xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>	/* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28 
29 #include <asm/local.h>
30 
31 static void update_pages_handler(struct work_struct *work);
32 
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 	trace_seq_puts(s, "# compressed entry header\n");
39 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41 	trace_seq_puts(s, "\tarray       :   32 bits\n");
42 	trace_seq_putc(s, '\n');
43 	trace_seq_printf(s, "\tpadding     : type == %d\n",
44 			 RINGBUF_TYPE_PADDING);
45 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 			 RINGBUF_TYPE_TIME_EXTEND);
47 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 			 RINGBUF_TYPE_TIME_STAMP);
49 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
50 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 
52 	return !trace_seq_has_overflowed(s);
53 }
54 
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122 
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF		(1 << 20)
125 
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT		4U
130 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
132 #define RB_ALIGN_DATA		__aligned(RB_ALIGNMENT)
133 
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
136 
137 enum {
138 	RB_LEN_TIME_EXTEND = 8,
139 	RB_LEN_TIME_STAMP =  8,
140 };
141 
142 #define skip_time_extend(event) \
143 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144 
145 #define extended_time(event) \
146 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147 
148 static inline int rb_null_event(struct ring_buffer_event *event)
149 {
150 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
151 }
152 
153 static void rb_event_set_padding(struct ring_buffer_event *event)
154 {
155 	/* padding has a NULL time_delta */
156 	event->type_len = RINGBUF_TYPE_PADDING;
157 	event->time_delta = 0;
158 }
159 
160 static unsigned
161 rb_event_data_length(struct ring_buffer_event *event)
162 {
163 	unsigned length;
164 
165 	if (event->type_len)
166 		length = event->type_len * RB_ALIGNMENT;
167 	else
168 		length = event->array[0];
169 	return length + RB_EVNT_HDR_SIZE;
170 }
171 
172 /*
173  * Return the length of the given event. Will return
174  * the length of the time extend if the event is a
175  * time extend.
176  */
177 static inline unsigned
178 rb_event_length(struct ring_buffer_event *event)
179 {
180 	switch (event->type_len) {
181 	case RINGBUF_TYPE_PADDING:
182 		if (rb_null_event(event))
183 			/* undefined */
184 			return -1;
185 		return  event->array[0] + RB_EVNT_HDR_SIZE;
186 
187 	case RINGBUF_TYPE_TIME_EXTEND:
188 		return RB_LEN_TIME_EXTEND;
189 
190 	case RINGBUF_TYPE_TIME_STAMP:
191 		return RB_LEN_TIME_STAMP;
192 
193 	case RINGBUF_TYPE_DATA:
194 		return rb_event_data_length(event);
195 	default:
196 		BUG();
197 	}
198 	/* not hit */
199 	return 0;
200 }
201 
202 /*
203  * Return total length of time extend and data,
204  *   or just the event length for all other events.
205  */
206 static inline unsigned
207 rb_event_ts_length(struct ring_buffer_event *event)
208 {
209 	unsigned len = 0;
210 
211 	if (extended_time(event)) {
212 		/* time extends include the data event after it */
213 		len = RB_LEN_TIME_EXTEND;
214 		event = skip_time_extend(event);
215 	}
216 	return len + rb_event_length(event);
217 }
218 
219 /**
220  * ring_buffer_event_length - return the length of the event
221  * @event: the event to get the length of
222  *
223  * Returns the size of the data load of a data event.
224  * If the event is something other than a data event, it
225  * returns the size of the event itself. With the exception
226  * of a TIME EXTEND, where it still returns the size of the
227  * data load of the data event after it.
228  */
229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230 {
231 	unsigned length;
232 
233 	if (extended_time(event))
234 		event = skip_time_extend(event);
235 
236 	length = rb_event_length(event);
237 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238 		return length;
239 	length -= RB_EVNT_HDR_SIZE;
240 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241                 length -= sizeof(event->array[0]);
242 	return length;
243 }
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
245 
246 /* inline for ring buffer fast paths */
247 static __always_inline void *
248 rb_event_data(struct ring_buffer_event *event)
249 {
250 	if (extended_time(event))
251 		event = skip_time_extend(event);
252 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253 	/* If length is in len field, then array[0] has the data */
254 	if (event->type_len)
255 		return (void *)&event->array[0];
256 	/* Otherwise length is in array[0] and array[1] has the data */
257 	return (void *)&event->array[1];
258 }
259 
260 /**
261  * ring_buffer_event_data - return the data of the event
262  * @event: the event to get the data from
263  */
264 void *ring_buffer_event_data(struct ring_buffer_event *event)
265 {
266 	return rb_event_data(event);
267 }
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
269 
270 #define for_each_buffer_cpu(buffer, cpu)		\
271 	for_each_cpu(cpu, buffer->cpumask)
272 
273 #define TS_SHIFT	27
274 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
275 #define TS_DELTA_TEST	(~TS_MASK)
276 
277 /**
278  * ring_buffer_event_time_stamp - return the event's extended timestamp
279  * @event: the event to get the timestamp of
280  *
281  * Returns the extended timestamp associated with a data event.
282  * An extended time_stamp is a 64-bit timestamp represented
283  * internally in a special way that makes the best use of space
284  * contained within a ring buffer event.  This function decodes
285  * it and maps it to a straight u64 value.
286  */
287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
288 {
289 	u64 ts;
290 
291 	ts = event->array[0];
292 	ts <<= TS_SHIFT;
293 	ts += event->time_delta;
294 
295 	return ts;
296 }
297 
298 /* Flag when events were overwritten */
299 #define RB_MISSED_EVENTS	(1 << 31)
300 /* Missed count stored at end */
301 #define RB_MISSED_STORED	(1 << 30)
302 
303 struct buffer_data_page {
304 	u64		 time_stamp;	/* page time stamp */
305 	local_t		 commit;	/* write committed index */
306 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
307 };
308 
309 /*
310  * Note, the buffer_page list must be first. The buffer pages
311  * are allocated in cache lines, which means that each buffer
312  * page will be at the beginning of a cache line, and thus
313  * the least significant bits will be zero. We use this to
314  * add flags in the list struct pointers, to make the ring buffer
315  * lockless.
316  */
317 struct buffer_page {
318 	struct list_head list;		/* list of buffer pages */
319 	local_t		 write;		/* index for next write */
320 	unsigned	 read;		/* index for next read */
321 	local_t		 entries;	/* entries on this page */
322 	unsigned long	 real_end;	/* real end of data */
323 	struct buffer_data_page *page;	/* Actual data page */
324 };
325 
326 /*
327  * The buffer page counters, write and entries, must be reset
328  * atomically when crossing page boundaries. To synchronize this
329  * update, two counters are inserted into the number. One is
330  * the actual counter for the write position or count on the page.
331  *
332  * The other is a counter of updaters. Before an update happens
333  * the update partition of the counter is incremented. This will
334  * allow the updater to update the counter atomically.
335  *
336  * The counter is 20 bits, and the state data is 12.
337  */
338 #define RB_WRITE_MASK		0xfffff
339 #define RB_WRITE_INTCNT		(1 << 20)
340 
341 static void rb_init_page(struct buffer_data_page *bpage)
342 {
343 	local_set(&bpage->commit, 0);
344 }
345 
346 /*
347  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
348  * this issue out.
349  */
350 static void free_buffer_page(struct buffer_page *bpage)
351 {
352 	free_page((unsigned long)bpage->page);
353 	kfree(bpage);
354 }
355 
356 /*
357  * We need to fit the time_stamp delta into 27 bits.
358  */
359 static inline int test_time_stamp(u64 delta)
360 {
361 	if (delta & TS_DELTA_TEST)
362 		return 1;
363 	return 0;
364 }
365 
366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
367 
368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
370 
371 int ring_buffer_print_page_header(struct trace_seq *s)
372 {
373 	struct buffer_data_page field;
374 
375 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
377 			 (unsigned int)sizeof(field.time_stamp),
378 			 (unsigned int)is_signed_type(u64));
379 
380 	trace_seq_printf(s, "\tfield: local_t commit;\t"
381 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
382 			 (unsigned int)offsetof(typeof(field), commit),
383 			 (unsigned int)sizeof(field.commit),
384 			 (unsigned int)is_signed_type(long));
385 
386 	trace_seq_printf(s, "\tfield: int overwrite;\t"
387 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
388 			 (unsigned int)offsetof(typeof(field), commit),
389 			 1,
390 			 (unsigned int)is_signed_type(long));
391 
392 	trace_seq_printf(s, "\tfield: char data;\t"
393 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
394 			 (unsigned int)offsetof(typeof(field), data),
395 			 (unsigned int)BUF_PAGE_SIZE,
396 			 (unsigned int)is_signed_type(char));
397 
398 	return !trace_seq_has_overflowed(s);
399 }
400 
401 struct rb_irq_work {
402 	struct irq_work			work;
403 	wait_queue_head_t		waiters;
404 	wait_queue_head_t		full_waiters;
405 	bool				waiters_pending;
406 	bool				full_waiters_pending;
407 	bool				wakeup_full;
408 };
409 
410 /*
411  * Structure to hold event state and handle nested events.
412  */
413 struct rb_event_info {
414 	u64			ts;
415 	u64			delta;
416 	unsigned long		length;
417 	struct buffer_page	*tail_page;
418 	int			add_timestamp;
419 };
420 
421 /*
422  * Used for which event context the event is in.
423  *  NMI     = 0
424  *  IRQ     = 1
425  *  SOFTIRQ = 2
426  *  NORMAL  = 3
427  *
428  * See trace_recursive_lock() comment below for more details.
429  */
430 enum {
431 	RB_CTX_NMI,
432 	RB_CTX_IRQ,
433 	RB_CTX_SOFTIRQ,
434 	RB_CTX_NORMAL,
435 	RB_CTX_MAX
436 };
437 
438 /*
439  * head_page == tail_page && head == tail then buffer is empty.
440  */
441 struct ring_buffer_per_cpu {
442 	int				cpu;
443 	atomic_t			record_disabled;
444 	atomic_t			resize_disabled;
445 	struct trace_buffer	*buffer;
446 	raw_spinlock_t			reader_lock;	/* serialize readers */
447 	arch_spinlock_t			lock;
448 	struct lock_class_key		lock_key;
449 	struct buffer_data_page		*free_page;
450 	unsigned long			nr_pages;
451 	unsigned int			current_context;
452 	struct list_head		*pages;
453 	struct buffer_page		*head_page;	/* read from head */
454 	struct buffer_page		*tail_page;	/* write to tail */
455 	struct buffer_page		*commit_page;	/* committed pages */
456 	struct buffer_page		*reader_page;
457 	unsigned long			lost_events;
458 	unsigned long			last_overrun;
459 	unsigned long			nest;
460 	local_t				entries_bytes;
461 	local_t				entries;
462 	local_t				overrun;
463 	local_t				commit_overrun;
464 	local_t				dropped_events;
465 	local_t				committing;
466 	local_t				commits;
467 	local_t				pages_touched;
468 	local_t				pages_read;
469 	long				last_pages_touch;
470 	size_t				shortest_full;
471 	unsigned long			read;
472 	unsigned long			read_bytes;
473 	u64				write_stamp;
474 	u64				read_stamp;
475 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
476 	long				nr_pages_to_update;
477 	struct list_head		new_pages; /* new pages to add */
478 	struct work_struct		update_pages_work;
479 	struct completion		update_done;
480 
481 	struct rb_irq_work		irq_work;
482 };
483 
484 struct trace_buffer {
485 	unsigned			flags;
486 	int				cpus;
487 	atomic_t			record_disabled;
488 	cpumask_var_t			cpumask;
489 
490 	struct lock_class_key		*reader_lock_key;
491 
492 	struct mutex			mutex;
493 
494 	struct ring_buffer_per_cpu	**buffers;
495 
496 	struct hlist_node		node;
497 	u64				(*clock)(void);
498 
499 	struct rb_irq_work		irq_work;
500 	bool				time_stamp_abs;
501 };
502 
503 struct ring_buffer_iter {
504 	struct ring_buffer_per_cpu	*cpu_buffer;
505 	unsigned long			head;
506 	unsigned long			next_event;
507 	struct buffer_page		*head_page;
508 	struct buffer_page		*cache_reader_page;
509 	unsigned long			cache_read;
510 	u64				read_stamp;
511 	u64				page_stamp;
512 	struct ring_buffer_event	*event;
513 	int				missed_events;
514 };
515 
516 /**
517  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
518  * @buffer: The ring_buffer to get the number of pages from
519  * @cpu: The cpu of the ring_buffer to get the number of pages from
520  *
521  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
522  */
523 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
524 {
525 	return buffer->buffers[cpu]->nr_pages;
526 }
527 
528 /**
529  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
530  * @buffer: The ring_buffer to get the number of pages from
531  * @cpu: The cpu of the ring_buffer to get the number of pages from
532  *
533  * Returns the number of pages that have content in the ring buffer.
534  */
535 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
536 {
537 	size_t read;
538 	size_t cnt;
539 
540 	read = local_read(&buffer->buffers[cpu]->pages_read);
541 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
542 	/* The reader can read an empty page, but not more than that */
543 	if (cnt < read) {
544 		WARN_ON_ONCE(read > cnt + 1);
545 		return 0;
546 	}
547 
548 	return cnt - read;
549 }
550 
551 /*
552  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
553  *
554  * Schedules a delayed work to wake up any task that is blocked on the
555  * ring buffer waiters queue.
556  */
557 static void rb_wake_up_waiters(struct irq_work *work)
558 {
559 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
560 
561 	wake_up_all(&rbwork->waiters);
562 	if (rbwork->wakeup_full) {
563 		rbwork->wakeup_full = false;
564 		wake_up_all(&rbwork->full_waiters);
565 	}
566 }
567 
568 /**
569  * ring_buffer_wait - wait for input to the ring buffer
570  * @buffer: buffer to wait on
571  * @cpu: the cpu buffer to wait on
572  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
573  *
574  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
575  * as data is added to any of the @buffer's cpu buffers. Otherwise
576  * it will wait for data to be added to a specific cpu buffer.
577  */
578 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
579 {
580 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
581 	DEFINE_WAIT(wait);
582 	struct rb_irq_work *work;
583 	int ret = 0;
584 
585 	/*
586 	 * Depending on what the caller is waiting for, either any
587 	 * data in any cpu buffer, or a specific buffer, put the
588 	 * caller on the appropriate wait queue.
589 	 */
590 	if (cpu == RING_BUFFER_ALL_CPUS) {
591 		work = &buffer->irq_work;
592 		/* Full only makes sense on per cpu reads */
593 		full = 0;
594 	} else {
595 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
596 			return -ENODEV;
597 		cpu_buffer = buffer->buffers[cpu];
598 		work = &cpu_buffer->irq_work;
599 	}
600 
601 
602 	while (true) {
603 		if (full)
604 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
605 		else
606 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
607 
608 		/*
609 		 * The events can happen in critical sections where
610 		 * checking a work queue can cause deadlocks.
611 		 * After adding a task to the queue, this flag is set
612 		 * only to notify events to try to wake up the queue
613 		 * using irq_work.
614 		 *
615 		 * We don't clear it even if the buffer is no longer
616 		 * empty. The flag only causes the next event to run
617 		 * irq_work to do the work queue wake up. The worse
618 		 * that can happen if we race with !trace_empty() is that
619 		 * an event will cause an irq_work to try to wake up
620 		 * an empty queue.
621 		 *
622 		 * There's no reason to protect this flag either, as
623 		 * the work queue and irq_work logic will do the necessary
624 		 * synchronization for the wake ups. The only thing
625 		 * that is necessary is that the wake up happens after
626 		 * a task has been queued. It's OK for spurious wake ups.
627 		 */
628 		if (full)
629 			work->full_waiters_pending = true;
630 		else
631 			work->waiters_pending = true;
632 
633 		if (signal_pending(current)) {
634 			ret = -EINTR;
635 			break;
636 		}
637 
638 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
639 			break;
640 
641 		if (cpu != RING_BUFFER_ALL_CPUS &&
642 		    !ring_buffer_empty_cpu(buffer, cpu)) {
643 			unsigned long flags;
644 			bool pagebusy;
645 			size_t nr_pages;
646 			size_t dirty;
647 
648 			if (!full)
649 				break;
650 
651 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
652 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
653 			nr_pages = cpu_buffer->nr_pages;
654 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
655 			if (!cpu_buffer->shortest_full ||
656 			    cpu_buffer->shortest_full < full)
657 				cpu_buffer->shortest_full = full;
658 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659 			if (!pagebusy &&
660 			    (!nr_pages || (dirty * 100) > full * nr_pages))
661 				break;
662 		}
663 
664 		schedule();
665 	}
666 
667 	if (full)
668 		finish_wait(&work->full_waiters, &wait);
669 	else
670 		finish_wait(&work->waiters, &wait);
671 
672 	return ret;
673 }
674 
675 /**
676  * ring_buffer_poll_wait - poll on buffer input
677  * @buffer: buffer to wait on
678  * @cpu: the cpu buffer to wait on
679  * @filp: the file descriptor
680  * @poll_table: The poll descriptor
681  *
682  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
683  * as data is added to any of the @buffer's cpu buffers. Otherwise
684  * it will wait for data to be added to a specific cpu buffer.
685  *
686  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
687  * zero otherwise.
688  */
689 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
690 			  struct file *filp, poll_table *poll_table)
691 {
692 	struct ring_buffer_per_cpu *cpu_buffer;
693 	struct rb_irq_work *work;
694 
695 	if (cpu == RING_BUFFER_ALL_CPUS)
696 		work = &buffer->irq_work;
697 	else {
698 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
699 			return -EINVAL;
700 
701 		cpu_buffer = buffer->buffers[cpu];
702 		work = &cpu_buffer->irq_work;
703 	}
704 
705 	poll_wait(filp, &work->waiters, poll_table);
706 	work->waiters_pending = true;
707 	/*
708 	 * There's a tight race between setting the waiters_pending and
709 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
710 	 * is set, the next event will wake the task up, but we can get stuck
711 	 * if there's only a single event in.
712 	 *
713 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
714 	 * but adding a memory barrier to all events will cause too much of a
715 	 * performance hit in the fast path.  We only need a memory barrier when
716 	 * the buffer goes from empty to having content.  But as this race is
717 	 * extremely small, and it's not a problem if another event comes in, we
718 	 * will fix it later.
719 	 */
720 	smp_mb();
721 
722 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
723 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
724 		return EPOLLIN | EPOLLRDNORM;
725 	return 0;
726 }
727 
728 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
729 #define RB_WARN_ON(b, cond)						\
730 	({								\
731 		int _____ret = unlikely(cond);				\
732 		if (_____ret) {						\
733 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
734 				struct ring_buffer_per_cpu *__b =	\
735 					(void *)b;			\
736 				atomic_inc(&__b->buffer->record_disabled); \
737 			} else						\
738 				atomic_inc(&b->record_disabled);	\
739 			WARN_ON(1);					\
740 		}							\
741 		_____ret;						\
742 	})
743 
744 /* Up this if you want to test the TIME_EXTENTS and normalization */
745 #define DEBUG_SHIFT 0
746 
747 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
748 {
749 	/* shift to debug/test normalization and TIME_EXTENTS */
750 	return buffer->clock() << DEBUG_SHIFT;
751 }
752 
753 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
754 {
755 	u64 time;
756 
757 	preempt_disable_notrace();
758 	time = rb_time_stamp(buffer);
759 	preempt_enable_notrace();
760 
761 	return time;
762 }
763 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
764 
765 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
766 				      int cpu, u64 *ts)
767 {
768 	/* Just stupid testing the normalize function and deltas */
769 	*ts >>= DEBUG_SHIFT;
770 }
771 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
772 
773 /*
774  * Making the ring buffer lockless makes things tricky.
775  * Although writes only happen on the CPU that they are on,
776  * and they only need to worry about interrupts. Reads can
777  * happen on any CPU.
778  *
779  * The reader page is always off the ring buffer, but when the
780  * reader finishes with a page, it needs to swap its page with
781  * a new one from the buffer. The reader needs to take from
782  * the head (writes go to the tail). But if a writer is in overwrite
783  * mode and wraps, it must push the head page forward.
784  *
785  * Here lies the problem.
786  *
787  * The reader must be careful to replace only the head page, and
788  * not another one. As described at the top of the file in the
789  * ASCII art, the reader sets its old page to point to the next
790  * page after head. It then sets the page after head to point to
791  * the old reader page. But if the writer moves the head page
792  * during this operation, the reader could end up with the tail.
793  *
794  * We use cmpxchg to help prevent this race. We also do something
795  * special with the page before head. We set the LSB to 1.
796  *
797  * When the writer must push the page forward, it will clear the
798  * bit that points to the head page, move the head, and then set
799  * the bit that points to the new head page.
800  *
801  * We also don't want an interrupt coming in and moving the head
802  * page on another writer. Thus we use the second LSB to catch
803  * that too. Thus:
804  *
805  * head->list->prev->next        bit 1          bit 0
806  *                              -------        -------
807  * Normal page                     0              0
808  * Points to head page             0              1
809  * New head page                   1              0
810  *
811  * Note we can not trust the prev pointer of the head page, because:
812  *
813  * +----+       +-----+        +-----+
814  * |    |------>|  T  |---X--->|  N  |
815  * |    |<------|     |        |     |
816  * +----+       +-----+        +-----+
817  *   ^                           ^ |
818  *   |          +-----+          | |
819  *   +----------|  R  |----------+ |
820  *              |     |<-----------+
821  *              +-----+
822  *
823  * Key:  ---X-->  HEAD flag set in pointer
824  *         T      Tail page
825  *         R      Reader page
826  *         N      Next page
827  *
828  * (see __rb_reserve_next() to see where this happens)
829  *
830  *  What the above shows is that the reader just swapped out
831  *  the reader page with a page in the buffer, but before it
832  *  could make the new header point back to the new page added
833  *  it was preempted by a writer. The writer moved forward onto
834  *  the new page added by the reader and is about to move forward
835  *  again.
836  *
837  *  You can see, it is legitimate for the previous pointer of
838  *  the head (or any page) not to point back to itself. But only
839  *  temporarily.
840  */
841 
842 #define RB_PAGE_NORMAL		0UL
843 #define RB_PAGE_HEAD		1UL
844 #define RB_PAGE_UPDATE		2UL
845 
846 
847 #define RB_FLAG_MASK		3UL
848 
849 /* PAGE_MOVED is not part of the mask */
850 #define RB_PAGE_MOVED		4UL
851 
852 /*
853  * rb_list_head - remove any bit
854  */
855 static struct list_head *rb_list_head(struct list_head *list)
856 {
857 	unsigned long val = (unsigned long)list;
858 
859 	return (struct list_head *)(val & ~RB_FLAG_MASK);
860 }
861 
862 /*
863  * rb_is_head_page - test if the given page is the head page
864  *
865  * Because the reader may move the head_page pointer, we can
866  * not trust what the head page is (it may be pointing to
867  * the reader page). But if the next page is a header page,
868  * its flags will be non zero.
869  */
870 static inline int
871 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
872 		struct buffer_page *page, struct list_head *list)
873 {
874 	unsigned long val;
875 
876 	val = (unsigned long)list->next;
877 
878 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
879 		return RB_PAGE_MOVED;
880 
881 	return val & RB_FLAG_MASK;
882 }
883 
884 /*
885  * rb_is_reader_page
886  *
887  * The unique thing about the reader page, is that, if the
888  * writer is ever on it, the previous pointer never points
889  * back to the reader page.
890  */
891 static bool rb_is_reader_page(struct buffer_page *page)
892 {
893 	struct list_head *list = page->list.prev;
894 
895 	return rb_list_head(list->next) != &page->list;
896 }
897 
898 /*
899  * rb_set_list_to_head - set a list_head to be pointing to head.
900  */
901 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
902 				struct list_head *list)
903 {
904 	unsigned long *ptr;
905 
906 	ptr = (unsigned long *)&list->next;
907 	*ptr |= RB_PAGE_HEAD;
908 	*ptr &= ~RB_PAGE_UPDATE;
909 }
910 
911 /*
912  * rb_head_page_activate - sets up head page
913  */
914 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
915 {
916 	struct buffer_page *head;
917 
918 	head = cpu_buffer->head_page;
919 	if (!head)
920 		return;
921 
922 	/*
923 	 * Set the previous list pointer to have the HEAD flag.
924 	 */
925 	rb_set_list_to_head(cpu_buffer, head->list.prev);
926 }
927 
928 static void rb_list_head_clear(struct list_head *list)
929 {
930 	unsigned long *ptr = (unsigned long *)&list->next;
931 
932 	*ptr &= ~RB_FLAG_MASK;
933 }
934 
935 /*
936  * rb_head_page_deactivate - clears head page ptr (for free list)
937  */
938 static void
939 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
940 {
941 	struct list_head *hd;
942 
943 	/* Go through the whole list and clear any pointers found. */
944 	rb_list_head_clear(cpu_buffer->pages);
945 
946 	list_for_each(hd, cpu_buffer->pages)
947 		rb_list_head_clear(hd);
948 }
949 
950 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
951 			    struct buffer_page *head,
952 			    struct buffer_page *prev,
953 			    int old_flag, int new_flag)
954 {
955 	struct list_head *list;
956 	unsigned long val = (unsigned long)&head->list;
957 	unsigned long ret;
958 
959 	list = &prev->list;
960 
961 	val &= ~RB_FLAG_MASK;
962 
963 	ret = cmpxchg((unsigned long *)&list->next,
964 		      val | old_flag, val | new_flag);
965 
966 	/* check if the reader took the page */
967 	if ((ret & ~RB_FLAG_MASK) != val)
968 		return RB_PAGE_MOVED;
969 
970 	return ret & RB_FLAG_MASK;
971 }
972 
973 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
974 				   struct buffer_page *head,
975 				   struct buffer_page *prev,
976 				   int old_flag)
977 {
978 	return rb_head_page_set(cpu_buffer, head, prev,
979 				old_flag, RB_PAGE_UPDATE);
980 }
981 
982 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
983 				 struct buffer_page *head,
984 				 struct buffer_page *prev,
985 				 int old_flag)
986 {
987 	return rb_head_page_set(cpu_buffer, head, prev,
988 				old_flag, RB_PAGE_HEAD);
989 }
990 
991 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
992 				   struct buffer_page *head,
993 				   struct buffer_page *prev,
994 				   int old_flag)
995 {
996 	return rb_head_page_set(cpu_buffer, head, prev,
997 				old_flag, RB_PAGE_NORMAL);
998 }
999 
1000 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1001 			       struct buffer_page **bpage)
1002 {
1003 	struct list_head *p = rb_list_head((*bpage)->list.next);
1004 
1005 	*bpage = list_entry(p, struct buffer_page, list);
1006 }
1007 
1008 static struct buffer_page *
1009 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1010 {
1011 	struct buffer_page *head;
1012 	struct buffer_page *page;
1013 	struct list_head *list;
1014 	int i;
1015 
1016 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1017 		return NULL;
1018 
1019 	/* sanity check */
1020 	list = cpu_buffer->pages;
1021 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1022 		return NULL;
1023 
1024 	page = head = cpu_buffer->head_page;
1025 	/*
1026 	 * It is possible that the writer moves the header behind
1027 	 * where we started, and we miss in one loop.
1028 	 * A second loop should grab the header, but we'll do
1029 	 * three loops just because I'm paranoid.
1030 	 */
1031 	for (i = 0; i < 3; i++) {
1032 		do {
1033 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1034 				cpu_buffer->head_page = page;
1035 				return page;
1036 			}
1037 			rb_inc_page(cpu_buffer, &page);
1038 		} while (page != head);
1039 	}
1040 
1041 	RB_WARN_ON(cpu_buffer, 1);
1042 
1043 	return NULL;
1044 }
1045 
1046 static int rb_head_page_replace(struct buffer_page *old,
1047 				struct buffer_page *new)
1048 {
1049 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1050 	unsigned long val;
1051 	unsigned long ret;
1052 
1053 	val = *ptr & ~RB_FLAG_MASK;
1054 	val |= RB_PAGE_HEAD;
1055 
1056 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1057 
1058 	return ret == val;
1059 }
1060 
1061 /*
1062  * rb_tail_page_update - move the tail page forward
1063  */
1064 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1065 			       struct buffer_page *tail_page,
1066 			       struct buffer_page *next_page)
1067 {
1068 	unsigned long old_entries;
1069 	unsigned long old_write;
1070 
1071 	/*
1072 	 * The tail page now needs to be moved forward.
1073 	 *
1074 	 * We need to reset the tail page, but without messing
1075 	 * with possible erasing of data brought in by interrupts
1076 	 * that have moved the tail page and are currently on it.
1077 	 *
1078 	 * We add a counter to the write field to denote this.
1079 	 */
1080 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1081 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1082 
1083 	local_inc(&cpu_buffer->pages_touched);
1084 	/*
1085 	 * Just make sure we have seen our old_write and synchronize
1086 	 * with any interrupts that come in.
1087 	 */
1088 	barrier();
1089 
1090 	/*
1091 	 * If the tail page is still the same as what we think
1092 	 * it is, then it is up to us to update the tail
1093 	 * pointer.
1094 	 */
1095 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1096 		/* Zero the write counter */
1097 		unsigned long val = old_write & ~RB_WRITE_MASK;
1098 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1099 
1100 		/*
1101 		 * This will only succeed if an interrupt did
1102 		 * not come in and change it. In which case, we
1103 		 * do not want to modify it.
1104 		 *
1105 		 * We add (void) to let the compiler know that we do not care
1106 		 * about the return value of these functions. We use the
1107 		 * cmpxchg to only update if an interrupt did not already
1108 		 * do it for us. If the cmpxchg fails, we don't care.
1109 		 */
1110 		(void)local_cmpxchg(&next_page->write, old_write, val);
1111 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1112 
1113 		/*
1114 		 * No need to worry about races with clearing out the commit.
1115 		 * it only can increment when a commit takes place. But that
1116 		 * only happens in the outer most nested commit.
1117 		 */
1118 		local_set(&next_page->page->commit, 0);
1119 
1120 		/* Again, either we update tail_page or an interrupt does */
1121 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1122 	}
1123 }
1124 
1125 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1126 			  struct buffer_page *bpage)
1127 {
1128 	unsigned long val = (unsigned long)bpage;
1129 
1130 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1131 		return 1;
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  * rb_check_list - make sure a pointer to a list has the last bits zero
1138  */
1139 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1140 			 struct list_head *list)
1141 {
1142 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1143 		return 1;
1144 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1145 		return 1;
1146 	return 0;
1147 }
1148 
1149 /**
1150  * rb_check_pages - integrity check of buffer pages
1151  * @cpu_buffer: CPU buffer with pages to test
1152  *
1153  * As a safety measure we check to make sure the data pages have not
1154  * been corrupted.
1155  */
1156 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1157 {
1158 	struct list_head *head = cpu_buffer->pages;
1159 	struct buffer_page *bpage, *tmp;
1160 
1161 	/* Reset the head page if it exists */
1162 	if (cpu_buffer->head_page)
1163 		rb_set_head_page(cpu_buffer);
1164 
1165 	rb_head_page_deactivate(cpu_buffer);
1166 
1167 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1168 		return -1;
1169 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1170 		return -1;
1171 
1172 	if (rb_check_list(cpu_buffer, head))
1173 		return -1;
1174 
1175 	list_for_each_entry_safe(bpage, tmp, head, list) {
1176 		if (RB_WARN_ON(cpu_buffer,
1177 			       bpage->list.next->prev != &bpage->list))
1178 			return -1;
1179 		if (RB_WARN_ON(cpu_buffer,
1180 			       bpage->list.prev->next != &bpage->list))
1181 			return -1;
1182 		if (rb_check_list(cpu_buffer, &bpage->list))
1183 			return -1;
1184 	}
1185 
1186 	rb_head_page_activate(cpu_buffer);
1187 
1188 	return 0;
1189 }
1190 
1191 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1192 {
1193 	struct buffer_page *bpage, *tmp;
1194 	bool user_thread = current->mm != NULL;
1195 	gfp_t mflags;
1196 	long i;
1197 
1198 	/*
1199 	 * Check if the available memory is there first.
1200 	 * Note, si_mem_available() only gives us a rough estimate of available
1201 	 * memory. It may not be accurate. But we don't care, we just want
1202 	 * to prevent doing any allocation when it is obvious that it is
1203 	 * not going to succeed.
1204 	 */
1205 	i = si_mem_available();
1206 	if (i < nr_pages)
1207 		return -ENOMEM;
1208 
1209 	/*
1210 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1211 	 * gracefully without invoking oom-killer and the system is not
1212 	 * destabilized.
1213 	 */
1214 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1215 
1216 	/*
1217 	 * If a user thread allocates too much, and si_mem_available()
1218 	 * reports there's enough memory, even though there is not.
1219 	 * Make sure the OOM killer kills this thread. This can happen
1220 	 * even with RETRY_MAYFAIL because another task may be doing
1221 	 * an allocation after this task has taken all memory.
1222 	 * This is the task the OOM killer needs to take out during this
1223 	 * loop, even if it was triggered by an allocation somewhere else.
1224 	 */
1225 	if (user_thread)
1226 		set_current_oom_origin();
1227 	for (i = 0; i < nr_pages; i++) {
1228 		struct page *page;
1229 
1230 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1231 				    mflags, cpu_to_node(cpu));
1232 		if (!bpage)
1233 			goto free_pages;
1234 
1235 		list_add(&bpage->list, pages);
1236 
1237 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1238 		if (!page)
1239 			goto free_pages;
1240 		bpage->page = page_address(page);
1241 		rb_init_page(bpage->page);
1242 
1243 		if (user_thread && fatal_signal_pending(current))
1244 			goto free_pages;
1245 	}
1246 	if (user_thread)
1247 		clear_current_oom_origin();
1248 
1249 	return 0;
1250 
1251 free_pages:
1252 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1253 		list_del_init(&bpage->list);
1254 		free_buffer_page(bpage);
1255 	}
1256 	if (user_thread)
1257 		clear_current_oom_origin();
1258 
1259 	return -ENOMEM;
1260 }
1261 
1262 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1263 			     unsigned long nr_pages)
1264 {
1265 	LIST_HEAD(pages);
1266 
1267 	WARN_ON(!nr_pages);
1268 
1269 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1270 		return -ENOMEM;
1271 
1272 	/*
1273 	 * The ring buffer page list is a circular list that does not
1274 	 * start and end with a list head. All page list items point to
1275 	 * other pages.
1276 	 */
1277 	cpu_buffer->pages = pages.next;
1278 	list_del(&pages);
1279 
1280 	cpu_buffer->nr_pages = nr_pages;
1281 
1282 	rb_check_pages(cpu_buffer);
1283 
1284 	return 0;
1285 }
1286 
1287 static struct ring_buffer_per_cpu *
1288 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1289 {
1290 	struct ring_buffer_per_cpu *cpu_buffer;
1291 	struct buffer_page *bpage;
1292 	struct page *page;
1293 	int ret;
1294 
1295 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1296 				  GFP_KERNEL, cpu_to_node(cpu));
1297 	if (!cpu_buffer)
1298 		return NULL;
1299 
1300 	cpu_buffer->cpu = cpu;
1301 	cpu_buffer->buffer = buffer;
1302 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1303 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1304 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1305 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1306 	init_completion(&cpu_buffer->update_done);
1307 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1308 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1309 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1310 
1311 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1312 			    GFP_KERNEL, cpu_to_node(cpu));
1313 	if (!bpage)
1314 		goto fail_free_buffer;
1315 
1316 	rb_check_bpage(cpu_buffer, bpage);
1317 
1318 	cpu_buffer->reader_page = bpage;
1319 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1320 	if (!page)
1321 		goto fail_free_reader;
1322 	bpage->page = page_address(page);
1323 	rb_init_page(bpage->page);
1324 
1325 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1326 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1327 
1328 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1329 	if (ret < 0)
1330 		goto fail_free_reader;
1331 
1332 	cpu_buffer->head_page
1333 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1334 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1335 
1336 	rb_head_page_activate(cpu_buffer);
1337 
1338 	return cpu_buffer;
1339 
1340  fail_free_reader:
1341 	free_buffer_page(cpu_buffer->reader_page);
1342 
1343  fail_free_buffer:
1344 	kfree(cpu_buffer);
1345 	return NULL;
1346 }
1347 
1348 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1349 {
1350 	struct list_head *head = cpu_buffer->pages;
1351 	struct buffer_page *bpage, *tmp;
1352 
1353 	free_buffer_page(cpu_buffer->reader_page);
1354 
1355 	rb_head_page_deactivate(cpu_buffer);
1356 
1357 	if (head) {
1358 		list_for_each_entry_safe(bpage, tmp, head, list) {
1359 			list_del_init(&bpage->list);
1360 			free_buffer_page(bpage);
1361 		}
1362 		bpage = list_entry(head, struct buffer_page, list);
1363 		free_buffer_page(bpage);
1364 	}
1365 
1366 	kfree(cpu_buffer);
1367 }
1368 
1369 /**
1370  * __ring_buffer_alloc - allocate a new ring_buffer
1371  * @size: the size in bytes per cpu that is needed.
1372  * @flags: attributes to set for the ring buffer.
1373  * @key: ring buffer reader_lock_key.
1374  *
1375  * Currently the only flag that is available is the RB_FL_OVERWRITE
1376  * flag. This flag means that the buffer will overwrite old data
1377  * when the buffer wraps. If this flag is not set, the buffer will
1378  * drop data when the tail hits the head.
1379  */
1380 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1381 					struct lock_class_key *key)
1382 {
1383 	struct trace_buffer *buffer;
1384 	long nr_pages;
1385 	int bsize;
1386 	int cpu;
1387 	int ret;
1388 
1389 	/* keep it in its own cache line */
1390 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1391 			 GFP_KERNEL);
1392 	if (!buffer)
1393 		return NULL;
1394 
1395 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1396 		goto fail_free_buffer;
1397 
1398 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1399 	buffer->flags = flags;
1400 	buffer->clock = trace_clock_local;
1401 	buffer->reader_lock_key = key;
1402 
1403 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1404 	init_waitqueue_head(&buffer->irq_work.waiters);
1405 
1406 	/* need at least two pages */
1407 	if (nr_pages < 2)
1408 		nr_pages = 2;
1409 
1410 	buffer->cpus = nr_cpu_ids;
1411 
1412 	bsize = sizeof(void *) * nr_cpu_ids;
1413 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1414 				  GFP_KERNEL);
1415 	if (!buffer->buffers)
1416 		goto fail_free_cpumask;
1417 
1418 	cpu = raw_smp_processor_id();
1419 	cpumask_set_cpu(cpu, buffer->cpumask);
1420 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1421 	if (!buffer->buffers[cpu])
1422 		goto fail_free_buffers;
1423 
1424 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1425 	if (ret < 0)
1426 		goto fail_free_buffers;
1427 
1428 	mutex_init(&buffer->mutex);
1429 
1430 	return buffer;
1431 
1432  fail_free_buffers:
1433 	for_each_buffer_cpu(buffer, cpu) {
1434 		if (buffer->buffers[cpu])
1435 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1436 	}
1437 	kfree(buffer->buffers);
1438 
1439  fail_free_cpumask:
1440 	free_cpumask_var(buffer->cpumask);
1441 
1442  fail_free_buffer:
1443 	kfree(buffer);
1444 	return NULL;
1445 }
1446 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1447 
1448 /**
1449  * ring_buffer_free - free a ring buffer.
1450  * @buffer: the buffer to free.
1451  */
1452 void
1453 ring_buffer_free(struct trace_buffer *buffer)
1454 {
1455 	int cpu;
1456 
1457 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1458 
1459 	for_each_buffer_cpu(buffer, cpu)
1460 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1461 
1462 	kfree(buffer->buffers);
1463 	free_cpumask_var(buffer->cpumask);
1464 
1465 	kfree(buffer);
1466 }
1467 EXPORT_SYMBOL_GPL(ring_buffer_free);
1468 
1469 void ring_buffer_set_clock(struct trace_buffer *buffer,
1470 			   u64 (*clock)(void))
1471 {
1472 	buffer->clock = clock;
1473 }
1474 
1475 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1476 {
1477 	buffer->time_stamp_abs = abs;
1478 }
1479 
1480 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1481 {
1482 	return buffer->time_stamp_abs;
1483 }
1484 
1485 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1486 
1487 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1488 {
1489 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1490 }
1491 
1492 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1493 {
1494 	return local_read(&bpage->write) & RB_WRITE_MASK;
1495 }
1496 
1497 static int
1498 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1499 {
1500 	struct list_head *tail_page, *to_remove, *next_page;
1501 	struct buffer_page *to_remove_page, *tmp_iter_page;
1502 	struct buffer_page *last_page, *first_page;
1503 	unsigned long nr_removed;
1504 	unsigned long head_bit;
1505 	int page_entries;
1506 
1507 	head_bit = 0;
1508 
1509 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1510 	atomic_inc(&cpu_buffer->record_disabled);
1511 	/*
1512 	 * We don't race with the readers since we have acquired the reader
1513 	 * lock. We also don't race with writers after disabling recording.
1514 	 * This makes it easy to figure out the first and the last page to be
1515 	 * removed from the list. We unlink all the pages in between including
1516 	 * the first and last pages. This is done in a busy loop so that we
1517 	 * lose the least number of traces.
1518 	 * The pages are freed after we restart recording and unlock readers.
1519 	 */
1520 	tail_page = &cpu_buffer->tail_page->list;
1521 
1522 	/*
1523 	 * tail page might be on reader page, we remove the next page
1524 	 * from the ring buffer
1525 	 */
1526 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1527 		tail_page = rb_list_head(tail_page->next);
1528 	to_remove = tail_page;
1529 
1530 	/* start of pages to remove */
1531 	first_page = list_entry(rb_list_head(to_remove->next),
1532 				struct buffer_page, list);
1533 
1534 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1535 		to_remove = rb_list_head(to_remove)->next;
1536 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1537 	}
1538 
1539 	next_page = rb_list_head(to_remove)->next;
1540 
1541 	/*
1542 	 * Now we remove all pages between tail_page and next_page.
1543 	 * Make sure that we have head_bit value preserved for the
1544 	 * next page
1545 	 */
1546 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1547 						head_bit);
1548 	next_page = rb_list_head(next_page);
1549 	next_page->prev = tail_page;
1550 
1551 	/* make sure pages points to a valid page in the ring buffer */
1552 	cpu_buffer->pages = next_page;
1553 
1554 	/* update head page */
1555 	if (head_bit)
1556 		cpu_buffer->head_page = list_entry(next_page,
1557 						struct buffer_page, list);
1558 
1559 	/*
1560 	 * change read pointer to make sure any read iterators reset
1561 	 * themselves
1562 	 */
1563 	cpu_buffer->read = 0;
1564 
1565 	/* pages are removed, resume tracing and then free the pages */
1566 	atomic_dec(&cpu_buffer->record_disabled);
1567 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1568 
1569 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1570 
1571 	/* last buffer page to remove */
1572 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1573 				list);
1574 	tmp_iter_page = first_page;
1575 
1576 	do {
1577 		cond_resched();
1578 
1579 		to_remove_page = tmp_iter_page;
1580 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1581 
1582 		/* update the counters */
1583 		page_entries = rb_page_entries(to_remove_page);
1584 		if (page_entries) {
1585 			/*
1586 			 * If something was added to this page, it was full
1587 			 * since it is not the tail page. So we deduct the
1588 			 * bytes consumed in ring buffer from here.
1589 			 * Increment overrun to account for the lost events.
1590 			 */
1591 			local_add(page_entries, &cpu_buffer->overrun);
1592 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1593 		}
1594 
1595 		/*
1596 		 * We have already removed references to this list item, just
1597 		 * free up the buffer_page and its page
1598 		 */
1599 		free_buffer_page(to_remove_page);
1600 		nr_removed--;
1601 
1602 	} while (to_remove_page != last_page);
1603 
1604 	RB_WARN_ON(cpu_buffer, nr_removed);
1605 
1606 	return nr_removed == 0;
1607 }
1608 
1609 static int
1610 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1611 {
1612 	struct list_head *pages = &cpu_buffer->new_pages;
1613 	int retries, success;
1614 
1615 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1616 	/*
1617 	 * We are holding the reader lock, so the reader page won't be swapped
1618 	 * in the ring buffer. Now we are racing with the writer trying to
1619 	 * move head page and the tail page.
1620 	 * We are going to adapt the reader page update process where:
1621 	 * 1. We first splice the start and end of list of new pages between
1622 	 *    the head page and its previous page.
1623 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1624 	 *    start of new pages list.
1625 	 * 3. Finally, we update the head->prev to the end of new list.
1626 	 *
1627 	 * We will try this process 10 times, to make sure that we don't keep
1628 	 * spinning.
1629 	 */
1630 	retries = 10;
1631 	success = 0;
1632 	while (retries--) {
1633 		struct list_head *head_page, *prev_page, *r;
1634 		struct list_head *last_page, *first_page;
1635 		struct list_head *head_page_with_bit;
1636 
1637 		head_page = &rb_set_head_page(cpu_buffer)->list;
1638 		if (!head_page)
1639 			break;
1640 		prev_page = head_page->prev;
1641 
1642 		first_page = pages->next;
1643 		last_page  = pages->prev;
1644 
1645 		head_page_with_bit = (struct list_head *)
1646 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1647 
1648 		last_page->next = head_page_with_bit;
1649 		first_page->prev = prev_page;
1650 
1651 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1652 
1653 		if (r == head_page_with_bit) {
1654 			/*
1655 			 * yay, we replaced the page pointer to our new list,
1656 			 * now, we just have to update to head page's prev
1657 			 * pointer to point to end of list
1658 			 */
1659 			head_page->prev = last_page;
1660 			success = 1;
1661 			break;
1662 		}
1663 	}
1664 
1665 	if (success)
1666 		INIT_LIST_HEAD(pages);
1667 	/*
1668 	 * If we weren't successful in adding in new pages, warn and stop
1669 	 * tracing
1670 	 */
1671 	RB_WARN_ON(cpu_buffer, !success);
1672 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1673 
1674 	/* free pages if they weren't inserted */
1675 	if (!success) {
1676 		struct buffer_page *bpage, *tmp;
1677 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1678 					 list) {
1679 			list_del_init(&bpage->list);
1680 			free_buffer_page(bpage);
1681 		}
1682 	}
1683 	return success;
1684 }
1685 
1686 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1687 {
1688 	int success;
1689 
1690 	if (cpu_buffer->nr_pages_to_update > 0)
1691 		success = rb_insert_pages(cpu_buffer);
1692 	else
1693 		success = rb_remove_pages(cpu_buffer,
1694 					-cpu_buffer->nr_pages_to_update);
1695 
1696 	if (success)
1697 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1698 }
1699 
1700 static void update_pages_handler(struct work_struct *work)
1701 {
1702 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1703 			struct ring_buffer_per_cpu, update_pages_work);
1704 	rb_update_pages(cpu_buffer);
1705 	complete(&cpu_buffer->update_done);
1706 }
1707 
1708 /**
1709  * ring_buffer_resize - resize the ring buffer
1710  * @buffer: the buffer to resize.
1711  * @size: the new size.
1712  * @cpu_id: the cpu buffer to resize
1713  *
1714  * Minimum size is 2 * BUF_PAGE_SIZE.
1715  *
1716  * Returns 0 on success and < 0 on failure.
1717  */
1718 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1719 			int cpu_id)
1720 {
1721 	struct ring_buffer_per_cpu *cpu_buffer;
1722 	unsigned long nr_pages;
1723 	int cpu, err = 0;
1724 
1725 	/*
1726 	 * Always succeed at resizing a non-existent buffer:
1727 	 */
1728 	if (!buffer)
1729 		return size;
1730 
1731 	/* Make sure the requested buffer exists */
1732 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1733 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1734 		return size;
1735 
1736 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1737 
1738 	/* we need a minimum of two pages */
1739 	if (nr_pages < 2)
1740 		nr_pages = 2;
1741 
1742 	size = nr_pages * BUF_PAGE_SIZE;
1743 
1744 	/* prevent another thread from changing buffer sizes */
1745 	mutex_lock(&buffer->mutex);
1746 
1747 
1748 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1749 		/*
1750 		 * Don't succeed if resizing is disabled, as a reader might be
1751 		 * manipulating the ring buffer and is expecting a sane state while
1752 		 * this is true.
1753 		 */
1754 		for_each_buffer_cpu(buffer, cpu) {
1755 			cpu_buffer = buffer->buffers[cpu];
1756 			if (atomic_read(&cpu_buffer->resize_disabled)) {
1757 				err = -EBUSY;
1758 				goto out_err_unlock;
1759 			}
1760 		}
1761 
1762 		/* calculate the pages to update */
1763 		for_each_buffer_cpu(buffer, cpu) {
1764 			cpu_buffer = buffer->buffers[cpu];
1765 
1766 			cpu_buffer->nr_pages_to_update = nr_pages -
1767 							cpu_buffer->nr_pages;
1768 			/*
1769 			 * nothing more to do for removing pages or no update
1770 			 */
1771 			if (cpu_buffer->nr_pages_to_update <= 0)
1772 				continue;
1773 			/*
1774 			 * to add pages, make sure all new pages can be
1775 			 * allocated without receiving ENOMEM
1776 			 */
1777 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1778 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1779 						&cpu_buffer->new_pages, cpu)) {
1780 				/* not enough memory for new pages */
1781 				err = -ENOMEM;
1782 				goto out_err;
1783 			}
1784 		}
1785 
1786 		get_online_cpus();
1787 		/*
1788 		 * Fire off all the required work handlers
1789 		 * We can't schedule on offline CPUs, but it's not necessary
1790 		 * since we can change their buffer sizes without any race.
1791 		 */
1792 		for_each_buffer_cpu(buffer, cpu) {
1793 			cpu_buffer = buffer->buffers[cpu];
1794 			if (!cpu_buffer->nr_pages_to_update)
1795 				continue;
1796 
1797 			/* Can't run something on an offline CPU. */
1798 			if (!cpu_online(cpu)) {
1799 				rb_update_pages(cpu_buffer);
1800 				cpu_buffer->nr_pages_to_update = 0;
1801 			} else {
1802 				schedule_work_on(cpu,
1803 						&cpu_buffer->update_pages_work);
1804 			}
1805 		}
1806 
1807 		/* wait for all the updates to complete */
1808 		for_each_buffer_cpu(buffer, cpu) {
1809 			cpu_buffer = buffer->buffers[cpu];
1810 			if (!cpu_buffer->nr_pages_to_update)
1811 				continue;
1812 
1813 			if (cpu_online(cpu))
1814 				wait_for_completion(&cpu_buffer->update_done);
1815 			cpu_buffer->nr_pages_to_update = 0;
1816 		}
1817 
1818 		put_online_cpus();
1819 	} else {
1820 		/* Make sure this CPU has been initialized */
1821 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1822 			goto out;
1823 
1824 		cpu_buffer = buffer->buffers[cpu_id];
1825 
1826 		if (nr_pages == cpu_buffer->nr_pages)
1827 			goto out;
1828 
1829 		/*
1830 		 * Don't succeed if resizing is disabled, as a reader might be
1831 		 * manipulating the ring buffer and is expecting a sane state while
1832 		 * this is true.
1833 		 */
1834 		if (atomic_read(&cpu_buffer->resize_disabled)) {
1835 			err = -EBUSY;
1836 			goto out_err_unlock;
1837 		}
1838 
1839 		cpu_buffer->nr_pages_to_update = nr_pages -
1840 						cpu_buffer->nr_pages;
1841 
1842 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1843 		if (cpu_buffer->nr_pages_to_update > 0 &&
1844 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1845 					    &cpu_buffer->new_pages, cpu_id)) {
1846 			err = -ENOMEM;
1847 			goto out_err;
1848 		}
1849 
1850 		get_online_cpus();
1851 
1852 		/* Can't run something on an offline CPU. */
1853 		if (!cpu_online(cpu_id))
1854 			rb_update_pages(cpu_buffer);
1855 		else {
1856 			schedule_work_on(cpu_id,
1857 					 &cpu_buffer->update_pages_work);
1858 			wait_for_completion(&cpu_buffer->update_done);
1859 		}
1860 
1861 		cpu_buffer->nr_pages_to_update = 0;
1862 		put_online_cpus();
1863 	}
1864 
1865  out:
1866 	/*
1867 	 * The ring buffer resize can happen with the ring buffer
1868 	 * enabled, so that the update disturbs the tracing as little
1869 	 * as possible. But if the buffer is disabled, we do not need
1870 	 * to worry about that, and we can take the time to verify
1871 	 * that the buffer is not corrupt.
1872 	 */
1873 	if (atomic_read(&buffer->record_disabled)) {
1874 		atomic_inc(&buffer->record_disabled);
1875 		/*
1876 		 * Even though the buffer was disabled, we must make sure
1877 		 * that it is truly disabled before calling rb_check_pages.
1878 		 * There could have been a race between checking
1879 		 * record_disable and incrementing it.
1880 		 */
1881 		synchronize_rcu();
1882 		for_each_buffer_cpu(buffer, cpu) {
1883 			cpu_buffer = buffer->buffers[cpu];
1884 			rb_check_pages(cpu_buffer);
1885 		}
1886 		atomic_dec(&buffer->record_disabled);
1887 	}
1888 
1889 	mutex_unlock(&buffer->mutex);
1890 	return size;
1891 
1892  out_err:
1893 	for_each_buffer_cpu(buffer, cpu) {
1894 		struct buffer_page *bpage, *tmp;
1895 
1896 		cpu_buffer = buffer->buffers[cpu];
1897 		cpu_buffer->nr_pages_to_update = 0;
1898 
1899 		if (list_empty(&cpu_buffer->new_pages))
1900 			continue;
1901 
1902 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1903 					list) {
1904 			list_del_init(&bpage->list);
1905 			free_buffer_page(bpage);
1906 		}
1907 	}
1908  out_err_unlock:
1909 	mutex_unlock(&buffer->mutex);
1910 	return err;
1911 }
1912 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1913 
1914 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
1915 {
1916 	mutex_lock(&buffer->mutex);
1917 	if (val)
1918 		buffer->flags |= RB_FL_OVERWRITE;
1919 	else
1920 		buffer->flags &= ~RB_FL_OVERWRITE;
1921 	mutex_unlock(&buffer->mutex);
1922 }
1923 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1924 
1925 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1926 {
1927 	return bpage->page->data + index;
1928 }
1929 
1930 static __always_inline struct ring_buffer_event *
1931 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1932 {
1933 	return __rb_page_index(cpu_buffer->reader_page,
1934 			       cpu_buffer->reader_page->read);
1935 }
1936 
1937 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1938 {
1939 	return local_read(&bpage->page->commit);
1940 }
1941 
1942 static struct ring_buffer_event *
1943 rb_iter_head_event(struct ring_buffer_iter *iter)
1944 {
1945 	struct ring_buffer_event *event;
1946 	struct buffer_page *iter_head_page = iter->head_page;
1947 	unsigned long commit;
1948 	unsigned length;
1949 
1950 	if (iter->head != iter->next_event)
1951 		return iter->event;
1952 
1953 	/*
1954 	 * When the writer goes across pages, it issues a cmpxchg which
1955 	 * is a mb(), which will synchronize with the rmb here.
1956 	 * (see rb_tail_page_update() and __rb_reserve_next())
1957 	 */
1958 	commit = rb_page_commit(iter_head_page);
1959 	smp_rmb();
1960 	event = __rb_page_index(iter_head_page, iter->head);
1961 	length = rb_event_length(event);
1962 
1963 	/*
1964 	 * READ_ONCE() doesn't work on functions and we don't want the
1965 	 * compiler doing any crazy optimizations with length.
1966 	 */
1967 	barrier();
1968 
1969 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
1970 		/* Writer corrupted the read? */
1971 		goto reset;
1972 
1973 	memcpy(iter->event, event, length);
1974 	/*
1975 	 * If the page stamp is still the same after this rmb() then the
1976 	 * event was safely copied without the writer entering the page.
1977 	 */
1978 	smp_rmb();
1979 
1980 	/* Make sure the page didn't change since we read this */
1981 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
1982 	    commit > rb_page_commit(iter_head_page))
1983 		goto reset;
1984 
1985 	iter->next_event = iter->head + length;
1986 	return iter->event;
1987  reset:
1988 	/* Reset to the beginning */
1989 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
1990 	iter->head = 0;
1991 	iter->next_event = 0;
1992 	iter->missed_events = 1;
1993 	return NULL;
1994 }
1995 
1996 /* Size is determined by what has been committed */
1997 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1998 {
1999 	return rb_page_commit(bpage);
2000 }
2001 
2002 static __always_inline unsigned
2003 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2004 {
2005 	return rb_page_commit(cpu_buffer->commit_page);
2006 }
2007 
2008 static __always_inline unsigned
2009 rb_event_index(struct ring_buffer_event *event)
2010 {
2011 	unsigned long addr = (unsigned long)event;
2012 
2013 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2014 }
2015 
2016 static void rb_inc_iter(struct ring_buffer_iter *iter)
2017 {
2018 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2019 
2020 	/*
2021 	 * The iterator could be on the reader page (it starts there).
2022 	 * But the head could have moved, since the reader was
2023 	 * found. Check for this case and assign the iterator
2024 	 * to the head page instead of next.
2025 	 */
2026 	if (iter->head_page == cpu_buffer->reader_page)
2027 		iter->head_page = rb_set_head_page(cpu_buffer);
2028 	else
2029 		rb_inc_page(cpu_buffer, &iter->head_page);
2030 
2031 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2032 	iter->head = 0;
2033 	iter->next_event = 0;
2034 }
2035 
2036 /*
2037  * rb_handle_head_page - writer hit the head page
2038  *
2039  * Returns: +1 to retry page
2040  *           0 to continue
2041  *          -1 on error
2042  */
2043 static int
2044 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2045 		    struct buffer_page *tail_page,
2046 		    struct buffer_page *next_page)
2047 {
2048 	struct buffer_page *new_head;
2049 	int entries;
2050 	int type;
2051 	int ret;
2052 
2053 	entries = rb_page_entries(next_page);
2054 
2055 	/*
2056 	 * The hard part is here. We need to move the head
2057 	 * forward, and protect against both readers on
2058 	 * other CPUs and writers coming in via interrupts.
2059 	 */
2060 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2061 				       RB_PAGE_HEAD);
2062 
2063 	/*
2064 	 * type can be one of four:
2065 	 *  NORMAL - an interrupt already moved it for us
2066 	 *  HEAD   - we are the first to get here.
2067 	 *  UPDATE - we are the interrupt interrupting
2068 	 *           a current move.
2069 	 *  MOVED  - a reader on another CPU moved the next
2070 	 *           pointer to its reader page. Give up
2071 	 *           and try again.
2072 	 */
2073 
2074 	switch (type) {
2075 	case RB_PAGE_HEAD:
2076 		/*
2077 		 * We changed the head to UPDATE, thus
2078 		 * it is our responsibility to update
2079 		 * the counters.
2080 		 */
2081 		local_add(entries, &cpu_buffer->overrun);
2082 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2083 
2084 		/*
2085 		 * The entries will be zeroed out when we move the
2086 		 * tail page.
2087 		 */
2088 
2089 		/* still more to do */
2090 		break;
2091 
2092 	case RB_PAGE_UPDATE:
2093 		/*
2094 		 * This is an interrupt that interrupt the
2095 		 * previous update. Still more to do.
2096 		 */
2097 		break;
2098 	case RB_PAGE_NORMAL:
2099 		/*
2100 		 * An interrupt came in before the update
2101 		 * and processed this for us.
2102 		 * Nothing left to do.
2103 		 */
2104 		return 1;
2105 	case RB_PAGE_MOVED:
2106 		/*
2107 		 * The reader is on another CPU and just did
2108 		 * a swap with our next_page.
2109 		 * Try again.
2110 		 */
2111 		return 1;
2112 	default:
2113 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2114 		return -1;
2115 	}
2116 
2117 	/*
2118 	 * Now that we are here, the old head pointer is
2119 	 * set to UPDATE. This will keep the reader from
2120 	 * swapping the head page with the reader page.
2121 	 * The reader (on another CPU) will spin till
2122 	 * we are finished.
2123 	 *
2124 	 * We just need to protect against interrupts
2125 	 * doing the job. We will set the next pointer
2126 	 * to HEAD. After that, we set the old pointer
2127 	 * to NORMAL, but only if it was HEAD before.
2128 	 * otherwise we are an interrupt, and only
2129 	 * want the outer most commit to reset it.
2130 	 */
2131 	new_head = next_page;
2132 	rb_inc_page(cpu_buffer, &new_head);
2133 
2134 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2135 				    RB_PAGE_NORMAL);
2136 
2137 	/*
2138 	 * Valid returns are:
2139 	 *  HEAD   - an interrupt came in and already set it.
2140 	 *  NORMAL - One of two things:
2141 	 *            1) We really set it.
2142 	 *            2) A bunch of interrupts came in and moved
2143 	 *               the page forward again.
2144 	 */
2145 	switch (ret) {
2146 	case RB_PAGE_HEAD:
2147 	case RB_PAGE_NORMAL:
2148 		/* OK */
2149 		break;
2150 	default:
2151 		RB_WARN_ON(cpu_buffer, 1);
2152 		return -1;
2153 	}
2154 
2155 	/*
2156 	 * It is possible that an interrupt came in,
2157 	 * set the head up, then more interrupts came in
2158 	 * and moved it again. When we get back here,
2159 	 * the page would have been set to NORMAL but we
2160 	 * just set it back to HEAD.
2161 	 *
2162 	 * How do you detect this? Well, if that happened
2163 	 * the tail page would have moved.
2164 	 */
2165 	if (ret == RB_PAGE_NORMAL) {
2166 		struct buffer_page *buffer_tail_page;
2167 
2168 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2169 		/*
2170 		 * If the tail had moved passed next, then we need
2171 		 * to reset the pointer.
2172 		 */
2173 		if (buffer_tail_page != tail_page &&
2174 		    buffer_tail_page != next_page)
2175 			rb_head_page_set_normal(cpu_buffer, new_head,
2176 						next_page,
2177 						RB_PAGE_HEAD);
2178 	}
2179 
2180 	/*
2181 	 * If this was the outer most commit (the one that
2182 	 * changed the original pointer from HEAD to UPDATE),
2183 	 * then it is up to us to reset it to NORMAL.
2184 	 */
2185 	if (type == RB_PAGE_HEAD) {
2186 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2187 					      tail_page,
2188 					      RB_PAGE_UPDATE);
2189 		if (RB_WARN_ON(cpu_buffer,
2190 			       ret != RB_PAGE_UPDATE))
2191 			return -1;
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static inline void
2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199 	      unsigned long tail, struct rb_event_info *info)
2200 {
2201 	struct buffer_page *tail_page = info->tail_page;
2202 	struct ring_buffer_event *event;
2203 	unsigned long length = info->length;
2204 
2205 	/*
2206 	 * Only the event that crossed the page boundary
2207 	 * must fill the old tail_page with padding.
2208 	 */
2209 	if (tail >= BUF_PAGE_SIZE) {
2210 		/*
2211 		 * If the page was filled, then we still need
2212 		 * to update the real_end. Reset it to zero
2213 		 * and the reader will ignore it.
2214 		 */
2215 		if (tail == BUF_PAGE_SIZE)
2216 			tail_page->real_end = 0;
2217 
2218 		local_sub(length, &tail_page->write);
2219 		return;
2220 	}
2221 
2222 	event = __rb_page_index(tail_page, tail);
2223 
2224 	/* account for padding bytes */
2225 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226 
2227 	/*
2228 	 * Save the original length to the meta data.
2229 	 * This will be used by the reader to add lost event
2230 	 * counter.
2231 	 */
2232 	tail_page->real_end = tail;
2233 
2234 	/*
2235 	 * If this event is bigger than the minimum size, then
2236 	 * we need to be careful that we don't subtract the
2237 	 * write counter enough to allow another writer to slip
2238 	 * in on this page.
2239 	 * We put in a discarded commit instead, to make sure
2240 	 * that this space is not used again.
2241 	 *
2242 	 * If we are less than the minimum size, we don't need to
2243 	 * worry about it.
2244 	 */
2245 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246 		/* No room for any events */
2247 
2248 		/* Mark the rest of the page with padding */
2249 		rb_event_set_padding(event);
2250 
2251 		/* Set the write back to the previous setting */
2252 		local_sub(length, &tail_page->write);
2253 		return;
2254 	}
2255 
2256 	/* Put in a discarded event */
2257 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258 	event->type_len = RINGBUF_TYPE_PADDING;
2259 	/* time delta must be non zero */
2260 	event->time_delta = 1;
2261 
2262 	/* Set write to end of buffer */
2263 	length = (tail + length) - BUF_PAGE_SIZE;
2264 	local_sub(length, &tail_page->write);
2265 }
2266 
2267 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2268 
2269 /*
2270  * This is the slow path, force gcc not to inline it.
2271  */
2272 static noinline struct ring_buffer_event *
2273 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2274 	     unsigned long tail, struct rb_event_info *info)
2275 {
2276 	struct buffer_page *tail_page = info->tail_page;
2277 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2278 	struct trace_buffer *buffer = cpu_buffer->buffer;
2279 	struct buffer_page *next_page;
2280 	int ret;
2281 
2282 	next_page = tail_page;
2283 
2284 	rb_inc_page(cpu_buffer, &next_page);
2285 
2286 	/*
2287 	 * If for some reason, we had an interrupt storm that made
2288 	 * it all the way around the buffer, bail, and warn
2289 	 * about it.
2290 	 */
2291 	if (unlikely(next_page == commit_page)) {
2292 		local_inc(&cpu_buffer->commit_overrun);
2293 		goto out_reset;
2294 	}
2295 
2296 	/*
2297 	 * This is where the fun begins!
2298 	 *
2299 	 * We are fighting against races between a reader that
2300 	 * could be on another CPU trying to swap its reader
2301 	 * page with the buffer head.
2302 	 *
2303 	 * We are also fighting against interrupts coming in and
2304 	 * moving the head or tail on us as well.
2305 	 *
2306 	 * If the next page is the head page then we have filled
2307 	 * the buffer, unless the commit page is still on the
2308 	 * reader page.
2309 	 */
2310 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2311 
2312 		/*
2313 		 * If the commit is not on the reader page, then
2314 		 * move the header page.
2315 		 */
2316 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2317 			/*
2318 			 * If we are not in overwrite mode,
2319 			 * this is easy, just stop here.
2320 			 */
2321 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2322 				local_inc(&cpu_buffer->dropped_events);
2323 				goto out_reset;
2324 			}
2325 
2326 			ret = rb_handle_head_page(cpu_buffer,
2327 						  tail_page,
2328 						  next_page);
2329 			if (ret < 0)
2330 				goto out_reset;
2331 			if (ret)
2332 				goto out_again;
2333 		} else {
2334 			/*
2335 			 * We need to be careful here too. The
2336 			 * commit page could still be on the reader
2337 			 * page. We could have a small buffer, and
2338 			 * have filled up the buffer with events
2339 			 * from interrupts and such, and wrapped.
2340 			 *
2341 			 * Note, if the tail page is also the on the
2342 			 * reader_page, we let it move out.
2343 			 */
2344 			if (unlikely((cpu_buffer->commit_page !=
2345 				      cpu_buffer->tail_page) &&
2346 				     (cpu_buffer->commit_page ==
2347 				      cpu_buffer->reader_page))) {
2348 				local_inc(&cpu_buffer->commit_overrun);
2349 				goto out_reset;
2350 			}
2351 		}
2352 	}
2353 
2354 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2355 
2356  out_again:
2357 
2358 	rb_reset_tail(cpu_buffer, tail, info);
2359 
2360 	/* Commit what we have for now. */
2361 	rb_end_commit(cpu_buffer);
2362 	/* rb_end_commit() decs committing */
2363 	local_inc(&cpu_buffer->committing);
2364 
2365 	/* fail and let the caller try again */
2366 	return ERR_PTR(-EAGAIN);
2367 
2368  out_reset:
2369 	/* reset write */
2370 	rb_reset_tail(cpu_buffer, tail, info);
2371 
2372 	return NULL;
2373 }
2374 
2375 /* Slow path, do not inline */
2376 static noinline struct ring_buffer_event *
2377 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2378 {
2379 	if (abs)
2380 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2381 	else
2382 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2383 
2384 	/* Not the first event on the page, or not delta? */
2385 	if (abs || rb_event_index(event)) {
2386 		event->time_delta = delta & TS_MASK;
2387 		event->array[0] = delta >> TS_SHIFT;
2388 	} else {
2389 		/* nope, just zero it */
2390 		event->time_delta = 0;
2391 		event->array[0] = 0;
2392 	}
2393 
2394 	return skip_time_extend(event);
2395 }
2396 
2397 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2398 				     struct ring_buffer_event *event);
2399 
2400 /**
2401  * rb_update_event - update event type and data
2402  * @cpu_buffer: The per cpu buffer of the @event
2403  * @event: the event to update
2404  * @info: The info to update the @event with (contains length and delta)
2405  *
2406  * Update the type and data fields of the @event. The length
2407  * is the actual size that is written to the ring buffer,
2408  * and with this, we can determine what to place into the
2409  * data field.
2410  */
2411 static void
2412 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2413 		struct ring_buffer_event *event,
2414 		struct rb_event_info *info)
2415 {
2416 	unsigned length = info->length;
2417 	u64 delta = info->delta;
2418 
2419 	/* Only a commit updates the timestamp */
2420 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2421 		delta = 0;
2422 
2423 	/*
2424 	 * If we need to add a timestamp, then we
2425 	 * add it to the start of the reserved space.
2426 	 */
2427 	if (unlikely(info->add_timestamp)) {
2428 		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2429 
2430 		event = rb_add_time_stamp(event, info->delta, abs);
2431 		length -= RB_LEN_TIME_EXTEND;
2432 		delta = 0;
2433 	}
2434 
2435 	event->time_delta = delta;
2436 	length -= RB_EVNT_HDR_SIZE;
2437 	if (length > RB_MAX_SMALL_DATA) {
2438 		event->type_len = 0;
2439 		event->array[0] = length;
2440 	} else
2441 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2442 }
2443 
2444 static unsigned rb_calculate_event_length(unsigned length)
2445 {
2446 	struct ring_buffer_event event; /* Used only for sizeof array */
2447 
2448 	/* zero length can cause confusions */
2449 	if (!length)
2450 		length++;
2451 
2452 	if (length > RB_MAX_SMALL_DATA)
2453 		length += sizeof(event.array[0]);
2454 
2455 	length += RB_EVNT_HDR_SIZE;
2456 	length = ALIGN(length, RB_ALIGNMENT);
2457 
2458 	/*
2459 	 * In case the time delta is larger than the 27 bits for it
2460 	 * in the header, we need to add a timestamp. If another
2461 	 * event comes in when trying to discard this one to increase
2462 	 * the length, then the timestamp will be added in the allocated
2463 	 * space of this event. If length is bigger than the size needed
2464 	 * for the TIME_EXTEND, then padding has to be used. The events
2465 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2466 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2467 	 * As length is a multiple of 4, we only need to worry if it
2468 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2469 	 */
2470 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2471 		length += RB_ALIGNMENT;
2472 
2473 	return length;
2474 }
2475 
2476 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2477 static inline bool sched_clock_stable(void)
2478 {
2479 	return true;
2480 }
2481 #endif
2482 
2483 static inline int
2484 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2485 		  struct ring_buffer_event *event)
2486 {
2487 	unsigned long new_index, old_index;
2488 	struct buffer_page *bpage;
2489 	unsigned long index;
2490 	unsigned long addr;
2491 
2492 	new_index = rb_event_index(event);
2493 	old_index = new_index + rb_event_ts_length(event);
2494 	addr = (unsigned long)event;
2495 	addr &= PAGE_MASK;
2496 
2497 	bpage = READ_ONCE(cpu_buffer->tail_page);
2498 
2499 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2500 		unsigned long write_mask =
2501 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2502 		unsigned long event_length = rb_event_length(event);
2503 		/*
2504 		 * This is on the tail page. It is possible that
2505 		 * a write could come in and move the tail page
2506 		 * and write to the next page. That is fine
2507 		 * because we just shorten what is on this page.
2508 		 */
2509 		old_index += write_mask;
2510 		new_index += write_mask;
2511 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2512 		if (index == old_index) {
2513 			/* update counters */
2514 			local_sub(event_length, &cpu_buffer->entries_bytes);
2515 			return 1;
2516 		}
2517 	}
2518 
2519 	/* could not discard */
2520 	return 0;
2521 }
2522 
2523 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2524 {
2525 	local_inc(&cpu_buffer->committing);
2526 	local_inc(&cpu_buffer->commits);
2527 }
2528 
2529 static __always_inline void
2530 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2531 {
2532 	unsigned long max_count;
2533 
2534 	/*
2535 	 * We only race with interrupts and NMIs on this CPU.
2536 	 * If we own the commit event, then we can commit
2537 	 * all others that interrupted us, since the interruptions
2538 	 * are in stack format (they finish before they come
2539 	 * back to us). This allows us to do a simple loop to
2540 	 * assign the commit to the tail.
2541 	 */
2542  again:
2543 	max_count = cpu_buffer->nr_pages * 100;
2544 
2545 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2546 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2547 			return;
2548 		if (RB_WARN_ON(cpu_buffer,
2549 			       rb_is_reader_page(cpu_buffer->tail_page)))
2550 			return;
2551 		local_set(&cpu_buffer->commit_page->page->commit,
2552 			  rb_page_write(cpu_buffer->commit_page));
2553 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2554 		/* Only update the write stamp if the page has an event */
2555 		if (rb_page_write(cpu_buffer->commit_page))
2556 			cpu_buffer->write_stamp =
2557 				cpu_buffer->commit_page->page->time_stamp;
2558 		/* add barrier to keep gcc from optimizing too much */
2559 		barrier();
2560 	}
2561 	while (rb_commit_index(cpu_buffer) !=
2562 	       rb_page_write(cpu_buffer->commit_page)) {
2563 
2564 		local_set(&cpu_buffer->commit_page->page->commit,
2565 			  rb_page_write(cpu_buffer->commit_page));
2566 		RB_WARN_ON(cpu_buffer,
2567 			   local_read(&cpu_buffer->commit_page->page->commit) &
2568 			   ~RB_WRITE_MASK);
2569 		barrier();
2570 	}
2571 
2572 	/* again, keep gcc from optimizing */
2573 	barrier();
2574 
2575 	/*
2576 	 * If an interrupt came in just after the first while loop
2577 	 * and pushed the tail page forward, we will be left with
2578 	 * a dangling commit that will never go forward.
2579 	 */
2580 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2581 		goto again;
2582 }
2583 
2584 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2585 {
2586 	unsigned long commits;
2587 
2588 	if (RB_WARN_ON(cpu_buffer,
2589 		       !local_read(&cpu_buffer->committing)))
2590 		return;
2591 
2592  again:
2593 	commits = local_read(&cpu_buffer->commits);
2594 	/* synchronize with interrupts */
2595 	barrier();
2596 	if (local_read(&cpu_buffer->committing) == 1)
2597 		rb_set_commit_to_write(cpu_buffer);
2598 
2599 	local_dec(&cpu_buffer->committing);
2600 
2601 	/* synchronize with interrupts */
2602 	barrier();
2603 
2604 	/*
2605 	 * Need to account for interrupts coming in between the
2606 	 * updating of the commit page and the clearing of the
2607 	 * committing counter.
2608 	 */
2609 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2610 	    !local_read(&cpu_buffer->committing)) {
2611 		local_inc(&cpu_buffer->committing);
2612 		goto again;
2613 	}
2614 }
2615 
2616 static inline void rb_event_discard(struct ring_buffer_event *event)
2617 {
2618 	if (extended_time(event))
2619 		event = skip_time_extend(event);
2620 
2621 	/* array[0] holds the actual length for the discarded event */
2622 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2623 	event->type_len = RINGBUF_TYPE_PADDING;
2624 	/* time delta must be non zero */
2625 	if (!event->time_delta)
2626 		event->time_delta = 1;
2627 }
2628 
2629 static __always_inline bool
2630 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2631 		   struct ring_buffer_event *event)
2632 {
2633 	unsigned long addr = (unsigned long)event;
2634 	unsigned long index;
2635 
2636 	index = rb_event_index(event);
2637 	addr &= PAGE_MASK;
2638 
2639 	return cpu_buffer->commit_page->page == (void *)addr &&
2640 		rb_commit_index(cpu_buffer) == index;
2641 }
2642 
2643 static __always_inline void
2644 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2645 		      struct ring_buffer_event *event)
2646 {
2647 	u64 delta;
2648 
2649 	/*
2650 	 * The event first in the commit queue updates the
2651 	 * time stamp.
2652 	 */
2653 	if (rb_event_is_commit(cpu_buffer, event)) {
2654 		/*
2655 		 * A commit event that is first on a page
2656 		 * updates the write timestamp with the page stamp
2657 		 */
2658 		if (!rb_event_index(event))
2659 			cpu_buffer->write_stamp =
2660 				cpu_buffer->commit_page->page->time_stamp;
2661 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2662 			delta = ring_buffer_event_time_stamp(event);
2663 			cpu_buffer->write_stamp += delta;
2664 		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2665 			delta = ring_buffer_event_time_stamp(event);
2666 			cpu_buffer->write_stamp = delta;
2667 		} else
2668 			cpu_buffer->write_stamp += event->time_delta;
2669 	}
2670 }
2671 
2672 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2673 		      struct ring_buffer_event *event)
2674 {
2675 	local_inc(&cpu_buffer->entries);
2676 	rb_update_write_stamp(cpu_buffer, event);
2677 	rb_end_commit(cpu_buffer);
2678 }
2679 
2680 static __always_inline void
2681 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2682 {
2683 	size_t nr_pages;
2684 	size_t dirty;
2685 	size_t full;
2686 
2687 	if (buffer->irq_work.waiters_pending) {
2688 		buffer->irq_work.waiters_pending = false;
2689 		/* irq_work_queue() supplies it's own memory barriers */
2690 		irq_work_queue(&buffer->irq_work.work);
2691 	}
2692 
2693 	if (cpu_buffer->irq_work.waiters_pending) {
2694 		cpu_buffer->irq_work.waiters_pending = false;
2695 		/* irq_work_queue() supplies it's own memory barriers */
2696 		irq_work_queue(&cpu_buffer->irq_work.work);
2697 	}
2698 
2699 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2700 		return;
2701 
2702 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2703 		return;
2704 
2705 	if (!cpu_buffer->irq_work.full_waiters_pending)
2706 		return;
2707 
2708 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2709 
2710 	full = cpu_buffer->shortest_full;
2711 	nr_pages = cpu_buffer->nr_pages;
2712 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2713 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2714 		return;
2715 
2716 	cpu_buffer->irq_work.wakeup_full = true;
2717 	cpu_buffer->irq_work.full_waiters_pending = false;
2718 	/* irq_work_queue() supplies it's own memory barriers */
2719 	irq_work_queue(&cpu_buffer->irq_work.work);
2720 }
2721 
2722 /*
2723  * The lock and unlock are done within a preempt disable section.
2724  * The current_context per_cpu variable can only be modified
2725  * by the current task between lock and unlock. But it can
2726  * be modified more than once via an interrupt. To pass this
2727  * information from the lock to the unlock without having to
2728  * access the 'in_interrupt()' functions again (which do show
2729  * a bit of overhead in something as critical as function tracing,
2730  * we use a bitmask trick.
2731  *
2732  *  bit 0 =  NMI context
2733  *  bit 1 =  IRQ context
2734  *  bit 2 =  SoftIRQ context
2735  *  bit 3 =  normal context.
2736  *
2737  * This works because this is the order of contexts that can
2738  * preempt other contexts. A SoftIRQ never preempts an IRQ
2739  * context.
2740  *
2741  * When the context is determined, the corresponding bit is
2742  * checked and set (if it was set, then a recursion of that context
2743  * happened).
2744  *
2745  * On unlock, we need to clear this bit. To do so, just subtract
2746  * 1 from the current_context and AND it to itself.
2747  *
2748  * (binary)
2749  *  101 - 1 = 100
2750  *  101 & 100 = 100 (clearing bit zero)
2751  *
2752  *  1010 - 1 = 1001
2753  *  1010 & 1001 = 1000 (clearing bit 1)
2754  *
2755  * The least significant bit can be cleared this way, and it
2756  * just so happens that it is the same bit corresponding to
2757  * the current context.
2758  */
2759 
2760 static __always_inline int
2761 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2762 {
2763 	unsigned int val = cpu_buffer->current_context;
2764 	unsigned long pc = preempt_count();
2765 	int bit;
2766 
2767 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2768 		bit = RB_CTX_NORMAL;
2769 	else
2770 		bit = pc & NMI_MASK ? RB_CTX_NMI :
2771 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2772 
2773 	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2774 		return 1;
2775 
2776 	val |= (1 << (bit + cpu_buffer->nest));
2777 	cpu_buffer->current_context = val;
2778 
2779 	return 0;
2780 }
2781 
2782 static __always_inline void
2783 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2784 {
2785 	cpu_buffer->current_context &=
2786 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2787 }
2788 
2789 /* The recursive locking above uses 4 bits */
2790 #define NESTED_BITS 4
2791 
2792 /**
2793  * ring_buffer_nest_start - Allow to trace while nested
2794  * @buffer: The ring buffer to modify
2795  *
2796  * The ring buffer has a safety mechanism to prevent recursion.
2797  * But there may be a case where a trace needs to be done while
2798  * tracing something else. In this case, calling this function
2799  * will allow this function to nest within a currently active
2800  * ring_buffer_lock_reserve().
2801  *
2802  * Call this function before calling another ring_buffer_lock_reserve() and
2803  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2804  */
2805 void ring_buffer_nest_start(struct trace_buffer *buffer)
2806 {
2807 	struct ring_buffer_per_cpu *cpu_buffer;
2808 	int cpu;
2809 
2810 	/* Enabled by ring_buffer_nest_end() */
2811 	preempt_disable_notrace();
2812 	cpu = raw_smp_processor_id();
2813 	cpu_buffer = buffer->buffers[cpu];
2814 	/* This is the shift value for the above recursive locking */
2815 	cpu_buffer->nest += NESTED_BITS;
2816 }
2817 
2818 /**
2819  * ring_buffer_nest_end - Allow to trace while nested
2820  * @buffer: The ring buffer to modify
2821  *
2822  * Must be called after ring_buffer_nest_start() and after the
2823  * ring_buffer_unlock_commit().
2824  */
2825 void ring_buffer_nest_end(struct trace_buffer *buffer)
2826 {
2827 	struct ring_buffer_per_cpu *cpu_buffer;
2828 	int cpu;
2829 
2830 	/* disabled by ring_buffer_nest_start() */
2831 	cpu = raw_smp_processor_id();
2832 	cpu_buffer = buffer->buffers[cpu];
2833 	/* This is the shift value for the above recursive locking */
2834 	cpu_buffer->nest -= NESTED_BITS;
2835 	preempt_enable_notrace();
2836 }
2837 
2838 /**
2839  * ring_buffer_unlock_commit - commit a reserved
2840  * @buffer: The buffer to commit to
2841  * @event: The event pointer to commit.
2842  *
2843  * This commits the data to the ring buffer, and releases any locks held.
2844  *
2845  * Must be paired with ring_buffer_lock_reserve.
2846  */
2847 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
2848 			      struct ring_buffer_event *event)
2849 {
2850 	struct ring_buffer_per_cpu *cpu_buffer;
2851 	int cpu = raw_smp_processor_id();
2852 
2853 	cpu_buffer = buffer->buffers[cpu];
2854 
2855 	rb_commit(cpu_buffer, event);
2856 
2857 	rb_wakeups(buffer, cpu_buffer);
2858 
2859 	trace_recursive_unlock(cpu_buffer);
2860 
2861 	preempt_enable_notrace();
2862 
2863 	return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2866 
2867 static noinline void
2868 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2869 		    struct rb_event_info *info)
2870 {
2871 	WARN_ONCE(info->delta > (1ULL << 59),
2872 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2873 		  (unsigned long long)info->delta,
2874 		  (unsigned long long)info->ts,
2875 		  (unsigned long long)cpu_buffer->write_stamp,
2876 		  sched_clock_stable() ? "" :
2877 		  "If you just came from a suspend/resume,\n"
2878 		  "please switch to the trace global clock:\n"
2879 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2880 		  "or add trace_clock=global to the kernel command line\n");
2881 	info->add_timestamp = 1;
2882 }
2883 
2884 static struct ring_buffer_event *
2885 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2886 		  struct rb_event_info *info)
2887 {
2888 	struct ring_buffer_event *event;
2889 	struct buffer_page *tail_page;
2890 	unsigned long tail, write;
2891 
2892 	/*
2893 	 * If the time delta since the last event is too big to
2894 	 * hold in the time field of the event, then we append a
2895 	 * TIME EXTEND event ahead of the data event.
2896 	 */
2897 	if (unlikely(info->add_timestamp))
2898 		info->length += RB_LEN_TIME_EXTEND;
2899 
2900 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2901 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2902 	write = local_add_return(info->length, &tail_page->write);
2903 
2904 	/* set write to only the index of the write */
2905 	write &= RB_WRITE_MASK;
2906 	tail = write - info->length;
2907 
2908 	/*
2909 	 * If this is the first commit on the page, then it has the same
2910 	 * timestamp as the page itself.
2911 	 */
2912 	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2913 		info->delta = 0;
2914 
2915 	/* See if we shot pass the end of this buffer page */
2916 	if (unlikely(write > BUF_PAGE_SIZE))
2917 		return rb_move_tail(cpu_buffer, tail, info);
2918 
2919 	/* We reserved something on the buffer */
2920 
2921 	event = __rb_page_index(tail_page, tail);
2922 	rb_update_event(cpu_buffer, event, info);
2923 
2924 	local_inc(&tail_page->entries);
2925 
2926 	/*
2927 	 * If this is the first commit on the page, then update
2928 	 * its timestamp.
2929 	 */
2930 	if (!tail)
2931 		tail_page->page->time_stamp = info->ts;
2932 
2933 	/* account for these added bytes */
2934 	local_add(info->length, &cpu_buffer->entries_bytes);
2935 
2936 	return event;
2937 }
2938 
2939 static __always_inline struct ring_buffer_event *
2940 rb_reserve_next_event(struct trace_buffer *buffer,
2941 		      struct ring_buffer_per_cpu *cpu_buffer,
2942 		      unsigned long length)
2943 {
2944 	struct ring_buffer_event *event;
2945 	struct rb_event_info info;
2946 	int nr_loops = 0;
2947 	u64 diff;
2948 
2949 	rb_start_commit(cpu_buffer);
2950 
2951 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2952 	/*
2953 	 * Due to the ability to swap a cpu buffer from a buffer
2954 	 * it is possible it was swapped before we committed.
2955 	 * (committing stops a swap). We check for it here and
2956 	 * if it happened, we have to fail the write.
2957 	 */
2958 	barrier();
2959 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2960 		local_dec(&cpu_buffer->committing);
2961 		local_dec(&cpu_buffer->commits);
2962 		return NULL;
2963 	}
2964 #endif
2965 
2966 	info.length = rb_calculate_event_length(length);
2967  again:
2968 	info.add_timestamp = 0;
2969 	info.delta = 0;
2970 
2971 	/*
2972 	 * We allow for interrupts to reenter here and do a trace.
2973 	 * If one does, it will cause this original code to loop
2974 	 * back here. Even with heavy interrupts happening, this
2975 	 * should only happen a few times in a row. If this happens
2976 	 * 1000 times in a row, there must be either an interrupt
2977 	 * storm or we have something buggy.
2978 	 * Bail!
2979 	 */
2980 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2981 		goto out_fail;
2982 
2983 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2984 	diff = info.ts - cpu_buffer->write_stamp;
2985 
2986 	/* make sure this diff is calculated here */
2987 	barrier();
2988 
2989 	if (ring_buffer_time_stamp_abs(buffer)) {
2990 		info.delta = info.ts;
2991 		rb_handle_timestamp(cpu_buffer, &info);
2992 	} else /* Did the write stamp get updated already? */
2993 		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2994 		info.delta = diff;
2995 		if (unlikely(test_time_stamp(info.delta)))
2996 			rb_handle_timestamp(cpu_buffer, &info);
2997 	}
2998 
2999 	event = __rb_reserve_next(cpu_buffer, &info);
3000 
3001 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3002 		if (info.add_timestamp)
3003 			info.length -= RB_LEN_TIME_EXTEND;
3004 		goto again;
3005 	}
3006 
3007 	if (!event)
3008 		goto out_fail;
3009 
3010 	return event;
3011 
3012  out_fail:
3013 	rb_end_commit(cpu_buffer);
3014 	return NULL;
3015 }
3016 
3017 /**
3018  * ring_buffer_lock_reserve - reserve a part of the buffer
3019  * @buffer: the ring buffer to reserve from
3020  * @length: the length of the data to reserve (excluding event header)
3021  *
3022  * Returns a reserved event on the ring buffer to copy directly to.
3023  * The user of this interface will need to get the body to write into
3024  * and can use the ring_buffer_event_data() interface.
3025  *
3026  * The length is the length of the data needed, not the event length
3027  * which also includes the event header.
3028  *
3029  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3030  * If NULL is returned, then nothing has been allocated or locked.
3031  */
3032 struct ring_buffer_event *
3033 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3034 {
3035 	struct ring_buffer_per_cpu *cpu_buffer;
3036 	struct ring_buffer_event *event;
3037 	int cpu;
3038 
3039 	/* If we are tracing schedule, we don't want to recurse */
3040 	preempt_disable_notrace();
3041 
3042 	if (unlikely(atomic_read(&buffer->record_disabled)))
3043 		goto out;
3044 
3045 	cpu = raw_smp_processor_id();
3046 
3047 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3048 		goto out;
3049 
3050 	cpu_buffer = buffer->buffers[cpu];
3051 
3052 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3053 		goto out;
3054 
3055 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3056 		goto out;
3057 
3058 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3059 		goto out;
3060 
3061 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3062 	if (!event)
3063 		goto out_unlock;
3064 
3065 	return event;
3066 
3067  out_unlock:
3068 	trace_recursive_unlock(cpu_buffer);
3069  out:
3070 	preempt_enable_notrace();
3071 	return NULL;
3072 }
3073 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3074 
3075 /*
3076  * Decrement the entries to the page that an event is on.
3077  * The event does not even need to exist, only the pointer
3078  * to the page it is on. This may only be called before the commit
3079  * takes place.
3080  */
3081 static inline void
3082 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3083 		   struct ring_buffer_event *event)
3084 {
3085 	unsigned long addr = (unsigned long)event;
3086 	struct buffer_page *bpage = cpu_buffer->commit_page;
3087 	struct buffer_page *start;
3088 
3089 	addr &= PAGE_MASK;
3090 
3091 	/* Do the likely case first */
3092 	if (likely(bpage->page == (void *)addr)) {
3093 		local_dec(&bpage->entries);
3094 		return;
3095 	}
3096 
3097 	/*
3098 	 * Because the commit page may be on the reader page we
3099 	 * start with the next page and check the end loop there.
3100 	 */
3101 	rb_inc_page(cpu_buffer, &bpage);
3102 	start = bpage;
3103 	do {
3104 		if (bpage->page == (void *)addr) {
3105 			local_dec(&bpage->entries);
3106 			return;
3107 		}
3108 		rb_inc_page(cpu_buffer, &bpage);
3109 	} while (bpage != start);
3110 
3111 	/* commit not part of this buffer?? */
3112 	RB_WARN_ON(cpu_buffer, 1);
3113 }
3114 
3115 /**
3116  * ring_buffer_commit_discard - discard an event that has not been committed
3117  * @buffer: the ring buffer
3118  * @event: non committed event to discard
3119  *
3120  * Sometimes an event that is in the ring buffer needs to be ignored.
3121  * This function lets the user discard an event in the ring buffer
3122  * and then that event will not be read later.
3123  *
3124  * This function only works if it is called before the item has been
3125  * committed. It will try to free the event from the ring buffer
3126  * if another event has not been added behind it.
3127  *
3128  * If another event has been added behind it, it will set the event
3129  * up as discarded, and perform the commit.
3130  *
3131  * If this function is called, do not call ring_buffer_unlock_commit on
3132  * the event.
3133  */
3134 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3135 				struct ring_buffer_event *event)
3136 {
3137 	struct ring_buffer_per_cpu *cpu_buffer;
3138 	int cpu;
3139 
3140 	/* The event is discarded regardless */
3141 	rb_event_discard(event);
3142 
3143 	cpu = smp_processor_id();
3144 	cpu_buffer = buffer->buffers[cpu];
3145 
3146 	/*
3147 	 * This must only be called if the event has not been
3148 	 * committed yet. Thus we can assume that preemption
3149 	 * is still disabled.
3150 	 */
3151 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3152 
3153 	rb_decrement_entry(cpu_buffer, event);
3154 	if (rb_try_to_discard(cpu_buffer, event))
3155 		goto out;
3156 
3157 	/*
3158 	 * The commit is still visible by the reader, so we
3159 	 * must still update the timestamp.
3160 	 */
3161 	rb_update_write_stamp(cpu_buffer, event);
3162  out:
3163 	rb_end_commit(cpu_buffer);
3164 
3165 	trace_recursive_unlock(cpu_buffer);
3166 
3167 	preempt_enable_notrace();
3168 
3169 }
3170 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3171 
3172 /**
3173  * ring_buffer_write - write data to the buffer without reserving
3174  * @buffer: The ring buffer to write to.
3175  * @length: The length of the data being written (excluding the event header)
3176  * @data: The data to write to the buffer.
3177  *
3178  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3179  * one function. If you already have the data to write to the buffer, it
3180  * may be easier to simply call this function.
3181  *
3182  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3183  * and not the length of the event which would hold the header.
3184  */
3185 int ring_buffer_write(struct trace_buffer *buffer,
3186 		      unsigned long length,
3187 		      void *data)
3188 {
3189 	struct ring_buffer_per_cpu *cpu_buffer;
3190 	struct ring_buffer_event *event;
3191 	void *body;
3192 	int ret = -EBUSY;
3193 	int cpu;
3194 
3195 	preempt_disable_notrace();
3196 
3197 	if (atomic_read(&buffer->record_disabled))
3198 		goto out;
3199 
3200 	cpu = raw_smp_processor_id();
3201 
3202 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203 		goto out;
3204 
3205 	cpu_buffer = buffer->buffers[cpu];
3206 
3207 	if (atomic_read(&cpu_buffer->record_disabled))
3208 		goto out;
3209 
3210 	if (length > BUF_MAX_DATA_SIZE)
3211 		goto out;
3212 
3213 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3214 		goto out;
3215 
3216 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3217 	if (!event)
3218 		goto out_unlock;
3219 
3220 	body = rb_event_data(event);
3221 
3222 	memcpy(body, data, length);
3223 
3224 	rb_commit(cpu_buffer, event);
3225 
3226 	rb_wakeups(buffer, cpu_buffer);
3227 
3228 	ret = 0;
3229 
3230  out_unlock:
3231 	trace_recursive_unlock(cpu_buffer);
3232 
3233  out:
3234 	preempt_enable_notrace();
3235 
3236 	return ret;
3237 }
3238 EXPORT_SYMBOL_GPL(ring_buffer_write);
3239 
3240 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3241 {
3242 	struct buffer_page *reader = cpu_buffer->reader_page;
3243 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3244 	struct buffer_page *commit = cpu_buffer->commit_page;
3245 
3246 	/* In case of error, head will be NULL */
3247 	if (unlikely(!head))
3248 		return true;
3249 
3250 	return reader->read == rb_page_commit(reader) &&
3251 		(commit == reader ||
3252 		 (commit == head &&
3253 		  head->read == rb_page_commit(commit)));
3254 }
3255 
3256 /**
3257  * ring_buffer_record_disable - stop all writes into the buffer
3258  * @buffer: The ring buffer to stop writes to.
3259  *
3260  * This prevents all writes to the buffer. Any attempt to write
3261  * to the buffer after this will fail and return NULL.
3262  *
3263  * The caller should call synchronize_rcu() after this.
3264  */
3265 void ring_buffer_record_disable(struct trace_buffer *buffer)
3266 {
3267 	atomic_inc(&buffer->record_disabled);
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3270 
3271 /**
3272  * ring_buffer_record_enable - enable writes to the buffer
3273  * @buffer: The ring buffer to enable writes
3274  *
3275  * Note, multiple disables will need the same number of enables
3276  * to truly enable the writing (much like preempt_disable).
3277  */
3278 void ring_buffer_record_enable(struct trace_buffer *buffer)
3279 {
3280 	atomic_dec(&buffer->record_disabled);
3281 }
3282 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3283 
3284 /**
3285  * ring_buffer_record_off - stop all writes into the buffer
3286  * @buffer: The ring buffer to stop writes to.
3287  *
3288  * This prevents all writes to the buffer. Any attempt to write
3289  * to the buffer after this will fail and return NULL.
3290  *
3291  * This is different than ring_buffer_record_disable() as
3292  * it works like an on/off switch, where as the disable() version
3293  * must be paired with a enable().
3294  */
3295 void ring_buffer_record_off(struct trace_buffer *buffer)
3296 {
3297 	unsigned int rd;
3298 	unsigned int new_rd;
3299 
3300 	do {
3301 		rd = atomic_read(&buffer->record_disabled);
3302 		new_rd = rd | RB_BUFFER_OFF;
3303 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3304 }
3305 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3306 
3307 /**
3308  * ring_buffer_record_on - restart writes into the buffer
3309  * @buffer: The ring buffer to start writes to.
3310  *
3311  * This enables all writes to the buffer that was disabled by
3312  * ring_buffer_record_off().
3313  *
3314  * This is different than ring_buffer_record_enable() as
3315  * it works like an on/off switch, where as the enable() version
3316  * must be paired with a disable().
3317  */
3318 void ring_buffer_record_on(struct trace_buffer *buffer)
3319 {
3320 	unsigned int rd;
3321 	unsigned int new_rd;
3322 
3323 	do {
3324 		rd = atomic_read(&buffer->record_disabled);
3325 		new_rd = rd & ~RB_BUFFER_OFF;
3326 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3329 
3330 /**
3331  * ring_buffer_record_is_on - return true if the ring buffer can write
3332  * @buffer: The ring buffer to see if write is enabled
3333  *
3334  * Returns true if the ring buffer is in a state that it accepts writes.
3335  */
3336 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3337 {
3338 	return !atomic_read(&buffer->record_disabled);
3339 }
3340 
3341 /**
3342  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3343  * @buffer: The ring buffer to see if write is set enabled
3344  *
3345  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3346  * Note that this does NOT mean it is in a writable state.
3347  *
3348  * It may return true when the ring buffer has been disabled by
3349  * ring_buffer_record_disable(), as that is a temporary disabling of
3350  * the ring buffer.
3351  */
3352 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3353 {
3354 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3355 }
3356 
3357 /**
3358  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3359  * @buffer: The ring buffer to stop writes to.
3360  * @cpu: The CPU buffer to stop
3361  *
3362  * This prevents all writes to the buffer. Any attempt to write
3363  * to the buffer after this will fail and return NULL.
3364  *
3365  * The caller should call synchronize_rcu() after this.
3366  */
3367 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3368 {
3369 	struct ring_buffer_per_cpu *cpu_buffer;
3370 
3371 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3372 		return;
3373 
3374 	cpu_buffer = buffer->buffers[cpu];
3375 	atomic_inc(&cpu_buffer->record_disabled);
3376 }
3377 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3378 
3379 /**
3380  * ring_buffer_record_enable_cpu - enable writes to the buffer
3381  * @buffer: The ring buffer to enable writes
3382  * @cpu: The CPU to enable.
3383  *
3384  * Note, multiple disables will need the same number of enables
3385  * to truly enable the writing (much like preempt_disable).
3386  */
3387 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3388 {
3389 	struct ring_buffer_per_cpu *cpu_buffer;
3390 
3391 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3392 		return;
3393 
3394 	cpu_buffer = buffer->buffers[cpu];
3395 	atomic_dec(&cpu_buffer->record_disabled);
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3398 
3399 /*
3400  * The total entries in the ring buffer is the running counter
3401  * of entries entered into the ring buffer, minus the sum of
3402  * the entries read from the ring buffer and the number of
3403  * entries that were overwritten.
3404  */
3405 static inline unsigned long
3406 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3407 {
3408 	return local_read(&cpu_buffer->entries) -
3409 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3410 }
3411 
3412 /**
3413  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3414  * @buffer: The ring buffer
3415  * @cpu: The per CPU buffer to read from.
3416  */
3417 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3418 {
3419 	unsigned long flags;
3420 	struct ring_buffer_per_cpu *cpu_buffer;
3421 	struct buffer_page *bpage;
3422 	u64 ret = 0;
3423 
3424 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425 		return 0;
3426 
3427 	cpu_buffer = buffer->buffers[cpu];
3428 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3429 	/*
3430 	 * if the tail is on reader_page, oldest time stamp is on the reader
3431 	 * page
3432 	 */
3433 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3434 		bpage = cpu_buffer->reader_page;
3435 	else
3436 		bpage = rb_set_head_page(cpu_buffer);
3437 	if (bpage)
3438 		ret = bpage->page->time_stamp;
3439 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3440 
3441 	return ret;
3442 }
3443 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3444 
3445 /**
3446  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3447  * @buffer: The ring buffer
3448  * @cpu: The per CPU buffer to read from.
3449  */
3450 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3451 {
3452 	struct ring_buffer_per_cpu *cpu_buffer;
3453 	unsigned long ret;
3454 
3455 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3456 		return 0;
3457 
3458 	cpu_buffer = buffer->buffers[cpu];
3459 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3460 
3461 	return ret;
3462 }
3463 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3464 
3465 /**
3466  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3467  * @buffer: The ring buffer
3468  * @cpu: The per CPU buffer to get the entries from.
3469  */
3470 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3471 {
3472 	struct ring_buffer_per_cpu *cpu_buffer;
3473 
3474 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3475 		return 0;
3476 
3477 	cpu_buffer = buffer->buffers[cpu];
3478 
3479 	return rb_num_of_entries(cpu_buffer);
3480 }
3481 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3482 
3483 /**
3484  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3485  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3486  * @buffer: The ring buffer
3487  * @cpu: The per CPU buffer to get the number of overruns from
3488  */
3489 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3490 {
3491 	struct ring_buffer_per_cpu *cpu_buffer;
3492 	unsigned long ret;
3493 
3494 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3495 		return 0;
3496 
3497 	cpu_buffer = buffer->buffers[cpu];
3498 	ret = local_read(&cpu_buffer->overrun);
3499 
3500 	return ret;
3501 }
3502 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3503 
3504 /**
3505  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3506  * commits failing due to the buffer wrapping around while there are uncommitted
3507  * events, such as during an interrupt storm.
3508  * @buffer: The ring buffer
3509  * @cpu: The per CPU buffer to get the number of overruns from
3510  */
3511 unsigned long
3512 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3513 {
3514 	struct ring_buffer_per_cpu *cpu_buffer;
3515 	unsigned long ret;
3516 
3517 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3518 		return 0;
3519 
3520 	cpu_buffer = buffer->buffers[cpu];
3521 	ret = local_read(&cpu_buffer->commit_overrun);
3522 
3523 	return ret;
3524 }
3525 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3526 
3527 /**
3528  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3529  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3530  * @buffer: The ring buffer
3531  * @cpu: The per CPU buffer to get the number of overruns from
3532  */
3533 unsigned long
3534 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3535 {
3536 	struct ring_buffer_per_cpu *cpu_buffer;
3537 	unsigned long ret;
3538 
3539 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3540 		return 0;
3541 
3542 	cpu_buffer = buffer->buffers[cpu];
3543 	ret = local_read(&cpu_buffer->dropped_events);
3544 
3545 	return ret;
3546 }
3547 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3548 
3549 /**
3550  * ring_buffer_read_events_cpu - get the number of events successfully read
3551  * @buffer: The ring buffer
3552  * @cpu: The per CPU buffer to get the number of events read
3553  */
3554 unsigned long
3555 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3556 {
3557 	struct ring_buffer_per_cpu *cpu_buffer;
3558 
3559 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3560 		return 0;
3561 
3562 	cpu_buffer = buffer->buffers[cpu];
3563 	return cpu_buffer->read;
3564 }
3565 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3566 
3567 /**
3568  * ring_buffer_entries - get the number of entries in a buffer
3569  * @buffer: The ring buffer
3570  *
3571  * Returns the total number of entries in the ring buffer
3572  * (all CPU entries)
3573  */
3574 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3575 {
3576 	struct ring_buffer_per_cpu *cpu_buffer;
3577 	unsigned long entries = 0;
3578 	int cpu;
3579 
3580 	/* if you care about this being correct, lock the buffer */
3581 	for_each_buffer_cpu(buffer, cpu) {
3582 		cpu_buffer = buffer->buffers[cpu];
3583 		entries += rb_num_of_entries(cpu_buffer);
3584 	}
3585 
3586 	return entries;
3587 }
3588 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3589 
3590 /**
3591  * ring_buffer_overruns - get the number of overruns in buffer
3592  * @buffer: The ring buffer
3593  *
3594  * Returns the total number of overruns in the ring buffer
3595  * (all CPU entries)
3596  */
3597 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3598 {
3599 	struct ring_buffer_per_cpu *cpu_buffer;
3600 	unsigned long overruns = 0;
3601 	int cpu;
3602 
3603 	/* if you care about this being correct, lock the buffer */
3604 	for_each_buffer_cpu(buffer, cpu) {
3605 		cpu_buffer = buffer->buffers[cpu];
3606 		overruns += local_read(&cpu_buffer->overrun);
3607 	}
3608 
3609 	return overruns;
3610 }
3611 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3612 
3613 static void rb_iter_reset(struct ring_buffer_iter *iter)
3614 {
3615 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3616 
3617 	/* Iterator usage is expected to have record disabled */
3618 	iter->head_page = cpu_buffer->reader_page;
3619 	iter->head = cpu_buffer->reader_page->read;
3620 	iter->next_event = iter->head;
3621 
3622 	iter->cache_reader_page = iter->head_page;
3623 	iter->cache_read = cpu_buffer->read;
3624 
3625 	if (iter->head) {
3626 		iter->read_stamp = cpu_buffer->read_stamp;
3627 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3628 	} else {
3629 		iter->read_stamp = iter->head_page->page->time_stamp;
3630 		iter->page_stamp = iter->read_stamp;
3631 	}
3632 }
3633 
3634 /**
3635  * ring_buffer_iter_reset - reset an iterator
3636  * @iter: The iterator to reset
3637  *
3638  * Resets the iterator, so that it will start from the beginning
3639  * again.
3640  */
3641 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3642 {
3643 	struct ring_buffer_per_cpu *cpu_buffer;
3644 	unsigned long flags;
3645 
3646 	if (!iter)
3647 		return;
3648 
3649 	cpu_buffer = iter->cpu_buffer;
3650 
3651 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3652 	rb_iter_reset(iter);
3653 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3654 }
3655 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3656 
3657 /**
3658  * ring_buffer_iter_empty - check if an iterator has no more to read
3659  * @iter: The iterator to check
3660  */
3661 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3662 {
3663 	struct ring_buffer_per_cpu *cpu_buffer;
3664 	struct buffer_page *reader;
3665 	struct buffer_page *head_page;
3666 	struct buffer_page *commit_page;
3667 	struct buffer_page *curr_commit_page;
3668 	unsigned commit;
3669 	u64 curr_commit_ts;
3670 	u64 commit_ts;
3671 
3672 	cpu_buffer = iter->cpu_buffer;
3673 	reader = cpu_buffer->reader_page;
3674 	head_page = cpu_buffer->head_page;
3675 	commit_page = cpu_buffer->commit_page;
3676 	commit_ts = commit_page->page->time_stamp;
3677 
3678 	/*
3679 	 * When the writer goes across pages, it issues a cmpxchg which
3680 	 * is a mb(), which will synchronize with the rmb here.
3681 	 * (see rb_tail_page_update())
3682 	 */
3683 	smp_rmb();
3684 	commit = rb_page_commit(commit_page);
3685 	/* We want to make sure that the commit page doesn't change */
3686 	smp_rmb();
3687 
3688 	/* Make sure commit page didn't change */
3689 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
3690 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
3691 
3692 	/* If the commit page changed, then there's more data */
3693 	if (curr_commit_page != commit_page ||
3694 	    curr_commit_ts != commit_ts)
3695 		return 0;
3696 
3697 	/* Still racy, as it may return a false positive, but that's OK */
3698 	return ((iter->head_page == commit_page && iter->head >= commit) ||
3699 		(iter->head_page == reader && commit_page == head_page &&
3700 		 head_page->read == commit &&
3701 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3702 }
3703 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3704 
3705 static void
3706 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3707 		     struct ring_buffer_event *event)
3708 {
3709 	u64 delta;
3710 
3711 	switch (event->type_len) {
3712 	case RINGBUF_TYPE_PADDING:
3713 		return;
3714 
3715 	case RINGBUF_TYPE_TIME_EXTEND:
3716 		delta = ring_buffer_event_time_stamp(event);
3717 		cpu_buffer->read_stamp += delta;
3718 		return;
3719 
3720 	case RINGBUF_TYPE_TIME_STAMP:
3721 		delta = ring_buffer_event_time_stamp(event);
3722 		cpu_buffer->read_stamp = delta;
3723 		return;
3724 
3725 	case RINGBUF_TYPE_DATA:
3726 		cpu_buffer->read_stamp += event->time_delta;
3727 		return;
3728 
3729 	default:
3730 		BUG();
3731 	}
3732 	return;
3733 }
3734 
3735 static void
3736 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3737 			  struct ring_buffer_event *event)
3738 {
3739 	u64 delta;
3740 
3741 	switch (event->type_len) {
3742 	case RINGBUF_TYPE_PADDING:
3743 		return;
3744 
3745 	case RINGBUF_TYPE_TIME_EXTEND:
3746 		delta = ring_buffer_event_time_stamp(event);
3747 		iter->read_stamp += delta;
3748 		return;
3749 
3750 	case RINGBUF_TYPE_TIME_STAMP:
3751 		delta = ring_buffer_event_time_stamp(event);
3752 		iter->read_stamp = delta;
3753 		return;
3754 
3755 	case RINGBUF_TYPE_DATA:
3756 		iter->read_stamp += event->time_delta;
3757 		return;
3758 
3759 	default:
3760 		BUG();
3761 	}
3762 	return;
3763 }
3764 
3765 static struct buffer_page *
3766 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3767 {
3768 	struct buffer_page *reader = NULL;
3769 	unsigned long overwrite;
3770 	unsigned long flags;
3771 	int nr_loops = 0;
3772 	int ret;
3773 
3774 	local_irq_save(flags);
3775 	arch_spin_lock(&cpu_buffer->lock);
3776 
3777  again:
3778 	/*
3779 	 * This should normally only loop twice. But because the
3780 	 * start of the reader inserts an empty page, it causes
3781 	 * a case where we will loop three times. There should be no
3782 	 * reason to loop four times (that I know of).
3783 	 */
3784 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3785 		reader = NULL;
3786 		goto out;
3787 	}
3788 
3789 	reader = cpu_buffer->reader_page;
3790 
3791 	/* If there's more to read, return this page */
3792 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3793 		goto out;
3794 
3795 	/* Never should we have an index greater than the size */
3796 	if (RB_WARN_ON(cpu_buffer,
3797 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3798 		goto out;
3799 
3800 	/* check if we caught up to the tail */
3801 	reader = NULL;
3802 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3803 		goto out;
3804 
3805 	/* Don't bother swapping if the ring buffer is empty */
3806 	if (rb_num_of_entries(cpu_buffer) == 0)
3807 		goto out;
3808 
3809 	/*
3810 	 * Reset the reader page to size zero.
3811 	 */
3812 	local_set(&cpu_buffer->reader_page->write, 0);
3813 	local_set(&cpu_buffer->reader_page->entries, 0);
3814 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3815 	cpu_buffer->reader_page->real_end = 0;
3816 
3817  spin:
3818 	/*
3819 	 * Splice the empty reader page into the list around the head.
3820 	 */
3821 	reader = rb_set_head_page(cpu_buffer);
3822 	if (!reader)
3823 		goto out;
3824 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3825 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3826 
3827 	/*
3828 	 * cpu_buffer->pages just needs to point to the buffer, it
3829 	 *  has no specific buffer page to point to. Lets move it out
3830 	 *  of our way so we don't accidentally swap it.
3831 	 */
3832 	cpu_buffer->pages = reader->list.prev;
3833 
3834 	/* The reader page will be pointing to the new head */
3835 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3836 
3837 	/*
3838 	 * We want to make sure we read the overruns after we set up our
3839 	 * pointers to the next object. The writer side does a
3840 	 * cmpxchg to cross pages which acts as the mb on the writer
3841 	 * side. Note, the reader will constantly fail the swap
3842 	 * while the writer is updating the pointers, so this
3843 	 * guarantees that the overwrite recorded here is the one we
3844 	 * want to compare with the last_overrun.
3845 	 */
3846 	smp_mb();
3847 	overwrite = local_read(&(cpu_buffer->overrun));
3848 
3849 	/*
3850 	 * Here's the tricky part.
3851 	 *
3852 	 * We need to move the pointer past the header page.
3853 	 * But we can only do that if a writer is not currently
3854 	 * moving it. The page before the header page has the
3855 	 * flag bit '1' set if it is pointing to the page we want.
3856 	 * but if the writer is in the process of moving it
3857 	 * than it will be '2' or already moved '0'.
3858 	 */
3859 
3860 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3861 
3862 	/*
3863 	 * If we did not convert it, then we must try again.
3864 	 */
3865 	if (!ret)
3866 		goto spin;
3867 
3868 	/*
3869 	 * Yay! We succeeded in replacing the page.
3870 	 *
3871 	 * Now make the new head point back to the reader page.
3872 	 */
3873 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3874 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3875 
3876 	local_inc(&cpu_buffer->pages_read);
3877 
3878 	/* Finally update the reader page to the new head */
3879 	cpu_buffer->reader_page = reader;
3880 	cpu_buffer->reader_page->read = 0;
3881 
3882 	if (overwrite != cpu_buffer->last_overrun) {
3883 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3884 		cpu_buffer->last_overrun = overwrite;
3885 	}
3886 
3887 	goto again;
3888 
3889  out:
3890 	/* Update the read_stamp on the first event */
3891 	if (reader && reader->read == 0)
3892 		cpu_buffer->read_stamp = reader->page->time_stamp;
3893 
3894 	arch_spin_unlock(&cpu_buffer->lock);
3895 	local_irq_restore(flags);
3896 
3897 	return reader;
3898 }
3899 
3900 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3901 {
3902 	struct ring_buffer_event *event;
3903 	struct buffer_page *reader;
3904 	unsigned length;
3905 
3906 	reader = rb_get_reader_page(cpu_buffer);
3907 
3908 	/* This function should not be called when buffer is empty */
3909 	if (RB_WARN_ON(cpu_buffer, !reader))
3910 		return;
3911 
3912 	event = rb_reader_event(cpu_buffer);
3913 
3914 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3915 		cpu_buffer->read++;
3916 
3917 	rb_update_read_stamp(cpu_buffer, event);
3918 
3919 	length = rb_event_length(event);
3920 	cpu_buffer->reader_page->read += length;
3921 }
3922 
3923 static void rb_advance_iter(struct ring_buffer_iter *iter)
3924 {
3925 	struct ring_buffer_per_cpu *cpu_buffer;
3926 
3927 	cpu_buffer = iter->cpu_buffer;
3928 
3929 	/* If head == next_event then we need to jump to the next event */
3930 	if (iter->head == iter->next_event) {
3931 		/* If the event gets overwritten again, there's nothing to do */
3932 		if (rb_iter_head_event(iter) == NULL)
3933 			return;
3934 	}
3935 
3936 	iter->head = iter->next_event;
3937 
3938 	/*
3939 	 * Check if we are at the end of the buffer.
3940 	 */
3941 	if (iter->next_event >= rb_page_size(iter->head_page)) {
3942 		/* discarded commits can make the page empty */
3943 		if (iter->head_page == cpu_buffer->commit_page)
3944 			return;
3945 		rb_inc_iter(iter);
3946 		return;
3947 	}
3948 
3949 	rb_update_iter_read_stamp(iter, iter->event);
3950 }
3951 
3952 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3953 {
3954 	return cpu_buffer->lost_events;
3955 }
3956 
3957 static struct ring_buffer_event *
3958 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3959 	       unsigned long *lost_events)
3960 {
3961 	struct ring_buffer_event *event;
3962 	struct buffer_page *reader;
3963 	int nr_loops = 0;
3964 
3965 	if (ts)
3966 		*ts = 0;
3967  again:
3968 	/*
3969 	 * We repeat when a time extend is encountered.
3970 	 * Since the time extend is always attached to a data event,
3971 	 * we should never loop more than once.
3972 	 * (We never hit the following condition more than twice).
3973 	 */
3974 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3975 		return NULL;
3976 
3977 	reader = rb_get_reader_page(cpu_buffer);
3978 	if (!reader)
3979 		return NULL;
3980 
3981 	event = rb_reader_event(cpu_buffer);
3982 
3983 	switch (event->type_len) {
3984 	case RINGBUF_TYPE_PADDING:
3985 		if (rb_null_event(event))
3986 			RB_WARN_ON(cpu_buffer, 1);
3987 		/*
3988 		 * Because the writer could be discarding every
3989 		 * event it creates (which would probably be bad)
3990 		 * if we were to go back to "again" then we may never
3991 		 * catch up, and will trigger the warn on, or lock
3992 		 * the box. Return the padding, and we will release
3993 		 * the current locks, and try again.
3994 		 */
3995 		return event;
3996 
3997 	case RINGBUF_TYPE_TIME_EXTEND:
3998 		/* Internal data, OK to advance */
3999 		rb_advance_reader(cpu_buffer);
4000 		goto again;
4001 
4002 	case RINGBUF_TYPE_TIME_STAMP:
4003 		if (ts) {
4004 			*ts = ring_buffer_event_time_stamp(event);
4005 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4006 							 cpu_buffer->cpu, ts);
4007 		}
4008 		/* Internal data, OK to advance */
4009 		rb_advance_reader(cpu_buffer);
4010 		goto again;
4011 
4012 	case RINGBUF_TYPE_DATA:
4013 		if (ts && !(*ts)) {
4014 			*ts = cpu_buffer->read_stamp + event->time_delta;
4015 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4016 							 cpu_buffer->cpu, ts);
4017 		}
4018 		if (lost_events)
4019 			*lost_events = rb_lost_events(cpu_buffer);
4020 		return event;
4021 
4022 	default:
4023 		BUG();
4024 	}
4025 
4026 	return NULL;
4027 }
4028 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4029 
4030 static struct ring_buffer_event *
4031 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4032 {
4033 	struct trace_buffer *buffer;
4034 	struct ring_buffer_per_cpu *cpu_buffer;
4035 	struct ring_buffer_event *event;
4036 	int nr_loops = 0;
4037 	bool failed = false;
4038 
4039 	if (ts)
4040 		*ts = 0;
4041 
4042 	cpu_buffer = iter->cpu_buffer;
4043 	buffer = cpu_buffer->buffer;
4044 
4045 	/*
4046 	 * Check if someone performed a consuming read to
4047 	 * the buffer. A consuming read invalidates the iterator
4048 	 * and we need to reset the iterator in this case.
4049 	 */
4050 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4051 		     iter->cache_reader_page != cpu_buffer->reader_page))
4052 		rb_iter_reset(iter);
4053 
4054  again:
4055 	if (ring_buffer_iter_empty(iter))
4056 		return NULL;
4057 
4058 	/*
4059 	 * We repeat when a time extend is encountered or we hit
4060 	 * the end of the page. Since the time extend is always attached
4061 	 * to a data event, we should never loop more than three times.
4062 	 * Once for going to next page, once on time extend, and
4063 	 * finally once to get the event.
4064 	 * We should never hit the following condition more than thrice,
4065 	 * unless the buffer is very small, and there's a writer
4066 	 * that is causing the reader to fail getting an event.
4067 	 */
4068 	if (++nr_loops > 3) {
4069 		RB_WARN_ON(cpu_buffer, !failed);
4070 		return NULL;
4071 	}
4072 
4073 	if (rb_per_cpu_empty(cpu_buffer))
4074 		return NULL;
4075 
4076 	if (iter->head >= rb_page_size(iter->head_page)) {
4077 		rb_inc_iter(iter);
4078 		goto again;
4079 	}
4080 
4081 	event = rb_iter_head_event(iter);
4082 	if (!event) {
4083 		failed = true;
4084 		goto again;
4085 	}
4086 
4087 	switch (event->type_len) {
4088 	case RINGBUF_TYPE_PADDING:
4089 		if (rb_null_event(event)) {
4090 			rb_inc_iter(iter);
4091 			goto again;
4092 		}
4093 		rb_advance_iter(iter);
4094 		return event;
4095 
4096 	case RINGBUF_TYPE_TIME_EXTEND:
4097 		/* Internal data, OK to advance */
4098 		rb_advance_iter(iter);
4099 		goto again;
4100 
4101 	case RINGBUF_TYPE_TIME_STAMP:
4102 		if (ts) {
4103 			*ts = ring_buffer_event_time_stamp(event);
4104 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4105 							 cpu_buffer->cpu, ts);
4106 		}
4107 		/* Internal data, OK to advance */
4108 		rb_advance_iter(iter);
4109 		goto again;
4110 
4111 	case RINGBUF_TYPE_DATA:
4112 		if (ts && !(*ts)) {
4113 			*ts = iter->read_stamp + event->time_delta;
4114 			ring_buffer_normalize_time_stamp(buffer,
4115 							 cpu_buffer->cpu, ts);
4116 		}
4117 		return event;
4118 
4119 	default:
4120 		BUG();
4121 	}
4122 
4123 	return NULL;
4124 }
4125 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4126 
4127 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4128 {
4129 	if (likely(!in_nmi())) {
4130 		raw_spin_lock(&cpu_buffer->reader_lock);
4131 		return true;
4132 	}
4133 
4134 	/*
4135 	 * If an NMI die dumps out the content of the ring buffer
4136 	 * trylock must be used to prevent a deadlock if the NMI
4137 	 * preempted a task that holds the ring buffer locks. If
4138 	 * we get the lock then all is fine, if not, then continue
4139 	 * to do the read, but this can corrupt the ring buffer,
4140 	 * so it must be permanently disabled from future writes.
4141 	 * Reading from NMI is a oneshot deal.
4142 	 */
4143 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4144 		return true;
4145 
4146 	/* Continue without locking, but disable the ring buffer */
4147 	atomic_inc(&cpu_buffer->record_disabled);
4148 	return false;
4149 }
4150 
4151 static inline void
4152 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4153 {
4154 	if (likely(locked))
4155 		raw_spin_unlock(&cpu_buffer->reader_lock);
4156 	return;
4157 }
4158 
4159 /**
4160  * ring_buffer_peek - peek at the next event to be read
4161  * @buffer: The ring buffer to read
4162  * @cpu: The cpu to peak at
4163  * @ts: The timestamp counter of this event.
4164  * @lost_events: a variable to store if events were lost (may be NULL)
4165  *
4166  * This will return the event that will be read next, but does
4167  * not consume the data.
4168  */
4169 struct ring_buffer_event *
4170 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4171 		 unsigned long *lost_events)
4172 {
4173 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4174 	struct ring_buffer_event *event;
4175 	unsigned long flags;
4176 	bool dolock;
4177 
4178 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4179 		return NULL;
4180 
4181  again:
4182 	local_irq_save(flags);
4183 	dolock = rb_reader_lock(cpu_buffer);
4184 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4185 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4186 		rb_advance_reader(cpu_buffer);
4187 	rb_reader_unlock(cpu_buffer, dolock);
4188 	local_irq_restore(flags);
4189 
4190 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4191 		goto again;
4192 
4193 	return event;
4194 }
4195 
4196 /** ring_buffer_iter_dropped - report if there are dropped events
4197  * @iter: The ring buffer iterator
4198  *
4199  * Returns true if there was dropped events since the last peek.
4200  */
4201 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4202 {
4203 	bool ret = iter->missed_events != 0;
4204 
4205 	iter->missed_events = 0;
4206 	return ret;
4207 }
4208 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4209 
4210 /**
4211  * ring_buffer_iter_peek - peek at the next event to be read
4212  * @iter: The ring buffer iterator
4213  * @ts: The timestamp counter of this event.
4214  *
4215  * This will return the event that will be read next, but does
4216  * not increment the iterator.
4217  */
4218 struct ring_buffer_event *
4219 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4220 {
4221 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4222 	struct ring_buffer_event *event;
4223 	unsigned long flags;
4224 
4225  again:
4226 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4227 	event = rb_iter_peek(iter, ts);
4228 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4229 
4230 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4231 		goto again;
4232 
4233 	return event;
4234 }
4235 
4236 /**
4237  * ring_buffer_consume - return an event and consume it
4238  * @buffer: The ring buffer to get the next event from
4239  * @cpu: the cpu to read the buffer from
4240  * @ts: a variable to store the timestamp (may be NULL)
4241  * @lost_events: a variable to store if events were lost (may be NULL)
4242  *
4243  * Returns the next event in the ring buffer, and that event is consumed.
4244  * Meaning, that sequential reads will keep returning a different event,
4245  * and eventually empty the ring buffer if the producer is slower.
4246  */
4247 struct ring_buffer_event *
4248 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4249 		    unsigned long *lost_events)
4250 {
4251 	struct ring_buffer_per_cpu *cpu_buffer;
4252 	struct ring_buffer_event *event = NULL;
4253 	unsigned long flags;
4254 	bool dolock;
4255 
4256  again:
4257 	/* might be called in atomic */
4258 	preempt_disable();
4259 
4260 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4261 		goto out;
4262 
4263 	cpu_buffer = buffer->buffers[cpu];
4264 	local_irq_save(flags);
4265 	dolock = rb_reader_lock(cpu_buffer);
4266 
4267 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4268 	if (event) {
4269 		cpu_buffer->lost_events = 0;
4270 		rb_advance_reader(cpu_buffer);
4271 	}
4272 
4273 	rb_reader_unlock(cpu_buffer, dolock);
4274 	local_irq_restore(flags);
4275 
4276  out:
4277 	preempt_enable();
4278 
4279 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4280 		goto again;
4281 
4282 	return event;
4283 }
4284 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4285 
4286 /**
4287  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4288  * @buffer: The ring buffer to read from
4289  * @cpu: The cpu buffer to iterate over
4290  * @flags: gfp flags to use for memory allocation
4291  *
4292  * This performs the initial preparations necessary to iterate
4293  * through the buffer.  Memory is allocated, buffer recording
4294  * is disabled, and the iterator pointer is returned to the caller.
4295  *
4296  * Disabling buffer recording prevents the reading from being
4297  * corrupted. This is not a consuming read, so a producer is not
4298  * expected.
4299  *
4300  * After a sequence of ring_buffer_read_prepare calls, the user is
4301  * expected to make at least one call to ring_buffer_read_prepare_sync.
4302  * Afterwards, ring_buffer_read_start is invoked to get things going
4303  * for real.
4304  *
4305  * This overall must be paired with ring_buffer_read_finish.
4306  */
4307 struct ring_buffer_iter *
4308 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4309 {
4310 	struct ring_buffer_per_cpu *cpu_buffer;
4311 	struct ring_buffer_iter *iter;
4312 
4313 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4314 		return NULL;
4315 
4316 	iter = kzalloc(sizeof(*iter), flags);
4317 	if (!iter)
4318 		return NULL;
4319 
4320 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4321 	if (!iter->event) {
4322 		kfree(iter);
4323 		return NULL;
4324 	}
4325 
4326 	cpu_buffer = buffer->buffers[cpu];
4327 
4328 	iter->cpu_buffer = cpu_buffer;
4329 
4330 	atomic_inc(&cpu_buffer->resize_disabled);
4331 
4332 	return iter;
4333 }
4334 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4335 
4336 /**
4337  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4338  *
4339  * All previously invoked ring_buffer_read_prepare calls to prepare
4340  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4341  * calls on those iterators are allowed.
4342  */
4343 void
4344 ring_buffer_read_prepare_sync(void)
4345 {
4346 	synchronize_rcu();
4347 }
4348 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4349 
4350 /**
4351  * ring_buffer_read_start - start a non consuming read of the buffer
4352  * @iter: The iterator returned by ring_buffer_read_prepare
4353  *
4354  * This finalizes the startup of an iteration through the buffer.
4355  * The iterator comes from a call to ring_buffer_read_prepare and
4356  * an intervening ring_buffer_read_prepare_sync must have been
4357  * performed.
4358  *
4359  * Must be paired with ring_buffer_read_finish.
4360  */
4361 void
4362 ring_buffer_read_start(struct ring_buffer_iter *iter)
4363 {
4364 	struct ring_buffer_per_cpu *cpu_buffer;
4365 	unsigned long flags;
4366 
4367 	if (!iter)
4368 		return;
4369 
4370 	cpu_buffer = iter->cpu_buffer;
4371 
4372 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4373 	arch_spin_lock(&cpu_buffer->lock);
4374 	rb_iter_reset(iter);
4375 	arch_spin_unlock(&cpu_buffer->lock);
4376 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4377 }
4378 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4379 
4380 /**
4381  * ring_buffer_read_finish - finish reading the iterator of the buffer
4382  * @iter: The iterator retrieved by ring_buffer_start
4383  *
4384  * This re-enables the recording to the buffer, and frees the
4385  * iterator.
4386  */
4387 void
4388 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4389 {
4390 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4391 	unsigned long flags;
4392 
4393 	/*
4394 	 * Ring buffer is disabled from recording, here's a good place
4395 	 * to check the integrity of the ring buffer.
4396 	 * Must prevent readers from trying to read, as the check
4397 	 * clears the HEAD page and readers require it.
4398 	 */
4399 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4400 	rb_check_pages(cpu_buffer);
4401 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4402 
4403 	atomic_dec(&cpu_buffer->resize_disabled);
4404 	kfree(iter->event);
4405 	kfree(iter);
4406 }
4407 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4408 
4409 /**
4410  * ring_buffer_iter_advance - advance the iterator to the next location
4411  * @iter: The ring buffer iterator
4412  *
4413  * Move the location of the iterator such that the next read will
4414  * be the next location of the iterator.
4415  */
4416 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4417 {
4418 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4419 	unsigned long flags;
4420 
4421 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4422 
4423 	rb_advance_iter(iter);
4424 
4425 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4426 }
4427 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4428 
4429 /**
4430  * ring_buffer_size - return the size of the ring buffer (in bytes)
4431  * @buffer: The ring buffer.
4432  * @cpu: The CPU to get ring buffer size from.
4433  */
4434 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4435 {
4436 	/*
4437 	 * Earlier, this method returned
4438 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4439 	 * Since the nr_pages field is now removed, we have converted this to
4440 	 * return the per cpu buffer value.
4441 	 */
4442 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4443 		return 0;
4444 
4445 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4446 }
4447 EXPORT_SYMBOL_GPL(ring_buffer_size);
4448 
4449 static void
4450 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4451 {
4452 	rb_head_page_deactivate(cpu_buffer);
4453 
4454 	cpu_buffer->head_page
4455 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4456 	local_set(&cpu_buffer->head_page->write, 0);
4457 	local_set(&cpu_buffer->head_page->entries, 0);
4458 	local_set(&cpu_buffer->head_page->page->commit, 0);
4459 
4460 	cpu_buffer->head_page->read = 0;
4461 
4462 	cpu_buffer->tail_page = cpu_buffer->head_page;
4463 	cpu_buffer->commit_page = cpu_buffer->head_page;
4464 
4465 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4466 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4467 	local_set(&cpu_buffer->reader_page->write, 0);
4468 	local_set(&cpu_buffer->reader_page->entries, 0);
4469 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4470 	cpu_buffer->reader_page->read = 0;
4471 
4472 	local_set(&cpu_buffer->entries_bytes, 0);
4473 	local_set(&cpu_buffer->overrun, 0);
4474 	local_set(&cpu_buffer->commit_overrun, 0);
4475 	local_set(&cpu_buffer->dropped_events, 0);
4476 	local_set(&cpu_buffer->entries, 0);
4477 	local_set(&cpu_buffer->committing, 0);
4478 	local_set(&cpu_buffer->commits, 0);
4479 	local_set(&cpu_buffer->pages_touched, 0);
4480 	local_set(&cpu_buffer->pages_read, 0);
4481 	cpu_buffer->last_pages_touch = 0;
4482 	cpu_buffer->shortest_full = 0;
4483 	cpu_buffer->read = 0;
4484 	cpu_buffer->read_bytes = 0;
4485 
4486 	cpu_buffer->write_stamp = 0;
4487 	cpu_buffer->read_stamp = 0;
4488 
4489 	cpu_buffer->lost_events = 0;
4490 	cpu_buffer->last_overrun = 0;
4491 
4492 	rb_head_page_activate(cpu_buffer);
4493 }
4494 
4495 /**
4496  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4497  * @buffer: The ring buffer to reset a per cpu buffer of
4498  * @cpu: The CPU buffer to be reset
4499  */
4500 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4501 {
4502 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4503 	unsigned long flags;
4504 
4505 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4506 		return;
4507 
4508 	atomic_inc(&cpu_buffer->resize_disabled);
4509 	atomic_inc(&cpu_buffer->record_disabled);
4510 
4511 	/* Make sure all commits have finished */
4512 	synchronize_rcu();
4513 
4514 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4515 
4516 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4517 		goto out;
4518 
4519 	arch_spin_lock(&cpu_buffer->lock);
4520 
4521 	rb_reset_cpu(cpu_buffer);
4522 
4523 	arch_spin_unlock(&cpu_buffer->lock);
4524 
4525  out:
4526 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4527 
4528 	atomic_dec(&cpu_buffer->record_disabled);
4529 	atomic_dec(&cpu_buffer->resize_disabled);
4530 }
4531 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4532 
4533 /**
4534  * ring_buffer_reset - reset a ring buffer
4535  * @buffer: The ring buffer to reset all cpu buffers
4536  */
4537 void ring_buffer_reset(struct trace_buffer *buffer)
4538 {
4539 	int cpu;
4540 
4541 	for_each_buffer_cpu(buffer, cpu)
4542 		ring_buffer_reset_cpu(buffer, cpu);
4543 }
4544 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4545 
4546 /**
4547  * rind_buffer_empty - is the ring buffer empty?
4548  * @buffer: The ring buffer to test
4549  */
4550 bool ring_buffer_empty(struct trace_buffer *buffer)
4551 {
4552 	struct ring_buffer_per_cpu *cpu_buffer;
4553 	unsigned long flags;
4554 	bool dolock;
4555 	int cpu;
4556 	int ret;
4557 
4558 	/* yes this is racy, but if you don't like the race, lock the buffer */
4559 	for_each_buffer_cpu(buffer, cpu) {
4560 		cpu_buffer = buffer->buffers[cpu];
4561 		local_irq_save(flags);
4562 		dolock = rb_reader_lock(cpu_buffer);
4563 		ret = rb_per_cpu_empty(cpu_buffer);
4564 		rb_reader_unlock(cpu_buffer, dolock);
4565 		local_irq_restore(flags);
4566 
4567 		if (!ret)
4568 			return false;
4569 	}
4570 
4571 	return true;
4572 }
4573 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4574 
4575 /**
4576  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4577  * @buffer: The ring buffer
4578  * @cpu: The CPU buffer to test
4579  */
4580 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4581 {
4582 	struct ring_buffer_per_cpu *cpu_buffer;
4583 	unsigned long flags;
4584 	bool dolock;
4585 	int ret;
4586 
4587 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4588 		return true;
4589 
4590 	cpu_buffer = buffer->buffers[cpu];
4591 	local_irq_save(flags);
4592 	dolock = rb_reader_lock(cpu_buffer);
4593 	ret = rb_per_cpu_empty(cpu_buffer);
4594 	rb_reader_unlock(cpu_buffer, dolock);
4595 	local_irq_restore(flags);
4596 
4597 	return ret;
4598 }
4599 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4600 
4601 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4602 /**
4603  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4604  * @buffer_a: One buffer to swap with
4605  * @buffer_b: The other buffer to swap with
4606  * @cpu: the CPU of the buffers to swap
4607  *
4608  * This function is useful for tracers that want to take a "snapshot"
4609  * of a CPU buffer and has another back up buffer lying around.
4610  * it is expected that the tracer handles the cpu buffer not being
4611  * used at the moment.
4612  */
4613 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
4614 			 struct trace_buffer *buffer_b, int cpu)
4615 {
4616 	struct ring_buffer_per_cpu *cpu_buffer_a;
4617 	struct ring_buffer_per_cpu *cpu_buffer_b;
4618 	int ret = -EINVAL;
4619 
4620 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4621 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4622 		goto out;
4623 
4624 	cpu_buffer_a = buffer_a->buffers[cpu];
4625 	cpu_buffer_b = buffer_b->buffers[cpu];
4626 
4627 	/* At least make sure the two buffers are somewhat the same */
4628 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4629 		goto out;
4630 
4631 	ret = -EAGAIN;
4632 
4633 	if (atomic_read(&buffer_a->record_disabled))
4634 		goto out;
4635 
4636 	if (atomic_read(&buffer_b->record_disabled))
4637 		goto out;
4638 
4639 	if (atomic_read(&cpu_buffer_a->record_disabled))
4640 		goto out;
4641 
4642 	if (atomic_read(&cpu_buffer_b->record_disabled))
4643 		goto out;
4644 
4645 	/*
4646 	 * We can't do a synchronize_rcu here because this
4647 	 * function can be called in atomic context.
4648 	 * Normally this will be called from the same CPU as cpu.
4649 	 * If not it's up to the caller to protect this.
4650 	 */
4651 	atomic_inc(&cpu_buffer_a->record_disabled);
4652 	atomic_inc(&cpu_buffer_b->record_disabled);
4653 
4654 	ret = -EBUSY;
4655 	if (local_read(&cpu_buffer_a->committing))
4656 		goto out_dec;
4657 	if (local_read(&cpu_buffer_b->committing))
4658 		goto out_dec;
4659 
4660 	buffer_a->buffers[cpu] = cpu_buffer_b;
4661 	buffer_b->buffers[cpu] = cpu_buffer_a;
4662 
4663 	cpu_buffer_b->buffer = buffer_a;
4664 	cpu_buffer_a->buffer = buffer_b;
4665 
4666 	ret = 0;
4667 
4668 out_dec:
4669 	atomic_dec(&cpu_buffer_a->record_disabled);
4670 	atomic_dec(&cpu_buffer_b->record_disabled);
4671 out:
4672 	return ret;
4673 }
4674 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4675 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4676 
4677 /**
4678  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4679  * @buffer: the buffer to allocate for.
4680  * @cpu: the cpu buffer to allocate.
4681  *
4682  * This function is used in conjunction with ring_buffer_read_page.
4683  * When reading a full page from the ring buffer, these functions
4684  * can be used to speed up the process. The calling function should
4685  * allocate a few pages first with this function. Then when it
4686  * needs to get pages from the ring buffer, it passes the result
4687  * of this function into ring_buffer_read_page, which will swap
4688  * the page that was allocated, with the read page of the buffer.
4689  *
4690  * Returns:
4691  *  The page allocated, or ERR_PTR
4692  */
4693 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
4694 {
4695 	struct ring_buffer_per_cpu *cpu_buffer;
4696 	struct buffer_data_page *bpage = NULL;
4697 	unsigned long flags;
4698 	struct page *page;
4699 
4700 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4701 		return ERR_PTR(-ENODEV);
4702 
4703 	cpu_buffer = buffer->buffers[cpu];
4704 	local_irq_save(flags);
4705 	arch_spin_lock(&cpu_buffer->lock);
4706 
4707 	if (cpu_buffer->free_page) {
4708 		bpage = cpu_buffer->free_page;
4709 		cpu_buffer->free_page = NULL;
4710 	}
4711 
4712 	arch_spin_unlock(&cpu_buffer->lock);
4713 	local_irq_restore(flags);
4714 
4715 	if (bpage)
4716 		goto out;
4717 
4718 	page = alloc_pages_node(cpu_to_node(cpu),
4719 				GFP_KERNEL | __GFP_NORETRY, 0);
4720 	if (!page)
4721 		return ERR_PTR(-ENOMEM);
4722 
4723 	bpage = page_address(page);
4724 
4725  out:
4726 	rb_init_page(bpage);
4727 
4728 	return bpage;
4729 }
4730 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4731 
4732 /**
4733  * ring_buffer_free_read_page - free an allocated read page
4734  * @buffer: the buffer the page was allocate for
4735  * @cpu: the cpu buffer the page came from
4736  * @data: the page to free
4737  *
4738  * Free a page allocated from ring_buffer_alloc_read_page.
4739  */
4740 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
4741 {
4742 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4743 	struct buffer_data_page *bpage = data;
4744 	struct page *page = virt_to_page(bpage);
4745 	unsigned long flags;
4746 
4747 	/* If the page is still in use someplace else, we can't reuse it */
4748 	if (page_ref_count(page) > 1)
4749 		goto out;
4750 
4751 	local_irq_save(flags);
4752 	arch_spin_lock(&cpu_buffer->lock);
4753 
4754 	if (!cpu_buffer->free_page) {
4755 		cpu_buffer->free_page = bpage;
4756 		bpage = NULL;
4757 	}
4758 
4759 	arch_spin_unlock(&cpu_buffer->lock);
4760 	local_irq_restore(flags);
4761 
4762  out:
4763 	free_page((unsigned long)bpage);
4764 }
4765 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4766 
4767 /**
4768  * ring_buffer_read_page - extract a page from the ring buffer
4769  * @buffer: buffer to extract from
4770  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4771  * @len: amount to extract
4772  * @cpu: the cpu of the buffer to extract
4773  * @full: should the extraction only happen when the page is full.
4774  *
4775  * This function will pull out a page from the ring buffer and consume it.
4776  * @data_page must be the address of the variable that was returned
4777  * from ring_buffer_alloc_read_page. This is because the page might be used
4778  * to swap with a page in the ring buffer.
4779  *
4780  * for example:
4781  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4782  *	if (IS_ERR(rpage))
4783  *		return PTR_ERR(rpage);
4784  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4785  *	if (ret >= 0)
4786  *		process_page(rpage, ret);
4787  *
4788  * When @full is set, the function will not return true unless
4789  * the writer is off the reader page.
4790  *
4791  * Note: it is up to the calling functions to handle sleeps and wakeups.
4792  *  The ring buffer can be used anywhere in the kernel and can not
4793  *  blindly call wake_up. The layer that uses the ring buffer must be
4794  *  responsible for that.
4795  *
4796  * Returns:
4797  *  >=0 if data has been transferred, returns the offset of consumed data.
4798  *  <0 if no data has been transferred.
4799  */
4800 int ring_buffer_read_page(struct trace_buffer *buffer,
4801 			  void **data_page, size_t len, int cpu, int full)
4802 {
4803 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4804 	struct ring_buffer_event *event;
4805 	struct buffer_data_page *bpage;
4806 	struct buffer_page *reader;
4807 	unsigned long missed_events;
4808 	unsigned long flags;
4809 	unsigned int commit;
4810 	unsigned int read;
4811 	u64 save_timestamp;
4812 	int ret = -1;
4813 
4814 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4815 		goto out;
4816 
4817 	/*
4818 	 * If len is not big enough to hold the page header, then
4819 	 * we can not copy anything.
4820 	 */
4821 	if (len <= BUF_PAGE_HDR_SIZE)
4822 		goto out;
4823 
4824 	len -= BUF_PAGE_HDR_SIZE;
4825 
4826 	if (!data_page)
4827 		goto out;
4828 
4829 	bpage = *data_page;
4830 	if (!bpage)
4831 		goto out;
4832 
4833 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4834 
4835 	reader = rb_get_reader_page(cpu_buffer);
4836 	if (!reader)
4837 		goto out_unlock;
4838 
4839 	event = rb_reader_event(cpu_buffer);
4840 
4841 	read = reader->read;
4842 	commit = rb_page_commit(reader);
4843 
4844 	/* Check if any events were dropped */
4845 	missed_events = cpu_buffer->lost_events;
4846 
4847 	/*
4848 	 * If this page has been partially read or
4849 	 * if len is not big enough to read the rest of the page or
4850 	 * a writer is still on the page, then
4851 	 * we must copy the data from the page to the buffer.
4852 	 * Otherwise, we can simply swap the page with the one passed in.
4853 	 */
4854 	if (read || (len < (commit - read)) ||
4855 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4856 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4857 		unsigned int rpos = read;
4858 		unsigned int pos = 0;
4859 		unsigned int size;
4860 
4861 		if (full)
4862 			goto out_unlock;
4863 
4864 		if (len > (commit - read))
4865 			len = (commit - read);
4866 
4867 		/* Always keep the time extend and data together */
4868 		size = rb_event_ts_length(event);
4869 
4870 		if (len < size)
4871 			goto out_unlock;
4872 
4873 		/* save the current timestamp, since the user will need it */
4874 		save_timestamp = cpu_buffer->read_stamp;
4875 
4876 		/* Need to copy one event at a time */
4877 		do {
4878 			/* We need the size of one event, because
4879 			 * rb_advance_reader only advances by one event,
4880 			 * whereas rb_event_ts_length may include the size of
4881 			 * one or two events.
4882 			 * We have already ensured there's enough space if this
4883 			 * is a time extend. */
4884 			size = rb_event_length(event);
4885 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4886 
4887 			len -= size;
4888 
4889 			rb_advance_reader(cpu_buffer);
4890 			rpos = reader->read;
4891 			pos += size;
4892 
4893 			if (rpos >= commit)
4894 				break;
4895 
4896 			event = rb_reader_event(cpu_buffer);
4897 			/* Always keep the time extend and data together */
4898 			size = rb_event_ts_length(event);
4899 		} while (len >= size);
4900 
4901 		/* update bpage */
4902 		local_set(&bpage->commit, pos);
4903 		bpage->time_stamp = save_timestamp;
4904 
4905 		/* we copied everything to the beginning */
4906 		read = 0;
4907 	} else {
4908 		/* update the entry counter */
4909 		cpu_buffer->read += rb_page_entries(reader);
4910 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4911 
4912 		/* swap the pages */
4913 		rb_init_page(bpage);
4914 		bpage = reader->page;
4915 		reader->page = *data_page;
4916 		local_set(&reader->write, 0);
4917 		local_set(&reader->entries, 0);
4918 		reader->read = 0;
4919 		*data_page = bpage;
4920 
4921 		/*
4922 		 * Use the real_end for the data size,
4923 		 * This gives us a chance to store the lost events
4924 		 * on the page.
4925 		 */
4926 		if (reader->real_end)
4927 			local_set(&bpage->commit, reader->real_end);
4928 	}
4929 	ret = read;
4930 
4931 	cpu_buffer->lost_events = 0;
4932 
4933 	commit = local_read(&bpage->commit);
4934 	/*
4935 	 * Set a flag in the commit field if we lost events
4936 	 */
4937 	if (missed_events) {
4938 		/* If there is room at the end of the page to save the
4939 		 * missed events, then record it there.
4940 		 */
4941 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4942 			memcpy(&bpage->data[commit], &missed_events,
4943 			       sizeof(missed_events));
4944 			local_add(RB_MISSED_STORED, &bpage->commit);
4945 			commit += sizeof(missed_events);
4946 		}
4947 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4948 	}
4949 
4950 	/*
4951 	 * This page may be off to user land. Zero it out here.
4952 	 */
4953 	if (commit < BUF_PAGE_SIZE)
4954 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4955 
4956  out_unlock:
4957 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4958 
4959  out:
4960 	return ret;
4961 }
4962 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4963 
4964 /*
4965  * We only allocate new buffers, never free them if the CPU goes down.
4966  * If we were to free the buffer, then the user would lose any trace that was in
4967  * the buffer.
4968  */
4969 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4970 {
4971 	struct trace_buffer *buffer;
4972 	long nr_pages_same;
4973 	int cpu_i;
4974 	unsigned long nr_pages;
4975 
4976 	buffer = container_of(node, struct trace_buffer, node);
4977 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4978 		return 0;
4979 
4980 	nr_pages = 0;
4981 	nr_pages_same = 1;
4982 	/* check if all cpu sizes are same */
4983 	for_each_buffer_cpu(buffer, cpu_i) {
4984 		/* fill in the size from first enabled cpu */
4985 		if (nr_pages == 0)
4986 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4987 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4988 			nr_pages_same = 0;
4989 			break;
4990 		}
4991 	}
4992 	/* allocate minimum pages, user can later expand it */
4993 	if (!nr_pages_same)
4994 		nr_pages = 2;
4995 	buffer->buffers[cpu] =
4996 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4997 	if (!buffer->buffers[cpu]) {
4998 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4999 		     cpu);
5000 		return -ENOMEM;
5001 	}
5002 	smp_wmb();
5003 	cpumask_set_cpu(cpu, buffer->cpumask);
5004 	return 0;
5005 }
5006 
5007 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5008 /*
5009  * This is a basic integrity check of the ring buffer.
5010  * Late in the boot cycle this test will run when configured in.
5011  * It will kick off a thread per CPU that will go into a loop
5012  * writing to the per cpu ring buffer various sizes of data.
5013  * Some of the data will be large items, some small.
5014  *
5015  * Another thread is created that goes into a spin, sending out
5016  * IPIs to the other CPUs to also write into the ring buffer.
5017  * this is to test the nesting ability of the buffer.
5018  *
5019  * Basic stats are recorded and reported. If something in the
5020  * ring buffer should happen that's not expected, a big warning
5021  * is displayed and all ring buffers are disabled.
5022  */
5023 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5024 
5025 struct rb_test_data {
5026 	struct trace_buffer *buffer;
5027 	unsigned long		events;
5028 	unsigned long		bytes_written;
5029 	unsigned long		bytes_alloc;
5030 	unsigned long		bytes_dropped;
5031 	unsigned long		events_nested;
5032 	unsigned long		bytes_written_nested;
5033 	unsigned long		bytes_alloc_nested;
5034 	unsigned long		bytes_dropped_nested;
5035 	int			min_size_nested;
5036 	int			max_size_nested;
5037 	int			max_size;
5038 	int			min_size;
5039 	int			cpu;
5040 	int			cnt;
5041 };
5042 
5043 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5044 
5045 /* 1 meg per cpu */
5046 #define RB_TEST_BUFFER_SIZE	1048576
5047 
5048 static char rb_string[] __initdata =
5049 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5050 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5051 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5052 
5053 static bool rb_test_started __initdata;
5054 
5055 struct rb_item {
5056 	int size;
5057 	char str[];
5058 };
5059 
5060 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5061 {
5062 	struct ring_buffer_event *event;
5063 	struct rb_item *item;
5064 	bool started;
5065 	int event_len;
5066 	int size;
5067 	int len;
5068 	int cnt;
5069 
5070 	/* Have nested writes different that what is written */
5071 	cnt = data->cnt + (nested ? 27 : 0);
5072 
5073 	/* Multiply cnt by ~e, to make some unique increment */
5074 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5075 
5076 	len = size + sizeof(struct rb_item);
5077 
5078 	started = rb_test_started;
5079 	/* read rb_test_started before checking buffer enabled */
5080 	smp_rmb();
5081 
5082 	event = ring_buffer_lock_reserve(data->buffer, len);
5083 	if (!event) {
5084 		/* Ignore dropped events before test starts. */
5085 		if (started) {
5086 			if (nested)
5087 				data->bytes_dropped += len;
5088 			else
5089 				data->bytes_dropped_nested += len;
5090 		}
5091 		return len;
5092 	}
5093 
5094 	event_len = ring_buffer_event_length(event);
5095 
5096 	if (RB_WARN_ON(data->buffer, event_len < len))
5097 		goto out;
5098 
5099 	item = ring_buffer_event_data(event);
5100 	item->size = size;
5101 	memcpy(item->str, rb_string, size);
5102 
5103 	if (nested) {
5104 		data->bytes_alloc_nested += event_len;
5105 		data->bytes_written_nested += len;
5106 		data->events_nested++;
5107 		if (!data->min_size_nested || len < data->min_size_nested)
5108 			data->min_size_nested = len;
5109 		if (len > data->max_size_nested)
5110 			data->max_size_nested = len;
5111 	} else {
5112 		data->bytes_alloc += event_len;
5113 		data->bytes_written += len;
5114 		data->events++;
5115 		if (!data->min_size || len < data->min_size)
5116 			data->max_size = len;
5117 		if (len > data->max_size)
5118 			data->max_size = len;
5119 	}
5120 
5121  out:
5122 	ring_buffer_unlock_commit(data->buffer, event);
5123 
5124 	return 0;
5125 }
5126 
5127 static __init int rb_test(void *arg)
5128 {
5129 	struct rb_test_data *data = arg;
5130 
5131 	while (!kthread_should_stop()) {
5132 		rb_write_something(data, false);
5133 		data->cnt++;
5134 
5135 		set_current_state(TASK_INTERRUPTIBLE);
5136 		/* Now sleep between a min of 100-300us and a max of 1ms */
5137 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5138 	}
5139 
5140 	return 0;
5141 }
5142 
5143 static __init void rb_ipi(void *ignore)
5144 {
5145 	struct rb_test_data *data;
5146 	int cpu = smp_processor_id();
5147 
5148 	data = &rb_data[cpu];
5149 	rb_write_something(data, true);
5150 }
5151 
5152 static __init int rb_hammer_test(void *arg)
5153 {
5154 	while (!kthread_should_stop()) {
5155 
5156 		/* Send an IPI to all cpus to write data! */
5157 		smp_call_function(rb_ipi, NULL, 1);
5158 		/* No sleep, but for non preempt, let others run */
5159 		schedule();
5160 	}
5161 
5162 	return 0;
5163 }
5164 
5165 static __init int test_ringbuffer(void)
5166 {
5167 	struct task_struct *rb_hammer;
5168 	struct trace_buffer *buffer;
5169 	int cpu;
5170 	int ret = 0;
5171 
5172 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5173 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5174 		return 0;
5175 	}
5176 
5177 	pr_info("Running ring buffer tests...\n");
5178 
5179 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5180 	if (WARN_ON(!buffer))
5181 		return 0;
5182 
5183 	/* Disable buffer so that threads can't write to it yet */
5184 	ring_buffer_record_off(buffer);
5185 
5186 	for_each_online_cpu(cpu) {
5187 		rb_data[cpu].buffer = buffer;
5188 		rb_data[cpu].cpu = cpu;
5189 		rb_data[cpu].cnt = cpu;
5190 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5191 						 "rbtester/%d", cpu);
5192 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5193 			pr_cont("FAILED\n");
5194 			ret = PTR_ERR(rb_threads[cpu]);
5195 			goto out_free;
5196 		}
5197 
5198 		kthread_bind(rb_threads[cpu], cpu);
5199  		wake_up_process(rb_threads[cpu]);
5200 	}
5201 
5202 	/* Now create the rb hammer! */
5203 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5204 	if (WARN_ON(IS_ERR(rb_hammer))) {
5205 		pr_cont("FAILED\n");
5206 		ret = PTR_ERR(rb_hammer);
5207 		goto out_free;
5208 	}
5209 
5210 	ring_buffer_record_on(buffer);
5211 	/*
5212 	 * Show buffer is enabled before setting rb_test_started.
5213 	 * Yes there's a small race window where events could be
5214 	 * dropped and the thread wont catch it. But when a ring
5215 	 * buffer gets enabled, there will always be some kind of
5216 	 * delay before other CPUs see it. Thus, we don't care about
5217 	 * those dropped events. We care about events dropped after
5218 	 * the threads see that the buffer is active.
5219 	 */
5220 	smp_wmb();
5221 	rb_test_started = true;
5222 
5223 	set_current_state(TASK_INTERRUPTIBLE);
5224 	/* Just run for 10 seconds */;
5225 	schedule_timeout(10 * HZ);
5226 
5227 	kthread_stop(rb_hammer);
5228 
5229  out_free:
5230 	for_each_online_cpu(cpu) {
5231 		if (!rb_threads[cpu])
5232 			break;
5233 		kthread_stop(rb_threads[cpu]);
5234 	}
5235 	if (ret) {
5236 		ring_buffer_free(buffer);
5237 		return ret;
5238 	}
5239 
5240 	/* Report! */
5241 	pr_info("finished\n");
5242 	for_each_online_cpu(cpu) {
5243 		struct ring_buffer_event *event;
5244 		struct rb_test_data *data = &rb_data[cpu];
5245 		struct rb_item *item;
5246 		unsigned long total_events;
5247 		unsigned long total_dropped;
5248 		unsigned long total_written;
5249 		unsigned long total_alloc;
5250 		unsigned long total_read = 0;
5251 		unsigned long total_size = 0;
5252 		unsigned long total_len = 0;
5253 		unsigned long total_lost = 0;
5254 		unsigned long lost;
5255 		int big_event_size;
5256 		int small_event_size;
5257 
5258 		ret = -1;
5259 
5260 		total_events = data->events + data->events_nested;
5261 		total_written = data->bytes_written + data->bytes_written_nested;
5262 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5263 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5264 
5265 		big_event_size = data->max_size + data->max_size_nested;
5266 		small_event_size = data->min_size + data->min_size_nested;
5267 
5268 		pr_info("CPU %d:\n", cpu);
5269 		pr_info("              events:    %ld\n", total_events);
5270 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5271 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5272 		pr_info("       written bytes:    %ld\n", total_written);
5273 		pr_info("       biggest event:    %d\n", big_event_size);
5274 		pr_info("      smallest event:    %d\n", small_event_size);
5275 
5276 		if (RB_WARN_ON(buffer, total_dropped))
5277 			break;
5278 
5279 		ret = 0;
5280 
5281 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5282 			total_lost += lost;
5283 			item = ring_buffer_event_data(event);
5284 			total_len += ring_buffer_event_length(event);
5285 			total_size += item->size + sizeof(struct rb_item);
5286 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5287 				pr_info("FAILED!\n");
5288 				pr_info("buffer had: %.*s\n", item->size, item->str);
5289 				pr_info("expected:   %.*s\n", item->size, rb_string);
5290 				RB_WARN_ON(buffer, 1);
5291 				ret = -1;
5292 				break;
5293 			}
5294 			total_read++;
5295 		}
5296 		if (ret)
5297 			break;
5298 
5299 		ret = -1;
5300 
5301 		pr_info("         read events:   %ld\n", total_read);
5302 		pr_info("         lost events:   %ld\n", total_lost);
5303 		pr_info("        total events:   %ld\n", total_lost + total_read);
5304 		pr_info("  recorded len bytes:   %ld\n", total_len);
5305 		pr_info(" recorded size bytes:   %ld\n", total_size);
5306 		if (total_lost)
5307 			pr_info(" With dropped events, record len and size may not match\n"
5308 				" alloced and written from above\n");
5309 		if (!total_lost) {
5310 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5311 				       total_size != total_written))
5312 				break;
5313 		}
5314 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5315 			break;
5316 
5317 		ret = 0;
5318 	}
5319 	if (!ret)
5320 		pr_info("Ring buffer PASSED!\n");
5321 
5322 	ring_buffer_free(buffer);
5323 	return 0;
5324 }
5325 
5326 late_initcall(test_ringbuffer);
5327 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5328