1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 /* 33 * The "absolute" timestamp in the buffer is only 59 bits. 34 * If a clock has the 5 MSBs set, it needs to be saved and 35 * reinserted. 36 */ 37 #define TS_MSB (0xf8ULL << 56) 38 #define ABS_TS_MASK (~TS_MSB) 39 40 static void update_pages_handler(struct work_struct *work); 41 42 /* 43 * The ring buffer header is special. We must manually up keep it. 44 */ 45 int ring_buffer_print_entry_header(struct trace_seq *s) 46 { 47 trace_seq_puts(s, "# compressed entry header\n"); 48 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 49 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 50 trace_seq_puts(s, "\tarray : 32 bits\n"); 51 trace_seq_putc(s, '\n'); 52 trace_seq_printf(s, "\tpadding : type == %d\n", 53 RINGBUF_TYPE_PADDING); 54 trace_seq_printf(s, "\ttime_extend : type == %d\n", 55 RINGBUF_TYPE_TIME_EXTEND); 56 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 57 RINGBUF_TYPE_TIME_STAMP); 58 trace_seq_printf(s, "\tdata max type_len == %d\n", 59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 60 61 return !trace_seq_has_overflowed(s); 62 } 63 64 /* 65 * The ring buffer is made up of a list of pages. A separate list of pages is 66 * allocated for each CPU. A writer may only write to a buffer that is 67 * associated with the CPU it is currently executing on. A reader may read 68 * from any per cpu buffer. 69 * 70 * The reader is special. For each per cpu buffer, the reader has its own 71 * reader page. When a reader has read the entire reader page, this reader 72 * page is swapped with another page in the ring buffer. 73 * 74 * Now, as long as the writer is off the reader page, the reader can do what 75 * ever it wants with that page. The writer will never write to that page 76 * again (as long as it is out of the ring buffer). 77 * 78 * Here's some silly ASCII art. 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page | 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * | |-->| |-->| | 96 * +---+ +---+ +---+ 97 * ^ | 98 * | | 99 * +---------------+ 100 * 101 * 102 * +------+ 103 * |reader| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | |-->| |-->| | 107 * | +---+ +---+ +---+ 108 * | | 109 * | | 110 * +------------------------------+ 111 * 112 * 113 * +------+ 114 * |buffer| RING BUFFER 115 * |page |------------------v 116 * +------+ +---+ +---+ +---+ 117 * ^ | | | |-->| | 118 * | New +---+ +---+ +---+ 119 * | Reader------^ | 120 * | page | 121 * +------------------------------+ 122 * 123 * 124 * After we make this swap, the reader can hand this page off to the splice 125 * code and be done with it. It can even allocate a new page if it needs to 126 * and swap that into the ring buffer. 127 * 128 * We will be using cmpxchg soon to make all this lockless. 129 * 130 */ 131 132 /* Used for individual buffers (after the counter) */ 133 #define RB_BUFFER_OFF (1 << 20) 134 135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 136 137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 138 #define RB_ALIGNMENT 4U 139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 141 142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 143 # define RB_FORCE_8BYTE_ALIGNMENT 0 144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 145 #else 146 # define RB_FORCE_8BYTE_ALIGNMENT 1 147 # define RB_ARCH_ALIGNMENT 8U 148 #endif 149 150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 151 152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 154 155 enum { 156 RB_LEN_TIME_EXTEND = 8, 157 RB_LEN_TIME_STAMP = 8, 158 }; 159 160 #define skip_time_extend(event) \ 161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 162 163 #define extended_time(event) \ 164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 165 166 static inline bool rb_null_event(struct ring_buffer_event *event) 167 { 168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 169 } 170 171 static void rb_event_set_padding(struct ring_buffer_event *event) 172 { 173 /* padding has a NULL time_delta */ 174 event->type_len = RINGBUF_TYPE_PADDING; 175 event->time_delta = 0; 176 } 177 178 static unsigned 179 rb_event_data_length(struct ring_buffer_event *event) 180 { 181 unsigned length; 182 183 if (event->type_len) 184 length = event->type_len * RB_ALIGNMENT; 185 else 186 length = event->array[0]; 187 return length + RB_EVNT_HDR_SIZE; 188 } 189 190 /* 191 * Return the length of the given event. Will return 192 * the length of the time extend if the event is a 193 * time extend. 194 */ 195 static inline unsigned 196 rb_event_length(struct ring_buffer_event *event) 197 { 198 switch (event->type_len) { 199 case RINGBUF_TYPE_PADDING: 200 if (rb_null_event(event)) 201 /* undefined */ 202 return -1; 203 return event->array[0] + RB_EVNT_HDR_SIZE; 204 205 case RINGBUF_TYPE_TIME_EXTEND: 206 return RB_LEN_TIME_EXTEND; 207 208 case RINGBUF_TYPE_TIME_STAMP: 209 return RB_LEN_TIME_STAMP; 210 211 case RINGBUF_TYPE_DATA: 212 return rb_event_data_length(event); 213 default: 214 WARN_ON_ONCE(1); 215 } 216 /* not hit */ 217 return 0; 218 } 219 220 /* 221 * Return total length of time extend and data, 222 * or just the event length for all other events. 223 */ 224 static inline unsigned 225 rb_event_ts_length(struct ring_buffer_event *event) 226 { 227 unsigned len = 0; 228 229 if (extended_time(event)) { 230 /* time extends include the data event after it */ 231 len = RB_LEN_TIME_EXTEND; 232 event = skip_time_extend(event); 233 } 234 return len + rb_event_length(event); 235 } 236 237 /** 238 * ring_buffer_event_length - return the length of the event 239 * @event: the event to get the length of 240 * 241 * Returns the size of the data load of a data event. 242 * If the event is something other than a data event, it 243 * returns the size of the event itself. With the exception 244 * of a TIME EXTEND, where it still returns the size of the 245 * data load of the data event after it. 246 */ 247 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 248 { 249 unsigned length; 250 251 if (extended_time(event)) 252 event = skip_time_extend(event); 253 254 length = rb_event_length(event); 255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 256 return length; 257 length -= RB_EVNT_HDR_SIZE; 258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 259 length -= sizeof(event->array[0]); 260 return length; 261 } 262 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 263 264 /* inline for ring buffer fast paths */ 265 static __always_inline void * 266 rb_event_data(struct ring_buffer_event *event) 267 { 268 if (extended_time(event)) 269 event = skip_time_extend(event); 270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 271 /* If length is in len field, then array[0] has the data */ 272 if (event->type_len) 273 return (void *)&event->array[0]; 274 /* Otherwise length is in array[0] and array[1] has the data */ 275 return (void *)&event->array[1]; 276 } 277 278 /** 279 * ring_buffer_event_data - return the data of the event 280 * @event: the event to get the data from 281 */ 282 void *ring_buffer_event_data(struct ring_buffer_event *event) 283 { 284 return rb_event_data(event); 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 287 288 #define for_each_buffer_cpu(buffer, cpu) \ 289 for_each_cpu(cpu, buffer->cpumask) 290 291 #define for_each_online_buffer_cpu(buffer, cpu) \ 292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 293 294 #define TS_SHIFT 27 295 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 296 #define TS_DELTA_TEST (~TS_MASK) 297 298 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 299 { 300 u64 ts; 301 302 ts = event->array[0]; 303 ts <<= TS_SHIFT; 304 ts += event->time_delta; 305 306 return ts; 307 } 308 309 /* Flag when events were overwritten */ 310 #define RB_MISSED_EVENTS (1 << 31) 311 /* Missed count stored at end */ 312 #define RB_MISSED_STORED (1 << 30) 313 314 struct buffer_data_page { 315 u64 time_stamp; /* page time stamp */ 316 local_t commit; /* write committed index */ 317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 318 }; 319 320 /* 321 * Note, the buffer_page list must be first. The buffer pages 322 * are allocated in cache lines, which means that each buffer 323 * page will be at the beginning of a cache line, and thus 324 * the least significant bits will be zero. We use this to 325 * add flags in the list struct pointers, to make the ring buffer 326 * lockless. 327 */ 328 struct buffer_page { 329 struct list_head list; /* list of buffer pages */ 330 local_t write; /* index for next write */ 331 unsigned read; /* index for next read */ 332 local_t entries; /* entries on this page */ 333 unsigned long real_end; /* real end of data */ 334 struct buffer_data_page *page; /* Actual data page */ 335 }; 336 337 /* 338 * The buffer page counters, write and entries, must be reset 339 * atomically when crossing page boundaries. To synchronize this 340 * update, two counters are inserted into the number. One is 341 * the actual counter for the write position or count on the page. 342 * 343 * The other is a counter of updaters. Before an update happens 344 * the update partition of the counter is incremented. This will 345 * allow the updater to update the counter atomically. 346 * 347 * The counter is 20 bits, and the state data is 12. 348 */ 349 #define RB_WRITE_MASK 0xfffff 350 #define RB_WRITE_INTCNT (1 << 20) 351 352 static void rb_init_page(struct buffer_data_page *bpage) 353 { 354 local_set(&bpage->commit, 0); 355 } 356 357 static void free_buffer_page(struct buffer_page *bpage) 358 { 359 free_page((unsigned long)bpage->page); 360 kfree(bpage); 361 } 362 363 /* 364 * We need to fit the time_stamp delta into 27 bits. 365 */ 366 static inline bool test_time_stamp(u64 delta) 367 { 368 return !!(delta & TS_DELTA_TEST); 369 } 370 371 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 372 373 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 374 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 375 376 int ring_buffer_print_page_header(struct trace_seq *s) 377 { 378 struct buffer_data_page field; 379 380 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 381 "offset:0;\tsize:%u;\tsigned:%u;\n", 382 (unsigned int)sizeof(field.time_stamp), 383 (unsigned int)is_signed_type(u64)); 384 385 trace_seq_printf(s, "\tfield: local_t commit;\t" 386 "offset:%u;\tsize:%u;\tsigned:%u;\n", 387 (unsigned int)offsetof(typeof(field), commit), 388 (unsigned int)sizeof(field.commit), 389 (unsigned int)is_signed_type(long)); 390 391 trace_seq_printf(s, "\tfield: int overwrite;\t" 392 "offset:%u;\tsize:%u;\tsigned:%u;\n", 393 (unsigned int)offsetof(typeof(field), commit), 394 1, 395 (unsigned int)is_signed_type(long)); 396 397 trace_seq_printf(s, "\tfield: char data;\t" 398 "offset:%u;\tsize:%u;\tsigned:%u;\n", 399 (unsigned int)offsetof(typeof(field), data), 400 (unsigned int)BUF_PAGE_SIZE, 401 (unsigned int)is_signed_type(char)); 402 403 return !trace_seq_has_overflowed(s); 404 } 405 406 struct rb_irq_work { 407 struct irq_work work; 408 wait_queue_head_t waiters; 409 wait_queue_head_t full_waiters; 410 long wait_index; 411 bool waiters_pending; 412 bool full_waiters_pending; 413 bool wakeup_full; 414 }; 415 416 /* 417 * Structure to hold event state and handle nested events. 418 */ 419 struct rb_event_info { 420 u64 ts; 421 u64 delta; 422 u64 before; 423 u64 after; 424 unsigned long length; 425 struct buffer_page *tail_page; 426 int add_timestamp; 427 }; 428 429 /* 430 * Used for the add_timestamp 431 * NONE 432 * EXTEND - wants a time extend 433 * ABSOLUTE - the buffer requests all events to have absolute time stamps 434 * FORCE - force a full time stamp. 435 */ 436 enum { 437 RB_ADD_STAMP_NONE = 0, 438 RB_ADD_STAMP_EXTEND = BIT(1), 439 RB_ADD_STAMP_ABSOLUTE = BIT(2), 440 RB_ADD_STAMP_FORCE = BIT(3) 441 }; 442 /* 443 * Used for which event context the event is in. 444 * TRANSITION = 0 445 * NMI = 1 446 * IRQ = 2 447 * SOFTIRQ = 3 448 * NORMAL = 4 449 * 450 * See trace_recursive_lock() comment below for more details. 451 */ 452 enum { 453 RB_CTX_TRANSITION, 454 RB_CTX_NMI, 455 RB_CTX_IRQ, 456 RB_CTX_SOFTIRQ, 457 RB_CTX_NORMAL, 458 RB_CTX_MAX 459 }; 460 461 #if BITS_PER_LONG == 32 462 #define RB_TIME_32 463 #endif 464 465 /* To test on 64 bit machines */ 466 //#define RB_TIME_32 467 468 #ifdef RB_TIME_32 469 470 struct rb_time_struct { 471 local_t cnt; 472 local_t top; 473 local_t bottom; 474 local_t msb; 475 }; 476 #else 477 #include <asm/local64.h> 478 struct rb_time_struct { 479 local64_t time; 480 }; 481 #endif 482 typedef struct rb_time_struct rb_time_t; 483 484 #define MAX_NEST 5 485 486 /* 487 * head_page == tail_page && head == tail then buffer is empty. 488 */ 489 struct ring_buffer_per_cpu { 490 int cpu; 491 atomic_t record_disabled; 492 atomic_t resize_disabled; 493 struct trace_buffer *buffer; 494 raw_spinlock_t reader_lock; /* serialize readers */ 495 arch_spinlock_t lock; 496 struct lock_class_key lock_key; 497 struct buffer_data_page *free_page; 498 unsigned long nr_pages; 499 unsigned int current_context; 500 struct list_head *pages; 501 struct buffer_page *head_page; /* read from head */ 502 struct buffer_page *tail_page; /* write to tail */ 503 struct buffer_page *commit_page; /* committed pages */ 504 struct buffer_page *reader_page; 505 unsigned long lost_events; 506 unsigned long last_overrun; 507 unsigned long nest; 508 local_t entries_bytes; 509 local_t entries; 510 local_t overrun; 511 local_t commit_overrun; 512 local_t dropped_events; 513 local_t committing; 514 local_t commits; 515 local_t pages_touched; 516 local_t pages_lost; 517 local_t pages_read; 518 long last_pages_touch; 519 size_t shortest_full; 520 unsigned long read; 521 unsigned long read_bytes; 522 rb_time_t write_stamp; 523 rb_time_t before_stamp; 524 u64 event_stamp[MAX_NEST]; 525 u64 read_stamp; 526 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 527 long nr_pages_to_update; 528 struct list_head new_pages; /* new pages to add */ 529 struct work_struct update_pages_work; 530 struct completion update_done; 531 532 struct rb_irq_work irq_work; 533 }; 534 535 struct trace_buffer { 536 unsigned flags; 537 int cpus; 538 atomic_t record_disabled; 539 atomic_t resizing; 540 cpumask_var_t cpumask; 541 542 struct lock_class_key *reader_lock_key; 543 544 struct mutex mutex; 545 546 struct ring_buffer_per_cpu **buffers; 547 548 struct hlist_node node; 549 u64 (*clock)(void); 550 551 struct rb_irq_work irq_work; 552 bool time_stamp_abs; 553 }; 554 555 struct ring_buffer_iter { 556 struct ring_buffer_per_cpu *cpu_buffer; 557 unsigned long head; 558 unsigned long next_event; 559 struct buffer_page *head_page; 560 struct buffer_page *cache_reader_page; 561 unsigned long cache_read; 562 u64 read_stamp; 563 u64 page_stamp; 564 struct ring_buffer_event *event; 565 int missed_events; 566 }; 567 568 #ifdef RB_TIME_32 569 570 /* 571 * On 32 bit machines, local64_t is very expensive. As the ring 572 * buffer doesn't need all the features of a true 64 bit atomic, 573 * on 32 bit, it uses these functions (64 still uses local64_t). 574 * 575 * For the ring buffer, 64 bit required operations for the time is 576 * the following: 577 * 578 * - Reads may fail if it interrupted a modification of the time stamp. 579 * It will succeed if it did not interrupt another write even if 580 * the read itself is interrupted by a write. 581 * It returns whether it was successful or not. 582 * 583 * - Writes always succeed and will overwrite other writes and writes 584 * that were done by events interrupting the current write. 585 * 586 * - A write followed by a read of the same time stamp will always succeed, 587 * but may not contain the same value. 588 * 589 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 590 * Other than that, it acts like a normal cmpxchg. 591 * 592 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 593 * (bottom being the least significant 30 bits of the 60 bit time stamp). 594 * 595 * The two most significant bits of each half holds a 2 bit counter (0-3). 596 * Each update will increment this counter by one. 597 * When reading the top and bottom, if the two counter bits match then the 598 * top and bottom together make a valid 60 bit number. 599 */ 600 #define RB_TIME_SHIFT 30 601 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 602 #define RB_TIME_MSB_SHIFT 60 603 604 static inline int rb_time_cnt(unsigned long val) 605 { 606 return (val >> RB_TIME_SHIFT) & 3; 607 } 608 609 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 610 { 611 u64 val; 612 613 val = top & RB_TIME_VAL_MASK; 614 val <<= RB_TIME_SHIFT; 615 val |= bottom & RB_TIME_VAL_MASK; 616 617 return val; 618 } 619 620 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 621 { 622 unsigned long top, bottom, msb; 623 unsigned long c; 624 625 /* 626 * If the read is interrupted by a write, then the cnt will 627 * be different. Loop until both top and bottom have been read 628 * without interruption. 629 */ 630 do { 631 c = local_read(&t->cnt); 632 top = local_read(&t->top); 633 bottom = local_read(&t->bottom); 634 msb = local_read(&t->msb); 635 } while (c != local_read(&t->cnt)); 636 637 *cnt = rb_time_cnt(top); 638 639 /* If top and bottom counts don't match, this interrupted a write */ 640 if (*cnt != rb_time_cnt(bottom)) 641 return false; 642 643 /* The shift to msb will lose its cnt bits */ 644 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT); 645 return true; 646 } 647 648 static bool rb_time_read(rb_time_t *t, u64 *ret) 649 { 650 unsigned long cnt; 651 652 return __rb_time_read(t, ret, &cnt); 653 } 654 655 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 656 { 657 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 658 } 659 660 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom, 661 unsigned long *msb) 662 { 663 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 664 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 665 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT); 666 } 667 668 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 669 { 670 val = rb_time_val_cnt(val, cnt); 671 local_set(t, val); 672 } 673 674 static void rb_time_set(rb_time_t *t, u64 val) 675 { 676 unsigned long cnt, top, bottom, msb; 677 678 rb_time_split(val, &top, &bottom, &msb); 679 680 /* Writes always succeed with a valid number even if it gets interrupted. */ 681 do { 682 cnt = local_inc_return(&t->cnt); 683 rb_time_val_set(&t->top, top, cnt); 684 rb_time_val_set(&t->bottom, bottom, cnt); 685 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt); 686 } while (cnt != local_read(&t->cnt)); 687 } 688 689 static inline bool 690 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 691 { 692 unsigned long ret; 693 694 ret = local_cmpxchg(l, expect, set); 695 return ret == expect; 696 } 697 698 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 699 { 700 unsigned long cnt, top, bottom, msb; 701 unsigned long cnt2, top2, bottom2, msb2; 702 u64 val; 703 704 /* The cmpxchg always fails if it interrupted an update */ 705 if (!__rb_time_read(t, &val, &cnt2)) 706 return false; 707 708 if (val != expect) 709 return false; 710 711 cnt = local_read(&t->cnt); 712 if ((cnt & 3) != cnt2) 713 return false; 714 715 cnt2 = cnt + 1; 716 717 rb_time_split(val, &top, &bottom, &msb); 718 top = rb_time_val_cnt(top, cnt); 719 bottom = rb_time_val_cnt(bottom, cnt); 720 721 rb_time_split(set, &top2, &bottom2, &msb2); 722 top2 = rb_time_val_cnt(top2, cnt2); 723 bottom2 = rb_time_val_cnt(bottom2, cnt2); 724 725 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 726 return false; 727 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2)) 728 return false; 729 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 730 return false; 731 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 732 return false; 733 return true; 734 } 735 736 #else /* 64 bits */ 737 738 /* local64_t always succeeds */ 739 740 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 741 { 742 *ret = local64_read(&t->time); 743 return true; 744 } 745 static void rb_time_set(rb_time_t *t, u64 val) 746 { 747 local64_set(&t->time, val); 748 } 749 750 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 751 { 752 u64 val; 753 val = local64_cmpxchg(&t->time, expect, set); 754 return val == expect; 755 } 756 #endif 757 758 /* 759 * Enable this to make sure that the event passed to 760 * ring_buffer_event_time_stamp() is not committed and also 761 * is on the buffer that it passed in. 762 */ 763 //#define RB_VERIFY_EVENT 764 #ifdef RB_VERIFY_EVENT 765 static struct list_head *rb_list_head(struct list_head *list); 766 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 767 void *event) 768 { 769 struct buffer_page *page = cpu_buffer->commit_page; 770 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 771 struct list_head *next; 772 long commit, write; 773 unsigned long addr = (unsigned long)event; 774 bool done = false; 775 int stop = 0; 776 777 /* Make sure the event exists and is not committed yet */ 778 do { 779 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 780 done = true; 781 commit = local_read(&page->page->commit); 782 write = local_read(&page->write); 783 if (addr >= (unsigned long)&page->page->data[commit] && 784 addr < (unsigned long)&page->page->data[write]) 785 return; 786 787 next = rb_list_head(page->list.next); 788 page = list_entry(next, struct buffer_page, list); 789 } while (!done); 790 WARN_ON_ONCE(1); 791 } 792 #else 793 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 794 void *event) 795 { 796 } 797 #endif 798 799 /* 800 * The absolute time stamp drops the 5 MSBs and some clocks may 801 * require them. The rb_fix_abs_ts() will take a previous full 802 * time stamp, and add the 5 MSB of that time stamp on to the 803 * saved absolute time stamp. Then they are compared in case of 804 * the unlikely event that the latest time stamp incremented 805 * the 5 MSB. 806 */ 807 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 808 { 809 if (save_ts & TS_MSB) { 810 abs |= save_ts & TS_MSB; 811 /* Check for overflow */ 812 if (unlikely(abs < save_ts)) 813 abs += 1ULL << 59; 814 } 815 return abs; 816 } 817 818 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 819 820 /** 821 * ring_buffer_event_time_stamp - return the event's current time stamp 822 * @buffer: The buffer that the event is on 823 * @event: the event to get the time stamp of 824 * 825 * Note, this must be called after @event is reserved, and before it is 826 * committed to the ring buffer. And must be called from the same 827 * context where the event was reserved (normal, softirq, irq, etc). 828 * 829 * Returns the time stamp associated with the current event. 830 * If the event has an extended time stamp, then that is used as 831 * the time stamp to return. 832 * In the highly unlikely case that the event was nested more than 833 * the max nesting, then the write_stamp of the buffer is returned, 834 * otherwise current time is returned, but that really neither of 835 * the last two cases should ever happen. 836 */ 837 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 838 struct ring_buffer_event *event) 839 { 840 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 841 unsigned int nest; 842 u64 ts; 843 844 /* If the event includes an absolute time, then just use that */ 845 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 846 ts = rb_event_time_stamp(event); 847 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 848 } 849 850 nest = local_read(&cpu_buffer->committing); 851 verify_event(cpu_buffer, event); 852 if (WARN_ON_ONCE(!nest)) 853 goto fail; 854 855 /* Read the current saved nesting level time stamp */ 856 if (likely(--nest < MAX_NEST)) 857 return cpu_buffer->event_stamp[nest]; 858 859 /* Shouldn't happen, warn if it does */ 860 WARN_ONCE(1, "nest (%d) greater than max", nest); 861 862 fail: 863 /* Can only fail on 32 bit */ 864 if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) 865 /* Screw it, just read the current time */ 866 ts = rb_time_stamp(cpu_buffer->buffer); 867 868 return ts; 869 } 870 871 /** 872 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 873 * @buffer: The ring_buffer to get the number of pages from 874 * @cpu: The cpu of the ring_buffer to get the number of pages from 875 * 876 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 877 */ 878 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 879 { 880 return buffer->buffers[cpu]->nr_pages; 881 } 882 883 /** 884 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 885 * @buffer: The ring_buffer to get the number of pages from 886 * @cpu: The cpu of the ring_buffer to get the number of pages from 887 * 888 * Returns the number of pages that have content in the ring buffer. 889 */ 890 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 891 { 892 size_t read; 893 size_t lost; 894 size_t cnt; 895 896 read = local_read(&buffer->buffers[cpu]->pages_read); 897 lost = local_read(&buffer->buffers[cpu]->pages_lost); 898 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 899 900 if (WARN_ON_ONCE(cnt < lost)) 901 return 0; 902 903 cnt -= lost; 904 905 /* The reader can read an empty page, but not more than that */ 906 if (cnt < read) { 907 WARN_ON_ONCE(read > cnt + 1); 908 return 0; 909 } 910 911 return cnt - read; 912 } 913 914 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 915 { 916 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 917 size_t nr_pages; 918 size_t dirty; 919 920 nr_pages = cpu_buffer->nr_pages; 921 if (!nr_pages || !full) 922 return true; 923 924 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 925 926 return (dirty * 100) > (full * nr_pages); 927 } 928 929 /* 930 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 931 * 932 * Schedules a delayed work to wake up any task that is blocked on the 933 * ring buffer waiters queue. 934 */ 935 static void rb_wake_up_waiters(struct irq_work *work) 936 { 937 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 938 939 wake_up_all(&rbwork->waiters); 940 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 941 rbwork->wakeup_full = false; 942 rbwork->full_waiters_pending = false; 943 wake_up_all(&rbwork->full_waiters); 944 } 945 } 946 947 /** 948 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 949 * @buffer: The ring buffer to wake waiters on 950 * 951 * In the case of a file that represents a ring buffer is closing, 952 * it is prudent to wake up any waiters that are on this. 953 */ 954 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 955 { 956 struct ring_buffer_per_cpu *cpu_buffer; 957 struct rb_irq_work *rbwork; 958 959 if (!buffer) 960 return; 961 962 if (cpu == RING_BUFFER_ALL_CPUS) { 963 964 /* Wake up individual ones too. One level recursion */ 965 for_each_buffer_cpu(buffer, cpu) 966 ring_buffer_wake_waiters(buffer, cpu); 967 968 rbwork = &buffer->irq_work; 969 } else { 970 if (WARN_ON_ONCE(!buffer->buffers)) 971 return; 972 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 973 return; 974 975 cpu_buffer = buffer->buffers[cpu]; 976 /* The CPU buffer may not have been initialized yet */ 977 if (!cpu_buffer) 978 return; 979 rbwork = &cpu_buffer->irq_work; 980 } 981 982 rbwork->wait_index++; 983 /* make sure the waiters see the new index */ 984 smp_wmb(); 985 986 rb_wake_up_waiters(&rbwork->work); 987 } 988 989 /** 990 * ring_buffer_wait - wait for input to the ring buffer 991 * @buffer: buffer to wait on 992 * @cpu: the cpu buffer to wait on 993 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 994 * 995 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 996 * as data is added to any of the @buffer's cpu buffers. Otherwise 997 * it will wait for data to be added to a specific cpu buffer. 998 */ 999 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 1000 { 1001 struct ring_buffer_per_cpu *cpu_buffer; 1002 DEFINE_WAIT(wait); 1003 struct rb_irq_work *work; 1004 long wait_index; 1005 int ret = 0; 1006 1007 /* 1008 * Depending on what the caller is waiting for, either any 1009 * data in any cpu buffer, or a specific buffer, put the 1010 * caller on the appropriate wait queue. 1011 */ 1012 if (cpu == RING_BUFFER_ALL_CPUS) { 1013 work = &buffer->irq_work; 1014 /* Full only makes sense on per cpu reads */ 1015 full = 0; 1016 } else { 1017 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1018 return -ENODEV; 1019 cpu_buffer = buffer->buffers[cpu]; 1020 work = &cpu_buffer->irq_work; 1021 } 1022 1023 wait_index = READ_ONCE(work->wait_index); 1024 1025 while (true) { 1026 if (full) 1027 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 1028 else 1029 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 1030 1031 /* 1032 * The events can happen in critical sections where 1033 * checking a work queue can cause deadlocks. 1034 * After adding a task to the queue, this flag is set 1035 * only to notify events to try to wake up the queue 1036 * using irq_work. 1037 * 1038 * We don't clear it even if the buffer is no longer 1039 * empty. The flag only causes the next event to run 1040 * irq_work to do the work queue wake up. The worse 1041 * that can happen if we race with !trace_empty() is that 1042 * an event will cause an irq_work to try to wake up 1043 * an empty queue. 1044 * 1045 * There's no reason to protect this flag either, as 1046 * the work queue and irq_work logic will do the necessary 1047 * synchronization for the wake ups. The only thing 1048 * that is necessary is that the wake up happens after 1049 * a task has been queued. It's OK for spurious wake ups. 1050 */ 1051 if (full) 1052 work->full_waiters_pending = true; 1053 else 1054 work->waiters_pending = true; 1055 1056 if (signal_pending(current)) { 1057 ret = -EINTR; 1058 break; 1059 } 1060 1061 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 1062 break; 1063 1064 if (cpu != RING_BUFFER_ALL_CPUS && 1065 !ring_buffer_empty_cpu(buffer, cpu)) { 1066 unsigned long flags; 1067 bool pagebusy; 1068 bool done; 1069 1070 if (!full) 1071 break; 1072 1073 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1074 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 1075 done = !pagebusy && full_hit(buffer, cpu, full); 1076 1077 if (!cpu_buffer->shortest_full || 1078 cpu_buffer->shortest_full > full) 1079 cpu_buffer->shortest_full = full; 1080 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1081 if (done) 1082 break; 1083 } 1084 1085 schedule(); 1086 1087 /* Make sure to see the new wait index */ 1088 smp_rmb(); 1089 if (wait_index != work->wait_index) 1090 break; 1091 } 1092 1093 if (full) 1094 finish_wait(&work->full_waiters, &wait); 1095 else 1096 finish_wait(&work->waiters, &wait); 1097 1098 return ret; 1099 } 1100 1101 /** 1102 * ring_buffer_poll_wait - poll on buffer input 1103 * @buffer: buffer to wait on 1104 * @cpu: the cpu buffer to wait on 1105 * @filp: the file descriptor 1106 * @poll_table: The poll descriptor 1107 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1108 * 1109 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1110 * as data is added to any of the @buffer's cpu buffers. Otherwise 1111 * it will wait for data to be added to a specific cpu buffer. 1112 * 1113 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1114 * zero otherwise. 1115 */ 1116 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1117 struct file *filp, poll_table *poll_table, int full) 1118 { 1119 struct ring_buffer_per_cpu *cpu_buffer; 1120 struct rb_irq_work *work; 1121 1122 if (cpu == RING_BUFFER_ALL_CPUS) { 1123 work = &buffer->irq_work; 1124 full = 0; 1125 } else { 1126 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1127 return -EINVAL; 1128 1129 cpu_buffer = buffer->buffers[cpu]; 1130 work = &cpu_buffer->irq_work; 1131 } 1132 1133 if (full) { 1134 poll_wait(filp, &work->full_waiters, poll_table); 1135 work->full_waiters_pending = true; 1136 } else { 1137 poll_wait(filp, &work->waiters, poll_table); 1138 work->waiters_pending = true; 1139 } 1140 1141 /* 1142 * There's a tight race between setting the waiters_pending and 1143 * checking if the ring buffer is empty. Once the waiters_pending bit 1144 * is set, the next event will wake the task up, but we can get stuck 1145 * if there's only a single event in. 1146 * 1147 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1148 * but adding a memory barrier to all events will cause too much of a 1149 * performance hit in the fast path. We only need a memory barrier when 1150 * the buffer goes from empty to having content. But as this race is 1151 * extremely small, and it's not a problem if another event comes in, we 1152 * will fix it later. 1153 */ 1154 smp_mb(); 1155 1156 if (full) 1157 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0; 1158 1159 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1160 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1161 return EPOLLIN | EPOLLRDNORM; 1162 return 0; 1163 } 1164 1165 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1166 #define RB_WARN_ON(b, cond) \ 1167 ({ \ 1168 int _____ret = unlikely(cond); \ 1169 if (_____ret) { \ 1170 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1171 struct ring_buffer_per_cpu *__b = \ 1172 (void *)b; \ 1173 atomic_inc(&__b->buffer->record_disabled); \ 1174 } else \ 1175 atomic_inc(&b->record_disabled); \ 1176 WARN_ON(1); \ 1177 } \ 1178 _____ret; \ 1179 }) 1180 1181 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1182 #define DEBUG_SHIFT 0 1183 1184 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1185 { 1186 u64 ts; 1187 1188 /* Skip retpolines :-( */ 1189 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1190 ts = trace_clock_local(); 1191 else 1192 ts = buffer->clock(); 1193 1194 /* shift to debug/test normalization and TIME_EXTENTS */ 1195 return ts << DEBUG_SHIFT; 1196 } 1197 1198 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1199 { 1200 u64 time; 1201 1202 preempt_disable_notrace(); 1203 time = rb_time_stamp(buffer); 1204 preempt_enable_notrace(); 1205 1206 return time; 1207 } 1208 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1209 1210 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1211 int cpu, u64 *ts) 1212 { 1213 /* Just stupid testing the normalize function and deltas */ 1214 *ts >>= DEBUG_SHIFT; 1215 } 1216 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1217 1218 /* 1219 * Making the ring buffer lockless makes things tricky. 1220 * Although writes only happen on the CPU that they are on, 1221 * and they only need to worry about interrupts. Reads can 1222 * happen on any CPU. 1223 * 1224 * The reader page is always off the ring buffer, but when the 1225 * reader finishes with a page, it needs to swap its page with 1226 * a new one from the buffer. The reader needs to take from 1227 * the head (writes go to the tail). But if a writer is in overwrite 1228 * mode and wraps, it must push the head page forward. 1229 * 1230 * Here lies the problem. 1231 * 1232 * The reader must be careful to replace only the head page, and 1233 * not another one. As described at the top of the file in the 1234 * ASCII art, the reader sets its old page to point to the next 1235 * page after head. It then sets the page after head to point to 1236 * the old reader page. But if the writer moves the head page 1237 * during this operation, the reader could end up with the tail. 1238 * 1239 * We use cmpxchg to help prevent this race. We also do something 1240 * special with the page before head. We set the LSB to 1. 1241 * 1242 * When the writer must push the page forward, it will clear the 1243 * bit that points to the head page, move the head, and then set 1244 * the bit that points to the new head page. 1245 * 1246 * We also don't want an interrupt coming in and moving the head 1247 * page on another writer. Thus we use the second LSB to catch 1248 * that too. Thus: 1249 * 1250 * head->list->prev->next bit 1 bit 0 1251 * ------- ------- 1252 * Normal page 0 0 1253 * Points to head page 0 1 1254 * New head page 1 0 1255 * 1256 * Note we can not trust the prev pointer of the head page, because: 1257 * 1258 * +----+ +-----+ +-----+ 1259 * | |------>| T |---X--->| N | 1260 * | |<------| | | | 1261 * +----+ +-----+ +-----+ 1262 * ^ ^ | 1263 * | +-----+ | | 1264 * +----------| R |----------+ | 1265 * | |<-----------+ 1266 * +-----+ 1267 * 1268 * Key: ---X--> HEAD flag set in pointer 1269 * T Tail page 1270 * R Reader page 1271 * N Next page 1272 * 1273 * (see __rb_reserve_next() to see where this happens) 1274 * 1275 * What the above shows is that the reader just swapped out 1276 * the reader page with a page in the buffer, but before it 1277 * could make the new header point back to the new page added 1278 * it was preempted by a writer. The writer moved forward onto 1279 * the new page added by the reader and is about to move forward 1280 * again. 1281 * 1282 * You can see, it is legitimate for the previous pointer of 1283 * the head (or any page) not to point back to itself. But only 1284 * temporarily. 1285 */ 1286 1287 #define RB_PAGE_NORMAL 0UL 1288 #define RB_PAGE_HEAD 1UL 1289 #define RB_PAGE_UPDATE 2UL 1290 1291 1292 #define RB_FLAG_MASK 3UL 1293 1294 /* PAGE_MOVED is not part of the mask */ 1295 #define RB_PAGE_MOVED 4UL 1296 1297 /* 1298 * rb_list_head - remove any bit 1299 */ 1300 static struct list_head *rb_list_head(struct list_head *list) 1301 { 1302 unsigned long val = (unsigned long)list; 1303 1304 return (struct list_head *)(val & ~RB_FLAG_MASK); 1305 } 1306 1307 /* 1308 * rb_is_head_page - test if the given page is the head page 1309 * 1310 * Because the reader may move the head_page pointer, we can 1311 * not trust what the head page is (it may be pointing to 1312 * the reader page). But if the next page is a header page, 1313 * its flags will be non zero. 1314 */ 1315 static inline int 1316 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1317 { 1318 unsigned long val; 1319 1320 val = (unsigned long)list->next; 1321 1322 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1323 return RB_PAGE_MOVED; 1324 1325 return val & RB_FLAG_MASK; 1326 } 1327 1328 /* 1329 * rb_is_reader_page 1330 * 1331 * The unique thing about the reader page, is that, if the 1332 * writer is ever on it, the previous pointer never points 1333 * back to the reader page. 1334 */ 1335 static bool rb_is_reader_page(struct buffer_page *page) 1336 { 1337 struct list_head *list = page->list.prev; 1338 1339 return rb_list_head(list->next) != &page->list; 1340 } 1341 1342 /* 1343 * rb_set_list_to_head - set a list_head to be pointing to head. 1344 */ 1345 static void rb_set_list_to_head(struct list_head *list) 1346 { 1347 unsigned long *ptr; 1348 1349 ptr = (unsigned long *)&list->next; 1350 *ptr |= RB_PAGE_HEAD; 1351 *ptr &= ~RB_PAGE_UPDATE; 1352 } 1353 1354 /* 1355 * rb_head_page_activate - sets up head page 1356 */ 1357 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1358 { 1359 struct buffer_page *head; 1360 1361 head = cpu_buffer->head_page; 1362 if (!head) 1363 return; 1364 1365 /* 1366 * Set the previous list pointer to have the HEAD flag. 1367 */ 1368 rb_set_list_to_head(head->list.prev); 1369 } 1370 1371 static void rb_list_head_clear(struct list_head *list) 1372 { 1373 unsigned long *ptr = (unsigned long *)&list->next; 1374 1375 *ptr &= ~RB_FLAG_MASK; 1376 } 1377 1378 /* 1379 * rb_head_page_deactivate - clears head page ptr (for free list) 1380 */ 1381 static void 1382 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1383 { 1384 struct list_head *hd; 1385 1386 /* Go through the whole list and clear any pointers found. */ 1387 rb_list_head_clear(cpu_buffer->pages); 1388 1389 list_for_each(hd, cpu_buffer->pages) 1390 rb_list_head_clear(hd); 1391 } 1392 1393 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1394 struct buffer_page *head, 1395 struct buffer_page *prev, 1396 int old_flag, int new_flag) 1397 { 1398 struct list_head *list; 1399 unsigned long val = (unsigned long)&head->list; 1400 unsigned long ret; 1401 1402 list = &prev->list; 1403 1404 val &= ~RB_FLAG_MASK; 1405 1406 ret = cmpxchg((unsigned long *)&list->next, 1407 val | old_flag, val | new_flag); 1408 1409 /* check if the reader took the page */ 1410 if ((ret & ~RB_FLAG_MASK) != val) 1411 return RB_PAGE_MOVED; 1412 1413 return ret & RB_FLAG_MASK; 1414 } 1415 1416 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1417 struct buffer_page *head, 1418 struct buffer_page *prev, 1419 int old_flag) 1420 { 1421 return rb_head_page_set(cpu_buffer, head, prev, 1422 old_flag, RB_PAGE_UPDATE); 1423 } 1424 1425 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1426 struct buffer_page *head, 1427 struct buffer_page *prev, 1428 int old_flag) 1429 { 1430 return rb_head_page_set(cpu_buffer, head, prev, 1431 old_flag, RB_PAGE_HEAD); 1432 } 1433 1434 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1435 struct buffer_page *head, 1436 struct buffer_page *prev, 1437 int old_flag) 1438 { 1439 return rb_head_page_set(cpu_buffer, head, prev, 1440 old_flag, RB_PAGE_NORMAL); 1441 } 1442 1443 static inline void rb_inc_page(struct buffer_page **bpage) 1444 { 1445 struct list_head *p = rb_list_head((*bpage)->list.next); 1446 1447 *bpage = list_entry(p, struct buffer_page, list); 1448 } 1449 1450 static struct buffer_page * 1451 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1452 { 1453 struct buffer_page *head; 1454 struct buffer_page *page; 1455 struct list_head *list; 1456 int i; 1457 1458 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1459 return NULL; 1460 1461 /* sanity check */ 1462 list = cpu_buffer->pages; 1463 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1464 return NULL; 1465 1466 page = head = cpu_buffer->head_page; 1467 /* 1468 * It is possible that the writer moves the header behind 1469 * where we started, and we miss in one loop. 1470 * A second loop should grab the header, but we'll do 1471 * three loops just because I'm paranoid. 1472 */ 1473 for (i = 0; i < 3; i++) { 1474 do { 1475 if (rb_is_head_page(page, page->list.prev)) { 1476 cpu_buffer->head_page = page; 1477 return page; 1478 } 1479 rb_inc_page(&page); 1480 } while (page != head); 1481 } 1482 1483 RB_WARN_ON(cpu_buffer, 1); 1484 1485 return NULL; 1486 } 1487 1488 static bool rb_head_page_replace(struct buffer_page *old, 1489 struct buffer_page *new) 1490 { 1491 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1492 unsigned long val; 1493 unsigned long ret; 1494 1495 val = *ptr & ~RB_FLAG_MASK; 1496 val |= RB_PAGE_HEAD; 1497 1498 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1499 1500 return ret == val; 1501 } 1502 1503 /* 1504 * rb_tail_page_update - move the tail page forward 1505 */ 1506 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1507 struct buffer_page *tail_page, 1508 struct buffer_page *next_page) 1509 { 1510 unsigned long old_entries; 1511 unsigned long old_write; 1512 1513 /* 1514 * The tail page now needs to be moved forward. 1515 * 1516 * We need to reset the tail page, but without messing 1517 * with possible erasing of data brought in by interrupts 1518 * that have moved the tail page and are currently on it. 1519 * 1520 * We add a counter to the write field to denote this. 1521 */ 1522 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1523 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1524 1525 local_inc(&cpu_buffer->pages_touched); 1526 /* 1527 * Just make sure we have seen our old_write and synchronize 1528 * with any interrupts that come in. 1529 */ 1530 barrier(); 1531 1532 /* 1533 * If the tail page is still the same as what we think 1534 * it is, then it is up to us to update the tail 1535 * pointer. 1536 */ 1537 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1538 /* Zero the write counter */ 1539 unsigned long val = old_write & ~RB_WRITE_MASK; 1540 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1541 1542 /* 1543 * This will only succeed if an interrupt did 1544 * not come in and change it. In which case, we 1545 * do not want to modify it. 1546 * 1547 * We add (void) to let the compiler know that we do not care 1548 * about the return value of these functions. We use the 1549 * cmpxchg to only update if an interrupt did not already 1550 * do it for us. If the cmpxchg fails, we don't care. 1551 */ 1552 (void)local_cmpxchg(&next_page->write, old_write, val); 1553 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1554 1555 /* 1556 * No need to worry about races with clearing out the commit. 1557 * it only can increment when a commit takes place. But that 1558 * only happens in the outer most nested commit. 1559 */ 1560 local_set(&next_page->page->commit, 0); 1561 1562 /* Again, either we update tail_page or an interrupt does */ 1563 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1564 } 1565 } 1566 1567 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1568 struct buffer_page *bpage) 1569 { 1570 unsigned long val = (unsigned long)bpage; 1571 1572 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1573 } 1574 1575 /** 1576 * rb_check_pages - integrity check of buffer pages 1577 * @cpu_buffer: CPU buffer with pages to test 1578 * 1579 * As a safety measure we check to make sure the data pages have not 1580 * been corrupted. 1581 */ 1582 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1583 { 1584 struct list_head *head = rb_list_head(cpu_buffer->pages); 1585 struct list_head *tmp; 1586 1587 if (RB_WARN_ON(cpu_buffer, 1588 rb_list_head(rb_list_head(head->next)->prev) != head)) 1589 return; 1590 1591 if (RB_WARN_ON(cpu_buffer, 1592 rb_list_head(rb_list_head(head->prev)->next) != head)) 1593 return; 1594 1595 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1596 if (RB_WARN_ON(cpu_buffer, 1597 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1598 return; 1599 1600 if (RB_WARN_ON(cpu_buffer, 1601 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1602 return; 1603 } 1604 } 1605 1606 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1607 long nr_pages, struct list_head *pages) 1608 { 1609 struct buffer_page *bpage, *tmp; 1610 bool user_thread = current->mm != NULL; 1611 gfp_t mflags; 1612 long i; 1613 1614 /* 1615 * Check if the available memory is there first. 1616 * Note, si_mem_available() only gives us a rough estimate of available 1617 * memory. It may not be accurate. But we don't care, we just want 1618 * to prevent doing any allocation when it is obvious that it is 1619 * not going to succeed. 1620 */ 1621 i = si_mem_available(); 1622 if (i < nr_pages) 1623 return -ENOMEM; 1624 1625 /* 1626 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1627 * gracefully without invoking oom-killer and the system is not 1628 * destabilized. 1629 */ 1630 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1631 1632 /* 1633 * If a user thread allocates too much, and si_mem_available() 1634 * reports there's enough memory, even though there is not. 1635 * Make sure the OOM killer kills this thread. This can happen 1636 * even with RETRY_MAYFAIL because another task may be doing 1637 * an allocation after this task has taken all memory. 1638 * This is the task the OOM killer needs to take out during this 1639 * loop, even if it was triggered by an allocation somewhere else. 1640 */ 1641 if (user_thread) 1642 set_current_oom_origin(); 1643 for (i = 0; i < nr_pages; i++) { 1644 struct page *page; 1645 1646 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1647 mflags, cpu_to_node(cpu_buffer->cpu)); 1648 if (!bpage) 1649 goto free_pages; 1650 1651 rb_check_bpage(cpu_buffer, bpage); 1652 1653 list_add(&bpage->list, pages); 1654 1655 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1656 if (!page) 1657 goto free_pages; 1658 bpage->page = page_address(page); 1659 rb_init_page(bpage->page); 1660 1661 if (user_thread && fatal_signal_pending(current)) 1662 goto free_pages; 1663 } 1664 if (user_thread) 1665 clear_current_oom_origin(); 1666 1667 return 0; 1668 1669 free_pages: 1670 list_for_each_entry_safe(bpage, tmp, pages, list) { 1671 list_del_init(&bpage->list); 1672 free_buffer_page(bpage); 1673 } 1674 if (user_thread) 1675 clear_current_oom_origin(); 1676 1677 return -ENOMEM; 1678 } 1679 1680 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1681 unsigned long nr_pages) 1682 { 1683 LIST_HEAD(pages); 1684 1685 WARN_ON(!nr_pages); 1686 1687 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1688 return -ENOMEM; 1689 1690 /* 1691 * The ring buffer page list is a circular list that does not 1692 * start and end with a list head. All page list items point to 1693 * other pages. 1694 */ 1695 cpu_buffer->pages = pages.next; 1696 list_del(&pages); 1697 1698 cpu_buffer->nr_pages = nr_pages; 1699 1700 rb_check_pages(cpu_buffer); 1701 1702 return 0; 1703 } 1704 1705 static struct ring_buffer_per_cpu * 1706 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1707 { 1708 struct ring_buffer_per_cpu *cpu_buffer; 1709 struct buffer_page *bpage; 1710 struct page *page; 1711 int ret; 1712 1713 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1714 GFP_KERNEL, cpu_to_node(cpu)); 1715 if (!cpu_buffer) 1716 return NULL; 1717 1718 cpu_buffer->cpu = cpu; 1719 cpu_buffer->buffer = buffer; 1720 raw_spin_lock_init(&cpu_buffer->reader_lock); 1721 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1722 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1723 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1724 init_completion(&cpu_buffer->update_done); 1725 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1726 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1727 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1728 1729 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1730 GFP_KERNEL, cpu_to_node(cpu)); 1731 if (!bpage) 1732 goto fail_free_buffer; 1733 1734 rb_check_bpage(cpu_buffer, bpage); 1735 1736 cpu_buffer->reader_page = bpage; 1737 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1738 if (!page) 1739 goto fail_free_reader; 1740 bpage->page = page_address(page); 1741 rb_init_page(bpage->page); 1742 1743 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1744 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1745 1746 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1747 if (ret < 0) 1748 goto fail_free_reader; 1749 1750 cpu_buffer->head_page 1751 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1752 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1753 1754 rb_head_page_activate(cpu_buffer); 1755 1756 return cpu_buffer; 1757 1758 fail_free_reader: 1759 free_buffer_page(cpu_buffer->reader_page); 1760 1761 fail_free_buffer: 1762 kfree(cpu_buffer); 1763 return NULL; 1764 } 1765 1766 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1767 { 1768 struct list_head *head = cpu_buffer->pages; 1769 struct buffer_page *bpage, *tmp; 1770 1771 irq_work_sync(&cpu_buffer->irq_work.work); 1772 1773 free_buffer_page(cpu_buffer->reader_page); 1774 1775 if (head) { 1776 rb_head_page_deactivate(cpu_buffer); 1777 1778 list_for_each_entry_safe(bpage, tmp, head, list) { 1779 list_del_init(&bpage->list); 1780 free_buffer_page(bpage); 1781 } 1782 bpage = list_entry(head, struct buffer_page, list); 1783 free_buffer_page(bpage); 1784 } 1785 1786 kfree(cpu_buffer); 1787 } 1788 1789 /** 1790 * __ring_buffer_alloc - allocate a new ring_buffer 1791 * @size: the size in bytes per cpu that is needed. 1792 * @flags: attributes to set for the ring buffer. 1793 * @key: ring buffer reader_lock_key. 1794 * 1795 * Currently the only flag that is available is the RB_FL_OVERWRITE 1796 * flag. This flag means that the buffer will overwrite old data 1797 * when the buffer wraps. If this flag is not set, the buffer will 1798 * drop data when the tail hits the head. 1799 */ 1800 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1801 struct lock_class_key *key) 1802 { 1803 struct trace_buffer *buffer; 1804 long nr_pages; 1805 int bsize; 1806 int cpu; 1807 int ret; 1808 1809 /* keep it in its own cache line */ 1810 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1811 GFP_KERNEL); 1812 if (!buffer) 1813 return NULL; 1814 1815 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1816 goto fail_free_buffer; 1817 1818 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1819 buffer->flags = flags; 1820 buffer->clock = trace_clock_local; 1821 buffer->reader_lock_key = key; 1822 1823 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1824 init_waitqueue_head(&buffer->irq_work.waiters); 1825 1826 /* need at least two pages */ 1827 if (nr_pages < 2) 1828 nr_pages = 2; 1829 1830 buffer->cpus = nr_cpu_ids; 1831 1832 bsize = sizeof(void *) * nr_cpu_ids; 1833 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1834 GFP_KERNEL); 1835 if (!buffer->buffers) 1836 goto fail_free_cpumask; 1837 1838 cpu = raw_smp_processor_id(); 1839 cpumask_set_cpu(cpu, buffer->cpumask); 1840 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1841 if (!buffer->buffers[cpu]) 1842 goto fail_free_buffers; 1843 1844 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1845 if (ret < 0) 1846 goto fail_free_buffers; 1847 1848 mutex_init(&buffer->mutex); 1849 1850 return buffer; 1851 1852 fail_free_buffers: 1853 for_each_buffer_cpu(buffer, cpu) { 1854 if (buffer->buffers[cpu]) 1855 rb_free_cpu_buffer(buffer->buffers[cpu]); 1856 } 1857 kfree(buffer->buffers); 1858 1859 fail_free_cpumask: 1860 free_cpumask_var(buffer->cpumask); 1861 1862 fail_free_buffer: 1863 kfree(buffer); 1864 return NULL; 1865 } 1866 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1867 1868 /** 1869 * ring_buffer_free - free a ring buffer. 1870 * @buffer: the buffer to free. 1871 */ 1872 void 1873 ring_buffer_free(struct trace_buffer *buffer) 1874 { 1875 int cpu; 1876 1877 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1878 1879 irq_work_sync(&buffer->irq_work.work); 1880 1881 for_each_buffer_cpu(buffer, cpu) 1882 rb_free_cpu_buffer(buffer->buffers[cpu]); 1883 1884 kfree(buffer->buffers); 1885 free_cpumask_var(buffer->cpumask); 1886 1887 kfree(buffer); 1888 } 1889 EXPORT_SYMBOL_GPL(ring_buffer_free); 1890 1891 void ring_buffer_set_clock(struct trace_buffer *buffer, 1892 u64 (*clock)(void)) 1893 { 1894 buffer->clock = clock; 1895 } 1896 1897 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1898 { 1899 buffer->time_stamp_abs = abs; 1900 } 1901 1902 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1903 { 1904 return buffer->time_stamp_abs; 1905 } 1906 1907 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1908 1909 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1910 { 1911 return local_read(&bpage->entries) & RB_WRITE_MASK; 1912 } 1913 1914 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1915 { 1916 return local_read(&bpage->write) & RB_WRITE_MASK; 1917 } 1918 1919 static bool 1920 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1921 { 1922 struct list_head *tail_page, *to_remove, *next_page; 1923 struct buffer_page *to_remove_page, *tmp_iter_page; 1924 struct buffer_page *last_page, *first_page; 1925 unsigned long nr_removed; 1926 unsigned long head_bit; 1927 int page_entries; 1928 1929 head_bit = 0; 1930 1931 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1932 atomic_inc(&cpu_buffer->record_disabled); 1933 /* 1934 * We don't race with the readers since we have acquired the reader 1935 * lock. We also don't race with writers after disabling recording. 1936 * This makes it easy to figure out the first and the last page to be 1937 * removed from the list. We unlink all the pages in between including 1938 * the first and last pages. This is done in a busy loop so that we 1939 * lose the least number of traces. 1940 * The pages are freed after we restart recording and unlock readers. 1941 */ 1942 tail_page = &cpu_buffer->tail_page->list; 1943 1944 /* 1945 * tail page might be on reader page, we remove the next page 1946 * from the ring buffer 1947 */ 1948 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1949 tail_page = rb_list_head(tail_page->next); 1950 to_remove = tail_page; 1951 1952 /* start of pages to remove */ 1953 first_page = list_entry(rb_list_head(to_remove->next), 1954 struct buffer_page, list); 1955 1956 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1957 to_remove = rb_list_head(to_remove)->next; 1958 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1959 } 1960 1961 next_page = rb_list_head(to_remove)->next; 1962 1963 /* 1964 * Now we remove all pages between tail_page and next_page. 1965 * Make sure that we have head_bit value preserved for the 1966 * next page 1967 */ 1968 tail_page->next = (struct list_head *)((unsigned long)next_page | 1969 head_bit); 1970 next_page = rb_list_head(next_page); 1971 next_page->prev = tail_page; 1972 1973 /* make sure pages points to a valid page in the ring buffer */ 1974 cpu_buffer->pages = next_page; 1975 1976 /* update head page */ 1977 if (head_bit) 1978 cpu_buffer->head_page = list_entry(next_page, 1979 struct buffer_page, list); 1980 1981 /* 1982 * change read pointer to make sure any read iterators reset 1983 * themselves 1984 */ 1985 cpu_buffer->read = 0; 1986 1987 /* pages are removed, resume tracing and then free the pages */ 1988 atomic_dec(&cpu_buffer->record_disabled); 1989 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1990 1991 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1992 1993 /* last buffer page to remove */ 1994 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1995 list); 1996 tmp_iter_page = first_page; 1997 1998 do { 1999 cond_resched(); 2000 2001 to_remove_page = tmp_iter_page; 2002 rb_inc_page(&tmp_iter_page); 2003 2004 /* update the counters */ 2005 page_entries = rb_page_entries(to_remove_page); 2006 if (page_entries) { 2007 /* 2008 * If something was added to this page, it was full 2009 * since it is not the tail page. So we deduct the 2010 * bytes consumed in ring buffer from here. 2011 * Increment overrun to account for the lost events. 2012 */ 2013 local_add(page_entries, &cpu_buffer->overrun); 2014 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2015 local_inc(&cpu_buffer->pages_lost); 2016 } 2017 2018 /* 2019 * We have already removed references to this list item, just 2020 * free up the buffer_page and its page 2021 */ 2022 free_buffer_page(to_remove_page); 2023 nr_removed--; 2024 2025 } while (to_remove_page != last_page); 2026 2027 RB_WARN_ON(cpu_buffer, nr_removed); 2028 2029 return nr_removed == 0; 2030 } 2031 2032 static bool 2033 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2034 { 2035 struct list_head *pages = &cpu_buffer->new_pages; 2036 unsigned long flags; 2037 bool success; 2038 int retries; 2039 2040 /* Can be called at early boot up, where interrupts must not been enabled */ 2041 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2042 /* 2043 * We are holding the reader lock, so the reader page won't be swapped 2044 * in the ring buffer. Now we are racing with the writer trying to 2045 * move head page and the tail page. 2046 * We are going to adapt the reader page update process where: 2047 * 1. We first splice the start and end of list of new pages between 2048 * the head page and its previous page. 2049 * 2. We cmpxchg the prev_page->next to point from head page to the 2050 * start of new pages list. 2051 * 3. Finally, we update the head->prev to the end of new list. 2052 * 2053 * We will try this process 10 times, to make sure that we don't keep 2054 * spinning. 2055 */ 2056 retries = 10; 2057 success = false; 2058 while (retries--) { 2059 struct list_head *head_page, *prev_page, *r; 2060 struct list_head *last_page, *first_page; 2061 struct list_head *head_page_with_bit; 2062 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2063 2064 if (!hpage) 2065 break; 2066 head_page = &hpage->list; 2067 prev_page = head_page->prev; 2068 2069 first_page = pages->next; 2070 last_page = pages->prev; 2071 2072 head_page_with_bit = (struct list_head *) 2073 ((unsigned long)head_page | RB_PAGE_HEAD); 2074 2075 last_page->next = head_page_with_bit; 2076 first_page->prev = prev_page; 2077 2078 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 2079 2080 if (r == head_page_with_bit) { 2081 /* 2082 * yay, we replaced the page pointer to our new list, 2083 * now, we just have to update to head page's prev 2084 * pointer to point to end of list 2085 */ 2086 head_page->prev = last_page; 2087 success = true; 2088 break; 2089 } 2090 } 2091 2092 if (success) 2093 INIT_LIST_HEAD(pages); 2094 /* 2095 * If we weren't successful in adding in new pages, warn and stop 2096 * tracing 2097 */ 2098 RB_WARN_ON(cpu_buffer, !success); 2099 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2100 2101 /* free pages if they weren't inserted */ 2102 if (!success) { 2103 struct buffer_page *bpage, *tmp; 2104 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2105 list) { 2106 list_del_init(&bpage->list); 2107 free_buffer_page(bpage); 2108 } 2109 } 2110 return success; 2111 } 2112 2113 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2114 { 2115 bool success; 2116 2117 if (cpu_buffer->nr_pages_to_update > 0) 2118 success = rb_insert_pages(cpu_buffer); 2119 else 2120 success = rb_remove_pages(cpu_buffer, 2121 -cpu_buffer->nr_pages_to_update); 2122 2123 if (success) 2124 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2125 } 2126 2127 static void update_pages_handler(struct work_struct *work) 2128 { 2129 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2130 struct ring_buffer_per_cpu, update_pages_work); 2131 rb_update_pages(cpu_buffer); 2132 complete(&cpu_buffer->update_done); 2133 } 2134 2135 /** 2136 * ring_buffer_resize - resize the ring buffer 2137 * @buffer: the buffer to resize. 2138 * @size: the new size. 2139 * @cpu_id: the cpu buffer to resize 2140 * 2141 * Minimum size is 2 * BUF_PAGE_SIZE. 2142 * 2143 * Returns 0 on success and < 0 on failure. 2144 */ 2145 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2146 int cpu_id) 2147 { 2148 struct ring_buffer_per_cpu *cpu_buffer; 2149 unsigned long nr_pages; 2150 int cpu, err; 2151 2152 /* 2153 * Always succeed at resizing a non-existent buffer: 2154 */ 2155 if (!buffer) 2156 return 0; 2157 2158 /* Make sure the requested buffer exists */ 2159 if (cpu_id != RING_BUFFER_ALL_CPUS && 2160 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2161 return 0; 2162 2163 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 2164 2165 /* we need a minimum of two pages */ 2166 if (nr_pages < 2) 2167 nr_pages = 2; 2168 2169 /* prevent another thread from changing buffer sizes */ 2170 mutex_lock(&buffer->mutex); 2171 atomic_inc(&buffer->resizing); 2172 2173 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2174 /* 2175 * Don't succeed if resizing is disabled, as a reader might be 2176 * manipulating the ring buffer and is expecting a sane state while 2177 * this is true. 2178 */ 2179 for_each_buffer_cpu(buffer, cpu) { 2180 cpu_buffer = buffer->buffers[cpu]; 2181 if (atomic_read(&cpu_buffer->resize_disabled)) { 2182 err = -EBUSY; 2183 goto out_err_unlock; 2184 } 2185 } 2186 2187 /* calculate the pages to update */ 2188 for_each_buffer_cpu(buffer, cpu) { 2189 cpu_buffer = buffer->buffers[cpu]; 2190 2191 cpu_buffer->nr_pages_to_update = nr_pages - 2192 cpu_buffer->nr_pages; 2193 /* 2194 * nothing more to do for removing pages or no update 2195 */ 2196 if (cpu_buffer->nr_pages_to_update <= 0) 2197 continue; 2198 /* 2199 * to add pages, make sure all new pages can be 2200 * allocated without receiving ENOMEM 2201 */ 2202 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2203 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2204 &cpu_buffer->new_pages)) { 2205 /* not enough memory for new pages */ 2206 err = -ENOMEM; 2207 goto out_err; 2208 } 2209 } 2210 2211 cpus_read_lock(); 2212 /* 2213 * Fire off all the required work handlers 2214 * We can't schedule on offline CPUs, but it's not necessary 2215 * since we can change their buffer sizes without any race. 2216 */ 2217 for_each_buffer_cpu(buffer, cpu) { 2218 cpu_buffer = buffer->buffers[cpu]; 2219 if (!cpu_buffer->nr_pages_to_update) 2220 continue; 2221 2222 /* Can't run something on an offline CPU. */ 2223 if (!cpu_online(cpu)) { 2224 rb_update_pages(cpu_buffer); 2225 cpu_buffer->nr_pages_to_update = 0; 2226 } else { 2227 /* Run directly if possible. */ 2228 migrate_disable(); 2229 if (cpu != smp_processor_id()) { 2230 migrate_enable(); 2231 schedule_work_on(cpu, 2232 &cpu_buffer->update_pages_work); 2233 } else { 2234 update_pages_handler(&cpu_buffer->update_pages_work); 2235 migrate_enable(); 2236 } 2237 } 2238 } 2239 2240 /* wait for all the updates to complete */ 2241 for_each_buffer_cpu(buffer, cpu) { 2242 cpu_buffer = buffer->buffers[cpu]; 2243 if (!cpu_buffer->nr_pages_to_update) 2244 continue; 2245 2246 if (cpu_online(cpu)) 2247 wait_for_completion(&cpu_buffer->update_done); 2248 cpu_buffer->nr_pages_to_update = 0; 2249 } 2250 2251 cpus_read_unlock(); 2252 } else { 2253 cpu_buffer = buffer->buffers[cpu_id]; 2254 2255 if (nr_pages == cpu_buffer->nr_pages) 2256 goto out; 2257 2258 /* 2259 * Don't succeed if resizing is disabled, as a reader might be 2260 * manipulating the ring buffer and is expecting a sane state while 2261 * this is true. 2262 */ 2263 if (atomic_read(&cpu_buffer->resize_disabled)) { 2264 err = -EBUSY; 2265 goto out_err_unlock; 2266 } 2267 2268 cpu_buffer->nr_pages_to_update = nr_pages - 2269 cpu_buffer->nr_pages; 2270 2271 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2272 if (cpu_buffer->nr_pages_to_update > 0 && 2273 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2274 &cpu_buffer->new_pages)) { 2275 err = -ENOMEM; 2276 goto out_err; 2277 } 2278 2279 cpus_read_lock(); 2280 2281 /* Can't run something on an offline CPU. */ 2282 if (!cpu_online(cpu_id)) 2283 rb_update_pages(cpu_buffer); 2284 else { 2285 /* Run directly if possible. */ 2286 migrate_disable(); 2287 if (cpu_id == smp_processor_id()) { 2288 rb_update_pages(cpu_buffer); 2289 migrate_enable(); 2290 } else { 2291 migrate_enable(); 2292 schedule_work_on(cpu_id, 2293 &cpu_buffer->update_pages_work); 2294 wait_for_completion(&cpu_buffer->update_done); 2295 } 2296 } 2297 2298 cpu_buffer->nr_pages_to_update = 0; 2299 cpus_read_unlock(); 2300 } 2301 2302 out: 2303 /* 2304 * The ring buffer resize can happen with the ring buffer 2305 * enabled, so that the update disturbs the tracing as little 2306 * as possible. But if the buffer is disabled, we do not need 2307 * to worry about that, and we can take the time to verify 2308 * that the buffer is not corrupt. 2309 */ 2310 if (atomic_read(&buffer->record_disabled)) { 2311 atomic_inc(&buffer->record_disabled); 2312 /* 2313 * Even though the buffer was disabled, we must make sure 2314 * that it is truly disabled before calling rb_check_pages. 2315 * There could have been a race between checking 2316 * record_disable and incrementing it. 2317 */ 2318 synchronize_rcu(); 2319 for_each_buffer_cpu(buffer, cpu) { 2320 cpu_buffer = buffer->buffers[cpu]; 2321 rb_check_pages(cpu_buffer); 2322 } 2323 atomic_dec(&buffer->record_disabled); 2324 } 2325 2326 atomic_dec(&buffer->resizing); 2327 mutex_unlock(&buffer->mutex); 2328 return 0; 2329 2330 out_err: 2331 for_each_buffer_cpu(buffer, cpu) { 2332 struct buffer_page *bpage, *tmp; 2333 2334 cpu_buffer = buffer->buffers[cpu]; 2335 cpu_buffer->nr_pages_to_update = 0; 2336 2337 if (list_empty(&cpu_buffer->new_pages)) 2338 continue; 2339 2340 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2341 list) { 2342 list_del_init(&bpage->list); 2343 free_buffer_page(bpage); 2344 } 2345 } 2346 out_err_unlock: 2347 atomic_dec(&buffer->resizing); 2348 mutex_unlock(&buffer->mutex); 2349 return err; 2350 } 2351 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2352 2353 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2354 { 2355 mutex_lock(&buffer->mutex); 2356 if (val) 2357 buffer->flags |= RB_FL_OVERWRITE; 2358 else 2359 buffer->flags &= ~RB_FL_OVERWRITE; 2360 mutex_unlock(&buffer->mutex); 2361 } 2362 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2363 2364 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2365 { 2366 return bpage->page->data + index; 2367 } 2368 2369 static __always_inline struct ring_buffer_event * 2370 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2371 { 2372 return __rb_page_index(cpu_buffer->reader_page, 2373 cpu_buffer->reader_page->read); 2374 } 2375 2376 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2377 { 2378 return local_read(&bpage->page->commit); 2379 } 2380 2381 static struct ring_buffer_event * 2382 rb_iter_head_event(struct ring_buffer_iter *iter) 2383 { 2384 struct ring_buffer_event *event; 2385 struct buffer_page *iter_head_page = iter->head_page; 2386 unsigned long commit; 2387 unsigned length; 2388 2389 if (iter->head != iter->next_event) 2390 return iter->event; 2391 2392 /* 2393 * When the writer goes across pages, it issues a cmpxchg which 2394 * is a mb(), which will synchronize with the rmb here. 2395 * (see rb_tail_page_update() and __rb_reserve_next()) 2396 */ 2397 commit = rb_page_commit(iter_head_page); 2398 smp_rmb(); 2399 event = __rb_page_index(iter_head_page, iter->head); 2400 length = rb_event_length(event); 2401 2402 /* 2403 * READ_ONCE() doesn't work on functions and we don't want the 2404 * compiler doing any crazy optimizations with length. 2405 */ 2406 barrier(); 2407 2408 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2409 /* Writer corrupted the read? */ 2410 goto reset; 2411 2412 memcpy(iter->event, event, length); 2413 /* 2414 * If the page stamp is still the same after this rmb() then the 2415 * event was safely copied without the writer entering the page. 2416 */ 2417 smp_rmb(); 2418 2419 /* Make sure the page didn't change since we read this */ 2420 if (iter->page_stamp != iter_head_page->page->time_stamp || 2421 commit > rb_page_commit(iter_head_page)) 2422 goto reset; 2423 2424 iter->next_event = iter->head + length; 2425 return iter->event; 2426 reset: 2427 /* Reset to the beginning */ 2428 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2429 iter->head = 0; 2430 iter->next_event = 0; 2431 iter->missed_events = 1; 2432 return NULL; 2433 } 2434 2435 /* Size is determined by what has been committed */ 2436 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2437 { 2438 return rb_page_commit(bpage); 2439 } 2440 2441 static __always_inline unsigned 2442 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2443 { 2444 return rb_page_commit(cpu_buffer->commit_page); 2445 } 2446 2447 static __always_inline unsigned 2448 rb_event_index(struct ring_buffer_event *event) 2449 { 2450 unsigned long addr = (unsigned long)event; 2451 2452 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2453 } 2454 2455 static void rb_inc_iter(struct ring_buffer_iter *iter) 2456 { 2457 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2458 2459 /* 2460 * The iterator could be on the reader page (it starts there). 2461 * But the head could have moved, since the reader was 2462 * found. Check for this case and assign the iterator 2463 * to the head page instead of next. 2464 */ 2465 if (iter->head_page == cpu_buffer->reader_page) 2466 iter->head_page = rb_set_head_page(cpu_buffer); 2467 else 2468 rb_inc_page(&iter->head_page); 2469 2470 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2471 iter->head = 0; 2472 iter->next_event = 0; 2473 } 2474 2475 /* 2476 * rb_handle_head_page - writer hit the head page 2477 * 2478 * Returns: +1 to retry page 2479 * 0 to continue 2480 * -1 on error 2481 */ 2482 static int 2483 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2484 struct buffer_page *tail_page, 2485 struct buffer_page *next_page) 2486 { 2487 struct buffer_page *new_head; 2488 int entries; 2489 int type; 2490 int ret; 2491 2492 entries = rb_page_entries(next_page); 2493 2494 /* 2495 * The hard part is here. We need to move the head 2496 * forward, and protect against both readers on 2497 * other CPUs and writers coming in via interrupts. 2498 */ 2499 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2500 RB_PAGE_HEAD); 2501 2502 /* 2503 * type can be one of four: 2504 * NORMAL - an interrupt already moved it for us 2505 * HEAD - we are the first to get here. 2506 * UPDATE - we are the interrupt interrupting 2507 * a current move. 2508 * MOVED - a reader on another CPU moved the next 2509 * pointer to its reader page. Give up 2510 * and try again. 2511 */ 2512 2513 switch (type) { 2514 case RB_PAGE_HEAD: 2515 /* 2516 * We changed the head to UPDATE, thus 2517 * it is our responsibility to update 2518 * the counters. 2519 */ 2520 local_add(entries, &cpu_buffer->overrun); 2521 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2522 local_inc(&cpu_buffer->pages_lost); 2523 2524 /* 2525 * The entries will be zeroed out when we move the 2526 * tail page. 2527 */ 2528 2529 /* still more to do */ 2530 break; 2531 2532 case RB_PAGE_UPDATE: 2533 /* 2534 * This is an interrupt that interrupt the 2535 * previous update. Still more to do. 2536 */ 2537 break; 2538 case RB_PAGE_NORMAL: 2539 /* 2540 * An interrupt came in before the update 2541 * and processed this for us. 2542 * Nothing left to do. 2543 */ 2544 return 1; 2545 case RB_PAGE_MOVED: 2546 /* 2547 * The reader is on another CPU and just did 2548 * a swap with our next_page. 2549 * Try again. 2550 */ 2551 return 1; 2552 default: 2553 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2554 return -1; 2555 } 2556 2557 /* 2558 * Now that we are here, the old head pointer is 2559 * set to UPDATE. This will keep the reader from 2560 * swapping the head page with the reader page. 2561 * The reader (on another CPU) will spin till 2562 * we are finished. 2563 * 2564 * We just need to protect against interrupts 2565 * doing the job. We will set the next pointer 2566 * to HEAD. After that, we set the old pointer 2567 * to NORMAL, but only if it was HEAD before. 2568 * otherwise we are an interrupt, and only 2569 * want the outer most commit to reset it. 2570 */ 2571 new_head = next_page; 2572 rb_inc_page(&new_head); 2573 2574 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2575 RB_PAGE_NORMAL); 2576 2577 /* 2578 * Valid returns are: 2579 * HEAD - an interrupt came in and already set it. 2580 * NORMAL - One of two things: 2581 * 1) We really set it. 2582 * 2) A bunch of interrupts came in and moved 2583 * the page forward again. 2584 */ 2585 switch (ret) { 2586 case RB_PAGE_HEAD: 2587 case RB_PAGE_NORMAL: 2588 /* OK */ 2589 break; 2590 default: 2591 RB_WARN_ON(cpu_buffer, 1); 2592 return -1; 2593 } 2594 2595 /* 2596 * It is possible that an interrupt came in, 2597 * set the head up, then more interrupts came in 2598 * and moved it again. When we get back here, 2599 * the page would have been set to NORMAL but we 2600 * just set it back to HEAD. 2601 * 2602 * How do you detect this? Well, if that happened 2603 * the tail page would have moved. 2604 */ 2605 if (ret == RB_PAGE_NORMAL) { 2606 struct buffer_page *buffer_tail_page; 2607 2608 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2609 /* 2610 * If the tail had moved passed next, then we need 2611 * to reset the pointer. 2612 */ 2613 if (buffer_tail_page != tail_page && 2614 buffer_tail_page != next_page) 2615 rb_head_page_set_normal(cpu_buffer, new_head, 2616 next_page, 2617 RB_PAGE_HEAD); 2618 } 2619 2620 /* 2621 * If this was the outer most commit (the one that 2622 * changed the original pointer from HEAD to UPDATE), 2623 * then it is up to us to reset it to NORMAL. 2624 */ 2625 if (type == RB_PAGE_HEAD) { 2626 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2627 tail_page, 2628 RB_PAGE_UPDATE); 2629 if (RB_WARN_ON(cpu_buffer, 2630 ret != RB_PAGE_UPDATE)) 2631 return -1; 2632 } 2633 2634 return 0; 2635 } 2636 2637 static inline void 2638 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2639 unsigned long tail, struct rb_event_info *info) 2640 { 2641 struct buffer_page *tail_page = info->tail_page; 2642 struct ring_buffer_event *event; 2643 unsigned long length = info->length; 2644 2645 /* 2646 * Only the event that crossed the page boundary 2647 * must fill the old tail_page with padding. 2648 */ 2649 if (tail >= BUF_PAGE_SIZE) { 2650 /* 2651 * If the page was filled, then we still need 2652 * to update the real_end. Reset it to zero 2653 * and the reader will ignore it. 2654 */ 2655 if (tail == BUF_PAGE_SIZE) 2656 tail_page->real_end = 0; 2657 2658 local_sub(length, &tail_page->write); 2659 return; 2660 } 2661 2662 event = __rb_page_index(tail_page, tail); 2663 2664 /* account for padding bytes */ 2665 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2666 2667 /* 2668 * Save the original length to the meta data. 2669 * This will be used by the reader to add lost event 2670 * counter. 2671 */ 2672 tail_page->real_end = tail; 2673 2674 /* 2675 * If this event is bigger than the minimum size, then 2676 * we need to be careful that we don't subtract the 2677 * write counter enough to allow another writer to slip 2678 * in on this page. 2679 * We put in a discarded commit instead, to make sure 2680 * that this space is not used again. 2681 * 2682 * If we are less than the minimum size, we don't need to 2683 * worry about it. 2684 */ 2685 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2686 /* No room for any events */ 2687 2688 /* Mark the rest of the page with padding */ 2689 rb_event_set_padding(event); 2690 2691 /* Make sure the padding is visible before the write update */ 2692 smp_wmb(); 2693 2694 /* Set the write back to the previous setting */ 2695 local_sub(length, &tail_page->write); 2696 return; 2697 } 2698 2699 /* Put in a discarded event */ 2700 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2701 event->type_len = RINGBUF_TYPE_PADDING; 2702 /* time delta must be non zero */ 2703 event->time_delta = 1; 2704 2705 /* Make sure the padding is visible before the tail_page->write update */ 2706 smp_wmb(); 2707 2708 /* Set write to end of buffer */ 2709 length = (tail + length) - BUF_PAGE_SIZE; 2710 local_sub(length, &tail_page->write); 2711 } 2712 2713 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2714 2715 /* 2716 * This is the slow path, force gcc not to inline it. 2717 */ 2718 static noinline struct ring_buffer_event * 2719 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2720 unsigned long tail, struct rb_event_info *info) 2721 { 2722 struct buffer_page *tail_page = info->tail_page; 2723 struct buffer_page *commit_page = cpu_buffer->commit_page; 2724 struct trace_buffer *buffer = cpu_buffer->buffer; 2725 struct buffer_page *next_page; 2726 int ret; 2727 2728 next_page = tail_page; 2729 2730 rb_inc_page(&next_page); 2731 2732 /* 2733 * If for some reason, we had an interrupt storm that made 2734 * it all the way around the buffer, bail, and warn 2735 * about it. 2736 */ 2737 if (unlikely(next_page == commit_page)) { 2738 local_inc(&cpu_buffer->commit_overrun); 2739 goto out_reset; 2740 } 2741 2742 /* 2743 * This is where the fun begins! 2744 * 2745 * We are fighting against races between a reader that 2746 * could be on another CPU trying to swap its reader 2747 * page with the buffer head. 2748 * 2749 * We are also fighting against interrupts coming in and 2750 * moving the head or tail on us as well. 2751 * 2752 * If the next page is the head page then we have filled 2753 * the buffer, unless the commit page is still on the 2754 * reader page. 2755 */ 2756 if (rb_is_head_page(next_page, &tail_page->list)) { 2757 2758 /* 2759 * If the commit is not on the reader page, then 2760 * move the header page. 2761 */ 2762 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2763 /* 2764 * If we are not in overwrite mode, 2765 * this is easy, just stop here. 2766 */ 2767 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2768 local_inc(&cpu_buffer->dropped_events); 2769 goto out_reset; 2770 } 2771 2772 ret = rb_handle_head_page(cpu_buffer, 2773 tail_page, 2774 next_page); 2775 if (ret < 0) 2776 goto out_reset; 2777 if (ret) 2778 goto out_again; 2779 } else { 2780 /* 2781 * We need to be careful here too. The 2782 * commit page could still be on the reader 2783 * page. We could have a small buffer, and 2784 * have filled up the buffer with events 2785 * from interrupts and such, and wrapped. 2786 * 2787 * Note, if the tail page is also on the 2788 * reader_page, we let it move out. 2789 */ 2790 if (unlikely((cpu_buffer->commit_page != 2791 cpu_buffer->tail_page) && 2792 (cpu_buffer->commit_page == 2793 cpu_buffer->reader_page))) { 2794 local_inc(&cpu_buffer->commit_overrun); 2795 goto out_reset; 2796 } 2797 } 2798 } 2799 2800 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2801 2802 out_again: 2803 2804 rb_reset_tail(cpu_buffer, tail, info); 2805 2806 /* Commit what we have for now. */ 2807 rb_end_commit(cpu_buffer); 2808 /* rb_end_commit() decs committing */ 2809 local_inc(&cpu_buffer->committing); 2810 2811 /* fail and let the caller try again */ 2812 return ERR_PTR(-EAGAIN); 2813 2814 out_reset: 2815 /* reset write */ 2816 rb_reset_tail(cpu_buffer, tail, info); 2817 2818 return NULL; 2819 } 2820 2821 /* Slow path */ 2822 static struct ring_buffer_event * 2823 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2824 { 2825 if (abs) 2826 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2827 else 2828 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2829 2830 /* Not the first event on the page, or not delta? */ 2831 if (abs || rb_event_index(event)) { 2832 event->time_delta = delta & TS_MASK; 2833 event->array[0] = delta >> TS_SHIFT; 2834 } else { 2835 /* nope, just zero it */ 2836 event->time_delta = 0; 2837 event->array[0] = 0; 2838 } 2839 2840 return skip_time_extend(event); 2841 } 2842 2843 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2844 static inline bool sched_clock_stable(void) 2845 { 2846 return true; 2847 } 2848 #endif 2849 2850 static void 2851 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2852 struct rb_event_info *info) 2853 { 2854 u64 write_stamp; 2855 2856 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2857 (unsigned long long)info->delta, 2858 (unsigned long long)info->ts, 2859 (unsigned long long)info->before, 2860 (unsigned long long)info->after, 2861 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2862 sched_clock_stable() ? "" : 2863 "If you just came from a suspend/resume,\n" 2864 "please switch to the trace global clock:\n" 2865 " echo global > /sys/kernel/tracing/trace_clock\n" 2866 "or add trace_clock=global to the kernel command line\n"); 2867 } 2868 2869 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2870 struct ring_buffer_event **event, 2871 struct rb_event_info *info, 2872 u64 *delta, 2873 unsigned int *length) 2874 { 2875 bool abs = info->add_timestamp & 2876 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2877 2878 if (unlikely(info->delta > (1ULL << 59))) { 2879 /* 2880 * Some timers can use more than 59 bits, and when a timestamp 2881 * is added to the buffer, it will lose those bits. 2882 */ 2883 if (abs && (info->ts & TS_MSB)) { 2884 info->delta &= ABS_TS_MASK; 2885 2886 /* did the clock go backwards */ 2887 } else if (info->before == info->after && info->before > info->ts) { 2888 /* not interrupted */ 2889 static int once; 2890 2891 /* 2892 * This is possible with a recalibrating of the TSC. 2893 * Do not produce a call stack, but just report it. 2894 */ 2895 if (!once) { 2896 once++; 2897 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2898 info->before, info->ts); 2899 } 2900 } else 2901 rb_check_timestamp(cpu_buffer, info); 2902 if (!abs) 2903 info->delta = 0; 2904 } 2905 *event = rb_add_time_stamp(*event, info->delta, abs); 2906 *length -= RB_LEN_TIME_EXTEND; 2907 *delta = 0; 2908 } 2909 2910 /** 2911 * rb_update_event - update event type and data 2912 * @cpu_buffer: The per cpu buffer of the @event 2913 * @event: the event to update 2914 * @info: The info to update the @event with (contains length and delta) 2915 * 2916 * Update the type and data fields of the @event. The length 2917 * is the actual size that is written to the ring buffer, 2918 * and with this, we can determine what to place into the 2919 * data field. 2920 */ 2921 static void 2922 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2923 struct ring_buffer_event *event, 2924 struct rb_event_info *info) 2925 { 2926 unsigned length = info->length; 2927 u64 delta = info->delta; 2928 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2929 2930 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2931 cpu_buffer->event_stamp[nest] = info->ts; 2932 2933 /* 2934 * If we need to add a timestamp, then we 2935 * add it to the start of the reserved space. 2936 */ 2937 if (unlikely(info->add_timestamp)) 2938 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2939 2940 event->time_delta = delta; 2941 length -= RB_EVNT_HDR_SIZE; 2942 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2943 event->type_len = 0; 2944 event->array[0] = length; 2945 } else 2946 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2947 } 2948 2949 static unsigned rb_calculate_event_length(unsigned length) 2950 { 2951 struct ring_buffer_event event; /* Used only for sizeof array */ 2952 2953 /* zero length can cause confusions */ 2954 if (!length) 2955 length++; 2956 2957 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2958 length += sizeof(event.array[0]); 2959 2960 length += RB_EVNT_HDR_SIZE; 2961 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2962 2963 /* 2964 * In case the time delta is larger than the 27 bits for it 2965 * in the header, we need to add a timestamp. If another 2966 * event comes in when trying to discard this one to increase 2967 * the length, then the timestamp will be added in the allocated 2968 * space of this event. If length is bigger than the size needed 2969 * for the TIME_EXTEND, then padding has to be used. The events 2970 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2971 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2972 * As length is a multiple of 4, we only need to worry if it 2973 * is 12 (RB_LEN_TIME_EXTEND + 4). 2974 */ 2975 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2976 length += RB_ALIGNMENT; 2977 2978 return length; 2979 } 2980 2981 static u64 rb_time_delta(struct ring_buffer_event *event) 2982 { 2983 switch (event->type_len) { 2984 case RINGBUF_TYPE_PADDING: 2985 return 0; 2986 2987 case RINGBUF_TYPE_TIME_EXTEND: 2988 return rb_event_time_stamp(event); 2989 2990 case RINGBUF_TYPE_TIME_STAMP: 2991 return 0; 2992 2993 case RINGBUF_TYPE_DATA: 2994 return event->time_delta; 2995 default: 2996 return 0; 2997 } 2998 } 2999 3000 static inline bool 3001 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3002 struct ring_buffer_event *event) 3003 { 3004 unsigned long new_index, old_index; 3005 struct buffer_page *bpage; 3006 unsigned long index; 3007 unsigned long addr; 3008 u64 write_stamp; 3009 u64 delta; 3010 3011 new_index = rb_event_index(event); 3012 old_index = new_index + rb_event_ts_length(event); 3013 addr = (unsigned long)event; 3014 addr &= PAGE_MASK; 3015 3016 bpage = READ_ONCE(cpu_buffer->tail_page); 3017 3018 delta = rb_time_delta(event); 3019 3020 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 3021 return false; 3022 3023 /* Make sure the write stamp is read before testing the location */ 3024 barrier(); 3025 3026 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3027 unsigned long write_mask = 3028 local_read(&bpage->write) & ~RB_WRITE_MASK; 3029 unsigned long event_length = rb_event_length(event); 3030 3031 /* Something came in, can't discard */ 3032 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 3033 write_stamp, write_stamp - delta)) 3034 return false; 3035 3036 /* 3037 * It's possible that the event time delta is zero 3038 * (has the same time stamp as the previous event) 3039 * in which case write_stamp and before_stamp could 3040 * be the same. In such a case, force before_stamp 3041 * to be different than write_stamp. It doesn't 3042 * matter what it is, as long as its different. 3043 */ 3044 if (!delta) 3045 rb_time_set(&cpu_buffer->before_stamp, 0); 3046 3047 /* 3048 * If an event were to come in now, it would see that the 3049 * write_stamp and the before_stamp are different, and assume 3050 * that this event just added itself before updating 3051 * the write stamp. The interrupting event will fix the 3052 * write stamp for us, and use the before stamp as its delta. 3053 */ 3054 3055 /* 3056 * This is on the tail page. It is possible that 3057 * a write could come in and move the tail page 3058 * and write to the next page. That is fine 3059 * because we just shorten what is on this page. 3060 */ 3061 old_index += write_mask; 3062 new_index += write_mask; 3063 index = local_cmpxchg(&bpage->write, old_index, new_index); 3064 if (index == old_index) { 3065 /* update counters */ 3066 local_sub(event_length, &cpu_buffer->entries_bytes); 3067 return true; 3068 } 3069 } 3070 3071 /* could not discard */ 3072 return false; 3073 } 3074 3075 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3076 { 3077 local_inc(&cpu_buffer->committing); 3078 local_inc(&cpu_buffer->commits); 3079 } 3080 3081 static __always_inline void 3082 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3083 { 3084 unsigned long max_count; 3085 3086 /* 3087 * We only race with interrupts and NMIs on this CPU. 3088 * If we own the commit event, then we can commit 3089 * all others that interrupted us, since the interruptions 3090 * are in stack format (they finish before they come 3091 * back to us). This allows us to do a simple loop to 3092 * assign the commit to the tail. 3093 */ 3094 again: 3095 max_count = cpu_buffer->nr_pages * 100; 3096 3097 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3098 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3099 return; 3100 if (RB_WARN_ON(cpu_buffer, 3101 rb_is_reader_page(cpu_buffer->tail_page))) 3102 return; 3103 /* 3104 * No need for a memory barrier here, as the update 3105 * of the tail_page did it for this page. 3106 */ 3107 local_set(&cpu_buffer->commit_page->page->commit, 3108 rb_page_write(cpu_buffer->commit_page)); 3109 rb_inc_page(&cpu_buffer->commit_page); 3110 /* add barrier to keep gcc from optimizing too much */ 3111 barrier(); 3112 } 3113 while (rb_commit_index(cpu_buffer) != 3114 rb_page_write(cpu_buffer->commit_page)) { 3115 3116 /* Make sure the readers see the content of what is committed. */ 3117 smp_wmb(); 3118 local_set(&cpu_buffer->commit_page->page->commit, 3119 rb_page_write(cpu_buffer->commit_page)); 3120 RB_WARN_ON(cpu_buffer, 3121 local_read(&cpu_buffer->commit_page->page->commit) & 3122 ~RB_WRITE_MASK); 3123 barrier(); 3124 } 3125 3126 /* again, keep gcc from optimizing */ 3127 barrier(); 3128 3129 /* 3130 * If an interrupt came in just after the first while loop 3131 * and pushed the tail page forward, we will be left with 3132 * a dangling commit that will never go forward. 3133 */ 3134 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3135 goto again; 3136 } 3137 3138 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3139 { 3140 unsigned long commits; 3141 3142 if (RB_WARN_ON(cpu_buffer, 3143 !local_read(&cpu_buffer->committing))) 3144 return; 3145 3146 again: 3147 commits = local_read(&cpu_buffer->commits); 3148 /* synchronize with interrupts */ 3149 barrier(); 3150 if (local_read(&cpu_buffer->committing) == 1) 3151 rb_set_commit_to_write(cpu_buffer); 3152 3153 local_dec(&cpu_buffer->committing); 3154 3155 /* synchronize with interrupts */ 3156 barrier(); 3157 3158 /* 3159 * Need to account for interrupts coming in between the 3160 * updating of the commit page and the clearing of the 3161 * committing counter. 3162 */ 3163 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3164 !local_read(&cpu_buffer->committing)) { 3165 local_inc(&cpu_buffer->committing); 3166 goto again; 3167 } 3168 } 3169 3170 static inline void rb_event_discard(struct ring_buffer_event *event) 3171 { 3172 if (extended_time(event)) 3173 event = skip_time_extend(event); 3174 3175 /* array[0] holds the actual length for the discarded event */ 3176 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3177 event->type_len = RINGBUF_TYPE_PADDING; 3178 /* time delta must be non zero */ 3179 if (!event->time_delta) 3180 event->time_delta = 1; 3181 } 3182 3183 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3184 { 3185 local_inc(&cpu_buffer->entries); 3186 rb_end_commit(cpu_buffer); 3187 } 3188 3189 static __always_inline void 3190 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3191 { 3192 if (buffer->irq_work.waiters_pending) { 3193 buffer->irq_work.waiters_pending = false; 3194 /* irq_work_queue() supplies it's own memory barriers */ 3195 irq_work_queue(&buffer->irq_work.work); 3196 } 3197 3198 if (cpu_buffer->irq_work.waiters_pending) { 3199 cpu_buffer->irq_work.waiters_pending = false; 3200 /* irq_work_queue() supplies it's own memory barriers */ 3201 irq_work_queue(&cpu_buffer->irq_work.work); 3202 } 3203 3204 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3205 return; 3206 3207 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3208 return; 3209 3210 if (!cpu_buffer->irq_work.full_waiters_pending) 3211 return; 3212 3213 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3214 3215 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3216 return; 3217 3218 cpu_buffer->irq_work.wakeup_full = true; 3219 cpu_buffer->irq_work.full_waiters_pending = false; 3220 /* irq_work_queue() supplies it's own memory barriers */ 3221 irq_work_queue(&cpu_buffer->irq_work.work); 3222 } 3223 3224 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3225 # define do_ring_buffer_record_recursion() \ 3226 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3227 #else 3228 # define do_ring_buffer_record_recursion() do { } while (0) 3229 #endif 3230 3231 /* 3232 * The lock and unlock are done within a preempt disable section. 3233 * The current_context per_cpu variable can only be modified 3234 * by the current task between lock and unlock. But it can 3235 * be modified more than once via an interrupt. To pass this 3236 * information from the lock to the unlock without having to 3237 * access the 'in_interrupt()' functions again (which do show 3238 * a bit of overhead in something as critical as function tracing, 3239 * we use a bitmask trick. 3240 * 3241 * bit 1 = NMI context 3242 * bit 2 = IRQ context 3243 * bit 3 = SoftIRQ context 3244 * bit 4 = normal context. 3245 * 3246 * This works because this is the order of contexts that can 3247 * preempt other contexts. A SoftIRQ never preempts an IRQ 3248 * context. 3249 * 3250 * When the context is determined, the corresponding bit is 3251 * checked and set (if it was set, then a recursion of that context 3252 * happened). 3253 * 3254 * On unlock, we need to clear this bit. To do so, just subtract 3255 * 1 from the current_context and AND it to itself. 3256 * 3257 * (binary) 3258 * 101 - 1 = 100 3259 * 101 & 100 = 100 (clearing bit zero) 3260 * 3261 * 1010 - 1 = 1001 3262 * 1010 & 1001 = 1000 (clearing bit 1) 3263 * 3264 * The least significant bit can be cleared this way, and it 3265 * just so happens that it is the same bit corresponding to 3266 * the current context. 3267 * 3268 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3269 * is set when a recursion is detected at the current context, and if 3270 * the TRANSITION bit is already set, it will fail the recursion. 3271 * This is needed because there's a lag between the changing of 3272 * interrupt context and updating the preempt count. In this case, 3273 * a false positive will be found. To handle this, one extra recursion 3274 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3275 * bit is already set, then it is considered a recursion and the function 3276 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3277 * 3278 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3279 * to be cleared. Even if it wasn't the context that set it. That is, 3280 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3281 * is called before preempt_count() is updated, since the check will 3282 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3283 * NMI then comes in, it will set the NMI bit, but when the NMI code 3284 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3285 * and leave the NMI bit set. But this is fine, because the interrupt 3286 * code that set the TRANSITION bit will then clear the NMI bit when it 3287 * calls trace_recursive_unlock(). If another NMI comes in, it will 3288 * set the TRANSITION bit and continue. 3289 * 3290 * Note: The TRANSITION bit only handles a single transition between context. 3291 */ 3292 3293 static __always_inline bool 3294 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3295 { 3296 unsigned int val = cpu_buffer->current_context; 3297 int bit = interrupt_context_level(); 3298 3299 bit = RB_CTX_NORMAL - bit; 3300 3301 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3302 /* 3303 * It is possible that this was called by transitioning 3304 * between interrupt context, and preempt_count() has not 3305 * been updated yet. In this case, use the TRANSITION bit. 3306 */ 3307 bit = RB_CTX_TRANSITION; 3308 if (val & (1 << (bit + cpu_buffer->nest))) { 3309 do_ring_buffer_record_recursion(); 3310 return true; 3311 } 3312 } 3313 3314 val |= (1 << (bit + cpu_buffer->nest)); 3315 cpu_buffer->current_context = val; 3316 3317 return false; 3318 } 3319 3320 static __always_inline void 3321 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3322 { 3323 cpu_buffer->current_context &= 3324 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3325 } 3326 3327 /* The recursive locking above uses 5 bits */ 3328 #define NESTED_BITS 5 3329 3330 /** 3331 * ring_buffer_nest_start - Allow to trace while nested 3332 * @buffer: The ring buffer to modify 3333 * 3334 * The ring buffer has a safety mechanism to prevent recursion. 3335 * But there may be a case where a trace needs to be done while 3336 * tracing something else. In this case, calling this function 3337 * will allow this function to nest within a currently active 3338 * ring_buffer_lock_reserve(). 3339 * 3340 * Call this function before calling another ring_buffer_lock_reserve() and 3341 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3342 */ 3343 void ring_buffer_nest_start(struct trace_buffer *buffer) 3344 { 3345 struct ring_buffer_per_cpu *cpu_buffer; 3346 int cpu; 3347 3348 /* Enabled by ring_buffer_nest_end() */ 3349 preempt_disable_notrace(); 3350 cpu = raw_smp_processor_id(); 3351 cpu_buffer = buffer->buffers[cpu]; 3352 /* This is the shift value for the above recursive locking */ 3353 cpu_buffer->nest += NESTED_BITS; 3354 } 3355 3356 /** 3357 * ring_buffer_nest_end - Allow to trace while nested 3358 * @buffer: The ring buffer to modify 3359 * 3360 * Must be called after ring_buffer_nest_start() and after the 3361 * ring_buffer_unlock_commit(). 3362 */ 3363 void ring_buffer_nest_end(struct trace_buffer *buffer) 3364 { 3365 struct ring_buffer_per_cpu *cpu_buffer; 3366 int cpu; 3367 3368 /* disabled by ring_buffer_nest_start() */ 3369 cpu = raw_smp_processor_id(); 3370 cpu_buffer = buffer->buffers[cpu]; 3371 /* This is the shift value for the above recursive locking */ 3372 cpu_buffer->nest -= NESTED_BITS; 3373 preempt_enable_notrace(); 3374 } 3375 3376 /** 3377 * ring_buffer_unlock_commit - commit a reserved 3378 * @buffer: The buffer to commit to 3379 * @event: The event pointer to commit. 3380 * 3381 * This commits the data to the ring buffer, and releases any locks held. 3382 * 3383 * Must be paired with ring_buffer_lock_reserve. 3384 */ 3385 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3386 { 3387 struct ring_buffer_per_cpu *cpu_buffer; 3388 int cpu = raw_smp_processor_id(); 3389 3390 cpu_buffer = buffer->buffers[cpu]; 3391 3392 rb_commit(cpu_buffer); 3393 3394 rb_wakeups(buffer, cpu_buffer); 3395 3396 trace_recursive_unlock(cpu_buffer); 3397 3398 preempt_enable_notrace(); 3399 3400 return 0; 3401 } 3402 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3403 3404 /* Special value to validate all deltas on a page. */ 3405 #define CHECK_FULL_PAGE 1L 3406 3407 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3408 static void dump_buffer_page(struct buffer_data_page *bpage, 3409 struct rb_event_info *info, 3410 unsigned long tail) 3411 { 3412 struct ring_buffer_event *event; 3413 u64 ts, delta; 3414 int e; 3415 3416 ts = bpage->time_stamp; 3417 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3418 3419 for (e = 0; e < tail; e += rb_event_length(event)) { 3420 3421 event = (struct ring_buffer_event *)(bpage->data + e); 3422 3423 switch (event->type_len) { 3424 3425 case RINGBUF_TYPE_TIME_EXTEND: 3426 delta = rb_event_time_stamp(event); 3427 ts += delta; 3428 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3429 break; 3430 3431 case RINGBUF_TYPE_TIME_STAMP: 3432 delta = rb_event_time_stamp(event); 3433 ts = rb_fix_abs_ts(delta, ts); 3434 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3435 break; 3436 3437 case RINGBUF_TYPE_PADDING: 3438 ts += event->time_delta; 3439 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3440 break; 3441 3442 case RINGBUF_TYPE_DATA: 3443 ts += event->time_delta; 3444 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3445 break; 3446 3447 default: 3448 break; 3449 } 3450 } 3451 } 3452 3453 static DEFINE_PER_CPU(atomic_t, checking); 3454 static atomic_t ts_dump; 3455 3456 /* 3457 * Check if the current event time stamp matches the deltas on 3458 * the buffer page. 3459 */ 3460 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3461 struct rb_event_info *info, 3462 unsigned long tail) 3463 { 3464 struct ring_buffer_event *event; 3465 struct buffer_data_page *bpage; 3466 u64 ts, delta; 3467 bool full = false; 3468 int e; 3469 3470 bpage = info->tail_page->page; 3471 3472 if (tail == CHECK_FULL_PAGE) { 3473 full = true; 3474 tail = local_read(&bpage->commit); 3475 } else if (info->add_timestamp & 3476 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3477 /* Ignore events with absolute time stamps */ 3478 return; 3479 } 3480 3481 /* 3482 * Do not check the first event (skip possible extends too). 3483 * Also do not check if previous events have not been committed. 3484 */ 3485 if (tail <= 8 || tail > local_read(&bpage->commit)) 3486 return; 3487 3488 /* 3489 * If this interrupted another event, 3490 */ 3491 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3492 goto out; 3493 3494 ts = bpage->time_stamp; 3495 3496 for (e = 0; e < tail; e += rb_event_length(event)) { 3497 3498 event = (struct ring_buffer_event *)(bpage->data + e); 3499 3500 switch (event->type_len) { 3501 3502 case RINGBUF_TYPE_TIME_EXTEND: 3503 delta = rb_event_time_stamp(event); 3504 ts += delta; 3505 break; 3506 3507 case RINGBUF_TYPE_TIME_STAMP: 3508 delta = rb_event_time_stamp(event); 3509 ts = rb_fix_abs_ts(delta, ts); 3510 break; 3511 3512 case RINGBUF_TYPE_PADDING: 3513 if (event->time_delta == 1) 3514 break; 3515 fallthrough; 3516 case RINGBUF_TYPE_DATA: 3517 ts += event->time_delta; 3518 break; 3519 3520 default: 3521 RB_WARN_ON(cpu_buffer, 1); 3522 } 3523 } 3524 if ((full && ts > info->ts) || 3525 (!full && ts + info->delta != info->ts)) { 3526 /* If another report is happening, ignore this one */ 3527 if (atomic_inc_return(&ts_dump) != 1) { 3528 atomic_dec(&ts_dump); 3529 goto out; 3530 } 3531 atomic_inc(&cpu_buffer->record_disabled); 3532 /* There's some cases in boot up that this can happen */ 3533 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3534 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3535 cpu_buffer->cpu, 3536 ts + info->delta, info->ts, info->delta, 3537 info->before, info->after, 3538 full ? " (full)" : ""); 3539 dump_buffer_page(bpage, info, tail); 3540 atomic_dec(&ts_dump); 3541 /* Do not re-enable checking */ 3542 return; 3543 } 3544 out: 3545 atomic_dec(this_cpu_ptr(&checking)); 3546 } 3547 #else 3548 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3549 struct rb_event_info *info, 3550 unsigned long tail) 3551 { 3552 } 3553 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3554 3555 static struct ring_buffer_event * 3556 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3557 struct rb_event_info *info) 3558 { 3559 struct ring_buffer_event *event; 3560 struct buffer_page *tail_page; 3561 unsigned long tail, write, w; 3562 bool a_ok; 3563 bool b_ok; 3564 3565 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3566 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3567 3568 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3569 barrier(); 3570 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3571 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3572 barrier(); 3573 info->ts = rb_time_stamp(cpu_buffer->buffer); 3574 3575 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3576 info->delta = info->ts; 3577 } else { 3578 /* 3579 * If interrupting an event time update, we may need an 3580 * absolute timestamp. 3581 * Don't bother if this is the start of a new page (w == 0). 3582 */ 3583 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3584 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3585 info->length += RB_LEN_TIME_EXTEND; 3586 } else { 3587 info->delta = info->ts - info->after; 3588 if (unlikely(test_time_stamp(info->delta))) { 3589 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3590 info->length += RB_LEN_TIME_EXTEND; 3591 } 3592 } 3593 } 3594 3595 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3596 3597 /*C*/ write = local_add_return(info->length, &tail_page->write); 3598 3599 /* set write to only the index of the write */ 3600 write &= RB_WRITE_MASK; 3601 3602 tail = write - info->length; 3603 3604 /* See if we shot pass the end of this buffer page */ 3605 if (unlikely(write > BUF_PAGE_SIZE)) { 3606 /* before and after may now different, fix it up*/ 3607 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3608 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3609 if (a_ok && b_ok && info->before != info->after) 3610 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3611 info->before, info->after); 3612 if (a_ok && b_ok) 3613 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3614 return rb_move_tail(cpu_buffer, tail, info); 3615 } 3616 3617 if (likely(tail == w)) { 3618 u64 save_before; 3619 bool s_ok; 3620 3621 /* Nothing interrupted us between A and C */ 3622 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3623 barrier(); 3624 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3625 RB_WARN_ON(cpu_buffer, !s_ok); 3626 if (likely(!(info->add_timestamp & 3627 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3628 /* This did not interrupt any time update */ 3629 info->delta = info->ts - info->after; 3630 else 3631 /* Just use full timestamp for interrupting event */ 3632 info->delta = info->ts; 3633 barrier(); 3634 check_buffer(cpu_buffer, info, tail); 3635 if (unlikely(info->ts != save_before)) { 3636 /* SLOW PATH - Interrupted between C and E */ 3637 3638 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3639 RB_WARN_ON(cpu_buffer, !a_ok); 3640 3641 /* Write stamp must only go forward */ 3642 if (save_before > info->after) { 3643 /* 3644 * We do not care about the result, only that 3645 * it gets updated atomically. 3646 */ 3647 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3648 info->after, save_before); 3649 } 3650 } 3651 } else { 3652 u64 ts; 3653 /* SLOW PATH - Interrupted between A and C */ 3654 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3655 /* Was interrupted before here, write_stamp must be valid */ 3656 RB_WARN_ON(cpu_buffer, !a_ok); 3657 ts = rb_time_stamp(cpu_buffer->buffer); 3658 barrier(); 3659 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3660 info->after < ts && 3661 rb_time_cmpxchg(&cpu_buffer->write_stamp, 3662 info->after, ts)) { 3663 /* Nothing came after this event between C and E */ 3664 info->delta = ts - info->after; 3665 } else { 3666 /* 3667 * Interrupted between C and E: 3668 * Lost the previous events time stamp. Just set the 3669 * delta to zero, and this will be the same time as 3670 * the event this event interrupted. And the events that 3671 * came after this will still be correct (as they would 3672 * have built their delta on the previous event. 3673 */ 3674 info->delta = 0; 3675 } 3676 info->ts = ts; 3677 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3678 } 3679 3680 /* 3681 * If this is the first commit on the page, then it has the same 3682 * timestamp as the page itself. 3683 */ 3684 if (unlikely(!tail && !(info->add_timestamp & 3685 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3686 info->delta = 0; 3687 3688 /* We reserved something on the buffer */ 3689 3690 event = __rb_page_index(tail_page, tail); 3691 rb_update_event(cpu_buffer, event, info); 3692 3693 local_inc(&tail_page->entries); 3694 3695 /* 3696 * If this is the first commit on the page, then update 3697 * its timestamp. 3698 */ 3699 if (unlikely(!tail)) 3700 tail_page->page->time_stamp = info->ts; 3701 3702 /* account for these added bytes */ 3703 local_add(info->length, &cpu_buffer->entries_bytes); 3704 3705 return event; 3706 } 3707 3708 static __always_inline struct ring_buffer_event * 3709 rb_reserve_next_event(struct trace_buffer *buffer, 3710 struct ring_buffer_per_cpu *cpu_buffer, 3711 unsigned long length) 3712 { 3713 struct ring_buffer_event *event; 3714 struct rb_event_info info; 3715 int nr_loops = 0; 3716 int add_ts_default; 3717 3718 rb_start_commit(cpu_buffer); 3719 /* The commit page can not change after this */ 3720 3721 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3722 /* 3723 * Due to the ability to swap a cpu buffer from a buffer 3724 * it is possible it was swapped before we committed. 3725 * (committing stops a swap). We check for it here and 3726 * if it happened, we have to fail the write. 3727 */ 3728 barrier(); 3729 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3730 local_dec(&cpu_buffer->committing); 3731 local_dec(&cpu_buffer->commits); 3732 return NULL; 3733 } 3734 #endif 3735 3736 info.length = rb_calculate_event_length(length); 3737 3738 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3739 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3740 info.length += RB_LEN_TIME_EXTEND; 3741 } else { 3742 add_ts_default = RB_ADD_STAMP_NONE; 3743 } 3744 3745 again: 3746 info.add_timestamp = add_ts_default; 3747 info.delta = 0; 3748 3749 /* 3750 * We allow for interrupts to reenter here and do a trace. 3751 * If one does, it will cause this original code to loop 3752 * back here. Even with heavy interrupts happening, this 3753 * should only happen a few times in a row. If this happens 3754 * 1000 times in a row, there must be either an interrupt 3755 * storm or we have something buggy. 3756 * Bail! 3757 */ 3758 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3759 goto out_fail; 3760 3761 event = __rb_reserve_next(cpu_buffer, &info); 3762 3763 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3764 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3765 info.length -= RB_LEN_TIME_EXTEND; 3766 goto again; 3767 } 3768 3769 if (likely(event)) 3770 return event; 3771 out_fail: 3772 rb_end_commit(cpu_buffer); 3773 return NULL; 3774 } 3775 3776 /** 3777 * ring_buffer_lock_reserve - reserve a part of the buffer 3778 * @buffer: the ring buffer to reserve from 3779 * @length: the length of the data to reserve (excluding event header) 3780 * 3781 * Returns a reserved event on the ring buffer to copy directly to. 3782 * The user of this interface will need to get the body to write into 3783 * and can use the ring_buffer_event_data() interface. 3784 * 3785 * The length is the length of the data needed, not the event length 3786 * which also includes the event header. 3787 * 3788 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3789 * If NULL is returned, then nothing has been allocated or locked. 3790 */ 3791 struct ring_buffer_event * 3792 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3793 { 3794 struct ring_buffer_per_cpu *cpu_buffer; 3795 struct ring_buffer_event *event; 3796 int cpu; 3797 3798 /* If we are tracing schedule, we don't want to recurse */ 3799 preempt_disable_notrace(); 3800 3801 if (unlikely(atomic_read(&buffer->record_disabled))) 3802 goto out; 3803 3804 cpu = raw_smp_processor_id(); 3805 3806 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3807 goto out; 3808 3809 cpu_buffer = buffer->buffers[cpu]; 3810 3811 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3812 goto out; 3813 3814 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3815 goto out; 3816 3817 if (unlikely(trace_recursive_lock(cpu_buffer))) 3818 goto out; 3819 3820 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3821 if (!event) 3822 goto out_unlock; 3823 3824 return event; 3825 3826 out_unlock: 3827 trace_recursive_unlock(cpu_buffer); 3828 out: 3829 preempt_enable_notrace(); 3830 return NULL; 3831 } 3832 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3833 3834 /* 3835 * Decrement the entries to the page that an event is on. 3836 * The event does not even need to exist, only the pointer 3837 * to the page it is on. This may only be called before the commit 3838 * takes place. 3839 */ 3840 static inline void 3841 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3842 struct ring_buffer_event *event) 3843 { 3844 unsigned long addr = (unsigned long)event; 3845 struct buffer_page *bpage = cpu_buffer->commit_page; 3846 struct buffer_page *start; 3847 3848 addr &= PAGE_MASK; 3849 3850 /* Do the likely case first */ 3851 if (likely(bpage->page == (void *)addr)) { 3852 local_dec(&bpage->entries); 3853 return; 3854 } 3855 3856 /* 3857 * Because the commit page may be on the reader page we 3858 * start with the next page and check the end loop there. 3859 */ 3860 rb_inc_page(&bpage); 3861 start = bpage; 3862 do { 3863 if (bpage->page == (void *)addr) { 3864 local_dec(&bpage->entries); 3865 return; 3866 } 3867 rb_inc_page(&bpage); 3868 } while (bpage != start); 3869 3870 /* commit not part of this buffer?? */ 3871 RB_WARN_ON(cpu_buffer, 1); 3872 } 3873 3874 /** 3875 * ring_buffer_discard_commit - discard an event that has not been committed 3876 * @buffer: the ring buffer 3877 * @event: non committed event to discard 3878 * 3879 * Sometimes an event that is in the ring buffer needs to be ignored. 3880 * This function lets the user discard an event in the ring buffer 3881 * and then that event will not be read later. 3882 * 3883 * This function only works if it is called before the item has been 3884 * committed. It will try to free the event from the ring buffer 3885 * if another event has not been added behind it. 3886 * 3887 * If another event has been added behind it, it will set the event 3888 * up as discarded, and perform the commit. 3889 * 3890 * If this function is called, do not call ring_buffer_unlock_commit on 3891 * the event. 3892 */ 3893 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3894 struct ring_buffer_event *event) 3895 { 3896 struct ring_buffer_per_cpu *cpu_buffer; 3897 int cpu; 3898 3899 /* The event is discarded regardless */ 3900 rb_event_discard(event); 3901 3902 cpu = smp_processor_id(); 3903 cpu_buffer = buffer->buffers[cpu]; 3904 3905 /* 3906 * This must only be called if the event has not been 3907 * committed yet. Thus we can assume that preemption 3908 * is still disabled. 3909 */ 3910 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3911 3912 rb_decrement_entry(cpu_buffer, event); 3913 if (rb_try_to_discard(cpu_buffer, event)) 3914 goto out; 3915 3916 out: 3917 rb_end_commit(cpu_buffer); 3918 3919 trace_recursive_unlock(cpu_buffer); 3920 3921 preempt_enable_notrace(); 3922 3923 } 3924 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3925 3926 /** 3927 * ring_buffer_write - write data to the buffer without reserving 3928 * @buffer: The ring buffer to write to. 3929 * @length: The length of the data being written (excluding the event header) 3930 * @data: The data to write to the buffer. 3931 * 3932 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3933 * one function. If you already have the data to write to the buffer, it 3934 * may be easier to simply call this function. 3935 * 3936 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3937 * and not the length of the event which would hold the header. 3938 */ 3939 int ring_buffer_write(struct trace_buffer *buffer, 3940 unsigned long length, 3941 void *data) 3942 { 3943 struct ring_buffer_per_cpu *cpu_buffer; 3944 struct ring_buffer_event *event; 3945 void *body; 3946 int ret = -EBUSY; 3947 int cpu; 3948 3949 preempt_disable_notrace(); 3950 3951 if (atomic_read(&buffer->record_disabled)) 3952 goto out; 3953 3954 cpu = raw_smp_processor_id(); 3955 3956 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3957 goto out; 3958 3959 cpu_buffer = buffer->buffers[cpu]; 3960 3961 if (atomic_read(&cpu_buffer->record_disabled)) 3962 goto out; 3963 3964 if (length > BUF_MAX_DATA_SIZE) 3965 goto out; 3966 3967 if (unlikely(trace_recursive_lock(cpu_buffer))) 3968 goto out; 3969 3970 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3971 if (!event) 3972 goto out_unlock; 3973 3974 body = rb_event_data(event); 3975 3976 memcpy(body, data, length); 3977 3978 rb_commit(cpu_buffer); 3979 3980 rb_wakeups(buffer, cpu_buffer); 3981 3982 ret = 0; 3983 3984 out_unlock: 3985 trace_recursive_unlock(cpu_buffer); 3986 3987 out: 3988 preempt_enable_notrace(); 3989 3990 return ret; 3991 } 3992 EXPORT_SYMBOL_GPL(ring_buffer_write); 3993 3994 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3995 { 3996 struct buffer_page *reader = cpu_buffer->reader_page; 3997 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3998 struct buffer_page *commit = cpu_buffer->commit_page; 3999 4000 /* In case of error, head will be NULL */ 4001 if (unlikely(!head)) 4002 return true; 4003 4004 /* Reader should exhaust content in reader page */ 4005 if (reader->read != rb_page_commit(reader)) 4006 return false; 4007 4008 /* 4009 * If writers are committing on the reader page, knowing all 4010 * committed content has been read, the ring buffer is empty. 4011 */ 4012 if (commit == reader) 4013 return true; 4014 4015 /* 4016 * If writers are committing on a page other than reader page 4017 * and head page, there should always be content to read. 4018 */ 4019 if (commit != head) 4020 return false; 4021 4022 /* 4023 * Writers are committing on the head page, we just need 4024 * to care about there're committed data, and the reader will 4025 * swap reader page with head page when it is to read data. 4026 */ 4027 return rb_page_commit(commit) == 0; 4028 } 4029 4030 /** 4031 * ring_buffer_record_disable - stop all writes into the buffer 4032 * @buffer: The ring buffer to stop writes to. 4033 * 4034 * This prevents all writes to the buffer. Any attempt to write 4035 * to the buffer after this will fail and return NULL. 4036 * 4037 * The caller should call synchronize_rcu() after this. 4038 */ 4039 void ring_buffer_record_disable(struct trace_buffer *buffer) 4040 { 4041 atomic_inc(&buffer->record_disabled); 4042 } 4043 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4044 4045 /** 4046 * ring_buffer_record_enable - enable writes to the buffer 4047 * @buffer: The ring buffer to enable writes 4048 * 4049 * Note, multiple disables will need the same number of enables 4050 * to truly enable the writing (much like preempt_disable). 4051 */ 4052 void ring_buffer_record_enable(struct trace_buffer *buffer) 4053 { 4054 atomic_dec(&buffer->record_disabled); 4055 } 4056 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4057 4058 /** 4059 * ring_buffer_record_off - stop all writes into the buffer 4060 * @buffer: The ring buffer to stop writes to. 4061 * 4062 * This prevents all writes to the buffer. Any attempt to write 4063 * to the buffer after this will fail and return NULL. 4064 * 4065 * This is different than ring_buffer_record_disable() as 4066 * it works like an on/off switch, where as the disable() version 4067 * must be paired with a enable(). 4068 */ 4069 void ring_buffer_record_off(struct trace_buffer *buffer) 4070 { 4071 unsigned int rd; 4072 unsigned int new_rd; 4073 4074 rd = atomic_read(&buffer->record_disabled); 4075 do { 4076 new_rd = rd | RB_BUFFER_OFF; 4077 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4078 } 4079 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4080 4081 /** 4082 * ring_buffer_record_on - restart writes into the buffer 4083 * @buffer: The ring buffer to start writes to. 4084 * 4085 * This enables all writes to the buffer that was disabled by 4086 * ring_buffer_record_off(). 4087 * 4088 * This is different than ring_buffer_record_enable() as 4089 * it works like an on/off switch, where as the enable() version 4090 * must be paired with a disable(). 4091 */ 4092 void ring_buffer_record_on(struct trace_buffer *buffer) 4093 { 4094 unsigned int rd; 4095 unsigned int new_rd; 4096 4097 rd = atomic_read(&buffer->record_disabled); 4098 do { 4099 new_rd = rd & ~RB_BUFFER_OFF; 4100 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4101 } 4102 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4103 4104 /** 4105 * ring_buffer_record_is_on - return true if the ring buffer can write 4106 * @buffer: The ring buffer to see if write is enabled 4107 * 4108 * Returns true if the ring buffer is in a state that it accepts writes. 4109 */ 4110 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4111 { 4112 return !atomic_read(&buffer->record_disabled); 4113 } 4114 4115 /** 4116 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4117 * @buffer: The ring buffer to see if write is set enabled 4118 * 4119 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4120 * Note that this does NOT mean it is in a writable state. 4121 * 4122 * It may return true when the ring buffer has been disabled by 4123 * ring_buffer_record_disable(), as that is a temporary disabling of 4124 * the ring buffer. 4125 */ 4126 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4127 { 4128 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4129 } 4130 4131 /** 4132 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4133 * @buffer: The ring buffer to stop writes to. 4134 * @cpu: The CPU buffer to stop 4135 * 4136 * This prevents all writes to the buffer. Any attempt to write 4137 * to the buffer after this will fail and return NULL. 4138 * 4139 * The caller should call synchronize_rcu() after this. 4140 */ 4141 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4142 { 4143 struct ring_buffer_per_cpu *cpu_buffer; 4144 4145 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4146 return; 4147 4148 cpu_buffer = buffer->buffers[cpu]; 4149 atomic_inc(&cpu_buffer->record_disabled); 4150 } 4151 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4152 4153 /** 4154 * ring_buffer_record_enable_cpu - enable writes to the buffer 4155 * @buffer: The ring buffer to enable writes 4156 * @cpu: The CPU to enable. 4157 * 4158 * Note, multiple disables will need the same number of enables 4159 * to truly enable the writing (much like preempt_disable). 4160 */ 4161 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4162 { 4163 struct ring_buffer_per_cpu *cpu_buffer; 4164 4165 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4166 return; 4167 4168 cpu_buffer = buffer->buffers[cpu]; 4169 atomic_dec(&cpu_buffer->record_disabled); 4170 } 4171 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4172 4173 /* 4174 * The total entries in the ring buffer is the running counter 4175 * of entries entered into the ring buffer, minus the sum of 4176 * the entries read from the ring buffer and the number of 4177 * entries that were overwritten. 4178 */ 4179 static inline unsigned long 4180 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4181 { 4182 return local_read(&cpu_buffer->entries) - 4183 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4184 } 4185 4186 /** 4187 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4188 * @buffer: The ring buffer 4189 * @cpu: The per CPU buffer to read from. 4190 */ 4191 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4192 { 4193 unsigned long flags; 4194 struct ring_buffer_per_cpu *cpu_buffer; 4195 struct buffer_page *bpage; 4196 u64 ret = 0; 4197 4198 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4199 return 0; 4200 4201 cpu_buffer = buffer->buffers[cpu]; 4202 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4203 /* 4204 * if the tail is on reader_page, oldest time stamp is on the reader 4205 * page 4206 */ 4207 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4208 bpage = cpu_buffer->reader_page; 4209 else 4210 bpage = rb_set_head_page(cpu_buffer); 4211 if (bpage) 4212 ret = bpage->page->time_stamp; 4213 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4214 4215 return ret; 4216 } 4217 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4218 4219 /** 4220 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 4221 * @buffer: The ring buffer 4222 * @cpu: The per CPU buffer to read from. 4223 */ 4224 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4225 { 4226 struct ring_buffer_per_cpu *cpu_buffer; 4227 unsigned long ret; 4228 4229 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4230 return 0; 4231 4232 cpu_buffer = buffer->buffers[cpu]; 4233 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4234 4235 return ret; 4236 } 4237 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4238 4239 /** 4240 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4241 * @buffer: The ring buffer 4242 * @cpu: The per CPU buffer to get the entries from. 4243 */ 4244 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4245 { 4246 struct ring_buffer_per_cpu *cpu_buffer; 4247 4248 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4249 return 0; 4250 4251 cpu_buffer = buffer->buffers[cpu]; 4252 4253 return rb_num_of_entries(cpu_buffer); 4254 } 4255 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4256 4257 /** 4258 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4259 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4260 * @buffer: The ring buffer 4261 * @cpu: The per CPU buffer to get the number of overruns from 4262 */ 4263 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4264 { 4265 struct ring_buffer_per_cpu *cpu_buffer; 4266 unsigned long ret; 4267 4268 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4269 return 0; 4270 4271 cpu_buffer = buffer->buffers[cpu]; 4272 ret = local_read(&cpu_buffer->overrun); 4273 4274 return ret; 4275 } 4276 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4277 4278 /** 4279 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4280 * commits failing due to the buffer wrapping around while there are uncommitted 4281 * events, such as during an interrupt storm. 4282 * @buffer: The ring buffer 4283 * @cpu: The per CPU buffer to get the number of overruns from 4284 */ 4285 unsigned long 4286 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4287 { 4288 struct ring_buffer_per_cpu *cpu_buffer; 4289 unsigned long ret; 4290 4291 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4292 return 0; 4293 4294 cpu_buffer = buffer->buffers[cpu]; 4295 ret = local_read(&cpu_buffer->commit_overrun); 4296 4297 return ret; 4298 } 4299 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4300 4301 /** 4302 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4303 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4304 * @buffer: The ring buffer 4305 * @cpu: The per CPU buffer to get the number of overruns from 4306 */ 4307 unsigned long 4308 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4309 { 4310 struct ring_buffer_per_cpu *cpu_buffer; 4311 unsigned long ret; 4312 4313 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4314 return 0; 4315 4316 cpu_buffer = buffer->buffers[cpu]; 4317 ret = local_read(&cpu_buffer->dropped_events); 4318 4319 return ret; 4320 } 4321 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4322 4323 /** 4324 * ring_buffer_read_events_cpu - get the number of events successfully read 4325 * @buffer: The ring buffer 4326 * @cpu: The per CPU buffer to get the number of events read 4327 */ 4328 unsigned long 4329 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4330 { 4331 struct ring_buffer_per_cpu *cpu_buffer; 4332 4333 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4334 return 0; 4335 4336 cpu_buffer = buffer->buffers[cpu]; 4337 return cpu_buffer->read; 4338 } 4339 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4340 4341 /** 4342 * ring_buffer_entries - get the number of entries in a buffer 4343 * @buffer: The ring buffer 4344 * 4345 * Returns the total number of entries in the ring buffer 4346 * (all CPU entries) 4347 */ 4348 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4349 { 4350 struct ring_buffer_per_cpu *cpu_buffer; 4351 unsigned long entries = 0; 4352 int cpu; 4353 4354 /* if you care about this being correct, lock the buffer */ 4355 for_each_buffer_cpu(buffer, cpu) { 4356 cpu_buffer = buffer->buffers[cpu]; 4357 entries += rb_num_of_entries(cpu_buffer); 4358 } 4359 4360 return entries; 4361 } 4362 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4363 4364 /** 4365 * ring_buffer_overruns - get the number of overruns in buffer 4366 * @buffer: The ring buffer 4367 * 4368 * Returns the total number of overruns in the ring buffer 4369 * (all CPU entries) 4370 */ 4371 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4372 { 4373 struct ring_buffer_per_cpu *cpu_buffer; 4374 unsigned long overruns = 0; 4375 int cpu; 4376 4377 /* if you care about this being correct, lock the buffer */ 4378 for_each_buffer_cpu(buffer, cpu) { 4379 cpu_buffer = buffer->buffers[cpu]; 4380 overruns += local_read(&cpu_buffer->overrun); 4381 } 4382 4383 return overruns; 4384 } 4385 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4386 4387 static void rb_iter_reset(struct ring_buffer_iter *iter) 4388 { 4389 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4390 4391 /* Iterator usage is expected to have record disabled */ 4392 iter->head_page = cpu_buffer->reader_page; 4393 iter->head = cpu_buffer->reader_page->read; 4394 iter->next_event = iter->head; 4395 4396 iter->cache_reader_page = iter->head_page; 4397 iter->cache_read = cpu_buffer->read; 4398 4399 if (iter->head) { 4400 iter->read_stamp = cpu_buffer->read_stamp; 4401 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4402 } else { 4403 iter->read_stamp = iter->head_page->page->time_stamp; 4404 iter->page_stamp = iter->read_stamp; 4405 } 4406 } 4407 4408 /** 4409 * ring_buffer_iter_reset - reset an iterator 4410 * @iter: The iterator to reset 4411 * 4412 * Resets the iterator, so that it will start from the beginning 4413 * again. 4414 */ 4415 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4416 { 4417 struct ring_buffer_per_cpu *cpu_buffer; 4418 unsigned long flags; 4419 4420 if (!iter) 4421 return; 4422 4423 cpu_buffer = iter->cpu_buffer; 4424 4425 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4426 rb_iter_reset(iter); 4427 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4428 } 4429 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4430 4431 /** 4432 * ring_buffer_iter_empty - check if an iterator has no more to read 4433 * @iter: The iterator to check 4434 */ 4435 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4436 { 4437 struct ring_buffer_per_cpu *cpu_buffer; 4438 struct buffer_page *reader; 4439 struct buffer_page *head_page; 4440 struct buffer_page *commit_page; 4441 struct buffer_page *curr_commit_page; 4442 unsigned commit; 4443 u64 curr_commit_ts; 4444 u64 commit_ts; 4445 4446 cpu_buffer = iter->cpu_buffer; 4447 reader = cpu_buffer->reader_page; 4448 head_page = cpu_buffer->head_page; 4449 commit_page = cpu_buffer->commit_page; 4450 commit_ts = commit_page->page->time_stamp; 4451 4452 /* 4453 * When the writer goes across pages, it issues a cmpxchg which 4454 * is a mb(), which will synchronize with the rmb here. 4455 * (see rb_tail_page_update()) 4456 */ 4457 smp_rmb(); 4458 commit = rb_page_commit(commit_page); 4459 /* We want to make sure that the commit page doesn't change */ 4460 smp_rmb(); 4461 4462 /* Make sure commit page didn't change */ 4463 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4464 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4465 4466 /* If the commit page changed, then there's more data */ 4467 if (curr_commit_page != commit_page || 4468 curr_commit_ts != commit_ts) 4469 return 0; 4470 4471 /* Still racy, as it may return a false positive, but that's OK */ 4472 return ((iter->head_page == commit_page && iter->head >= commit) || 4473 (iter->head_page == reader && commit_page == head_page && 4474 head_page->read == commit && 4475 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4476 } 4477 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4478 4479 static void 4480 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4481 struct ring_buffer_event *event) 4482 { 4483 u64 delta; 4484 4485 switch (event->type_len) { 4486 case RINGBUF_TYPE_PADDING: 4487 return; 4488 4489 case RINGBUF_TYPE_TIME_EXTEND: 4490 delta = rb_event_time_stamp(event); 4491 cpu_buffer->read_stamp += delta; 4492 return; 4493 4494 case RINGBUF_TYPE_TIME_STAMP: 4495 delta = rb_event_time_stamp(event); 4496 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4497 cpu_buffer->read_stamp = delta; 4498 return; 4499 4500 case RINGBUF_TYPE_DATA: 4501 cpu_buffer->read_stamp += event->time_delta; 4502 return; 4503 4504 default: 4505 RB_WARN_ON(cpu_buffer, 1); 4506 } 4507 } 4508 4509 static void 4510 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4511 struct ring_buffer_event *event) 4512 { 4513 u64 delta; 4514 4515 switch (event->type_len) { 4516 case RINGBUF_TYPE_PADDING: 4517 return; 4518 4519 case RINGBUF_TYPE_TIME_EXTEND: 4520 delta = rb_event_time_stamp(event); 4521 iter->read_stamp += delta; 4522 return; 4523 4524 case RINGBUF_TYPE_TIME_STAMP: 4525 delta = rb_event_time_stamp(event); 4526 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4527 iter->read_stamp = delta; 4528 return; 4529 4530 case RINGBUF_TYPE_DATA: 4531 iter->read_stamp += event->time_delta; 4532 return; 4533 4534 default: 4535 RB_WARN_ON(iter->cpu_buffer, 1); 4536 } 4537 } 4538 4539 static struct buffer_page * 4540 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4541 { 4542 struct buffer_page *reader = NULL; 4543 unsigned long overwrite; 4544 unsigned long flags; 4545 int nr_loops = 0; 4546 bool ret; 4547 4548 local_irq_save(flags); 4549 arch_spin_lock(&cpu_buffer->lock); 4550 4551 again: 4552 /* 4553 * This should normally only loop twice. But because the 4554 * start of the reader inserts an empty page, it causes 4555 * a case where we will loop three times. There should be no 4556 * reason to loop four times (that I know of). 4557 */ 4558 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4559 reader = NULL; 4560 goto out; 4561 } 4562 4563 reader = cpu_buffer->reader_page; 4564 4565 /* If there's more to read, return this page */ 4566 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4567 goto out; 4568 4569 /* Never should we have an index greater than the size */ 4570 if (RB_WARN_ON(cpu_buffer, 4571 cpu_buffer->reader_page->read > rb_page_size(reader))) 4572 goto out; 4573 4574 /* check if we caught up to the tail */ 4575 reader = NULL; 4576 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4577 goto out; 4578 4579 /* Don't bother swapping if the ring buffer is empty */ 4580 if (rb_num_of_entries(cpu_buffer) == 0) 4581 goto out; 4582 4583 /* 4584 * Reset the reader page to size zero. 4585 */ 4586 local_set(&cpu_buffer->reader_page->write, 0); 4587 local_set(&cpu_buffer->reader_page->entries, 0); 4588 local_set(&cpu_buffer->reader_page->page->commit, 0); 4589 cpu_buffer->reader_page->real_end = 0; 4590 4591 spin: 4592 /* 4593 * Splice the empty reader page into the list around the head. 4594 */ 4595 reader = rb_set_head_page(cpu_buffer); 4596 if (!reader) 4597 goto out; 4598 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4599 cpu_buffer->reader_page->list.prev = reader->list.prev; 4600 4601 /* 4602 * cpu_buffer->pages just needs to point to the buffer, it 4603 * has no specific buffer page to point to. Lets move it out 4604 * of our way so we don't accidentally swap it. 4605 */ 4606 cpu_buffer->pages = reader->list.prev; 4607 4608 /* The reader page will be pointing to the new head */ 4609 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4610 4611 /* 4612 * We want to make sure we read the overruns after we set up our 4613 * pointers to the next object. The writer side does a 4614 * cmpxchg to cross pages which acts as the mb on the writer 4615 * side. Note, the reader will constantly fail the swap 4616 * while the writer is updating the pointers, so this 4617 * guarantees that the overwrite recorded here is the one we 4618 * want to compare with the last_overrun. 4619 */ 4620 smp_mb(); 4621 overwrite = local_read(&(cpu_buffer->overrun)); 4622 4623 /* 4624 * Here's the tricky part. 4625 * 4626 * We need to move the pointer past the header page. 4627 * But we can only do that if a writer is not currently 4628 * moving it. The page before the header page has the 4629 * flag bit '1' set if it is pointing to the page we want. 4630 * but if the writer is in the process of moving it 4631 * than it will be '2' or already moved '0'. 4632 */ 4633 4634 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4635 4636 /* 4637 * If we did not convert it, then we must try again. 4638 */ 4639 if (!ret) 4640 goto spin; 4641 4642 /* 4643 * Yay! We succeeded in replacing the page. 4644 * 4645 * Now make the new head point back to the reader page. 4646 */ 4647 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4648 rb_inc_page(&cpu_buffer->head_page); 4649 4650 local_inc(&cpu_buffer->pages_read); 4651 4652 /* Finally update the reader page to the new head */ 4653 cpu_buffer->reader_page = reader; 4654 cpu_buffer->reader_page->read = 0; 4655 4656 if (overwrite != cpu_buffer->last_overrun) { 4657 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4658 cpu_buffer->last_overrun = overwrite; 4659 } 4660 4661 goto again; 4662 4663 out: 4664 /* Update the read_stamp on the first event */ 4665 if (reader && reader->read == 0) 4666 cpu_buffer->read_stamp = reader->page->time_stamp; 4667 4668 arch_spin_unlock(&cpu_buffer->lock); 4669 local_irq_restore(flags); 4670 4671 /* 4672 * The writer has preempt disable, wait for it. But not forever 4673 * Although, 1 second is pretty much "forever" 4674 */ 4675 #define USECS_WAIT 1000000 4676 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4677 /* If the write is past the end of page, a writer is still updating it */ 4678 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE)) 4679 break; 4680 4681 udelay(1); 4682 4683 /* Get the latest version of the reader write value */ 4684 smp_rmb(); 4685 } 4686 4687 /* The writer is not moving forward? Something is wrong */ 4688 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4689 reader = NULL; 4690 4691 /* 4692 * Make sure we see any padding after the write update 4693 * (see rb_reset_tail()). 4694 * 4695 * In addition, a writer may be writing on the reader page 4696 * if the page has not been fully filled, so the read barrier 4697 * is also needed to make sure we see the content of what is 4698 * committed by the writer (see rb_set_commit_to_write()). 4699 */ 4700 smp_rmb(); 4701 4702 4703 return reader; 4704 } 4705 4706 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4707 { 4708 struct ring_buffer_event *event; 4709 struct buffer_page *reader; 4710 unsigned length; 4711 4712 reader = rb_get_reader_page(cpu_buffer); 4713 4714 /* This function should not be called when buffer is empty */ 4715 if (RB_WARN_ON(cpu_buffer, !reader)) 4716 return; 4717 4718 event = rb_reader_event(cpu_buffer); 4719 4720 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4721 cpu_buffer->read++; 4722 4723 rb_update_read_stamp(cpu_buffer, event); 4724 4725 length = rb_event_length(event); 4726 cpu_buffer->reader_page->read += length; 4727 } 4728 4729 static void rb_advance_iter(struct ring_buffer_iter *iter) 4730 { 4731 struct ring_buffer_per_cpu *cpu_buffer; 4732 4733 cpu_buffer = iter->cpu_buffer; 4734 4735 /* If head == next_event then we need to jump to the next event */ 4736 if (iter->head == iter->next_event) { 4737 /* If the event gets overwritten again, there's nothing to do */ 4738 if (rb_iter_head_event(iter) == NULL) 4739 return; 4740 } 4741 4742 iter->head = iter->next_event; 4743 4744 /* 4745 * Check if we are at the end of the buffer. 4746 */ 4747 if (iter->next_event >= rb_page_size(iter->head_page)) { 4748 /* discarded commits can make the page empty */ 4749 if (iter->head_page == cpu_buffer->commit_page) 4750 return; 4751 rb_inc_iter(iter); 4752 return; 4753 } 4754 4755 rb_update_iter_read_stamp(iter, iter->event); 4756 } 4757 4758 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4759 { 4760 return cpu_buffer->lost_events; 4761 } 4762 4763 static struct ring_buffer_event * 4764 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4765 unsigned long *lost_events) 4766 { 4767 struct ring_buffer_event *event; 4768 struct buffer_page *reader; 4769 int nr_loops = 0; 4770 4771 if (ts) 4772 *ts = 0; 4773 again: 4774 /* 4775 * We repeat when a time extend is encountered. 4776 * Since the time extend is always attached to a data event, 4777 * we should never loop more than once. 4778 * (We never hit the following condition more than twice). 4779 */ 4780 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4781 return NULL; 4782 4783 reader = rb_get_reader_page(cpu_buffer); 4784 if (!reader) 4785 return NULL; 4786 4787 event = rb_reader_event(cpu_buffer); 4788 4789 switch (event->type_len) { 4790 case RINGBUF_TYPE_PADDING: 4791 if (rb_null_event(event)) 4792 RB_WARN_ON(cpu_buffer, 1); 4793 /* 4794 * Because the writer could be discarding every 4795 * event it creates (which would probably be bad) 4796 * if we were to go back to "again" then we may never 4797 * catch up, and will trigger the warn on, or lock 4798 * the box. Return the padding, and we will release 4799 * the current locks, and try again. 4800 */ 4801 return event; 4802 4803 case RINGBUF_TYPE_TIME_EXTEND: 4804 /* Internal data, OK to advance */ 4805 rb_advance_reader(cpu_buffer); 4806 goto again; 4807 4808 case RINGBUF_TYPE_TIME_STAMP: 4809 if (ts) { 4810 *ts = rb_event_time_stamp(event); 4811 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4812 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4813 cpu_buffer->cpu, ts); 4814 } 4815 /* Internal data, OK to advance */ 4816 rb_advance_reader(cpu_buffer); 4817 goto again; 4818 4819 case RINGBUF_TYPE_DATA: 4820 if (ts && !(*ts)) { 4821 *ts = cpu_buffer->read_stamp + event->time_delta; 4822 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4823 cpu_buffer->cpu, ts); 4824 } 4825 if (lost_events) 4826 *lost_events = rb_lost_events(cpu_buffer); 4827 return event; 4828 4829 default: 4830 RB_WARN_ON(cpu_buffer, 1); 4831 } 4832 4833 return NULL; 4834 } 4835 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4836 4837 static struct ring_buffer_event * 4838 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4839 { 4840 struct trace_buffer *buffer; 4841 struct ring_buffer_per_cpu *cpu_buffer; 4842 struct ring_buffer_event *event; 4843 int nr_loops = 0; 4844 4845 if (ts) 4846 *ts = 0; 4847 4848 cpu_buffer = iter->cpu_buffer; 4849 buffer = cpu_buffer->buffer; 4850 4851 /* 4852 * Check if someone performed a consuming read to 4853 * the buffer. A consuming read invalidates the iterator 4854 * and we need to reset the iterator in this case. 4855 */ 4856 if (unlikely(iter->cache_read != cpu_buffer->read || 4857 iter->cache_reader_page != cpu_buffer->reader_page)) 4858 rb_iter_reset(iter); 4859 4860 again: 4861 if (ring_buffer_iter_empty(iter)) 4862 return NULL; 4863 4864 /* 4865 * As the writer can mess with what the iterator is trying 4866 * to read, just give up if we fail to get an event after 4867 * three tries. The iterator is not as reliable when reading 4868 * the ring buffer with an active write as the consumer is. 4869 * Do not warn if the three failures is reached. 4870 */ 4871 if (++nr_loops > 3) 4872 return NULL; 4873 4874 if (rb_per_cpu_empty(cpu_buffer)) 4875 return NULL; 4876 4877 if (iter->head >= rb_page_size(iter->head_page)) { 4878 rb_inc_iter(iter); 4879 goto again; 4880 } 4881 4882 event = rb_iter_head_event(iter); 4883 if (!event) 4884 goto again; 4885 4886 switch (event->type_len) { 4887 case RINGBUF_TYPE_PADDING: 4888 if (rb_null_event(event)) { 4889 rb_inc_iter(iter); 4890 goto again; 4891 } 4892 rb_advance_iter(iter); 4893 return event; 4894 4895 case RINGBUF_TYPE_TIME_EXTEND: 4896 /* Internal data, OK to advance */ 4897 rb_advance_iter(iter); 4898 goto again; 4899 4900 case RINGBUF_TYPE_TIME_STAMP: 4901 if (ts) { 4902 *ts = rb_event_time_stamp(event); 4903 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4904 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4905 cpu_buffer->cpu, ts); 4906 } 4907 /* Internal data, OK to advance */ 4908 rb_advance_iter(iter); 4909 goto again; 4910 4911 case RINGBUF_TYPE_DATA: 4912 if (ts && !(*ts)) { 4913 *ts = iter->read_stamp + event->time_delta; 4914 ring_buffer_normalize_time_stamp(buffer, 4915 cpu_buffer->cpu, ts); 4916 } 4917 return event; 4918 4919 default: 4920 RB_WARN_ON(cpu_buffer, 1); 4921 } 4922 4923 return NULL; 4924 } 4925 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4926 4927 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4928 { 4929 if (likely(!in_nmi())) { 4930 raw_spin_lock(&cpu_buffer->reader_lock); 4931 return true; 4932 } 4933 4934 /* 4935 * If an NMI die dumps out the content of the ring buffer 4936 * trylock must be used to prevent a deadlock if the NMI 4937 * preempted a task that holds the ring buffer locks. If 4938 * we get the lock then all is fine, if not, then continue 4939 * to do the read, but this can corrupt the ring buffer, 4940 * so it must be permanently disabled from future writes. 4941 * Reading from NMI is a oneshot deal. 4942 */ 4943 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4944 return true; 4945 4946 /* Continue without locking, but disable the ring buffer */ 4947 atomic_inc(&cpu_buffer->record_disabled); 4948 return false; 4949 } 4950 4951 static inline void 4952 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4953 { 4954 if (likely(locked)) 4955 raw_spin_unlock(&cpu_buffer->reader_lock); 4956 } 4957 4958 /** 4959 * ring_buffer_peek - peek at the next event to be read 4960 * @buffer: The ring buffer to read 4961 * @cpu: The cpu to peak at 4962 * @ts: The timestamp counter of this event. 4963 * @lost_events: a variable to store if events were lost (may be NULL) 4964 * 4965 * This will return the event that will be read next, but does 4966 * not consume the data. 4967 */ 4968 struct ring_buffer_event * 4969 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4970 unsigned long *lost_events) 4971 { 4972 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4973 struct ring_buffer_event *event; 4974 unsigned long flags; 4975 bool dolock; 4976 4977 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4978 return NULL; 4979 4980 again: 4981 local_irq_save(flags); 4982 dolock = rb_reader_lock(cpu_buffer); 4983 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4984 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4985 rb_advance_reader(cpu_buffer); 4986 rb_reader_unlock(cpu_buffer, dolock); 4987 local_irq_restore(flags); 4988 4989 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4990 goto again; 4991 4992 return event; 4993 } 4994 4995 /** ring_buffer_iter_dropped - report if there are dropped events 4996 * @iter: The ring buffer iterator 4997 * 4998 * Returns true if there was dropped events since the last peek. 4999 */ 5000 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5001 { 5002 bool ret = iter->missed_events != 0; 5003 5004 iter->missed_events = 0; 5005 return ret; 5006 } 5007 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5008 5009 /** 5010 * ring_buffer_iter_peek - peek at the next event to be read 5011 * @iter: The ring buffer iterator 5012 * @ts: The timestamp counter of this event. 5013 * 5014 * This will return the event that will be read next, but does 5015 * not increment the iterator. 5016 */ 5017 struct ring_buffer_event * 5018 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5019 { 5020 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5021 struct ring_buffer_event *event; 5022 unsigned long flags; 5023 5024 again: 5025 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5026 event = rb_iter_peek(iter, ts); 5027 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5028 5029 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5030 goto again; 5031 5032 return event; 5033 } 5034 5035 /** 5036 * ring_buffer_consume - return an event and consume it 5037 * @buffer: The ring buffer to get the next event from 5038 * @cpu: the cpu to read the buffer from 5039 * @ts: a variable to store the timestamp (may be NULL) 5040 * @lost_events: a variable to store if events were lost (may be NULL) 5041 * 5042 * Returns the next event in the ring buffer, and that event is consumed. 5043 * Meaning, that sequential reads will keep returning a different event, 5044 * and eventually empty the ring buffer if the producer is slower. 5045 */ 5046 struct ring_buffer_event * 5047 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5048 unsigned long *lost_events) 5049 { 5050 struct ring_buffer_per_cpu *cpu_buffer; 5051 struct ring_buffer_event *event = NULL; 5052 unsigned long flags; 5053 bool dolock; 5054 5055 again: 5056 /* might be called in atomic */ 5057 preempt_disable(); 5058 5059 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5060 goto out; 5061 5062 cpu_buffer = buffer->buffers[cpu]; 5063 local_irq_save(flags); 5064 dolock = rb_reader_lock(cpu_buffer); 5065 5066 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5067 if (event) { 5068 cpu_buffer->lost_events = 0; 5069 rb_advance_reader(cpu_buffer); 5070 } 5071 5072 rb_reader_unlock(cpu_buffer, dolock); 5073 local_irq_restore(flags); 5074 5075 out: 5076 preempt_enable(); 5077 5078 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5079 goto again; 5080 5081 return event; 5082 } 5083 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5084 5085 /** 5086 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5087 * @buffer: The ring buffer to read from 5088 * @cpu: The cpu buffer to iterate over 5089 * @flags: gfp flags to use for memory allocation 5090 * 5091 * This performs the initial preparations necessary to iterate 5092 * through the buffer. Memory is allocated, buffer recording 5093 * is disabled, and the iterator pointer is returned to the caller. 5094 * 5095 * Disabling buffer recording prevents the reading from being 5096 * corrupted. This is not a consuming read, so a producer is not 5097 * expected. 5098 * 5099 * After a sequence of ring_buffer_read_prepare calls, the user is 5100 * expected to make at least one call to ring_buffer_read_prepare_sync. 5101 * Afterwards, ring_buffer_read_start is invoked to get things going 5102 * for real. 5103 * 5104 * This overall must be paired with ring_buffer_read_finish. 5105 */ 5106 struct ring_buffer_iter * 5107 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5108 { 5109 struct ring_buffer_per_cpu *cpu_buffer; 5110 struct ring_buffer_iter *iter; 5111 5112 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5113 return NULL; 5114 5115 iter = kzalloc(sizeof(*iter), flags); 5116 if (!iter) 5117 return NULL; 5118 5119 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 5120 if (!iter->event) { 5121 kfree(iter); 5122 return NULL; 5123 } 5124 5125 cpu_buffer = buffer->buffers[cpu]; 5126 5127 iter->cpu_buffer = cpu_buffer; 5128 5129 atomic_inc(&cpu_buffer->resize_disabled); 5130 5131 return iter; 5132 } 5133 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5134 5135 /** 5136 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5137 * 5138 * All previously invoked ring_buffer_read_prepare calls to prepare 5139 * iterators will be synchronized. Afterwards, read_buffer_read_start 5140 * calls on those iterators are allowed. 5141 */ 5142 void 5143 ring_buffer_read_prepare_sync(void) 5144 { 5145 synchronize_rcu(); 5146 } 5147 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5148 5149 /** 5150 * ring_buffer_read_start - start a non consuming read of the buffer 5151 * @iter: The iterator returned by ring_buffer_read_prepare 5152 * 5153 * This finalizes the startup of an iteration through the buffer. 5154 * The iterator comes from a call to ring_buffer_read_prepare and 5155 * an intervening ring_buffer_read_prepare_sync must have been 5156 * performed. 5157 * 5158 * Must be paired with ring_buffer_read_finish. 5159 */ 5160 void 5161 ring_buffer_read_start(struct ring_buffer_iter *iter) 5162 { 5163 struct ring_buffer_per_cpu *cpu_buffer; 5164 unsigned long flags; 5165 5166 if (!iter) 5167 return; 5168 5169 cpu_buffer = iter->cpu_buffer; 5170 5171 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5172 arch_spin_lock(&cpu_buffer->lock); 5173 rb_iter_reset(iter); 5174 arch_spin_unlock(&cpu_buffer->lock); 5175 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5176 } 5177 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5178 5179 /** 5180 * ring_buffer_read_finish - finish reading the iterator of the buffer 5181 * @iter: The iterator retrieved by ring_buffer_start 5182 * 5183 * This re-enables the recording to the buffer, and frees the 5184 * iterator. 5185 */ 5186 void 5187 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5188 { 5189 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5190 unsigned long flags; 5191 5192 /* 5193 * Ring buffer is disabled from recording, here's a good place 5194 * to check the integrity of the ring buffer. 5195 * Must prevent readers from trying to read, as the check 5196 * clears the HEAD page and readers require it. 5197 */ 5198 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5199 rb_check_pages(cpu_buffer); 5200 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5201 5202 atomic_dec(&cpu_buffer->resize_disabled); 5203 kfree(iter->event); 5204 kfree(iter); 5205 } 5206 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5207 5208 /** 5209 * ring_buffer_iter_advance - advance the iterator to the next location 5210 * @iter: The ring buffer iterator 5211 * 5212 * Move the location of the iterator such that the next read will 5213 * be the next location of the iterator. 5214 */ 5215 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5216 { 5217 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5218 unsigned long flags; 5219 5220 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5221 5222 rb_advance_iter(iter); 5223 5224 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5225 } 5226 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5227 5228 /** 5229 * ring_buffer_size - return the size of the ring buffer (in bytes) 5230 * @buffer: The ring buffer. 5231 * @cpu: The CPU to get ring buffer size from. 5232 */ 5233 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5234 { 5235 /* 5236 * Earlier, this method returned 5237 * BUF_PAGE_SIZE * buffer->nr_pages 5238 * Since the nr_pages field is now removed, we have converted this to 5239 * return the per cpu buffer value. 5240 */ 5241 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5242 return 0; 5243 5244 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 5245 } 5246 EXPORT_SYMBOL_GPL(ring_buffer_size); 5247 5248 static void rb_clear_buffer_page(struct buffer_page *page) 5249 { 5250 local_set(&page->write, 0); 5251 local_set(&page->entries, 0); 5252 rb_init_page(page->page); 5253 page->read = 0; 5254 } 5255 5256 static void 5257 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5258 { 5259 struct buffer_page *page; 5260 5261 rb_head_page_deactivate(cpu_buffer); 5262 5263 cpu_buffer->head_page 5264 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5265 rb_clear_buffer_page(cpu_buffer->head_page); 5266 list_for_each_entry(page, cpu_buffer->pages, list) { 5267 rb_clear_buffer_page(page); 5268 } 5269 5270 cpu_buffer->tail_page = cpu_buffer->head_page; 5271 cpu_buffer->commit_page = cpu_buffer->head_page; 5272 5273 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5274 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5275 rb_clear_buffer_page(cpu_buffer->reader_page); 5276 5277 local_set(&cpu_buffer->entries_bytes, 0); 5278 local_set(&cpu_buffer->overrun, 0); 5279 local_set(&cpu_buffer->commit_overrun, 0); 5280 local_set(&cpu_buffer->dropped_events, 0); 5281 local_set(&cpu_buffer->entries, 0); 5282 local_set(&cpu_buffer->committing, 0); 5283 local_set(&cpu_buffer->commits, 0); 5284 local_set(&cpu_buffer->pages_touched, 0); 5285 local_set(&cpu_buffer->pages_lost, 0); 5286 local_set(&cpu_buffer->pages_read, 0); 5287 cpu_buffer->last_pages_touch = 0; 5288 cpu_buffer->shortest_full = 0; 5289 cpu_buffer->read = 0; 5290 cpu_buffer->read_bytes = 0; 5291 5292 rb_time_set(&cpu_buffer->write_stamp, 0); 5293 rb_time_set(&cpu_buffer->before_stamp, 0); 5294 5295 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5296 5297 cpu_buffer->lost_events = 0; 5298 cpu_buffer->last_overrun = 0; 5299 5300 rb_head_page_activate(cpu_buffer); 5301 } 5302 5303 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5304 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5305 { 5306 unsigned long flags; 5307 5308 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5309 5310 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5311 goto out; 5312 5313 arch_spin_lock(&cpu_buffer->lock); 5314 5315 rb_reset_cpu(cpu_buffer); 5316 5317 arch_spin_unlock(&cpu_buffer->lock); 5318 5319 out: 5320 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5321 } 5322 5323 /** 5324 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5325 * @buffer: The ring buffer to reset a per cpu buffer of 5326 * @cpu: The CPU buffer to be reset 5327 */ 5328 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5329 { 5330 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5331 5332 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5333 return; 5334 5335 /* prevent another thread from changing buffer sizes */ 5336 mutex_lock(&buffer->mutex); 5337 5338 atomic_inc(&cpu_buffer->resize_disabled); 5339 atomic_inc(&cpu_buffer->record_disabled); 5340 5341 /* Make sure all commits have finished */ 5342 synchronize_rcu(); 5343 5344 reset_disabled_cpu_buffer(cpu_buffer); 5345 5346 atomic_dec(&cpu_buffer->record_disabled); 5347 atomic_dec(&cpu_buffer->resize_disabled); 5348 5349 mutex_unlock(&buffer->mutex); 5350 } 5351 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5352 5353 /* Flag to ensure proper resetting of atomic variables */ 5354 #define RESET_BIT (1 << 30) 5355 5356 /** 5357 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5358 * @buffer: The ring buffer to reset a per cpu buffer of 5359 * @cpu: The CPU buffer to be reset 5360 */ 5361 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5362 { 5363 struct ring_buffer_per_cpu *cpu_buffer; 5364 int cpu; 5365 5366 /* prevent another thread from changing buffer sizes */ 5367 mutex_lock(&buffer->mutex); 5368 5369 for_each_online_buffer_cpu(buffer, cpu) { 5370 cpu_buffer = buffer->buffers[cpu]; 5371 5372 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 5373 atomic_inc(&cpu_buffer->record_disabled); 5374 } 5375 5376 /* Make sure all commits have finished */ 5377 synchronize_rcu(); 5378 5379 for_each_buffer_cpu(buffer, cpu) { 5380 cpu_buffer = buffer->buffers[cpu]; 5381 5382 /* 5383 * If a CPU came online during the synchronize_rcu(), then 5384 * ignore it. 5385 */ 5386 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 5387 continue; 5388 5389 reset_disabled_cpu_buffer(cpu_buffer); 5390 5391 atomic_dec(&cpu_buffer->record_disabled); 5392 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 5393 } 5394 5395 mutex_unlock(&buffer->mutex); 5396 } 5397 5398 /** 5399 * ring_buffer_reset - reset a ring buffer 5400 * @buffer: The ring buffer to reset all cpu buffers 5401 */ 5402 void ring_buffer_reset(struct trace_buffer *buffer) 5403 { 5404 struct ring_buffer_per_cpu *cpu_buffer; 5405 int cpu; 5406 5407 /* prevent another thread from changing buffer sizes */ 5408 mutex_lock(&buffer->mutex); 5409 5410 for_each_buffer_cpu(buffer, cpu) { 5411 cpu_buffer = buffer->buffers[cpu]; 5412 5413 atomic_inc(&cpu_buffer->resize_disabled); 5414 atomic_inc(&cpu_buffer->record_disabled); 5415 } 5416 5417 /* Make sure all commits have finished */ 5418 synchronize_rcu(); 5419 5420 for_each_buffer_cpu(buffer, cpu) { 5421 cpu_buffer = buffer->buffers[cpu]; 5422 5423 reset_disabled_cpu_buffer(cpu_buffer); 5424 5425 atomic_dec(&cpu_buffer->record_disabled); 5426 atomic_dec(&cpu_buffer->resize_disabled); 5427 } 5428 5429 mutex_unlock(&buffer->mutex); 5430 } 5431 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5432 5433 /** 5434 * ring_buffer_empty - is the ring buffer empty? 5435 * @buffer: The ring buffer to test 5436 */ 5437 bool ring_buffer_empty(struct trace_buffer *buffer) 5438 { 5439 struct ring_buffer_per_cpu *cpu_buffer; 5440 unsigned long flags; 5441 bool dolock; 5442 bool ret; 5443 int cpu; 5444 5445 /* yes this is racy, but if you don't like the race, lock the buffer */ 5446 for_each_buffer_cpu(buffer, cpu) { 5447 cpu_buffer = buffer->buffers[cpu]; 5448 local_irq_save(flags); 5449 dolock = rb_reader_lock(cpu_buffer); 5450 ret = rb_per_cpu_empty(cpu_buffer); 5451 rb_reader_unlock(cpu_buffer, dolock); 5452 local_irq_restore(flags); 5453 5454 if (!ret) 5455 return false; 5456 } 5457 5458 return true; 5459 } 5460 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5461 5462 /** 5463 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5464 * @buffer: The ring buffer 5465 * @cpu: The CPU buffer to test 5466 */ 5467 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5468 { 5469 struct ring_buffer_per_cpu *cpu_buffer; 5470 unsigned long flags; 5471 bool dolock; 5472 bool ret; 5473 5474 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5475 return true; 5476 5477 cpu_buffer = buffer->buffers[cpu]; 5478 local_irq_save(flags); 5479 dolock = rb_reader_lock(cpu_buffer); 5480 ret = rb_per_cpu_empty(cpu_buffer); 5481 rb_reader_unlock(cpu_buffer, dolock); 5482 local_irq_restore(flags); 5483 5484 return ret; 5485 } 5486 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5487 5488 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5489 /** 5490 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5491 * @buffer_a: One buffer to swap with 5492 * @buffer_b: The other buffer to swap with 5493 * @cpu: the CPU of the buffers to swap 5494 * 5495 * This function is useful for tracers that want to take a "snapshot" 5496 * of a CPU buffer and has another back up buffer lying around. 5497 * it is expected that the tracer handles the cpu buffer not being 5498 * used at the moment. 5499 */ 5500 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5501 struct trace_buffer *buffer_b, int cpu) 5502 { 5503 struct ring_buffer_per_cpu *cpu_buffer_a; 5504 struct ring_buffer_per_cpu *cpu_buffer_b; 5505 int ret = -EINVAL; 5506 5507 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5508 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5509 goto out; 5510 5511 cpu_buffer_a = buffer_a->buffers[cpu]; 5512 cpu_buffer_b = buffer_b->buffers[cpu]; 5513 5514 /* At least make sure the two buffers are somewhat the same */ 5515 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5516 goto out; 5517 5518 ret = -EAGAIN; 5519 5520 if (atomic_read(&buffer_a->record_disabled)) 5521 goto out; 5522 5523 if (atomic_read(&buffer_b->record_disabled)) 5524 goto out; 5525 5526 if (atomic_read(&cpu_buffer_a->record_disabled)) 5527 goto out; 5528 5529 if (atomic_read(&cpu_buffer_b->record_disabled)) 5530 goto out; 5531 5532 /* 5533 * We can't do a synchronize_rcu here because this 5534 * function can be called in atomic context. 5535 * Normally this will be called from the same CPU as cpu. 5536 * If not it's up to the caller to protect this. 5537 */ 5538 atomic_inc(&cpu_buffer_a->record_disabled); 5539 atomic_inc(&cpu_buffer_b->record_disabled); 5540 5541 ret = -EBUSY; 5542 if (local_read(&cpu_buffer_a->committing)) 5543 goto out_dec; 5544 if (local_read(&cpu_buffer_b->committing)) 5545 goto out_dec; 5546 5547 /* 5548 * When resize is in progress, we cannot swap it because 5549 * it will mess the state of the cpu buffer. 5550 */ 5551 if (atomic_read(&buffer_a->resizing)) 5552 goto out_dec; 5553 if (atomic_read(&buffer_b->resizing)) 5554 goto out_dec; 5555 5556 buffer_a->buffers[cpu] = cpu_buffer_b; 5557 buffer_b->buffers[cpu] = cpu_buffer_a; 5558 5559 cpu_buffer_b->buffer = buffer_a; 5560 cpu_buffer_a->buffer = buffer_b; 5561 5562 ret = 0; 5563 5564 out_dec: 5565 atomic_dec(&cpu_buffer_a->record_disabled); 5566 atomic_dec(&cpu_buffer_b->record_disabled); 5567 out: 5568 return ret; 5569 } 5570 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5571 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5572 5573 /** 5574 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5575 * @buffer: the buffer to allocate for. 5576 * @cpu: the cpu buffer to allocate. 5577 * 5578 * This function is used in conjunction with ring_buffer_read_page. 5579 * When reading a full page from the ring buffer, these functions 5580 * can be used to speed up the process. The calling function should 5581 * allocate a few pages first with this function. Then when it 5582 * needs to get pages from the ring buffer, it passes the result 5583 * of this function into ring_buffer_read_page, which will swap 5584 * the page that was allocated, with the read page of the buffer. 5585 * 5586 * Returns: 5587 * The page allocated, or ERR_PTR 5588 */ 5589 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5590 { 5591 struct ring_buffer_per_cpu *cpu_buffer; 5592 struct buffer_data_page *bpage = NULL; 5593 unsigned long flags; 5594 struct page *page; 5595 5596 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5597 return ERR_PTR(-ENODEV); 5598 5599 cpu_buffer = buffer->buffers[cpu]; 5600 local_irq_save(flags); 5601 arch_spin_lock(&cpu_buffer->lock); 5602 5603 if (cpu_buffer->free_page) { 5604 bpage = cpu_buffer->free_page; 5605 cpu_buffer->free_page = NULL; 5606 } 5607 5608 arch_spin_unlock(&cpu_buffer->lock); 5609 local_irq_restore(flags); 5610 5611 if (bpage) 5612 goto out; 5613 5614 page = alloc_pages_node(cpu_to_node(cpu), 5615 GFP_KERNEL | __GFP_NORETRY, 0); 5616 if (!page) 5617 return ERR_PTR(-ENOMEM); 5618 5619 bpage = page_address(page); 5620 5621 out: 5622 rb_init_page(bpage); 5623 5624 return bpage; 5625 } 5626 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5627 5628 /** 5629 * ring_buffer_free_read_page - free an allocated read page 5630 * @buffer: the buffer the page was allocate for 5631 * @cpu: the cpu buffer the page came from 5632 * @data: the page to free 5633 * 5634 * Free a page allocated from ring_buffer_alloc_read_page. 5635 */ 5636 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5637 { 5638 struct ring_buffer_per_cpu *cpu_buffer; 5639 struct buffer_data_page *bpage = data; 5640 struct page *page = virt_to_page(bpage); 5641 unsigned long flags; 5642 5643 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5644 return; 5645 5646 cpu_buffer = buffer->buffers[cpu]; 5647 5648 /* If the page is still in use someplace else, we can't reuse it */ 5649 if (page_ref_count(page) > 1) 5650 goto out; 5651 5652 local_irq_save(flags); 5653 arch_spin_lock(&cpu_buffer->lock); 5654 5655 if (!cpu_buffer->free_page) { 5656 cpu_buffer->free_page = bpage; 5657 bpage = NULL; 5658 } 5659 5660 arch_spin_unlock(&cpu_buffer->lock); 5661 local_irq_restore(flags); 5662 5663 out: 5664 free_page((unsigned long)bpage); 5665 } 5666 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5667 5668 /** 5669 * ring_buffer_read_page - extract a page from the ring buffer 5670 * @buffer: buffer to extract from 5671 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5672 * @len: amount to extract 5673 * @cpu: the cpu of the buffer to extract 5674 * @full: should the extraction only happen when the page is full. 5675 * 5676 * This function will pull out a page from the ring buffer and consume it. 5677 * @data_page must be the address of the variable that was returned 5678 * from ring_buffer_alloc_read_page. This is because the page might be used 5679 * to swap with a page in the ring buffer. 5680 * 5681 * for example: 5682 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5683 * if (IS_ERR(rpage)) 5684 * return PTR_ERR(rpage); 5685 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5686 * if (ret >= 0) 5687 * process_page(rpage, ret); 5688 * 5689 * When @full is set, the function will not return true unless 5690 * the writer is off the reader page. 5691 * 5692 * Note: it is up to the calling functions to handle sleeps and wakeups. 5693 * The ring buffer can be used anywhere in the kernel and can not 5694 * blindly call wake_up. The layer that uses the ring buffer must be 5695 * responsible for that. 5696 * 5697 * Returns: 5698 * >=0 if data has been transferred, returns the offset of consumed data. 5699 * <0 if no data has been transferred. 5700 */ 5701 int ring_buffer_read_page(struct trace_buffer *buffer, 5702 void **data_page, size_t len, int cpu, int full) 5703 { 5704 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5705 struct ring_buffer_event *event; 5706 struct buffer_data_page *bpage; 5707 struct buffer_page *reader; 5708 unsigned long missed_events; 5709 unsigned long flags; 5710 unsigned int commit; 5711 unsigned int read; 5712 u64 save_timestamp; 5713 int ret = -1; 5714 5715 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5716 goto out; 5717 5718 /* 5719 * If len is not big enough to hold the page header, then 5720 * we can not copy anything. 5721 */ 5722 if (len <= BUF_PAGE_HDR_SIZE) 5723 goto out; 5724 5725 len -= BUF_PAGE_HDR_SIZE; 5726 5727 if (!data_page) 5728 goto out; 5729 5730 bpage = *data_page; 5731 if (!bpage) 5732 goto out; 5733 5734 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5735 5736 reader = rb_get_reader_page(cpu_buffer); 5737 if (!reader) 5738 goto out_unlock; 5739 5740 event = rb_reader_event(cpu_buffer); 5741 5742 read = reader->read; 5743 commit = rb_page_commit(reader); 5744 5745 /* Check if any events were dropped */ 5746 missed_events = cpu_buffer->lost_events; 5747 5748 /* 5749 * If this page has been partially read or 5750 * if len is not big enough to read the rest of the page or 5751 * a writer is still on the page, then 5752 * we must copy the data from the page to the buffer. 5753 * Otherwise, we can simply swap the page with the one passed in. 5754 */ 5755 if (read || (len < (commit - read)) || 5756 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5757 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5758 unsigned int rpos = read; 5759 unsigned int pos = 0; 5760 unsigned int size; 5761 5762 /* 5763 * If a full page is expected, this can still be returned 5764 * if there's been a previous partial read and the 5765 * rest of the page can be read and the commit page is off 5766 * the reader page. 5767 */ 5768 if (full && 5769 (!read || (len < (commit - read)) || 5770 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5771 goto out_unlock; 5772 5773 if (len > (commit - read)) 5774 len = (commit - read); 5775 5776 /* Always keep the time extend and data together */ 5777 size = rb_event_ts_length(event); 5778 5779 if (len < size) 5780 goto out_unlock; 5781 5782 /* save the current timestamp, since the user will need it */ 5783 save_timestamp = cpu_buffer->read_stamp; 5784 5785 /* Need to copy one event at a time */ 5786 do { 5787 /* We need the size of one event, because 5788 * rb_advance_reader only advances by one event, 5789 * whereas rb_event_ts_length may include the size of 5790 * one or two events. 5791 * We have already ensured there's enough space if this 5792 * is a time extend. */ 5793 size = rb_event_length(event); 5794 memcpy(bpage->data + pos, rpage->data + rpos, size); 5795 5796 len -= size; 5797 5798 rb_advance_reader(cpu_buffer); 5799 rpos = reader->read; 5800 pos += size; 5801 5802 if (rpos >= commit) 5803 break; 5804 5805 event = rb_reader_event(cpu_buffer); 5806 /* Always keep the time extend and data together */ 5807 size = rb_event_ts_length(event); 5808 } while (len >= size); 5809 5810 /* update bpage */ 5811 local_set(&bpage->commit, pos); 5812 bpage->time_stamp = save_timestamp; 5813 5814 /* we copied everything to the beginning */ 5815 read = 0; 5816 } else { 5817 /* update the entry counter */ 5818 cpu_buffer->read += rb_page_entries(reader); 5819 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5820 5821 /* swap the pages */ 5822 rb_init_page(bpage); 5823 bpage = reader->page; 5824 reader->page = *data_page; 5825 local_set(&reader->write, 0); 5826 local_set(&reader->entries, 0); 5827 reader->read = 0; 5828 *data_page = bpage; 5829 5830 /* 5831 * Use the real_end for the data size, 5832 * This gives us a chance to store the lost events 5833 * on the page. 5834 */ 5835 if (reader->real_end) 5836 local_set(&bpage->commit, reader->real_end); 5837 } 5838 ret = read; 5839 5840 cpu_buffer->lost_events = 0; 5841 5842 commit = local_read(&bpage->commit); 5843 /* 5844 * Set a flag in the commit field if we lost events 5845 */ 5846 if (missed_events) { 5847 /* If there is room at the end of the page to save the 5848 * missed events, then record it there. 5849 */ 5850 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5851 memcpy(&bpage->data[commit], &missed_events, 5852 sizeof(missed_events)); 5853 local_add(RB_MISSED_STORED, &bpage->commit); 5854 commit += sizeof(missed_events); 5855 } 5856 local_add(RB_MISSED_EVENTS, &bpage->commit); 5857 } 5858 5859 /* 5860 * This page may be off to user land. Zero it out here. 5861 */ 5862 if (commit < BUF_PAGE_SIZE) 5863 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5864 5865 out_unlock: 5866 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5867 5868 out: 5869 return ret; 5870 } 5871 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5872 5873 /* 5874 * We only allocate new buffers, never free them if the CPU goes down. 5875 * If we were to free the buffer, then the user would lose any trace that was in 5876 * the buffer. 5877 */ 5878 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5879 { 5880 struct trace_buffer *buffer; 5881 long nr_pages_same; 5882 int cpu_i; 5883 unsigned long nr_pages; 5884 5885 buffer = container_of(node, struct trace_buffer, node); 5886 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5887 return 0; 5888 5889 nr_pages = 0; 5890 nr_pages_same = 1; 5891 /* check if all cpu sizes are same */ 5892 for_each_buffer_cpu(buffer, cpu_i) { 5893 /* fill in the size from first enabled cpu */ 5894 if (nr_pages == 0) 5895 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5896 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5897 nr_pages_same = 0; 5898 break; 5899 } 5900 } 5901 /* allocate minimum pages, user can later expand it */ 5902 if (!nr_pages_same) 5903 nr_pages = 2; 5904 buffer->buffers[cpu] = 5905 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5906 if (!buffer->buffers[cpu]) { 5907 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5908 cpu); 5909 return -ENOMEM; 5910 } 5911 smp_wmb(); 5912 cpumask_set_cpu(cpu, buffer->cpumask); 5913 return 0; 5914 } 5915 5916 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5917 /* 5918 * This is a basic integrity check of the ring buffer. 5919 * Late in the boot cycle this test will run when configured in. 5920 * It will kick off a thread per CPU that will go into a loop 5921 * writing to the per cpu ring buffer various sizes of data. 5922 * Some of the data will be large items, some small. 5923 * 5924 * Another thread is created that goes into a spin, sending out 5925 * IPIs to the other CPUs to also write into the ring buffer. 5926 * this is to test the nesting ability of the buffer. 5927 * 5928 * Basic stats are recorded and reported. If something in the 5929 * ring buffer should happen that's not expected, a big warning 5930 * is displayed and all ring buffers are disabled. 5931 */ 5932 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5933 5934 struct rb_test_data { 5935 struct trace_buffer *buffer; 5936 unsigned long events; 5937 unsigned long bytes_written; 5938 unsigned long bytes_alloc; 5939 unsigned long bytes_dropped; 5940 unsigned long events_nested; 5941 unsigned long bytes_written_nested; 5942 unsigned long bytes_alloc_nested; 5943 unsigned long bytes_dropped_nested; 5944 int min_size_nested; 5945 int max_size_nested; 5946 int max_size; 5947 int min_size; 5948 int cpu; 5949 int cnt; 5950 }; 5951 5952 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5953 5954 /* 1 meg per cpu */ 5955 #define RB_TEST_BUFFER_SIZE 1048576 5956 5957 static char rb_string[] __initdata = 5958 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5959 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5960 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5961 5962 static bool rb_test_started __initdata; 5963 5964 struct rb_item { 5965 int size; 5966 char str[]; 5967 }; 5968 5969 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5970 { 5971 struct ring_buffer_event *event; 5972 struct rb_item *item; 5973 bool started; 5974 int event_len; 5975 int size; 5976 int len; 5977 int cnt; 5978 5979 /* Have nested writes different that what is written */ 5980 cnt = data->cnt + (nested ? 27 : 0); 5981 5982 /* Multiply cnt by ~e, to make some unique increment */ 5983 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5984 5985 len = size + sizeof(struct rb_item); 5986 5987 started = rb_test_started; 5988 /* read rb_test_started before checking buffer enabled */ 5989 smp_rmb(); 5990 5991 event = ring_buffer_lock_reserve(data->buffer, len); 5992 if (!event) { 5993 /* Ignore dropped events before test starts. */ 5994 if (started) { 5995 if (nested) 5996 data->bytes_dropped += len; 5997 else 5998 data->bytes_dropped_nested += len; 5999 } 6000 return len; 6001 } 6002 6003 event_len = ring_buffer_event_length(event); 6004 6005 if (RB_WARN_ON(data->buffer, event_len < len)) 6006 goto out; 6007 6008 item = ring_buffer_event_data(event); 6009 item->size = size; 6010 memcpy(item->str, rb_string, size); 6011 6012 if (nested) { 6013 data->bytes_alloc_nested += event_len; 6014 data->bytes_written_nested += len; 6015 data->events_nested++; 6016 if (!data->min_size_nested || len < data->min_size_nested) 6017 data->min_size_nested = len; 6018 if (len > data->max_size_nested) 6019 data->max_size_nested = len; 6020 } else { 6021 data->bytes_alloc += event_len; 6022 data->bytes_written += len; 6023 data->events++; 6024 if (!data->min_size || len < data->min_size) 6025 data->max_size = len; 6026 if (len > data->max_size) 6027 data->max_size = len; 6028 } 6029 6030 out: 6031 ring_buffer_unlock_commit(data->buffer); 6032 6033 return 0; 6034 } 6035 6036 static __init int rb_test(void *arg) 6037 { 6038 struct rb_test_data *data = arg; 6039 6040 while (!kthread_should_stop()) { 6041 rb_write_something(data, false); 6042 data->cnt++; 6043 6044 set_current_state(TASK_INTERRUPTIBLE); 6045 /* Now sleep between a min of 100-300us and a max of 1ms */ 6046 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6047 } 6048 6049 return 0; 6050 } 6051 6052 static __init void rb_ipi(void *ignore) 6053 { 6054 struct rb_test_data *data; 6055 int cpu = smp_processor_id(); 6056 6057 data = &rb_data[cpu]; 6058 rb_write_something(data, true); 6059 } 6060 6061 static __init int rb_hammer_test(void *arg) 6062 { 6063 while (!kthread_should_stop()) { 6064 6065 /* Send an IPI to all cpus to write data! */ 6066 smp_call_function(rb_ipi, NULL, 1); 6067 /* No sleep, but for non preempt, let others run */ 6068 schedule(); 6069 } 6070 6071 return 0; 6072 } 6073 6074 static __init int test_ringbuffer(void) 6075 { 6076 struct task_struct *rb_hammer; 6077 struct trace_buffer *buffer; 6078 int cpu; 6079 int ret = 0; 6080 6081 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6082 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6083 return 0; 6084 } 6085 6086 pr_info("Running ring buffer tests...\n"); 6087 6088 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6089 if (WARN_ON(!buffer)) 6090 return 0; 6091 6092 /* Disable buffer so that threads can't write to it yet */ 6093 ring_buffer_record_off(buffer); 6094 6095 for_each_online_cpu(cpu) { 6096 rb_data[cpu].buffer = buffer; 6097 rb_data[cpu].cpu = cpu; 6098 rb_data[cpu].cnt = cpu; 6099 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6100 cpu, "rbtester/%u"); 6101 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6102 pr_cont("FAILED\n"); 6103 ret = PTR_ERR(rb_threads[cpu]); 6104 goto out_free; 6105 } 6106 } 6107 6108 /* Now create the rb hammer! */ 6109 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6110 if (WARN_ON(IS_ERR(rb_hammer))) { 6111 pr_cont("FAILED\n"); 6112 ret = PTR_ERR(rb_hammer); 6113 goto out_free; 6114 } 6115 6116 ring_buffer_record_on(buffer); 6117 /* 6118 * Show buffer is enabled before setting rb_test_started. 6119 * Yes there's a small race window where events could be 6120 * dropped and the thread wont catch it. But when a ring 6121 * buffer gets enabled, there will always be some kind of 6122 * delay before other CPUs see it. Thus, we don't care about 6123 * those dropped events. We care about events dropped after 6124 * the threads see that the buffer is active. 6125 */ 6126 smp_wmb(); 6127 rb_test_started = true; 6128 6129 set_current_state(TASK_INTERRUPTIBLE); 6130 /* Just run for 10 seconds */; 6131 schedule_timeout(10 * HZ); 6132 6133 kthread_stop(rb_hammer); 6134 6135 out_free: 6136 for_each_online_cpu(cpu) { 6137 if (!rb_threads[cpu]) 6138 break; 6139 kthread_stop(rb_threads[cpu]); 6140 } 6141 if (ret) { 6142 ring_buffer_free(buffer); 6143 return ret; 6144 } 6145 6146 /* Report! */ 6147 pr_info("finished\n"); 6148 for_each_online_cpu(cpu) { 6149 struct ring_buffer_event *event; 6150 struct rb_test_data *data = &rb_data[cpu]; 6151 struct rb_item *item; 6152 unsigned long total_events; 6153 unsigned long total_dropped; 6154 unsigned long total_written; 6155 unsigned long total_alloc; 6156 unsigned long total_read = 0; 6157 unsigned long total_size = 0; 6158 unsigned long total_len = 0; 6159 unsigned long total_lost = 0; 6160 unsigned long lost; 6161 int big_event_size; 6162 int small_event_size; 6163 6164 ret = -1; 6165 6166 total_events = data->events + data->events_nested; 6167 total_written = data->bytes_written + data->bytes_written_nested; 6168 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6169 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6170 6171 big_event_size = data->max_size + data->max_size_nested; 6172 small_event_size = data->min_size + data->min_size_nested; 6173 6174 pr_info("CPU %d:\n", cpu); 6175 pr_info(" events: %ld\n", total_events); 6176 pr_info(" dropped bytes: %ld\n", total_dropped); 6177 pr_info(" alloced bytes: %ld\n", total_alloc); 6178 pr_info(" written bytes: %ld\n", total_written); 6179 pr_info(" biggest event: %d\n", big_event_size); 6180 pr_info(" smallest event: %d\n", small_event_size); 6181 6182 if (RB_WARN_ON(buffer, total_dropped)) 6183 break; 6184 6185 ret = 0; 6186 6187 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6188 total_lost += lost; 6189 item = ring_buffer_event_data(event); 6190 total_len += ring_buffer_event_length(event); 6191 total_size += item->size + sizeof(struct rb_item); 6192 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6193 pr_info("FAILED!\n"); 6194 pr_info("buffer had: %.*s\n", item->size, item->str); 6195 pr_info("expected: %.*s\n", item->size, rb_string); 6196 RB_WARN_ON(buffer, 1); 6197 ret = -1; 6198 break; 6199 } 6200 total_read++; 6201 } 6202 if (ret) 6203 break; 6204 6205 ret = -1; 6206 6207 pr_info(" read events: %ld\n", total_read); 6208 pr_info(" lost events: %ld\n", total_lost); 6209 pr_info(" total events: %ld\n", total_lost + total_read); 6210 pr_info(" recorded len bytes: %ld\n", total_len); 6211 pr_info(" recorded size bytes: %ld\n", total_size); 6212 if (total_lost) { 6213 pr_info(" With dropped events, record len and size may not match\n" 6214 " alloced and written from above\n"); 6215 } else { 6216 if (RB_WARN_ON(buffer, total_len != total_alloc || 6217 total_size != total_written)) 6218 break; 6219 } 6220 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6221 break; 6222 6223 ret = 0; 6224 } 6225 if (!ret) 6226 pr_info("Ring buffer PASSED!\n"); 6227 6228 ring_buffer_free(buffer); 6229 return 0; 6230 } 6231 6232 late_initcall(test_ringbuffer); 6233 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6234