1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/uaccess.h> 13 #include <linux/hardirq.h> 14 #include <linux/kthread.h> /* for self test */ 15 #include <linux/kmemcheck.h> 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* Used for individual buffers (after the counter) */ 119 #define RB_BUFFER_OFF (1 << 20) 120 121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 122 123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 124 #define RB_ALIGNMENT 4U 125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 127 128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 129 # define RB_FORCE_8BYTE_ALIGNMENT 0 130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 131 #else 132 # define RB_FORCE_8BYTE_ALIGNMENT 1 133 # define RB_ARCH_ALIGNMENT 8U 134 #endif 135 136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 137 138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 140 141 enum { 142 RB_LEN_TIME_EXTEND = 8, 143 RB_LEN_TIME_STAMP = 16, 144 }; 145 146 #define skip_time_extend(event) \ 147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 148 149 static inline int rb_null_event(struct ring_buffer_event *event) 150 { 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 152 } 153 154 static void rb_event_set_padding(struct ring_buffer_event *event) 155 { 156 /* padding has a NULL time_delta */ 157 event->type_len = RINGBUF_TYPE_PADDING; 158 event->time_delta = 0; 159 } 160 161 static unsigned 162 rb_event_data_length(struct ring_buffer_event *event) 163 { 164 unsigned length; 165 166 if (event->type_len) 167 length = event->type_len * RB_ALIGNMENT; 168 else 169 length = event->array[0]; 170 return length + RB_EVNT_HDR_SIZE; 171 } 172 173 /* 174 * Return the length of the given event. Will return 175 * the length of the time extend if the event is a 176 * time extend. 177 */ 178 static inline unsigned 179 rb_event_length(struct ring_buffer_event *event) 180 { 181 switch (event->type_len) { 182 case RINGBUF_TYPE_PADDING: 183 if (rb_null_event(event)) 184 /* undefined */ 185 return -1; 186 return event->array[0] + RB_EVNT_HDR_SIZE; 187 188 case RINGBUF_TYPE_TIME_EXTEND: 189 return RB_LEN_TIME_EXTEND; 190 191 case RINGBUF_TYPE_TIME_STAMP: 192 return RB_LEN_TIME_STAMP; 193 194 case RINGBUF_TYPE_DATA: 195 return rb_event_data_length(event); 196 default: 197 BUG(); 198 } 199 /* not hit */ 200 return 0; 201 } 202 203 /* 204 * Return total length of time extend and data, 205 * or just the event length for all other events. 206 */ 207 static inline unsigned 208 rb_event_ts_length(struct ring_buffer_event *event) 209 { 210 unsigned len = 0; 211 212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 213 /* time extends include the data event after it */ 214 len = RB_LEN_TIME_EXTEND; 215 event = skip_time_extend(event); 216 } 217 return len + rb_event_length(event); 218 } 219 220 /** 221 * ring_buffer_event_length - return the length of the event 222 * @event: the event to get the length of 223 * 224 * Returns the size of the data load of a data event. 225 * If the event is something other than a data event, it 226 * returns the size of the event itself. With the exception 227 * of a TIME EXTEND, where it still returns the size of the 228 * data load of the data event after it. 229 */ 230 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 235 event = skip_time_extend(event); 236 237 length = rb_event_length(event); 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 239 return length; 240 length -= RB_EVNT_HDR_SIZE; 241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 242 length -= sizeof(event->array[0]); 243 return length; 244 } 245 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 246 247 /* inline for ring buffer fast paths */ 248 static void * 249 rb_event_data(struct ring_buffer_event *event) 250 { 251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 252 event = skip_time_extend(event); 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 254 /* If length is in len field, then array[0] has the data */ 255 if (event->type_len) 256 return (void *)&event->array[0]; 257 /* Otherwise length is in array[0] and array[1] has the data */ 258 return (void *)&event->array[1]; 259 } 260 261 /** 262 * ring_buffer_event_data - return the data of the event 263 * @event: the event to get the data from 264 */ 265 void *ring_buffer_event_data(struct ring_buffer_event *event) 266 { 267 return rb_event_data(event); 268 } 269 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 270 271 #define for_each_buffer_cpu(buffer, cpu) \ 272 for_each_cpu(cpu, buffer->cpumask) 273 274 #define TS_SHIFT 27 275 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 276 #define TS_DELTA_TEST (~TS_MASK) 277 278 /* Flag when events were overwritten */ 279 #define RB_MISSED_EVENTS (1 << 31) 280 /* Missed count stored at end */ 281 #define RB_MISSED_STORED (1 << 30) 282 283 struct buffer_data_page { 284 u64 time_stamp; /* page time stamp */ 285 local_t commit; /* write committed index */ 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 287 }; 288 289 /* 290 * Note, the buffer_page list must be first. The buffer pages 291 * are allocated in cache lines, which means that each buffer 292 * page will be at the beginning of a cache line, and thus 293 * the least significant bits will be zero. We use this to 294 * add flags in the list struct pointers, to make the ring buffer 295 * lockless. 296 */ 297 struct buffer_page { 298 struct list_head list; /* list of buffer pages */ 299 local_t write; /* index for next write */ 300 unsigned read; /* index for next read */ 301 local_t entries; /* entries on this page */ 302 unsigned long real_end; /* real end of data */ 303 struct buffer_data_page *page; /* Actual data page */ 304 }; 305 306 /* 307 * The buffer page counters, write and entries, must be reset 308 * atomically when crossing page boundaries. To synchronize this 309 * update, two counters are inserted into the number. One is 310 * the actual counter for the write position or count on the page. 311 * 312 * The other is a counter of updaters. Before an update happens 313 * the update partition of the counter is incremented. This will 314 * allow the updater to update the counter atomically. 315 * 316 * The counter is 20 bits, and the state data is 12. 317 */ 318 #define RB_WRITE_MASK 0xfffff 319 #define RB_WRITE_INTCNT (1 << 20) 320 321 static void rb_init_page(struct buffer_data_page *bpage) 322 { 323 local_set(&bpage->commit, 0); 324 } 325 326 /** 327 * ring_buffer_page_len - the size of data on the page. 328 * @page: The page to read 329 * 330 * Returns the amount of data on the page, including buffer page header. 331 */ 332 size_t ring_buffer_page_len(void *page) 333 { 334 return local_read(&((struct buffer_data_page *)page)->commit) 335 + BUF_PAGE_HDR_SIZE; 336 } 337 338 /* 339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 340 * this issue out. 341 */ 342 static void free_buffer_page(struct buffer_page *bpage) 343 { 344 free_page((unsigned long)bpage->page); 345 kfree(bpage); 346 } 347 348 /* 349 * We need to fit the time_stamp delta into 27 bits. 350 */ 351 static inline int test_time_stamp(u64 delta) 352 { 353 if (delta & TS_DELTA_TEST) 354 return 1; 355 return 0; 356 } 357 358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 359 360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 362 363 int ring_buffer_print_page_header(struct trace_seq *s) 364 { 365 struct buffer_data_page field; 366 367 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 368 "offset:0;\tsize:%u;\tsigned:%u;\n", 369 (unsigned int)sizeof(field.time_stamp), 370 (unsigned int)is_signed_type(u64)); 371 372 trace_seq_printf(s, "\tfield: local_t commit;\t" 373 "offset:%u;\tsize:%u;\tsigned:%u;\n", 374 (unsigned int)offsetof(typeof(field), commit), 375 (unsigned int)sizeof(field.commit), 376 (unsigned int)is_signed_type(long)); 377 378 trace_seq_printf(s, "\tfield: int overwrite;\t" 379 "offset:%u;\tsize:%u;\tsigned:%u;\n", 380 (unsigned int)offsetof(typeof(field), commit), 381 1, 382 (unsigned int)is_signed_type(long)); 383 384 trace_seq_printf(s, "\tfield: char data;\t" 385 "offset:%u;\tsize:%u;\tsigned:%u;\n", 386 (unsigned int)offsetof(typeof(field), data), 387 (unsigned int)BUF_PAGE_SIZE, 388 (unsigned int)is_signed_type(char)); 389 390 return !trace_seq_has_overflowed(s); 391 } 392 393 struct rb_irq_work { 394 struct irq_work work; 395 wait_queue_head_t waiters; 396 wait_queue_head_t full_waiters; 397 bool waiters_pending; 398 bool full_waiters_pending; 399 bool wakeup_full; 400 }; 401 402 /* 403 * Used for which event context the event is in. 404 * NMI = 0 405 * IRQ = 1 406 * SOFTIRQ = 2 407 * NORMAL = 3 408 * 409 * See trace_recursive_lock() comment below for more details. 410 */ 411 enum { 412 RB_CTX_NMI, 413 RB_CTX_IRQ, 414 RB_CTX_SOFTIRQ, 415 RB_CTX_NORMAL, 416 RB_CTX_MAX 417 }; 418 419 /* 420 * head_page == tail_page && head == tail then buffer is empty. 421 */ 422 struct ring_buffer_per_cpu { 423 int cpu; 424 atomic_t record_disabled; 425 struct ring_buffer *buffer; 426 raw_spinlock_t reader_lock; /* serialize readers */ 427 arch_spinlock_t lock; 428 struct lock_class_key lock_key; 429 unsigned int nr_pages; 430 unsigned int current_context; 431 struct list_head *pages; 432 struct buffer_page *head_page; /* read from head */ 433 struct buffer_page *tail_page; /* write to tail */ 434 struct buffer_page *commit_page; /* committed pages */ 435 struct buffer_page *reader_page; 436 unsigned long lost_events; 437 unsigned long last_overrun; 438 local_t entries_bytes; 439 local_t entries; 440 local_t overrun; 441 local_t commit_overrun; 442 local_t dropped_events; 443 local_t committing; 444 local_t commits; 445 unsigned long read; 446 unsigned long read_bytes; 447 u64 write_stamp; 448 u64 read_stamp; 449 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 450 int nr_pages_to_update; 451 struct list_head new_pages; /* new pages to add */ 452 struct work_struct update_pages_work; 453 struct completion update_done; 454 455 struct rb_irq_work irq_work; 456 }; 457 458 struct ring_buffer { 459 unsigned flags; 460 int cpus; 461 atomic_t record_disabled; 462 atomic_t resize_disabled; 463 cpumask_var_t cpumask; 464 465 struct lock_class_key *reader_lock_key; 466 467 struct mutex mutex; 468 469 struct ring_buffer_per_cpu **buffers; 470 471 #ifdef CONFIG_HOTPLUG_CPU 472 struct notifier_block cpu_notify; 473 #endif 474 u64 (*clock)(void); 475 476 struct rb_irq_work irq_work; 477 }; 478 479 struct ring_buffer_iter { 480 struct ring_buffer_per_cpu *cpu_buffer; 481 unsigned long head; 482 struct buffer_page *head_page; 483 struct buffer_page *cache_reader_page; 484 unsigned long cache_read; 485 u64 read_stamp; 486 }; 487 488 /* 489 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 490 * 491 * Schedules a delayed work to wake up any task that is blocked on the 492 * ring buffer waiters queue. 493 */ 494 static void rb_wake_up_waiters(struct irq_work *work) 495 { 496 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 497 498 wake_up_all(&rbwork->waiters); 499 if (rbwork->wakeup_full) { 500 rbwork->wakeup_full = false; 501 wake_up_all(&rbwork->full_waiters); 502 } 503 } 504 505 /** 506 * ring_buffer_wait - wait for input to the ring buffer 507 * @buffer: buffer to wait on 508 * @cpu: the cpu buffer to wait on 509 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 510 * 511 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 512 * as data is added to any of the @buffer's cpu buffers. Otherwise 513 * it will wait for data to be added to a specific cpu buffer. 514 */ 515 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 516 { 517 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 518 DEFINE_WAIT(wait); 519 struct rb_irq_work *work; 520 int ret = 0; 521 522 /* 523 * Depending on what the caller is waiting for, either any 524 * data in any cpu buffer, or a specific buffer, put the 525 * caller on the appropriate wait queue. 526 */ 527 if (cpu == RING_BUFFER_ALL_CPUS) { 528 work = &buffer->irq_work; 529 /* Full only makes sense on per cpu reads */ 530 full = false; 531 } else { 532 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 533 return -ENODEV; 534 cpu_buffer = buffer->buffers[cpu]; 535 work = &cpu_buffer->irq_work; 536 } 537 538 539 while (true) { 540 if (full) 541 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 542 else 543 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 544 545 /* 546 * The events can happen in critical sections where 547 * checking a work queue can cause deadlocks. 548 * After adding a task to the queue, this flag is set 549 * only to notify events to try to wake up the queue 550 * using irq_work. 551 * 552 * We don't clear it even if the buffer is no longer 553 * empty. The flag only causes the next event to run 554 * irq_work to do the work queue wake up. The worse 555 * that can happen if we race with !trace_empty() is that 556 * an event will cause an irq_work to try to wake up 557 * an empty queue. 558 * 559 * There's no reason to protect this flag either, as 560 * the work queue and irq_work logic will do the necessary 561 * synchronization for the wake ups. The only thing 562 * that is necessary is that the wake up happens after 563 * a task has been queued. It's OK for spurious wake ups. 564 */ 565 if (full) 566 work->full_waiters_pending = true; 567 else 568 work->waiters_pending = true; 569 570 if (signal_pending(current)) { 571 ret = -EINTR; 572 break; 573 } 574 575 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 576 break; 577 578 if (cpu != RING_BUFFER_ALL_CPUS && 579 !ring_buffer_empty_cpu(buffer, cpu)) { 580 unsigned long flags; 581 bool pagebusy; 582 583 if (!full) 584 break; 585 586 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 587 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 588 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 589 590 if (!pagebusy) 591 break; 592 } 593 594 schedule(); 595 } 596 597 if (full) 598 finish_wait(&work->full_waiters, &wait); 599 else 600 finish_wait(&work->waiters, &wait); 601 602 return ret; 603 } 604 605 /** 606 * ring_buffer_poll_wait - poll on buffer input 607 * @buffer: buffer to wait on 608 * @cpu: the cpu buffer to wait on 609 * @filp: the file descriptor 610 * @poll_table: The poll descriptor 611 * 612 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 613 * as data is added to any of the @buffer's cpu buffers. Otherwise 614 * it will wait for data to be added to a specific cpu buffer. 615 * 616 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 617 * zero otherwise. 618 */ 619 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 620 struct file *filp, poll_table *poll_table) 621 { 622 struct ring_buffer_per_cpu *cpu_buffer; 623 struct rb_irq_work *work; 624 625 if (cpu == RING_BUFFER_ALL_CPUS) 626 work = &buffer->irq_work; 627 else { 628 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 629 return -EINVAL; 630 631 cpu_buffer = buffer->buffers[cpu]; 632 work = &cpu_buffer->irq_work; 633 } 634 635 poll_wait(filp, &work->waiters, poll_table); 636 work->waiters_pending = true; 637 /* 638 * There's a tight race between setting the waiters_pending and 639 * checking if the ring buffer is empty. Once the waiters_pending bit 640 * is set, the next event will wake the task up, but we can get stuck 641 * if there's only a single event in. 642 * 643 * FIXME: Ideally, we need a memory barrier on the writer side as well, 644 * but adding a memory barrier to all events will cause too much of a 645 * performance hit in the fast path. We only need a memory barrier when 646 * the buffer goes from empty to having content. But as this race is 647 * extremely small, and it's not a problem if another event comes in, we 648 * will fix it later. 649 */ 650 smp_mb(); 651 652 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 653 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 654 return POLLIN | POLLRDNORM; 655 return 0; 656 } 657 658 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 659 #define RB_WARN_ON(b, cond) \ 660 ({ \ 661 int _____ret = unlikely(cond); \ 662 if (_____ret) { \ 663 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 664 struct ring_buffer_per_cpu *__b = \ 665 (void *)b; \ 666 atomic_inc(&__b->buffer->record_disabled); \ 667 } else \ 668 atomic_inc(&b->record_disabled); \ 669 WARN_ON(1); \ 670 } \ 671 _____ret; \ 672 }) 673 674 /* Up this if you want to test the TIME_EXTENTS and normalization */ 675 #define DEBUG_SHIFT 0 676 677 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 678 { 679 /* shift to debug/test normalization and TIME_EXTENTS */ 680 return buffer->clock() << DEBUG_SHIFT; 681 } 682 683 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 684 { 685 u64 time; 686 687 preempt_disable_notrace(); 688 time = rb_time_stamp(buffer); 689 preempt_enable_no_resched_notrace(); 690 691 return time; 692 } 693 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 694 695 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 696 int cpu, u64 *ts) 697 { 698 /* Just stupid testing the normalize function and deltas */ 699 *ts >>= DEBUG_SHIFT; 700 } 701 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 702 703 /* 704 * Making the ring buffer lockless makes things tricky. 705 * Although writes only happen on the CPU that they are on, 706 * and they only need to worry about interrupts. Reads can 707 * happen on any CPU. 708 * 709 * The reader page is always off the ring buffer, but when the 710 * reader finishes with a page, it needs to swap its page with 711 * a new one from the buffer. The reader needs to take from 712 * the head (writes go to the tail). But if a writer is in overwrite 713 * mode and wraps, it must push the head page forward. 714 * 715 * Here lies the problem. 716 * 717 * The reader must be careful to replace only the head page, and 718 * not another one. As described at the top of the file in the 719 * ASCII art, the reader sets its old page to point to the next 720 * page after head. It then sets the page after head to point to 721 * the old reader page. But if the writer moves the head page 722 * during this operation, the reader could end up with the tail. 723 * 724 * We use cmpxchg to help prevent this race. We also do something 725 * special with the page before head. We set the LSB to 1. 726 * 727 * When the writer must push the page forward, it will clear the 728 * bit that points to the head page, move the head, and then set 729 * the bit that points to the new head page. 730 * 731 * We also don't want an interrupt coming in and moving the head 732 * page on another writer. Thus we use the second LSB to catch 733 * that too. Thus: 734 * 735 * head->list->prev->next bit 1 bit 0 736 * ------- ------- 737 * Normal page 0 0 738 * Points to head page 0 1 739 * New head page 1 0 740 * 741 * Note we can not trust the prev pointer of the head page, because: 742 * 743 * +----+ +-----+ +-----+ 744 * | |------>| T |---X--->| N | 745 * | |<------| | | | 746 * +----+ +-----+ +-----+ 747 * ^ ^ | 748 * | +-----+ | | 749 * +----------| R |----------+ | 750 * | |<-----------+ 751 * +-----+ 752 * 753 * Key: ---X--> HEAD flag set in pointer 754 * T Tail page 755 * R Reader page 756 * N Next page 757 * 758 * (see __rb_reserve_next() to see where this happens) 759 * 760 * What the above shows is that the reader just swapped out 761 * the reader page with a page in the buffer, but before it 762 * could make the new header point back to the new page added 763 * it was preempted by a writer. The writer moved forward onto 764 * the new page added by the reader and is about to move forward 765 * again. 766 * 767 * You can see, it is legitimate for the previous pointer of 768 * the head (or any page) not to point back to itself. But only 769 * temporarially. 770 */ 771 772 #define RB_PAGE_NORMAL 0UL 773 #define RB_PAGE_HEAD 1UL 774 #define RB_PAGE_UPDATE 2UL 775 776 777 #define RB_FLAG_MASK 3UL 778 779 /* PAGE_MOVED is not part of the mask */ 780 #define RB_PAGE_MOVED 4UL 781 782 /* 783 * rb_list_head - remove any bit 784 */ 785 static struct list_head *rb_list_head(struct list_head *list) 786 { 787 unsigned long val = (unsigned long)list; 788 789 return (struct list_head *)(val & ~RB_FLAG_MASK); 790 } 791 792 /* 793 * rb_is_head_page - test if the given page is the head page 794 * 795 * Because the reader may move the head_page pointer, we can 796 * not trust what the head page is (it may be pointing to 797 * the reader page). But if the next page is a header page, 798 * its flags will be non zero. 799 */ 800 static inline int 801 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 802 struct buffer_page *page, struct list_head *list) 803 { 804 unsigned long val; 805 806 val = (unsigned long)list->next; 807 808 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 809 return RB_PAGE_MOVED; 810 811 return val & RB_FLAG_MASK; 812 } 813 814 /* 815 * rb_is_reader_page 816 * 817 * The unique thing about the reader page, is that, if the 818 * writer is ever on it, the previous pointer never points 819 * back to the reader page. 820 */ 821 static int rb_is_reader_page(struct buffer_page *page) 822 { 823 struct list_head *list = page->list.prev; 824 825 return rb_list_head(list->next) != &page->list; 826 } 827 828 /* 829 * rb_set_list_to_head - set a list_head to be pointing to head. 830 */ 831 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 832 struct list_head *list) 833 { 834 unsigned long *ptr; 835 836 ptr = (unsigned long *)&list->next; 837 *ptr |= RB_PAGE_HEAD; 838 *ptr &= ~RB_PAGE_UPDATE; 839 } 840 841 /* 842 * rb_head_page_activate - sets up head page 843 */ 844 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 845 { 846 struct buffer_page *head; 847 848 head = cpu_buffer->head_page; 849 if (!head) 850 return; 851 852 /* 853 * Set the previous list pointer to have the HEAD flag. 854 */ 855 rb_set_list_to_head(cpu_buffer, head->list.prev); 856 } 857 858 static void rb_list_head_clear(struct list_head *list) 859 { 860 unsigned long *ptr = (unsigned long *)&list->next; 861 862 *ptr &= ~RB_FLAG_MASK; 863 } 864 865 /* 866 * rb_head_page_dactivate - clears head page ptr (for free list) 867 */ 868 static void 869 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 870 { 871 struct list_head *hd; 872 873 /* Go through the whole list and clear any pointers found. */ 874 rb_list_head_clear(cpu_buffer->pages); 875 876 list_for_each(hd, cpu_buffer->pages) 877 rb_list_head_clear(hd); 878 } 879 880 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 881 struct buffer_page *head, 882 struct buffer_page *prev, 883 int old_flag, int new_flag) 884 { 885 struct list_head *list; 886 unsigned long val = (unsigned long)&head->list; 887 unsigned long ret; 888 889 list = &prev->list; 890 891 val &= ~RB_FLAG_MASK; 892 893 ret = cmpxchg((unsigned long *)&list->next, 894 val | old_flag, val | new_flag); 895 896 /* check if the reader took the page */ 897 if ((ret & ~RB_FLAG_MASK) != val) 898 return RB_PAGE_MOVED; 899 900 return ret & RB_FLAG_MASK; 901 } 902 903 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 904 struct buffer_page *head, 905 struct buffer_page *prev, 906 int old_flag) 907 { 908 return rb_head_page_set(cpu_buffer, head, prev, 909 old_flag, RB_PAGE_UPDATE); 910 } 911 912 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 913 struct buffer_page *head, 914 struct buffer_page *prev, 915 int old_flag) 916 { 917 return rb_head_page_set(cpu_buffer, head, prev, 918 old_flag, RB_PAGE_HEAD); 919 } 920 921 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 922 struct buffer_page *head, 923 struct buffer_page *prev, 924 int old_flag) 925 { 926 return rb_head_page_set(cpu_buffer, head, prev, 927 old_flag, RB_PAGE_NORMAL); 928 } 929 930 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 931 struct buffer_page **bpage) 932 { 933 struct list_head *p = rb_list_head((*bpage)->list.next); 934 935 *bpage = list_entry(p, struct buffer_page, list); 936 } 937 938 static struct buffer_page * 939 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 940 { 941 struct buffer_page *head; 942 struct buffer_page *page; 943 struct list_head *list; 944 int i; 945 946 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 947 return NULL; 948 949 /* sanity check */ 950 list = cpu_buffer->pages; 951 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 952 return NULL; 953 954 page = head = cpu_buffer->head_page; 955 /* 956 * It is possible that the writer moves the header behind 957 * where we started, and we miss in one loop. 958 * A second loop should grab the header, but we'll do 959 * three loops just because I'm paranoid. 960 */ 961 for (i = 0; i < 3; i++) { 962 do { 963 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 964 cpu_buffer->head_page = page; 965 return page; 966 } 967 rb_inc_page(cpu_buffer, &page); 968 } while (page != head); 969 } 970 971 RB_WARN_ON(cpu_buffer, 1); 972 973 return NULL; 974 } 975 976 static int rb_head_page_replace(struct buffer_page *old, 977 struct buffer_page *new) 978 { 979 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 980 unsigned long val; 981 unsigned long ret; 982 983 val = *ptr & ~RB_FLAG_MASK; 984 val |= RB_PAGE_HEAD; 985 986 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 987 988 return ret == val; 989 } 990 991 /* 992 * rb_tail_page_update - move the tail page forward 993 * 994 * Returns 1 if moved tail page, 0 if someone else did. 995 */ 996 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 997 struct buffer_page *tail_page, 998 struct buffer_page *next_page) 999 { 1000 struct buffer_page *old_tail; 1001 unsigned long old_entries; 1002 unsigned long old_write; 1003 int ret = 0; 1004 1005 /* 1006 * The tail page now needs to be moved forward. 1007 * 1008 * We need to reset the tail page, but without messing 1009 * with possible erasing of data brought in by interrupts 1010 * that have moved the tail page and are currently on it. 1011 * 1012 * We add a counter to the write field to denote this. 1013 */ 1014 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1015 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1016 1017 /* 1018 * Just make sure we have seen our old_write and synchronize 1019 * with any interrupts that come in. 1020 */ 1021 barrier(); 1022 1023 /* 1024 * If the tail page is still the same as what we think 1025 * it is, then it is up to us to update the tail 1026 * pointer. 1027 */ 1028 if (tail_page == cpu_buffer->tail_page) { 1029 /* Zero the write counter */ 1030 unsigned long val = old_write & ~RB_WRITE_MASK; 1031 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1032 1033 /* 1034 * This will only succeed if an interrupt did 1035 * not come in and change it. In which case, we 1036 * do not want to modify it. 1037 * 1038 * We add (void) to let the compiler know that we do not care 1039 * about the return value of these functions. We use the 1040 * cmpxchg to only update if an interrupt did not already 1041 * do it for us. If the cmpxchg fails, we don't care. 1042 */ 1043 (void)local_cmpxchg(&next_page->write, old_write, val); 1044 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1045 1046 /* 1047 * No need to worry about races with clearing out the commit. 1048 * it only can increment when a commit takes place. But that 1049 * only happens in the outer most nested commit. 1050 */ 1051 local_set(&next_page->page->commit, 0); 1052 1053 old_tail = cmpxchg(&cpu_buffer->tail_page, 1054 tail_page, next_page); 1055 1056 if (old_tail == tail_page) 1057 ret = 1; 1058 } 1059 1060 return ret; 1061 } 1062 1063 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1064 struct buffer_page *bpage) 1065 { 1066 unsigned long val = (unsigned long)bpage; 1067 1068 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1069 return 1; 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * rb_check_list - make sure a pointer to a list has the last bits zero 1076 */ 1077 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1078 struct list_head *list) 1079 { 1080 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1081 return 1; 1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1083 return 1; 1084 return 0; 1085 } 1086 1087 /** 1088 * rb_check_pages - integrity check of buffer pages 1089 * @cpu_buffer: CPU buffer with pages to test 1090 * 1091 * As a safety measure we check to make sure the data pages have not 1092 * been corrupted. 1093 */ 1094 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1095 { 1096 struct list_head *head = cpu_buffer->pages; 1097 struct buffer_page *bpage, *tmp; 1098 1099 /* Reset the head page if it exists */ 1100 if (cpu_buffer->head_page) 1101 rb_set_head_page(cpu_buffer); 1102 1103 rb_head_page_deactivate(cpu_buffer); 1104 1105 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1106 return -1; 1107 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1108 return -1; 1109 1110 if (rb_check_list(cpu_buffer, head)) 1111 return -1; 1112 1113 list_for_each_entry_safe(bpage, tmp, head, list) { 1114 if (RB_WARN_ON(cpu_buffer, 1115 bpage->list.next->prev != &bpage->list)) 1116 return -1; 1117 if (RB_WARN_ON(cpu_buffer, 1118 bpage->list.prev->next != &bpage->list)) 1119 return -1; 1120 if (rb_check_list(cpu_buffer, &bpage->list)) 1121 return -1; 1122 } 1123 1124 rb_head_page_activate(cpu_buffer); 1125 1126 return 0; 1127 } 1128 1129 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1130 { 1131 int i; 1132 struct buffer_page *bpage, *tmp; 1133 1134 for (i = 0; i < nr_pages; i++) { 1135 struct page *page; 1136 /* 1137 * __GFP_NORETRY flag makes sure that the allocation fails 1138 * gracefully without invoking oom-killer and the system is 1139 * not destabilized. 1140 */ 1141 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1142 GFP_KERNEL | __GFP_NORETRY, 1143 cpu_to_node(cpu)); 1144 if (!bpage) 1145 goto free_pages; 1146 1147 list_add(&bpage->list, pages); 1148 1149 page = alloc_pages_node(cpu_to_node(cpu), 1150 GFP_KERNEL | __GFP_NORETRY, 0); 1151 if (!page) 1152 goto free_pages; 1153 bpage->page = page_address(page); 1154 rb_init_page(bpage->page); 1155 } 1156 1157 return 0; 1158 1159 free_pages: 1160 list_for_each_entry_safe(bpage, tmp, pages, list) { 1161 list_del_init(&bpage->list); 1162 free_buffer_page(bpage); 1163 } 1164 1165 return -ENOMEM; 1166 } 1167 1168 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1169 unsigned nr_pages) 1170 { 1171 LIST_HEAD(pages); 1172 1173 WARN_ON(!nr_pages); 1174 1175 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1176 return -ENOMEM; 1177 1178 /* 1179 * The ring buffer page list is a circular list that does not 1180 * start and end with a list head. All page list items point to 1181 * other pages. 1182 */ 1183 cpu_buffer->pages = pages.next; 1184 list_del(&pages); 1185 1186 cpu_buffer->nr_pages = nr_pages; 1187 1188 rb_check_pages(cpu_buffer); 1189 1190 return 0; 1191 } 1192 1193 static struct ring_buffer_per_cpu * 1194 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1195 { 1196 struct ring_buffer_per_cpu *cpu_buffer; 1197 struct buffer_page *bpage; 1198 struct page *page; 1199 int ret; 1200 1201 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1202 GFP_KERNEL, cpu_to_node(cpu)); 1203 if (!cpu_buffer) 1204 return NULL; 1205 1206 cpu_buffer->cpu = cpu; 1207 cpu_buffer->buffer = buffer; 1208 raw_spin_lock_init(&cpu_buffer->reader_lock); 1209 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1210 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1211 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1212 init_completion(&cpu_buffer->update_done); 1213 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1214 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1215 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1216 1217 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1218 GFP_KERNEL, cpu_to_node(cpu)); 1219 if (!bpage) 1220 goto fail_free_buffer; 1221 1222 rb_check_bpage(cpu_buffer, bpage); 1223 1224 cpu_buffer->reader_page = bpage; 1225 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1226 if (!page) 1227 goto fail_free_reader; 1228 bpage->page = page_address(page); 1229 rb_init_page(bpage->page); 1230 1231 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1232 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1233 1234 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1235 if (ret < 0) 1236 goto fail_free_reader; 1237 1238 cpu_buffer->head_page 1239 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1240 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1241 1242 rb_head_page_activate(cpu_buffer); 1243 1244 return cpu_buffer; 1245 1246 fail_free_reader: 1247 free_buffer_page(cpu_buffer->reader_page); 1248 1249 fail_free_buffer: 1250 kfree(cpu_buffer); 1251 return NULL; 1252 } 1253 1254 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1255 { 1256 struct list_head *head = cpu_buffer->pages; 1257 struct buffer_page *bpage, *tmp; 1258 1259 free_buffer_page(cpu_buffer->reader_page); 1260 1261 rb_head_page_deactivate(cpu_buffer); 1262 1263 if (head) { 1264 list_for_each_entry_safe(bpage, tmp, head, list) { 1265 list_del_init(&bpage->list); 1266 free_buffer_page(bpage); 1267 } 1268 bpage = list_entry(head, struct buffer_page, list); 1269 free_buffer_page(bpage); 1270 } 1271 1272 kfree(cpu_buffer); 1273 } 1274 1275 #ifdef CONFIG_HOTPLUG_CPU 1276 static int rb_cpu_notify(struct notifier_block *self, 1277 unsigned long action, void *hcpu); 1278 #endif 1279 1280 /** 1281 * __ring_buffer_alloc - allocate a new ring_buffer 1282 * @size: the size in bytes per cpu that is needed. 1283 * @flags: attributes to set for the ring buffer. 1284 * 1285 * Currently the only flag that is available is the RB_FL_OVERWRITE 1286 * flag. This flag means that the buffer will overwrite old data 1287 * when the buffer wraps. If this flag is not set, the buffer will 1288 * drop data when the tail hits the head. 1289 */ 1290 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1291 struct lock_class_key *key) 1292 { 1293 struct ring_buffer *buffer; 1294 int bsize; 1295 int cpu, nr_pages; 1296 1297 /* keep it in its own cache line */ 1298 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1299 GFP_KERNEL); 1300 if (!buffer) 1301 return NULL; 1302 1303 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1304 goto fail_free_buffer; 1305 1306 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1307 buffer->flags = flags; 1308 buffer->clock = trace_clock_local; 1309 buffer->reader_lock_key = key; 1310 1311 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1312 init_waitqueue_head(&buffer->irq_work.waiters); 1313 1314 /* need at least two pages */ 1315 if (nr_pages < 2) 1316 nr_pages = 2; 1317 1318 /* 1319 * In case of non-hotplug cpu, if the ring-buffer is allocated 1320 * in early initcall, it will not be notified of secondary cpus. 1321 * In that off case, we need to allocate for all possible cpus. 1322 */ 1323 #ifdef CONFIG_HOTPLUG_CPU 1324 cpu_notifier_register_begin(); 1325 cpumask_copy(buffer->cpumask, cpu_online_mask); 1326 #else 1327 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1328 #endif 1329 buffer->cpus = nr_cpu_ids; 1330 1331 bsize = sizeof(void *) * nr_cpu_ids; 1332 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1333 GFP_KERNEL); 1334 if (!buffer->buffers) 1335 goto fail_free_cpumask; 1336 1337 for_each_buffer_cpu(buffer, cpu) { 1338 buffer->buffers[cpu] = 1339 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1340 if (!buffer->buffers[cpu]) 1341 goto fail_free_buffers; 1342 } 1343 1344 #ifdef CONFIG_HOTPLUG_CPU 1345 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1346 buffer->cpu_notify.priority = 0; 1347 __register_cpu_notifier(&buffer->cpu_notify); 1348 cpu_notifier_register_done(); 1349 #endif 1350 1351 mutex_init(&buffer->mutex); 1352 1353 return buffer; 1354 1355 fail_free_buffers: 1356 for_each_buffer_cpu(buffer, cpu) { 1357 if (buffer->buffers[cpu]) 1358 rb_free_cpu_buffer(buffer->buffers[cpu]); 1359 } 1360 kfree(buffer->buffers); 1361 1362 fail_free_cpumask: 1363 free_cpumask_var(buffer->cpumask); 1364 #ifdef CONFIG_HOTPLUG_CPU 1365 cpu_notifier_register_done(); 1366 #endif 1367 1368 fail_free_buffer: 1369 kfree(buffer); 1370 return NULL; 1371 } 1372 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1373 1374 /** 1375 * ring_buffer_free - free a ring buffer. 1376 * @buffer: the buffer to free. 1377 */ 1378 void 1379 ring_buffer_free(struct ring_buffer *buffer) 1380 { 1381 int cpu; 1382 1383 #ifdef CONFIG_HOTPLUG_CPU 1384 cpu_notifier_register_begin(); 1385 __unregister_cpu_notifier(&buffer->cpu_notify); 1386 #endif 1387 1388 for_each_buffer_cpu(buffer, cpu) 1389 rb_free_cpu_buffer(buffer->buffers[cpu]); 1390 1391 #ifdef CONFIG_HOTPLUG_CPU 1392 cpu_notifier_register_done(); 1393 #endif 1394 1395 kfree(buffer->buffers); 1396 free_cpumask_var(buffer->cpumask); 1397 1398 kfree(buffer); 1399 } 1400 EXPORT_SYMBOL_GPL(ring_buffer_free); 1401 1402 void ring_buffer_set_clock(struct ring_buffer *buffer, 1403 u64 (*clock)(void)) 1404 { 1405 buffer->clock = clock; 1406 } 1407 1408 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1409 1410 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1411 { 1412 return local_read(&bpage->entries) & RB_WRITE_MASK; 1413 } 1414 1415 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1416 { 1417 return local_read(&bpage->write) & RB_WRITE_MASK; 1418 } 1419 1420 static int 1421 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1422 { 1423 struct list_head *tail_page, *to_remove, *next_page; 1424 struct buffer_page *to_remove_page, *tmp_iter_page; 1425 struct buffer_page *last_page, *first_page; 1426 unsigned int nr_removed; 1427 unsigned long head_bit; 1428 int page_entries; 1429 1430 head_bit = 0; 1431 1432 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1433 atomic_inc(&cpu_buffer->record_disabled); 1434 /* 1435 * We don't race with the readers since we have acquired the reader 1436 * lock. We also don't race with writers after disabling recording. 1437 * This makes it easy to figure out the first and the last page to be 1438 * removed from the list. We unlink all the pages in between including 1439 * the first and last pages. This is done in a busy loop so that we 1440 * lose the least number of traces. 1441 * The pages are freed after we restart recording and unlock readers. 1442 */ 1443 tail_page = &cpu_buffer->tail_page->list; 1444 1445 /* 1446 * tail page might be on reader page, we remove the next page 1447 * from the ring buffer 1448 */ 1449 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1450 tail_page = rb_list_head(tail_page->next); 1451 to_remove = tail_page; 1452 1453 /* start of pages to remove */ 1454 first_page = list_entry(rb_list_head(to_remove->next), 1455 struct buffer_page, list); 1456 1457 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1458 to_remove = rb_list_head(to_remove)->next; 1459 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1460 } 1461 1462 next_page = rb_list_head(to_remove)->next; 1463 1464 /* 1465 * Now we remove all pages between tail_page and next_page. 1466 * Make sure that we have head_bit value preserved for the 1467 * next page 1468 */ 1469 tail_page->next = (struct list_head *)((unsigned long)next_page | 1470 head_bit); 1471 next_page = rb_list_head(next_page); 1472 next_page->prev = tail_page; 1473 1474 /* make sure pages points to a valid page in the ring buffer */ 1475 cpu_buffer->pages = next_page; 1476 1477 /* update head page */ 1478 if (head_bit) 1479 cpu_buffer->head_page = list_entry(next_page, 1480 struct buffer_page, list); 1481 1482 /* 1483 * change read pointer to make sure any read iterators reset 1484 * themselves 1485 */ 1486 cpu_buffer->read = 0; 1487 1488 /* pages are removed, resume tracing and then free the pages */ 1489 atomic_dec(&cpu_buffer->record_disabled); 1490 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1491 1492 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1493 1494 /* last buffer page to remove */ 1495 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1496 list); 1497 tmp_iter_page = first_page; 1498 1499 do { 1500 to_remove_page = tmp_iter_page; 1501 rb_inc_page(cpu_buffer, &tmp_iter_page); 1502 1503 /* update the counters */ 1504 page_entries = rb_page_entries(to_remove_page); 1505 if (page_entries) { 1506 /* 1507 * If something was added to this page, it was full 1508 * since it is not the tail page. So we deduct the 1509 * bytes consumed in ring buffer from here. 1510 * Increment overrun to account for the lost events. 1511 */ 1512 local_add(page_entries, &cpu_buffer->overrun); 1513 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1514 } 1515 1516 /* 1517 * We have already removed references to this list item, just 1518 * free up the buffer_page and its page 1519 */ 1520 free_buffer_page(to_remove_page); 1521 nr_removed--; 1522 1523 } while (to_remove_page != last_page); 1524 1525 RB_WARN_ON(cpu_buffer, nr_removed); 1526 1527 return nr_removed == 0; 1528 } 1529 1530 static int 1531 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1532 { 1533 struct list_head *pages = &cpu_buffer->new_pages; 1534 int retries, success; 1535 1536 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1537 /* 1538 * We are holding the reader lock, so the reader page won't be swapped 1539 * in the ring buffer. Now we are racing with the writer trying to 1540 * move head page and the tail page. 1541 * We are going to adapt the reader page update process where: 1542 * 1. We first splice the start and end of list of new pages between 1543 * the head page and its previous page. 1544 * 2. We cmpxchg the prev_page->next to point from head page to the 1545 * start of new pages list. 1546 * 3. Finally, we update the head->prev to the end of new list. 1547 * 1548 * We will try this process 10 times, to make sure that we don't keep 1549 * spinning. 1550 */ 1551 retries = 10; 1552 success = 0; 1553 while (retries--) { 1554 struct list_head *head_page, *prev_page, *r; 1555 struct list_head *last_page, *first_page; 1556 struct list_head *head_page_with_bit; 1557 1558 head_page = &rb_set_head_page(cpu_buffer)->list; 1559 if (!head_page) 1560 break; 1561 prev_page = head_page->prev; 1562 1563 first_page = pages->next; 1564 last_page = pages->prev; 1565 1566 head_page_with_bit = (struct list_head *) 1567 ((unsigned long)head_page | RB_PAGE_HEAD); 1568 1569 last_page->next = head_page_with_bit; 1570 first_page->prev = prev_page; 1571 1572 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1573 1574 if (r == head_page_with_bit) { 1575 /* 1576 * yay, we replaced the page pointer to our new list, 1577 * now, we just have to update to head page's prev 1578 * pointer to point to end of list 1579 */ 1580 head_page->prev = last_page; 1581 success = 1; 1582 break; 1583 } 1584 } 1585 1586 if (success) 1587 INIT_LIST_HEAD(pages); 1588 /* 1589 * If we weren't successful in adding in new pages, warn and stop 1590 * tracing 1591 */ 1592 RB_WARN_ON(cpu_buffer, !success); 1593 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1594 1595 /* free pages if they weren't inserted */ 1596 if (!success) { 1597 struct buffer_page *bpage, *tmp; 1598 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1599 list) { 1600 list_del_init(&bpage->list); 1601 free_buffer_page(bpage); 1602 } 1603 } 1604 return success; 1605 } 1606 1607 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1608 { 1609 int success; 1610 1611 if (cpu_buffer->nr_pages_to_update > 0) 1612 success = rb_insert_pages(cpu_buffer); 1613 else 1614 success = rb_remove_pages(cpu_buffer, 1615 -cpu_buffer->nr_pages_to_update); 1616 1617 if (success) 1618 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1619 } 1620 1621 static void update_pages_handler(struct work_struct *work) 1622 { 1623 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1624 struct ring_buffer_per_cpu, update_pages_work); 1625 rb_update_pages(cpu_buffer); 1626 complete(&cpu_buffer->update_done); 1627 } 1628 1629 /** 1630 * ring_buffer_resize - resize the ring buffer 1631 * @buffer: the buffer to resize. 1632 * @size: the new size. 1633 * @cpu_id: the cpu buffer to resize 1634 * 1635 * Minimum size is 2 * BUF_PAGE_SIZE. 1636 * 1637 * Returns 0 on success and < 0 on failure. 1638 */ 1639 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1640 int cpu_id) 1641 { 1642 struct ring_buffer_per_cpu *cpu_buffer; 1643 unsigned nr_pages; 1644 int cpu, err = 0; 1645 1646 /* 1647 * Always succeed at resizing a non-existent buffer: 1648 */ 1649 if (!buffer) 1650 return size; 1651 1652 /* Make sure the requested buffer exists */ 1653 if (cpu_id != RING_BUFFER_ALL_CPUS && 1654 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1655 return size; 1656 1657 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1658 size *= BUF_PAGE_SIZE; 1659 1660 /* we need a minimum of two pages */ 1661 if (size < BUF_PAGE_SIZE * 2) 1662 size = BUF_PAGE_SIZE * 2; 1663 1664 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1665 1666 /* 1667 * Don't succeed if resizing is disabled, as a reader might be 1668 * manipulating the ring buffer and is expecting a sane state while 1669 * this is true. 1670 */ 1671 if (atomic_read(&buffer->resize_disabled)) 1672 return -EBUSY; 1673 1674 /* prevent another thread from changing buffer sizes */ 1675 mutex_lock(&buffer->mutex); 1676 1677 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1678 /* calculate the pages to update */ 1679 for_each_buffer_cpu(buffer, cpu) { 1680 cpu_buffer = buffer->buffers[cpu]; 1681 1682 cpu_buffer->nr_pages_to_update = nr_pages - 1683 cpu_buffer->nr_pages; 1684 /* 1685 * nothing more to do for removing pages or no update 1686 */ 1687 if (cpu_buffer->nr_pages_to_update <= 0) 1688 continue; 1689 /* 1690 * to add pages, make sure all new pages can be 1691 * allocated without receiving ENOMEM 1692 */ 1693 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1694 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1695 &cpu_buffer->new_pages, cpu)) { 1696 /* not enough memory for new pages */ 1697 err = -ENOMEM; 1698 goto out_err; 1699 } 1700 } 1701 1702 get_online_cpus(); 1703 /* 1704 * Fire off all the required work handlers 1705 * We can't schedule on offline CPUs, but it's not necessary 1706 * since we can change their buffer sizes without any race. 1707 */ 1708 for_each_buffer_cpu(buffer, cpu) { 1709 cpu_buffer = buffer->buffers[cpu]; 1710 if (!cpu_buffer->nr_pages_to_update) 1711 continue; 1712 1713 /* Can't run something on an offline CPU. */ 1714 if (!cpu_online(cpu)) { 1715 rb_update_pages(cpu_buffer); 1716 cpu_buffer->nr_pages_to_update = 0; 1717 } else { 1718 schedule_work_on(cpu, 1719 &cpu_buffer->update_pages_work); 1720 } 1721 } 1722 1723 /* wait for all the updates to complete */ 1724 for_each_buffer_cpu(buffer, cpu) { 1725 cpu_buffer = buffer->buffers[cpu]; 1726 if (!cpu_buffer->nr_pages_to_update) 1727 continue; 1728 1729 if (cpu_online(cpu)) 1730 wait_for_completion(&cpu_buffer->update_done); 1731 cpu_buffer->nr_pages_to_update = 0; 1732 } 1733 1734 put_online_cpus(); 1735 } else { 1736 /* Make sure this CPU has been intitialized */ 1737 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1738 goto out; 1739 1740 cpu_buffer = buffer->buffers[cpu_id]; 1741 1742 if (nr_pages == cpu_buffer->nr_pages) 1743 goto out; 1744 1745 cpu_buffer->nr_pages_to_update = nr_pages - 1746 cpu_buffer->nr_pages; 1747 1748 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1749 if (cpu_buffer->nr_pages_to_update > 0 && 1750 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1751 &cpu_buffer->new_pages, cpu_id)) { 1752 err = -ENOMEM; 1753 goto out_err; 1754 } 1755 1756 get_online_cpus(); 1757 1758 /* Can't run something on an offline CPU. */ 1759 if (!cpu_online(cpu_id)) 1760 rb_update_pages(cpu_buffer); 1761 else { 1762 schedule_work_on(cpu_id, 1763 &cpu_buffer->update_pages_work); 1764 wait_for_completion(&cpu_buffer->update_done); 1765 } 1766 1767 cpu_buffer->nr_pages_to_update = 0; 1768 put_online_cpus(); 1769 } 1770 1771 out: 1772 /* 1773 * The ring buffer resize can happen with the ring buffer 1774 * enabled, so that the update disturbs the tracing as little 1775 * as possible. But if the buffer is disabled, we do not need 1776 * to worry about that, and we can take the time to verify 1777 * that the buffer is not corrupt. 1778 */ 1779 if (atomic_read(&buffer->record_disabled)) { 1780 atomic_inc(&buffer->record_disabled); 1781 /* 1782 * Even though the buffer was disabled, we must make sure 1783 * that it is truly disabled before calling rb_check_pages. 1784 * There could have been a race between checking 1785 * record_disable and incrementing it. 1786 */ 1787 synchronize_sched(); 1788 for_each_buffer_cpu(buffer, cpu) { 1789 cpu_buffer = buffer->buffers[cpu]; 1790 rb_check_pages(cpu_buffer); 1791 } 1792 atomic_dec(&buffer->record_disabled); 1793 } 1794 1795 mutex_unlock(&buffer->mutex); 1796 return size; 1797 1798 out_err: 1799 for_each_buffer_cpu(buffer, cpu) { 1800 struct buffer_page *bpage, *tmp; 1801 1802 cpu_buffer = buffer->buffers[cpu]; 1803 cpu_buffer->nr_pages_to_update = 0; 1804 1805 if (list_empty(&cpu_buffer->new_pages)) 1806 continue; 1807 1808 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1809 list) { 1810 list_del_init(&bpage->list); 1811 free_buffer_page(bpage); 1812 } 1813 } 1814 mutex_unlock(&buffer->mutex); 1815 return err; 1816 } 1817 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1818 1819 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1820 { 1821 mutex_lock(&buffer->mutex); 1822 if (val) 1823 buffer->flags |= RB_FL_OVERWRITE; 1824 else 1825 buffer->flags &= ~RB_FL_OVERWRITE; 1826 mutex_unlock(&buffer->mutex); 1827 } 1828 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1829 1830 static inline void * 1831 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1832 { 1833 return bpage->data + index; 1834 } 1835 1836 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1837 { 1838 return bpage->page->data + index; 1839 } 1840 1841 static inline struct ring_buffer_event * 1842 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1843 { 1844 return __rb_page_index(cpu_buffer->reader_page, 1845 cpu_buffer->reader_page->read); 1846 } 1847 1848 static inline struct ring_buffer_event * 1849 rb_iter_head_event(struct ring_buffer_iter *iter) 1850 { 1851 return __rb_page_index(iter->head_page, iter->head); 1852 } 1853 1854 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1855 { 1856 return local_read(&bpage->page->commit); 1857 } 1858 1859 /* Size is determined by what has been committed */ 1860 static inline unsigned rb_page_size(struct buffer_page *bpage) 1861 { 1862 return rb_page_commit(bpage); 1863 } 1864 1865 static inline unsigned 1866 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1867 { 1868 return rb_page_commit(cpu_buffer->commit_page); 1869 } 1870 1871 static inline unsigned 1872 rb_event_index(struct ring_buffer_event *event) 1873 { 1874 unsigned long addr = (unsigned long)event; 1875 1876 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1877 } 1878 1879 static inline int 1880 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1881 struct ring_buffer_event *event) 1882 { 1883 unsigned long addr = (unsigned long)event; 1884 unsigned long index; 1885 1886 index = rb_event_index(event); 1887 addr &= PAGE_MASK; 1888 1889 return cpu_buffer->commit_page->page == (void *)addr && 1890 rb_commit_index(cpu_buffer) == index; 1891 } 1892 1893 static void 1894 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1895 { 1896 unsigned long max_count; 1897 1898 /* 1899 * We only race with interrupts and NMIs on this CPU. 1900 * If we own the commit event, then we can commit 1901 * all others that interrupted us, since the interruptions 1902 * are in stack format (they finish before they come 1903 * back to us). This allows us to do a simple loop to 1904 * assign the commit to the tail. 1905 */ 1906 again: 1907 max_count = cpu_buffer->nr_pages * 100; 1908 1909 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1910 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1911 return; 1912 if (RB_WARN_ON(cpu_buffer, 1913 rb_is_reader_page(cpu_buffer->tail_page))) 1914 return; 1915 local_set(&cpu_buffer->commit_page->page->commit, 1916 rb_page_write(cpu_buffer->commit_page)); 1917 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1918 cpu_buffer->write_stamp = 1919 cpu_buffer->commit_page->page->time_stamp; 1920 /* add barrier to keep gcc from optimizing too much */ 1921 barrier(); 1922 } 1923 while (rb_commit_index(cpu_buffer) != 1924 rb_page_write(cpu_buffer->commit_page)) { 1925 1926 local_set(&cpu_buffer->commit_page->page->commit, 1927 rb_page_write(cpu_buffer->commit_page)); 1928 RB_WARN_ON(cpu_buffer, 1929 local_read(&cpu_buffer->commit_page->page->commit) & 1930 ~RB_WRITE_MASK); 1931 barrier(); 1932 } 1933 1934 /* again, keep gcc from optimizing */ 1935 barrier(); 1936 1937 /* 1938 * If an interrupt came in just after the first while loop 1939 * and pushed the tail page forward, we will be left with 1940 * a dangling commit that will never go forward. 1941 */ 1942 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1943 goto again; 1944 } 1945 1946 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1947 { 1948 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1949 cpu_buffer->reader_page->read = 0; 1950 } 1951 1952 static void rb_inc_iter(struct ring_buffer_iter *iter) 1953 { 1954 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1955 1956 /* 1957 * The iterator could be on the reader page (it starts there). 1958 * But the head could have moved, since the reader was 1959 * found. Check for this case and assign the iterator 1960 * to the head page instead of next. 1961 */ 1962 if (iter->head_page == cpu_buffer->reader_page) 1963 iter->head_page = rb_set_head_page(cpu_buffer); 1964 else 1965 rb_inc_page(cpu_buffer, &iter->head_page); 1966 1967 iter->read_stamp = iter->head_page->page->time_stamp; 1968 iter->head = 0; 1969 } 1970 1971 /* Slow path, do not inline */ 1972 static noinline struct ring_buffer_event * 1973 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1974 { 1975 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1976 1977 /* Not the first event on the page? */ 1978 if (rb_event_index(event)) { 1979 event->time_delta = delta & TS_MASK; 1980 event->array[0] = delta >> TS_SHIFT; 1981 } else { 1982 /* nope, just zero it */ 1983 event->time_delta = 0; 1984 event->array[0] = 0; 1985 } 1986 1987 return skip_time_extend(event); 1988 } 1989 1990 /** 1991 * rb_update_event - update event type and data 1992 * @event: the event to update 1993 * @type: the type of event 1994 * @length: the size of the event field in the ring buffer 1995 * 1996 * Update the type and data fields of the event. The length 1997 * is the actual size that is written to the ring buffer, 1998 * and with this, we can determine what to place into the 1999 * data field. 2000 */ 2001 static void 2002 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2003 struct ring_buffer_event *event, unsigned length, 2004 int add_timestamp, u64 delta) 2005 { 2006 /* Only a commit updates the timestamp */ 2007 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2008 delta = 0; 2009 2010 /* 2011 * If we need to add a timestamp, then we 2012 * add it to the start of the resevered space. 2013 */ 2014 if (unlikely(add_timestamp)) { 2015 event = rb_add_time_stamp(event, delta); 2016 length -= RB_LEN_TIME_EXTEND; 2017 delta = 0; 2018 } 2019 2020 event->time_delta = delta; 2021 length -= RB_EVNT_HDR_SIZE; 2022 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2023 event->type_len = 0; 2024 event->array[0] = length; 2025 } else 2026 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2027 } 2028 2029 /* 2030 * rb_handle_head_page - writer hit the head page 2031 * 2032 * Returns: +1 to retry page 2033 * 0 to continue 2034 * -1 on error 2035 */ 2036 static int 2037 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2038 struct buffer_page *tail_page, 2039 struct buffer_page *next_page) 2040 { 2041 struct buffer_page *new_head; 2042 int entries; 2043 int type; 2044 int ret; 2045 2046 entries = rb_page_entries(next_page); 2047 2048 /* 2049 * The hard part is here. We need to move the head 2050 * forward, and protect against both readers on 2051 * other CPUs and writers coming in via interrupts. 2052 */ 2053 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2054 RB_PAGE_HEAD); 2055 2056 /* 2057 * type can be one of four: 2058 * NORMAL - an interrupt already moved it for us 2059 * HEAD - we are the first to get here. 2060 * UPDATE - we are the interrupt interrupting 2061 * a current move. 2062 * MOVED - a reader on another CPU moved the next 2063 * pointer to its reader page. Give up 2064 * and try again. 2065 */ 2066 2067 switch (type) { 2068 case RB_PAGE_HEAD: 2069 /* 2070 * We changed the head to UPDATE, thus 2071 * it is our responsibility to update 2072 * the counters. 2073 */ 2074 local_add(entries, &cpu_buffer->overrun); 2075 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2076 2077 /* 2078 * The entries will be zeroed out when we move the 2079 * tail page. 2080 */ 2081 2082 /* still more to do */ 2083 break; 2084 2085 case RB_PAGE_UPDATE: 2086 /* 2087 * This is an interrupt that interrupt the 2088 * previous update. Still more to do. 2089 */ 2090 break; 2091 case RB_PAGE_NORMAL: 2092 /* 2093 * An interrupt came in before the update 2094 * and processed this for us. 2095 * Nothing left to do. 2096 */ 2097 return 1; 2098 case RB_PAGE_MOVED: 2099 /* 2100 * The reader is on another CPU and just did 2101 * a swap with our next_page. 2102 * Try again. 2103 */ 2104 return 1; 2105 default: 2106 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2107 return -1; 2108 } 2109 2110 /* 2111 * Now that we are here, the old head pointer is 2112 * set to UPDATE. This will keep the reader from 2113 * swapping the head page with the reader page. 2114 * The reader (on another CPU) will spin till 2115 * we are finished. 2116 * 2117 * We just need to protect against interrupts 2118 * doing the job. We will set the next pointer 2119 * to HEAD. After that, we set the old pointer 2120 * to NORMAL, but only if it was HEAD before. 2121 * otherwise we are an interrupt, and only 2122 * want the outer most commit to reset it. 2123 */ 2124 new_head = next_page; 2125 rb_inc_page(cpu_buffer, &new_head); 2126 2127 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2128 RB_PAGE_NORMAL); 2129 2130 /* 2131 * Valid returns are: 2132 * HEAD - an interrupt came in and already set it. 2133 * NORMAL - One of two things: 2134 * 1) We really set it. 2135 * 2) A bunch of interrupts came in and moved 2136 * the page forward again. 2137 */ 2138 switch (ret) { 2139 case RB_PAGE_HEAD: 2140 case RB_PAGE_NORMAL: 2141 /* OK */ 2142 break; 2143 default: 2144 RB_WARN_ON(cpu_buffer, 1); 2145 return -1; 2146 } 2147 2148 /* 2149 * It is possible that an interrupt came in, 2150 * set the head up, then more interrupts came in 2151 * and moved it again. When we get back here, 2152 * the page would have been set to NORMAL but we 2153 * just set it back to HEAD. 2154 * 2155 * How do you detect this? Well, if that happened 2156 * the tail page would have moved. 2157 */ 2158 if (ret == RB_PAGE_NORMAL) { 2159 /* 2160 * If the tail had moved passed next, then we need 2161 * to reset the pointer. 2162 */ 2163 if (cpu_buffer->tail_page != tail_page && 2164 cpu_buffer->tail_page != next_page) 2165 rb_head_page_set_normal(cpu_buffer, new_head, 2166 next_page, 2167 RB_PAGE_HEAD); 2168 } 2169 2170 /* 2171 * If this was the outer most commit (the one that 2172 * changed the original pointer from HEAD to UPDATE), 2173 * then it is up to us to reset it to NORMAL. 2174 */ 2175 if (type == RB_PAGE_HEAD) { 2176 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2177 tail_page, 2178 RB_PAGE_UPDATE); 2179 if (RB_WARN_ON(cpu_buffer, 2180 ret != RB_PAGE_UPDATE)) 2181 return -1; 2182 } 2183 2184 return 0; 2185 } 2186 2187 static unsigned rb_calculate_event_length(unsigned length) 2188 { 2189 struct ring_buffer_event event; /* Used only for sizeof array */ 2190 2191 /* zero length can cause confusions */ 2192 if (!length) 2193 length++; 2194 2195 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2196 length += sizeof(event.array[0]); 2197 2198 length += RB_EVNT_HDR_SIZE; 2199 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2200 2201 return length; 2202 } 2203 2204 static inline void 2205 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2206 struct buffer_page *tail_page, 2207 unsigned long tail, unsigned long length) 2208 { 2209 struct ring_buffer_event *event; 2210 2211 /* 2212 * Only the event that crossed the page boundary 2213 * must fill the old tail_page with padding. 2214 */ 2215 if (tail >= BUF_PAGE_SIZE) { 2216 /* 2217 * If the page was filled, then we still need 2218 * to update the real_end. Reset it to zero 2219 * and the reader will ignore it. 2220 */ 2221 if (tail == BUF_PAGE_SIZE) 2222 tail_page->real_end = 0; 2223 2224 local_sub(length, &tail_page->write); 2225 return; 2226 } 2227 2228 event = __rb_page_index(tail_page, tail); 2229 kmemcheck_annotate_bitfield(event, bitfield); 2230 2231 /* account for padding bytes */ 2232 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2233 2234 /* 2235 * Save the original length to the meta data. 2236 * This will be used by the reader to add lost event 2237 * counter. 2238 */ 2239 tail_page->real_end = tail; 2240 2241 /* 2242 * If this event is bigger than the minimum size, then 2243 * we need to be careful that we don't subtract the 2244 * write counter enough to allow another writer to slip 2245 * in on this page. 2246 * We put in a discarded commit instead, to make sure 2247 * that this space is not used again. 2248 * 2249 * If we are less than the minimum size, we don't need to 2250 * worry about it. 2251 */ 2252 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2253 /* No room for any events */ 2254 2255 /* Mark the rest of the page with padding */ 2256 rb_event_set_padding(event); 2257 2258 /* Set the write back to the previous setting */ 2259 local_sub(length, &tail_page->write); 2260 return; 2261 } 2262 2263 /* Put in a discarded event */ 2264 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2265 event->type_len = RINGBUF_TYPE_PADDING; 2266 /* time delta must be non zero */ 2267 event->time_delta = 1; 2268 2269 /* Set write to end of buffer */ 2270 length = (tail + length) - BUF_PAGE_SIZE; 2271 local_sub(length, &tail_page->write); 2272 } 2273 2274 /* 2275 * This is the slow path, force gcc not to inline it. 2276 */ 2277 static noinline struct ring_buffer_event * 2278 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2279 unsigned long length, unsigned long tail, 2280 struct buffer_page *tail_page, u64 ts) 2281 { 2282 struct buffer_page *commit_page = cpu_buffer->commit_page; 2283 struct ring_buffer *buffer = cpu_buffer->buffer; 2284 struct buffer_page *next_page; 2285 int ret; 2286 2287 next_page = tail_page; 2288 2289 rb_inc_page(cpu_buffer, &next_page); 2290 2291 /* 2292 * If for some reason, we had an interrupt storm that made 2293 * it all the way around the buffer, bail, and warn 2294 * about it. 2295 */ 2296 if (unlikely(next_page == commit_page)) { 2297 local_inc(&cpu_buffer->commit_overrun); 2298 goto out_reset; 2299 } 2300 2301 /* 2302 * This is where the fun begins! 2303 * 2304 * We are fighting against races between a reader that 2305 * could be on another CPU trying to swap its reader 2306 * page with the buffer head. 2307 * 2308 * We are also fighting against interrupts coming in and 2309 * moving the head or tail on us as well. 2310 * 2311 * If the next page is the head page then we have filled 2312 * the buffer, unless the commit page is still on the 2313 * reader page. 2314 */ 2315 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2316 2317 /* 2318 * If the commit is not on the reader page, then 2319 * move the header page. 2320 */ 2321 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2322 /* 2323 * If we are not in overwrite mode, 2324 * this is easy, just stop here. 2325 */ 2326 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2327 local_inc(&cpu_buffer->dropped_events); 2328 goto out_reset; 2329 } 2330 2331 ret = rb_handle_head_page(cpu_buffer, 2332 tail_page, 2333 next_page); 2334 if (ret < 0) 2335 goto out_reset; 2336 if (ret) 2337 goto out_again; 2338 } else { 2339 /* 2340 * We need to be careful here too. The 2341 * commit page could still be on the reader 2342 * page. We could have a small buffer, and 2343 * have filled up the buffer with events 2344 * from interrupts and such, and wrapped. 2345 * 2346 * Note, if the tail page is also the on the 2347 * reader_page, we let it move out. 2348 */ 2349 if (unlikely((cpu_buffer->commit_page != 2350 cpu_buffer->tail_page) && 2351 (cpu_buffer->commit_page == 2352 cpu_buffer->reader_page))) { 2353 local_inc(&cpu_buffer->commit_overrun); 2354 goto out_reset; 2355 } 2356 } 2357 } 2358 2359 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2360 if (ret) { 2361 /* 2362 * Nested commits always have zero deltas, so 2363 * just reread the time stamp 2364 */ 2365 ts = rb_time_stamp(buffer); 2366 next_page->page->time_stamp = ts; 2367 } 2368 2369 out_again: 2370 2371 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2372 2373 /* fail and let the caller try again */ 2374 return ERR_PTR(-EAGAIN); 2375 2376 out_reset: 2377 /* reset write */ 2378 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2379 2380 return NULL; 2381 } 2382 2383 static struct ring_buffer_event * 2384 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2385 unsigned long length, u64 ts, 2386 u64 delta, int add_timestamp) 2387 { 2388 struct buffer_page *tail_page; 2389 struct ring_buffer_event *event; 2390 unsigned long tail, write; 2391 2392 /* 2393 * If the time delta since the last event is too big to 2394 * hold in the time field of the event, then we append a 2395 * TIME EXTEND event ahead of the data event. 2396 */ 2397 if (unlikely(add_timestamp)) 2398 length += RB_LEN_TIME_EXTEND; 2399 2400 tail_page = cpu_buffer->tail_page; 2401 write = local_add_return(length, &tail_page->write); 2402 2403 /* set write to only the index of the write */ 2404 write &= RB_WRITE_MASK; 2405 tail = write - length; 2406 2407 /* 2408 * If this is the first commit on the page, then it has the same 2409 * timestamp as the page itself. 2410 */ 2411 if (!tail) 2412 delta = 0; 2413 2414 /* See if we shot pass the end of this buffer page */ 2415 if (unlikely(write > BUF_PAGE_SIZE)) 2416 return rb_move_tail(cpu_buffer, length, tail, 2417 tail_page, ts); 2418 2419 /* We reserved something on the buffer */ 2420 2421 event = __rb_page_index(tail_page, tail); 2422 kmemcheck_annotate_bitfield(event, bitfield); 2423 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2424 2425 local_inc(&tail_page->entries); 2426 2427 /* 2428 * If this is the first commit on the page, then update 2429 * its timestamp. 2430 */ 2431 if (!tail) 2432 tail_page->page->time_stamp = ts; 2433 2434 /* account for these added bytes */ 2435 local_add(length, &cpu_buffer->entries_bytes); 2436 2437 return event; 2438 } 2439 2440 static inline int 2441 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2442 struct ring_buffer_event *event) 2443 { 2444 unsigned long new_index, old_index; 2445 struct buffer_page *bpage; 2446 unsigned long index; 2447 unsigned long addr; 2448 2449 new_index = rb_event_index(event); 2450 old_index = new_index + rb_event_ts_length(event); 2451 addr = (unsigned long)event; 2452 addr &= PAGE_MASK; 2453 2454 bpage = cpu_buffer->tail_page; 2455 2456 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2457 unsigned long write_mask = 2458 local_read(&bpage->write) & ~RB_WRITE_MASK; 2459 unsigned long event_length = rb_event_length(event); 2460 /* 2461 * This is on the tail page. It is possible that 2462 * a write could come in and move the tail page 2463 * and write to the next page. That is fine 2464 * because we just shorten what is on this page. 2465 */ 2466 old_index += write_mask; 2467 new_index += write_mask; 2468 index = local_cmpxchg(&bpage->write, old_index, new_index); 2469 if (index == old_index) { 2470 /* update counters */ 2471 local_sub(event_length, &cpu_buffer->entries_bytes); 2472 return 1; 2473 } 2474 } 2475 2476 /* could not discard */ 2477 return 0; 2478 } 2479 2480 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2481 { 2482 local_inc(&cpu_buffer->committing); 2483 local_inc(&cpu_buffer->commits); 2484 } 2485 2486 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2487 { 2488 unsigned long commits; 2489 2490 if (RB_WARN_ON(cpu_buffer, 2491 !local_read(&cpu_buffer->committing))) 2492 return; 2493 2494 again: 2495 commits = local_read(&cpu_buffer->commits); 2496 /* synchronize with interrupts */ 2497 barrier(); 2498 if (local_read(&cpu_buffer->committing) == 1) 2499 rb_set_commit_to_write(cpu_buffer); 2500 2501 local_dec(&cpu_buffer->committing); 2502 2503 /* synchronize with interrupts */ 2504 barrier(); 2505 2506 /* 2507 * Need to account for interrupts coming in between the 2508 * updating of the commit page and the clearing of the 2509 * committing counter. 2510 */ 2511 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2512 !local_read(&cpu_buffer->committing)) { 2513 local_inc(&cpu_buffer->committing); 2514 goto again; 2515 } 2516 } 2517 2518 static struct ring_buffer_event * 2519 rb_reserve_next_event(struct ring_buffer *buffer, 2520 struct ring_buffer_per_cpu *cpu_buffer, 2521 unsigned long length) 2522 { 2523 struct ring_buffer_event *event; 2524 u64 ts, delta; 2525 int nr_loops = 0; 2526 int add_timestamp; 2527 u64 diff; 2528 2529 rb_start_commit(cpu_buffer); 2530 2531 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2532 /* 2533 * Due to the ability to swap a cpu buffer from a buffer 2534 * it is possible it was swapped before we committed. 2535 * (committing stops a swap). We check for it here and 2536 * if it happened, we have to fail the write. 2537 */ 2538 barrier(); 2539 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2540 local_dec(&cpu_buffer->committing); 2541 local_dec(&cpu_buffer->commits); 2542 return NULL; 2543 } 2544 #endif 2545 2546 length = rb_calculate_event_length(length); 2547 again: 2548 add_timestamp = 0; 2549 delta = 0; 2550 2551 /* 2552 * We allow for interrupts to reenter here and do a trace. 2553 * If one does, it will cause this original code to loop 2554 * back here. Even with heavy interrupts happening, this 2555 * should only happen a few times in a row. If this happens 2556 * 1000 times in a row, there must be either an interrupt 2557 * storm or we have something buggy. 2558 * Bail! 2559 */ 2560 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2561 goto out_fail; 2562 2563 ts = rb_time_stamp(cpu_buffer->buffer); 2564 diff = ts - cpu_buffer->write_stamp; 2565 2566 /* make sure this diff is calculated here */ 2567 barrier(); 2568 2569 /* Did the write stamp get updated already? */ 2570 if (likely(ts >= cpu_buffer->write_stamp)) { 2571 delta = diff; 2572 if (unlikely(test_time_stamp(delta))) { 2573 int local_clock_stable = 1; 2574 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2575 local_clock_stable = sched_clock_stable(); 2576 #endif 2577 WARN_ONCE(delta > (1ULL << 59), 2578 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2579 (unsigned long long)delta, 2580 (unsigned long long)ts, 2581 (unsigned long long)cpu_buffer->write_stamp, 2582 local_clock_stable ? "" : 2583 "If you just came from a suspend/resume,\n" 2584 "please switch to the trace global clock:\n" 2585 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2586 add_timestamp = 1; 2587 } 2588 } 2589 2590 event = __rb_reserve_next(cpu_buffer, length, ts, 2591 delta, add_timestamp); 2592 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2593 goto again; 2594 2595 if (!event) 2596 goto out_fail; 2597 2598 return event; 2599 2600 out_fail: 2601 rb_end_commit(cpu_buffer); 2602 return NULL; 2603 } 2604 2605 /* 2606 * The lock and unlock are done within a preempt disable section. 2607 * The current_context per_cpu variable can only be modified 2608 * by the current task between lock and unlock. But it can 2609 * be modified more than once via an interrupt. To pass this 2610 * information from the lock to the unlock without having to 2611 * access the 'in_interrupt()' functions again (which do show 2612 * a bit of overhead in something as critical as function tracing, 2613 * we use a bitmask trick. 2614 * 2615 * bit 0 = NMI context 2616 * bit 1 = IRQ context 2617 * bit 2 = SoftIRQ context 2618 * bit 3 = normal context. 2619 * 2620 * This works because this is the order of contexts that can 2621 * preempt other contexts. A SoftIRQ never preempts an IRQ 2622 * context. 2623 * 2624 * When the context is determined, the corresponding bit is 2625 * checked and set (if it was set, then a recursion of that context 2626 * happened). 2627 * 2628 * On unlock, we need to clear this bit. To do so, just subtract 2629 * 1 from the current_context and AND it to itself. 2630 * 2631 * (binary) 2632 * 101 - 1 = 100 2633 * 101 & 100 = 100 (clearing bit zero) 2634 * 2635 * 1010 - 1 = 1001 2636 * 1010 & 1001 = 1000 (clearing bit 1) 2637 * 2638 * The least significant bit can be cleared this way, and it 2639 * just so happens that it is the same bit corresponding to 2640 * the current context. 2641 */ 2642 2643 static __always_inline int 2644 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2645 { 2646 unsigned int val = cpu_buffer->current_context; 2647 int bit; 2648 2649 if (in_interrupt()) { 2650 if (in_nmi()) 2651 bit = RB_CTX_NMI; 2652 else if (in_irq()) 2653 bit = RB_CTX_IRQ; 2654 else 2655 bit = RB_CTX_SOFTIRQ; 2656 } else 2657 bit = RB_CTX_NORMAL; 2658 2659 if (unlikely(val & (1 << bit))) 2660 return 1; 2661 2662 val |= (1 << bit); 2663 cpu_buffer->current_context = val; 2664 2665 return 0; 2666 } 2667 2668 static __always_inline void 2669 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2670 { 2671 cpu_buffer->current_context &= cpu_buffer->current_context - 1; 2672 } 2673 2674 /** 2675 * ring_buffer_lock_reserve - reserve a part of the buffer 2676 * @buffer: the ring buffer to reserve from 2677 * @length: the length of the data to reserve (excluding event header) 2678 * 2679 * Returns a reseverd event on the ring buffer to copy directly to. 2680 * The user of this interface will need to get the body to write into 2681 * and can use the ring_buffer_event_data() interface. 2682 * 2683 * The length is the length of the data needed, not the event length 2684 * which also includes the event header. 2685 * 2686 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2687 * If NULL is returned, then nothing has been allocated or locked. 2688 */ 2689 struct ring_buffer_event * 2690 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2691 { 2692 struct ring_buffer_per_cpu *cpu_buffer; 2693 struct ring_buffer_event *event; 2694 int cpu; 2695 2696 /* If we are tracing schedule, we don't want to recurse */ 2697 preempt_disable_notrace(); 2698 2699 if (unlikely(atomic_read(&buffer->record_disabled))) 2700 goto out; 2701 2702 cpu = raw_smp_processor_id(); 2703 2704 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2705 goto out; 2706 2707 cpu_buffer = buffer->buffers[cpu]; 2708 2709 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2710 goto out; 2711 2712 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2713 goto out; 2714 2715 if (unlikely(trace_recursive_lock(cpu_buffer))) 2716 goto out; 2717 2718 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2719 if (!event) 2720 goto out_unlock; 2721 2722 return event; 2723 2724 out_unlock: 2725 trace_recursive_unlock(cpu_buffer); 2726 out: 2727 preempt_enable_notrace(); 2728 return NULL; 2729 } 2730 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2731 2732 static void 2733 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2734 struct ring_buffer_event *event) 2735 { 2736 u64 delta; 2737 2738 /* 2739 * The event first in the commit queue updates the 2740 * time stamp. 2741 */ 2742 if (rb_event_is_commit(cpu_buffer, event)) { 2743 /* 2744 * A commit event that is first on a page 2745 * updates the write timestamp with the page stamp 2746 */ 2747 if (!rb_event_index(event)) 2748 cpu_buffer->write_stamp = 2749 cpu_buffer->commit_page->page->time_stamp; 2750 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2751 delta = event->array[0]; 2752 delta <<= TS_SHIFT; 2753 delta += event->time_delta; 2754 cpu_buffer->write_stamp += delta; 2755 } else 2756 cpu_buffer->write_stamp += event->time_delta; 2757 } 2758 } 2759 2760 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2761 struct ring_buffer_event *event) 2762 { 2763 local_inc(&cpu_buffer->entries); 2764 rb_update_write_stamp(cpu_buffer, event); 2765 rb_end_commit(cpu_buffer); 2766 } 2767 2768 static __always_inline void 2769 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2770 { 2771 bool pagebusy; 2772 2773 if (buffer->irq_work.waiters_pending) { 2774 buffer->irq_work.waiters_pending = false; 2775 /* irq_work_queue() supplies it's own memory barriers */ 2776 irq_work_queue(&buffer->irq_work.work); 2777 } 2778 2779 if (cpu_buffer->irq_work.waiters_pending) { 2780 cpu_buffer->irq_work.waiters_pending = false; 2781 /* irq_work_queue() supplies it's own memory barriers */ 2782 irq_work_queue(&cpu_buffer->irq_work.work); 2783 } 2784 2785 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2786 2787 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2788 cpu_buffer->irq_work.wakeup_full = true; 2789 cpu_buffer->irq_work.full_waiters_pending = false; 2790 /* irq_work_queue() supplies it's own memory barriers */ 2791 irq_work_queue(&cpu_buffer->irq_work.work); 2792 } 2793 } 2794 2795 /** 2796 * ring_buffer_unlock_commit - commit a reserved 2797 * @buffer: The buffer to commit to 2798 * @event: The event pointer to commit. 2799 * 2800 * This commits the data to the ring buffer, and releases any locks held. 2801 * 2802 * Must be paired with ring_buffer_lock_reserve. 2803 */ 2804 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2805 struct ring_buffer_event *event) 2806 { 2807 struct ring_buffer_per_cpu *cpu_buffer; 2808 int cpu = raw_smp_processor_id(); 2809 2810 cpu_buffer = buffer->buffers[cpu]; 2811 2812 rb_commit(cpu_buffer, event); 2813 2814 rb_wakeups(buffer, cpu_buffer); 2815 2816 trace_recursive_unlock(cpu_buffer); 2817 2818 preempt_enable_notrace(); 2819 2820 return 0; 2821 } 2822 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2823 2824 static inline void rb_event_discard(struct ring_buffer_event *event) 2825 { 2826 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2827 event = skip_time_extend(event); 2828 2829 /* array[0] holds the actual length for the discarded event */ 2830 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2831 event->type_len = RINGBUF_TYPE_PADDING; 2832 /* time delta must be non zero */ 2833 if (!event->time_delta) 2834 event->time_delta = 1; 2835 } 2836 2837 /* 2838 * Decrement the entries to the page that an event is on. 2839 * The event does not even need to exist, only the pointer 2840 * to the page it is on. This may only be called before the commit 2841 * takes place. 2842 */ 2843 static inline void 2844 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2845 struct ring_buffer_event *event) 2846 { 2847 unsigned long addr = (unsigned long)event; 2848 struct buffer_page *bpage = cpu_buffer->commit_page; 2849 struct buffer_page *start; 2850 2851 addr &= PAGE_MASK; 2852 2853 /* Do the likely case first */ 2854 if (likely(bpage->page == (void *)addr)) { 2855 local_dec(&bpage->entries); 2856 return; 2857 } 2858 2859 /* 2860 * Because the commit page may be on the reader page we 2861 * start with the next page and check the end loop there. 2862 */ 2863 rb_inc_page(cpu_buffer, &bpage); 2864 start = bpage; 2865 do { 2866 if (bpage->page == (void *)addr) { 2867 local_dec(&bpage->entries); 2868 return; 2869 } 2870 rb_inc_page(cpu_buffer, &bpage); 2871 } while (bpage != start); 2872 2873 /* commit not part of this buffer?? */ 2874 RB_WARN_ON(cpu_buffer, 1); 2875 } 2876 2877 /** 2878 * ring_buffer_commit_discard - discard an event that has not been committed 2879 * @buffer: the ring buffer 2880 * @event: non committed event to discard 2881 * 2882 * Sometimes an event that is in the ring buffer needs to be ignored. 2883 * This function lets the user discard an event in the ring buffer 2884 * and then that event will not be read later. 2885 * 2886 * This function only works if it is called before the the item has been 2887 * committed. It will try to free the event from the ring buffer 2888 * if another event has not been added behind it. 2889 * 2890 * If another event has been added behind it, it will set the event 2891 * up as discarded, and perform the commit. 2892 * 2893 * If this function is called, do not call ring_buffer_unlock_commit on 2894 * the event. 2895 */ 2896 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2897 struct ring_buffer_event *event) 2898 { 2899 struct ring_buffer_per_cpu *cpu_buffer; 2900 int cpu; 2901 2902 /* The event is discarded regardless */ 2903 rb_event_discard(event); 2904 2905 cpu = smp_processor_id(); 2906 cpu_buffer = buffer->buffers[cpu]; 2907 2908 /* 2909 * This must only be called if the event has not been 2910 * committed yet. Thus we can assume that preemption 2911 * is still disabled. 2912 */ 2913 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2914 2915 rb_decrement_entry(cpu_buffer, event); 2916 if (rb_try_to_discard(cpu_buffer, event)) 2917 goto out; 2918 2919 /* 2920 * The commit is still visible by the reader, so we 2921 * must still update the timestamp. 2922 */ 2923 rb_update_write_stamp(cpu_buffer, event); 2924 out: 2925 rb_end_commit(cpu_buffer); 2926 2927 trace_recursive_unlock(cpu_buffer); 2928 2929 preempt_enable_notrace(); 2930 2931 } 2932 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2933 2934 /** 2935 * ring_buffer_write - write data to the buffer without reserving 2936 * @buffer: The ring buffer to write to. 2937 * @length: The length of the data being written (excluding the event header) 2938 * @data: The data to write to the buffer. 2939 * 2940 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2941 * one function. If you already have the data to write to the buffer, it 2942 * may be easier to simply call this function. 2943 * 2944 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2945 * and not the length of the event which would hold the header. 2946 */ 2947 int ring_buffer_write(struct ring_buffer *buffer, 2948 unsigned long length, 2949 void *data) 2950 { 2951 struct ring_buffer_per_cpu *cpu_buffer; 2952 struct ring_buffer_event *event; 2953 void *body; 2954 int ret = -EBUSY; 2955 int cpu; 2956 2957 preempt_disable_notrace(); 2958 2959 if (atomic_read(&buffer->record_disabled)) 2960 goto out; 2961 2962 cpu = raw_smp_processor_id(); 2963 2964 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2965 goto out; 2966 2967 cpu_buffer = buffer->buffers[cpu]; 2968 2969 if (atomic_read(&cpu_buffer->record_disabled)) 2970 goto out; 2971 2972 if (length > BUF_MAX_DATA_SIZE) 2973 goto out; 2974 2975 if (unlikely(trace_recursive_lock(cpu_buffer))) 2976 goto out; 2977 2978 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2979 if (!event) 2980 goto out_unlock; 2981 2982 body = rb_event_data(event); 2983 2984 memcpy(body, data, length); 2985 2986 rb_commit(cpu_buffer, event); 2987 2988 rb_wakeups(buffer, cpu_buffer); 2989 2990 ret = 0; 2991 2992 out_unlock: 2993 trace_recursive_unlock(cpu_buffer); 2994 2995 out: 2996 preempt_enable_notrace(); 2997 2998 return ret; 2999 } 3000 EXPORT_SYMBOL_GPL(ring_buffer_write); 3001 3002 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3003 { 3004 struct buffer_page *reader = cpu_buffer->reader_page; 3005 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3006 struct buffer_page *commit = cpu_buffer->commit_page; 3007 3008 /* In case of error, head will be NULL */ 3009 if (unlikely(!head)) 3010 return 1; 3011 3012 return reader->read == rb_page_commit(reader) && 3013 (commit == reader || 3014 (commit == head && 3015 head->read == rb_page_commit(commit))); 3016 } 3017 3018 /** 3019 * ring_buffer_record_disable - stop all writes into the buffer 3020 * @buffer: The ring buffer to stop writes to. 3021 * 3022 * This prevents all writes to the buffer. Any attempt to write 3023 * to the buffer after this will fail and return NULL. 3024 * 3025 * The caller should call synchronize_sched() after this. 3026 */ 3027 void ring_buffer_record_disable(struct ring_buffer *buffer) 3028 { 3029 atomic_inc(&buffer->record_disabled); 3030 } 3031 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3032 3033 /** 3034 * ring_buffer_record_enable - enable writes to the buffer 3035 * @buffer: The ring buffer to enable writes 3036 * 3037 * Note, multiple disables will need the same number of enables 3038 * to truly enable the writing (much like preempt_disable). 3039 */ 3040 void ring_buffer_record_enable(struct ring_buffer *buffer) 3041 { 3042 atomic_dec(&buffer->record_disabled); 3043 } 3044 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3045 3046 /** 3047 * ring_buffer_record_off - stop all writes into the buffer 3048 * @buffer: The ring buffer to stop writes to. 3049 * 3050 * This prevents all writes to the buffer. Any attempt to write 3051 * to the buffer after this will fail and return NULL. 3052 * 3053 * This is different than ring_buffer_record_disable() as 3054 * it works like an on/off switch, where as the disable() version 3055 * must be paired with a enable(). 3056 */ 3057 void ring_buffer_record_off(struct ring_buffer *buffer) 3058 { 3059 unsigned int rd; 3060 unsigned int new_rd; 3061 3062 do { 3063 rd = atomic_read(&buffer->record_disabled); 3064 new_rd = rd | RB_BUFFER_OFF; 3065 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3066 } 3067 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3068 3069 /** 3070 * ring_buffer_record_on - restart writes into the buffer 3071 * @buffer: The ring buffer to start writes to. 3072 * 3073 * This enables all writes to the buffer that was disabled by 3074 * ring_buffer_record_off(). 3075 * 3076 * This is different than ring_buffer_record_enable() as 3077 * it works like an on/off switch, where as the enable() version 3078 * must be paired with a disable(). 3079 */ 3080 void ring_buffer_record_on(struct ring_buffer *buffer) 3081 { 3082 unsigned int rd; 3083 unsigned int new_rd; 3084 3085 do { 3086 rd = atomic_read(&buffer->record_disabled); 3087 new_rd = rd & ~RB_BUFFER_OFF; 3088 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3089 } 3090 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3091 3092 /** 3093 * ring_buffer_record_is_on - return true if the ring buffer can write 3094 * @buffer: The ring buffer to see if write is enabled 3095 * 3096 * Returns true if the ring buffer is in a state that it accepts writes. 3097 */ 3098 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3099 { 3100 return !atomic_read(&buffer->record_disabled); 3101 } 3102 3103 /** 3104 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3105 * @buffer: The ring buffer to stop writes to. 3106 * @cpu: The CPU buffer to stop 3107 * 3108 * This prevents all writes to the buffer. Any attempt to write 3109 * to the buffer after this will fail and return NULL. 3110 * 3111 * The caller should call synchronize_sched() after this. 3112 */ 3113 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3114 { 3115 struct ring_buffer_per_cpu *cpu_buffer; 3116 3117 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3118 return; 3119 3120 cpu_buffer = buffer->buffers[cpu]; 3121 atomic_inc(&cpu_buffer->record_disabled); 3122 } 3123 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3124 3125 /** 3126 * ring_buffer_record_enable_cpu - enable writes to the buffer 3127 * @buffer: The ring buffer to enable writes 3128 * @cpu: The CPU to enable. 3129 * 3130 * Note, multiple disables will need the same number of enables 3131 * to truly enable the writing (much like preempt_disable). 3132 */ 3133 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3134 { 3135 struct ring_buffer_per_cpu *cpu_buffer; 3136 3137 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3138 return; 3139 3140 cpu_buffer = buffer->buffers[cpu]; 3141 atomic_dec(&cpu_buffer->record_disabled); 3142 } 3143 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3144 3145 /* 3146 * The total entries in the ring buffer is the running counter 3147 * of entries entered into the ring buffer, minus the sum of 3148 * the entries read from the ring buffer and the number of 3149 * entries that were overwritten. 3150 */ 3151 static inline unsigned long 3152 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3153 { 3154 return local_read(&cpu_buffer->entries) - 3155 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3156 } 3157 3158 /** 3159 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3160 * @buffer: The ring buffer 3161 * @cpu: The per CPU buffer to read from. 3162 */ 3163 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3164 { 3165 unsigned long flags; 3166 struct ring_buffer_per_cpu *cpu_buffer; 3167 struct buffer_page *bpage; 3168 u64 ret = 0; 3169 3170 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3171 return 0; 3172 3173 cpu_buffer = buffer->buffers[cpu]; 3174 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3175 /* 3176 * if the tail is on reader_page, oldest time stamp is on the reader 3177 * page 3178 */ 3179 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3180 bpage = cpu_buffer->reader_page; 3181 else 3182 bpage = rb_set_head_page(cpu_buffer); 3183 if (bpage) 3184 ret = bpage->page->time_stamp; 3185 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3186 3187 return ret; 3188 } 3189 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3190 3191 /** 3192 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3193 * @buffer: The ring buffer 3194 * @cpu: The per CPU buffer to read from. 3195 */ 3196 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3197 { 3198 struct ring_buffer_per_cpu *cpu_buffer; 3199 unsigned long ret; 3200 3201 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3202 return 0; 3203 3204 cpu_buffer = buffer->buffers[cpu]; 3205 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3206 3207 return ret; 3208 } 3209 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3210 3211 /** 3212 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3213 * @buffer: The ring buffer 3214 * @cpu: The per CPU buffer to get the entries from. 3215 */ 3216 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3217 { 3218 struct ring_buffer_per_cpu *cpu_buffer; 3219 3220 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3221 return 0; 3222 3223 cpu_buffer = buffer->buffers[cpu]; 3224 3225 return rb_num_of_entries(cpu_buffer); 3226 } 3227 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3228 3229 /** 3230 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3231 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3232 * @buffer: The ring buffer 3233 * @cpu: The per CPU buffer to get the number of overruns from 3234 */ 3235 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3236 { 3237 struct ring_buffer_per_cpu *cpu_buffer; 3238 unsigned long ret; 3239 3240 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3241 return 0; 3242 3243 cpu_buffer = buffer->buffers[cpu]; 3244 ret = local_read(&cpu_buffer->overrun); 3245 3246 return ret; 3247 } 3248 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3249 3250 /** 3251 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3252 * commits failing due to the buffer wrapping around while there are uncommitted 3253 * events, such as during an interrupt storm. 3254 * @buffer: The ring buffer 3255 * @cpu: The per CPU buffer to get the number of overruns from 3256 */ 3257 unsigned long 3258 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3259 { 3260 struct ring_buffer_per_cpu *cpu_buffer; 3261 unsigned long ret; 3262 3263 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3264 return 0; 3265 3266 cpu_buffer = buffer->buffers[cpu]; 3267 ret = local_read(&cpu_buffer->commit_overrun); 3268 3269 return ret; 3270 } 3271 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3272 3273 /** 3274 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3275 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3276 * @buffer: The ring buffer 3277 * @cpu: The per CPU buffer to get the number of overruns from 3278 */ 3279 unsigned long 3280 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3281 { 3282 struct ring_buffer_per_cpu *cpu_buffer; 3283 unsigned long ret; 3284 3285 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3286 return 0; 3287 3288 cpu_buffer = buffer->buffers[cpu]; 3289 ret = local_read(&cpu_buffer->dropped_events); 3290 3291 return ret; 3292 } 3293 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3294 3295 /** 3296 * ring_buffer_read_events_cpu - get the number of events successfully read 3297 * @buffer: The ring buffer 3298 * @cpu: The per CPU buffer to get the number of events read 3299 */ 3300 unsigned long 3301 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3302 { 3303 struct ring_buffer_per_cpu *cpu_buffer; 3304 3305 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3306 return 0; 3307 3308 cpu_buffer = buffer->buffers[cpu]; 3309 return cpu_buffer->read; 3310 } 3311 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3312 3313 /** 3314 * ring_buffer_entries - get the number of entries in a buffer 3315 * @buffer: The ring buffer 3316 * 3317 * Returns the total number of entries in the ring buffer 3318 * (all CPU entries) 3319 */ 3320 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3321 { 3322 struct ring_buffer_per_cpu *cpu_buffer; 3323 unsigned long entries = 0; 3324 int cpu; 3325 3326 /* if you care about this being correct, lock the buffer */ 3327 for_each_buffer_cpu(buffer, cpu) { 3328 cpu_buffer = buffer->buffers[cpu]; 3329 entries += rb_num_of_entries(cpu_buffer); 3330 } 3331 3332 return entries; 3333 } 3334 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3335 3336 /** 3337 * ring_buffer_overruns - get the number of overruns in buffer 3338 * @buffer: The ring buffer 3339 * 3340 * Returns the total number of overruns in the ring buffer 3341 * (all CPU entries) 3342 */ 3343 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3344 { 3345 struct ring_buffer_per_cpu *cpu_buffer; 3346 unsigned long overruns = 0; 3347 int cpu; 3348 3349 /* if you care about this being correct, lock the buffer */ 3350 for_each_buffer_cpu(buffer, cpu) { 3351 cpu_buffer = buffer->buffers[cpu]; 3352 overruns += local_read(&cpu_buffer->overrun); 3353 } 3354 3355 return overruns; 3356 } 3357 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3358 3359 static void rb_iter_reset(struct ring_buffer_iter *iter) 3360 { 3361 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3362 3363 /* Iterator usage is expected to have record disabled */ 3364 iter->head_page = cpu_buffer->reader_page; 3365 iter->head = cpu_buffer->reader_page->read; 3366 3367 iter->cache_reader_page = iter->head_page; 3368 iter->cache_read = cpu_buffer->read; 3369 3370 if (iter->head) 3371 iter->read_stamp = cpu_buffer->read_stamp; 3372 else 3373 iter->read_stamp = iter->head_page->page->time_stamp; 3374 } 3375 3376 /** 3377 * ring_buffer_iter_reset - reset an iterator 3378 * @iter: The iterator to reset 3379 * 3380 * Resets the iterator, so that it will start from the beginning 3381 * again. 3382 */ 3383 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3384 { 3385 struct ring_buffer_per_cpu *cpu_buffer; 3386 unsigned long flags; 3387 3388 if (!iter) 3389 return; 3390 3391 cpu_buffer = iter->cpu_buffer; 3392 3393 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3394 rb_iter_reset(iter); 3395 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3396 } 3397 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3398 3399 /** 3400 * ring_buffer_iter_empty - check if an iterator has no more to read 3401 * @iter: The iterator to check 3402 */ 3403 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3404 { 3405 struct ring_buffer_per_cpu *cpu_buffer; 3406 3407 cpu_buffer = iter->cpu_buffer; 3408 3409 return iter->head_page == cpu_buffer->commit_page && 3410 iter->head == rb_commit_index(cpu_buffer); 3411 } 3412 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3413 3414 static void 3415 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3416 struct ring_buffer_event *event) 3417 { 3418 u64 delta; 3419 3420 switch (event->type_len) { 3421 case RINGBUF_TYPE_PADDING: 3422 return; 3423 3424 case RINGBUF_TYPE_TIME_EXTEND: 3425 delta = event->array[0]; 3426 delta <<= TS_SHIFT; 3427 delta += event->time_delta; 3428 cpu_buffer->read_stamp += delta; 3429 return; 3430 3431 case RINGBUF_TYPE_TIME_STAMP: 3432 /* FIXME: not implemented */ 3433 return; 3434 3435 case RINGBUF_TYPE_DATA: 3436 cpu_buffer->read_stamp += event->time_delta; 3437 return; 3438 3439 default: 3440 BUG(); 3441 } 3442 return; 3443 } 3444 3445 static void 3446 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3447 struct ring_buffer_event *event) 3448 { 3449 u64 delta; 3450 3451 switch (event->type_len) { 3452 case RINGBUF_TYPE_PADDING: 3453 return; 3454 3455 case RINGBUF_TYPE_TIME_EXTEND: 3456 delta = event->array[0]; 3457 delta <<= TS_SHIFT; 3458 delta += event->time_delta; 3459 iter->read_stamp += delta; 3460 return; 3461 3462 case RINGBUF_TYPE_TIME_STAMP: 3463 /* FIXME: not implemented */ 3464 return; 3465 3466 case RINGBUF_TYPE_DATA: 3467 iter->read_stamp += event->time_delta; 3468 return; 3469 3470 default: 3471 BUG(); 3472 } 3473 return; 3474 } 3475 3476 static struct buffer_page * 3477 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3478 { 3479 struct buffer_page *reader = NULL; 3480 unsigned long overwrite; 3481 unsigned long flags; 3482 int nr_loops = 0; 3483 int ret; 3484 3485 local_irq_save(flags); 3486 arch_spin_lock(&cpu_buffer->lock); 3487 3488 again: 3489 /* 3490 * This should normally only loop twice. But because the 3491 * start of the reader inserts an empty page, it causes 3492 * a case where we will loop three times. There should be no 3493 * reason to loop four times (that I know of). 3494 */ 3495 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3496 reader = NULL; 3497 goto out; 3498 } 3499 3500 reader = cpu_buffer->reader_page; 3501 3502 /* If there's more to read, return this page */ 3503 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3504 goto out; 3505 3506 /* Never should we have an index greater than the size */ 3507 if (RB_WARN_ON(cpu_buffer, 3508 cpu_buffer->reader_page->read > rb_page_size(reader))) 3509 goto out; 3510 3511 /* check if we caught up to the tail */ 3512 reader = NULL; 3513 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3514 goto out; 3515 3516 /* Don't bother swapping if the ring buffer is empty */ 3517 if (rb_num_of_entries(cpu_buffer) == 0) 3518 goto out; 3519 3520 /* 3521 * Reset the reader page to size zero. 3522 */ 3523 local_set(&cpu_buffer->reader_page->write, 0); 3524 local_set(&cpu_buffer->reader_page->entries, 0); 3525 local_set(&cpu_buffer->reader_page->page->commit, 0); 3526 cpu_buffer->reader_page->real_end = 0; 3527 3528 spin: 3529 /* 3530 * Splice the empty reader page into the list around the head. 3531 */ 3532 reader = rb_set_head_page(cpu_buffer); 3533 if (!reader) 3534 goto out; 3535 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3536 cpu_buffer->reader_page->list.prev = reader->list.prev; 3537 3538 /* 3539 * cpu_buffer->pages just needs to point to the buffer, it 3540 * has no specific buffer page to point to. Lets move it out 3541 * of our way so we don't accidentally swap it. 3542 */ 3543 cpu_buffer->pages = reader->list.prev; 3544 3545 /* The reader page will be pointing to the new head */ 3546 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3547 3548 /* 3549 * We want to make sure we read the overruns after we set up our 3550 * pointers to the next object. The writer side does a 3551 * cmpxchg to cross pages which acts as the mb on the writer 3552 * side. Note, the reader will constantly fail the swap 3553 * while the writer is updating the pointers, so this 3554 * guarantees that the overwrite recorded here is the one we 3555 * want to compare with the last_overrun. 3556 */ 3557 smp_mb(); 3558 overwrite = local_read(&(cpu_buffer->overrun)); 3559 3560 /* 3561 * Here's the tricky part. 3562 * 3563 * We need to move the pointer past the header page. 3564 * But we can only do that if a writer is not currently 3565 * moving it. The page before the header page has the 3566 * flag bit '1' set if it is pointing to the page we want. 3567 * but if the writer is in the process of moving it 3568 * than it will be '2' or already moved '0'. 3569 */ 3570 3571 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3572 3573 /* 3574 * If we did not convert it, then we must try again. 3575 */ 3576 if (!ret) 3577 goto spin; 3578 3579 /* 3580 * Yeah! We succeeded in replacing the page. 3581 * 3582 * Now make the new head point back to the reader page. 3583 */ 3584 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3585 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3586 3587 /* Finally update the reader page to the new head */ 3588 cpu_buffer->reader_page = reader; 3589 rb_reset_reader_page(cpu_buffer); 3590 3591 if (overwrite != cpu_buffer->last_overrun) { 3592 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3593 cpu_buffer->last_overrun = overwrite; 3594 } 3595 3596 goto again; 3597 3598 out: 3599 arch_spin_unlock(&cpu_buffer->lock); 3600 local_irq_restore(flags); 3601 3602 return reader; 3603 } 3604 3605 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3606 { 3607 struct ring_buffer_event *event; 3608 struct buffer_page *reader; 3609 unsigned length; 3610 3611 reader = rb_get_reader_page(cpu_buffer); 3612 3613 /* This function should not be called when buffer is empty */ 3614 if (RB_WARN_ON(cpu_buffer, !reader)) 3615 return; 3616 3617 event = rb_reader_event(cpu_buffer); 3618 3619 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3620 cpu_buffer->read++; 3621 3622 rb_update_read_stamp(cpu_buffer, event); 3623 3624 length = rb_event_length(event); 3625 cpu_buffer->reader_page->read += length; 3626 } 3627 3628 static void rb_advance_iter(struct ring_buffer_iter *iter) 3629 { 3630 struct ring_buffer_per_cpu *cpu_buffer; 3631 struct ring_buffer_event *event; 3632 unsigned length; 3633 3634 cpu_buffer = iter->cpu_buffer; 3635 3636 /* 3637 * Check if we are at the end of the buffer. 3638 */ 3639 if (iter->head >= rb_page_size(iter->head_page)) { 3640 /* discarded commits can make the page empty */ 3641 if (iter->head_page == cpu_buffer->commit_page) 3642 return; 3643 rb_inc_iter(iter); 3644 return; 3645 } 3646 3647 event = rb_iter_head_event(iter); 3648 3649 length = rb_event_length(event); 3650 3651 /* 3652 * This should not be called to advance the header if we are 3653 * at the tail of the buffer. 3654 */ 3655 if (RB_WARN_ON(cpu_buffer, 3656 (iter->head_page == cpu_buffer->commit_page) && 3657 (iter->head + length > rb_commit_index(cpu_buffer)))) 3658 return; 3659 3660 rb_update_iter_read_stamp(iter, event); 3661 3662 iter->head += length; 3663 3664 /* check for end of page padding */ 3665 if ((iter->head >= rb_page_size(iter->head_page)) && 3666 (iter->head_page != cpu_buffer->commit_page)) 3667 rb_inc_iter(iter); 3668 } 3669 3670 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3671 { 3672 return cpu_buffer->lost_events; 3673 } 3674 3675 static struct ring_buffer_event * 3676 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3677 unsigned long *lost_events) 3678 { 3679 struct ring_buffer_event *event; 3680 struct buffer_page *reader; 3681 int nr_loops = 0; 3682 3683 again: 3684 /* 3685 * We repeat when a time extend is encountered. 3686 * Since the time extend is always attached to a data event, 3687 * we should never loop more than once. 3688 * (We never hit the following condition more than twice). 3689 */ 3690 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3691 return NULL; 3692 3693 reader = rb_get_reader_page(cpu_buffer); 3694 if (!reader) 3695 return NULL; 3696 3697 event = rb_reader_event(cpu_buffer); 3698 3699 switch (event->type_len) { 3700 case RINGBUF_TYPE_PADDING: 3701 if (rb_null_event(event)) 3702 RB_WARN_ON(cpu_buffer, 1); 3703 /* 3704 * Because the writer could be discarding every 3705 * event it creates (which would probably be bad) 3706 * if we were to go back to "again" then we may never 3707 * catch up, and will trigger the warn on, or lock 3708 * the box. Return the padding, and we will release 3709 * the current locks, and try again. 3710 */ 3711 return event; 3712 3713 case RINGBUF_TYPE_TIME_EXTEND: 3714 /* Internal data, OK to advance */ 3715 rb_advance_reader(cpu_buffer); 3716 goto again; 3717 3718 case RINGBUF_TYPE_TIME_STAMP: 3719 /* FIXME: not implemented */ 3720 rb_advance_reader(cpu_buffer); 3721 goto again; 3722 3723 case RINGBUF_TYPE_DATA: 3724 if (ts) { 3725 *ts = cpu_buffer->read_stamp + event->time_delta; 3726 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3727 cpu_buffer->cpu, ts); 3728 } 3729 if (lost_events) 3730 *lost_events = rb_lost_events(cpu_buffer); 3731 return event; 3732 3733 default: 3734 BUG(); 3735 } 3736 3737 return NULL; 3738 } 3739 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3740 3741 static struct ring_buffer_event * 3742 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3743 { 3744 struct ring_buffer *buffer; 3745 struct ring_buffer_per_cpu *cpu_buffer; 3746 struct ring_buffer_event *event; 3747 int nr_loops = 0; 3748 3749 cpu_buffer = iter->cpu_buffer; 3750 buffer = cpu_buffer->buffer; 3751 3752 /* 3753 * Check if someone performed a consuming read to 3754 * the buffer. A consuming read invalidates the iterator 3755 * and we need to reset the iterator in this case. 3756 */ 3757 if (unlikely(iter->cache_read != cpu_buffer->read || 3758 iter->cache_reader_page != cpu_buffer->reader_page)) 3759 rb_iter_reset(iter); 3760 3761 again: 3762 if (ring_buffer_iter_empty(iter)) 3763 return NULL; 3764 3765 /* 3766 * We repeat when a time extend is encountered or we hit 3767 * the end of the page. Since the time extend is always attached 3768 * to a data event, we should never loop more than three times. 3769 * Once for going to next page, once on time extend, and 3770 * finally once to get the event. 3771 * (We never hit the following condition more than thrice). 3772 */ 3773 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3774 return NULL; 3775 3776 if (rb_per_cpu_empty(cpu_buffer)) 3777 return NULL; 3778 3779 if (iter->head >= rb_page_size(iter->head_page)) { 3780 rb_inc_iter(iter); 3781 goto again; 3782 } 3783 3784 event = rb_iter_head_event(iter); 3785 3786 switch (event->type_len) { 3787 case RINGBUF_TYPE_PADDING: 3788 if (rb_null_event(event)) { 3789 rb_inc_iter(iter); 3790 goto again; 3791 } 3792 rb_advance_iter(iter); 3793 return event; 3794 3795 case RINGBUF_TYPE_TIME_EXTEND: 3796 /* Internal data, OK to advance */ 3797 rb_advance_iter(iter); 3798 goto again; 3799 3800 case RINGBUF_TYPE_TIME_STAMP: 3801 /* FIXME: not implemented */ 3802 rb_advance_iter(iter); 3803 goto again; 3804 3805 case RINGBUF_TYPE_DATA: 3806 if (ts) { 3807 *ts = iter->read_stamp + event->time_delta; 3808 ring_buffer_normalize_time_stamp(buffer, 3809 cpu_buffer->cpu, ts); 3810 } 3811 return event; 3812 3813 default: 3814 BUG(); 3815 } 3816 3817 return NULL; 3818 } 3819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3820 3821 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3822 { 3823 if (likely(!in_nmi())) { 3824 raw_spin_lock(&cpu_buffer->reader_lock); 3825 return true; 3826 } 3827 3828 /* 3829 * If an NMI die dumps out the content of the ring buffer 3830 * trylock must be used to prevent a deadlock if the NMI 3831 * preempted a task that holds the ring buffer locks. If 3832 * we get the lock then all is fine, if not, then continue 3833 * to do the read, but this can corrupt the ring buffer, 3834 * so it must be permanently disabled from future writes. 3835 * Reading from NMI is a oneshot deal. 3836 */ 3837 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3838 return true; 3839 3840 /* Continue without locking, but disable the ring buffer */ 3841 atomic_inc(&cpu_buffer->record_disabled); 3842 return false; 3843 } 3844 3845 static inline void 3846 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 3847 { 3848 if (likely(locked)) 3849 raw_spin_unlock(&cpu_buffer->reader_lock); 3850 return; 3851 } 3852 3853 /** 3854 * ring_buffer_peek - peek at the next event to be read 3855 * @buffer: The ring buffer to read 3856 * @cpu: The cpu to peak at 3857 * @ts: The timestamp counter of this event. 3858 * @lost_events: a variable to store if events were lost (may be NULL) 3859 * 3860 * This will return the event that will be read next, but does 3861 * not consume the data. 3862 */ 3863 struct ring_buffer_event * 3864 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3865 unsigned long *lost_events) 3866 { 3867 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3868 struct ring_buffer_event *event; 3869 unsigned long flags; 3870 bool dolock; 3871 3872 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3873 return NULL; 3874 3875 again: 3876 local_irq_save(flags); 3877 dolock = rb_reader_lock(cpu_buffer); 3878 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3879 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3880 rb_advance_reader(cpu_buffer); 3881 rb_reader_unlock(cpu_buffer, dolock); 3882 local_irq_restore(flags); 3883 3884 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3885 goto again; 3886 3887 return event; 3888 } 3889 3890 /** 3891 * ring_buffer_iter_peek - peek at the next event to be read 3892 * @iter: The ring buffer iterator 3893 * @ts: The timestamp counter of this event. 3894 * 3895 * This will return the event that will be read next, but does 3896 * not increment the iterator. 3897 */ 3898 struct ring_buffer_event * 3899 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3900 { 3901 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3902 struct ring_buffer_event *event; 3903 unsigned long flags; 3904 3905 again: 3906 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3907 event = rb_iter_peek(iter, ts); 3908 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3909 3910 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3911 goto again; 3912 3913 return event; 3914 } 3915 3916 /** 3917 * ring_buffer_consume - return an event and consume it 3918 * @buffer: The ring buffer to get the next event from 3919 * @cpu: the cpu to read the buffer from 3920 * @ts: a variable to store the timestamp (may be NULL) 3921 * @lost_events: a variable to store if events were lost (may be NULL) 3922 * 3923 * Returns the next event in the ring buffer, and that event is consumed. 3924 * Meaning, that sequential reads will keep returning a different event, 3925 * and eventually empty the ring buffer if the producer is slower. 3926 */ 3927 struct ring_buffer_event * 3928 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3929 unsigned long *lost_events) 3930 { 3931 struct ring_buffer_per_cpu *cpu_buffer; 3932 struct ring_buffer_event *event = NULL; 3933 unsigned long flags; 3934 bool dolock; 3935 3936 again: 3937 /* might be called in atomic */ 3938 preempt_disable(); 3939 3940 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3941 goto out; 3942 3943 cpu_buffer = buffer->buffers[cpu]; 3944 local_irq_save(flags); 3945 dolock = rb_reader_lock(cpu_buffer); 3946 3947 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3948 if (event) { 3949 cpu_buffer->lost_events = 0; 3950 rb_advance_reader(cpu_buffer); 3951 } 3952 3953 rb_reader_unlock(cpu_buffer, dolock); 3954 local_irq_restore(flags); 3955 3956 out: 3957 preempt_enable(); 3958 3959 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3960 goto again; 3961 3962 return event; 3963 } 3964 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3965 3966 /** 3967 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3968 * @buffer: The ring buffer to read from 3969 * @cpu: The cpu buffer to iterate over 3970 * 3971 * This performs the initial preparations necessary to iterate 3972 * through the buffer. Memory is allocated, buffer recording 3973 * is disabled, and the iterator pointer is returned to the caller. 3974 * 3975 * Disabling buffer recordng prevents the reading from being 3976 * corrupted. This is not a consuming read, so a producer is not 3977 * expected. 3978 * 3979 * After a sequence of ring_buffer_read_prepare calls, the user is 3980 * expected to make at least one call to ring_buffer_read_prepare_sync. 3981 * Afterwards, ring_buffer_read_start is invoked to get things going 3982 * for real. 3983 * 3984 * This overall must be paired with ring_buffer_read_finish. 3985 */ 3986 struct ring_buffer_iter * 3987 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3988 { 3989 struct ring_buffer_per_cpu *cpu_buffer; 3990 struct ring_buffer_iter *iter; 3991 3992 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3993 return NULL; 3994 3995 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3996 if (!iter) 3997 return NULL; 3998 3999 cpu_buffer = buffer->buffers[cpu]; 4000 4001 iter->cpu_buffer = cpu_buffer; 4002 4003 atomic_inc(&buffer->resize_disabled); 4004 atomic_inc(&cpu_buffer->record_disabled); 4005 4006 return iter; 4007 } 4008 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4009 4010 /** 4011 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4012 * 4013 * All previously invoked ring_buffer_read_prepare calls to prepare 4014 * iterators will be synchronized. Afterwards, read_buffer_read_start 4015 * calls on those iterators are allowed. 4016 */ 4017 void 4018 ring_buffer_read_prepare_sync(void) 4019 { 4020 synchronize_sched(); 4021 } 4022 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4023 4024 /** 4025 * ring_buffer_read_start - start a non consuming read of the buffer 4026 * @iter: The iterator returned by ring_buffer_read_prepare 4027 * 4028 * This finalizes the startup of an iteration through the buffer. 4029 * The iterator comes from a call to ring_buffer_read_prepare and 4030 * an intervening ring_buffer_read_prepare_sync must have been 4031 * performed. 4032 * 4033 * Must be paired with ring_buffer_read_finish. 4034 */ 4035 void 4036 ring_buffer_read_start(struct ring_buffer_iter *iter) 4037 { 4038 struct ring_buffer_per_cpu *cpu_buffer; 4039 unsigned long flags; 4040 4041 if (!iter) 4042 return; 4043 4044 cpu_buffer = iter->cpu_buffer; 4045 4046 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4047 arch_spin_lock(&cpu_buffer->lock); 4048 rb_iter_reset(iter); 4049 arch_spin_unlock(&cpu_buffer->lock); 4050 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4051 } 4052 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4053 4054 /** 4055 * ring_buffer_read_finish - finish reading the iterator of the buffer 4056 * @iter: The iterator retrieved by ring_buffer_start 4057 * 4058 * This re-enables the recording to the buffer, and frees the 4059 * iterator. 4060 */ 4061 void 4062 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4063 { 4064 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4065 unsigned long flags; 4066 4067 /* 4068 * Ring buffer is disabled from recording, here's a good place 4069 * to check the integrity of the ring buffer. 4070 * Must prevent readers from trying to read, as the check 4071 * clears the HEAD page and readers require it. 4072 */ 4073 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4074 rb_check_pages(cpu_buffer); 4075 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4076 4077 atomic_dec(&cpu_buffer->record_disabled); 4078 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4079 kfree(iter); 4080 } 4081 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4082 4083 /** 4084 * ring_buffer_read - read the next item in the ring buffer by the iterator 4085 * @iter: The ring buffer iterator 4086 * @ts: The time stamp of the event read. 4087 * 4088 * This reads the next event in the ring buffer and increments the iterator. 4089 */ 4090 struct ring_buffer_event * 4091 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4092 { 4093 struct ring_buffer_event *event; 4094 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4095 unsigned long flags; 4096 4097 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4098 again: 4099 event = rb_iter_peek(iter, ts); 4100 if (!event) 4101 goto out; 4102 4103 if (event->type_len == RINGBUF_TYPE_PADDING) 4104 goto again; 4105 4106 rb_advance_iter(iter); 4107 out: 4108 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4109 4110 return event; 4111 } 4112 EXPORT_SYMBOL_GPL(ring_buffer_read); 4113 4114 /** 4115 * ring_buffer_size - return the size of the ring buffer (in bytes) 4116 * @buffer: The ring buffer. 4117 */ 4118 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4119 { 4120 /* 4121 * Earlier, this method returned 4122 * BUF_PAGE_SIZE * buffer->nr_pages 4123 * Since the nr_pages field is now removed, we have converted this to 4124 * return the per cpu buffer value. 4125 */ 4126 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4127 return 0; 4128 4129 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4130 } 4131 EXPORT_SYMBOL_GPL(ring_buffer_size); 4132 4133 static void 4134 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4135 { 4136 rb_head_page_deactivate(cpu_buffer); 4137 4138 cpu_buffer->head_page 4139 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4140 local_set(&cpu_buffer->head_page->write, 0); 4141 local_set(&cpu_buffer->head_page->entries, 0); 4142 local_set(&cpu_buffer->head_page->page->commit, 0); 4143 4144 cpu_buffer->head_page->read = 0; 4145 4146 cpu_buffer->tail_page = cpu_buffer->head_page; 4147 cpu_buffer->commit_page = cpu_buffer->head_page; 4148 4149 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4150 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4151 local_set(&cpu_buffer->reader_page->write, 0); 4152 local_set(&cpu_buffer->reader_page->entries, 0); 4153 local_set(&cpu_buffer->reader_page->page->commit, 0); 4154 cpu_buffer->reader_page->read = 0; 4155 4156 local_set(&cpu_buffer->entries_bytes, 0); 4157 local_set(&cpu_buffer->overrun, 0); 4158 local_set(&cpu_buffer->commit_overrun, 0); 4159 local_set(&cpu_buffer->dropped_events, 0); 4160 local_set(&cpu_buffer->entries, 0); 4161 local_set(&cpu_buffer->committing, 0); 4162 local_set(&cpu_buffer->commits, 0); 4163 cpu_buffer->read = 0; 4164 cpu_buffer->read_bytes = 0; 4165 4166 cpu_buffer->write_stamp = 0; 4167 cpu_buffer->read_stamp = 0; 4168 4169 cpu_buffer->lost_events = 0; 4170 cpu_buffer->last_overrun = 0; 4171 4172 rb_head_page_activate(cpu_buffer); 4173 } 4174 4175 /** 4176 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4177 * @buffer: The ring buffer to reset a per cpu buffer of 4178 * @cpu: The CPU buffer to be reset 4179 */ 4180 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4181 { 4182 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4183 unsigned long flags; 4184 4185 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4186 return; 4187 4188 atomic_inc(&buffer->resize_disabled); 4189 atomic_inc(&cpu_buffer->record_disabled); 4190 4191 /* Make sure all commits have finished */ 4192 synchronize_sched(); 4193 4194 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4195 4196 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4197 goto out; 4198 4199 arch_spin_lock(&cpu_buffer->lock); 4200 4201 rb_reset_cpu(cpu_buffer); 4202 4203 arch_spin_unlock(&cpu_buffer->lock); 4204 4205 out: 4206 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4207 4208 atomic_dec(&cpu_buffer->record_disabled); 4209 atomic_dec(&buffer->resize_disabled); 4210 } 4211 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4212 4213 /** 4214 * ring_buffer_reset - reset a ring buffer 4215 * @buffer: The ring buffer to reset all cpu buffers 4216 */ 4217 void ring_buffer_reset(struct ring_buffer *buffer) 4218 { 4219 int cpu; 4220 4221 for_each_buffer_cpu(buffer, cpu) 4222 ring_buffer_reset_cpu(buffer, cpu); 4223 } 4224 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4225 4226 /** 4227 * rind_buffer_empty - is the ring buffer empty? 4228 * @buffer: The ring buffer to test 4229 */ 4230 int ring_buffer_empty(struct ring_buffer *buffer) 4231 { 4232 struct ring_buffer_per_cpu *cpu_buffer; 4233 unsigned long flags; 4234 bool dolock; 4235 int cpu; 4236 int ret; 4237 4238 /* yes this is racy, but if you don't like the race, lock the buffer */ 4239 for_each_buffer_cpu(buffer, cpu) { 4240 cpu_buffer = buffer->buffers[cpu]; 4241 local_irq_save(flags); 4242 dolock = rb_reader_lock(cpu_buffer); 4243 ret = rb_per_cpu_empty(cpu_buffer); 4244 rb_reader_unlock(cpu_buffer, dolock); 4245 local_irq_restore(flags); 4246 4247 if (!ret) 4248 return 0; 4249 } 4250 4251 return 1; 4252 } 4253 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4254 4255 /** 4256 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4257 * @buffer: The ring buffer 4258 * @cpu: The CPU buffer to test 4259 */ 4260 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4261 { 4262 struct ring_buffer_per_cpu *cpu_buffer; 4263 unsigned long flags; 4264 bool dolock; 4265 int ret; 4266 4267 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4268 return 1; 4269 4270 cpu_buffer = buffer->buffers[cpu]; 4271 local_irq_save(flags); 4272 dolock = rb_reader_lock(cpu_buffer); 4273 ret = rb_per_cpu_empty(cpu_buffer); 4274 rb_reader_unlock(cpu_buffer, dolock); 4275 local_irq_restore(flags); 4276 4277 return ret; 4278 } 4279 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4280 4281 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4282 /** 4283 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4284 * @buffer_a: One buffer to swap with 4285 * @buffer_b: The other buffer to swap with 4286 * 4287 * This function is useful for tracers that want to take a "snapshot" 4288 * of a CPU buffer and has another back up buffer lying around. 4289 * it is expected that the tracer handles the cpu buffer not being 4290 * used at the moment. 4291 */ 4292 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4293 struct ring_buffer *buffer_b, int cpu) 4294 { 4295 struct ring_buffer_per_cpu *cpu_buffer_a; 4296 struct ring_buffer_per_cpu *cpu_buffer_b; 4297 int ret = -EINVAL; 4298 4299 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4300 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4301 goto out; 4302 4303 cpu_buffer_a = buffer_a->buffers[cpu]; 4304 cpu_buffer_b = buffer_b->buffers[cpu]; 4305 4306 /* At least make sure the two buffers are somewhat the same */ 4307 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4308 goto out; 4309 4310 ret = -EAGAIN; 4311 4312 if (atomic_read(&buffer_a->record_disabled)) 4313 goto out; 4314 4315 if (atomic_read(&buffer_b->record_disabled)) 4316 goto out; 4317 4318 if (atomic_read(&cpu_buffer_a->record_disabled)) 4319 goto out; 4320 4321 if (atomic_read(&cpu_buffer_b->record_disabled)) 4322 goto out; 4323 4324 /* 4325 * We can't do a synchronize_sched here because this 4326 * function can be called in atomic context. 4327 * Normally this will be called from the same CPU as cpu. 4328 * If not it's up to the caller to protect this. 4329 */ 4330 atomic_inc(&cpu_buffer_a->record_disabled); 4331 atomic_inc(&cpu_buffer_b->record_disabled); 4332 4333 ret = -EBUSY; 4334 if (local_read(&cpu_buffer_a->committing)) 4335 goto out_dec; 4336 if (local_read(&cpu_buffer_b->committing)) 4337 goto out_dec; 4338 4339 buffer_a->buffers[cpu] = cpu_buffer_b; 4340 buffer_b->buffers[cpu] = cpu_buffer_a; 4341 4342 cpu_buffer_b->buffer = buffer_a; 4343 cpu_buffer_a->buffer = buffer_b; 4344 4345 ret = 0; 4346 4347 out_dec: 4348 atomic_dec(&cpu_buffer_a->record_disabled); 4349 atomic_dec(&cpu_buffer_b->record_disabled); 4350 out: 4351 return ret; 4352 } 4353 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4354 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4355 4356 /** 4357 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4358 * @buffer: the buffer to allocate for. 4359 * @cpu: the cpu buffer to allocate. 4360 * 4361 * This function is used in conjunction with ring_buffer_read_page. 4362 * When reading a full page from the ring buffer, these functions 4363 * can be used to speed up the process. The calling function should 4364 * allocate a few pages first with this function. Then when it 4365 * needs to get pages from the ring buffer, it passes the result 4366 * of this function into ring_buffer_read_page, which will swap 4367 * the page that was allocated, with the read page of the buffer. 4368 * 4369 * Returns: 4370 * The page allocated, or NULL on error. 4371 */ 4372 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4373 { 4374 struct buffer_data_page *bpage; 4375 struct page *page; 4376 4377 page = alloc_pages_node(cpu_to_node(cpu), 4378 GFP_KERNEL | __GFP_NORETRY, 0); 4379 if (!page) 4380 return NULL; 4381 4382 bpage = page_address(page); 4383 4384 rb_init_page(bpage); 4385 4386 return bpage; 4387 } 4388 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4389 4390 /** 4391 * ring_buffer_free_read_page - free an allocated read page 4392 * @buffer: the buffer the page was allocate for 4393 * @data: the page to free 4394 * 4395 * Free a page allocated from ring_buffer_alloc_read_page. 4396 */ 4397 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4398 { 4399 free_page((unsigned long)data); 4400 } 4401 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4402 4403 /** 4404 * ring_buffer_read_page - extract a page from the ring buffer 4405 * @buffer: buffer to extract from 4406 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4407 * @len: amount to extract 4408 * @cpu: the cpu of the buffer to extract 4409 * @full: should the extraction only happen when the page is full. 4410 * 4411 * This function will pull out a page from the ring buffer and consume it. 4412 * @data_page must be the address of the variable that was returned 4413 * from ring_buffer_alloc_read_page. This is because the page might be used 4414 * to swap with a page in the ring buffer. 4415 * 4416 * for example: 4417 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4418 * if (!rpage) 4419 * return error; 4420 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4421 * if (ret >= 0) 4422 * process_page(rpage, ret); 4423 * 4424 * When @full is set, the function will not return true unless 4425 * the writer is off the reader page. 4426 * 4427 * Note: it is up to the calling functions to handle sleeps and wakeups. 4428 * The ring buffer can be used anywhere in the kernel and can not 4429 * blindly call wake_up. The layer that uses the ring buffer must be 4430 * responsible for that. 4431 * 4432 * Returns: 4433 * >=0 if data has been transferred, returns the offset of consumed data. 4434 * <0 if no data has been transferred. 4435 */ 4436 int ring_buffer_read_page(struct ring_buffer *buffer, 4437 void **data_page, size_t len, int cpu, int full) 4438 { 4439 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4440 struct ring_buffer_event *event; 4441 struct buffer_data_page *bpage; 4442 struct buffer_page *reader; 4443 unsigned long missed_events; 4444 unsigned long flags; 4445 unsigned int commit; 4446 unsigned int read; 4447 u64 save_timestamp; 4448 int ret = -1; 4449 4450 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4451 goto out; 4452 4453 /* 4454 * If len is not big enough to hold the page header, then 4455 * we can not copy anything. 4456 */ 4457 if (len <= BUF_PAGE_HDR_SIZE) 4458 goto out; 4459 4460 len -= BUF_PAGE_HDR_SIZE; 4461 4462 if (!data_page) 4463 goto out; 4464 4465 bpage = *data_page; 4466 if (!bpage) 4467 goto out; 4468 4469 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4470 4471 reader = rb_get_reader_page(cpu_buffer); 4472 if (!reader) 4473 goto out_unlock; 4474 4475 event = rb_reader_event(cpu_buffer); 4476 4477 read = reader->read; 4478 commit = rb_page_commit(reader); 4479 4480 /* Check if any events were dropped */ 4481 missed_events = cpu_buffer->lost_events; 4482 4483 /* 4484 * If this page has been partially read or 4485 * if len is not big enough to read the rest of the page or 4486 * a writer is still on the page, then 4487 * we must copy the data from the page to the buffer. 4488 * Otherwise, we can simply swap the page with the one passed in. 4489 */ 4490 if (read || (len < (commit - read)) || 4491 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4492 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4493 unsigned int rpos = read; 4494 unsigned int pos = 0; 4495 unsigned int size; 4496 4497 if (full) 4498 goto out_unlock; 4499 4500 if (len > (commit - read)) 4501 len = (commit - read); 4502 4503 /* Always keep the time extend and data together */ 4504 size = rb_event_ts_length(event); 4505 4506 if (len < size) 4507 goto out_unlock; 4508 4509 /* save the current timestamp, since the user will need it */ 4510 save_timestamp = cpu_buffer->read_stamp; 4511 4512 /* Need to copy one event at a time */ 4513 do { 4514 /* We need the size of one event, because 4515 * rb_advance_reader only advances by one event, 4516 * whereas rb_event_ts_length may include the size of 4517 * one or two events. 4518 * We have already ensured there's enough space if this 4519 * is a time extend. */ 4520 size = rb_event_length(event); 4521 memcpy(bpage->data + pos, rpage->data + rpos, size); 4522 4523 len -= size; 4524 4525 rb_advance_reader(cpu_buffer); 4526 rpos = reader->read; 4527 pos += size; 4528 4529 if (rpos >= commit) 4530 break; 4531 4532 event = rb_reader_event(cpu_buffer); 4533 /* Always keep the time extend and data together */ 4534 size = rb_event_ts_length(event); 4535 } while (len >= size); 4536 4537 /* update bpage */ 4538 local_set(&bpage->commit, pos); 4539 bpage->time_stamp = save_timestamp; 4540 4541 /* we copied everything to the beginning */ 4542 read = 0; 4543 } else { 4544 /* update the entry counter */ 4545 cpu_buffer->read += rb_page_entries(reader); 4546 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4547 4548 /* swap the pages */ 4549 rb_init_page(bpage); 4550 bpage = reader->page; 4551 reader->page = *data_page; 4552 local_set(&reader->write, 0); 4553 local_set(&reader->entries, 0); 4554 reader->read = 0; 4555 *data_page = bpage; 4556 4557 /* 4558 * Use the real_end for the data size, 4559 * This gives us a chance to store the lost events 4560 * on the page. 4561 */ 4562 if (reader->real_end) 4563 local_set(&bpage->commit, reader->real_end); 4564 } 4565 ret = read; 4566 4567 cpu_buffer->lost_events = 0; 4568 4569 commit = local_read(&bpage->commit); 4570 /* 4571 * Set a flag in the commit field if we lost events 4572 */ 4573 if (missed_events) { 4574 /* If there is room at the end of the page to save the 4575 * missed events, then record it there. 4576 */ 4577 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4578 memcpy(&bpage->data[commit], &missed_events, 4579 sizeof(missed_events)); 4580 local_add(RB_MISSED_STORED, &bpage->commit); 4581 commit += sizeof(missed_events); 4582 } 4583 local_add(RB_MISSED_EVENTS, &bpage->commit); 4584 } 4585 4586 /* 4587 * This page may be off to user land. Zero it out here. 4588 */ 4589 if (commit < BUF_PAGE_SIZE) 4590 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4591 4592 out_unlock: 4593 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4594 4595 out: 4596 return ret; 4597 } 4598 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4599 4600 #ifdef CONFIG_HOTPLUG_CPU 4601 static int rb_cpu_notify(struct notifier_block *self, 4602 unsigned long action, void *hcpu) 4603 { 4604 struct ring_buffer *buffer = 4605 container_of(self, struct ring_buffer, cpu_notify); 4606 long cpu = (long)hcpu; 4607 int cpu_i, nr_pages_same; 4608 unsigned int nr_pages; 4609 4610 switch (action) { 4611 case CPU_UP_PREPARE: 4612 case CPU_UP_PREPARE_FROZEN: 4613 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4614 return NOTIFY_OK; 4615 4616 nr_pages = 0; 4617 nr_pages_same = 1; 4618 /* check if all cpu sizes are same */ 4619 for_each_buffer_cpu(buffer, cpu_i) { 4620 /* fill in the size from first enabled cpu */ 4621 if (nr_pages == 0) 4622 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4623 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4624 nr_pages_same = 0; 4625 break; 4626 } 4627 } 4628 /* allocate minimum pages, user can later expand it */ 4629 if (!nr_pages_same) 4630 nr_pages = 2; 4631 buffer->buffers[cpu] = 4632 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4633 if (!buffer->buffers[cpu]) { 4634 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4635 cpu); 4636 return NOTIFY_OK; 4637 } 4638 smp_wmb(); 4639 cpumask_set_cpu(cpu, buffer->cpumask); 4640 break; 4641 case CPU_DOWN_PREPARE: 4642 case CPU_DOWN_PREPARE_FROZEN: 4643 /* 4644 * Do nothing. 4645 * If we were to free the buffer, then the user would 4646 * lose any trace that was in the buffer. 4647 */ 4648 break; 4649 default: 4650 break; 4651 } 4652 return NOTIFY_OK; 4653 } 4654 #endif 4655 4656 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4657 /* 4658 * This is a basic integrity check of the ring buffer. 4659 * Late in the boot cycle this test will run when configured in. 4660 * It will kick off a thread per CPU that will go into a loop 4661 * writing to the per cpu ring buffer various sizes of data. 4662 * Some of the data will be large items, some small. 4663 * 4664 * Another thread is created that goes into a spin, sending out 4665 * IPIs to the other CPUs to also write into the ring buffer. 4666 * this is to test the nesting ability of the buffer. 4667 * 4668 * Basic stats are recorded and reported. If something in the 4669 * ring buffer should happen that's not expected, a big warning 4670 * is displayed and all ring buffers are disabled. 4671 */ 4672 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4673 4674 struct rb_test_data { 4675 struct ring_buffer *buffer; 4676 unsigned long events; 4677 unsigned long bytes_written; 4678 unsigned long bytes_alloc; 4679 unsigned long bytes_dropped; 4680 unsigned long events_nested; 4681 unsigned long bytes_written_nested; 4682 unsigned long bytes_alloc_nested; 4683 unsigned long bytes_dropped_nested; 4684 int min_size_nested; 4685 int max_size_nested; 4686 int max_size; 4687 int min_size; 4688 int cpu; 4689 int cnt; 4690 }; 4691 4692 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4693 4694 /* 1 meg per cpu */ 4695 #define RB_TEST_BUFFER_SIZE 1048576 4696 4697 static char rb_string[] __initdata = 4698 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4699 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4700 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4701 4702 static bool rb_test_started __initdata; 4703 4704 struct rb_item { 4705 int size; 4706 char str[]; 4707 }; 4708 4709 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4710 { 4711 struct ring_buffer_event *event; 4712 struct rb_item *item; 4713 bool started; 4714 int event_len; 4715 int size; 4716 int len; 4717 int cnt; 4718 4719 /* Have nested writes different that what is written */ 4720 cnt = data->cnt + (nested ? 27 : 0); 4721 4722 /* Multiply cnt by ~e, to make some unique increment */ 4723 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4724 4725 len = size + sizeof(struct rb_item); 4726 4727 started = rb_test_started; 4728 /* read rb_test_started before checking buffer enabled */ 4729 smp_rmb(); 4730 4731 event = ring_buffer_lock_reserve(data->buffer, len); 4732 if (!event) { 4733 /* Ignore dropped events before test starts. */ 4734 if (started) { 4735 if (nested) 4736 data->bytes_dropped += len; 4737 else 4738 data->bytes_dropped_nested += len; 4739 } 4740 return len; 4741 } 4742 4743 event_len = ring_buffer_event_length(event); 4744 4745 if (RB_WARN_ON(data->buffer, event_len < len)) 4746 goto out; 4747 4748 item = ring_buffer_event_data(event); 4749 item->size = size; 4750 memcpy(item->str, rb_string, size); 4751 4752 if (nested) { 4753 data->bytes_alloc_nested += event_len; 4754 data->bytes_written_nested += len; 4755 data->events_nested++; 4756 if (!data->min_size_nested || len < data->min_size_nested) 4757 data->min_size_nested = len; 4758 if (len > data->max_size_nested) 4759 data->max_size_nested = len; 4760 } else { 4761 data->bytes_alloc += event_len; 4762 data->bytes_written += len; 4763 data->events++; 4764 if (!data->min_size || len < data->min_size) 4765 data->max_size = len; 4766 if (len > data->max_size) 4767 data->max_size = len; 4768 } 4769 4770 out: 4771 ring_buffer_unlock_commit(data->buffer, event); 4772 4773 return 0; 4774 } 4775 4776 static __init int rb_test(void *arg) 4777 { 4778 struct rb_test_data *data = arg; 4779 4780 while (!kthread_should_stop()) { 4781 rb_write_something(data, false); 4782 data->cnt++; 4783 4784 set_current_state(TASK_INTERRUPTIBLE); 4785 /* Now sleep between a min of 100-300us and a max of 1ms */ 4786 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4787 } 4788 4789 return 0; 4790 } 4791 4792 static __init void rb_ipi(void *ignore) 4793 { 4794 struct rb_test_data *data; 4795 int cpu = smp_processor_id(); 4796 4797 data = &rb_data[cpu]; 4798 rb_write_something(data, true); 4799 } 4800 4801 static __init int rb_hammer_test(void *arg) 4802 { 4803 while (!kthread_should_stop()) { 4804 4805 /* Send an IPI to all cpus to write data! */ 4806 smp_call_function(rb_ipi, NULL, 1); 4807 /* No sleep, but for non preempt, let others run */ 4808 schedule(); 4809 } 4810 4811 return 0; 4812 } 4813 4814 static __init int test_ringbuffer(void) 4815 { 4816 struct task_struct *rb_hammer; 4817 struct ring_buffer *buffer; 4818 int cpu; 4819 int ret = 0; 4820 4821 pr_info("Running ring buffer tests...\n"); 4822 4823 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4824 if (WARN_ON(!buffer)) 4825 return 0; 4826 4827 /* Disable buffer so that threads can't write to it yet */ 4828 ring_buffer_record_off(buffer); 4829 4830 for_each_online_cpu(cpu) { 4831 rb_data[cpu].buffer = buffer; 4832 rb_data[cpu].cpu = cpu; 4833 rb_data[cpu].cnt = cpu; 4834 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4835 "rbtester/%d", cpu); 4836 if (WARN_ON(!rb_threads[cpu])) { 4837 pr_cont("FAILED\n"); 4838 ret = -1; 4839 goto out_free; 4840 } 4841 4842 kthread_bind(rb_threads[cpu], cpu); 4843 wake_up_process(rb_threads[cpu]); 4844 } 4845 4846 /* Now create the rb hammer! */ 4847 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4848 if (WARN_ON(!rb_hammer)) { 4849 pr_cont("FAILED\n"); 4850 ret = -1; 4851 goto out_free; 4852 } 4853 4854 ring_buffer_record_on(buffer); 4855 /* 4856 * Show buffer is enabled before setting rb_test_started. 4857 * Yes there's a small race window where events could be 4858 * dropped and the thread wont catch it. But when a ring 4859 * buffer gets enabled, there will always be some kind of 4860 * delay before other CPUs see it. Thus, we don't care about 4861 * those dropped events. We care about events dropped after 4862 * the threads see that the buffer is active. 4863 */ 4864 smp_wmb(); 4865 rb_test_started = true; 4866 4867 set_current_state(TASK_INTERRUPTIBLE); 4868 /* Just run for 10 seconds */; 4869 schedule_timeout(10 * HZ); 4870 4871 kthread_stop(rb_hammer); 4872 4873 out_free: 4874 for_each_online_cpu(cpu) { 4875 if (!rb_threads[cpu]) 4876 break; 4877 kthread_stop(rb_threads[cpu]); 4878 } 4879 if (ret) { 4880 ring_buffer_free(buffer); 4881 return ret; 4882 } 4883 4884 /* Report! */ 4885 pr_info("finished\n"); 4886 for_each_online_cpu(cpu) { 4887 struct ring_buffer_event *event; 4888 struct rb_test_data *data = &rb_data[cpu]; 4889 struct rb_item *item; 4890 unsigned long total_events; 4891 unsigned long total_dropped; 4892 unsigned long total_written; 4893 unsigned long total_alloc; 4894 unsigned long total_read = 0; 4895 unsigned long total_size = 0; 4896 unsigned long total_len = 0; 4897 unsigned long total_lost = 0; 4898 unsigned long lost; 4899 int big_event_size; 4900 int small_event_size; 4901 4902 ret = -1; 4903 4904 total_events = data->events + data->events_nested; 4905 total_written = data->bytes_written + data->bytes_written_nested; 4906 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4907 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4908 4909 big_event_size = data->max_size + data->max_size_nested; 4910 small_event_size = data->min_size + data->min_size_nested; 4911 4912 pr_info("CPU %d:\n", cpu); 4913 pr_info(" events: %ld\n", total_events); 4914 pr_info(" dropped bytes: %ld\n", total_dropped); 4915 pr_info(" alloced bytes: %ld\n", total_alloc); 4916 pr_info(" written bytes: %ld\n", total_written); 4917 pr_info(" biggest event: %d\n", big_event_size); 4918 pr_info(" smallest event: %d\n", small_event_size); 4919 4920 if (RB_WARN_ON(buffer, total_dropped)) 4921 break; 4922 4923 ret = 0; 4924 4925 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4926 total_lost += lost; 4927 item = ring_buffer_event_data(event); 4928 total_len += ring_buffer_event_length(event); 4929 total_size += item->size + sizeof(struct rb_item); 4930 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4931 pr_info("FAILED!\n"); 4932 pr_info("buffer had: %.*s\n", item->size, item->str); 4933 pr_info("expected: %.*s\n", item->size, rb_string); 4934 RB_WARN_ON(buffer, 1); 4935 ret = -1; 4936 break; 4937 } 4938 total_read++; 4939 } 4940 if (ret) 4941 break; 4942 4943 ret = -1; 4944 4945 pr_info(" read events: %ld\n", total_read); 4946 pr_info(" lost events: %ld\n", total_lost); 4947 pr_info(" total events: %ld\n", total_lost + total_read); 4948 pr_info(" recorded len bytes: %ld\n", total_len); 4949 pr_info(" recorded size bytes: %ld\n", total_size); 4950 if (total_lost) 4951 pr_info(" With dropped events, record len and size may not match\n" 4952 " alloced and written from above\n"); 4953 if (!total_lost) { 4954 if (RB_WARN_ON(buffer, total_len != total_alloc || 4955 total_size != total_written)) 4956 break; 4957 } 4958 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4959 break; 4960 4961 ret = 0; 4962 } 4963 if (!ret) 4964 pr_info("Ring buffer PASSED!\n"); 4965 4966 ring_buffer_free(buffer); 4967 return 0; 4968 } 4969 4970 late_initcall(test_ringbuffer); 4971 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4972