1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/debugfs.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/kmemcheck.h> 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/fs.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 int ret; 38 39 ret = trace_seq_puts(s, "# compressed entry header\n"); 40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n"); 41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 42 ret = trace_seq_puts(s, "\tarray : 32 bits\n"); 43 ret = trace_seq_putc(s, '\n'); 44 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return ret; 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* 123 * A fast way to enable or disable all ring buffers is to 124 * call tracing_on or tracing_off. Turning off the ring buffers 125 * prevents all ring buffers from being recorded to. 126 * Turning this switch on, makes it OK to write to the 127 * ring buffer, if the ring buffer is enabled itself. 128 * 129 * There's three layers that must be on in order to write 130 * to the ring buffer. 131 * 132 * 1) This global flag must be set. 133 * 2) The ring buffer must be enabled for recording. 134 * 3) The per cpu buffer must be enabled for recording. 135 * 136 * In case of an anomaly, this global flag has a bit set that 137 * will permantly disable all ring buffers. 138 */ 139 140 /* 141 * Global flag to disable all recording to ring buffers 142 * This has two bits: ON, DISABLED 143 * 144 * ON DISABLED 145 * ---- ---------- 146 * 0 0 : ring buffers are off 147 * 1 0 : ring buffers are on 148 * X 1 : ring buffers are permanently disabled 149 */ 150 151 enum { 152 RB_BUFFERS_ON_BIT = 0, 153 RB_BUFFERS_DISABLED_BIT = 1, 154 }; 155 156 enum { 157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 159 }; 160 161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 162 163 /* Used for individual buffers (after the counter) */ 164 #define RB_BUFFER_OFF (1 << 20) 165 166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 167 168 /** 169 * tracing_off_permanent - permanently disable ring buffers 170 * 171 * This function, once called, will disable all ring buffers 172 * permanently. 173 */ 174 void tracing_off_permanent(void) 175 { 176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 177 } 178 179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 180 #define RB_ALIGNMENT 4U 181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 183 184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 185 # define RB_FORCE_8BYTE_ALIGNMENT 0 186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 187 #else 188 # define RB_FORCE_8BYTE_ALIGNMENT 1 189 # define RB_ARCH_ALIGNMENT 8U 190 #endif 191 192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 193 194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 196 197 enum { 198 RB_LEN_TIME_EXTEND = 8, 199 RB_LEN_TIME_STAMP = 16, 200 }; 201 202 #define skip_time_extend(event) \ 203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 204 205 static inline int rb_null_event(struct ring_buffer_event *event) 206 { 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 208 } 209 210 static void rb_event_set_padding(struct ring_buffer_event *event) 211 { 212 /* padding has a NULL time_delta */ 213 event->type_len = RINGBUF_TYPE_PADDING; 214 event->time_delta = 0; 215 } 216 217 static unsigned 218 rb_event_data_length(struct ring_buffer_event *event) 219 { 220 unsigned length; 221 222 if (event->type_len) 223 length = event->type_len * RB_ALIGNMENT; 224 else 225 length = event->array[0]; 226 return length + RB_EVNT_HDR_SIZE; 227 } 228 229 /* 230 * Return the length of the given event. Will return 231 * the length of the time extend if the event is a 232 * time extend. 233 */ 234 static inline unsigned 235 rb_event_length(struct ring_buffer_event *event) 236 { 237 switch (event->type_len) { 238 case RINGBUF_TYPE_PADDING: 239 if (rb_null_event(event)) 240 /* undefined */ 241 return -1; 242 return event->array[0] + RB_EVNT_HDR_SIZE; 243 244 case RINGBUF_TYPE_TIME_EXTEND: 245 return RB_LEN_TIME_EXTEND; 246 247 case RINGBUF_TYPE_TIME_STAMP: 248 return RB_LEN_TIME_STAMP; 249 250 case RINGBUF_TYPE_DATA: 251 return rb_event_data_length(event); 252 default: 253 BUG(); 254 } 255 /* not hit */ 256 return 0; 257 } 258 259 /* 260 * Return total length of time extend and data, 261 * or just the event length for all other events. 262 */ 263 static inline unsigned 264 rb_event_ts_length(struct ring_buffer_event *event) 265 { 266 unsigned len = 0; 267 268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 269 /* time extends include the data event after it */ 270 len = RB_LEN_TIME_EXTEND; 271 event = skip_time_extend(event); 272 } 273 return len + rb_event_length(event); 274 } 275 276 /** 277 * ring_buffer_event_length - return the length of the event 278 * @event: the event to get the length of 279 * 280 * Returns the size of the data load of a data event. 281 * If the event is something other than a data event, it 282 * returns the size of the event itself. With the exception 283 * of a TIME EXTEND, where it still returns the size of the 284 * data load of the data event after it. 285 */ 286 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 287 { 288 unsigned length; 289 290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 291 event = skip_time_extend(event); 292 293 length = rb_event_length(event); 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 295 return length; 296 length -= RB_EVNT_HDR_SIZE; 297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 298 length -= sizeof(event->array[0]); 299 return length; 300 } 301 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 302 303 /* inline for ring buffer fast paths */ 304 static void * 305 rb_event_data(struct ring_buffer_event *event) 306 { 307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 308 event = skip_time_extend(event); 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 310 /* If length is in len field, then array[0] has the data */ 311 if (event->type_len) 312 return (void *)&event->array[0]; 313 /* Otherwise length is in array[0] and array[1] has the data */ 314 return (void *)&event->array[1]; 315 } 316 317 /** 318 * ring_buffer_event_data - return the data of the event 319 * @event: the event to get the data from 320 */ 321 void *ring_buffer_event_data(struct ring_buffer_event *event) 322 { 323 return rb_event_data(event); 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 326 327 #define for_each_buffer_cpu(buffer, cpu) \ 328 for_each_cpu(cpu, buffer->cpumask) 329 330 #define TS_SHIFT 27 331 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 332 #define TS_DELTA_TEST (~TS_MASK) 333 334 /* Flag when events were overwritten */ 335 #define RB_MISSED_EVENTS (1 << 31) 336 /* Missed count stored at end */ 337 #define RB_MISSED_STORED (1 << 30) 338 339 struct buffer_data_page { 340 u64 time_stamp; /* page time stamp */ 341 local_t commit; /* write committed index */ 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 343 }; 344 345 /* 346 * Note, the buffer_page list must be first. The buffer pages 347 * are allocated in cache lines, which means that each buffer 348 * page will be at the beginning of a cache line, and thus 349 * the least significant bits will be zero. We use this to 350 * add flags in the list struct pointers, to make the ring buffer 351 * lockless. 352 */ 353 struct buffer_page { 354 struct list_head list; /* list of buffer pages */ 355 local_t write; /* index for next write */ 356 unsigned read; /* index for next read */ 357 local_t entries; /* entries on this page */ 358 unsigned long real_end; /* real end of data */ 359 struct buffer_data_page *page; /* Actual data page */ 360 }; 361 362 /* 363 * The buffer page counters, write and entries, must be reset 364 * atomically when crossing page boundaries. To synchronize this 365 * update, two counters are inserted into the number. One is 366 * the actual counter for the write position or count on the page. 367 * 368 * The other is a counter of updaters. Before an update happens 369 * the update partition of the counter is incremented. This will 370 * allow the updater to update the counter atomically. 371 * 372 * The counter is 20 bits, and the state data is 12. 373 */ 374 #define RB_WRITE_MASK 0xfffff 375 #define RB_WRITE_INTCNT (1 << 20) 376 377 static void rb_init_page(struct buffer_data_page *bpage) 378 { 379 local_set(&bpage->commit, 0); 380 } 381 382 /** 383 * ring_buffer_page_len - the size of data on the page. 384 * @page: The page to read 385 * 386 * Returns the amount of data on the page, including buffer page header. 387 */ 388 size_t ring_buffer_page_len(void *page) 389 { 390 return local_read(&((struct buffer_data_page *)page)->commit) 391 + BUF_PAGE_HDR_SIZE; 392 } 393 394 /* 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 396 * this issue out. 397 */ 398 static void free_buffer_page(struct buffer_page *bpage) 399 { 400 free_page((unsigned long)bpage->page); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline int test_time_stamp(u64 delta) 408 { 409 if (delta & TS_DELTA_TEST) 410 return 1; 411 return 0; 412 } 413 414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 415 416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 418 419 int ring_buffer_print_page_header(struct trace_seq *s) 420 { 421 struct buffer_data_page field; 422 int ret; 423 424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 425 "offset:0;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)sizeof(field.time_stamp), 427 (unsigned int)is_signed_type(u64)); 428 429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 (unsigned int)sizeof(field.commit), 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), commit), 438 1, 439 (unsigned int)is_signed_type(long)); 440 441 ret = trace_seq_printf(s, "\tfield: char data;\t" 442 "offset:%u;\tsize:%u;\tsigned:%u;\n", 443 (unsigned int)offsetof(typeof(field), data), 444 (unsigned int)BUF_PAGE_SIZE, 445 (unsigned int)is_signed_type(char)); 446 447 return ret; 448 } 449 450 struct rb_irq_work { 451 struct irq_work work; 452 wait_queue_head_t waiters; 453 bool waiters_pending; 454 }; 455 456 /* 457 * head_page == tail_page && head == tail then buffer is empty. 458 */ 459 struct ring_buffer_per_cpu { 460 int cpu; 461 atomic_t record_disabled; 462 struct ring_buffer *buffer; 463 raw_spinlock_t reader_lock; /* serialize readers */ 464 arch_spinlock_t lock; 465 struct lock_class_key lock_key; 466 unsigned int nr_pages; 467 struct list_head *pages; 468 struct buffer_page *head_page; /* read from head */ 469 struct buffer_page *tail_page; /* write to tail */ 470 struct buffer_page *commit_page; /* committed pages */ 471 struct buffer_page *reader_page; 472 unsigned long lost_events; 473 unsigned long last_overrun; 474 local_t entries_bytes; 475 local_t entries; 476 local_t overrun; 477 local_t commit_overrun; 478 local_t dropped_events; 479 local_t committing; 480 local_t commits; 481 unsigned long read; 482 unsigned long read_bytes; 483 u64 write_stamp; 484 u64 read_stamp; 485 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 486 int nr_pages_to_update; 487 struct list_head new_pages; /* new pages to add */ 488 struct work_struct update_pages_work; 489 struct completion update_done; 490 491 struct rb_irq_work irq_work; 492 }; 493 494 struct ring_buffer { 495 unsigned flags; 496 int cpus; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 cpumask_var_t cpumask; 500 501 struct lock_class_key *reader_lock_key; 502 503 struct mutex mutex; 504 505 struct ring_buffer_per_cpu **buffers; 506 507 #ifdef CONFIG_HOTPLUG_CPU 508 struct notifier_block cpu_notify; 509 #endif 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 }; 514 515 struct ring_buffer_iter { 516 struct ring_buffer_per_cpu *cpu_buffer; 517 unsigned long head; 518 struct buffer_page *head_page; 519 struct buffer_page *cache_reader_page; 520 unsigned long cache_read; 521 u64 read_stamp; 522 }; 523 524 /* 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 526 * 527 * Schedules a delayed work to wake up any task that is blocked on the 528 * ring buffer waiters queue. 529 */ 530 static void rb_wake_up_waiters(struct irq_work *work) 531 { 532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 533 534 wake_up_all(&rbwork->waiters); 535 } 536 537 /** 538 * ring_buffer_wait - wait for input to the ring buffer 539 * @buffer: buffer to wait on 540 * @cpu: the cpu buffer to wait on 541 * 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 543 * as data is added to any of the @buffer's cpu buffers. Otherwise 544 * it will wait for data to be added to a specific cpu buffer. 545 */ 546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu) 547 { 548 struct ring_buffer_per_cpu *cpu_buffer; 549 DEFINE_WAIT(wait); 550 struct rb_irq_work *work; 551 552 /* 553 * Depending on what the caller is waiting for, either any 554 * data in any cpu buffer, or a specific buffer, put the 555 * caller on the appropriate wait queue. 556 */ 557 if (cpu == RING_BUFFER_ALL_CPUS) 558 work = &buffer->irq_work; 559 else { 560 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 561 return -ENODEV; 562 cpu_buffer = buffer->buffers[cpu]; 563 work = &cpu_buffer->irq_work; 564 } 565 566 567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 568 569 /* 570 * The events can happen in critical sections where 571 * checking a work queue can cause deadlocks. 572 * After adding a task to the queue, this flag is set 573 * only to notify events to try to wake up the queue 574 * using irq_work. 575 * 576 * We don't clear it even if the buffer is no longer 577 * empty. The flag only causes the next event to run 578 * irq_work to do the work queue wake up. The worse 579 * that can happen if we race with !trace_empty() is that 580 * an event will cause an irq_work to try to wake up 581 * an empty queue. 582 * 583 * There's no reason to protect this flag either, as 584 * the work queue and irq_work logic will do the necessary 585 * synchronization for the wake ups. The only thing 586 * that is necessary is that the wake up happens after 587 * a task has been queued. It's OK for spurious wake ups. 588 */ 589 work->waiters_pending = true; 590 591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) || 592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu))) 593 schedule(); 594 595 finish_wait(&work->waiters, &wait); 596 return 0; 597 } 598 599 /** 600 * ring_buffer_poll_wait - poll on buffer input 601 * @buffer: buffer to wait on 602 * @cpu: the cpu buffer to wait on 603 * @filp: the file descriptor 604 * @poll_table: The poll descriptor 605 * 606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 607 * as data is added to any of the @buffer's cpu buffers. Otherwise 608 * it will wait for data to be added to a specific cpu buffer. 609 * 610 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 611 * zero otherwise. 612 */ 613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 614 struct file *filp, poll_table *poll_table) 615 { 616 struct ring_buffer_per_cpu *cpu_buffer; 617 struct rb_irq_work *work; 618 619 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 620 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 621 return POLLIN | POLLRDNORM; 622 623 if (cpu == RING_BUFFER_ALL_CPUS) 624 work = &buffer->irq_work; 625 else { 626 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 627 return -EINVAL; 628 629 cpu_buffer = buffer->buffers[cpu]; 630 work = &cpu_buffer->irq_work; 631 } 632 633 work->waiters_pending = true; 634 poll_wait(filp, &work->waiters, poll_table); 635 636 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 637 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 638 return POLLIN | POLLRDNORM; 639 return 0; 640 } 641 642 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 643 #define RB_WARN_ON(b, cond) \ 644 ({ \ 645 int _____ret = unlikely(cond); \ 646 if (_____ret) { \ 647 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 648 struct ring_buffer_per_cpu *__b = \ 649 (void *)b; \ 650 atomic_inc(&__b->buffer->record_disabled); \ 651 } else \ 652 atomic_inc(&b->record_disabled); \ 653 WARN_ON(1); \ 654 } \ 655 _____ret; \ 656 }) 657 658 /* Up this if you want to test the TIME_EXTENTS and normalization */ 659 #define DEBUG_SHIFT 0 660 661 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 662 { 663 /* shift to debug/test normalization and TIME_EXTENTS */ 664 return buffer->clock() << DEBUG_SHIFT; 665 } 666 667 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 668 { 669 u64 time; 670 671 preempt_disable_notrace(); 672 time = rb_time_stamp(buffer); 673 preempt_enable_no_resched_notrace(); 674 675 return time; 676 } 677 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 678 679 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 680 int cpu, u64 *ts) 681 { 682 /* Just stupid testing the normalize function and deltas */ 683 *ts >>= DEBUG_SHIFT; 684 } 685 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 686 687 /* 688 * Making the ring buffer lockless makes things tricky. 689 * Although writes only happen on the CPU that they are on, 690 * and they only need to worry about interrupts. Reads can 691 * happen on any CPU. 692 * 693 * The reader page is always off the ring buffer, but when the 694 * reader finishes with a page, it needs to swap its page with 695 * a new one from the buffer. The reader needs to take from 696 * the head (writes go to the tail). But if a writer is in overwrite 697 * mode and wraps, it must push the head page forward. 698 * 699 * Here lies the problem. 700 * 701 * The reader must be careful to replace only the head page, and 702 * not another one. As described at the top of the file in the 703 * ASCII art, the reader sets its old page to point to the next 704 * page after head. It then sets the page after head to point to 705 * the old reader page. But if the writer moves the head page 706 * during this operation, the reader could end up with the tail. 707 * 708 * We use cmpxchg to help prevent this race. We also do something 709 * special with the page before head. We set the LSB to 1. 710 * 711 * When the writer must push the page forward, it will clear the 712 * bit that points to the head page, move the head, and then set 713 * the bit that points to the new head page. 714 * 715 * We also don't want an interrupt coming in and moving the head 716 * page on another writer. Thus we use the second LSB to catch 717 * that too. Thus: 718 * 719 * head->list->prev->next bit 1 bit 0 720 * ------- ------- 721 * Normal page 0 0 722 * Points to head page 0 1 723 * New head page 1 0 724 * 725 * Note we can not trust the prev pointer of the head page, because: 726 * 727 * +----+ +-----+ +-----+ 728 * | |------>| T |---X--->| N | 729 * | |<------| | | | 730 * +----+ +-----+ +-----+ 731 * ^ ^ | 732 * | +-----+ | | 733 * +----------| R |----------+ | 734 * | |<-----------+ 735 * +-----+ 736 * 737 * Key: ---X--> HEAD flag set in pointer 738 * T Tail page 739 * R Reader page 740 * N Next page 741 * 742 * (see __rb_reserve_next() to see where this happens) 743 * 744 * What the above shows is that the reader just swapped out 745 * the reader page with a page in the buffer, but before it 746 * could make the new header point back to the new page added 747 * it was preempted by a writer. The writer moved forward onto 748 * the new page added by the reader and is about to move forward 749 * again. 750 * 751 * You can see, it is legitimate for the previous pointer of 752 * the head (or any page) not to point back to itself. But only 753 * temporarially. 754 */ 755 756 #define RB_PAGE_NORMAL 0UL 757 #define RB_PAGE_HEAD 1UL 758 #define RB_PAGE_UPDATE 2UL 759 760 761 #define RB_FLAG_MASK 3UL 762 763 /* PAGE_MOVED is not part of the mask */ 764 #define RB_PAGE_MOVED 4UL 765 766 /* 767 * rb_list_head - remove any bit 768 */ 769 static struct list_head *rb_list_head(struct list_head *list) 770 { 771 unsigned long val = (unsigned long)list; 772 773 return (struct list_head *)(val & ~RB_FLAG_MASK); 774 } 775 776 /* 777 * rb_is_head_page - test if the given page is the head page 778 * 779 * Because the reader may move the head_page pointer, we can 780 * not trust what the head page is (it may be pointing to 781 * the reader page). But if the next page is a header page, 782 * its flags will be non zero. 783 */ 784 static inline int 785 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 786 struct buffer_page *page, struct list_head *list) 787 { 788 unsigned long val; 789 790 val = (unsigned long)list->next; 791 792 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 793 return RB_PAGE_MOVED; 794 795 return val & RB_FLAG_MASK; 796 } 797 798 /* 799 * rb_is_reader_page 800 * 801 * The unique thing about the reader page, is that, if the 802 * writer is ever on it, the previous pointer never points 803 * back to the reader page. 804 */ 805 static int rb_is_reader_page(struct buffer_page *page) 806 { 807 struct list_head *list = page->list.prev; 808 809 return rb_list_head(list->next) != &page->list; 810 } 811 812 /* 813 * rb_set_list_to_head - set a list_head to be pointing to head. 814 */ 815 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 816 struct list_head *list) 817 { 818 unsigned long *ptr; 819 820 ptr = (unsigned long *)&list->next; 821 *ptr |= RB_PAGE_HEAD; 822 *ptr &= ~RB_PAGE_UPDATE; 823 } 824 825 /* 826 * rb_head_page_activate - sets up head page 827 */ 828 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 829 { 830 struct buffer_page *head; 831 832 head = cpu_buffer->head_page; 833 if (!head) 834 return; 835 836 /* 837 * Set the previous list pointer to have the HEAD flag. 838 */ 839 rb_set_list_to_head(cpu_buffer, head->list.prev); 840 } 841 842 static void rb_list_head_clear(struct list_head *list) 843 { 844 unsigned long *ptr = (unsigned long *)&list->next; 845 846 *ptr &= ~RB_FLAG_MASK; 847 } 848 849 /* 850 * rb_head_page_dactivate - clears head page ptr (for free list) 851 */ 852 static void 853 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 854 { 855 struct list_head *hd; 856 857 /* Go through the whole list and clear any pointers found. */ 858 rb_list_head_clear(cpu_buffer->pages); 859 860 list_for_each(hd, cpu_buffer->pages) 861 rb_list_head_clear(hd); 862 } 863 864 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 865 struct buffer_page *head, 866 struct buffer_page *prev, 867 int old_flag, int new_flag) 868 { 869 struct list_head *list; 870 unsigned long val = (unsigned long)&head->list; 871 unsigned long ret; 872 873 list = &prev->list; 874 875 val &= ~RB_FLAG_MASK; 876 877 ret = cmpxchg((unsigned long *)&list->next, 878 val | old_flag, val | new_flag); 879 880 /* check if the reader took the page */ 881 if ((ret & ~RB_FLAG_MASK) != val) 882 return RB_PAGE_MOVED; 883 884 return ret & RB_FLAG_MASK; 885 } 886 887 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 888 struct buffer_page *head, 889 struct buffer_page *prev, 890 int old_flag) 891 { 892 return rb_head_page_set(cpu_buffer, head, prev, 893 old_flag, RB_PAGE_UPDATE); 894 } 895 896 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 897 struct buffer_page *head, 898 struct buffer_page *prev, 899 int old_flag) 900 { 901 return rb_head_page_set(cpu_buffer, head, prev, 902 old_flag, RB_PAGE_HEAD); 903 } 904 905 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 906 struct buffer_page *head, 907 struct buffer_page *prev, 908 int old_flag) 909 { 910 return rb_head_page_set(cpu_buffer, head, prev, 911 old_flag, RB_PAGE_NORMAL); 912 } 913 914 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 915 struct buffer_page **bpage) 916 { 917 struct list_head *p = rb_list_head((*bpage)->list.next); 918 919 *bpage = list_entry(p, struct buffer_page, list); 920 } 921 922 static struct buffer_page * 923 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 924 { 925 struct buffer_page *head; 926 struct buffer_page *page; 927 struct list_head *list; 928 int i; 929 930 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 931 return NULL; 932 933 /* sanity check */ 934 list = cpu_buffer->pages; 935 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 936 return NULL; 937 938 page = head = cpu_buffer->head_page; 939 /* 940 * It is possible that the writer moves the header behind 941 * where we started, and we miss in one loop. 942 * A second loop should grab the header, but we'll do 943 * three loops just because I'm paranoid. 944 */ 945 for (i = 0; i < 3; i++) { 946 do { 947 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 948 cpu_buffer->head_page = page; 949 return page; 950 } 951 rb_inc_page(cpu_buffer, &page); 952 } while (page != head); 953 } 954 955 RB_WARN_ON(cpu_buffer, 1); 956 957 return NULL; 958 } 959 960 static int rb_head_page_replace(struct buffer_page *old, 961 struct buffer_page *new) 962 { 963 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 964 unsigned long val; 965 unsigned long ret; 966 967 val = *ptr & ~RB_FLAG_MASK; 968 val |= RB_PAGE_HEAD; 969 970 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 971 972 return ret == val; 973 } 974 975 /* 976 * rb_tail_page_update - move the tail page forward 977 * 978 * Returns 1 if moved tail page, 0 if someone else did. 979 */ 980 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 981 struct buffer_page *tail_page, 982 struct buffer_page *next_page) 983 { 984 struct buffer_page *old_tail; 985 unsigned long old_entries; 986 unsigned long old_write; 987 int ret = 0; 988 989 /* 990 * The tail page now needs to be moved forward. 991 * 992 * We need to reset the tail page, but without messing 993 * with possible erasing of data brought in by interrupts 994 * that have moved the tail page and are currently on it. 995 * 996 * We add a counter to the write field to denote this. 997 */ 998 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 999 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1000 1001 /* 1002 * Just make sure we have seen our old_write and synchronize 1003 * with any interrupts that come in. 1004 */ 1005 barrier(); 1006 1007 /* 1008 * If the tail page is still the same as what we think 1009 * it is, then it is up to us to update the tail 1010 * pointer. 1011 */ 1012 if (tail_page == cpu_buffer->tail_page) { 1013 /* Zero the write counter */ 1014 unsigned long val = old_write & ~RB_WRITE_MASK; 1015 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1016 1017 /* 1018 * This will only succeed if an interrupt did 1019 * not come in and change it. In which case, we 1020 * do not want to modify it. 1021 * 1022 * We add (void) to let the compiler know that we do not care 1023 * about the return value of these functions. We use the 1024 * cmpxchg to only update if an interrupt did not already 1025 * do it for us. If the cmpxchg fails, we don't care. 1026 */ 1027 (void)local_cmpxchg(&next_page->write, old_write, val); 1028 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1029 1030 /* 1031 * No need to worry about races with clearing out the commit. 1032 * it only can increment when a commit takes place. But that 1033 * only happens in the outer most nested commit. 1034 */ 1035 local_set(&next_page->page->commit, 0); 1036 1037 old_tail = cmpxchg(&cpu_buffer->tail_page, 1038 tail_page, next_page); 1039 1040 if (old_tail == tail_page) 1041 ret = 1; 1042 } 1043 1044 return ret; 1045 } 1046 1047 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1048 struct buffer_page *bpage) 1049 { 1050 unsigned long val = (unsigned long)bpage; 1051 1052 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1053 return 1; 1054 1055 return 0; 1056 } 1057 1058 /** 1059 * rb_check_list - make sure a pointer to a list has the last bits zero 1060 */ 1061 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1062 struct list_head *list) 1063 { 1064 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1065 return 1; 1066 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1067 return 1; 1068 return 0; 1069 } 1070 1071 /** 1072 * rb_check_pages - integrity check of buffer pages 1073 * @cpu_buffer: CPU buffer with pages to test 1074 * 1075 * As a safety measure we check to make sure the data pages have not 1076 * been corrupted. 1077 */ 1078 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1079 { 1080 struct list_head *head = cpu_buffer->pages; 1081 struct buffer_page *bpage, *tmp; 1082 1083 /* Reset the head page if it exists */ 1084 if (cpu_buffer->head_page) 1085 rb_set_head_page(cpu_buffer); 1086 1087 rb_head_page_deactivate(cpu_buffer); 1088 1089 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1090 return -1; 1091 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1092 return -1; 1093 1094 if (rb_check_list(cpu_buffer, head)) 1095 return -1; 1096 1097 list_for_each_entry_safe(bpage, tmp, head, list) { 1098 if (RB_WARN_ON(cpu_buffer, 1099 bpage->list.next->prev != &bpage->list)) 1100 return -1; 1101 if (RB_WARN_ON(cpu_buffer, 1102 bpage->list.prev->next != &bpage->list)) 1103 return -1; 1104 if (rb_check_list(cpu_buffer, &bpage->list)) 1105 return -1; 1106 } 1107 1108 rb_head_page_activate(cpu_buffer); 1109 1110 return 0; 1111 } 1112 1113 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1114 { 1115 int i; 1116 struct buffer_page *bpage, *tmp; 1117 1118 for (i = 0; i < nr_pages; i++) { 1119 struct page *page; 1120 /* 1121 * __GFP_NORETRY flag makes sure that the allocation fails 1122 * gracefully without invoking oom-killer and the system is 1123 * not destabilized. 1124 */ 1125 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1126 GFP_KERNEL | __GFP_NORETRY, 1127 cpu_to_node(cpu)); 1128 if (!bpage) 1129 goto free_pages; 1130 1131 list_add(&bpage->list, pages); 1132 1133 page = alloc_pages_node(cpu_to_node(cpu), 1134 GFP_KERNEL | __GFP_NORETRY, 0); 1135 if (!page) 1136 goto free_pages; 1137 bpage->page = page_address(page); 1138 rb_init_page(bpage->page); 1139 } 1140 1141 return 0; 1142 1143 free_pages: 1144 list_for_each_entry_safe(bpage, tmp, pages, list) { 1145 list_del_init(&bpage->list); 1146 free_buffer_page(bpage); 1147 } 1148 1149 return -ENOMEM; 1150 } 1151 1152 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1153 unsigned nr_pages) 1154 { 1155 LIST_HEAD(pages); 1156 1157 WARN_ON(!nr_pages); 1158 1159 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1160 return -ENOMEM; 1161 1162 /* 1163 * The ring buffer page list is a circular list that does not 1164 * start and end with a list head. All page list items point to 1165 * other pages. 1166 */ 1167 cpu_buffer->pages = pages.next; 1168 list_del(&pages); 1169 1170 cpu_buffer->nr_pages = nr_pages; 1171 1172 rb_check_pages(cpu_buffer); 1173 1174 return 0; 1175 } 1176 1177 static struct ring_buffer_per_cpu * 1178 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1179 { 1180 struct ring_buffer_per_cpu *cpu_buffer; 1181 struct buffer_page *bpage; 1182 struct page *page; 1183 int ret; 1184 1185 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1186 GFP_KERNEL, cpu_to_node(cpu)); 1187 if (!cpu_buffer) 1188 return NULL; 1189 1190 cpu_buffer->cpu = cpu; 1191 cpu_buffer->buffer = buffer; 1192 raw_spin_lock_init(&cpu_buffer->reader_lock); 1193 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1194 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1195 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1196 init_completion(&cpu_buffer->update_done); 1197 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1198 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1199 1200 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1201 GFP_KERNEL, cpu_to_node(cpu)); 1202 if (!bpage) 1203 goto fail_free_buffer; 1204 1205 rb_check_bpage(cpu_buffer, bpage); 1206 1207 cpu_buffer->reader_page = bpage; 1208 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1209 if (!page) 1210 goto fail_free_reader; 1211 bpage->page = page_address(page); 1212 rb_init_page(bpage->page); 1213 1214 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1215 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1216 1217 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1218 if (ret < 0) 1219 goto fail_free_reader; 1220 1221 cpu_buffer->head_page 1222 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1223 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1224 1225 rb_head_page_activate(cpu_buffer); 1226 1227 return cpu_buffer; 1228 1229 fail_free_reader: 1230 free_buffer_page(cpu_buffer->reader_page); 1231 1232 fail_free_buffer: 1233 kfree(cpu_buffer); 1234 return NULL; 1235 } 1236 1237 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1238 { 1239 struct list_head *head = cpu_buffer->pages; 1240 struct buffer_page *bpage, *tmp; 1241 1242 free_buffer_page(cpu_buffer->reader_page); 1243 1244 rb_head_page_deactivate(cpu_buffer); 1245 1246 if (head) { 1247 list_for_each_entry_safe(bpage, tmp, head, list) { 1248 list_del_init(&bpage->list); 1249 free_buffer_page(bpage); 1250 } 1251 bpage = list_entry(head, struct buffer_page, list); 1252 free_buffer_page(bpage); 1253 } 1254 1255 kfree(cpu_buffer); 1256 } 1257 1258 #ifdef CONFIG_HOTPLUG_CPU 1259 static int rb_cpu_notify(struct notifier_block *self, 1260 unsigned long action, void *hcpu); 1261 #endif 1262 1263 /** 1264 * __ring_buffer_alloc - allocate a new ring_buffer 1265 * @size: the size in bytes per cpu that is needed. 1266 * @flags: attributes to set for the ring buffer. 1267 * 1268 * Currently the only flag that is available is the RB_FL_OVERWRITE 1269 * flag. This flag means that the buffer will overwrite old data 1270 * when the buffer wraps. If this flag is not set, the buffer will 1271 * drop data when the tail hits the head. 1272 */ 1273 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1274 struct lock_class_key *key) 1275 { 1276 struct ring_buffer *buffer; 1277 int bsize; 1278 int cpu, nr_pages; 1279 1280 /* keep it in its own cache line */ 1281 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1282 GFP_KERNEL); 1283 if (!buffer) 1284 return NULL; 1285 1286 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1287 goto fail_free_buffer; 1288 1289 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1290 buffer->flags = flags; 1291 buffer->clock = trace_clock_local; 1292 buffer->reader_lock_key = key; 1293 1294 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1295 init_waitqueue_head(&buffer->irq_work.waiters); 1296 1297 /* need at least two pages */ 1298 if (nr_pages < 2) 1299 nr_pages = 2; 1300 1301 /* 1302 * In case of non-hotplug cpu, if the ring-buffer is allocated 1303 * in early initcall, it will not be notified of secondary cpus. 1304 * In that off case, we need to allocate for all possible cpus. 1305 */ 1306 #ifdef CONFIG_HOTPLUG_CPU 1307 cpu_notifier_register_begin(); 1308 cpumask_copy(buffer->cpumask, cpu_online_mask); 1309 #else 1310 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1311 #endif 1312 buffer->cpus = nr_cpu_ids; 1313 1314 bsize = sizeof(void *) * nr_cpu_ids; 1315 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1316 GFP_KERNEL); 1317 if (!buffer->buffers) 1318 goto fail_free_cpumask; 1319 1320 for_each_buffer_cpu(buffer, cpu) { 1321 buffer->buffers[cpu] = 1322 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1323 if (!buffer->buffers[cpu]) 1324 goto fail_free_buffers; 1325 } 1326 1327 #ifdef CONFIG_HOTPLUG_CPU 1328 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1329 buffer->cpu_notify.priority = 0; 1330 __register_cpu_notifier(&buffer->cpu_notify); 1331 cpu_notifier_register_done(); 1332 #endif 1333 1334 mutex_init(&buffer->mutex); 1335 1336 return buffer; 1337 1338 fail_free_buffers: 1339 for_each_buffer_cpu(buffer, cpu) { 1340 if (buffer->buffers[cpu]) 1341 rb_free_cpu_buffer(buffer->buffers[cpu]); 1342 } 1343 kfree(buffer->buffers); 1344 1345 fail_free_cpumask: 1346 free_cpumask_var(buffer->cpumask); 1347 #ifdef CONFIG_HOTPLUG_CPU 1348 cpu_notifier_register_done(); 1349 #endif 1350 1351 fail_free_buffer: 1352 kfree(buffer); 1353 return NULL; 1354 } 1355 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1356 1357 /** 1358 * ring_buffer_free - free a ring buffer. 1359 * @buffer: the buffer to free. 1360 */ 1361 void 1362 ring_buffer_free(struct ring_buffer *buffer) 1363 { 1364 int cpu; 1365 1366 #ifdef CONFIG_HOTPLUG_CPU 1367 cpu_notifier_register_begin(); 1368 __unregister_cpu_notifier(&buffer->cpu_notify); 1369 #endif 1370 1371 for_each_buffer_cpu(buffer, cpu) 1372 rb_free_cpu_buffer(buffer->buffers[cpu]); 1373 1374 #ifdef CONFIG_HOTPLUG_CPU 1375 cpu_notifier_register_done(); 1376 #endif 1377 1378 kfree(buffer->buffers); 1379 free_cpumask_var(buffer->cpumask); 1380 1381 kfree(buffer); 1382 } 1383 EXPORT_SYMBOL_GPL(ring_buffer_free); 1384 1385 void ring_buffer_set_clock(struct ring_buffer *buffer, 1386 u64 (*clock)(void)) 1387 { 1388 buffer->clock = clock; 1389 } 1390 1391 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1392 1393 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1394 { 1395 return local_read(&bpage->entries) & RB_WRITE_MASK; 1396 } 1397 1398 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1399 { 1400 return local_read(&bpage->write) & RB_WRITE_MASK; 1401 } 1402 1403 static int 1404 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1405 { 1406 struct list_head *tail_page, *to_remove, *next_page; 1407 struct buffer_page *to_remove_page, *tmp_iter_page; 1408 struct buffer_page *last_page, *first_page; 1409 unsigned int nr_removed; 1410 unsigned long head_bit; 1411 int page_entries; 1412 1413 head_bit = 0; 1414 1415 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1416 atomic_inc(&cpu_buffer->record_disabled); 1417 /* 1418 * We don't race with the readers since we have acquired the reader 1419 * lock. We also don't race with writers after disabling recording. 1420 * This makes it easy to figure out the first and the last page to be 1421 * removed from the list. We unlink all the pages in between including 1422 * the first and last pages. This is done in a busy loop so that we 1423 * lose the least number of traces. 1424 * The pages are freed after we restart recording and unlock readers. 1425 */ 1426 tail_page = &cpu_buffer->tail_page->list; 1427 1428 /* 1429 * tail page might be on reader page, we remove the next page 1430 * from the ring buffer 1431 */ 1432 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1433 tail_page = rb_list_head(tail_page->next); 1434 to_remove = tail_page; 1435 1436 /* start of pages to remove */ 1437 first_page = list_entry(rb_list_head(to_remove->next), 1438 struct buffer_page, list); 1439 1440 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1441 to_remove = rb_list_head(to_remove)->next; 1442 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1443 } 1444 1445 next_page = rb_list_head(to_remove)->next; 1446 1447 /* 1448 * Now we remove all pages between tail_page and next_page. 1449 * Make sure that we have head_bit value preserved for the 1450 * next page 1451 */ 1452 tail_page->next = (struct list_head *)((unsigned long)next_page | 1453 head_bit); 1454 next_page = rb_list_head(next_page); 1455 next_page->prev = tail_page; 1456 1457 /* make sure pages points to a valid page in the ring buffer */ 1458 cpu_buffer->pages = next_page; 1459 1460 /* update head page */ 1461 if (head_bit) 1462 cpu_buffer->head_page = list_entry(next_page, 1463 struct buffer_page, list); 1464 1465 /* 1466 * change read pointer to make sure any read iterators reset 1467 * themselves 1468 */ 1469 cpu_buffer->read = 0; 1470 1471 /* pages are removed, resume tracing and then free the pages */ 1472 atomic_dec(&cpu_buffer->record_disabled); 1473 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1474 1475 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1476 1477 /* last buffer page to remove */ 1478 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1479 list); 1480 tmp_iter_page = first_page; 1481 1482 do { 1483 to_remove_page = tmp_iter_page; 1484 rb_inc_page(cpu_buffer, &tmp_iter_page); 1485 1486 /* update the counters */ 1487 page_entries = rb_page_entries(to_remove_page); 1488 if (page_entries) { 1489 /* 1490 * If something was added to this page, it was full 1491 * since it is not the tail page. So we deduct the 1492 * bytes consumed in ring buffer from here. 1493 * Increment overrun to account for the lost events. 1494 */ 1495 local_add(page_entries, &cpu_buffer->overrun); 1496 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1497 } 1498 1499 /* 1500 * We have already removed references to this list item, just 1501 * free up the buffer_page and its page 1502 */ 1503 free_buffer_page(to_remove_page); 1504 nr_removed--; 1505 1506 } while (to_remove_page != last_page); 1507 1508 RB_WARN_ON(cpu_buffer, nr_removed); 1509 1510 return nr_removed == 0; 1511 } 1512 1513 static int 1514 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1515 { 1516 struct list_head *pages = &cpu_buffer->new_pages; 1517 int retries, success; 1518 1519 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1520 /* 1521 * We are holding the reader lock, so the reader page won't be swapped 1522 * in the ring buffer. Now we are racing with the writer trying to 1523 * move head page and the tail page. 1524 * We are going to adapt the reader page update process where: 1525 * 1. We first splice the start and end of list of new pages between 1526 * the head page and its previous page. 1527 * 2. We cmpxchg the prev_page->next to point from head page to the 1528 * start of new pages list. 1529 * 3. Finally, we update the head->prev to the end of new list. 1530 * 1531 * We will try this process 10 times, to make sure that we don't keep 1532 * spinning. 1533 */ 1534 retries = 10; 1535 success = 0; 1536 while (retries--) { 1537 struct list_head *head_page, *prev_page, *r; 1538 struct list_head *last_page, *first_page; 1539 struct list_head *head_page_with_bit; 1540 1541 head_page = &rb_set_head_page(cpu_buffer)->list; 1542 if (!head_page) 1543 break; 1544 prev_page = head_page->prev; 1545 1546 first_page = pages->next; 1547 last_page = pages->prev; 1548 1549 head_page_with_bit = (struct list_head *) 1550 ((unsigned long)head_page | RB_PAGE_HEAD); 1551 1552 last_page->next = head_page_with_bit; 1553 first_page->prev = prev_page; 1554 1555 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1556 1557 if (r == head_page_with_bit) { 1558 /* 1559 * yay, we replaced the page pointer to our new list, 1560 * now, we just have to update to head page's prev 1561 * pointer to point to end of list 1562 */ 1563 head_page->prev = last_page; 1564 success = 1; 1565 break; 1566 } 1567 } 1568 1569 if (success) 1570 INIT_LIST_HEAD(pages); 1571 /* 1572 * If we weren't successful in adding in new pages, warn and stop 1573 * tracing 1574 */ 1575 RB_WARN_ON(cpu_buffer, !success); 1576 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1577 1578 /* free pages if they weren't inserted */ 1579 if (!success) { 1580 struct buffer_page *bpage, *tmp; 1581 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1582 list) { 1583 list_del_init(&bpage->list); 1584 free_buffer_page(bpage); 1585 } 1586 } 1587 return success; 1588 } 1589 1590 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1591 { 1592 int success; 1593 1594 if (cpu_buffer->nr_pages_to_update > 0) 1595 success = rb_insert_pages(cpu_buffer); 1596 else 1597 success = rb_remove_pages(cpu_buffer, 1598 -cpu_buffer->nr_pages_to_update); 1599 1600 if (success) 1601 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1602 } 1603 1604 static void update_pages_handler(struct work_struct *work) 1605 { 1606 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1607 struct ring_buffer_per_cpu, update_pages_work); 1608 rb_update_pages(cpu_buffer); 1609 complete(&cpu_buffer->update_done); 1610 } 1611 1612 /** 1613 * ring_buffer_resize - resize the ring buffer 1614 * @buffer: the buffer to resize. 1615 * @size: the new size. 1616 * @cpu_id: the cpu buffer to resize 1617 * 1618 * Minimum size is 2 * BUF_PAGE_SIZE. 1619 * 1620 * Returns 0 on success and < 0 on failure. 1621 */ 1622 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1623 int cpu_id) 1624 { 1625 struct ring_buffer_per_cpu *cpu_buffer; 1626 unsigned nr_pages; 1627 int cpu, err = 0; 1628 1629 /* 1630 * Always succeed at resizing a non-existent buffer: 1631 */ 1632 if (!buffer) 1633 return size; 1634 1635 /* Make sure the requested buffer exists */ 1636 if (cpu_id != RING_BUFFER_ALL_CPUS && 1637 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1638 return size; 1639 1640 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1641 size *= BUF_PAGE_SIZE; 1642 1643 /* we need a minimum of two pages */ 1644 if (size < BUF_PAGE_SIZE * 2) 1645 size = BUF_PAGE_SIZE * 2; 1646 1647 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1648 1649 /* 1650 * Don't succeed if resizing is disabled, as a reader might be 1651 * manipulating the ring buffer and is expecting a sane state while 1652 * this is true. 1653 */ 1654 if (atomic_read(&buffer->resize_disabled)) 1655 return -EBUSY; 1656 1657 /* prevent another thread from changing buffer sizes */ 1658 mutex_lock(&buffer->mutex); 1659 1660 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1661 /* calculate the pages to update */ 1662 for_each_buffer_cpu(buffer, cpu) { 1663 cpu_buffer = buffer->buffers[cpu]; 1664 1665 cpu_buffer->nr_pages_to_update = nr_pages - 1666 cpu_buffer->nr_pages; 1667 /* 1668 * nothing more to do for removing pages or no update 1669 */ 1670 if (cpu_buffer->nr_pages_to_update <= 0) 1671 continue; 1672 /* 1673 * to add pages, make sure all new pages can be 1674 * allocated without receiving ENOMEM 1675 */ 1676 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1677 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1678 &cpu_buffer->new_pages, cpu)) { 1679 /* not enough memory for new pages */ 1680 err = -ENOMEM; 1681 goto out_err; 1682 } 1683 } 1684 1685 get_online_cpus(); 1686 /* 1687 * Fire off all the required work handlers 1688 * We can't schedule on offline CPUs, but it's not necessary 1689 * since we can change their buffer sizes without any race. 1690 */ 1691 for_each_buffer_cpu(buffer, cpu) { 1692 cpu_buffer = buffer->buffers[cpu]; 1693 if (!cpu_buffer->nr_pages_to_update) 1694 continue; 1695 1696 /* The update must run on the CPU that is being updated. */ 1697 preempt_disable(); 1698 if (cpu == smp_processor_id() || !cpu_online(cpu)) { 1699 rb_update_pages(cpu_buffer); 1700 cpu_buffer->nr_pages_to_update = 0; 1701 } else { 1702 /* 1703 * Can not disable preemption for schedule_work_on() 1704 * on PREEMPT_RT. 1705 */ 1706 preempt_enable(); 1707 schedule_work_on(cpu, 1708 &cpu_buffer->update_pages_work); 1709 preempt_disable(); 1710 } 1711 preempt_enable(); 1712 } 1713 1714 /* wait for all the updates to complete */ 1715 for_each_buffer_cpu(buffer, cpu) { 1716 cpu_buffer = buffer->buffers[cpu]; 1717 if (!cpu_buffer->nr_pages_to_update) 1718 continue; 1719 1720 if (cpu_online(cpu)) 1721 wait_for_completion(&cpu_buffer->update_done); 1722 cpu_buffer->nr_pages_to_update = 0; 1723 } 1724 1725 put_online_cpus(); 1726 } else { 1727 /* Make sure this CPU has been intitialized */ 1728 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1729 goto out; 1730 1731 cpu_buffer = buffer->buffers[cpu_id]; 1732 1733 if (nr_pages == cpu_buffer->nr_pages) 1734 goto out; 1735 1736 cpu_buffer->nr_pages_to_update = nr_pages - 1737 cpu_buffer->nr_pages; 1738 1739 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1740 if (cpu_buffer->nr_pages_to_update > 0 && 1741 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1742 &cpu_buffer->new_pages, cpu_id)) { 1743 err = -ENOMEM; 1744 goto out_err; 1745 } 1746 1747 get_online_cpus(); 1748 1749 preempt_disable(); 1750 /* The update must run on the CPU that is being updated. */ 1751 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id)) 1752 rb_update_pages(cpu_buffer); 1753 else { 1754 /* 1755 * Can not disable preemption for schedule_work_on() 1756 * on PREEMPT_RT. 1757 */ 1758 preempt_enable(); 1759 schedule_work_on(cpu_id, 1760 &cpu_buffer->update_pages_work); 1761 wait_for_completion(&cpu_buffer->update_done); 1762 preempt_disable(); 1763 } 1764 preempt_enable(); 1765 1766 cpu_buffer->nr_pages_to_update = 0; 1767 put_online_cpus(); 1768 } 1769 1770 out: 1771 /* 1772 * The ring buffer resize can happen with the ring buffer 1773 * enabled, so that the update disturbs the tracing as little 1774 * as possible. But if the buffer is disabled, we do not need 1775 * to worry about that, and we can take the time to verify 1776 * that the buffer is not corrupt. 1777 */ 1778 if (atomic_read(&buffer->record_disabled)) { 1779 atomic_inc(&buffer->record_disabled); 1780 /* 1781 * Even though the buffer was disabled, we must make sure 1782 * that it is truly disabled before calling rb_check_pages. 1783 * There could have been a race between checking 1784 * record_disable and incrementing it. 1785 */ 1786 synchronize_sched(); 1787 for_each_buffer_cpu(buffer, cpu) { 1788 cpu_buffer = buffer->buffers[cpu]; 1789 rb_check_pages(cpu_buffer); 1790 } 1791 atomic_dec(&buffer->record_disabled); 1792 } 1793 1794 mutex_unlock(&buffer->mutex); 1795 return size; 1796 1797 out_err: 1798 for_each_buffer_cpu(buffer, cpu) { 1799 struct buffer_page *bpage, *tmp; 1800 1801 cpu_buffer = buffer->buffers[cpu]; 1802 cpu_buffer->nr_pages_to_update = 0; 1803 1804 if (list_empty(&cpu_buffer->new_pages)) 1805 continue; 1806 1807 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1808 list) { 1809 list_del_init(&bpage->list); 1810 free_buffer_page(bpage); 1811 } 1812 } 1813 mutex_unlock(&buffer->mutex); 1814 return err; 1815 } 1816 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1817 1818 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1819 { 1820 mutex_lock(&buffer->mutex); 1821 if (val) 1822 buffer->flags |= RB_FL_OVERWRITE; 1823 else 1824 buffer->flags &= ~RB_FL_OVERWRITE; 1825 mutex_unlock(&buffer->mutex); 1826 } 1827 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1828 1829 static inline void * 1830 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1831 { 1832 return bpage->data + index; 1833 } 1834 1835 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1836 { 1837 return bpage->page->data + index; 1838 } 1839 1840 static inline struct ring_buffer_event * 1841 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1842 { 1843 return __rb_page_index(cpu_buffer->reader_page, 1844 cpu_buffer->reader_page->read); 1845 } 1846 1847 static inline struct ring_buffer_event * 1848 rb_iter_head_event(struct ring_buffer_iter *iter) 1849 { 1850 return __rb_page_index(iter->head_page, iter->head); 1851 } 1852 1853 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1854 { 1855 return local_read(&bpage->page->commit); 1856 } 1857 1858 /* Size is determined by what has been committed */ 1859 static inline unsigned rb_page_size(struct buffer_page *bpage) 1860 { 1861 return rb_page_commit(bpage); 1862 } 1863 1864 static inline unsigned 1865 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1866 { 1867 return rb_page_commit(cpu_buffer->commit_page); 1868 } 1869 1870 static inline unsigned 1871 rb_event_index(struct ring_buffer_event *event) 1872 { 1873 unsigned long addr = (unsigned long)event; 1874 1875 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1876 } 1877 1878 static inline int 1879 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1880 struct ring_buffer_event *event) 1881 { 1882 unsigned long addr = (unsigned long)event; 1883 unsigned long index; 1884 1885 index = rb_event_index(event); 1886 addr &= PAGE_MASK; 1887 1888 return cpu_buffer->commit_page->page == (void *)addr && 1889 rb_commit_index(cpu_buffer) == index; 1890 } 1891 1892 static void 1893 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1894 { 1895 unsigned long max_count; 1896 1897 /* 1898 * We only race with interrupts and NMIs on this CPU. 1899 * If we own the commit event, then we can commit 1900 * all others that interrupted us, since the interruptions 1901 * are in stack format (they finish before they come 1902 * back to us). This allows us to do a simple loop to 1903 * assign the commit to the tail. 1904 */ 1905 again: 1906 max_count = cpu_buffer->nr_pages * 100; 1907 1908 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1909 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1910 return; 1911 if (RB_WARN_ON(cpu_buffer, 1912 rb_is_reader_page(cpu_buffer->tail_page))) 1913 return; 1914 local_set(&cpu_buffer->commit_page->page->commit, 1915 rb_page_write(cpu_buffer->commit_page)); 1916 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1917 cpu_buffer->write_stamp = 1918 cpu_buffer->commit_page->page->time_stamp; 1919 /* add barrier to keep gcc from optimizing too much */ 1920 barrier(); 1921 } 1922 while (rb_commit_index(cpu_buffer) != 1923 rb_page_write(cpu_buffer->commit_page)) { 1924 1925 local_set(&cpu_buffer->commit_page->page->commit, 1926 rb_page_write(cpu_buffer->commit_page)); 1927 RB_WARN_ON(cpu_buffer, 1928 local_read(&cpu_buffer->commit_page->page->commit) & 1929 ~RB_WRITE_MASK); 1930 barrier(); 1931 } 1932 1933 /* again, keep gcc from optimizing */ 1934 barrier(); 1935 1936 /* 1937 * If an interrupt came in just after the first while loop 1938 * and pushed the tail page forward, we will be left with 1939 * a dangling commit that will never go forward. 1940 */ 1941 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1942 goto again; 1943 } 1944 1945 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1946 { 1947 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1948 cpu_buffer->reader_page->read = 0; 1949 } 1950 1951 static void rb_inc_iter(struct ring_buffer_iter *iter) 1952 { 1953 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1954 1955 /* 1956 * The iterator could be on the reader page (it starts there). 1957 * But the head could have moved, since the reader was 1958 * found. Check for this case and assign the iterator 1959 * to the head page instead of next. 1960 */ 1961 if (iter->head_page == cpu_buffer->reader_page) 1962 iter->head_page = rb_set_head_page(cpu_buffer); 1963 else 1964 rb_inc_page(cpu_buffer, &iter->head_page); 1965 1966 iter->read_stamp = iter->head_page->page->time_stamp; 1967 iter->head = 0; 1968 } 1969 1970 /* Slow path, do not inline */ 1971 static noinline struct ring_buffer_event * 1972 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1973 { 1974 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1975 1976 /* Not the first event on the page? */ 1977 if (rb_event_index(event)) { 1978 event->time_delta = delta & TS_MASK; 1979 event->array[0] = delta >> TS_SHIFT; 1980 } else { 1981 /* nope, just zero it */ 1982 event->time_delta = 0; 1983 event->array[0] = 0; 1984 } 1985 1986 return skip_time_extend(event); 1987 } 1988 1989 /** 1990 * rb_update_event - update event type and data 1991 * @event: the even to update 1992 * @type: the type of event 1993 * @length: the size of the event field in the ring buffer 1994 * 1995 * Update the type and data fields of the event. The length 1996 * is the actual size that is written to the ring buffer, 1997 * and with this, we can determine what to place into the 1998 * data field. 1999 */ 2000 static void 2001 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2002 struct ring_buffer_event *event, unsigned length, 2003 int add_timestamp, u64 delta) 2004 { 2005 /* Only a commit updates the timestamp */ 2006 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2007 delta = 0; 2008 2009 /* 2010 * If we need to add a timestamp, then we 2011 * add it to the start of the resevered space. 2012 */ 2013 if (unlikely(add_timestamp)) { 2014 event = rb_add_time_stamp(event, delta); 2015 length -= RB_LEN_TIME_EXTEND; 2016 delta = 0; 2017 } 2018 2019 event->time_delta = delta; 2020 length -= RB_EVNT_HDR_SIZE; 2021 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2022 event->type_len = 0; 2023 event->array[0] = length; 2024 } else 2025 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2026 } 2027 2028 /* 2029 * rb_handle_head_page - writer hit the head page 2030 * 2031 * Returns: +1 to retry page 2032 * 0 to continue 2033 * -1 on error 2034 */ 2035 static int 2036 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2037 struct buffer_page *tail_page, 2038 struct buffer_page *next_page) 2039 { 2040 struct buffer_page *new_head; 2041 int entries; 2042 int type; 2043 int ret; 2044 2045 entries = rb_page_entries(next_page); 2046 2047 /* 2048 * The hard part is here. We need to move the head 2049 * forward, and protect against both readers on 2050 * other CPUs and writers coming in via interrupts. 2051 */ 2052 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2053 RB_PAGE_HEAD); 2054 2055 /* 2056 * type can be one of four: 2057 * NORMAL - an interrupt already moved it for us 2058 * HEAD - we are the first to get here. 2059 * UPDATE - we are the interrupt interrupting 2060 * a current move. 2061 * MOVED - a reader on another CPU moved the next 2062 * pointer to its reader page. Give up 2063 * and try again. 2064 */ 2065 2066 switch (type) { 2067 case RB_PAGE_HEAD: 2068 /* 2069 * We changed the head to UPDATE, thus 2070 * it is our responsibility to update 2071 * the counters. 2072 */ 2073 local_add(entries, &cpu_buffer->overrun); 2074 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2075 2076 /* 2077 * The entries will be zeroed out when we move the 2078 * tail page. 2079 */ 2080 2081 /* still more to do */ 2082 break; 2083 2084 case RB_PAGE_UPDATE: 2085 /* 2086 * This is an interrupt that interrupt the 2087 * previous update. Still more to do. 2088 */ 2089 break; 2090 case RB_PAGE_NORMAL: 2091 /* 2092 * An interrupt came in before the update 2093 * and processed this for us. 2094 * Nothing left to do. 2095 */ 2096 return 1; 2097 case RB_PAGE_MOVED: 2098 /* 2099 * The reader is on another CPU and just did 2100 * a swap with our next_page. 2101 * Try again. 2102 */ 2103 return 1; 2104 default: 2105 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2106 return -1; 2107 } 2108 2109 /* 2110 * Now that we are here, the old head pointer is 2111 * set to UPDATE. This will keep the reader from 2112 * swapping the head page with the reader page. 2113 * The reader (on another CPU) will spin till 2114 * we are finished. 2115 * 2116 * We just need to protect against interrupts 2117 * doing the job. We will set the next pointer 2118 * to HEAD. After that, we set the old pointer 2119 * to NORMAL, but only if it was HEAD before. 2120 * otherwise we are an interrupt, and only 2121 * want the outer most commit to reset it. 2122 */ 2123 new_head = next_page; 2124 rb_inc_page(cpu_buffer, &new_head); 2125 2126 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2127 RB_PAGE_NORMAL); 2128 2129 /* 2130 * Valid returns are: 2131 * HEAD - an interrupt came in and already set it. 2132 * NORMAL - One of two things: 2133 * 1) We really set it. 2134 * 2) A bunch of interrupts came in and moved 2135 * the page forward again. 2136 */ 2137 switch (ret) { 2138 case RB_PAGE_HEAD: 2139 case RB_PAGE_NORMAL: 2140 /* OK */ 2141 break; 2142 default: 2143 RB_WARN_ON(cpu_buffer, 1); 2144 return -1; 2145 } 2146 2147 /* 2148 * It is possible that an interrupt came in, 2149 * set the head up, then more interrupts came in 2150 * and moved it again. When we get back here, 2151 * the page would have been set to NORMAL but we 2152 * just set it back to HEAD. 2153 * 2154 * How do you detect this? Well, if that happened 2155 * the tail page would have moved. 2156 */ 2157 if (ret == RB_PAGE_NORMAL) { 2158 /* 2159 * If the tail had moved passed next, then we need 2160 * to reset the pointer. 2161 */ 2162 if (cpu_buffer->tail_page != tail_page && 2163 cpu_buffer->tail_page != next_page) 2164 rb_head_page_set_normal(cpu_buffer, new_head, 2165 next_page, 2166 RB_PAGE_HEAD); 2167 } 2168 2169 /* 2170 * If this was the outer most commit (the one that 2171 * changed the original pointer from HEAD to UPDATE), 2172 * then it is up to us to reset it to NORMAL. 2173 */ 2174 if (type == RB_PAGE_HEAD) { 2175 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2176 tail_page, 2177 RB_PAGE_UPDATE); 2178 if (RB_WARN_ON(cpu_buffer, 2179 ret != RB_PAGE_UPDATE)) 2180 return -1; 2181 } 2182 2183 return 0; 2184 } 2185 2186 static unsigned rb_calculate_event_length(unsigned length) 2187 { 2188 struct ring_buffer_event event; /* Used only for sizeof array */ 2189 2190 /* zero length can cause confusions */ 2191 if (!length) 2192 length = 1; 2193 2194 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2195 length += sizeof(event.array[0]); 2196 2197 length += RB_EVNT_HDR_SIZE; 2198 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2199 2200 return length; 2201 } 2202 2203 static inline void 2204 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2205 struct buffer_page *tail_page, 2206 unsigned long tail, unsigned long length) 2207 { 2208 struct ring_buffer_event *event; 2209 2210 /* 2211 * Only the event that crossed the page boundary 2212 * must fill the old tail_page with padding. 2213 */ 2214 if (tail >= BUF_PAGE_SIZE) { 2215 /* 2216 * If the page was filled, then we still need 2217 * to update the real_end. Reset it to zero 2218 * and the reader will ignore it. 2219 */ 2220 if (tail == BUF_PAGE_SIZE) 2221 tail_page->real_end = 0; 2222 2223 local_sub(length, &tail_page->write); 2224 return; 2225 } 2226 2227 event = __rb_page_index(tail_page, tail); 2228 kmemcheck_annotate_bitfield(event, bitfield); 2229 2230 /* account for padding bytes */ 2231 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2232 2233 /* 2234 * Save the original length to the meta data. 2235 * This will be used by the reader to add lost event 2236 * counter. 2237 */ 2238 tail_page->real_end = tail; 2239 2240 /* 2241 * If this event is bigger than the minimum size, then 2242 * we need to be careful that we don't subtract the 2243 * write counter enough to allow another writer to slip 2244 * in on this page. 2245 * We put in a discarded commit instead, to make sure 2246 * that this space is not used again. 2247 * 2248 * If we are less than the minimum size, we don't need to 2249 * worry about it. 2250 */ 2251 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2252 /* No room for any events */ 2253 2254 /* Mark the rest of the page with padding */ 2255 rb_event_set_padding(event); 2256 2257 /* Set the write back to the previous setting */ 2258 local_sub(length, &tail_page->write); 2259 return; 2260 } 2261 2262 /* Put in a discarded event */ 2263 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2264 event->type_len = RINGBUF_TYPE_PADDING; 2265 /* time delta must be non zero */ 2266 event->time_delta = 1; 2267 2268 /* Set write to end of buffer */ 2269 length = (tail + length) - BUF_PAGE_SIZE; 2270 local_sub(length, &tail_page->write); 2271 } 2272 2273 /* 2274 * This is the slow path, force gcc not to inline it. 2275 */ 2276 static noinline struct ring_buffer_event * 2277 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2278 unsigned long length, unsigned long tail, 2279 struct buffer_page *tail_page, u64 ts) 2280 { 2281 struct buffer_page *commit_page = cpu_buffer->commit_page; 2282 struct ring_buffer *buffer = cpu_buffer->buffer; 2283 struct buffer_page *next_page; 2284 int ret; 2285 2286 next_page = tail_page; 2287 2288 rb_inc_page(cpu_buffer, &next_page); 2289 2290 /* 2291 * If for some reason, we had an interrupt storm that made 2292 * it all the way around the buffer, bail, and warn 2293 * about it. 2294 */ 2295 if (unlikely(next_page == commit_page)) { 2296 local_inc(&cpu_buffer->commit_overrun); 2297 goto out_reset; 2298 } 2299 2300 /* 2301 * This is where the fun begins! 2302 * 2303 * We are fighting against races between a reader that 2304 * could be on another CPU trying to swap its reader 2305 * page with the buffer head. 2306 * 2307 * We are also fighting against interrupts coming in and 2308 * moving the head or tail on us as well. 2309 * 2310 * If the next page is the head page then we have filled 2311 * the buffer, unless the commit page is still on the 2312 * reader page. 2313 */ 2314 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2315 2316 /* 2317 * If the commit is not on the reader page, then 2318 * move the header page. 2319 */ 2320 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2321 /* 2322 * If we are not in overwrite mode, 2323 * this is easy, just stop here. 2324 */ 2325 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2326 local_inc(&cpu_buffer->dropped_events); 2327 goto out_reset; 2328 } 2329 2330 ret = rb_handle_head_page(cpu_buffer, 2331 tail_page, 2332 next_page); 2333 if (ret < 0) 2334 goto out_reset; 2335 if (ret) 2336 goto out_again; 2337 } else { 2338 /* 2339 * We need to be careful here too. The 2340 * commit page could still be on the reader 2341 * page. We could have a small buffer, and 2342 * have filled up the buffer with events 2343 * from interrupts and such, and wrapped. 2344 * 2345 * Note, if the tail page is also the on the 2346 * reader_page, we let it move out. 2347 */ 2348 if (unlikely((cpu_buffer->commit_page != 2349 cpu_buffer->tail_page) && 2350 (cpu_buffer->commit_page == 2351 cpu_buffer->reader_page))) { 2352 local_inc(&cpu_buffer->commit_overrun); 2353 goto out_reset; 2354 } 2355 } 2356 } 2357 2358 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2359 if (ret) { 2360 /* 2361 * Nested commits always have zero deltas, so 2362 * just reread the time stamp 2363 */ 2364 ts = rb_time_stamp(buffer); 2365 next_page->page->time_stamp = ts; 2366 } 2367 2368 out_again: 2369 2370 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2371 2372 /* fail and let the caller try again */ 2373 return ERR_PTR(-EAGAIN); 2374 2375 out_reset: 2376 /* reset write */ 2377 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2378 2379 return NULL; 2380 } 2381 2382 static struct ring_buffer_event * 2383 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2384 unsigned long length, u64 ts, 2385 u64 delta, int add_timestamp) 2386 { 2387 struct buffer_page *tail_page; 2388 struct ring_buffer_event *event; 2389 unsigned long tail, write; 2390 2391 /* 2392 * If the time delta since the last event is too big to 2393 * hold in the time field of the event, then we append a 2394 * TIME EXTEND event ahead of the data event. 2395 */ 2396 if (unlikely(add_timestamp)) 2397 length += RB_LEN_TIME_EXTEND; 2398 2399 tail_page = cpu_buffer->tail_page; 2400 write = local_add_return(length, &tail_page->write); 2401 2402 /* set write to only the index of the write */ 2403 write &= RB_WRITE_MASK; 2404 tail = write - length; 2405 2406 /* 2407 * If this is the first commit on the page, then it has the same 2408 * timestamp as the page itself. 2409 */ 2410 if (!tail) 2411 delta = 0; 2412 2413 /* See if we shot pass the end of this buffer page */ 2414 if (unlikely(write > BUF_PAGE_SIZE)) 2415 return rb_move_tail(cpu_buffer, length, tail, 2416 tail_page, ts); 2417 2418 /* We reserved something on the buffer */ 2419 2420 event = __rb_page_index(tail_page, tail); 2421 kmemcheck_annotate_bitfield(event, bitfield); 2422 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2423 2424 local_inc(&tail_page->entries); 2425 2426 /* 2427 * If this is the first commit on the page, then update 2428 * its timestamp. 2429 */ 2430 if (!tail) 2431 tail_page->page->time_stamp = ts; 2432 2433 /* account for these added bytes */ 2434 local_add(length, &cpu_buffer->entries_bytes); 2435 2436 return event; 2437 } 2438 2439 static inline int 2440 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2441 struct ring_buffer_event *event) 2442 { 2443 unsigned long new_index, old_index; 2444 struct buffer_page *bpage; 2445 unsigned long index; 2446 unsigned long addr; 2447 2448 new_index = rb_event_index(event); 2449 old_index = new_index + rb_event_ts_length(event); 2450 addr = (unsigned long)event; 2451 addr &= PAGE_MASK; 2452 2453 bpage = cpu_buffer->tail_page; 2454 2455 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2456 unsigned long write_mask = 2457 local_read(&bpage->write) & ~RB_WRITE_MASK; 2458 unsigned long event_length = rb_event_length(event); 2459 /* 2460 * This is on the tail page. It is possible that 2461 * a write could come in and move the tail page 2462 * and write to the next page. That is fine 2463 * because we just shorten what is on this page. 2464 */ 2465 old_index += write_mask; 2466 new_index += write_mask; 2467 index = local_cmpxchg(&bpage->write, old_index, new_index); 2468 if (index == old_index) { 2469 /* update counters */ 2470 local_sub(event_length, &cpu_buffer->entries_bytes); 2471 return 1; 2472 } 2473 } 2474 2475 /* could not discard */ 2476 return 0; 2477 } 2478 2479 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2480 { 2481 local_inc(&cpu_buffer->committing); 2482 local_inc(&cpu_buffer->commits); 2483 } 2484 2485 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2486 { 2487 unsigned long commits; 2488 2489 if (RB_WARN_ON(cpu_buffer, 2490 !local_read(&cpu_buffer->committing))) 2491 return; 2492 2493 again: 2494 commits = local_read(&cpu_buffer->commits); 2495 /* synchronize with interrupts */ 2496 barrier(); 2497 if (local_read(&cpu_buffer->committing) == 1) 2498 rb_set_commit_to_write(cpu_buffer); 2499 2500 local_dec(&cpu_buffer->committing); 2501 2502 /* synchronize with interrupts */ 2503 barrier(); 2504 2505 /* 2506 * Need to account for interrupts coming in between the 2507 * updating of the commit page and the clearing of the 2508 * committing counter. 2509 */ 2510 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2511 !local_read(&cpu_buffer->committing)) { 2512 local_inc(&cpu_buffer->committing); 2513 goto again; 2514 } 2515 } 2516 2517 static struct ring_buffer_event * 2518 rb_reserve_next_event(struct ring_buffer *buffer, 2519 struct ring_buffer_per_cpu *cpu_buffer, 2520 unsigned long length) 2521 { 2522 struct ring_buffer_event *event; 2523 u64 ts, delta; 2524 int nr_loops = 0; 2525 int add_timestamp; 2526 u64 diff; 2527 2528 rb_start_commit(cpu_buffer); 2529 2530 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2531 /* 2532 * Due to the ability to swap a cpu buffer from a buffer 2533 * it is possible it was swapped before we committed. 2534 * (committing stops a swap). We check for it here and 2535 * if it happened, we have to fail the write. 2536 */ 2537 barrier(); 2538 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2539 local_dec(&cpu_buffer->committing); 2540 local_dec(&cpu_buffer->commits); 2541 return NULL; 2542 } 2543 #endif 2544 2545 length = rb_calculate_event_length(length); 2546 again: 2547 add_timestamp = 0; 2548 delta = 0; 2549 2550 /* 2551 * We allow for interrupts to reenter here and do a trace. 2552 * If one does, it will cause this original code to loop 2553 * back here. Even with heavy interrupts happening, this 2554 * should only happen a few times in a row. If this happens 2555 * 1000 times in a row, there must be either an interrupt 2556 * storm or we have something buggy. 2557 * Bail! 2558 */ 2559 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2560 goto out_fail; 2561 2562 ts = rb_time_stamp(cpu_buffer->buffer); 2563 diff = ts - cpu_buffer->write_stamp; 2564 2565 /* make sure this diff is calculated here */ 2566 barrier(); 2567 2568 /* Did the write stamp get updated already? */ 2569 if (likely(ts >= cpu_buffer->write_stamp)) { 2570 delta = diff; 2571 if (unlikely(test_time_stamp(delta))) { 2572 int local_clock_stable = 1; 2573 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2574 local_clock_stable = sched_clock_stable(); 2575 #endif 2576 WARN_ONCE(delta > (1ULL << 59), 2577 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2578 (unsigned long long)delta, 2579 (unsigned long long)ts, 2580 (unsigned long long)cpu_buffer->write_stamp, 2581 local_clock_stable ? "" : 2582 "If you just came from a suspend/resume,\n" 2583 "please switch to the trace global clock:\n" 2584 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2585 add_timestamp = 1; 2586 } 2587 } 2588 2589 event = __rb_reserve_next(cpu_buffer, length, ts, 2590 delta, add_timestamp); 2591 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2592 goto again; 2593 2594 if (!event) 2595 goto out_fail; 2596 2597 return event; 2598 2599 out_fail: 2600 rb_end_commit(cpu_buffer); 2601 return NULL; 2602 } 2603 2604 #ifdef CONFIG_TRACING 2605 2606 /* 2607 * The lock and unlock are done within a preempt disable section. 2608 * The current_context per_cpu variable can only be modified 2609 * by the current task between lock and unlock. But it can 2610 * be modified more than once via an interrupt. To pass this 2611 * information from the lock to the unlock without having to 2612 * access the 'in_interrupt()' functions again (which do show 2613 * a bit of overhead in something as critical as function tracing, 2614 * we use a bitmask trick. 2615 * 2616 * bit 0 = NMI context 2617 * bit 1 = IRQ context 2618 * bit 2 = SoftIRQ context 2619 * bit 3 = normal context. 2620 * 2621 * This works because this is the order of contexts that can 2622 * preempt other contexts. A SoftIRQ never preempts an IRQ 2623 * context. 2624 * 2625 * When the context is determined, the corresponding bit is 2626 * checked and set (if it was set, then a recursion of that context 2627 * happened). 2628 * 2629 * On unlock, we need to clear this bit. To do so, just subtract 2630 * 1 from the current_context and AND it to itself. 2631 * 2632 * (binary) 2633 * 101 - 1 = 100 2634 * 101 & 100 = 100 (clearing bit zero) 2635 * 2636 * 1010 - 1 = 1001 2637 * 1010 & 1001 = 1000 (clearing bit 1) 2638 * 2639 * The least significant bit can be cleared this way, and it 2640 * just so happens that it is the same bit corresponding to 2641 * the current context. 2642 */ 2643 static DEFINE_PER_CPU(unsigned int, current_context); 2644 2645 static __always_inline int trace_recursive_lock(void) 2646 { 2647 unsigned int val = this_cpu_read(current_context); 2648 int bit; 2649 2650 if (in_interrupt()) { 2651 if (in_nmi()) 2652 bit = 0; 2653 else if (in_irq()) 2654 bit = 1; 2655 else 2656 bit = 2; 2657 } else 2658 bit = 3; 2659 2660 if (unlikely(val & (1 << bit))) 2661 return 1; 2662 2663 val |= (1 << bit); 2664 this_cpu_write(current_context, val); 2665 2666 return 0; 2667 } 2668 2669 static __always_inline void trace_recursive_unlock(void) 2670 { 2671 unsigned int val = this_cpu_read(current_context); 2672 2673 val--; 2674 val &= this_cpu_read(current_context); 2675 this_cpu_write(current_context, val); 2676 } 2677 2678 #else 2679 2680 #define trace_recursive_lock() (0) 2681 #define trace_recursive_unlock() do { } while (0) 2682 2683 #endif 2684 2685 /** 2686 * ring_buffer_lock_reserve - reserve a part of the buffer 2687 * @buffer: the ring buffer to reserve from 2688 * @length: the length of the data to reserve (excluding event header) 2689 * 2690 * Returns a reseverd event on the ring buffer to copy directly to. 2691 * The user of this interface will need to get the body to write into 2692 * and can use the ring_buffer_event_data() interface. 2693 * 2694 * The length is the length of the data needed, not the event length 2695 * which also includes the event header. 2696 * 2697 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2698 * If NULL is returned, then nothing has been allocated or locked. 2699 */ 2700 struct ring_buffer_event * 2701 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2702 { 2703 struct ring_buffer_per_cpu *cpu_buffer; 2704 struct ring_buffer_event *event; 2705 int cpu; 2706 2707 if (ring_buffer_flags != RB_BUFFERS_ON) 2708 return NULL; 2709 2710 /* If we are tracing schedule, we don't want to recurse */ 2711 preempt_disable_notrace(); 2712 2713 if (atomic_read(&buffer->record_disabled)) 2714 goto out_nocheck; 2715 2716 if (trace_recursive_lock()) 2717 goto out_nocheck; 2718 2719 cpu = raw_smp_processor_id(); 2720 2721 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2722 goto out; 2723 2724 cpu_buffer = buffer->buffers[cpu]; 2725 2726 if (atomic_read(&cpu_buffer->record_disabled)) 2727 goto out; 2728 2729 if (length > BUF_MAX_DATA_SIZE) 2730 goto out; 2731 2732 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2733 if (!event) 2734 goto out; 2735 2736 return event; 2737 2738 out: 2739 trace_recursive_unlock(); 2740 2741 out_nocheck: 2742 preempt_enable_notrace(); 2743 return NULL; 2744 } 2745 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2746 2747 static void 2748 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2749 struct ring_buffer_event *event) 2750 { 2751 u64 delta; 2752 2753 /* 2754 * The event first in the commit queue updates the 2755 * time stamp. 2756 */ 2757 if (rb_event_is_commit(cpu_buffer, event)) { 2758 /* 2759 * A commit event that is first on a page 2760 * updates the write timestamp with the page stamp 2761 */ 2762 if (!rb_event_index(event)) 2763 cpu_buffer->write_stamp = 2764 cpu_buffer->commit_page->page->time_stamp; 2765 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2766 delta = event->array[0]; 2767 delta <<= TS_SHIFT; 2768 delta += event->time_delta; 2769 cpu_buffer->write_stamp += delta; 2770 } else 2771 cpu_buffer->write_stamp += event->time_delta; 2772 } 2773 } 2774 2775 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2776 struct ring_buffer_event *event) 2777 { 2778 local_inc(&cpu_buffer->entries); 2779 rb_update_write_stamp(cpu_buffer, event); 2780 rb_end_commit(cpu_buffer); 2781 } 2782 2783 static __always_inline void 2784 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2785 { 2786 if (buffer->irq_work.waiters_pending) { 2787 buffer->irq_work.waiters_pending = false; 2788 /* irq_work_queue() supplies it's own memory barriers */ 2789 irq_work_queue(&buffer->irq_work.work); 2790 } 2791 2792 if (cpu_buffer->irq_work.waiters_pending) { 2793 cpu_buffer->irq_work.waiters_pending = false; 2794 /* irq_work_queue() supplies it's own memory barriers */ 2795 irq_work_queue(&cpu_buffer->irq_work.work); 2796 } 2797 } 2798 2799 /** 2800 * ring_buffer_unlock_commit - commit a reserved 2801 * @buffer: The buffer to commit to 2802 * @event: The event pointer to commit. 2803 * 2804 * This commits the data to the ring buffer, and releases any locks held. 2805 * 2806 * Must be paired with ring_buffer_lock_reserve. 2807 */ 2808 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2809 struct ring_buffer_event *event) 2810 { 2811 struct ring_buffer_per_cpu *cpu_buffer; 2812 int cpu = raw_smp_processor_id(); 2813 2814 cpu_buffer = buffer->buffers[cpu]; 2815 2816 rb_commit(cpu_buffer, event); 2817 2818 rb_wakeups(buffer, cpu_buffer); 2819 2820 trace_recursive_unlock(); 2821 2822 preempt_enable_notrace(); 2823 2824 return 0; 2825 } 2826 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2827 2828 static inline void rb_event_discard(struct ring_buffer_event *event) 2829 { 2830 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2831 event = skip_time_extend(event); 2832 2833 /* array[0] holds the actual length for the discarded event */ 2834 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2835 event->type_len = RINGBUF_TYPE_PADDING; 2836 /* time delta must be non zero */ 2837 if (!event->time_delta) 2838 event->time_delta = 1; 2839 } 2840 2841 /* 2842 * Decrement the entries to the page that an event is on. 2843 * The event does not even need to exist, only the pointer 2844 * to the page it is on. This may only be called before the commit 2845 * takes place. 2846 */ 2847 static inline void 2848 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2849 struct ring_buffer_event *event) 2850 { 2851 unsigned long addr = (unsigned long)event; 2852 struct buffer_page *bpage = cpu_buffer->commit_page; 2853 struct buffer_page *start; 2854 2855 addr &= PAGE_MASK; 2856 2857 /* Do the likely case first */ 2858 if (likely(bpage->page == (void *)addr)) { 2859 local_dec(&bpage->entries); 2860 return; 2861 } 2862 2863 /* 2864 * Because the commit page may be on the reader page we 2865 * start with the next page and check the end loop there. 2866 */ 2867 rb_inc_page(cpu_buffer, &bpage); 2868 start = bpage; 2869 do { 2870 if (bpage->page == (void *)addr) { 2871 local_dec(&bpage->entries); 2872 return; 2873 } 2874 rb_inc_page(cpu_buffer, &bpage); 2875 } while (bpage != start); 2876 2877 /* commit not part of this buffer?? */ 2878 RB_WARN_ON(cpu_buffer, 1); 2879 } 2880 2881 /** 2882 * ring_buffer_commit_discard - discard an event that has not been committed 2883 * @buffer: the ring buffer 2884 * @event: non committed event to discard 2885 * 2886 * Sometimes an event that is in the ring buffer needs to be ignored. 2887 * This function lets the user discard an event in the ring buffer 2888 * and then that event will not be read later. 2889 * 2890 * This function only works if it is called before the the item has been 2891 * committed. It will try to free the event from the ring buffer 2892 * if another event has not been added behind it. 2893 * 2894 * If another event has been added behind it, it will set the event 2895 * up as discarded, and perform the commit. 2896 * 2897 * If this function is called, do not call ring_buffer_unlock_commit on 2898 * the event. 2899 */ 2900 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2901 struct ring_buffer_event *event) 2902 { 2903 struct ring_buffer_per_cpu *cpu_buffer; 2904 int cpu; 2905 2906 /* The event is discarded regardless */ 2907 rb_event_discard(event); 2908 2909 cpu = smp_processor_id(); 2910 cpu_buffer = buffer->buffers[cpu]; 2911 2912 /* 2913 * This must only be called if the event has not been 2914 * committed yet. Thus we can assume that preemption 2915 * is still disabled. 2916 */ 2917 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2918 2919 rb_decrement_entry(cpu_buffer, event); 2920 if (rb_try_to_discard(cpu_buffer, event)) 2921 goto out; 2922 2923 /* 2924 * The commit is still visible by the reader, so we 2925 * must still update the timestamp. 2926 */ 2927 rb_update_write_stamp(cpu_buffer, event); 2928 out: 2929 rb_end_commit(cpu_buffer); 2930 2931 trace_recursive_unlock(); 2932 2933 preempt_enable_notrace(); 2934 2935 } 2936 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2937 2938 /** 2939 * ring_buffer_write - write data to the buffer without reserving 2940 * @buffer: The ring buffer to write to. 2941 * @length: The length of the data being written (excluding the event header) 2942 * @data: The data to write to the buffer. 2943 * 2944 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2945 * one function. If you already have the data to write to the buffer, it 2946 * may be easier to simply call this function. 2947 * 2948 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2949 * and not the length of the event which would hold the header. 2950 */ 2951 int ring_buffer_write(struct ring_buffer *buffer, 2952 unsigned long length, 2953 void *data) 2954 { 2955 struct ring_buffer_per_cpu *cpu_buffer; 2956 struct ring_buffer_event *event; 2957 void *body; 2958 int ret = -EBUSY; 2959 int cpu; 2960 2961 if (ring_buffer_flags != RB_BUFFERS_ON) 2962 return -EBUSY; 2963 2964 preempt_disable_notrace(); 2965 2966 if (atomic_read(&buffer->record_disabled)) 2967 goto out; 2968 2969 cpu = raw_smp_processor_id(); 2970 2971 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2972 goto out; 2973 2974 cpu_buffer = buffer->buffers[cpu]; 2975 2976 if (atomic_read(&cpu_buffer->record_disabled)) 2977 goto out; 2978 2979 if (length > BUF_MAX_DATA_SIZE) 2980 goto out; 2981 2982 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2983 if (!event) 2984 goto out; 2985 2986 body = rb_event_data(event); 2987 2988 memcpy(body, data, length); 2989 2990 rb_commit(cpu_buffer, event); 2991 2992 rb_wakeups(buffer, cpu_buffer); 2993 2994 ret = 0; 2995 out: 2996 preempt_enable_notrace(); 2997 2998 return ret; 2999 } 3000 EXPORT_SYMBOL_GPL(ring_buffer_write); 3001 3002 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3003 { 3004 struct buffer_page *reader = cpu_buffer->reader_page; 3005 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3006 struct buffer_page *commit = cpu_buffer->commit_page; 3007 3008 /* In case of error, head will be NULL */ 3009 if (unlikely(!head)) 3010 return 1; 3011 3012 return reader->read == rb_page_commit(reader) && 3013 (commit == reader || 3014 (commit == head && 3015 head->read == rb_page_commit(commit))); 3016 } 3017 3018 /** 3019 * ring_buffer_record_disable - stop all writes into the buffer 3020 * @buffer: The ring buffer to stop writes to. 3021 * 3022 * This prevents all writes to the buffer. Any attempt to write 3023 * to the buffer after this will fail and return NULL. 3024 * 3025 * The caller should call synchronize_sched() after this. 3026 */ 3027 void ring_buffer_record_disable(struct ring_buffer *buffer) 3028 { 3029 atomic_inc(&buffer->record_disabled); 3030 } 3031 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3032 3033 /** 3034 * ring_buffer_record_enable - enable writes to the buffer 3035 * @buffer: The ring buffer to enable writes 3036 * 3037 * Note, multiple disables will need the same number of enables 3038 * to truly enable the writing (much like preempt_disable). 3039 */ 3040 void ring_buffer_record_enable(struct ring_buffer *buffer) 3041 { 3042 atomic_dec(&buffer->record_disabled); 3043 } 3044 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3045 3046 /** 3047 * ring_buffer_record_off - stop all writes into the buffer 3048 * @buffer: The ring buffer to stop writes to. 3049 * 3050 * This prevents all writes to the buffer. Any attempt to write 3051 * to the buffer after this will fail and return NULL. 3052 * 3053 * This is different than ring_buffer_record_disable() as 3054 * it works like an on/off switch, where as the disable() version 3055 * must be paired with a enable(). 3056 */ 3057 void ring_buffer_record_off(struct ring_buffer *buffer) 3058 { 3059 unsigned int rd; 3060 unsigned int new_rd; 3061 3062 do { 3063 rd = atomic_read(&buffer->record_disabled); 3064 new_rd = rd | RB_BUFFER_OFF; 3065 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3066 } 3067 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3068 3069 /** 3070 * ring_buffer_record_on - restart writes into the buffer 3071 * @buffer: The ring buffer to start writes to. 3072 * 3073 * This enables all writes to the buffer that was disabled by 3074 * ring_buffer_record_off(). 3075 * 3076 * This is different than ring_buffer_record_enable() as 3077 * it works like an on/off switch, where as the enable() version 3078 * must be paired with a disable(). 3079 */ 3080 void ring_buffer_record_on(struct ring_buffer *buffer) 3081 { 3082 unsigned int rd; 3083 unsigned int new_rd; 3084 3085 do { 3086 rd = atomic_read(&buffer->record_disabled); 3087 new_rd = rd & ~RB_BUFFER_OFF; 3088 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3089 } 3090 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3091 3092 /** 3093 * ring_buffer_record_is_on - return true if the ring buffer can write 3094 * @buffer: The ring buffer to see if write is enabled 3095 * 3096 * Returns true if the ring buffer is in a state that it accepts writes. 3097 */ 3098 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3099 { 3100 return !atomic_read(&buffer->record_disabled); 3101 } 3102 3103 /** 3104 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3105 * @buffer: The ring buffer to stop writes to. 3106 * @cpu: The CPU buffer to stop 3107 * 3108 * This prevents all writes to the buffer. Any attempt to write 3109 * to the buffer after this will fail and return NULL. 3110 * 3111 * The caller should call synchronize_sched() after this. 3112 */ 3113 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3114 { 3115 struct ring_buffer_per_cpu *cpu_buffer; 3116 3117 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3118 return; 3119 3120 cpu_buffer = buffer->buffers[cpu]; 3121 atomic_inc(&cpu_buffer->record_disabled); 3122 } 3123 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3124 3125 /** 3126 * ring_buffer_record_enable_cpu - enable writes to the buffer 3127 * @buffer: The ring buffer to enable writes 3128 * @cpu: The CPU to enable. 3129 * 3130 * Note, multiple disables will need the same number of enables 3131 * to truly enable the writing (much like preempt_disable). 3132 */ 3133 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3134 { 3135 struct ring_buffer_per_cpu *cpu_buffer; 3136 3137 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3138 return; 3139 3140 cpu_buffer = buffer->buffers[cpu]; 3141 atomic_dec(&cpu_buffer->record_disabled); 3142 } 3143 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3144 3145 /* 3146 * The total entries in the ring buffer is the running counter 3147 * of entries entered into the ring buffer, minus the sum of 3148 * the entries read from the ring buffer and the number of 3149 * entries that were overwritten. 3150 */ 3151 static inline unsigned long 3152 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3153 { 3154 return local_read(&cpu_buffer->entries) - 3155 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3156 } 3157 3158 /** 3159 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3160 * @buffer: The ring buffer 3161 * @cpu: The per CPU buffer to read from. 3162 */ 3163 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3164 { 3165 unsigned long flags; 3166 struct ring_buffer_per_cpu *cpu_buffer; 3167 struct buffer_page *bpage; 3168 u64 ret = 0; 3169 3170 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3171 return 0; 3172 3173 cpu_buffer = buffer->buffers[cpu]; 3174 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3175 /* 3176 * if the tail is on reader_page, oldest time stamp is on the reader 3177 * page 3178 */ 3179 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3180 bpage = cpu_buffer->reader_page; 3181 else 3182 bpage = rb_set_head_page(cpu_buffer); 3183 if (bpage) 3184 ret = bpage->page->time_stamp; 3185 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3186 3187 return ret; 3188 } 3189 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3190 3191 /** 3192 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3193 * @buffer: The ring buffer 3194 * @cpu: The per CPU buffer to read from. 3195 */ 3196 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3197 { 3198 struct ring_buffer_per_cpu *cpu_buffer; 3199 unsigned long ret; 3200 3201 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3202 return 0; 3203 3204 cpu_buffer = buffer->buffers[cpu]; 3205 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3206 3207 return ret; 3208 } 3209 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3210 3211 /** 3212 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3213 * @buffer: The ring buffer 3214 * @cpu: The per CPU buffer to get the entries from. 3215 */ 3216 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3217 { 3218 struct ring_buffer_per_cpu *cpu_buffer; 3219 3220 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3221 return 0; 3222 3223 cpu_buffer = buffer->buffers[cpu]; 3224 3225 return rb_num_of_entries(cpu_buffer); 3226 } 3227 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3228 3229 /** 3230 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3231 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3232 * @buffer: The ring buffer 3233 * @cpu: The per CPU buffer to get the number of overruns from 3234 */ 3235 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3236 { 3237 struct ring_buffer_per_cpu *cpu_buffer; 3238 unsigned long ret; 3239 3240 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3241 return 0; 3242 3243 cpu_buffer = buffer->buffers[cpu]; 3244 ret = local_read(&cpu_buffer->overrun); 3245 3246 return ret; 3247 } 3248 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3249 3250 /** 3251 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3252 * commits failing due to the buffer wrapping around while there are uncommitted 3253 * events, such as during an interrupt storm. 3254 * @buffer: The ring buffer 3255 * @cpu: The per CPU buffer to get the number of overruns from 3256 */ 3257 unsigned long 3258 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3259 { 3260 struct ring_buffer_per_cpu *cpu_buffer; 3261 unsigned long ret; 3262 3263 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3264 return 0; 3265 3266 cpu_buffer = buffer->buffers[cpu]; 3267 ret = local_read(&cpu_buffer->commit_overrun); 3268 3269 return ret; 3270 } 3271 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3272 3273 /** 3274 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3275 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3276 * @buffer: The ring buffer 3277 * @cpu: The per CPU buffer to get the number of overruns from 3278 */ 3279 unsigned long 3280 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3281 { 3282 struct ring_buffer_per_cpu *cpu_buffer; 3283 unsigned long ret; 3284 3285 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3286 return 0; 3287 3288 cpu_buffer = buffer->buffers[cpu]; 3289 ret = local_read(&cpu_buffer->dropped_events); 3290 3291 return ret; 3292 } 3293 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3294 3295 /** 3296 * ring_buffer_read_events_cpu - get the number of events successfully read 3297 * @buffer: The ring buffer 3298 * @cpu: The per CPU buffer to get the number of events read 3299 */ 3300 unsigned long 3301 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3302 { 3303 struct ring_buffer_per_cpu *cpu_buffer; 3304 3305 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3306 return 0; 3307 3308 cpu_buffer = buffer->buffers[cpu]; 3309 return cpu_buffer->read; 3310 } 3311 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3312 3313 /** 3314 * ring_buffer_entries - get the number of entries in a buffer 3315 * @buffer: The ring buffer 3316 * 3317 * Returns the total number of entries in the ring buffer 3318 * (all CPU entries) 3319 */ 3320 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3321 { 3322 struct ring_buffer_per_cpu *cpu_buffer; 3323 unsigned long entries = 0; 3324 int cpu; 3325 3326 /* if you care about this being correct, lock the buffer */ 3327 for_each_buffer_cpu(buffer, cpu) { 3328 cpu_buffer = buffer->buffers[cpu]; 3329 entries += rb_num_of_entries(cpu_buffer); 3330 } 3331 3332 return entries; 3333 } 3334 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3335 3336 /** 3337 * ring_buffer_overruns - get the number of overruns in buffer 3338 * @buffer: The ring buffer 3339 * 3340 * Returns the total number of overruns in the ring buffer 3341 * (all CPU entries) 3342 */ 3343 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3344 { 3345 struct ring_buffer_per_cpu *cpu_buffer; 3346 unsigned long overruns = 0; 3347 int cpu; 3348 3349 /* if you care about this being correct, lock the buffer */ 3350 for_each_buffer_cpu(buffer, cpu) { 3351 cpu_buffer = buffer->buffers[cpu]; 3352 overruns += local_read(&cpu_buffer->overrun); 3353 } 3354 3355 return overruns; 3356 } 3357 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3358 3359 static void rb_iter_reset(struct ring_buffer_iter *iter) 3360 { 3361 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3362 3363 /* Iterator usage is expected to have record disabled */ 3364 if (list_empty(&cpu_buffer->reader_page->list)) { 3365 iter->head_page = rb_set_head_page(cpu_buffer); 3366 if (unlikely(!iter->head_page)) 3367 return; 3368 iter->head = iter->head_page->read; 3369 } else { 3370 iter->head_page = cpu_buffer->reader_page; 3371 iter->head = cpu_buffer->reader_page->read; 3372 } 3373 if (iter->head) 3374 iter->read_stamp = cpu_buffer->read_stamp; 3375 else 3376 iter->read_stamp = iter->head_page->page->time_stamp; 3377 iter->cache_reader_page = cpu_buffer->reader_page; 3378 iter->cache_read = cpu_buffer->read; 3379 } 3380 3381 /** 3382 * ring_buffer_iter_reset - reset an iterator 3383 * @iter: The iterator to reset 3384 * 3385 * Resets the iterator, so that it will start from the beginning 3386 * again. 3387 */ 3388 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3389 { 3390 struct ring_buffer_per_cpu *cpu_buffer; 3391 unsigned long flags; 3392 3393 if (!iter) 3394 return; 3395 3396 cpu_buffer = iter->cpu_buffer; 3397 3398 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3399 rb_iter_reset(iter); 3400 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3401 } 3402 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3403 3404 /** 3405 * ring_buffer_iter_empty - check if an iterator has no more to read 3406 * @iter: The iterator to check 3407 */ 3408 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3409 { 3410 struct ring_buffer_per_cpu *cpu_buffer; 3411 3412 cpu_buffer = iter->cpu_buffer; 3413 3414 return iter->head_page == cpu_buffer->commit_page && 3415 iter->head == rb_commit_index(cpu_buffer); 3416 } 3417 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3418 3419 static void 3420 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3421 struct ring_buffer_event *event) 3422 { 3423 u64 delta; 3424 3425 switch (event->type_len) { 3426 case RINGBUF_TYPE_PADDING: 3427 return; 3428 3429 case RINGBUF_TYPE_TIME_EXTEND: 3430 delta = event->array[0]; 3431 delta <<= TS_SHIFT; 3432 delta += event->time_delta; 3433 cpu_buffer->read_stamp += delta; 3434 return; 3435 3436 case RINGBUF_TYPE_TIME_STAMP: 3437 /* FIXME: not implemented */ 3438 return; 3439 3440 case RINGBUF_TYPE_DATA: 3441 cpu_buffer->read_stamp += event->time_delta; 3442 return; 3443 3444 default: 3445 BUG(); 3446 } 3447 return; 3448 } 3449 3450 static void 3451 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3452 struct ring_buffer_event *event) 3453 { 3454 u64 delta; 3455 3456 switch (event->type_len) { 3457 case RINGBUF_TYPE_PADDING: 3458 return; 3459 3460 case RINGBUF_TYPE_TIME_EXTEND: 3461 delta = event->array[0]; 3462 delta <<= TS_SHIFT; 3463 delta += event->time_delta; 3464 iter->read_stamp += delta; 3465 return; 3466 3467 case RINGBUF_TYPE_TIME_STAMP: 3468 /* FIXME: not implemented */ 3469 return; 3470 3471 case RINGBUF_TYPE_DATA: 3472 iter->read_stamp += event->time_delta; 3473 return; 3474 3475 default: 3476 BUG(); 3477 } 3478 return; 3479 } 3480 3481 static struct buffer_page * 3482 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3483 { 3484 struct buffer_page *reader = NULL; 3485 unsigned long overwrite; 3486 unsigned long flags; 3487 int nr_loops = 0; 3488 int ret; 3489 3490 local_irq_save(flags); 3491 arch_spin_lock(&cpu_buffer->lock); 3492 3493 again: 3494 /* 3495 * This should normally only loop twice. But because the 3496 * start of the reader inserts an empty page, it causes 3497 * a case where we will loop three times. There should be no 3498 * reason to loop four times (that I know of). 3499 */ 3500 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3501 reader = NULL; 3502 goto out; 3503 } 3504 3505 reader = cpu_buffer->reader_page; 3506 3507 /* If there's more to read, return this page */ 3508 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3509 goto out; 3510 3511 /* Never should we have an index greater than the size */ 3512 if (RB_WARN_ON(cpu_buffer, 3513 cpu_buffer->reader_page->read > rb_page_size(reader))) 3514 goto out; 3515 3516 /* check if we caught up to the tail */ 3517 reader = NULL; 3518 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3519 goto out; 3520 3521 /* Don't bother swapping if the ring buffer is empty */ 3522 if (rb_num_of_entries(cpu_buffer) == 0) 3523 goto out; 3524 3525 /* 3526 * Reset the reader page to size zero. 3527 */ 3528 local_set(&cpu_buffer->reader_page->write, 0); 3529 local_set(&cpu_buffer->reader_page->entries, 0); 3530 local_set(&cpu_buffer->reader_page->page->commit, 0); 3531 cpu_buffer->reader_page->real_end = 0; 3532 3533 spin: 3534 /* 3535 * Splice the empty reader page into the list around the head. 3536 */ 3537 reader = rb_set_head_page(cpu_buffer); 3538 if (!reader) 3539 goto out; 3540 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3541 cpu_buffer->reader_page->list.prev = reader->list.prev; 3542 3543 /* 3544 * cpu_buffer->pages just needs to point to the buffer, it 3545 * has no specific buffer page to point to. Lets move it out 3546 * of our way so we don't accidentally swap it. 3547 */ 3548 cpu_buffer->pages = reader->list.prev; 3549 3550 /* The reader page will be pointing to the new head */ 3551 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3552 3553 /* 3554 * We want to make sure we read the overruns after we set up our 3555 * pointers to the next object. The writer side does a 3556 * cmpxchg to cross pages which acts as the mb on the writer 3557 * side. Note, the reader will constantly fail the swap 3558 * while the writer is updating the pointers, so this 3559 * guarantees that the overwrite recorded here is the one we 3560 * want to compare with the last_overrun. 3561 */ 3562 smp_mb(); 3563 overwrite = local_read(&(cpu_buffer->overrun)); 3564 3565 /* 3566 * Here's the tricky part. 3567 * 3568 * We need to move the pointer past the header page. 3569 * But we can only do that if a writer is not currently 3570 * moving it. The page before the header page has the 3571 * flag bit '1' set if it is pointing to the page we want. 3572 * but if the writer is in the process of moving it 3573 * than it will be '2' or already moved '0'. 3574 */ 3575 3576 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3577 3578 /* 3579 * If we did not convert it, then we must try again. 3580 */ 3581 if (!ret) 3582 goto spin; 3583 3584 /* 3585 * Yeah! We succeeded in replacing the page. 3586 * 3587 * Now make the new head point back to the reader page. 3588 */ 3589 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3590 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3591 3592 /* Finally update the reader page to the new head */ 3593 cpu_buffer->reader_page = reader; 3594 rb_reset_reader_page(cpu_buffer); 3595 3596 if (overwrite != cpu_buffer->last_overrun) { 3597 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3598 cpu_buffer->last_overrun = overwrite; 3599 } 3600 3601 goto again; 3602 3603 out: 3604 arch_spin_unlock(&cpu_buffer->lock); 3605 local_irq_restore(flags); 3606 3607 return reader; 3608 } 3609 3610 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3611 { 3612 struct ring_buffer_event *event; 3613 struct buffer_page *reader; 3614 unsigned length; 3615 3616 reader = rb_get_reader_page(cpu_buffer); 3617 3618 /* This function should not be called when buffer is empty */ 3619 if (RB_WARN_ON(cpu_buffer, !reader)) 3620 return; 3621 3622 event = rb_reader_event(cpu_buffer); 3623 3624 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3625 cpu_buffer->read++; 3626 3627 rb_update_read_stamp(cpu_buffer, event); 3628 3629 length = rb_event_length(event); 3630 cpu_buffer->reader_page->read += length; 3631 } 3632 3633 static void rb_advance_iter(struct ring_buffer_iter *iter) 3634 { 3635 struct ring_buffer_per_cpu *cpu_buffer; 3636 struct ring_buffer_event *event; 3637 unsigned length; 3638 3639 cpu_buffer = iter->cpu_buffer; 3640 3641 /* 3642 * Check if we are at the end of the buffer. 3643 */ 3644 if (iter->head >= rb_page_size(iter->head_page)) { 3645 /* discarded commits can make the page empty */ 3646 if (iter->head_page == cpu_buffer->commit_page) 3647 return; 3648 rb_inc_iter(iter); 3649 return; 3650 } 3651 3652 event = rb_iter_head_event(iter); 3653 3654 length = rb_event_length(event); 3655 3656 /* 3657 * This should not be called to advance the header if we are 3658 * at the tail of the buffer. 3659 */ 3660 if (RB_WARN_ON(cpu_buffer, 3661 (iter->head_page == cpu_buffer->commit_page) && 3662 (iter->head + length > rb_commit_index(cpu_buffer)))) 3663 return; 3664 3665 rb_update_iter_read_stamp(iter, event); 3666 3667 iter->head += length; 3668 3669 /* check for end of page padding */ 3670 if ((iter->head >= rb_page_size(iter->head_page)) && 3671 (iter->head_page != cpu_buffer->commit_page)) 3672 rb_inc_iter(iter); 3673 } 3674 3675 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3676 { 3677 return cpu_buffer->lost_events; 3678 } 3679 3680 static struct ring_buffer_event * 3681 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3682 unsigned long *lost_events) 3683 { 3684 struct ring_buffer_event *event; 3685 struct buffer_page *reader; 3686 int nr_loops = 0; 3687 3688 again: 3689 /* 3690 * We repeat when a time extend is encountered. 3691 * Since the time extend is always attached to a data event, 3692 * we should never loop more than once. 3693 * (We never hit the following condition more than twice). 3694 */ 3695 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3696 return NULL; 3697 3698 reader = rb_get_reader_page(cpu_buffer); 3699 if (!reader) 3700 return NULL; 3701 3702 event = rb_reader_event(cpu_buffer); 3703 3704 switch (event->type_len) { 3705 case RINGBUF_TYPE_PADDING: 3706 if (rb_null_event(event)) 3707 RB_WARN_ON(cpu_buffer, 1); 3708 /* 3709 * Because the writer could be discarding every 3710 * event it creates (which would probably be bad) 3711 * if we were to go back to "again" then we may never 3712 * catch up, and will trigger the warn on, or lock 3713 * the box. Return the padding, and we will release 3714 * the current locks, and try again. 3715 */ 3716 return event; 3717 3718 case RINGBUF_TYPE_TIME_EXTEND: 3719 /* Internal data, OK to advance */ 3720 rb_advance_reader(cpu_buffer); 3721 goto again; 3722 3723 case RINGBUF_TYPE_TIME_STAMP: 3724 /* FIXME: not implemented */ 3725 rb_advance_reader(cpu_buffer); 3726 goto again; 3727 3728 case RINGBUF_TYPE_DATA: 3729 if (ts) { 3730 *ts = cpu_buffer->read_stamp + event->time_delta; 3731 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3732 cpu_buffer->cpu, ts); 3733 } 3734 if (lost_events) 3735 *lost_events = rb_lost_events(cpu_buffer); 3736 return event; 3737 3738 default: 3739 BUG(); 3740 } 3741 3742 return NULL; 3743 } 3744 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3745 3746 static struct ring_buffer_event * 3747 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3748 { 3749 struct ring_buffer *buffer; 3750 struct ring_buffer_per_cpu *cpu_buffer; 3751 struct ring_buffer_event *event; 3752 int nr_loops = 0; 3753 3754 cpu_buffer = iter->cpu_buffer; 3755 buffer = cpu_buffer->buffer; 3756 3757 /* 3758 * Check if someone performed a consuming read to 3759 * the buffer. A consuming read invalidates the iterator 3760 * and we need to reset the iterator in this case. 3761 */ 3762 if (unlikely(iter->cache_read != cpu_buffer->read || 3763 iter->cache_reader_page != cpu_buffer->reader_page)) 3764 rb_iter_reset(iter); 3765 3766 again: 3767 if (ring_buffer_iter_empty(iter)) 3768 return NULL; 3769 3770 /* 3771 * We repeat when a time extend is encountered. 3772 * Since the time extend is always attached to a data event, 3773 * we should never loop more than once. 3774 * (We never hit the following condition more than twice). 3775 */ 3776 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3777 return NULL; 3778 3779 if (rb_per_cpu_empty(cpu_buffer)) 3780 return NULL; 3781 3782 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3783 rb_inc_iter(iter); 3784 goto again; 3785 } 3786 3787 event = rb_iter_head_event(iter); 3788 3789 switch (event->type_len) { 3790 case RINGBUF_TYPE_PADDING: 3791 if (rb_null_event(event)) { 3792 rb_inc_iter(iter); 3793 goto again; 3794 } 3795 rb_advance_iter(iter); 3796 return event; 3797 3798 case RINGBUF_TYPE_TIME_EXTEND: 3799 /* Internal data, OK to advance */ 3800 rb_advance_iter(iter); 3801 goto again; 3802 3803 case RINGBUF_TYPE_TIME_STAMP: 3804 /* FIXME: not implemented */ 3805 rb_advance_iter(iter); 3806 goto again; 3807 3808 case RINGBUF_TYPE_DATA: 3809 if (ts) { 3810 *ts = iter->read_stamp + event->time_delta; 3811 ring_buffer_normalize_time_stamp(buffer, 3812 cpu_buffer->cpu, ts); 3813 } 3814 return event; 3815 3816 default: 3817 BUG(); 3818 } 3819 3820 return NULL; 3821 } 3822 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3823 3824 static inline int rb_ok_to_lock(void) 3825 { 3826 /* 3827 * If an NMI die dumps out the content of the ring buffer 3828 * do not grab locks. We also permanently disable the ring 3829 * buffer too. A one time deal is all you get from reading 3830 * the ring buffer from an NMI. 3831 */ 3832 if (likely(!in_nmi())) 3833 return 1; 3834 3835 tracing_off_permanent(); 3836 return 0; 3837 } 3838 3839 /** 3840 * ring_buffer_peek - peek at the next event to be read 3841 * @buffer: The ring buffer to read 3842 * @cpu: The cpu to peak at 3843 * @ts: The timestamp counter of this event. 3844 * @lost_events: a variable to store if events were lost (may be NULL) 3845 * 3846 * This will return the event that will be read next, but does 3847 * not consume the data. 3848 */ 3849 struct ring_buffer_event * 3850 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3851 unsigned long *lost_events) 3852 { 3853 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3854 struct ring_buffer_event *event; 3855 unsigned long flags; 3856 int dolock; 3857 3858 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3859 return NULL; 3860 3861 dolock = rb_ok_to_lock(); 3862 again: 3863 local_irq_save(flags); 3864 if (dolock) 3865 raw_spin_lock(&cpu_buffer->reader_lock); 3866 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3867 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3868 rb_advance_reader(cpu_buffer); 3869 if (dolock) 3870 raw_spin_unlock(&cpu_buffer->reader_lock); 3871 local_irq_restore(flags); 3872 3873 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3874 goto again; 3875 3876 return event; 3877 } 3878 3879 /** 3880 * ring_buffer_iter_peek - peek at the next event to be read 3881 * @iter: The ring buffer iterator 3882 * @ts: The timestamp counter of this event. 3883 * 3884 * This will return the event that will be read next, but does 3885 * not increment the iterator. 3886 */ 3887 struct ring_buffer_event * 3888 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3889 { 3890 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3891 struct ring_buffer_event *event; 3892 unsigned long flags; 3893 3894 again: 3895 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3896 event = rb_iter_peek(iter, ts); 3897 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3898 3899 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3900 goto again; 3901 3902 return event; 3903 } 3904 3905 /** 3906 * ring_buffer_consume - return an event and consume it 3907 * @buffer: The ring buffer to get the next event from 3908 * @cpu: the cpu to read the buffer from 3909 * @ts: a variable to store the timestamp (may be NULL) 3910 * @lost_events: a variable to store if events were lost (may be NULL) 3911 * 3912 * Returns the next event in the ring buffer, and that event is consumed. 3913 * Meaning, that sequential reads will keep returning a different event, 3914 * and eventually empty the ring buffer if the producer is slower. 3915 */ 3916 struct ring_buffer_event * 3917 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3918 unsigned long *lost_events) 3919 { 3920 struct ring_buffer_per_cpu *cpu_buffer; 3921 struct ring_buffer_event *event = NULL; 3922 unsigned long flags; 3923 int dolock; 3924 3925 dolock = rb_ok_to_lock(); 3926 3927 again: 3928 /* might be called in atomic */ 3929 preempt_disable(); 3930 3931 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3932 goto out; 3933 3934 cpu_buffer = buffer->buffers[cpu]; 3935 local_irq_save(flags); 3936 if (dolock) 3937 raw_spin_lock(&cpu_buffer->reader_lock); 3938 3939 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3940 if (event) { 3941 cpu_buffer->lost_events = 0; 3942 rb_advance_reader(cpu_buffer); 3943 } 3944 3945 if (dolock) 3946 raw_spin_unlock(&cpu_buffer->reader_lock); 3947 local_irq_restore(flags); 3948 3949 out: 3950 preempt_enable(); 3951 3952 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3953 goto again; 3954 3955 return event; 3956 } 3957 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3958 3959 /** 3960 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3961 * @buffer: The ring buffer to read from 3962 * @cpu: The cpu buffer to iterate over 3963 * 3964 * This performs the initial preparations necessary to iterate 3965 * through the buffer. Memory is allocated, buffer recording 3966 * is disabled, and the iterator pointer is returned to the caller. 3967 * 3968 * Disabling buffer recordng prevents the reading from being 3969 * corrupted. This is not a consuming read, so a producer is not 3970 * expected. 3971 * 3972 * After a sequence of ring_buffer_read_prepare calls, the user is 3973 * expected to make at least one call to ring_buffer_read_prepare_sync. 3974 * Afterwards, ring_buffer_read_start is invoked to get things going 3975 * for real. 3976 * 3977 * This overall must be paired with ring_buffer_read_finish. 3978 */ 3979 struct ring_buffer_iter * 3980 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3981 { 3982 struct ring_buffer_per_cpu *cpu_buffer; 3983 struct ring_buffer_iter *iter; 3984 3985 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3986 return NULL; 3987 3988 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3989 if (!iter) 3990 return NULL; 3991 3992 cpu_buffer = buffer->buffers[cpu]; 3993 3994 iter->cpu_buffer = cpu_buffer; 3995 3996 atomic_inc(&buffer->resize_disabled); 3997 atomic_inc(&cpu_buffer->record_disabled); 3998 3999 return iter; 4000 } 4001 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4002 4003 /** 4004 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4005 * 4006 * All previously invoked ring_buffer_read_prepare calls to prepare 4007 * iterators will be synchronized. Afterwards, read_buffer_read_start 4008 * calls on those iterators are allowed. 4009 */ 4010 void 4011 ring_buffer_read_prepare_sync(void) 4012 { 4013 synchronize_sched(); 4014 } 4015 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4016 4017 /** 4018 * ring_buffer_read_start - start a non consuming read of the buffer 4019 * @iter: The iterator returned by ring_buffer_read_prepare 4020 * 4021 * This finalizes the startup of an iteration through the buffer. 4022 * The iterator comes from a call to ring_buffer_read_prepare and 4023 * an intervening ring_buffer_read_prepare_sync must have been 4024 * performed. 4025 * 4026 * Must be paired with ring_buffer_read_finish. 4027 */ 4028 void 4029 ring_buffer_read_start(struct ring_buffer_iter *iter) 4030 { 4031 struct ring_buffer_per_cpu *cpu_buffer; 4032 unsigned long flags; 4033 4034 if (!iter) 4035 return; 4036 4037 cpu_buffer = iter->cpu_buffer; 4038 4039 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4040 arch_spin_lock(&cpu_buffer->lock); 4041 rb_iter_reset(iter); 4042 arch_spin_unlock(&cpu_buffer->lock); 4043 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4044 } 4045 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4046 4047 /** 4048 * ring_buffer_read_finish - finish reading the iterator of the buffer 4049 * @iter: The iterator retrieved by ring_buffer_start 4050 * 4051 * This re-enables the recording to the buffer, and frees the 4052 * iterator. 4053 */ 4054 void 4055 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4056 { 4057 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4058 unsigned long flags; 4059 4060 /* 4061 * Ring buffer is disabled from recording, here's a good place 4062 * to check the integrity of the ring buffer. 4063 * Must prevent readers from trying to read, as the check 4064 * clears the HEAD page and readers require it. 4065 */ 4066 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4067 rb_check_pages(cpu_buffer); 4068 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4069 4070 atomic_dec(&cpu_buffer->record_disabled); 4071 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4072 kfree(iter); 4073 } 4074 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4075 4076 /** 4077 * ring_buffer_read - read the next item in the ring buffer by the iterator 4078 * @iter: The ring buffer iterator 4079 * @ts: The time stamp of the event read. 4080 * 4081 * This reads the next event in the ring buffer and increments the iterator. 4082 */ 4083 struct ring_buffer_event * 4084 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4085 { 4086 struct ring_buffer_event *event; 4087 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4088 unsigned long flags; 4089 4090 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4091 again: 4092 event = rb_iter_peek(iter, ts); 4093 if (!event) 4094 goto out; 4095 4096 if (event->type_len == RINGBUF_TYPE_PADDING) 4097 goto again; 4098 4099 rb_advance_iter(iter); 4100 out: 4101 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4102 4103 return event; 4104 } 4105 EXPORT_SYMBOL_GPL(ring_buffer_read); 4106 4107 /** 4108 * ring_buffer_size - return the size of the ring buffer (in bytes) 4109 * @buffer: The ring buffer. 4110 */ 4111 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4112 { 4113 /* 4114 * Earlier, this method returned 4115 * BUF_PAGE_SIZE * buffer->nr_pages 4116 * Since the nr_pages field is now removed, we have converted this to 4117 * return the per cpu buffer value. 4118 */ 4119 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4120 return 0; 4121 4122 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4123 } 4124 EXPORT_SYMBOL_GPL(ring_buffer_size); 4125 4126 static void 4127 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4128 { 4129 rb_head_page_deactivate(cpu_buffer); 4130 4131 cpu_buffer->head_page 4132 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4133 local_set(&cpu_buffer->head_page->write, 0); 4134 local_set(&cpu_buffer->head_page->entries, 0); 4135 local_set(&cpu_buffer->head_page->page->commit, 0); 4136 4137 cpu_buffer->head_page->read = 0; 4138 4139 cpu_buffer->tail_page = cpu_buffer->head_page; 4140 cpu_buffer->commit_page = cpu_buffer->head_page; 4141 4142 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4143 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4144 local_set(&cpu_buffer->reader_page->write, 0); 4145 local_set(&cpu_buffer->reader_page->entries, 0); 4146 local_set(&cpu_buffer->reader_page->page->commit, 0); 4147 cpu_buffer->reader_page->read = 0; 4148 4149 local_set(&cpu_buffer->entries_bytes, 0); 4150 local_set(&cpu_buffer->overrun, 0); 4151 local_set(&cpu_buffer->commit_overrun, 0); 4152 local_set(&cpu_buffer->dropped_events, 0); 4153 local_set(&cpu_buffer->entries, 0); 4154 local_set(&cpu_buffer->committing, 0); 4155 local_set(&cpu_buffer->commits, 0); 4156 cpu_buffer->read = 0; 4157 cpu_buffer->read_bytes = 0; 4158 4159 cpu_buffer->write_stamp = 0; 4160 cpu_buffer->read_stamp = 0; 4161 4162 cpu_buffer->lost_events = 0; 4163 cpu_buffer->last_overrun = 0; 4164 4165 rb_head_page_activate(cpu_buffer); 4166 } 4167 4168 /** 4169 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4170 * @buffer: The ring buffer to reset a per cpu buffer of 4171 * @cpu: The CPU buffer to be reset 4172 */ 4173 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4174 { 4175 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4176 unsigned long flags; 4177 4178 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4179 return; 4180 4181 atomic_inc(&buffer->resize_disabled); 4182 atomic_inc(&cpu_buffer->record_disabled); 4183 4184 /* Make sure all commits have finished */ 4185 synchronize_sched(); 4186 4187 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4188 4189 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4190 goto out; 4191 4192 arch_spin_lock(&cpu_buffer->lock); 4193 4194 rb_reset_cpu(cpu_buffer); 4195 4196 arch_spin_unlock(&cpu_buffer->lock); 4197 4198 out: 4199 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4200 4201 atomic_dec(&cpu_buffer->record_disabled); 4202 atomic_dec(&buffer->resize_disabled); 4203 } 4204 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4205 4206 /** 4207 * ring_buffer_reset - reset a ring buffer 4208 * @buffer: The ring buffer to reset all cpu buffers 4209 */ 4210 void ring_buffer_reset(struct ring_buffer *buffer) 4211 { 4212 int cpu; 4213 4214 for_each_buffer_cpu(buffer, cpu) 4215 ring_buffer_reset_cpu(buffer, cpu); 4216 } 4217 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4218 4219 /** 4220 * rind_buffer_empty - is the ring buffer empty? 4221 * @buffer: The ring buffer to test 4222 */ 4223 int ring_buffer_empty(struct ring_buffer *buffer) 4224 { 4225 struct ring_buffer_per_cpu *cpu_buffer; 4226 unsigned long flags; 4227 int dolock; 4228 int cpu; 4229 int ret; 4230 4231 dolock = rb_ok_to_lock(); 4232 4233 /* yes this is racy, but if you don't like the race, lock the buffer */ 4234 for_each_buffer_cpu(buffer, cpu) { 4235 cpu_buffer = buffer->buffers[cpu]; 4236 local_irq_save(flags); 4237 if (dolock) 4238 raw_spin_lock(&cpu_buffer->reader_lock); 4239 ret = rb_per_cpu_empty(cpu_buffer); 4240 if (dolock) 4241 raw_spin_unlock(&cpu_buffer->reader_lock); 4242 local_irq_restore(flags); 4243 4244 if (!ret) 4245 return 0; 4246 } 4247 4248 return 1; 4249 } 4250 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4251 4252 /** 4253 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4254 * @buffer: The ring buffer 4255 * @cpu: The CPU buffer to test 4256 */ 4257 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4258 { 4259 struct ring_buffer_per_cpu *cpu_buffer; 4260 unsigned long flags; 4261 int dolock; 4262 int ret; 4263 4264 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4265 return 1; 4266 4267 dolock = rb_ok_to_lock(); 4268 4269 cpu_buffer = buffer->buffers[cpu]; 4270 local_irq_save(flags); 4271 if (dolock) 4272 raw_spin_lock(&cpu_buffer->reader_lock); 4273 ret = rb_per_cpu_empty(cpu_buffer); 4274 if (dolock) 4275 raw_spin_unlock(&cpu_buffer->reader_lock); 4276 local_irq_restore(flags); 4277 4278 return ret; 4279 } 4280 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4281 4282 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4283 /** 4284 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4285 * @buffer_a: One buffer to swap with 4286 * @buffer_b: The other buffer to swap with 4287 * 4288 * This function is useful for tracers that want to take a "snapshot" 4289 * of a CPU buffer and has another back up buffer lying around. 4290 * it is expected that the tracer handles the cpu buffer not being 4291 * used at the moment. 4292 */ 4293 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4294 struct ring_buffer *buffer_b, int cpu) 4295 { 4296 struct ring_buffer_per_cpu *cpu_buffer_a; 4297 struct ring_buffer_per_cpu *cpu_buffer_b; 4298 int ret = -EINVAL; 4299 4300 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4301 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4302 goto out; 4303 4304 cpu_buffer_a = buffer_a->buffers[cpu]; 4305 cpu_buffer_b = buffer_b->buffers[cpu]; 4306 4307 /* At least make sure the two buffers are somewhat the same */ 4308 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4309 goto out; 4310 4311 ret = -EAGAIN; 4312 4313 if (ring_buffer_flags != RB_BUFFERS_ON) 4314 goto out; 4315 4316 if (atomic_read(&buffer_a->record_disabled)) 4317 goto out; 4318 4319 if (atomic_read(&buffer_b->record_disabled)) 4320 goto out; 4321 4322 if (atomic_read(&cpu_buffer_a->record_disabled)) 4323 goto out; 4324 4325 if (atomic_read(&cpu_buffer_b->record_disabled)) 4326 goto out; 4327 4328 /* 4329 * We can't do a synchronize_sched here because this 4330 * function can be called in atomic context. 4331 * Normally this will be called from the same CPU as cpu. 4332 * If not it's up to the caller to protect this. 4333 */ 4334 atomic_inc(&cpu_buffer_a->record_disabled); 4335 atomic_inc(&cpu_buffer_b->record_disabled); 4336 4337 ret = -EBUSY; 4338 if (local_read(&cpu_buffer_a->committing)) 4339 goto out_dec; 4340 if (local_read(&cpu_buffer_b->committing)) 4341 goto out_dec; 4342 4343 buffer_a->buffers[cpu] = cpu_buffer_b; 4344 buffer_b->buffers[cpu] = cpu_buffer_a; 4345 4346 cpu_buffer_b->buffer = buffer_a; 4347 cpu_buffer_a->buffer = buffer_b; 4348 4349 ret = 0; 4350 4351 out_dec: 4352 atomic_dec(&cpu_buffer_a->record_disabled); 4353 atomic_dec(&cpu_buffer_b->record_disabled); 4354 out: 4355 return ret; 4356 } 4357 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4358 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4359 4360 /** 4361 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4362 * @buffer: the buffer to allocate for. 4363 * @cpu: the cpu buffer to allocate. 4364 * 4365 * This function is used in conjunction with ring_buffer_read_page. 4366 * When reading a full page from the ring buffer, these functions 4367 * can be used to speed up the process. The calling function should 4368 * allocate a few pages first with this function. Then when it 4369 * needs to get pages from the ring buffer, it passes the result 4370 * of this function into ring_buffer_read_page, which will swap 4371 * the page that was allocated, with the read page of the buffer. 4372 * 4373 * Returns: 4374 * The page allocated, or NULL on error. 4375 */ 4376 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4377 { 4378 struct buffer_data_page *bpage; 4379 struct page *page; 4380 4381 page = alloc_pages_node(cpu_to_node(cpu), 4382 GFP_KERNEL | __GFP_NORETRY, 0); 4383 if (!page) 4384 return NULL; 4385 4386 bpage = page_address(page); 4387 4388 rb_init_page(bpage); 4389 4390 return bpage; 4391 } 4392 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4393 4394 /** 4395 * ring_buffer_free_read_page - free an allocated read page 4396 * @buffer: the buffer the page was allocate for 4397 * @data: the page to free 4398 * 4399 * Free a page allocated from ring_buffer_alloc_read_page. 4400 */ 4401 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4402 { 4403 free_page((unsigned long)data); 4404 } 4405 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4406 4407 /** 4408 * ring_buffer_read_page - extract a page from the ring buffer 4409 * @buffer: buffer to extract from 4410 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4411 * @len: amount to extract 4412 * @cpu: the cpu of the buffer to extract 4413 * @full: should the extraction only happen when the page is full. 4414 * 4415 * This function will pull out a page from the ring buffer and consume it. 4416 * @data_page must be the address of the variable that was returned 4417 * from ring_buffer_alloc_read_page. This is because the page might be used 4418 * to swap with a page in the ring buffer. 4419 * 4420 * for example: 4421 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4422 * if (!rpage) 4423 * return error; 4424 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4425 * if (ret >= 0) 4426 * process_page(rpage, ret); 4427 * 4428 * When @full is set, the function will not return true unless 4429 * the writer is off the reader page. 4430 * 4431 * Note: it is up to the calling functions to handle sleeps and wakeups. 4432 * The ring buffer can be used anywhere in the kernel and can not 4433 * blindly call wake_up. The layer that uses the ring buffer must be 4434 * responsible for that. 4435 * 4436 * Returns: 4437 * >=0 if data has been transferred, returns the offset of consumed data. 4438 * <0 if no data has been transferred. 4439 */ 4440 int ring_buffer_read_page(struct ring_buffer *buffer, 4441 void **data_page, size_t len, int cpu, int full) 4442 { 4443 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4444 struct ring_buffer_event *event; 4445 struct buffer_data_page *bpage; 4446 struct buffer_page *reader; 4447 unsigned long missed_events; 4448 unsigned long flags; 4449 unsigned int commit; 4450 unsigned int read; 4451 u64 save_timestamp; 4452 int ret = -1; 4453 4454 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4455 goto out; 4456 4457 /* 4458 * If len is not big enough to hold the page header, then 4459 * we can not copy anything. 4460 */ 4461 if (len <= BUF_PAGE_HDR_SIZE) 4462 goto out; 4463 4464 len -= BUF_PAGE_HDR_SIZE; 4465 4466 if (!data_page) 4467 goto out; 4468 4469 bpage = *data_page; 4470 if (!bpage) 4471 goto out; 4472 4473 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4474 4475 reader = rb_get_reader_page(cpu_buffer); 4476 if (!reader) 4477 goto out_unlock; 4478 4479 event = rb_reader_event(cpu_buffer); 4480 4481 read = reader->read; 4482 commit = rb_page_commit(reader); 4483 4484 /* Check if any events were dropped */ 4485 missed_events = cpu_buffer->lost_events; 4486 4487 /* 4488 * If this page has been partially read or 4489 * if len is not big enough to read the rest of the page or 4490 * a writer is still on the page, then 4491 * we must copy the data from the page to the buffer. 4492 * Otherwise, we can simply swap the page with the one passed in. 4493 */ 4494 if (read || (len < (commit - read)) || 4495 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4496 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4497 unsigned int rpos = read; 4498 unsigned int pos = 0; 4499 unsigned int size; 4500 4501 if (full) 4502 goto out_unlock; 4503 4504 if (len > (commit - read)) 4505 len = (commit - read); 4506 4507 /* Always keep the time extend and data together */ 4508 size = rb_event_ts_length(event); 4509 4510 if (len < size) 4511 goto out_unlock; 4512 4513 /* save the current timestamp, since the user will need it */ 4514 save_timestamp = cpu_buffer->read_stamp; 4515 4516 /* Need to copy one event at a time */ 4517 do { 4518 /* We need the size of one event, because 4519 * rb_advance_reader only advances by one event, 4520 * whereas rb_event_ts_length may include the size of 4521 * one or two events. 4522 * We have already ensured there's enough space if this 4523 * is a time extend. */ 4524 size = rb_event_length(event); 4525 memcpy(bpage->data + pos, rpage->data + rpos, size); 4526 4527 len -= size; 4528 4529 rb_advance_reader(cpu_buffer); 4530 rpos = reader->read; 4531 pos += size; 4532 4533 if (rpos >= commit) 4534 break; 4535 4536 event = rb_reader_event(cpu_buffer); 4537 /* Always keep the time extend and data together */ 4538 size = rb_event_ts_length(event); 4539 } while (len >= size); 4540 4541 /* update bpage */ 4542 local_set(&bpage->commit, pos); 4543 bpage->time_stamp = save_timestamp; 4544 4545 /* we copied everything to the beginning */ 4546 read = 0; 4547 } else { 4548 /* update the entry counter */ 4549 cpu_buffer->read += rb_page_entries(reader); 4550 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4551 4552 /* swap the pages */ 4553 rb_init_page(bpage); 4554 bpage = reader->page; 4555 reader->page = *data_page; 4556 local_set(&reader->write, 0); 4557 local_set(&reader->entries, 0); 4558 reader->read = 0; 4559 *data_page = bpage; 4560 4561 /* 4562 * Use the real_end for the data size, 4563 * This gives us a chance to store the lost events 4564 * on the page. 4565 */ 4566 if (reader->real_end) 4567 local_set(&bpage->commit, reader->real_end); 4568 } 4569 ret = read; 4570 4571 cpu_buffer->lost_events = 0; 4572 4573 commit = local_read(&bpage->commit); 4574 /* 4575 * Set a flag in the commit field if we lost events 4576 */ 4577 if (missed_events) { 4578 /* If there is room at the end of the page to save the 4579 * missed events, then record it there. 4580 */ 4581 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4582 memcpy(&bpage->data[commit], &missed_events, 4583 sizeof(missed_events)); 4584 local_add(RB_MISSED_STORED, &bpage->commit); 4585 commit += sizeof(missed_events); 4586 } 4587 local_add(RB_MISSED_EVENTS, &bpage->commit); 4588 } 4589 4590 /* 4591 * This page may be off to user land. Zero it out here. 4592 */ 4593 if (commit < BUF_PAGE_SIZE) 4594 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4595 4596 out_unlock: 4597 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4598 4599 out: 4600 return ret; 4601 } 4602 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4603 4604 #ifdef CONFIG_HOTPLUG_CPU 4605 static int rb_cpu_notify(struct notifier_block *self, 4606 unsigned long action, void *hcpu) 4607 { 4608 struct ring_buffer *buffer = 4609 container_of(self, struct ring_buffer, cpu_notify); 4610 long cpu = (long)hcpu; 4611 int cpu_i, nr_pages_same; 4612 unsigned int nr_pages; 4613 4614 switch (action) { 4615 case CPU_UP_PREPARE: 4616 case CPU_UP_PREPARE_FROZEN: 4617 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4618 return NOTIFY_OK; 4619 4620 nr_pages = 0; 4621 nr_pages_same = 1; 4622 /* check if all cpu sizes are same */ 4623 for_each_buffer_cpu(buffer, cpu_i) { 4624 /* fill in the size from first enabled cpu */ 4625 if (nr_pages == 0) 4626 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4627 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4628 nr_pages_same = 0; 4629 break; 4630 } 4631 } 4632 /* allocate minimum pages, user can later expand it */ 4633 if (!nr_pages_same) 4634 nr_pages = 2; 4635 buffer->buffers[cpu] = 4636 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4637 if (!buffer->buffers[cpu]) { 4638 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4639 cpu); 4640 return NOTIFY_OK; 4641 } 4642 smp_wmb(); 4643 cpumask_set_cpu(cpu, buffer->cpumask); 4644 break; 4645 case CPU_DOWN_PREPARE: 4646 case CPU_DOWN_PREPARE_FROZEN: 4647 /* 4648 * Do nothing. 4649 * If we were to free the buffer, then the user would 4650 * lose any trace that was in the buffer. 4651 */ 4652 break; 4653 default: 4654 break; 4655 } 4656 return NOTIFY_OK; 4657 } 4658 #endif 4659 4660 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4661 /* 4662 * This is a basic integrity check of the ring buffer. 4663 * Late in the boot cycle this test will run when configured in. 4664 * It will kick off a thread per CPU that will go into a loop 4665 * writing to the per cpu ring buffer various sizes of data. 4666 * Some of the data will be large items, some small. 4667 * 4668 * Another thread is created that goes into a spin, sending out 4669 * IPIs to the other CPUs to also write into the ring buffer. 4670 * this is to test the nesting ability of the buffer. 4671 * 4672 * Basic stats are recorded and reported. If something in the 4673 * ring buffer should happen that's not expected, a big warning 4674 * is displayed and all ring buffers are disabled. 4675 */ 4676 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4677 4678 struct rb_test_data { 4679 struct ring_buffer *buffer; 4680 unsigned long events; 4681 unsigned long bytes_written; 4682 unsigned long bytes_alloc; 4683 unsigned long bytes_dropped; 4684 unsigned long events_nested; 4685 unsigned long bytes_written_nested; 4686 unsigned long bytes_alloc_nested; 4687 unsigned long bytes_dropped_nested; 4688 int min_size_nested; 4689 int max_size_nested; 4690 int max_size; 4691 int min_size; 4692 int cpu; 4693 int cnt; 4694 }; 4695 4696 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4697 4698 /* 1 meg per cpu */ 4699 #define RB_TEST_BUFFER_SIZE 1048576 4700 4701 static char rb_string[] __initdata = 4702 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4703 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4704 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4705 4706 static bool rb_test_started __initdata; 4707 4708 struct rb_item { 4709 int size; 4710 char str[]; 4711 }; 4712 4713 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4714 { 4715 struct ring_buffer_event *event; 4716 struct rb_item *item; 4717 bool started; 4718 int event_len; 4719 int size; 4720 int len; 4721 int cnt; 4722 4723 /* Have nested writes different that what is written */ 4724 cnt = data->cnt + (nested ? 27 : 0); 4725 4726 /* Multiply cnt by ~e, to make some unique increment */ 4727 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4728 4729 len = size + sizeof(struct rb_item); 4730 4731 started = rb_test_started; 4732 /* read rb_test_started before checking buffer enabled */ 4733 smp_rmb(); 4734 4735 event = ring_buffer_lock_reserve(data->buffer, len); 4736 if (!event) { 4737 /* Ignore dropped events before test starts. */ 4738 if (started) { 4739 if (nested) 4740 data->bytes_dropped += len; 4741 else 4742 data->bytes_dropped_nested += len; 4743 } 4744 return len; 4745 } 4746 4747 event_len = ring_buffer_event_length(event); 4748 4749 if (RB_WARN_ON(data->buffer, event_len < len)) 4750 goto out; 4751 4752 item = ring_buffer_event_data(event); 4753 item->size = size; 4754 memcpy(item->str, rb_string, size); 4755 4756 if (nested) { 4757 data->bytes_alloc_nested += event_len; 4758 data->bytes_written_nested += len; 4759 data->events_nested++; 4760 if (!data->min_size_nested || len < data->min_size_nested) 4761 data->min_size_nested = len; 4762 if (len > data->max_size_nested) 4763 data->max_size_nested = len; 4764 } else { 4765 data->bytes_alloc += event_len; 4766 data->bytes_written += len; 4767 data->events++; 4768 if (!data->min_size || len < data->min_size) 4769 data->max_size = len; 4770 if (len > data->max_size) 4771 data->max_size = len; 4772 } 4773 4774 out: 4775 ring_buffer_unlock_commit(data->buffer, event); 4776 4777 return 0; 4778 } 4779 4780 static __init int rb_test(void *arg) 4781 { 4782 struct rb_test_data *data = arg; 4783 4784 while (!kthread_should_stop()) { 4785 rb_write_something(data, false); 4786 data->cnt++; 4787 4788 set_current_state(TASK_INTERRUPTIBLE); 4789 /* Now sleep between a min of 100-300us and a max of 1ms */ 4790 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4791 } 4792 4793 return 0; 4794 } 4795 4796 static __init void rb_ipi(void *ignore) 4797 { 4798 struct rb_test_data *data; 4799 int cpu = smp_processor_id(); 4800 4801 data = &rb_data[cpu]; 4802 rb_write_something(data, true); 4803 } 4804 4805 static __init int rb_hammer_test(void *arg) 4806 { 4807 while (!kthread_should_stop()) { 4808 4809 /* Send an IPI to all cpus to write data! */ 4810 smp_call_function(rb_ipi, NULL, 1); 4811 /* No sleep, but for non preempt, let others run */ 4812 schedule(); 4813 } 4814 4815 return 0; 4816 } 4817 4818 static __init int test_ringbuffer(void) 4819 { 4820 struct task_struct *rb_hammer; 4821 struct ring_buffer *buffer; 4822 int cpu; 4823 int ret = 0; 4824 4825 pr_info("Running ring buffer tests...\n"); 4826 4827 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4828 if (WARN_ON(!buffer)) 4829 return 0; 4830 4831 /* Disable buffer so that threads can't write to it yet */ 4832 ring_buffer_record_off(buffer); 4833 4834 for_each_online_cpu(cpu) { 4835 rb_data[cpu].buffer = buffer; 4836 rb_data[cpu].cpu = cpu; 4837 rb_data[cpu].cnt = cpu; 4838 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4839 "rbtester/%d", cpu); 4840 if (WARN_ON(!rb_threads[cpu])) { 4841 pr_cont("FAILED\n"); 4842 ret = -1; 4843 goto out_free; 4844 } 4845 4846 kthread_bind(rb_threads[cpu], cpu); 4847 wake_up_process(rb_threads[cpu]); 4848 } 4849 4850 /* Now create the rb hammer! */ 4851 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4852 if (WARN_ON(!rb_hammer)) { 4853 pr_cont("FAILED\n"); 4854 ret = -1; 4855 goto out_free; 4856 } 4857 4858 ring_buffer_record_on(buffer); 4859 /* 4860 * Show buffer is enabled before setting rb_test_started. 4861 * Yes there's a small race window where events could be 4862 * dropped and the thread wont catch it. But when a ring 4863 * buffer gets enabled, there will always be some kind of 4864 * delay before other CPUs see it. Thus, we don't care about 4865 * those dropped events. We care about events dropped after 4866 * the threads see that the buffer is active. 4867 */ 4868 smp_wmb(); 4869 rb_test_started = true; 4870 4871 set_current_state(TASK_INTERRUPTIBLE); 4872 /* Just run for 10 seconds */; 4873 schedule_timeout(10 * HZ); 4874 4875 kthread_stop(rb_hammer); 4876 4877 out_free: 4878 for_each_online_cpu(cpu) { 4879 if (!rb_threads[cpu]) 4880 break; 4881 kthread_stop(rb_threads[cpu]); 4882 } 4883 if (ret) { 4884 ring_buffer_free(buffer); 4885 return ret; 4886 } 4887 4888 /* Report! */ 4889 pr_info("finished\n"); 4890 for_each_online_cpu(cpu) { 4891 struct ring_buffer_event *event; 4892 struct rb_test_data *data = &rb_data[cpu]; 4893 struct rb_item *item; 4894 unsigned long total_events; 4895 unsigned long total_dropped; 4896 unsigned long total_written; 4897 unsigned long total_alloc; 4898 unsigned long total_read = 0; 4899 unsigned long total_size = 0; 4900 unsigned long total_len = 0; 4901 unsigned long total_lost = 0; 4902 unsigned long lost; 4903 int big_event_size; 4904 int small_event_size; 4905 4906 ret = -1; 4907 4908 total_events = data->events + data->events_nested; 4909 total_written = data->bytes_written + data->bytes_written_nested; 4910 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4911 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4912 4913 big_event_size = data->max_size + data->max_size_nested; 4914 small_event_size = data->min_size + data->min_size_nested; 4915 4916 pr_info("CPU %d:\n", cpu); 4917 pr_info(" events: %ld\n", total_events); 4918 pr_info(" dropped bytes: %ld\n", total_dropped); 4919 pr_info(" alloced bytes: %ld\n", total_alloc); 4920 pr_info(" written bytes: %ld\n", total_written); 4921 pr_info(" biggest event: %d\n", big_event_size); 4922 pr_info(" smallest event: %d\n", small_event_size); 4923 4924 if (RB_WARN_ON(buffer, total_dropped)) 4925 break; 4926 4927 ret = 0; 4928 4929 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4930 total_lost += lost; 4931 item = ring_buffer_event_data(event); 4932 total_len += ring_buffer_event_length(event); 4933 total_size += item->size + sizeof(struct rb_item); 4934 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4935 pr_info("FAILED!\n"); 4936 pr_info("buffer had: %.*s\n", item->size, item->str); 4937 pr_info("expected: %.*s\n", item->size, rb_string); 4938 RB_WARN_ON(buffer, 1); 4939 ret = -1; 4940 break; 4941 } 4942 total_read++; 4943 } 4944 if (ret) 4945 break; 4946 4947 ret = -1; 4948 4949 pr_info(" read events: %ld\n", total_read); 4950 pr_info(" lost events: %ld\n", total_lost); 4951 pr_info(" total events: %ld\n", total_lost + total_read); 4952 pr_info(" recorded len bytes: %ld\n", total_len); 4953 pr_info(" recorded size bytes: %ld\n", total_size); 4954 if (total_lost) 4955 pr_info(" With dropped events, record len and size may not match\n" 4956 " alloced and written from above\n"); 4957 if (!total_lost) { 4958 if (RB_WARN_ON(buffer, total_len != total_alloc || 4959 total_size != total_written)) 4960 break; 4961 } 4962 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4963 break; 4964 4965 ret = 0; 4966 } 4967 if (!ret) 4968 pr_info("Ring buffer PASSED!\n"); 4969 4970 ring_buffer_free(buffer); 4971 return 0; 4972 } 4973 4974 late_initcall(test_ringbuffer); 4975 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4976