xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision d78c317f)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include <asm/local.h>
24 #include "trace.h"
25 
26 /*
27  * The ring buffer header is special. We must manually up keep it.
28  */
29 int ring_buffer_print_entry_header(struct trace_seq *s)
30 {
31 	int ret;
32 
33 	ret = trace_seq_printf(s, "# compressed entry header\n");
34 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
35 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
36 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
37 	ret = trace_seq_printf(s, "\n");
38 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
39 			       RINGBUF_TYPE_PADDING);
40 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 			       RINGBUF_TYPE_TIME_EXTEND);
42 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
43 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
44 
45 	return ret;
46 }
47 
48 /*
49  * The ring buffer is made up of a list of pages. A separate list of pages is
50  * allocated for each CPU. A writer may only write to a buffer that is
51  * associated with the CPU it is currently executing on.  A reader may read
52  * from any per cpu buffer.
53  *
54  * The reader is special. For each per cpu buffer, the reader has its own
55  * reader page. When a reader has read the entire reader page, this reader
56  * page is swapped with another page in the ring buffer.
57  *
58  * Now, as long as the writer is off the reader page, the reader can do what
59  * ever it wants with that page. The writer will never write to that page
60  * again (as long as it is out of the ring buffer).
61  *
62  * Here's some silly ASCII art.
63  *
64  *   +------+
65  *   |reader|          RING BUFFER
66  *   |page  |
67  *   +------+        +---+   +---+   +---+
68  *                   |   |-->|   |-->|   |
69  *                   +---+   +---+   +---+
70  *                     ^               |
71  *                     |               |
72  *                     +---------------+
73  *
74  *
75  *   +------+
76  *   |reader|          RING BUFFER
77  *   |page  |------------------v
78  *   +------+        +---+   +---+   +---+
79  *                   |   |-->|   |-->|   |
80  *                   +---+   +---+   +---+
81  *                     ^               |
82  *                     |               |
83  *                     +---------------+
84  *
85  *
86  *   +------+
87  *   |reader|          RING BUFFER
88  *   |page  |------------------v
89  *   +------+        +---+   +---+   +---+
90  *      ^            |   |-->|   |-->|   |
91  *      |            +---+   +---+   +---+
92  *      |                              |
93  *      |                              |
94  *      +------------------------------+
95  *
96  *
97  *   +------+
98  *   |buffer|          RING BUFFER
99  *   |page  |------------------v
100  *   +------+        +---+   +---+   +---+
101  *      ^            |   |   |   |-->|   |
102  *      |   New      +---+   +---+   +---+
103  *      |  Reader------^               |
104  *      |   page                       |
105  *      +------------------------------+
106  *
107  *
108  * After we make this swap, the reader can hand this page off to the splice
109  * code and be done with it. It can even allocate a new page if it needs to
110  * and swap that into the ring buffer.
111  *
112  * We will be using cmpxchg soon to make all this lockless.
113  *
114  */
115 
116 /*
117  * A fast way to enable or disable all ring buffers is to
118  * call tracing_on or tracing_off. Turning off the ring buffers
119  * prevents all ring buffers from being recorded to.
120  * Turning this switch on, makes it OK to write to the
121  * ring buffer, if the ring buffer is enabled itself.
122  *
123  * There's three layers that must be on in order to write
124  * to the ring buffer.
125  *
126  * 1) This global flag must be set.
127  * 2) The ring buffer must be enabled for recording.
128  * 3) The per cpu buffer must be enabled for recording.
129  *
130  * In case of an anomaly, this global flag has a bit set that
131  * will permantly disable all ring buffers.
132  */
133 
134 /*
135  * Global flag to disable all recording to ring buffers
136  *  This has two bits: ON, DISABLED
137  *
138  *  ON   DISABLED
139  * ---- ----------
140  *   0      0        : ring buffers are off
141  *   1      0        : ring buffers are on
142  *   X      1        : ring buffers are permanently disabled
143  */
144 
145 enum {
146 	RB_BUFFERS_ON_BIT	= 0,
147 	RB_BUFFERS_DISABLED_BIT	= 1,
148 };
149 
150 enum {
151 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
152 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
153 };
154 
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156 
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158 
159 /**
160  * tracing_on - enable all tracing buffers
161  *
162  * This function enables all tracing buffers that may have been
163  * disabled with tracing_off.
164  */
165 void tracing_on(void)
166 {
167 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
168 }
169 EXPORT_SYMBOL_GPL(tracing_on);
170 
171 /**
172  * tracing_off - turn off all tracing buffers
173  *
174  * This function stops all tracing buffers from recording data.
175  * It does not disable any overhead the tracers themselves may
176  * be causing. This function simply causes all recording to
177  * the ring buffers to fail.
178  */
179 void tracing_off(void)
180 {
181 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182 }
183 EXPORT_SYMBOL_GPL(tracing_off);
184 
185 /**
186  * tracing_off_permanent - permanently disable ring buffers
187  *
188  * This function, once called, will disable all ring buffers
189  * permanently.
190  */
191 void tracing_off_permanent(void)
192 {
193 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
194 }
195 
196 /**
197  * tracing_is_on - show state of ring buffers enabled
198  */
199 int tracing_is_on(void)
200 {
201 	return ring_buffer_flags == RB_BUFFERS_ON;
202 }
203 EXPORT_SYMBOL_GPL(tracing_is_on);
204 
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT		4U
207 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
209 
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT	0
212 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
213 #else
214 # define RB_FORCE_8BYTE_ALIGNMENT	1
215 # define RB_ARCH_ALIGNMENT		8U
216 #endif
217 
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
220 
221 enum {
222 	RB_LEN_TIME_EXTEND = 8,
223 	RB_LEN_TIME_STAMP = 16,
224 };
225 
226 #define skip_time_extend(event) \
227 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
228 
229 static inline int rb_null_event(struct ring_buffer_event *event)
230 {
231 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
232 }
233 
234 static void rb_event_set_padding(struct ring_buffer_event *event)
235 {
236 	/* padding has a NULL time_delta */
237 	event->type_len = RINGBUF_TYPE_PADDING;
238 	event->time_delta = 0;
239 }
240 
241 static unsigned
242 rb_event_data_length(struct ring_buffer_event *event)
243 {
244 	unsigned length;
245 
246 	if (event->type_len)
247 		length = event->type_len * RB_ALIGNMENT;
248 	else
249 		length = event->array[0];
250 	return length + RB_EVNT_HDR_SIZE;
251 }
252 
253 /*
254  * Return the length of the given event. Will return
255  * the length of the time extend if the event is a
256  * time extend.
257  */
258 static inline unsigned
259 rb_event_length(struct ring_buffer_event *event)
260 {
261 	switch (event->type_len) {
262 	case RINGBUF_TYPE_PADDING:
263 		if (rb_null_event(event))
264 			/* undefined */
265 			return -1;
266 		return  event->array[0] + RB_EVNT_HDR_SIZE;
267 
268 	case RINGBUF_TYPE_TIME_EXTEND:
269 		return RB_LEN_TIME_EXTEND;
270 
271 	case RINGBUF_TYPE_TIME_STAMP:
272 		return RB_LEN_TIME_STAMP;
273 
274 	case RINGBUF_TYPE_DATA:
275 		return rb_event_data_length(event);
276 	default:
277 		BUG();
278 	}
279 	/* not hit */
280 	return 0;
281 }
282 
283 /*
284  * Return total length of time extend and data,
285  *   or just the event length for all other events.
286  */
287 static inline unsigned
288 rb_event_ts_length(struct ring_buffer_event *event)
289 {
290 	unsigned len = 0;
291 
292 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 		/* time extends include the data event after it */
294 		len = RB_LEN_TIME_EXTEND;
295 		event = skip_time_extend(event);
296 	}
297 	return len + rb_event_length(event);
298 }
299 
300 /**
301  * ring_buffer_event_length - return the length of the event
302  * @event: the event to get the length of
303  *
304  * Returns the size of the data load of a data event.
305  * If the event is something other than a data event, it
306  * returns the size of the event itself. With the exception
307  * of a TIME EXTEND, where it still returns the size of the
308  * data load of the data event after it.
309  */
310 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
311 {
312 	unsigned length;
313 
314 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 		event = skip_time_extend(event);
316 
317 	length = rb_event_length(event);
318 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
319 		return length;
320 	length -= RB_EVNT_HDR_SIZE;
321 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322                 length -= sizeof(event->array[0]);
323 	return length;
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
326 
327 /* inline for ring buffer fast paths */
328 static void *
329 rb_event_data(struct ring_buffer_event *event)
330 {
331 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 		event = skip_time_extend(event);
333 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
334 	/* If length is in len field, then array[0] has the data */
335 	if (event->type_len)
336 		return (void *)&event->array[0];
337 	/* Otherwise length is in array[0] and array[1] has the data */
338 	return (void *)&event->array[1];
339 }
340 
341 /**
342  * ring_buffer_event_data - return the data of the event
343  * @event: the event to get the data from
344  */
345 void *ring_buffer_event_data(struct ring_buffer_event *event)
346 {
347 	return rb_event_data(event);
348 }
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
350 
351 #define for_each_buffer_cpu(buffer, cpu)		\
352 	for_each_cpu(cpu, buffer->cpumask)
353 
354 #define TS_SHIFT	27
355 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST	(~TS_MASK)
357 
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS	(1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED	(1 << 30)
362 
363 struct buffer_data_page {
364 	u64		 time_stamp;	/* page time stamp */
365 	local_t		 commit;	/* write committed index */
366 	unsigned char	 data[];	/* data of buffer page */
367 };
368 
369 /*
370  * Note, the buffer_page list must be first. The buffer pages
371  * are allocated in cache lines, which means that each buffer
372  * page will be at the beginning of a cache line, and thus
373  * the least significant bits will be zero. We use this to
374  * add flags in the list struct pointers, to make the ring buffer
375  * lockless.
376  */
377 struct buffer_page {
378 	struct list_head list;		/* list of buffer pages */
379 	local_t		 write;		/* index for next write */
380 	unsigned	 read;		/* index for next read */
381 	local_t		 entries;	/* entries on this page */
382 	unsigned long	 real_end;	/* real end of data */
383 	struct buffer_data_page *page;	/* Actual data page */
384 };
385 
386 /*
387  * The buffer page counters, write and entries, must be reset
388  * atomically when crossing page boundaries. To synchronize this
389  * update, two counters are inserted into the number. One is
390  * the actual counter for the write position or count on the page.
391  *
392  * The other is a counter of updaters. Before an update happens
393  * the update partition of the counter is incremented. This will
394  * allow the updater to update the counter atomically.
395  *
396  * The counter is 20 bits, and the state data is 12.
397  */
398 #define RB_WRITE_MASK		0xfffff
399 #define RB_WRITE_INTCNT		(1 << 20)
400 
401 static void rb_init_page(struct buffer_data_page *bpage)
402 {
403 	local_set(&bpage->commit, 0);
404 }
405 
406 /**
407  * ring_buffer_page_len - the size of data on the page.
408  * @page: The page to read
409  *
410  * Returns the amount of data on the page, including buffer page header.
411  */
412 size_t ring_buffer_page_len(void *page)
413 {
414 	return local_read(&((struct buffer_data_page *)page)->commit)
415 		+ BUF_PAGE_HDR_SIZE;
416 }
417 
418 /*
419  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420  * this issue out.
421  */
422 static void free_buffer_page(struct buffer_page *bpage)
423 {
424 	free_page((unsigned long)bpage->page);
425 	kfree(bpage);
426 }
427 
428 /*
429  * We need to fit the time_stamp delta into 27 bits.
430  */
431 static inline int test_time_stamp(u64 delta)
432 {
433 	if (delta & TS_DELTA_TEST)
434 		return 1;
435 	return 0;
436 }
437 
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
439 
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
442 
443 int ring_buffer_print_page_header(struct trace_seq *s)
444 {
445 	struct buffer_data_page field;
446 	int ret;
447 
448 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
449 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
450 			       (unsigned int)sizeof(field.time_stamp),
451 			       (unsigned int)is_signed_type(u64));
452 
453 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
454 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 			       (unsigned int)offsetof(typeof(field), commit),
456 			       (unsigned int)sizeof(field.commit),
457 			       (unsigned int)is_signed_type(long));
458 
459 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 			       (unsigned int)offsetof(typeof(field), commit),
462 			       1,
463 			       (unsigned int)is_signed_type(long));
464 
465 	ret = trace_seq_printf(s, "\tfield: char data;\t"
466 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 			       (unsigned int)offsetof(typeof(field), data),
468 			       (unsigned int)BUF_PAGE_SIZE,
469 			       (unsigned int)is_signed_type(char));
470 
471 	return ret;
472 }
473 
474 /*
475  * head_page == tail_page && head == tail then buffer is empty.
476  */
477 struct ring_buffer_per_cpu {
478 	int				cpu;
479 	atomic_t			record_disabled;
480 	struct ring_buffer		*buffer;
481 	raw_spinlock_t			reader_lock;	/* serialize readers */
482 	arch_spinlock_t			lock;
483 	struct lock_class_key		lock_key;
484 	struct list_head		*pages;
485 	struct buffer_page		*head_page;	/* read from head */
486 	struct buffer_page		*tail_page;	/* write to tail */
487 	struct buffer_page		*commit_page;	/* committed pages */
488 	struct buffer_page		*reader_page;
489 	unsigned long			lost_events;
490 	unsigned long			last_overrun;
491 	local_t				entries_bytes;
492 	local_t				commit_overrun;
493 	local_t				overrun;
494 	local_t				entries;
495 	local_t				committing;
496 	local_t				commits;
497 	unsigned long			read;
498 	unsigned long			read_bytes;
499 	u64				write_stamp;
500 	u64				read_stamp;
501 };
502 
503 struct ring_buffer {
504 	unsigned			pages;
505 	unsigned			flags;
506 	int				cpus;
507 	atomic_t			record_disabled;
508 	cpumask_var_t			cpumask;
509 
510 	struct lock_class_key		*reader_lock_key;
511 
512 	struct mutex			mutex;
513 
514 	struct ring_buffer_per_cpu	**buffers;
515 
516 #ifdef CONFIG_HOTPLUG_CPU
517 	struct notifier_block		cpu_notify;
518 #endif
519 	u64				(*clock)(void);
520 };
521 
522 struct ring_buffer_iter {
523 	struct ring_buffer_per_cpu	*cpu_buffer;
524 	unsigned long			head;
525 	struct buffer_page		*head_page;
526 	struct buffer_page		*cache_reader_page;
527 	unsigned long			cache_read;
528 	u64				read_stamp;
529 };
530 
531 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
532 #define RB_WARN_ON(b, cond)						\
533 	({								\
534 		int _____ret = unlikely(cond);				\
535 		if (_____ret) {						\
536 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
537 				struct ring_buffer_per_cpu *__b =	\
538 					(void *)b;			\
539 				atomic_inc(&__b->buffer->record_disabled); \
540 			} else						\
541 				atomic_inc(&b->record_disabled);	\
542 			WARN_ON(1);					\
543 		}							\
544 		_____ret;						\
545 	})
546 
547 /* Up this if you want to test the TIME_EXTENTS and normalization */
548 #define DEBUG_SHIFT 0
549 
550 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
551 {
552 	/* shift to debug/test normalization and TIME_EXTENTS */
553 	return buffer->clock() << DEBUG_SHIFT;
554 }
555 
556 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
557 {
558 	u64 time;
559 
560 	preempt_disable_notrace();
561 	time = rb_time_stamp(buffer);
562 	preempt_enable_no_resched_notrace();
563 
564 	return time;
565 }
566 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
567 
568 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
569 				      int cpu, u64 *ts)
570 {
571 	/* Just stupid testing the normalize function and deltas */
572 	*ts >>= DEBUG_SHIFT;
573 }
574 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
575 
576 /*
577  * Making the ring buffer lockless makes things tricky.
578  * Although writes only happen on the CPU that they are on,
579  * and they only need to worry about interrupts. Reads can
580  * happen on any CPU.
581  *
582  * The reader page is always off the ring buffer, but when the
583  * reader finishes with a page, it needs to swap its page with
584  * a new one from the buffer. The reader needs to take from
585  * the head (writes go to the tail). But if a writer is in overwrite
586  * mode and wraps, it must push the head page forward.
587  *
588  * Here lies the problem.
589  *
590  * The reader must be careful to replace only the head page, and
591  * not another one. As described at the top of the file in the
592  * ASCII art, the reader sets its old page to point to the next
593  * page after head. It then sets the page after head to point to
594  * the old reader page. But if the writer moves the head page
595  * during this operation, the reader could end up with the tail.
596  *
597  * We use cmpxchg to help prevent this race. We also do something
598  * special with the page before head. We set the LSB to 1.
599  *
600  * When the writer must push the page forward, it will clear the
601  * bit that points to the head page, move the head, and then set
602  * the bit that points to the new head page.
603  *
604  * We also don't want an interrupt coming in and moving the head
605  * page on another writer. Thus we use the second LSB to catch
606  * that too. Thus:
607  *
608  * head->list->prev->next        bit 1          bit 0
609  *                              -------        -------
610  * Normal page                     0              0
611  * Points to head page             0              1
612  * New head page                   1              0
613  *
614  * Note we can not trust the prev pointer of the head page, because:
615  *
616  * +----+       +-----+        +-----+
617  * |    |------>|  T  |---X--->|  N  |
618  * |    |<------|     |        |     |
619  * +----+       +-----+        +-----+
620  *   ^                           ^ |
621  *   |          +-----+          | |
622  *   +----------|  R  |----------+ |
623  *              |     |<-----------+
624  *              +-----+
625  *
626  * Key:  ---X-->  HEAD flag set in pointer
627  *         T      Tail page
628  *         R      Reader page
629  *         N      Next page
630  *
631  * (see __rb_reserve_next() to see where this happens)
632  *
633  *  What the above shows is that the reader just swapped out
634  *  the reader page with a page in the buffer, but before it
635  *  could make the new header point back to the new page added
636  *  it was preempted by a writer. The writer moved forward onto
637  *  the new page added by the reader and is about to move forward
638  *  again.
639  *
640  *  You can see, it is legitimate for the previous pointer of
641  *  the head (or any page) not to point back to itself. But only
642  *  temporarially.
643  */
644 
645 #define RB_PAGE_NORMAL		0UL
646 #define RB_PAGE_HEAD		1UL
647 #define RB_PAGE_UPDATE		2UL
648 
649 
650 #define RB_FLAG_MASK		3UL
651 
652 /* PAGE_MOVED is not part of the mask */
653 #define RB_PAGE_MOVED		4UL
654 
655 /*
656  * rb_list_head - remove any bit
657  */
658 static struct list_head *rb_list_head(struct list_head *list)
659 {
660 	unsigned long val = (unsigned long)list;
661 
662 	return (struct list_head *)(val & ~RB_FLAG_MASK);
663 }
664 
665 /*
666  * rb_is_head_page - test if the given page is the head page
667  *
668  * Because the reader may move the head_page pointer, we can
669  * not trust what the head page is (it may be pointing to
670  * the reader page). But if the next page is a header page,
671  * its flags will be non zero.
672  */
673 static inline int
674 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
675 		struct buffer_page *page, struct list_head *list)
676 {
677 	unsigned long val;
678 
679 	val = (unsigned long)list->next;
680 
681 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
682 		return RB_PAGE_MOVED;
683 
684 	return val & RB_FLAG_MASK;
685 }
686 
687 /*
688  * rb_is_reader_page
689  *
690  * The unique thing about the reader page, is that, if the
691  * writer is ever on it, the previous pointer never points
692  * back to the reader page.
693  */
694 static int rb_is_reader_page(struct buffer_page *page)
695 {
696 	struct list_head *list = page->list.prev;
697 
698 	return rb_list_head(list->next) != &page->list;
699 }
700 
701 /*
702  * rb_set_list_to_head - set a list_head to be pointing to head.
703  */
704 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
705 				struct list_head *list)
706 {
707 	unsigned long *ptr;
708 
709 	ptr = (unsigned long *)&list->next;
710 	*ptr |= RB_PAGE_HEAD;
711 	*ptr &= ~RB_PAGE_UPDATE;
712 }
713 
714 /*
715  * rb_head_page_activate - sets up head page
716  */
717 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
718 {
719 	struct buffer_page *head;
720 
721 	head = cpu_buffer->head_page;
722 	if (!head)
723 		return;
724 
725 	/*
726 	 * Set the previous list pointer to have the HEAD flag.
727 	 */
728 	rb_set_list_to_head(cpu_buffer, head->list.prev);
729 }
730 
731 static void rb_list_head_clear(struct list_head *list)
732 {
733 	unsigned long *ptr = (unsigned long *)&list->next;
734 
735 	*ptr &= ~RB_FLAG_MASK;
736 }
737 
738 /*
739  * rb_head_page_dactivate - clears head page ptr (for free list)
740  */
741 static void
742 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
743 {
744 	struct list_head *hd;
745 
746 	/* Go through the whole list and clear any pointers found. */
747 	rb_list_head_clear(cpu_buffer->pages);
748 
749 	list_for_each(hd, cpu_buffer->pages)
750 		rb_list_head_clear(hd);
751 }
752 
753 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
754 			    struct buffer_page *head,
755 			    struct buffer_page *prev,
756 			    int old_flag, int new_flag)
757 {
758 	struct list_head *list;
759 	unsigned long val = (unsigned long)&head->list;
760 	unsigned long ret;
761 
762 	list = &prev->list;
763 
764 	val &= ~RB_FLAG_MASK;
765 
766 	ret = cmpxchg((unsigned long *)&list->next,
767 		      val | old_flag, val | new_flag);
768 
769 	/* check if the reader took the page */
770 	if ((ret & ~RB_FLAG_MASK) != val)
771 		return RB_PAGE_MOVED;
772 
773 	return ret & RB_FLAG_MASK;
774 }
775 
776 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
777 				   struct buffer_page *head,
778 				   struct buffer_page *prev,
779 				   int old_flag)
780 {
781 	return rb_head_page_set(cpu_buffer, head, prev,
782 				old_flag, RB_PAGE_UPDATE);
783 }
784 
785 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
786 				 struct buffer_page *head,
787 				 struct buffer_page *prev,
788 				 int old_flag)
789 {
790 	return rb_head_page_set(cpu_buffer, head, prev,
791 				old_flag, RB_PAGE_HEAD);
792 }
793 
794 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
795 				   struct buffer_page *head,
796 				   struct buffer_page *prev,
797 				   int old_flag)
798 {
799 	return rb_head_page_set(cpu_buffer, head, prev,
800 				old_flag, RB_PAGE_NORMAL);
801 }
802 
803 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
804 			       struct buffer_page **bpage)
805 {
806 	struct list_head *p = rb_list_head((*bpage)->list.next);
807 
808 	*bpage = list_entry(p, struct buffer_page, list);
809 }
810 
811 static struct buffer_page *
812 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
813 {
814 	struct buffer_page *head;
815 	struct buffer_page *page;
816 	struct list_head *list;
817 	int i;
818 
819 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
820 		return NULL;
821 
822 	/* sanity check */
823 	list = cpu_buffer->pages;
824 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
825 		return NULL;
826 
827 	page = head = cpu_buffer->head_page;
828 	/*
829 	 * It is possible that the writer moves the header behind
830 	 * where we started, and we miss in one loop.
831 	 * A second loop should grab the header, but we'll do
832 	 * three loops just because I'm paranoid.
833 	 */
834 	for (i = 0; i < 3; i++) {
835 		do {
836 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
837 				cpu_buffer->head_page = page;
838 				return page;
839 			}
840 			rb_inc_page(cpu_buffer, &page);
841 		} while (page != head);
842 	}
843 
844 	RB_WARN_ON(cpu_buffer, 1);
845 
846 	return NULL;
847 }
848 
849 static int rb_head_page_replace(struct buffer_page *old,
850 				struct buffer_page *new)
851 {
852 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
853 	unsigned long val;
854 	unsigned long ret;
855 
856 	val = *ptr & ~RB_FLAG_MASK;
857 	val |= RB_PAGE_HEAD;
858 
859 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
860 
861 	return ret == val;
862 }
863 
864 /*
865  * rb_tail_page_update - move the tail page forward
866  *
867  * Returns 1 if moved tail page, 0 if someone else did.
868  */
869 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
870 			       struct buffer_page *tail_page,
871 			       struct buffer_page *next_page)
872 {
873 	struct buffer_page *old_tail;
874 	unsigned long old_entries;
875 	unsigned long old_write;
876 	int ret = 0;
877 
878 	/*
879 	 * The tail page now needs to be moved forward.
880 	 *
881 	 * We need to reset the tail page, but without messing
882 	 * with possible erasing of data brought in by interrupts
883 	 * that have moved the tail page and are currently on it.
884 	 *
885 	 * We add a counter to the write field to denote this.
886 	 */
887 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
888 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
889 
890 	/*
891 	 * Just make sure we have seen our old_write and synchronize
892 	 * with any interrupts that come in.
893 	 */
894 	barrier();
895 
896 	/*
897 	 * If the tail page is still the same as what we think
898 	 * it is, then it is up to us to update the tail
899 	 * pointer.
900 	 */
901 	if (tail_page == cpu_buffer->tail_page) {
902 		/* Zero the write counter */
903 		unsigned long val = old_write & ~RB_WRITE_MASK;
904 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
905 
906 		/*
907 		 * This will only succeed if an interrupt did
908 		 * not come in and change it. In which case, we
909 		 * do not want to modify it.
910 		 *
911 		 * We add (void) to let the compiler know that we do not care
912 		 * about the return value of these functions. We use the
913 		 * cmpxchg to only update if an interrupt did not already
914 		 * do it for us. If the cmpxchg fails, we don't care.
915 		 */
916 		(void)local_cmpxchg(&next_page->write, old_write, val);
917 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
918 
919 		/*
920 		 * No need to worry about races with clearing out the commit.
921 		 * it only can increment when a commit takes place. But that
922 		 * only happens in the outer most nested commit.
923 		 */
924 		local_set(&next_page->page->commit, 0);
925 
926 		old_tail = cmpxchg(&cpu_buffer->tail_page,
927 				   tail_page, next_page);
928 
929 		if (old_tail == tail_page)
930 			ret = 1;
931 	}
932 
933 	return ret;
934 }
935 
936 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
937 			  struct buffer_page *bpage)
938 {
939 	unsigned long val = (unsigned long)bpage;
940 
941 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
942 		return 1;
943 
944 	return 0;
945 }
946 
947 /**
948  * rb_check_list - make sure a pointer to a list has the last bits zero
949  */
950 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
951 			 struct list_head *list)
952 {
953 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
954 		return 1;
955 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
956 		return 1;
957 	return 0;
958 }
959 
960 /**
961  * check_pages - integrity check of buffer pages
962  * @cpu_buffer: CPU buffer with pages to test
963  *
964  * As a safety measure we check to make sure the data pages have not
965  * been corrupted.
966  */
967 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
968 {
969 	struct list_head *head = cpu_buffer->pages;
970 	struct buffer_page *bpage, *tmp;
971 
972 	rb_head_page_deactivate(cpu_buffer);
973 
974 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
975 		return -1;
976 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
977 		return -1;
978 
979 	if (rb_check_list(cpu_buffer, head))
980 		return -1;
981 
982 	list_for_each_entry_safe(bpage, tmp, head, list) {
983 		if (RB_WARN_ON(cpu_buffer,
984 			       bpage->list.next->prev != &bpage->list))
985 			return -1;
986 		if (RB_WARN_ON(cpu_buffer,
987 			       bpage->list.prev->next != &bpage->list))
988 			return -1;
989 		if (rb_check_list(cpu_buffer, &bpage->list))
990 			return -1;
991 	}
992 
993 	rb_head_page_activate(cpu_buffer);
994 
995 	return 0;
996 }
997 
998 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
999 			     unsigned nr_pages)
1000 {
1001 	struct buffer_page *bpage, *tmp;
1002 	LIST_HEAD(pages);
1003 	unsigned i;
1004 
1005 	WARN_ON(!nr_pages);
1006 
1007 	for (i = 0; i < nr_pages; i++) {
1008 		struct page *page;
1009 		/*
1010 		 * __GFP_NORETRY flag makes sure that the allocation fails
1011 		 * gracefully without invoking oom-killer and the system is
1012 		 * not destabilized.
1013 		 */
1014 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1015 				    GFP_KERNEL | __GFP_NORETRY,
1016 				    cpu_to_node(cpu_buffer->cpu));
1017 		if (!bpage)
1018 			goto free_pages;
1019 
1020 		rb_check_bpage(cpu_buffer, bpage);
1021 
1022 		list_add(&bpage->list, &pages);
1023 
1024 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1025 					GFP_KERNEL | __GFP_NORETRY, 0);
1026 		if (!page)
1027 			goto free_pages;
1028 		bpage->page = page_address(page);
1029 		rb_init_page(bpage->page);
1030 	}
1031 
1032 	/*
1033 	 * The ring buffer page list is a circular list that does not
1034 	 * start and end with a list head. All page list items point to
1035 	 * other pages.
1036 	 */
1037 	cpu_buffer->pages = pages.next;
1038 	list_del(&pages);
1039 
1040 	rb_check_pages(cpu_buffer);
1041 
1042 	return 0;
1043 
1044  free_pages:
1045 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1046 		list_del_init(&bpage->list);
1047 		free_buffer_page(bpage);
1048 	}
1049 	return -ENOMEM;
1050 }
1051 
1052 static struct ring_buffer_per_cpu *
1053 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1054 {
1055 	struct ring_buffer_per_cpu *cpu_buffer;
1056 	struct buffer_page *bpage;
1057 	struct page *page;
1058 	int ret;
1059 
1060 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1061 				  GFP_KERNEL, cpu_to_node(cpu));
1062 	if (!cpu_buffer)
1063 		return NULL;
1064 
1065 	cpu_buffer->cpu = cpu;
1066 	cpu_buffer->buffer = buffer;
1067 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1068 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1069 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1070 
1071 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1072 			    GFP_KERNEL, cpu_to_node(cpu));
1073 	if (!bpage)
1074 		goto fail_free_buffer;
1075 
1076 	rb_check_bpage(cpu_buffer, bpage);
1077 
1078 	cpu_buffer->reader_page = bpage;
1079 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1080 	if (!page)
1081 		goto fail_free_reader;
1082 	bpage->page = page_address(page);
1083 	rb_init_page(bpage->page);
1084 
1085 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1086 
1087 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1088 	if (ret < 0)
1089 		goto fail_free_reader;
1090 
1091 	cpu_buffer->head_page
1092 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1093 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1094 
1095 	rb_head_page_activate(cpu_buffer);
1096 
1097 	return cpu_buffer;
1098 
1099  fail_free_reader:
1100 	free_buffer_page(cpu_buffer->reader_page);
1101 
1102  fail_free_buffer:
1103 	kfree(cpu_buffer);
1104 	return NULL;
1105 }
1106 
1107 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1108 {
1109 	struct list_head *head = cpu_buffer->pages;
1110 	struct buffer_page *bpage, *tmp;
1111 
1112 	free_buffer_page(cpu_buffer->reader_page);
1113 
1114 	rb_head_page_deactivate(cpu_buffer);
1115 
1116 	if (head) {
1117 		list_for_each_entry_safe(bpage, tmp, head, list) {
1118 			list_del_init(&bpage->list);
1119 			free_buffer_page(bpage);
1120 		}
1121 		bpage = list_entry(head, struct buffer_page, list);
1122 		free_buffer_page(bpage);
1123 	}
1124 
1125 	kfree(cpu_buffer);
1126 }
1127 
1128 #ifdef CONFIG_HOTPLUG_CPU
1129 static int rb_cpu_notify(struct notifier_block *self,
1130 			 unsigned long action, void *hcpu);
1131 #endif
1132 
1133 /**
1134  * ring_buffer_alloc - allocate a new ring_buffer
1135  * @size: the size in bytes per cpu that is needed.
1136  * @flags: attributes to set for the ring buffer.
1137  *
1138  * Currently the only flag that is available is the RB_FL_OVERWRITE
1139  * flag. This flag means that the buffer will overwrite old data
1140  * when the buffer wraps. If this flag is not set, the buffer will
1141  * drop data when the tail hits the head.
1142  */
1143 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1144 					struct lock_class_key *key)
1145 {
1146 	struct ring_buffer *buffer;
1147 	int bsize;
1148 	int cpu;
1149 
1150 	/* keep it in its own cache line */
1151 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1152 			 GFP_KERNEL);
1153 	if (!buffer)
1154 		return NULL;
1155 
1156 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1157 		goto fail_free_buffer;
1158 
1159 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1160 	buffer->flags = flags;
1161 	buffer->clock = trace_clock_local;
1162 	buffer->reader_lock_key = key;
1163 
1164 	/* need at least two pages */
1165 	if (buffer->pages < 2)
1166 		buffer->pages = 2;
1167 
1168 	/*
1169 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1170 	 * in early initcall, it will not be notified of secondary cpus.
1171 	 * In that off case, we need to allocate for all possible cpus.
1172 	 */
1173 #ifdef CONFIG_HOTPLUG_CPU
1174 	get_online_cpus();
1175 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1176 #else
1177 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1178 #endif
1179 	buffer->cpus = nr_cpu_ids;
1180 
1181 	bsize = sizeof(void *) * nr_cpu_ids;
1182 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1183 				  GFP_KERNEL);
1184 	if (!buffer->buffers)
1185 		goto fail_free_cpumask;
1186 
1187 	for_each_buffer_cpu(buffer, cpu) {
1188 		buffer->buffers[cpu] =
1189 			rb_allocate_cpu_buffer(buffer, cpu);
1190 		if (!buffer->buffers[cpu])
1191 			goto fail_free_buffers;
1192 	}
1193 
1194 #ifdef CONFIG_HOTPLUG_CPU
1195 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1196 	buffer->cpu_notify.priority = 0;
1197 	register_cpu_notifier(&buffer->cpu_notify);
1198 #endif
1199 
1200 	put_online_cpus();
1201 	mutex_init(&buffer->mutex);
1202 
1203 	return buffer;
1204 
1205  fail_free_buffers:
1206 	for_each_buffer_cpu(buffer, cpu) {
1207 		if (buffer->buffers[cpu])
1208 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1209 	}
1210 	kfree(buffer->buffers);
1211 
1212  fail_free_cpumask:
1213 	free_cpumask_var(buffer->cpumask);
1214 	put_online_cpus();
1215 
1216  fail_free_buffer:
1217 	kfree(buffer);
1218 	return NULL;
1219 }
1220 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1221 
1222 /**
1223  * ring_buffer_free - free a ring buffer.
1224  * @buffer: the buffer to free.
1225  */
1226 void
1227 ring_buffer_free(struct ring_buffer *buffer)
1228 {
1229 	int cpu;
1230 
1231 	get_online_cpus();
1232 
1233 #ifdef CONFIG_HOTPLUG_CPU
1234 	unregister_cpu_notifier(&buffer->cpu_notify);
1235 #endif
1236 
1237 	for_each_buffer_cpu(buffer, cpu)
1238 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1239 
1240 	put_online_cpus();
1241 
1242 	kfree(buffer->buffers);
1243 	free_cpumask_var(buffer->cpumask);
1244 
1245 	kfree(buffer);
1246 }
1247 EXPORT_SYMBOL_GPL(ring_buffer_free);
1248 
1249 void ring_buffer_set_clock(struct ring_buffer *buffer,
1250 			   u64 (*clock)(void))
1251 {
1252 	buffer->clock = clock;
1253 }
1254 
1255 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1256 
1257 static void
1258 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1259 {
1260 	struct buffer_page *bpage;
1261 	struct list_head *p;
1262 	unsigned i;
1263 
1264 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1265 	rb_head_page_deactivate(cpu_buffer);
1266 
1267 	for (i = 0; i < nr_pages; i++) {
1268 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1269 			goto out;
1270 		p = cpu_buffer->pages->next;
1271 		bpage = list_entry(p, struct buffer_page, list);
1272 		list_del_init(&bpage->list);
1273 		free_buffer_page(bpage);
1274 	}
1275 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1276 		goto out;
1277 
1278 	rb_reset_cpu(cpu_buffer);
1279 	rb_check_pages(cpu_buffer);
1280 
1281 out:
1282 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1283 }
1284 
1285 static void
1286 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1287 		struct list_head *pages, unsigned nr_pages)
1288 {
1289 	struct buffer_page *bpage;
1290 	struct list_head *p;
1291 	unsigned i;
1292 
1293 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1294 	rb_head_page_deactivate(cpu_buffer);
1295 
1296 	for (i = 0; i < nr_pages; i++) {
1297 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1298 			goto out;
1299 		p = pages->next;
1300 		bpage = list_entry(p, struct buffer_page, list);
1301 		list_del_init(&bpage->list);
1302 		list_add_tail(&bpage->list, cpu_buffer->pages);
1303 	}
1304 	rb_reset_cpu(cpu_buffer);
1305 	rb_check_pages(cpu_buffer);
1306 
1307 out:
1308 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1309 }
1310 
1311 /**
1312  * ring_buffer_resize - resize the ring buffer
1313  * @buffer: the buffer to resize.
1314  * @size: the new size.
1315  *
1316  * Minimum size is 2 * BUF_PAGE_SIZE.
1317  *
1318  * Returns -1 on failure.
1319  */
1320 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1321 {
1322 	struct ring_buffer_per_cpu *cpu_buffer;
1323 	unsigned nr_pages, rm_pages, new_pages;
1324 	struct buffer_page *bpage, *tmp;
1325 	unsigned long buffer_size;
1326 	LIST_HEAD(pages);
1327 	int i, cpu;
1328 
1329 	/*
1330 	 * Always succeed at resizing a non-existent buffer:
1331 	 */
1332 	if (!buffer)
1333 		return size;
1334 
1335 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1336 	size *= BUF_PAGE_SIZE;
1337 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1338 
1339 	/* we need a minimum of two pages */
1340 	if (size < BUF_PAGE_SIZE * 2)
1341 		size = BUF_PAGE_SIZE * 2;
1342 
1343 	if (size == buffer_size)
1344 		return size;
1345 
1346 	atomic_inc(&buffer->record_disabled);
1347 
1348 	/* Make sure all writers are done with this buffer. */
1349 	synchronize_sched();
1350 
1351 	mutex_lock(&buffer->mutex);
1352 	get_online_cpus();
1353 
1354 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1355 
1356 	if (size < buffer_size) {
1357 
1358 		/* easy case, just free pages */
1359 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1360 			goto out_fail;
1361 
1362 		rm_pages = buffer->pages - nr_pages;
1363 
1364 		for_each_buffer_cpu(buffer, cpu) {
1365 			cpu_buffer = buffer->buffers[cpu];
1366 			rb_remove_pages(cpu_buffer, rm_pages);
1367 		}
1368 		goto out;
1369 	}
1370 
1371 	/*
1372 	 * This is a bit more difficult. We only want to add pages
1373 	 * when we can allocate enough for all CPUs. We do this
1374 	 * by allocating all the pages and storing them on a local
1375 	 * link list. If we succeed in our allocation, then we
1376 	 * add these pages to the cpu_buffers. Otherwise we just free
1377 	 * them all and return -ENOMEM;
1378 	 */
1379 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1380 		goto out_fail;
1381 
1382 	new_pages = nr_pages - buffer->pages;
1383 
1384 	for_each_buffer_cpu(buffer, cpu) {
1385 		for (i = 0; i < new_pages; i++) {
1386 			struct page *page;
1387 			/*
1388 			 * __GFP_NORETRY flag makes sure that the allocation
1389 			 * fails gracefully without invoking oom-killer and
1390 			 * the system is not destabilized.
1391 			 */
1392 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1393 						  cache_line_size()),
1394 					    GFP_KERNEL | __GFP_NORETRY,
1395 					    cpu_to_node(cpu));
1396 			if (!bpage)
1397 				goto free_pages;
1398 			list_add(&bpage->list, &pages);
1399 			page = alloc_pages_node(cpu_to_node(cpu),
1400 						GFP_KERNEL | __GFP_NORETRY, 0);
1401 			if (!page)
1402 				goto free_pages;
1403 			bpage->page = page_address(page);
1404 			rb_init_page(bpage->page);
1405 		}
1406 	}
1407 
1408 	for_each_buffer_cpu(buffer, cpu) {
1409 		cpu_buffer = buffer->buffers[cpu];
1410 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1411 	}
1412 
1413 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1414 		goto out_fail;
1415 
1416  out:
1417 	buffer->pages = nr_pages;
1418 	put_online_cpus();
1419 	mutex_unlock(&buffer->mutex);
1420 
1421 	atomic_dec(&buffer->record_disabled);
1422 
1423 	return size;
1424 
1425  free_pages:
1426 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1427 		list_del_init(&bpage->list);
1428 		free_buffer_page(bpage);
1429 	}
1430 	put_online_cpus();
1431 	mutex_unlock(&buffer->mutex);
1432 	atomic_dec(&buffer->record_disabled);
1433 	return -ENOMEM;
1434 
1435 	/*
1436 	 * Something went totally wrong, and we are too paranoid
1437 	 * to even clean up the mess.
1438 	 */
1439  out_fail:
1440 	put_online_cpus();
1441 	mutex_unlock(&buffer->mutex);
1442 	atomic_dec(&buffer->record_disabled);
1443 	return -1;
1444 }
1445 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1446 
1447 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1448 {
1449 	mutex_lock(&buffer->mutex);
1450 	if (val)
1451 		buffer->flags |= RB_FL_OVERWRITE;
1452 	else
1453 		buffer->flags &= ~RB_FL_OVERWRITE;
1454 	mutex_unlock(&buffer->mutex);
1455 }
1456 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1457 
1458 static inline void *
1459 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1460 {
1461 	return bpage->data + index;
1462 }
1463 
1464 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1465 {
1466 	return bpage->page->data + index;
1467 }
1468 
1469 static inline struct ring_buffer_event *
1470 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1471 {
1472 	return __rb_page_index(cpu_buffer->reader_page,
1473 			       cpu_buffer->reader_page->read);
1474 }
1475 
1476 static inline struct ring_buffer_event *
1477 rb_iter_head_event(struct ring_buffer_iter *iter)
1478 {
1479 	return __rb_page_index(iter->head_page, iter->head);
1480 }
1481 
1482 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1483 {
1484 	return local_read(&bpage->write) & RB_WRITE_MASK;
1485 }
1486 
1487 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1488 {
1489 	return local_read(&bpage->page->commit);
1490 }
1491 
1492 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1493 {
1494 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1495 }
1496 
1497 /* Size is determined by what has been committed */
1498 static inline unsigned rb_page_size(struct buffer_page *bpage)
1499 {
1500 	return rb_page_commit(bpage);
1501 }
1502 
1503 static inline unsigned
1504 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1505 {
1506 	return rb_page_commit(cpu_buffer->commit_page);
1507 }
1508 
1509 static inline unsigned
1510 rb_event_index(struct ring_buffer_event *event)
1511 {
1512 	unsigned long addr = (unsigned long)event;
1513 
1514 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1515 }
1516 
1517 static inline int
1518 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1519 		   struct ring_buffer_event *event)
1520 {
1521 	unsigned long addr = (unsigned long)event;
1522 	unsigned long index;
1523 
1524 	index = rb_event_index(event);
1525 	addr &= PAGE_MASK;
1526 
1527 	return cpu_buffer->commit_page->page == (void *)addr &&
1528 		rb_commit_index(cpu_buffer) == index;
1529 }
1530 
1531 static void
1532 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1533 {
1534 	unsigned long max_count;
1535 
1536 	/*
1537 	 * We only race with interrupts and NMIs on this CPU.
1538 	 * If we own the commit event, then we can commit
1539 	 * all others that interrupted us, since the interruptions
1540 	 * are in stack format (they finish before they come
1541 	 * back to us). This allows us to do a simple loop to
1542 	 * assign the commit to the tail.
1543 	 */
1544  again:
1545 	max_count = cpu_buffer->buffer->pages * 100;
1546 
1547 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1548 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1549 			return;
1550 		if (RB_WARN_ON(cpu_buffer,
1551 			       rb_is_reader_page(cpu_buffer->tail_page)))
1552 			return;
1553 		local_set(&cpu_buffer->commit_page->page->commit,
1554 			  rb_page_write(cpu_buffer->commit_page));
1555 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1556 		cpu_buffer->write_stamp =
1557 			cpu_buffer->commit_page->page->time_stamp;
1558 		/* add barrier to keep gcc from optimizing too much */
1559 		barrier();
1560 	}
1561 	while (rb_commit_index(cpu_buffer) !=
1562 	       rb_page_write(cpu_buffer->commit_page)) {
1563 
1564 		local_set(&cpu_buffer->commit_page->page->commit,
1565 			  rb_page_write(cpu_buffer->commit_page));
1566 		RB_WARN_ON(cpu_buffer,
1567 			   local_read(&cpu_buffer->commit_page->page->commit) &
1568 			   ~RB_WRITE_MASK);
1569 		barrier();
1570 	}
1571 
1572 	/* again, keep gcc from optimizing */
1573 	barrier();
1574 
1575 	/*
1576 	 * If an interrupt came in just after the first while loop
1577 	 * and pushed the tail page forward, we will be left with
1578 	 * a dangling commit that will never go forward.
1579 	 */
1580 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1581 		goto again;
1582 }
1583 
1584 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1587 	cpu_buffer->reader_page->read = 0;
1588 }
1589 
1590 static void rb_inc_iter(struct ring_buffer_iter *iter)
1591 {
1592 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1593 
1594 	/*
1595 	 * The iterator could be on the reader page (it starts there).
1596 	 * But the head could have moved, since the reader was
1597 	 * found. Check for this case and assign the iterator
1598 	 * to the head page instead of next.
1599 	 */
1600 	if (iter->head_page == cpu_buffer->reader_page)
1601 		iter->head_page = rb_set_head_page(cpu_buffer);
1602 	else
1603 		rb_inc_page(cpu_buffer, &iter->head_page);
1604 
1605 	iter->read_stamp = iter->head_page->page->time_stamp;
1606 	iter->head = 0;
1607 }
1608 
1609 /* Slow path, do not inline */
1610 static noinline struct ring_buffer_event *
1611 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1612 {
1613 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1614 
1615 	/* Not the first event on the page? */
1616 	if (rb_event_index(event)) {
1617 		event->time_delta = delta & TS_MASK;
1618 		event->array[0] = delta >> TS_SHIFT;
1619 	} else {
1620 		/* nope, just zero it */
1621 		event->time_delta = 0;
1622 		event->array[0] = 0;
1623 	}
1624 
1625 	return skip_time_extend(event);
1626 }
1627 
1628 /**
1629  * ring_buffer_update_event - update event type and data
1630  * @event: the even to update
1631  * @type: the type of event
1632  * @length: the size of the event field in the ring buffer
1633  *
1634  * Update the type and data fields of the event. The length
1635  * is the actual size that is written to the ring buffer,
1636  * and with this, we can determine what to place into the
1637  * data field.
1638  */
1639 static void
1640 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1641 		struct ring_buffer_event *event, unsigned length,
1642 		int add_timestamp, u64 delta)
1643 {
1644 	/* Only a commit updates the timestamp */
1645 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1646 		delta = 0;
1647 
1648 	/*
1649 	 * If we need to add a timestamp, then we
1650 	 * add it to the start of the resevered space.
1651 	 */
1652 	if (unlikely(add_timestamp)) {
1653 		event = rb_add_time_stamp(event, delta);
1654 		length -= RB_LEN_TIME_EXTEND;
1655 		delta = 0;
1656 	}
1657 
1658 	event->time_delta = delta;
1659 	length -= RB_EVNT_HDR_SIZE;
1660 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1661 		event->type_len = 0;
1662 		event->array[0] = length;
1663 	} else
1664 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1665 }
1666 
1667 /*
1668  * rb_handle_head_page - writer hit the head page
1669  *
1670  * Returns: +1 to retry page
1671  *           0 to continue
1672  *          -1 on error
1673  */
1674 static int
1675 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1676 		    struct buffer_page *tail_page,
1677 		    struct buffer_page *next_page)
1678 {
1679 	struct buffer_page *new_head;
1680 	int entries;
1681 	int type;
1682 	int ret;
1683 
1684 	entries = rb_page_entries(next_page);
1685 
1686 	/*
1687 	 * The hard part is here. We need to move the head
1688 	 * forward, and protect against both readers on
1689 	 * other CPUs and writers coming in via interrupts.
1690 	 */
1691 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1692 				       RB_PAGE_HEAD);
1693 
1694 	/*
1695 	 * type can be one of four:
1696 	 *  NORMAL - an interrupt already moved it for us
1697 	 *  HEAD   - we are the first to get here.
1698 	 *  UPDATE - we are the interrupt interrupting
1699 	 *           a current move.
1700 	 *  MOVED  - a reader on another CPU moved the next
1701 	 *           pointer to its reader page. Give up
1702 	 *           and try again.
1703 	 */
1704 
1705 	switch (type) {
1706 	case RB_PAGE_HEAD:
1707 		/*
1708 		 * We changed the head to UPDATE, thus
1709 		 * it is our responsibility to update
1710 		 * the counters.
1711 		 */
1712 		local_add(entries, &cpu_buffer->overrun);
1713 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1714 
1715 		/*
1716 		 * The entries will be zeroed out when we move the
1717 		 * tail page.
1718 		 */
1719 
1720 		/* still more to do */
1721 		break;
1722 
1723 	case RB_PAGE_UPDATE:
1724 		/*
1725 		 * This is an interrupt that interrupt the
1726 		 * previous update. Still more to do.
1727 		 */
1728 		break;
1729 	case RB_PAGE_NORMAL:
1730 		/*
1731 		 * An interrupt came in before the update
1732 		 * and processed this for us.
1733 		 * Nothing left to do.
1734 		 */
1735 		return 1;
1736 	case RB_PAGE_MOVED:
1737 		/*
1738 		 * The reader is on another CPU and just did
1739 		 * a swap with our next_page.
1740 		 * Try again.
1741 		 */
1742 		return 1;
1743 	default:
1744 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1745 		return -1;
1746 	}
1747 
1748 	/*
1749 	 * Now that we are here, the old head pointer is
1750 	 * set to UPDATE. This will keep the reader from
1751 	 * swapping the head page with the reader page.
1752 	 * The reader (on another CPU) will spin till
1753 	 * we are finished.
1754 	 *
1755 	 * We just need to protect against interrupts
1756 	 * doing the job. We will set the next pointer
1757 	 * to HEAD. After that, we set the old pointer
1758 	 * to NORMAL, but only if it was HEAD before.
1759 	 * otherwise we are an interrupt, and only
1760 	 * want the outer most commit to reset it.
1761 	 */
1762 	new_head = next_page;
1763 	rb_inc_page(cpu_buffer, &new_head);
1764 
1765 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1766 				    RB_PAGE_NORMAL);
1767 
1768 	/*
1769 	 * Valid returns are:
1770 	 *  HEAD   - an interrupt came in and already set it.
1771 	 *  NORMAL - One of two things:
1772 	 *            1) We really set it.
1773 	 *            2) A bunch of interrupts came in and moved
1774 	 *               the page forward again.
1775 	 */
1776 	switch (ret) {
1777 	case RB_PAGE_HEAD:
1778 	case RB_PAGE_NORMAL:
1779 		/* OK */
1780 		break;
1781 	default:
1782 		RB_WARN_ON(cpu_buffer, 1);
1783 		return -1;
1784 	}
1785 
1786 	/*
1787 	 * It is possible that an interrupt came in,
1788 	 * set the head up, then more interrupts came in
1789 	 * and moved it again. When we get back here,
1790 	 * the page would have been set to NORMAL but we
1791 	 * just set it back to HEAD.
1792 	 *
1793 	 * How do you detect this? Well, if that happened
1794 	 * the tail page would have moved.
1795 	 */
1796 	if (ret == RB_PAGE_NORMAL) {
1797 		/*
1798 		 * If the tail had moved passed next, then we need
1799 		 * to reset the pointer.
1800 		 */
1801 		if (cpu_buffer->tail_page != tail_page &&
1802 		    cpu_buffer->tail_page != next_page)
1803 			rb_head_page_set_normal(cpu_buffer, new_head,
1804 						next_page,
1805 						RB_PAGE_HEAD);
1806 	}
1807 
1808 	/*
1809 	 * If this was the outer most commit (the one that
1810 	 * changed the original pointer from HEAD to UPDATE),
1811 	 * then it is up to us to reset it to NORMAL.
1812 	 */
1813 	if (type == RB_PAGE_HEAD) {
1814 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1815 					      tail_page,
1816 					      RB_PAGE_UPDATE);
1817 		if (RB_WARN_ON(cpu_buffer,
1818 			       ret != RB_PAGE_UPDATE))
1819 			return -1;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 static unsigned rb_calculate_event_length(unsigned length)
1826 {
1827 	struct ring_buffer_event event; /* Used only for sizeof array */
1828 
1829 	/* zero length can cause confusions */
1830 	if (!length)
1831 		length = 1;
1832 
1833 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1834 		length += sizeof(event.array[0]);
1835 
1836 	length += RB_EVNT_HDR_SIZE;
1837 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1838 
1839 	return length;
1840 }
1841 
1842 static inline void
1843 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1844 	      struct buffer_page *tail_page,
1845 	      unsigned long tail, unsigned long length)
1846 {
1847 	struct ring_buffer_event *event;
1848 
1849 	/*
1850 	 * Only the event that crossed the page boundary
1851 	 * must fill the old tail_page with padding.
1852 	 */
1853 	if (tail >= BUF_PAGE_SIZE) {
1854 		/*
1855 		 * If the page was filled, then we still need
1856 		 * to update the real_end. Reset it to zero
1857 		 * and the reader will ignore it.
1858 		 */
1859 		if (tail == BUF_PAGE_SIZE)
1860 			tail_page->real_end = 0;
1861 
1862 		local_sub(length, &tail_page->write);
1863 		return;
1864 	}
1865 
1866 	event = __rb_page_index(tail_page, tail);
1867 	kmemcheck_annotate_bitfield(event, bitfield);
1868 
1869 	/* account for padding bytes */
1870 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
1871 
1872 	/*
1873 	 * Save the original length to the meta data.
1874 	 * This will be used by the reader to add lost event
1875 	 * counter.
1876 	 */
1877 	tail_page->real_end = tail;
1878 
1879 	/*
1880 	 * If this event is bigger than the minimum size, then
1881 	 * we need to be careful that we don't subtract the
1882 	 * write counter enough to allow another writer to slip
1883 	 * in on this page.
1884 	 * We put in a discarded commit instead, to make sure
1885 	 * that this space is not used again.
1886 	 *
1887 	 * If we are less than the minimum size, we don't need to
1888 	 * worry about it.
1889 	 */
1890 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1891 		/* No room for any events */
1892 
1893 		/* Mark the rest of the page with padding */
1894 		rb_event_set_padding(event);
1895 
1896 		/* Set the write back to the previous setting */
1897 		local_sub(length, &tail_page->write);
1898 		return;
1899 	}
1900 
1901 	/* Put in a discarded event */
1902 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1903 	event->type_len = RINGBUF_TYPE_PADDING;
1904 	/* time delta must be non zero */
1905 	event->time_delta = 1;
1906 
1907 	/* Set write to end of buffer */
1908 	length = (tail + length) - BUF_PAGE_SIZE;
1909 	local_sub(length, &tail_page->write);
1910 }
1911 
1912 /*
1913  * This is the slow path, force gcc not to inline it.
1914  */
1915 static noinline struct ring_buffer_event *
1916 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1917 	     unsigned long length, unsigned long tail,
1918 	     struct buffer_page *tail_page, u64 ts)
1919 {
1920 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1921 	struct ring_buffer *buffer = cpu_buffer->buffer;
1922 	struct buffer_page *next_page;
1923 	int ret;
1924 
1925 	next_page = tail_page;
1926 
1927 	rb_inc_page(cpu_buffer, &next_page);
1928 
1929 	/*
1930 	 * If for some reason, we had an interrupt storm that made
1931 	 * it all the way around the buffer, bail, and warn
1932 	 * about it.
1933 	 */
1934 	if (unlikely(next_page == commit_page)) {
1935 		local_inc(&cpu_buffer->commit_overrun);
1936 		goto out_reset;
1937 	}
1938 
1939 	/*
1940 	 * This is where the fun begins!
1941 	 *
1942 	 * We are fighting against races between a reader that
1943 	 * could be on another CPU trying to swap its reader
1944 	 * page with the buffer head.
1945 	 *
1946 	 * We are also fighting against interrupts coming in and
1947 	 * moving the head or tail on us as well.
1948 	 *
1949 	 * If the next page is the head page then we have filled
1950 	 * the buffer, unless the commit page is still on the
1951 	 * reader page.
1952 	 */
1953 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1954 
1955 		/*
1956 		 * If the commit is not on the reader page, then
1957 		 * move the header page.
1958 		 */
1959 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1960 			/*
1961 			 * If we are not in overwrite mode,
1962 			 * this is easy, just stop here.
1963 			 */
1964 			if (!(buffer->flags & RB_FL_OVERWRITE))
1965 				goto out_reset;
1966 
1967 			ret = rb_handle_head_page(cpu_buffer,
1968 						  tail_page,
1969 						  next_page);
1970 			if (ret < 0)
1971 				goto out_reset;
1972 			if (ret)
1973 				goto out_again;
1974 		} else {
1975 			/*
1976 			 * We need to be careful here too. The
1977 			 * commit page could still be on the reader
1978 			 * page. We could have a small buffer, and
1979 			 * have filled up the buffer with events
1980 			 * from interrupts and such, and wrapped.
1981 			 *
1982 			 * Note, if the tail page is also the on the
1983 			 * reader_page, we let it move out.
1984 			 */
1985 			if (unlikely((cpu_buffer->commit_page !=
1986 				      cpu_buffer->tail_page) &&
1987 				     (cpu_buffer->commit_page ==
1988 				      cpu_buffer->reader_page))) {
1989 				local_inc(&cpu_buffer->commit_overrun);
1990 				goto out_reset;
1991 			}
1992 		}
1993 	}
1994 
1995 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1996 	if (ret) {
1997 		/*
1998 		 * Nested commits always have zero deltas, so
1999 		 * just reread the time stamp
2000 		 */
2001 		ts = rb_time_stamp(buffer);
2002 		next_page->page->time_stamp = ts;
2003 	}
2004 
2005  out_again:
2006 
2007 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2008 
2009 	/* fail and let the caller try again */
2010 	return ERR_PTR(-EAGAIN);
2011 
2012  out_reset:
2013 	/* reset write */
2014 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2015 
2016 	return NULL;
2017 }
2018 
2019 static struct ring_buffer_event *
2020 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2021 		  unsigned long length, u64 ts,
2022 		  u64 delta, int add_timestamp)
2023 {
2024 	struct buffer_page *tail_page;
2025 	struct ring_buffer_event *event;
2026 	unsigned long tail, write;
2027 
2028 	/*
2029 	 * If the time delta since the last event is too big to
2030 	 * hold in the time field of the event, then we append a
2031 	 * TIME EXTEND event ahead of the data event.
2032 	 */
2033 	if (unlikely(add_timestamp))
2034 		length += RB_LEN_TIME_EXTEND;
2035 
2036 	tail_page = cpu_buffer->tail_page;
2037 	write = local_add_return(length, &tail_page->write);
2038 
2039 	/* set write to only the index of the write */
2040 	write &= RB_WRITE_MASK;
2041 	tail = write - length;
2042 
2043 	/* See if we shot pass the end of this buffer page */
2044 	if (unlikely(write > BUF_PAGE_SIZE))
2045 		return rb_move_tail(cpu_buffer, length, tail,
2046 				    tail_page, ts);
2047 
2048 	/* We reserved something on the buffer */
2049 
2050 	event = __rb_page_index(tail_page, tail);
2051 	kmemcheck_annotate_bitfield(event, bitfield);
2052 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2053 
2054 	local_inc(&tail_page->entries);
2055 
2056 	/*
2057 	 * If this is the first commit on the page, then update
2058 	 * its timestamp.
2059 	 */
2060 	if (!tail)
2061 		tail_page->page->time_stamp = ts;
2062 
2063 	/* account for these added bytes */
2064 	local_add(length, &cpu_buffer->entries_bytes);
2065 
2066 	return event;
2067 }
2068 
2069 static inline int
2070 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2071 		  struct ring_buffer_event *event)
2072 {
2073 	unsigned long new_index, old_index;
2074 	struct buffer_page *bpage;
2075 	unsigned long index;
2076 	unsigned long addr;
2077 
2078 	new_index = rb_event_index(event);
2079 	old_index = new_index + rb_event_ts_length(event);
2080 	addr = (unsigned long)event;
2081 	addr &= PAGE_MASK;
2082 
2083 	bpage = cpu_buffer->tail_page;
2084 
2085 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2086 		unsigned long write_mask =
2087 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2088 		unsigned long event_length = rb_event_length(event);
2089 		/*
2090 		 * This is on the tail page. It is possible that
2091 		 * a write could come in and move the tail page
2092 		 * and write to the next page. That is fine
2093 		 * because we just shorten what is on this page.
2094 		 */
2095 		old_index += write_mask;
2096 		new_index += write_mask;
2097 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2098 		if (index == old_index) {
2099 			/* update counters */
2100 			local_sub(event_length, &cpu_buffer->entries_bytes);
2101 			return 1;
2102 		}
2103 	}
2104 
2105 	/* could not discard */
2106 	return 0;
2107 }
2108 
2109 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2110 {
2111 	local_inc(&cpu_buffer->committing);
2112 	local_inc(&cpu_buffer->commits);
2113 }
2114 
2115 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2116 {
2117 	unsigned long commits;
2118 
2119 	if (RB_WARN_ON(cpu_buffer,
2120 		       !local_read(&cpu_buffer->committing)))
2121 		return;
2122 
2123  again:
2124 	commits = local_read(&cpu_buffer->commits);
2125 	/* synchronize with interrupts */
2126 	barrier();
2127 	if (local_read(&cpu_buffer->committing) == 1)
2128 		rb_set_commit_to_write(cpu_buffer);
2129 
2130 	local_dec(&cpu_buffer->committing);
2131 
2132 	/* synchronize with interrupts */
2133 	barrier();
2134 
2135 	/*
2136 	 * Need to account for interrupts coming in between the
2137 	 * updating of the commit page and the clearing of the
2138 	 * committing counter.
2139 	 */
2140 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2141 	    !local_read(&cpu_buffer->committing)) {
2142 		local_inc(&cpu_buffer->committing);
2143 		goto again;
2144 	}
2145 }
2146 
2147 static struct ring_buffer_event *
2148 rb_reserve_next_event(struct ring_buffer *buffer,
2149 		      struct ring_buffer_per_cpu *cpu_buffer,
2150 		      unsigned long length)
2151 {
2152 	struct ring_buffer_event *event;
2153 	u64 ts, delta;
2154 	int nr_loops = 0;
2155 	int add_timestamp;
2156 	u64 diff;
2157 
2158 	rb_start_commit(cpu_buffer);
2159 
2160 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2161 	/*
2162 	 * Due to the ability to swap a cpu buffer from a buffer
2163 	 * it is possible it was swapped before we committed.
2164 	 * (committing stops a swap). We check for it here and
2165 	 * if it happened, we have to fail the write.
2166 	 */
2167 	barrier();
2168 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2169 		local_dec(&cpu_buffer->committing);
2170 		local_dec(&cpu_buffer->commits);
2171 		return NULL;
2172 	}
2173 #endif
2174 
2175 	length = rb_calculate_event_length(length);
2176  again:
2177 	add_timestamp = 0;
2178 	delta = 0;
2179 
2180 	/*
2181 	 * We allow for interrupts to reenter here and do a trace.
2182 	 * If one does, it will cause this original code to loop
2183 	 * back here. Even with heavy interrupts happening, this
2184 	 * should only happen a few times in a row. If this happens
2185 	 * 1000 times in a row, there must be either an interrupt
2186 	 * storm or we have something buggy.
2187 	 * Bail!
2188 	 */
2189 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2190 		goto out_fail;
2191 
2192 	ts = rb_time_stamp(cpu_buffer->buffer);
2193 	diff = ts - cpu_buffer->write_stamp;
2194 
2195 	/* make sure this diff is calculated here */
2196 	barrier();
2197 
2198 	/* Did the write stamp get updated already? */
2199 	if (likely(ts >= cpu_buffer->write_stamp)) {
2200 		delta = diff;
2201 		if (unlikely(test_time_stamp(delta))) {
2202 			int local_clock_stable = 1;
2203 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2204 			local_clock_stable = sched_clock_stable;
2205 #endif
2206 			WARN_ONCE(delta > (1ULL << 59),
2207 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2208 				  (unsigned long long)delta,
2209 				  (unsigned long long)ts,
2210 				  (unsigned long long)cpu_buffer->write_stamp,
2211 				  local_clock_stable ? "" :
2212 				  "If you just came from a suspend/resume,\n"
2213 				  "please switch to the trace global clock:\n"
2214 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2215 			add_timestamp = 1;
2216 		}
2217 	}
2218 
2219 	event = __rb_reserve_next(cpu_buffer, length, ts,
2220 				  delta, add_timestamp);
2221 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2222 		goto again;
2223 
2224 	if (!event)
2225 		goto out_fail;
2226 
2227 	return event;
2228 
2229  out_fail:
2230 	rb_end_commit(cpu_buffer);
2231 	return NULL;
2232 }
2233 
2234 #ifdef CONFIG_TRACING
2235 
2236 #define TRACE_RECURSIVE_DEPTH 16
2237 
2238 /* Keep this code out of the fast path cache */
2239 static noinline void trace_recursive_fail(void)
2240 {
2241 	/* Disable all tracing before we do anything else */
2242 	tracing_off_permanent();
2243 
2244 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2245 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2246 		    trace_recursion_buffer(),
2247 		    hardirq_count() >> HARDIRQ_SHIFT,
2248 		    softirq_count() >> SOFTIRQ_SHIFT,
2249 		    in_nmi());
2250 
2251 	WARN_ON_ONCE(1);
2252 }
2253 
2254 static inline int trace_recursive_lock(void)
2255 {
2256 	trace_recursion_inc();
2257 
2258 	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2259 		return 0;
2260 
2261 	trace_recursive_fail();
2262 
2263 	return -1;
2264 }
2265 
2266 static inline void trace_recursive_unlock(void)
2267 {
2268 	WARN_ON_ONCE(!trace_recursion_buffer());
2269 
2270 	trace_recursion_dec();
2271 }
2272 
2273 #else
2274 
2275 #define trace_recursive_lock()		(0)
2276 #define trace_recursive_unlock()	do { } while (0)
2277 
2278 #endif
2279 
2280 /**
2281  * ring_buffer_lock_reserve - reserve a part of the buffer
2282  * @buffer: the ring buffer to reserve from
2283  * @length: the length of the data to reserve (excluding event header)
2284  *
2285  * Returns a reseverd event on the ring buffer to copy directly to.
2286  * The user of this interface will need to get the body to write into
2287  * and can use the ring_buffer_event_data() interface.
2288  *
2289  * The length is the length of the data needed, not the event length
2290  * which also includes the event header.
2291  *
2292  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2293  * If NULL is returned, then nothing has been allocated or locked.
2294  */
2295 struct ring_buffer_event *
2296 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2297 {
2298 	struct ring_buffer_per_cpu *cpu_buffer;
2299 	struct ring_buffer_event *event;
2300 	int cpu;
2301 
2302 	if (ring_buffer_flags != RB_BUFFERS_ON)
2303 		return NULL;
2304 
2305 	/* If we are tracing schedule, we don't want to recurse */
2306 	preempt_disable_notrace();
2307 
2308 	if (atomic_read(&buffer->record_disabled))
2309 		goto out_nocheck;
2310 
2311 	if (trace_recursive_lock())
2312 		goto out_nocheck;
2313 
2314 	cpu = raw_smp_processor_id();
2315 
2316 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2317 		goto out;
2318 
2319 	cpu_buffer = buffer->buffers[cpu];
2320 
2321 	if (atomic_read(&cpu_buffer->record_disabled))
2322 		goto out;
2323 
2324 	if (length > BUF_MAX_DATA_SIZE)
2325 		goto out;
2326 
2327 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2328 	if (!event)
2329 		goto out;
2330 
2331 	return event;
2332 
2333  out:
2334 	trace_recursive_unlock();
2335 
2336  out_nocheck:
2337 	preempt_enable_notrace();
2338 	return NULL;
2339 }
2340 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2341 
2342 static void
2343 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2344 		      struct ring_buffer_event *event)
2345 {
2346 	u64 delta;
2347 
2348 	/*
2349 	 * The event first in the commit queue updates the
2350 	 * time stamp.
2351 	 */
2352 	if (rb_event_is_commit(cpu_buffer, event)) {
2353 		/*
2354 		 * A commit event that is first on a page
2355 		 * updates the write timestamp with the page stamp
2356 		 */
2357 		if (!rb_event_index(event))
2358 			cpu_buffer->write_stamp =
2359 				cpu_buffer->commit_page->page->time_stamp;
2360 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2361 			delta = event->array[0];
2362 			delta <<= TS_SHIFT;
2363 			delta += event->time_delta;
2364 			cpu_buffer->write_stamp += delta;
2365 		} else
2366 			cpu_buffer->write_stamp += event->time_delta;
2367 	}
2368 }
2369 
2370 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2371 		      struct ring_buffer_event *event)
2372 {
2373 	local_inc(&cpu_buffer->entries);
2374 	rb_update_write_stamp(cpu_buffer, event);
2375 	rb_end_commit(cpu_buffer);
2376 }
2377 
2378 /**
2379  * ring_buffer_unlock_commit - commit a reserved
2380  * @buffer: The buffer to commit to
2381  * @event: The event pointer to commit.
2382  *
2383  * This commits the data to the ring buffer, and releases any locks held.
2384  *
2385  * Must be paired with ring_buffer_lock_reserve.
2386  */
2387 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2388 			      struct ring_buffer_event *event)
2389 {
2390 	struct ring_buffer_per_cpu *cpu_buffer;
2391 	int cpu = raw_smp_processor_id();
2392 
2393 	cpu_buffer = buffer->buffers[cpu];
2394 
2395 	rb_commit(cpu_buffer, event);
2396 
2397 	trace_recursive_unlock();
2398 
2399 	preempt_enable_notrace();
2400 
2401 	return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2404 
2405 static inline void rb_event_discard(struct ring_buffer_event *event)
2406 {
2407 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2408 		event = skip_time_extend(event);
2409 
2410 	/* array[0] holds the actual length for the discarded event */
2411 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2412 	event->type_len = RINGBUF_TYPE_PADDING;
2413 	/* time delta must be non zero */
2414 	if (!event->time_delta)
2415 		event->time_delta = 1;
2416 }
2417 
2418 /*
2419  * Decrement the entries to the page that an event is on.
2420  * The event does not even need to exist, only the pointer
2421  * to the page it is on. This may only be called before the commit
2422  * takes place.
2423  */
2424 static inline void
2425 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2426 		   struct ring_buffer_event *event)
2427 {
2428 	unsigned long addr = (unsigned long)event;
2429 	struct buffer_page *bpage = cpu_buffer->commit_page;
2430 	struct buffer_page *start;
2431 
2432 	addr &= PAGE_MASK;
2433 
2434 	/* Do the likely case first */
2435 	if (likely(bpage->page == (void *)addr)) {
2436 		local_dec(&bpage->entries);
2437 		return;
2438 	}
2439 
2440 	/*
2441 	 * Because the commit page may be on the reader page we
2442 	 * start with the next page and check the end loop there.
2443 	 */
2444 	rb_inc_page(cpu_buffer, &bpage);
2445 	start = bpage;
2446 	do {
2447 		if (bpage->page == (void *)addr) {
2448 			local_dec(&bpage->entries);
2449 			return;
2450 		}
2451 		rb_inc_page(cpu_buffer, &bpage);
2452 	} while (bpage != start);
2453 
2454 	/* commit not part of this buffer?? */
2455 	RB_WARN_ON(cpu_buffer, 1);
2456 }
2457 
2458 /**
2459  * ring_buffer_commit_discard - discard an event that has not been committed
2460  * @buffer: the ring buffer
2461  * @event: non committed event to discard
2462  *
2463  * Sometimes an event that is in the ring buffer needs to be ignored.
2464  * This function lets the user discard an event in the ring buffer
2465  * and then that event will not be read later.
2466  *
2467  * This function only works if it is called before the the item has been
2468  * committed. It will try to free the event from the ring buffer
2469  * if another event has not been added behind it.
2470  *
2471  * If another event has been added behind it, it will set the event
2472  * up as discarded, and perform the commit.
2473  *
2474  * If this function is called, do not call ring_buffer_unlock_commit on
2475  * the event.
2476  */
2477 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2478 				struct ring_buffer_event *event)
2479 {
2480 	struct ring_buffer_per_cpu *cpu_buffer;
2481 	int cpu;
2482 
2483 	/* The event is discarded regardless */
2484 	rb_event_discard(event);
2485 
2486 	cpu = smp_processor_id();
2487 	cpu_buffer = buffer->buffers[cpu];
2488 
2489 	/*
2490 	 * This must only be called if the event has not been
2491 	 * committed yet. Thus we can assume that preemption
2492 	 * is still disabled.
2493 	 */
2494 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2495 
2496 	rb_decrement_entry(cpu_buffer, event);
2497 	if (rb_try_to_discard(cpu_buffer, event))
2498 		goto out;
2499 
2500 	/*
2501 	 * The commit is still visible by the reader, so we
2502 	 * must still update the timestamp.
2503 	 */
2504 	rb_update_write_stamp(cpu_buffer, event);
2505  out:
2506 	rb_end_commit(cpu_buffer);
2507 
2508 	trace_recursive_unlock();
2509 
2510 	preempt_enable_notrace();
2511 
2512 }
2513 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2514 
2515 /**
2516  * ring_buffer_write - write data to the buffer without reserving
2517  * @buffer: The ring buffer to write to.
2518  * @length: The length of the data being written (excluding the event header)
2519  * @data: The data to write to the buffer.
2520  *
2521  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2522  * one function. If you already have the data to write to the buffer, it
2523  * may be easier to simply call this function.
2524  *
2525  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2526  * and not the length of the event which would hold the header.
2527  */
2528 int ring_buffer_write(struct ring_buffer *buffer,
2529 			unsigned long length,
2530 			void *data)
2531 {
2532 	struct ring_buffer_per_cpu *cpu_buffer;
2533 	struct ring_buffer_event *event;
2534 	void *body;
2535 	int ret = -EBUSY;
2536 	int cpu;
2537 
2538 	if (ring_buffer_flags != RB_BUFFERS_ON)
2539 		return -EBUSY;
2540 
2541 	preempt_disable_notrace();
2542 
2543 	if (atomic_read(&buffer->record_disabled))
2544 		goto out;
2545 
2546 	cpu = raw_smp_processor_id();
2547 
2548 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2549 		goto out;
2550 
2551 	cpu_buffer = buffer->buffers[cpu];
2552 
2553 	if (atomic_read(&cpu_buffer->record_disabled))
2554 		goto out;
2555 
2556 	if (length > BUF_MAX_DATA_SIZE)
2557 		goto out;
2558 
2559 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2560 	if (!event)
2561 		goto out;
2562 
2563 	body = rb_event_data(event);
2564 
2565 	memcpy(body, data, length);
2566 
2567 	rb_commit(cpu_buffer, event);
2568 
2569 	ret = 0;
2570  out:
2571 	preempt_enable_notrace();
2572 
2573 	return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(ring_buffer_write);
2576 
2577 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2578 {
2579 	struct buffer_page *reader = cpu_buffer->reader_page;
2580 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2581 	struct buffer_page *commit = cpu_buffer->commit_page;
2582 
2583 	/* In case of error, head will be NULL */
2584 	if (unlikely(!head))
2585 		return 1;
2586 
2587 	return reader->read == rb_page_commit(reader) &&
2588 		(commit == reader ||
2589 		 (commit == head &&
2590 		  head->read == rb_page_commit(commit)));
2591 }
2592 
2593 /**
2594  * ring_buffer_record_disable - stop all writes into the buffer
2595  * @buffer: The ring buffer to stop writes to.
2596  *
2597  * This prevents all writes to the buffer. Any attempt to write
2598  * to the buffer after this will fail and return NULL.
2599  *
2600  * The caller should call synchronize_sched() after this.
2601  */
2602 void ring_buffer_record_disable(struct ring_buffer *buffer)
2603 {
2604 	atomic_inc(&buffer->record_disabled);
2605 }
2606 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2607 
2608 /**
2609  * ring_buffer_record_enable - enable writes to the buffer
2610  * @buffer: The ring buffer to enable writes
2611  *
2612  * Note, multiple disables will need the same number of enables
2613  * to truly enable the writing (much like preempt_disable).
2614  */
2615 void ring_buffer_record_enable(struct ring_buffer *buffer)
2616 {
2617 	atomic_dec(&buffer->record_disabled);
2618 }
2619 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2620 
2621 /**
2622  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2623  * @buffer: The ring buffer to stop writes to.
2624  * @cpu: The CPU buffer to stop
2625  *
2626  * This prevents all writes to the buffer. Any attempt to write
2627  * to the buffer after this will fail and return NULL.
2628  *
2629  * The caller should call synchronize_sched() after this.
2630  */
2631 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2632 {
2633 	struct ring_buffer_per_cpu *cpu_buffer;
2634 
2635 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2636 		return;
2637 
2638 	cpu_buffer = buffer->buffers[cpu];
2639 	atomic_inc(&cpu_buffer->record_disabled);
2640 }
2641 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2642 
2643 /**
2644  * ring_buffer_record_enable_cpu - enable writes to the buffer
2645  * @buffer: The ring buffer to enable writes
2646  * @cpu: The CPU to enable.
2647  *
2648  * Note, multiple disables will need the same number of enables
2649  * to truly enable the writing (much like preempt_disable).
2650  */
2651 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2652 {
2653 	struct ring_buffer_per_cpu *cpu_buffer;
2654 
2655 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2656 		return;
2657 
2658 	cpu_buffer = buffer->buffers[cpu];
2659 	atomic_dec(&cpu_buffer->record_disabled);
2660 }
2661 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2662 
2663 /*
2664  * The total entries in the ring buffer is the running counter
2665  * of entries entered into the ring buffer, minus the sum of
2666  * the entries read from the ring buffer and the number of
2667  * entries that were overwritten.
2668  */
2669 static inline unsigned long
2670 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2671 {
2672 	return local_read(&cpu_buffer->entries) -
2673 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2674 }
2675 
2676 /**
2677  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2678  * @buffer: The ring buffer
2679  * @cpu: The per CPU buffer to read from.
2680  */
2681 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2682 {
2683 	unsigned long flags;
2684 	struct ring_buffer_per_cpu *cpu_buffer;
2685 	struct buffer_page *bpage;
2686 	unsigned long ret;
2687 
2688 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2689 		return 0;
2690 
2691 	cpu_buffer = buffer->buffers[cpu];
2692 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2693 	/*
2694 	 * if the tail is on reader_page, oldest time stamp is on the reader
2695 	 * page
2696 	 */
2697 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2698 		bpage = cpu_buffer->reader_page;
2699 	else
2700 		bpage = rb_set_head_page(cpu_buffer);
2701 	ret = bpage->page->time_stamp;
2702 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2703 
2704 	return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2707 
2708 /**
2709  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2710  * @buffer: The ring buffer
2711  * @cpu: The per CPU buffer to read from.
2712  */
2713 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2714 {
2715 	struct ring_buffer_per_cpu *cpu_buffer;
2716 	unsigned long ret;
2717 
2718 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2719 		return 0;
2720 
2721 	cpu_buffer = buffer->buffers[cpu];
2722 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2723 
2724 	return ret;
2725 }
2726 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2727 
2728 /**
2729  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2730  * @buffer: The ring buffer
2731  * @cpu: The per CPU buffer to get the entries from.
2732  */
2733 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2734 {
2735 	struct ring_buffer_per_cpu *cpu_buffer;
2736 
2737 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2738 		return 0;
2739 
2740 	cpu_buffer = buffer->buffers[cpu];
2741 
2742 	return rb_num_of_entries(cpu_buffer);
2743 }
2744 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2745 
2746 /**
2747  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2748  * @buffer: The ring buffer
2749  * @cpu: The per CPU buffer to get the number of overruns from
2750  */
2751 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2752 {
2753 	struct ring_buffer_per_cpu *cpu_buffer;
2754 	unsigned long ret;
2755 
2756 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2757 		return 0;
2758 
2759 	cpu_buffer = buffer->buffers[cpu];
2760 	ret = local_read(&cpu_buffer->overrun);
2761 
2762 	return ret;
2763 }
2764 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2765 
2766 /**
2767  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2768  * @buffer: The ring buffer
2769  * @cpu: The per CPU buffer to get the number of overruns from
2770  */
2771 unsigned long
2772 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2773 {
2774 	struct ring_buffer_per_cpu *cpu_buffer;
2775 	unsigned long ret;
2776 
2777 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2778 		return 0;
2779 
2780 	cpu_buffer = buffer->buffers[cpu];
2781 	ret = local_read(&cpu_buffer->commit_overrun);
2782 
2783 	return ret;
2784 }
2785 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2786 
2787 /**
2788  * ring_buffer_entries - get the number of entries in a buffer
2789  * @buffer: The ring buffer
2790  *
2791  * Returns the total number of entries in the ring buffer
2792  * (all CPU entries)
2793  */
2794 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2795 {
2796 	struct ring_buffer_per_cpu *cpu_buffer;
2797 	unsigned long entries = 0;
2798 	int cpu;
2799 
2800 	/* if you care about this being correct, lock the buffer */
2801 	for_each_buffer_cpu(buffer, cpu) {
2802 		cpu_buffer = buffer->buffers[cpu];
2803 		entries += rb_num_of_entries(cpu_buffer);
2804 	}
2805 
2806 	return entries;
2807 }
2808 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2809 
2810 /**
2811  * ring_buffer_overruns - get the number of overruns in buffer
2812  * @buffer: The ring buffer
2813  *
2814  * Returns the total number of overruns in the ring buffer
2815  * (all CPU entries)
2816  */
2817 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2818 {
2819 	struct ring_buffer_per_cpu *cpu_buffer;
2820 	unsigned long overruns = 0;
2821 	int cpu;
2822 
2823 	/* if you care about this being correct, lock the buffer */
2824 	for_each_buffer_cpu(buffer, cpu) {
2825 		cpu_buffer = buffer->buffers[cpu];
2826 		overruns += local_read(&cpu_buffer->overrun);
2827 	}
2828 
2829 	return overruns;
2830 }
2831 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2832 
2833 static void rb_iter_reset(struct ring_buffer_iter *iter)
2834 {
2835 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2836 
2837 	/* Iterator usage is expected to have record disabled */
2838 	if (list_empty(&cpu_buffer->reader_page->list)) {
2839 		iter->head_page = rb_set_head_page(cpu_buffer);
2840 		if (unlikely(!iter->head_page))
2841 			return;
2842 		iter->head = iter->head_page->read;
2843 	} else {
2844 		iter->head_page = cpu_buffer->reader_page;
2845 		iter->head = cpu_buffer->reader_page->read;
2846 	}
2847 	if (iter->head)
2848 		iter->read_stamp = cpu_buffer->read_stamp;
2849 	else
2850 		iter->read_stamp = iter->head_page->page->time_stamp;
2851 	iter->cache_reader_page = cpu_buffer->reader_page;
2852 	iter->cache_read = cpu_buffer->read;
2853 }
2854 
2855 /**
2856  * ring_buffer_iter_reset - reset an iterator
2857  * @iter: The iterator to reset
2858  *
2859  * Resets the iterator, so that it will start from the beginning
2860  * again.
2861  */
2862 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2863 {
2864 	struct ring_buffer_per_cpu *cpu_buffer;
2865 	unsigned long flags;
2866 
2867 	if (!iter)
2868 		return;
2869 
2870 	cpu_buffer = iter->cpu_buffer;
2871 
2872 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2873 	rb_iter_reset(iter);
2874 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2875 }
2876 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2877 
2878 /**
2879  * ring_buffer_iter_empty - check if an iterator has no more to read
2880  * @iter: The iterator to check
2881  */
2882 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2883 {
2884 	struct ring_buffer_per_cpu *cpu_buffer;
2885 
2886 	cpu_buffer = iter->cpu_buffer;
2887 
2888 	return iter->head_page == cpu_buffer->commit_page &&
2889 		iter->head == rb_commit_index(cpu_buffer);
2890 }
2891 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2892 
2893 static void
2894 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2895 		     struct ring_buffer_event *event)
2896 {
2897 	u64 delta;
2898 
2899 	switch (event->type_len) {
2900 	case RINGBUF_TYPE_PADDING:
2901 		return;
2902 
2903 	case RINGBUF_TYPE_TIME_EXTEND:
2904 		delta = event->array[0];
2905 		delta <<= TS_SHIFT;
2906 		delta += event->time_delta;
2907 		cpu_buffer->read_stamp += delta;
2908 		return;
2909 
2910 	case RINGBUF_TYPE_TIME_STAMP:
2911 		/* FIXME: not implemented */
2912 		return;
2913 
2914 	case RINGBUF_TYPE_DATA:
2915 		cpu_buffer->read_stamp += event->time_delta;
2916 		return;
2917 
2918 	default:
2919 		BUG();
2920 	}
2921 	return;
2922 }
2923 
2924 static void
2925 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2926 			  struct ring_buffer_event *event)
2927 {
2928 	u64 delta;
2929 
2930 	switch (event->type_len) {
2931 	case RINGBUF_TYPE_PADDING:
2932 		return;
2933 
2934 	case RINGBUF_TYPE_TIME_EXTEND:
2935 		delta = event->array[0];
2936 		delta <<= TS_SHIFT;
2937 		delta += event->time_delta;
2938 		iter->read_stamp += delta;
2939 		return;
2940 
2941 	case RINGBUF_TYPE_TIME_STAMP:
2942 		/* FIXME: not implemented */
2943 		return;
2944 
2945 	case RINGBUF_TYPE_DATA:
2946 		iter->read_stamp += event->time_delta;
2947 		return;
2948 
2949 	default:
2950 		BUG();
2951 	}
2952 	return;
2953 }
2954 
2955 static struct buffer_page *
2956 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2957 {
2958 	struct buffer_page *reader = NULL;
2959 	unsigned long overwrite;
2960 	unsigned long flags;
2961 	int nr_loops = 0;
2962 	int ret;
2963 
2964 	local_irq_save(flags);
2965 	arch_spin_lock(&cpu_buffer->lock);
2966 
2967  again:
2968 	/*
2969 	 * This should normally only loop twice. But because the
2970 	 * start of the reader inserts an empty page, it causes
2971 	 * a case where we will loop three times. There should be no
2972 	 * reason to loop four times (that I know of).
2973 	 */
2974 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2975 		reader = NULL;
2976 		goto out;
2977 	}
2978 
2979 	reader = cpu_buffer->reader_page;
2980 
2981 	/* If there's more to read, return this page */
2982 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2983 		goto out;
2984 
2985 	/* Never should we have an index greater than the size */
2986 	if (RB_WARN_ON(cpu_buffer,
2987 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2988 		goto out;
2989 
2990 	/* check if we caught up to the tail */
2991 	reader = NULL;
2992 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2993 		goto out;
2994 
2995 	/*
2996 	 * Reset the reader page to size zero.
2997 	 */
2998 	local_set(&cpu_buffer->reader_page->write, 0);
2999 	local_set(&cpu_buffer->reader_page->entries, 0);
3000 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3001 	cpu_buffer->reader_page->real_end = 0;
3002 
3003  spin:
3004 	/*
3005 	 * Splice the empty reader page into the list around the head.
3006 	 */
3007 	reader = rb_set_head_page(cpu_buffer);
3008 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3009 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3010 
3011 	/*
3012 	 * cpu_buffer->pages just needs to point to the buffer, it
3013 	 *  has no specific buffer page to point to. Lets move it out
3014 	 *  of our way so we don't accidentally swap it.
3015 	 */
3016 	cpu_buffer->pages = reader->list.prev;
3017 
3018 	/* The reader page will be pointing to the new head */
3019 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3020 
3021 	/*
3022 	 * We want to make sure we read the overruns after we set up our
3023 	 * pointers to the next object. The writer side does a
3024 	 * cmpxchg to cross pages which acts as the mb on the writer
3025 	 * side. Note, the reader will constantly fail the swap
3026 	 * while the writer is updating the pointers, so this
3027 	 * guarantees that the overwrite recorded here is the one we
3028 	 * want to compare with the last_overrun.
3029 	 */
3030 	smp_mb();
3031 	overwrite = local_read(&(cpu_buffer->overrun));
3032 
3033 	/*
3034 	 * Here's the tricky part.
3035 	 *
3036 	 * We need to move the pointer past the header page.
3037 	 * But we can only do that if a writer is not currently
3038 	 * moving it. The page before the header page has the
3039 	 * flag bit '1' set if it is pointing to the page we want.
3040 	 * but if the writer is in the process of moving it
3041 	 * than it will be '2' or already moved '0'.
3042 	 */
3043 
3044 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3045 
3046 	/*
3047 	 * If we did not convert it, then we must try again.
3048 	 */
3049 	if (!ret)
3050 		goto spin;
3051 
3052 	/*
3053 	 * Yeah! We succeeded in replacing the page.
3054 	 *
3055 	 * Now make the new head point back to the reader page.
3056 	 */
3057 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3058 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3059 
3060 	/* Finally update the reader page to the new head */
3061 	cpu_buffer->reader_page = reader;
3062 	rb_reset_reader_page(cpu_buffer);
3063 
3064 	if (overwrite != cpu_buffer->last_overrun) {
3065 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3066 		cpu_buffer->last_overrun = overwrite;
3067 	}
3068 
3069 	goto again;
3070 
3071  out:
3072 	arch_spin_unlock(&cpu_buffer->lock);
3073 	local_irq_restore(flags);
3074 
3075 	return reader;
3076 }
3077 
3078 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3079 {
3080 	struct ring_buffer_event *event;
3081 	struct buffer_page *reader;
3082 	unsigned length;
3083 
3084 	reader = rb_get_reader_page(cpu_buffer);
3085 
3086 	/* This function should not be called when buffer is empty */
3087 	if (RB_WARN_ON(cpu_buffer, !reader))
3088 		return;
3089 
3090 	event = rb_reader_event(cpu_buffer);
3091 
3092 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3093 		cpu_buffer->read++;
3094 
3095 	rb_update_read_stamp(cpu_buffer, event);
3096 
3097 	length = rb_event_length(event);
3098 	cpu_buffer->reader_page->read += length;
3099 }
3100 
3101 static void rb_advance_iter(struct ring_buffer_iter *iter)
3102 {
3103 	struct ring_buffer_per_cpu *cpu_buffer;
3104 	struct ring_buffer_event *event;
3105 	unsigned length;
3106 
3107 	cpu_buffer = iter->cpu_buffer;
3108 
3109 	/*
3110 	 * Check if we are at the end of the buffer.
3111 	 */
3112 	if (iter->head >= rb_page_size(iter->head_page)) {
3113 		/* discarded commits can make the page empty */
3114 		if (iter->head_page == cpu_buffer->commit_page)
3115 			return;
3116 		rb_inc_iter(iter);
3117 		return;
3118 	}
3119 
3120 	event = rb_iter_head_event(iter);
3121 
3122 	length = rb_event_length(event);
3123 
3124 	/*
3125 	 * This should not be called to advance the header if we are
3126 	 * at the tail of the buffer.
3127 	 */
3128 	if (RB_WARN_ON(cpu_buffer,
3129 		       (iter->head_page == cpu_buffer->commit_page) &&
3130 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3131 		return;
3132 
3133 	rb_update_iter_read_stamp(iter, event);
3134 
3135 	iter->head += length;
3136 
3137 	/* check for end of page padding */
3138 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3139 	    (iter->head_page != cpu_buffer->commit_page))
3140 		rb_advance_iter(iter);
3141 }
3142 
3143 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3144 {
3145 	return cpu_buffer->lost_events;
3146 }
3147 
3148 static struct ring_buffer_event *
3149 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3150 	       unsigned long *lost_events)
3151 {
3152 	struct ring_buffer_event *event;
3153 	struct buffer_page *reader;
3154 	int nr_loops = 0;
3155 
3156  again:
3157 	/*
3158 	 * We repeat when a time extend is encountered.
3159 	 * Since the time extend is always attached to a data event,
3160 	 * we should never loop more than once.
3161 	 * (We never hit the following condition more than twice).
3162 	 */
3163 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3164 		return NULL;
3165 
3166 	reader = rb_get_reader_page(cpu_buffer);
3167 	if (!reader)
3168 		return NULL;
3169 
3170 	event = rb_reader_event(cpu_buffer);
3171 
3172 	switch (event->type_len) {
3173 	case RINGBUF_TYPE_PADDING:
3174 		if (rb_null_event(event))
3175 			RB_WARN_ON(cpu_buffer, 1);
3176 		/*
3177 		 * Because the writer could be discarding every
3178 		 * event it creates (which would probably be bad)
3179 		 * if we were to go back to "again" then we may never
3180 		 * catch up, and will trigger the warn on, or lock
3181 		 * the box. Return the padding, and we will release
3182 		 * the current locks, and try again.
3183 		 */
3184 		return event;
3185 
3186 	case RINGBUF_TYPE_TIME_EXTEND:
3187 		/* Internal data, OK to advance */
3188 		rb_advance_reader(cpu_buffer);
3189 		goto again;
3190 
3191 	case RINGBUF_TYPE_TIME_STAMP:
3192 		/* FIXME: not implemented */
3193 		rb_advance_reader(cpu_buffer);
3194 		goto again;
3195 
3196 	case RINGBUF_TYPE_DATA:
3197 		if (ts) {
3198 			*ts = cpu_buffer->read_stamp + event->time_delta;
3199 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3200 							 cpu_buffer->cpu, ts);
3201 		}
3202 		if (lost_events)
3203 			*lost_events = rb_lost_events(cpu_buffer);
3204 		return event;
3205 
3206 	default:
3207 		BUG();
3208 	}
3209 
3210 	return NULL;
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3213 
3214 static struct ring_buffer_event *
3215 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3216 {
3217 	struct ring_buffer *buffer;
3218 	struct ring_buffer_per_cpu *cpu_buffer;
3219 	struct ring_buffer_event *event;
3220 	int nr_loops = 0;
3221 
3222 	cpu_buffer = iter->cpu_buffer;
3223 	buffer = cpu_buffer->buffer;
3224 
3225 	/*
3226 	 * Check if someone performed a consuming read to
3227 	 * the buffer. A consuming read invalidates the iterator
3228 	 * and we need to reset the iterator in this case.
3229 	 */
3230 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3231 		     iter->cache_reader_page != cpu_buffer->reader_page))
3232 		rb_iter_reset(iter);
3233 
3234  again:
3235 	if (ring_buffer_iter_empty(iter))
3236 		return NULL;
3237 
3238 	/*
3239 	 * We repeat when a time extend is encountered.
3240 	 * Since the time extend is always attached to a data event,
3241 	 * we should never loop more than once.
3242 	 * (We never hit the following condition more than twice).
3243 	 */
3244 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3245 		return NULL;
3246 
3247 	if (rb_per_cpu_empty(cpu_buffer))
3248 		return NULL;
3249 
3250 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3251 		rb_inc_iter(iter);
3252 		goto again;
3253 	}
3254 
3255 	event = rb_iter_head_event(iter);
3256 
3257 	switch (event->type_len) {
3258 	case RINGBUF_TYPE_PADDING:
3259 		if (rb_null_event(event)) {
3260 			rb_inc_iter(iter);
3261 			goto again;
3262 		}
3263 		rb_advance_iter(iter);
3264 		return event;
3265 
3266 	case RINGBUF_TYPE_TIME_EXTEND:
3267 		/* Internal data, OK to advance */
3268 		rb_advance_iter(iter);
3269 		goto again;
3270 
3271 	case RINGBUF_TYPE_TIME_STAMP:
3272 		/* FIXME: not implemented */
3273 		rb_advance_iter(iter);
3274 		goto again;
3275 
3276 	case RINGBUF_TYPE_DATA:
3277 		if (ts) {
3278 			*ts = iter->read_stamp + event->time_delta;
3279 			ring_buffer_normalize_time_stamp(buffer,
3280 							 cpu_buffer->cpu, ts);
3281 		}
3282 		return event;
3283 
3284 	default:
3285 		BUG();
3286 	}
3287 
3288 	return NULL;
3289 }
3290 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3291 
3292 static inline int rb_ok_to_lock(void)
3293 {
3294 	/*
3295 	 * If an NMI die dumps out the content of the ring buffer
3296 	 * do not grab locks. We also permanently disable the ring
3297 	 * buffer too. A one time deal is all you get from reading
3298 	 * the ring buffer from an NMI.
3299 	 */
3300 	if (likely(!in_nmi()))
3301 		return 1;
3302 
3303 	tracing_off_permanent();
3304 	return 0;
3305 }
3306 
3307 /**
3308  * ring_buffer_peek - peek at the next event to be read
3309  * @buffer: The ring buffer to read
3310  * @cpu: The cpu to peak at
3311  * @ts: The timestamp counter of this event.
3312  * @lost_events: a variable to store if events were lost (may be NULL)
3313  *
3314  * This will return the event that will be read next, but does
3315  * not consume the data.
3316  */
3317 struct ring_buffer_event *
3318 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3319 		 unsigned long *lost_events)
3320 {
3321 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3322 	struct ring_buffer_event *event;
3323 	unsigned long flags;
3324 	int dolock;
3325 
3326 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3327 		return NULL;
3328 
3329 	dolock = rb_ok_to_lock();
3330  again:
3331 	local_irq_save(flags);
3332 	if (dolock)
3333 		raw_spin_lock(&cpu_buffer->reader_lock);
3334 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3335 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3336 		rb_advance_reader(cpu_buffer);
3337 	if (dolock)
3338 		raw_spin_unlock(&cpu_buffer->reader_lock);
3339 	local_irq_restore(flags);
3340 
3341 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3342 		goto again;
3343 
3344 	return event;
3345 }
3346 
3347 /**
3348  * ring_buffer_iter_peek - peek at the next event to be read
3349  * @iter: The ring buffer iterator
3350  * @ts: The timestamp counter of this event.
3351  *
3352  * This will return the event that will be read next, but does
3353  * not increment the iterator.
3354  */
3355 struct ring_buffer_event *
3356 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3357 {
3358 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3359 	struct ring_buffer_event *event;
3360 	unsigned long flags;
3361 
3362  again:
3363 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3364 	event = rb_iter_peek(iter, ts);
3365 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3366 
3367 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3368 		goto again;
3369 
3370 	return event;
3371 }
3372 
3373 /**
3374  * ring_buffer_consume - return an event and consume it
3375  * @buffer: The ring buffer to get the next event from
3376  * @cpu: the cpu to read the buffer from
3377  * @ts: a variable to store the timestamp (may be NULL)
3378  * @lost_events: a variable to store if events were lost (may be NULL)
3379  *
3380  * Returns the next event in the ring buffer, and that event is consumed.
3381  * Meaning, that sequential reads will keep returning a different event,
3382  * and eventually empty the ring buffer if the producer is slower.
3383  */
3384 struct ring_buffer_event *
3385 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3386 		    unsigned long *lost_events)
3387 {
3388 	struct ring_buffer_per_cpu *cpu_buffer;
3389 	struct ring_buffer_event *event = NULL;
3390 	unsigned long flags;
3391 	int dolock;
3392 
3393 	dolock = rb_ok_to_lock();
3394 
3395  again:
3396 	/* might be called in atomic */
3397 	preempt_disable();
3398 
3399 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3400 		goto out;
3401 
3402 	cpu_buffer = buffer->buffers[cpu];
3403 	local_irq_save(flags);
3404 	if (dolock)
3405 		raw_spin_lock(&cpu_buffer->reader_lock);
3406 
3407 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3408 	if (event) {
3409 		cpu_buffer->lost_events = 0;
3410 		rb_advance_reader(cpu_buffer);
3411 	}
3412 
3413 	if (dolock)
3414 		raw_spin_unlock(&cpu_buffer->reader_lock);
3415 	local_irq_restore(flags);
3416 
3417  out:
3418 	preempt_enable();
3419 
3420 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3421 		goto again;
3422 
3423 	return event;
3424 }
3425 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3426 
3427 /**
3428  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3429  * @buffer: The ring buffer to read from
3430  * @cpu: The cpu buffer to iterate over
3431  *
3432  * This performs the initial preparations necessary to iterate
3433  * through the buffer.  Memory is allocated, buffer recording
3434  * is disabled, and the iterator pointer is returned to the caller.
3435  *
3436  * Disabling buffer recordng prevents the reading from being
3437  * corrupted. This is not a consuming read, so a producer is not
3438  * expected.
3439  *
3440  * After a sequence of ring_buffer_read_prepare calls, the user is
3441  * expected to make at least one call to ring_buffer_prepare_sync.
3442  * Afterwards, ring_buffer_read_start is invoked to get things going
3443  * for real.
3444  *
3445  * This overall must be paired with ring_buffer_finish.
3446  */
3447 struct ring_buffer_iter *
3448 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3449 {
3450 	struct ring_buffer_per_cpu *cpu_buffer;
3451 	struct ring_buffer_iter *iter;
3452 
3453 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3454 		return NULL;
3455 
3456 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3457 	if (!iter)
3458 		return NULL;
3459 
3460 	cpu_buffer = buffer->buffers[cpu];
3461 
3462 	iter->cpu_buffer = cpu_buffer;
3463 
3464 	atomic_inc(&cpu_buffer->record_disabled);
3465 
3466 	return iter;
3467 }
3468 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3469 
3470 /**
3471  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3472  *
3473  * All previously invoked ring_buffer_read_prepare calls to prepare
3474  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3475  * calls on those iterators are allowed.
3476  */
3477 void
3478 ring_buffer_read_prepare_sync(void)
3479 {
3480 	synchronize_sched();
3481 }
3482 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3483 
3484 /**
3485  * ring_buffer_read_start - start a non consuming read of the buffer
3486  * @iter: The iterator returned by ring_buffer_read_prepare
3487  *
3488  * This finalizes the startup of an iteration through the buffer.
3489  * The iterator comes from a call to ring_buffer_read_prepare and
3490  * an intervening ring_buffer_read_prepare_sync must have been
3491  * performed.
3492  *
3493  * Must be paired with ring_buffer_finish.
3494  */
3495 void
3496 ring_buffer_read_start(struct ring_buffer_iter *iter)
3497 {
3498 	struct ring_buffer_per_cpu *cpu_buffer;
3499 	unsigned long flags;
3500 
3501 	if (!iter)
3502 		return;
3503 
3504 	cpu_buffer = iter->cpu_buffer;
3505 
3506 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3507 	arch_spin_lock(&cpu_buffer->lock);
3508 	rb_iter_reset(iter);
3509 	arch_spin_unlock(&cpu_buffer->lock);
3510 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3511 }
3512 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3513 
3514 /**
3515  * ring_buffer_finish - finish reading the iterator of the buffer
3516  * @iter: The iterator retrieved by ring_buffer_start
3517  *
3518  * This re-enables the recording to the buffer, and frees the
3519  * iterator.
3520  */
3521 void
3522 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3523 {
3524 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3525 
3526 	atomic_dec(&cpu_buffer->record_disabled);
3527 	kfree(iter);
3528 }
3529 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3530 
3531 /**
3532  * ring_buffer_read - read the next item in the ring buffer by the iterator
3533  * @iter: The ring buffer iterator
3534  * @ts: The time stamp of the event read.
3535  *
3536  * This reads the next event in the ring buffer and increments the iterator.
3537  */
3538 struct ring_buffer_event *
3539 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3540 {
3541 	struct ring_buffer_event *event;
3542 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3543 	unsigned long flags;
3544 
3545 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3546  again:
3547 	event = rb_iter_peek(iter, ts);
3548 	if (!event)
3549 		goto out;
3550 
3551 	if (event->type_len == RINGBUF_TYPE_PADDING)
3552 		goto again;
3553 
3554 	rb_advance_iter(iter);
3555  out:
3556 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3557 
3558 	return event;
3559 }
3560 EXPORT_SYMBOL_GPL(ring_buffer_read);
3561 
3562 /**
3563  * ring_buffer_size - return the size of the ring buffer (in bytes)
3564  * @buffer: The ring buffer.
3565  */
3566 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3567 {
3568 	return BUF_PAGE_SIZE * buffer->pages;
3569 }
3570 EXPORT_SYMBOL_GPL(ring_buffer_size);
3571 
3572 static void
3573 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3574 {
3575 	rb_head_page_deactivate(cpu_buffer);
3576 
3577 	cpu_buffer->head_page
3578 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3579 	local_set(&cpu_buffer->head_page->write, 0);
3580 	local_set(&cpu_buffer->head_page->entries, 0);
3581 	local_set(&cpu_buffer->head_page->page->commit, 0);
3582 
3583 	cpu_buffer->head_page->read = 0;
3584 
3585 	cpu_buffer->tail_page = cpu_buffer->head_page;
3586 	cpu_buffer->commit_page = cpu_buffer->head_page;
3587 
3588 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3589 	local_set(&cpu_buffer->reader_page->write, 0);
3590 	local_set(&cpu_buffer->reader_page->entries, 0);
3591 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3592 	cpu_buffer->reader_page->read = 0;
3593 
3594 	local_set(&cpu_buffer->commit_overrun, 0);
3595 	local_set(&cpu_buffer->entries_bytes, 0);
3596 	local_set(&cpu_buffer->overrun, 0);
3597 	local_set(&cpu_buffer->entries, 0);
3598 	local_set(&cpu_buffer->committing, 0);
3599 	local_set(&cpu_buffer->commits, 0);
3600 	cpu_buffer->read = 0;
3601 	cpu_buffer->read_bytes = 0;
3602 
3603 	cpu_buffer->write_stamp = 0;
3604 	cpu_buffer->read_stamp = 0;
3605 
3606 	cpu_buffer->lost_events = 0;
3607 	cpu_buffer->last_overrun = 0;
3608 
3609 	rb_head_page_activate(cpu_buffer);
3610 }
3611 
3612 /**
3613  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3614  * @buffer: The ring buffer to reset a per cpu buffer of
3615  * @cpu: The CPU buffer to be reset
3616  */
3617 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3618 {
3619 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3620 	unsigned long flags;
3621 
3622 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3623 		return;
3624 
3625 	atomic_inc(&cpu_buffer->record_disabled);
3626 
3627 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3628 
3629 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3630 		goto out;
3631 
3632 	arch_spin_lock(&cpu_buffer->lock);
3633 
3634 	rb_reset_cpu(cpu_buffer);
3635 
3636 	arch_spin_unlock(&cpu_buffer->lock);
3637 
3638  out:
3639 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3640 
3641 	atomic_dec(&cpu_buffer->record_disabled);
3642 }
3643 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3644 
3645 /**
3646  * ring_buffer_reset - reset a ring buffer
3647  * @buffer: The ring buffer to reset all cpu buffers
3648  */
3649 void ring_buffer_reset(struct ring_buffer *buffer)
3650 {
3651 	int cpu;
3652 
3653 	for_each_buffer_cpu(buffer, cpu)
3654 		ring_buffer_reset_cpu(buffer, cpu);
3655 }
3656 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3657 
3658 /**
3659  * rind_buffer_empty - is the ring buffer empty?
3660  * @buffer: The ring buffer to test
3661  */
3662 int ring_buffer_empty(struct ring_buffer *buffer)
3663 {
3664 	struct ring_buffer_per_cpu *cpu_buffer;
3665 	unsigned long flags;
3666 	int dolock;
3667 	int cpu;
3668 	int ret;
3669 
3670 	dolock = rb_ok_to_lock();
3671 
3672 	/* yes this is racy, but if you don't like the race, lock the buffer */
3673 	for_each_buffer_cpu(buffer, cpu) {
3674 		cpu_buffer = buffer->buffers[cpu];
3675 		local_irq_save(flags);
3676 		if (dolock)
3677 			raw_spin_lock(&cpu_buffer->reader_lock);
3678 		ret = rb_per_cpu_empty(cpu_buffer);
3679 		if (dolock)
3680 			raw_spin_unlock(&cpu_buffer->reader_lock);
3681 		local_irq_restore(flags);
3682 
3683 		if (!ret)
3684 			return 0;
3685 	}
3686 
3687 	return 1;
3688 }
3689 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3690 
3691 /**
3692  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3693  * @buffer: The ring buffer
3694  * @cpu: The CPU buffer to test
3695  */
3696 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3697 {
3698 	struct ring_buffer_per_cpu *cpu_buffer;
3699 	unsigned long flags;
3700 	int dolock;
3701 	int ret;
3702 
3703 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3704 		return 1;
3705 
3706 	dolock = rb_ok_to_lock();
3707 
3708 	cpu_buffer = buffer->buffers[cpu];
3709 	local_irq_save(flags);
3710 	if (dolock)
3711 		raw_spin_lock(&cpu_buffer->reader_lock);
3712 	ret = rb_per_cpu_empty(cpu_buffer);
3713 	if (dolock)
3714 		raw_spin_unlock(&cpu_buffer->reader_lock);
3715 	local_irq_restore(flags);
3716 
3717 	return ret;
3718 }
3719 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3720 
3721 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3722 /**
3723  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3724  * @buffer_a: One buffer to swap with
3725  * @buffer_b: The other buffer to swap with
3726  *
3727  * This function is useful for tracers that want to take a "snapshot"
3728  * of a CPU buffer and has another back up buffer lying around.
3729  * it is expected that the tracer handles the cpu buffer not being
3730  * used at the moment.
3731  */
3732 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3733 			 struct ring_buffer *buffer_b, int cpu)
3734 {
3735 	struct ring_buffer_per_cpu *cpu_buffer_a;
3736 	struct ring_buffer_per_cpu *cpu_buffer_b;
3737 	int ret = -EINVAL;
3738 
3739 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3740 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3741 		goto out;
3742 
3743 	/* At least make sure the two buffers are somewhat the same */
3744 	if (buffer_a->pages != buffer_b->pages)
3745 		goto out;
3746 
3747 	ret = -EAGAIN;
3748 
3749 	if (ring_buffer_flags != RB_BUFFERS_ON)
3750 		goto out;
3751 
3752 	if (atomic_read(&buffer_a->record_disabled))
3753 		goto out;
3754 
3755 	if (atomic_read(&buffer_b->record_disabled))
3756 		goto out;
3757 
3758 	cpu_buffer_a = buffer_a->buffers[cpu];
3759 	cpu_buffer_b = buffer_b->buffers[cpu];
3760 
3761 	if (atomic_read(&cpu_buffer_a->record_disabled))
3762 		goto out;
3763 
3764 	if (atomic_read(&cpu_buffer_b->record_disabled))
3765 		goto out;
3766 
3767 	/*
3768 	 * We can't do a synchronize_sched here because this
3769 	 * function can be called in atomic context.
3770 	 * Normally this will be called from the same CPU as cpu.
3771 	 * If not it's up to the caller to protect this.
3772 	 */
3773 	atomic_inc(&cpu_buffer_a->record_disabled);
3774 	atomic_inc(&cpu_buffer_b->record_disabled);
3775 
3776 	ret = -EBUSY;
3777 	if (local_read(&cpu_buffer_a->committing))
3778 		goto out_dec;
3779 	if (local_read(&cpu_buffer_b->committing))
3780 		goto out_dec;
3781 
3782 	buffer_a->buffers[cpu] = cpu_buffer_b;
3783 	buffer_b->buffers[cpu] = cpu_buffer_a;
3784 
3785 	cpu_buffer_b->buffer = buffer_a;
3786 	cpu_buffer_a->buffer = buffer_b;
3787 
3788 	ret = 0;
3789 
3790 out_dec:
3791 	atomic_dec(&cpu_buffer_a->record_disabled);
3792 	atomic_dec(&cpu_buffer_b->record_disabled);
3793 out:
3794 	return ret;
3795 }
3796 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3797 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3798 
3799 /**
3800  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3801  * @buffer: the buffer to allocate for.
3802  *
3803  * This function is used in conjunction with ring_buffer_read_page.
3804  * When reading a full page from the ring buffer, these functions
3805  * can be used to speed up the process. The calling function should
3806  * allocate a few pages first with this function. Then when it
3807  * needs to get pages from the ring buffer, it passes the result
3808  * of this function into ring_buffer_read_page, which will swap
3809  * the page that was allocated, with the read page of the buffer.
3810  *
3811  * Returns:
3812  *  The page allocated, or NULL on error.
3813  */
3814 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
3815 {
3816 	struct buffer_data_page *bpage;
3817 	struct page *page;
3818 
3819 	page = alloc_pages_node(cpu_to_node(cpu),
3820 				GFP_KERNEL | __GFP_NORETRY, 0);
3821 	if (!page)
3822 		return NULL;
3823 
3824 	bpage = page_address(page);
3825 
3826 	rb_init_page(bpage);
3827 
3828 	return bpage;
3829 }
3830 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3831 
3832 /**
3833  * ring_buffer_free_read_page - free an allocated read page
3834  * @buffer: the buffer the page was allocate for
3835  * @data: the page to free
3836  *
3837  * Free a page allocated from ring_buffer_alloc_read_page.
3838  */
3839 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3840 {
3841 	free_page((unsigned long)data);
3842 }
3843 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3844 
3845 /**
3846  * ring_buffer_read_page - extract a page from the ring buffer
3847  * @buffer: buffer to extract from
3848  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3849  * @len: amount to extract
3850  * @cpu: the cpu of the buffer to extract
3851  * @full: should the extraction only happen when the page is full.
3852  *
3853  * This function will pull out a page from the ring buffer and consume it.
3854  * @data_page must be the address of the variable that was returned
3855  * from ring_buffer_alloc_read_page. This is because the page might be used
3856  * to swap with a page in the ring buffer.
3857  *
3858  * for example:
3859  *	rpage = ring_buffer_alloc_read_page(buffer);
3860  *	if (!rpage)
3861  *		return error;
3862  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3863  *	if (ret >= 0)
3864  *		process_page(rpage, ret);
3865  *
3866  * When @full is set, the function will not return true unless
3867  * the writer is off the reader page.
3868  *
3869  * Note: it is up to the calling functions to handle sleeps and wakeups.
3870  *  The ring buffer can be used anywhere in the kernel and can not
3871  *  blindly call wake_up. The layer that uses the ring buffer must be
3872  *  responsible for that.
3873  *
3874  * Returns:
3875  *  >=0 if data has been transferred, returns the offset of consumed data.
3876  *  <0 if no data has been transferred.
3877  */
3878 int ring_buffer_read_page(struct ring_buffer *buffer,
3879 			  void **data_page, size_t len, int cpu, int full)
3880 {
3881 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3882 	struct ring_buffer_event *event;
3883 	struct buffer_data_page *bpage;
3884 	struct buffer_page *reader;
3885 	unsigned long missed_events;
3886 	unsigned long flags;
3887 	unsigned int commit;
3888 	unsigned int read;
3889 	u64 save_timestamp;
3890 	int ret = -1;
3891 
3892 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3893 		goto out;
3894 
3895 	/*
3896 	 * If len is not big enough to hold the page header, then
3897 	 * we can not copy anything.
3898 	 */
3899 	if (len <= BUF_PAGE_HDR_SIZE)
3900 		goto out;
3901 
3902 	len -= BUF_PAGE_HDR_SIZE;
3903 
3904 	if (!data_page)
3905 		goto out;
3906 
3907 	bpage = *data_page;
3908 	if (!bpage)
3909 		goto out;
3910 
3911 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3912 
3913 	reader = rb_get_reader_page(cpu_buffer);
3914 	if (!reader)
3915 		goto out_unlock;
3916 
3917 	event = rb_reader_event(cpu_buffer);
3918 
3919 	read = reader->read;
3920 	commit = rb_page_commit(reader);
3921 
3922 	/* Check if any events were dropped */
3923 	missed_events = cpu_buffer->lost_events;
3924 
3925 	/*
3926 	 * If this page has been partially read or
3927 	 * if len is not big enough to read the rest of the page or
3928 	 * a writer is still on the page, then
3929 	 * we must copy the data from the page to the buffer.
3930 	 * Otherwise, we can simply swap the page with the one passed in.
3931 	 */
3932 	if (read || (len < (commit - read)) ||
3933 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3934 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3935 		unsigned int rpos = read;
3936 		unsigned int pos = 0;
3937 		unsigned int size;
3938 
3939 		if (full)
3940 			goto out_unlock;
3941 
3942 		if (len > (commit - read))
3943 			len = (commit - read);
3944 
3945 		/* Always keep the time extend and data together */
3946 		size = rb_event_ts_length(event);
3947 
3948 		if (len < size)
3949 			goto out_unlock;
3950 
3951 		/* save the current timestamp, since the user will need it */
3952 		save_timestamp = cpu_buffer->read_stamp;
3953 
3954 		/* Need to copy one event at a time */
3955 		do {
3956 			/* We need the size of one event, because
3957 			 * rb_advance_reader only advances by one event,
3958 			 * whereas rb_event_ts_length may include the size of
3959 			 * one or two events.
3960 			 * We have already ensured there's enough space if this
3961 			 * is a time extend. */
3962 			size = rb_event_length(event);
3963 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3964 
3965 			len -= size;
3966 
3967 			rb_advance_reader(cpu_buffer);
3968 			rpos = reader->read;
3969 			pos += size;
3970 
3971 			if (rpos >= commit)
3972 				break;
3973 
3974 			event = rb_reader_event(cpu_buffer);
3975 			/* Always keep the time extend and data together */
3976 			size = rb_event_ts_length(event);
3977 		} while (len >= size);
3978 
3979 		/* update bpage */
3980 		local_set(&bpage->commit, pos);
3981 		bpage->time_stamp = save_timestamp;
3982 
3983 		/* we copied everything to the beginning */
3984 		read = 0;
3985 	} else {
3986 		/* update the entry counter */
3987 		cpu_buffer->read += rb_page_entries(reader);
3988 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
3989 
3990 		/* swap the pages */
3991 		rb_init_page(bpage);
3992 		bpage = reader->page;
3993 		reader->page = *data_page;
3994 		local_set(&reader->write, 0);
3995 		local_set(&reader->entries, 0);
3996 		reader->read = 0;
3997 		*data_page = bpage;
3998 
3999 		/*
4000 		 * Use the real_end for the data size,
4001 		 * This gives us a chance to store the lost events
4002 		 * on the page.
4003 		 */
4004 		if (reader->real_end)
4005 			local_set(&bpage->commit, reader->real_end);
4006 	}
4007 	ret = read;
4008 
4009 	cpu_buffer->lost_events = 0;
4010 
4011 	commit = local_read(&bpage->commit);
4012 	/*
4013 	 * Set a flag in the commit field if we lost events
4014 	 */
4015 	if (missed_events) {
4016 		/* If there is room at the end of the page to save the
4017 		 * missed events, then record it there.
4018 		 */
4019 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4020 			memcpy(&bpage->data[commit], &missed_events,
4021 			       sizeof(missed_events));
4022 			local_add(RB_MISSED_STORED, &bpage->commit);
4023 			commit += sizeof(missed_events);
4024 		}
4025 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4026 	}
4027 
4028 	/*
4029 	 * This page may be off to user land. Zero it out here.
4030 	 */
4031 	if (commit < BUF_PAGE_SIZE)
4032 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4033 
4034  out_unlock:
4035 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4036 
4037  out:
4038 	return ret;
4039 }
4040 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4041 
4042 #ifdef CONFIG_TRACING
4043 static ssize_t
4044 rb_simple_read(struct file *filp, char __user *ubuf,
4045 	       size_t cnt, loff_t *ppos)
4046 {
4047 	unsigned long *p = filp->private_data;
4048 	char buf[64];
4049 	int r;
4050 
4051 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
4052 		r = sprintf(buf, "permanently disabled\n");
4053 	else
4054 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
4055 
4056 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
4057 }
4058 
4059 static ssize_t
4060 rb_simple_write(struct file *filp, const char __user *ubuf,
4061 		size_t cnt, loff_t *ppos)
4062 {
4063 	unsigned long *p = filp->private_data;
4064 	unsigned long val;
4065 	int ret;
4066 
4067 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
4068 	if (ret)
4069 		return ret;
4070 
4071 	if (val)
4072 		set_bit(RB_BUFFERS_ON_BIT, p);
4073 	else
4074 		clear_bit(RB_BUFFERS_ON_BIT, p);
4075 
4076 	(*ppos)++;
4077 
4078 	return cnt;
4079 }
4080 
4081 static const struct file_operations rb_simple_fops = {
4082 	.open		= tracing_open_generic,
4083 	.read		= rb_simple_read,
4084 	.write		= rb_simple_write,
4085 	.llseek		= default_llseek,
4086 };
4087 
4088 
4089 static __init int rb_init_debugfs(void)
4090 {
4091 	struct dentry *d_tracer;
4092 
4093 	d_tracer = tracing_init_dentry();
4094 
4095 	trace_create_file("tracing_on", 0644, d_tracer,
4096 			    &ring_buffer_flags, &rb_simple_fops);
4097 
4098 	return 0;
4099 }
4100 
4101 fs_initcall(rb_init_debugfs);
4102 #endif
4103 
4104 #ifdef CONFIG_HOTPLUG_CPU
4105 static int rb_cpu_notify(struct notifier_block *self,
4106 			 unsigned long action, void *hcpu)
4107 {
4108 	struct ring_buffer *buffer =
4109 		container_of(self, struct ring_buffer, cpu_notify);
4110 	long cpu = (long)hcpu;
4111 
4112 	switch (action) {
4113 	case CPU_UP_PREPARE:
4114 	case CPU_UP_PREPARE_FROZEN:
4115 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4116 			return NOTIFY_OK;
4117 
4118 		buffer->buffers[cpu] =
4119 			rb_allocate_cpu_buffer(buffer, cpu);
4120 		if (!buffer->buffers[cpu]) {
4121 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4122 			     cpu);
4123 			return NOTIFY_OK;
4124 		}
4125 		smp_wmb();
4126 		cpumask_set_cpu(cpu, buffer->cpumask);
4127 		break;
4128 	case CPU_DOWN_PREPARE:
4129 	case CPU_DOWN_PREPARE_FROZEN:
4130 		/*
4131 		 * Do nothing.
4132 		 *  If we were to free the buffer, then the user would
4133 		 *  lose any trace that was in the buffer.
4134 		 */
4135 		break;
4136 	default:
4137 		break;
4138 	}
4139 	return NOTIFY_OK;
4140 }
4141 #endif
4142