xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/oom.h>
26 
27 #include <asm/local.h>
28 
29 static void update_pages_handler(struct work_struct *work);
30 
31 /*
32  * The ring buffer header is special. We must manually up keep it.
33  */
34 int ring_buffer_print_entry_header(struct trace_seq *s)
35 {
36 	trace_seq_puts(s, "# compressed entry header\n");
37 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
38 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
39 	trace_seq_puts(s, "\tarray       :   32 bits\n");
40 	trace_seq_putc(s, '\n');
41 	trace_seq_printf(s, "\tpadding     : type == %d\n",
42 			 RINGBUF_TYPE_PADDING);
43 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
44 			 RINGBUF_TYPE_TIME_EXTEND);
45 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
46 			 RINGBUF_TYPE_TIME_STAMP);
47 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
48 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
49 
50 	return !trace_seq_has_overflowed(s);
51 }
52 
53 /*
54  * The ring buffer is made up of a list of pages. A separate list of pages is
55  * allocated for each CPU. A writer may only write to a buffer that is
56  * associated with the CPU it is currently executing on.  A reader may read
57  * from any per cpu buffer.
58  *
59  * The reader is special. For each per cpu buffer, the reader has its own
60  * reader page. When a reader has read the entire reader page, this reader
61  * page is swapped with another page in the ring buffer.
62  *
63  * Now, as long as the writer is off the reader page, the reader can do what
64  * ever it wants with that page. The writer will never write to that page
65  * again (as long as it is out of the ring buffer).
66  *
67  * Here's some silly ASCII art.
68  *
69  *   +------+
70  *   |reader|          RING BUFFER
71  *   |page  |
72  *   +------+        +---+   +---+   +---+
73  *                   |   |-->|   |-->|   |
74  *                   +---+   +---+   +---+
75  *                     ^               |
76  *                     |               |
77  *                     +---------------+
78  *
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |------------------v
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *      ^            |   |-->|   |-->|   |
96  *      |            +---+   +---+   +---+
97  *      |                              |
98  *      |                              |
99  *      +------------------------------+
100  *
101  *
102  *   +------+
103  *   |buffer|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |   |   |-->|   |
107  *      |   New      +---+   +---+   +---+
108  *      |  Reader------^               |
109  *      |   page                       |
110  *      +------------------------------+
111  *
112  *
113  * After we make this swap, the reader can hand this page off to the splice
114  * code and be done with it. It can even allocate a new page if it needs to
115  * and swap that into the ring buffer.
116  *
117  * We will be using cmpxchg soon to make all this lockless.
118  *
119  */
120 
121 /* Used for individual buffers (after the counter) */
122 #define RB_BUFFER_OFF		(1 << 20)
123 
124 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
125 
126 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
127 #define RB_ALIGNMENT		4U
128 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
129 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
130 
131 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
132 # define RB_FORCE_8BYTE_ALIGNMENT	0
133 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
134 #else
135 # define RB_FORCE_8BYTE_ALIGNMENT	1
136 # define RB_ARCH_ALIGNMENT		8U
137 #endif
138 
139 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
140 
141 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
142 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
143 
144 enum {
145 	RB_LEN_TIME_EXTEND = 8,
146 	RB_LEN_TIME_STAMP =  8,
147 };
148 
149 #define skip_time_extend(event) \
150 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
151 
152 #define extended_time(event) \
153 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
154 
155 static inline int rb_null_event(struct ring_buffer_event *event)
156 {
157 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
158 }
159 
160 static void rb_event_set_padding(struct ring_buffer_event *event)
161 {
162 	/* padding has a NULL time_delta */
163 	event->type_len = RINGBUF_TYPE_PADDING;
164 	event->time_delta = 0;
165 }
166 
167 static unsigned
168 rb_event_data_length(struct ring_buffer_event *event)
169 {
170 	unsigned length;
171 
172 	if (event->type_len)
173 		length = event->type_len * RB_ALIGNMENT;
174 	else
175 		length = event->array[0];
176 	return length + RB_EVNT_HDR_SIZE;
177 }
178 
179 /*
180  * Return the length of the given event. Will return
181  * the length of the time extend if the event is a
182  * time extend.
183  */
184 static inline unsigned
185 rb_event_length(struct ring_buffer_event *event)
186 {
187 	switch (event->type_len) {
188 	case RINGBUF_TYPE_PADDING:
189 		if (rb_null_event(event))
190 			/* undefined */
191 			return -1;
192 		return  event->array[0] + RB_EVNT_HDR_SIZE;
193 
194 	case RINGBUF_TYPE_TIME_EXTEND:
195 		return RB_LEN_TIME_EXTEND;
196 
197 	case RINGBUF_TYPE_TIME_STAMP:
198 		return RB_LEN_TIME_STAMP;
199 
200 	case RINGBUF_TYPE_DATA:
201 		return rb_event_data_length(event);
202 	default:
203 		BUG();
204 	}
205 	/* not hit */
206 	return 0;
207 }
208 
209 /*
210  * Return total length of time extend and data,
211  *   or just the event length for all other events.
212  */
213 static inline unsigned
214 rb_event_ts_length(struct ring_buffer_event *event)
215 {
216 	unsigned len = 0;
217 
218 	if (extended_time(event)) {
219 		/* time extends include the data event after it */
220 		len = RB_LEN_TIME_EXTEND;
221 		event = skip_time_extend(event);
222 	}
223 	return len + rb_event_length(event);
224 }
225 
226 /**
227  * ring_buffer_event_length - return the length of the event
228  * @event: the event to get the length of
229  *
230  * Returns the size of the data load of a data event.
231  * If the event is something other than a data event, it
232  * returns the size of the event itself. With the exception
233  * of a TIME EXTEND, where it still returns the size of the
234  * data load of the data event after it.
235  */
236 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
237 {
238 	unsigned length;
239 
240 	if (extended_time(event))
241 		event = skip_time_extend(event);
242 
243 	length = rb_event_length(event);
244 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
245 		return length;
246 	length -= RB_EVNT_HDR_SIZE;
247 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
248                 length -= sizeof(event->array[0]);
249 	return length;
250 }
251 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
252 
253 /* inline for ring buffer fast paths */
254 static __always_inline void *
255 rb_event_data(struct ring_buffer_event *event)
256 {
257 	if (extended_time(event))
258 		event = skip_time_extend(event);
259 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
260 	/* If length is in len field, then array[0] has the data */
261 	if (event->type_len)
262 		return (void *)&event->array[0];
263 	/* Otherwise length is in array[0] and array[1] has the data */
264 	return (void *)&event->array[1];
265 }
266 
267 /**
268  * ring_buffer_event_data - return the data of the event
269  * @event: the event to get the data from
270  */
271 void *ring_buffer_event_data(struct ring_buffer_event *event)
272 {
273 	return rb_event_data(event);
274 }
275 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
276 
277 #define for_each_buffer_cpu(buffer, cpu)		\
278 	for_each_cpu(cpu, buffer->cpumask)
279 
280 #define TS_SHIFT	27
281 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
282 #define TS_DELTA_TEST	(~TS_MASK)
283 
284 /**
285  * ring_buffer_event_time_stamp - return the event's extended timestamp
286  * @event: the event to get the timestamp of
287  *
288  * Returns the extended timestamp associated with a data event.
289  * An extended time_stamp is a 64-bit timestamp represented
290  * internally in a special way that makes the best use of space
291  * contained within a ring buffer event.  This function decodes
292  * it and maps it to a straight u64 value.
293  */
294 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
295 {
296 	u64 ts;
297 
298 	ts = event->array[0];
299 	ts <<= TS_SHIFT;
300 	ts += event->time_delta;
301 
302 	return ts;
303 }
304 
305 /* Flag when events were overwritten */
306 #define RB_MISSED_EVENTS	(1 << 31)
307 /* Missed count stored at end */
308 #define RB_MISSED_STORED	(1 << 30)
309 
310 #define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
311 
312 struct buffer_data_page {
313 	u64		 time_stamp;	/* page time stamp */
314 	local_t		 commit;	/* write committed index */
315 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
316 };
317 
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327 	struct list_head list;		/* list of buffer pages */
328 	local_t		 write;		/* index for next write */
329 	unsigned	 read;		/* index for next read */
330 	local_t		 entries;	/* entries on this page */
331 	unsigned long	 real_end;	/* real end of data */
332 	struct buffer_data_page *page;	/* Actual data page */
333 };
334 
335 /*
336  * The buffer page counters, write and entries, must be reset
337  * atomically when crossing page boundaries. To synchronize this
338  * update, two counters are inserted into the number. One is
339  * the actual counter for the write position or count on the page.
340  *
341  * The other is a counter of updaters. Before an update happens
342  * the update partition of the counter is incremented. This will
343  * allow the updater to update the counter atomically.
344  *
345  * The counter is 20 bits, and the state data is 12.
346  */
347 #define RB_WRITE_MASK		0xfffff
348 #define RB_WRITE_INTCNT		(1 << 20)
349 
350 static void rb_init_page(struct buffer_data_page *bpage)
351 {
352 	local_set(&bpage->commit, 0);
353 }
354 
355 /**
356  * ring_buffer_page_len - the size of data on the page.
357  * @page: The page to read
358  *
359  * Returns the amount of data on the page, including buffer page header.
360  */
361 size_t ring_buffer_page_len(void *page)
362 {
363 	struct buffer_data_page *bpage = page;
364 
365 	return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
366 		+ BUF_PAGE_HDR_SIZE;
367 }
368 
369 /*
370  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
371  * this issue out.
372  */
373 static void free_buffer_page(struct buffer_page *bpage)
374 {
375 	free_page((unsigned long)bpage->page);
376 	kfree(bpage);
377 }
378 
379 /*
380  * We need to fit the time_stamp delta into 27 bits.
381  */
382 static inline int test_time_stamp(u64 delta)
383 {
384 	if (delta & TS_DELTA_TEST)
385 		return 1;
386 	return 0;
387 }
388 
389 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
390 
391 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
392 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
393 
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396 	struct buffer_data_page field;
397 
398 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
399 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
400 			 (unsigned int)sizeof(field.time_stamp),
401 			 (unsigned int)is_signed_type(u64));
402 
403 	trace_seq_printf(s, "\tfield: local_t commit;\t"
404 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
405 			 (unsigned int)offsetof(typeof(field), commit),
406 			 (unsigned int)sizeof(field.commit),
407 			 (unsigned int)is_signed_type(long));
408 
409 	trace_seq_printf(s, "\tfield: int overwrite;\t"
410 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
411 			 (unsigned int)offsetof(typeof(field), commit),
412 			 1,
413 			 (unsigned int)is_signed_type(long));
414 
415 	trace_seq_printf(s, "\tfield: char data;\t"
416 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
417 			 (unsigned int)offsetof(typeof(field), data),
418 			 (unsigned int)BUF_PAGE_SIZE,
419 			 (unsigned int)is_signed_type(char));
420 
421 	return !trace_seq_has_overflowed(s);
422 }
423 
424 struct rb_irq_work {
425 	struct irq_work			work;
426 	wait_queue_head_t		waiters;
427 	wait_queue_head_t		full_waiters;
428 	bool				waiters_pending;
429 	bool				full_waiters_pending;
430 	bool				wakeup_full;
431 };
432 
433 /*
434  * Structure to hold event state and handle nested events.
435  */
436 struct rb_event_info {
437 	u64			ts;
438 	u64			delta;
439 	unsigned long		length;
440 	struct buffer_page	*tail_page;
441 	int			add_timestamp;
442 };
443 
444 /*
445  * Used for which event context the event is in.
446  *  NMI     = 0
447  *  IRQ     = 1
448  *  SOFTIRQ = 2
449  *  NORMAL  = 3
450  *
451  * See trace_recursive_lock() comment below for more details.
452  */
453 enum {
454 	RB_CTX_NMI,
455 	RB_CTX_IRQ,
456 	RB_CTX_SOFTIRQ,
457 	RB_CTX_NORMAL,
458 	RB_CTX_MAX
459 };
460 
461 /*
462  * head_page == tail_page && head == tail then buffer is empty.
463  */
464 struct ring_buffer_per_cpu {
465 	int				cpu;
466 	atomic_t			record_disabled;
467 	struct ring_buffer		*buffer;
468 	raw_spinlock_t			reader_lock;	/* serialize readers */
469 	arch_spinlock_t			lock;
470 	struct lock_class_key		lock_key;
471 	struct buffer_data_page		*free_page;
472 	unsigned long			nr_pages;
473 	unsigned int			current_context;
474 	struct list_head		*pages;
475 	struct buffer_page		*head_page;	/* read from head */
476 	struct buffer_page		*tail_page;	/* write to tail */
477 	struct buffer_page		*commit_page;	/* committed pages */
478 	struct buffer_page		*reader_page;
479 	unsigned long			lost_events;
480 	unsigned long			last_overrun;
481 	unsigned long			nest;
482 	local_t				entries_bytes;
483 	local_t				entries;
484 	local_t				overrun;
485 	local_t				commit_overrun;
486 	local_t				dropped_events;
487 	local_t				committing;
488 	local_t				commits;
489 	unsigned long			read;
490 	unsigned long			read_bytes;
491 	u64				write_stamp;
492 	u64				read_stamp;
493 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
494 	long				nr_pages_to_update;
495 	struct list_head		new_pages; /* new pages to add */
496 	struct work_struct		update_pages_work;
497 	struct completion		update_done;
498 
499 	struct rb_irq_work		irq_work;
500 };
501 
502 struct ring_buffer {
503 	unsigned			flags;
504 	int				cpus;
505 	atomic_t			record_disabled;
506 	atomic_t			resize_disabled;
507 	cpumask_var_t			cpumask;
508 
509 	struct lock_class_key		*reader_lock_key;
510 
511 	struct mutex			mutex;
512 
513 	struct ring_buffer_per_cpu	**buffers;
514 
515 	struct hlist_node		node;
516 	u64				(*clock)(void);
517 
518 	struct rb_irq_work		irq_work;
519 	bool				time_stamp_abs;
520 };
521 
522 struct ring_buffer_iter {
523 	struct ring_buffer_per_cpu	*cpu_buffer;
524 	unsigned long			head;
525 	struct buffer_page		*head_page;
526 	struct buffer_page		*cache_reader_page;
527 	unsigned long			cache_read;
528 	u64				read_stamp;
529 };
530 
531 /*
532  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
533  *
534  * Schedules a delayed work to wake up any task that is blocked on the
535  * ring buffer waiters queue.
536  */
537 static void rb_wake_up_waiters(struct irq_work *work)
538 {
539 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
540 
541 	wake_up_all(&rbwork->waiters);
542 	if (rbwork->wakeup_full) {
543 		rbwork->wakeup_full = false;
544 		wake_up_all(&rbwork->full_waiters);
545 	}
546 }
547 
548 /**
549  * ring_buffer_wait - wait for input to the ring buffer
550  * @buffer: buffer to wait on
551  * @cpu: the cpu buffer to wait on
552  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
553  *
554  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
555  * as data is added to any of the @buffer's cpu buffers. Otherwise
556  * it will wait for data to be added to a specific cpu buffer.
557  */
558 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
559 {
560 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
561 	DEFINE_WAIT(wait);
562 	struct rb_irq_work *work;
563 	int ret = 0;
564 
565 	/*
566 	 * Depending on what the caller is waiting for, either any
567 	 * data in any cpu buffer, or a specific buffer, put the
568 	 * caller on the appropriate wait queue.
569 	 */
570 	if (cpu == RING_BUFFER_ALL_CPUS) {
571 		work = &buffer->irq_work;
572 		/* Full only makes sense on per cpu reads */
573 		full = false;
574 	} else {
575 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
576 			return -ENODEV;
577 		cpu_buffer = buffer->buffers[cpu];
578 		work = &cpu_buffer->irq_work;
579 	}
580 
581 
582 	while (true) {
583 		if (full)
584 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
585 		else
586 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
587 
588 		/*
589 		 * The events can happen in critical sections where
590 		 * checking a work queue can cause deadlocks.
591 		 * After adding a task to the queue, this flag is set
592 		 * only to notify events to try to wake up the queue
593 		 * using irq_work.
594 		 *
595 		 * We don't clear it even if the buffer is no longer
596 		 * empty. The flag only causes the next event to run
597 		 * irq_work to do the work queue wake up. The worse
598 		 * that can happen if we race with !trace_empty() is that
599 		 * an event will cause an irq_work to try to wake up
600 		 * an empty queue.
601 		 *
602 		 * There's no reason to protect this flag either, as
603 		 * the work queue and irq_work logic will do the necessary
604 		 * synchronization for the wake ups. The only thing
605 		 * that is necessary is that the wake up happens after
606 		 * a task has been queued. It's OK for spurious wake ups.
607 		 */
608 		if (full)
609 			work->full_waiters_pending = true;
610 		else
611 			work->waiters_pending = true;
612 
613 		if (signal_pending(current)) {
614 			ret = -EINTR;
615 			break;
616 		}
617 
618 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
619 			break;
620 
621 		if (cpu != RING_BUFFER_ALL_CPUS &&
622 		    !ring_buffer_empty_cpu(buffer, cpu)) {
623 			unsigned long flags;
624 			bool pagebusy;
625 
626 			if (!full)
627 				break;
628 
629 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
630 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
631 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
632 
633 			if (!pagebusy)
634 				break;
635 		}
636 
637 		schedule();
638 	}
639 
640 	if (full)
641 		finish_wait(&work->full_waiters, &wait);
642 	else
643 		finish_wait(&work->waiters, &wait);
644 
645 	return ret;
646 }
647 
648 /**
649  * ring_buffer_poll_wait - poll on buffer input
650  * @buffer: buffer to wait on
651  * @cpu: the cpu buffer to wait on
652  * @filp: the file descriptor
653  * @poll_table: The poll descriptor
654  *
655  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
656  * as data is added to any of the @buffer's cpu buffers. Otherwise
657  * it will wait for data to be added to a specific cpu buffer.
658  *
659  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
660  * zero otherwise.
661  */
662 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
663 			  struct file *filp, poll_table *poll_table)
664 {
665 	struct ring_buffer_per_cpu *cpu_buffer;
666 	struct rb_irq_work *work;
667 
668 	if (cpu == RING_BUFFER_ALL_CPUS)
669 		work = &buffer->irq_work;
670 	else {
671 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
672 			return -EINVAL;
673 
674 		cpu_buffer = buffer->buffers[cpu];
675 		work = &cpu_buffer->irq_work;
676 	}
677 
678 	poll_wait(filp, &work->waiters, poll_table);
679 	work->waiters_pending = true;
680 	/*
681 	 * There's a tight race between setting the waiters_pending and
682 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
683 	 * is set, the next event will wake the task up, but we can get stuck
684 	 * if there's only a single event in.
685 	 *
686 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
687 	 * but adding a memory barrier to all events will cause too much of a
688 	 * performance hit in the fast path.  We only need a memory barrier when
689 	 * the buffer goes from empty to having content.  But as this race is
690 	 * extremely small, and it's not a problem if another event comes in, we
691 	 * will fix it later.
692 	 */
693 	smp_mb();
694 
695 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
696 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
697 		return EPOLLIN | EPOLLRDNORM;
698 	return 0;
699 }
700 
701 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
702 #define RB_WARN_ON(b, cond)						\
703 	({								\
704 		int _____ret = unlikely(cond);				\
705 		if (_____ret) {						\
706 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
707 				struct ring_buffer_per_cpu *__b =	\
708 					(void *)b;			\
709 				atomic_inc(&__b->buffer->record_disabled); \
710 			} else						\
711 				atomic_inc(&b->record_disabled);	\
712 			WARN_ON(1);					\
713 		}							\
714 		_____ret;						\
715 	})
716 
717 /* Up this if you want to test the TIME_EXTENTS and normalization */
718 #define DEBUG_SHIFT 0
719 
720 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
721 {
722 	/* shift to debug/test normalization and TIME_EXTENTS */
723 	return buffer->clock() << DEBUG_SHIFT;
724 }
725 
726 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
727 {
728 	u64 time;
729 
730 	preempt_disable_notrace();
731 	time = rb_time_stamp(buffer);
732 	preempt_enable_no_resched_notrace();
733 
734 	return time;
735 }
736 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
737 
738 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
739 				      int cpu, u64 *ts)
740 {
741 	/* Just stupid testing the normalize function and deltas */
742 	*ts >>= DEBUG_SHIFT;
743 }
744 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
745 
746 /*
747  * Making the ring buffer lockless makes things tricky.
748  * Although writes only happen on the CPU that they are on,
749  * and they only need to worry about interrupts. Reads can
750  * happen on any CPU.
751  *
752  * The reader page is always off the ring buffer, but when the
753  * reader finishes with a page, it needs to swap its page with
754  * a new one from the buffer. The reader needs to take from
755  * the head (writes go to the tail). But if a writer is in overwrite
756  * mode and wraps, it must push the head page forward.
757  *
758  * Here lies the problem.
759  *
760  * The reader must be careful to replace only the head page, and
761  * not another one. As described at the top of the file in the
762  * ASCII art, the reader sets its old page to point to the next
763  * page after head. It then sets the page after head to point to
764  * the old reader page. But if the writer moves the head page
765  * during this operation, the reader could end up with the tail.
766  *
767  * We use cmpxchg to help prevent this race. We also do something
768  * special with the page before head. We set the LSB to 1.
769  *
770  * When the writer must push the page forward, it will clear the
771  * bit that points to the head page, move the head, and then set
772  * the bit that points to the new head page.
773  *
774  * We also don't want an interrupt coming in and moving the head
775  * page on another writer. Thus we use the second LSB to catch
776  * that too. Thus:
777  *
778  * head->list->prev->next        bit 1          bit 0
779  *                              -------        -------
780  * Normal page                     0              0
781  * Points to head page             0              1
782  * New head page                   1              0
783  *
784  * Note we can not trust the prev pointer of the head page, because:
785  *
786  * +----+       +-----+        +-----+
787  * |    |------>|  T  |---X--->|  N  |
788  * |    |<------|     |        |     |
789  * +----+       +-----+        +-----+
790  *   ^                           ^ |
791  *   |          +-----+          | |
792  *   +----------|  R  |----------+ |
793  *              |     |<-----------+
794  *              +-----+
795  *
796  * Key:  ---X-->  HEAD flag set in pointer
797  *         T      Tail page
798  *         R      Reader page
799  *         N      Next page
800  *
801  * (see __rb_reserve_next() to see where this happens)
802  *
803  *  What the above shows is that the reader just swapped out
804  *  the reader page with a page in the buffer, but before it
805  *  could make the new header point back to the new page added
806  *  it was preempted by a writer. The writer moved forward onto
807  *  the new page added by the reader and is about to move forward
808  *  again.
809  *
810  *  You can see, it is legitimate for the previous pointer of
811  *  the head (or any page) not to point back to itself. But only
812  *  temporarially.
813  */
814 
815 #define RB_PAGE_NORMAL		0UL
816 #define RB_PAGE_HEAD		1UL
817 #define RB_PAGE_UPDATE		2UL
818 
819 
820 #define RB_FLAG_MASK		3UL
821 
822 /* PAGE_MOVED is not part of the mask */
823 #define RB_PAGE_MOVED		4UL
824 
825 /*
826  * rb_list_head - remove any bit
827  */
828 static struct list_head *rb_list_head(struct list_head *list)
829 {
830 	unsigned long val = (unsigned long)list;
831 
832 	return (struct list_head *)(val & ~RB_FLAG_MASK);
833 }
834 
835 /*
836  * rb_is_head_page - test if the given page is the head page
837  *
838  * Because the reader may move the head_page pointer, we can
839  * not trust what the head page is (it may be pointing to
840  * the reader page). But if the next page is a header page,
841  * its flags will be non zero.
842  */
843 static inline int
844 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
845 		struct buffer_page *page, struct list_head *list)
846 {
847 	unsigned long val;
848 
849 	val = (unsigned long)list->next;
850 
851 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
852 		return RB_PAGE_MOVED;
853 
854 	return val & RB_FLAG_MASK;
855 }
856 
857 /*
858  * rb_is_reader_page
859  *
860  * The unique thing about the reader page, is that, if the
861  * writer is ever on it, the previous pointer never points
862  * back to the reader page.
863  */
864 static bool rb_is_reader_page(struct buffer_page *page)
865 {
866 	struct list_head *list = page->list.prev;
867 
868 	return rb_list_head(list->next) != &page->list;
869 }
870 
871 /*
872  * rb_set_list_to_head - set a list_head to be pointing to head.
873  */
874 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
875 				struct list_head *list)
876 {
877 	unsigned long *ptr;
878 
879 	ptr = (unsigned long *)&list->next;
880 	*ptr |= RB_PAGE_HEAD;
881 	*ptr &= ~RB_PAGE_UPDATE;
882 }
883 
884 /*
885  * rb_head_page_activate - sets up head page
886  */
887 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
888 {
889 	struct buffer_page *head;
890 
891 	head = cpu_buffer->head_page;
892 	if (!head)
893 		return;
894 
895 	/*
896 	 * Set the previous list pointer to have the HEAD flag.
897 	 */
898 	rb_set_list_to_head(cpu_buffer, head->list.prev);
899 }
900 
901 static void rb_list_head_clear(struct list_head *list)
902 {
903 	unsigned long *ptr = (unsigned long *)&list->next;
904 
905 	*ptr &= ~RB_FLAG_MASK;
906 }
907 
908 /*
909  * rb_head_page_dactivate - clears head page ptr (for free list)
910  */
911 static void
912 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
913 {
914 	struct list_head *hd;
915 
916 	/* Go through the whole list and clear any pointers found. */
917 	rb_list_head_clear(cpu_buffer->pages);
918 
919 	list_for_each(hd, cpu_buffer->pages)
920 		rb_list_head_clear(hd);
921 }
922 
923 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
924 			    struct buffer_page *head,
925 			    struct buffer_page *prev,
926 			    int old_flag, int new_flag)
927 {
928 	struct list_head *list;
929 	unsigned long val = (unsigned long)&head->list;
930 	unsigned long ret;
931 
932 	list = &prev->list;
933 
934 	val &= ~RB_FLAG_MASK;
935 
936 	ret = cmpxchg((unsigned long *)&list->next,
937 		      val | old_flag, val | new_flag);
938 
939 	/* check if the reader took the page */
940 	if ((ret & ~RB_FLAG_MASK) != val)
941 		return RB_PAGE_MOVED;
942 
943 	return ret & RB_FLAG_MASK;
944 }
945 
946 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
947 				   struct buffer_page *head,
948 				   struct buffer_page *prev,
949 				   int old_flag)
950 {
951 	return rb_head_page_set(cpu_buffer, head, prev,
952 				old_flag, RB_PAGE_UPDATE);
953 }
954 
955 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
956 				 struct buffer_page *head,
957 				 struct buffer_page *prev,
958 				 int old_flag)
959 {
960 	return rb_head_page_set(cpu_buffer, head, prev,
961 				old_flag, RB_PAGE_HEAD);
962 }
963 
964 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
965 				   struct buffer_page *head,
966 				   struct buffer_page *prev,
967 				   int old_flag)
968 {
969 	return rb_head_page_set(cpu_buffer, head, prev,
970 				old_flag, RB_PAGE_NORMAL);
971 }
972 
973 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
974 			       struct buffer_page **bpage)
975 {
976 	struct list_head *p = rb_list_head((*bpage)->list.next);
977 
978 	*bpage = list_entry(p, struct buffer_page, list);
979 }
980 
981 static struct buffer_page *
982 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
983 {
984 	struct buffer_page *head;
985 	struct buffer_page *page;
986 	struct list_head *list;
987 	int i;
988 
989 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
990 		return NULL;
991 
992 	/* sanity check */
993 	list = cpu_buffer->pages;
994 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
995 		return NULL;
996 
997 	page = head = cpu_buffer->head_page;
998 	/*
999 	 * It is possible that the writer moves the header behind
1000 	 * where we started, and we miss in one loop.
1001 	 * A second loop should grab the header, but we'll do
1002 	 * three loops just because I'm paranoid.
1003 	 */
1004 	for (i = 0; i < 3; i++) {
1005 		do {
1006 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1007 				cpu_buffer->head_page = page;
1008 				return page;
1009 			}
1010 			rb_inc_page(cpu_buffer, &page);
1011 		} while (page != head);
1012 	}
1013 
1014 	RB_WARN_ON(cpu_buffer, 1);
1015 
1016 	return NULL;
1017 }
1018 
1019 static int rb_head_page_replace(struct buffer_page *old,
1020 				struct buffer_page *new)
1021 {
1022 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1023 	unsigned long val;
1024 	unsigned long ret;
1025 
1026 	val = *ptr & ~RB_FLAG_MASK;
1027 	val |= RB_PAGE_HEAD;
1028 
1029 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1030 
1031 	return ret == val;
1032 }
1033 
1034 /*
1035  * rb_tail_page_update - move the tail page forward
1036  */
1037 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1038 			       struct buffer_page *tail_page,
1039 			       struct buffer_page *next_page)
1040 {
1041 	unsigned long old_entries;
1042 	unsigned long old_write;
1043 
1044 	/*
1045 	 * The tail page now needs to be moved forward.
1046 	 *
1047 	 * We need to reset the tail page, but without messing
1048 	 * with possible erasing of data brought in by interrupts
1049 	 * that have moved the tail page and are currently on it.
1050 	 *
1051 	 * We add a counter to the write field to denote this.
1052 	 */
1053 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1054 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1055 
1056 	/*
1057 	 * Just make sure we have seen our old_write and synchronize
1058 	 * with any interrupts that come in.
1059 	 */
1060 	barrier();
1061 
1062 	/*
1063 	 * If the tail page is still the same as what we think
1064 	 * it is, then it is up to us to update the tail
1065 	 * pointer.
1066 	 */
1067 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1068 		/* Zero the write counter */
1069 		unsigned long val = old_write & ~RB_WRITE_MASK;
1070 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1071 
1072 		/*
1073 		 * This will only succeed if an interrupt did
1074 		 * not come in and change it. In which case, we
1075 		 * do not want to modify it.
1076 		 *
1077 		 * We add (void) to let the compiler know that we do not care
1078 		 * about the return value of these functions. We use the
1079 		 * cmpxchg to only update if an interrupt did not already
1080 		 * do it for us. If the cmpxchg fails, we don't care.
1081 		 */
1082 		(void)local_cmpxchg(&next_page->write, old_write, val);
1083 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1084 
1085 		/*
1086 		 * No need to worry about races with clearing out the commit.
1087 		 * it only can increment when a commit takes place. But that
1088 		 * only happens in the outer most nested commit.
1089 		 */
1090 		local_set(&next_page->page->commit, 0);
1091 
1092 		/* Again, either we update tail_page or an interrupt does */
1093 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1094 	}
1095 }
1096 
1097 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1098 			  struct buffer_page *bpage)
1099 {
1100 	unsigned long val = (unsigned long)bpage;
1101 
1102 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1103 		return 1;
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  * rb_check_list - make sure a pointer to a list has the last bits zero
1110  */
1111 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1112 			 struct list_head *list)
1113 {
1114 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1115 		return 1;
1116 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1117 		return 1;
1118 	return 0;
1119 }
1120 
1121 /**
1122  * rb_check_pages - integrity check of buffer pages
1123  * @cpu_buffer: CPU buffer with pages to test
1124  *
1125  * As a safety measure we check to make sure the data pages have not
1126  * been corrupted.
1127  */
1128 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1129 {
1130 	struct list_head *head = cpu_buffer->pages;
1131 	struct buffer_page *bpage, *tmp;
1132 
1133 	/* Reset the head page if it exists */
1134 	if (cpu_buffer->head_page)
1135 		rb_set_head_page(cpu_buffer);
1136 
1137 	rb_head_page_deactivate(cpu_buffer);
1138 
1139 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1140 		return -1;
1141 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1142 		return -1;
1143 
1144 	if (rb_check_list(cpu_buffer, head))
1145 		return -1;
1146 
1147 	list_for_each_entry_safe(bpage, tmp, head, list) {
1148 		if (RB_WARN_ON(cpu_buffer,
1149 			       bpage->list.next->prev != &bpage->list))
1150 			return -1;
1151 		if (RB_WARN_ON(cpu_buffer,
1152 			       bpage->list.prev->next != &bpage->list))
1153 			return -1;
1154 		if (rb_check_list(cpu_buffer, &bpage->list))
1155 			return -1;
1156 	}
1157 
1158 	rb_head_page_activate(cpu_buffer);
1159 
1160 	return 0;
1161 }
1162 
1163 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1164 {
1165 	struct buffer_page *bpage, *tmp;
1166 	bool user_thread = current->mm != NULL;
1167 	gfp_t mflags;
1168 	long i;
1169 
1170 	/*
1171 	 * Check if the available memory is there first.
1172 	 * Note, si_mem_available() only gives us a rough estimate of available
1173 	 * memory. It may not be accurate. But we don't care, we just want
1174 	 * to prevent doing any allocation when it is obvious that it is
1175 	 * not going to succeed.
1176 	 */
1177 	i = si_mem_available();
1178 	if (i < nr_pages)
1179 		return -ENOMEM;
1180 
1181 	/*
1182 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1183 	 * gracefully without invoking oom-killer and the system is not
1184 	 * destabilized.
1185 	 */
1186 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1187 
1188 	/*
1189 	 * If a user thread allocates too much, and si_mem_available()
1190 	 * reports there's enough memory, even though there is not.
1191 	 * Make sure the OOM killer kills this thread. This can happen
1192 	 * even with RETRY_MAYFAIL because another task may be doing
1193 	 * an allocation after this task has taken all memory.
1194 	 * This is the task the OOM killer needs to take out during this
1195 	 * loop, even if it was triggered by an allocation somewhere else.
1196 	 */
1197 	if (user_thread)
1198 		set_current_oom_origin();
1199 	for (i = 0; i < nr_pages; i++) {
1200 		struct page *page;
1201 
1202 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1203 				    mflags, cpu_to_node(cpu));
1204 		if (!bpage)
1205 			goto free_pages;
1206 
1207 		list_add(&bpage->list, pages);
1208 
1209 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1210 		if (!page)
1211 			goto free_pages;
1212 		bpage->page = page_address(page);
1213 		rb_init_page(bpage->page);
1214 
1215 		if (user_thread && fatal_signal_pending(current))
1216 			goto free_pages;
1217 	}
1218 	if (user_thread)
1219 		clear_current_oom_origin();
1220 
1221 	return 0;
1222 
1223 free_pages:
1224 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1225 		list_del_init(&bpage->list);
1226 		free_buffer_page(bpage);
1227 	}
1228 	if (user_thread)
1229 		clear_current_oom_origin();
1230 
1231 	return -ENOMEM;
1232 }
1233 
1234 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1235 			     unsigned long nr_pages)
1236 {
1237 	LIST_HEAD(pages);
1238 
1239 	WARN_ON(!nr_pages);
1240 
1241 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1242 		return -ENOMEM;
1243 
1244 	/*
1245 	 * The ring buffer page list is a circular list that does not
1246 	 * start and end with a list head. All page list items point to
1247 	 * other pages.
1248 	 */
1249 	cpu_buffer->pages = pages.next;
1250 	list_del(&pages);
1251 
1252 	cpu_buffer->nr_pages = nr_pages;
1253 
1254 	rb_check_pages(cpu_buffer);
1255 
1256 	return 0;
1257 }
1258 
1259 static struct ring_buffer_per_cpu *
1260 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1261 {
1262 	struct ring_buffer_per_cpu *cpu_buffer;
1263 	struct buffer_page *bpage;
1264 	struct page *page;
1265 	int ret;
1266 
1267 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1268 				  GFP_KERNEL, cpu_to_node(cpu));
1269 	if (!cpu_buffer)
1270 		return NULL;
1271 
1272 	cpu_buffer->cpu = cpu;
1273 	cpu_buffer->buffer = buffer;
1274 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1275 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1276 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1277 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1278 	init_completion(&cpu_buffer->update_done);
1279 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1280 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1281 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1282 
1283 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1284 			    GFP_KERNEL, cpu_to_node(cpu));
1285 	if (!bpage)
1286 		goto fail_free_buffer;
1287 
1288 	rb_check_bpage(cpu_buffer, bpage);
1289 
1290 	cpu_buffer->reader_page = bpage;
1291 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1292 	if (!page)
1293 		goto fail_free_reader;
1294 	bpage->page = page_address(page);
1295 	rb_init_page(bpage->page);
1296 
1297 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1298 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1299 
1300 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1301 	if (ret < 0)
1302 		goto fail_free_reader;
1303 
1304 	cpu_buffer->head_page
1305 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1306 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1307 
1308 	rb_head_page_activate(cpu_buffer);
1309 
1310 	return cpu_buffer;
1311 
1312  fail_free_reader:
1313 	free_buffer_page(cpu_buffer->reader_page);
1314 
1315  fail_free_buffer:
1316 	kfree(cpu_buffer);
1317 	return NULL;
1318 }
1319 
1320 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1321 {
1322 	struct list_head *head = cpu_buffer->pages;
1323 	struct buffer_page *bpage, *tmp;
1324 
1325 	free_buffer_page(cpu_buffer->reader_page);
1326 
1327 	rb_head_page_deactivate(cpu_buffer);
1328 
1329 	if (head) {
1330 		list_for_each_entry_safe(bpage, tmp, head, list) {
1331 			list_del_init(&bpage->list);
1332 			free_buffer_page(bpage);
1333 		}
1334 		bpage = list_entry(head, struct buffer_page, list);
1335 		free_buffer_page(bpage);
1336 	}
1337 
1338 	kfree(cpu_buffer);
1339 }
1340 
1341 /**
1342  * __ring_buffer_alloc - allocate a new ring_buffer
1343  * @size: the size in bytes per cpu that is needed.
1344  * @flags: attributes to set for the ring buffer.
1345  *
1346  * Currently the only flag that is available is the RB_FL_OVERWRITE
1347  * flag. This flag means that the buffer will overwrite old data
1348  * when the buffer wraps. If this flag is not set, the buffer will
1349  * drop data when the tail hits the head.
1350  */
1351 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1352 					struct lock_class_key *key)
1353 {
1354 	struct ring_buffer *buffer;
1355 	long nr_pages;
1356 	int bsize;
1357 	int cpu;
1358 	int ret;
1359 
1360 	/* keep it in its own cache line */
1361 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1362 			 GFP_KERNEL);
1363 	if (!buffer)
1364 		return NULL;
1365 
1366 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1367 		goto fail_free_buffer;
1368 
1369 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1370 	buffer->flags = flags;
1371 	buffer->clock = trace_clock_local;
1372 	buffer->reader_lock_key = key;
1373 
1374 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1375 	init_waitqueue_head(&buffer->irq_work.waiters);
1376 
1377 	/* need at least two pages */
1378 	if (nr_pages < 2)
1379 		nr_pages = 2;
1380 
1381 	buffer->cpus = nr_cpu_ids;
1382 
1383 	bsize = sizeof(void *) * nr_cpu_ids;
1384 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1385 				  GFP_KERNEL);
1386 	if (!buffer->buffers)
1387 		goto fail_free_cpumask;
1388 
1389 	cpu = raw_smp_processor_id();
1390 	cpumask_set_cpu(cpu, buffer->cpumask);
1391 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1392 	if (!buffer->buffers[cpu])
1393 		goto fail_free_buffers;
1394 
1395 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1396 	if (ret < 0)
1397 		goto fail_free_buffers;
1398 
1399 	mutex_init(&buffer->mutex);
1400 
1401 	return buffer;
1402 
1403  fail_free_buffers:
1404 	for_each_buffer_cpu(buffer, cpu) {
1405 		if (buffer->buffers[cpu])
1406 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1407 	}
1408 	kfree(buffer->buffers);
1409 
1410  fail_free_cpumask:
1411 	free_cpumask_var(buffer->cpumask);
1412 
1413  fail_free_buffer:
1414 	kfree(buffer);
1415 	return NULL;
1416 }
1417 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1418 
1419 /**
1420  * ring_buffer_free - free a ring buffer.
1421  * @buffer: the buffer to free.
1422  */
1423 void
1424 ring_buffer_free(struct ring_buffer *buffer)
1425 {
1426 	int cpu;
1427 
1428 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1429 
1430 	for_each_buffer_cpu(buffer, cpu)
1431 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1432 
1433 	kfree(buffer->buffers);
1434 	free_cpumask_var(buffer->cpumask);
1435 
1436 	kfree(buffer);
1437 }
1438 EXPORT_SYMBOL_GPL(ring_buffer_free);
1439 
1440 void ring_buffer_set_clock(struct ring_buffer *buffer,
1441 			   u64 (*clock)(void))
1442 {
1443 	buffer->clock = clock;
1444 }
1445 
1446 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1447 {
1448 	buffer->time_stamp_abs = abs;
1449 }
1450 
1451 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1452 {
1453 	return buffer->time_stamp_abs;
1454 }
1455 
1456 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1457 
1458 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1459 {
1460 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1461 }
1462 
1463 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1464 {
1465 	return local_read(&bpage->write) & RB_WRITE_MASK;
1466 }
1467 
1468 static int
1469 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1470 {
1471 	struct list_head *tail_page, *to_remove, *next_page;
1472 	struct buffer_page *to_remove_page, *tmp_iter_page;
1473 	struct buffer_page *last_page, *first_page;
1474 	unsigned long nr_removed;
1475 	unsigned long head_bit;
1476 	int page_entries;
1477 
1478 	head_bit = 0;
1479 
1480 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1481 	atomic_inc(&cpu_buffer->record_disabled);
1482 	/*
1483 	 * We don't race with the readers since we have acquired the reader
1484 	 * lock. We also don't race with writers after disabling recording.
1485 	 * This makes it easy to figure out the first and the last page to be
1486 	 * removed from the list. We unlink all the pages in between including
1487 	 * the first and last pages. This is done in a busy loop so that we
1488 	 * lose the least number of traces.
1489 	 * The pages are freed after we restart recording and unlock readers.
1490 	 */
1491 	tail_page = &cpu_buffer->tail_page->list;
1492 
1493 	/*
1494 	 * tail page might be on reader page, we remove the next page
1495 	 * from the ring buffer
1496 	 */
1497 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1498 		tail_page = rb_list_head(tail_page->next);
1499 	to_remove = tail_page;
1500 
1501 	/* start of pages to remove */
1502 	first_page = list_entry(rb_list_head(to_remove->next),
1503 				struct buffer_page, list);
1504 
1505 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1506 		to_remove = rb_list_head(to_remove)->next;
1507 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1508 	}
1509 
1510 	next_page = rb_list_head(to_remove)->next;
1511 
1512 	/*
1513 	 * Now we remove all pages between tail_page and next_page.
1514 	 * Make sure that we have head_bit value preserved for the
1515 	 * next page
1516 	 */
1517 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1518 						head_bit);
1519 	next_page = rb_list_head(next_page);
1520 	next_page->prev = tail_page;
1521 
1522 	/* make sure pages points to a valid page in the ring buffer */
1523 	cpu_buffer->pages = next_page;
1524 
1525 	/* update head page */
1526 	if (head_bit)
1527 		cpu_buffer->head_page = list_entry(next_page,
1528 						struct buffer_page, list);
1529 
1530 	/*
1531 	 * change read pointer to make sure any read iterators reset
1532 	 * themselves
1533 	 */
1534 	cpu_buffer->read = 0;
1535 
1536 	/* pages are removed, resume tracing and then free the pages */
1537 	atomic_dec(&cpu_buffer->record_disabled);
1538 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1539 
1540 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1541 
1542 	/* last buffer page to remove */
1543 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1544 				list);
1545 	tmp_iter_page = first_page;
1546 
1547 	do {
1548 		to_remove_page = tmp_iter_page;
1549 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1550 
1551 		/* update the counters */
1552 		page_entries = rb_page_entries(to_remove_page);
1553 		if (page_entries) {
1554 			/*
1555 			 * If something was added to this page, it was full
1556 			 * since it is not the tail page. So we deduct the
1557 			 * bytes consumed in ring buffer from here.
1558 			 * Increment overrun to account for the lost events.
1559 			 */
1560 			local_add(page_entries, &cpu_buffer->overrun);
1561 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1562 		}
1563 
1564 		/*
1565 		 * We have already removed references to this list item, just
1566 		 * free up the buffer_page and its page
1567 		 */
1568 		free_buffer_page(to_remove_page);
1569 		nr_removed--;
1570 
1571 	} while (to_remove_page != last_page);
1572 
1573 	RB_WARN_ON(cpu_buffer, nr_removed);
1574 
1575 	return nr_removed == 0;
1576 }
1577 
1578 static int
1579 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1580 {
1581 	struct list_head *pages = &cpu_buffer->new_pages;
1582 	int retries, success;
1583 
1584 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1585 	/*
1586 	 * We are holding the reader lock, so the reader page won't be swapped
1587 	 * in the ring buffer. Now we are racing with the writer trying to
1588 	 * move head page and the tail page.
1589 	 * We are going to adapt the reader page update process where:
1590 	 * 1. We first splice the start and end of list of new pages between
1591 	 *    the head page and its previous page.
1592 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1593 	 *    start of new pages list.
1594 	 * 3. Finally, we update the head->prev to the end of new list.
1595 	 *
1596 	 * We will try this process 10 times, to make sure that we don't keep
1597 	 * spinning.
1598 	 */
1599 	retries = 10;
1600 	success = 0;
1601 	while (retries--) {
1602 		struct list_head *head_page, *prev_page, *r;
1603 		struct list_head *last_page, *first_page;
1604 		struct list_head *head_page_with_bit;
1605 
1606 		head_page = &rb_set_head_page(cpu_buffer)->list;
1607 		if (!head_page)
1608 			break;
1609 		prev_page = head_page->prev;
1610 
1611 		first_page = pages->next;
1612 		last_page  = pages->prev;
1613 
1614 		head_page_with_bit = (struct list_head *)
1615 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1616 
1617 		last_page->next = head_page_with_bit;
1618 		first_page->prev = prev_page;
1619 
1620 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1621 
1622 		if (r == head_page_with_bit) {
1623 			/*
1624 			 * yay, we replaced the page pointer to our new list,
1625 			 * now, we just have to update to head page's prev
1626 			 * pointer to point to end of list
1627 			 */
1628 			head_page->prev = last_page;
1629 			success = 1;
1630 			break;
1631 		}
1632 	}
1633 
1634 	if (success)
1635 		INIT_LIST_HEAD(pages);
1636 	/*
1637 	 * If we weren't successful in adding in new pages, warn and stop
1638 	 * tracing
1639 	 */
1640 	RB_WARN_ON(cpu_buffer, !success);
1641 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1642 
1643 	/* free pages if they weren't inserted */
1644 	if (!success) {
1645 		struct buffer_page *bpage, *tmp;
1646 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1647 					 list) {
1648 			list_del_init(&bpage->list);
1649 			free_buffer_page(bpage);
1650 		}
1651 	}
1652 	return success;
1653 }
1654 
1655 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1656 {
1657 	int success;
1658 
1659 	if (cpu_buffer->nr_pages_to_update > 0)
1660 		success = rb_insert_pages(cpu_buffer);
1661 	else
1662 		success = rb_remove_pages(cpu_buffer,
1663 					-cpu_buffer->nr_pages_to_update);
1664 
1665 	if (success)
1666 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1667 }
1668 
1669 static void update_pages_handler(struct work_struct *work)
1670 {
1671 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1672 			struct ring_buffer_per_cpu, update_pages_work);
1673 	rb_update_pages(cpu_buffer);
1674 	complete(&cpu_buffer->update_done);
1675 }
1676 
1677 /**
1678  * ring_buffer_resize - resize the ring buffer
1679  * @buffer: the buffer to resize.
1680  * @size: the new size.
1681  * @cpu_id: the cpu buffer to resize
1682  *
1683  * Minimum size is 2 * BUF_PAGE_SIZE.
1684  *
1685  * Returns 0 on success and < 0 on failure.
1686  */
1687 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1688 			int cpu_id)
1689 {
1690 	struct ring_buffer_per_cpu *cpu_buffer;
1691 	unsigned long nr_pages;
1692 	int cpu, err = 0;
1693 
1694 	/*
1695 	 * Always succeed at resizing a non-existent buffer:
1696 	 */
1697 	if (!buffer)
1698 		return size;
1699 
1700 	/* Make sure the requested buffer exists */
1701 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1702 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1703 		return size;
1704 
1705 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1706 
1707 	/* we need a minimum of two pages */
1708 	if (nr_pages < 2)
1709 		nr_pages = 2;
1710 
1711 	size = nr_pages * BUF_PAGE_SIZE;
1712 
1713 	/*
1714 	 * Don't succeed if resizing is disabled, as a reader might be
1715 	 * manipulating the ring buffer and is expecting a sane state while
1716 	 * this is true.
1717 	 */
1718 	if (atomic_read(&buffer->resize_disabled))
1719 		return -EBUSY;
1720 
1721 	/* prevent another thread from changing buffer sizes */
1722 	mutex_lock(&buffer->mutex);
1723 
1724 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1725 		/* calculate the pages to update */
1726 		for_each_buffer_cpu(buffer, cpu) {
1727 			cpu_buffer = buffer->buffers[cpu];
1728 
1729 			cpu_buffer->nr_pages_to_update = nr_pages -
1730 							cpu_buffer->nr_pages;
1731 			/*
1732 			 * nothing more to do for removing pages or no update
1733 			 */
1734 			if (cpu_buffer->nr_pages_to_update <= 0)
1735 				continue;
1736 			/*
1737 			 * to add pages, make sure all new pages can be
1738 			 * allocated without receiving ENOMEM
1739 			 */
1740 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1741 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1742 						&cpu_buffer->new_pages, cpu)) {
1743 				/* not enough memory for new pages */
1744 				err = -ENOMEM;
1745 				goto out_err;
1746 			}
1747 		}
1748 
1749 		get_online_cpus();
1750 		/*
1751 		 * Fire off all the required work handlers
1752 		 * We can't schedule on offline CPUs, but it's not necessary
1753 		 * since we can change their buffer sizes without any race.
1754 		 */
1755 		for_each_buffer_cpu(buffer, cpu) {
1756 			cpu_buffer = buffer->buffers[cpu];
1757 			if (!cpu_buffer->nr_pages_to_update)
1758 				continue;
1759 
1760 			/* Can't run something on an offline CPU. */
1761 			if (!cpu_online(cpu)) {
1762 				rb_update_pages(cpu_buffer);
1763 				cpu_buffer->nr_pages_to_update = 0;
1764 			} else {
1765 				schedule_work_on(cpu,
1766 						&cpu_buffer->update_pages_work);
1767 			}
1768 		}
1769 
1770 		/* wait for all the updates to complete */
1771 		for_each_buffer_cpu(buffer, cpu) {
1772 			cpu_buffer = buffer->buffers[cpu];
1773 			if (!cpu_buffer->nr_pages_to_update)
1774 				continue;
1775 
1776 			if (cpu_online(cpu))
1777 				wait_for_completion(&cpu_buffer->update_done);
1778 			cpu_buffer->nr_pages_to_update = 0;
1779 		}
1780 
1781 		put_online_cpus();
1782 	} else {
1783 		/* Make sure this CPU has been intitialized */
1784 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1785 			goto out;
1786 
1787 		cpu_buffer = buffer->buffers[cpu_id];
1788 
1789 		if (nr_pages == cpu_buffer->nr_pages)
1790 			goto out;
1791 
1792 		cpu_buffer->nr_pages_to_update = nr_pages -
1793 						cpu_buffer->nr_pages;
1794 
1795 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1796 		if (cpu_buffer->nr_pages_to_update > 0 &&
1797 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1798 					    &cpu_buffer->new_pages, cpu_id)) {
1799 			err = -ENOMEM;
1800 			goto out_err;
1801 		}
1802 
1803 		get_online_cpus();
1804 
1805 		/* Can't run something on an offline CPU. */
1806 		if (!cpu_online(cpu_id))
1807 			rb_update_pages(cpu_buffer);
1808 		else {
1809 			schedule_work_on(cpu_id,
1810 					 &cpu_buffer->update_pages_work);
1811 			wait_for_completion(&cpu_buffer->update_done);
1812 		}
1813 
1814 		cpu_buffer->nr_pages_to_update = 0;
1815 		put_online_cpus();
1816 	}
1817 
1818  out:
1819 	/*
1820 	 * The ring buffer resize can happen with the ring buffer
1821 	 * enabled, so that the update disturbs the tracing as little
1822 	 * as possible. But if the buffer is disabled, we do not need
1823 	 * to worry about that, and we can take the time to verify
1824 	 * that the buffer is not corrupt.
1825 	 */
1826 	if (atomic_read(&buffer->record_disabled)) {
1827 		atomic_inc(&buffer->record_disabled);
1828 		/*
1829 		 * Even though the buffer was disabled, we must make sure
1830 		 * that it is truly disabled before calling rb_check_pages.
1831 		 * There could have been a race between checking
1832 		 * record_disable and incrementing it.
1833 		 */
1834 		synchronize_sched();
1835 		for_each_buffer_cpu(buffer, cpu) {
1836 			cpu_buffer = buffer->buffers[cpu];
1837 			rb_check_pages(cpu_buffer);
1838 		}
1839 		atomic_dec(&buffer->record_disabled);
1840 	}
1841 
1842 	mutex_unlock(&buffer->mutex);
1843 	return size;
1844 
1845  out_err:
1846 	for_each_buffer_cpu(buffer, cpu) {
1847 		struct buffer_page *bpage, *tmp;
1848 
1849 		cpu_buffer = buffer->buffers[cpu];
1850 		cpu_buffer->nr_pages_to_update = 0;
1851 
1852 		if (list_empty(&cpu_buffer->new_pages))
1853 			continue;
1854 
1855 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1856 					list) {
1857 			list_del_init(&bpage->list);
1858 			free_buffer_page(bpage);
1859 		}
1860 	}
1861 	mutex_unlock(&buffer->mutex);
1862 	return err;
1863 }
1864 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1865 
1866 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1867 {
1868 	mutex_lock(&buffer->mutex);
1869 	if (val)
1870 		buffer->flags |= RB_FL_OVERWRITE;
1871 	else
1872 		buffer->flags &= ~RB_FL_OVERWRITE;
1873 	mutex_unlock(&buffer->mutex);
1874 }
1875 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1876 
1877 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1878 {
1879 	return bpage->page->data + index;
1880 }
1881 
1882 static __always_inline struct ring_buffer_event *
1883 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1884 {
1885 	return __rb_page_index(cpu_buffer->reader_page,
1886 			       cpu_buffer->reader_page->read);
1887 }
1888 
1889 static __always_inline struct ring_buffer_event *
1890 rb_iter_head_event(struct ring_buffer_iter *iter)
1891 {
1892 	return __rb_page_index(iter->head_page, iter->head);
1893 }
1894 
1895 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1896 {
1897 	return local_read(&bpage->page->commit);
1898 }
1899 
1900 /* Size is determined by what has been committed */
1901 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1902 {
1903 	return rb_page_commit(bpage);
1904 }
1905 
1906 static __always_inline unsigned
1907 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1908 {
1909 	return rb_page_commit(cpu_buffer->commit_page);
1910 }
1911 
1912 static __always_inline unsigned
1913 rb_event_index(struct ring_buffer_event *event)
1914 {
1915 	unsigned long addr = (unsigned long)event;
1916 
1917 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1918 }
1919 
1920 static void rb_inc_iter(struct ring_buffer_iter *iter)
1921 {
1922 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1923 
1924 	/*
1925 	 * The iterator could be on the reader page (it starts there).
1926 	 * But the head could have moved, since the reader was
1927 	 * found. Check for this case and assign the iterator
1928 	 * to the head page instead of next.
1929 	 */
1930 	if (iter->head_page == cpu_buffer->reader_page)
1931 		iter->head_page = rb_set_head_page(cpu_buffer);
1932 	else
1933 		rb_inc_page(cpu_buffer, &iter->head_page);
1934 
1935 	iter->read_stamp = iter->head_page->page->time_stamp;
1936 	iter->head = 0;
1937 }
1938 
1939 /*
1940  * rb_handle_head_page - writer hit the head page
1941  *
1942  * Returns: +1 to retry page
1943  *           0 to continue
1944  *          -1 on error
1945  */
1946 static int
1947 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1948 		    struct buffer_page *tail_page,
1949 		    struct buffer_page *next_page)
1950 {
1951 	struct buffer_page *new_head;
1952 	int entries;
1953 	int type;
1954 	int ret;
1955 
1956 	entries = rb_page_entries(next_page);
1957 
1958 	/*
1959 	 * The hard part is here. We need to move the head
1960 	 * forward, and protect against both readers on
1961 	 * other CPUs and writers coming in via interrupts.
1962 	 */
1963 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1964 				       RB_PAGE_HEAD);
1965 
1966 	/*
1967 	 * type can be one of four:
1968 	 *  NORMAL - an interrupt already moved it for us
1969 	 *  HEAD   - we are the first to get here.
1970 	 *  UPDATE - we are the interrupt interrupting
1971 	 *           a current move.
1972 	 *  MOVED  - a reader on another CPU moved the next
1973 	 *           pointer to its reader page. Give up
1974 	 *           and try again.
1975 	 */
1976 
1977 	switch (type) {
1978 	case RB_PAGE_HEAD:
1979 		/*
1980 		 * We changed the head to UPDATE, thus
1981 		 * it is our responsibility to update
1982 		 * the counters.
1983 		 */
1984 		local_add(entries, &cpu_buffer->overrun);
1985 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1986 
1987 		/*
1988 		 * The entries will be zeroed out when we move the
1989 		 * tail page.
1990 		 */
1991 
1992 		/* still more to do */
1993 		break;
1994 
1995 	case RB_PAGE_UPDATE:
1996 		/*
1997 		 * This is an interrupt that interrupt the
1998 		 * previous update. Still more to do.
1999 		 */
2000 		break;
2001 	case RB_PAGE_NORMAL:
2002 		/*
2003 		 * An interrupt came in before the update
2004 		 * and processed this for us.
2005 		 * Nothing left to do.
2006 		 */
2007 		return 1;
2008 	case RB_PAGE_MOVED:
2009 		/*
2010 		 * The reader is on another CPU and just did
2011 		 * a swap with our next_page.
2012 		 * Try again.
2013 		 */
2014 		return 1;
2015 	default:
2016 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2017 		return -1;
2018 	}
2019 
2020 	/*
2021 	 * Now that we are here, the old head pointer is
2022 	 * set to UPDATE. This will keep the reader from
2023 	 * swapping the head page with the reader page.
2024 	 * The reader (on another CPU) will spin till
2025 	 * we are finished.
2026 	 *
2027 	 * We just need to protect against interrupts
2028 	 * doing the job. We will set the next pointer
2029 	 * to HEAD. After that, we set the old pointer
2030 	 * to NORMAL, but only if it was HEAD before.
2031 	 * otherwise we are an interrupt, and only
2032 	 * want the outer most commit to reset it.
2033 	 */
2034 	new_head = next_page;
2035 	rb_inc_page(cpu_buffer, &new_head);
2036 
2037 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2038 				    RB_PAGE_NORMAL);
2039 
2040 	/*
2041 	 * Valid returns are:
2042 	 *  HEAD   - an interrupt came in and already set it.
2043 	 *  NORMAL - One of two things:
2044 	 *            1) We really set it.
2045 	 *            2) A bunch of interrupts came in and moved
2046 	 *               the page forward again.
2047 	 */
2048 	switch (ret) {
2049 	case RB_PAGE_HEAD:
2050 	case RB_PAGE_NORMAL:
2051 		/* OK */
2052 		break;
2053 	default:
2054 		RB_WARN_ON(cpu_buffer, 1);
2055 		return -1;
2056 	}
2057 
2058 	/*
2059 	 * It is possible that an interrupt came in,
2060 	 * set the head up, then more interrupts came in
2061 	 * and moved it again. When we get back here,
2062 	 * the page would have been set to NORMAL but we
2063 	 * just set it back to HEAD.
2064 	 *
2065 	 * How do you detect this? Well, if that happened
2066 	 * the tail page would have moved.
2067 	 */
2068 	if (ret == RB_PAGE_NORMAL) {
2069 		struct buffer_page *buffer_tail_page;
2070 
2071 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2072 		/*
2073 		 * If the tail had moved passed next, then we need
2074 		 * to reset the pointer.
2075 		 */
2076 		if (buffer_tail_page != tail_page &&
2077 		    buffer_tail_page != next_page)
2078 			rb_head_page_set_normal(cpu_buffer, new_head,
2079 						next_page,
2080 						RB_PAGE_HEAD);
2081 	}
2082 
2083 	/*
2084 	 * If this was the outer most commit (the one that
2085 	 * changed the original pointer from HEAD to UPDATE),
2086 	 * then it is up to us to reset it to NORMAL.
2087 	 */
2088 	if (type == RB_PAGE_HEAD) {
2089 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2090 					      tail_page,
2091 					      RB_PAGE_UPDATE);
2092 		if (RB_WARN_ON(cpu_buffer,
2093 			       ret != RB_PAGE_UPDATE))
2094 			return -1;
2095 	}
2096 
2097 	return 0;
2098 }
2099 
2100 static inline void
2101 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2102 	      unsigned long tail, struct rb_event_info *info)
2103 {
2104 	struct buffer_page *tail_page = info->tail_page;
2105 	struct ring_buffer_event *event;
2106 	unsigned long length = info->length;
2107 
2108 	/*
2109 	 * Only the event that crossed the page boundary
2110 	 * must fill the old tail_page with padding.
2111 	 */
2112 	if (tail >= BUF_PAGE_SIZE) {
2113 		/*
2114 		 * If the page was filled, then we still need
2115 		 * to update the real_end. Reset it to zero
2116 		 * and the reader will ignore it.
2117 		 */
2118 		if (tail == BUF_PAGE_SIZE)
2119 			tail_page->real_end = 0;
2120 
2121 		local_sub(length, &tail_page->write);
2122 		return;
2123 	}
2124 
2125 	event = __rb_page_index(tail_page, tail);
2126 
2127 	/* account for padding bytes */
2128 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2129 
2130 	/*
2131 	 * Save the original length to the meta data.
2132 	 * This will be used by the reader to add lost event
2133 	 * counter.
2134 	 */
2135 	tail_page->real_end = tail;
2136 
2137 	/*
2138 	 * If this event is bigger than the minimum size, then
2139 	 * we need to be careful that we don't subtract the
2140 	 * write counter enough to allow another writer to slip
2141 	 * in on this page.
2142 	 * We put in a discarded commit instead, to make sure
2143 	 * that this space is not used again.
2144 	 *
2145 	 * If we are less than the minimum size, we don't need to
2146 	 * worry about it.
2147 	 */
2148 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2149 		/* No room for any events */
2150 
2151 		/* Mark the rest of the page with padding */
2152 		rb_event_set_padding(event);
2153 
2154 		/* Set the write back to the previous setting */
2155 		local_sub(length, &tail_page->write);
2156 		return;
2157 	}
2158 
2159 	/* Put in a discarded event */
2160 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2161 	event->type_len = RINGBUF_TYPE_PADDING;
2162 	/* time delta must be non zero */
2163 	event->time_delta = 1;
2164 
2165 	/* Set write to end of buffer */
2166 	length = (tail + length) - BUF_PAGE_SIZE;
2167 	local_sub(length, &tail_page->write);
2168 }
2169 
2170 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2171 
2172 /*
2173  * This is the slow path, force gcc not to inline it.
2174  */
2175 static noinline struct ring_buffer_event *
2176 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2177 	     unsigned long tail, struct rb_event_info *info)
2178 {
2179 	struct buffer_page *tail_page = info->tail_page;
2180 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2181 	struct ring_buffer *buffer = cpu_buffer->buffer;
2182 	struct buffer_page *next_page;
2183 	int ret;
2184 
2185 	next_page = tail_page;
2186 
2187 	rb_inc_page(cpu_buffer, &next_page);
2188 
2189 	/*
2190 	 * If for some reason, we had an interrupt storm that made
2191 	 * it all the way around the buffer, bail, and warn
2192 	 * about it.
2193 	 */
2194 	if (unlikely(next_page == commit_page)) {
2195 		local_inc(&cpu_buffer->commit_overrun);
2196 		goto out_reset;
2197 	}
2198 
2199 	/*
2200 	 * This is where the fun begins!
2201 	 *
2202 	 * We are fighting against races between a reader that
2203 	 * could be on another CPU trying to swap its reader
2204 	 * page with the buffer head.
2205 	 *
2206 	 * We are also fighting against interrupts coming in and
2207 	 * moving the head or tail on us as well.
2208 	 *
2209 	 * If the next page is the head page then we have filled
2210 	 * the buffer, unless the commit page is still on the
2211 	 * reader page.
2212 	 */
2213 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2214 
2215 		/*
2216 		 * If the commit is not on the reader page, then
2217 		 * move the header page.
2218 		 */
2219 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2220 			/*
2221 			 * If we are not in overwrite mode,
2222 			 * this is easy, just stop here.
2223 			 */
2224 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2225 				local_inc(&cpu_buffer->dropped_events);
2226 				goto out_reset;
2227 			}
2228 
2229 			ret = rb_handle_head_page(cpu_buffer,
2230 						  tail_page,
2231 						  next_page);
2232 			if (ret < 0)
2233 				goto out_reset;
2234 			if (ret)
2235 				goto out_again;
2236 		} else {
2237 			/*
2238 			 * We need to be careful here too. The
2239 			 * commit page could still be on the reader
2240 			 * page. We could have a small buffer, and
2241 			 * have filled up the buffer with events
2242 			 * from interrupts and such, and wrapped.
2243 			 *
2244 			 * Note, if the tail page is also the on the
2245 			 * reader_page, we let it move out.
2246 			 */
2247 			if (unlikely((cpu_buffer->commit_page !=
2248 				      cpu_buffer->tail_page) &&
2249 				     (cpu_buffer->commit_page ==
2250 				      cpu_buffer->reader_page))) {
2251 				local_inc(&cpu_buffer->commit_overrun);
2252 				goto out_reset;
2253 			}
2254 		}
2255 	}
2256 
2257 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2258 
2259  out_again:
2260 
2261 	rb_reset_tail(cpu_buffer, tail, info);
2262 
2263 	/* Commit what we have for now. */
2264 	rb_end_commit(cpu_buffer);
2265 	/* rb_end_commit() decs committing */
2266 	local_inc(&cpu_buffer->committing);
2267 
2268 	/* fail and let the caller try again */
2269 	return ERR_PTR(-EAGAIN);
2270 
2271  out_reset:
2272 	/* reset write */
2273 	rb_reset_tail(cpu_buffer, tail, info);
2274 
2275 	return NULL;
2276 }
2277 
2278 /* Slow path, do not inline */
2279 static noinline struct ring_buffer_event *
2280 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2281 {
2282 	if (abs)
2283 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2284 	else
2285 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2286 
2287 	/* Not the first event on the page, or not delta? */
2288 	if (abs || rb_event_index(event)) {
2289 		event->time_delta = delta & TS_MASK;
2290 		event->array[0] = delta >> TS_SHIFT;
2291 	} else {
2292 		/* nope, just zero it */
2293 		event->time_delta = 0;
2294 		event->array[0] = 0;
2295 	}
2296 
2297 	return skip_time_extend(event);
2298 }
2299 
2300 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2301 				     struct ring_buffer_event *event);
2302 
2303 /**
2304  * rb_update_event - update event type and data
2305  * @event: the event to update
2306  * @type: the type of event
2307  * @length: the size of the event field in the ring buffer
2308  *
2309  * Update the type and data fields of the event. The length
2310  * is the actual size that is written to the ring buffer,
2311  * and with this, we can determine what to place into the
2312  * data field.
2313  */
2314 static void
2315 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2316 		struct ring_buffer_event *event,
2317 		struct rb_event_info *info)
2318 {
2319 	unsigned length = info->length;
2320 	u64 delta = info->delta;
2321 
2322 	/* Only a commit updates the timestamp */
2323 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2324 		delta = 0;
2325 
2326 	/*
2327 	 * If we need to add a timestamp, then we
2328 	 * add it to the start of the resevered space.
2329 	 */
2330 	if (unlikely(info->add_timestamp)) {
2331 		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2332 
2333 		event = rb_add_time_stamp(event, info->delta, abs);
2334 		length -= RB_LEN_TIME_EXTEND;
2335 		delta = 0;
2336 	}
2337 
2338 	event->time_delta = delta;
2339 	length -= RB_EVNT_HDR_SIZE;
2340 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2341 		event->type_len = 0;
2342 		event->array[0] = length;
2343 	} else
2344 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2345 }
2346 
2347 static unsigned rb_calculate_event_length(unsigned length)
2348 {
2349 	struct ring_buffer_event event; /* Used only for sizeof array */
2350 
2351 	/* zero length can cause confusions */
2352 	if (!length)
2353 		length++;
2354 
2355 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2356 		length += sizeof(event.array[0]);
2357 
2358 	length += RB_EVNT_HDR_SIZE;
2359 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2360 
2361 	/*
2362 	 * In case the time delta is larger than the 27 bits for it
2363 	 * in the header, we need to add a timestamp. If another
2364 	 * event comes in when trying to discard this one to increase
2365 	 * the length, then the timestamp will be added in the allocated
2366 	 * space of this event. If length is bigger than the size needed
2367 	 * for the TIME_EXTEND, then padding has to be used. The events
2368 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2369 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2370 	 * As length is a multiple of 4, we only need to worry if it
2371 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2372 	 */
2373 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2374 		length += RB_ALIGNMENT;
2375 
2376 	return length;
2377 }
2378 
2379 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2380 static inline bool sched_clock_stable(void)
2381 {
2382 	return true;
2383 }
2384 #endif
2385 
2386 static inline int
2387 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2388 		  struct ring_buffer_event *event)
2389 {
2390 	unsigned long new_index, old_index;
2391 	struct buffer_page *bpage;
2392 	unsigned long index;
2393 	unsigned long addr;
2394 
2395 	new_index = rb_event_index(event);
2396 	old_index = new_index + rb_event_ts_length(event);
2397 	addr = (unsigned long)event;
2398 	addr &= PAGE_MASK;
2399 
2400 	bpage = READ_ONCE(cpu_buffer->tail_page);
2401 
2402 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2403 		unsigned long write_mask =
2404 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2405 		unsigned long event_length = rb_event_length(event);
2406 		/*
2407 		 * This is on the tail page. It is possible that
2408 		 * a write could come in and move the tail page
2409 		 * and write to the next page. That is fine
2410 		 * because we just shorten what is on this page.
2411 		 */
2412 		old_index += write_mask;
2413 		new_index += write_mask;
2414 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2415 		if (index == old_index) {
2416 			/* update counters */
2417 			local_sub(event_length, &cpu_buffer->entries_bytes);
2418 			return 1;
2419 		}
2420 	}
2421 
2422 	/* could not discard */
2423 	return 0;
2424 }
2425 
2426 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2427 {
2428 	local_inc(&cpu_buffer->committing);
2429 	local_inc(&cpu_buffer->commits);
2430 }
2431 
2432 static __always_inline void
2433 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2434 {
2435 	unsigned long max_count;
2436 
2437 	/*
2438 	 * We only race with interrupts and NMIs on this CPU.
2439 	 * If we own the commit event, then we can commit
2440 	 * all others that interrupted us, since the interruptions
2441 	 * are in stack format (they finish before they come
2442 	 * back to us). This allows us to do a simple loop to
2443 	 * assign the commit to the tail.
2444 	 */
2445  again:
2446 	max_count = cpu_buffer->nr_pages * 100;
2447 
2448 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2449 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2450 			return;
2451 		if (RB_WARN_ON(cpu_buffer,
2452 			       rb_is_reader_page(cpu_buffer->tail_page)))
2453 			return;
2454 		local_set(&cpu_buffer->commit_page->page->commit,
2455 			  rb_page_write(cpu_buffer->commit_page));
2456 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2457 		/* Only update the write stamp if the page has an event */
2458 		if (rb_page_write(cpu_buffer->commit_page))
2459 			cpu_buffer->write_stamp =
2460 				cpu_buffer->commit_page->page->time_stamp;
2461 		/* add barrier to keep gcc from optimizing too much */
2462 		barrier();
2463 	}
2464 	while (rb_commit_index(cpu_buffer) !=
2465 	       rb_page_write(cpu_buffer->commit_page)) {
2466 
2467 		local_set(&cpu_buffer->commit_page->page->commit,
2468 			  rb_page_write(cpu_buffer->commit_page));
2469 		RB_WARN_ON(cpu_buffer,
2470 			   local_read(&cpu_buffer->commit_page->page->commit) &
2471 			   ~RB_WRITE_MASK);
2472 		barrier();
2473 	}
2474 
2475 	/* again, keep gcc from optimizing */
2476 	barrier();
2477 
2478 	/*
2479 	 * If an interrupt came in just after the first while loop
2480 	 * and pushed the tail page forward, we will be left with
2481 	 * a dangling commit that will never go forward.
2482 	 */
2483 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2484 		goto again;
2485 }
2486 
2487 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2488 {
2489 	unsigned long commits;
2490 
2491 	if (RB_WARN_ON(cpu_buffer,
2492 		       !local_read(&cpu_buffer->committing)))
2493 		return;
2494 
2495  again:
2496 	commits = local_read(&cpu_buffer->commits);
2497 	/* synchronize with interrupts */
2498 	barrier();
2499 	if (local_read(&cpu_buffer->committing) == 1)
2500 		rb_set_commit_to_write(cpu_buffer);
2501 
2502 	local_dec(&cpu_buffer->committing);
2503 
2504 	/* synchronize with interrupts */
2505 	barrier();
2506 
2507 	/*
2508 	 * Need to account for interrupts coming in between the
2509 	 * updating of the commit page and the clearing of the
2510 	 * committing counter.
2511 	 */
2512 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2513 	    !local_read(&cpu_buffer->committing)) {
2514 		local_inc(&cpu_buffer->committing);
2515 		goto again;
2516 	}
2517 }
2518 
2519 static inline void rb_event_discard(struct ring_buffer_event *event)
2520 {
2521 	if (extended_time(event))
2522 		event = skip_time_extend(event);
2523 
2524 	/* array[0] holds the actual length for the discarded event */
2525 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2526 	event->type_len = RINGBUF_TYPE_PADDING;
2527 	/* time delta must be non zero */
2528 	if (!event->time_delta)
2529 		event->time_delta = 1;
2530 }
2531 
2532 static __always_inline bool
2533 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2534 		   struct ring_buffer_event *event)
2535 {
2536 	unsigned long addr = (unsigned long)event;
2537 	unsigned long index;
2538 
2539 	index = rb_event_index(event);
2540 	addr &= PAGE_MASK;
2541 
2542 	return cpu_buffer->commit_page->page == (void *)addr &&
2543 		rb_commit_index(cpu_buffer) == index;
2544 }
2545 
2546 static __always_inline void
2547 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2548 		      struct ring_buffer_event *event)
2549 {
2550 	u64 delta;
2551 
2552 	/*
2553 	 * The event first in the commit queue updates the
2554 	 * time stamp.
2555 	 */
2556 	if (rb_event_is_commit(cpu_buffer, event)) {
2557 		/*
2558 		 * A commit event that is first on a page
2559 		 * updates the write timestamp with the page stamp
2560 		 */
2561 		if (!rb_event_index(event))
2562 			cpu_buffer->write_stamp =
2563 				cpu_buffer->commit_page->page->time_stamp;
2564 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2565 			delta = ring_buffer_event_time_stamp(event);
2566 			cpu_buffer->write_stamp += delta;
2567 		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2568 			delta = ring_buffer_event_time_stamp(event);
2569 			cpu_buffer->write_stamp = delta;
2570 		} else
2571 			cpu_buffer->write_stamp += event->time_delta;
2572 	}
2573 }
2574 
2575 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2576 		      struct ring_buffer_event *event)
2577 {
2578 	local_inc(&cpu_buffer->entries);
2579 	rb_update_write_stamp(cpu_buffer, event);
2580 	rb_end_commit(cpu_buffer);
2581 }
2582 
2583 static __always_inline void
2584 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2585 {
2586 	bool pagebusy;
2587 
2588 	if (buffer->irq_work.waiters_pending) {
2589 		buffer->irq_work.waiters_pending = false;
2590 		/* irq_work_queue() supplies it's own memory barriers */
2591 		irq_work_queue(&buffer->irq_work.work);
2592 	}
2593 
2594 	if (cpu_buffer->irq_work.waiters_pending) {
2595 		cpu_buffer->irq_work.waiters_pending = false;
2596 		/* irq_work_queue() supplies it's own memory barriers */
2597 		irq_work_queue(&cpu_buffer->irq_work.work);
2598 	}
2599 
2600 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2601 
2602 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2603 		cpu_buffer->irq_work.wakeup_full = true;
2604 		cpu_buffer->irq_work.full_waiters_pending = false;
2605 		/* irq_work_queue() supplies it's own memory barriers */
2606 		irq_work_queue(&cpu_buffer->irq_work.work);
2607 	}
2608 }
2609 
2610 /*
2611  * The lock and unlock are done within a preempt disable section.
2612  * The current_context per_cpu variable can only be modified
2613  * by the current task between lock and unlock. But it can
2614  * be modified more than once via an interrupt. To pass this
2615  * information from the lock to the unlock without having to
2616  * access the 'in_interrupt()' functions again (which do show
2617  * a bit of overhead in something as critical as function tracing,
2618  * we use a bitmask trick.
2619  *
2620  *  bit 0 =  NMI context
2621  *  bit 1 =  IRQ context
2622  *  bit 2 =  SoftIRQ context
2623  *  bit 3 =  normal context.
2624  *
2625  * This works because this is the order of contexts that can
2626  * preempt other contexts. A SoftIRQ never preempts an IRQ
2627  * context.
2628  *
2629  * When the context is determined, the corresponding bit is
2630  * checked and set (if it was set, then a recursion of that context
2631  * happened).
2632  *
2633  * On unlock, we need to clear this bit. To do so, just subtract
2634  * 1 from the current_context and AND it to itself.
2635  *
2636  * (binary)
2637  *  101 - 1 = 100
2638  *  101 & 100 = 100 (clearing bit zero)
2639  *
2640  *  1010 - 1 = 1001
2641  *  1010 & 1001 = 1000 (clearing bit 1)
2642  *
2643  * The least significant bit can be cleared this way, and it
2644  * just so happens that it is the same bit corresponding to
2645  * the current context.
2646  */
2647 
2648 static __always_inline int
2649 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2650 {
2651 	unsigned int val = cpu_buffer->current_context;
2652 	unsigned long pc = preempt_count();
2653 	int bit;
2654 
2655 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2656 		bit = RB_CTX_NORMAL;
2657 	else
2658 		bit = pc & NMI_MASK ? RB_CTX_NMI :
2659 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2660 
2661 	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2662 		return 1;
2663 
2664 	val |= (1 << (bit + cpu_buffer->nest));
2665 	cpu_buffer->current_context = val;
2666 
2667 	return 0;
2668 }
2669 
2670 static __always_inline void
2671 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2672 {
2673 	cpu_buffer->current_context &=
2674 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2675 }
2676 
2677 /* The recursive locking above uses 4 bits */
2678 #define NESTED_BITS 4
2679 
2680 /**
2681  * ring_buffer_nest_start - Allow to trace while nested
2682  * @buffer: The ring buffer to modify
2683  *
2684  * The ring buffer has a safty mechanism to prevent recursion.
2685  * But there may be a case where a trace needs to be done while
2686  * tracing something else. In this case, calling this function
2687  * will allow this function to nest within a currently active
2688  * ring_buffer_lock_reserve().
2689  *
2690  * Call this function before calling another ring_buffer_lock_reserve() and
2691  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2692  */
2693 void ring_buffer_nest_start(struct ring_buffer *buffer)
2694 {
2695 	struct ring_buffer_per_cpu *cpu_buffer;
2696 	int cpu;
2697 
2698 	/* Enabled by ring_buffer_nest_end() */
2699 	preempt_disable_notrace();
2700 	cpu = raw_smp_processor_id();
2701 	cpu_buffer = buffer->buffers[cpu];
2702 	/* This is the shift value for the above recusive locking */
2703 	cpu_buffer->nest += NESTED_BITS;
2704 }
2705 
2706 /**
2707  * ring_buffer_nest_end - Allow to trace while nested
2708  * @buffer: The ring buffer to modify
2709  *
2710  * Must be called after ring_buffer_nest_start() and after the
2711  * ring_buffer_unlock_commit().
2712  */
2713 void ring_buffer_nest_end(struct ring_buffer *buffer)
2714 {
2715 	struct ring_buffer_per_cpu *cpu_buffer;
2716 	int cpu;
2717 
2718 	/* disabled by ring_buffer_nest_start() */
2719 	cpu = raw_smp_processor_id();
2720 	cpu_buffer = buffer->buffers[cpu];
2721 	/* This is the shift value for the above recusive locking */
2722 	cpu_buffer->nest -= NESTED_BITS;
2723 	preempt_enable_notrace();
2724 }
2725 
2726 /**
2727  * ring_buffer_unlock_commit - commit a reserved
2728  * @buffer: The buffer to commit to
2729  * @event: The event pointer to commit.
2730  *
2731  * This commits the data to the ring buffer, and releases any locks held.
2732  *
2733  * Must be paired with ring_buffer_lock_reserve.
2734  */
2735 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2736 			      struct ring_buffer_event *event)
2737 {
2738 	struct ring_buffer_per_cpu *cpu_buffer;
2739 	int cpu = raw_smp_processor_id();
2740 
2741 	cpu_buffer = buffer->buffers[cpu];
2742 
2743 	rb_commit(cpu_buffer, event);
2744 
2745 	rb_wakeups(buffer, cpu_buffer);
2746 
2747 	trace_recursive_unlock(cpu_buffer);
2748 
2749 	preempt_enable_notrace();
2750 
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2754 
2755 static noinline void
2756 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2757 		    struct rb_event_info *info)
2758 {
2759 	WARN_ONCE(info->delta > (1ULL << 59),
2760 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2761 		  (unsigned long long)info->delta,
2762 		  (unsigned long long)info->ts,
2763 		  (unsigned long long)cpu_buffer->write_stamp,
2764 		  sched_clock_stable() ? "" :
2765 		  "If you just came from a suspend/resume,\n"
2766 		  "please switch to the trace global clock:\n"
2767 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2768 		  "or add trace_clock=global to the kernel command line\n");
2769 	info->add_timestamp = 1;
2770 }
2771 
2772 static struct ring_buffer_event *
2773 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2774 		  struct rb_event_info *info)
2775 {
2776 	struct ring_buffer_event *event;
2777 	struct buffer_page *tail_page;
2778 	unsigned long tail, write;
2779 
2780 	/*
2781 	 * If the time delta since the last event is too big to
2782 	 * hold in the time field of the event, then we append a
2783 	 * TIME EXTEND event ahead of the data event.
2784 	 */
2785 	if (unlikely(info->add_timestamp))
2786 		info->length += RB_LEN_TIME_EXTEND;
2787 
2788 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2789 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2790 	write = local_add_return(info->length, &tail_page->write);
2791 
2792 	/* set write to only the index of the write */
2793 	write &= RB_WRITE_MASK;
2794 	tail = write - info->length;
2795 
2796 	/*
2797 	 * If this is the first commit on the page, then it has the same
2798 	 * timestamp as the page itself.
2799 	 */
2800 	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2801 		info->delta = 0;
2802 
2803 	/* See if we shot pass the end of this buffer page */
2804 	if (unlikely(write > BUF_PAGE_SIZE))
2805 		return rb_move_tail(cpu_buffer, tail, info);
2806 
2807 	/* We reserved something on the buffer */
2808 
2809 	event = __rb_page_index(tail_page, tail);
2810 	rb_update_event(cpu_buffer, event, info);
2811 
2812 	local_inc(&tail_page->entries);
2813 
2814 	/*
2815 	 * If this is the first commit on the page, then update
2816 	 * its timestamp.
2817 	 */
2818 	if (!tail)
2819 		tail_page->page->time_stamp = info->ts;
2820 
2821 	/* account for these added bytes */
2822 	local_add(info->length, &cpu_buffer->entries_bytes);
2823 
2824 	return event;
2825 }
2826 
2827 static __always_inline struct ring_buffer_event *
2828 rb_reserve_next_event(struct ring_buffer *buffer,
2829 		      struct ring_buffer_per_cpu *cpu_buffer,
2830 		      unsigned long length)
2831 {
2832 	struct ring_buffer_event *event;
2833 	struct rb_event_info info;
2834 	int nr_loops = 0;
2835 	u64 diff;
2836 
2837 	rb_start_commit(cpu_buffer);
2838 
2839 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2840 	/*
2841 	 * Due to the ability to swap a cpu buffer from a buffer
2842 	 * it is possible it was swapped before we committed.
2843 	 * (committing stops a swap). We check for it here and
2844 	 * if it happened, we have to fail the write.
2845 	 */
2846 	barrier();
2847 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2848 		local_dec(&cpu_buffer->committing);
2849 		local_dec(&cpu_buffer->commits);
2850 		return NULL;
2851 	}
2852 #endif
2853 
2854 	info.length = rb_calculate_event_length(length);
2855  again:
2856 	info.add_timestamp = 0;
2857 	info.delta = 0;
2858 
2859 	/*
2860 	 * We allow for interrupts to reenter here and do a trace.
2861 	 * If one does, it will cause this original code to loop
2862 	 * back here. Even with heavy interrupts happening, this
2863 	 * should only happen a few times in a row. If this happens
2864 	 * 1000 times in a row, there must be either an interrupt
2865 	 * storm or we have something buggy.
2866 	 * Bail!
2867 	 */
2868 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2869 		goto out_fail;
2870 
2871 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2872 	diff = info.ts - cpu_buffer->write_stamp;
2873 
2874 	/* make sure this diff is calculated here */
2875 	barrier();
2876 
2877 	if (ring_buffer_time_stamp_abs(buffer)) {
2878 		info.delta = info.ts;
2879 		rb_handle_timestamp(cpu_buffer, &info);
2880 	} else /* Did the write stamp get updated already? */
2881 		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2882 		info.delta = diff;
2883 		if (unlikely(test_time_stamp(info.delta)))
2884 			rb_handle_timestamp(cpu_buffer, &info);
2885 	}
2886 
2887 	event = __rb_reserve_next(cpu_buffer, &info);
2888 
2889 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2890 		if (info.add_timestamp)
2891 			info.length -= RB_LEN_TIME_EXTEND;
2892 		goto again;
2893 	}
2894 
2895 	if (!event)
2896 		goto out_fail;
2897 
2898 	return event;
2899 
2900  out_fail:
2901 	rb_end_commit(cpu_buffer);
2902 	return NULL;
2903 }
2904 
2905 /**
2906  * ring_buffer_lock_reserve - reserve a part of the buffer
2907  * @buffer: the ring buffer to reserve from
2908  * @length: the length of the data to reserve (excluding event header)
2909  *
2910  * Returns a reseverd event on the ring buffer to copy directly to.
2911  * The user of this interface will need to get the body to write into
2912  * and can use the ring_buffer_event_data() interface.
2913  *
2914  * The length is the length of the data needed, not the event length
2915  * which also includes the event header.
2916  *
2917  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2918  * If NULL is returned, then nothing has been allocated or locked.
2919  */
2920 struct ring_buffer_event *
2921 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2922 {
2923 	struct ring_buffer_per_cpu *cpu_buffer;
2924 	struct ring_buffer_event *event;
2925 	int cpu;
2926 
2927 	/* If we are tracing schedule, we don't want to recurse */
2928 	preempt_disable_notrace();
2929 
2930 	if (unlikely(atomic_read(&buffer->record_disabled)))
2931 		goto out;
2932 
2933 	cpu = raw_smp_processor_id();
2934 
2935 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2936 		goto out;
2937 
2938 	cpu_buffer = buffer->buffers[cpu];
2939 
2940 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2941 		goto out;
2942 
2943 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2944 		goto out;
2945 
2946 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2947 		goto out;
2948 
2949 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2950 	if (!event)
2951 		goto out_unlock;
2952 
2953 	return event;
2954 
2955  out_unlock:
2956 	trace_recursive_unlock(cpu_buffer);
2957  out:
2958 	preempt_enable_notrace();
2959 	return NULL;
2960 }
2961 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2962 
2963 /*
2964  * Decrement the entries to the page that an event is on.
2965  * The event does not even need to exist, only the pointer
2966  * to the page it is on. This may only be called before the commit
2967  * takes place.
2968  */
2969 static inline void
2970 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2971 		   struct ring_buffer_event *event)
2972 {
2973 	unsigned long addr = (unsigned long)event;
2974 	struct buffer_page *bpage = cpu_buffer->commit_page;
2975 	struct buffer_page *start;
2976 
2977 	addr &= PAGE_MASK;
2978 
2979 	/* Do the likely case first */
2980 	if (likely(bpage->page == (void *)addr)) {
2981 		local_dec(&bpage->entries);
2982 		return;
2983 	}
2984 
2985 	/*
2986 	 * Because the commit page may be on the reader page we
2987 	 * start with the next page and check the end loop there.
2988 	 */
2989 	rb_inc_page(cpu_buffer, &bpage);
2990 	start = bpage;
2991 	do {
2992 		if (bpage->page == (void *)addr) {
2993 			local_dec(&bpage->entries);
2994 			return;
2995 		}
2996 		rb_inc_page(cpu_buffer, &bpage);
2997 	} while (bpage != start);
2998 
2999 	/* commit not part of this buffer?? */
3000 	RB_WARN_ON(cpu_buffer, 1);
3001 }
3002 
3003 /**
3004  * ring_buffer_commit_discard - discard an event that has not been committed
3005  * @buffer: the ring buffer
3006  * @event: non committed event to discard
3007  *
3008  * Sometimes an event that is in the ring buffer needs to be ignored.
3009  * This function lets the user discard an event in the ring buffer
3010  * and then that event will not be read later.
3011  *
3012  * This function only works if it is called before the the item has been
3013  * committed. It will try to free the event from the ring buffer
3014  * if another event has not been added behind it.
3015  *
3016  * If another event has been added behind it, it will set the event
3017  * up as discarded, and perform the commit.
3018  *
3019  * If this function is called, do not call ring_buffer_unlock_commit on
3020  * the event.
3021  */
3022 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3023 				struct ring_buffer_event *event)
3024 {
3025 	struct ring_buffer_per_cpu *cpu_buffer;
3026 	int cpu;
3027 
3028 	/* The event is discarded regardless */
3029 	rb_event_discard(event);
3030 
3031 	cpu = smp_processor_id();
3032 	cpu_buffer = buffer->buffers[cpu];
3033 
3034 	/*
3035 	 * This must only be called if the event has not been
3036 	 * committed yet. Thus we can assume that preemption
3037 	 * is still disabled.
3038 	 */
3039 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3040 
3041 	rb_decrement_entry(cpu_buffer, event);
3042 	if (rb_try_to_discard(cpu_buffer, event))
3043 		goto out;
3044 
3045 	/*
3046 	 * The commit is still visible by the reader, so we
3047 	 * must still update the timestamp.
3048 	 */
3049 	rb_update_write_stamp(cpu_buffer, event);
3050  out:
3051 	rb_end_commit(cpu_buffer);
3052 
3053 	trace_recursive_unlock(cpu_buffer);
3054 
3055 	preempt_enable_notrace();
3056 
3057 }
3058 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3059 
3060 /**
3061  * ring_buffer_write - write data to the buffer without reserving
3062  * @buffer: The ring buffer to write to.
3063  * @length: The length of the data being written (excluding the event header)
3064  * @data: The data to write to the buffer.
3065  *
3066  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3067  * one function. If you already have the data to write to the buffer, it
3068  * may be easier to simply call this function.
3069  *
3070  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3071  * and not the length of the event which would hold the header.
3072  */
3073 int ring_buffer_write(struct ring_buffer *buffer,
3074 		      unsigned long length,
3075 		      void *data)
3076 {
3077 	struct ring_buffer_per_cpu *cpu_buffer;
3078 	struct ring_buffer_event *event;
3079 	void *body;
3080 	int ret = -EBUSY;
3081 	int cpu;
3082 
3083 	preempt_disable_notrace();
3084 
3085 	if (atomic_read(&buffer->record_disabled))
3086 		goto out;
3087 
3088 	cpu = raw_smp_processor_id();
3089 
3090 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3091 		goto out;
3092 
3093 	cpu_buffer = buffer->buffers[cpu];
3094 
3095 	if (atomic_read(&cpu_buffer->record_disabled))
3096 		goto out;
3097 
3098 	if (length > BUF_MAX_DATA_SIZE)
3099 		goto out;
3100 
3101 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3102 		goto out;
3103 
3104 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3105 	if (!event)
3106 		goto out_unlock;
3107 
3108 	body = rb_event_data(event);
3109 
3110 	memcpy(body, data, length);
3111 
3112 	rb_commit(cpu_buffer, event);
3113 
3114 	rb_wakeups(buffer, cpu_buffer);
3115 
3116 	ret = 0;
3117 
3118  out_unlock:
3119 	trace_recursive_unlock(cpu_buffer);
3120 
3121  out:
3122 	preempt_enable_notrace();
3123 
3124 	return ret;
3125 }
3126 EXPORT_SYMBOL_GPL(ring_buffer_write);
3127 
3128 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3129 {
3130 	struct buffer_page *reader = cpu_buffer->reader_page;
3131 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3132 	struct buffer_page *commit = cpu_buffer->commit_page;
3133 
3134 	/* In case of error, head will be NULL */
3135 	if (unlikely(!head))
3136 		return true;
3137 
3138 	return reader->read == rb_page_commit(reader) &&
3139 		(commit == reader ||
3140 		 (commit == head &&
3141 		  head->read == rb_page_commit(commit)));
3142 }
3143 
3144 /**
3145  * ring_buffer_record_disable - stop all writes into the buffer
3146  * @buffer: The ring buffer to stop writes to.
3147  *
3148  * This prevents all writes to the buffer. Any attempt to write
3149  * to the buffer after this will fail and return NULL.
3150  *
3151  * The caller should call synchronize_sched() after this.
3152  */
3153 void ring_buffer_record_disable(struct ring_buffer *buffer)
3154 {
3155 	atomic_inc(&buffer->record_disabled);
3156 }
3157 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3158 
3159 /**
3160  * ring_buffer_record_enable - enable writes to the buffer
3161  * @buffer: The ring buffer to enable writes
3162  *
3163  * Note, multiple disables will need the same number of enables
3164  * to truly enable the writing (much like preempt_disable).
3165  */
3166 void ring_buffer_record_enable(struct ring_buffer *buffer)
3167 {
3168 	atomic_dec(&buffer->record_disabled);
3169 }
3170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3171 
3172 /**
3173  * ring_buffer_record_off - stop all writes into the buffer
3174  * @buffer: The ring buffer to stop writes to.
3175  *
3176  * This prevents all writes to the buffer. Any attempt to write
3177  * to the buffer after this will fail and return NULL.
3178  *
3179  * This is different than ring_buffer_record_disable() as
3180  * it works like an on/off switch, where as the disable() version
3181  * must be paired with a enable().
3182  */
3183 void ring_buffer_record_off(struct ring_buffer *buffer)
3184 {
3185 	unsigned int rd;
3186 	unsigned int new_rd;
3187 
3188 	do {
3189 		rd = atomic_read(&buffer->record_disabled);
3190 		new_rd = rd | RB_BUFFER_OFF;
3191 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3192 }
3193 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3194 
3195 /**
3196  * ring_buffer_record_on - restart writes into the buffer
3197  * @buffer: The ring buffer to start writes to.
3198  *
3199  * This enables all writes to the buffer that was disabled by
3200  * ring_buffer_record_off().
3201  *
3202  * This is different than ring_buffer_record_enable() as
3203  * it works like an on/off switch, where as the enable() version
3204  * must be paired with a disable().
3205  */
3206 void ring_buffer_record_on(struct ring_buffer *buffer)
3207 {
3208 	unsigned int rd;
3209 	unsigned int new_rd;
3210 
3211 	do {
3212 		rd = atomic_read(&buffer->record_disabled);
3213 		new_rd = rd & ~RB_BUFFER_OFF;
3214 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3215 }
3216 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3217 
3218 /**
3219  * ring_buffer_record_is_on - return true if the ring buffer can write
3220  * @buffer: The ring buffer to see if write is enabled
3221  *
3222  * Returns true if the ring buffer is in a state that it accepts writes.
3223  */
3224 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3225 {
3226 	return !atomic_read(&buffer->record_disabled);
3227 }
3228 
3229 /**
3230  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3231  * @buffer: The ring buffer to stop writes to.
3232  * @cpu: The CPU buffer to stop
3233  *
3234  * This prevents all writes to the buffer. Any attempt to write
3235  * to the buffer after this will fail and return NULL.
3236  *
3237  * The caller should call synchronize_sched() after this.
3238  */
3239 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3240 {
3241 	struct ring_buffer_per_cpu *cpu_buffer;
3242 
3243 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244 		return;
3245 
3246 	cpu_buffer = buffer->buffers[cpu];
3247 	atomic_inc(&cpu_buffer->record_disabled);
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3250 
3251 /**
3252  * ring_buffer_record_enable_cpu - enable writes to the buffer
3253  * @buffer: The ring buffer to enable writes
3254  * @cpu: The CPU to enable.
3255  *
3256  * Note, multiple disables will need the same number of enables
3257  * to truly enable the writing (much like preempt_disable).
3258  */
3259 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3260 {
3261 	struct ring_buffer_per_cpu *cpu_buffer;
3262 
3263 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264 		return;
3265 
3266 	cpu_buffer = buffer->buffers[cpu];
3267 	atomic_dec(&cpu_buffer->record_disabled);
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3270 
3271 /*
3272  * The total entries in the ring buffer is the running counter
3273  * of entries entered into the ring buffer, minus the sum of
3274  * the entries read from the ring buffer and the number of
3275  * entries that were overwritten.
3276  */
3277 static inline unsigned long
3278 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3279 {
3280 	return local_read(&cpu_buffer->entries) -
3281 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3282 }
3283 
3284 /**
3285  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3286  * @buffer: The ring buffer
3287  * @cpu: The per CPU buffer to read from.
3288  */
3289 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3290 {
3291 	unsigned long flags;
3292 	struct ring_buffer_per_cpu *cpu_buffer;
3293 	struct buffer_page *bpage;
3294 	u64 ret = 0;
3295 
3296 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3297 		return 0;
3298 
3299 	cpu_buffer = buffer->buffers[cpu];
3300 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3301 	/*
3302 	 * if the tail is on reader_page, oldest time stamp is on the reader
3303 	 * page
3304 	 */
3305 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3306 		bpage = cpu_buffer->reader_page;
3307 	else
3308 		bpage = rb_set_head_page(cpu_buffer);
3309 	if (bpage)
3310 		ret = bpage->page->time_stamp;
3311 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3312 
3313 	return ret;
3314 }
3315 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3316 
3317 /**
3318  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3319  * @buffer: The ring buffer
3320  * @cpu: The per CPU buffer to read from.
3321  */
3322 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3323 {
3324 	struct ring_buffer_per_cpu *cpu_buffer;
3325 	unsigned long ret;
3326 
3327 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3328 		return 0;
3329 
3330 	cpu_buffer = buffer->buffers[cpu];
3331 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3332 
3333 	return ret;
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3336 
3337 /**
3338  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3339  * @buffer: The ring buffer
3340  * @cpu: The per CPU buffer to get the entries from.
3341  */
3342 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3343 {
3344 	struct ring_buffer_per_cpu *cpu_buffer;
3345 
3346 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347 		return 0;
3348 
3349 	cpu_buffer = buffer->buffers[cpu];
3350 
3351 	return rb_num_of_entries(cpu_buffer);
3352 }
3353 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3354 
3355 /**
3356  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3357  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3358  * @buffer: The ring buffer
3359  * @cpu: The per CPU buffer to get the number of overruns from
3360  */
3361 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3362 {
3363 	struct ring_buffer_per_cpu *cpu_buffer;
3364 	unsigned long ret;
3365 
3366 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3367 		return 0;
3368 
3369 	cpu_buffer = buffer->buffers[cpu];
3370 	ret = local_read(&cpu_buffer->overrun);
3371 
3372 	return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3375 
3376 /**
3377  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3378  * commits failing due to the buffer wrapping around while there are uncommitted
3379  * events, such as during an interrupt storm.
3380  * @buffer: The ring buffer
3381  * @cpu: The per CPU buffer to get the number of overruns from
3382  */
3383 unsigned long
3384 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3385 {
3386 	struct ring_buffer_per_cpu *cpu_buffer;
3387 	unsigned long ret;
3388 
3389 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3390 		return 0;
3391 
3392 	cpu_buffer = buffer->buffers[cpu];
3393 	ret = local_read(&cpu_buffer->commit_overrun);
3394 
3395 	return ret;
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3398 
3399 /**
3400  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3401  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3402  * @buffer: The ring buffer
3403  * @cpu: The per CPU buffer to get the number of overruns from
3404  */
3405 unsigned long
3406 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3407 {
3408 	struct ring_buffer_per_cpu *cpu_buffer;
3409 	unsigned long ret;
3410 
3411 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3412 		return 0;
3413 
3414 	cpu_buffer = buffer->buffers[cpu];
3415 	ret = local_read(&cpu_buffer->dropped_events);
3416 
3417 	return ret;
3418 }
3419 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3420 
3421 /**
3422  * ring_buffer_read_events_cpu - get the number of events successfully read
3423  * @buffer: The ring buffer
3424  * @cpu: The per CPU buffer to get the number of events read
3425  */
3426 unsigned long
3427 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3428 {
3429 	struct ring_buffer_per_cpu *cpu_buffer;
3430 
3431 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3432 		return 0;
3433 
3434 	cpu_buffer = buffer->buffers[cpu];
3435 	return cpu_buffer->read;
3436 }
3437 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3438 
3439 /**
3440  * ring_buffer_entries - get the number of entries in a buffer
3441  * @buffer: The ring buffer
3442  *
3443  * Returns the total number of entries in the ring buffer
3444  * (all CPU entries)
3445  */
3446 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3447 {
3448 	struct ring_buffer_per_cpu *cpu_buffer;
3449 	unsigned long entries = 0;
3450 	int cpu;
3451 
3452 	/* if you care about this being correct, lock the buffer */
3453 	for_each_buffer_cpu(buffer, cpu) {
3454 		cpu_buffer = buffer->buffers[cpu];
3455 		entries += rb_num_of_entries(cpu_buffer);
3456 	}
3457 
3458 	return entries;
3459 }
3460 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3461 
3462 /**
3463  * ring_buffer_overruns - get the number of overruns in buffer
3464  * @buffer: The ring buffer
3465  *
3466  * Returns the total number of overruns in the ring buffer
3467  * (all CPU entries)
3468  */
3469 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3470 {
3471 	struct ring_buffer_per_cpu *cpu_buffer;
3472 	unsigned long overruns = 0;
3473 	int cpu;
3474 
3475 	/* if you care about this being correct, lock the buffer */
3476 	for_each_buffer_cpu(buffer, cpu) {
3477 		cpu_buffer = buffer->buffers[cpu];
3478 		overruns += local_read(&cpu_buffer->overrun);
3479 	}
3480 
3481 	return overruns;
3482 }
3483 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3484 
3485 static void rb_iter_reset(struct ring_buffer_iter *iter)
3486 {
3487 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3488 
3489 	/* Iterator usage is expected to have record disabled */
3490 	iter->head_page = cpu_buffer->reader_page;
3491 	iter->head = cpu_buffer->reader_page->read;
3492 
3493 	iter->cache_reader_page = iter->head_page;
3494 	iter->cache_read = cpu_buffer->read;
3495 
3496 	if (iter->head)
3497 		iter->read_stamp = cpu_buffer->read_stamp;
3498 	else
3499 		iter->read_stamp = iter->head_page->page->time_stamp;
3500 }
3501 
3502 /**
3503  * ring_buffer_iter_reset - reset an iterator
3504  * @iter: The iterator to reset
3505  *
3506  * Resets the iterator, so that it will start from the beginning
3507  * again.
3508  */
3509 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3510 {
3511 	struct ring_buffer_per_cpu *cpu_buffer;
3512 	unsigned long flags;
3513 
3514 	if (!iter)
3515 		return;
3516 
3517 	cpu_buffer = iter->cpu_buffer;
3518 
3519 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3520 	rb_iter_reset(iter);
3521 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3522 }
3523 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3524 
3525 /**
3526  * ring_buffer_iter_empty - check if an iterator has no more to read
3527  * @iter: The iterator to check
3528  */
3529 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3530 {
3531 	struct ring_buffer_per_cpu *cpu_buffer;
3532 	struct buffer_page *reader;
3533 	struct buffer_page *head_page;
3534 	struct buffer_page *commit_page;
3535 	unsigned commit;
3536 
3537 	cpu_buffer = iter->cpu_buffer;
3538 
3539 	/* Remember, trace recording is off when iterator is in use */
3540 	reader = cpu_buffer->reader_page;
3541 	head_page = cpu_buffer->head_page;
3542 	commit_page = cpu_buffer->commit_page;
3543 	commit = rb_page_commit(commit_page);
3544 
3545 	return ((iter->head_page == commit_page && iter->head == commit) ||
3546 		(iter->head_page == reader && commit_page == head_page &&
3547 		 head_page->read == commit &&
3548 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3549 }
3550 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3551 
3552 static void
3553 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3554 		     struct ring_buffer_event *event)
3555 {
3556 	u64 delta;
3557 
3558 	switch (event->type_len) {
3559 	case RINGBUF_TYPE_PADDING:
3560 		return;
3561 
3562 	case RINGBUF_TYPE_TIME_EXTEND:
3563 		delta = ring_buffer_event_time_stamp(event);
3564 		cpu_buffer->read_stamp += delta;
3565 		return;
3566 
3567 	case RINGBUF_TYPE_TIME_STAMP:
3568 		delta = ring_buffer_event_time_stamp(event);
3569 		cpu_buffer->read_stamp = delta;
3570 		return;
3571 
3572 	case RINGBUF_TYPE_DATA:
3573 		cpu_buffer->read_stamp += event->time_delta;
3574 		return;
3575 
3576 	default:
3577 		BUG();
3578 	}
3579 	return;
3580 }
3581 
3582 static void
3583 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3584 			  struct ring_buffer_event *event)
3585 {
3586 	u64 delta;
3587 
3588 	switch (event->type_len) {
3589 	case RINGBUF_TYPE_PADDING:
3590 		return;
3591 
3592 	case RINGBUF_TYPE_TIME_EXTEND:
3593 		delta = ring_buffer_event_time_stamp(event);
3594 		iter->read_stamp += delta;
3595 		return;
3596 
3597 	case RINGBUF_TYPE_TIME_STAMP:
3598 		delta = ring_buffer_event_time_stamp(event);
3599 		iter->read_stamp = delta;
3600 		return;
3601 
3602 	case RINGBUF_TYPE_DATA:
3603 		iter->read_stamp += event->time_delta;
3604 		return;
3605 
3606 	default:
3607 		BUG();
3608 	}
3609 	return;
3610 }
3611 
3612 static struct buffer_page *
3613 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3614 {
3615 	struct buffer_page *reader = NULL;
3616 	unsigned long overwrite;
3617 	unsigned long flags;
3618 	int nr_loops = 0;
3619 	int ret;
3620 
3621 	local_irq_save(flags);
3622 	arch_spin_lock(&cpu_buffer->lock);
3623 
3624  again:
3625 	/*
3626 	 * This should normally only loop twice. But because the
3627 	 * start of the reader inserts an empty page, it causes
3628 	 * a case where we will loop three times. There should be no
3629 	 * reason to loop four times (that I know of).
3630 	 */
3631 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3632 		reader = NULL;
3633 		goto out;
3634 	}
3635 
3636 	reader = cpu_buffer->reader_page;
3637 
3638 	/* If there's more to read, return this page */
3639 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3640 		goto out;
3641 
3642 	/* Never should we have an index greater than the size */
3643 	if (RB_WARN_ON(cpu_buffer,
3644 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3645 		goto out;
3646 
3647 	/* check if we caught up to the tail */
3648 	reader = NULL;
3649 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3650 		goto out;
3651 
3652 	/* Don't bother swapping if the ring buffer is empty */
3653 	if (rb_num_of_entries(cpu_buffer) == 0)
3654 		goto out;
3655 
3656 	/*
3657 	 * Reset the reader page to size zero.
3658 	 */
3659 	local_set(&cpu_buffer->reader_page->write, 0);
3660 	local_set(&cpu_buffer->reader_page->entries, 0);
3661 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3662 	cpu_buffer->reader_page->real_end = 0;
3663 
3664  spin:
3665 	/*
3666 	 * Splice the empty reader page into the list around the head.
3667 	 */
3668 	reader = rb_set_head_page(cpu_buffer);
3669 	if (!reader)
3670 		goto out;
3671 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3672 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3673 
3674 	/*
3675 	 * cpu_buffer->pages just needs to point to the buffer, it
3676 	 *  has no specific buffer page to point to. Lets move it out
3677 	 *  of our way so we don't accidentally swap it.
3678 	 */
3679 	cpu_buffer->pages = reader->list.prev;
3680 
3681 	/* The reader page will be pointing to the new head */
3682 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3683 
3684 	/*
3685 	 * We want to make sure we read the overruns after we set up our
3686 	 * pointers to the next object. The writer side does a
3687 	 * cmpxchg to cross pages which acts as the mb on the writer
3688 	 * side. Note, the reader will constantly fail the swap
3689 	 * while the writer is updating the pointers, so this
3690 	 * guarantees that the overwrite recorded here is the one we
3691 	 * want to compare with the last_overrun.
3692 	 */
3693 	smp_mb();
3694 	overwrite = local_read(&(cpu_buffer->overrun));
3695 
3696 	/*
3697 	 * Here's the tricky part.
3698 	 *
3699 	 * We need to move the pointer past the header page.
3700 	 * But we can only do that if a writer is not currently
3701 	 * moving it. The page before the header page has the
3702 	 * flag bit '1' set if it is pointing to the page we want.
3703 	 * but if the writer is in the process of moving it
3704 	 * than it will be '2' or already moved '0'.
3705 	 */
3706 
3707 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3708 
3709 	/*
3710 	 * If we did not convert it, then we must try again.
3711 	 */
3712 	if (!ret)
3713 		goto spin;
3714 
3715 	/*
3716 	 * Yeah! We succeeded in replacing the page.
3717 	 *
3718 	 * Now make the new head point back to the reader page.
3719 	 */
3720 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3721 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3722 
3723 	/* Finally update the reader page to the new head */
3724 	cpu_buffer->reader_page = reader;
3725 	cpu_buffer->reader_page->read = 0;
3726 
3727 	if (overwrite != cpu_buffer->last_overrun) {
3728 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3729 		cpu_buffer->last_overrun = overwrite;
3730 	}
3731 
3732 	goto again;
3733 
3734  out:
3735 	/* Update the read_stamp on the first event */
3736 	if (reader && reader->read == 0)
3737 		cpu_buffer->read_stamp = reader->page->time_stamp;
3738 
3739 	arch_spin_unlock(&cpu_buffer->lock);
3740 	local_irq_restore(flags);
3741 
3742 	return reader;
3743 }
3744 
3745 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3746 {
3747 	struct ring_buffer_event *event;
3748 	struct buffer_page *reader;
3749 	unsigned length;
3750 
3751 	reader = rb_get_reader_page(cpu_buffer);
3752 
3753 	/* This function should not be called when buffer is empty */
3754 	if (RB_WARN_ON(cpu_buffer, !reader))
3755 		return;
3756 
3757 	event = rb_reader_event(cpu_buffer);
3758 
3759 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3760 		cpu_buffer->read++;
3761 
3762 	rb_update_read_stamp(cpu_buffer, event);
3763 
3764 	length = rb_event_length(event);
3765 	cpu_buffer->reader_page->read += length;
3766 }
3767 
3768 static void rb_advance_iter(struct ring_buffer_iter *iter)
3769 {
3770 	struct ring_buffer_per_cpu *cpu_buffer;
3771 	struct ring_buffer_event *event;
3772 	unsigned length;
3773 
3774 	cpu_buffer = iter->cpu_buffer;
3775 
3776 	/*
3777 	 * Check if we are at the end of the buffer.
3778 	 */
3779 	if (iter->head >= rb_page_size(iter->head_page)) {
3780 		/* discarded commits can make the page empty */
3781 		if (iter->head_page == cpu_buffer->commit_page)
3782 			return;
3783 		rb_inc_iter(iter);
3784 		return;
3785 	}
3786 
3787 	event = rb_iter_head_event(iter);
3788 
3789 	length = rb_event_length(event);
3790 
3791 	/*
3792 	 * This should not be called to advance the header if we are
3793 	 * at the tail of the buffer.
3794 	 */
3795 	if (RB_WARN_ON(cpu_buffer,
3796 		       (iter->head_page == cpu_buffer->commit_page) &&
3797 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3798 		return;
3799 
3800 	rb_update_iter_read_stamp(iter, event);
3801 
3802 	iter->head += length;
3803 
3804 	/* check for end of page padding */
3805 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3806 	    (iter->head_page != cpu_buffer->commit_page))
3807 		rb_inc_iter(iter);
3808 }
3809 
3810 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3811 {
3812 	return cpu_buffer->lost_events;
3813 }
3814 
3815 static struct ring_buffer_event *
3816 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3817 	       unsigned long *lost_events)
3818 {
3819 	struct ring_buffer_event *event;
3820 	struct buffer_page *reader;
3821 	int nr_loops = 0;
3822 
3823 	if (ts)
3824 		*ts = 0;
3825  again:
3826 	/*
3827 	 * We repeat when a time extend is encountered.
3828 	 * Since the time extend is always attached to a data event,
3829 	 * we should never loop more than once.
3830 	 * (We never hit the following condition more than twice).
3831 	 */
3832 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3833 		return NULL;
3834 
3835 	reader = rb_get_reader_page(cpu_buffer);
3836 	if (!reader)
3837 		return NULL;
3838 
3839 	event = rb_reader_event(cpu_buffer);
3840 
3841 	switch (event->type_len) {
3842 	case RINGBUF_TYPE_PADDING:
3843 		if (rb_null_event(event))
3844 			RB_WARN_ON(cpu_buffer, 1);
3845 		/*
3846 		 * Because the writer could be discarding every
3847 		 * event it creates (which would probably be bad)
3848 		 * if we were to go back to "again" then we may never
3849 		 * catch up, and will trigger the warn on, or lock
3850 		 * the box. Return the padding, and we will release
3851 		 * the current locks, and try again.
3852 		 */
3853 		return event;
3854 
3855 	case RINGBUF_TYPE_TIME_EXTEND:
3856 		/* Internal data, OK to advance */
3857 		rb_advance_reader(cpu_buffer);
3858 		goto again;
3859 
3860 	case RINGBUF_TYPE_TIME_STAMP:
3861 		if (ts) {
3862 			*ts = ring_buffer_event_time_stamp(event);
3863 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3864 							 cpu_buffer->cpu, ts);
3865 		}
3866 		/* Internal data, OK to advance */
3867 		rb_advance_reader(cpu_buffer);
3868 		goto again;
3869 
3870 	case RINGBUF_TYPE_DATA:
3871 		if (ts && !(*ts)) {
3872 			*ts = cpu_buffer->read_stamp + event->time_delta;
3873 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3874 							 cpu_buffer->cpu, ts);
3875 		}
3876 		if (lost_events)
3877 			*lost_events = rb_lost_events(cpu_buffer);
3878 		return event;
3879 
3880 	default:
3881 		BUG();
3882 	}
3883 
3884 	return NULL;
3885 }
3886 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3887 
3888 static struct ring_buffer_event *
3889 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3890 {
3891 	struct ring_buffer *buffer;
3892 	struct ring_buffer_per_cpu *cpu_buffer;
3893 	struct ring_buffer_event *event;
3894 	int nr_loops = 0;
3895 
3896 	if (ts)
3897 		*ts = 0;
3898 
3899 	cpu_buffer = iter->cpu_buffer;
3900 	buffer = cpu_buffer->buffer;
3901 
3902 	/*
3903 	 * Check if someone performed a consuming read to
3904 	 * the buffer. A consuming read invalidates the iterator
3905 	 * and we need to reset the iterator in this case.
3906 	 */
3907 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3908 		     iter->cache_reader_page != cpu_buffer->reader_page))
3909 		rb_iter_reset(iter);
3910 
3911  again:
3912 	if (ring_buffer_iter_empty(iter))
3913 		return NULL;
3914 
3915 	/*
3916 	 * We repeat when a time extend is encountered or we hit
3917 	 * the end of the page. Since the time extend is always attached
3918 	 * to a data event, we should never loop more than three times.
3919 	 * Once for going to next page, once on time extend, and
3920 	 * finally once to get the event.
3921 	 * (We never hit the following condition more than thrice).
3922 	 */
3923 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3924 		return NULL;
3925 
3926 	if (rb_per_cpu_empty(cpu_buffer))
3927 		return NULL;
3928 
3929 	if (iter->head >= rb_page_size(iter->head_page)) {
3930 		rb_inc_iter(iter);
3931 		goto again;
3932 	}
3933 
3934 	event = rb_iter_head_event(iter);
3935 
3936 	switch (event->type_len) {
3937 	case RINGBUF_TYPE_PADDING:
3938 		if (rb_null_event(event)) {
3939 			rb_inc_iter(iter);
3940 			goto again;
3941 		}
3942 		rb_advance_iter(iter);
3943 		return event;
3944 
3945 	case RINGBUF_TYPE_TIME_EXTEND:
3946 		/* Internal data, OK to advance */
3947 		rb_advance_iter(iter);
3948 		goto again;
3949 
3950 	case RINGBUF_TYPE_TIME_STAMP:
3951 		if (ts) {
3952 			*ts = ring_buffer_event_time_stamp(event);
3953 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3954 							 cpu_buffer->cpu, ts);
3955 		}
3956 		/* Internal data, OK to advance */
3957 		rb_advance_iter(iter);
3958 		goto again;
3959 
3960 	case RINGBUF_TYPE_DATA:
3961 		if (ts && !(*ts)) {
3962 			*ts = iter->read_stamp + event->time_delta;
3963 			ring_buffer_normalize_time_stamp(buffer,
3964 							 cpu_buffer->cpu, ts);
3965 		}
3966 		return event;
3967 
3968 	default:
3969 		BUG();
3970 	}
3971 
3972 	return NULL;
3973 }
3974 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3975 
3976 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3977 {
3978 	if (likely(!in_nmi())) {
3979 		raw_spin_lock(&cpu_buffer->reader_lock);
3980 		return true;
3981 	}
3982 
3983 	/*
3984 	 * If an NMI die dumps out the content of the ring buffer
3985 	 * trylock must be used to prevent a deadlock if the NMI
3986 	 * preempted a task that holds the ring buffer locks. If
3987 	 * we get the lock then all is fine, if not, then continue
3988 	 * to do the read, but this can corrupt the ring buffer,
3989 	 * so it must be permanently disabled from future writes.
3990 	 * Reading from NMI is a oneshot deal.
3991 	 */
3992 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3993 		return true;
3994 
3995 	/* Continue without locking, but disable the ring buffer */
3996 	atomic_inc(&cpu_buffer->record_disabled);
3997 	return false;
3998 }
3999 
4000 static inline void
4001 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4002 {
4003 	if (likely(locked))
4004 		raw_spin_unlock(&cpu_buffer->reader_lock);
4005 	return;
4006 }
4007 
4008 /**
4009  * ring_buffer_peek - peek at the next event to be read
4010  * @buffer: The ring buffer to read
4011  * @cpu: The cpu to peak at
4012  * @ts: The timestamp counter of this event.
4013  * @lost_events: a variable to store if events were lost (may be NULL)
4014  *
4015  * This will return the event that will be read next, but does
4016  * not consume the data.
4017  */
4018 struct ring_buffer_event *
4019 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4020 		 unsigned long *lost_events)
4021 {
4022 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4023 	struct ring_buffer_event *event;
4024 	unsigned long flags;
4025 	bool dolock;
4026 
4027 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4028 		return NULL;
4029 
4030  again:
4031 	local_irq_save(flags);
4032 	dolock = rb_reader_lock(cpu_buffer);
4033 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4034 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4035 		rb_advance_reader(cpu_buffer);
4036 	rb_reader_unlock(cpu_buffer, dolock);
4037 	local_irq_restore(flags);
4038 
4039 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4040 		goto again;
4041 
4042 	return event;
4043 }
4044 
4045 /**
4046  * ring_buffer_iter_peek - peek at the next event to be read
4047  * @iter: The ring buffer iterator
4048  * @ts: The timestamp counter of this event.
4049  *
4050  * This will return the event that will be read next, but does
4051  * not increment the iterator.
4052  */
4053 struct ring_buffer_event *
4054 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4055 {
4056 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4057 	struct ring_buffer_event *event;
4058 	unsigned long flags;
4059 
4060  again:
4061 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4062 	event = rb_iter_peek(iter, ts);
4063 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4064 
4065 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4066 		goto again;
4067 
4068 	return event;
4069 }
4070 
4071 /**
4072  * ring_buffer_consume - return an event and consume it
4073  * @buffer: The ring buffer to get the next event from
4074  * @cpu: the cpu to read the buffer from
4075  * @ts: a variable to store the timestamp (may be NULL)
4076  * @lost_events: a variable to store if events were lost (may be NULL)
4077  *
4078  * Returns the next event in the ring buffer, and that event is consumed.
4079  * Meaning, that sequential reads will keep returning a different event,
4080  * and eventually empty the ring buffer if the producer is slower.
4081  */
4082 struct ring_buffer_event *
4083 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4084 		    unsigned long *lost_events)
4085 {
4086 	struct ring_buffer_per_cpu *cpu_buffer;
4087 	struct ring_buffer_event *event = NULL;
4088 	unsigned long flags;
4089 	bool dolock;
4090 
4091  again:
4092 	/* might be called in atomic */
4093 	preempt_disable();
4094 
4095 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4096 		goto out;
4097 
4098 	cpu_buffer = buffer->buffers[cpu];
4099 	local_irq_save(flags);
4100 	dolock = rb_reader_lock(cpu_buffer);
4101 
4102 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4103 	if (event) {
4104 		cpu_buffer->lost_events = 0;
4105 		rb_advance_reader(cpu_buffer);
4106 	}
4107 
4108 	rb_reader_unlock(cpu_buffer, dolock);
4109 	local_irq_restore(flags);
4110 
4111  out:
4112 	preempt_enable();
4113 
4114 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4115 		goto again;
4116 
4117 	return event;
4118 }
4119 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4120 
4121 /**
4122  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4123  * @buffer: The ring buffer to read from
4124  * @cpu: The cpu buffer to iterate over
4125  *
4126  * This performs the initial preparations necessary to iterate
4127  * through the buffer.  Memory is allocated, buffer recording
4128  * is disabled, and the iterator pointer is returned to the caller.
4129  *
4130  * Disabling buffer recordng prevents the reading from being
4131  * corrupted. This is not a consuming read, so a producer is not
4132  * expected.
4133  *
4134  * After a sequence of ring_buffer_read_prepare calls, the user is
4135  * expected to make at least one call to ring_buffer_read_prepare_sync.
4136  * Afterwards, ring_buffer_read_start is invoked to get things going
4137  * for real.
4138  *
4139  * This overall must be paired with ring_buffer_read_finish.
4140  */
4141 struct ring_buffer_iter *
4142 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4143 {
4144 	struct ring_buffer_per_cpu *cpu_buffer;
4145 	struct ring_buffer_iter *iter;
4146 
4147 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4148 		return NULL;
4149 
4150 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4151 	if (!iter)
4152 		return NULL;
4153 
4154 	cpu_buffer = buffer->buffers[cpu];
4155 
4156 	iter->cpu_buffer = cpu_buffer;
4157 
4158 	atomic_inc(&buffer->resize_disabled);
4159 	atomic_inc(&cpu_buffer->record_disabled);
4160 
4161 	return iter;
4162 }
4163 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4164 
4165 /**
4166  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4167  *
4168  * All previously invoked ring_buffer_read_prepare calls to prepare
4169  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4170  * calls on those iterators are allowed.
4171  */
4172 void
4173 ring_buffer_read_prepare_sync(void)
4174 {
4175 	synchronize_sched();
4176 }
4177 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4178 
4179 /**
4180  * ring_buffer_read_start - start a non consuming read of the buffer
4181  * @iter: The iterator returned by ring_buffer_read_prepare
4182  *
4183  * This finalizes the startup of an iteration through the buffer.
4184  * The iterator comes from a call to ring_buffer_read_prepare and
4185  * an intervening ring_buffer_read_prepare_sync must have been
4186  * performed.
4187  *
4188  * Must be paired with ring_buffer_read_finish.
4189  */
4190 void
4191 ring_buffer_read_start(struct ring_buffer_iter *iter)
4192 {
4193 	struct ring_buffer_per_cpu *cpu_buffer;
4194 	unsigned long flags;
4195 
4196 	if (!iter)
4197 		return;
4198 
4199 	cpu_buffer = iter->cpu_buffer;
4200 
4201 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4202 	arch_spin_lock(&cpu_buffer->lock);
4203 	rb_iter_reset(iter);
4204 	arch_spin_unlock(&cpu_buffer->lock);
4205 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4206 }
4207 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4208 
4209 /**
4210  * ring_buffer_read_finish - finish reading the iterator of the buffer
4211  * @iter: The iterator retrieved by ring_buffer_start
4212  *
4213  * This re-enables the recording to the buffer, and frees the
4214  * iterator.
4215  */
4216 void
4217 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4218 {
4219 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4220 	unsigned long flags;
4221 
4222 	/*
4223 	 * Ring buffer is disabled from recording, here's a good place
4224 	 * to check the integrity of the ring buffer.
4225 	 * Must prevent readers from trying to read, as the check
4226 	 * clears the HEAD page and readers require it.
4227 	 */
4228 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4229 	rb_check_pages(cpu_buffer);
4230 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4231 
4232 	atomic_dec(&cpu_buffer->record_disabled);
4233 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4234 	kfree(iter);
4235 }
4236 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4237 
4238 /**
4239  * ring_buffer_read - read the next item in the ring buffer by the iterator
4240  * @iter: The ring buffer iterator
4241  * @ts: The time stamp of the event read.
4242  *
4243  * This reads the next event in the ring buffer and increments the iterator.
4244  */
4245 struct ring_buffer_event *
4246 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4247 {
4248 	struct ring_buffer_event *event;
4249 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4250 	unsigned long flags;
4251 
4252 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4253  again:
4254 	event = rb_iter_peek(iter, ts);
4255 	if (!event)
4256 		goto out;
4257 
4258 	if (event->type_len == RINGBUF_TYPE_PADDING)
4259 		goto again;
4260 
4261 	rb_advance_iter(iter);
4262  out:
4263 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4264 
4265 	return event;
4266 }
4267 EXPORT_SYMBOL_GPL(ring_buffer_read);
4268 
4269 /**
4270  * ring_buffer_size - return the size of the ring buffer (in bytes)
4271  * @buffer: The ring buffer.
4272  */
4273 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4274 {
4275 	/*
4276 	 * Earlier, this method returned
4277 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4278 	 * Since the nr_pages field is now removed, we have converted this to
4279 	 * return the per cpu buffer value.
4280 	 */
4281 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4282 		return 0;
4283 
4284 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4285 }
4286 EXPORT_SYMBOL_GPL(ring_buffer_size);
4287 
4288 static void
4289 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4290 {
4291 	rb_head_page_deactivate(cpu_buffer);
4292 
4293 	cpu_buffer->head_page
4294 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4295 	local_set(&cpu_buffer->head_page->write, 0);
4296 	local_set(&cpu_buffer->head_page->entries, 0);
4297 	local_set(&cpu_buffer->head_page->page->commit, 0);
4298 
4299 	cpu_buffer->head_page->read = 0;
4300 
4301 	cpu_buffer->tail_page = cpu_buffer->head_page;
4302 	cpu_buffer->commit_page = cpu_buffer->head_page;
4303 
4304 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4305 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4306 	local_set(&cpu_buffer->reader_page->write, 0);
4307 	local_set(&cpu_buffer->reader_page->entries, 0);
4308 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4309 	cpu_buffer->reader_page->read = 0;
4310 
4311 	local_set(&cpu_buffer->entries_bytes, 0);
4312 	local_set(&cpu_buffer->overrun, 0);
4313 	local_set(&cpu_buffer->commit_overrun, 0);
4314 	local_set(&cpu_buffer->dropped_events, 0);
4315 	local_set(&cpu_buffer->entries, 0);
4316 	local_set(&cpu_buffer->committing, 0);
4317 	local_set(&cpu_buffer->commits, 0);
4318 	cpu_buffer->read = 0;
4319 	cpu_buffer->read_bytes = 0;
4320 
4321 	cpu_buffer->write_stamp = 0;
4322 	cpu_buffer->read_stamp = 0;
4323 
4324 	cpu_buffer->lost_events = 0;
4325 	cpu_buffer->last_overrun = 0;
4326 
4327 	rb_head_page_activate(cpu_buffer);
4328 }
4329 
4330 /**
4331  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4332  * @buffer: The ring buffer to reset a per cpu buffer of
4333  * @cpu: The CPU buffer to be reset
4334  */
4335 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4336 {
4337 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4338 	unsigned long flags;
4339 
4340 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4341 		return;
4342 
4343 	atomic_inc(&buffer->resize_disabled);
4344 	atomic_inc(&cpu_buffer->record_disabled);
4345 
4346 	/* Make sure all commits have finished */
4347 	synchronize_sched();
4348 
4349 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4350 
4351 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4352 		goto out;
4353 
4354 	arch_spin_lock(&cpu_buffer->lock);
4355 
4356 	rb_reset_cpu(cpu_buffer);
4357 
4358 	arch_spin_unlock(&cpu_buffer->lock);
4359 
4360  out:
4361 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4362 
4363 	atomic_dec(&cpu_buffer->record_disabled);
4364 	atomic_dec(&buffer->resize_disabled);
4365 }
4366 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4367 
4368 /**
4369  * ring_buffer_reset - reset a ring buffer
4370  * @buffer: The ring buffer to reset all cpu buffers
4371  */
4372 void ring_buffer_reset(struct ring_buffer *buffer)
4373 {
4374 	int cpu;
4375 
4376 	for_each_buffer_cpu(buffer, cpu)
4377 		ring_buffer_reset_cpu(buffer, cpu);
4378 }
4379 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4380 
4381 /**
4382  * rind_buffer_empty - is the ring buffer empty?
4383  * @buffer: The ring buffer to test
4384  */
4385 bool ring_buffer_empty(struct ring_buffer *buffer)
4386 {
4387 	struct ring_buffer_per_cpu *cpu_buffer;
4388 	unsigned long flags;
4389 	bool dolock;
4390 	int cpu;
4391 	int ret;
4392 
4393 	/* yes this is racy, but if you don't like the race, lock the buffer */
4394 	for_each_buffer_cpu(buffer, cpu) {
4395 		cpu_buffer = buffer->buffers[cpu];
4396 		local_irq_save(flags);
4397 		dolock = rb_reader_lock(cpu_buffer);
4398 		ret = rb_per_cpu_empty(cpu_buffer);
4399 		rb_reader_unlock(cpu_buffer, dolock);
4400 		local_irq_restore(flags);
4401 
4402 		if (!ret)
4403 			return false;
4404 	}
4405 
4406 	return true;
4407 }
4408 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4409 
4410 /**
4411  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4412  * @buffer: The ring buffer
4413  * @cpu: The CPU buffer to test
4414  */
4415 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4416 {
4417 	struct ring_buffer_per_cpu *cpu_buffer;
4418 	unsigned long flags;
4419 	bool dolock;
4420 	int ret;
4421 
4422 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4423 		return true;
4424 
4425 	cpu_buffer = buffer->buffers[cpu];
4426 	local_irq_save(flags);
4427 	dolock = rb_reader_lock(cpu_buffer);
4428 	ret = rb_per_cpu_empty(cpu_buffer);
4429 	rb_reader_unlock(cpu_buffer, dolock);
4430 	local_irq_restore(flags);
4431 
4432 	return ret;
4433 }
4434 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4435 
4436 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4437 /**
4438  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4439  * @buffer_a: One buffer to swap with
4440  * @buffer_b: The other buffer to swap with
4441  *
4442  * This function is useful for tracers that want to take a "snapshot"
4443  * of a CPU buffer and has another back up buffer lying around.
4444  * it is expected that the tracer handles the cpu buffer not being
4445  * used at the moment.
4446  */
4447 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4448 			 struct ring_buffer *buffer_b, int cpu)
4449 {
4450 	struct ring_buffer_per_cpu *cpu_buffer_a;
4451 	struct ring_buffer_per_cpu *cpu_buffer_b;
4452 	int ret = -EINVAL;
4453 
4454 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4455 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4456 		goto out;
4457 
4458 	cpu_buffer_a = buffer_a->buffers[cpu];
4459 	cpu_buffer_b = buffer_b->buffers[cpu];
4460 
4461 	/* At least make sure the two buffers are somewhat the same */
4462 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4463 		goto out;
4464 
4465 	ret = -EAGAIN;
4466 
4467 	if (atomic_read(&buffer_a->record_disabled))
4468 		goto out;
4469 
4470 	if (atomic_read(&buffer_b->record_disabled))
4471 		goto out;
4472 
4473 	if (atomic_read(&cpu_buffer_a->record_disabled))
4474 		goto out;
4475 
4476 	if (atomic_read(&cpu_buffer_b->record_disabled))
4477 		goto out;
4478 
4479 	/*
4480 	 * We can't do a synchronize_sched here because this
4481 	 * function can be called in atomic context.
4482 	 * Normally this will be called from the same CPU as cpu.
4483 	 * If not it's up to the caller to protect this.
4484 	 */
4485 	atomic_inc(&cpu_buffer_a->record_disabled);
4486 	atomic_inc(&cpu_buffer_b->record_disabled);
4487 
4488 	ret = -EBUSY;
4489 	if (local_read(&cpu_buffer_a->committing))
4490 		goto out_dec;
4491 	if (local_read(&cpu_buffer_b->committing))
4492 		goto out_dec;
4493 
4494 	buffer_a->buffers[cpu] = cpu_buffer_b;
4495 	buffer_b->buffers[cpu] = cpu_buffer_a;
4496 
4497 	cpu_buffer_b->buffer = buffer_a;
4498 	cpu_buffer_a->buffer = buffer_b;
4499 
4500 	ret = 0;
4501 
4502 out_dec:
4503 	atomic_dec(&cpu_buffer_a->record_disabled);
4504 	atomic_dec(&cpu_buffer_b->record_disabled);
4505 out:
4506 	return ret;
4507 }
4508 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4509 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4510 
4511 /**
4512  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4513  * @buffer: the buffer to allocate for.
4514  * @cpu: the cpu buffer to allocate.
4515  *
4516  * This function is used in conjunction with ring_buffer_read_page.
4517  * When reading a full page from the ring buffer, these functions
4518  * can be used to speed up the process. The calling function should
4519  * allocate a few pages first with this function. Then when it
4520  * needs to get pages from the ring buffer, it passes the result
4521  * of this function into ring_buffer_read_page, which will swap
4522  * the page that was allocated, with the read page of the buffer.
4523  *
4524  * Returns:
4525  *  The page allocated, or ERR_PTR
4526  */
4527 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4528 {
4529 	struct ring_buffer_per_cpu *cpu_buffer;
4530 	struct buffer_data_page *bpage = NULL;
4531 	unsigned long flags;
4532 	struct page *page;
4533 
4534 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4535 		return ERR_PTR(-ENODEV);
4536 
4537 	cpu_buffer = buffer->buffers[cpu];
4538 	local_irq_save(flags);
4539 	arch_spin_lock(&cpu_buffer->lock);
4540 
4541 	if (cpu_buffer->free_page) {
4542 		bpage = cpu_buffer->free_page;
4543 		cpu_buffer->free_page = NULL;
4544 	}
4545 
4546 	arch_spin_unlock(&cpu_buffer->lock);
4547 	local_irq_restore(flags);
4548 
4549 	if (bpage)
4550 		goto out;
4551 
4552 	page = alloc_pages_node(cpu_to_node(cpu),
4553 				GFP_KERNEL | __GFP_NORETRY, 0);
4554 	if (!page)
4555 		return ERR_PTR(-ENOMEM);
4556 
4557 	bpage = page_address(page);
4558 
4559  out:
4560 	rb_init_page(bpage);
4561 
4562 	return bpage;
4563 }
4564 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4565 
4566 /**
4567  * ring_buffer_free_read_page - free an allocated read page
4568  * @buffer: the buffer the page was allocate for
4569  * @cpu: the cpu buffer the page came from
4570  * @data: the page to free
4571  *
4572  * Free a page allocated from ring_buffer_alloc_read_page.
4573  */
4574 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4575 {
4576 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4577 	struct buffer_data_page *bpage = data;
4578 	struct page *page = virt_to_page(bpage);
4579 	unsigned long flags;
4580 
4581 	/* If the page is still in use someplace else, we can't reuse it */
4582 	if (page_ref_count(page) > 1)
4583 		goto out;
4584 
4585 	local_irq_save(flags);
4586 	arch_spin_lock(&cpu_buffer->lock);
4587 
4588 	if (!cpu_buffer->free_page) {
4589 		cpu_buffer->free_page = bpage;
4590 		bpage = NULL;
4591 	}
4592 
4593 	arch_spin_unlock(&cpu_buffer->lock);
4594 	local_irq_restore(flags);
4595 
4596  out:
4597 	free_page((unsigned long)bpage);
4598 }
4599 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4600 
4601 /**
4602  * ring_buffer_read_page - extract a page from the ring buffer
4603  * @buffer: buffer to extract from
4604  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4605  * @len: amount to extract
4606  * @cpu: the cpu of the buffer to extract
4607  * @full: should the extraction only happen when the page is full.
4608  *
4609  * This function will pull out a page from the ring buffer and consume it.
4610  * @data_page must be the address of the variable that was returned
4611  * from ring_buffer_alloc_read_page. This is because the page might be used
4612  * to swap with a page in the ring buffer.
4613  *
4614  * for example:
4615  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4616  *	if (IS_ERR(rpage))
4617  *		return PTR_ERR(rpage);
4618  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4619  *	if (ret >= 0)
4620  *		process_page(rpage, ret);
4621  *
4622  * When @full is set, the function will not return true unless
4623  * the writer is off the reader page.
4624  *
4625  * Note: it is up to the calling functions to handle sleeps and wakeups.
4626  *  The ring buffer can be used anywhere in the kernel and can not
4627  *  blindly call wake_up. The layer that uses the ring buffer must be
4628  *  responsible for that.
4629  *
4630  * Returns:
4631  *  >=0 if data has been transferred, returns the offset of consumed data.
4632  *  <0 if no data has been transferred.
4633  */
4634 int ring_buffer_read_page(struct ring_buffer *buffer,
4635 			  void **data_page, size_t len, int cpu, int full)
4636 {
4637 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4638 	struct ring_buffer_event *event;
4639 	struct buffer_data_page *bpage;
4640 	struct buffer_page *reader;
4641 	unsigned long missed_events;
4642 	unsigned long flags;
4643 	unsigned int commit;
4644 	unsigned int read;
4645 	u64 save_timestamp;
4646 	int ret = -1;
4647 
4648 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4649 		goto out;
4650 
4651 	/*
4652 	 * If len is not big enough to hold the page header, then
4653 	 * we can not copy anything.
4654 	 */
4655 	if (len <= BUF_PAGE_HDR_SIZE)
4656 		goto out;
4657 
4658 	len -= BUF_PAGE_HDR_SIZE;
4659 
4660 	if (!data_page)
4661 		goto out;
4662 
4663 	bpage = *data_page;
4664 	if (!bpage)
4665 		goto out;
4666 
4667 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4668 
4669 	reader = rb_get_reader_page(cpu_buffer);
4670 	if (!reader)
4671 		goto out_unlock;
4672 
4673 	event = rb_reader_event(cpu_buffer);
4674 
4675 	read = reader->read;
4676 	commit = rb_page_commit(reader);
4677 
4678 	/* Check if any events were dropped */
4679 	missed_events = cpu_buffer->lost_events;
4680 
4681 	/*
4682 	 * If this page has been partially read or
4683 	 * if len is not big enough to read the rest of the page or
4684 	 * a writer is still on the page, then
4685 	 * we must copy the data from the page to the buffer.
4686 	 * Otherwise, we can simply swap the page with the one passed in.
4687 	 */
4688 	if (read || (len < (commit - read)) ||
4689 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4690 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4691 		unsigned int rpos = read;
4692 		unsigned int pos = 0;
4693 		unsigned int size;
4694 
4695 		if (full)
4696 			goto out_unlock;
4697 
4698 		if (len > (commit - read))
4699 			len = (commit - read);
4700 
4701 		/* Always keep the time extend and data together */
4702 		size = rb_event_ts_length(event);
4703 
4704 		if (len < size)
4705 			goto out_unlock;
4706 
4707 		/* save the current timestamp, since the user will need it */
4708 		save_timestamp = cpu_buffer->read_stamp;
4709 
4710 		/* Need to copy one event at a time */
4711 		do {
4712 			/* We need the size of one event, because
4713 			 * rb_advance_reader only advances by one event,
4714 			 * whereas rb_event_ts_length may include the size of
4715 			 * one or two events.
4716 			 * We have already ensured there's enough space if this
4717 			 * is a time extend. */
4718 			size = rb_event_length(event);
4719 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4720 
4721 			len -= size;
4722 
4723 			rb_advance_reader(cpu_buffer);
4724 			rpos = reader->read;
4725 			pos += size;
4726 
4727 			if (rpos >= commit)
4728 				break;
4729 
4730 			event = rb_reader_event(cpu_buffer);
4731 			/* Always keep the time extend and data together */
4732 			size = rb_event_ts_length(event);
4733 		} while (len >= size);
4734 
4735 		/* update bpage */
4736 		local_set(&bpage->commit, pos);
4737 		bpage->time_stamp = save_timestamp;
4738 
4739 		/* we copied everything to the beginning */
4740 		read = 0;
4741 	} else {
4742 		/* update the entry counter */
4743 		cpu_buffer->read += rb_page_entries(reader);
4744 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4745 
4746 		/* swap the pages */
4747 		rb_init_page(bpage);
4748 		bpage = reader->page;
4749 		reader->page = *data_page;
4750 		local_set(&reader->write, 0);
4751 		local_set(&reader->entries, 0);
4752 		reader->read = 0;
4753 		*data_page = bpage;
4754 
4755 		/*
4756 		 * Use the real_end for the data size,
4757 		 * This gives us a chance to store the lost events
4758 		 * on the page.
4759 		 */
4760 		if (reader->real_end)
4761 			local_set(&bpage->commit, reader->real_end);
4762 	}
4763 	ret = read;
4764 
4765 	cpu_buffer->lost_events = 0;
4766 
4767 	commit = local_read(&bpage->commit);
4768 	/*
4769 	 * Set a flag in the commit field if we lost events
4770 	 */
4771 	if (missed_events) {
4772 		/* If there is room at the end of the page to save the
4773 		 * missed events, then record it there.
4774 		 */
4775 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4776 			memcpy(&bpage->data[commit], &missed_events,
4777 			       sizeof(missed_events));
4778 			local_add(RB_MISSED_STORED, &bpage->commit);
4779 			commit += sizeof(missed_events);
4780 		}
4781 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4782 	}
4783 
4784 	/*
4785 	 * This page may be off to user land. Zero it out here.
4786 	 */
4787 	if (commit < BUF_PAGE_SIZE)
4788 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4789 
4790  out_unlock:
4791 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4792 
4793  out:
4794 	return ret;
4795 }
4796 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4797 
4798 /*
4799  * We only allocate new buffers, never free them if the CPU goes down.
4800  * If we were to free the buffer, then the user would lose any trace that was in
4801  * the buffer.
4802  */
4803 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4804 {
4805 	struct ring_buffer *buffer;
4806 	long nr_pages_same;
4807 	int cpu_i;
4808 	unsigned long nr_pages;
4809 
4810 	buffer = container_of(node, struct ring_buffer, node);
4811 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4812 		return 0;
4813 
4814 	nr_pages = 0;
4815 	nr_pages_same = 1;
4816 	/* check if all cpu sizes are same */
4817 	for_each_buffer_cpu(buffer, cpu_i) {
4818 		/* fill in the size from first enabled cpu */
4819 		if (nr_pages == 0)
4820 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4821 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4822 			nr_pages_same = 0;
4823 			break;
4824 		}
4825 	}
4826 	/* allocate minimum pages, user can later expand it */
4827 	if (!nr_pages_same)
4828 		nr_pages = 2;
4829 	buffer->buffers[cpu] =
4830 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4831 	if (!buffer->buffers[cpu]) {
4832 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4833 		     cpu);
4834 		return -ENOMEM;
4835 	}
4836 	smp_wmb();
4837 	cpumask_set_cpu(cpu, buffer->cpumask);
4838 	return 0;
4839 }
4840 
4841 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4842 /*
4843  * This is a basic integrity check of the ring buffer.
4844  * Late in the boot cycle this test will run when configured in.
4845  * It will kick off a thread per CPU that will go into a loop
4846  * writing to the per cpu ring buffer various sizes of data.
4847  * Some of the data will be large items, some small.
4848  *
4849  * Another thread is created that goes into a spin, sending out
4850  * IPIs to the other CPUs to also write into the ring buffer.
4851  * this is to test the nesting ability of the buffer.
4852  *
4853  * Basic stats are recorded and reported. If something in the
4854  * ring buffer should happen that's not expected, a big warning
4855  * is displayed and all ring buffers are disabled.
4856  */
4857 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4858 
4859 struct rb_test_data {
4860 	struct ring_buffer	*buffer;
4861 	unsigned long		events;
4862 	unsigned long		bytes_written;
4863 	unsigned long		bytes_alloc;
4864 	unsigned long		bytes_dropped;
4865 	unsigned long		events_nested;
4866 	unsigned long		bytes_written_nested;
4867 	unsigned long		bytes_alloc_nested;
4868 	unsigned long		bytes_dropped_nested;
4869 	int			min_size_nested;
4870 	int			max_size_nested;
4871 	int			max_size;
4872 	int			min_size;
4873 	int			cpu;
4874 	int			cnt;
4875 };
4876 
4877 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4878 
4879 /* 1 meg per cpu */
4880 #define RB_TEST_BUFFER_SIZE	1048576
4881 
4882 static char rb_string[] __initdata =
4883 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4884 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4885 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4886 
4887 static bool rb_test_started __initdata;
4888 
4889 struct rb_item {
4890 	int size;
4891 	char str[];
4892 };
4893 
4894 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4895 {
4896 	struct ring_buffer_event *event;
4897 	struct rb_item *item;
4898 	bool started;
4899 	int event_len;
4900 	int size;
4901 	int len;
4902 	int cnt;
4903 
4904 	/* Have nested writes different that what is written */
4905 	cnt = data->cnt + (nested ? 27 : 0);
4906 
4907 	/* Multiply cnt by ~e, to make some unique increment */
4908 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4909 
4910 	len = size + sizeof(struct rb_item);
4911 
4912 	started = rb_test_started;
4913 	/* read rb_test_started before checking buffer enabled */
4914 	smp_rmb();
4915 
4916 	event = ring_buffer_lock_reserve(data->buffer, len);
4917 	if (!event) {
4918 		/* Ignore dropped events before test starts. */
4919 		if (started) {
4920 			if (nested)
4921 				data->bytes_dropped += len;
4922 			else
4923 				data->bytes_dropped_nested += len;
4924 		}
4925 		return len;
4926 	}
4927 
4928 	event_len = ring_buffer_event_length(event);
4929 
4930 	if (RB_WARN_ON(data->buffer, event_len < len))
4931 		goto out;
4932 
4933 	item = ring_buffer_event_data(event);
4934 	item->size = size;
4935 	memcpy(item->str, rb_string, size);
4936 
4937 	if (nested) {
4938 		data->bytes_alloc_nested += event_len;
4939 		data->bytes_written_nested += len;
4940 		data->events_nested++;
4941 		if (!data->min_size_nested || len < data->min_size_nested)
4942 			data->min_size_nested = len;
4943 		if (len > data->max_size_nested)
4944 			data->max_size_nested = len;
4945 	} else {
4946 		data->bytes_alloc += event_len;
4947 		data->bytes_written += len;
4948 		data->events++;
4949 		if (!data->min_size || len < data->min_size)
4950 			data->max_size = len;
4951 		if (len > data->max_size)
4952 			data->max_size = len;
4953 	}
4954 
4955  out:
4956 	ring_buffer_unlock_commit(data->buffer, event);
4957 
4958 	return 0;
4959 }
4960 
4961 static __init int rb_test(void *arg)
4962 {
4963 	struct rb_test_data *data = arg;
4964 
4965 	while (!kthread_should_stop()) {
4966 		rb_write_something(data, false);
4967 		data->cnt++;
4968 
4969 		set_current_state(TASK_INTERRUPTIBLE);
4970 		/* Now sleep between a min of 100-300us and a max of 1ms */
4971 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4972 	}
4973 
4974 	return 0;
4975 }
4976 
4977 static __init void rb_ipi(void *ignore)
4978 {
4979 	struct rb_test_data *data;
4980 	int cpu = smp_processor_id();
4981 
4982 	data = &rb_data[cpu];
4983 	rb_write_something(data, true);
4984 }
4985 
4986 static __init int rb_hammer_test(void *arg)
4987 {
4988 	while (!kthread_should_stop()) {
4989 
4990 		/* Send an IPI to all cpus to write data! */
4991 		smp_call_function(rb_ipi, NULL, 1);
4992 		/* No sleep, but for non preempt, let others run */
4993 		schedule();
4994 	}
4995 
4996 	return 0;
4997 }
4998 
4999 static __init int test_ringbuffer(void)
5000 {
5001 	struct task_struct *rb_hammer;
5002 	struct ring_buffer *buffer;
5003 	int cpu;
5004 	int ret = 0;
5005 
5006 	pr_info("Running ring buffer tests...\n");
5007 
5008 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5009 	if (WARN_ON(!buffer))
5010 		return 0;
5011 
5012 	/* Disable buffer so that threads can't write to it yet */
5013 	ring_buffer_record_off(buffer);
5014 
5015 	for_each_online_cpu(cpu) {
5016 		rb_data[cpu].buffer = buffer;
5017 		rb_data[cpu].cpu = cpu;
5018 		rb_data[cpu].cnt = cpu;
5019 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5020 						 "rbtester/%d", cpu);
5021 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5022 			pr_cont("FAILED\n");
5023 			ret = PTR_ERR(rb_threads[cpu]);
5024 			goto out_free;
5025 		}
5026 
5027 		kthread_bind(rb_threads[cpu], cpu);
5028  		wake_up_process(rb_threads[cpu]);
5029 	}
5030 
5031 	/* Now create the rb hammer! */
5032 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5033 	if (WARN_ON(IS_ERR(rb_hammer))) {
5034 		pr_cont("FAILED\n");
5035 		ret = PTR_ERR(rb_hammer);
5036 		goto out_free;
5037 	}
5038 
5039 	ring_buffer_record_on(buffer);
5040 	/*
5041 	 * Show buffer is enabled before setting rb_test_started.
5042 	 * Yes there's a small race window where events could be
5043 	 * dropped and the thread wont catch it. But when a ring
5044 	 * buffer gets enabled, there will always be some kind of
5045 	 * delay before other CPUs see it. Thus, we don't care about
5046 	 * those dropped events. We care about events dropped after
5047 	 * the threads see that the buffer is active.
5048 	 */
5049 	smp_wmb();
5050 	rb_test_started = true;
5051 
5052 	set_current_state(TASK_INTERRUPTIBLE);
5053 	/* Just run for 10 seconds */;
5054 	schedule_timeout(10 * HZ);
5055 
5056 	kthread_stop(rb_hammer);
5057 
5058  out_free:
5059 	for_each_online_cpu(cpu) {
5060 		if (!rb_threads[cpu])
5061 			break;
5062 		kthread_stop(rb_threads[cpu]);
5063 	}
5064 	if (ret) {
5065 		ring_buffer_free(buffer);
5066 		return ret;
5067 	}
5068 
5069 	/* Report! */
5070 	pr_info("finished\n");
5071 	for_each_online_cpu(cpu) {
5072 		struct ring_buffer_event *event;
5073 		struct rb_test_data *data = &rb_data[cpu];
5074 		struct rb_item *item;
5075 		unsigned long total_events;
5076 		unsigned long total_dropped;
5077 		unsigned long total_written;
5078 		unsigned long total_alloc;
5079 		unsigned long total_read = 0;
5080 		unsigned long total_size = 0;
5081 		unsigned long total_len = 0;
5082 		unsigned long total_lost = 0;
5083 		unsigned long lost;
5084 		int big_event_size;
5085 		int small_event_size;
5086 
5087 		ret = -1;
5088 
5089 		total_events = data->events + data->events_nested;
5090 		total_written = data->bytes_written + data->bytes_written_nested;
5091 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5092 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5093 
5094 		big_event_size = data->max_size + data->max_size_nested;
5095 		small_event_size = data->min_size + data->min_size_nested;
5096 
5097 		pr_info("CPU %d:\n", cpu);
5098 		pr_info("              events:    %ld\n", total_events);
5099 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5100 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5101 		pr_info("       written bytes:    %ld\n", total_written);
5102 		pr_info("       biggest event:    %d\n", big_event_size);
5103 		pr_info("      smallest event:    %d\n", small_event_size);
5104 
5105 		if (RB_WARN_ON(buffer, total_dropped))
5106 			break;
5107 
5108 		ret = 0;
5109 
5110 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5111 			total_lost += lost;
5112 			item = ring_buffer_event_data(event);
5113 			total_len += ring_buffer_event_length(event);
5114 			total_size += item->size + sizeof(struct rb_item);
5115 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5116 				pr_info("FAILED!\n");
5117 				pr_info("buffer had: %.*s\n", item->size, item->str);
5118 				pr_info("expected:   %.*s\n", item->size, rb_string);
5119 				RB_WARN_ON(buffer, 1);
5120 				ret = -1;
5121 				break;
5122 			}
5123 			total_read++;
5124 		}
5125 		if (ret)
5126 			break;
5127 
5128 		ret = -1;
5129 
5130 		pr_info("         read events:   %ld\n", total_read);
5131 		pr_info("         lost events:   %ld\n", total_lost);
5132 		pr_info("        total events:   %ld\n", total_lost + total_read);
5133 		pr_info("  recorded len bytes:   %ld\n", total_len);
5134 		pr_info(" recorded size bytes:   %ld\n", total_size);
5135 		if (total_lost)
5136 			pr_info(" With dropped events, record len and size may not match\n"
5137 				" alloced and written from above\n");
5138 		if (!total_lost) {
5139 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5140 				       total_size != total_written))
5141 				break;
5142 		}
5143 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5144 			break;
5145 
5146 		ret = 0;
5147 	}
5148 	if (!ret)
5149 		pr_info("Ring buffer PASSED!\n");
5150 
5151 	ring_buffer_free(buffer);
5152 	return 0;
5153 }
5154 
5155 late_initcall(test_ringbuffer);
5156 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5157