xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23 
24 #include <asm/local.h>
25 #include "trace.h"
26 
27 /*
28  * The ring buffer header is special. We must manually up keep it.
29  */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32 	int ret;
33 
34 	ret = trace_seq_printf(s, "# compressed entry header\n");
35 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
36 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
37 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
38 	ret = trace_seq_printf(s, "\n");
39 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
40 			       RINGBUF_TYPE_PADDING);
41 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 			       RINGBUF_TYPE_TIME_EXTEND);
43 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
44 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45 
46 	return ret;
47 }
48 
49 /*
50  * The ring buffer is made up of a list of pages. A separate list of pages is
51  * allocated for each CPU. A writer may only write to a buffer that is
52  * associated with the CPU it is currently executing on.  A reader may read
53  * from any per cpu buffer.
54  *
55  * The reader is special. For each per cpu buffer, the reader has its own
56  * reader page. When a reader has read the entire reader page, this reader
57  * page is swapped with another page in the ring buffer.
58  *
59  * Now, as long as the writer is off the reader page, the reader can do what
60  * ever it wants with that page. The writer will never write to that page
61  * again (as long as it is out of the ring buffer).
62  *
63  * Here's some silly ASCII art.
64  *
65  *   +------+
66  *   |reader|          RING BUFFER
67  *   |page  |
68  *   +------+        +---+   +---+   +---+
69  *                   |   |-->|   |-->|   |
70  *                   +---+   +---+   +---+
71  *                     ^               |
72  *                     |               |
73  *                     +---------------+
74  *
75  *
76  *   +------+
77  *   |reader|          RING BUFFER
78  *   |page  |------------------v
79  *   +------+        +---+   +---+   +---+
80  *                   |   |-->|   |-->|   |
81  *                   +---+   +---+   +---+
82  *                     ^               |
83  *                     |               |
84  *                     +---------------+
85  *
86  *
87  *   +------+
88  *   |reader|          RING BUFFER
89  *   |page  |------------------v
90  *   +------+        +---+   +---+   +---+
91  *      ^            |   |-->|   |-->|   |
92  *      |            +---+   +---+   +---+
93  *      |                              |
94  *      |                              |
95  *      +------------------------------+
96  *
97  *
98  *   +------+
99  *   |buffer|          RING BUFFER
100  *   |page  |------------------v
101  *   +------+        +---+   +---+   +---+
102  *      ^            |   |   |   |-->|   |
103  *      |   New      +---+   +---+   +---+
104  *      |  Reader------^               |
105  *      |   page                       |
106  *      +------------------------------+
107  *
108  *
109  * After we make this swap, the reader can hand this page off to the splice
110  * code and be done with it. It can even allocate a new page if it needs to
111  * and swap that into the ring buffer.
112  *
113  * We will be using cmpxchg soon to make all this lockless.
114  *
115  */
116 
117 /*
118  * A fast way to enable or disable all ring buffers is to
119  * call tracing_on or tracing_off. Turning off the ring buffers
120  * prevents all ring buffers from being recorded to.
121  * Turning this switch on, makes it OK to write to the
122  * ring buffer, if the ring buffer is enabled itself.
123  *
124  * There's three layers that must be on in order to write
125  * to the ring buffer.
126  *
127  * 1) This global flag must be set.
128  * 2) The ring buffer must be enabled for recording.
129  * 3) The per cpu buffer must be enabled for recording.
130  *
131  * In case of an anomaly, this global flag has a bit set that
132  * will permantly disable all ring buffers.
133  */
134 
135 /*
136  * Global flag to disable all recording to ring buffers
137  *  This has two bits: ON, DISABLED
138  *
139  *  ON   DISABLED
140  * ---- ----------
141  *   0      0        : ring buffers are off
142  *   1      0        : ring buffers are on
143  *   X      1        : ring buffers are permanently disabled
144  */
145 
146 enum {
147 	RB_BUFFERS_ON_BIT	= 0,
148 	RB_BUFFERS_DISABLED_BIT	= 1,
149 };
150 
151 enum {
152 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
153 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155 
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157 
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 
160 /**
161  * tracing_on - enable all tracing buffers
162  *
163  * This function enables all tracing buffers that may have been
164  * disabled with tracing_off.
165  */
166 void tracing_on(void)
167 {
168 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171 
172 /**
173  * tracing_off - turn off all tracing buffers
174  *
175  * This function stops all tracing buffers from recording data.
176  * It does not disable any overhead the tracers themselves may
177  * be causing. This function simply causes all recording to
178  * the ring buffers to fail.
179  */
180 void tracing_off(void)
181 {
182 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185 
186 /**
187  * tracing_off_permanent - permanently disable ring buffers
188  *
189  * This function, once called, will disable all ring buffers
190  * permanently.
191  */
192 void tracing_off_permanent(void)
193 {
194 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196 
197 /**
198  * tracing_is_on - show state of ring buffers enabled
199  */
200 int tracing_is_on(void)
201 {
202 	return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205 
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT		4U
208 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
210 
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT	0
213 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT	1
216 # define RB_ARCH_ALIGNMENT		8U
217 #endif
218 
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221 
222 enum {
223 	RB_LEN_TIME_EXTEND = 8,
224 	RB_LEN_TIME_STAMP = 16,
225 };
226 
227 #define skip_time_extend(event) \
228 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229 
230 static inline int rb_null_event(struct ring_buffer_event *event)
231 {
232 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
233 }
234 
235 static void rb_event_set_padding(struct ring_buffer_event *event)
236 {
237 	/* padding has a NULL time_delta */
238 	event->type_len = RINGBUF_TYPE_PADDING;
239 	event->time_delta = 0;
240 }
241 
242 static unsigned
243 rb_event_data_length(struct ring_buffer_event *event)
244 {
245 	unsigned length;
246 
247 	if (event->type_len)
248 		length = event->type_len * RB_ALIGNMENT;
249 	else
250 		length = event->array[0];
251 	return length + RB_EVNT_HDR_SIZE;
252 }
253 
254 /*
255  * Return the length of the given event. Will return
256  * the length of the time extend if the event is a
257  * time extend.
258  */
259 static inline unsigned
260 rb_event_length(struct ring_buffer_event *event)
261 {
262 	switch (event->type_len) {
263 	case RINGBUF_TYPE_PADDING:
264 		if (rb_null_event(event))
265 			/* undefined */
266 			return -1;
267 		return  event->array[0] + RB_EVNT_HDR_SIZE;
268 
269 	case RINGBUF_TYPE_TIME_EXTEND:
270 		return RB_LEN_TIME_EXTEND;
271 
272 	case RINGBUF_TYPE_TIME_STAMP:
273 		return RB_LEN_TIME_STAMP;
274 
275 	case RINGBUF_TYPE_DATA:
276 		return rb_event_data_length(event);
277 	default:
278 		BUG();
279 	}
280 	/* not hit */
281 	return 0;
282 }
283 
284 /*
285  * Return total length of time extend and data,
286  *   or just the event length for all other events.
287  */
288 static inline unsigned
289 rb_event_ts_length(struct ring_buffer_event *event)
290 {
291 	unsigned len = 0;
292 
293 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
294 		/* time extends include the data event after it */
295 		len = RB_LEN_TIME_EXTEND;
296 		event = skip_time_extend(event);
297 	}
298 	return len + rb_event_length(event);
299 }
300 
301 /**
302  * ring_buffer_event_length - return the length of the event
303  * @event: the event to get the length of
304  *
305  * Returns the size of the data load of a data event.
306  * If the event is something other than a data event, it
307  * returns the size of the event itself. With the exception
308  * of a TIME EXTEND, where it still returns the size of the
309  * data load of the data event after it.
310  */
311 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
312 {
313 	unsigned length;
314 
315 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
316 		event = skip_time_extend(event);
317 
318 	length = rb_event_length(event);
319 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
320 		return length;
321 	length -= RB_EVNT_HDR_SIZE;
322 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
323                 length -= sizeof(event->array[0]);
324 	return length;
325 }
326 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
327 
328 /* inline for ring buffer fast paths */
329 static void *
330 rb_event_data(struct ring_buffer_event *event)
331 {
332 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
333 		event = skip_time_extend(event);
334 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
335 	/* If length is in len field, then array[0] has the data */
336 	if (event->type_len)
337 		return (void *)&event->array[0];
338 	/* Otherwise length is in array[0] and array[1] has the data */
339 	return (void *)&event->array[1];
340 }
341 
342 /**
343  * ring_buffer_event_data - return the data of the event
344  * @event: the event to get the data from
345  */
346 void *ring_buffer_event_data(struct ring_buffer_event *event)
347 {
348 	return rb_event_data(event);
349 }
350 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
351 
352 #define for_each_buffer_cpu(buffer, cpu)		\
353 	for_each_cpu(cpu, buffer->cpumask)
354 
355 #define TS_SHIFT	27
356 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
357 #define TS_DELTA_TEST	(~TS_MASK)
358 
359 /* Flag when events were overwritten */
360 #define RB_MISSED_EVENTS	(1 << 31)
361 /* Missed count stored at end */
362 #define RB_MISSED_STORED	(1 << 30)
363 
364 struct buffer_data_page {
365 	u64		 time_stamp;	/* page time stamp */
366 	local_t		 commit;	/* write committed index */
367 	unsigned char	 data[];	/* data of buffer page */
368 };
369 
370 /*
371  * Note, the buffer_page list must be first. The buffer pages
372  * are allocated in cache lines, which means that each buffer
373  * page will be at the beginning of a cache line, and thus
374  * the least significant bits will be zero. We use this to
375  * add flags in the list struct pointers, to make the ring buffer
376  * lockless.
377  */
378 struct buffer_page {
379 	struct list_head list;		/* list of buffer pages */
380 	local_t		 write;		/* index for next write */
381 	unsigned	 read;		/* index for next read */
382 	local_t		 entries;	/* entries on this page */
383 	unsigned long	 real_end;	/* real end of data */
384 	struct buffer_data_page *page;	/* Actual data page */
385 };
386 
387 /*
388  * The buffer page counters, write and entries, must be reset
389  * atomically when crossing page boundaries. To synchronize this
390  * update, two counters are inserted into the number. One is
391  * the actual counter for the write position or count on the page.
392  *
393  * The other is a counter of updaters. Before an update happens
394  * the update partition of the counter is incremented. This will
395  * allow the updater to update the counter atomically.
396  *
397  * The counter is 20 bits, and the state data is 12.
398  */
399 #define RB_WRITE_MASK		0xfffff
400 #define RB_WRITE_INTCNT		(1 << 20)
401 
402 static void rb_init_page(struct buffer_data_page *bpage)
403 {
404 	local_set(&bpage->commit, 0);
405 }
406 
407 /**
408  * ring_buffer_page_len - the size of data on the page.
409  * @page: The page to read
410  *
411  * Returns the amount of data on the page, including buffer page header.
412  */
413 size_t ring_buffer_page_len(void *page)
414 {
415 	return local_read(&((struct buffer_data_page *)page)->commit)
416 		+ BUF_PAGE_HDR_SIZE;
417 }
418 
419 /*
420  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
421  * this issue out.
422  */
423 static void free_buffer_page(struct buffer_page *bpage)
424 {
425 	free_page((unsigned long)bpage->page);
426 	kfree(bpage);
427 }
428 
429 /*
430  * We need to fit the time_stamp delta into 27 bits.
431  */
432 static inline int test_time_stamp(u64 delta)
433 {
434 	if (delta & TS_DELTA_TEST)
435 		return 1;
436 	return 0;
437 }
438 
439 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
440 
441 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
442 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443 
444 int ring_buffer_print_page_header(struct trace_seq *s)
445 {
446 	struct buffer_data_page field;
447 	int ret;
448 
449 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
450 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
451 			       (unsigned int)sizeof(field.time_stamp),
452 			       (unsigned int)is_signed_type(u64));
453 
454 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
455 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
456 			       (unsigned int)offsetof(typeof(field), commit),
457 			       (unsigned int)sizeof(field.commit),
458 			       (unsigned int)is_signed_type(long));
459 
460 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
461 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
462 			       (unsigned int)offsetof(typeof(field), commit),
463 			       1,
464 			       (unsigned int)is_signed_type(long));
465 
466 	ret = trace_seq_printf(s, "\tfield: char data;\t"
467 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
468 			       (unsigned int)offsetof(typeof(field), data),
469 			       (unsigned int)BUF_PAGE_SIZE,
470 			       (unsigned int)is_signed_type(char));
471 
472 	return ret;
473 }
474 
475 /*
476  * head_page == tail_page && head == tail then buffer is empty.
477  */
478 struct ring_buffer_per_cpu {
479 	int				cpu;
480 	atomic_t			record_disabled;
481 	struct ring_buffer		*buffer;
482 	spinlock_t			reader_lock;	/* serialize readers */
483 	arch_spinlock_t			lock;
484 	struct lock_class_key		lock_key;
485 	struct list_head		*pages;
486 	struct buffer_page		*head_page;	/* read from head */
487 	struct buffer_page		*tail_page;	/* write to tail */
488 	struct buffer_page		*commit_page;	/* committed pages */
489 	struct buffer_page		*reader_page;
490 	unsigned long			lost_events;
491 	unsigned long			last_overrun;
492 	local_t				commit_overrun;
493 	local_t				overrun;
494 	local_t				entries;
495 	local_t				committing;
496 	local_t				commits;
497 	unsigned long			read;
498 	u64				write_stamp;
499 	u64				read_stamp;
500 };
501 
502 struct ring_buffer {
503 	unsigned			pages;
504 	unsigned			flags;
505 	int				cpus;
506 	atomic_t			record_disabled;
507 	cpumask_var_t			cpumask;
508 
509 	struct lock_class_key		*reader_lock_key;
510 
511 	struct mutex			mutex;
512 
513 	struct ring_buffer_per_cpu	**buffers;
514 
515 #ifdef CONFIG_HOTPLUG_CPU
516 	struct notifier_block		cpu_notify;
517 #endif
518 	u64				(*clock)(void);
519 };
520 
521 struct ring_buffer_iter {
522 	struct ring_buffer_per_cpu	*cpu_buffer;
523 	unsigned long			head;
524 	struct buffer_page		*head_page;
525 	struct buffer_page		*cache_reader_page;
526 	unsigned long			cache_read;
527 	u64				read_stamp;
528 };
529 
530 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
531 #define RB_WARN_ON(b, cond)						\
532 	({								\
533 		int _____ret = unlikely(cond);				\
534 		if (_____ret) {						\
535 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
536 				struct ring_buffer_per_cpu *__b =	\
537 					(void *)b;			\
538 				atomic_inc(&__b->buffer->record_disabled); \
539 			} else						\
540 				atomic_inc(&b->record_disabled);	\
541 			WARN_ON(1);					\
542 		}							\
543 		_____ret;						\
544 	})
545 
546 /* Up this if you want to test the TIME_EXTENTS and normalization */
547 #define DEBUG_SHIFT 0
548 
549 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
550 {
551 	/* shift to debug/test normalization and TIME_EXTENTS */
552 	return buffer->clock() << DEBUG_SHIFT;
553 }
554 
555 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
556 {
557 	u64 time;
558 
559 	preempt_disable_notrace();
560 	time = rb_time_stamp(buffer);
561 	preempt_enable_no_resched_notrace();
562 
563 	return time;
564 }
565 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
566 
567 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
568 				      int cpu, u64 *ts)
569 {
570 	/* Just stupid testing the normalize function and deltas */
571 	*ts >>= DEBUG_SHIFT;
572 }
573 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
574 
575 /*
576  * Making the ring buffer lockless makes things tricky.
577  * Although writes only happen on the CPU that they are on,
578  * and they only need to worry about interrupts. Reads can
579  * happen on any CPU.
580  *
581  * The reader page is always off the ring buffer, but when the
582  * reader finishes with a page, it needs to swap its page with
583  * a new one from the buffer. The reader needs to take from
584  * the head (writes go to the tail). But if a writer is in overwrite
585  * mode and wraps, it must push the head page forward.
586  *
587  * Here lies the problem.
588  *
589  * The reader must be careful to replace only the head page, and
590  * not another one. As described at the top of the file in the
591  * ASCII art, the reader sets its old page to point to the next
592  * page after head. It then sets the page after head to point to
593  * the old reader page. But if the writer moves the head page
594  * during this operation, the reader could end up with the tail.
595  *
596  * We use cmpxchg to help prevent this race. We also do something
597  * special with the page before head. We set the LSB to 1.
598  *
599  * When the writer must push the page forward, it will clear the
600  * bit that points to the head page, move the head, and then set
601  * the bit that points to the new head page.
602  *
603  * We also don't want an interrupt coming in and moving the head
604  * page on another writer. Thus we use the second LSB to catch
605  * that too. Thus:
606  *
607  * head->list->prev->next        bit 1          bit 0
608  *                              -------        -------
609  * Normal page                     0              0
610  * Points to head page             0              1
611  * New head page                   1              0
612  *
613  * Note we can not trust the prev pointer of the head page, because:
614  *
615  * +----+       +-----+        +-----+
616  * |    |------>|  T  |---X--->|  N  |
617  * |    |<------|     |        |     |
618  * +----+       +-----+        +-----+
619  *   ^                           ^ |
620  *   |          +-----+          | |
621  *   +----------|  R  |----------+ |
622  *              |     |<-----------+
623  *              +-----+
624  *
625  * Key:  ---X-->  HEAD flag set in pointer
626  *         T      Tail page
627  *         R      Reader page
628  *         N      Next page
629  *
630  * (see __rb_reserve_next() to see where this happens)
631  *
632  *  What the above shows is that the reader just swapped out
633  *  the reader page with a page in the buffer, but before it
634  *  could make the new header point back to the new page added
635  *  it was preempted by a writer. The writer moved forward onto
636  *  the new page added by the reader and is about to move forward
637  *  again.
638  *
639  *  You can see, it is legitimate for the previous pointer of
640  *  the head (or any page) not to point back to itself. But only
641  *  temporarially.
642  */
643 
644 #define RB_PAGE_NORMAL		0UL
645 #define RB_PAGE_HEAD		1UL
646 #define RB_PAGE_UPDATE		2UL
647 
648 
649 #define RB_FLAG_MASK		3UL
650 
651 /* PAGE_MOVED is not part of the mask */
652 #define RB_PAGE_MOVED		4UL
653 
654 /*
655  * rb_list_head - remove any bit
656  */
657 static struct list_head *rb_list_head(struct list_head *list)
658 {
659 	unsigned long val = (unsigned long)list;
660 
661 	return (struct list_head *)(val & ~RB_FLAG_MASK);
662 }
663 
664 /*
665  * rb_is_head_page - test if the given page is the head page
666  *
667  * Because the reader may move the head_page pointer, we can
668  * not trust what the head page is (it may be pointing to
669  * the reader page). But if the next page is a header page,
670  * its flags will be non zero.
671  */
672 static int inline
673 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
674 		struct buffer_page *page, struct list_head *list)
675 {
676 	unsigned long val;
677 
678 	val = (unsigned long)list->next;
679 
680 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
681 		return RB_PAGE_MOVED;
682 
683 	return val & RB_FLAG_MASK;
684 }
685 
686 /*
687  * rb_is_reader_page
688  *
689  * The unique thing about the reader page, is that, if the
690  * writer is ever on it, the previous pointer never points
691  * back to the reader page.
692  */
693 static int rb_is_reader_page(struct buffer_page *page)
694 {
695 	struct list_head *list = page->list.prev;
696 
697 	return rb_list_head(list->next) != &page->list;
698 }
699 
700 /*
701  * rb_set_list_to_head - set a list_head to be pointing to head.
702  */
703 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
704 				struct list_head *list)
705 {
706 	unsigned long *ptr;
707 
708 	ptr = (unsigned long *)&list->next;
709 	*ptr |= RB_PAGE_HEAD;
710 	*ptr &= ~RB_PAGE_UPDATE;
711 }
712 
713 /*
714  * rb_head_page_activate - sets up head page
715  */
716 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
717 {
718 	struct buffer_page *head;
719 
720 	head = cpu_buffer->head_page;
721 	if (!head)
722 		return;
723 
724 	/*
725 	 * Set the previous list pointer to have the HEAD flag.
726 	 */
727 	rb_set_list_to_head(cpu_buffer, head->list.prev);
728 }
729 
730 static void rb_list_head_clear(struct list_head *list)
731 {
732 	unsigned long *ptr = (unsigned long *)&list->next;
733 
734 	*ptr &= ~RB_FLAG_MASK;
735 }
736 
737 /*
738  * rb_head_page_dactivate - clears head page ptr (for free list)
739  */
740 static void
741 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
742 {
743 	struct list_head *hd;
744 
745 	/* Go through the whole list and clear any pointers found. */
746 	rb_list_head_clear(cpu_buffer->pages);
747 
748 	list_for_each(hd, cpu_buffer->pages)
749 		rb_list_head_clear(hd);
750 }
751 
752 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
753 			    struct buffer_page *head,
754 			    struct buffer_page *prev,
755 			    int old_flag, int new_flag)
756 {
757 	struct list_head *list;
758 	unsigned long val = (unsigned long)&head->list;
759 	unsigned long ret;
760 
761 	list = &prev->list;
762 
763 	val &= ~RB_FLAG_MASK;
764 
765 	ret = cmpxchg((unsigned long *)&list->next,
766 		      val | old_flag, val | new_flag);
767 
768 	/* check if the reader took the page */
769 	if ((ret & ~RB_FLAG_MASK) != val)
770 		return RB_PAGE_MOVED;
771 
772 	return ret & RB_FLAG_MASK;
773 }
774 
775 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
776 				   struct buffer_page *head,
777 				   struct buffer_page *prev,
778 				   int old_flag)
779 {
780 	return rb_head_page_set(cpu_buffer, head, prev,
781 				old_flag, RB_PAGE_UPDATE);
782 }
783 
784 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
785 				 struct buffer_page *head,
786 				 struct buffer_page *prev,
787 				 int old_flag)
788 {
789 	return rb_head_page_set(cpu_buffer, head, prev,
790 				old_flag, RB_PAGE_HEAD);
791 }
792 
793 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
794 				   struct buffer_page *head,
795 				   struct buffer_page *prev,
796 				   int old_flag)
797 {
798 	return rb_head_page_set(cpu_buffer, head, prev,
799 				old_flag, RB_PAGE_NORMAL);
800 }
801 
802 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
803 			       struct buffer_page **bpage)
804 {
805 	struct list_head *p = rb_list_head((*bpage)->list.next);
806 
807 	*bpage = list_entry(p, struct buffer_page, list);
808 }
809 
810 static struct buffer_page *
811 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
812 {
813 	struct buffer_page *head;
814 	struct buffer_page *page;
815 	struct list_head *list;
816 	int i;
817 
818 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
819 		return NULL;
820 
821 	/* sanity check */
822 	list = cpu_buffer->pages;
823 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
824 		return NULL;
825 
826 	page = head = cpu_buffer->head_page;
827 	/*
828 	 * It is possible that the writer moves the header behind
829 	 * where we started, and we miss in one loop.
830 	 * A second loop should grab the header, but we'll do
831 	 * three loops just because I'm paranoid.
832 	 */
833 	for (i = 0; i < 3; i++) {
834 		do {
835 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
836 				cpu_buffer->head_page = page;
837 				return page;
838 			}
839 			rb_inc_page(cpu_buffer, &page);
840 		} while (page != head);
841 	}
842 
843 	RB_WARN_ON(cpu_buffer, 1);
844 
845 	return NULL;
846 }
847 
848 static int rb_head_page_replace(struct buffer_page *old,
849 				struct buffer_page *new)
850 {
851 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
852 	unsigned long val;
853 	unsigned long ret;
854 
855 	val = *ptr & ~RB_FLAG_MASK;
856 	val |= RB_PAGE_HEAD;
857 
858 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
859 
860 	return ret == val;
861 }
862 
863 /*
864  * rb_tail_page_update - move the tail page forward
865  *
866  * Returns 1 if moved tail page, 0 if someone else did.
867  */
868 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
869 			       struct buffer_page *tail_page,
870 			       struct buffer_page *next_page)
871 {
872 	struct buffer_page *old_tail;
873 	unsigned long old_entries;
874 	unsigned long old_write;
875 	int ret = 0;
876 
877 	/*
878 	 * The tail page now needs to be moved forward.
879 	 *
880 	 * We need to reset the tail page, but without messing
881 	 * with possible erasing of data brought in by interrupts
882 	 * that have moved the tail page and are currently on it.
883 	 *
884 	 * We add a counter to the write field to denote this.
885 	 */
886 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
887 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
888 
889 	/*
890 	 * Just make sure we have seen our old_write and synchronize
891 	 * with any interrupts that come in.
892 	 */
893 	barrier();
894 
895 	/*
896 	 * If the tail page is still the same as what we think
897 	 * it is, then it is up to us to update the tail
898 	 * pointer.
899 	 */
900 	if (tail_page == cpu_buffer->tail_page) {
901 		/* Zero the write counter */
902 		unsigned long val = old_write & ~RB_WRITE_MASK;
903 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
904 
905 		/*
906 		 * This will only succeed if an interrupt did
907 		 * not come in and change it. In which case, we
908 		 * do not want to modify it.
909 		 *
910 		 * We add (void) to let the compiler know that we do not care
911 		 * about the return value of these functions. We use the
912 		 * cmpxchg to only update if an interrupt did not already
913 		 * do it for us. If the cmpxchg fails, we don't care.
914 		 */
915 		(void)local_cmpxchg(&next_page->write, old_write, val);
916 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
917 
918 		/*
919 		 * No need to worry about races with clearing out the commit.
920 		 * it only can increment when a commit takes place. But that
921 		 * only happens in the outer most nested commit.
922 		 */
923 		local_set(&next_page->page->commit, 0);
924 
925 		old_tail = cmpxchg(&cpu_buffer->tail_page,
926 				   tail_page, next_page);
927 
928 		if (old_tail == tail_page)
929 			ret = 1;
930 	}
931 
932 	return ret;
933 }
934 
935 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
936 			  struct buffer_page *bpage)
937 {
938 	unsigned long val = (unsigned long)bpage;
939 
940 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
941 		return 1;
942 
943 	return 0;
944 }
945 
946 /**
947  * rb_check_list - make sure a pointer to a list has the last bits zero
948  */
949 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
950 			 struct list_head *list)
951 {
952 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
953 		return 1;
954 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
955 		return 1;
956 	return 0;
957 }
958 
959 /**
960  * check_pages - integrity check of buffer pages
961  * @cpu_buffer: CPU buffer with pages to test
962  *
963  * As a safety measure we check to make sure the data pages have not
964  * been corrupted.
965  */
966 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
967 {
968 	struct list_head *head = cpu_buffer->pages;
969 	struct buffer_page *bpage, *tmp;
970 
971 	rb_head_page_deactivate(cpu_buffer);
972 
973 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
974 		return -1;
975 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
976 		return -1;
977 
978 	if (rb_check_list(cpu_buffer, head))
979 		return -1;
980 
981 	list_for_each_entry_safe(bpage, tmp, head, list) {
982 		if (RB_WARN_ON(cpu_buffer,
983 			       bpage->list.next->prev != &bpage->list))
984 			return -1;
985 		if (RB_WARN_ON(cpu_buffer,
986 			       bpage->list.prev->next != &bpage->list))
987 			return -1;
988 		if (rb_check_list(cpu_buffer, &bpage->list))
989 			return -1;
990 	}
991 
992 	rb_head_page_activate(cpu_buffer);
993 
994 	return 0;
995 }
996 
997 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
998 			     unsigned nr_pages)
999 {
1000 	struct buffer_page *bpage, *tmp;
1001 	unsigned long addr;
1002 	LIST_HEAD(pages);
1003 	unsigned i;
1004 
1005 	WARN_ON(!nr_pages);
1006 
1007 	for (i = 0; i < nr_pages; i++) {
1008 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1009 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
1010 		if (!bpage)
1011 			goto free_pages;
1012 
1013 		rb_check_bpage(cpu_buffer, bpage);
1014 
1015 		list_add(&bpage->list, &pages);
1016 
1017 		addr = __get_free_page(GFP_KERNEL);
1018 		if (!addr)
1019 			goto free_pages;
1020 		bpage->page = (void *)addr;
1021 		rb_init_page(bpage->page);
1022 	}
1023 
1024 	/*
1025 	 * The ring buffer page list is a circular list that does not
1026 	 * start and end with a list head. All page list items point to
1027 	 * other pages.
1028 	 */
1029 	cpu_buffer->pages = pages.next;
1030 	list_del(&pages);
1031 
1032 	rb_check_pages(cpu_buffer);
1033 
1034 	return 0;
1035 
1036  free_pages:
1037 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1038 		list_del_init(&bpage->list);
1039 		free_buffer_page(bpage);
1040 	}
1041 	return -ENOMEM;
1042 }
1043 
1044 static struct ring_buffer_per_cpu *
1045 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1046 {
1047 	struct ring_buffer_per_cpu *cpu_buffer;
1048 	struct buffer_page *bpage;
1049 	unsigned long addr;
1050 	int ret;
1051 
1052 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1053 				  GFP_KERNEL, cpu_to_node(cpu));
1054 	if (!cpu_buffer)
1055 		return NULL;
1056 
1057 	cpu_buffer->cpu = cpu;
1058 	cpu_buffer->buffer = buffer;
1059 	spin_lock_init(&cpu_buffer->reader_lock);
1060 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1061 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1062 
1063 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064 			    GFP_KERNEL, cpu_to_node(cpu));
1065 	if (!bpage)
1066 		goto fail_free_buffer;
1067 
1068 	rb_check_bpage(cpu_buffer, bpage);
1069 
1070 	cpu_buffer->reader_page = bpage;
1071 	addr = __get_free_page(GFP_KERNEL);
1072 	if (!addr)
1073 		goto fail_free_reader;
1074 	bpage->page = (void *)addr;
1075 	rb_init_page(bpage->page);
1076 
1077 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078 
1079 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1080 	if (ret < 0)
1081 		goto fail_free_reader;
1082 
1083 	cpu_buffer->head_page
1084 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1085 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1086 
1087 	rb_head_page_activate(cpu_buffer);
1088 
1089 	return cpu_buffer;
1090 
1091  fail_free_reader:
1092 	free_buffer_page(cpu_buffer->reader_page);
1093 
1094  fail_free_buffer:
1095 	kfree(cpu_buffer);
1096 	return NULL;
1097 }
1098 
1099 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 	struct list_head *head = cpu_buffer->pages;
1102 	struct buffer_page *bpage, *tmp;
1103 
1104 	free_buffer_page(cpu_buffer->reader_page);
1105 
1106 	rb_head_page_deactivate(cpu_buffer);
1107 
1108 	if (head) {
1109 		list_for_each_entry_safe(bpage, tmp, head, list) {
1110 			list_del_init(&bpage->list);
1111 			free_buffer_page(bpage);
1112 		}
1113 		bpage = list_entry(head, struct buffer_page, list);
1114 		free_buffer_page(bpage);
1115 	}
1116 
1117 	kfree(cpu_buffer);
1118 }
1119 
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 static int rb_cpu_notify(struct notifier_block *self,
1122 			 unsigned long action, void *hcpu);
1123 #endif
1124 
1125 /**
1126  * ring_buffer_alloc - allocate a new ring_buffer
1127  * @size: the size in bytes per cpu that is needed.
1128  * @flags: attributes to set for the ring buffer.
1129  *
1130  * Currently the only flag that is available is the RB_FL_OVERWRITE
1131  * flag. This flag means that the buffer will overwrite old data
1132  * when the buffer wraps. If this flag is not set, the buffer will
1133  * drop data when the tail hits the head.
1134  */
1135 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1136 					struct lock_class_key *key)
1137 {
1138 	struct ring_buffer *buffer;
1139 	int bsize;
1140 	int cpu;
1141 
1142 	/* keep it in its own cache line */
1143 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1144 			 GFP_KERNEL);
1145 	if (!buffer)
1146 		return NULL;
1147 
1148 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1149 		goto fail_free_buffer;
1150 
1151 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1152 	buffer->flags = flags;
1153 	buffer->clock = trace_clock_local;
1154 	buffer->reader_lock_key = key;
1155 
1156 	/* need at least two pages */
1157 	if (buffer->pages < 2)
1158 		buffer->pages = 2;
1159 
1160 	/*
1161 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1162 	 * in early initcall, it will not be notified of secondary cpus.
1163 	 * In that off case, we need to allocate for all possible cpus.
1164 	 */
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 	get_online_cpus();
1167 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1168 #else
1169 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1170 #endif
1171 	buffer->cpus = nr_cpu_ids;
1172 
1173 	bsize = sizeof(void *) * nr_cpu_ids;
1174 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1175 				  GFP_KERNEL);
1176 	if (!buffer->buffers)
1177 		goto fail_free_cpumask;
1178 
1179 	for_each_buffer_cpu(buffer, cpu) {
1180 		buffer->buffers[cpu] =
1181 			rb_allocate_cpu_buffer(buffer, cpu);
1182 		if (!buffer->buffers[cpu])
1183 			goto fail_free_buffers;
1184 	}
1185 
1186 #ifdef CONFIG_HOTPLUG_CPU
1187 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1188 	buffer->cpu_notify.priority = 0;
1189 	register_cpu_notifier(&buffer->cpu_notify);
1190 #endif
1191 
1192 	put_online_cpus();
1193 	mutex_init(&buffer->mutex);
1194 
1195 	return buffer;
1196 
1197  fail_free_buffers:
1198 	for_each_buffer_cpu(buffer, cpu) {
1199 		if (buffer->buffers[cpu])
1200 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1201 	}
1202 	kfree(buffer->buffers);
1203 
1204  fail_free_cpumask:
1205 	free_cpumask_var(buffer->cpumask);
1206 	put_online_cpus();
1207 
1208  fail_free_buffer:
1209 	kfree(buffer);
1210 	return NULL;
1211 }
1212 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1213 
1214 /**
1215  * ring_buffer_free - free a ring buffer.
1216  * @buffer: the buffer to free.
1217  */
1218 void
1219 ring_buffer_free(struct ring_buffer *buffer)
1220 {
1221 	int cpu;
1222 
1223 	get_online_cpus();
1224 
1225 #ifdef CONFIG_HOTPLUG_CPU
1226 	unregister_cpu_notifier(&buffer->cpu_notify);
1227 #endif
1228 
1229 	for_each_buffer_cpu(buffer, cpu)
1230 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1231 
1232 	put_online_cpus();
1233 
1234 	kfree(buffer->buffers);
1235 	free_cpumask_var(buffer->cpumask);
1236 
1237 	kfree(buffer);
1238 }
1239 EXPORT_SYMBOL_GPL(ring_buffer_free);
1240 
1241 void ring_buffer_set_clock(struct ring_buffer *buffer,
1242 			   u64 (*clock)(void))
1243 {
1244 	buffer->clock = clock;
1245 }
1246 
1247 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1248 
1249 static void
1250 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1251 {
1252 	struct buffer_page *bpage;
1253 	struct list_head *p;
1254 	unsigned i;
1255 
1256 	spin_lock_irq(&cpu_buffer->reader_lock);
1257 	rb_head_page_deactivate(cpu_buffer);
1258 
1259 	for (i = 0; i < nr_pages; i++) {
1260 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1261 			goto out;
1262 		p = cpu_buffer->pages->next;
1263 		bpage = list_entry(p, struct buffer_page, list);
1264 		list_del_init(&bpage->list);
1265 		free_buffer_page(bpage);
1266 	}
1267 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1268 		goto out;
1269 
1270 	rb_reset_cpu(cpu_buffer);
1271 	rb_check_pages(cpu_buffer);
1272 
1273 out:
1274 	spin_unlock_irq(&cpu_buffer->reader_lock);
1275 }
1276 
1277 static void
1278 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1279 		struct list_head *pages, unsigned nr_pages)
1280 {
1281 	struct buffer_page *bpage;
1282 	struct list_head *p;
1283 	unsigned i;
1284 
1285 	spin_lock_irq(&cpu_buffer->reader_lock);
1286 	rb_head_page_deactivate(cpu_buffer);
1287 
1288 	for (i = 0; i < nr_pages; i++) {
1289 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1290 			goto out;
1291 		p = pages->next;
1292 		bpage = list_entry(p, struct buffer_page, list);
1293 		list_del_init(&bpage->list);
1294 		list_add_tail(&bpage->list, cpu_buffer->pages);
1295 	}
1296 	rb_reset_cpu(cpu_buffer);
1297 	rb_check_pages(cpu_buffer);
1298 
1299 out:
1300 	spin_unlock_irq(&cpu_buffer->reader_lock);
1301 }
1302 
1303 /**
1304  * ring_buffer_resize - resize the ring buffer
1305  * @buffer: the buffer to resize.
1306  * @size: the new size.
1307  *
1308  * Minimum size is 2 * BUF_PAGE_SIZE.
1309  *
1310  * Returns -1 on failure.
1311  */
1312 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1313 {
1314 	struct ring_buffer_per_cpu *cpu_buffer;
1315 	unsigned nr_pages, rm_pages, new_pages;
1316 	struct buffer_page *bpage, *tmp;
1317 	unsigned long buffer_size;
1318 	unsigned long addr;
1319 	LIST_HEAD(pages);
1320 	int i, cpu;
1321 
1322 	/*
1323 	 * Always succeed at resizing a non-existent buffer:
1324 	 */
1325 	if (!buffer)
1326 		return size;
1327 
1328 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1329 	size *= BUF_PAGE_SIZE;
1330 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1331 
1332 	/* we need a minimum of two pages */
1333 	if (size < BUF_PAGE_SIZE * 2)
1334 		size = BUF_PAGE_SIZE * 2;
1335 
1336 	if (size == buffer_size)
1337 		return size;
1338 
1339 	atomic_inc(&buffer->record_disabled);
1340 
1341 	/* Make sure all writers are done with this buffer. */
1342 	synchronize_sched();
1343 
1344 	mutex_lock(&buffer->mutex);
1345 	get_online_cpus();
1346 
1347 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1348 
1349 	if (size < buffer_size) {
1350 
1351 		/* easy case, just free pages */
1352 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1353 			goto out_fail;
1354 
1355 		rm_pages = buffer->pages - nr_pages;
1356 
1357 		for_each_buffer_cpu(buffer, cpu) {
1358 			cpu_buffer = buffer->buffers[cpu];
1359 			rb_remove_pages(cpu_buffer, rm_pages);
1360 		}
1361 		goto out;
1362 	}
1363 
1364 	/*
1365 	 * This is a bit more difficult. We only want to add pages
1366 	 * when we can allocate enough for all CPUs. We do this
1367 	 * by allocating all the pages and storing them on a local
1368 	 * link list. If we succeed in our allocation, then we
1369 	 * add these pages to the cpu_buffers. Otherwise we just free
1370 	 * them all and return -ENOMEM;
1371 	 */
1372 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1373 		goto out_fail;
1374 
1375 	new_pages = nr_pages - buffer->pages;
1376 
1377 	for_each_buffer_cpu(buffer, cpu) {
1378 		for (i = 0; i < new_pages; i++) {
1379 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1380 						  cache_line_size()),
1381 					    GFP_KERNEL, cpu_to_node(cpu));
1382 			if (!bpage)
1383 				goto free_pages;
1384 			list_add(&bpage->list, &pages);
1385 			addr = __get_free_page(GFP_KERNEL);
1386 			if (!addr)
1387 				goto free_pages;
1388 			bpage->page = (void *)addr;
1389 			rb_init_page(bpage->page);
1390 		}
1391 	}
1392 
1393 	for_each_buffer_cpu(buffer, cpu) {
1394 		cpu_buffer = buffer->buffers[cpu];
1395 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1396 	}
1397 
1398 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1399 		goto out_fail;
1400 
1401  out:
1402 	buffer->pages = nr_pages;
1403 	put_online_cpus();
1404 	mutex_unlock(&buffer->mutex);
1405 
1406 	atomic_dec(&buffer->record_disabled);
1407 
1408 	return size;
1409 
1410  free_pages:
1411 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1412 		list_del_init(&bpage->list);
1413 		free_buffer_page(bpage);
1414 	}
1415 	put_online_cpus();
1416 	mutex_unlock(&buffer->mutex);
1417 	atomic_dec(&buffer->record_disabled);
1418 	return -ENOMEM;
1419 
1420 	/*
1421 	 * Something went totally wrong, and we are too paranoid
1422 	 * to even clean up the mess.
1423 	 */
1424  out_fail:
1425 	put_online_cpus();
1426 	mutex_unlock(&buffer->mutex);
1427 	atomic_dec(&buffer->record_disabled);
1428 	return -1;
1429 }
1430 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1431 
1432 static inline void *
1433 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1434 {
1435 	return bpage->data + index;
1436 }
1437 
1438 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1439 {
1440 	return bpage->page->data + index;
1441 }
1442 
1443 static inline struct ring_buffer_event *
1444 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1445 {
1446 	return __rb_page_index(cpu_buffer->reader_page,
1447 			       cpu_buffer->reader_page->read);
1448 }
1449 
1450 static inline struct ring_buffer_event *
1451 rb_iter_head_event(struct ring_buffer_iter *iter)
1452 {
1453 	return __rb_page_index(iter->head_page, iter->head);
1454 }
1455 
1456 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1457 {
1458 	return local_read(&bpage->write) & RB_WRITE_MASK;
1459 }
1460 
1461 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1462 {
1463 	return local_read(&bpage->page->commit);
1464 }
1465 
1466 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1467 {
1468 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1469 }
1470 
1471 /* Size is determined by what has been commited */
1472 static inline unsigned rb_page_size(struct buffer_page *bpage)
1473 {
1474 	return rb_page_commit(bpage);
1475 }
1476 
1477 static inline unsigned
1478 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1479 {
1480 	return rb_page_commit(cpu_buffer->commit_page);
1481 }
1482 
1483 static inline unsigned
1484 rb_event_index(struct ring_buffer_event *event)
1485 {
1486 	unsigned long addr = (unsigned long)event;
1487 
1488 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1489 }
1490 
1491 static inline int
1492 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1493 		   struct ring_buffer_event *event)
1494 {
1495 	unsigned long addr = (unsigned long)event;
1496 	unsigned long index;
1497 
1498 	index = rb_event_index(event);
1499 	addr &= PAGE_MASK;
1500 
1501 	return cpu_buffer->commit_page->page == (void *)addr &&
1502 		rb_commit_index(cpu_buffer) == index;
1503 }
1504 
1505 static void
1506 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1507 {
1508 	unsigned long max_count;
1509 
1510 	/*
1511 	 * We only race with interrupts and NMIs on this CPU.
1512 	 * If we own the commit event, then we can commit
1513 	 * all others that interrupted us, since the interruptions
1514 	 * are in stack format (they finish before they come
1515 	 * back to us). This allows us to do a simple loop to
1516 	 * assign the commit to the tail.
1517 	 */
1518  again:
1519 	max_count = cpu_buffer->buffer->pages * 100;
1520 
1521 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1522 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1523 			return;
1524 		if (RB_WARN_ON(cpu_buffer,
1525 			       rb_is_reader_page(cpu_buffer->tail_page)))
1526 			return;
1527 		local_set(&cpu_buffer->commit_page->page->commit,
1528 			  rb_page_write(cpu_buffer->commit_page));
1529 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1530 		cpu_buffer->write_stamp =
1531 			cpu_buffer->commit_page->page->time_stamp;
1532 		/* add barrier to keep gcc from optimizing too much */
1533 		barrier();
1534 	}
1535 	while (rb_commit_index(cpu_buffer) !=
1536 	       rb_page_write(cpu_buffer->commit_page)) {
1537 
1538 		local_set(&cpu_buffer->commit_page->page->commit,
1539 			  rb_page_write(cpu_buffer->commit_page));
1540 		RB_WARN_ON(cpu_buffer,
1541 			   local_read(&cpu_buffer->commit_page->page->commit) &
1542 			   ~RB_WRITE_MASK);
1543 		barrier();
1544 	}
1545 
1546 	/* again, keep gcc from optimizing */
1547 	barrier();
1548 
1549 	/*
1550 	 * If an interrupt came in just after the first while loop
1551 	 * and pushed the tail page forward, we will be left with
1552 	 * a dangling commit that will never go forward.
1553 	 */
1554 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1555 		goto again;
1556 }
1557 
1558 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1559 {
1560 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1561 	cpu_buffer->reader_page->read = 0;
1562 }
1563 
1564 static void rb_inc_iter(struct ring_buffer_iter *iter)
1565 {
1566 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1567 
1568 	/*
1569 	 * The iterator could be on the reader page (it starts there).
1570 	 * But the head could have moved, since the reader was
1571 	 * found. Check for this case and assign the iterator
1572 	 * to the head page instead of next.
1573 	 */
1574 	if (iter->head_page == cpu_buffer->reader_page)
1575 		iter->head_page = rb_set_head_page(cpu_buffer);
1576 	else
1577 		rb_inc_page(cpu_buffer, &iter->head_page);
1578 
1579 	iter->read_stamp = iter->head_page->page->time_stamp;
1580 	iter->head = 0;
1581 }
1582 
1583 /* Slow path, do not inline */
1584 static noinline struct ring_buffer_event *
1585 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1586 {
1587 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1588 
1589 	/* Not the first event on the page? */
1590 	if (rb_event_index(event)) {
1591 		event->time_delta = delta & TS_MASK;
1592 		event->array[0] = delta >> TS_SHIFT;
1593 	} else {
1594 		/* nope, just zero it */
1595 		event->time_delta = 0;
1596 		event->array[0] = 0;
1597 	}
1598 
1599 	return skip_time_extend(event);
1600 }
1601 
1602 /**
1603  * ring_buffer_update_event - update event type and data
1604  * @event: the even to update
1605  * @type: the type of event
1606  * @length: the size of the event field in the ring buffer
1607  *
1608  * Update the type and data fields of the event. The length
1609  * is the actual size that is written to the ring buffer,
1610  * and with this, we can determine what to place into the
1611  * data field.
1612  */
1613 static void
1614 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1615 		struct ring_buffer_event *event, unsigned length,
1616 		int add_timestamp, u64 delta)
1617 {
1618 	/* Only a commit updates the timestamp */
1619 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1620 		delta = 0;
1621 
1622 	/*
1623 	 * If we need to add a timestamp, then we
1624 	 * add it to the start of the resevered space.
1625 	 */
1626 	if (unlikely(add_timestamp)) {
1627 		event = rb_add_time_stamp(event, delta);
1628 		length -= RB_LEN_TIME_EXTEND;
1629 		delta = 0;
1630 	}
1631 
1632 	event->time_delta = delta;
1633 	length -= RB_EVNT_HDR_SIZE;
1634 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1635 		event->type_len = 0;
1636 		event->array[0] = length;
1637 	} else
1638 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1639 }
1640 
1641 /*
1642  * rb_handle_head_page - writer hit the head page
1643  *
1644  * Returns: +1 to retry page
1645  *           0 to continue
1646  *          -1 on error
1647  */
1648 static int
1649 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1650 		    struct buffer_page *tail_page,
1651 		    struct buffer_page *next_page)
1652 {
1653 	struct buffer_page *new_head;
1654 	int entries;
1655 	int type;
1656 	int ret;
1657 
1658 	entries = rb_page_entries(next_page);
1659 
1660 	/*
1661 	 * The hard part is here. We need to move the head
1662 	 * forward, and protect against both readers on
1663 	 * other CPUs and writers coming in via interrupts.
1664 	 */
1665 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1666 				       RB_PAGE_HEAD);
1667 
1668 	/*
1669 	 * type can be one of four:
1670 	 *  NORMAL - an interrupt already moved it for us
1671 	 *  HEAD   - we are the first to get here.
1672 	 *  UPDATE - we are the interrupt interrupting
1673 	 *           a current move.
1674 	 *  MOVED  - a reader on another CPU moved the next
1675 	 *           pointer to its reader page. Give up
1676 	 *           and try again.
1677 	 */
1678 
1679 	switch (type) {
1680 	case RB_PAGE_HEAD:
1681 		/*
1682 		 * We changed the head to UPDATE, thus
1683 		 * it is our responsibility to update
1684 		 * the counters.
1685 		 */
1686 		local_add(entries, &cpu_buffer->overrun);
1687 
1688 		/*
1689 		 * The entries will be zeroed out when we move the
1690 		 * tail page.
1691 		 */
1692 
1693 		/* still more to do */
1694 		break;
1695 
1696 	case RB_PAGE_UPDATE:
1697 		/*
1698 		 * This is an interrupt that interrupt the
1699 		 * previous update. Still more to do.
1700 		 */
1701 		break;
1702 	case RB_PAGE_NORMAL:
1703 		/*
1704 		 * An interrupt came in before the update
1705 		 * and processed this for us.
1706 		 * Nothing left to do.
1707 		 */
1708 		return 1;
1709 	case RB_PAGE_MOVED:
1710 		/*
1711 		 * The reader is on another CPU and just did
1712 		 * a swap with our next_page.
1713 		 * Try again.
1714 		 */
1715 		return 1;
1716 	default:
1717 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1718 		return -1;
1719 	}
1720 
1721 	/*
1722 	 * Now that we are here, the old head pointer is
1723 	 * set to UPDATE. This will keep the reader from
1724 	 * swapping the head page with the reader page.
1725 	 * The reader (on another CPU) will spin till
1726 	 * we are finished.
1727 	 *
1728 	 * We just need to protect against interrupts
1729 	 * doing the job. We will set the next pointer
1730 	 * to HEAD. After that, we set the old pointer
1731 	 * to NORMAL, but only if it was HEAD before.
1732 	 * otherwise we are an interrupt, and only
1733 	 * want the outer most commit to reset it.
1734 	 */
1735 	new_head = next_page;
1736 	rb_inc_page(cpu_buffer, &new_head);
1737 
1738 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1739 				    RB_PAGE_NORMAL);
1740 
1741 	/*
1742 	 * Valid returns are:
1743 	 *  HEAD   - an interrupt came in and already set it.
1744 	 *  NORMAL - One of two things:
1745 	 *            1) We really set it.
1746 	 *            2) A bunch of interrupts came in and moved
1747 	 *               the page forward again.
1748 	 */
1749 	switch (ret) {
1750 	case RB_PAGE_HEAD:
1751 	case RB_PAGE_NORMAL:
1752 		/* OK */
1753 		break;
1754 	default:
1755 		RB_WARN_ON(cpu_buffer, 1);
1756 		return -1;
1757 	}
1758 
1759 	/*
1760 	 * It is possible that an interrupt came in,
1761 	 * set the head up, then more interrupts came in
1762 	 * and moved it again. When we get back here,
1763 	 * the page would have been set to NORMAL but we
1764 	 * just set it back to HEAD.
1765 	 *
1766 	 * How do you detect this? Well, if that happened
1767 	 * the tail page would have moved.
1768 	 */
1769 	if (ret == RB_PAGE_NORMAL) {
1770 		/*
1771 		 * If the tail had moved passed next, then we need
1772 		 * to reset the pointer.
1773 		 */
1774 		if (cpu_buffer->tail_page != tail_page &&
1775 		    cpu_buffer->tail_page != next_page)
1776 			rb_head_page_set_normal(cpu_buffer, new_head,
1777 						next_page,
1778 						RB_PAGE_HEAD);
1779 	}
1780 
1781 	/*
1782 	 * If this was the outer most commit (the one that
1783 	 * changed the original pointer from HEAD to UPDATE),
1784 	 * then it is up to us to reset it to NORMAL.
1785 	 */
1786 	if (type == RB_PAGE_HEAD) {
1787 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1788 					      tail_page,
1789 					      RB_PAGE_UPDATE);
1790 		if (RB_WARN_ON(cpu_buffer,
1791 			       ret != RB_PAGE_UPDATE))
1792 			return -1;
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 static unsigned rb_calculate_event_length(unsigned length)
1799 {
1800 	struct ring_buffer_event event; /* Used only for sizeof array */
1801 
1802 	/* zero length can cause confusions */
1803 	if (!length)
1804 		length = 1;
1805 
1806 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1807 		length += sizeof(event.array[0]);
1808 
1809 	length += RB_EVNT_HDR_SIZE;
1810 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1811 
1812 	return length;
1813 }
1814 
1815 static inline void
1816 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1817 	      struct buffer_page *tail_page,
1818 	      unsigned long tail, unsigned long length)
1819 {
1820 	struct ring_buffer_event *event;
1821 
1822 	/*
1823 	 * Only the event that crossed the page boundary
1824 	 * must fill the old tail_page with padding.
1825 	 */
1826 	if (tail >= BUF_PAGE_SIZE) {
1827 		/*
1828 		 * If the page was filled, then we still need
1829 		 * to update the real_end. Reset it to zero
1830 		 * and the reader will ignore it.
1831 		 */
1832 		if (tail == BUF_PAGE_SIZE)
1833 			tail_page->real_end = 0;
1834 
1835 		local_sub(length, &tail_page->write);
1836 		return;
1837 	}
1838 
1839 	event = __rb_page_index(tail_page, tail);
1840 	kmemcheck_annotate_bitfield(event, bitfield);
1841 
1842 	/*
1843 	 * Save the original length to the meta data.
1844 	 * This will be used by the reader to add lost event
1845 	 * counter.
1846 	 */
1847 	tail_page->real_end = tail;
1848 
1849 	/*
1850 	 * If this event is bigger than the minimum size, then
1851 	 * we need to be careful that we don't subtract the
1852 	 * write counter enough to allow another writer to slip
1853 	 * in on this page.
1854 	 * We put in a discarded commit instead, to make sure
1855 	 * that this space is not used again.
1856 	 *
1857 	 * If we are less than the minimum size, we don't need to
1858 	 * worry about it.
1859 	 */
1860 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1861 		/* No room for any events */
1862 
1863 		/* Mark the rest of the page with padding */
1864 		rb_event_set_padding(event);
1865 
1866 		/* Set the write back to the previous setting */
1867 		local_sub(length, &tail_page->write);
1868 		return;
1869 	}
1870 
1871 	/* Put in a discarded event */
1872 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1873 	event->type_len = RINGBUF_TYPE_PADDING;
1874 	/* time delta must be non zero */
1875 	event->time_delta = 1;
1876 
1877 	/* Set write to end of buffer */
1878 	length = (tail + length) - BUF_PAGE_SIZE;
1879 	local_sub(length, &tail_page->write);
1880 }
1881 
1882 /*
1883  * This is the slow path, force gcc not to inline it.
1884  */
1885 static noinline struct ring_buffer_event *
1886 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1887 	     unsigned long length, unsigned long tail,
1888 	     struct buffer_page *tail_page, u64 ts)
1889 {
1890 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1891 	struct ring_buffer *buffer = cpu_buffer->buffer;
1892 	struct buffer_page *next_page;
1893 	int ret;
1894 
1895 	next_page = tail_page;
1896 
1897 	rb_inc_page(cpu_buffer, &next_page);
1898 
1899 	/*
1900 	 * If for some reason, we had an interrupt storm that made
1901 	 * it all the way around the buffer, bail, and warn
1902 	 * about it.
1903 	 */
1904 	if (unlikely(next_page == commit_page)) {
1905 		local_inc(&cpu_buffer->commit_overrun);
1906 		goto out_reset;
1907 	}
1908 
1909 	/*
1910 	 * This is where the fun begins!
1911 	 *
1912 	 * We are fighting against races between a reader that
1913 	 * could be on another CPU trying to swap its reader
1914 	 * page with the buffer head.
1915 	 *
1916 	 * We are also fighting against interrupts coming in and
1917 	 * moving the head or tail on us as well.
1918 	 *
1919 	 * If the next page is the head page then we have filled
1920 	 * the buffer, unless the commit page is still on the
1921 	 * reader page.
1922 	 */
1923 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1924 
1925 		/*
1926 		 * If the commit is not on the reader page, then
1927 		 * move the header page.
1928 		 */
1929 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1930 			/*
1931 			 * If we are not in overwrite mode,
1932 			 * this is easy, just stop here.
1933 			 */
1934 			if (!(buffer->flags & RB_FL_OVERWRITE))
1935 				goto out_reset;
1936 
1937 			ret = rb_handle_head_page(cpu_buffer,
1938 						  tail_page,
1939 						  next_page);
1940 			if (ret < 0)
1941 				goto out_reset;
1942 			if (ret)
1943 				goto out_again;
1944 		} else {
1945 			/*
1946 			 * We need to be careful here too. The
1947 			 * commit page could still be on the reader
1948 			 * page. We could have a small buffer, and
1949 			 * have filled up the buffer with events
1950 			 * from interrupts and such, and wrapped.
1951 			 *
1952 			 * Note, if the tail page is also the on the
1953 			 * reader_page, we let it move out.
1954 			 */
1955 			if (unlikely((cpu_buffer->commit_page !=
1956 				      cpu_buffer->tail_page) &&
1957 				     (cpu_buffer->commit_page ==
1958 				      cpu_buffer->reader_page))) {
1959 				local_inc(&cpu_buffer->commit_overrun);
1960 				goto out_reset;
1961 			}
1962 		}
1963 	}
1964 
1965 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1966 	if (ret) {
1967 		/*
1968 		 * Nested commits always have zero deltas, so
1969 		 * just reread the time stamp
1970 		 */
1971 		ts = rb_time_stamp(buffer);
1972 		next_page->page->time_stamp = ts;
1973 	}
1974 
1975  out_again:
1976 
1977 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1978 
1979 	/* fail and let the caller try again */
1980 	return ERR_PTR(-EAGAIN);
1981 
1982  out_reset:
1983 	/* reset write */
1984 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1985 
1986 	return NULL;
1987 }
1988 
1989 static struct ring_buffer_event *
1990 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1991 		  unsigned long length, u64 ts,
1992 		  u64 delta, int add_timestamp)
1993 {
1994 	struct buffer_page *tail_page;
1995 	struct ring_buffer_event *event;
1996 	unsigned long tail, write;
1997 
1998 	/*
1999 	 * If the time delta since the last event is too big to
2000 	 * hold in the time field of the event, then we append a
2001 	 * TIME EXTEND event ahead of the data event.
2002 	 */
2003 	if (unlikely(add_timestamp))
2004 		length += RB_LEN_TIME_EXTEND;
2005 
2006 	tail_page = cpu_buffer->tail_page;
2007 	write = local_add_return(length, &tail_page->write);
2008 
2009 	/* set write to only the index of the write */
2010 	write &= RB_WRITE_MASK;
2011 	tail = write - length;
2012 
2013 	/* See if we shot pass the end of this buffer page */
2014 	if (unlikely(write > BUF_PAGE_SIZE))
2015 		return rb_move_tail(cpu_buffer, length, tail,
2016 				    tail_page, ts);
2017 
2018 	/* We reserved something on the buffer */
2019 
2020 	event = __rb_page_index(tail_page, tail);
2021 	kmemcheck_annotate_bitfield(event, bitfield);
2022 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2023 
2024 	local_inc(&tail_page->entries);
2025 
2026 	/*
2027 	 * If this is the first commit on the page, then update
2028 	 * its timestamp.
2029 	 */
2030 	if (!tail)
2031 		tail_page->page->time_stamp = ts;
2032 
2033 	return event;
2034 }
2035 
2036 static inline int
2037 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2038 		  struct ring_buffer_event *event)
2039 {
2040 	unsigned long new_index, old_index;
2041 	struct buffer_page *bpage;
2042 	unsigned long index;
2043 	unsigned long addr;
2044 
2045 	new_index = rb_event_index(event);
2046 	old_index = new_index + rb_event_ts_length(event);
2047 	addr = (unsigned long)event;
2048 	addr &= PAGE_MASK;
2049 
2050 	bpage = cpu_buffer->tail_page;
2051 
2052 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2053 		unsigned long write_mask =
2054 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2055 		/*
2056 		 * This is on the tail page. It is possible that
2057 		 * a write could come in and move the tail page
2058 		 * and write to the next page. That is fine
2059 		 * because we just shorten what is on this page.
2060 		 */
2061 		old_index += write_mask;
2062 		new_index += write_mask;
2063 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2064 		if (index == old_index)
2065 			return 1;
2066 	}
2067 
2068 	/* could not discard */
2069 	return 0;
2070 }
2071 
2072 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2073 {
2074 	local_inc(&cpu_buffer->committing);
2075 	local_inc(&cpu_buffer->commits);
2076 }
2077 
2078 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2079 {
2080 	unsigned long commits;
2081 
2082 	if (RB_WARN_ON(cpu_buffer,
2083 		       !local_read(&cpu_buffer->committing)))
2084 		return;
2085 
2086  again:
2087 	commits = local_read(&cpu_buffer->commits);
2088 	/* synchronize with interrupts */
2089 	barrier();
2090 	if (local_read(&cpu_buffer->committing) == 1)
2091 		rb_set_commit_to_write(cpu_buffer);
2092 
2093 	local_dec(&cpu_buffer->committing);
2094 
2095 	/* synchronize with interrupts */
2096 	barrier();
2097 
2098 	/*
2099 	 * Need to account for interrupts coming in between the
2100 	 * updating of the commit page and the clearing of the
2101 	 * committing counter.
2102 	 */
2103 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2104 	    !local_read(&cpu_buffer->committing)) {
2105 		local_inc(&cpu_buffer->committing);
2106 		goto again;
2107 	}
2108 }
2109 
2110 static struct ring_buffer_event *
2111 rb_reserve_next_event(struct ring_buffer *buffer,
2112 		      struct ring_buffer_per_cpu *cpu_buffer,
2113 		      unsigned long length)
2114 {
2115 	struct ring_buffer_event *event;
2116 	u64 ts, delta;
2117 	int nr_loops = 0;
2118 	int add_timestamp;
2119 	u64 diff;
2120 
2121 	rb_start_commit(cpu_buffer);
2122 
2123 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2124 	/*
2125 	 * Due to the ability to swap a cpu buffer from a buffer
2126 	 * it is possible it was swapped before we committed.
2127 	 * (committing stops a swap). We check for it here and
2128 	 * if it happened, we have to fail the write.
2129 	 */
2130 	barrier();
2131 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2132 		local_dec(&cpu_buffer->committing);
2133 		local_dec(&cpu_buffer->commits);
2134 		return NULL;
2135 	}
2136 #endif
2137 
2138 	length = rb_calculate_event_length(length);
2139  again:
2140 	add_timestamp = 0;
2141 	delta = 0;
2142 
2143 	/*
2144 	 * We allow for interrupts to reenter here and do a trace.
2145 	 * If one does, it will cause this original code to loop
2146 	 * back here. Even with heavy interrupts happening, this
2147 	 * should only happen a few times in a row. If this happens
2148 	 * 1000 times in a row, there must be either an interrupt
2149 	 * storm or we have something buggy.
2150 	 * Bail!
2151 	 */
2152 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2153 		goto out_fail;
2154 
2155 	ts = rb_time_stamp(cpu_buffer->buffer);
2156 	diff = ts - cpu_buffer->write_stamp;
2157 
2158 	/* make sure this diff is calculated here */
2159 	barrier();
2160 
2161 	/* Did the write stamp get updated already? */
2162 	if (likely(ts >= cpu_buffer->write_stamp)) {
2163 		delta = diff;
2164 		if (unlikely(test_time_stamp(delta))) {
2165 			WARN_ONCE(delta > (1ULL << 59),
2166 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2167 				  (unsigned long long)delta,
2168 				  (unsigned long long)ts,
2169 				  (unsigned long long)cpu_buffer->write_stamp);
2170 			add_timestamp = 1;
2171 		}
2172 	}
2173 
2174 	event = __rb_reserve_next(cpu_buffer, length, ts,
2175 				  delta, add_timestamp);
2176 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2177 		goto again;
2178 
2179 	if (!event)
2180 		goto out_fail;
2181 
2182 	return event;
2183 
2184  out_fail:
2185 	rb_end_commit(cpu_buffer);
2186 	return NULL;
2187 }
2188 
2189 #ifdef CONFIG_TRACING
2190 
2191 #define TRACE_RECURSIVE_DEPTH 16
2192 
2193 /* Keep this code out of the fast path cache */
2194 static noinline void trace_recursive_fail(void)
2195 {
2196 	/* Disable all tracing before we do anything else */
2197 	tracing_off_permanent();
2198 
2199 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2200 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2201 		    current->trace_recursion,
2202 		    hardirq_count() >> HARDIRQ_SHIFT,
2203 		    softirq_count() >> SOFTIRQ_SHIFT,
2204 		    in_nmi());
2205 
2206 	WARN_ON_ONCE(1);
2207 }
2208 
2209 static inline int trace_recursive_lock(void)
2210 {
2211 	current->trace_recursion++;
2212 
2213 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2214 		return 0;
2215 
2216 	trace_recursive_fail();
2217 
2218 	return -1;
2219 }
2220 
2221 static inline void trace_recursive_unlock(void)
2222 {
2223 	WARN_ON_ONCE(!current->trace_recursion);
2224 
2225 	current->trace_recursion--;
2226 }
2227 
2228 #else
2229 
2230 #define trace_recursive_lock()		(0)
2231 #define trace_recursive_unlock()	do { } while (0)
2232 
2233 #endif
2234 
2235 /**
2236  * ring_buffer_lock_reserve - reserve a part of the buffer
2237  * @buffer: the ring buffer to reserve from
2238  * @length: the length of the data to reserve (excluding event header)
2239  *
2240  * Returns a reseverd event on the ring buffer to copy directly to.
2241  * The user of this interface will need to get the body to write into
2242  * and can use the ring_buffer_event_data() interface.
2243  *
2244  * The length is the length of the data needed, not the event length
2245  * which also includes the event header.
2246  *
2247  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2248  * If NULL is returned, then nothing has been allocated or locked.
2249  */
2250 struct ring_buffer_event *
2251 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2252 {
2253 	struct ring_buffer_per_cpu *cpu_buffer;
2254 	struct ring_buffer_event *event;
2255 	int cpu;
2256 
2257 	if (ring_buffer_flags != RB_BUFFERS_ON)
2258 		return NULL;
2259 
2260 	/* If we are tracing schedule, we don't want to recurse */
2261 	preempt_disable_notrace();
2262 
2263 	if (atomic_read(&buffer->record_disabled))
2264 		goto out_nocheck;
2265 
2266 	if (trace_recursive_lock())
2267 		goto out_nocheck;
2268 
2269 	cpu = raw_smp_processor_id();
2270 
2271 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2272 		goto out;
2273 
2274 	cpu_buffer = buffer->buffers[cpu];
2275 
2276 	if (atomic_read(&cpu_buffer->record_disabled))
2277 		goto out;
2278 
2279 	if (length > BUF_MAX_DATA_SIZE)
2280 		goto out;
2281 
2282 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2283 	if (!event)
2284 		goto out;
2285 
2286 	return event;
2287 
2288  out:
2289 	trace_recursive_unlock();
2290 
2291  out_nocheck:
2292 	preempt_enable_notrace();
2293 	return NULL;
2294 }
2295 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2296 
2297 static void
2298 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2299 		      struct ring_buffer_event *event)
2300 {
2301 	u64 delta;
2302 
2303 	/*
2304 	 * The event first in the commit queue updates the
2305 	 * time stamp.
2306 	 */
2307 	if (rb_event_is_commit(cpu_buffer, event)) {
2308 		/*
2309 		 * A commit event that is first on a page
2310 		 * updates the write timestamp with the page stamp
2311 		 */
2312 		if (!rb_event_index(event))
2313 			cpu_buffer->write_stamp =
2314 				cpu_buffer->commit_page->page->time_stamp;
2315 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2316 			delta = event->array[0];
2317 			delta <<= TS_SHIFT;
2318 			delta += event->time_delta;
2319 			cpu_buffer->write_stamp += delta;
2320 		} else
2321 			cpu_buffer->write_stamp += event->time_delta;
2322 	}
2323 }
2324 
2325 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2326 		      struct ring_buffer_event *event)
2327 {
2328 	local_inc(&cpu_buffer->entries);
2329 	rb_update_write_stamp(cpu_buffer, event);
2330 	rb_end_commit(cpu_buffer);
2331 }
2332 
2333 /**
2334  * ring_buffer_unlock_commit - commit a reserved
2335  * @buffer: The buffer to commit to
2336  * @event: The event pointer to commit.
2337  *
2338  * This commits the data to the ring buffer, and releases any locks held.
2339  *
2340  * Must be paired with ring_buffer_lock_reserve.
2341  */
2342 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2343 			      struct ring_buffer_event *event)
2344 {
2345 	struct ring_buffer_per_cpu *cpu_buffer;
2346 	int cpu = raw_smp_processor_id();
2347 
2348 	cpu_buffer = buffer->buffers[cpu];
2349 
2350 	rb_commit(cpu_buffer, event);
2351 
2352 	trace_recursive_unlock();
2353 
2354 	preempt_enable_notrace();
2355 
2356 	return 0;
2357 }
2358 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2359 
2360 static inline void rb_event_discard(struct ring_buffer_event *event)
2361 {
2362 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2363 		event = skip_time_extend(event);
2364 
2365 	/* array[0] holds the actual length for the discarded event */
2366 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2367 	event->type_len = RINGBUF_TYPE_PADDING;
2368 	/* time delta must be non zero */
2369 	if (!event->time_delta)
2370 		event->time_delta = 1;
2371 }
2372 
2373 /*
2374  * Decrement the entries to the page that an event is on.
2375  * The event does not even need to exist, only the pointer
2376  * to the page it is on. This may only be called before the commit
2377  * takes place.
2378  */
2379 static inline void
2380 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2381 		   struct ring_buffer_event *event)
2382 {
2383 	unsigned long addr = (unsigned long)event;
2384 	struct buffer_page *bpage = cpu_buffer->commit_page;
2385 	struct buffer_page *start;
2386 
2387 	addr &= PAGE_MASK;
2388 
2389 	/* Do the likely case first */
2390 	if (likely(bpage->page == (void *)addr)) {
2391 		local_dec(&bpage->entries);
2392 		return;
2393 	}
2394 
2395 	/*
2396 	 * Because the commit page may be on the reader page we
2397 	 * start with the next page and check the end loop there.
2398 	 */
2399 	rb_inc_page(cpu_buffer, &bpage);
2400 	start = bpage;
2401 	do {
2402 		if (bpage->page == (void *)addr) {
2403 			local_dec(&bpage->entries);
2404 			return;
2405 		}
2406 		rb_inc_page(cpu_buffer, &bpage);
2407 	} while (bpage != start);
2408 
2409 	/* commit not part of this buffer?? */
2410 	RB_WARN_ON(cpu_buffer, 1);
2411 }
2412 
2413 /**
2414  * ring_buffer_commit_discard - discard an event that has not been committed
2415  * @buffer: the ring buffer
2416  * @event: non committed event to discard
2417  *
2418  * Sometimes an event that is in the ring buffer needs to be ignored.
2419  * This function lets the user discard an event in the ring buffer
2420  * and then that event will not be read later.
2421  *
2422  * This function only works if it is called before the the item has been
2423  * committed. It will try to free the event from the ring buffer
2424  * if another event has not been added behind it.
2425  *
2426  * If another event has been added behind it, it will set the event
2427  * up as discarded, and perform the commit.
2428  *
2429  * If this function is called, do not call ring_buffer_unlock_commit on
2430  * the event.
2431  */
2432 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2433 				struct ring_buffer_event *event)
2434 {
2435 	struct ring_buffer_per_cpu *cpu_buffer;
2436 	int cpu;
2437 
2438 	/* The event is discarded regardless */
2439 	rb_event_discard(event);
2440 
2441 	cpu = smp_processor_id();
2442 	cpu_buffer = buffer->buffers[cpu];
2443 
2444 	/*
2445 	 * This must only be called if the event has not been
2446 	 * committed yet. Thus we can assume that preemption
2447 	 * is still disabled.
2448 	 */
2449 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2450 
2451 	rb_decrement_entry(cpu_buffer, event);
2452 	if (rb_try_to_discard(cpu_buffer, event))
2453 		goto out;
2454 
2455 	/*
2456 	 * The commit is still visible by the reader, so we
2457 	 * must still update the timestamp.
2458 	 */
2459 	rb_update_write_stamp(cpu_buffer, event);
2460  out:
2461 	rb_end_commit(cpu_buffer);
2462 
2463 	trace_recursive_unlock();
2464 
2465 	preempt_enable_notrace();
2466 
2467 }
2468 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2469 
2470 /**
2471  * ring_buffer_write - write data to the buffer without reserving
2472  * @buffer: The ring buffer to write to.
2473  * @length: The length of the data being written (excluding the event header)
2474  * @data: The data to write to the buffer.
2475  *
2476  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2477  * one function. If you already have the data to write to the buffer, it
2478  * may be easier to simply call this function.
2479  *
2480  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2481  * and not the length of the event which would hold the header.
2482  */
2483 int ring_buffer_write(struct ring_buffer *buffer,
2484 			unsigned long length,
2485 			void *data)
2486 {
2487 	struct ring_buffer_per_cpu *cpu_buffer;
2488 	struct ring_buffer_event *event;
2489 	void *body;
2490 	int ret = -EBUSY;
2491 	int cpu;
2492 
2493 	if (ring_buffer_flags != RB_BUFFERS_ON)
2494 		return -EBUSY;
2495 
2496 	preempt_disable_notrace();
2497 
2498 	if (atomic_read(&buffer->record_disabled))
2499 		goto out;
2500 
2501 	cpu = raw_smp_processor_id();
2502 
2503 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2504 		goto out;
2505 
2506 	cpu_buffer = buffer->buffers[cpu];
2507 
2508 	if (atomic_read(&cpu_buffer->record_disabled))
2509 		goto out;
2510 
2511 	if (length > BUF_MAX_DATA_SIZE)
2512 		goto out;
2513 
2514 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2515 	if (!event)
2516 		goto out;
2517 
2518 	body = rb_event_data(event);
2519 
2520 	memcpy(body, data, length);
2521 
2522 	rb_commit(cpu_buffer, event);
2523 
2524 	ret = 0;
2525  out:
2526 	preempt_enable_notrace();
2527 
2528 	return ret;
2529 }
2530 EXPORT_SYMBOL_GPL(ring_buffer_write);
2531 
2532 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2533 {
2534 	struct buffer_page *reader = cpu_buffer->reader_page;
2535 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2536 	struct buffer_page *commit = cpu_buffer->commit_page;
2537 
2538 	/* In case of error, head will be NULL */
2539 	if (unlikely(!head))
2540 		return 1;
2541 
2542 	return reader->read == rb_page_commit(reader) &&
2543 		(commit == reader ||
2544 		 (commit == head &&
2545 		  head->read == rb_page_commit(commit)));
2546 }
2547 
2548 /**
2549  * ring_buffer_record_disable - stop all writes into the buffer
2550  * @buffer: The ring buffer to stop writes to.
2551  *
2552  * This prevents all writes to the buffer. Any attempt to write
2553  * to the buffer after this will fail and return NULL.
2554  *
2555  * The caller should call synchronize_sched() after this.
2556  */
2557 void ring_buffer_record_disable(struct ring_buffer *buffer)
2558 {
2559 	atomic_inc(&buffer->record_disabled);
2560 }
2561 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2562 
2563 /**
2564  * ring_buffer_record_enable - enable writes to the buffer
2565  * @buffer: The ring buffer to enable writes
2566  *
2567  * Note, multiple disables will need the same number of enables
2568  * to truly enable the writing (much like preempt_disable).
2569  */
2570 void ring_buffer_record_enable(struct ring_buffer *buffer)
2571 {
2572 	atomic_dec(&buffer->record_disabled);
2573 }
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2575 
2576 /**
2577  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2578  * @buffer: The ring buffer to stop writes to.
2579  * @cpu: The CPU buffer to stop
2580  *
2581  * This prevents all writes to the buffer. Any attempt to write
2582  * to the buffer after this will fail and return NULL.
2583  *
2584  * The caller should call synchronize_sched() after this.
2585  */
2586 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2587 {
2588 	struct ring_buffer_per_cpu *cpu_buffer;
2589 
2590 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2591 		return;
2592 
2593 	cpu_buffer = buffer->buffers[cpu];
2594 	atomic_inc(&cpu_buffer->record_disabled);
2595 }
2596 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2597 
2598 /**
2599  * ring_buffer_record_enable_cpu - enable writes to the buffer
2600  * @buffer: The ring buffer to enable writes
2601  * @cpu: The CPU to enable.
2602  *
2603  * Note, multiple disables will need the same number of enables
2604  * to truly enable the writing (much like preempt_disable).
2605  */
2606 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2607 {
2608 	struct ring_buffer_per_cpu *cpu_buffer;
2609 
2610 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2611 		return;
2612 
2613 	cpu_buffer = buffer->buffers[cpu];
2614 	atomic_dec(&cpu_buffer->record_disabled);
2615 }
2616 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2617 
2618 /*
2619  * The total entries in the ring buffer is the running counter
2620  * of entries entered into the ring buffer, minus the sum of
2621  * the entries read from the ring buffer and the number of
2622  * entries that were overwritten.
2623  */
2624 static inline unsigned long
2625 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2626 {
2627 	return local_read(&cpu_buffer->entries) -
2628 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2629 }
2630 
2631 /**
2632  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2633  * @buffer: The ring buffer
2634  * @cpu: The per CPU buffer to get the entries from.
2635  */
2636 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2637 {
2638 	struct ring_buffer_per_cpu *cpu_buffer;
2639 
2640 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2641 		return 0;
2642 
2643 	cpu_buffer = buffer->buffers[cpu];
2644 
2645 	return rb_num_of_entries(cpu_buffer);
2646 }
2647 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2648 
2649 /**
2650  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2651  * @buffer: The ring buffer
2652  * @cpu: The per CPU buffer to get the number of overruns from
2653  */
2654 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2655 {
2656 	struct ring_buffer_per_cpu *cpu_buffer;
2657 	unsigned long ret;
2658 
2659 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2660 		return 0;
2661 
2662 	cpu_buffer = buffer->buffers[cpu];
2663 	ret = local_read(&cpu_buffer->overrun);
2664 
2665 	return ret;
2666 }
2667 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2668 
2669 /**
2670  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2671  * @buffer: The ring buffer
2672  * @cpu: The per CPU buffer to get the number of overruns from
2673  */
2674 unsigned long
2675 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2676 {
2677 	struct ring_buffer_per_cpu *cpu_buffer;
2678 	unsigned long ret;
2679 
2680 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2681 		return 0;
2682 
2683 	cpu_buffer = buffer->buffers[cpu];
2684 	ret = local_read(&cpu_buffer->commit_overrun);
2685 
2686 	return ret;
2687 }
2688 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2689 
2690 /**
2691  * ring_buffer_entries - get the number of entries in a buffer
2692  * @buffer: The ring buffer
2693  *
2694  * Returns the total number of entries in the ring buffer
2695  * (all CPU entries)
2696  */
2697 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2698 {
2699 	struct ring_buffer_per_cpu *cpu_buffer;
2700 	unsigned long entries = 0;
2701 	int cpu;
2702 
2703 	/* if you care about this being correct, lock the buffer */
2704 	for_each_buffer_cpu(buffer, cpu) {
2705 		cpu_buffer = buffer->buffers[cpu];
2706 		entries += rb_num_of_entries(cpu_buffer);
2707 	}
2708 
2709 	return entries;
2710 }
2711 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2712 
2713 /**
2714  * ring_buffer_overruns - get the number of overruns in buffer
2715  * @buffer: The ring buffer
2716  *
2717  * Returns the total number of overruns in the ring buffer
2718  * (all CPU entries)
2719  */
2720 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2721 {
2722 	struct ring_buffer_per_cpu *cpu_buffer;
2723 	unsigned long overruns = 0;
2724 	int cpu;
2725 
2726 	/* if you care about this being correct, lock the buffer */
2727 	for_each_buffer_cpu(buffer, cpu) {
2728 		cpu_buffer = buffer->buffers[cpu];
2729 		overruns += local_read(&cpu_buffer->overrun);
2730 	}
2731 
2732 	return overruns;
2733 }
2734 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2735 
2736 static void rb_iter_reset(struct ring_buffer_iter *iter)
2737 {
2738 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2739 
2740 	/* Iterator usage is expected to have record disabled */
2741 	if (list_empty(&cpu_buffer->reader_page->list)) {
2742 		iter->head_page = rb_set_head_page(cpu_buffer);
2743 		if (unlikely(!iter->head_page))
2744 			return;
2745 		iter->head = iter->head_page->read;
2746 	} else {
2747 		iter->head_page = cpu_buffer->reader_page;
2748 		iter->head = cpu_buffer->reader_page->read;
2749 	}
2750 	if (iter->head)
2751 		iter->read_stamp = cpu_buffer->read_stamp;
2752 	else
2753 		iter->read_stamp = iter->head_page->page->time_stamp;
2754 	iter->cache_reader_page = cpu_buffer->reader_page;
2755 	iter->cache_read = cpu_buffer->read;
2756 }
2757 
2758 /**
2759  * ring_buffer_iter_reset - reset an iterator
2760  * @iter: The iterator to reset
2761  *
2762  * Resets the iterator, so that it will start from the beginning
2763  * again.
2764  */
2765 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2766 {
2767 	struct ring_buffer_per_cpu *cpu_buffer;
2768 	unsigned long flags;
2769 
2770 	if (!iter)
2771 		return;
2772 
2773 	cpu_buffer = iter->cpu_buffer;
2774 
2775 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2776 	rb_iter_reset(iter);
2777 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2778 }
2779 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2780 
2781 /**
2782  * ring_buffer_iter_empty - check if an iterator has no more to read
2783  * @iter: The iterator to check
2784  */
2785 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2786 {
2787 	struct ring_buffer_per_cpu *cpu_buffer;
2788 
2789 	cpu_buffer = iter->cpu_buffer;
2790 
2791 	return iter->head_page == cpu_buffer->commit_page &&
2792 		iter->head == rb_commit_index(cpu_buffer);
2793 }
2794 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2795 
2796 static void
2797 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2798 		     struct ring_buffer_event *event)
2799 {
2800 	u64 delta;
2801 
2802 	switch (event->type_len) {
2803 	case RINGBUF_TYPE_PADDING:
2804 		return;
2805 
2806 	case RINGBUF_TYPE_TIME_EXTEND:
2807 		delta = event->array[0];
2808 		delta <<= TS_SHIFT;
2809 		delta += event->time_delta;
2810 		cpu_buffer->read_stamp += delta;
2811 		return;
2812 
2813 	case RINGBUF_TYPE_TIME_STAMP:
2814 		/* FIXME: not implemented */
2815 		return;
2816 
2817 	case RINGBUF_TYPE_DATA:
2818 		cpu_buffer->read_stamp += event->time_delta;
2819 		return;
2820 
2821 	default:
2822 		BUG();
2823 	}
2824 	return;
2825 }
2826 
2827 static void
2828 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2829 			  struct ring_buffer_event *event)
2830 {
2831 	u64 delta;
2832 
2833 	switch (event->type_len) {
2834 	case RINGBUF_TYPE_PADDING:
2835 		return;
2836 
2837 	case RINGBUF_TYPE_TIME_EXTEND:
2838 		delta = event->array[0];
2839 		delta <<= TS_SHIFT;
2840 		delta += event->time_delta;
2841 		iter->read_stamp += delta;
2842 		return;
2843 
2844 	case RINGBUF_TYPE_TIME_STAMP:
2845 		/* FIXME: not implemented */
2846 		return;
2847 
2848 	case RINGBUF_TYPE_DATA:
2849 		iter->read_stamp += event->time_delta;
2850 		return;
2851 
2852 	default:
2853 		BUG();
2854 	}
2855 	return;
2856 }
2857 
2858 static struct buffer_page *
2859 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2860 {
2861 	struct buffer_page *reader = NULL;
2862 	unsigned long overwrite;
2863 	unsigned long flags;
2864 	int nr_loops = 0;
2865 	int ret;
2866 
2867 	local_irq_save(flags);
2868 	arch_spin_lock(&cpu_buffer->lock);
2869 
2870  again:
2871 	/*
2872 	 * This should normally only loop twice. But because the
2873 	 * start of the reader inserts an empty page, it causes
2874 	 * a case where we will loop three times. There should be no
2875 	 * reason to loop four times (that I know of).
2876 	 */
2877 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2878 		reader = NULL;
2879 		goto out;
2880 	}
2881 
2882 	reader = cpu_buffer->reader_page;
2883 
2884 	/* If there's more to read, return this page */
2885 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2886 		goto out;
2887 
2888 	/* Never should we have an index greater than the size */
2889 	if (RB_WARN_ON(cpu_buffer,
2890 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2891 		goto out;
2892 
2893 	/* check if we caught up to the tail */
2894 	reader = NULL;
2895 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2896 		goto out;
2897 
2898 	/*
2899 	 * Reset the reader page to size zero.
2900 	 */
2901 	local_set(&cpu_buffer->reader_page->write, 0);
2902 	local_set(&cpu_buffer->reader_page->entries, 0);
2903 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2904 	cpu_buffer->reader_page->real_end = 0;
2905 
2906  spin:
2907 	/*
2908 	 * Splice the empty reader page into the list around the head.
2909 	 */
2910 	reader = rb_set_head_page(cpu_buffer);
2911 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2912 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2913 
2914 	/*
2915 	 * cpu_buffer->pages just needs to point to the buffer, it
2916 	 *  has no specific buffer page to point to. Lets move it out
2917 	 *  of our way so we don't accidently swap it.
2918 	 */
2919 	cpu_buffer->pages = reader->list.prev;
2920 
2921 	/* The reader page will be pointing to the new head */
2922 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2923 
2924 	/*
2925 	 * We want to make sure we read the overruns after we set up our
2926 	 * pointers to the next object. The writer side does a
2927 	 * cmpxchg to cross pages which acts as the mb on the writer
2928 	 * side. Note, the reader will constantly fail the swap
2929 	 * while the writer is updating the pointers, so this
2930 	 * guarantees that the overwrite recorded here is the one we
2931 	 * want to compare with the last_overrun.
2932 	 */
2933 	smp_mb();
2934 	overwrite = local_read(&(cpu_buffer->overrun));
2935 
2936 	/*
2937 	 * Here's the tricky part.
2938 	 *
2939 	 * We need to move the pointer past the header page.
2940 	 * But we can only do that if a writer is not currently
2941 	 * moving it. The page before the header page has the
2942 	 * flag bit '1' set if it is pointing to the page we want.
2943 	 * but if the writer is in the process of moving it
2944 	 * than it will be '2' or already moved '0'.
2945 	 */
2946 
2947 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2948 
2949 	/*
2950 	 * If we did not convert it, then we must try again.
2951 	 */
2952 	if (!ret)
2953 		goto spin;
2954 
2955 	/*
2956 	 * Yeah! We succeeded in replacing the page.
2957 	 *
2958 	 * Now make the new head point back to the reader page.
2959 	 */
2960 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2961 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2962 
2963 	/* Finally update the reader page to the new head */
2964 	cpu_buffer->reader_page = reader;
2965 	rb_reset_reader_page(cpu_buffer);
2966 
2967 	if (overwrite != cpu_buffer->last_overrun) {
2968 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2969 		cpu_buffer->last_overrun = overwrite;
2970 	}
2971 
2972 	goto again;
2973 
2974  out:
2975 	arch_spin_unlock(&cpu_buffer->lock);
2976 	local_irq_restore(flags);
2977 
2978 	return reader;
2979 }
2980 
2981 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2982 {
2983 	struct ring_buffer_event *event;
2984 	struct buffer_page *reader;
2985 	unsigned length;
2986 
2987 	reader = rb_get_reader_page(cpu_buffer);
2988 
2989 	/* This function should not be called when buffer is empty */
2990 	if (RB_WARN_ON(cpu_buffer, !reader))
2991 		return;
2992 
2993 	event = rb_reader_event(cpu_buffer);
2994 
2995 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2996 		cpu_buffer->read++;
2997 
2998 	rb_update_read_stamp(cpu_buffer, event);
2999 
3000 	length = rb_event_length(event);
3001 	cpu_buffer->reader_page->read += length;
3002 }
3003 
3004 static void rb_advance_iter(struct ring_buffer_iter *iter)
3005 {
3006 	struct ring_buffer_per_cpu *cpu_buffer;
3007 	struct ring_buffer_event *event;
3008 	unsigned length;
3009 
3010 	cpu_buffer = iter->cpu_buffer;
3011 
3012 	/*
3013 	 * Check if we are at the end of the buffer.
3014 	 */
3015 	if (iter->head >= rb_page_size(iter->head_page)) {
3016 		/* discarded commits can make the page empty */
3017 		if (iter->head_page == cpu_buffer->commit_page)
3018 			return;
3019 		rb_inc_iter(iter);
3020 		return;
3021 	}
3022 
3023 	event = rb_iter_head_event(iter);
3024 
3025 	length = rb_event_length(event);
3026 
3027 	/*
3028 	 * This should not be called to advance the header if we are
3029 	 * at the tail of the buffer.
3030 	 */
3031 	if (RB_WARN_ON(cpu_buffer,
3032 		       (iter->head_page == cpu_buffer->commit_page) &&
3033 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3034 		return;
3035 
3036 	rb_update_iter_read_stamp(iter, event);
3037 
3038 	iter->head += length;
3039 
3040 	/* check for end of page padding */
3041 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3042 	    (iter->head_page != cpu_buffer->commit_page))
3043 		rb_advance_iter(iter);
3044 }
3045 
3046 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3047 {
3048 	return cpu_buffer->lost_events;
3049 }
3050 
3051 static struct ring_buffer_event *
3052 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3053 	       unsigned long *lost_events)
3054 {
3055 	struct ring_buffer_event *event;
3056 	struct buffer_page *reader;
3057 	int nr_loops = 0;
3058 
3059  again:
3060 	/*
3061 	 * We repeat when a time extend is encountered.
3062 	 * Since the time extend is always attached to a data event,
3063 	 * we should never loop more than once.
3064 	 * (We never hit the following condition more than twice).
3065 	 */
3066 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3067 		return NULL;
3068 
3069 	reader = rb_get_reader_page(cpu_buffer);
3070 	if (!reader)
3071 		return NULL;
3072 
3073 	event = rb_reader_event(cpu_buffer);
3074 
3075 	switch (event->type_len) {
3076 	case RINGBUF_TYPE_PADDING:
3077 		if (rb_null_event(event))
3078 			RB_WARN_ON(cpu_buffer, 1);
3079 		/*
3080 		 * Because the writer could be discarding every
3081 		 * event it creates (which would probably be bad)
3082 		 * if we were to go back to "again" then we may never
3083 		 * catch up, and will trigger the warn on, or lock
3084 		 * the box. Return the padding, and we will release
3085 		 * the current locks, and try again.
3086 		 */
3087 		return event;
3088 
3089 	case RINGBUF_TYPE_TIME_EXTEND:
3090 		/* Internal data, OK to advance */
3091 		rb_advance_reader(cpu_buffer);
3092 		goto again;
3093 
3094 	case RINGBUF_TYPE_TIME_STAMP:
3095 		/* FIXME: not implemented */
3096 		rb_advance_reader(cpu_buffer);
3097 		goto again;
3098 
3099 	case RINGBUF_TYPE_DATA:
3100 		if (ts) {
3101 			*ts = cpu_buffer->read_stamp + event->time_delta;
3102 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3103 							 cpu_buffer->cpu, ts);
3104 		}
3105 		if (lost_events)
3106 			*lost_events = rb_lost_events(cpu_buffer);
3107 		return event;
3108 
3109 	default:
3110 		BUG();
3111 	}
3112 
3113 	return NULL;
3114 }
3115 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3116 
3117 static struct ring_buffer_event *
3118 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3119 {
3120 	struct ring_buffer *buffer;
3121 	struct ring_buffer_per_cpu *cpu_buffer;
3122 	struct ring_buffer_event *event;
3123 	int nr_loops = 0;
3124 
3125 	cpu_buffer = iter->cpu_buffer;
3126 	buffer = cpu_buffer->buffer;
3127 
3128 	/*
3129 	 * Check if someone performed a consuming read to
3130 	 * the buffer. A consuming read invalidates the iterator
3131 	 * and we need to reset the iterator in this case.
3132 	 */
3133 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3134 		     iter->cache_reader_page != cpu_buffer->reader_page))
3135 		rb_iter_reset(iter);
3136 
3137  again:
3138 	if (ring_buffer_iter_empty(iter))
3139 		return NULL;
3140 
3141 	/*
3142 	 * We repeat when a time extend is encountered.
3143 	 * Since the time extend is always attached to a data event,
3144 	 * we should never loop more than once.
3145 	 * (We never hit the following condition more than twice).
3146 	 */
3147 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3148 		return NULL;
3149 
3150 	if (rb_per_cpu_empty(cpu_buffer))
3151 		return NULL;
3152 
3153 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3154 		rb_inc_iter(iter);
3155 		goto again;
3156 	}
3157 
3158 	event = rb_iter_head_event(iter);
3159 
3160 	switch (event->type_len) {
3161 	case RINGBUF_TYPE_PADDING:
3162 		if (rb_null_event(event)) {
3163 			rb_inc_iter(iter);
3164 			goto again;
3165 		}
3166 		rb_advance_iter(iter);
3167 		return event;
3168 
3169 	case RINGBUF_TYPE_TIME_EXTEND:
3170 		/* Internal data, OK to advance */
3171 		rb_advance_iter(iter);
3172 		goto again;
3173 
3174 	case RINGBUF_TYPE_TIME_STAMP:
3175 		/* FIXME: not implemented */
3176 		rb_advance_iter(iter);
3177 		goto again;
3178 
3179 	case RINGBUF_TYPE_DATA:
3180 		if (ts) {
3181 			*ts = iter->read_stamp + event->time_delta;
3182 			ring_buffer_normalize_time_stamp(buffer,
3183 							 cpu_buffer->cpu, ts);
3184 		}
3185 		return event;
3186 
3187 	default:
3188 		BUG();
3189 	}
3190 
3191 	return NULL;
3192 }
3193 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3194 
3195 static inline int rb_ok_to_lock(void)
3196 {
3197 	/*
3198 	 * If an NMI die dumps out the content of the ring buffer
3199 	 * do not grab locks. We also permanently disable the ring
3200 	 * buffer too. A one time deal is all you get from reading
3201 	 * the ring buffer from an NMI.
3202 	 */
3203 	if (likely(!in_nmi()))
3204 		return 1;
3205 
3206 	tracing_off_permanent();
3207 	return 0;
3208 }
3209 
3210 /**
3211  * ring_buffer_peek - peek at the next event to be read
3212  * @buffer: The ring buffer to read
3213  * @cpu: The cpu to peak at
3214  * @ts: The timestamp counter of this event.
3215  * @lost_events: a variable to store if events were lost (may be NULL)
3216  *
3217  * This will return the event that will be read next, but does
3218  * not consume the data.
3219  */
3220 struct ring_buffer_event *
3221 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3222 		 unsigned long *lost_events)
3223 {
3224 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3225 	struct ring_buffer_event *event;
3226 	unsigned long flags;
3227 	int dolock;
3228 
3229 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3230 		return NULL;
3231 
3232 	dolock = rb_ok_to_lock();
3233  again:
3234 	local_irq_save(flags);
3235 	if (dolock)
3236 		spin_lock(&cpu_buffer->reader_lock);
3237 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3238 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3239 		rb_advance_reader(cpu_buffer);
3240 	if (dolock)
3241 		spin_unlock(&cpu_buffer->reader_lock);
3242 	local_irq_restore(flags);
3243 
3244 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3245 		goto again;
3246 
3247 	return event;
3248 }
3249 
3250 /**
3251  * ring_buffer_iter_peek - peek at the next event to be read
3252  * @iter: The ring buffer iterator
3253  * @ts: The timestamp counter of this event.
3254  *
3255  * This will return the event that will be read next, but does
3256  * not increment the iterator.
3257  */
3258 struct ring_buffer_event *
3259 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3260 {
3261 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3262 	struct ring_buffer_event *event;
3263 	unsigned long flags;
3264 
3265  again:
3266 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3267 	event = rb_iter_peek(iter, ts);
3268 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3269 
3270 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3271 		goto again;
3272 
3273 	return event;
3274 }
3275 
3276 /**
3277  * ring_buffer_consume - return an event and consume it
3278  * @buffer: The ring buffer to get the next event from
3279  * @cpu: the cpu to read the buffer from
3280  * @ts: a variable to store the timestamp (may be NULL)
3281  * @lost_events: a variable to store if events were lost (may be NULL)
3282  *
3283  * Returns the next event in the ring buffer, and that event is consumed.
3284  * Meaning, that sequential reads will keep returning a different event,
3285  * and eventually empty the ring buffer if the producer is slower.
3286  */
3287 struct ring_buffer_event *
3288 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3289 		    unsigned long *lost_events)
3290 {
3291 	struct ring_buffer_per_cpu *cpu_buffer;
3292 	struct ring_buffer_event *event = NULL;
3293 	unsigned long flags;
3294 	int dolock;
3295 
3296 	dolock = rb_ok_to_lock();
3297 
3298  again:
3299 	/* might be called in atomic */
3300 	preempt_disable();
3301 
3302 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3303 		goto out;
3304 
3305 	cpu_buffer = buffer->buffers[cpu];
3306 	local_irq_save(flags);
3307 	if (dolock)
3308 		spin_lock(&cpu_buffer->reader_lock);
3309 
3310 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3311 	if (event) {
3312 		cpu_buffer->lost_events = 0;
3313 		rb_advance_reader(cpu_buffer);
3314 	}
3315 
3316 	if (dolock)
3317 		spin_unlock(&cpu_buffer->reader_lock);
3318 	local_irq_restore(flags);
3319 
3320  out:
3321 	preempt_enable();
3322 
3323 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3324 		goto again;
3325 
3326 	return event;
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3329 
3330 /**
3331  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3332  * @buffer: The ring buffer to read from
3333  * @cpu: The cpu buffer to iterate over
3334  *
3335  * This performs the initial preparations necessary to iterate
3336  * through the buffer.  Memory is allocated, buffer recording
3337  * is disabled, and the iterator pointer is returned to the caller.
3338  *
3339  * Disabling buffer recordng prevents the reading from being
3340  * corrupted. This is not a consuming read, so a producer is not
3341  * expected.
3342  *
3343  * After a sequence of ring_buffer_read_prepare calls, the user is
3344  * expected to make at least one call to ring_buffer_prepare_sync.
3345  * Afterwards, ring_buffer_read_start is invoked to get things going
3346  * for real.
3347  *
3348  * This overall must be paired with ring_buffer_finish.
3349  */
3350 struct ring_buffer_iter *
3351 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3352 {
3353 	struct ring_buffer_per_cpu *cpu_buffer;
3354 	struct ring_buffer_iter *iter;
3355 
3356 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3357 		return NULL;
3358 
3359 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3360 	if (!iter)
3361 		return NULL;
3362 
3363 	cpu_buffer = buffer->buffers[cpu];
3364 
3365 	iter->cpu_buffer = cpu_buffer;
3366 
3367 	atomic_inc(&cpu_buffer->record_disabled);
3368 
3369 	return iter;
3370 }
3371 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3372 
3373 /**
3374  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3375  *
3376  * All previously invoked ring_buffer_read_prepare calls to prepare
3377  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3378  * calls on those iterators are allowed.
3379  */
3380 void
3381 ring_buffer_read_prepare_sync(void)
3382 {
3383 	synchronize_sched();
3384 }
3385 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3386 
3387 /**
3388  * ring_buffer_read_start - start a non consuming read of the buffer
3389  * @iter: The iterator returned by ring_buffer_read_prepare
3390  *
3391  * This finalizes the startup of an iteration through the buffer.
3392  * The iterator comes from a call to ring_buffer_read_prepare and
3393  * an intervening ring_buffer_read_prepare_sync must have been
3394  * performed.
3395  *
3396  * Must be paired with ring_buffer_finish.
3397  */
3398 void
3399 ring_buffer_read_start(struct ring_buffer_iter *iter)
3400 {
3401 	struct ring_buffer_per_cpu *cpu_buffer;
3402 	unsigned long flags;
3403 
3404 	if (!iter)
3405 		return;
3406 
3407 	cpu_buffer = iter->cpu_buffer;
3408 
3409 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3410 	arch_spin_lock(&cpu_buffer->lock);
3411 	rb_iter_reset(iter);
3412 	arch_spin_unlock(&cpu_buffer->lock);
3413 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3414 }
3415 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3416 
3417 /**
3418  * ring_buffer_finish - finish reading the iterator of the buffer
3419  * @iter: The iterator retrieved by ring_buffer_start
3420  *
3421  * This re-enables the recording to the buffer, and frees the
3422  * iterator.
3423  */
3424 void
3425 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3426 {
3427 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3428 
3429 	atomic_dec(&cpu_buffer->record_disabled);
3430 	kfree(iter);
3431 }
3432 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3433 
3434 /**
3435  * ring_buffer_read - read the next item in the ring buffer by the iterator
3436  * @iter: The ring buffer iterator
3437  * @ts: The time stamp of the event read.
3438  *
3439  * This reads the next event in the ring buffer and increments the iterator.
3440  */
3441 struct ring_buffer_event *
3442 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3443 {
3444 	struct ring_buffer_event *event;
3445 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3446 	unsigned long flags;
3447 
3448 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3449  again:
3450 	event = rb_iter_peek(iter, ts);
3451 	if (!event)
3452 		goto out;
3453 
3454 	if (event->type_len == RINGBUF_TYPE_PADDING)
3455 		goto again;
3456 
3457 	rb_advance_iter(iter);
3458  out:
3459 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3460 
3461 	return event;
3462 }
3463 EXPORT_SYMBOL_GPL(ring_buffer_read);
3464 
3465 /**
3466  * ring_buffer_size - return the size of the ring buffer (in bytes)
3467  * @buffer: The ring buffer.
3468  */
3469 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3470 {
3471 	return BUF_PAGE_SIZE * buffer->pages;
3472 }
3473 EXPORT_SYMBOL_GPL(ring_buffer_size);
3474 
3475 static void
3476 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3477 {
3478 	rb_head_page_deactivate(cpu_buffer);
3479 
3480 	cpu_buffer->head_page
3481 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3482 	local_set(&cpu_buffer->head_page->write, 0);
3483 	local_set(&cpu_buffer->head_page->entries, 0);
3484 	local_set(&cpu_buffer->head_page->page->commit, 0);
3485 
3486 	cpu_buffer->head_page->read = 0;
3487 
3488 	cpu_buffer->tail_page = cpu_buffer->head_page;
3489 	cpu_buffer->commit_page = cpu_buffer->head_page;
3490 
3491 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3492 	local_set(&cpu_buffer->reader_page->write, 0);
3493 	local_set(&cpu_buffer->reader_page->entries, 0);
3494 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3495 	cpu_buffer->reader_page->read = 0;
3496 
3497 	local_set(&cpu_buffer->commit_overrun, 0);
3498 	local_set(&cpu_buffer->overrun, 0);
3499 	local_set(&cpu_buffer->entries, 0);
3500 	local_set(&cpu_buffer->committing, 0);
3501 	local_set(&cpu_buffer->commits, 0);
3502 	cpu_buffer->read = 0;
3503 
3504 	cpu_buffer->write_stamp = 0;
3505 	cpu_buffer->read_stamp = 0;
3506 
3507 	cpu_buffer->lost_events = 0;
3508 	cpu_buffer->last_overrun = 0;
3509 
3510 	rb_head_page_activate(cpu_buffer);
3511 }
3512 
3513 /**
3514  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3515  * @buffer: The ring buffer to reset a per cpu buffer of
3516  * @cpu: The CPU buffer to be reset
3517  */
3518 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3519 {
3520 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3521 	unsigned long flags;
3522 
3523 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3524 		return;
3525 
3526 	atomic_inc(&cpu_buffer->record_disabled);
3527 
3528 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3529 
3530 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3531 		goto out;
3532 
3533 	arch_spin_lock(&cpu_buffer->lock);
3534 
3535 	rb_reset_cpu(cpu_buffer);
3536 
3537 	arch_spin_unlock(&cpu_buffer->lock);
3538 
3539  out:
3540 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3541 
3542 	atomic_dec(&cpu_buffer->record_disabled);
3543 }
3544 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3545 
3546 /**
3547  * ring_buffer_reset - reset a ring buffer
3548  * @buffer: The ring buffer to reset all cpu buffers
3549  */
3550 void ring_buffer_reset(struct ring_buffer *buffer)
3551 {
3552 	int cpu;
3553 
3554 	for_each_buffer_cpu(buffer, cpu)
3555 		ring_buffer_reset_cpu(buffer, cpu);
3556 }
3557 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3558 
3559 /**
3560  * rind_buffer_empty - is the ring buffer empty?
3561  * @buffer: The ring buffer to test
3562  */
3563 int ring_buffer_empty(struct ring_buffer *buffer)
3564 {
3565 	struct ring_buffer_per_cpu *cpu_buffer;
3566 	unsigned long flags;
3567 	int dolock;
3568 	int cpu;
3569 	int ret;
3570 
3571 	dolock = rb_ok_to_lock();
3572 
3573 	/* yes this is racy, but if you don't like the race, lock the buffer */
3574 	for_each_buffer_cpu(buffer, cpu) {
3575 		cpu_buffer = buffer->buffers[cpu];
3576 		local_irq_save(flags);
3577 		if (dolock)
3578 			spin_lock(&cpu_buffer->reader_lock);
3579 		ret = rb_per_cpu_empty(cpu_buffer);
3580 		if (dolock)
3581 			spin_unlock(&cpu_buffer->reader_lock);
3582 		local_irq_restore(flags);
3583 
3584 		if (!ret)
3585 			return 0;
3586 	}
3587 
3588 	return 1;
3589 }
3590 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3591 
3592 /**
3593  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3594  * @buffer: The ring buffer
3595  * @cpu: The CPU buffer to test
3596  */
3597 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3598 {
3599 	struct ring_buffer_per_cpu *cpu_buffer;
3600 	unsigned long flags;
3601 	int dolock;
3602 	int ret;
3603 
3604 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3605 		return 1;
3606 
3607 	dolock = rb_ok_to_lock();
3608 
3609 	cpu_buffer = buffer->buffers[cpu];
3610 	local_irq_save(flags);
3611 	if (dolock)
3612 		spin_lock(&cpu_buffer->reader_lock);
3613 	ret = rb_per_cpu_empty(cpu_buffer);
3614 	if (dolock)
3615 		spin_unlock(&cpu_buffer->reader_lock);
3616 	local_irq_restore(flags);
3617 
3618 	return ret;
3619 }
3620 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3621 
3622 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3623 /**
3624  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3625  * @buffer_a: One buffer to swap with
3626  * @buffer_b: The other buffer to swap with
3627  *
3628  * This function is useful for tracers that want to take a "snapshot"
3629  * of a CPU buffer and has another back up buffer lying around.
3630  * it is expected that the tracer handles the cpu buffer not being
3631  * used at the moment.
3632  */
3633 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3634 			 struct ring_buffer *buffer_b, int cpu)
3635 {
3636 	struct ring_buffer_per_cpu *cpu_buffer_a;
3637 	struct ring_buffer_per_cpu *cpu_buffer_b;
3638 	int ret = -EINVAL;
3639 
3640 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3641 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3642 		goto out;
3643 
3644 	/* At least make sure the two buffers are somewhat the same */
3645 	if (buffer_a->pages != buffer_b->pages)
3646 		goto out;
3647 
3648 	ret = -EAGAIN;
3649 
3650 	if (ring_buffer_flags != RB_BUFFERS_ON)
3651 		goto out;
3652 
3653 	if (atomic_read(&buffer_a->record_disabled))
3654 		goto out;
3655 
3656 	if (atomic_read(&buffer_b->record_disabled))
3657 		goto out;
3658 
3659 	cpu_buffer_a = buffer_a->buffers[cpu];
3660 	cpu_buffer_b = buffer_b->buffers[cpu];
3661 
3662 	if (atomic_read(&cpu_buffer_a->record_disabled))
3663 		goto out;
3664 
3665 	if (atomic_read(&cpu_buffer_b->record_disabled))
3666 		goto out;
3667 
3668 	/*
3669 	 * We can't do a synchronize_sched here because this
3670 	 * function can be called in atomic context.
3671 	 * Normally this will be called from the same CPU as cpu.
3672 	 * If not it's up to the caller to protect this.
3673 	 */
3674 	atomic_inc(&cpu_buffer_a->record_disabled);
3675 	atomic_inc(&cpu_buffer_b->record_disabled);
3676 
3677 	ret = -EBUSY;
3678 	if (local_read(&cpu_buffer_a->committing))
3679 		goto out_dec;
3680 	if (local_read(&cpu_buffer_b->committing))
3681 		goto out_dec;
3682 
3683 	buffer_a->buffers[cpu] = cpu_buffer_b;
3684 	buffer_b->buffers[cpu] = cpu_buffer_a;
3685 
3686 	cpu_buffer_b->buffer = buffer_a;
3687 	cpu_buffer_a->buffer = buffer_b;
3688 
3689 	ret = 0;
3690 
3691 out_dec:
3692 	atomic_dec(&cpu_buffer_a->record_disabled);
3693 	atomic_dec(&cpu_buffer_b->record_disabled);
3694 out:
3695 	return ret;
3696 }
3697 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3698 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3699 
3700 /**
3701  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3702  * @buffer: the buffer to allocate for.
3703  *
3704  * This function is used in conjunction with ring_buffer_read_page.
3705  * When reading a full page from the ring buffer, these functions
3706  * can be used to speed up the process. The calling function should
3707  * allocate a few pages first with this function. Then when it
3708  * needs to get pages from the ring buffer, it passes the result
3709  * of this function into ring_buffer_read_page, which will swap
3710  * the page that was allocated, with the read page of the buffer.
3711  *
3712  * Returns:
3713  *  The page allocated, or NULL on error.
3714  */
3715 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3716 {
3717 	struct buffer_data_page *bpage;
3718 	unsigned long addr;
3719 
3720 	addr = __get_free_page(GFP_KERNEL);
3721 	if (!addr)
3722 		return NULL;
3723 
3724 	bpage = (void *)addr;
3725 
3726 	rb_init_page(bpage);
3727 
3728 	return bpage;
3729 }
3730 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3731 
3732 /**
3733  * ring_buffer_free_read_page - free an allocated read page
3734  * @buffer: the buffer the page was allocate for
3735  * @data: the page to free
3736  *
3737  * Free a page allocated from ring_buffer_alloc_read_page.
3738  */
3739 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3740 {
3741 	free_page((unsigned long)data);
3742 }
3743 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3744 
3745 /**
3746  * ring_buffer_read_page - extract a page from the ring buffer
3747  * @buffer: buffer to extract from
3748  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3749  * @len: amount to extract
3750  * @cpu: the cpu of the buffer to extract
3751  * @full: should the extraction only happen when the page is full.
3752  *
3753  * This function will pull out a page from the ring buffer and consume it.
3754  * @data_page must be the address of the variable that was returned
3755  * from ring_buffer_alloc_read_page. This is because the page might be used
3756  * to swap with a page in the ring buffer.
3757  *
3758  * for example:
3759  *	rpage = ring_buffer_alloc_read_page(buffer);
3760  *	if (!rpage)
3761  *		return error;
3762  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3763  *	if (ret >= 0)
3764  *		process_page(rpage, ret);
3765  *
3766  * When @full is set, the function will not return true unless
3767  * the writer is off the reader page.
3768  *
3769  * Note: it is up to the calling functions to handle sleeps and wakeups.
3770  *  The ring buffer can be used anywhere in the kernel and can not
3771  *  blindly call wake_up. The layer that uses the ring buffer must be
3772  *  responsible for that.
3773  *
3774  * Returns:
3775  *  >=0 if data has been transferred, returns the offset of consumed data.
3776  *  <0 if no data has been transferred.
3777  */
3778 int ring_buffer_read_page(struct ring_buffer *buffer,
3779 			  void **data_page, size_t len, int cpu, int full)
3780 {
3781 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3782 	struct ring_buffer_event *event;
3783 	struct buffer_data_page *bpage;
3784 	struct buffer_page *reader;
3785 	unsigned long missed_events;
3786 	unsigned long flags;
3787 	unsigned int commit;
3788 	unsigned int read;
3789 	u64 save_timestamp;
3790 	int ret = -1;
3791 
3792 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3793 		goto out;
3794 
3795 	/*
3796 	 * If len is not big enough to hold the page header, then
3797 	 * we can not copy anything.
3798 	 */
3799 	if (len <= BUF_PAGE_HDR_SIZE)
3800 		goto out;
3801 
3802 	len -= BUF_PAGE_HDR_SIZE;
3803 
3804 	if (!data_page)
3805 		goto out;
3806 
3807 	bpage = *data_page;
3808 	if (!bpage)
3809 		goto out;
3810 
3811 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3812 
3813 	reader = rb_get_reader_page(cpu_buffer);
3814 	if (!reader)
3815 		goto out_unlock;
3816 
3817 	event = rb_reader_event(cpu_buffer);
3818 
3819 	read = reader->read;
3820 	commit = rb_page_commit(reader);
3821 
3822 	/* Check if any events were dropped */
3823 	missed_events = cpu_buffer->lost_events;
3824 
3825 	/*
3826 	 * If this page has been partially read or
3827 	 * if len is not big enough to read the rest of the page or
3828 	 * a writer is still on the page, then
3829 	 * we must copy the data from the page to the buffer.
3830 	 * Otherwise, we can simply swap the page with the one passed in.
3831 	 */
3832 	if (read || (len < (commit - read)) ||
3833 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3834 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3835 		unsigned int rpos = read;
3836 		unsigned int pos = 0;
3837 		unsigned int size;
3838 
3839 		if (full)
3840 			goto out_unlock;
3841 
3842 		if (len > (commit - read))
3843 			len = (commit - read);
3844 
3845 		/* Always keep the time extend and data together */
3846 		size = rb_event_ts_length(event);
3847 
3848 		if (len < size)
3849 			goto out_unlock;
3850 
3851 		/* save the current timestamp, since the user will need it */
3852 		save_timestamp = cpu_buffer->read_stamp;
3853 
3854 		/* Need to copy one event at a time */
3855 		do {
3856 			/* We need the size of one event, because
3857 			 * rb_advance_reader only advances by one event,
3858 			 * whereas rb_event_ts_length may include the size of
3859 			 * one or two events.
3860 			 * We have already ensured there's enough space if this
3861 			 * is a time extend. */
3862 			size = rb_event_length(event);
3863 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3864 
3865 			len -= size;
3866 
3867 			rb_advance_reader(cpu_buffer);
3868 			rpos = reader->read;
3869 			pos += size;
3870 
3871 			if (rpos >= commit)
3872 				break;
3873 
3874 			event = rb_reader_event(cpu_buffer);
3875 			/* Always keep the time extend and data together */
3876 			size = rb_event_ts_length(event);
3877 		} while (len >= size);
3878 
3879 		/* update bpage */
3880 		local_set(&bpage->commit, pos);
3881 		bpage->time_stamp = save_timestamp;
3882 
3883 		/* we copied everything to the beginning */
3884 		read = 0;
3885 	} else {
3886 		/* update the entry counter */
3887 		cpu_buffer->read += rb_page_entries(reader);
3888 
3889 		/* swap the pages */
3890 		rb_init_page(bpage);
3891 		bpage = reader->page;
3892 		reader->page = *data_page;
3893 		local_set(&reader->write, 0);
3894 		local_set(&reader->entries, 0);
3895 		reader->read = 0;
3896 		*data_page = bpage;
3897 
3898 		/*
3899 		 * Use the real_end for the data size,
3900 		 * This gives us a chance to store the lost events
3901 		 * on the page.
3902 		 */
3903 		if (reader->real_end)
3904 			local_set(&bpage->commit, reader->real_end);
3905 	}
3906 	ret = read;
3907 
3908 	cpu_buffer->lost_events = 0;
3909 
3910 	commit = local_read(&bpage->commit);
3911 	/*
3912 	 * Set a flag in the commit field if we lost events
3913 	 */
3914 	if (missed_events) {
3915 		/* If there is room at the end of the page to save the
3916 		 * missed events, then record it there.
3917 		 */
3918 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3919 			memcpy(&bpage->data[commit], &missed_events,
3920 			       sizeof(missed_events));
3921 			local_add(RB_MISSED_STORED, &bpage->commit);
3922 			commit += sizeof(missed_events);
3923 		}
3924 		local_add(RB_MISSED_EVENTS, &bpage->commit);
3925 	}
3926 
3927 	/*
3928 	 * This page may be off to user land. Zero it out here.
3929 	 */
3930 	if (commit < BUF_PAGE_SIZE)
3931 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3932 
3933  out_unlock:
3934 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3935 
3936  out:
3937 	return ret;
3938 }
3939 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3940 
3941 #ifdef CONFIG_TRACING
3942 static ssize_t
3943 rb_simple_read(struct file *filp, char __user *ubuf,
3944 	       size_t cnt, loff_t *ppos)
3945 {
3946 	unsigned long *p = filp->private_data;
3947 	char buf[64];
3948 	int r;
3949 
3950 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3951 		r = sprintf(buf, "permanently disabled\n");
3952 	else
3953 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3954 
3955 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3956 }
3957 
3958 static ssize_t
3959 rb_simple_write(struct file *filp, const char __user *ubuf,
3960 		size_t cnt, loff_t *ppos)
3961 {
3962 	unsigned long *p = filp->private_data;
3963 	char buf[64];
3964 	unsigned long val;
3965 	int ret;
3966 
3967 	if (cnt >= sizeof(buf))
3968 		return -EINVAL;
3969 
3970 	if (copy_from_user(&buf, ubuf, cnt))
3971 		return -EFAULT;
3972 
3973 	buf[cnt] = 0;
3974 
3975 	ret = strict_strtoul(buf, 10, &val);
3976 	if (ret < 0)
3977 		return ret;
3978 
3979 	if (val)
3980 		set_bit(RB_BUFFERS_ON_BIT, p);
3981 	else
3982 		clear_bit(RB_BUFFERS_ON_BIT, p);
3983 
3984 	(*ppos)++;
3985 
3986 	return cnt;
3987 }
3988 
3989 static const struct file_operations rb_simple_fops = {
3990 	.open		= tracing_open_generic,
3991 	.read		= rb_simple_read,
3992 	.write		= rb_simple_write,
3993 	.llseek		= default_llseek,
3994 };
3995 
3996 
3997 static __init int rb_init_debugfs(void)
3998 {
3999 	struct dentry *d_tracer;
4000 
4001 	d_tracer = tracing_init_dentry();
4002 
4003 	trace_create_file("tracing_on", 0644, d_tracer,
4004 			    &ring_buffer_flags, &rb_simple_fops);
4005 
4006 	return 0;
4007 }
4008 
4009 fs_initcall(rb_init_debugfs);
4010 #endif
4011 
4012 #ifdef CONFIG_HOTPLUG_CPU
4013 static int rb_cpu_notify(struct notifier_block *self,
4014 			 unsigned long action, void *hcpu)
4015 {
4016 	struct ring_buffer *buffer =
4017 		container_of(self, struct ring_buffer, cpu_notify);
4018 	long cpu = (long)hcpu;
4019 
4020 	switch (action) {
4021 	case CPU_UP_PREPARE:
4022 	case CPU_UP_PREPARE_FROZEN:
4023 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4024 			return NOTIFY_OK;
4025 
4026 		buffer->buffers[cpu] =
4027 			rb_allocate_cpu_buffer(buffer, cpu);
4028 		if (!buffer->buffers[cpu]) {
4029 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4030 			     cpu);
4031 			return NOTIFY_OK;
4032 		}
4033 		smp_wmb();
4034 		cpumask_set_cpu(cpu, buffer->cpumask);
4035 		break;
4036 	case CPU_DOWN_PREPARE:
4037 	case CPU_DOWN_PREPARE_FROZEN:
4038 		/*
4039 		 * Do nothing.
4040 		 *  If we were to free the buffer, then the user would
4041 		 *  lose any trace that was in the buffer.
4042 		 */
4043 		break;
4044 	default:
4045 		break;
4046 	}
4047 	return NOTIFY_OK;
4048 }
4049 #endif
4050