xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision d2168146)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	int ret;
38 
39 	ret = trace_seq_puts(s, "# compressed entry header\n");
40 	ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	ret = trace_seq_putc(s, '\n');
44 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			       RINGBUF_TYPE_PADDING);
46 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			       RINGBUF_TYPE_TIME_EXTEND);
48 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return ret;
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139 
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150 
151 enum {
152 	RB_BUFFERS_ON_BIT	= 0,
153 	RB_BUFFERS_DISABLED_BIT	= 1,
154 };
155 
156 enum {
157 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
158 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160 
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162 
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF		(1 << 20)
165 
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167 
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178 
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT		4U
181 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
183 
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT	0
186 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT	1
189 # define RB_ARCH_ALIGNMENT		8U
190 #endif
191 
192 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
193 
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196 
197 enum {
198 	RB_LEN_TIME_EXTEND = 8,
199 	RB_LEN_TIME_STAMP = 16,
200 };
201 
202 #define skip_time_extend(event) \
203 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204 
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209 
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 	/* padding has a NULL time_delta */
213 	event->type_len = RINGBUF_TYPE_PADDING;
214 	event->time_delta = 0;
215 }
216 
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 	unsigned length;
221 
222 	if (event->type_len)
223 		length = event->type_len * RB_ALIGNMENT;
224 	else
225 		length = event->array[0];
226 	return length + RB_EVNT_HDR_SIZE;
227 }
228 
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 	switch (event->type_len) {
238 	case RINGBUF_TYPE_PADDING:
239 		if (rb_null_event(event))
240 			/* undefined */
241 			return -1;
242 		return  event->array[0] + RB_EVNT_HDR_SIZE;
243 
244 	case RINGBUF_TYPE_TIME_EXTEND:
245 		return RB_LEN_TIME_EXTEND;
246 
247 	case RINGBUF_TYPE_TIME_STAMP:
248 		return RB_LEN_TIME_STAMP;
249 
250 	case RINGBUF_TYPE_DATA:
251 		return rb_event_data_length(event);
252 	default:
253 		BUG();
254 	}
255 	/* not hit */
256 	return 0;
257 }
258 
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 	unsigned len = 0;
267 
268 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 		/* time extends include the data event after it */
270 		len = RB_LEN_TIME_EXTEND;
271 		event = skip_time_extend(event);
272 	}
273 	return len + rb_event_length(event);
274 }
275 
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 	unsigned length;
289 
290 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 		event = skip_time_extend(event);
292 
293 	length = rb_event_length(event);
294 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 		return length;
296 	length -= RB_EVNT_HDR_SIZE;
297 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299 	return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302 
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 		event = skip_time_extend(event);
309 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 	/* If length is in len field, then array[0] has the data */
311 	if (event->type_len)
312 		return (void *)&event->array[0];
313 	/* Otherwise length is in array[0] and array[1] has the data */
314 	return (void *)&event->array[1];
315 }
316 
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 	return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326 
327 #define for_each_buffer_cpu(buffer, cpu)		\
328 	for_each_cpu(cpu, buffer->cpumask)
329 
330 #define TS_SHIFT	27
331 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST	(~TS_MASK)
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 struct buffer_data_page {
340 	u64		 time_stamp;	/* page time stamp */
341 	local_t		 commit;	/* write committed index */
342 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
343 };
344 
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354 	struct list_head list;		/* list of buffer pages */
355 	local_t		 write;		/* index for next write */
356 	unsigned	 read;		/* index for next read */
357 	local_t		 entries;	/* entries on this page */
358 	unsigned long	 real_end;	/* real end of data */
359 	struct buffer_data_page *page;	/* Actual data page */
360 };
361 
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK		0xfffff
375 #define RB_WRITE_INTCNT		(1 << 20)
376 
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 	local_set(&bpage->commit, 0);
380 }
381 
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390 	return local_read(&((struct buffer_data_page *)page)->commit)
391 		+ BUF_PAGE_HDR_SIZE;
392 }
393 
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 	free_page((unsigned long)bpage->page);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409 	if (delta & TS_DELTA_TEST)
410 		return 1;
411 	return 0;
412 }
413 
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415 
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418 
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 	struct buffer_data_page field;
422 	int ret;
423 
424 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
426 			       (unsigned int)sizeof(field.time_stamp),
427 			       (unsigned int)is_signed_type(u64));
428 
429 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       (unsigned int)sizeof(field.commit),
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), commit),
438 			       1,
439 			       (unsigned int)is_signed_type(long));
440 
441 	ret = trace_seq_printf(s, "\tfield: char data;\t"
442 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 			       (unsigned int)offsetof(typeof(field), data),
444 			       (unsigned int)BUF_PAGE_SIZE,
445 			       (unsigned int)is_signed_type(char));
446 
447 	return ret;
448 }
449 
450 struct rb_irq_work {
451 	struct irq_work			work;
452 	wait_queue_head_t		waiters;
453 	bool				waiters_pending;
454 };
455 
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460 	int				cpu;
461 	atomic_t			record_disabled;
462 	struct ring_buffer		*buffer;
463 	raw_spinlock_t			reader_lock;	/* serialize readers */
464 	arch_spinlock_t			lock;
465 	struct lock_class_key		lock_key;
466 	unsigned int			nr_pages;
467 	struct list_head		*pages;
468 	struct buffer_page		*head_page;	/* read from head */
469 	struct buffer_page		*tail_page;	/* write to tail */
470 	struct buffer_page		*commit_page;	/* committed pages */
471 	struct buffer_page		*reader_page;
472 	unsigned long			lost_events;
473 	unsigned long			last_overrun;
474 	local_t				entries_bytes;
475 	local_t				entries;
476 	local_t				overrun;
477 	local_t				commit_overrun;
478 	local_t				dropped_events;
479 	local_t				committing;
480 	local_t				commits;
481 	unsigned long			read;
482 	unsigned long			read_bytes;
483 	u64				write_stamp;
484 	u64				read_stamp;
485 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
486 	int				nr_pages_to_update;
487 	struct list_head		new_pages; /* new pages to add */
488 	struct work_struct		update_pages_work;
489 	struct completion		update_done;
490 
491 	struct rb_irq_work		irq_work;
492 };
493 
494 struct ring_buffer {
495 	unsigned			flags;
496 	int				cpus;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	cpumask_var_t			cpumask;
500 
501 	struct lock_class_key		*reader_lock_key;
502 
503 	struct mutex			mutex;
504 
505 	struct ring_buffer_per_cpu	**buffers;
506 
507 #ifdef CONFIG_HOTPLUG_CPU
508 	struct notifier_block		cpu_notify;
509 #endif
510 	u64				(*clock)(void);
511 
512 	struct rb_irq_work		irq_work;
513 };
514 
515 struct ring_buffer_iter {
516 	struct ring_buffer_per_cpu	*cpu_buffer;
517 	unsigned long			head;
518 	struct buffer_page		*head_page;
519 	struct buffer_page		*cache_reader_page;
520 	unsigned long			cache_read;
521 	u64				read_stamp;
522 };
523 
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533 
534 	wake_up_all(&rbwork->waiters);
535 }
536 
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 	struct ring_buffer_per_cpu *cpu_buffer;
549 	DEFINE_WAIT(wait);
550 	struct rb_irq_work *work;
551 
552 	/*
553 	 * Depending on what the caller is waiting for, either any
554 	 * data in any cpu buffer, or a specific buffer, put the
555 	 * caller on the appropriate wait queue.
556 	 */
557 	if (cpu == RING_BUFFER_ALL_CPUS)
558 		work = &buffer->irq_work;
559 	else {
560 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 			return -ENODEV;
562 		cpu_buffer = buffer->buffers[cpu];
563 		work = &cpu_buffer->irq_work;
564 	}
565 
566 
567 	prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568 
569 	/*
570 	 * The events can happen in critical sections where
571 	 * checking a work queue can cause deadlocks.
572 	 * After adding a task to the queue, this flag is set
573 	 * only to notify events to try to wake up the queue
574 	 * using irq_work.
575 	 *
576 	 * We don't clear it even if the buffer is no longer
577 	 * empty. The flag only causes the next event to run
578 	 * irq_work to do the work queue wake up. The worse
579 	 * that can happen if we race with !trace_empty() is that
580 	 * an event will cause an irq_work to try to wake up
581 	 * an empty queue.
582 	 *
583 	 * There's no reason to protect this flag either, as
584 	 * the work queue and irq_work logic will do the necessary
585 	 * synchronization for the wake ups. The only thing
586 	 * that is necessary is that the wake up happens after
587 	 * a task has been queued. It's OK for spurious wake ups.
588 	 */
589 	work->waiters_pending = true;
590 
591 	if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 	    (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 		schedule();
594 
595 	finish_wait(&work->waiters, &wait);
596 	return 0;
597 }
598 
599 /**
600  * ring_buffer_poll_wait - poll on buffer input
601  * @buffer: buffer to wait on
602  * @cpu: the cpu buffer to wait on
603  * @filp: the file descriptor
604  * @poll_table: The poll descriptor
605  *
606  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607  * as data is added to any of the @buffer's cpu buffers. Otherwise
608  * it will wait for data to be added to a specific cpu buffer.
609  *
610  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611  * zero otherwise.
612  */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 			  struct file *filp, poll_table *poll_table)
615 {
616 	struct ring_buffer_per_cpu *cpu_buffer;
617 	struct rb_irq_work *work;
618 
619 	if (cpu == RING_BUFFER_ALL_CPUS)
620 		work = &buffer->irq_work;
621 	else {
622 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 			return -EINVAL;
624 
625 		cpu_buffer = buffer->buffers[cpu];
626 		work = &cpu_buffer->irq_work;
627 	}
628 
629 	work->waiters_pending = true;
630 	poll_wait(filp, &work->waiters, poll_table);
631 
632 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
633 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
634 		return POLLIN | POLLRDNORM;
635 	return 0;
636 }
637 
638 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
639 #define RB_WARN_ON(b, cond)						\
640 	({								\
641 		int _____ret = unlikely(cond);				\
642 		if (_____ret) {						\
643 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
644 				struct ring_buffer_per_cpu *__b =	\
645 					(void *)b;			\
646 				atomic_inc(&__b->buffer->record_disabled); \
647 			} else						\
648 				atomic_inc(&b->record_disabled);	\
649 			WARN_ON(1);					\
650 		}							\
651 		_____ret;						\
652 	})
653 
654 /* Up this if you want to test the TIME_EXTENTS and normalization */
655 #define DEBUG_SHIFT 0
656 
657 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
658 {
659 	/* shift to debug/test normalization and TIME_EXTENTS */
660 	return buffer->clock() << DEBUG_SHIFT;
661 }
662 
663 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
664 {
665 	u64 time;
666 
667 	preempt_disable_notrace();
668 	time = rb_time_stamp(buffer);
669 	preempt_enable_no_resched_notrace();
670 
671 	return time;
672 }
673 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
674 
675 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
676 				      int cpu, u64 *ts)
677 {
678 	/* Just stupid testing the normalize function and deltas */
679 	*ts >>= DEBUG_SHIFT;
680 }
681 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
682 
683 /*
684  * Making the ring buffer lockless makes things tricky.
685  * Although writes only happen on the CPU that they are on,
686  * and they only need to worry about interrupts. Reads can
687  * happen on any CPU.
688  *
689  * The reader page is always off the ring buffer, but when the
690  * reader finishes with a page, it needs to swap its page with
691  * a new one from the buffer. The reader needs to take from
692  * the head (writes go to the tail). But if a writer is in overwrite
693  * mode and wraps, it must push the head page forward.
694  *
695  * Here lies the problem.
696  *
697  * The reader must be careful to replace only the head page, and
698  * not another one. As described at the top of the file in the
699  * ASCII art, the reader sets its old page to point to the next
700  * page after head. It then sets the page after head to point to
701  * the old reader page. But if the writer moves the head page
702  * during this operation, the reader could end up with the tail.
703  *
704  * We use cmpxchg to help prevent this race. We also do something
705  * special with the page before head. We set the LSB to 1.
706  *
707  * When the writer must push the page forward, it will clear the
708  * bit that points to the head page, move the head, and then set
709  * the bit that points to the new head page.
710  *
711  * We also don't want an interrupt coming in and moving the head
712  * page on another writer. Thus we use the second LSB to catch
713  * that too. Thus:
714  *
715  * head->list->prev->next        bit 1          bit 0
716  *                              -------        -------
717  * Normal page                     0              0
718  * Points to head page             0              1
719  * New head page                   1              0
720  *
721  * Note we can not trust the prev pointer of the head page, because:
722  *
723  * +----+       +-----+        +-----+
724  * |    |------>|  T  |---X--->|  N  |
725  * |    |<------|     |        |     |
726  * +----+       +-----+        +-----+
727  *   ^                           ^ |
728  *   |          +-----+          | |
729  *   +----------|  R  |----------+ |
730  *              |     |<-----------+
731  *              +-----+
732  *
733  * Key:  ---X-->  HEAD flag set in pointer
734  *         T      Tail page
735  *         R      Reader page
736  *         N      Next page
737  *
738  * (see __rb_reserve_next() to see where this happens)
739  *
740  *  What the above shows is that the reader just swapped out
741  *  the reader page with a page in the buffer, but before it
742  *  could make the new header point back to the new page added
743  *  it was preempted by a writer. The writer moved forward onto
744  *  the new page added by the reader and is about to move forward
745  *  again.
746  *
747  *  You can see, it is legitimate for the previous pointer of
748  *  the head (or any page) not to point back to itself. But only
749  *  temporarially.
750  */
751 
752 #define RB_PAGE_NORMAL		0UL
753 #define RB_PAGE_HEAD		1UL
754 #define RB_PAGE_UPDATE		2UL
755 
756 
757 #define RB_FLAG_MASK		3UL
758 
759 /* PAGE_MOVED is not part of the mask */
760 #define RB_PAGE_MOVED		4UL
761 
762 /*
763  * rb_list_head - remove any bit
764  */
765 static struct list_head *rb_list_head(struct list_head *list)
766 {
767 	unsigned long val = (unsigned long)list;
768 
769 	return (struct list_head *)(val & ~RB_FLAG_MASK);
770 }
771 
772 /*
773  * rb_is_head_page - test if the given page is the head page
774  *
775  * Because the reader may move the head_page pointer, we can
776  * not trust what the head page is (it may be pointing to
777  * the reader page). But if the next page is a header page,
778  * its flags will be non zero.
779  */
780 static inline int
781 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
782 		struct buffer_page *page, struct list_head *list)
783 {
784 	unsigned long val;
785 
786 	val = (unsigned long)list->next;
787 
788 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
789 		return RB_PAGE_MOVED;
790 
791 	return val & RB_FLAG_MASK;
792 }
793 
794 /*
795  * rb_is_reader_page
796  *
797  * The unique thing about the reader page, is that, if the
798  * writer is ever on it, the previous pointer never points
799  * back to the reader page.
800  */
801 static int rb_is_reader_page(struct buffer_page *page)
802 {
803 	struct list_head *list = page->list.prev;
804 
805 	return rb_list_head(list->next) != &page->list;
806 }
807 
808 /*
809  * rb_set_list_to_head - set a list_head to be pointing to head.
810  */
811 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
812 				struct list_head *list)
813 {
814 	unsigned long *ptr;
815 
816 	ptr = (unsigned long *)&list->next;
817 	*ptr |= RB_PAGE_HEAD;
818 	*ptr &= ~RB_PAGE_UPDATE;
819 }
820 
821 /*
822  * rb_head_page_activate - sets up head page
823  */
824 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
825 {
826 	struct buffer_page *head;
827 
828 	head = cpu_buffer->head_page;
829 	if (!head)
830 		return;
831 
832 	/*
833 	 * Set the previous list pointer to have the HEAD flag.
834 	 */
835 	rb_set_list_to_head(cpu_buffer, head->list.prev);
836 }
837 
838 static void rb_list_head_clear(struct list_head *list)
839 {
840 	unsigned long *ptr = (unsigned long *)&list->next;
841 
842 	*ptr &= ~RB_FLAG_MASK;
843 }
844 
845 /*
846  * rb_head_page_dactivate - clears head page ptr (for free list)
847  */
848 static void
849 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
850 {
851 	struct list_head *hd;
852 
853 	/* Go through the whole list and clear any pointers found. */
854 	rb_list_head_clear(cpu_buffer->pages);
855 
856 	list_for_each(hd, cpu_buffer->pages)
857 		rb_list_head_clear(hd);
858 }
859 
860 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
861 			    struct buffer_page *head,
862 			    struct buffer_page *prev,
863 			    int old_flag, int new_flag)
864 {
865 	struct list_head *list;
866 	unsigned long val = (unsigned long)&head->list;
867 	unsigned long ret;
868 
869 	list = &prev->list;
870 
871 	val &= ~RB_FLAG_MASK;
872 
873 	ret = cmpxchg((unsigned long *)&list->next,
874 		      val | old_flag, val | new_flag);
875 
876 	/* check if the reader took the page */
877 	if ((ret & ~RB_FLAG_MASK) != val)
878 		return RB_PAGE_MOVED;
879 
880 	return ret & RB_FLAG_MASK;
881 }
882 
883 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
884 				   struct buffer_page *head,
885 				   struct buffer_page *prev,
886 				   int old_flag)
887 {
888 	return rb_head_page_set(cpu_buffer, head, prev,
889 				old_flag, RB_PAGE_UPDATE);
890 }
891 
892 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
893 				 struct buffer_page *head,
894 				 struct buffer_page *prev,
895 				 int old_flag)
896 {
897 	return rb_head_page_set(cpu_buffer, head, prev,
898 				old_flag, RB_PAGE_HEAD);
899 }
900 
901 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
902 				   struct buffer_page *head,
903 				   struct buffer_page *prev,
904 				   int old_flag)
905 {
906 	return rb_head_page_set(cpu_buffer, head, prev,
907 				old_flag, RB_PAGE_NORMAL);
908 }
909 
910 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
911 			       struct buffer_page **bpage)
912 {
913 	struct list_head *p = rb_list_head((*bpage)->list.next);
914 
915 	*bpage = list_entry(p, struct buffer_page, list);
916 }
917 
918 static struct buffer_page *
919 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
920 {
921 	struct buffer_page *head;
922 	struct buffer_page *page;
923 	struct list_head *list;
924 	int i;
925 
926 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
927 		return NULL;
928 
929 	/* sanity check */
930 	list = cpu_buffer->pages;
931 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
932 		return NULL;
933 
934 	page = head = cpu_buffer->head_page;
935 	/*
936 	 * It is possible that the writer moves the header behind
937 	 * where we started, and we miss in one loop.
938 	 * A second loop should grab the header, but we'll do
939 	 * three loops just because I'm paranoid.
940 	 */
941 	for (i = 0; i < 3; i++) {
942 		do {
943 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
944 				cpu_buffer->head_page = page;
945 				return page;
946 			}
947 			rb_inc_page(cpu_buffer, &page);
948 		} while (page != head);
949 	}
950 
951 	RB_WARN_ON(cpu_buffer, 1);
952 
953 	return NULL;
954 }
955 
956 static int rb_head_page_replace(struct buffer_page *old,
957 				struct buffer_page *new)
958 {
959 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
960 	unsigned long val;
961 	unsigned long ret;
962 
963 	val = *ptr & ~RB_FLAG_MASK;
964 	val |= RB_PAGE_HEAD;
965 
966 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
967 
968 	return ret == val;
969 }
970 
971 /*
972  * rb_tail_page_update - move the tail page forward
973  *
974  * Returns 1 if moved tail page, 0 if someone else did.
975  */
976 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
977 			       struct buffer_page *tail_page,
978 			       struct buffer_page *next_page)
979 {
980 	struct buffer_page *old_tail;
981 	unsigned long old_entries;
982 	unsigned long old_write;
983 	int ret = 0;
984 
985 	/*
986 	 * The tail page now needs to be moved forward.
987 	 *
988 	 * We need to reset the tail page, but without messing
989 	 * with possible erasing of data brought in by interrupts
990 	 * that have moved the tail page and are currently on it.
991 	 *
992 	 * We add a counter to the write field to denote this.
993 	 */
994 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
995 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
996 
997 	/*
998 	 * Just make sure we have seen our old_write and synchronize
999 	 * with any interrupts that come in.
1000 	 */
1001 	barrier();
1002 
1003 	/*
1004 	 * If the tail page is still the same as what we think
1005 	 * it is, then it is up to us to update the tail
1006 	 * pointer.
1007 	 */
1008 	if (tail_page == cpu_buffer->tail_page) {
1009 		/* Zero the write counter */
1010 		unsigned long val = old_write & ~RB_WRITE_MASK;
1011 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1012 
1013 		/*
1014 		 * This will only succeed if an interrupt did
1015 		 * not come in and change it. In which case, we
1016 		 * do not want to modify it.
1017 		 *
1018 		 * We add (void) to let the compiler know that we do not care
1019 		 * about the return value of these functions. We use the
1020 		 * cmpxchg to only update if an interrupt did not already
1021 		 * do it for us. If the cmpxchg fails, we don't care.
1022 		 */
1023 		(void)local_cmpxchg(&next_page->write, old_write, val);
1024 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1025 
1026 		/*
1027 		 * No need to worry about races with clearing out the commit.
1028 		 * it only can increment when a commit takes place. But that
1029 		 * only happens in the outer most nested commit.
1030 		 */
1031 		local_set(&next_page->page->commit, 0);
1032 
1033 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1034 				   tail_page, next_page);
1035 
1036 		if (old_tail == tail_page)
1037 			ret = 1;
1038 	}
1039 
1040 	return ret;
1041 }
1042 
1043 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1044 			  struct buffer_page *bpage)
1045 {
1046 	unsigned long val = (unsigned long)bpage;
1047 
1048 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1049 		return 1;
1050 
1051 	return 0;
1052 }
1053 
1054 /**
1055  * rb_check_list - make sure a pointer to a list has the last bits zero
1056  */
1057 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1058 			 struct list_head *list)
1059 {
1060 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1061 		return 1;
1062 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1063 		return 1;
1064 	return 0;
1065 }
1066 
1067 /**
1068  * rb_check_pages - integrity check of buffer pages
1069  * @cpu_buffer: CPU buffer with pages to test
1070  *
1071  * As a safety measure we check to make sure the data pages have not
1072  * been corrupted.
1073  */
1074 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1075 {
1076 	struct list_head *head = cpu_buffer->pages;
1077 	struct buffer_page *bpage, *tmp;
1078 
1079 	/* Reset the head page if it exists */
1080 	if (cpu_buffer->head_page)
1081 		rb_set_head_page(cpu_buffer);
1082 
1083 	rb_head_page_deactivate(cpu_buffer);
1084 
1085 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1086 		return -1;
1087 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1088 		return -1;
1089 
1090 	if (rb_check_list(cpu_buffer, head))
1091 		return -1;
1092 
1093 	list_for_each_entry_safe(bpage, tmp, head, list) {
1094 		if (RB_WARN_ON(cpu_buffer,
1095 			       bpage->list.next->prev != &bpage->list))
1096 			return -1;
1097 		if (RB_WARN_ON(cpu_buffer,
1098 			       bpage->list.prev->next != &bpage->list))
1099 			return -1;
1100 		if (rb_check_list(cpu_buffer, &bpage->list))
1101 			return -1;
1102 	}
1103 
1104 	rb_head_page_activate(cpu_buffer);
1105 
1106 	return 0;
1107 }
1108 
1109 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1110 {
1111 	int i;
1112 	struct buffer_page *bpage, *tmp;
1113 
1114 	for (i = 0; i < nr_pages; i++) {
1115 		struct page *page;
1116 		/*
1117 		 * __GFP_NORETRY flag makes sure that the allocation fails
1118 		 * gracefully without invoking oom-killer and the system is
1119 		 * not destabilized.
1120 		 */
1121 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1122 				    GFP_KERNEL | __GFP_NORETRY,
1123 				    cpu_to_node(cpu));
1124 		if (!bpage)
1125 			goto free_pages;
1126 
1127 		list_add(&bpage->list, pages);
1128 
1129 		page = alloc_pages_node(cpu_to_node(cpu),
1130 					GFP_KERNEL | __GFP_NORETRY, 0);
1131 		if (!page)
1132 			goto free_pages;
1133 		bpage->page = page_address(page);
1134 		rb_init_page(bpage->page);
1135 	}
1136 
1137 	return 0;
1138 
1139 free_pages:
1140 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1141 		list_del_init(&bpage->list);
1142 		free_buffer_page(bpage);
1143 	}
1144 
1145 	return -ENOMEM;
1146 }
1147 
1148 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1149 			     unsigned nr_pages)
1150 {
1151 	LIST_HEAD(pages);
1152 
1153 	WARN_ON(!nr_pages);
1154 
1155 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1156 		return -ENOMEM;
1157 
1158 	/*
1159 	 * The ring buffer page list is a circular list that does not
1160 	 * start and end with a list head. All page list items point to
1161 	 * other pages.
1162 	 */
1163 	cpu_buffer->pages = pages.next;
1164 	list_del(&pages);
1165 
1166 	cpu_buffer->nr_pages = nr_pages;
1167 
1168 	rb_check_pages(cpu_buffer);
1169 
1170 	return 0;
1171 }
1172 
1173 static struct ring_buffer_per_cpu *
1174 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1175 {
1176 	struct ring_buffer_per_cpu *cpu_buffer;
1177 	struct buffer_page *bpage;
1178 	struct page *page;
1179 	int ret;
1180 
1181 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1182 				  GFP_KERNEL, cpu_to_node(cpu));
1183 	if (!cpu_buffer)
1184 		return NULL;
1185 
1186 	cpu_buffer->cpu = cpu;
1187 	cpu_buffer->buffer = buffer;
1188 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1189 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1190 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1191 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1192 	init_completion(&cpu_buffer->update_done);
1193 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1194 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1195 
1196 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1197 			    GFP_KERNEL, cpu_to_node(cpu));
1198 	if (!bpage)
1199 		goto fail_free_buffer;
1200 
1201 	rb_check_bpage(cpu_buffer, bpage);
1202 
1203 	cpu_buffer->reader_page = bpage;
1204 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1205 	if (!page)
1206 		goto fail_free_reader;
1207 	bpage->page = page_address(page);
1208 	rb_init_page(bpage->page);
1209 
1210 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1211 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1212 
1213 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1214 	if (ret < 0)
1215 		goto fail_free_reader;
1216 
1217 	cpu_buffer->head_page
1218 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1219 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1220 
1221 	rb_head_page_activate(cpu_buffer);
1222 
1223 	return cpu_buffer;
1224 
1225  fail_free_reader:
1226 	free_buffer_page(cpu_buffer->reader_page);
1227 
1228  fail_free_buffer:
1229 	kfree(cpu_buffer);
1230 	return NULL;
1231 }
1232 
1233 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1234 {
1235 	struct list_head *head = cpu_buffer->pages;
1236 	struct buffer_page *bpage, *tmp;
1237 
1238 	free_buffer_page(cpu_buffer->reader_page);
1239 
1240 	rb_head_page_deactivate(cpu_buffer);
1241 
1242 	if (head) {
1243 		list_for_each_entry_safe(bpage, tmp, head, list) {
1244 			list_del_init(&bpage->list);
1245 			free_buffer_page(bpage);
1246 		}
1247 		bpage = list_entry(head, struct buffer_page, list);
1248 		free_buffer_page(bpage);
1249 	}
1250 
1251 	kfree(cpu_buffer);
1252 }
1253 
1254 #ifdef CONFIG_HOTPLUG_CPU
1255 static int rb_cpu_notify(struct notifier_block *self,
1256 			 unsigned long action, void *hcpu);
1257 #endif
1258 
1259 /**
1260  * __ring_buffer_alloc - allocate a new ring_buffer
1261  * @size: the size in bytes per cpu that is needed.
1262  * @flags: attributes to set for the ring buffer.
1263  *
1264  * Currently the only flag that is available is the RB_FL_OVERWRITE
1265  * flag. This flag means that the buffer will overwrite old data
1266  * when the buffer wraps. If this flag is not set, the buffer will
1267  * drop data when the tail hits the head.
1268  */
1269 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1270 					struct lock_class_key *key)
1271 {
1272 	struct ring_buffer *buffer;
1273 	int bsize;
1274 	int cpu, nr_pages;
1275 
1276 	/* keep it in its own cache line */
1277 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1278 			 GFP_KERNEL);
1279 	if (!buffer)
1280 		return NULL;
1281 
1282 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1283 		goto fail_free_buffer;
1284 
1285 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1286 	buffer->flags = flags;
1287 	buffer->clock = trace_clock_local;
1288 	buffer->reader_lock_key = key;
1289 
1290 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1291 	init_waitqueue_head(&buffer->irq_work.waiters);
1292 
1293 	/* need at least two pages */
1294 	if (nr_pages < 2)
1295 		nr_pages = 2;
1296 
1297 	/*
1298 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1299 	 * in early initcall, it will not be notified of secondary cpus.
1300 	 * In that off case, we need to allocate for all possible cpus.
1301 	 */
1302 #ifdef CONFIG_HOTPLUG_CPU
1303 	cpu_notifier_register_begin();
1304 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1305 #else
1306 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1307 #endif
1308 	buffer->cpus = nr_cpu_ids;
1309 
1310 	bsize = sizeof(void *) * nr_cpu_ids;
1311 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1312 				  GFP_KERNEL);
1313 	if (!buffer->buffers)
1314 		goto fail_free_cpumask;
1315 
1316 	for_each_buffer_cpu(buffer, cpu) {
1317 		buffer->buffers[cpu] =
1318 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1319 		if (!buffer->buffers[cpu])
1320 			goto fail_free_buffers;
1321 	}
1322 
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1325 	buffer->cpu_notify.priority = 0;
1326 	__register_cpu_notifier(&buffer->cpu_notify);
1327 	cpu_notifier_register_done();
1328 #endif
1329 
1330 	mutex_init(&buffer->mutex);
1331 
1332 	return buffer;
1333 
1334  fail_free_buffers:
1335 	for_each_buffer_cpu(buffer, cpu) {
1336 		if (buffer->buffers[cpu])
1337 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1338 	}
1339 	kfree(buffer->buffers);
1340 
1341  fail_free_cpumask:
1342 	free_cpumask_var(buffer->cpumask);
1343 #ifdef CONFIG_HOTPLUG_CPU
1344 	cpu_notifier_register_done();
1345 #endif
1346 
1347  fail_free_buffer:
1348 	kfree(buffer);
1349 	return NULL;
1350 }
1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1352 
1353 /**
1354  * ring_buffer_free - free a ring buffer.
1355  * @buffer: the buffer to free.
1356  */
1357 void
1358 ring_buffer_free(struct ring_buffer *buffer)
1359 {
1360 	int cpu;
1361 
1362 #ifdef CONFIG_HOTPLUG_CPU
1363 	cpu_notifier_register_begin();
1364 	__unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366 
1367 	for_each_buffer_cpu(buffer, cpu)
1368 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1369 
1370 #ifdef CONFIG_HOTPLUG_CPU
1371 	cpu_notifier_register_done();
1372 #endif
1373 
1374 	kfree(buffer->buffers);
1375 	free_cpumask_var(buffer->cpumask);
1376 
1377 	kfree(buffer);
1378 }
1379 EXPORT_SYMBOL_GPL(ring_buffer_free);
1380 
1381 void ring_buffer_set_clock(struct ring_buffer *buffer,
1382 			   u64 (*clock)(void))
1383 {
1384 	buffer->clock = clock;
1385 }
1386 
1387 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1388 
1389 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1390 {
1391 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1392 }
1393 
1394 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1395 {
1396 	return local_read(&bpage->write) & RB_WRITE_MASK;
1397 }
1398 
1399 static int
1400 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1401 {
1402 	struct list_head *tail_page, *to_remove, *next_page;
1403 	struct buffer_page *to_remove_page, *tmp_iter_page;
1404 	struct buffer_page *last_page, *first_page;
1405 	unsigned int nr_removed;
1406 	unsigned long head_bit;
1407 	int page_entries;
1408 
1409 	head_bit = 0;
1410 
1411 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1412 	atomic_inc(&cpu_buffer->record_disabled);
1413 	/*
1414 	 * We don't race with the readers since we have acquired the reader
1415 	 * lock. We also don't race with writers after disabling recording.
1416 	 * This makes it easy to figure out the first and the last page to be
1417 	 * removed from the list. We unlink all the pages in between including
1418 	 * the first and last pages. This is done in a busy loop so that we
1419 	 * lose the least number of traces.
1420 	 * The pages are freed after we restart recording and unlock readers.
1421 	 */
1422 	tail_page = &cpu_buffer->tail_page->list;
1423 
1424 	/*
1425 	 * tail page might be on reader page, we remove the next page
1426 	 * from the ring buffer
1427 	 */
1428 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1429 		tail_page = rb_list_head(tail_page->next);
1430 	to_remove = tail_page;
1431 
1432 	/* start of pages to remove */
1433 	first_page = list_entry(rb_list_head(to_remove->next),
1434 				struct buffer_page, list);
1435 
1436 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1437 		to_remove = rb_list_head(to_remove)->next;
1438 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1439 	}
1440 
1441 	next_page = rb_list_head(to_remove)->next;
1442 
1443 	/*
1444 	 * Now we remove all pages between tail_page and next_page.
1445 	 * Make sure that we have head_bit value preserved for the
1446 	 * next page
1447 	 */
1448 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1449 						head_bit);
1450 	next_page = rb_list_head(next_page);
1451 	next_page->prev = tail_page;
1452 
1453 	/* make sure pages points to a valid page in the ring buffer */
1454 	cpu_buffer->pages = next_page;
1455 
1456 	/* update head page */
1457 	if (head_bit)
1458 		cpu_buffer->head_page = list_entry(next_page,
1459 						struct buffer_page, list);
1460 
1461 	/*
1462 	 * change read pointer to make sure any read iterators reset
1463 	 * themselves
1464 	 */
1465 	cpu_buffer->read = 0;
1466 
1467 	/* pages are removed, resume tracing and then free the pages */
1468 	atomic_dec(&cpu_buffer->record_disabled);
1469 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1470 
1471 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1472 
1473 	/* last buffer page to remove */
1474 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1475 				list);
1476 	tmp_iter_page = first_page;
1477 
1478 	do {
1479 		to_remove_page = tmp_iter_page;
1480 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1481 
1482 		/* update the counters */
1483 		page_entries = rb_page_entries(to_remove_page);
1484 		if (page_entries) {
1485 			/*
1486 			 * If something was added to this page, it was full
1487 			 * since it is not the tail page. So we deduct the
1488 			 * bytes consumed in ring buffer from here.
1489 			 * Increment overrun to account for the lost events.
1490 			 */
1491 			local_add(page_entries, &cpu_buffer->overrun);
1492 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1493 		}
1494 
1495 		/*
1496 		 * We have already removed references to this list item, just
1497 		 * free up the buffer_page and its page
1498 		 */
1499 		free_buffer_page(to_remove_page);
1500 		nr_removed--;
1501 
1502 	} while (to_remove_page != last_page);
1503 
1504 	RB_WARN_ON(cpu_buffer, nr_removed);
1505 
1506 	return nr_removed == 0;
1507 }
1508 
1509 static int
1510 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1511 {
1512 	struct list_head *pages = &cpu_buffer->new_pages;
1513 	int retries, success;
1514 
1515 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1516 	/*
1517 	 * We are holding the reader lock, so the reader page won't be swapped
1518 	 * in the ring buffer. Now we are racing with the writer trying to
1519 	 * move head page and the tail page.
1520 	 * We are going to adapt the reader page update process where:
1521 	 * 1. We first splice the start and end of list of new pages between
1522 	 *    the head page and its previous page.
1523 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1524 	 *    start of new pages list.
1525 	 * 3. Finally, we update the head->prev to the end of new list.
1526 	 *
1527 	 * We will try this process 10 times, to make sure that we don't keep
1528 	 * spinning.
1529 	 */
1530 	retries = 10;
1531 	success = 0;
1532 	while (retries--) {
1533 		struct list_head *head_page, *prev_page, *r;
1534 		struct list_head *last_page, *first_page;
1535 		struct list_head *head_page_with_bit;
1536 
1537 		head_page = &rb_set_head_page(cpu_buffer)->list;
1538 		if (!head_page)
1539 			break;
1540 		prev_page = head_page->prev;
1541 
1542 		first_page = pages->next;
1543 		last_page  = pages->prev;
1544 
1545 		head_page_with_bit = (struct list_head *)
1546 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1547 
1548 		last_page->next = head_page_with_bit;
1549 		first_page->prev = prev_page;
1550 
1551 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1552 
1553 		if (r == head_page_with_bit) {
1554 			/*
1555 			 * yay, we replaced the page pointer to our new list,
1556 			 * now, we just have to update to head page's prev
1557 			 * pointer to point to end of list
1558 			 */
1559 			head_page->prev = last_page;
1560 			success = 1;
1561 			break;
1562 		}
1563 	}
1564 
1565 	if (success)
1566 		INIT_LIST_HEAD(pages);
1567 	/*
1568 	 * If we weren't successful in adding in new pages, warn and stop
1569 	 * tracing
1570 	 */
1571 	RB_WARN_ON(cpu_buffer, !success);
1572 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1573 
1574 	/* free pages if they weren't inserted */
1575 	if (!success) {
1576 		struct buffer_page *bpage, *tmp;
1577 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1578 					 list) {
1579 			list_del_init(&bpage->list);
1580 			free_buffer_page(bpage);
1581 		}
1582 	}
1583 	return success;
1584 }
1585 
1586 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587 {
1588 	int success;
1589 
1590 	if (cpu_buffer->nr_pages_to_update > 0)
1591 		success = rb_insert_pages(cpu_buffer);
1592 	else
1593 		success = rb_remove_pages(cpu_buffer,
1594 					-cpu_buffer->nr_pages_to_update);
1595 
1596 	if (success)
1597 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1598 }
1599 
1600 static void update_pages_handler(struct work_struct *work)
1601 {
1602 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1603 			struct ring_buffer_per_cpu, update_pages_work);
1604 	rb_update_pages(cpu_buffer);
1605 	complete(&cpu_buffer->update_done);
1606 }
1607 
1608 /**
1609  * ring_buffer_resize - resize the ring buffer
1610  * @buffer: the buffer to resize.
1611  * @size: the new size.
1612  * @cpu_id: the cpu buffer to resize
1613  *
1614  * Minimum size is 2 * BUF_PAGE_SIZE.
1615  *
1616  * Returns 0 on success and < 0 on failure.
1617  */
1618 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1619 			int cpu_id)
1620 {
1621 	struct ring_buffer_per_cpu *cpu_buffer;
1622 	unsigned nr_pages;
1623 	int cpu, err = 0;
1624 
1625 	/*
1626 	 * Always succeed at resizing a non-existent buffer:
1627 	 */
1628 	if (!buffer)
1629 		return size;
1630 
1631 	/* Make sure the requested buffer exists */
1632 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1633 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1634 		return size;
1635 
1636 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1637 	size *= BUF_PAGE_SIZE;
1638 
1639 	/* we need a minimum of two pages */
1640 	if (size < BUF_PAGE_SIZE * 2)
1641 		size = BUF_PAGE_SIZE * 2;
1642 
1643 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1644 
1645 	/*
1646 	 * Don't succeed if resizing is disabled, as a reader might be
1647 	 * manipulating the ring buffer and is expecting a sane state while
1648 	 * this is true.
1649 	 */
1650 	if (atomic_read(&buffer->resize_disabled))
1651 		return -EBUSY;
1652 
1653 	/* prevent another thread from changing buffer sizes */
1654 	mutex_lock(&buffer->mutex);
1655 
1656 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1657 		/* calculate the pages to update */
1658 		for_each_buffer_cpu(buffer, cpu) {
1659 			cpu_buffer = buffer->buffers[cpu];
1660 
1661 			cpu_buffer->nr_pages_to_update = nr_pages -
1662 							cpu_buffer->nr_pages;
1663 			/*
1664 			 * nothing more to do for removing pages or no update
1665 			 */
1666 			if (cpu_buffer->nr_pages_to_update <= 0)
1667 				continue;
1668 			/*
1669 			 * to add pages, make sure all new pages can be
1670 			 * allocated without receiving ENOMEM
1671 			 */
1672 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1673 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1674 						&cpu_buffer->new_pages, cpu)) {
1675 				/* not enough memory for new pages */
1676 				err = -ENOMEM;
1677 				goto out_err;
1678 			}
1679 		}
1680 
1681 		get_online_cpus();
1682 		/*
1683 		 * Fire off all the required work handlers
1684 		 * We can't schedule on offline CPUs, but it's not necessary
1685 		 * since we can change their buffer sizes without any race.
1686 		 */
1687 		for_each_buffer_cpu(buffer, cpu) {
1688 			cpu_buffer = buffer->buffers[cpu];
1689 			if (!cpu_buffer->nr_pages_to_update)
1690 				continue;
1691 
1692 			/* The update must run on the CPU that is being updated. */
1693 			preempt_disable();
1694 			if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1695 				rb_update_pages(cpu_buffer);
1696 				cpu_buffer->nr_pages_to_update = 0;
1697 			} else {
1698 				/*
1699 				 * Can not disable preemption for schedule_work_on()
1700 				 * on PREEMPT_RT.
1701 				 */
1702 				preempt_enable();
1703 				schedule_work_on(cpu,
1704 						&cpu_buffer->update_pages_work);
1705 				preempt_disable();
1706 			}
1707 			preempt_enable();
1708 		}
1709 
1710 		/* wait for all the updates to complete */
1711 		for_each_buffer_cpu(buffer, cpu) {
1712 			cpu_buffer = buffer->buffers[cpu];
1713 			if (!cpu_buffer->nr_pages_to_update)
1714 				continue;
1715 
1716 			if (cpu_online(cpu))
1717 				wait_for_completion(&cpu_buffer->update_done);
1718 			cpu_buffer->nr_pages_to_update = 0;
1719 		}
1720 
1721 		put_online_cpus();
1722 	} else {
1723 		/* Make sure this CPU has been intitialized */
1724 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1725 			goto out;
1726 
1727 		cpu_buffer = buffer->buffers[cpu_id];
1728 
1729 		if (nr_pages == cpu_buffer->nr_pages)
1730 			goto out;
1731 
1732 		cpu_buffer->nr_pages_to_update = nr_pages -
1733 						cpu_buffer->nr_pages;
1734 
1735 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1736 		if (cpu_buffer->nr_pages_to_update > 0 &&
1737 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1738 					    &cpu_buffer->new_pages, cpu_id)) {
1739 			err = -ENOMEM;
1740 			goto out_err;
1741 		}
1742 
1743 		get_online_cpus();
1744 
1745 		preempt_disable();
1746 		/* The update must run on the CPU that is being updated. */
1747 		if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1748 			rb_update_pages(cpu_buffer);
1749 		else {
1750 			/*
1751 			 * Can not disable preemption for schedule_work_on()
1752 			 * on PREEMPT_RT.
1753 			 */
1754 			preempt_enable();
1755 			schedule_work_on(cpu_id,
1756 					 &cpu_buffer->update_pages_work);
1757 			wait_for_completion(&cpu_buffer->update_done);
1758 			preempt_disable();
1759 		}
1760 		preempt_enable();
1761 
1762 		cpu_buffer->nr_pages_to_update = 0;
1763 		put_online_cpus();
1764 	}
1765 
1766  out:
1767 	/*
1768 	 * The ring buffer resize can happen with the ring buffer
1769 	 * enabled, so that the update disturbs the tracing as little
1770 	 * as possible. But if the buffer is disabled, we do not need
1771 	 * to worry about that, and we can take the time to verify
1772 	 * that the buffer is not corrupt.
1773 	 */
1774 	if (atomic_read(&buffer->record_disabled)) {
1775 		atomic_inc(&buffer->record_disabled);
1776 		/*
1777 		 * Even though the buffer was disabled, we must make sure
1778 		 * that it is truly disabled before calling rb_check_pages.
1779 		 * There could have been a race between checking
1780 		 * record_disable and incrementing it.
1781 		 */
1782 		synchronize_sched();
1783 		for_each_buffer_cpu(buffer, cpu) {
1784 			cpu_buffer = buffer->buffers[cpu];
1785 			rb_check_pages(cpu_buffer);
1786 		}
1787 		atomic_dec(&buffer->record_disabled);
1788 	}
1789 
1790 	mutex_unlock(&buffer->mutex);
1791 	return size;
1792 
1793  out_err:
1794 	for_each_buffer_cpu(buffer, cpu) {
1795 		struct buffer_page *bpage, *tmp;
1796 
1797 		cpu_buffer = buffer->buffers[cpu];
1798 		cpu_buffer->nr_pages_to_update = 0;
1799 
1800 		if (list_empty(&cpu_buffer->new_pages))
1801 			continue;
1802 
1803 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1804 					list) {
1805 			list_del_init(&bpage->list);
1806 			free_buffer_page(bpage);
1807 		}
1808 	}
1809 	mutex_unlock(&buffer->mutex);
1810 	return err;
1811 }
1812 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1813 
1814 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1815 {
1816 	mutex_lock(&buffer->mutex);
1817 	if (val)
1818 		buffer->flags |= RB_FL_OVERWRITE;
1819 	else
1820 		buffer->flags &= ~RB_FL_OVERWRITE;
1821 	mutex_unlock(&buffer->mutex);
1822 }
1823 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1824 
1825 static inline void *
1826 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1827 {
1828 	return bpage->data + index;
1829 }
1830 
1831 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1832 {
1833 	return bpage->page->data + index;
1834 }
1835 
1836 static inline struct ring_buffer_event *
1837 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1838 {
1839 	return __rb_page_index(cpu_buffer->reader_page,
1840 			       cpu_buffer->reader_page->read);
1841 }
1842 
1843 static inline struct ring_buffer_event *
1844 rb_iter_head_event(struct ring_buffer_iter *iter)
1845 {
1846 	return __rb_page_index(iter->head_page, iter->head);
1847 }
1848 
1849 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1850 {
1851 	return local_read(&bpage->page->commit);
1852 }
1853 
1854 /* Size is determined by what has been committed */
1855 static inline unsigned rb_page_size(struct buffer_page *bpage)
1856 {
1857 	return rb_page_commit(bpage);
1858 }
1859 
1860 static inline unsigned
1861 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1862 {
1863 	return rb_page_commit(cpu_buffer->commit_page);
1864 }
1865 
1866 static inline unsigned
1867 rb_event_index(struct ring_buffer_event *event)
1868 {
1869 	unsigned long addr = (unsigned long)event;
1870 
1871 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1872 }
1873 
1874 static inline int
1875 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1876 		   struct ring_buffer_event *event)
1877 {
1878 	unsigned long addr = (unsigned long)event;
1879 	unsigned long index;
1880 
1881 	index = rb_event_index(event);
1882 	addr &= PAGE_MASK;
1883 
1884 	return cpu_buffer->commit_page->page == (void *)addr &&
1885 		rb_commit_index(cpu_buffer) == index;
1886 }
1887 
1888 static void
1889 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1890 {
1891 	unsigned long max_count;
1892 
1893 	/*
1894 	 * We only race with interrupts and NMIs on this CPU.
1895 	 * If we own the commit event, then we can commit
1896 	 * all others that interrupted us, since the interruptions
1897 	 * are in stack format (they finish before they come
1898 	 * back to us). This allows us to do a simple loop to
1899 	 * assign the commit to the tail.
1900 	 */
1901  again:
1902 	max_count = cpu_buffer->nr_pages * 100;
1903 
1904 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1905 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1906 			return;
1907 		if (RB_WARN_ON(cpu_buffer,
1908 			       rb_is_reader_page(cpu_buffer->tail_page)))
1909 			return;
1910 		local_set(&cpu_buffer->commit_page->page->commit,
1911 			  rb_page_write(cpu_buffer->commit_page));
1912 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1913 		cpu_buffer->write_stamp =
1914 			cpu_buffer->commit_page->page->time_stamp;
1915 		/* add barrier to keep gcc from optimizing too much */
1916 		barrier();
1917 	}
1918 	while (rb_commit_index(cpu_buffer) !=
1919 	       rb_page_write(cpu_buffer->commit_page)) {
1920 
1921 		local_set(&cpu_buffer->commit_page->page->commit,
1922 			  rb_page_write(cpu_buffer->commit_page));
1923 		RB_WARN_ON(cpu_buffer,
1924 			   local_read(&cpu_buffer->commit_page->page->commit) &
1925 			   ~RB_WRITE_MASK);
1926 		barrier();
1927 	}
1928 
1929 	/* again, keep gcc from optimizing */
1930 	barrier();
1931 
1932 	/*
1933 	 * If an interrupt came in just after the first while loop
1934 	 * and pushed the tail page forward, we will be left with
1935 	 * a dangling commit that will never go forward.
1936 	 */
1937 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1938 		goto again;
1939 }
1940 
1941 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1942 {
1943 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1944 	cpu_buffer->reader_page->read = 0;
1945 }
1946 
1947 static void rb_inc_iter(struct ring_buffer_iter *iter)
1948 {
1949 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950 
1951 	/*
1952 	 * The iterator could be on the reader page (it starts there).
1953 	 * But the head could have moved, since the reader was
1954 	 * found. Check for this case and assign the iterator
1955 	 * to the head page instead of next.
1956 	 */
1957 	if (iter->head_page == cpu_buffer->reader_page)
1958 		iter->head_page = rb_set_head_page(cpu_buffer);
1959 	else
1960 		rb_inc_page(cpu_buffer, &iter->head_page);
1961 
1962 	iter->read_stamp = iter->head_page->page->time_stamp;
1963 	iter->head = 0;
1964 }
1965 
1966 /* Slow path, do not inline */
1967 static noinline struct ring_buffer_event *
1968 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1969 {
1970 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1971 
1972 	/* Not the first event on the page? */
1973 	if (rb_event_index(event)) {
1974 		event->time_delta = delta & TS_MASK;
1975 		event->array[0] = delta >> TS_SHIFT;
1976 	} else {
1977 		/* nope, just zero it */
1978 		event->time_delta = 0;
1979 		event->array[0] = 0;
1980 	}
1981 
1982 	return skip_time_extend(event);
1983 }
1984 
1985 /**
1986  * rb_update_event - update event type and data
1987  * @event: the even to update
1988  * @type: the type of event
1989  * @length: the size of the event field in the ring buffer
1990  *
1991  * Update the type and data fields of the event. The length
1992  * is the actual size that is written to the ring buffer,
1993  * and with this, we can determine what to place into the
1994  * data field.
1995  */
1996 static void
1997 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1998 		struct ring_buffer_event *event, unsigned length,
1999 		int add_timestamp, u64 delta)
2000 {
2001 	/* Only a commit updates the timestamp */
2002 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2003 		delta = 0;
2004 
2005 	/*
2006 	 * If we need to add a timestamp, then we
2007 	 * add it to the start of the resevered space.
2008 	 */
2009 	if (unlikely(add_timestamp)) {
2010 		event = rb_add_time_stamp(event, delta);
2011 		length -= RB_LEN_TIME_EXTEND;
2012 		delta = 0;
2013 	}
2014 
2015 	event->time_delta = delta;
2016 	length -= RB_EVNT_HDR_SIZE;
2017 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2018 		event->type_len = 0;
2019 		event->array[0] = length;
2020 	} else
2021 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2022 }
2023 
2024 /*
2025  * rb_handle_head_page - writer hit the head page
2026  *
2027  * Returns: +1 to retry page
2028  *           0 to continue
2029  *          -1 on error
2030  */
2031 static int
2032 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2033 		    struct buffer_page *tail_page,
2034 		    struct buffer_page *next_page)
2035 {
2036 	struct buffer_page *new_head;
2037 	int entries;
2038 	int type;
2039 	int ret;
2040 
2041 	entries = rb_page_entries(next_page);
2042 
2043 	/*
2044 	 * The hard part is here. We need to move the head
2045 	 * forward, and protect against both readers on
2046 	 * other CPUs and writers coming in via interrupts.
2047 	 */
2048 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2049 				       RB_PAGE_HEAD);
2050 
2051 	/*
2052 	 * type can be one of four:
2053 	 *  NORMAL - an interrupt already moved it for us
2054 	 *  HEAD   - we are the first to get here.
2055 	 *  UPDATE - we are the interrupt interrupting
2056 	 *           a current move.
2057 	 *  MOVED  - a reader on another CPU moved the next
2058 	 *           pointer to its reader page. Give up
2059 	 *           and try again.
2060 	 */
2061 
2062 	switch (type) {
2063 	case RB_PAGE_HEAD:
2064 		/*
2065 		 * We changed the head to UPDATE, thus
2066 		 * it is our responsibility to update
2067 		 * the counters.
2068 		 */
2069 		local_add(entries, &cpu_buffer->overrun);
2070 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2071 
2072 		/*
2073 		 * The entries will be zeroed out when we move the
2074 		 * tail page.
2075 		 */
2076 
2077 		/* still more to do */
2078 		break;
2079 
2080 	case RB_PAGE_UPDATE:
2081 		/*
2082 		 * This is an interrupt that interrupt the
2083 		 * previous update. Still more to do.
2084 		 */
2085 		break;
2086 	case RB_PAGE_NORMAL:
2087 		/*
2088 		 * An interrupt came in before the update
2089 		 * and processed this for us.
2090 		 * Nothing left to do.
2091 		 */
2092 		return 1;
2093 	case RB_PAGE_MOVED:
2094 		/*
2095 		 * The reader is on another CPU and just did
2096 		 * a swap with our next_page.
2097 		 * Try again.
2098 		 */
2099 		return 1;
2100 	default:
2101 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2102 		return -1;
2103 	}
2104 
2105 	/*
2106 	 * Now that we are here, the old head pointer is
2107 	 * set to UPDATE. This will keep the reader from
2108 	 * swapping the head page with the reader page.
2109 	 * The reader (on another CPU) will spin till
2110 	 * we are finished.
2111 	 *
2112 	 * We just need to protect against interrupts
2113 	 * doing the job. We will set the next pointer
2114 	 * to HEAD. After that, we set the old pointer
2115 	 * to NORMAL, but only if it was HEAD before.
2116 	 * otherwise we are an interrupt, and only
2117 	 * want the outer most commit to reset it.
2118 	 */
2119 	new_head = next_page;
2120 	rb_inc_page(cpu_buffer, &new_head);
2121 
2122 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2123 				    RB_PAGE_NORMAL);
2124 
2125 	/*
2126 	 * Valid returns are:
2127 	 *  HEAD   - an interrupt came in and already set it.
2128 	 *  NORMAL - One of two things:
2129 	 *            1) We really set it.
2130 	 *            2) A bunch of interrupts came in and moved
2131 	 *               the page forward again.
2132 	 */
2133 	switch (ret) {
2134 	case RB_PAGE_HEAD:
2135 	case RB_PAGE_NORMAL:
2136 		/* OK */
2137 		break;
2138 	default:
2139 		RB_WARN_ON(cpu_buffer, 1);
2140 		return -1;
2141 	}
2142 
2143 	/*
2144 	 * It is possible that an interrupt came in,
2145 	 * set the head up, then more interrupts came in
2146 	 * and moved it again. When we get back here,
2147 	 * the page would have been set to NORMAL but we
2148 	 * just set it back to HEAD.
2149 	 *
2150 	 * How do you detect this? Well, if that happened
2151 	 * the tail page would have moved.
2152 	 */
2153 	if (ret == RB_PAGE_NORMAL) {
2154 		/*
2155 		 * If the tail had moved passed next, then we need
2156 		 * to reset the pointer.
2157 		 */
2158 		if (cpu_buffer->tail_page != tail_page &&
2159 		    cpu_buffer->tail_page != next_page)
2160 			rb_head_page_set_normal(cpu_buffer, new_head,
2161 						next_page,
2162 						RB_PAGE_HEAD);
2163 	}
2164 
2165 	/*
2166 	 * If this was the outer most commit (the one that
2167 	 * changed the original pointer from HEAD to UPDATE),
2168 	 * then it is up to us to reset it to NORMAL.
2169 	 */
2170 	if (type == RB_PAGE_HEAD) {
2171 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2172 					      tail_page,
2173 					      RB_PAGE_UPDATE);
2174 		if (RB_WARN_ON(cpu_buffer,
2175 			       ret != RB_PAGE_UPDATE))
2176 			return -1;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 static unsigned rb_calculate_event_length(unsigned length)
2183 {
2184 	struct ring_buffer_event event; /* Used only for sizeof array */
2185 
2186 	/* zero length can cause confusions */
2187 	if (!length)
2188 		length = 1;
2189 
2190 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2191 		length += sizeof(event.array[0]);
2192 
2193 	length += RB_EVNT_HDR_SIZE;
2194 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2195 
2196 	return length;
2197 }
2198 
2199 static inline void
2200 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2201 	      struct buffer_page *tail_page,
2202 	      unsigned long tail, unsigned long length)
2203 {
2204 	struct ring_buffer_event *event;
2205 
2206 	/*
2207 	 * Only the event that crossed the page boundary
2208 	 * must fill the old tail_page with padding.
2209 	 */
2210 	if (tail >= BUF_PAGE_SIZE) {
2211 		/*
2212 		 * If the page was filled, then we still need
2213 		 * to update the real_end. Reset it to zero
2214 		 * and the reader will ignore it.
2215 		 */
2216 		if (tail == BUF_PAGE_SIZE)
2217 			tail_page->real_end = 0;
2218 
2219 		local_sub(length, &tail_page->write);
2220 		return;
2221 	}
2222 
2223 	event = __rb_page_index(tail_page, tail);
2224 	kmemcheck_annotate_bitfield(event, bitfield);
2225 
2226 	/* account for padding bytes */
2227 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2228 
2229 	/*
2230 	 * Save the original length to the meta data.
2231 	 * This will be used by the reader to add lost event
2232 	 * counter.
2233 	 */
2234 	tail_page->real_end = tail;
2235 
2236 	/*
2237 	 * If this event is bigger than the minimum size, then
2238 	 * we need to be careful that we don't subtract the
2239 	 * write counter enough to allow another writer to slip
2240 	 * in on this page.
2241 	 * We put in a discarded commit instead, to make sure
2242 	 * that this space is not used again.
2243 	 *
2244 	 * If we are less than the minimum size, we don't need to
2245 	 * worry about it.
2246 	 */
2247 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2248 		/* No room for any events */
2249 
2250 		/* Mark the rest of the page with padding */
2251 		rb_event_set_padding(event);
2252 
2253 		/* Set the write back to the previous setting */
2254 		local_sub(length, &tail_page->write);
2255 		return;
2256 	}
2257 
2258 	/* Put in a discarded event */
2259 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2260 	event->type_len = RINGBUF_TYPE_PADDING;
2261 	/* time delta must be non zero */
2262 	event->time_delta = 1;
2263 
2264 	/* Set write to end of buffer */
2265 	length = (tail + length) - BUF_PAGE_SIZE;
2266 	local_sub(length, &tail_page->write);
2267 }
2268 
2269 /*
2270  * This is the slow path, force gcc not to inline it.
2271  */
2272 static noinline struct ring_buffer_event *
2273 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2274 	     unsigned long length, unsigned long tail,
2275 	     struct buffer_page *tail_page, u64 ts)
2276 {
2277 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2278 	struct ring_buffer *buffer = cpu_buffer->buffer;
2279 	struct buffer_page *next_page;
2280 	int ret;
2281 
2282 	next_page = tail_page;
2283 
2284 	rb_inc_page(cpu_buffer, &next_page);
2285 
2286 	/*
2287 	 * If for some reason, we had an interrupt storm that made
2288 	 * it all the way around the buffer, bail, and warn
2289 	 * about it.
2290 	 */
2291 	if (unlikely(next_page == commit_page)) {
2292 		local_inc(&cpu_buffer->commit_overrun);
2293 		goto out_reset;
2294 	}
2295 
2296 	/*
2297 	 * This is where the fun begins!
2298 	 *
2299 	 * We are fighting against races between a reader that
2300 	 * could be on another CPU trying to swap its reader
2301 	 * page with the buffer head.
2302 	 *
2303 	 * We are also fighting against interrupts coming in and
2304 	 * moving the head or tail on us as well.
2305 	 *
2306 	 * If the next page is the head page then we have filled
2307 	 * the buffer, unless the commit page is still on the
2308 	 * reader page.
2309 	 */
2310 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2311 
2312 		/*
2313 		 * If the commit is not on the reader page, then
2314 		 * move the header page.
2315 		 */
2316 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2317 			/*
2318 			 * If we are not in overwrite mode,
2319 			 * this is easy, just stop here.
2320 			 */
2321 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2322 				local_inc(&cpu_buffer->dropped_events);
2323 				goto out_reset;
2324 			}
2325 
2326 			ret = rb_handle_head_page(cpu_buffer,
2327 						  tail_page,
2328 						  next_page);
2329 			if (ret < 0)
2330 				goto out_reset;
2331 			if (ret)
2332 				goto out_again;
2333 		} else {
2334 			/*
2335 			 * We need to be careful here too. The
2336 			 * commit page could still be on the reader
2337 			 * page. We could have a small buffer, and
2338 			 * have filled up the buffer with events
2339 			 * from interrupts and such, and wrapped.
2340 			 *
2341 			 * Note, if the tail page is also the on the
2342 			 * reader_page, we let it move out.
2343 			 */
2344 			if (unlikely((cpu_buffer->commit_page !=
2345 				      cpu_buffer->tail_page) &&
2346 				     (cpu_buffer->commit_page ==
2347 				      cpu_buffer->reader_page))) {
2348 				local_inc(&cpu_buffer->commit_overrun);
2349 				goto out_reset;
2350 			}
2351 		}
2352 	}
2353 
2354 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2355 	if (ret) {
2356 		/*
2357 		 * Nested commits always have zero deltas, so
2358 		 * just reread the time stamp
2359 		 */
2360 		ts = rb_time_stamp(buffer);
2361 		next_page->page->time_stamp = ts;
2362 	}
2363 
2364  out_again:
2365 
2366 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2367 
2368 	/* fail and let the caller try again */
2369 	return ERR_PTR(-EAGAIN);
2370 
2371  out_reset:
2372 	/* reset write */
2373 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2374 
2375 	return NULL;
2376 }
2377 
2378 static struct ring_buffer_event *
2379 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2380 		  unsigned long length, u64 ts,
2381 		  u64 delta, int add_timestamp)
2382 {
2383 	struct buffer_page *tail_page;
2384 	struct ring_buffer_event *event;
2385 	unsigned long tail, write;
2386 
2387 	/*
2388 	 * If the time delta since the last event is too big to
2389 	 * hold in the time field of the event, then we append a
2390 	 * TIME EXTEND event ahead of the data event.
2391 	 */
2392 	if (unlikely(add_timestamp))
2393 		length += RB_LEN_TIME_EXTEND;
2394 
2395 	tail_page = cpu_buffer->tail_page;
2396 	write = local_add_return(length, &tail_page->write);
2397 
2398 	/* set write to only the index of the write */
2399 	write &= RB_WRITE_MASK;
2400 	tail = write - length;
2401 
2402 	/*
2403 	 * If this is the first commit on the page, then it has the same
2404 	 * timestamp as the page itself.
2405 	 */
2406 	if (!tail)
2407 		delta = 0;
2408 
2409 	/* See if we shot pass the end of this buffer page */
2410 	if (unlikely(write > BUF_PAGE_SIZE))
2411 		return rb_move_tail(cpu_buffer, length, tail,
2412 				    tail_page, ts);
2413 
2414 	/* We reserved something on the buffer */
2415 
2416 	event = __rb_page_index(tail_page, tail);
2417 	kmemcheck_annotate_bitfield(event, bitfield);
2418 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2419 
2420 	local_inc(&tail_page->entries);
2421 
2422 	/*
2423 	 * If this is the first commit on the page, then update
2424 	 * its timestamp.
2425 	 */
2426 	if (!tail)
2427 		tail_page->page->time_stamp = ts;
2428 
2429 	/* account for these added bytes */
2430 	local_add(length, &cpu_buffer->entries_bytes);
2431 
2432 	return event;
2433 }
2434 
2435 static inline int
2436 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2437 		  struct ring_buffer_event *event)
2438 {
2439 	unsigned long new_index, old_index;
2440 	struct buffer_page *bpage;
2441 	unsigned long index;
2442 	unsigned long addr;
2443 
2444 	new_index = rb_event_index(event);
2445 	old_index = new_index + rb_event_ts_length(event);
2446 	addr = (unsigned long)event;
2447 	addr &= PAGE_MASK;
2448 
2449 	bpage = cpu_buffer->tail_page;
2450 
2451 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2452 		unsigned long write_mask =
2453 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2454 		unsigned long event_length = rb_event_length(event);
2455 		/*
2456 		 * This is on the tail page. It is possible that
2457 		 * a write could come in and move the tail page
2458 		 * and write to the next page. That is fine
2459 		 * because we just shorten what is on this page.
2460 		 */
2461 		old_index += write_mask;
2462 		new_index += write_mask;
2463 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2464 		if (index == old_index) {
2465 			/* update counters */
2466 			local_sub(event_length, &cpu_buffer->entries_bytes);
2467 			return 1;
2468 		}
2469 	}
2470 
2471 	/* could not discard */
2472 	return 0;
2473 }
2474 
2475 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2476 {
2477 	local_inc(&cpu_buffer->committing);
2478 	local_inc(&cpu_buffer->commits);
2479 }
2480 
2481 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2482 {
2483 	unsigned long commits;
2484 
2485 	if (RB_WARN_ON(cpu_buffer,
2486 		       !local_read(&cpu_buffer->committing)))
2487 		return;
2488 
2489  again:
2490 	commits = local_read(&cpu_buffer->commits);
2491 	/* synchronize with interrupts */
2492 	barrier();
2493 	if (local_read(&cpu_buffer->committing) == 1)
2494 		rb_set_commit_to_write(cpu_buffer);
2495 
2496 	local_dec(&cpu_buffer->committing);
2497 
2498 	/* synchronize with interrupts */
2499 	barrier();
2500 
2501 	/*
2502 	 * Need to account for interrupts coming in between the
2503 	 * updating of the commit page and the clearing of the
2504 	 * committing counter.
2505 	 */
2506 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2507 	    !local_read(&cpu_buffer->committing)) {
2508 		local_inc(&cpu_buffer->committing);
2509 		goto again;
2510 	}
2511 }
2512 
2513 static struct ring_buffer_event *
2514 rb_reserve_next_event(struct ring_buffer *buffer,
2515 		      struct ring_buffer_per_cpu *cpu_buffer,
2516 		      unsigned long length)
2517 {
2518 	struct ring_buffer_event *event;
2519 	u64 ts, delta;
2520 	int nr_loops = 0;
2521 	int add_timestamp;
2522 	u64 diff;
2523 
2524 	rb_start_commit(cpu_buffer);
2525 
2526 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2527 	/*
2528 	 * Due to the ability to swap a cpu buffer from a buffer
2529 	 * it is possible it was swapped before we committed.
2530 	 * (committing stops a swap). We check for it here and
2531 	 * if it happened, we have to fail the write.
2532 	 */
2533 	barrier();
2534 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2535 		local_dec(&cpu_buffer->committing);
2536 		local_dec(&cpu_buffer->commits);
2537 		return NULL;
2538 	}
2539 #endif
2540 
2541 	length = rb_calculate_event_length(length);
2542  again:
2543 	add_timestamp = 0;
2544 	delta = 0;
2545 
2546 	/*
2547 	 * We allow for interrupts to reenter here and do a trace.
2548 	 * If one does, it will cause this original code to loop
2549 	 * back here. Even with heavy interrupts happening, this
2550 	 * should only happen a few times in a row. If this happens
2551 	 * 1000 times in a row, there must be either an interrupt
2552 	 * storm or we have something buggy.
2553 	 * Bail!
2554 	 */
2555 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2556 		goto out_fail;
2557 
2558 	ts = rb_time_stamp(cpu_buffer->buffer);
2559 	diff = ts - cpu_buffer->write_stamp;
2560 
2561 	/* make sure this diff is calculated here */
2562 	barrier();
2563 
2564 	/* Did the write stamp get updated already? */
2565 	if (likely(ts >= cpu_buffer->write_stamp)) {
2566 		delta = diff;
2567 		if (unlikely(test_time_stamp(delta))) {
2568 			int local_clock_stable = 1;
2569 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2570 			local_clock_stable = sched_clock_stable();
2571 #endif
2572 			WARN_ONCE(delta > (1ULL << 59),
2573 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2574 				  (unsigned long long)delta,
2575 				  (unsigned long long)ts,
2576 				  (unsigned long long)cpu_buffer->write_stamp,
2577 				  local_clock_stable ? "" :
2578 				  "If you just came from a suspend/resume,\n"
2579 				  "please switch to the trace global clock:\n"
2580 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2581 			add_timestamp = 1;
2582 		}
2583 	}
2584 
2585 	event = __rb_reserve_next(cpu_buffer, length, ts,
2586 				  delta, add_timestamp);
2587 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2588 		goto again;
2589 
2590 	if (!event)
2591 		goto out_fail;
2592 
2593 	return event;
2594 
2595  out_fail:
2596 	rb_end_commit(cpu_buffer);
2597 	return NULL;
2598 }
2599 
2600 #ifdef CONFIG_TRACING
2601 
2602 /*
2603  * The lock and unlock are done within a preempt disable section.
2604  * The current_context per_cpu variable can only be modified
2605  * by the current task between lock and unlock. But it can
2606  * be modified more than once via an interrupt. To pass this
2607  * information from the lock to the unlock without having to
2608  * access the 'in_interrupt()' functions again (which do show
2609  * a bit of overhead in something as critical as function tracing,
2610  * we use a bitmask trick.
2611  *
2612  *  bit 0 =  NMI context
2613  *  bit 1 =  IRQ context
2614  *  bit 2 =  SoftIRQ context
2615  *  bit 3 =  normal context.
2616  *
2617  * This works because this is the order of contexts that can
2618  * preempt other contexts. A SoftIRQ never preempts an IRQ
2619  * context.
2620  *
2621  * When the context is determined, the corresponding bit is
2622  * checked and set (if it was set, then a recursion of that context
2623  * happened).
2624  *
2625  * On unlock, we need to clear this bit. To do so, just subtract
2626  * 1 from the current_context and AND it to itself.
2627  *
2628  * (binary)
2629  *  101 - 1 = 100
2630  *  101 & 100 = 100 (clearing bit zero)
2631  *
2632  *  1010 - 1 = 1001
2633  *  1010 & 1001 = 1000 (clearing bit 1)
2634  *
2635  * The least significant bit can be cleared this way, and it
2636  * just so happens that it is the same bit corresponding to
2637  * the current context.
2638  */
2639 static DEFINE_PER_CPU(unsigned int, current_context);
2640 
2641 static __always_inline int trace_recursive_lock(void)
2642 {
2643 	unsigned int val = this_cpu_read(current_context);
2644 	int bit;
2645 
2646 	if (in_interrupt()) {
2647 		if (in_nmi())
2648 			bit = 0;
2649 		else if (in_irq())
2650 			bit = 1;
2651 		else
2652 			bit = 2;
2653 	} else
2654 		bit = 3;
2655 
2656 	if (unlikely(val & (1 << bit)))
2657 		return 1;
2658 
2659 	val |= (1 << bit);
2660 	this_cpu_write(current_context, val);
2661 
2662 	return 0;
2663 }
2664 
2665 static __always_inline void trace_recursive_unlock(void)
2666 {
2667 	unsigned int val = this_cpu_read(current_context);
2668 
2669 	val--;
2670 	val &= this_cpu_read(current_context);
2671 	this_cpu_write(current_context, val);
2672 }
2673 
2674 #else
2675 
2676 #define trace_recursive_lock()		(0)
2677 #define trace_recursive_unlock()	do { } while (0)
2678 
2679 #endif
2680 
2681 /**
2682  * ring_buffer_lock_reserve - reserve a part of the buffer
2683  * @buffer: the ring buffer to reserve from
2684  * @length: the length of the data to reserve (excluding event header)
2685  *
2686  * Returns a reseverd event on the ring buffer to copy directly to.
2687  * The user of this interface will need to get the body to write into
2688  * and can use the ring_buffer_event_data() interface.
2689  *
2690  * The length is the length of the data needed, not the event length
2691  * which also includes the event header.
2692  *
2693  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2694  * If NULL is returned, then nothing has been allocated or locked.
2695  */
2696 struct ring_buffer_event *
2697 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2698 {
2699 	struct ring_buffer_per_cpu *cpu_buffer;
2700 	struct ring_buffer_event *event;
2701 	int cpu;
2702 
2703 	if (ring_buffer_flags != RB_BUFFERS_ON)
2704 		return NULL;
2705 
2706 	/* If we are tracing schedule, we don't want to recurse */
2707 	preempt_disable_notrace();
2708 
2709 	if (atomic_read(&buffer->record_disabled))
2710 		goto out_nocheck;
2711 
2712 	if (trace_recursive_lock())
2713 		goto out_nocheck;
2714 
2715 	cpu = raw_smp_processor_id();
2716 
2717 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2718 		goto out;
2719 
2720 	cpu_buffer = buffer->buffers[cpu];
2721 
2722 	if (atomic_read(&cpu_buffer->record_disabled))
2723 		goto out;
2724 
2725 	if (length > BUF_MAX_DATA_SIZE)
2726 		goto out;
2727 
2728 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2729 	if (!event)
2730 		goto out;
2731 
2732 	return event;
2733 
2734  out:
2735 	trace_recursive_unlock();
2736 
2737  out_nocheck:
2738 	preempt_enable_notrace();
2739 	return NULL;
2740 }
2741 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2742 
2743 static void
2744 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2745 		      struct ring_buffer_event *event)
2746 {
2747 	u64 delta;
2748 
2749 	/*
2750 	 * The event first in the commit queue updates the
2751 	 * time stamp.
2752 	 */
2753 	if (rb_event_is_commit(cpu_buffer, event)) {
2754 		/*
2755 		 * A commit event that is first on a page
2756 		 * updates the write timestamp with the page stamp
2757 		 */
2758 		if (!rb_event_index(event))
2759 			cpu_buffer->write_stamp =
2760 				cpu_buffer->commit_page->page->time_stamp;
2761 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2762 			delta = event->array[0];
2763 			delta <<= TS_SHIFT;
2764 			delta += event->time_delta;
2765 			cpu_buffer->write_stamp += delta;
2766 		} else
2767 			cpu_buffer->write_stamp += event->time_delta;
2768 	}
2769 }
2770 
2771 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2772 		      struct ring_buffer_event *event)
2773 {
2774 	local_inc(&cpu_buffer->entries);
2775 	rb_update_write_stamp(cpu_buffer, event);
2776 	rb_end_commit(cpu_buffer);
2777 }
2778 
2779 static __always_inline void
2780 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2781 {
2782 	if (buffer->irq_work.waiters_pending) {
2783 		buffer->irq_work.waiters_pending = false;
2784 		/* irq_work_queue() supplies it's own memory barriers */
2785 		irq_work_queue(&buffer->irq_work.work);
2786 	}
2787 
2788 	if (cpu_buffer->irq_work.waiters_pending) {
2789 		cpu_buffer->irq_work.waiters_pending = false;
2790 		/* irq_work_queue() supplies it's own memory barriers */
2791 		irq_work_queue(&cpu_buffer->irq_work.work);
2792 	}
2793 }
2794 
2795 /**
2796  * ring_buffer_unlock_commit - commit a reserved
2797  * @buffer: The buffer to commit to
2798  * @event: The event pointer to commit.
2799  *
2800  * This commits the data to the ring buffer, and releases any locks held.
2801  *
2802  * Must be paired with ring_buffer_lock_reserve.
2803  */
2804 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2805 			      struct ring_buffer_event *event)
2806 {
2807 	struct ring_buffer_per_cpu *cpu_buffer;
2808 	int cpu = raw_smp_processor_id();
2809 
2810 	cpu_buffer = buffer->buffers[cpu];
2811 
2812 	rb_commit(cpu_buffer, event);
2813 
2814 	rb_wakeups(buffer, cpu_buffer);
2815 
2816 	trace_recursive_unlock();
2817 
2818 	preempt_enable_notrace();
2819 
2820 	return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2823 
2824 static inline void rb_event_discard(struct ring_buffer_event *event)
2825 {
2826 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2827 		event = skip_time_extend(event);
2828 
2829 	/* array[0] holds the actual length for the discarded event */
2830 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2831 	event->type_len = RINGBUF_TYPE_PADDING;
2832 	/* time delta must be non zero */
2833 	if (!event->time_delta)
2834 		event->time_delta = 1;
2835 }
2836 
2837 /*
2838  * Decrement the entries to the page that an event is on.
2839  * The event does not even need to exist, only the pointer
2840  * to the page it is on. This may only be called before the commit
2841  * takes place.
2842  */
2843 static inline void
2844 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2845 		   struct ring_buffer_event *event)
2846 {
2847 	unsigned long addr = (unsigned long)event;
2848 	struct buffer_page *bpage = cpu_buffer->commit_page;
2849 	struct buffer_page *start;
2850 
2851 	addr &= PAGE_MASK;
2852 
2853 	/* Do the likely case first */
2854 	if (likely(bpage->page == (void *)addr)) {
2855 		local_dec(&bpage->entries);
2856 		return;
2857 	}
2858 
2859 	/*
2860 	 * Because the commit page may be on the reader page we
2861 	 * start with the next page and check the end loop there.
2862 	 */
2863 	rb_inc_page(cpu_buffer, &bpage);
2864 	start = bpage;
2865 	do {
2866 		if (bpage->page == (void *)addr) {
2867 			local_dec(&bpage->entries);
2868 			return;
2869 		}
2870 		rb_inc_page(cpu_buffer, &bpage);
2871 	} while (bpage != start);
2872 
2873 	/* commit not part of this buffer?? */
2874 	RB_WARN_ON(cpu_buffer, 1);
2875 }
2876 
2877 /**
2878  * ring_buffer_commit_discard - discard an event that has not been committed
2879  * @buffer: the ring buffer
2880  * @event: non committed event to discard
2881  *
2882  * Sometimes an event that is in the ring buffer needs to be ignored.
2883  * This function lets the user discard an event in the ring buffer
2884  * and then that event will not be read later.
2885  *
2886  * This function only works if it is called before the the item has been
2887  * committed. It will try to free the event from the ring buffer
2888  * if another event has not been added behind it.
2889  *
2890  * If another event has been added behind it, it will set the event
2891  * up as discarded, and perform the commit.
2892  *
2893  * If this function is called, do not call ring_buffer_unlock_commit on
2894  * the event.
2895  */
2896 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2897 				struct ring_buffer_event *event)
2898 {
2899 	struct ring_buffer_per_cpu *cpu_buffer;
2900 	int cpu;
2901 
2902 	/* The event is discarded regardless */
2903 	rb_event_discard(event);
2904 
2905 	cpu = smp_processor_id();
2906 	cpu_buffer = buffer->buffers[cpu];
2907 
2908 	/*
2909 	 * This must only be called if the event has not been
2910 	 * committed yet. Thus we can assume that preemption
2911 	 * is still disabled.
2912 	 */
2913 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2914 
2915 	rb_decrement_entry(cpu_buffer, event);
2916 	if (rb_try_to_discard(cpu_buffer, event))
2917 		goto out;
2918 
2919 	/*
2920 	 * The commit is still visible by the reader, so we
2921 	 * must still update the timestamp.
2922 	 */
2923 	rb_update_write_stamp(cpu_buffer, event);
2924  out:
2925 	rb_end_commit(cpu_buffer);
2926 
2927 	trace_recursive_unlock();
2928 
2929 	preempt_enable_notrace();
2930 
2931 }
2932 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2933 
2934 /**
2935  * ring_buffer_write - write data to the buffer without reserving
2936  * @buffer: The ring buffer to write to.
2937  * @length: The length of the data being written (excluding the event header)
2938  * @data: The data to write to the buffer.
2939  *
2940  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2941  * one function. If you already have the data to write to the buffer, it
2942  * may be easier to simply call this function.
2943  *
2944  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2945  * and not the length of the event which would hold the header.
2946  */
2947 int ring_buffer_write(struct ring_buffer *buffer,
2948 		      unsigned long length,
2949 		      void *data)
2950 {
2951 	struct ring_buffer_per_cpu *cpu_buffer;
2952 	struct ring_buffer_event *event;
2953 	void *body;
2954 	int ret = -EBUSY;
2955 	int cpu;
2956 
2957 	if (ring_buffer_flags != RB_BUFFERS_ON)
2958 		return -EBUSY;
2959 
2960 	preempt_disable_notrace();
2961 
2962 	if (atomic_read(&buffer->record_disabled))
2963 		goto out;
2964 
2965 	cpu = raw_smp_processor_id();
2966 
2967 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968 		goto out;
2969 
2970 	cpu_buffer = buffer->buffers[cpu];
2971 
2972 	if (atomic_read(&cpu_buffer->record_disabled))
2973 		goto out;
2974 
2975 	if (length > BUF_MAX_DATA_SIZE)
2976 		goto out;
2977 
2978 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2979 	if (!event)
2980 		goto out;
2981 
2982 	body = rb_event_data(event);
2983 
2984 	memcpy(body, data, length);
2985 
2986 	rb_commit(cpu_buffer, event);
2987 
2988 	rb_wakeups(buffer, cpu_buffer);
2989 
2990 	ret = 0;
2991  out:
2992 	preempt_enable_notrace();
2993 
2994 	return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(ring_buffer_write);
2997 
2998 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2999 {
3000 	struct buffer_page *reader = cpu_buffer->reader_page;
3001 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3002 	struct buffer_page *commit = cpu_buffer->commit_page;
3003 
3004 	/* In case of error, head will be NULL */
3005 	if (unlikely(!head))
3006 		return 1;
3007 
3008 	return reader->read == rb_page_commit(reader) &&
3009 		(commit == reader ||
3010 		 (commit == head &&
3011 		  head->read == rb_page_commit(commit)));
3012 }
3013 
3014 /**
3015  * ring_buffer_record_disable - stop all writes into the buffer
3016  * @buffer: The ring buffer to stop writes to.
3017  *
3018  * This prevents all writes to the buffer. Any attempt to write
3019  * to the buffer after this will fail and return NULL.
3020  *
3021  * The caller should call synchronize_sched() after this.
3022  */
3023 void ring_buffer_record_disable(struct ring_buffer *buffer)
3024 {
3025 	atomic_inc(&buffer->record_disabled);
3026 }
3027 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3028 
3029 /**
3030  * ring_buffer_record_enable - enable writes to the buffer
3031  * @buffer: The ring buffer to enable writes
3032  *
3033  * Note, multiple disables will need the same number of enables
3034  * to truly enable the writing (much like preempt_disable).
3035  */
3036 void ring_buffer_record_enable(struct ring_buffer *buffer)
3037 {
3038 	atomic_dec(&buffer->record_disabled);
3039 }
3040 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3041 
3042 /**
3043  * ring_buffer_record_off - stop all writes into the buffer
3044  * @buffer: The ring buffer to stop writes to.
3045  *
3046  * This prevents all writes to the buffer. Any attempt to write
3047  * to the buffer after this will fail and return NULL.
3048  *
3049  * This is different than ring_buffer_record_disable() as
3050  * it works like an on/off switch, where as the disable() version
3051  * must be paired with a enable().
3052  */
3053 void ring_buffer_record_off(struct ring_buffer *buffer)
3054 {
3055 	unsigned int rd;
3056 	unsigned int new_rd;
3057 
3058 	do {
3059 		rd = atomic_read(&buffer->record_disabled);
3060 		new_rd = rd | RB_BUFFER_OFF;
3061 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3062 }
3063 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3064 
3065 /**
3066  * ring_buffer_record_on - restart writes into the buffer
3067  * @buffer: The ring buffer to start writes to.
3068  *
3069  * This enables all writes to the buffer that was disabled by
3070  * ring_buffer_record_off().
3071  *
3072  * This is different than ring_buffer_record_enable() as
3073  * it works like an on/off switch, where as the enable() version
3074  * must be paired with a disable().
3075  */
3076 void ring_buffer_record_on(struct ring_buffer *buffer)
3077 {
3078 	unsigned int rd;
3079 	unsigned int new_rd;
3080 
3081 	do {
3082 		rd = atomic_read(&buffer->record_disabled);
3083 		new_rd = rd & ~RB_BUFFER_OFF;
3084 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3085 }
3086 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3087 
3088 /**
3089  * ring_buffer_record_is_on - return true if the ring buffer can write
3090  * @buffer: The ring buffer to see if write is enabled
3091  *
3092  * Returns true if the ring buffer is in a state that it accepts writes.
3093  */
3094 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3095 {
3096 	return !atomic_read(&buffer->record_disabled);
3097 }
3098 
3099 /**
3100  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3101  * @buffer: The ring buffer to stop writes to.
3102  * @cpu: The CPU buffer to stop
3103  *
3104  * This prevents all writes to the buffer. Any attempt to write
3105  * to the buffer after this will fail and return NULL.
3106  *
3107  * The caller should call synchronize_sched() after this.
3108  */
3109 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3110 {
3111 	struct ring_buffer_per_cpu *cpu_buffer;
3112 
3113 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3114 		return;
3115 
3116 	cpu_buffer = buffer->buffers[cpu];
3117 	atomic_inc(&cpu_buffer->record_disabled);
3118 }
3119 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3120 
3121 /**
3122  * ring_buffer_record_enable_cpu - enable writes to the buffer
3123  * @buffer: The ring buffer to enable writes
3124  * @cpu: The CPU to enable.
3125  *
3126  * Note, multiple disables will need the same number of enables
3127  * to truly enable the writing (much like preempt_disable).
3128  */
3129 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3130 {
3131 	struct ring_buffer_per_cpu *cpu_buffer;
3132 
3133 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3134 		return;
3135 
3136 	cpu_buffer = buffer->buffers[cpu];
3137 	atomic_dec(&cpu_buffer->record_disabled);
3138 }
3139 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3140 
3141 /*
3142  * The total entries in the ring buffer is the running counter
3143  * of entries entered into the ring buffer, minus the sum of
3144  * the entries read from the ring buffer and the number of
3145  * entries that were overwritten.
3146  */
3147 static inline unsigned long
3148 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3149 {
3150 	return local_read(&cpu_buffer->entries) -
3151 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3152 }
3153 
3154 /**
3155  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3156  * @buffer: The ring buffer
3157  * @cpu: The per CPU buffer to read from.
3158  */
3159 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3160 {
3161 	unsigned long flags;
3162 	struct ring_buffer_per_cpu *cpu_buffer;
3163 	struct buffer_page *bpage;
3164 	u64 ret = 0;
3165 
3166 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3167 		return 0;
3168 
3169 	cpu_buffer = buffer->buffers[cpu];
3170 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3171 	/*
3172 	 * if the tail is on reader_page, oldest time stamp is on the reader
3173 	 * page
3174 	 */
3175 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3176 		bpage = cpu_buffer->reader_page;
3177 	else
3178 		bpage = rb_set_head_page(cpu_buffer);
3179 	if (bpage)
3180 		ret = bpage->page->time_stamp;
3181 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3182 
3183 	return ret;
3184 }
3185 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3186 
3187 /**
3188  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3189  * @buffer: The ring buffer
3190  * @cpu: The per CPU buffer to read from.
3191  */
3192 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3193 {
3194 	struct ring_buffer_per_cpu *cpu_buffer;
3195 	unsigned long ret;
3196 
3197 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198 		return 0;
3199 
3200 	cpu_buffer = buffer->buffers[cpu];
3201 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3202 
3203 	return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3206 
3207 /**
3208  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3209  * @buffer: The ring buffer
3210  * @cpu: The per CPU buffer to get the entries from.
3211  */
3212 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3213 {
3214 	struct ring_buffer_per_cpu *cpu_buffer;
3215 
3216 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3217 		return 0;
3218 
3219 	cpu_buffer = buffer->buffers[cpu];
3220 
3221 	return rb_num_of_entries(cpu_buffer);
3222 }
3223 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3224 
3225 /**
3226  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3227  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3228  * @buffer: The ring buffer
3229  * @cpu: The per CPU buffer to get the number of overruns from
3230  */
3231 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3232 {
3233 	struct ring_buffer_per_cpu *cpu_buffer;
3234 	unsigned long ret;
3235 
3236 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3237 		return 0;
3238 
3239 	cpu_buffer = buffer->buffers[cpu];
3240 	ret = local_read(&cpu_buffer->overrun);
3241 
3242 	return ret;
3243 }
3244 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3245 
3246 /**
3247  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3248  * commits failing due to the buffer wrapping around while there are uncommitted
3249  * events, such as during an interrupt storm.
3250  * @buffer: The ring buffer
3251  * @cpu: The per CPU buffer to get the number of overruns from
3252  */
3253 unsigned long
3254 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3255 {
3256 	struct ring_buffer_per_cpu *cpu_buffer;
3257 	unsigned long ret;
3258 
3259 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3260 		return 0;
3261 
3262 	cpu_buffer = buffer->buffers[cpu];
3263 	ret = local_read(&cpu_buffer->commit_overrun);
3264 
3265 	return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3268 
3269 /**
3270  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3271  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3272  * @buffer: The ring buffer
3273  * @cpu: The per CPU buffer to get the number of overruns from
3274  */
3275 unsigned long
3276 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278 	struct ring_buffer_per_cpu *cpu_buffer;
3279 	unsigned long ret;
3280 
3281 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282 		return 0;
3283 
3284 	cpu_buffer = buffer->buffers[cpu];
3285 	ret = local_read(&cpu_buffer->dropped_events);
3286 
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3290 
3291 /**
3292  * ring_buffer_read_events_cpu - get the number of events successfully read
3293  * @buffer: The ring buffer
3294  * @cpu: The per CPU buffer to get the number of events read
3295  */
3296 unsigned long
3297 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3298 {
3299 	struct ring_buffer_per_cpu *cpu_buffer;
3300 
3301 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302 		return 0;
3303 
3304 	cpu_buffer = buffer->buffers[cpu];
3305 	return cpu_buffer->read;
3306 }
3307 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3308 
3309 /**
3310  * ring_buffer_entries - get the number of entries in a buffer
3311  * @buffer: The ring buffer
3312  *
3313  * Returns the total number of entries in the ring buffer
3314  * (all CPU entries)
3315  */
3316 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3317 {
3318 	struct ring_buffer_per_cpu *cpu_buffer;
3319 	unsigned long entries = 0;
3320 	int cpu;
3321 
3322 	/* if you care about this being correct, lock the buffer */
3323 	for_each_buffer_cpu(buffer, cpu) {
3324 		cpu_buffer = buffer->buffers[cpu];
3325 		entries += rb_num_of_entries(cpu_buffer);
3326 	}
3327 
3328 	return entries;
3329 }
3330 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3331 
3332 /**
3333  * ring_buffer_overruns - get the number of overruns in buffer
3334  * @buffer: The ring buffer
3335  *
3336  * Returns the total number of overruns in the ring buffer
3337  * (all CPU entries)
3338  */
3339 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3340 {
3341 	struct ring_buffer_per_cpu *cpu_buffer;
3342 	unsigned long overruns = 0;
3343 	int cpu;
3344 
3345 	/* if you care about this being correct, lock the buffer */
3346 	for_each_buffer_cpu(buffer, cpu) {
3347 		cpu_buffer = buffer->buffers[cpu];
3348 		overruns += local_read(&cpu_buffer->overrun);
3349 	}
3350 
3351 	return overruns;
3352 }
3353 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3354 
3355 static void rb_iter_reset(struct ring_buffer_iter *iter)
3356 {
3357 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3358 
3359 	/* Iterator usage is expected to have record disabled */
3360 	if (list_empty(&cpu_buffer->reader_page->list)) {
3361 		iter->head_page = rb_set_head_page(cpu_buffer);
3362 		if (unlikely(!iter->head_page))
3363 			return;
3364 		iter->head = iter->head_page->read;
3365 	} else {
3366 		iter->head_page = cpu_buffer->reader_page;
3367 		iter->head = cpu_buffer->reader_page->read;
3368 	}
3369 	if (iter->head)
3370 		iter->read_stamp = cpu_buffer->read_stamp;
3371 	else
3372 		iter->read_stamp = iter->head_page->page->time_stamp;
3373 	iter->cache_reader_page = cpu_buffer->reader_page;
3374 	iter->cache_read = cpu_buffer->read;
3375 }
3376 
3377 /**
3378  * ring_buffer_iter_reset - reset an iterator
3379  * @iter: The iterator to reset
3380  *
3381  * Resets the iterator, so that it will start from the beginning
3382  * again.
3383  */
3384 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3385 {
3386 	struct ring_buffer_per_cpu *cpu_buffer;
3387 	unsigned long flags;
3388 
3389 	if (!iter)
3390 		return;
3391 
3392 	cpu_buffer = iter->cpu_buffer;
3393 
3394 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3395 	rb_iter_reset(iter);
3396 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3399 
3400 /**
3401  * ring_buffer_iter_empty - check if an iterator has no more to read
3402  * @iter: The iterator to check
3403  */
3404 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3405 {
3406 	struct ring_buffer_per_cpu *cpu_buffer;
3407 
3408 	cpu_buffer = iter->cpu_buffer;
3409 
3410 	return iter->head_page == cpu_buffer->commit_page &&
3411 		iter->head == rb_commit_index(cpu_buffer);
3412 }
3413 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3414 
3415 static void
3416 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3417 		     struct ring_buffer_event *event)
3418 {
3419 	u64 delta;
3420 
3421 	switch (event->type_len) {
3422 	case RINGBUF_TYPE_PADDING:
3423 		return;
3424 
3425 	case RINGBUF_TYPE_TIME_EXTEND:
3426 		delta = event->array[0];
3427 		delta <<= TS_SHIFT;
3428 		delta += event->time_delta;
3429 		cpu_buffer->read_stamp += delta;
3430 		return;
3431 
3432 	case RINGBUF_TYPE_TIME_STAMP:
3433 		/* FIXME: not implemented */
3434 		return;
3435 
3436 	case RINGBUF_TYPE_DATA:
3437 		cpu_buffer->read_stamp += event->time_delta;
3438 		return;
3439 
3440 	default:
3441 		BUG();
3442 	}
3443 	return;
3444 }
3445 
3446 static void
3447 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3448 			  struct ring_buffer_event *event)
3449 {
3450 	u64 delta;
3451 
3452 	switch (event->type_len) {
3453 	case RINGBUF_TYPE_PADDING:
3454 		return;
3455 
3456 	case RINGBUF_TYPE_TIME_EXTEND:
3457 		delta = event->array[0];
3458 		delta <<= TS_SHIFT;
3459 		delta += event->time_delta;
3460 		iter->read_stamp += delta;
3461 		return;
3462 
3463 	case RINGBUF_TYPE_TIME_STAMP:
3464 		/* FIXME: not implemented */
3465 		return;
3466 
3467 	case RINGBUF_TYPE_DATA:
3468 		iter->read_stamp += event->time_delta;
3469 		return;
3470 
3471 	default:
3472 		BUG();
3473 	}
3474 	return;
3475 }
3476 
3477 static struct buffer_page *
3478 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3479 {
3480 	struct buffer_page *reader = NULL;
3481 	unsigned long overwrite;
3482 	unsigned long flags;
3483 	int nr_loops = 0;
3484 	int ret;
3485 
3486 	local_irq_save(flags);
3487 	arch_spin_lock(&cpu_buffer->lock);
3488 
3489  again:
3490 	/*
3491 	 * This should normally only loop twice. But because the
3492 	 * start of the reader inserts an empty page, it causes
3493 	 * a case where we will loop three times. There should be no
3494 	 * reason to loop four times (that I know of).
3495 	 */
3496 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3497 		reader = NULL;
3498 		goto out;
3499 	}
3500 
3501 	reader = cpu_buffer->reader_page;
3502 
3503 	/* If there's more to read, return this page */
3504 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3505 		goto out;
3506 
3507 	/* Never should we have an index greater than the size */
3508 	if (RB_WARN_ON(cpu_buffer,
3509 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3510 		goto out;
3511 
3512 	/* check if we caught up to the tail */
3513 	reader = NULL;
3514 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3515 		goto out;
3516 
3517 	/* Don't bother swapping if the ring buffer is empty */
3518 	if (rb_num_of_entries(cpu_buffer) == 0)
3519 		goto out;
3520 
3521 	/*
3522 	 * Reset the reader page to size zero.
3523 	 */
3524 	local_set(&cpu_buffer->reader_page->write, 0);
3525 	local_set(&cpu_buffer->reader_page->entries, 0);
3526 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3527 	cpu_buffer->reader_page->real_end = 0;
3528 
3529  spin:
3530 	/*
3531 	 * Splice the empty reader page into the list around the head.
3532 	 */
3533 	reader = rb_set_head_page(cpu_buffer);
3534 	if (!reader)
3535 		goto out;
3536 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3537 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3538 
3539 	/*
3540 	 * cpu_buffer->pages just needs to point to the buffer, it
3541 	 *  has no specific buffer page to point to. Lets move it out
3542 	 *  of our way so we don't accidentally swap it.
3543 	 */
3544 	cpu_buffer->pages = reader->list.prev;
3545 
3546 	/* The reader page will be pointing to the new head */
3547 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3548 
3549 	/*
3550 	 * We want to make sure we read the overruns after we set up our
3551 	 * pointers to the next object. The writer side does a
3552 	 * cmpxchg to cross pages which acts as the mb on the writer
3553 	 * side. Note, the reader will constantly fail the swap
3554 	 * while the writer is updating the pointers, so this
3555 	 * guarantees that the overwrite recorded here is the one we
3556 	 * want to compare with the last_overrun.
3557 	 */
3558 	smp_mb();
3559 	overwrite = local_read(&(cpu_buffer->overrun));
3560 
3561 	/*
3562 	 * Here's the tricky part.
3563 	 *
3564 	 * We need to move the pointer past the header page.
3565 	 * But we can only do that if a writer is not currently
3566 	 * moving it. The page before the header page has the
3567 	 * flag bit '1' set if it is pointing to the page we want.
3568 	 * but if the writer is in the process of moving it
3569 	 * than it will be '2' or already moved '0'.
3570 	 */
3571 
3572 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3573 
3574 	/*
3575 	 * If we did not convert it, then we must try again.
3576 	 */
3577 	if (!ret)
3578 		goto spin;
3579 
3580 	/*
3581 	 * Yeah! We succeeded in replacing the page.
3582 	 *
3583 	 * Now make the new head point back to the reader page.
3584 	 */
3585 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3586 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3587 
3588 	/* Finally update the reader page to the new head */
3589 	cpu_buffer->reader_page = reader;
3590 	rb_reset_reader_page(cpu_buffer);
3591 
3592 	if (overwrite != cpu_buffer->last_overrun) {
3593 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3594 		cpu_buffer->last_overrun = overwrite;
3595 	}
3596 
3597 	goto again;
3598 
3599  out:
3600 	arch_spin_unlock(&cpu_buffer->lock);
3601 	local_irq_restore(flags);
3602 
3603 	return reader;
3604 }
3605 
3606 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3607 {
3608 	struct ring_buffer_event *event;
3609 	struct buffer_page *reader;
3610 	unsigned length;
3611 
3612 	reader = rb_get_reader_page(cpu_buffer);
3613 
3614 	/* This function should not be called when buffer is empty */
3615 	if (RB_WARN_ON(cpu_buffer, !reader))
3616 		return;
3617 
3618 	event = rb_reader_event(cpu_buffer);
3619 
3620 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3621 		cpu_buffer->read++;
3622 
3623 	rb_update_read_stamp(cpu_buffer, event);
3624 
3625 	length = rb_event_length(event);
3626 	cpu_buffer->reader_page->read += length;
3627 }
3628 
3629 static void rb_advance_iter(struct ring_buffer_iter *iter)
3630 {
3631 	struct ring_buffer_per_cpu *cpu_buffer;
3632 	struct ring_buffer_event *event;
3633 	unsigned length;
3634 
3635 	cpu_buffer = iter->cpu_buffer;
3636 
3637 	/*
3638 	 * Check if we are at the end of the buffer.
3639 	 */
3640 	if (iter->head >= rb_page_size(iter->head_page)) {
3641 		/* discarded commits can make the page empty */
3642 		if (iter->head_page == cpu_buffer->commit_page)
3643 			return;
3644 		rb_inc_iter(iter);
3645 		return;
3646 	}
3647 
3648 	event = rb_iter_head_event(iter);
3649 
3650 	length = rb_event_length(event);
3651 
3652 	/*
3653 	 * This should not be called to advance the header if we are
3654 	 * at the tail of the buffer.
3655 	 */
3656 	if (RB_WARN_ON(cpu_buffer,
3657 		       (iter->head_page == cpu_buffer->commit_page) &&
3658 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3659 		return;
3660 
3661 	rb_update_iter_read_stamp(iter, event);
3662 
3663 	iter->head += length;
3664 
3665 	/* check for end of page padding */
3666 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3667 	    (iter->head_page != cpu_buffer->commit_page))
3668 		rb_inc_iter(iter);
3669 }
3670 
3671 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3672 {
3673 	return cpu_buffer->lost_events;
3674 }
3675 
3676 static struct ring_buffer_event *
3677 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3678 	       unsigned long *lost_events)
3679 {
3680 	struct ring_buffer_event *event;
3681 	struct buffer_page *reader;
3682 	int nr_loops = 0;
3683 
3684  again:
3685 	/*
3686 	 * We repeat when a time extend is encountered.
3687 	 * Since the time extend is always attached to a data event,
3688 	 * we should never loop more than once.
3689 	 * (We never hit the following condition more than twice).
3690 	 */
3691 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3692 		return NULL;
3693 
3694 	reader = rb_get_reader_page(cpu_buffer);
3695 	if (!reader)
3696 		return NULL;
3697 
3698 	event = rb_reader_event(cpu_buffer);
3699 
3700 	switch (event->type_len) {
3701 	case RINGBUF_TYPE_PADDING:
3702 		if (rb_null_event(event))
3703 			RB_WARN_ON(cpu_buffer, 1);
3704 		/*
3705 		 * Because the writer could be discarding every
3706 		 * event it creates (which would probably be bad)
3707 		 * if we were to go back to "again" then we may never
3708 		 * catch up, and will trigger the warn on, or lock
3709 		 * the box. Return the padding, and we will release
3710 		 * the current locks, and try again.
3711 		 */
3712 		return event;
3713 
3714 	case RINGBUF_TYPE_TIME_EXTEND:
3715 		/* Internal data, OK to advance */
3716 		rb_advance_reader(cpu_buffer);
3717 		goto again;
3718 
3719 	case RINGBUF_TYPE_TIME_STAMP:
3720 		/* FIXME: not implemented */
3721 		rb_advance_reader(cpu_buffer);
3722 		goto again;
3723 
3724 	case RINGBUF_TYPE_DATA:
3725 		if (ts) {
3726 			*ts = cpu_buffer->read_stamp + event->time_delta;
3727 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3728 							 cpu_buffer->cpu, ts);
3729 		}
3730 		if (lost_events)
3731 			*lost_events = rb_lost_events(cpu_buffer);
3732 		return event;
3733 
3734 	default:
3735 		BUG();
3736 	}
3737 
3738 	return NULL;
3739 }
3740 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3741 
3742 static struct ring_buffer_event *
3743 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3744 {
3745 	struct ring_buffer *buffer;
3746 	struct ring_buffer_per_cpu *cpu_buffer;
3747 	struct ring_buffer_event *event;
3748 	int nr_loops = 0;
3749 
3750 	cpu_buffer = iter->cpu_buffer;
3751 	buffer = cpu_buffer->buffer;
3752 
3753 	/*
3754 	 * Check if someone performed a consuming read to
3755 	 * the buffer. A consuming read invalidates the iterator
3756 	 * and we need to reset the iterator in this case.
3757 	 */
3758 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3759 		     iter->cache_reader_page != cpu_buffer->reader_page))
3760 		rb_iter_reset(iter);
3761 
3762  again:
3763 	if (ring_buffer_iter_empty(iter))
3764 		return NULL;
3765 
3766 	/*
3767 	 * We repeat when a time extend is encountered.
3768 	 * Since the time extend is always attached to a data event,
3769 	 * we should never loop more than once.
3770 	 * (We never hit the following condition more than twice).
3771 	 */
3772 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3773 		return NULL;
3774 
3775 	if (rb_per_cpu_empty(cpu_buffer))
3776 		return NULL;
3777 
3778 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3779 		rb_inc_iter(iter);
3780 		goto again;
3781 	}
3782 
3783 	event = rb_iter_head_event(iter);
3784 
3785 	switch (event->type_len) {
3786 	case RINGBUF_TYPE_PADDING:
3787 		if (rb_null_event(event)) {
3788 			rb_inc_iter(iter);
3789 			goto again;
3790 		}
3791 		rb_advance_iter(iter);
3792 		return event;
3793 
3794 	case RINGBUF_TYPE_TIME_EXTEND:
3795 		/* Internal data, OK to advance */
3796 		rb_advance_iter(iter);
3797 		goto again;
3798 
3799 	case RINGBUF_TYPE_TIME_STAMP:
3800 		/* FIXME: not implemented */
3801 		rb_advance_iter(iter);
3802 		goto again;
3803 
3804 	case RINGBUF_TYPE_DATA:
3805 		if (ts) {
3806 			*ts = iter->read_stamp + event->time_delta;
3807 			ring_buffer_normalize_time_stamp(buffer,
3808 							 cpu_buffer->cpu, ts);
3809 		}
3810 		return event;
3811 
3812 	default:
3813 		BUG();
3814 	}
3815 
3816 	return NULL;
3817 }
3818 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3819 
3820 static inline int rb_ok_to_lock(void)
3821 {
3822 	/*
3823 	 * If an NMI die dumps out the content of the ring buffer
3824 	 * do not grab locks. We also permanently disable the ring
3825 	 * buffer too. A one time deal is all you get from reading
3826 	 * the ring buffer from an NMI.
3827 	 */
3828 	if (likely(!in_nmi()))
3829 		return 1;
3830 
3831 	tracing_off_permanent();
3832 	return 0;
3833 }
3834 
3835 /**
3836  * ring_buffer_peek - peek at the next event to be read
3837  * @buffer: The ring buffer to read
3838  * @cpu: The cpu to peak at
3839  * @ts: The timestamp counter of this event.
3840  * @lost_events: a variable to store if events were lost (may be NULL)
3841  *
3842  * This will return the event that will be read next, but does
3843  * not consume the data.
3844  */
3845 struct ring_buffer_event *
3846 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3847 		 unsigned long *lost_events)
3848 {
3849 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3850 	struct ring_buffer_event *event;
3851 	unsigned long flags;
3852 	int dolock;
3853 
3854 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3855 		return NULL;
3856 
3857 	dolock = rb_ok_to_lock();
3858  again:
3859 	local_irq_save(flags);
3860 	if (dolock)
3861 		raw_spin_lock(&cpu_buffer->reader_lock);
3862 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3863 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3864 		rb_advance_reader(cpu_buffer);
3865 	if (dolock)
3866 		raw_spin_unlock(&cpu_buffer->reader_lock);
3867 	local_irq_restore(flags);
3868 
3869 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3870 		goto again;
3871 
3872 	return event;
3873 }
3874 
3875 /**
3876  * ring_buffer_iter_peek - peek at the next event to be read
3877  * @iter: The ring buffer iterator
3878  * @ts: The timestamp counter of this event.
3879  *
3880  * This will return the event that will be read next, but does
3881  * not increment the iterator.
3882  */
3883 struct ring_buffer_event *
3884 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3885 {
3886 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3887 	struct ring_buffer_event *event;
3888 	unsigned long flags;
3889 
3890  again:
3891 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3892 	event = rb_iter_peek(iter, ts);
3893 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3894 
3895 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896 		goto again;
3897 
3898 	return event;
3899 }
3900 
3901 /**
3902  * ring_buffer_consume - return an event and consume it
3903  * @buffer: The ring buffer to get the next event from
3904  * @cpu: the cpu to read the buffer from
3905  * @ts: a variable to store the timestamp (may be NULL)
3906  * @lost_events: a variable to store if events were lost (may be NULL)
3907  *
3908  * Returns the next event in the ring buffer, and that event is consumed.
3909  * Meaning, that sequential reads will keep returning a different event,
3910  * and eventually empty the ring buffer if the producer is slower.
3911  */
3912 struct ring_buffer_event *
3913 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3914 		    unsigned long *lost_events)
3915 {
3916 	struct ring_buffer_per_cpu *cpu_buffer;
3917 	struct ring_buffer_event *event = NULL;
3918 	unsigned long flags;
3919 	int dolock;
3920 
3921 	dolock = rb_ok_to_lock();
3922 
3923  again:
3924 	/* might be called in atomic */
3925 	preempt_disable();
3926 
3927 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3928 		goto out;
3929 
3930 	cpu_buffer = buffer->buffers[cpu];
3931 	local_irq_save(flags);
3932 	if (dolock)
3933 		raw_spin_lock(&cpu_buffer->reader_lock);
3934 
3935 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3936 	if (event) {
3937 		cpu_buffer->lost_events = 0;
3938 		rb_advance_reader(cpu_buffer);
3939 	}
3940 
3941 	if (dolock)
3942 		raw_spin_unlock(&cpu_buffer->reader_lock);
3943 	local_irq_restore(flags);
3944 
3945  out:
3946 	preempt_enable();
3947 
3948 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3949 		goto again;
3950 
3951 	return event;
3952 }
3953 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3954 
3955 /**
3956  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3957  * @buffer: The ring buffer to read from
3958  * @cpu: The cpu buffer to iterate over
3959  *
3960  * This performs the initial preparations necessary to iterate
3961  * through the buffer.  Memory is allocated, buffer recording
3962  * is disabled, and the iterator pointer is returned to the caller.
3963  *
3964  * Disabling buffer recordng prevents the reading from being
3965  * corrupted. This is not a consuming read, so a producer is not
3966  * expected.
3967  *
3968  * After a sequence of ring_buffer_read_prepare calls, the user is
3969  * expected to make at least one call to ring_buffer_read_prepare_sync.
3970  * Afterwards, ring_buffer_read_start is invoked to get things going
3971  * for real.
3972  *
3973  * This overall must be paired with ring_buffer_read_finish.
3974  */
3975 struct ring_buffer_iter *
3976 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3977 {
3978 	struct ring_buffer_per_cpu *cpu_buffer;
3979 	struct ring_buffer_iter *iter;
3980 
3981 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982 		return NULL;
3983 
3984 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3985 	if (!iter)
3986 		return NULL;
3987 
3988 	cpu_buffer = buffer->buffers[cpu];
3989 
3990 	iter->cpu_buffer = cpu_buffer;
3991 
3992 	atomic_inc(&buffer->resize_disabled);
3993 	atomic_inc(&cpu_buffer->record_disabled);
3994 
3995 	return iter;
3996 }
3997 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3998 
3999 /**
4000  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4001  *
4002  * All previously invoked ring_buffer_read_prepare calls to prepare
4003  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4004  * calls on those iterators are allowed.
4005  */
4006 void
4007 ring_buffer_read_prepare_sync(void)
4008 {
4009 	synchronize_sched();
4010 }
4011 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4012 
4013 /**
4014  * ring_buffer_read_start - start a non consuming read of the buffer
4015  * @iter: The iterator returned by ring_buffer_read_prepare
4016  *
4017  * This finalizes the startup of an iteration through the buffer.
4018  * The iterator comes from a call to ring_buffer_read_prepare and
4019  * an intervening ring_buffer_read_prepare_sync must have been
4020  * performed.
4021  *
4022  * Must be paired with ring_buffer_read_finish.
4023  */
4024 void
4025 ring_buffer_read_start(struct ring_buffer_iter *iter)
4026 {
4027 	struct ring_buffer_per_cpu *cpu_buffer;
4028 	unsigned long flags;
4029 
4030 	if (!iter)
4031 		return;
4032 
4033 	cpu_buffer = iter->cpu_buffer;
4034 
4035 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4036 	arch_spin_lock(&cpu_buffer->lock);
4037 	rb_iter_reset(iter);
4038 	arch_spin_unlock(&cpu_buffer->lock);
4039 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4042 
4043 /**
4044  * ring_buffer_read_finish - finish reading the iterator of the buffer
4045  * @iter: The iterator retrieved by ring_buffer_start
4046  *
4047  * This re-enables the recording to the buffer, and frees the
4048  * iterator.
4049  */
4050 void
4051 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4052 {
4053 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4054 	unsigned long flags;
4055 
4056 	/*
4057 	 * Ring buffer is disabled from recording, here's a good place
4058 	 * to check the integrity of the ring buffer.
4059 	 * Must prevent readers from trying to read, as the check
4060 	 * clears the HEAD page and readers require it.
4061 	 */
4062 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4063 	rb_check_pages(cpu_buffer);
4064 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4065 
4066 	atomic_dec(&cpu_buffer->record_disabled);
4067 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4068 	kfree(iter);
4069 }
4070 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4071 
4072 /**
4073  * ring_buffer_read - read the next item in the ring buffer by the iterator
4074  * @iter: The ring buffer iterator
4075  * @ts: The time stamp of the event read.
4076  *
4077  * This reads the next event in the ring buffer and increments the iterator.
4078  */
4079 struct ring_buffer_event *
4080 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4081 {
4082 	struct ring_buffer_event *event;
4083 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4084 	unsigned long flags;
4085 
4086 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4087  again:
4088 	event = rb_iter_peek(iter, ts);
4089 	if (!event)
4090 		goto out;
4091 
4092 	if (event->type_len == RINGBUF_TYPE_PADDING)
4093 		goto again;
4094 
4095 	rb_advance_iter(iter);
4096  out:
4097 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4098 
4099 	return event;
4100 }
4101 EXPORT_SYMBOL_GPL(ring_buffer_read);
4102 
4103 /**
4104  * ring_buffer_size - return the size of the ring buffer (in bytes)
4105  * @buffer: The ring buffer.
4106  */
4107 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4108 {
4109 	/*
4110 	 * Earlier, this method returned
4111 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4112 	 * Since the nr_pages field is now removed, we have converted this to
4113 	 * return the per cpu buffer value.
4114 	 */
4115 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4116 		return 0;
4117 
4118 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4119 }
4120 EXPORT_SYMBOL_GPL(ring_buffer_size);
4121 
4122 static void
4123 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4124 {
4125 	rb_head_page_deactivate(cpu_buffer);
4126 
4127 	cpu_buffer->head_page
4128 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4129 	local_set(&cpu_buffer->head_page->write, 0);
4130 	local_set(&cpu_buffer->head_page->entries, 0);
4131 	local_set(&cpu_buffer->head_page->page->commit, 0);
4132 
4133 	cpu_buffer->head_page->read = 0;
4134 
4135 	cpu_buffer->tail_page = cpu_buffer->head_page;
4136 	cpu_buffer->commit_page = cpu_buffer->head_page;
4137 
4138 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4139 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4140 	local_set(&cpu_buffer->reader_page->write, 0);
4141 	local_set(&cpu_buffer->reader_page->entries, 0);
4142 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4143 	cpu_buffer->reader_page->read = 0;
4144 
4145 	local_set(&cpu_buffer->entries_bytes, 0);
4146 	local_set(&cpu_buffer->overrun, 0);
4147 	local_set(&cpu_buffer->commit_overrun, 0);
4148 	local_set(&cpu_buffer->dropped_events, 0);
4149 	local_set(&cpu_buffer->entries, 0);
4150 	local_set(&cpu_buffer->committing, 0);
4151 	local_set(&cpu_buffer->commits, 0);
4152 	cpu_buffer->read = 0;
4153 	cpu_buffer->read_bytes = 0;
4154 
4155 	cpu_buffer->write_stamp = 0;
4156 	cpu_buffer->read_stamp = 0;
4157 
4158 	cpu_buffer->lost_events = 0;
4159 	cpu_buffer->last_overrun = 0;
4160 
4161 	rb_head_page_activate(cpu_buffer);
4162 }
4163 
4164 /**
4165  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4166  * @buffer: The ring buffer to reset a per cpu buffer of
4167  * @cpu: The CPU buffer to be reset
4168  */
4169 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4170 {
4171 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4172 	unsigned long flags;
4173 
4174 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4175 		return;
4176 
4177 	atomic_inc(&buffer->resize_disabled);
4178 	atomic_inc(&cpu_buffer->record_disabled);
4179 
4180 	/* Make sure all commits have finished */
4181 	synchronize_sched();
4182 
4183 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4184 
4185 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4186 		goto out;
4187 
4188 	arch_spin_lock(&cpu_buffer->lock);
4189 
4190 	rb_reset_cpu(cpu_buffer);
4191 
4192 	arch_spin_unlock(&cpu_buffer->lock);
4193 
4194  out:
4195 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4196 
4197 	atomic_dec(&cpu_buffer->record_disabled);
4198 	atomic_dec(&buffer->resize_disabled);
4199 }
4200 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4201 
4202 /**
4203  * ring_buffer_reset - reset a ring buffer
4204  * @buffer: The ring buffer to reset all cpu buffers
4205  */
4206 void ring_buffer_reset(struct ring_buffer *buffer)
4207 {
4208 	int cpu;
4209 
4210 	for_each_buffer_cpu(buffer, cpu)
4211 		ring_buffer_reset_cpu(buffer, cpu);
4212 }
4213 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4214 
4215 /**
4216  * rind_buffer_empty - is the ring buffer empty?
4217  * @buffer: The ring buffer to test
4218  */
4219 int ring_buffer_empty(struct ring_buffer *buffer)
4220 {
4221 	struct ring_buffer_per_cpu *cpu_buffer;
4222 	unsigned long flags;
4223 	int dolock;
4224 	int cpu;
4225 	int ret;
4226 
4227 	dolock = rb_ok_to_lock();
4228 
4229 	/* yes this is racy, but if you don't like the race, lock the buffer */
4230 	for_each_buffer_cpu(buffer, cpu) {
4231 		cpu_buffer = buffer->buffers[cpu];
4232 		local_irq_save(flags);
4233 		if (dolock)
4234 			raw_spin_lock(&cpu_buffer->reader_lock);
4235 		ret = rb_per_cpu_empty(cpu_buffer);
4236 		if (dolock)
4237 			raw_spin_unlock(&cpu_buffer->reader_lock);
4238 		local_irq_restore(flags);
4239 
4240 		if (!ret)
4241 			return 0;
4242 	}
4243 
4244 	return 1;
4245 }
4246 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4247 
4248 /**
4249  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4250  * @buffer: The ring buffer
4251  * @cpu: The CPU buffer to test
4252  */
4253 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4254 {
4255 	struct ring_buffer_per_cpu *cpu_buffer;
4256 	unsigned long flags;
4257 	int dolock;
4258 	int ret;
4259 
4260 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4261 		return 1;
4262 
4263 	dolock = rb_ok_to_lock();
4264 
4265 	cpu_buffer = buffer->buffers[cpu];
4266 	local_irq_save(flags);
4267 	if (dolock)
4268 		raw_spin_lock(&cpu_buffer->reader_lock);
4269 	ret = rb_per_cpu_empty(cpu_buffer);
4270 	if (dolock)
4271 		raw_spin_unlock(&cpu_buffer->reader_lock);
4272 	local_irq_restore(flags);
4273 
4274 	return ret;
4275 }
4276 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4277 
4278 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4279 /**
4280  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4281  * @buffer_a: One buffer to swap with
4282  * @buffer_b: The other buffer to swap with
4283  *
4284  * This function is useful for tracers that want to take a "snapshot"
4285  * of a CPU buffer and has another back up buffer lying around.
4286  * it is expected that the tracer handles the cpu buffer not being
4287  * used at the moment.
4288  */
4289 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4290 			 struct ring_buffer *buffer_b, int cpu)
4291 {
4292 	struct ring_buffer_per_cpu *cpu_buffer_a;
4293 	struct ring_buffer_per_cpu *cpu_buffer_b;
4294 	int ret = -EINVAL;
4295 
4296 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4297 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4298 		goto out;
4299 
4300 	cpu_buffer_a = buffer_a->buffers[cpu];
4301 	cpu_buffer_b = buffer_b->buffers[cpu];
4302 
4303 	/* At least make sure the two buffers are somewhat the same */
4304 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4305 		goto out;
4306 
4307 	ret = -EAGAIN;
4308 
4309 	if (ring_buffer_flags != RB_BUFFERS_ON)
4310 		goto out;
4311 
4312 	if (atomic_read(&buffer_a->record_disabled))
4313 		goto out;
4314 
4315 	if (atomic_read(&buffer_b->record_disabled))
4316 		goto out;
4317 
4318 	if (atomic_read(&cpu_buffer_a->record_disabled))
4319 		goto out;
4320 
4321 	if (atomic_read(&cpu_buffer_b->record_disabled))
4322 		goto out;
4323 
4324 	/*
4325 	 * We can't do a synchronize_sched here because this
4326 	 * function can be called in atomic context.
4327 	 * Normally this will be called from the same CPU as cpu.
4328 	 * If not it's up to the caller to protect this.
4329 	 */
4330 	atomic_inc(&cpu_buffer_a->record_disabled);
4331 	atomic_inc(&cpu_buffer_b->record_disabled);
4332 
4333 	ret = -EBUSY;
4334 	if (local_read(&cpu_buffer_a->committing))
4335 		goto out_dec;
4336 	if (local_read(&cpu_buffer_b->committing))
4337 		goto out_dec;
4338 
4339 	buffer_a->buffers[cpu] = cpu_buffer_b;
4340 	buffer_b->buffers[cpu] = cpu_buffer_a;
4341 
4342 	cpu_buffer_b->buffer = buffer_a;
4343 	cpu_buffer_a->buffer = buffer_b;
4344 
4345 	ret = 0;
4346 
4347 out_dec:
4348 	atomic_dec(&cpu_buffer_a->record_disabled);
4349 	atomic_dec(&cpu_buffer_b->record_disabled);
4350 out:
4351 	return ret;
4352 }
4353 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4354 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4355 
4356 /**
4357  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4358  * @buffer: the buffer to allocate for.
4359  * @cpu: the cpu buffer to allocate.
4360  *
4361  * This function is used in conjunction with ring_buffer_read_page.
4362  * When reading a full page from the ring buffer, these functions
4363  * can be used to speed up the process. The calling function should
4364  * allocate a few pages first with this function. Then when it
4365  * needs to get pages from the ring buffer, it passes the result
4366  * of this function into ring_buffer_read_page, which will swap
4367  * the page that was allocated, with the read page of the buffer.
4368  *
4369  * Returns:
4370  *  The page allocated, or NULL on error.
4371  */
4372 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4373 {
4374 	struct buffer_data_page *bpage;
4375 	struct page *page;
4376 
4377 	page = alloc_pages_node(cpu_to_node(cpu),
4378 				GFP_KERNEL | __GFP_NORETRY, 0);
4379 	if (!page)
4380 		return NULL;
4381 
4382 	bpage = page_address(page);
4383 
4384 	rb_init_page(bpage);
4385 
4386 	return bpage;
4387 }
4388 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4389 
4390 /**
4391  * ring_buffer_free_read_page - free an allocated read page
4392  * @buffer: the buffer the page was allocate for
4393  * @data: the page to free
4394  *
4395  * Free a page allocated from ring_buffer_alloc_read_page.
4396  */
4397 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4398 {
4399 	free_page((unsigned long)data);
4400 }
4401 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4402 
4403 /**
4404  * ring_buffer_read_page - extract a page from the ring buffer
4405  * @buffer: buffer to extract from
4406  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4407  * @len: amount to extract
4408  * @cpu: the cpu of the buffer to extract
4409  * @full: should the extraction only happen when the page is full.
4410  *
4411  * This function will pull out a page from the ring buffer and consume it.
4412  * @data_page must be the address of the variable that was returned
4413  * from ring_buffer_alloc_read_page. This is because the page might be used
4414  * to swap with a page in the ring buffer.
4415  *
4416  * for example:
4417  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4418  *	if (!rpage)
4419  *		return error;
4420  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4421  *	if (ret >= 0)
4422  *		process_page(rpage, ret);
4423  *
4424  * When @full is set, the function will not return true unless
4425  * the writer is off the reader page.
4426  *
4427  * Note: it is up to the calling functions to handle sleeps and wakeups.
4428  *  The ring buffer can be used anywhere in the kernel and can not
4429  *  blindly call wake_up. The layer that uses the ring buffer must be
4430  *  responsible for that.
4431  *
4432  * Returns:
4433  *  >=0 if data has been transferred, returns the offset of consumed data.
4434  *  <0 if no data has been transferred.
4435  */
4436 int ring_buffer_read_page(struct ring_buffer *buffer,
4437 			  void **data_page, size_t len, int cpu, int full)
4438 {
4439 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4440 	struct ring_buffer_event *event;
4441 	struct buffer_data_page *bpage;
4442 	struct buffer_page *reader;
4443 	unsigned long missed_events;
4444 	unsigned long flags;
4445 	unsigned int commit;
4446 	unsigned int read;
4447 	u64 save_timestamp;
4448 	int ret = -1;
4449 
4450 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4451 		goto out;
4452 
4453 	/*
4454 	 * If len is not big enough to hold the page header, then
4455 	 * we can not copy anything.
4456 	 */
4457 	if (len <= BUF_PAGE_HDR_SIZE)
4458 		goto out;
4459 
4460 	len -= BUF_PAGE_HDR_SIZE;
4461 
4462 	if (!data_page)
4463 		goto out;
4464 
4465 	bpage = *data_page;
4466 	if (!bpage)
4467 		goto out;
4468 
4469 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4470 
4471 	reader = rb_get_reader_page(cpu_buffer);
4472 	if (!reader)
4473 		goto out_unlock;
4474 
4475 	event = rb_reader_event(cpu_buffer);
4476 
4477 	read = reader->read;
4478 	commit = rb_page_commit(reader);
4479 
4480 	/* Check if any events were dropped */
4481 	missed_events = cpu_buffer->lost_events;
4482 
4483 	/*
4484 	 * If this page has been partially read or
4485 	 * if len is not big enough to read the rest of the page or
4486 	 * a writer is still on the page, then
4487 	 * we must copy the data from the page to the buffer.
4488 	 * Otherwise, we can simply swap the page with the one passed in.
4489 	 */
4490 	if (read || (len < (commit - read)) ||
4491 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4492 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4493 		unsigned int rpos = read;
4494 		unsigned int pos = 0;
4495 		unsigned int size;
4496 
4497 		if (full)
4498 			goto out_unlock;
4499 
4500 		if (len > (commit - read))
4501 			len = (commit - read);
4502 
4503 		/* Always keep the time extend and data together */
4504 		size = rb_event_ts_length(event);
4505 
4506 		if (len < size)
4507 			goto out_unlock;
4508 
4509 		/* save the current timestamp, since the user will need it */
4510 		save_timestamp = cpu_buffer->read_stamp;
4511 
4512 		/* Need to copy one event at a time */
4513 		do {
4514 			/* We need the size of one event, because
4515 			 * rb_advance_reader only advances by one event,
4516 			 * whereas rb_event_ts_length may include the size of
4517 			 * one or two events.
4518 			 * We have already ensured there's enough space if this
4519 			 * is a time extend. */
4520 			size = rb_event_length(event);
4521 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4522 
4523 			len -= size;
4524 
4525 			rb_advance_reader(cpu_buffer);
4526 			rpos = reader->read;
4527 			pos += size;
4528 
4529 			if (rpos >= commit)
4530 				break;
4531 
4532 			event = rb_reader_event(cpu_buffer);
4533 			/* Always keep the time extend and data together */
4534 			size = rb_event_ts_length(event);
4535 		} while (len >= size);
4536 
4537 		/* update bpage */
4538 		local_set(&bpage->commit, pos);
4539 		bpage->time_stamp = save_timestamp;
4540 
4541 		/* we copied everything to the beginning */
4542 		read = 0;
4543 	} else {
4544 		/* update the entry counter */
4545 		cpu_buffer->read += rb_page_entries(reader);
4546 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4547 
4548 		/* swap the pages */
4549 		rb_init_page(bpage);
4550 		bpage = reader->page;
4551 		reader->page = *data_page;
4552 		local_set(&reader->write, 0);
4553 		local_set(&reader->entries, 0);
4554 		reader->read = 0;
4555 		*data_page = bpage;
4556 
4557 		/*
4558 		 * Use the real_end for the data size,
4559 		 * This gives us a chance to store the lost events
4560 		 * on the page.
4561 		 */
4562 		if (reader->real_end)
4563 			local_set(&bpage->commit, reader->real_end);
4564 	}
4565 	ret = read;
4566 
4567 	cpu_buffer->lost_events = 0;
4568 
4569 	commit = local_read(&bpage->commit);
4570 	/*
4571 	 * Set a flag in the commit field if we lost events
4572 	 */
4573 	if (missed_events) {
4574 		/* If there is room at the end of the page to save the
4575 		 * missed events, then record it there.
4576 		 */
4577 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4578 			memcpy(&bpage->data[commit], &missed_events,
4579 			       sizeof(missed_events));
4580 			local_add(RB_MISSED_STORED, &bpage->commit);
4581 			commit += sizeof(missed_events);
4582 		}
4583 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4584 	}
4585 
4586 	/*
4587 	 * This page may be off to user land. Zero it out here.
4588 	 */
4589 	if (commit < BUF_PAGE_SIZE)
4590 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4591 
4592  out_unlock:
4593 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4594 
4595  out:
4596 	return ret;
4597 }
4598 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4599 
4600 #ifdef CONFIG_HOTPLUG_CPU
4601 static int rb_cpu_notify(struct notifier_block *self,
4602 			 unsigned long action, void *hcpu)
4603 {
4604 	struct ring_buffer *buffer =
4605 		container_of(self, struct ring_buffer, cpu_notify);
4606 	long cpu = (long)hcpu;
4607 	int cpu_i, nr_pages_same;
4608 	unsigned int nr_pages;
4609 
4610 	switch (action) {
4611 	case CPU_UP_PREPARE:
4612 	case CPU_UP_PREPARE_FROZEN:
4613 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4614 			return NOTIFY_OK;
4615 
4616 		nr_pages = 0;
4617 		nr_pages_same = 1;
4618 		/* check if all cpu sizes are same */
4619 		for_each_buffer_cpu(buffer, cpu_i) {
4620 			/* fill in the size from first enabled cpu */
4621 			if (nr_pages == 0)
4622 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4623 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4624 				nr_pages_same = 0;
4625 				break;
4626 			}
4627 		}
4628 		/* allocate minimum pages, user can later expand it */
4629 		if (!nr_pages_same)
4630 			nr_pages = 2;
4631 		buffer->buffers[cpu] =
4632 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4633 		if (!buffer->buffers[cpu]) {
4634 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4635 			     cpu);
4636 			return NOTIFY_OK;
4637 		}
4638 		smp_wmb();
4639 		cpumask_set_cpu(cpu, buffer->cpumask);
4640 		break;
4641 	case CPU_DOWN_PREPARE:
4642 	case CPU_DOWN_PREPARE_FROZEN:
4643 		/*
4644 		 * Do nothing.
4645 		 *  If we were to free the buffer, then the user would
4646 		 *  lose any trace that was in the buffer.
4647 		 */
4648 		break;
4649 	default:
4650 		break;
4651 	}
4652 	return NOTIFY_OK;
4653 }
4654 #endif
4655 
4656 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4657 /*
4658  * This is a basic integrity check of the ring buffer.
4659  * Late in the boot cycle this test will run when configured in.
4660  * It will kick off a thread per CPU that will go into a loop
4661  * writing to the per cpu ring buffer various sizes of data.
4662  * Some of the data will be large items, some small.
4663  *
4664  * Another thread is created that goes into a spin, sending out
4665  * IPIs to the other CPUs to also write into the ring buffer.
4666  * this is to test the nesting ability of the buffer.
4667  *
4668  * Basic stats are recorded and reported. If something in the
4669  * ring buffer should happen that's not expected, a big warning
4670  * is displayed and all ring buffers are disabled.
4671  */
4672 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4673 
4674 struct rb_test_data {
4675 	struct ring_buffer	*buffer;
4676 	unsigned long		events;
4677 	unsigned long		bytes_written;
4678 	unsigned long		bytes_alloc;
4679 	unsigned long		bytes_dropped;
4680 	unsigned long		events_nested;
4681 	unsigned long		bytes_written_nested;
4682 	unsigned long		bytes_alloc_nested;
4683 	unsigned long		bytes_dropped_nested;
4684 	int			min_size_nested;
4685 	int			max_size_nested;
4686 	int			max_size;
4687 	int			min_size;
4688 	int			cpu;
4689 	int			cnt;
4690 };
4691 
4692 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4693 
4694 /* 1 meg per cpu */
4695 #define RB_TEST_BUFFER_SIZE	1048576
4696 
4697 static char rb_string[] __initdata =
4698 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4699 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4700 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4701 
4702 static bool rb_test_started __initdata;
4703 
4704 struct rb_item {
4705 	int size;
4706 	char str[];
4707 };
4708 
4709 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4710 {
4711 	struct ring_buffer_event *event;
4712 	struct rb_item *item;
4713 	bool started;
4714 	int event_len;
4715 	int size;
4716 	int len;
4717 	int cnt;
4718 
4719 	/* Have nested writes different that what is written */
4720 	cnt = data->cnt + (nested ? 27 : 0);
4721 
4722 	/* Multiply cnt by ~e, to make some unique increment */
4723 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4724 
4725 	len = size + sizeof(struct rb_item);
4726 
4727 	started = rb_test_started;
4728 	/* read rb_test_started before checking buffer enabled */
4729 	smp_rmb();
4730 
4731 	event = ring_buffer_lock_reserve(data->buffer, len);
4732 	if (!event) {
4733 		/* Ignore dropped events before test starts. */
4734 		if (started) {
4735 			if (nested)
4736 				data->bytes_dropped += len;
4737 			else
4738 				data->bytes_dropped_nested += len;
4739 		}
4740 		return len;
4741 	}
4742 
4743 	event_len = ring_buffer_event_length(event);
4744 
4745 	if (RB_WARN_ON(data->buffer, event_len < len))
4746 		goto out;
4747 
4748 	item = ring_buffer_event_data(event);
4749 	item->size = size;
4750 	memcpy(item->str, rb_string, size);
4751 
4752 	if (nested) {
4753 		data->bytes_alloc_nested += event_len;
4754 		data->bytes_written_nested += len;
4755 		data->events_nested++;
4756 		if (!data->min_size_nested || len < data->min_size_nested)
4757 			data->min_size_nested = len;
4758 		if (len > data->max_size_nested)
4759 			data->max_size_nested = len;
4760 	} else {
4761 		data->bytes_alloc += event_len;
4762 		data->bytes_written += len;
4763 		data->events++;
4764 		if (!data->min_size || len < data->min_size)
4765 			data->max_size = len;
4766 		if (len > data->max_size)
4767 			data->max_size = len;
4768 	}
4769 
4770  out:
4771 	ring_buffer_unlock_commit(data->buffer, event);
4772 
4773 	return 0;
4774 }
4775 
4776 static __init int rb_test(void *arg)
4777 {
4778 	struct rb_test_data *data = arg;
4779 
4780 	while (!kthread_should_stop()) {
4781 		rb_write_something(data, false);
4782 		data->cnt++;
4783 
4784 		set_current_state(TASK_INTERRUPTIBLE);
4785 		/* Now sleep between a min of 100-300us and a max of 1ms */
4786 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4787 	}
4788 
4789 	return 0;
4790 }
4791 
4792 static __init void rb_ipi(void *ignore)
4793 {
4794 	struct rb_test_data *data;
4795 	int cpu = smp_processor_id();
4796 
4797 	data = &rb_data[cpu];
4798 	rb_write_something(data, true);
4799 }
4800 
4801 static __init int rb_hammer_test(void *arg)
4802 {
4803 	while (!kthread_should_stop()) {
4804 
4805 		/* Send an IPI to all cpus to write data! */
4806 		smp_call_function(rb_ipi, NULL, 1);
4807 		/* No sleep, but for non preempt, let others run */
4808 		schedule();
4809 	}
4810 
4811 	return 0;
4812 }
4813 
4814 static __init int test_ringbuffer(void)
4815 {
4816 	struct task_struct *rb_hammer;
4817 	struct ring_buffer *buffer;
4818 	int cpu;
4819 	int ret = 0;
4820 
4821 	pr_info("Running ring buffer tests...\n");
4822 
4823 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4824 	if (WARN_ON(!buffer))
4825 		return 0;
4826 
4827 	/* Disable buffer so that threads can't write to it yet */
4828 	ring_buffer_record_off(buffer);
4829 
4830 	for_each_online_cpu(cpu) {
4831 		rb_data[cpu].buffer = buffer;
4832 		rb_data[cpu].cpu = cpu;
4833 		rb_data[cpu].cnt = cpu;
4834 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4835 						 "rbtester/%d", cpu);
4836 		if (WARN_ON(!rb_threads[cpu])) {
4837 			pr_cont("FAILED\n");
4838 			ret = -1;
4839 			goto out_free;
4840 		}
4841 
4842 		kthread_bind(rb_threads[cpu], cpu);
4843  		wake_up_process(rb_threads[cpu]);
4844 	}
4845 
4846 	/* Now create the rb hammer! */
4847 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4848 	if (WARN_ON(!rb_hammer)) {
4849 		pr_cont("FAILED\n");
4850 		ret = -1;
4851 		goto out_free;
4852 	}
4853 
4854 	ring_buffer_record_on(buffer);
4855 	/*
4856 	 * Show buffer is enabled before setting rb_test_started.
4857 	 * Yes there's a small race window where events could be
4858 	 * dropped and the thread wont catch it. But when a ring
4859 	 * buffer gets enabled, there will always be some kind of
4860 	 * delay before other CPUs see it. Thus, we don't care about
4861 	 * those dropped events. We care about events dropped after
4862 	 * the threads see that the buffer is active.
4863 	 */
4864 	smp_wmb();
4865 	rb_test_started = true;
4866 
4867 	set_current_state(TASK_INTERRUPTIBLE);
4868 	/* Just run for 10 seconds */;
4869 	schedule_timeout(10 * HZ);
4870 
4871 	kthread_stop(rb_hammer);
4872 
4873  out_free:
4874 	for_each_online_cpu(cpu) {
4875 		if (!rb_threads[cpu])
4876 			break;
4877 		kthread_stop(rb_threads[cpu]);
4878 	}
4879 	if (ret) {
4880 		ring_buffer_free(buffer);
4881 		return ret;
4882 	}
4883 
4884 	/* Report! */
4885 	pr_info("finished\n");
4886 	for_each_online_cpu(cpu) {
4887 		struct ring_buffer_event *event;
4888 		struct rb_test_data *data = &rb_data[cpu];
4889 		struct rb_item *item;
4890 		unsigned long total_events;
4891 		unsigned long total_dropped;
4892 		unsigned long total_written;
4893 		unsigned long total_alloc;
4894 		unsigned long total_read = 0;
4895 		unsigned long total_size = 0;
4896 		unsigned long total_len = 0;
4897 		unsigned long total_lost = 0;
4898 		unsigned long lost;
4899 		int big_event_size;
4900 		int small_event_size;
4901 
4902 		ret = -1;
4903 
4904 		total_events = data->events + data->events_nested;
4905 		total_written = data->bytes_written + data->bytes_written_nested;
4906 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4907 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4908 
4909 		big_event_size = data->max_size + data->max_size_nested;
4910 		small_event_size = data->min_size + data->min_size_nested;
4911 
4912 		pr_info("CPU %d:\n", cpu);
4913 		pr_info("              events:    %ld\n", total_events);
4914 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4915 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4916 		pr_info("       written bytes:    %ld\n", total_written);
4917 		pr_info("       biggest event:    %d\n", big_event_size);
4918 		pr_info("      smallest event:    %d\n", small_event_size);
4919 
4920 		if (RB_WARN_ON(buffer, total_dropped))
4921 			break;
4922 
4923 		ret = 0;
4924 
4925 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4926 			total_lost += lost;
4927 			item = ring_buffer_event_data(event);
4928 			total_len += ring_buffer_event_length(event);
4929 			total_size += item->size + sizeof(struct rb_item);
4930 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4931 				pr_info("FAILED!\n");
4932 				pr_info("buffer had: %.*s\n", item->size, item->str);
4933 				pr_info("expected:   %.*s\n", item->size, rb_string);
4934 				RB_WARN_ON(buffer, 1);
4935 				ret = -1;
4936 				break;
4937 			}
4938 			total_read++;
4939 		}
4940 		if (ret)
4941 			break;
4942 
4943 		ret = -1;
4944 
4945 		pr_info("         read events:   %ld\n", total_read);
4946 		pr_info("         lost events:   %ld\n", total_lost);
4947 		pr_info("        total events:   %ld\n", total_lost + total_read);
4948 		pr_info("  recorded len bytes:   %ld\n", total_len);
4949 		pr_info(" recorded size bytes:   %ld\n", total_size);
4950 		if (total_lost)
4951 			pr_info(" With dropped events, record len and size may not match\n"
4952 				" alloced and written from above\n");
4953 		if (!total_lost) {
4954 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4955 				       total_size != total_written))
4956 				break;
4957 		}
4958 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4959 			break;
4960 
4961 		ret = 0;
4962 	}
4963 	if (!ret)
4964 		pr_info("Ring buffer PASSED!\n");
4965 
4966 	ring_buffer_free(buffer);
4967 	return 0;
4968 }
4969 
4970 late_initcall(test_ringbuffer);
4971 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4972