1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/debugfs.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/kmemcheck.h> 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/fs.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 int ret; 38 39 ret = trace_seq_puts(s, "# compressed entry header\n"); 40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n"); 41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 42 ret = trace_seq_puts(s, "\tarray : 32 bits\n"); 43 ret = trace_seq_putc(s, '\n'); 44 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return ret; 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* 123 * A fast way to enable or disable all ring buffers is to 124 * call tracing_on or tracing_off. Turning off the ring buffers 125 * prevents all ring buffers from being recorded to. 126 * Turning this switch on, makes it OK to write to the 127 * ring buffer, if the ring buffer is enabled itself. 128 * 129 * There's three layers that must be on in order to write 130 * to the ring buffer. 131 * 132 * 1) This global flag must be set. 133 * 2) The ring buffer must be enabled for recording. 134 * 3) The per cpu buffer must be enabled for recording. 135 * 136 * In case of an anomaly, this global flag has a bit set that 137 * will permantly disable all ring buffers. 138 */ 139 140 /* 141 * Global flag to disable all recording to ring buffers 142 * This has two bits: ON, DISABLED 143 * 144 * ON DISABLED 145 * ---- ---------- 146 * 0 0 : ring buffers are off 147 * 1 0 : ring buffers are on 148 * X 1 : ring buffers are permanently disabled 149 */ 150 151 enum { 152 RB_BUFFERS_ON_BIT = 0, 153 RB_BUFFERS_DISABLED_BIT = 1, 154 }; 155 156 enum { 157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 159 }; 160 161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 162 163 /* Used for individual buffers (after the counter) */ 164 #define RB_BUFFER_OFF (1 << 20) 165 166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 167 168 /** 169 * tracing_off_permanent - permanently disable ring buffers 170 * 171 * This function, once called, will disable all ring buffers 172 * permanently. 173 */ 174 void tracing_off_permanent(void) 175 { 176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 177 } 178 179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 180 #define RB_ALIGNMENT 4U 181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 183 184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 185 # define RB_FORCE_8BYTE_ALIGNMENT 0 186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 187 #else 188 # define RB_FORCE_8BYTE_ALIGNMENT 1 189 # define RB_ARCH_ALIGNMENT 8U 190 #endif 191 192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 193 194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 196 197 enum { 198 RB_LEN_TIME_EXTEND = 8, 199 RB_LEN_TIME_STAMP = 16, 200 }; 201 202 #define skip_time_extend(event) \ 203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 204 205 static inline int rb_null_event(struct ring_buffer_event *event) 206 { 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 208 } 209 210 static void rb_event_set_padding(struct ring_buffer_event *event) 211 { 212 /* padding has a NULL time_delta */ 213 event->type_len = RINGBUF_TYPE_PADDING; 214 event->time_delta = 0; 215 } 216 217 static unsigned 218 rb_event_data_length(struct ring_buffer_event *event) 219 { 220 unsigned length; 221 222 if (event->type_len) 223 length = event->type_len * RB_ALIGNMENT; 224 else 225 length = event->array[0]; 226 return length + RB_EVNT_HDR_SIZE; 227 } 228 229 /* 230 * Return the length of the given event. Will return 231 * the length of the time extend if the event is a 232 * time extend. 233 */ 234 static inline unsigned 235 rb_event_length(struct ring_buffer_event *event) 236 { 237 switch (event->type_len) { 238 case RINGBUF_TYPE_PADDING: 239 if (rb_null_event(event)) 240 /* undefined */ 241 return -1; 242 return event->array[0] + RB_EVNT_HDR_SIZE; 243 244 case RINGBUF_TYPE_TIME_EXTEND: 245 return RB_LEN_TIME_EXTEND; 246 247 case RINGBUF_TYPE_TIME_STAMP: 248 return RB_LEN_TIME_STAMP; 249 250 case RINGBUF_TYPE_DATA: 251 return rb_event_data_length(event); 252 default: 253 BUG(); 254 } 255 /* not hit */ 256 return 0; 257 } 258 259 /* 260 * Return total length of time extend and data, 261 * or just the event length for all other events. 262 */ 263 static inline unsigned 264 rb_event_ts_length(struct ring_buffer_event *event) 265 { 266 unsigned len = 0; 267 268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 269 /* time extends include the data event after it */ 270 len = RB_LEN_TIME_EXTEND; 271 event = skip_time_extend(event); 272 } 273 return len + rb_event_length(event); 274 } 275 276 /** 277 * ring_buffer_event_length - return the length of the event 278 * @event: the event to get the length of 279 * 280 * Returns the size of the data load of a data event. 281 * If the event is something other than a data event, it 282 * returns the size of the event itself. With the exception 283 * of a TIME EXTEND, where it still returns the size of the 284 * data load of the data event after it. 285 */ 286 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 287 { 288 unsigned length; 289 290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 291 event = skip_time_extend(event); 292 293 length = rb_event_length(event); 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 295 return length; 296 length -= RB_EVNT_HDR_SIZE; 297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 298 length -= sizeof(event->array[0]); 299 return length; 300 } 301 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 302 303 /* inline for ring buffer fast paths */ 304 static void * 305 rb_event_data(struct ring_buffer_event *event) 306 { 307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 308 event = skip_time_extend(event); 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 310 /* If length is in len field, then array[0] has the data */ 311 if (event->type_len) 312 return (void *)&event->array[0]; 313 /* Otherwise length is in array[0] and array[1] has the data */ 314 return (void *)&event->array[1]; 315 } 316 317 /** 318 * ring_buffer_event_data - return the data of the event 319 * @event: the event to get the data from 320 */ 321 void *ring_buffer_event_data(struct ring_buffer_event *event) 322 { 323 return rb_event_data(event); 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 326 327 #define for_each_buffer_cpu(buffer, cpu) \ 328 for_each_cpu(cpu, buffer->cpumask) 329 330 #define TS_SHIFT 27 331 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 332 #define TS_DELTA_TEST (~TS_MASK) 333 334 /* Flag when events were overwritten */ 335 #define RB_MISSED_EVENTS (1 << 31) 336 /* Missed count stored at end */ 337 #define RB_MISSED_STORED (1 << 30) 338 339 struct buffer_data_page { 340 u64 time_stamp; /* page time stamp */ 341 local_t commit; /* write committed index */ 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 343 }; 344 345 /* 346 * Note, the buffer_page list must be first. The buffer pages 347 * are allocated in cache lines, which means that each buffer 348 * page will be at the beginning of a cache line, and thus 349 * the least significant bits will be zero. We use this to 350 * add flags in the list struct pointers, to make the ring buffer 351 * lockless. 352 */ 353 struct buffer_page { 354 struct list_head list; /* list of buffer pages */ 355 local_t write; /* index for next write */ 356 unsigned read; /* index for next read */ 357 local_t entries; /* entries on this page */ 358 unsigned long real_end; /* real end of data */ 359 struct buffer_data_page *page; /* Actual data page */ 360 }; 361 362 /* 363 * The buffer page counters, write and entries, must be reset 364 * atomically when crossing page boundaries. To synchronize this 365 * update, two counters are inserted into the number. One is 366 * the actual counter for the write position or count on the page. 367 * 368 * The other is a counter of updaters. Before an update happens 369 * the update partition of the counter is incremented. This will 370 * allow the updater to update the counter atomically. 371 * 372 * The counter is 20 bits, and the state data is 12. 373 */ 374 #define RB_WRITE_MASK 0xfffff 375 #define RB_WRITE_INTCNT (1 << 20) 376 377 static void rb_init_page(struct buffer_data_page *bpage) 378 { 379 local_set(&bpage->commit, 0); 380 } 381 382 /** 383 * ring_buffer_page_len - the size of data on the page. 384 * @page: The page to read 385 * 386 * Returns the amount of data on the page, including buffer page header. 387 */ 388 size_t ring_buffer_page_len(void *page) 389 { 390 return local_read(&((struct buffer_data_page *)page)->commit) 391 + BUF_PAGE_HDR_SIZE; 392 } 393 394 /* 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 396 * this issue out. 397 */ 398 static void free_buffer_page(struct buffer_page *bpage) 399 { 400 free_page((unsigned long)bpage->page); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline int test_time_stamp(u64 delta) 408 { 409 if (delta & TS_DELTA_TEST) 410 return 1; 411 return 0; 412 } 413 414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 415 416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 418 419 int ring_buffer_print_page_header(struct trace_seq *s) 420 { 421 struct buffer_data_page field; 422 int ret; 423 424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 425 "offset:0;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)sizeof(field.time_stamp), 427 (unsigned int)is_signed_type(u64)); 428 429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 (unsigned int)sizeof(field.commit), 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), commit), 438 1, 439 (unsigned int)is_signed_type(long)); 440 441 ret = trace_seq_printf(s, "\tfield: char data;\t" 442 "offset:%u;\tsize:%u;\tsigned:%u;\n", 443 (unsigned int)offsetof(typeof(field), data), 444 (unsigned int)BUF_PAGE_SIZE, 445 (unsigned int)is_signed_type(char)); 446 447 return ret; 448 } 449 450 struct rb_irq_work { 451 struct irq_work work; 452 wait_queue_head_t waiters; 453 bool waiters_pending; 454 }; 455 456 /* 457 * head_page == tail_page && head == tail then buffer is empty. 458 */ 459 struct ring_buffer_per_cpu { 460 int cpu; 461 atomic_t record_disabled; 462 struct ring_buffer *buffer; 463 raw_spinlock_t reader_lock; /* serialize readers */ 464 arch_spinlock_t lock; 465 struct lock_class_key lock_key; 466 unsigned int nr_pages; 467 struct list_head *pages; 468 struct buffer_page *head_page; /* read from head */ 469 struct buffer_page *tail_page; /* write to tail */ 470 struct buffer_page *commit_page; /* committed pages */ 471 struct buffer_page *reader_page; 472 unsigned long lost_events; 473 unsigned long last_overrun; 474 local_t entries_bytes; 475 local_t entries; 476 local_t overrun; 477 local_t commit_overrun; 478 local_t dropped_events; 479 local_t committing; 480 local_t commits; 481 unsigned long read; 482 unsigned long read_bytes; 483 u64 write_stamp; 484 u64 read_stamp; 485 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 486 int nr_pages_to_update; 487 struct list_head new_pages; /* new pages to add */ 488 struct work_struct update_pages_work; 489 struct completion update_done; 490 491 struct rb_irq_work irq_work; 492 }; 493 494 struct ring_buffer { 495 unsigned flags; 496 int cpus; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 cpumask_var_t cpumask; 500 501 struct lock_class_key *reader_lock_key; 502 503 struct mutex mutex; 504 505 struct ring_buffer_per_cpu **buffers; 506 507 #ifdef CONFIG_HOTPLUG_CPU 508 struct notifier_block cpu_notify; 509 #endif 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 }; 514 515 struct ring_buffer_iter { 516 struct ring_buffer_per_cpu *cpu_buffer; 517 unsigned long head; 518 struct buffer_page *head_page; 519 struct buffer_page *cache_reader_page; 520 unsigned long cache_read; 521 u64 read_stamp; 522 }; 523 524 /* 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 526 * 527 * Schedules a delayed work to wake up any task that is blocked on the 528 * ring buffer waiters queue. 529 */ 530 static void rb_wake_up_waiters(struct irq_work *work) 531 { 532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 533 534 wake_up_all(&rbwork->waiters); 535 } 536 537 /** 538 * ring_buffer_wait - wait for input to the ring buffer 539 * @buffer: buffer to wait on 540 * @cpu: the cpu buffer to wait on 541 * 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 543 * as data is added to any of the @buffer's cpu buffers. Otherwise 544 * it will wait for data to be added to a specific cpu buffer. 545 */ 546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu) 547 { 548 struct ring_buffer_per_cpu *cpu_buffer; 549 DEFINE_WAIT(wait); 550 struct rb_irq_work *work; 551 552 /* 553 * Depending on what the caller is waiting for, either any 554 * data in any cpu buffer, or a specific buffer, put the 555 * caller on the appropriate wait queue. 556 */ 557 if (cpu == RING_BUFFER_ALL_CPUS) 558 work = &buffer->irq_work; 559 else { 560 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 561 return -ENODEV; 562 cpu_buffer = buffer->buffers[cpu]; 563 work = &cpu_buffer->irq_work; 564 } 565 566 567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 568 569 /* 570 * The events can happen in critical sections where 571 * checking a work queue can cause deadlocks. 572 * After adding a task to the queue, this flag is set 573 * only to notify events to try to wake up the queue 574 * using irq_work. 575 * 576 * We don't clear it even if the buffer is no longer 577 * empty. The flag only causes the next event to run 578 * irq_work to do the work queue wake up. The worse 579 * that can happen if we race with !trace_empty() is that 580 * an event will cause an irq_work to try to wake up 581 * an empty queue. 582 * 583 * There's no reason to protect this flag either, as 584 * the work queue and irq_work logic will do the necessary 585 * synchronization for the wake ups. The only thing 586 * that is necessary is that the wake up happens after 587 * a task has been queued. It's OK for spurious wake ups. 588 */ 589 work->waiters_pending = true; 590 591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) || 592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu))) 593 schedule(); 594 595 finish_wait(&work->waiters, &wait); 596 return 0; 597 } 598 599 /** 600 * ring_buffer_poll_wait - poll on buffer input 601 * @buffer: buffer to wait on 602 * @cpu: the cpu buffer to wait on 603 * @filp: the file descriptor 604 * @poll_table: The poll descriptor 605 * 606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 607 * as data is added to any of the @buffer's cpu buffers. Otherwise 608 * it will wait for data to be added to a specific cpu buffer. 609 * 610 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 611 * zero otherwise. 612 */ 613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 614 struct file *filp, poll_table *poll_table) 615 { 616 struct ring_buffer_per_cpu *cpu_buffer; 617 struct rb_irq_work *work; 618 619 if (cpu == RING_BUFFER_ALL_CPUS) 620 work = &buffer->irq_work; 621 else { 622 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 623 return -EINVAL; 624 625 cpu_buffer = buffer->buffers[cpu]; 626 work = &cpu_buffer->irq_work; 627 } 628 629 work->waiters_pending = true; 630 poll_wait(filp, &work->waiters, poll_table); 631 632 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 633 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 634 return POLLIN | POLLRDNORM; 635 return 0; 636 } 637 638 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 639 #define RB_WARN_ON(b, cond) \ 640 ({ \ 641 int _____ret = unlikely(cond); \ 642 if (_____ret) { \ 643 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 644 struct ring_buffer_per_cpu *__b = \ 645 (void *)b; \ 646 atomic_inc(&__b->buffer->record_disabled); \ 647 } else \ 648 atomic_inc(&b->record_disabled); \ 649 WARN_ON(1); \ 650 } \ 651 _____ret; \ 652 }) 653 654 /* Up this if you want to test the TIME_EXTENTS and normalization */ 655 #define DEBUG_SHIFT 0 656 657 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 658 { 659 /* shift to debug/test normalization and TIME_EXTENTS */ 660 return buffer->clock() << DEBUG_SHIFT; 661 } 662 663 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 664 { 665 u64 time; 666 667 preempt_disable_notrace(); 668 time = rb_time_stamp(buffer); 669 preempt_enable_no_resched_notrace(); 670 671 return time; 672 } 673 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 674 675 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 676 int cpu, u64 *ts) 677 { 678 /* Just stupid testing the normalize function and deltas */ 679 *ts >>= DEBUG_SHIFT; 680 } 681 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 682 683 /* 684 * Making the ring buffer lockless makes things tricky. 685 * Although writes only happen on the CPU that they are on, 686 * and they only need to worry about interrupts. Reads can 687 * happen on any CPU. 688 * 689 * The reader page is always off the ring buffer, but when the 690 * reader finishes with a page, it needs to swap its page with 691 * a new one from the buffer. The reader needs to take from 692 * the head (writes go to the tail). But if a writer is in overwrite 693 * mode and wraps, it must push the head page forward. 694 * 695 * Here lies the problem. 696 * 697 * The reader must be careful to replace only the head page, and 698 * not another one. As described at the top of the file in the 699 * ASCII art, the reader sets its old page to point to the next 700 * page after head. It then sets the page after head to point to 701 * the old reader page. But if the writer moves the head page 702 * during this operation, the reader could end up with the tail. 703 * 704 * We use cmpxchg to help prevent this race. We also do something 705 * special with the page before head. We set the LSB to 1. 706 * 707 * When the writer must push the page forward, it will clear the 708 * bit that points to the head page, move the head, and then set 709 * the bit that points to the new head page. 710 * 711 * We also don't want an interrupt coming in and moving the head 712 * page on another writer. Thus we use the second LSB to catch 713 * that too. Thus: 714 * 715 * head->list->prev->next bit 1 bit 0 716 * ------- ------- 717 * Normal page 0 0 718 * Points to head page 0 1 719 * New head page 1 0 720 * 721 * Note we can not trust the prev pointer of the head page, because: 722 * 723 * +----+ +-----+ +-----+ 724 * | |------>| T |---X--->| N | 725 * | |<------| | | | 726 * +----+ +-----+ +-----+ 727 * ^ ^ | 728 * | +-----+ | | 729 * +----------| R |----------+ | 730 * | |<-----------+ 731 * +-----+ 732 * 733 * Key: ---X--> HEAD flag set in pointer 734 * T Tail page 735 * R Reader page 736 * N Next page 737 * 738 * (see __rb_reserve_next() to see where this happens) 739 * 740 * What the above shows is that the reader just swapped out 741 * the reader page with a page in the buffer, but before it 742 * could make the new header point back to the new page added 743 * it was preempted by a writer. The writer moved forward onto 744 * the new page added by the reader and is about to move forward 745 * again. 746 * 747 * You can see, it is legitimate for the previous pointer of 748 * the head (or any page) not to point back to itself. But only 749 * temporarially. 750 */ 751 752 #define RB_PAGE_NORMAL 0UL 753 #define RB_PAGE_HEAD 1UL 754 #define RB_PAGE_UPDATE 2UL 755 756 757 #define RB_FLAG_MASK 3UL 758 759 /* PAGE_MOVED is not part of the mask */ 760 #define RB_PAGE_MOVED 4UL 761 762 /* 763 * rb_list_head - remove any bit 764 */ 765 static struct list_head *rb_list_head(struct list_head *list) 766 { 767 unsigned long val = (unsigned long)list; 768 769 return (struct list_head *)(val & ~RB_FLAG_MASK); 770 } 771 772 /* 773 * rb_is_head_page - test if the given page is the head page 774 * 775 * Because the reader may move the head_page pointer, we can 776 * not trust what the head page is (it may be pointing to 777 * the reader page). But if the next page is a header page, 778 * its flags will be non zero. 779 */ 780 static inline int 781 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 782 struct buffer_page *page, struct list_head *list) 783 { 784 unsigned long val; 785 786 val = (unsigned long)list->next; 787 788 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 789 return RB_PAGE_MOVED; 790 791 return val & RB_FLAG_MASK; 792 } 793 794 /* 795 * rb_is_reader_page 796 * 797 * The unique thing about the reader page, is that, if the 798 * writer is ever on it, the previous pointer never points 799 * back to the reader page. 800 */ 801 static int rb_is_reader_page(struct buffer_page *page) 802 { 803 struct list_head *list = page->list.prev; 804 805 return rb_list_head(list->next) != &page->list; 806 } 807 808 /* 809 * rb_set_list_to_head - set a list_head to be pointing to head. 810 */ 811 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 812 struct list_head *list) 813 { 814 unsigned long *ptr; 815 816 ptr = (unsigned long *)&list->next; 817 *ptr |= RB_PAGE_HEAD; 818 *ptr &= ~RB_PAGE_UPDATE; 819 } 820 821 /* 822 * rb_head_page_activate - sets up head page 823 */ 824 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 825 { 826 struct buffer_page *head; 827 828 head = cpu_buffer->head_page; 829 if (!head) 830 return; 831 832 /* 833 * Set the previous list pointer to have the HEAD flag. 834 */ 835 rb_set_list_to_head(cpu_buffer, head->list.prev); 836 } 837 838 static void rb_list_head_clear(struct list_head *list) 839 { 840 unsigned long *ptr = (unsigned long *)&list->next; 841 842 *ptr &= ~RB_FLAG_MASK; 843 } 844 845 /* 846 * rb_head_page_dactivate - clears head page ptr (for free list) 847 */ 848 static void 849 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 850 { 851 struct list_head *hd; 852 853 /* Go through the whole list and clear any pointers found. */ 854 rb_list_head_clear(cpu_buffer->pages); 855 856 list_for_each(hd, cpu_buffer->pages) 857 rb_list_head_clear(hd); 858 } 859 860 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 861 struct buffer_page *head, 862 struct buffer_page *prev, 863 int old_flag, int new_flag) 864 { 865 struct list_head *list; 866 unsigned long val = (unsigned long)&head->list; 867 unsigned long ret; 868 869 list = &prev->list; 870 871 val &= ~RB_FLAG_MASK; 872 873 ret = cmpxchg((unsigned long *)&list->next, 874 val | old_flag, val | new_flag); 875 876 /* check if the reader took the page */ 877 if ((ret & ~RB_FLAG_MASK) != val) 878 return RB_PAGE_MOVED; 879 880 return ret & RB_FLAG_MASK; 881 } 882 883 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 884 struct buffer_page *head, 885 struct buffer_page *prev, 886 int old_flag) 887 { 888 return rb_head_page_set(cpu_buffer, head, prev, 889 old_flag, RB_PAGE_UPDATE); 890 } 891 892 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 893 struct buffer_page *head, 894 struct buffer_page *prev, 895 int old_flag) 896 { 897 return rb_head_page_set(cpu_buffer, head, prev, 898 old_flag, RB_PAGE_HEAD); 899 } 900 901 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 902 struct buffer_page *head, 903 struct buffer_page *prev, 904 int old_flag) 905 { 906 return rb_head_page_set(cpu_buffer, head, prev, 907 old_flag, RB_PAGE_NORMAL); 908 } 909 910 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 911 struct buffer_page **bpage) 912 { 913 struct list_head *p = rb_list_head((*bpage)->list.next); 914 915 *bpage = list_entry(p, struct buffer_page, list); 916 } 917 918 static struct buffer_page * 919 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 920 { 921 struct buffer_page *head; 922 struct buffer_page *page; 923 struct list_head *list; 924 int i; 925 926 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 927 return NULL; 928 929 /* sanity check */ 930 list = cpu_buffer->pages; 931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 932 return NULL; 933 934 page = head = cpu_buffer->head_page; 935 /* 936 * It is possible that the writer moves the header behind 937 * where we started, and we miss in one loop. 938 * A second loop should grab the header, but we'll do 939 * three loops just because I'm paranoid. 940 */ 941 for (i = 0; i < 3; i++) { 942 do { 943 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 944 cpu_buffer->head_page = page; 945 return page; 946 } 947 rb_inc_page(cpu_buffer, &page); 948 } while (page != head); 949 } 950 951 RB_WARN_ON(cpu_buffer, 1); 952 953 return NULL; 954 } 955 956 static int rb_head_page_replace(struct buffer_page *old, 957 struct buffer_page *new) 958 { 959 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 960 unsigned long val; 961 unsigned long ret; 962 963 val = *ptr & ~RB_FLAG_MASK; 964 val |= RB_PAGE_HEAD; 965 966 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 967 968 return ret == val; 969 } 970 971 /* 972 * rb_tail_page_update - move the tail page forward 973 * 974 * Returns 1 if moved tail page, 0 if someone else did. 975 */ 976 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 977 struct buffer_page *tail_page, 978 struct buffer_page *next_page) 979 { 980 struct buffer_page *old_tail; 981 unsigned long old_entries; 982 unsigned long old_write; 983 int ret = 0; 984 985 /* 986 * The tail page now needs to be moved forward. 987 * 988 * We need to reset the tail page, but without messing 989 * with possible erasing of data brought in by interrupts 990 * that have moved the tail page and are currently on it. 991 * 992 * We add a counter to the write field to denote this. 993 */ 994 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 995 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 996 997 /* 998 * Just make sure we have seen our old_write and synchronize 999 * with any interrupts that come in. 1000 */ 1001 barrier(); 1002 1003 /* 1004 * If the tail page is still the same as what we think 1005 * it is, then it is up to us to update the tail 1006 * pointer. 1007 */ 1008 if (tail_page == cpu_buffer->tail_page) { 1009 /* Zero the write counter */ 1010 unsigned long val = old_write & ~RB_WRITE_MASK; 1011 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1012 1013 /* 1014 * This will only succeed if an interrupt did 1015 * not come in and change it. In which case, we 1016 * do not want to modify it. 1017 * 1018 * We add (void) to let the compiler know that we do not care 1019 * about the return value of these functions. We use the 1020 * cmpxchg to only update if an interrupt did not already 1021 * do it for us. If the cmpxchg fails, we don't care. 1022 */ 1023 (void)local_cmpxchg(&next_page->write, old_write, val); 1024 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1025 1026 /* 1027 * No need to worry about races with clearing out the commit. 1028 * it only can increment when a commit takes place. But that 1029 * only happens in the outer most nested commit. 1030 */ 1031 local_set(&next_page->page->commit, 0); 1032 1033 old_tail = cmpxchg(&cpu_buffer->tail_page, 1034 tail_page, next_page); 1035 1036 if (old_tail == tail_page) 1037 ret = 1; 1038 } 1039 1040 return ret; 1041 } 1042 1043 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1044 struct buffer_page *bpage) 1045 { 1046 unsigned long val = (unsigned long)bpage; 1047 1048 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1049 return 1; 1050 1051 return 0; 1052 } 1053 1054 /** 1055 * rb_check_list - make sure a pointer to a list has the last bits zero 1056 */ 1057 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1058 struct list_head *list) 1059 { 1060 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1061 return 1; 1062 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1063 return 1; 1064 return 0; 1065 } 1066 1067 /** 1068 * rb_check_pages - integrity check of buffer pages 1069 * @cpu_buffer: CPU buffer with pages to test 1070 * 1071 * As a safety measure we check to make sure the data pages have not 1072 * been corrupted. 1073 */ 1074 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1075 { 1076 struct list_head *head = cpu_buffer->pages; 1077 struct buffer_page *bpage, *tmp; 1078 1079 /* Reset the head page if it exists */ 1080 if (cpu_buffer->head_page) 1081 rb_set_head_page(cpu_buffer); 1082 1083 rb_head_page_deactivate(cpu_buffer); 1084 1085 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1086 return -1; 1087 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1088 return -1; 1089 1090 if (rb_check_list(cpu_buffer, head)) 1091 return -1; 1092 1093 list_for_each_entry_safe(bpage, tmp, head, list) { 1094 if (RB_WARN_ON(cpu_buffer, 1095 bpage->list.next->prev != &bpage->list)) 1096 return -1; 1097 if (RB_WARN_ON(cpu_buffer, 1098 bpage->list.prev->next != &bpage->list)) 1099 return -1; 1100 if (rb_check_list(cpu_buffer, &bpage->list)) 1101 return -1; 1102 } 1103 1104 rb_head_page_activate(cpu_buffer); 1105 1106 return 0; 1107 } 1108 1109 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1110 { 1111 int i; 1112 struct buffer_page *bpage, *tmp; 1113 1114 for (i = 0; i < nr_pages; i++) { 1115 struct page *page; 1116 /* 1117 * __GFP_NORETRY flag makes sure that the allocation fails 1118 * gracefully without invoking oom-killer and the system is 1119 * not destabilized. 1120 */ 1121 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1122 GFP_KERNEL | __GFP_NORETRY, 1123 cpu_to_node(cpu)); 1124 if (!bpage) 1125 goto free_pages; 1126 1127 list_add(&bpage->list, pages); 1128 1129 page = alloc_pages_node(cpu_to_node(cpu), 1130 GFP_KERNEL | __GFP_NORETRY, 0); 1131 if (!page) 1132 goto free_pages; 1133 bpage->page = page_address(page); 1134 rb_init_page(bpage->page); 1135 } 1136 1137 return 0; 1138 1139 free_pages: 1140 list_for_each_entry_safe(bpage, tmp, pages, list) { 1141 list_del_init(&bpage->list); 1142 free_buffer_page(bpage); 1143 } 1144 1145 return -ENOMEM; 1146 } 1147 1148 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1149 unsigned nr_pages) 1150 { 1151 LIST_HEAD(pages); 1152 1153 WARN_ON(!nr_pages); 1154 1155 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1156 return -ENOMEM; 1157 1158 /* 1159 * The ring buffer page list is a circular list that does not 1160 * start and end with a list head. All page list items point to 1161 * other pages. 1162 */ 1163 cpu_buffer->pages = pages.next; 1164 list_del(&pages); 1165 1166 cpu_buffer->nr_pages = nr_pages; 1167 1168 rb_check_pages(cpu_buffer); 1169 1170 return 0; 1171 } 1172 1173 static struct ring_buffer_per_cpu * 1174 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1175 { 1176 struct ring_buffer_per_cpu *cpu_buffer; 1177 struct buffer_page *bpage; 1178 struct page *page; 1179 int ret; 1180 1181 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1182 GFP_KERNEL, cpu_to_node(cpu)); 1183 if (!cpu_buffer) 1184 return NULL; 1185 1186 cpu_buffer->cpu = cpu; 1187 cpu_buffer->buffer = buffer; 1188 raw_spin_lock_init(&cpu_buffer->reader_lock); 1189 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1190 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1191 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1192 init_completion(&cpu_buffer->update_done); 1193 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1194 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1195 1196 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1197 GFP_KERNEL, cpu_to_node(cpu)); 1198 if (!bpage) 1199 goto fail_free_buffer; 1200 1201 rb_check_bpage(cpu_buffer, bpage); 1202 1203 cpu_buffer->reader_page = bpage; 1204 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1205 if (!page) 1206 goto fail_free_reader; 1207 bpage->page = page_address(page); 1208 rb_init_page(bpage->page); 1209 1210 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1211 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1212 1213 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1214 if (ret < 0) 1215 goto fail_free_reader; 1216 1217 cpu_buffer->head_page 1218 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1219 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1220 1221 rb_head_page_activate(cpu_buffer); 1222 1223 return cpu_buffer; 1224 1225 fail_free_reader: 1226 free_buffer_page(cpu_buffer->reader_page); 1227 1228 fail_free_buffer: 1229 kfree(cpu_buffer); 1230 return NULL; 1231 } 1232 1233 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1234 { 1235 struct list_head *head = cpu_buffer->pages; 1236 struct buffer_page *bpage, *tmp; 1237 1238 free_buffer_page(cpu_buffer->reader_page); 1239 1240 rb_head_page_deactivate(cpu_buffer); 1241 1242 if (head) { 1243 list_for_each_entry_safe(bpage, tmp, head, list) { 1244 list_del_init(&bpage->list); 1245 free_buffer_page(bpage); 1246 } 1247 bpage = list_entry(head, struct buffer_page, list); 1248 free_buffer_page(bpage); 1249 } 1250 1251 kfree(cpu_buffer); 1252 } 1253 1254 #ifdef CONFIG_HOTPLUG_CPU 1255 static int rb_cpu_notify(struct notifier_block *self, 1256 unsigned long action, void *hcpu); 1257 #endif 1258 1259 /** 1260 * __ring_buffer_alloc - allocate a new ring_buffer 1261 * @size: the size in bytes per cpu that is needed. 1262 * @flags: attributes to set for the ring buffer. 1263 * 1264 * Currently the only flag that is available is the RB_FL_OVERWRITE 1265 * flag. This flag means that the buffer will overwrite old data 1266 * when the buffer wraps. If this flag is not set, the buffer will 1267 * drop data when the tail hits the head. 1268 */ 1269 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1270 struct lock_class_key *key) 1271 { 1272 struct ring_buffer *buffer; 1273 int bsize; 1274 int cpu, nr_pages; 1275 1276 /* keep it in its own cache line */ 1277 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1278 GFP_KERNEL); 1279 if (!buffer) 1280 return NULL; 1281 1282 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1283 goto fail_free_buffer; 1284 1285 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1286 buffer->flags = flags; 1287 buffer->clock = trace_clock_local; 1288 buffer->reader_lock_key = key; 1289 1290 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1291 init_waitqueue_head(&buffer->irq_work.waiters); 1292 1293 /* need at least two pages */ 1294 if (nr_pages < 2) 1295 nr_pages = 2; 1296 1297 /* 1298 * In case of non-hotplug cpu, if the ring-buffer is allocated 1299 * in early initcall, it will not be notified of secondary cpus. 1300 * In that off case, we need to allocate for all possible cpus. 1301 */ 1302 #ifdef CONFIG_HOTPLUG_CPU 1303 cpu_notifier_register_begin(); 1304 cpumask_copy(buffer->cpumask, cpu_online_mask); 1305 #else 1306 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1307 #endif 1308 buffer->cpus = nr_cpu_ids; 1309 1310 bsize = sizeof(void *) * nr_cpu_ids; 1311 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1312 GFP_KERNEL); 1313 if (!buffer->buffers) 1314 goto fail_free_cpumask; 1315 1316 for_each_buffer_cpu(buffer, cpu) { 1317 buffer->buffers[cpu] = 1318 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1319 if (!buffer->buffers[cpu]) 1320 goto fail_free_buffers; 1321 } 1322 1323 #ifdef CONFIG_HOTPLUG_CPU 1324 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1325 buffer->cpu_notify.priority = 0; 1326 __register_cpu_notifier(&buffer->cpu_notify); 1327 cpu_notifier_register_done(); 1328 #endif 1329 1330 mutex_init(&buffer->mutex); 1331 1332 return buffer; 1333 1334 fail_free_buffers: 1335 for_each_buffer_cpu(buffer, cpu) { 1336 if (buffer->buffers[cpu]) 1337 rb_free_cpu_buffer(buffer->buffers[cpu]); 1338 } 1339 kfree(buffer->buffers); 1340 1341 fail_free_cpumask: 1342 free_cpumask_var(buffer->cpumask); 1343 #ifdef CONFIG_HOTPLUG_CPU 1344 cpu_notifier_register_done(); 1345 #endif 1346 1347 fail_free_buffer: 1348 kfree(buffer); 1349 return NULL; 1350 } 1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1352 1353 /** 1354 * ring_buffer_free - free a ring buffer. 1355 * @buffer: the buffer to free. 1356 */ 1357 void 1358 ring_buffer_free(struct ring_buffer *buffer) 1359 { 1360 int cpu; 1361 1362 #ifdef CONFIG_HOTPLUG_CPU 1363 cpu_notifier_register_begin(); 1364 __unregister_cpu_notifier(&buffer->cpu_notify); 1365 #endif 1366 1367 for_each_buffer_cpu(buffer, cpu) 1368 rb_free_cpu_buffer(buffer->buffers[cpu]); 1369 1370 #ifdef CONFIG_HOTPLUG_CPU 1371 cpu_notifier_register_done(); 1372 #endif 1373 1374 kfree(buffer->buffers); 1375 free_cpumask_var(buffer->cpumask); 1376 1377 kfree(buffer); 1378 } 1379 EXPORT_SYMBOL_GPL(ring_buffer_free); 1380 1381 void ring_buffer_set_clock(struct ring_buffer *buffer, 1382 u64 (*clock)(void)) 1383 { 1384 buffer->clock = clock; 1385 } 1386 1387 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1388 1389 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1390 { 1391 return local_read(&bpage->entries) & RB_WRITE_MASK; 1392 } 1393 1394 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1395 { 1396 return local_read(&bpage->write) & RB_WRITE_MASK; 1397 } 1398 1399 static int 1400 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1401 { 1402 struct list_head *tail_page, *to_remove, *next_page; 1403 struct buffer_page *to_remove_page, *tmp_iter_page; 1404 struct buffer_page *last_page, *first_page; 1405 unsigned int nr_removed; 1406 unsigned long head_bit; 1407 int page_entries; 1408 1409 head_bit = 0; 1410 1411 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1412 atomic_inc(&cpu_buffer->record_disabled); 1413 /* 1414 * We don't race with the readers since we have acquired the reader 1415 * lock. We also don't race with writers after disabling recording. 1416 * This makes it easy to figure out the first and the last page to be 1417 * removed from the list. We unlink all the pages in between including 1418 * the first and last pages. This is done in a busy loop so that we 1419 * lose the least number of traces. 1420 * The pages are freed after we restart recording and unlock readers. 1421 */ 1422 tail_page = &cpu_buffer->tail_page->list; 1423 1424 /* 1425 * tail page might be on reader page, we remove the next page 1426 * from the ring buffer 1427 */ 1428 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1429 tail_page = rb_list_head(tail_page->next); 1430 to_remove = tail_page; 1431 1432 /* start of pages to remove */ 1433 first_page = list_entry(rb_list_head(to_remove->next), 1434 struct buffer_page, list); 1435 1436 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1437 to_remove = rb_list_head(to_remove)->next; 1438 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1439 } 1440 1441 next_page = rb_list_head(to_remove)->next; 1442 1443 /* 1444 * Now we remove all pages between tail_page and next_page. 1445 * Make sure that we have head_bit value preserved for the 1446 * next page 1447 */ 1448 tail_page->next = (struct list_head *)((unsigned long)next_page | 1449 head_bit); 1450 next_page = rb_list_head(next_page); 1451 next_page->prev = tail_page; 1452 1453 /* make sure pages points to a valid page in the ring buffer */ 1454 cpu_buffer->pages = next_page; 1455 1456 /* update head page */ 1457 if (head_bit) 1458 cpu_buffer->head_page = list_entry(next_page, 1459 struct buffer_page, list); 1460 1461 /* 1462 * change read pointer to make sure any read iterators reset 1463 * themselves 1464 */ 1465 cpu_buffer->read = 0; 1466 1467 /* pages are removed, resume tracing and then free the pages */ 1468 atomic_dec(&cpu_buffer->record_disabled); 1469 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1470 1471 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1472 1473 /* last buffer page to remove */ 1474 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1475 list); 1476 tmp_iter_page = first_page; 1477 1478 do { 1479 to_remove_page = tmp_iter_page; 1480 rb_inc_page(cpu_buffer, &tmp_iter_page); 1481 1482 /* update the counters */ 1483 page_entries = rb_page_entries(to_remove_page); 1484 if (page_entries) { 1485 /* 1486 * If something was added to this page, it was full 1487 * since it is not the tail page. So we deduct the 1488 * bytes consumed in ring buffer from here. 1489 * Increment overrun to account for the lost events. 1490 */ 1491 local_add(page_entries, &cpu_buffer->overrun); 1492 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1493 } 1494 1495 /* 1496 * We have already removed references to this list item, just 1497 * free up the buffer_page and its page 1498 */ 1499 free_buffer_page(to_remove_page); 1500 nr_removed--; 1501 1502 } while (to_remove_page != last_page); 1503 1504 RB_WARN_ON(cpu_buffer, nr_removed); 1505 1506 return nr_removed == 0; 1507 } 1508 1509 static int 1510 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1511 { 1512 struct list_head *pages = &cpu_buffer->new_pages; 1513 int retries, success; 1514 1515 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1516 /* 1517 * We are holding the reader lock, so the reader page won't be swapped 1518 * in the ring buffer. Now we are racing with the writer trying to 1519 * move head page and the tail page. 1520 * We are going to adapt the reader page update process where: 1521 * 1. We first splice the start and end of list of new pages between 1522 * the head page and its previous page. 1523 * 2. We cmpxchg the prev_page->next to point from head page to the 1524 * start of new pages list. 1525 * 3. Finally, we update the head->prev to the end of new list. 1526 * 1527 * We will try this process 10 times, to make sure that we don't keep 1528 * spinning. 1529 */ 1530 retries = 10; 1531 success = 0; 1532 while (retries--) { 1533 struct list_head *head_page, *prev_page, *r; 1534 struct list_head *last_page, *first_page; 1535 struct list_head *head_page_with_bit; 1536 1537 head_page = &rb_set_head_page(cpu_buffer)->list; 1538 if (!head_page) 1539 break; 1540 prev_page = head_page->prev; 1541 1542 first_page = pages->next; 1543 last_page = pages->prev; 1544 1545 head_page_with_bit = (struct list_head *) 1546 ((unsigned long)head_page | RB_PAGE_HEAD); 1547 1548 last_page->next = head_page_with_bit; 1549 first_page->prev = prev_page; 1550 1551 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1552 1553 if (r == head_page_with_bit) { 1554 /* 1555 * yay, we replaced the page pointer to our new list, 1556 * now, we just have to update to head page's prev 1557 * pointer to point to end of list 1558 */ 1559 head_page->prev = last_page; 1560 success = 1; 1561 break; 1562 } 1563 } 1564 1565 if (success) 1566 INIT_LIST_HEAD(pages); 1567 /* 1568 * If we weren't successful in adding in new pages, warn and stop 1569 * tracing 1570 */ 1571 RB_WARN_ON(cpu_buffer, !success); 1572 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1573 1574 /* free pages if they weren't inserted */ 1575 if (!success) { 1576 struct buffer_page *bpage, *tmp; 1577 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1578 list) { 1579 list_del_init(&bpage->list); 1580 free_buffer_page(bpage); 1581 } 1582 } 1583 return success; 1584 } 1585 1586 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1587 { 1588 int success; 1589 1590 if (cpu_buffer->nr_pages_to_update > 0) 1591 success = rb_insert_pages(cpu_buffer); 1592 else 1593 success = rb_remove_pages(cpu_buffer, 1594 -cpu_buffer->nr_pages_to_update); 1595 1596 if (success) 1597 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1598 } 1599 1600 static void update_pages_handler(struct work_struct *work) 1601 { 1602 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1603 struct ring_buffer_per_cpu, update_pages_work); 1604 rb_update_pages(cpu_buffer); 1605 complete(&cpu_buffer->update_done); 1606 } 1607 1608 /** 1609 * ring_buffer_resize - resize the ring buffer 1610 * @buffer: the buffer to resize. 1611 * @size: the new size. 1612 * @cpu_id: the cpu buffer to resize 1613 * 1614 * Minimum size is 2 * BUF_PAGE_SIZE. 1615 * 1616 * Returns 0 on success and < 0 on failure. 1617 */ 1618 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1619 int cpu_id) 1620 { 1621 struct ring_buffer_per_cpu *cpu_buffer; 1622 unsigned nr_pages; 1623 int cpu, err = 0; 1624 1625 /* 1626 * Always succeed at resizing a non-existent buffer: 1627 */ 1628 if (!buffer) 1629 return size; 1630 1631 /* Make sure the requested buffer exists */ 1632 if (cpu_id != RING_BUFFER_ALL_CPUS && 1633 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1634 return size; 1635 1636 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1637 size *= BUF_PAGE_SIZE; 1638 1639 /* we need a minimum of two pages */ 1640 if (size < BUF_PAGE_SIZE * 2) 1641 size = BUF_PAGE_SIZE * 2; 1642 1643 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1644 1645 /* 1646 * Don't succeed if resizing is disabled, as a reader might be 1647 * manipulating the ring buffer and is expecting a sane state while 1648 * this is true. 1649 */ 1650 if (atomic_read(&buffer->resize_disabled)) 1651 return -EBUSY; 1652 1653 /* prevent another thread from changing buffer sizes */ 1654 mutex_lock(&buffer->mutex); 1655 1656 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1657 /* calculate the pages to update */ 1658 for_each_buffer_cpu(buffer, cpu) { 1659 cpu_buffer = buffer->buffers[cpu]; 1660 1661 cpu_buffer->nr_pages_to_update = nr_pages - 1662 cpu_buffer->nr_pages; 1663 /* 1664 * nothing more to do for removing pages or no update 1665 */ 1666 if (cpu_buffer->nr_pages_to_update <= 0) 1667 continue; 1668 /* 1669 * to add pages, make sure all new pages can be 1670 * allocated without receiving ENOMEM 1671 */ 1672 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1673 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1674 &cpu_buffer->new_pages, cpu)) { 1675 /* not enough memory for new pages */ 1676 err = -ENOMEM; 1677 goto out_err; 1678 } 1679 } 1680 1681 get_online_cpus(); 1682 /* 1683 * Fire off all the required work handlers 1684 * We can't schedule on offline CPUs, but it's not necessary 1685 * since we can change their buffer sizes without any race. 1686 */ 1687 for_each_buffer_cpu(buffer, cpu) { 1688 cpu_buffer = buffer->buffers[cpu]; 1689 if (!cpu_buffer->nr_pages_to_update) 1690 continue; 1691 1692 /* The update must run on the CPU that is being updated. */ 1693 preempt_disable(); 1694 if (cpu == smp_processor_id() || !cpu_online(cpu)) { 1695 rb_update_pages(cpu_buffer); 1696 cpu_buffer->nr_pages_to_update = 0; 1697 } else { 1698 /* 1699 * Can not disable preemption for schedule_work_on() 1700 * on PREEMPT_RT. 1701 */ 1702 preempt_enable(); 1703 schedule_work_on(cpu, 1704 &cpu_buffer->update_pages_work); 1705 preempt_disable(); 1706 } 1707 preempt_enable(); 1708 } 1709 1710 /* wait for all the updates to complete */ 1711 for_each_buffer_cpu(buffer, cpu) { 1712 cpu_buffer = buffer->buffers[cpu]; 1713 if (!cpu_buffer->nr_pages_to_update) 1714 continue; 1715 1716 if (cpu_online(cpu)) 1717 wait_for_completion(&cpu_buffer->update_done); 1718 cpu_buffer->nr_pages_to_update = 0; 1719 } 1720 1721 put_online_cpus(); 1722 } else { 1723 /* Make sure this CPU has been intitialized */ 1724 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1725 goto out; 1726 1727 cpu_buffer = buffer->buffers[cpu_id]; 1728 1729 if (nr_pages == cpu_buffer->nr_pages) 1730 goto out; 1731 1732 cpu_buffer->nr_pages_to_update = nr_pages - 1733 cpu_buffer->nr_pages; 1734 1735 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1736 if (cpu_buffer->nr_pages_to_update > 0 && 1737 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1738 &cpu_buffer->new_pages, cpu_id)) { 1739 err = -ENOMEM; 1740 goto out_err; 1741 } 1742 1743 get_online_cpus(); 1744 1745 preempt_disable(); 1746 /* The update must run on the CPU that is being updated. */ 1747 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id)) 1748 rb_update_pages(cpu_buffer); 1749 else { 1750 /* 1751 * Can not disable preemption for schedule_work_on() 1752 * on PREEMPT_RT. 1753 */ 1754 preempt_enable(); 1755 schedule_work_on(cpu_id, 1756 &cpu_buffer->update_pages_work); 1757 wait_for_completion(&cpu_buffer->update_done); 1758 preempt_disable(); 1759 } 1760 preempt_enable(); 1761 1762 cpu_buffer->nr_pages_to_update = 0; 1763 put_online_cpus(); 1764 } 1765 1766 out: 1767 /* 1768 * The ring buffer resize can happen with the ring buffer 1769 * enabled, so that the update disturbs the tracing as little 1770 * as possible. But if the buffer is disabled, we do not need 1771 * to worry about that, and we can take the time to verify 1772 * that the buffer is not corrupt. 1773 */ 1774 if (atomic_read(&buffer->record_disabled)) { 1775 atomic_inc(&buffer->record_disabled); 1776 /* 1777 * Even though the buffer was disabled, we must make sure 1778 * that it is truly disabled before calling rb_check_pages. 1779 * There could have been a race between checking 1780 * record_disable and incrementing it. 1781 */ 1782 synchronize_sched(); 1783 for_each_buffer_cpu(buffer, cpu) { 1784 cpu_buffer = buffer->buffers[cpu]; 1785 rb_check_pages(cpu_buffer); 1786 } 1787 atomic_dec(&buffer->record_disabled); 1788 } 1789 1790 mutex_unlock(&buffer->mutex); 1791 return size; 1792 1793 out_err: 1794 for_each_buffer_cpu(buffer, cpu) { 1795 struct buffer_page *bpage, *tmp; 1796 1797 cpu_buffer = buffer->buffers[cpu]; 1798 cpu_buffer->nr_pages_to_update = 0; 1799 1800 if (list_empty(&cpu_buffer->new_pages)) 1801 continue; 1802 1803 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1804 list) { 1805 list_del_init(&bpage->list); 1806 free_buffer_page(bpage); 1807 } 1808 } 1809 mutex_unlock(&buffer->mutex); 1810 return err; 1811 } 1812 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1813 1814 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1815 { 1816 mutex_lock(&buffer->mutex); 1817 if (val) 1818 buffer->flags |= RB_FL_OVERWRITE; 1819 else 1820 buffer->flags &= ~RB_FL_OVERWRITE; 1821 mutex_unlock(&buffer->mutex); 1822 } 1823 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1824 1825 static inline void * 1826 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1827 { 1828 return bpage->data + index; 1829 } 1830 1831 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1832 { 1833 return bpage->page->data + index; 1834 } 1835 1836 static inline struct ring_buffer_event * 1837 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1838 { 1839 return __rb_page_index(cpu_buffer->reader_page, 1840 cpu_buffer->reader_page->read); 1841 } 1842 1843 static inline struct ring_buffer_event * 1844 rb_iter_head_event(struct ring_buffer_iter *iter) 1845 { 1846 return __rb_page_index(iter->head_page, iter->head); 1847 } 1848 1849 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1850 { 1851 return local_read(&bpage->page->commit); 1852 } 1853 1854 /* Size is determined by what has been committed */ 1855 static inline unsigned rb_page_size(struct buffer_page *bpage) 1856 { 1857 return rb_page_commit(bpage); 1858 } 1859 1860 static inline unsigned 1861 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1862 { 1863 return rb_page_commit(cpu_buffer->commit_page); 1864 } 1865 1866 static inline unsigned 1867 rb_event_index(struct ring_buffer_event *event) 1868 { 1869 unsigned long addr = (unsigned long)event; 1870 1871 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1872 } 1873 1874 static inline int 1875 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1876 struct ring_buffer_event *event) 1877 { 1878 unsigned long addr = (unsigned long)event; 1879 unsigned long index; 1880 1881 index = rb_event_index(event); 1882 addr &= PAGE_MASK; 1883 1884 return cpu_buffer->commit_page->page == (void *)addr && 1885 rb_commit_index(cpu_buffer) == index; 1886 } 1887 1888 static void 1889 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1890 { 1891 unsigned long max_count; 1892 1893 /* 1894 * We only race with interrupts and NMIs on this CPU. 1895 * If we own the commit event, then we can commit 1896 * all others that interrupted us, since the interruptions 1897 * are in stack format (they finish before they come 1898 * back to us). This allows us to do a simple loop to 1899 * assign the commit to the tail. 1900 */ 1901 again: 1902 max_count = cpu_buffer->nr_pages * 100; 1903 1904 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1905 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1906 return; 1907 if (RB_WARN_ON(cpu_buffer, 1908 rb_is_reader_page(cpu_buffer->tail_page))) 1909 return; 1910 local_set(&cpu_buffer->commit_page->page->commit, 1911 rb_page_write(cpu_buffer->commit_page)); 1912 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1913 cpu_buffer->write_stamp = 1914 cpu_buffer->commit_page->page->time_stamp; 1915 /* add barrier to keep gcc from optimizing too much */ 1916 barrier(); 1917 } 1918 while (rb_commit_index(cpu_buffer) != 1919 rb_page_write(cpu_buffer->commit_page)) { 1920 1921 local_set(&cpu_buffer->commit_page->page->commit, 1922 rb_page_write(cpu_buffer->commit_page)); 1923 RB_WARN_ON(cpu_buffer, 1924 local_read(&cpu_buffer->commit_page->page->commit) & 1925 ~RB_WRITE_MASK); 1926 barrier(); 1927 } 1928 1929 /* again, keep gcc from optimizing */ 1930 barrier(); 1931 1932 /* 1933 * If an interrupt came in just after the first while loop 1934 * and pushed the tail page forward, we will be left with 1935 * a dangling commit that will never go forward. 1936 */ 1937 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1938 goto again; 1939 } 1940 1941 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1942 { 1943 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1944 cpu_buffer->reader_page->read = 0; 1945 } 1946 1947 static void rb_inc_iter(struct ring_buffer_iter *iter) 1948 { 1949 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1950 1951 /* 1952 * The iterator could be on the reader page (it starts there). 1953 * But the head could have moved, since the reader was 1954 * found. Check for this case and assign the iterator 1955 * to the head page instead of next. 1956 */ 1957 if (iter->head_page == cpu_buffer->reader_page) 1958 iter->head_page = rb_set_head_page(cpu_buffer); 1959 else 1960 rb_inc_page(cpu_buffer, &iter->head_page); 1961 1962 iter->read_stamp = iter->head_page->page->time_stamp; 1963 iter->head = 0; 1964 } 1965 1966 /* Slow path, do not inline */ 1967 static noinline struct ring_buffer_event * 1968 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1969 { 1970 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1971 1972 /* Not the first event on the page? */ 1973 if (rb_event_index(event)) { 1974 event->time_delta = delta & TS_MASK; 1975 event->array[0] = delta >> TS_SHIFT; 1976 } else { 1977 /* nope, just zero it */ 1978 event->time_delta = 0; 1979 event->array[0] = 0; 1980 } 1981 1982 return skip_time_extend(event); 1983 } 1984 1985 /** 1986 * rb_update_event - update event type and data 1987 * @event: the even to update 1988 * @type: the type of event 1989 * @length: the size of the event field in the ring buffer 1990 * 1991 * Update the type and data fields of the event. The length 1992 * is the actual size that is written to the ring buffer, 1993 * and with this, we can determine what to place into the 1994 * data field. 1995 */ 1996 static void 1997 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1998 struct ring_buffer_event *event, unsigned length, 1999 int add_timestamp, u64 delta) 2000 { 2001 /* Only a commit updates the timestamp */ 2002 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2003 delta = 0; 2004 2005 /* 2006 * If we need to add a timestamp, then we 2007 * add it to the start of the resevered space. 2008 */ 2009 if (unlikely(add_timestamp)) { 2010 event = rb_add_time_stamp(event, delta); 2011 length -= RB_LEN_TIME_EXTEND; 2012 delta = 0; 2013 } 2014 2015 event->time_delta = delta; 2016 length -= RB_EVNT_HDR_SIZE; 2017 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2018 event->type_len = 0; 2019 event->array[0] = length; 2020 } else 2021 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2022 } 2023 2024 /* 2025 * rb_handle_head_page - writer hit the head page 2026 * 2027 * Returns: +1 to retry page 2028 * 0 to continue 2029 * -1 on error 2030 */ 2031 static int 2032 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2033 struct buffer_page *tail_page, 2034 struct buffer_page *next_page) 2035 { 2036 struct buffer_page *new_head; 2037 int entries; 2038 int type; 2039 int ret; 2040 2041 entries = rb_page_entries(next_page); 2042 2043 /* 2044 * The hard part is here. We need to move the head 2045 * forward, and protect against both readers on 2046 * other CPUs and writers coming in via interrupts. 2047 */ 2048 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2049 RB_PAGE_HEAD); 2050 2051 /* 2052 * type can be one of four: 2053 * NORMAL - an interrupt already moved it for us 2054 * HEAD - we are the first to get here. 2055 * UPDATE - we are the interrupt interrupting 2056 * a current move. 2057 * MOVED - a reader on another CPU moved the next 2058 * pointer to its reader page. Give up 2059 * and try again. 2060 */ 2061 2062 switch (type) { 2063 case RB_PAGE_HEAD: 2064 /* 2065 * We changed the head to UPDATE, thus 2066 * it is our responsibility to update 2067 * the counters. 2068 */ 2069 local_add(entries, &cpu_buffer->overrun); 2070 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2071 2072 /* 2073 * The entries will be zeroed out when we move the 2074 * tail page. 2075 */ 2076 2077 /* still more to do */ 2078 break; 2079 2080 case RB_PAGE_UPDATE: 2081 /* 2082 * This is an interrupt that interrupt the 2083 * previous update. Still more to do. 2084 */ 2085 break; 2086 case RB_PAGE_NORMAL: 2087 /* 2088 * An interrupt came in before the update 2089 * and processed this for us. 2090 * Nothing left to do. 2091 */ 2092 return 1; 2093 case RB_PAGE_MOVED: 2094 /* 2095 * The reader is on another CPU and just did 2096 * a swap with our next_page. 2097 * Try again. 2098 */ 2099 return 1; 2100 default: 2101 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2102 return -1; 2103 } 2104 2105 /* 2106 * Now that we are here, the old head pointer is 2107 * set to UPDATE. This will keep the reader from 2108 * swapping the head page with the reader page. 2109 * The reader (on another CPU) will spin till 2110 * we are finished. 2111 * 2112 * We just need to protect against interrupts 2113 * doing the job. We will set the next pointer 2114 * to HEAD. After that, we set the old pointer 2115 * to NORMAL, but only if it was HEAD before. 2116 * otherwise we are an interrupt, and only 2117 * want the outer most commit to reset it. 2118 */ 2119 new_head = next_page; 2120 rb_inc_page(cpu_buffer, &new_head); 2121 2122 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2123 RB_PAGE_NORMAL); 2124 2125 /* 2126 * Valid returns are: 2127 * HEAD - an interrupt came in and already set it. 2128 * NORMAL - One of two things: 2129 * 1) We really set it. 2130 * 2) A bunch of interrupts came in and moved 2131 * the page forward again. 2132 */ 2133 switch (ret) { 2134 case RB_PAGE_HEAD: 2135 case RB_PAGE_NORMAL: 2136 /* OK */ 2137 break; 2138 default: 2139 RB_WARN_ON(cpu_buffer, 1); 2140 return -1; 2141 } 2142 2143 /* 2144 * It is possible that an interrupt came in, 2145 * set the head up, then more interrupts came in 2146 * and moved it again. When we get back here, 2147 * the page would have been set to NORMAL but we 2148 * just set it back to HEAD. 2149 * 2150 * How do you detect this? Well, if that happened 2151 * the tail page would have moved. 2152 */ 2153 if (ret == RB_PAGE_NORMAL) { 2154 /* 2155 * If the tail had moved passed next, then we need 2156 * to reset the pointer. 2157 */ 2158 if (cpu_buffer->tail_page != tail_page && 2159 cpu_buffer->tail_page != next_page) 2160 rb_head_page_set_normal(cpu_buffer, new_head, 2161 next_page, 2162 RB_PAGE_HEAD); 2163 } 2164 2165 /* 2166 * If this was the outer most commit (the one that 2167 * changed the original pointer from HEAD to UPDATE), 2168 * then it is up to us to reset it to NORMAL. 2169 */ 2170 if (type == RB_PAGE_HEAD) { 2171 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2172 tail_page, 2173 RB_PAGE_UPDATE); 2174 if (RB_WARN_ON(cpu_buffer, 2175 ret != RB_PAGE_UPDATE)) 2176 return -1; 2177 } 2178 2179 return 0; 2180 } 2181 2182 static unsigned rb_calculate_event_length(unsigned length) 2183 { 2184 struct ring_buffer_event event; /* Used only for sizeof array */ 2185 2186 /* zero length can cause confusions */ 2187 if (!length) 2188 length = 1; 2189 2190 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2191 length += sizeof(event.array[0]); 2192 2193 length += RB_EVNT_HDR_SIZE; 2194 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2195 2196 return length; 2197 } 2198 2199 static inline void 2200 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2201 struct buffer_page *tail_page, 2202 unsigned long tail, unsigned long length) 2203 { 2204 struct ring_buffer_event *event; 2205 2206 /* 2207 * Only the event that crossed the page boundary 2208 * must fill the old tail_page with padding. 2209 */ 2210 if (tail >= BUF_PAGE_SIZE) { 2211 /* 2212 * If the page was filled, then we still need 2213 * to update the real_end. Reset it to zero 2214 * and the reader will ignore it. 2215 */ 2216 if (tail == BUF_PAGE_SIZE) 2217 tail_page->real_end = 0; 2218 2219 local_sub(length, &tail_page->write); 2220 return; 2221 } 2222 2223 event = __rb_page_index(tail_page, tail); 2224 kmemcheck_annotate_bitfield(event, bitfield); 2225 2226 /* account for padding bytes */ 2227 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2228 2229 /* 2230 * Save the original length to the meta data. 2231 * This will be used by the reader to add lost event 2232 * counter. 2233 */ 2234 tail_page->real_end = tail; 2235 2236 /* 2237 * If this event is bigger than the minimum size, then 2238 * we need to be careful that we don't subtract the 2239 * write counter enough to allow another writer to slip 2240 * in on this page. 2241 * We put in a discarded commit instead, to make sure 2242 * that this space is not used again. 2243 * 2244 * If we are less than the minimum size, we don't need to 2245 * worry about it. 2246 */ 2247 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2248 /* No room for any events */ 2249 2250 /* Mark the rest of the page with padding */ 2251 rb_event_set_padding(event); 2252 2253 /* Set the write back to the previous setting */ 2254 local_sub(length, &tail_page->write); 2255 return; 2256 } 2257 2258 /* Put in a discarded event */ 2259 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2260 event->type_len = RINGBUF_TYPE_PADDING; 2261 /* time delta must be non zero */ 2262 event->time_delta = 1; 2263 2264 /* Set write to end of buffer */ 2265 length = (tail + length) - BUF_PAGE_SIZE; 2266 local_sub(length, &tail_page->write); 2267 } 2268 2269 /* 2270 * This is the slow path, force gcc not to inline it. 2271 */ 2272 static noinline struct ring_buffer_event * 2273 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2274 unsigned long length, unsigned long tail, 2275 struct buffer_page *tail_page, u64 ts) 2276 { 2277 struct buffer_page *commit_page = cpu_buffer->commit_page; 2278 struct ring_buffer *buffer = cpu_buffer->buffer; 2279 struct buffer_page *next_page; 2280 int ret; 2281 2282 next_page = tail_page; 2283 2284 rb_inc_page(cpu_buffer, &next_page); 2285 2286 /* 2287 * If for some reason, we had an interrupt storm that made 2288 * it all the way around the buffer, bail, and warn 2289 * about it. 2290 */ 2291 if (unlikely(next_page == commit_page)) { 2292 local_inc(&cpu_buffer->commit_overrun); 2293 goto out_reset; 2294 } 2295 2296 /* 2297 * This is where the fun begins! 2298 * 2299 * We are fighting against races between a reader that 2300 * could be on another CPU trying to swap its reader 2301 * page with the buffer head. 2302 * 2303 * We are also fighting against interrupts coming in and 2304 * moving the head or tail on us as well. 2305 * 2306 * If the next page is the head page then we have filled 2307 * the buffer, unless the commit page is still on the 2308 * reader page. 2309 */ 2310 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2311 2312 /* 2313 * If the commit is not on the reader page, then 2314 * move the header page. 2315 */ 2316 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2317 /* 2318 * If we are not in overwrite mode, 2319 * this is easy, just stop here. 2320 */ 2321 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2322 local_inc(&cpu_buffer->dropped_events); 2323 goto out_reset; 2324 } 2325 2326 ret = rb_handle_head_page(cpu_buffer, 2327 tail_page, 2328 next_page); 2329 if (ret < 0) 2330 goto out_reset; 2331 if (ret) 2332 goto out_again; 2333 } else { 2334 /* 2335 * We need to be careful here too. The 2336 * commit page could still be on the reader 2337 * page. We could have a small buffer, and 2338 * have filled up the buffer with events 2339 * from interrupts and such, and wrapped. 2340 * 2341 * Note, if the tail page is also the on the 2342 * reader_page, we let it move out. 2343 */ 2344 if (unlikely((cpu_buffer->commit_page != 2345 cpu_buffer->tail_page) && 2346 (cpu_buffer->commit_page == 2347 cpu_buffer->reader_page))) { 2348 local_inc(&cpu_buffer->commit_overrun); 2349 goto out_reset; 2350 } 2351 } 2352 } 2353 2354 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2355 if (ret) { 2356 /* 2357 * Nested commits always have zero deltas, so 2358 * just reread the time stamp 2359 */ 2360 ts = rb_time_stamp(buffer); 2361 next_page->page->time_stamp = ts; 2362 } 2363 2364 out_again: 2365 2366 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2367 2368 /* fail and let the caller try again */ 2369 return ERR_PTR(-EAGAIN); 2370 2371 out_reset: 2372 /* reset write */ 2373 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2374 2375 return NULL; 2376 } 2377 2378 static struct ring_buffer_event * 2379 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2380 unsigned long length, u64 ts, 2381 u64 delta, int add_timestamp) 2382 { 2383 struct buffer_page *tail_page; 2384 struct ring_buffer_event *event; 2385 unsigned long tail, write; 2386 2387 /* 2388 * If the time delta since the last event is too big to 2389 * hold in the time field of the event, then we append a 2390 * TIME EXTEND event ahead of the data event. 2391 */ 2392 if (unlikely(add_timestamp)) 2393 length += RB_LEN_TIME_EXTEND; 2394 2395 tail_page = cpu_buffer->tail_page; 2396 write = local_add_return(length, &tail_page->write); 2397 2398 /* set write to only the index of the write */ 2399 write &= RB_WRITE_MASK; 2400 tail = write - length; 2401 2402 /* 2403 * If this is the first commit on the page, then it has the same 2404 * timestamp as the page itself. 2405 */ 2406 if (!tail) 2407 delta = 0; 2408 2409 /* See if we shot pass the end of this buffer page */ 2410 if (unlikely(write > BUF_PAGE_SIZE)) 2411 return rb_move_tail(cpu_buffer, length, tail, 2412 tail_page, ts); 2413 2414 /* We reserved something on the buffer */ 2415 2416 event = __rb_page_index(tail_page, tail); 2417 kmemcheck_annotate_bitfield(event, bitfield); 2418 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2419 2420 local_inc(&tail_page->entries); 2421 2422 /* 2423 * If this is the first commit on the page, then update 2424 * its timestamp. 2425 */ 2426 if (!tail) 2427 tail_page->page->time_stamp = ts; 2428 2429 /* account for these added bytes */ 2430 local_add(length, &cpu_buffer->entries_bytes); 2431 2432 return event; 2433 } 2434 2435 static inline int 2436 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2437 struct ring_buffer_event *event) 2438 { 2439 unsigned long new_index, old_index; 2440 struct buffer_page *bpage; 2441 unsigned long index; 2442 unsigned long addr; 2443 2444 new_index = rb_event_index(event); 2445 old_index = new_index + rb_event_ts_length(event); 2446 addr = (unsigned long)event; 2447 addr &= PAGE_MASK; 2448 2449 bpage = cpu_buffer->tail_page; 2450 2451 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2452 unsigned long write_mask = 2453 local_read(&bpage->write) & ~RB_WRITE_MASK; 2454 unsigned long event_length = rb_event_length(event); 2455 /* 2456 * This is on the tail page. It is possible that 2457 * a write could come in and move the tail page 2458 * and write to the next page. That is fine 2459 * because we just shorten what is on this page. 2460 */ 2461 old_index += write_mask; 2462 new_index += write_mask; 2463 index = local_cmpxchg(&bpage->write, old_index, new_index); 2464 if (index == old_index) { 2465 /* update counters */ 2466 local_sub(event_length, &cpu_buffer->entries_bytes); 2467 return 1; 2468 } 2469 } 2470 2471 /* could not discard */ 2472 return 0; 2473 } 2474 2475 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2476 { 2477 local_inc(&cpu_buffer->committing); 2478 local_inc(&cpu_buffer->commits); 2479 } 2480 2481 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2482 { 2483 unsigned long commits; 2484 2485 if (RB_WARN_ON(cpu_buffer, 2486 !local_read(&cpu_buffer->committing))) 2487 return; 2488 2489 again: 2490 commits = local_read(&cpu_buffer->commits); 2491 /* synchronize with interrupts */ 2492 barrier(); 2493 if (local_read(&cpu_buffer->committing) == 1) 2494 rb_set_commit_to_write(cpu_buffer); 2495 2496 local_dec(&cpu_buffer->committing); 2497 2498 /* synchronize with interrupts */ 2499 barrier(); 2500 2501 /* 2502 * Need to account for interrupts coming in between the 2503 * updating of the commit page and the clearing of the 2504 * committing counter. 2505 */ 2506 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2507 !local_read(&cpu_buffer->committing)) { 2508 local_inc(&cpu_buffer->committing); 2509 goto again; 2510 } 2511 } 2512 2513 static struct ring_buffer_event * 2514 rb_reserve_next_event(struct ring_buffer *buffer, 2515 struct ring_buffer_per_cpu *cpu_buffer, 2516 unsigned long length) 2517 { 2518 struct ring_buffer_event *event; 2519 u64 ts, delta; 2520 int nr_loops = 0; 2521 int add_timestamp; 2522 u64 diff; 2523 2524 rb_start_commit(cpu_buffer); 2525 2526 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2527 /* 2528 * Due to the ability to swap a cpu buffer from a buffer 2529 * it is possible it was swapped before we committed. 2530 * (committing stops a swap). We check for it here and 2531 * if it happened, we have to fail the write. 2532 */ 2533 barrier(); 2534 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2535 local_dec(&cpu_buffer->committing); 2536 local_dec(&cpu_buffer->commits); 2537 return NULL; 2538 } 2539 #endif 2540 2541 length = rb_calculate_event_length(length); 2542 again: 2543 add_timestamp = 0; 2544 delta = 0; 2545 2546 /* 2547 * We allow for interrupts to reenter here and do a trace. 2548 * If one does, it will cause this original code to loop 2549 * back here. Even with heavy interrupts happening, this 2550 * should only happen a few times in a row. If this happens 2551 * 1000 times in a row, there must be either an interrupt 2552 * storm or we have something buggy. 2553 * Bail! 2554 */ 2555 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2556 goto out_fail; 2557 2558 ts = rb_time_stamp(cpu_buffer->buffer); 2559 diff = ts - cpu_buffer->write_stamp; 2560 2561 /* make sure this diff is calculated here */ 2562 barrier(); 2563 2564 /* Did the write stamp get updated already? */ 2565 if (likely(ts >= cpu_buffer->write_stamp)) { 2566 delta = diff; 2567 if (unlikely(test_time_stamp(delta))) { 2568 int local_clock_stable = 1; 2569 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2570 local_clock_stable = sched_clock_stable(); 2571 #endif 2572 WARN_ONCE(delta > (1ULL << 59), 2573 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2574 (unsigned long long)delta, 2575 (unsigned long long)ts, 2576 (unsigned long long)cpu_buffer->write_stamp, 2577 local_clock_stable ? "" : 2578 "If you just came from a suspend/resume,\n" 2579 "please switch to the trace global clock:\n" 2580 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2581 add_timestamp = 1; 2582 } 2583 } 2584 2585 event = __rb_reserve_next(cpu_buffer, length, ts, 2586 delta, add_timestamp); 2587 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2588 goto again; 2589 2590 if (!event) 2591 goto out_fail; 2592 2593 return event; 2594 2595 out_fail: 2596 rb_end_commit(cpu_buffer); 2597 return NULL; 2598 } 2599 2600 #ifdef CONFIG_TRACING 2601 2602 /* 2603 * The lock and unlock are done within a preempt disable section. 2604 * The current_context per_cpu variable can only be modified 2605 * by the current task between lock and unlock. But it can 2606 * be modified more than once via an interrupt. To pass this 2607 * information from the lock to the unlock without having to 2608 * access the 'in_interrupt()' functions again (which do show 2609 * a bit of overhead in something as critical as function tracing, 2610 * we use a bitmask trick. 2611 * 2612 * bit 0 = NMI context 2613 * bit 1 = IRQ context 2614 * bit 2 = SoftIRQ context 2615 * bit 3 = normal context. 2616 * 2617 * This works because this is the order of contexts that can 2618 * preempt other contexts. A SoftIRQ never preempts an IRQ 2619 * context. 2620 * 2621 * When the context is determined, the corresponding bit is 2622 * checked and set (if it was set, then a recursion of that context 2623 * happened). 2624 * 2625 * On unlock, we need to clear this bit. To do so, just subtract 2626 * 1 from the current_context and AND it to itself. 2627 * 2628 * (binary) 2629 * 101 - 1 = 100 2630 * 101 & 100 = 100 (clearing bit zero) 2631 * 2632 * 1010 - 1 = 1001 2633 * 1010 & 1001 = 1000 (clearing bit 1) 2634 * 2635 * The least significant bit can be cleared this way, and it 2636 * just so happens that it is the same bit corresponding to 2637 * the current context. 2638 */ 2639 static DEFINE_PER_CPU(unsigned int, current_context); 2640 2641 static __always_inline int trace_recursive_lock(void) 2642 { 2643 unsigned int val = this_cpu_read(current_context); 2644 int bit; 2645 2646 if (in_interrupt()) { 2647 if (in_nmi()) 2648 bit = 0; 2649 else if (in_irq()) 2650 bit = 1; 2651 else 2652 bit = 2; 2653 } else 2654 bit = 3; 2655 2656 if (unlikely(val & (1 << bit))) 2657 return 1; 2658 2659 val |= (1 << bit); 2660 this_cpu_write(current_context, val); 2661 2662 return 0; 2663 } 2664 2665 static __always_inline void trace_recursive_unlock(void) 2666 { 2667 unsigned int val = this_cpu_read(current_context); 2668 2669 val--; 2670 val &= this_cpu_read(current_context); 2671 this_cpu_write(current_context, val); 2672 } 2673 2674 #else 2675 2676 #define trace_recursive_lock() (0) 2677 #define trace_recursive_unlock() do { } while (0) 2678 2679 #endif 2680 2681 /** 2682 * ring_buffer_lock_reserve - reserve a part of the buffer 2683 * @buffer: the ring buffer to reserve from 2684 * @length: the length of the data to reserve (excluding event header) 2685 * 2686 * Returns a reseverd event on the ring buffer to copy directly to. 2687 * The user of this interface will need to get the body to write into 2688 * and can use the ring_buffer_event_data() interface. 2689 * 2690 * The length is the length of the data needed, not the event length 2691 * which also includes the event header. 2692 * 2693 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2694 * If NULL is returned, then nothing has been allocated or locked. 2695 */ 2696 struct ring_buffer_event * 2697 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2698 { 2699 struct ring_buffer_per_cpu *cpu_buffer; 2700 struct ring_buffer_event *event; 2701 int cpu; 2702 2703 if (ring_buffer_flags != RB_BUFFERS_ON) 2704 return NULL; 2705 2706 /* If we are tracing schedule, we don't want to recurse */ 2707 preempt_disable_notrace(); 2708 2709 if (atomic_read(&buffer->record_disabled)) 2710 goto out_nocheck; 2711 2712 if (trace_recursive_lock()) 2713 goto out_nocheck; 2714 2715 cpu = raw_smp_processor_id(); 2716 2717 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2718 goto out; 2719 2720 cpu_buffer = buffer->buffers[cpu]; 2721 2722 if (atomic_read(&cpu_buffer->record_disabled)) 2723 goto out; 2724 2725 if (length > BUF_MAX_DATA_SIZE) 2726 goto out; 2727 2728 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2729 if (!event) 2730 goto out; 2731 2732 return event; 2733 2734 out: 2735 trace_recursive_unlock(); 2736 2737 out_nocheck: 2738 preempt_enable_notrace(); 2739 return NULL; 2740 } 2741 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2742 2743 static void 2744 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2745 struct ring_buffer_event *event) 2746 { 2747 u64 delta; 2748 2749 /* 2750 * The event first in the commit queue updates the 2751 * time stamp. 2752 */ 2753 if (rb_event_is_commit(cpu_buffer, event)) { 2754 /* 2755 * A commit event that is first on a page 2756 * updates the write timestamp with the page stamp 2757 */ 2758 if (!rb_event_index(event)) 2759 cpu_buffer->write_stamp = 2760 cpu_buffer->commit_page->page->time_stamp; 2761 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2762 delta = event->array[0]; 2763 delta <<= TS_SHIFT; 2764 delta += event->time_delta; 2765 cpu_buffer->write_stamp += delta; 2766 } else 2767 cpu_buffer->write_stamp += event->time_delta; 2768 } 2769 } 2770 2771 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2772 struct ring_buffer_event *event) 2773 { 2774 local_inc(&cpu_buffer->entries); 2775 rb_update_write_stamp(cpu_buffer, event); 2776 rb_end_commit(cpu_buffer); 2777 } 2778 2779 static __always_inline void 2780 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2781 { 2782 if (buffer->irq_work.waiters_pending) { 2783 buffer->irq_work.waiters_pending = false; 2784 /* irq_work_queue() supplies it's own memory barriers */ 2785 irq_work_queue(&buffer->irq_work.work); 2786 } 2787 2788 if (cpu_buffer->irq_work.waiters_pending) { 2789 cpu_buffer->irq_work.waiters_pending = false; 2790 /* irq_work_queue() supplies it's own memory barriers */ 2791 irq_work_queue(&cpu_buffer->irq_work.work); 2792 } 2793 } 2794 2795 /** 2796 * ring_buffer_unlock_commit - commit a reserved 2797 * @buffer: The buffer to commit to 2798 * @event: The event pointer to commit. 2799 * 2800 * This commits the data to the ring buffer, and releases any locks held. 2801 * 2802 * Must be paired with ring_buffer_lock_reserve. 2803 */ 2804 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2805 struct ring_buffer_event *event) 2806 { 2807 struct ring_buffer_per_cpu *cpu_buffer; 2808 int cpu = raw_smp_processor_id(); 2809 2810 cpu_buffer = buffer->buffers[cpu]; 2811 2812 rb_commit(cpu_buffer, event); 2813 2814 rb_wakeups(buffer, cpu_buffer); 2815 2816 trace_recursive_unlock(); 2817 2818 preempt_enable_notrace(); 2819 2820 return 0; 2821 } 2822 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2823 2824 static inline void rb_event_discard(struct ring_buffer_event *event) 2825 { 2826 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2827 event = skip_time_extend(event); 2828 2829 /* array[0] holds the actual length for the discarded event */ 2830 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2831 event->type_len = RINGBUF_TYPE_PADDING; 2832 /* time delta must be non zero */ 2833 if (!event->time_delta) 2834 event->time_delta = 1; 2835 } 2836 2837 /* 2838 * Decrement the entries to the page that an event is on. 2839 * The event does not even need to exist, only the pointer 2840 * to the page it is on. This may only be called before the commit 2841 * takes place. 2842 */ 2843 static inline void 2844 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2845 struct ring_buffer_event *event) 2846 { 2847 unsigned long addr = (unsigned long)event; 2848 struct buffer_page *bpage = cpu_buffer->commit_page; 2849 struct buffer_page *start; 2850 2851 addr &= PAGE_MASK; 2852 2853 /* Do the likely case first */ 2854 if (likely(bpage->page == (void *)addr)) { 2855 local_dec(&bpage->entries); 2856 return; 2857 } 2858 2859 /* 2860 * Because the commit page may be on the reader page we 2861 * start with the next page and check the end loop there. 2862 */ 2863 rb_inc_page(cpu_buffer, &bpage); 2864 start = bpage; 2865 do { 2866 if (bpage->page == (void *)addr) { 2867 local_dec(&bpage->entries); 2868 return; 2869 } 2870 rb_inc_page(cpu_buffer, &bpage); 2871 } while (bpage != start); 2872 2873 /* commit not part of this buffer?? */ 2874 RB_WARN_ON(cpu_buffer, 1); 2875 } 2876 2877 /** 2878 * ring_buffer_commit_discard - discard an event that has not been committed 2879 * @buffer: the ring buffer 2880 * @event: non committed event to discard 2881 * 2882 * Sometimes an event that is in the ring buffer needs to be ignored. 2883 * This function lets the user discard an event in the ring buffer 2884 * and then that event will not be read later. 2885 * 2886 * This function only works if it is called before the the item has been 2887 * committed. It will try to free the event from the ring buffer 2888 * if another event has not been added behind it. 2889 * 2890 * If another event has been added behind it, it will set the event 2891 * up as discarded, and perform the commit. 2892 * 2893 * If this function is called, do not call ring_buffer_unlock_commit on 2894 * the event. 2895 */ 2896 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2897 struct ring_buffer_event *event) 2898 { 2899 struct ring_buffer_per_cpu *cpu_buffer; 2900 int cpu; 2901 2902 /* The event is discarded regardless */ 2903 rb_event_discard(event); 2904 2905 cpu = smp_processor_id(); 2906 cpu_buffer = buffer->buffers[cpu]; 2907 2908 /* 2909 * This must only be called if the event has not been 2910 * committed yet. Thus we can assume that preemption 2911 * is still disabled. 2912 */ 2913 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2914 2915 rb_decrement_entry(cpu_buffer, event); 2916 if (rb_try_to_discard(cpu_buffer, event)) 2917 goto out; 2918 2919 /* 2920 * The commit is still visible by the reader, so we 2921 * must still update the timestamp. 2922 */ 2923 rb_update_write_stamp(cpu_buffer, event); 2924 out: 2925 rb_end_commit(cpu_buffer); 2926 2927 trace_recursive_unlock(); 2928 2929 preempt_enable_notrace(); 2930 2931 } 2932 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2933 2934 /** 2935 * ring_buffer_write - write data to the buffer without reserving 2936 * @buffer: The ring buffer to write to. 2937 * @length: The length of the data being written (excluding the event header) 2938 * @data: The data to write to the buffer. 2939 * 2940 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2941 * one function. If you already have the data to write to the buffer, it 2942 * may be easier to simply call this function. 2943 * 2944 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2945 * and not the length of the event which would hold the header. 2946 */ 2947 int ring_buffer_write(struct ring_buffer *buffer, 2948 unsigned long length, 2949 void *data) 2950 { 2951 struct ring_buffer_per_cpu *cpu_buffer; 2952 struct ring_buffer_event *event; 2953 void *body; 2954 int ret = -EBUSY; 2955 int cpu; 2956 2957 if (ring_buffer_flags != RB_BUFFERS_ON) 2958 return -EBUSY; 2959 2960 preempt_disable_notrace(); 2961 2962 if (atomic_read(&buffer->record_disabled)) 2963 goto out; 2964 2965 cpu = raw_smp_processor_id(); 2966 2967 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2968 goto out; 2969 2970 cpu_buffer = buffer->buffers[cpu]; 2971 2972 if (atomic_read(&cpu_buffer->record_disabled)) 2973 goto out; 2974 2975 if (length > BUF_MAX_DATA_SIZE) 2976 goto out; 2977 2978 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2979 if (!event) 2980 goto out; 2981 2982 body = rb_event_data(event); 2983 2984 memcpy(body, data, length); 2985 2986 rb_commit(cpu_buffer, event); 2987 2988 rb_wakeups(buffer, cpu_buffer); 2989 2990 ret = 0; 2991 out: 2992 preempt_enable_notrace(); 2993 2994 return ret; 2995 } 2996 EXPORT_SYMBOL_GPL(ring_buffer_write); 2997 2998 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2999 { 3000 struct buffer_page *reader = cpu_buffer->reader_page; 3001 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3002 struct buffer_page *commit = cpu_buffer->commit_page; 3003 3004 /* In case of error, head will be NULL */ 3005 if (unlikely(!head)) 3006 return 1; 3007 3008 return reader->read == rb_page_commit(reader) && 3009 (commit == reader || 3010 (commit == head && 3011 head->read == rb_page_commit(commit))); 3012 } 3013 3014 /** 3015 * ring_buffer_record_disable - stop all writes into the buffer 3016 * @buffer: The ring buffer to stop writes to. 3017 * 3018 * This prevents all writes to the buffer. Any attempt to write 3019 * to the buffer after this will fail and return NULL. 3020 * 3021 * The caller should call synchronize_sched() after this. 3022 */ 3023 void ring_buffer_record_disable(struct ring_buffer *buffer) 3024 { 3025 atomic_inc(&buffer->record_disabled); 3026 } 3027 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3028 3029 /** 3030 * ring_buffer_record_enable - enable writes to the buffer 3031 * @buffer: The ring buffer to enable writes 3032 * 3033 * Note, multiple disables will need the same number of enables 3034 * to truly enable the writing (much like preempt_disable). 3035 */ 3036 void ring_buffer_record_enable(struct ring_buffer *buffer) 3037 { 3038 atomic_dec(&buffer->record_disabled); 3039 } 3040 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3041 3042 /** 3043 * ring_buffer_record_off - stop all writes into the buffer 3044 * @buffer: The ring buffer to stop writes to. 3045 * 3046 * This prevents all writes to the buffer. Any attempt to write 3047 * to the buffer after this will fail and return NULL. 3048 * 3049 * This is different than ring_buffer_record_disable() as 3050 * it works like an on/off switch, where as the disable() version 3051 * must be paired with a enable(). 3052 */ 3053 void ring_buffer_record_off(struct ring_buffer *buffer) 3054 { 3055 unsigned int rd; 3056 unsigned int new_rd; 3057 3058 do { 3059 rd = atomic_read(&buffer->record_disabled); 3060 new_rd = rd | RB_BUFFER_OFF; 3061 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3062 } 3063 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3064 3065 /** 3066 * ring_buffer_record_on - restart writes into the buffer 3067 * @buffer: The ring buffer to start writes to. 3068 * 3069 * This enables all writes to the buffer that was disabled by 3070 * ring_buffer_record_off(). 3071 * 3072 * This is different than ring_buffer_record_enable() as 3073 * it works like an on/off switch, where as the enable() version 3074 * must be paired with a disable(). 3075 */ 3076 void ring_buffer_record_on(struct ring_buffer *buffer) 3077 { 3078 unsigned int rd; 3079 unsigned int new_rd; 3080 3081 do { 3082 rd = atomic_read(&buffer->record_disabled); 3083 new_rd = rd & ~RB_BUFFER_OFF; 3084 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3085 } 3086 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3087 3088 /** 3089 * ring_buffer_record_is_on - return true if the ring buffer can write 3090 * @buffer: The ring buffer to see if write is enabled 3091 * 3092 * Returns true if the ring buffer is in a state that it accepts writes. 3093 */ 3094 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3095 { 3096 return !atomic_read(&buffer->record_disabled); 3097 } 3098 3099 /** 3100 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3101 * @buffer: The ring buffer to stop writes to. 3102 * @cpu: The CPU buffer to stop 3103 * 3104 * This prevents all writes to the buffer. Any attempt to write 3105 * to the buffer after this will fail and return NULL. 3106 * 3107 * The caller should call synchronize_sched() after this. 3108 */ 3109 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3110 { 3111 struct ring_buffer_per_cpu *cpu_buffer; 3112 3113 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3114 return; 3115 3116 cpu_buffer = buffer->buffers[cpu]; 3117 atomic_inc(&cpu_buffer->record_disabled); 3118 } 3119 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3120 3121 /** 3122 * ring_buffer_record_enable_cpu - enable writes to the buffer 3123 * @buffer: The ring buffer to enable writes 3124 * @cpu: The CPU to enable. 3125 * 3126 * Note, multiple disables will need the same number of enables 3127 * to truly enable the writing (much like preempt_disable). 3128 */ 3129 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3130 { 3131 struct ring_buffer_per_cpu *cpu_buffer; 3132 3133 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3134 return; 3135 3136 cpu_buffer = buffer->buffers[cpu]; 3137 atomic_dec(&cpu_buffer->record_disabled); 3138 } 3139 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3140 3141 /* 3142 * The total entries in the ring buffer is the running counter 3143 * of entries entered into the ring buffer, minus the sum of 3144 * the entries read from the ring buffer and the number of 3145 * entries that were overwritten. 3146 */ 3147 static inline unsigned long 3148 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3149 { 3150 return local_read(&cpu_buffer->entries) - 3151 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3152 } 3153 3154 /** 3155 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3156 * @buffer: The ring buffer 3157 * @cpu: The per CPU buffer to read from. 3158 */ 3159 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3160 { 3161 unsigned long flags; 3162 struct ring_buffer_per_cpu *cpu_buffer; 3163 struct buffer_page *bpage; 3164 u64 ret = 0; 3165 3166 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3167 return 0; 3168 3169 cpu_buffer = buffer->buffers[cpu]; 3170 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3171 /* 3172 * if the tail is on reader_page, oldest time stamp is on the reader 3173 * page 3174 */ 3175 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3176 bpage = cpu_buffer->reader_page; 3177 else 3178 bpage = rb_set_head_page(cpu_buffer); 3179 if (bpage) 3180 ret = bpage->page->time_stamp; 3181 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3182 3183 return ret; 3184 } 3185 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3186 3187 /** 3188 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3189 * @buffer: The ring buffer 3190 * @cpu: The per CPU buffer to read from. 3191 */ 3192 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3193 { 3194 struct ring_buffer_per_cpu *cpu_buffer; 3195 unsigned long ret; 3196 3197 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3198 return 0; 3199 3200 cpu_buffer = buffer->buffers[cpu]; 3201 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3202 3203 return ret; 3204 } 3205 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3206 3207 /** 3208 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3209 * @buffer: The ring buffer 3210 * @cpu: The per CPU buffer to get the entries from. 3211 */ 3212 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3213 { 3214 struct ring_buffer_per_cpu *cpu_buffer; 3215 3216 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3217 return 0; 3218 3219 cpu_buffer = buffer->buffers[cpu]; 3220 3221 return rb_num_of_entries(cpu_buffer); 3222 } 3223 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3224 3225 /** 3226 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3227 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3228 * @buffer: The ring buffer 3229 * @cpu: The per CPU buffer to get the number of overruns from 3230 */ 3231 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3232 { 3233 struct ring_buffer_per_cpu *cpu_buffer; 3234 unsigned long ret; 3235 3236 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3237 return 0; 3238 3239 cpu_buffer = buffer->buffers[cpu]; 3240 ret = local_read(&cpu_buffer->overrun); 3241 3242 return ret; 3243 } 3244 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3245 3246 /** 3247 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3248 * commits failing due to the buffer wrapping around while there are uncommitted 3249 * events, such as during an interrupt storm. 3250 * @buffer: The ring buffer 3251 * @cpu: The per CPU buffer to get the number of overruns from 3252 */ 3253 unsigned long 3254 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3255 { 3256 struct ring_buffer_per_cpu *cpu_buffer; 3257 unsigned long ret; 3258 3259 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3260 return 0; 3261 3262 cpu_buffer = buffer->buffers[cpu]; 3263 ret = local_read(&cpu_buffer->commit_overrun); 3264 3265 return ret; 3266 } 3267 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3268 3269 /** 3270 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3271 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3272 * @buffer: The ring buffer 3273 * @cpu: The per CPU buffer to get the number of overruns from 3274 */ 3275 unsigned long 3276 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3277 { 3278 struct ring_buffer_per_cpu *cpu_buffer; 3279 unsigned long ret; 3280 3281 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3282 return 0; 3283 3284 cpu_buffer = buffer->buffers[cpu]; 3285 ret = local_read(&cpu_buffer->dropped_events); 3286 3287 return ret; 3288 } 3289 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3290 3291 /** 3292 * ring_buffer_read_events_cpu - get the number of events successfully read 3293 * @buffer: The ring buffer 3294 * @cpu: The per CPU buffer to get the number of events read 3295 */ 3296 unsigned long 3297 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3298 { 3299 struct ring_buffer_per_cpu *cpu_buffer; 3300 3301 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3302 return 0; 3303 3304 cpu_buffer = buffer->buffers[cpu]; 3305 return cpu_buffer->read; 3306 } 3307 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3308 3309 /** 3310 * ring_buffer_entries - get the number of entries in a buffer 3311 * @buffer: The ring buffer 3312 * 3313 * Returns the total number of entries in the ring buffer 3314 * (all CPU entries) 3315 */ 3316 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3317 { 3318 struct ring_buffer_per_cpu *cpu_buffer; 3319 unsigned long entries = 0; 3320 int cpu; 3321 3322 /* if you care about this being correct, lock the buffer */ 3323 for_each_buffer_cpu(buffer, cpu) { 3324 cpu_buffer = buffer->buffers[cpu]; 3325 entries += rb_num_of_entries(cpu_buffer); 3326 } 3327 3328 return entries; 3329 } 3330 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3331 3332 /** 3333 * ring_buffer_overruns - get the number of overruns in buffer 3334 * @buffer: The ring buffer 3335 * 3336 * Returns the total number of overruns in the ring buffer 3337 * (all CPU entries) 3338 */ 3339 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3340 { 3341 struct ring_buffer_per_cpu *cpu_buffer; 3342 unsigned long overruns = 0; 3343 int cpu; 3344 3345 /* if you care about this being correct, lock the buffer */ 3346 for_each_buffer_cpu(buffer, cpu) { 3347 cpu_buffer = buffer->buffers[cpu]; 3348 overruns += local_read(&cpu_buffer->overrun); 3349 } 3350 3351 return overruns; 3352 } 3353 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3354 3355 static void rb_iter_reset(struct ring_buffer_iter *iter) 3356 { 3357 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3358 3359 /* Iterator usage is expected to have record disabled */ 3360 if (list_empty(&cpu_buffer->reader_page->list)) { 3361 iter->head_page = rb_set_head_page(cpu_buffer); 3362 if (unlikely(!iter->head_page)) 3363 return; 3364 iter->head = iter->head_page->read; 3365 } else { 3366 iter->head_page = cpu_buffer->reader_page; 3367 iter->head = cpu_buffer->reader_page->read; 3368 } 3369 if (iter->head) 3370 iter->read_stamp = cpu_buffer->read_stamp; 3371 else 3372 iter->read_stamp = iter->head_page->page->time_stamp; 3373 iter->cache_reader_page = cpu_buffer->reader_page; 3374 iter->cache_read = cpu_buffer->read; 3375 } 3376 3377 /** 3378 * ring_buffer_iter_reset - reset an iterator 3379 * @iter: The iterator to reset 3380 * 3381 * Resets the iterator, so that it will start from the beginning 3382 * again. 3383 */ 3384 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3385 { 3386 struct ring_buffer_per_cpu *cpu_buffer; 3387 unsigned long flags; 3388 3389 if (!iter) 3390 return; 3391 3392 cpu_buffer = iter->cpu_buffer; 3393 3394 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3395 rb_iter_reset(iter); 3396 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3397 } 3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3399 3400 /** 3401 * ring_buffer_iter_empty - check if an iterator has no more to read 3402 * @iter: The iterator to check 3403 */ 3404 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3405 { 3406 struct ring_buffer_per_cpu *cpu_buffer; 3407 3408 cpu_buffer = iter->cpu_buffer; 3409 3410 return iter->head_page == cpu_buffer->commit_page && 3411 iter->head == rb_commit_index(cpu_buffer); 3412 } 3413 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3414 3415 static void 3416 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3417 struct ring_buffer_event *event) 3418 { 3419 u64 delta; 3420 3421 switch (event->type_len) { 3422 case RINGBUF_TYPE_PADDING: 3423 return; 3424 3425 case RINGBUF_TYPE_TIME_EXTEND: 3426 delta = event->array[0]; 3427 delta <<= TS_SHIFT; 3428 delta += event->time_delta; 3429 cpu_buffer->read_stamp += delta; 3430 return; 3431 3432 case RINGBUF_TYPE_TIME_STAMP: 3433 /* FIXME: not implemented */ 3434 return; 3435 3436 case RINGBUF_TYPE_DATA: 3437 cpu_buffer->read_stamp += event->time_delta; 3438 return; 3439 3440 default: 3441 BUG(); 3442 } 3443 return; 3444 } 3445 3446 static void 3447 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3448 struct ring_buffer_event *event) 3449 { 3450 u64 delta; 3451 3452 switch (event->type_len) { 3453 case RINGBUF_TYPE_PADDING: 3454 return; 3455 3456 case RINGBUF_TYPE_TIME_EXTEND: 3457 delta = event->array[0]; 3458 delta <<= TS_SHIFT; 3459 delta += event->time_delta; 3460 iter->read_stamp += delta; 3461 return; 3462 3463 case RINGBUF_TYPE_TIME_STAMP: 3464 /* FIXME: not implemented */ 3465 return; 3466 3467 case RINGBUF_TYPE_DATA: 3468 iter->read_stamp += event->time_delta; 3469 return; 3470 3471 default: 3472 BUG(); 3473 } 3474 return; 3475 } 3476 3477 static struct buffer_page * 3478 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3479 { 3480 struct buffer_page *reader = NULL; 3481 unsigned long overwrite; 3482 unsigned long flags; 3483 int nr_loops = 0; 3484 int ret; 3485 3486 local_irq_save(flags); 3487 arch_spin_lock(&cpu_buffer->lock); 3488 3489 again: 3490 /* 3491 * This should normally only loop twice. But because the 3492 * start of the reader inserts an empty page, it causes 3493 * a case where we will loop three times. There should be no 3494 * reason to loop four times (that I know of). 3495 */ 3496 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3497 reader = NULL; 3498 goto out; 3499 } 3500 3501 reader = cpu_buffer->reader_page; 3502 3503 /* If there's more to read, return this page */ 3504 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3505 goto out; 3506 3507 /* Never should we have an index greater than the size */ 3508 if (RB_WARN_ON(cpu_buffer, 3509 cpu_buffer->reader_page->read > rb_page_size(reader))) 3510 goto out; 3511 3512 /* check if we caught up to the tail */ 3513 reader = NULL; 3514 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3515 goto out; 3516 3517 /* Don't bother swapping if the ring buffer is empty */ 3518 if (rb_num_of_entries(cpu_buffer) == 0) 3519 goto out; 3520 3521 /* 3522 * Reset the reader page to size zero. 3523 */ 3524 local_set(&cpu_buffer->reader_page->write, 0); 3525 local_set(&cpu_buffer->reader_page->entries, 0); 3526 local_set(&cpu_buffer->reader_page->page->commit, 0); 3527 cpu_buffer->reader_page->real_end = 0; 3528 3529 spin: 3530 /* 3531 * Splice the empty reader page into the list around the head. 3532 */ 3533 reader = rb_set_head_page(cpu_buffer); 3534 if (!reader) 3535 goto out; 3536 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3537 cpu_buffer->reader_page->list.prev = reader->list.prev; 3538 3539 /* 3540 * cpu_buffer->pages just needs to point to the buffer, it 3541 * has no specific buffer page to point to. Lets move it out 3542 * of our way so we don't accidentally swap it. 3543 */ 3544 cpu_buffer->pages = reader->list.prev; 3545 3546 /* The reader page will be pointing to the new head */ 3547 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3548 3549 /* 3550 * We want to make sure we read the overruns after we set up our 3551 * pointers to the next object. The writer side does a 3552 * cmpxchg to cross pages which acts as the mb on the writer 3553 * side. Note, the reader will constantly fail the swap 3554 * while the writer is updating the pointers, so this 3555 * guarantees that the overwrite recorded here is the one we 3556 * want to compare with the last_overrun. 3557 */ 3558 smp_mb(); 3559 overwrite = local_read(&(cpu_buffer->overrun)); 3560 3561 /* 3562 * Here's the tricky part. 3563 * 3564 * We need to move the pointer past the header page. 3565 * But we can only do that if a writer is not currently 3566 * moving it. The page before the header page has the 3567 * flag bit '1' set if it is pointing to the page we want. 3568 * but if the writer is in the process of moving it 3569 * than it will be '2' or already moved '0'. 3570 */ 3571 3572 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3573 3574 /* 3575 * If we did not convert it, then we must try again. 3576 */ 3577 if (!ret) 3578 goto spin; 3579 3580 /* 3581 * Yeah! We succeeded in replacing the page. 3582 * 3583 * Now make the new head point back to the reader page. 3584 */ 3585 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3586 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3587 3588 /* Finally update the reader page to the new head */ 3589 cpu_buffer->reader_page = reader; 3590 rb_reset_reader_page(cpu_buffer); 3591 3592 if (overwrite != cpu_buffer->last_overrun) { 3593 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3594 cpu_buffer->last_overrun = overwrite; 3595 } 3596 3597 goto again; 3598 3599 out: 3600 arch_spin_unlock(&cpu_buffer->lock); 3601 local_irq_restore(flags); 3602 3603 return reader; 3604 } 3605 3606 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3607 { 3608 struct ring_buffer_event *event; 3609 struct buffer_page *reader; 3610 unsigned length; 3611 3612 reader = rb_get_reader_page(cpu_buffer); 3613 3614 /* This function should not be called when buffer is empty */ 3615 if (RB_WARN_ON(cpu_buffer, !reader)) 3616 return; 3617 3618 event = rb_reader_event(cpu_buffer); 3619 3620 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3621 cpu_buffer->read++; 3622 3623 rb_update_read_stamp(cpu_buffer, event); 3624 3625 length = rb_event_length(event); 3626 cpu_buffer->reader_page->read += length; 3627 } 3628 3629 static void rb_advance_iter(struct ring_buffer_iter *iter) 3630 { 3631 struct ring_buffer_per_cpu *cpu_buffer; 3632 struct ring_buffer_event *event; 3633 unsigned length; 3634 3635 cpu_buffer = iter->cpu_buffer; 3636 3637 /* 3638 * Check if we are at the end of the buffer. 3639 */ 3640 if (iter->head >= rb_page_size(iter->head_page)) { 3641 /* discarded commits can make the page empty */ 3642 if (iter->head_page == cpu_buffer->commit_page) 3643 return; 3644 rb_inc_iter(iter); 3645 return; 3646 } 3647 3648 event = rb_iter_head_event(iter); 3649 3650 length = rb_event_length(event); 3651 3652 /* 3653 * This should not be called to advance the header if we are 3654 * at the tail of the buffer. 3655 */ 3656 if (RB_WARN_ON(cpu_buffer, 3657 (iter->head_page == cpu_buffer->commit_page) && 3658 (iter->head + length > rb_commit_index(cpu_buffer)))) 3659 return; 3660 3661 rb_update_iter_read_stamp(iter, event); 3662 3663 iter->head += length; 3664 3665 /* check for end of page padding */ 3666 if ((iter->head >= rb_page_size(iter->head_page)) && 3667 (iter->head_page != cpu_buffer->commit_page)) 3668 rb_inc_iter(iter); 3669 } 3670 3671 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3672 { 3673 return cpu_buffer->lost_events; 3674 } 3675 3676 static struct ring_buffer_event * 3677 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3678 unsigned long *lost_events) 3679 { 3680 struct ring_buffer_event *event; 3681 struct buffer_page *reader; 3682 int nr_loops = 0; 3683 3684 again: 3685 /* 3686 * We repeat when a time extend is encountered. 3687 * Since the time extend is always attached to a data event, 3688 * we should never loop more than once. 3689 * (We never hit the following condition more than twice). 3690 */ 3691 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3692 return NULL; 3693 3694 reader = rb_get_reader_page(cpu_buffer); 3695 if (!reader) 3696 return NULL; 3697 3698 event = rb_reader_event(cpu_buffer); 3699 3700 switch (event->type_len) { 3701 case RINGBUF_TYPE_PADDING: 3702 if (rb_null_event(event)) 3703 RB_WARN_ON(cpu_buffer, 1); 3704 /* 3705 * Because the writer could be discarding every 3706 * event it creates (which would probably be bad) 3707 * if we were to go back to "again" then we may never 3708 * catch up, and will trigger the warn on, or lock 3709 * the box. Return the padding, and we will release 3710 * the current locks, and try again. 3711 */ 3712 return event; 3713 3714 case RINGBUF_TYPE_TIME_EXTEND: 3715 /* Internal data, OK to advance */ 3716 rb_advance_reader(cpu_buffer); 3717 goto again; 3718 3719 case RINGBUF_TYPE_TIME_STAMP: 3720 /* FIXME: not implemented */ 3721 rb_advance_reader(cpu_buffer); 3722 goto again; 3723 3724 case RINGBUF_TYPE_DATA: 3725 if (ts) { 3726 *ts = cpu_buffer->read_stamp + event->time_delta; 3727 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3728 cpu_buffer->cpu, ts); 3729 } 3730 if (lost_events) 3731 *lost_events = rb_lost_events(cpu_buffer); 3732 return event; 3733 3734 default: 3735 BUG(); 3736 } 3737 3738 return NULL; 3739 } 3740 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3741 3742 static struct ring_buffer_event * 3743 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3744 { 3745 struct ring_buffer *buffer; 3746 struct ring_buffer_per_cpu *cpu_buffer; 3747 struct ring_buffer_event *event; 3748 int nr_loops = 0; 3749 3750 cpu_buffer = iter->cpu_buffer; 3751 buffer = cpu_buffer->buffer; 3752 3753 /* 3754 * Check if someone performed a consuming read to 3755 * the buffer. A consuming read invalidates the iterator 3756 * and we need to reset the iterator in this case. 3757 */ 3758 if (unlikely(iter->cache_read != cpu_buffer->read || 3759 iter->cache_reader_page != cpu_buffer->reader_page)) 3760 rb_iter_reset(iter); 3761 3762 again: 3763 if (ring_buffer_iter_empty(iter)) 3764 return NULL; 3765 3766 /* 3767 * We repeat when a time extend is encountered. 3768 * Since the time extend is always attached to a data event, 3769 * we should never loop more than once. 3770 * (We never hit the following condition more than twice). 3771 */ 3772 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3773 return NULL; 3774 3775 if (rb_per_cpu_empty(cpu_buffer)) 3776 return NULL; 3777 3778 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3779 rb_inc_iter(iter); 3780 goto again; 3781 } 3782 3783 event = rb_iter_head_event(iter); 3784 3785 switch (event->type_len) { 3786 case RINGBUF_TYPE_PADDING: 3787 if (rb_null_event(event)) { 3788 rb_inc_iter(iter); 3789 goto again; 3790 } 3791 rb_advance_iter(iter); 3792 return event; 3793 3794 case RINGBUF_TYPE_TIME_EXTEND: 3795 /* Internal data, OK to advance */ 3796 rb_advance_iter(iter); 3797 goto again; 3798 3799 case RINGBUF_TYPE_TIME_STAMP: 3800 /* FIXME: not implemented */ 3801 rb_advance_iter(iter); 3802 goto again; 3803 3804 case RINGBUF_TYPE_DATA: 3805 if (ts) { 3806 *ts = iter->read_stamp + event->time_delta; 3807 ring_buffer_normalize_time_stamp(buffer, 3808 cpu_buffer->cpu, ts); 3809 } 3810 return event; 3811 3812 default: 3813 BUG(); 3814 } 3815 3816 return NULL; 3817 } 3818 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3819 3820 static inline int rb_ok_to_lock(void) 3821 { 3822 /* 3823 * If an NMI die dumps out the content of the ring buffer 3824 * do not grab locks. We also permanently disable the ring 3825 * buffer too. A one time deal is all you get from reading 3826 * the ring buffer from an NMI. 3827 */ 3828 if (likely(!in_nmi())) 3829 return 1; 3830 3831 tracing_off_permanent(); 3832 return 0; 3833 } 3834 3835 /** 3836 * ring_buffer_peek - peek at the next event to be read 3837 * @buffer: The ring buffer to read 3838 * @cpu: The cpu to peak at 3839 * @ts: The timestamp counter of this event. 3840 * @lost_events: a variable to store if events were lost (may be NULL) 3841 * 3842 * This will return the event that will be read next, but does 3843 * not consume the data. 3844 */ 3845 struct ring_buffer_event * 3846 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3847 unsigned long *lost_events) 3848 { 3849 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3850 struct ring_buffer_event *event; 3851 unsigned long flags; 3852 int dolock; 3853 3854 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3855 return NULL; 3856 3857 dolock = rb_ok_to_lock(); 3858 again: 3859 local_irq_save(flags); 3860 if (dolock) 3861 raw_spin_lock(&cpu_buffer->reader_lock); 3862 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3863 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3864 rb_advance_reader(cpu_buffer); 3865 if (dolock) 3866 raw_spin_unlock(&cpu_buffer->reader_lock); 3867 local_irq_restore(flags); 3868 3869 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3870 goto again; 3871 3872 return event; 3873 } 3874 3875 /** 3876 * ring_buffer_iter_peek - peek at the next event to be read 3877 * @iter: The ring buffer iterator 3878 * @ts: The timestamp counter of this event. 3879 * 3880 * This will return the event that will be read next, but does 3881 * not increment the iterator. 3882 */ 3883 struct ring_buffer_event * 3884 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3885 { 3886 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3887 struct ring_buffer_event *event; 3888 unsigned long flags; 3889 3890 again: 3891 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3892 event = rb_iter_peek(iter, ts); 3893 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3894 3895 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3896 goto again; 3897 3898 return event; 3899 } 3900 3901 /** 3902 * ring_buffer_consume - return an event and consume it 3903 * @buffer: The ring buffer to get the next event from 3904 * @cpu: the cpu to read the buffer from 3905 * @ts: a variable to store the timestamp (may be NULL) 3906 * @lost_events: a variable to store if events were lost (may be NULL) 3907 * 3908 * Returns the next event in the ring buffer, and that event is consumed. 3909 * Meaning, that sequential reads will keep returning a different event, 3910 * and eventually empty the ring buffer if the producer is slower. 3911 */ 3912 struct ring_buffer_event * 3913 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3914 unsigned long *lost_events) 3915 { 3916 struct ring_buffer_per_cpu *cpu_buffer; 3917 struct ring_buffer_event *event = NULL; 3918 unsigned long flags; 3919 int dolock; 3920 3921 dolock = rb_ok_to_lock(); 3922 3923 again: 3924 /* might be called in atomic */ 3925 preempt_disable(); 3926 3927 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3928 goto out; 3929 3930 cpu_buffer = buffer->buffers[cpu]; 3931 local_irq_save(flags); 3932 if (dolock) 3933 raw_spin_lock(&cpu_buffer->reader_lock); 3934 3935 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3936 if (event) { 3937 cpu_buffer->lost_events = 0; 3938 rb_advance_reader(cpu_buffer); 3939 } 3940 3941 if (dolock) 3942 raw_spin_unlock(&cpu_buffer->reader_lock); 3943 local_irq_restore(flags); 3944 3945 out: 3946 preempt_enable(); 3947 3948 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3949 goto again; 3950 3951 return event; 3952 } 3953 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3954 3955 /** 3956 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3957 * @buffer: The ring buffer to read from 3958 * @cpu: The cpu buffer to iterate over 3959 * 3960 * This performs the initial preparations necessary to iterate 3961 * through the buffer. Memory is allocated, buffer recording 3962 * is disabled, and the iterator pointer is returned to the caller. 3963 * 3964 * Disabling buffer recordng prevents the reading from being 3965 * corrupted. This is not a consuming read, so a producer is not 3966 * expected. 3967 * 3968 * After a sequence of ring_buffer_read_prepare calls, the user is 3969 * expected to make at least one call to ring_buffer_read_prepare_sync. 3970 * Afterwards, ring_buffer_read_start is invoked to get things going 3971 * for real. 3972 * 3973 * This overall must be paired with ring_buffer_read_finish. 3974 */ 3975 struct ring_buffer_iter * 3976 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3977 { 3978 struct ring_buffer_per_cpu *cpu_buffer; 3979 struct ring_buffer_iter *iter; 3980 3981 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3982 return NULL; 3983 3984 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3985 if (!iter) 3986 return NULL; 3987 3988 cpu_buffer = buffer->buffers[cpu]; 3989 3990 iter->cpu_buffer = cpu_buffer; 3991 3992 atomic_inc(&buffer->resize_disabled); 3993 atomic_inc(&cpu_buffer->record_disabled); 3994 3995 return iter; 3996 } 3997 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3998 3999 /** 4000 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4001 * 4002 * All previously invoked ring_buffer_read_prepare calls to prepare 4003 * iterators will be synchronized. Afterwards, read_buffer_read_start 4004 * calls on those iterators are allowed. 4005 */ 4006 void 4007 ring_buffer_read_prepare_sync(void) 4008 { 4009 synchronize_sched(); 4010 } 4011 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4012 4013 /** 4014 * ring_buffer_read_start - start a non consuming read of the buffer 4015 * @iter: The iterator returned by ring_buffer_read_prepare 4016 * 4017 * This finalizes the startup of an iteration through the buffer. 4018 * The iterator comes from a call to ring_buffer_read_prepare and 4019 * an intervening ring_buffer_read_prepare_sync must have been 4020 * performed. 4021 * 4022 * Must be paired with ring_buffer_read_finish. 4023 */ 4024 void 4025 ring_buffer_read_start(struct ring_buffer_iter *iter) 4026 { 4027 struct ring_buffer_per_cpu *cpu_buffer; 4028 unsigned long flags; 4029 4030 if (!iter) 4031 return; 4032 4033 cpu_buffer = iter->cpu_buffer; 4034 4035 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4036 arch_spin_lock(&cpu_buffer->lock); 4037 rb_iter_reset(iter); 4038 arch_spin_unlock(&cpu_buffer->lock); 4039 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4040 } 4041 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4042 4043 /** 4044 * ring_buffer_read_finish - finish reading the iterator of the buffer 4045 * @iter: The iterator retrieved by ring_buffer_start 4046 * 4047 * This re-enables the recording to the buffer, and frees the 4048 * iterator. 4049 */ 4050 void 4051 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4052 { 4053 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4054 unsigned long flags; 4055 4056 /* 4057 * Ring buffer is disabled from recording, here's a good place 4058 * to check the integrity of the ring buffer. 4059 * Must prevent readers from trying to read, as the check 4060 * clears the HEAD page and readers require it. 4061 */ 4062 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4063 rb_check_pages(cpu_buffer); 4064 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4065 4066 atomic_dec(&cpu_buffer->record_disabled); 4067 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4068 kfree(iter); 4069 } 4070 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4071 4072 /** 4073 * ring_buffer_read - read the next item in the ring buffer by the iterator 4074 * @iter: The ring buffer iterator 4075 * @ts: The time stamp of the event read. 4076 * 4077 * This reads the next event in the ring buffer and increments the iterator. 4078 */ 4079 struct ring_buffer_event * 4080 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4081 { 4082 struct ring_buffer_event *event; 4083 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4084 unsigned long flags; 4085 4086 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4087 again: 4088 event = rb_iter_peek(iter, ts); 4089 if (!event) 4090 goto out; 4091 4092 if (event->type_len == RINGBUF_TYPE_PADDING) 4093 goto again; 4094 4095 rb_advance_iter(iter); 4096 out: 4097 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4098 4099 return event; 4100 } 4101 EXPORT_SYMBOL_GPL(ring_buffer_read); 4102 4103 /** 4104 * ring_buffer_size - return the size of the ring buffer (in bytes) 4105 * @buffer: The ring buffer. 4106 */ 4107 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4108 { 4109 /* 4110 * Earlier, this method returned 4111 * BUF_PAGE_SIZE * buffer->nr_pages 4112 * Since the nr_pages field is now removed, we have converted this to 4113 * return the per cpu buffer value. 4114 */ 4115 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4116 return 0; 4117 4118 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4119 } 4120 EXPORT_SYMBOL_GPL(ring_buffer_size); 4121 4122 static void 4123 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4124 { 4125 rb_head_page_deactivate(cpu_buffer); 4126 4127 cpu_buffer->head_page 4128 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4129 local_set(&cpu_buffer->head_page->write, 0); 4130 local_set(&cpu_buffer->head_page->entries, 0); 4131 local_set(&cpu_buffer->head_page->page->commit, 0); 4132 4133 cpu_buffer->head_page->read = 0; 4134 4135 cpu_buffer->tail_page = cpu_buffer->head_page; 4136 cpu_buffer->commit_page = cpu_buffer->head_page; 4137 4138 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4139 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4140 local_set(&cpu_buffer->reader_page->write, 0); 4141 local_set(&cpu_buffer->reader_page->entries, 0); 4142 local_set(&cpu_buffer->reader_page->page->commit, 0); 4143 cpu_buffer->reader_page->read = 0; 4144 4145 local_set(&cpu_buffer->entries_bytes, 0); 4146 local_set(&cpu_buffer->overrun, 0); 4147 local_set(&cpu_buffer->commit_overrun, 0); 4148 local_set(&cpu_buffer->dropped_events, 0); 4149 local_set(&cpu_buffer->entries, 0); 4150 local_set(&cpu_buffer->committing, 0); 4151 local_set(&cpu_buffer->commits, 0); 4152 cpu_buffer->read = 0; 4153 cpu_buffer->read_bytes = 0; 4154 4155 cpu_buffer->write_stamp = 0; 4156 cpu_buffer->read_stamp = 0; 4157 4158 cpu_buffer->lost_events = 0; 4159 cpu_buffer->last_overrun = 0; 4160 4161 rb_head_page_activate(cpu_buffer); 4162 } 4163 4164 /** 4165 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4166 * @buffer: The ring buffer to reset a per cpu buffer of 4167 * @cpu: The CPU buffer to be reset 4168 */ 4169 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4170 { 4171 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4172 unsigned long flags; 4173 4174 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4175 return; 4176 4177 atomic_inc(&buffer->resize_disabled); 4178 atomic_inc(&cpu_buffer->record_disabled); 4179 4180 /* Make sure all commits have finished */ 4181 synchronize_sched(); 4182 4183 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4184 4185 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4186 goto out; 4187 4188 arch_spin_lock(&cpu_buffer->lock); 4189 4190 rb_reset_cpu(cpu_buffer); 4191 4192 arch_spin_unlock(&cpu_buffer->lock); 4193 4194 out: 4195 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4196 4197 atomic_dec(&cpu_buffer->record_disabled); 4198 atomic_dec(&buffer->resize_disabled); 4199 } 4200 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4201 4202 /** 4203 * ring_buffer_reset - reset a ring buffer 4204 * @buffer: The ring buffer to reset all cpu buffers 4205 */ 4206 void ring_buffer_reset(struct ring_buffer *buffer) 4207 { 4208 int cpu; 4209 4210 for_each_buffer_cpu(buffer, cpu) 4211 ring_buffer_reset_cpu(buffer, cpu); 4212 } 4213 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4214 4215 /** 4216 * rind_buffer_empty - is the ring buffer empty? 4217 * @buffer: The ring buffer to test 4218 */ 4219 int ring_buffer_empty(struct ring_buffer *buffer) 4220 { 4221 struct ring_buffer_per_cpu *cpu_buffer; 4222 unsigned long flags; 4223 int dolock; 4224 int cpu; 4225 int ret; 4226 4227 dolock = rb_ok_to_lock(); 4228 4229 /* yes this is racy, but if you don't like the race, lock the buffer */ 4230 for_each_buffer_cpu(buffer, cpu) { 4231 cpu_buffer = buffer->buffers[cpu]; 4232 local_irq_save(flags); 4233 if (dolock) 4234 raw_spin_lock(&cpu_buffer->reader_lock); 4235 ret = rb_per_cpu_empty(cpu_buffer); 4236 if (dolock) 4237 raw_spin_unlock(&cpu_buffer->reader_lock); 4238 local_irq_restore(flags); 4239 4240 if (!ret) 4241 return 0; 4242 } 4243 4244 return 1; 4245 } 4246 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4247 4248 /** 4249 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4250 * @buffer: The ring buffer 4251 * @cpu: The CPU buffer to test 4252 */ 4253 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4254 { 4255 struct ring_buffer_per_cpu *cpu_buffer; 4256 unsigned long flags; 4257 int dolock; 4258 int ret; 4259 4260 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4261 return 1; 4262 4263 dolock = rb_ok_to_lock(); 4264 4265 cpu_buffer = buffer->buffers[cpu]; 4266 local_irq_save(flags); 4267 if (dolock) 4268 raw_spin_lock(&cpu_buffer->reader_lock); 4269 ret = rb_per_cpu_empty(cpu_buffer); 4270 if (dolock) 4271 raw_spin_unlock(&cpu_buffer->reader_lock); 4272 local_irq_restore(flags); 4273 4274 return ret; 4275 } 4276 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4277 4278 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4279 /** 4280 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4281 * @buffer_a: One buffer to swap with 4282 * @buffer_b: The other buffer to swap with 4283 * 4284 * This function is useful for tracers that want to take a "snapshot" 4285 * of a CPU buffer and has another back up buffer lying around. 4286 * it is expected that the tracer handles the cpu buffer not being 4287 * used at the moment. 4288 */ 4289 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4290 struct ring_buffer *buffer_b, int cpu) 4291 { 4292 struct ring_buffer_per_cpu *cpu_buffer_a; 4293 struct ring_buffer_per_cpu *cpu_buffer_b; 4294 int ret = -EINVAL; 4295 4296 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4297 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4298 goto out; 4299 4300 cpu_buffer_a = buffer_a->buffers[cpu]; 4301 cpu_buffer_b = buffer_b->buffers[cpu]; 4302 4303 /* At least make sure the two buffers are somewhat the same */ 4304 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4305 goto out; 4306 4307 ret = -EAGAIN; 4308 4309 if (ring_buffer_flags != RB_BUFFERS_ON) 4310 goto out; 4311 4312 if (atomic_read(&buffer_a->record_disabled)) 4313 goto out; 4314 4315 if (atomic_read(&buffer_b->record_disabled)) 4316 goto out; 4317 4318 if (atomic_read(&cpu_buffer_a->record_disabled)) 4319 goto out; 4320 4321 if (atomic_read(&cpu_buffer_b->record_disabled)) 4322 goto out; 4323 4324 /* 4325 * We can't do a synchronize_sched here because this 4326 * function can be called in atomic context. 4327 * Normally this will be called from the same CPU as cpu. 4328 * If not it's up to the caller to protect this. 4329 */ 4330 atomic_inc(&cpu_buffer_a->record_disabled); 4331 atomic_inc(&cpu_buffer_b->record_disabled); 4332 4333 ret = -EBUSY; 4334 if (local_read(&cpu_buffer_a->committing)) 4335 goto out_dec; 4336 if (local_read(&cpu_buffer_b->committing)) 4337 goto out_dec; 4338 4339 buffer_a->buffers[cpu] = cpu_buffer_b; 4340 buffer_b->buffers[cpu] = cpu_buffer_a; 4341 4342 cpu_buffer_b->buffer = buffer_a; 4343 cpu_buffer_a->buffer = buffer_b; 4344 4345 ret = 0; 4346 4347 out_dec: 4348 atomic_dec(&cpu_buffer_a->record_disabled); 4349 atomic_dec(&cpu_buffer_b->record_disabled); 4350 out: 4351 return ret; 4352 } 4353 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4354 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4355 4356 /** 4357 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4358 * @buffer: the buffer to allocate for. 4359 * @cpu: the cpu buffer to allocate. 4360 * 4361 * This function is used in conjunction with ring_buffer_read_page. 4362 * When reading a full page from the ring buffer, these functions 4363 * can be used to speed up the process. The calling function should 4364 * allocate a few pages first with this function. Then when it 4365 * needs to get pages from the ring buffer, it passes the result 4366 * of this function into ring_buffer_read_page, which will swap 4367 * the page that was allocated, with the read page of the buffer. 4368 * 4369 * Returns: 4370 * The page allocated, or NULL on error. 4371 */ 4372 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4373 { 4374 struct buffer_data_page *bpage; 4375 struct page *page; 4376 4377 page = alloc_pages_node(cpu_to_node(cpu), 4378 GFP_KERNEL | __GFP_NORETRY, 0); 4379 if (!page) 4380 return NULL; 4381 4382 bpage = page_address(page); 4383 4384 rb_init_page(bpage); 4385 4386 return bpage; 4387 } 4388 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4389 4390 /** 4391 * ring_buffer_free_read_page - free an allocated read page 4392 * @buffer: the buffer the page was allocate for 4393 * @data: the page to free 4394 * 4395 * Free a page allocated from ring_buffer_alloc_read_page. 4396 */ 4397 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4398 { 4399 free_page((unsigned long)data); 4400 } 4401 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4402 4403 /** 4404 * ring_buffer_read_page - extract a page from the ring buffer 4405 * @buffer: buffer to extract from 4406 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4407 * @len: amount to extract 4408 * @cpu: the cpu of the buffer to extract 4409 * @full: should the extraction only happen when the page is full. 4410 * 4411 * This function will pull out a page from the ring buffer and consume it. 4412 * @data_page must be the address of the variable that was returned 4413 * from ring_buffer_alloc_read_page. This is because the page might be used 4414 * to swap with a page in the ring buffer. 4415 * 4416 * for example: 4417 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4418 * if (!rpage) 4419 * return error; 4420 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4421 * if (ret >= 0) 4422 * process_page(rpage, ret); 4423 * 4424 * When @full is set, the function will not return true unless 4425 * the writer is off the reader page. 4426 * 4427 * Note: it is up to the calling functions to handle sleeps and wakeups. 4428 * The ring buffer can be used anywhere in the kernel and can not 4429 * blindly call wake_up. The layer that uses the ring buffer must be 4430 * responsible for that. 4431 * 4432 * Returns: 4433 * >=0 if data has been transferred, returns the offset of consumed data. 4434 * <0 if no data has been transferred. 4435 */ 4436 int ring_buffer_read_page(struct ring_buffer *buffer, 4437 void **data_page, size_t len, int cpu, int full) 4438 { 4439 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4440 struct ring_buffer_event *event; 4441 struct buffer_data_page *bpage; 4442 struct buffer_page *reader; 4443 unsigned long missed_events; 4444 unsigned long flags; 4445 unsigned int commit; 4446 unsigned int read; 4447 u64 save_timestamp; 4448 int ret = -1; 4449 4450 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4451 goto out; 4452 4453 /* 4454 * If len is not big enough to hold the page header, then 4455 * we can not copy anything. 4456 */ 4457 if (len <= BUF_PAGE_HDR_SIZE) 4458 goto out; 4459 4460 len -= BUF_PAGE_HDR_SIZE; 4461 4462 if (!data_page) 4463 goto out; 4464 4465 bpage = *data_page; 4466 if (!bpage) 4467 goto out; 4468 4469 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4470 4471 reader = rb_get_reader_page(cpu_buffer); 4472 if (!reader) 4473 goto out_unlock; 4474 4475 event = rb_reader_event(cpu_buffer); 4476 4477 read = reader->read; 4478 commit = rb_page_commit(reader); 4479 4480 /* Check if any events were dropped */ 4481 missed_events = cpu_buffer->lost_events; 4482 4483 /* 4484 * If this page has been partially read or 4485 * if len is not big enough to read the rest of the page or 4486 * a writer is still on the page, then 4487 * we must copy the data from the page to the buffer. 4488 * Otherwise, we can simply swap the page with the one passed in. 4489 */ 4490 if (read || (len < (commit - read)) || 4491 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4492 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4493 unsigned int rpos = read; 4494 unsigned int pos = 0; 4495 unsigned int size; 4496 4497 if (full) 4498 goto out_unlock; 4499 4500 if (len > (commit - read)) 4501 len = (commit - read); 4502 4503 /* Always keep the time extend and data together */ 4504 size = rb_event_ts_length(event); 4505 4506 if (len < size) 4507 goto out_unlock; 4508 4509 /* save the current timestamp, since the user will need it */ 4510 save_timestamp = cpu_buffer->read_stamp; 4511 4512 /* Need to copy one event at a time */ 4513 do { 4514 /* We need the size of one event, because 4515 * rb_advance_reader only advances by one event, 4516 * whereas rb_event_ts_length may include the size of 4517 * one or two events. 4518 * We have already ensured there's enough space if this 4519 * is a time extend. */ 4520 size = rb_event_length(event); 4521 memcpy(bpage->data + pos, rpage->data + rpos, size); 4522 4523 len -= size; 4524 4525 rb_advance_reader(cpu_buffer); 4526 rpos = reader->read; 4527 pos += size; 4528 4529 if (rpos >= commit) 4530 break; 4531 4532 event = rb_reader_event(cpu_buffer); 4533 /* Always keep the time extend and data together */ 4534 size = rb_event_ts_length(event); 4535 } while (len >= size); 4536 4537 /* update bpage */ 4538 local_set(&bpage->commit, pos); 4539 bpage->time_stamp = save_timestamp; 4540 4541 /* we copied everything to the beginning */ 4542 read = 0; 4543 } else { 4544 /* update the entry counter */ 4545 cpu_buffer->read += rb_page_entries(reader); 4546 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4547 4548 /* swap the pages */ 4549 rb_init_page(bpage); 4550 bpage = reader->page; 4551 reader->page = *data_page; 4552 local_set(&reader->write, 0); 4553 local_set(&reader->entries, 0); 4554 reader->read = 0; 4555 *data_page = bpage; 4556 4557 /* 4558 * Use the real_end for the data size, 4559 * This gives us a chance to store the lost events 4560 * on the page. 4561 */ 4562 if (reader->real_end) 4563 local_set(&bpage->commit, reader->real_end); 4564 } 4565 ret = read; 4566 4567 cpu_buffer->lost_events = 0; 4568 4569 commit = local_read(&bpage->commit); 4570 /* 4571 * Set a flag in the commit field if we lost events 4572 */ 4573 if (missed_events) { 4574 /* If there is room at the end of the page to save the 4575 * missed events, then record it there. 4576 */ 4577 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4578 memcpy(&bpage->data[commit], &missed_events, 4579 sizeof(missed_events)); 4580 local_add(RB_MISSED_STORED, &bpage->commit); 4581 commit += sizeof(missed_events); 4582 } 4583 local_add(RB_MISSED_EVENTS, &bpage->commit); 4584 } 4585 4586 /* 4587 * This page may be off to user land. Zero it out here. 4588 */ 4589 if (commit < BUF_PAGE_SIZE) 4590 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4591 4592 out_unlock: 4593 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4594 4595 out: 4596 return ret; 4597 } 4598 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4599 4600 #ifdef CONFIG_HOTPLUG_CPU 4601 static int rb_cpu_notify(struct notifier_block *self, 4602 unsigned long action, void *hcpu) 4603 { 4604 struct ring_buffer *buffer = 4605 container_of(self, struct ring_buffer, cpu_notify); 4606 long cpu = (long)hcpu; 4607 int cpu_i, nr_pages_same; 4608 unsigned int nr_pages; 4609 4610 switch (action) { 4611 case CPU_UP_PREPARE: 4612 case CPU_UP_PREPARE_FROZEN: 4613 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4614 return NOTIFY_OK; 4615 4616 nr_pages = 0; 4617 nr_pages_same = 1; 4618 /* check if all cpu sizes are same */ 4619 for_each_buffer_cpu(buffer, cpu_i) { 4620 /* fill in the size from first enabled cpu */ 4621 if (nr_pages == 0) 4622 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4623 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4624 nr_pages_same = 0; 4625 break; 4626 } 4627 } 4628 /* allocate minimum pages, user can later expand it */ 4629 if (!nr_pages_same) 4630 nr_pages = 2; 4631 buffer->buffers[cpu] = 4632 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4633 if (!buffer->buffers[cpu]) { 4634 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4635 cpu); 4636 return NOTIFY_OK; 4637 } 4638 smp_wmb(); 4639 cpumask_set_cpu(cpu, buffer->cpumask); 4640 break; 4641 case CPU_DOWN_PREPARE: 4642 case CPU_DOWN_PREPARE_FROZEN: 4643 /* 4644 * Do nothing. 4645 * If we were to free the buffer, then the user would 4646 * lose any trace that was in the buffer. 4647 */ 4648 break; 4649 default: 4650 break; 4651 } 4652 return NOTIFY_OK; 4653 } 4654 #endif 4655 4656 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4657 /* 4658 * This is a basic integrity check of the ring buffer. 4659 * Late in the boot cycle this test will run when configured in. 4660 * It will kick off a thread per CPU that will go into a loop 4661 * writing to the per cpu ring buffer various sizes of data. 4662 * Some of the data will be large items, some small. 4663 * 4664 * Another thread is created that goes into a spin, sending out 4665 * IPIs to the other CPUs to also write into the ring buffer. 4666 * this is to test the nesting ability of the buffer. 4667 * 4668 * Basic stats are recorded and reported. If something in the 4669 * ring buffer should happen that's not expected, a big warning 4670 * is displayed and all ring buffers are disabled. 4671 */ 4672 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4673 4674 struct rb_test_data { 4675 struct ring_buffer *buffer; 4676 unsigned long events; 4677 unsigned long bytes_written; 4678 unsigned long bytes_alloc; 4679 unsigned long bytes_dropped; 4680 unsigned long events_nested; 4681 unsigned long bytes_written_nested; 4682 unsigned long bytes_alloc_nested; 4683 unsigned long bytes_dropped_nested; 4684 int min_size_nested; 4685 int max_size_nested; 4686 int max_size; 4687 int min_size; 4688 int cpu; 4689 int cnt; 4690 }; 4691 4692 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4693 4694 /* 1 meg per cpu */ 4695 #define RB_TEST_BUFFER_SIZE 1048576 4696 4697 static char rb_string[] __initdata = 4698 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4699 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4700 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4701 4702 static bool rb_test_started __initdata; 4703 4704 struct rb_item { 4705 int size; 4706 char str[]; 4707 }; 4708 4709 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4710 { 4711 struct ring_buffer_event *event; 4712 struct rb_item *item; 4713 bool started; 4714 int event_len; 4715 int size; 4716 int len; 4717 int cnt; 4718 4719 /* Have nested writes different that what is written */ 4720 cnt = data->cnt + (nested ? 27 : 0); 4721 4722 /* Multiply cnt by ~e, to make some unique increment */ 4723 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4724 4725 len = size + sizeof(struct rb_item); 4726 4727 started = rb_test_started; 4728 /* read rb_test_started before checking buffer enabled */ 4729 smp_rmb(); 4730 4731 event = ring_buffer_lock_reserve(data->buffer, len); 4732 if (!event) { 4733 /* Ignore dropped events before test starts. */ 4734 if (started) { 4735 if (nested) 4736 data->bytes_dropped += len; 4737 else 4738 data->bytes_dropped_nested += len; 4739 } 4740 return len; 4741 } 4742 4743 event_len = ring_buffer_event_length(event); 4744 4745 if (RB_WARN_ON(data->buffer, event_len < len)) 4746 goto out; 4747 4748 item = ring_buffer_event_data(event); 4749 item->size = size; 4750 memcpy(item->str, rb_string, size); 4751 4752 if (nested) { 4753 data->bytes_alloc_nested += event_len; 4754 data->bytes_written_nested += len; 4755 data->events_nested++; 4756 if (!data->min_size_nested || len < data->min_size_nested) 4757 data->min_size_nested = len; 4758 if (len > data->max_size_nested) 4759 data->max_size_nested = len; 4760 } else { 4761 data->bytes_alloc += event_len; 4762 data->bytes_written += len; 4763 data->events++; 4764 if (!data->min_size || len < data->min_size) 4765 data->max_size = len; 4766 if (len > data->max_size) 4767 data->max_size = len; 4768 } 4769 4770 out: 4771 ring_buffer_unlock_commit(data->buffer, event); 4772 4773 return 0; 4774 } 4775 4776 static __init int rb_test(void *arg) 4777 { 4778 struct rb_test_data *data = arg; 4779 4780 while (!kthread_should_stop()) { 4781 rb_write_something(data, false); 4782 data->cnt++; 4783 4784 set_current_state(TASK_INTERRUPTIBLE); 4785 /* Now sleep between a min of 100-300us and a max of 1ms */ 4786 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4787 } 4788 4789 return 0; 4790 } 4791 4792 static __init void rb_ipi(void *ignore) 4793 { 4794 struct rb_test_data *data; 4795 int cpu = smp_processor_id(); 4796 4797 data = &rb_data[cpu]; 4798 rb_write_something(data, true); 4799 } 4800 4801 static __init int rb_hammer_test(void *arg) 4802 { 4803 while (!kthread_should_stop()) { 4804 4805 /* Send an IPI to all cpus to write data! */ 4806 smp_call_function(rb_ipi, NULL, 1); 4807 /* No sleep, but for non preempt, let others run */ 4808 schedule(); 4809 } 4810 4811 return 0; 4812 } 4813 4814 static __init int test_ringbuffer(void) 4815 { 4816 struct task_struct *rb_hammer; 4817 struct ring_buffer *buffer; 4818 int cpu; 4819 int ret = 0; 4820 4821 pr_info("Running ring buffer tests...\n"); 4822 4823 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4824 if (WARN_ON(!buffer)) 4825 return 0; 4826 4827 /* Disable buffer so that threads can't write to it yet */ 4828 ring_buffer_record_off(buffer); 4829 4830 for_each_online_cpu(cpu) { 4831 rb_data[cpu].buffer = buffer; 4832 rb_data[cpu].cpu = cpu; 4833 rb_data[cpu].cnt = cpu; 4834 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4835 "rbtester/%d", cpu); 4836 if (WARN_ON(!rb_threads[cpu])) { 4837 pr_cont("FAILED\n"); 4838 ret = -1; 4839 goto out_free; 4840 } 4841 4842 kthread_bind(rb_threads[cpu], cpu); 4843 wake_up_process(rb_threads[cpu]); 4844 } 4845 4846 /* Now create the rb hammer! */ 4847 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4848 if (WARN_ON(!rb_hammer)) { 4849 pr_cont("FAILED\n"); 4850 ret = -1; 4851 goto out_free; 4852 } 4853 4854 ring_buffer_record_on(buffer); 4855 /* 4856 * Show buffer is enabled before setting rb_test_started. 4857 * Yes there's a small race window where events could be 4858 * dropped and the thread wont catch it. But when a ring 4859 * buffer gets enabled, there will always be some kind of 4860 * delay before other CPUs see it. Thus, we don't care about 4861 * those dropped events. We care about events dropped after 4862 * the threads see that the buffer is active. 4863 */ 4864 smp_wmb(); 4865 rb_test_started = true; 4866 4867 set_current_state(TASK_INTERRUPTIBLE); 4868 /* Just run for 10 seconds */; 4869 schedule_timeout(10 * HZ); 4870 4871 kthread_stop(rb_hammer); 4872 4873 out_free: 4874 for_each_online_cpu(cpu) { 4875 if (!rb_threads[cpu]) 4876 break; 4877 kthread_stop(rb_threads[cpu]); 4878 } 4879 if (ret) { 4880 ring_buffer_free(buffer); 4881 return ret; 4882 } 4883 4884 /* Report! */ 4885 pr_info("finished\n"); 4886 for_each_online_cpu(cpu) { 4887 struct ring_buffer_event *event; 4888 struct rb_test_data *data = &rb_data[cpu]; 4889 struct rb_item *item; 4890 unsigned long total_events; 4891 unsigned long total_dropped; 4892 unsigned long total_written; 4893 unsigned long total_alloc; 4894 unsigned long total_read = 0; 4895 unsigned long total_size = 0; 4896 unsigned long total_len = 0; 4897 unsigned long total_lost = 0; 4898 unsigned long lost; 4899 int big_event_size; 4900 int small_event_size; 4901 4902 ret = -1; 4903 4904 total_events = data->events + data->events_nested; 4905 total_written = data->bytes_written + data->bytes_written_nested; 4906 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4907 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4908 4909 big_event_size = data->max_size + data->max_size_nested; 4910 small_event_size = data->min_size + data->min_size_nested; 4911 4912 pr_info("CPU %d:\n", cpu); 4913 pr_info(" events: %ld\n", total_events); 4914 pr_info(" dropped bytes: %ld\n", total_dropped); 4915 pr_info(" alloced bytes: %ld\n", total_alloc); 4916 pr_info(" written bytes: %ld\n", total_written); 4917 pr_info(" biggest event: %d\n", big_event_size); 4918 pr_info(" smallest event: %d\n", small_event_size); 4919 4920 if (RB_WARN_ON(buffer, total_dropped)) 4921 break; 4922 4923 ret = 0; 4924 4925 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4926 total_lost += lost; 4927 item = ring_buffer_event_data(event); 4928 total_len += ring_buffer_event_length(event); 4929 total_size += item->size + sizeof(struct rb_item); 4930 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4931 pr_info("FAILED!\n"); 4932 pr_info("buffer had: %.*s\n", item->size, item->str); 4933 pr_info("expected: %.*s\n", item->size, rb_string); 4934 RB_WARN_ON(buffer, 1); 4935 ret = -1; 4936 break; 4937 } 4938 total_read++; 4939 } 4940 if (ret) 4941 break; 4942 4943 ret = -1; 4944 4945 pr_info(" read events: %ld\n", total_read); 4946 pr_info(" lost events: %ld\n", total_lost); 4947 pr_info(" total events: %ld\n", total_lost + total_read); 4948 pr_info(" recorded len bytes: %ld\n", total_len); 4949 pr_info(" recorded size bytes: %ld\n", total_size); 4950 if (total_lost) 4951 pr_info(" With dropped events, record len and size may not match\n" 4952 " alloced and written from above\n"); 4953 if (!total_lost) { 4954 if (RB_WARN_ON(buffer, total_len != total_alloc || 4955 total_size != total_written)) 4956 break; 4957 } 4958 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4959 break; 4960 4961 ret = 0; 4962 } 4963 if (!ret) 4964 pr_info("Ring buffer PASSED!\n"); 4965 4966 ring_buffer_free(buffer); 4967 return 0; 4968 } 4969 4970 late_initcall(test_ringbuffer); 4971 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4972