xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision e2f1cf25)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>	/* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 struct buffer_data_page {
284 	u64		 time_stamp;	/* page time stamp */
285 	local_t		 commit;	/* write committed index */
286 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
287 };
288 
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298 	struct list_head list;		/* list of buffer pages */
299 	local_t		 write;		/* index for next write */
300 	unsigned	 read;		/* index for next read */
301 	local_t		 entries;	/* entries on this page */
302 	unsigned long	 real_end;	/* real end of data */
303 	struct buffer_data_page *page;	/* Actual data page */
304 };
305 
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK		0xfffff
319 #define RB_WRITE_INTCNT		(1 << 20)
320 
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 	local_set(&bpage->commit, 0);
324 }
325 
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334 	return local_read(&((struct buffer_data_page *)page)->commit)
335 		+ BUF_PAGE_HDR_SIZE;
336 }
337 
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 	free_page((unsigned long)bpage->page);
345 	kfree(bpage);
346 }
347 
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353 	if (delta & TS_DELTA_TEST)
354 		return 1;
355 	return 0;
356 }
357 
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359 
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362 
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 	struct buffer_data_page field;
366 
367 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 			 (unsigned int)sizeof(field.time_stamp),
370 			 (unsigned int)is_signed_type(u64));
371 
372 	trace_seq_printf(s, "\tfield: local_t commit;\t"
373 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 			 (unsigned int)offsetof(typeof(field), commit),
375 			 (unsigned int)sizeof(field.commit),
376 			 (unsigned int)is_signed_type(long));
377 
378 	trace_seq_printf(s, "\tfield: int overwrite;\t"
379 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)offsetof(typeof(field), commit),
381 			 1,
382 			 (unsigned int)is_signed_type(long));
383 
384 	trace_seq_printf(s, "\tfield: char data;\t"
385 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 			 (unsigned int)offsetof(typeof(field), data),
387 			 (unsigned int)BUF_PAGE_SIZE,
388 			 (unsigned int)is_signed_type(char));
389 
390 	return !trace_seq_has_overflowed(s);
391 }
392 
393 struct rb_irq_work {
394 	struct irq_work			work;
395 	wait_queue_head_t		waiters;
396 	wait_queue_head_t		full_waiters;
397 	bool				waiters_pending;
398 	bool				full_waiters_pending;
399 	bool				wakeup_full;
400 };
401 
402 /*
403  * Used for which event context the event is in.
404  *  NMI     = 0
405  *  IRQ     = 1
406  *  SOFTIRQ = 2
407  *  NORMAL  = 3
408  *
409  * See trace_recursive_lock() comment below for more details.
410  */
411 enum {
412 	RB_CTX_NMI,
413 	RB_CTX_IRQ,
414 	RB_CTX_SOFTIRQ,
415 	RB_CTX_NORMAL,
416 	RB_CTX_MAX
417 };
418 
419 /*
420  * head_page == tail_page && head == tail then buffer is empty.
421  */
422 struct ring_buffer_per_cpu {
423 	int				cpu;
424 	atomic_t			record_disabled;
425 	struct ring_buffer		*buffer;
426 	raw_spinlock_t			reader_lock;	/* serialize readers */
427 	arch_spinlock_t			lock;
428 	struct lock_class_key		lock_key;
429 	unsigned int			nr_pages;
430 	unsigned int			current_context;
431 	struct list_head		*pages;
432 	struct buffer_page		*head_page;	/* read from head */
433 	struct buffer_page		*tail_page;	/* write to tail */
434 	struct buffer_page		*commit_page;	/* committed pages */
435 	struct buffer_page		*reader_page;
436 	unsigned long			lost_events;
437 	unsigned long			last_overrun;
438 	local_t				entries_bytes;
439 	local_t				entries;
440 	local_t				overrun;
441 	local_t				commit_overrun;
442 	local_t				dropped_events;
443 	local_t				committing;
444 	local_t				commits;
445 	unsigned long			read;
446 	unsigned long			read_bytes;
447 	u64				write_stamp;
448 	u64				read_stamp;
449 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
450 	int				nr_pages_to_update;
451 	struct list_head		new_pages; /* new pages to add */
452 	struct work_struct		update_pages_work;
453 	struct completion		update_done;
454 
455 	struct rb_irq_work		irq_work;
456 };
457 
458 struct ring_buffer {
459 	unsigned			flags;
460 	int				cpus;
461 	atomic_t			record_disabled;
462 	atomic_t			resize_disabled;
463 	cpumask_var_t			cpumask;
464 
465 	struct lock_class_key		*reader_lock_key;
466 
467 	struct mutex			mutex;
468 
469 	struct ring_buffer_per_cpu	**buffers;
470 
471 #ifdef CONFIG_HOTPLUG_CPU
472 	struct notifier_block		cpu_notify;
473 #endif
474 	u64				(*clock)(void);
475 
476 	struct rb_irq_work		irq_work;
477 };
478 
479 struct ring_buffer_iter {
480 	struct ring_buffer_per_cpu	*cpu_buffer;
481 	unsigned long			head;
482 	struct buffer_page		*head_page;
483 	struct buffer_page		*cache_reader_page;
484 	unsigned long			cache_read;
485 	u64				read_stamp;
486 };
487 
488 /*
489  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
490  *
491  * Schedules a delayed work to wake up any task that is blocked on the
492  * ring buffer waiters queue.
493  */
494 static void rb_wake_up_waiters(struct irq_work *work)
495 {
496 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
497 
498 	wake_up_all(&rbwork->waiters);
499 	if (rbwork->wakeup_full) {
500 		rbwork->wakeup_full = false;
501 		wake_up_all(&rbwork->full_waiters);
502 	}
503 }
504 
505 /**
506  * ring_buffer_wait - wait for input to the ring buffer
507  * @buffer: buffer to wait on
508  * @cpu: the cpu buffer to wait on
509  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
510  *
511  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
512  * as data is added to any of the @buffer's cpu buffers. Otherwise
513  * it will wait for data to be added to a specific cpu buffer.
514  */
515 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
516 {
517 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
518 	DEFINE_WAIT(wait);
519 	struct rb_irq_work *work;
520 	int ret = 0;
521 
522 	/*
523 	 * Depending on what the caller is waiting for, either any
524 	 * data in any cpu buffer, or a specific buffer, put the
525 	 * caller on the appropriate wait queue.
526 	 */
527 	if (cpu == RING_BUFFER_ALL_CPUS) {
528 		work = &buffer->irq_work;
529 		/* Full only makes sense on per cpu reads */
530 		full = false;
531 	} else {
532 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
533 			return -ENODEV;
534 		cpu_buffer = buffer->buffers[cpu];
535 		work = &cpu_buffer->irq_work;
536 	}
537 
538 
539 	while (true) {
540 		if (full)
541 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
542 		else
543 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
544 
545 		/*
546 		 * The events can happen in critical sections where
547 		 * checking a work queue can cause deadlocks.
548 		 * After adding a task to the queue, this flag is set
549 		 * only to notify events to try to wake up the queue
550 		 * using irq_work.
551 		 *
552 		 * We don't clear it even if the buffer is no longer
553 		 * empty. The flag only causes the next event to run
554 		 * irq_work to do the work queue wake up. The worse
555 		 * that can happen if we race with !trace_empty() is that
556 		 * an event will cause an irq_work to try to wake up
557 		 * an empty queue.
558 		 *
559 		 * There's no reason to protect this flag either, as
560 		 * the work queue and irq_work logic will do the necessary
561 		 * synchronization for the wake ups. The only thing
562 		 * that is necessary is that the wake up happens after
563 		 * a task has been queued. It's OK for spurious wake ups.
564 		 */
565 		if (full)
566 			work->full_waiters_pending = true;
567 		else
568 			work->waiters_pending = true;
569 
570 		if (signal_pending(current)) {
571 			ret = -EINTR;
572 			break;
573 		}
574 
575 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
576 			break;
577 
578 		if (cpu != RING_BUFFER_ALL_CPUS &&
579 		    !ring_buffer_empty_cpu(buffer, cpu)) {
580 			unsigned long flags;
581 			bool pagebusy;
582 
583 			if (!full)
584 				break;
585 
586 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
587 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
588 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
589 
590 			if (!pagebusy)
591 				break;
592 		}
593 
594 		schedule();
595 	}
596 
597 	if (full)
598 		finish_wait(&work->full_waiters, &wait);
599 	else
600 		finish_wait(&work->waiters, &wait);
601 
602 	return ret;
603 }
604 
605 /**
606  * ring_buffer_poll_wait - poll on buffer input
607  * @buffer: buffer to wait on
608  * @cpu: the cpu buffer to wait on
609  * @filp: the file descriptor
610  * @poll_table: The poll descriptor
611  *
612  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
613  * as data is added to any of the @buffer's cpu buffers. Otherwise
614  * it will wait for data to be added to a specific cpu buffer.
615  *
616  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
617  * zero otherwise.
618  */
619 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
620 			  struct file *filp, poll_table *poll_table)
621 {
622 	struct ring_buffer_per_cpu *cpu_buffer;
623 	struct rb_irq_work *work;
624 
625 	if (cpu == RING_BUFFER_ALL_CPUS)
626 		work = &buffer->irq_work;
627 	else {
628 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
629 			return -EINVAL;
630 
631 		cpu_buffer = buffer->buffers[cpu];
632 		work = &cpu_buffer->irq_work;
633 	}
634 
635 	poll_wait(filp, &work->waiters, poll_table);
636 	work->waiters_pending = true;
637 	/*
638 	 * There's a tight race between setting the waiters_pending and
639 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
640 	 * is set, the next event will wake the task up, but we can get stuck
641 	 * if there's only a single event in.
642 	 *
643 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
644 	 * but adding a memory barrier to all events will cause too much of a
645 	 * performance hit in the fast path.  We only need a memory barrier when
646 	 * the buffer goes from empty to having content.  But as this race is
647 	 * extremely small, and it's not a problem if another event comes in, we
648 	 * will fix it later.
649 	 */
650 	smp_mb();
651 
652 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
653 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
654 		return POLLIN | POLLRDNORM;
655 	return 0;
656 }
657 
658 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
659 #define RB_WARN_ON(b, cond)						\
660 	({								\
661 		int _____ret = unlikely(cond);				\
662 		if (_____ret) {						\
663 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
664 				struct ring_buffer_per_cpu *__b =	\
665 					(void *)b;			\
666 				atomic_inc(&__b->buffer->record_disabled); \
667 			} else						\
668 				atomic_inc(&b->record_disabled);	\
669 			WARN_ON(1);					\
670 		}							\
671 		_____ret;						\
672 	})
673 
674 /* Up this if you want to test the TIME_EXTENTS and normalization */
675 #define DEBUG_SHIFT 0
676 
677 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
678 {
679 	/* shift to debug/test normalization and TIME_EXTENTS */
680 	return buffer->clock() << DEBUG_SHIFT;
681 }
682 
683 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
684 {
685 	u64 time;
686 
687 	preempt_disable_notrace();
688 	time = rb_time_stamp(buffer);
689 	preempt_enable_no_resched_notrace();
690 
691 	return time;
692 }
693 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
694 
695 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
696 				      int cpu, u64 *ts)
697 {
698 	/* Just stupid testing the normalize function and deltas */
699 	*ts >>= DEBUG_SHIFT;
700 }
701 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
702 
703 /*
704  * Making the ring buffer lockless makes things tricky.
705  * Although writes only happen on the CPU that they are on,
706  * and they only need to worry about interrupts. Reads can
707  * happen on any CPU.
708  *
709  * The reader page is always off the ring buffer, but when the
710  * reader finishes with a page, it needs to swap its page with
711  * a new one from the buffer. The reader needs to take from
712  * the head (writes go to the tail). But if a writer is in overwrite
713  * mode and wraps, it must push the head page forward.
714  *
715  * Here lies the problem.
716  *
717  * The reader must be careful to replace only the head page, and
718  * not another one. As described at the top of the file in the
719  * ASCII art, the reader sets its old page to point to the next
720  * page after head. It then sets the page after head to point to
721  * the old reader page. But if the writer moves the head page
722  * during this operation, the reader could end up with the tail.
723  *
724  * We use cmpxchg to help prevent this race. We also do something
725  * special with the page before head. We set the LSB to 1.
726  *
727  * When the writer must push the page forward, it will clear the
728  * bit that points to the head page, move the head, and then set
729  * the bit that points to the new head page.
730  *
731  * We also don't want an interrupt coming in and moving the head
732  * page on another writer. Thus we use the second LSB to catch
733  * that too. Thus:
734  *
735  * head->list->prev->next        bit 1          bit 0
736  *                              -------        -------
737  * Normal page                     0              0
738  * Points to head page             0              1
739  * New head page                   1              0
740  *
741  * Note we can not trust the prev pointer of the head page, because:
742  *
743  * +----+       +-----+        +-----+
744  * |    |------>|  T  |---X--->|  N  |
745  * |    |<------|     |        |     |
746  * +----+       +-----+        +-----+
747  *   ^                           ^ |
748  *   |          +-----+          | |
749  *   +----------|  R  |----------+ |
750  *              |     |<-----------+
751  *              +-----+
752  *
753  * Key:  ---X-->  HEAD flag set in pointer
754  *         T      Tail page
755  *         R      Reader page
756  *         N      Next page
757  *
758  * (see __rb_reserve_next() to see where this happens)
759  *
760  *  What the above shows is that the reader just swapped out
761  *  the reader page with a page in the buffer, but before it
762  *  could make the new header point back to the new page added
763  *  it was preempted by a writer. The writer moved forward onto
764  *  the new page added by the reader and is about to move forward
765  *  again.
766  *
767  *  You can see, it is legitimate for the previous pointer of
768  *  the head (or any page) not to point back to itself. But only
769  *  temporarially.
770  */
771 
772 #define RB_PAGE_NORMAL		0UL
773 #define RB_PAGE_HEAD		1UL
774 #define RB_PAGE_UPDATE		2UL
775 
776 
777 #define RB_FLAG_MASK		3UL
778 
779 /* PAGE_MOVED is not part of the mask */
780 #define RB_PAGE_MOVED		4UL
781 
782 /*
783  * rb_list_head - remove any bit
784  */
785 static struct list_head *rb_list_head(struct list_head *list)
786 {
787 	unsigned long val = (unsigned long)list;
788 
789 	return (struct list_head *)(val & ~RB_FLAG_MASK);
790 }
791 
792 /*
793  * rb_is_head_page - test if the given page is the head page
794  *
795  * Because the reader may move the head_page pointer, we can
796  * not trust what the head page is (it may be pointing to
797  * the reader page). But if the next page is a header page,
798  * its flags will be non zero.
799  */
800 static inline int
801 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
802 		struct buffer_page *page, struct list_head *list)
803 {
804 	unsigned long val;
805 
806 	val = (unsigned long)list->next;
807 
808 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
809 		return RB_PAGE_MOVED;
810 
811 	return val & RB_FLAG_MASK;
812 }
813 
814 /*
815  * rb_is_reader_page
816  *
817  * The unique thing about the reader page, is that, if the
818  * writer is ever on it, the previous pointer never points
819  * back to the reader page.
820  */
821 static int rb_is_reader_page(struct buffer_page *page)
822 {
823 	struct list_head *list = page->list.prev;
824 
825 	return rb_list_head(list->next) != &page->list;
826 }
827 
828 /*
829  * rb_set_list_to_head - set a list_head to be pointing to head.
830  */
831 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
832 				struct list_head *list)
833 {
834 	unsigned long *ptr;
835 
836 	ptr = (unsigned long *)&list->next;
837 	*ptr |= RB_PAGE_HEAD;
838 	*ptr &= ~RB_PAGE_UPDATE;
839 }
840 
841 /*
842  * rb_head_page_activate - sets up head page
843  */
844 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
845 {
846 	struct buffer_page *head;
847 
848 	head = cpu_buffer->head_page;
849 	if (!head)
850 		return;
851 
852 	/*
853 	 * Set the previous list pointer to have the HEAD flag.
854 	 */
855 	rb_set_list_to_head(cpu_buffer, head->list.prev);
856 }
857 
858 static void rb_list_head_clear(struct list_head *list)
859 {
860 	unsigned long *ptr = (unsigned long *)&list->next;
861 
862 	*ptr &= ~RB_FLAG_MASK;
863 }
864 
865 /*
866  * rb_head_page_dactivate - clears head page ptr (for free list)
867  */
868 static void
869 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
870 {
871 	struct list_head *hd;
872 
873 	/* Go through the whole list and clear any pointers found. */
874 	rb_list_head_clear(cpu_buffer->pages);
875 
876 	list_for_each(hd, cpu_buffer->pages)
877 		rb_list_head_clear(hd);
878 }
879 
880 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
881 			    struct buffer_page *head,
882 			    struct buffer_page *prev,
883 			    int old_flag, int new_flag)
884 {
885 	struct list_head *list;
886 	unsigned long val = (unsigned long)&head->list;
887 	unsigned long ret;
888 
889 	list = &prev->list;
890 
891 	val &= ~RB_FLAG_MASK;
892 
893 	ret = cmpxchg((unsigned long *)&list->next,
894 		      val | old_flag, val | new_flag);
895 
896 	/* check if the reader took the page */
897 	if ((ret & ~RB_FLAG_MASK) != val)
898 		return RB_PAGE_MOVED;
899 
900 	return ret & RB_FLAG_MASK;
901 }
902 
903 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
904 				   struct buffer_page *head,
905 				   struct buffer_page *prev,
906 				   int old_flag)
907 {
908 	return rb_head_page_set(cpu_buffer, head, prev,
909 				old_flag, RB_PAGE_UPDATE);
910 }
911 
912 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
913 				 struct buffer_page *head,
914 				 struct buffer_page *prev,
915 				 int old_flag)
916 {
917 	return rb_head_page_set(cpu_buffer, head, prev,
918 				old_flag, RB_PAGE_HEAD);
919 }
920 
921 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
922 				   struct buffer_page *head,
923 				   struct buffer_page *prev,
924 				   int old_flag)
925 {
926 	return rb_head_page_set(cpu_buffer, head, prev,
927 				old_flag, RB_PAGE_NORMAL);
928 }
929 
930 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
931 			       struct buffer_page **bpage)
932 {
933 	struct list_head *p = rb_list_head((*bpage)->list.next);
934 
935 	*bpage = list_entry(p, struct buffer_page, list);
936 }
937 
938 static struct buffer_page *
939 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
940 {
941 	struct buffer_page *head;
942 	struct buffer_page *page;
943 	struct list_head *list;
944 	int i;
945 
946 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
947 		return NULL;
948 
949 	/* sanity check */
950 	list = cpu_buffer->pages;
951 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
952 		return NULL;
953 
954 	page = head = cpu_buffer->head_page;
955 	/*
956 	 * It is possible that the writer moves the header behind
957 	 * where we started, and we miss in one loop.
958 	 * A second loop should grab the header, but we'll do
959 	 * three loops just because I'm paranoid.
960 	 */
961 	for (i = 0; i < 3; i++) {
962 		do {
963 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
964 				cpu_buffer->head_page = page;
965 				return page;
966 			}
967 			rb_inc_page(cpu_buffer, &page);
968 		} while (page != head);
969 	}
970 
971 	RB_WARN_ON(cpu_buffer, 1);
972 
973 	return NULL;
974 }
975 
976 static int rb_head_page_replace(struct buffer_page *old,
977 				struct buffer_page *new)
978 {
979 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
980 	unsigned long val;
981 	unsigned long ret;
982 
983 	val = *ptr & ~RB_FLAG_MASK;
984 	val |= RB_PAGE_HEAD;
985 
986 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
987 
988 	return ret == val;
989 }
990 
991 /*
992  * rb_tail_page_update - move the tail page forward
993  *
994  * Returns 1 if moved tail page, 0 if someone else did.
995  */
996 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
997 			       struct buffer_page *tail_page,
998 			       struct buffer_page *next_page)
999 {
1000 	struct buffer_page *old_tail;
1001 	unsigned long old_entries;
1002 	unsigned long old_write;
1003 	int ret = 0;
1004 
1005 	/*
1006 	 * The tail page now needs to be moved forward.
1007 	 *
1008 	 * We need to reset the tail page, but without messing
1009 	 * with possible erasing of data brought in by interrupts
1010 	 * that have moved the tail page and are currently on it.
1011 	 *
1012 	 * We add a counter to the write field to denote this.
1013 	 */
1014 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1015 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1016 
1017 	/*
1018 	 * Just make sure we have seen our old_write and synchronize
1019 	 * with any interrupts that come in.
1020 	 */
1021 	barrier();
1022 
1023 	/*
1024 	 * If the tail page is still the same as what we think
1025 	 * it is, then it is up to us to update the tail
1026 	 * pointer.
1027 	 */
1028 	if (tail_page == cpu_buffer->tail_page) {
1029 		/* Zero the write counter */
1030 		unsigned long val = old_write & ~RB_WRITE_MASK;
1031 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1032 
1033 		/*
1034 		 * This will only succeed if an interrupt did
1035 		 * not come in and change it. In which case, we
1036 		 * do not want to modify it.
1037 		 *
1038 		 * We add (void) to let the compiler know that we do not care
1039 		 * about the return value of these functions. We use the
1040 		 * cmpxchg to only update if an interrupt did not already
1041 		 * do it for us. If the cmpxchg fails, we don't care.
1042 		 */
1043 		(void)local_cmpxchg(&next_page->write, old_write, val);
1044 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1045 
1046 		/*
1047 		 * No need to worry about races with clearing out the commit.
1048 		 * it only can increment when a commit takes place. But that
1049 		 * only happens in the outer most nested commit.
1050 		 */
1051 		local_set(&next_page->page->commit, 0);
1052 
1053 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1054 				   tail_page, next_page);
1055 
1056 		if (old_tail == tail_page)
1057 			ret = 1;
1058 	}
1059 
1060 	return ret;
1061 }
1062 
1063 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1064 			  struct buffer_page *bpage)
1065 {
1066 	unsigned long val = (unsigned long)bpage;
1067 
1068 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1069 		return 1;
1070 
1071 	return 0;
1072 }
1073 
1074 /**
1075  * rb_check_list - make sure a pointer to a list has the last bits zero
1076  */
1077 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1078 			 struct list_head *list)
1079 {
1080 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1081 		return 1;
1082 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1083 		return 1;
1084 	return 0;
1085 }
1086 
1087 /**
1088  * rb_check_pages - integrity check of buffer pages
1089  * @cpu_buffer: CPU buffer with pages to test
1090  *
1091  * As a safety measure we check to make sure the data pages have not
1092  * been corrupted.
1093  */
1094 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1095 {
1096 	struct list_head *head = cpu_buffer->pages;
1097 	struct buffer_page *bpage, *tmp;
1098 
1099 	/* Reset the head page if it exists */
1100 	if (cpu_buffer->head_page)
1101 		rb_set_head_page(cpu_buffer);
1102 
1103 	rb_head_page_deactivate(cpu_buffer);
1104 
1105 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1106 		return -1;
1107 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1108 		return -1;
1109 
1110 	if (rb_check_list(cpu_buffer, head))
1111 		return -1;
1112 
1113 	list_for_each_entry_safe(bpage, tmp, head, list) {
1114 		if (RB_WARN_ON(cpu_buffer,
1115 			       bpage->list.next->prev != &bpage->list))
1116 			return -1;
1117 		if (RB_WARN_ON(cpu_buffer,
1118 			       bpage->list.prev->next != &bpage->list))
1119 			return -1;
1120 		if (rb_check_list(cpu_buffer, &bpage->list))
1121 			return -1;
1122 	}
1123 
1124 	rb_head_page_activate(cpu_buffer);
1125 
1126 	return 0;
1127 }
1128 
1129 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1130 {
1131 	int i;
1132 	struct buffer_page *bpage, *tmp;
1133 
1134 	for (i = 0; i < nr_pages; i++) {
1135 		struct page *page;
1136 		/*
1137 		 * __GFP_NORETRY flag makes sure that the allocation fails
1138 		 * gracefully without invoking oom-killer and the system is
1139 		 * not destabilized.
1140 		 */
1141 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1142 				    GFP_KERNEL | __GFP_NORETRY,
1143 				    cpu_to_node(cpu));
1144 		if (!bpage)
1145 			goto free_pages;
1146 
1147 		list_add(&bpage->list, pages);
1148 
1149 		page = alloc_pages_node(cpu_to_node(cpu),
1150 					GFP_KERNEL | __GFP_NORETRY, 0);
1151 		if (!page)
1152 			goto free_pages;
1153 		bpage->page = page_address(page);
1154 		rb_init_page(bpage->page);
1155 	}
1156 
1157 	return 0;
1158 
1159 free_pages:
1160 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1161 		list_del_init(&bpage->list);
1162 		free_buffer_page(bpage);
1163 	}
1164 
1165 	return -ENOMEM;
1166 }
1167 
1168 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1169 			     unsigned nr_pages)
1170 {
1171 	LIST_HEAD(pages);
1172 
1173 	WARN_ON(!nr_pages);
1174 
1175 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1176 		return -ENOMEM;
1177 
1178 	/*
1179 	 * The ring buffer page list is a circular list that does not
1180 	 * start and end with a list head. All page list items point to
1181 	 * other pages.
1182 	 */
1183 	cpu_buffer->pages = pages.next;
1184 	list_del(&pages);
1185 
1186 	cpu_buffer->nr_pages = nr_pages;
1187 
1188 	rb_check_pages(cpu_buffer);
1189 
1190 	return 0;
1191 }
1192 
1193 static struct ring_buffer_per_cpu *
1194 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1195 {
1196 	struct ring_buffer_per_cpu *cpu_buffer;
1197 	struct buffer_page *bpage;
1198 	struct page *page;
1199 	int ret;
1200 
1201 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1202 				  GFP_KERNEL, cpu_to_node(cpu));
1203 	if (!cpu_buffer)
1204 		return NULL;
1205 
1206 	cpu_buffer->cpu = cpu;
1207 	cpu_buffer->buffer = buffer;
1208 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1209 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1210 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1211 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1212 	init_completion(&cpu_buffer->update_done);
1213 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1214 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1215 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1216 
1217 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1218 			    GFP_KERNEL, cpu_to_node(cpu));
1219 	if (!bpage)
1220 		goto fail_free_buffer;
1221 
1222 	rb_check_bpage(cpu_buffer, bpage);
1223 
1224 	cpu_buffer->reader_page = bpage;
1225 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1226 	if (!page)
1227 		goto fail_free_reader;
1228 	bpage->page = page_address(page);
1229 	rb_init_page(bpage->page);
1230 
1231 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1232 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1233 
1234 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1235 	if (ret < 0)
1236 		goto fail_free_reader;
1237 
1238 	cpu_buffer->head_page
1239 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1240 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1241 
1242 	rb_head_page_activate(cpu_buffer);
1243 
1244 	return cpu_buffer;
1245 
1246  fail_free_reader:
1247 	free_buffer_page(cpu_buffer->reader_page);
1248 
1249  fail_free_buffer:
1250 	kfree(cpu_buffer);
1251 	return NULL;
1252 }
1253 
1254 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1255 {
1256 	struct list_head *head = cpu_buffer->pages;
1257 	struct buffer_page *bpage, *tmp;
1258 
1259 	free_buffer_page(cpu_buffer->reader_page);
1260 
1261 	rb_head_page_deactivate(cpu_buffer);
1262 
1263 	if (head) {
1264 		list_for_each_entry_safe(bpage, tmp, head, list) {
1265 			list_del_init(&bpage->list);
1266 			free_buffer_page(bpage);
1267 		}
1268 		bpage = list_entry(head, struct buffer_page, list);
1269 		free_buffer_page(bpage);
1270 	}
1271 
1272 	kfree(cpu_buffer);
1273 }
1274 
1275 #ifdef CONFIG_HOTPLUG_CPU
1276 static int rb_cpu_notify(struct notifier_block *self,
1277 			 unsigned long action, void *hcpu);
1278 #endif
1279 
1280 /**
1281  * __ring_buffer_alloc - allocate a new ring_buffer
1282  * @size: the size in bytes per cpu that is needed.
1283  * @flags: attributes to set for the ring buffer.
1284  *
1285  * Currently the only flag that is available is the RB_FL_OVERWRITE
1286  * flag. This flag means that the buffer will overwrite old data
1287  * when the buffer wraps. If this flag is not set, the buffer will
1288  * drop data when the tail hits the head.
1289  */
1290 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1291 					struct lock_class_key *key)
1292 {
1293 	struct ring_buffer *buffer;
1294 	int bsize;
1295 	int cpu, nr_pages;
1296 
1297 	/* keep it in its own cache line */
1298 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1299 			 GFP_KERNEL);
1300 	if (!buffer)
1301 		return NULL;
1302 
1303 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1304 		goto fail_free_buffer;
1305 
1306 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1307 	buffer->flags = flags;
1308 	buffer->clock = trace_clock_local;
1309 	buffer->reader_lock_key = key;
1310 
1311 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1312 	init_waitqueue_head(&buffer->irq_work.waiters);
1313 
1314 	/* need at least two pages */
1315 	if (nr_pages < 2)
1316 		nr_pages = 2;
1317 
1318 	/*
1319 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1320 	 * in early initcall, it will not be notified of secondary cpus.
1321 	 * In that off case, we need to allocate for all possible cpus.
1322 	 */
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 	cpu_notifier_register_begin();
1325 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1326 #else
1327 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1328 #endif
1329 	buffer->cpus = nr_cpu_ids;
1330 
1331 	bsize = sizeof(void *) * nr_cpu_ids;
1332 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1333 				  GFP_KERNEL);
1334 	if (!buffer->buffers)
1335 		goto fail_free_cpumask;
1336 
1337 	for_each_buffer_cpu(buffer, cpu) {
1338 		buffer->buffers[cpu] =
1339 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1340 		if (!buffer->buffers[cpu])
1341 			goto fail_free_buffers;
1342 	}
1343 
1344 #ifdef CONFIG_HOTPLUG_CPU
1345 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1346 	buffer->cpu_notify.priority = 0;
1347 	__register_cpu_notifier(&buffer->cpu_notify);
1348 	cpu_notifier_register_done();
1349 #endif
1350 
1351 	mutex_init(&buffer->mutex);
1352 
1353 	return buffer;
1354 
1355  fail_free_buffers:
1356 	for_each_buffer_cpu(buffer, cpu) {
1357 		if (buffer->buffers[cpu])
1358 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1359 	}
1360 	kfree(buffer->buffers);
1361 
1362  fail_free_cpumask:
1363 	free_cpumask_var(buffer->cpumask);
1364 #ifdef CONFIG_HOTPLUG_CPU
1365 	cpu_notifier_register_done();
1366 #endif
1367 
1368  fail_free_buffer:
1369 	kfree(buffer);
1370 	return NULL;
1371 }
1372 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1373 
1374 /**
1375  * ring_buffer_free - free a ring buffer.
1376  * @buffer: the buffer to free.
1377  */
1378 void
1379 ring_buffer_free(struct ring_buffer *buffer)
1380 {
1381 	int cpu;
1382 
1383 #ifdef CONFIG_HOTPLUG_CPU
1384 	cpu_notifier_register_begin();
1385 	__unregister_cpu_notifier(&buffer->cpu_notify);
1386 #endif
1387 
1388 	for_each_buffer_cpu(buffer, cpu)
1389 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1390 
1391 #ifdef CONFIG_HOTPLUG_CPU
1392 	cpu_notifier_register_done();
1393 #endif
1394 
1395 	kfree(buffer->buffers);
1396 	free_cpumask_var(buffer->cpumask);
1397 
1398 	kfree(buffer);
1399 }
1400 EXPORT_SYMBOL_GPL(ring_buffer_free);
1401 
1402 void ring_buffer_set_clock(struct ring_buffer *buffer,
1403 			   u64 (*clock)(void))
1404 {
1405 	buffer->clock = clock;
1406 }
1407 
1408 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1409 
1410 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1411 {
1412 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1413 }
1414 
1415 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1416 {
1417 	return local_read(&bpage->write) & RB_WRITE_MASK;
1418 }
1419 
1420 static int
1421 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1422 {
1423 	struct list_head *tail_page, *to_remove, *next_page;
1424 	struct buffer_page *to_remove_page, *tmp_iter_page;
1425 	struct buffer_page *last_page, *first_page;
1426 	unsigned int nr_removed;
1427 	unsigned long head_bit;
1428 	int page_entries;
1429 
1430 	head_bit = 0;
1431 
1432 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1433 	atomic_inc(&cpu_buffer->record_disabled);
1434 	/*
1435 	 * We don't race with the readers since we have acquired the reader
1436 	 * lock. We also don't race with writers after disabling recording.
1437 	 * This makes it easy to figure out the first and the last page to be
1438 	 * removed from the list. We unlink all the pages in between including
1439 	 * the first and last pages. This is done in a busy loop so that we
1440 	 * lose the least number of traces.
1441 	 * The pages are freed after we restart recording and unlock readers.
1442 	 */
1443 	tail_page = &cpu_buffer->tail_page->list;
1444 
1445 	/*
1446 	 * tail page might be on reader page, we remove the next page
1447 	 * from the ring buffer
1448 	 */
1449 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1450 		tail_page = rb_list_head(tail_page->next);
1451 	to_remove = tail_page;
1452 
1453 	/* start of pages to remove */
1454 	first_page = list_entry(rb_list_head(to_remove->next),
1455 				struct buffer_page, list);
1456 
1457 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1458 		to_remove = rb_list_head(to_remove)->next;
1459 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1460 	}
1461 
1462 	next_page = rb_list_head(to_remove)->next;
1463 
1464 	/*
1465 	 * Now we remove all pages between tail_page and next_page.
1466 	 * Make sure that we have head_bit value preserved for the
1467 	 * next page
1468 	 */
1469 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1470 						head_bit);
1471 	next_page = rb_list_head(next_page);
1472 	next_page->prev = tail_page;
1473 
1474 	/* make sure pages points to a valid page in the ring buffer */
1475 	cpu_buffer->pages = next_page;
1476 
1477 	/* update head page */
1478 	if (head_bit)
1479 		cpu_buffer->head_page = list_entry(next_page,
1480 						struct buffer_page, list);
1481 
1482 	/*
1483 	 * change read pointer to make sure any read iterators reset
1484 	 * themselves
1485 	 */
1486 	cpu_buffer->read = 0;
1487 
1488 	/* pages are removed, resume tracing and then free the pages */
1489 	atomic_dec(&cpu_buffer->record_disabled);
1490 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1491 
1492 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1493 
1494 	/* last buffer page to remove */
1495 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1496 				list);
1497 	tmp_iter_page = first_page;
1498 
1499 	do {
1500 		to_remove_page = tmp_iter_page;
1501 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1502 
1503 		/* update the counters */
1504 		page_entries = rb_page_entries(to_remove_page);
1505 		if (page_entries) {
1506 			/*
1507 			 * If something was added to this page, it was full
1508 			 * since it is not the tail page. So we deduct the
1509 			 * bytes consumed in ring buffer from here.
1510 			 * Increment overrun to account for the lost events.
1511 			 */
1512 			local_add(page_entries, &cpu_buffer->overrun);
1513 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1514 		}
1515 
1516 		/*
1517 		 * We have already removed references to this list item, just
1518 		 * free up the buffer_page and its page
1519 		 */
1520 		free_buffer_page(to_remove_page);
1521 		nr_removed--;
1522 
1523 	} while (to_remove_page != last_page);
1524 
1525 	RB_WARN_ON(cpu_buffer, nr_removed);
1526 
1527 	return nr_removed == 0;
1528 }
1529 
1530 static int
1531 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1532 {
1533 	struct list_head *pages = &cpu_buffer->new_pages;
1534 	int retries, success;
1535 
1536 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1537 	/*
1538 	 * We are holding the reader lock, so the reader page won't be swapped
1539 	 * in the ring buffer. Now we are racing with the writer trying to
1540 	 * move head page and the tail page.
1541 	 * We are going to adapt the reader page update process where:
1542 	 * 1. We first splice the start and end of list of new pages between
1543 	 *    the head page and its previous page.
1544 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1545 	 *    start of new pages list.
1546 	 * 3. Finally, we update the head->prev to the end of new list.
1547 	 *
1548 	 * We will try this process 10 times, to make sure that we don't keep
1549 	 * spinning.
1550 	 */
1551 	retries = 10;
1552 	success = 0;
1553 	while (retries--) {
1554 		struct list_head *head_page, *prev_page, *r;
1555 		struct list_head *last_page, *first_page;
1556 		struct list_head *head_page_with_bit;
1557 
1558 		head_page = &rb_set_head_page(cpu_buffer)->list;
1559 		if (!head_page)
1560 			break;
1561 		prev_page = head_page->prev;
1562 
1563 		first_page = pages->next;
1564 		last_page  = pages->prev;
1565 
1566 		head_page_with_bit = (struct list_head *)
1567 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1568 
1569 		last_page->next = head_page_with_bit;
1570 		first_page->prev = prev_page;
1571 
1572 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1573 
1574 		if (r == head_page_with_bit) {
1575 			/*
1576 			 * yay, we replaced the page pointer to our new list,
1577 			 * now, we just have to update to head page's prev
1578 			 * pointer to point to end of list
1579 			 */
1580 			head_page->prev = last_page;
1581 			success = 1;
1582 			break;
1583 		}
1584 	}
1585 
1586 	if (success)
1587 		INIT_LIST_HEAD(pages);
1588 	/*
1589 	 * If we weren't successful in adding in new pages, warn and stop
1590 	 * tracing
1591 	 */
1592 	RB_WARN_ON(cpu_buffer, !success);
1593 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1594 
1595 	/* free pages if they weren't inserted */
1596 	if (!success) {
1597 		struct buffer_page *bpage, *tmp;
1598 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1599 					 list) {
1600 			list_del_init(&bpage->list);
1601 			free_buffer_page(bpage);
1602 		}
1603 	}
1604 	return success;
1605 }
1606 
1607 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1608 {
1609 	int success;
1610 
1611 	if (cpu_buffer->nr_pages_to_update > 0)
1612 		success = rb_insert_pages(cpu_buffer);
1613 	else
1614 		success = rb_remove_pages(cpu_buffer,
1615 					-cpu_buffer->nr_pages_to_update);
1616 
1617 	if (success)
1618 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1619 }
1620 
1621 static void update_pages_handler(struct work_struct *work)
1622 {
1623 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1624 			struct ring_buffer_per_cpu, update_pages_work);
1625 	rb_update_pages(cpu_buffer);
1626 	complete(&cpu_buffer->update_done);
1627 }
1628 
1629 /**
1630  * ring_buffer_resize - resize the ring buffer
1631  * @buffer: the buffer to resize.
1632  * @size: the new size.
1633  * @cpu_id: the cpu buffer to resize
1634  *
1635  * Minimum size is 2 * BUF_PAGE_SIZE.
1636  *
1637  * Returns 0 on success and < 0 on failure.
1638  */
1639 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1640 			int cpu_id)
1641 {
1642 	struct ring_buffer_per_cpu *cpu_buffer;
1643 	unsigned nr_pages;
1644 	int cpu, err = 0;
1645 
1646 	/*
1647 	 * Always succeed at resizing a non-existent buffer:
1648 	 */
1649 	if (!buffer)
1650 		return size;
1651 
1652 	/* Make sure the requested buffer exists */
1653 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1654 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1655 		return size;
1656 
1657 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1658 	size *= BUF_PAGE_SIZE;
1659 
1660 	/* we need a minimum of two pages */
1661 	if (size < BUF_PAGE_SIZE * 2)
1662 		size = BUF_PAGE_SIZE * 2;
1663 
1664 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1665 
1666 	/*
1667 	 * Don't succeed if resizing is disabled, as a reader might be
1668 	 * manipulating the ring buffer and is expecting a sane state while
1669 	 * this is true.
1670 	 */
1671 	if (atomic_read(&buffer->resize_disabled))
1672 		return -EBUSY;
1673 
1674 	/* prevent another thread from changing buffer sizes */
1675 	mutex_lock(&buffer->mutex);
1676 
1677 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1678 		/* calculate the pages to update */
1679 		for_each_buffer_cpu(buffer, cpu) {
1680 			cpu_buffer = buffer->buffers[cpu];
1681 
1682 			cpu_buffer->nr_pages_to_update = nr_pages -
1683 							cpu_buffer->nr_pages;
1684 			/*
1685 			 * nothing more to do for removing pages or no update
1686 			 */
1687 			if (cpu_buffer->nr_pages_to_update <= 0)
1688 				continue;
1689 			/*
1690 			 * to add pages, make sure all new pages can be
1691 			 * allocated without receiving ENOMEM
1692 			 */
1693 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1694 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1695 						&cpu_buffer->new_pages, cpu)) {
1696 				/* not enough memory for new pages */
1697 				err = -ENOMEM;
1698 				goto out_err;
1699 			}
1700 		}
1701 
1702 		get_online_cpus();
1703 		/*
1704 		 * Fire off all the required work handlers
1705 		 * We can't schedule on offline CPUs, but it's not necessary
1706 		 * since we can change their buffer sizes without any race.
1707 		 */
1708 		for_each_buffer_cpu(buffer, cpu) {
1709 			cpu_buffer = buffer->buffers[cpu];
1710 			if (!cpu_buffer->nr_pages_to_update)
1711 				continue;
1712 
1713 			/* Can't run something on an offline CPU. */
1714 			if (!cpu_online(cpu)) {
1715 				rb_update_pages(cpu_buffer);
1716 				cpu_buffer->nr_pages_to_update = 0;
1717 			} else {
1718 				schedule_work_on(cpu,
1719 						&cpu_buffer->update_pages_work);
1720 			}
1721 		}
1722 
1723 		/* wait for all the updates to complete */
1724 		for_each_buffer_cpu(buffer, cpu) {
1725 			cpu_buffer = buffer->buffers[cpu];
1726 			if (!cpu_buffer->nr_pages_to_update)
1727 				continue;
1728 
1729 			if (cpu_online(cpu))
1730 				wait_for_completion(&cpu_buffer->update_done);
1731 			cpu_buffer->nr_pages_to_update = 0;
1732 		}
1733 
1734 		put_online_cpus();
1735 	} else {
1736 		/* Make sure this CPU has been intitialized */
1737 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1738 			goto out;
1739 
1740 		cpu_buffer = buffer->buffers[cpu_id];
1741 
1742 		if (nr_pages == cpu_buffer->nr_pages)
1743 			goto out;
1744 
1745 		cpu_buffer->nr_pages_to_update = nr_pages -
1746 						cpu_buffer->nr_pages;
1747 
1748 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1749 		if (cpu_buffer->nr_pages_to_update > 0 &&
1750 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1751 					    &cpu_buffer->new_pages, cpu_id)) {
1752 			err = -ENOMEM;
1753 			goto out_err;
1754 		}
1755 
1756 		get_online_cpus();
1757 
1758 		/* Can't run something on an offline CPU. */
1759 		if (!cpu_online(cpu_id))
1760 			rb_update_pages(cpu_buffer);
1761 		else {
1762 			schedule_work_on(cpu_id,
1763 					 &cpu_buffer->update_pages_work);
1764 			wait_for_completion(&cpu_buffer->update_done);
1765 		}
1766 
1767 		cpu_buffer->nr_pages_to_update = 0;
1768 		put_online_cpus();
1769 	}
1770 
1771  out:
1772 	/*
1773 	 * The ring buffer resize can happen with the ring buffer
1774 	 * enabled, so that the update disturbs the tracing as little
1775 	 * as possible. But if the buffer is disabled, we do not need
1776 	 * to worry about that, and we can take the time to verify
1777 	 * that the buffer is not corrupt.
1778 	 */
1779 	if (atomic_read(&buffer->record_disabled)) {
1780 		atomic_inc(&buffer->record_disabled);
1781 		/*
1782 		 * Even though the buffer was disabled, we must make sure
1783 		 * that it is truly disabled before calling rb_check_pages.
1784 		 * There could have been a race between checking
1785 		 * record_disable and incrementing it.
1786 		 */
1787 		synchronize_sched();
1788 		for_each_buffer_cpu(buffer, cpu) {
1789 			cpu_buffer = buffer->buffers[cpu];
1790 			rb_check_pages(cpu_buffer);
1791 		}
1792 		atomic_dec(&buffer->record_disabled);
1793 	}
1794 
1795 	mutex_unlock(&buffer->mutex);
1796 	return size;
1797 
1798  out_err:
1799 	for_each_buffer_cpu(buffer, cpu) {
1800 		struct buffer_page *bpage, *tmp;
1801 
1802 		cpu_buffer = buffer->buffers[cpu];
1803 		cpu_buffer->nr_pages_to_update = 0;
1804 
1805 		if (list_empty(&cpu_buffer->new_pages))
1806 			continue;
1807 
1808 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1809 					list) {
1810 			list_del_init(&bpage->list);
1811 			free_buffer_page(bpage);
1812 		}
1813 	}
1814 	mutex_unlock(&buffer->mutex);
1815 	return err;
1816 }
1817 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1818 
1819 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1820 {
1821 	mutex_lock(&buffer->mutex);
1822 	if (val)
1823 		buffer->flags |= RB_FL_OVERWRITE;
1824 	else
1825 		buffer->flags &= ~RB_FL_OVERWRITE;
1826 	mutex_unlock(&buffer->mutex);
1827 }
1828 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1829 
1830 static inline void *
1831 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1832 {
1833 	return bpage->data + index;
1834 }
1835 
1836 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1837 {
1838 	return bpage->page->data + index;
1839 }
1840 
1841 static inline struct ring_buffer_event *
1842 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1843 {
1844 	return __rb_page_index(cpu_buffer->reader_page,
1845 			       cpu_buffer->reader_page->read);
1846 }
1847 
1848 static inline struct ring_buffer_event *
1849 rb_iter_head_event(struct ring_buffer_iter *iter)
1850 {
1851 	return __rb_page_index(iter->head_page, iter->head);
1852 }
1853 
1854 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1855 {
1856 	return local_read(&bpage->page->commit);
1857 }
1858 
1859 /* Size is determined by what has been committed */
1860 static inline unsigned rb_page_size(struct buffer_page *bpage)
1861 {
1862 	return rb_page_commit(bpage);
1863 }
1864 
1865 static inline unsigned
1866 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1867 {
1868 	return rb_page_commit(cpu_buffer->commit_page);
1869 }
1870 
1871 static inline unsigned
1872 rb_event_index(struct ring_buffer_event *event)
1873 {
1874 	unsigned long addr = (unsigned long)event;
1875 
1876 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1877 }
1878 
1879 static inline int
1880 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1881 		   struct ring_buffer_event *event)
1882 {
1883 	unsigned long addr = (unsigned long)event;
1884 	unsigned long index;
1885 
1886 	index = rb_event_index(event);
1887 	addr &= PAGE_MASK;
1888 
1889 	return cpu_buffer->commit_page->page == (void *)addr &&
1890 		rb_commit_index(cpu_buffer) == index;
1891 }
1892 
1893 static void
1894 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1895 {
1896 	unsigned long max_count;
1897 
1898 	/*
1899 	 * We only race with interrupts and NMIs on this CPU.
1900 	 * If we own the commit event, then we can commit
1901 	 * all others that interrupted us, since the interruptions
1902 	 * are in stack format (they finish before they come
1903 	 * back to us). This allows us to do a simple loop to
1904 	 * assign the commit to the tail.
1905 	 */
1906  again:
1907 	max_count = cpu_buffer->nr_pages * 100;
1908 
1909 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1910 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1911 			return;
1912 		if (RB_WARN_ON(cpu_buffer,
1913 			       rb_is_reader_page(cpu_buffer->tail_page)))
1914 			return;
1915 		local_set(&cpu_buffer->commit_page->page->commit,
1916 			  rb_page_write(cpu_buffer->commit_page));
1917 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1918 		cpu_buffer->write_stamp =
1919 			cpu_buffer->commit_page->page->time_stamp;
1920 		/* add barrier to keep gcc from optimizing too much */
1921 		barrier();
1922 	}
1923 	while (rb_commit_index(cpu_buffer) !=
1924 	       rb_page_write(cpu_buffer->commit_page)) {
1925 
1926 		local_set(&cpu_buffer->commit_page->page->commit,
1927 			  rb_page_write(cpu_buffer->commit_page));
1928 		RB_WARN_ON(cpu_buffer,
1929 			   local_read(&cpu_buffer->commit_page->page->commit) &
1930 			   ~RB_WRITE_MASK);
1931 		barrier();
1932 	}
1933 
1934 	/* again, keep gcc from optimizing */
1935 	barrier();
1936 
1937 	/*
1938 	 * If an interrupt came in just after the first while loop
1939 	 * and pushed the tail page forward, we will be left with
1940 	 * a dangling commit that will never go forward.
1941 	 */
1942 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1943 		goto again;
1944 }
1945 
1946 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1947 {
1948 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1949 	cpu_buffer->reader_page->read = 0;
1950 }
1951 
1952 static void rb_inc_iter(struct ring_buffer_iter *iter)
1953 {
1954 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1955 
1956 	/*
1957 	 * The iterator could be on the reader page (it starts there).
1958 	 * But the head could have moved, since the reader was
1959 	 * found. Check for this case and assign the iterator
1960 	 * to the head page instead of next.
1961 	 */
1962 	if (iter->head_page == cpu_buffer->reader_page)
1963 		iter->head_page = rb_set_head_page(cpu_buffer);
1964 	else
1965 		rb_inc_page(cpu_buffer, &iter->head_page);
1966 
1967 	iter->read_stamp = iter->head_page->page->time_stamp;
1968 	iter->head = 0;
1969 }
1970 
1971 /* Slow path, do not inline */
1972 static noinline struct ring_buffer_event *
1973 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1974 {
1975 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1976 
1977 	/* Not the first event on the page? */
1978 	if (rb_event_index(event)) {
1979 		event->time_delta = delta & TS_MASK;
1980 		event->array[0] = delta >> TS_SHIFT;
1981 	} else {
1982 		/* nope, just zero it */
1983 		event->time_delta = 0;
1984 		event->array[0] = 0;
1985 	}
1986 
1987 	return skip_time_extend(event);
1988 }
1989 
1990 /**
1991  * rb_update_event - update event type and data
1992  * @event: the event to update
1993  * @type: the type of event
1994  * @length: the size of the event field in the ring buffer
1995  *
1996  * Update the type and data fields of the event. The length
1997  * is the actual size that is written to the ring buffer,
1998  * and with this, we can determine what to place into the
1999  * data field.
2000  */
2001 static void
2002 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2003 		struct ring_buffer_event *event, unsigned length,
2004 		int add_timestamp, u64 delta)
2005 {
2006 	/* Only a commit updates the timestamp */
2007 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2008 		delta = 0;
2009 
2010 	/*
2011 	 * If we need to add a timestamp, then we
2012 	 * add it to the start of the resevered space.
2013 	 */
2014 	if (unlikely(add_timestamp)) {
2015 		event = rb_add_time_stamp(event, delta);
2016 		length -= RB_LEN_TIME_EXTEND;
2017 		delta = 0;
2018 	}
2019 
2020 	event->time_delta = delta;
2021 	length -= RB_EVNT_HDR_SIZE;
2022 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2023 		event->type_len = 0;
2024 		event->array[0] = length;
2025 	} else
2026 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2027 }
2028 
2029 /*
2030  * rb_handle_head_page - writer hit the head page
2031  *
2032  * Returns: +1 to retry page
2033  *           0 to continue
2034  *          -1 on error
2035  */
2036 static int
2037 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2038 		    struct buffer_page *tail_page,
2039 		    struct buffer_page *next_page)
2040 {
2041 	struct buffer_page *new_head;
2042 	int entries;
2043 	int type;
2044 	int ret;
2045 
2046 	entries = rb_page_entries(next_page);
2047 
2048 	/*
2049 	 * The hard part is here. We need to move the head
2050 	 * forward, and protect against both readers on
2051 	 * other CPUs and writers coming in via interrupts.
2052 	 */
2053 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2054 				       RB_PAGE_HEAD);
2055 
2056 	/*
2057 	 * type can be one of four:
2058 	 *  NORMAL - an interrupt already moved it for us
2059 	 *  HEAD   - we are the first to get here.
2060 	 *  UPDATE - we are the interrupt interrupting
2061 	 *           a current move.
2062 	 *  MOVED  - a reader on another CPU moved the next
2063 	 *           pointer to its reader page. Give up
2064 	 *           and try again.
2065 	 */
2066 
2067 	switch (type) {
2068 	case RB_PAGE_HEAD:
2069 		/*
2070 		 * We changed the head to UPDATE, thus
2071 		 * it is our responsibility to update
2072 		 * the counters.
2073 		 */
2074 		local_add(entries, &cpu_buffer->overrun);
2075 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2076 
2077 		/*
2078 		 * The entries will be zeroed out when we move the
2079 		 * tail page.
2080 		 */
2081 
2082 		/* still more to do */
2083 		break;
2084 
2085 	case RB_PAGE_UPDATE:
2086 		/*
2087 		 * This is an interrupt that interrupt the
2088 		 * previous update. Still more to do.
2089 		 */
2090 		break;
2091 	case RB_PAGE_NORMAL:
2092 		/*
2093 		 * An interrupt came in before the update
2094 		 * and processed this for us.
2095 		 * Nothing left to do.
2096 		 */
2097 		return 1;
2098 	case RB_PAGE_MOVED:
2099 		/*
2100 		 * The reader is on another CPU and just did
2101 		 * a swap with our next_page.
2102 		 * Try again.
2103 		 */
2104 		return 1;
2105 	default:
2106 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2107 		return -1;
2108 	}
2109 
2110 	/*
2111 	 * Now that we are here, the old head pointer is
2112 	 * set to UPDATE. This will keep the reader from
2113 	 * swapping the head page with the reader page.
2114 	 * The reader (on another CPU) will spin till
2115 	 * we are finished.
2116 	 *
2117 	 * We just need to protect against interrupts
2118 	 * doing the job. We will set the next pointer
2119 	 * to HEAD. After that, we set the old pointer
2120 	 * to NORMAL, but only if it was HEAD before.
2121 	 * otherwise we are an interrupt, and only
2122 	 * want the outer most commit to reset it.
2123 	 */
2124 	new_head = next_page;
2125 	rb_inc_page(cpu_buffer, &new_head);
2126 
2127 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2128 				    RB_PAGE_NORMAL);
2129 
2130 	/*
2131 	 * Valid returns are:
2132 	 *  HEAD   - an interrupt came in and already set it.
2133 	 *  NORMAL - One of two things:
2134 	 *            1) We really set it.
2135 	 *            2) A bunch of interrupts came in and moved
2136 	 *               the page forward again.
2137 	 */
2138 	switch (ret) {
2139 	case RB_PAGE_HEAD:
2140 	case RB_PAGE_NORMAL:
2141 		/* OK */
2142 		break;
2143 	default:
2144 		RB_WARN_ON(cpu_buffer, 1);
2145 		return -1;
2146 	}
2147 
2148 	/*
2149 	 * It is possible that an interrupt came in,
2150 	 * set the head up, then more interrupts came in
2151 	 * and moved it again. When we get back here,
2152 	 * the page would have been set to NORMAL but we
2153 	 * just set it back to HEAD.
2154 	 *
2155 	 * How do you detect this? Well, if that happened
2156 	 * the tail page would have moved.
2157 	 */
2158 	if (ret == RB_PAGE_NORMAL) {
2159 		/*
2160 		 * If the tail had moved passed next, then we need
2161 		 * to reset the pointer.
2162 		 */
2163 		if (cpu_buffer->tail_page != tail_page &&
2164 		    cpu_buffer->tail_page != next_page)
2165 			rb_head_page_set_normal(cpu_buffer, new_head,
2166 						next_page,
2167 						RB_PAGE_HEAD);
2168 	}
2169 
2170 	/*
2171 	 * If this was the outer most commit (the one that
2172 	 * changed the original pointer from HEAD to UPDATE),
2173 	 * then it is up to us to reset it to NORMAL.
2174 	 */
2175 	if (type == RB_PAGE_HEAD) {
2176 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2177 					      tail_page,
2178 					      RB_PAGE_UPDATE);
2179 		if (RB_WARN_ON(cpu_buffer,
2180 			       ret != RB_PAGE_UPDATE))
2181 			return -1;
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 static unsigned rb_calculate_event_length(unsigned length)
2188 {
2189 	struct ring_buffer_event event; /* Used only for sizeof array */
2190 
2191 	/* zero length can cause confusions */
2192 	if (!length)
2193 		length++;
2194 
2195 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2196 		length += sizeof(event.array[0]);
2197 
2198 	length += RB_EVNT_HDR_SIZE;
2199 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2200 
2201 	return length;
2202 }
2203 
2204 static inline void
2205 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2206 	      struct buffer_page *tail_page,
2207 	      unsigned long tail, unsigned long length)
2208 {
2209 	struct ring_buffer_event *event;
2210 
2211 	/*
2212 	 * Only the event that crossed the page boundary
2213 	 * must fill the old tail_page with padding.
2214 	 */
2215 	if (tail >= BUF_PAGE_SIZE) {
2216 		/*
2217 		 * If the page was filled, then we still need
2218 		 * to update the real_end. Reset it to zero
2219 		 * and the reader will ignore it.
2220 		 */
2221 		if (tail == BUF_PAGE_SIZE)
2222 			tail_page->real_end = 0;
2223 
2224 		local_sub(length, &tail_page->write);
2225 		return;
2226 	}
2227 
2228 	event = __rb_page_index(tail_page, tail);
2229 	kmemcheck_annotate_bitfield(event, bitfield);
2230 
2231 	/* account for padding bytes */
2232 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2233 
2234 	/*
2235 	 * Save the original length to the meta data.
2236 	 * This will be used by the reader to add lost event
2237 	 * counter.
2238 	 */
2239 	tail_page->real_end = tail;
2240 
2241 	/*
2242 	 * If this event is bigger than the minimum size, then
2243 	 * we need to be careful that we don't subtract the
2244 	 * write counter enough to allow another writer to slip
2245 	 * in on this page.
2246 	 * We put in a discarded commit instead, to make sure
2247 	 * that this space is not used again.
2248 	 *
2249 	 * If we are less than the minimum size, we don't need to
2250 	 * worry about it.
2251 	 */
2252 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2253 		/* No room for any events */
2254 
2255 		/* Mark the rest of the page with padding */
2256 		rb_event_set_padding(event);
2257 
2258 		/* Set the write back to the previous setting */
2259 		local_sub(length, &tail_page->write);
2260 		return;
2261 	}
2262 
2263 	/* Put in a discarded event */
2264 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2265 	event->type_len = RINGBUF_TYPE_PADDING;
2266 	/* time delta must be non zero */
2267 	event->time_delta = 1;
2268 
2269 	/* Set write to end of buffer */
2270 	length = (tail + length) - BUF_PAGE_SIZE;
2271 	local_sub(length, &tail_page->write);
2272 }
2273 
2274 /*
2275  * This is the slow path, force gcc not to inline it.
2276  */
2277 static noinline struct ring_buffer_event *
2278 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2279 	     unsigned long length, unsigned long tail,
2280 	     struct buffer_page *tail_page, u64 ts)
2281 {
2282 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2283 	struct ring_buffer *buffer = cpu_buffer->buffer;
2284 	struct buffer_page *next_page;
2285 	int ret;
2286 
2287 	next_page = tail_page;
2288 
2289 	rb_inc_page(cpu_buffer, &next_page);
2290 
2291 	/*
2292 	 * If for some reason, we had an interrupt storm that made
2293 	 * it all the way around the buffer, bail, and warn
2294 	 * about it.
2295 	 */
2296 	if (unlikely(next_page == commit_page)) {
2297 		local_inc(&cpu_buffer->commit_overrun);
2298 		goto out_reset;
2299 	}
2300 
2301 	/*
2302 	 * This is where the fun begins!
2303 	 *
2304 	 * We are fighting against races between a reader that
2305 	 * could be on another CPU trying to swap its reader
2306 	 * page with the buffer head.
2307 	 *
2308 	 * We are also fighting against interrupts coming in and
2309 	 * moving the head or tail on us as well.
2310 	 *
2311 	 * If the next page is the head page then we have filled
2312 	 * the buffer, unless the commit page is still on the
2313 	 * reader page.
2314 	 */
2315 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2316 
2317 		/*
2318 		 * If the commit is not on the reader page, then
2319 		 * move the header page.
2320 		 */
2321 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2322 			/*
2323 			 * If we are not in overwrite mode,
2324 			 * this is easy, just stop here.
2325 			 */
2326 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2327 				local_inc(&cpu_buffer->dropped_events);
2328 				goto out_reset;
2329 			}
2330 
2331 			ret = rb_handle_head_page(cpu_buffer,
2332 						  tail_page,
2333 						  next_page);
2334 			if (ret < 0)
2335 				goto out_reset;
2336 			if (ret)
2337 				goto out_again;
2338 		} else {
2339 			/*
2340 			 * We need to be careful here too. The
2341 			 * commit page could still be on the reader
2342 			 * page. We could have a small buffer, and
2343 			 * have filled up the buffer with events
2344 			 * from interrupts and such, and wrapped.
2345 			 *
2346 			 * Note, if the tail page is also the on the
2347 			 * reader_page, we let it move out.
2348 			 */
2349 			if (unlikely((cpu_buffer->commit_page !=
2350 				      cpu_buffer->tail_page) &&
2351 				     (cpu_buffer->commit_page ==
2352 				      cpu_buffer->reader_page))) {
2353 				local_inc(&cpu_buffer->commit_overrun);
2354 				goto out_reset;
2355 			}
2356 		}
2357 	}
2358 
2359 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2360 	if (ret) {
2361 		/*
2362 		 * Nested commits always have zero deltas, so
2363 		 * just reread the time stamp
2364 		 */
2365 		ts = rb_time_stamp(buffer);
2366 		next_page->page->time_stamp = ts;
2367 	}
2368 
2369  out_again:
2370 
2371 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2372 
2373 	/* fail and let the caller try again */
2374 	return ERR_PTR(-EAGAIN);
2375 
2376  out_reset:
2377 	/* reset write */
2378 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2379 
2380 	return NULL;
2381 }
2382 
2383 static struct ring_buffer_event *
2384 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2385 		  unsigned long length, u64 ts,
2386 		  u64 delta, int add_timestamp)
2387 {
2388 	struct buffer_page *tail_page;
2389 	struct ring_buffer_event *event;
2390 	unsigned long tail, write;
2391 
2392 	/*
2393 	 * If the time delta since the last event is too big to
2394 	 * hold in the time field of the event, then we append a
2395 	 * TIME EXTEND event ahead of the data event.
2396 	 */
2397 	if (unlikely(add_timestamp))
2398 		length += RB_LEN_TIME_EXTEND;
2399 
2400 	tail_page = cpu_buffer->tail_page;
2401 	write = local_add_return(length, &tail_page->write);
2402 
2403 	/* set write to only the index of the write */
2404 	write &= RB_WRITE_MASK;
2405 	tail = write - length;
2406 
2407 	/*
2408 	 * If this is the first commit on the page, then it has the same
2409 	 * timestamp as the page itself.
2410 	 */
2411 	if (!tail)
2412 		delta = 0;
2413 
2414 	/* See if we shot pass the end of this buffer page */
2415 	if (unlikely(write > BUF_PAGE_SIZE))
2416 		return rb_move_tail(cpu_buffer, length, tail,
2417 				    tail_page, ts);
2418 
2419 	/* We reserved something on the buffer */
2420 
2421 	event = __rb_page_index(tail_page, tail);
2422 	kmemcheck_annotate_bitfield(event, bitfield);
2423 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2424 
2425 	local_inc(&tail_page->entries);
2426 
2427 	/*
2428 	 * If this is the first commit on the page, then update
2429 	 * its timestamp.
2430 	 */
2431 	if (!tail)
2432 		tail_page->page->time_stamp = ts;
2433 
2434 	/* account for these added bytes */
2435 	local_add(length, &cpu_buffer->entries_bytes);
2436 
2437 	return event;
2438 }
2439 
2440 static inline int
2441 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2442 		  struct ring_buffer_event *event)
2443 {
2444 	unsigned long new_index, old_index;
2445 	struct buffer_page *bpage;
2446 	unsigned long index;
2447 	unsigned long addr;
2448 
2449 	new_index = rb_event_index(event);
2450 	old_index = new_index + rb_event_ts_length(event);
2451 	addr = (unsigned long)event;
2452 	addr &= PAGE_MASK;
2453 
2454 	bpage = cpu_buffer->tail_page;
2455 
2456 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2457 		unsigned long write_mask =
2458 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2459 		unsigned long event_length = rb_event_length(event);
2460 		/*
2461 		 * This is on the tail page. It is possible that
2462 		 * a write could come in and move the tail page
2463 		 * and write to the next page. That is fine
2464 		 * because we just shorten what is on this page.
2465 		 */
2466 		old_index += write_mask;
2467 		new_index += write_mask;
2468 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2469 		if (index == old_index) {
2470 			/* update counters */
2471 			local_sub(event_length, &cpu_buffer->entries_bytes);
2472 			return 1;
2473 		}
2474 	}
2475 
2476 	/* could not discard */
2477 	return 0;
2478 }
2479 
2480 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2481 {
2482 	local_inc(&cpu_buffer->committing);
2483 	local_inc(&cpu_buffer->commits);
2484 }
2485 
2486 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2487 {
2488 	unsigned long commits;
2489 
2490 	if (RB_WARN_ON(cpu_buffer,
2491 		       !local_read(&cpu_buffer->committing)))
2492 		return;
2493 
2494  again:
2495 	commits = local_read(&cpu_buffer->commits);
2496 	/* synchronize with interrupts */
2497 	barrier();
2498 	if (local_read(&cpu_buffer->committing) == 1)
2499 		rb_set_commit_to_write(cpu_buffer);
2500 
2501 	local_dec(&cpu_buffer->committing);
2502 
2503 	/* synchronize with interrupts */
2504 	barrier();
2505 
2506 	/*
2507 	 * Need to account for interrupts coming in between the
2508 	 * updating of the commit page and the clearing of the
2509 	 * committing counter.
2510 	 */
2511 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2512 	    !local_read(&cpu_buffer->committing)) {
2513 		local_inc(&cpu_buffer->committing);
2514 		goto again;
2515 	}
2516 }
2517 
2518 static struct ring_buffer_event *
2519 rb_reserve_next_event(struct ring_buffer *buffer,
2520 		      struct ring_buffer_per_cpu *cpu_buffer,
2521 		      unsigned long length)
2522 {
2523 	struct ring_buffer_event *event;
2524 	u64 ts, delta;
2525 	int nr_loops = 0;
2526 	int add_timestamp;
2527 	u64 diff;
2528 
2529 	rb_start_commit(cpu_buffer);
2530 
2531 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2532 	/*
2533 	 * Due to the ability to swap a cpu buffer from a buffer
2534 	 * it is possible it was swapped before we committed.
2535 	 * (committing stops a swap). We check for it here and
2536 	 * if it happened, we have to fail the write.
2537 	 */
2538 	barrier();
2539 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2540 		local_dec(&cpu_buffer->committing);
2541 		local_dec(&cpu_buffer->commits);
2542 		return NULL;
2543 	}
2544 #endif
2545 
2546 	length = rb_calculate_event_length(length);
2547  again:
2548 	add_timestamp = 0;
2549 	delta = 0;
2550 
2551 	/*
2552 	 * We allow for interrupts to reenter here and do a trace.
2553 	 * If one does, it will cause this original code to loop
2554 	 * back here. Even with heavy interrupts happening, this
2555 	 * should only happen a few times in a row. If this happens
2556 	 * 1000 times in a row, there must be either an interrupt
2557 	 * storm or we have something buggy.
2558 	 * Bail!
2559 	 */
2560 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2561 		goto out_fail;
2562 
2563 	ts = rb_time_stamp(cpu_buffer->buffer);
2564 	diff = ts - cpu_buffer->write_stamp;
2565 
2566 	/* make sure this diff is calculated here */
2567 	barrier();
2568 
2569 	/* Did the write stamp get updated already? */
2570 	if (likely(ts >= cpu_buffer->write_stamp)) {
2571 		delta = diff;
2572 		if (unlikely(test_time_stamp(delta))) {
2573 			int local_clock_stable = 1;
2574 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2575 			local_clock_stable = sched_clock_stable();
2576 #endif
2577 			WARN_ONCE(delta > (1ULL << 59),
2578 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2579 				  (unsigned long long)delta,
2580 				  (unsigned long long)ts,
2581 				  (unsigned long long)cpu_buffer->write_stamp,
2582 				  local_clock_stable ? "" :
2583 				  "If you just came from a suspend/resume,\n"
2584 				  "please switch to the trace global clock:\n"
2585 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2586 			add_timestamp = 1;
2587 		}
2588 	}
2589 
2590 	event = __rb_reserve_next(cpu_buffer, length, ts,
2591 				  delta, add_timestamp);
2592 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2593 		goto again;
2594 
2595 	if (!event)
2596 		goto out_fail;
2597 
2598 	return event;
2599 
2600  out_fail:
2601 	rb_end_commit(cpu_buffer);
2602 	return NULL;
2603 }
2604 
2605 /*
2606  * The lock and unlock are done within a preempt disable section.
2607  * The current_context per_cpu variable can only be modified
2608  * by the current task between lock and unlock. But it can
2609  * be modified more than once via an interrupt. To pass this
2610  * information from the lock to the unlock without having to
2611  * access the 'in_interrupt()' functions again (which do show
2612  * a bit of overhead in something as critical as function tracing,
2613  * we use a bitmask trick.
2614  *
2615  *  bit 0 =  NMI context
2616  *  bit 1 =  IRQ context
2617  *  bit 2 =  SoftIRQ context
2618  *  bit 3 =  normal context.
2619  *
2620  * This works because this is the order of contexts that can
2621  * preempt other contexts. A SoftIRQ never preempts an IRQ
2622  * context.
2623  *
2624  * When the context is determined, the corresponding bit is
2625  * checked and set (if it was set, then a recursion of that context
2626  * happened).
2627  *
2628  * On unlock, we need to clear this bit. To do so, just subtract
2629  * 1 from the current_context and AND it to itself.
2630  *
2631  * (binary)
2632  *  101 - 1 = 100
2633  *  101 & 100 = 100 (clearing bit zero)
2634  *
2635  *  1010 - 1 = 1001
2636  *  1010 & 1001 = 1000 (clearing bit 1)
2637  *
2638  * The least significant bit can be cleared this way, and it
2639  * just so happens that it is the same bit corresponding to
2640  * the current context.
2641  */
2642 
2643 static __always_inline int
2644 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2645 {
2646 	unsigned int val = cpu_buffer->current_context;
2647 	int bit;
2648 
2649 	if (in_interrupt()) {
2650 		if (in_nmi())
2651 			bit = RB_CTX_NMI;
2652 		else if (in_irq())
2653 			bit = RB_CTX_IRQ;
2654 		else
2655 			bit = RB_CTX_SOFTIRQ;
2656 	} else
2657 		bit = RB_CTX_NORMAL;
2658 
2659 	if (unlikely(val & (1 << bit)))
2660 		return 1;
2661 
2662 	val |= (1 << bit);
2663 	cpu_buffer->current_context = val;
2664 
2665 	return 0;
2666 }
2667 
2668 static __always_inline void
2669 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2670 {
2671 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2672 }
2673 
2674 /**
2675  * ring_buffer_lock_reserve - reserve a part of the buffer
2676  * @buffer: the ring buffer to reserve from
2677  * @length: the length of the data to reserve (excluding event header)
2678  *
2679  * Returns a reseverd event on the ring buffer to copy directly to.
2680  * The user of this interface will need to get the body to write into
2681  * and can use the ring_buffer_event_data() interface.
2682  *
2683  * The length is the length of the data needed, not the event length
2684  * which also includes the event header.
2685  *
2686  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2687  * If NULL is returned, then nothing has been allocated or locked.
2688  */
2689 struct ring_buffer_event *
2690 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2691 {
2692 	struct ring_buffer_per_cpu *cpu_buffer;
2693 	struct ring_buffer_event *event;
2694 	int cpu;
2695 
2696 	/* If we are tracing schedule, we don't want to recurse */
2697 	preempt_disable_notrace();
2698 
2699 	if (unlikely(atomic_read(&buffer->record_disabled)))
2700 		goto out;
2701 
2702 	cpu = raw_smp_processor_id();
2703 
2704 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2705 		goto out;
2706 
2707 	cpu_buffer = buffer->buffers[cpu];
2708 
2709 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2710 		goto out;
2711 
2712 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2713 		goto out;
2714 
2715 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2716 		goto out;
2717 
2718 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2719 	if (!event)
2720 		goto out_unlock;
2721 
2722 	return event;
2723 
2724  out_unlock:
2725 	trace_recursive_unlock(cpu_buffer);
2726  out:
2727 	preempt_enable_notrace();
2728 	return NULL;
2729 }
2730 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2731 
2732 static void
2733 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2734 		      struct ring_buffer_event *event)
2735 {
2736 	u64 delta;
2737 
2738 	/*
2739 	 * The event first in the commit queue updates the
2740 	 * time stamp.
2741 	 */
2742 	if (rb_event_is_commit(cpu_buffer, event)) {
2743 		/*
2744 		 * A commit event that is first on a page
2745 		 * updates the write timestamp with the page stamp
2746 		 */
2747 		if (!rb_event_index(event))
2748 			cpu_buffer->write_stamp =
2749 				cpu_buffer->commit_page->page->time_stamp;
2750 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2751 			delta = event->array[0];
2752 			delta <<= TS_SHIFT;
2753 			delta += event->time_delta;
2754 			cpu_buffer->write_stamp += delta;
2755 		} else
2756 			cpu_buffer->write_stamp += event->time_delta;
2757 	}
2758 }
2759 
2760 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761 		      struct ring_buffer_event *event)
2762 {
2763 	local_inc(&cpu_buffer->entries);
2764 	rb_update_write_stamp(cpu_buffer, event);
2765 	rb_end_commit(cpu_buffer);
2766 }
2767 
2768 static __always_inline void
2769 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2770 {
2771 	bool pagebusy;
2772 
2773 	if (buffer->irq_work.waiters_pending) {
2774 		buffer->irq_work.waiters_pending = false;
2775 		/* irq_work_queue() supplies it's own memory barriers */
2776 		irq_work_queue(&buffer->irq_work.work);
2777 	}
2778 
2779 	if (cpu_buffer->irq_work.waiters_pending) {
2780 		cpu_buffer->irq_work.waiters_pending = false;
2781 		/* irq_work_queue() supplies it's own memory barriers */
2782 		irq_work_queue(&cpu_buffer->irq_work.work);
2783 	}
2784 
2785 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2786 
2787 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2788 		cpu_buffer->irq_work.wakeup_full = true;
2789 		cpu_buffer->irq_work.full_waiters_pending = false;
2790 		/* irq_work_queue() supplies it's own memory barriers */
2791 		irq_work_queue(&cpu_buffer->irq_work.work);
2792 	}
2793 }
2794 
2795 /**
2796  * ring_buffer_unlock_commit - commit a reserved
2797  * @buffer: The buffer to commit to
2798  * @event: The event pointer to commit.
2799  *
2800  * This commits the data to the ring buffer, and releases any locks held.
2801  *
2802  * Must be paired with ring_buffer_lock_reserve.
2803  */
2804 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2805 			      struct ring_buffer_event *event)
2806 {
2807 	struct ring_buffer_per_cpu *cpu_buffer;
2808 	int cpu = raw_smp_processor_id();
2809 
2810 	cpu_buffer = buffer->buffers[cpu];
2811 
2812 	rb_commit(cpu_buffer, event);
2813 
2814 	rb_wakeups(buffer, cpu_buffer);
2815 
2816 	trace_recursive_unlock(cpu_buffer);
2817 
2818 	preempt_enable_notrace();
2819 
2820 	return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2823 
2824 static inline void rb_event_discard(struct ring_buffer_event *event)
2825 {
2826 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2827 		event = skip_time_extend(event);
2828 
2829 	/* array[0] holds the actual length for the discarded event */
2830 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2831 	event->type_len = RINGBUF_TYPE_PADDING;
2832 	/* time delta must be non zero */
2833 	if (!event->time_delta)
2834 		event->time_delta = 1;
2835 }
2836 
2837 /*
2838  * Decrement the entries to the page that an event is on.
2839  * The event does not even need to exist, only the pointer
2840  * to the page it is on. This may only be called before the commit
2841  * takes place.
2842  */
2843 static inline void
2844 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2845 		   struct ring_buffer_event *event)
2846 {
2847 	unsigned long addr = (unsigned long)event;
2848 	struct buffer_page *bpage = cpu_buffer->commit_page;
2849 	struct buffer_page *start;
2850 
2851 	addr &= PAGE_MASK;
2852 
2853 	/* Do the likely case first */
2854 	if (likely(bpage->page == (void *)addr)) {
2855 		local_dec(&bpage->entries);
2856 		return;
2857 	}
2858 
2859 	/*
2860 	 * Because the commit page may be on the reader page we
2861 	 * start with the next page and check the end loop there.
2862 	 */
2863 	rb_inc_page(cpu_buffer, &bpage);
2864 	start = bpage;
2865 	do {
2866 		if (bpage->page == (void *)addr) {
2867 			local_dec(&bpage->entries);
2868 			return;
2869 		}
2870 		rb_inc_page(cpu_buffer, &bpage);
2871 	} while (bpage != start);
2872 
2873 	/* commit not part of this buffer?? */
2874 	RB_WARN_ON(cpu_buffer, 1);
2875 }
2876 
2877 /**
2878  * ring_buffer_commit_discard - discard an event that has not been committed
2879  * @buffer: the ring buffer
2880  * @event: non committed event to discard
2881  *
2882  * Sometimes an event that is in the ring buffer needs to be ignored.
2883  * This function lets the user discard an event in the ring buffer
2884  * and then that event will not be read later.
2885  *
2886  * This function only works if it is called before the the item has been
2887  * committed. It will try to free the event from the ring buffer
2888  * if another event has not been added behind it.
2889  *
2890  * If another event has been added behind it, it will set the event
2891  * up as discarded, and perform the commit.
2892  *
2893  * If this function is called, do not call ring_buffer_unlock_commit on
2894  * the event.
2895  */
2896 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2897 				struct ring_buffer_event *event)
2898 {
2899 	struct ring_buffer_per_cpu *cpu_buffer;
2900 	int cpu;
2901 
2902 	/* The event is discarded regardless */
2903 	rb_event_discard(event);
2904 
2905 	cpu = smp_processor_id();
2906 	cpu_buffer = buffer->buffers[cpu];
2907 
2908 	/*
2909 	 * This must only be called if the event has not been
2910 	 * committed yet. Thus we can assume that preemption
2911 	 * is still disabled.
2912 	 */
2913 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2914 
2915 	rb_decrement_entry(cpu_buffer, event);
2916 	if (rb_try_to_discard(cpu_buffer, event))
2917 		goto out;
2918 
2919 	/*
2920 	 * The commit is still visible by the reader, so we
2921 	 * must still update the timestamp.
2922 	 */
2923 	rb_update_write_stamp(cpu_buffer, event);
2924  out:
2925 	rb_end_commit(cpu_buffer);
2926 
2927 	trace_recursive_unlock(cpu_buffer);
2928 
2929 	preempt_enable_notrace();
2930 
2931 }
2932 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2933 
2934 /**
2935  * ring_buffer_write - write data to the buffer without reserving
2936  * @buffer: The ring buffer to write to.
2937  * @length: The length of the data being written (excluding the event header)
2938  * @data: The data to write to the buffer.
2939  *
2940  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2941  * one function. If you already have the data to write to the buffer, it
2942  * may be easier to simply call this function.
2943  *
2944  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2945  * and not the length of the event which would hold the header.
2946  */
2947 int ring_buffer_write(struct ring_buffer *buffer,
2948 		      unsigned long length,
2949 		      void *data)
2950 {
2951 	struct ring_buffer_per_cpu *cpu_buffer;
2952 	struct ring_buffer_event *event;
2953 	void *body;
2954 	int ret = -EBUSY;
2955 	int cpu;
2956 
2957 	preempt_disable_notrace();
2958 
2959 	if (atomic_read(&buffer->record_disabled))
2960 		goto out;
2961 
2962 	cpu = raw_smp_processor_id();
2963 
2964 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2965 		goto out;
2966 
2967 	cpu_buffer = buffer->buffers[cpu];
2968 
2969 	if (atomic_read(&cpu_buffer->record_disabled))
2970 		goto out;
2971 
2972 	if (length > BUF_MAX_DATA_SIZE)
2973 		goto out;
2974 
2975 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2976 		goto out;
2977 
2978 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2979 	if (!event)
2980 		goto out_unlock;
2981 
2982 	body = rb_event_data(event);
2983 
2984 	memcpy(body, data, length);
2985 
2986 	rb_commit(cpu_buffer, event);
2987 
2988 	rb_wakeups(buffer, cpu_buffer);
2989 
2990 	ret = 0;
2991 
2992  out_unlock:
2993 	trace_recursive_unlock(cpu_buffer);
2994 
2995  out:
2996 	preempt_enable_notrace();
2997 
2998 	return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(ring_buffer_write);
3001 
3002 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3003 {
3004 	struct buffer_page *reader = cpu_buffer->reader_page;
3005 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3006 	struct buffer_page *commit = cpu_buffer->commit_page;
3007 
3008 	/* In case of error, head will be NULL */
3009 	if (unlikely(!head))
3010 		return 1;
3011 
3012 	return reader->read == rb_page_commit(reader) &&
3013 		(commit == reader ||
3014 		 (commit == head &&
3015 		  head->read == rb_page_commit(commit)));
3016 }
3017 
3018 /**
3019  * ring_buffer_record_disable - stop all writes into the buffer
3020  * @buffer: The ring buffer to stop writes to.
3021  *
3022  * This prevents all writes to the buffer. Any attempt to write
3023  * to the buffer after this will fail and return NULL.
3024  *
3025  * The caller should call synchronize_sched() after this.
3026  */
3027 void ring_buffer_record_disable(struct ring_buffer *buffer)
3028 {
3029 	atomic_inc(&buffer->record_disabled);
3030 }
3031 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3032 
3033 /**
3034  * ring_buffer_record_enable - enable writes to the buffer
3035  * @buffer: The ring buffer to enable writes
3036  *
3037  * Note, multiple disables will need the same number of enables
3038  * to truly enable the writing (much like preempt_disable).
3039  */
3040 void ring_buffer_record_enable(struct ring_buffer *buffer)
3041 {
3042 	atomic_dec(&buffer->record_disabled);
3043 }
3044 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3045 
3046 /**
3047  * ring_buffer_record_off - stop all writes into the buffer
3048  * @buffer: The ring buffer to stop writes to.
3049  *
3050  * This prevents all writes to the buffer. Any attempt to write
3051  * to the buffer after this will fail and return NULL.
3052  *
3053  * This is different than ring_buffer_record_disable() as
3054  * it works like an on/off switch, where as the disable() version
3055  * must be paired with a enable().
3056  */
3057 void ring_buffer_record_off(struct ring_buffer *buffer)
3058 {
3059 	unsigned int rd;
3060 	unsigned int new_rd;
3061 
3062 	do {
3063 		rd = atomic_read(&buffer->record_disabled);
3064 		new_rd = rd | RB_BUFFER_OFF;
3065 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3066 }
3067 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3068 
3069 /**
3070  * ring_buffer_record_on - restart writes into the buffer
3071  * @buffer: The ring buffer to start writes to.
3072  *
3073  * This enables all writes to the buffer that was disabled by
3074  * ring_buffer_record_off().
3075  *
3076  * This is different than ring_buffer_record_enable() as
3077  * it works like an on/off switch, where as the enable() version
3078  * must be paired with a disable().
3079  */
3080 void ring_buffer_record_on(struct ring_buffer *buffer)
3081 {
3082 	unsigned int rd;
3083 	unsigned int new_rd;
3084 
3085 	do {
3086 		rd = atomic_read(&buffer->record_disabled);
3087 		new_rd = rd & ~RB_BUFFER_OFF;
3088 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3089 }
3090 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3091 
3092 /**
3093  * ring_buffer_record_is_on - return true if the ring buffer can write
3094  * @buffer: The ring buffer to see if write is enabled
3095  *
3096  * Returns true if the ring buffer is in a state that it accepts writes.
3097  */
3098 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3099 {
3100 	return !atomic_read(&buffer->record_disabled);
3101 }
3102 
3103 /**
3104  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3105  * @buffer: The ring buffer to stop writes to.
3106  * @cpu: The CPU buffer to stop
3107  *
3108  * This prevents all writes to the buffer. Any attempt to write
3109  * to the buffer after this will fail and return NULL.
3110  *
3111  * The caller should call synchronize_sched() after this.
3112  */
3113 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3114 {
3115 	struct ring_buffer_per_cpu *cpu_buffer;
3116 
3117 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3118 		return;
3119 
3120 	cpu_buffer = buffer->buffers[cpu];
3121 	atomic_inc(&cpu_buffer->record_disabled);
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3124 
3125 /**
3126  * ring_buffer_record_enable_cpu - enable writes to the buffer
3127  * @buffer: The ring buffer to enable writes
3128  * @cpu: The CPU to enable.
3129  *
3130  * Note, multiple disables will need the same number of enables
3131  * to truly enable the writing (much like preempt_disable).
3132  */
3133 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3134 {
3135 	struct ring_buffer_per_cpu *cpu_buffer;
3136 
3137 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3138 		return;
3139 
3140 	cpu_buffer = buffer->buffers[cpu];
3141 	atomic_dec(&cpu_buffer->record_disabled);
3142 }
3143 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3144 
3145 /*
3146  * The total entries in the ring buffer is the running counter
3147  * of entries entered into the ring buffer, minus the sum of
3148  * the entries read from the ring buffer and the number of
3149  * entries that were overwritten.
3150  */
3151 static inline unsigned long
3152 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3153 {
3154 	return local_read(&cpu_buffer->entries) -
3155 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3156 }
3157 
3158 /**
3159  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3160  * @buffer: The ring buffer
3161  * @cpu: The per CPU buffer to read from.
3162  */
3163 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3164 {
3165 	unsigned long flags;
3166 	struct ring_buffer_per_cpu *cpu_buffer;
3167 	struct buffer_page *bpage;
3168 	u64 ret = 0;
3169 
3170 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3171 		return 0;
3172 
3173 	cpu_buffer = buffer->buffers[cpu];
3174 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3175 	/*
3176 	 * if the tail is on reader_page, oldest time stamp is on the reader
3177 	 * page
3178 	 */
3179 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3180 		bpage = cpu_buffer->reader_page;
3181 	else
3182 		bpage = rb_set_head_page(cpu_buffer);
3183 	if (bpage)
3184 		ret = bpage->page->time_stamp;
3185 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3186 
3187 	return ret;
3188 }
3189 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3190 
3191 /**
3192  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3193  * @buffer: The ring buffer
3194  * @cpu: The per CPU buffer to read from.
3195  */
3196 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3197 {
3198 	struct ring_buffer_per_cpu *cpu_buffer;
3199 	unsigned long ret;
3200 
3201 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3202 		return 0;
3203 
3204 	cpu_buffer = buffer->buffers[cpu];
3205 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3206 
3207 	return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3210 
3211 /**
3212  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3213  * @buffer: The ring buffer
3214  * @cpu: The per CPU buffer to get the entries from.
3215  */
3216 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3217 {
3218 	struct ring_buffer_per_cpu *cpu_buffer;
3219 
3220 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3221 		return 0;
3222 
3223 	cpu_buffer = buffer->buffers[cpu];
3224 
3225 	return rb_num_of_entries(cpu_buffer);
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3228 
3229 /**
3230  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3231  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3232  * @buffer: The ring buffer
3233  * @cpu: The per CPU buffer to get the number of overruns from
3234  */
3235 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3236 {
3237 	struct ring_buffer_per_cpu *cpu_buffer;
3238 	unsigned long ret;
3239 
3240 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3241 		return 0;
3242 
3243 	cpu_buffer = buffer->buffers[cpu];
3244 	ret = local_read(&cpu_buffer->overrun);
3245 
3246 	return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3249 
3250 /**
3251  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3252  * commits failing due to the buffer wrapping around while there are uncommitted
3253  * events, such as during an interrupt storm.
3254  * @buffer: The ring buffer
3255  * @cpu: The per CPU buffer to get the number of overruns from
3256  */
3257 unsigned long
3258 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3259 {
3260 	struct ring_buffer_per_cpu *cpu_buffer;
3261 	unsigned long ret;
3262 
3263 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264 		return 0;
3265 
3266 	cpu_buffer = buffer->buffers[cpu];
3267 	ret = local_read(&cpu_buffer->commit_overrun);
3268 
3269 	return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3272 
3273 /**
3274  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3275  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3276  * @buffer: The ring buffer
3277  * @cpu: The per CPU buffer to get the number of overruns from
3278  */
3279 unsigned long
3280 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3281 {
3282 	struct ring_buffer_per_cpu *cpu_buffer;
3283 	unsigned long ret;
3284 
3285 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3286 		return 0;
3287 
3288 	cpu_buffer = buffer->buffers[cpu];
3289 	ret = local_read(&cpu_buffer->dropped_events);
3290 
3291 	return ret;
3292 }
3293 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3294 
3295 /**
3296  * ring_buffer_read_events_cpu - get the number of events successfully read
3297  * @buffer: The ring buffer
3298  * @cpu: The per CPU buffer to get the number of events read
3299  */
3300 unsigned long
3301 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3302 {
3303 	struct ring_buffer_per_cpu *cpu_buffer;
3304 
3305 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3306 		return 0;
3307 
3308 	cpu_buffer = buffer->buffers[cpu];
3309 	return cpu_buffer->read;
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3312 
3313 /**
3314  * ring_buffer_entries - get the number of entries in a buffer
3315  * @buffer: The ring buffer
3316  *
3317  * Returns the total number of entries in the ring buffer
3318  * (all CPU entries)
3319  */
3320 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3321 {
3322 	struct ring_buffer_per_cpu *cpu_buffer;
3323 	unsigned long entries = 0;
3324 	int cpu;
3325 
3326 	/* if you care about this being correct, lock the buffer */
3327 	for_each_buffer_cpu(buffer, cpu) {
3328 		cpu_buffer = buffer->buffers[cpu];
3329 		entries += rb_num_of_entries(cpu_buffer);
3330 	}
3331 
3332 	return entries;
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3335 
3336 /**
3337  * ring_buffer_overruns - get the number of overruns in buffer
3338  * @buffer: The ring buffer
3339  *
3340  * Returns the total number of overruns in the ring buffer
3341  * (all CPU entries)
3342  */
3343 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3344 {
3345 	struct ring_buffer_per_cpu *cpu_buffer;
3346 	unsigned long overruns = 0;
3347 	int cpu;
3348 
3349 	/* if you care about this being correct, lock the buffer */
3350 	for_each_buffer_cpu(buffer, cpu) {
3351 		cpu_buffer = buffer->buffers[cpu];
3352 		overruns += local_read(&cpu_buffer->overrun);
3353 	}
3354 
3355 	return overruns;
3356 }
3357 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3358 
3359 static void rb_iter_reset(struct ring_buffer_iter *iter)
3360 {
3361 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3362 
3363 	/* Iterator usage is expected to have record disabled */
3364 	iter->head_page = cpu_buffer->reader_page;
3365 	iter->head = cpu_buffer->reader_page->read;
3366 
3367 	iter->cache_reader_page = iter->head_page;
3368 	iter->cache_read = cpu_buffer->read;
3369 
3370 	if (iter->head)
3371 		iter->read_stamp = cpu_buffer->read_stamp;
3372 	else
3373 		iter->read_stamp = iter->head_page->page->time_stamp;
3374 }
3375 
3376 /**
3377  * ring_buffer_iter_reset - reset an iterator
3378  * @iter: The iterator to reset
3379  *
3380  * Resets the iterator, so that it will start from the beginning
3381  * again.
3382  */
3383 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3384 {
3385 	struct ring_buffer_per_cpu *cpu_buffer;
3386 	unsigned long flags;
3387 
3388 	if (!iter)
3389 		return;
3390 
3391 	cpu_buffer = iter->cpu_buffer;
3392 
3393 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3394 	rb_iter_reset(iter);
3395 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3398 
3399 /**
3400  * ring_buffer_iter_empty - check if an iterator has no more to read
3401  * @iter: The iterator to check
3402  */
3403 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3404 {
3405 	struct ring_buffer_per_cpu *cpu_buffer;
3406 
3407 	cpu_buffer = iter->cpu_buffer;
3408 
3409 	return iter->head_page == cpu_buffer->commit_page &&
3410 		iter->head == rb_commit_index(cpu_buffer);
3411 }
3412 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3413 
3414 static void
3415 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3416 		     struct ring_buffer_event *event)
3417 {
3418 	u64 delta;
3419 
3420 	switch (event->type_len) {
3421 	case RINGBUF_TYPE_PADDING:
3422 		return;
3423 
3424 	case RINGBUF_TYPE_TIME_EXTEND:
3425 		delta = event->array[0];
3426 		delta <<= TS_SHIFT;
3427 		delta += event->time_delta;
3428 		cpu_buffer->read_stamp += delta;
3429 		return;
3430 
3431 	case RINGBUF_TYPE_TIME_STAMP:
3432 		/* FIXME: not implemented */
3433 		return;
3434 
3435 	case RINGBUF_TYPE_DATA:
3436 		cpu_buffer->read_stamp += event->time_delta;
3437 		return;
3438 
3439 	default:
3440 		BUG();
3441 	}
3442 	return;
3443 }
3444 
3445 static void
3446 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3447 			  struct ring_buffer_event *event)
3448 {
3449 	u64 delta;
3450 
3451 	switch (event->type_len) {
3452 	case RINGBUF_TYPE_PADDING:
3453 		return;
3454 
3455 	case RINGBUF_TYPE_TIME_EXTEND:
3456 		delta = event->array[0];
3457 		delta <<= TS_SHIFT;
3458 		delta += event->time_delta;
3459 		iter->read_stamp += delta;
3460 		return;
3461 
3462 	case RINGBUF_TYPE_TIME_STAMP:
3463 		/* FIXME: not implemented */
3464 		return;
3465 
3466 	case RINGBUF_TYPE_DATA:
3467 		iter->read_stamp += event->time_delta;
3468 		return;
3469 
3470 	default:
3471 		BUG();
3472 	}
3473 	return;
3474 }
3475 
3476 static struct buffer_page *
3477 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3478 {
3479 	struct buffer_page *reader = NULL;
3480 	unsigned long overwrite;
3481 	unsigned long flags;
3482 	int nr_loops = 0;
3483 	int ret;
3484 
3485 	local_irq_save(flags);
3486 	arch_spin_lock(&cpu_buffer->lock);
3487 
3488  again:
3489 	/*
3490 	 * This should normally only loop twice. But because the
3491 	 * start of the reader inserts an empty page, it causes
3492 	 * a case where we will loop three times. There should be no
3493 	 * reason to loop four times (that I know of).
3494 	 */
3495 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3496 		reader = NULL;
3497 		goto out;
3498 	}
3499 
3500 	reader = cpu_buffer->reader_page;
3501 
3502 	/* If there's more to read, return this page */
3503 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3504 		goto out;
3505 
3506 	/* Never should we have an index greater than the size */
3507 	if (RB_WARN_ON(cpu_buffer,
3508 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3509 		goto out;
3510 
3511 	/* check if we caught up to the tail */
3512 	reader = NULL;
3513 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3514 		goto out;
3515 
3516 	/* Don't bother swapping if the ring buffer is empty */
3517 	if (rb_num_of_entries(cpu_buffer) == 0)
3518 		goto out;
3519 
3520 	/*
3521 	 * Reset the reader page to size zero.
3522 	 */
3523 	local_set(&cpu_buffer->reader_page->write, 0);
3524 	local_set(&cpu_buffer->reader_page->entries, 0);
3525 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3526 	cpu_buffer->reader_page->real_end = 0;
3527 
3528  spin:
3529 	/*
3530 	 * Splice the empty reader page into the list around the head.
3531 	 */
3532 	reader = rb_set_head_page(cpu_buffer);
3533 	if (!reader)
3534 		goto out;
3535 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3536 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3537 
3538 	/*
3539 	 * cpu_buffer->pages just needs to point to the buffer, it
3540 	 *  has no specific buffer page to point to. Lets move it out
3541 	 *  of our way so we don't accidentally swap it.
3542 	 */
3543 	cpu_buffer->pages = reader->list.prev;
3544 
3545 	/* The reader page will be pointing to the new head */
3546 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3547 
3548 	/*
3549 	 * We want to make sure we read the overruns after we set up our
3550 	 * pointers to the next object. The writer side does a
3551 	 * cmpxchg to cross pages which acts as the mb on the writer
3552 	 * side. Note, the reader will constantly fail the swap
3553 	 * while the writer is updating the pointers, so this
3554 	 * guarantees that the overwrite recorded here is the one we
3555 	 * want to compare with the last_overrun.
3556 	 */
3557 	smp_mb();
3558 	overwrite = local_read(&(cpu_buffer->overrun));
3559 
3560 	/*
3561 	 * Here's the tricky part.
3562 	 *
3563 	 * We need to move the pointer past the header page.
3564 	 * But we can only do that if a writer is not currently
3565 	 * moving it. The page before the header page has the
3566 	 * flag bit '1' set if it is pointing to the page we want.
3567 	 * but if the writer is in the process of moving it
3568 	 * than it will be '2' or already moved '0'.
3569 	 */
3570 
3571 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3572 
3573 	/*
3574 	 * If we did not convert it, then we must try again.
3575 	 */
3576 	if (!ret)
3577 		goto spin;
3578 
3579 	/*
3580 	 * Yeah! We succeeded in replacing the page.
3581 	 *
3582 	 * Now make the new head point back to the reader page.
3583 	 */
3584 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3585 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3586 
3587 	/* Finally update the reader page to the new head */
3588 	cpu_buffer->reader_page = reader;
3589 	rb_reset_reader_page(cpu_buffer);
3590 
3591 	if (overwrite != cpu_buffer->last_overrun) {
3592 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3593 		cpu_buffer->last_overrun = overwrite;
3594 	}
3595 
3596 	goto again;
3597 
3598  out:
3599 	arch_spin_unlock(&cpu_buffer->lock);
3600 	local_irq_restore(flags);
3601 
3602 	return reader;
3603 }
3604 
3605 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3606 {
3607 	struct ring_buffer_event *event;
3608 	struct buffer_page *reader;
3609 	unsigned length;
3610 
3611 	reader = rb_get_reader_page(cpu_buffer);
3612 
3613 	/* This function should not be called when buffer is empty */
3614 	if (RB_WARN_ON(cpu_buffer, !reader))
3615 		return;
3616 
3617 	event = rb_reader_event(cpu_buffer);
3618 
3619 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3620 		cpu_buffer->read++;
3621 
3622 	rb_update_read_stamp(cpu_buffer, event);
3623 
3624 	length = rb_event_length(event);
3625 	cpu_buffer->reader_page->read += length;
3626 }
3627 
3628 static void rb_advance_iter(struct ring_buffer_iter *iter)
3629 {
3630 	struct ring_buffer_per_cpu *cpu_buffer;
3631 	struct ring_buffer_event *event;
3632 	unsigned length;
3633 
3634 	cpu_buffer = iter->cpu_buffer;
3635 
3636 	/*
3637 	 * Check if we are at the end of the buffer.
3638 	 */
3639 	if (iter->head >= rb_page_size(iter->head_page)) {
3640 		/* discarded commits can make the page empty */
3641 		if (iter->head_page == cpu_buffer->commit_page)
3642 			return;
3643 		rb_inc_iter(iter);
3644 		return;
3645 	}
3646 
3647 	event = rb_iter_head_event(iter);
3648 
3649 	length = rb_event_length(event);
3650 
3651 	/*
3652 	 * This should not be called to advance the header if we are
3653 	 * at the tail of the buffer.
3654 	 */
3655 	if (RB_WARN_ON(cpu_buffer,
3656 		       (iter->head_page == cpu_buffer->commit_page) &&
3657 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3658 		return;
3659 
3660 	rb_update_iter_read_stamp(iter, event);
3661 
3662 	iter->head += length;
3663 
3664 	/* check for end of page padding */
3665 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3666 	    (iter->head_page != cpu_buffer->commit_page))
3667 		rb_inc_iter(iter);
3668 }
3669 
3670 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3671 {
3672 	return cpu_buffer->lost_events;
3673 }
3674 
3675 static struct ring_buffer_event *
3676 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3677 	       unsigned long *lost_events)
3678 {
3679 	struct ring_buffer_event *event;
3680 	struct buffer_page *reader;
3681 	int nr_loops = 0;
3682 
3683  again:
3684 	/*
3685 	 * We repeat when a time extend is encountered.
3686 	 * Since the time extend is always attached to a data event,
3687 	 * we should never loop more than once.
3688 	 * (We never hit the following condition more than twice).
3689 	 */
3690 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3691 		return NULL;
3692 
3693 	reader = rb_get_reader_page(cpu_buffer);
3694 	if (!reader)
3695 		return NULL;
3696 
3697 	event = rb_reader_event(cpu_buffer);
3698 
3699 	switch (event->type_len) {
3700 	case RINGBUF_TYPE_PADDING:
3701 		if (rb_null_event(event))
3702 			RB_WARN_ON(cpu_buffer, 1);
3703 		/*
3704 		 * Because the writer could be discarding every
3705 		 * event it creates (which would probably be bad)
3706 		 * if we were to go back to "again" then we may never
3707 		 * catch up, and will trigger the warn on, or lock
3708 		 * the box. Return the padding, and we will release
3709 		 * the current locks, and try again.
3710 		 */
3711 		return event;
3712 
3713 	case RINGBUF_TYPE_TIME_EXTEND:
3714 		/* Internal data, OK to advance */
3715 		rb_advance_reader(cpu_buffer);
3716 		goto again;
3717 
3718 	case RINGBUF_TYPE_TIME_STAMP:
3719 		/* FIXME: not implemented */
3720 		rb_advance_reader(cpu_buffer);
3721 		goto again;
3722 
3723 	case RINGBUF_TYPE_DATA:
3724 		if (ts) {
3725 			*ts = cpu_buffer->read_stamp + event->time_delta;
3726 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3727 							 cpu_buffer->cpu, ts);
3728 		}
3729 		if (lost_events)
3730 			*lost_events = rb_lost_events(cpu_buffer);
3731 		return event;
3732 
3733 	default:
3734 		BUG();
3735 	}
3736 
3737 	return NULL;
3738 }
3739 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3740 
3741 static struct ring_buffer_event *
3742 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3743 {
3744 	struct ring_buffer *buffer;
3745 	struct ring_buffer_per_cpu *cpu_buffer;
3746 	struct ring_buffer_event *event;
3747 	int nr_loops = 0;
3748 
3749 	cpu_buffer = iter->cpu_buffer;
3750 	buffer = cpu_buffer->buffer;
3751 
3752 	/*
3753 	 * Check if someone performed a consuming read to
3754 	 * the buffer. A consuming read invalidates the iterator
3755 	 * and we need to reset the iterator in this case.
3756 	 */
3757 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3758 		     iter->cache_reader_page != cpu_buffer->reader_page))
3759 		rb_iter_reset(iter);
3760 
3761  again:
3762 	if (ring_buffer_iter_empty(iter))
3763 		return NULL;
3764 
3765 	/*
3766 	 * We repeat when a time extend is encountered or we hit
3767 	 * the end of the page. Since the time extend is always attached
3768 	 * to a data event, we should never loop more than three times.
3769 	 * Once for going to next page, once on time extend, and
3770 	 * finally once to get the event.
3771 	 * (We never hit the following condition more than thrice).
3772 	 */
3773 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3774 		return NULL;
3775 
3776 	if (rb_per_cpu_empty(cpu_buffer))
3777 		return NULL;
3778 
3779 	if (iter->head >= rb_page_size(iter->head_page)) {
3780 		rb_inc_iter(iter);
3781 		goto again;
3782 	}
3783 
3784 	event = rb_iter_head_event(iter);
3785 
3786 	switch (event->type_len) {
3787 	case RINGBUF_TYPE_PADDING:
3788 		if (rb_null_event(event)) {
3789 			rb_inc_iter(iter);
3790 			goto again;
3791 		}
3792 		rb_advance_iter(iter);
3793 		return event;
3794 
3795 	case RINGBUF_TYPE_TIME_EXTEND:
3796 		/* Internal data, OK to advance */
3797 		rb_advance_iter(iter);
3798 		goto again;
3799 
3800 	case RINGBUF_TYPE_TIME_STAMP:
3801 		/* FIXME: not implemented */
3802 		rb_advance_iter(iter);
3803 		goto again;
3804 
3805 	case RINGBUF_TYPE_DATA:
3806 		if (ts) {
3807 			*ts = iter->read_stamp + event->time_delta;
3808 			ring_buffer_normalize_time_stamp(buffer,
3809 							 cpu_buffer->cpu, ts);
3810 		}
3811 		return event;
3812 
3813 	default:
3814 		BUG();
3815 	}
3816 
3817 	return NULL;
3818 }
3819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3820 
3821 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3822 {
3823 	if (likely(!in_nmi())) {
3824 		raw_spin_lock(&cpu_buffer->reader_lock);
3825 		return true;
3826 	}
3827 
3828 	/*
3829 	 * If an NMI die dumps out the content of the ring buffer
3830 	 * trylock must be used to prevent a deadlock if the NMI
3831 	 * preempted a task that holds the ring buffer locks. If
3832 	 * we get the lock then all is fine, if not, then continue
3833 	 * to do the read, but this can corrupt the ring buffer,
3834 	 * so it must be permanently disabled from future writes.
3835 	 * Reading from NMI is a oneshot deal.
3836 	 */
3837 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3838 		return true;
3839 
3840 	/* Continue without locking, but disable the ring buffer */
3841 	atomic_inc(&cpu_buffer->record_disabled);
3842 	return false;
3843 }
3844 
3845 static inline void
3846 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3847 {
3848 	if (likely(locked))
3849 		raw_spin_unlock(&cpu_buffer->reader_lock);
3850 	return;
3851 }
3852 
3853 /**
3854  * ring_buffer_peek - peek at the next event to be read
3855  * @buffer: The ring buffer to read
3856  * @cpu: The cpu to peak at
3857  * @ts: The timestamp counter of this event.
3858  * @lost_events: a variable to store if events were lost (may be NULL)
3859  *
3860  * This will return the event that will be read next, but does
3861  * not consume the data.
3862  */
3863 struct ring_buffer_event *
3864 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3865 		 unsigned long *lost_events)
3866 {
3867 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3868 	struct ring_buffer_event *event;
3869 	unsigned long flags;
3870 	bool dolock;
3871 
3872 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3873 		return NULL;
3874 
3875  again:
3876 	local_irq_save(flags);
3877 	dolock = rb_reader_lock(cpu_buffer);
3878 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3879 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3880 		rb_advance_reader(cpu_buffer);
3881 	rb_reader_unlock(cpu_buffer, dolock);
3882 	local_irq_restore(flags);
3883 
3884 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3885 		goto again;
3886 
3887 	return event;
3888 }
3889 
3890 /**
3891  * ring_buffer_iter_peek - peek at the next event to be read
3892  * @iter: The ring buffer iterator
3893  * @ts: The timestamp counter of this event.
3894  *
3895  * This will return the event that will be read next, but does
3896  * not increment the iterator.
3897  */
3898 struct ring_buffer_event *
3899 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3900 {
3901 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3902 	struct ring_buffer_event *event;
3903 	unsigned long flags;
3904 
3905  again:
3906 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3907 	event = rb_iter_peek(iter, ts);
3908 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3909 
3910 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3911 		goto again;
3912 
3913 	return event;
3914 }
3915 
3916 /**
3917  * ring_buffer_consume - return an event and consume it
3918  * @buffer: The ring buffer to get the next event from
3919  * @cpu: the cpu to read the buffer from
3920  * @ts: a variable to store the timestamp (may be NULL)
3921  * @lost_events: a variable to store if events were lost (may be NULL)
3922  *
3923  * Returns the next event in the ring buffer, and that event is consumed.
3924  * Meaning, that sequential reads will keep returning a different event,
3925  * and eventually empty the ring buffer if the producer is slower.
3926  */
3927 struct ring_buffer_event *
3928 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3929 		    unsigned long *lost_events)
3930 {
3931 	struct ring_buffer_per_cpu *cpu_buffer;
3932 	struct ring_buffer_event *event = NULL;
3933 	unsigned long flags;
3934 	bool dolock;
3935 
3936  again:
3937 	/* might be called in atomic */
3938 	preempt_disable();
3939 
3940 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3941 		goto out;
3942 
3943 	cpu_buffer = buffer->buffers[cpu];
3944 	local_irq_save(flags);
3945 	dolock = rb_reader_lock(cpu_buffer);
3946 
3947 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3948 	if (event) {
3949 		cpu_buffer->lost_events = 0;
3950 		rb_advance_reader(cpu_buffer);
3951 	}
3952 
3953 	rb_reader_unlock(cpu_buffer, dolock);
3954 	local_irq_restore(flags);
3955 
3956  out:
3957 	preempt_enable();
3958 
3959 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3960 		goto again;
3961 
3962 	return event;
3963 }
3964 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3965 
3966 /**
3967  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3968  * @buffer: The ring buffer to read from
3969  * @cpu: The cpu buffer to iterate over
3970  *
3971  * This performs the initial preparations necessary to iterate
3972  * through the buffer.  Memory is allocated, buffer recording
3973  * is disabled, and the iterator pointer is returned to the caller.
3974  *
3975  * Disabling buffer recordng prevents the reading from being
3976  * corrupted. This is not a consuming read, so a producer is not
3977  * expected.
3978  *
3979  * After a sequence of ring_buffer_read_prepare calls, the user is
3980  * expected to make at least one call to ring_buffer_read_prepare_sync.
3981  * Afterwards, ring_buffer_read_start is invoked to get things going
3982  * for real.
3983  *
3984  * This overall must be paired with ring_buffer_read_finish.
3985  */
3986 struct ring_buffer_iter *
3987 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3988 {
3989 	struct ring_buffer_per_cpu *cpu_buffer;
3990 	struct ring_buffer_iter *iter;
3991 
3992 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3993 		return NULL;
3994 
3995 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3996 	if (!iter)
3997 		return NULL;
3998 
3999 	cpu_buffer = buffer->buffers[cpu];
4000 
4001 	iter->cpu_buffer = cpu_buffer;
4002 
4003 	atomic_inc(&buffer->resize_disabled);
4004 	atomic_inc(&cpu_buffer->record_disabled);
4005 
4006 	return iter;
4007 }
4008 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4009 
4010 /**
4011  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4012  *
4013  * All previously invoked ring_buffer_read_prepare calls to prepare
4014  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4015  * calls on those iterators are allowed.
4016  */
4017 void
4018 ring_buffer_read_prepare_sync(void)
4019 {
4020 	synchronize_sched();
4021 }
4022 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4023 
4024 /**
4025  * ring_buffer_read_start - start a non consuming read of the buffer
4026  * @iter: The iterator returned by ring_buffer_read_prepare
4027  *
4028  * This finalizes the startup of an iteration through the buffer.
4029  * The iterator comes from a call to ring_buffer_read_prepare and
4030  * an intervening ring_buffer_read_prepare_sync must have been
4031  * performed.
4032  *
4033  * Must be paired with ring_buffer_read_finish.
4034  */
4035 void
4036 ring_buffer_read_start(struct ring_buffer_iter *iter)
4037 {
4038 	struct ring_buffer_per_cpu *cpu_buffer;
4039 	unsigned long flags;
4040 
4041 	if (!iter)
4042 		return;
4043 
4044 	cpu_buffer = iter->cpu_buffer;
4045 
4046 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4047 	arch_spin_lock(&cpu_buffer->lock);
4048 	rb_iter_reset(iter);
4049 	arch_spin_unlock(&cpu_buffer->lock);
4050 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4051 }
4052 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4053 
4054 /**
4055  * ring_buffer_read_finish - finish reading the iterator of the buffer
4056  * @iter: The iterator retrieved by ring_buffer_start
4057  *
4058  * This re-enables the recording to the buffer, and frees the
4059  * iterator.
4060  */
4061 void
4062 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4063 {
4064 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4065 	unsigned long flags;
4066 
4067 	/*
4068 	 * Ring buffer is disabled from recording, here's a good place
4069 	 * to check the integrity of the ring buffer.
4070 	 * Must prevent readers from trying to read, as the check
4071 	 * clears the HEAD page and readers require it.
4072 	 */
4073 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4074 	rb_check_pages(cpu_buffer);
4075 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4076 
4077 	atomic_dec(&cpu_buffer->record_disabled);
4078 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4079 	kfree(iter);
4080 }
4081 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4082 
4083 /**
4084  * ring_buffer_read - read the next item in the ring buffer by the iterator
4085  * @iter: The ring buffer iterator
4086  * @ts: The time stamp of the event read.
4087  *
4088  * This reads the next event in the ring buffer and increments the iterator.
4089  */
4090 struct ring_buffer_event *
4091 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4092 {
4093 	struct ring_buffer_event *event;
4094 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4095 	unsigned long flags;
4096 
4097 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4098  again:
4099 	event = rb_iter_peek(iter, ts);
4100 	if (!event)
4101 		goto out;
4102 
4103 	if (event->type_len == RINGBUF_TYPE_PADDING)
4104 		goto again;
4105 
4106 	rb_advance_iter(iter);
4107  out:
4108 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4109 
4110 	return event;
4111 }
4112 EXPORT_SYMBOL_GPL(ring_buffer_read);
4113 
4114 /**
4115  * ring_buffer_size - return the size of the ring buffer (in bytes)
4116  * @buffer: The ring buffer.
4117  */
4118 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4119 {
4120 	/*
4121 	 * Earlier, this method returned
4122 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4123 	 * Since the nr_pages field is now removed, we have converted this to
4124 	 * return the per cpu buffer value.
4125 	 */
4126 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4127 		return 0;
4128 
4129 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4130 }
4131 EXPORT_SYMBOL_GPL(ring_buffer_size);
4132 
4133 static void
4134 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4135 {
4136 	rb_head_page_deactivate(cpu_buffer);
4137 
4138 	cpu_buffer->head_page
4139 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4140 	local_set(&cpu_buffer->head_page->write, 0);
4141 	local_set(&cpu_buffer->head_page->entries, 0);
4142 	local_set(&cpu_buffer->head_page->page->commit, 0);
4143 
4144 	cpu_buffer->head_page->read = 0;
4145 
4146 	cpu_buffer->tail_page = cpu_buffer->head_page;
4147 	cpu_buffer->commit_page = cpu_buffer->head_page;
4148 
4149 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4150 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4151 	local_set(&cpu_buffer->reader_page->write, 0);
4152 	local_set(&cpu_buffer->reader_page->entries, 0);
4153 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4154 	cpu_buffer->reader_page->read = 0;
4155 
4156 	local_set(&cpu_buffer->entries_bytes, 0);
4157 	local_set(&cpu_buffer->overrun, 0);
4158 	local_set(&cpu_buffer->commit_overrun, 0);
4159 	local_set(&cpu_buffer->dropped_events, 0);
4160 	local_set(&cpu_buffer->entries, 0);
4161 	local_set(&cpu_buffer->committing, 0);
4162 	local_set(&cpu_buffer->commits, 0);
4163 	cpu_buffer->read = 0;
4164 	cpu_buffer->read_bytes = 0;
4165 
4166 	cpu_buffer->write_stamp = 0;
4167 	cpu_buffer->read_stamp = 0;
4168 
4169 	cpu_buffer->lost_events = 0;
4170 	cpu_buffer->last_overrun = 0;
4171 
4172 	rb_head_page_activate(cpu_buffer);
4173 }
4174 
4175 /**
4176  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4177  * @buffer: The ring buffer to reset a per cpu buffer of
4178  * @cpu: The CPU buffer to be reset
4179  */
4180 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4181 {
4182 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4183 	unsigned long flags;
4184 
4185 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4186 		return;
4187 
4188 	atomic_inc(&buffer->resize_disabled);
4189 	atomic_inc(&cpu_buffer->record_disabled);
4190 
4191 	/* Make sure all commits have finished */
4192 	synchronize_sched();
4193 
4194 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4195 
4196 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4197 		goto out;
4198 
4199 	arch_spin_lock(&cpu_buffer->lock);
4200 
4201 	rb_reset_cpu(cpu_buffer);
4202 
4203 	arch_spin_unlock(&cpu_buffer->lock);
4204 
4205  out:
4206 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4207 
4208 	atomic_dec(&cpu_buffer->record_disabled);
4209 	atomic_dec(&buffer->resize_disabled);
4210 }
4211 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4212 
4213 /**
4214  * ring_buffer_reset - reset a ring buffer
4215  * @buffer: The ring buffer to reset all cpu buffers
4216  */
4217 void ring_buffer_reset(struct ring_buffer *buffer)
4218 {
4219 	int cpu;
4220 
4221 	for_each_buffer_cpu(buffer, cpu)
4222 		ring_buffer_reset_cpu(buffer, cpu);
4223 }
4224 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4225 
4226 /**
4227  * rind_buffer_empty - is the ring buffer empty?
4228  * @buffer: The ring buffer to test
4229  */
4230 int ring_buffer_empty(struct ring_buffer *buffer)
4231 {
4232 	struct ring_buffer_per_cpu *cpu_buffer;
4233 	unsigned long flags;
4234 	bool dolock;
4235 	int cpu;
4236 	int ret;
4237 
4238 	/* yes this is racy, but if you don't like the race, lock the buffer */
4239 	for_each_buffer_cpu(buffer, cpu) {
4240 		cpu_buffer = buffer->buffers[cpu];
4241 		local_irq_save(flags);
4242 		dolock = rb_reader_lock(cpu_buffer);
4243 		ret = rb_per_cpu_empty(cpu_buffer);
4244 		rb_reader_unlock(cpu_buffer, dolock);
4245 		local_irq_restore(flags);
4246 
4247 		if (!ret)
4248 			return 0;
4249 	}
4250 
4251 	return 1;
4252 }
4253 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4254 
4255 /**
4256  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4257  * @buffer: The ring buffer
4258  * @cpu: The CPU buffer to test
4259  */
4260 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4261 {
4262 	struct ring_buffer_per_cpu *cpu_buffer;
4263 	unsigned long flags;
4264 	bool dolock;
4265 	int ret;
4266 
4267 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4268 		return 1;
4269 
4270 	cpu_buffer = buffer->buffers[cpu];
4271 	local_irq_save(flags);
4272 	dolock = rb_reader_lock(cpu_buffer);
4273 	ret = rb_per_cpu_empty(cpu_buffer);
4274 	rb_reader_unlock(cpu_buffer, dolock);
4275 	local_irq_restore(flags);
4276 
4277 	return ret;
4278 }
4279 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4280 
4281 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4282 /**
4283  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4284  * @buffer_a: One buffer to swap with
4285  * @buffer_b: The other buffer to swap with
4286  *
4287  * This function is useful for tracers that want to take a "snapshot"
4288  * of a CPU buffer and has another back up buffer lying around.
4289  * it is expected that the tracer handles the cpu buffer not being
4290  * used at the moment.
4291  */
4292 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4293 			 struct ring_buffer *buffer_b, int cpu)
4294 {
4295 	struct ring_buffer_per_cpu *cpu_buffer_a;
4296 	struct ring_buffer_per_cpu *cpu_buffer_b;
4297 	int ret = -EINVAL;
4298 
4299 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4300 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4301 		goto out;
4302 
4303 	cpu_buffer_a = buffer_a->buffers[cpu];
4304 	cpu_buffer_b = buffer_b->buffers[cpu];
4305 
4306 	/* At least make sure the two buffers are somewhat the same */
4307 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4308 		goto out;
4309 
4310 	ret = -EAGAIN;
4311 
4312 	if (atomic_read(&buffer_a->record_disabled))
4313 		goto out;
4314 
4315 	if (atomic_read(&buffer_b->record_disabled))
4316 		goto out;
4317 
4318 	if (atomic_read(&cpu_buffer_a->record_disabled))
4319 		goto out;
4320 
4321 	if (atomic_read(&cpu_buffer_b->record_disabled))
4322 		goto out;
4323 
4324 	/*
4325 	 * We can't do a synchronize_sched here because this
4326 	 * function can be called in atomic context.
4327 	 * Normally this will be called from the same CPU as cpu.
4328 	 * If not it's up to the caller to protect this.
4329 	 */
4330 	atomic_inc(&cpu_buffer_a->record_disabled);
4331 	atomic_inc(&cpu_buffer_b->record_disabled);
4332 
4333 	ret = -EBUSY;
4334 	if (local_read(&cpu_buffer_a->committing))
4335 		goto out_dec;
4336 	if (local_read(&cpu_buffer_b->committing))
4337 		goto out_dec;
4338 
4339 	buffer_a->buffers[cpu] = cpu_buffer_b;
4340 	buffer_b->buffers[cpu] = cpu_buffer_a;
4341 
4342 	cpu_buffer_b->buffer = buffer_a;
4343 	cpu_buffer_a->buffer = buffer_b;
4344 
4345 	ret = 0;
4346 
4347 out_dec:
4348 	atomic_dec(&cpu_buffer_a->record_disabled);
4349 	atomic_dec(&cpu_buffer_b->record_disabled);
4350 out:
4351 	return ret;
4352 }
4353 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4354 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4355 
4356 /**
4357  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4358  * @buffer: the buffer to allocate for.
4359  * @cpu: the cpu buffer to allocate.
4360  *
4361  * This function is used in conjunction with ring_buffer_read_page.
4362  * When reading a full page from the ring buffer, these functions
4363  * can be used to speed up the process. The calling function should
4364  * allocate a few pages first with this function. Then when it
4365  * needs to get pages from the ring buffer, it passes the result
4366  * of this function into ring_buffer_read_page, which will swap
4367  * the page that was allocated, with the read page of the buffer.
4368  *
4369  * Returns:
4370  *  The page allocated, or NULL on error.
4371  */
4372 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4373 {
4374 	struct buffer_data_page *bpage;
4375 	struct page *page;
4376 
4377 	page = alloc_pages_node(cpu_to_node(cpu),
4378 				GFP_KERNEL | __GFP_NORETRY, 0);
4379 	if (!page)
4380 		return NULL;
4381 
4382 	bpage = page_address(page);
4383 
4384 	rb_init_page(bpage);
4385 
4386 	return bpage;
4387 }
4388 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4389 
4390 /**
4391  * ring_buffer_free_read_page - free an allocated read page
4392  * @buffer: the buffer the page was allocate for
4393  * @data: the page to free
4394  *
4395  * Free a page allocated from ring_buffer_alloc_read_page.
4396  */
4397 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4398 {
4399 	free_page((unsigned long)data);
4400 }
4401 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4402 
4403 /**
4404  * ring_buffer_read_page - extract a page from the ring buffer
4405  * @buffer: buffer to extract from
4406  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4407  * @len: amount to extract
4408  * @cpu: the cpu of the buffer to extract
4409  * @full: should the extraction only happen when the page is full.
4410  *
4411  * This function will pull out a page from the ring buffer and consume it.
4412  * @data_page must be the address of the variable that was returned
4413  * from ring_buffer_alloc_read_page. This is because the page might be used
4414  * to swap with a page in the ring buffer.
4415  *
4416  * for example:
4417  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4418  *	if (!rpage)
4419  *		return error;
4420  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4421  *	if (ret >= 0)
4422  *		process_page(rpage, ret);
4423  *
4424  * When @full is set, the function will not return true unless
4425  * the writer is off the reader page.
4426  *
4427  * Note: it is up to the calling functions to handle sleeps and wakeups.
4428  *  The ring buffer can be used anywhere in the kernel and can not
4429  *  blindly call wake_up. The layer that uses the ring buffer must be
4430  *  responsible for that.
4431  *
4432  * Returns:
4433  *  >=0 if data has been transferred, returns the offset of consumed data.
4434  *  <0 if no data has been transferred.
4435  */
4436 int ring_buffer_read_page(struct ring_buffer *buffer,
4437 			  void **data_page, size_t len, int cpu, int full)
4438 {
4439 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4440 	struct ring_buffer_event *event;
4441 	struct buffer_data_page *bpage;
4442 	struct buffer_page *reader;
4443 	unsigned long missed_events;
4444 	unsigned long flags;
4445 	unsigned int commit;
4446 	unsigned int read;
4447 	u64 save_timestamp;
4448 	int ret = -1;
4449 
4450 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4451 		goto out;
4452 
4453 	/*
4454 	 * If len is not big enough to hold the page header, then
4455 	 * we can not copy anything.
4456 	 */
4457 	if (len <= BUF_PAGE_HDR_SIZE)
4458 		goto out;
4459 
4460 	len -= BUF_PAGE_HDR_SIZE;
4461 
4462 	if (!data_page)
4463 		goto out;
4464 
4465 	bpage = *data_page;
4466 	if (!bpage)
4467 		goto out;
4468 
4469 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4470 
4471 	reader = rb_get_reader_page(cpu_buffer);
4472 	if (!reader)
4473 		goto out_unlock;
4474 
4475 	event = rb_reader_event(cpu_buffer);
4476 
4477 	read = reader->read;
4478 	commit = rb_page_commit(reader);
4479 
4480 	/* Check if any events were dropped */
4481 	missed_events = cpu_buffer->lost_events;
4482 
4483 	/*
4484 	 * If this page has been partially read or
4485 	 * if len is not big enough to read the rest of the page or
4486 	 * a writer is still on the page, then
4487 	 * we must copy the data from the page to the buffer.
4488 	 * Otherwise, we can simply swap the page with the one passed in.
4489 	 */
4490 	if (read || (len < (commit - read)) ||
4491 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4492 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4493 		unsigned int rpos = read;
4494 		unsigned int pos = 0;
4495 		unsigned int size;
4496 
4497 		if (full)
4498 			goto out_unlock;
4499 
4500 		if (len > (commit - read))
4501 			len = (commit - read);
4502 
4503 		/* Always keep the time extend and data together */
4504 		size = rb_event_ts_length(event);
4505 
4506 		if (len < size)
4507 			goto out_unlock;
4508 
4509 		/* save the current timestamp, since the user will need it */
4510 		save_timestamp = cpu_buffer->read_stamp;
4511 
4512 		/* Need to copy one event at a time */
4513 		do {
4514 			/* We need the size of one event, because
4515 			 * rb_advance_reader only advances by one event,
4516 			 * whereas rb_event_ts_length may include the size of
4517 			 * one or two events.
4518 			 * We have already ensured there's enough space if this
4519 			 * is a time extend. */
4520 			size = rb_event_length(event);
4521 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4522 
4523 			len -= size;
4524 
4525 			rb_advance_reader(cpu_buffer);
4526 			rpos = reader->read;
4527 			pos += size;
4528 
4529 			if (rpos >= commit)
4530 				break;
4531 
4532 			event = rb_reader_event(cpu_buffer);
4533 			/* Always keep the time extend and data together */
4534 			size = rb_event_ts_length(event);
4535 		} while (len >= size);
4536 
4537 		/* update bpage */
4538 		local_set(&bpage->commit, pos);
4539 		bpage->time_stamp = save_timestamp;
4540 
4541 		/* we copied everything to the beginning */
4542 		read = 0;
4543 	} else {
4544 		/* update the entry counter */
4545 		cpu_buffer->read += rb_page_entries(reader);
4546 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4547 
4548 		/* swap the pages */
4549 		rb_init_page(bpage);
4550 		bpage = reader->page;
4551 		reader->page = *data_page;
4552 		local_set(&reader->write, 0);
4553 		local_set(&reader->entries, 0);
4554 		reader->read = 0;
4555 		*data_page = bpage;
4556 
4557 		/*
4558 		 * Use the real_end for the data size,
4559 		 * This gives us a chance to store the lost events
4560 		 * on the page.
4561 		 */
4562 		if (reader->real_end)
4563 			local_set(&bpage->commit, reader->real_end);
4564 	}
4565 	ret = read;
4566 
4567 	cpu_buffer->lost_events = 0;
4568 
4569 	commit = local_read(&bpage->commit);
4570 	/*
4571 	 * Set a flag in the commit field if we lost events
4572 	 */
4573 	if (missed_events) {
4574 		/* If there is room at the end of the page to save the
4575 		 * missed events, then record it there.
4576 		 */
4577 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4578 			memcpy(&bpage->data[commit], &missed_events,
4579 			       sizeof(missed_events));
4580 			local_add(RB_MISSED_STORED, &bpage->commit);
4581 			commit += sizeof(missed_events);
4582 		}
4583 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4584 	}
4585 
4586 	/*
4587 	 * This page may be off to user land. Zero it out here.
4588 	 */
4589 	if (commit < BUF_PAGE_SIZE)
4590 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4591 
4592  out_unlock:
4593 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4594 
4595  out:
4596 	return ret;
4597 }
4598 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4599 
4600 #ifdef CONFIG_HOTPLUG_CPU
4601 static int rb_cpu_notify(struct notifier_block *self,
4602 			 unsigned long action, void *hcpu)
4603 {
4604 	struct ring_buffer *buffer =
4605 		container_of(self, struct ring_buffer, cpu_notify);
4606 	long cpu = (long)hcpu;
4607 	int cpu_i, nr_pages_same;
4608 	unsigned int nr_pages;
4609 
4610 	switch (action) {
4611 	case CPU_UP_PREPARE:
4612 	case CPU_UP_PREPARE_FROZEN:
4613 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4614 			return NOTIFY_OK;
4615 
4616 		nr_pages = 0;
4617 		nr_pages_same = 1;
4618 		/* check if all cpu sizes are same */
4619 		for_each_buffer_cpu(buffer, cpu_i) {
4620 			/* fill in the size from first enabled cpu */
4621 			if (nr_pages == 0)
4622 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4623 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4624 				nr_pages_same = 0;
4625 				break;
4626 			}
4627 		}
4628 		/* allocate minimum pages, user can later expand it */
4629 		if (!nr_pages_same)
4630 			nr_pages = 2;
4631 		buffer->buffers[cpu] =
4632 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4633 		if (!buffer->buffers[cpu]) {
4634 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4635 			     cpu);
4636 			return NOTIFY_OK;
4637 		}
4638 		smp_wmb();
4639 		cpumask_set_cpu(cpu, buffer->cpumask);
4640 		break;
4641 	case CPU_DOWN_PREPARE:
4642 	case CPU_DOWN_PREPARE_FROZEN:
4643 		/*
4644 		 * Do nothing.
4645 		 *  If we were to free the buffer, then the user would
4646 		 *  lose any trace that was in the buffer.
4647 		 */
4648 		break;
4649 	default:
4650 		break;
4651 	}
4652 	return NOTIFY_OK;
4653 }
4654 #endif
4655 
4656 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4657 /*
4658  * This is a basic integrity check of the ring buffer.
4659  * Late in the boot cycle this test will run when configured in.
4660  * It will kick off a thread per CPU that will go into a loop
4661  * writing to the per cpu ring buffer various sizes of data.
4662  * Some of the data will be large items, some small.
4663  *
4664  * Another thread is created that goes into a spin, sending out
4665  * IPIs to the other CPUs to also write into the ring buffer.
4666  * this is to test the nesting ability of the buffer.
4667  *
4668  * Basic stats are recorded and reported. If something in the
4669  * ring buffer should happen that's not expected, a big warning
4670  * is displayed and all ring buffers are disabled.
4671  */
4672 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4673 
4674 struct rb_test_data {
4675 	struct ring_buffer	*buffer;
4676 	unsigned long		events;
4677 	unsigned long		bytes_written;
4678 	unsigned long		bytes_alloc;
4679 	unsigned long		bytes_dropped;
4680 	unsigned long		events_nested;
4681 	unsigned long		bytes_written_nested;
4682 	unsigned long		bytes_alloc_nested;
4683 	unsigned long		bytes_dropped_nested;
4684 	int			min_size_nested;
4685 	int			max_size_nested;
4686 	int			max_size;
4687 	int			min_size;
4688 	int			cpu;
4689 	int			cnt;
4690 };
4691 
4692 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4693 
4694 /* 1 meg per cpu */
4695 #define RB_TEST_BUFFER_SIZE	1048576
4696 
4697 static char rb_string[] __initdata =
4698 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4699 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4700 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4701 
4702 static bool rb_test_started __initdata;
4703 
4704 struct rb_item {
4705 	int size;
4706 	char str[];
4707 };
4708 
4709 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4710 {
4711 	struct ring_buffer_event *event;
4712 	struct rb_item *item;
4713 	bool started;
4714 	int event_len;
4715 	int size;
4716 	int len;
4717 	int cnt;
4718 
4719 	/* Have nested writes different that what is written */
4720 	cnt = data->cnt + (nested ? 27 : 0);
4721 
4722 	/* Multiply cnt by ~e, to make some unique increment */
4723 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4724 
4725 	len = size + sizeof(struct rb_item);
4726 
4727 	started = rb_test_started;
4728 	/* read rb_test_started before checking buffer enabled */
4729 	smp_rmb();
4730 
4731 	event = ring_buffer_lock_reserve(data->buffer, len);
4732 	if (!event) {
4733 		/* Ignore dropped events before test starts. */
4734 		if (started) {
4735 			if (nested)
4736 				data->bytes_dropped += len;
4737 			else
4738 				data->bytes_dropped_nested += len;
4739 		}
4740 		return len;
4741 	}
4742 
4743 	event_len = ring_buffer_event_length(event);
4744 
4745 	if (RB_WARN_ON(data->buffer, event_len < len))
4746 		goto out;
4747 
4748 	item = ring_buffer_event_data(event);
4749 	item->size = size;
4750 	memcpy(item->str, rb_string, size);
4751 
4752 	if (nested) {
4753 		data->bytes_alloc_nested += event_len;
4754 		data->bytes_written_nested += len;
4755 		data->events_nested++;
4756 		if (!data->min_size_nested || len < data->min_size_nested)
4757 			data->min_size_nested = len;
4758 		if (len > data->max_size_nested)
4759 			data->max_size_nested = len;
4760 	} else {
4761 		data->bytes_alloc += event_len;
4762 		data->bytes_written += len;
4763 		data->events++;
4764 		if (!data->min_size || len < data->min_size)
4765 			data->max_size = len;
4766 		if (len > data->max_size)
4767 			data->max_size = len;
4768 	}
4769 
4770  out:
4771 	ring_buffer_unlock_commit(data->buffer, event);
4772 
4773 	return 0;
4774 }
4775 
4776 static __init int rb_test(void *arg)
4777 {
4778 	struct rb_test_data *data = arg;
4779 
4780 	while (!kthread_should_stop()) {
4781 		rb_write_something(data, false);
4782 		data->cnt++;
4783 
4784 		set_current_state(TASK_INTERRUPTIBLE);
4785 		/* Now sleep between a min of 100-300us and a max of 1ms */
4786 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4787 	}
4788 
4789 	return 0;
4790 }
4791 
4792 static __init void rb_ipi(void *ignore)
4793 {
4794 	struct rb_test_data *data;
4795 	int cpu = smp_processor_id();
4796 
4797 	data = &rb_data[cpu];
4798 	rb_write_something(data, true);
4799 }
4800 
4801 static __init int rb_hammer_test(void *arg)
4802 {
4803 	while (!kthread_should_stop()) {
4804 
4805 		/* Send an IPI to all cpus to write data! */
4806 		smp_call_function(rb_ipi, NULL, 1);
4807 		/* No sleep, but for non preempt, let others run */
4808 		schedule();
4809 	}
4810 
4811 	return 0;
4812 }
4813 
4814 static __init int test_ringbuffer(void)
4815 {
4816 	struct task_struct *rb_hammer;
4817 	struct ring_buffer *buffer;
4818 	int cpu;
4819 	int ret = 0;
4820 
4821 	pr_info("Running ring buffer tests...\n");
4822 
4823 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4824 	if (WARN_ON(!buffer))
4825 		return 0;
4826 
4827 	/* Disable buffer so that threads can't write to it yet */
4828 	ring_buffer_record_off(buffer);
4829 
4830 	for_each_online_cpu(cpu) {
4831 		rb_data[cpu].buffer = buffer;
4832 		rb_data[cpu].cpu = cpu;
4833 		rb_data[cpu].cnt = cpu;
4834 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4835 						 "rbtester/%d", cpu);
4836 		if (WARN_ON(!rb_threads[cpu])) {
4837 			pr_cont("FAILED\n");
4838 			ret = -1;
4839 			goto out_free;
4840 		}
4841 
4842 		kthread_bind(rb_threads[cpu], cpu);
4843  		wake_up_process(rb_threads[cpu]);
4844 	}
4845 
4846 	/* Now create the rb hammer! */
4847 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4848 	if (WARN_ON(!rb_hammer)) {
4849 		pr_cont("FAILED\n");
4850 		ret = -1;
4851 		goto out_free;
4852 	}
4853 
4854 	ring_buffer_record_on(buffer);
4855 	/*
4856 	 * Show buffer is enabled before setting rb_test_started.
4857 	 * Yes there's a small race window where events could be
4858 	 * dropped and the thread wont catch it. But when a ring
4859 	 * buffer gets enabled, there will always be some kind of
4860 	 * delay before other CPUs see it. Thus, we don't care about
4861 	 * those dropped events. We care about events dropped after
4862 	 * the threads see that the buffer is active.
4863 	 */
4864 	smp_wmb();
4865 	rb_test_started = true;
4866 
4867 	set_current_state(TASK_INTERRUPTIBLE);
4868 	/* Just run for 10 seconds */;
4869 	schedule_timeout(10 * HZ);
4870 
4871 	kthread_stop(rb_hammer);
4872 
4873  out_free:
4874 	for_each_online_cpu(cpu) {
4875 		if (!rb_threads[cpu])
4876 			break;
4877 		kthread_stop(rb_threads[cpu]);
4878 	}
4879 	if (ret) {
4880 		ring_buffer_free(buffer);
4881 		return ret;
4882 	}
4883 
4884 	/* Report! */
4885 	pr_info("finished\n");
4886 	for_each_online_cpu(cpu) {
4887 		struct ring_buffer_event *event;
4888 		struct rb_test_data *data = &rb_data[cpu];
4889 		struct rb_item *item;
4890 		unsigned long total_events;
4891 		unsigned long total_dropped;
4892 		unsigned long total_written;
4893 		unsigned long total_alloc;
4894 		unsigned long total_read = 0;
4895 		unsigned long total_size = 0;
4896 		unsigned long total_len = 0;
4897 		unsigned long total_lost = 0;
4898 		unsigned long lost;
4899 		int big_event_size;
4900 		int small_event_size;
4901 
4902 		ret = -1;
4903 
4904 		total_events = data->events + data->events_nested;
4905 		total_written = data->bytes_written + data->bytes_written_nested;
4906 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4907 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4908 
4909 		big_event_size = data->max_size + data->max_size_nested;
4910 		small_event_size = data->min_size + data->min_size_nested;
4911 
4912 		pr_info("CPU %d:\n", cpu);
4913 		pr_info("              events:    %ld\n", total_events);
4914 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4915 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4916 		pr_info("       written bytes:    %ld\n", total_written);
4917 		pr_info("       biggest event:    %d\n", big_event_size);
4918 		pr_info("      smallest event:    %d\n", small_event_size);
4919 
4920 		if (RB_WARN_ON(buffer, total_dropped))
4921 			break;
4922 
4923 		ret = 0;
4924 
4925 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4926 			total_lost += lost;
4927 			item = ring_buffer_event_data(event);
4928 			total_len += ring_buffer_event_length(event);
4929 			total_size += item->size + sizeof(struct rb_item);
4930 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4931 				pr_info("FAILED!\n");
4932 				pr_info("buffer had: %.*s\n", item->size, item->str);
4933 				pr_info("expected:   %.*s\n", item->size, rb_string);
4934 				RB_WARN_ON(buffer, 1);
4935 				ret = -1;
4936 				break;
4937 			}
4938 			total_read++;
4939 		}
4940 		if (ret)
4941 			break;
4942 
4943 		ret = -1;
4944 
4945 		pr_info("         read events:   %ld\n", total_read);
4946 		pr_info("         lost events:   %ld\n", total_lost);
4947 		pr_info("        total events:   %ld\n", total_lost + total_read);
4948 		pr_info("  recorded len bytes:   %ld\n", total_len);
4949 		pr_info(" recorded size bytes:   %ld\n", total_size);
4950 		if (total_lost)
4951 			pr_info(" With dropped events, record len and size may not match\n"
4952 				" alloced and written from above\n");
4953 		if (!total_lost) {
4954 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4955 				       total_size != total_written))
4956 				break;
4957 		}
4958 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4959 			break;
4960 
4961 		ret = 0;
4962 	}
4963 	if (!ret)
4964 		pr_info("Ring buffer PASSED!\n");
4965 
4966 	ring_buffer_free(buffer);
4967 	return 0;
4968 }
4969 
4970 late_initcall(test_ringbuffer);
4971 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4972