xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision f6723b56)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	int ret;
38 
39 	ret = trace_seq_puts(s, "# compressed entry header\n");
40 	ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	ret = trace_seq_putc(s, '\n');
44 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			       RINGBUF_TYPE_PADDING);
46 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			       RINGBUF_TYPE_TIME_EXTEND);
48 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return ret;
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139 
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150 
151 enum {
152 	RB_BUFFERS_ON_BIT	= 0,
153 	RB_BUFFERS_DISABLED_BIT	= 1,
154 };
155 
156 enum {
157 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
158 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160 
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162 
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF		(1 << 20)
165 
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167 
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178 
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT		4U
181 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
183 
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT	0
186 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT	1
189 # define RB_ARCH_ALIGNMENT		8U
190 #endif
191 
192 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
193 
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196 
197 enum {
198 	RB_LEN_TIME_EXTEND = 8,
199 	RB_LEN_TIME_STAMP = 16,
200 };
201 
202 #define skip_time_extend(event) \
203 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204 
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209 
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 	/* padding has a NULL time_delta */
213 	event->type_len = RINGBUF_TYPE_PADDING;
214 	event->time_delta = 0;
215 }
216 
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 	unsigned length;
221 
222 	if (event->type_len)
223 		length = event->type_len * RB_ALIGNMENT;
224 	else
225 		length = event->array[0];
226 	return length + RB_EVNT_HDR_SIZE;
227 }
228 
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 	switch (event->type_len) {
238 	case RINGBUF_TYPE_PADDING:
239 		if (rb_null_event(event))
240 			/* undefined */
241 			return -1;
242 		return  event->array[0] + RB_EVNT_HDR_SIZE;
243 
244 	case RINGBUF_TYPE_TIME_EXTEND:
245 		return RB_LEN_TIME_EXTEND;
246 
247 	case RINGBUF_TYPE_TIME_STAMP:
248 		return RB_LEN_TIME_STAMP;
249 
250 	case RINGBUF_TYPE_DATA:
251 		return rb_event_data_length(event);
252 	default:
253 		BUG();
254 	}
255 	/* not hit */
256 	return 0;
257 }
258 
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 	unsigned len = 0;
267 
268 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 		/* time extends include the data event after it */
270 		len = RB_LEN_TIME_EXTEND;
271 		event = skip_time_extend(event);
272 	}
273 	return len + rb_event_length(event);
274 }
275 
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 	unsigned length;
289 
290 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 		event = skip_time_extend(event);
292 
293 	length = rb_event_length(event);
294 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 		return length;
296 	length -= RB_EVNT_HDR_SIZE;
297 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299 	return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302 
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 		event = skip_time_extend(event);
309 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 	/* If length is in len field, then array[0] has the data */
311 	if (event->type_len)
312 		return (void *)&event->array[0];
313 	/* Otherwise length is in array[0] and array[1] has the data */
314 	return (void *)&event->array[1];
315 }
316 
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 	return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326 
327 #define for_each_buffer_cpu(buffer, cpu)		\
328 	for_each_cpu(cpu, buffer->cpumask)
329 
330 #define TS_SHIFT	27
331 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST	(~TS_MASK)
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 struct buffer_data_page {
340 	u64		 time_stamp;	/* page time stamp */
341 	local_t		 commit;	/* write committed index */
342 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
343 };
344 
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354 	struct list_head list;		/* list of buffer pages */
355 	local_t		 write;		/* index for next write */
356 	unsigned	 read;		/* index for next read */
357 	local_t		 entries;	/* entries on this page */
358 	unsigned long	 real_end;	/* real end of data */
359 	struct buffer_data_page *page;	/* Actual data page */
360 };
361 
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK		0xfffff
375 #define RB_WRITE_INTCNT		(1 << 20)
376 
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 	local_set(&bpage->commit, 0);
380 }
381 
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390 	return local_read(&((struct buffer_data_page *)page)->commit)
391 		+ BUF_PAGE_HDR_SIZE;
392 }
393 
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 	free_page((unsigned long)bpage->page);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409 	if (delta & TS_DELTA_TEST)
410 		return 1;
411 	return 0;
412 }
413 
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415 
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418 
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 	struct buffer_data_page field;
422 	int ret;
423 
424 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
426 			       (unsigned int)sizeof(field.time_stamp),
427 			       (unsigned int)is_signed_type(u64));
428 
429 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       (unsigned int)sizeof(field.commit),
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), commit),
438 			       1,
439 			       (unsigned int)is_signed_type(long));
440 
441 	ret = trace_seq_printf(s, "\tfield: char data;\t"
442 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 			       (unsigned int)offsetof(typeof(field), data),
444 			       (unsigned int)BUF_PAGE_SIZE,
445 			       (unsigned int)is_signed_type(char));
446 
447 	return ret;
448 }
449 
450 struct rb_irq_work {
451 	struct irq_work			work;
452 	wait_queue_head_t		waiters;
453 	bool				waiters_pending;
454 };
455 
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460 	int				cpu;
461 	atomic_t			record_disabled;
462 	struct ring_buffer		*buffer;
463 	raw_spinlock_t			reader_lock;	/* serialize readers */
464 	arch_spinlock_t			lock;
465 	struct lock_class_key		lock_key;
466 	unsigned int			nr_pages;
467 	struct list_head		*pages;
468 	struct buffer_page		*head_page;	/* read from head */
469 	struct buffer_page		*tail_page;	/* write to tail */
470 	struct buffer_page		*commit_page;	/* committed pages */
471 	struct buffer_page		*reader_page;
472 	unsigned long			lost_events;
473 	unsigned long			last_overrun;
474 	local_t				entries_bytes;
475 	local_t				entries;
476 	local_t				overrun;
477 	local_t				commit_overrun;
478 	local_t				dropped_events;
479 	local_t				committing;
480 	local_t				commits;
481 	unsigned long			read;
482 	unsigned long			read_bytes;
483 	u64				write_stamp;
484 	u64				read_stamp;
485 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
486 	int				nr_pages_to_update;
487 	struct list_head		new_pages; /* new pages to add */
488 	struct work_struct		update_pages_work;
489 	struct completion		update_done;
490 
491 	struct rb_irq_work		irq_work;
492 };
493 
494 struct ring_buffer {
495 	unsigned			flags;
496 	int				cpus;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	cpumask_var_t			cpumask;
500 
501 	struct lock_class_key		*reader_lock_key;
502 
503 	struct mutex			mutex;
504 
505 	struct ring_buffer_per_cpu	**buffers;
506 
507 #ifdef CONFIG_HOTPLUG_CPU
508 	struct notifier_block		cpu_notify;
509 #endif
510 	u64				(*clock)(void);
511 
512 	struct rb_irq_work		irq_work;
513 };
514 
515 struct ring_buffer_iter {
516 	struct ring_buffer_per_cpu	*cpu_buffer;
517 	unsigned long			head;
518 	struct buffer_page		*head_page;
519 	struct buffer_page		*cache_reader_page;
520 	unsigned long			cache_read;
521 	u64				read_stamp;
522 };
523 
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533 
534 	wake_up_all(&rbwork->waiters);
535 }
536 
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 	struct ring_buffer_per_cpu *cpu_buffer;
549 	DEFINE_WAIT(wait);
550 	struct rb_irq_work *work;
551 
552 	/*
553 	 * Depending on what the caller is waiting for, either any
554 	 * data in any cpu buffer, or a specific buffer, put the
555 	 * caller on the appropriate wait queue.
556 	 */
557 	if (cpu == RING_BUFFER_ALL_CPUS)
558 		work = &buffer->irq_work;
559 	else {
560 		cpu_buffer = buffer->buffers[cpu];
561 		work = &cpu_buffer->irq_work;
562 	}
563 
564 
565 	prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566 
567 	/*
568 	 * The events can happen in critical sections where
569 	 * checking a work queue can cause deadlocks.
570 	 * After adding a task to the queue, this flag is set
571 	 * only to notify events to try to wake up the queue
572 	 * using irq_work.
573 	 *
574 	 * We don't clear it even if the buffer is no longer
575 	 * empty. The flag only causes the next event to run
576 	 * irq_work to do the work queue wake up. The worse
577 	 * that can happen if we race with !trace_empty() is that
578 	 * an event will cause an irq_work to try to wake up
579 	 * an empty queue.
580 	 *
581 	 * There's no reason to protect this flag either, as
582 	 * the work queue and irq_work logic will do the necessary
583 	 * synchronization for the wake ups. The only thing
584 	 * that is necessary is that the wake up happens after
585 	 * a task has been queued. It's OK for spurious wake ups.
586 	 */
587 	work->waiters_pending = true;
588 
589 	if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 	    (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 		schedule();
592 
593 	finish_wait(&work->waiters, &wait);
594 }
595 
596 /**
597  * ring_buffer_poll_wait - poll on buffer input
598  * @buffer: buffer to wait on
599  * @cpu: the cpu buffer to wait on
600  * @filp: the file descriptor
601  * @poll_table: The poll descriptor
602  *
603  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604  * as data is added to any of the @buffer's cpu buffers. Otherwise
605  * it will wait for data to be added to a specific cpu buffer.
606  *
607  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608  * zero otherwise.
609  */
610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 			  struct file *filp, poll_table *poll_table)
612 {
613 	struct ring_buffer_per_cpu *cpu_buffer;
614 	struct rb_irq_work *work;
615 
616 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 		return POLLIN | POLLRDNORM;
619 
620 	if (cpu == RING_BUFFER_ALL_CPUS)
621 		work = &buffer->irq_work;
622 	else {
623 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 			return -EINVAL;
625 
626 		cpu_buffer = buffer->buffers[cpu];
627 		work = &cpu_buffer->irq_work;
628 	}
629 
630 	work->waiters_pending = true;
631 	poll_wait(filp, &work->waiters, poll_table);
632 
633 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 		return POLLIN | POLLRDNORM;
636 	return 0;
637 }
638 
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond)						\
641 	({								\
642 		int _____ret = unlikely(cond);				\
643 		if (_____ret) {						\
644 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 				struct ring_buffer_per_cpu *__b =	\
646 					(void *)b;			\
647 				atomic_inc(&__b->buffer->record_disabled); \
648 			} else						\
649 				atomic_inc(&b->record_disabled);	\
650 			WARN_ON(1);					\
651 		}							\
652 		_____ret;						\
653 	})
654 
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
657 
658 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659 {
660 	/* shift to debug/test normalization and TIME_EXTENTS */
661 	return buffer->clock() << DEBUG_SHIFT;
662 }
663 
664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665 {
666 	u64 time;
667 
668 	preempt_disable_notrace();
669 	time = rb_time_stamp(buffer);
670 	preempt_enable_no_resched_notrace();
671 
672 	return time;
673 }
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675 
676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 				      int cpu, u64 *ts)
678 {
679 	/* Just stupid testing the normalize function and deltas */
680 	*ts >>= DEBUG_SHIFT;
681 }
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683 
684 /*
685  * Making the ring buffer lockless makes things tricky.
686  * Although writes only happen on the CPU that they are on,
687  * and they only need to worry about interrupts. Reads can
688  * happen on any CPU.
689  *
690  * The reader page is always off the ring buffer, but when the
691  * reader finishes with a page, it needs to swap its page with
692  * a new one from the buffer. The reader needs to take from
693  * the head (writes go to the tail). But if a writer is in overwrite
694  * mode and wraps, it must push the head page forward.
695  *
696  * Here lies the problem.
697  *
698  * The reader must be careful to replace only the head page, and
699  * not another one. As described at the top of the file in the
700  * ASCII art, the reader sets its old page to point to the next
701  * page after head. It then sets the page after head to point to
702  * the old reader page. But if the writer moves the head page
703  * during this operation, the reader could end up with the tail.
704  *
705  * We use cmpxchg to help prevent this race. We also do something
706  * special with the page before head. We set the LSB to 1.
707  *
708  * When the writer must push the page forward, it will clear the
709  * bit that points to the head page, move the head, and then set
710  * the bit that points to the new head page.
711  *
712  * We also don't want an interrupt coming in and moving the head
713  * page on another writer. Thus we use the second LSB to catch
714  * that too. Thus:
715  *
716  * head->list->prev->next        bit 1          bit 0
717  *                              -------        -------
718  * Normal page                     0              0
719  * Points to head page             0              1
720  * New head page                   1              0
721  *
722  * Note we can not trust the prev pointer of the head page, because:
723  *
724  * +----+       +-----+        +-----+
725  * |    |------>|  T  |---X--->|  N  |
726  * |    |<------|     |        |     |
727  * +----+       +-----+        +-----+
728  *   ^                           ^ |
729  *   |          +-----+          | |
730  *   +----------|  R  |----------+ |
731  *              |     |<-----------+
732  *              +-----+
733  *
734  * Key:  ---X-->  HEAD flag set in pointer
735  *         T      Tail page
736  *         R      Reader page
737  *         N      Next page
738  *
739  * (see __rb_reserve_next() to see where this happens)
740  *
741  *  What the above shows is that the reader just swapped out
742  *  the reader page with a page in the buffer, but before it
743  *  could make the new header point back to the new page added
744  *  it was preempted by a writer. The writer moved forward onto
745  *  the new page added by the reader and is about to move forward
746  *  again.
747  *
748  *  You can see, it is legitimate for the previous pointer of
749  *  the head (or any page) not to point back to itself. But only
750  *  temporarially.
751  */
752 
753 #define RB_PAGE_NORMAL		0UL
754 #define RB_PAGE_HEAD		1UL
755 #define RB_PAGE_UPDATE		2UL
756 
757 
758 #define RB_FLAG_MASK		3UL
759 
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED		4UL
762 
763 /*
764  * rb_list_head - remove any bit
765  */
766 static struct list_head *rb_list_head(struct list_head *list)
767 {
768 	unsigned long val = (unsigned long)list;
769 
770 	return (struct list_head *)(val & ~RB_FLAG_MASK);
771 }
772 
773 /*
774  * rb_is_head_page - test if the given page is the head page
775  *
776  * Because the reader may move the head_page pointer, we can
777  * not trust what the head page is (it may be pointing to
778  * the reader page). But if the next page is a header page,
779  * its flags will be non zero.
780  */
781 static inline int
782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 		struct buffer_page *page, struct list_head *list)
784 {
785 	unsigned long val;
786 
787 	val = (unsigned long)list->next;
788 
789 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 		return RB_PAGE_MOVED;
791 
792 	return val & RB_FLAG_MASK;
793 }
794 
795 /*
796  * rb_is_reader_page
797  *
798  * The unique thing about the reader page, is that, if the
799  * writer is ever on it, the previous pointer never points
800  * back to the reader page.
801  */
802 static int rb_is_reader_page(struct buffer_page *page)
803 {
804 	struct list_head *list = page->list.prev;
805 
806 	return rb_list_head(list->next) != &page->list;
807 }
808 
809 /*
810  * rb_set_list_to_head - set a list_head to be pointing to head.
811  */
812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 				struct list_head *list)
814 {
815 	unsigned long *ptr;
816 
817 	ptr = (unsigned long *)&list->next;
818 	*ptr |= RB_PAGE_HEAD;
819 	*ptr &= ~RB_PAGE_UPDATE;
820 }
821 
822 /*
823  * rb_head_page_activate - sets up head page
824  */
825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826 {
827 	struct buffer_page *head;
828 
829 	head = cpu_buffer->head_page;
830 	if (!head)
831 		return;
832 
833 	/*
834 	 * Set the previous list pointer to have the HEAD flag.
835 	 */
836 	rb_set_list_to_head(cpu_buffer, head->list.prev);
837 }
838 
839 static void rb_list_head_clear(struct list_head *list)
840 {
841 	unsigned long *ptr = (unsigned long *)&list->next;
842 
843 	*ptr &= ~RB_FLAG_MASK;
844 }
845 
846 /*
847  * rb_head_page_dactivate - clears head page ptr (for free list)
848  */
849 static void
850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851 {
852 	struct list_head *hd;
853 
854 	/* Go through the whole list and clear any pointers found. */
855 	rb_list_head_clear(cpu_buffer->pages);
856 
857 	list_for_each(hd, cpu_buffer->pages)
858 		rb_list_head_clear(hd);
859 }
860 
861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 			    struct buffer_page *head,
863 			    struct buffer_page *prev,
864 			    int old_flag, int new_flag)
865 {
866 	struct list_head *list;
867 	unsigned long val = (unsigned long)&head->list;
868 	unsigned long ret;
869 
870 	list = &prev->list;
871 
872 	val &= ~RB_FLAG_MASK;
873 
874 	ret = cmpxchg((unsigned long *)&list->next,
875 		      val | old_flag, val | new_flag);
876 
877 	/* check if the reader took the page */
878 	if ((ret & ~RB_FLAG_MASK) != val)
879 		return RB_PAGE_MOVED;
880 
881 	return ret & RB_FLAG_MASK;
882 }
883 
884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 				   struct buffer_page *head,
886 				   struct buffer_page *prev,
887 				   int old_flag)
888 {
889 	return rb_head_page_set(cpu_buffer, head, prev,
890 				old_flag, RB_PAGE_UPDATE);
891 }
892 
893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 				 struct buffer_page *head,
895 				 struct buffer_page *prev,
896 				 int old_flag)
897 {
898 	return rb_head_page_set(cpu_buffer, head, prev,
899 				old_flag, RB_PAGE_HEAD);
900 }
901 
902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 				   struct buffer_page *head,
904 				   struct buffer_page *prev,
905 				   int old_flag)
906 {
907 	return rb_head_page_set(cpu_buffer, head, prev,
908 				old_flag, RB_PAGE_NORMAL);
909 }
910 
911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 			       struct buffer_page **bpage)
913 {
914 	struct list_head *p = rb_list_head((*bpage)->list.next);
915 
916 	*bpage = list_entry(p, struct buffer_page, list);
917 }
918 
919 static struct buffer_page *
920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921 {
922 	struct buffer_page *head;
923 	struct buffer_page *page;
924 	struct list_head *list;
925 	int i;
926 
927 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 		return NULL;
929 
930 	/* sanity check */
931 	list = cpu_buffer->pages;
932 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 		return NULL;
934 
935 	page = head = cpu_buffer->head_page;
936 	/*
937 	 * It is possible that the writer moves the header behind
938 	 * where we started, and we miss in one loop.
939 	 * A second loop should grab the header, but we'll do
940 	 * three loops just because I'm paranoid.
941 	 */
942 	for (i = 0; i < 3; i++) {
943 		do {
944 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 				cpu_buffer->head_page = page;
946 				return page;
947 			}
948 			rb_inc_page(cpu_buffer, &page);
949 		} while (page != head);
950 	}
951 
952 	RB_WARN_ON(cpu_buffer, 1);
953 
954 	return NULL;
955 }
956 
957 static int rb_head_page_replace(struct buffer_page *old,
958 				struct buffer_page *new)
959 {
960 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 	unsigned long val;
962 	unsigned long ret;
963 
964 	val = *ptr & ~RB_FLAG_MASK;
965 	val |= RB_PAGE_HEAD;
966 
967 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968 
969 	return ret == val;
970 }
971 
972 /*
973  * rb_tail_page_update - move the tail page forward
974  *
975  * Returns 1 if moved tail page, 0 if someone else did.
976  */
977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 			       struct buffer_page *tail_page,
979 			       struct buffer_page *next_page)
980 {
981 	struct buffer_page *old_tail;
982 	unsigned long old_entries;
983 	unsigned long old_write;
984 	int ret = 0;
985 
986 	/*
987 	 * The tail page now needs to be moved forward.
988 	 *
989 	 * We need to reset the tail page, but without messing
990 	 * with possible erasing of data brought in by interrupts
991 	 * that have moved the tail page and are currently on it.
992 	 *
993 	 * We add a counter to the write field to denote this.
994 	 */
995 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997 
998 	/*
999 	 * Just make sure we have seen our old_write and synchronize
1000 	 * with any interrupts that come in.
1001 	 */
1002 	barrier();
1003 
1004 	/*
1005 	 * If the tail page is still the same as what we think
1006 	 * it is, then it is up to us to update the tail
1007 	 * pointer.
1008 	 */
1009 	if (tail_page == cpu_buffer->tail_page) {
1010 		/* Zero the write counter */
1011 		unsigned long val = old_write & ~RB_WRITE_MASK;
1012 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013 
1014 		/*
1015 		 * This will only succeed if an interrupt did
1016 		 * not come in and change it. In which case, we
1017 		 * do not want to modify it.
1018 		 *
1019 		 * We add (void) to let the compiler know that we do not care
1020 		 * about the return value of these functions. We use the
1021 		 * cmpxchg to only update if an interrupt did not already
1022 		 * do it for us. If the cmpxchg fails, we don't care.
1023 		 */
1024 		(void)local_cmpxchg(&next_page->write, old_write, val);
1025 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026 
1027 		/*
1028 		 * No need to worry about races with clearing out the commit.
1029 		 * it only can increment when a commit takes place. But that
1030 		 * only happens in the outer most nested commit.
1031 		 */
1032 		local_set(&next_page->page->commit, 0);
1033 
1034 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 				   tail_page, next_page);
1036 
1037 		if (old_tail == tail_page)
1038 			ret = 1;
1039 	}
1040 
1041 	return ret;
1042 }
1043 
1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 			  struct buffer_page *bpage)
1046 {
1047 	unsigned long val = (unsigned long)bpage;
1048 
1049 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 		return 1;
1051 
1052 	return 0;
1053 }
1054 
1055 /**
1056  * rb_check_list - make sure a pointer to a list has the last bits zero
1057  */
1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 			 struct list_head *list)
1060 {
1061 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 		return 1;
1063 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 		return 1;
1065 	return 0;
1066 }
1067 
1068 /**
1069  * rb_check_pages - integrity check of buffer pages
1070  * @cpu_buffer: CPU buffer with pages to test
1071  *
1072  * As a safety measure we check to make sure the data pages have not
1073  * been corrupted.
1074  */
1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077 	struct list_head *head = cpu_buffer->pages;
1078 	struct buffer_page *bpage, *tmp;
1079 
1080 	/* Reset the head page if it exists */
1081 	if (cpu_buffer->head_page)
1082 		rb_set_head_page(cpu_buffer);
1083 
1084 	rb_head_page_deactivate(cpu_buffer);
1085 
1086 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 		return -1;
1088 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 		return -1;
1090 
1091 	if (rb_check_list(cpu_buffer, head))
1092 		return -1;
1093 
1094 	list_for_each_entry_safe(bpage, tmp, head, list) {
1095 		if (RB_WARN_ON(cpu_buffer,
1096 			       bpage->list.next->prev != &bpage->list))
1097 			return -1;
1098 		if (RB_WARN_ON(cpu_buffer,
1099 			       bpage->list.prev->next != &bpage->list))
1100 			return -1;
1101 		if (rb_check_list(cpu_buffer, &bpage->list))
1102 			return -1;
1103 	}
1104 
1105 	rb_head_page_activate(cpu_buffer);
1106 
1107 	return 0;
1108 }
1109 
1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111 {
1112 	int i;
1113 	struct buffer_page *bpage, *tmp;
1114 
1115 	for (i = 0; i < nr_pages; i++) {
1116 		struct page *page;
1117 		/*
1118 		 * __GFP_NORETRY flag makes sure that the allocation fails
1119 		 * gracefully without invoking oom-killer and the system is
1120 		 * not destabilized.
1121 		 */
1122 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123 				    GFP_KERNEL | __GFP_NORETRY,
1124 				    cpu_to_node(cpu));
1125 		if (!bpage)
1126 			goto free_pages;
1127 
1128 		list_add(&bpage->list, pages);
1129 
1130 		page = alloc_pages_node(cpu_to_node(cpu),
1131 					GFP_KERNEL | __GFP_NORETRY, 0);
1132 		if (!page)
1133 			goto free_pages;
1134 		bpage->page = page_address(page);
1135 		rb_init_page(bpage->page);
1136 	}
1137 
1138 	return 0;
1139 
1140 free_pages:
1141 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 		list_del_init(&bpage->list);
1143 		free_buffer_page(bpage);
1144 	}
1145 
1146 	return -ENOMEM;
1147 }
1148 
1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 			     unsigned nr_pages)
1151 {
1152 	LIST_HEAD(pages);
1153 
1154 	WARN_ON(!nr_pages);
1155 
1156 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 		return -ENOMEM;
1158 
1159 	/*
1160 	 * The ring buffer page list is a circular list that does not
1161 	 * start and end with a list head. All page list items point to
1162 	 * other pages.
1163 	 */
1164 	cpu_buffer->pages = pages.next;
1165 	list_del(&pages);
1166 
1167 	cpu_buffer->nr_pages = nr_pages;
1168 
1169 	rb_check_pages(cpu_buffer);
1170 
1171 	return 0;
1172 }
1173 
1174 static struct ring_buffer_per_cpu *
1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176 {
1177 	struct ring_buffer_per_cpu *cpu_buffer;
1178 	struct buffer_page *bpage;
1179 	struct page *page;
1180 	int ret;
1181 
1182 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 				  GFP_KERNEL, cpu_to_node(cpu));
1184 	if (!cpu_buffer)
1185 		return NULL;
1186 
1187 	cpu_buffer->cpu = cpu;
1188 	cpu_buffer->buffer = buffer;
1189 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1190 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193 	init_completion(&cpu_buffer->update_done);
1194 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196 
1197 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198 			    GFP_KERNEL, cpu_to_node(cpu));
1199 	if (!bpage)
1200 		goto fail_free_buffer;
1201 
1202 	rb_check_bpage(cpu_buffer, bpage);
1203 
1204 	cpu_buffer->reader_page = bpage;
1205 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 	if (!page)
1207 		goto fail_free_reader;
1208 	bpage->page = page_address(page);
1209 	rb_init_page(bpage->page);
1210 
1211 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213 
1214 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215 	if (ret < 0)
1216 		goto fail_free_reader;
1217 
1218 	cpu_buffer->head_page
1219 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1220 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221 
1222 	rb_head_page_activate(cpu_buffer);
1223 
1224 	return cpu_buffer;
1225 
1226  fail_free_reader:
1227 	free_buffer_page(cpu_buffer->reader_page);
1228 
1229  fail_free_buffer:
1230 	kfree(cpu_buffer);
1231 	return NULL;
1232 }
1233 
1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235 {
1236 	struct list_head *head = cpu_buffer->pages;
1237 	struct buffer_page *bpage, *tmp;
1238 
1239 	free_buffer_page(cpu_buffer->reader_page);
1240 
1241 	rb_head_page_deactivate(cpu_buffer);
1242 
1243 	if (head) {
1244 		list_for_each_entry_safe(bpage, tmp, head, list) {
1245 			list_del_init(&bpage->list);
1246 			free_buffer_page(bpage);
1247 		}
1248 		bpage = list_entry(head, struct buffer_page, list);
1249 		free_buffer_page(bpage);
1250 	}
1251 
1252 	kfree(cpu_buffer);
1253 }
1254 
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block *self,
1257 			 unsigned long action, void *hcpu);
1258 #endif
1259 
1260 /**
1261  * __ring_buffer_alloc - allocate a new ring_buffer
1262  * @size: the size in bytes per cpu that is needed.
1263  * @flags: attributes to set for the ring buffer.
1264  *
1265  * Currently the only flag that is available is the RB_FL_OVERWRITE
1266  * flag. This flag means that the buffer will overwrite old data
1267  * when the buffer wraps. If this flag is not set, the buffer will
1268  * drop data when the tail hits the head.
1269  */
1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 					struct lock_class_key *key)
1272 {
1273 	struct ring_buffer *buffer;
1274 	int bsize;
1275 	int cpu, nr_pages;
1276 
1277 	/* keep it in its own cache line */
1278 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 			 GFP_KERNEL);
1280 	if (!buffer)
1281 		return NULL;
1282 
1283 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 		goto fail_free_buffer;
1285 
1286 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287 	buffer->flags = flags;
1288 	buffer->clock = trace_clock_local;
1289 	buffer->reader_lock_key = key;
1290 
1291 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292 	init_waitqueue_head(&buffer->irq_work.waiters);
1293 
1294 	/* need at least two pages */
1295 	if (nr_pages < 2)
1296 		nr_pages = 2;
1297 
1298 	/*
1299 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 	 * in early initcall, it will not be notified of secondary cpus.
1301 	 * In that off case, we need to allocate for all possible cpus.
1302 	 */
1303 #ifdef CONFIG_HOTPLUG_CPU
1304 	get_online_cpus();
1305 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1306 #else
1307 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308 #endif
1309 	buffer->cpus = nr_cpu_ids;
1310 
1311 	bsize = sizeof(void *) * nr_cpu_ids;
1312 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 				  GFP_KERNEL);
1314 	if (!buffer->buffers)
1315 		goto fail_free_cpumask;
1316 
1317 	for_each_buffer_cpu(buffer, cpu) {
1318 		buffer->buffers[cpu] =
1319 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320 		if (!buffer->buffers[cpu])
1321 			goto fail_free_buffers;
1322 	}
1323 
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 	buffer->cpu_notify.priority = 0;
1327 	register_cpu_notifier(&buffer->cpu_notify);
1328 #endif
1329 
1330 	put_online_cpus();
1331 	mutex_init(&buffer->mutex);
1332 
1333 	return buffer;
1334 
1335  fail_free_buffers:
1336 	for_each_buffer_cpu(buffer, cpu) {
1337 		if (buffer->buffers[cpu])
1338 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 	}
1340 	kfree(buffer->buffers);
1341 
1342  fail_free_cpumask:
1343 	free_cpumask_var(buffer->cpumask);
1344 	put_online_cpus();
1345 
1346  fail_free_buffer:
1347 	kfree(buffer);
1348 	return NULL;
1349 }
1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1351 
1352 /**
1353  * ring_buffer_free - free a ring buffer.
1354  * @buffer: the buffer to free.
1355  */
1356 void
1357 ring_buffer_free(struct ring_buffer *buffer)
1358 {
1359 	int cpu;
1360 
1361 	get_online_cpus();
1362 
1363 #ifdef CONFIG_HOTPLUG_CPU
1364 	unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366 
1367 	for_each_buffer_cpu(buffer, cpu)
1368 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1369 
1370 	put_online_cpus();
1371 
1372 	kfree(buffer->buffers);
1373 	free_cpumask_var(buffer->cpumask);
1374 
1375 	kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378 
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 			   u64 (*clock)(void))
1381 {
1382 	buffer->clock = clock;
1383 }
1384 
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386 
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391 
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394 	return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396 
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399 {
1400 	struct list_head *tail_page, *to_remove, *next_page;
1401 	struct buffer_page *to_remove_page, *tmp_iter_page;
1402 	struct buffer_page *last_page, *first_page;
1403 	unsigned int nr_removed;
1404 	unsigned long head_bit;
1405 	int page_entries;
1406 
1407 	head_bit = 0;
1408 
1409 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410 	atomic_inc(&cpu_buffer->record_disabled);
1411 	/*
1412 	 * We don't race with the readers since we have acquired the reader
1413 	 * lock. We also don't race with writers after disabling recording.
1414 	 * This makes it easy to figure out the first and the last page to be
1415 	 * removed from the list. We unlink all the pages in between including
1416 	 * the first and last pages. This is done in a busy loop so that we
1417 	 * lose the least number of traces.
1418 	 * The pages are freed after we restart recording and unlock readers.
1419 	 */
1420 	tail_page = &cpu_buffer->tail_page->list;
1421 
1422 	/*
1423 	 * tail page might be on reader page, we remove the next page
1424 	 * from the ring buffer
1425 	 */
1426 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 		tail_page = rb_list_head(tail_page->next);
1428 	to_remove = tail_page;
1429 
1430 	/* start of pages to remove */
1431 	first_page = list_entry(rb_list_head(to_remove->next),
1432 				struct buffer_page, list);
1433 
1434 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 		to_remove = rb_list_head(to_remove)->next;
1436 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437 	}
1438 
1439 	next_page = rb_list_head(to_remove)->next;
1440 
1441 	/*
1442 	 * Now we remove all pages between tail_page and next_page.
1443 	 * Make sure that we have head_bit value preserved for the
1444 	 * next page
1445 	 */
1446 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 						head_bit);
1448 	next_page = rb_list_head(next_page);
1449 	next_page->prev = tail_page;
1450 
1451 	/* make sure pages points to a valid page in the ring buffer */
1452 	cpu_buffer->pages = next_page;
1453 
1454 	/* update head page */
1455 	if (head_bit)
1456 		cpu_buffer->head_page = list_entry(next_page,
1457 						struct buffer_page, list);
1458 
1459 	/*
1460 	 * change read pointer to make sure any read iterators reset
1461 	 * themselves
1462 	 */
1463 	cpu_buffer->read = 0;
1464 
1465 	/* pages are removed, resume tracing and then free the pages */
1466 	atomic_dec(&cpu_buffer->record_disabled);
1467 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468 
1469 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470 
1471 	/* last buffer page to remove */
1472 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 				list);
1474 	tmp_iter_page = first_page;
1475 
1476 	do {
1477 		to_remove_page = tmp_iter_page;
1478 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1479 
1480 		/* update the counters */
1481 		page_entries = rb_page_entries(to_remove_page);
1482 		if (page_entries) {
1483 			/*
1484 			 * If something was added to this page, it was full
1485 			 * since it is not the tail page. So we deduct the
1486 			 * bytes consumed in ring buffer from here.
1487 			 * Increment overrun to account for the lost events.
1488 			 */
1489 			local_add(page_entries, &cpu_buffer->overrun);
1490 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 		}
1492 
1493 		/*
1494 		 * We have already removed references to this list item, just
1495 		 * free up the buffer_page and its page
1496 		 */
1497 		free_buffer_page(to_remove_page);
1498 		nr_removed--;
1499 
1500 	} while (to_remove_page != last_page);
1501 
1502 	RB_WARN_ON(cpu_buffer, nr_removed);
1503 
1504 	return nr_removed == 0;
1505 }
1506 
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 	struct list_head *pages = &cpu_buffer->new_pages;
1511 	int retries, success;
1512 
1513 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514 	/*
1515 	 * We are holding the reader lock, so the reader page won't be swapped
1516 	 * in the ring buffer. Now we are racing with the writer trying to
1517 	 * move head page and the tail page.
1518 	 * We are going to adapt the reader page update process where:
1519 	 * 1. We first splice the start and end of list of new pages between
1520 	 *    the head page and its previous page.
1521 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 	 *    start of new pages list.
1523 	 * 3. Finally, we update the head->prev to the end of new list.
1524 	 *
1525 	 * We will try this process 10 times, to make sure that we don't keep
1526 	 * spinning.
1527 	 */
1528 	retries = 10;
1529 	success = 0;
1530 	while (retries--) {
1531 		struct list_head *head_page, *prev_page, *r;
1532 		struct list_head *last_page, *first_page;
1533 		struct list_head *head_page_with_bit;
1534 
1535 		head_page = &rb_set_head_page(cpu_buffer)->list;
1536 		if (!head_page)
1537 			break;
1538 		prev_page = head_page->prev;
1539 
1540 		first_page = pages->next;
1541 		last_page  = pages->prev;
1542 
1543 		head_page_with_bit = (struct list_head *)
1544 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1545 
1546 		last_page->next = head_page_with_bit;
1547 		first_page->prev = prev_page;
1548 
1549 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550 
1551 		if (r == head_page_with_bit) {
1552 			/*
1553 			 * yay, we replaced the page pointer to our new list,
1554 			 * now, we just have to update to head page's prev
1555 			 * pointer to point to end of list
1556 			 */
1557 			head_page->prev = last_page;
1558 			success = 1;
1559 			break;
1560 		}
1561 	}
1562 
1563 	if (success)
1564 		INIT_LIST_HEAD(pages);
1565 	/*
1566 	 * If we weren't successful in adding in new pages, warn and stop
1567 	 * tracing
1568 	 */
1569 	RB_WARN_ON(cpu_buffer, !success);
1570 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571 
1572 	/* free pages if they weren't inserted */
1573 	if (!success) {
1574 		struct buffer_page *bpage, *tmp;
1575 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 					 list) {
1577 			list_del_init(&bpage->list);
1578 			free_buffer_page(bpage);
1579 		}
1580 	}
1581 	return success;
1582 }
1583 
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586 	int success;
1587 
1588 	if (cpu_buffer->nr_pages_to_update > 0)
1589 		success = rb_insert_pages(cpu_buffer);
1590 	else
1591 		success = rb_remove_pages(cpu_buffer,
1592 					-cpu_buffer->nr_pages_to_update);
1593 
1594 	if (success)
1595 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597 
1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 			struct ring_buffer_per_cpu, update_pages_work);
1602 	rb_update_pages(cpu_buffer);
1603 	complete(&cpu_buffer->update_done);
1604 }
1605 
1606 /**
1607  * ring_buffer_resize - resize the ring buffer
1608  * @buffer: the buffer to resize.
1609  * @size: the new size.
1610  * @cpu_id: the cpu buffer to resize
1611  *
1612  * Minimum size is 2 * BUF_PAGE_SIZE.
1613  *
1614  * Returns 0 on success and < 0 on failure.
1615  */
1616 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617 			int cpu_id)
1618 {
1619 	struct ring_buffer_per_cpu *cpu_buffer;
1620 	unsigned nr_pages;
1621 	int cpu, err = 0;
1622 
1623 	/*
1624 	 * Always succeed at resizing a non-existent buffer:
1625 	 */
1626 	if (!buffer)
1627 		return size;
1628 
1629 	/* Make sure the requested buffer exists */
1630 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632 		return size;
1633 
1634 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1635 	size *= BUF_PAGE_SIZE;
1636 
1637 	/* we need a minimum of two pages */
1638 	if (size < BUF_PAGE_SIZE * 2)
1639 		size = BUF_PAGE_SIZE * 2;
1640 
1641 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1642 
1643 	/*
1644 	 * Don't succeed if resizing is disabled, as a reader might be
1645 	 * manipulating the ring buffer and is expecting a sane state while
1646 	 * this is true.
1647 	 */
1648 	if (atomic_read(&buffer->resize_disabled))
1649 		return -EBUSY;
1650 
1651 	/* prevent another thread from changing buffer sizes */
1652 	mutex_lock(&buffer->mutex);
1653 
1654 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1655 		/* calculate the pages to update */
1656 		for_each_buffer_cpu(buffer, cpu) {
1657 			cpu_buffer = buffer->buffers[cpu];
1658 
1659 			cpu_buffer->nr_pages_to_update = nr_pages -
1660 							cpu_buffer->nr_pages;
1661 			/*
1662 			 * nothing more to do for removing pages or no update
1663 			 */
1664 			if (cpu_buffer->nr_pages_to_update <= 0)
1665 				continue;
1666 			/*
1667 			 * to add pages, make sure all new pages can be
1668 			 * allocated without receiving ENOMEM
1669 			 */
1670 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1671 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1672 						&cpu_buffer->new_pages, cpu)) {
1673 				/* not enough memory for new pages */
1674 				err = -ENOMEM;
1675 				goto out_err;
1676 			}
1677 		}
1678 
1679 		get_online_cpus();
1680 		/*
1681 		 * Fire off all the required work handlers
1682 		 * We can't schedule on offline CPUs, but it's not necessary
1683 		 * since we can change their buffer sizes without any race.
1684 		 */
1685 		for_each_buffer_cpu(buffer, cpu) {
1686 			cpu_buffer = buffer->buffers[cpu];
1687 			if (!cpu_buffer->nr_pages_to_update)
1688 				continue;
1689 
1690 			/* The update must run on the CPU that is being updated. */
1691 			preempt_disable();
1692 			if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1693 				rb_update_pages(cpu_buffer);
1694 				cpu_buffer->nr_pages_to_update = 0;
1695 			} else {
1696 				/*
1697 				 * Can not disable preemption for schedule_work_on()
1698 				 * on PREEMPT_RT.
1699 				 */
1700 				preempt_enable();
1701 				schedule_work_on(cpu,
1702 						&cpu_buffer->update_pages_work);
1703 				preempt_disable();
1704 			}
1705 			preempt_enable();
1706 		}
1707 
1708 		/* wait for all the updates to complete */
1709 		for_each_buffer_cpu(buffer, cpu) {
1710 			cpu_buffer = buffer->buffers[cpu];
1711 			if (!cpu_buffer->nr_pages_to_update)
1712 				continue;
1713 
1714 			if (cpu_online(cpu))
1715 				wait_for_completion(&cpu_buffer->update_done);
1716 			cpu_buffer->nr_pages_to_update = 0;
1717 		}
1718 
1719 		put_online_cpus();
1720 	} else {
1721 		/* Make sure this CPU has been intitialized */
1722 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1723 			goto out;
1724 
1725 		cpu_buffer = buffer->buffers[cpu_id];
1726 
1727 		if (nr_pages == cpu_buffer->nr_pages)
1728 			goto out;
1729 
1730 		cpu_buffer->nr_pages_to_update = nr_pages -
1731 						cpu_buffer->nr_pages;
1732 
1733 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1734 		if (cpu_buffer->nr_pages_to_update > 0 &&
1735 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1736 					    &cpu_buffer->new_pages, cpu_id)) {
1737 			err = -ENOMEM;
1738 			goto out_err;
1739 		}
1740 
1741 		get_online_cpus();
1742 
1743 		preempt_disable();
1744 		/* The update must run on the CPU that is being updated. */
1745 		if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1746 			rb_update_pages(cpu_buffer);
1747 		else {
1748 			/*
1749 			 * Can not disable preemption for schedule_work_on()
1750 			 * on PREEMPT_RT.
1751 			 */
1752 			preempt_enable();
1753 			schedule_work_on(cpu_id,
1754 					 &cpu_buffer->update_pages_work);
1755 			wait_for_completion(&cpu_buffer->update_done);
1756 			preempt_disable();
1757 		}
1758 		preempt_enable();
1759 
1760 		cpu_buffer->nr_pages_to_update = 0;
1761 		put_online_cpus();
1762 	}
1763 
1764  out:
1765 	/*
1766 	 * The ring buffer resize can happen with the ring buffer
1767 	 * enabled, so that the update disturbs the tracing as little
1768 	 * as possible. But if the buffer is disabled, we do not need
1769 	 * to worry about that, and we can take the time to verify
1770 	 * that the buffer is not corrupt.
1771 	 */
1772 	if (atomic_read(&buffer->record_disabled)) {
1773 		atomic_inc(&buffer->record_disabled);
1774 		/*
1775 		 * Even though the buffer was disabled, we must make sure
1776 		 * that it is truly disabled before calling rb_check_pages.
1777 		 * There could have been a race between checking
1778 		 * record_disable and incrementing it.
1779 		 */
1780 		synchronize_sched();
1781 		for_each_buffer_cpu(buffer, cpu) {
1782 			cpu_buffer = buffer->buffers[cpu];
1783 			rb_check_pages(cpu_buffer);
1784 		}
1785 		atomic_dec(&buffer->record_disabled);
1786 	}
1787 
1788 	mutex_unlock(&buffer->mutex);
1789 	return size;
1790 
1791  out_err:
1792 	for_each_buffer_cpu(buffer, cpu) {
1793 		struct buffer_page *bpage, *tmp;
1794 
1795 		cpu_buffer = buffer->buffers[cpu];
1796 		cpu_buffer->nr_pages_to_update = 0;
1797 
1798 		if (list_empty(&cpu_buffer->new_pages))
1799 			continue;
1800 
1801 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1802 					list) {
1803 			list_del_init(&bpage->list);
1804 			free_buffer_page(bpage);
1805 		}
1806 	}
1807 	mutex_unlock(&buffer->mutex);
1808 	return err;
1809 }
1810 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1811 
1812 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1813 {
1814 	mutex_lock(&buffer->mutex);
1815 	if (val)
1816 		buffer->flags |= RB_FL_OVERWRITE;
1817 	else
1818 		buffer->flags &= ~RB_FL_OVERWRITE;
1819 	mutex_unlock(&buffer->mutex);
1820 }
1821 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1822 
1823 static inline void *
1824 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1825 {
1826 	return bpage->data + index;
1827 }
1828 
1829 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1830 {
1831 	return bpage->page->data + index;
1832 }
1833 
1834 static inline struct ring_buffer_event *
1835 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1836 {
1837 	return __rb_page_index(cpu_buffer->reader_page,
1838 			       cpu_buffer->reader_page->read);
1839 }
1840 
1841 static inline struct ring_buffer_event *
1842 rb_iter_head_event(struct ring_buffer_iter *iter)
1843 {
1844 	return __rb_page_index(iter->head_page, iter->head);
1845 }
1846 
1847 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1848 {
1849 	return local_read(&bpage->page->commit);
1850 }
1851 
1852 /* Size is determined by what has been committed */
1853 static inline unsigned rb_page_size(struct buffer_page *bpage)
1854 {
1855 	return rb_page_commit(bpage);
1856 }
1857 
1858 static inline unsigned
1859 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1860 {
1861 	return rb_page_commit(cpu_buffer->commit_page);
1862 }
1863 
1864 static inline unsigned
1865 rb_event_index(struct ring_buffer_event *event)
1866 {
1867 	unsigned long addr = (unsigned long)event;
1868 
1869 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1870 }
1871 
1872 static inline int
1873 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1874 		   struct ring_buffer_event *event)
1875 {
1876 	unsigned long addr = (unsigned long)event;
1877 	unsigned long index;
1878 
1879 	index = rb_event_index(event);
1880 	addr &= PAGE_MASK;
1881 
1882 	return cpu_buffer->commit_page->page == (void *)addr &&
1883 		rb_commit_index(cpu_buffer) == index;
1884 }
1885 
1886 static void
1887 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1888 {
1889 	unsigned long max_count;
1890 
1891 	/*
1892 	 * We only race with interrupts and NMIs on this CPU.
1893 	 * If we own the commit event, then we can commit
1894 	 * all others that interrupted us, since the interruptions
1895 	 * are in stack format (they finish before they come
1896 	 * back to us). This allows us to do a simple loop to
1897 	 * assign the commit to the tail.
1898 	 */
1899  again:
1900 	max_count = cpu_buffer->nr_pages * 100;
1901 
1902 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1903 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1904 			return;
1905 		if (RB_WARN_ON(cpu_buffer,
1906 			       rb_is_reader_page(cpu_buffer->tail_page)))
1907 			return;
1908 		local_set(&cpu_buffer->commit_page->page->commit,
1909 			  rb_page_write(cpu_buffer->commit_page));
1910 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1911 		cpu_buffer->write_stamp =
1912 			cpu_buffer->commit_page->page->time_stamp;
1913 		/* add barrier to keep gcc from optimizing too much */
1914 		barrier();
1915 	}
1916 	while (rb_commit_index(cpu_buffer) !=
1917 	       rb_page_write(cpu_buffer->commit_page)) {
1918 
1919 		local_set(&cpu_buffer->commit_page->page->commit,
1920 			  rb_page_write(cpu_buffer->commit_page));
1921 		RB_WARN_ON(cpu_buffer,
1922 			   local_read(&cpu_buffer->commit_page->page->commit) &
1923 			   ~RB_WRITE_MASK);
1924 		barrier();
1925 	}
1926 
1927 	/* again, keep gcc from optimizing */
1928 	barrier();
1929 
1930 	/*
1931 	 * If an interrupt came in just after the first while loop
1932 	 * and pushed the tail page forward, we will be left with
1933 	 * a dangling commit that will never go forward.
1934 	 */
1935 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1936 		goto again;
1937 }
1938 
1939 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1940 {
1941 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1942 	cpu_buffer->reader_page->read = 0;
1943 }
1944 
1945 static void rb_inc_iter(struct ring_buffer_iter *iter)
1946 {
1947 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1948 
1949 	/*
1950 	 * The iterator could be on the reader page (it starts there).
1951 	 * But the head could have moved, since the reader was
1952 	 * found. Check for this case and assign the iterator
1953 	 * to the head page instead of next.
1954 	 */
1955 	if (iter->head_page == cpu_buffer->reader_page)
1956 		iter->head_page = rb_set_head_page(cpu_buffer);
1957 	else
1958 		rb_inc_page(cpu_buffer, &iter->head_page);
1959 
1960 	iter->read_stamp = iter->head_page->page->time_stamp;
1961 	iter->head = 0;
1962 }
1963 
1964 /* Slow path, do not inline */
1965 static noinline struct ring_buffer_event *
1966 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1967 {
1968 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1969 
1970 	/* Not the first event on the page? */
1971 	if (rb_event_index(event)) {
1972 		event->time_delta = delta & TS_MASK;
1973 		event->array[0] = delta >> TS_SHIFT;
1974 	} else {
1975 		/* nope, just zero it */
1976 		event->time_delta = 0;
1977 		event->array[0] = 0;
1978 	}
1979 
1980 	return skip_time_extend(event);
1981 }
1982 
1983 /**
1984  * rb_update_event - update event type and data
1985  * @event: the even to update
1986  * @type: the type of event
1987  * @length: the size of the event field in the ring buffer
1988  *
1989  * Update the type and data fields of the event. The length
1990  * is the actual size that is written to the ring buffer,
1991  * and with this, we can determine what to place into the
1992  * data field.
1993  */
1994 static void
1995 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1996 		struct ring_buffer_event *event, unsigned length,
1997 		int add_timestamp, u64 delta)
1998 {
1999 	/* Only a commit updates the timestamp */
2000 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2001 		delta = 0;
2002 
2003 	/*
2004 	 * If we need to add a timestamp, then we
2005 	 * add it to the start of the resevered space.
2006 	 */
2007 	if (unlikely(add_timestamp)) {
2008 		event = rb_add_time_stamp(event, delta);
2009 		length -= RB_LEN_TIME_EXTEND;
2010 		delta = 0;
2011 	}
2012 
2013 	event->time_delta = delta;
2014 	length -= RB_EVNT_HDR_SIZE;
2015 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2016 		event->type_len = 0;
2017 		event->array[0] = length;
2018 	} else
2019 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2020 }
2021 
2022 /*
2023  * rb_handle_head_page - writer hit the head page
2024  *
2025  * Returns: +1 to retry page
2026  *           0 to continue
2027  *          -1 on error
2028  */
2029 static int
2030 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2031 		    struct buffer_page *tail_page,
2032 		    struct buffer_page *next_page)
2033 {
2034 	struct buffer_page *new_head;
2035 	int entries;
2036 	int type;
2037 	int ret;
2038 
2039 	entries = rb_page_entries(next_page);
2040 
2041 	/*
2042 	 * The hard part is here. We need to move the head
2043 	 * forward, and protect against both readers on
2044 	 * other CPUs and writers coming in via interrupts.
2045 	 */
2046 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2047 				       RB_PAGE_HEAD);
2048 
2049 	/*
2050 	 * type can be one of four:
2051 	 *  NORMAL - an interrupt already moved it for us
2052 	 *  HEAD   - we are the first to get here.
2053 	 *  UPDATE - we are the interrupt interrupting
2054 	 *           a current move.
2055 	 *  MOVED  - a reader on another CPU moved the next
2056 	 *           pointer to its reader page. Give up
2057 	 *           and try again.
2058 	 */
2059 
2060 	switch (type) {
2061 	case RB_PAGE_HEAD:
2062 		/*
2063 		 * We changed the head to UPDATE, thus
2064 		 * it is our responsibility to update
2065 		 * the counters.
2066 		 */
2067 		local_add(entries, &cpu_buffer->overrun);
2068 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2069 
2070 		/*
2071 		 * The entries will be zeroed out when we move the
2072 		 * tail page.
2073 		 */
2074 
2075 		/* still more to do */
2076 		break;
2077 
2078 	case RB_PAGE_UPDATE:
2079 		/*
2080 		 * This is an interrupt that interrupt the
2081 		 * previous update. Still more to do.
2082 		 */
2083 		break;
2084 	case RB_PAGE_NORMAL:
2085 		/*
2086 		 * An interrupt came in before the update
2087 		 * and processed this for us.
2088 		 * Nothing left to do.
2089 		 */
2090 		return 1;
2091 	case RB_PAGE_MOVED:
2092 		/*
2093 		 * The reader is on another CPU and just did
2094 		 * a swap with our next_page.
2095 		 * Try again.
2096 		 */
2097 		return 1;
2098 	default:
2099 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2100 		return -1;
2101 	}
2102 
2103 	/*
2104 	 * Now that we are here, the old head pointer is
2105 	 * set to UPDATE. This will keep the reader from
2106 	 * swapping the head page with the reader page.
2107 	 * The reader (on another CPU) will spin till
2108 	 * we are finished.
2109 	 *
2110 	 * We just need to protect against interrupts
2111 	 * doing the job. We will set the next pointer
2112 	 * to HEAD. After that, we set the old pointer
2113 	 * to NORMAL, but only if it was HEAD before.
2114 	 * otherwise we are an interrupt, and only
2115 	 * want the outer most commit to reset it.
2116 	 */
2117 	new_head = next_page;
2118 	rb_inc_page(cpu_buffer, &new_head);
2119 
2120 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2121 				    RB_PAGE_NORMAL);
2122 
2123 	/*
2124 	 * Valid returns are:
2125 	 *  HEAD   - an interrupt came in and already set it.
2126 	 *  NORMAL - One of two things:
2127 	 *            1) We really set it.
2128 	 *            2) A bunch of interrupts came in and moved
2129 	 *               the page forward again.
2130 	 */
2131 	switch (ret) {
2132 	case RB_PAGE_HEAD:
2133 	case RB_PAGE_NORMAL:
2134 		/* OK */
2135 		break;
2136 	default:
2137 		RB_WARN_ON(cpu_buffer, 1);
2138 		return -1;
2139 	}
2140 
2141 	/*
2142 	 * It is possible that an interrupt came in,
2143 	 * set the head up, then more interrupts came in
2144 	 * and moved it again. When we get back here,
2145 	 * the page would have been set to NORMAL but we
2146 	 * just set it back to HEAD.
2147 	 *
2148 	 * How do you detect this? Well, if that happened
2149 	 * the tail page would have moved.
2150 	 */
2151 	if (ret == RB_PAGE_NORMAL) {
2152 		/*
2153 		 * If the tail had moved passed next, then we need
2154 		 * to reset the pointer.
2155 		 */
2156 		if (cpu_buffer->tail_page != tail_page &&
2157 		    cpu_buffer->tail_page != next_page)
2158 			rb_head_page_set_normal(cpu_buffer, new_head,
2159 						next_page,
2160 						RB_PAGE_HEAD);
2161 	}
2162 
2163 	/*
2164 	 * If this was the outer most commit (the one that
2165 	 * changed the original pointer from HEAD to UPDATE),
2166 	 * then it is up to us to reset it to NORMAL.
2167 	 */
2168 	if (type == RB_PAGE_HEAD) {
2169 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2170 					      tail_page,
2171 					      RB_PAGE_UPDATE);
2172 		if (RB_WARN_ON(cpu_buffer,
2173 			       ret != RB_PAGE_UPDATE))
2174 			return -1;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static unsigned rb_calculate_event_length(unsigned length)
2181 {
2182 	struct ring_buffer_event event; /* Used only for sizeof array */
2183 
2184 	/* zero length can cause confusions */
2185 	if (!length)
2186 		length = 1;
2187 
2188 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2189 		length += sizeof(event.array[0]);
2190 
2191 	length += RB_EVNT_HDR_SIZE;
2192 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2193 
2194 	return length;
2195 }
2196 
2197 static inline void
2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199 	      struct buffer_page *tail_page,
2200 	      unsigned long tail, unsigned long length)
2201 {
2202 	struct ring_buffer_event *event;
2203 
2204 	/*
2205 	 * Only the event that crossed the page boundary
2206 	 * must fill the old tail_page with padding.
2207 	 */
2208 	if (tail >= BUF_PAGE_SIZE) {
2209 		/*
2210 		 * If the page was filled, then we still need
2211 		 * to update the real_end. Reset it to zero
2212 		 * and the reader will ignore it.
2213 		 */
2214 		if (tail == BUF_PAGE_SIZE)
2215 			tail_page->real_end = 0;
2216 
2217 		local_sub(length, &tail_page->write);
2218 		return;
2219 	}
2220 
2221 	event = __rb_page_index(tail_page, tail);
2222 	kmemcheck_annotate_bitfield(event, bitfield);
2223 
2224 	/* account for padding bytes */
2225 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226 
2227 	/*
2228 	 * Save the original length to the meta data.
2229 	 * This will be used by the reader to add lost event
2230 	 * counter.
2231 	 */
2232 	tail_page->real_end = tail;
2233 
2234 	/*
2235 	 * If this event is bigger than the minimum size, then
2236 	 * we need to be careful that we don't subtract the
2237 	 * write counter enough to allow another writer to slip
2238 	 * in on this page.
2239 	 * We put in a discarded commit instead, to make sure
2240 	 * that this space is not used again.
2241 	 *
2242 	 * If we are less than the minimum size, we don't need to
2243 	 * worry about it.
2244 	 */
2245 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246 		/* No room for any events */
2247 
2248 		/* Mark the rest of the page with padding */
2249 		rb_event_set_padding(event);
2250 
2251 		/* Set the write back to the previous setting */
2252 		local_sub(length, &tail_page->write);
2253 		return;
2254 	}
2255 
2256 	/* Put in a discarded event */
2257 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258 	event->type_len = RINGBUF_TYPE_PADDING;
2259 	/* time delta must be non zero */
2260 	event->time_delta = 1;
2261 
2262 	/* Set write to end of buffer */
2263 	length = (tail + length) - BUF_PAGE_SIZE;
2264 	local_sub(length, &tail_page->write);
2265 }
2266 
2267 /*
2268  * This is the slow path, force gcc not to inline it.
2269  */
2270 static noinline struct ring_buffer_event *
2271 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2272 	     unsigned long length, unsigned long tail,
2273 	     struct buffer_page *tail_page, u64 ts)
2274 {
2275 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2276 	struct ring_buffer *buffer = cpu_buffer->buffer;
2277 	struct buffer_page *next_page;
2278 	int ret;
2279 
2280 	next_page = tail_page;
2281 
2282 	rb_inc_page(cpu_buffer, &next_page);
2283 
2284 	/*
2285 	 * If for some reason, we had an interrupt storm that made
2286 	 * it all the way around the buffer, bail, and warn
2287 	 * about it.
2288 	 */
2289 	if (unlikely(next_page == commit_page)) {
2290 		local_inc(&cpu_buffer->commit_overrun);
2291 		goto out_reset;
2292 	}
2293 
2294 	/*
2295 	 * This is where the fun begins!
2296 	 *
2297 	 * We are fighting against races between a reader that
2298 	 * could be on another CPU trying to swap its reader
2299 	 * page with the buffer head.
2300 	 *
2301 	 * We are also fighting against interrupts coming in and
2302 	 * moving the head or tail on us as well.
2303 	 *
2304 	 * If the next page is the head page then we have filled
2305 	 * the buffer, unless the commit page is still on the
2306 	 * reader page.
2307 	 */
2308 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2309 
2310 		/*
2311 		 * If the commit is not on the reader page, then
2312 		 * move the header page.
2313 		 */
2314 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2315 			/*
2316 			 * If we are not in overwrite mode,
2317 			 * this is easy, just stop here.
2318 			 */
2319 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2320 				local_inc(&cpu_buffer->dropped_events);
2321 				goto out_reset;
2322 			}
2323 
2324 			ret = rb_handle_head_page(cpu_buffer,
2325 						  tail_page,
2326 						  next_page);
2327 			if (ret < 0)
2328 				goto out_reset;
2329 			if (ret)
2330 				goto out_again;
2331 		} else {
2332 			/*
2333 			 * We need to be careful here too. The
2334 			 * commit page could still be on the reader
2335 			 * page. We could have a small buffer, and
2336 			 * have filled up the buffer with events
2337 			 * from interrupts and such, and wrapped.
2338 			 *
2339 			 * Note, if the tail page is also the on the
2340 			 * reader_page, we let it move out.
2341 			 */
2342 			if (unlikely((cpu_buffer->commit_page !=
2343 				      cpu_buffer->tail_page) &&
2344 				     (cpu_buffer->commit_page ==
2345 				      cpu_buffer->reader_page))) {
2346 				local_inc(&cpu_buffer->commit_overrun);
2347 				goto out_reset;
2348 			}
2349 		}
2350 	}
2351 
2352 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2353 	if (ret) {
2354 		/*
2355 		 * Nested commits always have zero deltas, so
2356 		 * just reread the time stamp
2357 		 */
2358 		ts = rb_time_stamp(buffer);
2359 		next_page->page->time_stamp = ts;
2360 	}
2361 
2362  out_again:
2363 
2364 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2365 
2366 	/* fail and let the caller try again */
2367 	return ERR_PTR(-EAGAIN);
2368 
2369  out_reset:
2370 	/* reset write */
2371 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2372 
2373 	return NULL;
2374 }
2375 
2376 static struct ring_buffer_event *
2377 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2378 		  unsigned long length, u64 ts,
2379 		  u64 delta, int add_timestamp)
2380 {
2381 	struct buffer_page *tail_page;
2382 	struct ring_buffer_event *event;
2383 	unsigned long tail, write;
2384 
2385 	/*
2386 	 * If the time delta since the last event is too big to
2387 	 * hold in the time field of the event, then we append a
2388 	 * TIME EXTEND event ahead of the data event.
2389 	 */
2390 	if (unlikely(add_timestamp))
2391 		length += RB_LEN_TIME_EXTEND;
2392 
2393 	tail_page = cpu_buffer->tail_page;
2394 	write = local_add_return(length, &tail_page->write);
2395 
2396 	/* set write to only the index of the write */
2397 	write &= RB_WRITE_MASK;
2398 	tail = write - length;
2399 
2400 	/*
2401 	 * If this is the first commit on the page, then it has the same
2402 	 * timestamp as the page itself.
2403 	 */
2404 	if (!tail)
2405 		delta = 0;
2406 
2407 	/* See if we shot pass the end of this buffer page */
2408 	if (unlikely(write > BUF_PAGE_SIZE))
2409 		return rb_move_tail(cpu_buffer, length, tail,
2410 				    tail_page, ts);
2411 
2412 	/* We reserved something on the buffer */
2413 
2414 	event = __rb_page_index(tail_page, tail);
2415 	kmemcheck_annotate_bitfield(event, bitfield);
2416 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2417 
2418 	local_inc(&tail_page->entries);
2419 
2420 	/*
2421 	 * If this is the first commit on the page, then update
2422 	 * its timestamp.
2423 	 */
2424 	if (!tail)
2425 		tail_page->page->time_stamp = ts;
2426 
2427 	/* account for these added bytes */
2428 	local_add(length, &cpu_buffer->entries_bytes);
2429 
2430 	return event;
2431 }
2432 
2433 static inline int
2434 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2435 		  struct ring_buffer_event *event)
2436 {
2437 	unsigned long new_index, old_index;
2438 	struct buffer_page *bpage;
2439 	unsigned long index;
2440 	unsigned long addr;
2441 
2442 	new_index = rb_event_index(event);
2443 	old_index = new_index + rb_event_ts_length(event);
2444 	addr = (unsigned long)event;
2445 	addr &= PAGE_MASK;
2446 
2447 	bpage = cpu_buffer->tail_page;
2448 
2449 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2450 		unsigned long write_mask =
2451 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2452 		unsigned long event_length = rb_event_length(event);
2453 		/*
2454 		 * This is on the tail page. It is possible that
2455 		 * a write could come in and move the tail page
2456 		 * and write to the next page. That is fine
2457 		 * because we just shorten what is on this page.
2458 		 */
2459 		old_index += write_mask;
2460 		new_index += write_mask;
2461 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2462 		if (index == old_index) {
2463 			/* update counters */
2464 			local_sub(event_length, &cpu_buffer->entries_bytes);
2465 			return 1;
2466 		}
2467 	}
2468 
2469 	/* could not discard */
2470 	return 0;
2471 }
2472 
2473 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2474 {
2475 	local_inc(&cpu_buffer->committing);
2476 	local_inc(&cpu_buffer->commits);
2477 }
2478 
2479 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2480 {
2481 	unsigned long commits;
2482 
2483 	if (RB_WARN_ON(cpu_buffer,
2484 		       !local_read(&cpu_buffer->committing)))
2485 		return;
2486 
2487  again:
2488 	commits = local_read(&cpu_buffer->commits);
2489 	/* synchronize with interrupts */
2490 	barrier();
2491 	if (local_read(&cpu_buffer->committing) == 1)
2492 		rb_set_commit_to_write(cpu_buffer);
2493 
2494 	local_dec(&cpu_buffer->committing);
2495 
2496 	/* synchronize with interrupts */
2497 	barrier();
2498 
2499 	/*
2500 	 * Need to account for interrupts coming in between the
2501 	 * updating of the commit page and the clearing of the
2502 	 * committing counter.
2503 	 */
2504 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2505 	    !local_read(&cpu_buffer->committing)) {
2506 		local_inc(&cpu_buffer->committing);
2507 		goto again;
2508 	}
2509 }
2510 
2511 static struct ring_buffer_event *
2512 rb_reserve_next_event(struct ring_buffer *buffer,
2513 		      struct ring_buffer_per_cpu *cpu_buffer,
2514 		      unsigned long length)
2515 {
2516 	struct ring_buffer_event *event;
2517 	u64 ts, delta;
2518 	int nr_loops = 0;
2519 	int add_timestamp;
2520 	u64 diff;
2521 
2522 	rb_start_commit(cpu_buffer);
2523 
2524 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2525 	/*
2526 	 * Due to the ability to swap a cpu buffer from a buffer
2527 	 * it is possible it was swapped before we committed.
2528 	 * (committing stops a swap). We check for it here and
2529 	 * if it happened, we have to fail the write.
2530 	 */
2531 	barrier();
2532 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2533 		local_dec(&cpu_buffer->committing);
2534 		local_dec(&cpu_buffer->commits);
2535 		return NULL;
2536 	}
2537 #endif
2538 
2539 	length = rb_calculate_event_length(length);
2540  again:
2541 	add_timestamp = 0;
2542 	delta = 0;
2543 
2544 	/*
2545 	 * We allow for interrupts to reenter here and do a trace.
2546 	 * If one does, it will cause this original code to loop
2547 	 * back here. Even with heavy interrupts happening, this
2548 	 * should only happen a few times in a row. If this happens
2549 	 * 1000 times in a row, there must be either an interrupt
2550 	 * storm or we have something buggy.
2551 	 * Bail!
2552 	 */
2553 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2554 		goto out_fail;
2555 
2556 	ts = rb_time_stamp(cpu_buffer->buffer);
2557 	diff = ts - cpu_buffer->write_stamp;
2558 
2559 	/* make sure this diff is calculated here */
2560 	barrier();
2561 
2562 	/* Did the write stamp get updated already? */
2563 	if (likely(ts >= cpu_buffer->write_stamp)) {
2564 		delta = diff;
2565 		if (unlikely(test_time_stamp(delta))) {
2566 			int local_clock_stable = 1;
2567 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2568 			local_clock_stable = sched_clock_stable();
2569 #endif
2570 			WARN_ONCE(delta > (1ULL << 59),
2571 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2572 				  (unsigned long long)delta,
2573 				  (unsigned long long)ts,
2574 				  (unsigned long long)cpu_buffer->write_stamp,
2575 				  local_clock_stable ? "" :
2576 				  "If you just came from a suspend/resume,\n"
2577 				  "please switch to the trace global clock:\n"
2578 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2579 			add_timestamp = 1;
2580 		}
2581 	}
2582 
2583 	event = __rb_reserve_next(cpu_buffer, length, ts,
2584 				  delta, add_timestamp);
2585 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2586 		goto again;
2587 
2588 	if (!event)
2589 		goto out_fail;
2590 
2591 	return event;
2592 
2593  out_fail:
2594 	rb_end_commit(cpu_buffer);
2595 	return NULL;
2596 }
2597 
2598 #ifdef CONFIG_TRACING
2599 
2600 /*
2601  * The lock and unlock are done within a preempt disable section.
2602  * The current_context per_cpu variable can only be modified
2603  * by the current task between lock and unlock. But it can
2604  * be modified more than once via an interrupt. To pass this
2605  * information from the lock to the unlock without having to
2606  * access the 'in_interrupt()' functions again (which do show
2607  * a bit of overhead in something as critical as function tracing,
2608  * we use a bitmask trick.
2609  *
2610  *  bit 0 =  NMI context
2611  *  bit 1 =  IRQ context
2612  *  bit 2 =  SoftIRQ context
2613  *  bit 3 =  normal context.
2614  *
2615  * This works because this is the order of contexts that can
2616  * preempt other contexts. A SoftIRQ never preempts an IRQ
2617  * context.
2618  *
2619  * When the context is determined, the corresponding bit is
2620  * checked and set (if it was set, then a recursion of that context
2621  * happened).
2622  *
2623  * On unlock, we need to clear this bit. To do so, just subtract
2624  * 1 from the current_context and AND it to itself.
2625  *
2626  * (binary)
2627  *  101 - 1 = 100
2628  *  101 & 100 = 100 (clearing bit zero)
2629  *
2630  *  1010 - 1 = 1001
2631  *  1010 & 1001 = 1000 (clearing bit 1)
2632  *
2633  * The least significant bit can be cleared this way, and it
2634  * just so happens that it is the same bit corresponding to
2635  * the current context.
2636  */
2637 static DEFINE_PER_CPU(unsigned int, current_context);
2638 
2639 static __always_inline int trace_recursive_lock(void)
2640 {
2641 	unsigned int val = this_cpu_read(current_context);
2642 	int bit;
2643 
2644 	if (in_interrupt()) {
2645 		if (in_nmi())
2646 			bit = 0;
2647 		else if (in_irq())
2648 			bit = 1;
2649 		else
2650 			bit = 2;
2651 	} else
2652 		bit = 3;
2653 
2654 	if (unlikely(val & (1 << bit)))
2655 		return 1;
2656 
2657 	val |= (1 << bit);
2658 	this_cpu_write(current_context, val);
2659 
2660 	return 0;
2661 }
2662 
2663 static __always_inline void trace_recursive_unlock(void)
2664 {
2665 	unsigned int val = this_cpu_read(current_context);
2666 
2667 	val--;
2668 	val &= this_cpu_read(current_context);
2669 	this_cpu_write(current_context, val);
2670 }
2671 
2672 #else
2673 
2674 #define trace_recursive_lock()		(0)
2675 #define trace_recursive_unlock()	do { } while (0)
2676 
2677 #endif
2678 
2679 /**
2680  * ring_buffer_lock_reserve - reserve a part of the buffer
2681  * @buffer: the ring buffer to reserve from
2682  * @length: the length of the data to reserve (excluding event header)
2683  *
2684  * Returns a reseverd event on the ring buffer to copy directly to.
2685  * The user of this interface will need to get the body to write into
2686  * and can use the ring_buffer_event_data() interface.
2687  *
2688  * The length is the length of the data needed, not the event length
2689  * which also includes the event header.
2690  *
2691  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2692  * If NULL is returned, then nothing has been allocated or locked.
2693  */
2694 struct ring_buffer_event *
2695 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2696 {
2697 	struct ring_buffer_per_cpu *cpu_buffer;
2698 	struct ring_buffer_event *event;
2699 	int cpu;
2700 
2701 	if (ring_buffer_flags != RB_BUFFERS_ON)
2702 		return NULL;
2703 
2704 	/* If we are tracing schedule, we don't want to recurse */
2705 	preempt_disable_notrace();
2706 
2707 	if (atomic_read(&buffer->record_disabled))
2708 		goto out_nocheck;
2709 
2710 	if (trace_recursive_lock())
2711 		goto out_nocheck;
2712 
2713 	cpu = raw_smp_processor_id();
2714 
2715 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2716 		goto out;
2717 
2718 	cpu_buffer = buffer->buffers[cpu];
2719 
2720 	if (atomic_read(&cpu_buffer->record_disabled))
2721 		goto out;
2722 
2723 	if (length > BUF_MAX_DATA_SIZE)
2724 		goto out;
2725 
2726 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2727 	if (!event)
2728 		goto out;
2729 
2730 	return event;
2731 
2732  out:
2733 	trace_recursive_unlock();
2734 
2735  out_nocheck:
2736 	preempt_enable_notrace();
2737 	return NULL;
2738 }
2739 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2740 
2741 static void
2742 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2743 		      struct ring_buffer_event *event)
2744 {
2745 	u64 delta;
2746 
2747 	/*
2748 	 * The event first in the commit queue updates the
2749 	 * time stamp.
2750 	 */
2751 	if (rb_event_is_commit(cpu_buffer, event)) {
2752 		/*
2753 		 * A commit event that is first on a page
2754 		 * updates the write timestamp with the page stamp
2755 		 */
2756 		if (!rb_event_index(event))
2757 			cpu_buffer->write_stamp =
2758 				cpu_buffer->commit_page->page->time_stamp;
2759 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2760 			delta = event->array[0];
2761 			delta <<= TS_SHIFT;
2762 			delta += event->time_delta;
2763 			cpu_buffer->write_stamp += delta;
2764 		} else
2765 			cpu_buffer->write_stamp += event->time_delta;
2766 	}
2767 }
2768 
2769 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2770 		      struct ring_buffer_event *event)
2771 {
2772 	local_inc(&cpu_buffer->entries);
2773 	rb_update_write_stamp(cpu_buffer, event);
2774 	rb_end_commit(cpu_buffer);
2775 }
2776 
2777 static __always_inline void
2778 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2779 {
2780 	if (buffer->irq_work.waiters_pending) {
2781 		buffer->irq_work.waiters_pending = false;
2782 		/* irq_work_queue() supplies it's own memory barriers */
2783 		irq_work_queue(&buffer->irq_work.work);
2784 	}
2785 
2786 	if (cpu_buffer->irq_work.waiters_pending) {
2787 		cpu_buffer->irq_work.waiters_pending = false;
2788 		/* irq_work_queue() supplies it's own memory barriers */
2789 		irq_work_queue(&cpu_buffer->irq_work.work);
2790 	}
2791 }
2792 
2793 /**
2794  * ring_buffer_unlock_commit - commit a reserved
2795  * @buffer: The buffer to commit to
2796  * @event: The event pointer to commit.
2797  *
2798  * This commits the data to the ring buffer, and releases any locks held.
2799  *
2800  * Must be paired with ring_buffer_lock_reserve.
2801  */
2802 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2803 			      struct ring_buffer_event *event)
2804 {
2805 	struct ring_buffer_per_cpu *cpu_buffer;
2806 	int cpu = raw_smp_processor_id();
2807 
2808 	cpu_buffer = buffer->buffers[cpu];
2809 
2810 	rb_commit(cpu_buffer, event);
2811 
2812 	rb_wakeups(buffer, cpu_buffer);
2813 
2814 	trace_recursive_unlock();
2815 
2816 	preempt_enable_notrace();
2817 
2818 	return 0;
2819 }
2820 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2821 
2822 static inline void rb_event_discard(struct ring_buffer_event *event)
2823 {
2824 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2825 		event = skip_time_extend(event);
2826 
2827 	/* array[0] holds the actual length for the discarded event */
2828 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2829 	event->type_len = RINGBUF_TYPE_PADDING;
2830 	/* time delta must be non zero */
2831 	if (!event->time_delta)
2832 		event->time_delta = 1;
2833 }
2834 
2835 /*
2836  * Decrement the entries to the page that an event is on.
2837  * The event does not even need to exist, only the pointer
2838  * to the page it is on. This may only be called before the commit
2839  * takes place.
2840  */
2841 static inline void
2842 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2843 		   struct ring_buffer_event *event)
2844 {
2845 	unsigned long addr = (unsigned long)event;
2846 	struct buffer_page *bpage = cpu_buffer->commit_page;
2847 	struct buffer_page *start;
2848 
2849 	addr &= PAGE_MASK;
2850 
2851 	/* Do the likely case first */
2852 	if (likely(bpage->page == (void *)addr)) {
2853 		local_dec(&bpage->entries);
2854 		return;
2855 	}
2856 
2857 	/*
2858 	 * Because the commit page may be on the reader page we
2859 	 * start with the next page and check the end loop there.
2860 	 */
2861 	rb_inc_page(cpu_buffer, &bpage);
2862 	start = bpage;
2863 	do {
2864 		if (bpage->page == (void *)addr) {
2865 			local_dec(&bpage->entries);
2866 			return;
2867 		}
2868 		rb_inc_page(cpu_buffer, &bpage);
2869 	} while (bpage != start);
2870 
2871 	/* commit not part of this buffer?? */
2872 	RB_WARN_ON(cpu_buffer, 1);
2873 }
2874 
2875 /**
2876  * ring_buffer_commit_discard - discard an event that has not been committed
2877  * @buffer: the ring buffer
2878  * @event: non committed event to discard
2879  *
2880  * Sometimes an event that is in the ring buffer needs to be ignored.
2881  * This function lets the user discard an event in the ring buffer
2882  * and then that event will not be read later.
2883  *
2884  * This function only works if it is called before the the item has been
2885  * committed. It will try to free the event from the ring buffer
2886  * if another event has not been added behind it.
2887  *
2888  * If another event has been added behind it, it will set the event
2889  * up as discarded, and perform the commit.
2890  *
2891  * If this function is called, do not call ring_buffer_unlock_commit on
2892  * the event.
2893  */
2894 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2895 				struct ring_buffer_event *event)
2896 {
2897 	struct ring_buffer_per_cpu *cpu_buffer;
2898 	int cpu;
2899 
2900 	/* The event is discarded regardless */
2901 	rb_event_discard(event);
2902 
2903 	cpu = smp_processor_id();
2904 	cpu_buffer = buffer->buffers[cpu];
2905 
2906 	/*
2907 	 * This must only be called if the event has not been
2908 	 * committed yet. Thus we can assume that preemption
2909 	 * is still disabled.
2910 	 */
2911 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2912 
2913 	rb_decrement_entry(cpu_buffer, event);
2914 	if (rb_try_to_discard(cpu_buffer, event))
2915 		goto out;
2916 
2917 	/*
2918 	 * The commit is still visible by the reader, so we
2919 	 * must still update the timestamp.
2920 	 */
2921 	rb_update_write_stamp(cpu_buffer, event);
2922  out:
2923 	rb_end_commit(cpu_buffer);
2924 
2925 	trace_recursive_unlock();
2926 
2927 	preempt_enable_notrace();
2928 
2929 }
2930 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2931 
2932 /**
2933  * ring_buffer_write - write data to the buffer without reserving
2934  * @buffer: The ring buffer to write to.
2935  * @length: The length of the data being written (excluding the event header)
2936  * @data: The data to write to the buffer.
2937  *
2938  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2939  * one function. If you already have the data to write to the buffer, it
2940  * may be easier to simply call this function.
2941  *
2942  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2943  * and not the length of the event which would hold the header.
2944  */
2945 int ring_buffer_write(struct ring_buffer *buffer,
2946 		      unsigned long length,
2947 		      void *data)
2948 {
2949 	struct ring_buffer_per_cpu *cpu_buffer;
2950 	struct ring_buffer_event *event;
2951 	void *body;
2952 	int ret = -EBUSY;
2953 	int cpu;
2954 
2955 	if (ring_buffer_flags != RB_BUFFERS_ON)
2956 		return -EBUSY;
2957 
2958 	preempt_disable_notrace();
2959 
2960 	if (atomic_read(&buffer->record_disabled))
2961 		goto out;
2962 
2963 	cpu = raw_smp_processor_id();
2964 
2965 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966 		goto out;
2967 
2968 	cpu_buffer = buffer->buffers[cpu];
2969 
2970 	if (atomic_read(&cpu_buffer->record_disabled))
2971 		goto out;
2972 
2973 	if (length > BUF_MAX_DATA_SIZE)
2974 		goto out;
2975 
2976 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2977 	if (!event)
2978 		goto out;
2979 
2980 	body = rb_event_data(event);
2981 
2982 	memcpy(body, data, length);
2983 
2984 	rb_commit(cpu_buffer, event);
2985 
2986 	rb_wakeups(buffer, cpu_buffer);
2987 
2988 	ret = 0;
2989  out:
2990 	preempt_enable_notrace();
2991 
2992 	return ret;
2993 }
2994 EXPORT_SYMBOL_GPL(ring_buffer_write);
2995 
2996 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2997 {
2998 	struct buffer_page *reader = cpu_buffer->reader_page;
2999 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3000 	struct buffer_page *commit = cpu_buffer->commit_page;
3001 
3002 	/* In case of error, head will be NULL */
3003 	if (unlikely(!head))
3004 		return 1;
3005 
3006 	return reader->read == rb_page_commit(reader) &&
3007 		(commit == reader ||
3008 		 (commit == head &&
3009 		  head->read == rb_page_commit(commit)));
3010 }
3011 
3012 /**
3013  * ring_buffer_record_disable - stop all writes into the buffer
3014  * @buffer: The ring buffer to stop writes to.
3015  *
3016  * This prevents all writes to the buffer. Any attempt to write
3017  * to the buffer after this will fail and return NULL.
3018  *
3019  * The caller should call synchronize_sched() after this.
3020  */
3021 void ring_buffer_record_disable(struct ring_buffer *buffer)
3022 {
3023 	atomic_inc(&buffer->record_disabled);
3024 }
3025 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3026 
3027 /**
3028  * ring_buffer_record_enable - enable writes to the buffer
3029  * @buffer: The ring buffer to enable writes
3030  *
3031  * Note, multiple disables will need the same number of enables
3032  * to truly enable the writing (much like preempt_disable).
3033  */
3034 void ring_buffer_record_enable(struct ring_buffer *buffer)
3035 {
3036 	atomic_dec(&buffer->record_disabled);
3037 }
3038 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3039 
3040 /**
3041  * ring_buffer_record_off - stop all writes into the buffer
3042  * @buffer: The ring buffer to stop writes to.
3043  *
3044  * This prevents all writes to the buffer. Any attempt to write
3045  * to the buffer after this will fail and return NULL.
3046  *
3047  * This is different than ring_buffer_record_disable() as
3048  * it works like an on/off switch, where as the disable() version
3049  * must be paired with a enable().
3050  */
3051 void ring_buffer_record_off(struct ring_buffer *buffer)
3052 {
3053 	unsigned int rd;
3054 	unsigned int new_rd;
3055 
3056 	do {
3057 		rd = atomic_read(&buffer->record_disabled);
3058 		new_rd = rd | RB_BUFFER_OFF;
3059 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3060 }
3061 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3062 
3063 /**
3064  * ring_buffer_record_on - restart writes into the buffer
3065  * @buffer: The ring buffer to start writes to.
3066  *
3067  * This enables all writes to the buffer that was disabled by
3068  * ring_buffer_record_off().
3069  *
3070  * This is different than ring_buffer_record_enable() as
3071  * it works like an on/off switch, where as the enable() version
3072  * must be paired with a disable().
3073  */
3074 void ring_buffer_record_on(struct ring_buffer *buffer)
3075 {
3076 	unsigned int rd;
3077 	unsigned int new_rd;
3078 
3079 	do {
3080 		rd = atomic_read(&buffer->record_disabled);
3081 		new_rd = rd & ~RB_BUFFER_OFF;
3082 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3083 }
3084 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3085 
3086 /**
3087  * ring_buffer_record_is_on - return true if the ring buffer can write
3088  * @buffer: The ring buffer to see if write is enabled
3089  *
3090  * Returns true if the ring buffer is in a state that it accepts writes.
3091  */
3092 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3093 {
3094 	return !atomic_read(&buffer->record_disabled);
3095 }
3096 
3097 /**
3098  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3099  * @buffer: The ring buffer to stop writes to.
3100  * @cpu: The CPU buffer to stop
3101  *
3102  * This prevents all writes to the buffer. Any attempt to write
3103  * to the buffer after this will fail and return NULL.
3104  *
3105  * The caller should call synchronize_sched() after this.
3106  */
3107 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3108 {
3109 	struct ring_buffer_per_cpu *cpu_buffer;
3110 
3111 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3112 		return;
3113 
3114 	cpu_buffer = buffer->buffers[cpu];
3115 	atomic_inc(&cpu_buffer->record_disabled);
3116 }
3117 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3118 
3119 /**
3120  * ring_buffer_record_enable_cpu - enable writes to the buffer
3121  * @buffer: The ring buffer to enable writes
3122  * @cpu: The CPU to enable.
3123  *
3124  * Note, multiple disables will need the same number of enables
3125  * to truly enable the writing (much like preempt_disable).
3126  */
3127 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3128 {
3129 	struct ring_buffer_per_cpu *cpu_buffer;
3130 
3131 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3132 		return;
3133 
3134 	cpu_buffer = buffer->buffers[cpu];
3135 	atomic_dec(&cpu_buffer->record_disabled);
3136 }
3137 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3138 
3139 /*
3140  * The total entries in the ring buffer is the running counter
3141  * of entries entered into the ring buffer, minus the sum of
3142  * the entries read from the ring buffer and the number of
3143  * entries that were overwritten.
3144  */
3145 static inline unsigned long
3146 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3147 {
3148 	return local_read(&cpu_buffer->entries) -
3149 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3150 }
3151 
3152 /**
3153  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3154  * @buffer: The ring buffer
3155  * @cpu: The per CPU buffer to read from.
3156  */
3157 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3158 {
3159 	unsigned long flags;
3160 	struct ring_buffer_per_cpu *cpu_buffer;
3161 	struct buffer_page *bpage;
3162 	u64 ret = 0;
3163 
3164 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3165 		return 0;
3166 
3167 	cpu_buffer = buffer->buffers[cpu];
3168 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3169 	/*
3170 	 * if the tail is on reader_page, oldest time stamp is on the reader
3171 	 * page
3172 	 */
3173 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3174 		bpage = cpu_buffer->reader_page;
3175 	else
3176 		bpage = rb_set_head_page(cpu_buffer);
3177 	if (bpage)
3178 		ret = bpage->page->time_stamp;
3179 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3180 
3181 	return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3184 
3185 /**
3186  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3187  * @buffer: The ring buffer
3188  * @cpu: The per CPU buffer to read from.
3189  */
3190 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3191 {
3192 	struct ring_buffer_per_cpu *cpu_buffer;
3193 	unsigned long ret;
3194 
3195 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3196 		return 0;
3197 
3198 	cpu_buffer = buffer->buffers[cpu];
3199 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3200 
3201 	return ret;
3202 }
3203 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3204 
3205 /**
3206  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3207  * @buffer: The ring buffer
3208  * @cpu: The per CPU buffer to get the entries from.
3209  */
3210 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3211 {
3212 	struct ring_buffer_per_cpu *cpu_buffer;
3213 
3214 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3215 		return 0;
3216 
3217 	cpu_buffer = buffer->buffers[cpu];
3218 
3219 	return rb_num_of_entries(cpu_buffer);
3220 }
3221 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3222 
3223 /**
3224  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3225  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3226  * @buffer: The ring buffer
3227  * @cpu: The per CPU buffer to get the number of overruns from
3228  */
3229 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3230 {
3231 	struct ring_buffer_per_cpu *cpu_buffer;
3232 	unsigned long ret;
3233 
3234 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3235 		return 0;
3236 
3237 	cpu_buffer = buffer->buffers[cpu];
3238 	ret = local_read(&cpu_buffer->overrun);
3239 
3240 	return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3243 
3244 /**
3245  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3246  * commits failing due to the buffer wrapping around while there are uncommitted
3247  * events, such as during an interrupt storm.
3248  * @buffer: The ring buffer
3249  * @cpu: The per CPU buffer to get the number of overruns from
3250  */
3251 unsigned long
3252 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3253 {
3254 	struct ring_buffer_per_cpu *cpu_buffer;
3255 	unsigned long ret;
3256 
3257 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3258 		return 0;
3259 
3260 	cpu_buffer = buffer->buffers[cpu];
3261 	ret = local_read(&cpu_buffer->commit_overrun);
3262 
3263 	return ret;
3264 }
3265 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3266 
3267 /**
3268  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3269  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3270  * @buffer: The ring buffer
3271  * @cpu: The per CPU buffer to get the number of overruns from
3272  */
3273 unsigned long
3274 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3275 {
3276 	struct ring_buffer_per_cpu *cpu_buffer;
3277 	unsigned long ret;
3278 
3279 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3280 		return 0;
3281 
3282 	cpu_buffer = buffer->buffers[cpu];
3283 	ret = local_read(&cpu_buffer->dropped_events);
3284 
3285 	return ret;
3286 }
3287 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3288 
3289 /**
3290  * ring_buffer_read_events_cpu - get the number of events successfully read
3291  * @buffer: The ring buffer
3292  * @cpu: The per CPU buffer to get the number of events read
3293  */
3294 unsigned long
3295 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3296 {
3297 	struct ring_buffer_per_cpu *cpu_buffer;
3298 
3299 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3300 		return 0;
3301 
3302 	cpu_buffer = buffer->buffers[cpu];
3303 	return cpu_buffer->read;
3304 }
3305 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3306 
3307 /**
3308  * ring_buffer_entries - get the number of entries in a buffer
3309  * @buffer: The ring buffer
3310  *
3311  * Returns the total number of entries in the ring buffer
3312  * (all CPU entries)
3313  */
3314 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3315 {
3316 	struct ring_buffer_per_cpu *cpu_buffer;
3317 	unsigned long entries = 0;
3318 	int cpu;
3319 
3320 	/* if you care about this being correct, lock the buffer */
3321 	for_each_buffer_cpu(buffer, cpu) {
3322 		cpu_buffer = buffer->buffers[cpu];
3323 		entries += rb_num_of_entries(cpu_buffer);
3324 	}
3325 
3326 	return entries;
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3329 
3330 /**
3331  * ring_buffer_overruns - get the number of overruns in buffer
3332  * @buffer: The ring buffer
3333  *
3334  * Returns the total number of overruns in the ring buffer
3335  * (all CPU entries)
3336  */
3337 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3338 {
3339 	struct ring_buffer_per_cpu *cpu_buffer;
3340 	unsigned long overruns = 0;
3341 	int cpu;
3342 
3343 	/* if you care about this being correct, lock the buffer */
3344 	for_each_buffer_cpu(buffer, cpu) {
3345 		cpu_buffer = buffer->buffers[cpu];
3346 		overruns += local_read(&cpu_buffer->overrun);
3347 	}
3348 
3349 	return overruns;
3350 }
3351 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3352 
3353 static void rb_iter_reset(struct ring_buffer_iter *iter)
3354 {
3355 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3356 
3357 	/* Iterator usage is expected to have record disabled */
3358 	if (list_empty(&cpu_buffer->reader_page->list)) {
3359 		iter->head_page = rb_set_head_page(cpu_buffer);
3360 		if (unlikely(!iter->head_page))
3361 			return;
3362 		iter->head = iter->head_page->read;
3363 	} else {
3364 		iter->head_page = cpu_buffer->reader_page;
3365 		iter->head = cpu_buffer->reader_page->read;
3366 	}
3367 	if (iter->head)
3368 		iter->read_stamp = cpu_buffer->read_stamp;
3369 	else
3370 		iter->read_stamp = iter->head_page->page->time_stamp;
3371 	iter->cache_reader_page = cpu_buffer->reader_page;
3372 	iter->cache_read = cpu_buffer->read;
3373 }
3374 
3375 /**
3376  * ring_buffer_iter_reset - reset an iterator
3377  * @iter: The iterator to reset
3378  *
3379  * Resets the iterator, so that it will start from the beginning
3380  * again.
3381  */
3382 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3383 {
3384 	struct ring_buffer_per_cpu *cpu_buffer;
3385 	unsigned long flags;
3386 
3387 	if (!iter)
3388 		return;
3389 
3390 	cpu_buffer = iter->cpu_buffer;
3391 
3392 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3393 	rb_iter_reset(iter);
3394 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3395 }
3396 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3397 
3398 /**
3399  * ring_buffer_iter_empty - check if an iterator has no more to read
3400  * @iter: The iterator to check
3401  */
3402 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3403 {
3404 	struct ring_buffer_per_cpu *cpu_buffer;
3405 
3406 	cpu_buffer = iter->cpu_buffer;
3407 
3408 	return iter->head_page == cpu_buffer->commit_page &&
3409 		iter->head == rb_commit_index(cpu_buffer);
3410 }
3411 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3412 
3413 static void
3414 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3415 		     struct ring_buffer_event *event)
3416 {
3417 	u64 delta;
3418 
3419 	switch (event->type_len) {
3420 	case RINGBUF_TYPE_PADDING:
3421 		return;
3422 
3423 	case RINGBUF_TYPE_TIME_EXTEND:
3424 		delta = event->array[0];
3425 		delta <<= TS_SHIFT;
3426 		delta += event->time_delta;
3427 		cpu_buffer->read_stamp += delta;
3428 		return;
3429 
3430 	case RINGBUF_TYPE_TIME_STAMP:
3431 		/* FIXME: not implemented */
3432 		return;
3433 
3434 	case RINGBUF_TYPE_DATA:
3435 		cpu_buffer->read_stamp += event->time_delta;
3436 		return;
3437 
3438 	default:
3439 		BUG();
3440 	}
3441 	return;
3442 }
3443 
3444 static void
3445 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3446 			  struct ring_buffer_event *event)
3447 {
3448 	u64 delta;
3449 
3450 	switch (event->type_len) {
3451 	case RINGBUF_TYPE_PADDING:
3452 		return;
3453 
3454 	case RINGBUF_TYPE_TIME_EXTEND:
3455 		delta = event->array[0];
3456 		delta <<= TS_SHIFT;
3457 		delta += event->time_delta;
3458 		iter->read_stamp += delta;
3459 		return;
3460 
3461 	case RINGBUF_TYPE_TIME_STAMP:
3462 		/* FIXME: not implemented */
3463 		return;
3464 
3465 	case RINGBUF_TYPE_DATA:
3466 		iter->read_stamp += event->time_delta;
3467 		return;
3468 
3469 	default:
3470 		BUG();
3471 	}
3472 	return;
3473 }
3474 
3475 static struct buffer_page *
3476 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3477 {
3478 	struct buffer_page *reader = NULL;
3479 	unsigned long overwrite;
3480 	unsigned long flags;
3481 	int nr_loops = 0;
3482 	int ret;
3483 
3484 	local_irq_save(flags);
3485 	arch_spin_lock(&cpu_buffer->lock);
3486 
3487  again:
3488 	/*
3489 	 * This should normally only loop twice. But because the
3490 	 * start of the reader inserts an empty page, it causes
3491 	 * a case where we will loop three times. There should be no
3492 	 * reason to loop four times (that I know of).
3493 	 */
3494 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3495 		reader = NULL;
3496 		goto out;
3497 	}
3498 
3499 	reader = cpu_buffer->reader_page;
3500 
3501 	/* If there's more to read, return this page */
3502 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3503 		goto out;
3504 
3505 	/* Never should we have an index greater than the size */
3506 	if (RB_WARN_ON(cpu_buffer,
3507 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3508 		goto out;
3509 
3510 	/* check if we caught up to the tail */
3511 	reader = NULL;
3512 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3513 		goto out;
3514 
3515 	/* Don't bother swapping if the ring buffer is empty */
3516 	if (rb_num_of_entries(cpu_buffer) == 0)
3517 		goto out;
3518 
3519 	/*
3520 	 * Reset the reader page to size zero.
3521 	 */
3522 	local_set(&cpu_buffer->reader_page->write, 0);
3523 	local_set(&cpu_buffer->reader_page->entries, 0);
3524 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3525 	cpu_buffer->reader_page->real_end = 0;
3526 
3527  spin:
3528 	/*
3529 	 * Splice the empty reader page into the list around the head.
3530 	 */
3531 	reader = rb_set_head_page(cpu_buffer);
3532 	if (!reader)
3533 		goto out;
3534 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3535 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3536 
3537 	/*
3538 	 * cpu_buffer->pages just needs to point to the buffer, it
3539 	 *  has no specific buffer page to point to. Lets move it out
3540 	 *  of our way so we don't accidentally swap it.
3541 	 */
3542 	cpu_buffer->pages = reader->list.prev;
3543 
3544 	/* The reader page will be pointing to the new head */
3545 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3546 
3547 	/*
3548 	 * We want to make sure we read the overruns after we set up our
3549 	 * pointers to the next object. The writer side does a
3550 	 * cmpxchg to cross pages which acts as the mb on the writer
3551 	 * side. Note, the reader will constantly fail the swap
3552 	 * while the writer is updating the pointers, so this
3553 	 * guarantees that the overwrite recorded here is the one we
3554 	 * want to compare with the last_overrun.
3555 	 */
3556 	smp_mb();
3557 	overwrite = local_read(&(cpu_buffer->overrun));
3558 
3559 	/*
3560 	 * Here's the tricky part.
3561 	 *
3562 	 * We need to move the pointer past the header page.
3563 	 * But we can only do that if a writer is not currently
3564 	 * moving it. The page before the header page has the
3565 	 * flag bit '1' set if it is pointing to the page we want.
3566 	 * but if the writer is in the process of moving it
3567 	 * than it will be '2' or already moved '0'.
3568 	 */
3569 
3570 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3571 
3572 	/*
3573 	 * If we did not convert it, then we must try again.
3574 	 */
3575 	if (!ret)
3576 		goto spin;
3577 
3578 	/*
3579 	 * Yeah! We succeeded in replacing the page.
3580 	 *
3581 	 * Now make the new head point back to the reader page.
3582 	 */
3583 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3584 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3585 
3586 	/* Finally update the reader page to the new head */
3587 	cpu_buffer->reader_page = reader;
3588 	rb_reset_reader_page(cpu_buffer);
3589 
3590 	if (overwrite != cpu_buffer->last_overrun) {
3591 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3592 		cpu_buffer->last_overrun = overwrite;
3593 	}
3594 
3595 	goto again;
3596 
3597  out:
3598 	arch_spin_unlock(&cpu_buffer->lock);
3599 	local_irq_restore(flags);
3600 
3601 	return reader;
3602 }
3603 
3604 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3605 {
3606 	struct ring_buffer_event *event;
3607 	struct buffer_page *reader;
3608 	unsigned length;
3609 
3610 	reader = rb_get_reader_page(cpu_buffer);
3611 
3612 	/* This function should not be called when buffer is empty */
3613 	if (RB_WARN_ON(cpu_buffer, !reader))
3614 		return;
3615 
3616 	event = rb_reader_event(cpu_buffer);
3617 
3618 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3619 		cpu_buffer->read++;
3620 
3621 	rb_update_read_stamp(cpu_buffer, event);
3622 
3623 	length = rb_event_length(event);
3624 	cpu_buffer->reader_page->read += length;
3625 }
3626 
3627 static void rb_advance_iter(struct ring_buffer_iter *iter)
3628 {
3629 	struct ring_buffer_per_cpu *cpu_buffer;
3630 	struct ring_buffer_event *event;
3631 	unsigned length;
3632 
3633 	cpu_buffer = iter->cpu_buffer;
3634 
3635 	/*
3636 	 * Check if we are at the end of the buffer.
3637 	 */
3638 	if (iter->head >= rb_page_size(iter->head_page)) {
3639 		/* discarded commits can make the page empty */
3640 		if (iter->head_page == cpu_buffer->commit_page)
3641 			return;
3642 		rb_inc_iter(iter);
3643 		return;
3644 	}
3645 
3646 	event = rb_iter_head_event(iter);
3647 
3648 	length = rb_event_length(event);
3649 
3650 	/*
3651 	 * This should not be called to advance the header if we are
3652 	 * at the tail of the buffer.
3653 	 */
3654 	if (RB_WARN_ON(cpu_buffer,
3655 		       (iter->head_page == cpu_buffer->commit_page) &&
3656 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3657 		return;
3658 
3659 	rb_update_iter_read_stamp(iter, event);
3660 
3661 	iter->head += length;
3662 
3663 	/* check for end of page padding */
3664 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3665 	    (iter->head_page != cpu_buffer->commit_page))
3666 		rb_inc_iter(iter);
3667 }
3668 
3669 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3670 {
3671 	return cpu_buffer->lost_events;
3672 }
3673 
3674 static struct ring_buffer_event *
3675 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3676 	       unsigned long *lost_events)
3677 {
3678 	struct ring_buffer_event *event;
3679 	struct buffer_page *reader;
3680 	int nr_loops = 0;
3681 
3682  again:
3683 	/*
3684 	 * We repeat when a time extend is encountered.
3685 	 * Since the time extend is always attached to a data event,
3686 	 * we should never loop more than once.
3687 	 * (We never hit the following condition more than twice).
3688 	 */
3689 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3690 		return NULL;
3691 
3692 	reader = rb_get_reader_page(cpu_buffer);
3693 	if (!reader)
3694 		return NULL;
3695 
3696 	event = rb_reader_event(cpu_buffer);
3697 
3698 	switch (event->type_len) {
3699 	case RINGBUF_TYPE_PADDING:
3700 		if (rb_null_event(event))
3701 			RB_WARN_ON(cpu_buffer, 1);
3702 		/*
3703 		 * Because the writer could be discarding every
3704 		 * event it creates (which would probably be bad)
3705 		 * if we were to go back to "again" then we may never
3706 		 * catch up, and will trigger the warn on, or lock
3707 		 * the box. Return the padding, and we will release
3708 		 * the current locks, and try again.
3709 		 */
3710 		return event;
3711 
3712 	case RINGBUF_TYPE_TIME_EXTEND:
3713 		/* Internal data, OK to advance */
3714 		rb_advance_reader(cpu_buffer);
3715 		goto again;
3716 
3717 	case RINGBUF_TYPE_TIME_STAMP:
3718 		/* FIXME: not implemented */
3719 		rb_advance_reader(cpu_buffer);
3720 		goto again;
3721 
3722 	case RINGBUF_TYPE_DATA:
3723 		if (ts) {
3724 			*ts = cpu_buffer->read_stamp + event->time_delta;
3725 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3726 							 cpu_buffer->cpu, ts);
3727 		}
3728 		if (lost_events)
3729 			*lost_events = rb_lost_events(cpu_buffer);
3730 		return event;
3731 
3732 	default:
3733 		BUG();
3734 	}
3735 
3736 	return NULL;
3737 }
3738 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3739 
3740 static struct ring_buffer_event *
3741 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3742 {
3743 	struct ring_buffer *buffer;
3744 	struct ring_buffer_per_cpu *cpu_buffer;
3745 	struct ring_buffer_event *event;
3746 	int nr_loops = 0;
3747 
3748 	cpu_buffer = iter->cpu_buffer;
3749 	buffer = cpu_buffer->buffer;
3750 
3751 	/*
3752 	 * Check if someone performed a consuming read to
3753 	 * the buffer. A consuming read invalidates the iterator
3754 	 * and we need to reset the iterator in this case.
3755 	 */
3756 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3757 		     iter->cache_reader_page != cpu_buffer->reader_page))
3758 		rb_iter_reset(iter);
3759 
3760  again:
3761 	if (ring_buffer_iter_empty(iter))
3762 		return NULL;
3763 
3764 	/*
3765 	 * We repeat when a time extend is encountered.
3766 	 * Since the time extend is always attached to a data event,
3767 	 * we should never loop more than once.
3768 	 * (We never hit the following condition more than twice).
3769 	 */
3770 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3771 		return NULL;
3772 
3773 	if (rb_per_cpu_empty(cpu_buffer))
3774 		return NULL;
3775 
3776 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3777 		rb_inc_iter(iter);
3778 		goto again;
3779 	}
3780 
3781 	event = rb_iter_head_event(iter);
3782 
3783 	switch (event->type_len) {
3784 	case RINGBUF_TYPE_PADDING:
3785 		if (rb_null_event(event)) {
3786 			rb_inc_iter(iter);
3787 			goto again;
3788 		}
3789 		rb_advance_iter(iter);
3790 		return event;
3791 
3792 	case RINGBUF_TYPE_TIME_EXTEND:
3793 		/* Internal data, OK to advance */
3794 		rb_advance_iter(iter);
3795 		goto again;
3796 
3797 	case RINGBUF_TYPE_TIME_STAMP:
3798 		/* FIXME: not implemented */
3799 		rb_advance_iter(iter);
3800 		goto again;
3801 
3802 	case RINGBUF_TYPE_DATA:
3803 		if (ts) {
3804 			*ts = iter->read_stamp + event->time_delta;
3805 			ring_buffer_normalize_time_stamp(buffer,
3806 							 cpu_buffer->cpu, ts);
3807 		}
3808 		return event;
3809 
3810 	default:
3811 		BUG();
3812 	}
3813 
3814 	return NULL;
3815 }
3816 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3817 
3818 static inline int rb_ok_to_lock(void)
3819 {
3820 	/*
3821 	 * If an NMI die dumps out the content of the ring buffer
3822 	 * do not grab locks. We also permanently disable the ring
3823 	 * buffer too. A one time deal is all you get from reading
3824 	 * the ring buffer from an NMI.
3825 	 */
3826 	if (likely(!in_nmi()))
3827 		return 1;
3828 
3829 	tracing_off_permanent();
3830 	return 0;
3831 }
3832 
3833 /**
3834  * ring_buffer_peek - peek at the next event to be read
3835  * @buffer: The ring buffer to read
3836  * @cpu: The cpu to peak at
3837  * @ts: The timestamp counter of this event.
3838  * @lost_events: a variable to store if events were lost (may be NULL)
3839  *
3840  * This will return the event that will be read next, but does
3841  * not consume the data.
3842  */
3843 struct ring_buffer_event *
3844 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3845 		 unsigned long *lost_events)
3846 {
3847 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3848 	struct ring_buffer_event *event;
3849 	unsigned long flags;
3850 	int dolock;
3851 
3852 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3853 		return NULL;
3854 
3855 	dolock = rb_ok_to_lock();
3856  again:
3857 	local_irq_save(flags);
3858 	if (dolock)
3859 		raw_spin_lock(&cpu_buffer->reader_lock);
3860 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3861 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3862 		rb_advance_reader(cpu_buffer);
3863 	if (dolock)
3864 		raw_spin_unlock(&cpu_buffer->reader_lock);
3865 	local_irq_restore(flags);
3866 
3867 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3868 		goto again;
3869 
3870 	return event;
3871 }
3872 
3873 /**
3874  * ring_buffer_iter_peek - peek at the next event to be read
3875  * @iter: The ring buffer iterator
3876  * @ts: The timestamp counter of this event.
3877  *
3878  * This will return the event that will be read next, but does
3879  * not increment the iterator.
3880  */
3881 struct ring_buffer_event *
3882 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3883 {
3884 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3885 	struct ring_buffer_event *event;
3886 	unsigned long flags;
3887 
3888  again:
3889 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3890 	event = rb_iter_peek(iter, ts);
3891 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3892 
3893 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3894 		goto again;
3895 
3896 	return event;
3897 }
3898 
3899 /**
3900  * ring_buffer_consume - return an event and consume it
3901  * @buffer: The ring buffer to get the next event from
3902  * @cpu: the cpu to read the buffer from
3903  * @ts: a variable to store the timestamp (may be NULL)
3904  * @lost_events: a variable to store if events were lost (may be NULL)
3905  *
3906  * Returns the next event in the ring buffer, and that event is consumed.
3907  * Meaning, that sequential reads will keep returning a different event,
3908  * and eventually empty the ring buffer if the producer is slower.
3909  */
3910 struct ring_buffer_event *
3911 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3912 		    unsigned long *lost_events)
3913 {
3914 	struct ring_buffer_per_cpu *cpu_buffer;
3915 	struct ring_buffer_event *event = NULL;
3916 	unsigned long flags;
3917 	int dolock;
3918 
3919 	dolock = rb_ok_to_lock();
3920 
3921  again:
3922 	/* might be called in atomic */
3923 	preempt_disable();
3924 
3925 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3926 		goto out;
3927 
3928 	cpu_buffer = buffer->buffers[cpu];
3929 	local_irq_save(flags);
3930 	if (dolock)
3931 		raw_spin_lock(&cpu_buffer->reader_lock);
3932 
3933 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3934 	if (event) {
3935 		cpu_buffer->lost_events = 0;
3936 		rb_advance_reader(cpu_buffer);
3937 	}
3938 
3939 	if (dolock)
3940 		raw_spin_unlock(&cpu_buffer->reader_lock);
3941 	local_irq_restore(flags);
3942 
3943  out:
3944 	preempt_enable();
3945 
3946 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3947 		goto again;
3948 
3949 	return event;
3950 }
3951 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3952 
3953 /**
3954  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3955  * @buffer: The ring buffer to read from
3956  * @cpu: The cpu buffer to iterate over
3957  *
3958  * This performs the initial preparations necessary to iterate
3959  * through the buffer.  Memory is allocated, buffer recording
3960  * is disabled, and the iterator pointer is returned to the caller.
3961  *
3962  * Disabling buffer recordng prevents the reading from being
3963  * corrupted. This is not a consuming read, so a producer is not
3964  * expected.
3965  *
3966  * After a sequence of ring_buffer_read_prepare calls, the user is
3967  * expected to make at least one call to ring_buffer_read_prepare_sync.
3968  * Afterwards, ring_buffer_read_start is invoked to get things going
3969  * for real.
3970  *
3971  * This overall must be paired with ring_buffer_read_finish.
3972  */
3973 struct ring_buffer_iter *
3974 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3975 {
3976 	struct ring_buffer_per_cpu *cpu_buffer;
3977 	struct ring_buffer_iter *iter;
3978 
3979 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3980 		return NULL;
3981 
3982 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3983 	if (!iter)
3984 		return NULL;
3985 
3986 	cpu_buffer = buffer->buffers[cpu];
3987 
3988 	iter->cpu_buffer = cpu_buffer;
3989 
3990 	atomic_inc(&buffer->resize_disabled);
3991 	atomic_inc(&cpu_buffer->record_disabled);
3992 
3993 	return iter;
3994 }
3995 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3996 
3997 /**
3998  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3999  *
4000  * All previously invoked ring_buffer_read_prepare calls to prepare
4001  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4002  * calls on those iterators are allowed.
4003  */
4004 void
4005 ring_buffer_read_prepare_sync(void)
4006 {
4007 	synchronize_sched();
4008 }
4009 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4010 
4011 /**
4012  * ring_buffer_read_start - start a non consuming read of the buffer
4013  * @iter: The iterator returned by ring_buffer_read_prepare
4014  *
4015  * This finalizes the startup of an iteration through the buffer.
4016  * The iterator comes from a call to ring_buffer_read_prepare and
4017  * an intervening ring_buffer_read_prepare_sync must have been
4018  * performed.
4019  *
4020  * Must be paired with ring_buffer_read_finish.
4021  */
4022 void
4023 ring_buffer_read_start(struct ring_buffer_iter *iter)
4024 {
4025 	struct ring_buffer_per_cpu *cpu_buffer;
4026 	unsigned long flags;
4027 
4028 	if (!iter)
4029 		return;
4030 
4031 	cpu_buffer = iter->cpu_buffer;
4032 
4033 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4034 	arch_spin_lock(&cpu_buffer->lock);
4035 	rb_iter_reset(iter);
4036 	arch_spin_unlock(&cpu_buffer->lock);
4037 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4038 }
4039 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4040 
4041 /**
4042  * ring_buffer_read_finish - finish reading the iterator of the buffer
4043  * @iter: The iterator retrieved by ring_buffer_start
4044  *
4045  * This re-enables the recording to the buffer, and frees the
4046  * iterator.
4047  */
4048 void
4049 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4050 {
4051 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4052 	unsigned long flags;
4053 
4054 	/*
4055 	 * Ring buffer is disabled from recording, here's a good place
4056 	 * to check the integrity of the ring buffer.
4057 	 * Must prevent readers from trying to read, as the check
4058 	 * clears the HEAD page and readers require it.
4059 	 */
4060 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4061 	rb_check_pages(cpu_buffer);
4062 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4063 
4064 	atomic_dec(&cpu_buffer->record_disabled);
4065 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4066 	kfree(iter);
4067 }
4068 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4069 
4070 /**
4071  * ring_buffer_read - read the next item in the ring buffer by the iterator
4072  * @iter: The ring buffer iterator
4073  * @ts: The time stamp of the event read.
4074  *
4075  * This reads the next event in the ring buffer and increments the iterator.
4076  */
4077 struct ring_buffer_event *
4078 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4079 {
4080 	struct ring_buffer_event *event;
4081 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4082 	unsigned long flags;
4083 
4084 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4085  again:
4086 	event = rb_iter_peek(iter, ts);
4087 	if (!event)
4088 		goto out;
4089 
4090 	if (event->type_len == RINGBUF_TYPE_PADDING)
4091 		goto again;
4092 
4093 	rb_advance_iter(iter);
4094  out:
4095 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4096 
4097 	return event;
4098 }
4099 EXPORT_SYMBOL_GPL(ring_buffer_read);
4100 
4101 /**
4102  * ring_buffer_size - return the size of the ring buffer (in bytes)
4103  * @buffer: The ring buffer.
4104  */
4105 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4106 {
4107 	/*
4108 	 * Earlier, this method returned
4109 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4110 	 * Since the nr_pages field is now removed, we have converted this to
4111 	 * return the per cpu buffer value.
4112 	 */
4113 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4114 		return 0;
4115 
4116 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4117 }
4118 EXPORT_SYMBOL_GPL(ring_buffer_size);
4119 
4120 static void
4121 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4122 {
4123 	rb_head_page_deactivate(cpu_buffer);
4124 
4125 	cpu_buffer->head_page
4126 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4127 	local_set(&cpu_buffer->head_page->write, 0);
4128 	local_set(&cpu_buffer->head_page->entries, 0);
4129 	local_set(&cpu_buffer->head_page->page->commit, 0);
4130 
4131 	cpu_buffer->head_page->read = 0;
4132 
4133 	cpu_buffer->tail_page = cpu_buffer->head_page;
4134 	cpu_buffer->commit_page = cpu_buffer->head_page;
4135 
4136 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4137 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4138 	local_set(&cpu_buffer->reader_page->write, 0);
4139 	local_set(&cpu_buffer->reader_page->entries, 0);
4140 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4141 	cpu_buffer->reader_page->read = 0;
4142 
4143 	local_set(&cpu_buffer->entries_bytes, 0);
4144 	local_set(&cpu_buffer->overrun, 0);
4145 	local_set(&cpu_buffer->commit_overrun, 0);
4146 	local_set(&cpu_buffer->dropped_events, 0);
4147 	local_set(&cpu_buffer->entries, 0);
4148 	local_set(&cpu_buffer->committing, 0);
4149 	local_set(&cpu_buffer->commits, 0);
4150 	cpu_buffer->read = 0;
4151 	cpu_buffer->read_bytes = 0;
4152 
4153 	cpu_buffer->write_stamp = 0;
4154 	cpu_buffer->read_stamp = 0;
4155 
4156 	cpu_buffer->lost_events = 0;
4157 	cpu_buffer->last_overrun = 0;
4158 
4159 	rb_head_page_activate(cpu_buffer);
4160 }
4161 
4162 /**
4163  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4164  * @buffer: The ring buffer to reset a per cpu buffer of
4165  * @cpu: The CPU buffer to be reset
4166  */
4167 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4168 {
4169 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4170 	unsigned long flags;
4171 
4172 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4173 		return;
4174 
4175 	atomic_inc(&buffer->resize_disabled);
4176 	atomic_inc(&cpu_buffer->record_disabled);
4177 
4178 	/* Make sure all commits have finished */
4179 	synchronize_sched();
4180 
4181 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4182 
4183 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4184 		goto out;
4185 
4186 	arch_spin_lock(&cpu_buffer->lock);
4187 
4188 	rb_reset_cpu(cpu_buffer);
4189 
4190 	arch_spin_unlock(&cpu_buffer->lock);
4191 
4192  out:
4193 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4194 
4195 	atomic_dec(&cpu_buffer->record_disabled);
4196 	atomic_dec(&buffer->resize_disabled);
4197 }
4198 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4199 
4200 /**
4201  * ring_buffer_reset - reset a ring buffer
4202  * @buffer: The ring buffer to reset all cpu buffers
4203  */
4204 void ring_buffer_reset(struct ring_buffer *buffer)
4205 {
4206 	int cpu;
4207 
4208 	for_each_buffer_cpu(buffer, cpu)
4209 		ring_buffer_reset_cpu(buffer, cpu);
4210 }
4211 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4212 
4213 /**
4214  * rind_buffer_empty - is the ring buffer empty?
4215  * @buffer: The ring buffer to test
4216  */
4217 int ring_buffer_empty(struct ring_buffer *buffer)
4218 {
4219 	struct ring_buffer_per_cpu *cpu_buffer;
4220 	unsigned long flags;
4221 	int dolock;
4222 	int cpu;
4223 	int ret;
4224 
4225 	dolock = rb_ok_to_lock();
4226 
4227 	/* yes this is racy, but if you don't like the race, lock the buffer */
4228 	for_each_buffer_cpu(buffer, cpu) {
4229 		cpu_buffer = buffer->buffers[cpu];
4230 		local_irq_save(flags);
4231 		if (dolock)
4232 			raw_spin_lock(&cpu_buffer->reader_lock);
4233 		ret = rb_per_cpu_empty(cpu_buffer);
4234 		if (dolock)
4235 			raw_spin_unlock(&cpu_buffer->reader_lock);
4236 		local_irq_restore(flags);
4237 
4238 		if (!ret)
4239 			return 0;
4240 	}
4241 
4242 	return 1;
4243 }
4244 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4245 
4246 /**
4247  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4248  * @buffer: The ring buffer
4249  * @cpu: The CPU buffer to test
4250  */
4251 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4252 {
4253 	struct ring_buffer_per_cpu *cpu_buffer;
4254 	unsigned long flags;
4255 	int dolock;
4256 	int ret;
4257 
4258 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4259 		return 1;
4260 
4261 	dolock = rb_ok_to_lock();
4262 
4263 	cpu_buffer = buffer->buffers[cpu];
4264 	local_irq_save(flags);
4265 	if (dolock)
4266 		raw_spin_lock(&cpu_buffer->reader_lock);
4267 	ret = rb_per_cpu_empty(cpu_buffer);
4268 	if (dolock)
4269 		raw_spin_unlock(&cpu_buffer->reader_lock);
4270 	local_irq_restore(flags);
4271 
4272 	return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4275 
4276 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4277 /**
4278  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4279  * @buffer_a: One buffer to swap with
4280  * @buffer_b: The other buffer to swap with
4281  *
4282  * This function is useful for tracers that want to take a "snapshot"
4283  * of a CPU buffer and has another back up buffer lying around.
4284  * it is expected that the tracer handles the cpu buffer not being
4285  * used at the moment.
4286  */
4287 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4288 			 struct ring_buffer *buffer_b, int cpu)
4289 {
4290 	struct ring_buffer_per_cpu *cpu_buffer_a;
4291 	struct ring_buffer_per_cpu *cpu_buffer_b;
4292 	int ret = -EINVAL;
4293 
4294 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4295 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4296 		goto out;
4297 
4298 	cpu_buffer_a = buffer_a->buffers[cpu];
4299 	cpu_buffer_b = buffer_b->buffers[cpu];
4300 
4301 	/* At least make sure the two buffers are somewhat the same */
4302 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4303 		goto out;
4304 
4305 	ret = -EAGAIN;
4306 
4307 	if (ring_buffer_flags != RB_BUFFERS_ON)
4308 		goto out;
4309 
4310 	if (atomic_read(&buffer_a->record_disabled))
4311 		goto out;
4312 
4313 	if (atomic_read(&buffer_b->record_disabled))
4314 		goto out;
4315 
4316 	if (atomic_read(&cpu_buffer_a->record_disabled))
4317 		goto out;
4318 
4319 	if (atomic_read(&cpu_buffer_b->record_disabled))
4320 		goto out;
4321 
4322 	/*
4323 	 * We can't do a synchronize_sched here because this
4324 	 * function can be called in atomic context.
4325 	 * Normally this will be called from the same CPU as cpu.
4326 	 * If not it's up to the caller to protect this.
4327 	 */
4328 	atomic_inc(&cpu_buffer_a->record_disabled);
4329 	atomic_inc(&cpu_buffer_b->record_disabled);
4330 
4331 	ret = -EBUSY;
4332 	if (local_read(&cpu_buffer_a->committing))
4333 		goto out_dec;
4334 	if (local_read(&cpu_buffer_b->committing))
4335 		goto out_dec;
4336 
4337 	buffer_a->buffers[cpu] = cpu_buffer_b;
4338 	buffer_b->buffers[cpu] = cpu_buffer_a;
4339 
4340 	cpu_buffer_b->buffer = buffer_a;
4341 	cpu_buffer_a->buffer = buffer_b;
4342 
4343 	ret = 0;
4344 
4345 out_dec:
4346 	atomic_dec(&cpu_buffer_a->record_disabled);
4347 	atomic_dec(&cpu_buffer_b->record_disabled);
4348 out:
4349 	return ret;
4350 }
4351 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4352 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4353 
4354 /**
4355  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4356  * @buffer: the buffer to allocate for.
4357  * @cpu: the cpu buffer to allocate.
4358  *
4359  * This function is used in conjunction with ring_buffer_read_page.
4360  * When reading a full page from the ring buffer, these functions
4361  * can be used to speed up the process. The calling function should
4362  * allocate a few pages first with this function. Then when it
4363  * needs to get pages from the ring buffer, it passes the result
4364  * of this function into ring_buffer_read_page, which will swap
4365  * the page that was allocated, with the read page of the buffer.
4366  *
4367  * Returns:
4368  *  The page allocated, or NULL on error.
4369  */
4370 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4371 {
4372 	struct buffer_data_page *bpage;
4373 	struct page *page;
4374 
4375 	page = alloc_pages_node(cpu_to_node(cpu),
4376 				GFP_KERNEL | __GFP_NORETRY, 0);
4377 	if (!page)
4378 		return NULL;
4379 
4380 	bpage = page_address(page);
4381 
4382 	rb_init_page(bpage);
4383 
4384 	return bpage;
4385 }
4386 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4387 
4388 /**
4389  * ring_buffer_free_read_page - free an allocated read page
4390  * @buffer: the buffer the page was allocate for
4391  * @data: the page to free
4392  *
4393  * Free a page allocated from ring_buffer_alloc_read_page.
4394  */
4395 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4396 {
4397 	free_page((unsigned long)data);
4398 }
4399 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4400 
4401 /**
4402  * ring_buffer_read_page - extract a page from the ring buffer
4403  * @buffer: buffer to extract from
4404  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4405  * @len: amount to extract
4406  * @cpu: the cpu of the buffer to extract
4407  * @full: should the extraction only happen when the page is full.
4408  *
4409  * This function will pull out a page from the ring buffer and consume it.
4410  * @data_page must be the address of the variable that was returned
4411  * from ring_buffer_alloc_read_page. This is because the page might be used
4412  * to swap with a page in the ring buffer.
4413  *
4414  * for example:
4415  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4416  *	if (!rpage)
4417  *		return error;
4418  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4419  *	if (ret >= 0)
4420  *		process_page(rpage, ret);
4421  *
4422  * When @full is set, the function will not return true unless
4423  * the writer is off the reader page.
4424  *
4425  * Note: it is up to the calling functions to handle sleeps and wakeups.
4426  *  The ring buffer can be used anywhere in the kernel and can not
4427  *  blindly call wake_up. The layer that uses the ring buffer must be
4428  *  responsible for that.
4429  *
4430  * Returns:
4431  *  >=0 if data has been transferred, returns the offset of consumed data.
4432  *  <0 if no data has been transferred.
4433  */
4434 int ring_buffer_read_page(struct ring_buffer *buffer,
4435 			  void **data_page, size_t len, int cpu, int full)
4436 {
4437 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4438 	struct ring_buffer_event *event;
4439 	struct buffer_data_page *bpage;
4440 	struct buffer_page *reader;
4441 	unsigned long missed_events;
4442 	unsigned long flags;
4443 	unsigned int commit;
4444 	unsigned int read;
4445 	u64 save_timestamp;
4446 	int ret = -1;
4447 
4448 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4449 		goto out;
4450 
4451 	/*
4452 	 * If len is not big enough to hold the page header, then
4453 	 * we can not copy anything.
4454 	 */
4455 	if (len <= BUF_PAGE_HDR_SIZE)
4456 		goto out;
4457 
4458 	len -= BUF_PAGE_HDR_SIZE;
4459 
4460 	if (!data_page)
4461 		goto out;
4462 
4463 	bpage = *data_page;
4464 	if (!bpage)
4465 		goto out;
4466 
4467 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4468 
4469 	reader = rb_get_reader_page(cpu_buffer);
4470 	if (!reader)
4471 		goto out_unlock;
4472 
4473 	event = rb_reader_event(cpu_buffer);
4474 
4475 	read = reader->read;
4476 	commit = rb_page_commit(reader);
4477 
4478 	/* Check if any events were dropped */
4479 	missed_events = cpu_buffer->lost_events;
4480 
4481 	/*
4482 	 * If this page has been partially read or
4483 	 * if len is not big enough to read the rest of the page or
4484 	 * a writer is still on the page, then
4485 	 * we must copy the data from the page to the buffer.
4486 	 * Otherwise, we can simply swap the page with the one passed in.
4487 	 */
4488 	if (read || (len < (commit - read)) ||
4489 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4490 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4491 		unsigned int rpos = read;
4492 		unsigned int pos = 0;
4493 		unsigned int size;
4494 
4495 		if (full)
4496 			goto out_unlock;
4497 
4498 		if (len > (commit - read))
4499 			len = (commit - read);
4500 
4501 		/* Always keep the time extend and data together */
4502 		size = rb_event_ts_length(event);
4503 
4504 		if (len < size)
4505 			goto out_unlock;
4506 
4507 		/* save the current timestamp, since the user will need it */
4508 		save_timestamp = cpu_buffer->read_stamp;
4509 
4510 		/* Need to copy one event at a time */
4511 		do {
4512 			/* We need the size of one event, because
4513 			 * rb_advance_reader only advances by one event,
4514 			 * whereas rb_event_ts_length may include the size of
4515 			 * one or two events.
4516 			 * We have already ensured there's enough space if this
4517 			 * is a time extend. */
4518 			size = rb_event_length(event);
4519 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4520 
4521 			len -= size;
4522 
4523 			rb_advance_reader(cpu_buffer);
4524 			rpos = reader->read;
4525 			pos += size;
4526 
4527 			if (rpos >= commit)
4528 				break;
4529 
4530 			event = rb_reader_event(cpu_buffer);
4531 			/* Always keep the time extend and data together */
4532 			size = rb_event_ts_length(event);
4533 		} while (len >= size);
4534 
4535 		/* update bpage */
4536 		local_set(&bpage->commit, pos);
4537 		bpage->time_stamp = save_timestamp;
4538 
4539 		/* we copied everything to the beginning */
4540 		read = 0;
4541 	} else {
4542 		/* update the entry counter */
4543 		cpu_buffer->read += rb_page_entries(reader);
4544 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4545 
4546 		/* swap the pages */
4547 		rb_init_page(bpage);
4548 		bpage = reader->page;
4549 		reader->page = *data_page;
4550 		local_set(&reader->write, 0);
4551 		local_set(&reader->entries, 0);
4552 		reader->read = 0;
4553 		*data_page = bpage;
4554 
4555 		/*
4556 		 * Use the real_end for the data size,
4557 		 * This gives us a chance to store the lost events
4558 		 * on the page.
4559 		 */
4560 		if (reader->real_end)
4561 			local_set(&bpage->commit, reader->real_end);
4562 	}
4563 	ret = read;
4564 
4565 	cpu_buffer->lost_events = 0;
4566 
4567 	commit = local_read(&bpage->commit);
4568 	/*
4569 	 * Set a flag in the commit field if we lost events
4570 	 */
4571 	if (missed_events) {
4572 		/* If there is room at the end of the page to save the
4573 		 * missed events, then record it there.
4574 		 */
4575 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4576 			memcpy(&bpage->data[commit], &missed_events,
4577 			       sizeof(missed_events));
4578 			local_add(RB_MISSED_STORED, &bpage->commit);
4579 			commit += sizeof(missed_events);
4580 		}
4581 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4582 	}
4583 
4584 	/*
4585 	 * This page may be off to user land. Zero it out here.
4586 	 */
4587 	if (commit < BUF_PAGE_SIZE)
4588 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4589 
4590  out_unlock:
4591 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4592 
4593  out:
4594 	return ret;
4595 }
4596 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4597 
4598 #ifdef CONFIG_HOTPLUG_CPU
4599 static int rb_cpu_notify(struct notifier_block *self,
4600 			 unsigned long action, void *hcpu)
4601 {
4602 	struct ring_buffer *buffer =
4603 		container_of(self, struct ring_buffer, cpu_notify);
4604 	long cpu = (long)hcpu;
4605 	int cpu_i, nr_pages_same;
4606 	unsigned int nr_pages;
4607 
4608 	switch (action) {
4609 	case CPU_UP_PREPARE:
4610 	case CPU_UP_PREPARE_FROZEN:
4611 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4612 			return NOTIFY_OK;
4613 
4614 		nr_pages = 0;
4615 		nr_pages_same = 1;
4616 		/* check if all cpu sizes are same */
4617 		for_each_buffer_cpu(buffer, cpu_i) {
4618 			/* fill in the size from first enabled cpu */
4619 			if (nr_pages == 0)
4620 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4621 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4622 				nr_pages_same = 0;
4623 				break;
4624 			}
4625 		}
4626 		/* allocate minimum pages, user can later expand it */
4627 		if (!nr_pages_same)
4628 			nr_pages = 2;
4629 		buffer->buffers[cpu] =
4630 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4631 		if (!buffer->buffers[cpu]) {
4632 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4633 			     cpu);
4634 			return NOTIFY_OK;
4635 		}
4636 		smp_wmb();
4637 		cpumask_set_cpu(cpu, buffer->cpumask);
4638 		break;
4639 	case CPU_DOWN_PREPARE:
4640 	case CPU_DOWN_PREPARE_FROZEN:
4641 		/*
4642 		 * Do nothing.
4643 		 *  If we were to free the buffer, then the user would
4644 		 *  lose any trace that was in the buffer.
4645 		 */
4646 		break;
4647 	default:
4648 		break;
4649 	}
4650 	return NOTIFY_OK;
4651 }
4652 #endif
4653 
4654 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4655 /*
4656  * This is a basic integrity check of the ring buffer.
4657  * Late in the boot cycle this test will run when configured in.
4658  * It will kick off a thread per CPU that will go into a loop
4659  * writing to the per cpu ring buffer various sizes of data.
4660  * Some of the data will be large items, some small.
4661  *
4662  * Another thread is created that goes into a spin, sending out
4663  * IPIs to the other CPUs to also write into the ring buffer.
4664  * this is to test the nesting ability of the buffer.
4665  *
4666  * Basic stats are recorded and reported. If something in the
4667  * ring buffer should happen that's not expected, a big warning
4668  * is displayed and all ring buffers are disabled.
4669  */
4670 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4671 
4672 struct rb_test_data {
4673 	struct ring_buffer	*buffer;
4674 	unsigned long		events;
4675 	unsigned long		bytes_written;
4676 	unsigned long		bytes_alloc;
4677 	unsigned long		bytes_dropped;
4678 	unsigned long		events_nested;
4679 	unsigned long		bytes_written_nested;
4680 	unsigned long		bytes_alloc_nested;
4681 	unsigned long		bytes_dropped_nested;
4682 	int			min_size_nested;
4683 	int			max_size_nested;
4684 	int			max_size;
4685 	int			min_size;
4686 	int			cpu;
4687 	int			cnt;
4688 };
4689 
4690 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4691 
4692 /* 1 meg per cpu */
4693 #define RB_TEST_BUFFER_SIZE	1048576
4694 
4695 static char rb_string[] __initdata =
4696 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4697 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4698 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4699 
4700 static bool rb_test_started __initdata;
4701 
4702 struct rb_item {
4703 	int size;
4704 	char str[];
4705 };
4706 
4707 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4708 {
4709 	struct ring_buffer_event *event;
4710 	struct rb_item *item;
4711 	bool started;
4712 	int event_len;
4713 	int size;
4714 	int len;
4715 	int cnt;
4716 
4717 	/* Have nested writes different that what is written */
4718 	cnt = data->cnt + (nested ? 27 : 0);
4719 
4720 	/* Multiply cnt by ~e, to make some unique increment */
4721 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4722 
4723 	len = size + sizeof(struct rb_item);
4724 
4725 	started = rb_test_started;
4726 	/* read rb_test_started before checking buffer enabled */
4727 	smp_rmb();
4728 
4729 	event = ring_buffer_lock_reserve(data->buffer, len);
4730 	if (!event) {
4731 		/* Ignore dropped events before test starts. */
4732 		if (started) {
4733 			if (nested)
4734 				data->bytes_dropped += len;
4735 			else
4736 				data->bytes_dropped_nested += len;
4737 		}
4738 		return len;
4739 	}
4740 
4741 	event_len = ring_buffer_event_length(event);
4742 
4743 	if (RB_WARN_ON(data->buffer, event_len < len))
4744 		goto out;
4745 
4746 	item = ring_buffer_event_data(event);
4747 	item->size = size;
4748 	memcpy(item->str, rb_string, size);
4749 
4750 	if (nested) {
4751 		data->bytes_alloc_nested += event_len;
4752 		data->bytes_written_nested += len;
4753 		data->events_nested++;
4754 		if (!data->min_size_nested || len < data->min_size_nested)
4755 			data->min_size_nested = len;
4756 		if (len > data->max_size_nested)
4757 			data->max_size_nested = len;
4758 	} else {
4759 		data->bytes_alloc += event_len;
4760 		data->bytes_written += len;
4761 		data->events++;
4762 		if (!data->min_size || len < data->min_size)
4763 			data->max_size = len;
4764 		if (len > data->max_size)
4765 			data->max_size = len;
4766 	}
4767 
4768  out:
4769 	ring_buffer_unlock_commit(data->buffer, event);
4770 
4771 	return 0;
4772 }
4773 
4774 static __init int rb_test(void *arg)
4775 {
4776 	struct rb_test_data *data = arg;
4777 
4778 	while (!kthread_should_stop()) {
4779 		rb_write_something(data, false);
4780 		data->cnt++;
4781 
4782 		set_current_state(TASK_INTERRUPTIBLE);
4783 		/* Now sleep between a min of 100-300us and a max of 1ms */
4784 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4785 	}
4786 
4787 	return 0;
4788 }
4789 
4790 static __init void rb_ipi(void *ignore)
4791 {
4792 	struct rb_test_data *data;
4793 	int cpu = smp_processor_id();
4794 
4795 	data = &rb_data[cpu];
4796 	rb_write_something(data, true);
4797 }
4798 
4799 static __init int rb_hammer_test(void *arg)
4800 {
4801 	while (!kthread_should_stop()) {
4802 
4803 		/* Send an IPI to all cpus to write data! */
4804 		smp_call_function(rb_ipi, NULL, 1);
4805 		/* No sleep, but for non preempt, let others run */
4806 		schedule();
4807 	}
4808 
4809 	return 0;
4810 }
4811 
4812 static __init int test_ringbuffer(void)
4813 {
4814 	struct task_struct *rb_hammer;
4815 	struct ring_buffer *buffer;
4816 	int cpu;
4817 	int ret = 0;
4818 
4819 	pr_info("Running ring buffer tests...\n");
4820 
4821 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4822 	if (WARN_ON(!buffer))
4823 		return 0;
4824 
4825 	/* Disable buffer so that threads can't write to it yet */
4826 	ring_buffer_record_off(buffer);
4827 
4828 	for_each_online_cpu(cpu) {
4829 		rb_data[cpu].buffer = buffer;
4830 		rb_data[cpu].cpu = cpu;
4831 		rb_data[cpu].cnt = cpu;
4832 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4833 						 "rbtester/%d", cpu);
4834 		if (WARN_ON(!rb_threads[cpu])) {
4835 			pr_cont("FAILED\n");
4836 			ret = -1;
4837 			goto out_free;
4838 		}
4839 
4840 		kthread_bind(rb_threads[cpu], cpu);
4841  		wake_up_process(rb_threads[cpu]);
4842 	}
4843 
4844 	/* Now create the rb hammer! */
4845 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4846 	if (WARN_ON(!rb_hammer)) {
4847 		pr_cont("FAILED\n");
4848 		ret = -1;
4849 		goto out_free;
4850 	}
4851 
4852 	ring_buffer_record_on(buffer);
4853 	/*
4854 	 * Show buffer is enabled before setting rb_test_started.
4855 	 * Yes there's a small race window where events could be
4856 	 * dropped and the thread wont catch it. But when a ring
4857 	 * buffer gets enabled, there will always be some kind of
4858 	 * delay before other CPUs see it. Thus, we don't care about
4859 	 * those dropped events. We care about events dropped after
4860 	 * the threads see that the buffer is active.
4861 	 */
4862 	smp_wmb();
4863 	rb_test_started = true;
4864 
4865 	set_current_state(TASK_INTERRUPTIBLE);
4866 	/* Just run for 10 seconds */;
4867 	schedule_timeout(10 * HZ);
4868 
4869 	kthread_stop(rb_hammer);
4870 
4871  out_free:
4872 	for_each_online_cpu(cpu) {
4873 		if (!rb_threads[cpu])
4874 			break;
4875 		kthread_stop(rb_threads[cpu]);
4876 	}
4877 	if (ret) {
4878 		ring_buffer_free(buffer);
4879 		return ret;
4880 	}
4881 
4882 	/* Report! */
4883 	pr_info("finished\n");
4884 	for_each_online_cpu(cpu) {
4885 		struct ring_buffer_event *event;
4886 		struct rb_test_data *data = &rb_data[cpu];
4887 		struct rb_item *item;
4888 		unsigned long total_events;
4889 		unsigned long total_dropped;
4890 		unsigned long total_written;
4891 		unsigned long total_alloc;
4892 		unsigned long total_read = 0;
4893 		unsigned long total_size = 0;
4894 		unsigned long total_len = 0;
4895 		unsigned long total_lost = 0;
4896 		unsigned long lost;
4897 		int big_event_size;
4898 		int small_event_size;
4899 
4900 		ret = -1;
4901 
4902 		total_events = data->events + data->events_nested;
4903 		total_written = data->bytes_written + data->bytes_written_nested;
4904 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4905 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4906 
4907 		big_event_size = data->max_size + data->max_size_nested;
4908 		small_event_size = data->min_size + data->min_size_nested;
4909 
4910 		pr_info("CPU %d:\n", cpu);
4911 		pr_info("              events:    %ld\n", total_events);
4912 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4913 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4914 		pr_info("       written bytes:    %ld\n", total_written);
4915 		pr_info("       biggest event:    %d\n", big_event_size);
4916 		pr_info("      smallest event:    %d\n", small_event_size);
4917 
4918 		if (RB_WARN_ON(buffer, total_dropped))
4919 			break;
4920 
4921 		ret = 0;
4922 
4923 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4924 			total_lost += lost;
4925 			item = ring_buffer_event_data(event);
4926 			total_len += ring_buffer_event_length(event);
4927 			total_size += item->size + sizeof(struct rb_item);
4928 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4929 				pr_info("FAILED!\n");
4930 				pr_info("buffer had: %.*s\n", item->size, item->str);
4931 				pr_info("expected:   %.*s\n", item->size, rb_string);
4932 				RB_WARN_ON(buffer, 1);
4933 				ret = -1;
4934 				break;
4935 			}
4936 			total_read++;
4937 		}
4938 		if (ret)
4939 			break;
4940 
4941 		ret = -1;
4942 
4943 		pr_info("         read events:   %ld\n", total_read);
4944 		pr_info("         lost events:   %ld\n", total_lost);
4945 		pr_info("        total events:   %ld\n", total_lost + total_read);
4946 		pr_info("  recorded len bytes:   %ld\n", total_len);
4947 		pr_info(" recorded size bytes:   %ld\n", total_size);
4948 		if (total_lost)
4949 			pr_info(" With dropped events, record len and size may not match\n"
4950 				" alloced and written from above\n");
4951 		if (!total_lost) {
4952 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4953 				       total_size != total_written))
4954 				break;
4955 		}
4956 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4957 			break;
4958 
4959 		ret = 0;
4960 	}
4961 	if (!ret)
4962 		pr_info("Ring buffer PASSED!\n");
4963 
4964 	ring_buffer_free(buffer);
4965 	return 0;
4966 }
4967 
4968 late_initcall(test_ringbuffer);
4969 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4970