1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_events.h> 8 #include <linux/ring_buffer.h> 9 #include <linux/trace_clock.h> 10 #include <linux/sched/clock.h> 11 #include <linux/trace_seq.h> 12 #include <linux/spinlock.h> 13 #include <linux/irq_work.h> 14 #include <linux/security.h> 15 #include <linux/uaccess.h> 16 #include <linux/hardirq.h> 17 #include <linux/kthread.h> /* for self test */ 18 #include <linux/module.h> 19 #include <linux/percpu.h> 20 #include <linux/mutex.h> 21 #include <linux/delay.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/list.h> 26 #include <linux/cpu.h> 27 #include <linux/oom.h> 28 29 #include <asm/local.h> 30 31 static void update_pages_handler(struct work_struct *work); 32 33 /* 34 * The ring buffer header is special. We must manually up keep it. 35 */ 36 int ring_buffer_print_entry_header(struct trace_seq *s) 37 { 38 trace_seq_puts(s, "# compressed entry header\n"); 39 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 40 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 41 trace_seq_puts(s, "\tarray : 32 bits\n"); 42 trace_seq_putc(s, '\n'); 43 trace_seq_printf(s, "\tpadding : type == %d\n", 44 RINGBUF_TYPE_PADDING); 45 trace_seq_printf(s, "\ttime_extend : type == %d\n", 46 RINGBUF_TYPE_TIME_EXTEND); 47 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 48 RINGBUF_TYPE_TIME_STAMP); 49 trace_seq_printf(s, "\tdata max type_len == %d\n", 50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 51 52 return !trace_seq_has_overflowed(s); 53 } 54 55 /* 56 * The ring buffer is made up of a list of pages. A separate list of pages is 57 * allocated for each CPU. A writer may only write to a buffer that is 58 * associated with the CPU it is currently executing on. A reader may read 59 * from any per cpu buffer. 60 * 61 * The reader is special. For each per cpu buffer, the reader has its own 62 * reader page. When a reader has read the entire reader page, this reader 63 * page is swapped with another page in the ring buffer. 64 * 65 * Now, as long as the writer is off the reader page, the reader can do what 66 * ever it wants with that page. The writer will never write to that page 67 * again (as long as it is out of the ring buffer). 68 * 69 * Here's some silly ASCII art. 70 * 71 * +------+ 72 * |reader| RING BUFFER 73 * |page | 74 * +------+ +---+ +---+ +---+ 75 * | |-->| |-->| | 76 * +---+ +---+ +---+ 77 * ^ | 78 * | | 79 * +---------------+ 80 * 81 * 82 * +------+ 83 * |reader| RING BUFFER 84 * |page |------------------v 85 * +------+ +---+ +---+ +---+ 86 * | |-->| |-->| | 87 * +---+ +---+ +---+ 88 * ^ | 89 * | | 90 * +---------------+ 91 * 92 * 93 * +------+ 94 * |reader| RING BUFFER 95 * |page |------------------v 96 * +------+ +---+ +---+ +---+ 97 * ^ | |-->| |-->| | 98 * | +---+ +---+ +---+ 99 * | | 100 * | | 101 * +------------------------------+ 102 * 103 * 104 * +------+ 105 * |buffer| RING BUFFER 106 * |page |------------------v 107 * +------+ +---+ +---+ +---+ 108 * ^ | | | |-->| | 109 * | New +---+ +---+ +---+ 110 * | Reader------^ | 111 * | page | 112 * +------------------------------+ 113 * 114 * 115 * After we make this swap, the reader can hand this page off to the splice 116 * code and be done with it. It can even allocate a new page if it needs to 117 * and swap that into the ring buffer. 118 * 119 * We will be using cmpxchg soon to make all this lockless. 120 * 121 */ 122 123 /* Used for individual buffers (after the counter) */ 124 #define RB_BUFFER_OFF (1 << 20) 125 126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 127 128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 129 #define RB_ALIGNMENT 4U 130 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 131 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 132 #define RB_ALIGN_DATA __aligned(RB_ALIGNMENT) 133 134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 136 137 enum { 138 RB_LEN_TIME_EXTEND = 8, 139 RB_LEN_TIME_STAMP = 8, 140 }; 141 142 #define skip_time_extend(event) \ 143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 144 145 #define extended_time(event) \ 146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 147 148 static inline int rb_null_event(struct ring_buffer_event *event) 149 { 150 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 151 } 152 153 static void rb_event_set_padding(struct ring_buffer_event *event) 154 { 155 /* padding has a NULL time_delta */ 156 event->type_len = RINGBUF_TYPE_PADDING; 157 event->time_delta = 0; 158 } 159 160 static unsigned 161 rb_event_data_length(struct ring_buffer_event *event) 162 { 163 unsigned length; 164 165 if (event->type_len) 166 length = event->type_len * RB_ALIGNMENT; 167 else 168 length = event->array[0]; 169 return length + RB_EVNT_HDR_SIZE; 170 } 171 172 /* 173 * Return the length of the given event. Will return 174 * the length of the time extend if the event is a 175 * time extend. 176 */ 177 static inline unsigned 178 rb_event_length(struct ring_buffer_event *event) 179 { 180 switch (event->type_len) { 181 case RINGBUF_TYPE_PADDING: 182 if (rb_null_event(event)) 183 /* undefined */ 184 return -1; 185 return event->array[0] + RB_EVNT_HDR_SIZE; 186 187 case RINGBUF_TYPE_TIME_EXTEND: 188 return RB_LEN_TIME_EXTEND; 189 190 case RINGBUF_TYPE_TIME_STAMP: 191 return RB_LEN_TIME_STAMP; 192 193 case RINGBUF_TYPE_DATA: 194 return rb_event_data_length(event); 195 default: 196 WARN_ON_ONCE(1); 197 } 198 /* not hit */ 199 return 0; 200 } 201 202 /* 203 * Return total length of time extend and data, 204 * or just the event length for all other events. 205 */ 206 static inline unsigned 207 rb_event_ts_length(struct ring_buffer_event *event) 208 { 209 unsigned len = 0; 210 211 if (extended_time(event)) { 212 /* time extends include the data event after it */ 213 len = RB_LEN_TIME_EXTEND; 214 event = skip_time_extend(event); 215 } 216 return len + rb_event_length(event); 217 } 218 219 /** 220 * ring_buffer_event_length - return the length of the event 221 * @event: the event to get the length of 222 * 223 * Returns the size of the data load of a data event. 224 * If the event is something other than a data event, it 225 * returns the size of the event itself. With the exception 226 * of a TIME EXTEND, where it still returns the size of the 227 * data load of the data event after it. 228 */ 229 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 230 { 231 unsigned length; 232 233 if (extended_time(event)) 234 event = skip_time_extend(event); 235 236 length = rb_event_length(event); 237 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 238 return length; 239 length -= RB_EVNT_HDR_SIZE; 240 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 241 length -= sizeof(event->array[0]); 242 return length; 243 } 244 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 245 246 /* inline for ring buffer fast paths */ 247 static __always_inline void * 248 rb_event_data(struct ring_buffer_event *event) 249 { 250 if (extended_time(event)) 251 event = skip_time_extend(event); 252 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 253 /* If length is in len field, then array[0] has the data */ 254 if (event->type_len) 255 return (void *)&event->array[0]; 256 /* Otherwise length is in array[0] and array[1] has the data */ 257 return (void *)&event->array[1]; 258 } 259 260 /** 261 * ring_buffer_event_data - return the data of the event 262 * @event: the event to get the data from 263 */ 264 void *ring_buffer_event_data(struct ring_buffer_event *event) 265 { 266 return rb_event_data(event); 267 } 268 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 269 270 #define for_each_buffer_cpu(buffer, cpu) \ 271 for_each_cpu(cpu, buffer->cpumask) 272 273 #define for_each_online_buffer_cpu(buffer, cpu) \ 274 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 275 276 #define TS_SHIFT 27 277 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 278 #define TS_DELTA_TEST (~TS_MASK) 279 280 /** 281 * ring_buffer_event_time_stamp - return the event's extended timestamp 282 * @event: the event to get the timestamp of 283 * 284 * Returns the extended timestamp associated with a data event. 285 * An extended time_stamp is a 64-bit timestamp represented 286 * internally in a special way that makes the best use of space 287 * contained within a ring buffer event. This function decodes 288 * it and maps it to a straight u64 value. 289 */ 290 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 291 { 292 u64 ts; 293 294 ts = event->array[0]; 295 ts <<= TS_SHIFT; 296 ts += event->time_delta; 297 298 return ts; 299 } 300 301 /* Flag when events were overwritten */ 302 #define RB_MISSED_EVENTS (1 << 31) 303 /* Missed count stored at end */ 304 #define RB_MISSED_STORED (1 << 30) 305 306 struct buffer_data_page { 307 u64 time_stamp; /* page time stamp */ 308 local_t commit; /* write committed index */ 309 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 310 }; 311 312 /* 313 * Note, the buffer_page list must be first. The buffer pages 314 * are allocated in cache lines, which means that each buffer 315 * page will be at the beginning of a cache line, and thus 316 * the least significant bits will be zero. We use this to 317 * add flags in the list struct pointers, to make the ring buffer 318 * lockless. 319 */ 320 struct buffer_page { 321 struct list_head list; /* list of buffer pages */ 322 local_t write; /* index for next write */ 323 unsigned read; /* index for next read */ 324 local_t entries; /* entries on this page */ 325 unsigned long real_end; /* real end of data */ 326 struct buffer_data_page *page; /* Actual data page */ 327 }; 328 329 /* 330 * The buffer page counters, write and entries, must be reset 331 * atomically when crossing page boundaries. To synchronize this 332 * update, two counters are inserted into the number. One is 333 * the actual counter for the write position or count on the page. 334 * 335 * The other is a counter of updaters. Before an update happens 336 * the update partition of the counter is incremented. This will 337 * allow the updater to update the counter atomically. 338 * 339 * The counter is 20 bits, and the state data is 12. 340 */ 341 #define RB_WRITE_MASK 0xfffff 342 #define RB_WRITE_INTCNT (1 << 20) 343 344 static void rb_init_page(struct buffer_data_page *bpage) 345 { 346 local_set(&bpage->commit, 0); 347 } 348 349 /* 350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 351 * this issue out. 352 */ 353 static void free_buffer_page(struct buffer_page *bpage) 354 { 355 free_page((unsigned long)bpage->page); 356 kfree(bpage); 357 } 358 359 /* 360 * We need to fit the time_stamp delta into 27 bits. 361 */ 362 static inline int test_time_stamp(u64 delta) 363 { 364 if (delta & TS_DELTA_TEST) 365 return 1; 366 return 0; 367 } 368 369 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 370 371 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 372 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 373 374 int ring_buffer_print_page_header(struct trace_seq *s) 375 { 376 struct buffer_data_page field; 377 378 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 379 "offset:0;\tsize:%u;\tsigned:%u;\n", 380 (unsigned int)sizeof(field.time_stamp), 381 (unsigned int)is_signed_type(u64)); 382 383 trace_seq_printf(s, "\tfield: local_t commit;\t" 384 "offset:%u;\tsize:%u;\tsigned:%u;\n", 385 (unsigned int)offsetof(typeof(field), commit), 386 (unsigned int)sizeof(field.commit), 387 (unsigned int)is_signed_type(long)); 388 389 trace_seq_printf(s, "\tfield: int overwrite;\t" 390 "offset:%u;\tsize:%u;\tsigned:%u;\n", 391 (unsigned int)offsetof(typeof(field), commit), 392 1, 393 (unsigned int)is_signed_type(long)); 394 395 trace_seq_printf(s, "\tfield: char data;\t" 396 "offset:%u;\tsize:%u;\tsigned:%u;\n", 397 (unsigned int)offsetof(typeof(field), data), 398 (unsigned int)BUF_PAGE_SIZE, 399 (unsigned int)is_signed_type(char)); 400 401 return !trace_seq_has_overflowed(s); 402 } 403 404 struct rb_irq_work { 405 struct irq_work work; 406 wait_queue_head_t waiters; 407 wait_queue_head_t full_waiters; 408 bool waiters_pending; 409 bool full_waiters_pending; 410 bool wakeup_full; 411 }; 412 413 /* 414 * Structure to hold event state and handle nested events. 415 */ 416 struct rb_event_info { 417 u64 ts; 418 u64 delta; 419 u64 before; 420 u64 after; 421 unsigned long length; 422 struct buffer_page *tail_page; 423 int add_timestamp; 424 }; 425 426 /* 427 * Used for the add_timestamp 428 * NONE 429 * EXTEND - wants a time extend 430 * ABSOLUTE - the buffer requests all events to have absolute time stamps 431 * FORCE - force a full time stamp. 432 */ 433 enum { 434 RB_ADD_STAMP_NONE = 0, 435 RB_ADD_STAMP_EXTEND = BIT(1), 436 RB_ADD_STAMP_ABSOLUTE = BIT(2), 437 RB_ADD_STAMP_FORCE = BIT(3) 438 }; 439 /* 440 * Used for which event context the event is in. 441 * NMI = 0 442 * IRQ = 1 443 * SOFTIRQ = 2 444 * NORMAL = 3 445 * 446 * See trace_recursive_lock() comment below for more details. 447 */ 448 enum { 449 RB_CTX_NMI, 450 RB_CTX_IRQ, 451 RB_CTX_SOFTIRQ, 452 RB_CTX_NORMAL, 453 RB_CTX_MAX 454 }; 455 456 #if BITS_PER_LONG == 32 457 #define RB_TIME_32 458 #endif 459 460 /* To test on 64 bit machines */ 461 //#define RB_TIME_32 462 463 #ifdef RB_TIME_32 464 465 struct rb_time_struct { 466 local_t cnt; 467 local_t top; 468 local_t bottom; 469 }; 470 #else 471 #include <asm/local64.h> 472 struct rb_time_struct { 473 local64_t time; 474 }; 475 #endif 476 typedef struct rb_time_struct rb_time_t; 477 478 /* 479 * head_page == tail_page && head == tail then buffer is empty. 480 */ 481 struct ring_buffer_per_cpu { 482 int cpu; 483 atomic_t record_disabled; 484 atomic_t resize_disabled; 485 struct trace_buffer *buffer; 486 raw_spinlock_t reader_lock; /* serialize readers */ 487 arch_spinlock_t lock; 488 struct lock_class_key lock_key; 489 struct buffer_data_page *free_page; 490 unsigned long nr_pages; 491 unsigned int current_context; 492 struct list_head *pages; 493 struct buffer_page *head_page; /* read from head */ 494 struct buffer_page *tail_page; /* write to tail */ 495 struct buffer_page *commit_page; /* committed pages */ 496 struct buffer_page *reader_page; 497 unsigned long lost_events; 498 unsigned long last_overrun; 499 unsigned long nest; 500 local_t entries_bytes; 501 local_t entries; 502 local_t overrun; 503 local_t commit_overrun; 504 local_t dropped_events; 505 local_t committing; 506 local_t commits; 507 local_t pages_touched; 508 local_t pages_read; 509 long last_pages_touch; 510 size_t shortest_full; 511 unsigned long read; 512 unsigned long read_bytes; 513 rb_time_t write_stamp; 514 rb_time_t before_stamp; 515 u64 read_stamp; 516 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 517 long nr_pages_to_update; 518 struct list_head new_pages; /* new pages to add */ 519 struct work_struct update_pages_work; 520 struct completion update_done; 521 522 struct rb_irq_work irq_work; 523 }; 524 525 struct trace_buffer { 526 unsigned flags; 527 int cpus; 528 atomic_t record_disabled; 529 cpumask_var_t cpumask; 530 531 struct lock_class_key *reader_lock_key; 532 533 struct mutex mutex; 534 535 struct ring_buffer_per_cpu **buffers; 536 537 struct hlist_node node; 538 u64 (*clock)(void); 539 540 struct rb_irq_work irq_work; 541 bool time_stamp_abs; 542 }; 543 544 struct ring_buffer_iter { 545 struct ring_buffer_per_cpu *cpu_buffer; 546 unsigned long head; 547 unsigned long next_event; 548 struct buffer_page *head_page; 549 struct buffer_page *cache_reader_page; 550 unsigned long cache_read; 551 u64 read_stamp; 552 u64 page_stamp; 553 struct ring_buffer_event *event; 554 int missed_events; 555 }; 556 557 #ifdef RB_TIME_32 558 559 /* 560 * On 32 bit machines, local64_t is very expensive. As the ring 561 * buffer doesn't need all the features of a true 64 bit atomic, 562 * on 32 bit, it uses these functions (64 still uses local64_t). 563 * 564 * For the ring buffer, 64 bit required operations for the time is 565 * the following: 566 * 567 * - Only need 59 bits (uses 60 to make it even). 568 * - Reads may fail if it interrupted a modification of the time stamp. 569 * It will succeed if it did not interrupt another write even if 570 * the read itself is interrupted by a write. 571 * It returns whether it was successful or not. 572 * 573 * - Writes always succeed and will overwrite other writes and writes 574 * that were done by events interrupting the current write. 575 * 576 * - A write followed by a read of the same time stamp will always succeed, 577 * but may not contain the same value. 578 * 579 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 580 * Other than that, it acts like a normal cmpxchg. 581 * 582 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 583 * (bottom being the least significant 30 bits of the 60 bit time stamp). 584 * 585 * The two most significant bits of each half holds a 2 bit counter (0-3). 586 * Each update will increment this counter by one. 587 * When reading the top and bottom, if the two counter bits match then the 588 * top and bottom together make a valid 60 bit number. 589 */ 590 #define RB_TIME_SHIFT 30 591 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 592 593 static inline int rb_time_cnt(unsigned long val) 594 { 595 return (val >> RB_TIME_SHIFT) & 3; 596 } 597 598 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 599 { 600 u64 val; 601 602 val = top & RB_TIME_VAL_MASK; 603 val <<= RB_TIME_SHIFT; 604 val |= bottom & RB_TIME_VAL_MASK; 605 606 return val; 607 } 608 609 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 610 { 611 unsigned long top, bottom; 612 unsigned long c; 613 614 /* 615 * If the read is interrupted by a write, then the cnt will 616 * be different. Loop until both top and bottom have been read 617 * without interruption. 618 */ 619 do { 620 c = local_read(&t->cnt); 621 top = local_read(&t->top); 622 bottom = local_read(&t->bottom); 623 } while (c != local_read(&t->cnt)); 624 625 *cnt = rb_time_cnt(top); 626 627 /* If top and bottom counts don't match, this interrupted a write */ 628 if (*cnt != rb_time_cnt(bottom)) 629 return false; 630 631 *ret = rb_time_val(top, bottom); 632 return true; 633 } 634 635 static bool rb_time_read(rb_time_t *t, u64 *ret) 636 { 637 unsigned long cnt; 638 639 return __rb_time_read(t, ret, &cnt); 640 } 641 642 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 643 { 644 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 645 } 646 647 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom) 648 { 649 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 650 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 651 } 652 653 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 654 { 655 val = rb_time_val_cnt(val, cnt); 656 local_set(t, val); 657 } 658 659 static void rb_time_set(rb_time_t *t, u64 val) 660 { 661 unsigned long cnt, top, bottom; 662 663 rb_time_split(val, &top, &bottom); 664 665 /* Writes always succeed with a valid number even if it gets interrupted. */ 666 do { 667 cnt = local_inc_return(&t->cnt); 668 rb_time_val_set(&t->top, top, cnt); 669 rb_time_val_set(&t->bottom, bottom, cnt); 670 } while (cnt != local_read(&t->cnt)); 671 } 672 673 static inline bool 674 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 675 { 676 unsigned long ret; 677 678 ret = local_cmpxchg(l, expect, set); 679 return ret == expect; 680 } 681 682 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 683 { 684 unsigned long cnt, top, bottom; 685 unsigned long cnt2, top2, bottom2; 686 u64 val; 687 688 /* The cmpxchg always fails if it interrupted an update */ 689 if (!__rb_time_read(t, &val, &cnt2)) 690 return false; 691 692 if (val != expect) 693 return false; 694 695 cnt = local_read(&t->cnt); 696 if ((cnt & 3) != cnt2) 697 return false; 698 699 cnt2 = cnt + 1; 700 701 rb_time_split(val, &top, &bottom); 702 top = rb_time_val_cnt(top, cnt); 703 bottom = rb_time_val_cnt(bottom, cnt); 704 705 rb_time_split(set, &top2, &bottom2); 706 top2 = rb_time_val_cnt(top2, cnt2); 707 bottom2 = rb_time_val_cnt(bottom2, cnt2); 708 709 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 710 return false; 711 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 712 return false; 713 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 714 return false; 715 return true; 716 } 717 718 #else /* 64 bits */ 719 720 /* local64_t always succeeds */ 721 722 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 723 { 724 *ret = local64_read(&t->time); 725 return true; 726 } 727 static void rb_time_set(rb_time_t *t, u64 val) 728 { 729 local64_set(&t->time, val); 730 } 731 732 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 733 { 734 u64 val; 735 val = local64_cmpxchg(&t->time, expect, set); 736 return val == expect; 737 } 738 #endif 739 740 /** 741 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 742 * @buffer: The ring_buffer to get the number of pages from 743 * @cpu: The cpu of the ring_buffer to get the number of pages from 744 * 745 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 746 */ 747 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 748 { 749 return buffer->buffers[cpu]->nr_pages; 750 } 751 752 /** 753 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 754 * @buffer: The ring_buffer to get the number of pages from 755 * @cpu: The cpu of the ring_buffer to get the number of pages from 756 * 757 * Returns the number of pages that have content in the ring buffer. 758 */ 759 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 760 { 761 size_t read; 762 size_t cnt; 763 764 read = local_read(&buffer->buffers[cpu]->pages_read); 765 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 766 /* The reader can read an empty page, but not more than that */ 767 if (cnt < read) { 768 WARN_ON_ONCE(read > cnt + 1); 769 return 0; 770 } 771 772 return cnt - read; 773 } 774 775 /* 776 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 777 * 778 * Schedules a delayed work to wake up any task that is blocked on the 779 * ring buffer waiters queue. 780 */ 781 static void rb_wake_up_waiters(struct irq_work *work) 782 { 783 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 784 785 wake_up_all(&rbwork->waiters); 786 if (rbwork->wakeup_full) { 787 rbwork->wakeup_full = false; 788 wake_up_all(&rbwork->full_waiters); 789 } 790 } 791 792 /** 793 * ring_buffer_wait - wait for input to the ring buffer 794 * @buffer: buffer to wait on 795 * @cpu: the cpu buffer to wait on 796 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 797 * 798 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 799 * as data is added to any of the @buffer's cpu buffers. Otherwise 800 * it will wait for data to be added to a specific cpu buffer. 801 */ 802 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 803 { 804 struct ring_buffer_per_cpu *cpu_buffer; 805 DEFINE_WAIT(wait); 806 struct rb_irq_work *work; 807 int ret = 0; 808 809 /* 810 * Depending on what the caller is waiting for, either any 811 * data in any cpu buffer, or a specific buffer, put the 812 * caller on the appropriate wait queue. 813 */ 814 if (cpu == RING_BUFFER_ALL_CPUS) { 815 work = &buffer->irq_work; 816 /* Full only makes sense on per cpu reads */ 817 full = 0; 818 } else { 819 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 820 return -ENODEV; 821 cpu_buffer = buffer->buffers[cpu]; 822 work = &cpu_buffer->irq_work; 823 } 824 825 826 while (true) { 827 if (full) 828 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 829 else 830 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 831 832 /* 833 * The events can happen in critical sections where 834 * checking a work queue can cause deadlocks. 835 * After adding a task to the queue, this flag is set 836 * only to notify events to try to wake up the queue 837 * using irq_work. 838 * 839 * We don't clear it even if the buffer is no longer 840 * empty. The flag only causes the next event to run 841 * irq_work to do the work queue wake up. The worse 842 * that can happen if we race with !trace_empty() is that 843 * an event will cause an irq_work to try to wake up 844 * an empty queue. 845 * 846 * There's no reason to protect this flag either, as 847 * the work queue and irq_work logic will do the necessary 848 * synchronization for the wake ups. The only thing 849 * that is necessary is that the wake up happens after 850 * a task has been queued. It's OK for spurious wake ups. 851 */ 852 if (full) 853 work->full_waiters_pending = true; 854 else 855 work->waiters_pending = true; 856 857 if (signal_pending(current)) { 858 ret = -EINTR; 859 break; 860 } 861 862 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 863 break; 864 865 if (cpu != RING_BUFFER_ALL_CPUS && 866 !ring_buffer_empty_cpu(buffer, cpu)) { 867 unsigned long flags; 868 bool pagebusy; 869 size_t nr_pages; 870 size_t dirty; 871 872 if (!full) 873 break; 874 875 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 876 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 877 nr_pages = cpu_buffer->nr_pages; 878 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 879 if (!cpu_buffer->shortest_full || 880 cpu_buffer->shortest_full < full) 881 cpu_buffer->shortest_full = full; 882 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 883 if (!pagebusy && 884 (!nr_pages || (dirty * 100) > full * nr_pages)) 885 break; 886 } 887 888 schedule(); 889 } 890 891 if (full) 892 finish_wait(&work->full_waiters, &wait); 893 else 894 finish_wait(&work->waiters, &wait); 895 896 return ret; 897 } 898 899 /** 900 * ring_buffer_poll_wait - poll on buffer input 901 * @buffer: buffer to wait on 902 * @cpu: the cpu buffer to wait on 903 * @filp: the file descriptor 904 * @poll_table: The poll descriptor 905 * 906 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 907 * as data is added to any of the @buffer's cpu buffers. Otherwise 908 * it will wait for data to be added to a specific cpu buffer. 909 * 910 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 911 * zero otherwise. 912 */ 913 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 914 struct file *filp, poll_table *poll_table) 915 { 916 struct ring_buffer_per_cpu *cpu_buffer; 917 struct rb_irq_work *work; 918 919 if (cpu == RING_BUFFER_ALL_CPUS) 920 work = &buffer->irq_work; 921 else { 922 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 923 return -EINVAL; 924 925 cpu_buffer = buffer->buffers[cpu]; 926 work = &cpu_buffer->irq_work; 927 } 928 929 poll_wait(filp, &work->waiters, poll_table); 930 work->waiters_pending = true; 931 /* 932 * There's a tight race between setting the waiters_pending and 933 * checking if the ring buffer is empty. Once the waiters_pending bit 934 * is set, the next event will wake the task up, but we can get stuck 935 * if there's only a single event in. 936 * 937 * FIXME: Ideally, we need a memory barrier on the writer side as well, 938 * but adding a memory barrier to all events will cause too much of a 939 * performance hit in the fast path. We only need a memory barrier when 940 * the buffer goes from empty to having content. But as this race is 941 * extremely small, and it's not a problem if another event comes in, we 942 * will fix it later. 943 */ 944 smp_mb(); 945 946 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 947 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 948 return EPOLLIN | EPOLLRDNORM; 949 return 0; 950 } 951 952 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 953 #define RB_WARN_ON(b, cond) \ 954 ({ \ 955 int _____ret = unlikely(cond); \ 956 if (_____ret) { \ 957 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 958 struct ring_buffer_per_cpu *__b = \ 959 (void *)b; \ 960 atomic_inc(&__b->buffer->record_disabled); \ 961 } else \ 962 atomic_inc(&b->record_disabled); \ 963 WARN_ON(1); \ 964 } \ 965 _____ret; \ 966 }) 967 968 /* Up this if you want to test the TIME_EXTENTS and normalization */ 969 #define DEBUG_SHIFT 0 970 971 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 972 { 973 u64 ts; 974 975 /* Skip retpolines :-( */ 976 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 977 ts = trace_clock_local(); 978 else 979 ts = buffer->clock(); 980 981 /* shift to debug/test normalization and TIME_EXTENTS */ 982 return ts << DEBUG_SHIFT; 983 } 984 985 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu) 986 { 987 u64 time; 988 989 preempt_disable_notrace(); 990 time = rb_time_stamp(buffer); 991 preempt_enable_notrace(); 992 993 return time; 994 } 995 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 996 997 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 998 int cpu, u64 *ts) 999 { 1000 /* Just stupid testing the normalize function and deltas */ 1001 *ts >>= DEBUG_SHIFT; 1002 } 1003 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1004 1005 /* 1006 * Making the ring buffer lockless makes things tricky. 1007 * Although writes only happen on the CPU that they are on, 1008 * and they only need to worry about interrupts. Reads can 1009 * happen on any CPU. 1010 * 1011 * The reader page is always off the ring buffer, but when the 1012 * reader finishes with a page, it needs to swap its page with 1013 * a new one from the buffer. The reader needs to take from 1014 * the head (writes go to the tail). But if a writer is in overwrite 1015 * mode and wraps, it must push the head page forward. 1016 * 1017 * Here lies the problem. 1018 * 1019 * The reader must be careful to replace only the head page, and 1020 * not another one. As described at the top of the file in the 1021 * ASCII art, the reader sets its old page to point to the next 1022 * page after head. It then sets the page after head to point to 1023 * the old reader page. But if the writer moves the head page 1024 * during this operation, the reader could end up with the tail. 1025 * 1026 * We use cmpxchg to help prevent this race. We also do something 1027 * special with the page before head. We set the LSB to 1. 1028 * 1029 * When the writer must push the page forward, it will clear the 1030 * bit that points to the head page, move the head, and then set 1031 * the bit that points to the new head page. 1032 * 1033 * We also don't want an interrupt coming in and moving the head 1034 * page on another writer. Thus we use the second LSB to catch 1035 * that too. Thus: 1036 * 1037 * head->list->prev->next bit 1 bit 0 1038 * ------- ------- 1039 * Normal page 0 0 1040 * Points to head page 0 1 1041 * New head page 1 0 1042 * 1043 * Note we can not trust the prev pointer of the head page, because: 1044 * 1045 * +----+ +-----+ +-----+ 1046 * | |------>| T |---X--->| N | 1047 * | |<------| | | | 1048 * +----+ +-----+ +-----+ 1049 * ^ ^ | 1050 * | +-----+ | | 1051 * +----------| R |----------+ | 1052 * | |<-----------+ 1053 * +-----+ 1054 * 1055 * Key: ---X--> HEAD flag set in pointer 1056 * T Tail page 1057 * R Reader page 1058 * N Next page 1059 * 1060 * (see __rb_reserve_next() to see where this happens) 1061 * 1062 * What the above shows is that the reader just swapped out 1063 * the reader page with a page in the buffer, but before it 1064 * could make the new header point back to the new page added 1065 * it was preempted by a writer. The writer moved forward onto 1066 * the new page added by the reader and is about to move forward 1067 * again. 1068 * 1069 * You can see, it is legitimate for the previous pointer of 1070 * the head (or any page) not to point back to itself. But only 1071 * temporarily. 1072 */ 1073 1074 #define RB_PAGE_NORMAL 0UL 1075 #define RB_PAGE_HEAD 1UL 1076 #define RB_PAGE_UPDATE 2UL 1077 1078 1079 #define RB_FLAG_MASK 3UL 1080 1081 /* PAGE_MOVED is not part of the mask */ 1082 #define RB_PAGE_MOVED 4UL 1083 1084 /* 1085 * rb_list_head - remove any bit 1086 */ 1087 static struct list_head *rb_list_head(struct list_head *list) 1088 { 1089 unsigned long val = (unsigned long)list; 1090 1091 return (struct list_head *)(val & ~RB_FLAG_MASK); 1092 } 1093 1094 /* 1095 * rb_is_head_page - test if the given page is the head page 1096 * 1097 * Because the reader may move the head_page pointer, we can 1098 * not trust what the head page is (it may be pointing to 1099 * the reader page). But if the next page is a header page, 1100 * its flags will be non zero. 1101 */ 1102 static inline int 1103 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1104 struct buffer_page *page, struct list_head *list) 1105 { 1106 unsigned long val; 1107 1108 val = (unsigned long)list->next; 1109 1110 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1111 return RB_PAGE_MOVED; 1112 1113 return val & RB_FLAG_MASK; 1114 } 1115 1116 /* 1117 * rb_is_reader_page 1118 * 1119 * The unique thing about the reader page, is that, if the 1120 * writer is ever on it, the previous pointer never points 1121 * back to the reader page. 1122 */ 1123 static bool rb_is_reader_page(struct buffer_page *page) 1124 { 1125 struct list_head *list = page->list.prev; 1126 1127 return rb_list_head(list->next) != &page->list; 1128 } 1129 1130 /* 1131 * rb_set_list_to_head - set a list_head to be pointing to head. 1132 */ 1133 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 1134 struct list_head *list) 1135 { 1136 unsigned long *ptr; 1137 1138 ptr = (unsigned long *)&list->next; 1139 *ptr |= RB_PAGE_HEAD; 1140 *ptr &= ~RB_PAGE_UPDATE; 1141 } 1142 1143 /* 1144 * rb_head_page_activate - sets up head page 1145 */ 1146 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1147 { 1148 struct buffer_page *head; 1149 1150 head = cpu_buffer->head_page; 1151 if (!head) 1152 return; 1153 1154 /* 1155 * Set the previous list pointer to have the HEAD flag. 1156 */ 1157 rb_set_list_to_head(cpu_buffer, head->list.prev); 1158 } 1159 1160 static void rb_list_head_clear(struct list_head *list) 1161 { 1162 unsigned long *ptr = (unsigned long *)&list->next; 1163 1164 *ptr &= ~RB_FLAG_MASK; 1165 } 1166 1167 /* 1168 * rb_head_page_deactivate - clears head page ptr (for free list) 1169 */ 1170 static void 1171 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1172 { 1173 struct list_head *hd; 1174 1175 /* Go through the whole list and clear any pointers found. */ 1176 rb_list_head_clear(cpu_buffer->pages); 1177 1178 list_for_each(hd, cpu_buffer->pages) 1179 rb_list_head_clear(hd); 1180 } 1181 1182 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1183 struct buffer_page *head, 1184 struct buffer_page *prev, 1185 int old_flag, int new_flag) 1186 { 1187 struct list_head *list; 1188 unsigned long val = (unsigned long)&head->list; 1189 unsigned long ret; 1190 1191 list = &prev->list; 1192 1193 val &= ~RB_FLAG_MASK; 1194 1195 ret = cmpxchg((unsigned long *)&list->next, 1196 val | old_flag, val | new_flag); 1197 1198 /* check if the reader took the page */ 1199 if ((ret & ~RB_FLAG_MASK) != val) 1200 return RB_PAGE_MOVED; 1201 1202 return ret & RB_FLAG_MASK; 1203 } 1204 1205 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1206 struct buffer_page *head, 1207 struct buffer_page *prev, 1208 int old_flag) 1209 { 1210 return rb_head_page_set(cpu_buffer, head, prev, 1211 old_flag, RB_PAGE_UPDATE); 1212 } 1213 1214 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1215 struct buffer_page *head, 1216 struct buffer_page *prev, 1217 int old_flag) 1218 { 1219 return rb_head_page_set(cpu_buffer, head, prev, 1220 old_flag, RB_PAGE_HEAD); 1221 } 1222 1223 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1224 struct buffer_page *head, 1225 struct buffer_page *prev, 1226 int old_flag) 1227 { 1228 return rb_head_page_set(cpu_buffer, head, prev, 1229 old_flag, RB_PAGE_NORMAL); 1230 } 1231 1232 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 1233 struct buffer_page **bpage) 1234 { 1235 struct list_head *p = rb_list_head((*bpage)->list.next); 1236 1237 *bpage = list_entry(p, struct buffer_page, list); 1238 } 1239 1240 static struct buffer_page * 1241 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1242 { 1243 struct buffer_page *head; 1244 struct buffer_page *page; 1245 struct list_head *list; 1246 int i; 1247 1248 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1249 return NULL; 1250 1251 /* sanity check */ 1252 list = cpu_buffer->pages; 1253 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1254 return NULL; 1255 1256 page = head = cpu_buffer->head_page; 1257 /* 1258 * It is possible that the writer moves the header behind 1259 * where we started, and we miss in one loop. 1260 * A second loop should grab the header, but we'll do 1261 * three loops just because I'm paranoid. 1262 */ 1263 for (i = 0; i < 3; i++) { 1264 do { 1265 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1266 cpu_buffer->head_page = page; 1267 return page; 1268 } 1269 rb_inc_page(cpu_buffer, &page); 1270 } while (page != head); 1271 } 1272 1273 RB_WARN_ON(cpu_buffer, 1); 1274 1275 return NULL; 1276 } 1277 1278 static int rb_head_page_replace(struct buffer_page *old, 1279 struct buffer_page *new) 1280 { 1281 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1282 unsigned long val; 1283 unsigned long ret; 1284 1285 val = *ptr & ~RB_FLAG_MASK; 1286 val |= RB_PAGE_HEAD; 1287 1288 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1289 1290 return ret == val; 1291 } 1292 1293 /* 1294 * rb_tail_page_update - move the tail page forward 1295 */ 1296 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1297 struct buffer_page *tail_page, 1298 struct buffer_page *next_page) 1299 { 1300 unsigned long old_entries; 1301 unsigned long old_write; 1302 1303 /* 1304 * The tail page now needs to be moved forward. 1305 * 1306 * We need to reset the tail page, but without messing 1307 * with possible erasing of data brought in by interrupts 1308 * that have moved the tail page and are currently on it. 1309 * 1310 * We add a counter to the write field to denote this. 1311 */ 1312 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1313 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1314 1315 local_inc(&cpu_buffer->pages_touched); 1316 /* 1317 * Just make sure we have seen our old_write and synchronize 1318 * with any interrupts that come in. 1319 */ 1320 barrier(); 1321 1322 /* 1323 * If the tail page is still the same as what we think 1324 * it is, then it is up to us to update the tail 1325 * pointer. 1326 */ 1327 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1328 /* Zero the write counter */ 1329 unsigned long val = old_write & ~RB_WRITE_MASK; 1330 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1331 1332 /* 1333 * This will only succeed if an interrupt did 1334 * not come in and change it. In which case, we 1335 * do not want to modify it. 1336 * 1337 * We add (void) to let the compiler know that we do not care 1338 * about the return value of these functions. We use the 1339 * cmpxchg to only update if an interrupt did not already 1340 * do it for us. If the cmpxchg fails, we don't care. 1341 */ 1342 (void)local_cmpxchg(&next_page->write, old_write, val); 1343 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1344 1345 /* 1346 * No need to worry about races with clearing out the commit. 1347 * it only can increment when a commit takes place. But that 1348 * only happens in the outer most nested commit. 1349 */ 1350 local_set(&next_page->page->commit, 0); 1351 1352 /* Again, either we update tail_page or an interrupt does */ 1353 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1354 } 1355 } 1356 1357 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1358 struct buffer_page *bpage) 1359 { 1360 unsigned long val = (unsigned long)bpage; 1361 1362 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1363 return 1; 1364 1365 return 0; 1366 } 1367 1368 /** 1369 * rb_check_list - make sure a pointer to a list has the last bits zero 1370 */ 1371 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1372 struct list_head *list) 1373 { 1374 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1375 return 1; 1376 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1377 return 1; 1378 return 0; 1379 } 1380 1381 /** 1382 * rb_check_pages - integrity check of buffer pages 1383 * @cpu_buffer: CPU buffer with pages to test 1384 * 1385 * As a safety measure we check to make sure the data pages have not 1386 * been corrupted. 1387 */ 1388 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1389 { 1390 struct list_head *head = cpu_buffer->pages; 1391 struct buffer_page *bpage, *tmp; 1392 1393 /* Reset the head page if it exists */ 1394 if (cpu_buffer->head_page) 1395 rb_set_head_page(cpu_buffer); 1396 1397 rb_head_page_deactivate(cpu_buffer); 1398 1399 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1400 return -1; 1401 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1402 return -1; 1403 1404 if (rb_check_list(cpu_buffer, head)) 1405 return -1; 1406 1407 list_for_each_entry_safe(bpage, tmp, head, list) { 1408 if (RB_WARN_ON(cpu_buffer, 1409 bpage->list.next->prev != &bpage->list)) 1410 return -1; 1411 if (RB_WARN_ON(cpu_buffer, 1412 bpage->list.prev->next != &bpage->list)) 1413 return -1; 1414 if (rb_check_list(cpu_buffer, &bpage->list)) 1415 return -1; 1416 } 1417 1418 rb_head_page_activate(cpu_buffer); 1419 1420 return 0; 1421 } 1422 1423 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1424 { 1425 struct buffer_page *bpage, *tmp; 1426 bool user_thread = current->mm != NULL; 1427 gfp_t mflags; 1428 long i; 1429 1430 /* 1431 * Check if the available memory is there first. 1432 * Note, si_mem_available() only gives us a rough estimate of available 1433 * memory. It may not be accurate. But we don't care, we just want 1434 * to prevent doing any allocation when it is obvious that it is 1435 * not going to succeed. 1436 */ 1437 i = si_mem_available(); 1438 if (i < nr_pages) 1439 return -ENOMEM; 1440 1441 /* 1442 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1443 * gracefully without invoking oom-killer and the system is not 1444 * destabilized. 1445 */ 1446 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1447 1448 /* 1449 * If a user thread allocates too much, and si_mem_available() 1450 * reports there's enough memory, even though there is not. 1451 * Make sure the OOM killer kills this thread. This can happen 1452 * even with RETRY_MAYFAIL because another task may be doing 1453 * an allocation after this task has taken all memory. 1454 * This is the task the OOM killer needs to take out during this 1455 * loop, even if it was triggered by an allocation somewhere else. 1456 */ 1457 if (user_thread) 1458 set_current_oom_origin(); 1459 for (i = 0; i < nr_pages; i++) { 1460 struct page *page; 1461 1462 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1463 mflags, cpu_to_node(cpu)); 1464 if (!bpage) 1465 goto free_pages; 1466 1467 list_add(&bpage->list, pages); 1468 1469 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1470 if (!page) 1471 goto free_pages; 1472 bpage->page = page_address(page); 1473 rb_init_page(bpage->page); 1474 1475 if (user_thread && fatal_signal_pending(current)) 1476 goto free_pages; 1477 } 1478 if (user_thread) 1479 clear_current_oom_origin(); 1480 1481 return 0; 1482 1483 free_pages: 1484 list_for_each_entry_safe(bpage, tmp, pages, list) { 1485 list_del_init(&bpage->list); 1486 free_buffer_page(bpage); 1487 } 1488 if (user_thread) 1489 clear_current_oom_origin(); 1490 1491 return -ENOMEM; 1492 } 1493 1494 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1495 unsigned long nr_pages) 1496 { 1497 LIST_HEAD(pages); 1498 1499 WARN_ON(!nr_pages); 1500 1501 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1502 return -ENOMEM; 1503 1504 /* 1505 * The ring buffer page list is a circular list that does not 1506 * start and end with a list head. All page list items point to 1507 * other pages. 1508 */ 1509 cpu_buffer->pages = pages.next; 1510 list_del(&pages); 1511 1512 cpu_buffer->nr_pages = nr_pages; 1513 1514 rb_check_pages(cpu_buffer); 1515 1516 return 0; 1517 } 1518 1519 static struct ring_buffer_per_cpu * 1520 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1521 { 1522 struct ring_buffer_per_cpu *cpu_buffer; 1523 struct buffer_page *bpage; 1524 struct page *page; 1525 int ret; 1526 1527 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1528 GFP_KERNEL, cpu_to_node(cpu)); 1529 if (!cpu_buffer) 1530 return NULL; 1531 1532 cpu_buffer->cpu = cpu; 1533 cpu_buffer->buffer = buffer; 1534 raw_spin_lock_init(&cpu_buffer->reader_lock); 1535 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1536 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1537 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1538 init_completion(&cpu_buffer->update_done); 1539 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1540 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1541 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1542 1543 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1544 GFP_KERNEL, cpu_to_node(cpu)); 1545 if (!bpage) 1546 goto fail_free_buffer; 1547 1548 rb_check_bpage(cpu_buffer, bpage); 1549 1550 cpu_buffer->reader_page = bpage; 1551 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1552 if (!page) 1553 goto fail_free_reader; 1554 bpage->page = page_address(page); 1555 rb_init_page(bpage->page); 1556 1557 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1558 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1559 1560 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1561 if (ret < 0) 1562 goto fail_free_reader; 1563 1564 cpu_buffer->head_page 1565 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1566 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1567 1568 rb_head_page_activate(cpu_buffer); 1569 1570 return cpu_buffer; 1571 1572 fail_free_reader: 1573 free_buffer_page(cpu_buffer->reader_page); 1574 1575 fail_free_buffer: 1576 kfree(cpu_buffer); 1577 return NULL; 1578 } 1579 1580 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1581 { 1582 struct list_head *head = cpu_buffer->pages; 1583 struct buffer_page *bpage, *tmp; 1584 1585 free_buffer_page(cpu_buffer->reader_page); 1586 1587 rb_head_page_deactivate(cpu_buffer); 1588 1589 if (head) { 1590 list_for_each_entry_safe(bpage, tmp, head, list) { 1591 list_del_init(&bpage->list); 1592 free_buffer_page(bpage); 1593 } 1594 bpage = list_entry(head, struct buffer_page, list); 1595 free_buffer_page(bpage); 1596 } 1597 1598 kfree(cpu_buffer); 1599 } 1600 1601 /** 1602 * __ring_buffer_alloc - allocate a new ring_buffer 1603 * @size: the size in bytes per cpu that is needed. 1604 * @flags: attributes to set for the ring buffer. 1605 * @key: ring buffer reader_lock_key. 1606 * 1607 * Currently the only flag that is available is the RB_FL_OVERWRITE 1608 * flag. This flag means that the buffer will overwrite old data 1609 * when the buffer wraps. If this flag is not set, the buffer will 1610 * drop data when the tail hits the head. 1611 */ 1612 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1613 struct lock_class_key *key) 1614 { 1615 struct trace_buffer *buffer; 1616 long nr_pages; 1617 int bsize; 1618 int cpu; 1619 int ret; 1620 1621 /* keep it in its own cache line */ 1622 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1623 GFP_KERNEL); 1624 if (!buffer) 1625 return NULL; 1626 1627 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1628 goto fail_free_buffer; 1629 1630 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1631 buffer->flags = flags; 1632 buffer->clock = trace_clock_local; 1633 buffer->reader_lock_key = key; 1634 1635 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1636 init_waitqueue_head(&buffer->irq_work.waiters); 1637 1638 /* need at least two pages */ 1639 if (nr_pages < 2) 1640 nr_pages = 2; 1641 1642 buffer->cpus = nr_cpu_ids; 1643 1644 bsize = sizeof(void *) * nr_cpu_ids; 1645 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1646 GFP_KERNEL); 1647 if (!buffer->buffers) 1648 goto fail_free_cpumask; 1649 1650 cpu = raw_smp_processor_id(); 1651 cpumask_set_cpu(cpu, buffer->cpumask); 1652 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1653 if (!buffer->buffers[cpu]) 1654 goto fail_free_buffers; 1655 1656 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1657 if (ret < 0) 1658 goto fail_free_buffers; 1659 1660 mutex_init(&buffer->mutex); 1661 1662 return buffer; 1663 1664 fail_free_buffers: 1665 for_each_buffer_cpu(buffer, cpu) { 1666 if (buffer->buffers[cpu]) 1667 rb_free_cpu_buffer(buffer->buffers[cpu]); 1668 } 1669 kfree(buffer->buffers); 1670 1671 fail_free_cpumask: 1672 free_cpumask_var(buffer->cpumask); 1673 1674 fail_free_buffer: 1675 kfree(buffer); 1676 return NULL; 1677 } 1678 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1679 1680 /** 1681 * ring_buffer_free - free a ring buffer. 1682 * @buffer: the buffer to free. 1683 */ 1684 void 1685 ring_buffer_free(struct trace_buffer *buffer) 1686 { 1687 int cpu; 1688 1689 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1690 1691 for_each_buffer_cpu(buffer, cpu) 1692 rb_free_cpu_buffer(buffer->buffers[cpu]); 1693 1694 kfree(buffer->buffers); 1695 free_cpumask_var(buffer->cpumask); 1696 1697 kfree(buffer); 1698 } 1699 EXPORT_SYMBOL_GPL(ring_buffer_free); 1700 1701 void ring_buffer_set_clock(struct trace_buffer *buffer, 1702 u64 (*clock)(void)) 1703 { 1704 buffer->clock = clock; 1705 } 1706 1707 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1708 { 1709 buffer->time_stamp_abs = abs; 1710 } 1711 1712 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1713 { 1714 return buffer->time_stamp_abs; 1715 } 1716 1717 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1718 1719 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1720 { 1721 return local_read(&bpage->entries) & RB_WRITE_MASK; 1722 } 1723 1724 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1725 { 1726 return local_read(&bpage->write) & RB_WRITE_MASK; 1727 } 1728 1729 static int 1730 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1731 { 1732 struct list_head *tail_page, *to_remove, *next_page; 1733 struct buffer_page *to_remove_page, *tmp_iter_page; 1734 struct buffer_page *last_page, *first_page; 1735 unsigned long nr_removed; 1736 unsigned long head_bit; 1737 int page_entries; 1738 1739 head_bit = 0; 1740 1741 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1742 atomic_inc(&cpu_buffer->record_disabled); 1743 /* 1744 * We don't race with the readers since we have acquired the reader 1745 * lock. We also don't race with writers after disabling recording. 1746 * This makes it easy to figure out the first and the last page to be 1747 * removed from the list. We unlink all the pages in between including 1748 * the first and last pages. This is done in a busy loop so that we 1749 * lose the least number of traces. 1750 * The pages are freed after we restart recording and unlock readers. 1751 */ 1752 tail_page = &cpu_buffer->tail_page->list; 1753 1754 /* 1755 * tail page might be on reader page, we remove the next page 1756 * from the ring buffer 1757 */ 1758 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1759 tail_page = rb_list_head(tail_page->next); 1760 to_remove = tail_page; 1761 1762 /* start of pages to remove */ 1763 first_page = list_entry(rb_list_head(to_remove->next), 1764 struct buffer_page, list); 1765 1766 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1767 to_remove = rb_list_head(to_remove)->next; 1768 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1769 } 1770 1771 next_page = rb_list_head(to_remove)->next; 1772 1773 /* 1774 * Now we remove all pages between tail_page and next_page. 1775 * Make sure that we have head_bit value preserved for the 1776 * next page 1777 */ 1778 tail_page->next = (struct list_head *)((unsigned long)next_page | 1779 head_bit); 1780 next_page = rb_list_head(next_page); 1781 next_page->prev = tail_page; 1782 1783 /* make sure pages points to a valid page in the ring buffer */ 1784 cpu_buffer->pages = next_page; 1785 1786 /* update head page */ 1787 if (head_bit) 1788 cpu_buffer->head_page = list_entry(next_page, 1789 struct buffer_page, list); 1790 1791 /* 1792 * change read pointer to make sure any read iterators reset 1793 * themselves 1794 */ 1795 cpu_buffer->read = 0; 1796 1797 /* pages are removed, resume tracing and then free the pages */ 1798 atomic_dec(&cpu_buffer->record_disabled); 1799 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1800 1801 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1802 1803 /* last buffer page to remove */ 1804 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1805 list); 1806 tmp_iter_page = first_page; 1807 1808 do { 1809 cond_resched(); 1810 1811 to_remove_page = tmp_iter_page; 1812 rb_inc_page(cpu_buffer, &tmp_iter_page); 1813 1814 /* update the counters */ 1815 page_entries = rb_page_entries(to_remove_page); 1816 if (page_entries) { 1817 /* 1818 * If something was added to this page, it was full 1819 * since it is not the tail page. So we deduct the 1820 * bytes consumed in ring buffer from here. 1821 * Increment overrun to account for the lost events. 1822 */ 1823 local_add(page_entries, &cpu_buffer->overrun); 1824 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1825 } 1826 1827 /* 1828 * We have already removed references to this list item, just 1829 * free up the buffer_page and its page 1830 */ 1831 free_buffer_page(to_remove_page); 1832 nr_removed--; 1833 1834 } while (to_remove_page != last_page); 1835 1836 RB_WARN_ON(cpu_buffer, nr_removed); 1837 1838 return nr_removed == 0; 1839 } 1840 1841 static int 1842 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1843 { 1844 struct list_head *pages = &cpu_buffer->new_pages; 1845 int retries, success; 1846 1847 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1848 /* 1849 * We are holding the reader lock, so the reader page won't be swapped 1850 * in the ring buffer. Now we are racing with the writer trying to 1851 * move head page and the tail page. 1852 * We are going to adapt the reader page update process where: 1853 * 1. We first splice the start and end of list of new pages between 1854 * the head page and its previous page. 1855 * 2. We cmpxchg the prev_page->next to point from head page to the 1856 * start of new pages list. 1857 * 3. Finally, we update the head->prev to the end of new list. 1858 * 1859 * We will try this process 10 times, to make sure that we don't keep 1860 * spinning. 1861 */ 1862 retries = 10; 1863 success = 0; 1864 while (retries--) { 1865 struct list_head *head_page, *prev_page, *r; 1866 struct list_head *last_page, *first_page; 1867 struct list_head *head_page_with_bit; 1868 1869 head_page = &rb_set_head_page(cpu_buffer)->list; 1870 if (!head_page) 1871 break; 1872 prev_page = head_page->prev; 1873 1874 first_page = pages->next; 1875 last_page = pages->prev; 1876 1877 head_page_with_bit = (struct list_head *) 1878 ((unsigned long)head_page | RB_PAGE_HEAD); 1879 1880 last_page->next = head_page_with_bit; 1881 first_page->prev = prev_page; 1882 1883 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1884 1885 if (r == head_page_with_bit) { 1886 /* 1887 * yay, we replaced the page pointer to our new list, 1888 * now, we just have to update to head page's prev 1889 * pointer to point to end of list 1890 */ 1891 head_page->prev = last_page; 1892 success = 1; 1893 break; 1894 } 1895 } 1896 1897 if (success) 1898 INIT_LIST_HEAD(pages); 1899 /* 1900 * If we weren't successful in adding in new pages, warn and stop 1901 * tracing 1902 */ 1903 RB_WARN_ON(cpu_buffer, !success); 1904 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1905 1906 /* free pages if they weren't inserted */ 1907 if (!success) { 1908 struct buffer_page *bpage, *tmp; 1909 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1910 list) { 1911 list_del_init(&bpage->list); 1912 free_buffer_page(bpage); 1913 } 1914 } 1915 return success; 1916 } 1917 1918 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1919 { 1920 int success; 1921 1922 if (cpu_buffer->nr_pages_to_update > 0) 1923 success = rb_insert_pages(cpu_buffer); 1924 else 1925 success = rb_remove_pages(cpu_buffer, 1926 -cpu_buffer->nr_pages_to_update); 1927 1928 if (success) 1929 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1930 } 1931 1932 static void update_pages_handler(struct work_struct *work) 1933 { 1934 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1935 struct ring_buffer_per_cpu, update_pages_work); 1936 rb_update_pages(cpu_buffer); 1937 complete(&cpu_buffer->update_done); 1938 } 1939 1940 /** 1941 * ring_buffer_resize - resize the ring buffer 1942 * @buffer: the buffer to resize. 1943 * @size: the new size. 1944 * @cpu_id: the cpu buffer to resize 1945 * 1946 * Minimum size is 2 * BUF_PAGE_SIZE. 1947 * 1948 * Returns 0 on success and < 0 on failure. 1949 */ 1950 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 1951 int cpu_id) 1952 { 1953 struct ring_buffer_per_cpu *cpu_buffer; 1954 unsigned long nr_pages; 1955 int cpu, err = 0; 1956 1957 /* 1958 * Always succeed at resizing a non-existent buffer: 1959 */ 1960 if (!buffer) 1961 return size; 1962 1963 /* Make sure the requested buffer exists */ 1964 if (cpu_id != RING_BUFFER_ALL_CPUS && 1965 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1966 return size; 1967 1968 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1969 1970 /* we need a minimum of two pages */ 1971 if (nr_pages < 2) 1972 nr_pages = 2; 1973 1974 size = nr_pages * BUF_PAGE_SIZE; 1975 1976 /* prevent another thread from changing buffer sizes */ 1977 mutex_lock(&buffer->mutex); 1978 1979 1980 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1981 /* 1982 * Don't succeed if resizing is disabled, as a reader might be 1983 * manipulating the ring buffer and is expecting a sane state while 1984 * this is true. 1985 */ 1986 for_each_buffer_cpu(buffer, cpu) { 1987 cpu_buffer = buffer->buffers[cpu]; 1988 if (atomic_read(&cpu_buffer->resize_disabled)) { 1989 err = -EBUSY; 1990 goto out_err_unlock; 1991 } 1992 } 1993 1994 /* calculate the pages to update */ 1995 for_each_buffer_cpu(buffer, cpu) { 1996 cpu_buffer = buffer->buffers[cpu]; 1997 1998 cpu_buffer->nr_pages_to_update = nr_pages - 1999 cpu_buffer->nr_pages; 2000 /* 2001 * nothing more to do for removing pages or no update 2002 */ 2003 if (cpu_buffer->nr_pages_to_update <= 0) 2004 continue; 2005 /* 2006 * to add pages, make sure all new pages can be 2007 * allocated without receiving ENOMEM 2008 */ 2009 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2010 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 2011 &cpu_buffer->new_pages, cpu)) { 2012 /* not enough memory for new pages */ 2013 err = -ENOMEM; 2014 goto out_err; 2015 } 2016 } 2017 2018 get_online_cpus(); 2019 /* 2020 * Fire off all the required work handlers 2021 * We can't schedule on offline CPUs, but it's not necessary 2022 * since we can change their buffer sizes without any race. 2023 */ 2024 for_each_buffer_cpu(buffer, cpu) { 2025 cpu_buffer = buffer->buffers[cpu]; 2026 if (!cpu_buffer->nr_pages_to_update) 2027 continue; 2028 2029 /* Can't run something on an offline CPU. */ 2030 if (!cpu_online(cpu)) { 2031 rb_update_pages(cpu_buffer); 2032 cpu_buffer->nr_pages_to_update = 0; 2033 } else { 2034 schedule_work_on(cpu, 2035 &cpu_buffer->update_pages_work); 2036 } 2037 } 2038 2039 /* wait for all the updates to complete */ 2040 for_each_buffer_cpu(buffer, cpu) { 2041 cpu_buffer = buffer->buffers[cpu]; 2042 if (!cpu_buffer->nr_pages_to_update) 2043 continue; 2044 2045 if (cpu_online(cpu)) 2046 wait_for_completion(&cpu_buffer->update_done); 2047 cpu_buffer->nr_pages_to_update = 0; 2048 } 2049 2050 put_online_cpus(); 2051 } else { 2052 /* Make sure this CPU has been initialized */ 2053 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 2054 goto out; 2055 2056 cpu_buffer = buffer->buffers[cpu_id]; 2057 2058 if (nr_pages == cpu_buffer->nr_pages) 2059 goto out; 2060 2061 /* 2062 * Don't succeed if resizing is disabled, as a reader might be 2063 * manipulating the ring buffer and is expecting a sane state while 2064 * this is true. 2065 */ 2066 if (atomic_read(&cpu_buffer->resize_disabled)) { 2067 err = -EBUSY; 2068 goto out_err_unlock; 2069 } 2070 2071 cpu_buffer->nr_pages_to_update = nr_pages - 2072 cpu_buffer->nr_pages; 2073 2074 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2075 if (cpu_buffer->nr_pages_to_update > 0 && 2076 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 2077 &cpu_buffer->new_pages, cpu_id)) { 2078 err = -ENOMEM; 2079 goto out_err; 2080 } 2081 2082 get_online_cpus(); 2083 2084 /* Can't run something on an offline CPU. */ 2085 if (!cpu_online(cpu_id)) 2086 rb_update_pages(cpu_buffer); 2087 else { 2088 schedule_work_on(cpu_id, 2089 &cpu_buffer->update_pages_work); 2090 wait_for_completion(&cpu_buffer->update_done); 2091 } 2092 2093 cpu_buffer->nr_pages_to_update = 0; 2094 put_online_cpus(); 2095 } 2096 2097 out: 2098 /* 2099 * The ring buffer resize can happen with the ring buffer 2100 * enabled, so that the update disturbs the tracing as little 2101 * as possible. But if the buffer is disabled, we do not need 2102 * to worry about that, and we can take the time to verify 2103 * that the buffer is not corrupt. 2104 */ 2105 if (atomic_read(&buffer->record_disabled)) { 2106 atomic_inc(&buffer->record_disabled); 2107 /* 2108 * Even though the buffer was disabled, we must make sure 2109 * that it is truly disabled before calling rb_check_pages. 2110 * There could have been a race between checking 2111 * record_disable and incrementing it. 2112 */ 2113 synchronize_rcu(); 2114 for_each_buffer_cpu(buffer, cpu) { 2115 cpu_buffer = buffer->buffers[cpu]; 2116 rb_check_pages(cpu_buffer); 2117 } 2118 atomic_dec(&buffer->record_disabled); 2119 } 2120 2121 mutex_unlock(&buffer->mutex); 2122 return size; 2123 2124 out_err: 2125 for_each_buffer_cpu(buffer, cpu) { 2126 struct buffer_page *bpage, *tmp; 2127 2128 cpu_buffer = buffer->buffers[cpu]; 2129 cpu_buffer->nr_pages_to_update = 0; 2130 2131 if (list_empty(&cpu_buffer->new_pages)) 2132 continue; 2133 2134 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2135 list) { 2136 list_del_init(&bpage->list); 2137 free_buffer_page(bpage); 2138 } 2139 } 2140 out_err_unlock: 2141 mutex_unlock(&buffer->mutex); 2142 return err; 2143 } 2144 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2145 2146 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2147 { 2148 mutex_lock(&buffer->mutex); 2149 if (val) 2150 buffer->flags |= RB_FL_OVERWRITE; 2151 else 2152 buffer->flags &= ~RB_FL_OVERWRITE; 2153 mutex_unlock(&buffer->mutex); 2154 } 2155 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2156 2157 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2158 { 2159 return bpage->page->data + index; 2160 } 2161 2162 static __always_inline struct ring_buffer_event * 2163 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2164 { 2165 return __rb_page_index(cpu_buffer->reader_page, 2166 cpu_buffer->reader_page->read); 2167 } 2168 2169 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2170 { 2171 return local_read(&bpage->page->commit); 2172 } 2173 2174 static struct ring_buffer_event * 2175 rb_iter_head_event(struct ring_buffer_iter *iter) 2176 { 2177 struct ring_buffer_event *event; 2178 struct buffer_page *iter_head_page = iter->head_page; 2179 unsigned long commit; 2180 unsigned length; 2181 2182 if (iter->head != iter->next_event) 2183 return iter->event; 2184 2185 /* 2186 * When the writer goes across pages, it issues a cmpxchg which 2187 * is a mb(), which will synchronize with the rmb here. 2188 * (see rb_tail_page_update() and __rb_reserve_next()) 2189 */ 2190 commit = rb_page_commit(iter_head_page); 2191 smp_rmb(); 2192 event = __rb_page_index(iter_head_page, iter->head); 2193 length = rb_event_length(event); 2194 2195 /* 2196 * READ_ONCE() doesn't work on functions and we don't want the 2197 * compiler doing any crazy optimizations with length. 2198 */ 2199 barrier(); 2200 2201 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2202 /* Writer corrupted the read? */ 2203 goto reset; 2204 2205 memcpy(iter->event, event, length); 2206 /* 2207 * If the page stamp is still the same after this rmb() then the 2208 * event was safely copied without the writer entering the page. 2209 */ 2210 smp_rmb(); 2211 2212 /* Make sure the page didn't change since we read this */ 2213 if (iter->page_stamp != iter_head_page->page->time_stamp || 2214 commit > rb_page_commit(iter_head_page)) 2215 goto reset; 2216 2217 iter->next_event = iter->head + length; 2218 return iter->event; 2219 reset: 2220 /* Reset to the beginning */ 2221 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2222 iter->head = 0; 2223 iter->next_event = 0; 2224 iter->missed_events = 1; 2225 return NULL; 2226 } 2227 2228 /* Size is determined by what has been committed */ 2229 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2230 { 2231 return rb_page_commit(bpage); 2232 } 2233 2234 static __always_inline unsigned 2235 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2236 { 2237 return rb_page_commit(cpu_buffer->commit_page); 2238 } 2239 2240 static __always_inline unsigned 2241 rb_event_index(struct ring_buffer_event *event) 2242 { 2243 unsigned long addr = (unsigned long)event; 2244 2245 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2246 } 2247 2248 static void rb_inc_iter(struct ring_buffer_iter *iter) 2249 { 2250 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2251 2252 /* 2253 * The iterator could be on the reader page (it starts there). 2254 * But the head could have moved, since the reader was 2255 * found. Check for this case and assign the iterator 2256 * to the head page instead of next. 2257 */ 2258 if (iter->head_page == cpu_buffer->reader_page) 2259 iter->head_page = rb_set_head_page(cpu_buffer); 2260 else 2261 rb_inc_page(cpu_buffer, &iter->head_page); 2262 2263 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2264 iter->head = 0; 2265 iter->next_event = 0; 2266 } 2267 2268 /* 2269 * rb_handle_head_page - writer hit the head page 2270 * 2271 * Returns: +1 to retry page 2272 * 0 to continue 2273 * -1 on error 2274 */ 2275 static int 2276 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2277 struct buffer_page *tail_page, 2278 struct buffer_page *next_page) 2279 { 2280 struct buffer_page *new_head; 2281 int entries; 2282 int type; 2283 int ret; 2284 2285 entries = rb_page_entries(next_page); 2286 2287 /* 2288 * The hard part is here. We need to move the head 2289 * forward, and protect against both readers on 2290 * other CPUs and writers coming in via interrupts. 2291 */ 2292 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2293 RB_PAGE_HEAD); 2294 2295 /* 2296 * type can be one of four: 2297 * NORMAL - an interrupt already moved it for us 2298 * HEAD - we are the first to get here. 2299 * UPDATE - we are the interrupt interrupting 2300 * a current move. 2301 * MOVED - a reader on another CPU moved the next 2302 * pointer to its reader page. Give up 2303 * and try again. 2304 */ 2305 2306 switch (type) { 2307 case RB_PAGE_HEAD: 2308 /* 2309 * We changed the head to UPDATE, thus 2310 * it is our responsibility to update 2311 * the counters. 2312 */ 2313 local_add(entries, &cpu_buffer->overrun); 2314 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2315 2316 /* 2317 * The entries will be zeroed out when we move the 2318 * tail page. 2319 */ 2320 2321 /* still more to do */ 2322 break; 2323 2324 case RB_PAGE_UPDATE: 2325 /* 2326 * This is an interrupt that interrupt the 2327 * previous update. Still more to do. 2328 */ 2329 break; 2330 case RB_PAGE_NORMAL: 2331 /* 2332 * An interrupt came in before the update 2333 * and processed this for us. 2334 * Nothing left to do. 2335 */ 2336 return 1; 2337 case RB_PAGE_MOVED: 2338 /* 2339 * The reader is on another CPU and just did 2340 * a swap with our next_page. 2341 * Try again. 2342 */ 2343 return 1; 2344 default: 2345 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2346 return -1; 2347 } 2348 2349 /* 2350 * Now that we are here, the old head pointer is 2351 * set to UPDATE. This will keep the reader from 2352 * swapping the head page with the reader page. 2353 * The reader (on another CPU) will spin till 2354 * we are finished. 2355 * 2356 * We just need to protect against interrupts 2357 * doing the job. We will set the next pointer 2358 * to HEAD. After that, we set the old pointer 2359 * to NORMAL, but only if it was HEAD before. 2360 * otherwise we are an interrupt, and only 2361 * want the outer most commit to reset it. 2362 */ 2363 new_head = next_page; 2364 rb_inc_page(cpu_buffer, &new_head); 2365 2366 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2367 RB_PAGE_NORMAL); 2368 2369 /* 2370 * Valid returns are: 2371 * HEAD - an interrupt came in and already set it. 2372 * NORMAL - One of two things: 2373 * 1) We really set it. 2374 * 2) A bunch of interrupts came in and moved 2375 * the page forward again. 2376 */ 2377 switch (ret) { 2378 case RB_PAGE_HEAD: 2379 case RB_PAGE_NORMAL: 2380 /* OK */ 2381 break; 2382 default: 2383 RB_WARN_ON(cpu_buffer, 1); 2384 return -1; 2385 } 2386 2387 /* 2388 * It is possible that an interrupt came in, 2389 * set the head up, then more interrupts came in 2390 * and moved it again. When we get back here, 2391 * the page would have been set to NORMAL but we 2392 * just set it back to HEAD. 2393 * 2394 * How do you detect this? Well, if that happened 2395 * the tail page would have moved. 2396 */ 2397 if (ret == RB_PAGE_NORMAL) { 2398 struct buffer_page *buffer_tail_page; 2399 2400 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2401 /* 2402 * If the tail had moved passed next, then we need 2403 * to reset the pointer. 2404 */ 2405 if (buffer_tail_page != tail_page && 2406 buffer_tail_page != next_page) 2407 rb_head_page_set_normal(cpu_buffer, new_head, 2408 next_page, 2409 RB_PAGE_HEAD); 2410 } 2411 2412 /* 2413 * If this was the outer most commit (the one that 2414 * changed the original pointer from HEAD to UPDATE), 2415 * then it is up to us to reset it to NORMAL. 2416 */ 2417 if (type == RB_PAGE_HEAD) { 2418 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2419 tail_page, 2420 RB_PAGE_UPDATE); 2421 if (RB_WARN_ON(cpu_buffer, 2422 ret != RB_PAGE_UPDATE)) 2423 return -1; 2424 } 2425 2426 return 0; 2427 } 2428 2429 static inline void 2430 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2431 unsigned long tail, struct rb_event_info *info) 2432 { 2433 struct buffer_page *tail_page = info->tail_page; 2434 struct ring_buffer_event *event; 2435 unsigned long length = info->length; 2436 2437 /* 2438 * Only the event that crossed the page boundary 2439 * must fill the old tail_page with padding. 2440 */ 2441 if (tail >= BUF_PAGE_SIZE) { 2442 /* 2443 * If the page was filled, then we still need 2444 * to update the real_end. Reset it to zero 2445 * and the reader will ignore it. 2446 */ 2447 if (tail == BUF_PAGE_SIZE) 2448 tail_page->real_end = 0; 2449 2450 local_sub(length, &tail_page->write); 2451 return; 2452 } 2453 2454 event = __rb_page_index(tail_page, tail); 2455 2456 /* account for padding bytes */ 2457 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2458 2459 /* 2460 * Save the original length to the meta data. 2461 * This will be used by the reader to add lost event 2462 * counter. 2463 */ 2464 tail_page->real_end = tail; 2465 2466 /* 2467 * If this event is bigger than the minimum size, then 2468 * we need to be careful that we don't subtract the 2469 * write counter enough to allow another writer to slip 2470 * in on this page. 2471 * We put in a discarded commit instead, to make sure 2472 * that this space is not used again. 2473 * 2474 * If we are less than the minimum size, we don't need to 2475 * worry about it. 2476 */ 2477 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2478 /* No room for any events */ 2479 2480 /* Mark the rest of the page with padding */ 2481 rb_event_set_padding(event); 2482 2483 /* Set the write back to the previous setting */ 2484 local_sub(length, &tail_page->write); 2485 return; 2486 } 2487 2488 /* Put in a discarded event */ 2489 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2490 event->type_len = RINGBUF_TYPE_PADDING; 2491 /* time delta must be non zero */ 2492 event->time_delta = 1; 2493 2494 /* Set write to end of buffer */ 2495 length = (tail + length) - BUF_PAGE_SIZE; 2496 local_sub(length, &tail_page->write); 2497 } 2498 2499 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2500 2501 /* 2502 * This is the slow path, force gcc not to inline it. 2503 */ 2504 static noinline struct ring_buffer_event * 2505 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2506 unsigned long tail, struct rb_event_info *info) 2507 { 2508 struct buffer_page *tail_page = info->tail_page; 2509 struct buffer_page *commit_page = cpu_buffer->commit_page; 2510 struct trace_buffer *buffer = cpu_buffer->buffer; 2511 struct buffer_page *next_page; 2512 int ret; 2513 2514 next_page = tail_page; 2515 2516 rb_inc_page(cpu_buffer, &next_page); 2517 2518 /* 2519 * If for some reason, we had an interrupt storm that made 2520 * it all the way around the buffer, bail, and warn 2521 * about it. 2522 */ 2523 if (unlikely(next_page == commit_page)) { 2524 local_inc(&cpu_buffer->commit_overrun); 2525 goto out_reset; 2526 } 2527 2528 /* 2529 * This is where the fun begins! 2530 * 2531 * We are fighting against races between a reader that 2532 * could be on another CPU trying to swap its reader 2533 * page with the buffer head. 2534 * 2535 * We are also fighting against interrupts coming in and 2536 * moving the head or tail on us as well. 2537 * 2538 * If the next page is the head page then we have filled 2539 * the buffer, unless the commit page is still on the 2540 * reader page. 2541 */ 2542 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2543 2544 /* 2545 * If the commit is not on the reader page, then 2546 * move the header page. 2547 */ 2548 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2549 /* 2550 * If we are not in overwrite mode, 2551 * this is easy, just stop here. 2552 */ 2553 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2554 local_inc(&cpu_buffer->dropped_events); 2555 goto out_reset; 2556 } 2557 2558 ret = rb_handle_head_page(cpu_buffer, 2559 tail_page, 2560 next_page); 2561 if (ret < 0) 2562 goto out_reset; 2563 if (ret) 2564 goto out_again; 2565 } else { 2566 /* 2567 * We need to be careful here too. The 2568 * commit page could still be on the reader 2569 * page. We could have a small buffer, and 2570 * have filled up the buffer with events 2571 * from interrupts and such, and wrapped. 2572 * 2573 * Note, if the tail page is also the on the 2574 * reader_page, we let it move out. 2575 */ 2576 if (unlikely((cpu_buffer->commit_page != 2577 cpu_buffer->tail_page) && 2578 (cpu_buffer->commit_page == 2579 cpu_buffer->reader_page))) { 2580 local_inc(&cpu_buffer->commit_overrun); 2581 goto out_reset; 2582 } 2583 } 2584 } 2585 2586 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2587 2588 out_again: 2589 2590 rb_reset_tail(cpu_buffer, tail, info); 2591 2592 /* Commit what we have for now. */ 2593 rb_end_commit(cpu_buffer); 2594 /* rb_end_commit() decs committing */ 2595 local_inc(&cpu_buffer->committing); 2596 2597 /* fail and let the caller try again */ 2598 return ERR_PTR(-EAGAIN); 2599 2600 out_reset: 2601 /* reset write */ 2602 rb_reset_tail(cpu_buffer, tail, info); 2603 2604 return NULL; 2605 } 2606 2607 /* Slow path */ 2608 static struct ring_buffer_event * 2609 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2610 { 2611 if (abs) 2612 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2613 else 2614 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2615 2616 /* Not the first event on the page, or not delta? */ 2617 if (abs || rb_event_index(event)) { 2618 event->time_delta = delta & TS_MASK; 2619 event->array[0] = delta >> TS_SHIFT; 2620 } else { 2621 /* nope, just zero it */ 2622 event->time_delta = 0; 2623 event->array[0] = 0; 2624 } 2625 2626 return skip_time_extend(event); 2627 } 2628 2629 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2630 struct ring_buffer_event *event); 2631 2632 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2633 static inline bool sched_clock_stable(void) 2634 { 2635 return true; 2636 } 2637 #endif 2638 2639 static void 2640 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2641 struct rb_event_info *info) 2642 { 2643 u64 write_stamp; 2644 2645 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2646 (unsigned long long)info->delta, 2647 (unsigned long long)info->ts, 2648 (unsigned long long)info->before, 2649 (unsigned long long)info->after, 2650 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2651 sched_clock_stable() ? "" : 2652 "If you just came from a suspend/resume,\n" 2653 "please switch to the trace global clock:\n" 2654 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2655 "or add trace_clock=global to the kernel command line\n"); 2656 } 2657 2658 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2659 struct ring_buffer_event **event, 2660 struct rb_event_info *info, 2661 u64 *delta, 2662 unsigned int *length) 2663 { 2664 bool abs = info->add_timestamp & 2665 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2666 2667 if (unlikely(info->delta > (1ULL << 59))) { 2668 /* did the clock go backwards */ 2669 if (info->before == info->after && info->before > info->ts) { 2670 /* not interrupted */ 2671 static int once; 2672 2673 /* 2674 * This is possible with a recalibrating of the TSC. 2675 * Do not produce a call stack, but just report it. 2676 */ 2677 if (!once) { 2678 once++; 2679 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2680 info->before, info->ts); 2681 } 2682 } else 2683 rb_check_timestamp(cpu_buffer, info); 2684 if (!abs) 2685 info->delta = 0; 2686 } 2687 *event = rb_add_time_stamp(*event, info->delta, abs); 2688 *length -= RB_LEN_TIME_EXTEND; 2689 *delta = 0; 2690 } 2691 2692 /** 2693 * rb_update_event - update event type and data 2694 * @cpu_buffer: The per cpu buffer of the @event 2695 * @event: the event to update 2696 * @info: The info to update the @event with (contains length and delta) 2697 * 2698 * Update the type and data fields of the @event. The length 2699 * is the actual size that is written to the ring buffer, 2700 * and with this, we can determine what to place into the 2701 * data field. 2702 */ 2703 static void 2704 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2705 struct ring_buffer_event *event, 2706 struct rb_event_info *info) 2707 { 2708 unsigned length = info->length; 2709 u64 delta = info->delta; 2710 2711 /* 2712 * If we need to add a timestamp, then we 2713 * add it to the start of the reserved space. 2714 */ 2715 if (unlikely(info->add_timestamp)) 2716 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2717 2718 event->time_delta = delta; 2719 length -= RB_EVNT_HDR_SIZE; 2720 if (length > RB_MAX_SMALL_DATA) { 2721 event->type_len = 0; 2722 event->array[0] = length; 2723 } else 2724 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2725 } 2726 2727 static unsigned rb_calculate_event_length(unsigned length) 2728 { 2729 struct ring_buffer_event event; /* Used only for sizeof array */ 2730 2731 /* zero length can cause confusions */ 2732 if (!length) 2733 length++; 2734 2735 if (length > RB_MAX_SMALL_DATA) 2736 length += sizeof(event.array[0]); 2737 2738 length += RB_EVNT_HDR_SIZE; 2739 length = ALIGN(length, RB_ALIGNMENT); 2740 2741 /* 2742 * In case the time delta is larger than the 27 bits for it 2743 * in the header, we need to add a timestamp. If another 2744 * event comes in when trying to discard this one to increase 2745 * the length, then the timestamp will be added in the allocated 2746 * space of this event. If length is bigger than the size needed 2747 * for the TIME_EXTEND, then padding has to be used. The events 2748 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2749 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2750 * As length is a multiple of 4, we only need to worry if it 2751 * is 12 (RB_LEN_TIME_EXTEND + 4). 2752 */ 2753 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2754 length += RB_ALIGNMENT; 2755 2756 return length; 2757 } 2758 2759 static __always_inline bool 2760 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2761 struct ring_buffer_event *event) 2762 { 2763 unsigned long addr = (unsigned long)event; 2764 unsigned long index; 2765 2766 index = rb_event_index(event); 2767 addr &= PAGE_MASK; 2768 2769 return cpu_buffer->commit_page->page == (void *)addr && 2770 rb_commit_index(cpu_buffer) == index; 2771 } 2772 2773 static u64 rb_time_delta(struct ring_buffer_event *event) 2774 { 2775 switch (event->type_len) { 2776 case RINGBUF_TYPE_PADDING: 2777 return 0; 2778 2779 case RINGBUF_TYPE_TIME_EXTEND: 2780 return ring_buffer_event_time_stamp(event); 2781 2782 case RINGBUF_TYPE_TIME_STAMP: 2783 return 0; 2784 2785 case RINGBUF_TYPE_DATA: 2786 return event->time_delta; 2787 default: 2788 return 0; 2789 } 2790 } 2791 2792 static inline int 2793 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2794 struct ring_buffer_event *event) 2795 { 2796 unsigned long new_index, old_index; 2797 struct buffer_page *bpage; 2798 unsigned long index; 2799 unsigned long addr; 2800 u64 write_stamp; 2801 u64 delta; 2802 2803 new_index = rb_event_index(event); 2804 old_index = new_index + rb_event_ts_length(event); 2805 addr = (unsigned long)event; 2806 addr &= PAGE_MASK; 2807 2808 bpage = READ_ONCE(cpu_buffer->tail_page); 2809 2810 delta = rb_time_delta(event); 2811 2812 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 2813 return 0; 2814 2815 /* Make sure the write stamp is read before testing the location */ 2816 barrier(); 2817 2818 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2819 unsigned long write_mask = 2820 local_read(&bpage->write) & ~RB_WRITE_MASK; 2821 unsigned long event_length = rb_event_length(event); 2822 2823 /* Something came in, can't discard */ 2824 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 2825 write_stamp, write_stamp - delta)) 2826 return 0; 2827 2828 /* 2829 * If an event were to come in now, it would see that the 2830 * write_stamp and the before_stamp are different, and assume 2831 * that this event just added itself before updating 2832 * the write stamp. The interrupting event will fix the 2833 * write stamp for us, and use the before stamp as its delta. 2834 */ 2835 2836 /* 2837 * This is on the tail page. It is possible that 2838 * a write could come in and move the tail page 2839 * and write to the next page. That is fine 2840 * because we just shorten what is on this page. 2841 */ 2842 old_index += write_mask; 2843 new_index += write_mask; 2844 index = local_cmpxchg(&bpage->write, old_index, new_index); 2845 if (index == old_index) { 2846 /* update counters */ 2847 local_sub(event_length, &cpu_buffer->entries_bytes); 2848 return 1; 2849 } 2850 } 2851 2852 /* could not discard */ 2853 return 0; 2854 } 2855 2856 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2857 { 2858 local_inc(&cpu_buffer->committing); 2859 local_inc(&cpu_buffer->commits); 2860 } 2861 2862 static __always_inline void 2863 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2864 { 2865 unsigned long max_count; 2866 2867 /* 2868 * We only race with interrupts and NMIs on this CPU. 2869 * If we own the commit event, then we can commit 2870 * all others that interrupted us, since the interruptions 2871 * are in stack format (they finish before they come 2872 * back to us). This allows us to do a simple loop to 2873 * assign the commit to the tail. 2874 */ 2875 again: 2876 max_count = cpu_buffer->nr_pages * 100; 2877 2878 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2879 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2880 return; 2881 if (RB_WARN_ON(cpu_buffer, 2882 rb_is_reader_page(cpu_buffer->tail_page))) 2883 return; 2884 local_set(&cpu_buffer->commit_page->page->commit, 2885 rb_page_write(cpu_buffer->commit_page)); 2886 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2887 /* add barrier to keep gcc from optimizing too much */ 2888 barrier(); 2889 } 2890 while (rb_commit_index(cpu_buffer) != 2891 rb_page_write(cpu_buffer->commit_page)) { 2892 2893 local_set(&cpu_buffer->commit_page->page->commit, 2894 rb_page_write(cpu_buffer->commit_page)); 2895 RB_WARN_ON(cpu_buffer, 2896 local_read(&cpu_buffer->commit_page->page->commit) & 2897 ~RB_WRITE_MASK); 2898 barrier(); 2899 } 2900 2901 /* again, keep gcc from optimizing */ 2902 barrier(); 2903 2904 /* 2905 * If an interrupt came in just after the first while loop 2906 * and pushed the tail page forward, we will be left with 2907 * a dangling commit that will never go forward. 2908 */ 2909 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2910 goto again; 2911 } 2912 2913 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2914 { 2915 unsigned long commits; 2916 2917 if (RB_WARN_ON(cpu_buffer, 2918 !local_read(&cpu_buffer->committing))) 2919 return; 2920 2921 again: 2922 commits = local_read(&cpu_buffer->commits); 2923 /* synchronize with interrupts */ 2924 barrier(); 2925 if (local_read(&cpu_buffer->committing) == 1) 2926 rb_set_commit_to_write(cpu_buffer); 2927 2928 local_dec(&cpu_buffer->committing); 2929 2930 /* synchronize with interrupts */ 2931 barrier(); 2932 2933 /* 2934 * Need to account for interrupts coming in between the 2935 * updating of the commit page and the clearing of the 2936 * committing counter. 2937 */ 2938 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2939 !local_read(&cpu_buffer->committing)) { 2940 local_inc(&cpu_buffer->committing); 2941 goto again; 2942 } 2943 } 2944 2945 static inline void rb_event_discard(struct ring_buffer_event *event) 2946 { 2947 if (extended_time(event)) 2948 event = skip_time_extend(event); 2949 2950 /* array[0] holds the actual length for the discarded event */ 2951 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2952 event->type_len = RINGBUF_TYPE_PADDING; 2953 /* time delta must be non zero */ 2954 if (!event->time_delta) 2955 event->time_delta = 1; 2956 } 2957 2958 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2959 struct ring_buffer_event *event) 2960 { 2961 local_inc(&cpu_buffer->entries); 2962 rb_end_commit(cpu_buffer); 2963 } 2964 2965 static __always_inline void 2966 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2967 { 2968 size_t nr_pages; 2969 size_t dirty; 2970 size_t full; 2971 2972 if (buffer->irq_work.waiters_pending) { 2973 buffer->irq_work.waiters_pending = false; 2974 /* irq_work_queue() supplies it's own memory barriers */ 2975 irq_work_queue(&buffer->irq_work.work); 2976 } 2977 2978 if (cpu_buffer->irq_work.waiters_pending) { 2979 cpu_buffer->irq_work.waiters_pending = false; 2980 /* irq_work_queue() supplies it's own memory barriers */ 2981 irq_work_queue(&cpu_buffer->irq_work.work); 2982 } 2983 2984 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2985 return; 2986 2987 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2988 return; 2989 2990 if (!cpu_buffer->irq_work.full_waiters_pending) 2991 return; 2992 2993 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2994 2995 full = cpu_buffer->shortest_full; 2996 nr_pages = cpu_buffer->nr_pages; 2997 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2998 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2999 return; 3000 3001 cpu_buffer->irq_work.wakeup_full = true; 3002 cpu_buffer->irq_work.full_waiters_pending = false; 3003 /* irq_work_queue() supplies it's own memory barriers */ 3004 irq_work_queue(&cpu_buffer->irq_work.work); 3005 } 3006 3007 /* 3008 * The lock and unlock are done within a preempt disable section. 3009 * The current_context per_cpu variable can only be modified 3010 * by the current task between lock and unlock. But it can 3011 * be modified more than once via an interrupt. To pass this 3012 * information from the lock to the unlock without having to 3013 * access the 'in_interrupt()' functions again (which do show 3014 * a bit of overhead in something as critical as function tracing, 3015 * we use a bitmask trick. 3016 * 3017 * bit 0 = NMI context 3018 * bit 1 = IRQ context 3019 * bit 2 = SoftIRQ context 3020 * bit 3 = normal context. 3021 * 3022 * This works because this is the order of contexts that can 3023 * preempt other contexts. A SoftIRQ never preempts an IRQ 3024 * context. 3025 * 3026 * When the context is determined, the corresponding bit is 3027 * checked and set (if it was set, then a recursion of that context 3028 * happened). 3029 * 3030 * On unlock, we need to clear this bit. To do so, just subtract 3031 * 1 from the current_context and AND it to itself. 3032 * 3033 * (binary) 3034 * 101 - 1 = 100 3035 * 101 & 100 = 100 (clearing bit zero) 3036 * 3037 * 1010 - 1 = 1001 3038 * 1010 & 1001 = 1000 (clearing bit 1) 3039 * 3040 * The least significant bit can be cleared this way, and it 3041 * just so happens that it is the same bit corresponding to 3042 * the current context. 3043 */ 3044 3045 static __always_inline int 3046 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3047 { 3048 unsigned int val = cpu_buffer->current_context; 3049 unsigned long pc = preempt_count(); 3050 int bit; 3051 3052 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 3053 bit = RB_CTX_NORMAL; 3054 else 3055 bit = pc & NMI_MASK ? RB_CTX_NMI : 3056 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 3057 3058 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 3059 return 1; 3060 3061 val |= (1 << (bit + cpu_buffer->nest)); 3062 cpu_buffer->current_context = val; 3063 3064 return 0; 3065 } 3066 3067 static __always_inline void 3068 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3069 { 3070 cpu_buffer->current_context &= 3071 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3072 } 3073 3074 /* The recursive locking above uses 4 bits */ 3075 #define NESTED_BITS 4 3076 3077 /** 3078 * ring_buffer_nest_start - Allow to trace while nested 3079 * @buffer: The ring buffer to modify 3080 * 3081 * The ring buffer has a safety mechanism to prevent recursion. 3082 * But there may be a case where a trace needs to be done while 3083 * tracing something else. In this case, calling this function 3084 * will allow this function to nest within a currently active 3085 * ring_buffer_lock_reserve(). 3086 * 3087 * Call this function before calling another ring_buffer_lock_reserve() and 3088 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3089 */ 3090 void ring_buffer_nest_start(struct trace_buffer *buffer) 3091 { 3092 struct ring_buffer_per_cpu *cpu_buffer; 3093 int cpu; 3094 3095 /* Enabled by ring_buffer_nest_end() */ 3096 preempt_disable_notrace(); 3097 cpu = raw_smp_processor_id(); 3098 cpu_buffer = buffer->buffers[cpu]; 3099 /* This is the shift value for the above recursive locking */ 3100 cpu_buffer->nest += NESTED_BITS; 3101 } 3102 3103 /** 3104 * ring_buffer_nest_end - Allow to trace while nested 3105 * @buffer: The ring buffer to modify 3106 * 3107 * Must be called after ring_buffer_nest_start() and after the 3108 * ring_buffer_unlock_commit(). 3109 */ 3110 void ring_buffer_nest_end(struct trace_buffer *buffer) 3111 { 3112 struct ring_buffer_per_cpu *cpu_buffer; 3113 int cpu; 3114 3115 /* disabled by ring_buffer_nest_start() */ 3116 cpu = raw_smp_processor_id(); 3117 cpu_buffer = buffer->buffers[cpu]; 3118 /* This is the shift value for the above recursive locking */ 3119 cpu_buffer->nest -= NESTED_BITS; 3120 preempt_enable_notrace(); 3121 } 3122 3123 /** 3124 * ring_buffer_unlock_commit - commit a reserved 3125 * @buffer: The buffer to commit to 3126 * @event: The event pointer to commit. 3127 * 3128 * This commits the data to the ring buffer, and releases any locks held. 3129 * 3130 * Must be paired with ring_buffer_lock_reserve. 3131 */ 3132 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 3133 struct ring_buffer_event *event) 3134 { 3135 struct ring_buffer_per_cpu *cpu_buffer; 3136 int cpu = raw_smp_processor_id(); 3137 3138 cpu_buffer = buffer->buffers[cpu]; 3139 3140 rb_commit(cpu_buffer, event); 3141 3142 rb_wakeups(buffer, cpu_buffer); 3143 3144 trace_recursive_unlock(cpu_buffer); 3145 3146 preempt_enable_notrace(); 3147 3148 return 0; 3149 } 3150 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3151 3152 static struct ring_buffer_event * 3153 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3154 struct rb_event_info *info) 3155 { 3156 struct ring_buffer_event *event; 3157 struct buffer_page *tail_page; 3158 unsigned long tail, write, w; 3159 bool a_ok; 3160 bool b_ok; 3161 3162 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3163 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3164 3165 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3166 barrier(); 3167 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3168 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3169 barrier(); 3170 info->ts = rb_time_stamp(cpu_buffer->buffer); 3171 3172 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3173 info->delta = info->ts; 3174 } else { 3175 /* 3176 * If interrupting an event time update, we may need an 3177 * absolute timestamp. 3178 * Don't bother if this is the start of a new page (w == 0). 3179 */ 3180 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3181 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3182 info->length += RB_LEN_TIME_EXTEND; 3183 } else { 3184 info->delta = info->ts - info->after; 3185 if (unlikely(test_time_stamp(info->delta))) { 3186 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3187 info->length += RB_LEN_TIME_EXTEND; 3188 } 3189 } 3190 } 3191 3192 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3193 3194 /*C*/ write = local_add_return(info->length, &tail_page->write); 3195 3196 /* set write to only the index of the write */ 3197 write &= RB_WRITE_MASK; 3198 3199 tail = write - info->length; 3200 3201 /* See if we shot pass the end of this buffer page */ 3202 if (unlikely(write > BUF_PAGE_SIZE)) { 3203 if (tail != w) { 3204 /* before and after may now different, fix it up*/ 3205 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3206 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3207 if (a_ok && b_ok && info->before != info->after) 3208 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3209 info->before, info->after); 3210 } 3211 return rb_move_tail(cpu_buffer, tail, info); 3212 } 3213 3214 if (likely(tail == w)) { 3215 u64 save_before; 3216 bool s_ok; 3217 3218 /* Nothing interrupted us between A and C */ 3219 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3220 barrier(); 3221 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3222 RB_WARN_ON(cpu_buffer, !s_ok); 3223 if (likely(!(info->add_timestamp & 3224 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3225 /* This did not interrupt any time update */ 3226 info->delta = info->ts - info->after; 3227 else 3228 /* Just use full timestamp for inerrupting event */ 3229 info->delta = info->ts; 3230 barrier(); 3231 if (unlikely(info->ts != save_before)) { 3232 /* SLOW PATH - Interrupted between C and E */ 3233 3234 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3235 RB_WARN_ON(cpu_buffer, !a_ok); 3236 3237 /* Write stamp must only go forward */ 3238 if (save_before > info->after) { 3239 /* 3240 * We do not care about the result, only that 3241 * it gets updated atomically. 3242 */ 3243 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3244 info->after, save_before); 3245 } 3246 } 3247 } else { 3248 u64 ts; 3249 /* SLOW PATH - Interrupted between A and C */ 3250 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3251 /* Was interrupted before here, write_stamp must be valid */ 3252 RB_WARN_ON(cpu_buffer, !a_ok); 3253 ts = rb_time_stamp(cpu_buffer->buffer); 3254 barrier(); 3255 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3256 info->after < ts) { 3257 /* Nothing came after this event between C and E */ 3258 info->delta = ts - info->after; 3259 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3260 info->after, info->ts); 3261 info->ts = ts; 3262 } else { 3263 /* 3264 * Interrupted beween C and E: 3265 * Lost the previous events time stamp. Just set the 3266 * delta to zero, and this will be the same time as 3267 * the event this event interrupted. And the events that 3268 * came after this will still be correct (as they would 3269 * have built their delta on the previous event. 3270 */ 3271 info->delta = 0; 3272 } 3273 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3274 } 3275 3276 /* 3277 * If this is the first commit on the page, then it has the same 3278 * timestamp as the page itself. 3279 */ 3280 if (unlikely(!tail && !(info->add_timestamp & 3281 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3282 info->delta = 0; 3283 3284 /* We reserved something on the buffer */ 3285 3286 event = __rb_page_index(tail_page, tail); 3287 rb_update_event(cpu_buffer, event, info); 3288 3289 local_inc(&tail_page->entries); 3290 3291 /* 3292 * If this is the first commit on the page, then update 3293 * its timestamp. 3294 */ 3295 if (unlikely(!tail)) 3296 tail_page->page->time_stamp = info->ts; 3297 3298 /* account for these added bytes */ 3299 local_add(info->length, &cpu_buffer->entries_bytes); 3300 3301 return event; 3302 } 3303 3304 static __always_inline struct ring_buffer_event * 3305 rb_reserve_next_event(struct trace_buffer *buffer, 3306 struct ring_buffer_per_cpu *cpu_buffer, 3307 unsigned long length) 3308 { 3309 struct ring_buffer_event *event; 3310 struct rb_event_info info; 3311 int nr_loops = 0; 3312 int add_ts_default; 3313 3314 rb_start_commit(cpu_buffer); 3315 /* The commit page can not change after this */ 3316 3317 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3318 /* 3319 * Due to the ability to swap a cpu buffer from a buffer 3320 * it is possible it was swapped before we committed. 3321 * (committing stops a swap). We check for it here and 3322 * if it happened, we have to fail the write. 3323 */ 3324 barrier(); 3325 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3326 local_dec(&cpu_buffer->committing); 3327 local_dec(&cpu_buffer->commits); 3328 return NULL; 3329 } 3330 #endif 3331 3332 info.length = rb_calculate_event_length(length); 3333 3334 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3335 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3336 info.length += RB_LEN_TIME_EXTEND; 3337 } else { 3338 add_ts_default = RB_ADD_STAMP_NONE; 3339 } 3340 3341 again: 3342 info.add_timestamp = add_ts_default; 3343 info.delta = 0; 3344 3345 /* 3346 * We allow for interrupts to reenter here and do a trace. 3347 * If one does, it will cause this original code to loop 3348 * back here. Even with heavy interrupts happening, this 3349 * should only happen a few times in a row. If this happens 3350 * 1000 times in a row, there must be either an interrupt 3351 * storm or we have something buggy. 3352 * Bail! 3353 */ 3354 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3355 goto out_fail; 3356 3357 event = __rb_reserve_next(cpu_buffer, &info); 3358 3359 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3360 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3361 info.length -= RB_LEN_TIME_EXTEND; 3362 goto again; 3363 } 3364 3365 if (likely(event)) 3366 return event; 3367 out_fail: 3368 rb_end_commit(cpu_buffer); 3369 return NULL; 3370 } 3371 3372 /** 3373 * ring_buffer_lock_reserve - reserve a part of the buffer 3374 * @buffer: the ring buffer to reserve from 3375 * @length: the length of the data to reserve (excluding event header) 3376 * 3377 * Returns a reserved event on the ring buffer to copy directly to. 3378 * The user of this interface will need to get the body to write into 3379 * and can use the ring_buffer_event_data() interface. 3380 * 3381 * The length is the length of the data needed, not the event length 3382 * which also includes the event header. 3383 * 3384 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3385 * If NULL is returned, then nothing has been allocated or locked. 3386 */ 3387 struct ring_buffer_event * 3388 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3389 { 3390 struct ring_buffer_per_cpu *cpu_buffer; 3391 struct ring_buffer_event *event; 3392 int cpu; 3393 3394 /* If we are tracing schedule, we don't want to recurse */ 3395 preempt_disable_notrace(); 3396 3397 if (unlikely(atomic_read(&buffer->record_disabled))) 3398 goto out; 3399 3400 cpu = raw_smp_processor_id(); 3401 3402 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3403 goto out; 3404 3405 cpu_buffer = buffer->buffers[cpu]; 3406 3407 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3408 goto out; 3409 3410 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3411 goto out; 3412 3413 if (unlikely(trace_recursive_lock(cpu_buffer))) 3414 goto out; 3415 3416 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3417 if (!event) 3418 goto out_unlock; 3419 3420 return event; 3421 3422 out_unlock: 3423 trace_recursive_unlock(cpu_buffer); 3424 out: 3425 preempt_enable_notrace(); 3426 return NULL; 3427 } 3428 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3429 3430 /* 3431 * Decrement the entries to the page that an event is on. 3432 * The event does not even need to exist, only the pointer 3433 * to the page it is on. This may only be called before the commit 3434 * takes place. 3435 */ 3436 static inline void 3437 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3438 struct ring_buffer_event *event) 3439 { 3440 unsigned long addr = (unsigned long)event; 3441 struct buffer_page *bpage = cpu_buffer->commit_page; 3442 struct buffer_page *start; 3443 3444 addr &= PAGE_MASK; 3445 3446 /* Do the likely case first */ 3447 if (likely(bpage->page == (void *)addr)) { 3448 local_dec(&bpage->entries); 3449 return; 3450 } 3451 3452 /* 3453 * Because the commit page may be on the reader page we 3454 * start with the next page and check the end loop there. 3455 */ 3456 rb_inc_page(cpu_buffer, &bpage); 3457 start = bpage; 3458 do { 3459 if (bpage->page == (void *)addr) { 3460 local_dec(&bpage->entries); 3461 return; 3462 } 3463 rb_inc_page(cpu_buffer, &bpage); 3464 } while (bpage != start); 3465 3466 /* commit not part of this buffer?? */ 3467 RB_WARN_ON(cpu_buffer, 1); 3468 } 3469 3470 /** 3471 * ring_buffer_commit_discard - discard an event that has not been committed 3472 * @buffer: the ring buffer 3473 * @event: non committed event to discard 3474 * 3475 * Sometimes an event that is in the ring buffer needs to be ignored. 3476 * This function lets the user discard an event in the ring buffer 3477 * and then that event will not be read later. 3478 * 3479 * This function only works if it is called before the item has been 3480 * committed. It will try to free the event from the ring buffer 3481 * if another event has not been added behind it. 3482 * 3483 * If another event has been added behind it, it will set the event 3484 * up as discarded, and perform the commit. 3485 * 3486 * If this function is called, do not call ring_buffer_unlock_commit on 3487 * the event. 3488 */ 3489 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3490 struct ring_buffer_event *event) 3491 { 3492 struct ring_buffer_per_cpu *cpu_buffer; 3493 int cpu; 3494 3495 /* The event is discarded regardless */ 3496 rb_event_discard(event); 3497 3498 cpu = smp_processor_id(); 3499 cpu_buffer = buffer->buffers[cpu]; 3500 3501 /* 3502 * This must only be called if the event has not been 3503 * committed yet. Thus we can assume that preemption 3504 * is still disabled. 3505 */ 3506 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3507 3508 rb_decrement_entry(cpu_buffer, event); 3509 if (rb_try_to_discard(cpu_buffer, event)) 3510 goto out; 3511 3512 out: 3513 rb_end_commit(cpu_buffer); 3514 3515 trace_recursive_unlock(cpu_buffer); 3516 3517 preempt_enable_notrace(); 3518 3519 } 3520 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3521 3522 /** 3523 * ring_buffer_write - write data to the buffer without reserving 3524 * @buffer: The ring buffer to write to. 3525 * @length: The length of the data being written (excluding the event header) 3526 * @data: The data to write to the buffer. 3527 * 3528 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3529 * one function. If you already have the data to write to the buffer, it 3530 * may be easier to simply call this function. 3531 * 3532 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3533 * and not the length of the event which would hold the header. 3534 */ 3535 int ring_buffer_write(struct trace_buffer *buffer, 3536 unsigned long length, 3537 void *data) 3538 { 3539 struct ring_buffer_per_cpu *cpu_buffer; 3540 struct ring_buffer_event *event; 3541 void *body; 3542 int ret = -EBUSY; 3543 int cpu; 3544 3545 preempt_disable_notrace(); 3546 3547 if (atomic_read(&buffer->record_disabled)) 3548 goto out; 3549 3550 cpu = raw_smp_processor_id(); 3551 3552 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3553 goto out; 3554 3555 cpu_buffer = buffer->buffers[cpu]; 3556 3557 if (atomic_read(&cpu_buffer->record_disabled)) 3558 goto out; 3559 3560 if (length > BUF_MAX_DATA_SIZE) 3561 goto out; 3562 3563 if (unlikely(trace_recursive_lock(cpu_buffer))) 3564 goto out; 3565 3566 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3567 if (!event) 3568 goto out_unlock; 3569 3570 body = rb_event_data(event); 3571 3572 memcpy(body, data, length); 3573 3574 rb_commit(cpu_buffer, event); 3575 3576 rb_wakeups(buffer, cpu_buffer); 3577 3578 ret = 0; 3579 3580 out_unlock: 3581 trace_recursive_unlock(cpu_buffer); 3582 3583 out: 3584 preempt_enable_notrace(); 3585 3586 return ret; 3587 } 3588 EXPORT_SYMBOL_GPL(ring_buffer_write); 3589 3590 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3591 { 3592 struct buffer_page *reader = cpu_buffer->reader_page; 3593 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3594 struct buffer_page *commit = cpu_buffer->commit_page; 3595 3596 /* In case of error, head will be NULL */ 3597 if (unlikely(!head)) 3598 return true; 3599 3600 return reader->read == rb_page_commit(reader) && 3601 (commit == reader || 3602 (commit == head && 3603 head->read == rb_page_commit(commit))); 3604 } 3605 3606 /** 3607 * ring_buffer_record_disable - stop all writes into the buffer 3608 * @buffer: The ring buffer to stop writes to. 3609 * 3610 * This prevents all writes to the buffer. Any attempt to write 3611 * to the buffer after this will fail and return NULL. 3612 * 3613 * The caller should call synchronize_rcu() after this. 3614 */ 3615 void ring_buffer_record_disable(struct trace_buffer *buffer) 3616 { 3617 atomic_inc(&buffer->record_disabled); 3618 } 3619 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3620 3621 /** 3622 * ring_buffer_record_enable - enable writes to the buffer 3623 * @buffer: The ring buffer to enable writes 3624 * 3625 * Note, multiple disables will need the same number of enables 3626 * to truly enable the writing (much like preempt_disable). 3627 */ 3628 void ring_buffer_record_enable(struct trace_buffer *buffer) 3629 { 3630 atomic_dec(&buffer->record_disabled); 3631 } 3632 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3633 3634 /** 3635 * ring_buffer_record_off - stop all writes into the buffer 3636 * @buffer: The ring buffer to stop writes to. 3637 * 3638 * This prevents all writes to the buffer. Any attempt to write 3639 * to the buffer after this will fail and return NULL. 3640 * 3641 * This is different than ring_buffer_record_disable() as 3642 * it works like an on/off switch, where as the disable() version 3643 * must be paired with a enable(). 3644 */ 3645 void ring_buffer_record_off(struct trace_buffer *buffer) 3646 { 3647 unsigned int rd; 3648 unsigned int new_rd; 3649 3650 do { 3651 rd = atomic_read(&buffer->record_disabled); 3652 new_rd = rd | RB_BUFFER_OFF; 3653 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3654 } 3655 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3656 3657 /** 3658 * ring_buffer_record_on - restart writes into the buffer 3659 * @buffer: The ring buffer to start writes to. 3660 * 3661 * This enables all writes to the buffer that was disabled by 3662 * ring_buffer_record_off(). 3663 * 3664 * This is different than ring_buffer_record_enable() as 3665 * it works like an on/off switch, where as the enable() version 3666 * must be paired with a disable(). 3667 */ 3668 void ring_buffer_record_on(struct trace_buffer *buffer) 3669 { 3670 unsigned int rd; 3671 unsigned int new_rd; 3672 3673 do { 3674 rd = atomic_read(&buffer->record_disabled); 3675 new_rd = rd & ~RB_BUFFER_OFF; 3676 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3677 } 3678 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3679 3680 /** 3681 * ring_buffer_record_is_on - return true if the ring buffer can write 3682 * @buffer: The ring buffer to see if write is enabled 3683 * 3684 * Returns true if the ring buffer is in a state that it accepts writes. 3685 */ 3686 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 3687 { 3688 return !atomic_read(&buffer->record_disabled); 3689 } 3690 3691 /** 3692 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3693 * @buffer: The ring buffer to see if write is set enabled 3694 * 3695 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3696 * Note that this does NOT mean it is in a writable state. 3697 * 3698 * It may return true when the ring buffer has been disabled by 3699 * ring_buffer_record_disable(), as that is a temporary disabling of 3700 * the ring buffer. 3701 */ 3702 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 3703 { 3704 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3705 } 3706 3707 /** 3708 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3709 * @buffer: The ring buffer to stop writes to. 3710 * @cpu: The CPU buffer to stop 3711 * 3712 * This prevents all writes to the buffer. Any attempt to write 3713 * to the buffer after this will fail and return NULL. 3714 * 3715 * The caller should call synchronize_rcu() after this. 3716 */ 3717 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 3718 { 3719 struct ring_buffer_per_cpu *cpu_buffer; 3720 3721 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3722 return; 3723 3724 cpu_buffer = buffer->buffers[cpu]; 3725 atomic_inc(&cpu_buffer->record_disabled); 3726 } 3727 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3728 3729 /** 3730 * ring_buffer_record_enable_cpu - enable writes to the buffer 3731 * @buffer: The ring buffer to enable writes 3732 * @cpu: The CPU to enable. 3733 * 3734 * Note, multiple disables will need the same number of enables 3735 * to truly enable the writing (much like preempt_disable). 3736 */ 3737 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 3738 { 3739 struct ring_buffer_per_cpu *cpu_buffer; 3740 3741 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3742 return; 3743 3744 cpu_buffer = buffer->buffers[cpu]; 3745 atomic_dec(&cpu_buffer->record_disabled); 3746 } 3747 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3748 3749 /* 3750 * The total entries in the ring buffer is the running counter 3751 * of entries entered into the ring buffer, minus the sum of 3752 * the entries read from the ring buffer and the number of 3753 * entries that were overwritten. 3754 */ 3755 static inline unsigned long 3756 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3757 { 3758 return local_read(&cpu_buffer->entries) - 3759 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3760 } 3761 3762 /** 3763 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3764 * @buffer: The ring buffer 3765 * @cpu: The per CPU buffer to read from. 3766 */ 3767 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 3768 { 3769 unsigned long flags; 3770 struct ring_buffer_per_cpu *cpu_buffer; 3771 struct buffer_page *bpage; 3772 u64 ret = 0; 3773 3774 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3775 return 0; 3776 3777 cpu_buffer = buffer->buffers[cpu]; 3778 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3779 /* 3780 * if the tail is on reader_page, oldest time stamp is on the reader 3781 * page 3782 */ 3783 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3784 bpage = cpu_buffer->reader_page; 3785 else 3786 bpage = rb_set_head_page(cpu_buffer); 3787 if (bpage) 3788 ret = bpage->page->time_stamp; 3789 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3790 3791 return ret; 3792 } 3793 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3794 3795 /** 3796 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3797 * @buffer: The ring buffer 3798 * @cpu: The per CPU buffer to read from. 3799 */ 3800 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 3801 { 3802 struct ring_buffer_per_cpu *cpu_buffer; 3803 unsigned long ret; 3804 3805 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3806 return 0; 3807 3808 cpu_buffer = buffer->buffers[cpu]; 3809 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3810 3811 return ret; 3812 } 3813 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3814 3815 /** 3816 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3817 * @buffer: The ring buffer 3818 * @cpu: The per CPU buffer to get the entries from. 3819 */ 3820 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 3821 { 3822 struct ring_buffer_per_cpu *cpu_buffer; 3823 3824 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3825 return 0; 3826 3827 cpu_buffer = buffer->buffers[cpu]; 3828 3829 return rb_num_of_entries(cpu_buffer); 3830 } 3831 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3832 3833 /** 3834 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3835 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3836 * @buffer: The ring buffer 3837 * @cpu: The per CPU buffer to get the number of overruns from 3838 */ 3839 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 3840 { 3841 struct ring_buffer_per_cpu *cpu_buffer; 3842 unsigned long ret; 3843 3844 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3845 return 0; 3846 3847 cpu_buffer = buffer->buffers[cpu]; 3848 ret = local_read(&cpu_buffer->overrun); 3849 3850 return ret; 3851 } 3852 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3853 3854 /** 3855 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3856 * commits failing due to the buffer wrapping around while there are uncommitted 3857 * events, such as during an interrupt storm. 3858 * @buffer: The ring buffer 3859 * @cpu: The per CPU buffer to get the number of overruns from 3860 */ 3861 unsigned long 3862 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 3863 { 3864 struct ring_buffer_per_cpu *cpu_buffer; 3865 unsigned long ret; 3866 3867 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3868 return 0; 3869 3870 cpu_buffer = buffer->buffers[cpu]; 3871 ret = local_read(&cpu_buffer->commit_overrun); 3872 3873 return ret; 3874 } 3875 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3876 3877 /** 3878 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3879 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3880 * @buffer: The ring buffer 3881 * @cpu: The per CPU buffer to get the number of overruns from 3882 */ 3883 unsigned long 3884 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 3885 { 3886 struct ring_buffer_per_cpu *cpu_buffer; 3887 unsigned long ret; 3888 3889 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3890 return 0; 3891 3892 cpu_buffer = buffer->buffers[cpu]; 3893 ret = local_read(&cpu_buffer->dropped_events); 3894 3895 return ret; 3896 } 3897 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3898 3899 /** 3900 * ring_buffer_read_events_cpu - get the number of events successfully read 3901 * @buffer: The ring buffer 3902 * @cpu: The per CPU buffer to get the number of events read 3903 */ 3904 unsigned long 3905 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 3906 { 3907 struct ring_buffer_per_cpu *cpu_buffer; 3908 3909 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3910 return 0; 3911 3912 cpu_buffer = buffer->buffers[cpu]; 3913 return cpu_buffer->read; 3914 } 3915 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3916 3917 /** 3918 * ring_buffer_entries - get the number of entries in a buffer 3919 * @buffer: The ring buffer 3920 * 3921 * Returns the total number of entries in the ring buffer 3922 * (all CPU entries) 3923 */ 3924 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 3925 { 3926 struct ring_buffer_per_cpu *cpu_buffer; 3927 unsigned long entries = 0; 3928 int cpu; 3929 3930 /* if you care about this being correct, lock the buffer */ 3931 for_each_buffer_cpu(buffer, cpu) { 3932 cpu_buffer = buffer->buffers[cpu]; 3933 entries += rb_num_of_entries(cpu_buffer); 3934 } 3935 3936 return entries; 3937 } 3938 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3939 3940 /** 3941 * ring_buffer_overruns - get the number of overruns in buffer 3942 * @buffer: The ring buffer 3943 * 3944 * Returns the total number of overruns in the ring buffer 3945 * (all CPU entries) 3946 */ 3947 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 3948 { 3949 struct ring_buffer_per_cpu *cpu_buffer; 3950 unsigned long overruns = 0; 3951 int cpu; 3952 3953 /* if you care about this being correct, lock the buffer */ 3954 for_each_buffer_cpu(buffer, cpu) { 3955 cpu_buffer = buffer->buffers[cpu]; 3956 overruns += local_read(&cpu_buffer->overrun); 3957 } 3958 3959 return overruns; 3960 } 3961 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3962 3963 static void rb_iter_reset(struct ring_buffer_iter *iter) 3964 { 3965 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3966 3967 /* Iterator usage is expected to have record disabled */ 3968 iter->head_page = cpu_buffer->reader_page; 3969 iter->head = cpu_buffer->reader_page->read; 3970 iter->next_event = iter->head; 3971 3972 iter->cache_reader_page = iter->head_page; 3973 iter->cache_read = cpu_buffer->read; 3974 3975 if (iter->head) { 3976 iter->read_stamp = cpu_buffer->read_stamp; 3977 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 3978 } else { 3979 iter->read_stamp = iter->head_page->page->time_stamp; 3980 iter->page_stamp = iter->read_stamp; 3981 } 3982 } 3983 3984 /** 3985 * ring_buffer_iter_reset - reset an iterator 3986 * @iter: The iterator to reset 3987 * 3988 * Resets the iterator, so that it will start from the beginning 3989 * again. 3990 */ 3991 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3992 { 3993 struct ring_buffer_per_cpu *cpu_buffer; 3994 unsigned long flags; 3995 3996 if (!iter) 3997 return; 3998 3999 cpu_buffer = iter->cpu_buffer; 4000 4001 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4002 rb_iter_reset(iter); 4003 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4004 } 4005 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4006 4007 /** 4008 * ring_buffer_iter_empty - check if an iterator has no more to read 4009 * @iter: The iterator to check 4010 */ 4011 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4012 { 4013 struct ring_buffer_per_cpu *cpu_buffer; 4014 struct buffer_page *reader; 4015 struct buffer_page *head_page; 4016 struct buffer_page *commit_page; 4017 struct buffer_page *curr_commit_page; 4018 unsigned commit; 4019 u64 curr_commit_ts; 4020 u64 commit_ts; 4021 4022 cpu_buffer = iter->cpu_buffer; 4023 reader = cpu_buffer->reader_page; 4024 head_page = cpu_buffer->head_page; 4025 commit_page = cpu_buffer->commit_page; 4026 commit_ts = commit_page->page->time_stamp; 4027 4028 /* 4029 * When the writer goes across pages, it issues a cmpxchg which 4030 * is a mb(), which will synchronize with the rmb here. 4031 * (see rb_tail_page_update()) 4032 */ 4033 smp_rmb(); 4034 commit = rb_page_commit(commit_page); 4035 /* We want to make sure that the commit page doesn't change */ 4036 smp_rmb(); 4037 4038 /* Make sure commit page didn't change */ 4039 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4040 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4041 4042 /* If the commit page changed, then there's more data */ 4043 if (curr_commit_page != commit_page || 4044 curr_commit_ts != commit_ts) 4045 return 0; 4046 4047 /* Still racy, as it may return a false positive, but that's OK */ 4048 return ((iter->head_page == commit_page && iter->head >= commit) || 4049 (iter->head_page == reader && commit_page == head_page && 4050 head_page->read == commit && 4051 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4052 } 4053 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4054 4055 static void 4056 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4057 struct ring_buffer_event *event) 4058 { 4059 u64 delta; 4060 4061 switch (event->type_len) { 4062 case RINGBUF_TYPE_PADDING: 4063 return; 4064 4065 case RINGBUF_TYPE_TIME_EXTEND: 4066 delta = ring_buffer_event_time_stamp(event); 4067 cpu_buffer->read_stamp += delta; 4068 return; 4069 4070 case RINGBUF_TYPE_TIME_STAMP: 4071 delta = ring_buffer_event_time_stamp(event); 4072 cpu_buffer->read_stamp = delta; 4073 return; 4074 4075 case RINGBUF_TYPE_DATA: 4076 cpu_buffer->read_stamp += event->time_delta; 4077 return; 4078 4079 default: 4080 RB_WARN_ON(cpu_buffer, 1); 4081 } 4082 return; 4083 } 4084 4085 static void 4086 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4087 struct ring_buffer_event *event) 4088 { 4089 u64 delta; 4090 4091 switch (event->type_len) { 4092 case RINGBUF_TYPE_PADDING: 4093 return; 4094 4095 case RINGBUF_TYPE_TIME_EXTEND: 4096 delta = ring_buffer_event_time_stamp(event); 4097 iter->read_stamp += delta; 4098 return; 4099 4100 case RINGBUF_TYPE_TIME_STAMP: 4101 delta = ring_buffer_event_time_stamp(event); 4102 iter->read_stamp = delta; 4103 return; 4104 4105 case RINGBUF_TYPE_DATA: 4106 iter->read_stamp += event->time_delta; 4107 return; 4108 4109 default: 4110 RB_WARN_ON(iter->cpu_buffer, 1); 4111 } 4112 return; 4113 } 4114 4115 static struct buffer_page * 4116 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4117 { 4118 struct buffer_page *reader = NULL; 4119 unsigned long overwrite; 4120 unsigned long flags; 4121 int nr_loops = 0; 4122 int ret; 4123 4124 local_irq_save(flags); 4125 arch_spin_lock(&cpu_buffer->lock); 4126 4127 again: 4128 /* 4129 * This should normally only loop twice. But because the 4130 * start of the reader inserts an empty page, it causes 4131 * a case where we will loop three times. There should be no 4132 * reason to loop four times (that I know of). 4133 */ 4134 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4135 reader = NULL; 4136 goto out; 4137 } 4138 4139 reader = cpu_buffer->reader_page; 4140 4141 /* If there's more to read, return this page */ 4142 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4143 goto out; 4144 4145 /* Never should we have an index greater than the size */ 4146 if (RB_WARN_ON(cpu_buffer, 4147 cpu_buffer->reader_page->read > rb_page_size(reader))) 4148 goto out; 4149 4150 /* check if we caught up to the tail */ 4151 reader = NULL; 4152 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4153 goto out; 4154 4155 /* Don't bother swapping if the ring buffer is empty */ 4156 if (rb_num_of_entries(cpu_buffer) == 0) 4157 goto out; 4158 4159 /* 4160 * Reset the reader page to size zero. 4161 */ 4162 local_set(&cpu_buffer->reader_page->write, 0); 4163 local_set(&cpu_buffer->reader_page->entries, 0); 4164 local_set(&cpu_buffer->reader_page->page->commit, 0); 4165 cpu_buffer->reader_page->real_end = 0; 4166 4167 spin: 4168 /* 4169 * Splice the empty reader page into the list around the head. 4170 */ 4171 reader = rb_set_head_page(cpu_buffer); 4172 if (!reader) 4173 goto out; 4174 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4175 cpu_buffer->reader_page->list.prev = reader->list.prev; 4176 4177 /* 4178 * cpu_buffer->pages just needs to point to the buffer, it 4179 * has no specific buffer page to point to. Lets move it out 4180 * of our way so we don't accidentally swap it. 4181 */ 4182 cpu_buffer->pages = reader->list.prev; 4183 4184 /* The reader page will be pointing to the new head */ 4185 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 4186 4187 /* 4188 * We want to make sure we read the overruns after we set up our 4189 * pointers to the next object. The writer side does a 4190 * cmpxchg to cross pages which acts as the mb on the writer 4191 * side. Note, the reader will constantly fail the swap 4192 * while the writer is updating the pointers, so this 4193 * guarantees that the overwrite recorded here is the one we 4194 * want to compare with the last_overrun. 4195 */ 4196 smp_mb(); 4197 overwrite = local_read(&(cpu_buffer->overrun)); 4198 4199 /* 4200 * Here's the tricky part. 4201 * 4202 * We need to move the pointer past the header page. 4203 * But we can only do that if a writer is not currently 4204 * moving it. The page before the header page has the 4205 * flag bit '1' set if it is pointing to the page we want. 4206 * but if the writer is in the process of moving it 4207 * than it will be '2' or already moved '0'. 4208 */ 4209 4210 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4211 4212 /* 4213 * If we did not convert it, then we must try again. 4214 */ 4215 if (!ret) 4216 goto spin; 4217 4218 /* 4219 * Yay! We succeeded in replacing the page. 4220 * 4221 * Now make the new head point back to the reader page. 4222 */ 4223 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4224 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 4225 4226 local_inc(&cpu_buffer->pages_read); 4227 4228 /* Finally update the reader page to the new head */ 4229 cpu_buffer->reader_page = reader; 4230 cpu_buffer->reader_page->read = 0; 4231 4232 if (overwrite != cpu_buffer->last_overrun) { 4233 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4234 cpu_buffer->last_overrun = overwrite; 4235 } 4236 4237 goto again; 4238 4239 out: 4240 /* Update the read_stamp on the first event */ 4241 if (reader && reader->read == 0) 4242 cpu_buffer->read_stamp = reader->page->time_stamp; 4243 4244 arch_spin_unlock(&cpu_buffer->lock); 4245 local_irq_restore(flags); 4246 4247 return reader; 4248 } 4249 4250 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4251 { 4252 struct ring_buffer_event *event; 4253 struct buffer_page *reader; 4254 unsigned length; 4255 4256 reader = rb_get_reader_page(cpu_buffer); 4257 4258 /* This function should not be called when buffer is empty */ 4259 if (RB_WARN_ON(cpu_buffer, !reader)) 4260 return; 4261 4262 event = rb_reader_event(cpu_buffer); 4263 4264 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4265 cpu_buffer->read++; 4266 4267 rb_update_read_stamp(cpu_buffer, event); 4268 4269 length = rb_event_length(event); 4270 cpu_buffer->reader_page->read += length; 4271 } 4272 4273 static void rb_advance_iter(struct ring_buffer_iter *iter) 4274 { 4275 struct ring_buffer_per_cpu *cpu_buffer; 4276 4277 cpu_buffer = iter->cpu_buffer; 4278 4279 /* If head == next_event then we need to jump to the next event */ 4280 if (iter->head == iter->next_event) { 4281 /* If the event gets overwritten again, there's nothing to do */ 4282 if (rb_iter_head_event(iter) == NULL) 4283 return; 4284 } 4285 4286 iter->head = iter->next_event; 4287 4288 /* 4289 * Check if we are at the end of the buffer. 4290 */ 4291 if (iter->next_event >= rb_page_size(iter->head_page)) { 4292 /* discarded commits can make the page empty */ 4293 if (iter->head_page == cpu_buffer->commit_page) 4294 return; 4295 rb_inc_iter(iter); 4296 return; 4297 } 4298 4299 rb_update_iter_read_stamp(iter, iter->event); 4300 } 4301 4302 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4303 { 4304 return cpu_buffer->lost_events; 4305 } 4306 4307 static struct ring_buffer_event * 4308 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4309 unsigned long *lost_events) 4310 { 4311 struct ring_buffer_event *event; 4312 struct buffer_page *reader; 4313 int nr_loops = 0; 4314 4315 if (ts) 4316 *ts = 0; 4317 again: 4318 /* 4319 * We repeat when a time extend is encountered. 4320 * Since the time extend is always attached to a data event, 4321 * we should never loop more than once. 4322 * (We never hit the following condition more than twice). 4323 */ 4324 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4325 return NULL; 4326 4327 reader = rb_get_reader_page(cpu_buffer); 4328 if (!reader) 4329 return NULL; 4330 4331 event = rb_reader_event(cpu_buffer); 4332 4333 switch (event->type_len) { 4334 case RINGBUF_TYPE_PADDING: 4335 if (rb_null_event(event)) 4336 RB_WARN_ON(cpu_buffer, 1); 4337 /* 4338 * Because the writer could be discarding every 4339 * event it creates (which would probably be bad) 4340 * if we were to go back to "again" then we may never 4341 * catch up, and will trigger the warn on, or lock 4342 * the box. Return the padding, and we will release 4343 * the current locks, and try again. 4344 */ 4345 return event; 4346 4347 case RINGBUF_TYPE_TIME_EXTEND: 4348 /* Internal data, OK to advance */ 4349 rb_advance_reader(cpu_buffer); 4350 goto again; 4351 4352 case RINGBUF_TYPE_TIME_STAMP: 4353 if (ts) { 4354 *ts = ring_buffer_event_time_stamp(event); 4355 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4356 cpu_buffer->cpu, ts); 4357 } 4358 /* Internal data, OK to advance */ 4359 rb_advance_reader(cpu_buffer); 4360 goto again; 4361 4362 case RINGBUF_TYPE_DATA: 4363 if (ts && !(*ts)) { 4364 *ts = cpu_buffer->read_stamp + event->time_delta; 4365 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4366 cpu_buffer->cpu, ts); 4367 } 4368 if (lost_events) 4369 *lost_events = rb_lost_events(cpu_buffer); 4370 return event; 4371 4372 default: 4373 RB_WARN_ON(cpu_buffer, 1); 4374 } 4375 4376 return NULL; 4377 } 4378 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4379 4380 static struct ring_buffer_event * 4381 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4382 { 4383 struct trace_buffer *buffer; 4384 struct ring_buffer_per_cpu *cpu_buffer; 4385 struct ring_buffer_event *event; 4386 int nr_loops = 0; 4387 4388 if (ts) 4389 *ts = 0; 4390 4391 cpu_buffer = iter->cpu_buffer; 4392 buffer = cpu_buffer->buffer; 4393 4394 /* 4395 * Check if someone performed a consuming read to 4396 * the buffer. A consuming read invalidates the iterator 4397 * and we need to reset the iterator in this case. 4398 */ 4399 if (unlikely(iter->cache_read != cpu_buffer->read || 4400 iter->cache_reader_page != cpu_buffer->reader_page)) 4401 rb_iter_reset(iter); 4402 4403 again: 4404 if (ring_buffer_iter_empty(iter)) 4405 return NULL; 4406 4407 /* 4408 * As the writer can mess with what the iterator is trying 4409 * to read, just give up if we fail to get an event after 4410 * three tries. The iterator is not as reliable when reading 4411 * the ring buffer with an active write as the consumer is. 4412 * Do not warn if the three failures is reached. 4413 */ 4414 if (++nr_loops > 3) 4415 return NULL; 4416 4417 if (rb_per_cpu_empty(cpu_buffer)) 4418 return NULL; 4419 4420 if (iter->head >= rb_page_size(iter->head_page)) { 4421 rb_inc_iter(iter); 4422 goto again; 4423 } 4424 4425 event = rb_iter_head_event(iter); 4426 if (!event) 4427 goto again; 4428 4429 switch (event->type_len) { 4430 case RINGBUF_TYPE_PADDING: 4431 if (rb_null_event(event)) { 4432 rb_inc_iter(iter); 4433 goto again; 4434 } 4435 rb_advance_iter(iter); 4436 return event; 4437 4438 case RINGBUF_TYPE_TIME_EXTEND: 4439 /* Internal data, OK to advance */ 4440 rb_advance_iter(iter); 4441 goto again; 4442 4443 case RINGBUF_TYPE_TIME_STAMP: 4444 if (ts) { 4445 *ts = ring_buffer_event_time_stamp(event); 4446 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4447 cpu_buffer->cpu, ts); 4448 } 4449 /* Internal data, OK to advance */ 4450 rb_advance_iter(iter); 4451 goto again; 4452 4453 case RINGBUF_TYPE_DATA: 4454 if (ts && !(*ts)) { 4455 *ts = iter->read_stamp + event->time_delta; 4456 ring_buffer_normalize_time_stamp(buffer, 4457 cpu_buffer->cpu, ts); 4458 } 4459 return event; 4460 4461 default: 4462 RB_WARN_ON(cpu_buffer, 1); 4463 } 4464 4465 return NULL; 4466 } 4467 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4468 4469 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4470 { 4471 if (likely(!in_nmi())) { 4472 raw_spin_lock(&cpu_buffer->reader_lock); 4473 return true; 4474 } 4475 4476 /* 4477 * If an NMI die dumps out the content of the ring buffer 4478 * trylock must be used to prevent a deadlock if the NMI 4479 * preempted a task that holds the ring buffer locks. If 4480 * we get the lock then all is fine, if not, then continue 4481 * to do the read, but this can corrupt the ring buffer, 4482 * so it must be permanently disabled from future writes. 4483 * Reading from NMI is a oneshot deal. 4484 */ 4485 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4486 return true; 4487 4488 /* Continue without locking, but disable the ring buffer */ 4489 atomic_inc(&cpu_buffer->record_disabled); 4490 return false; 4491 } 4492 4493 static inline void 4494 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4495 { 4496 if (likely(locked)) 4497 raw_spin_unlock(&cpu_buffer->reader_lock); 4498 return; 4499 } 4500 4501 /** 4502 * ring_buffer_peek - peek at the next event to be read 4503 * @buffer: The ring buffer to read 4504 * @cpu: The cpu to peak at 4505 * @ts: The timestamp counter of this event. 4506 * @lost_events: a variable to store if events were lost (may be NULL) 4507 * 4508 * This will return the event that will be read next, but does 4509 * not consume the data. 4510 */ 4511 struct ring_buffer_event * 4512 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4513 unsigned long *lost_events) 4514 { 4515 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4516 struct ring_buffer_event *event; 4517 unsigned long flags; 4518 bool dolock; 4519 4520 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4521 return NULL; 4522 4523 again: 4524 local_irq_save(flags); 4525 dolock = rb_reader_lock(cpu_buffer); 4526 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4527 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4528 rb_advance_reader(cpu_buffer); 4529 rb_reader_unlock(cpu_buffer, dolock); 4530 local_irq_restore(flags); 4531 4532 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4533 goto again; 4534 4535 return event; 4536 } 4537 4538 /** ring_buffer_iter_dropped - report if there are dropped events 4539 * @iter: The ring buffer iterator 4540 * 4541 * Returns true if there was dropped events since the last peek. 4542 */ 4543 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4544 { 4545 bool ret = iter->missed_events != 0; 4546 4547 iter->missed_events = 0; 4548 return ret; 4549 } 4550 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4551 4552 /** 4553 * ring_buffer_iter_peek - peek at the next event to be read 4554 * @iter: The ring buffer iterator 4555 * @ts: The timestamp counter of this event. 4556 * 4557 * This will return the event that will be read next, but does 4558 * not increment the iterator. 4559 */ 4560 struct ring_buffer_event * 4561 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4562 { 4563 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4564 struct ring_buffer_event *event; 4565 unsigned long flags; 4566 4567 again: 4568 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4569 event = rb_iter_peek(iter, ts); 4570 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4571 4572 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4573 goto again; 4574 4575 return event; 4576 } 4577 4578 /** 4579 * ring_buffer_consume - return an event and consume it 4580 * @buffer: The ring buffer to get the next event from 4581 * @cpu: the cpu to read the buffer from 4582 * @ts: a variable to store the timestamp (may be NULL) 4583 * @lost_events: a variable to store if events were lost (may be NULL) 4584 * 4585 * Returns the next event in the ring buffer, and that event is consumed. 4586 * Meaning, that sequential reads will keep returning a different event, 4587 * and eventually empty the ring buffer if the producer is slower. 4588 */ 4589 struct ring_buffer_event * 4590 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4591 unsigned long *lost_events) 4592 { 4593 struct ring_buffer_per_cpu *cpu_buffer; 4594 struct ring_buffer_event *event = NULL; 4595 unsigned long flags; 4596 bool dolock; 4597 4598 again: 4599 /* might be called in atomic */ 4600 preempt_disable(); 4601 4602 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4603 goto out; 4604 4605 cpu_buffer = buffer->buffers[cpu]; 4606 local_irq_save(flags); 4607 dolock = rb_reader_lock(cpu_buffer); 4608 4609 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4610 if (event) { 4611 cpu_buffer->lost_events = 0; 4612 rb_advance_reader(cpu_buffer); 4613 } 4614 4615 rb_reader_unlock(cpu_buffer, dolock); 4616 local_irq_restore(flags); 4617 4618 out: 4619 preempt_enable(); 4620 4621 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4622 goto again; 4623 4624 return event; 4625 } 4626 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4627 4628 /** 4629 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4630 * @buffer: The ring buffer to read from 4631 * @cpu: The cpu buffer to iterate over 4632 * @flags: gfp flags to use for memory allocation 4633 * 4634 * This performs the initial preparations necessary to iterate 4635 * through the buffer. Memory is allocated, buffer recording 4636 * is disabled, and the iterator pointer is returned to the caller. 4637 * 4638 * Disabling buffer recording prevents the reading from being 4639 * corrupted. This is not a consuming read, so a producer is not 4640 * expected. 4641 * 4642 * After a sequence of ring_buffer_read_prepare calls, the user is 4643 * expected to make at least one call to ring_buffer_read_prepare_sync. 4644 * Afterwards, ring_buffer_read_start is invoked to get things going 4645 * for real. 4646 * 4647 * This overall must be paired with ring_buffer_read_finish. 4648 */ 4649 struct ring_buffer_iter * 4650 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 4651 { 4652 struct ring_buffer_per_cpu *cpu_buffer; 4653 struct ring_buffer_iter *iter; 4654 4655 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4656 return NULL; 4657 4658 iter = kzalloc(sizeof(*iter), flags); 4659 if (!iter) 4660 return NULL; 4661 4662 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 4663 if (!iter->event) { 4664 kfree(iter); 4665 return NULL; 4666 } 4667 4668 cpu_buffer = buffer->buffers[cpu]; 4669 4670 iter->cpu_buffer = cpu_buffer; 4671 4672 atomic_inc(&cpu_buffer->resize_disabled); 4673 4674 return iter; 4675 } 4676 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4677 4678 /** 4679 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4680 * 4681 * All previously invoked ring_buffer_read_prepare calls to prepare 4682 * iterators will be synchronized. Afterwards, read_buffer_read_start 4683 * calls on those iterators are allowed. 4684 */ 4685 void 4686 ring_buffer_read_prepare_sync(void) 4687 { 4688 synchronize_rcu(); 4689 } 4690 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4691 4692 /** 4693 * ring_buffer_read_start - start a non consuming read of the buffer 4694 * @iter: The iterator returned by ring_buffer_read_prepare 4695 * 4696 * This finalizes the startup of an iteration through the buffer. 4697 * The iterator comes from a call to ring_buffer_read_prepare and 4698 * an intervening ring_buffer_read_prepare_sync must have been 4699 * performed. 4700 * 4701 * Must be paired with ring_buffer_read_finish. 4702 */ 4703 void 4704 ring_buffer_read_start(struct ring_buffer_iter *iter) 4705 { 4706 struct ring_buffer_per_cpu *cpu_buffer; 4707 unsigned long flags; 4708 4709 if (!iter) 4710 return; 4711 4712 cpu_buffer = iter->cpu_buffer; 4713 4714 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4715 arch_spin_lock(&cpu_buffer->lock); 4716 rb_iter_reset(iter); 4717 arch_spin_unlock(&cpu_buffer->lock); 4718 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4719 } 4720 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4721 4722 /** 4723 * ring_buffer_read_finish - finish reading the iterator of the buffer 4724 * @iter: The iterator retrieved by ring_buffer_start 4725 * 4726 * This re-enables the recording to the buffer, and frees the 4727 * iterator. 4728 */ 4729 void 4730 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4731 { 4732 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4733 unsigned long flags; 4734 4735 /* 4736 * Ring buffer is disabled from recording, here's a good place 4737 * to check the integrity of the ring buffer. 4738 * Must prevent readers from trying to read, as the check 4739 * clears the HEAD page and readers require it. 4740 */ 4741 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4742 rb_check_pages(cpu_buffer); 4743 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4744 4745 atomic_dec(&cpu_buffer->resize_disabled); 4746 kfree(iter->event); 4747 kfree(iter); 4748 } 4749 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4750 4751 /** 4752 * ring_buffer_iter_advance - advance the iterator to the next location 4753 * @iter: The ring buffer iterator 4754 * 4755 * Move the location of the iterator such that the next read will 4756 * be the next location of the iterator. 4757 */ 4758 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 4759 { 4760 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4761 unsigned long flags; 4762 4763 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4764 4765 rb_advance_iter(iter); 4766 4767 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4768 } 4769 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 4770 4771 /** 4772 * ring_buffer_size - return the size of the ring buffer (in bytes) 4773 * @buffer: The ring buffer. 4774 * @cpu: The CPU to get ring buffer size from. 4775 */ 4776 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 4777 { 4778 /* 4779 * Earlier, this method returned 4780 * BUF_PAGE_SIZE * buffer->nr_pages 4781 * Since the nr_pages field is now removed, we have converted this to 4782 * return the per cpu buffer value. 4783 */ 4784 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4785 return 0; 4786 4787 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4788 } 4789 EXPORT_SYMBOL_GPL(ring_buffer_size); 4790 4791 static void 4792 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4793 { 4794 rb_head_page_deactivate(cpu_buffer); 4795 4796 cpu_buffer->head_page 4797 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4798 local_set(&cpu_buffer->head_page->write, 0); 4799 local_set(&cpu_buffer->head_page->entries, 0); 4800 local_set(&cpu_buffer->head_page->page->commit, 0); 4801 4802 cpu_buffer->head_page->read = 0; 4803 4804 cpu_buffer->tail_page = cpu_buffer->head_page; 4805 cpu_buffer->commit_page = cpu_buffer->head_page; 4806 4807 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4808 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4809 local_set(&cpu_buffer->reader_page->write, 0); 4810 local_set(&cpu_buffer->reader_page->entries, 0); 4811 local_set(&cpu_buffer->reader_page->page->commit, 0); 4812 cpu_buffer->reader_page->read = 0; 4813 4814 local_set(&cpu_buffer->entries_bytes, 0); 4815 local_set(&cpu_buffer->overrun, 0); 4816 local_set(&cpu_buffer->commit_overrun, 0); 4817 local_set(&cpu_buffer->dropped_events, 0); 4818 local_set(&cpu_buffer->entries, 0); 4819 local_set(&cpu_buffer->committing, 0); 4820 local_set(&cpu_buffer->commits, 0); 4821 local_set(&cpu_buffer->pages_touched, 0); 4822 local_set(&cpu_buffer->pages_read, 0); 4823 cpu_buffer->last_pages_touch = 0; 4824 cpu_buffer->shortest_full = 0; 4825 cpu_buffer->read = 0; 4826 cpu_buffer->read_bytes = 0; 4827 4828 rb_time_set(&cpu_buffer->write_stamp, 0); 4829 rb_time_set(&cpu_buffer->before_stamp, 0); 4830 4831 cpu_buffer->lost_events = 0; 4832 cpu_buffer->last_overrun = 0; 4833 4834 rb_head_page_activate(cpu_buffer); 4835 } 4836 4837 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 4838 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 4839 { 4840 unsigned long flags; 4841 4842 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4843 4844 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4845 goto out; 4846 4847 arch_spin_lock(&cpu_buffer->lock); 4848 4849 rb_reset_cpu(cpu_buffer); 4850 4851 arch_spin_unlock(&cpu_buffer->lock); 4852 4853 out: 4854 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4855 } 4856 4857 /** 4858 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4859 * @buffer: The ring buffer to reset a per cpu buffer of 4860 * @cpu: The CPU buffer to be reset 4861 */ 4862 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 4863 { 4864 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4865 4866 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4867 return; 4868 4869 atomic_inc(&cpu_buffer->resize_disabled); 4870 atomic_inc(&cpu_buffer->record_disabled); 4871 4872 /* Make sure all commits have finished */ 4873 synchronize_rcu(); 4874 4875 reset_disabled_cpu_buffer(cpu_buffer); 4876 4877 atomic_dec(&cpu_buffer->record_disabled); 4878 atomic_dec(&cpu_buffer->resize_disabled); 4879 } 4880 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4881 4882 /** 4883 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4884 * @buffer: The ring buffer to reset a per cpu buffer of 4885 * @cpu: The CPU buffer to be reset 4886 */ 4887 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 4888 { 4889 struct ring_buffer_per_cpu *cpu_buffer; 4890 int cpu; 4891 4892 for_each_online_buffer_cpu(buffer, cpu) { 4893 cpu_buffer = buffer->buffers[cpu]; 4894 4895 atomic_inc(&cpu_buffer->resize_disabled); 4896 atomic_inc(&cpu_buffer->record_disabled); 4897 } 4898 4899 /* Make sure all commits have finished */ 4900 synchronize_rcu(); 4901 4902 for_each_online_buffer_cpu(buffer, cpu) { 4903 cpu_buffer = buffer->buffers[cpu]; 4904 4905 reset_disabled_cpu_buffer(cpu_buffer); 4906 4907 atomic_dec(&cpu_buffer->record_disabled); 4908 atomic_dec(&cpu_buffer->resize_disabled); 4909 } 4910 } 4911 4912 /** 4913 * ring_buffer_reset - reset a ring buffer 4914 * @buffer: The ring buffer to reset all cpu buffers 4915 */ 4916 void ring_buffer_reset(struct trace_buffer *buffer) 4917 { 4918 struct ring_buffer_per_cpu *cpu_buffer; 4919 int cpu; 4920 4921 for_each_buffer_cpu(buffer, cpu) { 4922 cpu_buffer = buffer->buffers[cpu]; 4923 4924 atomic_inc(&cpu_buffer->resize_disabled); 4925 atomic_inc(&cpu_buffer->record_disabled); 4926 } 4927 4928 /* Make sure all commits have finished */ 4929 synchronize_rcu(); 4930 4931 for_each_buffer_cpu(buffer, cpu) { 4932 cpu_buffer = buffer->buffers[cpu]; 4933 4934 reset_disabled_cpu_buffer(cpu_buffer); 4935 4936 atomic_dec(&cpu_buffer->record_disabled); 4937 atomic_dec(&cpu_buffer->resize_disabled); 4938 } 4939 } 4940 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4941 4942 /** 4943 * rind_buffer_empty - is the ring buffer empty? 4944 * @buffer: The ring buffer to test 4945 */ 4946 bool ring_buffer_empty(struct trace_buffer *buffer) 4947 { 4948 struct ring_buffer_per_cpu *cpu_buffer; 4949 unsigned long flags; 4950 bool dolock; 4951 int cpu; 4952 int ret; 4953 4954 /* yes this is racy, but if you don't like the race, lock the buffer */ 4955 for_each_buffer_cpu(buffer, cpu) { 4956 cpu_buffer = buffer->buffers[cpu]; 4957 local_irq_save(flags); 4958 dolock = rb_reader_lock(cpu_buffer); 4959 ret = rb_per_cpu_empty(cpu_buffer); 4960 rb_reader_unlock(cpu_buffer, dolock); 4961 local_irq_restore(flags); 4962 4963 if (!ret) 4964 return false; 4965 } 4966 4967 return true; 4968 } 4969 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4970 4971 /** 4972 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4973 * @buffer: The ring buffer 4974 * @cpu: The CPU buffer to test 4975 */ 4976 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 4977 { 4978 struct ring_buffer_per_cpu *cpu_buffer; 4979 unsigned long flags; 4980 bool dolock; 4981 int ret; 4982 4983 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4984 return true; 4985 4986 cpu_buffer = buffer->buffers[cpu]; 4987 local_irq_save(flags); 4988 dolock = rb_reader_lock(cpu_buffer); 4989 ret = rb_per_cpu_empty(cpu_buffer); 4990 rb_reader_unlock(cpu_buffer, dolock); 4991 local_irq_restore(flags); 4992 4993 return ret; 4994 } 4995 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4996 4997 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4998 /** 4999 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5000 * @buffer_a: One buffer to swap with 5001 * @buffer_b: The other buffer to swap with 5002 * @cpu: the CPU of the buffers to swap 5003 * 5004 * This function is useful for tracers that want to take a "snapshot" 5005 * of a CPU buffer and has another back up buffer lying around. 5006 * it is expected that the tracer handles the cpu buffer not being 5007 * used at the moment. 5008 */ 5009 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5010 struct trace_buffer *buffer_b, int cpu) 5011 { 5012 struct ring_buffer_per_cpu *cpu_buffer_a; 5013 struct ring_buffer_per_cpu *cpu_buffer_b; 5014 int ret = -EINVAL; 5015 5016 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5017 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5018 goto out; 5019 5020 cpu_buffer_a = buffer_a->buffers[cpu]; 5021 cpu_buffer_b = buffer_b->buffers[cpu]; 5022 5023 /* At least make sure the two buffers are somewhat the same */ 5024 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5025 goto out; 5026 5027 ret = -EAGAIN; 5028 5029 if (atomic_read(&buffer_a->record_disabled)) 5030 goto out; 5031 5032 if (atomic_read(&buffer_b->record_disabled)) 5033 goto out; 5034 5035 if (atomic_read(&cpu_buffer_a->record_disabled)) 5036 goto out; 5037 5038 if (atomic_read(&cpu_buffer_b->record_disabled)) 5039 goto out; 5040 5041 /* 5042 * We can't do a synchronize_rcu here because this 5043 * function can be called in atomic context. 5044 * Normally this will be called from the same CPU as cpu. 5045 * If not it's up to the caller to protect this. 5046 */ 5047 atomic_inc(&cpu_buffer_a->record_disabled); 5048 atomic_inc(&cpu_buffer_b->record_disabled); 5049 5050 ret = -EBUSY; 5051 if (local_read(&cpu_buffer_a->committing)) 5052 goto out_dec; 5053 if (local_read(&cpu_buffer_b->committing)) 5054 goto out_dec; 5055 5056 buffer_a->buffers[cpu] = cpu_buffer_b; 5057 buffer_b->buffers[cpu] = cpu_buffer_a; 5058 5059 cpu_buffer_b->buffer = buffer_a; 5060 cpu_buffer_a->buffer = buffer_b; 5061 5062 ret = 0; 5063 5064 out_dec: 5065 atomic_dec(&cpu_buffer_a->record_disabled); 5066 atomic_dec(&cpu_buffer_b->record_disabled); 5067 out: 5068 return ret; 5069 } 5070 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5071 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5072 5073 /** 5074 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5075 * @buffer: the buffer to allocate for. 5076 * @cpu: the cpu buffer to allocate. 5077 * 5078 * This function is used in conjunction with ring_buffer_read_page. 5079 * When reading a full page from the ring buffer, these functions 5080 * can be used to speed up the process. The calling function should 5081 * allocate a few pages first with this function. Then when it 5082 * needs to get pages from the ring buffer, it passes the result 5083 * of this function into ring_buffer_read_page, which will swap 5084 * the page that was allocated, with the read page of the buffer. 5085 * 5086 * Returns: 5087 * The page allocated, or ERR_PTR 5088 */ 5089 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5090 { 5091 struct ring_buffer_per_cpu *cpu_buffer; 5092 struct buffer_data_page *bpage = NULL; 5093 unsigned long flags; 5094 struct page *page; 5095 5096 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5097 return ERR_PTR(-ENODEV); 5098 5099 cpu_buffer = buffer->buffers[cpu]; 5100 local_irq_save(flags); 5101 arch_spin_lock(&cpu_buffer->lock); 5102 5103 if (cpu_buffer->free_page) { 5104 bpage = cpu_buffer->free_page; 5105 cpu_buffer->free_page = NULL; 5106 } 5107 5108 arch_spin_unlock(&cpu_buffer->lock); 5109 local_irq_restore(flags); 5110 5111 if (bpage) 5112 goto out; 5113 5114 page = alloc_pages_node(cpu_to_node(cpu), 5115 GFP_KERNEL | __GFP_NORETRY, 0); 5116 if (!page) 5117 return ERR_PTR(-ENOMEM); 5118 5119 bpage = page_address(page); 5120 5121 out: 5122 rb_init_page(bpage); 5123 5124 return bpage; 5125 } 5126 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5127 5128 /** 5129 * ring_buffer_free_read_page - free an allocated read page 5130 * @buffer: the buffer the page was allocate for 5131 * @cpu: the cpu buffer the page came from 5132 * @data: the page to free 5133 * 5134 * Free a page allocated from ring_buffer_alloc_read_page. 5135 */ 5136 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5137 { 5138 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5139 struct buffer_data_page *bpage = data; 5140 struct page *page = virt_to_page(bpage); 5141 unsigned long flags; 5142 5143 /* If the page is still in use someplace else, we can't reuse it */ 5144 if (page_ref_count(page) > 1) 5145 goto out; 5146 5147 local_irq_save(flags); 5148 arch_spin_lock(&cpu_buffer->lock); 5149 5150 if (!cpu_buffer->free_page) { 5151 cpu_buffer->free_page = bpage; 5152 bpage = NULL; 5153 } 5154 5155 arch_spin_unlock(&cpu_buffer->lock); 5156 local_irq_restore(flags); 5157 5158 out: 5159 free_page((unsigned long)bpage); 5160 } 5161 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5162 5163 /** 5164 * ring_buffer_read_page - extract a page from the ring buffer 5165 * @buffer: buffer to extract from 5166 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5167 * @len: amount to extract 5168 * @cpu: the cpu of the buffer to extract 5169 * @full: should the extraction only happen when the page is full. 5170 * 5171 * This function will pull out a page from the ring buffer and consume it. 5172 * @data_page must be the address of the variable that was returned 5173 * from ring_buffer_alloc_read_page. This is because the page might be used 5174 * to swap with a page in the ring buffer. 5175 * 5176 * for example: 5177 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5178 * if (IS_ERR(rpage)) 5179 * return PTR_ERR(rpage); 5180 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5181 * if (ret >= 0) 5182 * process_page(rpage, ret); 5183 * 5184 * When @full is set, the function will not return true unless 5185 * the writer is off the reader page. 5186 * 5187 * Note: it is up to the calling functions to handle sleeps and wakeups. 5188 * The ring buffer can be used anywhere in the kernel and can not 5189 * blindly call wake_up. The layer that uses the ring buffer must be 5190 * responsible for that. 5191 * 5192 * Returns: 5193 * >=0 if data has been transferred, returns the offset of consumed data. 5194 * <0 if no data has been transferred. 5195 */ 5196 int ring_buffer_read_page(struct trace_buffer *buffer, 5197 void **data_page, size_t len, int cpu, int full) 5198 { 5199 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5200 struct ring_buffer_event *event; 5201 struct buffer_data_page *bpage; 5202 struct buffer_page *reader; 5203 unsigned long missed_events; 5204 unsigned long flags; 5205 unsigned int commit; 5206 unsigned int read; 5207 u64 save_timestamp; 5208 int ret = -1; 5209 5210 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5211 goto out; 5212 5213 /* 5214 * If len is not big enough to hold the page header, then 5215 * we can not copy anything. 5216 */ 5217 if (len <= BUF_PAGE_HDR_SIZE) 5218 goto out; 5219 5220 len -= BUF_PAGE_HDR_SIZE; 5221 5222 if (!data_page) 5223 goto out; 5224 5225 bpage = *data_page; 5226 if (!bpage) 5227 goto out; 5228 5229 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5230 5231 reader = rb_get_reader_page(cpu_buffer); 5232 if (!reader) 5233 goto out_unlock; 5234 5235 event = rb_reader_event(cpu_buffer); 5236 5237 read = reader->read; 5238 commit = rb_page_commit(reader); 5239 5240 /* Check if any events were dropped */ 5241 missed_events = cpu_buffer->lost_events; 5242 5243 /* 5244 * If this page has been partially read or 5245 * if len is not big enough to read the rest of the page or 5246 * a writer is still on the page, then 5247 * we must copy the data from the page to the buffer. 5248 * Otherwise, we can simply swap the page with the one passed in. 5249 */ 5250 if (read || (len < (commit - read)) || 5251 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5252 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5253 unsigned int rpos = read; 5254 unsigned int pos = 0; 5255 unsigned int size; 5256 5257 if (full) 5258 goto out_unlock; 5259 5260 if (len > (commit - read)) 5261 len = (commit - read); 5262 5263 /* Always keep the time extend and data together */ 5264 size = rb_event_ts_length(event); 5265 5266 if (len < size) 5267 goto out_unlock; 5268 5269 /* save the current timestamp, since the user will need it */ 5270 save_timestamp = cpu_buffer->read_stamp; 5271 5272 /* Need to copy one event at a time */ 5273 do { 5274 /* We need the size of one event, because 5275 * rb_advance_reader only advances by one event, 5276 * whereas rb_event_ts_length may include the size of 5277 * one or two events. 5278 * We have already ensured there's enough space if this 5279 * is a time extend. */ 5280 size = rb_event_length(event); 5281 memcpy(bpage->data + pos, rpage->data + rpos, size); 5282 5283 len -= size; 5284 5285 rb_advance_reader(cpu_buffer); 5286 rpos = reader->read; 5287 pos += size; 5288 5289 if (rpos >= commit) 5290 break; 5291 5292 event = rb_reader_event(cpu_buffer); 5293 /* Always keep the time extend and data together */ 5294 size = rb_event_ts_length(event); 5295 } while (len >= size); 5296 5297 /* update bpage */ 5298 local_set(&bpage->commit, pos); 5299 bpage->time_stamp = save_timestamp; 5300 5301 /* we copied everything to the beginning */ 5302 read = 0; 5303 } else { 5304 /* update the entry counter */ 5305 cpu_buffer->read += rb_page_entries(reader); 5306 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5307 5308 /* swap the pages */ 5309 rb_init_page(bpage); 5310 bpage = reader->page; 5311 reader->page = *data_page; 5312 local_set(&reader->write, 0); 5313 local_set(&reader->entries, 0); 5314 reader->read = 0; 5315 *data_page = bpage; 5316 5317 /* 5318 * Use the real_end for the data size, 5319 * This gives us a chance to store the lost events 5320 * on the page. 5321 */ 5322 if (reader->real_end) 5323 local_set(&bpage->commit, reader->real_end); 5324 } 5325 ret = read; 5326 5327 cpu_buffer->lost_events = 0; 5328 5329 commit = local_read(&bpage->commit); 5330 /* 5331 * Set a flag in the commit field if we lost events 5332 */ 5333 if (missed_events) { 5334 /* If there is room at the end of the page to save the 5335 * missed events, then record it there. 5336 */ 5337 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5338 memcpy(&bpage->data[commit], &missed_events, 5339 sizeof(missed_events)); 5340 local_add(RB_MISSED_STORED, &bpage->commit); 5341 commit += sizeof(missed_events); 5342 } 5343 local_add(RB_MISSED_EVENTS, &bpage->commit); 5344 } 5345 5346 /* 5347 * This page may be off to user land. Zero it out here. 5348 */ 5349 if (commit < BUF_PAGE_SIZE) 5350 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5351 5352 out_unlock: 5353 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5354 5355 out: 5356 return ret; 5357 } 5358 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5359 5360 /* 5361 * We only allocate new buffers, never free them if the CPU goes down. 5362 * If we were to free the buffer, then the user would lose any trace that was in 5363 * the buffer. 5364 */ 5365 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5366 { 5367 struct trace_buffer *buffer; 5368 long nr_pages_same; 5369 int cpu_i; 5370 unsigned long nr_pages; 5371 5372 buffer = container_of(node, struct trace_buffer, node); 5373 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5374 return 0; 5375 5376 nr_pages = 0; 5377 nr_pages_same = 1; 5378 /* check if all cpu sizes are same */ 5379 for_each_buffer_cpu(buffer, cpu_i) { 5380 /* fill in the size from first enabled cpu */ 5381 if (nr_pages == 0) 5382 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5383 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5384 nr_pages_same = 0; 5385 break; 5386 } 5387 } 5388 /* allocate minimum pages, user can later expand it */ 5389 if (!nr_pages_same) 5390 nr_pages = 2; 5391 buffer->buffers[cpu] = 5392 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5393 if (!buffer->buffers[cpu]) { 5394 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5395 cpu); 5396 return -ENOMEM; 5397 } 5398 smp_wmb(); 5399 cpumask_set_cpu(cpu, buffer->cpumask); 5400 return 0; 5401 } 5402 5403 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5404 /* 5405 * This is a basic integrity check of the ring buffer. 5406 * Late in the boot cycle this test will run when configured in. 5407 * It will kick off a thread per CPU that will go into a loop 5408 * writing to the per cpu ring buffer various sizes of data. 5409 * Some of the data will be large items, some small. 5410 * 5411 * Another thread is created that goes into a spin, sending out 5412 * IPIs to the other CPUs to also write into the ring buffer. 5413 * this is to test the nesting ability of the buffer. 5414 * 5415 * Basic stats are recorded and reported. If something in the 5416 * ring buffer should happen that's not expected, a big warning 5417 * is displayed and all ring buffers are disabled. 5418 */ 5419 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5420 5421 struct rb_test_data { 5422 struct trace_buffer *buffer; 5423 unsigned long events; 5424 unsigned long bytes_written; 5425 unsigned long bytes_alloc; 5426 unsigned long bytes_dropped; 5427 unsigned long events_nested; 5428 unsigned long bytes_written_nested; 5429 unsigned long bytes_alloc_nested; 5430 unsigned long bytes_dropped_nested; 5431 int min_size_nested; 5432 int max_size_nested; 5433 int max_size; 5434 int min_size; 5435 int cpu; 5436 int cnt; 5437 }; 5438 5439 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5440 5441 /* 1 meg per cpu */ 5442 #define RB_TEST_BUFFER_SIZE 1048576 5443 5444 static char rb_string[] __initdata = 5445 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5446 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5447 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5448 5449 static bool rb_test_started __initdata; 5450 5451 struct rb_item { 5452 int size; 5453 char str[]; 5454 }; 5455 5456 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5457 { 5458 struct ring_buffer_event *event; 5459 struct rb_item *item; 5460 bool started; 5461 int event_len; 5462 int size; 5463 int len; 5464 int cnt; 5465 5466 /* Have nested writes different that what is written */ 5467 cnt = data->cnt + (nested ? 27 : 0); 5468 5469 /* Multiply cnt by ~e, to make some unique increment */ 5470 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5471 5472 len = size + sizeof(struct rb_item); 5473 5474 started = rb_test_started; 5475 /* read rb_test_started before checking buffer enabled */ 5476 smp_rmb(); 5477 5478 event = ring_buffer_lock_reserve(data->buffer, len); 5479 if (!event) { 5480 /* Ignore dropped events before test starts. */ 5481 if (started) { 5482 if (nested) 5483 data->bytes_dropped += len; 5484 else 5485 data->bytes_dropped_nested += len; 5486 } 5487 return len; 5488 } 5489 5490 event_len = ring_buffer_event_length(event); 5491 5492 if (RB_WARN_ON(data->buffer, event_len < len)) 5493 goto out; 5494 5495 item = ring_buffer_event_data(event); 5496 item->size = size; 5497 memcpy(item->str, rb_string, size); 5498 5499 if (nested) { 5500 data->bytes_alloc_nested += event_len; 5501 data->bytes_written_nested += len; 5502 data->events_nested++; 5503 if (!data->min_size_nested || len < data->min_size_nested) 5504 data->min_size_nested = len; 5505 if (len > data->max_size_nested) 5506 data->max_size_nested = len; 5507 } else { 5508 data->bytes_alloc += event_len; 5509 data->bytes_written += len; 5510 data->events++; 5511 if (!data->min_size || len < data->min_size) 5512 data->max_size = len; 5513 if (len > data->max_size) 5514 data->max_size = len; 5515 } 5516 5517 out: 5518 ring_buffer_unlock_commit(data->buffer, event); 5519 5520 return 0; 5521 } 5522 5523 static __init int rb_test(void *arg) 5524 { 5525 struct rb_test_data *data = arg; 5526 5527 while (!kthread_should_stop()) { 5528 rb_write_something(data, false); 5529 data->cnt++; 5530 5531 set_current_state(TASK_INTERRUPTIBLE); 5532 /* Now sleep between a min of 100-300us and a max of 1ms */ 5533 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5534 } 5535 5536 return 0; 5537 } 5538 5539 static __init void rb_ipi(void *ignore) 5540 { 5541 struct rb_test_data *data; 5542 int cpu = smp_processor_id(); 5543 5544 data = &rb_data[cpu]; 5545 rb_write_something(data, true); 5546 } 5547 5548 static __init int rb_hammer_test(void *arg) 5549 { 5550 while (!kthread_should_stop()) { 5551 5552 /* Send an IPI to all cpus to write data! */ 5553 smp_call_function(rb_ipi, NULL, 1); 5554 /* No sleep, but for non preempt, let others run */ 5555 schedule(); 5556 } 5557 5558 return 0; 5559 } 5560 5561 static __init int test_ringbuffer(void) 5562 { 5563 struct task_struct *rb_hammer; 5564 struct trace_buffer *buffer; 5565 int cpu; 5566 int ret = 0; 5567 5568 if (security_locked_down(LOCKDOWN_TRACEFS)) { 5569 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 5570 return 0; 5571 } 5572 5573 pr_info("Running ring buffer tests...\n"); 5574 5575 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5576 if (WARN_ON(!buffer)) 5577 return 0; 5578 5579 /* Disable buffer so that threads can't write to it yet */ 5580 ring_buffer_record_off(buffer); 5581 5582 for_each_online_cpu(cpu) { 5583 rb_data[cpu].buffer = buffer; 5584 rb_data[cpu].cpu = cpu; 5585 rb_data[cpu].cnt = cpu; 5586 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5587 "rbtester/%d", cpu); 5588 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5589 pr_cont("FAILED\n"); 5590 ret = PTR_ERR(rb_threads[cpu]); 5591 goto out_free; 5592 } 5593 5594 kthread_bind(rb_threads[cpu], cpu); 5595 wake_up_process(rb_threads[cpu]); 5596 } 5597 5598 /* Now create the rb hammer! */ 5599 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5600 if (WARN_ON(IS_ERR(rb_hammer))) { 5601 pr_cont("FAILED\n"); 5602 ret = PTR_ERR(rb_hammer); 5603 goto out_free; 5604 } 5605 5606 ring_buffer_record_on(buffer); 5607 /* 5608 * Show buffer is enabled before setting rb_test_started. 5609 * Yes there's a small race window where events could be 5610 * dropped and the thread wont catch it. But when a ring 5611 * buffer gets enabled, there will always be some kind of 5612 * delay before other CPUs see it. Thus, we don't care about 5613 * those dropped events. We care about events dropped after 5614 * the threads see that the buffer is active. 5615 */ 5616 smp_wmb(); 5617 rb_test_started = true; 5618 5619 set_current_state(TASK_INTERRUPTIBLE); 5620 /* Just run for 10 seconds */; 5621 schedule_timeout(10 * HZ); 5622 5623 kthread_stop(rb_hammer); 5624 5625 out_free: 5626 for_each_online_cpu(cpu) { 5627 if (!rb_threads[cpu]) 5628 break; 5629 kthread_stop(rb_threads[cpu]); 5630 } 5631 if (ret) { 5632 ring_buffer_free(buffer); 5633 return ret; 5634 } 5635 5636 /* Report! */ 5637 pr_info("finished\n"); 5638 for_each_online_cpu(cpu) { 5639 struct ring_buffer_event *event; 5640 struct rb_test_data *data = &rb_data[cpu]; 5641 struct rb_item *item; 5642 unsigned long total_events; 5643 unsigned long total_dropped; 5644 unsigned long total_written; 5645 unsigned long total_alloc; 5646 unsigned long total_read = 0; 5647 unsigned long total_size = 0; 5648 unsigned long total_len = 0; 5649 unsigned long total_lost = 0; 5650 unsigned long lost; 5651 int big_event_size; 5652 int small_event_size; 5653 5654 ret = -1; 5655 5656 total_events = data->events + data->events_nested; 5657 total_written = data->bytes_written + data->bytes_written_nested; 5658 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5659 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5660 5661 big_event_size = data->max_size + data->max_size_nested; 5662 small_event_size = data->min_size + data->min_size_nested; 5663 5664 pr_info("CPU %d:\n", cpu); 5665 pr_info(" events: %ld\n", total_events); 5666 pr_info(" dropped bytes: %ld\n", total_dropped); 5667 pr_info(" alloced bytes: %ld\n", total_alloc); 5668 pr_info(" written bytes: %ld\n", total_written); 5669 pr_info(" biggest event: %d\n", big_event_size); 5670 pr_info(" smallest event: %d\n", small_event_size); 5671 5672 if (RB_WARN_ON(buffer, total_dropped)) 5673 break; 5674 5675 ret = 0; 5676 5677 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5678 total_lost += lost; 5679 item = ring_buffer_event_data(event); 5680 total_len += ring_buffer_event_length(event); 5681 total_size += item->size + sizeof(struct rb_item); 5682 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5683 pr_info("FAILED!\n"); 5684 pr_info("buffer had: %.*s\n", item->size, item->str); 5685 pr_info("expected: %.*s\n", item->size, rb_string); 5686 RB_WARN_ON(buffer, 1); 5687 ret = -1; 5688 break; 5689 } 5690 total_read++; 5691 } 5692 if (ret) 5693 break; 5694 5695 ret = -1; 5696 5697 pr_info(" read events: %ld\n", total_read); 5698 pr_info(" lost events: %ld\n", total_lost); 5699 pr_info(" total events: %ld\n", total_lost + total_read); 5700 pr_info(" recorded len bytes: %ld\n", total_len); 5701 pr_info(" recorded size bytes: %ld\n", total_size); 5702 if (total_lost) 5703 pr_info(" With dropped events, record len and size may not match\n" 5704 " alloced and written from above\n"); 5705 if (!total_lost) { 5706 if (RB_WARN_ON(buffer, total_len != total_alloc || 5707 total_size != total_written)) 5708 break; 5709 } 5710 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5711 break; 5712 5713 ret = 0; 5714 } 5715 if (!ret) 5716 pr_info("Ring buffer PASSED!\n"); 5717 5718 ring_buffer_free(buffer); 5719 return 0; 5720 } 5721 5722 late_initcall(test_ringbuffer); 5723 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5724