xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision e2c75e76)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 #define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
284 
285 struct buffer_data_page {
286 	u64		 time_stamp;	/* page time stamp */
287 	local_t		 commit;	/* write committed index */
288 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
289 };
290 
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300 	struct list_head list;		/* list of buffer pages */
301 	local_t		 write;		/* index for next write */
302 	unsigned	 read;		/* index for next read */
303 	local_t		 entries;	/* entries on this page */
304 	unsigned long	 real_end;	/* real end of data */
305 	struct buffer_data_page *page;	/* Actual data page */
306 };
307 
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK		0xfffff
321 #define RB_WRITE_INTCNT		(1 << 20)
322 
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325 	local_set(&bpage->commit, 0);
326 }
327 
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
334 size_t ring_buffer_page_len(void *page)
335 {
336 	struct buffer_data_page *bpage = page;
337 
338 	return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339 		+ BUF_PAGE_HDR_SIZE;
340 }
341 
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348 	free_page((unsigned long)bpage->page);
349 	kfree(bpage);
350 }
351 
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
355 static inline int test_time_stamp(u64 delta)
356 {
357 	if (delta & TS_DELTA_TEST)
358 		return 1;
359 	return 0;
360 }
361 
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363 
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366 
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369 	struct buffer_data_page field;
370 
371 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 			 (unsigned int)sizeof(field.time_stamp),
374 			 (unsigned int)is_signed_type(u64));
375 
376 	trace_seq_printf(s, "\tfield: local_t commit;\t"
377 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 			 (unsigned int)offsetof(typeof(field), commit),
379 			 (unsigned int)sizeof(field.commit),
380 			 (unsigned int)is_signed_type(long));
381 
382 	trace_seq_printf(s, "\tfield: int overwrite;\t"
383 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 			 (unsigned int)offsetof(typeof(field), commit),
385 			 1,
386 			 (unsigned int)is_signed_type(long));
387 
388 	trace_seq_printf(s, "\tfield: char data;\t"
389 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 			 (unsigned int)offsetof(typeof(field), data),
391 			 (unsigned int)BUF_PAGE_SIZE,
392 			 (unsigned int)is_signed_type(char));
393 
394 	return !trace_seq_has_overflowed(s);
395 }
396 
397 struct rb_irq_work {
398 	struct irq_work			work;
399 	wait_queue_head_t		waiters;
400 	wait_queue_head_t		full_waiters;
401 	bool				waiters_pending;
402 	bool				full_waiters_pending;
403 	bool				wakeup_full;
404 };
405 
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410 	u64			ts;
411 	u64			delta;
412 	unsigned long		length;
413 	struct buffer_page	*tail_page;
414 	int			add_timestamp;
415 };
416 
417 /*
418  * Used for which event context the event is in.
419  *  NMI     = 0
420  *  IRQ     = 1
421  *  SOFTIRQ = 2
422  *  NORMAL  = 3
423  *
424  * See trace_recursive_lock() comment below for more details.
425  */
426 enum {
427 	RB_CTX_NMI,
428 	RB_CTX_IRQ,
429 	RB_CTX_SOFTIRQ,
430 	RB_CTX_NORMAL,
431 	RB_CTX_MAX
432 };
433 
434 /*
435  * head_page == tail_page && head == tail then buffer is empty.
436  */
437 struct ring_buffer_per_cpu {
438 	int				cpu;
439 	atomic_t			record_disabled;
440 	struct ring_buffer		*buffer;
441 	raw_spinlock_t			reader_lock;	/* serialize readers */
442 	arch_spinlock_t			lock;
443 	struct lock_class_key		lock_key;
444 	struct buffer_data_page		*free_page;
445 	unsigned long			nr_pages;
446 	unsigned int			current_context;
447 	struct list_head		*pages;
448 	struct buffer_page		*head_page;	/* read from head */
449 	struct buffer_page		*tail_page;	/* write to tail */
450 	struct buffer_page		*commit_page;	/* committed pages */
451 	struct buffer_page		*reader_page;
452 	unsigned long			lost_events;
453 	unsigned long			last_overrun;
454 	local_t				entries_bytes;
455 	local_t				entries;
456 	local_t				overrun;
457 	local_t				commit_overrun;
458 	local_t				dropped_events;
459 	local_t				committing;
460 	local_t				commits;
461 	unsigned long			read;
462 	unsigned long			read_bytes;
463 	u64				write_stamp;
464 	u64				read_stamp;
465 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
466 	long				nr_pages_to_update;
467 	struct list_head		new_pages; /* new pages to add */
468 	struct work_struct		update_pages_work;
469 	struct completion		update_done;
470 
471 	struct rb_irq_work		irq_work;
472 };
473 
474 struct ring_buffer {
475 	unsigned			flags;
476 	int				cpus;
477 	atomic_t			record_disabled;
478 	atomic_t			resize_disabled;
479 	cpumask_var_t			cpumask;
480 
481 	struct lock_class_key		*reader_lock_key;
482 
483 	struct mutex			mutex;
484 
485 	struct ring_buffer_per_cpu	**buffers;
486 
487 	struct hlist_node		node;
488 	u64				(*clock)(void);
489 
490 	struct rb_irq_work		irq_work;
491 };
492 
493 struct ring_buffer_iter {
494 	struct ring_buffer_per_cpu	*cpu_buffer;
495 	unsigned long			head;
496 	struct buffer_page		*head_page;
497 	struct buffer_page		*cache_reader_page;
498 	unsigned long			cache_read;
499 	u64				read_stamp;
500 };
501 
502 /*
503  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504  *
505  * Schedules a delayed work to wake up any task that is blocked on the
506  * ring buffer waiters queue.
507  */
508 static void rb_wake_up_waiters(struct irq_work *work)
509 {
510 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511 
512 	wake_up_all(&rbwork->waiters);
513 	if (rbwork->wakeup_full) {
514 		rbwork->wakeup_full = false;
515 		wake_up_all(&rbwork->full_waiters);
516 	}
517 }
518 
519 /**
520  * ring_buffer_wait - wait for input to the ring buffer
521  * @buffer: buffer to wait on
522  * @cpu: the cpu buffer to wait on
523  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
524  *
525  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526  * as data is added to any of the @buffer's cpu buffers. Otherwise
527  * it will wait for data to be added to a specific cpu buffer.
528  */
529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
530 {
531 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
532 	DEFINE_WAIT(wait);
533 	struct rb_irq_work *work;
534 	int ret = 0;
535 
536 	/*
537 	 * Depending on what the caller is waiting for, either any
538 	 * data in any cpu buffer, or a specific buffer, put the
539 	 * caller on the appropriate wait queue.
540 	 */
541 	if (cpu == RING_BUFFER_ALL_CPUS) {
542 		work = &buffer->irq_work;
543 		/* Full only makes sense on per cpu reads */
544 		full = false;
545 	} else {
546 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 			return -ENODEV;
548 		cpu_buffer = buffer->buffers[cpu];
549 		work = &cpu_buffer->irq_work;
550 	}
551 
552 
553 	while (true) {
554 		if (full)
555 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 		else
557 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
558 
559 		/*
560 		 * The events can happen in critical sections where
561 		 * checking a work queue can cause deadlocks.
562 		 * After adding a task to the queue, this flag is set
563 		 * only to notify events to try to wake up the queue
564 		 * using irq_work.
565 		 *
566 		 * We don't clear it even if the buffer is no longer
567 		 * empty. The flag only causes the next event to run
568 		 * irq_work to do the work queue wake up. The worse
569 		 * that can happen if we race with !trace_empty() is that
570 		 * an event will cause an irq_work to try to wake up
571 		 * an empty queue.
572 		 *
573 		 * There's no reason to protect this flag either, as
574 		 * the work queue and irq_work logic will do the necessary
575 		 * synchronization for the wake ups. The only thing
576 		 * that is necessary is that the wake up happens after
577 		 * a task has been queued. It's OK for spurious wake ups.
578 		 */
579 		if (full)
580 			work->full_waiters_pending = true;
581 		else
582 			work->waiters_pending = true;
583 
584 		if (signal_pending(current)) {
585 			ret = -EINTR;
586 			break;
587 		}
588 
589 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 			break;
591 
592 		if (cpu != RING_BUFFER_ALL_CPUS &&
593 		    !ring_buffer_empty_cpu(buffer, cpu)) {
594 			unsigned long flags;
595 			bool pagebusy;
596 
597 			if (!full)
598 				break;
599 
600 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603 
604 			if (!pagebusy)
605 				break;
606 		}
607 
608 		schedule();
609 	}
610 
611 	if (full)
612 		finish_wait(&work->full_waiters, &wait);
613 	else
614 		finish_wait(&work->waiters, &wait);
615 
616 	return ret;
617 }
618 
619 /**
620  * ring_buffer_poll_wait - poll on buffer input
621  * @buffer: buffer to wait on
622  * @cpu: the cpu buffer to wait on
623  * @filp: the file descriptor
624  * @poll_table: The poll descriptor
625  *
626  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627  * as data is added to any of the @buffer's cpu buffers. Otherwise
628  * it will wait for data to be added to a specific cpu buffer.
629  *
630  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
631  * zero otherwise.
632  */
633 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 			  struct file *filp, poll_table *poll_table)
635 {
636 	struct ring_buffer_per_cpu *cpu_buffer;
637 	struct rb_irq_work *work;
638 
639 	if (cpu == RING_BUFFER_ALL_CPUS)
640 		work = &buffer->irq_work;
641 	else {
642 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 			return -EINVAL;
644 
645 		cpu_buffer = buffer->buffers[cpu];
646 		work = &cpu_buffer->irq_work;
647 	}
648 
649 	poll_wait(filp, &work->waiters, poll_table);
650 	work->waiters_pending = true;
651 	/*
652 	 * There's a tight race between setting the waiters_pending and
653 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
654 	 * is set, the next event will wake the task up, but we can get stuck
655 	 * if there's only a single event in.
656 	 *
657 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 	 * but adding a memory barrier to all events will cause too much of a
659 	 * performance hit in the fast path.  We only need a memory barrier when
660 	 * the buffer goes from empty to having content.  But as this race is
661 	 * extremely small, and it's not a problem if another event comes in, we
662 	 * will fix it later.
663 	 */
664 	smp_mb();
665 
666 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 		return EPOLLIN | EPOLLRDNORM;
669 	return 0;
670 }
671 
672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
673 #define RB_WARN_ON(b, cond)						\
674 	({								\
675 		int _____ret = unlikely(cond);				\
676 		if (_____ret) {						\
677 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 				struct ring_buffer_per_cpu *__b =	\
679 					(void *)b;			\
680 				atomic_inc(&__b->buffer->record_disabled); \
681 			} else						\
682 				atomic_inc(&b->record_disabled);	\
683 			WARN_ON(1);					\
684 		}							\
685 		_____ret;						\
686 	})
687 
688 /* Up this if you want to test the TIME_EXTENTS and normalization */
689 #define DEBUG_SHIFT 0
690 
691 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
692 {
693 	/* shift to debug/test normalization and TIME_EXTENTS */
694 	return buffer->clock() << DEBUG_SHIFT;
695 }
696 
697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698 {
699 	u64 time;
700 
701 	preempt_disable_notrace();
702 	time = rb_time_stamp(buffer);
703 	preempt_enable_no_resched_notrace();
704 
705 	return time;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708 
709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 				      int cpu, u64 *ts)
711 {
712 	/* Just stupid testing the normalize function and deltas */
713 	*ts >>= DEBUG_SHIFT;
714 }
715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716 
717 /*
718  * Making the ring buffer lockless makes things tricky.
719  * Although writes only happen on the CPU that they are on,
720  * and they only need to worry about interrupts. Reads can
721  * happen on any CPU.
722  *
723  * The reader page is always off the ring buffer, but when the
724  * reader finishes with a page, it needs to swap its page with
725  * a new one from the buffer. The reader needs to take from
726  * the head (writes go to the tail). But if a writer is in overwrite
727  * mode and wraps, it must push the head page forward.
728  *
729  * Here lies the problem.
730  *
731  * The reader must be careful to replace only the head page, and
732  * not another one. As described at the top of the file in the
733  * ASCII art, the reader sets its old page to point to the next
734  * page after head. It then sets the page after head to point to
735  * the old reader page. But if the writer moves the head page
736  * during this operation, the reader could end up with the tail.
737  *
738  * We use cmpxchg to help prevent this race. We also do something
739  * special with the page before head. We set the LSB to 1.
740  *
741  * When the writer must push the page forward, it will clear the
742  * bit that points to the head page, move the head, and then set
743  * the bit that points to the new head page.
744  *
745  * We also don't want an interrupt coming in and moving the head
746  * page on another writer. Thus we use the second LSB to catch
747  * that too. Thus:
748  *
749  * head->list->prev->next        bit 1          bit 0
750  *                              -------        -------
751  * Normal page                     0              0
752  * Points to head page             0              1
753  * New head page                   1              0
754  *
755  * Note we can not trust the prev pointer of the head page, because:
756  *
757  * +----+       +-----+        +-----+
758  * |    |------>|  T  |---X--->|  N  |
759  * |    |<------|     |        |     |
760  * +----+       +-----+        +-----+
761  *   ^                           ^ |
762  *   |          +-----+          | |
763  *   +----------|  R  |----------+ |
764  *              |     |<-----------+
765  *              +-----+
766  *
767  * Key:  ---X-->  HEAD flag set in pointer
768  *         T      Tail page
769  *         R      Reader page
770  *         N      Next page
771  *
772  * (see __rb_reserve_next() to see where this happens)
773  *
774  *  What the above shows is that the reader just swapped out
775  *  the reader page with a page in the buffer, but before it
776  *  could make the new header point back to the new page added
777  *  it was preempted by a writer. The writer moved forward onto
778  *  the new page added by the reader and is about to move forward
779  *  again.
780  *
781  *  You can see, it is legitimate for the previous pointer of
782  *  the head (or any page) not to point back to itself. But only
783  *  temporarially.
784  */
785 
786 #define RB_PAGE_NORMAL		0UL
787 #define RB_PAGE_HEAD		1UL
788 #define RB_PAGE_UPDATE		2UL
789 
790 
791 #define RB_FLAG_MASK		3UL
792 
793 /* PAGE_MOVED is not part of the mask */
794 #define RB_PAGE_MOVED		4UL
795 
796 /*
797  * rb_list_head - remove any bit
798  */
799 static struct list_head *rb_list_head(struct list_head *list)
800 {
801 	unsigned long val = (unsigned long)list;
802 
803 	return (struct list_head *)(val & ~RB_FLAG_MASK);
804 }
805 
806 /*
807  * rb_is_head_page - test if the given page is the head page
808  *
809  * Because the reader may move the head_page pointer, we can
810  * not trust what the head page is (it may be pointing to
811  * the reader page). But if the next page is a header page,
812  * its flags will be non zero.
813  */
814 static inline int
815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 		struct buffer_page *page, struct list_head *list)
817 {
818 	unsigned long val;
819 
820 	val = (unsigned long)list->next;
821 
822 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 		return RB_PAGE_MOVED;
824 
825 	return val & RB_FLAG_MASK;
826 }
827 
828 /*
829  * rb_is_reader_page
830  *
831  * The unique thing about the reader page, is that, if the
832  * writer is ever on it, the previous pointer never points
833  * back to the reader page.
834  */
835 static bool rb_is_reader_page(struct buffer_page *page)
836 {
837 	struct list_head *list = page->list.prev;
838 
839 	return rb_list_head(list->next) != &page->list;
840 }
841 
842 /*
843  * rb_set_list_to_head - set a list_head to be pointing to head.
844  */
845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 				struct list_head *list)
847 {
848 	unsigned long *ptr;
849 
850 	ptr = (unsigned long *)&list->next;
851 	*ptr |= RB_PAGE_HEAD;
852 	*ptr &= ~RB_PAGE_UPDATE;
853 }
854 
855 /*
856  * rb_head_page_activate - sets up head page
857  */
858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859 {
860 	struct buffer_page *head;
861 
862 	head = cpu_buffer->head_page;
863 	if (!head)
864 		return;
865 
866 	/*
867 	 * Set the previous list pointer to have the HEAD flag.
868 	 */
869 	rb_set_list_to_head(cpu_buffer, head->list.prev);
870 }
871 
872 static void rb_list_head_clear(struct list_head *list)
873 {
874 	unsigned long *ptr = (unsigned long *)&list->next;
875 
876 	*ptr &= ~RB_FLAG_MASK;
877 }
878 
879 /*
880  * rb_head_page_dactivate - clears head page ptr (for free list)
881  */
882 static void
883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884 {
885 	struct list_head *hd;
886 
887 	/* Go through the whole list and clear any pointers found. */
888 	rb_list_head_clear(cpu_buffer->pages);
889 
890 	list_for_each(hd, cpu_buffer->pages)
891 		rb_list_head_clear(hd);
892 }
893 
894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 			    struct buffer_page *head,
896 			    struct buffer_page *prev,
897 			    int old_flag, int new_flag)
898 {
899 	struct list_head *list;
900 	unsigned long val = (unsigned long)&head->list;
901 	unsigned long ret;
902 
903 	list = &prev->list;
904 
905 	val &= ~RB_FLAG_MASK;
906 
907 	ret = cmpxchg((unsigned long *)&list->next,
908 		      val | old_flag, val | new_flag);
909 
910 	/* check if the reader took the page */
911 	if ((ret & ~RB_FLAG_MASK) != val)
912 		return RB_PAGE_MOVED;
913 
914 	return ret & RB_FLAG_MASK;
915 }
916 
917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 				   struct buffer_page *head,
919 				   struct buffer_page *prev,
920 				   int old_flag)
921 {
922 	return rb_head_page_set(cpu_buffer, head, prev,
923 				old_flag, RB_PAGE_UPDATE);
924 }
925 
926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 				 struct buffer_page *head,
928 				 struct buffer_page *prev,
929 				 int old_flag)
930 {
931 	return rb_head_page_set(cpu_buffer, head, prev,
932 				old_flag, RB_PAGE_HEAD);
933 }
934 
935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 				   struct buffer_page *head,
937 				   struct buffer_page *prev,
938 				   int old_flag)
939 {
940 	return rb_head_page_set(cpu_buffer, head, prev,
941 				old_flag, RB_PAGE_NORMAL);
942 }
943 
944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 			       struct buffer_page **bpage)
946 {
947 	struct list_head *p = rb_list_head((*bpage)->list.next);
948 
949 	*bpage = list_entry(p, struct buffer_page, list);
950 }
951 
952 static struct buffer_page *
953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954 {
955 	struct buffer_page *head;
956 	struct buffer_page *page;
957 	struct list_head *list;
958 	int i;
959 
960 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 		return NULL;
962 
963 	/* sanity check */
964 	list = cpu_buffer->pages;
965 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 		return NULL;
967 
968 	page = head = cpu_buffer->head_page;
969 	/*
970 	 * It is possible that the writer moves the header behind
971 	 * where we started, and we miss in one loop.
972 	 * A second loop should grab the header, but we'll do
973 	 * three loops just because I'm paranoid.
974 	 */
975 	for (i = 0; i < 3; i++) {
976 		do {
977 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 				cpu_buffer->head_page = page;
979 				return page;
980 			}
981 			rb_inc_page(cpu_buffer, &page);
982 		} while (page != head);
983 	}
984 
985 	RB_WARN_ON(cpu_buffer, 1);
986 
987 	return NULL;
988 }
989 
990 static int rb_head_page_replace(struct buffer_page *old,
991 				struct buffer_page *new)
992 {
993 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 	unsigned long val;
995 	unsigned long ret;
996 
997 	val = *ptr & ~RB_FLAG_MASK;
998 	val |= RB_PAGE_HEAD;
999 
1000 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1001 
1002 	return ret == val;
1003 }
1004 
1005 /*
1006  * rb_tail_page_update - move the tail page forward
1007  */
1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009 			       struct buffer_page *tail_page,
1010 			       struct buffer_page *next_page)
1011 {
1012 	unsigned long old_entries;
1013 	unsigned long old_write;
1014 
1015 	/*
1016 	 * The tail page now needs to be moved forward.
1017 	 *
1018 	 * We need to reset the tail page, but without messing
1019 	 * with possible erasing of data brought in by interrupts
1020 	 * that have moved the tail page and are currently on it.
1021 	 *
1022 	 * We add a counter to the write field to denote this.
1023 	 */
1024 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026 
1027 	/*
1028 	 * Just make sure we have seen our old_write and synchronize
1029 	 * with any interrupts that come in.
1030 	 */
1031 	barrier();
1032 
1033 	/*
1034 	 * If the tail page is still the same as what we think
1035 	 * it is, then it is up to us to update the tail
1036 	 * pointer.
1037 	 */
1038 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039 		/* Zero the write counter */
1040 		unsigned long val = old_write & ~RB_WRITE_MASK;
1041 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042 
1043 		/*
1044 		 * This will only succeed if an interrupt did
1045 		 * not come in and change it. In which case, we
1046 		 * do not want to modify it.
1047 		 *
1048 		 * We add (void) to let the compiler know that we do not care
1049 		 * about the return value of these functions. We use the
1050 		 * cmpxchg to only update if an interrupt did not already
1051 		 * do it for us. If the cmpxchg fails, we don't care.
1052 		 */
1053 		(void)local_cmpxchg(&next_page->write, old_write, val);
1054 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1055 
1056 		/*
1057 		 * No need to worry about races with clearing out the commit.
1058 		 * it only can increment when a commit takes place. But that
1059 		 * only happens in the outer most nested commit.
1060 		 */
1061 		local_set(&next_page->page->commit, 0);
1062 
1063 		/* Again, either we update tail_page or an interrupt does */
1064 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065 	}
1066 }
1067 
1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 			  struct buffer_page *bpage)
1070 {
1071 	unsigned long val = (unsigned long)bpage;
1072 
1073 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 		return 1;
1075 
1076 	return 0;
1077 }
1078 
1079 /**
1080  * rb_check_list - make sure a pointer to a list has the last bits zero
1081  */
1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 			 struct list_head *list)
1084 {
1085 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 		return 1;
1087 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 		return 1;
1089 	return 0;
1090 }
1091 
1092 /**
1093  * rb_check_pages - integrity check of buffer pages
1094  * @cpu_buffer: CPU buffer with pages to test
1095  *
1096  * As a safety measure we check to make sure the data pages have not
1097  * been corrupted.
1098  */
1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 	struct list_head *head = cpu_buffer->pages;
1102 	struct buffer_page *bpage, *tmp;
1103 
1104 	/* Reset the head page if it exists */
1105 	if (cpu_buffer->head_page)
1106 		rb_set_head_page(cpu_buffer);
1107 
1108 	rb_head_page_deactivate(cpu_buffer);
1109 
1110 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 		return -1;
1112 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 		return -1;
1114 
1115 	if (rb_check_list(cpu_buffer, head))
1116 		return -1;
1117 
1118 	list_for_each_entry_safe(bpage, tmp, head, list) {
1119 		if (RB_WARN_ON(cpu_buffer,
1120 			       bpage->list.next->prev != &bpage->list))
1121 			return -1;
1122 		if (RB_WARN_ON(cpu_buffer,
1123 			       bpage->list.prev->next != &bpage->list))
1124 			return -1;
1125 		if (rb_check_list(cpu_buffer, &bpage->list))
1126 			return -1;
1127 	}
1128 
1129 	rb_head_page_activate(cpu_buffer);
1130 
1131 	return 0;
1132 }
1133 
1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1135 {
1136 	struct buffer_page *bpage, *tmp;
1137 	long i;
1138 
1139 	for (i = 0; i < nr_pages; i++) {
1140 		struct page *page;
1141 		/*
1142 		 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1143 		 * gracefully without invoking oom-killer and the system is not
1144 		 * destabilized.
1145 		 */
1146 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1147 				    GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1148 				    cpu_to_node(cpu));
1149 		if (!bpage)
1150 			goto free_pages;
1151 
1152 		list_add(&bpage->list, pages);
1153 
1154 		page = alloc_pages_node(cpu_to_node(cpu),
1155 					GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1156 		if (!page)
1157 			goto free_pages;
1158 		bpage->page = page_address(page);
1159 		rb_init_page(bpage->page);
1160 	}
1161 
1162 	return 0;
1163 
1164 free_pages:
1165 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1166 		list_del_init(&bpage->list);
1167 		free_buffer_page(bpage);
1168 	}
1169 
1170 	return -ENOMEM;
1171 }
1172 
1173 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1174 			     unsigned long nr_pages)
1175 {
1176 	LIST_HEAD(pages);
1177 
1178 	WARN_ON(!nr_pages);
1179 
1180 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1181 		return -ENOMEM;
1182 
1183 	/*
1184 	 * The ring buffer page list is a circular list that does not
1185 	 * start and end with a list head. All page list items point to
1186 	 * other pages.
1187 	 */
1188 	cpu_buffer->pages = pages.next;
1189 	list_del(&pages);
1190 
1191 	cpu_buffer->nr_pages = nr_pages;
1192 
1193 	rb_check_pages(cpu_buffer);
1194 
1195 	return 0;
1196 }
1197 
1198 static struct ring_buffer_per_cpu *
1199 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1200 {
1201 	struct ring_buffer_per_cpu *cpu_buffer;
1202 	struct buffer_page *bpage;
1203 	struct page *page;
1204 	int ret;
1205 
1206 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1207 				  GFP_KERNEL, cpu_to_node(cpu));
1208 	if (!cpu_buffer)
1209 		return NULL;
1210 
1211 	cpu_buffer->cpu = cpu;
1212 	cpu_buffer->buffer = buffer;
1213 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1214 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1215 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1216 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1217 	init_completion(&cpu_buffer->update_done);
1218 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1219 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1220 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1221 
1222 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1223 			    GFP_KERNEL, cpu_to_node(cpu));
1224 	if (!bpage)
1225 		goto fail_free_buffer;
1226 
1227 	rb_check_bpage(cpu_buffer, bpage);
1228 
1229 	cpu_buffer->reader_page = bpage;
1230 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1231 	if (!page)
1232 		goto fail_free_reader;
1233 	bpage->page = page_address(page);
1234 	rb_init_page(bpage->page);
1235 
1236 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1237 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1238 
1239 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1240 	if (ret < 0)
1241 		goto fail_free_reader;
1242 
1243 	cpu_buffer->head_page
1244 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1245 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1246 
1247 	rb_head_page_activate(cpu_buffer);
1248 
1249 	return cpu_buffer;
1250 
1251  fail_free_reader:
1252 	free_buffer_page(cpu_buffer->reader_page);
1253 
1254  fail_free_buffer:
1255 	kfree(cpu_buffer);
1256 	return NULL;
1257 }
1258 
1259 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1260 {
1261 	struct list_head *head = cpu_buffer->pages;
1262 	struct buffer_page *bpage, *tmp;
1263 
1264 	free_buffer_page(cpu_buffer->reader_page);
1265 
1266 	rb_head_page_deactivate(cpu_buffer);
1267 
1268 	if (head) {
1269 		list_for_each_entry_safe(bpage, tmp, head, list) {
1270 			list_del_init(&bpage->list);
1271 			free_buffer_page(bpage);
1272 		}
1273 		bpage = list_entry(head, struct buffer_page, list);
1274 		free_buffer_page(bpage);
1275 	}
1276 
1277 	kfree(cpu_buffer);
1278 }
1279 
1280 /**
1281  * __ring_buffer_alloc - allocate a new ring_buffer
1282  * @size: the size in bytes per cpu that is needed.
1283  * @flags: attributes to set for the ring buffer.
1284  *
1285  * Currently the only flag that is available is the RB_FL_OVERWRITE
1286  * flag. This flag means that the buffer will overwrite old data
1287  * when the buffer wraps. If this flag is not set, the buffer will
1288  * drop data when the tail hits the head.
1289  */
1290 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1291 					struct lock_class_key *key)
1292 {
1293 	struct ring_buffer *buffer;
1294 	long nr_pages;
1295 	int bsize;
1296 	int cpu;
1297 	int ret;
1298 
1299 	/* keep it in its own cache line */
1300 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301 			 GFP_KERNEL);
1302 	if (!buffer)
1303 		return NULL;
1304 
1305 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1306 		goto fail_free_buffer;
1307 
1308 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1309 	buffer->flags = flags;
1310 	buffer->clock = trace_clock_local;
1311 	buffer->reader_lock_key = key;
1312 
1313 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1314 	init_waitqueue_head(&buffer->irq_work.waiters);
1315 
1316 	/* need at least two pages */
1317 	if (nr_pages < 2)
1318 		nr_pages = 2;
1319 
1320 	buffer->cpus = nr_cpu_ids;
1321 
1322 	bsize = sizeof(void *) * nr_cpu_ids;
1323 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1324 				  GFP_KERNEL);
1325 	if (!buffer->buffers)
1326 		goto fail_free_cpumask;
1327 
1328 	cpu = raw_smp_processor_id();
1329 	cpumask_set_cpu(cpu, buffer->cpumask);
1330 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1331 	if (!buffer->buffers[cpu])
1332 		goto fail_free_buffers;
1333 
1334 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1335 	if (ret < 0)
1336 		goto fail_free_buffers;
1337 
1338 	mutex_init(&buffer->mutex);
1339 
1340 	return buffer;
1341 
1342  fail_free_buffers:
1343 	for_each_buffer_cpu(buffer, cpu) {
1344 		if (buffer->buffers[cpu])
1345 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1346 	}
1347 	kfree(buffer->buffers);
1348 
1349  fail_free_cpumask:
1350 	free_cpumask_var(buffer->cpumask);
1351 
1352  fail_free_buffer:
1353 	kfree(buffer);
1354 	return NULL;
1355 }
1356 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1357 
1358 /**
1359  * ring_buffer_free - free a ring buffer.
1360  * @buffer: the buffer to free.
1361  */
1362 void
1363 ring_buffer_free(struct ring_buffer *buffer)
1364 {
1365 	int cpu;
1366 
1367 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1368 
1369 	for_each_buffer_cpu(buffer, cpu)
1370 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1371 
1372 	kfree(buffer->buffers);
1373 	free_cpumask_var(buffer->cpumask);
1374 
1375 	kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378 
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 			   u64 (*clock)(void))
1381 {
1382 	buffer->clock = clock;
1383 }
1384 
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386 
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391 
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394 	return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396 
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1399 {
1400 	struct list_head *tail_page, *to_remove, *next_page;
1401 	struct buffer_page *to_remove_page, *tmp_iter_page;
1402 	struct buffer_page *last_page, *first_page;
1403 	unsigned long nr_removed;
1404 	unsigned long head_bit;
1405 	int page_entries;
1406 
1407 	head_bit = 0;
1408 
1409 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410 	atomic_inc(&cpu_buffer->record_disabled);
1411 	/*
1412 	 * We don't race with the readers since we have acquired the reader
1413 	 * lock. We also don't race with writers after disabling recording.
1414 	 * This makes it easy to figure out the first and the last page to be
1415 	 * removed from the list. We unlink all the pages in between including
1416 	 * the first and last pages. This is done in a busy loop so that we
1417 	 * lose the least number of traces.
1418 	 * The pages are freed after we restart recording and unlock readers.
1419 	 */
1420 	tail_page = &cpu_buffer->tail_page->list;
1421 
1422 	/*
1423 	 * tail page might be on reader page, we remove the next page
1424 	 * from the ring buffer
1425 	 */
1426 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 		tail_page = rb_list_head(tail_page->next);
1428 	to_remove = tail_page;
1429 
1430 	/* start of pages to remove */
1431 	first_page = list_entry(rb_list_head(to_remove->next),
1432 				struct buffer_page, list);
1433 
1434 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 		to_remove = rb_list_head(to_remove)->next;
1436 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437 	}
1438 
1439 	next_page = rb_list_head(to_remove)->next;
1440 
1441 	/*
1442 	 * Now we remove all pages between tail_page and next_page.
1443 	 * Make sure that we have head_bit value preserved for the
1444 	 * next page
1445 	 */
1446 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 						head_bit);
1448 	next_page = rb_list_head(next_page);
1449 	next_page->prev = tail_page;
1450 
1451 	/* make sure pages points to a valid page in the ring buffer */
1452 	cpu_buffer->pages = next_page;
1453 
1454 	/* update head page */
1455 	if (head_bit)
1456 		cpu_buffer->head_page = list_entry(next_page,
1457 						struct buffer_page, list);
1458 
1459 	/*
1460 	 * change read pointer to make sure any read iterators reset
1461 	 * themselves
1462 	 */
1463 	cpu_buffer->read = 0;
1464 
1465 	/* pages are removed, resume tracing and then free the pages */
1466 	atomic_dec(&cpu_buffer->record_disabled);
1467 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468 
1469 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470 
1471 	/* last buffer page to remove */
1472 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 				list);
1474 	tmp_iter_page = first_page;
1475 
1476 	do {
1477 		to_remove_page = tmp_iter_page;
1478 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1479 
1480 		/* update the counters */
1481 		page_entries = rb_page_entries(to_remove_page);
1482 		if (page_entries) {
1483 			/*
1484 			 * If something was added to this page, it was full
1485 			 * since it is not the tail page. So we deduct the
1486 			 * bytes consumed in ring buffer from here.
1487 			 * Increment overrun to account for the lost events.
1488 			 */
1489 			local_add(page_entries, &cpu_buffer->overrun);
1490 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 		}
1492 
1493 		/*
1494 		 * We have already removed references to this list item, just
1495 		 * free up the buffer_page and its page
1496 		 */
1497 		free_buffer_page(to_remove_page);
1498 		nr_removed--;
1499 
1500 	} while (to_remove_page != last_page);
1501 
1502 	RB_WARN_ON(cpu_buffer, nr_removed);
1503 
1504 	return nr_removed == 0;
1505 }
1506 
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 	struct list_head *pages = &cpu_buffer->new_pages;
1511 	int retries, success;
1512 
1513 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514 	/*
1515 	 * We are holding the reader lock, so the reader page won't be swapped
1516 	 * in the ring buffer. Now we are racing with the writer trying to
1517 	 * move head page and the tail page.
1518 	 * We are going to adapt the reader page update process where:
1519 	 * 1. We first splice the start and end of list of new pages between
1520 	 *    the head page and its previous page.
1521 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 	 *    start of new pages list.
1523 	 * 3. Finally, we update the head->prev to the end of new list.
1524 	 *
1525 	 * We will try this process 10 times, to make sure that we don't keep
1526 	 * spinning.
1527 	 */
1528 	retries = 10;
1529 	success = 0;
1530 	while (retries--) {
1531 		struct list_head *head_page, *prev_page, *r;
1532 		struct list_head *last_page, *first_page;
1533 		struct list_head *head_page_with_bit;
1534 
1535 		head_page = &rb_set_head_page(cpu_buffer)->list;
1536 		if (!head_page)
1537 			break;
1538 		prev_page = head_page->prev;
1539 
1540 		first_page = pages->next;
1541 		last_page  = pages->prev;
1542 
1543 		head_page_with_bit = (struct list_head *)
1544 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1545 
1546 		last_page->next = head_page_with_bit;
1547 		first_page->prev = prev_page;
1548 
1549 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550 
1551 		if (r == head_page_with_bit) {
1552 			/*
1553 			 * yay, we replaced the page pointer to our new list,
1554 			 * now, we just have to update to head page's prev
1555 			 * pointer to point to end of list
1556 			 */
1557 			head_page->prev = last_page;
1558 			success = 1;
1559 			break;
1560 		}
1561 	}
1562 
1563 	if (success)
1564 		INIT_LIST_HEAD(pages);
1565 	/*
1566 	 * If we weren't successful in adding in new pages, warn and stop
1567 	 * tracing
1568 	 */
1569 	RB_WARN_ON(cpu_buffer, !success);
1570 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571 
1572 	/* free pages if they weren't inserted */
1573 	if (!success) {
1574 		struct buffer_page *bpage, *tmp;
1575 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 					 list) {
1577 			list_del_init(&bpage->list);
1578 			free_buffer_page(bpage);
1579 		}
1580 	}
1581 	return success;
1582 }
1583 
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586 	int success;
1587 
1588 	if (cpu_buffer->nr_pages_to_update > 0)
1589 		success = rb_insert_pages(cpu_buffer);
1590 	else
1591 		success = rb_remove_pages(cpu_buffer,
1592 					-cpu_buffer->nr_pages_to_update);
1593 
1594 	if (success)
1595 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597 
1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 			struct ring_buffer_per_cpu, update_pages_work);
1602 	rb_update_pages(cpu_buffer);
1603 	complete(&cpu_buffer->update_done);
1604 }
1605 
1606 /**
1607  * ring_buffer_resize - resize the ring buffer
1608  * @buffer: the buffer to resize.
1609  * @size: the new size.
1610  * @cpu_id: the cpu buffer to resize
1611  *
1612  * Minimum size is 2 * BUF_PAGE_SIZE.
1613  *
1614  * Returns 0 on success and < 0 on failure.
1615  */
1616 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617 			int cpu_id)
1618 {
1619 	struct ring_buffer_per_cpu *cpu_buffer;
1620 	unsigned long nr_pages;
1621 	int cpu, err = 0;
1622 
1623 	/*
1624 	 * Always succeed at resizing a non-existent buffer:
1625 	 */
1626 	if (!buffer)
1627 		return size;
1628 
1629 	/* Make sure the requested buffer exists */
1630 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632 		return size;
1633 
1634 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1635 
1636 	/* we need a minimum of two pages */
1637 	if (nr_pages < 2)
1638 		nr_pages = 2;
1639 
1640 	size = nr_pages * BUF_PAGE_SIZE;
1641 
1642 	/*
1643 	 * Don't succeed if resizing is disabled, as a reader might be
1644 	 * manipulating the ring buffer and is expecting a sane state while
1645 	 * this is true.
1646 	 */
1647 	if (atomic_read(&buffer->resize_disabled))
1648 		return -EBUSY;
1649 
1650 	/* prevent another thread from changing buffer sizes */
1651 	mutex_lock(&buffer->mutex);
1652 
1653 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654 		/* calculate the pages to update */
1655 		for_each_buffer_cpu(buffer, cpu) {
1656 			cpu_buffer = buffer->buffers[cpu];
1657 
1658 			cpu_buffer->nr_pages_to_update = nr_pages -
1659 							cpu_buffer->nr_pages;
1660 			/*
1661 			 * nothing more to do for removing pages or no update
1662 			 */
1663 			if (cpu_buffer->nr_pages_to_update <= 0)
1664 				continue;
1665 			/*
1666 			 * to add pages, make sure all new pages can be
1667 			 * allocated without receiving ENOMEM
1668 			 */
1669 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1671 						&cpu_buffer->new_pages, cpu)) {
1672 				/* not enough memory for new pages */
1673 				err = -ENOMEM;
1674 				goto out_err;
1675 			}
1676 		}
1677 
1678 		get_online_cpus();
1679 		/*
1680 		 * Fire off all the required work handlers
1681 		 * We can't schedule on offline CPUs, but it's not necessary
1682 		 * since we can change their buffer sizes without any race.
1683 		 */
1684 		for_each_buffer_cpu(buffer, cpu) {
1685 			cpu_buffer = buffer->buffers[cpu];
1686 			if (!cpu_buffer->nr_pages_to_update)
1687 				continue;
1688 
1689 			/* Can't run something on an offline CPU. */
1690 			if (!cpu_online(cpu)) {
1691 				rb_update_pages(cpu_buffer);
1692 				cpu_buffer->nr_pages_to_update = 0;
1693 			} else {
1694 				schedule_work_on(cpu,
1695 						&cpu_buffer->update_pages_work);
1696 			}
1697 		}
1698 
1699 		/* wait for all the updates to complete */
1700 		for_each_buffer_cpu(buffer, cpu) {
1701 			cpu_buffer = buffer->buffers[cpu];
1702 			if (!cpu_buffer->nr_pages_to_update)
1703 				continue;
1704 
1705 			if (cpu_online(cpu))
1706 				wait_for_completion(&cpu_buffer->update_done);
1707 			cpu_buffer->nr_pages_to_update = 0;
1708 		}
1709 
1710 		put_online_cpus();
1711 	} else {
1712 		/* Make sure this CPU has been intitialized */
1713 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1714 			goto out;
1715 
1716 		cpu_buffer = buffer->buffers[cpu_id];
1717 
1718 		if (nr_pages == cpu_buffer->nr_pages)
1719 			goto out;
1720 
1721 		cpu_buffer->nr_pages_to_update = nr_pages -
1722 						cpu_buffer->nr_pages;
1723 
1724 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1725 		if (cpu_buffer->nr_pages_to_update > 0 &&
1726 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1727 					    &cpu_buffer->new_pages, cpu_id)) {
1728 			err = -ENOMEM;
1729 			goto out_err;
1730 		}
1731 
1732 		get_online_cpus();
1733 
1734 		/* Can't run something on an offline CPU. */
1735 		if (!cpu_online(cpu_id))
1736 			rb_update_pages(cpu_buffer);
1737 		else {
1738 			schedule_work_on(cpu_id,
1739 					 &cpu_buffer->update_pages_work);
1740 			wait_for_completion(&cpu_buffer->update_done);
1741 		}
1742 
1743 		cpu_buffer->nr_pages_to_update = 0;
1744 		put_online_cpus();
1745 	}
1746 
1747  out:
1748 	/*
1749 	 * The ring buffer resize can happen with the ring buffer
1750 	 * enabled, so that the update disturbs the tracing as little
1751 	 * as possible. But if the buffer is disabled, we do not need
1752 	 * to worry about that, and we can take the time to verify
1753 	 * that the buffer is not corrupt.
1754 	 */
1755 	if (atomic_read(&buffer->record_disabled)) {
1756 		atomic_inc(&buffer->record_disabled);
1757 		/*
1758 		 * Even though the buffer was disabled, we must make sure
1759 		 * that it is truly disabled before calling rb_check_pages.
1760 		 * There could have been a race between checking
1761 		 * record_disable and incrementing it.
1762 		 */
1763 		synchronize_sched();
1764 		for_each_buffer_cpu(buffer, cpu) {
1765 			cpu_buffer = buffer->buffers[cpu];
1766 			rb_check_pages(cpu_buffer);
1767 		}
1768 		atomic_dec(&buffer->record_disabled);
1769 	}
1770 
1771 	mutex_unlock(&buffer->mutex);
1772 	return size;
1773 
1774  out_err:
1775 	for_each_buffer_cpu(buffer, cpu) {
1776 		struct buffer_page *bpage, *tmp;
1777 
1778 		cpu_buffer = buffer->buffers[cpu];
1779 		cpu_buffer->nr_pages_to_update = 0;
1780 
1781 		if (list_empty(&cpu_buffer->new_pages))
1782 			continue;
1783 
1784 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1785 					list) {
1786 			list_del_init(&bpage->list);
1787 			free_buffer_page(bpage);
1788 		}
1789 	}
1790 	mutex_unlock(&buffer->mutex);
1791 	return err;
1792 }
1793 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1794 
1795 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1796 {
1797 	mutex_lock(&buffer->mutex);
1798 	if (val)
1799 		buffer->flags |= RB_FL_OVERWRITE;
1800 	else
1801 		buffer->flags &= ~RB_FL_OVERWRITE;
1802 	mutex_unlock(&buffer->mutex);
1803 }
1804 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1805 
1806 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1807 {
1808 	return bpage->page->data + index;
1809 }
1810 
1811 static __always_inline struct ring_buffer_event *
1812 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1813 {
1814 	return __rb_page_index(cpu_buffer->reader_page,
1815 			       cpu_buffer->reader_page->read);
1816 }
1817 
1818 static __always_inline struct ring_buffer_event *
1819 rb_iter_head_event(struct ring_buffer_iter *iter)
1820 {
1821 	return __rb_page_index(iter->head_page, iter->head);
1822 }
1823 
1824 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1825 {
1826 	return local_read(&bpage->page->commit);
1827 }
1828 
1829 /* Size is determined by what has been committed */
1830 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1831 {
1832 	return rb_page_commit(bpage);
1833 }
1834 
1835 static __always_inline unsigned
1836 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1837 {
1838 	return rb_page_commit(cpu_buffer->commit_page);
1839 }
1840 
1841 static __always_inline unsigned
1842 rb_event_index(struct ring_buffer_event *event)
1843 {
1844 	unsigned long addr = (unsigned long)event;
1845 
1846 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1847 }
1848 
1849 static void rb_inc_iter(struct ring_buffer_iter *iter)
1850 {
1851 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1852 
1853 	/*
1854 	 * The iterator could be on the reader page (it starts there).
1855 	 * But the head could have moved, since the reader was
1856 	 * found. Check for this case and assign the iterator
1857 	 * to the head page instead of next.
1858 	 */
1859 	if (iter->head_page == cpu_buffer->reader_page)
1860 		iter->head_page = rb_set_head_page(cpu_buffer);
1861 	else
1862 		rb_inc_page(cpu_buffer, &iter->head_page);
1863 
1864 	iter->read_stamp = iter->head_page->page->time_stamp;
1865 	iter->head = 0;
1866 }
1867 
1868 /*
1869  * rb_handle_head_page - writer hit the head page
1870  *
1871  * Returns: +1 to retry page
1872  *           0 to continue
1873  *          -1 on error
1874  */
1875 static int
1876 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1877 		    struct buffer_page *tail_page,
1878 		    struct buffer_page *next_page)
1879 {
1880 	struct buffer_page *new_head;
1881 	int entries;
1882 	int type;
1883 	int ret;
1884 
1885 	entries = rb_page_entries(next_page);
1886 
1887 	/*
1888 	 * The hard part is here. We need to move the head
1889 	 * forward, and protect against both readers on
1890 	 * other CPUs and writers coming in via interrupts.
1891 	 */
1892 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1893 				       RB_PAGE_HEAD);
1894 
1895 	/*
1896 	 * type can be one of four:
1897 	 *  NORMAL - an interrupt already moved it for us
1898 	 *  HEAD   - we are the first to get here.
1899 	 *  UPDATE - we are the interrupt interrupting
1900 	 *           a current move.
1901 	 *  MOVED  - a reader on another CPU moved the next
1902 	 *           pointer to its reader page. Give up
1903 	 *           and try again.
1904 	 */
1905 
1906 	switch (type) {
1907 	case RB_PAGE_HEAD:
1908 		/*
1909 		 * We changed the head to UPDATE, thus
1910 		 * it is our responsibility to update
1911 		 * the counters.
1912 		 */
1913 		local_add(entries, &cpu_buffer->overrun);
1914 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1915 
1916 		/*
1917 		 * The entries will be zeroed out when we move the
1918 		 * tail page.
1919 		 */
1920 
1921 		/* still more to do */
1922 		break;
1923 
1924 	case RB_PAGE_UPDATE:
1925 		/*
1926 		 * This is an interrupt that interrupt the
1927 		 * previous update. Still more to do.
1928 		 */
1929 		break;
1930 	case RB_PAGE_NORMAL:
1931 		/*
1932 		 * An interrupt came in before the update
1933 		 * and processed this for us.
1934 		 * Nothing left to do.
1935 		 */
1936 		return 1;
1937 	case RB_PAGE_MOVED:
1938 		/*
1939 		 * The reader is on another CPU and just did
1940 		 * a swap with our next_page.
1941 		 * Try again.
1942 		 */
1943 		return 1;
1944 	default:
1945 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1946 		return -1;
1947 	}
1948 
1949 	/*
1950 	 * Now that we are here, the old head pointer is
1951 	 * set to UPDATE. This will keep the reader from
1952 	 * swapping the head page with the reader page.
1953 	 * The reader (on another CPU) will spin till
1954 	 * we are finished.
1955 	 *
1956 	 * We just need to protect against interrupts
1957 	 * doing the job. We will set the next pointer
1958 	 * to HEAD. After that, we set the old pointer
1959 	 * to NORMAL, but only if it was HEAD before.
1960 	 * otherwise we are an interrupt, and only
1961 	 * want the outer most commit to reset it.
1962 	 */
1963 	new_head = next_page;
1964 	rb_inc_page(cpu_buffer, &new_head);
1965 
1966 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1967 				    RB_PAGE_NORMAL);
1968 
1969 	/*
1970 	 * Valid returns are:
1971 	 *  HEAD   - an interrupt came in and already set it.
1972 	 *  NORMAL - One of two things:
1973 	 *            1) We really set it.
1974 	 *            2) A bunch of interrupts came in and moved
1975 	 *               the page forward again.
1976 	 */
1977 	switch (ret) {
1978 	case RB_PAGE_HEAD:
1979 	case RB_PAGE_NORMAL:
1980 		/* OK */
1981 		break;
1982 	default:
1983 		RB_WARN_ON(cpu_buffer, 1);
1984 		return -1;
1985 	}
1986 
1987 	/*
1988 	 * It is possible that an interrupt came in,
1989 	 * set the head up, then more interrupts came in
1990 	 * and moved it again. When we get back here,
1991 	 * the page would have been set to NORMAL but we
1992 	 * just set it back to HEAD.
1993 	 *
1994 	 * How do you detect this? Well, if that happened
1995 	 * the tail page would have moved.
1996 	 */
1997 	if (ret == RB_PAGE_NORMAL) {
1998 		struct buffer_page *buffer_tail_page;
1999 
2000 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2001 		/*
2002 		 * If the tail had moved passed next, then we need
2003 		 * to reset the pointer.
2004 		 */
2005 		if (buffer_tail_page != tail_page &&
2006 		    buffer_tail_page != next_page)
2007 			rb_head_page_set_normal(cpu_buffer, new_head,
2008 						next_page,
2009 						RB_PAGE_HEAD);
2010 	}
2011 
2012 	/*
2013 	 * If this was the outer most commit (the one that
2014 	 * changed the original pointer from HEAD to UPDATE),
2015 	 * then it is up to us to reset it to NORMAL.
2016 	 */
2017 	if (type == RB_PAGE_HEAD) {
2018 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2019 					      tail_page,
2020 					      RB_PAGE_UPDATE);
2021 		if (RB_WARN_ON(cpu_buffer,
2022 			       ret != RB_PAGE_UPDATE))
2023 			return -1;
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 static inline void
2030 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2031 	      unsigned long tail, struct rb_event_info *info)
2032 {
2033 	struct buffer_page *tail_page = info->tail_page;
2034 	struct ring_buffer_event *event;
2035 	unsigned long length = info->length;
2036 
2037 	/*
2038 	 * Only the event that crossed the page boundary
2039 	 * must fill the old tail_page with padding.
2040 	 */
2041 	if (tail >= BUF_PAGE_SIZE) {
2042 		/*
2043 		 * If the page was filled, then we still need
2044 		 * to update the real_end. Reset it to zero
2045 		 * and the reader will ignore it.
2046 		 */
2047 		if (tail == BUF_PAGE_SIZE)
2048 			tail_page->real_end = 0;
2049 
2050 		local_sub(length, &tail_page->write);
2051 		return;
2052 	}
2053 
2054 	event = __rb_page_index(tail_page, tail);
2055 
2056 	/* account for padding bytes */
2057 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2058 
2059 	/*
2060 	 * Save the original length to the meta data.
2061 	 * This will be used by the reader to add lost event
2062 	 * counter.
2063 	 */
2064 	tail_page->real_end = tail;
2065 
2066 	/*
2067 	 * If this event is bigger than the minimum size, then
2068 	 * we need to be careful that we don't subtract the
2069 	 * write counter enough to allow another writer to slip
2070 	 * in on this page.
2071 	 * We put in a discarded commit instead, to make sure
2072 	 * that this space is not used again.
2073 	 *
2074 	 * If we are less than the minimum size, we don't need to
2075 	 * worry about it.
2076 	 */
2077 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2078 		/* No room for any events */
2079 
2080 		/* Mark the rest of the page with padding */
2081 		rb_event_set_padding(event);
2082 
2083 		/* Set the write back to the previous setting */
2084 		local_sub(length, &tail_page->write);
2085 		return;
2086 	}
2087 
2088 	/* Put in a discarded event */
2089 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2090 	event->type_len = RINGBUF_TYPE_PADDING;
2091 	/* time delta must be non zero */
2092 	event->time_delta = 1;
2093 
2094 	/* Set write to end of buffer */
2095 	length = (tail + length) - BUF_PAGE_SIZE;
2096 	local_sub(length, &tail_page->write);
2097 }
2098 
2099 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2100 
2101 /*
2102  * This is the slow path, force gcc not to inline it.
2103  */
2104 static noinline struct ring_buffer_event *
2105 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2106 	     unsigned long tail, struct rb_event_info *info)
2107 {
2108 	struct buffer_page *tail_page = info->tail_page;
2109 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2110 	struct ring_buffer *buffer = cpu_buffer->buffer;
2111 	struct buffer_page *next_page;
2112 	int ret;
2113 
2114 	next_page = tail_page;
2115 
2116 	rb_inc_page(cpu_buffer, &next_page);
2117 
2118 	/*
2119 	 * If for some reason, we had an interrupt storm that made
2120 	 * it all the way around the buffer, bail, and warn
2121 	 * about it.
2122 	 */
2123 	if (unlikely(next_page == commit_page)) {
2124 		local_inc(&cpu_buffer->commit_overrun);
2125 		goto out_reset;
2126 	}
2127 
2128 	/*
2129 	 * This is where the fun begins!
2130 	 *
2131 	 * We are fighting against races between a reader that
2132 	 * could be on another CPU trying to swap its reader
2133 	 * page with the buffer head.
2134 	 *
2135 	 * We are also fighting against interrupts coming in and
2136 	 * moving the head or tail on us as well.
2137 	 *
2138 	 * If the next page is the head page then we have filled
2139 	 * the buffer, unless the commit page is still on the
2140 	 * reader page.
2141 	 */
2142 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2143 
2144 		/*
2145 		 * If the commit is not on the reader page, then
2146 		 * move the header page.
2147 		 */
2148 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2149 			/*
2150 			 * If we are not in overwrite mode,
2151 			 * this is easy, just stop here.
2152 			 */
2153 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2154 				local_inc(&cpu_buffer->dropped_events);
2155 				goto out_reset;
2156 			}
2157 
2158 			ret = rb_handle_head_page(cpu_buffer,
2159 						  tail_page,
2160 						  next_page);
2161 			if (ret < 0)
2162 				goto out_reset;
2163 			if (ret)
2164 				goto out_again;
2165 		} else {
2166 			/*
2167 			 * We need to be careful here too. The
2168 			 * commit page could still be on the reader
2169 			 * page. We could have a small buffer, and
2170 			 * have filled up the buffer with events
2171 			 * from interrupts and such, and wrapped.
2172 			 *
2173 			 * Note, if the tail page is also the on the
2174 			 * reader_page, we let it move out.
2175 			 */
2176 			if (unlikely((cpu_buffer->commit_page !=
2177 				      cpu_buffer->tail_page) &&
2178 				     (cpu_buffer->commit_page ==
2179 				      cpu_buffer->reader_page))) {
2180 				local_inc(&cpu_buffer->commit_overrun);
2181 				goto out_reset;
2182 			}
2183 		}
2184 	}
2185 
2186 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2187 
2188  out_again:
2189 
2190 	rb_reset_tail(cpu_buffer, tail, info);
2191 
2192 	/* Commit what we have for now. */
2193 	rb_end_commit(cpu_buffer);
2194 	/* rb_end_commit() decs committing */
2195 	local_inc(&cpu_buffer->committing);
2196 
2197 	/* fail and let the caller try again */
2198 	return ERR_PTR(-EAGAIN);
2199 
2200  out_reset:
2201 	/* reset write */
2202 	rb_reset_tail(cpu_buffer, tail, info);
2203 
2204 	return NULL;
2205 }
2206 
2207 /* Slow path, do not inline */
2208 static noinline struct ring_buffer_event *
2209 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2210 {
2211 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2212 
2213 	/* Not the first event on the page? */
2214 	if (rb_event_index(event)) {
2215 		event->time_delta = delta & TS_MASK;
2216 		event->array[0] = delta >> TS_SHIFT;
2217 	} else {
2218 		/* nope, just zero it */
2219 		event->time_delta = 0;
2220 		event->array[0] = 0;
2221 	}
2222 
2223 	return skip_time_extend(event);
2224 }
2225 
2226 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2227 				     struct ring_buffer_event *event);
2228 
2229 /**
2230  * rb_update_event - update event type and data
2231  * @event: the event to update
2232  * @type: the type of event
2233  * @length: the size of the event field in the ring buffer
2234  *
2235  * Update the type and data fields of the event. The length
2236  * is the actual size that is written to the ring buffer,
2237  * and with this, we can determine what to place into the
2238  * data field.
2239  */
2240 static void
2241 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2242 		struct ring_buffer_event *event,
2243 		struct rb_event_info *info)
2244 {
2245 	unsigned length = info->length;
2246 	u64 delta = info->delta;
2247 
2248 	/* Only a commit updates the timestamp */
2249 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2250 		delta = 0;
2251 
2252 	/*
2253 	 * If we need to add a timestamp, then we
2254 	 * add it to the start of the resevered space.
2255 	 */
2256 	if (unlikely(info->add_timestamp)) {
2257 		event = rb_add_time_stamp(event, delta);
2258 		length -= RB_LEN_TIME_EXTEND;
2259 		delta = 0;
2260 	}
2261 
2262 	event->time_delta = delta;
2263 	length -= RB_EVNT_HDR_SIZE;
2264 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2265 		event->type_len = 0;
2266 		event->array[0] = length;
2267 	} else
2268 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2269 }
2270 
2271 static unsigned rb_calculate_event_length(unsigned length)
2272 {
2273 	struct ring_buffer_event event; /* Used only for sizeof array */
2274 
2275 	/* zero length can cause confusions */
2276 	if (!length)
2277 		length++;
2278 
2279 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2280 		length += sizeof(event.array[0]);
2281 
2282 	length += RB_EVNT_HDR_SIZE;
2283 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2284 
2285 	/*
2286 	 * In case the time delta is larger than the 27 bits for it
2287 	 * in the header, we need to add a timestamp. If another
2288 	 * event comes in when trying to discard this one to increase
2289 	 * the length, then the timestamp will be added in the allocated
2290 	 * space of this event. If length is bigger than the size needed
2291 	 * for the TIME_EXTEND, then padding has to be used. The events
2292 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2293 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2294 	 * As length is a multiple of 4, we only need to worry if it
2295 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2296 	 */
2297 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2298 		length += RB_ALIGNMENT;
2299 
2300 	return length;
2301 }
2302 
2303 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2304 static inline bool sched_clock_stable(void)
2305 {
2306 	return true;
2307 }
2308 #endif
2309 
2310 static inline int
2311 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2312 		  struct ring_buffer_event *event)
2313 {
2314 	unsigned long new_index, old_index;
2315 	struct buffer_page *bpage;
2316 	unsigned long index;
2317 	unsigned long addr;
2318 
2319 	new_index = rb_event_index(event);
2320 	old_index = new_index + rb_event_ts_length(event);
2321 	addr = (unsigned long)event;
2322 	addr &= PAGE_MASK;
2323 
2324 	bpage = READ_ONCE(cpu_buffer->tail_page);
2325 
2326 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2327 		unsigned long write_mask =
2328 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2329 		unsigned long event_length = rb_event_length(event);
2330 		/*
2331 		 * This is on the tail page. It is possible that
2332 		 * a write could come in and move the tail page
2333 		 * and write to the next page. That is fine
2334 		 * because we just shorten what is on this page.
2335 		 */
2336 		old_index += write_mask;
2337 		new_index += write_mask;
2338 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2339 		if (index == old_index) {
2340 			/* update counters */
2341 			local_sub(event_length, &cpu_buffer->entries_bytes);
2342 			return 1;
2343 		}
2344 	}
2345 
2346 	/* could not discard */
2347 	return 0;
2348 }
2349 
2350 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2351 {
2352 	local_inc(&cpu_buffer->committing);
2353 	local_inc(&cpu_buffer->commits);
2354 }
2355 
2356 static __always_inline void
2357 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2358 {
2359 	unsigned long max_count;
2360 
2361 	/*
2362 	 * We only race with interrupts and NMIs on this CPU.
2363 	 * If we own the commit event, then we can commit
2364 	 * all others that interrupted us, since the interruptions
2365 	 * are in stack format (they finish before they come
2366 	 * back to us). This allows us to do a simple loop to
2367 	 * assign the commit to the tail.
2368 	 */
2369  again:
2370 	max_count = cpu_buffer->nr_pages * 100;
2371 
2372 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2373 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2374 			return;
2375 		if (RB_WARN_ON(cpu_buffer,
2376 			       rb_is_reader_page(cpu_buffer->tail_page)))
2377 			return;
2378 		local_set(&cpu_buffer->commit_page->page->commit,
2379 			  rb_page_write(cpu_buffer->commit_page));
2380 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2381 		/* Only update the write stamp if the page has an event */
2382 		if (rb_page_write(cpu_buffer->commit_page))
2383 			cpu_buffer->write_stamp =
2384 				cpu_buffer->commit_page->page->time_stamp;
2385 		/* add barrier to keep gcc from optimizing too much */
2386 		barrier();
2387 	}
2388 	while (rb_commit_index(cpu_buffer) !=
2389 	       rb_page_write(cpu_buffer->commit_page)) {
2390 
2391 		local_set(&cpu_buffer->commit_page->page->commit,
2392 			  rb_page_write(cpu_buffer->commit_page));
2393 		RB_WARN_ON(cpu_buffer,
2394 			   local_read(&cpu_buffer->commit_page->page->commit) &
2395 			   ~RB_WRITE_MASK);
2396 		barrier();
2397 	}
2398 
2399 	/* again, keep gcc from optimizing */
2400 	barrier();
2401 
2402 	/*
2403 	 * If an interrupt came in just after the first while loop
2404 	 * and pushed the tail page forward, we will be left with
2405 	 * a dangling commit that will never go forward.
2406 	 */
2407 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2408 		goto again;
2409 }
2410 
2411 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2412 {
2413 	unsigned long commits;
2414 
2415 	if (RB_WARN_ON(cpu_buffer,
2416 		       !local_read(&cpu_buffer->committing)))
2417 		return;
2418 
2419  again:
2420 	commits = local_read(&cpu_buffer->commits);
2421 	/* synchronize with interrupts */
2422 	barrier();
2423 	if (local_read(&cpu_buffer->committing) == 1)
2424 		rb_set_commit_to_write(cpu_buffer);
2425 
2426 	local_dec(&cpu_buffer->committing);
2427 
2428 	/* synchronize with interrupts */
2429 	barrier();
2430 
2431 	/*
2432 	 * Need to account for interrupts coming in between the
2433 	 * updating of the commit page and the clearing of the
2434 	 * committing counter.
2435 	 */
2436 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2437 	    !local_read(&cpu_buffer->committing)) {
2438 		local_inc(&cpu_buffer->committing);
2439 		goto again;
2440 	}
2441 }
2442 
2443 static inline void rb_event_discard(struct ring_buffer_event *event)
2444 {
2445 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2446 		event = skip_time_extend(event);
2447 
2448 	/* array[0] holds the actual length for the discarded event */
2449 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2450 	event->type_len = RINGBUF_TYPE_PADDING;
2451 	/* time delta must be non zero */
2452 	if (!event->time_delta)
2453 		event->time_delta = 1;
2454 }
2455 
2456 static __always_inline bool
2457 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2458 		   struct ring_buffer_event *event)
2459 {
2460 	unsigned long addr = (unsigned long)event;
2461 	unsigned long index;
2462 
2463 	index = rb_event_index(event);
2464 	addr &= PAGE_MASK;
2465 
2466 	return cpu_buffer->commit_page->page == (void *)addr &&
2467 		rb_commit_index(cpu_buffer) == index;
2468 }
2469 
2470 static __always_inline void
2471 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2472 		      struct ring_buffer_event *event)
2473 {
2474 	u64 delta;
2475 
2476 	/*
2477 	 * The event first in the commit queue updates the
2478 	 * time stamp.
2479 	 */
2480 	if (rb_event_is_commit(cpu_buffer, event)) {
2481 		/*
2482 		 * A commit event that is first on a page
2483 		 * updates the write timestamp with the page stamp
2484 		 */
2485 		if (!rb_event_index(event))
2486 			cpu_buffer->write_stamp =
2487 				cpu_buffer->commit_page->page->time_stamp;
2488 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2489 			delta = event->array[0];
2490 			delta <<= TS_SHIFT;
2491 			delta += event->time_delta;
2492 			cpu_buffer->write_stamp += delta;
2493 		} else
2494 			cpu_buffer->write_stamp += event->time_delta;
2495 	}
2496 }
2497 
2498 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2499 		      struct ring_buffer_event *event)
2500 {
2501 	local_inc(&cpu_buffer->entries);
2502 	rb_update_write_stamp(cpu_buffer, event);
2503 	rb_end_commit(cpu_buffer);
2504 }
2505 
2506 static __always_inline void
2507 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2508 {
2509 	bool pagebusy;
2510 
2511 	if (buffer->irq_work.waiters_pending) {
2512 		buffer->irq_work.waiters_pending = false;
2513 		/* irq_work_queue() supplies it's own memory barriers */
2514 		irq_work_queue(&buffer->irq_work.work);
2515 	}
2516 
2517 	if (cpu_buffer->irq_work.waiters_pending) {
2518 		cpu_buffer->irq_work.waiters_pending = false;
2519 		/* irq_work_queue() supplies it's own memory barriers */
2520 		irq_work_queue(&cpu_buffer->irq_work.work);
2521 	}
2522 
2523 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2524 
2525 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2526 		cpu_buffer->irq_work.wakeup_full = true;
2527 		cpu_buffer->irq_work.full_waiters_pending = false;
2528 		/* irq_work_queue() supplies it's own memory barriers */
2529 		irq_work_queue(&cpu_buffer->irq_work.work);
2530 	}
2531 }
2532 
2533 /*
2534  * The lock and unlock are done within a preempt disable section.
2535  * The current_context per_cpu variable can only be modified
2536  * by the current task between lock and unlock. But it can
2537  * be modified more than once via an interrupt. To pass this
2538  * information from the lock to the unlock without having to
2539  * access the 'in_interrupt()' functions again (which do show
2540  * a bit of overhead in something as critical as function tracing,
2541  * we use a bitmask trick.
2542  *
2543  *  bit 0 =  NMI context
2544  *  bit 1 =  IRQ context
2545  *  bit 2 =  SoftIRQ context
2546  *  bit 3 =  normal context.
2547  *
2548  * This works because this is the order of contexts that can
2549  * preempt other contexts. A SoftIRQ never preempts an IRQ
2550  * context.
2551  *
2552  * When the context is determined, the corresponding bit is
2553  * checked and set (if it was set, then a recursion of that context
2554  * happened).
2555  *
2556  * On unlock, we need to clear this bit. To do so, just subtract
2557  * 1 from the current_context and AND it to itself.
2558  *
2559  * (binary)
2560  *  101 - 1 = 100
2561  *  101 & 100 = 100 (clearing bit zero)
2562  *
2563  *  1010 - 1 = 1001
2564  *  1010 & 1001 = 1000 (clearing bit 1)
2565  *
2566  * The least significant bit can be cleared this way, and it
2567  * just so happens that it is the same bit corresponding to
2568  * the current context.
2569  */
2570 
2571 static __always_inline int
2572 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2573 {
2574 	unsigned int val = cpu_buffer->current_context;
2575 	unsigned long pc = preempt_count();
2576 	int bit;
2577 
2578 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2579 		bit = RB_CTX_NORMAL;
2580 	else
2581 		bit = pc & NMI_MASK ? RB_CTX_NMI :
2582 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2583 
2584 	if (unlikely(val & (1 << bit)))
2585 		return 1;
2586 
2587 	val |= (1 << bit);
2588 	cpu_buffer->current_context = val;
2589 
2590 	return 0;
2591 }
2592 
2593 static __always_inline void
2594 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2595 {
2596 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2597 }
2598 
2599 /**
2600  * ring_buffer_unlock_commit - commit a reserved
2601  * @buffer: The buffer to commit to
2602  * @event: The event pointer to commit.
2603  *
2604  * This commits the data to the ring buffer, and releases any locks held.
2605  *
2606  * Must be paired with ring_buffer_lock_reserve.
2607  */
2608 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2609 			      struct ring_buffer_event *event)
2610 {
2611 	struct ring_buffer_per_cpu *cpu_buffer;
2612 	int cpu = raw_smp_processor_id();
2613 
2614 	cpu_buffer = buffer->buffers[cpu];
2615 
2616 	rb_commit(cpu_buffer, event);
2617 
2618 	rb_wakeups(buffer, cpu_buffer);
2619 
2620 	trace_recursive_unlock(cpu_buffer);
2621 
2622 	preempt_enable_notrace();
2623 
2624 	return 0;
2625 }
2626 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2627 
2628 static noinline void
2629 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2630 		    struct rb_event_info *info)
2631 {
2632 	WARN_ONCE(info->delta > (1ULL << 59),
2633 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2634 		  (unsigned long long)info->delta,
2635 		  (unsigned long long)info->ts,
2636 		  (unsigned long long)cpu_buffer->write_stamp,
2637 		  sched_clock_stable() ? "" :
2638 		  "If you just came from a suspend/resume,\n"
2639 		  "please switch to the trace global clock:\n"
2640 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2641 	info->add_timestamp = 1;
2642 }
2643 
2644 static struct ring_buffer_event *
2645 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2646 		  struct rb_event_info *info)
2647 {
2648 	struct ring_buffer_event *event;
2649 	struct buffer_page *tail_page;
2650 	unsigned long tail, write;
2651 
2652 	/*
2653 	 * If the time delta since the last event is too big to
2654 	 * hold in the time field of the event, then we append a
2655 	 * TIME EXTEND event ahead of the data event.
2656 	 */
2657 	if (unlikely(info->add_timestamp))
2658 		info->length += RB_LEN_TIME_EXTEND;
2659 
2660 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2661 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2662 	write = local_add_return(info->length, &tail_page->write);
2663 
2664 	/* set write to only the index of the write */
2665 	write &= RB_WRITE_MASK;
2666 	tail = write - info->length;
2667 
2668 	/*
2669 	 * If this is the first commit on the page, then it has the same
2670 	 * timestamp as the page itself.
2671 	 */
2672 	if (!tail)
2673 		info->delta = 0;
2674 
2675 	/* See if we shot pass the end of this buffer page */
2676 	if (unlikely(write > BUF_PAGE_SIZE))
2677 		return rb_move_tail(cpu_buffer, tail, info);
2678 
2679 	/* We reserved something on the buffer */
2680 
2681 	event = __rb_page_index(tail_page, tail);
2682 	rb_update_event(cpu_buffer, event, info);
2683 
2684 	local_inc(&tail_page->entries);
2685 
2686 	/*
2687 	 * If this is the first commit on the page, then update
2688 	 * its timestamp.
2689 	 */
2690 	if (!tail)
2691 		tail_page->page->time_stamp = info->ts;
2692 
2693 	/* account for these added bytes */
2694 	local_add(info->length, &cpu_buffer->entries_bytes);
2695 
2696 	return event;
2697 }
2698 
2699 static __always_inline struct ring_buffer_event *
2700 rb_reserve_next_event(struct ring_buffer *buffer,
2701 		      struct ring_buffer_per_cpu *cpu_buffer,
2702 		      unsigned long length)
2703 {
2704 	struct ring_buffer_event *event;
2705 	struct rb_event_info info;
2706 	int nr_loops = 0;
2707 	u64 diff;
2708 
2709 	rb_start_commit(cpu_buffer);
2710 
2711 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2712 	/*
2713 	 * Due to the ability to swap a cpu buffer from a buffer
2714 	 * it is possible it was swapped before we committed.
2715 	 * (committing stops a swap). We check for it here and
2716 	 * if it happened, we have to fail the write.
2717 	 */
2718 	barrier();
2719 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2720 		local_dec(&cpu_buffer->committing);
2721 		local_dec(&cpu_buffer->commits);
2722 		return NULL;
2723 	}
2724 #endif
2725 
2726 	info.length = rb_calculate_event_length(length);
2727  again:
2728 	info.add_timestamp = 0;
2729 	info.delta = 0;
2730 
2731 	/*
2732 	 * We allow for interrupts to reenter here and do a trace.
2733 	 * If one does, it will cause this original code to loop
2734 	 * back here. Even with heavy interrupts happening, this
2735 	 * should only happen a few times in a row. If this happens
2736 	 * 1000 times in a row, there must be either an interrupt
2737 	 * storm or we have something buggy.
2738 	 * Bail!
2739 	 */
2740 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2741 		goto out_fail;
2742 
2743 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2744 	diff = info.ts - cpu_buffer->write_stamp;
2745 
2746 	/* make sure this diff is calculated here */
2747 	barrier();
2748 
2749 	/* Did the write stamp get updated already? */
2750 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2751 		info.delta = diff;
2752 		if (unlikely(test_time_stamp(info.delta)))
2753 			rb_handle_timestamp(cpu_buffer, &info);
2754 	}
2755 
2756 	event = __rb_reserve_next(cpu_buffer, &info);
2757 
2758 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2759 		if (info.add_timestamp)
2760 			info.length -= RB_LEN_TIME_EXTEND;
2761 		goto again;
2762 	}
2763 
2764 	if (!event)
2765 		goto out_fail;
2766 
2767 	return event;
2768 
2769  out_fail:
2770 	rb_end_commit(cpu_buffer);
2771 	return NULL;
2772 }
2773 
2774 /**
2775  * ring_buffer_lock_reserve - reserve a part of the buffer
2776  * @buffer: the ring buffer to reserve from
2777  * @length: the length of the data to reserve (excluding event header)
2778  *
2779  * Returns a reseverd event on the ring buffer to copy directly to.
2780  * The user of this interface will need to get the body to write into
2781  * and can use the ring_buffer_event_data() interface.
2782  *
2783  * The length is the length of the data needed, not the event length
2784  * which also includes the event header.
2785  *
2786  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2787  * If NULL is returned, then nothing has been allocated or locked.
2788  */
2789 struct ring_buffer_event *
2790 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2791 {
2792 	struct ring_buffer_per_cpu *cpu_buffer;
2793 	struct ring_buffer_event *event;
2794 	int cpu;
2795 
2796 	/* If we are tracing schedule, we don't want to recurse */
2797 	preempt_disable_notrace();
2798 
2799 	if (unlikely(atomic_read(&buffer->record_disabled)))
2800 		goto out;
2801 
2802 	cpu = raw_smp_processor_id();
2803 
2804 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2805 		goto out;
2806 
2807 	cpu_buffer = buffer->buffers[cpu];
2808 
2809 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2810 		goto out;
2811 
2812 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2813 		goto out;
2814 
2815 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2816 		goto out;
2817 
2818 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2819 	if (!event)
2820 		goto out_unlock;
2821 
2822 	return event;
2823 
2824  out_unlock:
2825 	trace_recursive_unlock(cpu_buffer);
2826  out:
2827 	preempt_enable_notrace();
2828 	return NULL;
2829 }
2830 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2831 
2832 /*
2833  * Decrement the entries to the page that an event is on.
2834  * The event does not even need to exist, only the pointer
2835  * to the page it is on. This may only be called before the commit
2836  * takes place.
2837  */
2838 static inline void
2839 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2840 		   struct ring_buffer_event *event)
2841 {
2842 	unsigned long addr = (unsigned long)event;
2843 	struct buffer_page *bpage = cpu_buffer->commit_page;
2844 	struct buffer_page *start;
2845 
2846 	addr &= PAGE_MASK;
2847 
2848 	/* Do the likely case first */
2849 	if (likely(bpage->page == (void *)addr)) {
2850 		local_dec(&bpage->entries);
2851 		return;
2852 	}
2853 
2854 	/*
2855 	 * Because the commit page may be on the reader page we
2856 	 * start with the next page and check the end loop there.
2857 	 */
2858 	rb_inc_page(cpu_buffer, &bpage);
2859 	start = bpage;
2860 	do {
2861 		if (bpage->page == (void *)addr) {
2862 			local_dec(&bpage->entries);
2863 			return;
2864 		}
2865 		rb_inc_page(cpu_buffer, &bpage);
2866 	} while (bpage != start);
2867 
2868 	/* commit not part of this buffer?? */
2869 	RB_WARN_ON(cpu_buffer, 1);
2870 }
2871 
2872 /**
2873  * ring_buffer_commit_discard - discard an event that has not been committed
2874  * @buffer: the ring buffer
2875  * @event: non committed event to discard
2876  *
2877  * Sometimes an event that is in the ring buffer needs to be ignored.
2878  * This function lets the user discard an event in the ring buffer
2879  * and then that event will not be read later.
2880  *
2881  * This function only works if it is called before the the item has been
2882  * committed. It will try to free the event from the ring buffer
2883  * if another event has not been added behind it.
2884  *
2885  * If another event has been added behind it, it will set the event
2886  * up as discarded, and perform the commit.
2887  *
2888  * If this function is called, do not call ring_buffer_unlock_commit on
2889  * the event.
2890  */
2891 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2892 				struct ring_buffer_event *event)
2893 {
2894 	struct ring_buffer_per_cpu *cpu_buffer;
2895 	int cpu;
2896 
2897 	/* The event is discarded regardless */
2898 	rb_event_discard(event);
2899 
2900 	cpu = smp_processor_id();
2901 	cpu_buffer = buffer->buffers[cpu];
2902 
2903 	/*
2904 	 * This must only be called if the event has not been
2905 	 * committed yet. Thus we can assume that preemption
2906 	 * is still disabled.
2907 	 */
2908 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2909 
2910 	rb_decrement_entry(cpu_buffer, event);
2911 	if (rb_try_to_discard(cpu_buffer, event))
2912 		goto out;
2913 
2914 	/*
2915 	 * The commit is still visible by the reader, so we
2916 	 * must still update the timestamp.
2917 	 */
2918 	rb_update_write_stamp(cpu_buffer, event);
2919  out:
2920 	rb_end_commit(cpu_buffer);
2921 
2922 	trace_recursive_unlock(cpu_buffer);
2923 
2924 	preempt_enable_notrace();
2925 
2926 }
2927 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2928 
2929 /**
2930  * ring_buffer_write - write data to the buffer without reserving
2931  * @buffer: The ring buffer to write to.
2932  * @length: The length of the data being written (excluding the event header)
2933  * @data: The data to write to the buffer.
2934  *
2935  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2936  * one function. If you already have the data to write to the buffer, it
2937  * may be easier to simply call this function.
2938  *
2939  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2940  * and not the length of the event which would hold the header.
2941  */
2942 int ring_buffer_write(struct ring_buffer *buffer,
2943 		      unsigned long length,
2944 		      void *data)
2945 {
2946 	struct ring_buffer_per_cpu *cpu_buffer;
2947 	struct ring_buffer_event *event;
2948 	void *body;
2949 	int ret = -EBUSY;
2950 	int cpu;
2951 
2952 	preempt_disable_notrace();
2953 
2954 	if (atomic_read(&buffer->record_disabled))
2955 		goto out;
2956 
2957 	cpu = raw_smp_processor_id();
2958 
2959 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2960 		goto out;
2961 
2962 	cpu_buffer = buffer->buffers[cpu];
2963 
2964 	if (atomic_read(&cpu_buffer->record_disabled))
2965 		goto out;
2966 
2967 	if (length > BUF_MAX_DATA_SIZE)
2968 		goto out;
2969 
2970 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2971 		goto out;
2972 
2973 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2974 	if (!event)
2975 		goto out_unlock;
2976 
2977 	body = rb_event_data(event);
2978 
2979 	memcpy(body, data, length);
2980 
2981 	rb_commit(cpu_buffer, event);
2982 
2983 	rb_wakeups(buffer, cpu_buffer);
2984 
2985 	ret = 0;
2986 
2987  out_unlock:
2988 	trace_recursive_unlock(cpu_buffer);
2989 
2990  out:
2991 	preempt_enable_notrace();
2992 
2993 	return ret;
2994 }
2995 EXPORT_SYMBOL_GPL(ring_buffer_write);
2996 
2997 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2998 {
2999 	struct buffer_page *reader = cpu_buffer->reader_page;
3000 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3001 	struct buffer_page *commit = cpu_buffer->commit_page;
3002 
3003 	/* In case of error, head will be NULL */
3004 	if (unlikely(!head))
3005 		return true;
3006 
3007 	return reader->read == rb_page_commit(reader) &&
3008 		(commit == reader ||
3009 		 (commit == head &&
3010 		  head->read == rb_page_commit(commit)));
3011 }
3012 
3013 /**
3014  * ring_buffer_record_disable - stop all writes into the buffer
3015  * @buffer: The ring buffer to stop writes to.
3016  *
3017  * This prevents all writes to the buffer. Any attempt to write
3018  * to the buffer after this will fail and return NULL.
3019  *
3020  * The caller should call synchronize_sched() after this.
3021  */
3022 void ring_buffer_record_disable(struct ring_buffer *buffer)
3023 {
3024 	atomic_inc(&buffer->record_disabled);
3025 }
3026 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3027 
3028 /**
3029  * ring_buffer_record_enable - enable writes to the buffer
3030  * @buffer: The ring buffer to enable writes
3031  *
3032  * Note, multiple disables will need the same number of enables
3033  * to truly enable the writing (much like preempt_disable).
3034  */
3035 void ring_buffer_record_enable(struct ring_buffer *buffer)
3036 {
3037 	atomic_dec(&buffer->record_disabled);
3038 }
3039 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3040 
3041 /**
3042  * ring_buffer_record_off - stop all writes into the buffer
3043  * @buffer: The ring buffer to stop writes to.
3044  *
3045  * This prevents all writes to the buffer. Any attempt to write
3046  * to the buffer after this will fail and return NULL.
3047  *
3048  * This is different than ring_buffer_record_disable() as
3049  * it works like an on/off switch, where as the disable() version
3050  * must be paired with a enable().
3051  */
3052 void ring_buffer_record_off(struct ring_buffer *buffer)
3053 {
3054 	unsigned int rd;
3055 	unsigned int new_rd;
3056 
3057 	do {
3058 		rd = atomic_read(&buffer->record_disabled);
3059 		new_rd = rd | RB_BUFFER_OFF;
3060 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3061 }
3062 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3063 
3064 /**
3065  * ring_buffer_record_on - restart writes into the buffer
3066  * @buffer: The ring buffer to start writes to.
3067  *
3068  * This enables all writes to the buffer that was disabled by
3069  * ring_buffer_record_off().
3070  *
3071  * This is different than ring_buffer_record_enable() as
3072  * it works like an on/off switch, where as the enable() version
3073  * must be paired with a disable().
3074  */
3075 void ring_buffer_record_on(struct ring_buffer *buffer)
3076 {
3077 	unsigned int rd;
3078 	unsigned int new_rd;
3079 
3080 	do {
3081 		rd = atomic_read(&buffer->record_disabled);
3082 		new_rd = rd & ~RB_BUFFER_OFF;
3083 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3084 }
3085 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3086 
3087 /**
3088  * ring_buffer_record_is_on - return true if the ring buffer can write
3089  * @buffer: The ring buffer to see if write is enabled
3090  *
3091  * Returns true if the ring buffer is in a state that it accepts writes.
3092  */
3093 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3094 {
3095 	return !atomic_read(&buffer->record_disabled);
3096 }
3097 
3098 /**
3099  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3100  * @buffer: The ring buffer to stop writes to.
3101  * @cpu: The CPU buffer to stop
3102  *
3103  * This prevents all writes to the buffer. Any attempt to write
3104  * to the buffer after this will fail and return NULL.
3105  *
3106  * The caller should call synchronize_sched() after this.
3107  */
3108 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3109 {
3110 	struct ring_buffer_per_cpu *cpu_buffer;
3111 
3112 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3113 		return;
3114 
3115 	cpu_buffer = buffer->buffers[cpu];
3116 	atomic_inc(&cpu_buffer->record_disabled);
3117 }
3118 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3119 
3120 /**
3121  * ring_buffer_record_enable_cpu - enable writes to the buffer
3122  * @buffer: The ring buffer to enable writes
3123  * @cpu: The CPU to enable.
3124  *
3125  * Note, multiple disables will need the same number of enables
3126  * to truly enable the writing (much like preempt_disable).
3127  */
3128 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3129 {
3130 	struct ring_buffer_per_cpu *cpu_buffer;
3131 
3132 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133 		return;
3134 
3135 	cpu_buffer = buffer->buffers[cpu];
3136 	atomic_dec(&cpu_buffer->record_disabled);
3137 }
3138 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3139 
3140 /*
3141  * The total entries in the ring buffer is the running counter
3142  * of entries entered into the ring buffer, minus the sum of
3143  * the entries read from the ring buffer and the number of
3144  * entries that were overwritten.
3145  */
3146 static inline unsigned long
3147 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3148 {
3149 	return local_read(&cpu_buffer->entries) -
3150 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3151 }
3152 
3153 /**
3154  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3155  * @buffer: The ring buffer
3156  * @cpu: The per CPU buffer to read from.
3157  */
3158 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3159 {
3160 	unsigned long flags;
3161 	struct ring_buffer_per_cpu *cpu_buffer;
3162 	struct buffer_page *bpage;
3163 	u64 ret = 0;
3164 
3165 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3166 		return 0;
3167 
3168 	cpu_buffer = buffer->buffers[cpu];
3169 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3170 	/*
3171 	 * if the tail is on reader_page, oldest time stamp is on the reader
3172 	 * page
3173 	 */
3174 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3175 		bpage = cpu_buffer->reader_page;
3176 	else
3177 		bpage = rb_set_head_page(cpu_buffer);
3178 	if (bpage)
3179 		ret = bpage->page->time_stamp;
3180 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3181 
3182 	return ret;
3183 }
3184 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3185 
3186 /**
3187  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3188  * @buffer: The ring buffer
3189  * @cpu: The per CPU buffer to read from.
3190  */
3191 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3192 {
3193 	struct ring_buffer_per_cpu *cpu_buffer;
3194 	unsigned long ret;
3195 
3196 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3197 		return 0;
3198 
3199 	cpu_buffer = buffer->buffers[cpu];
3200 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3201 
3202 	return ret;
3203 }
3204 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3205 
3206 /**
3207  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3208  * @buffer: The ring buffer
3209  * @cpu: The per CPU buffer to get the entries from.
3210  */
3211 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3212 {
3213 	struct ring_buffer_per_cpu *cpu_buffer;
3214 
3215 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3216 		return 0;
3217 
3218 	cpu_buffer = buffer->buffers[cpu];
3219 
3220 	return rb_num_of_entries(cpu_buffer);
3221 }
3222 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3223 
3224 /**
3225  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3226  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3227  * @buffer: The ring buffer
3228  * @cpu: The per CPU buffer to get the number of overruns from
3229  */
3230 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3231 {
3232 	struct ring_buffer_per_cpu *cpu_buffer;
3233 	unsigned long ret;
3234 
3235 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3236 		return 0;
3237 
3238 	cpu_buffer = buffer->buffers[cpu];
3239 	ret = local_read(&cpu_buffer->overrun);
3240 
3241 	return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3244 
3245 /**
3246  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3247  * commits failing due to the buffer wrapping around while there are uncommitted
3248  * events, such as during an interrupt storm.
3249  * @buffer: The ring buffer
3250  * @cpu: The per CPU buffer to get the number of overruns from
3251  */
3252 unsigned long
3253 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3254 {
3255 	struct ring_buffer_per_cpu *cpu_buffer;
3256 	unsigned long ret;
3257 
3258 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259 		return 0;
3260 
3261 	cpu_buffer = buffer->buffers[cpu];
3262 	ret = local_read(&cpu_buffer->commit_overrun);
3263 
3264 	return ret;
3265 }
3266 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3267 
3268 /**
3269  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3270  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3271  * @buffer: The ring buffer
3272  * @cpu: The per CPU buffer to get the number of overruns from
3273  */
3274 unsigned long
3275 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3276 {
3277 	struct ring_buffer_per_cpu *cpu_buffer;
3278 	unsigned long ret;
3279 
3280 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3281 		return 0;
3282 
3283 	cpu_buffer = buffer->buffers[cpu];
3284 	ret = local_read(&cpu_buffer->dropped_events);
3285 
3286 	return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3289 
3290 /**
3291  * ring_buffer_read_events_cpu - get the number of events successfully read
3292  * @buffer: The ring buffer
3293  * @cpu: The per CPU buffer to get the number of events read
3294  */
3295 unsigned long
3296 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3297 {
3298 	struct ring_buffer_per_cpu *cpu_buffer;
3299 
3300 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3301 		return 0;
3302 
3303 	cpu_buffer = buffer->buffers[cpu];
3304 	return cpu_buffer->read;
3305 }
3306 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3307 
3308 /**
3309  * ring_buffer_entries - get the number of entries in a buffer
3310  * @buffer: The ring buffer
3311  *
3312  * Returns the total number of entries in the ring buffer
3313  * (all CPU entries)
3314  */
3315 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3316 {
3317 	struct ring_buffer_per_cpu *cpu_buffer;
3318 	unsigned long entries = 0;
3319 	int cpu;
3320 
3321 	/* if you care about this being correct, lock the buffer */
3322 	for_each_buffer_cpu(buffer, cpu) {
3323 		cpu_buffer = buffer->buffers[cpu];
3324 		entries += rb_num_of_entries(cpu_buffer);
3325 	}
3326 
3327 	return entries;
3328 }
3329 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3330 
3331 /**
3332  * ring_buffer_overruns - get the number of overruns in buffer
3333  * @buffer: The ring buffer
3334  *
3335  * Returns the total number of overruns in the ring buffer
3336  * (all CPU entries)
3337  */
3338 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3339 {
3340 	struct ring_buffer_per_cpu *cpu_buffer;
3341 	unsigned long overruns = 0;
3342 	int cpu;
3343 
3344 	/* if you care about this being correct, lock the buffer */
3345 	for_each_buffer_cpu(buffer, cpu) {
3346 		cpu_buffer = buffer->buffers[cpu];
3347 		overruns += local_read(&cpu_buffer->overrun);
3348 	}
3349 
3350 	return overruns;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3353 
3354 static void rb_iter_reset(struct ring_buffer_iter *iter)
3355 {
3356 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3357 
3358 	/* Iterator usage is expected to have record disabled */
3359 	iter->head_page = cpu_buffer->reader_page;
3360 	iter->head = cpu_buffer->reader_page->read;
3361 
3362 	iter->cache_reader_page = iter->head_page;
3363 	iter->cache_read = cpu_buffer->read;
3364 
3365 	if (iter->head)
3366 		iter->read_stamp = cpu_buffer->read_stamp;
3367 	else
3368 		iter->read_stamp = iter->head_page->page->time_stamp;
3369 }
3370 
3371 /**
3372  * ring_buffer_iter_reset - reset an iterator
3373  * @iter: The iterator to reset
3374  *
3375  * Resets the iterator, so that it will start from the beginning
3376  * again.
3377  */
3378 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3379 {
3380 	struct ring_buffer_per_cpu *cpu_buffer;
3381 	unsigned long flags;
3382 
3383 	if (!iter)
3384 		return;
3385 
3386 	cpu_buffer = iter->cpu_buffer;
3387 
3388 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3389 	rb_iter_reset(iter);
3390 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3391 }
3392 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3393 
3394 /**
3395  * ring_buffer_iter_empty - check if an iterator has no more to read
3396  * @iter: The iterator to check
3397  */
3398 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3399 {
3400 	struct ring_buffer_per_cpu *cpu_buffer;
3401 	struct buffer_page *reader;
3402 	struct buffer_page *head_page;
3403 	struct buffer_page *commit_page;
3404 	unsigned commit;
3405 
3406 	cpu_buffer = iter->cpu_buffer;
3407 
3408 	/* Remember, trace recording is off when iterator is in use */
3409 	reader = cpu_buffer->reader_page;
3410 	head_page = cpu_buffer->head_page;
3411 	commit_page = cpu_buffer->commit_page;
3412 	commit = rb_page_commit(commit_page);
3413 
3414 	return ((iter->head_page == commit_page && iter->head == commit) ||
3415 		(iter->head_page == reader && commit_page == head_page &&
3416 		 head_page->read == commit &&
3417 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3418 }
3419 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3420 
3421 static void
3422 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3423 		     struct ring_buffer_event *event)
3424 {
3425 	u64 delta;
3426 
3427 	switch (event->type_len) {
3428 	case RINGBUF_TYPE_PADDING:
3429 		return;
3430 
3431 	case RINGBUF_TYPE_TIME_EXTEND:
3432 		delta = event->array[0];
3433 		delta <<= TS_SHIFT;
3434 		delta += event->time_delta;
3435 		cpu_buffer->read_stamp += delta;
3436 		return;
3437 
3438 	case RINGBUF_TYPE_TIME_STAMP:
3439 		/* FIXME: not implemented */
3440 		return;
3441 
3442 	case RINGBUF_TYPE_DATA:
3443 		cpu_buffer->read_stamp += event->time_delta;
3444 		return;
3445 
3446 	default:
3447 		BUG();
3448 	}
3449 	return;
3450 }
3451 
3452 static void
3453 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3454 			  struct ring_buffer_event *event)
3455 {
3456 	u64 delta;
3457 
3458 	switch (event->type_len) {
3459 	case RINGBUF_TYPE_PADDING:
3460 		return;
3461 
3462 	case RINGBUF_TYPE_TIME_EXTEND:
3463 		delta = event->array[0];
3464 		delta <<= TS_SHIFT;
3465 		delta += event->time_delta;
3466 		iter->read_stamp += delta;
3467 		return;
3468 
3469 	case RINGBUF_TYPE_TIME_STAMP:
3470 		/* FIXME: not implemented */
3471 		return;
3472 
3473 	case RINGBUF_TYPE_DATA:
3474 		iter->read_stamp += event->time_delta;
3475 		return;
3476 
3477 	default:
3478 		BUG();
3479 	}
3480 	return;
3481 }
3482 
3483 static struct buffer_page *
3484 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3485 {
3486 	struct buffer_page *reader = NULL;
3487 	unsigned long overwrite;
3488 	unsigned long flags;
3489 	int nr_loops = 0;
3490 	int ret;
3491 
3492 	local_irq_save(flags);
3493 	arch_spin_lock(&cpu_buffer->lock);
3494 
3495  again:
3496 	/*
3497 	 * This should normally only loop twice. But because the
3498 	 * start of the reader inserts an empty page, it causes
3499 	 * a case where we will loop three times. There should be no
3500 	 * reason to loop four times (that I know of).
3501 	 */
3502 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3503 		reader = NULL;
3504 		goto out;
3505 	}
3506 
3507 	reader = cpu_buffer->reader_page;
3508 
3509 	/* If there's more to read, return this page */
3510 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3511 		goto out;
3512 
3513 	/* Never should we have an index greater than the size */
3514 	if (RB_WARN_ON(cpu_buffer,
3515 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3516 		goto out;
3517 
3518 	/* check if we caught up to the tail */
3519 	reader = NULL;
3520 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3521 		goto out;
3522 
3523 	/* Don't bother swapping if the ring buffer is empty */
3524 	if (rb_num_of_entries(cpu_buffer) == 0)
3525 		goto out;
3526 
3527 	/*
3528 	 * Reset the reader page to size zero.
3529 	 */
3530 	local_set(&cpu_buffer->reader_page->write, 0);
3531 	local_set(&cpu_buffer->reader_page->entries, 0);
3532 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3533 	cpu_buffer->reader_page->real_end = 0;
3534 
3535  spin:
3536 	/*
3537 	 * Splice the empty reader page into the list around the head.
3538 	 */
3539 	reader = rb_set_head_page(cpu_buffer);
3540 	if (!reader)
3541 		goto out;
3542 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3543 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3544 
3545 	/*
3546 	 * cpu_buffer->pages just needs to point to the buffer, it
3547 	 *  has no specific buffer page to point to. Lets move it out
3548 	 *  of our way so we don't accidentally swap it.
3549 	 */
3550 	cpu_buffer->pages = reader->list.prev;
3551 
3552 	/* The reader page will be pointing to the new head */
3553 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3554 
3555 	/*
3556 	 * We want to make sure we read the overruns after we set up our
3557 	 * pointers to the next object. The writer side does a
3558 	 * cmpxchg to cross pages which acts as the mb on the writer
3559 	 * side. Note, the reader will constantly fail the swap
3560 	 * while the writer is updating the pointers, so this
3561 	 * guarantees that the overwrite recorded here is the one we
3562 	 * want to compare with the last_overrun.
3563 	 */
3564 	smp_mb();
3565 	overwrite = local_read(&(cpu_buffer->overrun));
3566 
3567 	/*
3568 	 * Here's the tricky part.
3569 	 *
3570 	 * We need to move the pointer past the header page.
3571 	 * But we can only do that if a writer is not currently
3572 	 * moving it. The page before the header page has the
3573 	 * flag bit '1' set if it is pointing to the page we want.
3574 	 * but if the writer is in the process of moving it
3575 	 * than it will be '2' or already moved '0'.
3576 	 */
3577 
3578 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3579 
3580 	/*
3581 	 * If we did not convert it, then we must try again.
3582 	 */
3583 	if (!ret)
3584 		goto spin;
3585 
3586 	/*
3587 	 * Yeah! We succeeded in replacing the page.
3588 	 *
3589 	 * Now make the new head point back to the reader page.
3590 	 */
3591 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3592 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3593 
3594 	/* Finally update the reader page to the new head */
3595 	cpu_buffer->reader_page = reader;
3596 	cpu_buffer->reader_page->read = 0;
3597 
3598 	if (overwrite != cpu_buffer->last_overrun) {
3599 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3600 		cpu_buffer->last_overrun = overwrite;
3601 	}
3602 
3603 	goto again;
3604 
3605  out:
3606 	/* Update the read_stamp on the first event */
3607 	if (reader && reader->read == 0)
3608 		cpu_buffer->read_stamp = reader->page->time_stamp;
3609 
3610 	arch_spin_unlock(&cpu_buffer->lock);
3611 	local_irq_restore(flags);
3612 
3613 	return reader;
3614 }
3615 
3616 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3617 {
3618 	struct ring_buffer_event *event;
3619 	struct buffer_page *reader;
3620 	unsigned length;
3621 
3622 	reader = rb_get_reader_page(cpu_buffer);
3623 
3624 	/* This function should not be called when buffer is empty */
3625 	if (RB_WARN_ON(cpu_buffer, !reader))
3626 		return;
3627 
3628 	event = rb_reader_event(cpu_buffer);
3629 
3630 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3631 		cpu_buffer->read++;
3632 
3633 	rb_update_read_stamp(cpu_buffer, event);
3634 
3635 	length = rb_event_length(event);
3636 	cpu_buffer->reader_page->read += length;
3637 }
3638 
3639 static void rb_advance_iter(struct ring_buffer_iter *iter)
3640 {
3641 	struct ring_buffer_per_cpu *cpu_buffer;
3642 	struct ring_buffer_event *event;
3643 	unsigned length;
3644 
3645 	cpu_buffer = iter->cpu_buffer;
3646 
3647 	/*
3648 	 * Check if we are at the end of the buffer.
3649 	 */
3650 	if (iter->head >= rb_page_size(iter->head_page)) {
3651 		/* discarded commits can make the page empty */
3652 		if (iter->head_page == cpu_buffer->commit_page)
3653 			return;
3654 		rb_inc_iter(iter);
3655 		return;
3656 	}
3657 
3658 	event = rb_iter_head_event(iter);
3659 
3660 	length = rb_event_length(event);
3661 
3662 	/*
3663 	 * This should not be called to advance the header if we are
3664 	 * at the tail of the buffer.
3665 	 */
3666 	if (RB_WARN_ON(cpu_buffer,
3667 		       (iter->head_page == cpu_buffer->commit_page) &&
3668 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3669 		return;
3670 
3671 	rb_update_iter_read_stamp(iter, event);
3672 
3673 	iter->head += length;
3674 
3675 	/* check for end of page padding */
3676 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3677 	    (iter->head_page != cpu_buffer->commit_page))
3678 		rb_inc_iter(iter);
3679 }
3680 
3681 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3682 {
3683 	return cpu_buffer->lost_events;
3684 }
3685 
3686 static struct ring_buffer_event *
3687 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3688 	       unsigned long *lost_events)
3689 {
3690 	struct ring_buffer_event *event;
3691 	struct buffer_page *reader;
3692 	int nr_loops = 0;
3693 
3694  again:
3695 	/*
3696 	 * We repeat when a time extend is encountered.
3697 	 * Since the time extend is always attached to a data event,
3698 	 * we should never loop more than once.
3699 	 * (We never hit the following condition more than twice).
3700 	 */
3701 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3702 		return NULL;
3703 
3704 	reader = rb_get_reader_page(cpu_buffer);
3705 	if (!reader)
3706 		return NULL;
3707 
3708 	event = rb_reader_event(cpu_buffer);
3709 
3710 	switch (event->type_len) {
3711 	case RINGBUF_TYPE_PADDING:
3712 		if (rb_null_event(event))
3713 			RB_WARN_ON(cpu_buffer, 1);
3714 		/*
3715 		 * Because the writer could be discarding every
3716 		 * event it creates (which would probably be bad)
3717 		 * if we were to go back to "again" then we may never
3718 		 * catch up, and will trigger the warn on, or lock
3719 		 * the box. Return the padding, and we will release
3720 		 * the current locks, and try again.
3721 		 */
3722 		return event;
3723 
3724 	case RINGBUF_TYPE_TIME_EXTEND:
3725 		/* Internal data, OK to advance */
3726 		rb_advance_reader(cpu_buffer);
3727 		goto again;
3728 
3729 	case RINGBUF_TYPE_TIME_STAMP:
3730 		/* FIXME: not implemented */
3731 		rb_advance_reader(cpu_buffer);
3732 		goto again;
3733 
3734 	case RINGBUF_TYPE_DATA:
3735 		if (ts) {
3736 			*ts = cpu_buffer->read_stamp + event->time_delta;
3737 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3738 							 cpu_buffer->cpu, ts);
3739 		}
3740 		if (lost_events)
3741 			*lost_events = rb_lost_events(cpu_buffer);
3742 		return event;
3743 
3744 	default:
3745 		BUG();
3746 	}
3747 
3748 	return NULL;
3749 }
3750 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3751 
3752 static struct ring_buffer_event *
3753 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3754 {
3755 	struct ring_buffer *buffer;
3756 	struct ring_buffer_per_cpu *cpu_buffer;
3757 	struct ring_buffer_event *event;
3758 	int nr_loops = 0;
3759 
3760 	cpu_buffer = iter->cpu_buffer;
3761 	buffer = cpu_buffer->buffer;
3762 
3763 	/*
3764 	 * Check if someone performed a consuming read to
3765 	 * the buffer. A consuming read invalidates the iterator
3766 	 * and we need to reset the iterator in this case.
3767 	 */
3768 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3769 		     iter->cache_reader_page != cpu_buffer->reader_page))
3770 		rb_iter_reset(iter);
3771 
3772  again:
3773 	if (ring_buffer_iter_empty(iter))
3774 		return NULL;
3775 
3776 	/*
3777 	 * We repeat when a time extend is encountered or we hit
3778 	 * the end of the page. Since the time extend is always attached
3779 	 * to a data event, we should never loop more than three times.
3780 	 * Once for going to next page, once on time extend, and
3781 	 * finally once to get the event.
3782 	 * (We never hit the following condition more than thrice).
3783 	 */
3784 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3785 		return NULL;
3786 
3787 	if (rb_per_cpu_empty(cpu_buffer))
3788 		return NULL;
3789 
3790 	if (iter->head >= rb_page_size(iter->head_page)) {
3791 		rb_inc_iter(iter);
3792 		goto again;
3793 	}
3794 
3795 	event = rb_iter_head_event(iter);
3796 
3797 	switch (event->type_len) {
3798 	case RINGBUF_TYPE_PADDING:
3799 		if (rb_null_event(event)) {
3800 			rb_inc_iter(iter);
3801 			goto again;
3802 		}
3803 		rb_advance_iter(iter);
3804 		return event;
3805 
3806 	case RINGBUF_TYPE_TIME_EXTEND:
3807 		/* Internal data, OK to advance */
3808 		rb_advance_iter(iter);
3809 		goto again;
3810 
3811 	case RINGBUF_TYPE_TIME_STAMP:
3812 		/* FIXME: not implemented */
3813 		rb_advance_iter(iter);
3814 		goto again;
3815 
3816 	case RINGBUF_TYPE_DATA:
3817 		if (ts) {
3818 			*ts = iter->read_stamp + event->time_delta;
3819 			ring_buffer_normalize_time_stamp(buffer,
3820 							 cpu_buffer->cpu, ts);
3821 		}
3822 		return event;
3823 
3824 	default:
3825 		BUG();
3826 	}
3827 
3828 	return NULL;
3829 }
3830 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3831 
3832 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3833 {
3834 	if (likely(!in_nmi())) {
3835 		raw_spin_lock(&cpu_buffer->reader_lock);
3836 		return true;
3837 	}
3838 
3839 	/*
3840 	 * If an NMI die dumps out the content of the ring buffer
3841 	 * trylock must be used to prevent a deadlock if the NMI
3842 	 * preempted a task that holds the ring buffer locks. If
3843 	 * we get the lock then all is fine, if not, then continue
3844 	 * to do the read, but this can corrupt the ring buffer,
3845 	 * so it must be permanently disabled from future writes.
3846 	 * Reading from NMI is a oneshot deal.
3847 	 */
3848 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3849 		return true;
3850 
3851 	/* Continue without locking, but disable the ring buffer */
3852 	atomic_inc(&cpu_buffer->record_disabled);
3853 	return false;
3854 }
3855 
3856 static inline void
3857 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3858 {
3859 	if (likely(locked))
3860 		raw_spin_unlock(&cpu_buffer->reader_lock);
3861 	return;
3862 }
3863 
3864 /**
3865  * ring_buffer_peek - peek at the next event to be read
3866  * @buffer: The ring buffer to read
3867  * @cpu: The cpu to peak at
3868  * @ts: The timestamp counter of this event.
3869  * @lost_events: a variable to store if events were lost (may be NULL)
3870  *
3871  * This will return the event that will be read next, but does
3872  * not consume the data.
3873  */
3874 struct ring_buffer_event *
3875 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3876 		 unsigned long *lost_events)
3877 {
3878 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3879 	struct ring_buffer_event *event;
3880 	unsigned long flags;
3881 	bool dolock;
3882 
3883 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3884 		return NULL;
3885 
3886  again:
3887 	local_irq_save(flags);
3888 	dolock = rb_reader_lock(cpu_buffer);
3889 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3890 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3891 		rb_advance_reader(cpu_buffer);
3892 	rb_reader_unlock(cpu_buffer, dolock);
3893 	local_irq_restore(flags);
3894 
3895 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896 		goto again;
3897 
3898 	return event;
3899 }
3900 
3901 /**
3902  * ring_buffer_iter_peek - peek at the next event to be read
3903  * @iter: The ring buffer iterator
3904  * @ts: The timestamp counter of this event.
3905  *
3906  * This will return the event that will be read next, but does
3907  * not increment the iterator.
3908  */
3909 struct ring_buffer_event *
3910 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3911 {
3912 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3913 	struct ring_buffer_event *event;
3914 	unsigned long flags;
3915 
3916  again:
3917 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3918 	event = rb_iter_peek(iter, ts);
3919 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3920 
3921 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3922 		goto again;
3923 
3924 	return event;
3925 }
3926 
3927 /**
3928  * ring_buffer_consume - return an event and consume it
3929  * @buffer: The ring buffer to get the next event from
3930  * @cpu: the cpu to read the buffer from
3931  * @ts: a variable to store the timestamp (may be NULL)
3932  * @lost_events: a variable to store if events were lost (may be NULL)
3933  *
3934  * Returns the next event in the ring buffer, and that event is consumed.
3935  * Meaning, that sequential reads will keep returning a different event,
3936  * and eventually empty the ring buffer if the producer is slower.
3937  */
3938 struct ring_buffer_event *
3939 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3940 		    unsigned long *lost_events)
3941 {
3942 	struct ring_buffer_per_cpu *cpu_buffer;
3943 	struct ring_buffer_event *event = NULL;
3944 	unsigned long flags;
3945 	bool dolock;
3946 
3947  again:
3948 	/* might be called in atomic */
3949 	preempt_disable();
3950 
3951 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3952 		goto out;
3953 
3954 	cpu_buffer = buffer->buffers[cpu];
3955 	local_irq_save(flags);
3956 	dolock = rb_reader_lock(cpu_buffer);
3957 
3958 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3959 	if (event) {
3960 		cpu_buffer->lost_events = 0;
3961 		rb_advance_reader(cpu_buffer);
3962 	}
3963 
3964 	rb_reader_unlock(cpu_buffer, dolock);
3965 	local_irq_restore(flags);
3966 
3967  out:
3968 	preempt_enable();
3969 
3970 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3971 		goto again;
3972 
3973 	return event;
3974 }
3975 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3976 
3977 /**
3978  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3979  * @buffer: The ring buffer to read from
3980  * @cpu: The cpu buffer to iterate over
3981  *
3982  * This performs the initial preparations necessary to iterate
3983  * through the buffer.  Memory is allocated, buffer recording
3984  * is disabled, and the iterator pointer is returned to the caller.
3985  *
3986  * Disabling buffer recordng prevents the reading from being
3987  * corrupted. This is not a consuming read, so a producer is not
3988  * expected.
3989  *
3990  * After a sequence of ring_buffer_read_prepare calls, the user is
3991  * expected to make at least one call to ring_buffer_read_prepare_sync.
3992  * Afterwards, ring_buffer_read_start is invoked to get things going
3993  * for real.
3994  *
3995  * This overall must be paired with ring_buffer_read_finish.
3996  */
3997 struct ring_buffer_iter *
3998 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3999 {
4000 	struct ring_buffer_per_cpu *cpu_buffer;
4001 	struct ring_buffer_iter *iter;
4002 
4003 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4004 		return NULL;
4005 
4006 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4007 	if (!iter)
4008 		return NULL;
4009 
4010 	cpu_buffer = buffer->buffers[cpu];
4011 
4012 	iter->cpu_buffer = cpu_buffer;
4013 
4014 	atomic_inc(&buffer->resize_disabled);
4015 	atomic_inc(&cpu_buffer->record_disabled);
4016 
4017 	return iter;
4018 }
4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4020 
4021 /**
4022  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4023  *
4024  * All previously invoked ring_buffer_read_prepare calls to prepare
4025  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4026  * calls on those iterators are allowed.
4027  */
4028 void
4029 ring_buffer_read_prepare_sync(void)
4030 {
4031 	synchronize_sched();
4032 }
4033 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4034 
4035 /**
4036  * ring_buffer_read_start - start a non consuming read of the buffer
4037  * @iter: The iterator returned by ring_buffer_read_prepare
4038  *
4039  * This finalizes the startup of an iteration through the buffer.
4040  * The iterator comes from a call to ring_buffer_read_prepare and
4041  * an intervening ring_buffer_read_prepare_sync must have been
4042  * performed.
4043  *
4044  * Must be paired with ring_buffer_read_finish.
4045  */
4046 void
4047 ring_buffer_read_start(struct ring_buffer_iter *iter)
4048 {
4049 	struct ring_buffer_per_cpu *cpu_buffer;
4050 	unsigned long flags;
4051 
4052 	if (!iter)
4053 		return;
4054 
4055 	cpu_buffer = iter->cpu_buffer;
4056 
4057 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058 	arch_spin_lock(&cpu_buffer->lock);
4059 	rb_iter_reset(iter);
4060 	arch_spin_unlock(&cpu_buffer->lock);
4061 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4064 
4065 /**
4066  * ring_buffer_read_finish - finish reading the iterator of the buffer
4067  * @iter: The iterator retrieved by ring_buffer_start
4068  *
4069  * This re-enables the recording to the buffer, and frees the
4070  * iterator.
4071  */
4072 void
4073 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4074 {
4075 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076 	unsigned long flags;
4077 
4078 	/*
4079 	 * Ring buffer is disabled from recording, here's a good place
4080 	 * to check the integrity of the ring buffer.
4081 	 * Must prevent readers from trying to read, as the check
4082 	 * clears the HEAD page and readers require it.
4083 	 */
4084 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4085 	rb_check_pages(cpu_buffer);
4086 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087 
4088 	atomic_dec(&cpu_buffer->record_disabled);
4089 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4090 	kfree(iter);
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4093 
4094 /**
4095  * ring_buffer_read - read the next item in the ring buffer by the iterator
4096  * @iter: The ring buffer iterator
4097  * @ts: The time stamp of the event read.
4098  *
4099  * This reads the next event in the ring buffer and increments the iterator.
4100  */
4101 struct ring_buffer_event *
4102 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4103 {
4104 	struct ring_buffer_event *event;
4105 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106 	unsigned long flags;
4107 
4108 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4109  again:
4110 	event = rb_iter_peek(iter, ts);
4111 	if (!event)
4112 		goto out;
4113 
4114 	if (event->type_len == RINGBUF_TYPE_PADDING)
4115 		goto again;
4116 
4117 	rb_advance_iter(iter);
4118  out:
4119 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4120 
4121 	return event;
4122 }
4123 EXPORT_SYMBOL_GPL(ring_buffer_read);
4124 
4125 /**
4126  * ring_buffer_size - return the size of the ring buffer (in bytes)
4127  * @buffer: The ring buffer.
4128  */
4129 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4130 {
4131 	/*
4132 	 * Earlier, this method returned
4133 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4134 	 * Since the nr_pages field is now removed, we have converted this to
4135 	 * return the per cpu buffer value.
4136 	 */
4137 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4138 		return 0;
4139 
4140 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4141 }
4142 EXPORT_SYMBOL_GPL(ring_buffer_size);
4143 
4144 static void
4145 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4146 {
4147 	rb_head_page_deactivate(cpu_buffer);
4148 
4149 	cpu_buffer->head_page
4150 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4151 	local_set(&cpu_buffer->head_page->write, 0);
4152 	local_set(&cpu_buffer->head_page->entries, 0);
4153 	local_set(&cpu_buffer->head_page->page->commit, 0);
4154 
4155 	cpu_buffer->head_page->read = 0;
4156 
4157 	cpu_buffer->tail_page = cpu_buffer->head_page;
4158 	cpu_buffer->commit_page = cpu_buffer->head_page;
4159 
4160 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4161 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4162 	local_set(&cpu_buffer->reader_page->write, 0);
4163 	local_set(&cpu_buffer->reader_page->entries, 0);
4164 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4165 	cpu_buffer->reader_page->read = 0;
4166 
4167 	local_set(&cpu_buffer->entries_bytes, 0);
4168 	local_set(&cpu_buffer->overrun, 0);
4169 	local_set(&cpu_buffer->commit_overrun, 0);
4170 	local_set(&cpu_buffer->dropped_events, 0);
4171 	local_set(&cpu_buffer->entries, 0);
4172 	local_set(&cpu_buffer->committing, 0);
4173 	local_set(&cpu_buffer->commits, 0);
4174 	cpu_buffer->read = 0;
4175 	cpu_buffer->read_bytes = 0;
4176 
4177 	cpu_buffer->write_stamp = 0;
4178 	cpu_buffer->read_stamp = 0;
4179 
4180 	cpu_buffer->lost_events = 0;
4181 	cpu_buffer->last_overrun = 0;
4182 
4183 	rb_head_page_activate(cpu_buffer);
4184 }
4185 
4186 /**
4187  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4188  * @buffer: The ring buffer to reset a per cpu buffer of
4189  * @cpu: The CPU buffer to be reset
4190  */
4191 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4192 {
4193 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4194 	unsigned long flags;
4195 
4196 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197 		return;
4198 
4199 	atomic_inc(&buffer->resize_disabled);
4200 	atomic_inc(&cpu_buffer->record_disabled);
4201 
4202 	/* Make sure all commits have finished */
4203 	synchronize_sched();
4204 
4205 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4206 
4207 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4208 		goto out;
4209 
4210 	arch_spin_lock(&cpu_buffer->lock);
4211 
4212 	rb_reset_cpu(cpu_buffer);
4213 
4214 	arch_spin_unlock(&cpu_buffer->lock);
4215 
4216  out:
4217 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4218 
4219 	atomic_dec(&cpu_buffer->record_disabled);
4220 	atomic_dec(&buffer->resize_disabled);
4221 }
4222 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4223 
4224 /**
4225  * ring_buffer_reset - reset a ring buffer
4226  * @buffer: The ring buffer to reset all cpu buffers
4227  */
4228 void ring_buffer_reset(struct ring_buffer *buffer)
4229 {
4230 	int cpu;
4231 
4232 	for_each_buffer_cpu(buffer, cpu)
4233 		ring_buffer_reset_cpu(buffer, cpu);
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4236 
4237 /**
4238  * rind_buffer_empty - is the ring buffer empty?
4239  * @buffer: The ring buffer to test
4240  */
4241 bool ring_buffer_empty(struct ring_buffer *buffer)
4242 {
4243 	struct ring_buffer_per_cpu *cpu_buffer;
4244 	unsigned long flags;
4245 	bool dolock;
4246 	int cpu;
4247 	int ret;
4248 
4249 	/* yes this is racy, but if you don't like the race, lock the buffer */
4250 	for_each_buffer_cpu(buffer, cpu) {
4251 		cpu_buffer = buffer->buffers[cpu];
4252 		local_irq_save(flags);
4253 		dolock = rb_reader_lock(cpu_buffer);
4254 		ret = rb_per_cpu_empty(cpu_buffer);
4255 		rb_reader_unlock(cpu_buffer, dolock);
4256 		local_irq_restore(flags);
4257 
4258 		if (!ret)
4259 			return false;
4260 	}
4261 
4262 	return true;
4263 }
4264 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4265 
4266 /**
4267  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4268  * @buffer: The ring buffer
4269  * @cpu: The CPU buffer to test
4270  */
4271 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4272 {
4273 	struct ring_buffer_per_cpu *cpu_buffer;
4274 	unsigned long flags;
4275 	bool dolock;
4276 	int ret;
4277 
4278 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4279 		return true;
4280 
4281 	cpu_buffer = buffer->buffers[cpu];
4282 	local_irq_save(flags);
4283 	dolock = rb_reader_lock(cpu_buffer);
4284 	ret = rb_per_cpu_empty(cpu_buffer);
4285 	rb_reader_unlock(cpu_buffer, dolock);
4286 	local_irq_restore(flags);
4287 
4288 	return ret;
4289 }
4290 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4291 
4292 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4293 /**
4294  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4295  * @buffer_a: One buffer to swap with
4296  * @buffer_b: The other buffer to swap with
4297  *
4298  * This function is useful for tracers that want to take a "snapshot"
4299  * of a CPU buffer and has another back up buffer lying around.
4300  * it is expected that the tracer handles the cpu buffer not being
4301  * used at the moment.
4302  */
4303 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4304 			 struct ring_buffer *buffer_b, int cpu)
4305 {
4306 	struct ring_buffer_per_cpu *cpu_buffer_a;
4307 	struct ring_buffer_per_cpu *cpu_buffer_b;
4308 	int ret = -EINVAL;
4309 
4310 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4311 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4312 		goto out;
4313 
4314 	cpu_buffer_a = buffer_a->buffers[cpu];
4315 	cpu_buffer_b = buffer_b->buffers[cpu];
4316 
4317 	/* At least make sure the two buffers are somewhat the same */
4318 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4319 		goto out;
4320 
4321 	ret = -EAGAIN;
4322 
4323 	if (atomic_read(&buffer_a->record_disabled))
4324 		goto out;
4325 
4326 	if (atomic_read(&buffer_b->record_disabled))
4327 		goto out;
4328 
4329 	if (atomic_read(&cpu_buffer_a->record_disabled))
4330 		goto out;
4331 
4332 	if (atomic_read(&cpu_buffer_b->record_disabled))
4333 		goto out;
4334 
4335 	/*
4336 	 * We can't do a synchronize_sched here because this
4337 	 * function can be called in atomic context.
4338 	 * Normally this will be called from the same CPU as cpu.
4339 	 * If not it's up to the caller to protect this.
4340 	 */
4341 	atomic_inc(&cpu_buffer_a->record_disabled);
4342 	atomic_inc(&cpu_buffer_b->record_disabled);
4343 
4344 	ret = -EBUSY;
4345 	if (local_read(&cpu_buffer_a->committing))
4346 		goto out_dec;
4347 	if (local_read(&cpu_buffer_b->committing))
4348 		goto out_dec;
4349 
4350 	buffer_a->buffers[cpu] = cpu_buffer_b;
4351 	buffer_b->buffers[cpu] = cpu_buffer_a;
4352 
4353 	cpu_buffer_b->buffer = buffer_a;
4354 	cpu_buffer_a->buffer = buffer_b;
4355 
4356 	ret = 0;
4357 
4358 out_dec:
4359 	atomic_dec(&cpu_buffer_a->record_disabled);
4360 	atomic_dec(&cpu_buffer_b->record_disabled);
4361 out:
4362 	return ret;
4363 }
4364 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4365 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4366 
4367 /**
4368  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4369  * @buffer: the buffer to allocate for.
4370  * @cpu: the cpu buffer to allocate.
4371  *
4372  * This function is used in conjunction with ring_buffer_read_page.
4373  * When reading a full page from the ring buffer, these functions
4374  * can be used to speed up the process. The calling function should
4375  * allocate a few pages first with this function. Then when it
4376  * needs to get pages from the ring buffer, it passes the result
4377  * of this function into ring_buffer_read_page, which will swap
4378  * the page that was allocated, with the read page of the buffer.
4379  *
4380  * Returns:
4381  *  The page allocated, or ERR_PTR
4382  */
4383 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4384 {
4385 	struct ring_buffer_per_cpu *cpu_buffer;
4386 	struct buffer_data_page *bpage = NULL;
4387 	unsigned long flags;
4388 	struct page *page;
4389 
4390 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4391 		return ERR_PTR(-ENODEV);
4392 
4393 	cpu_buffer = buffer->buffers[cpu];
4394 	local_irq_save(flags);
4395 	arch_spin_lock(&cpu_buffer->lock);
4396 
4397 	if (cpu_buffer->free_page) {
4398 		bpage = cpu_buffer->free_page;
4399 		cpu_buffer->free_page = NULL;
4400 	}
4401 
4402 	arch_spin_unlock(&cpu_buffer->lock);
4403 	local_irq_restore(flags);
4404 
4405 	if (bpage)
4406 		goto out;
4407 
4408 	page = alloc_pages_node(cpu_to_node(cpu),
4409 				GFP_KERNEL | __GFP_NORETRY, 0);
4410 	if (!page)
4411 		return ERR_PTR(-ENOMEM);
4412 
4413 	bpage = page_address(page);
4414 
4415  out:
4416 	rb_init_page(bpage);
4417 
4418 	return bpage;
4419 }
4420 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4421 
4422 /**
4423  * ring_buffer_free_read_page - free an allocated read page
4424  * @buffer: the buffer the page was allocate for
4425  * @cpu: the cpu buffer the page came from
4426  * @data: the page to free
4427  *
4428  * Free a page allocated from ring_buffer_alloc_read_page.
4429  */
4430 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4431 {
4432 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4433 	struct buffer_data_page *bpage = data;
4434 	struct page *page = virt_to_page(bpage);
4435 	unsigned long flags;
4436 
4437 	/* If the page is still in use someplace else, we can't reuse it */
4438 	if (page_ref_count(page) > 1)
4439 		goto out;
4440 
4441 	local_irq_save(flags);
4442 	arch_spin_lock(&cpu_buffer->lock);
4443 
4444 	if (!cpu_buffer->free_page) {
4445 		cpu_buffer->free_page = bpage;
4446 		bpage = NULL;
4447 	}
4448 
4449 	arch_spin_unlock(&cpu_buffer->lock);
4450 	local_irq_restore(flags);
4451 
4452  out:
4453 	free_page((unsigned long)bpage);
4454 }
4455 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4456 
4457 /**
4458  * ring_buffer_read_page - extract a page from the ring buffer
4459  * @buffer: buffer to extract from
4460  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4461  * @len: amount to extract
4462  * @cpu: the cpu of the buffer to extract
4463  * @full: should the extraction only happen when the page is full.
4464  *
4465  * This function will pull out a page from the ring buffer and consume it.
4466  * @data_page must be the address of the variable that was returned
4467  * from ring_buffer_alloc_read_page. This is because the page might be used
4468  * to swap with a page in the ring buffer.
4469  *
4470  * for example:
4471  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4472  *	if (IS_ERR(rpage))
4473  *		return PTR_ERR(rpage);
4474  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4475  *	if (ret >= 0)
4476  *		process_page(rpage, ret);
4477  *
4478  * When @full is set, the function will not return true unless
4479  * the writer is off the reader page.
4480  *
4481  * Note: it is up to the calling functions to handle sleeps and wakeups.
4482  *  The ring buffer can be used anywhere in the kernel and can not
4483  *  blindly call wake_up. The layer that uses the ring buffer must be
4484  *  responsible for that.
4485  *
4486  * Returns:
4487  *  >=0 if data has been transferred, returns the offset of consumed data.
4488  *  <0 if no data has been transferred.
4489  */
4490 int ring_buffer_read_page(struct ring_buffer *buffer,
4491 			  void **data_page, size_t len, int cpu, int full)
4492 {
4493 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4494 	struct ring_buffer_event *event;
4495 	struct buffer_data_page *bpage;
4496 	struct buffer_page *reader;
4497 	unsigned long missed_events;
4498 	unsigned long flags;
4499 	unsigned int commit;
4500 	unsigned int read;
4501 	u64 save_timestamp;
4502 	int ret = -1;
4503 
4504 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4505 		goto out;
4506 
4507 	/*
4508 	 * If len is not big enough to hold the page header, then
4509 	 * we can not copy anything.
4510 	 */
4511 	if (len <= BUF_PAGE_HDR_SIZE)
4512 		goto out;
4513 
4514 	len -= BUF_PAGE_HDR_SIZE;
4515 
4516 	if (!data_page)
4517 		goto out;
4518 
4519 	bpage = *data_page;
4520 	if (!bpage)
4521 		goto out;
4522 
4523 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4524 
4525 	reader = rb_get_reader_page(cpu_buffer);
4526 	if (!reader)
4527 		goto out_unlock;
4528 
4529 	event = rb_reader_event(cpu_buffer);
4530 
4531 	read = reader->read;
4532 	commit = rb_page_commit(reader);
4533 
4534 	/* Check if any events were dropped */
4535 	missed_events = cpu_buffer->lost_events;
4536 
4537 	/*
4538 	 * If this page has been partially read or
4539 	 * if len is not big enough to read the rest of the page or
4540 	 * a writer is still on the page, then
4541 	 * we must copy the data from the page to the buffer.
4542 	 * Otherwise, we can simply swap the page with the one passed in.
4543 	 */
4544 	if (read || (len < (commit - read)) ||
4545 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4546 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4547 		unsigned int rpos = read;
4548 		unsigned int pos = 0;
4549 		unsigned int size;
4550 
4551 		if (full)
4552 			goto out_unlock;
4553 
4554 		if (len > (commit - read))
4555 			len = (commit - read);
4556 
4557 		/* Always keep the time extend and data together */
4558 		size = rb_event_ts_length(event);
4559 
4560 		if (len < size)
4561 			goto out_unlock;
4562 
4563 		/* save the current timestamp, since the user will need it */
4564 		save_timestamp = cpu_buffer->read_stamp;
4565 
4566 		/* Need to copy one event at a time */
4567 		do {
4568 			/* We need the size of one event, because
4569 			 * rb_advance_reader only advances by one event,
4570 			 * whereas rb_event_ts_length may include the size of
4571 			 * one or two events.
4572 			 * We have already ensured there's enough space if this
4573 			 * is a time extend. */
4574 			size = rb_event_length(event);
4575 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4576 
4577 			len -= size;
4578 
4579 			rb_advance_reader(cpu_buffer);
4580 			rpos = reader->read;
4581 			pos += size;
4582 
4583 			if (rpos >= commit)
4584 				break;
4585 
4586 			event = rb_reader_event(cpu_buffer);
4587 			/* Always keep the time extend and data together */
4588 			size = rb_event_ts_length(event);
4589 		} while (len >= size);
4590 
4591 		/* update bpage */
4592 		local_set(&bpage->commit, pos);
4593 		bpage->time_stamp = save_timestamp;
4594 
4595 		/* we copied everything to the beginning */
4596 		read = 0;
4597 	} else {
4598 		/* update the entry counter */
4599 		cpu_buffer->read += rb_page_entries(reader);
4600 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4601 
4602 		/* swap the pages */
4603 		rb_init_page(bpage);
4604 		bpage = reader->page;
4605 		reader->page = *data_page;
4606 		local_set(&reader->write, 0);
4607 		local_set(&reader->entries, 0);
4608 		reader->read = 0;
4609 		*data_page = bpage;
4610 
4611 		/*
4612 		 * Use the real_end for the data size,
4613 		 * This gives us a chance to store the lost events
4614 		 * on the page.
4615 		 */
4616 		if (reader->real_end)
4617 			local_set(&bpage->commit, reader->real_end);
4618 	}
4619 	ret = read;
4620 
4621 	cpu_buffer->lost_events = 0;
4622 
4623 	commit = local_read(&bpage->commit);
4624 	/*
4625 	 * Set a flag in the commit field if we lost events
4626 	 */
4627 	if (missed_events) {
4628 		/* If there is room at the end of the page to save the
4629 		 * missed events, then record it there.
4630 		 */
4631 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4632 			memcpy(&bpage->data[commit], &missed_events,
4633 			       sizeof(missed_events));
4634 			local_add(RB_MISSED_STORED, &bpage->commit);
4635 			commit += sizeof(missed_events);
4636 		}
4637 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4638 	}
4639 
4640 	/*
4641 	 * This page may be off to user land. Zero it out here.
4642 	 */
4643 	if (commit < BUF_PAGE_SIZE)
4644 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4645 
4646  out_unlock:
4647 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4648 
4649  out:
4650 	return ret;
4651 }
4652 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4653 
4654 /*
4655  * We only allocate new buffers, never free them if the CPU goes down.
4656  * If we were to free the buffer, then the user would lose any trace that was in
4657  * the buffer.
4658  */
4659 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4660 {
4661 	struct ring_buffer *buffer;
4662 	long nr_pages_same;
4663 	int cpu_i;
4664 	unsigned long nr_pages;
4665 
4666 	buffer = container_of(node, struct ring_buffer, node);
4667 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4668 		return 0;
4669 
4670 	nr_pages = 0;
4671 	nr_pages_same = 1;
4672 	/* check if all cpu sizes are same */
4673 	for_each_buffer_cpu(buffer, cpu_i) {
4674 		/* fill in the size from first enabled cpu */
4675 		if (nr_pages == 0)
4676 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4677 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4678 			nr_pages_same = 0;
4679 			break;
4680 		}
4681 	}
4682 	/* allocate minimum pages, user can later expand it */
4683 	if (!nr_pages_same)
4684 		nr_pages = 2;
4685 	buffer->buffers[cpu] =
4686 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4687 	if (!buffer->buffers[cpu]) {
4688 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4689 		     cpu);
4690 		return -ENOMEM;
4691 	}
4692 	smp_wmb();
4693 	cpumask_set_cpu(cpu, buffer->cpumask);
4694 	return 0;
4695 }
4696 
4697 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4698 /*
4699  * This is a basic integrity check of the ring buffer.
4700  * Late in the boot cycle this test will run when configured in.
4701  * It will kick off a thread per CPU that will go into a loop
4702  * writing to the per cpu ring buffer various sizes of data.
4703  * Some of the data will be large items, some small.
4704  *
4705  * Another thread is created that goes into a spin, sending out
4706  * IPIs to the other CPUs to also write into the ring buffer.
4707  * this is to test the nesting ability of the buffer.
4708  *
4709  * Basic stats are recorded and reported. If something in the
4710  * ring buffer should happen that's not expected, a big warning
4711  * is displayed and all ring buffers are disabled.
4712  */
4713 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4714 
4715 struct rb_test_data {
4716 	struct ring_buffer	*buffer;
4717 	unsigned long		events;
4718 	unsigned long		bytes_written;
4719 	unsigned long		bytes_alloc;
4720 	unsigned long		bytes_dropped;
4721 	unsigned long		events_nested;
4722 	unsigned long		bytes_written_nested;
4723 	unsigned long		bytes_alloc_nested;
4724 	unsigned long		bytes_dropped_nested;
4725 	int			min_size_nested;
4726 	int			max_size_nested;
4727 	int			max_size;
4728 	int			min_size;
4729 	int			cpu;
4730 	int			cnt;
4731 };
4732 
4733 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4734 
4735 /* 1 meg per cpu */
4736 #define RB_TEST_BUFFER_SIZE	1048576
4737 
4738 static char rb_string[] __initdata =
4739 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4740 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4741 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4742 
4743 static bool rb_test_started __initdata;
4744 
4745 struct rb_item {
4746 	int size;
4747 	char str[];
4748 };
4749 
4750 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4751 {
4752 	struct ring_buffer_event *event;
4753 	struct rb_item *item;
4754 	bool started;
4755 	int event_len;
4756 	int size;
4757 	int len;
4758 	int cnt;
4759 
4760 	/* Have nested writes different that what is written */
4761 	cnt = data->cnt + (nested ? 27 : 0);
4762 
4763 	/* Multiply cnt by ~e, to make some unique increment */
4764 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4765 
4766 	len = size + sizeof(struct rb_item);
4767 
4768 	started = rb_test_started;
4769 	/* read rb_test_started before checking buffer enabled */
4770 	smp_rmb();
4771 
4772 	event = ring_buffer_lock_reserve(data->buffer, len);
4773 	if (!event) {
4774 		/* Ignore dropped events before test starts. */
4775 		if (started) {
4776 			if (nested)
4777 				data->bytes_dropped += len;
4778 			else
4779 				data->bytes_dropped_nested += len;
4780 		}
4781 		return len;
4782 	}
4783 
4784 	event_len = ring_buffer_event_length(event);
4785 
4786 	if (RB_WARN_ON(data->buffer, event_len < len))
4787 		goto out;
4788 
4789 	item = ring_buffer_event_data(event);
4790 	item->size = size;
4791 	memcpy(item->str, rb_string, size);
4792 
4793 	if (nested) {
4794 		data->bytes_alloc_nested += event_len;
4795 		data->bytes_written_nested += len;
4796 		data->events_nested++;
4797 		if (!data->min_size_nested || len < data->min_size_nested)
4798 			data->min_size_nested = len;
4799 		if (len > data->max_size_nested)
4800 			data->max_size_nested = len;
4801 	} else {
4802 		data->bytes_alloc += event_len;
4803 		data->bytes_written += len;
4804 		data->events++;
4805 		if (!data->min_size || len < data->min_size)
4806 			data->max_size = len;
4807 		if (len > data->max_size)
4808 			data->max_size = len;
4809 	}
4810 
4811  out:
4812 	ring_buffer_unlock_commit(data->buffer, event);
4813 
4814 	return 0;
4815 }
4816 
4817 static __init int rb_test(void *arg)
4818 {
4819 	struct rb_test_data *data = arg;
4820 
4821 	while (!kthread_should_stop()) {
4822 		rb_write_something(data, false);
4823 		data->cnt++;
4824 
4825 		set_current_state(TASK_INTERRUPTIBLE);
4826 		/* Now sleep between a min of 100-300us and a max of 1ms */
4827 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4828 	}
4829 
4830 	return 0;
4831 }
4832 
4833 static __init void rb_ipi(void *ignore)
4834 {
4835 	struct rb_test_data *data;
4836 	int cpu = smp_processor_id();
4837 
4838 	data = &rb_data[cpu];
4839 	rb_write_something(data, true);
4840 }
4841 
4842 static __init int rb_hammer_test(void *arg)
4843 {
4844 	while (!kthread_should_stop()) {
4845 
4846 		/* Send an IPI to all cpus to write data! */
4847 		smp_call_function(rb_ipi, NULL, 1);
4848 		/* No sleep, but for non preempt, let others run */
4849 		schedule();
4850 	}
4851 
4852 	return 0;
4853 }
4854 
4855 static __init int test_ringbuffer(void)
4856 {
4857 	struct task_struct *rb_hammer;
4858 	struct ring_buffer *buffer;
4859 	int cpu;
4860 	int ret = 0;
4861 
4862 	pr_info("Running ring buffer tests...\n");
4863 
4864 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4865 	if (WARN_ON(!buffer))
4866 		return 0;
4867 
4868 	/* Disable buffer so that threads can't write to it yet */
4869 	ring_buffer_record_off(buffer);
4870 
4871 	for_each_online_cpu(cpu) {
4872 		rb_data[cpu].buffer = buffer;
4873 		rb_data[cpu].cpu = cpu;
4874 		rb_data[cpu].cnt = cpu;
4875 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4876 						 "rbtester/%d", cpu);
4877 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4878 			pr_cont("FAILED\n");
4879 			ret = PTR_ERR(rb_threads[cpu]);
4880 			goto out_free;
4881 		}
4882 
4883 		kthread_bind(rb_threads[cpu], cpu);
4884  		wake_up_process(rb_threads[cpu]);
4885 	}
4886 
4887 	/* Now create the rb hammer! */
4888 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4889 	if (WARN_ON(IS_ERR(rb_hammer))) {
4890 		pr_cont("FAILED\n");
4891 		ret = PTR_ERR(rb_hammer);
4892 		goto out_free;
4893 	}
4894 
4895 	ring_buffer_record_on(buffer);
4896 	/*
4897 	 * Show buffer is enabled before setting rb_test_started.
4898 	 * Yes there's a small race window where events could be
4899 	 * dropped and the thread wont catch it. But when a ring
4900 	 * buffer gets enabled, there will always be some kind of
4901 	 * delay before other CPUs see it. Thus, we don't care about
4902 	 * those dropped events. We care about events dropped after
4903 	 * the threads see that the buffer is active.
4904 	 */
4905 	smp_wmb();
4906 	rb_test_started = true;
4907 
4908 	set_current_state(TASK_INTERRUPTIBLE);
4909 	/* Just run for 10 seconds */;
4910 	schedule_timeout(10 * HZ);
4911 
4912 	kthread_stop(rb_hammer);
4913 
4914  out_free:
4915 	for_each_online_cpu(cpu) {
4916 		if (!rb_threads[cpu])
4917 			break;
4918 		kthread_stop(rb_threads[cpu]);
4919 	}
4920 	if (ret) {
4921 		ring_buffer_free(buffer);
4922 		return ret;
4923 	}
4924 
4925 	/* Report! */
4926 	pr_info("finished\n");
4927 	for_each_online_cpu(cpu) {
4928 		struct ring_buffer_event *event;
4929 		struct rb_test_data *data = &rb_data[cpu];
4930 		struct rb_item *item;
4931 		unsigned long total_events;
4932 		unsigned long total_dropped;
4933 		unsigned long total_written;
4934 		unsigned long total_alloc;
4935 		unsigned long total_read = 0;
4936 		unsigned long total_size = 0;
4937 		unsigned long total_len = 0;
4938 		unsigned long total_lost = 0;
4939 		unsigned long lost;
4940 		int big_event_size;
4941 		int small_event_size;
4942 
4943 		ret = -1;
4944 
4945 		total_events = data->events + data->events_nested;
4946 		total_written = data->bytes_written + data->bytes_written_nested;
4947 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4948 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4949 
4950 		big_event_size = data->max_size + data->max_size_nested;
4951 		small_event_size = data->min_size + data->min_size_nested;
4952 
4953 		pr_info("CPU %d:\n", cpu);
4954 		pr_info("              events:    %ld\n", total_events);
4955 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4956 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4957 		pr_info("       written bytes:    %ld\n", total_written);
4958 		pr_info("       biggest event:    %d\n", big_event_size);
4959 		pr_info("      smallest event:    %d\n", small_event_size);
4960 
4961 		if (RB_WARN_ON(buffer, total_dropped))
4962 			break;
4963 
4964 		ret = 0;
4965 
4966 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4967 			total_lost += lost;
4968 			item = ring_buffer_event_data(event);
4969 			total_len += ring_buffer_event_length(event);
4970 			total_size += item->size + sizeof(struct rb_item);
4971 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4972 				pr_info("FAILED!\n");
4973 				pr_info("buffer had: %.*s\n", item->size, item->str);
4974 				pr_info("expected:   %.*s\n", item->size, rb_string);
4975 				RB_WARN_ON(buffer, 1);
4976 				ret = -1;
4977 				break;
4978 			}
4979 			total_read++;
4980 		}
4981 		if (ret)
4982 			break;
4983 
4984 		ret = -1;
4985 
4986 		pr_info("         read events:   %ld\n", total_read);
4987 		pr_info("         lost events:   %ld\n", total_lost);
4988 		pr_info("        total events:   %ld\n", total_lost + total_read);
4989 		pr_info("  recorded len bytes:   %ld\n", total_len);
4990 		pr_info(" recorded size bytes:   %ld\n", total_size);
4991 		if (total_lost)
4992 			pr_info(" With dropped events, record len and size may not match\n"
4993 				" alloced and written from above\n");
4994 		if (!total_lost) {
4995 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4996 				       total_size != total_written))
4997 				break;
4998 		}
4999 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5000 			break;
5001 
5002 		ret = 0;
5003 	}
5004 	if (!ret)
5005 		pr_info("Ring buffer PASSED!\n");
5006 
5007 	ring_buffer_free(buffer);
5008 	return 0;
5009 }
5010 
5011 late_initcall(test_ringbuffer);
5012 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5013