xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision e917ba44)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	int ret;
38 
39 	ret = trace_seq_puts(s, "# compressed entry header\n");
40 	ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	ret = trace_seq_putc(s, '\n');
44 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			       RINGBUF_TYPE_PADDING);
46 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			       RINGBUF_TYPE_TIME_EXTEND);
48 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return ret;
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139 
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150 
151 enum {
152 	RB_BUFFERS_ON_BIT	= 0,
153 	RB_BUFFERS_DISABLED_BIT	= 1,
154 };
155 
156 enum {
157 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
158 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160 
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162 
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF		(1 << 20)
165 
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167 
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178 
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT		4U
181 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
183 
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT	0
186 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT	1
189 # define RB_ARCH_ALIGNMENT		8U
190 #endif
191 
192 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
193 
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196 
197 enum {
198 	RB_LEN_TIME_EXTEND = 8,
199 	RB_LEN_TIME_STAMP = 16,
200 };
201 
202 #define skip_time_extend(event) \
203 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204 
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209 
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 	/* padding has a NULL time_delta */
213 	event->type_len = RINGBUF_TYPE_PADDING;
214 	event->time_delta = 0;
215 }
216 
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 	unsigned length;
221 
222 	if (event->type_len)
223 		length = event->type_len * RB_ALIGNMENT;
224 	else
225 		length = event->array[0];
226 	return length + RB_EVNT_HDR_SIZE;
227 }
228 
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 	switch (event->type_len) {
238 	case RINGBUF_TYPE_PADDING:
239 		if (rb_null_event(event))
240 			/* undefined */
241 			return -1;
242 		return  event->array[0] + RB_EVNT_HDR_SIZE;
243 
244 	case RINGBUF_TYPE_TIME_EXTEND:
245 		return RB_LEN_TIME_EXTEND;
246 
247 	case RINGBUF_TYPE_TIME_STAMP:
248 		return RB_LEN_TIME_STAMP;
249 
250 	case RINGBUF_TYPE_DATA:
251 		return rb_event_data_length(event);
252 	default:
253 		BUG();
254 	}
255 	/* not hit */
256 	return 0;
257 }
258 
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 	unsigned len = 0;
267 
268 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 		/* time extends include the data event after it */
270 		len = RB_LEN_TIME_EXTEND;
271 		event = skip_time_extend(event);
272 	}
273 	return len + rb_event_length(event);
274 }
275 
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 	unsigned length;
289 
290 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 		event = skip_time_extend(event);
292 
293 	length = rb_event_length(event);
294 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 		return length;
296 	length -= RB_EVNT_HDR_SIZE;
297 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299 	return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302 
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 		event = skip_time_extend(event);
309 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 	/* If length is in len field, then array[0] has the data */
311 	if (event->type_len)
312 		return (void *)&event->array[0];
313 	/* Otherwise length is in array[0] and array[1] has the data */
314 	return (void *)&event->array[1];
315 }
316 
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 	return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326 
327 #define for_each_buffer_cpu(buffer, cpu)		\
328 	for_each_cpu(cpu, buffer->cpumask)
329 
330 #define TS_SHIFT	27
331 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST	(~TS_MASK)
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 struct buffer_data_page {
340 	u64		 time_stamp;	/* page time stamp */
341 	local_t		 commit;	/* write committed index */
342 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
343 };
344 
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354 	struct list_head list;		/* list of buffer pages */
355 	local_t		 write;		/* index for next write */
356 	unsigned	 read;		/* index for next read */
357 	local_t		 entries;	/* entries on this page */
358 	unsigned long	 real_end;	/* real end of data */
359 	struct buffer_data_page *page;	/* Actual data page */
360 };
361 
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK		0xfffff
375 #define RB_WRITE_INTCNT		(1 << 20)
376 
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 	local_set(&bpage->commit, 0);
380 }
381 
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390 	return local_read(&((struct buffer_data_page *)page)->commit)
391 		+ BUF_PAGE_HDR_SIZE;
392 }
393 
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 	free_page((unsigned long)bpage->page);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409 	if (delta & TS_DELTA_TEST)
410 		return 1;
411 	return 0;
412 }
413 
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415 
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418 
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 	struct buffer_data_page field;
422 	int ret;
423 
424 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
426 			       (unsigned int)sizeof(field.time_stamp),
427 			       (unsigned int)is_signed_type(u64));
428 
429 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       (unsigned int)sizeof(field.commit),
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), commit),
438 			       1,
439 			       (unsigned int)is_signed_type(long));
440 
441 	ret = trace_seq_printf(s, "\tfield: char data;\t"
442 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 			       (unsigned int)offsetof(typeof(field), data),
444 			       (unsigned int)BUF_PAGE_SIZE,
445 			       (unsigned int)is_signed_type(char));
446 
447 	return ret;
448 }
449 
450 struct rb_irq_work {
451 	struct irq_work			work;
452 	wait_queue_head_t		waiters;
453 	bool				waiters_pending;
454 };
455 
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460 	int				cpu;
461 	atomic_t			record_disabled;
462 	struct ring_buffer		*buffer;
463 	raw_spinlock_t			reader_lock;	/* serialize readers */
464 	arch_spinlock_t			lock;
465 	struct lock_class_key		lock_key;
466 	unsigned int			nr_pages;
467 	struct list_head		*pages;
468 	struct buffer_page		*head_page;	/* read from head */
469 	struct buffer_page		*tail_page;	/* write to tail */
470 	struct buffer_page		*commit_page;	/* committed pages */
471 	struct buffer_page		*reader_page;
472 	unsigned long			lost_events;
473 	unsigned long			last_overrun;
474 	local_t				entries_bytes;
475 	local_t				entries;
476 	local_t				overrun;
477 	local_t				commit_overrun;
478 	local_t				dropped_events;
479 	local_t				committing;
480 	local_t				commits;
481 	unsigned long			read;
482 	unsigned long			read_bytes;
483 	u64				write_stamp;
484 	u64				read_stamp;
485 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
486 	int				nr_pages_to_update;
487 	struct list_head		new_pages; /* new pages to add */
488 	struct work_struct		update_pages_work;
489 	struct completion		update_done;
490 
491 	struct rb_irq_work		irq_work;
492 };
493 
494 struct ring_buffer {
495 	unsigned			flags;
496 	int				cpus;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	cpumask_var_t			cpumask;
500 
501 	struct lock_class_key		*reader_lock_key;
502 
503 	struct mutex			mutex;
504 
505 	struct ring_buffer_per_cpu	**buffers;
506 
507 #ifdef CONFIG_HOTPLUG_CPU
508 	struct notifier_block		cpu_notify;
509 #endif
510 	u64				(*clock)(void);
511 
512 	struct rb_irq_work		irq_work;
513 };
514 
515 struct ring_buffer_iter {
516 	struct ring_buffer_per_cpu	*cpu_buffer;
517 	unsigned long			head;
518 	struct buffer_page		*head_page;
519 	struct buffer_page		*cache_reader_page;
520 	unsigned long			cache_read;
521 	u64				read_stamp;
522 };
523 
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533 
534 	wake_up_all(&rbwork->waiters);
535 }
536 
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 	struct ring_buffer_per_cpu *cpu_buffer;
549 	DEFINE_WAIT(wait);
550 	struct rb_irq_work *work;
551 
552 	/*
553 	 * Depending on what the caller is waiting for, either any
554 	 * data in any cpu buffer, or a specific buffer, put the
555 	 * caller on the appropriate wait queue.
556 	 */
557 	if (cpu == RING_BUFFER_ALL_CPUS)
558 		work = &buffer->irq_work;
559 	else {
560 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 			return -ENODEV;
562 		cpu_buffer = buffer->buffers[cpu];
563 		work = &cpu_buffer->irq_work;
564 	}
565 
566 
567 	prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568 
569 	/*
570 	 * The events can happen in critical sections where
571 	 * checking a work queue can cause deadlocks.
572 	 * After adding a task to the queue, this flag is set
573 	 * only to notify events to try to wake up the queue
574 	 * using irq_work.
575 	 *
576 	 * We don't clear it even if the buffer is no longer
577 	 * empty. The flag only causes the next event to run
578 	 * irq_work to do the work queue wake up. The worse
579 	 * that can happen if we race with !trace_empty() is that
580 	 * an event will cause an irq_work to try to wake up
581 	 * an empty queue.
582 	 *
583 	 * There's no reason to protect this flag either, as
584 	 * the work queue and irq_work logic will do the necessary
585 	 * synchronization for the wake ups. The only thing
586 	 * that is necessary is that the wake up happens after
587 	 * a task has been queued. It's OK for spurious wake ups.
588 	 */
589 	work->waiters_pending = true;
590 
591 	if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 	    (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 		schedule();
594 
595 	finish_wait(&work->waiters, &wait);
596 	return 0;
597 }
598 
599 /**
600  * ring_buffer_poll_wait - poll on buffer input
601  * @buffer: buffer to wait on
602  * @cpu: the cpu buffer to wait on
603  * @filp: the file descriptor
604  * @poll_table: The poll descriptor
605  *
606  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607  * as data is added to any of the @buffer's cpu buffers. Otherwise
608  * it will wait for data to be added to a specific cpu buffer.
609  *
610  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611  * zero otherwise.
612  */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 			  struct file *filp, poll_table *poll_table)
615 {
616 	struct ring_buffer_per_cpu *cpu_buffer;
617 	struct rb_irq_work *work;
618 
619 	if (cpu == RING_BUFFER_ALL_CPUS)
620 		work = &buffer->irq_work;
621 	else {
622 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 			return -EINVAL;
624 
625 		cpu_buffer = buffer->buffers[cpu];
626 		work = &cpu_buffer->irq_work;
627 	}
628 
629 	work->waiters_pending = true;
630 	poll_wait(filp, &work->waiters, poll_table);
631 
632 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
633 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
634 		return POLLIN | POLLRDNORM;
635 	return 0;
636 }
637 
638 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
639 #define RB_WARN_ON(b, cond)						\
640 	({								\
641 		int _____ret = unlikely(cond);				\
642 		if (_____ret) {						\
643 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
644 				struct ring_buffer_per_cpu *__b =	\
645 					(void *)b;			\
646 				atomic_inc(&__b->buffer->record_disabled); \
647 			} else						\
648 				atomic_inc(&b->record_disabled);	\
649 			WARN_ON(1);					\
650 		}							\
651 		_____ret;						\
652 	})
653 
654 /* Up this if you want to test the TIME_EXTENTS and normalization */
655 #define DEBUG_SHIFT 0
656 
657 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
658 {
659 	/* shift to debug/test normalization and TIME_EXTENTS */
660 	return buffer->clock() << DEBUG_SHIFT;
661 }
662 
663 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
664 {
665 	u64 time;
666 
667 	preempt_disable_notrace();
668 	time = rb_time_stamp(buffer);
669 	preempt_enable_no_resched_notrace();
670 
671 	return time;
672 }
673 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
674 
675 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
676 				      int cpu, u64 *ts)
677 {
678 	/* Just stupid testing the normalize function and deltas */
679 	*ts >>= DEBUG_SHIFT;
680 }
681 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
682 
683 /*
684  * Making the ring buffer lockless makes things tricky.
685  * Although writes only happen on the CPU that they are on,
686  * and they only need to worry about interrupts. Reads can
687  * happen on any CPU.
688  *
689  * The reader page is always off the ring buffer, but when the
690  * reader finishes with a page, it needs to swap its page with
691  * a new one from the buffer. The reader needs to take from
692  * the head (writes go to the tail). But if a writer is in overwrite
693  * mode and wraps, it must push the head page forward.
694  *
695  * Here lies the problem.
696  *
697  * The reader must be careful to replace only the head page, and
698  * not another one. As described at the top of the file in the
699  * ASCII art, the reader sets its old page to point to the next
700  * page after head. It then sets the page after head to point to
701  * the old reader page. But if the writer moves the head page
702  * during this operation, the reader could end up with the tail.
703  *
704  * We use cmpxchg to help prevent this race. We also do something
705  * special with the page before head. We set the LSB to 1.
706  *
707  * When the writer must push the page forward, it will clear the
708  * bit that points to the head page, move the head, and then set
709  * the bit that points to the new head page.
710  *
711  * We also don't want an interrupt coming in and moving the head
712  * page on another writer. Thus we use the second LSB to catch
713  * that too. Thus:
714  *
715  * head->list->prev->next        bit 1          bit 0
716  *                              -------        -------
717  * Normal page                     0              0
718  * Points to head page             0              1
719  * New head page                   1              0
720  *
721  * Note we can not trust the prev pointer of the head page, because:
722  *
723  * +----+       +-----+        +-----+
724  * |    |------>|  T  |---X--->|  N  |
725  * |    |<------|     |        |     |
726  * +----+       +-----+        +-----+
727  *   ^                           ^ |
728  *   |          +-----+          | |
729  *   +----------|  R  |----------+ |
730  *              |     |<-----------+
731  *              +-----+
732  *
733  * Key:  ---X-->  HEAD flag set in pointer
734  *         T      Tail page
735  *         R      Reader page
736  *         N      Next page
737  *
738  * (see __rb_reserve_next() to see where this happens)
739  *
740  *  What the above shows is that the reader just swapped out
741  *  the reader page with a page in the buffer, but before it
742  *  could make the new header point back to the new page added
743  *  it was preempted by a writer. The writer moved forward onto
744  *  the new page added by the reader and is about to move forward
745  *  again.
746  *
747  *  You can see, it is legitimate for the previous pointer of
748  *  the head (or any page) not to point back to itself. But only
749  *  temporarially.
750  */
751 
752 #define RB_PAGE_NORMAL		0UL
753 #define RB_PAGE_HEAD		1UL
754 #define RB_PAGE_UPDATE		2UL
755 
756 
757 #define RB_FLAG_MASK		3UL
758 
759 /* PAGE_MOVED is not part of the mask */
760 #define RB_PAGE_MOVED		4UL
761 
762 /*
763  * rb_list_head - remove any bit
764  */
765 static struct list_head *rb_list_head(struct list_head *list)
766 {
767 	unsigned long val = (unsigned long)list;
768 
769 	return (struct list_head *)(val & ~RB_FLAG_MASK);
770 }
771 
772 /*
773  * rb_is_head_page - test if the given page is the head page
774  *
775  * Because the reader may move the head_page pointer, we can
776  * not trust what the head page is (it may be pointing to
777  * the reader page). But if the next page is a header page,
778  * its flags will be non zero.
779  */
780 static inline int
781 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
782 		struct buffer_page *page, struct list_head *list)
783 {
784 	unsigned long val;
785 
786 	val = (unsigned long)list->next;
787 
788 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
789 		return RB_PAGE_MOVED;
790 
791 	return val & RB_FLAG_MASK;
792 }
793 
794 /*
795  * rb_is_reader_page
796  *
797  * The unique thing about the reader page, is that, if the
798  * writer is ever on it, the previous pointer never points
799  * back to the reader page.
800  */
801 static int rb_is_reader_page(struct buffer_page *page)
802 {
803 	struct list_head *list = page->list.prev;
804 
805 	return rb_list_head(list->next) != &page->list;
806 }
807 
808 /*
809  * rb_set_list_to_head - set a list_head to be pointing to head.
810  */
811 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
812 				struct list_head *list)
813 {
814 	unsigned long *ptr;
815 
816 	ptr = (unsigned long *)&list->next;
817 	*ptr |= RB_PAGE_HEAD;
818 	*ptr &= ~RB_PAGE_UPDATE;
819 }
820 
821 /*
822  * rb_head_page_activate - sets up head page
823  */
824 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
825 {
826 	struct buffer_page *head;
827 
828 	head = cpu_buffer->head_page;
829 	if (!head)
830 		return;
831 
832 	/*
833 	 * Set the previous list pointer to have the HEAD flag.
834 	 */
835 	rb_set_list_to_head(cpu_buffer, head->list.prev);
836 }
837 
838 static void rb_list_head_clear(struct list_head *list)
839 {
840 	unsigned long *ptr = (unsigned long *)&list->next;
841 
842 	*ptr &= ~RB_FLAG_MASK;
843 }
844 
845 /*
846  * rb_head_page_dactivate - clears head page ptr (for free list)
847  */
848 static void
849 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
850 {
851 	struct list_head *hd;
852 
853 	/* Go through the whole list and clear any pointers found. */
854 	rb_list_head_clear(cpu_buffer->pages);
855 
856 	list_for_each(hd, cpu_buffer->pages)
857 		rb_list_head_clear(hd);
858 }
859 
860 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
861 			    struct buffer_page *head,
862 			    struct buffer_page *prev,
863 			    int old_flag, int new_flag)
864 {
865 	struct list_head *list;
866 	unsigned long val = (unsigned long)&head->list;
867 	unsigned long ret;
868 
869 	list = &prev->list;
870 
871 	val &= ~RB_FLAG_MASK;
872 
873 	ret = cmpxchg((unsigned long *)&list->next,
874 		      val | old_flag, val | new_flag);
875 
876 	/* check if the reader took the page */
877 	if ((ret & ~RB_FLAG_MASK) != val)
878 		return RB_PAGE_MOVED;
879 
880 	return ret & RB_FLAG_MASK;
881 }
882 
883 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
884 				   struct buffer_page *head,
885 				   struct buffer_page *prev,
886 				   int old_flag)
887 {
888 	return rb_head_page_set(cpu_buffer, head, prev,
889 				old_flag, RB_PAGE_UPDATE);
890 }
891 
892 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
893 				 struct buffer_page *head,
894 				 struct buffer_page *prev,
895 				 int old_flag)
896 {
897 	return rb_head_page_set(cpu_buffer, head, prev,
898 				old_flag, RB_PAGE_HEAD);
899 }
900 
901 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
902 				   struct buffer_page *head,
903 				   struct buffer_page *prev,
904 				   int old_flag)
905 {
906 	return rb_head_page_set(cpu_buffer, head, prev,
907 				old_flag, RB_PAGE_NORMAL);
908 }
909 
910 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
911 			       struct buffer_page **bpage)
912 {
913 	struct list_head *p = rb_list_head((*bpage)->list.next);
914 
915 	*bpage = list_entry(p, struct buffer_page, list);
916 }
917 
918 static struct buffer_page *
919 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
920 {
921 	struct buffer_page *head;
922 	struct buffer_page *page;
923 	struct list_head *list;
924 	int i;
925 
926 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
927 		return NULL;
928 
929 	/* sanity check */
930 	list = cpu_buffer->pages;
931 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
932 		return NULL;
933 
934 	page = head = cpu_buffer->head_page;
935 	/*
936 	 * It is possible that the writer moves the header behind
937 	 * where we started, and we miss in one loop.
938 	 * A second loop should grab the header, but we'll do
939 	 * three loops just because I'm paranoid.
940 	 */
941 	for (i = 0; i < 3; i++) {
942 		do {
943 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
944 				cpu_buffer->head_page = page;
945 				return page;
946 			}
947 			rb_inc_page(cpu_buffer, &page);
948 		} while (page != head);
949 	}
950 
951 	RB_WARN_ON(cpu_buffer, 1);
952 
953 	return NULL;
954 }
955 
956 static int rb_head_page_replace(struct buffer_page *old,
957 				struct buffer_page *new)
958 {
959 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
960 	unsigned long val;
961 	unsigned long ret;
962 
963 	val = *ptr & ~RB_FLAG_MASK;
964 	val |= RB_PAGE_HEAD;
965 
966 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
967 
968 	return ret == val;
969 }
970 
971 /*
972  * rb_tail_page_update - move the tail page forward
973  *
974  * Returns 1 if moved tail page, 0 if someone else did.
975  */
976 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
977 			       struct buffer_page *tail_page,
978 			       struct buffer_page *next_page)
979 {
980 	struct buffer_page *old_tail;
981 	unsigned long old_entries;
982 	unsigned long old_write;
983 	int ret = 0;
984 
985 	/*
986 	 * The tail page now needs to be moved forward.
987 	 *
988 	 * We need to reset the tail page, but without messing
989 	 * with possible erasing of data brought in by interrupts
990 	 * that have moved the tail page and are currently on it.
991 	 *
992 	 * We add a counter to the write field to denote this.
993 	 */
994 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
995 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
996 
997 	/*
998 	 * Just make sure we have seen our old_write and synchronize
999 	 * with any interrupts that come in.
1000 	 */
1001 	barrier();
1002 
1003 	/*
1004 	 * If the tail page is still the same as what we think
1005 	 * it is, then it is up to us to update the tail
1006 	 * pointer.
1007 	 */
1008 	if (tail_page == cpu_buffer->tail_page) {
1009 		/* Zero the write counter */
1010 		unsigned long val = old_write & ~RB_WRITE_MASK;
1011 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1012 
1013 		/*
1014 		 * This will only succeed if an interrupt did
1015 		 * not come in and change it. In which case, we
1016 		 * do not want to modify it.
1017 		 *
1018 		 * We add (void) to let the compiler know that we do not care
1019 		 * about the return value of these functions. We use the
1020 		 * cmpxchg to only update if an interrupt did not already
1021 		 * do it for us. If the cmpxchg fails, we don't care.
1022 		 */
1023 		(void)local_cmpxchg(&next_page->write, old_write, val);
1024 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1025 
1026 		/*
1027 		 * No need to worry about races with clearing out the commit.
1028 		 * it only can increment when a commit takes place. But that
1029 		 * only happens in the outer most nested commit.
1030 		 */
1031 		local_set(&next_page->page->commit, 0);
1032 
1033 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1034 				   tail_page, next_page);
1035 
1036 		if (old_tail == tail_page)
1037 			ret = 1;
1038 	}
1039 
1040 	return ret;
1041 }
1042 
1043 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1044 			  struct buffer_page *bpage)
1045 {
1046 	unsigned long val = (unsigned long)bpage;
1047 
1048 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1049 		return 1;
1050 
1051 	return 0;
1052 }
1053 
1054 /**
1055  * rb_check_list - make sure a pointer to a list has the last bits zero
1056  */
1057 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1058 			 struct list_head *list)
1059 {
1060 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1061 		return 1;
1062 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1063 		return 1;
1064 	return 0;
1065 }
1066 
1067 /**
1068  * rb_check_pages - integrity check of buffer pages
1069  * @cpu_buffer: CPU buffer with pages to test
1070  *
1071  * As a safety measure we check to make sure the data pages have not
1072  * been corrupted.
1073  */
1074 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1075 {
1076 	struct list_head *head = cpu_buffer->pages;
1077 	struct buffer_page *bpage, *tmp;
1078 
1079 	/* Reset the head page if it exists */
1080 	if (cpu_buffer->head_page)
1081 		rb_set_head_page(cpu_buffer);
1082 
1083 	rb_head_page_deactivate(cpu_buffer);
1084 
1085 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1086 		return -1;
1087 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1088 		return -1;
1089 
1090 	if (rb_check_list(cpu_buffer, head))
1091 		return -1;
1092 
1093 	list_for_each_entry_safe(bpage, tmp, head, list) {
1094 		if (RB_WARN_ON(cpu_buffer,
1095 			       bpage->list.next->prev != &bpage->list))
1096 			return -1;
1097 		if (RB_WARN_ON(cpu_buffer,
1098 			       bpage->list.prev->next != &bpage->list))
1099 			return -1;
1100 		if (rb_check_list(cpu_buffer, &bpage->list))
1101 			return -1;
1102 	}
1103 
1104 	rb_head_page_activate(cpu_buffer);
1105 
1106 	return 0;
1107 }
1108 
1109 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1110 {
1111 	int i;
1112 	struct buffer_page *bpage, *tmp;
1113 
1114 	for (i = 0; i < nr_pages; i++) {
1115 		struct page *page;
1116 		/*
1117 		 * __GFP_NORETRY flag makes sure that the allocation fails
1118 		 * gracefully without invoking oom-killer and the system is
1119 		 * not destabilized.
1120 		 */
1121 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1122 				    GFP_KERNEL | __GFP_NORETRY,
1123 				    cpu_to_node(cpu));
1124 		if (!bpage)
1125 			goto free_pages;
1126 
1127 		list_add(&bpage->list, pages);
1128 
1129 		page = alloc_pages_node(cpu_to_node(cpu),
1130 					GFP_KERNEL | __GFP_NORETRY, 0);
1131 		if (!page)
1132 			goto free_pages;
1133 		bpage->page = page_address(page);
1134 		rb_init_page(bpage->page);
1135 	}
1136 
1137 	return 0;
1138 
1139 free_pages:
1140 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1141 		list_del_init(&bpage->list);
1142 		free_buffer_page(bpage);
1143 	}
1144 
1145 	return -ENOMEM;
1146 }
1147 
1148 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1149 			     unsigned nr_pages)
1150 {
1151 	LIST_HEAD(pages);
1152 
1153 	WARN_ON(!nr_pages);
1154 
1155 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1156 		return -ENOMEM;
1157 
1158 	/*
1159 	 * The ring buffer page list is a circular list that does not
1160 	 * start and end with a list head. All page list items point to
1161 	 * other pages.
1162 	 */
1163 	cpu_buffer->pages = pages.next;
1164 	list_del(&pages);
1165 
1166 	cpu_buffer->nr_pages = nr_pages;
1167 
1168 	rb_check_pages(cpu_buffer);
1169 
1170 	return 0;
1171 }
1172 
1173 static struct ring_buffer_per_cpu *
1174 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1175 {
1176 	struct ring_buffer_per_cpu *cpu_buffer;
1177 	struct buffer_page *bpage;
1178 	struct page *page;
1179 	int ret;
1180 
1181 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1182 				  GFP_KERNEL, cpu_to_node(cpu));
1183 	if (!cpu_buffer)
1184 		return NULL;
1185 
1186 	cpu_buffer->cpu = cpu;
1187 	cpu_buffer->buffer = buffer;
1188 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1189 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1190 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1191 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1192 	init_completion(&cpu_buffer->update_done);
1193 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1194 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1195 
1196 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1197 			    GFP_KERNEL, cpu_to_node(cpu));
1198 	if (!bpage)
1199 		goto fail_free_buffer;
1200 
1201 	rb_check_bpage(cpu_buffer, bpage);
1202 
1203 	cpu_buffer->reader_page = bpage;
1204 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1205 	if (!page)
1206 		goto fail_free_reader;
1207 	bpage->page = page_address(page);
1208 	rb_init_page(bpage->page);
1209 
1210 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1211 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1212 
1213 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1214 	if (ret < 0)
1215 		goto fail_free_reader;
1216 
1217 	cpu_buffer->head_page
1218 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1219 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1220 
1221 	rb_head_page_activate(cpu_buffer);
1222 
1223 	return cpu_buffer;
1224 
1225  fail_free_reader:
1226 	free_buffer_page(cpu_buffer->reader_page);
1227 
1228  fail_free_buffer:
1229 	kfree(cpu_buffer);
1230 	return NULL;
1231 }
1232 
1233 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1234 {
1235 	struct list_head *head = cpu_buffer->pages;
1236 	struct buffer_page *bpage, *tmp;
1237 
1238 	free_buffer_page(cpu_buffer->reader_page);
1239 
1240 	rb_head_page_deactivate(cpu_buffer);
1241 
1242 	if (head) {
1243 		list_for_each_entry_safe(bpage, tmp, head, list) {
1244 			list_del_init(&bpage->list);
1245 			free_buffer_page(bpage);
1246 		}
1247 		bpage = list_entry(head, struct buffer_page, list);
1248 		free_buffer_page(bpage);
1249 	}
1250 
1251 	kfree(cpu_buffer);
1252 }
1253 
1254 #ifdef CONFIG_HOTPLUG_CPU
1255 static int rb_cpu_notify(struct notifier_block *self,
1256 			 unsigned long action, void *hcpu);
1257 #endif
1258 
1259 /**
1260  * __ring_buffer_alloc - allocate a new ring_buffer
1261  * @size: the size in bytes per cpu that is needed.
1262  * @flags: attributes to set for the ring buffer.
1263  *
1264  * Currently the only flag that is available is the RB_FL_OVERWRITE
1265  * flag. This flag means that the buffer will overwrite old data
1266  * when the buffer wraps. If this flag is not set, the buffer will
1267  * drop data when the tail hits the head.
1268  */
1269 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1270 					struct lock_class_key *key)
1271 {
1272 	struct ring_buffer *buffer;
1273 	int bsize;
1274 	int cpu, nr_pages;
1275 
1276 	/* keep it in its own cache line */
1277 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1278 			 GFP_KERNEL);
1279 	if (!buffer)
1280 		return NULL;
1281 
1282 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1283 		goto fail_free_buffer;
1284 
1285 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1286 	buffer->flags = flags;
1287 	buffer->clock = trace_clock_local;
1288 	buffer->reader_lock_key = key;
1289 
1290 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1291 	init_waitqueue_head(&buffer->irq_work.waiters);
1292 
1293 	/* need at least two pages */
1294 	if (nr_pages < 2)
1295 		nr_pages = 2;
1296 
1297 	/*
1298 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1299 	 * in early initcall, it will not be notified of secondary cpus.
1300 	 * In that off case, we need to allocate for all possible cpus.
1301 	 */
1302 #ifdef CONFIG_HOTPLUG_CPU
1303 	cpu_notifier_register_begin();
1304 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1305 #else
1306 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1307 #endif
1308 	buffer->cpus = nr_cpu_ids;
1309 
1310 	bsize = sizeof(void *) * nr_cpu_ids;
1311 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1312 				  GFP_KERNEL);
1313 	if (!buffer->buffers)
1314 		goto fail_free_cpumask;
1315 
1316 	for_each_buffer_cpu(buffer, cpu) {
1317 		buffer->buffers[cpu] =
1318 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1319 		if (!buffer->buffers[cpu])
1320 			goto fail_free_buffers;
1321 	}
1322 
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1325 	buffer->cpu_notify.priority = 0;
1326 	__register_cpu_notifier(&buffer->cpu_notify);
1327 	cpu_notifier_register_done();
1328 #endif
1329 
1330 	mutex_init(&buffer->mutex);
1331 
1332 	return buffer;
1333 
1334  fail_free_buffers:
1335 	for_each_buffer_cpu(buffer, cpu) {
1336 		if (buffer->buffers[cpu])
1337 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1338 	}
1339 	kfree(buffer->buffers);
1340 
1341  fail_free_cpumask:
1342 	free_cpumask_var(buffer->cpumask);
1343 #ifdef CONFIG_HOTPLUG_CPU
1344 	cpu_notifier_register_done();
1345 #endif
1346 
1347  fail_free_buffer:
1348 	kfree(buffer);
1349 	return NULL;
1350 }
1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1352 
1353 /**
1354  * ring_buffer_free - free a ring buffer.
1355  * @buffer: the buffer to free.
1356  */
1357 void
1358 ring_buffer_free(struct ring_buffer *buffer)
1359 {
1360 	int cpu;
1361 
1362 #ifdef CONFIG_HOTPLUG_CPU
1363 	cpu_notifier_register_begin();
1364 	__unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366 
1367 	for_each_buffer_cpu(buffer, cpu)
1368 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1369 
1370 #ifdef CONFIG_HOTPLUG_CPU
1371 	cpu_notifier_register_done();
1372 #endif
1373 
1374 	kfree(buffer->buffers);
1375 	free_cpumask_var(buffer->cpumask);
1376 
1377 	kfree(buffer);
1378 }
1379 EXPORT_SYMBOL_GPL(ring_buffer_free);
1380 
1381 void ring_buffer_set_clock(struct ring_buffer *buffer,
1382 			   u64 (*clock)(void))
1383 {
1384 	buffer->clock = clock;
1385 }
1386 
1387 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1388 
1389 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1390 {
1391 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1392 }
1393 
1394 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1395 {
1396 	return local_read(&bpage->write) & RB_WRITE_MASK;
1397 }
1398 
1399 static int
1400 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1401 {
1402 	struct list_head *tail_page, *to_remove, *next_page;
1403 	struct buffer_page *to_remove_page, *tmp_iter_page;
1404 	struct buffer_page *last_page, *first_page;
1405 	unsigned int nr_removed;
1406 	unsigned long head_bit;
1407 	int page_entries;
1408 
1409 	head_bit = 0;
1410 
1411 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1412 	atomic_inc(&cpu_buffer->record_disabled);
1413 	/*
1414 	 * We don't race with the readers since we have acquired the reader
1415 	 * lock. We also don't race with writers after disabling recording.
1416 	 * This makes it easy to figure out the first and the last page to be
1417 	 * removed from the list. We unlink all the pages in between including
1418 	 * the first and last pages. This is done in a busy loop so that we
1419 	 * lose the least number of traces.
1420 	 * The pages are freed after we restart recording and unlock readers.
1421 	 */
1422 	tail_page = &cpu_buffer->tail_page->list;
1423 
1424 	/*
1425 	 * tail page might be on reader page, we remove the next page
1426 	 * from the ring buffer
1427 	 */
1428 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1429 		tail_page = rb_list_head(tail_page->next);
1430 	to_remove = tail_page;
1431 
1432 	/* start of pages to remove */
1433 	first_page = list_entry(rb_list_head(to_remove->next),
1434 				struct buffer_page, list);
1435 
1436 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1437 		to_remove = rb_list_head(to_remove)->next;
1438 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1439 	}
1440 
1441 	next_page = rb_list_head(to_remove)->next;
1442 
1443 	/*
1444 	 * Now we remove all pages between tail_page and next_page.
1445 	 * Make sure that we have head_bit value preserved for the
1446 	 * next page
1447 	 */
1448 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1449 						head_bit);
1450 	next_page = rb_list_head(next_page);
1451 	next_page->prev = tail_page;
1452 
1453 	/* make sure pages points to a valid page in the ring buffer */
1454 	cpu_buffer->pages = next_page;
1455 
1456 	/* update head page */
1457 	if (head_bit)
1458 		cpu_buffer->head_page = list_entry(next_page,
1459 						struct buffer_page, list);
1460 
1461 	/*
1462 	 * change read pointer to make sure any read iterators reset
1463 	 * themselves
1464 	 */
1465 	cpu_buffer->read = 0;
1466 
1467 	/* pages are removed, resume tracing and then free the pages */
1468 	atomic_dec(&cpu_buffer->record_disabled);
1469 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1470 
1471 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1472 
1473 	/* last buffer page to remove */
1474 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1475 				list);
1476 	tmp_iter_page = first_page;
1477 
1478 	do {
1479 		to_remove_page = tmp_iter_page;
1480 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1481 
1482 		/* update the counters */
1483 		page_entries = rb_page_entries(to_remove_page);
1484 		if (page_entries) {
1485 			/*
1486 			 * If something was added to this page, it was full
1487 			 * since it is not the tail page. So we deduct the
1488 			 * bytes consumed in ring buffer from here.
1489 			 * Increment overrun to account for the lost events.
1490 			 */
1491 			local_add(page_entries, &cpu_buffer->overrun);
1492 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1493 		}
1494 
1495 		/*
1496 		 * We have already removed references to this list item, just
1497 		 * free up the buffer_page and its page
1498 		 */
1499 		free_buffer_page(to_remove_page);
1500 		nr_removed--;
1501 
1502 	} while (to_remove_page != last_page);
1503 
1504 	RB_WARN_ON(cpu_buffer, nr_removed);
1505 
1506 	return nr_removed == 0;
1507 }
1508 
1509 static int
1510 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1511 {
1512 	struct list_head *pages = &cpu_buffer->new_pages;
1513 	int retries, success;
1514 
1515 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1516 	/*
1517 	 * We are holding the reader lock, so the reader page won't be swapped
1518 	 * in the ring buffer. Now we are racing with the writer trying to
1519 	 * move head page and the tail page.
1520 	 * We are going to adapt the reader page update process where:
1521 	 * 1. We first splice the start and end of list of new pages between
1522 	 *    the head page and its previous page.
1523 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1524 	 *    start of new pages list.
1525 	 * 3. Finally, we update the head->prev to the end of new list.
1526 	 *
1527 	 * We will try this process 10 times, to make sure that we don't keep
1528 	 * spinning.
1529 	 */
1530 	retries = 10;
1531 	success = 0;
1532 	while (retries--) {
1533 		struct list_head *head_page, *prev_page, *r;
1534 		struct list_head *last_page, *first_page;
1535 		struct list_head *head_page_with_bit;
1536 
1537 		head_page = &rb_set_head_page(cpu_buffer)->list;
1538 		if (!head_page)
1539 			break;
1540 		prev_page = head_page->prev;
1541 
1542 		first_page = pages->next;
1543 		last_page  = pages->prev;
1544 
1545 		head_page_with_bit = (struct list_head *)
1546 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1547 
1548 		last_page->next = head_page_with_bit;
1549 		first_page->prev = prev_page;
1550 
1551 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1552 
1553 		if (r == head_page_with_bit) {
1554 			/*
1555 			 * yay, we replaced the page pointer to our new list,
1556 			 * now, we just have to update to head page's prev
1557 			 * pointer to point to end of list
1558 			 */
1559 			head_page->prev = last_page;
1560 			success = 1;
1561 			break;
1562 		}
1563 	}
1564 
1565 	if (success)
1566 		INIT_LIST_HEAD(pages);
1567 	/*
1568 	 * If we weren't successful in adding in new pages, warn and stop
1569 	 * tracing
1570 	 */
1571 	RB_WARN_ON(cpu_buffer, !success);
1572 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1573 
1574 	/* free pages if they weren't inserted */
1575 	if (!success) {
1576 		struct buffer_page *bpage, *tmp;
1577 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1578 					 list) {
1579 			list_del_init(&bpage->list);
1580 			free_buffer_page(bpage);
1581 		}
1582 	}
1583 	return success;
1584 }
1585 
1586 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587 {
1588 	int success;
1589 
1590 	if (cpu_buffer->nr_pages_to_update > 0)
1591 		success = rb_insert_pages(cpu_buffer);
1592 	else
1593 		success = rb_remove_pages(cpu_buffer,
1594 					-cpu_buffer->nr_pages_to_update);
1595 
1596 	if (success)
1597 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1598 }
1599 
1600 static void update_pages_handler(struct work_struct *work)
1601 {
1602 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1603 			struct ring_buffer_per_cpu, update_pages_work);
1604 	rb_update_pages(cpu_buffer);
1605 	complete(&cpu_buffer->update_done);
1606 }
1607 
1608 /**
1609  * ring_buffer_resize - resize the ring buffer
1610  * @buffer: the buffer to resize.
1611  * @size: the new size.
1612  * @cpu_id: the cpu buffer to resize
1613  *
1614  * Minimum size is 2 * BUF_PAGE_SIZE.
1615  *
1616  * Returns 0 on success and < 0 on failure.
1617  */
1618 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1619 			int cpu_id)
1620 {
1621 	struct ring_buffer_per_cpu *cpu_buffer;
1622 	unsigned nr_pages;
1623 	int cpu, err = 0;
1624 
1625 	/*
1626 	 * Always succeed at resizing a non-existent buffer:
1627 	 */
1628 	if (!buffer)
1629 		return size;
1630 
1631 	/* Make sure the requested buffer exists */
1632 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1633 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1634 		return size;
1635 
1636 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1637 	size *= BUF_PAGE_SIZE;
1638 
1639 	/* we need a minimum of two pages */
1640 	if (size < BUF_PAGE_SIZE * 2)
1641 		size = BUF_PAGE_SIZE * 2;
1642 
1643 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1644 
1645 	/*
1646 	 * Don't succeed if resizing is disabled, as a reader might be
1647 	 * manipulating the ring buffer and is expecting a sane state while
1648 	 * this is true.
1649 	 */
1650 	if (atomic_read(&buffer->resize_disabled))
1651 		return -EBUSY;
1652 
1653 	/* prevent another thread from changing buffer sizes */
1654 	mutex_lock(&buffer->mutex);
1655 
1656 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1657 		/* calculate the pages to update */
1658 		for_each_buffer_cpu(buffer, cpu) {
1659 			cpu_buffer = buffer->buffers[cpu];
1660 
1661 			cpu_buffer->nr_pages_to_update = nr_pages -
1662 							cpu_buffer->nr_pages;
1663 			/*
1664 			 * nothing more to do for removing pages or no update
1665 			 */
1666 			if (cpu_buffer->nr_pages_to_update <= 0)
1667 				continue;
1668 			/*
1669 			 * to add pages, make sure all new pages can be
1670 			 * allocated without receiving ENOMEM
1671 			 */
1672 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1673 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1674 						&cpu_buffer->new_pages, cpu)) {
1675 				/* not enough memory for new pages */
1676 				err = -ENOMEM;
1677 				goto out_err;
1678 			}
1679 		}
1680 
1681 		get_online_cpus();
1682 		/*
1683 		 * Fire off all the required work handlers
1684 		 * We can't schedule on offline CPUs, but it's not necessary
1685 		 * since we can change their buffer sizes without any race.
1686 		 */
1687 		for_each_buffer_cpu(buffer, cpu) {
1688 			cpu_buffer = buffer->buffers[cpu];
1689 			if (!cpu_buffer->nr_pages_to_update)
1690 				continue;
1691 
1692 			/* Can't run something on an offline CPU. */
1693 			if (!cpu_online(cpu)) {
1694 				rb_update_pages(cpu_buffer);
1695 				cpu_buffer->nr_pages_to_update = 0;
1696 			} else {
1697 				schedule_work_on(cpu,
1698 						&cpu_buffer->update_pages_work);
1699 			}
1700 		}
1701 
1702 		/* wait for all the updates to complete */
1703 		for_each_buffer_cpu(buffer, cpu) {
1704 			cpu_buffer = buffer->buffers[cpu];
1705 			if (!cpu_buffer->nr_pages_to_update)
1706 				continue;
1707 
1708 			if (cpu_online(cpu))
1709 				wait_for_completion(&cpu_buffer->update_done);
1710 			cpu_buffer->nr_pages_to_update = 0;
1711 		}
1712 
1713 		put_online_cpus();
1714 	} else {
1715 		/* Make sure this CPU has been intitialized */
1716 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1717 			goto out;
1718 
1719 		cpu_buffer = buffer->buffers[cpu_id];
1720 
1721 		if (nr_pages == cpu_buffer->nr_pages)
1722 			goto out;
1723 
1724 		cpu_buffer->nr_pages_to_update = nr_pages -
1725 						cpu_buffer->nr_pages;
1726 
1727 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728 		if (cpu_buffer->nr_pages_to_update > 0 &&
1729 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1730 					    &cpu_buffer->new_pages, cpu_id)) {
1731 			err = -ENOMEM;
1732 			goto out_err;
1733 		}
1734 
1735 		get_online_cpus();
1736 
1737 		/* Can't run something on an offline CPU. */
1738 		if (!cpu_online(cpu_id))
1739 			rb_update_pages(cpu_buffer);
1740 		else {
1741 			schedule_work_on(cpu_id,
1742 					 &cpu_buffer->update_pages_work);
1743 			wait_for_completion(&cpu_buffer->update_done);
1744 		}
1745 
1746 		cpu_buffer->nr_pages_to_update = 0;
1747 		put_online_cpus();
1748 	}
1749 
1750  out:
1751 	/*
1752 	 * The ring buffer resize can happen with the ring buffer
1753 	 * enabled, so that the update disturbs the tracing as little
1754 	 * as possible. But if the buffer is disabled, we do not need
1755 	 * to worry about that, and we can take the time to verify
1756 	 * that the buffer is not corrupt.
1757 	 */
1758 	if (atomic_read(&buffer->record_disabled)) {
1759 		atomic_inc(&buffer->record_disabled);
1760 		/*
1761 		 * Even though the buffer was disabled, we must make sure
1762 		 * that it is truly disabled before calling rb_check_pages.
1763 		 * There could have been a race between checking
1764 		 * record_disable and incrementing it.
1765 		 */
1766 		synchronize_sched();
1767 		for_each_buffer_cpu(buffer, cpu) {
1768 			cpu_buffer = buffer->buffers[cpu];
1769 			rb_check_pages(cpu_buffer);
1770 		}
1771 		atomic_dec(&buffer->record_disabled);
1772 	}
1773 
1774 	mutex_unlock(&buffer->mutex);
1775 	return size;
1776 
1777  out_err:
1778 	for_each_buffer_cpu(buffer, cpu) {
1779 		struct buffer_page *bpage, *tmp;
1780 
1781 		cpu_buffer = buffer->buffers[cpu];
1782 		cpu_buffer->nr_pages_to_update = 0;
1783 
1784 		if (list_empty(&cpu_buffer->new_pages))
1785 			continue;
1786 
1787 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1788 					list) {
1789 			list_del_init(&bpage->list);
1790 			free_buffer_page(bpage);
1791 		}
1792 	}
1793 	mutex_unlock(&buffer->mutex);
1794 	return err;
1795 }
1796 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1797 
1798 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1799 {
1800 	mutex_lock(&buffer->mutex);
1801 	if (val)
1802 		buffer->flags |= RB_FL_OVERWRITE;
1803 	else
1804 		buffer->flags &= ~RB_FL_OVERWRITE;
1805 	mutex_unlock(&buffer->mutex);
1806 }
1807 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1808 
1809 static inline void *
1810 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1811 {
1812 	return bpage->data + index;
1813 }
1814 
1815 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1816 {
1817 	return bpage->page->data + index;
1818 }
1819 
1820 static inline struct ring_buffer_event *
1821 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1822 {
1823 	return __rb_page_index(cpu_buffer->reader_page,
1824 			       cpu_buffer->reader_page->read);
1825 }
1826 
1827 static inline struct ring_buffer_event *
1828 rb_iter_head_event(struct ring_buffer_iter *iter)
1829 {
1830 	return __rb_page_index(iter->head_page, iter->head);
1831 }
1832 
1833 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1834 {
1835 	return local_read(&bpage->page->commit);
1836 }
1837 
1838 /* Size is determined by what has been committed */
1839 static inline unsigned rb_page_size(struct buffer_page *bpage)
1840 {
1841 	return rb_page_commit(bpage);
1842 }
1843 
1844 static inline unsigned
1845 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1846 {
1847 	return rb_page_commit(cpu_buffer->commit_page);
1848 }
1849 
1850 static inline unsigned
1851 rb_event_index(struct ring_buffer_event *event)
1852 {
1853 	unsigned long addr = (unsigned long)event;
1854 
1855 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1856 }
1857 
1858 static inline int
1859 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1860 		   struct ring_buffer_event *event)
1861 {
1862 	unsigned long addr = (unsigned long)event;
1863 	unsigned long index;
1864 
1865 	index = rb_event_index(event);
1866 	addr &= PAGE_MASK;
1867 
1868 	return cpu_buffer->commit_page->page == (void *)addr &&
1869 		rb_commit_index(cpu_buffer) == index;
1870 }
1871 
1872 static void
1873 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1874 {
1875 	unsigned long max_count;
1876 
1877 	/*
1878 	 * We only race with interrupts and NMIs on this CPU.
1879 	 * If we own the commit event, then we can commit
1880 	 * all others that interrupted us, since the interruptions
1881 	 * are in stack format (they finish before they come
1882 	 * back to us). This allows us to do a simple loop to
1883 	 * assign the commit to the tail.
1884 	 */
1885  again:
1886 	max_count = cpu_buffer->nr_pages * 100;
1887 
1888 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1889 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1890 			return;
1891 		if (RB_WARN_ON(cpu_buffer,
1892 			       rb_is_reader_page(cpu_buffer->tail_page)))
1893 			return;
1894 		local_set(&cpu_buffer->commit_page->page->commit,
1895 			  rb_page_write(cpu_buffer->commit_page));
1896 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1897 		cpu_buffer->write_stamp =
1898 			cpu_buffer->commit_page->page->time_stamp;
1899 		/* add barrier to keep gcc from optimizing too much */
1900 		barrier();
1901 	}
1902 	while (rb_commit_index(cpu_buffer) !=
1903 	       rb_page_write(cpu_buffer->commit_page)) {
1904 
1905 		local_set(&cpu_buffer->commit_page->page->commit,
1906 			  rb_page_write(cpu_buffer->commit_page));
1907 		RB_WARN_ON(cpu_buffer,
1908 			   local_read(&cpu_buffer->commit_page->page->commit) &
1909 			   ~RB_WRITE_MASK);
1910 		barrier();
1911 	}
1912 
1913 	/* again, keep gcc from optimizing */
1914 	barrier();
1915 
1916 	/*
1917 	 * If an interrupt came in just after the first while loop
1918 	 * and pushed the tail page forward, we will be left with
1919 	 * a dangling commit that will never go forward.
1920 	 */
1921 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1922 		goto again;
1923 }
1924 
1925 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1926 {
1927 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1928 	cpu_buffer->reader_page->read = 0;
1929 }
1930 
1931 static void rb_inc_iter(struct ring_buffer_iter *iter)
1932 {
1933 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1934 
1935 	/*
1936 	 * The iterator could be on the reader page (it starts there).
1937 	 * But the head could have moved, since the reader was
1938 	 * found. Check for this case and assign the iterator
1939 	 * to the head page instead of next.
1940 	 */
1941 	if (iter->head_page == cpu_buffer->reader_page)
1942 		iter->head_page = rb_set_head_page(cpu_buffer);
1943 	else
1944 		rb_inc_page(cpu_buffer, &iter->head_page);
1945 
1946 	iter->read_stamp = iter->head_page->page->time_stamp;
1947 	iter->head = 0;
1948 }
1949 
1950 /* Slow path, do not inline */
1951 static noinline struct ring_buffer_event *
1952 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1953 {
1954 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1955 
1956 	/* Not the first event on the page? */
1957 	if (rb_event_index(event)) {
1958 		event->time_delta = delta & TS_MASK;
1959 		event->array[0] = delta >> TS_SHIFT;
1960 	} else {
1961 		/* nope, just zero it */
1962 		event->time_delta = 0;
1963 		event->array[0] = 0;
1964 	}
1965 
1966 	return skip_time_extend(event);
1967 }
1968 
1969 /**
1970  * rb_update_event - update event type and data
1971  * @event: the event to update
1972  * @type: the type of event
1973  * @length: the size of the event field in the ring buffer
1974  *
1975  * Update the type and data fields of the event. The length
1976  * is the actual size that is written to the ring buffer,
1977  * and with this, we can determine what to place into the
1978  * data field.
1979  */
1980 static void
1981 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1982 		struct ring_buffer_event *event, unsigned length,
1983 		int add_timestamp, u64 delta)
1984 {
1985 	/* Only a commit updates the timestamp */
1986 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1987 		delta = 0;
1988 
1989 	/*
1990 	 * If we need to add a timestamp, then we
1991 	 * add it to the start of the resevered space.
1992 	 */
1993 	if (unlikely(add_timestamp)) {
1994 		event = rb_add_time_stamp(event, delta);
1995 		length -= RB_LEN_TIME_EXTEND;
1996 		delta = 0;
1997 	}
1998 
1999 	event->time_delta = delta;
2000 	length -= RB_EVNT_HDR_SIZE;
2001 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2002 		event->type_len = 0;
2003 		event->array[0] = length;
2004 	} else
2005 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2006 }
2007 
2008 /*
2009  * rb_handle_head_page - writer hit the head page
2010  *
2011  * Returns: +1 to retry page
2012  *           0 to continue
2013  *          -1 on error
2014  */
2015 static int
2016 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2017 		    struct buffer_page *tail_page,
2018 		    struct buffer_page *next_page)
2019 {
2020 	struct buffer_page *new_head;
2021 	int entries;
2022 	int type;
2023 	int ret;
2024 
2025 	entries = rb_page_entries(next_page);
2026 
2027 	/*
2028 	 * The hard part is here. We need to move the head
2029 	 * forward, and protect against both readers on
2030 	 * other CPUs and writers coming in via interrupts.
2031 	 */
2032 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2033 				       RB_PAGE_HEAD);
2034 
2035 	/*
2036 	 * type can be one of four:
2037 	 *  NORMAL - an interrupt already moved it for us
2038 	 *  HEAD   - we are the first to get here.
2039 	 *  UPDATE - we are the interrupt interrupting
2040 	 *           a current move.
2041 	 *  MOVED  - a reader on another CPU moved the next
2042 	 *           pointer to its reader page. Give up
2043 	 *           and try again.
2044 	 */
2045 
2046 	switch (type) {
2047 	case RB_PAGE_HEAD:
2048 		/*
2049 		 * We changed the head to UPDATE, thus
2050 		 * it is our responsibility to update
2051 		 * the counters.
2052 		 */
2053 		local_add(entries, &cpu_buffer->overrun);
2054 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2055 
2056 		/*
2057 		 * The entries will be zeroed out when we move the
2058 		 * tail page.
2059 		 */
2060 
2061 		/* still more to do */
2062 		break;
2063 
2064 	case RB_PAGE_UPDATE:
2065 		/*
2066 		 * This is an interrupt that interrupt the
2067 		 * previous update. Still more to do.
2068 		 */
2069 		break;
2070 	case RB_PAGE_NORMAL:
2071 		/*
2072 		 * An interrupt came in before the update
2073 		 * and processed this for us.
2074 		 * Nothing left to do.
2075 		 */
2076 		return 1;
2077 	case RB_PAGE_MOVED:
2078 		/*
2079 		 * The reader is on another CPU and just did
2080 		 * a swap with our next_page.
2081 		 * Try again.
2082 		 */
2083 		return 1;
2084 	default:
2085 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2086 		return -1;
2087 	}
2088 
2089 	/*
2090 	 * Now that we are here, the old head pointer is
2091 	 * set to UPDATE. This will keep the reader from
2092 	 * swapping the head page with the reader page.
2093 	 * The reader (on another CPU) will spin till
2094 	 * we are finished.
2095 	 *
2096 	 * We just need to protect against interrupts
2097 	 * doing the job. We will set the next pointer
2098 	 * to HEAD. After that, we set the old pointer
2099 	 * to NORMAL, but only if it was HEAD before.
2100 	 * otherwise we are an interrupt, and only
2101 	 * want the outer most commit to reset it.
2102 	 */
2103 	new_head = next_page;
2104 	rb_inc_page(cpu_buffer, &new_head);
2105 
2106 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2107 				    RB_PAGE_NORMAL);
2108 
2109 	/*
2110 	 * Valid returns are:
2111 	 *  HEAD   - an interrupt came in and already set it.
2112 	 *  NORMAL - One of two things:
2113 	 *            1) We really set it.
2114 	 *            2) A bunch of interrupts came in and moved
2115 	 *               the page forward again.
2116 	 */
2117 	switch (ret) {
2118 	case RB_PAGE_HEAD:
2119 	case RB_PAGE_NORMAL:
2120 		/* OK */
2121 		break;
2122 	default:
2123 		RB_WARN_ON(cpu_buffer, 1);
2124 		return -1;
2125 	}
2126 
2127 	/*
2128 	 * It is possible that an interrupt came in,
2129 	 * set the head up, then more interrupts came in
2130 	 * and moved it again. When we get back here,
2131 	 * the page would have been set to NORMAL but we
2132 	 * just set it back to HEAD.
2133 	 *
2134 	 * How do you detect this? Well, if that happened
2135 	 * the tail page would have moved.
2136 	 */
2137 	if (ret == RB_PAGE_NORMAL) {
2138 		/*
2139 		 * If the tail had moved passed next, then we need
2140 		 * to reset the pointer.
2141 		 */
2142 		if (cpu_buffer->tail_page != tail_page &&
2143 		    cpu_buffer->tail_page != next_page)
2144 			rb_head_page_set_normal(cpu_buffer, new_head,
2145 						next_page,
2146 						RB_PAGE_HEAD);
2147 	}
2148 
2149 	/*
2150 	 * If this was the outer most commit (the one that
2151 	 * changed the original pointer from HEAD to UPDATE),
2152 	 * then it is up to us to reset it to NORMAL.
2153 	 */
2154 	if (type == RB_PAGE_HEAD) {
2155 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2156 					      tail_page,
2157 					      RB_PAGE_UPDATE);
2158 		if (RB_WARN_ON(cpu_buffer,
2159 			       ret != RB_PAGE_UPDATE))
2160 			return -1;
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 static unsigned rb_calculate_event_length(unsigned length)
2167 {
2168 	struct ring_buffer_event event; /* Used only for sizeof array */
2169 
2170 	/* zero length can cause confusions */
2171 	if (!length)
2172 		length = 1;
2173 
2174 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2175 		length += sizeof(event.array[0]);
2176 
2177 	length += RB_EVNT_HDR_SIZE;
2178 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2179 
2180 	return length;
2181 }
2182 
2183 static inline void
2184 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2185 	      struct buffer_page *tail_page,
2186 	      unsigned long tail, unsigned long length)
2187 {
2188 	struct ring_buffer_event *event;
2189 
2190 	/*
2191 	 * Only the event that crossed the page boundary
2192 	 * must fill the old tail_page with padding.
2193 	 */
2194 	if (tail >= BUF_PAGE_SIZE) {
2195 		/*
2196 		 * If the page was filled, then we still need
2197 		 * to update the real_end. Reset it to zero
2198 		 * and the reader will ignore it.
2199 		 */
2200 		if (tail == BUF_PAGE_SIZE)
2201 			tail_page->real_end = 0;
2202 
2203 		local_sub(length, &tail_page->write);
2204 		return;
2205 	}
2206 
2207 	event = __rb_page_index(tail_page, tail);
2208 	kmemcheck_annotate_bitfield(event, bitfield);
2209 
2210 	/* account for padding bytes */
2211 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2212 
2213 	/*
2214 	 * Save the original length to the meta data.
2215 	 * This will be used by the reader to add lost event
2216 	 * counter.
2217 	 */
2218 	tail_page->real_end = tail;
2219 
2220 	/*
2221 	 * If this event is bigger than the minimum size, then
2222 	 * we need to be careful that we don't subtract the
2223 	 * write counter enough to allow another writer to slip
2224 	 * in on this page.
2225 	 * We put in a discarded commit instead, to make sure
2226 	 * that this space is not used again.
2227 	 *
2228 	 * If we are less than the minimum size, we don't need to
2229 	 * worry about it.
2230 	 */
2231 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2232 		/* No room for any events */
2233 
2234 		/* Mark the rest of the page with padding */
2235 		rb_event_set_padding(event);
2236 
2237 		/* Set the write back to the previous setting */
2238 		local_sub(length, &tail_page->write);
2239 		return;
2240 	}
2241 
2242 	/* Put in a discarded event */
2243 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2244 	event->type_len = RINGBUF_TYPE_PADDING;
2245 	/* time delta must be non zero */
2246 	event->time_delta = 1;
2247 
2248 	/* Set write to end of buffer */
2249 	length = (tail + length) - BUF_PAGE_SIZE;
2250 	local_sub(length, &tail_page->write);
2251 }
2252 
2253 /*
2254  * This is the slow path, force gcc not to inline it.
2255  */
2256 static noinline struct ring_buffer_event *
2257 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2258 	     unsigned long length, unsigned long tail,
2259 	     struct buffer_page *tail_page, u64 ts)
2260 {
2261 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2262 	struct ring_buffer *buffer = cpu_buffer->buffer;
2263 	struct buffer_page *next_page;
2264 	int ret;
2265 
2266 	next_page = tail_page;
2267 
2268 	rb_inc_page(cpu_buffer, &next_page);
2269 
2270 	/*
2271 	 * If for some reason, we had an interrupt storm that made
2272 	 * it all the way around the buffer, bail, and warn
2273 	 * about it.
2274 	 */
2275 	if (unlikely(next_page == commit_page)) {
2276 		local_inc(&cpu_buffer->commit_overrun);
2277 		goto out_reset;
2278 	}
2279 
2280 	/*
2281 	 * This is where the fun begins!
2282 	 *
2283 	 * We are fighting against races between a reader that
2284 	 * could be on another CPU trying to swap its reader
2285 	 * page with the buffer head.
2286 	 *
2287 	 * We are also fighting against interrupts coming in and
2288 	 * moving the head or tail on us as well.
2289 	 *
2290 	 * If the next page is the head page then we have filled
2291 	 * the buffer, unless the commit page is still on the
2292 	 * reader page.
2293 	 */
2294 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2295 
2296 		/*
2297 		 * If the commit is not on the reader page, then
2298 		 * move the header page.
2299 		 */
2300 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2301 			/*
2302 			 * If we are not in overwrite mode,
2303 			 * this is easy, just stop here.
2304 			 */
2305 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2306 				local_inc(&cpu_buffer->dropped_events);
2307 				goto out_reset;
2308 			}
2309 
2310 			ret = rb_handle_head_page(cpu_buffer,
2311 						  tail_page,
2312 						  next_page);
2313 			if (ret < 0)
2314 				goto out_reset;
2315 			if (ret)
2316 				goto out_again;
2317 		} else {
2318 			/*
2319 			 * We need to be careful here too. The
2320 			 * commit page could still be on the reader
2321 			 * page. We could have a small buffer, and
2322 			 * have filled up the buffer with events
2323 			 * from interrupts and such, and wrapped.
2324 			 *
2325 			 * Note, if the tail page is also the on the
2326 			 * reader_page, we let it move out.
2327 			 */
2328 			if (unlikely((cpu_buffer->commit_page !=
2329 				      cpu_buffer->tail_page) &&
2330 				     (cpu_buffer->commit_page ==
2331 				      cpu_buffer->reader_page))) {
2332 				local_inc(&cpu_buffer->commit_overrun);
2333 				goto out_reset;
2334 			}
2335 		}
2336 	}
2337 
2338 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2339 	if (ret) {
2340 		/*
2341 		 * Nested commits always have zero deltas, so
2342 		 * just reread the time stamp
2343 		 */
2344 		ts = rb_time_stamp(buffer);
2345 		next_page->page->time_stamp = ts;
2346 	}
2347 
2348  out_again:
2349 
2350 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2351 
2352 	/* fail and let the caller try again */
2353 	return ERR_PTR(-EAGAIN);
2354 
2355  out_reset:
2356 	/* reset write */
2357 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2358 
2359 	return NULL;
2360 }
2361 
2362 static struct ring_buffer_event *
2363 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2364 		  unsigned long length, u64 ts,
2365 		  u64 delta, int add_timestamp)
2366 {
2367 	struct buffer_page *tail_page;
2368 	struct ring_buffer_event *event;
2369 	unsigned long tail, write;
2370 
2371 	/*
2372 	 * If the time delta since the last event is too big to
2373 	 * hold in the time field of the event, then we append a
2374 	 * TIME EXTEND event ahead of the data event.
2375 	 */
2376 	if (unlikely(add_timestamp))
2377 		length += RB_LEN_TIME_EXTEND;
2378 
2379 	tail_page = cpu_buffer->tail_page;
2380 	write = local_add_return(length, &tail_page->write);
2381 
2382 	/* set write to only the index of the write */
2383 	write &= RB_WRITE_MASK;
2384 	tail = write - length;
2385 
2386 	/*
2387 	 * If this is the first commit on the page, then it has the same
2388 	 * timestamp as the page itself.
2389 	 */
2390 	if (!tail)
2391 		delta = 0;
2392 
2393 	/* See if we shot pass the end of this buffer page */
2394 	if (unlikely(write > BUF_PAGE_SIZE))
2395 		return rb_move_tail(cpu_buffer, length, tail,
2396 				    tail_page, ts);
2397 
2398 	/* We reserved something on the buffer */
2399 
2400 	event = __rb_page_index(tail_page, tail);
2401 	kmemcheck_annotate_bitfield(event, bitfield);
2402 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2403 
2404 	local_inc(&tail_page->entries);
2405 
2406 	/*
2407 	 * If this is the first commit on the page, then update
2408 	 * its timestamp.
2409 	 */
2410 	if (!tail)
2411 		tail_page->page->time_stamp = ts;
2412 
2413 	/* account for these added bytes */
2414 	local_add(length, &cpu_buffer->entries_bytes);
2415 
2416 	return event;
2417 }
2418 
2419 static inline int
2420 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2421 		  struct ring_buffer_event *event)
2422 {
2423 	unsigned long new_index, old_index;
2424 	struct buffer_page *bpage;
2425 	unsigned long index;
2426 	unsigned long addr;
2427 
2428 	new_index = rb_event_index(event);
2429 	old_index = new_index + rb_event_ts_length(event);
2430 	addr = (unsigned long)event;
2431 	addr &= PAGE_MASK;
2432 
2433 	bpage = cpu_buffer->tail_page;
2434 
2435 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2436 		unsigned long write_mask =
2437 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2438 		unsigned long event_length = rb_event_length(event);
2439 		/*
2440 		 * This is on the tail page. It is possible that
2441 		 * a write could come in and move the tail page
2442 		 * and write to the next page. That is fine
2443 		 * because we just shorten what is on this page.
2444 		 */
2445 		old_index += write_mask;
2446 		new_index += write_mask;
2447 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2448 		if (index == old_index) {
2449 			/* update counters */
2450 			local_sub(event_length, &cpu_buffer->entries_bytes);
2451 			return 1;
2452 		}
2453 	}
2454 
2455 	/* could not discard */
2456 	return 0;
2457 }
2458 
2459 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2460 {
2461 	local_inc(&cpu_buffer->committing);
2462 	local_inc(&cpu_buffer->commits);
2463 }
2464 
2465 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2466 {
2467 	unsigned long commits;
2468 
2469 	if (RB_WARN_ON(cpu_buffer,
2470 		       !local_read(&cpu_buffer->committing)))
2471 		return;
2472 
2473  again:
2474 	commits = local_read(&cpu_buffer->commits);
2475 	/* synchronize with interrupts */
2476 	barrier();
2477 	if (local_read(&cpu_buffer->committing) == 1)
2478 		rb_set_commit_to_write(cpu_buffer);
2479 
2480 	local_dec(&cpu_buffer->committing);
2481 
2482 	/* synchronize with interrupts */
2483 	barrier();
2484 
2485 	/*
2486 	 * Need to account for interrupts coming in between the
2487 	 * updating of the commit page and the clearing of the
2488 	 * committing counter.
2489 	 */
2490 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2491 	    !local_read(&cpu_buffer->committing)) {
2492 		local_inc(&cpu_buffer->committing);
2493 		goto again;
2494 	}
2495 }
2496 
2497 static struct ring_buffer_event *
2498 rb_reserve_next_event(struct ring_buffer *buffer,
2499 		      struct ring_buffer_per_cpu *cpu_buffer,
2500 		      unsigned long length)
2501 {
2502 	struct ring_buffer_event *event;
2503 	u64 ts, delta;
2504 	int nr_loops = 0;
2505 	int add_timestamp;
2506 	u64 diff;
2507 
2508 	rb_start_commit(cpu_buffer);
2509 
2510 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2511 	/*
2512 	 * Due to the ability to swap a cpu buffer from a buffer
2513 	 * it is possible it was swapped before we committed.
2514 	 * (committing stops a swap). We check for it here and
2515 	 * if it happened, we have to fail the write.
2516 	 */
2517 	barrier();
2518 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2519 		local_dec(&cpu_buffer->committing);
2520 		local_dec(&cpu_buffer->commits);
2521 		return NULL;
2522 	}
2523 #endif
2524 
2525 	length = rb_calculate_event_length(length);
2526  again:
2527 	add_timestamp = 0;
2528 	delta = 0;
2529 
2530 	/*
2531 	 * We allow for interrupts to reenter here and do a trace.
2532 	 * If one does, it will cause this original code to loop
2533 	 * back here. Even with heavy interrupts happening, this
2534 	 * should only happen a few times in a row. If this happens
2535 	 * 1000 times in a row, there must be either an interrupt
2536 	 * storm or we have something buggy.
2537 	 * Bail!
2538 	 */
2539 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2540 		goto out_fail;
2541 
2542 	ts = rb_time_stamp(cpu_buffer->buffer);
2543 	diff = ts - cpu_buffer->write_stamp;
2544 
2545 	/* make sure this diff is calculated here */
2546 	barrier();
2547 
2548 	/* Did the write stamp get updated already? */
2549 	if (likely(ts >= cpu_buffer->write_stamp)) {
2550 		delta = diff;
2551 		if (unlikely(test_time_stamp(delta))) {
2552 			int local_clock_stable = 1;
2553 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2554 			local_clock_stable = sched_clock_stable();
2555 #endif
2556 			WARN_ONCE(delta > (1ULL << 59),
2557 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2558 				  (unsigned long long)delta,
2559 				  (unsigned long long)ts,
2560 				  (unsigned long long)cpu_buffer->write_stamp,
2561 				  local_clock_stable ? "" :
2562 				  "If you just came from a suspend/resume,\n"
2563 				  "please switch to the trace global clock:\n"
2564 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2565 			add_timestamp = 1;
2566 		}
2567 	}
2568 
2569 	event = __rb_reserve_next(cpu_buffer, length, ts,
2570 				  delta, add_timestamp);
2571 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2572 		goto again;
2573 
2574 	if (!event)
2575 		goto out_fail;
2576 
2577 	return event;
2578 
2579  out_fail:
2580 	rb_end_commit(cpu_buffer);
2581 	return NULL;
2582 }
2583 
2584 #ifdef CONFIG_TRACING
2585 
2586 /*
2587  * The lock and unlock are done within a preempt disable section.
2588  * The current_context per_cpu variable can only be modified
2589  * by the current task between lock and unlock. But it can
2590  * be modified more than once via an interrupt. To pass this
2591  * information from the lock to the unlock without having to
2592  * access the 'in_interrupt()' functions again (which do show
2593  * a bit of overhead in something as critical as function tracing,
2594  * we use a bitmask trick.
2595  *
2596  *  bit 0 =  NMI context
2597  *  bit 1 =  IRQ context
2598  *  bit 2 =  SoftIRQ context
2599  *  bit 3 =  normal context.
2600  *
2601  * This works because this is the order of contexts that can
2602  * preempt other contexts. A SoftIRQ never preempts an IRQ
2603  * context.
2604  *
2605  * When the context is determined, the corresponding bit is
2606  * checked and set (if it was set, then a recursion of that context
2607  * happened).
2608  *
2609  * On unlock, we need to clear this bit. To do so, just subtract
2610  * 1 from the current_context and AND it to itself.
2611  *
2612  * (binary)
2613  *  101 - 1 = 100
2614  *  101 & 100 = 100 (clearing bit zero)
2615  *
2616  *  1010 - 1 = 1001
2617  *  1010 & 1001 = 1000 (clearing bit 1)
2618  *
2619  * The least significant bit can be cleared this way, and it
2620  * just so happens that it is the same bit corresponding to
2621  * the current context.
2622  */
2623 static DEFINE_PER_CPU(unsigned int, current_context);
2624 
2625 static __always_inline int trace_recursive_lock(void)
2626 {
2627 	unsigned int val = this_cpu_read(current_context);
2628 	int bit;
2629 
2630 	if (in_interrupt()) {
2631 		if (in_nmi())
2632 			bit = 0;
2633 		else if (in_irq())
2634 			bit = 1;
2635 		else
2636 			bit = 2;
2637 	} else
2638 		bit = 3;
2639 
2640 	if (unlikely(val & (1 << bit)))
2641 		return 1;
2642 
2643 	val |= (1 << bit);
2644 	this_cpu_write(current_context, val);
2645 
2646 	return 0;
2647 }
2648 
2649 static __always_inline void trace_recursive_unlock(void)
2650 {
2651 	unsigned int val = this_cpu_read(current_context);
2652 
2653 	val--;
2654 	val &= this_cpu_read(current_context);
2655 	this_cpu_write(current_context, val);
2656 }
2657 
2658 #else
2659 
2660 #define trace_recursive_lock()		(0)
2661 #define trace_recursive_unlock()	do { } while (0)
2662 
2663 #endif
2664 
2665 /**
2666  * ring_buffer_lock_reserve - reserve a part of the buffer
2667  * @buffer: the ring buffer to reserve from
2668  * @length: the length of the data to reserve (excluding event header)
2669  *
2670  * Returns a reseverd event on the ring buffer to copy directly to.
2671  * The user of this interface will need to get the body to write into
2672  * and can use the ring_buffer_event_data() interface.
2673  *
2674  * The length is the length of the data needed, not the event length
2675  * which also includes the event header.
2676  *
2677  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2678  * If NULL is returned, then nothing has been allocated or locked.
2679  */
2680 struct ring_buffer_event *
2681 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2682 {
2683 	struct ring_buffer_per_cpu *cpu_buffer;
2684 	struct ring_buffer_event *event;
2685 	int cpu;
2686 
2687 	if (ring_buffer_flags != RB_BUFFERS_ON)
2688 		return NULL;
2689 
2690 	/* If we are tracing schedule, we don't want to recurse */
2691 	preempt_disable_notrace();
2692 
2693 	if (atomic_read(&buffer->record_disabled))
2694 		goto out_nocheck;
2695 
2696 	if (trace_recursive_lock())
2697 		goto out_nocheck;
2698 
2699 	cpu = raw_smp_processor_id();
2700 
2701 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2702 		goto out;
2703 
2704 	cpu_buffer = buffer->buffers[cpu];
2705 
2706 	if (atomic_read(&cpu_buffer->record_disabled))
2707 		goto out;
2708 
2709 	if (length > BUF_MAX_DATA_SIZE)
2710 		goto out;
2711 
2712 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2713 	if (!event)
2714 		goto out;
2715 
2716 	return event;
2717 
2718  out:
2719 	trace_recursive_unlock();
2720 
2721  out_nocheck:
2722 	preempt_enable_notrace();
2723 	return NULL;
2724 }
2725 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2726 
2727 static void
2728 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2729 		      struct ring_buffer_event *event)
2730 {
2731 	u64 delta;
2732 
2733 	/*
2734 	 * The event first in the commit queue updates the
2735 	 * time stamp.
2736 	 */
2737 	if (rb_event_is_commit(cpu_buffer, event)) {
2738 		/*
2739 		 * A commit event that is first on a page
2740 		 * updates the write timestamp with the page stamp
2741 		 */
2742 		if (!rb_event_index(event))
2743 			cpu_buffer->write_stamp =
2744 				cpu_buffer->commit_page->page->time_stamp;
2745 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2746 			delta = event->array[0];
2747 			delta <<= TS_SHIFT;
2748 			delta += event->time_delta;
2749 			cpu_buffer->write_stamp += delta;
2750 		} else
2751 			cpu_buffer->write_stamp += event->time_delta;
2752 	}
2753 }
2754 
2755 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2756 		      struct ring_buffer_event *event)
2757 {
2758 	local_inc(&cpu_buffer->entries);
2759 	rb_update_write_stamp(cpu_buffer, event);
2760 	rb_end_commit(cpu_buffer);
2761 }
2762 
2763 static __always_inline void
2764 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2765 {
2766 	if (buffer->irq_work.waiters_pending) {
2767 		buffer->irq_work.waiters_pending = false;
2768 		/* irq_work_queue() supplies it's own memory barriers */
2769 		irq_work_queue(&buffer->irq_work.work);
2770 	}
2771 
2772 	if (cpu_buffer->irq_work.waiters_pending) {
2773 		cpu_buffer->irq_work.waiters_pending = false;
2774 		/* irq_work_queue() supplies it's own memory barriers */
2775 		irq_work_queue(&cpu_buffer->irq_work.work);
2776 	}
2777 }
2778 
2779 /**
2780  * ring_buffer_unlock_commit - commit a reserved
2781  * @buffer: The buffer to commit to
2782  * @event: The event pointer to commit.
2783  *
2784  * This commits the data to the ring buffer, and releases any locks held.
2785  *
2786  * Must be paired with ring_buffer_lock_reserve.
2787  */
2788 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2789 			      struct ring_buffer_event *event)
2790 {
2791 	struct ring_buffer_per_cpu *cpu_buffer;
2792 	int cpu = raw_smp_processor_id();
2793 
2794 	cpu_buffer = buffer->buffers[cpu];
2795 
2796 	rb_commit(cpu_buffer, event);
2797 
2798 	rb_wakeups(buffer, cpu_buffer);
2799 
2800 	trace_recursive_unlock();
2801 
2802 	preempt_enable_notrace();
2803 
2804 	return 0;
2805 }
2806 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2807 
2808 static inline void rb_event_discard(struct ring_buffer_event *event)
2809 {
2810 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2811 		event = skip_time_extend(event);
2812 
2813 	/* array[0] holds the actual length for the discarded event */
2814 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2815 	event->type_len = RINGBUF_TYPE_PADDING;
2816 	/* time delta must be non zero */
2817 	if (!event->time_delta)
2818 		event->time_delta = 1;
2819 }
2820 
2821 /*
2822  * Decrement the entries to the page that an event is on.
2823  * The event does not even need to exist, only the pointer
2824  * to the page it is on. This may only be called before the commit
2825  * takes place.
2826  */
2827 static inline void
2828 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2829 		   struct ring_buffer_event *event)
2830 {
2831 	unsigned long addr = (unsigned long)event;
2832 	struct buffer_page *bpage = cpu_buffer->commit_page;
2833 	struct buffer_page *start;
2834 
2835 	addr &= PAGE_MASK;
2836 
2837 	/* Do the likely case first */
2838 	if (likely(bpage->page == (void *)addr)) {
2839 		local_dec(&bpage->entries);
2840 		return;
2841 	}
2842 
2843 	/*
2844 	 * Because the commit page may be on the reader page we
2845 	 * start with the next page and check the end loop there.
2846 	 */
2847 	rb_inc_page(cpu_buffer, &bpage);
2848 	start = bpage;
2849 	do {
2850 		if (bpage->page == (void *)addr) {
2851 			local_dec(&bpage->entries);
2852 			return;
2853 		}
2854 		rb_inc_page(cpu_buffer, &bpage);
2855 	} while (bpage != start);
2856 
2857 	/* commit not part of this buffer?? */
2858 	RB_WARN_ON(cpu_buffer, 1);
2859 }
2860 
2861 /**
2862  * ring_buffer_commit_discard - discard an event that has not been committed
2863  * @buffer: the ring buffer
2864  * @event: non committed event to discard
2865  *
2866  * Sometimes an event that is in the ring buffer needs to be ignored.
2867  * This function lets the user discard an event in the ring buffer
2868  * and then that event will not be read later.
2869  *
2870  * This function only works if it is called before the the item has been
2871  * committed. It will try to free the event from the ring buffer
2872  * if another event has not been added behind it.
2873  *
2874  * If another event has been added behind it, it will set the event
2875  * up as discarded, and perform the commit.
2876  *
2877  * If this function is called, do not call ring_buffer_unlock_commit on
2878  * the event.
2879  */
2880 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2881 				struct ring_buffer_event *event)
2882 {
2883 	struct ring_buffer_per_cpu *cpu_buffer;
2884 	int cpu;
2885 
2886 	/* The event is discarded regardless */
2887 	rb_event_discard(event);
2888 
2889 	cpu = smp_processor_id();
2890 	cpu_buffer = buffer->buffers[cpu];
2891 
2892 	/*
2893 	 * This must only be called if the event has not been
2894 	 * committed yet. Thus we can assume that preemption
2895 	 * is still disabled.
2896 	 */
2897 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2898 
2899 	rb_decrement_entry(cpu_buffer, event);
2900 	if (rb_try_to_discard(cpu_buffer, event))
2901 		goto out;
2902 
2903 	/*
2904 	 * The commit is still visible by the reader, so we
2905 	 * must still update the timestamp.
2906 	 */
2907 	rb_update_write_stamp(cpu_buffer, event);
2908  out:
2909 	rb_end_commit(cpu_buffer);
2910 
2911 	trace_recursive_unlock();
2912 
2913 	preempt_enable_notrace();
2914 
2915 }
2916 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2917 
2918 /**
2919  * ring_buffer_write - write data to the buffer without reserving
2920  * @buffer: The ring buffer to write to.
2921  * @length: The length of the data being written (excluding the event header)
2922  * @data: The data to write to the buffer.
2923  *
2924  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2925  * one function. If you already have the data to write to the buffer, it
2926  * may be easier to simply call this function.
2927  *
2928  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2929  * and not the length of the event which would hold the header.
2930  */
2931 int ring_buffer_write(struct ring_buffer *buffer,
2932 		      unsigned long length,
2933 		      void *data)
2934 {
2935 	struct ring_buffer_per_cpu *cpu_buffer;
2936 	struct ring_buffer_event *event;
2937 	void *body;
2938 	int ret = -EBUSY;
2939 	int cpu;
2940 
2941 	if (ring_buffer_flags != RB_BUFFERS_ON)
2942 		return -EBUSY;
2943 
2944 	preempt_disable_notrace();
2945 
2946 	if (atomic_read(&buffer->record_disabled))
2947 		goto out;
2948 
2949 	cpu = raw_smp_processor_id();
2950 
2951 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2952 		goto out;
2953 
2954 	cpu_buffer = buffer->buffers[cpu];
2955 
2956 	if (atomic_read(&cpu_buffer->record_disabled))
2957 		goto out;
2958 
2959 	if (length > BUF_MAX_DATA_SIZE)
2960 		goto out;
2961 
2962 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2963 	if (!event)
2964 		goto out;
2965 
2966 	body = rb_event_data(event);
2967 
2968 	memcpy(body, data, length);
2969 
2970 	rb_commit(cpu_buffer, event);
2971 
2972 	rb_wakeups(buffer, cpu_buffer);
2973 
2974 	ret = 0;
2975  out:
2976 	preempt_enable_notrace();
2977 
2978 	return ret;
2979 }
2980 EXPORT_SYMBOL_GPL(ring_buffer_write);
2981 
2982 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2983 {
2984 	struct buffer_page *reader = cpu_buffer->reader_page;
2985 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2986 	struct buffer_page *commit = cpu_buffer->commit_page;
2987 
2988 	/* In case of error, head will be NULL */
2989 	if (unlikely(!head))
2990 		return 1;
2991 
2992 	return reader->read == rb_page_commit(reader) &&
2993 		(commit == reader ||
2994 		 (commit == head &&
2995 		  head->read == rb_page_commit(commit)));
2996 }
2997 
2998 /**
2999  * ring_buffer_record_disable - stop all writes into the buffer
3000  * @buffer: The ring buffer to stop writes to.
3001  *
3002  * This prevents all writes to the buffer. Any attempt to write
3003  * to the buffer after this will fail and return NULL.
3004  *
3005  * The caller should call synchronize_sched() after this.
3006  */
3007 void ring_buffer_record_disable(struct ring_buffer *buffer)
3008 {
3009 	atomic_inc(&buffer->record_disabled);
3010 }
3011 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3012 
3013 /**
3014  * ring_buffer_record_enable - enable writes to the buffer
3015  * @buffer: The ring buffer to enable writes
3016  *
3017  * Note, multiple disables will need the same number of enables
3018  * to truly enable the writing (much like preempt_disable).
3019  */
3020 void ring_buffer_record_enable(struct ring_buffer *buffer)
3021 {
3022 	atomic_dec(&buffer->record_disabled);
3023 }
3024 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3025 
3026 /**
3027  * ring_buffer_record_off - stop all writes into the buffer
3028  * @buffer: The ring buffer to stop writes to.
3029  *
3030  * This prevents all writes to the buffer. Any attempt to write
3031  * to the buffer after this will fail and return NULL.
3032  *
3033  * This is different than ring_buffer_record_disable() as
3034  * it works like an on/off switch, where as the disable() version
3035  * must be paired with a enable().
3036  */
3037 void ring_buffer_record_off(struct ring_buffer *buffer)
3038 {
3039 	unsigned int rd;
3040 	unsigned int new_rd;
3041 
3042 	do {
3043 		rd = atomic_read(&buffer->record_disabled);
3044 		new_rd = rd | RB_BUFFER_OFF;
3045 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3046 }
3047 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3048 
3049 /**
3050  * ring_buffer_record_on - restart writes into the buffer
3051  * @buffer: The ring buffer to start writes to.
3052  *
3053  * This enables all writes to the buffer that was disabled by
3054  * ring_buffer_record_off().
3055  *
3056  * This is different than ring_buffer_record_enable() as
3057  * it works like an on/off switch, where as the enable() version
3058  * must be paired with a disable().
3059  */
3060 void ring_buffer_record_on(struct ring_buffer *buffer)
3061 {
3062 	unsigned int rd;
3063 	unsigned int new_rd;
3064 
3065 	do {
3066 		rd = atomic_read(&buffer->record_disabled);
3067 		new_rd = rd & ~RB_BUFFER_OFF;
3068 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3069 }
3070 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3071 
3072 /**
3073  * ring_buffer_record_is_on - return true if the ring buffer can write
3074  * @buffer: The ring buffer to see if write is enabled
3075  *
3076  * Returns true if the ring buffer is in a state that it accepts writes.
3077  */
3078 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3079 {
3080 	return !atomic_read(&buffer->record_disabled);
3081 }
3082 
3083 /**
3084  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3085  * @buffer: The ring buffer to stop writes to.
3086  * @cpu: The CPU buffer to stop
3087  *
3088  * This prevents all writes to the buffer. Any attempt to write
3089  * to the buffer after this will fail and return NULL.
3090  *
3091  * The caller should call synchronize_sched() after this.
3092  */
3093 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3094 {
3095 	struct ring_buffer_per_cpu *cpu_buffer;
3096 
3097 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3098 		return;
3099 
3100 	cpu_buffer = buffer->buffers[cpu];
3101 	atomic_inc(&cpu_buffer->record_disabled);
3102 }
3103 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3104 
3105 /**
3106  * ring_buffer_record_enable_cpu - enable writes to the buffer
3107  * @buffer: The ring buffer to enable writes
3108  * @cpu: The CPU to enable.
3109  *
3110  * Note, multiple disables will need the same number of enables
3111  * to truly enable the writing (much like preempt_disable).
3112  */
3113 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3114 {
3115 	struct ring_buffer_per_cpu *cpu_buffer;
3116 
3117 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3118 		return;
3119 
3120 	cpu_buffer = buffer->buffers[cpu];
3121 	atomic_dec(&cpu_buffer->record_disabled);
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3124 
3125 /*
3126  * The total entries in the ring buffer is the running counter
3127  * of entries entered into the ring buffer, minus the sum of
3128  * the entries read from the ring buffer and the number of
3129  * entries that were overwritten.
3130  */
3131 static inline unsigned long
3132 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3133 {
3134 	return local_read(&cpu_buffer->entries) -
3135 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3136 }
3137 
3138 /**
3139  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3140  * @buffer: The ring buffer
3141  * @cpu: The per CPU buffer to read from.
3142  */
3143 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3144 {
3145 	unsigned long flags;
3146 	struct ring_buffer_per_cpu *cpu_buffer;
3147 	struct buffer_page *bpage;
3148 	u64 ret = 0;
3149 
3150 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3151 		return 0;
3152 
3153 	cpu_buffer = buffer->buffers[cpu];
3154 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3155 	/*
3156 	 * if the tail is on reader_page, oldest time stamp is on the reader
3157 	 * page
3158 	 */
3159 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3160 		bpage = cpu_buffer->reader_page;
3161 	else
3162 		bpage = rb_set_head_page(cpu_buffer);
3163 	if (bpage)
3164 		ret = bpage->page->time_stamp;
3165 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3166 
3167 	return ret;
3168 }
3169 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3170 
3171 /**
3172  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3173  * @buffer: The ring buffer
3174  * @cpu: The per CPU buffer to read from.
3175  */
3176 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3177 {
3178 	struct ring_buffer_per_cpu *cpu_buffer;
3179 	unsigned long ret;
3180 
3181 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3182 		return 0;
3183 
3184 	cpu_buffer = buffer->buffers[cpu];
3185 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3186 
3187 	return ret;
3188 }
3189 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3190 
3191 /**
3192  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3193  * @buffer: The ring buffer
3194  * @cpu: The per CPU buffer to get the entries from.
3195  */
3196 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3197 {
3198 	struct ring_buffer_per_cpu *cpu_buffer;
3199 
3200 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3201 		return 0;
3202 
3203 	cpu_buffer = buffer->buffers[cpu];
3204 
3205 	return rb_num_of_entries(cpu_buffer);
3206 }
3207 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3208 
3209 /**
3210  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3211  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3212  * @buffer: The ring buffer
3213  * @cpu: The per CPU buffer to get the number of overruns from
3214  */
3215 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3216 {
3217 	struct ring_buffer_per_cpu *cpu_buffer;
3218 	unsigned long ret;
3219 
3220 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3221 		return 0;
3222 
3223 	cpu_buffer = buffer->buffers[cpu];
3224 	ret = local_read(&cpu_buffer->overrun);
3225 
3226 	return ret;
3227 }
3228 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3229 
3230 /**
3231  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3232  * commits failing due to the buffer wrapping around while there are uncommitted
3233  * events, such as during an interrupt storm.
3234  * @buffer: The ring buffer
3235  * @cpu: The per CPU buffer to get the number of overruns from
3236  */
3237 unsigned long
3238 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3239 {
3240 	struct ring_buffer_per_cpu *cpu_buffer;
3241 	unsigned long ret;
3242 
3243 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244 		return 0;
3245 
3246 	cpu_buffer = buffer->buffers[cpu];
3247 	ret = local_read(&cpu_buffer->commit_overrun);
3248 
3249 	return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3252 
3253 /**
3254  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3255  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3256  * @buffer: The ring buffer
3257  * @cpu: The per CPU buffer to get the number of overruns from
3258  */
3259 unsigned long
3260 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3261 {
3262 	struct ring_buffer_per_cpu *cpu_buffer;
3263 	unsigned long ret;
3264 
3265 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3266 		return 0;
3267 
3268 	cpu_buffer = buffer->buffers[cpu];
3269 	ret = local_read(&cpu_buffer->dropped_events);
3270 
3271 	return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3274 
3275 /**
3276  * ring_buffer_read_events_cpu - get the number of events successfully read
3277  * @buffer: The ring buffer
3278  * @cpu: The per CPU buffer to get the number of events read
3279  */
3280 unsigned long
3281 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3282 {
3283 	struct ring_buffer_per_cpu *cpu_buffer;
3284 
3285 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3286 		return 0;
3287 
3288 	cpu_buffer = buffer->buffers[cpu];
3289 	return cpu_buffer->read;
3290 }
3291 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3292 
3293 /**
3294  * ring_buffer_entries - get the number of entries in a buffer
3295  * @buffer: The ring buffer
3296  *
3297  * Returns the total number of entries in the ring buffer
3298  * (all CPU entries)
3299  */
3300 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3301 {
3302 	struct ring_buffer_per_cpu *cpu_buffer;
3303 	unsigned long entries = 0;
3304 	int cpu;
3305 
3306 	/* if you care about this being correct, lock the buffer */
3307 	for_each_buffer_cpu(buffer, cpu) {
3308 		cpu_buffer = buffer->buffers[cpu];
3309 		entries += rb_num_of_entries(cpu_buffer);
3310 	}
3311 
3312 	return entries;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3315 
3316 /**
3317  * ring_buffer_overruns - get the number of overruns in buffer
3318  * @buffer: The ring buffer
3319  *
3320  * Returns the total number of overruns in the ring buffer
3321  * (all CPU entries)
3322  */
3323 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3324 {
3325 	struct ring_buffer_per_cpu *cpu_buffer;
3326 	unsigned long overruns = 0;
3327 	int cpu;
3328 
3329 	/* if you care about this being correct, lock the buffer */
3330 	for_each_buffer_cpu(buffer, cpu) {
3331 		cpu_buffer = buffer->buffers[cpu];
3332 		overruns += local_read(&cpu_buffer->overrun);
3333 	}
3334 
3335 	return overruns;
3336 }
3337 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3338 
3339 static void rb_iter_reset(struct ring_buffer_iter *iter)
3340 {
3341 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3342 
3343 	/* Iterator usage is expected to have record disabled */
3344 	iter->head_page = cpu_buffer->reader_page;
3345 	iter->head = cpu_buffer->reader_page->read;
3346 
3347 	iter->cache_reader_page = iter->head_page;
3348 	iter->cache_read = iter->head;
3349 
3350 	if (iter->head)
3351 		iter->read_stamp = cpu_buffer->read_stamp;
3352 	else
3353 		iter->read_stamp = iter->head_page->page->time_stamp;
3354 }
3355 
3356 /**
3357  * ring_buffer_iter_reset - reset an iterator
3358  * @iter: The iterator to reset
3359  *
3360  * Resets the iterator, so that it will start from the beginning
3361  * again.
3362  */
3363 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3364 {
3365 	struct ring_buffer_per_cpu *cpu_buffer;
3366 	unsigned long flags;
3367 
3368 	if (!iter)
3369 		return;
3370 
3371 	cpu_buffer = iter->cpu_buffer;
3372 
3373 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3374 	rb_iter_reset(iter);
3375 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3376 }
3377 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3378 
3379 /**
3380  * ring_buffer_iter_empty - check if an iterator has no more to read
3381  * @iter: The iterator to check
3382  */
3383 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3384 {
3385 	struct ring_buffer_per_cpu *cpu_buffer;
3386 
3387 	cpu_buffer = iter->cpu_buffer;
3388 
3389 	return iter->head_page == cpu_buffer->commit_page &&
3390 		iter->head == rb_commit_index(cpu_buffer);
3391 }
3392 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3393 
3394 static void
3395 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3396 		     struct ring_buffer_event *event)
3397 {
3398 	u64 delta;
3399 
3400 	switch (event->type_len) {
3401 	case RINGBUF_TYPE_PADDING:
3402 		return;
3403 
3404 	case RINGBUF_TYPE_TIME_EXTEND:
3405 		delta = event->array[0];
3406 		delta <<= TS_SHIFT;
3407 		delta += event->time_delta;
3408 		cpu_buffer->read_stamp += delta;
3409 		return;
3410 
3411 	case RINGBUF_TYPE_TIME_STAMP:
3412 		/* FIXME: not implemented */
3413 		return;
3414 
3415 	case RINGBUF_TYPE_DATA:
3416 		cpu_buffer->read_stamp += event->time_delta;
3417 		return;
3418 
3419 	default:
3420 		BUG();
3421 	}
3422 	return;
3423 }
3424 
3425 static void
3426 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3427 			  struct ring_buffer_event *event)
3428 {
3429 	u64 delta;
3430 
3431 	switch (event->type_len) {
3432 	case RINGBUF_TYPE_PADDING:
3433 		return;
3434 
3435 	case RINGBUF_TYPE_TIME_EXTEND:
3436 		delta = event->array[0];
3437 		delta <<= TS_SHIFT;
3438 		delta += event->time_delta;
3439 		iter->read_stamp += delta;
3440 		return;
3441 
3442 	case RINGBUF_TYPE_TIME_STAMP:
3443 		/* FIXME: not implemented */
3444 		return;
3445 
3446 	case RINGBUF_TYPE_DATA:
3447 		iter->read_stamp += event->time_delta;
3448 		return;
3449 
3450 	default:
3451 		BUG();
3452 	}
3453 	return;
3454 }
3455 
3456 static struct buffer_page *
3457 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3458 {
3459 	struct buffer_page *reader = NULL;
3460 	unsigned long overwrite;
3461 	unsigned long flags;
3462 	int nr_loops = 0;
3463 	int ret;
3464 
3465 	local_irq_save(flags);
3466 	arch_spin_lock(&cpu_buffer->lock);
3467 
3468  again:
3469 	/*
3470 	 * This should normally only loop twice. But because the
3471 	 * start of the reader inserts an empty page, it causes
3472 	 * a case where we will loop three times. There should be no
3473 	 * reason to loop four times (that I know of).
3474 	 */
3475 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3476 		reader = NULL;
3477 		goto out;
3478 	}
3479 
3480 	reader = cpu_buffer->reader_page;
3481 
3482 	/* If there's more to read, return this page */
3483 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3484 		goto out;
3485 
3486 	/* Never should we have an index greater than the size */
3487 	if (RB_WARN_ON(cpu_buffer,
3488 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3489 		goto out;
3490 
3491 	/* check if we caught up to the tail */
3492 	reader = NULL;
3493 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3494 		goto out;
3495 
3496 	/* Don't bother swapping if the ring buffer is empty */
3497 	if (rb_num_of_entries(cpu_buffer) == 0)
3498 		goto out;
3499 
3500 	/*
3501 	 * Reset the reader page to size zero.
3502 	 */
3503 	local_set(&cpu_buffer->reader_page->write, 0);
3504 	local_set(&cpu_buffer->reader_page->entries, 0);
3505 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3506 	cpu_buffer->reader_page->real_end = 0;
3507 
3508  spin:
3509 	/*
3510 	 * Splice the empty reader page into the list around the head.
3511 	 */
3512 	reader = rb_set_head_page(cpu_buffer);
3513 	if (!reader)
3514 		goto out;
3515 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3516 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3517 
3518 	/*
3519 	 * cpu_buffer->pages just needs to point to the buffer, it
3520 	 *  has no specific buffer page to point to. Lets move it out
3521 	 *  of our way so we don't accidentally swap it.
3522 	 */
3523 	cpu_buffer->pages = reader->list.prev;
3524 
3525 	/* The reader page will be pointing to the new head */
3526 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3527 
3528 	/*
3529 	 * We want to make sure we read the overruns after we set up our
3530 	 * pointers to the next object. The writer side does a
3531 	 * cmpxchg to cross pages which acts as the mb on the writer
3532 	 * side. Note, the reader will constantly fail the swap
3533 	 * while the writer is updating the pointers, so this
3534 	 * guarantees that the overwrite recorded here is the one we
3535 	 * want to compare with the last_overrun.
3536 	 */
3537 	smp_mb();
3538 	overwrite = local_read(&(cpu_buffer->overrun));
3539 
3540 	/*
3541 	 * Here's the tricky part.
3542 	 *
3543 	 * We need to move the pointer past the header page.
3544 	 * But we can only do that if a writer is not currently
3545 	 * moving it. The page before the header page has the
3546 	 * flag bit '1' set if it is pointing to the page we want.
3547 	 * but if the writer is in the process of moving it
3548 	 * than it will be '2' or already moved '0'.
3549 	 */
3550 
3551 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3552 
3553 	/*
3554 	 * If we did not convert it, then we must try again.
3555 	 */
3556 	if (!ret)
3557 		goto spin;
3558 
3559 	/*
3560 	 * Yeah! We succeeded in replacing the page.
3561 	 *
3562 	 * Now make the new head point back to the reader page.
3563 	 */
3564 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3565 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3566 
3567 	/* Finally update the reader page to the new head */
3568 	cpu_buffer->reader_page = reader;
3569 	rb_reset_reader_page(cpu_buffer);
3570 
3571 	if (overwrite != cpu_buffer->last_overrun) {
3572 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3573 		cpu_buffer->last_overrun = overwrite;
3574 	}
3575 
3576 	goto again;
3577 
3578  out:
3579 	arch_spin_unlock(&cpu_buffer->lock);
3580 	local_irq_restore(flags);
3581 
3582 	return reader;
3583 }
3584 
3585 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3586 {
3587 	struct ring_buffer_event *event;
3588 	struct buffer_page *reader;
3589 	unsigned length;
3590 
3591 	reader = rb_get_reader_page(cpu_buffer);
3592 
3593 	/* This function should not be called when buffer is empty */
3594 	if (RB_WARN_ON(cpu_buffer, !reader))
3595 		return;
3596 
3597 	event = rb_reader_event(cpu_buffer);
3598 
3599 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3600 		cpu_buffer->read++;
3601 
3602 	rb_update_read_stamp(cpu_buffer, event);
3603 
3604 	length = rb_event_length(event);
3605 	cpu_buffer->reader_page->read += length;
3606 }
3607 
3608 static void rb_advance_iter(struct ring_buffer_iter *iter)
3609 {
3610 	struct ring_buffer_per_cpu *cpu_buffer;
3611 	struct ring_buffer_event *event;
3612 	unsigned length;
3613 
3614 	cpu_buffer = iter->cpu_buffer;
3615 
3616 	/*
3617 	 * Check if we are at the end of the buffer.
3618 	 */
3619 	if (iter->head >= rb_page_size(iter->head_page)) {
3620 		/* discarded commits can make the page empty */
3621 		if (iter->head_page == cpu_buffer->commit_page)
3622 			return;
3623 		rb_inc_iter(iter);
3624 		return;
3625 	}
3626 
3627 	event = rb_iter_head_event(iter);
3628 
3629 	length = rb_event_length(event);
3630 
3631 	/*
3632 	 * This should not be called to advance the header if we are
3633 	 * at the tail of the buffer.
3634 	 */
3635 	if (RB_WARN_ON(cpu_buffer,
3636 		       (iter->head_page == cpu_buffer->commit_page) &&
3637 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3638 		return;
3639 
3640 	rb_update_iter_read_stamp(iter, event);
3641 
3642 	iter->head += length;
3643 
3644 	/* check for end of page padding */
3645 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3646 	    (iter->head_page != cpu_buffer->commit_page))
3647 		rb_inc_iter(iter);
3648 }
3649 
3650 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3651 {
3652 	return cpu_buffer->lost_events;
3653 }
3654 
3655 static struct ring_buffer_event *
3656 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3657 	       unsigned long *lost_events)
3658 {
3659 	struct ring_buffer_event *event;
3660 	struct buffer_page *reader;
3661 	int nr_loops = 0;
3662 
3663  again:
3664 	/*
3665 	 * We repeat when a time extend is encountered.
3666 	 * Since the time extend is always attached to a data event,
3667 	 * we should never loop more than once.
3668 	 * (We never hit the following condition more than twice).
3669 	 */
3670 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3671 		return NULL;
3672 
3673 	reader = rb_get_reader_page(cpu_buffer);
3674 	if (!reader)
3675 		return NULL;
3676 
3677 	event = rb_reader_event(cpu_buffer);
3678 
3679 	switch (event->type_len) {
3680 	case RINGBUF_TYPE_PADDING:
3681 		if (rb_null_event(event))
3682 			RB_WARN_ON(cpu_buffer, 1);
3683 		/*
3684 		 * Because the writer could be discarding every
3685 		 * event it creates (which would probably be bad)
3686 		 * if we were to go back to "again" then we may never
3687 		 * catch up, and will trigger the warn on, or lock
3688 		 * the box. Return the padding, and we will release
3689 		 * the current locks, and try again.
3690 		 */
3691 		return event;
3692 
3693 	case RINGBUF_TYPE_TIME_EXTEND:
3694 		/* Internal data, OK to advance */
3695 		rb_advance_reader(cpu_buffer);
3696 		goto again;
3697 
3698 	case RINGBUF_TYPE_TIME_STAMP:
3699 		/* FIXME: not implemented */
3700 		rb_advance_reader(cpu_buffer);
3701 		goto again;
3702 
3703 	case RINGBUF_TYPE_DATA:
3704 		if (ts) {
3705 			*ts = cpu_buffer->read_stamp + event->time_delta;
3706 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3707 							 cpu_buffer->cpu, ts);
3708 		}
3709 		if (lost_events)
3710 			*lost_events = rb_lost_events(cpu_buffer);
3711 		return event;
3712 
3713 	default:
3714 		BUG();
3715 	}
3716 
3717 	return NULL;
3718 }
3719 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3720 
3721 static struct ring_buffer_event *
3722 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3723 {
3724 	struct ring_buffer *buffer;
3725 	struct ring_buffer_per_cpu *cpu_buffer;
3726 	struct ring_buffer_event *event;
3727 	int nr_loops = 0;
3728 
3729 	cpu_buffer = iter->cpu_buffer;
3730 	buffer = cpu_buffer->buffer;
3731 
3732 	/*
3733 	 * Check if someone performed a consuming read to
3734 	 * the buffer. A consuming read invalidates the iterator
3735 	 * and we need to reset the iterator in this case.
3736 	 */
3737 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3738 		     iter->cache_reader_page != cpu_buffer->reader_page))
3739 		rb_iter_reset(iter);
3740 
3741  again:
3742 	if (ring_buffer_iter_empty(iter))
3743 		return NULL;
3744 
3745 	/*
3746 	 * We repeat when a time extend is encountered or we hit
3747 	 * the end of the page. Since the time extend is always attached
3748 	 * to a data event, we should never loop more than three times.
3749 	 * Once for going to next page, once on time extend, and
3750 	 * finally once to get the event.
3751 	 * (We never hit the following condition more than thrice).
3752 	 */
3753 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3754 		return NULL;
3755 
3756 	if (rb_per_cpu_empty(cpu_buffer))
3757 		return NULL;
3758 
3759 	if (iter->head >= rb_page_size(iter->head_page)) {
3760 		rb_inc_iter(iter);
3761 		goto again;
3762 	}
3763 
3764 	event = rb_iter_head_event(iter);
3765 
3766 	switch (event->type_len) {
3767 	case RINGBUF_TYPE_PADDING:
3768 		if (rb_null_event(event)) {
3769 			rb_inc_iter(iter);
3770 			goto again;
3771 		}
3772 		rb_advance_iter(iter);
3773 		return event;
3774 
3775 	case RINGBUF_TYPE_TIME_EXTEND:
3776 		/* Internal data, OK to advance */
3777 		rb_advance_iter(iter);
3778 		goto again;
3779 
3780 	case RINGBUF_TYPE_TIME_STAMP:
3781 		/* FIXME: not implemented */
3782 		rb_advance_iter(iter);
3783 		goto again;
3784 
3785 	case RINGBUF_TYPE_DATA:
3786 		if (ts) {
3787 			*ts = iter->read_stamp + event->time_delta;
3788 			ring_buffer_normalize_time_stamp(buffer,
3789 							 cpu_buffer->cpu, ts);
3790 		}
3791 		return event;
3792 
3793 	default:
3794 		BUG();
3795 	}
3796 
3797 	return NULL;
3798 }
3799 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3800 
3801 static inline int rb_ok_to_lock(void)
3802 {
3803 	/*
3804 	 * If an NMI die dumps out the content of the ring buffer
3805 	 * do not grab locks. We also permanently disable the ring
3806 	 * buffer too. A one time deal is all you get from reading
3807 	 * the ring buffer from an NMI.
3808 	 */
3809 	if (likely(!in_nmi()))
3810 		return 1;
3811 
3812 	tracing_off_permanent();
3813 	return 0;
3814 }
3815 
3816 /**
3817  * ring_buffer_peek - peek at the next event to be read
3818  * @buffer: The ring buffer to read
3819  * @cpu: The cpu to peak at
3820  * @ts: The timestamp counter of this event.
3821  * @lost_events: a variable to store if events were lost (may be NULL)
3822  *
3823  * This will return the event that will be read next, but does
3824  * not consume the data.
3825  */
3826 struct ring_buffer_event *
3827 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3828 		 unsigned long *lost_events)
3829 {
3830 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3831 	struct ring_buffer_event *event;
3832 	unsigned long flags;
3833 	int dolock;
3834 
3835 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3836 		return NULL;
3837 
3838 	dolock = rb_ok_to_lock();
3839  again:
3840 	local_irq_save(flags);
3841 	if (dolock)
3842 		raw_spin_lock(&cpu_buffer->reader_lock);
3843 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3844 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3845 		rb_advance_reader(cpu_buffer);
3846 	if (dolock)
3847 		raw_spin_unlock(&cpu_buffer->reader_lock);
3848 	local_irq_restore(flags);
3849 
3850 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3851 		goto again;
3852 
3853 	return event;
3854 }
3855 
3856 /**
3857  * ring_buffer_iter_peek - peek at the next event to be read
3858  * @iter: The ring buffer iterator
3859  * @ts: The timestamp counter of this event.
3860  *
3861  * This will return the event that will be read next, but does
3862  * not increment the iterator.
3863  */
3864 struct ring_buffer_event *
3865 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3866 {
3867 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3868 	struct ring_buffer_event *event;
3869 	unsigned long flags;
3870 
3871  again:
3872 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3873 	event = rb_iter_peek(iter, ts);
3874 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3875 
3876 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3877 		goto again;
3878 
3879 	return event;
3880 }
3881 
3882 /**
3883  * ring_buffer_consume - return an event and consume it
3884  * @buffer: The ring buffer to get the next event from
3885  * @cpu: the cpu to read the buffer from
3886  * @ts: a variable to store the timestamp (may be NULL)
3887  * @lost_events: a variable to store if events were lost (may be NULL)
3888  *
3889  * Returns the next event in the ring buffer, and that event is consumed.
3890  * Meaning, that sequential reads will keep returning a different event,
3891  * and eventually empty the ring buffer if the producer is slower.
3892  */
3893 struct ring_buffer_event *
3894 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3895 		    unsigned long *lost_events)
3896 {
3897 	struct ring_buffer_per_cpu *cpu_buffer;
3898 	struct ring_buffer_event *event = NULL;
3899 	unsigned long flags;
3900 	int dolock;
3901 
3902 	dolock = rb_ok_to_lock();
3903 
3904  again:
3905 	/* might be called in atomic */
3906 	preempt_disable();
3907 
3908 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3909 		goto out;
3910 
3911 	cpu_buffer = buffer->buffers[cpu];
3912 	local_irq_save(flags);
3913 	if (dolock)
3914 		raw_spin_lock(&cpu_buffer->reader_lock);
3915 
3916 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3917 	if (event) {
3918 		cpu_buffer->lost_events = 0;
3919 		rb_advance_reader(cpu_buffer);
3920 	}
3921 
3922 	if (dolock)
3923 		raw_spin_unlock(&cpu_buffer->reader_lock);
3924 	local_irq_restore(flags);
3925 
3926  out:
3927 	preempt_enable();
3928 
3929 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3930 		goto again;
3931 
3932 	return event;
3933 }
3934 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3935 
3936 /**
3937  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3938  * @buffer: The ring buffer to read from
3939  * @cpu: The cpu buffer to iterate over
3940  *
3941  * This performs the initial preparations necessary to iterate
3942  * through the buffer.  Memory is allocated, buffer recording
3943  * is disabled, and the iterator pointer is returned to the caller.
3944  *
3945  * Disabling buffer recordng prevents the reading from being
3946  * corrupted. This is not a consuming read, so a producer is not
3947  * expected.
3948  *
3949  * After a sequence of ring_buffer_read_prepare calls, the user is
3950  * expected to make at least one call to ring_buffer_read_prepare_sync.
3951  * Afterwards, ring_buffer_read_start is invoked to get things going
3952  * for real.
3953  *
3954  * This overall must be paired with ring_buffer_read_finish.
3955  */
3956 struct ring_buffer_iter *
3957 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3958 {
3959 	struct ring_buffer_per_cpu *cpu_buffer;
3960 	struct ring_buffer_iter *iter;
3961 
3962 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3963 		return NULL;
3964 
3965 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3966 	if (!iter)
3967 		return NULL;
3968 
3969 	cpu_buffer = buffer->buffers[cpu];
3970 
3971 	iter->cpu_buffer = cpu_buffer;
3972 
3973 	atomic_inc(&buffer->resize_disabled);
3974 	atomic_inc(&cpu_buffer->record_disabled);
3975 
3976 	return iter;
3977 }
3978 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3979 
3980 /**
3981  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3982  *
3983  * All previously invoked ring_buffer_read_prepare calls to prepare
3984  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3985  * calls on those iterators are allowed.
3986  */
3987 void
3988 ring_buffer_read_prepare_sync(void)
3989 {
3990 	synchronize_sched();
3991 }
3992 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3993 
3994 /**
3995  * ring_buffer_read_start - start a non consuming read of the buffer
3996  * @iter: The iterator returned by ring_buffer_read_prepare
3997  *
3998  * This finalizes the startup of an iteration through the buffer.
3999  * The iterator comes from a call to ring_buffer_read_prepare and
4000  * an intervening ring_buffer_read_prepare_sync must have been
4001  * performed.
4002  *
4003  * Must be paired with ring_buffer_read_finish.
4004  */
4005 void
4006 ring_buffer_read_start(struct ring_buffer_iter *iter)
4007 {
4008 	struct ring_buffer_per_cpu *cpu_buffer;
4009 	unsigned long flags;
4010 
4011 	if (!iter)
4012 		return;
4013 
4014 	cpu_buffer = iter->cpu_buffer;
4015 
4016 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4017 	arch_spin_lock(&cpu_buffer->lock);
4018 	rb_iter_reset(iter);
4019 	arch_spin_unlock(&cpu_buffer->lock);
4020 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4021 }
4022 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4023 
4024 /**
4025  * ring_buffer_read_finish - finish reading the iterator of the buffer
4026  * @iter: The iterator retrieved by ring_buffer_start
4027  *
4028  * This re-enables the recording to the buffer, and frees the
4029  * iterator.
4030  */
4031 void
4032 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4033 {
4034 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4035 	unsigned long flags;
4036 
4037 	/*
4038 	 * Ring buffer is disabled from recording, here's a good place
4039 	 * to check the integrity of the ring buffer.
4040 	 * Must prevent readers from trying to read, as the check
4041 	 * clears the HEAD page and readers require it.
4042 	 */
4043 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4044 	rb_check_pages(cpu_buffer);
4045 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4046 
4047 	atomic_dec(&cpu_buffer->record_disabled);
4048 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4049 	kfree(iter);
4050 }
4051 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4052 
4053 /**
4054  * ring_buffer_read - read the next item in the ring buffer by the iterator
4055  * @iter: The ring buffer iterator
4056  * @ts: The time stamp of the event read.
4057  *
4058  * This reads the next event in the ring buffer and increments the iterator.
4059  */
4060 struct ring_buffer_event *
4061 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4062 {
4063 	struct ring_buffer_event *event;
4064 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4065 	unsigned long flags;
4066 
4067 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4068  again:
4069 	event = rb_iter_peek(iter, ts);
4070 	if (!event)
4071 		goto out;
4072 
4073 	if (event->type_len == RINGBUF_TYPE_PADDING)
4074 		goto again;
4075 
4076 	rb_advance_iter(iter);
4077  out:
4078 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4079 
4080 	return event;
4081 }
4082 EXPORT_SYMBOL_GPL(ring_buffer_read);
4083 
4084 /**
4085  * ring_buffer_size - return the size of the ring buffer (in bytes)
4086  * @buffer: The ring buffer.
4087  */
4088 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4089 {
4090 	/*
4091 	 * Earlier, this method returned
4092 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4093 	 * Since the nr_pages field is now removed, we have converted this to
4094 	 * return the per cpu buffer value.
4095 	 */
4096 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4097 		return 0;
4098 
4099 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4100 }
4101 EXPORT_SYMBOL_GPL(ring_buffer_size);
4102 
4103 static void
4104 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4105 {
4106 	rb_head_page_deactivate(cpu_buffer);
4107 
4108 	cpu_buffer->head_page
4109 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4110 	local_set(&cpu_buffer->head_page->write, 0);
4111 	local_set(&cpu_buffer->head_page->entries, 0);
4112 	local_set(&cpu_buffer->head_page->page->commit, 0);
4113 
4114 	cpu_buffer->head_page->read = 0;
4115 
4116 	cpu_buffer->tail_page = cpu_buffer->head_page;
4117 	cpu_buffer->commit_page = cpu_buffer->head_page;
4118 
4119 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4120 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4121 	local_set(&cpu_buffer->reader_page->write, 0);
4122 	local_set(&cpu_buffer->reader_page->entries, 0);
4123 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4124 	cpu_buffer->reader_page->read = 0;
4125 
4126 	local_set(&cpu_buffer->entries_bytes, 0);
4127 	local_set(&cpu_buffer->overrun, 0);
4128 	local_set(&cpu_buffer->commit_overrun, 0);
4129 	local_set(&cpu_buffer->dropped_events, 0);
4130 	local_set(&cpu_buffer->entries, 0);
4131 	local_set(&cpu_buffer->committing, 0);
4132 	local_set(&cpu_buffer->commits, 0);
4133 	cpu_buffer->read = 0;
4134 	cpu_buffer->read_bytes = 0;
4135 
4136 	cpu_buffer->write_stamp = 0;
4137 	cpu_buffer->read_stamp = 0;
4138 
4139 	cpu_buffer->lost_events = 0;
4140 	cpu_buffer->last_overrun = 0;
4141 
4142 	rb_head_page_activate(cpu_buffer);
4143 }
4144 
4145 /**
4146  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4147  * @buffer: The ring buffer to reset a per cpu buffer of
4148  * @cpu: The CPU buffer to be reset
4149  */
4150 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4151 {
4152 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4153 	unsigned long flags;
4154 
4155 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4156 		return;
4157 
4158 	atomic_inc(&buffer->resize_disabled);
4159 	atomic_inc(&cpu_buffer->record_disabled);
4160 
4161 	/* Make sure all commits have finished */
4162 	synchronize_sched();
4163 
4164 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4165 
4166 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4167 		goto out;
4168 
4169 	arch_spin_lock(&cpu_buffer->lock);
4170 
4171 	rb_reset_cpu(cpu_buffer);
4172 
4173 	arch_spin_unlock(&cpu_buffer->lock);
4174 
4175  out:
4176 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4177 
4178 	atomic_dec(&cpu_buffer->record_disabled);
4179 	atomic_dec(&buffer->resize_disabled);
4180 }
4181 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4182 
4183 /**
4184  * ring_buffer_reset - reset a ring buffer
4185  * @buffer: The ring buffer to reset all cpu buffers
4186  */
4187 void ring_buffer_reset(struct ring_buffer *buffer)
4188 {
4189 	int cpu;
4190 
4191 	for_each_buffer_cpu(buffer, cpu)
4192 		ring_buffer_reset_cpu(buffer, cpu);
4193 }
4194 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4195 
4196 /**
4197  * rind_buffer_empty - is the ring buffer empty?
4198  * @buffer: The ring buffer to test
4199  */
4200 int ring_buffer_empty(struct ring_buffer *buffer)
4201 {
4202 	struct ring_buffer_per_cpu *cpu_buffer;
4203 	unsigned long flags;
4204 	int dolock;
4205 	int cpu;
4206 	int ret;
4207 
4208 	dolock = rb_ok_to_lock();
4209 
4210 	/* yes this is racy, but if you don't like the race, lock the buffer */
4211 	for_each_buffer_cpu(buffer, cpu) {
4212 		cpu_buffer = buffer->buffers[cpu];
4213 		local_irq_save(flags);
4214 		if (dolock)
4215 			raw_spin_lock(&cpu_buffer->reader_lock);
4216 		ret = rb_per_cpu_empty(cpu_buffer);
4217 		if (dolock)
4218 			raw_spin_unlock(&cpu_buffer->reader_lock);
4219 		local_irq_restore(flags);
4220 
4221 		if (!ret)
4222 			return 0;
4223 	}
4224 
4225 	return 1;
4226 }
4227 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4228 
4229 /**
4230  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4231  * @buffer: The ring buffer
4232  * @cpu: The CPU buffer to test
4233  */
4234 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4235 {
4236 	struct ring_buffer_per_cpu *cpu_buffer;
4237 	unsigned long flags;
4238 	int dolock;
4239 	int ret;
4240 
4241 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4242 		return 1;
4243 
4244 	dolock = rb_ok_to_lock();
4245 
4246 	cpu_buffer = buffer->buffers[cpu];
4247 	local_irq_save(flags);
4248 	if (dolock)
4249 		raw_spin_lock(&cpu_buffer->reader_lock);
4250 	ret = rb_per_cpu_empty(cpu_buffer);
4251 	if (dolock)
4252 		raw_spin_unlock(&cpu_buffer->reader_lock);
4253 	local_irq_restore(flags);
4254 
4255 	return ret;
4256 }
4257 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4258 
4259 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4260 /**
4261  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4262  * @buffer_a: One buffer to swap with
4263  * @buffer_b: The other buffer to swap with
4264  *
4265  * This function is useful for tracers that want to take a "snapshot"
4266  * of a CPU buffer and has another back up buffer lying around.
4267  * it is expected that the tracer handles the cpu buffer not being
4268  * used at the moment.
4269  */
4270 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4271 			 struct ring_buffer *buffer_b, int cpu)
4272 {
4273 	struct ring_buffer_per_cpu *cpu_buffer_a;
4274 	struct ring_buffer_per_cpu *cpu_buffer_b;
4275 	int ret = -EINVAL;
4276 
4277 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4278 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4279 		goto out;
4280 
4281 	cpu_buffer_a = buffer_a->buffers[cpu];
4282 	cpu_buffer_b = buffer_b->buffers[cpu];
4283 
4284 	/* At least make sure the two buffers are somewhat the same */
4285 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4286 		goto out;
4287 
4288 	ret = -EAGAIN;
4289 
4290 	if (ring_buffer_flags != RB_BUFFERS_ON)
4291 		goto out;
4292 
4293 	if (atomic_read(&buffer_a->record_disabled))
4294 		goto out;
4295 
4296 	if (atomic_read(&buffer_b->record_disabled))
4297 		goto out;
4298 
4299 	if (atomic_read(&cpu_buffer_a->record_disabled))
4300 		goto out;
4301 
4302 	if (atomic_read(&cpu_buffer_b->record_disabled))
4303 		goto out;
4304 
4305 	/*
4306 	 * We can't do a synchronize_sched here because this
4307 	 * function can be called in atomic context.
4308 	 * Normally this will be called from the same CPU as cpu.
4309 	 * If not it's up to the caller to protect this.
4310 	 */
4311 	atomic_inc(&cpu_buffer_a->record_disabled);
4312 	atomic_inc(&cpu_buffer_b->record_disabled);
4313 
4314 	ret = -EBUSY;
4315 	if (local_read(&cpu_buffer_a->committing))
4316 		goto out_dec;
4317 	if (local_read(&cpu_buffer_b->committing))
4318 		goto out_dec;
4319 
4320 	buffer_a->buffers[cpu] = cpu_buffer_b;
4321 	buffer_b->buffers[cpu] = cpu_buffer_a;
4322 
4323 	cpu_buffer_b->buffer = buffer_a;
4324 	cpu_buffer_a->buffer = buffer_b;
4325 
4326 	ret = 0;
4327 
4328 out_dec:
4329 	atomic_dec(&cpu_buffer_a->record_disabled);
4330 	atomic_dec(&cpu_buffer_b->record_disabled);
4331 out:
4332 	return ret;
4333 }
4334 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4335 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4336 
4337 /**
4338  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4339  * @buffer: the buffer to allocate for.
4340  * @cpu: the cpu buffer to allocate.
4341  *
4342  * This function is used in conjunction with ring_buffer_read_page.
4343  * When reading a full page from the ring buffer, these functions
4344  * can be used to speed up the process. The calling function should
4345  * allocate a few pages first with this function. Then when it
4346  * needs to get pages from the ring buffer, it passes the result
4347  * of this function into ring_buffer_read_page, which will swap
4348  * the page that was allocated, with the read page of the buffer.
4349  *
4350  * Returns:
4351  *  The page allocated, or NULL on error.
4352  */
4353 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4354 {
4355 	struct buffer_data_page *bpage;
4356 	struct page *page;
4357 
4358 	page = alloc_pages_node(cpu_to_node(cpu),
4359 				GFP_KERNEL | __GFP_NORETRY, 0);
4360 	if (!page)
4361 		return NULL;
4362 
4363 	bpage = page_address(page);
4364 
4365 	rb_init_page(bpage);
4366 
4367 	return bpage;
4368 }
4369 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4370 
4371 /**
4372  * ring_buffer_free_read_page - free an allocated read page
4373  * @buffer: the buffer the page was allocate for
4374  * @data: the page to free
4375  *
4376  * Free a page allocated from ring_buffer_alloc_read_page.
4377  */
4378 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4379 {
4380 	free_page((unsigned long)data);
4381 }
4382 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4383 
4384 /**
4385  * ring_buffer_read_page - extract a page from the ring buffer
4386  * @buffer: buffer to extract from
4387  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4388  * @len: amount to extract
4389  * @cpu: the cpu of the buffer to extract
4390  * @full: should the extraction only happen when the page is full.
4391  *
4392  * This function will pull out a page from the ring buffer and consume it.
4393  * @data_page must be the address of the variable that was returned
4394  * from ring_buffer_alloc_read_page. This is because the page might be used
4395  * to swap with a page in the ring buffer.
4396  *
4397  * for example:
4398  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4399  *	if (!rpage)
4400  *		return error;
4401  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4402  *	if (ret >= 0)
4403  *		process_page(rpage, ret);
4404  *
4405  * When @full is set, the function will not return true unless
4406  * the writer is off the reader page.
4407  *
4408  * Note: it is up to the calling functions to handle sleeps and wakeups.
4409  *  The ring buffer can be used anywhere in the kernel and can not
4410  *  blindly call wake_up. The layer that uses the ring buffer must be
4411  *  responsible for that.
4412  *
4413  * Returns:
4414  *  >=0 if data has been transferred, returns the offset of consumed data.
4415  *  <0 if no data has been transferred.
4416  */
4417 int ring_buffer_read_page(struct ring_buffer *buffer,
4418 			  void **data_page, size_t len, int cpu, int full)
4419 {
4420 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4421 	struct ring_buffer_event *event;
4422 	struct buffer_data_page *bpage;
4423 	struct buffer_page *reader;
4424 	unsigned long missed_events;
4425 	unsigned long flags;
4426 	unsigned int commit;
4427 	unsigned int read;
4428 	u64 save_timestamp;
4429 	int ret = -1;
4430 
4431 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4432 		goto out;
4433 
4434 	/*
4435 	 * If len is not big enough to hold the page header, then
4436 	 * we can not copy anything.
4437 	 */
4438 	if (len <= BUF_PAGE_HDR_SIZE)
4439 		goto out;
4440 
4441 	len -= BUF_PAGE_HDR_SIZE;
4442 
4443 	if (!data_page)
4444 		goto out;
4445 
4446 	bpage = *data_page;
4447 	if (!bpage)
4448 		goto out;
4449 
4450 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4451 
4452 	reader = rb_get_reader_page(cpu_buffer);
4453 	if (!reader)
4454 		goto out_unlock;
4455 
4456 	event = rb_reader_event(cpu_buffer);
4457 
4458 	read = reader->read;
4459 	commit = rb_page_commit(reader);
4460 
4461 	/* Check if any events were dropped */
4462 	missed_events = cpu_buffer->lost_events;
4463 
4464 	/*
4465 	 * If this page has been partially read or
4466 	 * if len is not big enough to read the rest of the page or
4467 	 * a writer is still on the page, then
4468 	 * we must copy the data from the page to the buffer.
4469 	 * Otherwise, we can simply swap the page with the one passed in.
4470 	 */
4471 	if (read || (len < (commit - read)) ||
4472 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4473 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4474 		unsigned int rpos = read;
4475 		unsigned int pos = 0;
4476 		unsigned int size;
4477 
4478 		if (full)
4479 			goto out_unlock;
4480 
4481 		if (len > (commit - read))
4482 			len = (commit - read);
4483 
4484 		/* Always keep the time extend and data together */
4485 		size = rb_event_ts_length(event);
4486 
4487 		if (len < size)
4488 			goto out_unlock;
4489 
4490 		/* save the current timestamp, since the user will need it */
4491 		save_timestamp = cpu_buffer->read_stamp;
4492 
4493 		/* Need to copy one event at a time */
4494 		do {
4495 			/* We need the size of one event, because
4496 			 * rb_advance_reader only advances by one event,
4497 			 * whereas rb_event_ts_length may include the size of
4498 			 * one or two events.
4499 			 * We have already ensured there's enough space if this
4500 			 * is a time extend. */
4501 			size = rb_event_length(event);
4502 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4503 
4504 			len -= size;
4505 
4506 			rb_advance_reader(cpu_buffer);
4507 			rpos = reader->read;
4508 			pos += size;
4509 
4510 			if (rpos >= commit)
4511 				break;
4512 
4513 			event = rb_reader_event(cpu_buffer);
4514 			/* Always keep the time extend and data together */
4515 			size = rb_event_ts_length(event);
4516 		} while (len >= size);
4517 
4518 		/* update bpage */
4519 		local_set(&bpage->commit, pos);
4520 		bpage->time_stamp = save_timestamp;
4521 
4522 		/* we copied everything to the beginning */
4523 		read = 0;
4524 	} else {
4525 		/* update the entry counter */
4526 		cpu_buffer->read += rb_page_entries(reader);
4527 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4528 
4529 		/* swap the pages */
4530 		rb_init_page(bpage);
4531 		bpage = reader->page;
4532 		reader->page = *data_page;
4533 		local_set(&reader->write, 0);
4534 		local_set(&reader->entries, 0);
4535 		reader->read = 0;
4536 		*data_page = bpage;
4537 
4538 		/*
4539 		 * Use the real_end for the data size,
4540 		 * This gives us a chance to store the lost events
4541 		 * on the page.
4542 		 */
4543 		if (reader->real_end)
4544 			local_set(&bpage->commit, reader->real_end);
4545 	}
4546 	ret = read;
4547 
4548 	cpu_buffer->lost_events = 0;
4549 
4550 	commit = local_read(&bpage->commit);
4551 	/*
4552 	 * Set a flag in the commit field if we lost events
4553 	 */
4554 	if (missed_events) {
4555 		/* If there is room at the end of the page to save the
4556 		 * missed events, then record it there.
4557 		 */
4558 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4559 			memcpy(&bpage->data[commit], &missed_events,
4560 			       sizeof(missed_events));
4561 			local_add(RB_MISSED_STORED, &bpage->commit);
4562 			commit += sizeof(missed_events);
4563 		}
4564 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4565 	}
4566 
4567 	/*
4568 	 * This page may be off to user land. Zero it out here.
4569 	 */
4570 	if (commit < BUF_PAGE_SIZE)
4571 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4572 
4573  out_unlock:
4574 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4575 
4576  out:
4577 	return ret;
4578 }
4579 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4580 
4581 #ifdef CONFIG_HOTPLUG_CPU
4582 static int rb_cpu_notify(struct notifier_block *self,
4583 			 unsigned long action, void *hcpu)
4584 {
4585 	struct ring_buffer *buffer =
4586 		container_of(self, struct ring_buffer, cpu_notify);
4587 	long cpu = (long)hcpu;
4588 	int cpu_i, nr_pages_same;
4589 	unsigned int nr_pages;
4590 
4591 	switch (action) {
4592 	case CPU_UP_PREPARE:
4593 	case CPU_UP_PREPARE_FROZEN:
4594 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4595 			return NOTIFY_OK;
4596 
4597 		nr_pages = 0;
4598 		nr_pages_same = 1;
4599 		/* check if all cpu sizes are same */
4600 		for_each_buffer_cpu(buffer, cpu_i) {
4601 			/* fill in the size from first enabled cpu */
4602 			if (nr_pages == 0)
4603 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4604 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4605 				nr_pages_same = 0;
4606 				break;
4607 			}
4608 		}
4609 		/* allocate minimum pages, user can later expand it */
4610 		if (!nr_pages_same)
4611 			nr_pages = 2;
4612 		buffer->buffers[cpu] =
4613 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4614 		if (!buffer->buffers[cpu]) {
4615 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4616 			     cpu);
4617 			return NOTIFY_OK;
4618 		}
4619 		smp_wmb();
4620 		cpumask_set_cpu(cpu, buffer->cpumask);
4621 		break;
4622 	case CPU_DOWN_PREPARE:
4623 	case CPU_DOWN_PREPARE_FROZEN:
4624 		/*
4625 		 * Do nothing.
4626 		 *  If we were to free the buffer, then the user would
4627 		 *  lose any trace that was in the buffer.
4628 		 */
4629 		break;
4630 	default:
4631 		break;
4632 	}
4633 	return NOTIFY_OK;
4634 }
4635 #endif
4636 
4637 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4638 /*
4639  * This is a basic integrity check of the ring buffer.
4640  * Late in the boot cycle this test will run when configured in.
4641  * It will kick off a thread per CPU that will go into a loop
4642  * writing to the per cpu ring buffer various sizes of data.
4643  * Some of the data will be large items, some small.
4644  *
4645  * Another thread is created that goes into a spin, sending out
4646  * IPIs to the other CPUs to also write into the ring buffer.
4647  * this is to test the nesting ability of the buffer.
4648  *
4649  * Basic stats are recorded and reported. If something in the
4650  * ring buffer should happen that's not expected, a big warning
4651  * is displayed and all ring buffers are disabled.
4652  */
4653 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4654 
4655 struct rb_test_data {
4656 	struct ring_buffer	*buffer;
4657 	unsigned long		events;
4658 	unsigned long		bytes_written;
4659 	unsigned long		bytes_alloc;
4660 	unsigned long		bytes_dropped;
4661 	unsigned long		events_nested;
4662 	unsigned long		bytes_written_nested;
4663 	unsigned long		bytes_alloc_nested;
4664 	unsigned long		bytes_dropped_nested;
4665 	int			min_size_nested;
4666 	int			max_size_nested;
4667 	int			max_size;
4668 	int			min_size;
4669 	int			cpu;
4670 	int			cnt;
4671 };
4672 
4673 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4674 
4675 /* 1 meg per cpu */
4676 #define RB_TEST_BUFFER_SIZE	1048576
4677 
4678 static char rb_string[] __initdata =
4679 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4680 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4681 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4682 
4683 static bool rb_test_started __initdata;
4684 
4685 struct rb_item {
4686 	int size;
4687 	char str[];
4688 };
4689 
4690 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4691 {
4692 	struct ring_buffer_event *event;
4693 	struct rb_item *item;
4694 	bool started;
4695 	int event_len;
4696 	int size;
4697 	int len;
4698 	int cnt;
4699 
4700 	/* Have nested writes different that what is written */
4701 	cnt = data->cnt + (nested ? 27 : 0);
4702 
4703 	/* Multiply cnt by ~e, to make some unique increment */
4704 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4705 
4706 	len = size + sizeof(struct rb_item);
4707 
4708 	started = rb_test_started;
4709 	/* read rb_test_started before checking buffer enabled */
4710 	smp_rmb();
4711 
4712 	event = ring_buffer_lock_reserve(data->buffer, len);
4713 	if (!event) {
4714 		/* Ignore dropped events before test starts. */
4715 		if (started) {
4716 			if (nested)
4717 				data->bytes_dropped += len;
4718 			else
4719 				data->bytes_dropped_nested += len;
4720 		}
4721 		return len;
4722 	}
4723 
4724 	event_len = ring_buffer_event_length(event);
4725 
4726 	if (RB_WARN_ON(data->buffer, event_len < len))
4727 		goto out;
4728 
4729 	item = ring_buffer_event_data(event);
4730 	item->size = size;
4731 	memcpy(item->str, rb_string, size);
4732 
4733 	if (nested) {
4734 		data->bytes_alloc_nested += event_len;
4735 		data->bytes_written_nested += len;
4736 		data->events_nested++;
4737 		if (!data->min_size_nested || len < data->min_size_nested)
4738 			data->min_size_nested = len;
4739 		if (len > data->max_size_nested)
4740 			data->max_size_nested = len;
4741 	} else {
4742 		data->bytes_alloc += event_len;
4743 		data->bytes_written += len;
4744 		data->events++;
4745 		if (!data->min_size || len < data->min_size)
4746 			data->max_size = len;
4747 		if (len > data->max_size)
4748 			data->max_size = len;
4749 	}
4750 
4751  out:
4752 	ring_buffer_unlock_commit(data->buffer, event);
4753 
4754 	return 0;
4755 }
4756 
4757 static __init int rb_test(void *arg)
4758 {
4759 	struct rb_test_data *data = arg;
4760 
4761 	while (!kthread_should_stop()) {
4762 		rb_write_something(data, false);
4763 		data->cnt++;
4764 
4765 		set_current_state(TASK_INTERRUPTIBLE);
4766 		/* Now sleep between a min of 100-300us and a max of 1ms */
4767 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4768 	}
4769 
4770 	return 0;
4771 }
4772 
4773 static __init void rb_ipi(void *ignore)
4774 {
4775 	struct rb_test_data *data;
4776 	int cpu = smp_processor_id();
4777 
4778 	data = &rb_data[cpu];
4779 	rb_write_something(data, true);
4780 }
4781 
4782 static __init int rb_hammer_test(void *arg)
4783 {
4784 	while (!kthread_should_stop()) {
4785 
4786 		/* Send an IPI to all cpus to write data! */
4787 		smp_call_function(rb_ipi, NULL, 1);
4788 		/* No sleep, but for non preempt, let others run */
4789 		schedule();
4790 	}
4791 
4792 	return 0;
4793 }
4794 
4795 static __init int test_ringbuffer(void)
4796 {
4797 	struct task_struct *rb_hammer;
4798 	struct ring_buffer *buffer;
4799 	int cpu;
4800 	int ret = 0;
4801 
4802 	pr_info("Running ring buffer tests...\n");
4803 
4804 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4805 	if (WARN_ON(!buffer))
4806 		return 0;
4807 
4808 	/* Disable buffer so that threads can't write to it yet */
4809 	ring_buffer_record_off(buffer);
4810 
4811 	for_each_online_cpu(cpu) {
4812 		rb_data[cpu].buffer = buffer;
4813 		rb_data[cpu].cpu = cpu;
4814 		rb_data[cpu].cnt = cpu;
4815 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4816 						 "rbtester/%d", cpu);
4817 		if (WARN_ON(!rb_threads[cpu])) {
4818 			pr_cont("FAILED\n");
4819 			ret = -1;
4820 			goto out_free;
4821 		}
4822 
4823 		kthread_bind(rb_threads[cpu], cpu);
4824  		wake_up_process(rb_threads[cpu]);
4825 	}
4826 
4827 	/* Now create the rb hammer! */
4828 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4829 	if (WARN_ON(!rb_hammer)) {
4830 		pr_cont("FAILED\n");
4831 		ret = -1;
4832 		goto out_free;
4833 	}
4834 
4835 	ring_buffer_record_on(buffer);
4836 	/*
4837 	 * Show buffer is enabled before setting rb_test_started.
4838 	 * Yes there's a small race window where events could be
4839 	 * dropped and the thread wont catch it. But when a ring
4840 	 * buffer gets enabled, there will always be some kind of
4841 	 * delay before other CPUs see it. Thus, we don't care about
4842 	 * those dropped events. We care about events dropped after
4843 	 * the threads see that the buffer is active.
4844 	 */
4845 	smp_wmb();
4846 	rb_test_started = true;
4847 
4848 	set_current_state(TASK_INTERRUPTIBLE);
4849 	/* Just run for 10 seconds */;
4850 	schedule_timeout(10 * HZ);
4851 
4852 	kthread_stop(rb_hammer);
4853 
4854  out_free:
4855 	for_each_online_cpu(cpu) {
4856 		if (!rb_threads[cpu])
4857 			break;
4858 		kthread_stop(rb_threads[cpu]);
4859 	}
4860 	if (ret) {
4861 		ring_buffer_free(buffer);
4862 		return ret;
4863 	}
4864 
4865 	/* Report! */
4866 	pr_info("finished\n");
4867 	for_each_online_cpu(cpu) {
4868 		struct ring_buffer_event *event;
4869 		struct rb_test_data *data = &rb_data[cpu];
4870 		struct rb_item *item;
4871 		unsigned long total_events;
4872 		unsigned long total_dropped;
4873 		unsigned long total_written;
4874 		unsigned long total_alloc;
4875 		unsigned long total_read = 0;
4876 		unsigned long total_size = 0;
4877 		unsigned long total_len = 0;
4878 		unsigned long total_lost = 0;
4879 		unsigned long lost;
4880 		int big_event_size;
4881 		int small_event_size;
4882 
4883 		ret = -1;
4884 
4885 		total_events = data->events + data->events_nested;
4886 		total_written = data->bytes_written + data->bytes_written_nested;
4887 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4888 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4889 
4890 		big_event_size = data->max_size + data->max_size_nested;
4891 		small_event_size = data->min_size + data->min_size_nested;
4892 
4893 		pr_info("CPU %d:\n", cpu);
4894 		pr_info("              events:    %ld\n", total_events);
4895 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4896 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4897 		pr_info("       written bytes:    %ld\n", total_written);
4898 		pr_info("       biggest event:    %d\n", big_event_size);
4899 		pr_info("      smallest event:    %d\n", small_event_size);
4900 
4901 		if (RB_WARN_ON(buffer, total_dropped))
4902 			break;
4903 
4904 		ret = 0;
4905 
4906 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4907 			total_lost += lost;
4908 			item = ring_buffer_event_data(event);
4909 			total_len += ring_buffer_event_length(event);
4910 			total_size += item->size + sizeof(struct rb_item);
4911 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4912 				pr_info("FAILED!\n");
4913 				pr_info("buffer had: %.*s\n", item->size, item->str);
4914 				pr_info("expected:   %.*s\n", item->size, rb_string);
4915 				RB_WARN_ON(buffer, 1);
4916 				ret = -1;
4917 				break;
4918 			}
4919 			total_read++;
4920 		}
4921 		if (ret)
4922 			break;
4923 
4924 		ret = -1;
4925 
4926 		pr_info("         read events:   %ld\n", total_read);
4927 		pr_info("         lost events:   %ld\n", total_lost);
4928 		pr_info("        total events:   %ld\n", total_lost + total_read);
4929 		pr_info("  recorded len bytes:   %ld\n", total_len);
4930 		pr_info(" recorded size bytes:   %ld\n", total_size);
4931 		if (total_lost)
4932 			pr_info(" With dropped events, record len and size may not match\n"
4933 				" alloced and written from above\n");
4934 		if (!total_lost) {
4935 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4936 				       total_size != total_written))
4937 				break;
4938 		}
4939 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4940 			break;
4941 
4942 		ret = 0;
4943 	}
4944 	if (!ret)
4945 		pr_info("Ring buffer PASSED!\n");
4946 
4947 	ring_buffer_free(buffer);
4948 	return 0;
4949 }
4950 
4951 late_initcall(test_ringbuffer);
4952 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4953