1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/sched/clock.h> 10 #include <linux/trace_seq.h> 11 #include <linux/spinlock.h> 12 #include <linux/irq_work.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* Used for individual buffers (after the counter) */ 119 #define RB_BUFFER_OFF (1 << 20) 120 121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 122 123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 124 #define RB_ALIGNMENT 4U 125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 127 128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 129 # define RB_FORCE_8BYTE_ALIGNMENT 0 130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 131 #else 132 # define RB_FORCE_8BYTE_ALIGNMENT 1 133 # define RB_ARCH_ALIGNMENT 8U 134 #endif 135 136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 137 138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 140 141 enum { 142 RB_LEN_TIME_EXTEND = 8, 143 RB_LEN_TIME_STAMP = 16, 144 }; 145 146 #define skip_time_extend(event) \ 147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 148 149 static inline int rb_null_event(struct ring_buffer_event *event) 150 { 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 152 } 153 154 static void rb_event_set_padding(struct ring_buffer_event *event) 155 { 156 /* padding has a NULL time_delta */ 157 event->type_len = RINGBUF_TYPE_PADDING; 158 event->time_delta = 0; 159 } 160 161 static unsigned 162 rb_event_data_length(struct ring_buffer_event *event) 163 { 164 unsigned length; 165 166 if (event->type_len) 167 length = event->type_len * RB_ALIGNMENT; 168 else 169 length = event->array[0]; 170 return length + RB_EVNT_HDR_SIZE; 171 } 172 173 /* 174 * Return the length of the given event. Will return 175 * the length of the time extend if the event is a 176 * time extend. 177 */ 178 static inline unsigned 179 rb_event_length(struct ring_buffer_event *event) 180 { 181 switch (event->type_len) { 182 case RINGBUF_TYPE_PADDING: 183 if (rb_null_event(event)) 184 /* undefined */ 185 return -1; 186 return event->array[0] + RB_EVNT_HDR_SIZE; 187 188 case RINGBUF_TYPE_TIME_EXTEND: 189 return RB_LEN_TIME_EXTEND; 190 191 case RINGBUF_TYPE_TIME_STAMP: 192 return RB_LEN_TIME_STAMP; 193 194 case RINGBUF_TYPE_DATA: 195 return rb_event_data_length(event); 196 default: 197 BUG(); 198 } 199 /* not hit */ 200 return 0; 201 } 202 203 /* 204 * Return total length of time extend and data, 205 * or just the event length for all other events. 206 */ 207 static inline unsigned 208 rb_event_ts_length(struct ring_buffer_event *event) 209 { 210 unsigned len = 0; 211 212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 213 /* time extends include the data event after it */ 214 len = RB_LEN_TIME_EXTEND; 215 event = skip_time_extend(event); 216 } 217 return len + rb_event_length(event); 218 } 219 220 /** 221 * ring_buffer_event_length - return the length of the event 222 * @event: the event to get the length of 223 * 224 * Returns the size of the data load of a data event. 225 * If the event is something other than a data event, it 226 * returns the size of the event itself. With the exception 227 * of a TIME EXTEND, where it still returns the size of the 228 * data load of the data event after it. 229 */ 230 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 235 event = skip_time_extend(event); 236 237 length = rb_event_length(event); 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 239 return length; 240 length -= RB_EVNT_HDR_SIZE; 241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 242 length -= sizeof(event->array[0]); 243 return length; 244 } 245 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 246 247 /* inline for ring buffer fast paths */ 248 static __always_inline void * 249 rb_event_data(struct ring_buffer_event *event) 250 { 251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 252 event = skip_time_extend(event); 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 254 /* If length is in len field, then array[0] has the data */ 255 if (event->type_len) 256 return (void *)&event->array[0]; 257 /* Otherwise length is in array[0] and array[1] has the data */ 258 return (void *)&event->array[1]; 259 } 260 261 /** 262 * ring_buffer_event_data - return the data of the event 263 * @event: the event to get the data from 264 */ 265 void *ring_buffer_event_data(struct ring_buffer_event *event) 266 { 267 return rb_event_data(event); 268 } 269 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 270 271 #define for_each_buffer_cpu(buffer, cpu) \ 272 for_each_cpu(cpu, buffer->cpumask) 273 274 #define TS_SHIFT 27 275 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 276 #define TS_DELTA_TEST (~TS_MASK) 277 278 /* Flag when events were overwritten */ 279 #define RB_MISSED_EVENTS (1 << 31) 280 /* Missed count stored at end */ 281 #define RB_MISSED_STORED (1 << 30) 282 283 struct buffer_data_page { 284 u64 time_stamp; /* page time stamp */ 285 local_t commit; /* write committed index */ 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 287 }; 288 289 /* 290 * Note, the buffer_page list must be first. The buffer pages 291 * are allocated in cache lines, which means that each buffer 292 * page will be at the beginning of a cache line, and thus 293 * the least significant bits will be zero. We use this to 294 * add flags in the list struct pointers, to make the ring buffer 295 * lockless. 296 */ 297 struct buffer_page { 298 struct list_head list; /* list of buffer pages */ 299 local_t write; /* index for next write */ 300 unsigned read; /* index for next read */ 301 local_t entries; /* entries on this page */ 302 unsigned long real_end; /* real end of data */ 303 struct buffer_data_page *page; /* Actual data page */ 304 }; 305 306 /* 307 * The buffer page counters, write and entries, must be reset 308 * atomically when crossing page boundaries. To synchronize this 309 * update, two counters are inserted into the number. One is 310 * the actual counter for the write position or count on the page. 311 * 312 * The other is a counter of updaters. Before an update happens 313 * the update partition of the counter is incremented. This will 314 * allow the updater to update the counter atomically. 315 * 316 * The counter is 20 bits, and the state data is 12. 317 */ 318 #define RB_WRITE_MASK 0xfffff 319 #define RB_WRITE_INTCNT (1 << 20) 320 321 static void rb_init_page(struct buffer_data_page *bpage) 322 { 323 local_set(&bpage->commit, 0); 324 } 325 326 /** 327 * ring_buffer_page_len - the size of data on the page. 328 * @page: The page to read 329 * 330 * Returns the amount of data on the page, including buffer page header. 331 */ 332 size_t ring_buffer_page_len(void *page) 333 { 334 return local_read(&((struct buffer_data_page *)page)->commit) 335 + BUF_PAGE_HDR_SIZE; 336 } 337 338 /* 339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 340 * this issue out. 341 */ 342 static void free_buffer_page(struct buffer_page *bpage) 343 { 344 free_page((unsigned long)bpage->page); 345 kfree(bpage); 346 } 347 348 /* 349 * We need to fit the time_stamp delta into 27 bits. 350 */ 351 static inline int test_time_stamp(u64 delta) 352 { 353 if (delta & TS_DELTA_TEST) 354 return 1; 355 return 0; 356 } 357 358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 359 360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 362 363 int ring_buffer_print_page_header(struct trace_seq *s) 364 { 365 struct buffer_data_page field; 366 367 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 368 "offset:0;\tsize:%u;\tsigned:%u;\n", 369 (unsigned int)sizeof(field.time_stamp), 370 (unsigned int)is_signed_type(u64)); 371 372 trace_seq_printf(s, "\tfield: local_t commit;\t" 373 "offset:%u;\tsize:%u;\tsigned:%u;\n", 374 (unsigned int)offsetof(typeof(field), commit), 375 (unsigned int)sizeof(field.commit), 376 (unsigned int)is_signed_type(long)); 377 378 trace_seq_printf(s, "\tfield: int overwrite;\t" 379 "offset:%u;\tsize:%u;\tsigned:%u;\n", 380 (unsigned int)offsetof(typeof(field), commit), 381 1, 382 (unsigned int)is_signed_type(long)); 383 384 trace_seq_printf(s, "\tfield: char data;\t" 385 "offset:%u;\tsize:%u;\tsigned:%u;\n", 386 (unsigned int)offsetof(typeof(field), data), 387 (unsigned int)BUF_PAGE_SIZE, 388 (unsigned int)is_signed_type(char)); 389 390 return !trace_seq_has_overflowed(s); 391 } 392 393 struct rb_irq_work { 394 struct irq_work work; 395 wait_queue_head_t waiters; 396 wait_queue_head_t full_waiters; 397 bool waiters_pending; 398 bool full_waiters_pending; 399 bool wakeup_full; 400 }; 401 402 /* 403 * Structure to hold event state and handle nested events. 404 */ 405 struct rb_event_info { 406 u64 ts; 407 u64 delta; 408 unsigned long length; 409 struct buffer_page *tail_page; 410 int add_timestamp; 411 }; 412 413 /* 414 * Used for which event context the event is in. 415 * NMI = 0 416 * IRQ = 1 417 * SOFTIRQ = 2 418 * NORMAL = 3 419 * 420 * See trace_recursive_lock() comment below for more details. 421 */ 422 enum { 423 RB_CTX_NMI, 424 RB_CTX_IRQ, 425 RB_CTX_SOFTIRQ, 426 RB_CTX_NORMAL, 427 RB_CTX_MAX 428 }; 429 430 /* 431 * head_page == tail_page && head == tail then buffer is empty. 432 */ 433 struct ring_buffer_per_cpu { 434 int cpu; 435 atomic_t record_disabled; 436 struct ring_buffer *buffer; 437 raw_spinlock_t reader_lock; /* serialize readers */ 438 arch_spinlock_t lock; 439 struct lock_class_key lock_key; 440 struct buffer_data_page *free_page; 441 unsigned long nr_pages; 442 unsigned int current_context; 443 struct list_head *pages; 444 struct buffer_page *head_page; /* read from head */ 445 struct buffer_page *tail_page; /* write to tail */ 446 struct buffer_page *commit_page; /* committed pages */ 447 struct buffer_page *reader_page; 448 unsigned long lost_events; 449 unsigned long last_overrun; 450 local_t entries_bytes; 451 local_t entries; 452 local_t overrun; 453 local_t commit_overrun; 454 local_t dropped_events; 455 local_t committing; 456 local_t commits; 457 unsigned long read; 458 unsigned long read_bytes; 459 u64 write_stamp; 460 u64 read_stamp; 461 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 462 long nr_pages_to_update; 463 struct list_head new_pages; /* new pages to add */ 464 struct work_struct update_pages_work; 465 struct completion update_done; 466 467 struct rb_irq_work irq_work; 468 }; 469 470 struct ring_buffer { 471 unsigned flags; 472 int cpus; 473 atomic_t record_disabled; 474 atomic_t resize_disabled; 475 cpumask_var_t cpumask; 476 477 struct lock_class_key *reader_lock_key; 478 479 struct mutex mutex; 480 481 struct ring_buffer_per_cpu **buffers; 482 483 struct hlist_node node; 484 u64 (*clock)(void); 485 486 struct rb_irq_work irq_work; 487 }; 488 489 struct ring_buffer_iter { 490 struct ring_buffer_per_cpu *cpu_buffer; 491 unsigned long head; 492 struct buffer_page *head_page; 493 struct buffer_page *cache_reader_page; 494 unsigned long cache_read; 495 u64 read_stamp; 496 }; 497 498 /* 499 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 500 * 501 * Schedules a delayed work to wake up any task that is blocked on the 502 * ring buffer waiters queue. 503 */ 504 static void rb_wake_up_waiters(struct irq_work *work) 505 { 506 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 507 508 wake_up_all(&rbwork->waiters); 509 if (rbwork->wakeup_full) { 510 rbwork->wakeup_full = false; 511 wake_up_all(&rbwork->full_waiters); 512 } 513 } 514 515 /** 516 * ring_buffer_wait - wait for input to the ring buffer 517 * @buffer: buffer to wait on 518 * @cpu: the cpu buffer to wait on 519 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 520 * 521 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 522 * as data is added to any of the @buffer's cpu buffers. Otherwise 523 * it will wait for data to be added to a specific cpu buffer. 524 */ 525 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 526 { 527 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 528 DEFINE_WAIT(wait); 529 struct rb_irq_work *work; 530 int ret = 0; 531 532 /* 533 * Depending on what the caller is waiting for, either any 534 * data in any cpu buffer, or a specific buffer, put the 535 * caller on the appropriate wait queue. 536 */ 537 if (cpu == RING_BUFFER_ALL_CPUS) { 538 work = &buffer->irq_work; 539 /* Full only makes sense on per cpu reads */ 540 full = false; 541 } else { 542 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 543 return -ENODEV; 544 cpu_buffer = buffer->buffers[cpu]; 545 work = &cpu_buffer->irq_work; 546 } 547 548 549 while (true) { 550 if (full) 551 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 552 else 553 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 554 555 /* 556 * The events can happen in critical sections where 557 * checking a work queue can cause deadlocks. 558 * After adding a task to the queue, this flag is set 559 * only to notify events to try to wake up the queue 560 * using irq_work. 561 * 562 * We don't clear it even if the buffer is no longer 563 * empty. The flag only causes the next event to run 564 * irq_work to do the work queue wake up. The worse 565 * that can happen if we race with !trace_empty() is that 566 * an event will cause an irq_work to try to wake up 567 * an empty queue. 568 * 569 * There's no reason to protect this flag either, as 570 * the work queue and irq_work logic will do the necessary 571 * synchronization for the wake ups. The only thing 572 * that is necessary is that the wake up happens after 573 * a task has been queued. It's OK for spurious wake ups. 574 */ 575 if (full) 576 work->full_waiters_pending = true; 577 else 578 work->waiters_pending = true; 579 580 if (signal_pending(current)) { 581 ret = -EINTR; 582 break; 583 } 584 585 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 586 break; 587 588 if (cpu != RING_BUFFER_ALL_CPUS && 589 !ring_buffer_empty_cpu(buffer, cpu)) { 590 unsigned long flags; 591 bool pagebusy; 592 593 if (!full) 594 break; 595 596 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 597 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 598 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 599 600 if (!pagebusy) 601 break; 602 } 603 604 schedule(); 605 } 606 607 if (full) 608 finish_wait(&work->full_waiters, &wait); 609 else 610 finish_wait(&work->waiters, &wait); 611 612 return ret; 613 } 614 615 /** 616 * ring_buffer_poll_wait - poll on buffer input 617 * @buffer: buffer to wait on 618 * @cpu: the cpu buffer to wait on 619 * @filp: the file descriptor 620 * @poll_table: The poll descriptor 621 * 622 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 623 * as data is added to any of the @buffer's cpu buffers. Otherwise 624 * it will wait for data to be added to a specific cpu buffer. 625 * 626 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 627 * zero otherwise. 628 */ 629 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 630 struct file *filp, poll_table *poll_table) 631 { 632 struct ring_buffer_per_cpu *cpu_buffer; 633 struct rb_irq_work *work; 634 635 if (cpu == RING_BUFFER_ALL_CPUS) 636 work = &buffer->irq_work; 637 else { 638 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 639 return -EINVAL; 640 641 cpu_buffer = buffer->buffers[cpu]; 642 work = &cpu_buffer->irq_work; 643 } 644 645 poll_wait(filp, &work->waiters, poll_table); 646 work->waiters_pending = true; 647 /* 648 * There's a tight race between setting the waiters_pending and 649 * checking if the ring buffer is empty. Once the waiters_pending bit 650 * is set, the next event will wake the task up, but we can get stuck 651 * if there's only a single event in. 652 * 653 * FIXME: Ideally, we need a memory barrier on the writer side as well, 654 * but adding a memory barrier to all events will cause too much of a 655 * performance hit in the fast path. We only need a memory barrier when 656 * the buffer goes from empty to having content. But as this race is 657 * extremely small, and it's not a problem if another event comes in, we 658 * will fix it later. 659 */ 660 smp_mb(); 661 662 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 663 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 664 return POLLIN | POLLRDNORM; 665 return 0; 666 } 667 668 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 669 #define RB_WARN_ON(b, cond) \ 670 ({ \ 671 int _____ret = unlikely(cond); \ 672 if (_____ret) { \ 673 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 674 struct ring_buffer_per_cpu *__b = \ 675 (void *)b; \ 676 atomic_inc(&__b->buffer->record_disabled); \ 677 } else \ 678 atomic_inc(&b->record_disabled); \ 679 WARN_ON(1); \ 680 } \ 681 _____ret; \ 682 }) 683 684 /* Up this if you want to test the TIME_EXTENTS and normalization */ 685 #define DEBUG_SHIFT 0 686 687 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 688 { 689 /* shift to debug/test normalization and TIME_EXTENTS */ 690 return buffer->clock() << DEBUG_SHIFT; 691 } 692 693 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 694 { 695 u64 time; 696 697 preempt_disable_notrace(); 698 time = rb_time_stamp(buffer); 699 preempt_enable_no_resched_notrace(); 700 701 return time; 702 } 703 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 704 705 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 706 int cpu, u64 *ts) 707 { 708 /* Just stupid testing the normalize function and deltas */ 709 *ts >>= DEBUG_SHIFT; 710 } 711 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 712 713 /* 714 * Making the ring buffer lockless makes things tricky. 715 * Although writes only happen on the CPU that they are on, 716 * and they only need to worry about interrupts. Reads can 717 * happen on any CPU. 718 * 719 * The reader page is always off the ring buffer, but when the 720 * reader finishes with a page, it needs to swap its page with 721 * a new one from the buffer. The reader needs to take from 722 * the head (writes go to the tail). But if a writer is in overwrite 723 * mode and wraps, it must push the head page forward. 724 * 725 * Here lies the problem. 726 * 727 * The reader must be careful to replace only the head page, and 728 * not another one. As described at the top of the file in the 729 * ASCII art, the reader sets its old page to point to the next 730 * page after head. It then sets the page after head to point to 731 * the old reader page. But if the writer moves the head page 732 * during this operation, the reader could end up with the tail. 733 * 734 * We use cmpxchg to help prevent this race. We also do something 735 * special with the page before head. We set the LSB to 1. 736 * 737 * When the writer must push the page forward, it will clear the 738 * bit that points to the head page, move the head, and then set 739 * the bit that points to the new head page. 740 * 741 * We also don't want an interrupt coming in and moving the head 742 * page on another writer. Thus we use the second LSB to catch 743 * that too. Thus: 744 * 745 * head->list->prev->next bit 1 bit 0 746 * ------- ------- 747 * Normal page 0 0 748 * Points to head page 0 1 749 * New head page 1 0 750 * 751 * Note we can not trust the prev pointer of the head page, because: 752 * 753 * +----+ +-----+ +-----+ 754 * | |------>| T |---X--->| N | 755 * | |<------| | | | 756 * +----+ +-----+ +-----+ 757 * ^ ^ | 758 * | +-----+ | | 759 * +----------| R |----------+ | 760 * | |<-----------+ 761 * +-----+ 762 * 763 * Key: ---X--> HEAD flag set in pointer 764 * T Tail page 765 * R Reader page 766 * N Next page 767 * 768 * (see __rb_reserve_next() to see where this happens) 769 * 770 * What the above shows is that the reader just swapped out 771 * the reader page with a page in the buffer, but before it 772 * could make the new header point back to the new page added 773 * it was preempted by a writer. The writer moved forward onto 774 * the new page added by the reader and is about to move forward 775 * again. 776 * 777 * You can see, it is legitimate for the previous pointer of 778 * the head (or any page) not to point back to itself. But only 779 * temporarially. 780 */ 781 782 #define RB_PAGE_NORMAL 0UL 783 #define RB_PAGE_HEAD 1UL 784 #define RB_PAGE_UPDATE 2UL 785 786 787 #define RB_FLAG_MASK 3UL 788 789 /* PAGE_MOVED is not part of the mask */ 790 #define RB_PAGE_MOVED 4UL 791 792 /* 793 * rb_list_head - remove any bit 794 */ 795 static struct list_head *rb_list_head(struct list_head *list) 796 { 797 unsigned long val = (unsigned long)list; 798 799 return (struct list_head *)(val & ~RB_FLAG_MASK); 800 } 801 802 /* 803 * rb_is_head_page - test if the given page is the head page 804 * 805 * Because the reader may move the head_page pointer, we can 806 * not trust what the head page is (it may be pointing to 807 * the reader page). But if the next page is a header page, 808 * its flags will be non zero. 809 */ 810 static inline int 811 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 812 struct buffer_page *page, struct list_head *list) 813 { 814 unsigned long val; 815 816 val = (unsigned long)list->next; 817 818 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 819 return RB_PAGE_MOVED; 820 821 return val & RB_FLAG_MASK; 822 } 823 824 /* 825 * rb_is_reader_page 826 * 827 * The unique thing about the reader page, is that, if the 828 * writer is ever on it, the previous pointer never points 829 * back to the reader page. 830 */ 831 static bool rb_is_reader_page(struct buffer_page *page) 832 { 833 struct list_head *list = page->list.prev; 834 835 return rb_list_head(list->next) != &page->list; 836 } 837 838 /* 839 * rb_set_list_to_head - set a list_head to be pointing to head. 840 */ 841 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 842 struct list_head *list) 843 { 844 unsigned long *ptr; 845 846 ptr = (unsigned long *)&list->next; 847 *ptr |= RB_PAGE_HEAD; 848 *ptr &= ~RB_PAGE_UPDATE; 849 } 850 851 /* 852 * rb_head_page_activate - sets up head page 853 */ 854 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 855 { 856 struct buffer_page *head; 857 858 head = cpu_buffer->head_page; 859 if (!head) 860 return; 861 862 /* 863 * Set the previous list pointer to have the HEAD flag. 864 */ 865 rb_set_list_to_head(cpu_buffer, head->list.prev); 866 } 867 868 static void rb_list_head_clear(struct list_head *list) 869 { 870 unsigned long *ptr = (unsigned long *)&list->next; 871 872 *ptr &= ~RB_FLAG_MASK; 873 } 874 875 /* 876 * rb_head_page_dactivate - clears head page ptr (for free list) 877 */ 878 static void 879 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 880 { 881 struct list_head *hd; 882 883 /* Go through the whole list and clear any pointers found. */ 884 rb_list_head_clear(cpu_buffer->pages); 885 886 list_for_each(hd, cpu_buffer->pages) 887 rb_list_head_clear(hd); 888 } 889 890 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 891 struct buffer_page *head, 892 struct buffer_page *prev, 893 int old_flag, int new_flag) 894 { 895 struct list_head *list; 896 unsigned long val = (unsigned long)&head->list; 897 unsigned long ret; 898 899 list = &prev->list; 900 901 val &= ~RB_FLAG_MASK; 902 903 ret = cmpxchg((unsigned long *)&list->next, 904 val | old_flag, val | new_flag); 905 906 /* check if the reader took the page */ 907 if ((ret & ~RB_FLAG_MASK) != val) 908 return RB_PAGE_MOVED; 909 910 return ret & RB_FLAG_MASK; 911 } 912 913 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 914 struct buffer_page *head, 915 struct buffer_page *prev, 916 int old_flag) 917 { 918 return rb_head_page_set(cpu_buffer, head, prev, 919 old_flag, RB_PAGE_UPDATE); 920 } 921 922 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 923 struct buffer_page *head, 924 struct buffer_page *prev, 925 int old_flag) 926 { 927 return rb_head_page_set(cpu_buffer, head, prev, 928 old_flag, RB_PAGE_HEAD); 929 } 930 931 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 932 struct buffer_page *head, 933 struct buffer_page *prev, 934 int old_flag) 935 { 936 return rb_head_page_set(cpu_buffer, head, prev, 937 old_flag, RB_PAGE_NORMAL); 938 } 939 940 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 941 struct buffer_page **bpage) 942 { 943 struct list_head *p = rb_list_head((*bpage)->list.next); 944 945 *bpage = list_entry(p, struct buffer_page, list); 946 } 947 948 static struct buffer_page * 949 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 950 { 951 struct buffer_page *head; 952 struct buffer_page *page; 953 struct list_head *list; 954 int i; 955 956 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 957 return NULL; 958 959 /* sanity check */ 960 list = cpu_buffer->pages; 961 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 962 return NULL; 963 964 page = head = cpu_buffer->head_page; 965 /* 966 * It is possible that the writer moves the header behind 967 * where we started, and we miss in one loop. 968 * A second loop should grab the header, but we'll do 969 * three loops just because I'm paranoid. 970 */ 971 for (i = 0; i < 3; i++) { 972 do { 973 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 974 cpu_buffer->head_page = page; 975 return page; 976 } 977 rb_inc_page(cpu_buffer, &page); 978 } while (page != head); 979 } 980 981 RB_WARN_ON(cpu_buffer, 1); 982 983 return NULL; 984 } 985 986 static int rb_head_page_replace(struct buffer_page *old, 987 struct buffer_page *new) 988 { 989 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 990 unsigned long val; 991 unsigned long ret; 992 993 val = *ptr & ~RB_FLAG_MASK; 994 val |= RB_PAGE_HEAD; 995 996 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 997 998 return ret == val; 999 } 1000 1001 /* 1002 * rb_tail_page_update - move the tail page forward 1003 */ 1004 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1005 struct buffer_page *tail_page, 1006 struct buffer_page *next_page) 1007 { 1008 unsigned long old_entries; 1009 unsigned long old_write; 1010 1011 /* 1012 * The tail page now needs to be moved forward. 1013 * 1014 * We need to reset the tail page, but without messing 1015 * with possible erasing of data brought in by interrupts 1016 * that have moved the tail page and are currently on it. 1017 * 1018 * We add a counter to the write field to denote this. 1019 */ 1020 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1021 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1022 1023 /* 1024 * Just make sure we have seen our old_write and synchronize 1025 * with any interrupts that come in. 1026 */ 1027 barrier(); 1028 1029 /* 1030 * If the tail page is still the same as what we think 1031 * it is, then it is up to us to update the tail 1032 * pointer. 1033 */ 1034 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1035 /* Zero the write counter */ 1036 unsigned long val = old_write & ~RB_WRITE_MASK; 1037 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1038 1039 /* 1040 * This will only succeed if an interrupt did 1041 * not come in and change it. In which case, we 1042 * do not want to modify it. 1043 * 1044 * We add (void) to let the compiler know that we do not care 1045 * about the return value of these functions. We use the 1046 * cmpxchg to only update if an interrupt did not already 1047 * do it for us. If the cmpxchg fails, we don't care. 1048 */ 1049 (void)local_cmpxchg(&next_page->write, old_write, val); 1050 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1051 1052 /* 1053 * No need to worry about races with clearing out the commit. 1054 * it only can increment when a commit takes place. But that 1055 * only happens in the outer most nested commit. 1056 */ 1057 local_set(&next_page->page->commit, 0); 1058 1059 /* Again, either we update tail_page or an interrupt does */ 1060 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1061 } 1062 } 1063 1064 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1065 struct buffer_page *bpage) 1066 { 1067 unsigned long val = (unsigned long)bpage; 1068 1069 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1070 return 1; 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * rb_check_list - make sure a pointer to a list has the last bits zero 1077 */ 1078 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1079 struct list_head *list) 1080 { 1081 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1082 return 1; 1083 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1084 return 1; 1085 return 0; 1086 } 1087 1088 /** 1089 * rb_check_pages - integrity check of buffer pages 1090 * @cpu_buffer: CPU buffer with pages to test 1091 * 1092 * As a safety measure we check to make sure the data pages have not 1093 * been corrupted. 1094 */ 1095 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1096 { 1097 struct list_head *head = cpu_buffer->pages; 1098 struct buffer_page *bpage, *tmp; 1099 1100 /* Reset the head page if it exists */ 1101 if (cpu_buffer->head_page) 1102 rb_set_head_page(cpu_buffer); 1103 1104 rb_head_page_deactivate(cpu_buffer); 1105 1106 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1107 return -1; 1108 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1109 return -1; 1110 1111 if (rb_check_list(cpu_buffer, head)) 1112 return -1; 1113 1114 list_for_each_entry_safe(bpage, tmp, head, list) { 1115 if (RB_WARN_ON(cpu_buffer, 1116 bpage->list.next->prev != &bpage->list)) 1117 return -1; 1118 if (RB_WARN_ON(cpu_buffer, 1119 bpage->list.prev->next != &bpage->list)) 1120 return -1; 1121 if (rb_check_list(cpu_buffer, &bpage->list)) 1122 return -1; 1123 } 1124 1125 rb_head_page_activate(cpu_buffer); 1126 1127 return 0; 1128 } 1129 1130 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1131 { 1132 struct buffer_page *bpage, *tmp; 1133 long i; 1134 1135 for (i = 0; i < nr_pages; i++) { 1136 struct page *page; 1137 /* 1138 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1139 * gracefully without invoking oom-killer and the system is not 1140 * destabilized. 1141 */ 1142 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1143 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 1144 cpu_to_node(cpu)); 1145 if (!bpage) 1146 goto free_pages; 1147 1148 list_add(&bpage->list, pages); 1149 1150 page = alloc_pages_node(cpu_to_node(cpu), 1151 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0); 1152 if (!page) 1153 goto free_pages; 1154 bpage->page = page_address(page); 1155 rb_init_page(bpage->page); 1156 } 1157 1158 return 0; 1159 1160 free_pages: 1161 list_for_each_entry_safe(bpage, tmp, pages, list) { 1162 list_del_init(&bpage->list); 1163 free_buffer_page(bpage); 1164 } 1165 1166 return -ENOMEM; 1167 } 1168 1169 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1170 unsigned long nr_pages) 1171 { 1172 LIST_HEAD(pages); 1173 1174 WARN_ON(!nr_pages); 1175 1176 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1177 return -ENOMEM; 1178 1179 /* 1180 * The ring buffer page list is a circular list that does not 1181 * start and end with a list head. All page list items point to 1182 * other pages. 1183 */ 1184 cpu_buffer->pages = pages.next; 1185 list_del(&pages); 1186 1187 cpu_buffer->nr_pages = nr_pages; 1188 1189 rb_check_pages(cpu_buffer); 1190 1191 return 0; 1192 } 1193 1194 static struct ring_buffer_per_cpu * 1195 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1196 { 1197 struct ring_buffer_per_cpu *cpu_buffer; 1198 struct buffer_page *bpage; 1199 struct page *page; 1200 int ret; 1201 1202 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1203 GFP_KERNEL, cpu_to_node(cpu)); 1204 if (!cpu_buffer) 1205 return NULL; 1206 1207 cpu_buffer->cpu = cpu; 1208 cpu_buffer->buffer = buffer; 1209 raw_spin_lock_init(&cpu_buffer->reader_lock); 1210 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1211 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1212 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1213 init_completion(&cpu_buffer->update_done); 1214 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1215 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1216 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1217 1218 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1219 GFP_KERNEL, cpu_to_node(cpu)); 1220 if (!bpage) 1221 goto fail_free_buffer; 1222 1223 rb_check_bpage(cpu_buffer, bpage); 1224 1225 cpu_buffer->reader_page = bpage; 1226 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1227 if (!page) 1228 goto fail_free_reader; 1229 bpage->page = page_address(page); 1230 rb_init_page(bpage->page); 1231 1232 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1233 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1234 1235 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1236 if (ret < 0) 1237 goto fail_free_reader; 1238 1239 cpu_buffer->head_page 1240 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1241 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1242 1243 rb_head_page_activate(cpu_buffer); 1244 1245 return cpu_buffer; 1246 1247 fail_free_reader: 1248 free_buffer_page(cpu_buffer->reader_page); 1249 1250 fail_free_buffer: 1251 kfree(cpu_buffer); 1252 return NULL; 1253 } 1254 1255 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1256 { 1257 struct list_head *head = cpu_buffer->pages; 1258 struct buffer_page *bpage, *tmp; 1259 1260 free_buffer_page(cpu_buffer->reader_page); 1261 1262 rb_head_page_deactivate(cpu_buffer); 1263 1264 if (head) { 1265 list_for_each_entry_safe(bpage, tmp, head, list) { 1266 list_del_init(&bpage->list); 1267 free_buffer_page(bpage); 1268 } 1269 bpage = list_entry(head, struct buffer_page, list); 1270 free_buffer_page(bpage); 1271 } 1272 1273 kfree(cpu_buffer); 1274 } 1275 1276 /** 1277 * __ring_buffer_alloc - allocate a new ring_buffer 1278 * @size: the size in bytes per cpu that is needed. 1279 * @flags: attributes to set for the ring buffer. 1280 * 1281 * Currently the only flag that is available is the RB_FL_OVERWRITE 1282 * flag. This flag means that the buffer will overwrite old data 1283 * when the buffer wraps. If this flag is not set, the buffer will 1284 * drop data when the tail hits the head. 1285 */ 1286 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1287 struct lock_class_key *key) 1288 { 1289 struct ring_buffer *buffer; 1290 long nr_pages; 1291 int bsize; 1292 int cpu; 1293 int ret; 1294 1295 /* keep it in its own cache line */ 1296 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1297 GFP_KERNEL); 1298 if (!buffer) 1299 return NULL; 1300 1301 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1302 goto fail_free_buffer; 1303 1304 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1305 buffer->flags = flags; 1306 buffer->clock = trace_clock_local; 1307 buffer->reader_lock_key = key; 1308 1309 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1310 init_waitqueue_head(&buffer->irq_work.waiters); 1311 1312 /* need at least two pages */ 1313 if (nr_pages < 2) 1314 nr_pages = 2; 1315 1316 buffer->cpus = nr_cpu_ids; 1317 1318 bsize = sizeof(void *) * nr_cpu_ids; 1319 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1320 GFP_KERNEL); 1321 if (!buffer->buffers) 1322 goto fail_free_cpumask; 1323 1324 cpu = raw_smp_processor_id(); 1325 cpumask_set_cpu(cpu, buffer->cpumask); 1326 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1327 if (!buffer->buffers[cpu]) 1328 goto fail_free_buffers; 1329 1330 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1331 if (ret < 0) 1332 goto fail_free_buffers; 1333 1334 mutex_init(&buffer->mutex); 1335 1336 return buffer; 1337 1338 fail_free_buffers: 1339 for_each_buffer_cpu(buffer, cpu) { 1340 if (buffer->buffers[cpu]) 1341 rb_free_cpu_buffer(buffer->buffers[cpu]); 1342 } 1343 kfree(buffer->buffers); 1344 1345 fail_free_cpumask: 1346 free_cpumask_var(buffer->cpumask); 1347 1348 fail_free_buffer: 1349 kfree(buffer); 1350 return NULL; 1351 } 1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1353 1354 /** 1355 * ring_buffer_free - free a ring buffer. 1356 * @buffer: the buffer to free. 1357 */ 1358 void 1359 ring_buffer_free(struct ring_buffer *buffer) 1360 { 1361 int cpu; 1362 1363 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1364 1365 for_each_buffer_cpu(buffer, cpu) 1366 rb_free_cpu_buffer(buffer->buffers[cpu]); 1367 1368 kfree(buffer->buffers); 1369 free_cpumask_var(buffer->cpumask); 1370 1371 kfree(buffer); 1372 } 1373 EXPORT_SYMBOL_GPL(ring_buffer_free); 1374 1375 void ring_buffer_set_clock(struct ring_buffer *buffer, 1376 u64 (*clock)(void)) 1377 { 1378 buffer->clock = clock; 1379 } 1380 1381 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1382 1383 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1384 { 1385 return local_read(&bpage->entries) & RB_WRITE_MASK; 1386 } 1387 1388 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1389 { 1390 return local_read(&bpage->write) & RB_WRITE_MASK; 1391 } 1392 1393 static int 1394 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1395 { 1396 struct list_head *tail_page, *to_remove, *next_page; 1397 struct buffer_page *to_remove_page, *tmp_iter_page; 1398 struct buffer_page *last_page, *first_page; 1399 unsigned long nr_removed; 1400 unsigned long head_bit; 1401 int page_entries; 1402 1403 head_bit = 0; 1404 1405 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1406 atomic_inc(&cpu_buffer->record_disabled); 1407 /* 1408 * We don't race with the readers since we have acquired the reader 1409 * lock. We also don't race with writers after disabling recording. 1410 * This makes it easy to figure out the first and the last page to be 1411 * removed from the list. We unlink all the pages in between including 1412 * the first and last pages. This is done in a busy loop so that we 1413 * lose the least number of traces. 1414 * The pages are freed after we restart recording and unlock readers. 1415 */ 1416 tail_page = &cpu_buffer->tail_page->list; 1417 1418 /* 1419 * tail page might be on reader page, we remove the next page 1420 * from the ring buffer 1421 */ 1422 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1423 tail_page = rb_list_head(tail_page->next); 1424 to_remove = tail_page; 1425 1426 /* start of pages to remove */ 1427 first_page = list_entry(rb_list_head(to_remove->next), 1428 struct buffer_page, list); 1429 1430 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1431 to_remove = rb_list_head(to_remove)->next; 1432 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1433 } 1434 1435 next_page = rb_list_head(to_remove)->next; 1436 1437 /* 1438 * Now we remove all pages between tail_page and next_page. 1439 * Make sure that we have head_bit value preserved for the 1440 * next page 1441 */ 1442 tail_page->next = (struct list_head *)((unsigned long)next_page | 1443 head_bit); 1444 next_page = rb_list_head(next_page); 1445 next_page->prev = tail_page; 1446 1447 /* make sure pages points to a valid page in the ring buffer */ 1448 cpu_buffer->pages = next_page; 1449 1450 /* update head page */ 1451 if (head_bit) 1452 cpu_buffer->head_page = list_entry(next_page, 1453 struct buffer_page, list); 1454 1455 /* 1456 * change read pointer to make sure any read iterators reset 1457 * themselves 1458 */ 1459 cpu_buffer->read = 0; 1460 1461 /* pages are removed, resume tracing and then free the pages */ 1462 atomic_dec(&cpu_buffer->record_disabled); 1463 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1464 1465 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1466 1467 /* last buffer page to remove */ 1468 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1469 list); 1470 tmp_iter_page = first_page; 1471 1472 do { 1473 to_remove_page = tmp_iter_page; 1474 rb_inc_page(cpu_buffer, &tmp_iter_page); 1475 1476 /* update the counters */ 1477 page_entries = rb_page_entries(to_remove_page); 1478 if (page_entries) { 1479 /* 1480 * If something was added to this page, it was full 1481 * since it is not the tail page. So we deduct the 1482 * bytes consumed in ring buffer from here. 1483 * Increment overrun to account for the lost events. 1484 */ 1485 local_add(page_entries, &cpu_buffer->overrun); 1486 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1487 } 1488 1489 /* 1490 * We have already removed references to this list item, just 1491 * free up the buffer_page and its page 1492 */ 1493 free_buffer_page(to_remove_page); 1494 nr_removed--; 1495 1496 } while (to_remove_page != last_page); 1497 1498 RB_WARN_ON(cpu_buffer, nr_removed); 1499 1500 return nr_removed == 0; 1501 } 1502 1503 static int 1504 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1505 { 1506 struct list_head *pages = &cpu_buffer->new_pages; 1507 int retries, success; 1508 1509 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1510 /* 1511 * We are holding the reader lock, so the reader page won't be swapped 1512 * in the ring buffer. Now we are racing with the writer trying to 1513 * move head page and the tail page. 1514 * We are going to adapt the reader page update process where: 1515 * 1. We first splice the start and end of list of new pages between 1516 * the head page and its previous page. 1517 * 2. We cmpxchg the prev_page->next to point from head page to the 1518 * start of new pages list. 1519 * 3. Finally, we update the head->prev to the end of new list. 1520 * 1521 * We will try this process 10 times, to make sure that we don't keep 1522 * spinning. 1523 */ 1524 retries = 10; 1525 success = 0; 1526 while (retries--) { 1527 struct list_head *head_page, *prev_page, *r; 1528 struct list_head *last_page, *first_page; 1529 struct list_head *head_page_with_bit; 1530 1531 head_page = &rb_set_head_page(cpu_buffer)->list; 1532 if (!head_page) 1533 break; 1534 prev_page = head_page->prev; 1535 1536 first_page = pages->next; 1537 last_page = pages->prev; 1538 1539 head_page_with_bit = (struct list_head *) 1540 ((unsigned long)head_page | RB_PAGE_HEAD); 1541 1542 last_page->next = head_page_with_bit; 1543 first_page->prev = prev_page; 1544 1545 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1546 1547 if (r == head_page_with_bit) { 1548 /* 1549 * yay, we replaced the page pointer to our new list, 1550 * now, we just have to update to head page's prev 1551 * pointer to point to end of list 1552 */ 1553 head_page->prev = last_page; 1554 success = 1; 1555 break; 1556 } 1557 } 1558 1559 if (success) 1560 INIT_LIST_HEAD(pages); 1561 /* 1562 * If we weren't successful in adding in new pages, warn and stop 1563 * tracing 1564 */ 1565 RB_WARN_ON(cpu_buffer, !success); 1566 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1567 1568 /* free pages if they weren't inserted */ 1569 if (!success) { 1570 struct buffer_page *bpage, *tmp; 1571 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1572 list) { 1573 list_del_init(&bpage->list); 1574 free_buffer_page(bpage); 1575 } 1576 } 1577 return success; 1578 } 1579 1580 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1581 { 1582 int success; 1583 1584 if (cpu_buffer->nr_pages_to_update > 0) 1585 success = rb_insert_pages(cpu_buffer); 1586 else 1587 success = rb_remove_pages(cpu_buffer, 1588 -cpu_buffer->nr_pages_to_update); 1589 1590 if (success) 1591 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1592 } 1593 1594 static void update_pages_handler(struct work_struct *work) 1595 { 1596 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1597 struct ring_buffer_per_cpu, update_pages_work); 1598 rb_update_pages(cpu_buffer); 1599 complete(&cpu_buffer->update_done); 1600 } 1601 1602 /** 1603 * ring_buffer_resize - resize the ring buffer 1604 * @buffer: the buffer to resize. 1605 * @size: the new size. 1606 * @cpu_id: the cpu buffer to resize 1607 * 1608 * Minimum size is 2 * BUF_PAGE_SIZE. 1609 * 1610 * Returns 0 on success and < 0 on failure. 1611 */ 1612 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1613 int cpu_id) 1614 { 1615 struct ring_buffer_per_cpu *cpu_buffer; 1616 unsigned long nr_pages; 1617 int cpu, err = 0; 1618 1619 /* 1620 * Always succeed at resizing a non-existent buffer: 1621 */ 1622 if (!buffer) 1623 return size; 1624 1625 /* Make sure the requested buffer exists */ 1626 if (cpu_id != RING_BUFFER_ALL_CPUS && 1627 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1628 return size; 1629 1630 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1631 1632 /* we need a minimum of two pages */ 1633 if (nr_pages < 2) 1634 nr_pages = 2; 1635 1636 size = nr_pages * BUF_PAGE_SIZE; 1637 1638 /* 1639 * Don't succeed if resizing is disabled, as a reader might be 1640 * manipulating the ring buffer and is expecting a sane state while 1641 * this is true. 1642 */ 1643 if (atomic_read(&buffer->resize_disabled)) 1644 return -EBUSY; 1645 1646 /* prevent another thread from changing buffer sizes */ 1647 mutex_lock(&buffer->mutex); 1648 1649 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1650 /* calculate the pages to update */ 1651 for_each_buffer_cpu(buffer, cpu) { 1652 cpu_buffer = buffer->buffers[cpu]; 1653 1654 cpu_buffer->nr_pages_to_update = nr_pages - 1655 cpu_buffer->nr_pages; 1656 /* 1657 * nothing more to do for removing pages or no update 1658 */ 1659 if (cpu_buffer->nr_pages_to_update <= 0) 1660 continue; 1661 /* 1662 * to add pages, make sure all new pages can be 1663 * allocated without receiving ENOMEM 1664 */ 1665 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1666 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1667 &cpu_buffer->new_pages, cpu)) { 1668 /* not enough memory for new pages */ 1669 err = -ENOMEM; 1670 goto out_err; 1671 } 1672 } 1673 1674 get_online_cpus(); 1675 /* 1676 * Fire off all the required work handlers 1677 * We can't schedule on offline CPUs, but it's not necessary 1678 * since we can change their buffer sizes without any race. 1679 */ 1680 for_each_buffer_cpu(buffer, cpu) { 1681 cpu_buffer = buffer->buffers[cpu]; 1682 if (!cpu_buffer->nr_pages_to_update) 1683 continue; 1684 1685 /* Can't run something on an offline CPU. */ 1686 if (!cpu_online(cpu)) { 1687 rb_update_pages(cpu_buffer); 1688 cpu_buffer->nr_pages_to_update = 0; 1689 } else { 1690 schedule_work_on(cpu, 1691 &cpu_buffer->update_pages_work); 1692 } 1693 } 1694 1695 /* wait for all the updates to complete */ 1696 for_each_buffer_cpu(buffer, cpu) { 1697 cpu_buffer = buffer->buffers[cpu]; 1698 if (!cpu_buffer->nr_pages_to_update) 1699 continue; 1700 1701 if (cpu_online(cpu)) 1702 wait_for_completion(&cpu_buffer->update_done); 1703 cpu_buffer->nr_pages_to_update = 0; 1704 } 1705 1706 put_online_cpus(); 1707 } else { 1708 /* Make sure this CPU has been intitialized */ 1709 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1710 goto out; 1711 1712 cpu_buffer = buffer->buffers[cpu_id]; 1713 1714 if (nr_pages == cpu_buffer->nr_pages) 1715 goto out; 1716 1717 cpu_buffer->nr_pages_to_update = nr_pages - 1718 cpu_buffer->nr_pages; 1719 1720 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1721 if (cpu_buffer->nr_pages_to_update > 0 && 1722 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1723 &cpu_buffer->new_pages, cpu_id)) { 1724 err = -ENOMEM; 1725 goto out_err; 1726 } 1727 1728 get_online_cpus(); 1729 1730 /* Can't run something on an offline CPU. */ 1731 if (!cpu_online(cpu_id)) 1732 rb_update_pages(cpu_buffer); 1733 else { 1734 schedule_work_on(cpu_id, 1735 &cpu_buffer->update_pages_work); 1736 wait_for_completion(&cpu_buffer->update_done); 1737 } 1738 1739 cpu_buffer->nr_pages_to_update = 0; 1740 put_online_cpus(); 1741 } 1742 1743 out: 1744 /* 1745 * The ring buffer resize can happen with the ring buffer 1746 * enabled, so that the update disturbs the tracing as little 1747 * as possible. But if the buffer is disabled, we do not need 1748 * to worry about that, and we can take the time to verify 1749 * that the buffer is not corrupt. 1750 */ 1751 if (atomic_read(&buffer->record_disabled)) { 1752 atomic_inc(&buffer->record_disabled); 1753 /* 1754 * Even though the buffer was disabled, we must make sure 1755 * that it is truly disabled before calling rb_check_pages. 1756 * There could have been a race between checking 1757 * record_disable and incrementing it. 1758 */ 1759 synchronize_sched(); 1760 for_each_buffer_cpu(buffer, cpu) { 1761 cpu_buffer = buffer->buffers[cpu]; 1762 rb_check_pages(cpu_buffer); 1763 } 1764 atomic_dec(&buffer->record_disabled); 1765 } 1766 1767 mutex_unlock(&buffer->mutex); 1768 return size; 1769 1770 out_err: 1771 for_each_buffer_cpu(buffer, cpu) { 1772 struct buffer_page *bpage, *tmp; 1773 1774 cpu_buffer = buffer->buffers[cpu]; 1775 cpu_buffer->nr_pages_to_update = 0; 1776 1777 if (list_empty(&cpu_buffer->new_pages)) 1778 continue; 1779 1780 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1781 list) { 1782 list_del_init(&bpage->list); 1783 free_buffer_page(bpage); 1784 } 1785 } 1786 mutex_unlock(&buffer->mutex); 1787 return err; 1788 } 1789 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1790 1791 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1792 { 1793 mutex_lock(&buffer->mutex); 1794 if (val) 1795 buffer->flags |= RB_FL_OVERWRITE; 1796 else 1797 buffer->flags &= ~RB_FL_OVERWRITE; 1798 mutex_unlock(&buffer->mutex); 1799 } 1800 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1801 1802 static __always_inline void * 1803 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1804 { 1805 return bpage->data + index; 1806 } 1807 1808 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1809 { 1810 return bpage->page->data + index; 1811 } 1812 1813 static __always_inline struct ring_buffer_event * 1814 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1815 { 1816 return __rb_page_index(cpu_buffer->reader_page, 1817 cpu_buffer->reader_page->read); 1818 } 1819 1820 static __always_inline struct ring_buffer_event * 1821 rb_iter_head_event(struct ring_buffer_iter *iter) 1822 { 1823 return __rb_page_index(iter->head_page, iter->head); 1824 } 1825 1826 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1827 { 1828 return local_read(&bpage->page->commit); 1829 } 1830 1831 /* Size is determined by what has been committed */ 1832 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1833 { 1834 return rb_page_commit(bpage); 1835 } 1836 1837 static __always_inline unsigned 1838 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1839 { 1840 return rb_page_commit(cpu_buffer->commit_page); 1841 } 1842 1843 static __always_inline unsigned 1844 rb_event_index(struct ring_buffer_event *event) 1845 { 1846 unsigned long addr = (unsigned long)event; 1847 1848 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1849 } 1850 1851 static void rb_inc_iter(struct ring_buffer_iter *iter) 1852 { 1853 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1854 1855 /* 1856 * The iterator could be on the reader page (it starts there). 1857 * But the head could have moved, since the reader was 1858 * found. Check for this case and assign the iterator 1859 * to the head page instead of next. 1860 */ 1861 if (iter->head_page == cpu_buffer->reader_page) 1862 iter->head_page = rb_set_head_page(cpu_buffer); 1863 else 1864 rb_inc_page(cpu_buffer, &iter->head_page); 1865 1866 iter->read_stamp = iter->head_page->page->time_stamp; 1867 iter->head = 0; 1868 } 1869 1870 /* 1871 * rb_handle_head_page - writer hit the head page 1872 * 1873 * Returns: +1 to retry page 1874 * 0 to continue 1875 * -1 on error 1876 */ 1877 static int 1878 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1879 struct buffer_page *tail_page, 1880 struct buffer_page *next_page) 1881 { 1882 struct buffer_page *new_head; 1883 int entries; 1884 int type; 1885 int ret; 1886 1887 entries = rb_page_entries(next_page); 1888 1889 /* 1890 * The hard part is here. We need to move the head 1891 * forward, and protect against both readers on 1892 * other CPUs and writers coming in via interrupts. 1893 */ 1894 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1895 RB_PAGE_HEAD); 1896 1897 /* 1898 * type can be one of four: 1899 * NORMAL - an interrupt already moved it for us 1900 * HEAD - we are the first to get here. 1901 * UPDATE - we are the interrupt interrupting 1902 * a current move. 1903 * MOVED - a reader on another CPU moved the next 1904 * pointer to its reader page. Give up 1905 * and try again. 1906 */ 1907 1908 switch (type) { 1909 case RB_PAGE_HEAD: 1910 /* 1911 * We changed the head to UPDATE, thus 1912 * it is our responsibility to update 1913 * the counters. 1914 */ 1915 local_add(entries, &cpu_buffer->overrun); 1916 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1917 1918 /* 1919 * The entries will be zeroed out when we move the 1920 * tail page. 1921 */ 1922 1923 /* still more to do */ 1924 break; 1925 1926 case RB_PAGE_UPDATE: 1927 /* 1928 * This is an interrupt that interrupt the 1929 * previous update. Still more to do. 1930 */ 1931 break; 1932 case RB_PAGE_NORMAL: 1933 /* 1934 * An interrupt came in before the update 1935 * and processed this for us. 1936 * Nothing left to do. 1937 */ 1938 return 1; 1939 case RB_PAGE_MOVED: 1940 /* 1941 * The reader is on another CPU and just did 1942 * a swap with our next_page. 1943 * Try again. 1944 */ 1945 return 1; 1946 default: 1947 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1948 return -1; 1949 } 1950 1951 /* 1952 * Now that we are here, the old head pointer is 1953 * set to UPDATE. This will keep the reader from 1954 * swapping the head page with the reader page. 1955 * The reader (on another CPU) will spin till 1956 * we are finished. 1957 * 1958 * We just need to protect against interrupts 1959 * doing the job. We will set the next pointer 1960 * to HEAD. After that, we set the old pointer 1961 * to NORMAL, but only if it was HEAD before. 1962 * otherwise we are an interrupt, and only 1963 * want the outer most commit to reset it. 1964 */ 1965 new_head = next_page; 1966 rb_inc_page(cpu_buffer, &new_head); 1967 1968 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1969 RB_PAGE_NORMAL); 1970 1971 /* 1972 * Valid returns are: 1973 * HEAD - an interrupt came in and already set it. 1974 * NORMAL - One of two things: 1975 * 1) We really set it. 1976 * 2) A bunch of interrupts came in and moved 1977 * the page forward again. 1978 */ 1979 switch (ret) { 1980 case RB_PAGE_HEAD: 1981 case RB_PAGE_NORMAL: 1982 /* OK */ 1983 break; 1984 default: 1985 RB_WARN_ON(cpu_buffer, 1); 1986 return -1; 1987 } 1988 1989 /* 1990 * It is possible that an interrupt came in, 1991 * set the head up, then more interrupts came in 1992 * and moved it again. When we get back here, 1993 * the page would have been set to NORMAL but we 1994 * just set it back to HEAD. 1995 * 1996 * How do you detect this? Well, if that happened 1997 * the tail page would have moved. 1998 */ 1999 if (ret == RB_PAGE_NORMAL) { 2000 struct buffer_page *buffer_tail_page; 2001 2002 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2003 /* 2004 * If the tail had moved passed next, then we need 2005 * to reset the pointer. 2006 */ 2007 if (buffer_tail_page != tail_page && 2008 buffer_tail_page != next_page) 2009 rb_head_page_set_normal(cpu_buffer, new_head, 2010 next_page, 2011 RB_PAGE_HEAD); 2012 } 2013 2014 /* 2015 * If this was the outer most commit (the one that 2016 * changed the original pointer from HEAD to UPDATE), 2017 * then it is up to us to reset it to NORMAL. 2018 */ 2019 if (type == RB_PAGE_HEAD) { 2020 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2021 tail_page, 2022 RB_PAGE_UPDATE); 2023 if (RB_WARN_ON(cpu_buffer, 2024 ret != RB_PAGE_UPDATE)) 2025 return -1; 2026 } 2027 2028 return 0; 2029 } 2030 2031 static inline void 2032 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2033 unsigned long tail, struct rb_event_info *info) 2034 { 2035 struct buffer_page *tail_page = info->tail_page; 2036 struct ring_buffer_event *event; 2037 unsigned long length = info->length; 2038 2039 /* 2040 * Only the event that crossed the page boundary 2041 * must fill the old tail_page with padding. 2042 */ 2043 if (tail >= BUF_PAGE_SIZE) { 2044 /* 2045 * If the page was filled, then we still need 2046 * to update the real_end. Reset it to zero 2047 * and the reader will ignore it. 2048 */ 2049 if (tail == BUF_PAGE_SIZE) 2050 tail_page->real_end = 0; 2051 2052 local_sub(length, &tail_page->write); 2053 return; 2054 } 2055 2056 event = __rb_page_index(tail_page, tail); 2057 2058 /* account for padding bytes */ 2059 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2060 2061 /* 2062 * Save the original length to the meta data. 2063 * This will be used by the reader to add lost event 2064 * counter. 2065 */ 2066 tail_page->real_end = tail; 2067 2068 /* 2069 * If this event is bigger than the minimum size, then 2070 * we need to be careful that we don't subtract the 2071 * write counter enough to allow another writer to slip 2072 * in on this page. 2073 * We put in a discarded commit instead, to make sure 2074 * that this space is not used again. 2075 * 2076 * If we are less than the minimum size, we don't need to 2077 * worry about it. 2078 */ 2079 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2080 /* No room for any events */ 2081 2082 /* Mark the rest of the page with padding */ 2083 rb_event_set_padding(event); 2084 2085 /* Set the write back to the previous setting */ 2086 local_sub(length, &tail_page->write); 2087 return; 2088 } 2089 2090 /* Put in a discarded event */ 2091 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2092 event->type_len = RINGBUF_TYPE_PADDING; 2093 /* time delta must be non zero */ 2094 event->time_delta = 1; 2095 2096 /* Set write to end of buffer */ 2097 length = (tail + length) - BUF_PAGE_SIZE; 2098 local_sub(length, &tail_page->write); 2099 } 2100 2101 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2102 2103 /* 2104 * This is the slow path, force gcc not to inline it. 2105 */ 2106 static noinline struct ring_buffer_event * 2107 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2108 unsigned long tail, struct rb_event_info *info) 2109 { 2110 struct buffer_page *tail_page = info->tail_page; 2111 struct buffer_page *commit_page = cpu_buffer->commit_page; 2112 struct ring_buffer *buffer = cpu_buffer->buffer; 2113 struct buffer_page *next_page; 2114 int ret; 2115 2116 next_page = tail_page; 2117 2118 rb_inc_page(cpu_buffer, &next_page); 2119 2120 /* 2121 * If for some reason, we had an interrupt storm that made 2122 * it all the way around the buffer, bail, and warn 2123 * about it. 2124 */ 2125 if (unlikely(next_page == commit_page)) { 2126 local_inc(&cpu_buffer->commit_overrun); 2127 goto out_reset; 2128 } 2129 2130 /* 2131 * This is where the fun begins! 2132 * 2133 * We are fighting against races between a reader that 2134 * could be on another CPU trying to swap its reader 2135 * page with the buffer head. 2136 * 2137 * We are also fighting against interrupts coming in and 2138 * moving the head or tail on us as well. 2139 * 2140 * If the next page is the head page then we have filled 2141 * the buffer, unless the commit page is still on the 2142 * reader page. 2143 */ 2144 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2145 2146 /* 2147 * If the commit is not on the reader page, then 2148 * move the header page. 2149 */ 2150 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2151 /* 2152 * If we are not in overwrite mode, 2153 * this is easy, just stop here. 2154 */ 2155 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2156 local_inc(&cpu_buffer->dropped_events); 2157 goto out_reset; 2158 } 2159 2160 ret = rb_handle_head_page(cpu_buffer, 2161 tail_page, 2162 next_page); 2163 if (ret < 0) 2164 goto out_reset; 2165 if (ret) 2166 goto out_again; 2167 } else { 2168 /* 2169 * We need to be careful here too. The 2170 * commit page could still be on the reader 2171 * page. We could have a small buffer, and 2172 * have filled up the buffer with events 2173 * from interrupts and such, and wrapped. 2174 * 2175 * Note, if the tail page is also the on the 2176 * reader_page, we let it move out. 2177 */ 2178 if (unlikely((cpu_buffer->commit_page != 2179 cpu_buffer->tail_page) && 2180 (cpu_buffer->commit_page == 2181 cpu_buffer->reader_page))) { 2182 local_inc(&cpu_buffer->commit_overrun); 2183 goto out_reset; 2184 } 2185 } 2186 } 2187 2188 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2189 2190 out_again: 2191 2192 rb_reset_tail(cpu_buffer, tail, info); 2193 2194 /* Commit what we have for now. */ 2195 rb_end_commit(cpu_buffer); 2196 /* rb_end_commit() decs committing */ 2197 local_inc(&cpu_buffer->committing); 2198 2199 /* fail and let the caller try again */ 2200 return ERR_PTR(-EAGAIN); 2201 2202 out_reset: 2203 /* reset write */ 2204 rb_reset_tail(cpu_buffer, tail, info); 2205 2206 return NULL; 2207 } 2208 2209 /* Slow path, do not inline */ 2210 static noinline struct ring_buffer_event * 2211 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2212 { 2213 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2214 2215 /* Not the first event on the page? */ 2216 if (rb_event_index(event)) { 2217 event->time_delta = delta & TS_MASK; 2218 event->array[0] = delta >> TS_SHIFT; 2219 } else { 2220 /* nope, just zero it */ 2221 event->time_delta = 0; 2222 event->array[0] = 0; 2223 } 2224 2225 return skip_time_extend(event); 2226 } 2227 2228 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2229 struct ring_buffer_event *event); 2230 2231 /** 2232 * rb_update_event - update event type and data 2233 * @event: the event to update 2234 * @type: the type of event 2235 * @length: the size of the event field in the ring buffer 2236 * 2237 * Update the type and data fields of the event. The length 2238 * is the actual size that is written to the ring buffer, 2239 * and with this, we can determine what to place into the 2240 * data field. 2241 */ 2242 static void 2243 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2244 struct ring_buffer_event *event, 2245 struct rb_event_info *info) 2246 { 2247 unsigned length = info->length; 2248 u64 delta = info->delta; 2249 2250 /* Only a commit updates the timestamp */ 2251 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2252 delta = 0; 2253 2254 /* 2255 * If we need to add a timestamp, then we 2256 * add it to the start of the resevered space. 2257 */ 2258 if (unlikely(info->add_timestamp)) { 2259 event = rb_add_time_stamp(event, delta); 2260 length -= RB_LEN_TIME_EXTEND; 2261 delta = 0; 2262 } 2263 2264 event->time_delta = delta; 2265 length -= RB_EVNT_HDR_SIZE; 2266 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2267 event->type_len = 0; 2268 event->array[0] = length; 2269 } else 2270 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2271 } 2272 2273 static unsigned rb_calculate_event_length(unsigned length) 2274 { 2275 struct ring_buffer_event event; /* Used only for sizeof array */ 2276 2277 /* zero length can cause confusions */ 2278 if (!length) 2279 length++; 2280 2281 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2282 length += sizeof(event.array[0]); 2283 2284 length += RB_EVNT_HDR_SIZE; 2285 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2286 2287 /* 2288 * In case the time delta is larger than the 27 bits for it 2289 * in the header, we need to add a timestamp. If another 2290 * event comes in when trying to discard this one to increase 2291 * the length, then the timestamp will be added in the allocated 2292 * space of this event. If length is bigger than the size needed 2293 * for the TIME_EXTEND, then padding has to be used. The events 2294 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2295 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2296 * As length is a multiple of 4, we only need to worry if it 2297 * is 12 (RB_LEN_TIME_EXTEND + 4). 2298 */ 2299 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2300 length += RB_ALIGNMENT; 2301 2302 return length; 2303 } 2304 2305 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2306 static inline bool sched_clock_stable(void) 2307 { 2308 return true; 2309 } 2310 #endif 2311 2312 static inline int 2313 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2314 struct ring_buffer_event *event) 2315 { 2316 unsigned long new_index, old_index; 2317 struct buffer_page *bpage; 2318 unsigned long index; 2319 unsigned long addr; 2320 2321 new_index = rb_event_index(event); 2322 old_index = new_index + rb_event_ts_length(event); 2323 addr = (unsigned long)event; 2324 addr &= PAGE_MASK; 2325 2326 bpage = READ_ONCE(cpu_buffer->tail_page); 2327 2328 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2329 unsigned long write_mask = 2330 local_read(&bpage->write) & ~RB_WRITE_MASK; 2331 unsigned long event_length = rb_event_length(event); 2332 /* 2333 * This is on the tail page. It is possible that 2334 * a write could come in and move the tail page 2335 * and write to the next page. That is fine 2336 * because we just shorten what is on this page. 2337 */ 2338 old_index += write_mask; 2339 new_index += write_mask; 2340 index = local_cmpxchg(&bpage->write, old_index, new_index); 2341 if (index == old_index) { 2342 /* update counters */ 2343 local_sub(event_length, &cpu_buffer->entries_bytes); 2344 return 1; 2345 } 2346 } 2347 2348 /* could not discard */ 2349 return 0; 2350 } 2351 2352 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2353 { 2354 local_inc(&cpu_buffer->committing); 2355 local_inc(&cpu_buffer->commits); 2356 } 2357 2358 static __always_inline void 2359 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2360 { 2361 unsigned long max_count; 2362 2363 /* 2364 * We only race with interrupts and NMIs on this CPU. 2365 * If we own the commit event, then we can commit 2366 * all others that interrupted us, since the interruptions 2367 * are in stack format (they finish before they come 2368 * back to us). This allows us to do a simple loop to 2369 * assign the commit to the tail. 2370 */ 2371 again: 2372 max_count = cpu_buffer->nr_pages * 100; 2373 2374 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2375 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2376 return; 2377 if (RB_WARN_ON(cpu_buffer, 2378 rb_is_reader_page(cpu_buffer->tail_page))) 2379 return; 2380 local_set(&cpu_buffer->commit_page->page->commit, 2381 rb_page_write(cpu_buffer->commit_page)); 2382 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2383 /* Only update the write stamp if the page has an event */ 2384 if (rb_page_write(cpu_buffer->commit_page)) 2385 cpu_buffer->write_stamp = 2386 cpu_buffer->commit_page->page->time_stamp; 2387 /* add barrier to keep gcc from optimizing too much */ 2388 barrier(); 2389 } 2390 while (rb_commit_index(cpu_buffer) != 2391 rb_page_write(cpu_buffer->commit_page)) { 2392 2393 local_set(&cpu_buffer->commit_page->page->commit, 2394 rb_page_write(cpu_buffer->commit_page)); 2395 RB_WARN_ON(cpu_buffer, 2396 local_read(&cpu_buffer->commit_page->page->commit) & 2397 ~RB_WRITE_MASK); 2398 barrier(); 2399 } 2400 2401 /* again, keep gcc from optimizing */ 2402 barrier(); 2403 2404 /* 2405 * If an interrupt came in just after the first while loop 2406 * and pushed the tail page forward, we will be left with 2407 * a dangling commit that will never go forward. 2408 */ 2409 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2410 goto again; 2411 } 2412 2413 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2414 { 2415 unsigned long commits; 2416 2417 if (RB_WARN_ON(cpu_buffer, 2418 !local_read(&cpu_buffer->committing))) 2419 return; 2420 2421 again: 2422 commits = local_read(&cpu_buffer->commits); 2423 /* synchronize with interrupts */ 2424 barrier(); 2425 if (local_read(&cpu_buffer->committing) == 1) 2426 rb_set_commit_to_write(cpu_buffer); 2427 2428 local_dec(&cpu_buffer->committing); 2429 2430 /* synchronize with interrupts */ 2431 barrier(); 2432 2433 /* 2434 * Need to account for interrupts coming in between the 2435 * updating of the commit page and the clearing of the 2436 * committing counter. 2437 */ 2438 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2439 !local_read(&cpu_buffer->committing)) { 2440 local_inc(&cpu_buffer->committing); 2441 goto again; 2442 } 2443 } 2444 2445 static inline void rb_event_discard(struct ring_buffer_event *event) 2446 { 2447 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2448 event = skip_time_extend(event); 2449 2450 /* array[0] holds the actual length for the discarded event */ 2451 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2452 event->type_len = RINGBUF_TYPE_PADDING; 2453 /* time delta must be non zero */ 2454 if (!event->time_delta) 2455 event->time_delta = 1; 2456 } 2457 2458 static __always_inline bool 2459 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2460 struct ring_buffer_event *event) 2461 { 2462 unsigned long addr = (unsigned long)event; 2463 unsigned long index; 2464 2465 index = rb_event_index(event); 2466 addr &= PAGE_MASK; 2467 2468 return cpu_buffer->commit_page->page == (void *)addr && 2469 rb_commit_index(cpu_buffer) == index; 2470 } 2471 2472 static __always_inline void 2473 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2474 struct ring_buffer_event *event) 2475 { 2476 u64 delta; 2477 2478 /* 2479 * The event first in the commit queue updates the 2480 * time stamp. 2481 */ 2482 if (rb_event_is_commit(cpu_buffer, event)) { 2483 /* 2484 * A commit event that is first on a page 2485 * updates the write timestamp with the page stamp 2486 */ 2487 if (!rb_event_index(event)) 2488 cpu_buffer->write_stamp = 2489 cpu_buffer->commit_page->page->time_stamp; 2490 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2491 delta = event->array[0]; 2492 delta <<= TS_SHIFT; 2493 delta += event->time_delta; 2494 cpu_buffer->write_stamp += delta; 2495 } else 2496 cpu_buffer->write_stamp += event->time_delta; 2497 } 2498 } 2499 2500 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2501 struct ring_buffer_event *event) 2502 { 2503 local_inc(&cpu_buffer->entries); 2504 rb_update_write_stamp(cpu_buffer, event); 2505 rb_end_commit(cpu_buffer); 2506 } 2507 2508 static __always_inline void 2509 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2510 { 2511 bool pagebusy; 2512 2513 if (buffer->irq_work.waiters_pending) { 2514 buffer->irq_work.waiters_pending = false; 2515 /* irq_work_queue() supplies it's own memory barriers */ 2516 irq_work_queue(&buffer->irq_work.work); 2517 } 2518 2519 if (cpu_buffer->irq_work.waiters_pending) { 2520 cpu_buffer->irq_work.waiters_pending = false; 2521 /* irq_work_queue() supplies it's own memory barriers */ 2522 irq_work_queue(&cpu_buffer->irq_work.work); 2523 } 2524 2525 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2526 2527 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2528 cpu_buffer->irq_work.wakeup_full = true; 2529 cpu_buffer->irq_work.full_waiters_pending = false; 2530 /* irq_work_queue() supplies it's own memory barriers */ 2531 irq_work_queue(&cpu_buffer->irq_work.work); 2532 } 2533 } 2534 2535 /* 2536 * The lock and unlock are done within a preempt disable section. 2537 * The current_context per_cpu variable can only be modified 2538 * by the current task between lock and unlock. But it can 2539 * be modified more than once via an interrupt. There are four 2540 * different contexts that we need to consider. 2541 * 2542 * Normal context. 2543 * SoftIRQ context 2544 * IRQ context 2545 * NMI context 2546 * 2547 * If for some reason the ring buffer starts to recurse, we 2548 * only allow that to happen at most 4 times (one for each 2549 * context). If it happens 5 times, then we consider this a 2550 * recusive loop and do not let it go further. 2551 */ 2552 2553 static __always_inline int 2554 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2555 { 2556 if (cpu_buffer->current_context >= 4) 2557 return 1; 2558 2559 cpu_buffer->current_context++; 2560 /* Interrupts must see this update */ 2561 barrier(); 2562 2563 return 0; 2564 } 2565 2566 static __always_inline void 2567 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2568 { 2569 /* Don't let the dec leak out */ 2570 barrier(); 2571 cpu_buffer->current_context--; 2572 } 2573 2574 /** 2575 * ring_buffer_unlock_commit - commit a reserved 2576 * @buffer: The buffer to commit to 2577 * @event: The event pointer to commit. 2578 * 2579 * This commits the data to the ring buffer, and releases any locks held. 2580 * 2581 * Must be paired with ring_buffer_lock_reserve. 2582 */ 2583 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2584 struct ring_buffer_event *event) 2585 { 2586 struct ring_buffer_per_cpu *cpu_buffer; 2587 int cpu = raw_smp_processor_id(); 2588 2589 cpu_buffer = buffer->buffers[cpu]; 2590 2591 rb_commit(cpu_buffer, event); 2592 2593 rb_wakeups(buffer, cpu_buffer); 2594 2595 trace_recursive_unlock(cpu_buffer); 2596 2597 preempt_enable_notrace(); 2598 2599 return 0; 2600 } 2601 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2602 2603 static noinline void 2604 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2605 struct rb_event_info *info) 2606 { 2607 WARN_ONCE(info->delta > (1ULL << 59), 2608 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2609 (unsigned long long)info->delta, 2610 (unsigned long long)info->ts, 2611 (unsigned long long)cpu_buffer->write_stamp, 2612 sched_clock_stable() ? "" : 2613 "If you just came from a suspend/resume,\n" 2614 "please switch to the trace global clock:\n" 2615 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2616 info->add_timestamp = 1; 2617 } 2618 2619 static struct ring_buffer_event * 2620 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2621 struct rb_event_info *info) 2622 { 2623 struct ring_buffer_event *event; 2624 struct buffer_page *tail_page; 2625 unsigned long tail, write; 2626 2627 /* 2628 * If the time delta since the last event is too big to 2629 * hold in the time field of the event, then we append a 2630 * TIME EXTEND event ahead of the data event. 2631 */ 2632 if (unlikely(info->add_timestamp)) 2633 info->length += RB_LEN_TIME_EXTEND; 2634 2635 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2636 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2637 write = local_add_return(info->length, &tail_page->write); 2638 2639 /* set write to only the index of the write */ 2640 write &= RB_WRITE_MASK; 2641 tail = write - info->length; 2642 2643 /* 2644 * If this is the first commit on the page, then it has the same 2645 * timestamp as the page itself. 2646 */ 2647 if (!tail) 2648 info->delta = 0; 2649 2650 /* See if we shot pass the end of this buffer page */ 2651 if (unlikely(write > BUF_PAGE_SIZE)) 2652 return rb_move_tail(cpu_buffer, tail, info); 2653 2654 /* We reserved something on the buffer */ 2655 2656 event = __rb_page_index(tail_page, tail); 2657 rb_update_event(cpu_buffer, event, info); 2658 2659 local_inc(&tail_page->entries); 2660 2661 /* 2662 * If this is the first commit on the page, then update 2663 * its timestamp. 2664 */ 2665 if (!tail) 2666 tail_page->page->time_stamp = info->ts; 2667 2668 /* account for these added bytes */ 2669 local_add(info->length, &cpu_buffer->entries_bytes); 2670 2671 return event; 2672 } 2673 2674 static __always_inline struct ring_buffer_event * 2675 rb_reserve_next_event(struct ring_buffer *buffer, 2676 struct ring_buffer_per_cpu *cpu_buffer, 2677 unsigned long length) 2678 { 2679 struct ring_buffer_event *event; 2680 struct rb_event_info info; 2681 int nr_loops = 0; 2682 u64 diff; 2683 2684 rb_start_commit(cpu_buffer); 2685 2686 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2687 /* 2688 * Due to the ability to swap a cpu buffer from a buffer 2689 * it is possible it was swapped before we committed. 2690 * (committing stops a swap). We check for it here and 2691 * if it happened, we have to fail the write. 2692 */ 2693 barrier(); 2694 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2695 local_dec(&cpu_buffer->committing); 2696 local_dec(&cpu_buffer->commits); 2697 return NULL; 2698 } 2699 #endif 2700 2701 info.length = rb_calculate_event_length(length); 2702 again: 2703 info.add_timestamp = 0; 2704 info.delta = 0; 2705 2706 /* 2707 * We allow for interrupts to reenter here and do a trace. 2708 * If one does, it will cause this original code to loop 2709 * back here. Even with heavy interrupts happening, this 2710 * should only happen a few times in a row. If this happens 2711 * 1000 times in a row, there must be either an interrupt 2712 * storm or we have something buggy. 2713 * Bail! 2714 */ 2715 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2716 goto out_fail; 2717 2718 info.ts = rb_time_stamp(cpu_buffer->buffer); 2719 diff = info.ts - cpu_buffer->write_stamp; 2720 2721 /* make sure this diff is calculated here */ 2722 barrier(); 2723 2724 /* Did the write stamp get updated already? */ 2725 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2726 info.delta = diff; 2727 if (unlikely(test_time_stamp(info.delta))) 2728 rb_handle_timestamp(cpu_buffer, &info); 2729 } 2730 2731 event = __rb_reserve_next(cpu_buffer, &info); 2732 2733 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2734 if (info.add_timestamp) 2735 info.length -= RB_LEN_TIME_EXTEND; 2736 goto again; 2737 } 2738 2739 if (!event) 2740 goto out_fail; 2741 2742 return event; 2743 2744 out_fail: 2745 rb_end_commit(cpu_buffer); 2746 return NULL; 2747 } 2748 2749 /** 2750 * ring_buffer_lock_reserve - reserve a part of the buffer 2751 * @buffer: the ring buffer to reserve from 2752 * @length: the length of the data to reserve (excluding event header) 2753 * 2754 * Returns a reseverd event on the ring buffer to copy directly to. 2755 * The user of this interface will need to get the body to write into 2756 * and can use the ring_buffer_event_data() interface. 2757 * 2758 * The length is the length of the data needed, not the event length 2759 * which also includes the event header. 2760 * 2761 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2762 * If NULL is returned, then nothing has been allocated or locked. 2763 */ 2764 struct ring_buffer_event * 2765 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2766 { 2767 struct ring_buffer_per_cpu *cpu_buffer; 2768 struct ring_buffer_event *event; 2769 int cpu; 2770 2771 /* If we are tracing schedule, we don't want to recurse */ 2772 preempt_disable_notrace(); 2773 2774 if (unlikely(atomic_read(&buffer->record_disabled))) 2775 goto out; 2776 2777 cpu = raw_smp_processor_id(); 2778 2779 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2780 goto out; 2781 2782 cpu_buffer = buffer->buffers[cpu]; 2783 2784 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2785 goto out; 2786 2787 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2788 goto out; 2789 2790 if (unlikely(trace_recursive_lock(cpu_buffer))) 2791 goto out; 2792 2793 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2794 if (!event) 2795 goto out_unlock; 2796 2797 return event; 2798 2799 out_unlock: 2800 trace_recursive_unlock(cpu_buffer); 2801 out: 2802 preempt_enable_notrace(); 2803 return NULL; 2804 } 2805 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2806 2807 /* 2808 * Decrement the entries to the page that an event is on. 2809 * The event does not even need to exist, only the pointer 2810 * to the page it is on. This may only be called before the commit 2811 * takes place. 2812 */ 2813 static inline void 2814 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2815 struct ring_buffer_event *event) 2816 { 2817 unsigned long addr = (unsigned long)event; 2818 struct buffer_page *bpage = cpu_buffer->commit_page; 2819 struct buffer_page *start; 2820 2821 addr &= PAGE_MASK; 2822 2823 /* Do the likely case first */ 2824 if (likely(bpage->page == (void *)addr)) { 2825 local_dec(&bpage->entries); 2826 return; 2827 } 2828 2829 /* 2830 * Because the commit page may be on the reader page we 2831 * start with the next page and check the end loop there. 2832 */ 2833 rb_inc_page(cpu_buffer, &bpage); 2834 start = bpage; 2835 do { 2836 if (bpage->page == (void *)addr) { 2837 local_dec(&bpage->entries); 2838 return; 2839 } 2840 rb_inc_page(cpu_buffer, &bpage); 2841 } while (bpage != start); 2842 2843 /* commit not part of this buffer?? */ 2844 RB_WARN_ON(cpu_buffer, 1); 2845 } 2846 2847 /** 2848 * ring_buffer_commit_discard - discard an event that has not been committed 2849 * @buffer: the ring buffer 2850 * @event: non committed event to discard 2851 * 2852 * Sometimes an event that is in the ring buffer needs to be ignored. 2853 * This function lets the user discard an event in the ring buffer 2854 * and then that event will not be read later. 2855 * 2856 * This function only works if it is called before the the item has been 2857 * committed. It will try to free the event from the ring buffer 2858 * if another event has not been added behind it. 2859 * 2860 * If another event has been added behind it, it will set the event 2861 * up as discarded, and perform the commit. 2862 * 2863 * If this function is called, do not call ring_buffer_unlock_commit on 2864 * the event. 2865 */ 2866 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2867 struct ring_buffer_event *event) 2868 { 2869 struct ring_buffer_per_cpu *cpu_buffer; 2870 int cpu; 2871 2872 /* The event is discarded regardless */ 2873 rb_event_discard(event); 2874 2875 cpu = smp_processor_id(); 2876 cpu_buffer = buffer->buffers[cpu]; 2877 2878 /* 2879 * This must only be called if the event has not been 2880 * committed yet. Thus we can assume that preemption 2881 * is still disabled. 2882 */ 2883 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2884 2885 rb_decrement_entry(cpu_buffer, event); 2886 if (rb_try_to_discard(cpu_buffer, event)) 2887 goto out; 2888 2889 /* 2890 * The commit is still visible by the reader, so we 2891 * must still update the timestamp. 2892 */ 2893 rb_update_write_stamp(cpu_buffer, event); 2894 out: 2895 rb_end_commit(cpu_buffer); 2896 2897 trace_recursive_unlock(cpu_buffer); 2898 2899 preempt_enable_notrace(); 2900 2901 } 2902 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2903 2904 /** 2905 * ring_buffer_write - write data to the buffer without reserving 2906 * @buffer: The ring buffer to write to. 2907 * @length: The length of the data being written (excluding the event header) 2908 * @data: The data to write to the buffer. 2909 * 2910 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2911 * one function. If you already have the data to write to the buffer, it 2912 * may be easier to simply call this function. 2913 * 2914 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2915 * and not the length of the event which would hold the header. 2916 */ 2917 int ring_buffer_write(struct ring_buffer *buffer, 2918 unsigned long length, 2919 void *data) 2920 { 2921 struct ring_buffer_per_cpu *cpu_buffer; 2922 struct ring_buffer_event *event; 2923 void *body; 2924 int ret = -EBUSY; 2925 int cpu; 2926 2927 preempt_disable_notrace(); 2928 2929 if (atomic_read(&buffer->record_disabled)) 2930 goto out; 2931 2932 cpu = raw_smp_processor_id(); 2933 2934 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2935 goto out; 2936 2937 cpu_buffer = buffer->buffers[cpu]; 2938 2939 if (atomic_read(&cpu_buffer->record_disabled)) 2940 goto out; 2941 2942 if (length > BUF_MAX_DATA_SIZE) 2943 goto out; 2944 2945 if (unlikely(trace_recursive_lock(cpu_buffer))) 2946 goto out; 2947 2948 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2949 if (!event) 2950 goto out_unlock; 2951 2952 body = rb_event_data(event); 2953 2954 memcpy(body, data, length); 2955 2956 rb_commit(cpu_buffer, event); 2957 2958 rb_wakeups(buffer, cpu_buffer); 2959 2960 ret = 0; 2961 2962 out_unlock: 2963 trace_recursive_unlock(cpu_buffer); 2964 2965 out: 2966 preempt_enable_notrace(); 2967 2968 return ret; 2969 } 2970 EXPORT_SYMBOL_GPL(ring_buffer_write); 2971 2972 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2973 { 2974 struct buffer_page *reader = cpu_buffer->reader_page; 2975 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2976 struct buffer_page *commit = cpu_buffer->commit_page; 2977 2978 /* In case of error, head will be NULL */ 2979 if (unlikely(!head)) 2980 return true; 2981 2982 return reader->read == rb_page_commit(reader) && 2983 (commit == reader || 2984 (commit == head && 2985 head->read == rb_page_commit(commit))); 2986 } 2987 2988 /** 2989 * ring_buffer_record_disable - stop all writes into the buffer 2990 * @buffer: The ring buffer to stop writes to. 2991 * 2992 * This prevents all writes to the buffer. Any attempt to write 2993 * to the buffer after this will fail and return NULL. 2994 * 2995 * The caller should call synchronize_sched() after this. 2996 */ 2997 void ring_buffer_record_disable(struct ring_buffer *buffer) 2998 { 2999 atomic_inc(&buffer->record_disabled); 3000 } 3001 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3002 3003 /** 3004 * ring_buffer_record_enable - enable writes to the buffer 3005 * @buffer: The ring buffer to enable writes 3006 * 3007 * Note, multiple disables will need the same number of enables 3008 * to truly enable the writing (much like preempt_disable). 3009 */ 3010 void ring_buffer_record_enable(struct ring_buffer *buffer) 3011 { 3012 atomic_dec(&buffer->record_disabled); 3013 } 3014 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3015 3016 /** 3017 * ring_buffer_record_off - stop all writes into the buffer 3018 * @buffer: The ring buffer to stop writes to. 3019 * 3020 * This prevents all writes to the buffer. Any attempt to write 3021 * to the buffer after this will fail and return NULL. 3022 * 3023 * This is different than ring_buffer_record_disable() as 3024 * it works like an on/off switch, where as the disable() version 3025 * must be paired with a enable(). 3026 */ 3027 void ring_buffer_record_off(struct ring_buffer *buffer) 3028 { 3029 unsigned int rd; 3030 unsigned int new_rd; 3031 3032 do { 3033 rd = atomic_read(&buffer->record_disabled); 3034 new_rd = rd | RB_BUFFER_OFF; 3035 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3036 } 3037 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3038 3039 /** 3040 * ring_buffer_record_on - restart writes into the buffer 3041 * @buffer: The ring buffer to start writes to. 3042 * 3043 * This enables all writes to the buffer that was disabled by 3044 * ring_buffer_record_off(). 3045 * 3046 * This is different than ring_buffer_record_enable() as 3047 * it works like an on/off switch, where as the enable() version 3048 * must be paired with a disable(). 3049 */ 3050 void ring_buffer_record_on(struct ring_buffer *buffer) 3051 { 3052 unsigned int rd; 3053 unsigned int new_rd; 3054 3055 do { 3056 rd = atomic_read(&buffer->record_disabled); 3057 new_rd = rd & ~RB_BUFFER_OFF; 3058 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3059 } 3060 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3061 3062 /** 3063 * ring_buffer_record_is_on - return true if the ring buffer can write 3064 * @buffer: The ring buffer to see if write is enabled 3065 * 3066 * Returns true if the ring buffer is in a state that it accepts writes. 3067 */ 3068 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3069 { 3070 return !atomic_read(&buffer->record_disabled); 3071 } 3072 3073 /** 3074 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3075 * @buffer: The ring buffer to stop writes to. 3076 * @cpu: The CPU buffer to stop 3077 * 3078 * This prevents all writes to the buffer. Any attempt to write 3079 * to the buffer after this will fail and return NULL. 3080 * 3081 * The caller should call synchronize_sched() after this. 3082 */ 3083 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3084 { 3085 struct ring_buffer_per_cpu *cpu_buffer; 3086 3087 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3088 return; 3089 3090 cpu_buffer = buffer->buffers[cpu]; 3091 atomic_inc(&cpu_buffer->record_disabled); 3092 } 3093 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3094 3095 /** 3096 * ring_buffer_record_enable_cpu - enable writes to the buffer 3097 * @buffer: The ring buffer to enable writes 3098 * @cpu: The CPU to enable. 3099 * 3100 * Note, multiple disables will need the same number of enables 3101 * to truly enable the writing (much like preempt_disable). 3102 */ 3103 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3104 { 3105 struct ring_buffer_per_cpu *cpu_buffer; 3106 3107 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3108 return; 3109 3110 cpu_buffer = buffer->buffers[cpu]; 3111 atomic_dec(&cpu_buffer->record_disabled); 3112 } 3113 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3114 3115 /* 3116 * The total entries in the ring buffer is the running counter 3117 * of entries entered into the ring buffer, minus the sum of 3118 * the entries read from the ring buffer and the number of 3119 * entries that were overwritten. 3120 */ 3121 static inline unsigned long 3122 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3123 { 3124 return local_read(&cpu_buffer->entries) - 3125 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3126 } 3127 3128 /** 3129 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3130 * @buffer: The ring buffer 3131 * @cpu: The per CPU buffer to read from. 3132 */ 3133 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3134 { 3135 unsigned long flags; 3136 struct ring_buffer_per_cpu *cpu_buffer; 3137 struct buffer_page *bpage; 3138 u64 ret = 0; 3139 3140 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3141 return 0; 3142 3143 cpu_buffer = buffer->buffers[cpu]; 3144 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3145 /* 3146 * if the tail is on reader_page, oldest time stamp is on the reader 3147 * page 3148 */ 3149 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3150 bpage = cpu_buffer->reader_page; 3151 else 3152 bpage = rb_set_head_page(cpu_buffer); 3153 if (bpage) 3154 ret = bpage->page->time_stamp; 3155 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3156 3157 return ret; 3158 } 3159 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3160 3161 /** 3162 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3163 * @buffer: The ring buffer 3164 * @cpu: The per CPU buffer to read from. 3165 */ 3166 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3167 { 3168 struct ring_buffer_per_cpu *cpu_buffer; 3169 unsigned long ret; 3170 3171 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3172 return 0; 3173 3174 cpu_buffer = buffer->buffers[cpu]; 3175 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3176 3177 return ret; 3178 } 3179 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3180 3181 /** 3182 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3183 * @buffer: The ring buffer 3184 * @cpu: The per CPU buffer to get the entries from. 3185 */ 3186 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3187 { 3188 struct ring_buffer_per_cpu *cpu_buffer; 3189 3190 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3191 return 0; 3192 3193 cpu_buffer = buffer->buffers[cpu]; 3194 3195 return rb_num_of_entries(cpu_buffer); 3196 } 3197 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3198 3199 /** 3200 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3201 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3202 * @buffer: The ring buffer 3203 * @cpu: The per CPU buffer to get the number of overruns from 3204 */ 3205 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3206 { 3207 struct ring_buffer_per_cpu *cpu_buffer; 3208 unsigned long ret; 3209 3210 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3211 return 0; 3212 3213 cpu_buffer = buffer->buffers[cpu]; 3214 ret = local_read(&cpu_buffer->overrun); 3215 3216 return ret; 3217 } 3218 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3219 3220 /** 3221 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3222 * commits failing due to the buffer wrapping around while there are uncommitted 3223 * events, such as during an interrupt storm. 3224 * @buffer: The ring buffer 3225 * @cpu: The per CPU buffer to get the number of overruns from 3226 */ 3227 unsigned long 3228 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3229 { 3230 struct ring_buffer_per_cpu *cpu_buffer; 3231 unsigned long ret; 3232 3233 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3234 return 0; 3235 3236 cpu_buffer = buffer->buffers[cpu]; 3237 ret = local_read(&cpu_buffer->commit_overrun); 3238 3239 return ret; 3240 } 3241 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3242 3243 /** 3244 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3245 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3246 * @buffer: The ring buffer 3247 * @cpu: The per CPU buffer to get the number of overruns from 3248 */ 3249 unsigned long 3250 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3251 { 3252 struct ring_buffer_per_cpu *cpu_buffer; 3253 unsigned long ret; 3254 3255 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3256 return 0; 3257 3258 cpu_buffer = buffer->buffers[cpu]; 3259 ret = local_read(&cpu_buffer->dropped_events); 3260 3261 return ret; 3262 } 3263 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3264 3265 /** 3266 * ring_buffer_read_events_cpu - get the number of events successfully read 3267 * @buffer: The ring buffer 3268 * @cpu: The per CPU buffer to get the number of events read 3269 */ 3270 unsigned long 3271 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3272 { 3273 struct ring_buffer_per_cpu *cpu_buffer; 3274 3275 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3276 return 0; 3277 3278 cpu_buffer = buffer->buffers[cpu]; 3279 return cpu_buffer->read; 3280 } 3281 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3282 3283 /** 3284 * ring_buffer_entries - get the number of entries in a buffer 3285 * @buffer: The ring buffer 3286 * 3287 * Returns the total number of entries in the ring buffer 3288 * (all CPU entries) 3289 */ 3290 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3291 { 3292 struct ring_buffer_per_cpu *cpu_buffer; 3293 unsigned long entries = 0; 3294 int cpu; 3295 3296 /* if you care about this being correct, lock the buffer */ 3297 for_each_buffer_cpu(buffer, cpu) { 3298 cpu_buffer = buffer->buffers[cpu]; 3299 entries += rb_num_of_entries(cpu_buffer); 3300 } 3301 3302 return entries; 3303 } 3304 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3305 3306 /** 3307 * ring_buffer_overruns - get the number of overruns in buffer 3308 * @buffer: The ring buffer 3309 * 3310 * Returns the total number of overruns in the ring buffer 3311 * (all CPU entries) 3312 */ 3313 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3314 { 3315 struct ring_buffer_per_cpu *cpu_buffer; 3316 unsigned long overruns = 0; 3317 int cpu; 3318 3319 /* if you care about this being correct, lock the buffer */ 3320 for_each_buffer_cpu(buffer, cpu) { 3321 cpu_buffer = buffer->buffers[cpu]; 3322 overruns += local_read(&cpu_buffer->overrun); 3323 } 3324 3325 return overruns; 3326 } 3327 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3328 3329 static void rb_iter_reset(struct ring_buffer_iter *iter) 3330 { 3331 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3332 3333 /* Iterator usage is expected to have record disabled */ 3334 iter->head_page = cpu_buffer->reader_page; 3335 iter->head = cpu_buffer->reader_page->read; 3336 3337 iter->cache_reader_page = iter->head_page; 3338 iter->cache_read = cpu_buffer->read; 3339 3340 if (iter->head) 3341 iter->read_stamp = cpu_buffer->read_stamp; 3342 else 3343 iter->read_stamp = iter->head_page->page->time_stamp; 3344 } 3345 3346 /** 3347 * ring_buffer_iter_reset - reset an iterator 3348 * @iter: The iterator to reset 3349 * 3350 * Resets the iterator, so that it will start from the beginning 3351 * again. 3352 */ 3353 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3354 { 3355 struct ring_buffer_per_cpu *cpu_buffer; 3356 unsigned long flags; 3357 3358 if (!iter) 3359 return; 3360 3361 cpu_buffer = iter->cpu_buffer; 3362 3363 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3364 rb_iter_reset(iter); 3365 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3366 } 3367 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3368 3369 /** 3370 * ring_buffer_iter_empty - check if an iterator has no more to read 3371 * @iter: The iterator to check 3372 */ 3373 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3374 { 3375 struct ring_buffer_per_cpu *cpu_buffer; 3376 struct buffer_page *reader; 3377 struct buffer_page *head_page; 3378 struct buffer_page *commit_page; 3379 unsigned commit; 3380 3381 cpu_buffer = iter->cpu_buffer; 3382 3383 /* Remember, trace recording is off when iterator is in use */ 3384 reader = cpu_buffer->reader_page; 3385 head_page = cpu_buffer->head_page; 3386 commit_page = cpu_buffer->commit_page; 3387 commit = rb_page_commit(commit_page); 3388 3389 return ((iter->head_page == commit_page && iter->head == commit) || 3390 (iter->head_page == reader && commit_page == head_page && 3391 head_page->read == commit && 3392 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3393 } 3394 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3395 3396 static void 3397 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3398 struct ring_buffer_event *event) 3399 { 3400 u64 delta; 3401 3402 switch (event->type_len) { 3403 case RINGBUF_TYPE_PADDING: 3404 return; 3405 3406 case RINGBUF_TYPE_TIME_EXTEND: 3407 delta = event->array[0]; 3408 delta <<= TS_SHIFT; 3409 delta += event->time_delta; 3410 cpu_buffer->read_stamp += delta; 3411 return; 3412 3413 case RINGBUF_TYPE_TIME_STAMP: 3414 /* FIXME: not implemented */ 3415 return; 3416 3417 case RINGBUF_TYPE_DATA: 3418 cpu_buffer->read_stamp += event->time_delta; 3419 return; 3420 3421 default: 3422 BUG(); 3423 } 3424 return; 3425 } 3426 3427 static void 3428 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3429 struct ring_buffer_event *event) 3430 { 3431 u64 delta; 3432 3433 switch (event->type_len) { 3434 case RINGBUF_TYPE_PADDING: 3435 return; 3436 3437 case RINGBUF_TYPE_TIME_EXTEND: 3438 delta = event->array[0]; 3439 delta <<= TS_SHIFT; 3440 delta += event->time_delta; 3441 iter->read_stamp += delta; 3442 return; 3443 3444 case RINGBUF_TYPE_TIME_STAMP: 3445 /* FIXME: not implemented */ 3446 return; 3447 3448 case RINGBUF_TYPE_DATA: 3449 iter->read_stamp += event->time_delta; 3450 return; 3451 3452 default: 3453 BUG(); 3454 } 3455 return; 3456 } 3457 3458 static struct buffer_page * 3459 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3460 { 3461 struct buffer_page *reader = NULL; 3462 unsigned long overwrite; 3463 unsigned long flags; 3464 int nr_loops = 0; 3465 int ret; 3466 3467 local_irq_save(flags); 3468 arch_spin_lock(&cpu_buffer->lock); 3469 3470 again: 3471 /* 3472 * This should normally only loop twice. But because the 3473 * start of the reader inserts an empty page, it causes 3474 * a case where we will loop three times. There should be no 3475 * reason to loop four times (that I know of). 3476 */ 3477 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3478 reader = NULL; 3479 goto out; 3480 } 3481 3482 reader = cpu_buffer->reader_page; 3483 3484 /* If there's more to read, return this page */ 3485 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3486 goto out; 3487 3488 /* Never should we have an index greater than the size */ 3489 if (RB_WARN_ON(cpu_buffer, 3490 cpu_buffer->reader_page->read > rb_page_size(reader))) 3491 goto out; 3492 3493 /* check if we caught up to the tail */ 3494 reader = NULL; 3495 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3496 goto out; 3497 3498 /* Don't bother swapping if the ring buffer is empty */ 3499 if (rb_num_of_entries(cpu_buffer) == 0) 3500 goto out; 3501 3502 /* 3503 * Reset the reader page to size zero. 3504 */ 3505 local_set(&cpu_buffer->reader_page->write, 0); 3506 local_set(&cpu_buffer->reader_page->entries, 0); 3507 local_set(&cpu_buffer->reader_page->page->commit, 0); 3508 cpu_buffer->reader_page->real_end = 0; 3509 3510 spin: 3511 /* 3512 * Splice the empty reader page into the list around the head. 3513 */ 3514 reader = rb_set_head_page(cpu_buffer); 3515 if (!reader) 3516 goto out; 3517 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3518 cpu_buffer->reader_page->list.prev = reader->list.prev; 3519 3520 /* 3521 * cpu_buffer->pages just needs to point to the buffer, it 3522 * has no specific buffer page to point to. Lets move it out 3523 * of our way so we don't accidentally swap it. 3524 */ 3525 cpu_buffer->pages = reader->list.prev; 3526 3527 /* The reader page will be pointing to the new head */ 3528 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3529 3530 /* 3531 * We want to make sure we read the overruns after we set up our 3532 * pointers to the next object. The writer side does a 3533 * cmpxchg to cross pages which acts as the mb on the writer 3534 * side. Note, the reader will constantly fail the swap 3535 * while the writer is updating the pointers, so this 3536 * guarantees that the overwrite recorded here is the one we 3537 * want to compare with the last_overrun. 3538 */ 3539 smp_mb(); 3540 overwrite = local_read(&(cpu_buffer->overrun)); 3541 3542 /* 3543 * Here's the tricky part. 3544 * 3545 * We need to move the pointer past the header page. 3546 * But we can only do that if a writer is not currently 3547 * moving it. The page before the header page has the 3548 * flag bit '1' set if it is pointing to the page we want. 3549 * but if the writer is in the process of moving it 3550 * than it will be '2' or already moved '0'. 3551 */ 3552 3553 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3554 3555 /* 3556 * If we did not convert it, then we must try again. 3557 */ 3558 if (!ret) 3559 goto spin; 3560 3561 /* 3562 * Yeah! We succeeded in replacing the page. 3563 * 3564 * Now make the new head point back to the reader page. 3565 */ 3566 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3567 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3568 3569 /* Finally update the reader page to the new head */ 3570 cpu_buffer->reader_page = reader; 3571 cpu_buffer->reader_page->read = 0; 3572 3573 if (overwrite != cpu_buffer->last_overrun) { 3574 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3575 cpu_buffer->last_overrun = overwrite; 3576 } 3577 3578 goto again; 3579 3580 out: 3581 /* Update the read_stamp on the first event */ 3582 if (reader && reader->read == 0) 3583 cpu_buffer->read_stamp = reader->page->time_stamp; 3584 3585 arch_spin_unlock(&cpu_buffer->lock); 3586 local_irq_restore(flags); 3587 3588 return reader; 3589 } 3590 3591 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3592 { 3593 struct ring_buffer_event *event; 3594 struct buffer_page *reader; 3595 unsigned length; 3596 3597 reader = rb_get_reader_page(cpu_buffer); 3598 3599 /* This function should not be called when buffer is empty */ 3600 if (RB_WARN_ON(cpu_buffer, !reader)) 3601 return; 3602 3603 event = rb_reader_event(cpu_buffer); 3604 3605 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3606 cpu_buffer->read++; 3607 3608 rb_update_read_stamp(cpu_buffer, event); 3609 3610 length = rb_event_length(event); 3611 cpu_buffer->reader_page->read += length; 3612 } 3613 3614 static void rb_advance_iter(struct ring_buffer_iter *iter) 3615 { 3616 struct ring_buffer_per_cpu *cpu_buffer; 3617 struct ring_buffer_event *event; 3618 unsigned length; 3619 3620 cpu_buffer = iter->cpu_buffer; 3621 3622 /* 3623 * Check if we are at the end of the buffer. 3624 */ 3625 if (iter->head >= rb_page_size(iter->head_page)) { 3626 /* discarded commits can make the page empty */ 3627 if (iter->head_page == cpu_buffer->commit_page) 3628 return; 3629 rb_inc_iter(iter); 3630 return; 3631 } 3632 3633 event = rb_iter_head_event(iter); 3634 3635 length = rb_event_length(event); 3636 3637 /* 3638 * This should not be called to advance the header if we are 3639 * at the tail of the buffer. 3640 */ 3641 if (RB_WARN_ON(cpu_buffer, 3642 (iter->head_page == cpu_buffer->commit_page) && 3643 (iter->head + length > rb_commit_index(cpu_buffer)))) 3644 return; 3645 3646 rb_update_iter_read_stamp(iter, event); 3647 3648 iter->head += length; 3649 3650 /* check for end of page padding */ 3651 if ((iter->head >= rb_page_size(iter->head_page)) && 3652 (iter->head_page != cpu_buffer->commit_page)) 3653 rb_inc_iter(iter); 3654 } 3655 3656 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3657 { 3658 return cpu_buffer->lost_events; 3659 } 3660 3661 static struct ring_buffer_event * 3662 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3663 unsigned long *lost_events) 3664 { 3665 struct ring_buffer_event *event; 3666 struct buffer_page *reader; 3667 int nr_loops = 0; 3668 3669 again: 3670 /* 3671 * We repeat when a time extend is encountered. 3672 * Since the time extend is always attached to a data event, 3673 * we should never loop more than once. 3674 * (We never hit the following condition more than twice). 3675 */ 3676 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3677 return NULL; 3678 3679 reader = rb_get_reader_page(cpu_buffer); 3680 if (!reader) 3681 return NULL; 3682 3683 event = rb_reader_event(cpu_buffer); 3684 3685 switch (event->type_len) { 3686 case RINGBUF_TYPE_PADDING: 3687 if (rb_null_event(event)) 3688 RB_WARN_ON(cpu_buffer, 1); 3689 /* 3690 * Because the writer could be discarding every 3691 * event it creates (which would probably be bad) 3692 * if we were to go back to "again" then we may never 3693 * catch up, and will trigger the warn on, or lock 3694 * the box. Return the padding, and we will release 3695 * the current locks, and try again. 3696 */ 3697 return event; 3698 3699 case RINGBUF_TYPE_TIME_EXTEND: 3700 /* Internal data, OK to advance */ 3701 rb_advance_reader(cpu_buffer); 3702 goto again; 3703 3704 case RINGBUF_TYPE_TIME_STAMP: 3705 /* FIXME: not implemented */ 3706 rb_advance_reader(cpu_buffer); 3707 goto again; 3708 3709 case RINGBUF_TYPE_DATA: 3710 if (ts) { 3711 *ts = cpu_buffer->read_stamp + event->time_delta; 3712 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3713 cpu_buffer->cpu, ts); 3714 } 3715 if (lost_events) 3716 *lost_events = rb_lost_events(cpu_buffer); 3717 return event; 3718 3719 default: 3720 BUG(); 3721 } 3722 3723 return NULL; 3724 } 3725 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3726 3727 static struct ring_buffer_event * 3728 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3729 { 3730 struct ring_buffer *buffer; 3731 struct ring_buffer_per_cpu *cpu_buffer; 3732 struct ring_buffer_event *event; 3733 int nr_loops = 0; 3734 3735 cpu_buffer = iter->cpu_buffer; 3736 buffer = cpu_buffer->buffer; 3737 3738 /* 3739 * Check if someone performed a consuming read to 3740 * the buffer. A consuming read invalidates the iterator 3741 * and we need to reset the iterator in this case. 3742 */ 3743 if (unlikely(iter->cache_read != cpu_buffer->read || 3744 iter->cache_reader_page != cpu_buffer->reader_page)) 3745 rb_iter_reset(iter); 3746 3747 again: 3748 if (ring_buffer_iter_empty(iter)) 3749 return NULL; 3750 3751 /* 3752 * We repeat when a time extend is encountered or we hit 3753 * the end of the page. Since the time extend is always attached 3754 * to a data event, we should never loop more than three times. 3755 * Once for going to next page, once on time extend, and 3756 * finally once to get the event. 3757 * (We never hit the following condition more than thrice). 3758 */ 3759 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3760 return NULL; 3761 3762 if (rb_per_cpu_empty(cpu_buffer)) 3763 return NULL; 3764 3765 if (iter->head >= rb_page_size(iter->head_page)) { 3766 rb_inc_iter(iter); 3767 goto again; 3768 } 3769 3770 event = rb_iter_head_event(iter); 3771 3772 switch (event->type_len) { 3773 case RINGBUF_TYPE_PADDING: 3774 if (rb_null_event(event)) { 3775 rb_inc_iter(iter); 3776 goto again; 3777 } 3778 rb_advance_iter(iter); 3779 return event; 3780 3781 case RINGBUF_TYPE_TIME_EXTEND: 3782 /* Internal data, OK to advance */ 3783 rb_advance_iter(iter); 3784 goto again; 3785 3786 case RINGBUF_TYPE_TIME_STAMP: 3787 /* FIXME: not implemented */ 3788 rb_advance_iter(iter); 3789 goto again; 3790 3791 case RINGBUF_TYPE_DATA: 3792 if (ts) { 3793 *ts = iter->read_stamp + event->time_delta; 3794 ring_buffer_normalize_time_stamp(buffer, 3795 cpu_buffer->cpu, ts); 3796 } 3797 return event; 3798 3799 default: 3800 BUG(); 3801 } 3802 3803 return NULL; 3804 } 3805 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3806 3807 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3808 { 3809 if (likely(!in_nmi())) { 3810 raw_spin_lock(&cpu_buffer->reader_lock); 3811 return true; 3812 } 3813 3814 /* 3815 * If an NMI die dumps out the content of the ring buffer 3816 * trylock must be used to prevent a deadlock if the NMI 3817 * preempted a task that holds the ring buffer locks. If 3818 * we get the lock then all is fine, if not, then continue 3819 * to do the read, but this can corrupt the ring buffer, 3820 * so it must be permanently disabled from future writes. 3821 * Reading from NMI is a oneshot deal. 3822 */ 3823 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3824 return true; 3825 3826 /* Continue without locking, but disable the ring buffer */ 3827 atomic_inc(&cpu_buffer->record_disabled); 3828 return false; 3829 } 3830 3831 static inline void 3832 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 3833 { 3834 if (likely(locked)) 3835 raw_spin_unlock(&cpu_buffer->reader_lock); 3836 return; 3837 } 3838 3839 /** 3840 * ring_buffer_peek - peek at the next event to be read 3841 * @buffer: The ring buffer to read 3842 * @cpu: The cpu to peak at 3843 * @ts: The timestamp counter of this event. 3844 * @lost_events: a variable to store if events were lost (may be NULL) 3845 * 3846 * This will return the event that will be read next, but does 3847 * not consume the data. 3848 */ 3849 struct ring_buffer_event * 3850 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3851 unsigned long *lost_events) 3852 { 3853 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3854 struct ring_buffer_event *event; 3855 unsigned long flags; 3856 bool dolock; 3857 3858 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3859 return NULL; 3860 3861 again: 3862 local_irq_save(flags); 3863 dolock = rb_reader_lock(cpu_buffer); 3864 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3865 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3866 rb_advance_reader(cpu_buffer); 3867 rb_reader_unlock(cpu_buffer, dolock); 3868 local_irq_restore(flags); 3869 3870 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3871 goto again; 3872 3873 return event; 3874 } 3875 3876 /** 3877 * ring_buffer_iter_peek - peek at the next event to be read 3878 * @iter: The ring buffer iterator 3879 * @ts: The timestamp counter of this event. 3880 * 3881 * This will return the event that will be read next, but does 3882 * not increment the iterator. 3883 */ 3884 struct ring_buffer_event * 3885 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3886 { 3887 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3888 struct ring_buffer_event *event; 3889 unsigned long flags; 3890 3891 again: 3892 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3893 event = rb_iter_peek(iter, ts); 3894 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3895 3896 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3897 goto again; 3898 3899 return event; 3900 } 3901 3902 /** 3903 * ring_buffer_consume - return an event and consume it 3904 * @buffer: The ring buffer to get the next event from 3905 * @cpu: the cpu to read the buffer from 3906 * @ts: a variable to store the timestamp (may be NULL) 3907 * @lost_events: a variable to store if events were lost (may be NULL) 3908 * 3909 * Returns the next event in the ring buffer, and that event is consumed. 3910 * Meaning, that sequential reads will keep returning a different event, 3911 * and eventually empty the ring buffer if the producer is slower. 3912 */ 3913 struct ring_buffer_event * 3914 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3915 unsigned long *lost_events) 3916 { 3917 struct ring_buffer_per_cpu *cpu_buffer; 3918 struct ring_buffer_event *event = NULL; 3919 unsigned long flags; 3920 bool dolock; 3921 3922 again: 3923 /* might be called in atomic */ 3924 preempt_disable(); 3925 3926 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3927 goto out; 3928 3929 cpu_buffer = buffer->buffers[cpu]; 3930 local_irq_save(flags); 3931 dolock = rb_reader_lock(cpu_buffer); 3932 3933 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3934 if (event) { 3935 cpu_buffer->lost_events = 0; 3936 rb_advance_reader(cpu_buffer); 3937 } 3938 3939 rb_reader_unlock(cpu_buffer, dolock); 3940 local_irq_restore(flags); 3941 3942 out: 3943 preempt_enable(); 3944 3945 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3946 goto again; 3947 3948 return event; 3949 } 3950 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3951 3952 /** 3953 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3954 * @buffer: The ring buffer to read from 3955 * @cpu: The cpu buffer to iterate over 3956 * 3957 * This performs the initial preparations necessary to iterate 3958 * through the buffer. Memory is allocated, buffer recording 3959 * is disabled, and the iterator pointer is returned to the caller. 3960 * 3961 * Disabling buffer recordng prevents the reading from being 3962 * corrupted. This is not a consuming read, so a producer is not 3963 * expected. 3964 * 3965 * After a sequence of ring_buffer_read_prepare calls, the user is 3966 * expected to make at least one call to ring_buffer_read_prepare_sync. 3967 * Afterwards, ring_buffer_read_start is invoked to get things going 3968 * for real. 3969 * 3970 * This overall must be paired with ring_buffer_read_finish. 3971 */ 3972 struct ring_buffer_iter * 3973 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3974 { 3975 struct ring_buffer_per_cpu *cpu_buffer; 3976 struct ring_buffer_iter *iter; 3977 3978 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3979 return NULL; 3980 3981 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3982 if (!iter) 3983 return NULL; 3984 3985 cpu_buffer = buffer->buffers[cpu]; 3986 3987 iter->cpu_buffer = cpu_buffer; 3988 3989 atomic_inc(&buffer->resize_disabled); 3990 atomic_inc(&cpu_buffer->record_disabled); 3991 3992 return iter; 3993 } 3994 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3995 3996 /** 3997 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3998 * 3999 * All previously invoked ring_buffer_read_prepare calls to prepare 4000 * iterators will be synchronized. Afterwards, read_buffer_read_start 4001 * calls on those iterators are allowed. 4002 */ 4003 void 4004 ring_buffer_read_prepare_sync(void) 4005 { 4006 synchronize_sched(); 4007 } 4008 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4009 4010 /** 4011 * ring_buffer_read_start - start a non consuming read of the buffer 4012 * @iter: The iterator returned by ring_buffer_read_prepare 4013 * 4014 * This finalizes the startup of an iteration through the buffer. 4015 * The iterator comes from a call to ring_buffer_read_prepare and 4016 * an intervening ring_buffer_read_prepare_sync must have been 4017 * performed. 4018 * 4019 * Must be paired with ring_buffer_read_finish. 4020 */ 4021 void 4022 ring_buffer_read_start(struct ring_buffer_iter *iter) 4023 { 4024 struct ring_buffer_per_cpu *cpu_buffer; 4025 unsigned long flags; 4026 4027 if (!iter) 4028 return; 4029 4030 cpu_buffer = iter->cpu_buffer; 4031 4032 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4033 arch_spin_lock(&cpu_buffer->lock); 4034 rb_iter_reset(iter); 4035 arch_spin_unlock(&cpu_buffer->lock); 4036 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4037 } 4038 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4039 4040 /** 4041 * ring_buffer_read_finish - finish reading the iterator of the buffer 4042 * @iter: The iterator retrieved by ring_buffer_start 4043 * 4044 * This re-enables the recording to the buffer, and frees the 4045 * iterator. 4046 */ 4047 void 4048 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4049 { 4050 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4051 unsigned long flags; 4052 4053 /* 4054 * Ring buffer is disabled from recording, here's a good place 4055 * to check the integrity of the ring buffer. 4056 * Must prevent readers from trying to read, as the check 4057 * clears the HEAD page and readers require it. 4058 */ 4059 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4060 rb_check_pages(cpu_buffer); 4061 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4062 4063 atomic_dec(&cpu_buffer->record_disabled); 4064 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4065 kfree(iter); 4066 } 4067 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4068 4069 /** 4070 * ring_buffer_read - read the next item in the ring buffer by the iterator 4071 * @iter: The ring buffer iterator 4072 * @ts: The time stamp of the event read. 4073 * 4074 * This reads the next event in the ring buffer and increments the iterator. 4075 */ 4076 struct ring_buffer_event * 4077 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4078 { 4079 struct ring_buffer_event *event; 4080 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4081 unsigned long flags; 4082 4083 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4084 again: 4085 event = rb_iter_peek(iter, ts); 4086 if (!event) 4087 goto out; 4088 4089 if (event->type_len == RINGBUF_TYPE_PADDING) 4090 goto again; 4091 4092 rb_advance_iter(iter); 4093 out: 4094 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4095 4096 return event; 4097 } 4098 EXPORT_SYMBOL_GPL(ring_buffer_read); 4099 4100 /** 4101 * ring_buffer_size - return the size of the ring buffer (in bytes) 4102 * @buffer: The ring buffer. 4103 */ 4104 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4105 { 4106 /* 4107 * Earlier, this method returned 4108 * BUF_PAGE_SIZE * buffer->nr_pages 4109 * Since the nr_pages field is now removed, we have converted this to 4110 * return the per cpu buffer value. 4111 */ 4112 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4113 return 0; 4114 4115 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4116 } 4117 EXPORT_SYMBOL_GPL(ring_buffer_size); 4118 4119 static void 4120 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4121 { 4122 rb_head_page_deactivate(cpu_buffer); 4123 4124 cpu_buffer->head_page 4125 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4126 local_set(&cpu_buffer->head_page->write, 0); 4127 local_set(&cpu_buffer->head_page->entries, 0); 4128 local_set(&cpu_buffer->head_page->page->commit, 0); 4129 4130 cpu_buffer->head_page->read = 0; 4131 4132 cpu_buffer->tail_page = cpu_buffer->head_page; 4133 cpu_buffer->commit_page = cpu_buffer->head_page; 4134 4135 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4136 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4137 local_set(&cpu_buffer->reader_page->write, 0); 4138 local_set(&cpu_buffer->reader_page->entries, 0); 4139 local_set(&cpu_buffer->reader_page->page->commit, 0); 4140 cpu_buffer->reader_page->read = 0; 4141 4142 local_set(&cpu_buffer->entries_bytes, 0); 4143 local_set(&cpu_buffer->overrun, 0); 4144 local_set(&cpu_buffer->commit_overrun, 0); 4145 local_set(&cpu_buffer->dropped_events, 0); 4146 local_set(&cpu_buffer->entries, 0); 4147 local_set(&cpu_buffer->committing, 0); 4148 local_set(&cpu_buffer->commits, 0); 4149 cpu_buffer->read = 0; 4150 cpu_buffer->read_bytes = 0; 4151 4152 cpu_buffer->write_stamp = 0; 4153 cpu_buffer->read_stamp = 0; 4154 4155 cpu_buffer->lost_events = 0; 4156 cpu_buffer->last_overrun = 0; 4157 4158 rb_head_page_activate(cpu_buffer); 4159 } 4160 4161 /** 4162 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4163 * @buffer: The ring buffer to reset a per cpu buffer of 4164 * @cpu: The CPU buffer to be reset 4165 */ 4166 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4167 { 4168 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4169 unsigned long flags; 4170 4171 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4172 return; 4173 4174 atomic_inc(&buffer->resize_disabled); 4175 atomic_inc(&cpu_buffer->record_disabled); 4176 4177 /* Make sure all commits have finished */ 4178 synchronize_sched(); 4179 4180 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4181 4182 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4183 goto out; 4184 4185 arch_spin_lock(&cpu_buffer->lock); 4186 4187 rb_reset_cpu(cpu_buffer); 4188 4189 arch_spin_unlock(&cpu_buffer->lock); 4190 4191 out: 4192 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4193 4194 atomic_dec(&cpu_buffer->record_disabled); 4195 atomic_dec(&buffer->resize_disabled); 4196 } 4197 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4198 4199 /** 4200 * ring_buffer_reset - reset a ring buffer 4201 * @buffer: The ring buffer to reset all cpu buffers 4202 */ 4203 void ring_buffer_reset(struct ring_buffer *buffer) 4204 { 4205 int cpu; 4206 4207 for_each_buffer_cpu(buffer, cpu) 4208 ring_buffer_reset_cpu(buffer, cpu); 4209 } 4210 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4211 4212 /** 4213 * rind_buffer_empty - is the ring buffer empty? 4214 * @buffer: The ring buffer to test 4215 */ 4216 bool ring_buffer_empty(struct ring_buffer *buffer) 4217 { 4218 struct ring_buffer_per_cpu *cpu_buffer; 4219 unsigned long flags; 4220 bool dolock; 4221 int cpu; 4222 int ret; 4223 4224 /* yes this is racy, but if you don't like the race, lock the buffer */ 4225 for_each_buffer_cpu(buffer, cpu) { 4226 cpu_buffer = buffer->buffers[cpu]; 4227 local_irq_save(flags); 4228 dolock = rb_reader_lock(cpu_buffer); 4229 ret = rb_per_cpu_empty(cpu_buffer); 4230 rb_reader_unlock(cpu_buffer, dolock); 4231 local_irq_restore(flags); 4232 4233 if (!ret) 4234 return false; 4235 } 4236 4237 return true; 4238 } 4239 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4240 4241 /** 4242 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4243 * @buffer: The ring buffer 4244 * @cpu: The CPU buffer to test 4245 */ 4246 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4247 { 4248 struct ring_buffer_per_cpu *cpu_buffer; 4249 unsigned long flags; 4250 bool dolock; 4251 int ret; 4252 4253 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4254 return true; 4255 4256 cpu_buffer = buffer->buffers[cpu]; 4257 local_irq_save(flags); 4258 dolock = rb_reader_lock(cpu_buffer); 4259 ret = rb_per_cpu_empty(cpu_buffer); 4260 rb_reader_unlock(cpu_buffer, dolock); 4261 local_irq_restore(flags); 4262 4263 return ret; 4264 } 4265 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4266 4267 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4268 /** 4269 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4270 * @buffer_a: One buffer to swap with 4271 * @buffer_b: The other buffer to swap with 4272 * 4273 * This function is useful for tracers that want to take a "snapshot" 4274 * of a CPU buffer and has another back up buffer lying around. 4275 * it is expected that the tracer handles the cpu buffer not being 4276 * used at the moment. 4277 */ 4278 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4279 struct ring_buffer *buffer_b, int cpu) 4280 { 4281 struct ring_buffer_per_cpu *cpu_buffer_a; 4282 struct ring_buffer_per_cpu *cpu_buffer_b; 4283 int ret = -EINVAL; 4284 4285 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4286 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4287 goto out; 4288 4289 cpu_buffer_a = buffer_a->buffers[cpu]; 4290 cpu_buffer_b = buffer_b->buffers[cpu]; 4291 4292 /* At least make sure the two buffers are somewhat the same */ 4293 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4294 goto out; 4295 4296 ret = -EAGAIN; 4297 4298 if (atomic_read(&buffer_a->record_disabled)) 4299 goto out; 4300 4301 if (atomic_read(&buffer_b->record_disabled)) 4302 goto out; 4303 4304 if (atomic_read(&cpu_buffer_a->record_disabled)) 4305 goto out; 4306 4307 if (atomic_read(&cpu_buffer_b->record_disabled)) 4308 goto out; 4309 4310 /* 4311 * We can't do a synchronize_sched here because this 4312 * function can be called in atomic context. 4313 * Normally this will be called from the same CPU as cpu. 4314 * If not it's up to the caller to protect this. 4315 */ 4316 atomic_inc(&cpu_buffer_a->record_disabled); 4317 atomic_inc(&cpu_buffer_b->record_disabled); 4318 4319 ret = -EBUSY; 4320 if (local_read(&cpu_buffer_a->committing)) 4321 goto out_dec; 4322 if (local_read(&cpu_buffer_b->committing)) 4323 goto out_dec; 4324 4325 buffer_a->buffers[cpu] = cpu_buffer_b; 4326 buffer_b->buffers[cpu] = cpu_buffer_a; 4327 4328 cpu_buffer_b->buffer = buffer_a; 4329 cpu_buffer_a->buffer = buffer_b; 4330 4331 ret = 0; 4332 4333 out_dec: 4334 atomic_dec(&cpu_buffer_a->record_disabled); 4335 atomic_dec(&cpu_buffer_b->record_disabled); 4336 out: 4337 return ret; 4338 } 4339 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4340 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4341 4342 /** 4343 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4344 * @buffer: the buffer to allocate for. 4345 * @cpu: the cpu buffer to allocate. 4346 * 4347 * This function is used in conjunction with ring_buffer_read_page. 4348 * When reading a full page from the ring buffer, these functions 4349 * can be used to speed up the process. The calling function should 4350 * allocate a few pages first with this function. Then when it 4351 * needs to get pages from the ring buffer, it passes the result 4352 * of this function into ring_buffer_read_page, which will swap 4353 * the page that was allocated, with the read page of the buffer. 4354 * 4355 * Returns: 4356 * The page allocated, or ERR_PTR 4357 */ 4358 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4359 { 4360 struct ring_buffer_per_cpu *cpu_buffer; 4361 struct buffer_data_page *bpage = NULL; 4362 unsigned long flags; 4363 struct page *page; 4364 4365 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4366 return ERR_PTR(-ENODEV); 4367 4368 cpu_buffer = buffer->buffers[cpu]; 4369 local_irq_save(flags); 4370 arch_spin_lock(&cpu_buffer->lock); 4371 4372 if (cpu_buffer->free_page) { 4373 bpage = cpu_buffer->free_page; 4374 cpu_buffer->free_page = NULL; 4375 } 4376 4377 arch_spin_unlock(&cpu_buffer->lock); 4378 local_irq_restore(flags); 4379 4380 if (bpage) 4381 goto out; 4382 4383 page = alloc_pages_node(cpu_to_node(cpu), 4384 GFP_KERNEL | __GFP_NORETRY, 0); 4385 if (!page) 4386 return ERR_PTR(-ENOMEM); 4387 4388 bpage = page_address(page); 4389 4390 out: 4391 rb_init_page(bpage); 4392 4393 return bpage; 4394 } 4395 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4396 4397 /** 4398 * ring_buffer_free_read_page - free an allocated read page 4399 * @buffer: the buffer the page was allocate for 4400 * @cpu: the cpu buffer the page came from 4401 * @data: the page to free 4402 * 4403 * Free a page allocated from ring_buffer_alloc_read_page. 4404 */ 4405 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data) 4406 { 4407 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4408 struct buffer_data_page *bpage = data; 4409 unsigned long flags; 4410 4411 local_irq_save(flags); 4412 arch_spin_lock(&cpu_buffer->lock); 4413 4414 if (!cpu_buffer->free_page) { 4415 cpu_buffer->free_page = bpage; 4416 bpage = NULL; 4417 } 4418 4419 arch_spin_unlock(&cpu_buffer->lock); 4420 local_irq_restore(flags); 4421 4422 free_page((unsigned long)bpage); 4423 } 4424 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4425 4426 /** 4427 * ring_buffer_read_page - extract a page from the ring buffer 4428 * @buffer: buffer to extract from 4429 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4430 * @len: amount to extract 4431 * @cpu: the cpu of the buffer to extract 4432 * @full: should the extraction only happen when the page is full. 4433 * 4434 * This function will pull out a page from the ring buffer and consume it. 4435 * @data_page must be the address of the variable that was returned 4436 * from ring_buffer_alloc_read_page. This is because the page might be used 4437 * to swap with a page in the ring buffer. 4438 * 4439 * for example: 4440 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4441 * if (IS_ERR(rpage)) 4442 * return PTR_ERR(rpage); 4443 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4444 * if (ret >= 0) 4445 * process_page(rpage, ret); 4446 * 4447 * When @full is set, the function will not return true unless 4448 * the writer is off the reader page. 4449 * 4450 * Note: it is up to the calling functions to handle sleeps and wakeups. 4451 * The ring buffer can be used anywhere in the kernel and can not 4452 * blindly call wake_up. The layer that uses the ring buffer must be 4453 * responsible for that. 4454 * 4455 * Returns: 4456 * >=0 if data has been transferred, returns the offset of consumed data. 4457 * <0 if no data has been transferred. 4458 */ 4459 int ring_buffer_read_page(struct ring_buffer *buffer, 4460 void **data_page, size_t len, int cpu, int full) 4461 { 4462 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4463 struct ring_buffer_event *event; 4464 struct buffer_data_page *bpage; 4465 struct buffer_page *reader; 4466 unsigned long missed_events; 4467 unsigned long flags; 4468 unsigned int commit; 4469 unsigned int read; 4470 u64 save_timestamp; 4471 int ret = -1; 4472 4473 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4474 goto out; 4475 4476 /* 4477 * If len is not big enough to hold the page header, then 4478 * we can not copy anything. 4479 */ 4480 if (len <= BUF_PAGE_HDR_SIZE) 4481 goto out; 4482 4483 len -= BUF_PAGE_HDR_SIZE; 4484 4485 if (!data_page) 4486 goto out; 4487 4488 bpage = *data_page; 4489 if (!bpage) 4490 goto out; 4491 4492 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4493 4494 reader = rb_get_reader_page(cpu_buffer); 4495 if (!reader) 4496 goto out_unlock; 4497 4498 event = rb_reader_event(cpu_buffer); 4499 4500 read = reader->read; 4501 commit = rb_page_commit(reader); 4502 4503 /* Check if any events were dropped */ 4504 missed_events = cpu_buffer->lost_events; 4505 4506 /* 4507 * If this page has been partially read or 4508 * if len is not big enough to read the rest of the page or 4509 * a writer is still on the page, then 4510 * we must copy the data from the page to the buffer. 4511 * Otherwise, we can simply swap the page with the one passed in. 4512 */ 4513 if (read || (len < (commit - read)) || 4514 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4515 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4516 unsigned int rpos = read; 4517 unsigned int pos = 0; 4518 unsigned int size; 4519 4520 if (full) 4521 goto out_unlock; 4522 4523 if (len > (commit - read)) 4524 len = (commit - read); 4525 4526 /* Always keep the time extend and data together */ 4527 size = rb_event_ts_length(event); 4528 4529 if (len < size) 4530 goto out_unlock; 4531 4532 /* save the current timestamp, since the user will need it */ 4533 save_timestamp = cpu_buffer->read_stamp; 4534 4535 /* Need to copy one event at a time */ 4536 do { 4537 /* We need the size of one event, because 4538 * rb_advance_reader only advances by one event, 4539 * whereas rb_event_ts_length may include the size of 4540 * one or two events. 4541 * We have already ensured there's enough space if this 4542 * is a time extend. */ 4543 size = rb_event_length(event); 4544 memcpy(bpage->data + pos, rpage->data + rpos, size); 4545 4546 len -= size; 4547 4548 rb_advance_reader(cpu_buffer); 4549 rpos = reader->read; 4550 pos += size; 4551 4552 if (rpos >= commit) 4553 break; 4554 4555 event = rb_reader_event(cpu_buffer); 4556 /* Always keep the time extend and data together */ 4557 size = rb_event_ts_length(event); 4558 } while (len >= size); 4559 4560 /* update bpage */ 4561 local_set(&bpage->commit, pos); 4562 bpage->time_stamp = save_timestamp; 4563 4564 /* we copied everything to the beginning */ 4565 read = 0; 4566 } else { 4567 /* update the entry counter */ 4568 cpu_buffer->read += rb_page_entries(reader); 4569 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4570 4571 /* swap the pages */ 4572 rb_init_page(bpage); 4573 bpage = reader->page; 4574 reader->page = *data_page; 4575 local_set(&reader->write, 0); 4576 local_set(&reader->entries, 0); 4577 reader->read = 0; 4578 *data_page = bpage; 4579 4580 /* 4581 * Use the real_end for the data size, 4582 * This gives us a chance to store the lost events 4583 * on the page. 4584 */ 4585 if (reader->real_end) 4586 local_set(&bpage->commit, reader->real_end); 4587 } 4588 ret = read; 4589 4590 cpu_buffer->lost_events = 0; 4591 4592 commit = local_read(&bpage->commit); 4593 /* 4594 * Set a flag in the commit field if we lost events 4595 */ 4596 if (missed_events) { 4597 /* If there is room at the end of the page to save the 4598 * missed events, then record it there. 4599 */ 4600 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4601 memcpy(&bpage->data[commit], &missed_events, 4602 sizeof(missed_events)); 4603 local_add(RB_MISSED_STORED, &bpage->commit); 4604 commit += sizeof(missed_events); 4605 } 4606 local_add(RB_MISSED_EVENTS, &bpage->commit); 4607 } 4608 4609 /* 4610 * This page may be off to user land. Zero it out here. 4611 */ 4612 if (commit < BUF_PAGE_SIZE) 4613 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4614 4615 out_unlock: 4616 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4617 4618 out: 4619 return ret; 4620 } 4621 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4622 4623 /* 4624 * We only allocate new buffers, never free them if the CPU goes down. 4625 * If we were to free the buffer, then the user would lose any trace that was in 4626 * the buffer. 4627 */ 4628 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4629 { 4630 struct ring_buffer *buffer; 4631 long nr_pages_same; 4632 int cpu_i; 4633 unsigned long nr_pages; 4634 4635 buffer = container_of(node, struct ring_buffer, node); 4636 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4637 return 0; 4638 4639 nr_pages = 0; 4640 nr_pages_same = 1; 4641 /* check if all cpu sizes are same */ 4642 for_each_buffer_cpu(buffer, cpu_i) { 4643 /* fill in the size from first enabled cpu */ 4644 if (nr_pages == 0) 4645 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4646 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4647 nr_pages_same = 0; 4648 break; 4649 } 4650 } 4651 /* allocate minimum pages, user can later expand it */ 4652 if (!nr_pages_same) 4653 nr_pages = 2; 4654 buffer->buffers[cpu] = 4655 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4656 if (!buffer->buffers[cpu]) { 4657 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4658 cpu); 4659 return -ENOMEM; 4660 } 4661 smp_wmb(); 4662 cpumask_set_cpu(cpu, buffer->cpumask); 4663 return 0; 4664 } 4665 4666 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4667 /* 4668 * This is a basic integrity check of the ring buffer. 4669 * Late in the boot cycle this test will run when configured in. 4670 * It will kick off a thread per CPU that will go into a loop 4671 * writing to the per cpu ring buffer various sizes of data. 4672 * Some of the data will be large items, some small. 4673 * 4674 * Another thread is created that goes into a spin, sending out 4675 * IPIs to the other CPUs to also write into the ring buffer. 4676 * this is to test the nesting ability of the buffer. 4677 * 4678 * Basic stats are recorded and reported. If something in the 4679 * ring buffer should happen that's not expected, a big warning 4680 * is displayed and all ring buffers are disabled. 4681 */ 4682 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4683 4684 struct rb_test_data { 4685 struct ring_buffer *buffer; 4686 unsigned long events; 4687 unsigned long bytes_written; 4688 unsigned long bytes_alloc; 4689 unsigned long bytes_dropped; 4690 unsigned long events_nested; 4691 unsigned long bytes_written_nested; 4692 unsigned long bytes_alloc_nested; 4693 unsigned long bytes_dropped_nested; 4694 int min_size_nested; 4695 int max_size_nested; 4696 int max_size; 4697 int min_size; 4698 int cpu; 4699 int cnt; 4700 }; 4701 4702 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4703 4704 /* 1 meg per cpu */ 4705 #define RB_TEST_BUFFER_SIZE 1048576 4706 4707 static char rb_string[] __initdata = 4708 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4709 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4710 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4711 4712 static bool rb_test_started __initdata; 4713 4714 struct rb_item { 4715 int size; 4716 char str[]; 4717 }; 4718 4719 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4720 { 4721 struct ring_buffer_event *event; 4722 struct rb_item *item; 4723 bool started; 4724 int event_len; 4725 int size; 4726 int len; 4727 int cnt; 4728 4729 /* Have nested writes different that what is written */ 4730 cnt = data->cnt + (nested ? 27 : 0); 4731 4732 /* Multiply cnt by ~e, to make some unique increment */ 4733 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4734 4735 len = size + sizeof(struct rb_item); 4736 4737 started = rb_test_started; 4738 /* read rb_test_started before checking buffer enabled */ 4739 smp_rmb(); 4740 4741 event = ring_buffer_lock_reserve(data->buffer, len); 4742 if (!event) { 4743 /* Ignore dropped events before test starts. */ 4744 if (started) { 4745 if (nested) 4746 data->bytes_dropped += len; 4747 else 4748 data->bytes_dropped_nested += len; 4749 } 4750 return len; 4751 } 4752 4753 event_len = ring_buffer_event_length(event); 4754 4755 if (RB_WARN_ON(data->buffer, event_len < len)) 4756 goto out; 4757 4758 item = ring_buffer_event_data(event); 4759 item->size = size; 4760 memcpy(item->str, rb_string, size); 4761 4762 if (nested) { 4763 data->bytes_alloc_nested += event_len; 4764 data->bytes_written_nested += len; 4765 data->events_nested++; 4766 if (!data->min_size_nested || len < data->min_size_nested) 4767 data->min_size_nested = len; 4768 if (len > data->max_size_nested) 4769 data->max_size_nested = len; 4770 } else { 4771 data->bytes_alloc += event_len; 4772 data->bytes_written += len; 4773 data->events++; 4774 if (!data->min_size || len < data->min_size) 4775 data->max_size = len; 4776 if (len > data->max_size) 4777 data->max_size = len; 4778 } 4779 4780 out: 4781 ring_buffer_unlock_commit(data->buffer, event); 4782 4783 return 0; 4784 } 4785 4786 static __init int rb_test(void *arg) 4787 { 4788 struct rb_test_data *data = arg; 4789 4790 while (!kthread_should_stop()) { 4791 rb_write_something(data, false); 4792 data->cnt++; 4793 4794 set_current_state(TASK_INTERRUPTIBLE); 4795 /* Now sleep between a min of 100-300us and a max of 1ms */ 4796 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4797 } 4798 4799 return 0; 4800 } 4801 4802 static __init void rb_ipi(void *ignore) 4803 { 4804 struct rb_test_data *data; 4805 int cpu = smp_processor_id(); 4806 4807 data = &rb_data[cpu]; 4808 rb_write_something(data, true); 4809 } 4810 4811 static __init int rb_hammer_test(void *arg) 4812 { 4813 while (!kthread_should_stop()) { 4814 4815 /* Send an IPI to all cpus to write data! */ 4816 smp_call_function(rb_ipi, NULL, 1); 4817 /* No sleep, but for non preempt, let others run */ 4818 schedule(); 4819 } 4820 4821 return 0; 4822 } 4823 4824 static __init int test_ringbuffer(void) 4825 { 4826 struct task_struct *rb_hammer; 4827 struct ring_buffer *buffer; 4828 int cpu; 4829 int ret = 0; 4830 4831 pr_info("Running ring buffer tests...\n"); 4832 4833 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4834 if (WARN_ON(!buffer)) 4835 return 0; 4836 4837 /* Disable buffer so that threads can't write to it yet */ 4838 ring_buffer_record_off(buffer); 4839 4840 for_each_online_cpu(cpu) { 4841 rb_data[cpu].buffer = buffer; 4842 rb_data[cpu].cpu = cpu; 4843 rb_data[cpu].cnt = cpu; 4844 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4845 "rbtester/%d", cpu); 4846 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 4847 pr_cont("FAILED\n"); 4848 ret = PTR_ERR(rb_threads[cpu]); 4849 goto out_free; 4850 } 4851 4852 kthread_bind(rb_threads[cpu], cpu); 4853 wake_up_process(rb_threads[cpu]); 4854 } 4855 4856 /* Now create the rb hammer! */ 4857 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4858 if (WARN_ON(IS_ERR(rb_hammer))) { 4859 pr_cont("FAILED\n"); 4860 ret = PTR_ERR(rb_hammer); 4861 goto out_free; 4862 } 4863 4864 ring_buffer_record_on(buffer); 4865 /* 4866 * Show buffer is enabled before setting rb_test_started. 4867 * Yes there's a small race window where events could be 4868 * dropped and the thread wont catch it. But when a ring 4869 * buffer gets enabled, there will always be some kind of 4870 * delay before other CPUs see it. Thus, we don't care about 4871 * those dropped events. We care about events dropped after 4872 * the threads see that the buffer is active. 4873 */ 4874 smp_wmb(); 4875 rb_test_started = true; 4876 4877 set_current_state(TASK_INTERRUPTIBLE); 4878 /* Just run for 10 seconds */; 4879 schedule_timeout(10 * HZ); 4880 4881 kthread_stop(rb_hammer); 4882 4883 out_free: 4884 for_each_online_cpu(cpu) { 4885 if (!rb_threads[cpu]) 4886 break; 4887 kthread_stop(rb_threads[cpu]); 4888 } 4889 if (ret) { 4890 ring_buffer_free(buffer); 4891 return ret; 4892 } 4893 4894 /* Report! */ 4895 pr_info("finished\n"); 4896 for_each_online_cpu(cpu) { 4897 struct ring_buffer_event *event; 4898 struct rb_test_data *data = &rb_data[cpu]; 4899 struct rb_item *item; 4900 unsigned long total_events; 4901 unsigned long total_dropped; 4902 unsigned long total_written; 4903 unsigned long total_alloc; 4904 unsigned long total_read = 0; 4905 unsigned long total_size = 0; 4906 unsigned long total_len = 0; 4907 unsigned long total_lost = 0; 4908 unsigned long lost; 4909 int big_event_size; 4910 int small_event_size; 4911 4912 ret = -1; 4913 4914 total_events = data->events + data->events_nested; 4915 total_written = data->bytes_written + data->bytes_written_nested; 4916 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4917 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4918 4919 big_event_size = data->max_size + data->max_size_nested; 4920 small_event_size = data->min_size + data->min_size_nested; 4921 4922 pr_info("CPU %d:\n", cpu); 4923 pr_info(" events: %ld\n", total_events); 4924 pr_info(" dropped bytes: %ld\n", total_dropped); 4925 pr_info(" alloced bytes: %ld\n", total_alloc); 4926 pr_info(" written bytes: %ld\n", total_written); 4927 pr_info(" biggest event: %d\n", big_event_size); 4928 pr_info(" smallest event: %d\n", small_event_size); 4929 4930 if (RB_WARN_ON(buffer, total_dropped)) 4931 break; 4932 4933 ret = 0; 4934 4935 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4936 total_lost += lost; 4937 item = ring_buffer_event_data(event); 4938 total_len += ring_buffer_event_length(event); 4939 total_size += item->size + sizeof(struct rb_item); 4940 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4941 pr_info("FAILED!\n"); 4942 pr_info("buffer had: %.*s\n", item->size, item->str); 4943 pr_info("expected: %.*s\n", item->size, rb_string); 4944 RB_WARN_ON(buffer, 1); 4945 ret = -1; 4946 break; 4947 } 4948 total_read++; 4949 } 4950 if (ret) 4951 break; 4952 4953 ret = -1; 4954 4955 pr_info(" read events: %ld\n", total_read); 4956 pr_info(" lost events: %ld\n", total_lost); 4957 pr_info(" total events: %ld\n", total_lost + total_read); 4958 pr_info(" recorded len bytes: %ld\n", total_len); 4959 pr_info(" recorded size bytes: %ld\n", total_size); 4960 if (total_lost) 4961 pr_info(" With dropped events, record len and size may not match\n" 4962 " alloced and written from above\n"); 4963 if (!total_lost) { 4964 if (RB_WARN_ON(buffer, total_len != total_alloc || 4965 total_size != total_written)) 4966 break; 4967 } 4968 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4969 break; 4970 4971 ret = 0; 4972 } 4973 if (!ret) 4974 pr_info("Ring buffer PASSED!\n"); 4975 4976 ring_buffer_free(buffer); 4977 return 0; 4978 } 4979 4980 late_initcall(test_ringbuffer); 4981 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4982