xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision dfd4f649)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h>	/* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	trace_seq_puts(s, "# compressed entry header\n");
38 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40 	trace_seq_puts(s, "\tarray       :   32 bits\n");
41 	trace_seq_putc(s, '\n');
42 	trace_seq_printf(s, "\tpadding     : type == %d\n",
43 			 RINGBUF_TYPE_PADDING);
44 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 			 RINGBUF_TYPE_TIME_EXTEND);
46 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47 			 RINGBUF_TYPE_TIME_STAMP);
48 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return !trace_seq_has_overflowed(s);
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF		(1 << 20)
124 
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126 
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT		4U
129 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
131 
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT	0
134 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
135 #else
136 # define RB_FORCE_8BYTE_ALIGNMENT	1
137 # define RB_ARCH_ALIGNMENT		8U
138 #endif
139 
140 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
141 
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
144 
145 enum {
146 	RB_LEN_TIME_EXTEND = 8,
147 	RB_LEN_TIME_STAMP =  8,
148 };
149 
150 #define skip_time_extend(event) \
151 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152 
153 #define extended_time(event) \
154 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155 
156 static inline int rb_null_event(struct ring_buffer_event *event)
157 {
158 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
159 }
160 
161 static void rb_event_set_padding(struct ring_buffer_event *event)
162 {
163 	/* padding has a NULL time_delta */
164 	event->type_len = RINGBUF_TYPE_PADDING;
165 	event->time_delta = 0;
166 }
167 
168 static unsigned
169 rb_event_data_length(struct ring_buffer_event *event)
170 {
171 	unsigned length;
172 
173 	if (event->type_len)
174 		length = event->type_len * RB_ALIGNMENT;
175 	else
176 		length = event->array[0];
177 	return length + RB_EVNT_HDR_SIZE;
178 }
179 
180 /*
181  * Return the length of the given event. Will return
182  * the length of the time extend if the event is a
183  * time extend.
184  */
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event *event)
187 {
188 	switch (event->type_len) {
189 	case RINGBUF_TYPE_PADDING:
190 		if (rb_null_event(event))
191 			/* undefined */
192 			return -1;
193 		return  event->array[0] + RB_EVNT_HDR_SIZE;
194 
195 	case RINGBUF_TYPE_TIME_EXTEND:
196 		return RB_LEN_TIME_EXTEND;
197 
198 	case RINGBUF_TYPE_TIME_STAMP:
199 		return RB_LEN_TIME_STAMP;
200 
201 	case RINGBUF_TYPE_DATA:
202 		return rb_event_data_length(event);
203 	default:
204 		BUG();
205 	}
206 	/* not hit */
207 	return 0;
208 }
209 
210 /*
211  * Return total length of time extend and data,
212  *   or just the event length for all other events.
213  */
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event *event)
216 {
217 	unsigned len = 0;
218 
219 	if (extended_time(event)) {
220 		/* time extends include the data event after it */
221 		len = RB_LEN_TIME_EXTEND;
222 		event = skip_time_extend(event);
223 	}
224 	return len + rb_event_length(event);
225 }
226 
227 /**
228  * ring_buffer_event_length - return the length of the event
229  * @event: the event to get the length of
230  *
231  * Returns the size of the data load of a data event.
232  * If the event is something other than a data event, it
233  * returns the size of the event itself. With the exception
234  * of a TIME EXTEND, where it still returns the size of the
235  * data load of the data event after it.
236  */
237 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
238 {
239 	unsigned length;
240 
241 	if (extended_time(event))
242 		event = skip_time_extend(event);
243 
244 	length = rb_event_length(event);
245 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
246 		return length;
247 	length -= RB_EVNT_HDR_SIZE;
248 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249                 length -= sizeof(event->array[0]);
250 	return length;
251 }
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
253 
254 /* inline for ring buffer fast paths */
255 static __always_inline void *
256 rb_event_data(struct ring_buffer_event *event)
257 {
258 	if (extended_time(event))
259 		event = skip_time_extend(event);
260 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
261 	/* If length is in len field, then array[0] has the data */
262 	if (event->type_len)
263 		return (void *)&event->array[0];
264 	/* Otherwise length is in array[0] and array[1] has the data */
265 	return (void *)&event->array[1];
266 }
267 
268 /**
269  * ring_buffer_event_data - return the data of the event
270  * @event: the event to get the data from
271  */
272 void *ring_buffer_event_data(struct ring_buffer_event *event)
273 {
274 	return rb_event_data(event);
275 }
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
277 
278 #define for_each_buffer_cpu(buffer, cpu)		\
279 	for_each_cpu(cpu, buffer->cpumask)
280 
281 #define TS_SHIFT	27
282 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST	(~TS_MASK)
284 
285 /**
286  * ring_buffer_event_time_stamp - return the event's extended timestamp
287  * @event: the event to get the timestamp of
288  *
289  * Returns the extended timestamp associated with a data event.
290  * An extended time_stamp is a 64-bit timestamp represented
291  * internally in a special way that makes the best use of space
292  * contained within a ring buffer event.  This function decodes
293  * it and maps it to a straight u64 value.
294  */
295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
296 {
297 	u64 ts;
298 
299 	ts = event->array[0];
300 	ts <<= TS_SHIFT;
301 	ts += event->time_delta;
302 
303 	return ts;
304 }
305 
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS	(1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED	(1 << 30)
310 
311 #define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
312 
313 struct buffer_data_page {
314 	u64		 time_stamp;	/* page time stamp */
315 	local_t		 commit;	/* write committed index */
316 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
317 };
318 
319 /*
320  * Note, the buffer_page list must be first. The buffer pages
321  * are allocated in cache lines, which means that each buffer
322  * page will be at the beginning of a cache line, and thus
323  * the least significant bits will be zero. We use this to
324  * add flags in the list struct pointers, to make the ring buffer
325  * lockless.
326  */
327 struct buffer_page {
328 	struct list_head list;		/* list of buffer pages */
329 	local_t		 write;		/* index for next write */
330 	unsigned	 read;		/* index for next read */
331 	local_t		 entries;	/* entries on this page */
332 	unsigned long	 real_end;	/* real end of data */
333 	struct buffer_data_page *page;	/* Actual data page */
334 };
335 
336 /*
337  * The buffer page counters, write and entries, must be reset
338  * atomically when crossing page boundaries. To synchronize this
339  * update, two counters are inserted into the number. One is
340  * the actual counter for the write position or count on the page.
341  *
342  * The other is a counter of updaters. Before an update happens
343  * the update partition of the counter is incremented. This will
344  * allow the updater to update the counter atomically.
345  *
346  * The counter is 20 bits, and the state data is 12.
347  */
348 #define RB_WRITE_MASK		0xfffff
349 #define RB_WRITE_INTCNT		(1 << 20)
350 
351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353 	local_set(&bpage->commit, 0);
354 }
355 
356 /*
357  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
358  * this issue out.
359  */
360 static void free_buffer_page(struct buffer_page *bpage)
361 {
362 	free_page((unsigned long)bpage->page);
363 	kfree(bpage);
364 }
365 
366 /*
367  * We need to fit the time_stamp delta into 27 bits.
368  */
369 static inline int test_time_stamp(u64 delta)
370 {
371 	if (delta & TS_DELTA_TEST)
372 		return 1;
373 	return 0;
374 }
375 
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377 
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380 
381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383 	struct buffer_data_page field;
384 
385 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
387 			 (unsigned int)sizeof(field.time_stamp),
388 			 (unsigned int)is_signed_type(u64));
389 
390 	trace_seq_printf(s, "\tfield: local_t commit;\t"
391 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
392 			 (unsigned int)offsetof(typeof(field), commit),
393 			 (unsigned int)sizeof(field.commit),
394 			 (unsigned int)is_signed_type(long));
395 
396 	trace_seq_printf(s, "\tfield: int overwrite;\t"
397 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
398 			 (unsigned int)offsetof(typeof(field), commit),
399 			 1,
400 			 (unsigned int)is_signed_type(long));
401 
402 	trace_seq_printf(s, "\tfield: char data;\t"
403 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
404 			 (unsigned int)offsetof(typeof(field), data),
405 			 (unsigned int)BUF_PAGE_SIZE,
406 			 (unsigned int)is_signed_type(char));
407 
408 	return !trace_seq_has_overflowed(s);
409 }
410 
411 struct rb_irq_work {
412 	struct irq_work			work;
413 	wait_queue_head_t		waiters;
414 	wait_queue_head_t		full_waiters;
415 	bool				waiters_pending;
416 	bool				full_waiters_pending;
417 	bool				wakeup_full;
418 };
419 
420 /*
421  * Structure to hold event state and handle nested events.
422  */
423 struct rb_event_info {
424 	u64			ts;
425 	u64			delta;
426 	unsigned long		length;
427 	struct buffer_page	*tail_page;
428 	int			add_timestamp;
429 };
430 
431 /*
432  * Used for which event context the event is in.
433  *  NMI     = 0
434  *  IRQ     = 1
435  *  SOFTIRQ = 2
436  *  NORMAL  = 3
437  *
438  * See trace_recursive_lock() comment below for more details.
439  */
440 enum {
441 	RB_CTX_NMI,
442 	RB_CTX_IRQ,
443 	RB_CTX_SOFTIRQ,
444 	RB_CTX_NORMAL,
445 	RB_CTX_MAX
446 };
447 
448 /*
449  * head_page == tail_page && head == tail then buffer is empty.
450  */
451 struct ring_buffer_per_cpu {
452 	int				cpu;
453 	atomic_t			record_disabled;
454 	struct ring_buffer		*buffer;
455 	raw_spinlock_t			reader_lock;	/* serialize readers */
456 	arch_spinlock_t			lock;
457 	struct lock_class_key		lock_key;
458 	struct buffer_data_page		*free_page;
459 	unsigned long			nr_pages;
460 	unsigned int			current_context;
461 	struct list_head		*pages;
462 	struct buffer_page		*head_page;	/* read from head */
463 	struct buffer_page		*tail_page;	/* write to tail */
464 	struct buffer_page		*commit_page;	/* committed pages */
465 	struct buffer_page		*reader_page;
466 	unsigned long			lost_events;
467 	unsigned long			last_overrun;
468 	unsigned long			nest;
469 	local_t				entries_bytes;
470 	local_t				entries;
471 	local_t				overrun;
472 	local_t				commit_overrun;
473 	local_t				dropped_events;
474 	local_t				committing;
475 	local_t				commits;
476 	local_t				pages_touched;
477 	local_t				pages_read;
478 	long				last_pages_touch;
479 	size_t				shortest_full;
480 	unsigned long			read;
481 	unsigned long			read_bytes;
482 	u64				write_stamp;
483 	u64				read_stamp;
484 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
485 	long				nr_pages_to_update;
486 	struct list_head		new_pages; /* new pages to add */
487 	struct work_struct		update_pages_work;
488 	struct completion		update_done;
489 
490 	struct rb_irq_work		irq_work;
491 };
492 
493 struct ring_buffer {
494 	unsigned			flags;
495 	int				cpus;
496 	atomic_t			record_disabled;
497 	atomic_t			resize_disabled;
498 	cpumask_var_t			cpumask;
499 
500 	struct lock_class_key		*reader_lock_key;
501 
502 	struct mutex			mutex;
503 
504 	struct ring_buffer_per_cpu	**buffers;
505 
506 	struct hlist_node		node;
507 	u64				(*clock)(void);
508 
509 	struct rb_irq_work		irq_work;
510 	bool				time_stamp_abs;
511 };
512 
513 struct ring_buffer_iter {
514 	struct ring_buffer_per_cpu	*cpu_buffer;
515 	unsigned long			head;
516 	struct buffer_page		*head_page;
517 	struct buffer_page		*cache_reader_page;
518 	unsigned long			cache_read;
519 	u64				read_stamp;
520 };
521 
522 /**
523  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
524  * @buffer: The ring_buffer to get the number of pages from
525  * @cpu: The cpu of the ring_buffer to get the number of pages from
526  *
527  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
528  */
529 size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
530 {
531 	return buffer->buffers[cpu]->nr_pages;
532 }
533 
534 /**
535  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
536  * @buffer: The ring_buffer to get the number of pages from
537  * @cpu: The cpu of the ring_buffer to get the number of pages from
538  *
539  * Returns the number of pages that have content in the ring buffer.
540  */
541 size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
542 {
543 	size_t read;
544 	size_t cnt;
545 
546 	read = local_read(&buffer->buffers[cpu]->pages_read);
547 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
548 	/* The reader can read an empty page, but not more than that */
549 	if (cnt < read) {
550 		WARN_ON_ONCE(read > cnt + 1);
551 		return 0;
552 	}
553 
554 	return cnt - read;
555 }
556 
557 /*
558  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
559  *
560  * Schedules a delayed work to wake up any task that is blocked on the
561  * ring buffer waiters queue.
562  */
563 static void rb_wake_up_waiters(struct irq_work *work)
564 {
565 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
566 
567 	wake_up_all(&rbwork->waiters);
568 	if (rbwork->wakeup_full) {
569 		rbwork->wakeup_full = false;
570 		wake_up_all(&rbwork->full_waiters);
571 	}
572 }
573 
574 /**
575  * ring_buffer_wait - wait for input to the ring buffer
576  * @buffer: buffer to wait on
577  * @cpu: the cpu buffer to wait on
578  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
579  *
580  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
581  * as data is added to any of the @buffer's cpu buffers. Otherwise
582  * it will wait for data to be added to a specific cpu buffer.
583  */
584 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
585 {
586 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
587 	DEFINE_WAIT(wait);
588 	struct rb_irq_work *work;
589 	int ret = 0;
590 
591 	/*
592 	 * Depending on what the caller is waiting for, either any
593 	 * data in any cpu buffer, or a specific buffer, put the
594 	 * caller on the appropriate wait queue.
595 	 */
596 	if (cpu == RING_BUFFER_ALL_CPUS) {
597 		work = &buffer->irq_work;
598 		/* Full only makes sense on per cpu reads */
599 		full = 0;
600 	} else {
601 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
602 			return -ENODEV;
603 		cpu_buffer = buffer->buffers[cpu];
604 		work = &cpu_buffer->irq_work;
605 	}
606 
607 
608 	while (true) {
609 		if (full)
610 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
611 		else
612 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
613 
614 		/*
615 		 * The events can happen in critical sections where
616 		 * checking a work queue can cause deadlocks.
617 		 * After adding a task to the queue, this flag is set
618 		 * only to notify events to try to wake up the queue
619 		 * using irq_work.
620 		 *
621 		 * We don't clear it even if the buffer is no longer
622 		 * empty. The flag only causes the next event to run
623 		 * irq_work to do the work queue wake up. The worse
624 		 * that can happen if we race with !trace_empty() is that
625 		 * an event will cause an irq_work to try to wake up
626 		 * an empty queue.
627 		 *
628 		 * There's no reason to protect this flag either, as
629 		 * the work queue and irq_work logic will do the necessary
630 		 * synchronization for the wake ups. The only thing
631 		 * that is necessary is that the wake up happens after
632 		 * a task has been queued. It's OK for spurious wake ups.
633 		 */
634 		if (full)
635 			work->full_waiters_pending = true;
636 		else
637 			work->waiters_pending = true;
638 
639 		if (signal_pending(current)) {
640 			ret = -EINTR;
641 			break;
642 		}
643 
644 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
645 			break;
646 
647 		if (cpu != RING_BUFFER_ALL_CPUS &&
648 		    !ring_buffer_empty_cpu(buffer, cpu)) {
649 			unsigned long flags;
650 			bool pagebusy;
651 			size_t nr_pages;
652 			size_t dirty;
653 
654 			if (!full)
655 				break;
656 
657 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
658 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
659 			nr_pages = cpu_buffer->nr_pages;
660 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
661 			if (!cpu_buffer->shortest_full ||
662 			    cpu_buffer->shortest_full < full)
663 				cpu_buffer->shortest_full = full;
664 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
665 			if (!pagebusy &&
666 			    (!nr_pages || (dirty * 100) > full * nr_pages))
667 				break;
668 		}
669 
670 		schedule();
671 	}
672 
673 	if (full)
674 		finish_wait(&work->full_waiters, &wait);
675 	else
676 		finish_wait(&work->waiters, &wait);
677 
678 	return ret;
679 }
680 
681 /**
682  * ring_buffer_poll_wait - poll on buffer input
683  * @buffer: buffer to wait on
684  * @cpu: the cpu buffer to wait on
685  * @filp: the file descriptor
686  * @poll_table: The poll descriptor
687  *
688  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
689  * as data is added to any of the @buffer's cpu buffers. Otherwise
690  * it will wait for data to be added to a specific cpu buffer.
691  *
692  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
693  * zero otherwise.
694  */
695 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
696 			  struct file *filp, poll_table *poll_table)
697 {
698 	struct ring_buffer_per_cpu *cpu_buffer;
699 	struct rb_irq_work *work;
700 
701 	if (cpu == RING_BUFFER_ALL_CPUS)
702 		work = &buffer->irq_work;
703 	else {
704 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
705 			return -EINVAL;
706 
707 		cpu_buffer = buffer->buffers[cpu];
708 		work = &cpu_buffer->irq_work;
709 	}
710 
711 	poll_wait(filp, &work->waiters, poll_table);
712 	work->waiters_pending = true;
713 	/*
714 	 * There's a tight race between setting the waiters_pending and
715 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
716 	 * is set, the next event will wake the task up, but we can get stuck
717 	 * if there's only a single event in.
718 	 *
719 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
720 	 * but adding a memory barrier to all events will cause too much of a
721 	 * performance hit in the fast path.  We only need a memory barrier when
722 	 * the buffer goes from empty to having content.  But as this race is
723 	 * extremely small, and it's not a problem if another event comes in, we
724 	 * will fix it later.
725 	 */
726 	smp_mb();
727 
728 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
729 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
730 		return EPOLLIN | EPOLLRDNORM;
731 	return 0;
732 }
733 
734 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
735 #define RB_WARN_ON(b, cond)						\
736 	({								\
737 		int _____ret = unlikely(cond);				\
738 		if (_____ret) {						\
739 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
740 				struct ring_buffer_per_cpu *__b =	\
741 					(void *)b;			\
742 				atomic_inc(&__b->buffer->record_disabled); \
743 			} else						\
744 				atomic_inc(&b->record_disabled);	\
745 			WARN_ON(1);					\
746 		}							\
747 		_____ret;						\
748 	})
749 
750 /* Up this if you want to test the TIME_EXTENTS and normalization */
751 #define DEBUG_SHIFT 0
752 
753 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
754 {
755 	/* shift to debug/test normalization and TIME_EXTENTS */
756 	return buffer->clock() << DEBUG_SHIFT;
757 }
758 
759 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
760 {
761 	u64 time;
762 
763 	preempt_disable_notrace();
764 	time = rb_time_stamp(buffer);
765 	preempt_enable_no_resched_notrace();
766 
767 	return time;
768 }
769 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
770 
771 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
772 				      int cpu, u64 *ts)
773 {
774 	/* Just stupid testing the normalize function and deltas */
775 	*ts >>= DEBUG_SHIFT;
776 }
777 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
778 
779 /*
780  * Making the ring buffer lockless makes things tricky.
781  * Although writes only happen on the CPU that they are on,
782  * and they only need to worry about interrupts. Reads can
783  * happen on any CPU.
784  *
785  * The reader page is always off the ring buffer, but when the
786  * reader finishes with a page, it needs to swap its page with
787  * a new one from the buffer. The reader needs to take from
788  * the head (writes go to the tail). But if a writer is in overwrite
789  * mode and wraps, it must push the head page forward.
790  *
791  * Here lies the problem.
792  *
793  * The reader must be careful to replace only the head page, and
794  * not another one. As described at the top of the file in the
795  * ASCII art, the reader sets its old page to point to the next
796  * page after head. It then sets the page after head to point to
797  * the old reader page. But if the writer moves the head page
798  * during this operation, the reader could end up with the tail.
799  *
800  * We use cmpxchg to help prevent this race. We also do something
801  * special with the page before head. We set the LSB to 1.
802  *
803  * When the writer must push the page forward, it will clear the
804  * bit that points to the head page, move the head, and then set
805  * the bit that points to the new head page.
806  *
807  * We also don't want an interrupt coming in and moving the head
808  * page on another writer. Thus we use the second LSB to catch
809  * that too. Thus:
810  *
811  * head->list->prev->next        bit 1          bit 0
812  *                              -------        -------
813  * Normal page                     0              0
814  * Points to head page             0              1
815  * New head page                   1              0
816  *
817  * Note we can not trust the prev pointer of the head page, because:
818  *
819  * +----+       +-----+        +-----+
820  * |    |------>|  T  |---X--->|  N  |
821  * |    |<------|     |        |     |
822  * +----+       +-----+        +-----+
823  *   ^                           ^ |
824  *   |          +-----+          | |
825  *   +----------|  R  |----------+ |
826  *              |     |<-----------+
827  *              +-----+
828  *
829  * Key:  ---X-->  HEAD flag set in pointer
830  *         T      Tail page
831  *         R      Reader page
832  *         N      Next page
833  *
834  * (see __rb_reserve_next() to see where this happens)
835  *
836  *  What the above shows is that the reader just swapped out
837  *  the reader page with a page in the buffer, but before it
838  *  could make the new header point back to the new page added
839  *  it was preempted by a writer. The writer moved forward onto
840  *  the new page added by the reader and is about to move forward
841  *  again.
842  *
843  *  You can see, it is legitimate for the previous pointer of
844  *  the head (or any page) not to point back to itself. But only
845  *  temporarily.
846  */
847 
848 #define RB_PAGE_NORMAL		0UL
849 #define RB_PAGE_HEAD		1UL
850 #define RB_PAGE_UPDATE		2UL
851 
852 
853 #define RB_FLAG_MASK		3UL
854 
855 /* PAGE_MOVED is not part of the mask */
856 #define RB_PAGE_MOVED		4UL
857 
858 /*
859  * rb_list_head - remove any bit
860  */
861 static struct list_head *rb_list_head(struct list_head *list)
862 {
863 	unsigned long val = (unsigned long)list;
864 
865 	return (struct list_head *)(val & ~RB_FLAG_MASK);
866 }
867 
868 /*
869  * rb_is_head_page - test if the given page is the head page
870  *
871  * Because the reader may move the head_page pointer, we can
872  * not trust what the head page is (it may be pointing to
873  * the reader page). But if the next page is a header page,
874  * its flags will be non zero.
875  */
876 static inline int
877 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
878 		struct buffer_page *page, struct list_head *list)
879 {
880 	unsigned long val;
881 
882 	val = (unsigned long)list->next;
883 
884 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
885 		return RB_PAGE_MOVED;
886 
887 	return val & RB_FLAG_MASK;
888 }
889 
890 /*
891  * rb_is_reader_page
892  *
893  * The unique thing about the reader page, is that, if the
894  * writer is ever on it, the previous pointer never points
895  * back to the reader page.
896  */
897 static bool rb_is_reader_page(struct buffer_page *page)
898 {
899 	struct list_head *list = page->list.prev;
900 
901 	return rb_list_head(list->next) != &page->list;
902 }
903 
904 /*
905  * rb_set_list_to_head - set a list_head to be pointing to head.
906  */
907 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
908 				struct list_head *list)
909 {
910 	unsigned long *ptr;
911 
912 	ptr = (unsigned long *)&list->next;
913 	*ptr |= RB_PAGE_HEAD;
914 	*ptr &= ~RB_PAGE_UPDATE;
915 }
916 
917 /*
918  * rb_head_page_activate - sets up head page
919  */
920 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
921 {
922 	struct buffer_page *head;
923 
924 	head = cpu_buffer->head_page;
925 	if (!head)
926 		return;
927 
928 	/*
929 	 * Set the previous list pointer to have the HEAD flag.
930 	 */
931 	rb_set_list_to_head(cpu_buffer, head->list.prev);
932 }
933 
934 static void rb_list_head_clear(struct list_head *list)
935 {
936 	unsigned long *ptr = (unsigned long *)&list->next;
937 
938 	*ptr &= ~RB_FLAG_MASK;
939 }
940 
941 /*
942  * rb_head_page_deactivate - clears head page ptr (for free list)
943  */
944 static void
945 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
946 {
947 	struct list_head *hd;
948 
949 	/* Go through the whole list and clear any pointers found. */
950 	rb_list_head_clear(cpu_buffer->pages);
951 
952 	list_for_each(hd, cpu_buffer->pages)
953 		rb_list_head_clear(hd);
954 }
955 
956 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
957 			    struct buffer_page *head,
958 			    struct buffer_page *prev,
959 			    int old_flag, int new_flag)
960 {
961 	struct list_head *list;
962 	unsigned long val = (unsigned long)&head->list;
963 	unsigned long ret;
964 
965 	list = &prev->list;
966 
967 	val &= ~RB_FLAG_MASK;
968 
969 	ret = cmpxchg((unsigned long *)&list->next,
970 		      val | old_flag, val | new_flag);
971 
972 	/* check if the reader took the page */
973 	if ((ret & ~RB_FLAG_MASK) != val)
974 		return RB_PAGE_MOVED;
975 
976 	return ret & RB_FLAG_MASK;
977 }
978 
979 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
980 				   struct buffer_page *head,
981 				   struct buffer_page *prev,
982 				   int old_flag)
983 {
984 	return rb_head_page_set(cpu_buffer, head, prev,
985 				old_flag, RB_PAGE_UPDATE);
986 }
987 
988 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
989 				 struct buffer_page *head,
990 				 struct buffer_page *prev,
991 				 int old_flag)
992 {
993 	return rb_head_page_set(cpu_buffer, head, prev,
994 				old_flag, RB_PAGE_HEAD);
995 }
996 
997 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
998 				   struct buffer_page *head,
999 				   struct buffer_page *prev,
1000 				   int old_flag)
1001 {
1002 	return rb_head_page_set(cpu_buffer, head, prev,
1003 				old_flag, RB_PAGE_NORMAL);
1004 }
1005 
1006 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1007 			       struct buffer_page **bpage)
1008 {
1009 	struct list_head *p = rb_list_head((*bpage)->list.next);
1010 
1011 	*bpage = list_entry(p, struct buffer_page, list);
1012 }
1013 
1014 static struct buffer_page *
1015 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1016 {
1017 	struct buffer_page *head;
1018 	struct buffer_page *page;
1019 	struct list_head *list;
1020 	int i;
1021 
1022 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1023 		return NULL;
1024 
1025 	/* sanity check */
1026 	list = cpu_buffer->pages;
1027 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1028 		return NULL;
1029 
1030 	page = head = cpu_buffer->head_page;
1031 	/*
1032 	 * It is possible that the writer moves the header behind
1033 	 * where we started, and we miss in one loop.
1034 	 * A second loop should grab the header, but we'll do
1035 	 * three loops just because I'm paranoid.
1036 	 */
1037 	for (i = 0; i < 3; i++) {
1038 		do {
1039 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1040 				cpu_buffer->head_page = page;
1041 				return page;
1042 			}
1043 			rb_inc_page(cpu_buffer, &page);
1044 		} while (page != head);
1045 	}
1046 
1047 	RB_WARN_ON(cpu_buffer, 1);
1048 
1049 	return NULL;
1050 }
1051 
1052 static int rb_head_page_replace(struct buffer_page *old,
1053 				struct buffer_page *new)
1054 {
1055 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1056 	unsigned long val;
1057 	unsigned long ret;
1058 
1059 	val = *ptr & ~RB_FLAG_MASK;
1060 	val |= RB_PAGE_HEAD;
1061 
1062 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1063 
1064 	return ret == val;
1065 }
1066 
1067 /*
1068  * rb_tail_page_update - move the tail page forward
1069  */
1070 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1071 			       struct buffer_page *tail_page,
1072 			       struct buffer_page *next_page)
1073 {
1074 	unsigned long old_entries;
1075 	unsigned long old_write;
1076 
1077 	/*
1078 	 * The tail page now needs to be moved forward.
1079 	 *
1080 	 * We need to reset the tail page, but without messing
1081 	 * with possible erasing of data brought in by interrupts
1082 	 * that have moved the tail page and are currently on it.
1083 	 *
1084 	 * We add a counter to the write field to denote this.
1085 	 */
1086 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1087 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1088 
1089 	local_inc(&cpu_buffer->pages_touched);
1090 	/*
1091 	 * Just make sure we have seen our old_write and synchronize
1092 	 * with any interrupts that come in.
1093 	 */
1094 	barrier();
1095 
1096 	/*
1097 	 * If the tail page is still the same as what we think
1098 	 * it is, then it is up to us to update the tail
1099 	 * pointer.
1100 	 */
1101 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1102 		/* Zero the write counter */
1103 		unsigned long val = old_write & ~RB_WRITE_MASK;
1104 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1105 
1106 		/*
1107 		 * This will only succeed if an interrupt did
1108 		 * not come in and change it. In which case, we
1109 		 * do not want to modify it.
1110 		 *
1111 		 * We add (void) to let the compiler know that we do not care
1112 		 * about the return value of these functions. We use the
1113 		 * cmpxchg to only update if an interrupt did not already
1114 		 * do it for us. If the cmpxchg fails, we don't care.
1115 		 */
1116 		(void)local_cmpxchg(&next_page->write, old_write, val);
1117 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1118 
1119 		/*
1120 		 * No need to worry about races with clearing out the commit.
1121 		 * it only can increment when a commit takes place. But that
1122 		 * only happens in the outer most nested commit.
1123 		 */
1124 		local_set(&next_page->page->commit, 0);
1125 
1126 		/* Again, either we update tail_page or an interrupt does */
1127 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1128 	}
1129 }
1130 
1131 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1132 			  struct buffer_page *bpage)
1133 {
1134 	unsigned long val = (unsigned long)bpage;
1135 
1136 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1137 		return 1;
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * rb_check_list - make sure a pointer to a list has the last bits zero
1144  */
1145 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1146 			 struct list_head *list)
1147 {
1148 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1149 		return 1;
1150 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1151 		return 1;
1152 	return 0;
1153 }
1154 
1155 /**
1156  * rb_check_pages - integrity check of buffer pages
1157  * @cpu_buffer: CPU buffer with pages to test
1158  *
1159  * As a safety measure we check to make sure the data pages have not
1160  * been corrupted.
1161  */
1162 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1163 {
1164 	struct list_head *head = cpu_buffer->pages;
1165 	struct buffer_page *bpage, *tmp;
1166 
1167 	/* Reset the head page if it exists */
1168 	if (cpu_buffer->head_page)
1169 		rb_set_head_page(cpu_buffer);
1170 
1171 	rb_head_page_deactivate(cpu_buffer);
1172 
1173 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1174 		return -1;
1175 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1176 		return -1;
1177 
1178 	if (rb_check_list(cpu_buffer, head))
1179 		return -1;
1180 
1181 	list_for_each_entry_safe(bpage, tmp, head, list) {
1182 		if (RB_WARN_ON(cpu_buffer,
1183 			       bpage->list.next->prev != &bpage->list))
1184 			return -1;
1185 		if (RB_WARN_ON(cpu_buffer,
1186 			       bpage->list.prev->next != &bpage->list))
1187 			return -1;
1188 		if (rb_check_list(cpu_buffer, &bpage->list))
1189 			return -1;
1190 	}
1191 
1192 	rb_head_page_activate(cpu_buffer);
1193 
1194 	return 0;
1195 }
1196 
1197 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1198 {
1199 	struct buffer_page *bpage, *tmp;
1200 	bool user_thread = current->mm != NULL;
1201 	gfp_t mflags;
1202 	long i;
1203 
1204 	/*
1205 	 * Check if the available memory is there first.
1206 	 * Note, si_mem_available() only gives us a rough estimate of available
1207 	 * memory. It may not be accurate. But we don't care, we just want
1208 	 * to prevent doing any allocation when it is obvious that it is
1209 	 * not going to succeed.
1210 	 */
1211 	i = si_mem_available();
1212 	if (i < nr_pages)
1213 		return -ENOMEM;
1214 
1215 	/*
1216 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1217 	 * gracefully without invoking oom-killer and the system is not
1218 	 * destabilized.
1219 	 */
1220 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1221 
1222 	/*
1223 	 * If a user thread allocates too much, and si_mem_available()
1224 	 * reports there's enough memory, even though there is not.
1225 	 * Make sure the OOM killer kills this thread. This can happen
1226 	 * even with RETRY_MAYFAIL because another task may be doing
1227 	 * an allocation after this task has taken all memory.
1228 	 * This is the task the OOM killer needs to take out during this
1229 	 * loop, even if it was triggered by an allocation somewhere else.
1230 	 */
1231 	if (user_thread)
1232 		set_current_oom_origin();
1233 	for (i = 0; i < nr_pages; i++) {
1234 		struct page *page;
1235 
1236 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1237 				    mflags, cpu_to_node(cpu));
1238 		if (!bpage)
1239 			goto free_pages;
1240 
1241 		list_add(&bpage->list, pages);
1242 
1243 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1244 		if (!page)
1245 			goto free_pages;
1246 		bpage->page = page_address(page);
1247 		rb_init_page(bpage->page);
1248 
1249 		if (user_thread && fatal_signal_pending(current))
1250 			goto free_pages;
1251 	}
1252 	if (user_thread)
1253 		clear_current_oom_origin();
1254 
1255 	return 0;
1256 
1257 free_pages:
1258 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1259 		list_del_init(&bpage->list);
1260 		free_buffer_page(bpage);
1261 	}
1262 	if (user_thread)
1263 		clear_current_oom_origin();
1264 
1265 	return -ENOMEM;
1266 }
1267 
1268 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1269 			     unsigned long nr_pages)
1270 {
1271 	LIST_HEAD(pages);
1272 
1273 	WARN_ON(!nr_pages);
1274 
1275 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1276 		return -ENOMEM;
1277 
1278 	/*
1279 	 * The ring buffer page list is a circular list that does not
1280 	 * start and end with a list head. All page list items point to
1281 	 * other pages.
1282 	 */
1283 	cpu_buffer->pages = pages.next;
1284 	list_del(&pages);
1285 
1286 	cpu_buffer->nr_pages = nr_pages;
1287 
1288 	rb_check_pages(cpu_buffer);
1289 
1290 	return 0;
1291 }
1292 
1293 static struct ring_buffer_per_cpu *
1294 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1295 {
1296 	struct ring_buffer_per_cpu *cpu_buffer;
1297 	struct buffer_page *bpage;
1298 	struct page *page;
1299 	int ret;
1300 
1301 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1302 				  GFP_KERNEL, cpu_to_node(cpu));
1303 	if (!cpu_buffer)
1304 		return NULL;
1305 
1306 	cpu_buffer->cpu = cpu;
1307 	cpu_buffer->buffer = buffer;
1308 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1309 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1310 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1311 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1312 	init_completion(&cpu_buffer->update_done);
1313 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1314 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1315 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1316 
1317 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1318 			    GFP_KERNEL, cpu_to_node(cpu));
1319 	if (!bpage)
1320 		goto fail_free_buffer;
1321 
1322 	rb_check_bpage(cpu_buffer, bpage);
1323 
1324 	cpu_buffer->reader_page = bpage;
1325 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1326 	if (!page)
1327 		goto fail_free_reader;
1328 	bpage->page = page_address(page);
1329 	rb_init_page(bpage->page);
1330 
1331 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1332 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1333 
1334 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1335 	if (ret < 0)
1336 		goto fail_free_reader;
1337 
1338 	cpu_buffer->head_page
1339 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1340 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1341 
1342 	rb_head_page_activate(cpu_buffer);
1343 
1344 	return cpu_buffer;
1345 
1346  fail_free_reader:
1347 	free_buffer_page(cpu_buffer->reader_page);
1348 
1349  fail_free_buffer:
1350 	kfree(cpu_buffer);
1351 	return NULL;
1352 }
1353 
1354 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1355 {
1356 	struct list_head *head = cpu_buffer->pages;
1357 	struct buffer_page *bpage, *tmp;
1358 
1359 	free_buffer_page(cpu_buffer->reader_page);
1360 
1361 	rb_head_page_deactivate(cpu_buffer);
1362 
1363 	if (head) {
1364 		list_for_each_entry_safe(bpage, tmp, head, list) {
1365 			list_del_init(&bpage->list);
1366 			free_buffer_page(bpage);
1367 		}
1368 		bpage = list_entry(head, struct buffer_page, list);
1369 		free_buffer_page(bpage);
1370 	}
1371 
1372 	kfree(cpu_buffer);
1373 }
1374 
1375 /**
1376  * __ring_buffer_alloc - allocate a new ring_buffer
1377  * @size: the size in bytes per cpu that is needed.
1378  * @flags: attributes to set for the ring buffer.
1379  *
1380  * Currently the only flag that is available is the RB_FL_OVERWRITE
1381  * flag. This flag means that the buffer will overwrite old data
1382  * when the buffer wraps. If this flag is not set, the buffer will
1383  * drop data when the tail hits the head.
1384  */
1385 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1386 					struct lock_class_key *key)
1387 {
1388 	struct ring_buffer *buffer;
1389 	long nr_pages;
1390 	int bsize;
1391 	int cpu;
1392 	int ret;
1393 
1394 	/* keep it in its own cache line */
1395 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1396 			 GFP_KERNEL);
1397 	if (!buffer)
1398 		return NULL;
1399 
1400 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1401 		goto fail_free_buffer;
1402 
1403 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1404 	buffer->flags = flags;
1405 	buffer->clock = trace_clock_local;
1406 	buffer->reader_lock_key = key;
1407 
1408 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1409 	init_waitqueue_head(&buffer->irq_work.waiters);
1410 
1411 	/* need at least two pages */
1412 	if (nr_pages < 2)
1413 		nr_pages = 2;
1414 
1415 	buffer->cpus = nr_cpu_ids;
1416 
1417 	bsize = sizeof(void *) * nr_cpu_ids;
1418 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1419 				  GFP_KERNEL);
1420 	if (!buffer->buffers)
1421 		goto fail_free_cpumask;
1422 
1423 	cpu = raw_smp_processor_id();
1424 	cpumask_set_cpu(cpu, buffer->cpumask);
1425 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1426 	if (!buffer->buffers[cpu])
1427 		goto fail_free_buffers;
1428 
1429 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1430 	if (ret < 0)
1431 		goto fail_free_buffers;
1432 
1433 	mutex_init(&buffer->mutex);
1434 
1435 	return buffer;
1436 
1437  fail_free_buffers:
1438 	for_each_buffer_cpu(buffer, cpu) {
1439 		if (buffer->buffers[cpu])
1440 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1441 	}
1442 	kfree(buffer->buffers);
1443 
1444  fail_free_cpumask:
1445 	free_cpumask_var(buffer->cpumask);
1446 
1447  fail_free_buffer:
1448 	kfree(buffer);
1449 	return NULL;
1450 }
1451 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1452 
1453 /**
1454  * ring_buffer_free - free a ring buffer.
1455  * @buffer: the buffer to free.
1456  */
1457 void
1458 ring_buffer_free(struct ring_buffer *buffer)
1459 {
1460 	int cpu;
1461 
1462 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1463 
1464 	for_each_buffer_cpu(buffer, cpu)
1465 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1466 
1467 	kfree(buffer->buffers);
1468 	free_cpumask_var(buffer->cpumask);
1469 
1470 	kfree(buffer);
1471 }
1472 EXPORT_SYMBOL_GPL(ring_buffer_free);
1473 
1474 void ring_buffer_set_clock(struct ring_buffer *buffer,
1475 			   u64 (*clock)(void))
1476 {
1477 	buffer->clock = clock;
1478 }
1479 
1480 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1481 {
1482 	buffer->time_stamp_abs = abs;
1483 }
1484 
1485 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1486 {
1487 	return buffer->time_stamp_abs;
1488 }
1489 
1490 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1491 
1492 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1493 {
1494 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1495 }
1496 
1497 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1498 {
1499 	return local_read(&bpage->write) & RB_WRITE_MASK;
1500 }
1501 
1502 static int
1503 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1504 {
1505 	struct list_head *tail_page, *to_remove, *next_page;
1506 	struct buffer_page *to_remove_page, *tmp_iter_page;
1507 	struct buffer_page *last_page, *first_page;
1508 	unsigned long nr_removed;
1509 	unsigned long head_bit;
1510 	int page_entries;
1511 
1512 	head_bit = 0;
1513 
1514 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1515 	atomic_inc(&cpu_buffer->record_disabled);
1516 	/*
1517 	 * We don't race with the readers since we have acquired the reader
1518 	 * lock. We also don't race with writers after disabling recording.
1519 	 * This makes it easy to figure out the first and the last page to be
1520 	 * removed from the list. We unlink all the pages in between including
1521 	 * the first and last pages. This is done in a busy loop so that we
1522 	 * lose the least number of traces.
1523 	 * The pages are freed after we restart recording and unlock readers.
1524 	 */
1525 	tail_page = &cpu_buffer->tail_page->list;
1526 
1527 	/*
1528 	 * tail page might be on reader page, we remove the next page
1529 	 * from the ring buffer
1530 	 */
1531 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1532 		tail_page = rb_list_head(tail_page->next);
1533 	to_remove = tail_page;
1534 
1535 	/* start of pages to remove */
1536 	first_page = list_entry(rb_list_head(to_remove->next),
1537 				struct buffer_page, list);
1538 
1539 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1540 		to_remove = rb_list_head(to_remove)->next;
1541 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1542 	}
1543 
1544 	next_page = rb_list_head(to_remove)->next;
1545 
1546 	/*
1547 	 * Now we remove all pages between tail_page and next_page.
1548 	 * Make sure that we have head_bit value preserved for the
1549 	 * next page
1550 	 */
1551 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1552 						head_bit);
1553 	next_page = rb_list_head(next_page);
1554 	next_page->prev = tail_page;
1555 
1556 	/* make sure pages points to a valid page in the ring buffer */
1557 	cpu_buffer->pages = next_page;
1558 
1559 	/* update head page */
1560 	if (head_bit)
1561 		cpu_buffer->head_page = list_entry(next_page,
1562 						struct buffer_page, list);
1563 
1564 	/*
1565 	 * change read pointer to make sure any read iterators reset
1566 	 * themselves
1567 	 */
1568 	cpu_buffer->read = 0;
1569 
1570 	/* pages are removed, resume tracing and then free the pages */
1571 	atomic_dec(&cpu_buffer->record_disabled);
1572 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1573 
1574 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1575 
1576 	/* last buffer page to remove */
1577 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1578 				list);
1579 	tmp_iter_page = first_page;
1580 
1581 	do {
1582 		cond_resched();
1583 
1584 		to_remove_page = tmp_iter_page;
1585 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1586 
1587 		/* update the counters */
1588 		page_entries = rb_page_entries(to_remove_page);
1589 		if (page_entries) {
1590 			/*
1591 			 * If something was added to this page, it was full
1592 			 * since it is not the tail page. So we deduct the
1593 			 * bytes consumed in ring buffer from here.
1594 			 * Increment overrun to account for the lost events.
1595 			 */
1596 			local_add(page_entries, &cpu_buffer->overrun);
1597 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1598 		}
1599 
1600 		/*
1601 		 * We have already removed references to this list item, just
1602 		 * free up the buffer_page and its page
1603 		 */
1604 		free_buffer_page(to_remove_page);
1605 		nr_removed--;
1606 
1607 	} while (to_remove_page != last_page);
1608 
1609 	RB_WARN_ON(cpu_buffer, nr_removed);
1610 
1611 	return nr_removed == 0;
1612 }
1613 
1614 static int
1615 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1616 {
1617 	struct list_head *pages = &cpu_buffer->new_pages;
1618 	int retries, success;
1619 
1620 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1621 	/*
1622 	 * We are holding the reader lock, so the reader page won't be swapped
1623 	 * in the ring buffer. Now we are racing with the writer trying to
1624 	 * move head page and the tail page.
1625 	 * We are going to adapt the reader page update process where:
1626 	 * 1. We first splice the start and end of list of new pages between
1627 	 *    the head page and its previous page.
1628 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1629 	 *    start of new pages list.
1630 	 * 3. Finally, we update the head->prev to the end of new list.
1631 	 *
1632 	 * We will try this process 10 times, to make sure that we don't keep
1633 	 * spinning.
1634 	 */
1635 	retries = 10;
1636 	success = 0;
1637 	while (retries--) {
1638 		struct list_head *head_page, *prev_page, *r;
1639 		struct list_head *last_page, *first_page;
1640 		struct list_head *head_page_with_bit;
1641 
1642 		head_page = &rb_set_head_page(cpu_buffer)->list;
1643 		if (!head_page)
1644 			break;
1645 		prev_page = head_page->prev;
1646 
1647 		first_page = pages->next;
1648 		last_page  = pages->prev;
1649 
1650 		head_page_with_bit = (struct list_head *)
1651 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1652 
1653 		last_page->next = head_page_with_bit;
1654 		first_page->prev = prev_page;
1655 
1656 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1657 
1658 		if (r == head_page_with_bit) {
1659 			/*
1660 			 * yay, we replaced the page pointer to our new list,
1661 			 * now, we just have to update to head page's prev
1662 			 * pointer to point to end of list
1663 			 */
1664 			head_page->prev = last_page;
1665 			success = 1;
1666 			break;
1667 		}
1668 	}
1669 
1670 	if (success)
1671 		INIT_LIST_HEAD(pages);
1672 	/*
1673 	 * If we weren't successful in adding in new pages, warn and stop
1674 	 * tracing
1675 	 */
1676 	RB_WARN_ON(cpu_buffer, !success);
1677 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1678 
1679 	/* free pages if they weren't inserted */
1680 	if (!success) {
1681 		struct buffer_page *bpage, *tmp;
1682 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1683 					 list) {
1684 			list_del_init(&bpage->list);
1685 			free_buffer_page(bpage);
1686 		}
1687 	}
1688 	return success;
1689 }
1690 
1691 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1692 {
1693 	int success;
1694 
1695 	if (cpu_buffer->nr_pages_to_update > 0)
1696 		success = rb_insert_pages(cpu_buffer);
1697 	else
1698 		success = rb_remove_pages(cpu_buffer,
1699 					-cpu_buffer->nr_pages_to_update);
1700 
1701 	if (success)
1702 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1703 }
1704 
1705 static void update_pages_handler(struct work_struct *work)
1706 {
1707 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1708 			struct ring_buffer_per_cpu, update_pages_work);
1709 	rb_update_pages(cpu_buffer);
1710 	complete(&cpu_buffer->update_done);
1711 }
1712 
1713 /**
1714  * ring_buffer_resize - resize the ring buffer
1715  * @buffer: the buffer to resize.
1716  * @size: the new size.
1717  * @cpu_id: the cpu buffer to resize
1718  *
1719  * Minimum size is 2 * BUF_PAGE_SIZE.
1720  *
1721  * Returns 0 on success and < 0 on failure.
1722  */
1723 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1724 			int cpu_id)
1725 {
1726 	struct ring_buffer_per_cpu *cpu_buffer;
1727 	unsigned long nr_pages;
1728 	int cpu, err = 0;
1729 
1730 	/*
1731 	 * Always succeed at resizing a non-existent buffer:
1732 	 */
1733 	if (!buffer)
1734 		return size;
1735 
1736 	/* Make sure the requested buffer exists */
1737 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1738 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1739 		return size;
1740 
1741 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1742 
1743 	/* we need a minimum of two pages */
1744 	if (nr_pages < 2)
1745 		nr_pages = 2;
1746 
1747 	size = nr_pages * BUF_PAGE_SIZE;
1748 
1749 	/*
1750 	 * Don't succeed if resizing is disabled, as a reader might be
1751 	 * manipulating the ring buffer and is expecting a sane state while
1752 	 * this is true.
1753 	 */
1754 	if (atomic_read(&buffer->resize_disabled))
1755 		return -EBUSY;
1756 
1757 	/* prevent another thread from changing buffer sizes */
1758 	mutex_lock(&buffer->mutex);
1759 
1760 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1761 		/* calculate the pages to update */
1762 		for_each_buffer_cpu(buffer, cpu) {
1763 			cpu_buffer = buffer->buffers[cpu];
1764 
1765 			cpu_buffer->nr_pages_to_update = nr_pages -
1766 							cpu_buffer->nr_pages;
1767 			/*
1768 			 * nothing more to do for removing pages or no update
1769 			 */
1770 			if (cpu_buffer->nr_pages_to_update <= 0)
1771 				continue;
1772 			/*
1773 			 * to add pages, make sure all new pages can be
1774 			 * allocated without receiving ENOMEM
1775 			 */
1776 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1777 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1778 						&cpu_buffer->new_pages, cpu)) {
1779 				/* not enough memory for new pages */
1780 				err = -ENOMEM;
1781 				goto out_err;
1782 			}
1783 		}
1784 
1785 		get_online_cpus();
1786 		/*
1787 		 * Fire off all the required work handlers
1788 		 * We can't schedule on offline CPUs, but it's not necessary
1789 		 * since we can change their buffer sizes without any race.
1790 		 */
1791 		for_each_buffer_cpu(buffer, cpu) {
1792 			cpu_buffer = buffer->buffers[cpu];
1793 			if (!cpu_buffer->nr_pages_to_update)
1794 				continue;
1795 
1796 			/* Can't run something on an offline CPU. */
1797 			if (!cpu_online(cpu)) {
1798 				rb_update_pages(cpu_buffer);
1799 				cpu_buffer->nr_pages_to_update = 0;
1800 			} else {
1801 				schedule_work_on(cpu,
1802 						&cpu_buffer->update_pages_work);
1803 			}
1804 		}
1805 
1806 		/* wait for all the updates to complete */
1807 		for_each_buffer_cpu(buffer, cpu) {
1808 			cpu_buffer = buffer->buffers[cpu];
1809 			if (!cpu_buffer->nr_pages_to_update)
1810 				continue;
1811 
1812 			if (cpu_online(cpu))
1813 				wait_for_completion(&cpu_buffer->update_done);
1814 			cpu_buffer->nr_pages_to_update = 0;
1815 		}
1816 
1817 		put_online_cpus();
1818 	} else {
1819 		/* Make sure this CPU has been initialized */
1820 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1821 			goto out;
1822 
1823 		cpu_buffer = buffer->buffers[cpu_id];
1824 
1825 		if (nr_pages == cpu_buffer->nr_pages)
1826 			goto out;
1827 
1828 		cpu_buffer->nr_pages_to_update = nr_pages -
1829 						cpu_buffer->nr_pages;
1830 
1831 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1832 		if (cpu_buffer->nr_pages_to_update > 0 &&
1833 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1834 					    &cpu_buffer->new_pages, cpu_id)) {
1835 			err = -ENOMEM;
1836 			goto out_err;
1837 		}
1838 
1839 		get_online_cpus();
1840 
1841 		/* Can't run something on an offline CPU. */
1842 		if (!cpu_online(cpu_id))
1843 			rb_update_pages(cpu_buffer);
1844 		else {
1845 			schedule_work_on(cpu_id,
1846 					 &cpu_buffer->update_pages_work);
1847 			wait_for_completion(&cpu_buffer->update_done);
1848 		}
1849 
1850 		cpu_buffer->nr_pages_to_update = 0;
1851 		put_online_cpus();
1852 	}
1853 
1854  out:
1855 	/*
1856 	 * The ring buffer resize can happen with the ring buffer
1857 	 * enabled, so that the update disturbs the tracing as little
1858 	 * as possible. But if the buffer is disabled, we do not need
1859 	 * to worry about that, and we can take the time to verify
1860 	 * that the buffer is not corrupt.
1861 	 */
1862 	if (atomic_read(&buffer->record_disabled)) {
1863 		atomic_inc(&buffer->record_disabled);
1864 		/*
1865 		 * Even though the buffer was disabled, we must make sure
1866 		 * that it is truly disabled before calling rb_check_pages.
1867 		 * There could have been a race between checking
1868 		 * record_disable and incrementing it.
1869 		 */
1870 		synchronize_rcu();
1871 		for_each_buffer_cpu(buffer, cpu) {
1872 			cpu_buffer = buffer->buffers[cpu];
1873 			rb_check_pages(cpu_buffer);
1874 		}
1875 		atomic_dec(&buffer->record_disabled);
1876 	}
1877 
1878 	mutex_unlock(&buffer->mutex);
1879 	return size;
1880 
1881  out_err:
1882 	for_each_buffer_cpu(buffer, cpu) {
1883 		struct buffer_page *bpage, *tmp;
1884 
1885 		cpu_buffer = buffer->buffers[cpu];
1886 		cpu_buffer->nr_pages_to_update = 0;
1887 
1888 		if (list_empty(&cpu_buffer->new_pages))
1889 			continue;
1890 
1891 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1892 					list) {
1893 			list_del_init(&bpage->list);
1894 			free_buffer_page(bpage);
1895 		}
1896 	}
1897 	mutex_unlock(&buffer->mutex);
1898 	return err;
1899 }
1900 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1901 
1902 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1903 {
1904 	mutex_lock(&buffer->mutex);
1905 	if (val)
1906 		buffer->flags |= RB_FL_OVERWRITE;
1907 	else
1908 		buffer->flags &= ~RB_FL_OVERWRITE;
1909 	mutex_unlock(&buffer->mutex);
1910 }
1911 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1912 
1913 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1914 {
1915 	return bpage->page->data + index;
1916 }
1917 
1918 static __always_inline struct ring_buffer_event *
1919 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1920 {
1921 	return __rb_page_index(cpu_buffer->reader_page,
1922 			       cpu_buffer->reader_page->read);
1923 }
1924 
1925 static __always_inline struct ring_buffer_event *
1926 rb_iter_head_event(struct ring_buffer_iter *iter)
1927 {
1928 	return __rb_page_index(iter->head_page, iter->head);
1929 }
1930 
1931 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1932 {
1933 	return local_read(&bpage->page->commit);
1934 }
1935 
1936 /* Size is determined by what has been committed */
1937 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1938 {
1939 	return rb_page_commit(bpage);
1940 }
1941 
1942 static __always_inline unsigned
1943 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1944 {
1945 	return rb_page_commit(cpu_buffer->commit_page);
1946 }
1947 
1948 static __always_inline unsigned
1949 rb_event_index(struct ring_buffer_event *event)
1950 {
1951 	unsigned long addr = (unsigned long)event;
1952 
1953 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1954 }
1955 
1956 static void rb_inc_iter(struct ring_buffer_iter *iter)
1957 {
1958 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1959 
1960 	/*
1961 	 * The iterator could be on the reader page (it starts there).
1962 	 * But the head could have moved, since the reader was
1963 	 * found. Check for this case and assign the iterator
1964 	 * to the head page instead of next.
1965 	 */
1966 	if (iter->head_page == cpu_buffer->reader_page)
1967 		iter->head_page = rb_set_head_page(cpu_buffer);
1968 	else
1969 		rb_inc_page(cpu_buffer, &iter->head_page);
1970 
1971 	iter->read_stamp = iter->head_page->page->time_stamp;
1972 	iter->head = 0;
1973 }
1974 
1975 /*
1976  * rb_handle_head_page - writer hit the head page
1977  *
1978  * Returns: +1 to retry page
1979  *           0 to continue
1980  *          -1 on error
1981  */
1982 static int
1983 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1984 		    struct buffer_page *tail_page,
1985 		    struct buffer_page *next_page)
1986 {
1987 	struct buffer_page *new_head;
1988 	int entries;
1989 	int type;
1990 	int ret;
1991 
1992 	entries = rb_page_entries(next_page);
1993 
1994 	/*
1995 	 * The hard part is here. We need to move the head
1996 	 * forward, and protect against both readers on
1997 	 * other CPUs and writers coming in via interrupts.
1998 	 */
1999 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2000 				       RB_PAGE_HEAD);
2001 
2002 	/*
2003 	 * type can be one of four:
2004 	 *  NORMAL - an interrupt already moved it for us
2005 	 *  HEAD   - we are the first to get here.
2006 	 *  UPDATE - we are the interrupt interrupting
2007 	 *           a current move.
2008 	 *  MOVED  - a reader on another CPU moved the next
2009 	 *           pointer to its reader page. Give up
2010 	 *           and try again.
2011 	 */
2012 
2013 	switch (type) {
2014 	case RB_PAGE_HEAD:
2015 		/*
2016 		 * We changed the head to UPDATE, thus
2017 		 * it is our responsibility to update
2018 		 * the counters.
2019 		 */
2020 		local_add(entries, &cpu_buffer->overrun);
2021 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2022 
2023 		/*
2024 		 * The entries will be zeroed out when we move the
2025 		 * tail page.
2026 		 */
2027 
2028 		/* still more to do */
2029 		break;
2030 
2031 	case RB_PAGE_UPDATE:
2032 		/*
2033 		 * This is an interrupt that interrupt the
2034 		 * previous update. Still more to do.
2035 		 */
2036 		break;
2037 	case RB_PAGE_NORMAL:
2038 		/*
2039 		 * An interrupt came in before the update
2040 		 * and processed this for us.
2041 		 * Nothing left to do.
2042 		 */
2043 		return 1;
2044 	case RB_PAGE_MOVED:
2045 		/*
2046 		 * The reader is on another CPU and just did
2047 		 * a swap with our next_page.
2048 		 * Try again.
2049 		 */
2050 		return 1;
2051 	default:
2052 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2053 		return -1;
2054 	}
2055 
2056 	/*
2057 	 * Now that we are here, the old head pointer is
2058 	 * set to UPDATE. This will keep the reader from
2059 	 * swapping the head page with the reader page.
2060 	 * The reader (on another CPU) will spin till
2061 	 * we are finished.
2062 	 *
2063 	 * We just need to protect against interrupts
2064 	 * doing the job. We will set the next pointer
2065 	 * to HEAD. After that, we set the old pointer
2066 	 * to NORMAL, but only if it was HEAD before.
2067 	 * otherwise we are an interrupt, and only
2068 	 * want the outer most commit to reset it.
2069 	 */
2070 	new_head = next_page;
2071 	rb_inc_page(cpu_buffer, &new_head);
2072 
2073 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2074 				    RB_PAGE_NORMAL);
2075 
2076 	/*
2077 	 * Valid returns are:
2078 	 *  HEAD   - an interrupt came in and already set it.
2079 	 *  NORMAL - One of two things:
2080 	 *            1) We really set it.
2081 	 *            2) A bunch of interrupts came in and moved
2082 	 *               the page forward again.
2083 	 */
2084 	switch (ret) {
2085 	case RB_PAGE_HEAD:
2086 	case RB_PAGE_NORMAL:
2087 		/* OK */
2088 		break;
2089 	default:
2090 		RB_WARN_ON(cpu_buffer, 1);
2091 		return -1;
2092 	}
2093 
2094 	/*
2095 	 * It is possible that an interrupt came in,
2096 	 * set the head up, then more interrupts came in
2097 	 * and moved it again. When we get back here,
2098 	 * the page would have been set to NORMAL but we
2099 	 * just set it back to HEAD.
2100 	 *
2101 	 * How do you detect this? Well, if that happened
2102 	 * the tail page would have moved.
2103 	 */
2104 	if (ret == RB_PAGE_NORMAL) {
2105 		struct buffer_page *buffer_tail_page;
2106 
2107 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2108 		/*
2109 		 * If the tail had moved passed next, then we need
2110 		 * to reset the pointer.
2111 		 */
2112 		if (buffer_tail_page != tail_page &&
2113 		    buffer_tail_page != next_page)
2114 			rb_head_page_set_normal(cpu_buffer, new_head,
2115 						next_page,
2116 						RB_PAGE_HEAD);
2117 	}
2118 
2119 	/*
2120 	 * If this was the outer most commit (the one that
2121 	 * changed the original pointer from HEAD to UPDATE),
2122 	 * then it is up to us to reset it to NORMAL.
2123 	 */
2124 	if (type == RB_PAGE_HEAD) {
2125 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2126 					      tail_page,
2127 					      RB_PAGE_UPDATE);
2128 		if (RB_WARN_ON(cpu_buffer,
2129 			       ret != RB_PAGE_UPDATE))
2130 			return -1;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 static inline void
2137 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2138 	      unsigned long tail, struct rb_event_info *info)
2139 {
2140 	struct buffer_page *tail_page = info->tail_page;
2141 	struct ring_buffer_event *event;
2142 	unsigned long length = info->length;
2143 
2144 	/*
2145 	 * Only the event that crossed the page boundary
2146 	 * must fill the old tail_page with padding.
2147 	 */
2148 	if (tail >= BUF_PAGE_SIZE) {
2149 		/*
2150 		 * If the page was filled, then we still need
2151 		 * to update the real_end. Reset it to zero
2152 		 * and the reader will ignore it.
2153 		 */
2154 		if (tail == BUF_PAGE_SIZE)
2155 			tail_page->real_end = 0;
2156 
2157 		local_sub(length, &tail_page->write);
2158 		return;
2159 	}
2160 
2161 	event = __rb_page_index(tail_page, tail);
2162 
2163 	/* account for padding bytes */
2164 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2165 
2166 	/*
2167 	 * Save the original length to the meta data.
2168 	 * This will be used by the reader to add lost event
2169 	 * counter.
2170 	 */
2171 	tail_page->real_end = tail;
2172 
2173 	/*
2174 	 * If this event is bigger than the minimum size, then
2175 	 * we need to be careful that we don't subtract the
2176 	 * write counter enough to allow another writer to slip
2177 	 * in on this page.
2178 	 * We put in a discarded commit instead, to make sure
2179 	 * that this space is not used again.
2180 	 *
2181 	 * If we are less than the minimum size, we don't need to
2182 	 * worry about it.
2183 	 */
2184 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2185 		/* No room for any events */
2186 
2187 		/* Mark the rest of the page with padding */
2188 		rb_event_set_padding(event);
2189 
2190 		/* Set the write back to the previous setting */
2191 		local_sub(length, &tail_page->write);
2192 		return;
2193 	}
2194 
2195 	/* Put in a discarded event */
2196 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2197 	event->type_len = RINGBUF_TYPE_PADDING;
2198 	/* time delta must be non zero */
2199 	event->time_delta = 1;
2200 
2201 	/* Set write to end of buffer */
2202 	length = (tail + length) - BUF_PAGE_SIZE;
2203 	local_sub(length, &tail_page->write);
2204 }
2205 
2206 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2207 
2208 /*
2209  * This is the slow path, force gcc not to inline it.
2210  */
2211 static noinline struct ring_buffer_event *
2212 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2213 	     unsigned long tail, struct rb_event_info *info)
2214 {
2215 	struct buffer_page *tail_page = info->tail_page;
2216 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2217 	struct ring_buffer *buffer = cpu_buffer->buffer;
2218 	struct buffer_page *next_page;
2219 	int ret;
2220 
2221 	next_page = tail_page;
2222 
2223 	rb_inc_page(cpu_buffer, &next_page);
2224 
2225 	/*
2226 	 * If for some reason, we had an interrupt storm that made
2227 	 * it all the way around the buffer, bail, and warn
2228 	 * about it.
2229 	 */
2230 	if (unlikely(next_page == commit_page)) {
2231 		local_inc(&cpu_buffer->commit_overrun);
2232 		goto out_reset;
2233 	}
2234 
2235 	/*
2236 	 * This is where the fun begins!
2237 	 *
2238 	 * We are fighting against races between a reader that
2239 	 * could be on another CPU trying to swap its reader
2240 	 * page with the buffer head.
2241 	 *
2242 	 * We are also fighting against interrupts coming in and
2243 	 * moving the head or tail on us as well.
2244 	 *
2245 	 * If the next page is the head page then we have filled
2246 	 * the buffer, unless the commit page is still on the
2247 	 * reader page.
2248 	 */
2249 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2250 
2251 		/*
2252 		 * If the commit is not on the reader page, then
2253 		 * move the header page.
2254 		 */
2255 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2256 			/*
2257 			 * If we are not in overwrite mode,
2258 			 * this is easy, just stop here.
2259 			 */
2260 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2261 				local_inc(&cpu_buffer->dropped_events);
2262 				goto out_reset;
2263 			}
2264 
2265 			ret = rb_handle_head_page(cpu_buffer,
2266 						  tail_page,
2267 						  next_page);
2268 			if (ret < 0)
2269 				goto out_reset;
2270 			if (ret)
2271 				goto out_again;
2272 		} else {
2273 			/*
2274 			 * We need to be careful here too. The
2275 			 * commit page could still be on the reader
2276 			 * page. We could have a small buffer, and
2277 			 * have filled up the buffer with events
2278 			 * from interrupts and such, and wrapped.
2279 			 *
2280 			 * Note, if the tail page is also the on the
2281 			 * reader_page, we let it move out.
2282 			 */
2283 			if (unlikely((cpu_buffer->commit_page !=
2284 				      cpu_buffer->tail_page) &&
2285 				     (cpu_buffer->commit_page ==
2286 				      cpu_buffer->reader_page))) {
2287 				local_inc(&cpu_buffer->commit_overrun);
2288 				goto out_reset;
2289 			}
2290 		}
2291 	}
2292 
2293 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2294 
2295  out_again:
2296 
2297 	rb_reset_tail(cpu_buffer, tail, info);
2298 
2299 	/* Commit what we have for now. */
2300 	rb_end_commit(cpu_buffer);
2301 	/* rb_end_commit() decs committing */
2302 	local_inc(&cpu_buffer->committing);
2303 
2304 	/* fail and let the caller try again */
2305 	return ERR_PTR(-EAGAIN);
2306 
2307  out_reset:
2308 	/* reset write */
2309 	rb_reset_tail(cpu_buffer, tail, info);
2310 
2311 	return NULL;
2312 }
2313 
2314 /* Slow path, do not inline */
2315 static noinline struct ring_buffer_event *
2316 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2317 {
2318 	if (abs)
2319 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2320 	else
2321 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2322 
2323 	/* Not the first event on the page, or not delta? */
2324 	if (abs || rb_event_index(event)) {
2325 		event->time_delta = delta & TS_MASK;
2326 		event->array[0] = delta >> TS_SHIFT;
2327 	} else {
2328 		/* nope, just zero it */
2329 		event->time_delta = 0;
2330 		event->array[0] = 0;
2331 	}
2332 
2333 	return skip_time_extend(event);
2334 }
2335 
2336 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2337 				     struct ring_buffer_event *event);
2338 
2339 /**
2340  * rb_update_event - update event type and data
2341  * @event: the event to update
2342  * @type: the type of event
2343  * @length: the size of the event field in the ring buffer
2344  *
2345  * Update the type and data fields of the event. The length
2346  * is the actual size that is written to the ring buffer,
2347  * and with this, we can determine what to place into the
2348  * data field.
2349  */
2350 static void
2351 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2352 		struct ring_buffer_event *event,
2353 		struct rb_event_info *info)
2354 {
2355 	unsigned length = info->length;
2356 	u64 delta = info->delta;
2357 
2358 	/* Only a commit updates the timestamp */
2359 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2360 		delta = 0;
2361 
2362 	/*
2363 	 * If we need to add a timestamp, then we
2364 	 * add it to the start of the reserved space.
2365 	 */
2366 	if (unlikely(info->add_timestamp)) {
2367 		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2368 
2369 		event = rb_add_time_stamp(event, info->delta, abs);
2370 		length -= RB_LEN_TIME_EXTEND;
2371 		delta = 0;
2372 	}
2373 
2374 	event->time_delta = delta;
2375 	length -= RB_EVNT_HDR_SIZE;
2376 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2377 		event->type_len = 0;
2378 		event->array[0] = length;
2379 	} else
2380 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2381 }
2382 
2383 static unsigned rb_calculate_event_length(unsigned length)
2384 {
2385 	struct ring_buffer_event event; /* Used only for sizeof array */
2386 
2387 	/* zero length can cause confusions */
2388 	if (!length)
2389 		length++;
2390 
2391 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2392 		length += sizeof(event.array[0]);
2393 
2394 	length += RB_EVNT_HDR_SIZE;
2395 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2396 
2397 	/*
2398 	 * In case the time delta is larger than the 27 bits for it
2399 	 * in the header, we need to add a timestamp. If another
2400 	 * event comes in when trying to discard this one to increase
2401 	 * the length, then the timestamp will be added in the allocated
2402 	 * space of this event. If length is bigger than the size needed
2403 	 * for the TIME_EXTEND, then padding has to be used. The events
2404 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2405 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2406 	 * As length is a multiple of 4, we only need to worry if it
2407 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2408 	 */
2409 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2410 		length += RB_ALIGNMENT;
2411 
2412 	return length;
2413 }
2414 
2415 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2416 static inline bool sched_clock_stable(void)
2417 {
2418 	return true;
2419 }
2420 #endif
2421 
2422 static inline int
2423 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2424 		  struct ring_buffer_event *event)
2425 {
2426 	unsigned long new_index, old_index;
2427 	struct buffer_page *bpage;
2428 	unsigned long index;
2429 	unsigned long addr;
2430 
2431 	new_index = rb_event_index(event);
2432 	old_index = new_index + rb_event_ts_length(event);
2433 	addr = (unsigned long)event;
2434 	addr &= PAGE_MASK;
2435 
2436 	bpage = READ_ONCE(cpu_buffer->tail_page);
2437 
2438 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2439 		unsigned long write_mask =
2440 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2441 		unsigned long event_length = rb_event_length(event);
2442 		/*
2443 		 * This is on the tail page. It is possible that
2444 		 * a write could come in and move the tail page
2445 		 * and write to the next page. That is fine
2446 		 * because we just shorten what is on this page.
2447 		 */
2448 		old_index += write_mask;
2449 		new_index += write_mask;
2450 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2451 		if (index == old_index) {
2452 			/* update counters */
2453 			local_sub(event_length, &cpu_buffer->entries_bytes);
2454 			return 1;
2455 		}
2456 	}
2457 
2458 	/* could not discard */
2459 	return 0;
2460 }
2461 
2462 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2463 {
2464 	local_inc(&cpu_buffer->committing);
2465 	local_inc(&cpu_buffer->commits);
2466 }
2467 
2468 static __always_inline void
2469 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2470 {
2471 	unsigned long max_count;
2472 
2473 	/*
2474 	 * We only race with interrupts and NMIs on this CPU.
2475 	 * If we own the commit event, then we can commit
2476 	 * all others that interrupted us, since the interruptions
2477 	 * are in stack format (they finish before they come
2478 	 * back to us). This allows us to do a simple loop to
2479 	 * assign the commit to the tail.
2480 	 */
2481  again:
2482 	max_count = cpu_buffer->nr_pages * 100;
2483 
2484 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2485 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2486 			return;
2487 		if (RB_WARN_ON(cpu_buffer,
2488 			       rb_is_reader_page(cpu_buffer->tail_page)))
2489 			return;
2490 		local_set(&cpu_buffer->commit_page->page->commit,
2491 			  rb_page_write(cpu_buffer->commit_page));
2492 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2493 		/* Only update the write stamp if the page has an event */
2494 		if (rb_page_write(cpu_buffer->commit_page))
2495 			cpu_buffer->write_stamp =
2496 				cpu_buffer->commit_page->page->time_stamp;
2497 		/* add barrier to keep gcc from optimizing too much */
2498 		barrier();
2499 	}
2500 	while (rb_commit_index(cpu_buffer) !=
2501 	       rb_page_write(cpu_buffer->commit_page)) {
2502 
2503 		local_set(&cpu_buffer->commit_page->page->commit,
2504 			  rb_page_write(cpu_buffer->commit_page));
2505 		RB_WARN_ON(cpu_buffer,
2506 			   local_read(&cpu_buffer->commit_page->page->commit) &
2507 			   ~RB_WRITE_MASK);
2508 		barrier();
2509 	}
2510 
2511 	/* again, keep gcc from optimizing */
2512 	barrier();
2513 
2514 	/*
2515 	 * If an interrupt came in just after the first while loop
2516 	 * and pushed the tail page forward, we will be left with
2517 	 * a dangling commit that will never go forward.
2518 	 */
2519 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2520 		goto again;
2521 }
2522 
2523 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2524 {
2525 	unsigned long commits;
2526 
2527 	if (RB_WARN_ON(cpu_buffer,
2528 		       !local_read(&cpu_buffer->committing)))
2529 		return;
2530 
2531  again:
2532 	commits = local_read(&cpu_buffer->commits);
2533 	/* synchronize with interrupts */
2534 	barrier();
2535 	if (local_read(&cpu_buffer->committing) == 1)
2536 		rb_set_commit_to_write(cpu_buffer);
2537 
2538 	local_dec(&cpu_buffer->committing);
2539 
2540 	/* synchronize with interrupts */
2541 	barrier();
2542 
2543 	/*
2544 	 * Need to account for interrupts coming in between the
2545 	 * updating of the commit page and the clearing of the
2546 	 * committing counter.
2547 	 */
2548 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2549 	    !local_read(&cpu_buffer->committing)) {
2550 		local_inc(&cpu_buffer->committing);
2551 		goto again;
2552 	}
2553 }
2554 
2555 static inline void rb_event_discard(struct ring_buffer_event *event)
2556 {
2557 	if (extended_time(event))
2558 		event = skip_time_extend(event);
2559 
2560 	/* array[0] holds the actual length for the discarded event */
2561 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2562 	event->type_len = RINGBUF_TYPE_PADDING;
2563 	/* time delta must be non zero */
2564 	if (!event->time_delta)
2565 		event->time_delta = 1;
2566 }
2567 
2568 static __always_inline bool
2569 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2570 		   struct ring_buffer_event *event)
2571 {
2572 	unsigned long addr = (unsigned long)event;
2573 	unsigned long index;
2574 
2575 	index = rb_event_index(event);
2576 	addr &= PAGE_MASK;
2577 
2578 	return cpu_buffer->commit_page->page == (void *)addr &&
2579 		rb_commit_index(cpu_buffer) == index;
2580 }
2581 
2582 static __always_inline void
2583 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2584 		      struct ring_buffer_event *event)
2585 {
2586 	u64 delta;
2587 
2588 	/*
2589 	 * The event first in the commit queue updates the
2590 	 * time stamp.
2591 	 */
2592 	if (rb_event_is_commit(cpu_buffer, event)) {
2593 		/*
2594 		 * A commit event that is first on a page
2595 		 * updates the write timestamp with the page stamp
2596 		 */
2597 		if (!rb_event_index(event))
2598 			cpu_buffer->write_stamp =
2599 				cpu_buffer->commit_page->page->time_stamp;
2600 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2601 			delta = ring_buffer_event_time_stamp(event);
2602 			cpu_buffer->write_stamp += delta;
2603 		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2604 			delta = ring_buffer_event_time_stamp(event);
2605 			cpu_buffer->write_stamp = delta;
2606 		} else
2607 			cpu_buffer->write_stamp += event->time_delta;
2608 	}
2609 }
2610 
2611 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2612 		      struct ring_buffer_event *event)
2613 {
2614 	local_inc(&cpu_buffer->entries);
2615 	rb_update_write_stamp(cpu_buffer, event);
2616 	rb_end_commit(cpu_buffer);
2617 }
2618 
2619 static __always_inline void
2620 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2621 {
2622 	size_t nr_pages;
2623 	size_t dirty;
2624 	size_t full;
2625 
2626 	if (buffer->irq_work.waiters_pending) {
2627 		buffer->irq_work.waiters_pending = false;
2628 		/* irq_work_queue() supplies it's own memory barriers */
2629 		irq_work_queue(&buffer->irq_work.work);
2630 	}
2631 
2632 	if (cpu_buffer->irq_work.waiters_pending) {
2633 		cpu_buffer->irq_work.waiters_pending = false;
2634 		/* irq_work_queue() supplies it's own memory barriers */
2635 		irq_work_queue(&cpu_buffer->irq_work.work);
2636 	}
2637 
2638 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2639 		return;
2640 
2641 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2642 		return;
2643 
2644 	if (!cpu_buffer->irq_work.full_waiters_pending)
2645 		return;
2646 
2647 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2648 
2649 	full = cpu_buffer->shortest_full;
2650 	nr_pages = cpu_buffer->nr_pages;
2651 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2652 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2653 		return;
2654 
2655 	cpu_buffer->irq_work.wakeup_full = true;
2656 	cpu_buffer->irq_work.full_waiters_pending = false;
2657 	/* irq_work_queue() supplies it's own memory barriers */
2658 	irq_work_queue(&cpu_buffer->irq_work.work);
2659 }
2660 
2661 /*
2662  * The lock and unlock are done within a preempt disable section.
2663  * The current_context per_cpu variable can only be modified
2664  * by the current task between lock and unlock. But it can
2665  * be modified more than once via an interrupt. To pass this
2666  * information from the lock to the unlock without having to
2667  * access the 'in_interrupt()' functions again (which do show
2668  * a bit of overhead in something as critical as function tracing,
2669  * we use a bitmask trick.
2670  *
2671  *  bit 0 =  NMI context
2672  *  bit 1 =  IRQ context
2673  *  bit 2 =  SoftIRQ context
2674  *  bit 3 =  normal context.
2675  *
2676  * This works because this is the order of contexts that can
2677  * preempt other contexts. A SoftIRQ never preempts an IRQ
2678  * context.
2679  *
2680  * When the context is determined, the corresponding bit is
2681  * checked and set (if it was set, then a recursion of that context
2682  * happened).
2683  *
2684  * On unlock, we need to clear this bit. To do so, just subtract
2685  * 1 from the current_context and AND it to itself.
2686  *
2687  * (binary)
2688  *  101 - 1 = 100
2689  *  101 & 100 = 100 (clearing bit zero)
2690  *
2691  *  1010 - 1 = 1001
2692  *  1010 & 1001 = 1000 (clearing bit 1)
2693  *
2694  * The least significant bit can be cleared this way, and it
2695  * just so happens that it is the same bit corresponding to
2696  * the current context.
2697  */
2698 
2699 static __always_inline int
2700 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2701 {
2702 	unsigned int val = cpu_buffer->current_context;
2703 	unsigned long pc = preempt_count();
2704 	int bit;
2705 
2706 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2707 		bit = RB_CTX_NORMAL;
2708 	else
2709 		bit = pc & NMI_MASK ? RB_CTX_NMI :
2710 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2711 
2712 	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2713 		return 1;
2714 
2715 	val |= (1 << (bit + cpu_buffer->nest));
2716 	cpu_buffer->current_context = val;
2717 
2718 	return 0;
2719 }
2720 
2721 static __always_inline void
2722 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2723 {
2724 	cpu_buffer->current_context &=
2725 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2726 }
2727 
2728 /* The recursive locking above uses 4 bits */
2729 #define NESTED_BITS 4
2730 
2731 /**
2732  * ring_buffer_nest_start - Allow to trace while nested
2733  * @buffer: The ring buffer to modify
2734  *
2735  * The ring buffer has a safety mechanism to prevent recursion.
2736  * But there may be a case where a trace needs to be done while
2737  * tracing something else. In this case, calling this function
2738  * will allow this function to nest within a currently active
2739  * ring_buffer_lock_reserve().
2740  *
2741  * Call this function before calling another ring_buffer_lock_reserve() and
2742  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2743  */
2744 void ring_buffer_nest_start(struct ring_buffer *buffer)
2745 {
2746 	struct ring_buffer_per_cpu *cpu_buffer;
2747 	int cpu;
2748 
2749 	/* Enabled by ring_buffer_nest_end() */
2750 	preempt_disable_notrace();
2751 	cpu = raw_smp_processor_id();
2752 	cpu_buffer = buffer->buffers[cpu];
2753 	/* This is the shift value for the above recursive locking */
2754 	cpu_buffer->nest += NESTED_BITS;
2755 }
2756 
2757 /**
2758  * ring_buffer_nest_end - Allow to trace while nested
2759  * @buffer: The ring buffer to modify
2760  *
2761  * Must be called after ring_buffer_nest_start() and after the
2762  * ring_buffer_unlock_commit().
2763  */
2764 void ring_buffer_nest_end(struct ring_buffer *buffer)
2765 {
2766 	struct ring_buffer_per_cpu *cpu_buffer;
2767 	int cpu;
2768 
2769 	/* disabled by ring_buffer_nest_start() */
2770 	cpu = raw_smp_processor_id();
2771 	cpu_buffer = buffer->buffers[cpu];
2772 	/* This is the shift value for the above recursive locking */
2773 	cpu_buffer->nest -= NESTED_BITS;
2774 	preempt_enable_notrace();
2775 }
2776 
2777 /**
2778  * ring_buffer_unlock_commit - commit a reserved
2779  * @buffer: The buffer to commit to
2780  * @event: The event pointer to commit.
2781  *
2782  * This commits the data to the ring buffer, and releases any locks held.
2783  *
2784  * Must be paired with ring_buffer_lock_reserve.
2785  */
2786 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2787 			      struct ring_buffer_event *event)
2788 {
2789 	struct ring_buffer_per_cpu *cpu_buffer;
2790 	int cpu = raw_smp_processor_id();
2791 
2792 	cpu_buffer = buffer->buffers[cpu];
2793 
2794 	rb_commit(cpu_buffer, event);
2795 
2796 	rb_wakeups(buffer, cpu_buffer);
2797 
2798 	trace_recursive_unlock(cpu_buffer);
2799 
2800 	preempt_enable_notrace();
2801 
2802 	return 0;
2803 }
2804 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2805 
2806 static noinline void
2807 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2808 		    struct rb_event_info *info)
2809 {
2810 	WARN_ONCE(info->delta > (1ULL << 59),
2811 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2812 		  (unsigned long long)info->delta,
2813 		  (unsigned long long)info->ts,
2814 		  (unsigned long long)cpu_buffer->write_stamp,
2815 		  sched_clock_stable() ? "" :
2816 		  "If you just came from a suspend/resume,\n"
2817 		  "please switch to the trace global clock:\n"
2818 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2819 		  "or add trace_clock=global to the kernel command line\n");
2820 	info->add_timestamp = 1;
2821 }
2822 
2823 static struct ring_buffer_event *
2824 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2825 		  struct rb_event_info *info)
2826 {
2827 	struct ring_buffer_event *event;
2828 	struct buffer_page *tail_page;
2829 	unsigned long tail, write;
2830 
2831 	/*
2832 	 * If the time delta since the last event is too big to
2833 	 * hold in the time field of the event, then we append a
2834 	 * TIME EXTEND event ahead of the data event.
2835 	 */
2836 	if (unlikely(info->add_timestamp))
2837 		info->length += RB_LEN_TIME_EXTEND;
2838 
2839 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2840 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2841 	write = local_add_return(info->length, &tail_page->write);
2842 
2843 	/* set write to only the index of the write */
2844 	write &= RB_WRITE_MASK;
2845 	tail = write - info->length;
2846 
2847 	/*
2848 	 * If this is the first commit on the page, then it has the same
2849 	 * timestamp as the page itself.
2850 	 */
2851 	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2852 		info->delta = 0;
2853 
2854 	/* See if we shot pass the end of this buffer page */
2855 	if (unlikely(write > BUF_PAGE_SIZE))
2856 		return rb_move_tail(cpu_buffer, tail, info);
2857 
2858 	/* We reserved something on the buffer */
2859 
2860 	event = __rb_page_index(tail_page, tail);
2861 	rb_update_event(cpu_buffer, event, info);
2862 
2863 	local_inc(&tail_page->entries);
2864 
2865 	/*
2866 	 * If this is the first commit on the page, then update
2867 	 * its timestamp.
2868 	 */
2869 	if (!tail)
2870 		tail_page->page->time_stamp = info->ts;
2871 
2872 	/* account for these added bytes */
2873 	local_add(info->length, &cpu_buffer->entries_bytes);
2874 
2875 	return event;
2876 }
2877 
2878 static __always_inline struct ring_buffer_event *
2879 rb_reserve_next_event(struct ring_buffer *buffer,
2880 		      struct ring_buffer_per_cpu *cpu_buffer,
2881 		      unsigned long length)
2882 {
2883 	struct ring_buffer_event *event;
2884 	struct rb_event_info info;
2885 	int nr_loops = 0;
2886 	u64 diff;
2887 
2888 	rb_start_commit(cpu_buffer);
2889 
2890 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2891 	/*
2892 	 * Due to the ability to swap a cpu buffer from a buffer
2893 	 * it is possible it was swapped before we committed.
2894 	 * (committing stops a swap). We check for it here and
2895 	 * if it happened, we have to fail the write.
2896 	 */
2897 	barrier();
2898 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2899 		local_dec(&cpu_buffer->committing);
2900 		local_dec(&cpu_buffer->commits);
2901 		return NULL;
2902 	}
2903 #endif
2904 
2905 	info.length = rb_calculate_event_length(length);
2906  again:
2907 	info.add_timestamp = 0;
2908 	info.delta = 0;
2909 
2910 	/*
2911 	 * We allow for interrupts to reenter here and do a trace.
2912 	 * If one does, it will cause this original code to loop
2913 	 * back here. Even with heavy interrupts happening, this
2914 	 * should only happen a few times in a row. If this happens
2915 	 * 1000 times in a row, there must be either an interrupt
2916 	 * storm or we have something buggy.
2917 	 * Bail!
2918 	 */
2919 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2920 		goto out_fail;
2921 
2922 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2923 	diff = info.ts - cpu_buffer->write_stamp;
2924 
2925 	/* make sure this diff is calculated here */
2926 	barrier();
2927 
2928 	if (ring_buffer_time_stamp_abs(buffer)) {
2929 		info.delta = info.ts;
2930 		rb_handle_timestamp(cpu_buffer, &info);
2931 	} else /* Did the write stamp get updated already? */
2932 		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2933 		info.delta = diff;
2934 		if (unlikely(test_time_stamp(info.delta)))
2935 			rb_handle_timestamp(cpu_buffer, &info);
2936 	}
2937 
2938 	event = __rb_reserve_next(cpu_buffer, &info);
2939 
2940 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2941 		if (info.add_timestamp)
2942 			info.length -= RB_LEN_TIME_EXTEND;
2943 		goto again;
2944 	}
2945 
2946 	if (!event)
2947 		goto out_fail;
2948 
2949 	return event;
2950 
2951  out_fail:
2952 	rb_end_commit(cpu_buffer);
2953 	return NULL;
2954 }
2955 
2956 /**
2957  * ring_buffer_lock_reserve - reserve a part of the buffer
2958  * @buffer: the ring buffer to reserve from
2959  * @length: the length of the data to reserve (excluding event header)
2960  *
2961  * Returns a reserved event on the ring buffer to copy directly to.
2962  * The user of this interface will need to get the body to write into
2963  * and can use the ring_buffer_event_data() interface.
2964  *
2965  * The length is the length of the data needed, not the event length
2966  * which also includes the event header.
2967  *
2968  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2969  * If NULL is returned, then nothing has been allocated or locked.
2970  */
2971 struct ring_buffer_event *
2972 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2973 {
2974 	struct ring_buffer_per_cpu *cpu_buffer;
2975 	struct ring_buffer_event *event;
2976 	int cpu;
2977 
2978 	/* If we are tracing schedule, we don't want to recurse */
2979 	preempt_disable_notrace();
2980 
2981 	if (unlikely(atomic_read(&buffer->record_disabled)))
2982 		goto out;
2983 
2984 	cpu = raw_smp_processor_id();
2985 
2986 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2987 		goto out;
2988 
2989 	cpu_buffer = buffer->buffers[cpu];
2990 
2991 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2992 		goto out;
2993 
2994 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2995 		goto out;
2996 
2997 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2998 		goto out;
2999 
3000 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3001 	if (!event)
3002 		goto out_unlock;
3003 
3004 	return event;
3005 
3006  out_unlock:
3007 	trace_recursive_unlock(cpu_buffer);
3008  out:
3009 	preempt_enable_notrace();
3010 	return NULL;
3011 }
3012 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3013 
3014 /*
3015  * Decrement the entries to the page that an event is on.
3016  * The event does not even need to exist, only the pointer
3017  * to the page it is on. This may only be called before the commit
3018  * takes place.
3019  */
3020 static inline void
3021 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3022 		   struct ring_buffer_event *event)
3023 {
3024 	unsigned long addr = (unsigned long)event;
3025 	struct buffer_page *bpage = cpu_buffer->commit_page;
3026 	struct buffer_page *start;
3027 
3028 	addr &= PAGE_MASK;
3029 
3030 	/* Do the likely case first */
3031 	if (likely(bpage->page == (void *)addr)) {
3032 		local_dec(&bpage->entries);
3033 		return;
3034 	}
3035 
3036 	/*
3037 	 * Because the commit page may be on the reader page we
3038 	 * start with the next page and check the end loop there.
3039 	 */
3040 	rb_inc_page(cpu_buffer, &bpage);
3041 	start = bpage;
3042 	do {
3043 		if (bpage->page == (void *)addr) {
3044 			local_dec(&bpage->entries);
3045 			return;
3046 		}
3047 		rb_inc_page(cpu_buffer, &bpage);
3048 	} while (bpage != start);
3049 
3050 	/* commit not part of this buffer?? */
3051 	RB_WARN_ON(cpu_buffer, 1);
3052 }
3053 
3054 /**
3055  * ring_buffer_commit_discard - discard an event that has not been committed
3056  * @buffer: the ring buffer
3057  * @event: non committed event to discard
3058  *
3059  * Sometimes an event that is in the ring buffer needs to be ignored.
3060  * This function lets the user discard an event in the ring buffer
3061  * and then that event will not be read later.
3062  *
3063  * This function only works if it is called before the item has been
3064  * committed. It will try to free the event from the ring buffer
3065  * if another event has not been added behind it.
3066  *
3067  * If another event has been added behind it, it will set the event
3068  * up as discarded, and perform the commit.
3069  *
3070  * If this function is called, do not call ring_buffer_unlock_commit on
3071  * the event.
3072  */
3073 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3074 				struct ring_buffer_event *event)
3075 {
3076 	struct ring_buffer_per_cpu *cpu_buffer;
3077 	int cpu;
3078 
3079 	/* The event is discarded regardless */
3080 	rb_event_discard(event);
3081 
3082 	cpu = smp_processor_id();
3083 	cpu_buffer = buffer->buffers[cpu];
3084 
3085 	/*
3086 	 * This must only be called if the event has not been
3087 	 * committed yet. Thus we can assume that preemption
3088 	 * is still disabled.
3089 	 */
3090 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3091 
3092 	rb_decrement_entry(cpu_buffer, event);
3093 	if (rb_try_to_discard(cpu_buffer, event))
3094 		goto out;
3095 
3096 	/*
3097 	 * The commit is still visible by the reader, so we
3098 	 * must still update the timestamp.
3099 	 */
3100 	rb_update_write_stamp(cpu_buffer, event);
3101  out:
3102 	rb_end_commit(cpu_buffer);
3103 
3104 	trace_recursive_unlock(cpu_buffer);
3105 
3106 	preempt_enable_notrace();
3107 
3108 }
3109 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3110 
3111 /**
3112  * ring_buffer_write - write data to the buffer without reserving
3113  * @buffer: The ring buffer to write to.
3114  * @length: The length of the data being written (excluding the event header)
3115  * @data: The data to write to the buffer.
3116  *
3117  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3118  * one function. If you already have the data to write to the buffer, it
3119  * may be easier to simply call this function.
3120  *
3121  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3122  * and not the length of the event which would hold the header.
3123  */
3124 int ring_buffer_write(struct ring_buffer *buffer,
3125 		      unsigned long length,
3126 		      void *data)
3127 {
3128 	struct ring_buffer_per_cpu *cpu_buffer;
3129 	struct ring_buffer_event *event;
3130 	void *body;
3131 	int ret = -EBUSY;
3132 	int cpu;
3133 
3134 	preempt_disable_notrace();
3135 
3136 	if (atomic_read(&buffer->record_disabled))
3137 		goto out;
3138 
3139 	cpu = raw_smp_processor_id();
3140 
3141 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3142 		goto out;
3143 
3144 	cpu_buffer = buffer->buffers[cpu];
3145 
3146 	if (atomic_read(&cpu_buffer->record_disabled))
3147 		goto out;
3148 
3149 	if (length > BUF_MAX_DATA_SIZE)
3150 		goto out;
3151 
3152 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3153 		goto out;
3154 
3155 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3156 	if (!event)
3157 		goto out_unlock;
3158 
3159 	body = rb_event_data(event);
3160 
3161 	memcpy(body, data, length);
3162 
3163 	rb_commit(cpu_buffer, event);
3164 
3165 	rb_wakeups(buffer, cpu_buffer);
3166 
3167 	ret = 0;
3168 
3169  out_unlock:
3170 	trace_recursive_unlock(cpu_buffer);
3171 
3172  out:
3173 	preempt_enable_notrace();
3174 
3175 	return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(ring_buffer_write);
3178 
3179 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3180 {
3181 	struct buffer_page *reader = cpu_buffer->reader_page;
3182 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3183 	struct buffer_page *commit = cpu_buffer->commit_page;
3184 
3185 	/* In case of error, head will be NULL */
3186 	if (unlikely(!head))
3187 		return true;
3188 
3189 	return reader->read == rb_page_commit(reader) &&
3190 		(commit == reader ||
3191 		 (commit == head &&
3192 		  head->read == rb_page_commit(commit)));
3193 }
3194 
3195 /**
3196  * ring_buffer_record_disable - stop all writes into the buffer
3197  * @buffer: The ring buffer to stop writes to.
3198  *
3199  * This prevents all writes to the buffer. Any attempt to write
3200  * to the buffer after this will fail and return NULL.
3201  *
3202  * The caller should call synchronize_rcu() after this.
3203  */
3204 void ring_buffer_record_disable(struct ring_buffer *buffer)
3205 {
3206 	atomic_inc(&buffer->record_disabled);
3207 }
3208 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3209 
3210 /**
3211  * ring_buffer_record_enable - enable writes to the buffer
3212  * @buffer: The ring buffer to enable writes
3213  *
3214  * Note, multiple disables will need the same number of enables
3215  * to truly enable the writing (much like preempt_disable).
3216  */
3217 void ring_buffer_record_enable(struct ring_buffer *buffer)
3218 {
3219 	atomic_dec(&buffer->record_disabled);
3220 }
3221 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3222 
3223 /**
3224  * ring_buffer_record_off - stop all writes into the buffer
3225  * @buffer: The ring buffer to stop writes to.
3226  *
3227  * This prevents all writes to the buffer. Any attempt to write
3228  * to the buffer after this will fail and return NULL.
3229  *
3230  * This is different than ring_buffer_record_disable() as
3231  * it works like an on/off switch, where as the disable() version
3232  * must be paired with a enable().
3233  */
3234 void ring_buffer_record_off(struct ring_buffer *buffer)
3235 {
3236 	unsigned int rd;
3237 	unsigned int new_rd;
3238 
3239 	do {
3240 		rd = atomic_read(&buffer->record_disabled);
3241 		new_rd = rd | RB_BUFFER_OFF;
3242 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3243 }
3244 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3245 
3246 /**
3247  * ring_buffer_record_on - restart writes into the buffer
3248  * @buffer: The ring buffer to start writes to.
3249  *
3250  * This enables all writes to the buffer that was disabled by
3251  * ring_buffer_record_off().
3252  *
3253  * This is different than ring_buffer_record_enable() as
3254  * it works like an on/off switch, where as the enable() version
3255  * must be paired with a disable().
3256  */
3257 void ring_buffer_record_on(struct ring_buffer *buffer)
3258 {
3259 	unsigned int rd;
3260 	unsigned int new_rd;
3261 
3262 	do {
3263 		rd = atomic_read(&buffer->record_disabled);
3264 		new_rd = rd & ~RB_BUFFER_OFF;
3265 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3266 }
3267 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3268 
3269 /**
3270  * ring_buffer_record_is_on - return true if the ring buffer can write
3271  * @buffer: The ring buffer to see if write is enabled
3272  *
3273  * Returns true if the ring buffer is in a state that it accepts writes.
3274  */
3275 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3276 {
3277 	return !atomic_read(&buffer->record_disabled);
3278 }
3279 
3280 /**
3281  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3282  * @buffer: The ring buffer to see if write is set enabled
3283  *
3284  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3285  * Note that this does NOT mean it is in a writable state.
3286  *
3287  * It may return true when the ring buffer has been disabled by
3288  * ring_buffer_record_disable(), as that is a temporary disabling of
3289  * the ring buffer.
3290  */
3291 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3292 {
3293 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3294 }
3295 
3296 /**
3297  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3298  * @buffer: The ring buffer to stop writes to.
3299  * @cpu: The CPU buffer to stop
3300  *
3301  * This prevents all writes to the buffer. Any attempt to write
3302  * to the buffer after this will fail and return NULL.
3303  *
3304  * The caller should call synchronize_rcu() after this.
3305  */
3306 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3307 {
3308 	struct ring_buffer_per_cpu *cpu_buffer;
3309 
3310 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3311 		return;
3312 
3313 	cpu_buffer = buffer->buffers[cpu];
3314 	atomic_inc(&cpu_buffer->record_disabled);
3315 }
3316 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3317 
3318 /**
3319  * ring_buffer_record_enable_cpu - enable writes to the buffer
3320  * @buffer: The ring buffer to enable writes
3321  * @cpu: The CPU to enable.
3322  *
3323  * Note, multiple disables will need the same number of enables
3324  * to truly enable the writing (much like preempt_disable).
3325  */
3326 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3327 {
3328 	struct ring_buffer_per_cpu *cpu_buffer;
3329 
3330 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3331 		return;
3332 
3333 	cpu_buffer = buffer->buffers[cpu];
3334 	atomic_dec(&cpu_buffer->record_disabled);
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3337 
3338 /*
3339  * The total entries in the ring buffer is the running counter
3340  * of entries entered into the ring buffer, minus the sum of
3341  * the entries read from the ring buffer and the number of
3342  * entries that were overwritten.
3343  */
3344 static inline unsigned long
3345 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3346 {
3347 	return local_read(&cpu_buffer->entries) -
3348 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3349 }
3350 
3351 /**
3352  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3353  * @buffer: The ring buffer
3354  * @cpu: The per CPU buffer to read from.
3355  */
3356 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3357 {
3358 	unsigned long flags;
3359 	struct ring_buffer_per_cpu *cpu_buffer;
3360 	struct buffer_page *bpage;
3361 	u64 ret = 0;
3362 
3363 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3364 		return 0;
3365 
3366 	cpu_buffer = buffer->buffers[cpu];
3367 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3368 	/*
3369 	 * if the tail is on reader_page, oldest time stamp is on the reader
3370 	 * page
3371 	 */
3372 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3373 		bpage = cpu_buffer->reader_page;
3374 	else
3375 		bpage = rb_set_head_page(cpu_buffer);
3376 	if (bpage)
3377 		ret = bpage->page->time_stamp;
3378 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3379 
3380 	return ret;
3381 }
3382 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3383 
3384 /**
3385  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3386  * @buffer: The ring buffer
3387  * @cpu: The per CPU buffer to read from.
3388  */
3389 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3390 {
3391 	struct ring_buffer_per_cpu *cpu_buffer;
3392 	unsigned long ret;
3393 
3394 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3395 		return 0;
3396 
3397 	cpu_buffer = buffer->buffers[cpu];
3398 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3399 
3400 	return ret;
3401 }
3402 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3403 
3404 /**
3405  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3406  * @buffer: The ring buffer
3407  * @cpu: The per CPU buffer to get the entries from.
3408  */
3409 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3410 {
3411 	struct ring_buffer_per_cpu *cpu_buffer;
3412 
3413 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3414 		return 0;
3415 
3416 	cpu_buffer = buffer->buffers[cpu];
3417 
3418 	return rb_num_of_entries(cpu_buffer);
3419 }
3420 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3421 
3422 /**
3423  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3424  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3425  * @buffer: The ring buffer
3426  * @cpu: The per CPU buffer to get the number of overruns from
3427  */
3428 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3429 {
3430 	struct ring_buffer_per_cpu *cpu_buffer;
3431 	unsigned long ret;
3432 
3433 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3434 		return 0;
3435 
3436 	cpu_buffer = buffer->buffers[cpu];
3437 	ret = local_read(&cpu_buffer->overrun);
3438 
3439 	return ret;
3440 }
3441 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3442 
3443 /**
3444  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3445  * commits failing due to the buffer wrapping around while there are uncommitted
3446  * events, such as during an interrupt storm.
3447  * @buffer: The ring buffer
3448  * @cpu: The per CPU buffer to get the number of overruns from
3449  */
3450 unsigned long
3451 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3452 {
3453 	struct ring_buffer_per_cpu *cpu_buffer;
3454 	unsigned long ret;
3455 
3456 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3457 		return 0;
3458 
3459 	cpu_buffer = buffer->buffers[cpu];
3460 	ret = local_read(&cpu_buffer->commit_overrun);
3461 
3462 	return ret;
3463 }
3464 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3465 
3466 /**
3467  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3468  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3469  * @buffer: The ring buffer
3470  * @cpu: The per CPU buffer to get the number of overruns from
3471  */
3472 unsigned long
3473 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3474 {
3475 	struct ring_buffer_per_cpu *cpu_buffer;
3476 	unsigned long ret;
3477 
3478 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3479 		return 0;
3480 
3481 	cpu_buffer = buffer->buffers[cpu];
3482 	ret = local_read(&cpu_buffer->dropped_events);
3483 
3484 	return ret;
3485 }
3486 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3487 
3488 /**
3489  * ring_buffer_read_events_cpu - get the number of events successfully read
3490  * @buffer: The ring buffer
3491  * @cpu: The per CPU buffer to get the number of events read
3492  */
3493 unsigned long
3494 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3495 {
3496 	struct ring_buffer_per_cpu *cpu_buffer;
3497 
3498 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3499 		return 0;
3500 
3501 	cpu_buffer = buffer->buffers[cpu];
3502 	return cpu_buffer->read;
3503 }
3504 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3505 
3506 /**
3507  * ring_buffer_entries - get the number of entries in a buffer
3508  * @buffer: The ring buffer
3509  *
3510  * Returns the total number of entries in the ring buffer
3511  * (all CPU entries)
3512  */
3513 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3514 {
3515 	struct ring_buffer_per_cpu *cpu_buffer;
3516 	unsigned long entries = 0;
3517 	int cpu;
3518 
3519 	/* if you care about this being correct, lock the buffer */
3520 	for_each_buffer_cpu(buffer, cpu) {
3521 		cpu_buffer = buffer->buffers[cpu];
3522 		entries += rb_num_of_entries(cpu_buffer);
3523 	}
3524 
3525 	return entries;
3526 }
3527 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3528 
3529 /**
3530  * ring_buffer_overruns - get the number of overruns in buffer
3531  * @buffer: The ring buffer
3532  *
3533  * Returns the total number of overruns in the ring buffer
3534  * (all CPU entries)
3535  */
3536 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3537 {
3538 	struct ring_buffer_per_cpu *cpu_buffer;
3539 	unsigned long overruns = 0;
3540 	int cpu;
3541 
3542 	/* if you care about this being correct, lock the buffer */
3543 	for_each_buffer_cpu(buffer, cpu) {
3544 		cpu_buffer = buffer->buffers[cpu];
3545 		overruns += local_read(&cpu_buffer->overrun);
3546 	}
3547 
3548 	return overruns;
3549 }
3550 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3551 
3552 static void rb_iter_reset(struct ring_buffer_iter *iter)
3553 {
3554 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3555 
3556 	/* Iterator usage is expected to have record disabled */
3557 	iter->head_page = cpu_buffer->reader_page;
3558 	iter->head = cpu_buffer->reader_page->read;
3559 
3560 	iter->cache_reader_page = iter->head_page;
3561 	iter->cache_read = cpu_buffer->read;
3562 
3563 	if (iter->head)
3564 		iter->read_stamp = cpu_buffer->read_stamp;
3565 	else
3566 		iter->read_stamp = iter->head_page->page->time_stamp;
3567 }
3568 
3569 /**
3570  * ring_buffer_iter_reset - reset an iterator
3571  * @iter: The iterator to reset
3572  *
3573  * Resets the iterator, so that it will start from the beginning
3574  * again.
3575  */
3576 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3577 {
3578 	struct ring_buffer_per_cpu *cpu_buffer;
3579 	unsigned long flags;
3580 
3581 	if (!iter)
3582 		return;
3583 
3584 	cpu_buffer = iter->cpu_buffer;
3585 
3586 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3587 	rb_iter_reset(iter);
3588 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3589 }
3590 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3591 
3592 /**
3593  * ring_buffer_iter_empty - check if an iterator has no more to read
3594  * @iter: The iterator to check
3595  */
3596 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3597 {
3598 	struct ring_buffer_per_cpu *cpu_buffer;
3599 	struct buffer_page *reader;
3600 	struct buffer_page *head_page;
3601 	struct buffer_page *commit_page;
3602 	unsigned commit;
3603 
3604 	cpu_buffer = iter->cpu_buffer;
3605 
3606 	/* Remember, trace recording is off when iterator is in use */
3607 	reader = cpu_buffer->reader_page;
3608 	head_page = cpu_buffer->head_page;
3609 	commit_page = cpu_buffer->commit_page;
3610 	commit = rb_page_commit(commit_page);
3611 
3612 	return ((iter->head_page == commit_page && iter->head == commit) ||
3613 		(iter->head_page == reader && commit_page == head_page &&
3614 		 head_page->read == commit &&
3615 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3616 }
3617 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3618 
3619 static void
3620 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3621 		     struct ring_buffer_event *event)
3622 {
3623 	u64 delta;
3624 
3625 	switch (event->type_len) {
3626 	case RINGBUF_TYPE_PADDING:
3627 		return;
3628 
3629 	case RINGBUF_TYPE_TIME_EXTEND:
3630 		delta = ring_buffer_event_time_stamp(event);
3631 		cpu_buffer->read_stamp += delta;
3632 		return;
3633 
3634 	case RINGBUF_TYPE_TIME_STAMP:
3635 		delta = ring_buffer_event_time_stamp(event);
3636 		cpu_buffer->read_stamp = delta;
3637 		return;
3638 
3639 	case RINGBUF_TYPE_DATA:
3640 		cpu_buffer->read_stamp += event->time_delta;
3641 		return;
3642 
3643 	default:
3644 		BUG();
3645 	}
3646 	return;
3647 }
3648 
3649 static void
3650 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3651 			  struct ring_buffer_event *event)
3652 {
3653 	u64 delta;
3654 
3655 	switch (event->type_len) {
3656 	case RINGBUF_TYPE_PADDING:
3657 		return;
3658 
3659 	case RINGBUF_TYPE_TIME_EXTEND:
3660 		delta = ring_buffer_event_time_stamp(event);
3661 		iter->read_stamp += delta;
3662 		return;
3663 
3664 	case RINGBUF_TYPE_TIME_STAMP:
3665 		delta = ring_buffer_event_time_stamp(event);
3666 		iter->read_stamp = delta;
3667 		return;
3668 
3669 	case RINGBUF_TYPE_DATA:
3670 		iter->read_stamp += event->time_delta;
3671 		return;
3672 
3673 	default:
3674 		BUG();
3675 	}
3676 	return;
3677 }
3678 
3679 static struct buffer_page *
3680 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3681 {
3682 	struct buffer_page *reader = NULL;
3683 	unsigned long overwrite;
3684 	unsigned long flags;
3685 	int nr_loops = 0;
3686 	int ret;
3687 
3688 	local_irq_save(flags);
3689 	arch_spin_lock(&cpu_buffer->lock);
3690 
3691  again:
3692 	/*
3693 	 * This should normally only loop twice. But because the
3694 	 * start of the reader inserts an empty page, it causes
3695 	 * a case where we will loop three times. There should be no
3696 	 * reason to loop four times (that I know of).
3697 	 */
3698 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3699 		reader = NULL;
3700 		goto out;
3701 	}
3702 
3703 	reader = cpu_buffer->reader_page;
3704 
3705 	/* If there's more to read, return this page */
3706 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3707 		goto out;
3708 
3709 	/* Never should we have an index greater than the size */
3710 	if (RB_WARN_ON(cpu_buffer,
3711 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3712 		goto out;
3713 
3714 	/* check if we caught up to the tail */
3715 	reader = NULL;
3716 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3717 		goto out;
3718 
3719 	/* Don't bother swapping if the ring buffer is empty */
3720 	if (rb_num_of_entries(cpu_buffer) == 0)
3721 		goto out;
3722 
3723 	/*
3724 	 * Reset the reader page to size zero.
3725 	 */
3726 	local_set(&cpu_buffer->reader_page->write, 0);
3727 	local_set(&cpu_buffer->reader_page->entries, 0);
3728 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3729 	cpu_buffer->reader_page->real_end = 0;
3730 
3731  spin:
3732 	/*
3733 	 * Splice the empty reader page into the list around the head.
3734 	 */
3735 	reader = rb_set_head_page(cpu_buffer);
3736 	if (!reader)
3737 		goto out;
3738 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3739 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3740 
3741 	/*
3742 	 * cpu_buffer->pages just needs to point to the buffer, it
3743 	 *  has no specific buffer page to point to. Lets move it out
3744 	 *  of our way so we don't accidentally swap it.
3745 	 */
3746 	cpu_buffer->pages = reader->list.prev;
3747 
3748 	/* The reader page will be pointing to the new head */
3749 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3750 
3751 	/*
3752 	 * We want to make sure we read the overruns after we set up our
3753 	 * pointers to the next object. The writer side does a
3754 	 * cmpxchg to cross pages which acts as the mb on the writer
3755 	 * side. Note, the reader will constantly fail the swap
3756 	 * while the writer is updating the pointers, so this
3757 	 * guarantees that the overwrite recorded here is the one we
3758 	 * want to compare with the last_overrun.
3759 	 */
3760 	smp_mb();
3761 	overwrite = local_read(&(cpu_buffer->overrun));
3762 
3763 	/*
3764 	 * Here's the tricky part.
3765 	 *
3766 	 * We need to move the pointer past the header page.
3767 	 * But we can only do that if a writer is not currently
3768 	 * moving it. The page before the header page has the
3769 	 * flag bit '1' set if it is pointing to the page we want.
3770 	 * but if the writer is in the process of moving it
3771 	 * than it will be '2' or already moved '0'.
3772 	 */
3773 
3774 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3775 
3776 	/*
3777 	 * If we did not convert it, then we must try again.
3778 	 */
3779 	if (!ret)
3780 		goto spin;
3781 
3782 	/*
3783 	 * Yay! We succeeded in replacing the page.
3784 	 *
3785 	 * Now make the new head point back to the reader page.
3786 	 */
3787 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3788 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3789 
3790 	local_inc(&cpu_buffer->pages_read);
3791 
3792 	/* Finally update the reader page to the new head */
3793 	cpu_buffer->reader_page = reader;
3794 	cpu_buffer->reader_page->read = 0;
3795 
3796 	if (overwrite != cpu_buffer->last_overrun) {
3797 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3798 		cpu_buffer->last_overrun = overwrite;
3799 	}
3800 
3801 	goto again;
3802 
3803  out:
3804 	/* Update the read_stamp on the first event */
3805 	if (reader && reader->read == 0)
3806 		cpu_buffer->read_stamp = reader->page->time_stamp;
3807 
3808 	arch_spin_unlock(&cpu_buffer->lock);
3809 	local_irq_restore(flags);
3810 
3811 	return reader;
3812 }
3813 
3814 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3815 {
3816 	struct ring_buffer_event *event;
3817 	struct buffer_page *reader;
3818 	unsigned length;
3819 
3820 	reader = rb_get_reader_page(cpu_buffer);
3821 
3822 	/* This function should not be called when buffer is empty */
3823 	if (RB_WARN_ON(cpu_buffer, !reader))
3824 		return;
3825 
3826 	event = rb_reader_event(cpu_buffer);
3827 
3828 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3829 		cpu_buffer->read++;
3830 
3831 	rb_update_read_stamp(cpu_buffer, event);
3832 
3833 	length = rb_event_length(event);
3834 	cpu_buffer->reader_page->read += length;
3835 }
3836 
3837 static void rb_advance_iter(struct ring_buffer_iter *iter)
3838 {
3839 	struct ring_buffer_per_cpu *cpu_buffer;
3840 	struct ring_buffer_event *event;
3841 	unsigned length;
3842 
3843 	cpu_buffer = iter->cpu_buffer;
3844 
3845 	/*
3846 	 * Check if we are at the end of the buffer.
3847 	 */
3848 	if (iter->head >= rb_page_size(iter->head_page)) {
3849 		/* discarded commits can make the page empty */
3850 		if (iter->head_page == cpu_buffer->commit_page)
3851 			return;
3852 		rb_inc_iter(iter);
3853 		return;
3854 	}
3855 
3856 	event = rb_iter_head_event(iter);
3857 
3858 	length = rb_event_length(event);
3859 
3860 	/*
3861 	 * This should not be called to advance the header if we are
3862 	 * at the tail of the buffer.
3863 	 */
3864 	if (RB_WARN_ON(cpu_buffer,
3865 		       (iter->head_page == cpu_buffer->commit_page) &&
3866 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3867 		return;
3868 
3869 	rb_update_iter_read_stamp(iter, event);
3870 
3871 	iter->head += length;
3872 
3873 	/* check for end of page padding */
3874 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3875 	    (iter->head_page != cpu_buffer->commit_page))
3876 		rb_inc_iter(iter);
3877 }
3878 
3879 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3880 {
3881 	return cpu_buffer->lost_events;
3882 }
3883 
3884 static struct ring_buffer_event *
3885 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3886 	       unsigned long *lost_events)
3887 {
3888 	struct ring_buffer_event *event;
3889 	struct buffer_page *reader;
3890 	int nr_loops = 0;
3891 
3892 	if (ts)
3893 		*ts = 0;
3894  again:
3895 	/*
3896 	 * We repeat when a time extend is encountered.
3897 	 * Since the time extend is always attached to a data event,
3898 	 * we should never loop more than once.
3899 	 * (We never hit the following condition more than twice).
3900 	 */
3901 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3902 		return NULL;
3903 
3904 	reader = rb_get_reader_page(cpu_buffer);
3905 	if (!reader)
3906 		return NULL;
3907 
3908 	event = rb_reader_event(cpu_buffer);
3909 
3910 	switch (event->type_len) {
3911 	case RINGBUF_TYPE_PADDING:
3912 		if (rb_null_event(event))
3913 			RB_WARN_ON(cpu_buffer, 1);
3914 		/*
3915 		 * Because the writer could be discarding every
3916 		 * event it creates (which would probably be bad)
3917 		 * if we were to go back to "again" then we may never
3918 		 * catch up, and will trigger the warn on, or lock
3919 		 * the box. Return the padding, and we will release
3920 		 * the current locks, and try again.
3921 		 */
3922 		return event;
3923 
3924 	case RINGBUF_TYPE_TIME_EXTEND:
3925 		/* Internal data, OK to advance */
3926 		rb_advance_reader(cpu_buffer);
3927 		goto again;
3928 
3929 	case RINGBUF_TYPE_TIME_STAMP:
3930 		if (ts) {
3931 			*ts = ring_buffer_event_time_stamp(event);
3932 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3933 							 cpu_buffer->cpu, ts);
3934 		}
3935 		/* Internal data, OK to advance */
3936 		rb_advance_reader(cpu_buffer);
3937 		goto again;
3938 
3939 	case RINGBUF_TYPE_DATA:
3940 		if (ts && !(*ts)) {
3941 			*ts = cpu_buffer->read_stamp + event->time_delta;
3942 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3943 							 cpu_buffer->cpu, ts);
3944 		}
3945 		if (lost_events)
3946 			*lost_events = rb_lost_events(cpu_buffer);
3947 		return event;
3948 
3949 	default:
3950 		BUG();
3951 	}
3952 
3953 	return NULL;
3954 }
3955 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3956 
3957 static struct ring_buffer_event *
3958 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3959 {
3960 	struct ring_buffer *buffer;
3961 	struct ring_buffer_per_cpu *cpu_buffer;
3962 	struct ring_buffer_event *event;
3963 	int nr_loops = 0;
3964 
3965 	if (ts)
3966 		*ts = 0;
3967 
3968 	cpu_buffer = iter->cpu_buffer;
3969 	buffer = cpu_buffer->buffer;
3970 
3971 	/*
3972 	 * Check if someone performed a consuming read to
3973 	 * the buffer. A consuming read invalidates the iterator
3974 	 * and we need to reset the iterator in this case.
3975 	 */
3976 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3977 		     iter->cache_reader_page != cpu_buffer->reader_page))
3978 		rb_iter_reset(iter);
3979 
3980  again:
3981 	if (ring_buffer_iter_empty(iter))
3982 		return NULL;
3983 
3984 	/*
3985 	 * We repeat when a time extend is encountered or we hit
3986 	 * the end of the page. Since the time extend is always attached
3987 	 * to a data event, we should never loop more than three times.
3988 	 * Once for going to next page, once on time extend, and
3989 	 * finally once to get the event.
3990 	 * (We never hit the following condition more than thrice).
3991 	 */
3992 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3993 		return NULL;
3994 
3995 	if (rb_per_cpu_empty(cpu_buffer))
3996 		return NULL;
3997 
3998 	if (iter->head >= rb_page_size(iter->head_page)) {
3999 		rb_inc_iter(iter);
4000 		goto again;
4001 	}
4002 
4003 	event = rb_iter_head_event(iter);
4004 
4005 	switch (event->type_len) {
4006 	case RINGBUF_TYPE_PADDING:
4007 		if (rb_null_event(event)) {
4008 			rb_inc_iter(iter);
4009 			goto again;
4010 		}
4011 		rb_advance_iter(iter);
4012 		return event;
4013 
4014 	case RINGBUF_TYPE_TIME_EXTEND:
4015 		/* Internal data, OK to advance */
4016 		rb_advance_iter(iter);
4017 		goto again;
4018 
4019 	case RINGBUF_TYPE_TIME_STAMP:
4020 		if (ts) {
4021 			*ts = ring_buffer_event_time_stamp(event);
4022 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4023 							 cpu_buffer->cpu, ts);
4024 		}
4025 		/* Internal data, OK to advance */
4026 		rb_advance_iter(iter);
4027 		goto again;
4028 
4029 	case RINGBUF_TYPE_DATA:
4030 		if (ts && !(*ts)) {
4031 			*ts = iter->read_stamp + event->time_delta;
4032 			ring_buffer_normalize_time_stamp(buffer,
4033 							 cpu_buffer->cpu, ts);
4034 		}
4035 		return event;
4036 
4037 	default:
4038 		BUG();
4039 	}
4040 
4041 	return NULL;
4042 }
4043 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4044 
4045 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4046 {
4047 	if (likely(!in_nmi())) {
4048 		raw_spin_lock(&cpu_buffer->reader_lock);
4049 		return true;
4050 	}
4051 
4052 	/*
4053 	 * If an NMI die dumps out the content of the ring buffer
4054 	 * trylock must be used to prevent a deadlock if the NMI
4055 	 * preempted a task that holds the ring buffer locks. If
4056 	 * we get the lock then all is fine, if not, then continue
4057 	 * to do the read, but this can corrupt the ring buffer,
4058 	 * so it must be permanently disabled from future writes.
4059 	 * Reading from NMI is a oneshot deal.
4060 	 */
4061 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4062 		return true;
4063 
4064 	/* Continue without locking, but disable the ring buffer */
4065 	atomic_inc(&cpu_buffer->record_disabled);
4066 	return false;
4067 }
4068 
4069 static inline void
4070 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4071 {
4072 	if (likely(locked))
4073 		raw_spin_unlock(&cpu_buffer->reader_lock);
4074 	return;
4075 }
4076 
4077 /**
4078  * ring_buffer_peek - peek at the next event to be read
4079  * @buffer: The ring buffer to read
4080  * @cpu: The cpu to peak at
4081  * @ts: The timestamp counter of this event.
4082  * @lost_events: a variable to store if events were lost (may be NULL)
4083  *
4084  * This will return the event that will be read next, but does
4085  * not consume the data.
4086  */
4087 struct ring_buffer_event *
4088 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4089 		 unsigned long *lost_events)
4090 {
4091 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4092 	struct ring_buffer_event *event;
4093 	unsigned long flags;
4094 	bool dolock;
4095 
4096 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4097 		return NULL;
4098 
4099  again:
4100 	local_irq_save(flags);
4101 	dolock = rb_reader_lock(cpu_buffer);
4102 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4103 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4104 		rb_advance_reader(cpu_buffer);
4105 	rb_reader_unlock(cpu_buffer, dolock);
4106 	local_irq_restore(flags);
4107 
4108 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4109 		goto again;
4110 
4111 	return event;
4112 }
4113 
4114 /**
4115  * ring_buffer_iter_peek - peek at the next event to be read
4116  * @iter: The ring buffer iterator
4117  * @ts: The timestamp counter of this event.
4118  *
4119  * This will return the event that will be read next, but does
4120  * not increment the iterator.
4121  */
4122 struct ring_buffer_event *
4123 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4124 {
4125 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4126 	struct ring_buffer_event *event;
4127 	unsigned long flags;
4128 
4129  again:
4130 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4131 	event = rb_iter_peek(iter, ts);
4132 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4133 
4134 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4135 		goto again;
4136 
4137 	return event;
4138 }
4139 
4140 /**
4141  * ring_buffer_consume - return an event and consume it
4142  * @buffer: The ring buffer to get the next event from
4143  * @cpu: the cpu to read the buffer from
4144  * @ts: a variable to store the timestamp (may be NULL)
4145  * @lost_events: a variable to store if events were lost (may be NULL)
4146  *
4147  * Returns the next event in the ring buffer, and that event is consumed.
4148  * Meaning, that sequential reads will keep returning a different event,
4149  * and eventually empty the ring buffer if the producer is slower.
4150  */
4151 struct ring_buffer_event *
4152 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4153 		    unsigned long *lost_events)
4154 {
4155 	struct ring_buffer_per_cpu *cpu_buffer;
4156 	struct ring_buffer_event *event = NULL;
4157 	unsigned long flags;
4158 	bool dolock;
4159 
4160  again:
4161 	/* might be called in atomic */
4162 	preempt_disable();
4163 
4164 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4165 		goto out;
4166 
4167 	cpu_buffer = buffer->buffers[cpu];
4168 	local_irq_save(flags);
4169 	dolock = rb_reader_lock(cpu_buffer);
4170 
4171 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4172 	if (event) {
4173 		cpu_buffer->lost_events = 0;
4174 		rb_advance_reader(cpu_buffer);
4175 	}
4176 
4177 	rb_reader_unlock(cpu_buffer, dolock);
4178 	local_irq_restore(flags);
4179 
4180  out:
4181 	preempt_enable();
4182 
4183 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4184 		goto again;
4185 
4186 	return event;
4187 }
4188 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4189 
4190 /**
4191  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4192  * @buffer: The ring buffer to read from
4193  * @cpu: The cpu buffer to iterate over
4194  * @flags: gfp flags to use for memory allocation
4195  *
4196  * This performs the initial preparations necessary to iterate
4197  * through the buffer.  Memory is allocated, buffer recording
4198  * is disabled, and the iterator pointer is returned to the caller.
4199  *
4200  * Disabling buffer recording prevents the reading from being
4201  * corrupted. This is not a consuming read, so a producer is not
4202  * expected.
4203  *
4204  * After a sequence of ring_buffer_read_prepare calls, the user is
4205  * expected to make at least one call to ring_buffer_read_prepare_sync.
4206  * Afterwards, ring_buffer_read_start is invoked to get things going
4207  * for real.
4208  *
4209  * This overall must be paired with ring_buffer_read_finish.
4210  */
4211 struct ring_buffer_iter *
4212 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4213 {
4214 	struct ring_buffer_per_cpu *cpu_buffer;
4215 	struct ring_buffer_iter *iter;
4216 
4217 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4218 		return NULL;
4219 
4220 	iter = kmalloc(sizeof(*iter), flags);
4221 	if (!iter)
4222 		return NULL;
4223 
4224 	cpu_buffer = buffer->buffers[cpu];
4225 
4226 	iter->cpu_buffer = cpu_buffer;
4227 
4228 	atomic_inc(&buffer->resize_disabled);
4229 	atomic_inc(&cpu_buffer->record_disabled);
4230 
4231 	return iter;
4232 }
4233 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4234 
4235 /**
4236  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4237  *
4238  * All previously invoked ring_buffer_read_prepare calls to prepare
4239  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4240  * calls on those iterators are allowed.
4241  */
4242 void
4243 ring_buffer_read_prepare_sync(void)
4244 {
4245 	synchronize_rcu();
4246 }
4247 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4248 
4249 /**
4250  * ring_buffer_read_start - start a non consuming read of the buffer
4251  * @iter: The iterator returned by ring_buffer_read_prepare
4252  *
4253  * This finalizes the startup of an iteration through the buffer.
4254  * The iterator comes from a call to ring_buffer_read_prepare and
4255  * an intervening ring_buffer_read_prepare_sync must have been
4256  * performed.
4257  *
4258  * Must be paired with ring_buffer_read_finish.
4259  */
4260 void
4261 ring_buffer_read_start(struct ring_buffer_iter *iter)
4262 {
4263 	struct ring_buffer_per_cpu *cpu_buffer;
4264 	unsigned long flags;
4265 
4266 	if (!iter)
4267 		return;
4268 
4269 	cpu_buffer = iter->cpu_buffer;
4270 
4271 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4272 	arch_spin_lock(&cpu_buffer->lock);
4273 	rb_iter_reset(iter);
4274 	arch_spin_unlock(&cpu_buffer->lock);
4275 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4276 }
4277 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4278 
4279 /**
4280  * ring_buffer_read_finish - finish reading the iterator of the buffer
4281  * @iter: The iterator retrieved by ring_buffer_start
4282  *
4283  * This re-enables the recording to the buffer, and frees the
4284  * iterator.
4285  */
4286 void
4287 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4288 {
4289 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4290 	unsigned long flags;
4291 
4292 	/*
4293 	 * Ring buffer is disabled from recording, here's a good place
4294 	 * to check the integrity of the ring buffer.
4295 	 * Must prevent readers from trying to read, as the check
4296 	 * clears the HEAD page and readers require it.
4297 	 */
4298 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4299 	rb_check_pages(cpu_buffer);
4300 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4301 
4302 	atomic_dec(&cpu_buffer->record_disabled);
4303 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4304 	kfree(iter);
4305 }
4306 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4307 
4308 /**
4309  * ring_buffer_read - read the next item in the ring buffer by the iterator
4310  * @iter: The ring buffer iterator
4311  * @ts: The time stamp of the event read.
4312  *
4313  * This reads the next event in the ring buffer and increments the iterator.
4314  */
4315 struct ring_buffer_event *
4316 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4317 {
4318 	struct ring_buffer_event *event;
4319 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4320 	unsigned long flags;
4321 
4322 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4323  again:
4324 	event = rb_iter_peek(iter, ts);
4325 	if (!event)
4326 		goto out;
4327 
4328 	if (event->type_len == RINGBUF_TYPE_PADDING)
4329 		goto again;
4330 
4331 	rb_advance_iter(iter);
4332  out:
4333 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4334 
4335 	return event;
4336 }
4337 EXPORT_SYMBOL_GPL(ring_buffer_read);
4338 
4339 /**
4340  * ring_buffer_size - return the size of the ring buffer (in bytes)
4341  * @buffer: The ring buffer.
4342  */
4343 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4344 {
4345 	/*
4346 	 * Earlier, this method returned
4347 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4348 	 * Since the nr_pages field is now removed, we have converted this to
4349 	 * return the per cpu buffer value.
4350 	 */
4351 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4352 		return 0;
4353 
4354 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4355 }
4356 EXPORT_SYMBOL_GPL(ring_buffer_size);
4357 
4358 static void
4359 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4360 {
4361 	rb_head_page_deactivate(cpu_buffer);
4362 
4363 	cpu_buffer->head_page
4364 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4365 	local_set(&cpu_buffer->head_page->write, 0);
4366 	local_set(&cpu_buffer->head_page->entries, 0);
4367 	local_set(&cpu_buffer->head_page->page->commit, 0);
4368 
4369 	cpu_buffer->head_page->read = 0;
4370 
4371 	cpu_buffer->tail_page = cpu_buffer->head_page;
4372 	cpu_buffer->commit_page = cpu_buffer->head_page;
4373 
4374 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4375 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4376 	local_set(&cpu_buffer->reader_page->write, 0);
4377 	local_set(&cpu_buffer->reader_page->entries, 0);
4378 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4379 	cpu_buffer->reader_page->read = 0;
4380 
4381 	local_set(&cpu_buffer->entries_bytes, 0);
4382 	local_set(&cpu_buffer->overrun, 0);
4383 	local_set(&cpu_buffer->commit_overrun, 0);
4384 	local_set(&cpu_buffer->dropped_events, 0);
4385 	local_set(&cpu_buffer->entries, 0);
4386 	local_set(&cpu_buffer->committing, 0);
4387 	local_set(&cpu_buffer->commits, 0);
4388 	local_set(&cpu_buffer->pages_touched, 0);
4389 	local_set(&cpu_buffer->pages_read, 0);
4390 	cpu_buffer->last_pages_touch = 0;
4391 	cpu_buffer->shortest_full = 0;
4392 	cpu_buffer->read = 0;
4393 	cpu_buffer->read_bytes = 0;
4394 
4395 	cpu_buffer->write_stamp = 0;
4396 	cpu_buffer->read_stamp = 0;
4397 
4398 	cpu_buffer->lost_events = 0;
4399 	cpu_buffer->last_overrun = 0;
4400 
4401 	rb_head_page_activate(cpu_buffer);
4402 }
4403 
4404 /**
4405  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4406  * @buffer: The ring buffer to reset a per cpu buffer of
4407  * @cpu: The CPU buffer to be reset
4408  */
4409 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4410 {
4411 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4412 	unsigned long flags;
4413 
4414 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4415 		return;
4416 
4417 	atomic_inc(&buffer->resize_disabled);
4418 	atomic_inc(&cpu_buffer->record_disabled);
4419 
4420 	/* Make sure all commits have finished */
4421 	synchronize_rcu();
4422 
4423 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4424 
4425 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4426 		goto out;
4427 
4428 	arch_spin_lock(&cpu_buffer->lock);
4429 
4430 	rb_reset_cpu(cpu_buffer);
4431 
4432 	arch_spin_unlock(&cpu_buffer->lock);
4433 
4434  out:
4435 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4436 
4437 	atomic_dec(&cpu_buffer->record_disabled);
4438 	atomic_dec(&buffer->resize_disabled);
4439 }
4440 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4441 
4442 /**
4443  * ring_buffer_reset - reset a ring buffer
4444  * @buffer: The ring buffer to reset all cpu buffers
4445  */
4446 void ring_buffer_reset(struct ring_buffer *buffer)
4447 {
4448 	int cpu;
4449 
4450 	for_each_buffer_cpu(buffer, cpu)
4451 		ring_buffer_reset_cpu(buffer, cpu);
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4454 
4455 /**
4456  * rind_buffer_empty - is the ring buffer empty?
4457  * @buffer: The ring buffer to test
4458  */
4459 bool ring_buffer_empty(struct ring_buffer *buffer)
4460 {
4461 	struct ring_buffer_per_cpu *cpu_buffer;
4462 	unsigned long flags;
4463 	bool dolock;
4464 	int cpu;
4465 	int ret;
4466 
4467 	/* yes this is racy, but if you don't like the race, lock the buffer */
4468 	for_each_buffer_cpu(buffer, cpu) {
4469 		cpu_buffer = buffer->buffers[cpu];
4470 		local_irq_save(flags);
4471 		dolock = rb_reader_lock(cpu_buffer);
4472 		ret = rb_per_cpu_empty(cpu_buffer);
4473 		rb_reader_unlock(cpu_buffer, dolock);
4474 		local_irq_restore(flags);
4475 
4476 		if (!ret)
4477 			return false;
4478 	}
4479 
4480 	return true;
4481 }
4482 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4483 
4484 /**
4485  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4486  * @buffer: The ring buffer
4487  * @cpu: The CPU buffer to test
4488  */
4489 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4490 {
4491 	struct ring_buffer_per_cpu *cpu_buffer;
4492 	unsigned long flags;
4493 	bool dolock;
4494 	int ret;
4495 
4496 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4497 		return true;
4498 
4499 	cpu_buffer = buffer->buffers[cpu];
4500 	local_irq_save(flags);
4501 	dolock = rb_reader_lock(cpu_buffer);
4502 	ret = rb_per_cpu_empty(cpu_buffer);
4503 	rb_reader_unlock(cpu_buffer, dolock);
4504 	local_irq_restore(flags);
4505 
4506 	return ret;
4507 }
4508 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4509 
4510 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4511 /**
4512  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4513  * @buffer_a: One buffer to swap with
4514  * @buffer_b: The other buffer to swap with
4515  *
4516  * This function is useful for tracers that want to take a "snapshot"
4517  * of a CPU buffer and has another back up buffer lying around.
4518  * it is expected that the tracer handles the cpu buffer not being
4519  * used at the moment.
4520  */
4521 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4522 			 struct ring_buffer *buffer_b, int cpu)
4523 {
4524 	struct ring_buffer_per_cpu *cpu_buffer_a;
4525 	struct ring_buffer_per_cpu *cpu_buffer_b;
4526 	int ret = -EINVAL;
4527 
4528 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4529 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4530 		goto out;
4531 
4532 	cpu_buffer_a = buffer_a->buffers[cpu];
4533 	cpu_buffer_b = buffer_b->buffers[cpu];
4534 
4535 	/* At least make sure the two buffers are somewhat the same */
4536 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4537 		goto out;
4538 
4539 	ret = -EAGAIN;
4540 
4541 	if (atomic_read(&buffer_a->record_disabled))
4542 		goto out;
4543 
4544 	if (atomic_read(&buffer_b->record_disabled))
4545 		goto out;
4546 
4547 	if (atomic_read(&cpu_buffer_a->record_disabled))
4548 		goto out;
4549 
4550 	if (atomic_read(&cpu_buffer_b->record_disabled))
4551 		goto out;
4552 
4553 	/*
4554 	 * We can't do a synchronize_rcu here because this
4555 	 * function can be called in atomic context.
4556 	 * Normally this will be called from the same CPU as cpu.
4557 	 * If not it's up to the caller to protect this.
4558 	 */
4559 	atomic_inc(&cpu_buffer_a->record_disabled);
4560 	atomic_inc(&cpu_buffer_b->record_disabled);
4561 
4562 	ret = -EBUSY;
4563 	if (local_read(&cpu_buffer_a->committing))
4564 		goto out_dec;
4565 	if (local_read(&cpu_buffer_b->committing))
4566 		goto out_dec;
4567 
4568 	buffer_a->buffers[cpu] = cpu_buffer_b;
4569 	buffer_b->buffers[cpu] = cpu_buffer_a;
4570 
4571 	cpu_buffer_b->buffer = buffer_a;
4572 	cpu_buffer_a->buffer = buffer_b;
4573 
4574 	ret = 0;
4575 
4576 out_dec:
4577 	atomic_dec(&cpu_buffer_a->record_disabled);
4578 	atomic_dec(&cpu_buffer_b->record_disabled);
4579 out:
4580 	return ret;
4581 }
4582 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4583 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4584 
4585 /**
4586  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4587  * @buffer: the buffer to allocate for.
4588  * @cpu: the cpu buffer to allocate.
4589  *
4590  * This function is used in conjunction with ring_buffer_read_page.
4591  * When reading a full page from the ring buffer, these functions
4592  * can be used to speed up the process. The calling function should
4593  * allocate a few pages first with this function. Then when it
4594  * needs to get pages from the ring buffer, it passes the result
4595  * of this function into ring_buffer_read_page, which will swap
4596  * the page that was allocated, with the read page of the buffer.
4597  *
4598  * Returns:
4599  *  The page allocated, or ERR_PTR
4600  */
4601 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4602 {
4603 	struct ring_buffer_per_cpu *cpu_buffer;
4604 	struct buffer_data_page *bpage = NULL;
4605 	unsigned long flags;
4606 	struct page *page;
4607 
4608 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4609 		return ERR_PTR(-ENODEV);
4610 
4611 	cpu_buffer = buffer->buffers[cpu];
4612 	local_irq_save(flags);
4613 	arch_spin_lock(&cpu_buffer->lock);
4614 
4615 	if (cpu_buffer->free_page) {
4616 		bpage = cpu_buffer->free_page;
4617 		cpu_buffer->free_page = NULL;
4618 	}
4619 
4620 	arch_spin_unlock(&cpu_buffer->lock);
4621 	local_irq_restore(flags);
4622 
4623 	if (bpage)
4624 		goto out;
4625 
4626 	page = alloc_pages_node(cpu_to_node(cpu),
4627 				GFP_KERNEL | __GFP_NORETRY, 0);
4628 	if (!page)
4629 		return ERR_PTR(-ENOMEM);
4630 
4631 	bpage = page_address(page);
4632 
4633  out:
4634 	rb_init_page(bpage);
4635 
4636 	return bpage;
4637 }
4638 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4639 
4640 /**
4641  * ring_buffer_free_read_page - free an allocated read page
4642  * @buffer: the buffer the page was allocate for
4643  * @cpu: the cpu buffer the page came from
4644  * @data: the page to free
4645  *
4646  * Free a page allocated from ring_buffer_alloc_read_page.
4647  */
4648 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4649 {
4650 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4651 	struct buffer_data_page *bpage = data;
4652 	struct page *page = virt_to_page(bpage);
4653 	unsigned long flags;
4654 
4655 	/* If the page is still in use someplace else, we can't reuse it */
4656 	if (page_ref_count(page) > 1)
4657 		goto out;
4658 
4659 	local_irq_save(flags);
4660 	arch_spin_lock(&cpu_buffer->lock);
4661 
4662 	if (!cpu_buffer->free_page) {
4663 		cpu_buffer->free_page = bpage;
4664 		bpage = NULL;
4665 	}
4666 
4667 	arch_spin_unlock(&cpu_buffer->lock);
4668 	local_irq_restore(flags);
4669 
4670  out:
4671 	free_page((unsigned long)bpage);
4672 }
4673 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4674 
4675 /**
4676  * ring_buffer_read_page - extract a page from the ring buffer
4677  * @buffer: buffer to extract from
4678  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4679  * @len: amount to extract
4680  * @cpu: the cpu of the buffer to extract
4681  * @full: should the extraction only happen when the page is full.
4682  *
4683  * This function will pull out a page from the ring buffer and consume it.
4684  * @data_page must be the address of the variable that was returned
4685  * from ring_buffer_alloc_read_page. This is because the page might be used
4686  * to swap with a page in the ring buffer.
4687  *
4688  * for example:
4689  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4690  *	if (IS_ERR(rpage))
4691  *		return PTR_ERR(rpage);
4692  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4693  *	if (ret >= 0)
4694  *		process_page(rpage, ret);
4695  *
4696  * When @full is set, the function will not return true unless
4697  * the writer is off the reader page.
4698  *
4699  * Note: it is up to the calling functions to handle sleeps and wakeups.
4700  *  The ring buffer can be used anywhere in the kernel and can not
4701  *  blindly call wake_up. The layer that uses the ring buffer must be
4702  *  responsible for that.
4703  *
4704  * Returns:
4705  *  >=0 if data has been transferred, returns the offset of consumed data.
4706  *  <0 if no data has been transferred.
4707  */
4708 int ring_buffer_read_page(struct ring_buffer *buffer,
4709 			  void **data_page, size_t len, int cpu, int full)
4710 {
4711 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4712 	struct ring_buffer_event *event;
4713 	struct buffer_data_page *bpage;
4714 	struct buffer_page *reader;
4715 	unsigned long missed_events;
4716 	unsigned long flags;
4717 	unsigned int commit;
4718 	unsigned int read;
4719 	u64 save_timestamp;
4720 	int ret = -1;
4721 
4722 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4723 		goto out;
4724 
4725 	/*
4726 	 * If len is not big enough to hold the page header, then
4727 	 * we can not copy anything.
4728 	 */
4729 	if (len <= BUF_PAGE_HDR_SIZE)
4730 		goto out;
4731 
4732 	len -= BUF_PAGE_HDR_SIZE;
4733 
4734 	if (!data_page)
4735 		goto out;
4736 
4737 	bpage = *data_page;
4738 	if (!bpage)
4739 		goto out;
4740 
4741 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4742 
4743 	reader = rb_get_reader_page(cpu_buffer);
4744 	if (!reader)
4745 		goto out_unlock;
4746 
4747 	event = rb_reader_event(cpu_buffer);
4748 
4749 	read = reader->read;
4750 	commit = rb_page_commit(reader);
4751 
4752 	/* Check if any events were dropped */
4753 	missed_events = cpu_buffer->lost_events;
4754 
4755 	/*
4756 	 * If this page has been partially read or
4757 	 * if len is not big enough to read the rest of the page or
4758 	 * a writer is still on the page, then
4759 	 * we must copy the data from the page to the buffer.
4760 	 * Otherwise, we can simply swap the page with the one passed in.
4761 	 */
4762 	if (read || (len < (commit - read)) ||
4763 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4764 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4765 		unsigned int rpos = read;
4766 		unsigned int pos = 0;
4767 		unsigned int size;
4768 
4769 		if (full)
4770 			goto out_unlock;
4771 
4772 		if (len > (commit - read))
4773 			len = (commit - read);
4774 
4775 		/* Always keep the time extend and data together */
4776 		size = rb_event_ts_length(event);
4777 
4778 		if (len < size)
4779 			goto out_unlock;
4780 
4781 		/* save the current timestamp, since the user will need it */
4782 		save_timestamp = cpu_buffer->read_stamp;
4783 
4784 		/* Need to copy one event at a time */
4785 		do {
4786 			/* We need the size of one event, because
4787 			 * rb_advance_reader only advances by one event,
4788 			 * whereas rb_event_ts_length may include the size of
4789 			 * one or two events.
4790 			 * We have already ensured there's enough space if this
4791 			 * is a time extend. */
4792 			size = rb_event_length(event);
4793 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4794 
4795 			len -= size;
4796 
4797 			rb_advance_reader(cpu_buffer);
4798 			rpos = reader->read;
4799 			pos += size;
4800 
4801 			if (rpos >= commit)
4802 				break;
4803 
4804 			event = rb_reader_event(cpu_buffer);
4805 			/* Always keep the time extend and data together */
4806 			size = rb_event_ts_length(event);
4807 		} while (len >= size);
4808 
4809 		/* update bpage */
4810 		local_set(&bpage->commit, pos);
4811 		bpage->time_stamp = save_timestamp;
4812 
4813 		/* we copied everything to the beginning */
4814 		read = 0;
4815 	} else {
4816 		/* update the entry counter */
4817 		cpu_buffer->read += rb_page_entries(reader);
4818 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4819 
4820 		/* swap the pages */
4821 		rb_init_page(bpage);
4822 		bpage = reader->page;
4823 		reader->page = *data_page;
4824 		local_set(&reader->write, 0);
4825 		local_set(&reader->entries, 0);
4826 		reader->read = 0;
4827 		*data_page = bpage;
4828 
4829 		/*
4830 		 * Use the real_end for the data size,
4831 		 * This gives us a chance to store the lost events
4832 		 * on the page.
4833 		 */
4834 		if (reader->real_end)
4835 			local_set(&bpage->commit, reader->real_end);
4836 	}
4837 	ret = read;
4838 
4839 	cpu_buffer->lost_events = 0;
4840 
4841 	commit = local_read(&bpage->commit);
4842 	/*
4843 	 * Set a flag in the commit field if we lost events
4844 	 */
4845 	if (missed_events) {
4846 		/* If there is room at the end of the page to save the
4847 		 * missed events, then record it there.
4848 		 */
4849 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4850 			memcpy(&bpage->data[commit], &missed_events,
4851 			       sizeof(missed_events));
4852 			local_add(RB_MISSED_STORED, &bpage->commit);
4853 			commit += sizeof(missed_events);
4854 		}
4855 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4856 	}
4857 
4858 	/*
4859 	 * This page may be off to user land. Zero it out here.
4860 	 */
4861 	if (commit < BUF_PAGE_SIZE)
4862 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4863 
4864  out_unlock:
4865 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4866 
4867  out:
4868 	return ret;
4869 }
4870 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4871 
4872 /*
4873  * We only allocate new buffers, never free them if the CPU goes down.
4874  * If we were to free the buffer, then the user would lose any trace that was in
4875  * the buffer.
4876  */
4877 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4878 {
4879 	struct ring_buffer *buffer;
4880 	long nr_pages_same;
4881 	int cpu_i;
4882 	unsigned long nr_pages;
4883 
4884 	buffer = container_of(node, struct ring_buffer, node);
4885 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4886 		return 0;
4887 
4888 	nr_pages = 0;
4889 	nr_pages_same = 1;
4890 	/* check if all cpu sizes are same */
4891 	for_each_buffer_cpu(buffer, cpu_i) {
4892 		/* fill in the size from first enabled cpu */
4893 		if (nr_pages == 0)
4894 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4895 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4896 			nr_pages_same = 0;
4897 			break;
4898 		}
4899 	}
4900 	/* allocate minimum pages, user can later expand it */
4901 	if (!nr_pages_same)
4902 		nr_pages = 2;
4903 	buffer->buffers[cpu] =
4904 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4905 	if (!buffer->buffers[cpu]) {
4906 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4907 		     cpu);
4908 		return -ENOMEM;
4909 	}
4910 	smp_wmb();
4911 	cpumask_set_cpu(cpu, buffer->cpumask);
4912 	return 0;
4913 }
4914 
4915 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4916 /*
4917  * This is a basic integrity check of the ring buffer.
4918  * Late in the boot cycle this test will run when configured in.
4919  * It will kick off a thread per CPU that will go into a loop
4920  * writing to the per cpu ring buffer various sizes of data.
4921  * Some of the data will be large items, some small.
4922  *
4923  * Another thread is created that goes into a spin, sending out
4924  * IPIs to the other CPUs to also write into the ring buffer.
4925  * this is to test the nesting ability of the buffer.
4926  *
4927  * Basic stats are recorded and reported. If something in the
4928  * ring buffer should happen that's not expected, a big warning
4929  * is displayed and all ring buffers are disabled.
4930  */
4931 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4932 
4933 struct rb_test_data {
4934 	struct ring_buffer	*buffer;
4935 	unsigned long		events;
4936 	unsigned long		bytes_written;
4937 	unsigned long		bytes_alloc;
4938 	unsigned long		bytes_dropped;
4939 	unsigned long		events_nested;
4940 	unsigned long		bytes_written_nested;
4941 	unsigned long		bytes_alloc_nested;
4942 	unsigned long		bytes_dropped_nested;
4943 	int			min_size_nested;
4944 	int			max_size_nested;
4945 	int			max_size;
4946 	int			min_size;
4947 	int			cpu;
4948 	int			cnt;
4949 };
4950 
4951 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4952 
4953 /* 1 meg per cpu */
4954 #define RB_TEST_BUFFER_SIZE	1048576
4955 
4956 static char rb_string[] __initdata =
4957 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4958 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4959 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4960 
4961 static bool rb_test_started __initdata;
4962 
4963 struct rb_item {
4964 	int size;
4965 	char str[];
4966 };
4967 
4968 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4969 {
4970 	struct ring_buffer_event *event;
4971 	struct rb_item *item;
4972 	bool started;
4973 	int event_len;
4974 	int size;
4975 	int len;
4976 	int cnt;
4977 
4978 	/* Have nested writes different that what is written */
4979 	cnt = data->cnt + (nested ? 27 : 0);
4980 
4981 	/* Multiply cnt by ~e, to make some unique increment */
4982 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4983 
4984 	len = size + sizeof(struct rb_item);
4985 
4986 	started = rb_test_started;
4987 	/* read rb_test_started before checking buffer enabled */
4988 	smp_rmb();
4989 
4990 	event = ring_buffer_lock_reserve(data->buffer, len);
4991 	if (!event) {
4992 		/* Ignore dropped events before test starts. */
4993 		if (started) {
4994 			if (nested)
4995 				data->bytes_dropped += len;
4996 			else
4997 				data->bytes_dropped_nested += len;
4998 		}
4999 		return len;
5000 	}
5001 
5002 	event_len = ring_buffer_event_length(event);
5003 
5004 	if (RB_WARN_ON(data->buffer, event_len < len))
5005 		goto out;
5006 
5007 	item = ring_buffer_event_data(event);
5008 	item->size = size;
5009 	memcpy(item->str, rb_string, size);
5010 
5011 	if (nested) {
5012 		data->bytes_alloc_nested += event_len;
5013 		data->bytes_written_nested += len;
5014 		data->events_nested++;
5015 		if (!data->min_size_nested || len < data->min_size_nested)
5016 			data->min_size_nested = len;
5017 		if (len > data->max_size_nested)
5018 			data->max_size_nested = len;
5019 	} else {
5020 		data->bytes_alloc += event_len;
5021 		data->bytes_written += len;
5022 		data->events++;
5023 		if (!data->min_size || len < data->min_size)
5024 			data->max_size = len;
5025 		if (len > data->max_size)
5026 			data->max_size = len;
5027 	}
5028 
5029  out:
5030 	ring_buffer_unlock_commit(data->buffer, event);
5031 
5032 	return 0;
5033 }
5034 
5035 static __init int rb_test(void *arg)
5036 {
5037 	struct rb_test_data *data = arg;
5038 
5039 	while (!kthread_should_stop()) {
5040 		rb_write_something(data, false);
5041 		data->cnt++;
5042 
5043 		set_current_state(TASK_INTERRUPTIBLE);
5044 		/* Now sleep between a min of 100-300us and a max of 1ms */
5045 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5046 	}
5047 
5048 	return 0;
5049 }
5050 
5051 static __init void rb_ipi(void *ignore)
5052 {
5053 	struct rb_test_data *data;
5054 	int cpu = smp_processor_id();
5055 
5056 	data = &rb_data[cpu];
5057 	rb_write_something(data, true);
5058 }
5059 
5060 static __init int rb_hammer_test(void *arg)
5061 {
5062 	while (!kthread_should_stop()) {
5063 
5064 		/* Send an IPI to all cpus to write data! */
5065 		smp_call_function(rb_ipi, NULL, 1);
5066 		/* No sleep, but for non preempt, let others run */
5067 		schedule();
5068 	}
5069 
5070 	return 0;
5071 }
5072 
5073 static __init int test_ringbuffer(void)
5074 {
5075 	struct task_struct *rb_hammer;
5076 	struct ring_buffer *buffer;
5077 	int cpu;
5078 	int ret = 0;
5079 
5080 	pr_info("Running ring buffer tests...\n");
5081 
5082 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5083 	if (WARN_ON(!buffer))
5084 		return 0;
5085 
5086 	/* Disable buffer so that threads can't write to it yet */
5087 	ring_buffer_record_off(buffer);
5088 
5089 	for_each_online_cpu(cpu) {
5090 		rb_data[cpu].buffer = buffer;
5091 		rb_data[cpu].cpu = cpu;
5092 		rb_data[cpu].cnt = cpu;
5093 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5094 						 "rbtester/%d", cpu);
5095 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5096 			pr_cont("FAILED\n");
5097 			ret = PTR_ERR(rb_threads[cpu]);
5098 			goto out_free;
5099 		}
5100 
5101 		kthread_bind(rb_threads[cpu], cpu);
5102  		wake_up_process(rb_threads[cpu]);
5103 	}
5104 
5105 	/* Now create the rb hammer! */
5106 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5107 	if (WARN_ON(IS_ERR(rb_hammer))) {
5108 		pr_cont("FAILED\n");
5109 		ret = PTR_ERR(rb_hammer);
5110 		goto out_free;
5111 	}
5112 
5113 	ring_buffer_record_on(buffer);
5114 	/*
5115 	 * Show buffer is enabled before setting rb_test_started.
5116 	 * Yes there's a small race window where events could be
5117 	 * dropped and the thread wont catch it. But when a ring
5118 	 * buffer gets enabled, there will always be some kind of
5119 	 * delay before other CPUs see it. Thus, we don't care about
5120 	 * those dropped events. We care about events dropped after
5121 	 * the threads see that the buffer is active.
5122 	 */
5123 	smp_wmb();
5124 	rb_test_started = true;
5125 
5126 	set_current_state(TASK_INTERRUPTIBLE);
5127 	/* Just run for 10 seconds */;
5128 	schedule_timeout(10 * HZ);
5129 
5130 	kthread_stop(rb_hammer);
5131 
5132  out_free:
5133 	for_each_online_cpu(cpu) {
5134 		if (!rb_threads[cpu])
5135 			break;
5136 		kthread_stop(rb_threads[cpu]);
5137 	}
5138 	if (ret) {
5139 		ring_buffer_free(buffer);
5140 		return ret;
5141 	}
5142 
5143 	/* Report! */
5144 	pr_info("finished\n");
5145 	for_each_online_cpu(cpu) {
5146 		struct ring_buffer_event *event;
5147 		struct rb_test_data *data = &rb_data[cpu];
5148 		struct rb_item *item;
5149 		unsigned long total_events;
5150 		unsigned long total_dropped;
5151 		unsigned long total_written;
5152 		unsigned long total_alloc;
5153 		unsigned long total_read = 0;
5154 		unsigned long total_size = 0;
5155 		unsigned long total_len = 0;
5156 		unsigned long total_lost = 0;
5157 		unsigned long lost;
5158 		int big_event_size;
5159 		int small_event_size;
5160 
5161 		ret = -1;
5162 
5163 		total_events = data->events + data->events_nested;
5164 		total_written = data->bytes_written + data->bytes_written_nested;
5165 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5166 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5167 
5168 		big_event_size = data->max_size + data->max_size_nested;
5169 		small_event_size = data->min_size + data->min_size_nested;
5170 
5171 		pr_info("CPU %d:\n", cpu);
5172 		pr_info("              events:    %ld\n", total_events);
5173 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5174 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5175 		pr_info("       written bytes:    %ld\n", total_written);
5176 		pr_info("       biggest event:    %d\n", big_event_size);
5177 		pr_info("      smallest event:    %d\n", small_event_size);
5178 
5179 		if (RB_WARN_ON(buffer, total_dropped))
5180 			break;
5181 
5182 		ret = 0;
5183 
5184 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5185 			total_lost += lost;
5186 			item = ring_buffer_event_data(event);
5187 			total_len += ring_buffer_event_length(event);
5188 			total_size += item->size + sizeof(struct rb_item);
5189 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5190 				pr_info("FAILED!\n");
5191 				pr_info("buffer had: %.*s\n", item->size, item->str);
5192 				pr_info("expected:   %.*s\n", item->size, rb_string);
5193 				RB_WARN_ON(buffer, 1);
5194 				ret = -1;
5195 				break;
5196 			}
5197 			total_read++;
5198 		}
5199 		if (ret)
5200 			break;
5201 
5202 		ret = -1;
5203 
5204 		pr_info("         read events:   %ld\n", total_read);
5205 		pr_info("         lost events:   %ld\n", total_lost);
5206 		pr_info("        total events:   %ld\n", total_lost + total_read);
5207 		pr_info("  recorded len bytes:   %ld\n", total_len);
5208 		pr_info(" recorded size bytes:   %ld\n", total_size);
5209 		if (total_lost)
5210 			pr_info(" With dropped events, record len and size may not match\n"
5211 				" alloced and written from above\n");
5212 		if (!total_lost) {
5213 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5214 				       total_size != total_written))
5215 				break;
5216 		}
5217 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5218 			break;
5219 
5220 		ret = 0;
5221 	}
5222 	if (!ret)
5223 		pr_info("Ring buffer PASSED!\n");
5224 
5225 	ring_buffer_free(buffer);
5226 	return 0;
5227 }
5228 
5229 late_initcall(test_ringbuffer);
5230 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5231