1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/debugfs.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/kmemcheck.h> 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/fs.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 int ret; 38 39 ret = trace_seq_puts(s, "# compressed entry header\n"); 40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n"); 41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 42 ret = trace_seq_puts(s, "\tarray : 32 bits\n"); 43 ret = trace_seq_putc(s, '\n'); 44 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return ret; 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* 123 * A fast way to enable or disable all ring buffers is to 124 * call tracing_on or tracing_off. Turning off the ring buffers 125 * prevents all ring buffers from being recorded to. 126 * Turning this switch on, makes it OK to write to the 127 * ring buffer, if the ring buffer is enabled itself. 128 * 129 * There's three layers that must be on in order to write 130 * to the ring buffer. 131 * 132 * 1) This global flag must be set. 133 * 2) The ring buffer must be enabled for recording. 134 * 3) The per cpu buffer must be enabled for recording. 135 * 136 * In case of an anomaly, this global flag has a bit set that 137 * will permantly disable all ring buffers. 138 */ 139 140 /* 141 * Global flag to disable all recording to ring buffers 142 * This has two bits: ON, DISABLED 143 * 144 * ON DISABLED 145 * ---- ---------- 146 * 0 0 : ring buffers are off 147 * 1 0 : ring buffers are on 148 * X 1 : ring buffers are permanently disabled 149 */ 150 151 enum { 152 RB_BUFFERS_ON_BIT = 0, 153 RB_BUFFERS_DISABLED_BIT = 1, 154 }; 155 156 enum { 157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 159 }; 160 161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 162 163 /* Used for individual buffers (after the counter) */ 164 #define RB_BUFFER_OFF (1 << 20) 165 166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 167 168 /** 169 * tracing_off_permanent - permanently disable ring buffers 170 * 171 * This function, once called, will disable all ring buffers 172 * permanently. 173 */ 174 void tracing_off_permanent(void) 175 { 176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 177 } 178 179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 180 #define RB_ALIGNMENT 4U 181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 183 184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 185 # define RB_FORCE_8BYTE_ALIGNMENT 0 186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 187 #else 188 # define RB_FORCE_8BYTE_ALIGNMENT 1 189 # define RB_ARCH_ALIGNMENT 8U 190 #endif 191 192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 193 194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 196 197 enum { 198 RB_LEN_TIME_EXTEND = 8, 199 RB_LEN_TIME_STAMP = 16, 200 }; 201 202 #define skip_time_extend(event) \ 203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 204 205 static inline int rb_null_event(struct ring_buffer_event *event) 206 { 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 208 } 209 210 static void rb_event_set_padding(struct ring_buffer_event *event) 211 { 212 /* padding has a NULL time_delta */ 213 event->type_len = RINGBUF_TYPE_PADDING; 214 event->time_delta = 0; 215 } 216 217 static unsigned 218 rb_event_data_length(struct ring_buffer_event *event) 219 { 220 unsigned length; 221 222 if (event->type_len) 223 length = event->type_len * RB_ALIGNMENT; 224 else 225 length = event->array[0]; 226 return length + RB_EVNT_HDR_SIZE; 227 } 228 229 /* 230 * Return the length of the given event. Will return 231 * the length of the time extend if the event is a 232 * time extend. 233 */ 234 static inline unsigned 235 rb_event_length(struct ring_buffer_event *event) 236 { 237 switch (event->type_len) { 238 case RINGBUF_TYPE_PADDING: 239 if (rb_null_event(event)) 240 /* undefined */ 241 return -1; 242 return event->array[0] + RB_EVNT_HDR_SIZE; 243 244 case RINGBUF_TYPE_TIME_EXTEND: 245 return RB_LEN_TIME_EXTEND; 246 247 case RINGBUF_TYPE_TIME_STAMP: 248 return RB_LEN_TIME_STAMP; 249 250 case RINGBUF_TYPE_DATA: 251 return rb_event_data_length(event); 252 default: 253 BUG(); 254 } 255 /* not hit */ 256 return 0; 257 } 258 259 /* 260 * Return total length of time extend and data, 261 * or just the event length for all other events. 262 */ 263 static inline unsigned 264 rb_event_ts_length(struct ring_buffer_event *event) 265 { 266 unsigned len = 0; 267 268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 269 /* time extends include the data event after it */ 270 len = RB_LEN_TIME_EXTEND; 271 event = skip_time_extend(event); 272 } 273 return len + rb_event_length(event); 274 } 275 276 /** 277 * ring_buffer_event_length - return the length of the event 278 * @event: the event to get the length of 279 * 280 * Returns the size of the data load of a data event. 281 * If the event is something other than a data event, it 282 * returns the size of the event itself. With the exception 283 * of a TIME EXTEND, where it still returns the size of the 284 * data load of the data event after it. 285 */ 286 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 287 { 288 unsigned length; 289 290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 291 event = skip_time_extend(event); 292 293 length = rb_event_length(event); 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 295 return length; 296 length -= RB_EVNT_HDR_SIZE; 297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 298 length -= sizeof(event->array[0]); 299 return length; 300 } 301 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 302 303 /* inline for ring buffer fast paths */ 304 static void * 305 rb_event_data(struct ring_buffer_event *event) 306 { 307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 308 event = skip_time_extend(event); 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 310 /* If length is in len field, then array[0] has the data */ 311 if (event->type_len) 312 return (void *)&event->array[0]; 313 /* Otherwise length is in array[0] and array[1] has the data */ 314 return (void *)&event->array[1]; 315 } 316 317 /** 318 * ring_buffer_event_data - return the data of the event 319 * @event: the event to get the data from 320 */ 321 void *ring_buffer_event_data(struct ring_buffer_event *event) 322 { 323 return rb_event_data(event); 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 326 327 #define for_each_buffer_cpu(buffer, cpu) \ 328 for_each_cpu(cpu, buffer->cpumask) 329 330 #define TS_SHIFT 27 331 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 332 #define TS_DELTA_TEST (~TS_MASK) 333 334 /* Flag when events were overwritten */ 335 #define RB_MISSED_EVENTS (1 << 31) 336 /* Missed count stored at end */ 337 #define RB_MISSED_STORED (1 << 30) 338 339 struct buffer_data_page { 340 u64 time_stamp; /* page time stamp */ 341 local_t commit; /* write committed index */ 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 343 }; 344 345 /* 346 * Note, the buffer_page list must be first. The buffer pages 347 * are allocated in cache lines, which means that each buffer 348 * page will be at the beginning of a cache line, and thus 349 * the least significant bits will be zero. We use this to 350 * add flags in the list struct pointers, to make the ring buffer 351 * lockless. 352 */ 353 struct buffer_page { 354 struct list_head list; /* list of buffer pages */ 355 local_t write; /* index for next write */ 356 unsigned read; /* index for next read */ 357 local_t entries; /* entries on this page */ 358 unsigned long real_end; /* real end of data */ 359 struct buffer_data_page *page; /* Actual data page */ 360 }; 361 362 /* 363 * The buffer page counters, write and entries, must be reset 364 * atomically when crossing page boundaries. To synchronize this 365 * update, two counters are inserted into the number. One is 366 * the actual counter for the write position or count on the page. 367 * 368 * The other is a counter of updaters. Before an update happens 369 * the update partition of the counter is incremented. This will 370 * allow the updater to update the counter atomically. 371 * 372 * The counter is 20 bits, and the state data is 12. 373 */ 374 #define RB_WRITE_MASK 0xfffff 375 #define RB_WRITE_INTCNT (1 << 20) 376 377 static void rb_init_page(struct buffer_data_page *bpage) 378 { 379 local_set(&bpage->commit, 0); 380 } 381 382 /** 383 * ring_buffer_page_len - the size of data on the page. 384 * @page: The page to read 385 * 386 * Returns the amount of data on the page, including buffer page header. 387 */ 388 size_t ring_buffer_page_len(void *page) 389 { 390 return local_read(&((struct buffer_data_page *)page)->commit) 391 + BUF_PAGE_HDR_SIZE; 392 } 393 394 /* 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 396 * this issue out. 397 */ 398 static void free_buffer_page(struct buffer_page *bpage) 399 { 400 free_page((unsigned long)bpage->page); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline int test_time_stamp(u64 delta) 408 { 409 if (delta & TS_DELTA_TEST) 410 return 1; 411 return 0; 412 } 413 414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 415 416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 418 419 int ring_buffer_print_page_header(struct trace_seq *s) 420 { 421 struct buffer_data_page field; 422 int ret; 423 424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 425 "offset:0;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)sizeof(field.time_stamp), 427 (unsigned int)is_signed_type(u64)); 428 429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 (unsigned int)sizeof(field.commit), 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), commit), 438 1, 439 (unsigned int)is_signed_type(long)); 440 441 ret = trace_seq_printf(s, "\tfield: char data;\t" 442 "offset:%u;\tsize:%u;\tsigned:%u;\n", 443 (unsigned int)offsetof(typeof(field), data), 444 (unsigned int)BUF_PAGE_SIZE, 445 (unsigned int)is_signed_type(char)); 446 447 return ret; 448 } 449 450 struct rb_irq_work { 451 struct irq_work work; 452 wait_queue_head_t waiters; 453 bool waiters_pending; 454 }; 455 456 /* 457 * head_page == tail_page && head == tail then buffer is empty. 458 */ 459 struct ring_buffer_per_cpu { 460 int cpu; 461 atomic_t record_disabled; 462 struct ring_buffer *buffer; 463 raw_spinlock_t reader_lock; /* serialize readers */ 464 arch_spinlock_t lock; 465 struct lock_class_key lock_key; 466 unsigned int nr_pages; 467 struct list_head *pages; 468 struct buffer_page *head_page; /* read from head */ 469 struct buffer_page *tail_page; /* write to tail */ 470 struct buffer_page *commit_page; /* committed pages */ 471 struct buffer_page *reader_page; 472 unsigned long lost_events; 473 unsigned long last_overrun; 474 local_t entries_bytes; 475 local_t entries; 476 local_t overrun; 477 local_t commit_overrun; 478 local_t dropped_events; 479 local_t committing; 480 local_t commits; 481 unsigned long read; 482 unsigned long read_bytes; 483 u64 write_stamp; 484 u64 read_stamp; 485 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 486 int nr_pages_to_update; 487 struct list_head new_pages; /* new pages to add */ 488 struct work_struct update_pages_work; 489 struct completion update_done; 490 491 struct rb_irq_work irq_work; 492 }; 493 494 struct ring_buffer { 495 unsigned flags; 496 int cpus; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 cpumask_var_t cpumask; 500 501 struct lock_class_key *reader_lock_key; 502 503 struct mutex mutex; 504 505 struct ring_buffer_per_cpu **buffers; 506 507 #ifdef CONFIG_HOTPLUG_CPU 508 struct notifier_block cpu_notify; 509 #endif 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 }; 514 515 struct ring_buffer_iter { 516 struct ring_buffer_per_cpu *cpu_buffer; 517 unsigned long head; 518 struct buffer_page *head_page; 519 struct buffer_page *cache_reader_page; 520 unsigned long cache_read; 521 u64 read_stamp; 522 }; 523 524 /* 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 526 * 527 * Schedules a delayed work to wake up any task that is blocked on the 528 * ring buffer waiters queue. 529 */ 530 static void rb_wake_up_waiters(struct irq_work *work) 531 { 532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 533 534 wake_up_all(&rbwork->waiters); 535 } 536 537 /** 538 * ring_buffer_wait - wait for input to the ring buffer 539 * @buffer: buffer to wait on 540 * @cpu: the cpu buffer to wait on 541 * 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 543 * as data is added to any of the @buffer's cpu buffers. Otherwise 544 * it will wait for data to be added to a specific cpu buffer. 545 */ 546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu) 547 { 548 struct ring_buffer_per_cpu *cpu_buffer; 549 DEFINE_WAIT(wait); 550 struct rb_irq_work *work; 551 552 /* 553 * Depending on what the caller is waiting for, either any 554 * data in any cpu buffer, or a specific buffer, put the 555 * caller on the appropriate wait queue. 556 */ 557 if (cpu == RING_BUFFER_ALL_CPUS) 558 work = &buffer->irq_work; 559 else { 560 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 561 return -ENODEV; 562 cpu_buffer = buffer->buffers[cpu]; 563 work = &cpu_buffer->irq_work; 564 } 565 566 567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 568 569 /* 570 * The events can happen in critical sections where 571 * checking a work queue can cause deadlocks. 572 * After adding a task to the queue, this flag is set 573 * only to notify events to try to wake up the queue 574 * using irq_work. 575 * 576 * We don't clear it even if the buffer is no longer 577 * empty. The flag only causes the next event to run 578 * irq_work to do the work queue wake up. The worse 579 * that can happen if we race with !trace_empty() is that 580 * an event will cause an irq_work to try to wake up 581 * an empty queue. 582 * 583 * There's no reason to protect this flag either, as 584 * the work queue and irq_work logic will do the necessary 585 * synchronization for the wake ups. The only thing 586 * that is necessary is that the wake up happens after 587 * a task has been queued. It's OK for spurious wake ups. 588 */ 589 work->waiters_pending = true; 590 591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) || 592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu))) 593 schedule(); 594 595 finish_wait(&work->waiters, &wait); 596 return 0; 597 } 598 599 /** 600 * ring_buffer_poll_wait - poll on buffer input 601 * @buffer: buffer to wait on 602 * @cpu: the cpu buffer to wait on 603 * @filp: the file descriptor 604 * @poll_table: The poll descriptor 605 * 606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 607 * as data is added to any of the @buffer's cpu buffers. Otherwise 608 * it will wait for data to be added to a specific cpu buffer. 609 * 610 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 611 * zero otherwise. 612 */ 613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 614 struct file *filp, poll_table *poll_table) 615 { 616 struct ring_buffer_per_cpu *cpu_buffer; 617 struct rb_irq_work *work; 618 619 if (cpu == RING_BUFFER_ALL_CPUS) 620 work = &buffer->irq_work; 621 else { 622 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 623 return -EINVAL; 624 625 cpu_buffer = buffer->buffers[cpu]; 626 work = &cpu_buffer->irq_work; 627 } 628 629 work->waiters_pending = true; 630 poll_wait(filp, &work->waiters, poll_table); 631 632 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 633 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 634 return POLLIN | POLLRDNORM; 635 return 0; 636 } 637 638 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 639 #define RB_WARN_ON(b, cond) \ 640 ({ \ 641 int _____ret = unlikely(cond); \ 642 if (_____ret) { \ 643 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 644 struct ring_buffer_per_cpu *__b = \ 645 (void *)b; \ 646 atomic_inc(&__b->buffer->record_disabled); \ 647 } else \ 648 atomic_inc(&b->record_disabled); \ 649 WARN_ON(1); \ 650 } \ 651 _____ret; \ 652 }) 653 654 /* Up this if you want to test the TIME_EXTENTS and normalization */ 655 #define DEBUG_SHIFT 0 656 657 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 658 { 659 /* shift to debug/test normalization and TIME_EXTENTS */ 660 return buffer->clock() << DEBUG_SHIFT; 661 } 662 663 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 664 { 665 u64 time; 666 667 preempt_disable_notrace(); 668 time = rb_time_stamp(buffer); 669 preempt_enable_no_resched_notrace(); 670 671 return time; 672 } 673 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 674 675 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 676 int cpu, u64 *ts) 677 { 678 /* Just stupid testing the normalize function and deltas */ 679 *ts >>= DEBUG_SHIFT; 680 } 681 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 682 683 /* 684 * Making the ring buffer lockless makes things tricky. 685 * Although writes only happen on the CPU that they are on, 686 * and they only need to worry about interrupts. Reads can 687 * happen on any CPU. 688 * 689 * The reader page is always off the ring buffer, but when the 690 * reader finishes with a page, it needs to swap its page with 691 * a new one from the buffer. The reader needs to take from 692 * the head (writes go to the tail). But if a writer is in overwrite 693 * mode and wraps, it must push the head page forward. 694 * 695 * Here lies the problem. 696 * 697 * The reader must be careful to replace only the head page, and 698 * not another one. As described at the top of the file in the 699 * ASCII art, the reader sets its old page to point to the next 700 * page after head. It then sets the page after head to point to 701 * the old reader page. But if the writer moves the head page 702 * during this operation, the reader could end up with the tail. 703 * 704 * We use cmpxchg to help prevent this race. We also do something 705 * special with the page before head. We set the LSB to 1. 706 * 707 * When the writer must push the page forward, it will clear the 708 * bit that points to the head page, move the head, and then set 709 * the bit that points to the new head page. 710 * 711 * We also don't want an interrupt coming in and moving the head 712 * page on another writer. Thus we use the second LSB to catch 713 * that too. Thus: 714 * 715 * head->list->prev->next bit 1 bit 0 716 * ------- ------- 717 * Normal page 0 0 718 * Points to head page 0 1 719 * New head page 1 0 720 * 721 * Note we can not trust the prev pointer of the head page, because: 722 * 723 * +----+ +-----+ +-----+ 724 * | |------>| T |---X--->| N | 725 * | |<------| | | | 726 * +----+ +-----+ +-----+ 727 * ^ ^ | 728 * | +-----+ | | 729 * +----------| R |----------+ | 730 * | |<-----------+ 731 * +-----+ 732 * 733 * Key: ---X--> HEAD flag set in pointer 734 * T Tail page 735 * R Reader page 736 * N Next page 737 * 738 * (see __rb_reserve_next() to see where this happens) 739 * 740 * What the above shows is that the reader just swapped out 741 * the reader page with a page in the buffer, but before it 742 * could make the new header point back to the new page added 743 * it was preempted by a writer. The writer moved forward onto 744 * the new page added by the reader and is about to move forward 745 * again. 746 * 747 * You can see, it is legitimate for the previous pointer of 748 * the head (or any page) not to point back to itself. But only 749 * temporarially. 750 */ 751 752 #define RB_PAGE_NORMAL 0UL 753 #define RB_PAGE_HEAD 1UL 754 #define RB_PAGE_UPDATE 2UL 755 756 757 #define RB_FLAG_MASK 3UL 758 759 /* PAGE_MOVED is not part of the mask */ 760 #define RB_PAGE_MOVED 4UL 761 762 /* 763 * rb_list_head - remove any bit 764 */ 765 static struct list_head *rb_list_head(struct list_head *list) 766 { 767 unsigned long val = (unsigned long)list; 768 769 return (struct list_head *)(val & ~RB_FLAG_MASK); 770 } 771 772 /* 773 * rb_is_head_page - test if the given page is the head page 774 * 775 * Because the reader may move the head_page pointer, we can 776 * not trust what the head page is (it may be pointing to 777 * the reader page). But if the next page is a header page, 778 * its flags will be non zero. 779 */ 780 static inline int 781 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 782 struct buffer_page *page, struct list_head *list) 783 { 784 unsigned long val; 785 786 val = (unsigned long)list->next; 787 788 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 789 return RB_PAGE_MOVED; 790 791 return val & RB_FLAG_MASK; 792 } 793 794 /* 795 * rb_is_reader_page 796 * 797 * The unique thing about the reader page, is that, if the 798 * writer is ever on it, the previous pointer never points 799 * back to the reader page. 800 */ 801 static int rb_is_reader_page(struct buffer_page *page) 802 { 803 struct list_head *list = page->list.prev; 804 805 return rb_list_head(list->next) != &page->list; 806 } 807 808 /* 809 * rb_set_list_to_head - set a list_head to be pointing to head. 810 */ 811 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 812 struct list_head *list) 813 { 814 unsigned long *ptr; 815 816 ptr = (unsigned long *)&list->next; 817 *ptr |= RB_PAGE_HEAD; 818 *ptr &= ~RB_PAGE_UPDATE; 819 } 820 821 /* 822 * rb_head_page_activate - sets up head page 823 */ 824 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 825 { 826 struct buffer_page *head; 827 828 head = cpu_buffer->head_page; 829 if (!head) 830 return; 831 832 /* 833 * Set the previous list pointer to have the HEAD flag. 834 */ 835 rb_set_list_to_head(cpu_buffer, head->list.prev); 836 } 837 838 static void rb_list_head_clear(struct list_head *list) 839 { 840 unsigned long *ptr = (unsigned long *)&list->next; 841 842 *ptr &= ~RB_FLAG_MASK; 843 } 844 845 /* 846 * rb_head_page_dactivate - clears head page ptr (for free list) 847 */ 848 static void 849 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 850 { 851 struct list_head *hd; 852 853 /* Go through the whole list and clear any pointers found. */ 854 rb_list_head_clear(cpu_buffer->pages); 855 856 list_for_each(hd, cpu_buffer->pages) 857 rb_list_head_clear(hd); 858 } 859 860 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 861 struct buffer_page *head, 862 struct buffer_page *prev, 863 int old_flag, int new_flag) 864 { 865 struct list_head *list; 866 unsigned long val = (unsigned long)&head->list; 867 unsigned long ret; 868 869 list = &prev->list; 870 871 val &= ~RB_FLAG_MASK; 872 873 ret = cmpxchg((unsigned long *)&list->next, 874 val | old_flag, val | new_flag); 875 876 /* check if the reader took the page */ 877 if ((ret & ~RB_FLAG_MASK) != val) 878 return RB_PAGE_MOVED; 879 880 return ret & RB_FLAG_MASK; 881 } 882 883 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 884 struct buffer_page *head, 885 struct buffer_page *prev, 886 int old_flag) 887 { 888 return rb_head_page_set(cpu_buffer, head, prev, 889 old_flag, RB_PAGE_UPDATE); 890 } 891 892 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 893 struct buffer_page *head, 894 struct buffer_page *prev, 895 int old_flag) 896 { 897 return rb_head_page_set(cpu_buffer, head, prev, 898 old_flag, RB_PAGE_HEAD); 899 } 900 901 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 902 struct buffer_page *head, 903 struct buffer_page *prev, 904 int old_flag) 905 { 906 return rb_head_page_set(cpu_buffer, head, prev, 907 old_flag, RB_PAGE_NORMAL); 908 } 909 910 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 911 struct buffer_page **bpage) 912 { 913 struct list_head *p = rb_list_head((*bpage)->list.next); 914 915 *bpage = list_entry(p, struct buffer_page, list); 916 } 917 918 static struct buffer_page * 919 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 920 { 921 struct buffer_page *head; 922 struct buffer_page *page; 923 struct list_head *list; 924 int i; 925 926 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 927 return NULL; 928 929 /* sanity check */ 930 list = cpu_buffer->pages; 931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 932 return NULL; 933 934 page = head = cpu_buffer->head_page; 935 /* 936 * It is possible that the writer moves the header behind 937 * where we started, and we miss in one loop. 938 * A second loop should grab the header, but we'll do 939 * three loops just because I'm paranoid. 940 */ 941 for (i = 0; i < 3; i++) { 942 do { 943 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 944 cpu_buffer->head_page = page; 945 return page; 946 } 947 rb_inc_page(cpu_buffer, &page); 948 } while (page != head); 949 } 950 951 RB_WARN_ON(cpu_buffer, 1); 952 953 return NULL; 954 } 955 956 static int rb_head_page_replace(struct buffer_page *old, 957 struct buffer_page *new) 958 { 959 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 960 unsigned long val; 961 unsigned long ret; 962 963 val = *ptr & ~RB_FLAG_MASK; 964 val |= RB_PAGE_HEAD; 965 966 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 967 968 return ret == val; 969 } 970 971 /* 972 * rb_tail_page_update - move the tail page forward 973 * 974 * Returns 1 if moved tail page, 0 if someone else did. 975 */ 976 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 977 struct buffer_page *tail_page, 978 struct buffer_page *next_page) 979 { 980 struct buffer_page *old_tail; 981 unsigned long old_entries; 982 unsigned long old_write; 983 int ret = 0; 984 985 /* 986 * The tail page now needs to be moved forward. 987 * 988 * We need to reset the tail page, but without messing 989 * with possible erasing of data brought in by interrupts 990 * that have moved the tail page and are currently on it. 991 * 992 * We add a counter to the write field to denote this. 993 */ 994 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 995 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 996 997 /* 998 * Just make sure we have seen our old_write and synchronize 999 * with any interrupts that come in. 1000 */ 1001 barrier(); 1002 1003 /* 1004 * If the tail page is still the same as what we think 1005 * it is, then it is up to us to update the tail 1006 * pointer. 1007 */ 1008 if (tail_page == cpu_buffer->tail_page) { 1009 /* Zero the write counter */ 1010 unsigned long val = old_write & ~RB_WRITE_MASK; 1011 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1012 1013 /* 1014 * This will only succeed if an interrupt did 1015 * not come in and change it. In which case, we 1016 * do not want to modify it. 1017 * 1018 * We add (void) to let the compiler know that we do not care 1019 * about the return value of these functions. We use the 1020 * cmpxchg to only update if an interrupt did not already 1021 * do it for us. If the cmpxchg fails, we don't care. 1022 */ 1023 (void)local_cmpxchg(&next_page->write, old_write, val); 1024 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1025 1026 /* 1027 * No need to worry about races with clearing out the commit. 1028 * it only can increment when a commit takes place. But that 1029 * only happens in the outer most nested commit. 1030 */ 1031 local_set(&next_page->page->commit, 0); 1032 1033 old_tail = cmpxchg(&cpu_buffer->tail_page, 1034 tail_page, next_page); 1035 1036 if (old_tail == tail_page) 1037 ret = 1; 1038 } 1039 1040 return ret; 1041 } 1042 1043 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1044 struct buffer_page *bpage) 1045 { 1046 unsigned long val = (unsigned long)bpage; 1047 1048 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1049 return 1; 1050 1051 return 0; 1052 } 1053 1054 /** 1055 * rb_check_list - make sure a pointer to a list has the last bits zero 1056 */ 1057 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1058 struct list_head *list) 1059 { 1060 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1061 return 1; 1062 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1063 return 1; 1064 return 0; 1065 } 1066 1067 /** 1068 * rb_check_pages - integrity check of buffer pages 1069 * @cpu_buffer: CPU buffer with pages to test 1070 * 1071 * As a safety measure we check to make sure the data pages have not 1072 * been corrupted. 1073 */ 1074 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1075 { 1076 struct list_head *head = cpu_buffer->pages; 1077 struct buffer_page *bpage, *tmp; 1078 1079 /* Reset the head page if it exists */ 1080 if (cpu_buffer->head_page) 1081 rb_set_head_page(cpu_buffer); 1082 1083 rb_head_page_deactivate(cpu_buffer); 1084 1085 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1086 return -1; 1087 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1088 return -1; 1089 1090 if (rb_check_list(cpu_buffer, head)) 1091 return -1; 1092 1093 list_for_each_entry_safe(bpage, tmp, head, list) { 1094 if (RB_WARN_ON(cpu_buffer, 1095 bpage->list.next->prev != &bpage->list)) 1096 return -1; 1097 if (RB_WARN_ON(cpu_buffer, 1098 bpage->list.prev->next != &bpage->list)) 1099 return -1; 1100 if (rb_check_list(cpu_buffer, &bpage->list)) 1101 return -1; 1102 } 1103 1104 rb_head_page_activate(cpu_buffer); 1105 1106 return 0; 1107 } 1108 1109 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1110 { 1111 int i; 1112 struct buffer_page *bpage, *tmp; 1113 1114 for (i = 0; i < nr_pages; i++) { 1115 struct page *page; 1116 /* 1117 * __GFP_NORETRY flag makes sure that the allocation fails 1118 * gracefully without invoking oom-killer and the system is 1119 * not destabilized. 1120 */ 1121 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1122 GFP_KERNEL | __GFP_NORETRY, 1123 cpu_to_node(cpu)); 1124 if (!bpage) 1125 goto free_pages; 1126 1127 list_add(&bpage->list, pages); 1128 1129 page = alloc_pages_node(cpu_to_node(cpu), 1130 GFP_KERNEL | __GFP_NORETRY, 0); 1131 if (!page) 1132 goto free_pages; 1133 bpage->page = page_address(page); 1134 rb_init_page(bpage->page); 1135 } 1136 1137 return 0; 1138 1139 free_pages: 1140 list_for_each_entry_safe(bpage, tmp, pages, list) { 1141 list_del_init(&bpage->list); 1142 free_buffer_page(bpage); 1143 } 1144 1145 return -ENOMEM; 1146 } 1147 1148 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1149 unsigned nr_pages) 1150 { 1151 LIST_HEAD(pages); 1152 1153 WARN_ON(!nr_pages); 1154 1155 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1156 return -ENOMEM; 1157 1158 /* 1159 * The ring buffer page list is a circular list that does not 1160 * start and end with a list head. All page list items point to 1161 * other pages. 1162 */ 1163 cpu_buffer->pages = pages.next; 1164 list_del(&pages); 1165 1166 cpu_buffer->nr_pages = nr_pages; 1167 1168 rb_check_pages(cpu_buffer); 1169 1170 return 0; 1171 } 1172 1173 static struct ring_buffer_per_cpu * 1174 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1175 { 1176 struct ring_buffer_per_cpu *cpu_buffer; 1177 struct buffer_page *bpage; 1178 struct page *page; 1179 int ret; 1180 1181 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1182 GFP_KERNEL, cpu_to_node(cpu)); 1183 if (!cpu_buffer) 1184 return NULL; 1185 1186 cpu_buffer->cpu = cpu; 1187 cpu_buffer->buffer = buffer; 1188 raw_spin_lock_init(&cpu_buffer->reader_lock); 1189 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1190 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1191 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1192 init_completion(&cpu_buffer->update_done); 1193 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1194 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1195 1196 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1197 GFP_KERNEL, cpu_to_node(cpu)); 1198 if (!bpage) 1199 goto fail_free_buffer; 1200 1201 rb_check_bpage(cpu_buffer, bpage); 1202 1203 cpu_buffer->reader_page = bpage; 1204 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1205 if (!page) 1206 goto fail_free_reader; 1207 bpage->page = page_address(page); 1208 rb_init_page(bpage->page); 1209 1210 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1211 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1212 1213 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1214 if (ret < 0) 1215 goto fail_free_reader; 1216 1217 cpu_buffer->head_page 1218 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1219 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1220 1221 rb_head_page_activate(cpu_buffer); 1222 1223 return cpu_buffer; 1224 1225 fail_free_reader: 1226 free_buffer_page(cpu_buffer->reader_page); 1227 1228 fail_free_buffer: 1229 kfree(cpu_buffer); 1230 return NULL; 1231 } 1232 1233 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1234 { 1235 struct list_head *head = cpu_buffer->pages; 1236 struct buffer_page *bpage, *tmp; 1237 1238 free_buffer_page(cpu_buffer->reader_page); 1239 1240 rb_head_page_deactivate(cpu_buffer); 1241 1242 if (head) { 1243 list_for_each_entry_safe(bpage, tmp, head, list) { 1244 list_del_init(&bpage->list); 1245 free_buffer_page(bpage); 1246 } 1247 bpage = list_entry(head, struct buffer_page, list); 1248 free_buffer_page(bpage); 1249 } 1250 1251 kfree(cpu_buffer); 1252 } 1253 1254 #ifdef CONFIG_HOTPLUG_CPU 1255 static int rb_cpu_notify(struct notifier_block *self, 1256 unsigned long action, void *hcpu); 1257 #endif 1258 1259 /** 1260 * __ring_buffer_alloc - allocate a new ring_buffer 1261 * @size: the size in bytes per cpu that is needed. 1262 * @flags: attributes to set for the ring buffer. 1263 * 1264 * Currently the only flag that is available is the RB_FL_OVERWRITE 1265 * flag. This flag means that the buffer will overwrite old data 1266 * when the buffer wraps. If this flag is not set, the buffer will 1267 * drop data when the tail hits the head. 1268 */ 1269 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1270 struct lock_class_key *key) 1271 { 1272 struct ring_buffer *buffer; 1273 int bsize; 1274 int cpu, nr_pages; 1275 1276 /* keep it in its own cache line */ 1277 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1278 GFP_KERNEL); 1279 if (!buffer) 1280 return NULL; 1281 1282 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1283 goto fail_free_buffer; 1284 1285 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1286 buffer->flags = flags; 1287 buffer->clock = trace_clock_local; 1288 buffer->reader_lock_key = key; 1289 1290 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1291 init_waitqueue_head(&buffer->irq_work.waiters); 1292 1293 /* need at least two pages */ 1294 if (nr_pages < 2) 1295 nr_pages = 2; 1296 1297 /* 1298 * In case of non-hotplug cpu, if the ring-buffer is allocated 1299 * in early initcall, it will not be notified of secondary cpus. 1300 * In that off case, we need to allocate for all possible cpus. 1301 */ 1302 #ifdef CONFIG_HOTPLUG_CPU 1303 cpu_notifier_register_begin(); 1304 cpumask_copy(buffer->cpumask, cpu_online_mask); 1305 #else 1306 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1307 #endif 1308 buffer->cpus = nr_cpu_ids; 1309 1310 bsize = sizeof(void *) * nr_cpu_ids; 1311 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1312 GFP_KERNEL); 1313 if (!buffer->buffers) 1314 goto fail_free_cpumask; 1315 1316 for_each_buffer_cpu(buffer, cpu) { 1317 buffer->buffers[cpu] = 1318 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1319 if (!buffer->buffers[cpu]) 1320 goto fail_free_buffers; 1321 } 1322 1323 #ifdef CONFIG_HOTPLUG_CPU 1324 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1325 buffer->cpu_notify.priority = 0; 1326 __register_cpu_notifier(&buffer->cpu_notify); 1327 cpu_notifier_register_done(); 1328 #endif 1329 1330 mutex_init(&buffer->mutex); 1331 1332 return buffer; 1333 1334 fail_free_buffers: 1335 for_each_buffer_cpu(buffer, cpu) { 1336 if (buffer->buffers[cpu]) 1337 rb_free_cpu_buffer(buffer->buffers[cpu]); 1338 } 1339 kfree(buffer->buffers); 1340 1341 fail_free_cpumask: 1342 free_cpumask_var(buffer->cpumask); 1343 #ifdef CONFIG_HOTPLUG_CPU 1344 cpu_notifier_register_done(); 1345 #endif 1346 1347 fail_free_buffer: 1348 kfree(buffer); 1349 return NULL; 1350 } 1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1352 1353 /** 1354 * ring_buffer_free - free a ring buffer. 1355 * @buffer: the buffer to free. 1356 */ 1357 void 1358 ring_buffer_free(struct ring_buffer *buffer) 1359 { 1360 int cpu; 1361 1362 #ifdef CONFIG_HOTPLUG_CPU 1363 cpu_notifier_register_begin(); 1364 __unregister_cpu_notifier(&buffer->cpu_notify); 1365 #endif 1366 1367 for_each_buffer_cpu(buffer, cpu) 1368 rb_free_cpu_buffer(buffer->buffers[cpu]); 1369 1370 #ifdef CONFIG_HOTPLUG_CPU 1371 cpu_notifier_register_done(); 1372 #endif 1373 1374 kfree(buffer->buffers); 1375 free_cpumask_var(buffer->cpumask); 1376 1377 kfree(buffer); 1378 } 1379 EXPORT_SYMBOL_GPL(ring_buffer_free); 1380 1381 void ring_buffer_set_clock(struct ring_buffer *buffer, 1382 u64 (*clock)(void)) 1383 { 1384 buffer->clock = clock; 1385 } 1386 1387 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1388 1389 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1390 { 1391 return local_read(&bpage->entries) & RB_WRITE_MASK; 1392 } 1393 1394 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1395 { 1396 return local_read(&bpage->write) & RB_WRITE_MASK; 1397 } 1398 1399 static int 1400 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1401 { 1402 struct list_head *tail_page, *to_remove, *next_page; 1403 struct buffer_page *to_remove_page, *tmp_iter_page; 1404 struct buffer_page *last_page, *first_page; 1405 unsigned int nr_removed; 1406 unsigned long head_bit; 1407 int page_entries; 1408 1409 head_bit = 0; 1410 1411 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1412 atomic_inc(&cpu_buffer->record_disabled); 1413 /* 1414 * We don't race with the readers since we have acquired the reader 1415 * lock. We also don't race with writers after disabling recording. 1416 * This makes it easy to figure out the first and the last page to be 1417 * removed from the list. We unlink all the pages in between including 1418 * the first and last pages. This is done in a busy loop so that we 1419 * lose the least number of traces. 1420 * The pages are freed after we restart recording and unlock readers. 1421 */ 1422 tail_page = &cpu_buffer->tail_page->list; 1423 1424 /* 1425 * tail page might be on reader page, we remove the next page 1426 * from the ring buffer 1427 */ 1428 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1429 tail_page = rb_list_head(tail_page->next); 1430 to_remove = tail_page; 1431 1432 /* start of pages to remove */ 1433 first_page = list_entry(rb_list_head(to_remove->next), 1434 struct buffer_page, list); 1435 1436 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1437 to_remove = rb_list_head(to_remove)->next; 1438 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1439 } 1440 1441 next_page = rb_list_head(to_remove)->next; 1442 1443 /* 1444 * Now we remove all pages between tail_page and next_page. 1445 * Make sure that we have head_bit value preserved for the 1446 * next page 1447 */ 1448 tail_page->next = (struct list_head *)((unsigned long)next_page | 1449 head_bit); 1450 next_page = rb_list_head(next_page); 1451 next_page->prev = tail_page; 1452 1453 /* make sure pages points to a valid page in the ring buffer */ 1454 cpu_buffer->pages = next_page; 1455 1456 /* update head page */ 1457 if (head_bit) 1458 cpu_buffer->head_page = list_entry(next_page, 1459 struct buffer_page, list); 1460 1461 /* 1462 * change read pointer to make sure any read iterators reset 1463 * themselves 1464 */ 1465 cpu_buffer->read = 0; 1466 1467 /* pages are removed, resume tracing and then free the pages */ 1468 atomic_dec(&cpu_buffer->record_disabled); 1469 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1470 1471 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1472 1473 /* last buffer page to remove */ 1474 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1475 list); 1476 tmp_iter_page = first_page; 1477 1478 do { 1479 to_remove_page = tmp_iter_page; 1480 rb_inc_page(cpu_buffer, &tmp_iter_page); 1481 1482 /* update the counters */ 1483 page_entries = rb_page_entries(to_remove_page); 1484 if (page_entries) { 1485 /* 1486 * If something was added to this page, it was full 1487 * since it is not the tail page. So we deduct the 1488 * bytes consumed in ring buffer from here. 1489 * Increment overrun to account for the lost events. 1490 */ 1491 local_add(page_entries, &cpu_buffer->overrun); 1492 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1493 } 1494 1495 /* 1496 * We have already removed references to this list item, just 1497 * free up the buffer_page and its page 1498 */ 1499 free_buffer_page(to_remove_page); 1500 nr_removed--; 1501 1502 } while (to_remove_page != last_page); 1503 1504 RB_WARN_ON(cpu_buffer, nr_removed); 1505 1506 return nr_removed == 0; 1507 } 1508 1509 static int 1510 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1511 { 1512 struct list_head *pages = &cpu_buffer->new_pages; 1513 int retries, success; 1514 1515 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1516 /* 1517 * We are holding the reader lock, so the reader page won't be swapped 1518 * in the ring buffer. Now we are racing with the writer trying to 1519 * move head page and the tail page. 1520 * We are going to adapt the reader page update process where: 1521 * 1. We first splice the start and end of list of new pages between 1522 * the head page and its previous page. 1523 * 2. We cmpxchg the prev_page->next to point from head page to the 1524 * start of new pages list. 1525 * 3. Finally, we update the head->prev to the end of new list. 1526 * 1527 * We will try this process 10 times, to make sure that we don't keep 1528 * spinning. 1529 */ 1530 retries = 10; 1531 success = 0; 1532 while (retries--) { 1533 struct list_head *head_page, *prev_page, *r; 1534 struct list_head *last_page, *first_page; 1535 struct list_head *head_page_with_bit; 1536 1537 head_page = &rb_set_head_page(cpu_buffer)->list; 1538 if (!head_page) 1539 break; 1540 prev_page = head_page->prev; 1541 1542 first_page = pages->next; 1543 last_page = pages->prev; 1544 1545 head_page_with_bit = (struct list_head *) 1546 ((unsigned long)head_page | RB_PAGE_HEAD); 1547 1548 last_page->next = head_page_with_bit; 1549 first_page->prev = prev_page; 1550 1551 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1552 1553 if (r == head_page_with_bit) { 1554 /* 1555 * yay, we replaced the page pointer to our new list, 1556 * now, we just have to update to head page's prev 1557 * pointer to point to end of list 1558 */ 1559 head_page->prev = last_page; 1560 success = 1; 1561 break; 1562 } 1563 } 1564 1565 if (success) 1566 INIT_LIST_HEAD(pages); 1567 /* 1568 * If we weren't successful in adding in new pages, warn and stop 1569 * tracing 1570 */ 1571 RB_WARN_ON(cpu_buffer, !success); 1572 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1573 1574 /* free pages if they weren't inserted */ 1575 if (!success) { 1576 struct buffer_page *bpage, *tmp; 1577 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1578 list) { 1579 list_del_init(&bpage->list); 1580 free_buffer_page(bpage); 1581 } 1582 } 1583 return success; 1584 } 1585 1586 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1587 { 1588 int success; 1589 1590 if (cpu_buffer->nr_pages_to_update > 0) 1591 success = rb_insert_pages(cpu_buffer); 1592 else 1593 success = rb_remove_pages(cpu_buffer, 1594 -cpu_buffer->nr_pages_to_update); 1595 1596 if (success) 1597 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1598 } 1599 1600 static void update_pages_handler(struct work_struct *work) 1601 { 1602 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1603 struct ring_buffer_per_cpu, update_pages_work); 1604 rb_update_pages(cpu_buffer); 1605 complete(&cpu_buffer->update_done); 1606 } 1607 1608 /** 1609 * ring_buffer_resize - resize the ring buffer 1610 * @buffer: the buffer to resize. 1611 * @size: the new size. 1612 * @cpu_id: the cpu buffer to resize 1613 * 1614 * Minimum size is 2 * BUF_PAGE_SIZE. 1615 * 1616 * Returns 0 on success and < 0 on failure. 1617 */ 1618 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1619 int cpu_id) 1620 { 1621 struct ring_buffer_per_cpu *cpu_buffer; 1622 unsigned nr_pages; 1623 int cpu, err = 0; 1624 1625 /* 1626 * Always succeed at resizing a non-existent buffer: 1627 */ 1628 if (!buffer) 1629 return size; 1630 1631 /* Make sure the requested buffer exists */ 1632 if (cpu_id != RING_BUFFER_ALL_CPUS && 1633 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1634 return size; 1635 1636 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1637 size *= BUF_PAGE_SIZE; 1638 1639 /* we need a minimum of two pages */ 1640 if (size < BUF_PAGE_SIZE * 2) 1641 size = BUF_PAGE_SIZE * 2; 1642 1643 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1644 1645 /* 1646 * Don't succeed if resizing is disabled, as a reader might be 1647 * manipulating the ring buffer and is expecting a sane state while 1648 * this is true. 1649 */ 1650 if (atomic_read(&buffer->resize_disabled)) 1651 return -EBUSY; 1652 1653 /* prevent another thread from changing buffer sizes */ 1654 mutex_lock(&buffer->mutex); 1655 1656 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1657 /* calculate the pages to update */ 1658 for_each_buffer_cpu(buffer, cpu) { 1659 cpu_buffer = buffer->buffers[cpu]; 1660 1661 cpu_buffer->nr_pages_to_update = nr_pages - 1662 cpu_buffer->nr_pages; 1663 /* 1664 * nothing more to do for removing pages or no update 1665 */ 1666 if (cpu_buffer->nr_pages_to_update <= 0) 1667 continue; 1668 /* 1669 * to add pages, make sure all new pages can be 1670 * allocated without receiving ENOMEM 1671 */ 1672 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1673 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1674 &cpu_buffer->new_pages, cpu)) { 1675 /* not enough memory for new pages */ 1676 err = -ENOMEM; 1677 goto out_err; 1678 } 1679 } 1680 1681 get_online_cpus(); 1682 /* 1683 * Fire off all the required work handlers 1684 * We can't schedule on offline CPUs, but it's not necessary 1685 * since we can change their buffer sizes without any race. 1686 */ 1687 for_each_buffer_cpu(buffer, cpu) { 1688 cpu_buffer = buffer->buffers[cpu]; 1689 if (!cpu_buffer->nr_pages_to_update) 1690 continue; 1691 1692 /* Can't run something on an offline CPU. */ 1693 if (!cpu_online(cpu)) { 1694 rb_update_pages(cpu_buffer); 1695 cpu_buffer->nr_pages_to_update = 0; 1696 } else { 1697 schedule_work_on(cpu, 1698 &cpu_buffer->update_pages_work); 1699 } 1700 } 1701 1702 /* wait for all the updates to complete */ 1703 for_each_buffer_cpu(buffer, cpu) { 1704 cpu_buffer = buffer->buffers[cpu]; 1705 if (!cpu_buffer->nr_pages_to_update) 1706 continue; 1707 1708 if (cpu_online(cpu)) 1709 wait_for_completion(&cpu_buffer->update_done); 1710 cpu_buffer->nr_pages_to_update = 0; 1711 } 1712 1713 put_online_cpus(); 1714 } else { 1715 /* Make sure this CPU has been intitialized */ 1716 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1717 goto out; 1718 1719 cpu_buffer = buffer->buffers[cpu_id]; 1720 1721 if (nr_pages == cpu_buffer->nr_pages) 1722 goto out; 1723 1724 cpu_buffer->nr_pages_to_update = nr_pages - 1725 cpu_buffer->nr_pages; 1726 1727 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1728 if (cpu_buffer->nr_pages_to_update > 0 && 1729 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1730 &cpu_buffer->new_pages, cpu_id)) { 1731 err = -ENOMEM; 1732 goto out_err; 1733 } 1734 1735 get_online_cpus(); 1736 1737 /* Can't run something on an offline CPU. */ 1738 if (!cpu_online(cpu_id)) 1739 rb_update_pages(cpu_buffer); 1740 else { 1741 schedule_work_on(cpu_id, 1742 &cpu_buffer->update_pages_work); 1743 wait_for_completion(&cpu_buffer->update_done); 1744 } 1745 1746 cpu_buffer->nr_pages_to_update = 0; 1747 put_online_cpus(); 1748 } 1749 1750 out: 1751 /* 1752 * The ring buffer resize can happen with the ring buffer 1753 * enabled, so that the update disturbs the tracing as little 1754 * as possible. But if the buffer is disabled, we do not need 1755 * to worry about that, and we can take the time to verify 1756 * that the buffer is not corrupt. 1757 */ 1758 if (atomic_read(&buffer->record_disabled)) { 1759 atomic_inc(&buffer->record_disabled); 1760 /* 1761 * Even though the buffer was disabled, we must make sure 1762 * that it is truly disabled before calling rb_check_pages. 1763 * There could have been a race between checking 1764 * record_disable and incrementing it. 1765 */ 1766 synchronize_sched(); 1767 for_each_buffer_cpu(buffer, cpu) { 1768 cpu_buffer = buffer->buffers[cpu]; 1769 rb_check_pages(cpu_buffer); 1770 } 1771 atomic_dec(&buffer->record_disabled); 1772 } 1773 1774 mutex_unlock(&buffer->mutex); 1775 return size; 1776 1777 out_err: 1778 for_each_buffer_cpu(buffer, cpu) { 1779 struct buffer_page *bpage, *tmp; 1780 1781 cpu_buffer = buffer->buffers[cpu]; 1782 cpu_buffer->nr_pages_to_update = 0; 1783 1784 if (list_empty(&cpu_buffer->new_pages)) 1785 continue; 1786 1787 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1788 list) { 1789 list_del_init(&bpage->list); 1790 free_buffer_page(bpage); 1791 } 1792 } 1793 mutex_unlock(&buffer->mutex); 1794 return err; 1795 } 1796 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1797 1798 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1799 { 1800 mutex_lock(&buffer->mutex); 1801 if (val) 1802 buffer->flags |= RB_FL_OVERWRITE; 1803 else 1804 buffer->flags &= ~RB_FL_OVERWRITE; 1805 mutex_unlock(&buffer->mutex); 1806 } 1807 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1808 1809 static inline void * 1810 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1811 { 1812 return bpage->data + index; 1813 } 1814 1815 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1816 { 1817 return bpage->page->data + index; 1818 } 1819 1820 static inline struct ring_buffer_event * 1821 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1822 { 1823 return __rb_page_index(cpu_buffer->reader_page, 1824 cpu_buffer->reader_page->read); 1825 } 1826 1827 static inline struct ring_buffer_event * 1828 rb_iter_head_event(struct ring_buffer_iter *iter) 1829 { 1830 return __rb_page_index(iter->head_page, iter->head); 1831 } 1832 1833 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1834 { 1835 return local_read(&bpage->page->commit); 1836 } 1837 1838 /* Size is determined by what has been committed */ 1839 static inline unsigned rb_page_size(struct buffer_page *bpage) 1840 { 1841 return rb_page_commit(bpage); 1842 } 1843 1844 static inline unsigned 1845 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1846 { 1847 return rb_page_commit(cpu_buffer->commit_page); 1848 } 1849 1850 static inline unsigned 1851 rb_event_index(struct ring_buffer_event *event) 1852 { 1853 unsigned long addr = (unsigned long)event; 1854 1855 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1856 } 1857 1858 static inline int 1859 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1860 struct ring_buffer_event *event) 1861 { 1862 unsigned long addr = (unsigned long)event; 1863 unsigned long index; 1864 1865 index = rb_event_index(event); 1866 addr &= PAGE_MASK; 1867 1868 return cpu_buffer->commit_page->page == (void *)addr && 1869 rb_commit_index(cpu_buffer) == index; 1870 } 1871 1872 static void 1873 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1874 { 1875 unsigned long max_count; 1876 1877 /* 1878 * We only race with interrupts and NMIs on this CPU. 1879 * If we own the commit event, then we can commit 1880 * all others that interrupted us, since the interruptions 1881 * are in stack format (they finish before they come 1882 * back to us). This allows us to do a simple loop to 1883 * assign the commit to the tail. 1884 */ 1885 again: 1886 max_count = cpu_buffer->nr_pages * 100; 1887 1888 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1889 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1890 return; 1891 if (RB_WARN_ON(cpu_buffer, 1892 rb_is_reader_page(cpu_buffer->tail_page))) 1893 return; 1894 local_set(&cpu_buffer->commit_page->page->commit, 1895 rb_page_write(cpu_buffer->commit_page)); 1896 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1897 cpu_buffer->write_stamp = 1898 cpu_buffer->commit_page->page->time_stamp; 1899 /* add barrier to keep gcc from optimizing too much */ 1900 barrier(); 1901 } 1902 while (rb_commit_index(cpu_buffer) != 1903 rb_page_write(cpu_buffer->commit_page)) { 1904 1905 local_set(&cpu_buffer->commit_page->page->commit, 1906 rb_page_write(cpu_buffer->commit_page)); 1907 RB_WARN_ON(cpu_buffer, 1908 local_read(&cpu_buffer->commit_page->page->commit) & 1909 ~RB_WRITE_MASK); 1910 barrier(); 1911 } 1912 1913 /* again, keep gcc from optimizing */ 1914 barrier(); 1915 1916 /* 1917 * If an interrupt came in just after the first while loop 1918 * and pushed the tail page forward, we will be left with 1919 * a dangling commit that will never go forward. 1920 */ 1921 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1922 goto again; 1923 } 1924 1925 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1926 { 1927 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1928 cpu_buffer->reader_page->read = 0; 1929 } 1930 1931 static void rb_inc_iter(struct ring_buffer_iter *iter) 1932 { 1933 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1934 1935 /* 1936 * The iterator could be on the reader page (it starts there). 1937 * But the head could have moved, since the reader was 1938 * found. Check for this case and assign the iterator 1939 * to the head page instead of next. 1940 */ 1941 if (iter->head_page == cpu_buffer->reader_page) 1942 iter->head_page = rb_set_head_page(cpu_buffer); 1943 else 1944 rb_inc_page(cpu_buffer, &iter->head_page); 1945 1946 iter->read_stamp = iter->head_page->page->time_stamp; 1947 iter->head = 0; 1948 } 1949 1950 /* Slow path, do not inline */ 1951 static noinline struct ring_buffer_event * 1952 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1953 { 1954 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1955 1956 /* Not the first event on the page? */ 1957 if (rb_event_index(event)) { 1958 event->time_delta = delta & TS_MASK; 1959 event->array[0] = delta >> TS_SHIFT; 1960 } else { 1961 /* nope, just zero it */ 1962 event->time_delta = 0; 1963 event->array[0] = 0; 1964 } 1965 1966 return skip_time_extend(event); 1967 } 1968 1969 /** 1970 * rb_update_event - update event type and data 1971 * @event: the event to update 1972 * @type: the type of event 1973 * @length: the size of the event field in the ring buffer 1974 * 1975 * Update the type and data fields of the event. The length 1976 * is the actual size that is written to the ring buffer, 1977 * and with this, we can determine what to place into the 1978 * data field. 1979 */ 1980 static void 1981 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1982 struct ring_buffer_event *event, unsigned length, 1983 int add_timestamp, u64 delta) 1984 { 1985 /* Only a commit updates the timestamp */ 1986 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 1987 delta = 0; 1988 1989 /* 1990 * If we need to add a timestamp, then we 1991 * add it to the start of the resevered space. 1992 */ 1993 if (unlikely(add_timestamp)) { 1994 event = rb_add_time_stamp(event, delta); 1995 length -= RB_LEN_TIME_EXTEND; 1996 delta = 0; 1997 } 1998 1999 event->time_delta = delta; 2000 length -= RB_EVNT_HDR_SIZE; 2001 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2002 event->type_len = 0; 2003 event->array[0] = length; 2004 } else 2005 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2006 } 2007 2008 /* 2009 * rb_handle_head_page - writer hit the head page 2010 * 2011 * Returns: +1 to retry page 2012 * 0 to continue 2013 * -1 on error 2014 */ 2015 static int 2016 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2017 struct buffer_page *tail_page, 2018 struct buffer_page *next_page) 2019 { 2020 struct buffer_page *new_head; 2021 int entries; 2022 int type; 2023 int ret; 2024 2025 entries = rb_page_entries(next_page); 2026 2027 /* 2028 * The hard part is here. We need to move the head 2029 * forward, and protect against both readers on 2030 * other CPUs and writers coming in via interrupts. 2031 */ 2032 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2033 RB_PAGE_HEAD); 2034 2035 /* 2036 * type can be one of four: 2037 * NORMAL - an interrupt already moved it for us 2038 * HEAD - we are the first to get here. 2039 * UPDATE - we are the interrupt interrupting 2040 * a current move. 2041 * MOVED - a reader on another CPU moved the next 2042 * pointer to its reader page. Give up 2043 * and try again. 2044 */ 2045 2046 switch (type) { 2047 case RB_PAGE_HEAD: 2048 /* 2049 * We changed the head to UPDATE, thus 2050 * it is our responsibility to update 2051 * the counters. 2052 */ 2053 local_add(entries, &cpu_buffer->overrun); 2054 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2055 2056 /* 2057 * The entries will be zeroed out when we move the 2058 * tail page. 2059 */ 2060 2061 /* still more to do */ 2062 break; 2063 2064 case RB_PAGE_UPDATE: 2065 /* 2066 * This is an interrupt that interrupt the 2067 * previous update. Still more to do. 2068 */ 2069 break; 2070 case RB_PAGE_NORMAL: 2071 /* 2072 * An interrupt came in before the update 2073 * and processed this for us. 2074 * Nothing left to do. 2075 */ 2076 return 1; 2077 case RB_PAGE_MOVED: 2078 /* 2079 * The reader is on another CPU and just did 2080 * a swap with our next_page. 2081 * Try again. 2082 */ 2083 return 1; 2084 default: 2085 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2086 return -1; 2087 } 2088 2089 /* 2090 * Now that we are here, the old head pointer is 2091 * set to UPDATE. This will keep the reader from 2092 * swapping the head page with the reader page. 2093 * The reader (on another CPU) will spin till 2094 * we are finished. 2095 * 2096 * We just need to protect against interrupts 2097 * doing the job. We will set the next pointer 2098 * to HEAD. After that, we set the old pointer 2099 * to NORMAL, but only if it was HEAD before. 2100 * otherwise we are an interrupt, and only 2101 * want the outer most commit to reset it. 2102 */ 2103 new_head = next_page; 2104 rb_inc_page(cpu_buffer, &new_head); 2105 2106 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2107 RB_PAGE_NORMAL); 2108 2109 /* 2110 * Valid returns are: 2111 * HEAD - an interrupt came in and already set it. 2112 * NORMAL - One of two things: 2113 * 1) We really set it. 2114 * 2) A bunch of interrupts came in and moved 2115 * the page forward again. 2116 */ 2117 switch (ret) { 2118 case RB_PAGE_HEAD: 2119 case RB_PAGE_NORMAL: 2120 /* OK */ 2121 break; 2122 default: 2123 RB_WARN_ON(cpu_buffer, 1); 2124 return -1; 2125 } 2126 2127 /* 2128 * It is possible that an interrupt came in, 2129 * set the head up, then more interrupts came in 2130 * and moved it again. When we get back here, 2131 * the page would have been set to NORMAL but we 2132 * just set it back to HEAD. 2133 * 2134 * How do you detect this? Well, if that happened 2135 * the tail page would have moved. 2136 */ 2137 if (ret == RB_PAGE_NORMAL) { 2138 /* 2139 * If the tail had moved passed next, then we need 2140 * to reset the pointer. 2141 */ 2142 if (cpu_buffer->tail_page != tail_page && 2143 cpu_buffer->tail_page != next_page) 2144 rb_head_page_set_normal(cpu_buffer, new_head, 2145 next_page, 2146 RB_PAGE_HEAD); 2147 } 2148 2149 /* 2150 * If this was the outer most commit (the one that 2151 * changed the original pointer from HEAD to UPDATE), 2152 * then it is up to us to reset it to NORMAL. 2153 */ 2154 if (type == RB_PAGE_HEAD) { 2155 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2156 tail_page, 2157 RB_PAGE_UPDATE); 2158 if (RB_WARN_ON(cpu_buffer, 2159 ret != RB_PAGE_UPDATE)) 2160 return -1; 2161 } 2162 2163 return 0; 2164 } 2165 2166 static unsigned rb_calculate_event_length(unsigned length) 2167 { 2168 struct ring_buffer_event event; /* Used only for sizeof array */ 2169 2170 /* zero length can cause confusions */ 2171 if (!length) 2172 length = 1; 2173 2174 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2175 length += sizeof(event.array[0]); 2176 2177 length += RB_EVNT_HDR_SIZE; 2178 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2179 2180 return length; 2181 } 2182 2183 static inline void 2184 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2185 struct buffer_page *tail_page, 2186 unsigned long tail, unsigned long length) 2187 { 2188 struct ring_buffer_event *event; 2189 2190 /* 2191 * Only the event that crossed the page boundary 2192 * must fill the old tail_page with padding. 2193 */ 2194 if (tail >= BUF_PAGE_SIZE) { 2195 /* 2196 * If the page was filled, then we still need 2197 * to update the real_end. Reset it to zero 2198 * and the reader will ignore it. 2199 */ 2200 if (tail == BUF_PAGE_SIZE) 2201 tail_page->real_end = 0; 2202 2203 local_sub(length, &tail_page->write); 2204 return; 2205 } 2206 2207 event = __rb_page_index(tail_page, tail); 2208 kmemcheck_annotate_bitfield(event, bitfield); 2209 2210 /* account for padding bytes */ 2211 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2212 2213 /* 2214 * Save the original length to the meta data. 2215 * This will be used by the reader to add lost event 2216 * counter. 2217 */ 2218 tail_page->real_end = tail; 2219 2220 /* 2221 * If this event is bigger than the minimum size, then 2222 * we need to be careful that we don't subtract the 2223 * write counter enough to allow another writer to slip 2224 * in on this page. 2225 * We put in a discarded commit instead, to make sure 2226 * that this space is not used again. 2227 * 2228 * If we are less than the minimum size, we don't need to 2229 * worry about it. 2230 */ 2231 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2232 /* No room for any events */ 2233 2234 /* Mark the rest of the page with padding */ 2235 rb_event_set_padding(event); 2236 2237 /* Set the write back to the previous setting */ 2238 local_sub(length, &tail_page->write); 2239 return; 2240 } 2241 2242 /* Put in a discarded event */ 2243 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2244 event->type_len = RINGBUF_TYPE_PADDING; 2245 /* time delta must be non zero */ 2246 event->time_delta = 1; 2247 2248 /* Set write to end of buffer */ 2249 length = (tail + length) - BUF_PAGE_SIZE; 2250 local_sub(length, &tail_page->write); 2251 } 2252 2253 /* 2254 * This is the slow path, force gcc not to inline it. 2255 */ 2256 static noinline struct ring_buffer_event * 2257 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2258 unsigned long length, unsigned long tail, 2259 struct buffer_page *tail_page, u64 ts) 2260 { 2261 struct buffer_page *commit_page = cpu_buffer->commit_page; 2262 struct ring_buffer *buffer = cpu_buffer->buffer; 2263 struct buffer_page *next_page; 2264 int ret; 2265 2266 next_page = tail_page; 2267 2268 rb_inc_page(cpu_buffer, &next_page); 2269 2270 /* 2271 * If for some reason, we had an interrupt storm that made 2272 * it all the way around the buffer, bail, and warn 2273 * about it. 2274 */ 2275 if (unlikely(next_page == commit_page)) { 2276 local_inc(&cpu_buffer->commit_overrun); 2277 goto out_reset; 2278 } 2279 2280 /* 2281 * This is where the fun begins! 2282 * 2283 * We are fighting against races between a reader that 2284 * could be on another CPU trying to swap its reader 2285 * page with the buffer head. 2286 * 2287 * We are also fighting against interrupts coming in and 2288 * moving the head or tail on us as well. 2289 * 2290 * If the next page is the head page then we have filled 2291 * the buffer, unless the commit page is still on the 2292 * reader page. 2293 */ 2294 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2295 2296 /* 2297 * If the commit is not on the reader page, then 2298 * move the header page. 2299 */ 2300 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2301 /* 2302 * If we are not in overwrite mode, 2303 * this is easy, just stop here. 2304 */ 2305 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2306 local_inc(&cpu_buffer->dropped_events); 2307 goto out_reset; 2308 } 2309 2310 ret = rb_handle_head_page(cpu_buffer, 2311 tail_page, 2312 next_page); 2313 if (ret < 0) 2314 goto out_reset; 2315 if (ret) 2316 goto out_again; 2317 } else { 2318 /* 2319 * We need to be careful here too. The 2320 * commit page could still be on the reader 2321 * page. We could have a small buffer, and 2322 * have filled up the buffer with events 2323 * from interrupts and such, and wrapped. 2324 * 2325 * Note, if the tail page is also the on the 2326 * reader_page, we let it move out. 2327 */ 2328 if (unlikely((cpu_buffer->commit_page != 2329 cpu_buffer->tail_page) && 2330 (cpu_buffer->commit_page == 2331 cpu_buffer->reader_page))) { 2332 local_inc(&cpu_buffer->commit_overrun); 2333 goto out_reset; 2334 } 2335 } 2336 } 2337 2338 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2339 if (ret) { 2340 /* 2341 * Nested commits always have zero deltas, so 2342 * just reread the time stamp 2343 */ 2344 ts = rb_time_stamp(buffer); 2345 next_page->page->time_stamp = ts; 2346 } 2347 2348 out_again: 2349 2350 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2351 2352 /* fail and let the caller try again */ 2353 return ERR_PTR(-EAGAIN); 2354 2355 out_reset: 2356 /* reset write */ 2357 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2358 2359 return NULL; 2360 } 2361 2362 static struct ring_buffer_event * 2363 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2364 unsigned long length, u64 ts, 2365 u64 delta, int add_timestamp) 2366 { 2367 struct buffer_page *tail_page; 2368 struct ring_buffer_event *event; 2369 unsigned long tail, write; 2370 2371 /* 2372 * If the time delta since the last event is too big to 2373 * hold in the time field of the event, then we append a 2374 * TIME EXTEND event ahead of the data event. 2375 */ 2376 if (unlikely(add_timestamp)) 2377 length += RB_LEN_TIME_EXTEND; 2378 2379 tail_page = cpu_buffer->tail_page; 2380 write = local_add_return(length, &tail_page->write); 2381 2382 /* set write to only the index of the write */ 2383 write &= RB_WRITE_MASK; 2384 tail = write - length; 2385 2386 /* 2387 * If this is the first commit on the page, then it has the same 2388 * timestamp as the page itself. 2389 */ 2390 if (!tail) 2391 delta = 0; 2392 2393 /* See if we shot pass the end of this buffer page */ 2394 if (unlikely(write > BUF_PAGE_SIZE)) 2395 return rb_move_tail(cpu_buffer, length, tail, 2396 tail_page, ts); 2397 2398 /* We reserved something on the buffer */ 2399 2400 event = __rb_page_index(tail_page, tail); 2401 kmemcheck_annotate_bitfield(event, bitfield); 2402 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2403 2404 local_inc(&tail_page->entries); 2405 2406 /* 2407 * If this is the first commit on the page, then update 2408 * its timestamp. 2409 */ 2410 if (!tail) 2411 tail_page->page->time_stamp = ts; 2412 2413 /* account for these added bytes */ 2414 local_add(length, &cpu_buffer->entries_bytes); 2415 2416 return event; 2417 } 2418 2419 static inline int 2420 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2421 struct ring_buffer_event *event) 2422 { 2423 unsigned long new_index, old_index; 2424 struct buffer_page *bpage; 2425 unsigned long index; 2426 unsigned long addr; 2427 2428 new_index = rb_event_index(event); 2429 old_index = new_index + rb_event_ts_length(event); 2430 addr = (unsigned long)event; 2431 addr &= PAGE_MASK; 2432 2433 bpage = cpu_buffer->tail_page; 2434 2435 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2436 unsigned long write_mask = 2437 local_read(&bpage->write) & ~RB_WRITE_MASK; 2438 unsigned long event_length = rb_event_length(event); 2439 /* 2440 * This is on the tail page. It is possible that 2441 * a write could come in and move the tail page 2442 * and write to the next page. That is fine 2443 * because we just shorten what is on this page. 2444 */ 2445 old_index += write_mask; 2446 new_index += write_mask; 2447 index = local_cmpxchg(&bpage->write, old_index, new_index); 2448 if (index == old_index) { 2449 /* update counters */ 2450 local_sub(event_length, &cpu_buffer->entries_bytes); 2451 return 1; 2452 } 2453 } 2454 2455 /* could not discard */ 2456 return 0; 2457 } 2458 2459 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2460 { 2461 local_inc(&cpu_buffer->committing); 2462 local_inc(&cpu_buffer->commits); 2463 } 2464 2465 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2466 { 2467 unsigned long commits; 2468 2469 if (RB_WARN_ON(cpu_buffer, 2470 !local_read(&cpu_buffer->committing))) 2471 return; 2472 2473 again: 2474 commits = local_read(&cpu_buffer->commits); 2475 /* synchronize with interrupts */ 2476 barrier(); 2477 if (local_read(&cpu_buffer->committing) == 1) 2478 rb_set_commit_to_write(cpu_buffer); 2479 2480 local_dec(&cpu_buffer->committing); 2481 2482 /* synchronize with interrupts */ 2483 barrier(); 2484 2485 /* 2486 * Need to account for interrupts coming in between the 2487 * updating of the commit page and the clearing of the 2488 * committing counter. 2489 */ 2490 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2491 !local_read(&cpu_buffer->committing)) { 2492 local_inc(&cpu_buffer->committing); 2493 goto again; 2494 } 2495 } 2496 2497 static struct ring_buffer_event * 2498 rb_reserve_next_event(struct ring_buffer *buffer, 2499 struct ring_buffer_per_cpu *cpu_buffer, 2500 unsigned long length) 2501 { 2502 struct ring_buffer_event *event; 2503 u64 ts, delta; 2504 int nr_loops = 0; 2505 int add_timestamp; 2506 u64 diff; 2507 2508 rb_start_commit(cpu_buffer); 2509 2510 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2511 /* 2512 * Due to the ability to swap a cpu buffer from a buffer 2513 * it is possible it was swapped before we committed. 2514 * (committing stops a swap). We check for it here and 2515 * if it happened, we have to fail the write. 2516 */ 2517 barrier(); 2518 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2519 local_dec(&cpu_buffer->committing); 2520 local_dec(&cpu_buffer->commits); 2521 return NULL; 2522 } 2523 #endif 2524 2525 length = rb_calculate_event_length(length); 2526 again: 2527 add_timestamp = 0; 2528 delta = 0; 2529 2530 /* 2531 * We allow for interrupts to reenter here and do a trace. 2532 * If one does, it will cause this original code to loop 2533 * back here. Even with heavy interrupts happening, this 2534 * should only happen a few times in a row. If this happens 2535 * 1000 times in a row, there must be either an interrupt 2536 * storm or we have something buggy. 2537 * Bail! 2538 */ 2539 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2540 goto out_fail; 2541 2542 ts = rb_time_stamp(cpu_buffer->buffer); 2543 diff = ts - cpu_buffer->write_stamp; 2544 2545 /* make sure this diff is calculated here */ 2546 barrier(); 2547 2548 /* Did the write stamp get updated already? */ 2549 if (likely(ts >= cpu_buffer->write_stamp)) { 2550 delta = diff; 2551 if (unlikely(test_time_stamp(delta))) { 2552 int local_clock_stable = 1; 2553 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2554 local_clock_stable = sched_clock_stable(); 2555 #endif 2556 WARN_ONCE(delta > (1ULL << 59), 2557 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2558 (unsigned long long)delta, 2559 (unsigned long long)ts, 2560 (unsigned long long)cpu_buffer->write_stamp, 2561 local_clock_stable ? "" : 2562 "If you just came from a suspend/resume,\n" 2563 "please switch to the trace global clock:\n" 2564 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2565 add_timestamp = 1; 2566 } 2567 } 2568 2569 event = __rb_reserve_next(cpu_buffer, length, ts, 2570 delta, add_timestamp); 2571 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2572 goto again; 2573 2574 if (!event) 2575 goto out_fail; 2576 2577 return event; 2578 2579 out_fail: 2580 rb_end_commit(cpu_buffer); 2581 return NULL; 2582 } 2583 2584 #ifdef CONFIG_TRACING 2585 2586 /* 2587 * The lock and unlock are done within a preempt disable section. 2588 * The current_context per_cpu variable can only be modified 2589 * by the current task between lock and unlock. But it can 2590 * be modified more than once via an interrupt. To pass this 2591 * information from the lock to the unlock without having to 2592 * access the 'in_interrupt()' functions again (which do show 2593 * a bit of overhead in something as critical as function tracing, 2594 * we use a bitmask trick. 2595 * 2596 * bit 0 = NMI context 2597 * bit 1 = IRQ context 2598 * bit 2 = SoftIRQ context 2599 * bit 3 = normal context. 2600 * 2601 * This works because this is the order of contexts that can 2602 * preempt other contexts. A SoftIRQ never preempts an IRQ 2603 * context. 2604 * 2605 * When the context is determined, the corresponding bit is 2606 * checked and set (if it was set, then a recursion of that context 2607 * happened). 2608 * 2609 * On unlock, we need to clear this bit. To do so, just subtract 2610 * 1 from the current_context and AND it to itself. 2611 * 2612 * (binary) 2613 * 101 - 1 = 100 2614 * 101 & 100 = 100 (clearing bit zero) 2615 * 2616 * 1010 - 1 = 1001 2617 * 1010 & 1001 = 1000 (clearing bit 1) 2618 * 2619 * The least significant bit can be cleared this way, and it 2620 * just so happens that it is the same bit corresponding to 2621 * the current context. 2622 */ 2623 static DEFINE_PER_CPU(unsigned int, current_context); 2624 2625 static __always_inline int trace_recursive_lock(void) 2626 { 2627 unsigned int val = this_cpu_read(current_context); 2628 int bit; 2629 2630 if (in_interrupt()) { 2631 if (in_nmi()) 2632 bit = 0; 2633 else if (in_irq()) 2634 bit = 1; 2635 else 2636 bit = 2; 2637 } else 2638 bit = 3; 2639 2640 if (unlikely(val & (1 << bit))) 2641 return 1; 2642 2643 val |= (1 << bit); 2644 this_cpu_write(current_context, val); 2645 2646 return 0; 2647 } 2648 2649 static __always_inline void trace_recursive_unlock(void) 2650 { 2651 unsigned int val = this_cpu_read(current_context); 2652 2653 val--; 2654 val &= this_cpu_read(current_context); 2655 this_cpu_write(current_context, val); 2656 } 2657 2658 #else 2659 2660 #define trace_recursive_lock() (0) 2661 #define trace_recursive_unlock() do { } while (0) 2662 2663 #endif 2664 2665 /** 2666 * ring_buffer_lock_reserve - reserve a part of the buffer 2667 * @buffer: the ring buffer to reserve from 2668 * @length: the length of the data to reserve (excluding event header) 2669 * 2670 * Returns a reseverd event on the ring buffer to copy directly to. 2671 * The user of this interface will need to get the body to write into 2672 * and can use the ring_buffer_event_data() interface. 2673 * 2674 * The length is the length of the data needed, not the event length 2675 * which also includes the event header. 2676 * 2677 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2678 * If NULL is returned, then nothing has been allocated or locked. 2679 */ 2680 struct ring_buffer_event * 2681 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2682 { 2683 struct ring_buffer_per_cpu *cpu_buffer; 2684 struct ring_buffer_event *event; 2685 int cpu; 2686 2687 if (ring_buffer_flags != RB_BUFFERS_ON) 2688 return NULL; 2689 2690 /* If we are tracing schedule, we don't want to recurse */ 2691 preempt_disable_notrace(); 2692 2693 if (atomic_read(&buffer->record_disabled)) 2694 goto out_nocheck; 2695 2696 if (trace_recursive_lock()) 2697 goto out_nocheck; 2698 2699 cpu = raw_smp_processor_id(); 2700 2701 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2702 goto out; 2703 2704 cpu_buffer = buffer->buffers[cpu]; 2705 2706 if (atomic_read(&cpu_buffer->record_disabled)) 2707 goto out; 2708 2709 if (length > BUF_MAX_DATA_SIZE) 2710 goto out; 2711 2712 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2713 if (!event) 2714 goto out; 2715 2716 return event; 2717 2718 out: 2719 trace_recursive_unlock(); 2720 2721 out_nocheck: 2722 preempt_enable_notrace(); 2723 return NULL; 2724 } 2725 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2726 2727 static void 2728 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2729 struct ring_buffer_event *event) 2730 { 2731 u64 delta; 2732 2733 /* 2734 * The event first in the commit queue updates the 2735 * time stamp. 2736 */ 2737 if (rb_event_is_commit(cpu_buffer, event)) { 2738 /* 2739 * A commit event that is first on a page 2740 * updates the write timestamp with the page stamp 2741 */ 2742 if (!rb_event_index(event)) 2743 cpu_buffer->write_stamp = 2744 cpu_buffer->commit_page->page->time_stamp; 2745 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2746 delta = event->array[0]; 2747 delta <<= TS_SHIFT; 2748 delta += event->time_delta; 2749 cpu_buffer->write_stamp += delta; 2750 } else 2751 cpu_buffer->write_stamp += event->time_delta; 2752 } 2753 } 2754 2755 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2756 struct ring_buffer_event *event) 2757 { 2758 local_inc(&cpu_buffer->entries); 2759 rb_update_write_stamp(cpu_buffer, event); 2760 rb_end_commit(cpu_buffer); 2761 } 2762 2763 static __always_inline void 2764 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2765 { 2766 if (buffer->irq_work.waiters_pending) { 2767 buffer->irq_work.waiters_pending = false; 2768 /* irq_work_queue() supplies it's own memory barriers */ 2769 irq_work_queue(&buffer->irq_work.work); 2770 } 2771 2772 if (cpu_buffer->irq_work.waiters_pending) { 2773 cpu_buffer->irq_work.waiters_pending = false; 2774 /* irq_work_queue() supplies it's own memory barriers */ 2775 irq_work_queue(&cpu_buffer->irq_work.work); 2776 } 2777 } 2778 2779 /** 2780 * ring_buffer_unlock_commit - commit a reserved 2781 * @buffer: The buffer to commit to 2782 * @event: The event pointer to commit. 2783 * 2784 * This commits the data to the ring buffer, and releases any locks held. 2785 * 2786 * Must be paired with ring_buffer_lock_reserve. 2787 */ 2788 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2789 struct ring_buffer_event *event) 2790 { 2791 struct ring_buffer_per_cpu *cpu_buffer; 2792 int cpu = raw_smp_processor_id(); 2793 2794 cpu_buffer = buffer->buffers[cpu]; 2795 2796 rb_commit(cpu_buffer, event); 2797 2798 rb_wakeups(buffer, cpu_buffer); 2799 2800 trace_recursive_unlock(); 2801 2802 preempt_enable_notrace(); 2803 2804 return 0; 2805 } 2806 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2807 2808 static inline void rb_event_discard(struct ring_buffer_event *event) 2809 { 2810 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2811 event = skip_time_extend(event); 2812 2813 /* array[0] holds the actual length for the discarded event */ 2814 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2815 event->type_len = RINGBUF_TYPE_PADDING; 2816 /* time delta must be non zero */ 2817 if (!event->time_delta) 2818 event->time_delta = 1; 2819 } 2820 2821 /* 2822 * Decrement the entries to the page that an event is on. 2823 * The event does not even need to exist, only the pointer 2824 * to the page it is on. This may only be called before the commit 2825 * takes place. 2826 */ 2827 static inline void 2828 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2829 struct ring_buffer_event *event) 2830 { 2831 unsigned long addr = (unsigned long)event; 2832 struct buffer_page *bpage = cpu_buffer->commit_page; 2833 struct buffer_page *start; 2834 2835 addr &= PAGE_MASK; 2836 2837 /* Do the likely case first */ 2838 if (likely(bpage->page == (void *)addr)) { 2839 local_dec(&bpage->entries); 2840 return; 2841 } 2842 2843 /* 2844 * Because the commit page may be on the reader page we 2845 * start with the next page and check the end loop there. 2846 */ 2847 rb_inc_page(cpu_buffer, &bpage); 2848 start = bpage; 2849 do { 2850 if (bpage->page == (void *)addr) { 2851 local_dec(&bpage->entries); 2852 return; 2853 } 2854 rb_inc_page(cpu_buffer, &bpage); 2855 } while (bpage != start); 2856 2857 /* commit not part of this buffer?? */ 2858 RB_WARN_ON(cpu_buffer, 1); 2859 } 2860 2861 /** 2862 * ring_buffer_commit_discard - discard an event that has not been committed 2863 * @buffer: the ring buffer 2864 * @event: non committed event to discard 2865 * 2866 * Sometimes an event that is in the ring buffer needs to be ignored. 2867 * This function lets the user discard an event in the ring buffer 2868 * and then that event will not be read later. 2869 * 2870 * This function only works if it is called before the the item has been 2871 * committed. It will try to free the event from the ring buffer 2872 * if another event has not been added behind it. 2873 * 2874 * If another event has been added behind it, it will set the event 2875 * up as discarded, and perform the commit. 2876 * 2877 * If this function is called, do not call ring_buffer_unlock_commit on 2878 * the event. 2879 */ 2880 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2881 struct ring_buffer_event *event) 2882 { 2883 struct ring_buffer_per_cpu *cpu_buffer; 2884 int cpu; 2885 2886 /* The event is discarded regardless */ 2887 rb_event_discard(event); 2888 2889 cpu = smp_processor_id(); 2890 cpu_buffer = buffer->buffers[cpu]; 2891 2892 /* 2893 * This must only be called if the event has not been 2894 * committed yet. Thus we can assume that preemption 2895 * is still disabled. 2896 */ 2897 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2898 2899 rb_decrement_entry(cpu_buffer, event); 2900 if (rb_try_to_discard(cpu_buffer, event)) 2901 goto out; 2902 2903 /* 2904 * The commit is still visible by the reader, so we 2905 * must still update the timestamp. 2906 */ 2907 rb_update_write_stamp(cpu_buffer, event); 2908 out: 2909 rb_end_commit(cpu_buffer); 2910 2911 trace_recursive_unlock(); 2912 2913 preempt_enable_notrace(); 2914 2915 } 2916 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2917 2918 /** 2919 * ring_buffer_write - write data to the buffer without reserving 2920 * @buffer: The ring buffer to write to. 2921 * @length: The length of the data being written (excluding the event header) 2922 * @data: The data to write to the buffer. 2923 * 2924 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2925 * one function. If you already have the data to write to the buffer, it 2926 * may be easier to simply call this function. 2927 * 2928 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2929 * and not the length of the event which would hold the header. 2930 */ 2931 int ring_buffer_write(struct ring_buffer *buffer, 2932 unsigned long length, 2933 void *data) 2934 { 2935 struct ring_buffer_per_cpu *cpu_buffer; 2936 struct ring_buffer_event *event; 2937 void *body; 2938 int ret = -EBUSY; 2939 int cpu; 2940 2941 if (ring_buffer_flags != RB_BUFFERS_ON) 2942 return -EBUSY; 2943 2944 preempt_disable_notrace(); 2945 2946 if (atomic_read(&buffer->record_disabled)) 2947 goto out; 2948 2949 cpu = raw_smp_processor_id(); 2950 2951 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2952 goto out; 2953 2954 cpu_buffer = buffer->buffers[cpu]; 2955 2956 if (atomic_read(&cpu_buffer->record_disabled)) 2957 goto out; 2958 2959 if (length > BUF_MAX_DATA_SIZE) 2960 goto out; 2961 2962 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2963 if (!event) 2964 goto out; 2965 2966 body = rb_event_data(event); 2967 2968 memcpy(body, data, length); 2969 2970 rb_commit(cpu_buffer, event); 2971 2972 rb_wakeups(buffer, cpu_buffer); 2973 2974 ret = 0; 2975 out: 2976 preempt_enable_notrace(); 2977 2978 return ret; 2979 } 2980 EXPORT_SYMBOL_GPL(ring_buffer_write); 2981 2982 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2983 { 2984 struct buffer_page *reader = cpu_buffer->reader_page; 2985 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2986 struct buffer_page *commit = cpu_buffer->commit_page; 2987 2988 /* In case of error, head will be NULL */ 2989 if (unlikely(!head)) 2990 return 1; 2991 2992 return reader->read == rb_page_commit(reader) && 2993 (commit == reader || 2994 (commit == head && 2995 head->read == rb_page_commit(commit))); 2996 } 2997 2998 /** 2999 * ring_buffer_record_disable - stop all writes into the buffer 3000 * @buffer: The ring buffer to stop writes to. 3001 * 3002 * This prevents all writes to the buffer. Any attempt to write 3003 * to the buffer after this will fail and return NULL. 3004 * 3005 * The caller should call synchronize_sched() after this. 3006 */ 3007 void ring_buffer_record_disable(struct ring_buffer *buffer) 3008 { 3009 atomic_inc(&buffer->record_disabled); 3010 } 3011 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3012 3013 /** 3014 * ring_buffer_record_enable - enable writes to the buffer 3015 * @buffer: The ring buffer to enable writes 3016 * 3017 * Note, multiple disables will need the same number of enables 3018 * to truly enable the writing (much like preempt_disable). 3019 */ 3020 void ring_buffer_record_enable(struct ring_buffer *buffer) 3021 { 3022 atomic_dec(&buffer->record_disabled); 3023 } 3024 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3025 3026 /** 3027 * ring_buffer_record_off - stop all writes into the buffer 3028 * @buffer: The ring buffer to stop writes to. 3029 * 3030 * This prevents all writes to the buffer. Any attempt to write 3031 * to the buffer after this will fail and return NULL. 3032 * 3033 * This is different than ring_buffer_record_disable() as 3034 * it works like an on/off switch, where as the disable() version 3035 * must be paired with a enable(). 3036 */ 3037 void ring_buffer_record_off(struct ring_buffer *buffer) 3038 { 3039 unsigned int rd; 3040 unsigned int new_rd; 3041 3042 do { 3043 rd = atomic_read(&buffer->record_disabled); 3044 new_rd = rd | RB_BUFFER_OFF; 3045 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3046 } 3047 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3048 3049 /** 3050 * ring_buffer_record_on - restart writes into the buffer 3051 * @buffer: The ring buffer to start writes to. 3052 * 3053 * This enables all writes to the buffer that was disabled by 3054 * ring_buffer_record_off(). 3055 * 3056 * This is different than ring_buffer_record_enable() as 3057 * it works like an on/off switch, where as the enable() version 3058 * must be paired with a disable(). 3059 */ 3060 void ring_buffer_record_on(struct ring_buffer *buffer) 3061 { 3062 unsigned int rd; 3063 unsigned int new_rd; 3064 3065 do { 3066 rd = atomic_read(&buffer->record_disabled); 3067 new_rd = rd & ~RB_BUFFER_OFF; 3068 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3069 } 3070 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3071 3072 /** 3073 * ring_buffer_record_is_on - return true if the ring buffer can write 3074 * @buffer: The ring buffer to see if write is enabled 3075 * 3076 * Returns true if the ring buffer is in a state that it accepts writes. 3077 */ 3078 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3079 { 3080 return !atomic_read(&buffer->record_disabled); 3081 } 3082 3083 /** 3084 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3085 * @buffer: The ring buffer to stop writes to. 3086 * @cpu: The CPU buffer to stop 3087 * 3088 * This prevents all writes to the buffer. Any attempt to write 3089 * to the buffer after this will fail and return NULL. 3090 * 3091 * The caller should call synchronize_sched() after this. 3092 */ 3093 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3094 { 3095 struct ring_buffer_per_cpu *cpu_buffer; 3096 3097 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3098 return; 3099 3100 cpu_buffer = buffer->buffers[cpu]; 3101 atomic_inc(&cpu_buffer->record_disabled); 3102 } 3103 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3104 3105 /** 3106 * ring_buffer_record_enable_cpu - enable writes to the buffer 3107 * @buffer: The ring buffer to enable writes 3108 * @cpu: The CPU to enable. 3109 * 3110 * Note, multiple disables will need the same number of enables 3111 * to truly enable the writing (much like preempt_disable). 3112 */ 3113 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3114 { 3115 struct ring_buffer_per_cpu *cpu_buffer; 3116 3117 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3118 return; 3119 3120 cpu_buffer = buffer->buffers[cpu]; 3121 atomic_dec(&cpu_buffer->record_disabled); 3122 } 3123 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3124 3125 /* 3126 * The total entries in the ring buffer is the running counter 3127 * of entries entered into the ring buffer, minus the sum of 3128 * the entries read from the ring buffer and the number of 3129 * entries that were overwritten. 3130 */ 3131 static inline unsigned long 3132 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3133 { 3134 return local_read(&cpu_buffer->entries) - 3135 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3136 } 3137 3138 /** 3139 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3140 * @buffer: The ring buffer 3141 * @cpu: The per CPU buffer to read from. 3142 */ 3143 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3144 { 3145 unsigned long flags; 3146 struct ring_buffer_per_cpu *cpu_buffer; 3147 struct buffer_page *bpage; 3148 u64 ret = 0; 3149 3150 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3151 return 0; 3152 3153 cpu_buffer = buffer->buffers[cpu]; 3154 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3155 /* 3156 * if the tail is on reader_page, oldest time stamp is on the reader 3157 * page 3158 */ 3159 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3160 bpage = cpu_buffer->reader_page; 3161 else 3162 bpage = rb_set_head_page(cpu_buffer); 3163 if (bpage) 3164 ret = bpage->page->time_stamp; 3165 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3166 3167 return ret; 3168 } 3169 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3170 3171 /** 3172 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3173 * @buffer: The ring buffer 3174 * @cpu: The per CPU buffer to read from. 3175 */ 3176 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3177 { 3178 struct ring_buffer_per_cpu *cpu_buffer; 3179 unsigned long ret; 3180 3181 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3182 return 0; 3183 3184 cpu_buffer = buffer->buffers[cpu]; 3185 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3186 3187 return ret; 3188 } 3189 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3190 3191 /** 3192 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3193 * @buffer: The ring buffer 3194 * @cpu: The per CPU buffer to get the entries from. 3195 */ 3196 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3197 { 3198 struct ring_buffer_per_cpu *cpu_buffer; 3199 3200 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3201 return 0; 3202 3203 cpu_buffer = buffer->buffers[cpu]; 3204 3205 return rb_num_of_entries(cpu_buffer); 3206 } 3207 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3208 3209 /** 3210 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3211 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3212 * @buffer: The ring buffer 3213 * @cpu: The per CPU buffer to get the number of overruns from 3214 */ 3215 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3216 { 3217 struct ring_buffer_per_cpu *cpu_buffer; 3218 unsigned long ret; 3219 3220 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3221 return 0; 3222 3223 cpu_buffer = buffer->buffers[cpu]; 3224 ret = local_read(&cpu_buffer->overrun); 3225 3226 return ret; 3227 } 3228 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3229 3230 /** 3231 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3232 * commits failing due to the buffer wrapping around while there are uncommitted 3233 * events, such as during an interrupt storm. 3234 * @buffer: The ring buffer 3235 * @cpu: The per CPU buffer to get the number of overruns from 3236 */ 3237 unsigned long 3238 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3239 { 3240 struct ring_buffer_per_cpu *cpu_buffer; 3241 unsigned long ret; 3242 3243 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3244 return 0; 3245 3246 cpu_buffer = buffer->buffers[cpu]; 3247 ret = local_read(&cpu_buffer->commit_overrun); 3248 3249 return ret; 3250 } 3251 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3252 3253 /** 3254 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3255 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3256 * @buffer: The ring buffer 3257 * @cpu: The per CPU buffer to get the number of overruns from 3258 */ 3259 unsigned long 3260 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3261 { 3262 struct ring_buffer_per_cpu *cpu_buffer; 3263 unsigned long ret; 3264 3265 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3266 return 0; 3267 3268 cpu_buffer = buffer->buffers[cpu]; 3269 ret = local_read(&cpu_buffer->dropped_events); 3270 3271 return ret; 3272 } 3273 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3274 3275 /** 3276 * ring_buffer_read_events_cpu - get the number of events successfully read 3277 * @buffer: The ring buffer 3278 * @cpu: The per CPU buffer to get the number of events read 3279 */ 3280 unsigned long 3281 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3282 { 3283 struct ring_buffer_per_cpu *cpu_buffer; 3284 3285 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3286 return 0; 3287 3288 cpu_buffer = buffer->buffers[cpu]; 3289 return cpu_buffer->read; 3290 } 3291 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3292 3293 /** 3294 * ring_buffer_entries - get the number of entries in a buffer 3295 * @buffer: The ring buffer 3296 * 3297 * Returns the total number of entries in the ring buffer 3298 * (all CPU entries) 3299 */ 3300 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3301 { 3302 struct ring_buffer_per_cpu *cpu_buffer; 3303 unsigned long entries = 0; 3304 int cpu; 3305 3306 /* if you care about this being correct, lock the buffer */ 3307 for_each_buffer_cpu(buffer, cpu) { 3308 cpu_buffer = buffer->buffers[cpu]; 3309 entries += rb_num_of_entries(cpu_buffer); 3310 } 3311 3312 return entries; 3313 } 3314 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3315 3316 /** 3317 * ring_buffer_overruns - get the number of overruns in buffer 3318 * @buffer: The ring buffer 3319 * 3320 * Returns the total number of overruns in the ring buffer 3321 * (all CPU entries) 3322 */ 3323 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3324 { 3325 struct ring_buffer_per_cpu *cpu_buffer; 3326 unsigned long overruns = 0; 3327 int cpu; 3328 3329 /* if you care about this being correct, lock the buffer */ 3330 for_each_buffer_cpu(buffer, cpu) { 3331 cpu_buffer = buffer->buffers[cpu]; 3332 overruns += local_read(&cpu_buffer->overrun); 3333 } 3334 3335 return overruns; 3336 } 3337 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3338 3339 static void rb_iter_reset(struct ring_buffer_iter *iter) 3340 { 3341 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3342 3343 /* Iterator usage is expected to have record disabled */ 3344 iter->head_page = cpu_buffer->reader_page; 3345 iter->head = cpu_buffer->reader_page->read; 3346 3347 iter->cache_reader_page = iter->head_page; 3348 iter->cache_read = iter->head; 3349 3350 if (iter->head) 3351 iter->read_stamp = cpu_buffer->read_stamp; 3352 else 3353 iter->read_stamp = iter->head_page->page->time_stamp; 3354 } 3355 3356 /** 3357 * ring_buffer_iter_reset - reset an iterator 3358 * @iter: The iterator to reset 3359 * 3360 * Resets the iterator, so that it will start from the beginning 3361 * again. 3362 */ 3363 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3364 { 3365 struct ring_buffer_per_cpu *cpu_buffer; 3366 unsigned long flags; 3367 3368 if (!iter) 3369 return; 3370 3371 cpu_buffer = iter->cpu_buffer; 3372 3373 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3374 rb_iter_reset(iter); 3375 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3376 } 3377 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3378 3379 /** 3380 * ring_buffer_iter_empty - check if an iterator has no more to read 3381 * @iter: The iterator to check 3382 */ 3383 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3384 { 3385 struct ring_buffer_per_cpu *cpu_buffer; 3386 3387 cpu_buffer = iter->cpu_buffer; 3388 3389 return iter->head_page == cpu_buffer->commit_page && 3390 iter->head == rb_commit_index(cpu_buffer); 3391 } 3392 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3393 3394 static void 3395 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3396 struct ring_buffer_event *event) 3397 { 3398 u64 delta; 3399 3400 switch (event->type_len) { 3401 case RINGBUF_TYPE_PADDING: 3402 return; 3403 3404 case RINGBUF_TYPE_TIME_EXTEND: 3405 delta = event->array[0]; 3406 delta <<= TS_SHIFT; 3407 delta += event->time_delta; 3408 cpu_buffer->read_stamp += delta; 3409 return; 3410 3411 case RINGBUF_TYPE_TIME_STAMP: 3412 /* FIXME: not implemented */ 3413 return; 3414 3415 case RINGBUF_TYPE_DATA: 3416 cpu_buffer->read_stamp += event->time_delta; 3417 return; 3418 3419 default: 3420 BUG(); 3421 } 3422 return; 3423 } 3424 3425 static void 3426 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3427 struct ring_buffer_event *event) 3428 { 3429 u64 delta; 3430 3431 switch (event->type_len) { 3432 case RINGBUF_TYPE_PADDING: 3433 return; 3434 3435 case RINGBUF_TYPE_TIME_EXTEND: 3436 delta = event->array[0]; 3437 delta <<= TS_SHIFT; 3438 delta += event->time_delta; 3439 iter->read_stamp += delta; 3440 return; 3441 3442 case RINGBUF_TYPE_TIME_STAMP: 3443 /* FIXME: not implemented */ 3444 return; 3445 3446 case RINGBUF_TYPE_DATA: 3447 iter->read_stamp += event->time_delta; 3448 return; 3449 3450 default: 3451 BUG(); 3452 } 3453 return; 3454 } 3455 3456 static struct buffer_page * 3457 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3458 { 3459 struct buffer_page *reader = NULL; 3460 unsigned long overwrite; 3461 unsigned long flags; 3462 int nr_loops = 0; 3463 int ret; 3464 3465 local_irq_save(flags); 3466 arch_spin_lock(&cpu_buffer->lock); 3467 3468 again: 3469 /* 3470 * This should normally only loop twice. But because the 3471 * start of the reader inserts an empty page, it causes 3472 * a case where we will loop three times. There should be no 3473 * reason to loop four times (that I know of). 3474 */ 3475 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3476 reader = NULL; 3477 goto out; 3478 } 3479 3480 reader = cpu_buffer->reader_page; 3481 3482 /* If there's more to read, return this page */ 3483 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3484 goto out; 3485 3486 /* Never should we have an index greater than the size */ 3487 if (RB_WARN_ON(cpu_buffer, 3488 cpu_buffer->reader_page->read > rb_page_size(reader))) 3489 goto out; 3490 3491 /* check if we caught up to the tail */ 3492 reader = NULL; 3493 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3494 goto out; 3495 3496 /* Don't bother swapping if the ring buffer is empty */ 3497 if (rb_num_of_entries(cpu_buffer) == 0) 3498 goto out; 3499 3500 /* 3501 * Reset the reader page to size zero. 3502 */ 3503 local_set(&cpu_buffer->reader_page->write, 0); 3504 local_set(&cpu_buffer->reader_page->entries, 0); 3505 local_set(&cpu_buffer->reader_page->page->commit, 0); 3506 cpu_buffer->reader_page->real_end = 0; 3507 3508 spin: 3509 /* 3510 * Splice the empty reader page into the list around the head. 3511 */ 3512 reader = rb_set_head_page(cpu_buffer); 3513 if (!reader) 3514 goto out; 3515 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3516 cpu_buffer->reader_page->list.prev = reader->list.prev; 3517 3518 /* 3519 * cpu_buffer->pages just needs to point to the buffer, it 3520 * has no specific buffer page to point to. Lets move it out 3521 * of our way so we don't accidentally swap it. 3522 */ 3523 cpu_buffer->pages = reader->list.prev; 3524 3525 /* The reader page will be pointing to the new head */ 3526 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3527 3528 /* 3529 * We want to make sure we read the overruns after we set up our 3530 * pointers to the next object. The writer side does a 3531 * cmpxchg to cross pages which acts as the mb on the writer 3532 * side. Note, the reader will constantly fail the swap 3533 * while the writer is updating the pointers, so this 3534 * guarantees that the overwrite recorded here is the one we 3535 * want to compare with the last_overrun. 3536 */ 3537 smp_mb(); 3538 overwrite = local_read(&(cpu_buffer->overrun)); 3539 3540 /* 3541 * Here's the tricky part. 3542 * 3543 * We need to move the pointer past the header page. 3544 * But we can only do that if a writer is not currently 3545 * moving it. The page before the header page has the 3546 * flag bit '1' set if it is pointing to the page we want. 3547 * but if the writer is in the process of moving it 3548 * than it will be '2' or already moved '0'. 3549 */ 3550 3551 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3552 3553 /* 3554 * If we did not convert it, then we must try again. 3555 */ 3556 if (!ret) 3557 goto spin; 3558 3559 /* 3560 * Yeah! We succeeded in replacing the page. 3561 * 3562 * Now make the new head point back to the reader page. 3563 */ 3564 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3565 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3566 3567 /* Finally update the reader page to the new head */ 3568 cpu_buffer->reader_page = reader; 3569 rb_reset_reader_page(cpu_buffer); 3570 3571 if (overwrite != cpu_buffer->last_overrun) { 3572 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3573 cpu_buffer->last_overrun = overwrite; 3574 } 3575 3576 goto again; 3577 3578 out: 3579 arch_spin_unlock(&cpu_buffer->lock); 3580 local_irq_restore(flags); 3581 3582 return reader; 3583 } 3584 3585 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3586 { 3587 struct ring_buffer_event *event; 3588 struct buffer_page *reader; 3589 unsigned length; 3590 3591 reader = rb_get_reader_page(cpu_buffer); 3592 3593 /* This function should not be called when buffer is empty */ 3594 if (RB_WARN_ON(cpu_buffer, !reader)) 3595 return; 3596 3597 event = rb_reader_event(cpu_buffer); 3598 3599 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3600 cpu_buffer->read++; 3601 3602 rb_update_read_stamp(cpu_buffer, event); 3603 3604 length = rb_event_length(event); 3605 cpu_buffer->reader_page->read += length; 3606 } 3607 3608 static void rb_advance_iter(struct ring_buffer_iter *iter) 3609 { 3610 struct ring_buffer_per_cpu *cpu_buffer; 3611 struct ring_buffer_event *event; 3612 unsigned length; 3613 3614 cpu_buffer = iter->cpu_buffer; 3615 3616 /* 3617 * Check if we are at the end of the buffer. 3618 */ 3619 if (iter->head >= rb_page_size(iter->head_page)) { 3620 /* discarded commits can make the page empty */ 3621 if (iter->head_page == cpu_buffer->commit_page) 3622 return; 3623 rb_inc_iter(iter); 3624 return; 3625 } 3626 3627 event = rb_iter_head_event(iter); 3628 3629 length = rb_event_length(event); 3630 3631 /* 3632 * This should not be called to advance the header if we are 3633 * at the tail of the buffer. 3634 */ 3635 if (RB_WARN_ON(cpu_buffer, 3636 (iter->head_page == cpu_buffer->commit_page) && 3637 (iter->head + length > rb_commit_index(cpu_buffer)))) 3638 return; 3639 3640 rb_update_iter_read_stamp(iter, event); 3641 3642 iter->head += length; 3643 3644 /* check for end of page padding */ 3645 if ((iter->head >= rb_page_size(iter->head_page)) && 3646 (iter->head_page != cpu_buffer->commit_page)) 3647 rb_inc_iter(iter); 3648 } 3649 3650 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3651 { 3652 return cpu_buffer->lost_events; 3653 } 3654 3655 static struct ring_buffer_event * 3656 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3657 unsigned long *lost_events) 3658 { 3659 struct ring_buffer_event *event; 3660 struct buffer_page *reader; 3661 int nr_loops = 0; 3662 3663 again: 3664 /* 3665 * We repeat when a time extend is encountered. 3666 * Since the time extend is always attached to a data event, 3667 * we should never loop more than once. 3668 * (We never hit the following condition more than twice). 3669 */ 3670 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3671 return NULL; 3672 3673 reader = rb_get_reader_page(cpu_buffer); 3674 if (!reader) 3675 return NULL; 3676 3677 event = rb_reader_event(cpu_buffer); 3678 3679 switch (event->type_len) { 3680 case RINGBUF_TYPE_PADDING: 3681 if (rb_null_event(event)) 3682 RB_WARN_ON(cpu_buffer, 1); 3683 /* 3684 * Because the writer could be discarding every 3685 * event it creates (which would probably be bad) 3686 * if we were to go back to "again" then we may never 3687 * catch up, and will trigger the warn on, or lock 3688 * the box. Return the padding, and we will release 3689 * the current locks, and try again. 3690 */ 3691 return event; 3692 3693 case RINGBUF_TYPE_TIME_EXTEND: 3694 /* Internal data, OK to advance */ 3695 rb_advance_reader(cpu_buffer); 3696 goto again; 3697 3698 case RINGBUF_TYPE_TIME_STAMP: 3699 /* FIXME: not implemented */ 3700 rb_advance_reader(cpu_buffer); 3701 goto again; 3702 3703 case RINGBUF_TYPE_DATA: 3704 if (ts) { 3705 *ts = cpu_buffer->read_stamp + event->time_delta; 3706 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3707 cpu_buffer->cpu, ts); 3708 } 3709 if (lost_events) 3710 *lost_events = rb_lost_events(cpu_buffer); 3711 return event; 3712 3713 default: 3714 BUG(); 3715 } 3716 3717 return NULL; 3718 } 3719 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3720 3721 static struct ring_buffer_event * 3722 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3723 { 3724 struct ring_buffer *buffer; 3725 struct ring_buffer_per_cpu *cpu_buffer; 3726 struct ring_buffer_event *event; 3727 int nr_loops = 0; 3728 3729 cpu_buffer = iter->cpu_buffer; 3730 buffer = cpu_buffer->buffer; 3731 3732 /* 3733 * Check if someone performed a consuming read to 3734 * the buffer. A consuming read invalidates the iterator 3735 * and we need to reset the iterator in this case. 3736 */ 3737 if (unlikely(iter->cache_read != cpu_buffer->read || 3738 iter->cache_reader_page != cpu_buffer->reader_page)) 3739 rb_iter_reset(iter); 3740 3741 again: 3742 if (ring_buffer_iter_empty(iter)) 3743 return NULL; 3744 3745 /* 3746 * We repeat when a time extend is encountered or we hit 3747 * the end of the page. Since the time extend is always attached 3748 * to a data event, we should never loop more than three times. 3749 * Once for going to next page, once on time extend, and 3750 * finally once to get the event. 3751 * (We never hit the following condition more than thrice). 3752 */ 3753 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3754 return NULL; 3755 3756 if (rb_per_cpu_empty(cpu_buffer)) 3757 return NULL; 3758 3759 if (iter->head >= rb_page_size(iter->head_page)) { 3760 rb_inc_iter(iter); 3761 goto again; 3762 } 3763 3764 event = rb_iter_head_event(iter); 3765 3766 switch (event->type_len) { 3767 case RINGBUF_TYPE_PADDING: 3768 if (rb_null_event(event)) { 3769 rb_inc_iter(iter); 3770 goto again; 3771 } 3772 rb_advance_iter(iter); 3773 return event; 3774 3775 case RINGBUF_TYPE_TIME_EXTEND: 3776 /* Internal data, OK to advance */ 3777 rb_advance_iter(iter); 3778 goto again; 3779 3780 case RINGBUF_TYPE_TIME_STAMP: 3781 /* FIXME: not implemented */ 3782 rb_advance_iter(iter); 3783 goto again; 3784 3785 case RINGBUF_TYPE_DATA: 3786 if (ts) { 3787 *ts = iter->read_stamp + event->time_delta; 3788 ring_buffer_normalize_time_stamp(buffer, 3789 cpu_buffer->cpu, ts); 3790 } 3791 return event; 3792 3793 default: 3794 BUG(); 3795 } 3796 3797 return NULL; 3798 } 3799 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3800 3801 static inline int rb_ok_to_lock(void) 3802 { 3803 /* 3804 * If an NMI die dumps out the content of the ring buffer 3805 * do not grab locks. We also permanently disable the ring 3806 * buffer too. A one time deal is all you get from reading 3807 * the ring buffer from an NMI. 3808 */ 3809 if (likely(!in_nmi())) 3810 return 1; 3811 3812 tracing_off_permanent(); 3813 return 0; 3814 } 3815 3816 /** 3817 * ring_buffer_peek - peek at the next event to be read 3818 * @buffer: The ring buffer to read 3819 * @cpu: The cpu to peak at 3820 * @ts: The timestamp counter of this event. 3821 * @lost_events: a variable to store if events were lost (may be NULL) 3822 * 3823 * This will return the event that will be read next, but does 3824 * not consume the data. 3825 */ 3826 struct ring_buffer_event * 3827 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3828 unsigned long *lost_events) 3829 { 3830 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3831 struct ring_buffer_event *event; 3832 unsigned long flags; 3833 int dolock; 3834 3835 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3836 return NULL; 3837 3838 dolock = rb_ok_to_lock(); 3839 again: 3840 local_irq_save(flags); 3841 if (dolock) 3842 raw_spin_lock(&cpu_buffer->reader_lock); 3843 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3844 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3845 rb_advance_reader(cpu_buffer); 3846 if (dolock) 3847 raw_spin_unlock(&cpu_buffer->reader_lock); 3848 local_irq_restore(flags); 3849 3850 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3851 goto again; 3852 3853 return event; 3854 } 3855 3856 /** 3857 * ring_buffer_iter_peek - peek at the next event to be read 3858 * @iter: The ring buffer iterator 3859 * @ts: The timestamp counter of this event. 3860 * 3861 * This will return the event that will be read next, but does 3862 * not increment the iterator. 3863 */ 3864 struct ring_buffer_event * 3865 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3866 { 3867 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3868 struct ring_buffer_event *event; 3869 unsigned long flags; 3870 3871 again: 3872 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3873 event = rb_iter_peek(iter, ts); 3874 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3875 3876 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3877 goto again; 3878 3879 return event; 3880 } 3881 3882 /** 3883 * ring_buffer_consume - return an event and consume it 3884 * @buffer: The ring buffer to get the next event from 3885 * @cpu: the cpu to read the buffer from 3886 * @ts: a variable to store the timestamp (may be NULL) 3887 * @lost_events: a variable to store if events were lost (may be NULL) 3888 * 3889 * Returns the next event in the ring buffer, and that event is consumed. 3890 * Meaning, that sequential reads will keep returning a different event, 3891 * and eventually empty the ring buffer if the producer is slower. 3892 */ 3893 struct ring_buffer_event * 3894 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3895 unsigned long *lost_events) 3896 { 3897 struct ring_buffer_per_cpu *cpu_buffer; 3898 struct ring_buffer_event *event = NULL; 3899 unsigned long flags; 3900 int dolock; 3901 3902 dolock = rb_ok_to_lock(); 3903 3904 again: 3905 /* might be called in atomic */ 3906 preempt_disable(); 3907 3908 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3909 goto out; 3910 3911 cpu_buffer = buffer->buffers[cpu]; 3912 local_irq_save(flags); 3913 if (dolock) 3914 raw_spin_lock(&cpu_buffer->reader_lock); 3915 3916 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3917 if (event) { 3918 cpu_buffer->lost_events = 0; 3919 rb_advance_reader(cpu_buffer); 3920 } 3921 3922 if (dolock) 3923 raw_spin_unlock(&cpu_buffer->reader_lock); 3924 local_irq_restore(flags); 3925 3926 out: 3927 preempt_enable(); 3928 3929 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3930 goto again; 3931 3932 return event; 3933 } 3934 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3935 3936 /** 3937 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3938 * @buffer: The ring buffer to read from 3939 * @cpu: The cpu buffer to iterate over 3940 * 3941 * This performs the initial preparations necessary to iterate 3942 * through the buffer. Memory is allocated, buffer recording 3943 * is disabled, and the iterator pointer is returned to the caller. 3944 * 3945 * Disabling buffer recordng prevents the reading from being 3946 * corrupted. This is not a consuming read, so a producer is not 3947 * expected. 3948 * 3949 * After a sequence of ring_buffer_read_prepare calls, the user is 3950 * expected to make at least one call to ring_buffer_read_prepare_sync. 3951 * Afterwards, ring_buffer_read_start is invoked to get things going 3952 * for real. 3953 * 3954 * This overall must be paired with ring_buffer_read_finish. 3955 */ 3956 struct ring_buffer_iter * 3957 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3958 { 3959 struct ring_buffer_per_cpu *cpu_buffer; 3960 struct ring_buffer_iter *iter; 3961 3962 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3963 return NULL; 3964 3965 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3966 if (!iter) 3967 return NULL; 3968 3969 cpu_buffer = buffer->buffers[cpu]; 3970 3971 iter->cpu_buffer = cpu_buffer; 3972 3973 atomic_inc(&buffer->resize_disabled); 3974 atomic_inc(&cpu_buffer->record_disabled); 3975 3976 return iter; 3977 } 3978 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3979 3980 /** 3981 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3982 * 3983 * All previously invoked ring_buffer_read_prepare calls to prepare 3984 * iterators will be synchronized. Afterwards, read_buffer_read_start 3985 * calls on those iterators are allowed. 3986 */ 3987 void 3988 ring_buffer_read_prepare_sync(void) 3989 { 3990 synchronize_sched(); 3991 } 3992 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3993 3994 /** 3995 * ring_buffer_read_start - start a non consuming read of the buffer 3996 * @iter: The iterator returned by ring_buffer_read_prepare 3997 * 3998 * This finalizes the startup of an iteration through the buffer. 3999 * The iterator comes from a call to ring_buffer_read_prepare and 4000 * an intervening ring_buffer_read_prepare_sync must have been 4001 * performed. 4002 * 4003 * Must be paired with ring_buffer_read_finish. 4004 */ 4005 void 4006 ring_buffer_read_start(struct ring_buffer_iter *iter) 4007 { 4008 struct ring_buffer_per_cpu *cpu_buffer; 4009 unsigned long flags; 4010 4011 if (!iter) 4012 return; 4013 4014 cpu_buffer = iter->cpu_buffer; 4015 4016 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4017 arch_spin_lock(&cpu_buffer->lock); 4018 rb_iter_reset(iter); 4019 arch_spin_unlock(&cpu_buffer->lock); 4020 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4021 } 4022 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4023 4024 /** 4025 * ring_buffer_read_finish - finish reading the iterator of the buffer 4026 * @iter: The iterator retrieved by ring_buffer_start 4027 * 4028 * This re-enables the recording to the buffer, and frees the 4029 * iterator. 4030 */ 4031 void 4032 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4033 { 4034 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4035 unsigned long flags; 4036 4037 /* 4038 * Ring buffer is disabled from recording, here's a good place 4039 * to check the integrity of the ring buffer. 4040 * Must prevent readers from trying to read, as the check 4041 * clears the HEAD page and readers require it. 4042 */ 4043 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4044 rb_check_pages(cpu_buffer); 4045 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4046 4047 atomic_dec(&cpu_buffer->record_disabled); 4048 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4049 kfree(iter); 4050 } 4051 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4052 4053 /** 4054 * ring_buffer_read - read the next item in the ring buffer by the iterator 4055 * @iter: The ring buffer iterator 4056 * @ts: The time stamp of the event read. 4057 * 4058 * This reads the next event in the ring buffer and increments the iterator. 4059 */ 4060 struct ring_buffer_event * 4061 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4062 { 4063 struct ring_buffer_event *event; 4064 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4065 unsigned long flags; 4066 4067 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4068 again: 4069 event = rb_iter_peek(iter, ts); 4070 if (!event) 4071 goto out; 4072 4073 if (event->type_len == RINGBUF_TYPE_PADDING) 4074 goto again; 4075 4076 rb_advance_iter(iter); 4077 out: 4078 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4079 4080 return event; 4081 } 4082 EXPORT_SYMBOL_GPL(ring_buffer_read); 4083 4084 /** 4085 * ring_buffer_size - return the size of the ring buffer (in bytes) 4086 * @buffer: The ring buffer. 4087 */ 4088 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4089 { 4090 /* 4091 * Earlier, this method returned 4092 * BUF_PAGE_SIZE * buffer->nr_pages 4093 * Since the nr_pages field is now removed, we have converted this to 4094 * return the per cpu buffer value. 4095 */ 4096 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4097 return 0; 4098 4099 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4100 } 4101 EXPORT_SYMBOL_GPL(ring_buffer_size); 4102 4103 static void 4104 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4105 { 4106 rb_head_page_deactivate(cpu_buffer); 4107 4108 cpu_buffer->head_page 4109 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4110 local_set(&cpu_buffer->head_page->write, 0); 4111 local_set(&cpu_buffer->head_page->entries, 0); 4112 local_set(&cpu_buffer->head_page->page->commit, 0); 4113 4114 cpu_buffer->head_page->read = 0; 4115 4116 cpu_buffer->tail_page = cpu_buffer->head_page; 4117 cpu_buffer->commit_page = cpu_buffer->head_page; 4118 4119 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4120 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4121 local_set(&cpu_buffer->reader_page->write, 0); 4122 local_set(&cpu_buffer->reader_page->entries, 0); 4123 local_set(&cpu_buffer->reader_page->page->commit, 0); 4124 cpu_buffer->reader_page->read = 0; 4125 4126 local_set(&cpu_buffer->entries_bytes, 0); 4127 local_set(&cpu_buffer->overrun, 0); 4128 local_set(&cpu_buffer->commit_overrun, 0); 4129 local_set(&cpu_buffer->dropped_events, 0); 4130 local_set(&cpu_buffer->entries, 0); 4131 local_set(&cpu_buffer->committing, 0); 4132 local_set(&cpu_buffer->commits, 0); 4133 cpu_buffer->read = 0; 4134 cpu_buffer->read_bytes = 0; 4135 4136 cpu_buffer->write_stamp = 0; 4137 cpu_buffer->read_stamp = 0; 4138 4139 cpu_buffer->lost_events = 0; 4140 cpu_buffer->last_overrun = 0; 4141 4142 rb_head_page_activate(cpu_buffer); 4143 } 4144 4145 /** 4146 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4147 * @buffer: The ring buffer to reset a per cpu buffer of 4148 * @cpu: The CPU buffer to be reset 4149 */ 4150 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4151 { 4152 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4153 unsigned long flags; 4154 4155 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4156 return; 4157 4158 atomic_inc(&buffer->resize_disabled); 4159 atomic_inc(&cpu_buffer->record_disabled); 4160 4161 /* Make sure all commits have finished */ 4162 synchronize_sched(); 4163 4164 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4165 4166 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4167 goto out; 4168 4169 arch_spin_lock(&cpu_buffer->lock); 4170 4171 rb_reset_cpu(cpu_buffer); 4172 4173 arch_spin_unlock(&cpu_buffer->lock); 4174 4175 out: 4176 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4177 4178 atomic_dec(&cpu_buffer->record_disabled); 4179 atomic_dec(&buffer->resize_disabled); 4180 } 4181 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4182 4183 /** 4184 * ring_buffer_reset - reset a ring buffer 4185 * @buffer: The ring buffer to reset all cpu buffers 4186 */ 4187 void ring_buffer_reset(struct ring_buffer *buffer) 4188 { 4189 int cpu; 4190 4191 for_each_buffer_cpu(buffer, cpu) 4192 ring_buffer_reset_cpu(buffer, cpu); 4193 } 4194 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4195 4196 /** 4197 * rind_buffer_empty - is the ring buffer empty? 4198 * @buffer: The ring buffer to test 4199 */ 4200 int ring_buffer_empty(struct ring_buffer *buffer) 4201 { 4202 struct ring_buffer_per_cpu *cpu_buffer; 4203 unsigned long flags; 4204 int dolock; 4205 int cpu; 4206 int ret; 4207 4208 dolock = rb_ok_to_lock(); 4209 4210 /* yes this is racy, but if you don't like the race, lock the buffer */ 4211 for_each_buffer_cpu(buffer, cpu) { 4212 cpu_buffer = buffer->buffers[cpu]; 4213 local_irq_save(flags); 4214 if (dolock) 4215 raw_spin_lock(&cpu_buffer->reader_lock); 4216 ret = rb_per_cpu_empty(cpu_buffer); 4217 if (dolock) 4218 raw_spin_unlock(&cpu_buffer->reader_lock); 4219 local_irq_restore(flags); 4220 4221 if (!ret) 4222 return 0; 4223 } 4224 4225 return 1; 4226 } 4227 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4228 4229 /** 4230 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4231 * @buffer: The ring buffer 4232 * @cpu: The CPU buffer to test 4233 */ 4234 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4235 { 4236 struct ring_buffer_per_cpu *cpu_buffer; 4237 unsigned long flags; 4238 int dolock; 4239 int ret; 4240 4241 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4242 return 1; 4243 4244 dolock = rb_ok_to_lock(); 4245 4246 cpu_buffer = buffer->buffers[cpu]; 4247 local_irq_save(flags); 4248 if (dolock) 4249 raw_spin_lock(&cpu_buffer->reader_lock); 4250 ret = rb_per_cpu_empty(cpu_buffer); 4251 if (dolock) 4252 raw_spin_unlock(&cpu_buffer->reader_lock); 4253 local_irq_restore(flags); 4254 4255 return ret; 4256 } 4257 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4258 4259 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4260 /** 4261 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4262 * @buffer_a: One buffer to swap with 4263 * @buffer_b: The other buffer to swap with 4264 * 4265 * This function is useful for tracers that want to take a "snapshot" 4266 * of a CPU buffer and has another back up buffer lying around. 4267 * it is expected that the tracer handles the cpu buffer not being 4268 * used at the moment. 4269 */ 4270 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4271 struct ring_buffer *buffer_b, int cpu) 4272 { 4273 struct ring_buffer_per_cpu *cpu_buffer_a; 4274 struct ring_buffer_per_cpu *cpu_buffer_b; 4275 int ret = -EINVAL; 4276 4277 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4278 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4279 goto out; 4280 4281 cpu_buffer_a = buffer_a->buffers[cpu]; 4282 cpu_buffer_b = buffer_b->buffers[cpu]; 4283 4284 /* At least make sure the two buffers are somewhat the same */ 4285 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4286 goto out; 4287 4288 ret = -EAGAIN; 4289 4290 if (ring_buffer_flags != RB_BUFFERS_ON) 4291 goto out; 4292 4293 if (atomic_read(&buffer_a->record_disabled)) 4294 goto out; 4295 4296 if (atomic_read(&buffer_b->record_disabled)) 4297 goto out; 4298 4299 if (atomic_read(&cpu_buffer_a->record_disabled)) 4300 goto out; 4301 4302 if (atomic_read(&cpu_buffer_b->record_disabled)) 4303 goto out; 4304 4305 /* 4306 * We can't do a synchronize_sched here because this 4307 * function can be called in atomic context. 4308 * Normally this will be called from the same CPU as cpu. 4309 * If not it's up to the caller to protect this. 4310 */ 4311 atomic_inc(&cpu_buffer_a->record_disabled); 4312 atomic_inc(&cpu_buffer_b->record_disabled); 4313 4314 ret = -EBUSY; 4315 if (local_read(&cpu_buffer_a->committing)) 4316 goto out_dec; 4317 if (local_read(&cpu_buffer_b->committing)) 4318 goto out_dec; 4319 4320 buffer_a->buffers[cpu] = cpu_buffer_b; 4321 buffer_b->buffers[cpu] = cpu_buffer_a; 4322 4323 cpu_buffer_b->buffer = buffer_a; 4324 cpu_buffer_a->buffer = buffer_b; 4325 4326 ret = 0; 4327 4328 out_dec: 4329 atomic_dec(&cpu_buffer_a->record_disabled); 4330 atomic_dec(&cpu_buffer_b->record_disabled); 4331 out: 4332 return ret; 4333 } 4334 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4335 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4336 4337 /** 4338 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4339 * @buffer: the buffer to allocate for. 4340 * @cpu: the cpu buffer to allocate. 4341 * 4342 * This function is used in conjunction with ring_buffer_read_page. 4343 * When reading a full page from the ring buffer, these functions 4344 * can be used to speed up the process. The calling function should 4345 * allocate a few pages first with this function. Then when it 4346 * needs to get pages from the ring buffer, it passes the result 4347 * of this function into ring_buffer_read_page, which will swap 4348 * the page that was allocated, with the read page of the buffer. 4349 * 4350 * Returns: 4351 * The page allocated, or NULL on error. 4352 */ 4353 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4354 { 4355 struct buffer_data_page *bpage; 4356 struct page *page; 4357 4358 page = alloc_pages_node(cpu_to_node(cpu), 4359 GFP_KERNEL | __GFP_NORETRY, 0); 4360 if (!page) 4361 return NULL; 4362 4363 bpage = page_address(page); 4364 4365 rb_init_page(bpage); 4366 4367 return bpage; 4368 } 4369 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4370 4371 /** 4372 * ring_buffer_free_read_page - free an allocated read page 4373 * @buffer: the buffer the page was allocate for 4374 * @data: the page to free 4375 * 4376 * Free a page allocated from ring_buffer_alloc_read_page. 4377 */ 4378 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4379 { 4380 free_page((unsigned long)data); 4381 } 4382 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4383 4384 /** 4385 * ring_buffer_read_page - extract a page from the ring buffer 4386 * @buffer: buffer to extract from 4387 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4388 * @len: amount to extract 4389 * @cpu: the cpu of the buffer to extract 4390 * @full: should the extraction only happen when the page is full. 4391 * 4392 * This function will pull out a page from the ring buffer and consume it. 4393 * @data_page must be the address of the variable that was returned 4394 * from ring_buffer_alloc_read_page. This is because the page might be used 4395 * to swap with a page in the ring buffer. 4396 * 4397 * for example: 4398 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4399 * if (!rpage) 4400 * return error; 4401 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4402 * if (ret >= 0) 4403 * process_page(rpage, ret); 4404 * 4405 * When @full is set, the function will not return true unless 4406 * the writer is off the reader page. 4407 * 4408 * Note: it is up to the calling functions to handle sleeps and wakeups. 4409 * The ring buffer can be used anywhere in the kernel and can not 4410 * blindly call wake_up. The layer that uses the ring buffer must be 4411 * responsible for that. 4412 * 4413 * Returns: 4414 * >=0 if data has been transferred, returns the offset of consumed data. 4415 * <0 if no data has been transferred. 4416 */ 4417 int ring_buffer_read_page(struct ring_buffer *buffer, 4418 void **data_page, size_t len, int cpu, int full) 4419 { 4420 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4421 struct ring_buffer_event *event; 4422 struct buffer_data_page *bpage; 4423 struct buffer_page *reader; 4424 unsigned long missed_events; 4425 unsigned long flags; 4426 unsigned int commit; 4427 unsigned int read; 4428 u64 save_timestamp; 4429 int ret = -1; 4430 4431 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4432 goto out; 4433 4434 /* 4435 * If len is not big enough to hold the page header, then 4436 * we can not copy anything. 4437 */ 4438 if (len <= BUF_PAGE_HDR_SIZE) 4439 goto out; 4440 4441 len -= BUF_PAGE_HDR_SIZE; 4442 4443 if (!data_page) 4444 goto out; 4445 4446 bpage = *data_page; 4447 if (!bpage) 4448 goto out; 4449 4450 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4451 4452 reader = rb_get_reader_page(cpu_buffer); 4453 if (!reader) 4454 goto out_unlock; 4455 4456 event = rb_reader_event(cpu_buffer); 4457 4458 read = reader->read; 4459 commit = rb_page_commit(reader); 4460 4461 /* Check if any events were dropped */ 4462 missed_events = cpu_buffer->lost_events; 4463 4464 /* 4465 * If this page has been partially read or 4466 * if len is not big enough to read the rest of the page or 4467 * a writer is still on the page, then 4468 * we must copy the data from the page to the buffer. 4469 * Otherwise, we can simply swap the page with the one passed in. 4470 */ 4471 if (read || (len < (commit - read)) || 4472 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4473 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4474 unsigned int rpos = read; 4475 unsigned int pos = 0; 4476 unsigned int size; 4477 4478 if (full) 4479 goto out_unlock; 4480 4481 if (len > (commit - read)) 4482 len = (commit - read); 4483 4484 /* Always keep the time extend and data together */ 4485 size = rb_event_ts_length(event); 4486 4487 if (len < size) 4488 goto out_unlock; 4489 4490 /* save the current timestamp, since the user will need it */ 4491 save_timestamp = cpu_buffer->read_stamp; 4492 4493 /* Need to copy one event at a time */ 4494 do { 4495 /* We need the size of one event, because 4496 * rb_advance_reader only advances by one event, 4497 * whereas rb_event_ts_length may include the size of 4498 * one or two events. 4499 * We have already ensured there's enough space if this 4500 * is a time extend. */ 4501 size = rb_event_length(event); 4502 memcpy(bpage->data + pos, rpage->data + rpos, size); 4503 4504 len -= size; 4505 4506 rb_advance_reader(cpu_buffer); 4507 rpos = reader->read; 4508 pos += size; 4509 4510 if (rpos >= commit) 4511 break; 4512 4513 event = rb_reader_event(cpu_buffer); 4514 /* Always keep the time extend and data together */ 4515 size = rb_event_ts_length(event); 4516 } while (len >= size); 4517 4518 /* update bpage */ 4519 local_set(&bpage->commit, pos); 4520 bpage->time_stamp = save_timestamp; 4521 4522 /* we copied everything to the beginning */ 4523 read = 0; 4524 } else { 4525 /* update the entry counter */ 4526 cpu_buffer->read += rb_page_entries(reader); 4527 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4528 4529 /* swap the pages */ 4530 rb_init_page(bpage); 4531 bpage = reader->page; 4532 reader->page = *data_page; 4533 local_set(&reader->write, 0); 4534 local_set(&reader->entries, 0); 4535 reader->read = 0; 4536 *data_page = bpage; 4537 4538 /* 4539 * Use the real_end for the data size, 4540 * This gives us a chance to store the lost events 4541 * on the page. 4542 */ 4543 if (reader->real_end) 4544 local_set(&bpage->commit, reader->real_end); 4545 } 4546 ret = read; 4547 4548 cpu_buffer->lost_events = 0; 4549 4550 commit = local_read(&bpage->commit); 4551 /* 4552 * Set a flag in the commit field if we lost events 4553 */ 4554 if (missed_events) { 4555 /* If there is room at the end of the page to save the 4556 * missed events, then record it there. 4557 */ 4558 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4559 memcpy(&bpage->data[commit], &missed_events, 4560 sizeof(missed_events)); 4561 local_add(RB_MISSED_STORED, &bpage->commit); 4562 commit += sizeof(missed_events); 4563 } 4564 local_add(RB_MISSED_EVENTS, &bpage->commit); 4565 } 4566 4567 /* 4568 * This page may be off to user land. Zero it out here. 4569 */ 4570 if (commit < BUF_PAGE_SIZE) 4571 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4572 4573 out_unlock: 4574 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4575 4576 out: 4577 return ret; 4578 } 4579 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4580 4581 #ifdef CONFIG_HOTPLUG_CPU 4582 static int rb_cpu_notify(struct notifier_block *self, 4583 unsigned long action, void *hcpu) 4584 { 4585 struct ring_buffer *buffer = 4586 container_of(self, struct ring_buffer, cpu_notify); 4587 long cpu = (long)hcpu; 4588 int cpu_i, nr_pages_same; 4589 unsigned int nr_pages; 4590 4591 switch (action) { 4592 case CPU_UP_PREPARE: 4593 case CPU_UP_PREPARE_FROZEN: 4594 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4595 return NOTIFY_OK; 4596 4597 nr_pages = 0; 4598 nr_pages_same = 1; 4599 /* check if all cpu sizes are same */ 4600 for_each_buffer_cpu(buffer, cpu_i) { 4601 /* fill in the size from first enabled cpu */ 4602 if (nr_pages == 0) 4603 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4604 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4605 nr_pages_same = 0; 4606 break; 4607 } 4608 } 4609 /* allocate minimum pages, user can later expand it */ 4610 if (!nr_pages_same) 4611 nr_pages = 2; 4612 buffer->buffers[cpu] = 4613 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4614 if (!buffer->buffers[cpu]) { 4615 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4616 cpu); 4617 return NOTIFY_OK; 4618 } 4619 smp_wmb(); 4620 cpumask_set_cpu(cpu, buffer->cpumask); 4621 break; 4622 case CPU_DOWN_PREPARE: 4623 case CPU_DOWN_PREPARE_FROZEN: 4624 /* 4625 * Do nothing. 4626 * If we were to free the buffer, then the user would 4627 * lose any trace that was in the buffer. 4628 */ 4629 break; 4630 default: 4631 break; 4632 } 4633 return NOTIFY_OK; 4634 } 4635 #endif 4636 4637 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4638 /* 4639 * This is a basic integrity check of the ring buffer. 4640 * Late in the boot cycle this test will run when configured in. 4641 * It will kick off a thread per CPU that will go into a loop 4642 * writing to the per cpu ring buffer various sizes of data. 4643 * Some of the data will be large items, some small. 4644 * 4645 * Another thread is created that goes into a spin, sending out 4646 * IPIs to the other CPUs to also write into the ring buffer. 4647 * this is to test the nesting ability of the buffer. 4648 * 4649 * Basic stats are recorded and reported. If something in the 4650 * ring buffer should happen that's not expected, a big warning 4651 * is displayed and all ring buffers are disabled. 4652 */ 4653 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4654 4655 struct rb_test_data { 4656 struct ring_buffer *buffer; 4657 unsigned long events; 4658 unsigned long bytes_written; 4659 unsigned long bytes_alloc; 4660 unsigned long bytes_dropped; 4661 unsigned long events_nested; 4662 unsigned long bytes_written_nested; 4663 unsigned long bytes_alloc_nested; 4664 unsigned long bytes_dropped_nested; 4665 int min_size_nested; 4666 int max_size_nested; 4667 int max_size; 4668 int min_size; 4669 int cpu; 4670 int cnt; 4671 }; 4672 4673 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4674 4675 /* 1 meg per cpu */ 4676 #define RB_TEST_BUFFER_SIZE 1048576 4677 4678 static char rb_string[] __initdata = 4679 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4680 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4681 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4682 4683 static bool rb_test_started __initdata; 4684 4685 struct rb_item { 4686 int size; 4687 char str[]; 4688 }; 4689 4690 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4691 { 4692 struct ring_buffer_event *event; 4693 struct rb_item *item; 4694 bool started; 4695 int event_len; 4696 int size; 4697 int len; 4698 int cnt; 4699 4700 /* Have nested writes different that what is written */ 4701 cnt = data->cnt + (nested ? 27 : 0); 4702 4703 /* Multiply cnt by ~e, to make some unique increment */ 4704 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4705 4706 len = size + sizeof(struct rb_item); 4707 4708 started = rb_test_started; 4709 /* read rb_test_started before checking buffer enabled */ 4710 smp_rmb(); 4711 4712 event = ring_buffer_lock_reserve(data->buffer, len); 4713 if (!event) { 4714 /* Ignore dropped events before test starts. */ 4715 if (started) { 4716 if (nested) 4717 data->bytes_dropped += len; 4718 else 4719 data->bytes_dropped_nested += len; 4720 } 4721 return len; 4722 } 4723 4724 event_len = ring_buffer_event_length(event); 4725 4726 if (RB_WARN_ON(data->buffer, event_len < len)) 4727 goto out; 4728 4729 item = ring_buffer_event_data(event); 4730 item->size = size; 4731 memcpy(item->str, rb_string, size); 4732 4733 if (nested) { 4734 data->bytes_alloc_nested += event_len; 4735 data->bytes_written_nested += len; 4736 data->events_nested++; 4737 if (!data->min_size_nested || len < data->min_size_nested) 4738 data->min_size_nested = len; 4739 if (len > data->max_size_nested) 4740 data->max_size_nested = len; 4741 } else { 4742 data->bytes_alloc += event_len; 4743 data->bytes_written += len; 4744 data->events++; 4745 if (!data->min_size || len < data->min_size) 4746 data->max_size = len; 4747 if (len > data->max_size) 4748 data->max_size = len; 4749 } 4750 4751 out: 4752 ring_buffer_unlock_commit(data->buffer, event); 4753 4754 return 0; 4755 } 4756 4757 static __init int rb_test(void *arg) 4758 { 4759 struct rb_test_data *data = arg; 4760 4761 while (!kthread_should_stop()) { 4762 rb_write_something(data, false); 4763 data->cnt++; 4764 4765 set_current_state(TASK_INTERRUPTIBLE); 4766 /* Now sleep between a min of 100-300us and a max of 1ms */ 4767 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4768 } 4769 4770 return 0; 4771 } 4772 4773 static __init void rb_ipi(void *ignore) 4774 { 4775 struct rb_test_data *data; 4776 int cpu = smp_processor_id(); 4777 4778 data = &rb_data[cpu]; 4779 rb_write_something(data, true); 4780 } 4781 4782 static __init int rb_hammer_test(void *arg) 4783 { 4784 while (!kthread_should_stop()) { 4785 4786 /* Send an IPI to all cpus to write data! */ 4787 smp_call_function(rb_ipi, NULL, 1); 4788 /* No sleep, but for non preempt, let others run */ 4789 schedule(); 4790 } 4791 4792 return 0; 4793 } 4794 4795 static __init int test_ringbuffer(void) 4796 { 4797 struct task_struct *rb_hammer; 4798 struct ring_buffer *buffer; 4799 int cpu; 4800 int ret = 0; 4801 4802 pr_info("Running ring buffer tests...\n"); 4803 4804 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4805 if (WARN_ON(!buffer)) 4806 return 0; 4807 4808 /* Disable buffer so that threads can't write to it yet */ 4809 ring_buffer_record_off(buffer); 4810 4811 for_each_online_cpu(cpu) { 4812 rb_data[cpu].buffer = buffer; 4813 rb_data[cpu].cpu = cpu; 4814 rb_data[cpu].cnt = cpu; 4815 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4816 "rbtester/%d", cpu); 4817 if (WARN_ON(!rb_threads[cpu])) { 4818 pr_cont("FAILED\n"); 4819 ret = -1; 4820 goto out_free; 4821 } 4822 4823 kthread_bind(rb_threads[cpu], cpu); 4824 wake_up_process(rb_threads[cpu]); 4825 } 4826 4827 /* Now create the rb hammer! */ 4828 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4829 if (WARN_ON(!rb_hammer)) { 4830 pr_cont("FAILED\n"); 4831 ret = -1; 4832 goto out_free; 4833 } 4834 4835 ring_buffer_record_on(buffer); 4836 /* 4837 * Show buffer is enabled before setting rb_test_started. 4838 * Yes there's a small race window where events could be 4839 * dropped and the thread wont catch it. But when a ring 4840 * buffer gets enabled, there will always be some kind of 4841 * delay before other CPUs see it. Thus, we don't care about 4842 * those dropped events. We care about events dropped after 4843 * the threads see that the buffer is active. 4844 */ 4845 smp_wmb(); 4846 rb_test_started = true; 4847 4848 set_current_state(TASK_INTERRUPTIBLE); 4849 /* Just run for 10 seconds */; 4850 schedule_timeout(10 * HZ); 4851 4852 kthread_stop(rb_hammer); 4853 4854 out_free: 4855 for_each_online_cpu(cpu) { 4856 if (!rb_threads[cpu]) 4857 break; 4858 kthread_stop(rb_threads[cpu]); 4859 } 4860 if (ret) { 4861 ring_buffer_free(buffer); 4862 return ret; 4863 } 4864 4865 /* Report! */ 4866 pr_info("finished\n"); 4867 for_each_online_cpu(cpu) { 4868 struct ring_buffer_event *event; 4869 struct rb_test_data *data = &rb_data[cpu]; 4870 struct rb_item *item; 4871 unsigned long total_events; 4872 unsigned long total_dropped; 4873 unsigned long total_written; 4874 unsigned long total_alloc; 4875 unsigned long total_read = 0; 4876 unsigned long total_size = 0; 4877 unsigned long total_len = 0; 4878 unsigned long total_lost = 0; 4879 unsigned long lost; 4880 int big_event_size; 4881 int small_event_size; 4882 4883 ret = -1; 4884 4885 total_events = data->events + data->events_nested; 4886 total_written = data->bytes_written + data->bytes_written_nested; 4887 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4888 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4889 4890 big_event_size = data->max_size + data->max_size_nested; 4891 small_event_size = data->min_size + data->min_size_nested; 4892 4893 pr_info("CPU %d:\n", cpu); 4894 pr_info(" events: %ld\n", total_events); 4895 pr_info(" dropped bytes: %ld\n", total_dropped); 4896 pr_info(" alloced bytes: %ld\n", total_alloc); 4897 pr_info(" written bytes: %ld\n", total_written); 4898 pr_info(" biggest event: %d\n", big_event_size); 4899 pr_info(" smallest event: %d\n", small_event_size); 4900 4901 if (RB_WARN_ON(buffer, total_dropped)) 4902 break; 4903 4904 ret = 0; 4905 4906 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4907 total_lost += lost; 4908 item = ring_buffer_event_data(event); 4909 total_len += ring_buffer_event_length(event); 4910 total_size += item->size + sizeof(struct rb_item); 4911 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4912 pr_info("FAILED!\n"); 4913 pr_info("buffer had: %.*s\n", item->size, item->str); 4914 pr_info("expected: %.*s\n", item->size, rb_string); 4915 RB_WARN_ON(buffer, 1); 4916 ret = -1; 4917 break; 4918 } 4919 total_read++; 4920 } 4921 if (ret) 4922 break; 4923 4924 ret = -1; 4925 4926 pr_info(" read events: %ld\n", total_read); 4927 pr_info(" lost events: %ld\n", total_lost); 4928 pr_info(" total events: %ld\n", total_lost + total_read); 4929 pr_info(" recorded len bytes: %ld\n", total_len); 4930 pr_info(" recorded size bytes: %ld\n", total_size); 4931 if (total_lost) 4932 pr_info(" With dropped events, record len and size may not match\n" 4933 " alloced and written from above\n"); 4934 if (!total_lost) { 4935 if (RB_WARN_ON(buffer, total_len != total_alloc || 4936 total_size != total_written)) 4937 break; 4938 } 4939 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4940 break; 4941 4942 ret = 0; 4943 } 4944 if (!ret) 4945 pr_info("Ring buffer PASSED!\n"); 4946 4947 ring_buffer_free(buffer); 4948 return 0; 4949 } 4950 4951 late_initcall(test_ringbuffer); 4952 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4953