210 * Meaning, that sequential reads will keep returning a different event, 3211 * and eventually empty the ring buffer if the producer is slower. 3212 */ 3213 struct ring_buffer_event * 3214 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) 3215 { 3216 struct ring_buffer_per_cpu *cpu_buffer; 3217 struct ring_buffer_event *event = NULL; 3218 unsigned long flags; 3219 int dolock; 3220 3221 dolock = rb_ok_to_lock(); 3222 3223 again: 3224 /* might be called in atomic */ 3225 preempt_disable(); 3226 3227 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3228 goto out; 3229 3230 cpu_buffer = buffer->buffers[cpu]; 3231 local_irq_save(flags); 3232 if (dolock) 3233 spin_lock(&cpu_buffer->reader_lock); 3234 3235 event = rb_buffer_peek(cpu_buffer, ts); 3236 if (event) 3237 rb_advance_reader(cpu_buffer); 3238 3239 if (dolock) 3240 spin_unlock(&cpu_buffer->reader_lock); 3241 local_irq_restore(flags); 3242 3243 out: 3244 preempt_enable(); 3245 3246 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3247 goto again; 3248 3249 return event; 3250 } 3251 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3252 3253 /** 3254 * ring_buffer_read_start - start a non consuming read of the buffer 3255 * @buffer: The ring buffer to read from 3256 * @cpu: The cpu buffer to iterate over 3257 * 3258 * This starts up an iteration through the buffer. It also disables 3259 * the recording to the buffer until the reading is finished. 3260 * This prevents the reading from being corrupted. This is not 3261 * a consuming read, so a producer is not expected. 3262 * 3263 * Must be paired with ring_buffer_finish. 3264 */ 3265 struct ring_buffer_iter * 3266 ring_buffer_read_start(struct ring_buffer *buffer, int cpu) 3267 { 3268 struct ring_buffer_per_cpu *cpu_buffer; 3269 struct ring_buffer_iter *iter; 3270 unsigned long flags; 3271 3272 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3273 return NULL; 3274 3275 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3276 if (!iter) 3277 return NULL; 3278 3279 cpu_buffer = buffer->buffers[cpu]; 3280 3281 iter->cpu_buffer = cpu_buffer; 3282 3283 atomic_inc(&cpu_buffer->record_disabled); 3284 synchronize_sched(); 3285 3286 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3287 __raw_spin_lock(&cpu_buffer->lock); 3288 rb_iter_reset(iter); 3289 __raw_spin_unlock(&cpu_buffer->lock); 3290 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3291 3292 return iter; 3293 } 3294 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3295 3296 /** 3297 * ring_buffer_finish - finish reading the iterator of the buffer 3298 * @iter: The iterator retrieved by ring_buffer_start 3299 * 3300 * This re-enables the recording to the buffer, and frees the 3301 * iterator. 3302 */ 3303 void 3304 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3305 { 3306 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3307 3308 atomic_dec(&cpu_buffer->record_disabled); 3309 kfree(iter); 3310 } 3311 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3312 3313 /** 3314 * ring_buffer_read - read the next item in the ring buffer by the iterator 3315 * @iter: The ring buffer iterator 3316 * @ts: The time stamp of the event read. 3317 * 3318 * This reads the next event in the ring buffer and increments the iterator. 3319 */ 3320 struct ring_buffer_event * 3321 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3322 { 3323 struct ring_buffer_event *event; 3324 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3325 unsigned long flags; 3326 3327 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3328 again: 3329 event = rb_iter_peek(iter, ts); 3330 if (!event) 3331 goto out; 3332 3333 if (event->type_len == RINGBUF_TYPE_PADDING) 3334 goto again; 3335 3336 rb_advance_iter(iter); 3337 out: 3338 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3339 3340 return event; 3341 } 3342 EXPORT_SYMBOL_GPL(ring_buffer_read); 3343 3344 /** 3345 * ring_buffer_size - return the size of the ring buffer (in bytes) 3346 * @buffer: The ring buffer. 3347 */ 3348 unsigned long ring_buffer_size(struct ring_buffer *buffer) 3349 { 3350 return BUF_PAGE_SIZE * buffer->pages; 3351 } 3352 EXPORT_SYMBOL_GPL(ring_buffer_size); 3353 3354 static void 3355 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3356 { 3357 rb_head_page_deactivate(cpu_buffer); 3358 3359 cpu_buffer->head_page 3360 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3361 local_set(&cpu_buffer->head_page->write, 0); 3362 local_set(&cpu_buffer->head_page->entries, 0); 3363 local_set(&cpu_buffer->head_page->page->commit, 0); 3364 3365 cpu_buffer->head_page->read = 0; 3366 3367 cpu_buffer->tail_page = cpu_buffer->head_page; 3368 cpu_buffer->commit_page = cpu_buffer->head_page; 3369 3370 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3371 local_set(&cpu_buffer->reader_page->write, 0); 3372 local_set(&cpu_buffer->reader_page->entries, 0); 3373 local_set(&cpu_buffer->reader_page->page->commit, 0); 3374 cpu_buffer->reader_page->read = 0; 3375 3376 local_set(&cpu_buffer->commit_overrun, 0); 3377 local_set(&cpu_buffer->overrun, 0); 3378 local_set(&cpu_buffer->entries, 0); 3379 local_set(&cpu_buffer->committing, 0); 3380 local_set(&cpu_buffer->commits, 0); 3381 cpu_buffer->read = 0; 3382 3383 cpu_buffer->write_stamp = 0; 3384 cpu_buffer->read_stamp = 0; 3385 3386 rb_head_page_activate(cpu_buffer); 3387 } 3388 3389 /** 3390 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3391 * @buffer: The ring buffer to reset a per cpu buffer of 3392 * @cpu: The CPU buffer to be reset 3393 */ 3394 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3395 { 3396 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3397 unsigned long flags; 3398 3399 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3400 return; 3401 3402 atomic_inc(&cpu_buffer->record_disabled); 3403 3404 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3405 3406 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3407 goto out; 3408 3409 __raw_spin_lock(&cpu_buffer->lock); 3410 3411 rb_reset_cpu(cpu_buffer); 3412 3413 __raw_spin_unlock(&cpu_buffer->lock); 3414 3415 out: 3416 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3417 3418 atomic_dec(&cpu_buffer->record_disabled); 3419 } 3420 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3421 3422 /** 3423 * ring_buffer_reset - reset a ring buffer 3424 * @buffer: The ring buffer to reset all cpu buffers 3425 */ 3426 void ring_buffer_reset(struct ring_buffer *buffer) 3427 { 3428 int cpu; 3429 3430 for_each_buffer_cpu(buffer, cpu) 3431 ring_buffer_reset_cpu(buffer, cpu); 3432 } 3433 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3434 3435 /** 3436 * rind_buffer_empty - is the ring buffer empty? 3437 * @buffer: The ring buffer to test 3438 */ 3439 int ring_buffer_empty(struct ring_buffer *buffer) 3440 { 3441 struct ring_buffer_per_cpu *cpu_buffer; 3442 unsigned long flags; 3443 int dolock; 3444 int cpu; 3445 int ret; 3446 3447 dolock = rb_ok_to_lock(); 3448 3449 /* yes this is racy, but if you don't like the race, lock the buffer */ 3450 for_each_buffer_cpu(buffer, cpu) { 3451 cpu_buffer = buffer->buffers[cpu]; 3452 local_irq_save(flags); 3453 if (dolock) 3454 spin_lock(&cpu_buffer->reader_lock); 3455 ret = rb_per_cpu_empty(cpu_buffer); 3456 if (dolock) 3457 spin_unlock(&cpu_buffer->reader_lock); 3458 local_irq_restore(flags); 3459 3460 if (!ret) 3461 return 0; 3462 } 3463 3464 return 1; 3465 } 3466 EXPORT_SYMBOL_GPL(ring_buffer_empty); 3467 3468 /** 3469 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 3470 * @buffer: The ring buffer 3471 * @cpu: The CPU buffer to test 3472 */ 3473 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 3474 { 3475 struct ring_buffer_per_cpu *cpu_buffer; 3476 unsigned long flags; 3477 int dolock; 3478 int ret; 3479 3480 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3481 return 1; 3482 3483 dolock = rb_ok_to_lock(); 3484 3485 cpu_buffer = buffer->buffers[cpu]; 3486 local_irq_save(flags); 3487 if (dolock) 3488 spin_lock(&cpu_buffer->reader_lock); 3489 ret = rb_per_cpu_empty(cpu_buffer); 3490 if (dolock) 3491 spin_unlock(&cpu_buffer->reader_lock); 3492 local_irq_restore(flags); 3493 3494 return ret; 3495 } 3496 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3497 3498 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3499 /** 3500 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3501 * @buffer_a: One buffer to swap with 3502 * @buffer_b: The other buffer to swap with 3503 * 3504 * This function is useful for tracers that want to take a "snapshot" 3505 * of a CPU buffer and has another back up buffer lying around. 3506 * it is expected that the tracer handles the cpu buffer not being 3507 * used at the moment. 3508 */ 3509 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 3510 struct ring_buffer *buffer_b, int cpu) 3511 { 3512 struct ring_buffer_per_cpu *cpu_buffer_a; 3513 struct ring_buffer_per_cpu *cpu_buffer_b; 3514 int ret = -EINVAL; 3515 3516 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 3517 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 3518 goto out; 3519 3520 /* At least make sure the two buffers are somewhat the same */ 3521 if (buffer_a->pages != buffer_b->pages) 3522 goto out; 3523 3524 ret = -EAGAIN; 3525 3526 if (ring_buffer_flags != RB_BUFFERS_ON) 3527 goto out; 3528 3529 if (atomic_read(&buffer_a->record_disabled)) 3530 goto out; 3531 3532 if (atomic_read(&buffer_b->record_disabled)) 3533 goto out; 3534 3535 cpu_buffer_a = buffer_a->buffers[cpu]; 3536 cpu_buffer_b = buffer_b->buffers[cpu]; 3537 3538 if (atomic_read(&cpu_buffer_a->record_disabled)) 3539 goto out; 3540 3541 if (atomic_read(&cpu_buffer_b->record_disabled)) 3542 goto out; 3543 3544 /* 3545 * We can't do a synchronize_sched here because this 3546 * function can be called in atomic context. 3547 * Normally this will be called from the same CPU as cpu. 3548 * If not it's up to the caller to protect this. 3549 */ 3550 atomic_inc(&cpu_buffer_a->record_disabled); 3551 atomic_inc(&cpu_buffer_b->record_disabled); 3552 3553 ret = -EBUSY; 3554 if (local_read(&cpu_buffer_a->committing)) 3555 goto out_dec; 3556 if (local_read(&cpu_buffer_b->committing)) 3557 goto out_dec; 3558 3559 buffer_a->buffers[cpu] = cpu_buffer_b; 3560 buffer_b->buffers[cpu] = cpu_buffer_a; 3561 3562 cpu_buffer_b->buffer = buffer_a; 3563 cpu_buffer_a->buffer = buffer_b; 3564 3565 ret = 0; 3566 3567 out_dec: 3568 atomic_dec(&cpu_buffer_a->record_disabled); 3569 atomic_dec(&cpu_buffer_b->record_disabled); 3570 out: 3571 return ret; 3572 } 3573 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 3574 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 3575 3576 /** 3577 * ring_buffer_alloc_read_page - allocate a page to read from buffer 3578 * @buffer: the buffer to allocate for. 3579 * 3580 * This function is used in conjunction with ring_buffer_read_page. 3581 * When reading a full page from the ring buffer, these functions 3582 * can be used to speed up the process. The calling function should 3583 * allocate a few pages first with this function. Then when it 3584 * needs to get pages from the ring buffer, it passes the result 3585 * of this function into ring_buffer_read_page, which will swap 3586 * the page that was allocated, with the read page of the buffer. 3587 * 3588 * Returns: 3589 * The page allocated, or NULL on error. 3590 */ 3591 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer) 3592 { 3593 struct buffer_data_page *bpage; 3594 unsigned long addr; 3595 3596 addr = __get_free_page(GFP_KERNEL); 3597 if (!addr) 3598 return NULL; 3599 3600 bpage = (void *)addr; 3601 3602 rb_init_page(bpage); 3603 3604 return bpage; 3605 } 3606 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 3607 3608 /** 3609 * ring_buffer_free_read_page - free an allocated read page 3610 * @buffer: the buffer the page was allocate for 3611 * @data: the page to free 3612 * 3613 * Free a page allocated from ring_buffer_alloc_read_page. 3614 */ 3615 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 3616 { 3617 free_page((unsigned long)data); 3618 } 3619 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 3620 3621 /** 3622 * ring_buffer_read_page - extract a page from the ring buffer 3623 * @buffer: buffer to extract from 3624 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 3625 * @len: amount to extract 3626 * @cpu: the cpu of the buffer to extract 3627 * @full: should the extraction only happen when the page is full. 3628 * 3629 * This function will pull out a page from the ring buffer and consume it. 3630 * @data_page must be the address of the variable that was returned 3631 * from ring_buffer_alloc_read_page. This is because the page might be used 3632 * to swap with a page in the ring buffer. 3633 * 3634 * for example: 3635 * rpage = ring_buffer_alloc_read_page(buffer); 3636 * if (!rpage) 3637 * return error; 3638 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 3639 * if (ret >= 0) 3640 * process_page(rpage, ret); 3641 * 3642 * When @full is set, the function will not return true unless 3643 * the writer is off the reader page. 3644 * 3645 * Note: it is up to the calling functions to handle sleeps and wakeups. 3646 * The ring buffer can be used anywhere in the kernel and can not 3647 * blindly call wake_up. The layer that uses the ring buffer must be 3648 * responsible for that. 3649 * 3650 * Returns: 3651 * >=0 if data has been transferred, returns the offset of consumed data. 3652 * <0 if no data has been transferred. 3653 */ 3654 int ring_buffer_read_page(struct ring_buffer *buffer, 3655 void **data_page, size_t len, int cpu, int full) 3656 { 3657 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3658 struct ring_buffer_event *event; 3659 struct buffer_data_page *bpage; 3660 struct buffer_page *reader; 3661 unsigned long flags; 3662 unsigned int commit; 3663 unsigned int read; 3664 u64 save_timestamp; 3665 int ret = -1; 3666 3667 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3668 goto out; 3669 3670 /* 3671 * If len is not big enough to hold the page header, then 3672 * we can not copy anything. 3673 */ 3674 if (len <= BUF_PAGE_HDR_SIZE) 3675 goto out; 3676 3677 len -= BUF_PAGE_HDR_SIZE; 3678 3679 if (!data_page) 3680 goto out; 3681 3682 bpage = *data_page; 3683 if (!bpage) 3684 goto out; 3685 3686 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3687 3688 reader = rb_get_reader_page(cpu_buffer); 3689 if (!reader) 3690 goto out_unlock; 3691 3692 event = rb_reader_event(cpu_buffer); 3693 3694 read = reader->read; 3695 commit = rb_page_commit(reader); 3696 3697 /* 3698 * If this page has been partially read or 3699 * if len is not big enough to read the rest of the page or 3700 * a writer is still on the page, then 3701 * we must copy the data from the page to the buffer. 3702 * Otherwise, we can simply swap the page with the one passed in. 3703 */ 3704 if (read || (len < (commit - read)) || 3705 cpu_buffer->reader_page == cpu_buffer->commit_page) { 3706 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 3707 unsigned int rpos = read; 3708 unsigned int pos = 0; 3709 unsigned int size; 3710 3711 if (full) 3712 goto out_unlock; 3713 3714 if (len > (commit - read)) 3715 len = (commit - read); 3716 3717 size = rb_event_length(event); 3718 3719 if (len < size) 3720 goto out_unlock; 3721 3722 /* save the current timestamp, since the user will need it */ 3723 save_timestamp = cpu_buffer->read_stamp; 3724 3725 /* Need to copy one event at a time */ 3726 do { 3727 memcpy(bpage->data + pos, rpage->data + rpos, size); 3728 3729 len -= size; 3730 3731 rb_advance_reader(cpu_buffer); 3732 rpos = reader->read; 3733 pos += size; 3734 3735 event = rb_reader_event(cpu_buffer); 3736 size = rb_event_length(event); 3737 } while (len > size); 3738 3739 /* update bpage */ 3740 local_set(&bpage->commit, pos); 3741 bpage->time_stamp = save_timestamp; 3742 3743 /* we copied everything to the beginning */ 3744 read = 0; 3745 } else { 3746 /* update the entry counter */ 3747 cpu_buffer->read += rb_page_entries(reader); 3748 3749 /* swap the pages */ 3750 rb_init_page(bpage); 3751 bpage = reader->page; 3752 reader->page = *data_page; 3753 local_set(&reader->write, 0); 3754 local_set(&reader->entries, 0); 3755 reader->read = 0; 3756 *data_page = bpage; 3757 } 3758 ret = read; 3759 3760 out_unlock: 3761 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3762 3763 out: 3764 return ret; 3765 } 3766 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 3767 3768 #ifdef CONFIG_TRACING 3769 static ssize_t 3770 rb_simple_read(struct file *filp, char __user *ubuf, 3771 size_t cnt, loff_t *ppos) 3772 { 3773 unsigned long *p = filp->private_data; 3774 char buf[64]; 3775 int r; 3776 3777 if (test_bit(RB_BUFFERS_DISABLED_BIT, p)) 3778 r = sprintf(buf, "permanently disabled\n"); 3779 else 3780 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p)); 3781 3782 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 3783 } 3784 3785 static ssize_t 3786 rb_simple_write(struct file *filp, const char __user *ubuf, 3787 size_t cnt, loff_t *ppos) 3788 { 3789 unsigned long *p = filp->private_data; 3790 char buf[64]; 3791 unsigned long val; 3792 int ret; 3793 3794 if (cnt >= sizeof(buf)) 3795 return -EINVAL; 3796 3797 if (copy_from_user(&buf, ubuf, cnt)) 3798 return -EFAULT; 3799 3800 buf[cnt] = 0; 3801 3802 ret = strict_strtoul(buf, 10, &val); 3803 if (ret < 0) 3804 return ret; 3805 3806 if (val) 3807 set_bit(RB_BUFFERS_ON_BIT, p); 3808 else 3809 clear_bit(RB_BUFFERS_ON_BIT, p); 3810 3811 (*ppos)++; 3812 3813 return cnt; 3814 } 3815 3816 static const struct file_operations rb_simple_fops = { 3817 .open = tracing_open_generic, 3818 .read = rb_simple_read, 3819 .write = rb_simple_write, 3820 }; 3821 3822 3823 static __init int rb_init_debugfs(void) 3824 { 3825 struct dentry *d_tracer; 3826 3827 d_tracer = tracing_init_dentry(); 3828 3829 trace_create_file("tracing_on", 0644, d_tracer, 3830 &ring_buffer_flags, &rb_simple_fops); 3831 3832 return 0; 3833 } 3834 3835 fs_initcall(rb_init_debugfs); 3836 #endif 3837 3838 #ifdef CONFIG_HOTPLUG_CPU 3839 static int rb_cpu_notify(struct notifier_block *self, 3840 unsigned long action, void *hcpu) 3841 { 3842 struct ring_buffer *buffer = 3843 container_of(self, struct ring_buffer, cpu_notify); 3844 long cpu = (long)hcpu; 3845 3846 switch (action) { 3847 case CPU_UP_PREPARE: 3848 case CPU_UP_PREPARE_FROZEN: 3849 if (cpumask_test_cpu(cpu, buffer->cpumask)) 3850 return NOTIFY_OK; 3851 3852 buffer->buffers[cpu] = 3853 rb_allocate_cpu_buffer(buffer, cpu); 3854 if (!buffer->buffers[cpu]) { 3855 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 3856 cpu); 3857 return NOTIFY_OK; 3858 } 3859 smp_wmb(); 3860 cpumask_set_cpu(cpu, buffer->cpumask); 3861 break; 3862 case CPU_DOWN_PREPARE: 3863 case CPU_DOWN_PREPARE_FROZEN: 3864 /* 3865 * Do nothing. 3866 * If we were to free the buffer, then the user would 3867 * lose any trace that was in the buffer. 3868 */ 3869 break; 3870 default: 3871 break; 3872 } 3873 return NOTIFY_OK; 3874 } 3875 #endif 3876