xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision f066af882b3755c5cdd2574e860433750c6bce1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 static void update_pages_handler(struct work_struct *work);
33 
34 /*
35  * The ring buffer header is special. We must manually up keep it.
36  */
37 int ring_buffer_print_entry_header(struct trace_seq *s)
38 {
39 	trace_seq_puts(s, "# compressed entry header\n");
40 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	trace_seq_putc(s, '\n');
44 	trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			 RINGBUF_TYPE_PADDING);
46 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			 RINGBUF_TYPE_TIME_EXTEND);
48 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
49 			 RINGBUF_TYPE_TIME_STAMP);
50 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
51 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
52 
53 	return !trace_seq_has_overflowed(s);
54 }
55 
56 /*
57  * The ring buffer is made up of a list of pages. A separate list of pages is
58  * allocated for each CPU. A writer may only write to a buffer that is
59  * associated with the CPU it is currently executing on.  A reader may read
60  * from any per cpu buffer.
61  *
62  * The reader is special. For each per cpu buffer, the reader has its own
63  * reader page. When a reader has read the entire reader page, this reader
64  * page is swapped with another page in the ring buffer.
65  *
66  * Now, as long as the writer is off the reader page, the reader can do what
67  * ever it wants with that page. The writer will never write to that page
68  * again (as long as it is out of the ring buffer).
69  *
70  * Here's some silly ASCII art.
71  *
72  *   +------+
73  *   |reader|          RING BUFFER
74  *   |page  |
75  *   +------+        +---+   +---+   +---+
76  *                   |   |-->|   |-->|   |
77  *                   +---+   +---+   +---+
78  *                     ^               |
79  *                     |               |
80  *                     +---------------+
81  *
82  *
83  *   +------+
84  *   |reader|          RING BUFFER
85  *   |page  |------------------v
86  *   +------+        +---+   +---+   +---+
87  *                   |   |-->|   |-->|   |
88  *                   +---+   +---+   +---+
89  *                     ^               |
90  *                     |               |
91  *                     +---------------+
92  *
93  *
94  *   +------+
95  *   |reader|          RING BUFFER
96  *   |page  |------------------v
97  *   +------+        +---+   +---+   +---+
98  *      ^            |   |-->|   |-->|   |
99  *      |            +---+   +---+   +---+
100  *      |                              |
101  *      |                              |
102  *      +------------------------------+
103  *
104  *
105  *   +------+
106  *   |buffer|          RING BUFFER
107  *   |page  |------------------v
108  *   +------+        +---+   +---+   +---+
109  *      ^            |   |   |   |-->|   |
110  *      |   New      +---+   +---+   +---+
111  *      |  Reader------^               |
112  *      |   page                       |
113  *      +------------------------------+
114  *
115  *
116  * After we make this swap, the reader can hand this page off to the splice
117  * code and be done with it. It can even allocate a new page if it needs to
118  * and swap that into the ring buffer.
119  *
120  * We will be using cmpxchg soon to make all this lockless.
121  *
122  */
123 
124 /* Used for individual buffers (after the counter) */
125 #define RB_BUFFER_OFF		(1 << 20)
126 
127 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
128 
129 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
130 #define RB_ALIGNMENT		4U
131 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
132 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
133 
134 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
135 # define RB_FORCE_8BYTE_ALIGNMENT	0
136 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
137 #else
138 # define RB_FORCE_8BYTE_ALIGNMENT	1
139 # define RB_ARCH_ALIGNMENT		8U
140 #endif
141 
142 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
143 
144 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
145 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
146 
147 enum {
148 	RB_LEN_TIME_EXTEND = 8,
149 	RB_LEN_TIME_STAMP =  8,
150 };
151 
152 #define skip_time_extend(event) \
153 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
154 
155 #define extended_time(event) \
156 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
157 
158 static inline int rb_null_event(struct ring_buffer_event *event)
159 {
160 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
161 }
162 
163 static void rb_event_set_padding(struct ring_buffer_event *event)
164 {
165 	/* padding has a NULL time_delta */
166 	event->type_len = RINGBUF_TYPE_PADDING;
167 	event->time_delta = 0;
168 }
169 
170 static unsigned
171 rb_event_data_length(struct ring_buffer_event *event)
172 {
173 	unsigned length;
174 
175 	if (event->type_len)
176 		length = event->type_len * RB_ALIGNMENT;
177 	else
178 		length = event->array[0];
179 	return length + RB_EVNT_HDR_SIZE;
180 }
181 
182 /*
183  * Return the length of the given event. Will return
184  * the length of the time extend if the event is a
185  * time extend.
186  */
187 static inline unsigned
188 rb_event_length(struct ring_buffer_event *event)
189 {
190 	switch (event->type_len) {
191 	case RINGBUF_TYPE_PADDING:
192 		if (rb_null_event(event))
193 			/* undefined */
194 			return -1;
195 		return  event->array[0] + RB_EVNT_HDR_SIZE;
196 
197 	case RINGBUF_TYPE_TIME_EXTEND:
198 		return RB_LEN_TIME_EXTEND;
199 
200 	case RINGBUF_TYPE_TIME_STAMP:
201 		return RB_LEN_TIME_STAMP;
202 
203 	case RINGBUF_TYPE_DATA:
204 		return rb_event_data_length(event);
205 	default:
206 		WARN_ON_ONCE(1);
207 	}
208 	/* not hit */
209 	return 0;
210 }
211 
212 /*
213  * Return total length of time extend and data,
214  *   or just the event length for all other events.
215  */
216 static inline unsigned
217 rb_event_ts_length(struct ring_buffer_event *event)
218 {
219 	unsigned len = 0;
220 
221 	if (extended_time(event)) {
222 		/* time extends include the data event after it */
223 		len = RB_LEN_TIME_EXTEND;
224 		event = skip_time_extend(event);
225 	}
226 	return len + rb_event_length(event);
227 }
228 
229 /**
230  * ring_buffer_event_length - return the length of the event
231  * @event: the event to get the length of
232  *
233  * Returns the size of the data load of a data event.
234  * If the event is something other than a data event, it
235  * returns the size of the event itself. With the exception
236  * of a TIME EXTEND, where it still returns the size of the
237  * data load of the data event after it.
238  */
239 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
240 {
241 	unsigned length;
242 
243 	if (extended_time(event))
244 		event = skip_time_extend(event);
245 
246 	length = rb_event_length(event);
247 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
248 		return length;
249 	length -= RB_EVNT_HDR_SIZE;
250 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
251                 length -= sizeof(event->array[0]);
252 	return length;
253 }
254 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
255 
256 /* inline for ring buffer fast paths */
257 static __always_inline void *
258 rb_event_data(struct ring_buffer_event *event)
259 {
260 	if (extended_time(event))
261 		event = skip_time_extend(event);
262 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
263 	/* If length is in len field, then array[0] has the data */
264 	if (event->type_len)
265 		return (void *)&event->array[0];
266 	/* Otherwise length is in array[0] and array[1] has the data */
267 	return (void *)&event->array[1];
268 }
269 
270 /**
271  * ring_buffer_event_data - return the data of the event
272  * @event: the event to get the data from
273  */
274 void *ring_buffer_event_data(struct ring_buffer_event *event)
275 {
276 	return rb_event_data(event);
277 }
278 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
279 
280 #define for_each_buffer_cpu(buffer, cpu)		\
281 	for_each_cpu(cpu, buffer->cpumask)
282 
283 #define for_each_online_buffer_cpu(buffer, cpu)		\
284 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
285 
286 #define TS_SHIFT	27
287 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
288 #define TS_DELTA_TEST	(~TS_MASK)
289 
290 /**
291  * ring_buffer_event_time_stamp - return the event's extended timestamp
292  * @event: the event to get the timestamp of
293  *
294  * Returns the extended timestamp associated with a data event.
295  * An extended time_stamp is a 64-bit timestamp represented
296  * internally in a special way that makes the best use of space
297  * contained within a ring buffer event.  This function decodes
298  * it and maps it to a straight u64 value.
299  */
300 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
301 {
302 	u64 ts;
303 
304 	ts = event->array[0];
305 	ts <<= TS_SHIFT;
306 	ts += event->time_delta;
307 
308 	return ts;
309 }
310 
311 /* Flag when events were overwritten */
312 #define RB_MISSED_EVENTS	(1 << 31)
313 /* Missed count stored at end */
314 #define RB_MISSED_STORED	(1 << 30)
315 
316 struct buffer_data_page {
317 	u64		 time_stamp;	/* page time stamp */
318 	local_t		 commit;	/* write committed index */
319 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
320 };
321 
322 /*
323  * Note, the buffer_page list must be first. The buffer pages
324  * are allocated in cache lines, which means that each buffer
325  * page will be at the beginning of a cache line, and thus
326  * the least significant bits will be zero. We use this to
327  * add flags in the list struct pointers, to make the ring buffer
328  * lockless.
329  */
330 struct buffer_page {
331 	struct list_head list;		/* list of buffer pages */
332 	local_t		 write;		/* index for next write */
333 	unsigned	 read;		/* index for next read */
334 	local_t		 entries;	/* entries on this page */
335 	unsigned long	 real_end;	/* real end of data */
336 	struct buffer_data_page *page;	/* Actual data page */
337 };
338 
339 /*
340  * The buffer page counters, write and entries, must be reset
341  * atomically when crossing page boundaries. To synchronize this
342  * update, two counters are inserted into the number. One is
343  * the actual counter for the write position or count on the page.
344  *
345  * The other is a counter of updaters. Before an update happens
346  * the update partition of the counter is incremented. This will
347  * allow the updater to update the counter atomically.
348  *
349  * The counter is 20 bits, and the state data is 12.
350  */
351 #define RB_WRITE_MASK		0xfffff
352 #define RB_WRITE_INTCNT		(1 << 20)
353 
354 static void rb_init_page(struct buffer_data_page *bpage)
355 {
356 	local_set(&bpage->commit, 0);
357 }
358 
359 /*
360  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
361  * this issue out.
362  */
363 static void free_buffer_page(struct buffer_page *bpage)
364 {
365 	free_page((unsigned long)bpage->page);
366 	kfree(bpage);
367 }
368 
369 /*
370  * We need to fit the time_stamp delta into 27 bits.
371  */
372 static inline int test_time_stamp(u64 delta)
373 {
374 	if (delta & TS_DELTA_TEST)
375 		return 1;
376 	return 0;
377 }
378 
379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
380 
381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
383 
384 int ring_buffer_print_page_header(struct trace_seq *s)
385 {
386 	struct buffer_data_page field;
387 
388 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
389 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
390 			 (unsigned int)sizeof(field.time_stamp),
391 			 (unsigned int)is_signed_type(u64));
392 
393 	trace_seq_printf(s, "\tfield: local_t commit;\t"
394 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
395 			 (unsigned int)offsetof(typeof(field), commit),
396 			 (unsigned int)sizeof(field.commit),
397 			 (unsigned int)is_signed_type(long));
398 
399 	trace_seq_printf(s, "\tfield: int overwrite;\t"
400 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
401 			 (unsigned int)offsetof(typeof(field), commit),
402 			 1,
403 			 (unsigned int)is_signed_type(long));
404 
405 	trace_seq_printf(s, "\tfield: char data;\t"
406 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
407 			 (unsigned int)offsetof(typeof(field), data),
408 			 (unsigned int)BUF_PAGE_SIZE,
409 			 (unsigned int)is_signed_type(char));
410 
411 	return !trace_seq_has_overflowed(s);
412 }
413 
414 struct rb_irq_work {
415 	struct irq_work			work;
416 	wait_queue_head_t		waiters;
417 	wait_queue_head_t		full_waiters;
418 	bool				waiters_pending;
419 	bool				full_waiters_pending;
420 	bool				wakeup_full;
421 };
422 
423 /*
424  * Structure to hold event state and handle nested events.
425  */
426 struct rb_event_info {
427 	u64			ts;
428 	u64			delta;
429 	u64			before;
430 	u64			after;
431 	unsigned long		length;
432 	struct buffer_page	*tail_page;
433 	int			add_timestamp;
434 };
435 
436 /*
437  * Used for the add_timestamp
438  *  NONE
439  *  EXTEND - wants a time extend
440  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
441  *  FORCE - force a full time stamp.
442  */
443 enum {
444 	RB_ADD_STAMP_NONE		= 0,
445 	RB_ADD_STAMP_EXTEND		= BIT(1),
446 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
447 	RB_ADD_STAMP_FORCE		= BIT(3)
448 };
449 /*
450  * Used for which event context the event is in.
451  *  TRANSITION = 0
452  *  NMI     = 1
453  *  IRQ     = 2
454  *  SOFTIRQ = 3
455  *  NORMAL  = 4
456  *
457  * See trace_recursive_lock() comment below for more details.
458  */
459 enum {
460 	RB_CTX_TRANSITION,
461 	RB_CTX_NMI,
462 	RB_CTX_IRQ,
463 	RB_CTX_SOFTIRQ,
464 	RB_CTX_NORMAL,
465 	RB_CTX_MAX
466 };
467 
468 #if BITS_PER_LONG == 32
469 #define RB_TIME_32
470 #endif
471 
472 /* To test on 64 bit machines */
473 //#define RB_TIME_32
474 
475 #ifdef RB_TIME_32
476 
477 struct rb_time_struct {
478 	local_t		cnt;
479 	local_t		top;
480 	local_t		bottom;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485 	local64_t	time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489 
490 /*
491  * head_page == tail_page && head == tail then buffer is empty.
492  */
493 struct ring_buffer_per_cpu {
494 	int				cpu;
495 	atomic_t			record_disabled;
496 	atomic_t			resize_disabled;
497 	struct trace_buffer	*buffer;
498 	raw_spinlock_t			reader_lock;	/* serialize readers */
499 	arch_spinlock_t			lock;
500 	struct lock_class_key		lock_key;
501 	struct buffer_data_page		*free_page;
502 	unsigned long			nr_pages;
503 	unsigned int			current_context;
504 	struct list_head		*pages;
505 	struct buffer_page		*head_page;	/* read from head */
506 	struct buffer_page		*tail_page;	/* write to tail */
507 	struct buffer_page		*commit_page;	/* committed pages */
508 	struct buffer_page		*reader_page;
509 	unsigned long			lost_events;
510 	unsigned long			last_overrun;
511 	unsigned long			nest;
512 	local_t				entries_bytes;
513 	local_t				entries;
514 	local_t				overrun;
515 	local_t				commit_overrun;
516 	local_t				dropped_events;
517 	local_t				committing;
518 	local_t				commits;
519 	local_t				pages_touched;
520 	local_t				pages_read;
521 	long				last_pages_touch;
522 	size_t				shortest_full;
523 	unsigned long			read;
524 	unsigned long			read_bytes;
525 	rb_time_t			write_stamp;
526 	rb_time_t			before_stamp;
527 	u64				read_stamp;
528 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
529 	long				nr_pages_to_update;
530 	struct list_head		new_pages; /* new pages to add */
531 	struct work_struct		update_pages_work;
532 	struct completion		update_done;
533 
534 	struct rb_irq_work		irq_work;
535 };
536 
537 struct trace_buffer {
538 	unsigned			flags;
539 	int				cpus;
540 	atomic_t			record_disabled;
541 	cpumask_var_t			cpumask;
542 
543 	struct lock_class_key		*reader_lock_key;
544 
545 	struct mutex			mutex;
546 
547 	struct ring_buffer_per_cpu	**buffers;
548 
549 	struct hlist_node		node;
550 	u64				(*clock)(void);
551 
552 	struct rb_irq_work		irq_work;
553 	bool				time_stamp_abs;
554 };
555 
556 struct ring_buffer_iter {
557 	struct ring_buffer_per_cpu	*cpu_buffer;
558 	unsigned long			head;
559 	unsigned long			next_event;
560 	struct buffer_page		*head_page;
561 	struct buffer_page		*cache_reader_page;
562 	unsigned long			cache_read;
563 	u64				read_stamp;
564 	u64				page_stamp;
565 	struct ring_buffer_event	*event;
566 	int				missed_events;
567 };
568 
569 #ifdef RB_TIME_32
570 
571 /*
572  * On 32 bit machines, local64_t is very expensive. As the ring
573  * buffer doesn't need all the features of a true 64 bit atomic,
574  * on 32 bit, it uses these functions (64 still uses local64_t).
575  *
576  * For the ring buffer, 64 bit required operations for the time is
577  * the following:
578  *
579  *  - Only need 59 bits (uses 60 to make it even).
580  *  - Reads may fail if it interrupted a modification of the time stamp.
581  *      It will succeed if it did not interrupt another write even if
582  *      the read itself is interrupted by a write.
583  *      It returns whether it was successful or not.
584  *
585  *  - Writes always succeed and will overwrite other writes and writes
586  *      that were done by events interrupting the current write.
587  *
588  *  - A write followed by a read of the same time stamp will always succeed,
589  *      but may not contain the same value.
590  *
591  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
592  *      Other than that, it acts like a normal cmpxchg.
593  *
594  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
595  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
596  *
597  * The two most significant bits of each half holds a 2 bit counter (0-3).
598  * Each update will increment this counter by one.
599  * When reading the top and bottom, if the two counter bits match then the
600  *  top and bottom together make a valid 60 bit number.
601  */
602 #define RB_TIME_SHIFT	30
603 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
604 
605 static inline int rb_time_cnt(unsigned long val)
606 {
607 	return (val >> RB_TIME_SHIFT) & 3;
608 }
609 
610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
611 {
612 	u64 val;
613 
614 	val = top & RB_TIME_VAL_MASK;
615 	val <<= RB_TIME_SHIFT;
616 	val |= bottom & RB_TIME_VAL_MASK;
617 
618 	return val;
619 }
620 
621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
622 {
623 	unsigned long top, bottom;
624 	unsigned long c;
625 
626 	/*
627 	 * If the read is interrupted by a write, then the cnt will
628 	 * be different. Loop until both top and bottom have been read
629 	 * without interruption.
630 	 */
631 	do {
632 		c = local_read(&t->cnt);
633 		top = local_read(&t->top);
634 		bottom = local_read(&t->bottom);
635 	} while (c != local_read(&t->cnt));
636 
637 	*cnt = rb_time_cnt(top);
638 
639 	/* If top and bottom counts don't match, this interrupted a write */
640 	if (*cnt != rb_time_cnt(bottom))
641 		return false;
642 
643 	*ret = rb_time_val(top, bottom);
644 	return true;
645 }
646 
647 static bool rb_time_read(rb_time_t *t, u64 *ret)
648 {
649 	unsigned long cnt;
650 
651 	return __rb_time_read(t, ret, &cnt);
652 }
653 
654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
655 {
656 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
657 }
658 
659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
660 {
661 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
662 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
663 }
664 
665 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
666 {
667 	val = rb_time_val_cnt(val, cnt);
668 	local_set(t, val);
669 }
670 
671 static void rb_time_set(rb_time_t *t, u64 val)
672 {
673 	unsigned long cnt, top, bottom;
674 
675 	rb_time_split(val, &top, &bottom);
676 
677 	/* Writes always succeed with a valid number even if it gets interrupted. */
678 	do {
679 		cnt = local_inc_return(&t->cnt);
680 		rb_time_val_set(&t->top, top, cnt);
681 		rb_time_val_set(&t->bottom, bottom, cnt);
682 	} while (cnt != local_read(&t->cnt));
683 }
684 
685 static inline bool
686 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
687 {
688 	unsigned long ret;
689 
690 	ret = local_cmpxchg(l, expect, set);
691 	return ret == expect;
692 }
693 
694 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
695 {
696 	unsigned long cnt, top, bottom;
697 	unsigned long cnt2, top2, bottom2;
698 	u64 val;
699 
700 	/* The cmpxchg always fails if it interrupted an update */
701 	 if (!__rb_time_read(t, &val, &cnt2))
702 		 return false;
703 
704 	 if (val != expect)
705 		 return false;
706 
707 	 cnt = local_read(&t->cnt);
708 	 if ((cnt & 3) != cnt2)
709 		 return false;
710 
711 	 cnt2 = cnt + 1;
712 
713 	 rb_time_split(val, &top, &bottom);
714 	 top = rb_time_val_cnt(top, cnt);
715 	 bottom = rb_time_val_cnt(bottom, cnt);
716 
717 	 rb_time_split(set, &top2, &bottom2);
718 	 top2 = rb_time_val_cnt(top2, cnt2);
719 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
720 
721 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
722 		return false;
723 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
724 		return false;
725 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
726 		return false;
727 	return true;
728 }
729 
730 #else /* 64 bits */
731 
732 /* local64_t always succeeds */
733 
734 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
735 {
736 	*ret = local64_read(&t->time);
737 	return true;
738 }
739 static void rb_time_set(rb_time_t *t, u64 val)
740 {
741 	local64_set(&t->time, val);
742 }
743 
744 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
745 {
746 	u64 val;
747 	val = local64_cmpxchg(&t->time, expect, set);
748 	return val == expect;
749 }
750 #endif
751 
752 /**
753  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
754  * @buffer: The ring_buffer to get the number of pages from
755  * @cpu: The cpu of the ring_buffer to get the number of pages from
756  *
757  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
758  */
759 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
760 {
761 	return buffer->buffers[cpu]->nr_pages;
762 }
763 
764 /**
765  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
766  * @buffer: The ring_buffer to get the number of pages from
767  * @cpu: The cpu of the ring_buffer to get the number of pages from
768  *
769  * Returns the number of pages that have content in the ring buffer.
770  */
771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
772 {
773 	size_t read;
774 	size_t cnt;
775 
776 	read = local_read(&buffer->buffers[cpu]->pages_read);
777 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
778 	/* The reader can read an empty page, but not more than that */
779 	if (cnt < read) {
780 		WARN_ON_ONCE(read > cnt + 1);
781 		return 0;
782 	}
783 
784 	return cnt - read;
785 }
786 
787 /*
788  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
789  *
790  * Schedules a delayed work to wake up any task that is blocked on the
791  * ring buffer waiters queue.
792  */
793 static void rb_wake_up_waiters(struct irq_work *work)
794 {
795 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
796 
797 	wake_up_all(&rbwork->waiters);
798 	if (rbwork->wakeup_full) {
799 		rbwork->wakeup_full = false;
800 		wake_up_all(&rbwork->full_waiters);
801 	}
802 }
803 
804 /**
805  * ring_buffer_wait - wait for input to the ring buffer
806  * @buffer: buffer to wait on
807  * @cpu: the cpu buffer to wait on
808  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
809  *
810  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
811  * as data is added to any of the @buffer's cpu buffers. Otherwise
812  * it will wait for data to be added to a specific cpu buffer.
813  */
814 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
815 {
816 	struct ring_buffer_per_cpu *cpu_buffer;
817 	DEFINE_WAIT(wait);
818 	struct rb_irq_work *work;
819 	int ret = 0;
820 
821 	/*
822 	 * Depending on what the caller is waiting for, either any
823 	 * data in any cpu buffer, or a specific buffer, put the
824 	 * caller on the appropriate wait queue.
825 	 */
826 	if (cpu == RING_BUFFER_ALL_CPUS) {
827 		work = &buffer->irq_work;
828 		/* Full only makes sense on per cpu reads */
829 		full = 0;
830 	} else {
831 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
832 			return -ENODEV;
833 		cpu_buffer = buffer->buffers[cpu];
834 		work = &cpu_buffer->irq_work;
835 	}
836 
837 
838 	while (true) {
839 		if (full)
840 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
841 		else
842 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
843 
844 		/*
845 		 * The events can happen in critical sections where
846 		 * checking a work queue can cause deadlocks.
847 		 * After adding a task to the queue, this flag is set
848 		 * only to notify events to try to wake up the queue
849 		 * using irq_work.
850 		 *
851 		 * We don't clear it even if the buffer is no longer
852 		 * empty. The flag only causes the next event to run
853 		 * irq_work to do the work queue wake up. The worse
854 		 * that can happen if we race with !trace_empty() is that
855 		 * an event will cause an irq_work to try to wake up
856 		 * an empty queue.
857 		 *
858 		 * There's no reason to protect this flag either, as
859 		 * the work queue and irq_work logic will do the necessary
860 		 * synchronization for the wake ups. The only thing
861 		 * that is necessary is that the wake up happens after
862 		 * a task has been queued. It's OK for spurious wake ups.
863 		 */
864 		if (full)
865 			work->full_waiters_pending = true;
866 		else
867 			work->waiters_pending = true;
868 
869 		if (signal_pending(current)) {
870 			ret = -EINTR;
871 			break;
872 		}
873 
874 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
875 			break;
876 
877 		if (cpu != RING_BUFFER_ALL_CPUS &&
878 		    !ring_buffer_empty_cpu(buffer, cpu)) {
879 			unsigned long flags;
880 			bool pagebusy;
881 			size_t nr_pages;
882 			size_t dirty;
883 
884 			if (!full)
885 				break;
886 
887 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
888 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
889 			nr_pages = cpu_buffer->nr_pages;
890 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
891 			if (!cpu_buffer->shortest_full ||
892 			    cpu_buffer->shortest_full < full)
893 				cpu_buffer->shortest_full = full;
894 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
895 			if (!pagebusy &&
896 			    (!nr_pages || (dirty * 100) > full * nr_pages))
897 				break;
898 		}
899 
900 		schedule();
901 	}
902 
903 	if (full)
904 		finish_wait(&work->full_waiters, &wait);
905 	else
906 		finish_wait(&work->waiters, &wait);
907 
908 	return ret;
909 }
910 
911 /**
912  * ring_buffer_poll_wait - poll on buffer input
913  * @buffer: buffer to wait on
914  * @cpu: the cpu buffer to wait on
915  * @filp: the file descriptor
916  * @poll_table: The poll descriptor
917  *
918  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
919  * as data is added to any of the @buffer's cpu buffers. Otherwise
920  * it will wait for data to be added to a specific cpu buffer.
921  *
922  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
923  * zero otherwise.
924  */
925 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
926 			  struct file *filp, poll_table *poll_table)
927 {
928 	struct ring_buffer_per_cpu *cpu_buffer;
929 	struct rb_irq_work *work;
930 
931 	if (cpu == RING_BUFFER_ALL_CPUS)
932 		work = &buffer->irq_work;
933 	else {
934 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
935 			return -EINVAL;
936 
937 		cpu_buffer = buffer->buffers[cpu];
938 		work = &cpu_buffer->irq_work;
939 	}
940 
941 	poll_wait(filp, &work->waiters, poll_table);
942 	work->waiters_pending = true;
943 	/*
944 	 * There's a tight race between setting the waiters_pending and
945 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
946 	 * is set, the next event will wake the task up, but we can get stuck
947 	 * if there's only a single event in.
948 	 *
949 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
950 	 * but adding a memory barrier to all events will cause too much of a
951 	 * performance hit in the fast path.  We only need a memory barrier when
952 	 * the buffer goes from empty to having content.  But as this race is
953 	 * extremely small, and it's not a problem if another event comes in, we
954 	 * will fix it later.
955 	 */
956 	smp_mb();
957 
958 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
959 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
960 		return EPOLLIN | EPOLLRDNORM;
961 	return 0;
962 }
963 
964 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
965 #define RB_WARN_ON(b, cond)						\
966 	({								\
967 		int _____ret = unlikely(cond);				\
968 		if (_____ret) {						\
969 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
970 				struct ring_buffer_per_cpu *__b =	\
971 					(void *)b;			\
972 				atomic_inc(&__b->buffer->record_disabled); \
973 			} else						\
974 				atomic_inc(&b->record_disabled);	\
975 			WARN_ON(1);					\
976 		}							\
977 		_____ret;						\
978 	})
979 
980 /* Up this if you want to test the TIME_EXTENTS and normalization */
981 #define DEBUG_SHIFT 0
982 
983 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
984 {
985 	u64 ts;
986 
987 	/* Skip retpolines :-( */
988 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
989 		ts = trace_clock_local();
990 	else
991 		ts = buffer->clock();
992 
993 	/* shift to debug/test normalization and TIME_EXTENTS */
994 	return ts << DEBUG_SHIFT;
995 }
996 
997 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
998 {
999 	u64 time;
1000 
1001 	preempt_disable_notrace();
1002 	time = rb_time_stamp(buffer);
1003 	preempt_enable_notrace();
1004 
1005 	return time;
1006 }
1007 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1008 
1009 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1010 				      int cpu, u64 *ts)
1011 {
1012 	/* Just stupid testing the normalize function and deltas */
1013 	*ts >>= DEBUG_SHIFT;
1014 }
1015 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1016 
1017 /*
1018  * Making the ring buffer lockless makes things tricky.
1019  * Although writes only happen on the CPU that they are on,
1020  * and they only need to worry about interrupts. Reads can
1021  * happen on any CPU.
1022  *
1023  * The reader page is always off the ring buffer, but when the
1024  * reader finishes with a page, it needs to swap its page with
1025  * a new one from the buffer. The reader needs to take from
1026  * the head (writes go to the tail). But if a writer is in overwrite
1027  * mode and wraps, it must push the head page forward.
1028  *
1029  * Here lies the problem.
1030  *
1031  * The reader must be careful to replace only the head page, and
1032  * not another one. As described at the top of the file in the
1033  * ASCII art, the reader sets its old page to point to the next
1034  * page after head. It then sets the page after head to point to
1035  * the old reader page. But if the writer moves the head page
1036  * during this operation, the reader could end up with the tail.
1037  *
1038  * We use cmpxchg to help prevent this race. We also do something
1039  * special with the page before head. We set the LSB to 1.
1040  *
1041  * When the writer must push the page forward, it will clear the
1042  * bit that points to the head page, move the head, and then set
1043  * the bit that points to the new head page.
1044  *
1045  * We also don't want an interrupt coming in and moving the head
1046  * page on another writer. Thus we use the second LSB to catch
1047  * that too. Thus:
1048  *
1049  * head->list->prev->next        bit 1          bit 0
1050  *                              -------        -------
1051  * Normal page                     0              0
1052  * Points to head page             0              1
1053  * New head page                   1              0
1054  *
1055  * Note we can not trust the prev pointer of the head page, because:
1056  *
1057  * +----+       +-----+        +-----+
1058  * |    |------>|  T  |---X--->|  N  |
1059  * |    |<------|     |        |     |
1060  * +----+       +-----+        +-----+
1061  *   ^                           ^ |
1062  *   |          +-----+          | |
1063  *   +----------|  R  |----------+ |
1064  *              |     |<-----------+
1065  *              +-----+
1066  *
1067  * Key:  ---X-->  HEAD flag set in pointer
1068  *         T      Tail page
1069  *         R      Reader page
1070  *         N      Next page
1071  *
1072  * (see __rb_reserve_next() to see where this happens)
1073  *
1074  *  What the above shows is that the reader just swapped out
1075  *  the reader page with a page in the buffer, but before it
1076  *  could make the new header point back to the new page added
1077  *  it was preempted by a writer. The writer moved forward onto
1078  *  the new page added by the reader and is about to move forward
1079  *  again.
1080  *
1081  *  You can see, it is legitimate for the previous pointer of
1082  *  the head (or any page) not to point back to itself. But only
1083  *  temporarily.
1084  */
1085 
1086 #define RB_PAGE_NORMAL		0UL
1087 #define RB_PAGE_HEAD		1UL
1088 #define RB_PAGE_UPDATE		2UL
1089 
1090 
1091 #define RB_FLAG_MASK		3UL
1092 
1093 /* PAGE_MOVED is not part of the mask */
1094 #define RB_PAGE_MOVED		4UL
1095 
1096 /*
1097  * rb_list_head - remove any bit
1098  */
1099 static struct list_head *rb_list_head(struct list_head *list)
1100 {
1101 	unsigned long val = (unsigned long)list;
1102 
1103 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1104 }
1105 
1106 /*
1107  * rb_is_head_page - test if the given page is the head page
1108  *
1109  * Because the reader may move the head_page pointer, we can
1110  * not trust what the head page is (it may be pointing to
1111  * the reader page). But if the next page is a header page,
1112  * its flags will be non zero.
1113  */
1114 static inline int
1115 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1116 {
1117 	unsigned long val;
1118 
1119 	val = (unsigned long)list->next;
1120 
1121 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1122 		return RB_PAGE_MOVED;
1123 
1124 	return val & RB_FLAG_MASK;
1125 }
1126 
1127 /*
1128  * rb_is_reader_page
1129  *
1130  * The unique thing about the reader page, is that, if the
1131  * writer is ever on it, the previous pointer never points
1132  * back to the reader page.
1133  */
1134 static bool rb_is_reader_page(struct buffer_page *page)
1135 {
1136 	struct list_head *list = page->list.prev;
1137 
1138 	return rb_list_head(list->next) != &page->list;
1139 }
1140 
1141 /*
1142  * rb_set_list_to_head - set a list_head to be pointing to head.
1143  */
1144 static void rb_set_list_to_head(struct list_head *list)
1145 {
1146 	unsigned long *ptr;
1147 
1148 	ptr = (unsigned long *)&list->next;
1149 	*ptr |= RB_PAGE_HEAD;
1150 	*ptr &= ~RB_PAGE_UPDATE;
1151 }
1152 
1153 /*
1154  * rb_head_page_activate - sets up head page
1155  */
1156 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1157 {
1158 	struct buffer_page *head;
1159 
1160 	head = cpu_buffer->head_page;
1161 	if (!head)
1162 		return;
1163 
1164 	/*
1165 	 * Set the previous list pointer to have the HEAD flag.
1166 	 */
1167 	rb_set_list_to_head(head->list.prev);
1168 }
1169 
1170 static void rb_list_head_clear(struct list_head *list)
1171 {
1172 	unsigned long *ptr = (unsigned long *)&list->next;
1173 
1174 	*ptr &= ~RB_FLAG_MASK;
1175 }
1176 
1177 /*
1178  * rb_head_page_deactivate - clears head page ptr (for free list)
1179  */
1180 static void
1181 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1182 {
1183 	struct list_head *hd;
1184 
1185 	/* Go through the whole list and clear any pointers found. */
1186 	rb_list_head_clear(cpu_buffer->pages);
1187 
1188 	list_for_each(hd, cpu_buffer->pages)
1189 		rb_list_head_clear(hd);
1190 }
1191 
1192 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1193 			    struct buffer_page *head,
1194 			    struct buffer_page *prev,
1195 			    int old_flag, int new_flag)
1196 {
1197 	struct list_head *list;
1198 	unsigned long val = (unsigned long)&head->list;
1199 	unsigned long ret;
1200 
1201 	list = &prev->list;
1202 
1203 	val &= ~RB_FLAG_MASK;
1204 
1205 	ret = cmpxchg((unsigned long *)&list->next,
1206 		      val | old_flag, val | new_flag);
1207 
1208 	/* check if the reader took the page */
1209 	if ((ret & ~RB_FLAG_MASK) != val)
1210 		return RB_PAGE_MOVED;
1211 
1212 	return ret & RB_FLAG_MASK;
1213 }
1214 
1215 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1216 				   struct buffer_page *head,
1217 				   struct buffer_page *prev,
1218 				   int old_flag)
1219 {
1220 	return rb_head_page_set(cpu_buffer, head, prev,
1221 				old_flag, RB_PAGE_UPDATE);
1222 }
1223 
1224 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1225 				 struct buffer_page *head,
1226 				 struct buffer_page *prev,
1227 				 int old_flag)
1228 {
1229 	return rb_head_page_set(cpu_buffer, head, prev,
1230 				old_flag, RB_PAGE_HEAD);
1231 }
1232 
1233 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1234 				   struct buffer_page *head,
1235 				   struct buffer_page *prev,
1236 				   int old_flag)
1237 {
1238 	return rb_head_page_set(cpu_buffer, head, prev,
1239 				old_flag, RB_PAGE_NORMAL);
1240 }
1241 
1242 static inline void rb_inc_page(struct buffer_page **bpage)
1243 {
1244 	struct list_head *p = rb_list_head((*bpage)->list.next);
1245 
1246 	*bpage = list_entry(p, struct buffer_page, list);
1247 }
1248 
1249 static struct buffer_page *
1250 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1251 {
1252 	struct buffer_page *head;
1253 	struct buffer_page *page;
1254 	struct list_head *list;
1255 	int i;
1256 
1257 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1258 		return NULL;
1259 
1260 	/* sanity check */
1261 	list = cpu_buffer->pages;
1262 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1263 		return NULL;
1264 
1265 	page = head = cpu_buffer->head_page;
1266 	/*
1267 	 * It is possible that the writer moves the header behind
1268 	 * where we started, and we miss in one loop.
1269 	 * A second loop should grab the header, but we'll do
1270 	 * three loops just because I'm paranoid.
1271 	 */
1272 	for (i = 0; i < 3; i++) {
1273 		do {
1274 			if (rb_is_head_page(page, page->list.prev)) {
1275 				cpu_buffer->head_page = page;
1276 				return page;
1277 			}
1278 			rb_inc_page(&page);
1279 		} while (page != head);
1280 	}
1281 
1282 	RB_WARN_ON(cpu_buffer, 1);
1283 
1284 	return NULL;
1285 }
1286 
1287 static int rb_head_page_replace(struct buffer_page *old,
1288 				struct buffer_page *new)
1289 {
1290 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1291 	unsigned long val;
1292 	unsigned long ret;
1293 
1294 	val = *ptr & ~RB_FLAG_MASK;
1295 	val |= RB_PAGE_HEAD;
1296 
1297 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1298 
1299 	return ret == val;
1300 }
1301 
1302 /*
1303  * rb_tail_page_update - move the tail page forward
1304  */
1305 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1306 			       struct buffer_page *tail_page,
1307 			       struct buffer_page *next_page)
1308 {
1309 	unsigned long old_entries;
1310 	unsigned long old_write;
1311 
1312 	/*
1313 	 * The tail page now needs to be moved forward.
1314 	 *
1315 	 * We need to reset the tail page, but without messing
1316 	 * with possible erasing of data brought in by interrupts
1317 	 * that have moved the tail page and are currently on it.
1318 	 *
1319 	 * We add a counter to the write field to denote this.
1320 	 */
1321 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1322 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1323 
1324 	local_inc(&cpu_buffer->pages_touched);
1325 	/*
1326 	 * Just make sure we have seen our old_write and synchronize
1327 	 * with any interrupts that come in.
1328 	 */
1329 	barrier();
1330 
1331 	/*
1332 	 * If the tail page is still the same as what we think
1333 	 * it is, then it is up to us to update the tail
1334 	 * pointer.
1335 	 */
1336 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1337 		/* Zero the write counter */
1338 		unsigned long val = old_write & ~RB_WRITE_MASK;
1339 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1340 
1341 		/*
1342 		 * This will only succeed if an interrupt did
1343 		 * not come in and change it. In which case, we
1344 		 * do not want to modify it.
1345 		 *
1346 		 * We add (void) to let the compiler know that we do not care
1347 		 * about the return value of these functions. We use the
1348 		 * cmpxchg to only update if an interrupt did not already
1349 		 * do it for us. If the cmpxchg fails, we don't care.
1350 		 */
1351 		(void)local_cmpxchg(&next_page->write, old_write, val);
1352 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1353 
1354 		/*
1355 		 * No need to worry about races with clearing out the commit.
1356 		 * it only can increment when a commit takes place. But that
1357 		 * only happens in the outer most nested commit.
1358 		 */
1359 		local_set(&next_page->page->commit, 0);
1360 
1361 		/* Again, either we update tail_page or an interrupt does */
1362 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1363 	}
1364 }
1365 
1366 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1367 			  struct buffer_page *bpage)
1368 {
1369 	unsigned long val = (unsigned long)bpage;
1370 
1371 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1372 		return 1;
1373 
1374 	return 0;
1375 }
1376 
1377 /**
1378  * rb_check_list - make sure a pointer to a list has the last bits zero
1379  */
1380 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1381 			 struct list_head *list)
1382 {
1383 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1384 		return 1;
1385 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1386 		return 1;
1387 	return 0;
1388 }
1389 
1390 /**
1391  * rb_check_pages - integrity check of buffer pages
1392  * @cpu_buffer: CPU buffer with pages to test
1393  *
1394  * As a safety measure we check to make sure the data pages have not
1395  * been corrupted.
1396  */
1397 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1398 {
1399 	struct list_head *head = cpu_buffer->pages;
1400 	struct buffer_page *bpage, *tmp;
1401 
1402 	/* Reset the head page if it exists */
1403 	if (cpu_buffer->head_page)
1404 		rb_set_head_page(cpu_buffer);
1405 
1406 	rb_head_page_deactivate(cpu_buffer);
1407 
1408 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1409 		return -1;
1410 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1411 		return -1;
1412 
1413 	if (rb_check_list(cpu_buffer, head))
1414 		return -1;
1415 
1416 	list_for_each_entry_safe(bpage, tmp, head, list) {
1417 		if (RB_WARN_ON(cpu_buffer,
1418 			       bpage->list.next->prev != &bpage->list))
1419 			return -1;
1420 		if (RB_WARN_ON(cpu_buffer,
1421 			       bpage->list.prev->next != &bpage->list))
1422 			return -1;
1423 		if (rb_check_list(cpu_buffer, &bpage->list))
1424 			return -1;
1425 	}
1426 
1427 	rb_head_page_activate(cpu_buffer);
1428 
1429 	return 0;
1430 }
1431 
1432 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1433 		long nr_pages, struct list_head *pages)
1434 {
1435 	struct buffer_page *bpage, *tmp;
1436 	bool user_thread = current->mm != NULL;
1437 	gfp_t mflags;
1438 	long i;
1439 
1440 	/*
1441 	 * Check if the available memory is there first.
1442 	 * Note, si_mem_available() only gives us a rough estimate of available
1443 	 * memory. It may not be accurate. But we don't care, we just want
1444 	 * to prevent doing any allocation when it is obvious that it is
1445 	 * not going to succeed.
1446 	 */
1447 	i = si_mem_available();
1448 	if (i < nr_pages)
1449 		return -ENOMEM;
1450 
1451 	/*
1452 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1453 	 * gracefully without invoking oom-killer and the system is not
1454 	 * destabilized.
1455 	 */
1456 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1457 
1458 	/*
1459 	 * If a user thread allocates too much, and si_mem_available()
1460 	 * reports there's enough memory, even though there is not.
1461 	 * Make sure the OOM killer kills this thread. This can happen
1462 	 * even with RETRY_MAYFAIL because another task may be doing
1463 	 * an allocation after this task has taken all memory.
1464 	 * This is the task the OOM killer needs to take out during this
1465 	 * loop, even if it was triggered by an allocation somewhere else.
1466 	 */
1467 	if (user_thread)
1468 		set_current_oom_origin();
1469 	for (i = 0; i < nr_pages; i++) {
1470 		struct page *page;
1471 
1472 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1473 				    mflags, cpu_to_node(cpu_buffer->cpu));
1474 		if (!bpage)
1475 			goto free_pages;
1476 
1477 		rb_check_bpage(cpu_buffer, bpage);
1478 
1479 		list_add(&bpage->list, pages);
1480 
1481 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1482 		if (!page)
1483 			goto free_pages;
1484 		bpage->page = page_address(page);
1485 		rb_init_page(bpage->page);
1486 
1487 		if (user_thread && fatal_signal_pending(current))
1488 			goto free_pages;
1489 	}
1490 	if (user_thread)
1491 		clear_current_oom_origin();
1492 
1493 	return 0;
1494 
1495 free_pages:
1496 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1497 		list_del_init(&bpage->list);
1498 		free_buffer_page(bpage);
1499 	}
1500 	if (user_thread)
1501 		clear_current_oom_origin();
1502 
1503 	return -ENOMEM;
1504 }
1505 
1506 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1507 			     unsigned long nr_pages)
1508 {
1509 	LIST_HEAD(pages);
1510 
1511 	WARN_ON(!nr_pages);
1512 
1513 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1514 		return -ENOMEM;
1515 
1516 	/*
1517 	 * The ring buffer page list is a circular list that does not
1518 	 * start and end with a list head. All page list items point to
1519 	 * other pages.
1520 	 */
1521 	cpu_buffer->pages = pages.next;
1522 	list_del(&pages);
1523 
1524 	cpu_buffer->nr_pages = nr_pages;
1525 
1526 	rb_check_pages(cpu_buffer);
1527 
1528 	return 0;
1529 }
1530 
1531 static struct ring_buffer_per_cpu *
1532 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1533 {
1534 	struct ring_buffer_per_cpu *cpu_buffer;
1535 	struct buffer_page *bpage;
1536 	struct page *page;
1537 	int ret;
1538 
1539 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1540 				  GFP_KERNEL, cpu_to_node(cpu));
1541 	if (!cpu_buffer)
1542 		return NULL;
1543 
1544 	cpu_buffer->cpu = cpu;
1545 	cpu_buffer->buffer = buffer;
1546 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1547 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1548 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1549 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1550 	init_completion(&cpu_buffer->update_done);
1551 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1552 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1553 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1554 
1555 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1556 			    GFP_KERNEL, cpu_to_node(cpu));
1557 	if (!bpage)
1558 		goto fail_free_buffer;
1559 
1560 	rb_check_bpage(cpu_buffer, bpage);
1561 
1562 	cpu_buffer->reader_page = bpage;
1563 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1564 	if (!page)
1565 		goto fail_free_reader;
1566 	bpage->page = page_address(page);
1567 	rb_init_page(bpage->page);
1568 
1569 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1570 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1571 
1572 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1573 	if (ret < 0)
1574 		goto fail_free_reader;
1575 
1576 	cpu_buffer->head_page
1577 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1578 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1579 
1580 	rb_head_page_activate(cpu_buffer);
1581 
1582 	return cpu_buffer;
1583 
1584  fail_free_reader:
1585 	free_buffer_page(cpu_buffer->reader_page);
1586 
1587  fail_free_buffer:
1588 	kfree(cpu_buffer);
1589 	return NULL;
1590 }
1591 
1592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1593 {
1594 	struct list_head *head = cpu_buffer->pages;
1595 	struct buffer_page *bpage, *tmp;
1596 
1597 	free_buffer_page(cpu_buffer->reader_page);
1598 
1599 	rb_head_page_deactivate(cpu_buffer);
1600 
1601 	if (head) {
1602 		list_for_each_entry_safe(bpage, tmp, head, list) {
1603 			list_del_init(&bpage->list);
1604 			free_buffer_page(bpage);
1605 		}
1606 		bpage = list_entry(head, struct buffer_page, list);
1607 		free_buffer_page(bpage);
1608 	}
1609 
1610 	kfree(cpu_buffer);
1611 }
1612 
1613 /**
1614  * __ring_buffer_alloc - allocate a new ring_buffer
1615  * @size: the size in bytes per cpu that is needed.
1616  * @flags: attributes to set for the ring buffer.
1617  * @key: ring buffer reader_lock_key.
1618  *
1619  * Currently the only flag that is available is the RB_FL_OVERWRITE
1620  * flag. This flag means that the buffer will overwrite old data
1621  * when the buffer wraps. If this flag is not set, the buffer will
1622  * drop data when the tail hits the head.
1623  */
1624 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1625 					struct lock_class_key *key)
1626 {
1627 	struct trace_buffer *buffer;
1628 	long nr_pages;
1629 	int bsize;
1630 	int cpu;
1631 	int ret;
1632 
1633 	/* keep it in its own cache line */
1634 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1635 			 GFP_KERNEL);
1636 	if (!buffer)
1637 		return NULL;
1638 
1639 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1640 		goto fail_free_buffer;
1641 
1642 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1643 	buffer->flags = flags;
1644 	buffer->clock = trace_clock_local;
1645 	buffer->reader_lock_key = key;
1646 
1647 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1648 	init_waitqueue_head(&buffer->irq_work.waiters);
1649 
1650 	/* need at least two pages */
1651 	if (nr_pages < 2)
1652 		nr_pages = 2;
1653 
1654 	buffer->cpus = nr_cpu_ids;
1655 
1656 	bsize = sizeof(void *) * nr_cpu_ids;
1657 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1658 				  GFP_KERNEL);
1659 	if (!buffer->buffers)
1660 		goto fail_free_cpumask;
1661 
1662 	cpu = raw_smp_processor_id();
1663 	cpumask_set_cpu(cpu, buffer->cpumask);
1664 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1665 	if (!buffer->buffers[cpu])
1666 		goto fail_free_buffers;
1667 
1668 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1669 	if (ret < 0)
1670 		goto fail_free_buffers;
1671 
1672 	mutex_init(&buffer->mutex);
1673 
1674 	return buffer;
1675 
1676  fail_free_buffers:
1677 	for_each_buffer_cpu(buffer, cpu) {
1678 		if (buffer->buffers[cpu])
1679 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1680 	}
1681 	kfree(buffer->buffers);
1682 
1683  fail_free_cpumask:
1684 	free_cpumask_var(buffer->cpumask);
1685 
1686  fail_free_buffer:
1687 	kfree(buffer);
1688 	return NULL;
1689 }
1690 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1691 
1692 /**
1693  * ring_buffer_free - free a ring buffer.
1694  * @buffer: the buffer to free.
1695  */
1696 void
1697 ring_buffer_free(struct trace_buffer *buffer)
1698 {
1699 	int cpu;
1700 
1701 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1702 
1703 	for_each_buffer_cpu(buffer, cpu)
1704 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1705 
1706 	kfree(buffer->buffers);
1707 	free_cpumask_var(buffer->cpumask);
1708 
1709 	kfree(buffer);
1710 }
1711 EXPORT_SYMBOL_GPL(ring_buffer_free);
1712 
1713 void ring_buffer_set_clock(struct trace_buffer *buffer,
1714 			   u64 (*clock)(void))
1715 {
1716 	buffer->clock = clock;
1717 }
1718 
1719 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1720 {
1721 	buffer->time_stamp_abs = abs;
1722 }
1723 
1724 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1725 {
1726 	return buffer->time_stamp_abs;
1727 }
1728 
1729 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1730 
1731 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1732 {
1733 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1734 }
1735 
1736 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1737 {
1738 	return local_read(&bpage->write) & RB_WRITE_MASK;
1739 }
1740 
1741 static int
1742 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1743 {
1744 	struct list_head *tail_page, *to_remove, *next_page;
1745 	struct buffer_page *to_remove_page, *tmp_iter_page;
1746 	struct buffer_page *last_page, *first_page;
1747 	unsigned long nr_removed;
1748 	unsigned long head_bit;
1749 	int page_entries;
1750 
1751 	head_bit = 0;
1752 
1753 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1754 	atomic_inc(&cpu_buffer->record_disabled);
1755 	/*
1756 	 * We don't race with the readers since we have acquired the reader
1757 	 * lock. We also don't race with writers after disabling recording.
1758 	 * This makes it easy to figure out the first and the last page to be
1759 	 * removed from the list. We unlink all the pages in between including
1760 	 * the first and last pages. This is done in a busy loop so that we
1761 	 * lose the least number of traces.
1762 	 * The pages are freed after we restart recording and unlock readers.
1763 	 */
1764 	tail_page = &cpu_buffer->tail_page->list;
1765 
1766 	/*
1767 	 * tail page might be on reader page, we remove the next page
1768 	 * from the ring buffer
1769 	 */
1770 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1771 		tail_page = rb_list_head(tail_page->next);
1772 	to_remove = tail_page;
1773 
1774 	/* start of pages to remove */
1775 	first_page = list_entry(rb_list_head(to_remove->next),
1776 				struct buffer_page, list);
1777 
1778 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1779 		to_remove = rb_list_head(to_remove)->next;
1780 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1781 	}
1782 
1783 	next_page = rb_list_head(to_remove)->next;
1784 
1785 	/*
1786 	 * Now we remove all pages between tail_page and next_page.
1787 	 * Make sure that we have head_bit value preserved for the
1788 	 * next page
1789 	 */
1790 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1791 						head_bit);
1792 	next_page = rb_list_head(next_page);
1793 	next_page->prev = tail_page;
1794 
1795 	/* make sure pages points to a valid page in the ring buffer */
1796 	cpu_buffer->pages = next_page;
1797 
1798 	/* update head page */
1799 	if (head_bit)
1800 		cpu_buffer->head_page = list_entry(next_page,
1801 						struct buffer_page, list);
1802 
1803 	/*
1804 	 * change read pointer to make sure any read iterators reset
1805 	 * themselves
1806 	 */
1807 	cpu_buffer->read = 0;
1808 
1809 	/* pages are removed, resume tracing and then free the pages */
1810 	atomic_dec(&cpu_buffer->record_disabled);
1811 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1812 
1813 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1814 
1815 	/* last buffer page to remove */
1816 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1817 				list);
1818 	tmp_iter_page = first_page;
1819 
1820 	do {
1821 		cond_resched();
1822 
1823 		to_remove_page = tmp_iter_page;
1824 		rb_inc_page(&tmp_iter_page);
1825 
1826 		/* update the counters */
1827 		page_entries = rb_page_entries(to_remove_page);
1828 		if (page_entries) {
1829 			/*
1830 			 * If something was added to this page, it was full
1831 			 * since it is not the tail page. So we deduct the
1832 			 * bytes consumed in ring buffer from here.
1833 			 * Increment overrun to account for the lost events.
1834 			 */
1835 			local_add(page_entries, &cpu_buffer->overrun);
1836 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1837 		}
1838 
1839 		/*
1840 		 * We have already removed references to this list item, just
1841 		 * free up the buffer_page and its page
1842 		 */
1843 		free_buffer_page(to_remove_page);
1844 		nr_removed--;
1845 
1846 	} while (to_remove_page != last_page);
1847 
1848 	RB_WARN_ON(cpu_buffer, nr_removed);
1849 
1850 	return nr_removed == 0;
1851 }
1852 
1853 static int
1854 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1855 {
1856 	struct list_head *pages = &cpu_buffer->new_pages;
1857 	int retries, success;
1858 
1859 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1860 	/*
1861 	 * We are holding the reader lock, so the reader page won't be swapped
1862 	 * in the ring buffer. Now we are racing with the writer trying to
1863 	 * move head page and the tail page.
1864 	 * We are going to adapt the reader page update process where:
1865 	 * 1. We first splice the start and end of list of new pages between
1866 	 *    the head page and its previous page.
1867 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1868 	 *    start of new pages list.
1869 	 * 3. Finally, we update the head->prev to the end of new list.
1870 	 *
1871 	 * We will try this process 10 times, to make sure that we don't keep
1872 	 * spinning.
1873 	 */
1874 	retries = 10;
1875 	success = 0;
1876 	while (retries--) {
1877 		struct list_head *head_page, *prev_page, *r;
1878 		struct list_head *last_page, *first_page;
1879 		struct list_head *head_page_with_bit;
1880 
1881 		head_page = &rb_set_head_page(cpu_buffer)->list;
1882 		if (!head_page)
1883 			break;
1884 		prev_page = head_page->prev;
1885 
1886 		first_page = pages->next;
1887 		last_page  = pages->prev;
1888 
1889 		head_page_with_bit = (struct list_head *)
1890 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1891 
1892 		last_page->next = head_page_with_bit;
1893 		first_page->prev = prev_page;
1894 
1895 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1896 
1897 		if (r == head_page_with_bit) {
1898 			/*
1899 			 * yay, we replaced the page pointer to our new list,
1900 			 * now, we just have to update to head page's prev
1901 			 * pointer to point to end of list
1902 			 */
1903 			head_page->prev = last_page;
1904 			success = 1;
1905 			break;
1906 		}
1907 	}
1908 
1909 	if (success)
1910 		INIT_LIST_HEAD(pages);
1911 	/*
1912 	 * If we weren't successful in adding in new pages, warn and stop
1913 	 * tracing
1914 	 */
1915 	RB_WARN_ON(cpu_buffer, !success);
1916 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1917 
1918 	/* free pages if they weren't inserted */
1919 	if (!success) {
1920 		struct buffer_page *bpage, *tmp;
1921 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1922 					 list) {
1923 			list_del_init(&bpage->list);
1924 			free_buffer_page(bpage);
1925 		}
1926 	}
1927 	return success;
1928 }
1929 
1930 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1931 {
1932 	int success;
1933 
1934 	if (cpu_buffer->nr_pages_to_update > 0)
1935 		success = rb_insert_pages(cpu_buffer);
1936 	else
1937 		success = rb_remove_pages(cpu_buffer,
1938 					-cpu_buffer->nr_pages_to_update);
1939 
1940 	if (success)
1941 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1942 }
1943 
1944 static void update_pages_handler(struct work_struct *work)
1945 {
1946 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1947 			struct ring_buffer_per_cpu, update_pages_work);
1948 	rb_update_pages(cpu_buffer);
1949 	complete(&cpu_buffer->update_done);
1950 }
1951 
1952 /**
1953  * ring_buffer_resize - resize the ring buffer
1954  * @buffer: the buffer to resize.
1955  * @size: the new size.
1956  * @cpu_id: the cpu buffer to resize
1957  *
1958  * Minimum size is 2 * BUF_PAGE_SIZE.
1959  *
1960  * Returns 0 on success and < 0 on failure.
1961  */
1962 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1963 			int cpu_id)
1964 {
1965 	struct ring_buffer_per_cpu *cpu_buffer;
1966 	unsigned long nr_pages;
1967 	int cpu, err;
1968 
1969 	/*
1970 	 * Always succeed at resizing a non-existent buffer:
1971 	 */
1972 	if (!buffer)
1973 		return 0;
1974 
1975 	/* Make sure the requested buffer exists */
1976 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1977 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1978 		return 0;
1979 
1980 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1981 
1982 	/* we need a minimum of two pages */
1983 	if (nr_pages < 2)
1984 		nr_pages = 2;
1985 
1986 	/* prevent another thread from changing buffer sizes */
1987 	mutex_lock(&buffer->mutex);
1988 
1989 
1990 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1991 		/*
1992 		 * Don't succeed if resizing is disabled, as a reader might be
1993 		 * manipulating the ring buffer and is expecting a sane state while
1994 		 * this is true.
1995 		 */
1996 		for_each_buffer_cpu(buffer, cpu) {
1997 			cpu_buffer = buffer->buffers[cpu];
1998 			if (atomic_read(&cpu_buffer->resize_disabled)) {
1999 				err = -EBUSY;
2000 				goto out_err_unlock;
2001 			}
2002 		}
2003 
2004 		/* calculate the pages to update */
2005 		for_each_buffer_cpu(buffer, cpu) {
2006 			cpu_buffer = buffer->buffers[cpu];
2007 
2008 			cpu_buffer->nr_pages_to_update = nr_pages -
2009 							cpu_buffer->nr_pages;
2010 			/*
2011 			 * nothing more to do for removing pages or no update
2012 			 */
2013 			if (cpu_buffer->nr_pages_to_update <= 0)
2014 				continue;
2015 			/*
2016 			 * to add pages, make sure all new pages can be
2017 			 * allocated without receiving ENOMEM
2018 			 */
2019 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2020 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2021 						&cpu_buffer->new_pages)) {
2022 				/* not enough memory for new pages */
2023 				err = -ENOMEM;
2024 				goto out_err;
2025 			}
2026 		}
2027 
2028 		get_online_cpus();
2029 		/*
2030 		 * Fire off all the required work handlers
2031 		 * We can't schedule on offline CPUs, but it's not necessary
2032 		 * since we can change their buffer sizes without any race.
2033 		 */
2034 		for_each_buffer_cpu(buffer, cpu) {
2035 			cpu_buffer = buffer->buffers[cpu];
2036 			if (!cpu_buffer->nr_pages_to_update)
2037 				continue;
2038 
2039 			/* Can't run something on an offline CPU. */
2040 			if (!cpu_online(cpu)) {
2041 				rb_update_pages(cpu_buffer);
2042 				cpu_buffer->nr_pages_to_update = 0;
2043 			} else {
2044 				schedule_work_on(cpu,
2045 						&cpu_buffer->update_pages_work);
2046 			}
2047 		}
2048 
2049 		/* wait for all the updates to complete */
2050 		for_each_buffer_cpu(buffer, cpu) {
2051 			cpu_buffer = buffer->buffers[cpu];
2052 			if (!cpu_buffer->nr_pages_to_update)
2053 				continue;
2054 
2055 			if (cpu_online(cpu))
2056 				wait_for_completion(&cpu_buffer->update_done);
2057 			cpu_buffer->nr_pages_to_update = 0;
2058 		}
2059 
2060 		put_online_cpus();
2061 	} else {
2062 		cpu_buffer = buffer->buffers[cpu_id];
2063 
2064 		if (nr_pages == cpu_buffer->nr_pages)
2065 			goto out;
2066 
2067 		/*
2068 		 * Don't succeed if resizing is disabled, as a reader might be
2069 		 * manipulating the ring buffer and is expecting a sane state while
2070 		 * this is true.
2071 		 */
2072 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2073 			err = -EBUSY;
2074 			goto out_err_unlock;
2075 		}
2076 
2077 		cpu_buffer->nr_pages_to_update = nr_pages -
2078 						cpu_buffer->nr_pages;
2079 
2080 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2081 		if (cpu_buffer->nr_pages_to_update > 0 &&
2082 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2083 					    &cpu_buffer->new_pages)) {
2084 			err = -ENOMEM;
2085 			goto out_err;
2086 		}
2087 
2088 		get_online_cpus();
2089 
2090 		/* Can't run something on an offline CPU. */
2091 		if (!cpu_online(cpu_id))
2092 			rb_update_pages(cpu_buffer);
2093 		else {
2094 			schedule_work_on(cpu_id,
2095 					 &cpu_buffer->update_pages_work);
2096 			wait_for_completion(&cpu_buffer->update_done);
2097 		}
2098 
2099 		cpu_buffer->nr_pages_to_update = 0;
2100 		put_online_cpus();
2101 	}
2102 
2103  out:
2104 	/*
2105 	 * The ring buffer resize can happen with the ring buffer
2106 	 * enabled, so that the update disturbs the tracing as little
2107 	 * as possible. But if the buffer is disabled, we do not need
2108 	 * to worry about that, and we can take the time to verify
2109 	 * that the buffer is not corrupt.
2110 	 */
2111 	if (atomic_read(&buffer->record_disabled)) {
2112 		atomic_inc(&buffer->record_disabled);
2113 		/*
2114 		 * Even though the buffer was disabled, we must make sure
2115 		 * that it is truly disabled before calling rb_check_pages.
2116 		 * There could have been a race between checking
2117 		 * record_disable and incrementing it.
2118 		 */
2119 		synchronize_rcu();
2120 		for_each_buffer_cpu(buffer, cpu) {
2121 			cpu_buffer = buffer->buffers[cpu];
2122 			rb_check_pages(cpu_buffer);
2123 		}
2124 		atomic_dec(&buffer->record_disabled);
2125 	}
2126 
2127 	mutex_unlock(&buffer->mutex);
2128 	return 0;
2129 
2130  out_err:
2131 	for_each_buffer_cpu(buffer, cpu) {
2132 		struct buffer_page *bpage, *tmp;
2133 
2134 		cpu_buffer = buffer->buffers[cpu];
2135 		cpu_buffer->nr_pages_to_update = 0;
2136 
2137 		if (list_empty(&cpu_buffer->new_pages))
2138 			continue;
2139 
2140 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2141 					list) {
2142 			list_del_init(&bpage->list);
2143 			free_buffer_page(bpage);
2144 		}
2145 	}
2146  out_err_unlock:
2147 	mutex_unlock(&buffer->mutex);
2148 	return err;
2149 }
2150 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2151 
2152 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2153 {
2154 	mutex_lock(&buffer->mutex);
2155 	if (val)
2156 		buffer->flags |= RB_FL_OVERWRITE;
2157 	else
2158 		buffer->flags &= ~RB_FL_OVERWRITE;
2159 	mutex_unlock(&buffer->mutex);
2160 }
2161 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2162 
2163 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2164 {
2165 	return bpage->page->data + index;
2166 }
2167 
2168 static __always_inline struct ring_buffer_event *
2169 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2170 {
2171 	return __rb_page_index(cpu_buffer->reader_page,
2172 			       cpu_buffer->reader_page->read);
2173 }
2174 
2175 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2176 {
2177 	return local_read(&bpage->page->commit);
2178 }
2179 
2180 static struct ring_buffer_event *
2181 rb_iter_head_event(struct ring_buffer_iter *iter)
2182 {
2183 	struct ring_buffer_event *event;
2184 	struct buffer_page *iter_head_page = iter->head_page;
2185 	unsigned long commit;
2186 	unsigned length;
2187 
2188 	if (iter->head != iter->next_event)
2189 		return iter->event;
2190 
2191 	/*
2192 	 * When the writer goes across pages, it issues a cmpxchg which
2193 	 * is a mb(), which will synchronize with the rmb here.
2194 	 * (see rb_tail_page_update() and __rb_reserve_next())
2195 	 */
2196 	commit = rb_page_commit(iter_head_page);
2197 	smp_rmb();
2198 	event = __rb_page_index(iter_head_page, iter->head);
2199 	length = rb_event_length(event);
2200 
2201 	/*
2202 	 * READ_ONCE() doesn't work on functions and we don't want the
2203 	 * compiler doing any crazy optimizations with length.
2204 	 */
2205 	barrier();
2206 
2207 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2208 		/* Writer corrupted the read? */
2209 		goto reset;
2210 
2211 	memcpy(iter->event, event, length);
2212 	/*
2213 	 * If the page stamp is still the same after this rmb() then the
2214 	 * event was safely copied without the writer entering the page.
2215 	 */
2216 	smp_rmb();
2217 
2218 	/* Make sure the page didn't change since we read this */
2219 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2220 	    commit > rb_page_commit(iter_head_page))
2221 		goto reset;
2222 
2223 	iter->next_event = iter->head + length;
2224 	return iter->event;
2225  reset:
2226 	/* Reset to the beginning */
2227 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2228 	iter->head = 0;
2229 	iter->next_event = 0;
2230 	iter->missed_events = 1;
2231 	return NULL;
2232 }
2233 
2234 /* Size is determined by what has been committed */
2235 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2236 {
2237 	return rb_page_commit(bpage);
2238 }
2239 
2240 static __always_inline unsigned
2241 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2242 {
2243 	return rb_page_commit(cpu_buffer->commit_page);
2244 }
2245 
2246 static __always_inline unsigned
2247 rb_event_index(struct ring_buffer_event *event)
2248 {
2249 	unsigned long addr = (unsigned long)event;
2250 
2251 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2252 }
2253 
2254 static void rb_inc_iter(struct ring_buffer_iter *iter)
2255 {
2256 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2257 
2258 	/*
2259 	 * The iterator could be on the reader page (it starts there).
2260 	 * But the head could have moved, since the reader was
2261 	 * found. Check for this case and assign the iterator
2262 	 * to the head page instead of next.
2263 	 */
2264 	if (iter->head_page == cpu_buffer->reader_page)
2265 		iter->head_page = rb_set_head_page(cpu_buffer);
2266 	else
2267 		rb_inc_page(&iter->head_page);
2268 
2269 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2270 	iter->head = 0;
2271 	iter->next_event = 0;
2272 }
2273 
2274 /*
2275  * rb_handle_head_page - writer hit the head page
2276  *
2277  * Returns: +1 to retry page
2278  *           0 to continue
2279  *          -1 on error
2280  */
2281 static int
2282 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2283 		    struct buffer_page *tail_page,
2284 		    struct buffer_page *next_page)
2285 {
2286 	struct buffer_page *new_head;
2287 	int entries;
2288 	int type;
2289 	int ret;
2290 
2291 	entries = rb_page_entries(next_page);
2292 
2293 	/*
2294 	 * The hard part is here. We need to move the head
2295 	 * forward, and protect against both readers on
2296 	 * other CPUs and writers coming in via interrupts.
2297 	 */
2298 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2299 				       RB_PAGE_HEAD);
2300 
2301 	/*
2302 	 * type can be one of four:
2303 	 *  NORMAL - an interrupt already moved it for us
2304 	 *  HEAD   - we are the first to get here.
2305 	 *  UPDATE - we are the interrupt interrupting
2306 	 *           a current move.
2307 	 *  MOVED  - a reader on another CPU moved the next
2308 	 *           pointer to its reader page. Give up
2309 	 *           and try again.
2310 	 */
2311 
2312 	switch (type) {
2313 	case RB_PAGE_HEAD:
2314 		/*
2315 		 * We changed the head to UPDATE, thus
2316 		 * it is our responsibility to update
2317 		 * the counters.
2318 		 */
2319 		local_add(entries, &cpu_buffer->overrun);
2320 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2321 
2322 		/*
2323 		 * The entries will be zeroed out when we move the
2324 		 * tail page.
2325 		 */
2326 
2327 		/* still more to do */
2328 		break;
2329 
2330 	case RB_PAGE_UPDATE:
2331 		/*
2332 		 * This is an interrupt that interrupt the
2333 		 * previous update. Still more to do.
2334 		 */
2335 		break;
2336 	case RB_PAGE_NORMAL:
2337 		/*
2338 		 * An interrupt came in before the update
2339 		 * and processed this for us.
2340 		 * Nothing left to do.
2341 		 */
2342 		return 1;
2343 	case RB_PAGE_MOVED:
2344 		/*
2345 		 * The reader is on another CPU and just did
2346 		 * a swap with our next_page.
2347 		 * Try again.
2348 		 */
2349 		return 1;
2350 	default:
2351 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2352 		return -1;
2353 	}
2354 
2355 	/*
2356 	 * Now that we are here, the old head pointer is
2357 	 * set to UPDATE. This will keep the reader from
2358 	 * swapping the head page with the reader page.
2359 	 * The reader (on another CPU) will spin till
2360 	 * we are finished.
2361 	 *
2362 	 * We just need to protect against interrupts
2363 	 * doing the job. We will set the next pointer
2364 	 * to HEAD. After that, we set the old pointer
2365 	 * to NORMAL, but only if it was HEAD before.
2366 	 * otherwise we are an interrupt, and only
2367 	 * want the outer most commit to reset it.
2368 	 */
2369 	new_head = next_page;
2370 	rb_inc_page(&new_head);
2371 
2372 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2373 				    RB_PAGE_NORMAL);
2374 
2375 	/*
2376 	 * Valid returns are:
2377 	 *  HEAD   - an interrupt came in and already set it.
2378 	 *  NORMAL - One of two things:
2379 	 *            1) We really set it.
2380 	 *            2) A bunch of interrupts came in and moved
2381 	 *               the page forward again.
2382 	 */
2383 	switch (ret) {
2384 	case RB_PAGE_HEAD:
2385 	case RB_PAGE_NORMAL:
2386 		/* OK */
2387 		break;
2388 	default:
2389 		RB_WARN_ON(cpu_buffer, 1);
2390 		return -1;
2391 	}
2392 
2393 	/*
2394 	 * It is possible that an interrupt came in,
2395 	 * set the head up, then more interrupts came in
2396 	 * and moved it again. When we get back here,
2397 	 * the page would have been set to NORMAL but we
2398 	 * just set it back to HEAD.
2399 	 *
2400 	 * How do you detect this? Well, if that happened
2401 	 * the tail page would have moved.
2402 	 */
2403 	if (ret == RB_PAGE_NORMAL) {
2404 		struct buffer_page *buffer_tail_page;
2405 
2406 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2407 		/*
2408 		 * If the tail had moved passed next, then we need
2409 		 * to reset the pointer.
2410 		 */
2411 		if (buffer_tail_page != tail_page &&
2412 		    buffer_tail_page != next_page)
2413 			rb_head_page_set_normal(cpu_buffer, new_head,
2414 						next_page,
2415 						RB_PAGE_HEAD);
2416 	}
2417 
2418 	/*
2419 	 * If this was the outer most commit (the one that
2420 	 * changed the original pointer from HEAD to UPDATE),
2421 	 * then it is up to us to reset it to NORMAL.
2422 	 */
2423 	if (type == RB_PAGE_HEAD) {
2424 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2425 					      tail_page,
2426 					      RB_PAGE_UPDATE);
2427 		if (RB_WARN_ON(cpu_buffer,
2428 			       ret != RB_PAGE_UPDATE))
2429 			return -1;
2430 	}
2431 
2432 	return 0;
2433 }
2434 
2435 static inline void
2436 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2437 	      unsigned long tail, struct rb_event_info *info)
2438 {
2439 	struct buffer_page *tail_page = info->tail_page;
2440 	struct ring_buffer_event *event;
2441 	unsigned long length = info->length;
2442 
2443 	/*
2444 	 * Only the event that crossed the page boundary
2445 	 * must fill the old tail_page with padding.
2446 	 */
2447 	if (tail >= BUF_PAGE_SIZE) {
2448 		/*
2449 		 * If the page was filled, then we still need
2450 		 * to update the real_end. Reset it to zero
2451 		 * and the reader will ignore it.
2452 		 */
2453 		if (tail == BUF_PAGE_SIZE)
2454 			tail_page->real_end = 0;
2455 
2456 		local_sub(length, &tail_page->write);
2457 		return;
2458 	}
2459 
2460 	event = __rb_page_index(tail_page, tail);
2461 
2462 	/* account for padding bytes */
2463 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2464 
2465 	/*
2466 	 * Save the original length to the meta data.
2467 	 * This will be used by the reader to add lost event
2468 	 * counter.
2469 	 */
2470 	tail_page->real_end = tail;
2471 
2472 	/*
2473 	 * If this event is bigger than the minimum size, then
2474 	 * we need to be careful that we don't subtract the
2475 	 * write counter enough to allow another writer to slip
2476 	 * in on this page.
2477 	 * We put in a discarded commit instead, to make sure
2478 	 * that this space is not used again.
2479 	 *
2480 	 * If we are less than the minimum size, we don't need to
2481 	 * worry about it.
2482 	 */
2483 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2484 		/* No room for any events */
2485 
2486 		/* Mark the rest of the page with padding */
2487 		rb_event_set_padding(event);
2488 
2489 		/* Set the write back to the previous setting */
2490 		local_sub(length, &tail_page->write);
2491 		return;
2492 	}
2493 
2494 	/* Put in a discarded event */
2495 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2496 	event->type_len = RINGBUF_TYPE_PADDING;
2497 	/* time delta must be non zero */
2498 	event->time_delta = 1;
2499 
2500 	/* Set write to end of buffer */
2501 	length = (tail + length) - BUF_PAGE_SIZE;
2502 	local_sub(length, &tail_page->write);
2503 }
2504 
2505 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2506 
2507 /*
2508  * This is the slow path, force gcc not to inline it.
2509  */
2510 static noinline struct ring_buffer_event *
2511 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2512 	     unsigned long tail, struct rb_event_info *info)
2513 {
2514 	struct buffer_page *tail_page = info->tail_page;
2515 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2516 	struct trace_buffer *buffer = cpu_buffer->buffer;
2517 	struct buffer_page *next_page;
2518 	int ret;
2519 
2520 	next_page = tail_page;
2521 
2522 	rb_inc_page(&next_page);
2523 
2524 	/*
2525 	 * If for some reason, we had an interrupt storm that made
2526 	 * it all the way around the buffer, bail, and warn
2527 	 * about it.
2528 	 */
2529 	if (unlikely(next_page == commit_page)) {
2530 		local_inc(&cpu_buffer->commit_overrun);
2531 		goto out_reset;
2532 	}
2533 
2534 	/*
2535 	 * This is where the fun begins!
2536 	 *
2537 	 * We are fighting against races between a reader that
2538 	 * could be on another CPU trying to swap its reader
2539 	 * page with the buffer head.
2540 	 *
2541 	 * We are also fighting against interrupts coming in and
2542 	 * moving the head or tail on us as well.
2543 	 *
2544 	 * If the next page is the head page then we have filled
2545 	 * the buffer, unless the commit page is still on the
2546 	 * reader page.
2547 	 */
2548 	if (rb_is_head_page(next_page, &tail_page->list)) {
2549 
2550 		/*
2551 		 * If the commit is not on the reader page, then
2552 		 * move the header page.
2553 		 */
2554 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2555 			/*
2556 			 * If we are not in overwrite mode,
2557 			 * this is easy, just stop here.
2558 			 */
2559 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2560 				local_inc(&cpu_buffer->dropped_events);
2561 				goto out_reset;
2562 			}
2563 
2564 			ret = rb_handle_head_page(cpu_buffer,
2565 						  tail_page,
2566 						  next_page);
2567 			if (ret < 0)
2568 				goto out_reset;
2569 			if (ret)
2570 				goto out_again;
2571 		} else {
2572 			/*
2573 			 * We need to be careful here too. The
2574 			 * commit page could still be on the reader
2575 			 * page. We could have a small buffer, and
2576 			 * have filled up the buffer with events
2577 			 * from interrupts and such, and wrapped.
2578 			 *
2579 			 * Note, if the tail page is also on the
2580 			 * reader_page, we let it move out.
2581 			 */
2582 			if (unlikely((cpu_buffer->commit_page !=
2583 				      cpu_buffer->tail_page) &&
2584 				     (cpu_buffer->commit_page ==
2585 				      cpu_buffer->reader_page))) {
2586 				local_inc(&cpu_buffer->commit_overrun);
2587 				goto out_reset;
2588 			}
2589 		}
2590 	}
2591 
2592 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2593 
2594  out_again:
2595 
2596 	rb_reset_tail(cpu_buffer, tail, info);
2597 
2598 	/* Commit what we have for now. */
2599 	rb_end_commit(cpu_buffer);
2600 	/* rb_end_commit() decs committing */
2601 	local_inc(&cpu_buffer->committing);
2602 
2603 	/* fail and let the caller try again */
2604 	return ERR_PTR(-EAGAIN);
2605 
2606  out_reset:
2607 	/* reset write */
2608 	rb_reset_tail(cpu_buffer, tail, info);
2609 
2610 	return NULL;
2611 }
2612 
2613 /* Slow path */
2614 static struct ring_buffer_event *
2615 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2616 {
2617 	if (abs)
2618 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2619 	else
2620 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2621 
2622 	/* Not the first event on the page, or not delta? */
2623 	if (abs || rb_event_index(event)) {
2624 		event->time_delta = delta & TS_MASK;
2625 		event->array[0] = delta >> TS_SHIFT;
2626 	} else {
2627 		/* nope, just zero it */
2628 		event->time_delta = 0;
2629 		event->array[0] = 0;
2630 	}
2631 
2632 	return skip_time_extend(event);
2633 }
2634 
2635 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2636 static inline bool sched_clock_stable(void)
2637 {
2638 	return true;
2639 }
2640 #endif
2641 
2642 static void
2643 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2644 		   struct rb_event_info *info)
2645 {
2646 	u64 write_stamp;
2647 
2648 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2649 		  (unsigned long long)info->delta,
2650 		  (unsigned long long)info->ts,
2651 		  (unsigned long long)info->before,
2652 		  (unsigned long long)info->after,
2653 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2654 		  sched_clock_stable() ? "" :
2655 		  "If you just came from a suspend/resume,\n"
2656 		  "please switch to the trace global clock:\n"
2657 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2658 		  "or add trace_clock=global to the kernel command line\n");
2659 }
2660 
2661 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2662 				      struct ring_buffer_event **event,
2663 				      struct rb_event_info *info,
2664 				      u64 *delta,
2665 				      unsigned int *length)
2666 {
2667 	bool abs = info->add_timestamp &
2668 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2669 
2670 	if (unlikely(info->delta > (1ULL << 59))) {
2671 		/* did the clock go backwards */
2672 		if (info->before == info->after && info->before > info->ts) {
2673 			/* not interrupted */
2674 			static int once;
2675 
2676 			/*
2677 			 * This is possible with a recalibrating of the TSC.
2678 			 * Do not produce a call stack, but just report it.
2679 			 */
2680 			if (!once) {
2681 				once++;
2682 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2683 					info->before, info->ts);
2684 			}
2685 		} else
2686 			rb_check_timestamp(cpu_buffer, info);
2687 		if (!abs)
2688 			info->delta = 0;
2689 	}
2690 	*event = rb_add_time_stamp(*event, info->delta, abs);
2691 	*length -= RB_LEN_TIME_EXTEND;
2692 	*delta = 0;
2693 }
2694 
2695 /**
2696  * rb_update_event - update event type and data
2697  * @cpu_buffer: The per cpu buffer of the @event
2698  * @event: the event to update
2699  * @info: The info to update the @event with (contains length and delta)
2700  *
2701  * Update the type and data fields of the @event. The length
2702  * is the actual size that is written to the ring buffer,
2703  * and with this, we can determine what to place into the
2704  * data field.
2705  */
2706 static void
2707 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2708 		struct ring_buffer_event *event,
2709 		struct rb_event_info *info)
2710 {
2711 	unsigned length = info->length;
2712 	u64 delta = info->delta;
2713 
2714 	/*
2715 	 * If we need to add a timestamp, then we
2716 	 * add it to the start of the reserved space.
2717 	 */
2718 	if (unlikely(info->add_timestamp))
2719 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2720 
2721 	event->time_delta = delta;
2722 	length -= RB_EVNT_HDR_SIZE;
2723 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2724 		event->type_len = 0;
2725 		event->array[0] = length;
2726 	} else
2727 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2728 }
2729 
2730 static unsigned rb_calculate_event_length(unsigned length)
2731 {
2732 	struct ring_buffer_event event; /* Used only for sizeof array */
2733 
2734 	/* zero length can cause confusions */
2735 	if (!length)
2736 		length++;
2737 
2738 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2739 		length += sizeof(event.array[0]);
2740 
2741 	length += RB_EVNT_HDR_SIZE;
2742 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2743 
2744 	/*
2745 	 * In case the time delta is larger than the 27 bits for it
2746 	 * in the header, we need to add a timestamp. If another
2747 	 * event comes in when trying to discard this one to increase
2748 	 * the length, then the timestamp will be added in the allocated
2749 	 * space of this event. If length is bigger than the size needed
2750 	 * for the TIME_EXTEND, then padding has to be used. The events
2751 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2752 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2753 	 * As length is a multiple of 4, we only need to worry if it
2754 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2755 	 */
2756 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2757 		length += RB_ALIGNMENT;
2758 
2759 	return length;
2760 }
2761 
2762 static u64 rb_time_delta(struct ring_buffer_event *event)
2763 {
2764 	switch (event->type_len) {
2765 	case RINGBUF_TYPE_PADDING:
2766 		return 0;
2767 
2768 	case RINGBUF_TYPE_TIME_EXTEND:
2769 		return ring_buffer_event_time_stamp(event);
2770 
2771 	case RINGBUF_TYPE_TIME_STAMP:
2772 		return 0;
2773 
2774 	case RINGBUF_TYPE_DATA:
2775 		return event->time_delta;
2776 	default:
2777 		return 0;
2778 	}
2779 }
2780 
2781 static inline int
2782 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2783 		  struct ring_buffer_event *event)
2784 {
2785 	unsigned long new_index, old_index;
2786 	struct buffer_page *bpage;
2787 	unsigned long index;
2788 	unsigned long addr;
2789 	u64 write_stamp;
2790 	u64 delta;
2791 
2792 	new_index = rb_event_index(event);
2793 	old_index = new_index + rb_event_ts_length(event);
2794 	addr = (unsigned long)event;
2795 	addr &= PAGE_MASK;
2796 
2797 	bpage = READ_ONCE(cpu_buffer->tail_page);
2798 
2799 	delta = rb_time_delta(event);
2800 
2801 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2802 		return 0;
2803 
2804 	/* Make sure the write stamp is read before testing the location */
2805 	barrier();
2806 
2807 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2808 		unsigned long write_mask =
2809 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2810 		unsigned long event_length = rb_event_length(event);
2811 
2812 		/* Something came in, can't discard */
2813 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2814 				       write_stamp, write_stamp - delta))
2815 			return 0;
2816 
2817 		/*
2818 		 * It's possible that the event time delta is zero
2819 		 * (has the same time stamp as the previous event)
2820 		 * in which case write_stamp and before_stamp could
2821 		 * be the same. In such a case, force before_stamp
2822 		 * to be different than write_stamp. It doesn't
2823 		 * matter what it is, as long as its different.
2824 		 */
2825 		if (!delta)
2826 			rb_time_set(&cpu_buffer->before_stamp, 0);
2827 
2828 		/*
2829 		 * If an event were to come in now, it would see that the
2830 		 * write_stamp and the before_stamp are different, and assume
2831 		 * that this event just added itself before updating
2832 		 * the write stamp. The interrupting event will fix the
2833 		 * write stamp for us, and use the before stamp as its delta.
2834 		 */
2835 
2836 		/*
2837 		 * This is on the tail page. It is possible that
2838 		 * a write could come in and move the tail page
2839 		 * and write to the next page. That is fine
2840 		 * because we just shorten what is on this page.
2841 		 */
2842 		old_index += write_mask;
2843 		new_index += write_mask;
2844 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2845 		if (index == old_index) {
2846 			/* update counters */
2847 			local_sub(event_length, &cpu_buffer->entries_bytes);
2848 			return 1;
2849 		}
2850 	}
2851 
2852 	/* could not discard */
2853 	return 0;
2854 }
2855 
2856 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2857 {
2858 	local_inc(&cpu_buffer->committing);
2859 	local_inc(&cpu_buffer->commits);
2860 }
2861 
2862 static __always_inline void
2863 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2864 {
2865 	unsigned long max_count;
2866 
2867 	/*
2868 	 * We only race with interrupts and NMIs on this CPU.
2869 	 * If we own the commit event, then we can commit
2870 	 * all others that interrupted us, since the interruptions
2871 	 * are in stack format (they finish before they come
2872 	 * back to us). This allows us to do a simple loop to
2873 	 * assign the commit to the tail.
2874 	 */
2875  again:
2876 	max_count = cpu_buffer->nr_pages * 100;
2877 
2878 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2879 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2880 			return;
2881 		if (RB_WARN_ON(cpu_buffer,
2882 			       rb_is_reader_page(cpu_buffer->tail_page)))
2883 			return;
2884 		local_set(&cpu_buffer->commit_page->page->commit,
2885 			  rb_page_write(cpu_buffer->commit_page));
2886 		rb_inc_page(&cpu_buffer->commit_page);
2887 		/* add barrier to keep gcc from optimizing too much */
2888 		barrier();
2889 	}
2890 	while (rb_commit_index(cpu_buffer) !=
2891 	       rb_page_write(cpu_buffer->commit_page)) {
2892 
2893 		local_set(&cpu_buffer->commit_page->page->commit,
2894 			  rb_page_write(cpu_buffer->commit_page));
2895 		RB_WARN_ON(cpu_buffer,
2896 			   local_read(&cpu_buffer->commit_page->page->commit) &
2897 			   ~RB_WRITE_MASK);
2898 		barrier();
2899 	}
2900 
2901 	/* again, keep gcc from optimizing */
2902 	barrier();
2903 
2904 	/*
2905 	 * If an interrupt came in just after the first while loop
2906 	 * and pushed the tail page forward, we will be left with
2907 	 * a dangling commit that will never go forward.
2908 	 */
2909 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2910 		goto again;
2911 }
2912 
2913 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2914 {
2915 	unsigned long commits;
2916 
2917 	if (RB_WARN_ON(cpu_buffer,
2918 		       !local_read(&cpu_buffer->committing)))
2919 		return;
2920 
2921  again:
2922 	commits = local_read(&cpu_buffer->commits);
2923 	/* synchronize with interrupts */
2924 	barrier();
2925 	if (local_read(&cpu_buffer->committing) == 1)
2926 		rb_set_commit_to_write(cpu_buffer);
2927 
2928 	local_dec(&cpu_buffer->committing);
2929 
2930 	/* synchronize with interrupts */
2931 	barrier();
2932 
2933 	/*
2934 	 * Need to account for interrupts coming in between the
2935 	 * updating of the commit page and the clearing of the
2936 	 * committing counter.
2937 	 */
2938 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2939 	    !local_read(&cpu_buffer->committing)) {
2940 		local_inc(&cpu_buffer->committing);
2941 		goto again;
2942 	}
2943 }
2944 
2945 static inline void rb_event_discard(struct ring_buffer_event *event)
2946 {
2947 	if (extended_time(event))
2948 		event = skip_time_extend(event);
2949 
2950 	/* array[0] holds the actual length for the discarded event */
2951 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2952 	event->type_len = RINGBUF_TYPE_PADDING;
2953 	/* time delta must be non zero */
2954 	if (!event->time_delta)
2955 		event->time_delta = 1;
2956 }
2957 
2958 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2959 		      struct ring_buffer_event *event)
2960 {
2961 	local_inc(&cpu_buffer->entries);
2962 	rb_end_commit(cpu_buffer);
2963 }
2964 
2965 static __always_inline void
2966 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2967 {
2968 	size_t nr_pages;
2969 	size_t dirty;
2970 	size_t full;
2971 
2972 	if (buffer->irq_work.waiters_pending) {
2973 		buffer->irq_work.waiters_pending = false;
2974 		/* irq_work_queue() supplies it's own memory barriers */
2975 		irq_work_queue(&buffer->irq_work.work);
2976 	}
2977 
2978 	if (cpu_buffer->irq_work.waiters_pending) {
2979 		cpu_buffer->irq_work.waiters_pending = false;
2980 		/* irq_work_queue() supplies it's own memory barriers */
2981 		irq_work_queue(&cpu_buffer->irq_work.work);
2982 	}
2983 
2984 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2985 		return;
2986 
2987 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2988 		return;
2989 
2990 	if (!cpu_buffer->irq_work.full_waiters_pending)
2991 		return;
2992 
2993 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2994 
2995 	full = cpu_buffer->shortest_full;
2996 	nr_pages = cpu_buffer->nr_pages;
2997 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2998 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2999 		return;
3000 
3001 	cpu_buffer->irq_work.wakeup_full = true;
3002 	cpu_buffer->irq_work.full_waiters_pending = false;
3003 	/* irq_work_queue() supplies it's own memory barriers */
3004 	irq_work_queue(&cpu_buffer->irq_work.work);
3005 }
3006 
3007 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3008 # define do_ring_buffer_record_recursion()	\
3009 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3010 #else
3011 # define do_ring_buffer_record_recursion() do { } while (0)
3012 #endif
3013 
3014 /*
3015  * The lock and unlock are done within a preempt disable section.
3016  * The current_context per_cpu variable can only be modified
3017  * by the current task between lock and unlock. But it can
3018  * be modified more than once via an interrupt. To pass this
3019  * information from the lock to the unlock without having to
3020  * access the 'in_interrupt()' functions again (which do show
3021  * a bit of overhead in something as critical as function tracing,
3022  * we use a bitmask trick.
3023  *
3024  *  bit 1 =  NMI context
3025  *  bit 2 =  IRQ context
3026  *  bit 3 =  SoftIRQ context
3027  *  bit 4 =  normal context.
3028  *
3029  * This works because this is the order of contexts that can
3030  * preempt other contexts. A SoftIRQ never preempts an IRQ
3031  * context.
3032  *
3033  * When the context is determined, the corresponding bit is
3034  * checked and set (if it was set, then a recursion of that context
3035  * happened).
3036  *
3037  * On unlock, we need to clear this bit. To do so, just subtract
3038  * 1 from the current_context and AND it to itself.
3039  *
3040  * (binary)
3041  *  101 - 1 = 100
3042  *  101 & 100 = 100 (clearing bit zero)
3043  *
3044  *  1010 - 1 = 1001
3045  *  1010 & 1001 = 1000 (clearing bit 1)
3046  *
3047  * The least significant bit can be cleared this way, and it
3048  * just so happens that it is the same bit corresponding to
3049  * the current context.
3050  *
3051  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3052  * is set when a recursion is detected at the current context, and if
3053  * the TRANSITION bit is already set, it will fail the recursion.
3054  * This is needed because there's a lag between the changing of
3055  * interrupt context and updating the preempt count. In this case,
3056  * a false positive will be found. To handle this, one extra recursion
3057  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3058  * bit is already set, then it is considered a recursion and the function
3059  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3060  *
3061  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3062  * to be cleared. Even if it wasn't the context that set it. That is,
3063  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3064  * is called before preempt_count() is updated, since the check will
3065  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3066  * NMI then comes in, it will set the NMI bit, but when the NMI code
3067  * does the trace_recursive_unlock() it will clear the TRANSTION bit
3068  * and leave the NMI bit set. But this is fine, because the interrupt
3069  * code that set the TRANSITION bit will then clear the NMI bit when it
3070  * calls trace_recursive_unlock(). If another NMI comes in, it will
3071  * set the TRANSITION bit and continue.
3072  *
3073  * Note: The TRANSITION bit only handles a single transition between context.
3074  */
3075 
3076 static __always_inline int
3077 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3078 {
3079 	unsigned int val = cpu_buffer->current_context;
3080 	unsigned long pc = preempt_count();
3081 	int bit;
3082 
3083 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3084 		bit = RB_CTX_NORMAL;
3085 	else
3086 		bit = pc & NMI_MASK ? RB_CTX_NMI :
3087 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3088 
3089 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3090 		/*
3091 		 * It is possible that this was called by transitioning
3092 		 * between interrupt context, and preempt_count() has not
3093 		 * been updated yet. In this case, use the TRANSITION bit.
3094 		 */
3095 		bit = RB_CTX_TRANSITION;
3096 		if (val & (1 << (bit + cpu_buffer->nest))) {
3097 			do_ring_buffer_record_recursion();
3098 			return 1;
3099 		}
3100 	}
3101 
3102 	val |= (1 << (bit + cpu_buffer->nest));
3103 	cpu_buffer->current_context = val;
3104 
3105 	return 0;
3106 }
3107 
3108 static __always_inline void
3109 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3110 {
3111 	cpu_buffer->current_context &=
3112 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3113 }
3114 
3115 /* The recursive locking above uses 5 bits */
3116 #define NESTED_BITS 5
3117 
3118 /**
3119  * ring_buffer_nest_start - Allow to trace while nested
3120  * @buffer: The ring buffer to modify
3121  *
3122  * The ring buffer has a safety mechanism to prevent recursion.
3123  * But there may be a case where a trace needs to be done while
3124  * tracing something else. In this case, calling this function
3125  * will allow this function to nest within a currently active
3126  * ring_buffer_lock_reserve().
3127  *
3128  * Call this function before calling another ring_buffer_lock_reserve() and
3129  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3130  */
3131 void ring_buffer_nest_start(struct trace_buffer *buffer)
3132 {
3133 	struct ring_buffer_per_cpu *cpu_buffer;
3134 	int cpu;
3135 
3136 	/* Enabled by ring_buffer_nest_end() */
3137 	preempt_disable_notrace();
3138 	cpu = raw_smp_processor_id();
3139 	cpu_buffer = buffer->buffers[cpu];
3140 	/* This is the shift value for the above recursive locking */
3141 	cpu_buffer->nest += NESTED_BITS;
3142 }
3143 
3144 /**
3145  * ring_buffer_nest_end - Allow to trace while nested
3146  * @buffer: The ring buffer to modify
3147  *
3148  * Must be called after ring_buffer_nest_start() and after the
3149  * ring_buffer_unlock_commit().
3150  */
3151 void ring_buffer_nest_end(struct trace_buffer *buffer)
3152 {
3153 	struct ring_buffer_per_cpu *cpu_buffer;
3154 	int cpu;
3155 
3156 	/* disabled by ring_buffer_nest_start() */
3157 	cpu = raw_smp_processor_id();
3158 	cpu_buffer = buffer->buffers[cpu];
3159 	/* This is the shift value for the above recursive locking */
3160 	cpu_buffer->nest -= NESTED_BITS;
3161 	preempt_enable_notrace();
3162 }
3163 
3164 /**
3165  * ring_buffer_unlock_commit - commit a reserved
3166  * @buffer: The buffer to commit to
3167  * @event: The event pointer to commit.
3168  *
3169  * This commits the data to the ring buffer, and releases any locks held.
3170  *
3171  * Must be paired with ring_buffer_lock_reserve.
3172  */
3173 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3174 			      struct ring_buffer_event *event)
3175 {
3176 	struct ring_buffer_per_cpu *cpu_buffer;
3177 	int cpu = raw_smp_processor_id();
3178 
3179 	cpu_buffer = buffer->buffers[cpu];
3180 
3181 	rb_commit(cpu_buffer, event);
3182 
3183 	rb_wakeups(buffer, cpu_buffer);
3184 
3185 	trace_recursive_unlock(cpu_buffer);
3186 
3187 	preempt_enable_notrace();
3188 
3189 	return 0;
3190 }
3191 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3192 
3193 /* Special value to validate all deltas on a page. */
3194 #define CHECK_FULL_PAGE		1L
3195 
3196 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3197 static void dump_buffer_page(struct buffer_data_page *bpage,
3198 			     struct rb_event_info *info,
3199 			     unsigned long tail)
3200 {
3201 	struct ring_buffer_event *event;
3202 	u64 ts, delta;
3203 	int e;
3204 
3205 	ts = bpage->time_stamp;
3206 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3207 
3208 	for (e = 0; e < tail; e += rb_event_length(event)) {
3209 
3210 		event = (struct ring_buffer_event *)(bpage->data + e);
3211 
3212 		switch (event->type_len) {
3213 
3214 		case RINGBUF_TYPE_TIME_EXTEND:
3215 			delta = ring_buffer_event_time_stamp(event);
3216 			ts += delta;
3217 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3218 			break;
3219 
3220 		case RINGBUF_TYPE_TIME_STAMP:
3221 			delta = ring_buffer_event_time_stamp(event);
3222 			ts = delta;
3223 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3224 			break;
3225 
3226 		case RINGBUF_TYPE_PADDING:
3227 			ts += event->time_delta;
3228 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3229 			break;
3230 
3231 		case RINGBUF_TYPE_DATA:
3232 			ts += event->time_delta;
3233 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3234 			break;
3235 
3236 		default:
3237 			break;
3238 		}
3239 	}
3240 }
3241 
3242 static DEFINE_PER_CPU(atomic_t, checking);
3243 static atomic_t ts_dump;
3244 
3245 /*
3246  * Check if the current event time stamp matches the deltas on
3247  * the buffer page.
3248  */
3249 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3250 			 struct rb_event_info *info,
3251 			 unsigned long tail)
3252 {
3253 	struct ring_buffer_event *event;
3254 	struct buffer_data_page *bpage;
3255 	u64 ts, delta;
3256 	bool full = false;
3257 	int e;
3258 
3259 	bpage = info->tail_page->page;
3260 
3261 	if (tail == CHECK_FULL_PAGE) {
3262 		full = true;
3263 		tail = local_read(&bpage->commit);
3264 	} else if (info->add_timestamp &
3265 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3266 		/* Ignore events with absolute time stamps */
3267 		return;
3268 	}
3269 
3270 	/*
3271 	 * Do not check the first event (skip possible extends too).
3272 	 * Also do not check if previous events have not been committed.
3273 	 */
3274 	if (tail <= 8 || tail > local_read(&bpage->commit))
3275 		return;
3276 
3277 	/*
3278 	 * If this interrupted another event,
3279 	 */
3280 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3281 		goto out;
3282 
3283 	ts = bpage->time_stamp;
3284 
3285 	for (e = 0; e < tail; e += rb_event_length(event)) {
3286 
3287 		event = (struct ring_buffer_event *)(bpage->data + e);
3288 
3289 		switch (event->type_len) {
3290 
3291 		case RINGBUF_TYPE_TIME_EXTEND:
3292 			delta = ring_buffer_event_time_stamp(event);
3293 			ts += delta;
3294 			break;
3295 
3296 		case RINGBUF_TYPE_TIME_STAMP:
3297 			delta = ring_buffer_event_time_stamp(event);
3298 			ts = delta;
3299 			break;
3300 
3301 		case RINGBUF_TYPE_PADDING:
3302 			if (event->time_delta == 1)
3303 				break;
3304 			/* fall through */
3305 		case RINGBUF_TYPE_DATA:
3306 			ts += event->time_delta;
3307 			break;
3308 
3309 		default:
3310 			RB_WARN_ON(cpu_buffer, 1);
3311 		}
3312 	}
3313 	if ((full && ts > info->ts) ||
3314 	    (!full && ts + info->delta != info->ts)) {
3315 		/* If another report is happening, ignore this one */
3316 		if (atomic_inc_return(&ts_dump) != 1) {
3317 			atomic_dec(&ts_dump);
3318 			goto out;
3319 		}
3320 		atomic_inc(&cpu_buffer->record_disabled);
3321 		/* There's some cases in boot up that this can happen */
3322 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3323 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3324 			cpu_buffer->cpu,
3325 			ts + info->delta, info->ts, info->delta,
3326 			info->before, info->after,
3327 			full ? " (full)" : "");
3328 		dump_buffer_page(bpage, info, tail);
3329 		atomic_dec(&ts_dump);
3330 		/* Do not re-enable checking */
3331 		return;
3332 	}
3333 out:
3334 	atomic_dec(this_cpu_ptr(&checking));
3335 }
3336 #else
3337 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3338 			 struct rb_event_info *info,
3339 			 unsigned long tail)
3340 {
3341 }
3342 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3343 
3344 static struct ring_buffer_event *
3345 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3346 		  struct rb_event_info *info)
3347 {
3348 	struct ring_buffer_event *event;
3349 	struct buffer_page *tail_page;
3350 	unsigned long tail, write, w;
3351 	bool a_ok;
3352 	bool b_ok;
3353 
3354 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3355 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3356 
3357  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3358 	barrier();
3359 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3360 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3361 	barrier();
3362 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3363 
3364 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3365 		info->delta = info->ts;
3366 	} else {
3367 		/*
3368 		 * If interrupting an event time update, we may need an
3369 		 * absolute timestamp.
3370 		 * Don't bother if this is the start of a new page (w == 0).
3371 		 */
3372 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3373 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3374 			info->length += RB_LEN_TIME_EXTEND;
3375 		} else {
3376 			info->delta = info->ts - info->after;
3377 			if (unlikely(test_time_stamp(info->delta))) {
3378 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3379 				info->length += RB_LEN_TIME_EXTEND;
3380 			}
3381 		}
3382 	}
3383 
3384  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3385 
3386  /*C*/	write = local_add_return(info->length, &tail_page->write);
3387 
3388 	/* set write to only the index of the write */
3389 	write &= RB_WRITE_MASK;
3390 
3391 	tail = write - info->length;
3392 
3393 	/* See if we shot pass the end of this buffer page */
3394 	if (unlikely(write > BUF_PAGE_SIZE)) {
3395 		/* before and after may now different, fix it up*/
3396 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3397 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3398 		if (a_ok && b_ok && info->before != info->after)
3399 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3400 					      info->before, info->after);
3401 		if (a_ok && b_ok)
3402 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3403 		return rb_move_tail(cpu_buffer, tail, info);
3404 	}
3405 
3406 	if (likely(tail == w)) {
3407 		u64 save_before;
3408 		bool s_ok;
3409 
3410 		/* Nothing interrupted us between A and C */
3411  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3412 		barrier();
3413  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3414 		RB_WARN_ON(cpu_buffer, !s_ok);
3415 		if (likely(!(info->add_timestamp &
3416 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3417 			/* This did not interrupt any time update */
3418 			info->delta = info->ts - info->after;
3419 		else
3420 			/* Just use full timestamp for interrupting event */
3421 			info->delta = info->ts;
3422 		barrier();
3423 		check_buffer(cpu_buffer, info, tail);
3424 		if (unlikely(info->ts != save_before)) {
3425 			/* SLOW PATH - Interrupted between C and E */
3426 
3427 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3428 			RB_WARN_ON(cpu_buffer, !a_ok);
3429 
3430 			/* Write stamp must only go forward */
3431 			if (save_before > info->after) {
3432 				/*
3433 				 * We do not care about the result, only that
3434 				 * it gets updated atomically.
3435 				 */
3436 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3437 						      info->after, save_before);
3438 			}
3439 		}
3440 	} else {
3441 		u64 ts;
3442 		/* SLOW PATH - Interrupted between A and C */
3443 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3444 		/* Was interrupted before here, write_stamp must be valid */
3445 		RB_WARN_ON(cpu_buffer, !a_ok);
3446 		ts = rb_time_stamp(cpu_buffer->buffer);
3447 		barrier();
3448  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3449 		    info->after < ts &&
3450 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3451 				    info->after, ts)) {
3452 			/* Nothing came after this event between C and E */
3453 			info->delta = ts - info->after;
3454 			info->ts = ts;
3455 		} else {
3456 			/*
3457 			 * Interrupted between C and E:
3458 			 * Lost the previous events time stamp. Just set the
3459 			 * delta to zero, and this will be the same time as
3460 			 * the event this event interrupted. And the events that
3461 			 * came after this will still be correct (as they would
3462 			 * have built their delta on the previous event.
3463 			 */
3464 			info->delta = 0;
3465 		}
3466 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3467 	}
3468 
3469 	/*
3470 	 * If this is the first commit on the page, then it has the same
3471 	 * timestamp as the page itself.
3472 	 */
3473 	if (unlikely(!tail && !(info->add_timestamp &
3474 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3475 		info->delta = 0;
3476 
3477 	/* We reserved something on the buffer */
3478 
3479 	event = __rb_page_index(tail_page, tail);
3480 	rb_update_event(cpu_buffer, event, info);
3481 
3482 	local_inc(&tail_page->entries);
3483 
3484 	/*
3485 	 * If this is the first commit on the page, then update
3486 	 * its timestamp.
3487 	 */
3488 	if (unlikely(!tail))
3489 		tail_page->page->time_stamp = info->ts;
3490 
3491 	/* account for these added bytes */
3492 	local_add(info->length, &cpu_buffer->entries_bytes);
3493 
3494 	return event;
3495 }
3496 
3497 static __always_inline struct ring_buffer_event *
3498 rb_reserve_next_event(struct trace_buffer *buffer,
3499 		      struct ring_buffer_per_cpu *cpu_buffer,
3500 		      unsigned long length)
3501 {
3502 	struct ring_buffer_event *event;
3503 	struct rb_event_info info;
3504 	int nr_loops = 0;
3505 	int add_ts_default;
3506 
3507 	rb_start_commit(cpu_buffer);
3508 	/* The commit page can not change after this */
3509 
3510 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3511 	/*
3512 	 * Due to the ability to swap a cpu buffer from a buffer
3513 	 * it is possible it was swapped before we committed.
3514 	 * (committing stops a swap). We check for it here and
3515 	 * if it happened, we have to fail the write.
3516 	 */
3517 	barrier();
3518 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3519 		local_dec(&cpu_buffer->committing);
3520 		local_dec(&cpu_buffer->commits);
3521 		return NULL;
3522 	}
3523 #endif
3524 
3525 	info.length = rb_calculate_event_length(length);
3526 
3527 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3528 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3529 		info.length += RB_LEN_TIME_EXTEND;
3530 	} else {
3531 		add_ts_default = RB_ADD_STAMP_NONE;
3532 	}
3533 
3534  again:
3535 	info.add_timestamp = add_ts_default;
3536 	info.delta = 0;
3537 
3538 	/*
3539 	 * We allow for interrupts to reenter here and do a trace.
3540 	 * If one does, it will cause this original code to loop
3541 	 * back here. Even with heavy interrupts happening, this
3542 	 * should only happen a few times in a row. If this happens
3543 	 * 1000 times in a row, there must be either an interrupt
3544 	 * storm or we have something buggy.
3545 	 * Bail!
3546 	 */
3547 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3548 		goto out_fail;
3549 
3550 	event = __rb_reserve_next(cpu_buffer, &info);
3551 
3552 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3553 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3554 			info.length -= RB_LEN_TIME_EXTEND;
3555 		goto again;
3556 	}
3557 
3558 	if (likely(event))
3559 		return event;
3560  out_fail:
3561 	rb_end_commit(cpu_buffer);
3562 	return NULL;
3563 }
3564 
3565 /**
3566  * ring_buffer_lock_reserve - reserve a part of the buffer
3567  * @buffer: the ring buffer to reserve from
3568  * @length: the length of the data to reserve (excluding event header)
3569  *
3570  * Returns a reserved event on the ring buffer to copy directly to.
3571  * The user of this interface will need to get the body to write into
3572  * and can use the ring_buffer_event_data() interface.
3573  *
3574  * The length is the length of the data needed, not the event length
3575  * which also includes the event header.
3576  *
3577  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3578  * If NULL is returned, then nothing has been allocated or locked.
3579  */
3580 struct ring_buffer_event *
3581 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3582 {
3583 	struct ring_buffer_per_cpu *cpu_buffer;
3584 	struct ring_buffer_event *event;
3585 	int cpu;
3586 
3587 	/* If we are tracing schedule, we don't want to recurse */
3588 	preempt_disable_notrace();
3589 
3590 	if (unlikely(atomic_read(&buffer->record_disabled)))
3591 		goto out;
3592 
3593 	cpu = raw_smp_processor_id();
3594 
3595 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3596 		goto out;
3597 
3598 	cpu_buffer = buffer->buffers[cpu];
3599 
3600 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3601 		goto out;
3602 
3603 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3604 		goto out;
3605 
3606 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3607 		goto out;
3608 
3609 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3610 	if (!event)
3611 		goto out_unlock;
3612 
3613 	return event;
3614 
3615  out_unlock:
3616 	trace_recursive_unlock(cpu_buffer);
3617  out:
3618 	preempt_enable_notrace();
3619 	return NULL;
3620 }
3621 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3622 
3623 /*
3624  * Decrement the entries to the page that an event is on.
3625  * The event does not even need to exist, only the pointer
3626  * to the page it is on. This may only be called before the commit
3627  * takes place.
3628  */
3629 static inline void
3630 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3631 		   struct ring_buffer_event *event)
3632 {
3633 	unsigned long addr = (unsigned long)event;
3634 	struct buffer_page *bpage = cpu_buffer->commit_page;
3635 	struct buffer_page *start;
3636 
3637 	addr &= PAGE_MASK;
3638 
3639 	/* Do the likely case first */
3640 	if (likely(bpage->page == (void *)addr)) {
3641 		local_dec(&bpage->entries);
3642 		return;
3643 	}
3644 
3645 	/*
3646 	 * Because the commit page may be on the reader page we
3647 	 * start with the next page and check the end loop there.
3648 	 */
3649 	rb_inc_page(&bpage);
3650 	start = bpage;
3651 	do {
3652 		if (bpage->page == (void *)addr) {
3653 			local_dec(&bpage->entries);
3654 			return;
3655 		}
3656 		rb_inc_page(&bpage);
3657 	} while (bpage != start);
3658 
3659 	/* commit not part of this buffer?? */
3660 	RB_WARN_ON(cpu_buffer, 1);
3661 }
3662 
3663 /**
3664  * ring_buffer_discard_commit - discard an event that has not been committed
3665  * @buffer: the ring buffer
3666  * @event: non committed event to discard
3667  *
3668  * Sometimes an event that is in the ring buffer needs to be ignored.
3669  * This function lets the user discard an event in the ring buffer
3670  * and then that event will not be read later.
3671  *
3672  * This function only works if it is called before the item has been
3673  * committed. It will try to free the event from the ring buffer
3674  * if another event has not been added behind it.
3675  *
3676  * If another event has been added behind it, it will set the event
3677  * up as discarded, and perform the commit.
3678  *
3679  * If this function is called, do not call ring_buffer_unlock_commit on
3680  * the event.
3681  */
3682 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3683 				struct ring_buffer_event *event)
3684 {
3685 	struct ring_buffer_per_cpu *cpu_buffer;
3686 	int cpu;
3687 
3688 	/* The event is discarded regardless */
3689 	rb_event_discard(event);
3690 
3691 	cpu = smp_processor_id();
3692 	cpu_buffer = buffer->buffers[cpu];
3693 
3694 	/*
3695 	 * This must only be called if the event has not been
3696 	 * committed yet. Thus we can assume that preemption
3697 	 * is still disabled.
3698 	 */
3699 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3700 
3701 	rb_decrement_entry(cpu_buffer, event);
3702 	if (rb_try_to_discard(cpu_buffer, event))
3703 		goto out;
3704 
3705  out:
3706 	rb_end_commit(cpu_buffer);
3707 
3708 	trace_recursive_unlock(cpu_buffer);
3709 
3710 	preempt_enable_notrace();
3711 
3712 }
3713 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3714 
3715 /**
3716  * ring_buffer_write - write data to the buffer without reserving
3717  * @buffer: The ring buffer to write to.
3718  * @length: The length of the data being written (excluding the event header)
3719  * @data: The data to write to the buffer.
3720  *
3721  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3722  * one function. If you already have the data to write to the buffer, it
3723  * may be easier to simply call this function.
3724  *
3725  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3726  * and not the length of the event which would hold the header.
3727  */
3728 int ring_buffer_write(struct trace_buffer *buffer,
3729 		      unsigned long length,
3730 		      void *data)
3731 {
3732 	struct ring_buffer_per_cpu *cpu_buffer;
3733 	struct ring_buffer_event *event;
3734 	void *body;
3735 	int ret = -EBUSY;
3736 	int cpu;
3737 
3738 	preempt_disable_notrace();
3739 
3740 	if (atomic_read(&buffer->record_disabled))
3741 		goto out;
3742 
3743 	cpu = raw_smp_processor_id();
3744 
3745 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3746 		goto out;
3747 
3748 	cpu_buffer = buffer->buffers[cpu];
3749 
3750 	if (atomic_read(&cpu_buffer->record_disabled))
3751 		goto out;
3752 
3753 	if (length > BUF_MAX_DATA_SIZE)
3754 		goto out;
3755 
3756 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3757 		goto out;
3758 
3759 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3760 	if (!event)
3761 		goto out_unlock;
3762 
3763 	body = rb_event_data(event);
3764 
3765 	memcpy(body, data, length);
3766 
3767 	rb_commit(cpu_buffer, event);
3768 
3769 	rb_wakeups(buffer, cpu_buffer);
3770 
3771 	ret = 0;
3772 
3773  out_unlock:
3774 	trace_recursive_unlock(cpu_buffer);
3775 
3776  out:
3777 	preempt_enable_notrace();
3778 
3779 	return ret;
3780 }
3781 EXPORT_SYMBOL_GPL(ring_buffer_write);
3782 
3783 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3784 {
3785 	struct buffer_page *reader = cpu_buffer->reader_page;
3786 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3787 	struct buffer_page *commit = cpu_buffer->commit_page;
3788 
3789 	/* In case of error, head will be NULL */
3790 	if (unlikely(!head))
3791 		return true;
3792 
3793 	return reader->read == rb_page_commit(reader) &&
3794 		(commit == reader ||
3795 		 (commit == head &&
3796 		  head->read == rb_page_commit(commit)));
3797 }
3798 
3799 /**
3800  * ring_buffer_record_disable - stop all writes into the buffer
3801  * @buffer: The ring buffer to stop writes to.
3802  *
3803  * This prevents all writes to the buffer. Any attempt to write
3804  * to the buffer after this will fail and return NULL.
3805  *
3806  * The caller should call synchronize_rcu() after this.
3807  */
3808 void ring_buffer_record_disable(struct trace_buffer *buffer)
3809 {
3810 	atomic_inc(&buffer->record_disabled);
3811 }
3812 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3813 
3814 /**
3815  * ring_buffer_record_enable - enable writes to the buffer
3816  * @buffer: The ring buffer to enable writes
3817  *
3818  * Note, multiple disables will need the same number of enables
3819  * to truly enable the writing (much like preempt_disable).
3820  */
3821 void ring_buffer_record_enable(struct trace_buffer *buffer)
3822 {
3823 	atomic_dec(&buffer->record_disabled);
3824 }
3825 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3826 
3827 /**
3828  * ring_buffer_record_off - stop all writes into the buffer
3829  * @buffer: The ring buffer to stop writes to.
3830  *
3831  * This prevents all writes to the buffer. Any attempt to write
3832  * to the buffer after this will fail and return NULL.
3833  *
3834  * This is different than ring_buffer_record_disable() as
3835  * it works like an on/off switch, where as the disable() version
3836  * must be paired with a enable().
3837  */
3838 void ring_buffer_record_off(struct trace_buffer *buffer)
3839 {
3840 	unsigned int rd;
3841 	unsigned int new_rd;
3842 
3843 	do {
3844 		rd = atomic_read(&buffer->record_disabled);
3845 		new_rd = rd | RB_BUFFER_OFF;
3846 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3847 }
3848 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3849 
3850 /**
3851  * ring_buffer_record_on - restart writes into the buffer
3852  * @buffer: The ring buffer to start writes to.
3853  *
3854  * This enables all writes to the buffer that was disabled by
3855  * ring_buffer_record_off().
3856  *
3857  * This is different than ring_buffer_record_enable() as
3858  * it works like an on/off switch, where as the enable() version
3859  * must be paired with a disable().
3860  */
3861 void ring_buffer_record_on(struct trace_buffer *buffer)
3862 {
3863 	unsigned int rd;
3864 	unsigned int new_rd;
3865 
3866 	do {
3867 		rd = atomic_read(&buffer->record_disabled);
3868 		new_rd = rd & ~RB_BUFFER_OFF;
3869 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3870 }
3871 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3872 
3873 /**
3874  * ring_buffer_record_is_on - return true if the ring buffer can write
3875  * @buffer: The ring buffer to see if write is enabled
3876  *
3877  * Returns true if the ring buffer is in a state that it accepts writes.
3878  */
3879 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3880 {
3881 	return !atomic_read(&buffer->record_disabled);
3882 }
3883 
3884 /**
3885  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3886  * @buffer: The ring buffer to see if write is set enabled
3887  *
3888  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3889  * Note that this does NOT mean it is in a writable state.
3890  *
3891  * It may return true when the ring buffer has been disabled by
3892  * ring_buffer_record_disable(), as that is a temporary disabling of
3893  * the ring buffer.
3894  */
3895 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3896 {
3897 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3898 }
3899 
3900 /**
3901  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3902  * @buffer: The ring buffer to stop writes to.
3903  * @cpu: The CPU buffer to stop
3904  *
3905  * This prevents all writes to the buffer. Any attempt to write
3906  * to the buffer after this will fail and return NULL.
3907  *
3908  * The caller should call synchronize_rcu() after this.
3909  */
3910 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3911 {
3912 	struct ring_buffer_per_cpu *cpu_buffer;
3913 
3914 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3915 		return;
3916 
3917 	cpu_buffer = buffer->buffers[cpu];
3918 	atomic_inc(&cpu_buffer->record_disabled);
3919 }
3920 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3921 
3922 /**
3923  * ring_buffer_record_enable_cpu - enable writes to the buffer
3924  * @buffer: The ring buffer to enable writes
3925  * @cpu: The CPU to enable.
3926  *
3927  * Note, multiple disables will need the same number of enables
3928  * to truly enable the writing (much like preempt_disable).
3929  */
3930 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3931 {
3932 	struct ring_buffer_per_cpu *cpu_buffer;
3933 
3934 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3935 		return;
3936 
3937 	cpu_buffer = buffer->buffers[cpu];
3938 	atomic_dec(&cpu_buffer->record_disabled);
3939 }
3940 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3941 
3942 /*
3943  * The total entries in the ring buffer is the running counter
3944  * of entries entered into the ring buffer, minus the sum of
3945  * the entries read from the ring buffer and the number of
3946  * entries that were overwritten.
3947  */
3948 static inline unsigned long
3949 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3950 {
3951 	return local_read(&cpu_buffer->entries) -
3952 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3953 }
3954 
3955 /**
3956  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3957  * @buffer: The ring buffer
3958  * @cpu: The per CPU buffer to read from.
3959  */
3960 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3961 {
3962 	unsigned long flags;
3963 	struct ring_buffer_per_cpu *cpu_buffer;
3964 	struct buffer_page *bpage;
3965 	u64 ret = 0;
3966 
3967 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3968 		return 0;
3969 
3970 	cpu_buffer = buffer->buffers[cpu];
3971 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3972 	/*
3973 	 * if the tail is on reader_page, oldest time stamp is on the reader
3974 	 * page
3975 	 */
3976 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3977 		bpage = cpu_buffer->reader_page;
3978 	else
3979 		bpage = rb_set_head_page(cpu_buffer);
3980 	if (bpage)
3981 		ret = bpage->page->time_stamp;
3982 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3983 
3984 	return ret;
3985 }
3986 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3987 
3988 /**
3989  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3990  * @buffer: The ring buffer
3991  * @cpu: The per CPU buffer to read from.
3992  */
3993 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3994 {
3995 	struct ring_buffer_per_cpu *cpu_buffer;
3996 	unsigned long ret;
3997 
3998 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3999 		return 0;
4000 
4001 	cpu_buffer = buffer->buffers[cpu];
4002 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4003 
4004 	return ret;
4005 }
4006 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4007 
4008 /**
4009  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4010  * @buffer: The ring buffer
4011  * @cpu: The per CPU buffer to get the entries from.
4012  */
4013 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4014 {
4015 	struct ring_buffer_per_cpu *cpu_buffer;
4016 
4017 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4018 		return 0;
4019 
4020 	cpu_buffer = buffer->buffers[cpu];
4021 
4022 	return rb_num_of_entries(cpu_buffer);
4023 }
4024 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4025 
4026 /**
4027  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4028  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4029  * @buffer: The ring buffer
4030  * @cpu: The per CPU buffer to get the number of overruns from
4031  */
4032 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4033 {
4034 	struct ring_buffer_per_cpu *cpu_buffer;
4035 	unsigned long ret;
4036 
4037 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4038 		return 0;
4039 
4040 	cpu_buffer = buffer->buffers[cpu];
4041 	ret = local_read(&cpu_buffer->overrun);
4042 
4043 	return ret;
4044 }
4045 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4046 
4047 /**
4048  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4049  * commits failing due to the buffer wrapping around while there are uncommitted
4050  * events, such as during an interrupt storm.
4051  * @buffer: The ring buffer
4052  * @cpu: The per CPU buffer to get the number of overruns from
4053  */
4054 unsigned long
4055 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4056 {
4057 	struct ring_buffer_per_cpu *cpu_buffer;
4058 	unsigned long ret;
4059 
4060 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4061 		return 0;
4062 
4063 	cpu_buffer = buffer->buffers[cpu];
4064 	ret = local_read(&cpu_buffer->commit_overrun);
4065 
4066 	return ret;
4067 }
4068 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4069 
4070 /**
4071  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4072  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4073  * @buffer: The ring buffer
4074  * @cpu: The per CPU buffer to get the number of overruns from
4075  */
4076 unsigned long
4077 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4078 {
4079 	struct ring_buffer_per_cpu *cpu_buffer;
4080 	unsigned long ret;
4081 
4082 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4083 		return 0;
4084 
4085 	cpu_buffer = buffer->buffers[cpu];
4086 	ret = local_read(&cpu_buffer->dropped_events);
4087 
4088 	return ret;
4089 }
4090 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4091 
4092 /**
4093  * ring_buffer_read_events_cpu - get the number of events successfully read
4094  * @buffer: The ring buffer
4095  * @cpu: The per CPU buffer to get the number of events read
4096  */
4097 unsigned long
4098 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4099 {
4100 	struct ring_buffer_per_cpu *cpu_buffer;
4101 
4102 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4103 		return 0;
4104 
4105 	cpu_buffer = buffer->buffers[cpu];
4106 	return cpu_buffer->read;
4107 }
4108 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4109 
4110 /**
4111  * ring_buffer_entries - get the number of entries in a buffer
4112  * @buffer: The ring buffer
4113  *
4114  * Returns the total number of entries in the ring buffer
4115  * (all CPU entries)
4116  */
4117 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4118 {
4119 	struct ring_buffer_per_cpu *cpu_buffer;
4120 	unsigned long entries = 0;
4121 	int cpu;
4122 
4123 	/* if you care about this being correct, lock the buffer */
4124 	for_each_buffer_cpu(buffer, cpu) {
4125 		cpu_buffer = buffer->buffers[cpu];
4126 		entries += rb_num_of_entries(cpu_buffer);
4127 	}
4128 
4129 	return entries;
4130 }
4131 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4132 
4133 /**
4134  * ring_buffer_overruns - get the number of overruns in buffer
4135  * @buffer: The ring buffer
4136  *
4137  * Returns the total number of overruns in the ring buffer
4138  * (all CPU entries)
4139  */
4140 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4141 {
4142 	struct ring_buffer_per_cpu *cpu_buffer;
4143 	unsigned long overruns = 0;
4144 	int cpu;
4145 
4146 	/* if you care about this being correct, lock the buffer */
4147 	for_each_buffer_cpu(buffer, cpu) {
4148 		cpu_buffer = buffer->buffers[cpu];
4149 		overruns += local_read(&cpu_buffer->overrun);
4150 	}
4151 
4152 	return overruns;
4153 }
4154 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4155 
4156 static void rb_iter_reset(struct ring_buffer_iter *iter)
4157 {
4158 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4159 
4160 	/* Iterator usage is expected to have record disabled */
4161 	iter->head_page = cpu_buffer->reader_page;
4162 	iter->head = cpu_buffer->reader_page->read;
4163 	iter->next_event = iter->head;
4164 
4165 	iter->cache_reader_page = iter->head_page;
4166 	iter->cache_read = cpu_buffer->read;
4167 
4168 	if (iter->head) {
4169 		iter->read_stamp = cpu_buffer->read_stamp;
4170 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4171 	} else {
4172 		iter->read_stamp = iter->head_page->page->time_stamp;
4173 		iter->page_stamp = iter->read_stamp;
4174 	}
4175 }
4176 
4177 /**
4178  * ring_buffer_iter_reset - reset an iterator
4179  * @iter: The iterator to reset
4180  *
4181  * Resets the iterator, so that it will start from the beginning
4182  * again.
4183  */
4184 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4185 {
4186 	struct ring_buffer_per_cpu *cpu_buffer;
4187 	unsigned long flags;
4188 
4189 	if (!iter)
4190 		return;
4191 
4192 	cpu_buffer = iter->cpu_buffer;
4193 
4194 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4195 	rb_iter_reset(iter);
4196 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4197 }
4198 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4199 
4200 /**
4201  * ring_buffer_iter_empty - check if an iterator has no more to read
4202  * @iter: The iterator to check
4203  */
4204 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4205 {
4206 	struct ring_buffer_per_cpu *cpu_buffer;
4207 	struct buffer_page *reader;
4208 	struct buffer_page *head_page;
4209 	struct buffer_page *commit_page;
4210 	struct buffer_page *curr_commit_page;
4211 	unsigned commit;
4212 	u64 curr_commit_ts;
4213 	u64 commit_ts;
4214 
4215 	cpu_buffer = iter->cpu_buffer;
4216 	reader = cpu_buffer->reader_page;
4217 	head_page = cpu_buffer->head_page;
4218 	commit_page = cpu_buffer->commit_page;
4219 	commit_ts = commit_page->page->time_stamp;
4220 
4221 	/*
4222 	 * When the writer goes across pages, it issues a cmpxchg which
4223 	 * is a mb(), which will synchronize with the rmb here.
4224 	 * (see rb_tail_page_update())
4225 	 */
4226 	smp_rmb();
4227 	commit = rb_page_commit(commit_page);
4228 	/* We want to make sure that the commit page doesn't change */
4229 	smp_rmb();
4230 
4231 	/* Make sure commit page didn't change */
4232 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4233 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4234 
4235 	/* If the commit page changed, then there's more data */
4236 	if (curr_commit_page != commit_page ||
4237 	    curr_commit_ts != commit_ts)
4238 		return 0;
4239 
4240 	/* Still racy, as it may return a false positive, but that's OK */
4241 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4242 		(iter->head_page == reader && commit_page == head_page &&
4243 		 head_page->read == commit &&
4244 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4245 }
4246 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4247 
4248 static void
4249 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4250 		     struct ring_buffer_event *event)
4251 {
4252 	u64 delta;
4253 
4254 	switch (event->type_len) {
4255 	case RINGBUF_TYPE_PADDING:
4256 		return;
4257 
4258 	case RINGBUF_TYPE_TIME_EXTEND:
4259 		delta = ring_buffer_event_time_stamp(event);
4260 		cpu_buffer->read_stamp += delta;
4261 		return;
4262 
4263 	case RINGBUF_TYPE_TIME_STAMP:
4264 		delta = ring_buffer_event_time_stamp(event);
4265 		cpu_buffer->read_stamp = delta;
4266 		return;
4267 
4268 	case RINGBUF_TYPE_DATA:
4269 		cpu_buffer->read_stamp += event->time_delta;
4270 		return;
4271 
4272 	default:
4273 		RB_WARN_ON(cpu_buffer, 1);
4274 	}
4275 	return;
4276 }
4277 
4278 static void
4279 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4280 			  struct ring_buffer_event *event)
4281 {
4282 	u64 delta;
4283 
4284 	switch (event->type_len) {
4285 	case RINGBUF_TYPE_PADDING:
4286 		return;
4287 
4288 	case RINGBUF_TYPE_TIME_EXTEND:
4289 		delta = ring_buffer_event_time_stamp(event);
4290 		iter->read_stamp += delta;
4291 		return;
4292 
4293 	case RINGBUF_TYPE_TIME_STAMP:
4294 		delta = ring_buffer_event_time_stamp(event);
4295 		iter->read_stamp = delta;
4296 		return;
4297 
4298 	case RINGBUF_TYPE_DATA:
4299 		iter->read_stamp += event->time_delta;
4300 		return;
4301 
4302 	default:
4303 		RB_WARN_ON(iter->cpu_buffer, 1);
4304 	}
4305 	return;
4306 }
4307 
4308 static struct buffer_page *
4309 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4310 {
4311 	struct buffer_page *reader = NULL;
4312 	unsigned long overwrite;
4313 	unsigned long flags;
4314 	int nr_loops = 0;
4315 	int ret;
4316 
4317 	local_irq_save(flags);
4318 	arch_spin_lock(&cpu_buffer->lock);
4319 
4320  again:
4321 	/*
4322 	 * This should normally only loop twice. But because the
4323 	 * start of the reader inserts an empty page, it causes
4324 	 * a case where we will loop three times. There should be no
4325 	 * reason to loop four times (that I know of).
4326 	 */
4327 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4328 		reader = NULL;
4329 		goto out;
4330 	}
4331 
4332 	reader = cpu_buffer->reader_page;
4333 
4334 	/* If there's more to read, return this page */
4335 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4336 		goto out;
4337 
4338 	/* Never should we have an index greater than the size */
4339 	if (RB_WARN_ON(cpu_buffer,
4340 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4341 		goto out;
4342 
4343 	/* check if we caught up to the tail */
4344 	reader = NULL;
4345 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4346 		goto out;
4347 
4348 	/* Don't bother swapping if the ring buffer is empty */
4349 	if (rb_num_of_entries(cpu_buffer) == 0)
4350 		goto out;
4351 
4352 	/*
4353 	 * Reset the reader page to size zero.
4354 	 */
4355 	local_set(&cpu_buffer->reader_page->write, 0);
4356 	local_set(&cpu_buffer->reader_page->entries, 0);
4357 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4358 	cpu_buffer->reader_page->real_end = 0;
4359 
4360  spin:
4361 	/*
4362 	 * Splice the empty reader page into the list around the head.
4363 	 */
4364 	reader = rb_set_head_page(cpu_buffer);
4365 	if (!reader)
4366 		goto out;
4367 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4368 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4369 
4370 	/*
4371 	 * cpu_buffer->pages just needs to point to the buffer, it
4372 	 *  has no specific buffer page to point to. Lets move it out
4373 	 *  of our way so we don't accidentally swap it.
4374 	 */
4375 	cpu_buffer->pages = reader->list.prev;
4376 
4377 	/* The reader page will be pointing to the new head */
4378 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4379 
4380 	/*
4381 	 * We want to make sure we read the overruns after we set up our
4382 	 * pointers to the next object. The writer side does a
4383 	 * cmpxchg to cross pages which acts as the mb on the writer
4384 	 * side. Note, the reader will constantly fail the swap
4385 	 * while the writer is updating the pointers, so this
4386 	 * guarantees that the overwrite recorded here is the one we
4387 	 * want to compare with the last_overrun.
4388 	 */
4389 	smp_mb();
4390 	overwrite = local_read(&(cpu_buffer->overrun));
4391 
4392 	/*
4393 	 * Here's the tricky part.
4394 	 *
4395 	 * We need to move the pointer past the header page.
4396 	 * But we can only do that if a writer is not currently
4397 	 * moving it. The page before the header page has the
4398 	 * flag bit '1' set if it is pointing to the page we want.
4399 	 * but if the writer is in the process of moving it
4400 	 * than it will be '2' or already moved '0'.
4401 	 */
4402 
4403 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4404 
4405 	/*
4406 	 * If we did not convert it, then we must try again.
4407 	 */
4408 	if (!ret)
4409 		goto spin;
4410 
4411 	/*
4412 	 * Yay! We succeeded in replacing the page.
4413 	 *
4414 	 * Now make the new head point back to the reader page.
4415 	 */
4416 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4417 	rb_inc_page(&cpu_buffer->head_page);
4418 
4419 	local_inc(&cpu_buffer->pages_read);
4420 
4421 	/* Finally update the reader page to the new head */
4422 	cpu_buffer->reader_page = reader;
4423 	cpu_buffer->reader_page->read = 0;
4424 
4425 	if (overwrite != cpu_buffer->last_overrun) {
4426 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4427 		cpu_buffer->last_overrun = overwrite;
4428 	}
4429 
4430 	goto again;
4431 
4432  out:
4433 	/* Update the read_stamp on the first event */
4434 	if (reader && reader->read == 0)
4435 		cpu_buffer->read_stamp = reader->page->time_stamp;
4436 
4437 	arch_spin_unlock(&cpu_buffer->lock);
4438 	local_irq_restore(flags);
4439 
4440 	return reader;
4441 }
4442 
4443 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4444 {
4445 	struct ring_buffer_event *event;
4446 	struct buffer_page *reader;
4447 	unsigned length;
4448 
4449 	reader = rb_get_reader_page(cpu_buffer);
4450 
4451 	/* This function should not be called when buffer is empty */
4452 	if (RB_WARN_ON(cpu_buffer, !reader))
4453 		return;
4454 
4455 	event = rb_reader_event(cpu_buffer);
4456 
4457 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4458 		cpu_buffer->read++;
4459 
4460 	rb_update_read_stamp(cpu_buffer, event);
4461 
4462 	length = rb_event_length(event);
4463 	cpu_buffer->reader_page->read += length;
4464 }
4465 
4466 static void rb_advance_iter(struct ring_buffer_iter *iter)
4467 {
4468 	struct ring_buffer_per_cpu *cpu_buffer;
4469 
4470 	cpu_buffer = iter->cpu_buffer;
4471 
4472 	/* If head == next_event then we need to jump to the next event */
4473 	if (iter->head == iter->next_event) {
4474 		/* If the event gets overwritten again, there's nothing to do */
4475 		if (rb_iter_head_event(iter) == NULL)
4476 			return;
4477 	}
4478 
4479 	iter->head = iter->next_event;
4480 
4481 	/*
4482 	 * Check if we are at the end of the buffer.
4483 	 */
4484 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4485 		/* discarded commits can make the page empty */
4486 		if (iter->head_page == cpu_buffer->commit_page)
4487 			return;
4488 		rb_inc_iter(iter);
4489 		return;
4490 	}
4491 
4492 	rb_update_iter_read_stamp(iter, iter->event);
4493 }
4494 
4495 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4496 {
4497 	return cpu_buffer->lost_events;
4498 }
4499 
4500 static struct ring_buffer_event *
4501 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4502 	       unsigned long *lost_events)
4503 {
4504 	struct ring_buffer_event *event;
4505 	struct buffer_page *reader;
4506 	int nr_loops = 0;
4507 
4508 	if (ts)
4509 		*ts = 0;
4510  again:
4511 	/*
4512 	 * We repeat when a time extend is encountered.
4513 	 * Since the time extend is always attached to a data event,
4514 	 * we should never loop more than once.
4515 	 * (We never hit the following condition more than twice).
4516 	 */
4517 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4518 		return NULL;
4519 
4520 	reader = rb_get_reader_page(cpu_buffer);
4521 	if (!reader)
4522 		return NULL;
4523 
4524 	event = rb_reader_event(cpu_buffer);
4525 
4526 	switch (event->type_len) {
4527 	case RINGBUF_TYPE_PADDING:
4528 		if (rb_null_event(event))
4529 			RB_WARN_ON(cpu_buffer, 1);
4530 		/*
4531 		 * Because the writer could be discarding every
4532 		 * event it creates (which would probably be bad)
4533 		 * if we were to go back to "again" then we may never
4534 		 * catch up, and will trigger the warn on, or lock
4535 		 * the box. Return the padding, and we will release
4536 		 * the current locks, and try again.
4537 		 */
4538 		return event;
4539 
4540 	case RINGBUF_TYPE_TIME_EXTEND:
4541 		/* Internal data, OK to advance */
4542 		rb_advance_reader(cpu_buffer);
4543 		goto again;
4544 
4545 	case RINGBUF_TYPE_TIME_STAMP:
4546 		if (ts) {
4547 			*ts = ring_buffer_event_time_stamp(event);
4548 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4549 							 cpu_buffer->cpu, ts);
4550 		}
4551 		/* Internal data, OK to advance */
4552 		rb_advance_reader(cpu_buffer);
4553 		goto again;
4554 
4555 	case RINGBUF_TYPE_DATA:
4556 		if (ts && !(*ts)) {
4557 			*ts = cpu_buffer->read_stamp + event->time_delta;
4558 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4559 							 cpu_buffer->cpu, ts);
4560 		}
4561 		if (lost_events)
4562 			*lost_events = rb_lost_events(cpu_buffer);
4563 		return event;
4564 
4565 	default:
4566 		RB_WARN_ON(cpu_buffer, 1);
4567 	}
4568 
4569 	return NULL;
4570 }
4571 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4572 
4573 static struct ring_buffer_event *
4574 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4575 {
4576 	struct trace_buffer *buffer;
4577 	struct ring_buffer_per_cpu *cpu_buffer;
4578 	struct ring_buffer_event *event;
4579 	int nr_loops = 0;
4580 
4581 	if (ts)
4582 		*ts = 0;
4583 
4584 	cpu_buffer = iter->cpu_buffer;
4585 	buffer = cpu_buffer->buffer;
4586 
4587 	/*
4588 	 * Check if someone performed a consuming read to
4589 	 * the buffer. A consuming read invalidates the iterator
4590 	 * and we need to reset the iterator in this case.
4591 	 */
4592 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4593 		     iter->cache_reader_page != cpu_buffer->reader_page))
4594 		rb_iter_reset(iter);
4595 
4596  again:
4597 	if (ring_buffer_iter_empty(iter))
4598 		return NULL;
4599 
4600 	/*
4601 	 * As the writer can mess with what the iterator is trying
4602 	 * to read, just give up if we fail to get an event after
4603 	 * three tries. The iterator is not as reliable when reading
4604 	 * the ring buffer with an active write as the consumer is.
4605 	 * Do not warn if the three failures is reached.
4606 	 */
4607 	if (++nr_loops > 3)
4608 		return NULL;
4609 
4610 	if (rb_per_cpu_empty(cpu_buffer))
4611 		return NULL;
4612 
4613 	if (iter->head >= rb_page_size(iter->head_page)) {
4614 		rb_inc_iter(iter);
4615 		goto again;
4616 	}
4617 
4618 	event = rb_iter_head_event(iter);
4619 	if (!event)
4620 		goto again;
4621 
4622 	switch (event->type_len) {
4623 	case RINGBUF_TYPE_PADDING:
4624 		if (rb_null_event(event)) {
4625 			rb_inc_iter(iter);
4626 			goto again;
4627 		}
4628 		rb_advance_iter(iter);
4629 		return event;
4630 
4631 	case RINGBUF_TYPE_TIME_EXTEND:
4632 		/* Internal data, OK to advance */
4633 		rb_advance_iter(iter);
4634 		goto again;
4635 
4636 	case RINGBUF_TYPE_TIME_STAMP:
4637 		if (ts) {
4638 			*ts = ring_buffer_event_time_stamp(event);
4639 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4640 							 cpu_buffer->cpu, ts);
4641 		}
4642 		/* Internal data, OK to advance */
4643 		rb_advance_iter(iter);
4644 		goto again;
4645 
4646 	case RINGBUF_TYPE_DATA:
4647 		if (ts && !(*ts)) {
4648 			*ts = iter->read_stamp + event->time_delta;
4649 			ring_buffer_normalize_time_stamp(buffer,
4650 							 cpu_buffer->cpu, ts);
4651 		}
4652 		return event;
4653 
4654 	default:
4655 		RB_WARN_ON(cpu_buffer, 1);
4656 	}
4657 
4658 	return NULL;
4659 }
4660 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4661 
4662 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4663 {
4664 	if (likely(!in_nmi())) {
4665 		raw_spin_lock(&cpu_buffer->reader_lock);
4666 		return true;
4667 	}
4668 
4669 	/*
4670 	 * If an NMI die dumps out the content of the ring buffer
4671 	 * trylock must be used to prevent a deadlock if the NMI
4672 	 * preempted a task that holds the ring buffer locks. If
4673 	 * we get the lock then all is fine, if not, then continue
4674 	 * to do the read, but this can corrupt the ring buffer,
4675 	 * so it must be permanently disabled from future writes.
4676 	 * Reading from NMI is a oneshot deal.
4677 	 */
4678 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4679 		return true;
4680 
4681 	/* Continue without locking, but disable the ring buffer */
4682 	atomic_inc(&cpu_buffer->record_disabled);
4683 	return false;
4684 }
4685 
4686 static inline void
4687 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4688 {
4689 	if (likely(locked))
4690 		raw_spin_unlock(&cpu_buffer->reader_lock);
4691 	return;
4692 }
4693 
4694 /**
4695  * ring_buffer_peek - peek at the next event to be read
4696  * @buffer: The ring buffer to read
4697  * @cpu: The cpu to peak at
4698  * @ts: The timestamp counter of this event.
4699  * @lost_events: a variable to store if events were lost (may be NULL)
4700  *
4701  * This will return the event that will be read next, but does
4702  * not consume the data.
4703  */
4704 struct ring_buffer_event *
4705 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4706 		 unsigned long *lost_events)
4707 {
4708 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4709 	struct ring_buffer_event *event;
4710 	unsigned long flags;
4711 	bool dolock;
4712 
4713 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4714 		return NULL;
4715 
4716  again:
4717 	local_irq_save(flags);
4718 	dolock = rb_reader_lock(cpu_buffer);
4719 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4720 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4721 		rb_advance_reader(cpu_buffer);
4722 	rb_reader_unlock(cpu_buffer, dolock);
4723 	local_irq_restore(flags);
4724 
4725 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4726 		goto again;
4727 
4728 	return event;
4729 }
4730 
4731 /** ring_buffer_iter_dropped - report if there are dropped events
4732  * @iter: The ring buffer iterator
4733  *
4734  * Returns true if there was dropped events since the last peek.
4735  */
4736 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4737 {
4738 	bool ret = iter->missed_events != 0;
4739 
4740 	iter->missed_events = 0;
4741 	return ret;
4742 }
4743 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4744 
4745 /**
4746  * ring_buffer_iter_peek - peek at the next event to be read
4747  * @iter: The ring buffer iterator
4748  * @ts: The timestamp counter of this event.
4749  *
4750  * This will return the event that will be read next, but does
4751  * not increment the iterator.
4752  */
4753 struct ring_buffer_event *
4754 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4755 {
4756 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4757 	struct ring_buffer_event *event;
4758 	unsigned long flags;
4759 
4760  again:
4761 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4762 	event = rb_iter_peek(iter, ts);
4763 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4764 
4765 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4766 		goto again;
4767 
4768 	return event;
4769 }
4770 
4771 /**
4772  * ring_buffer_consume - return an event and consume it
4773  * @buffer: The ring buffer to get the next event from
4774  * @cpu: the cpu to read the buffer from
4775  * @ts: a variable to store the timestamp (may be NULL)
4776  * @lost_events: a variable to store if events were lost (may be NULL)
4777  *
4778  * Returns the next event in the ring buffer, and that event is consumed.
4779  * Meaning, that sequential reads will keep returning a different event,
4780  * and eventually empty the ring buffer if the producer is slower.
4781  */
4782 struct ring_buffer_event *
4783 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4784 		    unsigned long *lost_events)
4785 {
4786 	struct ring_buffer_per_cpu *cpu_buffer;
4787 	struct ring_buffer_event *event = NULL;
4788 	unsigned long flags;
4789 	bool dolock;
4790 
4791  again:
4792 	/* might be called in atomic */
4793 	preempt_disable();
4794 
4795 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4796 		goto out;
4797 
4798 	cpu_buffer = buffer->buffers[cpu];
4799 	local_irq_save(flags);
4800 	dolock = rb_reader_lock(cpu_buffer);
4801 
4802 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4803 	if (event) {
4804 		cpu_buffer->lost_events = 0;
4805 		rb_advance_reader(cpu_buffer);
4806 	}
4807 
4808 	rb_reader_unlock(cpu_buffer, dolock);
4809 	local_irq_restore(flags);
4810 
4811  out:
4812 	preempt_enable();
4813 
4814 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4815 		goto again;
4816 
4817 	return event;
4818 }
4819 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4820 
4821 /**
4822  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4823  * @buffer: The ring buffer to read from
4824  * @cpu: The cpu buffer to iterate over
4825  * @flags: gfp flags to use for memory allocation
4826  *
4827  * This performs the initial preparations necessary to iterate
4828  * through the buffer.  Memory is allocated, buffer recording
4829  * is disabled, and the iterator pointer is returned to the caller.
4830  *
4831  * Disabling buffer recording prevents the reading from being
4832  * corrupted. This is not a consuming read, so a producer is not
4833  * expected.
4834  *
4835  * After a sequence of ring_buffer_read_prepare calls, the user is
4836  * expected to make at least one call to ring_buffer_read_prepare_sync.
4837  * Afterwards, ring_buffer_read_start is invoked to get things going
4838  * for real.
4839  *
4840  * This overall must be paired with ring_buffer_read_finish.
4841  */
4842 struct ring_buffer_iter *
4843 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4844 {
4845 	struct ring_buffer_per_cpu *cpu_buffer;
4846 	struct ring_buffer_iter *iter;
4847 
4848 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4849 		return NULL;
4850 
4851 	iter = kzalloc(sizeof(*iter), flags);
4852 	if (!iter)
4853 		return NULL;
4854 
4855 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4856 	if (!iter->event) {
4857 		kfree(iter);
4858 		return NULL;
4859 	}
4860 
4861 	cpu_buffer = buffer->buffers[cpu];
4862 
4863 	iter->cpu_buffer = cpu_buffer;
4864 
4865 	atomic_inc(&cpu_buffer->resize_disabled);
4866 
4867 	return iter;
4868 }
4869 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4870 
4871 /**
4872  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4873  *
4874  * All previously invoked ring_buffer_read_prepare calls to prepare
4875  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4876  * calls on those iterators are allowed.
4877  */
4878 void
4879 ring_buffer_read_prepare_sync(void)
4880 {
4881 	synchronize_rcu();
4882 }
4883 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4884 
4885 /**
4886  * ring_buffer_read_start - start a non consuming read of the buffer
4887  * @iter: The iterator returned by ring_buffer_read_prepare
4888  *
4889  * This finalizes the startup of an iteration through the buffer.
4890  * The iterator comes from a call to ring_buffer_read_prepare and
4891  * an intervening ring_buffer_read_prepare_sync must have been
4892  * performed.
4893  *
4894  * Must be paired with ring_buffer_read_finish.
4895  */
4896 void
4897 ring_buffer_read_start(struct ring_buffer_iter *iter)
4898 {
4899 	struct ring_buffer_per_cpu *cpu_buffer;
4900 	unsigned long flags;
4901 
4902 	if (!iter)
4903 		return;
4904 
4905 	cpu_buffer = iter->cpu_buffer;
4906 
4907 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4908 	arch_spin_lock(&cpu_buffer->lock);
4909 	rb_iter_reset(iter);
4910 	arch_spin_unlock(&cpu_buffer->lock);
4911 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4912 }
4913 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4914 
4915 /**
4916  * ring_buffer_read_finish - finish reading the iterator of the buffer
4917  * @iter: The iterator retrieved by ring_buffer_start
4918  *
4919  * This re-enables the recording to the buffer, and frees the
4920  * iterator.
4921  */
4922 void
4923 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4924 {
4925 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4926 	unsigned long flags;
4927 
4928 	/*
4929 	 * Ring buffer is disabled from recording, here's a good place
4930 	 * to check the integrity of the ring buffer.
4931 	 * Must prevent readers from trying to read, as the check
4932 	 * clears the HEAD page and readers require it.
4933 	 */
4934 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4935 	rb_check_pages(cpu_buffer);
4936 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4937 
4938 	atomic_dec(&cpu_buffer->resize_disabled);
4939 	kfree(iter->event);
4940 	kfree(iter);
4941 }
4942 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4943 
4944 /**
4945  * ring_buffer_iter_advance - advance the iterator to the next location
4946  * @iter: The ring buffer iterator
4947  *
4948  * Move the location of the iterator such that the next read will
4949  * be the next location of the iterator.
4950  */
4951 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4952 {
4953 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4954 	unsigned long flags;
4955 
4956 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4957 
4958 	rb_advance_iter(iter);
4959 
4960 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4961 }
4962 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4963 
4964 /**
4965  * ring_buffer_size - return the size of the ring buffer (in bytes)
4966  * @buffer: The ring buffer.
4967  * @cpu: The CPU to get ring buffer size from.
4968  */
4969 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4970 {
4971 	/*
4972 	 * Earlier, this method returned
4973 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4974 	 * Since the nr_pages field is now removed, we have converted this to
4975 	 * return the per cpu buffer value.
4976 	 */
4977 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4978 		return 0;
4979 
4980 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4981 }
4982 EXPORT_SYMBOL_GPL(ring_buffer_size);
4983 
4984 static void
4985 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4986 {
4987 	rb_head_page_deactivate(cpu_buffer);
4988 
4989 	cpu_buffer->head_page
4990 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4991 	local_set(&cpu_buffer->head_page->write, 0);
4992 	local_set(&cpu_buffer->head_page->entries, 0);
4993 	local_set(&cpu_buffer->head_page->page->commit, 0);
4994 
4995 	cpu_buffer->head_page->read = 0;
4996 
4997 	cpu_buffer->tail_page = cpu_buffer->head_page;
4998 	cpu_buffer->commit_page = cpu_buffer->head_page;
4999 
5000 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5001 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5002 	local_set(&cpu_buffer->reader_page->write, 0);
5003 	local_set(&cpu_buffer->reader_page->entries, 0);
5004 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5005 	cpu_buffer->reader_page->read = 0;
5006 
5007 	local_set(&cpu_buffer->entries_bytes, 0);
5008 	local_set(&cpu_buffer->overrun, 0);
5009 	local_set(&cpu_buffer->commit_overrun, 0);
5010 	local_set(&cpu_buffer->dropped_events, 0);
5011 	local_set(&cpu_buffer->entries, 0);
5012 	local_set(&cpu_buffer->committing, 0);
5013 	local_set(&cpu_buffer->commits, 0);
5014 	local_set(&cpu_buffer->pages_touched, 0);
5015 	local_set(&cpu_buffer->pages_read, 0);
5016 	cpu_buffer->last_pages_touch = 0;
5017 	cpu_buffer->shortest_full = 0;
5018 	cpu_buffer->read = 0;
5019 	cpu_buffer->read_bytes = 0;
5020 
5021 	rb_time_set(&cpu_buffer->write_stamp, 0);
5022 	rb_time_set(&cpu_buffer->before_stamp, 0);
5023 
5024 	cpu_buffer->lost_events = 0;
5025 	cpu_buffer->last_overrun = 0;
5026 
5027 	rb_head_page_activate(cpu_buffer);
5028 }
5029 
5030 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5031 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5032 {
5033 	unsigned long flags;
5034 
5035 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5036 
5037 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5038 		goto out;
5039 
5040 	arch_spin_lock(&cpu_buffer->lock);
5041 
5042 	rb_reset_cpu(cpu_buffer);
5043 
5044 	arch_spin_unlock(&cpu_buffer->lock);
5045 
5046  out:
5047 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5048 }
5049 
5050 /**
5051  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5052  * @buffer: The ring buffer to reset a per cpu buffer of
5053  * @cpu: The CPU buffer to be reset
5054  */
5055 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5056 {
5057 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5058 
5059 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5060 		return;
5061 
5062 	/* prevent another thread from changing buffer sizes */
5063 	mutex_lock(&buffer->mutex);
5064 
5065 	atomic_inc(&cpu_buffer->resize_disabled);
5066 	atomic_inc(&cpu_buffer->record_disabled);
5067 
5068 	/* Make sure all commits have finished */
5069 	synchronize_rcu();
5070 
5071 	reset_disabled_cpu_buffer(cpu_buffer);
5072 
5073 	atomic_dec(&cpu_buffer->record_disabled);
5074 	atomic_dec(&cpu_buffer->resize_disabled);
5075 
5076 	mutex_unlock(&buffer->mutex);
5077 }
5078 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5079 
5080 /**
5081  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5082  * @buffer: The ring buffer to reset a per cpu buffer of
5083  * @cpu: The CPU buffer to be reset
5084  */
5085 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5086 {
5087 	struct ring_buffer_per_cpu *cpu_buffer;
5088 	int cpu;
5089 
5090 	/* prevent another thread from changing buffer sizes */
5091 	mutex_lock(&buffer->mutex);
5092 
5093 	for_each_online_buffer_cpu(buffer, cpu) {
5094 		cpu_buffer = buffer->buffers[cpu];
5095 
5096 		atomic_inc(&cpu_buffer->resize_disabled);
5097 		atomic_inc(&cpu_buffer->record_disabled);
5098 	}
5099 
5100 	/* Make sure all commits have finished */
5101 	synchronize_rcu();
5102 
5103 	for_each_online_buffer_cpu(buffer, cpu) {
5104 		cpu_buffer = buffer->buffers[cpu];
5105 
5106 		reset_disabled_cpu_buffer(cpu_buffer);
5107 
5108 		atomic_dec(&cpu_buffer->record_disabled);
5109 		atomic_dec(&cpu_buffer->resize_disabled);
5110 	}
5111 
5112 	mutex_unlock(&buffer->mutex);
5113 }
5114 
5115 /**
5116  * ring_buffer_reset - reset a ring buffer
5117  * @buffer: The ring buffer to reset all cpu buffers
5118  */
5119 void ring_buffer_reset(struct trace_buffer *buffer)
5120 {
5121 	struct ring_buffer_per_cpu *cpu_buffer;
5122 	int cpu;
5123 
5124 	for_each_buffer_cpu(buffer, cpu) {
5125 		cpu_buffer = buffer->buffers[cpu];
5126 
5127 		atomic_inc(&cpu_buffer->resize_disabled);
5128 		atomic_inc(&cpu_buffer->record_disabled);
5129 	}
5130 
5131 	/* Make sure all commits have finished */
5132 	synchronize_rcu();
5133 
5134 	for_each_buffer_cpu(buffer, cpu) {
5135 		cpu_buffer = buffer->buffers[cpu];
5136 
5137 		reset_disabled_cpu_buffer(cpu_buffer);
5138 
5139 		atomic_dec(&cpu_buffer->record_disabled);
5140 		atomic_dec(&cpu_buffer->resize_disabled);
5141 	}
5142 }
5143 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5144 
5145 /**
5146  * rind_buffer_empty - is the ring buffer empty?
5147  * @buffer: The ring buffer to test
5148  */
5149 bool ring_buffer_empty(struct trace_buffer *buffer)
5150 {
5151 	struct ring_buffer_per_cpu *cpu_buffer;
5152 	unsigned long flags;
5153 	bool dolock;
5154 	int cpu;
5155 	int ret;
5156 
5157 	/* yes this is racy, but if you don't like the race, lock the buffer */
5158 	for_each_buffer_cpu(buffer, cpu) {
5159 		cpu_buffer = buffer->buffers[cpu];
5160 		local_irq_save(flags);
5161 		dolock = rb_reader_lock(cpu_buffer);
5162 		ret = rb_per_cpu_empty(cpu_buffer);
5163 		rb_reader_unlock(cpu_buffer, dolock);
5164 		local_irq_restore(flags);
5165 
5166 		if (!ret)
5167 			return false;
5168 	}
5169 
5170 	return true;
5171 }
5172 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5173 
5174 /**
5175  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5176  * @buffer: The ring buffer
5177  * @cpu: The CPU buffer to test
5178  */
5179 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5180 {
5181 	struct ring_buffer_per_cpu *cpu_buffer;
5182 	unsigned long flags;
5183 	bool dolock;
5184 	int ret;
5185 
5186 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5187 		return true;
5188 
5189 	cpu_buffer = buffer->buffers[cpu];
5190 	local_irq_save(flags);
5191 	dolock = rb_reader_lock(cpu_buffer);
5192 	ret = rb_per_cpu_empty(cpu_buffer);
5193 	rb_reader_unlock(cpu_buffer, dolock);
5194 	local_irq_restore(flags);
5195 
5196 	return ret;
5197 }
5198 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5199 
5200 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5201 /**
5202  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5203  * @buffer_a: One buffer to swap with
5204  * @buffer_b: The other buffer to swap with
5205  * @cpu: the CPU of the buffers to swap
5206  *
5207  * This function is useful for tracers that want to take a "snapshot"
5208  * of a CPU buffer and has another back up buffer lying around.
5209  * it is expected that the tracer handles the cpu buffer not being
5210  * used at the moment.
5211  */
5212 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5213 			 struct trace_buffer *buffer_b, int cpu)
5214 {
5215 	struct ring_buffer_per_cpu *cpu_buffer_a;
5216 	struct ring_buffer_per_cpu *cpu_buffer_b;
5217 	int ret = -EINVAL;
5218 
5219 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5220 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5221 		goto out;
5222 
5223 	cpu_buffer_a = buffer_a->buffers[cpu];
5224 	cpu_buffer_b = buffer_b->buffers[cpu];
5225 
5226 	/* At least make sure the two buffers are somewhat the same */
5227 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5228 		goto out;
5229 
5230 	ret = -EAGAIN;
5231 
5232 	if (atomic_read(&buffer_a->record_disabled))
5233 		goto out;
5234 
5235 	if (atomic_read(&buffer_b->record_disabled))
5236 		goto out;
5237 
5238 	if (atomic_read(&cpu_buffer_a->record_disabled))
5239 		goto out;
5240 
5241 	if (atomic_read(&cpu_buffer_b->record_disabled))
5242 		goto out;
5243 
5244 	/*
5245 	 * We can't do a synchronize_rcu here because this
5246 	 * function can be called in atomic context.
5247 	 * Normally this will be called from the same CPU as cpu.
5248 	 * If not it's up to the caller to protect this.
5249 	 */
5250 	atomic_inc(&cpu_buffer_a->record_disabled);
5251 	atomic_inc(&cpu_buffer_b->record_disabled);
5252 
5253 	ret = -EBUSY;
5254 	if (local_read(&cpu_buffer_a->committing))
5255 		goto out_dec;
5256 	if (local_read(&cpu_buffer_b->committing))
5257 		goto out_dec;
5258 
5259 	buffer_a->buffers[cpu] = cpu_buffer_b;
5260 	buffer_b->buffers[cpu] = cpu_buffer_a;
5261 
5262 	cpu_buffer_b->buffer = buffer_a;
5263 	cpu_buffer_a->buffer = buffer_b;
5264 
5265 	ret = 0;
5266 
5267 out_dec:
5268 	atomic_dec(&cpu_buffer_a->record_disabled);
5269 	atomic_dec(&cpu_buffer_b->record_disabled);
5270 out:
5271 	return ret;
5272 }
5273 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5274 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5275 
5276 /**
5277  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5278  * @buffer: the buffer to allocate for.
5279  * @cpu: the cpu buffer to allocate.
5280  *
5281  * This function is used in conjunction with ring_buffer_read_page.
5282  * When reading a full page from the ring buffer, these functions
5283  * can be used to speed up the process. The calling function should
5284  * allocate a few pages first with this function. Then when it
5285  * needs to get pages from the ring buffer, it passes the result
5286  * of this function into ring_buffer_read_page, which will swap
5287  * the page that was allocated, with the read page of the buffer.
5288  *
5289  * Returns:
5290  *  The page allocated, or ERR_PTR
5291  */
5292 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5293 {
5294 	struct ring_buffer_per_cpu *cpu_buffer;
5295 	struct buffer_data_page *bpage = NULL;
5296 	unsigned long flags;
5297 	struct page *page;
5298 
5299 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5300 		return ERR_PTR(-ENODEV);
5301 
5302 	cpu_buffer = buffer->buffers[cpu];
5303 	local_irq_save(flags);
5304 	arch_spin_lock(&cpu_buffer->lock);
5305 
5306 	if (cpu_buffer->free_page) {
5307 		bpage = cpu_buffer->free_page;
5308 		cpu_buffer->free_page = NULL;
5309 	}
5310 
5311 	arch_spin_unlock(&cpu_buffer->lock);
5312 	local_irq_restore(flags);
5313 
5314 	if (bpage)
5315 		goto out;
5316 
5317 	page = alloc_pages_node(cpu_to_node(cpu),
5318 				GFP_KERNEL | __GFP_NORETRY, 0);
5319 	if (!page)
5320 		return ERR_PTR(-ENOMEM);
5321 
5322 	bpage = page_address(page);
5323 
5324  out:
5325 	rb_init_page(bpage);
5326 
5327 	return bpage;
5328 }
5329 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5330 
5331 /**
5332  * ring_buffer_free_read_page - free an allocated read page
5333  * @buffer: the buffer the page was allocate for
5334  * @cpu: the cpu buffer the page came from
5335  * @data: the page to free
5336  *
5337  * Free a page allocated from ring_buffer_alloc_read_page.
5338  */
5339 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5340 {
5341 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5342 	struct buffer_data_page *bpage = data;
5343 	struct page *page = virt_to_page(bpage);
5344 	unsigned long flags;
5345 
5346 	/* If the page is still in use someplace else, we can't reuse it */
5347 	if (page_ref_count(page) > 1)
5348 		goto out;
5349 
5350 	local_irq_save(flags);
5351 	arch_spin_lock(&cpu_buffer->lock);
5352 
5353 	if (!cpu_buffer->free_page) {
5354 		cpu_buffer->free_page = bpage;
5355 		bpage = NULL;
5356 	}
5357 
5358 	arch_spin_unlock(&cpu_buffer->lock);
5359 	local_irq_restore(flags);
5360 
5361  out:
5362 	free_page((unsigned long)bpage);
5363 }
5364 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5365 
5366 /**
5367  * ring_buffer_read_page - extract a page from the ring buffer
5368  * @buffer: buffer to extract from
5369  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5370  * @len: amount to extract
5371  * @cpu: the cpu of the buffer to extract
5372  * @full: should the extraction only happen when the page is full.
5373  *
5374  * This function will pull out a page from the ring buffer and consume it.
5375  * @data_page must be the address of the variable that was returned
5376  * from ring_buffer_alloc_read_page. This is because the page might be used
5377  * to swap with a page in the ring buffer.
5378  *
5379  * for example:
5380  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5381  *	if (IS_ERR(rpage))
5382  *		return PTR_ERR(rpage);
5383  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5384  *	if (ret >= 0)
5385  *		process_page(rpage, ret);
5386  *
5387  * When @full is set, the function will not return true unless
5388  * the writer is off the reader page.
5389  *
5390  * Note: it is up to the calling functions to handle sleeps and wakeups.
5391  *  The ring buffer can be used anywhere in the kernel and can not
5392  *  blindly call wake_up. The layer that uses the ring buffer must be
5393  *  responsible for that.
5394  *
5395  * Returns:
5396  *  >=0 if data has been transferred, returns the offset of consumed data.
5397  *  <0 if no data has been transferred.
5398  */
5399 int ring_buffer_read_page(struct trace_buffer *buffer,
5400 			  void **data_page, size_t len, int cpu, int full)
5401 {
5402 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5403 	struct ring_buffer_event *event;
5404 	struct buffer_data_page *bpage;
5405 	struct buffer_page *reader;
5406 	unsigned long missed_events;
5407 	unsigned long flags;
5408 	unsigned int commit;
5409 	unsigned int read;
5410 	u64 save_timestamp;
5411 	int ret = -1;
5412 
5413 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5414 		goto out;
5415 
5416 	/*
5417 	 * If len is not big enough to hold the page header, then
5418 	 * we can not copy anything.
5419 	 */
5420 	if (len <= BUF_PAGE_HDR_SIZE)
5421 		goto out;
5422 
5423 	len -= BUF_PAGE_HDR_SIZE;
5424 
5425 	if (!data_page)
5426 		goto out;
5427 
5428 	bpage = *data_page;
5429 	if (!bpage)
5430 		goto out;
5431 
5432 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5433 
5434 	reader = rb_get_reader_page(cpu_buffer);
5435 	if (!reader)
5436 		goto out_unlock;
5437 
5438 	event = rb_reader_event(cpu_buffer);
5439 
5440 	read = reader->read;
5441 	commit = rb_page_commit(reader);
5442 
5443 	/* Check if any events were dropped */
5444 	missed_events = cpu_buffer->lost_events;
5445 
5446 	/*
5447 	 * If this page has been partially read or
5448 	 * if len is not big enough to read the rest of the page or
5449 	 * a writer is still on the page, then
5450 	 * we must copy the data from the page to the buffer.
5451 	 * Otherwise, we can simply swap the page with the one passed in.
5452 	 */
5453 	if (read || (len < (commit - read)) ||
5454 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5455 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5456 		unsigned int rpos = read;
5457 		unsigned int pos = 0;
5458 		unsigned int size;
5459 
5460 		if (full)
5461 			goto out_unlock;
5462 
5463 		if (len > (commit - read))
5464 			len = (commit - read);
5465 
5466 		/* Always keep the time extend and data together */
5467 		size = rb_event_ts_length(event);
5468 
5469 		if (len < size)
5470 			goto out_unlock;
5471 
5472 		/* save the current timestamp, since the user will need it */
5473 		save_timestamp = cpu_buffer->read_stamp;
5474 
5475 		/* Need to copy one event at a time */
5476 		do {
5477 			/* We need the size of one event, because
5478 			 * rb_advance_reader only advances by one event,
5479 			 * whereas rb_event_ts_length may include the size of
5480 			 * one or two events.
5481 			 * We have already ensured there's enough space if this
5482 			 * is a time extend. */
5483 			size = rb_event_length(event);
5484 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5485 
5486 			len -= size;
5487 
5488 			rb_advance_reader(cpu_buffer);
5489 			rpos = reader->read;
5490 			pos += size;
5491 
5492 			if (rpos >= commit)
5493 				break;
5494 
5495 			event = rb_reader_event(cpu_buffer);
5496 			/* Always keep the time extend and data together */
5497 			size = rb_event_ts_length(event);
5498 		} while (len >= size);
5499 
5500 		/* update bpage */
5501 		local_set(&bpage->commit, pos);
5502 		bpage->time_stamp = save_timestamp;
5503 
5504 		/* we copied everything to the beginning */
5505 		read = 0;
5506 	} else {
5507 		/* update the entry counter */
5508 		cpu_buffer->read += rb_page_entries(reader);
5509 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5510 
5511 		/* swap the pages */
5512 		rb_init_page(bpage);
5513 		bpage = reader->page;
5514 		reader->page = *data_page;
5515 		local_set(&reader->write, 0);
5516 		local_set(&reader->entries, 0);
5517 		reader->read = 0;
5518 		*data_page = bpage;
5519 
5520 		/*
5521 		 * Use the real_end for the data size,
5522 		 * This gives us a chance to store the lost events
5523 		 * on the page.
5524 		 */
5525 		if (reader->real_end)
5526 			local_set(&bpage->commit, reader->real_end);
5527 	}
5528 	ret = read;
5529 
5530 	cpu_buffer->lost_events = 0;
5531 
5532 	commit = local_read(&bpage->commit);
5533 	/*
5534 	 * Set a flag in the commit field if we lost events
5535 	 */
5536 	if (missed_events) {
5537 		/* If there is room at the end of the page to save the
5538 		 * missed events, then record it there.
5539 		 */
5540 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5541 			memcpy(&bpage->data[commit], &missed_events,
5542 			       sizeof(missed_events));
5543 			local_add(RB_MISSED_STORED, &bpage->commit);
5544 			commit += sizeof(missed_events);
5545 		}
5546 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5547 	}
5548 
5549 	/*
5550 	 * This page may be off to user land. Zero it out here.
5551 	 */
5552 	if (commit < BUF_PAGE_SIZE)
5553 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5554 
5555  out_unlock:
5556 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5557 
5558  out:
5559 	return ret;
5560 }
5561 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5562 
5563 /*
5564  * We only allocate new buffers, never free them if the CPU goes down.
5565  * If we were to free the buffer, then the user would lose any trace that was in
5566  * the buffer.
5567  */
5568 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5569 {
5570 	struct trace_buffer *buffer;
5571 	long nr_pages_same;
5572 	int cpu_i;
5573 	unsigned long nr_pages;
5574 
5575 	buffer = container_of(node, struct trace_buffer, node);
5576 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5577 		return 0;
5578 
5579 	nr_pages = 0;
5580 	nr_pages_same = 1;
5581 	/* check if all cpu sizes are same */
5582 	for_each_buffer_cpu(buffer, cpu_i) {
5583 		/* fill in the size from first enabled cpu */
5584 		if (nr_pages == 0)
5585 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5586 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5587 			nr_pages_same = 0;
5588 			break;
5589 		}
5590 	}
5591 	/* allocate minimum pages, user can later expand it */
5592 	if (!nr_pages_same)
5593 		nr_pages = 2;
5594 	buffer->buffers[cpu] =
5595 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5596 	if (!buffer->buffers[cpu]) {
5597 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5598 		     cpu);
5599 		return -ENOMEM;
5600 	}
5601 	smp_wmb();
5602 	cpumask_set_cpu(cpu, buffer->cpumask);
5603 	return 0;
5604 }
5605 
5606 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5607 /*
5608  * This is a basic integrity check of the ring buffer.
5609  * Late in the boot cycle this test will run when configured in.
5610  * It will kick off a thread per CPU that will go into a loop
5611  * writing to the per cpu ring buffer various sizes of data.
5612  * Some of the data will be large items, some small.
5613  *
5614  * Another thread is created that goes into a spin, sending out
5615  * IPIs to the other CPUs to also write into the ring buffer.
5616  * this is to test the nesting ability of the buffer.
5617  *
5618  * Basic stats are recorded and reported. If something in the
5619  * ring buffer should happen that's not expected, a big warning
5620  * is displayed and all ring buffers are disabled.
5621  */
5622 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5623 
5624 struct rb_test_data {
5625 	struct trace_buffer *buffer;
5626 	unsigned long		events;
5627 	unsigned long		bytes_written;
5628 	unsigned long		bytes_alloc;
5629 	unsigned long		bytes_dropped;
5630 	unsigned long		events_nested;
5631 	unsigned long		bytes_written_nested;
5632 	unsigned long		bytes_alloc_nested;
5633 	unsigned long		bytes_dropped_nested;
5634 	int			min_size_nested;
5635 	int			max_size_nested;
5636 	int			max_size;
5637 	int			min_size;
5638 	int			cpu;
5639 	int			cnt;
5640 };
5641 
5642 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5643 
5644 /* 1 meg per cpu */
5645 #define RB_TEST_BUFFER_SIZE	1048576
5646 
5647 static char rb_string[] __initdata =
5648 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5649 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5650 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5651 
5652 static bool rb_test_started __initdata;
5653 
5654 struct rb_item {
5655 	int size;
5656 	char str[];
5657 };
5658 
5659 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5660 {
5661 	struct ring_buffer_event *event;
5662 	struct rb_item *item;
5663 	bool started;
5664 	int event_len;
5665 	int size;
5666 	int len;
5667 	int cnt;
5668 
5669 	/* Have nested writes different that what is written */
5670 	cnt = data->cnt + (nested ? 27 : 0);
5671 
5672 	/* Multiply cnt by ~e, to make some unique increment */
5673 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5674 
5675 	len = size + sizeof(struct rb_item);
5676 
5677 	started = rb_test_started;
5678 	/* read rb_test_started before checking buffer enabled */
5679 	smp_rmb();
5680 
5681 	event = ring_buffer_lock_reserve(data->buffer, len);
5682 	if (!event) {
5683 		/* Ignore dropped events before test starts. */
5684 		if (started) {
5685 			if (nested)
5686 				data->bytes_dropped += len;
5687 			else
5688 				data->bytes_dropped_nested += len;
5689 		}
5690 		return len;
5691 	}
5692 
5693 	event_len = ring_buffer_event_length(event);
5694 
5695 	if (RB_WARN_ON(data->buffer, event_len < len))
5696 		goto out;
5697 
5698 	item = ring_buffer_event_data(event);
5699 	item->size = size;
5700 	memcpy(item->str, rb_string, size);
5701 
5702 	if (nested) {
5703 		data->bytes_alloc_nested += event_len;
5704 		data->bytes_written_nested += len;
5705 		data->events_nested++;
5706 		if (!data->min_size_nested || len < data->min_size_nested)
5707 			data->min_size_nested = len;
5708 		if (len > data->max_size_nested)
5709 			data->max_size_nested = len;
5710 	} else {
5711 		data->bytes_alloc += event_len;
5712 		data->bytes_written += len;
5713 		data->events++;
5714 		if (!data->min_size || len < data->min_size)
5715 			data->max_size = len;
5716 		if (len > data->max_size)
5717 			data->max_size = len;
5718 	}
5719 
5720  out:
5721 	ring_buffer_unlock_commit(data->buffer, event);
5722 
5723 	return 0;
5724 }
5725 
5726 static __init int rb_test(void *arg)
5727 {
5728 	struct rb_test_data *data = arg;
5729 
5730 	while (!kthread_should_stop()) {
5731 		rb_write_something(data, false);
5732 		data->cnt++;
5733 
5734 		set_current_state(TASK_INTERRUPTIBLE);
5735 		/* Now sleep between a min of 100-300us and a max of 1ms */
5736 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5737 	}
5738 
5739 	return 0;
5740 }
5741 
5742 static __init void rb_ipi(void *ignore)
5743 {
5744 	struct rb_test_data *data;
5745 	int cpu = smp_processor_id();
5746 
5747 	data = &rb_data[cpu];
5748 	rb_write_something(data, true);
5749 }
5750 
5751 static __init int rb_hammer_test(void *arg)
5752 {
5753 	while (!kthread_should_stop()) {
5754 
5755 		/* Send an IPI to all cpus to write data! */
5756 		smp_call_function(rb_ipi, NULL, 1);
5757 		/* No sleep, but for non preempt, let others run */
5758 		schedule();
5759 	}
5760 
5761 	return 0;
5762 }
5763 
5764 static __init int test_ringbuffer(void)
5765 {
5766 	struct task_struct *rb_hammer;
5767 	struct trace_buffer *buffer;
5768 	int cpu;
5769 	int ret = 0;
5770 
5771 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5772 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5773 		return 0;
5774 	}
5775 
5776 	pr_info("Running ring buffer tests...\n");
5777 
5778 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5779 	if (WARN_ON(!buffer))
5780 		return 0;
5781 
5782 	/* Disable buffer so that threads can't write to it yet */
5783 	ring_buffer_record_off(buffer);
5784 
5785 	for_each_online_cpu(cpu) {
5786 		rb_data[cpu].buffer = buffer;
5787 		rb_data[cpu].cpu = cpu;
5788 		rb_data[cpu].cnt = cpu;
5789 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5790 						 "rbtester/%d", cpu);
5791 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5792 			pr_cont("FAILED\n");
5793 			ret = PTR_ERR(rb_threads[cpu]);
5794 			goto out_free;
5795 		}
5796 
5797 		kthread_bind(rb_threads[cpu], cpu);
5798  		wake_up_process(rb_threads[cpu]);
5799 	}
5800 
5801 	/* Now create the rb hammer! */
5802 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5803 	if (WARN_ON(IS_ERR(rb_hammer))) {
5804 		pr_cont("FAILED\n");
5805 		ret = PTR_ERR(rb_hammer);
5806 		goto out_free;
5807 	}
5808 
5809 	ring_buffer_record_on(buffer);
5810 	/*
5811 	 * Show buffer is enabled before setting rb_test_started.
5812 	 * Yes there's a small race window where events could be
5813 	 * dropped and the thread wont catch it. But when a ring
5814 	 * buffer gets enabled, there will always be some kind of
5815 	 * delay before other CPUs see it. Thus, we don't care about
5816 	 * those dropped events. We care about events dropped after
5817 	 * the threads see that the buffer is active.
5818 	 */
5819 	smp_wmb();
5820 	rb_test_started = true;
5821 
5822 	set_current_state(TASK_INTERRUPTIBLE);
5823 	/* Just run for 10 seconds */;
5824 	schedule_timeout(10 * HZ);
5825 
5826 	kthread_stop(rb_hammer);
5827 
5828  out_free:
5829 	for_each_online_cpu(cpu) {
5830 		if (!rb_threads[cpu])
5831 			break;
5832 		kthread_stop(rb_threads[cpu]);
5833 	}
5834 	if (ret) {
5835 		ring_buffer_free(buffer);
5836 		return ret;
5837 	}
5838 
5839 	/* Report! */
5840 	pr_info("finished\n");
5841 	for_each_online_cpu(cpu) {
5842 		struct ring_buffer_event *event;
5843 		struct rb_test_data *data = &rb_data[cpu];
5844 		struct rb_item *item;
5845 		unsigned long total_events;
5846 		unsigned long total_dropped;
5847 		unsigned long total_written;
5848 		unsigned long total_alloc;
5849 		unsigned long total_read = 0;
5850 		unsigned long total_size = 0;
5851 		unsigned long total_len = 0;
5852 		unsigned long total_lost = 0;
5853 		unsigned long lost;
5854 		int big_event_size;
5855 		int small_event_size;
5856 
5857 		ret = -1;
5858 
5859 		total_events = data->events + data->events_nested;
5860 		total_written = data->bytes_written + data->bytes_written_nested;
5861 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5862 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5863 
5864 		big_event_size = data->max_size + data->max_size_nested;
5865 		small_event_size = data->min_size + data->min_size_nested;
5866 
5867 		pr_info("CPU %d:\n", cpu);
5868 		pr_info("              events:    %ld\n", total_events);
5869 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5870 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5871 		pr_info("       written bytes:    %ld\n", total_written);
5872 		pr_info("       biggest event:    %d\n", big_event_size);
5873 		pr_info("      smallest event:    %d\n", small_event_size);
5874 
5875 		if (RB_WARN_ON(buffer, total_dropped))
5876 			break;
5877 
5878 		ret = 0;
5879 
5880 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5881 			total_lost += lost;
5882 			item = ring_buffer_event_data(event);
5883 			total_len += ring_buffer_event_length(event);
5884 			total_size += item->size + sizeof(struct rb_item);
5885 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5886 				pr_info("FAILED!\n");
5887 				pr_info("buffer had: %.*s\n", item->size, item->str);
5888 				pr_info("expected:   %.*s\n", item->size, rb_string);
5889 				RB_WARN_ON(buffer, 1);
5890 				ret = -1;
5891 				break;
5892 			}
5893 			total_read++;
5894 		}
5895 		if (ret)
5896 			break;
5897 
5898 		ret = -1;
5899 
5900 		pr_info("         read events:   %ld\n", total_read);
5901 		pr_info("         lost events:   %ld\n", total_lost);
5902 		pr_info("        total events:   %ld\n", total_lost + total_read);
5903 		pr_info("  recorded len bytes:   %ld\n", total_len);
5904 		pr_info(" recorded size bytes:   %ld\n", total_size);
5905 		if (total_lost)
5906 			pr_info(" With dropped events, record len and size may not match\n"
5907 				" alloced and written from above\n");
5908 		if (!total_lost) {
5909 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5910 				       total_size != total_written))
5911 				break;
5912 		}
5913 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5914 			break;
5915 
5916 		ret = 0;
5917 	}
5918 	if (!ret)
5919 		pr_info("Ring buffer PASSED!\n");
5920 
5921 	ring_buffer_free(buffer);
5922 	return 0;
5923 }
5924 
5925 late_initcall(test_ringbuffer);
5926 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5927