xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision e290ed81)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include <asm/local.h>
24 #include "trace.h"
25 
26 /*
27  * The ring buffer header is special. We must manually up keep it.
28  */
29 int ring_buffer_print_entry_header(struct trace_seq *s)
30 {
31 	int ret;
32 
33 	ret = trace_seq_printf(s, "# compressed entry header\n");
34 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
35 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
36 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
37 	ret = trace_seq_printf(s, "\n");
38 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
39 			       RINGBUF_TYPE_PADDING);
40 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 			       RINGBUF_TYPE_TIME_EXTEND);
42 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
43 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
44 
45 	return ret;
46 }
47 
48 /*
49  * The ring buffer is made up of a list of pages. A separate list of pages is
50  * allocated for each CPU. A writer may only write to a buffer that is
51  * associated with the CPU it is currently executing on.  A reader may read
52  * from any per cpu buffer.
53  *
54  * The reader is special. For each per cpu buffer, the reader has its own
55  * reader page. When a reader has read the entire reader page, this reader
56  * page is swapped with another page in the ring buffer.
57  *
58  * Now, as long as the writer is off the reader page, the reader can do what
59  * ever it wants with that page. The writer will never write to that page
60  * again (as long as it is out of the ring buffer).
61  *
62  * Here's some silly ASCII art.
63  *
64  *   +------+
65  *   |reader|          RING BUFFER
66  *   |page  |
67  *   +------+        +---+   +---+   +---+
68  *                   |   |-->|   |-->|   |
69  *                   +---+   +---+   +---+
70  *                     ^               |
71  *                     |               |
72  *                     +---------------+
73  *
74  *
75  *   +------+
76  *   |reader|          RING BUFFER
77  *   |page  |------------------v
78  *   +------+        +---+   +---+   +---+
79  *                   |   |-->|   |-->|   |
80  *                   +---+   +---+   +---+
81  *                     ^               |
82  *                     |               |
83  *                     +---------------+
84  *
85  *
86  *   +------+
87  *   |reader|          RING BUFFER
88  *   |page  |------------------v
89  *   +------+        +---+   +---+   +---+
90  *      ^            |   |-->|   |-->|   |
91  *      |            +---+   +---+   +---+
92  *      |                              |
93  *      |                              |
94  *      +------------------------------+
95  *
96  *
97  *   +------+
98  *   |buffer|          RING BUFFER
99  *   |page  |------------------v
100  *   +------+        +---+   +---+   +---+
101  *      ^            |   |   |   |-->|   |
102  *      |   New      +---+   +---+   +---+
103  *      |  Reader------^               |
104  *      |   page                       |
105  *      +------------------------------+
106  *
107  *
108  * After we make this swap, the reader can hand this page off to the splice
109  * code and be done with it. It can even allocate a new page if it needs to
110  * and swap that into the ring buffer.
111  *
112  * We will be using cmpxchg soon to make all this lockless.
113  *
114  */
115 
116 /*
117  * A fast way to enable or disable all ring buffers is to
118  * call tracing_on or tracing_off. Turning off the ring buffers
119  * prevents all ring buffers from being recorded to.
120  * Turning this switch on, makes it OK to write to the
121  * ring buffer, if the ring buffer is enabled itself.
122  *
123  * There's three layers that must be on in order to write
124  * to the ring buffer.
125  *
126  * 1) This global flag must be set.
127  * 2) The ring buffer must be enabled for recording.
128  * 3) The per cpu buffer must be enabled for recording.
129  *
130  * In case of an anomaly, this global flag has a bit set that
131  * will permantly disable all ring buffers.
132  */
133 
134 /*
135  * Global flag to disable all recording to ring buffers
136  *  This has two bits: ON, DISABLED
137  *
138  *  ON   DISABLED
139  * ---- ----------
140  *   0      0        : ring buffers are off
141  *   1      0        : ring buffers are on
142  *   X      1        : ring buffers are permanently disabled
143  */
144 
145 enum {
146 	RB_BUFFERS_ON_BIT	= 0,
147 	RB_BUFFERS_DISABLED_BIT	= 1,
148 };
149 
150 enum {
151 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
152 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
153 };
154 
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156 
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158 
159 /**
160  * tracing_on - enable all tracing buffers
161  *
162  * This function enables all tracing buffers that may have been
163  * disabled with tracing_off.
164  */
165 void tracing_on(void)
166 {
167 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
168 }
169 EXPORT_SYMBOL_GPL(tracing_on);
170 
171 /**
172  * tracing_off - turn off all tracing buffers
173  *
174  * This function stops all tracing buffers from recording data.
175  * It does not disable any overhead the tracers themselves may
176  * be causing. This function simply causes all recording to
177  * the ring buffers to fail.
178  */
179 void tracing_off(void)
180 {
181 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182 }
183 EXPORT_SYMBOL_GPL(tracing_off);
184 
185 /**
186  * tracing_off_permanent - permanently disable ring buffers
187  *
188  * This function, once called, will disable all ring buffers
189  * permanently.
190  */
191 void tracing_off_permanent(void)
192 {
193 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
194 }
195 
196 /**
197  * tracing_is_on - show state of ring buffers enabled
198  */
199 int tracing_is_on(void)
200 {
201 	return ring_buffer_flags == RB_BUFFERS_ON;
202 }
203 EXPORT_SYMBOL_GPL(tracing_is_on);
204 
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT		4U
207 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
209 
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT	0
212 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
213 #else
214 # define RB_FORCE_8BYTE_ALIGNMENT	1
215 # define RB_ARCH_ALIGNMENT		8U
216 #endif
217 
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
220 
221 enum {
222 	RB_LEN_TIME_EXTEND = 8,
223 	RB_LEN_TIME_STAMP = 16,
224 };
225 
226 #define skip_time_extend(event) \
227 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
228 
229 static inline int rb_null_event(struct ring_buffer_event *event)
230 {
231 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
232 }
233 
234 static void rb_event_set_padding(struct ring_buffer_event *event)
235 {
236 	/* padding has a NULL time_delta */
237 	event->type_len = RINGBUF_TYPE_PADDING;
238 	event->time_delta = 0;
239 }
240 
241 static unsigned
242 rb_event_data_length(struct ring_buffer_event *event)
243 {
244 	unsigned length;
245 
246 	if (event->type_len)
247 		length = event->type_len * RB_ALIGNMENT;
248 	else
249 		length = event->array[0];
250 	return length + RB_EVNT_HDR_SIZE;
251 }
252 
253 /*
254  * Return the length of the given event. Will return
255  * the length of the time extend if the event is a
256  * time extend.
257  */
258 static inline unsigned
259 rb_event_length(struct ring_buffer_event *event)
260 {
261 	switch (event->type_len) {
262 	case RINGBUF_TYPE_PADDING:
263 		if (rb_null_event(event))
264 			/* undefined */
265 			return -1;
266 		return  event->array[0] + RB_EVNT_HDR_SIZE;
267 
268 	case RINGBUF_TYPE_TIME_EXTEND:
269 		return RB_LEN_TIME_EXTEND;
270 
271 	case RINGBUF_TYPE_TIME_STAMP:
272 		return RB_LEN_TIME_STAMP;
273 
274 	case RINGBUF_TYPE_DATA:
275 		return rb_event_data_length(event);
276 	default:
277 		BUG();
278 	}
279 	/* not hit */
280 	return 0;
281 }
282 
283 /*
284  * Return total length of time extend and data,
285  *   or just the event length for all other events.
286  */
287 static inline unsigned
288 rb_event_ts_length(struct ring_buffer_event *event)
289 {
290 	unsigned len = 0;
291 
292 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 		/* time extends include the data event after it */
294 		len = RB_LEN_TIME_EXTEND;
295 		event = skip_time_extend(event);
296 	}
297 	return len + rb_event_length(event);
298 }
299 
300 /**
301  * ring_buffer_event_length - return the length of the event
302  * @event: the event to get the length of
303  *
304  * Returns the size of the data load of a data event.
305  * If the event is something other than a data event, it
306  * returns the size of the event itself. With the exception
307  * of a TIME EXTEND, where it still returns the size of the
308  * data load of the data event after it.
309  */
310 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
311 {
312 	unsigned length;
313 
314 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 		event = skip_time_extend(event);
316 
317 	length = rb_event_length(event);
318 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
319 		return length;
320 	length -= RB_EVNT_HDR_SIZE;
321 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322                 length -= sizeof(event->array[0]);
323 	return length;
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
326 
327 /* inline for ring buffer fast paths */
328 static void *
329 rb_event_data(struct ring_buffer_event *event)
330 {
331 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 		event = skip_time_extend(event);
333 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
334 	/* If length is in len field, then array[0] has the data */
335 	if (event->type_len)
336 		return (void *)&event->array[0];
337 	/* Otherwise length is in array[0] and array[1] has the data */
338 	return (void *)&event->array[1];
339 }
340 
341 /**
342  * ring_buffer_event_data - return the data of the event
343  * @event: the event to get the data from
344  */
345 void *ring_buffer_event_data(struct ring_buffer_event *event)
346 {
347 	return rb_event_data(event);
348 }
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
350 
351 #define for_each_buffer_cpu(buffer, cpu)		\
352 	for_each_cpu(cpu, buffer->cpumask)
353 
354 #define TS_SHIFT	27
355 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST	(~TS_MASK)
357 
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS	(1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED	(1 << 30)
362 
363 struct buffer_data_page {
364 	u64		 time_stamp;	/* page time stamp */
365 	local_t		 commit;	/* write committed index */
366 	unsigned char	 data[];	/* data of buffer page */
367 };
368 
369 /*
370  * Note, the buffer_page list must be first. The buffer pages
371  * are allocated in cache lines, which means that each buffer
372  * page will be at the beginning of a cache line, and thus
373  * the least significant bits will be zero. We use this to
374  * add flags in the list struct pointers, to make the ring buffer
375  * lockless.
376  */
377 struct buffer_page {
378 	struct list_head list;		/* list of buffer pages */
379 	local_t		 write;		/* index for next write */
380 	unsigned	 read;		/* index for next read */
381 	local_t		 entries;	/* entries on this page */
382 	unsigned long	 real_end;	/* real end of data */
383 	struct buffer_data_page *page;	/* Actual data page */
384 };
385 
386 /*
387  * The buffer page counters, write and entries, must be reset
388  * atomically when crossing page boundaries. To synchronize this
389  * update, two counters are inserted into the number. One is
390  * the actual counter for the write position or count on the page.
391  *
392  * The other is a counter of updaters. Before an update happens
393  * the update partition of the counter is incremented. This will
394  * allow the updater to update the counter atomically.
395  *
396  * The counter is 20 bits, and the state data is 12.
397  */
398 #define RB_WRITE_MASK		0xfffff
399 #define RB_WRITE_INTCNT		(1 << 20)
400 
401 static void rb_init_page(struct buffer_data_page *bpage)
402 {
403 	local_set(&bpage->commit, 0);
404 }
405 
406 /**
407  * ring_buffer_page_len - the size of data on the page.
408  * @page: The page to read
409  *
410  * Returns the amount of data on the page, including buffer page header.
411  */
412 size_t ring_buffer_page_len(void *page)
413 {
414 	return local_read(&((struct buffer_data_page *)page)->commit)
415 		+ BUF_PAGE_HDR_SIZE;
416 }
417 
418 /*
419  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420  * this issue out.
421  */
422 static void free_buffer_page(struct buffer_page *bpage)
423 {
424 	free_page((unsigned long)bpage->page);
425 	kfree(bpage);
426 }
427 
428 /*
429  * We need to fit the time_stamp delta into 27 bits.
430  */
431 static inline int test_time_stamp(u64 delta)
432 {
433 	if (delta & TS_DELTA_TEST)
434 		return 1;
435 	return 0;
436 }
437 
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
439 
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
442 
443 int ring_buffer_print_page_header(struct trace_seq *s)
444 {
445 	struct buffer_data_page field;
446 	int ret;
447 
448 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
449 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
450 			       (unsigned int)sizeof(field.time_stamp),
451 			       (unsigned int)is_signed_type(u64));
452 
453 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
454 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 			       (unsigned int)offsetof(typeof(field), commit),
456 			       (unsigned int)sizeof(field.commit),
457 			       (unsigned int)is_signed_type(long));
458 
459 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 			       (unsigned int)offsetof(typeof(field), commit),
462 			       1,
463 			       (unsigned int)is_signed_type(long));
464 
465 	ret = trace_seq_printf(s, "\tfield: char data;\t"
466 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 			       (unsigned int)offsetof(typeof(field), data),
468 			       (unsigned int)BUF_PAGE_SIZE,
469 			       (unsigned int)is_signed_type(char));
470 
471 	return ret;
472 }
473 
474 /*
475  * head_page == tail_page && head == tail then buffer is empty.
476  */
477 struct ring_buffer_per_cpu {
478 	int				cpu;
479 	atomic_t			record_disabled;
480 	struct ring_buffer		*buffer;
481 	spinlock_t			reader_lock;	/* serialize readers */
482 	arch_spinlock_t			lock;
483 	struct lock_class_key		lock_key;
484 	struct list_head		*pages;
485 	struct buffer_page		*head_page;	/* read from head */
486 	struct buffer_page		*tail_page;	/* write to tail */
487 	struct buffer_page		*commit_page;	/* committed pages */
488 	struct buffer_page		*reader_page;
489 	unsigned long			lost_events;
490 	unsigned long			last_overrun;
491 	local_t				commit_overrun;
492 	local_t				overrun;
493 	local_t				entries;
494 	local_t				committing;
495 	local_t				commits;
496 	unsigned long			read;
497 	u64				write_stamp;
498 	u64				read_stamp;
499 };
500 
501 struct ring_buffer {
502 	unsigned			pages;
503 	unsigned			flags;
504 	int				cpus;
505 	atomic_t			record_disabled;
506 	cpumask_var_t			cpumask;
507 
508 	struct lock_class_key		*reader_lock_key;
509 
510 	struct mutex			mutex;
511 
512 	struct ring_buffer_per_cpu	**buffers;
513 
514 #ifdef CONFIG_HOTPLUG_CPU
515 	struct notifier_block		cpu_notify;
516 #endif
517 	u64				(*clock)(void);
518 };
519 
520 struct ring_buffer_iter {
521 	struct ring_buffer_per_cpu	*cpu_buffer;
522 	unsigned long			head;
523 	struct buffer_page		*head_page;
524 	struct buffer_page		*cache_reader_page;
525 	unsigned long			cache_read;
526 	u64				read_stamp;
527 };
528 
529 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
530 #define RB_WARN_ON(b, cond)						\
531 	({								\
532 		int _____ret = unlikely(cond);				\
533 		if (_____ret) {						\
534 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535 				struct ring_buffer_per_cpu *__b =	\
536 					(void *)b;			\
537 				atomic_inc(&__b->buffer->record_disabled); \
538 			} else						\
539 				atomic_inc(&b->record_disabled);	\
540 			WARN_ON(1);					\
541 		}							\
542 		_____ret;						\
543 	})
544 
545 /* Up this if you want to test the TIME_EXTENTS and normalization */
546 #define DEBUG_SHIFT 0
547 
548 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
549 {
550 	/* shift to debug/test normalization and TIME_EXTENTS */
551 	return buffer->clock() << DEBUG_SHIFT;
552 }
553 
554 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
555 {
556 	u64 time;
557 
558 	preempt_disable_notrace();
559 	time = rb_time_stamp(buffer);
560 	preempt_enable_no_resched_notrace();
561 
562 	return time;
563 }
564 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
565 
566 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
567 				      int cpu, u64 *ts)
568 {
569 	/* Just stupid testing the normalize function and deltas */
570 	*ts >>= DEBUG_SHIFT;
571 }
572 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
573 
574 /*
575  * Making the ring buffer lockless makes things tricky.
576  * Although writes only happen on the CPU that they are on,
577  * and they only need to worry about interrupts. Reads can
578  * happen on any CPU.
579  *
580  * The reader page is always off the ring buffer, but when the
581  * reader finishes with a page, it needs to swap its page with
582  * a new one from the buffer. The reader needs to take from
583  * the head (writes go to the tail). But if a writer is in overwrite
584  * mode and wraps, it must push the head page forward.
585  *
586  * Here lies the problem.
587  *
588  * The reader must be careful to replace only the head page, and
589  * not another one. As described at the top of the file in the
590  * ASCII art, the reader sets its old page to point to the next
591  * page after head. It then sets the page after head to point to
592  * the old reader page. But if the writer moves the head page
593  * during this operation, the reader could end up with the tail.
594  *
595  * We use cmpxchg to help prevent this race. We also do something
596  * special with the page before head. We set the LSB to 1.
597  *
598  * When the writer must push the page forward, it will clear the
599  * bit that points to the head page, move the head, and then set
600  * the bit that points to the new head page.
601  *
602  * We also don't want an interrupt coming in and moving the head
603  * page on another writer. Thus we use the second LSB to catch
604  * that too. Thus:
605  *
606  * head->list->prev->next        bit 1          bit 0
607  *                              -------        -------
608  * Normal page                     0              0
609  * Points to head page             0              1
610  * New head page                   1              0
611  *
612  * Note we can not trust the prev pointer of the head page, because:
613  *
614  * +----+       +-----+        +-----+
615  * |    |------>|  T  |---X--->|  N  |
616  * |    |<------|     |        |     |
617  * +----+       +-----+        +-----+
618  *   ^                           ^ |
619  *   |          +-----+          | |
620  *   +----------|  R  |----------+ |
621  *              |     |<-----------+
622  *              +-----+
623  *
624  * Key:  ---X-->  HEAD flag set in pointer
625  *         T      Tail page
626  *         R      Reader page
627  *         N      Next page
628  *
629  * (see __rb_reserve_next() to see where this happens)
630  *
631  *  What the above shows is that the reader just swapped out
632  *  the reader page with a page in the buffer, but before it
633  *  could make the new header point back to the new page added
634  *  it was preempted by a writer. The writer moved forward onto
635  *  the new page added by the reader and is about to move forward
636  *  again.
637  *
638  *  You can see, it is legitimate for the previous pointer of
639  *  the head (or any page) not to point back to itself. But only
640  *  temporarially.
641  */
642 
643 #define RB_PAGE_NORMAL		0UL
644 #define RB_PAGE_HEAD		1UL
645 #define RB_PAGE_UPDATE		2UL
646 
647 
648 #define RB_FLAG_MASK		3UL
649 
650 /* PAGE_MOVED is not part of the mask */
651 #define RB_PAGE_MOVED		4UL
652 
653 /*
654  * rb_list_head - remove any bit
655  */
656 static struct list_head *rb_list_head(struct list_head *list)
657 {
658 	unsigned long val = (unsigned long)list;
659 
660 	return (struct list_head *)(val & ~RB_FLAG_MASK);
661 }
662 
663 /*
664  * rb_is_head_page - test if the given page is the head page
665  *
666  * Because the reader may move the head_page pointer, we can
667  * not trust what the head page is (it may be pointing to
668  * the reader page). But if the next page is a header page,
669  * its flags will be non zero.
670  */
671 static inline int
672 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
673 		struct buffer_page *page, struct list_head *list)
674 {
675 	unsigned long val;
676 
677 	val = (unsigned long)list->next;
678 
679 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
680 		return RB_PAGE_MOVED;
681 
682 	return val & RB_FLAG_MASK;
683 }
684 
685 /*
686  * rb_is_reader_page
687  *
688  * The unique thing about the reader page, is that, if the
689  * writer is ever on it, the previous pointer never points
690  * back to the reader page.
691  */
692 static int rb_is_reader_page(struct buffer_page *page)
693 {
694 	struct list_head *list = page->list.prev;
695 
696 	return rb_list_head(list->next) != &page->list;
697 }
698 
699 /*
700  * rb_set_list_to_head - set a list_head to be pointing to head.
701  */
702 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
703 				struct list_head *list)
704 {
705 	unsigned long *ptr;
706 
707 	ptr = (unsigned long *)&list->next;
708 	*ptr |= RB_PAGE_HEAD;
709 	*ptr &= ~RB_PAGE_UPDATE;
710 }
711 
712 /*
713  * rb_head_page_activate - sets up head page
714  */
715 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
716 {
717 	struct buffer_page *head;
718 
719 	head = cpu_buffer->head_page;
720 	if (!head)
721 		return;
722 
723 	/*
724 	 * Set the previous list pointer to have the HEAD flag.
725 	 */
726 	rb_set_list_to_head(cpu_buffer, head->list.prev);
727 }
728 
729 static void rb_list_head_clear(struct list_head *list)
730 {
731 	unsigned long *ptr = (unsigned long *)&list->next;
732 
733 	*ptr &= ~RB_FLAG_MASK;
734 }
735 
736 /*
737  * rb_head_page_dactivate - clears head page ptr (for free list)
738  */
739 static void
740 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
741 {
742 	struct list_head *hd;
743 
744 	/* Go through the whole list and clear any pointers found. */
745 	rb_list_head_clear(cpu_buffer->pages);
746 
747 	list_for_each(hd, cpu_buffer->pages)
748 		rb_list_head_clear(hd);
749 }
750 
751 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
752 			    struct buffer_page *head,
753 			    struct buffer_page *prev,
754 			    int old_flag, int new_flag)
755 {
756 	struct list_head *list;
757 	unsigned long val = (unsigned long)&head->list;
758 	unsigned long ret;
759 
760 	list = &prev->list;
761 
762 	val &= ~RB_FLAG_MASK;
763 
764 	ret = cmpxchg((unsigned long *)&list->next,
765 		      val | old_flag, val | new_flag);
766 
767 	/* check if the reader took the page */
768 	if ((ret & ~RB_FLAG_MASK) != val)
769 		return RB_PAGE_MOVED;
770 
771 	return ret & RB_FLAG_MASK;
772 }
773 
774 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
775 				   struct buffer_page *head,
776 				   struct buffer_page *prev,
777 				   int old_flag)
778 {
779 	return rb_head_page_set(cpu_buffer, head, prev,
780 				old_flag, RB_PAGE_UPDATE);
781 }
782 
783 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
784 				 struct buffer_page *head,
785 				 struct buffer_page *prev,
786 				 int old_flag)
787 {
788 	return rb_head_page_set(cpu_buffer, head, prev,
789 				old_flag, RB_PAGE_HEAD);
790 }
791 
792 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
793 				   struct buffer_page *head,
794 				   struct buffer_page *prev,
795 				   int old_flag)
796 {
797 	return rb_head_page_set(cpu_buffer, head, prev,
798 				old_flag, RB_PAGE_NORMAL);
799 }
800 
801 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
802 			       struct buffer_page **bpage)
803 {
804 	struct list_head *p = rb_list_head((*bpage)->list.next);
805 
806 	*bpage = list_entry(p, struct buffer_page, list);
807 }
808 
809 static struct buffer_page *
810 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
811 {
812 	struct buffer_page *head;
813 	struct buffer_page *page;
814 	struct list_head *list;
815 	int i;
816 
817 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
818 		return NULL;
819 
820 	/* sanity check */
821 	list = cpu_buffer->pages;
822 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
823 		return NULL;
824 
825 	page = head = cpu_buffer->head_page;
826 	/*
827 	 * It is possible that the writer moves the header behind
828 	 * where we started, and we miss in one loop.
829 	 * A second loop should grab the header, but we'll do
830 	 * three loops just because I'm paranoid.
831 	 */
832 	for (i = 0; i < 3; i++) {
833 		do {
834 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
835 				cpu_buffer->head_page = page;
836 				return page;
837 			}
838 			rb_inc_page(cpu_buffer, &page);
839 		} while (page != head);
840 	}
841 
842 	RB_WARN_ON(cpu_buffer, 1);
843 
844 	return NULL;
845 }
846 
847 static int rb_head_page_replace(struct buffer_page *old,
848 				struct buffer_page *new)
849 {
850 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
851 	unsigned long val;
852 	unsigned long ret;
853 
854 	val = *ptr & ~RB_FLAG_MASK;
855 	val |= RB_PAGE_HEAD;
856 
857 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
858 
859 	return ret == val;
860 }
861 
862 /*
863  * rb_tail_page_update - move the tail page forward
864  *
865  * Returns 1 if moved tail page, 0 if someone else did.
866  */
867 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
868 			       struct buffer_page *tail_page,
869 			       struct buffer_page *next_page)
870 {
871 	struct buffer_page *old_tail;
872 	unsigned long old_entries;
873 	unsigned long old_write;
874 	int ret = 0;
875 
876 	/*
877 	 * The tail page now needs to be moved forward.
878 	 *
879 	 * We need to reset the tail page, but without messing
880 	 * with possible erasing of data brought in by interrupts
881 	 * that have moved the tail page and are currently on it.
882 	 *
883 	 * We add a counter to the write field to denote this.
884 	 */
885 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
886 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
887 
888 	/*
889 	 * Just make sure we have seen our old_write and synchronize
890 	 * with any interrupts that come in.
891 	 */
892 	barrier();
893 
894 	/*
895 	 * If the tail page is still the same as what we think
896 	 * it is, then it is up to us to update the tail
897 	 * pointer.
898 	 */
899 	if (tail_page == cpu_buffer->tail_page) {
900 		/* Zero the write counter */
901 		unsigned long val = old_write & ~RB_WRITE_MASK;
902 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
903 
904 		/*
905 		 * This will only succeed if an interrupt did
906 		 * not come in and change it. In which case, we
907 		 * do not want to modify it.
908 		 *
909 		 * We add (void) to let the compiler know that we do not care
910 		 * about the return value of these functions. We use the
911 		 * cmpxchg to only update if an interrupt did not already
912 		 * do it for us. If the cmpxchg fails, we don't care.
913 		 */
914 		(void)local_cmpxchg(&next_page->write, old_write, val);
915 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
916 
917 		/*
918 		 * No need to worry about races with clearing out the commit.
919 		 * it only can increment when a commit takes place. But that
920 		 * only happens in the outer most nested commit.
921 		 */
922 		local_set(&next_page->page->commit, 0);
923 
924 		old_tail = cmpxchg(&cpu_buffer->tail_page,
925 				   tail_page, next_page);
926 
927 		if (old_tail == tail_page)
928 			ret = 1;
929 	}
930 
931 	return ret;
932 }
933 
934 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
935 			  struct buffer_page *bpage)
936 {
937 	unsigned long val = (unsigned long)bpage;
938 
939 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
940 		return 1;
941 
942 	return 0;
943 }
944 
945 /**
946  * rb_check_list - make sure a pointer to a list has the last bits zero
947  */
948 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
949 			 struct list_head *list)
950 {
951 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
952 		return 1;
953 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
954 		return 1;
955 	return 0;
956 }
957 
958 /**
959  * check_pages - integrity check of buffer pages
960  * @cpu_buffer: CPU buffer with pages to test
961  *
962  * As a safety measure we check to make sure the data pages have not
963  * been corrupted.
964  */
965 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
966 {
967 	struct list_head *head = cpu_buffer->pages;
968 	struct buffer_page *bpage, *tmp;
969 
970 	rb_head_page_deactivate(cpu_buffer);
971 
972 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
973 		return -1;
974 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
975 		return -1;
976 
977 	if (rb_check_list(cpu_buffer, head))
978 		return -1;
979 
980 	list_for_each_entry_safe(bpage, tmp, head, list) {
981 		if (RB_WARN_ON(cpu_buffer,
982 			       bpage->list.next->prev != &bpage->list))
983 			return -1;
984 		if (RB_WARN_ON(cpu_buffer,
985 			       bpage->list.prev->next != &bpage->list))
986 			return -1;
987 		if (rb_check_list(cpu_buffer, &bpage->list))
988 			return -1;
989 	}
990 
991 	rb_head_page_activate(cpu_buffer);
992 
993 	return 0;
994 }
995 
996 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
997 			     unsigned nr_pages)
998 {
999 	struct buffer_page *bpage, *tmp;
1000 	LIST_HEAD(pages);
1001 	unsigned i;
1002 
1003 	WARN_ON(!nr_pages);
1004 
1005 	for (i = 0; i < nr_pages; i++) {
1006 		struct page *page;
1007 		/*
1008 		 * __GFP_NORETRY flag makes sure that the allocation fails
1009 		 * gracefully without invoking oom-killer and the system is
1010 		 * not destabilized.
1011 		 */
1012 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1013 				    GFP_KERNEL | __GFP_NORETRY,
1014 				    cpu_to_node(cpu_buffer->cpu));
1015 		if (!bpage)
1016 			goto free_pages;
1017 
1018 		rb_check_bpage(cpu_buffer, bpage);
1019 
1020 		list_add(&bpage->list, &pages);
1021 
1022 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1023 					GFP_KERNEL | __GFP_NORETRY, 0);
1024 		if (!page)
1025 			goto free_pages;
1026 		bpage->page = page_address(page);
1027 		rb_init_page(bpage->page);
1028 	}
1029 
1030 	/*
1031 	 * The ring buffer page list is a circular list that does not
1032 	 * start and end with a list head. All page list items point to
1033 	 * other pages.
1034 	 */
1035 	cpu_buffer->pages = pages.next;
1036 	list_del(&pages);
1037 
1038 	rb_check_pages(cpu_buffer);
1039 
1040 	return 0;
1041 
1042  free_pages:
1043 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1044 		list_del_init(&bpage->list);
1045 		free_buffer_page(bpage);
1046 	}
1047 	return -ENOMEM;
1048 }
1049 
1050 static struct ring_buffer_per_cpu *
1051 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1052 {
1053 	struct ring_buffer_per_cpu *cpu_buffer;
1054 	struct buffer_page *bpage;
1055 	struct page *page;
1056 	int ret;
1057 
1058 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1059 				  GFP_KERNEL, cpu_to_node(cpu));
1060 	if (!cpu_buffer)
1061 		return NULL;
1062 
1063 	cpu_buffer->cpu = cpu;
1064 	cpu_buffer->buffer = buffer;
1065 	spin_lock_init(&cpu_buffer->reader_lock);
1066 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1067 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1068 
1069 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1070 			    GFP_KERNEL, cpu_to_node(cpu));
1071 	if (!bpage)
1072 		goto fail_free_buffer;
1073 
1074 	rb_check_bpage(cpu_buffer, bpage);
1075 
1076 	cpu_buffer->reader_page = bpage;
1077 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1078 	if (!page)
1079 		goto fail_free_reader;
1080 	bpage->page = page_address(page);
1081 	rb_init_page(bpage->page);
1082 
1083 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1084 
1085 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1086 	if (ret < 0)
1087 		goto fail_free_reader;
1088 
1089 	cpu_buffer->head_page
1090 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1091 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1092 
1093 	rb_head_page_activate(cpu_buffer);
1094 
1095 	return cpu_buffer;
1096 
1097  fail_free_reader:
1098 	free_buffer_page(cpu_buffer->reader_page);
1099 
1100  fail_free_buffer:
1101 	kfree(cpu_buffer);
1102 	return NULL;
1103 }
1104 
1105 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1106 {
1107 	struct list_head *head = cpu_buffer->pages;
1108 	struct buffer_page *bpage, *tmp;
1109 
1110 	free_buffer_page(cpu_buffer->reader_page);
1111 
1112 	rb_head_page_deactivate(cpu_buffer);
1113 
1114 	if (head) {
1115 		list_for_each_entry_safe(bpage, tmp, head, list) {
1116 			list_del_init(&bpage->list);
1117 			free_buffer_page(bpage);
1118 		}
1119 		bpage = list_entry(head, struct buffer_page, list);
1120 		free_buffer_page(bpage);
1121 	}
1122 
1123 	kfree(cpu_buffer);
1124 }
1125 
1126 #ifdef CONFIG_HOTPLUG_CPU
1127 static int rb_cpu_notify(struct notifier_block *self,
1128 			 unsigned long action, void *hcpu);
1129 #endif
1130 
1131 /**
1132  * ring_buffer_alloc - allocate a new ring_buffer
1133  * @size: the size in bytes per cpu that is needed.
1134  * @flags: attributes to set for the ring buffer.
1135  *
1136  * Currently the only flag that is available is the RB_FL_OVERWRITE
1137  * flag. This flag means that the buffer will overwrite old data
1138  * when the buffer wraps. If this flag is not set, the buffer will
1139  * drop data when the tail hits the head.
1140  */
1141 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1142 					struct lock_class_key *key)
1143 {
1144 	struct ring_buffer *buffer;
1145 	int bsize;
1146 	int cpu;
1147 
1148 	/* keep it in its own cache line */
1149 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1150 			 GFP_KERNEL);
1151 	if (!buffer)
1152 		return NULL;
1153 
1154 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1155 		goto fail_free_buffer;
1156 
1157 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1158 	buffer->flags = flags;
1159 	buffer->clock = trace_clock_local;
1160 	buffer->reader_lock_key = key;
1161 
1162 	/* need at least two pages */
1163 	if (buffer->pages < 2)
1164 		buffer->pages = 2;
1165 
1166 	/*
1167 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1168 	 * in early initcall, it will not be notified of secondary cpus.
1169 	 * In that off case, we need to allocate for all possible cpus.
1170 	 */
1171 #ifdef CONFIG_HOTPLUG_CPU
1172 	get_online_cpus();
1173 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1174 #else
1175 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1176 #endif
1177 	buffer->cpus = nr_cpu_ids;
1178 
1179 	bsize = sizeof(void *) * nr_cpu_ids;
1180 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1181 				  GFP_KERNEL);
1182 	if (!buffer->buffers)
1183 		goto fail_free_cpumask;
1184 
1185 	for_each_buffer_cpu(buffer, cpu) {
1186 		buffer->buffers[cpu] =
1187 			rb_allocate_cpu_buffer(buffer, cpu);
1188 		if (!buffer->buffers[cpu])
1189 			goto fail_free_buffers;
1190 	}
1191 
1192 #ifdef CONFIG_HOTPLUG_CPU
1193 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1194 	buffer->cpu_notify.priority = 0;
1195 	register_cpu_notifier(&buffer->cpu_notify);
1196 #endif
1197 
1198 	put_online_cpus();
1199 	mutex_init(&buffer->mutex);
1200 
1201 	return buffer;
1202 
1203  fail_free_buffers:
1204 	for_each_buffer_cpu(buffer, cpu) {
1205 		if (buffer->buffers[cpu])
1206 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1207 	}
1208 	kfree(buffer->buffers);
1209 
1210  fail_free_cpumask:
1211 	free_cpumask_var(buffer->cpumask);
1212 	put_online_cpus();
1213 
1214  fail_free_buffer:
1215 	kfree(buffer);
1216 	return NULL;
1217 }
1218 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1219 
1220 /**
1221  * ring_buffer_free - free a ring buffer.
1222  * @buffer: the buffer to free.
1223  */
1224 void
1225 ring_buffer_free(struct ring_buffer *buffer)
1226 {
1227 	int cpu;
1228 
1229 	get_online_cpus();
1230 
1231 #ifdef CONFIG_HOTPLUG_CPU
1232 	unregister_cpu_notifier(&buffer->cpu_notify);
1233 #endif
1234 
1235 	for_each_buffer_cpu(buffer, cpu)
1236 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1237 
1238 	put_online_cpus();
1239 
1240 	kfree(buffer->buffers);
1241 	free_cpumask_var(buffer->cpumask);
1242 
1243 	kfree(buffer);
1244 }
1245 EXPORT_SYMBOL_GPL(ring_buffer_free);
1246 
1247 void ring_buffer_set_clock(struct ring_buffer *buffer,
1248 			   u64 (*clock)(void))
1249 {
1250 	buffer->clock = clock;
1251 }
1252 
1253 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1254 
1255 static void
1256 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1257 {
1258 	struct buffer_page *bpage;
1259 	struct list_head *p;
1260 	unsigned i;
1261 
1262 	spin_lock_irq(&cpu_buffer->reader_lock);
1263 	rb_head_page_deactivate(cpu_buffer);
1264 
1265 	for (i = 0; i < nr_pages; i++) {
1266 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1267 			goto out;
1268 		p = cpu_buffer->pages->next;
1269 		bpage = list_entry(p, struct buffer_page, list);
1270 		list_del_init(&bpage->list);
1271 		free_buffer_page(bpage);
1272 	}
1273 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1274 		goto out;
1275 
1276 	rb_reset_cpu(cpu_buffer);
1277 	rb_check_pages(cpu_buffer);
1278 
1279 out:
1280 	spin_unlock_irq(&cpu_buffer->reader_lock);
1281 }
1282 
1283 static void
1284 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1285 		struct list_head *pages, unsigned nr_pages)
1286 {
1287 	struct buffer_page *bpage;
1288 	struct list_head *p;
1289 	unsigned i;
1290 
1291 	spin_lock_irq(&cpu_buffer->reader_lock);
1292 	rb_head_page_deactivate(cpu_buffer);
1293 
1294 	for (i = 0; i < nr_pages; i++) {
1295 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1296 			goto out;
1297 		p = pages->next;
1298 		bpage = list_entry(p, struct buffer_page, list);
1299 		list_del_init(&bpage->list);
1300 		list_add_tail(&bpage->list, cpu_buffer->pages);
1301 	}
1302 	rb_reset_cpu(cpu_buffer);
1303 	rb_check_pages(cpu_buffer);
1304 
1305 out:
1306 	spin_unlock_irq(&cpu_buffer->reader_lock);
1307 }
1308 
1309 /**
1310  * ring_buffer_resize - resize the ring buffer
1311  * @buffer: the buffer to resize.
1312  * @size: the new size.
1313  *
1314  * Minimum size is 2 * BUF_PAGE_SIZE.
1315  *
1316  * Returns -1 on failure.
1317  */
1318 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1319 {
1320 	struct ring_buffer_per_cpu *cpu_buffer;
1321 	unsigned nr_pages, rm_pages, new_pages;
1322 	struct buffer_page *bpage, *tmp;
1323 	unsigned long buffer_size;
1324 	LIST_HEAD(pages);
1325 	int i, cpu;
1326 
1327 	/*
1328 	 * Always succeed at resizing a non-existent buffer:
1329 	 */
1330 	if (!buffer)
1331 		return size;
1332 
1333 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1334 	size *= BUF_PAGE_SIZE;
1335 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1336 
1337 	/* we need a minimum of two pages */
1338 	if (size < BUF_PAGE_SIZE * 2)
1339 		size = BUF_PAGE_SIZE * 2;
1340 
1341 	if (size == buffer_size)
1342 		return size;
1343 
1344 	atomic_inc(&buffer->record_disabled);
1345 
1346 	/* Make sure all writers are done with this buffer. */
1347 	synchronize_sched();
1348 
1349 	mutex_lock(&buffer->mutex);
1350 	get_online_cpus();
1351 
1352 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1353 
1354 	if (size < buffer_size) {
1355 
1356 		/* easy case, just free pages */
1357 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1358 			goto out_fail;
1359 
1360 		rm_pages = buffer->pages - nr_pages;
1361 
1362 		for_each_buffer_cpu(buffer, cpu) {
1363 			cpu_buffer = buffer->buffers[cpu];
1364 			rb_remove_pages(cpu_buffer, rm_pages);
1365 		}
1366 		goto out;
1367 	}
1368 
1369 	/*
1370 	 * This is a bit more difficult. We only want to add pages
1371 	 * when we can allocate enough for all CPUs. We do this
1372 	 * by allocating all the pages and storing them on a local
1373 	 * link list. If we succeed in our allocation, then we
1374 	 * add these pages to the cpu_buffers. Otherwise we just free
1375 	 * them all and return -ENOMEM;
1376 	 */
1377 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1378 		goto out_fail;
1379 
1380 	new_pages = nr_pages - buffer->pages;
1381 
1382 	for_each_buffer_cpu(buffer, cpu) {
1383 		for (i = 0; i < new_pages; i++) {
1384 			struct page *page;
1385 			/*
1386 			 * __GFP_NORETRY flag makes sure that the allocation
1387 			 * fails gracefully without invoking oom-killer and
1388 			 * the system is not destabilized.
1389 			 */
1390 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1391 						  cache_line_size()),
1392 					    GFP_KERNEL | __GFP_NORETRY,
1393 					    cpu_to_node(cpu));
1394 			if (!bpage)
1395 				goto free_pages;
1396 			list_add(&bpage->list, &pages);
1397 			page = alloc_pages_node(cpu_to_node(cpu),
1398 						GFP_KERNEL | __GFP_NORETRY, 0);
1399 			if (!page)
1400 				goto free_pages;
1401 			bpage->page = page_address(page);
1402 			rb_init_page(bpage->page);
1403 		}
1404 	}
1405 
1406 	for_each_buffer_cpu(buffer, cpu) {
1407 		cpu_buffer = buffer->buffers[cpu];
1408 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1409 	}
1410 
1411 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1412 		goto out_fail;
1413 
1414  out:
1415 	buffer->pages = nr_pages;
1416 	put_online_cpus();
1417 	mutex_unlock(&buffer->mutex);
1418 
1419 	atomic_dec(&buffer->record_disabled);
1420 
1421 	return size;
1422 
1423  free_pages:
1424 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1425 		list_del_init(&bpage->list);
1426 		free_buffer_page(bpage);
1427 	}
1428 	put_online_cpus();
1429 	mutex_unlock(&buffer->mutex);
1430 	atomic_dec(&buffer->record_disabled);
1431 	return -ENOMEM;
1432 
1433 	/*
1434 	 * Something went totally wrong, and we are too paranoid
1435 	 * to even clean up the mess.
1436 	 */
1437  out_fail:
1438 	put_online_cpus();
1439 	mutex_unlock(&buffer->mutex);
1440 	atomic_dec(&buffer->record_disabled);
1441 	return -1;
1442 }
1443 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1444 
1445 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1446 {
1447 	mutex_lock(&buffer->mutex);
1448 	if (val)
1449 		buffer->flags |= RB_FL_OVERWRITE;
1450 	else
1451 		buffer->flags &= ~RB_FL_OVERWRITE;
1452 	mutex_unlock(&buffer->mutex);
1453 }
1454 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1455 
1456 static inline void *
1457 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1458 {
1459 	return bpage->data + index;
1460 }
1461 
1462 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1463 {
1464 	return bpage->page->data + index;
1465 }
1466 
1467 static inline struct ring_buffer_event *
1468 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1469 {
1470 	return __rb_page_index(cpu_buffer->reader_page,
1471 			       cpu_buffer->reader_page->read);
1472 }
1473 
1474 static inline struct ring_buffer_event *
1475 rb_iter_head_event(struct ring_buffer_iter *iter)
1476 {
1477 	return __rb_page_index(iter->head_page, iter->head);
1478 }
1479 
1480 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1481 {
1482 	return local_read(&bpage->write) & RB_WRITE_MASK;
1483 }
1484 
1485 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1486 {
1487 	return local_read(&bpage->page->commit);
1488 }
1489 
1490 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1491 {
1492 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1493 }
1494 
1495 /* Size is determined by what has been committed */
1496 static inline unsigned rb_page_size(struct buffer_page *bpage)
1497 {
1498 	return rb_page_commit(bpage);
1499 }
1500 
1501 static inline unsigned
1502 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1503 {
1504 	return rb_page_commit(cpu_buffer->commit_page);
1505 }
1506 
1507 static inline unsigned
1508 rb_event_index(struct ring_buffer_event *event)
1509 {
1510 	unsigned long addr = (unsigned long)event;
1511 
1512 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1513 }
1514 
1515 static inline int
1516 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1517 		   struct ring_buffer_event *event)
1518 {
1519 	unsigned long addr = (unsigned long)event;
1520 	unsigned long index;
1521 
1522 	index = rb_event_index(event);
1523 	addr &= PAGE_MASK;
1524 
1525 	return cpu_buffer->commit_page->page == (void *)addr &&
1526 		rb_commit_index(cpu_buffer) == index;
1527 }
1528 
1529 static void
1530 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1531 {
1532 	unsigned long max_count;
1533 
1534 	/*
1535 	 * We only race with interrupts and NMIs on this CPU.
1536 	 * If we own the commit event, then we can commit
1537 	 * all others that interrupted us, since the interruptions
1538 	 * are in stack format (they finish before they come
1539 	 * back to us). This allows us to do a simple loop to
1540 	 * assign the commit to the tail.
1541 	 */
1542  again:
1543 	max_count = cpu_buffer->buffer->pages * 100;
1544 
1545 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1546 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1547 			return;
1548 		if (RB_WARN_ON(cpu_buffer,
1549 			       rb_is_reader_page(cpu_buffer->tail_page)))
1550 			return;
1551 		local_set(&cpu_buffer->commit_page->page->commit,
1552 			  rb_page_write(cpu_buffer->commit_page));
1553 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1554 		cpu_buffer->write_stamp =
1555 			cpu_buffer->commit_page->page->time_stamp;
1556 		/* add barrier to keep gcc from optimizing too much */
1557 		barrier();
1558 	}
1559 	while (rb_commit_index(cpu_buffer) !=
1560 	       rb_page_write(cpu_buffer->commit_page)) {
1561 
1562 		local_set(&cpu_buffer->commit_page->page->commit,
1563 			  rb_page_write(cpu_buffer->commit_page));
1564 		RB_WARN_ON(cpu_buffer,
1565 			   local_read(&cpu_buffer->commit_page->page->commit) &
1566 			   ~RB_WRITE_MASK);
1567 		barrier();
1568 	}
1569 
1570 	/* again, keep gcc from optimizing */
1571 	barrier();
1572 
1573 	/*
1574 	 * If an interrupt came in just after the first while loop
1575 	 * and pushed the tail page forward, we will be left with
1576 	 * a dangling commit that will never go forward.
1577 	 */
1578 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1579 		goto again;
1580 }
1581 
1582 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1583 {
1584 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1585 	cpu_buffer->reader_page->read = 0;
1586 }
1587 
1588 static void rb_inc_iter(struct ring_buffer_iter *iter)
1589 {
1590 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1591 
1592 	/*
1593 	 * The iterator could be on the reader page (it starts there).
1594 	 * But the head could have moved, since the reader was
1595 	 * found. Check for this case and assign the iterator
1596 	 * to the head page instead of next.
1597 	 */
1598 	if (iter->head_page == cpu_buffer->reader_page)
1599 		iter->head_page = rb_set_head_page(cpu_buffer);
1600 	else
1601 		rb_inc_page(cpu_buffer, &iter->head_page);
1602 
1603 	iter->read_stamp = iter->head_page->page->time_stamp;
1604 	iter->head = 0;
1605 }
1606 
1607 /* Slow path, do not inline */
1608 static noinline struct ring_buffer_event *
1609 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1610 {
1611 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1612 
1613 	/* Not the first event on the page? */
1614 	if (rb_event_index(event)) {
1615 		event->time_delta = delta & TS_MASK;
1616 		event->array[0] = delta >> TS_SHIFT;
1617 	} else {
1618 		/* nope, just zero it */
1619 		event->time_delta = 0;
1620 		event->array[0] = 0;
1621 	}
1622 
1623 	return skip_time_extend(event);
1624 }
1625 
1626 /**
1627  * ring_buffer_update_event - update event type and data
1628  * @event: the even to update
1629  * @type: the type of event
1630  * @length: the size of the event field in the ring buffer
1631  *
1632  * Update the type and data fields of the event. The length
1633  * is the actual size that is written to the ring buffer,
1634  * and with this, we can determine what to place into the
1635  * data field.
1636  */
1637 static void
1638 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1639 		struct ring_buffer_event *event, unsigned length,
1640 		int add_timestamp, u64 delta)
1641 {
1642 	/* Only a commit updates the timestamp */
1643 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1644 		delta = 0;
1645 
1646 	/*
1647 	 * If we need to add a timestamp, then we
1648 	 * add it to the start of the resevered space.
1649 	 */
1650 	if (unlikely(add_timestamp)) {
1651 		event = rb_add_time_stamp(event, delta);
1652 		length -= RB_LEN_TIME_EXTEND;
1653 		delta = 0;
1654 	}
1655 
1656 	event->time_delta = delta;
1657 	length -= RB_EVNT_HDR_SIZE;
1658 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1659 		event->type_len = 0;
1660 		event->array[0] = length;
1661 	} else
1662 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1663 }
1664 
1665 /*
1666  * rb_handle_head_page - writer hit the head page
1667  *
1668  * Returns: +1 to retry page
1669  *           0 to continue
1670  *          -1 on error
1671  */
1672 static int
1673 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1674 		    struct buffer_page *tail_page,
1675 		    struct buffer_page *next_page)
1676 {
1677 	struct buffer_page *new_head;
1678 	int entries;
1679 	int type;
1680 	int ret;
1681 
1682 	entries = rb_page_entries(next_page);
1683 
1684 	/*
1685 	 * The hard part is here. We need to move the head
1686 	 * forward, and protect against both readers on
1687 	 * other CPUs and writers coming in via interrupts.
1688 	 */
1689 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1690 				       RB_PAGE_HEAD);
1691 
1692 	/*
1693 	 * type can be one of four:
1694 	 *  NORMAL - an interrupt already moved it for us
1695 	 *  HEAD   - we are the first to get here.
1696 	 *  UPDATE - we are the interrupt interrupting
1697 	 *           a current move.
1698 	 *  MOVED  - a reader on another CPU moved the next
1699 	 *           pointer to its reader page. Give up
1700 	 *           and try again.
1701 	 */
1702 
1703 	switch (type) {
1704 	case RB_PAGE_HEAD:
1705 		/*
1706 		 * We changed the head to UPDATE, thus
1707 		 * it is our responsibility to update
1708 		 * the counters.
1709 		 */
1710 		local_add(entries, &cpu_buffer->overrun);
1711 
1712 		/*
1713 		 * The entries will be zeroed out when we move the
1714 		 * tail page.
1715 		 */
1716 
1717 		/* still more to do */
1718 		break;
1719 
1720 	case RB_PAGE_UPDATE:
1721 		/*
1722 		 * This is an interrupt that interrupt the
1723 		 * previous update. Still more to do.
1724 		 */
1725 		break;
1726 	case RB_PAGE_NORMAL:
1727 		/*
1728 		 * An interrupt came in before the update
1729 		 * and processed this for us.
1730 		 * Nothing left to do.
1731 		 */
1732 		return 1;
1733 	case RB_PAGE_MOVED:
1734 		/*
1735 		 * The reader is on another CPU and just did
1736 		 * a swap with our next_page.
1737 		 * Try again.
1738 		 */
1739 		return 1;
1740 	default:
1741 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1742 		return -1;
1743 	}
1744 
1745 	/*
1746 	 * Now that we are here, the old head pointer is
1747 	 * set to UPDATE. This will keep the reader from
1748 	 * swapping the head page with the reader page.
1749 	 * The reader (on another CPU) will spin till
1750 	 * we are finished.
1751 	 *
1752 	 * We just need to protect against interrupts
1753 	 * doing the job. We will set the next pointer
1754 	 * to HEAD. After that, we set the old pointer
1755 	 * to NORMAL, but only if it was HEAD before.
1756 	 * otherwise we are an interrupt, and only
1757 	 * want the outer most commit to reset it.
1758 	 */
1759 	new_head = next_page;
1760 	rb_inc_page(cpu_buffer, &new_head);
1761 
1762 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1763 				    RB_PAGE_NORMAL);
1764 
1765 	/*
1766 	 * Valid returns are:
1767 	 *  HEAD   - an interrupt came in and already set it.
1768 	 *  NORMAL - One of two things:
1769 	 *            1) We really set it.
1770 	 *            2) A bunch of interrupts came in and moved
1771 	 *               the page forward again.
1772 	 */
1773 	switch (ret) {
1774 	case RB_PAGE_HEAD:
1775 	case RB_PAGE_NORMAL:
1776 		/* OK */
1777 		break;
1778 	default:
1779 		RB_WARN_ON(cpu_buffer, 1);
1780 		return -1;
1781 	}
1782 
1783 	/*
1784 	 * It is possible that an interrupt came in,
1785 	 * set the head up, then more interrupts came in
1786 	 * and moved it again. When we get back here,
1787 	 * the page would have been set to NORMAL but we
1788 	 * just set it back to HEAD.
1789 	 *
1790 	 * How do you detect this? Well, if that happened
1791 	 * the tail page would have moved.
1792 	 */
1793 	if (ret == RB_PAGE_NORMAL) {
1794 		/*
1795 		 * If the tail had moved passed next, then we need
1796 		 * to reset the pointer.
1797 		 */
1798 		if (cpu_buffer->tail_page != tail_page &&
1799 		    cpu_buffer->tail_page != next_page)
1800 			rb_head_page_set_normal(cpu_buffer, new_head,
1801 						next_page,
1802 						RB_PAGE_HEAD);
1803 	}
1804 
1805 	/*
1806 	 * If this was the outer most commit (the one that
1807 	 * changed the original pointer from HEAD to UPDATE),
1808 	 * then it is up to us to reset it to NORMAL.
1809 	 */
1810 	if (type == RB_PAGE_HEAD) {
1811 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1812 					      tail_page,
1813 					      RB_PAGE_UPDATE);
1814 		if (RB_WARN_ON(cpu_buffer,
1815 			       ret != RB_PAGE_UPDATE))
1816 			return -1;
1817 	}
1818 
1819 	return 0;
1820 }
1821 
1822 static unsigned rb_calculate_event_length(unsigned length)
1823 {
1824 	struct ring_buffer_event event; /* Used only for sizeof array */
1825 
1826 	/* zero length can cause confusions */
1827 	if (!length)
1828 		length = 1;
1829 
1830 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1831 		length += sizeof(event.array[0]);
1832 
1833 	length += RB_EVNT_HDR_SIZE;
1834 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1835 
1836 	return length;
1837 }
1838 
1839 static inline void
1840 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1841 	      struct buffer_page *tail_page,
1842 	      unsigned long tail, unsigned long length)
1843 {
1844 	struct ring_buffer_event *event;
1845 
1846 	/*
1847 	 * Only the event that crossed the page boundary
1848 	 * must fill the old tail_page with padding.
1849 	 */
1850 	if (tail >= BUF_PAGE_SIZE) {
1851 		/*
1852 		 * If the page was filled, then we still need
1853 		 * to update the real_end. Reset it to zero
1854 		 * and the reader will ignore it.
1855 		 */
1856 		if (tail == BUF_PAGE_SIZE)
1857 			tail_page->real_end = 0;
1858 
1859 		local_sub(length, &tail_page->write);
1860 		return;
1861 	}
1862 
1863 	event = __rb_page_index(tail_page, tail);
1864 	kmemcheck_annotate_bitfield(event, bitfield);
1865 
1866 	/*
1867 	 * Save the original length to the meta data.
1868 	 * This will be used by the reader to add lost event
1869 	 * counter.
1870 	 */
1871 	tail_page->real_end = tail;
1872 
1873 	/*
1874 	 * If this event is bigger than the minimum size, then
1875 	 * we need to be careful that we don't subtract the
1876 	 * write counter enough to allow another writer to slip
1877 	 * in on this page.
1878 	 * We put in a discarded commit instead, to make sure
1879 	 * that this space is not used again.
1880 	 *
1881 	 * If we are less than the minimum size, we don't need to
1882 	 * worry about it.
1883 	 */
1884 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1885 		/* No room for any events */
1886 
1887 		/* Mark the rest of the page with padding */
1888 		rb_event_set_padding(event);
1889 
1890 		/* Set the write back to the previous setting */
1891 		local_sub(length, &tail_page->write);
1892 		return;
1893 	}
1894 
1895 	/* Put in a discarded event */
1896 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1897 	event->type_len = RINGBUF_TYPE_PADDING;
1898 	/* time delta must be non zero */
1899 	event->time_delta = 1;
1900 
1901 	/* Set write to end of buffer */
1902 	length = (tail + length) - BUF_PAGE_SIZE;
1903 	local_sub(length, &tail_page->write);
1904 }
1905 
1906 /*
1907  * This is the slow path, force gcc not to inline it.
1908  */
1909 static noinline struct ring_buffer_event *
1910 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1911 	     unsigned long length, unsigned long tail,
1912 	     struct buffer_page *tail_page, u64 ts)
1913 {
1914 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1915 	struct ring_buffer *buffer = cpu_buffer->buffer;
1916 	struct buffer_page *next_page;
1917 	int ret;
1918 
1919 	next_page = tail_page;
1920 
1921 	rb_inc_page(cpu_buffer, &next_page);
1922 
1923 	/*
1924 	 * If for some reason, we had an interrupt storm that made
1925 	 * it all the way around the buffer, bail, and warn
1926 	 * about it.
1927 	 */
1928 	if (unlikely(next_page == commit_page)) {
1929 		local_inc(&cpu_buffer->commit_overrun);
1930 		goto out_reset;
1931 	}
1932 
1933 	/*
1934 	 * This is where the fun begins!
1935 	 *
1936 	 * We are fighting against races between a reader that
1937 	 * could be on another CPU trying to swap its reader
1938 	 * page with the buffer head.
1939 	 *
1940 	 * We are also fighting against interrupts coming in and
1941 	 * moving the head or tail on us as well.
1942 	 *
1943 	 * If the next page is the head page then we have filled
1944 	 * the buffer, unless the commit page is still on the
1945 	 * reader page.
1946 	 */
1947 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1948 
1949 		/*
1950 		 * If the commit is not on the reader page, then
1951 		 * move the header page.
1952 		 */
1953 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1954 			/*
1955 			 * If we are not in overwrite mode,
1956 			 * this is easy, just stop here.
1957 			 */
1958 			if (!(buffer->flags & RB_FL_OVERWRITE))
1959 				goto out_reset;
1960 
1961 			ret = rb_handle_head_page(cpu_buffer,
1962 						  tail_page,
1963 						  next_page);
1964 			if (ret < 0)
1965 				goto out_reset;
1966 			if (ret)
1967 				goto out_again;
1968 		} else {
1969 			/*
1970 			 * We need to be careful here too. The
1971 			 * commit page could still be on the reader
1972 			 * page. We could have a small buffer, and
1973 			 * have filled up the buffer with events
1974 			 * from interrupts and such, and wrapped.
1975 			 *
1976 			 * Note, if the tail page is also the on the
1977 			 * reader_page, we let it move out.
1978 			 */
1979 			if (unlikely((cpu_buffer->commit_page !=
1980 				      cpu_buffer->tail_page) &&
1981 				     (cpu_buffer->commit_page ==
1982 				      cpu_buffer->reader_page))) {
1983 				local_inc(&cpu_buffer->commit_overrun);
1984 				goto out_reset;
1985 			}
1986 		}
1987 	}
1988 
1989 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1990 	if (ret) {
1991 		/*
1992 		 * Nested commits always have zero deltas, so
1993 		 * just reread the time stamp
1994 		 */
1995 		ts = rb_time_stamp(buffer);
1996 		next_page->page->time_stamp = ts;
1997 	}
1998 
1999  out_again:
2000 
2001 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2002 
2003 	/* fail and let the caller try again */
2004 	return ERR_PTR(-EAGAIN);
2005 
2006  out_reset:
2007 	/* reset write */
2008 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2009 
2010 	return NULL;
2011 }
2012 
2013 static struct ring_buffer_event *
2014 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2015 		  unsigned long length, u64 ts,
2016 		  u64 delta, int add_timestamp)
2017 {
2018 	struct buffer_page *tail_page;
2019 	struct ring_buffer_event *event;
2020 	unsigned long tail, write;
2021 
2022 	/*
2023 	 * If the time delta since the last event is too big to
2024 	 * hold in the time field of the event, then we append a
2025 	 * TIME EXTEND event ahead of the data event.
2026 	 */
2027 	if (unlikely(add_timestamp))
2028 		length += RB_LEN_TIME_EXTEND;
2029 
2030 	tail_page = cpu_buffer->tail_page;
2031 	write = local_add_return(length, &tail_page->write);
2032 
2033 	/* set write to only the index of the write */
2034 	write &= RB_WRITE_MASK;
2035 	tail = write - length;
2036 
2037 	/* See if we shot pass the end of this buffer page */
2038 	if (unlikely(write > BUF_PAGE_SIZE))
2039 		return rb_move_tail(cpu_buffer, length, tail,
2040 				    tail_page, ts);
2041 
2042 	/* We reserved something on the buffer */
2043 
2044 	event = __rb_page_index(tail_page, tail);
2045 	kmemcheck_annotate_bitfield(event, bitfield);
2046 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2047 
2048 	local_inc(&tail_page->entries);
2049 
2050 	/*
2051 	 * If this is the first commit on the page, then update
2052 	 * its timestamp.
2053 	 */
2054 	if (!tail)
2055 		tail_page->page->time_stamp = ts;
2056 
2057 	return event;
2058 }
2059 
2060 static inline int
2061 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2062 		  struct ring_buffer_event *event)
2063 {
2064 	unsigned long new_index, old_index;
2065 	struct buffer_page *bpage;
2066 	unsigned long index;
2067 	unsigned long addr;
2068 
2069 	new_index = rb_event_index(event);
2070 	old_index = new_index + rb_event_ts_length(event);
2071 	addr = (unsigned long)event;
2072 	addr &= PAGE_MASK;
2073 
2074 	bpage = cpu_buffer->tail_page;
2075 
2076 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2077 		unsigned long write_mask =
2078 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2079 		/*
2080 		 * This is on the tail page. It is possible that
2081 		 * a write could come in and move the tail page
2082 		 * and write to the next page. That is fine
2083 		 * because we just shorten what is on this page.
2084 		 */
2085 		old_index += write_mask;
2086 		new_index += write_mask;
2087 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2088 		if (index == old_index)
2089 			return 1;
2090 	}
2091 
2092 	/* could not discard */
2093 	return 0;
2094 }
2095 
2096 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2097 {
2098 	local_inc(&cpu_buffer->committing);
2099 	local_inc(&cpu_buffer->commits);
2100 }
2101 
2102 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2103 {
2104 	unsigned long commits;
2105 
2106 	if (RB_WARN_ON(cpu_buffer,
2107 		       !local_read(&cpu_buffer->committing)))
2108 		return;
2109 
2110  again:
2111 	commits = local_read(&cpu_buffer->commits);
2112 	/* synchronize with interrupts */
2113 	barrier();
2114 	if (local_read(&cpu_buffer->committing) == 1)
2115 		rb_set_commit_to_write(cpu_buffer);
2116 
2117 	local_dec(&cpu_buffer->committing);
2118 
2119 	/* synchronize with interrupts */
2120 	barrier();
2121 
2122 	/*
2123 	 * Need to account for interrupts coming in between the
2124 	 * updating of the commit page and the clearing of the
2125 	 * committing counter.
2126 	 */
2127 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2128 	    !local_read(&cpu_buffer->committing)) {
2129 		local_inc(&cpu_buffer->committing);
2130 		goto again;
2131 	}
2132 }
2133 
2134 static struct ring_buffer_event *
2135 rb_reserve_next_event(struct ring_buffer *buffer,
2136 		      struct ring_buffer_per_cpu *cpu_buffer,
2137 		      unsigned long length)
2138 {
2139 	struct ring_buffer_event *event;
2140 	u64 ts, delta;
2141 	int nr_loops = 0;
2142 	int add_timestamp;
2143 	u64 diff;
2144 
2145 	rb_start_commit(cpu_buffer);
2146 
2147 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2148 	/*
2149 	 * Due to the ability to swap a cpu buffer from a buffer
2150 	 * it is possible it was swapped before we committed.
2151 	 * (committing stops a swap). We check for it here and
2152 	 * if it happened, we have to fail the write.
2153 	 */
2154 	barrier();
2155 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2156 		local_dec(&cpu_buffer->committing);
2157 		local_dec(&cpu_buffer->commits);
2158 		return NULL;
2159 	}
2160 #endif
2161 
2162 	length = rb_calculate_event_length(length);
2163  again:
2164 	add_timestamp = 0;
2165 	delta = 0;
2166 
2167 	/*
2168 	 * We allow for interrupts to reenter here and do a trace.
2169 	 * If one does, it will cause this original code to loop
2170 	 * back here. Even with heavy interrupts happening, this
2171 	 * should only happen a few times in a row. If this happens
2172 	 * 1000 times in a row, there must be either an interrupt
2173 	 * storm or we have something buggy.
2174 	 * Bail!
2175 	 */
2176 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2177 		goto out_fail;
2178 
2179 	ts = rb_time_stamp(cpu_buffer->buffer);
2180 	diff = ts - cpu_buffer->write_stamp;
2181 
2182 	/* make sure this diff is calculated here */
2183 	barrier();
2184 
2185 	/* Did the write stamp get updated already? */
2186 	if (likely(ts >= cpu_buffer->write_stamp)) {
2187 		delta = diff;
2188 		if (unlikely(test_time_stamp(delta))) {
2189 			int local_clock_stable = 1;
2190 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2191 			local_clock_stable = sched_clock_stable;
2192 #endif
2193 			WARN_ONCE(delta > (1ULL << 59),
2194 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2195 				  (unsigned long long)delta,
2196 				  (unsigned long long)ts,
2197 				  (unsigned long long)cpu_buffer->write_stamp,
2198 				  local_clock_stable ? "" :
2199 				  "If you just came from a suspend/resume,\n"
2200 				  "please switch to the trace global clock:\n"
2201 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2202 			add_timestamp = 1;
2203 		}
2204 	}
2205 
2206 	event = __rb_reserve_next(cpu_buffer, length, ts,
2207 				  delta, add_timestamp);
2208 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2209 		goto again;
2210 
2211 	if (!event)
2212 		goto out_fail;
2213 
2214 	return event;
2215 
2216  out_fail:
2217 	rb_end_commit(cpu_buffer);
2218 	return NULL;
2219 }
2220 
2221 #ifdef CONFIG_TRACING
2222 
2223 #define TRACE_RECURSIVE_DEPTH 16
2224 
2225 /* Keep this code out of the fast path cache */
2226 static noinline void trace_recursive_fail(void)
2227 {
2228 	/* Disable all tracing before we do anything else */
2229 	tracing_off_permanent();
2230 
2231 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2232 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2233 		    trace_recursion_buffer(),
2234 		    hardirq_count() >> HARDIRQ_SHIFT,
2235 		    softirq_count() >> SOFTIRQ_SHIFT,
2236 		    in_nmi());
2237 
2238 	WARN_ON_ONCE(1);
2239 }
2240 
2241 static inline int trace_recursive_lock(void)
2242 {
2243 	trace_recursion_inc();
2244 
2245 	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2246 		return 0;
2247 
2248 	trace_recursive_fail();
2249 
2250 	return -1;
2251 }
2252 
2253 static inline void trace_recursive_unlock(void)
2254 {
2255 	WARN_ON_ONCE(!trace_recursion_buffer());
2256 
2257 	trace_recursion_dec();
2258 }
2259 
2260 #else
2261 
2262 #define trace_recursive_lock()		(0)
2263 #define trace_recursive_unlock()	do { } while (0)
2264 
2265 #endif
2266 
2267 /**
2268  * ring_buffer_lock_reserve - reserve a part of the buffer
2269  * @buffer: the ring buffer to reserve from
2270  * @length: the length of the data to reserve (excluding event header)
2271  *
2272  * Returns a reseverd event on the ring buffer to copy directly to.
2273  * The user of this interface will need to get the body to write into
2274  * and can use the ring_buffer_event_data() interface.
2275  *
2276  * The length is the length of the data needed, not the event length
2277  * which also includes the event header.
2278  *
2279  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2280  * If NULL is returned, then nothing has been allocated or locked.
2281  */
2282 struct ring_buffer_event *
2283 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2284 {
2285 	struct ring_buffer_per_cpu *cpu_buffer;
2286 	struct ring_buffer_event *event;
2287 	int cpu;
2288 
2289 	if (ring_buffer_flags != RB_BUFFERS_ON)
2290 		return NULL;
2291 
2292 	/* If we are tracing schedule, we don't want to recurse */
2293 	preempt_disable_notrace();
2294 
2295 	if (atomic_read(&buffer->record_disabled))
2296 		goto out_nocheck;
2297 
2298 	if (trace_recursive_lock())
2299 		goto out_nocheck;
2300 
2301 	cpu = raw_smp_processor_id();
2302 
2303 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2304 		goto out;
2305 
2306 	cpu_buffer = buffer->buffers[cpu];
2307 
2308 	if (atomic_read(&cpu_buffer->record_disabled))
2309 		goto out;
2310 
2311 	if (length > BUF_MAX_DATA_SIZE)
2312 		goto out;
2313 
2314 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2315 	if (!event)
2316 		goto out;
2317 
2318 	return event;
2319 
2320  out:
2321 	trace_recursive_unlock();
2322 
2323  out_nocheck:
2324 	preempt_enable_notrace();
2325 	return NULL;
2326 }
2327 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2328 
2329 static void
2330 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2331 		      struct ring_buffer_event *event)
2332 {
2333 	u64 delta;
2334 
2335 	/*
2336 	 * The event first in the commit queue updates the
2337 	 * time stamp.
2338 	 */
2339 	if (rb_event_is_commit(cpu_buffer, event)) {
2340 		/*
2341 		 * A commit event that is first on a page
2342 		 * updates the write timestamp with the page stamp
2343 		 */
2344 		if (!rb_event_index(event))
2345 			cpu_buffer->write_stamp =
2346 				cpu_buffer->commit_page->page->time_stamp;
2347 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2348 			delta = event->array[0];
2349 			delta <<= TS_SHIFT;
2350 			delta += event->time_delta;
2351 			cpu_buffer->write_stamp += delta;
2352 		} else
2353 			cpu_buffer->write_stamp += event->time_delta;
2354 	}
2355 }
2356 
2357 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2358 		      struct ring_buffer_event *event)
2359 {
2360 	local_inc(&cpu_buffer->entries);
2361 	rb_update_write_stamp(cpu_buffer, event);
2362 	rb_end_commit(cpu_buffer);
2363 }
2364 
2365 /**
2366  * ring_buffer_unlock_commit - commit a reserved
2367  * @buffer: The buffer to commit to
2368  * @event: The event pointer to commit.
2369  *
2370  * This commits the data to the ring buffer, and releases any locks held.
2371  *
2372  * Must be paired with ring_buffer_lock_reserve.
2373  */
2374 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2375 			      struct ring_buffer_event *event)
2376 {
2377 	struct ring_buffer_per_cpu *cpu_buffer;
2378 	int cpu = raw_smp_processor_id();
2379 
2380 	cpu_buffer = buffer->buffers[cpu];
2381 
2382 	rb_commit(cpu_buffer, event);
2383 
2384 	trace_recursive_unlock();
2385 
2386 	preempt_enable_notrace();
2387 
2388 	return 0;
2389 }
2390 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2391 
2392 static inline void rb_event_discard(struct ring_buffer_event *event)
2393 {
2394 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2395 		event = skip_time_extend(event);
2396 
2397 	/* array[0] holds the actual length for the discarded event */
2398 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2399 	event->type_len = RINGBUF_TYPE_PADDING;
2400 	/* time delta must be non zero */
2401 	if (!event->time_delta)
2402 		event->time_delta = 1;
2403 }
2404 
2405 /*
2406  * Decrement the entries to the page that an event is on.
2407  * The event does not even need to exist, only the pointer
2408  * to the page it is on. This may only be called before the commit
2409  * takes place.
2410  */
2411 static inline void
2412 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2413 		   struct ring_buffer_event *event)
2414 {
2415 	unsigned long addr = (unsigned long)event;
2416 	struct buffer_page *bpage = cpu_buffer->commit_page;
2417 	struct buffer_page *start;
2418 
2419 	addr &= PAGE_MASK;
2420 
2421 	/* Do the likely case first */
2422 	if (likely(bpage->page == (void *)addr)) {
2423 		local_dec(&bpage->entries);
2424 		return;
2425 	}
2426 
2427 	/*
2428 	 * Because the commit page may be on the reader page we
2429 	 * start with the next page and check the end loop there.
2430 	 */
2431 	rb_inc_page(cpu_buffer, &bpage);
2432 	start = bpage;
2433 	do {
2434 		if (bpage->page == (void *)addr) {
2435 			local_dec(&bpage->entries);
2436 			return;
2437 		}
2438 		rb_inc_page(cpu_buffer, &bpage);
2439 	} while (bpage != start);
2440 
2441 	/* commit not part of this buffer?? */
2442 	RB_WARN_ON(cpu_buffer, 1);
2443 }
2444 
2445 /**
2446  * ring_buffer_commit_discard - discard an event that has not been committed
2447  * @buffer: the ring buffer
2448  * @event: non committed event to discard
2449  *
2450  * Sometimes an event that is in the ring buffer needs to be ignored.
2451  * This function lets the user discard an event in the ring buffer
2452  * and then that event will not be read later.
2453  *
2454  * This function only works if it is called before the the item has been
2455  * committed. It will try to free the event from the ring buffer
2456  * if another event has not been added behind it.
2457  *
2458  * If another event has been added behind it, it will set the event
2459  * up as discarded, and perform the commit.
2460  *
2461  * If this function is called, do not call ring_buffer_unlock_commit on
2462  * the event.
2463  */
2464 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2465 				struct ring_buffer_event *event)
2466 {
2467 	struct ring_buffer_per_cpu *cpu_buffer;
2468 	int cpu;
2469 
2470 	/* The event is discarded regardless */
2471 	rb_event_discard(event);
2472 
2473 	cpu = smp_processor_id();
2474 	cpu_buffer = buffer->buffers[cpu];
2475 
2476 	/*
2477 	 * This must only be called if the event has not been
2478 	 * committed yet. Thus we can assume that preemption
2479 	 * is still disabled.
2480 	 */
2481 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2482 
2483 	rb_decrement_entry(cpu_buffer, event);
2484 	if (rb_try_to_discard(cpu_buffer, event))
2485 		goto out;
2486 
2487 	/*
2488 	 * The commit is still visible by the reader, so we
2489 	 * must still update the timestamp.
2490 	 */
2491 	rb_update_write_stamp(cpu_buffer, event);
2492  out:
2493 	rb_end_commit(cpu_buffer);
2494 
2495 	trace_recursive_unlock();
2496 
2497 	preempt_enable_notrace();
2498 
2499 }
2500 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2501 
2502 /**
2503  * ring_buffer_write - write data to the buffer without reserving
2504  * @buffer: The ring buffer to write to.
2505  * @length: The length of the data being written (excluding the event header)
2506  * @data: The data to write to the buffer.
2507  *
2508  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2509  * one function. If you already have the data to write to the buffer, it
2510  * may be easier to simply call this function.
2511  *
2512  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2513  * and not the length of the event which would hold the header.
2514  */
2515 int ring_buffer_write(struct ring_buffer *buffer,
2516 			unsigned long length,
2517 			void *data)
2518 {
2519 	struct ring_buffer_per_cpu *cpu_buffer;
2520 	struct ring_buffer_event *event;
2521 	void *body;
2522 	int ret = -EBUSY;
2523 	int cpu;
2524 
2525 	if (ring_buffer_flags != RB_BUFFERS_ON)
2526 		return -EBUSY;
2527 
2528 	preempt_disable_notrace();
2529 
2530 	if (atomic_read(&buffer->record_disabled))
2531 		goto out;
2532 
2533 	cpu = raw_smp_processor_id();
2534 
2535 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2536 		goto out;
2537 
2538 	cpu_buffer = buffer->buffers[cpu];
2539 
2540 	if (atomic_read(&cpu_buffer->record_disabled))
2541 		goto out;
2542 
2543 	if (length > BUF_MAX_DATA_SIZE)
2544 		goto out;
2545 
2546 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2547 	if (!event)
2548 		goto out;
2549 
2550 	body = rb_event_data(event);
2551 
2552 	memcpy(body, data, length);
2553 
2554 	rb_commit(cpu_buffer, event);
2555 
2556 	ret = 0;
2557  out:
2558 	preempt_enable_notrace();
2559 
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL_GPL(ring_buffer_write);
2563 
2564 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2565 {
2566 	struct buffer_page *reader = cpu_buffer->reader_page;
2567 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2568 	struct buffer_page *commit = cpu_buffer->commit_page;
2569 
2570 	/* In case of error, head will be NULL */
2571 	if (unlikely(!head))
2572 		return 1;
2573 
2574 	return reader->read == rb_page_commit(reader) &&
2575 		(commit == reader ||
2576 		 (commit == head &&
2577 		  head->read == rb_page_commit(commit)));
2578 }
2579 
2580 /**
2581  * ring_buffer_record_disable - stop all writes into the buffer
2582  * @buffer: The ring buffer to stop writes to.
2583  *
2584  * This prevents all writes to the buffer. Any attempt to write
2585  * to the buffer after this will fail and return NULL.
2586  *
2587  * The caller should call synchronize_sched() after this.
2588  */
2589 void ring_buffer_record_disable(struct ring_buffer *buffer)
2590 {
2591 	atomic_inc(&buffer->record_disabled);
2592 }
2593 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2594 
2595 /**
2596  * ring_buffer_record_enable - enable writes to the buffer
2597  * @buffer: The ring buffer to enable writes
2598  *
2599  * Note, multiple disables will need the same number of enables
2600  * to truly enable the writing (much like preempt_disable).
2601  */
2602 void ring_buffer_record_enable(struct ring_buffer *buffer)
2603 {
2604 	atomic_dec(&buffer->record_disabled);
2605 }
2606 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2607 
2608 /**
2609  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2610  * @buffer: The ring buffer to stop writes to.
2611  * @cpu: The CPU buffer to stop
2612  *
2613  * This prevents all writes to the buffer. Any attempt to write
2614  * to the buffer after this will fail and return NULL.
2615  *
2616  * The caller should call synchronize_sched() after this.
2617  */
2618 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2619 {
2620 	struct ring_buffer_per_cpu *cpu_buffer;
2621 
2622 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2623 		return;
2624 
2625 	cpu_buffer = buffer->buffers[cpu];
2626 	atomic_inc(&cpu_buffer->record_disabled);
2627 }
2628 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2629 
2630 /**
2631  * ring_buffer_record_enable_cpu - enable writes to the buffer
2632  * @buffer: The ring buffer to enable writes
2633  * @cpu: The CPU to enable.
2634  *
2635  * Note, multiple disables will need the same number of enables
2636  * to truly enable the writing (much like preempt_disable).
2637  */
2638 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2639 {
2640 	struct ring_buffer_per_cpu *cpu_buffer;
2641 
2642 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2643 		return;
2644 
2645 	cpu_buffer = buffer->buffers[cpu];
2646 	atomic_dec(&cpu_buffer->record_disabled);
2647 }
2648 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2649 
2650 /*
2651  * The total entries in the ring buffer is the running counter
2652  * of entries entered into the ring buffer, minus the sum of
2653  * the entries read from the ring buffer and the number of
2654  * entries that were overwritten.
2655  */
2656 static inline unsigned long
2657 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2658 {
2659 	return local_read(&cpu_buffer->entries) -
2660 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2661 }
2662 
2663 /**
2664  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2665  * @buffer: The ring buffer
2666  * @cpu: The per CPU buffer to get the entries from.
2667  */
2668 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2669 {
2670 	struct ring_buffer_per_cpu *cpu_buffer;
2671 
2672 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2673 		return 0;
2674 
2675 	cpu_buffer = buffer->buffers[cpu];
2676 
2677 	return rb_num_of_entries(cpu_buffer);
2678 }
2679 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2680 
2681 /**
2682  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2683  * @buffer: The ring buffer
2684  * @cpu: The per CPU buffer to get the number of overruns from
2685  */
2686 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2687 {
2688 	struct ring_buffer_per_cpu *cpu_buffer;
2689 	unsigned long ret;
2690 
2691 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2692 		return 0;
2693 
2694 	cpu_buffer = buffer->buffers[cpu];
2695 	ret = local_read(&cpu_buffer->overrun);
2696 
2697 	return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2700 
2701 /**
2702  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2703  * @buffer: The ring buffer
2704  * @cpu: The per CPU buffer to get the number of overruns from
2705  */
2706 unsigned long
2707 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2708 {
2709 	struct ring_buffer_per_cpu *cpu_buffer;
2710 	unsigned long ret;
2711 
2712 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2713 		return 0;
2714 
2715 	cpu_buffer = buffer->buffers[cpu];
2716 	ret = local_read(&cpu_buffer->commit_overrun);
2717 
2718 	return ret;
2719 }
2720 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2721 
2722 /**
2723  * ring_buffer_entries - get the number of entries in a buffer
2724  * @buffer: The ring buffer
2725  *
2726  * Returns the total number of entries in the ring buffer
2727  * (all CPU entries)
2728  */
2729 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2730 {
2731 	struct ring_buffer_per_cpu *cpu_buffer;
2732 	unsigned long entries = 0;
2733 	int cpu;
2734 
2735 	/* if you care about this being correct, lock the buffer */
2736 	for_each_buffer_cpu(buffer, cpu) {
2737 		cpu_buffer = buffer->buffers[cpu];
2738 		entries += rb_num_of_entries(cpu_buffer);
2739 	}
2740 
2741 	return entries;
2742 }
2743 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2744 
2745 /**
2746  * ring_buffer_overruns - get the number of overruns in buffer
2747  * @buffer: The ring buffer
2748  *
2749  * Returns the total number of overruns in the ring buffer
2750  * (all CPU entries)
2751  */
2752 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2753 {
2754 	struct ring_buffer_per_cpu *cpu_buffer;
2755 	unsigned long overruns = 0;
2756 	int cpu;
2757 
2758 	/* if you care about this being correct, lock the buffer */
2759 	for_each_buffer_cpu(buffer, cpu) {
2760 		cpu_buffer = buffer->buffers[cpu];
2761 		overruns += local_read(&cpu_buffer->overrun);
2762 	}
2763 
2764 	return overruns;
2765 }
2766 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2767 
2768 static void rb_iter_reset(struct ring_buffer_iter *iter)
2769 {
2770 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2771 
2772 	/* Iterator usage is expected to have record disabled */
2773 	if (list_empty(&cpu_buffer->reader_page->list)) {
2774 		iter->head_page = rb_set_head_page(cpu_buffer);
2775 		if (unlikely(!iter->head_page))
2776 			return;
2777 		iter->head = iter->head_page->read;
2778 	} else {
2779 		iter->head_page = cpu_buffer->reader_page;
2780 		iter->head = cpu_buffer->reader_page->read;
2781 	}
2782 	if (iter->head)
2783 		iter->read_stamp = cpu_buffer->read_stamp;
2784 	else
2785 		iter->read_stamp = iter->head_page->page->time_stamp;
2786 	iter->cache_reader_page = cpu_buffer->reader_page;
2787 	iter->cache_read = cpu_buffer->read;
2788 }
2789 
2790 /**
2791  * ring_buffer_iter_reset - reset an iterator
2792  * @iter: The iterator to reset
2793  *
2794  * Resets the iterator, so that it will start from the beginning
2795  * again.
2796  */
2797 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2798 {
2799 	struct ring_buffer_per_cpu *cpu_buffer;
2800 	unsigned long flags;
2801 
2802 	if (!iter)
2803 		return;
2804 
2805 	cpu_buffer = iter->cpu_buffer;
2806 
2807 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2808 	rb_iter_reset(iter);
2809 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2810 }
2811 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2812 
2813 /**
2814  * ring_buffer_iter_empty - check if an iterator has no more to read
2815  * @iter: The iterator to check
2816  */
2817 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2818 {
2819 	struct ring_buffer_per_cpu *cpu_buffer;
2820 
2821 	cpu_buffer = iter->cpu_buffer;
2822 
2823 	return iter->head_page == cpu_buffer->commit_page &&
2824 		iter->head == rb_commit_index(cpu_buffer);
2825 }
2826 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2827 
2828 static void
2829 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2830 		     struct ring_buffer_event *event)
2831 {
2832 	u64 delta;
2833 
2834 	switch (event->type_len) {
2835 	case RINGBUF_TYPE_PADDING:
2836 		return;
2837 
2838 	case RINGBUF_TYPE_TIME_EXTEND:
2839 		delta = event->array[0];
2840 		delta <<= TS_SHIFT;
2841 		delta += event->time_delta;
2842 		cpu_buffer->read_stamp += delta;
2843 		return;
2844 
2845 	case RINGBUF_TYPE_TIME_STAMP:
2846 		/* FIXME: not implemented */
2847 		return;
2848 
2849 	case RINGBUF_TYPE_DATA:
2850 		cpu_buffer->read_stamp += event->time_delta;
2851 		return;
2852 
2853 	default:
2854 		BUG();
2855 	}
2856 	return;
2857 }
2858 
2859 static void
2860 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2861 			  struct ring_buffer_event *event)
2862 {
2863 	u64 delta;
2864 
2865 	switch (event->type_len) {
2866 	case RINGBUF_TYPE_PADDING:
2867 		return;
2868 
2869 	case RINGBUF_TYPE_TIME_EXTEND:
2870 		delta = event->array[0];
2871 		delta <<= TS_SHIFT;
2872 		delta += event->time_delta;
2873 		iter->read_stamp += delta;
2874 		return;
2875 
2876 	case RINGBUF_TYPE_TIME_STAMP:
2877 		/* FIXME: not implemented */
2878 		return;
2879 
2880 	case RINGBUF_TYPE_DATA:
2881 		iter->read_stamp += event->time_delta;
2882 		return;
2883 
2884 	default:
2885 		BUG();
2886 	}
2887 	return;
2888 }
2889 
2890 static struct buffer_page *
2891 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2892 {
2893 	struct buffer_page *reader = NULL;
2894 	unsigned long overwrite;
2895 	unsigned long flags;
2896 	int nr_loops = 0;
2897 	int ret;
2898 
2899 	local_irq_save(flags);
2900 	arch_spin_lock(&cpu_buffer->lock);
2901 
2902  again:
2903 	/*
2904 	 * This should normally only loop twice. But because the
2905 	 * start of the reader inserts an empty page, it causes
2906 	 * a case where we will loop three times. There should be no
2907 	 * reason to loop four times (that I know of).
2908 	 */
2909 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2910 		reader = NULL;
2911 		goto out;
2912 	}
2913 
2914 	reader = cpu_buffer->reader_page;
2915 
2916 	/* If there's more to read, return this page */
2917 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2918 		goto out;
2919 
2920 	/* Never should we have an index greater than the size */
2921 	if (RB_WARN_ON(cpu_buffer,
2922 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2923 		goto out;
2924 
2925 	/* check if we caught up to the tail */
2926 	reader = NULL;
2927 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2928 		goto out;
2929 
2930 	/*
2931 	 * Reset the reader page to size zero.
2932 	 */
2933 	local_set(&cpu_buffer->reader_page->write, 0);
2934 	local_set(&cpu_buffer->reader_page->entries, 0);
2935 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2936 	cpu_buffer->reader_page->real_end = 0;
2937 
2938  spin:
2939 	/*
2940 	 * Splice the empty reader page into the list around the head.
2941 	 */
2942 	reader = rb_set_head_page(cpu_buffer);
2943 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2944 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2945 
2946 	/*
2947 	 * cpu_buffer->pages just needs to point to the buffer, it
2948 	 *  has no specific buffer page to point to. Lets move it out
2949 	 *  of our way so we don't accidentally swap it.
2950 	 */
2951 	cpu_buffer->pages = reader->list.prev;
2952 
2953 	/* The reader page will be pointing to the new head */
2954 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2955 
2956 	/*
2957 	 * We want to make sure we read the overruns after we set up our
2958 	 * pointers to the next object. The writer side does a
2959 	 * cmpxchg to cross pages which acts as the mb on the writer
2960 	 * side. Note, the reader will constantly fail the swap
2961 	 * while the writer is updating the pointers, so this
2962 	 * guarantees that the overwrite recorded here is the one we
2963 	 * want to compare with the last_overrun.
2964 	 */
2965 	smp_mb();
2966 	overwrite = local_read(&(cpu_buffer->overrun));
2967 
2968 	/*
2969 	 * Here's the tricky part.
2970 	 *
2971 	 * We need to move the pointer past the header page.
2972 	 * But we can only do that if a writer is not currently
2973 	 * moving it. The page before the header page has the
2974 	 * flag bit '1' set if it is pointing to the page we want.
2975 	 * but if the writer is in the process of moving it
2976 	 * than it will be '2' or already moved '0'.
2977 	 */
2978 
2979 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2980 
2981 	/*
2982 	 * If we did not convert it, then we must try again.
2983 	 */
2984 	if (!ret)
2985 		goto spin;
2986 
2987 	/*
2988 	 * Yeah! We succeeded in replacing the page.
2989 	 *
2990 	 * Now make the new head point back to the reader page.
2991 	 */
2992 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2993 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2994 
2995 	/* Finally update the reader page to the new head */
2996 	cpu_buffer->reader_page = reader;
2997 	rb_reset_reader_page(cpu_buffer);
2998 
2999 	if (overwrite != cpu_buffer->last_overrun) {
3000 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3001 		cpu_buffer->last_overrun = overwrite;
3002 	}
3003 
3004 	goto again;
3005 
3006  out:
3007 	arch_spin_unlock(&cpu_buffer->lock);
3008 	local_irq_restore(flags);
3009 
3010 	return reader;
3011 }
3012 
3013 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3014 {
3015 	struct ring_buffer_event *event;
3016 	struct buffer_page *reader;
3017 	unsigned length;
3018 
3019 	reader = rb_get_reader_page(cpu_buffer);
3020 
3021 	/* This function should not be called when buffer is empty */
3022 	if (RB_WARN_ON(cpu_buffer, !reader))
3023 		return;
3024 
3025 	event = rb_reader_event(cpu_buffer);
3026 
3027 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3028 		cpu_buffer->read++;
3029 
3030 	rb_update_read_stamp(cpu_buffer, event);
3031 
3032 	length = rb_event_length(event);
3033 	cpu_buffer->reader_page->read += length;
3034 }
3035 
3036 static void rb_advance_iter(struct ring_buffer_iter *iter)
3037 {
3038 	struct ring_buffer_per_cpu *cpu_buffer;
3039 	struct ring_buffer_event *event;
3040 	unsigned length;
3041 
3042 	cpu_buffer = iter->cpu_buffer;
3043 
3044 	/*
3045 	 * Check if we are at the end of the buffer.
3046 	 */
3047 	if (iter->head >= rb_page_size(iter->head_page)) {
3048 		/* discarded commits can make the page empty */
3049 		if (iter->head_page == cpu_buffer->commit_page)
3050 			return;
3051 		rb_inc_iter(iter);
3052 		return;
3053 	}
3054 
3055 	event = rb_iter_head_event(iter);
3056 
3057 	length = rb_event_length(event);
3058 
3059 	/*
3060 	 * This should not be called to advance the header if we are
3061 	 * at the tail of the buffer.
3062 	 */
3063 	if (RB_WARN_ON(cpu_buffer,
3064 		       (iter->head_page == cpu_buffer->commit_page) &&
3065 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3066 		return;
3067 
3068 	rb_update_iter_read_stamp(iter, event);
3069 
3070 	iter->head += length;
3071 
3072 	/* check for end of page padding */
3073 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3074 	    (iter->head_page != cpu_buffer->commit_page))
3075 		rb_advance_iter(iter);
3076 }
3077 
3078 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3079 {
3080 	return cpu_buffer->lost_events;
3081 }
3082 
3083 static struct ring_buffer_event *
3084 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3085 	       unsigned long *lost_events)
3086 {
3087 	struct ring_buffer_event *event;
3088 	struct buffer_page *reader;
3089 	int nr_loops = 0;
3090 
3091  again:
3092 	/*
3093 	 * We repeat when a time extend is encountered.
3094 	 * Since the time extend is always attached to a data event,
3095 	 * we should never loop more than once.
3096 	 * (We never hit the following condition more than twice).
3097 	 */
3098 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3099 		return NULL;
3100 
3101 	reader = rb_get_reader_page(cpu_buffer);
3102 	if (!reader)
3103 		return NULL;
3104 
3105 	event = rb_reader_event(cpu_buffer);
3106 
3107 	switch (event->type_len) {
3108 	case RINGBUF_TYPE_PADDING:
3109 		if (rb_null_event(event))
3110 			RB_WARN_ON(cpu_buffer, 1);
3111 		/*
3112 		 * Because the writer could be discarding every
3113 		 * event it creates (which would probably be bad)
3114 		 * if we were to go back to "again" then we may never
3115 		 * catch up, and will trigger the warn on, or lock
3116 		 * the box. Return the padding, and we will release
3117 		 * the current locks, and try again.
3118 		 */
3119 		return event;
3120 
3121 	case RINGBUF_TYPE_TIME_EXTEND:
3122 		/* Internal data, OK to advance */
3123 		rb_advance_reader(cpu_buffer);
3124 		goto again;
3125 
3126 	case RINGBUF_TYPE_TIME_STAMP:
3127 		/* FIXME: not implemented */
3128 		rb_advance_reader(cpu_buffer);
3129 		goto again;
3130 
3131 	case RINGBUF_TYPE_DATA:
3132 		if (ts) {
3133 			*ts = cpu_buffer->read_stamp + event->time_delta;
3134 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3135 							 cpu_buffer->cpu, ts);
3136 		}
3137 		if (lost_events)
3138 			*lost_events = rb_lost_events(cpu_buffer);
3139 		return event;
3140 
3141 	default:
3142 		BUG();
3143 	}
3144 
3145 	return NULL;
3146 }
3147 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3148 
3149 static struct ring_buffer_event *
3150 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3151 {
3152 	struct ring_buffer *buffer;
3153 	struct ring_buffer_per_cpu *cpu_buffer;
3154 	struct ring_buffer_event *event;
3155 	int nr_loops = 0;
3156 
3157 	cpu_buffer = iter->cpu_buffer;
3158 	buffer = cpu_buffer->buffer;
3159 
3160 	/*
3161 	 * Check if someone performed a consuming read to
3162 	 * the buffer. A consuming read invalidates the iterator
3163 	 * and we need to reset the iterator in this case.
3164 	 */
3165 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3166 		     iter->cache_reader_page != cpu_buffer->reader_page))
3167 		rb_iter_reset(iter);
3168 
3169  again:
3170 	if (ring_buffer_iter_empty(iter))
3171 		return NULL;
3172 
3173 	/*
3174 	 * We repeat when a time extend is encountered.
3175 	 * Since the time extend is always attached to a data event,
3176 	 * we should never loop more than once.
3177 	 * (We never hit the following condition more than twice).
3178 	 */
3179 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3180 		return NULL;
3181 
3182 	if (rb_per_cpu_empty(cpu_buffer))
3183 		return NULL;
3184 
3185 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3186 		rb_inc_iter(iter);
3187 		goto again;
3188 	}
3189 
3190 	event = rb_iter_head_event(iter);
3191 
3192 	switch (event->type_len) {
3193 	case RINGBUF_TYPE_PADDING:
3194 		if (rb_null_event(event)) {
3195 			rb_inc_iter(iter);
3196 			goto again;
3197 		}
3198 		rb_advance_iter(iter);
3199 		return event;
3200 
3201 	case RINGBUF_TYPE_TIME_EXTEND:
3202 		/* Internal data, OK to advance */
3203 		rb_advance_iter(iter);
3204 		goto again;
3205 
3206 	case RINGBUF_TYPE_TIME_STAMP:
3207 		/* FIXME: not implemented */
3208 		rb_advance_iter(iter);
3209 		goto again;
3210 
3211 	case RINGBUF_TYPE_DATA:
3212 		if (ts) {
3213 			*ts = iter->read_stamp + event->time_delta;
3214 			ring_buffer_normalize_time_stamp(buffer,
3215 							 cpu_buffer->cpu, ts);
3216 		}
3217 		return event;
3218 
3219 	default:
3220 		BUG();
3221 	}
3222 
3223 	return NULL;
3224 }
3225 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3226 
3227 static inline int rb_ok_to_lock(void)
3228 {
3229 	/*
3230 	 * If an NMI die dumps out the content of the ring buffer
3231 	 * do not grab locks. We also permanently disable the ring
3232 	 * buffer too. A one time deal is all you get from reading
3233 	 * the ring buffer from an NMI.
3234 	 */
3235 	if (likely(!in_nmi()))
3236 		return 1;
3237 
3238 	tracing_off_permanent();
3239 	return 0;
3240 }
3241 
3242 /**
3243  * ring_buffer_peek - peek at the next event to be read
3244  * @buffer: The ring buffer to read
3245  * @cpu: The cpu to peak at
3246  * @ts: The timestamp counter of this event.
3247  * @lost_events: a variable to store if events were lost (may be NULL)
3248  *
3249  * This will return the event that will be read next, but does
3250  * not consume the data.
3251  */
3252 struct ring_buffer_event *
3253 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3254 		 unsigned long *lost_events)
3255 {
3256 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3257 	struct ring_buffer_event *event;
3258 	unsigned long flags;
3259 	int dolock;
3260 
3261 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262 		return NULL;
3263 
3264 	dolock = rb_ok_to_lock();
3265  again:
3266 	local_irq_save(flags);
3267 	if (dolock)
3268 		spin_lock(&cpu_buffer->reader_lock);
3269 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3270 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3271 		rb_advance_reader(cpu_buffer);
3272 	if (dolock)
3273 		spin_unlock(&cpu_buffer->reader_lock);
3274 	local_irq_restore(flags);
3275 
3276 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3277 		goto again;
3278 
3279 	return event;
3280 }
3281 
3282 /**
3283  * ring_buffer_iter_peek - peek at the next event to be read
3284  * @iter: The ring buffer iterator
3285  * @ts: The timestamp counter of this event.
3286  *
3287  * This will return the event that will be read next, but does
3288  * not increment the iterator.
3289  */
3290 struct ring_buffer_event *
3291 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3292 {
3293 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3294 	struct ring_buffer_event *event;
3295 	unsigned long flags;
3296 
3297  again:
3298 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3299 	event = rb_iter_peek(iter, ts);
3300 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3301 
3302 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3303 		goto again;
3304 
3305 	return event;
3306 }
3307 
3308 /**
3309  * ring_buffer_consume - return an event and consume it
3310  * @buffer: The ring buffer to get the next event from
3311  * @cpu: the cpu to read the buffer from
3312  * @ts: a variable to store the timestamp (may be NULL)
3313  * @lost_events: a variable to store if events were lost (may be NULL)
3314  *
3315  * Returns the next event in the ring buffer, and that event is consumed.
3316  * Meaning, that sequential reads will keep returning a different event,
3317  * and eventually empty the ring buffer if the producer is slower.
3318  */
3319 struct ring_buffer_event *
3320 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3321 		    unsigned long *lost_events)
3322 {
3323 	struct ring_buffer_per_cpu *cpu_buffer;
3324 	struct ring_buffer_event *event = NULL;
3325 	unsigned long flags;
3326 	int dolock;
3327 
3328 	dolock = rb_ok_to_lock();
3329 
3330  again:
3331 	/* might be called in atomic */
3332 	preempt_disable();
3333 
3334 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3335 		goto out;
3336 
3337 	cpu_buffer = buffer->buffers[cpu];
3338 	local_irq_save(flags);
3339 	if (dolock)
3340 		spin_lock(&cpu_buffer->reader_lock);
3341 
3342 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3343 	if (event) {
3344 		cpu_buffer->lost_events = 0;
3345 		rb_advance_reader(cpu_buffer);
3346 	}
3347 
3348 	if (dolock)
3349 		spin_unlock(&cpu_buffer->reader_lock);
3350 	local_irq_restore(flags);
3351 
3352  out:
3353 	preempt_enable();
3354 
3355 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3356 		goto again;
3357 
3358 	return event;
3359 }
3360 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3361 
3362 /**
3363  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3364  * @buffer: The ring buffer to read from
3365  * @cpu: The cpu buffer to iterate over
3366  *
3367  * This performs the initial preparations necessary to iterate
3368  * through the buffer.  Memory is allocated, buffer recording
3369  * is disabled, and the iterator pointer is returned to the caller.
3370  *
3371  * Disabling buffer recordng prevents the reading from being
3372  * corrupted. This is not a consuming read, so a producer is not
3373  * expected.
3374  *
3375  * After a sequence of ring_buffer_read_prepare calls, the user is
3376  * expected to make at least one call to ring_buffer_prepare_sync.
3377  * Afterwards, ring_buffer_read_start is invoked to get things going
3378  * for real.
3379  *
3380  * This overall must be paired with ring_buffer_finish.
3381  */
3382 struct ring_buffer_iter *
3383 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3384 {
3385 	struct ring_buffer_per_cpu *cpu_buffer;
3386 	struct ring_buffer_iter *iter;
3387 
3388 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3389 		return NULL;
3390 
3391 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3392 	if (!iter)
3393 		return NULL;
3394 
3395 	cpu_buffer = buffer->buffers[cpu];
3396 
3397 	iter->cpu_buffer = cpu_buffer;
3398 
3399 	atomic_inc(&cpu_buffer->record_disabled);
3400 
3401 	return iter;
3402 }
3403 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3404 
3405 /**
3406  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3407  *
3408  * All previously invoked ring_buffer_read_prepare calls to prepare
3409  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3410  * calls on those iterators are allowed.
3411  */
3412 void
3413 ring_buffer_read_prepare_sync(void)
3414 {
3415 	synchronize_sched();
3416 }
3417 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3418 
3419 /**
3420  * ring_buffer_read_start - start a non consuming read of the buffer
3421  * @iter: The iterator returned by ring_buffer_read_prepare
3422  *
3423  * This finalizes the startup of an iteration through the buffer.
3424  * The iterator comes from a call to ring_buffer_read_prepare and
3425  * an intervening ring_buffer_read_prepare_sync must have been
3426  * performed.
3427  *
3428  * Must be paired with ring_buffer_finish.
3429  */
3430 void
3431 ring_buffer_read_start(struct ring_buffer_iter *iter)
3432 {
3433 	struct ring_buffer_per_cpu *cpu_buffer;
3434 	unsigned long flags;
3435 
3436 	if (!iter)
3437 		return;
3438 
3439 	cpu_buffer = iter->cpu_buffer;
3440 
3441 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3442 	arch_spin_lock(&cpu_buffer->lock);
3443 	rb_iter_reset(iter);
3444 	arch_spin_unlock(&cpu_buffer->lock);
3445 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3446 }
3447 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3448 
3449 /**
3450  * ring_buffer_finish - finish reading the iterator of the buffer
3451  * @iter: The iterator retrieved by ring_buffer_start
3452  *
3453  * This re-enables the recording to the buffer, and frees the
3454  * iterator.
3455  */
3456 void
3457 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3458 {
3459 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3460 
3461 	atomic_dec(&cpu_buffer->record_disabled);
3462 	kfree(iter);
3463 }
3464 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3465 
3466 /**
3467  * ring_buffer_read - read the next item in the ring buffer by the iterator
3468  * @iter: The ring buffer iterator
3469  * @ts: The time stamp of the event read.
3470  *
3471  * This reads the next event in the ring buffer and increments the iterator.
3472  */
3473 struct ring_buffer_event *
3474 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3475 {
3476 	struct ring_buffer_event *event;
3477 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3478 	unsigned long flags;
3479 
3480 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3481  again:
3482 	event = rb_iter_peek(iter, ts);
3483 	if (!event)
3484 		goto out;
3485 
3486 	if (event->type_len == RINGBUF_TYPE_PADDING)
3487 		goto again;
3488 
3489 	rb_advance_iter(iter);
3490  out:
3491 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3492 
3493 	return event;
3494 }
3495 EXPORT_SYMBOL_GPL(ring_buffer_read);
3496 
3497 /**
3498  * ring_buffer_size - return the size of the ring buffer (in bytes)
3499  * @buffer: The ring buffer.
3500  */
3501 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3502 {
3503 	return BUF_PAGE_SIZE * buffer->pages;
3504 }
3505 EXPORT_SYMBOL_GPL(ring_buffer_size);
3506 
3507 static void
3508 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3509 {
3510 	rb_head_page_deactivate(cpu_buffer);
3511 
3512 	cpu_buffer->head_page
3513 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3514 	local_set(&cpu_buffer->head_page->write, 0);
3515 	local_set(&cpu_buffer->head_page->entries, 0);
3516 	local_set(&cpu_buffer->head_page->page->commit, 0);
3517 
3518 	cpu_buffer->head_page->read = 0;
3519 
3520 	cpu_buffer->tail_page = cpu_buffer->head_page;
3521 	cpu_buffer->commit_page = cpu_buffer->head_page;
3522 
3523 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3524 	local_set(&cpu_buffer->reader_page->write, 0);
3525 	local_set(&cpu_buffer->reader_page->entries, 0);
3526 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3527 	cpu_buffer->reader_page->read = 0;
3528 
3529 	local_set(&cpu_buffer->commit_overrun, 0);
3530 	local_set(&cpu_buffer->overrun, 0);
3531 	local_set(&cpu_buffer->entries, 0);
3532 	local_set(&cpu_buffer->committing, 0);
3533 	local_set(&cpu_buffer->commits, 0);
3534 	cpu_buffer->read = 0;
3535 
3536 	cpu_buffer->write_stamp = 0;
3537 	cpu_buffer->read_stamp = 0;
3538 
3539 	cpu_buffer->lost_events = 0;
3540 	cpu_buffer->last_overrun = 0;
3541 
3542 	rb_head_page_activate(cpu_buffer);
3543 }
3544 
3545 /**
3546  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3547  * @buffer: The ring buffer to reset a per cpu buffer of
3548  * @cpu: The CPU buffer to be reset
3549  */
3550 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3551 {
3552 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3553 	unsigned long flags;
3554 
3555 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3556 		return;
3557 
3558 	atomic_inc(&cpu_buffer->record_disabled);
3559 
3560 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3561 
3562 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3563 		goto out;
3564 
3565 	arch_spin_lock(&cpu_buffer->lock);
3566 
3567 	rb_reset_cpu(cpu_buffer);
3568 
3569 	arch_spin_unlock(&cpu_buffer->lock);
3570 
3571  out:
3572 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3573 
3574 	atomic_dec(&cpu_buffer->record_disabled);
3575 }
3576 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3577 
3578 /**
3579  * ring_buffer_reset - reset a ring buffer
3580  * @buffer: The ring buffer to reset all cpu buffers
3581  */
3582 void ring_buffer_reset(struct ring_buffer *buffer)
3583 {
3584 	int cpu;
3585 
3586 	for_each_buffer_cpu(buffer, cpu)
3587 		ring_buffer_reset_cpu(buffer, cpu);
3588 }
3589 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3590 
3591 /**
3592  * rind_buffer_empty - is the ring buffer empty?
3593  * @buffer: The ring buffer to test
3594  */
3595 int ring_buffer_empty(struct ring_buffer *buffer)
3596 {
3597 	struct ring_buffer_per_cpu *cpu_buffer;
3598 	unsigned long flags;
3599 	int dolock;
3600 	int cpu;
3601 	int ret;
3602 
3603 	dolock = rb_ok_to_lock();
3604 
3605 	/* yes this is racy, but if you don't like the race, lock the buffer */
3606 	for_each_buffer_cpu(buffer, cpu) {
3607 		cpu_buffer = buffer->buffers[cpu];
3608 		local_irq_save(flags);
3609 		if (dolock)
3610 			spin_lock(&cpu_buffer->reader_lock);
3611 		ret = rb_per_cpu_empty(cpu_buffer);
3612 		if (dolock)
3613 			spin_unlock(&cpu_buffer->reader_lock);
3614 		local_irq_restore(flags);
3615 
3616 		if (!ret)
3617 			return 0;
3618 	}
3619 
3620 	return 1;
3621 }
3622 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3623 
3624 /**
3625  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3626  * @buffer: The ring buffer
3627  * @cpu: The CPU buffer to test
3628  */
3629 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3630 {
3631 	struct ring_buffer_per_cpu *cpu_buffer;
3632 	unsigned long flags;
3633 	int dolock;
3634 	int ret;
3635 
3636 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3637 		return 1;
3638 
3639 	dolock = rb_ok_to_lock();
3640 
3641 	cpu_buffer = buffer->buffers[cpu];
3642 	local_irq_save(flags);
3643 	if (dolock)
3644 		spin_lock(&cpu_buffer->reader_lock);
3645 	ret = rb_per_cpu_empty(cpu_buffer);
3646 	if (dolock)
3647 		spin_unlock(&cpu_buffer->reader_lock);
3648 	local_irq_restore(flags);
3649 
3650 	return ret;
3651 }
3652 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3653 
3654 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3655 /**
3656  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3657  * @buffer_a: One buffer to swap with
3658  * @buffer_b: The other buffer to swap with
3659  *
3660  * This function is useful for tracers that want to take a "snapshot"
3661  * of a CPU buffer and has another back up buffer lying around.
3662  * it is expected that the tracer handles the cpu buffer not being
3663  * used at the moment.
3664  */
3665 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3666 			 struct ring_buffer *buffer_b, int cpu)
3667 {
3668 	struct ring_buffer_per_cpu *cpu_buffer_a;
3669 	struct ring_buffer_per_cpu *cpu_buffer_b;
3670 	int ret = -EINVAL;
3671 
3672 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3673 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3674 		goto out;
3675 
3676 	/* At least make sure the two buffers are somewhat the same */
3677 	if (buffer_a->pages != buffer_b->pages)
3678 		goto out;
3679 
3680 	ret = -EAGAIN;
3681 
3682 	if (ring_buffer_flags != RB_BUFFERS_ON)
3683 		goto out;
3684 
3685 	if (atomic_read(&buffer_a->record_disabled))
3686 		goto out;
3687 
3688 	if (atomic_read(&buffer_b->record_disabled))
3689 		goto out;
3690 
3691 	cpu_buffer_a = buffer_a->buffers[cpu];
3692 	cpu_buffer_b = buffer_b->buffers[cpu];
3693 
3694 	if (atomic_read(&cpu_buffer_a->record_disabled))
3695 		goto out;
3696 
3697 	if (atomic_read(&cpu_buffer_b->record_disabled))
3698 		goto out;
3699 
3700 	/*
3701 	 * We can't do a synchronize_sched here because this
3702 	 * function can be called in atomic context.
3703 	 * Normally this will be called from the same CPU as cpu.
3704 	 * If not it's up to the caller to protect this.
3705 	 */
3706 	atomic_inc(&cpu_buffer_a->record_disabled);
3707 	atomic_inc(&cpu_buffer_b->record_disabled);
3708 
3709 	ret = -EBUSY;
3710 	if (local_read(&cpu_buffer_a->committing))
3711 		goto out_dec;
3712 	if (local_read(&cpu_buffer_b->committing))
3713 		goto out_dec;
3714 
3715 	buffer_a->buffers[cpu] = cpu_buffer_b;
3716 	buffer_b->buffers[cpu] = cpu_buffer_a;
3717 
3718 	cpu_buffer_b->buffer = buffer_a;
3719 	cpu_buffer_a->buffer = buffer_b;
3720 
3721 	ret = 0;
3722 
3723 out_dec:
3724 	atomic_dec(&cpu_buffer_a->record_disabled);
3725 	atomic_dec(&cpu_buffer_b->record_disabled);
3726 out:
3727 	return ret;
3728 }
3729 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3730 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3731 
3732 /**
3733  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3734  * @buffer: the buffer to allocate for.
3735  *
3736  * This function is used in conjunction with ring_buffer_read_page.
3737  * When reading a full page from the ring buffer, these functions
3738  * can be used to speed up the process. The calling function should
3739  * allocate a few pages first with this function. Then when it
3740  * needs to get pages from the ring buffer, it passes the result
3741  * of this function into ring_buffer_read_page, which will swap
3742  * the page that was allocated, with the read page of the buffer.
3743  *
3744  * Returns:
3745  *  The page allocated, or NULL on error.
3746  */
3747 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
3748 {
3749 	struct buffer_data_page *bpage;
3750 	struct page *page;
3751 
3752 	page = alloc_pages_node(cpu_to_node(cpu),
3753 				GFP_KERNEL | __GFP_NORETRY, 0);
3754 	if (!page)
3755 		return NULL;
3756 
3757 	bpage = page_address(page);
3758 
3759 	rb_init_page(bpage);
3760 
3761 	return bpage;
3762 }
3763 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3764 
3765 /**
3766  * ring_buffer_free_read_page - free an allocated read page
3767  * @buffer: the buffer the page was allocate for
3768  * @data: the page to free
3769  *
3770  * Free a page allocated from ring_buffer_alloc_read_page.
3771  */
3772 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3773 {
3774 	free_page((unsigned long)data);
3775 }
3776 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3777 
3778 /**
3779  * ring_buffer_read_page - extract a page from the ring buffer
3780  * @buffer: buffer to extract from
3781  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3782  * @len: amount to extract
3783  * @cpu: the cpu of the buffer to extract
3784  * @full: should the extraction only happen when the page is full.
3785  *
3786  * This function will pull out a page from the ring buffer and consume it.
3787  * @data_page must be the address of the variable that was returned
3788  * from ring_buffer_alloc_read_page. This is because the page might be used
3789  * to swap with a page in the ring buffer.
3790  *
3791  * for example:
3792  *	rpage = ring_buffer_alloc_read_page(buffer);
3793  *	if (!rpage)
3794  *		return error;
3795  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3796  *	if (ret >= 0)
3797  *		process_page(rpage, ret);
3798  *
3799  * When @full is set, the function will not return true unless
3800  * the writer is off the reader page.
3801  *
3802  * Note: it is up to the calling functions to handle sleeps and wakeups.
3803  *  The ring buffer can be used anywhere in the kernel and can not
3804  *  blindly call wake_up. The layer that uses the ring buffer must be
3805  *  responsible for that.
3806  *
3807  * Returns:
3808  *  >=0 if data has been transferred, returns the offset of consumed data.
3809  *  <0 if no data has been transferred.
3810  */
3811 int ring_buffer_read_page(struct ring_buffer *buffer,
3812 			  void **data_page, size_t len, int cpu, int full)
3813 {
3814 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3815 	struct ring_buffer_event *event;
3816 	struct buffer_data_page *bpage;
3817 	struct buffer_page *reader;
3818 	unsigned long missed_events;
3819 	unsigned long flags;
3820 	unsigned int commit;
3821 	unsigned int read;
3822 	u64 save_timestamp;
3823 	int ret = -1;
3824 
3825 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3826 		goto out;
3827 
3828 	/*
3829 	 * If len is not big enough to hold the page header, then
3830 	 * we can not copy anything.
3831 	 */
3832 	if (len <= BUF_PAGE_HDR_SIZE)
3833 		goto out;
3834 
3835 	len -= BUF_PAGE_HDR_SIZE;
3836 
3837 	if (!data_page)
3838 		goto out;
3839 
3840 	bpage = *data_page;
3841 	if (!bpage)
3842 		goto out;
3843 
3844 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3845 
3846 	reader = rb_get_reader_page(cpu_buffer);
3847 	if (!reader)
3848 		goto out_unlock;
3849 
3850 	event = rb_reader_event(cpu_buffer);
3851 
3852 	read = reader->read;
3853 	commit = rb_page_commit(reader);
3854 
3855 	/* Check if any events were dropped */
3856 	missed_events = cpu_buffer->lost_events;
3857 
3858 	/*
3859 	 * If this page has been partially read or
3860 	 * if len is not big enough to read the rest of the page or
3861 	 * a writer is still on the page, then
3862 	 * we must copy the data from the page to the buffer.
3863 	 * Otherwise, we can simply swap the page with the one passed in.
3864 	 */
3865 	if (read || (len < (commit - read)) ||
3866 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3867 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3868 		unsigned int rpos = read;
3869 		unsigned int pos = 0;
3870 		unsigned int size;
3871 
3872 		if (full)
3873 			goto out_unlock;
3874 
3875 		if (len > (commit - read))
3876 			len = (commit - read);
3877 
3878 		/* Always keep the time extend and data together */
3879 		size = rb_event_ts_length(event);
3880 
3881 		if (len < size)
3882 			goto out_unlock;
3883 
3884 		/* save the current timestamp, since the user will need it */
3885 		save_timestamp = cpu_buffer->read_stamp;
3886 
3887 		/* Need to copy one event at a time */
3888 		do {
3889 			/* We need the size of one event, because
3890 			 * rb_advance_reader only advances by one event,
3891 			 * whereas rb_event_ts_length may include the size of
3892 			 * one or two events.
3893 			 * We have already ensured there's enough space if this
3894 			 * is a time extend. */
3895 			size = rb_event_length(event);
3896 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3897 
3898 			len -= size;
3899 
3900 			rb_advance_reader(cpu_buffer);
3901 			rpos = reader->read;
3902 			pos += size;
3903 
3904 			if (rpos >= commit)
3905 				break;
3906 
3907 			event = rb_reader_event(cpu_buffer);
3908 			/* Always keep the time extend and data together */
3909 			size = rb_event_ts_length(event);
3910 		} while (len >= size);
3911 
3912 		/* update bpage */
3913 		local_set(&bpage->commit, pos);
3914 		bpage->time_stamp = save_timestamp;
3915 
3916 		/* we copied everything to the beginning */
3917 		read = 0;
3918 	} else {
3919 		/* update the entry counter */
3920 		cpu_buffer->read += rb_page_entries(reader);
3921 
3922 		/* swap the pages */
3923 		rb_init_page(bpage);
3924 		bpage = reader->page;
3925 		reader->page = *data_page;
3926 		local_set(&reader->write, 0);
3927 		local_set(&reader->entries, 0);
3928 		reader->read = 0;
3929 		*data_page = bpage;
3930 
3931 		/*
3932 		 * Use the real_end for the data size,
3933 		 * This gives us a chance to store the lost events
3934 		 * on the page.
3935 		 */
3936 		if (reader->real_end)
3937 			local_set(&bpage->commit, reader->real_end);
3938 	}
3939 	ret = read;
3940 
3941 	cpu_buffer->lost_events = 0;
3942 
3943 	commit = local_read(&bpage->commit);
3944 	/*
3945 	 * Set a flag in the commit field if we lost events
3946 	 */
3947 	if (missed_events) {
3948 		/* If there is room at the end of the page to save the
3949 		 * missed events, then record it there.
3950 		 */
3951 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3952 			memcpy(&bpage->data[commit], &missed_events,
3953 			       sizeof(missed_events));
3954 			local_add(RB_MISSED_STORED, &bpage->commit);
3955 			commit += sizeof(missed_events);
3956 		}
3957 		local_add(RB_MISSED_EVENTS, &bpage->commit);
3958 	}
3959 
3960 	/*
3961 	 * This page may be off to user land. Zero it out here.
3962 	 */
3963 	if (commit < BUF_PAGE_SIZE)
3964 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3965 
3966  out_unlock:
3967 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3968 
3969  out:
3970 	return ret;
3971 }
3972 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3973 
3974 #ifdef CONFIG_TRACING
3975 static ssize_t
3976 rb_simple_read(struct file *filp, char __user *ubuf,
3977 	       size_t cnt, loff_t *ppos)
3978 {
3979 	unsigned long *p = filp->private_data;
3980 	char buf[64];
3981 	int r;
3982 
3983 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3984 		r = sprintf(buf, "permanently disabled\n");
3985 	else
3986 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3987 
3988 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3989 }
3990 
3991 static ssize_t
3992 rb_simple_write(struct file *filp, const char __user *ubuf,
3993 		size_t cnt, loff_t *ppos)
3994 {
3995 	unsigned long *p = filp->private_data;
3996 	unsigned long val;
3997 	int ret;
3998 
3999 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
4000 	if (ret)
4001 		return ret;
4002 
4003 	if (val)
4004 		set_bit(RB_BUFFERS_ON_BIT, p);
4005 	else
4006 		clear_bit(RB_BUFFERS_ON_BIT, p);
4007 
4008 	(*ppos)++;
4009 
4010 	return cnt;
4011 }
4012 
4013 static const struct file_operations rb_simple_fops = {
4014 	.open		= tracing_open_generic,
4015 	.read		= rb_simple_read,
4016 	.write		= rb_simple_write,
4017 	.llseek		= default_llseek,
4018 };
4019 
4020 
4021 static __init int rb_init_debugfs(void)
4022 {
4023 	struct dentry *d_tracer;
4024 
4025 	d_tracer = tracing_init_dentry();
4026 
4027 	trace_create_file("tracing_on", 0644, d_tracer,
4028 			    &ring_buffer_flags, &rb_simple_fops);
4029 
4030 	return 0;
4031 }
4032 
4033 fs_initcall(rb_init_debugfs);
4034 #endif
4035 
4036 #ifdef CONFIG_HOTPLUG_CPU
4037 static int rb_cpu_notify(struct notifier_block *self,
4038 			 unsigned long action, void *hcpu)
4039 {
4040 	struct ring_buffer *buffer =
4041 		container_of(self, struct ring_buffer, cpu_notify);
4042 	long cpu = (long)hcpu;
4043 
4044 	switch (action) {
4045 	case CPU_UP_PREPARE:
4046 	case CPU_UP_PREPARE_FROZEN:
4047 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4048 			return NOTIFY_OK;
4049 
4050 		buffer->buffers[cpu] =
4051 			rb_allocate_cpu_buffer(buffer, cpu);
4052 		if (!buffer->buffers[cpu]) {
4053 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4054 			     cpu);
4055 			return NOTIFY_OK;
4056 		}
4057 		smp_wmb();
4058 		cpumask_set_cpu(cpu, buffer->cpumask);
4059 		break;
4060 	case CPU_DOWN_PREPARE:
4061 	case CPU_DOWN_PREPARE_FROZEN:
4062 		/*
4063 		 * Do nothing.
4064 		 *  If we were to free the buffer, then the user would
4065 		 *  lose any trace that was in the buffer.
4066 		 */
4067 		break;
4068 	default:
4069 		break;
4070 	}
4071 	return NOTIFY_OK;
4072 }
4073 #endif
4074