xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision fb960bd2)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 struct buffer_data_page {
284 	u64		 time_stamp;	/* page time stamp */
285 	local_t		 commit;	/* write committed index */
286 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
287 };
288 
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298 	struct list_head list;		/* list of buffer pages */
299 	local_t		 write;		/* index for next write */
300 	unsigned	 read;		/* index for next read */
301 	local_t		 entries;	/* entries on this page */
302 	unsigned long	 real_end;	/* real end of data */
303 	struct buffer_data_page *page;	/* Actual data page */
304 };
305 
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK		0xfffff
319 #define RB_WRITE_INTCNT		(1 << 20)
320 
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 	local_set(&bpage->commit, 0);
324 }
325 
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334 	return local_read(&((struct buffer_data_page *)page)->commit)
335 		+ BUF_PAGE_HDR_SIZE;
336 }
337 
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 	free_page((unsigned long)bpage->page);
345 	kfree(bpage);
346 }
347 
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353 	if (delta & TS_DELTA_TEST)
354 		return 1;
355 	return 0;
356 }
357 
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359 
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362 
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 	struct buffer_data_page field;
366 
367 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 			 (unsigned int)sizeof(field.time_stamp),
370 			 (unsigned int)is_signed_type(u64));
371 
372 	trace_seq_printf(s, "\tfield: local_t commit;\t"
373 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 			 (unsigned int)offsetof(typeof(field), commit),
375 			 (unsigned int)sizeof(field.commit),
376 			 (unsigned int)is_signed_type(long));
377 
378 	trace_seq_printf(s, "\tfield: int overwrite;\t"
379 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)offsetof(typeof(field), commit),
381 			 1,
382 			 (unsigned int)is_signed_type(long));
383 
384 	trace_seq_printf(s, "\tfield: char data;\t"
385 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 			 (unsigned int)offsetof(typeof(field), data),
387 			 (unsigned int)BUF_PAGE_SIZE,
388 			 (unsigned int)is_signed_type(char));
389 
390 	return !trace_seq_has_overflowed(s);
391 }
392 
393 struct rb_irq_work {
394 	struct irq_work			work;
395 	wait_queue_head_t		waiters;
396 	wait_queue_head_t		full_waiters;
397 	bool				waiters_pending;
398 	bool				full_waiters_pending;
399 	bool				wakeup_full;
400 };
401 
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406 	u64			ts;
407 	u64			delta;
408 	unsigned long		length;
409 	struct buffer_page	*tail_page;
410 	int			add_timestamp;
411 };
412 
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423 	RB_CTX_NMI,
424 	RB_CTX_IRQ,
425 	RB_CTX_SOFTIRQ,
426 	RB_CTX_NORMAL,
427 	RB_CTX_MAX
428 };
429 
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434 	int				cpu;
435 	atomic_t			record_disabled;
436 	struct ring_buffer		*buffer;
437 	raw_spinlock_t			reader_lock;	/* serialize readers */
438 	arch_spinlock_t			lock;
439 	struct lock_class_key		lock_key;
440 	struct buffer_data_page		*free_page;
441 	unsigned long			nr_pages;
442 	unsigned int			current_context;
443 	struct list_head		*pages;
444 	struct buffer_page		*head_page;	/* read from head */
445 	struct buffer_page		*tail_page;	/* write to tail */
446 	struct buffer_page		*commit_page;	/* committed pages */
447 	struct buffer_page		*reader_page;
448 	unsigned long			lost_events;
449 	unsigned long			last_overrun;
450 	local_t				entries_bytes;
451 	local_t				entries;
452 	local_t				overrun;
453 	local_t				commit_overrun;
454 	local_t				dropped_events;
455 	local_t				committing;
456 	local_t				commits;
457 	unsigned long			read;
458 	unsigned long			read_bytes;
459 	u64				write_stamp;
460 	u64				read_stamp;
461 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
462 	long				nr_pages_to_update;
463 	struct list_head		new_pages; /* new pages to add */
464 	struct work_struct		update_pages_work;
465 	struct completion		update_done;
466 
467 	struct rb_irq_work		irq_work;
468 };
469 
470 struct ring_buffer {
471 	unsigned			flags;
472 	int				cpus;
473 	atomic_t			record_disabled;
474 	atomic_t			resize_disabled;
475 	cpumask_var_t			cpumask;
476 
477 	struct lock_class_key		*reader_lock_key;
478 
479 	struct mutex			mutex;
480 
481 	struct ring_buffer_per_cpu	**buffers;
482 
483 	struct hlist_node		node;
484 	u64				(*clock)(void);
485 
486 	struct rb_irq_work		irq_work;
487 };
488 
489 struct ring_buffer_iter {
490 	struct ring_buffer_per_cpu	*cpu_buffer;
491 	unsigned long			head;
492 	struct buffer_page		*head_page;
493 	struct buffer_page		*cache_reader_page;
494 	unsigned long			cache_read;
495 	u64				read_stamp;
496 };
497 
498 /*
499  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
500  *
501  * Schedules a delayed work to wake up any task that is blocked on the
502  * ring buffer waiters queue.
503  */
504 static void rb_wake_up_waiters(struct irq_work *work)
505 {
506 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
507 
508 	wake_up_all(&rbwork->waiters);
509 	if (rbwork->wakeup_full) {
510 		rbwork->wakeup_full = false;
511 		wake_up_all(&rbwork->full_waiters);
512 	}
513 }
514 
515 /**
516  * ring_buffer_wait - wait for input to the ring buffer
517  * @buffer: buffer to wait on
518  * @cpu: the cpu buffer to wait on
519  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
520  *
521  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
522  * as data is added to any of the @buffer's cpu buffers. Otherwise
523  * it will wait for data to be added to a specific cpu buffer.
524  */
525 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
526 {
527 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
528 	DEFINE_WAIT(wait);
529 	struct rb_irq_work *work;
530 	int ret = 0;
531 
532 	/*
533 	 * Depending on what the caller is waiting for, either any
534 	 * data in any cpu buffer, or a specific buffer, put the
535 	 * caller on the appropriate wait queue.
536 	 */
537 	if (cpu == RING_BUFFER_ALL_CPUS) {
538 		work = &buffer->irq_work;
539 		/* Full only makes sense on per cpu reads */
540 		full = false;
541 	} else {
542 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
543 			return -ENODEV;
544 		cpu_buffer = buffer->buffers[cpu];
545 		work = &cpu_buffer->irq_work;
546 	}
547 
548 
549 	while (true) {
550 		if (full)
551 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
552 		else
553 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
554 
555 		/*
556 		 * The events can happen in critical sections where
557 		 * checking a work queue can cause deadlocks.
558 		 * After adding a task to the queue, this flag is set
559 		 * only to notify events to try to wake up the queue
560 		 * using irq_work.
561 		 *
562 		 * We don't clear it even if the buffer is no longer
563 		 * empty. The flag only causes the next event to run
564 		 * irq_work to do the work queue wake up. The worse
565 		 * that can happen if we race with !trace_empty() is that
566 		 * an event will cause an irq_work to try to wake up
567 		 * an empty queue.
568 		 *
569 		 * There's no reason to protect this flag either, as
570 		 * the work queue and irq_work logic will do the necessary
571 		 * synchronization for the wake ups. The only thing
572 		 * that is necessary is that the wake up happens after
573 		 * a task has been queued. It's OK for spurious wake ups.
574 		 */
575 		if (full)
576 			work->full_waiters_pending = true;
577 		else
578 			work->waiters_pending = true;
579 
580 		if (signal_pending(current)) {
581 			ret = -EINTR;
582 			break;
583 		}
584 
585 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
586 			break;
587 
588 		if (cpu != RING_BUFFER_ALL_CPUS &&
589 		    !ring_buffer_empty_cpu(buffer, cpu)) {
590 			unsigned long flags;
591 			bool pagebusy;
592 
593 			if (!full)
594 				break;
595 
596 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
597 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
598 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
599 
600 			if (!pagebusy)
601 				break;
602 		}
603 
604 		schedule();
605 	}
606 
607 	if (full)
608 		finish_wait(&work->full_waiters, &wait);
609 	else
610 		finish_wait(&work->waiters, &wait);
611 
612 	return ret;
613 }
614 
615 /**
616  * ring_buffer_poll_wait - poll on buffer input
617  * @buffer: buffer to wait on
618  * @cpu: the cpu buffer to wait on
619  * @filp: the file descriptor
620  * @poll_table: The poll descriptor
621  *
622  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
623  * as data is added to any of the @buffer's cpu buffers. Otherwise
624  * it will wait for data to be added to a specific cpu buffer.
625  *
626  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
627  * zero otherwise.
628  */
629 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
630 			  struct file *filp, poll_table *poll_table)
631 {
632 	struct ring_buffer_per_cpu *cpu_buffer;
633 	struct rb_irq_work *work;
634 
635 	if (cpu == RING_BUFFER_ALL_CPUS)
636 		work = &buffer->irq_work;
637 	else {
638 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
639 			return -EINVAL;
640 
641 		cpu_buffer = buffer->buffers[cpu];
642 		work = &cpu_buffer->irq_work;
643 	}
644 
645 	poll_wait(filp, &work->waiters, poll_table);
646 	work->waiters_pending = true;
647 	/*
648 	 * There's a tight race between setting the waiters_pending and
649 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
650 	 * is set, the next event will wake the task up, but we can get stuck
651 	 * if there's only a single event in.
652 	 *
653 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
654 	 * but adding a memory barrier to all events will cause too much of a
655 	 * performance hit in the fast path.  We only need a memory barrier when
656 	 * the buffer goes from empty to having content.  But as this race is
657 	 * extremely small, and it's not a problem if another event comes in, we
658 	 * will fix it later.
659 	 */
660 	smp_mb();
661 
662 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
663 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
664 		return POLLIN | POLLRDNORM;
665 	return 0;
666 }
667 
668 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
669 #define RB_WARN_ON(b, cond)						\
670 	({								\
671 		int _____ret = unlikely(cond);				\
672 		if (_____ret) {						\
673 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
674 				struct ring_buffer_per_cpu *__b =	\
675 					(void *)b;			\
676 				atomic_inc(&__b->buffer->record_disabled); \
677 			} else						\
678 				atomic_inc(&b->record_disabled);	\
679 			WARN_ON(1);					\
680 		}							\
681 		_____ret;						\
682 	})
683 
684 /* Up this if you want to test the TIME_EXTENTS and normalization */
685 #define DEBUG_SHIFT 0
686 
687 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
688 {
689 	/* shift to debug/test normalization and TIME_EXTENTS */
690 	return buffer->clock() << DEBUG_SHIFT;
691 }
692 
693 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
694 {
695 	u64 time;
696 
697 	preempt_disable_notrace();
698 	time = rb_time_stamp(buffer);
699 	preempt_enable_no_resched_notrace();
700 
701 	return time;
702 }
703 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
704 
705 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
706 				      int cpu, u64 *ts)
707 {
708 	/* Just stupid testing the normalize function and deltas */
709 	*ts >>= DEBUG_SHIFT;
710 }
711 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
712 
713 /*
714  * Making the ring buffer lockless makes things tricky.
715  * Although writes only happen on the CPU that they are on,
716  * and they only need to worry about interrupts. Reads can
717  * happen on any CPU.
718  *
719  * The reader page is always off the ring buffer, but when the
720  * reader finishes with a page, it needs to swap its page with
721  * a new one from the buffer. The reader needs to take from
722  * the head (writes go to the tail). But if a writer is in overwrite
723  * mode and wraps, it must push the head page forward.
724  *
725  * Here lies the problem.
726  *
727  * The reader must be careful to replace only the head page, and
728  * not another one. As described at the top of the file in the
729  * ASCII art, the reader sets its old page to point to the next
730  * page after head. It then sets the page after head to point to
731  * the old reader page. But if the writer moves the head page
732  * during this operation, the reader could end up with the tail.
733  *
734  * We use cmpxchg to help prevent this race. We also do something
735  * special with the page before head. We set the LSB to 1.
736  *
737  * When the writer must push the page forward, it will clear the
738  * bit that points to the head page, move the head, and then set
739  * the bit that points to the new head page.
740  *
741  * We also don't want an interrupt coming in and moving the head
742  * page on another writer. Thus we use the second LSB to catch
743  * that too. Thus:
744  *
745  * head->list->prev->next        bit 1          bit 0
746  *                              -------        -------
747  * Normal page                     0              0
748  * Points to head page             0              1
749  * New head page                   1              0
750  *
751  * Note we can not trust the prev pointer of the head page, because:
752  *
753  * +----+       +-----+        +-----+
754  * |    |------>|  T  |---X--->|  N  |
755  * |    |<------|     |        |     |
756  * +----+       +-----+        +-----+
757  *   ^                           ^ |
758  *   |          +-----+          | |
759  *   +----------|  R  |----------+ |
760  *              |     |<-----------+
761  *              +-----+
762  *
763  * Key:  ---X-->  HEAD flag set in pointer
764  *         T      Tail page
765  *         R      Reader page
766  *         N      Next page
767  *
768  * (see __rb_reserve_next() to see where this happens)
769  *
770  *  What the above shows is that the reader just swapped out
771  *  the reader page with a page in the buffer, but before it
772  *  could make the new header point back to the new page added
773  *  it was preempted by a writer. The writer moved forward onto
774  *  the new page added by the reader and is about to move forward
775  *  again.
776  *
777  *  You can see, it is legitimate for the previous pointer of
778  *  the head (or any page) not to point back to itself. But only
779  *  temporarially.
780  */
781 
782 #define RB_PAGE_NORMAL		0UL
783 #define RB_PAGE_HEAD		1UL
784 #define RB_PAGE_UPDATE		2UL
785 
786 
787 #define RB_FLAG_MASK		3UL
788 
789 /* PAGE_MOVED is not part of the mask */
790 #define RB_PAGE_MOVED		4UL
791 
792 /*
793  * rb_list_head - remove any bit
794  */
795 static struct list_head *rb_list_head(struct list_head *list)
796 {
797 	unsigned long val = (unsigned long)list;
798 
799 	return (struct list_head *)(val & ~RB_FLAG_MASK);
800 }
801 
802 /*
803  * rb_is_head_page - test if the given page is the head page
804  *
805  * Because the reader may move the head_page pointer, we can
806  * not trust what the head page is (it may be pointing to
807  * the reader page). But if the next page is a header page,
808  * its flags will be non zero.
809  */
810 static inline int
811 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
812 		struct buffer_page *page, struct list_head *list)
813 {
814 	unsigned long val;
815 
816 	val = (unsigned long)list->next;
817 
818 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
819 		return RB_PAGE_MOVED;
820 
821 	return val & RB_FLAG_MASK;
822 }
823 
824 /*
825  * rb_is_reader_page
826  *
827  * The unique thing about the reader page, is that, if the
828  * writer is ever on it, the previous pointer never points
829  * back to the reader page.
830  */
831 static bool rb_is_reader_page(struct buffer_page *page)
832 {
833 	struct list_head *list = page->list.prev;
834 
835 	return rb_list_head(list->next) != &page->list;
836 }
837 
838 /*
839  * rb_set_list_to_head - set a list_head to be pointing to head.
840  */
841 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
842 				struct list_head *list)
843 {
844 	unsigned long *ptr;
845 
846 	ptr = (unsigned long *)&list->next;
847 	*ptr |= RB_PAGE_HEAD;
848 	*ptr &= ~RB_PAGE_UPDATE;
849 }
850 
851 /*
852  * rb_head_page_activate - sets up head page
853  */
854 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
855 {
856 	struct buffer_page *head;
857 
858 	head = cpu_buffer->head_page;
859 	if (!head)
860 		return;
861 
862 	/*
863 	 * Set the previous list pointer to have the HEAD flag.
864 	 */
865 	rb_set_list_to_head(cpu_buffer, head->list.prev);
866 }
867 
868 static void rb_list_head_clear(struct list_head *list)
869 {
870 	unsigned long *ptr = (unsigned long *)&list->next;
871 
872 	*ptr &= ~RB_FLAG_MASK;
873 }
874 
875 /*
876  * rb_head_page_dactivate - clears head page ptr (for free list)
877  */
878 static void
879 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
880 {
881 	struct list_head *hd;
882 
883 	/* Go through the whole list and clear any pointers found. */
884 	rb_list_head_clear(cpu_buffer->pages);
885 
886 	list_for_each(hd, cpu_buffer->pages)
887 		rb_list_head_clear(hd);
888 }
889 
890 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
891 			    struct buffer_page *head,
892 			    struct buffer_page *prev,
893 			    int old_flag, int new_flag)
894 {
895 	struct list_head *list;
896 	unsigned long val = (unsigned long)&head->list;
897 	unsigned long ret;
898 
899 	list = &prev->list;
900 
901 	val &= ~RB_FLAG_MASK;
902 
903 	ret = cmpxchg((unsigned long *)&list->next,
904 		      val | old_flag, val | new_flag);
905 
906 	/* check if the reader took the page */
907 	if ((ret & ~RB_FLAG_MASK) != val)
908 		return RB_PAGE_MOVED;
909 
910 	return ret & RB_FLAG_MASK;
911 }
912 
913 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
914 				   struct buffer_page *head,
915 				   struct buffer_page *prev,
916 				   int old_flag)
917 {
918 	return rb_head_page_set(cpu_buffer, head, prev,
919 				old_flag, RB_PAGE_UPDATE);
920 }
921 
922 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
923 				 struct buffer_page *head,
924 				 struct buffer_page *prev,
925 				 int old_flag)
926 {
927 	return rb_head_page_set(cpu_buffer, head, prev,
928 				old_flag, RB_PAGE_HEAD);
929 }
930 
931 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
932 				   struct buffer_page *head,
933 				   struct buffer_page *prev,
934 				   int old_flag)
935 {
936 	return rb_head_page_set(cpu_buffer, head, prev,
937 				old_flag, RB_PAGE_NORMAL);
938 }
939 
940 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
941 			       struct buffer_page **bpage)
942 {
943 	struct list_head *p = rb_list_head((*bpage)->list.next);
944 
945 	*bpage = list_entry(p, struct buffer_page, list);
946 }
947 
948 static struct buffer_page *
949 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
950 {
951 	struct buffer_page *head;
952 	struct buffer_page *page;
953 	struct list_head *list;
954 	int i;
955 
956 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
957 		return NULL;
958 
959 	/* sanity check */
960 	list = cpu_buffer->pages;
961 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
962 		return NULL;
963 
964 	page = head = cpu_buffer->head_page;
965 	/*
966 	 * It is possible that the writer moves the header behind
967 	 * where we started, and we miss in one loop.
968 	 * A second loop should grab the header, but we'll do
969 	 * three loops just because I'm paranoid.
970 	 */
971 	for (i = 0; i < 3; i++) {
972 		do {
973 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
974 				cpu_buffer->head_page = page;
975 				return page;
976 			}
977 			rb_inc_page(cpu_buffer, &page);
978 		} while (page != head);
979 	}
980 
981 	RB_WARN_ON(cpu_buffer, 1);
982 
983 	return NULL;
984 }
985 
986 static int rb_head_page_replace(struct buffer_page *old,
987 				struct buffer_page *new)
988 {
989 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
990 	unsigned long val;
991 	unsigned long ret;
992 
993 	val = *ptr & ~RB_FLAG_MASK;
994 	val |= RB_PAGE_HEAD;
995 
996 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
997 
998 	return ret == val;
999 }
1000 
1001 /*
1002  * rb_tail_page_update - move the tail page forward
1003  */
1004 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1005 			       struct buffer_page *tail_page,
1006 			       struct buffer_page *next_page)
1007 {
1008 	unsigned long old_entries;
1009 	unsigned long old_write;
1010 
1011 	/*
1012 	 * The tail page now needs to be moved forward.
1013 	 *
1014 	 * We need to reset the tail page, but without messing
1015 	 * with possible erasing of data brought in by interrupts
1016 	 * that have moved the tail page and are currently on it.
1017 	 *
1018 	 * We add a counter to the write field to denote this.
1019 	 */
1020 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1021 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1022 
1023 	/*
1024 	 * Just make sure we have seen our old_write and synchronize
1025 	 * with any interrupts that come in.
1026 	 */
1027 	barrier();
1028 
1029 	/*
1030 	 * If the tail page is still the same as what we think
1031 	 * it is, then it is up to us to update the tail
1032 	 * pointer.
1033 	 */
1034 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1035 		/* Zero the write counter */
1036 		unsigned long val = old_write & ~RB_WRITE_MASK;
1037 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1038 
1039 		/*
1040 		 * This will only succeed if an interrupt did
1041 		 * not come in and change it. In which case, we
1042 		 * do not want to modify it.
1043 		 *
1044 		 * We add (void) to let the compiler know that we do not care
1045 		 * about the return value of these functions. We use the
1046 		 * cmpxchg to only update if an interrupt did not already
1047 		 * do it for us. If the cmpxchg fails, we don't care.
1048 		 */
1049 		(void)local_cmpxchg(&next_page->write, old_write, val);
1050 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1051 
1052 		/*
1053 		 * No need to worry about races with clearing out the commit.
1054 		 * it only can increment when a commit takes place. But that
1055 		 * only happens in the outer most nested commit.
1056 		 */
1057 		local_set(&next_page->page->commit, 0);
1058 
1059 		/* Again, either we update tail_page or an interrupt does */
1060 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1061 	}
1062 }
1063 
1064 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1065 			  struct buffer_page *bpage)
1066 {
1067 	unsigned long val = (unsigned long)bpage;
1068 
1069 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1070 		return 1;
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * rb_check_list - make sure a pointer to a list has the last bits zero
1077  */
1078 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1079 			 struct list_head *list)
1080 {
1081 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1082 		return 1;
1083 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1084 		return 1;
1085 	return 0;
1086 }
1087 
1088 /**
1089  * rb_check_pages - integrity check of buffer pages
1090  * @cpu_buffer: CPU buffer with pages to test
1091  *
1092  * As a safety measure we check to make sure the data pages have not
1093  * been corrupted.
1094  */
1095 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1096 {
1097 	struct list_head *head = cpu_buffer->pages;
1098 	struct buffer_page *bpage, *tmp;
1099 
1100 	/* Reset the head page if it exists */
1101 	if (cpu_buffer->head_page)
1102 		rb_set_head_page(cpu_buffer);
1103 
1104 	rb_head_page_deactivate(cpu_buffer);
1105 
1106 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1107 		return -1;
1108 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1109 		return -1;
1110 
1111 	if (rb_check_list(cpu_buffer, head))
1112 		return -1;
1113 
1114 	list_for_each_entry_safe(bpage, tmp, head, list) {
1115 		if (RB_WARN_ON(cpu_buffer,
1116 			       bpage->list.next->prev != &bpage->list))
1117 			return -1;
1118 		if (RB_WARN_ON(cpu_buffer,
1119 			       bpage->list.prev->next != &bpage->list))
1120 			return -1;
1121 		if (rb_check_list(cpu_buffer, &bpage->list))
1122 			return -1;
1123 	}
1124 
1125 	rb_head_page_activate(cpu_buffer);
1126 
1127 	return 0;
1128 }
1129 
1130 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1131 {
1132 	struct buffer_page *bpage, *tmp;
1133 	long i;
1134 
1135 	for (i = 0; i < nr_pages; i++) {
1136 		struct page *page;
1137 		/*
1138 		 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1139 		 * gracefully without invoking oom-killer and the system is not
1140 		 * destabilized.
1141 		 */
1142 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1143 				    GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1144 				    cpu_to_node(cpu));
1145 		if (!bpage)
1146 			goto free_pages;
1147 
1148 		list_add(&bpage->list, pages);
1149 
1150 		page = alloc_pages_node(cpu_to_node(cpu),
1151 					GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1152 		if (!page)
1153 			goto free_pages;
1154 		bpage->page = page_address(page);
1155 		rb_init_page(bpage->page);
1156 	}
1157 
1158 	return 0;
1159 
1160 free_pages:
1161 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1162 		list_del_init(&bpage->list);
1163 		free_buffer_page(bpage);
1164 	}
1165 
1166 	return -ENOMEM;
1167 }
1168 
1169 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1170 			     unsigned long nr_pages)
1171 {
1172 	LIST_HEAD(pages);
1173 
1174 	WARN_ON(!nr_pages);
1175 
1176 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1177 		return -ENOMEM;
1178 
1179 	/*
1180 	 * The ring buffer page list is a circular list that does not
1181 	 * start and end with a list head. All page list items point to
1182 	 * other pages.
1183 	 */
1184 	cpu_buffer->pages = pages.next;
1185 	list_del(&pages);
1186 
1187 	cpu_buffer->nr_pages = nr_pages;
1188 
1189 	rb_check_pages(cpu_buffer);
1190 
1191 	return 0;
1192 }
1193 
1194 static struct ring_buffer_per_cpu *
1195 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1196 {
1197 	struct ring_buffer_per_cpu *cpu_buffer;
1198 	struct buffer_page *bpage;
1199 	struct page *page;
1200 	int ret;
1201 
1202 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1203 				  GFP_KERNEL, cpu_to_node(cpu));
1204 	if (!cpu_buffer)
1205 		return NULL;
1206 
1207 	cpu_buffer->cpu = cpu;
1208 	cpu_buffer->buffer = buffer;
1209 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1210 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1211 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1212 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1213 	init_completion(&cpu_buffer->update_done);
1214 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1215 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1216 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1217 
1218 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1219 			    GFP_KERNEL, cpu_to_node(cpu));
1220 	if (!bpage)
1221 		goto fail_free_buffer;
1222 
1223 	rb_check_bpage(cpu_buffer, bpage);
1224 
1225 	cpu_buffer->reader_page = bpage;
1226 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1227 	if (!page)
1228 		goto fail_free_reader;
1229 	bpage->page = page_address(page);
1230 	rb_init_page(bpage->page);
1231 
1232 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1233 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1234 
1235 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1236 	if (ret < 0)
1237 		goto fail_free_reader;
1238 
1239 	cpu_buffer->head_page
1240 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1241 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1242 
1243 	rb_head_page_activate(cpu_buffer);
1244 
1245 	return cpu_buffer;
1246 
1247  fail_free_reader:
1248 	free_buffer_page(cpu_buffer->reader_page);
1249 
1250  fail_free_buffer:
1251 	kfree(cpu_buffer);
1252 	return NULL;
1253 }
1254 
1255 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1256 {
1257 	struct list_head *head = cpu_buffer->pages;
1258 	struct buffer_page *bpage, *tmp;
1259 
1260 	free_buffer_page(cpu_buffer->reader_page);
1261 
1262 	rb_head_page_deactivate(cpu_buffer);
1263 
1264 	if (head) {
1265 		list_for_each_entry_safe(bpage, tmp, head, list) {
1266 			list_del_init(&bpage->list);
1267 			free_buffer_page(bpage);
1268 		}
1269 		bpage = list_entry(head, struct buffer_page, list);
1270 		free_buffer_page(bpage);
1271 	}
1272 
1273 	kfree(cpu_buffer);
1274 }
1275 
1276 /**
1277  * __ring_buffer_alloc - allocate a new ring_buffer
1278  * @size: the size in bytes per cpu that is needed.
1279  * @flags: attributes to set for the ring buffer.
1280  *
1281  * Currently the only flag that is available is the RB_FL_OVERWRITE
1282  * flag. This flag means that the buffer will overwrite old data
1283  * when the buffer wraps. If this flag is not set, the buffer will
1284  * drop data when the tail hits the head.
1285  */
1286 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1287 					struct lock_class_key *key)
1288 {
1289 	struct ring_buffer *buffer;
1290 	long nr_pages;
1291 	int bsize;
1292 	int cpu;
1293 	int ret;
1294 
1295 	/* keep it in its own cache line */
1296 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1297 			 GFP_KERNEL);
1298 	if (!buffer)
1299 		return NULL;
1300 
1301 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1302 		goto fail_free_buffer;
1303 
1304 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1305 	buffer->flags = flags;
1306 	buffer->clock = trace_clock_local;
1307 	buffer->reader_lock_key = key;
1308 
1309 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1310 	init_waitqueue_head(&buffer->irq_work.waiters);
1311 
1312 	/* need at least two pages */
1313 	if (nr_pages < 2)
1314 		nr_pages = 2;
1315 
1316 	buffer->cpus = nr_cpu_ids;
1317 
1318 	bsize = sizeof(void *) * nr_cpu_ids;
1319 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1320 				  GFP_KERNEL);
1321 	if (!buffer->buffers)
1322 		goto fail_free_cpumask;
1323 
1324 	cpu = raw_smp_processor_id();
1325 	cpumask_set_cpu(cpu, buffer->cpumask);
1326 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1327 	if (!buffer->buffers[cpu])
1328 		goto fail_free_buffers;
1329 
1330 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1331 	if (ret < 0)
1332 		goto fail_free_buffers;
1333 
1334 	mutex_init(&buffer->mutex);
1335 
1336 	return buffer;
1337 
1338  fail_free_buffers:
1339 	for_each_buffer_cpu(buffer, cpu) {
1340 		if (buffer->buffers[cpu])
1341 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1342 	}
1343 	kfree(buffer->buffers);
1344 
1345  fail_free_cpumask:
1346 	free_cpumask_var(buffer->cpumask);
1347 
1348  fail_free_buffer:
1349 	kfree(buffer);
1350 	return NULL;
1351 }
1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1353 
1354 /**
1355  * ring_buffer_free - free a ring buffer.
1356  * @buffer: the buffer to free.
1357  */
1358 void
1359 ring_buffer_free(struct ring_buffer *buffer)
1360 {
1361 	int cpu;
1362 
1363 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1364 
1365 	for_each_buffer_cpu(buffer, cpu)
1366 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1367 
1368 	kfree(buffer->buffers);
1369 	free_cpumask_var(buffer->cpumask);
1370 
1371 	kfree(buffer);
1372 }
1373 EXPORT_SYMBOL_GPL(ring_buffer_free);
1374 
1375 void ring_buffer_set_clock(struct ring_buffer *buffer,
1376 			   u64 (*clock)(void))
1377 {
1378 	buffer->clock = clock;
1379 }
1380 
1381 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1382 
1383 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1384 {
1385 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1386 }
1387 
1388 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1389 {
1390 	return local_read(&bpage->write) & RB_WRITE_MASK;
1391 }
1392 
1393 static int
1394 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1395 {
1396 	struct list_head *tail_page, *to_remove, *next_page;
1397 	struct buffer_page *to_remove_page, *tmp_iter_page;
1398 	struct buffer_page *last_page, *first_page;
1399 	unsigned long nr_removed;
1400 	unsigned long head_bit;
1401 	int page_entries;
1402 
1403 	head_bit = 0;
1404 
1405 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1406 	atomic_inc(&cpu_buffer->record_disabled);
1407 	/*
1408 	 * We don't race with the readers since we have acquired the reader
1409 	 * lock. We also don't race with writers after disabling recording.
1410 	 * This makes it easy to figure out the first and the last page to be
1411 	 * removed from the list. We unlink all the pages in between including
1412 	 * the first and last pages. This is done in a busy loop so that we
1413 	 * lose the least number of traces.
1414 	 * The pages are freed after we restart recording and unlock readers.
1415 	 */
1416 	tail_page = &cpu_buffer->tail_page->list;
1417 
1418 	/*
1419 	 * tail page might be on reader page, we remove the next page
1420 	 * from the ring buffer
1421 	 */
1422 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1423 		tail_page = rb_list_head(tail_page->next);
1424 	to_remove = tail_page;
1425 
1426 	/* start of pages to remove */
1427 	first_page = list_entry(rb_list_head(to_remove->next),
1428 				struct buffer_page, list);
1429 
1430 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1431 		to_remove = rb_list_head(to_remove)->next;
1432 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1433 	}
1434 
1435 	next_page = rb_list_head(to_remove)->next;
1436 
1437 	/*
1438 	 * Now we remove all pages between tail_page and next_page.
1439 	 * Make sure that we have head_bit value preserved for the
1440 	 * next page
1441 	 */
1442 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1443 						head_bit);
1444 	next_page = rb_list_head(next_page);
1445 	next_page->prev = tail_page;
1446 
1447 	/* make sure pages points to a valid page in the ring buffer */
1448 	cpu_buffer->pages = next_page;
1449 
1450 	/* update head page */
1451 	if (head_bit)
1452 		cpu_buffer->head_page = list_entry(next_page,
1453 						struct buffer_page, list);
1454 
1455 	/*
1456 	 * change read pointer to make sure any read iterators reset
1457 	 * themselves
1458 	 */
1459 	cpu_buffer->read = 0;
1460 
1461 	/* pages are removed, resume tracing and then free the pages */
1462 	atomic_dec(&cpu_buffer->record_disabled);
1463 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1464 
1465 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1466 
1467 	/* last buffer page to remove */
1468 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1469 				list);
1470 	tmp_iter_page = first_page;
1471 
1472 	do {
1473 		to_remove_page = tmp_iter_page;
1474 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1475 
1476 		/* update the counters */
1477 		page_entries = rb_page_entries(to_remove_page);
1478 		if (page_entries) {
1479 			/*
1480 			 * If something was added to this page, it was full
1481 			 * since it is not the tail page. So we deduct the
1482 			 * bytes consumed in ring buffer from here.
1483 			 * Increment overrun to account for the lost events.
1484 			 */
1485 			local_add(page_entries, &cpu_buffer->overrun);
1486 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1487 		}
1488 
1489 		/*
1490 		 * We have already removed references to this list item, just
1491 		 * free up the buffer_page and its page
1492 		 */
1493 		free_buffer_page(to_remove_page);
1494 		nr_removed--;
1495 
1496 	} while (to_remove_page != last_page);
1497 
1498 	RB_WARN_ON(cpu_buffer, nr_removed);
1499 
1500 	return nr_removed == 0;
1501 }
1502 
1503 static int
1504 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1505 {
1506 	struct list_head *pages = &cpu_buffer->new_pages;
1507 	int retries, success;
1508 
1509 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1510 	/*
1511 	 * We are holding the reader lock, so the reader page won't be swapped
1512 	 * in the ring buffer. Now we are racing with the writer trying to
1513 	 * move head page and the tail page.
1514 	 * We are going to adapt the reader page update process where:
1515 	 * 1. We first splice the start and end of list of new pages between
1516 	 *    the head page and its previous page.
1517 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1518 	 *    start of new pages list.
1519 	 * 3. Finally, we update the head->prev to the end of new list.
1520 	 *
1521 	 * We will try this process 10 times, to make sure that we don't keep
1522 	 * spinning.
1523 	 */
1524 	retries = 10;
1525 	success = 0;
1526 	while (retries--) {
1527 		struct list_head *head_page, *prev_page, *r;
1528 		struct list_head *last_page, *first_page;
1529 		struct list_head *head_page_with_bit;
1530 
1531 		head_page = &rb_set_head_page(cpu_buffer)->list;
1532 		if (!head_page)
1533 			break;
1534 		prev_page = head_page->prev;
1535 
1536 		first_page = pages->next;
1537 		last_page  = pages->prev;
1538 
1539 		head_page_with_bit = (struct list_head *)
1540 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1541 
1542 		last_page->next = head_page_with_bit;
1543 		first_page->prev = prev_page;
1544 
1545 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1546 
1547 		if (r == head_page_with_bit) {
1548 			/*
1549 			 * yay, we replaced the page pointer to our new list,
1550 			 * now, we just have to update to head page's prev
1551 			 * pointer to point to end of list
1552 			 */
1553 			head_page->prev = last_page;
1554 			success = 1;
1555 			break;
1556 		}
1557 	}
1558 
1559 	if (success)
1560 		INIT_LIST_HEAD(pages);
1561 	/*
1562 	 * If we weren't successful in adding in new pages, warn and stop
1563 	 * tracing
1564 	 */
1565 	RB_WARN_ON(cpu_buffer, !success);
1566 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1567 
1568 	/* free pages if they weren't inserted */
1569 	if (!success) {
1570 		struct buffer_page *bpage, *tmp;
1571 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1572 					 list) {
1573 			list_del_init(&bpage->list);
1574 			free_buffer_page(bpage);
1575 		}
1576 	}
1577 	return success;
1578 }
1579 
1580 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1581 {
1582 	int success;
1583 
1584 	if (cpu_buffer->nr_pages_to_update > 0)
1585 		success = rb_insert_pages(cpu_buffer);
1586 	else
1587 		success = rb_remove_pages(cpu_buffer,
1588 					-cpu_buffer->nr_pages_to_update);
1589 
1590 	if (success)
1591 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1592 }
1593 
1594 static void update_pages_handler(struct work_struct *work)
1595 {
1596 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1597 			struct ring_buffer_per_cpu, update_pages_work);
1598 	rb_update_pages(cpu_buffer);
1599 	complete(&cpu_buffer->update_done);
1600 }
1601 
1602 /**
1603  * ring_buffer_resize - resize the ring buffer
1604  * @buffer: the buffer to resize.
1605  * @size: the new size.
1606  * @cpu_id: the cpu buffer to resize
1607  *
1608  * Minimum size is 2 * BUF_PAGE_SIZE.
1609  *
1610  * Returns 0 on success and < 0 on failure.
1611  */
1612 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1613 			int cpu_id)
1614 {
1615 	struct ring_buffer_per_cpu *cpu_buffer;
1616 	unsigned long nr_pages;
1617 	int cpu, err = 0;
1618 
1619 	/*
1620 	 * Always succeed at resizing a non-existent buffer:
1621 	 */
1622 	if (!buffer)
1623 		return size;
1624 
1625 	/* Make sure the requested buffer exists */
1626 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1627 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1628 		return size;
1629 
1630 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631 
1632 	/* we need a minimum of two pages */
1633 	if (nr_pages < 2)
1634 		nr_pages = 2;
1635 
1636 	size = nr_pages * BUF_PAGE_SIZE;
1637 
1638 	/*
1639 	 * Don't succeed if resizing is disabled, as a reader might be
1640 	 * manipulating the ring buffer and is expecting a sane state while
1641 	 * this is true.
1642 	 */
1643 	if (atomic_read(&buffer->resize_disabled))
1644 		return -EBUSY;
1645 
1646 	/* prevent another thread from changing buffer sizes */
1647 	mutex_lock(&buffer->mutex);
1648 
1649 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1650 		/* calculate the pages to update */
1651 		for_each_buffer_cpu(buffer, cpu) {
1652 			cpu_buffer = buffer->buffers[cpu];
1653 
1654 			cpu_buffer->nr_pages_to_update = nr_pages -
1655 							cpu_buffer->nr_pages;
1656 			/*
1657 			 * nothing more to do for removing pages or no update
1658 			 */
1659 			if (cpu_buffer->nr_pages_to_update <= 0)
1660 				continue;
1661 			/*
1662 			 * to add pages, make sure all new pages can be
1663 			 * allocated without receiving ENOMEM
1664 			 */
1665 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1666 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1667 						&cpu_buffer->new_pages, cpu)) {
1668 				/* not enough memory for new pages */
1669 				err = -ENOMEM;
1670 				goto out_err;
1671 			}
1672 		}
1673 
1674 		get_online_cpus();
1675 		/*
1676 		 * Fire off all the required work handlers
1677 		 * We can't schedule on offline CPUs, but it's not necessary
1678 		 * since we can change their buffer sizes without any race.
1679 		 */
1680 		for_each_buffer_cpu(buffer, cpu) {
1681 			cpu_buffer = buffer->buffers[cpu];
1682 			if (!cpu_buffer->nr_pages_to_update)
1683 				continue;
1684 
1685 			/* Can't run something on an offline CPU. */
1686 			if (!cpu_online(cpu)) {
1687 				rb_update_pages(cpu_buffer);
1688 				cpu_buffer->nr_pages_to_update = 0;
1689 			} else {
1690 				schedule_work_on(cpu,
1691 						&cpu_buffer->update_pages_work);
1692 			}
1693 		}
1694 
1695 		/* wait for all the updates to complete */
1696 		for_each_buffer_cpu(buffer, cpu) {
1697 			cpu_buffer = buffer->buffers[cpu];
1698 			if (!cpu_buffer->nr_pages_to_update)
1699 				continue;
1700 
1701 			if (cpu_online(cpu))
1702 				wait_for_completion(&cpu_buffer->update_done);
1703 			cpu_buffer->nr_pages_to_update = 0;
1704 		}
1705 
1706 		put_online_cpus();
1707 	} else {
1708 		/* Make sure this CPU has been intitialized */
1709 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1710 			goto out;
1711 
1712 		cpu_buffer = buffer->buffers[cpu_id];
1713 
1714 		if (nr_pages == cpu_buffer->nr_pages)
1715 			goto out;
1716 
1717 		cpu_buffer->nr_pages_to_update = nr_pages -
1718 						cpu_buffer->nr_pages;
1719 
1720 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1721 		if (cpu_buffer->nr_pages_to_update > 0 &&
1722 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1723 					    &cpu_buffer->new_pages, cpu_id)) {
1724 			err = -ENOMEM;
1725 			goto out_err;
1726 		}
1727 
1728 		get_online_cpus();
1729 
1730 		/* Can't run something on an offline CPU. */
1731 		if (!cpu_online(cpu_id))
1732 			rb_update_pages(cpu_buffer);
1733 		else {
1734 			schedule_work_on(cpu_id,
1735 					 &cpu_buffer->update_pages_work);
1736 			wait_for_completion(&cpu_buffer->update_done);
1737 		}
1738 
1739 		cpu_buffer->nr_pages_to_update = 0;
1740 		put_online_cpus();
1741 	}
1742 
1743  out:
1744 	/*
1745 	 * The ring buffer resize can happen with the ring buffer
1746 	 * enabled, so that the update disturbs the tracing as little
1747 	 * as possible. But if the buffer is disabled, we do not need
1748 	 * to worry about that, and we can take the time to verify
1749 	 * that the buffer is not corrupt.
1750 	 */
1751 	if (atomic_read(&buffer->record_disabled)) {
1752 		atomic_inc(&buffer->record_disabled);
1753 		/*
1754 		 * Even though the buffer was disabled, we must make sure
1755 		 * that it is truly disabled before calling rb_check_pages.
1756 		 * There could have been a race between checking
1757 		 * record_disable and incrementing it.
1758 		 */
1759 		synchronize_sched();
1760 		for_each_buffer_cpu(buffer, cpu) {
1761 			cpu_buffer = buffer->buffers[cpu];
1762 			rb_check_pages(cpu_buffer);
1763 		}
1764 		atomic_dec(&buffer->record_disabled);
1765 	}
1766 
1767 	mutex_unlock(&buffer->mutex);
1768 	return size;
1769 
1770  out_err:
1771 	for_each_buffer_cpu(buffer, cpu) {
1772 		struct buffer_page *bpage, *tmp;
1773 
1774 		cpu_buffer = buffer->buffers[cpu];
1775 		cpu_buffer->nr_pages_to_update = 0;
1776 
1777 		if (list_empty(&cpu_buffer->new_pages))
1778 			continue;
1779 
1780 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1781 					list) {
1782 			list_del_init(&bpage->list);
1783 			free_buffer_page(bpage);
1784 		}
1785 	}
1786 	mutex_unlock(&buffer->mutex);
1787 	return err;
1788 }
1789 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1790 
1791 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1792 {
1793 	mutex_lock(&buffer->mutex);
1794 	if (val)
1795 		buffer->flags |= RB_FL_OVERWRITE;
1796 	else
1797 		buffer->flags &= ~RB_FL_OVERWRITE;
1798 	mutex_unlock(&buffer->mutex);
1799 }
1800 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1801 
1802 static __always_inline void *
1803 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1804 {
1805 	return bpage->data + index;
1806 }
1807 
1808 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1809 {
1810 	return bpage->page->data + index;
1811 }
1812 
1813 static __always_inline struct ring_buffer_event *
1814 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1815 {
1816 	return __rb_page_index(cpu_buffer->reader_page,
1817 			       cpu_buffer->reader_page->read);
1818 }
1819 
1820 static __always_inline struct ring_buffer_event *
1821 rb_iter_head_event(struct ring_buffer_iter *iter)
1822 {
1823 	return __rb_page_index(iter->head_page, iter->head);
1824 }
1825 
1826 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1827 {
1828 	return local_read(&bpage->page->commit);
1829 }
1830 
1831 /* Size is determined by what has been committed */
1832 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1833 {
1834 	return rb_page_commit(bpage);
1835 }
1836 
1837 static __always_inline unsigned
1838 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1839 {
1840 	return rb_page_commit(cpu_buffer->commit_page);
1841 }
1842 
1843 static __always_inline unsigned
1844 rb_event_index(struct ring_buffer_event *event)
1845 {
1846 	unsigned long addr = (unsigned long)event;
1847 
1848 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1849 }
1850 
1851 static void rb_inc_iter(struct ring_buffer_iter *iter)
1852 {
1853 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1854 
1855 	/*
1856 	 * The iterator could be on the reader page (it starts there).
1857 	 * But the head could have moved, since the reader was
1858 	 * found. Check for this case and assign the iterator
1859 	 * to the head page instead of next.
1860 	 */
1861 	if (iter->head_page == cpu_buffer->reader_page)
1862 		iter->head_page = rb_set_head_page(cpu_buffer);
1863 	else
1864 		rb_inc_page(cpu_buffer, &iter->head_page);
1865 
1866 	iter->read_stamp = iter->head_page->page->time_stamp;
1867 	iter->head = 0;
1868 }
1869 
1870 /*
1871  * rb_handle_head_page - writer hit the head page
1872  *
1873  * Returns: +1 to retry page
1874  *           0 to continue
1875  *          -1 on error
1876  */
1877 static int
1878 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1879 		    struct buffer_page *tail_page,
1880 		    struct buffer_page *next_page)
1881 {
1882 	struct buffer_page *new_head;
1883 	int entries;
1884 	int type;
1885 	int ret;
1886 
1887 	entries = rb_page_entries(next_page);
1888 
1889 	/*
1890 	 * The hard part is here. We need to move the head
1891 	 * forward, and protect against both readers on
1892 	 * other CPUs and writers coming in via interrupts.
1893 	 */
1894 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1895 				       RB_PAGE_HEAD);
1896 
1897 	/*
1898 	 * type can be one of four:
1899 	 *  NORMAL - an interrupt already moved it for us
1900 	 *  HEAD   - we are the first to get here.
1901 	 *  UPDATE - we are the interrupt interrupting
1902 	 *           a current move.
1903 	 *  MOVED  - a reader on another CPU moved the next
1904 	 *           pointer to its reader page. Give up
1905 	 *           and try again.
1906 	 */
1907 
1908 	switch (type) {
1909 	case RB_PAGE_HEAD:
1910 		/*
1911 		 * We changed the head to UPDATE, thus
1912 		 * it is our responsibility to update
1913 		 * the counters.
1914 		 */
1915 		local_add(entries, &cpu_buffer->overrun);
1916 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1917 
1918 		/*
1919 		 * The entries will be zeroed out when we move the
1920 		 * tail page.
1921 		 */
1922 
1923 		/* still more to do */
1924 		break;
1925 
1926 	case RB_PAGE_UPDATE:
1927 		/*
1928 		 * This is an interrupt that interrupt the
1929 		 * previous update. Still more to do.
1930 		 */
1931 		break;
1932 	case RB_PAGE_NORMAL:
1933 		/*
1934 		 * An interrupt came in before the update
1935 		 * and processed this for us.
1936 		 * Nothing left to do.
1937 		 */
1938 		return 1;
1939 	case RB_PAGE_MOVED:
1940 		/*
1941 		 * The reader is on another CPU and just did
1942 		 * a swap with our next_page.
1943 		 * Try again.
1944 		 */
1945 		return 1;
1946 	default:
1947 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1948 		return -1;
1949 	}
1950 
1951 	/*
1952 	 * Now that we are here, the old head pointer is
1953 	 * set to UPDATE. This will keep the reader from
1954 	 * swapping the head page with the reader page.
1955 	 * The reader (on another CPU) will spin till
1956 	 * we are finished.
1957 	 *
1958 	 * We just need to protect against interrupts
1959 	 * doing the job. We will set the next pointer
1960 	 * to HEAD. After that, we set the old pointer
1961 	 * to NORMAL, but only if it was HEAD before.
1962 	 * otherwise we are an interrupt, and only
1963 	 * want the outer most commit to reset it.
1964 	 */
1965 	new_head = next_page;
1966 	rb_inc_page(cpu_buffer, &new_head);
1967 
1968 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1969 				    RB_PAGE_NORMAL);
1970 
1971 	/*
1972 	 * Valid returns are:
1973 	 *  HEAD   - an interrupt came in and already set it.
1974 	 *  NORMAL - One of two things:
1975 	 *            1) We really set it.
1976 	 *            2) A bunch of interrupts came in and moved
1977 	 *               the page forward again.
1978 	 */
1979 	switch (ret) {
1980 	case RB_PAGE_HEAD:
1981 	case RB_PAGE_NORMAL:
1982 		/* OK */
1983 		break;
1984 	default:
1985 		RB_WARN_ON(cpu_buffer, 1);
1986 		return -1;
1987 	}
1988 
1989 	/*
1990 	 * It is possible that an interrupt came in,
1991 	 * set the head up, then more interrupts came in
1992 	 * and moved it again. When we get back here,
1993 	 * the page would have been set to NORMAL but we
1994 	 * just set it back to HEAD.
1995 	 *
1996 	 * How do you detect this? Well, if that happened
1997 	 * the tail page would have moved.
1998 	 */
1999 	if (ret == RB_PAGE_NORMAL) {
2000 		struct buffer_page *buffer_tail_page;
2001 
2002 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2003 		/*
2004 		 * If the tail had moved passed next, then we need
2005 		 * to reset the pointer.
2006 		 */
2007 		if (buffer_tail_page != tail_page &&
2008 		    buffer_tail_page != next_page)
2009 			rb_head_page_set_normal(cpu_buffer, new_head,
2010 						next_page,
2011 						RB_PAGE_HEAD);
2012 	}
2013 
2014 	/*
2015 	 * If this was the outer most commit (the one that
2016 	 * changed the original pointer from HEAD to UPDATE),
2017 	 * then it is up to us to reset it to NORMAL.
2018 	 */
2019 	if (type == RB_PAGE_HEAD) {
2020 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2021 					      tail_page,
2022 					      RB_PAGE_UPDATE);
2023 		if (RB_WARN_ON(cpu_buffer,
2024 			       ret != RB_PAGE_UPDATE))
2025 			return -1;
2026 	}
2027 
2028 	return 0;
2029 }
2030 
2031 static inline void
2032 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2033 	      unsigned long tail, struct rb_event_info *info)
2034 {
2035 	struct buffer_page *tail_page = info->tail_page;
2036 	struct ring_buffer_event *event;
2037 	unsigned long length = info->length;
2038 
2039 	/*
2040 	 * Only the event that crossed the page boundary
2041 	 * must fill the old tail_page with padding.
2042 	 */
2043 	if (tail >= BUF_PAGE_SIZE) {
2044 		/*
2045 		 * If the page was filled, then we still need
2046 		 * to update the real_end. Reset it to zero
2047 		 * and the reader will ignore it.
2048 		 */
2049 		if (tail == BUF_PAGE_SIZE)
2050 			tail_page->real_end = 0;
2051 
2052 		local_sub(length, &tail_page->write);
2053 		return;
2054 	}
2055 
2056 	event = __rb_page_index(tail_page, tail);
2057 
2058 	/* account for padding bytes */
2059 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2060 
2061 	/*
2062 	 * Save the original length to the meta data.
2063 	 * This will be used by the reader to add lost event
2064 	 * counter.
2065 	 */
2066 	tail_page->real_end = tail;
2067 
2068 	/*
2069 	 * If this event is bigger than the minimum size, then
2070 	 * we need to be careful that we don't subtract the
2071 	 * write counter enough to allow another writer to slip
2072 	 * in on this page.
2073 	 * We put in a discarded commit instead, to make sure
2074 	 * that this space is not used again.
2075 	 *
2076 	 * If we are less than the minimum size, we don't need to
2077 	 * worry about it.
2078 	 */
2079 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2080 		/* No room for any events */
2081 
2082 		/* Mark the rest of the page with padding */
2083 		rb_event_set_padding(event);
2084 
2085 		/* Set the write back to the previous setting */
2086 		local_sub(length, &tail_page->write);
2087 		return;
2088 	}
2089 
2090 	/* Put in a discarded event */
2091 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2092 	event->type_len = RINGBUF_TYPE_PADDING;
2093 	/* time delta must be non zero */
2094 	event->time_delta = 1;
2095 
2096 	/* Set write to end of buffer */
2097 	length = (tail + length) - BUF_PAGE_SIZE;
2098 	local_sub(length, &tail_page->write);
2099 }
2100 
2101 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2102 
2103 /*
2104  * This is the slow path, force gcc not to inline it.
2105  */
2106 static noinline struct ring_buffer_event *
2107 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2108 	     unsigned long tail, struct rb_event_info *info)
2109 {
2110 	struct buffer_page *tail_page = info->tail_page;
2111 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2112 	struct ring_buffer *buffer = cpu_buffer->buffer;
2113 	struct buffer_page *next_page;
2114 	int ret;
2115 
2116 	next_page = tail_page;
2117 
2118 	rb_inc_page(cpu_buffer, &next_page);
2119 
2120 	/*
2121 	 * If for some reason, we had an interrupt storm that made
2122 	 * it all the way around the buffer, bail, and warn
2123 	 * about it.
2124 	 */
2125 	if (unlikely(next_page == commit_page)) {
2126 		local_inc(&cpu_buffer->commit_overrun);
2127 		goto out_reset;
2128 	}
2129 
2130 	/*
2131 	 * This is where the fun begins!
2132 	 *
2133 	 * We are fighting against races between a reader that
2134 	 * could be on another CPU trying to swap its reader
2135 	 * page with the buffer head.
2136 	 *
2137 	 * We are also fighting against interrupts coming in and
2138 	 * moving the head or tail on us as well.
2139 	 *
2140 	 * If the next page is the head page then we have filled
2141 	 * the buffer, unless the commit page is still on the
2142 	 * reader page.
2143 	 */
2144 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2145 
2146 		/*
2147 		 * If the commit is not on the reader page, then
2148 		 * move the header page.
2149 		 */
2150 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2151 			/*
2152 			 * If we are not in overwrite mode,
2153 			 * this is easy, just stop here.
2154 			 */
2155 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2156 				local_inc(&cpu_buffer->dropped_events);
2157 				goto out_reset;
2158 			}
2159 
2160 			ret = rb_handle_head_page(cpu_buffer,
2161 						  tail_page,
2162 						  next_page);
2163 			if (ret < 0)
2164 				goto out_reset;
2165 			if (ret)
2166 				goto out_again;
2167 		} else {
2168 			/*
2169 			 * We need to be careful here too. The
2170 			 * commit page could still be on the reader
2171 			 * page. We could have a small buffer, and
2172 			 * have filled up the buffer with events
2173 			 * from interrupts and such, and wrapped.
2174 			 *
2175 			 * Note, if the tail page is also the on the
2176 			 * reader_page, we let it move out.
2177 			 */
2178 			if (unlikely((cpu_buffer->commit_page !=
2179 				      cpu_buffer->tail_page) &&
2180 				     (cpu_buffer->commit_page ==
2181 				      cpu_buffer->reader_page))) {
2182 				local_inc(&cpu_buffer->commit_overrun);
2183 				goto out_reset;
2184 			}
2185 		}
2186 	}
2187 
2188 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2189 
2190  out_again:
2191 
2192 	rb_reset_tail(cpu_buffer, tail, info);
2193 
2194 	/* Commit what we have for now. */
2195 	rb_end_commit(cpu_buffer);
2196 	/* rb_end_commit() decs committing */
2197 	local_inc(&cpu_buffer->committing);
2198 
2199 	/* fail and let the caller try again */
2200 	return ERR_PTR(-EAGAIN);
2201 
2202  out_reset:
2203 	/* reset write */
2204 	rb_reset_tail(cpu_buffer, tail, info);
2205 
2206 	return NULL;
2207 }
2208 
2209 /* Slow path, do not inline */
2210 static noinline struct ring_buffer_event *
2211 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2212 {
2213 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2214 
2215 	/* Not the first event on the page? */
2216 	if (rb_event_index(event)) {
2217 		event->time_delta = delta & TS_MASK;
2218 		event->array[0] = delta >> TS_SHIFT;
2219 	} else {
2220 		/* nope, just zero it */
2221 		event->time_delta = 0;
2222 		event->array[0] = 0;
2223 	}
2224 
2225 	return skip_time_extend(event);
2226 }
2227 
2228 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2229 				     struct ring_buffer_event *event);
2230 
2231 /**
2232  * rb_update_event - update event type and data
2233  * @event: the event to update
2234  * @type: the type of event
2235  * @length: the size of the event field in the ring buffer
2236  *
2237  * Update the type and data fields of the event. The length
2238  * is the actual size that is written to the ring buffer,
2239  * and with this, we can determine what to place into the
2240  * data field.
2241  */
2242 static void
2243 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2244 		struct ring_buffer_event *event,
2245 		struct rb_event_info *info)
2246 {
2247 	unsigned length = info->length;
2248 	u64 delta = info->delta;
2249 
2250 	/* Only a commit updates the timestamp */
2251 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2252 		delta = 0;
2253 
2254 	/*
2255 	 * If we need to add a timestamp, then we
2256 	 * add it to the start of the resevered space.
2257 	 */
2258 	if (unlikely(info->add_timestamp)) {
2259 		event = rb_add_time_stamp(event, delta);
2260 		length -= RB_LEN_TIME_EXTEND;
2261 		delta = 0;
2262 	}
2263 
2264 	event->time_delta = delta;
2265 	length -= RB_EVNT_HDR_SIZE;
2266 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2267 		event->type_len = 0;
2268 		event->array[0] = length;
2269 	} else
2270 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2271 }
2272 
2273 static unsigned rb_calculate_event_length(unsigned length)
2274 {
2275 	struct ring_buffer_event event; /* Used only for sizeof array */
2276 
2277 	/* zero length can cause confusions */
2278 	if (!length)
2279 		length++;
2280 
2281 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2282 		length += sizeof(event.array[0]);
2283 
2284 	length += RB_EVNT_HDR_SIZE;
2285 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2286 
2287 	/*
2288 	 * In case the time delta is larger than the 27 bits for it
2289 	 * in the header, we need to add a timestamp. If another
2290 	 * event comes in when trying to discard this one to increase
2291 	 * the length, then the timestamp will be added in the allocated
2292 	 * space of this event. If length is bigger than the size needed
2293 	 * for the TIME_EXTEND, then padding has to be used. The events
2294 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2295 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2296 	 * As length is a multiple of 4, we only need to worry if it
2297 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2298 	 */
2299 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2300 		length += RB_ALIGNMENT;
2301 
2302 	return length;
2303 }
2304 
2305 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2306 static inline bool sched_clock_stable(void)
2307 {
2308 	return true;
2309 }
2310 #endif
2311 
2312 static inline int
2313 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2314 		  struct ring_buffer_event *event)
2315 {
2316 	unsigned long new_index, old_index;
2317 	struct buffer_page *bpage;
2318 	unsigned long index;
2319 	unsigned long addr;
2320 
2321 	new_index = rb_event_index(event);
2322 	old_index = new_index + rb_event_ts_length(event);
2323 	addr = (unsigned long)event;
2324 	addr &= PAGE_MASK;
2325 
2326 	bpage = READ_ONCE(cpu_buffer->tail_page);
2327 
2328 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2329 		unsigned long write_mask =
2330 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2331 		unsigned long event_length = rb_event_length(event);
2332 		/*
2333 		 * This is on the tail page. It is possible that
2334 		 * a write could come in and move the tail page
2335 		 * and write to the next page. That is fine
2336 		 * because we just shorten what is on this page.
2337 		 */
2338 		old_index += write_mask;
2339 		new_index += write_mask;
2340 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2341 		if (index == old_index) {
2342 			/* update counters */
2343 			local_sub(event_length, &cpu_buffer->entries_bytes);
2344 			return 1;
2345 		}
2346 	}
2347 
2348 	/* could not discard */
2349 	return 0;
2350 }
2351 
2352 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2353 {
2354 	local_inc(&cpu_buffer->committing);
2355 	local_inc(&cpu_buffer->commits);
2356 }
2357 
2358 static __always_inline void
2359 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2360 {
2361 	unsigned long max_count;
2362 
2363 	/*
2364 	 * We only race with interrupts and NMIs on this CPU.
2365 	 * If we own the commit event, then we can commit
2366 	 * all others that interrupted us, since the interruptions
2367 	 * are in stack format (they finish before they come
2368 	 * back to us). This allows us to do a simple loop to
2369 	 * assign the commit to the tail.
2370 	 */
2371  again:
2372 	max_count = cpu_buffer->nr_pages * 100;
2373 
2374 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2375 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2376 			return;
2377 		if (RB_WARN_ON(cpu_buffer,
2378 			       rb_is_reader_page(cpu_buffer->tail_page)))
2379 			return;
2380 		local_set(&cpu_buffer->commit_page->page->commit,
2381 			  rb_page_write(cpu_buffer->commit_page));
2382 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2383 		/* Only update the write stamp if the page has an event */
2384 		if (rb_page_write(cpu_buffer->commit_page))
2385 			cpu_buffer->write_stamp =
2386 				cpu_buffer->commit_page->page->time_stamp;
2387 		/* add barrier to keep gcc from optimizing too much */
2388 		barrier();
2389 	}
2390 	while (rb_commit_index(cpu_buffer) !=
2391 	       rb_page_write(cpu_buffer->commit_page)) {
2392 
2393 		local_set(&cpu_buffer->commit_page->page->commit,
2394 			  rb_page_write(cpu_buffer->commit_page));
2395 		RB_WARN_ON(cpu_buffer,
2396 			   local_read(&cpu_buffer->commit_page->page->commit) &
2397 			   ~RB_WRITE_MASK);
2398 		barrier();
2399 	}
2400 
2401 	/* again, keep gcc from optimizing */
2402 	barrier();
2403 
2404 	/*
2405 	 * If an interrupt came in just after the first while loop
2406 	 * and pushed the tail page forward, we will be left with
2407 	 * a dangling commit that will never go forward.
2408 	 */
2409 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2410 		goto again;
2411 }
2412 
2413 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2414 {
2415 	unsigned long commits;
2416 
2417 	if (RB_WARN_ON(cpu_buffer,
2418 		       !local_read(&cpu_buffer->committing)))
2419 		return;
2420 
2421  again:
2422 	commits = local_read(&cpu_buffer->commits);
2423 	/* synchronize with interrupts */
2424 	barrier();
2425 	if (local_read(&cpu_buffer->committing) == 1)
2426 		rb_set_commit_to_write(cpu_buffer);
2427 
2428 	local_dec(&cpu_buffer->committing);
2429 
2430 	/* synchronize with interrupts */
2431 	barrier();
2432 
2433 	/*
2434 	 * Need to account for interrupts coming in between the
2435 	 * updating of the commit page and the clearing of the
2436 	 * committing counter.
2437 	 */
2438 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2439 	    !local_read(&cpu_buffer->committing)) {
2440 		local_inc(&cpu_buffer->committing);
2441 		goto again;
2442 	}
2443 }
2444 
2445 static inline void rb_event_discard(struct ring_buffer_event *event)
2446 {
2447 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2448 		event = skip_time_extend(event);
2449 
2450 	/* array[0] holds the actual length for the discarded event */
2451 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2452 	event->type_len = RINGBUF_TYPE_PADDING;
2453 	/* time delta must be non zero */
2454 	if (!event->time_delta)
2455 		event->time_delta = 1;
2456 }
2457 
2458 static __always_inline bool
2459 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2460 		   struct ring_buffer_event *event)
2461 {
2462 	unsigned long addr = (unsigned long)event;
2463 	unsigned long index;
2464 
2465 	index = rb_event_index(event);
2466 	addr &= PAGE_MASK;
2467 
2468 	return cpu_buffer->commit_page->page == (void *)addr &&
2469 		rb_commit_index(cpu_buffer) == index;
2470 }
2471 
2472 static __always_inline void
2473 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2474 		      struct ring_buffer_event *event)
2475 {
2476 	u64 delta;
2477 
2478 	/*
2479 	 * The event first in the commit queue updates the
2480 	 * time stamp.
2481 	 */
2482 	if (rb_event_is_commit(cpu_buffer, event)) {
2483 		/*
2484 		 * A commit event that is first on a page
2485 		 * updates the write timestamp with the page stamp
2486 		 */
2487 		if (!rb_event_index(event))
2488 			cpu_buffer->write_stamp =
2489 				cpu_buffer->commit_page->page->time_stamp;
2490 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2491 			delta = event->array[0];
2492 			delta <<= TS_SHIFT;
2493 			delta += event->time_delta;
2494 			cpu_buffer->write_stamp += delta;
2495 		} else
2496 			cpu_buffer->write_stamp += event->time_delta;
2497 	}
2498 }
2499 
2500 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2501 		      struct ring_buffer_event *event)
2502 {
2503 	local_inc(&cpu_buffer->entries);
2504 	rb_update_write_stamp(cpu_buffer, event);
2505 	rb_end_commit(cpu_buffer);
2506 }
2507 
2508 static __always_inline void
2509 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2510 {
2511 	bool pagebusy;
2512 
2513 	if (buffer->irq_work.waiters_pending) {
2514 		buffer->irq_work.waiters_pending = false;
2515 		/* irq_work_queue() supplies it's own memory barriers */
2516 		irq_work_queue(&buffer->irq_work.work);
2517 	}
2518 
2519 	if (cpu_buffer->irq_work.waiters_pending) {
2520 		cpu_buffer->irq_work.waiters_pending = false;
2521 		/* irq_work_queue() supplies it's own memory barriers */
2522 		irq_work_queue(&cpu_buffer->irq_work.work);
2523 	}
2524 
2525 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2526 
2527 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2528 		cpu_buffer->irq_work.wakeup_full = true;
2529 		cpu_buffer->irq_work.full_waiters_pending = false;
2530 		/* irq_work_queue() supplies it's own memory barriers */
2531 		irq_work_queue(&cpu_buffer->irq_work.work);
2532 	}
2533 }
2534 
2535 /*
2536  * The lock and unlock are done within a preempt disable section.
2537  * The current_context per_cpu variable can only be modified
2538  * by the current task between lock and unlock. But it can
2539  * be modified more than once via an interrupt. There are four
2540  * different contexts that we need to consider.
2541  *
2542  *  Normal context.
2543  *  SoftIRQ context
2544  *  IRQ context
2545  *  NMI context
2546  *
2547  * If for some reason the ring buffer starts to recurse, we
2548  * only allow that to happen at most 4 times (one for each
2549  * context). If it happens 5 times, then we consider this a
2550  * recusive loop and do not let it go further.
2551  */
2552 
2553 static __always_inline int
2554 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2555 {
2556 	if (cpu_buffer->current_context >= 4)
2557 		return 1;
2558 
2559 	cpu_buffer->current_context++;
2560 	/* Interrupts must see this update */
2561 	barrier();
2562 
2563 	return 0;
2564 }
2565 
2566 static __always_inline void
2567 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2568 {
2569 	/* Don't let the dec leak out */
2570 	barrier();
2571 	cpu_buffer->current_context--;
2572 }
2573 
2574 /**
2575  * ring_buffer_unlock_commit - commit a reserved
2576  * @buffer: The buffer to commit to
2577  * @event: The event pointer to commit.
2578  *
2579  * This commits the data to the ring buffer, and releases any locks held.
2580  *
2581  * Must be paired with ring_buffer_lock_reserve.
2582  */
2583 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2584 			      struct ring_buffer_event *event)
2585 {
2586 	struct ring_buffer_per_cpu *cpu_buffer;
2587 	int cpu = raw_smp_processor_id();
2588 
2589 	cpu_buffer = buffer->buffers[cpu];
2590 
2591 	rb_commit(cpu_buffer, event);
2592 
2593 	rb_wakeups(buffer, cpu_buffer);
2594 
2595 	trace_recursive_unlock(cpu_buffer);
2596 
2597 	preempt_enable_notrace();
2598 
2599 	return 0;
2600 }
2601 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2602 
2603 static noinline void
2604 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2605 		    struct rb_event_info *info)
2606 {
2607 	WARN_ONCE(info->delta > (1ULL << 59),
2608 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2609 		  (unsigned long long)info->delta,
2610 		  (unsigned long long)info->ts,
2611 		  (unsigned long long)cpu_buffer->write_stamp,
2612 		  sched_clock_stable() ? "" :
2613 		  "If you just came from a suspend/resume,\n"
2614 		  "please switch to the trace global clock:\n"
2615 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2616 	info->add_timestamp = 1;
2617 }
2618 
2619 static struct ring_buffer_event *
2620 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2621 		  struct rb_event_info *info)
2622 {
2623 	struct ring_buffer_event *event;
2624 	struct buffer_page *tail_page;
2625 	unsigned long tail, write;
2626 
2627 	/*
2628 	 * If the time delta since the last event is too big to
2629 	 * hold in the time field of the event, then we append a
2630 	 * TIME EXTEND event ahead of the data event.
2631 	 */
2632 	if (unlikely(info->add_timestamp))
2633 		info->length += RB_LEN_TIME_EXTEND;
2634 
2635 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2636 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2637 	write = local_add_return(info->length, &tail_page->write);
2638 
2639 	/* set write to only the index of the write */
2640 	write &= RB_WRITE_MASK;
2641 	tail = write - info->length;
2642 
2643 	/*
2644 	 * If this is the first commit on the page, then it has the same
2645 	 * timestamp as the page itself.
2646 	 */
2647 	if (!tail)
2648 		info->delta = 0;
2649 
2650 	/* See if we shot pass the end of this buffer page */
2651 	if (unlikely(write > BUF_PAGE_SIZE))
2652 		return rb_move_tail(cpu_buffer, tail, info);
2653 
2654 	/* We reserved something on the buffer */
2655 
2656 	event = __rb_page_index(tail_page, tail);
2657 	rb_update_event(cpu_buffer, event, info);
2658 
2659 	local_inc(&tail_page->entries);
2660 
2661 	/*
2662 	 * If this is the first commit on the page, then update
2663 	 * its timestamp.
2664 	 */
2665 	if (!tail)
2666 		tail_page->page->time_stamp = info->ts;
2667 
2668 	/* account for these added bytes */
2669 	local_add(info->length, &cpu_buffer->entries_bytes);
2670 
2671 	return event;
2672 }
2673 
2674 static __always_inline struct ring_buffer_event *
2675 rb_reserve_next_event(struct ring_buffer *buffer,
2676 		      struct ring_buffer_per_cpu *cpu_buffer,
2677 		      unsigned long length)
2678 {
2679 	struct ring_buffer_event *event;
2680 	struct rb_event_info info;
2681 	int nr_loops = 0;
2682 	u64 diff;
2683 
2684 	rb_start_commit(cpu_buffer);
2685 
2686 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2687 	/*
2688 	 * Due to the ability to swap a cpu buffer from a buffer
2689 	 * it is possible it was swapped before we committed.
2690 	 * (committing stops a swap). We check for it here and
2691 	 * if it happened, we have to fail the write.
2692 	 */
2693 	barrier();
2694 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2695 		local_dec(&cpu_buffer->committing);
2696 		local_dec(&cpu_buffer->commits);
2697 		return NULL;
2698 	}
2699 #endif
2700 
2701 	info.length = rb_calculate_event_length(length);
2702  again:
2703 	info.add_timestamp = 0;
2704 	info.delta = 0;
2705 
2706 	/*
2707 	 * We allow for interrupts to reenter here and do a trace.
2708 	 * If one does, it will cause this original code to loop
2709 	 * back here. Even with heavy interrupts happening, this
2710 	 * should only happen a few times in a row. If this happens
2711 	 * 1000 times in a row, there must be either an interrupt
2712 	 * storm or we have something buggy.
2713 	 * Bail!
2714 	 */
2715 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2716 		goto out_fail;
2717 
2718 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2719 	diff = info.ts - cpu_buffer->write_stamp;
2720 
2721 	/* make sure this diff is calculated here */
2722 	barrier();
2723 
2724 	/* Did the write stamp get updated already? */
2725 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2726 		info.delta = diff;
2727 		if (unlikely(test_time_stamp(info.delta)))
2728 			rb_handle_timestamp(cpu_buffer, &info);
2729 	}
2730 
2731 	event = __rb_reserve_next(cpu_buffer, &info);
2732 
2733 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2734 		if (info.add_timestamp)
2735 			info.length -= RB_LEN_TIME_EXTEND;
2736 		goto again;
2737 	}
2738 
2739 	if (!event)
2740 		goto out_fail;
2741 
2742 	return event;
2743 
2744  out_fail:
2745 	rb_end_commit(cpu_buffer);
2746 	return NULL;
2747 }
2748 
2749 /**
2750  * ring_buffer_lock_reserve - reserve a part of the buffer
2751  * @buffer: the ring buffer to reserve from
2752  * @length: the length of the data to reserve (excluding event header)
2753  *
2754  * Returns a reseverd event on the ring buffer to copy directly to.
2755  * The user of this interface will need to get the body to write into
2756  * and can use the ring_buffer_event_data() interface.
2757  *
2758  * The length is the length of the data needed, not the event length
2759  * which also includes the event header.
2760  *
2761  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2762  * If NULL is returned, then nothing has been allocated or locked.
2763  */
2764 struct ring_buffer_event *
2765 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2766 {
2767 	struct ring_buffer_per_cpu *cpu_buffer;
2768 	struct ring_buffer_event *event;
2769 	int cpu;
2770 
2771 	/* If we are tracing schedule, we don't want to recurse */
2772 	preempt_disable_notrace();
2773 
2774 	if (unlikely(atomic_read(&buffer->record_disabled)))
2775 		goto out;
2776 
2777 	cpu = raw_smp_processor_id();
2778 
2779 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2780 		goto out;
2781 
2782 	cpu_buffer = buffer->buffers[cpu];
2783 
2784 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2785 		goto out;
2786 
2787 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2788 		goto out;
2789 
2790 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2791 		goto out;
2792 
2793 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2794 	if (!event)
2795 		goto out_unlock;
2796 
2797 	return event;
2798 
2799  out_unlock:
2800 	trace_recursive_unlock(cpu_buffer);
2801  out:
2802 	preempt_enable_notrace();
2803 	return NULL;
2804 }
2805 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2806 
2807 /*
2808  * Decrement the entries to the page that an event is on.
2809  * The event does not even need to exist, only the pointer
2810  * to the page it is on. This may only be called before the commit
2811  * takes place.
2812  */
2813 static inline void
2814 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2815 		   struct ring_buffer_event *event)
2816 {
2817 	unsigned long addr = (unsigned long)event;
2818 	struct buffer_page *bpage = cpu_buffer->commit_page;
2819 	struct buffer_page *start;
2820 
2821 	addr &= PAGE_MASK;
2822 
2823 	/* Do the likely case first */
2824 	if (likely(bpage->page == (void *)addr)) {
2825 		local_dec(&bpage->entries);
2826 		return;
2827 	}
2828 
2829 	/*
2830 	 * Because the commit page may be on the reader page we
2831 	 * start with the next page and check the end loop there.
2832 	 */
2833 	rb_inc_page(cpu_buffer, &bpage);
2834 	start = bpage;
2835 	do {
2836 		if (bpage->page == (void *)addr) {
2837 			local_dec(&bpage->entries);
2838 			return;
2839 		}
2840 		rb_inc_page(cpu_buffer, &bpage);
2841 	} while (bpage != start);
2842 
2843 	/* commit not part of this buffer?? */
2844 	RB_WARN_ON(cpu_buffer, 1);
2845 }
2846 
2847 /**
2848  * ring_buffer_commit_discard - discard an event that has not been committed
2849  * @buffer: the ring buffer
2850  * @event: non committed event to discard
2851  *
2852  * Sometimes an event that is in the ring buffer needs to be ignored.
2853  * This function lets the user discard an event in the ring buffer
2854  * and then that event will not be read later.
2855  *
2856  * This function only works if it is called before the the item has been
2857  * committed. It will try to free the event from the ring buffer
2858  * if another event has not been added behind it.
2859  *
2860  * If another event has been added behind it, it will set the event
2861  * up as discarded, and perform the commit.
2862  *
2863  * If this function is called, do not call ring_buffer_unlock_commit on
2864  * the event.
2865  */
2866 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2867 				struct ring_buffer_event *event)
2868 {
2869 	struct ring_buffer_per_cpu *cpu_buffer;
2870 	int cpu;
2871 
2872 	/* The event is discarded regardless */
2873 	rb_event_discard(event);
2874 
2875 	cpu = smp_processor_id();
2876 	cpu_buffer = buffer->buffers[cpu];
2877 
2878 	/*
2879 	 * This must only be called if the event has not been
2880 	 * committed yet. Thus we can assume that preemption
2881 	 * is still disabled.
2882 	 */
2883 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2884 
2885 	rb_decrement_entry(cpu_buffer, event);
2886 	if (rb_try_to_discard(cpu_buffer, event))
2887 		goto out;
2888 
2889 	/*
2890 	 * The commit is still visible by the reader, so we
2891 	 * must still update the timestamp.
2892 	 */
2893 	rb_update_write_stamp(cpu_buffer, event);
2894  out:
2895 	rb_end_commit(cpu_buffer);
2896 
2897 	trace_recursive_unlock(cpu_buffer);
2898 
2899 	preempt_enable_notrace();
2900 
2901 }
2902 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2903 
2904 /**
2905  * ring_buffer_write - write data to the buffer without reserving
2906  * @buffer: The ring buffer to write to.
2907  * @length: The length of the data being written (excluding the event header)
2908  * @data: The data to write to the buffer.
2909  *
2910  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2911  * one function. If you already have the data to write to the buffer, it
2912  * may be easier to simply call this function.
2913  *
2914  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2915  * and not the length of the event which would hold the header.
2916  */
2917 int ring_buffer_write(struct ring_buffer *buffer,
2918 		      unsigned long length,
2919 		      void *data)
2920 {
2921 	struct ring_buffer_per_cpu *cpu_buffer;
2922 	struct ring_buffer_event *event;
2923 	void *body;
2924 	int ret = -EBUSY;
2925 	int cpu;
2926 
2927 	preempt_disable_notrace();
2928 
2929 	if (atomic_read(&buffer->record_disabled))
2930 		goto out;
2931 
2932 	cpu = raw_smp_processor_id();
2933 
2934 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2935 		goto out;
2936 
2937 	cpu_buffer = buffer->buffers[cpu];
2938 
2939 	if (atomic_read(&cpu_buffer->record_disabled))
2940 		goto out;
2941 
2942 	if (length > BUF_MAX_DATA_SIZE)
2943 		goto out;
2944 
2945 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2946 		goto out;
2947 
2948 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2949 	if (!event)
2950 		goto out_unlock;
2951 
2952 	body = rb_event_data(event);
2953 
2954 	memcpy(body, data, length);
2955 
2956 	rb_commit(cpu_buffer, event);
2957 
2958 	rb_wakeups(buffer, cpu_buffer);
2959 
2960 	ret = 0;
2961 
2962  out_unlock:
2963 	trace_recursive_unlock(cpu_buffer);
2964 
2965  out:
2966 	preempt_enable_notrace();
2967 
2968 	return ret;
2969 }
2970 EXPORT_SYMBOL_GPL(ring_buffer_write);
2971 
2972 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2973 {
2974 	struct buffer_page *reader = cpu_buffer->reader_page;
2975 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2976 	struct buffer_page *commit = cpu_buffer->commit_page;
2977 
2978 	/* In case of error, head will be NULL */
2979 	if (unlikely(!head))
2980 		return true;
2981 
2982 	return reader->read == rb_page_commit(reader) &&
2983 		(commit == reader ||
2984 		 (commit == head &&
2985 		  head->read == rb_page_commit(commit)));
2986 }
2987 
2988 /**
2989  * ring_buffer_record_disable - stop all writes into the buffer
2990  * @buffer: The ring buffer to stop writes to.
2991  *
2992  * This prevents all writes to the buffer. Any attempt to write
2993  * to the buffer after this will fail and return NULL.
2994  *
2995  * The caller should call synchronize_sched() after this.
2996  */
2997 void ring_buffer_record_disable(struct ring_buffer *buffer)
2998 {
2999 	atomic_inc(&buffer->record_disabled);
3000 }
3001 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3002 
3003 /**
3004  * ring_buffer_record_enable - enable writes to the buffer
3005  * @buffer: The ring buffer to enable writes
3006  *
3007  * Note, multiple disables will need the same number of enables
3008  * to truly enable the writing (much like preempt_disable).
3009  */
3010 void ring_buffer_record_enable(struct ring_buffer *buffer)
3011 {
3012 	atomic_dec(&buffer->record_disabled);
3013 }
3014 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3015 
3016 /**
3017  * ring_buffer_record_off - stop all writes into the buffer
3018  * @buffer: The ring buffer to stop writes to.
3019  *
3020  * This prevents all writes to the buffer. Any attempt to write
3021  * to the buffer after this will fail and return NULL.
3022  *
3023  * This is different than ring_buffer_record_disable() as
3024  * it works like an on/off switch, where as the disable() version
3025  * must be paired with a enable().
3026  */
3027 void ring_buffer_record_off(struct ring_buffer *buffer)
3028 {
3029 	unsigned int rd;
3030 	unsigned int new_rd;
3031 
3032 	do {
3033 		rd = atomic_read(&buffer->record_disabled);
3034 		new_rd = rd | RB_BUFFER_OFF;
3035 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3036 }
3037 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3038 
3039 /**
3040  * ring_buffer_record_on - restart writes into the buffer
3041  * @buffer: The ring buffer to start writes to.
3042  *
3043  * This enables all writes to the buffer that was disabled by
3044  * ring_buffer_record_off().
3045  *
3046  * This is different than ring_buffer_record_enable() as
3047  * it works like an on/off switch, where as the enable() version
3048  * must be paired with a disable().
3049  */
3050 void ring_buffer_record_on(struct ring_buffer *buffer)
3051 {
3052 	unsigned int rd;
3053 	unsigned int new_rd;
3054 
3055 	do {
3056 		rd = atomic_read(&buffer->record_disabled);
3057 		new_rd = rd & ~RB_BUFFER_OFF;
3058 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3059 }
3060 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3061 
3062 /**
3063  * ring_buffer_record_is_on - return true if the ring buffer can write
3064  * @buffer: The ring buffer to see if write is enabled
3065  *
3066  * Returns true if the ring buffer is in a state that it accepts writes.
3067  */
3068 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3069 {
3070 	return !atomic_read(&buffer->record_disabled);
3071 }
3072 
3073 /**
3074  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3075  * @buffer: The ring buffer to stop writes to.
3076  * @cpu: The CPU buffer to stop
3077  *
3078  * This prevents all writes to the buffer. Any attempt to write
3079  * to the buffer after this will fail and return NULL.
3080  *
3081  * The caller should call synchronize_sched() after this.
3082  */
3083 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3084 {
3085 	struct ring_buffer_per_cpu *cpu_buffer;
3086 
3087 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3088 		return;
3089 
3090 	cpu_buffer = buffer->buffers[cpu];
3091 	atomic_inc(&cpu_buffer->record_disabled);
3092 }
3093 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3094 
3095 /**
3096  * ring_buffer_record_enable_cpu - enable writes to the buffer
3097  * @buffer: The ring buffer to enable writes
3098  * @cpu: The CPU to enable.
3099  *
3100  * Note, multiple disables will need the same number of enables
3101  * to truly enable the writing (much like preempt_disable).
3102  */
3103 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3104 {
3105 	struct ring_buffer_per_cpu *cpu_buffer;
3106 
3107 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3108 		return;
3109 
3110 	cpu_buffer = buffer->buffers[cpu];
3111 	atomic_dec(&cpu_buffer->record_disabled);
3112 }
3113 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3114 
3115 /*
3116  * The total entries in the ring buffer is the running counter
3117  * of entries entered into the ring buffer, minus the sum of
3118  * the entries read from the ring buffer and the number of
3119  * entries that were overwritten.
3120  */
3121 static inline unsigned long
3122 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3123 {
3124 	return local_read(&cpu_buffer->entries) -
3125 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3126 }
3127 
3128 /**
3129  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3130  * @buffer: The ring buffer
3131  * @cpu: The per CPU buffer to read from.
3132  */
3133 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3134 {
3135 	unsigned long flags;
3136 	struct ring_buffer_per_cpu *cpu_buffer;
3137 	struct buffer_page *bpage;
3138 	u64 ret = 0;
3139 
3140 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3141 		return 0;
3142 
3143 	cpu_buffer = buffer->buffers[cpu];
3144 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3145 	/*
3146 	 * if the tail is on reader_page, oldest time stamp is on the reader
3147 	 * page
3148 	 */
3149 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3150 		bpage = cpu_buffer->reader_page;
3151 	else
3152 		bpage = rb_set_head_page(cpu_buffer);
3153 	if (bpage)
3154 		ret = bpage->page->time_stamp;
3155 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3156 
3157 	return ret;
3158 }
3159 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3160 
3161 /**
3162  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3163  * @buffer: The ring buffer
3164  * @cpu: The per CPU buffer to read from.
3165  */
3166 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3167 {
3168 	struct ring_buffer_per_cpu *cpu_buffer;
3169 	unsigned long ret;
3170 
3171 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3172 		return 0;
3173 
3174 	cpu_buffer = buffer->buffers[cpu];
3175 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3176 
3177 	return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3180 
3181 /**
3182  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3183  * @buffer: The ring buffer
3184  * @cpu: The per CPU buffer to get the entries from.
3185  */
3186 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3187 {
3188 	struct ring_buffer_per_cpu *cpu_buffer;
3189 
3190 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3191 		return 0;
3192 
3193 	cpu_buffer = buffer->buffers[cpu];
3194 
3195 	return rb_num_of_entries(cpu_buffer);
3196 }
3197 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3198 
3199 /**
3200  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3201  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3202  * @buffer: The ring buffer
3203  * @cpu: The per CPU buffer to get the number of overruns from
3204  */
3205 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3206 {
3207 	struct ring_buffer_per_cpu *cpu_buffer;
3208 	unsigned long ret;
3209 
3210 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3211 		return 0;
3212 
3213 	cpu_buffer = buffer->buffers[cpu];
3214 	ret = local_read(&cpu_buffer->overrun);
3215 
3216 	return ret;
3217 }
3218 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3219 
3220 /**
3221  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3222  * commits failing due to the buffer wrapping around while there are uncommitted
3223  * events, such as during an interrupt storm.
3224  * @buffer: The ring buffer
3225  * @cpu: The per CPU buffer to get the number of overruns from
3226  */
3227 unsigned long
3228 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3229 {
3230 	struct ring_buffer_per_cpu *cpu_buffer;
3231 	unsigned long ret;
3232 
3233 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3234 		return 0;
3235 
3236 	cpu_buffer = buffer->buffers[cpu];
3237 	ret = local_read(&cpu_buffer->commit_overrun);
3238 
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3242 
3243 /**
3244  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3245  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3246  * @buffer: The ring buffer
3247  * @cpu: The per CPU buffer to get the number of overruns from
3248  */
3249 unsigned long
3250 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3251 {
3252 	struct ring_buffer_per_cpu *cpu_buffer;
3253 	unsigned long ret;
3254 
3255 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3256 		return 0;
3257 
3258 	cpu_buffer = buffer->buffers[cpu];
3259 	ret = local_read(&cpu_buffer->dropped_events);
3260 
3261 	return ret;
3262 }
3263 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3264 
3265 /**
3266  * ring_buffer_read_events_cpu - get the number of events successfully read
3267  * @buffer: The ring buffer
3268  * @cpu: The per CPU buffer to get the number of events read
3269  */
3270 unsigned long
3271 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3272 {
3273 	struct ring_buffer_per_cpu *cpu_buffer;
3274 
3275 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3276 		return 0;
3277 
3278 	cpu_buffer = buffer->buffers[cpu];
3279 	return cpu_buffer->read;
3280 }
3281 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3282 
3283 /**
3284  * ring_buffer_entries - get the number of entries in a buffer
3285  * @buffer: The ring buffer
3286  *
3287  * Returns the total number of entries in the ring buffer
3288  * (all CPU entries)
3289  */
3290 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3291 {
3292 	struct ring_buffer_per_cpu *cpu_buffer;
3293 	unsigned long entries = 0;
3294 	int cpu;
3295 
3296 	/* if you care about this being correct, lock the buffer */
3297 	for_each_buffer_cpu(buffer, cpu) {
3298 		cpu_buffer = buffer->buffers[cpu];
3299 		entries += rb_num_of_entries(cpu_buffer);
3300 	}
3301 
3302 	return entries;
3303 }
3304 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3305 
3306 /**
3307  * ring_buffer_overruns - get the number of overruns in buffer
3308  * @buffer: The ring buffer
3309  *
3310  * Returns the total number of overruns in the ring buffer
3311  * (all CPU entries)
3312  */
3313 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3314 {
3315 	struct ring_buffer_per_cpu *cpu_buffer;
3316 	unsigned long overruns = 0;
3317 	int cpu;
3318 
3319 	/* if you care about this being correct, lock the buffer */
3320 	for_each_buffer_cpu(buffer, cpu) {
3321 		cpu_buffer = buffer->buffers[cpu];
3322 		overruns += local_read(&cpu_buffer->overrun);
3323 	}
3324 
3325 	return overruns;
3326 }
3327 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3328 
3329 static void rb_iter_reset(struct ring_buffer_iter *iter)
3330 {
3331 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3332 
3333 	/* Iterator usage is expected to have record disabled */
3334 	iter->head_page = cpu_buffer->reader_page;
3335 	iter->head = cpu_buffer->reader_page->read;
3336 
3337 	iter->cache_reader_page = iter->head_page;
3338 	iter->cache_read = cpu_buffer->read;
3339 
3340 	if (iter->head)
3341 		iter->read_stamp = cpu_buffer->read_stamp;
3342 	else
3343 		iter->read_stamp = iter->head_page->page->time_stamp;
3344 }
3345 
3346 /**
3347  * ring_buffer_iter_reset - reset an iterator
3348  * @iter: The iterator to reset
3349  *
3350  * Resets the iterator, so that it will start from the beginning
3351  * again.
3352  */
3353 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3354 {
3355 	struct ring_buffer_per_cpu *cpu_buffer;
3356 	unsigned long flags;
3357 
3358 	if (!iter)
3359 		return;
3360 
3361 	cpu_buffer = iter->cpu_buffer;
3362 
3363 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3364 	rb_iter_reset(iter);
3365 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3366 }
3367 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3368 
3369 /**
3370  * ring_buffer_iter_empty - check if an iterator has no more to read
3371  * @iter: The iterator to check
3372  */
3373 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3374 {
3375 	struct ring_buffer_per_cpu *cpu_buffer;
3376 	struct buffer_page *reader;
3377 	struct buffer_page *head_page;
3378 	struct buffer_page *commit_page;
3379 	unsigned commit;
3380 
3381 	cpu_buffer = iter->cpu_buffer;
3382 
3383 	/* Remember, trace recording is off when iterator is in use */
3384 	reader = cpu_buffer->reader_page;
3385 	head_page = cpu_buffer->head_page;
3386 	commit_page = cpu_buffer->commit_page;
3387 	commit = rb_page_commit(commit_page);
3388 
3389 	return ((iter->head_page == commit_page && iter->head == commit) ||
3390 		(iter->head_page == reader && commit_page == head_page &&
3391 		 head_page->read == commit &&
3392 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3393 }
3394 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3395 
3396 static void
3397 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3398 		     struct ring_buffer_event *event)
3399 {
3400 	u64 delta;
3401 
3402 	switch (event->type_len) {
3403 	case RINGBUF_TYPE_PADDING:
3404 		return;
3405 
3406 	case RINGBUF_TYPE_TIME_EXTEND:
3407 		delta = event->array[0];
3408 		delta <<= TS_SHIFT;
3409 		delta += event->time_delta;
3410 		cpu_buffer->read_stamp += delta;
3411 		return;
3412 
3413 	case RINGBUF_TYPE_TIME_STAMP:
3414 		/* FIXME: not implemented */
3415 		return;
3416 
3417 	case RINGBUF_TYPE_DATA:
3418 		cpu_buffer->read_stamp += event->time_delta;
3419 		return;
3420 
3421 	default:
3422 		BUG();
3423 	}
3424 	return;
3425 }
3426 
3427 static void
3428 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3429 			  struct ring_buffer_event *event)
3430 {
3431 	u64 delta;
3432 
3433 	switch (event->type_len) {
3434 	case RINGBUF_TYPE_PADDING:
3435 		return;
3436 
3437 	case RINGBUF_TYPE_TIME_EXTEND:
3438 		delta = event->array[0];
3439 		delta <<= TS_SHIFT;
3440 		delta += event->time_delta;
3441 		iter->read_stamp += delta;
3442 		return;
3443 
3444 	case RINGBUF_TYPE_TIME_STAMP:
3445 		/* FIXME: not implemented */
3446 		return;
3447 
3448 	case RINGBUF_TYPE_DATA:
3449 		iter->read_stamp += event->time_delta;
3450 		return;
3451 
3452 	default:
3453 		BUG();
3454 	}
3455 	return;
3456 }
3457 
3458 static struct buffer_page *
3459 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3460 {
3461 	struct buffer_page *reader = NULL;
3462 	unsigned long overwrite;
3463 	unsigned long flags;
3464 	int nr_loops = 0;
3465 	int ret;
3466 
3467 	local_irq_save(flags);
3468 	arch_spin_lock(&cpu_buffer->lock);
3469 
3470  again:
3471 	/*
3472 	 * This should normally only loop twice. But because the
3473 	 * start of the reader inserts an empty page, it causes
3474 	 * a case where we will loop three times. There should be no
3475 	 * reason to loop four times (that I know of).
3476 	 */
3477 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3478 		reader = NULL;
3479 		goto out;
3480 	}
3481 
3482 	reader = cpu_buffer->reader_page;
3483 
3484 	/* If there's more to read, return this page */
3485 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3486 		goto out;
3487 
3488 	/* Never should we have an index greater than the size */
3489 	if (RB_WARN_ON(cpu_buffer,
3490 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3491 		goto out;
3492 
3493 	/* check if we caught up to the tail */
3494 	reader = NULL;
3495 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3496 		goto out;
3497 
3498 	/* Don't bother swapping if the ring buffer is empty */
3499 	if (rb_num_of_entries(cpu_buffer) == 0)
3500 		goto out;
3501 
3502 	/*
3503 	 * Reset the reader page to size zero.
3504 	 */
3505 	local_set(&cpu_buffer->reader_page->write, 0);
3506 	local_set(&cpu_buffer->reader_page->entries, 0);
3507 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3508 	cpu_buffer->reader_page->real_end = 0;
3509 
3510  spin:
3511 	/*
3512 	 * Splice the empty reader page into the list around the head.
3513 	 */
3514 	reader = rb_set_head_page(cpu_buffer);
3515 	if (!reader)
3516 		goto out;
3517 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3518 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3519 
3520 	/*
3521 	 * cpu_buffer->pages just needs to point to the buffer, it
3522 	 *  has no specific buffer page to point to. Lets move it out
3523 	 *  of our way so we don't accidentally swap it.
3524 	 */
3525 	cpu_buffer->pages = reader->list.prev;
3526 
3527 	/* The reader page will be pointing to the new head */
3528 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3529 
3530 	/*
3531 	 * We want to make sure we read the overruns after we set up our
3532 	 * pointers to the next object. The writer side does a
3533 	 * cmpxchg to cross pages which acts as the mb on the writer
3534 	 * side. Note, the reader will constantly fail the swap
3535 	 * while the writer is updating the pointers, so this
3536 	 * guarantees that the overwrite recorded here is the one we
3537 	 * want to compare with the last_overrun.
3538 	 */
3539 	smp_mb();
3540 	overwrite = local_read(&(cpu_buffer->overrun));
3541 
3542 	/*
3543 	 * Here's the tricky part.
3544 	 *
3545 	 * We need to move the pointer past the header page.
3546 	 * But we can only do that if a writer is not currently
3547 	 * moving it. The page before the header page has the
3548 	 * flag bit '1' set if it is pointing to the page we want.
3549 	 * but if the writer is in the process of moving it
3550 	 * than it will be '2' or already moved '0'.
3551 	 */
3552 
3553 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3554 
3555 	/*
3556 	 * If we did not convert it, then we must try again.
3557 	 */
3558 	if (!ret)
3559 		goto spin;
3560 
3561 	/*
3562 	 * Yeah! We succeeded in replacing the page.
3563 	 *
3564 	 * Now make the new head point back to the reader page.
3565 	 */
3566 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3567 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3568 
3569 	/* Finally update the reader page to the new head */
3570 	cpu_buffer->reader_page = reader;
3571 	cpu_buffer->reader_page->read = 0;
3572 
3573 	if (overwrite != cpu_buffer->last_overrun) {
3574 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3575 		cpu_buffer->last_overrun = overwrite;
3576 	}
3577 
3578 	goto again;
3579 
3580  out:
3581 	/* Update the read_stamp on the first event */
3582 	if (reader && reader->read == 0)
3583 		cpu_buffer->read_stamp = reader->page->time_stamp;
3584 
3585 	arch_spin_unlock(&cpu_buffer->lock);
3586 	local_irq_restore(flags);
3587 
3588 	return reader;
3589 }
3590 
3591 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3592 {
3593 	struct ring_buffer_event *event;
3594 	struct buffer_page *reader;
3595 	unsigned length;
3596 
3597 	reader = rb_get_reader_page(cpu_buffer);
3598 
3599 	/* This function should not be called when buffer is empty */
3600 	if (RB_WARN_ON(cpu_buffer, !reader))
3601 		return;
3602 
3603 	event = rb_reader_event(cpu_buffer);
3604 
3605 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3606 		cpu_buffer->read++;
3607 
3608 	rb_update_read_stamp(cpu_buffer, event);
3609 
3610 	length = rb_event_length(event);
3611 	cpu_buffer->reader_page->read += length;
3612 }
3613 
3614 static void rb_advance_iter(struct ring_buffer_iter *iter)
3615 {
3616 	struct ring_buffer_per_cpu *cpu_buffer;
3617 	struct ring_buffer_event *event;
3618 	unsigned length;
3619 
3620 	cpu_buffer = iter->cpu_buffer;
3621 
3622 	/*
3623 	 * Check if we are at the end of the buffer.
3624 	 */
3625 	if (iter->head >= rb_page_size(iter->head_page)) {
3626 		/* discarded commits can make the page empty */
3627 		if (iter->head_page == cpu_buffer->commit_page)
3628 			return;
3629 		rb_inc_iter(iter);
3630 		return;
3631 	}
3632 
3633 	event = rb_iter_head_event(iter);
3634 
3635 	length = rb_event_length(event);
3636 
3637 	/*
3638 	 * This should not be called to advance the header if we are
3639 	 * at the tail of the buffer.
3640 	 */
3641 	if (RB_WARN_ON(cpu_buffer,
3642 		       (iter->head_page == cpu_buffer->commit_page) &&
3643 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3644 		return;
3645 
3646 	rb_update_iter_read_stamp(iter, event);
3647 
3648 	iter->head += length;
3649 
3650 	/* check for end of page padding */
3651 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3652 	    (iter->head_page != cpu_buffer->commit_page))
3653 		rb_inc_iter(iter);
3654 }
3655 
3656 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3657 {
3658 	return cpu_buffer->lost_events;
3659 }
3660 
3661 static struct ring_buffer_event *
3662 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3663 	       unsigned long *lost_events)
3664 {
3665 	struct ring_buffer_event *event;
3666 	struct buffer_page *reader;
3667 	int nr_loops = 0;
3668 
3669  again:
3670 	/*
3671 	 * We repeat when a time extend is encountered.
3672 	 * Since the time extend is always attached to a data event,
3673 	 * we should never loop more than once.
3674 	 * (We never hit the following condition more than twice).
3675 	 */
3676 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3677 		return NULL;
3678 
3679 	reader = rb_get_reader_page(cpu_buffer);
3680 	if (!reader)
3681 		return NULL;
3682 
3683 	event = rb_reader_event(cpu_buffer);
3684 
3685 	switch (event->type_len) {
3686 	case RINGBUF_TYPE_PADDING:
3687 		if (rb_null_event(event))
3688 			RB_WARN_ON(cpu_buffer, 1);
3689 		/*
3690 		 * Because the writer could be discarding every
3691 		 * event it creates (which would probably be bad)
3692 		 * if we were to go back to "again" then we may never
3693 		 * catch up, and will trigger the warn on, or lock
3694 		 * the box. Return the padding, and we will release
3695 		 * the current locks, and try again.
3696 		 */
3697 		return event;
3698 
3699 	case RINGBUF_TYPE_TIME_EXTEND:
3700 		/* Internal data, OK to advance */
3701 		rb_advance_reader(cpu_buffer);
3702 		goto again;
3703 
3704 	case RINGBUF_TYPE_TIME_STAMP:
3705 		/* FIXME: not implemented */
3706 		rb_advance_reader(cpu_buffer);
3707 		goto again;
3708 
3709 	case RINGBUF_TYPE_DATA:
3710 		if (ts) {
3711 			*ts = cpu_buffer->read_stamp + event->time_delta;
3712 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3713 							 cpu_buffer->cpu, ts);
3714 		}
3715 		if (lost_events)
3716 			*lost_events = rb_lost_events(cpu_buffer);
3717 		return event;
3718 
3719 	default:
3720 		BUG();
3721 	}
3722 
3723 	return NULL;
3724 }
3725 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3726 
3727 static struct ring_buffer_event *
3728 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3729 {
3730 	struct ring_buffer *buffer;
3731 	struct ring_buffer_per_cpu *cpu_buffer;
3732 	struct ring_buffer_event *event;
3733 	int nr_loops = 0;
3734 
3735 	cpu_buffer = iter->cpu_buffer;
3736 	buffer = cpu_buffer->buffer;
3737 
3738 	/*
3739 	 * Check if someone performed a consuming read to
3740 	 * the buffer. A consuming read invalidates the iterator
3741 	 * and we need to reset the iterator in this case.
3742 	 */
3743 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3744 		     iter->cache_reader_page != cpu_buffer->reader_page))
3745 		rb_iter_reset(iter);
3746 
3747  again:
3748 	if (ring_buffer_iter_empty(iter))
3749 		return NULL;
3750 
3751 	/*
3752 	 * We repeat when a time extend is encountered or we hit
3753 	 * the end of the page. Since the time extend is always attached
3754 	 * to a data event, we should never loop more than three times.
3755 	 * Once for going to next page, once on time extend, and
3756 	 * finally once to get the event.
3757 	 * (We never hit the following condition more than thrice).
3758 	 */
3759 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3760 		return NULL;
3761 
3762 	if (rb_per_cpu_empty(cpu_buffer))
3763 		return NULL;
3764 
3765 	if (iter->head >= rb_page_size(iter->head_page)) {
3766 		rb_inc_iter(iter);
3767 		goto again;
3768 	}
3769 
3770 	event = rb_iter_head_event(iter);
3771 
3772 	switch (event->type_len) {
3773 	case RINGBUF_TYPE_PADDING:
3774 		if (rb_null_event(event)) {
3775 			rb_inc_iter(iter);
3776 			goto again;
3777 		}
3778 		rb_advance_iter(iter);
3779 		return event;
3780 
3781 	case RINGBUF_TYPE_TIME_EXTEND:
3782 		/* Internal data, OK to advance */
3783 		rb_advance_iter(iter);
3784 		goto again;
3785 
3786 	case RINGBUF_TYPE_TIME_STAMP:
3787 		/* FIXME: not implemented */
3788 		rb_advance_iter(iter);
3789 		goto again;
3790 
3791 	case RINGBUF_TYPE_DATA:
3792 		if (ts) {
3793 			*ts = iter->read_stamp + event->time_delta;
3794 			ring_buffer_normalize_time_stamp(buffer,
3795 							 cpu_buffer->cpu, ts);
3796 		}
3797 		return event;
3798 
3799 	default:
3800 		BUG();
3801 	}
3802 
3803 	return NULL;
3804 }
3805 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3806 
3807 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3808 {
3809 	if (likely(!in_nmi())) {
3810 		raw_spin_lock(&cpu_buffer->reader_lock);
3811 		return true;
3812 	}
3813 
3814 	/*
3815 	 * If an NMI die dumps out the content of the ring buffer
3816 	 * trylock must be used to prevent a deadlock if the NMI
3817 	 * preempted a task that holds the ring buffer locks. If
3818 	 * we get the lock then all is fine, if not, then continue
3819 	 * to do the read, but this can corrupt the ring buffer,
3820 	 * so it must be permanently disabled from future writes.
3821 	 * Reading from NMI is a oneshot deal.
3822 	 */
3823 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3824 		return true;
3825 
3826 	/* Continue without locking, but disable the ring buffer */
3827 	atomic_inc(&cpu_buffer->record_disabled);
3828 	return false;
3829 }
3830 
3831 static inline void
3832 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3833 {
3834 	if (likely(locked))
3835 		raw_spin_unlock(&cpu_buffer->reader_lock);
3836 	return;
3837 }
3838 
3839 /**
3840  * ring_buffer_peek - peek at the next event to be read
3841  * @buffer: The ring buffer to read
3842  * @cpu: The cpu to peak at
3843  * @ts: The timestamp counter of this event.
3844  * @lost_events: a variable to store if events were lost (may be NULL)
3845  *
3846  * This will return the event that will be read next, but does
3847  * not consume the data.
3848  */
3849 struct ring_buffer_event *
3850 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3851 		 unsigned long *lost_events)
3852 {
3853 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3854 	struct ring_buffer_event *event;
3855 	unsigned long flags;
3856 	bool dolock;
3857 
3858 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3859 		return NULL;
3860 
3861  again:
3862 	local_irq_save(flags);
3863 	dolock = rb_reader_lock(cpu_buffer);
3864 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3865 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3866 		rb_advance_reader(cpu_buffer);
3867 	rb_reader_unlock(cpu_buffer, dolock);
3868 	local_irq_restore(flags);
3869 
3870 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3871 		goto again;
3872 
3873 	return event;
3874 }
3875 
3876 /**
3877  * ring_buffer_iter_peek - peek at the next event to be read
3878  * @iter: The ring buffer iterator
3879  * @ts: The timestamp counter of this event.
3880  *
3881  * This will return the event that will be read next, but does
3882  * not increment the iterator.
3883  */
3884 struct ring_buffer_event *
3885 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3886 {
3887 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3888 	struct ring_buffer_event *event;
3889 	unsigned long flags;
3890 
3891  again:
3892 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3893 	event = rb_iter_peek(iter, ts);
3894 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3895 
3896 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3897 		goto again;
3898 
3899 	return event;
3900 }
3901 
3902 /**
3903  * ring_buffer_consume - return an event and consume it
3904  * @buffer: The ring buffer to get the next event from
3905  * @cpu: the cpu to read the buffer from
3906  * @ts: a variable to store the timestamp (may be NULL)
3907  * @lost_events: a variable to store if events were lost (may be NULL)
3908  *
3909  * Returns the next event in the ring buffer, and that event is consumed.
3910  * Meaning, that sequential reads will keep returning a different event,
3911  * and eventually empty the ring buffer if the producer is slower.
3912  */
3913 struct ring_buffer_event *
3914 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3915 		    unsigned long *lost_events)
3916 {
3917 	struct ring_buffer_per_cpu *cpu_buffer;
3918 	struct ring_buffer_event *event = NULL;
3919 	unsigned long flags;
3920 	bool dolock;
3921 
3922  again:
3923 	/* might be called in atomic */
3924 	preempt_disable();
3925 
3926 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3927 		goto out;
3928 
3929 	cpu_buffer = buffer->buffers[cpu];
3930 	local_irq_save(flags);
3931 	dolock = rb_reader_lock(cpu_buffer);
3932 
3933 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3934 	if (event) {
3935 		cpu_buffer->lost_events = 0;
3936 		rb_advance_reader(cpu_buffer);
3937 	}
3938 
3939 	rb_reader_unlock(cpu_buffer, dolock);
3940 	local_irq_restore(flags);
3941 
3942  out:
3943 	preempt_enable();
3944 
3945 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3946 		goto again;
3947 
3948 	return event;
3949 }
3950 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3951 
3952 /**
3953  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3954  * @buffer: The ring buffer to read from
3955  * @cpu: The cpu buffer to iterate over
3956  *
3957  * This performs the initial preparations necessary to iterate
3958  * through the buffer.  Memory is allocated, buffer recording
3959  * is disabled, and the iterator pointer is returned to the caller.
3960  *
3961  * Disabling buffer recordng prevents the reading from being
3962  * corrupted. This is not a consuming read, so a producer is not
3963  * expected.
3964  *
3965  * After a sequence of ring_buffer_read_prepare calls, the user is
3966  * expected to make at least one call to ring_buffer_read_prepare_sync.
3967  * Afterwards, ring_buffer_read_start is invoked to get things going
3968  * for real.
3969  *
3970  * This overall must be paired with ring_buffer_read_finish.
3971  */
3972 struct ring_buffer_iter *
3973 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3974 {
3975 	struct ring_buffer_per_cpu *cpu_buffer;
3976 	struct ring_buffer_iter *iter;
3977 
3978 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3979 		return NULL;
3980 
3981 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3982 	if (!iter)
3983 		return NULL;
3984 
3985 	cpu_buffer = buffer->buffers[cpu];
3986 
3987 	iter->cpu_buffer = cpu_buffer;
3988 
3989 	atomic_inc(&buffer->resize_disabled);
3990 	atomic_inc(&cpu_buffer->record_disabled);
3991 
3992 	return iter;
3993 }
3994 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3995 
3996 /**
3997  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3998  *
3999  * All previously invoked ring_buffer_read_prepare calls to prepare
4000  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4001  * calls on those iterators are allowed.
4002  */
4003 void
4004 ring_buffer_read_prepare_sync(void)
4005 {
4006 	synchronize_sched();
4007 }
4008 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4009 
4010 /**
4011  * ring_buffer_read_start - start a non consuming read of the buffer
4012  * @iter: The iterator returned by ring_buffer_read_prepare
4013  *
4014  * This finalizes the startup of an iteration through the buffer.
4015  * The iterator comes from a call to ring_buffer_read_prepare and
4016  * an intervening ring_buffer_read_prepare_sync must have been
4017  * performed.
4018  *
4019  * Must be paired with ring_buffer_read_finish.
4020  */
4021 void
4022 ring_buffer_read_start(struct ring_buffer_iter *iter)
4023 {
4024 	struct ring_buffer_per_cpu *cpu_buffer;
4025 	unsigned long flags;
4026 
4027 	if (!iter)
4028 		return;
4029 
4030 	cpu_buffer = iter->cpu_buffer;
4031 
4032 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4033 	arch_spin_lock(&cpu_buffer->lock);
4034 	rb_iter_reset(iter);
4035 	arch_spin_unlock(&cpu_buffer->lock);
4036 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4037 }
4038 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4039 
4040 /**
4041  * ring_buffer_read_finish - finish reading the iterator of the buffer
4042  * @iter: The iterator retrieved by ring_buffer_start
4043  *
4044  * This re-enables the recording to the buffer, and frees the
4045  * iterator.
4046  */
4047 void
4048 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4049 {
4050 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4051 	unsigned long flags;
4052 
4053 	/*
4054 	 * Ring buffer is disabled from recording, here's a good place
4055 	 * to check the integrity of the ring buffer.
4056 	 * Must prevent readers from trying to read, as the check
4057 	 * clears the HEAD page and readers require it.
4058 	 */
4059 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4060 	rb_check_pages(cpu_buffer);
4061 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4062 
4063 	atomic_dec(&cpu_buffer->record_disabled);
4064 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4065 	kfree(iter);
4066 }
4067 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4068 
4069 /**
4070  * ring_buffer_read - read the next item in the ring buffer by the iterator
4071  * @iter: The ring buffer iterator
4072  * @ts: The time stamp of the event read.
4073  *
4074  * This reads the next event in the ring buffer and increments the iterator.
4075  */
4076 struct ring_buffer_event *
4077 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4078 {
4079 	struct ring_buffer_event *event;
4080 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4081 	unsigned long flags;
4082 
4083 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4084  again:
4085 	event = rb_iter_peek(iter, ts);
4086 	if (!event)
4087 		goto out;
4088 
4089 	if (event->type_len == RINGBUF_TYPE_PADDING)
4090 		goto again;
4091 
4092 	rb_advance_iter(iter);
4093  out:
4094 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4095 
4096 	return event;
4097 }
4098 EXPORT_SYMBOL_GPL(ring_buffer_read);
4099 
4100 /**
4101  * ring_buffer_size - return the size of the ring buffer (in bytes)
4102  * @buffer: The ring buffer.
4103  */
4104 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4105 {
4106 	/*
4107 	 * Earlier, this method returned
4108 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4109 	 * Since the nr_pages field is now removed, we have converted this to
4110 	 * return the per cpu buffer value.
4111 	 */
4112 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4113 		return 0;
4114 
4115 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4116 }
4117 EXPORT_SYMBOL_GPL(ring_buffer_size);
4118 
4119 static void
4120 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4121 {
4122 	rb_head_page_deactivate(cpu_buffer);
4123 
4124 	cpu_buffer->head_page
4125 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4126 	local_set(&cpu_buffer->head_page->write, 0);
4127 	local_set(&cpu_buffer->head_page->entries, 0);
4128 	local_set(&cpu_buffer->head_page->page->commit, 0);
4129 
4130 	cpu_buffer->head_page->read = 0;
4131 
4132 	cpu_buffer->tail_page = cpu_buffer->head_page;
4133 	cpu_buffer->commit_page = cpu_buffer->head_page;
4134 
4135 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4136 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4137 	local_set(&cpu_buffer->reader_page->write, 0);
4138 	local_set(&cpu_buffer->reader_page->entries, 0);
4139 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4140 	cpu_buffer->reader_page->read = 0;
4141 
4142 	local_set(&cpu_buffer->entries_bytes, 0);
4143 	local_set(&cpu_buffer->overrun, 0);
4144 	local_set(&cpu_buffer->commit_overrun, 0);
4145 	local_set(&cpu_buffer->dropped_events, 0);
4146 	local_set(&cpu_buffer->entries, 0);
4147 	local_set(&cpu_buffer->committing, 0);
4148 	local_set(&cpu_buffer->commits, 0);
4149 	cpu_buffer->read = 0;
4150 	cpu_buffer->read_bytes = 0;
4151 
4152 	cpu_buffer->write_stamp = 0;
4153 	cpu_buffer->read_stamp = 0;
4154 
4155 	cpu_buffer->lost_events = 0;
4156 	cpu_buffer->last_overrun = 0;
4157 
4158 	rb_head_page_activate(cpu_buffer);
4159 }
4160 
4161 /**
4162  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4163  * @buffer: The ring buffer to reset a per cpu buffer of
4164  * @cpu: The CPU buffer to be reset
4165  */
4166 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4167 {
4168 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4169 	unsigned long flags;
4170 
4171 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4172 		return;
4173 
4174 	atomic_inc(&buffer->resize_disabled);
4175 	atomic_inc(&cpu_buffer->record_disabled);
4176 
4177 	/* Make sure all commits have finished */
4178 	synchronize_sched();
4179 
4180 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4181 
4182 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4183 		goto out;
4184 
4185 	arch_spin_lock(&cpu_buffer->lock);
4186 
4187 	rb_reset_cpu(cpu_buffer);
4188 
4189 	arch_spin_unlock(&cpu_buffer->lock);
4190 
4191  out:
4192 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4193 
4194 	atomic_dec(&cpu_buffer->record_disabled);
4195 	atomic_dec(&buffer->resize_disabled);
4196 }
4197 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4198 
4199 /**
4200  * ring_buffer_reset - reset a ring buffer
4201  * @buffer: The ring buffer to reset all cpu buffers
4202  */
4203 void ring_buffer_reset(struct ring_buffer *buffer)
4204 {
4205 	int cpu;
4206 
4207 	for_each_buffer_cpu(buffer, cpu)
4208 		ring_buffer_reset_cpu(buffer, cpu);
4209 }
4210 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4211 
4212 /**
4213  * rind_buffer_empty - is the ring buffer empty?
4214  * @buffer: The ring buffer to test
4215  */
4216 bool ring_buffer_empty(struct ring_buffer *buffer)
4217 {
4218 	struct ring_buffer_per_cpu *cpu_buffer;
4219 	unsigned long flags;
4220 	bool dolock;
4221 	int cpu;
4222 	int ret;
4223 
4224 	/* yes this is racy, but if you don't like the race, lock the buffer */
4225 	for_each_buffer_cpu(buffer, cpu) {
4226 		cpu_buffer = buffer->buffers[cpu];
4227 		local_irq_save(flags);
4228 		dolock = rb_reader_lock(cpu_buffer);
4229 		ret = rb_per_cpu_empty(cpu_buffer);
4230 		rb_reader_unlock(cpu_buffer, dolock);
4231 		local_irq_restore(flags);
4232 
4233 		if (!ret)
4234 			return false;
4235 	}
4236 
4237 	return true;
4238 }
4239 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4240 
4241 /**
4242  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4243  * @buffer: The ring buffer
4244  * @cpu: The CPU buffer to test
4245  */
4246 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4247 {
4248 	struct ring_buffer_per_cpu *cpu_buffer;
4249 	unsigned long flags;
4250 	bool dolock;
4251 	int ret;
4252 
4253 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4254 		return true;
4255 
4256 	cpu_buffer = buffer->buffers[cpu];
4257 	local_irq_save(flags);
4258 	dolock = rb_reader_lock(cpu_buffer);
4259 	ret = rb_per_cpu_empty(cpu_buffer);
4260 	rb_reader_unlock(cpu_buffer, dolock);
4261 	local_irq_restore(flags);
4262 
4263 	return ret;
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4266 
4267 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4268 /**
4269  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4270  * @buffer_a: One buffer to swap with
4271  * @buffer_b: The other buffer to swap with
4272  *
4273  * This function is useful for tracers that want to take a "snapshot"
4274  * of a CPU buffer and has another back up buffer lying around.
4275  * it is expected that the tracer handles the cpu buffer not being
4276  * used at the moment.
4277  */
4278 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4279 			 struct ring_buffer *buffer_b, int cpu)
4280 {
4281 	struct ring_buffer_per_cpu *cpu_buffer_a;
4282 	struct ring_buffer_per_cpu *cpu_buffer_b;
4283 	int ret = -EINVAL;
4284 
4285 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4286 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4287 		goto out;
4288 
4289 	cpu_buffer_a = buffer_a->buffers[cpu];
4290 	cpu_buffer_b = buffer_b->buffers[cpu];
4291 
4292 	/* At least make sure the two buffers are somewhat the same */
4293 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4294 		goto out;
4295 
4296 	ret = -EAGAIN;
4297 
4298 	if (atomic_read(&buffer_a->record_disabled))
4299 		goto out;
4300 
4301 	if (atomic_read(&buffer_b->record_disabled))
4302 		goto out;
4303 
4304 	if (atomic_read(&cpu_buffer_a->record_disabled))
4305 		goto out;
4306 
4307 	if (atomic_read(&cpu_buffer_b->record_disabled))
4308 		goto out;
4309 
4310 	/*
4311 	 * We can't do a synchronize_sched here because this
4312 	 * function can be called in atomic context.
4313 	 * Normally this will be called from the same CPU as cpu.
4314 	 * If not it's up to the caller to protect this.
4315 	 */
4316 	atomic_inc(&cpu_buffer_a->record_disabled);
4317 	atomic_inc(&cpu_buffer_b->record_disabled);
4318 
4319 	ret = -EBUSY;
4320 	if (local_read(&cpu_buffer_a->committing))
4321 		goto out_dec;
4322 	if (local_read(&cpu_buffer_b->committing))
4323 		goto out_dec;
4324 
4325 	buffer_a->buffers[cpu] = cpu_buffer_b;
4326 	buffer_b->buffers[cpu] = cpu_buffer_a;
4327 
4328 	cpu_buffer_b->buffer = buffer_a;
4329 	cpu_buffer_a->buffer = buffer_b;
4330 
4331 	ret = 0;
4332 
4333 out_dec:
4334 	atomic_dec(&cpu_buffer_a->record_disabled);
4335 	atomic_dec(&cpu_buffer_b->record_disabled);
4336 out:
4337 	return ret;
4338 }
4339 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4340 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4341 
4342 /**
4343  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4344  * @buffer: the buffer to allocate for.
4345  * @cpu: the cpu buffer to allocate.
4346  *
4347  * This function is used in conjunction with ring_buffer_read_page.
4348  * When reading a full page from the ring buffer, these functions
4349  * can be used to speed up the process. The calling function should
4350  * allocate a few pages first with this function. Then when it
4351  * needs to get pages from the ring buffer, it passes the result
4352  * of this function into ring_buffer_read_page, which will swap
4353  * the page that was allocated, with the read page of the buffer.
4354  *
4355  * Returns:
4356  *  The page allocated, or ERR_PTR
4357  */
4358 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4359 {
4360 	struct ring_buffer_per_cpu *cpu_buffer;
4361 	struct buffer_data_page *bpage = NULL;
4362 	unsigned long flags;
4363 	struct page *page;
4364 
4365 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4366 		return ERR_PTR(-ENODEV);
4367 
4368 	cpu_buffer = buffer->buffers[cpu];
4369 	local_irq_save(flags);
4370 	arch_spin_lock(&cpu_buffer->lock);
4371 
4372 	if (cpu_buffer->free_page) {
4373 		bpage = cpu_buffer->free_page;
4374 		cpu_buffer->free_page = NULL;
4375 	}
4376 
4377 	arch_spin_unlock(&cpu_buffer->lock);
4378 	local_irq_restore(flags);
4379 
4380 	if (bpage)
4381 		goto out;
4382 
4383 	page = alloc_pages_node(cpu_to_node(cpu),
4384 				GFP_KERNEL | __GFP_NORETRY, 0);
4385 	if (!page)
4386 		return ERR_PTR(-ENOMEM);
4387 
4388 	bpage = page_address(page);
4389 
4390  out:
4391 	rb_init_page(bpage);
4392 
4393 	return bpage;
4394 }
4395 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4396 
4397 /**
4398  * ring_buffer_free_read_page - free an allocated read page
4399  * @buffer: the buffer the page was allocate for
4400  * @cpu: the cpu buffer the page came from
4401  * @data: the page to free
4402  *
4403  * Free a page allocated from ring_buffer_alloc_read_page.
4404  */
4405 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4406 {
4407 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4408 	struct buffer_data_page *bpage = data;
4409 	unsigned long flags;
4410 
4411 	local_irq_save(flags);
4412 	arch_spin_lock(&cpu_buffer->lock);
4413 
4414 	if (!cpu_buffer->free_page) {
4415 		cpu_buffer->free_page = bpage;
4416 		bpage = NULL;
4417 	}
4418 
4419 	arch_spin_unlock(&cpu_buffer->lock);
4420 	local_irq_restore(flags);
4421 
4422 	free_page((unsigned long)bpage);
4423 }
4424 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4425 
4426 /**
4427  * ring_buffer_read_page - extract a page from the ring buffer
4428  * @buffer: buffer to extract from
4429  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4430  * @len: amount to extract
4431  * @cpu: the cpu of the buffer to extract
4432  * @full: should the extraction only happen when the page is full.
4433  *
4434  * This function will pull out a page from the ring buffer and consume it.
4435  * @data_page must be the address of the variable that was returned
4436  * from ring_buffer_alloc_read_page. This is because the page might be used
4437  * to swap with a page in the ring buffer.
4438  *
4439  * for example:
4440  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4441  *	if (IS_ERR(rpage))
4442  *		return PTR_ERR(rpage);
4443  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4444  *	if (ret >= 0)
4445  *		process_page(rpage, ret);
4446  *
4447  * When @full is set, the function will not return true unless
4448  * the writer is off the reader page.
4449  *
4450  * Note: it is up to the calling functions to handle sleeps and wakeups.
4451  *  The ring buffer can be used anywhere in the kernel and can not
4452  *  blindly call wake_up. The layer that uses the ring buffer must be
4453  *  responsible for that.
4454  *
4455  * Returns:
4456  *  >=0 if data has been transferred, returns the offset of consumed data.
4457  *  <0 if no data has been transferred.
4458  */
4459 int ring_buffer_read_page(struct ring_buffer *buffer,
4460 			  void **data_page, size_t len, int cpu, int full)
4461 {
4462 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4463 	struct ring_buffer_event *event;
4464 	struct buffer_data_page *bpage;
4465 	struct buffer_page *reader;
4466 	unsigned long missed_events;
4467 	unsigned long flags;
4468 	unsigned int commit;
4469 	unsigned int read;
4470 	u64 save_timestamp;
4471 	int ret = -1;
4472 
4473 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4474 		goto out;
4475 
4476 	/*
4477 	 * If len is not big enough to hold the page header, then
4478 	 * we can not copy anything.
4479 	 */
4480 	if (len <= BUF_PAGE_HDR_SIZE)
4481 		goto out;
4482 
4483 	len -= BUF_PAGE_HDR_SIZE;
4484 
4485 	if (!data_page)
4486 		goto out;
4487 
4488 	bpage = *data_page;
4489 	if (!bpage)
4490 		goto out;
4491 
4492 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4493 
4494 	reader = rb_get_reader_page(cpu_buffer);
4495 	if (!reader)
4496 		goto out_unlock;
4497 
4498 	event = rb_reader_event(cpu_buffer);
4499 
4500 	read = reader->read;
4501 	commit = rb_page_commit(reader);
4502 
4503 	/* Check if any events were dropped */
4504 	missed_events = cpu_buffer->lost_events;
4505 
4506 	/*
4507 	 * If this page has been partially read or
4508 	 * if len is not big enough to read the rest of the page or
4509 	 * a writer is still on the page, then
4510 	 * we must copy the data from the page to the buffer.
4511 	 * Otherwise, we can simply swap the page with the one passed in.
4512 	 */
4513 	if (read || (len < (commit - read)) ||
4514 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4515 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4516 		unsigned int rpos = read;
4517 		unsigned int pos = 0;
4518 		unsigned int size;
4519 
4520 		if (full)
4521 			goto out_unlock;
4522 
4523 		if (len > (commit - read))
4524 			len = (commit - read);
4525 
4526 		/* Always keep the time extend and data together */
4527 		size = rb_event_ts_length(event);
4528 
4529 		if (len < size)
4530 			goto out_unlock;
4531 
4532 		/* save the current timestamp, since the user will need it */
4533 		save_timestamp = cpu_buffer->read_stamp;
4534 
4535 		/* Need to copy one event at a time */
4536 		do {
4537 			/* We need the size of one event, because
4538 			 * rb_advance_reader only advances by one event,
4539 			 * whereas rb_event_ts_length may include the size of
4540 			 * one or two events.
4541 			 * We have already ensured there's enough space if this
4542 			 * is a time extend. */
4543 			size = rb_event_length(event);
4544 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4545 
4546 			len -= size;
4547 
4548 			rb_advance_reader(cpu_buffer);
4549 			rpos = reader->read;
4550 			pos += size;
4551 
4552 			if (rpos >= commit)
4553 				break;
4554 
4555 			event = rb_reader_event(cpu_buffer);
4556 			/* Always keep the time extend and data together */
4557 			size = rb_event_ts_length(event);
4558 		} while (len >= size);
4559 
4560 		/* update bpage */
4561 		local_set(&bpage->commit, pos);
4562 		bpage->time_stamp = save_timestamp;
4563 
4564 		/* we copied everything to the beginning */
4565 		read = 0;
4566 	} else {
4567 		/* update the entry counter */
4568 		cpu_buffer->read += rb_page_entries(reader);
4569 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4570 
4571 		/* swap the pages */
4572 		rb_init_page(bpage);
4573 		bpage = reader->page;
4574 		reader->page = *data_page;
4575 		local_set(&reader->write, 0);
4576 		local_set(&reader->entries, 0);
4577 		reader->read = 0;
4578 		*data_page = bpage;
4579 
4580 		/*
4581 		 * Use the real_end for the data size,
4582 		 * This gives us a chance to store the lost events
4583 		 * on the page.
4584 		 */
4585 		if (reader->real_end)
4586 			local_set(&bpage->commit, reader->real_end);
4587 	}
4588 	ret = read;
4589 
4590 	cpu_buffer->lost_events = 0;
4591 
4592 	commit = local_read(&bpage->commit);
4593 	/*
4594 	 * Set a flag in the commit field if we lost events
4595 	 */
4596 	if (missed_events) {
4597 		/* If there is room at the end of the page to save the
4598 		 * missed events, then record it there.
4599 		 */
4600 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4601 			memcpy(&bpage->data[commit], &missed_events,
4602 			       sizeof(missed_events));
4603 			local_add(RB_MISSED_STORED, &bpage->commit);
4604 			commit += sizeof(missed_events);
4605 		}
4606 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4607 	}
4608 
4609 	/*
4610 	 * This page may be off to user land. Zero it out here.
4611 	 */
4612 	if (commit < BUF_PAGE_SIZE)
4613 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4614 
4615  out_unlock:
4616 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4617 
4618  out:
4619 	return ret;
4620 }
4621 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4622 
4623 /*
4624  * We only allocate new buffers, never free them if the CPU goes down.
4625  * If we were to free the buffer, then the user would lose any trace that was in
4626  * the buffer.
4627  */
4628 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4629 {
4630 	struct ring_buffer *buffer;
4631 	long nr_pages_same;
4632 	int cpu_i;
4633 	unsigned long nr_pages;
4634 
4635 	buffer = container_of(node, struct ring_buffer, node);
4636 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4637 		return 0;
4638 
4639 	nr_pages = 0;
4640 	nr_pages_same = 1;
4641 	/* check if all cpu sizes are same */
4642 	for_each_buffer_cpu(buffer, cpu_i) {
4643 		/* fill in the size from first enabled cpu */
4644 		if (nr_pages == 0)
4645 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4646 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4647 			nr_pages_same = 0;
4648 			break;
4649 		}
4650 	}
4651 	/* allocate minimum pages, user can later expand it */
4652 	if (!nr_pages_same)
4653 		nr_pages = 2;
4654 	buffer->buffers[cpu] =
4655 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4656 	if (!buffer->buffers[cpu]) {
4657 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4658 		     cpu);
4659 		return -ENOMEM;
4660 	}
4661 	smp_wmb();
4662 	cpumask_set_cpu(cpu, buffer->cpumask);
4663 	return 0;
4664 }
4665 
4666 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4667 /*
4668  * This is a basic integrity check of the ring buffer.
4669  * Late in the boot cycle this test will run when configured in.
4670  * It will kick off a thread per CPU that will go into a loop
4671  * writing to the per cpu ring buffer various sizes of data.
4672  * Some of the data will be large items, some small.
4673  *
4674  * Another thread is created that goes into a spin, sending out
4675  * IPIs to the other CPUs to also write into the ring buffer.
4676  * this is to test the nesting ability of the buffer.
4677  *
4678  * Basic stats are recorded and reported. If something in the
4679  * ring buffer should happen that's not expected, a big warning
4680  * is displayed and all ring buffers are disabled.
4681  */
4682 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4683 
4684 struct rb_test_data {
4685 	struct ring_buffer	*buffer;
4686 	unsigned long		events;
4687 	unsigned long		bytes_written;
4688 	unsigned long		bytes_alloc;
4689 	unsigned long		bytes_dropped;
4690 	unsigned long		events_nested;
4691 	unsigned long		bytes_written_nested;
4692 	unsigned long		bytes_alloc_nested;
4693 	unsigned long		bytes_dropped_nested;
4694 	int			min_size_nested;
4695 	int			max_size_nested;
4696 	int			max_size;
4697 	int			min_size;
4698 	int			cpu;
4699 	int			cnt;
4700 };
4701 
4702 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4703 
4704 /* 1 meg per cpu */
4705 #define RB_TEST_BUFFER_SIZE	1048576
4706 
4707 static char rb_string[] __initdata =
4708 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4709 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4710 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4711 
4712 static bool rb_test_started __initdata;
4713 
4714 struct rb_item {
4715 	int size;
4716 	char str[];
4717 };
4718 
4719 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4720 {
4721 	struct ring_buffer_event *event;
4722 	struct rb_item *item;
4723 	bool started;
4724 	int event_len;
4725 	int size;
4726 	int len;
4727 	int cnt;
4728 
4729 	/* Have nested writes different that what is written */
4730 	cnt = data->cnt + (nested ? 27 : 0);
4731 
4732 	/* Multiply cnt by ~e, to make some unique increment */
4733 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4734 
4735 	len = size + sizeof(struct rb_item);
4736 
4737 	started = rb_test_started;
4738 	/* read rb_test_started before checking buffer enabled */
4739 	smp_rmb();
4740 
4741 	event = ring_buffer_lock_reserve(data->buffer, len);
4742 	if (!event) {
4743 		/* Ignore dropped events before test starts. */
4744 		if (started) {
4745 			if (nested)
4746 				data->bytes_dropped += len;
4747 			else
4748 				data->bytes_dropped_nested += len;
4749 		}
4750 		return len;
4751 	}
4752 
4753 	event_len = ring_buffer_event_length(event);
4754 
4755 	if (RB_WARN_ON(data->buffer, event_len < len))
4756 		goto out;
4757 
4758 	item = ring_buffer_event_data(event);
4759 	item->size = size;
4760 	memcpy(item->str, rb_string, size);
4761 
4762 	if (nested) {
4763 		data->bytes_alloc_nested += event_len;
4764 		data->bytes_written_nested += len;
4765 		data->events_nested++;
4766 		if (!data->min_size_nested || len < data->min_size_nested)
4767 			data->min_size_nested = len;
4768 		if (len > data->max_size_nested)
4769 			data->max_size_nested = len;
4770 	} else {
4771 		data->bytes_alloc += event_len;
4772 		data->bytes_written += len;
4773 		data->events++;
4774 		if (!data->min_size || len < data->min_size)
4775 			data->max_size = len;
4776 		if (len > data->max_size)
4777 			data->max_size = len;
4778 	}
4779 
4780  out:
4781 	ring_buffer_unlock_commit(data->buffer, event);
4782 
4783 	return 0;
4784 }
4785 
4786 static __init int rb_test(void *arg)
4787 {
4788 	struct rb_test_data *data = arg;
4789 
4790 	while (!kthread_should_stop()) {
4791 		rb_write_something(data, false);
4792 		data->cnt++;
4793 
4794 		set_current_state(TASK_INTERRUPTIBLE);
4795 		/* Now sleep between a min of 100-300us and a max of 1ms */
4796 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4797 	}
4798 
4799 	return 0;
4800 }
4801 
4802 static __init void rb_ipi(void *ignore)
4803 {
4804 	struct rb_test_data *data;
4805 	int cpu = smp_processor_id();
4806 
4807 	data = &rb_data[cpu];
4808 	rb_write_something(data, true);
4809 }
4810 
4811 static __init int rb_hammer_test(void *arg)
4812 {
4813 	while (!kthread_should_stop()) {
4814 
4815 		/* Send an IPI to all cpus to write data! */
4816 		smp_call_function(rb_ipi, NULL, 1);
4817 		/* No sleep, but for non preempt, let others run */
4818 		schedule();
4819 	}
4820 
4821 	return 0;
4822 }
4823 
4824 static __init int test_ringbuffer(void)
4825 {
4826 	struct task_struct *rb_hammer;
4827 	struct ring_buffer *buffer;
4828 	int cpu;
4829 	int ret = 0;
4830 
4831 	pr_info("Running ring buffer tests...\n");
4832 
4833 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4834 	if (WARN_ON(!buffer))
4835 		return 0;
4836 
4837 	/* Disable buffer so that threads can't write to it yet */
4838 	ring_buffer_record_off(buffer);
4839 
4840 	for_each_online_cpu(cpu) {
4841 		rb_data[cpu].buffer = buffer;
4842 		rb_data[cpu].cpu = cpu;
4843 		rb_data[cpu].cnt = cpu;
4844 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4845 						 "rbtester/%d", cpu);
4846 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4847 			pr_cont("FAILED\n");
4848 			ret = PTR_ERR(rb_threads[cpu]);
4849 			goto out_free;
4850 		}
4851 
4852 		kthread_bind(rb_threads[cpu], cpu);
4853  		wake_up_process(rb_threads[cpu]);
4854 	}
4855 
4856 	/* Now create the rb hammer! */
4857 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4858 	if (WARN_ON(IS_ERR(rb_hammer))) {
4859 		pr_cont("FAILED\n");
4860 		ret = PTR_ERR(rb_hammer);
4861 		goto out_free;
4862 	}
4863 
4864 	ring_buffer_record_on(buffer);
4865 	/*
4866 	 * Show buffer is enabled before setting rb_test_started.
4867 	 * Yes there's a small race window where events could be
4868 	 * dropped and the thread wont catch it. But when a ring
4869 	 * buffer gets enabled, there will always be some kind of
4870 	 * delay before other CPUs see it. Thus, we don't care about
4871 	 * those dropped events. We care about events dropped after
4872 	 * the threads see that the buffer is active.
4873 	 */
4874 	smp_wmb();
4875 	rb_test_started = true;
4876 
4877 	set_current_state(TASK_INTERRUPTIBLE);
4878 	/* Just run for 10 seconds */;
4879 	schedule_timeout(10 * HZ);
4880 
4881 	kthread_stop(rb_hammer);
4882 
4883  out_free:
4884 	for_each_online_cpu(cpu) {
4885 		if (!rb_threads[cpu])
4886 			break;
4887 		kthread_stop(rb_threads[cpu]);
4888 	}
4889 	if (ret) {
4890 		ring_buffer_free(buffer);
4891 		return ret;
4892 	}
4893 
4894 	/* Report! */
4895 	pr_info("finished\n");
4896 	for_each_online_cpu(cpu) {
4897 		struct ring_buffer_event *event;
4898 		struct rb_test_data *data = &rb_data[cpu];
4899 		struct rb_item *item;
4900 		unsigned long total_events;
4901 		unsigned long total_dropped;
4902 		unsigned long total_written;
4903 		unsigned long total_alloc;
4904 		unsigned long total_read = 0;
4905 		unsigned long total_size = 0;
4906 		unsigned long total_len = 0;
4907 		unsigned long total_lost = 0;
4908 		unsigned long lost;
4909 		int big_event_size;
4910 		int small_event_size;
4911 
4912 		ret = -1;
4913 
4914 		total_events = data->events + data->events_nested;
4915 		total_written = data->bytes_written + data->bytes_written_nested;
4916 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4917 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4918 
4919 		big_event_size = data->max_size + data->max_size_nested;
4920 		small_event_size = data->min_size + data->min_size_nested;
4921 
4922 		pr_info("CPU %d:\n", cpu);
4923 		pr_info("              events:    %ld\n", total_events);
4924 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4925 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4926 		pr_info("       written bytes:    %ld\n", total_written);
4927 		pr_info("       biggest event:    %d\n", big_event_size);
4928 		pr_info("      smallest event:    %d\n", small_event_size);
4929 
4930 		if (RB_WARN_ON(buffer, total_dropped))
4931 			break;
4932 
4933 		ret = 0;
4934 
4935 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4936 			total_lost += lost;
4937 			item = ring_buffer_event_data(event);
4938 			total_len += ring_buffer_event_length(event);
4939 			total_size += item->size + sizeof(struct rb_item);
4940 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4941 				pr_info("FAILED!\n");
4942 				pr_info("buffer had: %.*s\n", item->size, item->str);
4943 				pr_info("expected:   %.*s\n", item->size, rb_string);
4944 				RB_WARN_ON(buffer, 1);
4945 				ret = -1;
4946 				break;
4947 			}
4948 			total_read++;
4949 		}
4950 		if (ret)
4951 			break;
4952 
4953 		ret = -1;
4954 
4955 		pr_info("         read events:   %ld\n", total_read);
4956 		pr_info("         lost events:   %ld\n", total_lost);
4957 		pr_info("        total events:   %ld\n", total_lost + total_read);
4958 		pr_info("  recorded len bytes:   %ld\n", total_len);
4959 		pr_info(" recorded size bytes:   %ld\n", total_size);
4960 		if (total_lost)
4961 			pr_info(" With dropped events, record len and size may not match\n"
4962 				" alloced and written from above\n");
4963 		if (!total_lost) {
4964 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4965 				       total_size != total_written))
4966 				break;
4967 		}
4968 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4969 			break;
4970 
4971 		ret = 0;
4972 	}
4973 	if (!ret)
4974 		pr_info("Ring buffer PASSED!\n");
4975 
4976 	ring_buffer_free(buffer);
4977 	return 0;
4978 }
4979 
4980 late_initcall(test_ringbuffer);
4981 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4982