xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision ecfb9f40)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB		(0xf8ULL << 56)
38 #define ABS_TS_MASK	(~TS_MSB)
39 
40 static void update_pages_handler(struct work_struct *work);
41 
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 	trace_seq_puts(s, "# compressed entry header\n");
48 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50 	trace_seq_puts(s, "\tarray       :   32 bits\n");
51 	trace_seq_putc(s, '\n');
52 	trace_seq_printf(s, "\tpadding     : type == %d\n",
53 			 RINGBUF_TYPE_PADDING);
54 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 			 RINGBUF_TYPE_TIME_EXTEND);
56 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 			 RINGBUF_TYPE_TIME_STAMP);
58 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
59 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60 
61 	return !trace_seq_has_overflowed(s);
62 }
63 
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131 
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF		(1 << 20)
134 
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136 
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT		4U
139 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
141 
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT	0
144 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT	1
147 # define RB_ARCH_ALIGNMENT		8U
148 #endif
149 
150 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
151 
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154 
155 enum {
156 	RB_LEN_TIME_EXTEND = 8,
157 	RB_LEN_TIME_STAMP =  8,
158 };
159 
160 #define skip_time_extend(event) \
161 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162 
163 #define extended_time(event) \
164 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165 
166 static inline int rb_null_event(struct ring_buffer_event *event)
167 {
168 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170 
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 	/* padding has a NULL time_delta */
174 	event->type_len = RINGBUF_TYPE_PADDING;
175 	event->time_delta = 0;
176 }
177 
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 	unsigned length;
182 
183 	if (event->type_len)
184 		length = event->type_len * RB_ALIGNMENT;
185 	else
186 		length = event->array[0];
187 	return length + RB_EVNT_HDR_SIZE;
188 }
189 
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 	switch (event->type_len) {
199 	case RINGBUF_TYPE_PADDING:
200 		if (rb_null_event(event))
201 			/* undefined */
202 			return -1;
203 		return  event->array[0] + RB_EVNT_HDR_SIZE;
204 
205 	case RINGBUF_TYPE_TIME_EXTEND:
206 		return RB_LEN_TIME_EXTEND;
207 
208 	case RINGBUF_TYPE_TIME_STAMP:
209 		return RB_LEN_TIME_STAMP;
210 
211 	case RINGBUF_TYPE_DATA:
212 		return rb_event_data_length(event);
213 	default:
214 		WARN_ON_ONCE(1);
215 	}
216 	/* not hit */
217 	return 0;
218 }
219 
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 	unsigned len = 0;
228 
229 	if (extended_time(event)) {
230 		/* time extends include the data event after it */
231 		len = RB_LEN_TIME_EXTEND;
232 		event = skip_time_extend(event);
233 	}
234 	return len + rb_event_length(event);
235 }
236 
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 	unsigned length;
250 
251 	if (extended_time(event))
252 		event = skip_time_extend(event);
253 
254 	length = rb_event_length(event);
255 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 		return length;
257 	length -= RB_EVNT_HDR_SIZE;
258 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260 	return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263 
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 	if (extended_time(event))
269 		event = skip_time_extend(event);
270 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 	/* If length is in len field, then array[0] has the data */
272 	if (event->type_len)
273 		return (void *)&event->array[0];
274 	/* Otherwise length is in array[0] and array[1] has the data */
275 	return (void *)&event->array[1];
276 }
277 
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 	return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287 
288 #define for_each_buffer_cpu(buffer, cpu)		\
289 	for_each_cpu(cpu, buffer->cpumask)
290 
291 #define for_each_online_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293 
294 #define TS_SHIFT	27
295 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST	(~TS_MASK)
297 
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 	u64 ts;
301 
302 	ts = event->array[0];
303 	ts <<= TS_SHIFT;
304 	ts += event->time_delta;
305 
306 	return ts;
307 }
308 
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS	(1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED	(1 << 30)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 /*
358  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
359  * this issue out.
360  */
361 static void free_buffer_page(struct buffer_page *bpage)
362 {
363 	free_page((unsigned long)bpage->page);
364 	kfree(bpage);
365 }
366 
367 /*
368  * We need to fit the time_stamp delta into 27 bits.
369  */
370 static inline int test_time_stamp(u64 delta)
371 {
372 	if (delta & TS_DELTA_TEST)
373 		return 1;
374 	return 0;
375 }
376 
377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
378 
379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
381 
382 int ring_buffer_print_page_header(struct trace_seq *s)
383 {
384 	struct buffer_data_page field;
385 
386 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
387 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
388 			 (unsigned int)sizeof(field.time_stamp),
389 			 (unsigned int)is_signed_type(u64));
390 
391 	trace_seq_printf(s, "\tfield: local_t commit;\t"
392 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 			 (unsigned int)offsetof(typeof(field), commit),
394 			 (unsigned int)sizeof(field.commit),
395 			 (unsigned int)is_signed_type(long));
396 
397 	trace_seq_printf(s, "\tfield: int overwrite;\t"
398 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 			 (unsigned int)offsetof(typeof(field), commit),
400 			 1,
401 			 (unsigned int)is_signed_type(long));
402 
403 	trace_seq_printf(s, "\tfield: char data;\t"
404 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
405 			 (unsigned int)offsetof(typeof(field), data),
406 			 (unsigned int)BUF_PAGE_SIZE,
407 			 (unsigned int)is_signed_type(char));
408 
409 	return !trace_seq_has_overflowed(s);
410 }
411 
412 struct rb_irq_work {
413 	struct irq_work			work;
414 	wait_queue_head_t		waiters;
415 	wait_queue_head_t		full_waiters;
416 	long				wait_index;
417 	bool				waiters_pending;
418 	bool				full_waiters_pending;
419 	bool				wakeup_full;
420 };
421 
422 /*
423  * Structure to hold event state and handle nested events.
424  */
425 struct rb_event_info {
426 	u64			ts;
427 	u64			delta;
428 	u64			before;
429 	u64			after;
430 	unsigned long		length;
431 	struct buffer_page	*tail_page;
432 	int			add_timestamp;
433 };
434 
435 /*
436  * Used for the add_timestamp
437  *  NONE
438  *  EXTEND - wants a time extend
439  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
440  *  FORCE - force a full time stamp.
441  */
442 enum {
443 	RB_ADD_STAMP_NONE		= 0,
444 	RB_ADD_STAMP_EXTEND		= BIT(1),
445 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
446 	RB_ADD_STAMP_FORCE		= BIT(3)
447 };
448 /*
449  * Used for which event context the event is in.
450  *  TRANSITION = 0
451  *  NMI     = 1
452  *  IRQ     = 2
453  *  SOFTIRQ = 3
454  *  NORMAL  = 4
455  *
456  * See trace_recursive_lock() comment below for more details.
457  */
458 enum {
459 	RB_CTX_TRANSITION,
460 	RB_CTX_NMI,
461 	RB_CTX_IRQ,
462 	RB_CTX_SOFTIRQ,
463 	RB_CTX_NORMAL,
464 	RB_CTX_MAX
465 };
466 
467 #if BITS_PER_LONG == 32
468 #define RB_TIME_32
469 #endif
470 
471 /* To test on 64 bit machines */
472 //#define RB_TIME_32
473 
474 #ifdef RB_TIME_32
475 
476 struct rb_time_struct {
477 	local_t		cnt;
478 	local_t		top;
479 	local_t		bottom;
480 	local_t		msb;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485 	local64_t	time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489 
490 #define MAX_NEST	5
491 
492 /*
493  * head_page == tail_page && head == tail then buffer is empty.
494  */
495 struct ring_buffer_per_cpu {
496 	int				cpu;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	struct trace_buffer	*buffer;
500 	raw_spinlock_t			reader_lock;	/* serialize readers */
501 	arch_spinlock_t			lock;
502 	struct lock_class_key		lock_key;
503 	struct buffer_data_page		*free_page;
504 	unsigned long			nr_pages;
505 	unsigned int			current_context;
506 	struct list_head		*pages;
507 	struct buffer_page		*head_page;	/* read from head */
508 	struct buffer_page		*tail_page;	/* write to tail */
509 	struct buffer_page		*commit_page;	/* committed pages */
510 	struct buffer_page		*reader_page;
511 	unsigned long			lost_events;
512 	unsigned long			last_overrun;
513 	unsigned long			nest;
514 	local_t				entries_bytes;
515 	local_t				entries;
516 	local_t				overrun;
517 	local_t				commit_overrun;
518 	local_t				dropped_events;
519 	local_t				committing;
520 	local_t				commits;
521 	local_t				pages_touched;
522 	local_t				pages_lost;
523 	local_t				pages_read;
524 	long				last_pages_touch;
525 	size_t				shortest_full;
526 	unsigned long			read;
527 	unsigned long			read_bytes;
528 	rb_time_t			write_stamp;
529 	rb_time_t			before_stamp;
530 	u64				event_stamp[MAX_NEST];
531 	u64				read_stamp;
532 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
533 	long				nr_pages_to_update;
534 	struct list_head		new_pages; /* new pages to add */
535 	struct work_struct		update_pages_work;
536 	struct completion		update_done;
537 
538 	struct rb_irq_work		irq_work;
539 };
540 
541 struct trace_buffer {
542 	unsigned			flags;
543 	int				cpus;
544 	atomic_t			record_disabled;
545 	cpumask_var_t			cpumask;
546 
547 	struct lock_class_key		*reader_lock_key;
548 
549 	struct mutex			mutex;
550 
551 	struct ring_buffer_per_cpu	**buffers;
552 
553 	struct hlist_node		node;
554 	u64				(*clock)(void);
555 
556 	struct rb_irq_work		irq_work;
557 	bool				time_stamp_abs;
558 };
559 
560 struct ring_buffer_iter {
561 	struct ring_buffer_per_cpu	*cpu_buffer;
562 	unsigned long			head;
563 	unsigned long			next_event;
564 	struct buffer_page		*head_page;
565 	struct buffer_page		*cache_reader_page;
566 	unsigned long			cache_read;
567 	u64				read_stamp;
568 	u64				page_stamp;
569 	struct ring_buffer_event	*event;
570 	int				missed_events;
571 };
572 
573 #ifdef RB_TIME_32
574 
575 /*
576  * On 32 bit machines, local64_t is very expensive. As the ring
577  * buffer doesn't need all the features of a true 64 bit atomic,
578  * on 32 bit, it uses these functions (64 still uses local64_t).
579  *
580  * For the ring buffer, 64 bit required operations for the time is
581  * the following:
582  *
583  *  - Reads may fail if it interrupted a modification of the time stamp.
584  *      It will succeed if it did not interrupt another write even if
585  *      the read itself is interrupted by a write.
586  *      It returns whether it was successful or not.
587  *
588  *  - Writes always succeed and will overwrite other writes and writes
589  *      that were done by events interrupting the current write.
590  *
591  *  - A write followed by a read of the same time stamp will always succeed,
592  *      but may not contain the same value.
593  *
594  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
595  *      Other than that, it acts like a normal cmpxchg.
596  *
597  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
598  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
599  *
600  * The two most significant bits of each half holds a 2 bit counter (0-3).
601  * Each update will increment this counter by one.
602  * When reading the top and bottom, if the two counter bits match then the
603  *  top and bottom together make a valid 60 bit number.
604  */
605 #define RB_TIME_SHIFT	30
606 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
607 #define RB_TIME_MSB_SHIFT	 60
608 
609 static inline int rb_time_cnt(unsigned long val)
610 {
611 	return (val >> RB_TIME_SHIFT) & 3;
612 }
613 
614 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
615 {
616 	u64 val;
617 
618 	val = top & RB_TIME_VAL_MASK;
619 	val <<= RB_TIME_SHIFT;
620 	val |= bottom & RB_TIME_VAL_MASK;
621 
622 	return val;
623 }
624 
625 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
626 {
627 	unsigned long top, bottom, msb;
628 	unsigned long c;
629 
630 	/*
631 	 * If the read is interrupted by a write, then the cnt will
632 	 * be different. Loop until both top and bottom have been read
633 	 * without interruption.
634 	 */
635 	do {
636 		c = local_read(&t->cnt);
637 		top = local_read(&t->top);
638 		bottom = local_read(&t->bottom);
639 		msb = local_read(&t->msb);
640 	} while (c != local_read(&t->cnt));
641 
642 	*cnt = rb_time_cnt(top);
643 
644 	/* If top and bottom counts don't match, this interrupted a write */
645 	if (*cnt != rb_time_cnt(bottom))
646 		return false;
647 
648 	/* The shift to msb will lose its cnt bits */
649 	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
650 	return true;
651 }
652 
653 static bool rb_time_read(rb_time_t *t, u64 *ret)
654 {
655 	unsigned long cnt;
656 
657 	return __rb_time_read(t, ret, &cnt);
658 }
659 
660 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
661 {
662 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
663 }
664 
665 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
666 				 unsigned long *msb)
667 {
668 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
669 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
670 	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
671 }
672 
673 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
674 {
675 	val = rb_time_val_cnt(val, cnt);
676 	local_set(t, val);
677 }
678 
679 static void rb_time_set(rb_time_t *t, u64 val)
680 {
681 	unsigned long cnt, top, bottom, msb;
682 
683 	rb_time_split(val, &top, &bottom, &msb);
684 
685 	/* Writes always succeed with a valid number even if it gets interrupted. */
686 	do {
687 		cnt = local_inc_return(&t->cnt);
688 		rb_time_val_set(&t->top, top, cnt);
689 		rb_time_val_set(&t->bottom, bottom, cnt);
690 		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
691 	} while (cnt != local_read(&t->cnt));
692 }
693 
694 static inline bool
695 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
696 {
697 	unsigned long ret;
698 
699 	ret = local_cmpxchg(l, expect, set);
700 	return ret == expect;
701 }
702 
703 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
704 {
705 	unsigned long cnt, top, bottom, msb;
706 	unsigned long cnt2, top2, bottom2, msb2;
707 	u64 val;
708 
709 	/* The cmpxchg always fails if it interrupted an update */
710 	 if (!__rb_time_read(t, &val, &cnt2))
711 		 return false;
712 
713 	 if (val != expect)
714 		 return false;
715 
716 	 cnt = local_read(&t->cnt);
717 	 if ((cnt & 3) != cnt2)
718 		 return false;
719 
720 	 cnt2 = cnt + 1;
721 
722 	 rb_time_split(val, &top, &bottom, &msb);
723 	 top = rb_time_val_cnt(top, cnt);
724 	 bottom = rb_time_val_cnt(bottom, cnt);
725 
726 	 rb_time_split(set, &top2, &bottom2, &msb2);
727 	 top2 = rb_time_val_cnt(top2, cnt2);
728 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
729 
730 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
731 		return false;
732 	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
733 		return false;
734 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
735 		return false;
736 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
737 		return false;
738 	return true;
739 }
740 
741 #else /* 64 bits */
742 
743 /* local64_t always succeeds */
744 
745 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
746 {
747 	*ret = local64_read(&t->time);
748 	return true;
749 }
750 static void rb_time_set(rb_time_t *t, u64 val)
751 {
752 	local64_set(&t->time, val);
753 }
754 
755 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
756 {
757 	u64 val;
758 	val = local64_cmpxchg(&t->time, expect, set);
759 	return val == expect;
760 }
761 #endif
762 
763 /*
764  * Enable this to make sure that the event passed to
765  * ring_buffer_event_time_stamp() is not committed and also
766  * is on the buffer that it passed in.
767  */
768 //#define RB_VERIFY_EVENT
769 #ifdef RB_VERIFY_EVENT
770 static struct list_head *rb_list_head(struct list_head *list);
771 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
772 			 void *event)
773 {
774 	struct buffer_page *page = cpu_buffer->commit_page;
775 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
776 	struct list_head *next;
777 	long commit, write;
778 	unsigned long addr = (unsigned long)event;
779 	bool done = false;
780 	int stop = 0;
781 
782 	/* Make sure the event exists and is not committed yet */
783 	do {
784 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
785 			done = true;
786 		commit = local_read(&page->page->commit);
787 		write = local_read(&page->write);
788 		if (addr >= (unsigned long)&page->page->data[commit] &&
789 		    addr < (unsigned long)&page->page->data[write])
790 			return;
791 
792 		next = rb_list_head(page->list.next);
793 		page = list_entry(next, struct buffer_page, list);
794 	} while (!done);
795 	WARN_ON_ONCE(1);
796 }
797 #else
798 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
799 			 void *event)
800 {
801 }
802 #endif
803 
804 /*
805  * The absolute time stamp drops the 5 MSBs and some clocks may
806  * require them. The rb_fix_abs_ts() will take a previous full
807  * time stamp, and add the 5 MSB of that time stamp on to the
808  * saved absolute time stamp. Then they are compared in case of
809  * the unlikely event that the latest time stamp incremented
810  * the 5 MSB.
811  */
812 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
813 {
814 	if (save_ts & TS_MSB) {
815 		abs |= save_ts & TS_MSB;
816 		/* Check for overflow */
817 		if (unlikely(abs < save_ts))
818 			abs += 1ULL << 59;
819 	}
820 	return abs;
821 }
822 
823 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
824 
825 /**
826  * ring_buffer_event_time_stamp - return the event's current time stamp
827  * @buffer: The buffer that the event is on
828  * @event: the event to get the time stamp of
829  *
830  * Note, this must be called after @event is reserved, and before it is
831  * committed to the ring buffer. And must be called from the same
832  * context where the event was reserved (normal, softirq, irq, etc).
833  *
834  * Returns the time stamp associated with the current event.
835  * If the event has an extended time stamp, then that is used as
836  * the time stamp to return.
837  * In the highly unlikely case that the event was nested more than
838  * the max nesting, then the write_stamp of the buffer is returned,
839  * otherwise  current time is returned, but that really neither of
840  * the last two cases should ever happen.
841  */
842 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
843 				 struct ring_buffer_event *event)
844 {
845 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
846 	unsigned int nest;
847 	u64 ts;
848 
849 	/* If the event includes an absolute time, then just use that */
850 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
851 		ts = rb_event_time_stamp(event);
852 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
853 	}
854 
855 	nest = local_read(&cpu_buffer->committing);
856 	verify_event(cpu_buffer, event);
857 	if (WARN_ON_ONCE(!nest))
858 		goto fail;
859 
860 	/* Read the current saved nesting level time stamp */
861 	if (likely(--nest < MAX_NEST))
862 		return cpu_buffer->event_stamp[nest];
863 
864 	/* Shouldn't happen, warn if it does */
865 	WARN_ONCE(1, "nest (%d) greater than max", nest);
866 
867  fail:
868 	/* Can only fail on 32 bit */
869 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
870 		/* Screw it, just read the current time */
871 		ts = rb_time_stamp(cpu_buffer->buffer);
872 
873 	return ts;
874 }
875 
876 /**
877  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
878  * @buffer: The ring_buffer to get the number of pages from
879  * @cpu: The cpu of the ring_buffer to get the number of pages from
880  *
881  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
882  */
883 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
884 {
885 	return buffer->buffers[cpu]->nr_pages;
886 }
887 
888 /**
889  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
890  * @buffer: The ring_buffer to get the number of pages from
891  * @cpu: The cpu of the ring_buffer to get the number of pages from
892  *
893  * Returns the number of pages that have content in the ring buffer.
894  */
895 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
896 {
897 	size_t read;
898 	size_t lost;
899 	size_t cnt;
900 
901 	read = local_read(&buffer->buffers[cpu]->pages_read);
902 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
903 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
904 
905 	if (WARN_ON_ONCE(cnt < lost))
906 		return 0;
907 
908 	cnt -= lost;
909 
910 	/* The reader can read an empty page, but not more than that */
911 	if (cnt < read) {
912 		WARN_ON_ONCE(read > cnt + 1);
913 		return 0;
914 	}
915 
916 	return cnt - read;
917 }
918 
919 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
920 {
921 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
922 	size_t nr_pages;
923 	size_t dirty;
924 
925 	nr_pages = cpu_buffer->nr_pages;
926 	if (!nr_pages || !full)
927 		return true;
928 
929 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
930 
931 	return (dirty * 100) > (full * nr_pages);
932 }
933 
934 /*
935  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
936  *
937  * Schedules a delayed work to wake up any task that is blocked on the
938  * ring buffer waiters queue.
939  */
940 static void rb_wake_up_waiters(struct irq_work *work)
941 {
942 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
943 
944 	wake_up_all(&rbwork->waiters);
945 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
946 		rbwork->wakeup_full = false;
947 		rbwork->full_waiters_pending = false;
948 		wake_up_all(&rbwork->full_waiters);
949 	}
950 }
951 
952 /**
953  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
954  * @buffer: The ring buffer to wake waiters on
955  *
956  * In the case of a file that represents a ring buffer is closing,
957  * it is prudent to wake up any waiters that are on this.
958  */
959 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
960 {
961 	struct ring_buffer_per_cpu *cpu_buffer;
962 	struct rb_irq_work *rbwork;
963 
964 	if (!buffer)
965 		return;
966 
967 	if (cpu == RING_BUFFER_ALL_CPUS) {
968 
969 		/* Wake up individual ones too. One level recursion */
970 		for_each_buffer_cpu(buffer, cpu)
971 			ring_buffer_wake_waiters(buffer, cpu);
972 
973 		rbwork = &buffer->irq_work;
974 	} else {
975 		if (WARN_ON_ONCE(!buffer->buffers))
976 			return;
977 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
978 			return;
979 
980 		cpu_buffer = buffer->buffers[cpu];
981 		/* The CPU buffer may not have been initialized yet */
982 		if (!cpu_buffer)
983 			return;
984 		rbwork = &cpu_buffer->irq_work;
985 	}
986 
987 	rbwork->wait_index++;
988 	/* make sure the waiters see the new index */
989 	smp_wmb();
990 
991 	rb_wake_up_waiters(&rbwork->work);
992 }
993 
994 /**
995  * ring_buffer_wait - wait for input to the ring buffer
996  * @buffer: buffer to wait on
997  * @cpu: the cpu buffer to wait on
998  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
999  *
1000  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1001  * as data is added to any of the @buffer's cpu buffers. Otherwise
1002  * it will wait for data to be added to a specific cpu buffer.
1003  */
1004 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1005 {
1006 	struct ring_buffer_per_cpu *cpu_buffer;
1007 	DEFINE_WAIT(wait);
1008 	struct rb_irq_work *work;
1009 	long wait_index;
1010 	int ret = 0;
1011 
1012 	/*
1013 	 * Depending on what the caller is waiting for, either any
1014 	 * data in any cpu buffer, or a specific buffer, put the
1015 	 * caller on the appropriate wait queue.
1016 	 */
1017 	if (cpu == RING_BUFFER_ALL_CPUS) {
1018 		work = &buffer->irq_work;
1019 		/* Full only makes sense on per cpu reads */
1020 		full = 0;
1021 	} else {
1022 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1023 			return -ENODEV;
1024 		cpu_buffer = buffer->buffers[cpu];
1025 		work = &cpu_buffer->irq_work;
1026 	}
1027 
1028 	wait_index = READ_ONCE(work->wait_index);
1029 
1030 	while (true) {
1031 		if (full)
1032 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1033 		else
1034 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1035 
1036 		/*
1037 		 * The events can happen in critical sections where
1038 		 * checking a work queue can cause deadlocks.
1039 		 * After adding a task to the queue, this flag is set
1040 		 * only to notify events to try to wake up the queue
1041 		 * using irq_work.
1042 		 *
1043 		 * We don't clear it even if the buffer is no longer
1044 		 * empty. The flag only causes the next event to run
1045 		 * irq_work to do the work queue wake up. The worse
1046 		 * that can happen if we race with !trace_empty() is that
1047 		 * an event will cause an irq_work to try to wake up
1048 		 * an empty queue.
1049 		 *
1050 		 * There's no reason to protect this flag either, as
1051 		 * the work queue and irq_work logic will do the necessary
1052 		 * synchronization for the wake ups. The only thing
1053 		 * that is necessary is that the wake up happens after
1054 		 * a task has been queued. It's OK for spurious wake ups.
1055 		 */
1056 		if (full)
1057 			work->full_waiters_pending = true;
1058 		else
1059 			work->waiters_pending = true;
1060 
1061 		if (signal_pending(current)) {
1062 			ret = -EINTR;
1063 			break;
1064 		}
1065 
1066 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1067 			break;
1068 
1069 		if (cpu != RING_BUFFER_ALL_CPUS &&
1070 		    !ring_buffer_empty_cpu(buffer, cpu)) {
1071 			unsigned long flags;
1072 			bool pagebusy;
1073 			bool done;
1074 
1075 			if (!full)
1076 				break;
1077 
1078 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1079 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1080 			done = !pagebusy && full_hit(buffer, cpu, full);
1081 
1082 			if (!cpu_buffer->shortest_full ||
1083 			    cpu_buffer->shortest_full > full)
1084 				cpu_buffer->shortest_full = full;
1085 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1086 			if (done)
1087 				break;
1088 		}
1089 
1090 		schedule();
1091 
1092 		/* Make sure to see the new wait index */
1093 		smp_rmb();
1094 		if (wait_index != work->wait_index)
1095 			break;
1096 	}
1097 
1098 	if (full)
1099 		finish_wait(&work->full_waiters, &wait);
1100 	else
1101 		finish_wait(&work->waiters, &wait);
1102 
1103 	return ret;
1104 }
1105 
1106 /**
1107  * ring_buffer_poll_wait - poll on buffer input
1108  * @buffer: buffer to wait on
1109  * @cpu: the cpu buffer to wait on
1110  * @filp: the file descriptor
1111  * @poll_table: The poll descriptor
1112  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1113  *
1114  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1115  * as data is added to any of the @buffer's cpu buffers. Otherwise
1116  * it will wait for data to be added to a specific cpu buffer.
1117  *
1118  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1119  * zero otherwise.
1120  */
1121 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1122 			  struct file *filp, poll_table *poll_table, int full)
1123 {
1124 	struct ring_buffer_per_cpu *cpu_buffer;
1125 	struct rb_irq_work *work;
1126 
1127 	if (cpu == RING_BUFFER_ALL_CPUS) {
1128 		work = &buffer->irq_work;
1129 		full = 0;
1130 	} else {
1131 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1132 			return -EINVAL;
1133 
1134 		cpu_buffer = buffer->buffers[cpu];
1135 		work = &cpu_buffer->irq_work;
1136 	}
1137 
1138 	if (full) {
1139 		poll_wait(filp, &work->full_waiters, poll_table);
1140 		work->full_waiters_pending = true;
1141 	} else {
1142 		poll_wait(filp, &work->waiters, poll_table);
1143 		work->waiters_pending = true;
1144 	}
1145 
1146 	/*
1147 	 * There's a tight race between setting the waiters_pending and
1148 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1149 	 * is set, the next event will wake the task up, but we can get stuck
1150 	 * if there's only a single event in.
1151 	 *
1152 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1153 	 * but adding a memory barrier to all events will cause too much of a
1154 	 * performance hit in the fast path.  We only need a memory barrier when
1155 	 * the buffer goes from empty to having content.  But as this race is
1156 	 * extremely small, and it's not a problem if another event comes in, we
1157 	 * will fix it later.
1158 	 */
1159 	smp_mb();
1160 
1161 	if (full)
1162 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1163 
1164 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1165 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1166 		return EPOLLIN | EPOLLRDNORM;
1167 	return 0;
1168 }
1169 
1170 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1171 #define RB_WARN_ON(b, cond)						\
1172 	({								\
1173 		int _____ret = unlikely(cond);				\
1174 		if (_____ret) {						\
1175 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1176 				struct ring_buffer_per_cpu *__b =	\
1177 					(void *)b;			\
1178 				atomic_inc(&__b->buffer->record_disabled); \
1179 			} else						\
1180 				atomic_inc(&b->record_disabled);	\
1181 			WARN_ON(1);					\
1182 		}							\
1183 		_____ret;						\
1184 	})
1185 
1186 /* Up this if you want to test the TIME_EXTENTS and normalization */
1187 #define DEBUG_SHIFT 0
1188 
1189 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1190 {
1191 	u64 ts;
1192 
1193 	/* Skip retpolines :-( */
1194 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1195 		ts = trace_clock_local();
1196 	else
1197 		ts = buffer->clock();
1198 
1199 	/* shift to debug/test normalization and TIME_EXTENTS */
1200 	return ts << DEBUG_SHIFT;
1201 }
1202 
1203 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1204 {
1205 	u64 time;
1206 
1207 	preempt_disable_notrace();
1208 	time = rb_time_stamp(buffer);
1209 	preempt_enable_notrace();
1210 
1211 	return time;
1212 }
1213 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1214 
1215 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1216 				      int cpu, u64 *ts)
1217 {
1218 	/* Just stupid testing the normalize function and deltas */
1219 	*ts >>= DEBUG_SHIFT;
1220 }
1221 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1222 
1223 /*
1224  * Making the ring buffer lockless makes things tricky.
1225  * Although writes only happen on the CPU that they are on,
1226  * and they only need to worry about interrupts. Reads can
1227  * happen on any CPU.
1228  *
1229  * The reader page is always off the ring buffer, but when the
1230  * reader finishes with a page, it needs to swap its page with
1231  * a new one from the buffer. The reader needs to take from
1232  * the head (writes go to the tail). But if a writer is in overwrite
1233  * mode and wraps, it must push the head page forward.
1234  *
1235  * Here lies the problem.
1236  *
1237  * The reader must be careful to replace only the head page, and
1238  * not another one. As described at the top of the file in the
1239  * ASCII art, the reader sets its old page to point to the next
1240  * page after head. It then sets the page after head to point to
1241  * the old reader page. But if the writer moves the head page
1242  * during this operation, the reader could end up with the tail.
1243  *
1244  * We use cmpxchg to help prevent this race. We also do something
1245  * special with the page before head. We set the LSB to 1.
1246  *
1247  * When the writer must push the page forward, it will clear the
1248  * bit that points to the head page, move the head, and then set
1249  * the bit that points to the new head page.
1250  *
1251  * We also don't want an interrupt coming in and moving the head
1252  * page on another writer. Thus we use the second LSB to catch
1253  * that too. Thus:
1254  *
1255  * head->list->prev->next        bit 1          bit 0
1256  *                              -------        -------
1257  * Normal page                     0              0
1258  * Points to head page             0              1
1259  * New head page                   1              0
1260  *
1261  * Note we can not trust the prev pointer of the head page, because:
1262  *
1263  * +----+       +-----+        +-----+
1264  * |    |------>|  T  |---X--->|  N  |
1265  * |    |<------|     |        |     |
1266  * +----+       +-----+        +-----+
1267  *   ^                           ^ |
1268  *   |          +-----+          | |
1269  *   +----------|  R  |----------+ |
1270  *              |     |<-----------+
1271  *              +-----+
1272  *
1273  * Key:  ---X-->  HEAD flag set in pointer
1274  *         T      Tail page
1275  *         R      Reader page
1276  *         N      Next page
1277  *
1278  * (see __rb_reserve_next() to see where this happens)
1279  *
1280  *  What the above shows is that the reader just swapped out
1281  *  the reader page with a page in the buffer, but before it
1282  *  could make the new header point back to the new page added
1283  *  it was preempted by a writer. The writer moved forward onto
1284  *  the new page added by the reader and is about to move forward
1285  *  again.
1286  *
1287  *  You can see, it is legitimate for the previous pointer of
1288  *  the head (or any page) not to point back to itself. But only
1289  *  temporarily.
1290  */
1291 
1292 #define RB_PAGE_NORMAL		0UL
1293 #define RB_PAGE_HEAD		1UL
1294 #define RB_PAGE_UPDATE		2UL
1295 
1296 
1297 #define RB_FLAG_MASK		3UL
1298 
1299 /* PAGE_MOVED is not part of the mask */
1300 #define RB_PAGE_MOVED		4UL
1301 
1302 /*
1303  * rb_list_head - remove any bit
1304  */
1305 static struct list_head *rb_list_head(struct list_head *list)
1306 {
1307 	unsigned long val = (unsigned long)list;
1308 
1309 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1310 }
1311 
1312 /*
1313  * rb_is_head_page - test if the given page is the head page
1314  *
1315  * Because the reader may move the head_page pointer, we can
1316  * not trust what the head page is (it may be pointing to
1317  * the reader page). But if the next page is a header page,
1318  * its flags will be non zero.
1319  */
1320 static inline int
1321 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1322 {
1323 	unsigned long val;
1324 
1325 	val = (unsigned long)list->next;
1326 
1327 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1328 		return RB_PAGE_MOVED;
1329 
1330 	return val & RB_FLAG_MASK;
1331 }
1332 
1333 /*
1334  * rb_is_reader_page
1335  *
1336  * The unique thing about the reader page, is that, if the
1337  * writer is ever on it, the previous pointer never points
1338  * back to the reader page.
1339  */
1340 static bool rb_is_reader_page(struct buffer_page *page)
1341 {
1342 	struct list_head *list = page->list.prev;
1343 
1344 	return rb_list_head(list->next) != &page->list;
1345 }
1346 
1347 /*
1348  * rb_set_list_to_head - set a list_head to be pointing to head.
1349  */
1350 static void rb_set_list_to_head(struct list_head *list)
1351 {
1352 	unsigned long *ptr;
1353 
1354 	ptr = (unsigned long *)&list->next;
1355 	*ptr |= RB_PAGE_HEAD;
1356 	*ptr &= ~RB_PAGE_UPDATE;
1357 }
1358 
1359 /*
1360  * rb_head_page_activate - sets up head page
1361  */
1362 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1363 {
1364 	struct buffer_page *head;
1365 
1366 	head = cpu_buffer->head_page;
1367 	if (!head)
1368 		return;
1369 
1370 	/*
1371 	 * Set the previous list pointer to have the HEAD flag.
1372 	 */
1373 	rb_set_list_to_head(head->list.prev);
1374 }
1375 
1376 static void rb_list_head_clear(struct list_head *list)
1377 {
1378 	unsigned long *ptr = (unsigned long *)&list->next;
1379 
1380 	*ptr &= ~RB_FLAG_MASK;
1381 }
1382 
1383 /*
1384  * rb_head_page_deactivate - clears head page ptr (for free list)
1385  */
1386 static void
1387 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1388 {
1389 	struct list_head *hd;
1390 
1391 	/* Go through the whole list and clear any pointers found. */
1392 	rb_list_head_clear(cpu_buffer->pages);
1393 
1394 	list_for_each(hd, cpu_buffer->pages)
1395 		rb_list_head_clear(hd);
1396 }
1397 
1398 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1399 			    struct buffer_page *head,
1400 			    struct buffer_page *prev,
1401 			    int old_flag, int new_flag)
1402 {
1403 	struct list_head *list;
1404 	unsigned long val = (unsigned long)&head->list;
1405 	unsigned long ret;
1406 
1407 	list = &prev->list;
1408 
1409 	val &= ~RB_FLAG_MASK;
1410 
1411 	ret = cmpxchg((unsigned long *)&list->next,
1412 		      val | old_flag, val | new_flag);
1413 
1414 	/* check if the reader took the page */
1415 	if ((ret & ~RB_FLAG_MASK) != val)
1416 		return RB_PAGE_MOVED;
1417 
1418 	return ret & RB_FLAG_MASK;
1419 }
1420 
1421 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1422 				   struct buffer_page *head,
1423 				   struct buffer_page *prev,
1424 				   int old_flag)
1425 {
1426 	return rb_head_page_set(cpu_buffer, head, prev,
1427 				old_flag, RB_PAGE_UPDATE);
1428 }
1429 
1430 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1431 				 struct buffer_page *head,
1432 				 struct buffer_page *prev,
1433 				 int old_flag)
1434 {
1435 	return rb_head_page_set(cpu_buffer, head, prev,
1436 				old_flag, RB_PAGE_HEAD);
1437 }
1438 
1439 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1440 				   struct buffer_page *head,
1441 				   struct buffer_page *prev,
1442 				   int old_flag)
1443 {
1444 	return rb_head_page_set(cpu_buffer, head, prev,
1445 				old_flag, RB_PAGE_NORMAL);
1446 }
1447 
1448 static inline void rb_inc_page(struct buffer_page **bpage)
1449 {
1450 	struct list_head *p = rb_list_head((*bpage)->list.next);
1451 
1452 	*bpage = list_entry(p, struct buffer_page, list);
1453 }
1454 
1455 static struct buffer_page *
1456 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1457 {
1458 	struct buffer_page *head;
1459 	struct buffer_page *page;
1460 	struct list_head *list;
1461 	int i;
1462 
1463 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1464 		return NULL;
1465 
1466 	/* sanity check */
1467 	list = cpu_buffer->pages;
1468 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1469 		return NULL;
1470 
1471 	page = head = cpu_buffer->head_page;
1472 	/*
1473 	 * It is possible that the writer moves the header behind
1474 	 * where we started, and we miss in one loop.
1475 	 * A second loop should grab the header, but we'll do
1476 	 * three loops just because I'm paranoid.
1477 	 */
1478 	for (i = 0; i < 3; i++) {
1479 		do {
1480 			if (rb_is_head_page(page, page->list.prev)) {
1481 				cpu_buffer->head_page = page;
1482 				return page;
1483 			}
1484 			rb_inc_page(&page);
1485 		} while (page != head);
1486 	}
1487 
1488 	RB_WARN_ON(cpu_buffer, 1);
1489 
1490 	return NULL;
1491 }
1492 
1493 static int rb_head_page_replace(struct buffer_page *old,
1494 				struct buffer_page *new)
1495 {
1496 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1497 	unsigned long val;
1498 	unsigned long ret;
1499 
1500 	val = *ptr & ~RB_FLAG_MASK;
1501 	val |= RB_PAGE_HEAD;
1502 
1503 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1504 
1505 	return ret == val;
1506 }
1507 
1508 /*
1509  * rb_tail_page_update - move the tail page forward
1510  */
1511 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1512 			       struct buffer_page *tail_page,
1513 			       struct buffer_page *next_page)
1514 {
1515 	unsigned long old_entries;
1516 	unsigned long old_write;
1517 
1518 	/*
1519 	 * The tail page now needs to be moved forward.
1520 	 *
1521 	 * We need to reset the tail page, but without messing
1522 	 * with possible erasing of data brought in by interrupts
1523 	 * that have moved the tail page and are currently on it.
1524 	 *
1525 	 * We add a counter to the write field to denote this.
1526 	 */
1527 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1528 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1529 
1530 	local_inc(&cpu_buffer->pages_touched);
1531 	/*
1532 	 * Just make sure we have seen our old_write and synchronize
1533 	 * with any interrupts that come in.
1534 	 */
1535 	barrier();
1536 
1537 	/*
1538 	 * If the tail page is still the same as what we think
1539 	 * it is, then it is up to us to update the tail
1540 	 * pointer.
1541 	 */
1542 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1543 		/* Zero the write counter */
1544 		unsigned long val = old_write & ~RB_WRITE_MASK;
1545 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1546 
1547 		/*
1548 		 * This will only succeed if an interrupt did
1549 		 * not come in and change it. In which case, we
1550 		 * do not want to modify it.
1551 		 *
1552 		 * We add (void) to let the compiler know that we do not care
1553 		 * about the return value of these functions. We use the
1554 		 * cmpxchg to only update if an interrupt did not already
1555 		 * do it for us. If the cmpxchg fails, we don't care.
1556 		 */
1557 		(void)local_cmpxchg(&next_page->write, old_write, val);
1558 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1559 
1560 		/*
1561 		 * No need to worry about races with clearing out the commit.
1562 		 * it only can increment when a commit takes place. But that
1563 		 * only happens in the outer most nested commit.
1564 		 */
1565 		local_set(&next_page->page->commit, 0);
1566 
1567 		/* Again, either we update tail_page or an interrupt does */
1568 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1569 	}
1570 }
1571 
1572 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1573 			  struct buffer_page *bpage)
1574 {
1575 	unsigned long val = (unsigned long)bpage;
1576 
1577 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1578 		return 1;
1579 
1580 	return 0;
1581 }
1582 
1583 /**
1584  * rb_check_list - make sure a pointer to a list has the last bits zero
1585  */
1586 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1587 			 struct list_head *list)
1588 {
1589 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1590 		return 1;
1591 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1592 		return 1;
1593 	return 0;
1594 }
1595 
1596 /**
1597  * rb_check_pages - integrity check of buffer pages
1598  * @cpu_buffer: CPU buffer with pages to test
1599  *
1600  * As a safety measure we check to make sure the data pages have not
1601  * been corrupted.
1602  */
1603 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1604 {
1605 	struct list_head *head = cpu_buffer->pages;
1606 	struct buffer_page *bpage, *tmp;
1607 
1608 	/* Reset the head page if it exists */
1609 	if (cpu_buffer->head_page)
1610 		rb_set_head_page(cpu_buffer);
1611 
1612 	rb_head_page_deactivate(cpu_buffer);
1613 
1614 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1615 		return -1;
1616 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1617 		return -1;
1618 
1619 	if (rb_check_list(cpu_buffer, head))
1620 		return -1;
1621 
1622 	list_for_each_entry_safe(bpage, tmp, head, list) {
1623 		if (RB_WARN_ON(cpu_buffer,
1624 			       bpage->list.next->prev != &bpage->list))
1625 			return -1;
1626 		if (RB_WARN_ON(cpu_buffer,
1627 			       bpage->list.prev->next != &bpage->list))
1628 			return -1;
1629 		if (rb_check_list(cpu_buffer, &bpage->list))
1630 			return -1;
1631 	}
1632 
1633 	rb_head_page_activate(cpu_buffer);
1634 
1635 	return 0;
1636 }
1637 
1638 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1639 		long nr_pages, struct list_head *pages)
1640 {
1641 	struct buffer_page *bpage, *tmp;
1642 	bool user_thread = current->mm != NULL;
1643 	gfp_t mflags;
1644 	long i;
1645 
1646 	/*
1647 	 * Check if the available memory is there first.
1648 	 * Note, si_mem_available() only gives us a rough estimate of available
1649 	 * memory. It may not be accurate. But we don't care, we just want
1650 	 * to prevent doing any allocation when it is obvious that it is
1651 	 * not going to succeed.
1652 	 */
1653 	i = si_mem_available();
1654 	if (i < nr_pages)
1655 		return -ENOMEM;
1656 
1657 	/*
1658 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1659 	 * gracefully without invoking oom-killer and the system is not
1660 	 * destabilized.
1661 	 */
1662 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1663 
1664 	/*
1665 	 * If a user thread allocates too much, and si_mem_available()
1666 	 * reports there's enough memory, even though there is not.
1667 	 * Make sure the OOM killer kills this thread. This can happen
1668 	 * even with RETRY_MAYFAIL because another task may be doing
1669 	 * an allocation after this task has taken all memory.
1670 	 * This is the task the OOM killer needs to take out during this
1671 	 * loop, even if it was triggered by an allocation somewhere else.
1672 	 */
1673 	if (user_thread)
1674 		set_current_oom_origin();
1675 	for (i = 0; i < nr_pages; i++) {
1676 		struct page *page;
1677 
1678 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1679 				    mflags, cpu_to_node(cpu_buffer->cpu));
1680 		if (!bpage)
1681 			goto free_pages;
1682 
1683 		rb_check_bpage(cpu_buffer, bpage);
1684 
1685 		list_add(&bpage->list, pages);
1686 
1687 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1688 		if (!page)
1689 			goto free_pages;
1690 		bpage->page = page_address(page);
1691 		rb_init_page(bpage->page);
1692 
1693 		if (user_thread && fatal_signal_pending(current))
1694 			goto free_pages;
1695 	}
1696 	if (user_thread)
1697 		clear_current_oom_origin();
1698 
1699 	return 0;
1700 
1701 free_pages:
1702 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1703 		list_del_init(&bpage->list);
1704 		free_buffer_page(bpage);
1705 	}
1706 	if (user_thread)
1707 		clear_current_oom_origin();
1708 
1709 	return -ENOMEM;
1710 }
1711 
1712 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1713 			     unsigned long nr_pages)
1714 {
1715 	LIST_HEAD(pages);
1716 
1717 	WARN_ON(!nr_pages);
1718 
1719 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1720 		return -ENOMEM;
1721 
1722 	/*
1723 	 * The ring buffer page list is a circular list that does not
1724 	 * start and end with a list head. All page list items point to
1725 	 * other pages.
1726 	 */
1727 	cpu_buffer->pages = pages.next;
1728 	list_del(&pages);
1729 
1730 	cpu_buffer->nr_pages = nr_pages;
1731 
1732 	rb_check_pages(cpu_buffer);
1733 
1734 	return 0;
1735 }
1736 
1737 static struct ring_buffer_per_cpu *
1738 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1739 {
1740 	struct ring_buffer_per_cpu *cpu_buffer;
1741 	struct buffer_page *bpage;
1742 	struct page *page;
1743 	int ret;
1744 
1745 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1746 				  GFP_KERNEL, cpu_to_node(cpu));
1747 	if (!cpu_buffer)
1748 		return NULL;
1749 
1750 	cpu_buffer->cpu = cpu;
1751 	cpu_buffer->buffer = buffer;
1752 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1753 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1754 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1755 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1756 	init_completion(&cpu_buffer->update_done);
1757 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1758 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1759 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1760 
1761 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1762 			    GFP_KERNEL, cpu_to_node(cpu));
1763 	if (!bpage)
1764 		goto fail_free_buffer;
1765 
1766 	rb_check_bpage(cpu_buffer, bpage);
1767 
1768 	cpu_buffer->reader_page = bpage;
1769 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1770 	if (!page)
1771 		goto fail_free_reader;
1772 	bpage->page = page_address(page);
1773 	rb_init_page(bpage->page);
1774 
1775 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1776 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1777 
1778 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1779 	if (ret < 0)
1780 		goto fail_free_reader;
1781 
1782 	cpu_buffer->head_page
1783 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1784 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1785 
1786 	rb_head_page_activate(cpu_buffer);
1787 
1788 	return cpu_buffer;
1789 
1790  fail_free_reader:
1791 	free_buffer_page(cpu_buffer->reader_page);
1792 
1793  fail_free_buffer:
1794 	kfree(cpu_buffer);
1795 	return NULL;
1796 }
1797 
1798 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1799 {
1800 	struct list_head *head = cpu_buffer->pages;
1801 	struct buffer_page *bpage, *tmp;
1802 
1803 	free_buffer_page(cpu_buffer->reader_page);
1804 
1805 	if (head) {
1806 		rb_head_page_deactivate(cpu_buffer);
1807 
1808 		list_for_each_entry_safe(bpage, tmp, head, list) {
1809 			list_del_init(&bpage->list);
1810 			free_buffer_page(bpage);
1811 		}
1812 		bpage = list_entry(head, struct buffer_page, list);
1813 		free_buffer_page(bpage);
1814 	}
1815 
1816 	kfree(cpu_buffer);
1817 }
1818 
1819 /**
1820  * __ring_buffer_alloc - allocate a new ring_buffer
1821  * @size: the size in bytes per cpu that is needed.
1822  * @flags: attributes to set for the ring buffer.
1823  * @key: ring buffer reader_lock_key.
1824  *
1825  * Currently the only flag that is available is the RB_FL_OVERWRITE
1826  * flag. This flag means that the buffer will overwrite old data
1827  * when the buffer wraps. If this flag is not set, the buffer will
1828  * drop data when the tail hits the head.
1829  */
1830 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1831 					struct lock_class_key *key)
1832 {
1833 	struct trace_buffer *buffer;
1834 	long nr_pages;
1835 	int bsize;
1836 	int cpu;
1837 	int ret;
1838 
1839 	/* keep it in its own cache line */
1840 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1841 			 GFP_KERNEL);
1842 	if (!buffer)
1843 		return NULL;
1844 
1845 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1846 		goto fail_free_buffer;
1847 
1848 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1849 	buffer->flags = flags;
1850 	buffer->clock = trace_clock_local;
1851 	buffer->reader_lock_key = key;
1852 
1853 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1854 	init_waitqueue_head(&buffer->irq_work.waiters);
1855 
1856 	/* need at least two pages */
1857 	if (nr_pages < 2)
1858 		nr_pages = 2;
1859 
1860 	buffer->cpus = nr_cpu_ids;
1861 
1862 	bsize = sizeof(void *) * nr_cpu_ids;
1863 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1864 				  GFP_KERNEL);
1865 	if (!buffer->buffers)
1866 		goto fail_free_cpumask;
1867 
1868 	cpu = raw_smp_processor_id();
1869 	cpumask_set_cpu(cpu, buffer->cpumask);
1870 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1871 	if (!buffer->buffers[cpu])
1872 		goto fail_free_buffers;
1873 
1874 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1875 	if (ret < 0)
1876 		goto fail_free_buffers;
1877 
1878 	mutex_init(&buffer->mutex);
1879 
1880 	return buffer;
1881 
1882  fail_free_buffers:
1883 	for_each_buffer_cpu(buffer, cpu) {
1884 		if (buffer->buffers[cpu])
1885 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1886 	}
1887 	kfree(buffer->buffers);
1888 
1889  fail_free_cpumask:
1890 	free_cpumask_var(buffer->cpumask);
1891 
1892  fail_free_buffer:
1893 	kfree(buffer);
1894 	return NULL;
1895 }
1896 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1897 
1898 /**
1899  * ring_buffer_free - free a ring buffer.
1900  * @buffer: the buffer to free.
1901  */
1902 void
1903 ring_buffer_free(struct trace_buffer *buffer)
1904 {
1905 	int cpu;
1906 
1907 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1908 
1909 	for_each_buffer_cpu(buffer, cpu)
1910 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1911 
1912 	kfree(buffer->buffers);
1913 	free_cpumask_var(buffer->cpumask);
1914 
1915 	kfree(buffer);
1916 }
1917 EXPORT_SYMBOL_GPL(ring_buffer_free);
1918 
1919 void ring_buffer_set_clock(struct trace_buffer *buffer,
1920 			   u64 (*clock)(void))
1921 {
1922 	buffer->clock = clock;
1923 }
1924 
1925 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1926 {
1927 	buffer->time_stamp_abs = abs;
1928 }
1929 
1930 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1931 {
1932 	return buffer->time_stamp_abs;
1933 }
1934 
1935 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1936 
1937 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1938 {
1939 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1940 }
1941 
1942 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1943 {
1944 	return local_read(&bpage->write) & RB_WRITE_MASK;
1945 }
1946 
1947 static int
1948 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1949 {
1950 	struct list_head *tail_page, *to_remove, *next_page;
1951 	struct buffer_page *to_remove_page, *tmp_iter_page;
1952 	struct buffer_page *last_page, *first_page;
1953 	unsigned long nr_removed;
1954 	unsigned long head_bit;
1955 	int page_entries;
1956 
1957 	head_bit = 0;
1958 
1959 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1960 	atomic_inc(&cpu_buffer->record_disabled);
1961 	/*
1962 	 * We don't race with the readers since we have acquired the reader
1963 	 * lock. We also don't race with writers after disabling recording.
1964 	 * This makes it easy to figure out the first and the last page to be
1965 	 * removed from the list. We unlink all the pages in between including
1966 	 * the first and last pages. This is done in a busy loop so that we
1967 	 * lose the least number of traces.
1968 	 * The pages are freed after we restart recording and unlock readers.
1969 	 */
1970 	tail_page = &cpu_buffer->tail_page->list;
1971 
1972 	/*
1973 	 * tail page might be on reader page, we remove the next page
1974 	 * from the ring buffer
1975 	 */
1976 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1977 		tail_page = rb_list_head(tail_page->next);
1978 	to_remove = tail_page;
1979 
1980 	/* start of pages to remove */
1981 	first_page = list_entry(rb_list_head(to_remove->next),
1982 				struct buffer_page, list);
1983 
1984 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1985 		to_remove = rb_list_head(to_remove)->next;
1986 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1987 	}
1988 
1989 	next_page = rb_list_head(to_remove)->next;
1990 
1991 	/*
1992 	 * Now we remove all pages between tail_page and next_page.
1993 	 * Make sure that we have head_bit value preserved for the
1994 	 * next page
1995 	 */
1996 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1997 						head_bit);
1998 	next_page = rb_list_head(next_page);
1999 	next_page->prev = tail_page;
2000 
2001 	/* make sure pages points to a valid page in the ring buffer */
2002 	cpu_buffer->pages = next_page;
2003 
2004 	/* update head page */
2005 	if (head_bit)
2006 		cpu_buffer->head_page = list_entry(next_page,
2007 						struct buffer_page, list);
2008 
2009 	/*
2010 	 * change read pointer to make sure any read iterators reset
2011 	 * themselves
2012 	 */
2013 	cpu_buffer->read = 0;
2014 
2015 	/* pages are removed, resume tracing and then free the pages */
2016 	atomic_dec(&cpu_buffer->record_disabled);
2017 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2018 
2019 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2020 
2021 	/* last buffer page to remove */
2022 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2023 				list);
2024 	tmp_iter_page = first_page;
2025 
2026 	do {
2027 		cond_resched();
2028 
2029 		to_remove_page = tmp_iter_page;
2030 		rb_inc_page(&tmp_iter_page);
2031 
2032 		/* update the counters */
2033 		page_entries = rb_page_entries(to_remove_page);
2034 		if (page_entries) {
2035 			/*
2036 			 * If something was added to this page, it was full
2037 			 * since it is not the tail page. So we deduct the
2038 			 * bytes consumed in ring buffer from here.
2039 			 * Increment overrun to account for the lost events.
2040 			 */
2041 			local_add(page_entries, &cpu_buffer->overrun);
2042 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2043 			local_inc(&cpu_buffer->pages_lost);
2044 		}
2045 
2046 		/*
2047 		 * We have already removed references to this list item, just
2048 		 * free up the buffer_page and its page
2049 		 */
2050 		free_buffer_page(to_remove_page);
2051 		nr_removed--;
2052 
2053 	} while (to_remove_page != last_page);
2054 
2055 	RB_WARN_ON(cpu_buffer, nr_removed);
2056 
2057 	return nr_removed == 0;
2058 }
2059 
2060 static int
2061 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2062 {
2063 	struct list_head *pages = &cpu_buffer->new_pages;
2064 	int retries, success;
2065 	unsigned long flags;
2066 
2067 	/* Can be called at early boot up, where interrupts must not been enabled */
2068 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2069 	/*
2070 	 * We are holding the reader lock, so the reader page won't be swapped
2071 	 * in the ring buffer. Now we are racing with the writer trying to
2072 	 * move head page and the tail page.
2073 	 * We are going to adapt the reader page update process where:
2074 	 * 1. We first splice the start and end of list of new pages between
2075 	 *    the head page and its previous page.
2076 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2077 	 *    start of new pages list.
2078 	 * 3. Finally, we update the head->prev to the end of new list.
2079 	 *
2080 	 * We will try this process 10 times, to make sure that we don't keep
2081 	 * spinning.
2082 	 */
2083 	retries = 10;
2084 	success = 0;
2085 	while (retries--) {
2086 		struct list_head *head_page, *prev_page, *r;
2087 		struct list_head *last_page, *first_page;
2088 		struct list_head *head_page_with_bit;
2089 
2090 		head_page = &rb_set_head_page(cpu_buffer)->list;
2091 		if (!head_page)
2092 			break;
2093 		prev_page = head_page->prev;
2094 
2095 		first_page = pages->next;
2096 		last_page  = pages->prev;
2097 
2098 		head_page_with_bit = (struct list_head *)
2099 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2100 
2101 		last_page->next = head_page_with_bit;
2102 		first_page->prev = prev_page;
2103 
2104 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2105 
2106 		if (r == head_page_with_bit) {
2107 			/*
2108 			 * yay, we replaced the page pointer to our new list,
2109 			 * now, we just have to update to head page's prev
2110 			 * pointer to point to end of list
2111 			 */
2112 			head_page->prev = last_page;
2113 			success = 1;
2114 			break;
2115 		}
2116 	}
2117 
2118 	if (success)
2119 		INIT_LIST_HEAD(pages);
2120 	/*
2121 	 * If we weren't successful in adding in new pages, warn and stop
2122 	 * tracing
2123 	 */
2124 	RB_WARN_ON(cpu_buffer, !success);
2125 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2126 
2127 	/* free pages if they weren't inserted */
2128 	if (!success) {
2129 		struct buffer_page *bpage, *tmp;
2130 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2131 					 list) {
2132 			list_del_init(&bpage->list);
2133 			free_buffer_page(bpage);
2134 		}
2135 	}
2136 	return success;
2137 }
2138 
2139 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2140 {
2141 	int success;
2142 
2143 	if (cpu_buffer->nr_pages_to_update > 0)
2144 		success = rb_insert_pages(cpu_buffer);
2145 	else
2146 		success = rb_remove_pages(cpu_buffer,
2147 					-cpu_buffer->nr_pages_to_update);
2148 
2149 	if (success)
2150 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2151 }
2152 
2153 static void update_pages_handler(struct work_struct *work)
2154 {
2155 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2156 			struct ring_buffer_per_cpu, update_pages_work);
2157 	rb_update_pages(cpu_buffer);
2158 	complete(&cpu_buffer->update_done);
2159 }
2160 
2161 /**
2162  * ring_buffer_resize - resize the ring buffer
2163  * @buffer: the buffer to resize.
2164  * @size: the new size.
2165  * @cpu_id: the cpu buffer to resize
2166  *
2167  * Minimum size is 2 * BUF_PAGE_SIZE.
2168  *
2169  * Returns 0 on success and < 0 on failure.
2170  */
2171 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2172 			int cpu_id)
2173 {
2174 	struct ring_buffer_per_cpu *cpu_buffer;
2175 	unsigned long nr_pages;
2176 	int cpu, err;
2177 
2178 	/*
2179 	 * Always succeed at resizing a non-existent buffer:
2180 	 */
2181 	if (!buffer)
2182 		return 0;
2183 
2184 	/* Make sure the requested buffer exists */
2185 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2186 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2187 		return 0;
2188 
2189 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2190 
2191 	/* we need a minimum of two pages */
2192 	if (nr_pages < 2)
2193 		nr_pages = 2;
2194 
2195 	/* prevent another thread from changing buffer sizes */
2196 	mutex_lock(&buffer->mutex);
2197 
2198 
2199 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2200 		/*
2201 		 * Don't succeed if resizing is disabled, as a reader might be
2202 		 * manipulating the ring buffer and is expecting a sane state while
2203 		 * this is true.
2204 		 */
2205 		for_each_buffer_cpu(buffer, cpu) {
2206 			cpu_buffer = buffer->buffers[cpu];
2207 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2208 				err = -EBUSY;
2209 				goto out_err_unlock;
2210 			}
2211 		}
2212 
2213 		/* calculate the pages to update */
2214 		for_each_buffer_cpu(buffer, cpu) {
2215 			cpu_buffer = buffer->buffers[cpu];
2216 
2217 			cpu_buffer->nr_pages_to_update = nr_pages -
2218 							cpu_buffer->nr_pages;
2219 			/*
2220 			 * nothing more to do for removing pages or no update
2221 			 */
2222 			if (cpu_buffer->nr_pages_to_update <= 0)
2223 				continue;
2224 			/*
2225 			 * to add pages, make sure all new pages can be
2226 			 * allocated without receiving ENOMEM
2227 			 */
2228 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2229 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2230 						&cpu_buffer->new_pages)) {
2231 				/* not enough memory for new pages */
2232 				err = -ENOMEM;
2233 				goto out_err;
2234 			}
2235 		}
2236 
2237 		cpus_read_lock();
2238 		/*
2239 		 * Fire off all the required work handlers
2240 		 * We can't schedule on offline CPUs, but it's not necessary
2241 		 * since we can change their buffer sizes without any race.
2242 		 */
2243 		for_each_buffer_cpu(buffer, cpu) {
2244 			cpu_buffer = buffer->buffers[cpu];
2245 			if (!cpu_buffer->nr_pages_to_update)
2246 				continue;
2247 
2248 			/* Can't run something on an offline CPU. */
2249 			if (!cpu_online(cpu)) {
2250 				rb_update_pages(cpu_buffer);
2251 				cpu_buffer->nr_pages_to_update = 0;
2252 			} else {
2253 				/* Run directly if possible. */
2254 				migrate_disable();
2255 				if (cpu != smp_processor_id()) {
2256 					migrate_enable();
2257 					schedule_work_on(cpu,
2258 							 &cpu_buffer->update_pages_work);
2259 				} else {
2260 					update_pages_handler(&cpu_buffer->update_pages_work);
2261 					migrate_enable();
2262 				}
2263 			}
2264 		}
2265 
2266 		/* wait for all the updates to complete */
2267 		for_each_buffer_cpu(buffer, cpu) {
2268 			cpu_buffer = buffer->buffers[cpu];
2269 			if (!cpu_buffer->nr_pages_to_update)
2270 				continue;
2271 
2272 			if (cpu_online(cpu))
2273 				wait_for_completion(&cpu_buffer->update_done);
2274 			cpu_buffer->nr_pages_to_update = 0;
2275 		}
2276 
2277 		cpus_read_unlock();
2278 	} else {
2279 		cpu_buffer = buffer->buffers[cpu_id];
2280 
2281 		if (nr_pages == cpu_buffer->nr_pages)
2282 			goto out;
2283 
2284 		/*
2285 		 * Don't succeed if resizing is disabled, as a reader might be
2286 		 * manipulating the ring buffer and is expecting a sane state while
2287 		 * this is true.
2288 		 */
2289 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2290 			err = -EBUSY;
2291 			goto out_err_unlock;
2292 		}
2293 
2294 		cpu_buffer->nr_pages_to_update = nr_pages -
2295 						cpu_buffer->nr_pages;
2296 
2297 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2298 		if (cpu_buffer->nr_pages_to_update > 0 &&
2299 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2300 					    &cpu_buffer->new_pages)) {
2301 			err = -ENOMEM;
2302 			goto out_err;
2303 		}
2304 
2305 		cpus_read_lock();
2306 
2307 		/* Can't run something on an offline CPU. */
2308 		if (!cpu_online(cpu_id))
2309 			rb_update_pages(cpu_buffer);
2310 		else {
2311 			/* Run directly if possible. */
2312 			migrate_disable();
2313 			if (cpu_id == smp_processor_id()) {
2314 				rb_update_pages(cpu_buffer);
2315 				migrate_enable();
2316 			} else {
2317 				migrate_enable();
2318 				schedule_work_on(cpu_id,
2319 						 &cpu_buffer->update_pages_work);
2320 				wait_for_completion(&cpu_buffer->update_done);
2321 			}
2322 		}
2323 
2324 		cpu_buffer->nr_pages_to_update = 0;
2325 		cpus_read_unlock();
2326 	}
2327 
2328  out:
2329 	/*
2330 	 * The ring buffer resize can happen with the ring buffer
2331 	 * enabled, so that the update disturbs the tracing as little
2332 	 * as possible. But if the buffer is disabled, we do not need
2333 	 * to worry about that, and we can take the time to verify
2334 	 * that the buffer is not corrupt.
2335 	 */
2336 	if (atomic_read(&buffer->record_disabled)) {
2337 		atomic_inc(&buffer->record_disabled);
2338 		/*
2339 		 * Even though the buffer was disabled, we must make sure
2340 		 * that it is truly disabled before calling rb_check_pages.
2341 		 * There could have been a race between checking
2342 		 * record_disable and incrementing it.
2343 		 */
2344 		synchronize_rcu();
2345 		for_each_buffer_cpu(buffer, cpu) {
2346 			cpu_buffer = buffer->buffers[cpu];
2347 			rb_check_pages(cpu_buffer);
2348 		}
2349 		atomic_dec(&buffer->record_disabled);
2350 	}
2351 
2352 	mutex_unlock(&buffer->mutex);
2353 	return 0;
2354 
2355  out_err:
2356 	for_each_buffer_cpu(buffer, cpu) {
2357 		struct buffer_page *bpage, *tmp;
2358 
2359 		cpu_buffer = buffer->buffers[cpu];
2360 		cpu_buffer->nr_pages_to_update = 0;
2361 
2362 		if (list_empty(&cpu_buffer->new_pages))
2363 			continue;
2364 
2365 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2366 					list) {
2367 			list_del_init(&bpage->list);
2368 			free_buffer_page(bpage);
2369 		}
2370 	}
2371  out_err_unlock:
2372 	mutex_unlock(&buffer->mutex);
2373 	return err;
2374 }
2375 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2376 
2377 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2378 {
2379 	mutex_lock(&buffer->mutex);
2380 	if (val)
2381 		buffer->flags |= RB_FL_OVERWRITE;
2382 	else
2383 		buffer->flags &= ~RB_FL_OVERWRITE;
2384 	mutex_unlock(&buffer->mutex);
2385 }
2386 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2387 
2388 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2389 {
2390 	return bpage->page->data + index;
2391 }
2392 
2393 static __always_inline struct ring_buffer_event *
2394 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2395 {
2396 	return __rb_page_index(cpu_buffer->reader_page,
2397 			       cpu_buffer->reader_page->read);
2398 }
2399 
2400 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2401 {
2402 	return local_read(&bpage->page->commit);
2403 }
2404 
2405 static struct ring_buffer_event *
2406 rb_iter_head_event(struct ring_buffer_iter *iter)
2407 {
2408 	struct ring_buffer_event *event;
2409 	struct buffer_page *iter_head_page = iter->head_page;
2410 	unsigned long commit;
2411 	unsigned length;
2412 
2413 	if (iter->head != iter->next_event)
2414 		return iter->event;
2415 
2416 	/*
2417 	 * When the writer goes across pages, it issues a cmpxchg which
2418 	 * is a mb(), which will synchronize with the rmb here.
2419 	 * (see rb_tail_page_update() and __rb_reserve_next())
2420 	 */
2421 	commit = rb_page_commit(iter_head_page);
2422 	smp_rmb();
2423 	event = __rb_page_index(iter_head_page, iter->head);
2424 	length = rb_event_length(event);
2425 
2426 	/*
2427 	 * READ_ONCE() doesn't work on functions and we don't want the
2428 	 * compiler doing any crazy optimizations with length.
2429 	 */
2430 	barrier();
2431 
2432 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2433 		/* Writer corrupted the read? */
2434 		goto reset;
2435 
2436 	memcpy(iter->event, event, length);
2437 	/*
2438 	 * If the page stamp is still the same after this rmb() then the
2439 	 * event was safely copied without the writer entering the page.
2440 	 */
2441 	smp_rmb();
2442 
2443 	/* Make sure the page didn't change since we read this */
2444 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2445 	    commit > rb_page_commit(iter_head_page))
2446 		goto reset;
2447 
2448 	iter->next_event = iter->head + length;
2449 	return iter->event;
2450  reset:
2451 	/* Reset to the beginning */
2452 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2453 	iter->head = 0;
2454 	iter->next_event = 0;
2455 	iter->missed_events = 1;
2456 	return NULL;
2457 }
2458 
2459 /* Size is determined by what has been committed */
2460 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2461 {
2462 	return rb_page_commit(bpage);
2463 }
2464 
2465 static __always_inline unsigned
2466 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2467 {
2468 	return rb_page_commit(cpu_buffer->commit_page);
2469 }
2470 
2471 static __always_inline unsigned
2472 rb_event_index(struct ring_buffer_event *event)
2473 {
2474 	unsigned long addr = (unsigned long)event;
2475 
2476 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2477 }
2478 
2479 static void rb_inc_iter(struct ring_buffer_iter *iter)
2480 {
2481 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2482 
2483 	/*
2484 	 * The iterator could be on the reader page (it starts there).
2485 	 * But the head could have moved, since the reader was
2486 	 * found. Check for this case and assign the iterator
2487 	 * to the head page instead of next.
2488 	 */
2489 	if (iter->head_page == cpu_buffer->reader_page)
2490 		iter->head_page = rb_set_head_page(cpu_buffer);
2491 	else
2492 		rb_inc_page(&iter->head_page);
2493 
2494 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2495 	iter->head = 0;
2496 	iter->next_event = 0;
2497 }
2498 
2499 /*
2500  * rb_handle_head_page - writer hit the head page
2501  *
2502  * Returns: +1 to retry page
2503  *           0 to continue
2504  *          -1 on error
2505  */
2506 static int
2507 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2508 		    struct buffer_page *tail_page,
2509 		    struct buffer_page *next_page)
2510 {
2511 	struct buffer_page *new_head;
2512 	int entries;
2513 	int type;
2514 	int ret;
2515 
2516 	entries = rb_page_entries(next_page);
2517 
2518 	/*
2519 	 * The hard part is here. We need to move the head
2520 	 * forward, and protect against both readers on
2521 	 * other CPUs and writers coming in via interrupts.
2522 	 */
2523 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2524 				       RB_PAGE_HEAD);
2525 
2526 	/*
2527 	 * type can be one of four:
2528 	 *  NORMAL - an interrupt already moved it for us
2529 	 *  HEAD   - we are the first to get here.
2530 	 *  UPDATE - we are the interrupt interrupting
2531 	 *           a current move.
2532 	 *  MOVED  - a reader on another CPU moved the next
2533 	 *           pointer to its reader page. Give up
2534 	 *           and try again.
2535 	 */
2536 
2537 	switch (type) {
2538 	case RB_PAGE_HEAD:
2539 		/*
2540 		 * We changed the head to UPDATE, thus
2541 		 * it is our responsibility to update
2542 		 * the counters.
2543 		 */
2544 		local_add(entries, &cpu_buffer->overrun);
2545 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2546 		local_inc(&cpu_buffer->pages_lost);
2547 
2548 		/*
2549 		 * The entries will be zeroed out when we move the
2550 		 * tail page.
2551 		 */
2552 
2553 		/* still more to do */
2554 		break;
2555 
2556 	case RB_PAGE_UPDATE:
2557 		/*
2558 		 * This is an interrupt that interrupt the
2559 		 * previous update. Still more to do.
2560 		 */
2561 		break;
2562 	case RB_PAGE_NORMAL:
2563 		/*
2564 		 * An interrupt came in before the update
2565 		 * and processed this for us.
2566 		 * Nothing left to do.
2567 		 */
2568 		return 1;
2569 	case RB_PAGE_MOVED:
2570 		/*
2571 		 * The reader is on another CPU and just did
2572 		 * a swap with our next_page.
2573 		 * Try again.
2574 		 */
2575 		return 1;
2576 	default:
2577 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2578 		return -1;
2579 	}
2580 
2581 	/*
2582 	 * Now that we are here, the old head pointer is
2583 	 * set to UPDATE. This will keep the reader from
2584 	 * swapping the head page with the reader page.
2585 	 * The reader (on another CPU) will spin till
2586 	 * we are finished.
2587 	 *
2588 	 * We just need to protect against interrupts
2589 	 * doing the job. We will set the next pointer
2590 	 * to HEAD. After that, we set the old pointer
2591 	 * to NORMAL, but only if it was HEAD before.
2592 	 * otherwise we are an interrupt, and only
2593 	 * want the outer most commit to reset it.
2594 	 */
2595 	new_head = next_page;
2596 	rb_inc_page(&new_head);
2597 
2598 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2599 				    RB_PAGE_NORMAL);
2600 
2601 	/*
2602 	 * Valid returns are:
2603 	 *  HEAD   - an interrupt came in and already set it.
2604 	 *  NORMAL - One of two things:
2605 	 *            1) We really set it.
2606 	 *            2) A bunch of interrupts came in and moved
2607 	 *               the page forward again.
2608 	 */
2609 	switch (ret) {
2610 	case RB_PAGE_HEAD:
2611 	case RB_PAGE_NORMAL:
2612 		/* OK */
2613 		break;
2614 	default:
2615 		RB_WARN_ON(cpu_buffer, 1);
2616 		return -1;
2617 	}
2618 
2619 	/*
2620 	 * It is possible that an interrupt came in,
2621 	 * set the head up, then more interrupts came in
2622 	 * and moved it again. When we get back here,
2623 	 * the page would have been set to NORMAL but we
2624 	 * just set it back to HEAD.
2625 	 *
2626 	 * How do you detect this? Well, if that happened
2627 	 * the tail page would have moved.
2628 	 */
2629 	if (ret == RB_PAGE_NORMAL) {
2630 		struct buffer_page *buffer_tail_page;
2631 
2632 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2633 		/*
2634 		 * If the tail had moved passed next, then we need
2635 		 * to reset the pointer.
2636 		 */
2637 		if (buffer_tail_page != tail_page &&
2638 		    buffer_tail_page != next_page)
2639 			rb_head_page_set_normal(cpu_buffer, new_head,
2640 						next_page,
2641 						RB_PAGE_HEAD);
2642 	}
2643 
2644 	/*
2645 	 * If this was the outer most commit (the one that
2646 	 * changed the original pointer from HEAD to UPDATE),
2647 	 * then it is up to us to reset it to NORMAL.
2648 	 */
2649 	if (type == RB_PAGE_HEAD) {
2650 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2651 					      tail_page,
2652 					      RB_PAGE_UPDATE);
2653 		if (RB_WARN_ON(cpu_buffer,
2654 			       ret != RB_PAGE_UPDATE))
2655 			return -1;
2656 	}
2657 
2658 	return 0;
2659 }
2660 
2661 static inline void
2662 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2663 	      unsigned long tail, struct rb_event_info *info)
2664 {
2665 	struct buffer_page *tail_page = info->tail_page;
2666 	struct ring_buffer_event *event;
2667 	unsigned long length = info->length;
2668 
2669 	/*
2670 	 * Only the event that crossed the page boundary
2671 	 * must fill the old tail_page with padding.
2672 	 */
2673 	if (tail >= BUF_PAGE_SIZE) {
2674 		/*
2675 		 * If the page was filled, then we still need
2676 		 * to update the real_end. Reset it to zero
2677 		 * and the reader will ignore it.
2678 		 */
2679 		if (tail == BUF_PAGE_SIZE)
2680 			tail_page->real_end = 0;
2681 
2682 		local_sub(length, &tail_page->write);
2683 		return;
2684 	}
2685 
2686 	event = __rb_page_index(tail_page, tail);
2687 
2688 	/* account for padding bytes */
2689 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2690 
2691 	/*
2692 	 * Save the original length to the meta data.
2693 	 * This will be used by the reader to add lost event
2694 	 * counter.
2695 	 */
2696 	tail_page->real_end = tail;
2697 
2698 	/*
2699 	 * If this event is bigger than the minimum size, then
2700 	 * we need to be careful that we don't subtract the
2701 	 * write counter enough to allow another writer to slip
2702 	 * in on this page.
2703 	 * We put in a discarded commit instead, to make sure
2704 	 * that this space is not used again.
2705 	 *
2706 	 * If we are less than the minimum size, we don't need to
2707 	 * worry about it.
2708 	 */
2709 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2710 		/* No room for any events */
2711 
2712 		/* Mark the rest of the page with padding */
2713 		rb_event_set_padding(event);
2714 
2715 		/* Make sure the padding is visible before the write update */
2716 		smp_wmb();
2717 
2718 		/* Set the write back to the previous setting */
2719 		local_sub(length, &tail_page->write);
2720 		return;
2721 	}
2722 
2723 	/* Put in a discarded event */
2724 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2725 	event->type_len = RINGBUF_TYPE_PADDING;
2726 	/* time delta must be non zero */
2727 	event->time_delta = 1;
2728 
2729 	/* Make sure the padding is visible before the tail_page->write update */
2730 	smp_wmb();
2731 
2732 	/* Set write to end of buffer */
2733 	length = (tail + length) - BUF_PAGE_SIZE;
2734 	local_sub(length, &tail_page->write);
2735 }
2736 
2737 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2738 
2739 /*
2740  * This is the slow path, force gcc not to inline it.
2741  */
2742 static noinline struct ring_buffer_event *
2743 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2744 	     unsigned long tail, struct rb_event_info *info)
2745 {
2746 	struct buffer_page *tail_page = info->tail_page;
2747 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2748 	struct trace_buffer *buffer = cpu_buffer->buffer;
2749 	struct buffer_page *next_page;
2750 	int ret;
2751 
2752 	next_page = tail_page;
2753 
2754 	rb_inc_page(&next_page);
2755 
2756 	/*
2757 	 * If for some reason, we had an interrupt storm that made
2758 	 * it all the way around the buffer, bail, and warn
2759 	 * about it.
2760 	 */
2761 	if (unlikely(next_page == commit_page)) {
2762 		local_inc(&cpu_buffer->commit_overrun);
2763 		goto out_reset;
2764 	}
2765 
2766 	/*
2767 	 * This is where the fun begins!
2768 	 *
2769 	 * We are fighting against races between a reader that
2770 	 * could be on another CPU trying to swap its reader
2771 	 * page with the buffer head.
2772 	 *
2773 	 * We are also fighting against interrupts coming in and
2774 	 * moving the head or tail on us as well.
2775 	 *
2776 	 * If the next page is the head page then we have filled
2777 	 * the buffer, unless the commit page is still on the
2778 	 * reader page.
2779 	 */
2780 	if (rb_is_head_page(next_page, &tail_page->list)) {
2781 
2782 		/*
2783 		 * If the commit is not on the reader page, then
2784 		 * move the header page.
2785 		 */
2786 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2787 			/*
2788 			 * If we are not in overwrite mode,
2789 			 * this is easy, just stop here.
2790 			 */
2791 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2792 				local_inc(&cpu_buffer->dropped_events);
2793 				goto out_reset;
2794 			}
2795 
2796 			ret = rb_handle_head_page(cpu_buffer,
2797 						  tail_page,
2798 						  next_page);
2799 			if (ret < 0)
2800 				goto out_reset;
2801 			if (ret)
2802 				goto out_again;
2803 		} else {
2804 			/*
2805 			 * We need to be careful here too. The
2806 			 * commit page could still be on the reader
2807 			 * page. We could have a small buffer, and
2808 			 * have filled up the buffer with events
2809 			 * from interrupts and such, and wrapped.
2810 			 *
2811 			 * Note, if the tail page is also on the
2812 			 * reader_page, we let it move out.
2813 			 */
2814 			if (unlikely((cpu_buffer->commit_page !=
2815 				      cpu_buffer->tail_page) &&
2816 				     (cpu_buffer->commit_page ==
2817 				      cpu_buffer->reader_page))) {
2818 				local_inc(&cpu_buffer->commit_overrun);
2819 				goto out_reset;
2820 			}
2821 		}
2822 	}
2823 
2824 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2825 
2826  out_again:
2827 
2828 	rb_reset_tail(cpu_buffer, tail, info);
2829 
2830 	/* Commit what we have for now. */
2831 	rb_end_commit(cpu_buffer);
2832 	/* rb_end_commit() decs committing */
2833 	local_inc(&cpu_buffer->committing);
2834 
2835 	/* fail and let the caller try again */
2836 	return ERR_PTR(-EAGAIN);
2837 
2838  out_reset:
2839 	/* reset write */
2840 	rb_reset_tail(cpu_buffer, tail, info);
2841 
2842 	return NULL;
2843 }
2844 
2845 /* Slow path */
2846 static struct ring_buffer_event *
2847 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2848 {
2849 	if (abs)
2850 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2851 	else
2852 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2853 
2854 	/* Not the first event on the page, or not delta? */
2855 	if (abs || rb_event_index(event)) {
2856 		event->time_delta = delta & TS_MASK;
2857 		event->array[0] = delta >> TS_SHIFT;
2858 	} else {
2859 		/* nope, just zero it */
2860 		event->time_delta = 0;
2861 		event->array[0] = 0;
2862 	}
2863 
2864 	return skip_time_extend(event);
2865 }
2866 
2867 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2868 static inline bool sched_clock_stable(void)
2869 {
2870 	return true;
2871 }
2872 #endif
2873 
2874 static void
2875 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2876 		   struct rb_event_info *info)
2877 {
2878 	u64 write_stamp;
2879 
2880 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2881 		  (unsigned long long)info->delta,
2882 		  (unsigned long long)info->ts,
2883 		  (unsigned long long)info->before,
2884 		  (unsigned long long)info->after,
2885 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2886 		  sched_clock_stable() ? "" :
2887 		  "If you just came from a suspend/resume,\n"
2888 		  "please switch to the trace global clock:\n"
2889 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2890 		  "or add trace_clock=global to the kernel command line\n");
2891 }
2892 
2893 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2894 				      struct ring_buffer_event **event,
2895 				      struct rb_event_info *info,
2896 				      u64 *delta,
2897 				      unsigned int *length)
2898 {
2899 	bool abs = info->add_timestamp &
2900 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2901 
2902 	if (unlikely(info->delta > (1ULL << 59))) {
2903 		/*
2904 		 * Some timers can use more than 59 bits, and when a timestamp
2905 		 * is added to the buffer, it will lose those bits.
2906 		 */
2907 		if (abs && (info->ts & TS_MSB)) {
2908 			info->delta &= ABS_TS_MASK;
2909 
2910 		/* did the clock go backwards */
2911 		} else if (info->before == info->after && info->before > info->ts) {
2912 			/* not interrupted */
2913 			static int once;
2914 
2915 			/*
2916 			 * This is possible with a recalibrating of the TSC.
2917 			 * Do not produce a call stack, but just report it.
2918 			 */
2919 			if (!once) {
2920 				once++;
2921 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2922 					info->before, info->ts);
2923 			}
2924 		} else
2925 			rb_check_timestamp(cpu_buffer, info);
2926 		if (!abs)
2927 			info->delta = 0;
2928 	}
2929 	*event = rb_add_time_stamp(*event, info->delta, abs);
2930 	*length -= RB_LEN_TIME_EXTEND;
2931 	*delta = 0;
2932 }
2933 
2934 /**
2935  * rb_update_event - update event type and data
2936  * @cpu_buffer: The per cpu buffer of the @event
2937  * @event: the event to update
2938  * @info: The info to update the @event with (contains length and delta)
2939  *
2940  * Update the type and data fields of the @event. The length
2941  * is the actual size that is written to the ring buffer,
2942  * and with this, we can determine what to place into the
2943  * data field.
2944  */
2945 static void
2946 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2947 		struct ring_buffer_event *event,
2948 		struct rb_event_info *info)
2949 {
2950 	unsigned length = info->length;
2951 	u64 delta = info->delta;
2952 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2953 
2954 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2955 		cpu_buffer->event_stamp[nest] = info->ts;
2956 
2957 	/*
2958 	 * If we need to add a timestamp, then we
2959 	 * add it to the start of the reserved space.
2960 	 */
2961 	if (unlikely(info->add_timestamp))
2962 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2963 
2964 	event->time_delta = delta;
2965 	length -= RB_EVNT_HDR_SIZE;
2966 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2967 		event->type_len = 0;
2968 		event->array[0] = length;
2969 	} else
2970 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2971 }
2972 
2973 static unsigned rb_calculate_event_length(unsigned length)
2974 {
2975 	struct ring_buffer_event event; /* Used only for sizeof array */
2976 
2977 	/* zero length can cause confusions */
2978 	if (!length)
2979 		length++;
2980 
2981 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2982 		length += sizeof(event.array[0]);
2983 
2984 	length += RB_EVNT_HDR_SIZE;
2985 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2986 
2987 	/*
2988 	 * In case the time delta is larger than the 27 bits for it
2989 	 * in the header, we need to add a timestamp. If another
2990 	 * event comes in when trying to discard this one to increase
2991 	 * the length, then the timestamp will be added in the allocated
2992 	 * space of this event. If length is bigger than the size needed
2993 	 * for the TIME_EXTEND, then padding has to be used. The events
2994 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2995 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2996 	 * As length is a multiple of 4, we only need to worry if it
2997 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2998 	 */
2999 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3000 		length += RB_ALIGNMENT;
3001 
3002 	return length;
3003 }
3004 
3005 static u64 rb_time_delta(struct ring_buffer_event *event)
3006 {
3007 	switch (event->type_len) {
3008 	case RINGBUF_TYPE_PADDING:
3009 		return 0;
3010 
3011 	case RINGBUF_TYPE_TIME_EXTEND:
3012 		return rb_event_time_stamp(event);
3013 
3014 	case RINGBUF_TYPE_TIME_STAMP:
3015 		return 0;
3016 
3017 	case RINGBUF_TYPE_DATA:
3018 		return event->time_delta;
3019 	default:
3020 		return 0;
3021 	}
3022 }
3023 
3024 static inline int
3025 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3026 		  struct ring_buffer_event *event)
3027 {
3028 	unsigned long new_index, old_index;
3029 	struct buffer_page *bpage;
3030 	unsigned long index;
3031 	unsigned long addr;
3032 	u64 write_stamp;
3033 	u64 delta;
3034 
3035 	new_index = rb_event_index(event);
3036 	old_index = new_index + rb_event_ts_length(event);
3037 	addr = (unsigned long)event;
3038 	addr &= PAGE_MASK;
3039 
3040 	bpage = READ_ONCE(cpu_buffer->tail_page);
3041 
3042 	delta = rb_time_delta(event);
3043 
3044 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3045 		return 0;
3046 
3047 	/* Make sure the write stamp is read before testing the location */
3048 	barrier();
3049 
3050 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3051 		unsigned long write_mask =
3052 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3053 		unsigned long event_length = rb_event_length(event);
3054 
3055 		/* Something came in, can't discard */
3056 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3057 				       write_stamp, write_stamp - delta))
3058 			return 0;
3059 
3060 		/*
3061 		 * It's possible that the event time delta is zero
3062 		 * (has the same time stamp as the previous event)
3063 		 * in which case write_stamp and before_stamp could
3064 		 * be the same. In such a case, force before_stamp
3065 		 * to be different than write_stamp. It doesn't
3066 		 * matter what it is, as long as its different.
3067 		 */
3068 		if (!delta)
3069 			rb_time_set(&cpu_buffer->before_stamp, 0);
3070 
3071 		/*
3072 		 * If an event were to come in now, it would see that the
3073 		 * write_stamp and the before_stamp are different, and assume
3074 		 * that this event just added itself before updating
3075 		 * the write stamp. The interrupting event will fix the
3076 		 * write stamp for us, and use the before stamp as its delta.
3077 		 */
3078 
3079 		/*
3080 		 * This is on the tail page. It is possible that
3081 		 * a write could come in and move the tail page
3082 		 * and write to the next page. That is fine
3083 		 * because we just shorten what is on this page.
3084 		 */
3085 		old_index += write_mask;
3086 		new_index += write_mask;
3087 		index = local_cmpxchg(&bpage->write, old_index, new_index);
3088 		if (index == old_index) {
3089 			/* update counters */
3090 			local_sub(event_length, &cpu_buffer->entries_bytes);
3091 			return 1;
3092 		}
3093 	}
3094 
3095 	/* could not discard */
3096 	return 0;
3097 }
3098 
3099 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3100 {
3101 	local_inc(&cpu_buffer->committing);
3102 	local_inc(&cpu_buffer->commits);
3103 }
3104 
3105 static __always_inline void
3106 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3107 {
3108 	unsigned long max_count;
3109 
3110 	/*
3111 	 * We only race with interrupts and NMIs on this CPU.
3112 	 * If we own the commit event, then we can commit
3113 	 * all others that interrupted us, since the interruptions
3114 	 * are in stack format (they finish before they come
3115 	 * back to us). This allows us to do a simple loop to
3116 	 * assign the commit to the tail.
3117 	 */
3118  again:
3119 	max_count = cpu_buffer->nr_pages * 100;
3120 
3121 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3122 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3123 			return;
3124 		if (RB_WARN_ON(cpu_buffer,
3125 			       rb_is_reader_page(cpu_buffer->tail_page)))
3126 			return;
3127 		local_set(&cpu_buffer->commit_page->page->commit,
3128 			  rb_page_write(cpu_buffer->commit_page));
3129 		rb_inc_page(&cpu_buffer->commit_page);
3130 		/* add barrier to keep gcc from optimizing too much */
3131 		barrier();
3132 	}
3133 	while (rb_commit_index(cpu_buffer) !=
3134 	       rb_page_write(cpu_buffer->commit_page)) {
3135 
3136 		local_set(&cpu_buffer->commit_page->page->commit,
3137 			  rb_page_write(cpu_buffer->commit_page));
3138 		RB_WARN_ON(cpu_buffer,
3139 			   local_read(&cpu_buffer->commit_page->page->commit) &
3140 			   ~RB_WRITE_MASK);
3141 		barrier();
3142 	}
3143 
3144 	/* again, keep gcc from optimizing */
3145 	barrier();
3146 
3147 	/*
3148 	 * If an interrupt came in just after the first while loop
3149 	 * and pushed the tail page forward, we will be left with
3150 	 * a dangling commit that will never go forward.
3151 	 */
3152 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3153 		goto again;
3154 }
3155 
3156 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3157 {
3158 	unsigned long commits;
3159 
3160 	if (RB_WARN_ON(cpu_buffer,
3161 		       !local_read(&cpu_buffer->committing)))
3162 		return;
3163 
3164  again:
3165 	commits = local_read(&cpu_buffer->commits);
3166 	/* synchronize with interrupts */
3167 	barrier();
3168 	if (local_read(&cpu_buffer->committing) == 1)
3169 		rb_set_commit_to_write(cpu_buffer);
3170 
3171 	local_dec(&cpu_buffer->committing);
3172 
3173 	/* synchronize with interrupts */
3174 	barrier();
3175 
3176 	/*
3177 	 * Need to account for interrupts coming in between the
3178 	 * updating of the commit page and the clearing of the
3179 	 * committing counter.
3180 	 */
3181 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3182 	    !local_read(&cpu_buffer->committing)) {
3183 		local_inc(&cpu_buffer->committing);
3184 		goto again;
3185 	}
3186 }
3187 
3188 static inline void rb_event_discard(struct ring_buffer_event *event)
3189 {
3190 	if (extended_time(event))
3191 		event = skip_time_extend(event);
3192 
3193 	/* array[0] holds the actual length for the discarded event */
3194 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3195 	event->type_len = RINGBUF_TYPE_PADDING;
3196 	/* time delta must be non zero */
3197 	if (!event->time_delta)
3198 		event->time_delta = 1;
3199 }
3200 
3201 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3202 {
3203 	local_inc(&cpu_buffer->entries);
3204 	rb_end_commit(cpu_buffer);
3205 }
3206 
3207 static __always_inline void
3208 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3209 {
3210 	if (buffer->irq_work.waiters_pending) {
3211 		buffer->irq_work.waiters_pending = false;
3212 		/* irq_work_queue() supplies it's own memory barriers */
3213 		irq_work_queue(&buffer->irq_work.work);
3214 	}
3215 
3216 	if (cpu_buffer->irq_work.waiters_pending) {
3217 		cpu_buffer->irq_work.waiters_pending = false;
3218 		/* irq_work_queue() supplies it's own memory barriers */
3219 		irq_work_queue(&cpu_buffer->irq_work.work);
3220 	}
3221 
3222 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3223 		return;
3224 
3225 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3226 		return;
3227 
3228 	if (!cpu_buffer->irq_work.full_waiters_pending)
3229 		return;
3230 
3231 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3232 
3233 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3234 		return;
3235 
3236 	cpu_buffer->irq_work.wakeup_full = true;
3237 	cpu_buffer->irq_work.full_waiters_pending = false;
3238 	/* irq_work_queue() supplies it's own memory barriers */
3239 	irq_work_queue(&cpu_buffer->irq_work.work);
3240 }
3241 
3242 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3243 # define do_ring_buffer_record_recursion()	\
3244 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3245 #else
3246 # define do_ring_buffer_record_recursion() do { } while (0)
3247 #endif
3248 
3249 /*
3250  * The lock and unlock are done within a preempt disable section.
3251  * The current_context per_cpu variable can only be modified
3252  * by the current task between lock and unlock. But it can
3253  * be modified more than once via an interrupt. To pass this
3254  * information from the lock to the unlock without having to
3255  * access the 'in_interrupt()' functions again (which do show
3256  * a bit of overhead in something as critical as function tracing,
3257  * we use a bitmask trick.
3258  *
3259  *  bit 1 =  NMI context
3260  *  bit 2 =  IRQ context
3261  *  bit 3 =  SoftIRQ context
3262  *  bit 4 =  normal context.
3263  *
3264  * This works because this is the order of contexts that can
3265  * preempt other contexts. A SoftIRQ never preempts an IRQ
3266  * context.
3267  *
3268  * When the context is determined, the corresponding bit is
3269  * checked and set (if it was set, then a recursion of that context
3270  * happened).
3271  *
3272  * On unlock, we need to clear this bit. To do so, just subtract
3273  * 1 from the current_context and AND it to itself.
3274  *
3275  * (binary)
3276  *  101 - 1 = 100
3277  *  101 & 100 = 100 (clearing bit zero)
3278  *
3279  *  1010 - 1 = 1001
3280  *  1010 & 1001 = 1000 (clearing bit 1)
3281  *
3282  * The least significant bit can be cleared this way, and it
3283  * just so happens that it is the same bit corresponding to
3284  * the current context.
3285  *
3286  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3287  * is set when a recursion is detected at the current context, and if
3288  * the TRANSITION bit is already set, it will fail the recursion.
3289  * This is needed because there's a lag between the changing of
3290  * interrupt context and updating the preempt count. In this case,
3291  * a false positive will be found. To handle this, one extra recursion
3292  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3293  * bit is already set, then it is considered a recursion and the function
3294  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3295  *
3296  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3297  * to be cleared. Even if it wasn't the context that set it. That is,
3298  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3299  * is called before preempt_count() is updated, since the check will
3300  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3301  * NMI then comes in, it will set the NMI bit, but when the NMI code
3302  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3303  * and leave the NMI bit set. But this is fine, because the interrupt
3304  * code that set the TRANSITION bit will then clear the NMI bit when it
3305  * calls trace_recursive_unlock(). If another NMI comes in, it will
3306  * set the TRANSITION bit and continue.
3307  *
3308  * Note: The TRANSITION bit only handles a single transition between context.
3309  */
3310 
3311 static __always_inline int
3312 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3313 {
3314 	unsigned int val = cpu_buffer->current_context;
3315 	int bit = interrupt_context_level();
3316 
3317 	bit = RB_CTX_NORMAL - bit;
3318 
3319 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3320 		/*
3321 		 * It is possible that this was called by transitioning
3322 		 * between interrupt context, and preempt_count() has not
3323 		 * been updated yet. In this case, use the TRANSITION bit.
3324 		 */
3325 		bit = RB_CTX_TRANSITION;
3326 		if (val & (1 << (bit + cpu_buffer->nest))) {
3327 			do_ring_buffer_record_recursion();
3328 			return 1;
3329 		}
3330 	}
3331 
3332 	val |= (1 << (bit + cpu_buffer->nest));
3333 	cpu_buffer->current_context = val;
3334 
3335 	return 0;
3336 }
3337 
3338 static __always_inline void
3339 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3340 {
3341 	cpu_buffer->current_context &=
3342 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3343 }
3344 
3345 /* The recursive locking above uses 5 bits */
3346 #define NESTED_BITS 5
3347 
3348 /**
3349  * ring_buffer_nest_start - Allow to trace while nested
3350  * @buffer: The ring buffer to modify
3351  *
3352  * The ring buffer has a safety mechanism to prevent recursion.
3353  * But there may be a case where a trace needs to be done while
3354  * tracing something else. In this case, calling this function
3355  * will allow this function to nest within a currently active
3356  * ring_buffer_lock_reserve().
3357  *
3358  * Call this function before calling another ring_buffer_lock_reserve() and
3359  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3360  */
3361 void ring_buffer_nest_start(struct trace_buffer *buffer)
3362 {
3363 	struct ring_buffer_per_cpu *cpu_buffer;
3364 	int cpu;
3365 
3366 	/* Enabled by ring_buffer_nest_end() */
3367 	preempt_disable_notrace();
3368 	cpu = raw_smp_processor_id();
3369 	cpu_buffer = buffer->buffers[cpu];
3370 	/* This is the shift value for the above recursive locking */
3371 	cpu_buffer->nest += NESTED_BITS;
3372 }
3373 
3374 /**
3375  * ring_buffer_nest_end - Allow to trace while nested
3376  * @buffer: The ring buffer to modify
3377  *
3378  * Must be called after ring_buffer_nest_start() and after the
3379  * ring_buffer_unlock_commit().
3380  */
3381 void ring_buffer_nest_end(struct trace_buffer *buffer)
3382 {
3383 	struct ring_buffer_per_cpu *cpu_buffer;
3384 	int cpu;
3385 
3386 	/* disabled by ring_buffer_nest_start() */
3387 	cpu = raw_smp_processor_id();
3388 	cpu_buffer = buffer->buffers[cpu];
3389 	/* This is the shift value for the above recursive locking */
3390 	cpu_buffer->nest -= NESTED_BITS;
3391 	preempt_enable_notrace();
3392 }
3393 
3394 /**
3395  * ring_buffer_unlock_commit - commit a reserved
3396  * @buffer: The buffer to commit to
3397  * @event: The event pointer to commit.
3398  *
3399  * This commits the data to the ring buffer, and releases any locks held.
3400  *
3401  * Must be paired with ring_buffer_lock_reserve.
3402  */
3403 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3404 {
3405 	struct ring_buffer_per_cpu *cpu_buffer;
3406 	int cpu = raw_smp_processor_id();
3407 
3408 	cpu_buffer = buffer->buffers[cpu];
3409 
3410 	rb_commit(cpu_buffer);
3411 
3412 	rb_wakeups(buffer, cpu_buffer);
3413 
3414 	trace_recursive_unlock(cpu_buffer);
3415 
3416 	preempt_enable_notrace();
3417 
3418 	return 0;
3419 }
3420 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3421 
3422 /* Special value to validate all deltas on a page. */
3423 #define CHECK_FULL_PAGE		1L
3424 
3425 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3426 static void dump_buffer_page(struct buffer_data_page *bpage,
3427 			     struct rb_event_info *info,
3428 			     unsigned long tail)
3429 {
3430 	struct ring_buffer_event *event;
3431 	u64 ts, delta;
3432 	int e;
3433 
3434 	ts = bpage->time_stamp;
3435 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3436 
3437 	for (e = 0; e < tail; e += rb_event_length(event)) {
3438 
3439 		event = (struct ring_buffer_event *)(bpage->data + e);
3440 
3441 		switch (event->type_len) {
3442 
3443 		case RINGBUF_TYPE_TIME_EXTEND:
3444 			delta = rb_event_time_stamp(event);
3445 			ts += delta;
3446 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3447 			break;
3448 
3449 		case RINGBUF_TYPE_TIME_STAMP:
3450 			delta = rb_event_time_stamp(event);
3451 			ts = rb_fix_abs_ts(delta, ts);
3452 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3453 			break;
3454 
3455 		case RINGBUF_TYPE_PADDING:
3456 			ts += event->time_delta;
3457 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3458 			break;
3459 
3460 		case RINGBUF_TYPE_DATA:
3461 			ts += event->time_delta;
3462 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3463 			break;
3464 
3465 		default:
3466 			break;
3467 		}
3468 	}
3469 }
3470 
3471 static DEFINE_PER_CPU(atomic_t, checking);
3472 static atomic_t ts_dump;
3473 
3474 /*
3475  * Check if the current event time stamp matches the deltas on
3476  * the buffer page.
3477  */
3478 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3479 			 struct rb_event_info *info,
3480 			 unsigned long tail)
3481 {
3482 	struct ring_buffer_event *event;
3483 	struct buffer_data_page *bpage;
3484 	u64 ts, delta;
3485 	bool full = false;
3486 	int e;
3487 
3488 	bpage = info->tail_page->page;
3489 
3490 	if (tail == CHECK_FULL_PAGE) {
3491 		full = true;
3492 		tail = local_read(&bpage->commit);
3493 	} else if (info->add_timestamp &
3494 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3495 		/* Ignore events with absolute time stamps */
3496 		return;
3497 	}
3498 
3499 	/*
3500 	 * Do not check the first event (skip possible extends too).
3501 	 * Also do not check if previous events have not been committed.
3502 	 */
3503 	if (tail <= 8 || tail > local_read(&bpage->commit))
3504 		return;
3505 
3506 	/*
3507 	 * If this interrupted another event,
3508 	 */
3509 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3510 		goto out;
3511 
3512 	ts = bpage->time_stamp;
3513 
3514 	for (e = 0; e < tail; e += rb_event_length(event)) {
3515 
3516 		event = (struct ring_buffer_event *)(bpage->data + e);
3517 
3518 		switch (event->type_len) {
3519 
3520 		case RINGBUF_TYPE_TIME_EXTEND:
3521 			delta = rb_event_time_stamp(event);
3522 			ts += delta;
3523 			break;
3524 
3525 		case RINGBUF_TYPE_TIME_STAMP:
3526 			delta = rb_event_time_stamp(event);
3527 			ts = rb_fix_abs_ts(delta, ts);
3528 			break;
3529 
3530 		case RINGBUF_TYPE_PADDING:
3531 			if (event->time_delta == 1)
3532 				break;
3533 			fallthrough;
3534 		case RINGBUF_TYPE_DATA:
3535 			ts += event->time_delta;
3536 			break;
3537 
3538 		default:
3539 			RB_WARN_ON(cpu_buffer, 1);
3540 		}
3541 	}
3542 	if ((full && ts > info->ts) ||
3543 	    (!full && ts + info->delta != info->ts)) {
3544 		/* If another report is happening, ignore this one */
3545 		if (atomic_inc_return(&ts_dump) != 1) {
3546 			atomic_dec(&ts_dump);
3547 			goto out;
3548 		}
3549 		atomic_inc(&cpu_buffer->record_disabled);
3550 		/* There's some cases in boot up that this can happen */
3551 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3552 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3553 			cpu_buffer->cpu,
3554 			ts + info->delta, info->ts, info->delta,
3555 			info->before, info->after,
3556 			full ? " (full)" : "");
3557 		dump_buffer_page(bpage, info, tail);
3558 		atomic_dec(&ts_dump);
3559 		/* Do not re-enable checking */
3560 		return;
3561 	}
3562 out:
3563 	atomic_dec(this_cpu_ptr(&checking));
3564 }
3565 #else
3566 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3567 			 struct rb_event_info *info,
3568 			 unsigned long tail)
3569 {
3570 }
3571 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3572 
3573 static struct ring_buffer_event *
3574 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3575 		  struct rb_event_info *info)
3576 {
3577 	struct ring_buffer_event *event;
3578 	struct buffer_page *tail_page;
3579 	unsigned long tail, write, w;
3580 	bool a_ok;
3581 	bool b_ok;
3582 
3583 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3584 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3585 
3586  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3587 	barrier();
3588 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3589 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3590 	barrier();
3591 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3592 
3593 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3594 		info->delta = info->ts;
3595 	} else {
3596 		/*
3597 		 * If interrupting an event time update, we may need an
3598 		 * absolute timestamp.
3599 		 * Don't bother if this is the start of a new page (w == 0).
3600 		 */
3601 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3602 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3603 			info->length += RB_LEN_TIME_EXTEND;
3604 		} else {
3605 			info->delta = info->ts - info->after;
3606 			if (unlikely(test_time_stamp(info->delta))) {
3607 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3608 				info->length += RB_LEN_TIME_EXTEND;
3609 			}
3610 		}
3611 	}
3612 
3613  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3614 
3615  /*C*/	write = local_add_return(info->length, &tail_page->write);
3616 
3617 	/* set write to only the index of the write */
3618 	write &= RB_WRITE_MASK;
3619 
3620 	tail = write - info->length;
3621 
3622 	/* See if we shot pass the end of this buffer page */
3623 	if (unlikely(write > BUF_PAGE_SIZE)) {
3624 		/* before and after may now different, fix it up*/
3625 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3626 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3627 		if (a_ok && b_ok && info->before != info->after)
3628 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3629 					      info->before, info->after);
3630 		if (a_ok && b_ok)
3631 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3632 		return rb_move_tail(cpu_buffer, tail, info);
3633 	}
3634 
3635 	if (likely(tail == w)) {
3636 		u64 save_before;
3637 		bool s_ok;
3638 
3639 		/* Nothing interrupted us between A and C */
3640  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3641 		barrier();
3642  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3643 		RB_WARN_ON(cpu_buffer, !s_ok);
3644 		if (likely(!(info->add_timestamp &
3645 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3646 			/* This did not interrupt any time update */
3647 			info->delta = info->ts - info->after;
3648 		else
3649 			/* Just use full timestamp for interrupting event */
3650 			info->delta = info->ts;
3651 		barrier();
3652 		check_buffer(cpu_buffer, info, tail);
3653 		if (unlikely(info->ts != save_before)) {
3654 			/* SLOW PATH - Interrupted between C and E */
3655 
3656 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3657 			RB_WARN_ON(cpu_buffer, !a_ok);
3658 
3659 			/* Write stamp must only go forward */
3660 			if (save_before > info->after) {
3661 				/*
3662 				 * We do not care about the result, only that
3663 				 * it gets updated atomically.
3664 				 */
3665 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3666 						      info->after, save_before);
3667 			}
3668 		}
3669 	} else {
3670 		u64 ts;
3671 		/* SLOW PATH - Interrupted between A and C */
3672 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3673 		/* Was interrupted before here, write_stamp must be valid */
3674 		RB_WARN_ON(cpu_buffer, !a_ok);
3675 		ts = rb_time_stamp(cpu_buffer->buffer);
3676 		barrier();
3677  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3678 		    info->after < ts &&
3679 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3680 				    info->after, ts)) {
3681 			/* Nothing came after this event between C and E */
3682 			info->delta = ts - info->after;
3683 		} else {
3684 			/*
3685 			 * Interrupted between C and E:
3686 			 * Lost the previous events time stamp. Just set the
3687 			 * delta to zero, and this will be the same time as
3688 			 * the event this event interrupted. And the events that
3689 			 * came after this will still be correct (as they would
3690 			 * have built their delta on the previous event.
3691 			 */
3692 			info->delta = 0;
3693 		}
3694 		info->ts = ts;
3695 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3696 	}
3697 
3698 	/*
3699 	 * If this is the first commit on the page, then it has the same
3700 	 * timestamp as the page itself.
3701 	 */
3702 	if (unlikely(!tail && !(info->add_timestamp &
3703 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3704 		info->delta = 0;
3705 
3706 	/* We reserved something on the buffer */
3707 
3708 	event = __rb_page_index(tail_page, tail);
3709 	rb_update_event(cpu_buffer, event, info);
3710 
3711 	local_inc(&tail_page->entries);
3712 
3713 	/*
3714 	 * If this is the first commit on the page, then update
3715 	 * its timestamp.
3716 	 */
3717 	if (unlikely(!tail))
3718 		tail_page->page->time_stamp = info->ts;
3719 
3720 	/* account for these added bytes */
3721 	local_add(info->length, &cpu_buffer->entries_bytes);
3722 
3723 	return event;
3724 }
3725 
3726 static __always_inline struct ring_buffer_event *
3727 rb_reserve_next_event(struct trace_buffer *buffer,
3728 		      struct ring_buffer_per_cpu *cpu_buffer,
3729 		      unsigned long length)
3730 {
3731 	struct ring_buffer_event *event;
3732 	struct rb_event_info info;
3733 	int nr_loops = 0;
3734 	int add_ts_default;
3735 
3736 	rb_start_commit(cpu_buffer);
3737 	/* The commit page can not change after this */
3738 
3739 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3740 	/*
3741 	 * Due to the ability to swap a cpu buffer from a buffer
3742 	 * it is possible it was swapped before we committed.
3743 	 * (committing stops a swap). We check for it here and
3744 	 * if it happened, we have to fail the write.
3745 	 */
3746 	barrier();
3747 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3748 		local_dec(&cpu_buffer->committing);
3749 		local_dec(&cpu_buffer->commits);
3750 		return NULL;
3751 	}
3752 #endif
3753 
3754 	info.length = rb_calculate_event_length(length);
3755 
3756 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3757 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3758 		info.length += RB_LEN_TIME_EXTEND;
3759 	} else {
3760 		add_ts_default = RB_ADD_STAMP_NONE;
3761 	}
3762 
3763  again:
3764 	info.add_timestamp = add_ts_default;
3765 	info.delta = 0;
3766 
3767 	/*
3768 	 * We allow for interrupts to reenter here and do a trace.
3769 	 * If one does, it will cause this original code to loop
3770 	 * back here. Even with heavy interrupts happening, this
3771 	 * should only happen a few times in a row. If this happens
3772 	 * 1000 times in a row, there must be either an interrupt
3773 	 * storm or we have something buggy.
3774 	 * Bail!
3775 	 */
3776 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3777 		goto out_fail;
3778 
3779 	event = __rb_reserve_next(cpu_buffer, &info);
3780 
3781 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3782 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3783 			info.length -= RB_LEN_TIME_EXTEND;
3784 		goto again;
3785 	}
3786 
3787 	if (likely(event))
3788 		return event;
3789  out_fail:
3790 	rb_end_commit(cpu_buffer);
3791 	return NULL;
3792 }
3793 
3794 /**
3795  * ring_buffer_lock_reserve - reserve a part of the buffer
3796  * @buffer: the ring buffer to reserve from
3797  * @length: the length of the data to reserve (excluding event header)
3798  *
3799  * Returns a reserved event on the ring buffer to copy directly to.
3800  * The user of this interface will need to get the body to write into
3801  * and can use the ring_buffer_event_data() interface.
3802  *
3803  * The length is the length of the data needed, not the event length
3804  * which also includes the event header.
3805  *
3806  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3807  * If NULL is returned, then nothing has been allocated or locked.
3808  */
3809 struct ring_buffer_event *
3810 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3811 {
3812 	struct ring_buffer_per_cpu *cpu_buffer;
3813 	struct ring_buffer_event *event;
3814 	int cpu;
3815 
3816 	/* If we are tracing schedule, we don't want to recurse */
3817 	preempt_disable_notrace();
3818 
3819 	if (unlikely(atomic_read(&buffer->record_disabled)))
3820 		goto out;
3821 
3822 	cpu = raw_smp_processor_id();
3823 
3824 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3825 		goto out;
3826 
3827 	cpu_buffer = buffer->buffers[cpu];
3828 
3829 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3830 		goto out;
3831 
3832 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3833 		goto out;
3834 
3835 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3836 		goto out;
3837 
3838 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3839 	if (!event)
3840 		goto out_unlock;
3841 
3842 	return event;
3843 
3844  out_unlock:
3845 	trace_recursive_unlock(cpu_buffer);
3846  out:
3847 	preempt_enable_notrace();
3848 	return NULL;
3849 }
3850 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3851 
3852 /*
3853  * Decrement the entries to the page that an event is on.
3854  * The event does not even need to exist, only the pointer
3855  * to the page it is on. This may only be called before the commit
3856  * takes place.
3857  */
3858 static inline void
3859 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3860 		   struct ring_buffer_event *event)
3861 {
3862 	unsigned long addr = (unsigned long)event;
3863 	struct buffer_page *bpage = cpu_buffer->commit_page;
3864 	struct buffer_page *start;
3865 
3866 	addr &= PAGE_MASK;
3867 
3868 	/* Do the likely case first */
3869 	if (likely(bpage->page == (void *)addr)) {
3870 		local_dec(&bpage->entries);
3871 		return;
3872 	}
3873 
3874 	/*
3875 	 * Because the commit page may be on the reader page we
3876 	 * start with the next page and check the end loop there.
3877 	 */
3878 	rb_inc_page(&bpage);
3879 	start = bpage;
3880 	do {
3881 		if (bpage->page == (void *)addr) {
3882 			local_dec(&bpage->entries);
3883 			return;
3884 		}
3885 		rb_inc_page(&bpage);
3886 	} while (bpage != start);
3887 
3888 	/* commit not part of this buffer?? */
3889 	RB_WARN_ON(cpu_buffer, 1);
3890 }
3891 
3892 /**
3893  * ring_buffer_discard_commit - discard an event that has not been committed
3894  * @buffer: the ring buffer
3895  * @event: non committed event to discard
3896  *
3897  * Sometimes an event that is in the ring buffer needs to be ignored.
3898  * This function lets the user discard an event in the ring buffer
3899  * and then that event will not be read later.
3900  *
3901  * This function only works if it is called before the item has been
3902  * committed. It will try to free the event from the ring buffer
3903  * if another event has not been added behind it.
3904  *
3905  * If another event has been added behind it, it will set the event
3906  * up as discarded, and perform the commit.
3907  *
3908  * If this function is called, do not call ring_buffer_unlock_commit on
3909  * the event.
3910  */
3911 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3912 				struct ring_buffer_event *event)
3913 {
3914 	struct ring_buffer_per_cpu *cpu_buffer;
3915 	int cpu;
3916 
3917 	/* The event is discarded regardless */
3918 	rb_event_discard(event);
3919 
3920 	cpu = smp_processor_id();
3921 	cpu_buffer = buffer->buffers[cpu];
3922 
3923 	/*
3924 	 * This must only be called if the event has not been
3925 	 * committed yet. Thus we can assume that preemption
3926 	 * is still disabled.
3927 	 */
3928 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3929 
3930 	rb_decrement_entry(cpu_buffer, event);
3931 	if (rb_try_to_discard(cpu_buffer, event))
3932 		goto out;
3933 
3934  out:
3935 	rb_end_commit(cpu_buffer);
3936 
3937 	trace_recursive_unlock(cpu_buffer);
3938 
3939 	preempt_enable_notrace();
3940 
3941 }
3942 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3943 
3944 /**
3945  * ring_buffer_write - write data to the buffer without reserving
3946  * @buffer: The ring buffer to write to.
3947  * @length: The length of the data being written (excluding the event header)
3948  * @data: The data to write to the buffer.
3949  *
3950  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3951  * one function. If you already have the data to write to the buffer, it
3952  * may be easier to simply call this function.
3953  *
3954  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3955  * and not the length of the event which would hold the header.
3956  */
3957 int ring_buffer_write(struct trace_buffer *buffer,
3958 		      unsigned long length,
3959 		      void *data)
3960 {
3961 	struct ring_buffer_per_cpu *cpu_buffer;
3962 	struct ring_buffer_event *event;
3963 	void *body;
3964 	int ret = -EBUSY;
3965 	int cpu;
3966 
3967 	preempt_disable_notrace();
3968 
3969 	if (atomic_read(&buffer->record_disabled))
3970 		goto out;
3971 
3972 	cpu = raw_smp_processor_id();
3973 
3974 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3975 		goto out;
3976 
3977 	cpu_buffer = buffer->buffers[cpu];
3978 
3979 	if (atomic_read(&cpu_buffer->record_disabled))
3980 		goto out;
3981 
3982 	if (length > BUF_MAX_DATA_SIZE)
3983 		goto out;
3984 
3985 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3986 		goto out;
3987 
3988 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3989 	if (!event)
3990 		goto out_unlock;
3991 
3992 	body = rb_event_data(event);
3993 
3994 	memcpy(body, data, length);
3995 
3996 	rb_commit(cpu_buffer);
3997 
3998 	rb_wakeups(buffer, cpu_buffer);
3999 
4000 	ret = 0;
4001 
4002  out_unlock:
4003 	trace_recursive_unlock(cpu_buffer);
4004 
4005  out:
4006 	preempt_enable_notrace();
4007 
4008 	return ret;
4009 }
4010 EXPORT_SYMBOL_GPL(ring_buffer_write);
4011 
4012 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4013 {
4014 	struct buffer_page *reader = cpu_buffer->reader_page;
4015 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4016 	struct buffer_page *commit = cpu_buffer->commit_page;
4017 
4018 	/* In case of error, head will be NULL */
4019 	if (unlikely(!head))
4020 		return true;
4021 
4022 	/* Reader should exhaust content in reader page */
4023 	if (reader->read != rb_page_commit(reader))
4024 		return false;
4025 
4026 	/*
4027 	 * If writers are committing on the reader page, knowing all
4028 	 * committed content has been read, the ring buffer is empty.
4029 	 */
4030 	if (commit == reader)
4031 		return true;
4032 
4033 	/*
4034 	 * If writers are committing on a page other than reader page
4035 	 * and head page, there should always be content to read.
4036 	 */
4037 	if (commit != head)
4038 		return false;
4039 
4040 	/*
4041 	 * Writers are committing on the head page, we just need
4042 	 * to care about there're committed data, and the reader will
4043 	 * swap reader page with head page when it is to read data.
4044 	 */
4045 	return rb_page_commit(commit) == 0;
4046 }
4047 
4048 /**
4049  * ring_buffer_record_disable - stop all writes into the buffer
4050  * @buffer: The ring buffer to stop writes to.
4051  *
4052  * This prevents all writes to the buffer. Any attempt to write
4053  * to the buffer after this will fail and return NULL.
4054  *
4055  * The caller should call synchronize_rcu() after this.
4056  */
4057 void ring_buffer_record_disable(struct trace_buffer *buffer)
4058 {
4059 	atomic_inc(&buffer->record_disabled);
4060 }
4061 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4062 
4063 /**
4064  * ring_buffer_record_enable - enable writes to the buffer
4065  * @buffer: The ring buffer to enable writes
4066  *
4067  * Note, multiple disables will need the same number of enables
4068  * to truly enable the writing (much like preempt_disable).
4069  */
4070 void ring_buffer_record_enable(struct trace_buffer *buffer)
4071 {
4072 	atomic_dec(&buffer->record_disabled);
4073 }
4074 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4075 
4076 /**
4077  * ring_buffer_record_off - stop all writes into the buffer
4078  * @buffer: The ring buffer to stop writes to.
4079  *
4080  * This prevents all writes to the buffer. Any attempt to write
4081  * to the buffer after this will fail and return NULL.
4082  *
4083  * This is different than ring_buffer_record_disable() as
4084  * it works like an on/off switch, where as the disable() version
4085  * must be paired with a enable().
4086  */
4087 void ring_buffer_record_off(struct trace_buffer *buffer)
4088 {
4089 	unsigned int rd;
4090 	unsigned int new_rd;
4091 
4092 	do {
4093 		rd = atomic_read(&buffer->record_disabled);
4094 		new_rd = rd | RB_BUFFER_OFF;
4095 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4096 }
4097 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4098 
4099 /**
4100  * ring_buffer_record_on - restart writes into the buffer
4101  * @buffer: The ring buffer to start writes to.
4102  *
4103  * This enables all writes to the buffer that was disabled by
4104  * ring_buffer_record_off().
4105  *
4106  * This is different than ring_buffer_record_enable() as
4107  * it works like an on/off switch, where as the enable() version
4108  * must be paired with a disable().
4109  */
4110 void ring_buffer_record_on(struct trace_buffer *buffer)
4111 {
4112 	unsigned int rd;
4113 	unsigned int new_rd;
4114 
4115 	do {
4116 		rd = atomic_read(&buffer->record_disabled);
4117 		new_rd = rd & ~RB_BUFFER_OFF;
4118 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4119 }
4120 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4121 
4122 /**
4123  * ring_buffer_record_is_on - return true if the ring buffer can write
4124  * @buffer: The ring buffer to see if write is enabled
4125  *
4126  * Returns true if the ring buffer is in a state that it accepts writes.
4127  */
4128 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4129 {
4130 	return !atomic_read(&buffer->record_disabled);
4131 }
4132 
4133 /**
4134  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4135  * @buffer: The ring buffer to see if write is set enabled
4136  *
4137  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4138  * Note that this does NOT mean it is in a writable state.
4139  *
4140  * It may return true when the ring buffer has been disabled by
4141  * ring_buffer_record_disable(), as that is a temporary disabling of
4142  * the ring buffer.
4143  */
4144 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4145 {
4146 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4147 }
4148 
4149 /**
4150  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4151  * @buffer: The ring buffer to stop writes to.
4152  * @cpu: The CPU buffer to stop
4153  *
4154  * This prevents all writes to the buffer. Any attempt to write
4155  * to the buffer after this will fail and return NULL.
4156  *
4157  * The caller should call synchronize_rcu() after this.
4158  */
4159 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4160 {
4161 	struct ring_buffer_per_cpu *cpu_buffer;
4162 
4163 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164 		return;
4165 
4166 	cpu_buffer = buffer->buffers[cpu];
4167 	atomic_inc(&cpu_buffer->record_disabled);
4168 }
4169 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4170 
4171 /**
4172  * ring_buffer_record_enable_cpu - enable writes to the buffer
4173  * @buffer: The ring buffer to enable writes
4174  * @cpu: The CPU to enable.
4175  *
4176  * Note, multiple disables will need the same number of enables
4177  * to truly enable the writing (much like preempt_disable).
4178  */
4179 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4180 {
4181 	struct ring_buffer_per_cpu *cpu_buffer;
4182 
4183 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4184 		return;
4185 
4186 	cpu_buffer = buffer->buffers[cpu];
4187 	atomic_dec(&cpu_buffer->record_disabled);
4188 }
4189 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4190 
4191 /*
4192  * The total entries in the ring buffer is the running counter
4193  * of entries entered into the ring buffer, minus the sum of
4194  * the entries read from the ring buffer and the number of
4195  * entries that were overwritten.
4196  */
4197 static inline unsigned long
4198 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4199 {
4200 	return local_read(&cpu_buffer->entries) -
4201 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4202 }
4203 
4204 /**
4205  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4206  * @buffer: The ring buffer
4207  * @cpu: The per CPU buffer to read from.
4208  */
4209 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4210 {
4211 	unsigned long flags;
4212 	struct ring_buffer_per_cpu *cpu_buffer;
4213 	struct buffer_page *bpage;
4214 	u64 ret = 0;
4215 
4216 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4217 		return 0;
4218 
4219 	cpu_buffer = buffer->buffers[cpu];
4220 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4221 	/*
4222 	 * if the tail is on reader_page, oldest time stamp is on the reader
4223 	 * page
4224 	 */
4225 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4226 		bpage = cpu_buffer->reader_page;
4227 	else
4228 		bpage = rb_set_head_page(cpu_buffer);
4229 	if (bpage)
4230 		ret = bpage->page->time_stamp;
4231 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4232 
4233 	return ret;
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4236 
4237 /**
4238  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4239  * @buffer: The ring buffer
4240  * @cpu: The per CPU buffer to read from.
4241  */
4242 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4243 {
4244 	struct ring_buffer_per_cpu *cpu_buffer;
4245 	unsigned long ret;
4246 
4247 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4248 		return 0;
4249 
4250 	cpu_buffer = buffer->buffers[cpu];
4251 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4252 
4253 	return ret;
4254 }
4255 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4256 
4257 /**
4258  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4259  * @buffer: The ring buffer
4260  * @cpu: The per CPU buffer to get the entries from.
4261  */
4262 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4263 {
4264 	struct ring_buffer_per_cpu *cpu_buffer;
4265 
4266 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4267 		return 0;
4268 
4269 	cpu_buffer = buffer->buffers[cpu];
4270 
4271 	return rb_num_of_entries(cpu_buffer);
4272 }
4273 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4274 
4275 /**
4276  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4277  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4278  * @buffer: The ring buffer
4279  * @cpu: The per CPU buffer to get the number of overruns from
4280  */
4281 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4282 {
4283 	struct ring_buffer_per_cpu *cpu_buffer;
4284 	unsigned long ret;
4285 
4286 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4287 		return 0;
4288 
4289 	cpu_buffer = buffer->buffers[cpu];
4290 	ret = local_read(&cpu_buffer->overrun);
4291 
4292 	return ret;
4293 }
4294 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4295 
4296 /**
4297  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4298  * commits failing due to the buffer wrapping around while there are uncommitted
4299  * events, such as during an interrupt storm.
4300  * @buffer: The ring buffer
4301  * @cpu: The per CPU buffer to get the number of overruns from
4302  */
4303 unsigned long
4304 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4305 {
4306 	struct ring_buffer_per_cpu *cpu_buffer;
4307 	unsigned long ret;
4308 
4309 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4310 		return 0;
4311 
4312 	cpu_buffer = buffer->buffers[cpu];
4313 	ret = local_read(&cpu_buffer->commit_overrun);
4314 
4315 	return ret;
4316 }
4317 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4318 
4319 /**
4320  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4321  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4322  * @buffer: The ring buffer
4323  * @cpu: The per CPU buffer to get the number of overruns from
4324  */
4325 unsigned long
4326 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4327 {
4328 	struct ring_buffer_per_cpu *cpu_buffer;
4329 	unsigned long ret;
4330 
4331 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4332 		return 0;
4333 
4334 	cpu_buffer = buffer->buffers[cpu];
4335 	ret = local_read(&cpu_buffer->dropped_events);
4336 
4337 	return ret;
4338 }
4339 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4340 
4341 /**
4342  * ring_buffer_read_events_cpu - get the number of events successfully read
4343  * @buffer: The ring buffer
4344  * @cpu: The per CPU buffer to get the number of events read
4345  */
4346 unsigned long
4347 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4348 {
4349 	struct ring_buffer_per_cpu *cpu_buffer;
4350 
4351 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4352 		return 0;
4353 
4354 	cpu_buffer = buffer->buffers[cpu];
4355 	return cpu_buffer->read;
4356 }
4357 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4358 
4359 /**
4360  * ring_buffer_entries - get the number of entries in a buffer
4361  * @buffer: The ring buffer
4362  *
4363  * Returns the total number of entries in the ring buffer
4364  * (all CPU entries)
4365  */
4366 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4367 {
4368 	struct ring_buffer_per_cpu *cpu_buffer;
4369 	unsigned long entries = 0;
4370 	int cpu;
4371 
4372 	/* if you care about this being correct, lock the buffer */
4373 	for_each_buffer_cpu(buffer, cpu) {
4374 		cpu_buffer = buffer->buffers[cpu];
4375 		entries += rb_num_of_entries(cpu_buffer);
4376 	}
4377 
4378 	return entries;
4379 }
4380 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4381 
4382 /**
4383  * ring_buffer_overruns - get the number of overruns in buffer
4384  * @buffer: The ring buffer
4385  *
4386  * Returns the total number of overruns in the ring buffer
4387  * (all CPU entries)
4388  */
4389 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4390 {
4391 	struct ring_buffer_per_cpu *cpu_buffer;
4392 	unsigned long overruns = 0;
4393 	int cpu;
4394 
4395 	/* if you care about this being correct, lock the buffer */
4396 	for_each_buffer_cpu(buffer, cpu) {
4397 		cpu_buffer = buffer->buffers[cpu];
4398 		overruns += local_read(&cpu_buffer->overrun);
4399 	}
4400 
4401 	return overruns;
4402 }
4403 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4404 
4405 static void rb_iter_reset(struct ring_buffer_iter *iter)
4406 {
4407 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4408 
4409 	/* Iterator usage is expected to have record disabled */
4410 	iter->head_page = cpu_buffer->reader_page;
4411 	iter->head = cpu_buffer->reader_page->read;
4412 	iter->next_event = iter->head;
4413 
4414 	iter->cache_reader_page = iter->head_page;
4415 	iter->cache_read = cpu_buffer->read;
4416 
4417 	if (iter->head) {
4418 		iter->read_stamp = cpu_buffer->read_stamp;
4419 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4420 	} else {
4421 		iter->read_stamp = iter->head_page->page->time_stamp;
4422 		iter->page_stamp = iter->read_stamp;
4423 	}
4424 }
4425 
4426 /**
4427  * ring_buffer_iter_reset - reset an iterator
4428  * @iter: The iterator to reset
4429  *
4430  * Resets the iterator, so that it will start from the beginning
4431  * again.
4432  */
4433 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4434 {
4435 	struct ring_buffer_per_cpu *cpu_buffer;
4436 	unsigned long flags;
4437 
4438 	if (!iter)
4439 		return;
4440 
4441 	cpu_buffer = iter->cpu_buffer;
4442 
4443 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4444 	rb_iter_reset(iter);
4445 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4446 }
4447 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4448 
4449 /**
4450  * ring_buffer_iter_empty - check if an iterator has no more to read
4451  * @iter: The iterator to check
4452  */
4453 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4454 {
4455 	struct ring_buffer_per_cpu *cpu_buffer;
4456 	struct buffer_page *reader;
4457 	struct buffer_page *head_page;
4458 	struct buffer_page *commit_page;
4459 	struct buffer_page *curr_commit_page;
4460 	unsigned commit;
4461 	u64 curr_commit_ts;
4462 	u64 commit_ts;
4463 
4464 	cpu_buffer = iter->cpu_buffer;
4465 	reader = cpu_buffer->reader_page;
4466 	head_page = cpu_buffer->head_page;
4467 	commit_page = cpu_buffer->commit_page;
4468 	commit_ts = commit_page->page->time_stamp;
4469 
4470 	/*
4471 	 * When the writer goes across pages, it issues a cmpxchg which
4472 	 * is a mb(), which will synchronize with the rmb here.
4473 	 * (see rb_tail_page_update())
4474 	 */
4475 	smp_rmb();
4476 	commit = rb_page_commit(commit_page);
4477 	/* We want to make sure that the commit page doesn't change */
4478 	smp_rmb();
4479 
4480 	/* Make sure commit page didn't change */
4481 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4482 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4483 
4484 	/* If the commit page changed, then there's more data */
4485 	if (curr_commit_page != commit_page ||
4486 	    curr_commit_ts != commit_ts)
4487 		return 0;
4488 
4489 	/* Still racy, as it may return a false positive, but that's OK */
4490 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4491 		(iter->head_page == reader && commit_page == head_page &&
4492 		 head_page->read == commit &&
4493 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4494 }
4495 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4496 
4497 static void
4498 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4499 		     struct ring_buffer_event *event)
4500 {
4501 	u64 delta;
4502 
4503 	switch (event->type_len) {
4504 	case RINGBUF_TYPE_PADDING:
4505 		return;
4506 
4507 	case RINGBUF_TYPE_TIME_EXTEND:
4508 		delta = rb_event_time_stamp(event);
4509 		cpu_buffer->read_stamp += delta;
4510 		return;
4511 
4512 	case RINGBUF_TYPE_TIME_STAMP:
4513 		delta = rb_event_time_stamp(event);
4514 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4515 		cpu_buffer->read_stamp = delta;
4516 		return;
4517 
4518 	case RINGBUF_TYPE_DATA:
4519 		cpu_buffer->read_stamp += event->time_delta;
4520 		return;
4521 
4522 	default:
4523 		RB_WARN_ON(cpu_buffer, 1);
4524 	}
4525 	return;
4526 }
4527 
4528 static void
4529 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4530 			  struct ring_buffer_event *event)
4531 {
4532 	u64 delta;
4533 
4534 	switch (event->type_len) {
4535 	case RINGBUF_TYPE_PADDING:
4536 		return;
4537 
4538 	case RINGBUF_TYPE_TIME_EXTEND:
4539 		delta = rb_event_time_stamp(event);
4540 		iter->read_stamp += delta;
4541 		return;
4542 
4543 	case RINGBUF_TYPE_TIME_STAMP:
4544 		delta = rb_event_time_stamp(event);
4545 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4546 		iter->read_stamp = delta;
4547 		return;
4548 
4549 	case RINGBUF_TYPE_DATA:
4550 		iter->read_stamp += event->time_delta;
4551 		return;
4552 
4553 	default:
4554 		RB_WARN_ON(iter->cpu_buffer, 1);
4555 	}
4556 	return;
4557 }
4558 
4559 static struct buffer_page *
4560 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4561 {
4562 	struct buffer_page *reader = NULL;
4563 	unsigned long overwrite;
4564 	unsigned long flags;
4565 	int nr_loops = 0;
4566 	int ret;
4567 
4568 	local_irq_save(flags);
4569 	arch_spin_lock(&cpu_buffer->lock);
4570 
4571  again:
4572 	/*
4573 	 * This should normally only loop twice. But because the
4574 	 * start of the reader inserts an empty page, it causes
4575 	 * a case where we will loop three times. There should be no
4576 	 * reason to loop four times (that I know of).
4577 	 */
4578 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4579 		reader = NULL;
4580 		goto out;
4581 	}
4582 
4583 	reader = cpu_buffer->reader_page;
4584 
4585 	/* If there's more to read, return this page */
4586 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4587 		goto out;
4588 
4589 	/* Never should we have an index greater than the size */
4590 	if (RB_WARN_ON(cpu_buffer,
4591 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4592 		goto out;
4593 
4594 	/* check if we caught up to the tail */
4595 	reader = NULL;
4596 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4597 		goto out;
4598 
4599 	/* Don't bother swapping if the ring buffer is empty */
4600 	if (rb_num_of_entries(cpu_buffer) == 0)
4601 		goto out;
4602 
4603 	/*
4604 	 * Reset the reader page to size zero.
4605 	 */
4606 	local_set(&cpu_buffer->reader_page->write, 0);
4607 	local_set(&cpu_buffer->reader_page->entries, 0);
4608 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4609 	cpu_buffer->reader_page->real_end = 0;
4610 
4611  spin:
4612 	/*
4613 	 * Splice the empty reader page into the list around the head.
4614 	 */
4615 	reader = rb_set_head_page(cpu_buffer);
4616 	if (!reader)
4617 		goto out;
4618 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4619 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4620 
4621 	/*
4622 	 * cpu_buffer->pages just needs to point to the buffer, it
4623 	 *  has no specific buffer page to point to. Lets move it out
4624 	 *  of our way so we don't accidentally swap it.
4625 	 */
4626 	cpu_buffer->pages = reader->list.prev;
4627 
4628 	/* The reader page will be pointing to the new head */
4629 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4630 
4631 	/*
4632 	 * We want to make sure we read the overruns after we set up our
4633 	 * pointers to the next object. The writer side does a
4634 	 * cmpxchg to cross pages which acts as the mb on the writer
4635 	 * side. Note, the reader will constantly fail the swap
4636 	 * while the writer is updating the pointers, so this
4637 	 * guarantees that the overwrite recorded here is the one we
4638 	 * want to compare with the last_overrun.
4639 	 */
4640 	smp_mb();
4641 	overwrite = local_read(&(cpu_buffer->overrun));
4642 
4643 	/*
4644 	 * Here's the tricky part.
4645 	 *
4646 	 * We need to move the pointer past the header page.
4647 	 * But we can only do that if a writer is not currently
4648 	 * moving it. The page before the header page has the
4649 	 * flag bit '1' set if it is pointing to the page we want.
4650 	 * but if the writer is in the process of moving it
4651 	 * than it will be '2' or already moved '0'.
4652 	 */
4653 
4654 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4655 
4656 	/*
4657 	 * If we did not convert it, then we must try again.
4658 	 */
4659 	if (!ret)
4660 		goto spin;
4661 
4662 	/*
4663 	 * Yay! We succeeded in replacing the page.
4664 	 *
4665 	 * Now make the new head point back to the reader page.
4666 	 */
4667 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4668 	rb_inc_page(&cpu_buffer->head_page);
4669 
4670 	local_inc(&cpu_buffer->pages_read);
4671 
4672 	/* Finally update the reader page to the new head */
4673 	cpu_buffer->reader_page = reader;
4674 	cpu_buffer->reader_page->read = 0;
4675 
4676 	if (overwrite != cpu_buffer->last_overrun) {
4677 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4678 		cpu_buffer->last_overrun = overwrite;
4679 	}
4680 
4681 	goto again;
4682 
4683  out:
4684 	/* Update the read_stamp on the first event */
4685 	if (reader && reader->read == 0)
4686 		cpu_buffer->read_stamp = reader->page->time_stamp;
4687 
4688 	arch_spin_unlock(&cpu_buffer->lock);
4689 	local_irq_restore(flags);
4690 
4691 	/*
4692 	 * The writer has preempt disable, wait for it. But not forever
4693 	 * Although, 1 second is pretty much "forever"
4694 	 */
4695 #define USECS_WAIT	1000000
4696         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4697 		/* If the write is past the end of page, a writer is still updating it */
4698 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4699 			break;
4700 
4701 		udelay(1);
4702 
4703 		/* Get the latest version of the reader write value */
4704 		smp_rmb();
4705 	}
4706 
4707 	/* The writer is not moving forward? Something is wrong */
4708 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4709 		reader = NULL;
4710 
4711 	/*
4712 	 * Make sure we see any padding after the write update
4713 	 * (see rb_reset_tail())
4714 	 */
4715 	smp_rmb();
4716 
4717 
4718 	return reader;
4719 }
4720 
4721 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4722 {
4723 	struct ring_buffer_event *event;
4724 	struct buffer_page *reader;
4725 	unsigned length;
4726 
4727 	reader = rb_get_reader_page(cpu_buffer);
4728 
4729 	/* This function should not be called when buffer is empty */
4730 	if (RB_WARN_ON(cpu_buffer, !reader))
4731 		return;
4732 
4733 	event = rb_reader_event(cpu_buffer);
4734 
4735 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4736 		cpu_buffer->read++;
4737 
4738 	rb_update_read_stamp(cpu_buffer, event);
4739 
4740 	length = rb_event_length(event);
4741 	cpu_buffer->reader_page->read += length;
4742 }
4743 
4744 static void rb_advance_iter(struct ring_buffer_iter *iter)
4745 {
4746 	struct ring_buffer_per_cpu *cpu_buffer;
4747 
4748 	cpu_buffer = iter->cpu_buffer;
4749 
4750 	/* If head == next_event then we need to jump to the next event */
4751 	if (iter->head == iter->next_event) {
4752 		/* If the event gets overwritten again, there's nothing to do */
4753 		if (rb_iter_head_event(iter) == NULL)
4754 			return;
4755 	}
4756 
4757 	iter->head = iter->next_event;
4758 
4759 	/*
4760 	 * Check if we are at the end of the buffer.
4761 	 */
4762 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4763 		/* discarded commits can make the page empty */
4764 		if (iter->head_page == cpu_buffer->commit_page)
4765 			return;
4766 		rb_inc_iter(iter);
4767 		return;
4768 	}
4769 
4770 	rb_update_iter_read_stamp(iter, iter->event);
4771 }
4772 
4773 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4774 {
4775 	return cpu_buffer->lost_events;
4776 }
4777 
4778 static struct ring_buffer_event *
4779 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4780 	       unsigned long *lost_events)
4781 {
4782 	struct ring_buffer_event *event;
4783 	struct buffer_page *reader;
4784 	int nr_loops = 0;
4785 
4786 	if (ts)
4787 		*ts = 0;
4788  again:
4789 	/*
4790 	 * We repeat when a time extend is encountered.
4791 	 * Since the time extend is always attached to a data event,
4792 	 * we should never loop more than once.
4793 	 * (We never hit the following condition more than twice).
4794 	 */
4795 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4796 		return NULL;
4797 
4798 	reader = rb_get_reader_page(cpu_buffer);
4799 	if (!reader)
4800 		return NULL;
4801 
4802 	event = rb_reader_event(cpu_buffer);
4803 
4804 	switch (event->type_len) {
4805 	case RINGBUF_TYPE_PADDING:
4806 		if (rb_null_event(event))
4807 			RB_WARN_ON(cpu_buffer, 1);
4808 		/*
4809 		 * Because the writer could be discarding every
4810 		 * event it creates (which would probably be bad)
4811 		 * if we were to go back to "again" then we may never
4812 		 * catch up, and will trigger the warn on, or lock
4813 		 * the box. Return the padding, and we will release
4814 		 * the current locks, and try again.
4815 		 */
4816 		return event;
4817 
4818 	case RINGBUF_TYPE_TIME_EXTEND:
4819 		/* Internal data, OK to advance */
4820 		rb_advance_reader(cpu_buffer);
4821 		goto again;
4822 
4823 	case RINGBUF_TYPE_TIME_STAMP:
4824 		if (ts) {
4825 			*ts = rb_event_time_stamp(event);
4826 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4827 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4828 							 cpu_buffer->cpu, ts);
4829 		}
4830 		/* Internal data, OK to advance */
4831 		rb_advance_reader(cpu_buffer);
4832 		goto again;
4833 
4834 	case RINGBUF_TYPE_DATA:
4835 		if (ts && !(*ts)) {
4836 			*ts = cpu_buffer->read_stamp + event->time_delta;
4837 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4838 							 cpu_buffer->cpu, ts);
4839 		}
4840 		if (lost_events)
4841 			*lost_events = rb_lost_events(cpu_buffer);
4842 		return event;
4843 
4844 	default:
4845 		RB_WARN_ON(cpu_buffer, 1);
4846 	}
4847 
4848 	return NULL;
4849 }
4850 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4851 
4852 static struct ring_buffer_event *
4853 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4854 {
4855 	struct trace_buffer *buffer;
4856 	struct ring_buffer_per_cpu *cpu_buffer;
4857 	struct ring_buffer_event *event;
4858 	int nr_loops = 0;
4859 
4860 	if (ts)
4861 		*ts = 0;
4862 
4863 	cpu_buffer = iter->cpu_buffer;
4864 	buffer = cpu_buffer->buffer;
4865 
4866 	/*
4867 	 * Check if someone performed a consuming read to
4868 	 * the buffer. A consuming read invalidates the iterator
4869 	 * and we need to reset the iterator in this case.
4870 	 */
4871 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4872 		     iter->cache_reader_page != cpu_buffer->reader_page))
4873 		rb_iter_reset(iter);
4874 
4875  again:
4876 	if (ring_buffer_iter_empty(iter))
4877 		return NULL;
4878 
4879 	/*
4880 	 * As the writer can mess with what the iterator is trying
4881 	 * to read, just give up if we fail to get an event after
4882 	 * three tries. The iterator is not as reliable when reading
4883 	 * the ring buffer with an active write as the consumer is.
4884 	 * Do not warn if the three failures is reached.
4885 	 */
4886 	if (++nr_loops > 3)
4887 		return NULL;
4888 
4889 	if (rb_per_cpu_empty(cpu_buffer))
4890 		return NULL;
4891 
4892 	if (iter->head >= rb_page_size(iter->head_page)) {
4893 		rb_inc_iter(iter);
4894 		goto again;
4895 	}
4896 
4897 	event = rb_iter_head_event(iter);
4898 	if (!event)
4899 		goto again;
4900 
4901 	switch (event->type_len) {
4902 	case RINGBUF_TYPE_PADDING:
4903 		if (rb_null_event(event)) {
4904 			rb_inc_iter(iter);
4905 			goto again;
4906 		}
4907 		rb_advance_iter(iter);
4908 		return event;
4909 
4910 	case RINGBUF_TYPE_TIME_EXTEND:
4911 		/* Internal data, OK to advance */
4912 		rb_advance_iter(iter);
4913 		goto again;
4914 
4915 	case RINGBUF_TYPE_TIME_STAMP:
4916 		if (ts) {
4917 			*ts = rb_event_time_stamp(event);
4918 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4919 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4920 							 cpu_buffer->cpu, ts);
4921 		}
4922 		/* Internal data, OK to advance */
4923 		rb_advance_iter(iter);
4924 		goto again;
4925 
4926 	case RINGBUF_TYPE_DATA:
4927 		if (ts && !(*ts)) {
4928 			*ts = iter->read_stamp + event->time_delta;
4929 			ring_buffer_normalize_time_stamp(buffer,
4930 							 cpu_buffer->cpu, ts);
4931 		}
4932 		return event;
4933 
4934 	default:
4935 		RB_WARN_ON(cpu_buffer, 1);
4936 	}
4937 
4938 	return NULL;
4939 }
4940 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4941 
4942 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4943 {
4944 	if (likely(!in_nmi())) {
4945 		raw_spin_lock(&cpu_buffer->reader_lock);
4946 		return true;
4947 	}
4948 
4949 	/*
4950 	 * If an NMI die dumps out the content of the ring buffer
4951 	 * trylock must be used to prevent a deadlock if the NMI
4952 	 * preempted a task that holds the ring buffer locks. If
4953 	 * we get the lock then all is fine, if not, then continue
4954 	 * to do the read, but this can corrupt the ring buffer,
4955 	 * so it must be permanently disabled from future writes.
4956 	 * Reading from NMI is a oneshot deal.
4957 	 */
4958 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4959 		return true;
4960 
4961 	/* Continue without locking, but disable the ring buffer */
4962 	atomic_inc(&cpu_buffer->record_disabled);
4963 	return false;
4964 }
4965 
4966 static inline void
4967 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4968 {
4969 	if (likely(locked))
4970 		raw_spin_unlock(&cpu_buffer->reader_lock);
4971 	return;
4972 }
4973 
4974 /**
4975  * ring_buffer_peek - peek at the next event to be read
4976  * @buffer: The ring buffer to read
4977  * @cpu: The cpu to peak at
4978  * @ts: The timestamp counter of this event.
4979  * @lost_events: a variable to store if events were lost (may be NULL)
4980  *
4981  * This will return the event that will be read next, but does
4982  * not consume the data.
4983  */
4984 struct ring_buffer_event *
4985 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4986 		 unsigned long *lost_events)
4987 {
4988 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4989 	struct ring_buffer_event *event;
4990 	unsigned long flags;
4991 	bool dolock;
4992 
4993 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4994 		return NULL;
4995 
4996  again:
4997 	local_irq_save(flags);
4998 	dolock = rb_reader_lock(cpu_buffer);
4999 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5000 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5001 		rb_advance_reader(cpu_buffer);
5002 	rb_reader_unlock(cpu_buffer, dolock);
5003 	local_irq_restore(flags);
5004 
5005 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5006 		goto again;
5007 
5008 	return event;
5009 }
5010 
5011 /** ring_buffer_iter_dropped - report if there are dropped events
5012  * @iter: The ring buffer iterator
5013  *
5014  * Returns true if there was dropped events since the last peek.
5015  */
5016 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5017 {
5018 	bool ret = iter->missed_events != 0;
5019 
5020 	iter->missed_events = 0;
5021 	return ret;
5022 }
5023 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5024 
5025 /**
5026  * ring_buffer_iter_peek - peek at the next event to be read
5027  * @iter: The ring buffer iterator
5028  * @ts: The timestamp counter of this event.
5029  *
5030  * This will return the event that will be read next, but does
5031  * not increment the iterator.
5032  */
5033 struct ring_buffer_event *
5034 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5035 {
5036 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5037 	struct ring_buffer_event *event;
5038 	unsigned long flags;
5039 
5040  again:
5041 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5042 	event = rb_iter_peek(iter, ts);
5043 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5044 
5045 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5046 		goto again;
5047 
5048 	return event;
5049 }
5050 
5051 /**
5052  * ring_buffer_consume - return an event and consume it
5053  * @buffer: The ring buffer to get the next event from
5054  * @cpu: the cpu to read the buffer from
5055  * @ts: a variable to store the timestamp (may be NULL)
5056  * @lost_events: a variable to store if events were lost (may be NULL)
5057  *
5058  * Returns the next event in the ring buffer, and that event is consumed.
5059  * Meaning, that sequential reads will keep returning a different event,
5060  * and eventually empty the ring buffer if the producer is slower.
5061  */
5062 struct ring_buffer_event *
5063 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5064 		    unsigned long *lost_events)
5065 {
5066 	struct ring_buffer_per_cpu *cpu_buffer;
5067 	struct ring_buffer_event *event = NULL;
5068 	unsigned long flags;
5069 	bool dolock;
5070 
5071  again:
5072 	/* might be called in atomic */
5073 	preempt_disable();
5074 
5075 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5076 		goto out;
5077 
5078 	cpu_buffer = buffer->buffers[cpu];
5079 	local_irq_save(flags);
5080 	dolock = rb_reader_lock(cpu_buffer);
5081 
5082 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5083 	if (event) {
5084 		cpu_buffer->lost_events = 0;
5085 		rb_advance_reader(cpu_buffer);
5086 	}
5087 
5088 	rb_reader_unlock(cpu_buffer, dolock);
5089 	local_irq_restore(flags);
5090 
5091  out:
5092 	preempt_enable();
5093 
5094 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5095 		goto again;
5096 
5097 	return event;
5098 }
5099 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5100 
5101 /**
5102  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5103  * @buffer: The ring buffer to read from
5104  * @cpu: The cpu buffer to iterate over
5105  * @flags: gfp flags to use for memory allocation
5106  *
5107  * This performs the initial preparations necessary to iterate
5108  * through the buffer.  Memory is allocated, buffer recording
5109  * is disabled, and the iterator pointer is returned to the caller.
5110  *
5111  * Disabling buffer recording prevents the reading from being
5112  * corrupted. This is not a consuming read, so a producer is not
5113  * expected.
5114  *
5115  * After a sequence of ring_buffer_read_prepare calls, the user is
5116  * expected to make at least one call to ring_buffer_read_prepare_sync.
5117  * Afterwards, ring_buffer_read_start is invoked to get things going
5118  * for real.
5119  *
5120  * This overall must be paired with ring_buffer_read_finish.
5121  */
5122 struct ring_buffer_iter *
5123 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5124 {
5125 	struct ring_buffer_per_cpu *cpu_buffer;
5126 	struct ring_buffer_iter *iter;
5127 
5128 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5129 		return NULL;
5130 
5131 	iter = kzalloc(sizeof(*iter), flags);
5132 	if (!iter)
5133 		return NULL;
5134 
5135 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5136 	if (!iter->event) {
5137 		kfree(iter);
5138 		return NULL;
5139 	}
5140 
5141 	cpu_buffer = buffer->buffers[cpu];
5142 
5143 	iter->cpu_buffer = cpu_buffer;
5144 
5145 	atomic_inc(&cpu_buffer->resize_disabled);
5146 
5147 	return iter;
5148 }
5149 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5150 
5151 /**
5152  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5153  *
5154  * All previously invoked ring_buffer_read_prepare calls to prepare
5155  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5156  * calls on those iterators are allowed.
5157  */
5158 void
5159 ring_buffer_read_prepare_sync(void)
5160 {
5161 	synchronize_rcu();
5162 }
5163 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5164 
5165 /**
5166  * ring_buffer_read_start - start a non consuming read of the buffer
5167  * @iter: The iterator returned by ring_buffer_read_prepare
5168  *
5169  * This finalizes the startup of an iteration through the buffer.
5170  * The iterator comes from a call to ring_buffer_read_prepare and
5171  * an intervening ring_buffer_read_prepare_sync must have been
5172  * performed.
5173  *
5174  * Must be paired with ring_buffer_read_finish.
5175  */
5176 void
5177 ring_buffer_read_start(struct ring_buffer_iter *iter)
5178 {
5179 	struct ring_buffer_per_cpu *cpu_buffer;
5180 	unsigned long flags;
5181 
5182 	if (!iter)
5183 		return;
5184 
5185 	cpu_buffer = iter->cpu_buffer;
5186 
5187 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5188 	arch_spin_lock(&cpu_buffer->lock);
5189 	rb_iter_reset(iter);
5190 	arch_spin_unlock(&cpu_buffer->lock);
5191 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5192 }
5193 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5194 
5195 /**
5196  * ring_buffer_read_finish - finish reading the iterator of the buffer
5197  * @iter: The iterator retrieved by ring_buffer_start
5198  *
5199  * This re-enables the recording to the buffer, and frees the
5200  * iterator.
5201  */
5202 void
5203 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5204 {
5205 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5206 	unsigned long flags;
5207 
5208 	/*
5209 	 * Ring buffer is disabled from recording, here's a good place
5210 	 * to check the integrity of the ring buffer.
5211 	 * Must prevent readers from trying to read, as the check
5212 	 * clears the HEAD page and readers require it.
5213 	 */
5214 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5215 	rb_check_pages(cpu_buffer);
5216 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5217 
5218 	atomic_dec(&cpu_buffer->resize_disabled);
5219 	kfree(iter->event);
5220 	kfree(iter);
5221 }
5222 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5223 
5224 /**
5225  * ring_buffer_iter_advance - advance the iterator to the next location
5226  * @iter: The ring buffer iterator
5227  *
5228  * Move the location of the iterator such that the next read will
5229  * be the next location of the iterator.
5230  */
5231 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5232 {
5233 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5234 	unsigned long flags;
5235 
5236 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5237 
5238 	rb_advance_iter(iter);
5239 
5240 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5241 }
5242 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5243 
5244 /**
5245  * ring_buffer_size - return the size of the ring buffer (in bytes)
5246  * @buffer: The ring buffer.
5247  * @cpu: The CPU to get ring buffer size from.
5248  */
5249 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5250 {
5251 	/*
5252 	 * Earlier, this method returned
5253 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5254 	 * Since the nr_pages field is now removed, we have converted this to
5255 	 * return the per cpu buffer value.
5256 	 */
5257 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5258 		return 0;
5259 
5260 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5261 }
5262 EXPORT_SYMBOL_GPL(ring_buffer_size);
5263 
5264 static void
5265 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5266 {
5267 	rb_head_page_deactivate(cpu_buffer);
5268 
5269 	cpu_buffer->head_page
5270 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5271 	local_set(&cpu_buffer->head_page->write, 0);
5272 	local_set(&cpu_buffer->head_page->entries, 0);
5273 	local_set(&cpu_buffer->head_page->page->commit, 0);
5274 
5275 	cpu_buffer->head_page->read = 0;
5276 
5277 	cpu_buffer->tail_page = cpu_buffer->head_page;
5278 	cpu_buffer->commit_page = cpu_buffer->head_page;
5279 
5280 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5281 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5282 	local_set(&cpu_buffer->reader_page->write, 0);
5283 	local_set(&cpu_buffer->reader_page->entries, 0);
5284 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5285 	cpu_buffer->reader_page->read = 0;
5286 
5287 	local_set(&cpu_buffer->entries_bytes, 0);
5288 	local_set(&cpu_buffer->overrun, 0);
5289 	local_set(&cpu_buffer->commit_overrun, 0);
5290 	local_set(&cpu_buffer->dropped_events, 0);
5291 	local_set(&cpu_buffer->entries, 0);
5292 	local_set(&cpu_buffer->committing, 0);
5293 	local_set(&cpu_buffer->commits, 0);
5294 	local_set(&cpu_buffer->pages_touched, 0);
5295 	local_set(&cpu_buffer->pages_lost, 0);
5296 	local_set(&cpu_buffer->pages_read, 0);
5297 	cpu_buffer->last_pages_touch = 0;
5298 	cpu_buffer->shortest_full = 0;
5299 	cpu_buffer->read = 0;
5300 	cpu_buffer->read_bytes = 0;
5301 
5302 	rb_time_set(&cpu_buffer->write_stamp, 0);
5303 	rb_time_set(&cpu_buffer->before_stamp, 0);
5304 
5305 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5306 
5307 	cpu_buffer->lost_events = 0;
5308 	cpu_buffer->last_overrun = 0;
5309 
5310 	rb_head_page_activate(cpu_buffer);
5311 }
5312 
5313 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5314 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5315 {
5316 	unsigned long flags;
5317 
5318 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5319 
5320 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5321 		goto out;
5322 
5323 	arch_spin_lock(&cpu_buffer->lock);
5324 
5325 	rb_reset_cpu(cpu_buffer);
5326 
5327 	arch_spin_unlock(&cpu_buffer->lock);
5328 
5329  out:
5330 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5331 }
5332 
5333 /**
5334  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5335  * @buffer: The ring buffer to reset a per cpu buffer of
5336  * @cpu: The CPU buffer to be reset
5337  */
5338 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5339 {
5340 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5341 
5342 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5343 		return;
5344 
5345 	/* prevent another thread from changing buffer sizes */
5346 	mutex_lock(&buffer->mutex);
5347 
5348 	atomic_inc(&cpu_buffer->resize_disabled);
5349 	atomic_inc(&cpu_buffer->record_disabled);
5350 
5351 	/* Make sure all commits have finished */
5352 	synchronize_rcu();
5353 
5354 	reset_disabled_cpu_buffer(cpu_buffer);
5355 
5356 	atomic_dec(&cpu_buffer->record_disabled);
5357 	atomic_dec(&cpu_buffer->resize_disabled);
5358 
5359 	mutex_unlock(&buffer->mutex);
5360 }
5361 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5362 
5363 /**
5364  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5365  * @buffer: The ring buffer to reset a per cpu buffer of
5366  * @cpu: The CPU buffer to be reset
5367  */
5368 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5369 {
5370 	struct ring_buffer_per_cpu *cpu_buffer;
5371 	int cpu;
5372 
5373 	/* prevent another thread from changing buffer sizes */
5374 	mutex_lock(&buffer->mutex);
5375 
5376 	for_each_online_buffer_cpu(buffer, cpu) {
5377 		cpu_buffer = buffer->buffers[cpu];
5378 
5379 		atomic_inc(&cpu_buffer->resize_disabled);
5380 		atomic_inc(&cpu_buffer->record_disabled);
5381 	}
5382 
5383 	/* Make sure all commits have finished */
5384 	synchronize_rcu();
5385 
5386 	for_each_online_buffer_cpu(buffer, cpu) {
5387 		cpu_buffer = buffer->buffers[cpu];
5388 
5389 		reset_disabled_cpu_buffer(cpu_buffer);
5390 
5391 		atomic_dec(&cpu_buffer->record_disabled);
5392 		atomic_dec(&cpu_buffer->resize_disabled);
5393 	}
5394 
5395 	mutex_unlock(&buffer->mutex);
5396 }
5397 
5398 /**
5399  * ring_buffer_reset - reset a ring buffer
5400  * @buffer: The ring buffer to reset all cpu buffers
5401  */
5402 void ring_buffer_reset(struct trace_buffer *buffer)
5403 {
5404 	struct ring_buffer_per_cpu *cpu_buffer;
5405 	int cpu;
5406 
5407 	/* prevent another thread from changing buffer sizes */
5408 	mutex_lock(&buffer->mutex);
5409 
5410 	for_each_buffer_cpu(buffer, cpu) {
5411 		cpu_buffer = buffer->buffers[cpu];
5412 
5413 		atomic_inc(&cpu_buffer->resize_disabled);
5414 		atomic_inc(&cpu_buffer->record_disabled);
5415 	}
5416 
5417 	/* Make sure all commits have finished */
5418 	synchronize_rcu();
5419 
5420 	for_each_buffer_cpu(buffer, cpu) {
5421 		cpu_buffer = buffer->buffers[cpu];
5422 
5423 		reset_disabled_cpu_buffer(cpu_buffer);
5424 
5425 		atomic_dec(&cpu_buffer->record_disabled);
5426 		atomic_dec(&cpu_buffer->resize_disabled);
5427 	}
5428 
5429 	mutex_unlock(&buffer->mutex);
5430 }
5431 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5432 
5433 /**
5434  * ring_buffer_empty - is the ring buffer empty?
5435  * @buffer: The ring buffer to test
5436  */
5437 bool ring_buffer_empty(struct trace_buffer *buffer)
5438 {
5439 	struct ring_buffer_per_cpu *cpu_buffer;
5440 	unsigned long flags;
5441 	bool dolock;
5442 	int cpu;
5443 	int ret;
5444 
5445 	/* yes this is racy, but if you don't like the race, lock the buffer */
5446 	for_each_buffer_cpu(buffer, cpu) {
5447 		cpu_buffer = buffer->buffers[cpu];
5448 		local_irq_save(flags);
5449 		dolock = rb_reader_lock(cpu_buffer);
5450 		ret = rb_per_cpu_empty(cpu_buffer);
5451 		rb_reader_unlock(cpu_buffer, dolock);
5452 		local_irq_restore(flags);
5453 
5454 		if (!ret)
5455 			return false;
5456 	}
5457 
5458 	return true;
5459 }
5460 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5461 
5462 /**
5463  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5464  * @buffer: The ring buffer
5465  * @cpu: The CPU buffer to test
5466  */
5467 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5468 {
5469 	struct ring_buffer_per_cpu *cpu_buffer;
5470 	unsigned long flags;
5471 	bool dolock;
5472 	int ret;
5473 
5474 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5475 		return true;
5476 
5477 	cpu_buffer = buffer->buffers[cpu];
5478 	local_irq_save(flags);
5479 	dolock = rb_reader_lock(cpu_buffer);
5480 	ret = rb_per_cpu_empty(cpu_buffer);
5481 	rb_reader_unlock(cpu_buffer, dolock);
5482 	local_irq_restore(flags);
5483 
5484 	return ret;
5485 }
5486 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5487 
5488 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5489 /**
5490  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5491  * @buffer_a: One buffer to swap with
5492  * @buffer_b: The other buffer to swap with
5493  * @cpu: the CPU of the buffers to swap
5494  *
5495  * This function is useful for tracers that want to take a "snapshot"
5496  * of a CPU buffer and has another back up buffer lying around.
5497  * it is expected that the tracer handles the cpu buffer not being
5498  * used at the moment.
5499  */
5500 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5501 			 struct trace_buffer *buffer_b, int cpu)
5502 {
5503 	struct ring_buffer_per_cpu *cpu_buffer_a;
5504 	struct ring_buffer_per_cpu *cpu_buffer_b;
5505 	int ret = -EINVAL;
5506 
5507 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5508 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5509 		goto out;
5510 
5511 	cpu_buffer_a = buffer_a->buffers[cpu];
5512 	cpu_buffer_b = buffer_b->buffers[cpu];
5513 
5514 	/* At least make sure the two buffers are somewhat the same */
5515 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5516 		goto out;
5517 
5518 	ret = -EAGAIN;
5519 
5520 	if (atomic_read(&buffer_a->record_disabled))
5521 		goto out;
5522 
5523 	if (atomic_read(&buffer_b->record_disabled))
5524 		goto out;
5525 
5526 	if (atomic_read(&cpu_buffer_a->record_disabled))
5527 		goto out;
5528 
5529 	if (atomic_read(&cpu_buffer_b->record_disabled))
5530 		goto out;
5531 
5532 	/*
5533 	 * We can't do a synchronize_rcu here because this
5534 	 * function can be called in atomic context.
5535 	 * Normally this will be called from the same CPU as cpu.
5536 	 * If not it's up to the caller to protect this.
5537 	 */
5538 	atomic_inc(&cpu_buffer_a->record_disabled);
5539 	atomic_inc(&cpu_buffer_b->record_disabled);
5540 
5541 	ret = -EBUSY;
5542 	if (local_read(&cpu_buffer_a->committing))
5543 		goto out_dec;
5544 	if (local_read(&cpu_buffer_b->committing))
5545 		goto out_dec;
5546 
5547 	buffer_a->buffers[cpu] = cpu_buffer_b;
5548 	buffer_b->buffers[cpu] = cpu_buffer_a;
5549 
5550 	cpu_buffer_b->buffer = buffer_a;
5551 	cpu_buffer_a->buffer = buffer_b;
5552 
5553 	ret = 0;
5554 
5555 out_dec:
5556 	atomic_dec(&cpu_buffer_a->record_disabled);
5557 	atomic_dec(&cpu_buffer_b->record_disabled);
5558 out:
5559 	return ret;
5560 }
5561 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5562 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5563 
5564 /**
5565  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5566  * @buffer: the buffer to allocate for.
5567  * @cpu: the cpu buffer to allocate.
5568  *
5569  * This function is used in conjunction with ring_buffer_read_page.
5570  * When reading a full page from the ring buffer, these functions
5571  * can be used to speed up the process. The calling function should
5572  * allocate a few pages first with this function. Then when it
5573  * needs to get pages from the ring buffer, it passes the result
5574  * of this function into ring_buffer_read_page, which will swap
5575  * the page that was allocated, with the read page of the buffer.
5576  *
5577  * Returns:
5578  *  The page allocated, or ERR_PTR
5579  */
5580 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5581 {
5582 	struct ring_buffer_per_cpu *cpu_buffer;
5583 	struct buffer_data_page *bpage = NULL;
5584 	unsigned long flags;
5585 	struct page *page;
5586 
5587 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5588 		return ERR_PTR(-ENODEV);
5589 
5590 	cpu_buffer = buffer->buffers[cpu];
5591 	local_irq_save(flags);
5592 	arch_spin_lock(&cpu_buffer->lock);
5593 
5594 	if (cpu_buffer->free_page) {
5595 		bpage = cpu_buffer->free_page;
5596 		cpu_buffer->free_page = NULL;
5597 	}
5598 
5599 	arch_spin_unlock(&cpu_buffer->lock);
5600 	local_irq_restore(flags);
5601 
5602 	if (bpage)
5603 		goto out;
5604 
5605 	page = alloc_pages_node(cpu_to_node(cpu),
5606 				GFP_KERNEL | __GFP_NORETRY, 0);
5607 	if (!page)
5608 		return ERR_PTR(-ENOMEM);
5609 
5610 	bpage = page_address(page);
5611 
5612  out:
5613 	rb_init_page(bpage);
5614 
5615 	return bpage;
5616 }
5617 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5618 
5619 /**
5620  * ring_buffer_free_read_page - free an allocated read page
5621  * @buffer: the buffer the page was allocate for
5622  * @cpu: the cpu buffer the page came from
5623  * @data: the page to free
5624  *
5625  * Free a page allocated from ring_buffer_alloc_read_page.
5626  */
5627 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5628 {
5629 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5630 	struct buffer_data_page *bpage = data;
5631 	struct page *page = virt_to_page(bpage);
5632 	unsigned long flags;
5633 
5634 	/* If the page is still in use someplace else, we can't reuse it */
5635 	if (page_ref_count(page) > 1)
5636 		goto out;
5637 
5638 	local_irq_save(flags);
5639 	arch_spin_lock(&cpu_buffer->lock);
5640 
5641 	if (!cpu_buffer->free_page) {
5642 		cpu_buffer->free_page = bpage;
5643 		bpage = NULL;
5644 	}
5645 
5646 	arch_spin_unlock(&cpu_buffer->lock);
5647 	local_irq_restore(flags);
5648 
5649  out:
5650 	free_page((unsigned long)bpage);
5651 }
5652 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5653 
5654 /**
5655  * ring_buffer_read_page - extract a page from the ring buffer
5656  * @buffer: buffer to extract from
5657  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5658  * @len: amount to extract
5659  * @cpu: the cpu of the buffer to extract
5660  * @full: should the extraction only happen when the page is full.
5661  *
5662  * This function will pull out a page from the ring buffer and consume it.
5663  * @data_page must be the address of the variable that was returned
5664  * from ring_buffer_alloc_read_page. This is because the page might be used
5665  * to swap with a page in the ring buffer.
5666  *
5667  * for example:
5668  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5669  *	if (IS_ERR(rpage))
5670  *		return PTR_ERR(rpage);
5671  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5672  *	if (ret >= 0)
5673  *		process_page(rpage, ret);
5674  *
5675  * When @full is set, the function will not return true unless
5676  * the writer is off the reader page.
5677  *
5678  * Note: it is up to the calling functions to handle sleeps and wakeups.
5679  *  The ring buffer can be used anywhere in the kernel and can not
5680  *  blindly call wake_up. The layer that uses the ring buffer must be
5681  *  responsible for that.
5682  *
5683  * Returns:
5684  *  >=0 if data has been transferred, returns the offset of consumed data.
5685  *  <0 if no data has been transferred.
5686  */
5687 int ring_buffer_read_page(struct trace_buffer *buffer,
5688 			  void **data_page, size_t len, int cpu, int full)
5689 {
5690 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5691 	struct ring_buffer_event *event;
5692 	struct buffer_data_page *bpage;
5693 	struct buffer_page *reader;
5694 	unsigned long missed_events;
5695 	unsigned long flags;
5696 	unsigned int commit;
5697 	unsigned int read;
5698 	u64 save_timestamp;
5699 	int ret = -1;
5700 
5701 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5702 		goto out;
5703 
5704 	/*
5705 	 * If len is not big enough to hold the page header, then
5706 	 * we can not copy anything.
5707 	 */
5708 	if (len <= BUF_PAGE_HDR_SIZE)
5709 		goto out;
5710 
5711 	len -= BUF_PAGE_HDR_SIZE;
5712 
5713 	if (!data_page)
5714 		goto out;
5715 
5716 	bpage = *data_page;
5717 	if (!bpage)
5718 		goto out;
5719 
5720 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5721 
5722 	reader = rb_get_reader_page(cpu_buffer);
5723 	if (!reader)
5724 		goto out_unlock;
5725 
5726 	event = rb_reader_event(cpu_buffer);
5727 
5728 	read = reader->read;
5729 	commit = rb_page_commit(reader);
5730 
5731 	/* Check if any events were dropped */
5732 	missed_events = cpu_buffer->lost_events;
5733 
5734 	/*
5735 	 * If this page has been partially read or
5736 	 * if len is not big enough to read the rest of the page or
5737 	 * a writer is still on the page, then
5738 	 * we must copy the data from the page to the buffer.
5739 	 * Otherwise, we can simply swap the page with the one passed in.
5740 	 */
5741 	if (read || (len < (commit - read)) ||
5742 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5743 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5744 		unsigned int rpos = read;
5745 		unsigned int pos = 0;
5746 		unsigned int size;
5747 
5748 		/*
5749 		 * If a full page is expected, this can still be returned
5750 		 * if there's been a previous partial read and the
5751 		 * rest of the page can be read and the commit page is off
5752 		 * the reader page.
5753 		 */
5754 		if (full &&
5755 		    (!read || (len < (commit - read)) ||
5756 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5757 			goto out_unlock;
5758 
5759 		if (len > (commit - read))
5760 			len = (commit - read);
5761 
5762 		/* Always keep the time extend and data together */
5763 		size = rb_event_ts_length(event);
5764 
5765 		if (len < size)
5766 			goto out_unlock;
5767 
5768 		/* save the current timestamp, since the user will need it */
5769 		save_timestamp = cpu_buffer->read_stamp;
5770 
5771 		/* Need to copy one event at a time */
5772 		do {
5773 			/* We need the size of one event, because
5774 			 * rb_advance_reader only advances by one event,
5775 			 * whereas rb_event_ts_length may include the size of
5776 			 * one or two events.
5777 			 * We have already ensured there's enough space if this
5778 			 * is a time extend. */
5779 			size = rb_event_length(event);
5780 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5781 
5782 			len -= size;
5783 
5784 			rb_advance_reader(cpu_buffer);
5785 			rpos = reader->read;
5786 			pos += size;
5787 
5788 			if (rpos >= commit)
5789 				break;
5790 
5791 			event = rb_reader_event(cpu_buffer);
5792 			/* Always keep the time extend and data together */
5793 			size = rb_event_ts_length(event);
5794 		} while (len >= size);
5795 
5796 		/* update bpage */
5797 		local_set(&bpage->commit, pos);
5798 		bpage->time_stamp = save_timestamp;
5799 
5800 		/* we copied everything to the beginning */
5801 		read = 0;
5802 	} else {
5803 		/* update the entry counter */
5804 		cpu_buffer->read += rb_page_entries(reader);
5805 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5806 
5807 		/* swap the pages */
5808 		rb_init_page(bpage);
5809 		bpage = reader->page;
5810 		reader->page = *data_page;
5811 		local_set(&reader->write, 0);
5812 		local_set(&reader->entries, 0);
5813 		reader->read = 0;
5814 		*data_page = bpage;
5815 
5816 		/*
5817 		 * Use the real_end for the data size,
5818 		 * This gives us a chance to store the lost events
5819 		 * on the page.
5820 		 */
5821 		if (reader->real_end)
5822 			local_set(&bpage->commit, reader->real_end);
5823 	}
5824 	ret = read;
5825 
5826 	cpu_buffer->lost_events = 0;
5827 
5828 	commit = local_read(&bpage->commit);
5829 	/*
5830 	 * Set a flag in the commit field if we lost events
5831 	 */
5832 	if (missed_events) {
5833 		/* If there is room at the end of the page to save the
5834 		 * missed events, then record it there.
5835 		 */
5836 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5837 			memcpy(&bpage->data[commit], &missed_events,
5838 			       sizeof(missed_events));
5839 			local_add(RB_MISSED_STORED, &bpage->commit);
5840 			commit += sizeof(missed_events);
5841 		}
5842 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5843 	}
5844 
5845 	/*
5846 	 * This page may be off to user land. Zero it out here.
5847 	 */
5848 	if (commit < BUF_PAGE_SIZE)
5849 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5850 
5851  out_unlock:
5852 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5853 
5854  out:
5855 	return ret;
5856 }
5857 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5858 
5859 /*
5860  * We only allocate new buffers, never free them if the CPU goes down.
5861  * If we were to free the buffer, then the user would lose any trace that was in
5862  * the buffer.
5863  */
5864 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5865 {
5866 	struct trace_buffer *buffer;
5867 	long nr_pages_same;
5868 	int cpu_i;
5869 	unsigned long nr_pages;
5870 
5871 	buffer = container_of(node, struct trace_buffer, node);
5872 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5873 		return 0;
5874 
5875 	nr_pages = 0;
5876 	nr_pages_same = 1;
5877 	/* check if all cpu sizes are same */
5878 	for_each_buffer_cpu(buffer, cpu_i) {
5879 		/* fill in the size from first enabled cpu */
5880 		if (nr_pages == 0)
5881 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5882 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5883 			nr_pages_same = 0;
5884 			break;
5885 		}
5886 	}
5887 	/* allocate minimum pages, user can later expand it */
5888 	if (!nr_pages_same)
5889 		nr_pages = 2;
5890 	buffer->buffers[cpu] =
5891 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5892 	if (!buffer->buffers[cpu]) {
5893 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5894 		     cpu);
5895 		return -ENOMEM;
5896 	}
5897 	smp_wmb();
5898 	cpumask_set_cpu(cpu, buffer->cpumask);
5899 	return 0;
5900 }
5901 
5902 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5903 /*
5904  * This is a basic integrity check of the ring buffer.
5905  * Late in the boot cycle this test will run when configured in.
5906  * It will kick off a thread per CPU that will go into a loop
5907  * writing to the per cpu ring buffer various sizes of data.
5908  * Some of the data will be large items, some small.
5909  *
5910  * Another thread is created that goes into a spin, sending out
5911  * IPIs to the other CPUs to also write into the ring buffer.
5912  * this is to test the nesting ability of the buffer.
5913  *
5914  * Basic stats are recorded and reported. If something in the
5915  * ring buffer should happen that's not expected, a big warning
5916  * is displayed and all ring buffers are disabled.
5917  */
5918 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5919 
5920 struct rb_test_data {
5921 	struct trace_buffer *buffer;
5922 	unsigned long		events;
5923 	unsigned long		bytes_written;
5924 	unsigned long		bytes_alloc;
5925 	unsigned long		bytes_dropped;
5926 	unsigned long		events_nested;
5927 	unsigned long		bytes_written_nested;
5928 	unsigned long		bytes_alloc_nested;
5929 	unsigned long		bytes_dropped_nested;
5930 	int			min_size_nested;
5931 	int			max_size_nested;
5932 	int			max_size;
5933 	int			min_size;
5934 	int			cpu;
5935 	int			cnt;
5936 };
5937 
5938 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5939 
5940 /* 1 meg per cpu */
5941 #define RB_TEST_BUFFER_SIZE	1048576
5942 
5943 static char rb_string[] __initdata =
5944 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5945 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5946 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5947 
5948 static bool rb_test_started __initdata;
5949 
5950 struct rb_item {
5951 	int size;
5952 	char str[];
5953 };
5954 
5955 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5956 {
5957 	struct ring_buffer_event *event;
5958 	struct rb_item *item;
5959 	bool started;
5960 	int event_len;
5961 	int size;
5962 	int len;
5963 	int cnt;
5964 
5965 	/* Have nested writes different that what is written */
5966 	cnt = data->cnt + (nested ? 27 : 0);
5967 
5968 	/* Multiply cnt by ~e, to make some unique increment */
5969 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5970 
5971 	len = size + sizeof(struct rb_item);
5972 
5973 	started = rb_test_started;
5974 	/* read rb_test_started before checking buffer enabled */
5975 	smp_rmb();
5976 
5977 	event = ring_buffer_lock_reserve(data->buffer, len);
5978 	if (!event) {
5979 		/* Ignore dropped events before test starts. */
5980 		if (started) {
5981 			if (nested)
5982 				data->bytes_dropped += len;
5983 			else
5984 				data->bytes_dropped_nested += len;
5985 		}
5986 		return len;
5987 	}
5988 
5989 	event_len = ring_buffer_event_length(event);
5990 
5991 	if (RB_WARN_ON(data->buffer, event_len < len))
5992 		goto out;
5993 
5994 	item = ring_buffer_event_data(event);
5995 	item->size = size;
5996 	memcpy(item->str, rb_string, size);
5997 
5998 	if (nested) {
5999 		data->bytes_alloc_nested += event_len;
6000 		data->bytes_written_nested += len;
6001 		data->events_nested++;
6002 		if (!data->min_size_nested || len < data->min_size_nested)
6003 			data->min_size_nested = len;
6004 		if (len > data->max_size_nested)
6005 			data->max_size_nested = len;
6006 	} else {
6007 		data->bytes_alloc += event_len;
6008 		data->bytes_written += len;
6009 		data->events++;
6010 		if (!data->min_size || len < data->min_size)
6011 			data->max_size = len;
6012 		if (len > data->max_size)
6013 			data->max_size = len;
6014 	}
6015 
6016  out:
6017 	ring_buffer_unlock_commit(data->buffer);
6018 
6019 	return 0;
6020 }
6021 
6022 static __init int rb_test(void *arg)
6023 {
6024 	struct rb_test_data *data = arg;
6025 
6026 	while (!kthread_should_stop()) {
6027 		rb_write_something(data, false);
6028 		data->cnt++;
6029 
6030 		set_current_state(TASK_INTERRUPTIBLE);
6031 		/* Now sleep between a min of 100-300us and a max of 1ms */
6032 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6033 	}
6034 
6035 	return 0;
6036 }
6037 
6038 static __init void rb_ipi(void *ignore)
6039 {
6040 	struct rb_test_data *data;
6041 	int cpu = smp_processor_id();
6042 
6043 	data = &rb_data[cpu];
6044 	rb_write_something(data, true);
6045 }
6046 
6047 static __init int rb_hammer_test(void *arg)
6048 {
6049 	while (!kthread_should_stop()) {
6050 
6051 		/* Send an IPI to all cpus to write data! */
6052 		smp_call_function(rb_ipi, NULL, 1);
6053 		/* No sleep, but for non preempt, let others run */
6054 		schedule();
6055 	}
6056 
6057 	return 0;
6058 }
6059 
6060 static __init int test_ringbuffer(void)
6061 {
6062 	struct task_struct *rb_hammer;
6063 	struct trace_buffer *buffer;
6064 	int cpu;
6065 	int ret = 0;
6066 
6067 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6068 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6069 		return 0;
6070 	}
6071 
6072 	pr_info("Running ring buffer tests...\n");
6073 
6074 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6075 	if (WARN_ON(!buffer))
6076 		return 0;
6077 
6078 	/* Disable buffer so that threads can't write to it yet */
6079 	ring_buffer_record_off(buffer);
6080 
6081 	for_each_online_cpu(cpu) {
6082 		rb_data[cpu].buffer = buffer;
6083 		rb_data[cpu].cpu = cpu;
6084 		rb_data[cpu].cnt = cpu;
6085 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6086 						     cpu, "rbtester/%u");
6087 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6088 			pr_cont("FAILED\n");
6089 			ret = PTR_ERR(rb_threads[cpu]);
6090 			goto out_free;
6091 		}
6092 	}
6093 
6094 	/* Now create the rb hammer! */
6095 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6096 	if (WARN_ON(IS_ERR(rb_hammer))) {
6097 		pr_cont("FAILED\n");
6098 		ret = PTR_ERR(rb_hammer);
6099 		goto out_free;
6100 	}
6101 
6102 	ring_buffer_record_on(buffer);
6103 	/*
6104 	 * Show buffer is enabled before setting rb_test_started.
6105 	 * Yes there's a small race window where events could be
6106 	 * dropped and the thread wont catch it. But when a ring
6107 	 * buffer gets enabled, there will always be some kind of
6108 	 * delay before other CPUs see it. Thus, we don't care about
6109 	 * those dropped events. We care about events dropped after
6110 	 * the threads see that the buffer is active.
6111 	 */
6112 	smp_wmb();
6113 	rb_test_started = true;
6114 
6115 	set_current_state(TASK_INTERRUPTIBLE);
6116 	/* Just run for 10 seconds */;
6117 	schedule_timeout(10 * HZ);
6118 
6119 	kthread_stop(rb_hammer);
6120 
6121  out_free:
6122 	for_each_online_cpu(cpu) {
6123 		if (!rb_threads[cpu])
6124 			break;
6125 		kthread_stop(rb_threads[cpu]);
6126 	}
6127 	if (ret) {
6128 		ring_buffer_free(buffer);
6129 		return ret;
6130 	}
6131 
6132 	/* Report! */
6133 	pr_info("finished\n");
6134 	for_each_online_cpu(cpu) {
6135 		struct ring_buffer_event *event;
6136 		struct rb_test_data *data = &rb_data[cpu];
6137 		struct rb_item *item;
6138 		unsigned long total_events;
6139 		unsigned long total_dropped;
6140 		unsigned long total_written;
6141 		unsigned long total_alloc;
6142 		unsigned long total_read = 0;
6143 		unsigned long total_size = 0;
6144 		unsigned long total_len = 0;
6145 		unsigned long total_lost = 0;
6146 		unsigned long lost;
6147 		int big_event_size;
6148 		int small_event_size;
6149 
6150 		ret = -1;
6151 
6152 		total_events = data->events + data->events_nested;
6153 		total_written = data->bytes_written + data->bytes_written_nested;
6154 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6155 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6156 
6157 		big_event_size = data->max_size + data->max_size_nested;
6158 		small_event_size = data->min_size + data->min_size_nested;
6159 
6160 		pr_info("CPU %d:\n", cpu);
6161 		pr_info("              events:    %ld\n", total_events);
6162 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6163 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6164 		pr_info("       written bytes:    %ld\n", total_written);
6165 		pr_info("       biggest event:    %d\n", big_event_size);
6166 		pr_info("      smallest event:    %d\n", small_event_size);
6167 
6168 		if (RB_WARN_ON(buffer, total_dropped))
6169 			break;
6170 
6171 		ret = 0;
6172 
6173 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6174 			total_lost += lost;
6175 			item = ring_buffer_event_data(event);
6176 			total_len += ring_buffer_event_length(event);
6177 			total_size += item->size + sizeof(struct rb_item);
6178 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6179 				pr_info("FAILED!\n");
6180 				pr_info("buffer had: %.*s\n", item->size, item->str);
6181 				pr_info("expected:   %.*s\n", item->size, rb_string);
6182 				RB_WARN_ON(buffer, 1);
6183 				ret = -1;
6184 				break;
6185 			}
6186 			total_read++;
6187 		}
6188 		if (ret)
6189 			break;
6190 
6191 		ret = -1;
6192 
6193 		pr_info("         read events:   %ld\n", total_read);
6194 		pr_info("         lost events:   %ld\n", total_lost);
6195 		pr_info("        total events:   %ld\n", total_lost + total_read);
6196 		pr_info("  recorded len bytes:   %ld\n", total_len);
6197 		pr_info(" recorded size bytes:   %ld\n", total_size);
6198 		if (total_lost) {
6199 			pr_info(" With dropped events, record len and size may not match\n"
6200 				" alloced and written from above\n");
6201 		} else {
6202 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6203 				       total_size != total_written))
6204 				break;
6205 		}
6206 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6207 			break;
6208 
6209 		ret = 0;
6210 	}
6211 	if (!ret)
6212 		pr_info("Ring buffer PASSED!\n");
6213 
6214 	ring_buffer_free(buffer);
6215 	return 0;
6216 }
6217 
6218 late_initcall(test_ringbuffer);
6219 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6220