xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision f7d84fa7)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 
27 #include <asm/local.h>
28 
29 static void update_pages_handler(struct work_struct *work);
30 
31 /*
32  * The ring buffer header is special. We must manually up keep it.
33  */
34 int ring_buffer_print_entry_header(struct trace_seq *s)
35 {
36 	trace_seq_puts(s, "# compressed entry header\n");
37 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
38 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
39 	trace_seq_puts(s, "\tarray       :   32 bits\n");
40 	trace_seq_putc(s, '\n');
41 	trace_seq_printf(s, "\tpadding     : type == %d\n",
42 			 RINGBUF_TYPE_PADDING);
43 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
44 			 RINGBUF_TYPE_TIME_EXTEND);
45 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
46 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47 
48 	return !trace_seq_has_overflowed(s);
49 }
50 
51 /*
52  * The ring buffer is made up of a list of pages. A separate list of pages is
53  * allocated for each CPU. A writer may only write to a buffer that is
54  * associated with the CPU it is currently executing on.  A reader may read
55  * from any per cpu buffer.
56  *
57  * The reader is special. For each per cpu buffer, the reader has its own
58  * reader page. When a reader has read the entire reader page, this reader
59  * page is swapped with another page in the ring buffer.
60  *
61  * Now, as long as the writer is off the reader page, the reader can do what
62  * ever it wants with that page. The writer will never write to that page
63  * again (as long as it is out of the ring buffer).
64  *
65  * Here's some silly ASCII art.
66  *
67  *   +------+
68  *   |reader|          RING BUFFER
69  *   |page  |
70  *   +------+        +---+   +---+   +---+
71  *                   |   |-->|   |-->|   |
72  *                   +---+   +---+   +---+
73  *                     ^               |
74  *                     |               |
75  *                     +---------------+
76  *
77  *
78  *   +------+
79  *   |reader|          RING BUFFER
80  *   |page  |------------------v
81  *   +------+        +---+   +---+   +---+
82  *                   |   |-->|   |-->|   |
83  *                   +---+   +---+   +---+
84  *                     ^               |
85  *                     |               |
86  *                     +---------------+
87  *
88  *
89  *   +------+
90  *   |reader|          RING BUFFER
91  *   |page  |------------------v
92  *   +------+        +---+   +---+   +---+
93  *      ^            |   |-->|   |-->|   |
94  *      |            +---+   +---+   +---+
95  *      |                              |
96  *      |                              |
97  *      +------------------------------+
98  *
99  *
100  *   +------+
101  *   |buffer|          RING BUFFER
102  *   |page  |------------------v
103  *   +------+        +---+   +---+   +---+
104  *      ^            |   |   |   |-->|   |
105  *      |   New      +---+   +---+   +---+
106  *      |  Reader------^               |
107  *      |   page                       |
108  *      +------------------------------+
109  *
110  *
111  * After we make this swap, the reader can hand this page off to the splice
112  * code and be done with it. It can even allocate a new page if it needs to
113  * and swap that into the ring buffer.
114  *
115  * We will be using cmpxchg soon to make all this lockless.
116  *
117  */
118 
119 /* Used for individual buffers (after the counter) */
120 #define RB_BUFFER_OFF		(1 << 20)
121 
122 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123 
124 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
125 #define RB_ALIGNMENT		4U
126 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
127 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
128 
129 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
130 # define RB_FORCE_8BYTE_ALIGNMENT	0
131 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
132 #else
133 # define RB_FORCE_8BYTE_ALIGNMENT	1
134 # define RB_ARCH_ALIGNMENT		8U
135 #endif
136 
137 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
138 
139 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
140 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
141 
142 enum {
143 	RB_LEN_TIME_EXTEND = 8,
144 	RB_LEN_TIME_STAMP = 16,
145 };
146 
147 #define skip_time_extend(event) \
148 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149 
150 static inline int rb_null_event(struct ring_buffer_event *event)
151 {
152 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
153 }
154 
155 static void rb_event_set_padding(struct ring_buffer_event *event)
156 {
157 	/* padding has a NULL time_delta */
158 	event->type_len = RINGBUF_TYPE_PADDING;
159 	event->time_delta = 0;
160 }
161 
162 static unsigned
163 rb_event_data_length(struct ring_buffer_event *event)
164 {
165 	unsigned length;
166 
167 	if (event->type_len)
168 		length = event->type_len * RB_ALIGNMENT;
169 	else
170 		length = event->array[0];
171 	return length + RB_EVNT_HDR_SIZE;
172 }
173 
174 /*
175  * Return the length of the given event. Will return
176  * the length of the time extend if the event is a
177  * time extend.
178  */
179 static inline unsigned
180 rb_event_length(struct ring_buffer_event *event)
181 {
182 	switch (event->type_len) {
183 	case RINGBUF_TYPE_PADDING:
184 		if (rb_null_event(event))
185 			/* undefined */
186 			return -1;
187 		return  event->array[0] + RB_EVNT_HDR_SIZE;
188 
189 	case RINGBUF_TYPE_TIME_EXTEND:
190 		return RB_LEN_TIME_EXTEND;
191 
192 	case RINGBUF_TYPE_TIME_STAMP:
193 		return RB_LEN_TIME_STAMP;
194 
195 	case RINGBUF_TYPE_DATA:
196 		return rb_event_data_length(event);
197 	default:
198 		BUG();
199 	}
200 	/* not hit */
201 	return 0;
202 }
203 
204 /*
205  * Return total length of time extend and data,
206  *   or just the event length for all other events.
207  */
208 static inline unsigned
209 rb_event_ts_length(struct ring_buffer_event *event)
210 {
211 	unsigned len = 0;
212 
213 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
214 		/* time extends include the data event after it */
215 		len = RB_LEN_TIME_EXTEND;
216 		event = skip_time_extend(event);
217 	}
218 	return len + rb_event_length(event);
219 }
220 
221 /**
222  * ring_buffer_event_length - return the length of the event
223  * @event: the event to get the length of
224  *
225  * Returns the size of the data load of a data event.
226  * If the event is something other than a data event, it
227  * returns the size of the event itself. With the exception
228  * of a TIME EXTEND, where it still returns the size of the
229  * data load of the data event after it.
230  */
231 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232 {
233 	unsigned length;
234 
235 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
236 		event = skip_time_extend(event);
237 
238 	length = rb_event_length(event);
239 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
240 		return length;
241 	length -= RB_EVNT_HDR_SIZE;
242 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
243                 length -= sizeof(event->array[0]);
244 	return length;
245 }
246 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
247 
248 /* inline for ring buffer fast paths */
249 static __always_inline void *
250 rb_event_data(struct ring_buffer_event *event)
251 {
252 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
253 		event = skip_time_extend(event);
254 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
255 	/* If length is in len field, then array[0] has the data */
256 	if (event->type_len)
257 		return (void *)&event->array[0];
258 	/* Otherwise length is in array[0] and array[1] has the data */
259 	return (void *)&event->array[1];
260 }
261 
262 /**
263  * ring_buffer_event_data - return the data of the event
264  * @event: the event to get the data from
265  */
266 void *ring_buffer_event_data(struct ring_buffer_event *event)
267 {
268 	return rb_event_data(event);
269 }
270 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
271 
272 #define for_each_buffer_cpu(buffer, cpu)		\
273 	for_each_cpu(cpu, buffer->cpumask)
274 
275 #define TS_SHIFT	27
276 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
277 #define TS_DELTA_TEST	(~TS_MASK)
278 
279 /* Flag when events were overwritten */
280 #define RB_MISSED_EVENTS	(1 << 31)
281 /* Missed count stored at end */
282 #define RB_MISSED_STORED	(1 << 30)
283 
284 struct buffer_data_page {
285 	u64		 time_stamp;	/* page time stamp */
286 	local_t		 commit;	/* write committed index */
287 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
288 };
289 
290 /*
291  * Note, the buffer_page list must be first. The buffer pages
292  * are allocated in cache lines, which means that each buffer
293  * page will be at the beginning of a cache line, and thus
294  * the least significant bits will be zero. We use this to
295  * add flags in the list struct pointers, to make the ring buffer
296  * lockless.
297  */
298 struct buffer_page {
299 	struct list_head list;		/* list of buffer pages */
300 	local_t		 write;		/* index for next write */
301 	unsigned	 read;		/* index for next read */
302 	local_t		 entries;	/* entries on this page */
303 	unsigned long	 real_end;	/* real end of data */
304 	struct buffer_data_page *page;	/* Actual data page */
305 };
306 
307 /*
308  * The buffer page counters, write and entries, must be reset
309  * atomically when crossing page boundaries. To synchronize this
310  * update, two counters are inserted into the number. One is
311  * the actual counter for the write position or count on the page.
312  *
313  * The other is a counter of updaters. Before an update happens
314  * the update partition of the counter is incremented. This will
315  * allow the updater to update the counter atomically.
316  *
317  * The counter is 20 bits, and the state data is 12.
318  */
319 #define RB_WRITE_MASK		0xfffff
320 #define RB_WRITE_INTCNT		(1 << 20)
321 
322 static void rb_init_page(struct buffer_data_page *bpage)
323 {
324 	local_set(&bpage->commit, 0);
325 }
326 
327 /**
328  * ring_buffer_page_len - the size of data on the page.
329  * @page: The page to read
330  *
331  * Returns the amount of data on the page, including buffer page header.
332  */
333 size_t ring_buffer_page_len(void *page)
334 {
335 	return local_read(&((struct buffer_data_page *)page)->commit)
336 		+ BUF_PAGE_HDR_SIZE;
337 }
338 
339 /*
340  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
341  * this issue out.
342  */
343 static void free_buffer_page(struct buffer_page *bpage)
344 {
345 	free_page((unsigned long)bpage->page);
346 	kfree(bpage);
347 }
348 
349 /*
350  * We need to fit the time_stamp delta into 27 bits.
351  */
352 static inline int test_time_stamp(u64 delta)
353 {
354 	if (delta & TS_DELTA_TEST)
355 		return 1;
356 	return 0;
357 }
358 
359 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360 
361 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
362 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363 
364 int ring_buffer_print_page_header(struct trace_seq *s)
365 {
366 	struct buffer_data_page field;
367 
368 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
369 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
370 			 (unsigned int)sizeof(field.time_stamp),
371 			 (unsigned int)is_signed_type(u64));
372 
373 	trace_seq_printf(s, "\tfield: local_t commit;\t"
374 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
375 			 (unsigned int)offsetof(typeof(field), commit),
376 			 (unsigned int)sizeof(field.commit),
377 			 (unsigned int)is_signed_type(long));
378 
379 	trace_seq_printf(s, "\tfield: int overwrite;\t"
380 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
381 			 (unsigned int)offsetof(typeof(field), commit),
382 			 1,
383 			 (unsigned int)is_signed_type(long));
384 
385 	trace_seq_printf(s, "\tfield: char data;\t"
386 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
387 			 (unsigned int)offsetof(typeof(field), data),
388 			 (unsigned int)BUF_PAGE_SIZE,
389 			 (unsigned int)is_signed_type(char));
390 
391 	return !trace_seq_has_overflowed(s);
392 }
393 
394 struct rb_irq_work {
395 	struct irq_work			work;
396 	wait_queue_head_t		waiters;
397 	wait_queue_head_t		full_waiters;
398 	bool				waiters_pending;
399 	bool				full_waiters_pending;
400 	bool				wakeup_full;
401 };
402 
403 /*
404  * Structure to hold event state and handle nested events.
405  */
406 struct rb_event_info {
407 	u64			ts;
408 	u64			delta;
409 	unsigned long		length;
410 	struct buffer_page	*tail_page;
411 	int			add_timestamp;
412 };
413 
414 /*
415  * Used for which event context the event is in.
416  *  NMI     = 0
417  *  IRQ     = 1
418  *  SOFTIRQ = 2
419  *  NORMAL  = 3
420  *
421  * See trace_recursive_lock() comment below for more details.
422  */
423 enum {
424 	RB_CTX_NMI,
425 	RB_CTX_IRQ,
426 	RB_CTX_SOFTIRQ,
427 	RB_CTX_NORMAL,
428 	RB_CTX_MAX
429 };
430 
431 /*
432  * head_page == tail_page && head == tail then buffer is empty.
433  */
434 struct ring_buffer_per_cpu {
435 	int				cpu;
436 	atomic_t			record_disabled;
437 	struct ring_buffer		*buffer;
438 	raw_spinlock_t			reader_lock;	/* serialize readers */
439 	arch_spinlock_t			lock;
440 	struct lock_class_key		lock_key;
441 	struct buffer_data_page		*free_page;
442 	unsigned long			nr_pages;
443 	unsigned int			current_context;
444 	struct list_head		*pages;
445 	struct buffer_page		*head_page;	/* read from head */
446 	struct buffer_page		*tail_page;	/* write to tail */
447 	struct buffer_page		*commit_page;	/* committed pages */
448 	struct buffer_page		*reader_page;
449 	unsigned long			lost_events;
450 	unsigned long			last_overrun;
451 	local_t				entries_bytes;
452 	local_t				entries;
453 	local_t				overrun;
454 	local_t				commit_overrun;
455 	local_t				dropped_events;
456 	local_t				committing;
457 	local_t				commits;
458 	unsigned long			read;
459 	unsigned long			read_bytes;
460 	u64				write_stamp;
461 	u64				read_stamp;
462 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
463 	long				nr_pages_to_update;
464 	struct list_head		new_pages; /* new pages to add */
465 	struct work_struct		update_pages_work;
466 	struct completion		update_done;
467 
468 	struct rb_irq_work		irq_work;
469 };
470 
471 struct ring_buffer {
472 	unsigned			flags;
473 	int				cpus;
474 	atomic_t			record_disabled;
475 	atomic_t			resize_disabled;
476 	cpumask_var_t			cpumask;
477 
478 	struct lock_class_key		*reader_lock_key;
479 
480 	struct mutex			mutex;
481 
482 	struct ring_buffer_per_cpu	**buffers;
483 
484 	struct hlist_node		node;
485 	u64				(*clock)(void);
486 
487 	struct rb_irq_work		irq_work;
488 };
489 
490 struct ring_buffer_iter {
491 	struct ring_buffer_per_cpu	*cpu_buffer;
492 	unsigned long			head;
493 	struct buffer_page		*head_page;
494 	struct buffer_page		*cache_reader_page;
495 	unsigned long			cache_read;
496 	u64				read_stamp;
497 };
498 
499 /*
500  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501  *
502  * Schedules a delayed work to wake up any task that is blocked on the
503  * ring buffer waiters queue.
504  */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508 
509 	wake_up_all(&rbwork->waiters);
510 	if (rbwork->wakeup_full) {
511 		rbwork->wakeup_full = false;
512 		wake_up_all(&rbwork->full_waiters);
513 	}
514 }
515 
516 /**
517  * ring_buffer_wait - wait for input to the ring buffer
518  * @buffer: buffer to wait on
519  * @cpu: the cpu buffer to wait on
520  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521  *
522  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523  * as data is added to any of the @buffer's cpu buffers. Otherwise
524  * it will wait for data to be added to a specific cpu buffer.
525  */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529 	DEFINE_WAIT(wait);
530 	struct rb_irq_work *work;
531 	int ret = 0;
532 
533 	/*
534 	 * Depending on what the caller is waiting for, either any
535 	 * data in any cpu buffer, or a specific buffer, put the
536 	 * caller on the appropriate wait queue.
537 	 */
538 	if (cpu == RING_BUFFER_ALL_CPUS) {
539 		work = &buffer->irq_work;
540 		/* Full only makes sense on per cpu reads */
541 		full = false;
542 	} else {
543 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 			return -ENODEV;
545 		cpu_buffer = buffer->buffers[cpu];
546 		work = &cpu_buffer->irq_work;
547 	}
548 
549 
550 	while (true) {
551 		if (full)
552 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 		else
554 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555 
556 		/*
557 		 * The events can happen in critical sections where
558 		 * checking a work queue can cause deadlocks.
559 		 * After adding a task to the queue, this flag is set
560 		 * only to notify events to try to wake up the queue
561 		 * using irq_work.
562 		 *
563 		 * We don't clear it even if the buffer is no longer
564 		 * empty. The flag only causes the next event to run
565 		 * irq_work to do the work queue wake up. The worse
566 		 * that can happen if we race with !trace_empty() is that
567 		 * an event will cause an irq_work to try to wake up
568 		 * an empty queue.
569 		 *
570 		 * There's no reason to protect this flag either, as
571 		 * the work queue and irq_work logic will do the necessary
572 		 * synchronization for the wake ups. The only thing
573 		 * that is necessary is that the wake up happens after
574 		 * a task has been queued. It's OK for spurious wake ups.
575 		 */
576 		if (full)
577 			work->full_waiters_pending = true;
578 		else
579 			work->waiters_pending = true;
580 
581 		if (signal_pending(current)) {
582 			ret = -EINTR;
583 			break;
584 		}
585 
586 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 			break;
588 
589 		if (cpu != RING_BUFFER_ALL_CPUS &&
590 		    !ring_buffer_empty_cpu(buffer, cpu)) {
591 			unsigned long flags;
592 			bool pagebusy;
593 
594 			if (!full)
595 				break;
596 
597 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600 
601 			if (!pagebusy)
602 				break;
603 		}
604 
605 		schedule();
606 	}
607 
608 	if (full)
609 		finish_wait(&work->full_waiters, &wait);
610 	else
611 		finish_wait(&work->waiters, &wait);
612 
613 	return ret;
614 }
615 
616 /**
617  * ring_buffer_poll_wait - poll on buffer input
618  * @buffer: buffer to wait on
619  * @cpu: the cpu buffer to wait on
620  * @filp: the file descriptor
621  * @poll_table: The poll descriptor
622  *
623  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624  * as data is added to any of the @buffer's cpu buffers. Otherwise
625  * it will wait for data to be added to a specific cpu buffer.
626  *
627  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628  * zero otherwise.
629  */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 			  struct file *filp, poll_table *poll_table)
632 {
633 	struct ring_buffer_per_cpu *cpu_buffer;
634 	struct rb_irq_work *work;
635 
636 	if (cpu == RING_BUFFER_ALL_CPUS)
637 		work = &buffer->irq_work;
638 	else {
639 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 			return -EINVAL;
641 
642 		cpu_buffer = buffer->buffers[cpu];
643 		work = &cpu_buffer->irq_work;
644 	}
645 
646 	poll_wait(filp, &work->waiters, poll_table);
647 	work->waiters_pending = true;
648 	/*
649 	 * There's a tight race between setting the waiters_pending and
650 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
651 	 * is set, the next event will wake the task up, but we can get stuck
652 	 * if there's only a single event in.
653 	 *
654 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 	 * but adding a memory barrier to all events will cause too much of a
656 	 * performance hit in the fast path.  We only need a memory barrier when
657 	 * the buffer goes from empty to having content.  But as this race is
658 	 * extremely small, and it's not a problem if another event comes in, we
659 	 * will fix it later.
660 	 */
661 	smp_mb();
662 
663 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 		return POLLIN | POLLRDNORM;
666 	return 0;
667 }
668 
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond)						\
671 	({								\
672 		int _____ret = unlikely(cond);				\
673 		if (_____ret) {						\
674 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 				struct ring_buffer_per_cpu *__b =	\
676 					(void *)b;			\
677 				atomic_inc(&__b->buffer->record_disabled); \
678 			} else						\
679 				atomic_inc(&b->record_disabled);	\
680 			WARN_ON(1);					\
681 		}							\
682 		_____ret;						\
683 	})
684 
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687 
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690 	/* shift to debug/test normalization and TIME_EXTENTS */
691 	return buffer->clock() << DEBUG_SHIFT;
692 }
693 
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696 	u64 time;
697 
698 	preempt_disable_notrace();
699 	time = rb_time_stamp(buffer);
700 	preempt_enable_no_resched_notrace();
701 
702 	return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705 
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 				      int cpu, u64 *ts)
708 {
709 	/* Just stupid testing the normalize function and deltas */
710 	*ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713 
714 /*
715  * Making the ring buffer lockless makes things tricky.
716  * Although writes only happen on the CPU that they are on,
717  * and they only need to worry about interrupts. Reads can
718  * happen on any CPU.
719  *
720  * The reader page is always off the ring buffer, but when the
721  * reader finishes with a page, it needs to swap its page with
722  * a new one from the buffer. The reader needs to take from
723  * the head (writes go to the tail). But if a writer is in overwrite
724  * mode and wraps, it must push the head page forward.
725  *
726  * Here lies the problem.
727  *
728  * The reader must be careful to replace only the head page, and
729  * not another one. As described at the top of the file in the
730  * ASCII art, the reader sets its old page to point to the next
731  * page after head. It then sets the page after head to point to
732  * the old reader page. But if the writer moves the head page
733  * during this operation, the reader could end up with the tail.
734  *
735  * We use cmpxchg to help prevent this race. We also do something
736  * special with the page before head. We set the LSB to 1.
737  *
738  * When the writer must push the page forward, it will clear the
739  * bit that points to the head page, move the head, and then set
740  * the bit that points to the new head page.
741  *
742  * We also don't want an interrupt coming in and moving the head
743  * page on another writer. Thus we use the second LSB to catch
744  * that too. Thus:
745  *
746  * head->list->prev->next        bit 1          bit 0
747  *                              -------        -------
748  * Normal page                     0              0
749  * Points to head page             0              1
750  * New head page                   1              0
751  *
752  * Note we can not trust the prev pointer of the head page, because:
753  *
754  * +----+       +-----+        +-----+
755  * |    |------>|  T  |---X--->|  N  |
756  * |    |<------|     |        |     |
757  * +----+       +-----+        +-----+
758  *   ^                           ^ |
759  *   |          +-----+          | |
760  *   +----------|  R  |----------+ |
761  *              |     |<-----------+
762  *              +-----+
763  *
764  * Key:  ---X-->  HEAD flag set in pointer
765  *         T      Tail page
766  *         R      Reader page
767  *         N      Next page
768  *
769  * (see __rb_reserve_next() to see where this happens)
770  *
771  *  What the above shows is that the reader just swapped out
772  *  the reader page with a page in the buffer, but before it
773  *  could make the new header point back to the new page added
774  *  it was preempted by a writer. The writer moved forward onto
775  *  the new page added by the reader and is about to move forward
776  *  again.
777  *
778  *  You can see, it is legitimate for the previous pointer of
779  *  the head (or any page) not to point back to itself. But only
780  *  temporarially.
781  */
782 
783 #define RB_PAGE_NORMAL		0UL
784 #define RB_PAGE_HEAD		1UL
785 #define RB_PAGE_UPDATE		2UL
786 
787 
788 #define RB_FLAG_MASK		3UL
789 
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED		4UL
792 
793 /*
794  * rb_list_head - remove any bit
795  */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798 	unsigned long val = (unsigned long)list;
799 
800 	return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802 
803 /*
804  * rb_is_head_page - test if the given page is the head page
805  *
806  * Because the reader may move the head_page pointer, we can
807  * not trust what the head page is (it may be pointing to
808  * the reader page). But if the next page is a header page,
809  * its flags will be non zero.
810  */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 		struct buffer_page *page, struct list_head *list)
814 {
815 	unsigned long val;
816 
817 	val = (unsigned long)list->next;
818 
819 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 		return RB_PAGE_MOVED;
821 
822 	return val & RB_FLAG_MASK;
823 }
824 
825 /*
826  * rb_is_reader_page
827  *
828  * The unique thing about the reader page, is that, if the
829  * writer is ever on it, the previous pointer never points
830  * back to the reader page.
831  */
832 static bool rb_is_reader_page(struct buffer_page *page)
833 {
834 	struct list_head *list = page->list.prev;
835 
836 	return rb_list_head(list->next) != &page->list;
837 }
838 
839 /*
840  * rb_set_list_to_head - set a list_head to be pointing to head.
841  */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 				struct list_head *list)
844 {
845 	unsigned long *ptr;
846 
847 	ptr = (unsigned long *)&list->next;
848 	*ptr |= RB_PAGE_HEAD;
849 	*ptr &= ~RB_PAGE_UPDATE;
850 }
851 
852 /*
853  * rb_head_page_activate - sets up head page
854  */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857 	struct buffer_page *head;
858 
859 	head = cpu_buffer->head_page;
860 	if (!head)
861 		return;
862 
863 	/*
864 	 * Set the previous list pointer to have the HEAD flag.
865 	 */
866 	rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868 
869 static void rb_list_head_clear(struct list_head *list)
870 {
871 	unsigned long *ptr = (unsigned long *)&list->next;
872 
873 	*ptr &= ~RB_FLAG_MASK;
874 }
875 
876 /*
877  * rb_head_page_dactivate - clears head page ptr (for free list)
878  */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882 	struct list_head *hd;
883 
884 	/* Go through the whole list and clear any pointers found. */
885 	rb_list_head_clear(cpu_buffer->pages);
886 
887 	list_for_each(hd, cpu_buffer->pages)
888 		rb_list_head_clear(hd);
889 }
890 
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 			    struct buffer_page *head,
893 			    struct buffer_page *prev,
894 			    int old_flag, int new_flag)
895 {
896 	struct list_head *list;
897 	unsigned long val = (unsigned long)&head->list;
898 	unsigned long ret;
899 
900 	list = &prev->list;
901 
902 	val &= ~RB_FLAG_MASK;
903 
904 	ret = cmpxchg((unsigned long *)&list->next,
905 		      val | old_flag, val | new_flag);
906 
907 	/* check if the reader took the page */
908 	if ((ret & ~RB_FLAG_MASK) != val)
909 		return RB_PAGE_MOVED;
910 
911 	return ret & RB_FLAG_MASK;
912 }
913 
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 				   struct buffer_page *head,
916 				   struct buffer_page *prev,
917 				   int old_flag)
918 {
919 	return rb_head_page_set(cpu_buffer, head, prev,
920 				old_flag, RB_PAGE_UPDATE);
921 }
922 
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 				 struct buffer_page *head,
925 				 struct buffer_page *prev,
926 				 int old_flag)
927 {
928 	return rb_head_page_set(cpu_buffer, head, prev,
929 				old_flag, RB_PAGE_HEAD);
930 }
931 
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 				   struct buffer_page *head,
934 				   struct buffer_page *prev,
935 				   int old_flag)
936 {
937 	return rb_head_page_set(cpu_buffer, head, prev,
938 				old_flag, RB_PAGE_NORMAL);
939 }
940 
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 			       struct buffer_page **bpage)
943 {
944 	struct list_head *p = rb_list_head((*bpage)->list.next);
945 
946 	*bpage = list_entry(p, struct buffer_page, list);
947 }
948 
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952 	struct buffer_page *head;
953 	struct buffer_page *page;
954 	struct list_head *list;
955 	int i;
956 
957 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 		return NULL;
959 
960 	/* sanity check */
961 	list = cpu_buffer->pages;
962 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 		return NULL;
964 
965 	page = head = cpu_buffer->head_page;
966 	/*
967 	 * It is possible that the writer moves the header behind
968 	 * where we started, and we miss in one loop.
969 	 * A second loop should grab the header, but we'll do
970 	 * three loops just because I'm paranoid.
971 	 */
972 	for (i = 0; i < 3; i++) {
973 		do {
974 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 				cpu_buffer->head_page = page;
976 				return page;
977 			}
978 			rb_inc_page(cpu_buffer, &page);
979 		} while (page != head);
980 	}
981 
982 	RB_WARN_ON(cpu_buffer, 1);
983 
984 	return NULL;
985 }
986 
987 static int rb_head_page_replace(struct buffer_page *old,
988 				struct buffer_page *new)
989 {
990 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 	unsigned long val;
992 	unsigned long ret;
993 
994 	val = *ptr & ~RB_FLAG_MASK;
995 	val |= RB_PAGE_HEAD;
996 
997 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998 
999 	return ret == val;
1000 }
1001 
1002 /*
1003  * rb_tail_page_update - move the tail page forward
1004  */
1005 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1006 			       struct buffer_page *tail_page,
1007 			       struct buffer_page *next_page)
1008 {
1009 	unsigned long old_entries;
1010 	unsigned long old_write;
1011 
1012 	/*
1013 	 * The tail page now needs to be moved forward.
1014 	 *
1015 	 * We need to reset the tail page, but without messing
1016 	 * with possible erasing of data brought in by interrupts
1017 	 * that have moved the tail page and are currently on it.
1018 	 *
1019 	 * We add a counter to the write field to denote this.
1020 	 */
1021 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023 
1024 	/*
1025 	 * Just make sure we have seen our old_write and synchronize
1026 	 * with any interrupts that come in.
1027 	 */
1028 	barrier();
1029 
1030 	/*
1031 	 * If the tail page is still the same as what we think
1032 	 * it is, then it is up to us to update the tail
1033 	 * pointer.
1034 	 */
1035 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1036 		/* Zero the write counter */
1037 		unsigned long val = old_write & ~RB_WRITE_MASK;
1038 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039 
1040 		/*
1041 		 * This will only succeed if an interrupt did
1042 		 * not come in and change it. In which case, we
1043 		 * do not want to modify it.
1044 		 *
1045 		 * We add (void) to let the compiler know that we do not care
1046 		 * about the return value of these functions. We use the
1047 		 * cmpxchg to only update if an interrupt did not already
1048 		 * do it for us. If the cmpxchg fails, we don't care.
1049 		 */
1050 		(void)local_cmpxchg(&next_page->write, old_write, val);
1051 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1052 
1053 		/*
1054 		 * No need to worry about races with clearing out the commit.
1055 		 * it only can increment when a commit takes place. But that
1056 		 * only happens in the outer most nested commit.
1057 		 */
1058 		local_set(&next_page->page->commit, 0);
1059 
1060 		/* Again, either we update tail_page or an interrupt does */
1061 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1062 	}
1063 }
1064 
1065 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066 			  struct buffer_page *bpage)
1067 {
1068 	unsigned long val = (unsigned long)bpage;
1069 
1070 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071 		return 1;
1072 
1073 	return 0;
1074 }
1075 
1076 /**
1077  * rb_check_list - make sure a pointer to a list has the last bits zero
1078  */
1079 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080 			 struct list_head *list)
1081 {
1082 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083 		return 1;
1084 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085 		return 1;
1086 	return 0;
1087 }
1088 
1089 /**
1090  * rb_check_pages - integrity check of buffer pages
1091  * @cpu_buffer: CPU buffer with pages to test
1092  *
1093  * As a safety measure we check to make sure the data pages have not
1094  * been corrupted.
1095  */
1096 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097 {
1098 	struct list_head *head = cpu_buffer->pages;
1099 	struct buffer_page *bpage, *tmp;
1100 
1101 	/* Reset the head page if it exists */
1102 	if (cpu_buffer->head_page)
1103 		rb_set_head_page(cpu_buffer);
1104 
1105 	rb_head_page_deactivate(cpu_buffer);
1106 
1107 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108 		return -1;
1109 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110 		return -1;
1111 
1112 	if (rb_check_list(cpu_buffer, head))
1113 		return -1;
1114 
1115 	list_for_each_entry_safe(bpage, tmp, head, list) {
1116 		if (RB_WARN_ON(cpu_buffer,
1117 			       bpage->list.next->prev != &bpage->list))
1118 			return -1;
1119 		if (RB_WARN_ON(cpu_buffer,
1120 			       bpage->list.prev->next != &bpage->list))
1121 			return -1;
1122 		if (rb_check_list(cpu_buffer, &bpage->list))
1123 			return -1;
1124 	}
1125 
1126 	rb_head_page_activate(cpu_buffer);
1127 
1128 	return 0;
1129 }
1130 
1131 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1132 {
1133 	struct buffer_page *bpage, *tmp;
1134 	long i;
1135 
1136 	for (i = 0; i < nr_pages; i++) {
1137 		struct page *page;
1138 		/*
1139 		 * __GFP_NORETRY flag makes sure that the allocation fails
1140 		 * gracefully without invoking oom-killer and the system is
1141 		 * not destabilized.
1142 		 */
1143 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1144 				    GFP_KERNEL | __GFP_NORETRY,
1145 				    cpu_to_node(cpu));
1146 		if (!bpage)
1147 			goto free_pages;
1148 
1149 		list_add(&bpage->list, pages);
1150 
1151 		page = alloc_pages_node(cpu_to_node(cpu),
1152 					GFP_KERNEL | __GFP_NORETRY, 0);
1153 		if (!page)
1154 			goto free_pages;
1155 		bpage->page = page_address(page);
1156 		rb_init_page(bpage->page);
1157 	}
1158 
1159 	return 0;
1160 
1161 free_pages:
1162 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1163 		list_del_init(&bpage->list);
1164 		free_buffer_page(bpage);
1165 	}
1166 
1167 	return -ENOMEM;
1168 }
1169 
1170 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1171 			     unsigned long nr_pages)
1172 {
1173 	LIST_HEAD(pages);
1174 
1175 	WARN_ON(!nr_pages);
1176 
1177 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178 		return -ENOMEM;
1179 
1180 	/*
1181 	 * The ring buffer page list is a circular list that does not
1182 	 * start and end with a list head. All page list items point to
1183 	 * other pages.
1184 	 */
1185 	cpu_buffer->pages = pages.next;
1186 	list_del(&pages);
1187 
1188 	cpu_buffer->nr_pages = nr_pages;
1189 
1190 	rb_check_pages(cpu_buffer);
1191 
1192 	return 0;
1193 }
1194 
1195 static struct ring_buffer_per_cpu *
1196 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1197 {
1198 	struct ring_buffer_per_cpu *cpu_buffer;
1199 	struct buffer_page *bpage;
1200 	struct page *page;
1201 	int ret;
1202 
1203 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204 				  GFP_KERNEL, cpu_to_node(cpu));
1205 	if (!cpu_buffer)
1206 		return NULL;
1207 
1208 	cpu_buffer->cpu = cpu;
1209 	cpu_buffer->buffer = buffer;
1210 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1211 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1212 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1213 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1214 	init_completion(&cpu_buffer->update_done);
1215 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1216 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1217 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1218 
1219 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1220 			    GFP_KERNEL, cpu_to_node(cpu));
1221 	if (!bpage)
1222 		goto fail_free_buffer;
1223 
1224 	rb_check_bpage(cpu_buffer, bpage);
1225 
1226 	cpu_buffer->reader_page = bpage;
1227 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228 	if (!page)
1229 		goto fail_free_reader;
1230 	bpage->page = page_address(page);
1231 	rb_init_page(bpage->page);
1232 
1233 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1234 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1235 
1236 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1237 	if (ret < 0)
1238 		goto fail_free_reader;
1239 
1240 	cpu_buffer->head_page
1241 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1242 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1243 
1244 	rb_head_page_activate(cpu_buffer);
1245 
1246 	return cpu_buffer;
1247 
1248  fail_free_reader:
1249 	free_buffer_page(cpu_buffer->reader_page);
1250 
1251  fail_free_buffer:
1252 	kfree(cpu_buffer);
1253 	return NULL;
1254 }
1255 
1256 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257 {
1258 	struct list_head *head = cpu_buffer->pages;
1259 	struct buffer_page *bpage, *tmp;
1260 
1261 	free_buffer_page(cpu_buffer->reader_page);
1262 
1263 	rb_head_page_deactivate(cpu_buffer);
1264 
1265 	if (head) {
1266 		list_for_each_entry_safe(bpage, tmp, head, list) {
1267 			list_del_init(&bpage->list);
1268 			free_buffer_page(bpage);
1269 		}
1270 		bpage = list_entry(head, struct buffer_page, list);
1271 		free_buffer_page(bpage);
1272 	}
1273 
1274 	kfree(cpu_buffer);
1275 }
1276 
1277 /**
1278  * __ring_buffer_alloc - allocate a new ring_buffer
1279  * @size: the size in bytes per cpu that is needed.
1280  * @flags: attributes to set for the ring buffer.
1281  *
1282  * Currently the only flag that is available is the RB_FL_OVERWRITE
1283  * flag. This flag means that the buffer will overwrite old data
1284  * when the buffer wraps. If this flag is not set, the buffer will
1285  * drop data when the tail hits the head.
1286  */
1287 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1288 					struct lock_class_key *key)
1289 {
1290 	struct ring_buffer *buffer;
1291 	long nr_pages;
1292 	int bsize;
1293 	int cpu;
1294 	int ret;
1295 
1296 	/* keep it in its own cache line */
1297 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1298 			 GFP_KERNEL);
1299 	if (!buffer)
1300 		return NULL;
1301 
1302 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1303 		goto fail_free_buffer;
1304 
1305 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1306 	buffer->flags = flags;
1307 	buffer->clock = trace_clock_local;
1308 	buffer->reader_lock_key = key;
1309 
1310 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1311 	init_waitqueue_head(&buffer->irq_work.waiters);
1312 
1313 	/* need at least two pages */
1314 	if (nr_pages < 2)
1315 		nr_pages = 2;
1316 
1317 	buffer->cpus = nr_cpu_ids;
1318 
1319 	bsize = sizeof(void *) * nr_cpu_ids;
1320 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1321 				  GFP_KERNEL);
1322 	if (!buffer->buffers)
1323 		goto fail_free_cpumask;
1324 
1325 	cpu = raw_smp_processor_id();
1326 	cpumask_set_cpu(cpu, buffer->cpumask);
1327 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1328 	if (!buffer->buffers[cpu])
1329 		goto fail_free_buffers;
1330 
1331 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1332 	if (ret < 0)
1333 		goto fail_free_buffers;
1334 
1335 	mutex_init(&buffer->mutex);
1336 
1337 	return buffer;
1338 
1339  fail_free_buffers:
1340 	for_each_buffer_cpu(buffer, cpu) {
1341 		if (buffer->buffers[cpu])
1342 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1343 	}
1344 	kfree(buffer->buffers);
1345 
1346  fail_free_cpumask:
1347 	free_cpumask_var(buffer->cpumask);
1348 
1349  fail_free_buffer:
1350 	kfree(buffer);
1351 	return NULL;
1352 }
1353 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1354 
1355 /**
1356  * ring_buffer_free - free a ring buffer.
1357  * @buffer: the buffer to free.
1358  */
1359 void
1360 ring_buffer_free(struct ring_buffer *buffer)
1361 {
1362 	int cpu;
1363 
1364 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1365 
1366 	for_each_buffer_cpu(buffer, cpu)
1367 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1368 
1369 	kfree(buffer->buffers);
1370 	free_cpumask_var(buffer->cpumask);
1371 
1372 	kfree(buffer);
1373 }
1374 EXPORT_SYMBOL_GPL(ring_buffer_free);
1375 
1376 void ring_buffer_set_clock(struct ring_buffer *buffer,
1377 			   u64 (*clock)(void))
1378 {
1379 	buffer->clock = clock;
1380 }
1381 
1382 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1383 
1384 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1385 {
1386 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1387 }
1388 
1389 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1390 {
1391 	return local_read(&bpage->write) & RB_WRITE_MASK;
1392 }
1393 
1394 static int
1395 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1396 {
1397 	struct list_head *tail_page, *to_remove, *next_page;
1398 	struct buffer_page *to_remove_page, *tmp_iter_page;
1399 	struct buffer_page *last_page, *first_page;
1400 	unsigned long nr_removed;
1401 	unsigned long head_bit;
1402 	int page_entries;
1403 
1404 	head_bit = 0;
1405 
1406 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1407 	atomic_inc(&cpu_buffer->record_disabled);
1408 	/*
1409 	 * We don't race with the readers since we have acquired the reader
1410 	 * lock. We also don't race with writers after disabling recording.
1411 	 * This makes it easy to figure out the first and the last page to be
1412 	 * removed from the list. We unlink all the pages in between including
1413 	 * the first and last pages. This is done in a busy loop so that we
1414 	 * lose the least number of traces.
1415 	 * The pages are freed after we restart recording and unlock readers.
1416 	 */
1417 	tail_page = &cpu_buffer->tail_page->list;
1418 
1419 	/*
1420 	 * tail page might be on reader page, we remove the next page
1421 	 * from the ring buffer
1422 	 */
1423 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1424 		tail_page = rb_list_head(tail_page->next);
1425 	to_remove = tail_page;
1426 
1427 	/* start of pages to remove */
1428 	first_page = list_entry(rb_list_head(to_remove->next),
1429 				struct buffer_page, list);
1430 
1431 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1432 		to_remove = rb_list_head(to_remove)->next;
1433 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1434 	}
1435 
1436 	next_page = rb_list_head(to_remove)->next;
1437 
1438 	/*
1439 	 * Now we remove all pages between tail_page and next_page.
1440 	 * Make sure that we have head_bit value preserved for the
1441 	 * next page
1442 	 */
1443 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1444 						head_bit);
1445 	next_page = rb_list_head(next_page);
1446 	next_page->prev = tail_page;
1447 
1448 	/* make sure pages points to a valid page in the ring buffer */
1449 	cpu_buffer->pages = next_page;
1450 
1451 	/* update head page */
1452 	if (head_bit)
1453 		cpu_buffer->head_page = list_entry(next_page,
1454 						struct buffer_page, list);
1455 
1456 	/*
1457 	 * change read pointer to make sure any read iterators reset
1458 	 * themselves
1459 	 */
1460 	cpu_buffer->read = 0;
1461 
1462 	/* pages are removed, resume tracing and then free the pages */
1463 	atomic_dec(&cpu_buffer->record_disabled);
1464 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1465 
1466 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1467 
1468 	/* last buffer page to remove */
1469 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1470 				list);
1471 	tmp_iter_page = first_page;
1472 
1473 	do {
1474 		to_remove_page = tmp_iter_page;
1475 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1476 
1477 		/* update the counters */
1478 		page_entries = rb_page_entries(to_remove_page);
1479 		if (page_entries) {
1480 			/*
1481 			 * If something was added to this page, it was full
1482 			 * since it is not the tail page. So we deduct the
1483 			 * bytes consumed in ring buffer from here.
1484 			 * Increment overrun to account for the lost events.
1485 			 */
1486 			local_add(page_entries, &cpu_buffer->overrun);
1487 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1488 		}
1489 
1490 		/*
1491 		 * We have already removed references to this list item, just
1492 		 * free up the buffer_page and its page
1493 		 */
1494 		free_buffer_page(to_remove_page);
1495 		nr_removed--;
1496 
1497 	} while (to_remove_page != last_page);
1498 
1499 	RB_WARN_ON(cpu_buffer, nr_removed);
1500 
1501 	return nr_removed == 0;
1502 }
1503 
1504 static int
1505 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1506 {
1507 	struct list_head *pages = &cpu_buffer->new_pages;
1508 	int retries, success;
1509 
1510 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1511 	/*
1512 	 * We are holding the reader lock, so the reader page won't be swapped
1513 	 * in the ring buffer. Now we are racing with the writer trying to
1514 	 * move head page and the tail page.
1515 	 * We are going to adapt the reader page update process where:
1516 	 * 1. We first splice the start and end of list of new pages between
1517 	 *    the head page and its previous page.
1518 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1519 	 *    start of new pages list.
1520 	 * 3. Finally, we update the head->prev to the end of new list.
1521 	 *
1522 	 * We will try this process 10 times, to make sure that we don't keep
1523 	 * spinning.
1524 	 */
1525 	retries = 10;
1526 	success = 0;
1527 	while (retries--) {
1528 		struct list_head *head_page, *prev_page, *r;
1529 		struct list_head *last_page, *first_page;
1530 		struct list_head *head_page_with_bit;
1531 
1532 		head_page = &rb_set_head_page(cpu_buffer)->list;
1533 		if (!head_page)
1534 			break;
1535 		prev_page = head_page->prev;
1536 
1537 		first_page = pages->next;
1538 		last_page  = pages->prev;
1539 
1540 		head_page_with_bit = (struct list_head *)
1541 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1542 
1543 		last_page->next = head_page_with_bit;
1544 		first_page->prev = prev_page;
1545 
1546 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1547 
1548 		if (r == head_page_with_bit) {
1549 			/*
1550 			 * yay, we replaced the page pointer to our new list,
1551 			 * now, we just have to update to head page's prev
1552 			 * pointer to point to end of list
1553 			 */
1554 			head_page->prev = last_page;
1555 			success = 1;
1556 			break;
1557 		}
1558 	}
1559 
1560 	if (success)
1561 		INIT_LIST_HEAD(pages);
1562 	/*
1563 	 * If we weren't successful in adding in new pages, warn and stop
1564 	 * tracing
1565 	 */
1566 	RB_WARN_ON(cpu_buffer, !success);
1567 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1568 
1569 	/* free pages if they weren't inserted */
1570 	if (!success) {
1571 		struct buffer_page *bpage, *tmp;
1572 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1573 					 list) {
1574 			list_del_init(&bpage->list);
1575 			free_buffer_page(bpage);
1576 		}
1577 	}
1578 	return success;
1579 }
1580 
1581 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1582 {
1583 	int success;
1584 
1585 	if (cpu_buffer->nr_pages_to_update > 0)
1586 		success = rb_insert_pages(cpu_buffer);
1587 	else
1588 		success = rb_remove_pages(cpu_buffer,
1589 					-cpu_buffer->nr_pages_to_update);
1590 
1591 	if (success)
1592 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1593 }
1594 
1595 static void update_pages_handler(struct work_struct *work)
1596 {
1597 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1598 			struct ring_buffer_per_cpu, update_pages_work);
1599 	rb_update_pages(cpu_buffer);
1600 	complete(&cpu_buffer->update_done);
1601 }
1602 
1603 /**
1604  * ring_buffer_resize - resize the ring buffer
1605  * @buffer: the buffer to resize.
1606  * @size: the new size.
1607  * @cpu_id: the cpu buffer to resize
1608  *
1609  * Minimum size is 2 * BUF_PAGE_SIZE.
1610  *
1611  * Returns 0 on success and < 0 on failure.
1612  */
1613 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1614 			int cpu_id)
1615 {
1616 	struct ring_buffer_per_cpu *cpu_buffer;
1617 	unsigned long nr_pages;
1618 	int cpu, err = 0;
1619 
1620 	/*
1621 	 * Always succeed at resizing a non-existent buffer:
1622 	 */
1623 	if (!buffer)
1624 		return size;
1625 
1626 	/* Make sure the requested buffer exists */
1627 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1628 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1629 		return size;
1630 
1631 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1632 
1633 	/* we need a minimum of two pages */
1634 	if (nr_pages < 2)
1635 		nr_pages = 2;
1636 
1637 	size = nr_pages * BUF_PAGE_SIZE;
1638 
1639 	/*
1640 	 * Don't succeed if resizing is disabled, as a reader might be
1641 	 * manipulating the ring buffer and is expecting a sane state while
1642 	 * this is true.
1643 	 */
1644 	if (atomic_read(&buffer->resize_disabled))
1645 		return -EBUSY;
1646 
1647 	/* prevent another thread from changing buffer sizes */
1648 	mutex_lock(&buffer->mutex);
1649 
1650 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1651 		/* calculate the pages to update */
1652 		for_each_buffer_cpu(buffer, cpu) {
1653 			cpu_buffer = buffer->buffers[cpu];
1654 
1655 			cpu_buffer->nr_pages_to_update = nr_pages -
1656 							cpu_buffer->nr_pages;
1657 			/*
1658 			 * nothing more to do for removing pages or no update
1659 			 */
1660 			if (cpu_buffer->nr_pages_to_update <= 0)
1661 				continue;
1662 			/*
1663 			 * to add pages, make sure all new pages can be
1664 			 * allocated without receiving ENOMEM
1665 			 */
1666 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1667 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1668 						&cpu_buffer->new_pages, cpu)) {
1669 				/* not enough memory for new pages */
1670 				err = -ENOMEM;
1671 				goto out_err;
1672 			}
1673 		}
1674 
1675 		get_online_cpus();
1676 		/*
1677 		 * Fire off all the required work handlers
1678 		 * We can't schedule on offline CPUs, but it's not necessary
1679 		 * since we can change their buffer sizes without any race.
1680 		 */
1681 		for_each_buffer_cpu(buffer, cpu) {
1682 			cpu_buffer = buffer->buffers[cpu];
1683 			if (!cpu_buffer->nr_pages_to_update)
1684 				continue;
1685 
1686 			/* Can't run something on an offline CPU. */
1687 			if (!cpu_online(cpu)) {
1688 				rb_update_pages(cpu_buffer);
1689 				cpu_buffer->nr_pages_to_update = 0;
1690 			} else {
1691 				schedule_work_on(cpu,
1692 						&cpu_buffer->update_pages_work);
1693 			}
1694 		}
1695 
1696 		/* wait for all the updates to complete */
1697 		for_each_buffer_cpu(buffer, cpu) {
1698 			cpu_buffer = buffer->buffers[cpu];
1699 			if (!cpu_buffer->nr_pages_to_update)
1700 				continue;
1701 
1702 			if (cpu_online(cpu))
1703 				wait_for_completion(&cpu_buffer->update_done);
1704 			cpu_buffer->nr_pages_to_update = 0;
1705 		}
1706 
1707 		put_online_cpus();
1708 	} else {
1709 		/* Make sure this CPU has been intitialized */
1710 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1711 			goto out;
1712 
1713 		cpu_buffer = buffer->buffers[cpu_id];
1714 
1715 		if (nr_pages == cpu_buffer->nr_pages)
1716 			goto out;
1717 
1718 		cpu_buffer->nr_pages_to_update = nr_pages -
1719 						cpu_buffer->nr_pages;
1720 
1721 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1722 		if (cpu_buffer->nr_pages_to_update > 0 &&
1723 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1724 					    &cpu_buffer->new_pages, cpu_id)) {
1725 			err = -ENOMEM;
1726 			goto out_err;
1727 		}
1728 
1729 		get_online_cpus();
1730 
1731 		/* Can't run something on an offline CPU. */
1732 		if (!cpu_online(cpu_id))
1733 			rb_update_pages(cpu_buffer);
1734 		else {
1735 			schedule_work_on(cpu_id,
1736 					 &cpu_buffer->update_pages_work);
1737 			wait_for_completion(&cpu_buffer->update_done);
1738 		}
1739 
1740 		cpu_buffer->nr_pages_to_update = 0;
1741 		put_online_cpus();
1742 	}
1743 
1744  out:
1745 	/*
1746 	 * The ring buffer resize can happen with the ring buffer
1747 	 * enabled, so that the update disturbs the tracing as little
1748 	 * as possible. But if the buffer is disabled, we do not need
1749 	 * to worry about that, and we can take the time to verify
1750 	 * that the buffer is not corrupt.
1751 	 */
1752 	if (atomic_read(&buffer->record_disabled)) {
1753 		atomic_inc(&buffer->record_disabled);
1754 		/*
1755 		 * Even though the buffer was disabled, we must make sure
1756 		 * that it is truly disabled before calling rb_check_pages.
1757 		 * There could have been a race between checking
1758 		 * record_disable and incrementing it.
1759 		 */
1760 		synchronize_sched();
1761 		for_each_buffer_cpu(buffer, cpu) {
1762 			cpu_buffer = buffer->buffers[cpu];
1763 			rb_check_pages(cpu_buffer);
1764 		}
1765 		atomic_dec(&buffer->record_disabled);
1766 	}
1767 
1768 	mutex_unlock(&buffer->mutex);
1769 	return size;
1770 
1771  out_err:
1772 	for_each_buffer_cpu(buffer, cpu) {
1773 		struct buffer_page *bpage, *tmp;
1774 
1775 		cpu_buffer = buffer->buffers[cpu];
1776 		cpu_buffer->nr_pages_to_update = 0;
1777 
1778 		if (list_empty(&cpu_buffer->new_pages))
1779 			continue;
1780 
1781 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1782 					list) {
1783 			list_del_init(&bpage->list);
1784 			free_buffer_page(bpage);
1785 		}
1786 	}
1787 	mutex_unlock(&buffer->mutex);
1788 	return err;
1789 }
1790 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1791 
1792 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1793 {
1794 	mutex_lock(&buffer->mutex);
1795 	if (val)
1796 		buffer->flags |= RB_FL_OVERWRITE;
1797 	else
1798 		buffer->flags &= ~RB_FL_OVERWRITE;
1799 	mutex_unlock(&buffer->mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1802 
1803 static __always_inline void *
1804 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1805 {
1806 	return bpage->data + index;
1807 }
1808 
1809 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1810 {
1811 	return bpage->page->data + index;
1812 }
1813 
1814 static __always_inline struct ring_buffer_event *
1815 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1816 {
1817 	return __rb_page_index(cpu_buffer->reader_page,
1818 			       cpu_buffer->reader_page->read);
1819 }
1820 
1821 static __always_inline struct ring_buffer_event *
1822 rb_iter_head_event(struct ring_buffer_iter *iter)
1823 {
1824 	return __rb_page_index(iter->head_page, iter->head);
1825 }
1826 
1827 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1828 {
1829 	return local_read(&bpage->page->commit);
1830 }
1831 
1832 /* Size is determined by what has been committed */
1833 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1834 {
1835 	return rb_page_commit(bpage);
1836 }
1837 
1838 static __always_inline unsigned
1839 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1840 {
1841 	return rb_page_commit(cpu_buffer->commit_page);
1842 }
1843 
1844 static __always_inline unsigned
1845 rb_event_index(struct ring_buffer_event *event)
1846 {
1847 	unsigned long addr = (unsigned long)event;
1848 
1849 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1850 }
1851 
1852 static void rb_inc_iter(struct ring_buffer_iter *iter)
1853 {
1854 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1855 
1856 	/*
1857 	 * The iterator could be on the reader page (it starts there).
1858 	 * But the head could have moved, since the reader was
1859 	 * found. Check for this case and assign the iterator
1860 	 * to the head page instead of next.
1861 	 */
1862 	if (iter->head_page == cpu_buffer->reader_page)
1863 		iter->head_page = rb_set_head_page(cpu_buffer);
1864 	else
1865 		rb_inc_page(cpu_buffer, &iter->head_page);
1866 
1867 	iter->read_stamp = iter->head_page->page->time_stamp;
1868 	iter->head = 0;
1869 }
1870 
1871 /*
1872  * rb_handle_head_page - writer hit the head page
1873  *
1874  * Returns: +1 to retry page
1875  *           0 to continue
1876  *          -1 on error
1877  */
1878 static int
1879 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1880 		    struct buffer_page *tail_page,
1881 		    struct buffer_page *next_page)
1882 {
1883 	struct buffer_page *new_head;
1884 	int entries;
1885 	int type;
1886 	int ret;
1887 
1888 	entries = rb_page_entries(next_page);
1889 
1890 	/*
1891 	 * The hard part is here. We need to move the head
1892 	 * forward, and protect against both readers on
1893 	 * other CPUs and writers coming in via interrupts.
1894 	 */
1895 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1896 				       RB_PAGE_HEAD);
1897 
1898 	/*
1899 	 * type can be one of four:
1900 	 *  NORMAL - an interrupt already moved it for us
1901 	 *  HEAD   - we are the first to get here.
1902 	 *  UPDATE - we are the interrupt interrupting
1903 	 *           a current move.
1904 	 *  MOVED  - a reader on another CPU moved the next
1905 	 *           pointer to its reader page. Give up
1906 	 *           and try again.
1907 	 */
1908 
1909 	switch (type) {
1910 	case RB_PAGE_HEAD:
1911 		/*
1912 		 * We changed the head to UPDATE, thus
1913 		 * it is our responsibility to update
1914 		 * the counters.
1915 		 */
1916 		local_add(entries, &cpu_buffer->overrun);
1917 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1918 
1919 		/*
1920 		 * The entries will be zeroed out when we move the
1921 		 * tail page.
1922 		 */
1923 
1924 		/* still more to do */
1925 		break;
1926 
1927 	case RB_PAGE_UPDATE:
1928 		/*
1929 		 * This is an interrupt that interrupt the
1930 		 * previous update. Still more to do.
1931 		 */
1932 		break;
1933 	case RB_PAGE_NORMAL:
1934 		/*
1935 		 * An interrupt came in before the update
1936 		 * and processed this for us.
1937 		 * Nothing left to do.
1938 		 */
1939 		return 1;
1940 	case RB_PAGE_MOVED:
1941 		/*
1942 		 * The reader is on another CPU and just did
1943 		 * a swap with our next_page.
1944 		 * Try again.
1945 		 */
1946 		return 1;
1947 	default:
1948 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1949 		return -1;
1950 	}
1951 
1952 	/*
1953 	 * Now that we are here, the old head pointer is
1954 	 * set to UPDATE. This will keep the reader from
1955 	 * swapping the head page with the reader page.
1956 	 * The reader (on another CPU) will spin till
1957 	 * we are finished.
1958 	 *
1959 	 * We just need to protect against interrupts
1960 	 * doing the job. We will set the next pointer
1961 	 * to HEAD. After that, we set the old pointer
1962 	 * to NORMAL, but only if it was HEAD before.
1963 	 * otherwise we are an interrupt, and only
1964 	 * want the outer most commit to reset it.
1965 	 */
1966 	new_head = next_page;
1967 	rb_inc_page(cpu_buffer, &new_head);
1968 
1969 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1970 				    RB_PAGE_NORMAL);
1971 
1972 	/*
1973 	 * Valid returns are:
1974 	 *  HEAD   - an interrupt came in and already set it.
1975 	 *  NORMAL - One of two things:
1976 	 *            1) We really set it.
1977 	 *            2) A bunch of interrupts came in and moved
1978 	 *               the page forward again.
1979 	 */
1980 	switch (ret) {
1981 	case RB_PAGE_HEAD:
1982 	case RB_PAGE_NORMAL:
1983 		/* OK */
1984 		break;
1985 	default:
1986 		RB_WARN_ON(cpu_buffer, 1);
1987 		return -1;
1988 	}
1989 
1990 	/*
1991 	 * It is possible that an interrupt came in,
1992 	 * set the head up, then more interrupts came in
1993 	 * and moved it again. When we get back here,
1994 	 * the page would have been set to NORMAL but we
1995 	 * just set it back to HEAD.
1996 	 *
1997 	 * How do you detect this? Well, if that happened
1998 	 * the tail page would have moved.
1999 	 */
2000 	if (ret == RB_PAGE_NORMAL) {
2001 		struct buffer_page *buffer_tail_page;
2002 
2003 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2004 		/*
2005 		 * If the tail had moved passed next, then we need
2006 		 * to reset the pointer.
2007 		 */
2008 		if (buffer_tail_page != tail_page &&
2009 		    buffer_tail_page != next_page)
2010 			rb_head_page_set_normal(cpu_buffer, new_head,
2011 						next_page,
2012 						RB_PAGE_HEAD);
2013 	}
2014 
2015 	/*
2016 	 * If this was the outer most commit (the one that
2017 	 * changed the original pointer from HEAD to UPDATE),
2018 	 * then it is up to us to reset it to NORMAL.
2019 	 */
2020 	if (type == RB_PAGE_HEAD) {
2021 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2022 					      tail_page,
2023 					      RB_PAGE_UPDATE);
2024 		if (RB_WARN_ON(cpu_buffer,
2025 			       ret != RB_PAGE_UPDATE))
2026 			return -1;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 static inline void
2033 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034 	      unsigned long tail, struct rb_event_info *info)
2035 {
2036 	struct buffer_page *tail_page = info->tail_page;
2037 	struct ring_buffer_event *event;
2038 	unsigned long length = info->length;
2039 
2040 	/*
2041 	 * Only the event that crossed the page boundary
2042 	 * must fill the old tail_page with padding.
2043 	 */
2044 	if (tail >= BUF_PAGE_SIZE) {
2045 		/*
2046 		 * If the page was filled, then we still need
2047 		 * to update the real_end. Reset it to zero
2048 		 * and the reader will ignore it.
2049 		 */
2050 		if (tail == BUF_PAGE_SIZE)
2051 			tail_page->real_end = 0;
2052 
2053 		local_sub(length, &tail_page->write);
2054 		return;
2055 	}
2056 
2057 	event = __rb_page_index(tail_page, tail);
2058 	kmemcheck_annotate_bitfield(event, bitfield);
2059 
2060 	/* account for padding bytes */
2061 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2062 
2063 	/*
2064 	 * Save the original length to the meta data.
2065 	 * This will be used by the reader to add lost event
2066 	 * counter.
2067 	 */
2068 	tail_page->real_end = tail;
2069 
2070 	/*
2071 	 * If this event is bigger than the minimum size, then
2072 	 * we need to be careful that we don't subtract the
2073 	 * write counter enough to allow another writer to slip
2074 	 * in on this page.
2075 	 * We put in a discarded commit instead, to make sure
2076 	 * that this space is not used again.
2077 	 *
2078 	 * If we are less than the minimum size, we don't need to
2079 	 * worry about it.
2080 	 */
2081 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2082 		/* No room for any events */
2083 
2084 		/* Mark the rest of the page with padding */
2085 		rb_event_set_padding(event);
2086 
2087 		/* Set the write back to the previous setting */
2088 		local_sub(length, &tail_page->write);
2089 		return;
2090 	}
2091 
2092 	/* Put in a discarded event */
2093 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2094 	event->type_len = RINGBUF_TYPE_PADDING;
2095 	/* time delta must be non zero */
2096 	event->time_delta = 1;
2097 
2098 	/* Set write to end of buffer */
2099 	length = (tail + length) - BUF_PAGE_SIZE;
2100 	local_sub(length, &tail_page->write);
2101 }
2102 
2103 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2104 
2105 /*
2106  * This is the slow path, force gcc not to inline it.
2107  */
2108 static noinline struct ring_buffer_event *
2109 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2110 	     unsigned long tail, struct rb_event_info *info)
2111 {
2112 	struct buffer_page *tail_page = info->tail_page;
2113 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2114 	struct ring_buffer *buffer = cpu_buffer->buffer;
2115 	struct buffer_page *next_page;
2116 	int ret;
2117 
2118 	next_page = tail_page;
2119 
2120 	rb_inc_page(cpu_buffer, &next_page);
2121 
2122 	/*
2123 	 * If for some reason, we had an interrupt storm that made
2124 	 * it all the way around the buffer, bail, and warn
2125 	 * about it.
2126 	 */
2127 	if (unlikely(next_page == commit_page)) {
2128 		local_inc(&cpu_buffer->commit_overrun);
2129 		goto out_reset;
2130 	}
2131 
2132 	/*
2133 	 * This is where the fun begins!
2134 	 *
2135 	 * We are fighting against races between a reader that
2136 	 * could be on another CPU trying to swap its reader
2137 	 * page with the buffer head.
2138 	 *
2139 	 * We are also fighting against interrupts coming in and
2140 	 * moving the head or tail on us as well.
2141 	 *
2142 	 * If the next page is the head page then we have filled
2143 	 * the buffer, unless the commit page is still on the
2144 	 * reader page.
2145 	 */
2146 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2147 
2148 		/*
2149 		 * If the commit is not on the reader page, then
2150 		 * move the header page.
2151 		 */
2152 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2153 			/*
2154 			 * If we are not in overwrite mode,
2155 			 * this is easy, just stop here.
2156 			 */
2157 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2158 				local_inc(&cpu_buffer->dropped_events);
2159 				goto out_reset;
2160 			}
2161 
2162 			ret = rb_handle_head_page(cpu_buffer,
2163 						  tail_page,
2164 						  next_page);
2165 			if (ret < 0)
2166 				goto out_reset;
2167 			if (ret)
2168 				goto out_again;
2169 		} else {
2170 			/*
2171 			 * We need to be careful here too. The
2172 			 * commit page could still be on the reader
2173 			 * page. We could have a small buffer, and
2174 			 * have filled up the buffer with events
2175 			 * from interrupts and such, and wrapped.
2176 			 *
2177 			 * Note, if the tail page is also the on the
2178 			 * reader_page, we let it move out.
2179 			 */
2180 			if (unlikely((cpu_buffer->commit_page !=
2181 				      cpu_buffer->tail_page) &&
2182 				     (cpu_buffer->commit_page ==
2183 				      cpu_buffer->reader_page))) {
2184 				local_inc(&cpu_buffer->commit_overrun);
2185 				goto out_reset;
2186 			}
2187 		}
2188 	}
2189 
2190 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2191 
2192  out_again:
2193 
2194 	rb_reset_tail(cpu_buffer, tail, info);
2195 
2196 	/* Commit what we have for now. */
2197 	rb_end_commit(cpu_buffer);
2198 	/* rb_end_commit() decs committing */
2199 	local_inc(&cpu_buffer->committing);
2200 
2201 	/* fail and let the caller try again */
2202 	return ERR_PTR(-EAGAIN);
2203 
2204  out_reset:
2205 	/* reset write */
2206 	rb_reset_tail(cpu_buffer, tail, info);
2207 
2208 	return NULL;
2209 }
2210 
2211 /* Slow path, do not inline */
2212 static noinline struct ring_buffer_event *
2213 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2214 {
2215 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2216 
2217 	/* Not the first event on the page? */
2218 	if (rb_event_index(event)) {
2219 		event->time_delta = delta & TS_MASK;
2220 		event->array[0] = delta >> TS_SHIFT;
2221 	} else {
2222 		/* nope, just zero it */
2223 		event->time_delta = 0;
2224 		event->array[0] = 0;
2225 	}
2226 
2227 	return skip_time_extend(event);
2228 }
2229 
2230 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2231 				     struct ring_buffer_event *event);
2232 
2233 /**
2234  * rb_update_event - update event type and data
2235  * @event: the event to update
2236  * @type: the type of event
2237  * @length: the size of the event field in the ring buffer
2238  *
2239  * Update the type and data fields of the event. The length
2240  * is the actual size that is written to the ring buffer,
2241  * and with this, we can determine what to place into the
2242  * data field.
2243  */
2244 static void
2245 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2246 		struct ring_buffer_event *event,
2247 		struct rb_event_info *info)
2248 {
2249 	unsigned length = info->length;
2250 	u64 delta = info->delta;
2251 
2252 	/* Only a commit updates the timestamp */
2253 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2254 		delta = 0;
2255 
2256 	/*
2257 	 * If we need to add a timestamp, then we
2258 	 * add it to the start of the resevered space.
2259 	 */
2260 	if (unlikely(info->add_timestamp)) {
2261 		event = rb_add_time_stamp(event, delta);
2262 		length -= RB_LEN_TIME_EXTEND;
2263 		delta = 0;
2264 	}
2265 
2266 	event->time_delta = delta;
2267 	length -= RB_EVNT_HDR_SIZE;
2268 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2269 		event->type_len = 0;
2270 		event->array[0] = length;
2271 	} else
2272 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2273 }
2274 
2275 static unsigned rb_calculate_event_length(unsigned length)
2276 {
2277 	struct ring_buffer_event event; /* Used only for sizeof array */
2278 
2279 	/* zero length can cause confusions */
2280 	if (!length)
2281 		length++;
2282 
2283 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2284 		length += sizeof(event.array[0]);
2285 
2286 	length += RB_EVNT_HDR_SIZE;
2287 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2288 
2289 	/*
2290 	 * In case the time delta is larger than the 27 bits for it
2291 	 * in the header, we need to add a timestamp. If another
2292 	 * event comes in when trying to discard this one to increase
2293 	 * the length, then the timestamp will be added in the allocated
2294 	 * space of this event. If length is bigger than the size needed
2295 	 * for the TIME_EXTEND, then padding has to be used. The events
2296 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2297 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2298 	 * As length is a multiple of 4, we only need to worry if it
2299 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2300 	 */
2301 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2302 		length += RB_ALIGNMENT;
2303 
2304 	return length;
2305 }
2306 
2307 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2308 static inline bool sched_clock_stable(void)
2309 {
2310 	return true;
2311 }
2312 #endif
2313 
2314 static inline int
2315 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2316 		  struct ring_buffer_event *event)
2317 {
2318 	unsigned long new_index, old_index;
2319 	struct buffer_page *bpage;
2320 	unsigned long index;
2321 	unsigned long addr;
2322 
2323 	new_index = rb_event_index(event);
2324 	old_index = new_index + rb_event_ts_length(event);
2325 	addr = (unsigned long)event;
2326 	addr &= PAGE_MASK;
2327 
2328 	bpage = READ_ONCE(cpu_buffer->tail_page);
2329 
2330 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2331 		unsigned long write_mask =
2332 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2333 		unsigned long event_length = rb_event_length(event);
2334 		/*
2335 		 * This is on the tail page. It is possible that
2336 		 * a write could come in and move the tail page
2337 		 * and write to the next page. That is fine
2338 		 * because we just shorten what is on this page.
2339 		 */
2340 		old_index += write_mask;
2341 		new_index += write_mask;
2342 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2343 		if (index == old_index) {
2344 			/* update counters */
2345 			local_sub(event_length, &cpu_buffer->entries_bytes);
2346 			return 1;
2347 		}
2348 	}
2349 
2350 	/* could not discard */
2351 	return 0;
2352 }
2353 
2354 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2355 {
2356 	local_inc(&cpu_buffer->committing);
2357 	local_inc(&cpu_buffer->commits);
2358 }
2359 
2360 static __always_inline void
2361 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2362 {
2363 	unsigned long max_count;
2364 
2365 	/*
2366 	 * We only race with interrupts and NMIs on this CPU.
2367 	 * If we own the commit event, then we can commit
2368 	 * all others that interrupted us, since the interruptions
2369 	 * are in stack format (they finish before they come
2370 	 * back to us). This allows us to do a simple loop to
2371 	 * assign the commit to the tail.
2372 	 */
2373  again:
2374 	max_count = cpu_buffer->nr_pages * 100;
2375 
2376 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2377 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2378 			return;
2379 		if (RB_WARN_ON(cpu_buffer,
2380 			       rb_is_reader_page(cpu_buffer->tail_page)))
2381 			return;
2382 		local_set(&cpu_buffer->commit_page->page->commit,
2383 			  rb_page_write(cpu_buffer->commit_page));
2384 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2385 		/* Only update the write stamp if the page has an event */
2386 		if (rb_page_write(cpu_buffer->commit_page))
2387 			cpu_buffer->write_stamp =
2388 				cpu_buffer->commit_page->page->time_stamp;
2389 		/* add barrier to keep gcc from optimizing too much */
2390 		barrier();
2391 	}
2392 	while (rb_commit_index(cpu_buffer) !=
2393 	       rb_page_write(cpu_buffer->commit_page)) {
2394 
2395 		local_set(&cpu_buffer->commit_page->page->commit,
2396 			  rb_page_write(cpu_buffer->commit_page));
2397 		RB_WARN_ON(cpu_buffer,
2398 			   local_read(&cpu_buffer->commit_page->page->commit) &
2399 			   ~RB_WRITE_MASK);
2400 		barrier();
2401 	}
2402 
2403 	/* again, keep gcc from optimizing */
2404 	barrier();
2405 
2406 	/*
2407 	 * If an interrupt came in just after the first while loop
2408 	 * and pushed the tail page forward, we will be left with
2409 	 * a dangling commit that will never go forward.
2410 	 */
2411 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2412 		goto again;
2413 }
2414 
2415 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2416 {
2417 	unsigned long commits;
2418 
2419 	if (RB_WARN_ON(cpu_buffer,
2420 		       !local_read(&cpu_buffer->committing)))
2421 		return;
2422 
2423  again:
2424 	commits = local_read(&cpu_buffer->commits);
2425 	/* synchronize with interrupts */
2426 	barrier();
2427 	if (local_read(&cpu_buffer->committing) == 1)
2428 		rb_set_commit_to_write(cpu_buffer);
2429 
2430 	local_dec(&cpu_buffer->committing);
2431 
2432 	/* synchronize with interrupts */
2433 	barrier();
2434 
2435 	/*
2436 	 * Need to account for interrupts coming in between the
2437 	 * updating of the commit page and the clearing of the
2438 	 * committing counter.
2439 	 */
2440 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2441 	    !local_read(&cpu_buffer->committing)) {
2442 		local_inc(&cpu_buffer->committing);
2443 		goto again;
2444 	}
2445 }
2446 
2447 static inline void rb_event_discard(struct ring_buffer_event *event)
2448 {
2449 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2450 		event = skip_time_extend(event);
2451 
2452 	/* array[0] holds the actual length for the discarded event */
2453 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2454 	event->type_len = RINGBUF_TYPE_PADDING;
2455 	/* time delta must be non zero */
2456 	if (!event->time_delta)
2457 		event->time_delta = 1;
2458 }
2459 
2460 static __always_inline bool
2461 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2462 		   struct ring_buffer_event *event)
2463 {
2464 	unsigned long addr = (unsigned long)event;
2465 	unsigned long index;
2466 
2467 	index = rb_event_index(event);
2468 	addr &= PAGE_MASK;
2469 
2470 	return cpu_buffer->commit_page->page == (void *)addr &&
2471 		rb_commit_index(cpu_buffer) == index;
2472 }
2473 
2474 static __always_inline void
2475 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2476 		      struct ring_buffer_event *event)
2477 {
2478 	u64 delta;
2479 
2480 	/*
2481 	 * The event first in the commit queue updates the
2482 	 * time stamp.
2483 	 */
2484 	if (rb_event_is_commit(cpu_buffer, event)) {
2485 		/*
2486 		 * A commit event that is first on a page
2487 		 * updates the write timestamp with the page stamp
2488 		 */
2489 		if (!rb_event_index(event))
2490 			cpu_buffer->write_stamp =
2491 				cpu_buffer->commit_page->page->time_stamp;
2492 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2493 			delta = event->array[0];
2494 			delta <<= TS_SHIFT;
2495 			delta += event->time_delta;
2496 			cpu_buffer->write_stamp += delta;
2497 		} else
2498 			cpu_buffer->write_stamp += event->time_delta;
2499 	}
2500 }
2501 
2502 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2503 		      struct ring_buffer_event *event)
2504 {
2505 	local_inc(&cpu_buffer->entries);
2506 	rb_update_write_stamp(cpu_buffer, event);
2507 	rb_end_commit(cpu_buffer);
2508 }
2509 
2510 static __always_inline void
2511 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2512 {
2513 	bool pagebusy;
2514 
2515 	if (buffer->irq_work.waiters_pending) {
2516 		buffer->irq_work.waiters_pending = false;
2517 		/* irq_work_queue() supplies it's own memory barriers */
2518 		irq_work_queue(&buffer->irq_work.work);
2519 	}
2520 
2521 	if (cpu_buffer->irq_work.waiters_pending) {
2522 		cpu_buffer->irq_work.waiters_pending = false;
2523 		/* irq_work_queue() supplies it's own memory barriers */
2524 		irq_work_queue(&cpu_buffer->irq_work.work);
2525 	}
2526 
2527 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2528 
2529 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2530 		cpu_buffer->irq_work.wakeup_full = true;
2531 		cpu_buffer->irq_work.full_waiters_pending = false;
2532 		/* irq_work_queue() supplies it's own memory barriers */
2533 		irq_work_queue(&cpu_buffer->irq_work.work);
2534 	}
2535 }
2536 
2537 /*
2538  * The lock and unlock are done within a preempt disable section.
2539  * The current_context per_cpu variable can only be modified
2540  * by the current task between lock and unlock. But it can
2541  * be modified more than once via an interrupt. To pass this
2542  * information from the lock to the unlock without having to
2543  * access the 'in_interrupt()' functions again (which do show
2544  * a bit of overhead in something as critical as function tracing,
2545  * we use a bitmask trick.
2546  *
2547  *  bit 0 =  NMI context
2548  *  bit 1 =  IRQ context
2549  *  bit 2 =  SoftIRQ context
2550  *  bit 3 =  normal context.
2551  *
2552  * This works because this is the order of contexts that can
2553  * preempt other contexts. A SoftIRQ never preempts an IRQ
2554  * context.
2555  *
2556  * When the context is determined, the corresponding bit is
2557  * checked and set (if it was set, then a recursion of that context
2558  * happened).
2559  *
2560  * On unlock, we need to clear this bit. To do so, just subtract
2561  * 1 from the current_context and AND it to itself.
2562  *
2563  * (binary)
2564  *  101 - 1 = 100
2565  *  101 & 100 = 100 (clearing bit zero)
2566  *
2567  *  1010 - 1 = 1001
2568  *  1010 & 1001 = 1000 (clearing bit 1)
2569  *
2570  * The least significant bit can be cleared this way, and it
2571  * just so happens that it is the same bit corresponding to
2572  * the current context.
2573  */
2574 
2575 static __always_inline int
2576 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2577 {
2578 	unsigned int val = cpu_buffer->current_context;
2579 	int bit;
2580 
2581 	if (in_interrupt()) {
2582 		if (in_nmi())
2583 			bit = RB_CTX_NMI;
2584 		else if (in_irq())
2585 			bit = RB_CTX_IRQ;
2586 		else
2587 			bit = RB_CTX_SOFTIRQ;
2588 	} else
2589 		bit = RB_CTX_NORMAL;
2590 
2591 	if (unlikely(val & (1 << bit)))
2592 		return 1;
2593 
2594 	val |= (1 << bit);
2595 	cpu_buffer->current_context = val;
2596 
2597 	return 0;
2598 }
2599 
2600 static __always_inline void
2601 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2602 {
2603 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2604 }
2605 
2606 /**
2607  * ring_buffer_unlock_commit - commit a reserved
2608  * @buffer: The buffer to commit to
2609  * @event: The event pointer to commit.
2610  *
2611  * This commits the data to the ring buffer, and releases any locks held.
2612  *
2613  * Must be paired with ring_buffer_lock_reserve.
2614  */
2615 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2616 			      struct ring_buffer_event *event)
2617 {
2618 	struct ring_buffer_per_cpu *cpu_buffer;
2619 	int cpu = raw_smp_processor_id();
2620 
2621 	cpu_buffer = buffer->buffers[cpu];
2622 
2623 	rb_commit(cpu_buffer, event);
2624 
2625 	rb_wakeups(buffer, cpu_buffer);
2626 
2627 	trace_recursive_unlock(cpu_buffer);
2628 
2629 	preempt_enable_notrace();
2630 
2631 	return 0;
2632 }
2633 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2634 
2635 static noinline void
2636 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2637 		    struct rb_event_info *info)
2638 {
2639 	WARN_ONCE(info->delta > (1ULL << 59),
2640 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2641 		  (unsigned long long)info->delta,
2642 		  (unsigned long long)info->ts,
2643 		  (unsigned long long)cpu_buffer->write_stamp,
2644 		  sched_clock_stable() ? "" :
2645 		  "If you just came from a suspend/resume,\n"
2646 		  "please switch to the trace global clock:\n"
2647 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2648 	info->add_timestamp = 1;
2649 }
2650 
2651 static struct ring_buffer_event *
2652 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2653 		  struct rb_event_info *info)
2654 {
2655 	struct ring_buffer_event *event;
2656 	struct buffer_page *tail_page;
2657 	unsigned long tail, write;
2658 
2659 	/*
2660 	 * If the time delta since the last event is too big to
2661 	 * hold in the time field of the event, then we append a
2662 	 * TIME EXTEND event ahead of the data event.
2663 	 */
2664 	if (unlikely(info->add_timestamp))
2665 		info->length += RB_LEN_TIME_EXTEND;
2666 
2667 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2668 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2669 	write = local_add_return(info->length, &tail_page->write);
2670 
2671 	/* set write to only the index of the write */
2672 	write &= RB_WRITE_MASK;
2673 	tail = write - info->length;
2674 
2675 	/*
2676 	 * If this is the first commit on the page, then it has the same
2677 	 * timestamp as the page itself.
2678 	 */
2679 	if (!tail)
2680 		info->delta = 0;
2681 
2682 	/* See if we shot pass the end of this buffer page */
2683 	if (unlikely(write > BUF_PAGE_SIZE))
2684 		return rb_move_tail(cpu_buffer, tail, info);
2685 
2686 	/* We reserved something on the buffer */
2687 
2688 	event = __rb_page_index(tail_page, tail);
2689 	kmemcheck_annotate_bitfield(event, bitfield);
2690 	rb_update_event(cpu_buffer, event, info);
2691 
2692 	local_inc(&tail_page->entries);
2693 
2694 	/*
2695 	 * If this is the first commit on the page, then update
2696 	 * its timestamp.
2697 	 */
2698 	if (!tail)
2699 		tail_page->page->time_stamp = info->ts;
2700 
2701 	/* account for these added bytes */
2702 	local_add(info->length, &cpu_buffer->entries_bytes);
2703 
2704 	return event;
2705 }
2706 
2707 static __always_inline struct ring_buffer_event *
2708 rb_reserve_next_event(struct ring_buffer *buffer,
2709 		      struct ring_buffer_per_cpu *cpu_buffer,
2710 		      unsigned long length)
2711 {
2712 	struct ring_buffer_event *event;
2713 	struct rb_event_info info;
2714 	int nr_loops = 0;
2715 	u64 diff;
2716 
2717 	rb_start_commit(cpu_buffer);
2718 
2719 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2720 	/*
2721 	 * Due to the ability to swap a cpu buffer from a buffer
2722 	 * it is possible it was swapped before we committed.
2723 	 * (committing stops a swap). We check for it here and
2724 	 * if it happened, we have to fail the write.
2725 	 */
2726 	barrier();
2727 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2728 		local_dec(&cpu_buffer->committing);
2729 		local_dec(&cpu_buffer->commits);
2730 		return NULL;
2731 	}
2732 #endif
2733 
2734 	info.length = rb_calculate_event_length(length);
2735  again:
2736 	info.add_timestamp = 0;
2737 	info.delta = 0;
2738 
2739 	/*
2740 	 * We allow for interrupts to reenter here and do a trace.
2741 	 * If one does, it will cause this original code to loop
2742 	 * back here. Even with heavy interrupts happening, this
2743 	 * should only happen a few times in a row. If this happens
2744 	 * 1000 times in a row, there must be either an interrupt
2745 	 * storm or we have something buggy.
2746 	 * Bail!
2747 	 */
2748 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2749 		goto out_fail;
2750 
2751 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2752 	diff = info.ts - cpu_buffer->write_stamp;
2753 
2754 	/* make sure this diff is calculated here */
2755 	barrier();
2756 
2757 	/* Did the write stamp get updated already? */
2758 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2759 		info.delta = diff;
2760 		if (unlikely(test_time_stamp(info.delta)))
2761 			rb_handle_timestamp(cpu_buffer, &info);
2762 	}
2763 
2764 	event = __rb_reserve_next(cpu_buffer, &info);
2765 
2766 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2767 		if (info.add_timestamp)
2768 			info.length -= RB_LEN_TIME_EXTEND;
2769 		goto again;
2770 	}
2771 
2772 	if (!event)
2773 		goto out_fail;
2774 
2775 	return event;
2776 
2777  out_fail:
2778 	rb_end_commit(cpu_buffer);
2779 	return NULL;
2780 }
2781 
2782 /**
2783  * ring_buffer_lock_reserve - reserve a part of the buffer
2784  * @buffer: the ring buffer to reserve from
2785  * @length: the length of the data to reserve (excluding event header)
2786  *
2787  * Returns a reseverd event on the ring buffer to copy directly to.
2788  * The user of this interface will need to get the body to write into
2789  * and can use the ring_buffer_event_data() interface.
2790  *
2791  * The length is the length of the data needed, not the event length
2792  * which also includes the event header.
2793  *
2794  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2795  * If NULL is returned, then nothing has been allocated or locked.
2796  */
2797 struct ring_buffer_event *
2798 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2799 {
2800 	struct ring_buffer_per_cpu *cpu_buffer;
2801 	struct ring_buffer_event *event;
2802 	int cpu;
2803 
2804 	/* If we are tracing schedule, we don't want to recurse */
2805 	preempt_disable_notrace();
2806 
2807 	if (unlikely(atomic_read(&buffer->record_disabled)))
2808 		goto out;
2809 
2810 	cpu = raw_smp_processor_id();
2811 
2812 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2813 		goto out;
2814 
2815 	cpu_buffer = buffer->buffers[cpu];
2816 
2817 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2818 		goto out;
2819 
2820 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2821 		goto out;
2822 
2823 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2824 		goto out;
2825 
2826 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2827 	if (!event)
2828 		goto out_unlock;
2829 
2830 	return event;
2831 
2832  out_unlock:
2833 	trace_recursive_unlock(cpu_buffer);
2834  out:
2835 	preempt_enable_notrace();
2836 	return NULL;
2837 }
2838 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2839 
2840 /*
2841  * Decrement the entries to the page that an event is on.
2842  * The event does not even need to exist, only the pointer
2843  * to the page it is on. This may only be called before the commit
2844  * takes place.
2845  */
2846 static inline void
2847 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2848 		   struct ring_buffer_event *event)
2849 {
2850 	unsigned long addr = (unsigned long)event;
2851 	struct buffer_page *bpage = cpu_buffer->commit_page;
2852 	struct buffer_page *start;
2853 
2854 	addr &= PAGE_MASK;
2855 
2856 	/* Do the likely case first */
2857 	if (likely(bpage->page == (void *)addr)) {
2858 		local_dec(&bpage->entries);
2859 		return;
2860 	}
2861 
2862 	/*
2863 	 * Because the commit page may be on the reader page we
2864 	 * start with the next page and check the end loop there.
2865 	 */
2866 	rb_inc_page(cpu_buffer, &bpage);
2867 	start = bpage;
2868 	do {
2869 		if (bpage->page == (void *)addr) {
2870 			local_dec(&bpage->entries);
2871 			return;
2872 		}
2873 		rb_inc_page(cpu_buffer, &bpage);
2874 	} while (bpage != start);
2875 
2876 	/* commit not part of this buffer?? */
2877 	RB_WARN_ON(cpu_buffer, 1);
2878 }
2879 
2880 /**
2881  * ring_buffer_commit_discard - discard an event that has not been committed
2882  * @buffer: the ring buffer
2883  * @event: non committed event to discard
2884  *
2885  * Sometimes an event that is in the ring buffer needs to be ignored.
2886  * This function lets the user discard an event in the ring buffer
2887  * and then that event will not be read later.
2888  *
2889  * This function only works if it is called before the the item has been
2890  * committed. It will try to free the event from the ring buffer
2891  * if another event has not been added behind it.
2892  *
2893  * If another event has been added behind it, it will set the event
2894  * up as discarded, and perform the commit.
2895  *
2896  * If this function is called, do not call ring_buffer_unlock_commit on
2897  * the event.
2898  */
2899 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2900 				struct ring_buffer_event *event)
2901 {
2902 	struct ring_buffer_per_cpu *cpu_buffer;
2903 	int cpu;
2904 
2905 	/* The event is discarded regardless */
2906 	rb_event_discard(event);
2907 
2908 	cpu = smp_processor_id();
2909 	cpu_buffer = buffer->buffers[cpu];
2910 
2911 	/*
2912 	 * This must only be called if the event has not been
2913 	 * committed yet. Thus we can assume that preemption
2914 	 * is still disabled.
2915 	 */
2916 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2917 
2918 	rb_decrement_entry(cpu_buffer, event);
2919 	if (rb_try_to_discard(cpu_buffer, event))
2920 		goto out;
2921 
2922 	/*
2923 	 * The commit is still visible by the reader, so we
2924 	 * must still update the timestamp.
2925 	 */
2926 	rb_update_write_stamp(cpu_buffer, event);
2927  out:
2928 	rb_end_commit(cpu_buffer);
2929 
2930 	trace_recursive_unlock(cpu_buffer);
2931 
2932 	preempt_enable_notrace();
2933 
2934 }
2935 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2936 
2937 /**
2938  * ring_buffer_write - write data to the buffer without reserving
2939  * @buffer: The ring buffer to write to.
2940  * @length: The length of the data being written (excluding the event header)
2941  * @data: The data to write to the buffer.
2942  *
2943  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2944  * one function. If you already have the data to write to the buffer, it
2945  * may be easier to simply call this function.
2946  *
2947  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2948  * and not the length of the event which would hold the header.
2949  */
2950 int ring_buffer_write(struct ring_buffer *buffer,
2951 		      unsigned long length,
2952 		      void *data)
2953 {
2954 	struct ring_buffer_per_cpu *cpu_buffer;
2955 	struct ring_buffer_event *event;
2956 	void *body;
2957 	int ret = -EBUSY;
2958 	int cpu;
2959 
2960 	preempt_disable_notrace();
2961 
2962 	if (atomic_read(&buffer->record_disabled))
2963 		goto out;
2964 
2965 	cpu = raw_smp_processor_id();
2966 
2967 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968 		goto out;
2969 
2970 	cpu_buffer = buffer->buffers[cpu];
2971 
2972 	if (atomic_read(&cpu_buffer->record_disabled))
2973 		goto out;
2974 
2975 	if (length > BUF_MAX_DATA_SIZE)
2976 		goto out;
2977 
2978 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2979 		goto out;
2980 
2981 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2982 	if (!event)
2983 		goto out_unlock;
2984 
2985 	body = rb_event_data(event);
2986 
2987 	memcpy(body, data, length);
2988 
2989 	rb_commit(cpu_buffer, event);
2990 
2991 	rb_wakeups(buffer, cpu_buffer);
2992 
2993 	ret = 0;
2994 
2995  out_unlock:
2996 	trace_recursive_unlock(cpu_buffer);
2997 
2998  out:
2999 	preempt_enable_notrace();
3000 
3001 	return ret;
3002 }
3003 EXPORT_SYMBOL_GPL(ring_buffer_write);
3004 
3005 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3006 {
3007 	struct buffer_page *reader = cpu_buffer->reader_page;
3008 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3009 	struct buffer_page *commit = cpu_buffer->commit_page;
3010 
3011 	/* In case of error, head will be NULL */
3012 	if (unlikely(!head))
3013 		return true;
3014 
3015 	return reader->read == rb_page_commit(reader) &&
3016 		(commit == reader ||
3017 		 (commit == head &&
3018 		  head->read == rb_page_commit(commit)));
3019 }
3020 
3021 /**
3022  * ring_buffer_record_disable - stop all writes into the buffer
3023  * @buffer: The ring buffer to stop writes to.
3024  *
3025  * This prevents all writes to the buffer. Any attempt to write
3026  * to the buffer after this will fail and return NULL.
3027  *
3028  * The caller should call synchronize_sched() after this.
3029  */
3030 void ring_buffer_record_disable(struct ring_buffer *buffer)
3031 {
3032 	atomic_inc(&buffer->record_disabled);
3033 }
3034 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3035 
3036 /**
3037  * ring_buffer_record_enable - enable writes to the buffer
3038  * @buffer: The ring buffer to enable writes
3039  *
3040  * Note, multiple disables will need the same number of enables
3041  * to truly enable the writing (much like preempt_disable).
3042  */
3043 void ring_buffer_record_enable(struct ring_buffer *buffer)
3044 {
3045 	atomic_dec(&buffer->record_disabled);
3046 }
3047 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3048 
3049 /**
3050  * ring_buffer_record_off - stop all writes into the buffer
3051  * @buffer: The ring buffer to stop writes to.
3052  *
3053  * This prevents all writes to the buffer. Any attempt to write
3054  * to the buffer after this will fail and return NULL.
3055  *
3056  * This is different than ring_buffer_record_disable() as
3057  * it works like an on/off switch, where as the disable() version
3058  * must be paired with a enable().
3059  */
3060 void ring_buffer_record_off(struct ring_buffer *buffer)
3061 {
3062 	unsigned int rd;
3063 	unsigned int new_rd;
3064 
3065 	do {
3066 		rd = atomic_read(&buffer->record_disabled);
3067 		new_rd = rd | RB_BUFFER_OFF;
3068 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3069 }
3070 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3071 
3072 /**
3073  * ring_buffer_record_on - restart writes into the buffer
3074  * @buffer: The ring buffer to start writes to.
3075  *
3076  * This enables all writes to the buffer that was disabled by
3077  * ring_buffer_record_off().
3078  *
3079  * This is different than ring_buffer_record_enable() as
3080  * it works like an on/off switch, where as the enable() version
3081  * must be paired with a disable().
3082  */
3083 void ring_buffer_record_on(struct ring_buffer *buffer)
3084 {
3085 	unsigned int rd;
3086 	unsigned int new_rd;
3087 
3088 	do {
3089 		rd = atomic_read(&buffer->record_disabled);
3090 		new_rd = rd & ~RB_BUFFER_OFF;
3091 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3092 }
3093 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3094 
3095 /**
3096  * ring_buffer_record_is_on - return true if the ring buffer can write
3097  * @buffer: The ring buffer to see if write is enabled
3098  *
3099  * Returns true if the ring buffer is in a state that it accepts writes.
3100  */
3101 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3102 {
3103 	return !atomic_read(&buffer->record_disabled);
3104 }
3105 
3106 /**
3107  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3108  * @buffer: The ring buffer to stop writes to.
3109  * @cpu: The CPU buffer to stop
3110  *
3111  * This prevents all writes to the buffer. Any attempt to write
3112  * to the buffer after this will fail and return NULL.
3113  *
3114  * The caller should call synchronize_sched() after this.
3115  */
3116 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3117 {
3118 	struct ring_buffer_per_cpu *cpu_buffer;
3119 
3120 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3121 		return;
3122 
3123 	cpu_buffer = buffer->buffers[cpu];
3124 	atomic_inc(&cpu_buffer->record_disabled);
3125 }
3126 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3127 
3128 /**
3129  * ring_buffer_record_enable_cpu - enable writes to the buffer
3130  * @buffer: The ring buffer to enable writes
3131  * @cpu: The CPU to enable.
3132  *
3133  * Note, multiple disables will need the same number of enables
3134  * to truly enable the writing (much like preempt_disable).
3135  */
3136 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3137 {
3138 	struct ring_buffer_per_cpu *cpu_buffer;
3139 
3140 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3141 		return;
3142 
3143 	cpu_buffer = buffer->buffers[cpu];
3144 	atomic_dec(&cpu_buffer->record_disabled);
3145 }
3146 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3147 
3148 /*
3149  * The total entries in the ring buffer is the running counter
3150  * of entries entered into the ring buffer, minus the sum of
3151  * the entries read from the ring buffer and the number of
3152  * entries that were overwritten.
3153  */
3154 static inline unsigned long
3155 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3156 {
3157 	return local_read(&cpu_buffer->entries) -
3158 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3159 }
3160 
3161 /**
3162  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3163  * @buffer: The ring buffer
3164  * @cpu: The per CPU buffer to read from.
3165  */
3166 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3167 {
3168 	unsigned long flags;
3169 	struct ring_buffer_per_cpu *cpu_buffer;
3170 	struct buffer_page *bpage;
3171 	u64 ret = 0;
3172 
3173 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3174 		return 0;
3175 
3176 	cpu_buffer = buffer->buffers[cpu];
3177 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3178 	/*
3179 	 * if the tail is on reader_page, oldest time stamp is on the reader
3180 	 * page
3181 	 */
3182 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3183 		bpage = cpu_buffer->reader_page;
3184 	else
3185 		bpage = rb_set_head_page(cpu_buffer);
3186 	if (bpage)
3187 		ret = bpage->page->time_stamp;
3188 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3189 
3190 	return ret;
3191 }
3192 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3193 
3194 /**
3195  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3196  * @buffer: The ring buffer
3197  * @cpu: The per CPU buffer to read from.
3198  */
3199 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3200 {
3201 	struct ring_buffer_per_cpu *cpu_buffer;
3202 	unsigned long ret;
3203 
3204 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3205 		return 0;
3206 
3207 	cpu_buffer = buffer->buffers[cpu];
3208 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3209 
3210 	return ret;
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3213 
3214 /**
3215  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3216  * @buffer: The ring buffer
3217  * @cpu: The per CPU buffer to get the entries from.
3218  */
3219 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3220 {
3221 	struct ring_buffer_per_cpu *cpu_buffer;
3222 
3223 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3224 		return 0;
3225 
3226 	cpu_buffer = buffer->buffers[cpu];
3227 
3228 	return rb_num_of_entries(cpu_buffer);
3229 }
3230 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3231 
3232 /**
3233  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3234  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3235  * @buffer: The ring buffer
3236  * @cpu: The per CPU buffer to get the number of overruns from
3237  */
3238 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3239 {
3240 	struct ring_buffer_per_cpu *cpu_buffer;
3241 	unsigned long ret;
3242 
3243 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244 		return 0;
3245 
3246 	cpu_buffer = buffer->buffers[cpu];
3247 	ret = local_read(&cpu_buffer->overrun);
3248 
3249 	return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3252 
3253 /**
3254  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3255  * commits failing due to the buffer wrapping around while there are uncommitted
3256  * events, such as during an interrupt storm.
3257  * @buffer: The ring buffer
3258  * @cpu: The per CPU buffer to get the number of overruns from
3259  */
3260 unsigned long
3261 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3262 {
3263 	struct ring_buffer_per_cpu *cpu_buffer;
3264 	unsigned long ret;
3265 
3266 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3267 		return 0;
3268 
3269 	cpu_buffer = buffer->buffers[cpu];
3270 	ret = local_read(&cpu_buffer->commit_overrun);
3271 
3272 	return ret;
3273 }
3274 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3275 
3276 /**
3277  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3278  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3279  * @buffer: The ring buffer
3280  * @cpu: The per CPU buffer to get the number of overruns from
3281  */
3282 unsigned long
3283 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3284 {
3285 	struct ring_buffer_per_cpu *cpu_buffer;
3286 	unsigned long ret;
3287 
3288 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3289 		return 0;
3290 
3291 	cpu_buffer = buffer->buffers[cpu];
3292 	ret = local_read(&cpu_buffer->dropped_events);
3293 
3294 	return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3297 
3298 /**
3299  * ring_buffer_read_events_cpu - get the number of events successfully read
3300  * @buffer: The ring buffer
3301  * @cpu: The per CPU buffer to get the number of events read
3302  */
3303 unsigned long
3304 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3305 {
3306 	struct ring_buffer_per_cpu *cpu_buffer;
3307 
3308 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3309 		return 0;
3310 
3311 	cpu_buffer = buffer->buffers[cpu];
3312 	return cpu_buffer->read;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3315 
3316 /**
3317  * ring_buffer_entries - get the number of entries in a buffer
3318  * @buffer: The ring buffer
3319  *
3320  * Returns the total number of entries in the ring buffer
3321  * (all CPU entries)
3322  */
3323 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3324 {
3325 	struct ring_buffer_per_cpu *cpu_buffer;
3326 	unsigned long entries = 0;
3327 	int cpu;
3328 
3329 	/* if you care about this being correct, lock the buffer */
3330 	for_each_buffer_cpu(buffer, cpu) {
3331 		cpu_buffer = buffer->buffers[cpu];
3332 		entries += rb_num_of_entries(cpu_buffer);
3333 	}
3334 
3335 	return entries;
3336 }
3337 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3338 
3339 /**
3340  * ring_buffer_overruns - get the number of overruns in buffer
3341  * @buffer: The ring buffer
3342  *
3343  * Returns the total number of overruns in the ring buffer
3344  * (all CPU entries)
3345  */
3346 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3347 {
3348 	struct ring_buffer_per_cpu *cpu_buffer;
3349 	unsigned long overruns = 0;
3350 	int cpu;
3351 
3352 	/* if you care about this being correct, lock the buffer */
3353 	for_each_buffer_cpu(buffer, cpu) {
3354 		cpu_buffer = buffer->buffers[cpu];
3355 		overruns += local_read(&cpu_buffer->overrun);
3356 	}
3357 
3358 	return overruns;
3359 }
3360 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3361 
3362 static void rb_iter_reset(struct ring_buffer_iter *iter)
3363 {
3364 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3365 
3366 	/* Iterator usage is expected to have record disabled */
3367 	iter->head_page = cpu_buffer->reader_page;
3368 	iter->head = cpu_buffer->reader_page->read;
3369 
3370 	iter->cache_reader_page = iter->head_page;
3371 	iter->cache_read = cpu_buffer->read;
3372 
3373 	if (iter->head)
3374 		iter->read_stamp = cpu_buffer->read_stamp;
3375 	else
3376 		iter->read_stamp = iter->head_page->page->time_stamp;
3377 }
3378 
3379 /**
3380  * ring_buffer_iter_reset - reset an iterator
3381  * @iter: The iterator to reset
3382  *
3383  * Resets the iterator, so that it will start from the beginning
3384  * again.
3385  */
3386 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3387 {
3388 	struct ring_buffer_per_cpu *cpu_buffer;
3389 	unsigned long flags;
3390 
3391 	if (!iter)
3392 		return;
3393 
3394 	cpu_buffer = iter->cpu_buffer;
3395 
3396 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3397 	rb_iter_reset(iter);
3398 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3399 }
3400 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3401 
3402 /**
3403  * ring_buffer_iter_empty - check if an iterator has no more to read
3404  * @iter: The iterator to check
3405  */
3406 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3407 {
3408 	struct ring_buffer_per_cpu *cpu_buffer;
3409 	struct buffer_page *reader;
3410 	struct buffer_page *head_page;
3411 	struct buffer_page *commit_page;
3412 	unsigned commit;
3413 
3414 	cpu_buffer = iter->cpu_buffer;
3415 
3416 	/* Remember, trace recording is off when iterator is in use */
3417 	reader = cpu_buffer->reader_page;
3418 	head_page = cpu_buffer->head_page;
3419 	commit_page = cpu_buffer->commit_page;
3420 	commit = rb_page_commit(commit_page);
3421 
3422 	return ((iter->head_page == commit_page && iter->head == commit) ||
3423 		(iter->head_page == reader && commit_page == head_page &&
3424 		 head_page->read == commit &&
3425 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3426 }
3427 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3428 
3429 static void
3430 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3431 		     struct ring_buffer_event *event)
3432 {
3433 	u64 delta;
3434 
3435 	switch (event->type_len) {
3436 	case RINGBUF_TYPE_PADDING:
3437 		return;
3438 
3439 	case RINGBUF_TYPE_TIME_EXTEND:
3440 		delta = event->array[0];
3441 		delta <<= TS_SHIFT;
3442 		delta += event->time_delta;
3443 		cpu_buffer->read_stamp += delta;
3444 		return;
3445 
3446 	case RINGBUF_TYPE_TIME_STAMP:
3447 		/* FIXME: not implemented */
3448 		return;
3449 
3450 	case RINGBUF_TYPE_DATA:
3451 		cpu_buffer->read_stamp += event->time_delta;
3452 		return;
3453 
3454 	default:
3455 		BUG();
3456 	}
3457 	return;
3458 }
3459 
3460 static void
3461 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3462 			  struct ring_buffer_event *event)
3463 {
3464 	u64 delta;
3465 
3466 	switch (event->type_len) {
3467 	case RINGBUF_TYPE_PADDING:
3468 		return;
3469 
3470 	case RINGBUF_TYPE_TIME_EXTEND:
3471 		delta = event->array[0];
3472 		delta <<= TS_SHIFT;
3473 		delta += event->time_delta;
3474 		iter->read_stamp += delta;
3475 		return;
3476 
3477 	case RINGBUF_TYPE_TIME_STAMP:
3478 		/* FIXME: not implemented */
3479 		return;
3480 
3481 	case RINGBUF_TYPE_DATA:
3482 		iter->read_stamp += event->time_delta;
3483 		return;
3484 
3485 	default:
3486 		BUG();
3487 	}
3488 	return;
3489 }
3490 
3491 static struct buffer_page *
3492 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3493 {
3494 	struct buffer_page *reader = NULL;
3495 	unsigned long overwrite;
3496 	unsigned long flags;
3497 	int nr_loops = 0;
3498 	int ret;
3499 
3500 	local_irq_save(flags);
3501 	arch_spin_lock(&cpu_buffer->lock);
3502 
3503  again:
3504 	/*
3505 	 * This should normally only loop twice. But because the
3506 	 * start of the reader inserts an empty page, it causes
3507 	 * a case where we will loop three times. There should be no
3508 	 * reason to loop four times (that I know of).
3509 	 */
3510 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3511 		reader = NULL;
3512 		goto out;
3513 	}
3514 
3515 	reader = cpu_buffer->reader_page;
3516 
3517 	/* If there's more to read, return this page */
3518 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3519 		goto out;
3520 
3521 	/* Never should we have an index greater than the size */
3522 	if (RB_WARN_ON(cpu_buffer,
3523 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3524 		goto out;
3525 
3526 	/* check if we caught up to the tail */
3527 	reader = NULL;
3528 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3529 		goto out;
3530 
3531 	/* Don't bother swapping if the ring buffer is empty */
3532 	if (rb_num_of_entries(cpu_buffer) == 0)
3533 		goto out;
3534 
3535 	/*
3536 	 * Reset the reader page to size zero.
3537 	 */
3538 	local_set(&cpu_buffer->reader_page->write, 0);
3539 	local_set(&cpu_buffer->reader_page->entries, 0);
3540 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3541 	cpu_buffer->reader_page->real_end = 0;
3542 
3543  spin:
3544 	/*
3545 	 * Splice the empty reader page into the list around the head.
3546 	 */
3547 	reader = rb_set_head_page(cpu_buffer);
3548 	if (!reader)
3549 		goto out;
3550 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3551 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3552 
3553 	/*
3554 	 * cpu_buffer->pages just needs to point to the buffer, it
3555 	 *  has no specific buffer page to point to. Lets move it out
3556 	 *  of our way so we don't accidentally swap it.
3557 	 */
3558 	cpu_buffer->pages = reader->list.prev;
3559 
3560 	/* The reader page will be pointing to the new head */
3561 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3562 
3563 	/*
3564 	 * We want to make sure we read the overruns after we set up our
3565 	 * pointers to the next object. The writer side does a
3566 	 * cmpxchg to cross pages which acts as the mb on the writer
3567 	 * side. Note, the reader will constantly fail the swap
3568 	 * while the writer is updating the pointers, so this
3569 	 * guarantees that the overwrite recorded here is the one we
3570 	 * want to compare with the last_overrun.
3571 	 */
3572 	smp_mb();
3573 	overwrite = local_read(&(cpu_buffer->overrun));
3574 
3575 	/*
3576 	 * Here's the tricky part.
3577 	 *
3578 	 * We need to move the pointer past the header page.
3579 	 * But we can only do that if a writer is not currently
3580 	 * moving it. The page before the header page has the
3581 	 * flag bit '1' set if it is pointing to the page we want.
3582 	 * but if the writer is in the process of moving it
3583 	 * than it will be '2' or already moved '0'.
3584 	 */
3585 
3586 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3587 
3588 	/*
3589 	 * If we did not convert it, then we must try again.
3590 	 */
3591 	if (!ret)
3592 		goto spin;
3593 
3594 	/*
3595 	 * Yeah! We succeeded in replacing the page.
3596 	 *
3597 	 * Now make the new head point back to the reader page.
3598 	 */
3599 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3600 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3601 
3602 	/* Finally update the reader page to the new head */
3603 	cpu_buffer->reader_page = reader;
3604 	cpu_buffer->reader_page->read = 0;
3605 
3606 	if (overwrite != cpu_buffer->last_overrun) {
3607 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3608 		cpu_buffer->last_overrun = overwrite;
3609 	}
3610 
3611 	goto again;
3612 
3613  out:
3614 	/* Update the read_stamp on the first event */
3615 	if (reader && reader->read == 0)
3616 		cpu_buffer->read_stamp = reader->page->time_stamp;
3617 
3618 	arch_spin_unlock(&cpu_buffer->lock);
3619 	local_irq_restore(flags);
3620 
3621 	return reader;
3622 }
3623 
3624 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3625 {
3626 	struct ring_buffer_event *event;
3627 	struct buffer_page *reader;
3628 	unsigned length;
3629 
3630 	reader = rb_get_reader_page(cpu_buffer);
3631 
3632 	/* This function should not be called when buffer is empty */
3633 	if (RB_WARN_ON(cpu_buffer, !reader))
3634 		return;
3635 
3636 	event = rb_reader_event(cpu_buffer);
3637 
3638 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3639 		cpu_buffer->read++;
3640 
3641 	rb_update_read_stamp(cpu_buffer, event);
3642 
3643 	length = rb_event_length(event);
3644 	cpu_buffer->reader_page->read += length;
3645 }
3646 
3647 static void rb_advance_iter(struct ring_buffer_iter *iter)
3648 {
3649 	struct ring_buffer_per_cpu *cpu_buffer;
3650 	struct ring_buffer_event *event;
3651 	unsigned length;
3652 
3653 	cpu_buffer = iter->cpu_buffer;
3654 
3655 	/*
3656 	 * Check if we are at the end of the buffer.
3657 	 */
3658 	if (iter->head >= rb_page_size(iter->head_page)) {
3659 		/* discarded commits can make the page empty */
3660 		if (iter->head_page == cpu_buffer->commit_page)
3661 			return;
3662 		rb_inc_iter(iter);
3663 		return;
3664 	}
3665 
3666 	event = rb_iter_head_event(iter);
3667 
3668 	length = rb_event_length(event);
3669 
3670 	/*
3671 	 * This should not be called to advance the header if we are
3672 	 * at the tail of the buffer.
3673 	 */
3674 	if (RB_WARN_ON(cpu_buffer,
3675 		       (iter->head_page == cpu_buffer->commit_page) &&
3676 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3677 		return;
3678 
3679 	rb_update_iter_read_stamp(iter, event);
3680 
3681 	iter->head += length;
3682 
3683 	/* check for end of page padding */
3684 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3685 	    (iter->head_page != cpu_buffer->commit_page))
3686 		rb_inc_iter(iter);
3687 }
3688 
3689 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3690 {
3691 	return cpu_buffer->lost_events;
3692 }
3693 
3694 static struct ring_buffer_event *
3695 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3696 	       unsigned long *lost_events)
3697 {
3698 	struct ring_buffer_event *event;
3699 	struct buffer_page *reader;
3700 	int nr_loops = 0;
3701 
3702  again:
3703 	/*
3704 	 * We repeat when a time extend is encountered.
3705 	 * Since the time extend is always attached to a data event,
3706 	 * we should never loop more than once.
3707 	 * (We never hit the following condition more than twice).
3708 	 */
3709 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3710 		return NULL;
3711 
3712 	reader = rb_get_reader_page(cpu_buffer);
3713 	if (!reader)
3714 		return NULL;
3715 
3716 	event = rb_reader_event(cpu_buffer);
3717 
3718 	switch (event->type_len) {
3719 	case RINGBUF_TYPE_PADDING:
3720 		if (rb_null_event(event))
3721 			RB_WARN_ON(cpu_buffer, 1);
3722 		/*
3723 		 * Because the writer could be discarding every
3724 		 * event it creates (which would probably be bad)
3725 		 * if we were to go back to "again" then we may never
3726 		 * catch up, and will trigger the warn on, or lock
3727 		 * the box. Return the padding, and we will release
3728 		 * the current locks, and try again.
3729 		 */
3730 		return event;
3731 
3732 	case RINGBUF_TYPE_TIME_EXTEND:
3733 		/* Internal data, OK to advance */
3734 		rb_advance_reader(cpu_buffer);
3735 		goto again;
3736 
3737 	case RINGBUF_TYPE_TIME_STAMP:
3738 		/* FIXME: not implemented */
3739 		rb_advance_reader(cpu_buffer);
3740 		goto again;
3741 
3742 	case RINGBUF_TYPE_DATA:
3743 		if (ts) {
3744 			*ts = cpu_buffer->read_stamp + event->time_delta;
3745 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3746 							 cpu_buffer->cpu, ts);
3747 		}
3748 		if (lost_events)
3749 			*lost_events = rb_lost_events(cpu_buffer);
3750 		return event;
3751 
3752 	default:
3753 		BUG();
3754 	}
3755 
3756 	return NULL;
3757 }
3758 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3759 
3760 static struct ring_buffer_event *
3761 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3762 {
3763 	struct ring_buffer *buffer;
3764 	struct ring_buffer_per_cpu *cpu_buffer;
3765 	struct ring_buffer_event *event;
3766 	int nr_loops = 0;
3767 
3768 	cpu_buffer = iter->cpu_buffer;
3769 	buffer = cpu_buffer->buffer;
3770 
3771 	/*
3772 	 * Check if someone performed a consuming read to
3773 	 * the buffer. A consuming read invalidates the iterator
3774 	 * and we need to reset the iterator in this case.
3775 	 */
3776 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3777 		     iter->cache_reader_page != cpu_buffer->reader_page))
3778 		rb_iter_reset(iter);
3779 
3780  again:
3781 	if (ring_buffer_iter_empty(iter))
3782 		return NULL;
3783 
3784 	/*
3785 	 * We repeat when a time extend is encountered or we hit
3786 	 * the end of the page. Since the time extend is always attached
3787 	 * to a data event, we should never loop more than three times.
3788 	 * Once for going to next page, once on time extend, and
3789 	 * finally once to get the event.
3790 	 * (We never hit the following condition more than thrice).
3791 	 */
3792 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3793 		return NULL;
3794 
3795 	if (rb_per_cpu_empty(cpu_buffer))
3796 		return NULL;
3797 
3798 	if (iter->head >= rb_page_size(iter->head_page)) {
3799 		rb_inc_iter(iter);
3800 		goto again;
3801 	}
3802 
3803 	event = rb_iter_head_event(iter);
3804 
3805 	switch (event->type_len) {
3806 	case RINGBUF_TYPE_PADDING:
3807 		if (rb_null_event(event)) {
3808 			rb_inc_iter(iter);
3809 			goto again;
3810 		}
3811 		rb_advance_iter(iter);
3812 		return event;
3813 
3814 	case RINGBUF_TYPE_TIME_EXTEND:
3815 		/* Internal data, OK to advance */
3816 		rb_advance_iter(iter);
3817 		goto again;
3818 
3819 	case RINGBUF_TYPE_TIME_STAMP:
3820 		/* FIXME: not implemented */
3821 		rb_advance_iter(iter);
3822 		goto again;
3823 
3824 	case RINGBUF_TYPE_DATA:
3825 		if (ts) {
3826 			*ts = iter->read_stamp + event->time_delta;
3827 			ring_buffer_normalize_time_stamp(buffer,
3828 							 cpu_buffer->cpu, ts);
3829 		}
3830 		return event;
3831 
3832 	default:
3833 		BUG();
3834 	}
3835 
3836 	return NULL;
3837 }
3838 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3839 
3840 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3841 {
3842 	if (likely(!in_nmi())) {
3843 		raw_spin_lock(&cpu_buffer->reader_lock);
3844 		return true;
3845 	}
3846 
3847 	/*
3848 	 * If an NMI die dumps out the content of the ring buffer
3849 	 * trylock must be used to prevent a deadlock if the NMI
3850 	 * preempted a task that holds the ring buffer locks. If
3851 	 * we get the lock then all is fine, if not, then continue
3852 	 * to do the read, but this can corrupt the ring buffer,
3853 	 * so it must be permanently disabled from future writes.
3854 	 * Reading from NMI is a oneshot deal.
3855 	 */
3856 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3857 		return true;
3858 
3859 	/* Continue without locking, but disable the ring buffer */
3860 	atomic_inc(&cpu_buffer->record_disabled);
3861 	return false;
3862 }
3863 
3864 static inline void
3865 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3866 {
3867 	if (likely(locked))
3868 		raw_spin_unlock(&cpu_buffer->reader_lock);
3869 	return;
3870 }
3871 
3872 /**
3873  * ring_buffer_peek - peek at the next event to be read
3874  * @buffer: The ring buffer to read
3875  * @cpu: The cpu to peak at
3876  * @ts: The timestamp counter of this event.
3877  * @lost_events: a variable to store if events were lost (may be NULL)
3878  *
3879  * This will return the event that will be read next, but does
3880  * not consume the data.
3881  */
3882 struct ring_buffer_event *
3883 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3884 		 unsigned long *lost_events)
3885 {
3886 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3887 	struct ring_buffer_event *event;
3888 	unsigned long flags;
3889 	bool dolock;
3890 
3891 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3892 		return NULL;
3893 
3894  again:
3895 	local_irq_save(flags);
3896 	dolock = rb_reader_lock(cpu_buffer);
3897 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3898 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3899 		rb_advance_reader(cpu_buffer);
3900 	rb_reader_unlock(cpu_buffer, dolock);
3901 	local_irq_restore(flags);
3902 
3903 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3904 		goto again;
3905 
3906 	return event;
3907 }
3908 
3909 /**
3910  * ring_buffer_iter_peek - peek at the next event to be read
3911  * @iter: The ring buffer iterator
3912  * @ts: The timestamp counter of this event.
3913  *
3914  * This will return the event that will be read next, but does
3915  * not increment the iterator.
3916  */
3917 struct ring_buffer_event *
3918 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3919 {
3920 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3921 	struct ring_buffer_event *event;
3922 	unsigned long flags;
3923 
3924  again:
3925 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3926 	event = rb_iter_peek(iter, ts);
3927 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3928 
3929 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3930 		goto again;
3931 
3932 	return event;
3933 }
3934 
3935 /**
3936  * ring_buffer_consume - return an event and consume it
3937  * @buffer: The ring buffer to get the next event from
3938  * @cpu: the cpu to read the buffer from
3939  * @ts: a variable to store the timestamp (may be NULL)
3940  * @lost_events: a variable to store if events were lost (may be NULL)
3941  *
3942  * Returns the next event in the ring buffer, and that event is consumed.
3943  * Meaning, that sequential reads will keep returning a different event,
3944  * and eventually empty the ring buffer if the producer is slower.
3945  */
3946 struct ring_buffer_event *
3947 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3948 		    unsigned long *lost_events)
3949 {
3950 	struct ring_buffer_per_cpu *cpu_buffer;
3951 	struct ring_buffer_event *event = NULL;
3952 	unsigned long flags;
3953 	bool dolock;
3954 
3955  again:
3956 	/* might be called in atomic */
3957 	preempt_disable();
3958 
3959 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3960 		goto out;
3961 
3962 	cpu_buffer = buffer->buffers[cpu];
3963 	local_irq_save(flags);
3964 	dolock = rb_reader_lock(cpu_buffer);
3965 
3966 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3967 	if (event) {
3968 		cpu_buffer->lost_events = 0;
3969 		rb_advance_reader(cpu_buffer);
3970 	}
3971 
3972 	rb_reader_unlock(cpu_buffer, dolock);
3973 	local_irq_restore(flags);
3974 
3975  out:
3976 	preempt_enable();
3977 
3978 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3979 		goto again;
3980 
3981 	return event;
3982 }
3983 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3984 
3985 /**
3986  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3987  * @buffer: The ring buffer to read from
3988  * @cpu: The cpu buffer to iterate over
3989  *
3990  * This performs the initial preparations necessary to iterate
3991  * through the buffer.  Memory is allocated, buffer recording
3992  * is disabled, and the iterator pointer is returned to the caller.
3993  *
3994  * Disabling buffer recordng prevents the reading from being
3995  * corrupted. This is not a consuming read, so a producer is not
3996  * expected.
3997  *
3998  * After a sequence of ring_buffer_read_prepare calls, the user is
3999  * expected to make at least one call to ring_buffer_read_prepare_sync.
4000  * Afterwards, ring_buffer_read_start is invoked to get things going
4001  * for real.
4002  *
4003  * This overall must be paired with ring_buffer_read_finish.
4004  */
4005 struct ring_buffer_iter *
4006 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4007 {
4008 	struct ring_buffer_per_cpu *cpu_buffer;
4009 	struct ring_buffer_iter *iter;
4010 
4011 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4012 		return NULL;
4013 
4014 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4015 	if (!iter)
4016 		return NULL;
4017 
4018 	cpu_buffer = buffer->buffers[cpu];
4019 
4020 	iter->cpu_buffer = cpu_buffer;
4021 
4022 	atomic_inc(&buffer->resize_disabled);
4023 	atomic_inc(&cpu_buffer->record_disabled);
4024 
4025 	return iter;
4026 }
4027 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4028 
4029 /**
4030  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4031  *
4032  * All previously invoked ring_buffer_read_prepare calls to prepare
4033  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4034  * calls on those iterators are allowed.
4035  */
4036 void
4037 ring_buffer_read_prepare_sync(void)
4038 {
4039 	synchronize_sched();
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4042 
4043 /**
4044  * ring_buffer_read_start - start a non consuming read of the buffer
4045  * @iter: The iterator returned by ring_buffer_read_prepare
4046  *
4047  * This finalizes the startup of an iteration through the buffer.
4048  * The iterator comes from a call to ring_buffer_read_prepare and
4049  * an intervening ring_buffer_read_prepare_sync must have been
4050  * performed.
4051  *
4052  * Must be paired with ring_buffer_read_finish.
4053  */
4054 void
4055 ring_buffer_read_start(struct ring_buffer_iter *iter)
4056 {
4057 	struct ring_buffer_per_cpu *cpu_buffer;
4058 	unsigned long flags;
4059 
4060 	if (!iter)
4061 		return;
4062 
4063 	cpu_buffer = iter->cpu_buffer;
4064 
4065 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4066 	arch_spin_lock(&cpu_buffer->lock);
4067 	rb_iter_reset(iter);
4068 	arch_spin_unlock(&cpu_buffer->lock);
4069 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4070 }
4071 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4072 
4073 /**
4074  * ring_buffer_read_finish - finish reading the iterator of the buffer
4075  * @iter: The iterator retrieved by ring_buffer_start
4076  *
4077  * This re-enables the recording to the buffer, and frees the
4078  * iterator.
4079  */
4080 void
4081 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4082 {
4083 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4084 	unsigned long flags;
4085 
4086 	/*
4087 	 * Ring buffer is disabled from recording, here's a good place
4088 	 * to check the integrity of the ring buffer.
4089 	 * Must prevent readers from trying to read, as the check
4090 	 * clears the HEAD page and readers require it.
4091 	 */
4092 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4093 	rb_check_pages(cpu_buffer);
4094 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4095 
4096 	atomic_dec(&cpu_buffer->record_disabled);
4097 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4098 	kfree(iter);
4099 }
4100 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4101 
4102 /**
4103  * ring_buffer_read - read the next item in the ring buffer by the iterator
4104  * @iter: The ring buffer iterator
4105  * @ts: The time stamp of the event read.
4106  *
4107  * This reads the next event in the ring buffer and increments the iterator.
4108  */
4109 struct ring_buffer_event *
4110 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4111 {
4112 	struct ring_buffer_event *event;
4113 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4114 	unsigned long flags;
4115 
4116 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4117  again:
4118 	event = rb_iter_peek(iter, ts);
4119 	if (!event)
4120 		goto out;
4121 
4122 	if (event->type_len == RINGBUF_TYPE_PADDING)
4123 		goto again;
4124 
4125 	rb_advance_iter(iter);
4126  out:
4127 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4128 
4129 	return event;
4130 }
4131 EXPORT_SYMBOL_GPL(ring_buffer_read);
4132 
4133 /**
4134  * ring_buffer_size - return the size of the ring buffer (in bytes)
4135  * @buffer: The ring buffer.
4136  */
4137 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4138 {
4139 	/*
4140 	 * Earlier, this method returned
4141 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4142 	 * Since the nr_pages field is now removed, we have converted this to
4143 	 * return the per cpu buffer value.
4144 	 */
4145 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4146 		return 0;
4147 
4148 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4149 }
4150 EXPORT_SYMBOL_GPL(ring_buffer_size);
4151 
4152 static void
4153 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4154 {
4155 	rb_head_page_deactivate(cpu_buffer);
4156 
4157 	cpu_buffer->head_page
4158 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4159 	local_set(&cpu_buffer->head_page->write, 0);
4160 	local_set(&cpu_buffer->head_page->entries, 0);
4161 	local_set(&cpu_buffer->head_page->page->commit, 0);
4162 
4163 	cpu_buffer->head_page->read = 0;
4164 
4165 	cpu_buffer->tail_page = cpu_buffer->head_page;
4166 	cpu_buffer->commit_page = cpu_buffer->head_page;
4167 
4168 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4169 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4170 	local_set(&cpu_buffer->reader_page->write, 0);
4171 	local_set(&cpu_buffer->reader_page->entries, 0);
4172 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4173 	cpu_buffer->reader_page->read = 0;
4174 
4175 	local_set(&cpu_buffer->entries_bytes, 0);
4176 	local_set(&cpu_buffer->overrun, 0);
4177 	local_set(&cpu_buffer->commit_overrun, 0);
4178 	local_set(&cpu_buffer->dropped_events, 0);
4179 	local_set(&cpu_buffer->entries, 0);
4180 	local_set(&cpu_buffer->committing, 0);
4181 	local_set(&cpu_buffer->commits, 0);
4182 	cpu_buffer->read = 0;
4183 	cpu_buffer->read_bytes = 0;
4184 
4185 	cpu_buffer->write_stamp = 0;
4186 	cpu_buffer->read_stamp = 0;
4187 
4188 	cpu_buffer->lost_events = 0;
4189 	cpu_buffer->last_overrun = 0;
4190 
4191 	rb_head_page_activate(cpu_buffer);
4192 }
4193 
4194 /**
4195  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4196  * @buffer: The ring buffer to reset a per cpu buffer of
4197  * @cpu: The CPU buffer to be reset
4198  */
4199 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4200 {
4201 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4202 	unsigned long flags;
4203 
4204 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4205 		return;
4206 
4207 	atomic_inc(&buffer->resize_disabled);
4208 	atomic_inc(&cpu_buffer->record_disabled);
4209 
4210 	/* Make sure all commits have finished */
4211 	synchronize_sched();
4212 
4213 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4214 
4215 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4216 		goto out;
4217 
4218 	arch_spin_lock(&cpu_buffer->lock);
4219 
4220 	rb_reset_cpu(cpu_buffer);
4221 
4222 	arch_spin_unlock(&cpu_buffer->lock);
4223 
4224  out:
4225 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4226 
4227 	atomic_dec(&cpu_buffer->record_disabled);
4228 	atomic_dec(&buffer->resize_disabled);
4229 }
4230 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4231 
4232 /**
4233  * ring_buffer_reset - reset a ring buffer
4234  * @buffer: The ring buffer to reset all cpu buffers
4235  */
4236 void ring_buffer_reset(struct ring_buffer *buffer)
4237 {
4238 	int cpu;
4239 
4240 	for_each_buffer_cpu(buffer, cpu)
4241 		ring_buffer_reset_cpu(buffer, cpu);
4242 }
4243 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4244 
4245 /**
4246  * rind_buffer_empty - is the ring buffer empty?
4247  * @buffer: The ring buffer to test
4248  */
4249 bool ring_buffer_empty(struct ring_buffer *buffer)
4250 {
4251 	struct ring_buffer_per_cpu *cpu_buffer;
4252 	unsigned long flags;
4253 	bool dolock;
4254 	int cpu;
4255 	int ret;
4256 
4257 	/* yes this is racy, but if you don't like the race, lock the buffer */
4258 	for_each_buffer_cpu(buffer, cpu) {
4259 		cpu_buffer = buffer->buffers[cpu];
4260 		local_irq_save(flags);
4261 		dolock = rb_reader_lock(cpu_buffer);
4262 		ret = rb_per_cpu_empty(cpu_buffer);
4263 		rb_reader_unlock(cpu_buffer, dolock);
4264 		local_irq_restore(flags);
4265 
4266 		if (!ret)
4267 			return false;
4268 	}
4269 
4270 	return true;
4271 }
4272 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4273 
4274 /**
4275  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4276  * @buffer: The ring buffer
4277  * @cpu: The CPU buffer to test
4278  */
4279 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4280 {
4281 	struct ring_buffer_per_cpu *cpu_buffer;
4282 	unsigned long flags;
4283 	bool dolock;
4284 	int ret;
4285 
4286 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4287 		return true;
4288 
4289 	cpu_buffer = buffer->buffers[cpu];
4290 	local_irq_save(flags);
4291 	dolock = rb_reader_lock(cpu_buffer);
4292 	ret = rb_per_cpu_empty(cpu_buffer);
4293 	rb_reader_unlock(cpu_buffer, dolock);
4294 	local_irq_restore(flags);
4295 
4296 	return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4299 
4300 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4301 /**
4302  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4303  * @buffer_a: One buffer to swap with
4304  * @buffer_b: The other buffer to swap with
4305  *
4306  * This function is useful for tracers that want to take a "snapshot"
4307  * of a CPU buffer and has another back up buffer lying around.
4308  * it is expected that the tracer handles the cpu buffer not being
4309  * used at the moment.
4310  */
4311 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4312 			 struct ring_buffer *buffer_b, int cpu)
4313 {
4314 	struct ring_buffer_per_cpu *cpu_buffer_a;
4315 	struct ring_buffer_per_cpu *cpu_buffer_b;
4316 	int ret = -EINVAL;
4317 
4318 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4319 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4320 		goto out;
4321 
4322 	cpu_buffer_a = buffer_a->buffers[cpu];
4323 	cpu_buffer_b = buffer_b->buffers[cpu];
4324 
4325 	/* At least make sure the two buffers are somewhat the same */
4326 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4327 		goto out;
4328 
4329 	ret = -EAGAIN;
4330 
4331 	if (atomic_read(&buffer_a->record_disabled))
4332 		goto out;
4333 
4334 	if (atomic_read(&buffer_b->record_disabled))
4335 		goto out;
4336 
4337 	if (atomic_read(&cpu_buffer_a->record_disabled))
4338 		goto out;
4339 
4340 	if (atomic_read(&cpu_buffer_b->record_disabled))
4341 		goto out;
4342 
4343 	/*
4344 	 * We can't do a synchronize_sched here because this
4345 	 * function can be called in atomic context.
4346 	 * Normally this will be called from the same CPU as cpu.
4347 	 * If not it's up to the caller to protect this.
4348 	 */
4349 	atomic_inc(&cpu_buffer_a->record_disabled);
4350 	atomic_inc(&cpu_buffer_b->record_disabled);
4351 
4352 	ret = -EBUSY;
4353 	if (local_read(&cpu_buffer_a->committing))
4354 		goto out_dec;
4355 	if (local_read(&cpu_buffer_b->committing))
4356 		goto out_dec;
4357 
4358 	buffer_a->buffers[cpu] = cpu_buffer_b;
4359 	buffer_b->buffers[cpu] = cpu_buffer_a;
4360 
4361 	cpu_buffer_b->buffer = buffer_a;
4362 	cpu_buffer_a->buffer = buffer_b;
4363 
4364 	ret = 0;
4365 
4366 out_dec:
4367 	atomic_dec(&cpu_buffer_a->record_disabled);
4368 	atomic_dec(&cpu_buffer_b->record_disabled);
4369 out:
4370 	return ret;
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4373 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4374 
4375 /**
4376  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4377  * @buffer: the buffer to allocate for.
4378  * @cpu: the cpu buffer to allocate.
4379  *
4380  * This function is used in conjunction with ring_buffer_read_page.
4381  * When reading a full page from the ring buffer, these functions
4382  * can be used to speed up the process. The calling function should
4383  * allocate a few pages first with this function. Then when it
4384  * needs to get pages from the ring buffer, it passes the result
4385  * of this function into ring_buffer_read_page, which will swap
4386  * the page that was allocated, with the read page of the buffer.
4387  *
4388  * Returns:
4389  *  The page allocated, or NULL on error.
4390  */
4391 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4392 {
4393 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4394 	struct buffer_data_page *bpage = NULL;
4395 	unsigned long flags;
4396 	struct page *page;
4397 
4398 	local_irq_save(flags);
4399 	arch_spin_lock(&cpu_buffer->lock);
4400 
4401 	if (cpu_buffer->free_page) {
4402 		bpage = cpu_buffer->free_page;
4403 		cpu_buffer->free_page = NULL;
4404 	}
4405 
4406 	arch_spin_unlock(&cpu_buffer->lock);
4407 	local_irq_restore(flags);
4408 
4409 	if (bpage)
4410 		goto out;
4411 
4412 	page = alloc_pages_node(cpu_to_node(cpu),
4413 				GFP_KERNEL | __GFP_NORETRY, 0);
4414 	if (!page)
4415 		return NULL;
4416 
4417 	bpage = page_address(page);
4418 
4419  out:
4420 	rb_init_page(bpage);
4421 
4422 	return bpage;
4423 }
4424 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4425 
4426 /**
4427  * ring_buffer_free_read_page - free an allocated read page
4428  * @buffer: the buffer the page was allocate for
4429  * @cpu: the cpu buffer the page came from
4430  * @data: the page to free
4431  *
4432  * Free a page allocated from ring_buffer_alloc_read_page.
4433  */
4434 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4435 {
4436 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4437 	struct buffer_data_page *bpage = data;
4438 	unsigned long flags;
4439 
4440 	local_irq_save(flags);
4441 	arch_spin_lock(&cpu_buffer->lock);
4442 
4443 	if (!cpu_buffer->free_page) {
4444 		cpu_buffer->free_page = bpage;
4445 		bpage = NULL;
4446 	}
4447 
4448 	arch_spin_unlock(&cpu_buffer->lock);
4449 	local_irq_restore(flags);
4450 
4451 	free_page((unsigned long)bpage);
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4454 
4455 /**
4456  * ring_buffer_read_page - extract a page from the ring buffer
4457  * @buffer: buffer to extract from
4458  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4459  * @len: amount to extract
4460  * @cpu: the cpu of the buffer to extract
4461  * @full: should the extraction only happen when the page is full.
4462  *
4463  * This function will pull out a page from the ring buffer and consume it.
4464  * @data_page must be the address of the variable that was returned
4465  * from ring_buffer_alloc_read_page. This is because the page might be used
4466  * to swap with a page in the ring buffer.
4467  *
4468  * for example:
4469  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4470  *	if (!rpage)
4471  *		return error;
4472  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4473  *	if (ret >= 0)
4474  *		process_page(rpage, ret);
4475  *
4476  * When @full is set, the function will not return true unless
4477  * the writer is off the reader page.
4478  *
4479  * Note: it is up to the calling functions to handle sleeps and wakeups.
4480  *  The ring buffer can be used anywhere in the kernel and can not
4481  *  blindly call wake_up. The layer that uses the ring buffer must be
4482  *  responsible for that.
4483  *
4484  * Returns:
4485  *  >=0 if data has been transferred, returns the offset of consumed data.
4486  *  <0 if no data has been transferred.
4487  */
4488 int ring_buffer_read_page(struct ring_buffer *buffer,
4489 			  void **data_page, size_t len, int cpu, int full)
4490 {
4491 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4492 	struct ring_buffer_event *event;
4493 	struct buffer_data_page *bpage;
4494 	struct buffer_page *reader;
4495 	unsigned long missed_events;
4496 	unsigned long flags;
4497 	unsigned int commit;
4498 	unsigned int read;
4499 	u64 save_timestamp;
4500 	int ret = -1;
4501 
4502 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4503 		goto out;
4504 
4505 	/*
4506 	 * If len is not big enough to hold the page header, then
4507 	 * we can not copy anything.
4508 	 */
4509 	if (len <= BUF_PAGE_HDR_SIZE)
4510 		goto out;
4511 
4512 	len -= BUF_PAGE_HDR_SIZE;
4513 
4514 	if (!data_page)
4515 		goto out;
4516 
4517 	bpage = *data_page;
4518 	if (!bpage)
4519 		goto out;
4520 
4521 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4522 
4523 	reader = rb_get_reader_page(cpu_buffer);
4524 	if (!reader)
4525 		goto out_unlock;
4526 
4527 	event = rb_reader_event(cpu_buffer);
4528 
4529 	read = reader->read;
4530 	commit = rb_page_commit(reader);
4531 
4532 	/* Check if any events were dropped */
4533 	missed_events = cpu_buffer->lost_events;
4534 
4535 	/*
4536 	 * If this page has been partially read or
4537 	 * if len is not big enough to read the rest of the page or
4538 	 * a writer is still on the page, then
4539 	 * we must copy the data from the page to the buffer.
4540 	 * Otherwise, we can simply swap the page with the one passed in.
4541 	 */
4542 	if (read || (len < (commit - read)) ||
4543 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4544 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4545 		unsigned int rpos = read;
4546 		unsigned int pos = 0;
4547 		unsigned int size;
4548 
4549 		if (full)
4550 			goto out_unlock;
4551 
4552 		if (len > (commit - read))
4553 			len = (commit - read);
4554 
4555 		/* Always keep the time extend and data together */
4556 		size = rb_event_ts_length(event);
4557 
4558 		if (len < size)
4559 			goto out_unlock;
4560 
4561 		/* save the current timestamp, since the user will need it */
4562 		save_timestamp = cpu_buffer->read_stamp;
4563 
4564 		/* Need to copy one event at a time */
4565 		do {
4566 			/* We need the size of one event, because
4567 			 * rb_advance_reader only advances by one event,
4568 			 * whereas rb_event_ts_length may include the size of
4569 			 * one or two events.
4570 			 * We have already ensured there's enough space if this
4571 			 * is a time extend. */
4572 			size = rb_event_length(event);
4573 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4574 
4575 			len -= size;
4576 
4577 			rb_advance_reader(cpu_buffer);
4578 			rpos = reader->read;
4579 			pos += size;
4580 
4581 			if (rpos >= commit)
4582 				break;
4583 
4584 			event = rb_reader_event(cpu_buffer);
4585 			/* Always keep the time extend and data together */
4586 			size = rb_event_ts_length(event);
4587 		} while (len >= size);
4588 
4589 		/* update bpage */
4590 		local_set(&bpage->commit, pos);
4591 		bpage->time_stamp = save_timestamp;
4592 
4593 		/* we copied everything to the beginning */
4594 		read = 0;
4595 	} else {
4596 		/* update the entry counter */
4597 		cpu_buffer->read += rb_page_entries(reader);
4598 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4599 
4600 		/* swap the pages */
4601 		rb_init_page(bpage);
4602 		bpage = reader->page;
4603 		reader->page = *data_page;
4604 		local_set(&reader->write, 0);
4605 		local_set(&reader->entries, 0);
4606 		reader->read = 0;
4607 		*data_page = bpage;
4608 
4609 		/*
4610 		 * Use the real_end for the data size,
4611 		 * This gives us a chance to store the lost events
4612 		 * on the page.
4613 		 */
4614 		if (reader->real_end)
4615 			local_set(&bpage->commit, reader->real_end);
4616 	}
4617 	ret = read;
4618 
4619 	cpu_buffer->lost_events = 0;
4620 
4621 	commit = local_read(&bpage->commit);
4622 	/*
4623 	 * Set a flag in the commit field if we lost events
4624 	 */
4625 	if (missed_events) {
4626 		/* If there is room at the end of the page to save the
4627 		 * missed events, then record it there.
4628 		 */
4629 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4630 			memcpy(&bpage->data[commit], &missed_events,
4631 			       sizeof(missed_events));
4632 			local_add(RB_MISSED_STORED, &bpage->commit);
4633 			commit += sizeof(missed_events);
4634 		}
4635 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4636 	}
4637 
4638 	/*
4639 	 * This page may be off to user land. Zero it out here.
4640 	 */
4641 	if (commit < BUF_PAGE_SIZE)
4642 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4643 
4644  out_unlock:
4645 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4646 
4647  out:
4648 	return ret;
4649 }
4650 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4651 
4652 /*
4653  * We only allocate new buffers, never free them if the CPU goes down.
4654  * If we were to free the buffer, then the user would lose any trace that was in
4655  * the buffer.
4656  */
4657 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4658 {
4659 	struct ring_buffer *buffer;
4660 	long nr_pages_same;
4661 	int cpu_i;
4662 	unsigned long nr_pages;
4663 
4664 	buffer = container_of(node, struct ring_buffer, node);
4665 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4666 		return 0;
4667 
4668 	nr_pages = 0;
4669 	nr_pages_same = 1;
4670 	/* check if all cpu sizes are same */
4671 	for_each_buffer_cpu(buffer, cpu_i) {
4672 		/* fill in the size from first enabled cpu */
4673 		if (nr_pages == 0)
4674 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4675 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4676 			nr_pages_same = 0;
4677 			break;
4678 		}
4679 	}
4680 	/* allocate minimum pages, user can later expand it */
4681 	if (!nr_pages_same)
4682 		nr_pages = 2;
4683 	buffer->buffers[cpu] =
4684 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4685 	if (!buffer->buffers[cpu]) {
4686 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4687 		     cpu);
4688 		return -ENOMEM;
4689 	}
4690 	smp_wmb();
4691 	cpumask_set_cpu(cpu, buffer->cpumask);
4692 	return 0;
4693 }
4694 
4695 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4696 /*
4697  * This is a basic integrity check of the ring buffer.
4698  * Late in the boot cycle this test will run when configured in.
4699  * It will kick off a thread per CPU that will go into a loop
4700  * writing to the per cpu ring buffer various sizes of data.
4701  * Some of the data will be large items, some small.
4702  *
4703  * Another thread is created that goes into a spin, sending out
4704  * IPIs to the other CPUs to also write into the ring buffer.
4705  * this is to test the nesting ability of the buffer.
4706  *
4707  * Basic stats are recorded and reported. If something in the
4708  * ring buffer should happen that's not expected, a big warning
4709  * is displayed and all ring buffers are disabled.
4710  */
4711 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4712 
4713 struct rb_test_data {
4714 	struct ring_buffer	*buffer;
4715 	unsigned long		events;
4716 	unsigned long		bytes_written;
4717 	unsigned long		bytes_alloc;
4718 	unsigned long		bytes_dropped;
4719 	unsigned long		events_nested;
4720 	unsigned long		bytes_written_nested;
4721 	unsigned long		bytes_alloc_nested;
4722 	unsigned long		bytes_dropped_nested;
4723 	int			min_size_nested;
4724 	int			max_size_nested;
4725 	int			max_size;
4726 	int			min_size;
4727 	int			cpu;
4728 	int			cnt;
4729 };
4730 
4731 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4732 
4733 /* 1 meg per cpu */
4734 #define RB_TEST_BUFFER_SIZE	1048576
4735 
4736 static char rb_string[] __initdata =
4737 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4738 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4739 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4740 
4741 static bool rb_test_started __initdata;
4742 
4743 struct rb_item {
4744 	int size;
4745 	char str[];
4746 };
4747 
4748 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4749 {
4750 	struct ring_buffer_event *event;
4751 	struct rb_item *item;
4752 	bool started;
4753 	int event_len;
4754 	int size;
4755 	int len;
4756 	int cnt;
4757 
4758 	/* Have nested writes different that what is written */
4759 	cnt = data->cnt + (nested ? 27 : 0);
4760 
4761 	/* Multiply cnt by ~e, to make some unique increment */
4762 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4763 
4764 	len = size + sizeof(struct rb_item);
4765 
4766 	started = rb_test_started;
4767 	/* read rb_test_started before checking buffer enabled */
4768 	smp_rmb();
4769 
4770 	event = ring_buffer_lock_reserve(data->buffer, len);
4771 	if (!event) {
4772 		/* Ignore dropped events before test starts. */
4773 		if (started) {
4774 			if (nested)
4775 				data->bytes_dropped += len;
4776 			else
4777 				data->bytes_dropped_nested += len;
4778 		}
4779 		return len;
4780 	}
4781 
4782 	event_len = ring_buffer_event_length(event);
4783 
4784 	if (RB_WARN_ON(data->buffer, event_len < len))
4785 		goto out;
4786 
4787 	item = ring_buffer_event_data(event);
4788 	item->size = size;
4789 	memcpy(item->str, rb_string, size);
4790 
4791 	if (nested) {
4792 		data->bytes_alloc_nested += event_len;
4793 		data->bytes_written_nested += len;
4794 		data->events_nested++;
4795 		if (!data->min_size_nested || len < data->min_size_nested)
4796 			data->min_size_nested = len;
4797 		if (len > data->max_size_nested)
4798 			data->max_size_nested = len;
4799 	} else {
4800 		data->bytes_alloc += event_len;
4801 		data->bytes_written += len;
4802 		data->events++;
4803 		if (!data->min_size || len < data->min_size)
4804 			data->max_size = len;
4805 		if (len > data->max_size)
4806 			data->max_size = len;
4807 	}
4808 
4809  out:
4810 	ring_buffer_unlock_commit(data->buffer, event);
4811 
4812 	return 0;
4813 }
4814 
4815 static __init int rb_test(void *arg)
4816 {
4817 	struct rb_test_data *data = arg;
4818 
4819 	while (!kthread_should_stop()) {
4820 		rb_write_something(data, false);
4821 		data->cnt++;
4822 
4823 		set_current_state(TASK_INTERRUPTIBLE);
4824 		/* Now sleep between a min of 100-300us and a max of 1ms */
4825 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4826 	}
4827 
4828 	return 0;
4829 }
4830 
4831 static __init void rb_ipi(void *ignore)
4832 {
4833 	struct rb_test_data *data;
4834 	int cpu = smp_processor_id();
4835 
4836 	data = &rb_data[cpu];
4837 	rb_write_something(data, true);
4838 }
4839 
4840 static __init int rb_hammer_test(void *arg)
4841 {
4842 	while (!kthread_should_stop()) {
4843 
4844 		/* Send an IPI to all cpus to write data! */
4845 		smp_call_function(rb_ipi, NULL, 1);
4846 		/* No sleep, but for non preempt, let others run */
4847 		schedule();
4848 	}
4849 
4850 	return 0;
4851 }
4852 
4853 static __init int test_ringbuffer(void)
4854 {
4855 	struct task_struct *rb_hammer;
4856 	struct ring_buffer *buffer;
4857 	int cpu;
4858 	int ret = 0;
4859 
4860 	pr_info("Running ring buffer tests...\n");
4861 
4862 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4863 	if (WARN_ON(!buffer))
4864 		return 0;
4865 
4866 	/* Disable buffer so that threads can't write to it yet */
4867 	ring_buffer_record_off(buffer);
4868 
4869 	for_each_online_cpu(cpu) {
4870 		rb_data[cpu].buffer = buffer;
4871 		rb_data[cpu].cpu = cpu;
4872 		rb_data[cpu].cnt = cpu;
4873 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4874 						 "rbtester/%d", cpu);
4875 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4876 			pr_cont("FAILED\n");
4877 			ret = PTR_ERR(rb_threads[cpu]);
4878 			goto out_free;
4879 		}
4880 
4881 		kthread_bind(rb_threads[cpu], cpu);
4882  		wake_up_process(rb_threads[cpu]);
4883 	}
4884 
4885 	/* Now create the rb hammer! */
4886 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4887 	if (WARN_ON(IS_ERR(rb_hammer))) {
4888 		pr_cont("FAILED\n");
4889 		ret = PTR_ERR(rb_hammer);
4890 		goto out_free;
4891 	}
4892 
4893 	ring_buffer_record_on(buffer);
4894 	/*
4895 	 * Show buffer is enabled before setting rb_test_started.
4896 	 * Yes there's a small race window where events could be
4897 	 * dropped and the thread wont catch it. But when a ring
4898 	 * buffer gets enabled, there will always be some kind of
4899 	 * delay before other CPUs see it. Thus, we don't care about
4900 	 * those dropped events. We care about events dropped after
4901 	 * the threads see that the buffer is active.
4902 	 */
4903 	smp_wmb();
4904 	rb_test_started = true;
4905 
4906 	set_current_state(TASK_INTERRUPTIBLE);
4907 	/* Just run for 10 seconds */;
4908 	schedule_timeout(10 * HZ);
4909 
4910 	kthread_stop(rb_hammer);
4911 
4912  out_free:
4913 	for_each_online_cpu(cpu) {
4914 		if (!rb_threads[cpu])
4915 			break;
4916 		kthread_stop(rb_threads[cpu]);
4917 	}
4918 	if (ret) {
4919 		ring_buffer_free(buffer);
4920 		return ret;
4921 	}
4922 
4923 	/* Report! */
4924 	pr_info("finished\n");
4925 	for_each_online_cpu(cpu) {
4926 		struct ring_buffer_event *event;
4927 		struct rb_test_data *data = &rb_data[cpu];
4928 		struct rb_item *item;
4929 		unsigned long total_events;
4930 		unsigned long total_dropped;
4931 		unsigned long total_written;
4932 		unsigned long total_alloc;
4933 		unsigned long total_read = 0;
4934 		unsigned long total_size = 0;
4935 		unsigned long total_len = 0;
4936 		unsigned long total_lost = 0;
4937 		unsigned long lost;
4938 		int big_event_size;
4939 		int small_event_size;
4940 
4941 		ret = -1;
4942 
4943 		total_events = data->events + data->events_nested;
4944 		total_written = data->bytes_written + data->bytes_written_nested;
4945 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4946 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4947 
4948 		big_event_size = data->max_size + data->max_size_nested;
4949 		small_event_size = data->min_size + data->min_size_nested;
4950 
4951 		pr_info("CPU %d:\n", cpu);
4952 		pr_info("              events:    %ld\n", total_events);
4953 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4954 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4955 		pr_info("       written bytes:    %ld\n", total_written);
4956 		pr_info("       biggest event:    %d\n", big_event_size);
4957 		pr_info("      smallest event:    %d\n", small_event_size);
4958 
4959 		if (RB_WARN_ON(buffer, total_dropped))
4960 			break;
4961 
4962 		ret = 0;
4963 
4964 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4965 			total_lost += lost;
4966 			item = ring_buffer_event_data(event);
4967 			total_len += ring_buffer_event_length(event);
4968 			total_size += item->size + sizeof(struct rb_item);
4969 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4970 				pr_info("FAILED!\n");
4971 				pr_info("buffer had: %.*s\n", item->size, item->str);
4972 				pr_info("expected:   %.*s\n", item->size, rb_string);
4973 				RB_WARN_ON(buffer, 1);
4974 				ret = -1;
4975 				break;
4976 			}
4977 			total_read++;
4978 		}
4979 		if (ret)
4980 			break;
4981 
4982 		ret = -1;
4983 
4984 		pr_info("         read events:   %ld\n", total_read);
4985 		pr_info("         lost events:   %ld\n", total_lost);
4986 		pr_info("        total events:   %ld\n", total_lost + total_read);
4987 		pr_info("  recorded len bytes:   %ld\n", total_len);
4988 		pr_info(" recorded size bytes:   %ld\n", total_size);
4989 		if (total_lost)
4990 			pr_info(" With dropped events, record len and size may not match\n"
4991 				" alloced and written from above\n");
4992 		if (!total_lost) {
4993 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4994 				       total_size != total_written))
4995 				break;
4996 		}
4997 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4998 			break;
4999 
5000 		ret = 0;
5001 	}
5002 	if (!ret)
5003 		pr_info("Ring buffer PASSED!\n");
5004 
5005 	ring_buffer_free(buffer);
5006 	return 0;
5007 }
5008 
5009 late_initcall(test_ringbuffer);
5010 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5011