1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/sched/clock.h> 10 #include <linux/trace_seq.h> 11 #include <linux/spinlock.h> 12 #include <linux/irq_work.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* Used for individual buffers (after the counter) */ 119 #define RB_BUFFER_OFF (1 << 20) 120 121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 122 123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 124 #define RB_ALIGNMENT 4U 125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 127 128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 129 # define RB_FORCE_8BYTE_ALIGNMENT 0 130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 131 #else 132 # define RB_FORCE_8BYTE_ALIGNMENT 1 133 # define RB_ARCH_ALIGNMENT 8U 134 #endif 135 136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 137 138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 140 141 enum { 142 RB_LEN_TIME_EXTEND = 8, 143 RB_LEN_TIME_STAMP = 16, 144 }; 145 146 #define skip_time_extend(event) \ 147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 148 149 static inline int rb_null_event(struct ring_buffer_event *event) 150 { 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 152 } 153 154 static void rb_event_set_padding(struct ring_buffer_event *event) 155 { 156 /* padding has a NULL time_delta */ 157 event->type_len = RINGBUF_TYPE_PADDING; 158 event->time_delta = 0; 159 } 160 161 static unsigned 162 rb_event_data_length(struct ring_buffer_event *event) 163 { 164 unsigned length; 165 166 if (event->type_len) 167 length = event->type_len * RB_ALIGNMENT; 168 else 169 length = event->array[0]; 170 return length + RB_EVNT_HDR_SIZE; 171 } 172 173 /* 174 * Return the length of the given event. Will return 175 * the length of the time extend if the event is a 176 * time extend. 177 */ 178 static inline unsigned 179 rb_event_length(struct ring_buffer_event *event) 180 { 181 switch (event->type_len) { 182 case RINGBUF_TYPE_PADDING: 183 if (rb_null_event(event)) 184 /* undefined */ 185 return -1; 186 return event->array[0] + RB_EVNT_HDR_SIZE; 187 188 case RINGBUF_TYPE_TIME_EXTEND: 189 return RB_LEN_TIME_EXTEND; 190 191 case RINGBUF_TYPE_TIME_STAMP: 192 return RB_LEN_TIME_STAMP; 193 194 case RINGBUF_TYPE_DATA: 195 return rb_event_data_length(event); 196 default: 197 BUG(); 198 } 199 /* not hit */ 200 return 0; 201 } 202 203 /* 204 * Return total length of time extend and data, 205 * or just the event length for all other events. 206 */ 207 static inline unsigned 208 rb_event_ts_length(struct ring_buffer_event *event) 209 { 210 unsigned len = 0; 211 212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 213 /* time extends include the data event after it */ 214 len = RB_LEN_TIME_EXTEND; 215 event = skip_time_extend(event); 216 } 217 return len + rb_event_length(event); 218 } 219 220 /** 221 * ring_buffer_event_length - return the length of the event 222 * @event: the event to get the length of 223 * 224 * Returns the size of the data load of a data event. 225 * If the event is something other than a data event, it 226 * returns the size of the event itself. With the exception 227 * of a TIME EXTEND, where it still returns the size of the 228 * data load of the data event after it. 229 */ 230 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 235 event = skip_time_extend(event); 236 237 length = rb_event_length(event); 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 239 return length; 240 length -= RB_EVNT_HDR_SIZE; 241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 242 length -= sizeof(event->array[0]); 243 return length; 244 } 245 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 246 247 /* inline for ring buffer fast paths */ 248 static __always_inline void * 249 rb_event_data(struct ring_buffer_event *event) 250 { 251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 252 event = skip_time_extend(event); 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 254 /* If length is in len field, then array[0] has the data */ 255 if (event->type_len) 256 return (void *)&event->array[0]; 257 /* Otherwise length is in array[0] and array[1] has the data */ 258 return (void *)&event->array[1]; 259 } 260 261 /** 262 * ring_buffer_event_data - return the data of the event 263 * @event: the event to get the data from 264 */ 265 void *ring_buffer_event_data(struct ring_buffer_event *event) 266 { 267 return rb_event_data(event); 268 } 269 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 270 271 #define for_each_buffer_cpu(buffer, cpu) \ 272 for_each_cpu(cpu, buffer->cpumask) 273 274 #define TS_SHIFT 27 275 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 276 #define TS_DELTA_TEST (~TS_MASK) 277 278 /* Flag when events were overwritten */ 279 #define RB_MISSED_EVENTS (1 << 31) 280 /* Missed count stored at end */ 281 #define RB_MISSED_STORED (1 << 30) 282 283 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED) 284 285 struct buffer_data_page { 286 u64 time_stamp; /* page time stamp */ 287 local_t commit; /* write committed index */ 288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 289 }; 290 291 /* 292 * Note, the buffer_page list must be first. The buffer pages 293 * are allocated in cache lines, which means that each buffer 294 * page will be at the beginning of a cache line, and thus 295 * the least significant bits will be zero. We use this to 296 * add flags in the list struct pointers, to make the ring buffer 297 * lockless. 298 */ 299 struct buffer_page { 300 struct list_head list; /* list of buffer pages */ 301 local_t write; /* index for next write */ 302 unsigned read; /* index for next read */ 303 local_t entries; /* entries on this page */ 304 unsigned long real_end; /* real end of data */ 305 struct buffer_data_page *page; /* Actual data page */ 306 }; 307 308 /* 309 * The buffer page counters, write and entries, must be reset 310 * atomically when crossing page boundaries. To synchronize this 311 * update, two counters are inserted into the number. One is 312 * the actual counter for the write position or count on the page. 313 * 314 * The other is a counter of updaters. Before an update happens 315 * the update partition of the counter is incremented. This will 316 * allow the updater to update the counter atomically. 317 * 318 * The counter is 20 bits, and the state data is 12. 319 */ 320 #define RB_WRITE_MASK 0xfffff 321 #define RB_WRITE_INTCNT (1 << 20) 322 323 static void rb_init_page(struct buffer_data_page *bpage) 324 { 325 local_set(&bpage->commit, 0); 326 } 327 328 /** 329 * ring_buffer_page_len - the size of data on the page. 330 * @page: The page to read 331 * 332 * Returns the amount of data on the page, including buffer page header. 333 */ 334 size_t ring_buffer_page_len(void *page) 335 { 336 struct buffer_data_page *bpage = page; 337 338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS) 339 + BUF_PAGE_HDR_SIZE; 340 } 341 342 /* 343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 344 * this issue out. 345 */ 346 static void free_buffer_page(struct buffer_page *bpage) 347 { 348 free_page((unsigned long)bpage->page); 349 kfree(bpage); 350 } 351 352 /* 353 * We need to fit the time_stamp delta into 27 bits. 354 */ 355 static inline int test_time_stamp(u64 delta) 356 { 357 if (delta & TS_DELTA_TEST) 358 return 1; 359 return 0; 360 } 361 362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 363 364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 366 367 int ring_buffer_print_page_header(struct trace_seq *s) 368 { 369 struct buffer_data_page field; 370 371 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 372 "offset:0;\tsize:%u;\tsigned:%u;\n", 373 (unsigned int)sizeof(field.time_stamp), 374 (unsigned int)is_signed_type(u64)); 375 376 trace_seq_printf(s, "\tfield: local_t commit;\t" 377 "offset:%u;\tsize:%u;\tsigned:%u;\n", 378 (unsigned int)offsetof(typeof(field), commit), 379 (unsigned int)sizeof(field.commit), 380 (unsigned int)is_signed_type(long)); 381 382 trace_seq_printf(s, "\tfield: int overwrite;\t" 383 "offset:%u;\tsize:%u;\tsigned:%u;\n", 384 (unsigned int)offsetof(typeof(field), commit), 385 1, 386 (unsigned int)is_signed_type(long)); 387 388 trace_seq_printf(s, "\tfield: char data;\t" 389 "offset:%u;\tsize:%u;\tsigned:%u;\n", 390 (unsigned int)offsetof(typeof(field), data), 391 (unsigned int)BUF_PAGE_SIZE, 392 (unsigned int)is_signed_type(char)); 393 394 return !trace_seq_has_overflowed(s); 395 } 396 397 struct rb_irq_work { 398 struct irq_work work; 399 wait_queue_head_t waiters; 400 wait_queue_head_t full_waiters; 401 bool waiters_pending; 402 bool full_waiters_pending; 403 bool wakeup_full; 404 }; 405 406 /* 407 * Structure to hold event state and handle nested events. 408 */ 409 struct rb_event_info { 410 u64 ts; 411 u64 delta; 412 unsigned long length; 413 struct buffer_page *tail_page; 414 int add_timestamp; 415 }; 416 417 /* 418 * Used for which event context the event is in. 419 * NMI = 0 420 * IRQ = 1 421 * SOFTIRQ = 2 422 * NORMAL = 3 423 * 424 * See trace_recursive_lock() comment below for more details. 425 */ 426 enum { 427 RB_CTX_NMI, 428 RB_CTX_IRQ, 429 RB_CTX_SOFTIRQ, 430 RB_CTX_NORMAL, 431 RB_CTX_MAX 432 }; 433 434 /* 435 * head_page == tail_page && head == tail then buffer is empty. 436 */ 437 struct ring_buffer_per_cpu { 438 int cpu; 439 atomic_t record_disabled; 440 struct ring_buffer *buffer; 441 raw_spinlock_t reader_lock; /* serialize readers */ 442 arch_spinlock_t lock; 443 struct lock_class_key lock_key; 444 struct buffer_data_page *free_page; 445 unsigned long nr_pages; 446 unsigned int current_context; 447 struct list_head *pages; 448 struct buffer_page *head_page; /* read from head */ 449 struct buffer_page *tail_page; /* write to tail */ 450 struct buffer_page *commit_page; /* committed pages */ 451 struct buffer_page *reader_page; 452 unsigned long lost_events; 453 unsigned long last_overrun; 454 local_t entries_bytes; 455 local_t entries; 456 local_t overrun; 457 local_t commit_overrun; 458 local_t dropped_events; 459 local_t committing; 460 local_t commits; 461 unsigned long read; 462 unsigned long read_bytes; 463 u64 write_stamp; 464 u64 read_stamp; 465 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 466 long nr_pages_to_update; 467 struct list_head new_pages; /* new pages to add */ 468 struct work_struct update_pages_work; 469 struct completion update_done; 470 471 struct rb_irq_work irq_work; 472 }; 473 474 struct ring_buffer { 475 unsigned flags; 476 int cpus; 477 atomic_t record_disabled; 478 atomic_t resize_disabled; 479 cpumask_var_t cpumask; 480 481 struct lock_class_key *reader_lock_key; 482 483 struct mutex mutex; 484 485 struct ring_buffer_per_cpu **buffers; 486 487 struct hlist_node node; 488 u64 (*clock)(void); 489 490 struct rb_irq_work irq_work; 491 }; 492 493 struct ring_buffer_iter { 494 struct ring_buffer_per_cpu *cpu_buffer; 495 unsigned long head; 496 struct buffer_page *head_page; 497 struct buffer_page *cache_reader_page; 498 unsigned long cache_read; 499 u64 read_stamp; 500 }; 501 502 /* 503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 504 * 505 * Schedules a delayed work to wake up any task that is blocked on the 506 * ring buffer waiters queue. 507 */ 508 static void rb_wake_up_waiters(struct irq_work *work) 509 { 510 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 511 512 wake_up_all(&rbwork->waiters); 513 if (rbwork->wakeup_full) { 514 rbwork->wakeup_full = false; 515 wake_up_all(&rbwork->full_waiters); 516 } 517 } 518 519 /** 520 * ring_buffer_wait - wait for input to the ring buffer 521 * @buffer: buffer to wait on 522 * @cpu: the cpu buffer to wait on 523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 524 * 525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 526 * as data is added to any of the @buffer's cpu buffers. Otherwise 527 * it will wait for data to be added to a specific cpu buffer. 528 */ 529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 530 { 531 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 532 DEFINE_WAIT(wait); 533 struct rb_irq_work *work; 534 int ret = 0; 535 536 /* 537 * Depending on what the caller is waiting for, either any 538 * data in any cpu buffer, or a specific buffer, put the 539 * caller on the appropriate wait queue. 540 */ 541 if (cpu == RING_BUFFER_ALL_CPUS) { 542 work = &buffer->irq_work; 543 /* Full only makes sense on per cpu reads */ 544 full = false; 545 } else { 546 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 547 return -ENODEV; 548 cpu_buffer = buffer->buffers[cpu]; 549 work = &cpu_buffer->irq_work; 550 } 551 552 553 while (true) { 554 if (full) 555 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 556 else 557 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 558 559 /* 560 * The events can happen in critical sections where 561 * checking a work queue can cause deadlocks. 562 * After adding a task to the queue, this flag is set 563 * only to notify events to try to wake up the queue 564 * using irq_work. 565 * 566 * We don't clear it even if the buffer is no longer 567 * empty. The flag only causes the next event to run 568 * irq_work to do the work queue wake up. The worse 569 * that can happen if we race with !trace_empty() is that 570 * an event will cause an irq_work to try to wake up 571 * an empty queue. 572 * 573 * There's no reason to protect this flag either, as 574 * the work queue and irq_work logic will do the necessary 575 * synchronization for the wake ups. The only thing 576 * that is necessary is that the wake up happens after 577 * a task has been queued. It's OK for spurious wake ups. 578 */ 579 if (full) 580 work->full_waiters_pending = true; 581 else 582 work->waiters_pending = true; 583 584 if (signal_pending(current)) { 585 ret = -EINTR; 586 break; 587 } 588 589 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 590 break; 591 592 if (cpu != RING_BUFFER_ALL_CPUS && 593 !ring_buffer_empty_cpu(buffer, cpu)) { 594 unsigned long flags; 595 bool pagebusy; 596 597 if (!full) 598 break; 599 600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 603 604 if (!pagebusy) 605 break; 606 } 607 608 schedule(); 609 } 610 611 if (full) 612 finish_wait(&work->full_waiters, &wait); 613 else 614 finish_wait(&work->waiters, &wait); 615 616 return ret; 617 } 618 619 /** 620 * ring_buffer_poll_wait - poll on buffer input 621 * @buffer: buffer to wait on 622 * @cpu: the cpu buffer to wait on 623 * @filp: the file descriptor 624 * @poll_table: The poll descriptor 625 * 626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 627 * as data is added to any of the @buffer's cpu buffers. Otherwise 628 * it will wait for data to be added to a specific cpu buffer. 629 * 630 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 631 * zero otherwise. 632 */ 633 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 634 struct file *filp, poll_table *poll_table) 635 { 636 struct ring_buffer_per_cpu *cpu_buffer; 637 struct rb_irq_work *work; 638 639 if (cpu == RING_BUFFER_ALL_CPUS) 640 work = &buffer->irq_work; 641 else { 642 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 643 return -EINVAL; 644 645 cpu_buffer = buffer->buffers[cpu]; 646 work = &cpu_buffer->irq_work; 647 } 648 649 poll_wait(filp, &work->waiters, poll_table); 650 work->waiters_pending = true; 651 /* 652 * There's a tight race between setting the waiters_pending and 653 * checking if the ring buffer is empty. Once the waiters_pending bit 654 * is set, the next event will wake the task up, but we can get stuck 655 * if there's only a single event in. 656 * 657 * FIXME: Ideally, we need a memory barrier on the writer side as well, 658 * but adding a memory barrier to all events will cause too much of a 659 * performance hit in the fast path. We only need a memory barrier when 660 * the buffer goes from empty to having content. But as this race is 661 * extremely small, and it's not a problem if another event comes in, we 662 * will fix it later. 663 */ 664 smp_mb(); 665 666 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 667 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 668 return POLLIN | POLLRDNORM; 669 return 0; 670 } 671 672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 673 #define RB_WARN_ON(b, cond) \ 674 ({ \ 675 int _____ret = unlikely(cond); \ 676 if (_____ret) { \ 677 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 678 struct ring_buffer_per_cpu *__b = \ 679 (void *)b; \ 680 atomic_inc(&__b->buffer->record_disabled); \ 681 } else \ 682 atomic_inc(&b->record_disabled); \ 683 WARN_ON(1); \ 684 } \ 685 _____ret; \ 686 }) 687 688 /* Up this if you want to test the TIME_EXTENTS and normalization */ 689 #define DEBUG_SHIFT 0 690 691 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 692 { 693 /* shift to debug/test normalization and TIME_EXTENTS */ 694 return buffer->clock() << DEBUG_SHIFT; 695 } 696 697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 698 { 699 u64 time; 700 701 preempt_disable_notrace(); 702 time = rb_time_stamp(buffer); 703 preempt_enable_no_resched_notrace(); 704 705 return time; 706 } 707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 708 709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 710 int cpu, u64 *ts) 711 { 712 /* Just stupid testing the normalize function and deltas */ 713 *ts >>= DEBUG_SHIFT; 714 } 715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 716 717 /* 718 * Making the ring buffer lockless makes things tricky. 719 * Although writes only happen on the CPU that they are on, 720 * and they only need to worry about interrupts. Reads can 721 * happen on any CPU. 722 * 723 * The reader page is always off the ring buffer, but when the 724 * reader finishes with a page, it needs to swap its page with 725 * a new one from the buffer. The reader needs to take from 726 * the head (writes go to the tail). But if a writer is in overwrite 727 * mode and wraps, it must push the head page forward. 728 * 729 * Here lies the problem. 730 * 731 * The reader must be careful to replace only the head page, and 732 * not another one. As described at the top of the file in the 733 * ASCII art, the reader sets its old page to point to the next 734 * page after head. It then sets the page after head to point to 735 * the old reader page. But if the writer moves the head page 736 * during this operation, the reader could end up with the tail. 737 * 738 * We use cmpxchg to help prevent this race. We also do something 739 * special with the page before head. We set the LSB to 1. 740 * 741 * When the writer must push the page forward, it will clear the 742 * bit that points to the head page, move the head, and then set 743 * the bit that points to the new head page. 744 * 745 * We also don't want an interrupt coming in and moving the head 746 * page on another writer. Thus we use the second LSB to catch 747 * that too. Thus: 748 * 749 * head->list->prev->next bit 1 bit 0 750 * ------- ------- 751 * Normal page 0 0 752 * Points to head page 0 1 753 * New head page 1 0 754 * 755 * Note we can not trust the prev pointer of the head page, because: 756 * 757 * +----+ +-----+ +-----+ 758 * | |------>| T |---X--->| N | 759 * | |<------| | | | 760 * +----+ +-----+ +-----+ 761 * ^ ^ | 762 * | +-----+ | | 763 * +----------| R |----------+ | 764 * | |<-----------+ 765 * +-----+ 766 * 767 * Key: ---X--> HEAD flag set in pointer 768 * T Tail page 769 * R Reader page 770 * N Next page 771 * 772 * (see __rb_reserve_next() to see where this happens) 773 * 774 * What the above shows is that the reader just swapped out 775 * the reader page with a page in the buffer, but before it 776 * could make the new header point back to the new page added 777 * it was preempted by a writer. The writer moved forward onto 778 * the new page added by the reader and is about to move forward 779 * again. 780 * 781 * You can see, it is legitimate for the previous pointer of 782 * the head (or any page) not to point back to itself. But only 783 * temporarially. 784 */ 785 786 #define RB_PAGE_NORMAL 0UL 787 #define RB_PAGE_HEAD 1UL 788 #define RB_PAGE_UPDATE 2UL 789 790 791 #define RB_FLAG_MASK 3UL 792 793 /* PAGE_MOVED is not part of the mask */ 794 #define RB_PAGE_MOVED 4UL 795 796 /* 797 * rb_list_head - remove any bit 798 */ 799 static struct list_head *rb_list_head(struct list_head *list) 800 { 801 unsigned long val = (unsigned long)list; 802 803 return (struct list_head *)(val & ~RB_FLAG_MASK); 804 } 805 806 /* 807 * rb_is_head_page - test if the given page is the head page 808 * 809 * Because the reader may move the head_page pointer, we can 810 * not trust what the head page is (it may be pointing to 811 * the reader page). But if the next page is a header page, 812 * its flags will be non zero. 813 */ 814 static inline int 815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 816 struct buffer_page *page, struct list_head *list) 817 { 818 unsigned long val; 819 820 val = (unsigned long)list->next; 821 822 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 823 return RB_PAGE_MOVED; 824 825 return val & RB_FLAG_MASK; 826 } 827 828 /* 829 * rb_is_reader_page 830 * 831 * The unique thing about the reader page, is that, if the 832 * writer is ever on it, the previous pointer never points 833 * back to the reader page. 834 */ 835 static bool rb_is_reader_page(struct buffer_page *page) 836 { 837 struct list_head *list = page->list.prev; 838 839 return rb_list_head(list->next) != &page->list; 840 } 841 842 /* 843 * rb_set_list_to_head - set a list_head to be pointing to head. 844 */ 845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 846 struct list_head *list) 847 { 848 unsigned long *ptr; 849 850 ptr = (unsigned long *)&list->next; 851 *ptr |= RB_PAGE_HEAD; 852 *ptr &= ~RB_PAGE_UPDATE; 853 } 854 855 /* 856 * rb_head_page_activate - sets up head page 857 */ 858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 859 { 860 struct buffer_page *head; 861 862 head = cpu_buffer->head_page; 863 if (!head) 864 return; 865 866 /* 867 * Set the previous list pointer to have the HEAD flag. 868 */ 869 rb_set_list_to_head(cpu_buffer, head->list.prev); 870 } 871 872 static void rb_list_head_clear(struct list_head *list) 873 { 874 unsigned long *ptr = (unsigned long *)&list->next; 875 876 *ptr &= ~RB_FLAG_MASK; 877 } 878 879 /* 880 * rb_head_page_dactivate - clears head page ptr (for free list) 881 */ 882 static void 883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 884 { 885 struct list_head *hd; 886 887 /* Go through the whole list and clear any pointers found. */ 888 rb_list_head_clear(cpu_buffer->pages); 889 890 list_for_each(hd, cpu_buffer->pages) 891 rb_list_head_clear(hd); 892 } 893 894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 895 struct buffer_page *head, 896 struct buffer_page *prev, 897 int old_flag, int new_flag) 898 { 899 struct list_head *list; 900 unsigned long val = (unsigned long)&head->list; 901 unsigned long ret; 902 903 list = &prev->list; 904 905 val &= ~RB_FLAG_MASK; 906 907 ret = cmpxchg((unsigned long *)&list->next, 908 val | old_flag, val | new_flag); 909 910 /* check if the reader took the page */ 911 if ((ret & ~RB_FLAG_MASK) != val) 912 return RB_PAGE_MOVED; 913 914 return ret & RB_FLAG_MASK; 915 } 916 917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 918 struct buffer_page *head, 919 struct buffer_page *prev, 920 int old_flag) 921 { 922 return rb_head_page_set(cpu_buffer, head, prev, 923 old_flag, RB_PAGE_UPDATE); 924 } 925 926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 927 struct buffer_page *head, 928 struct buffer_page *prev, 929 int old_flag) 930 { 931 return rb_head_page_set(cpu_buffer, head, prev, 932 old_flag, RB_PAGE_HEAD); 933 } 934 935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 936 struct buffer_page *head, 937 struct buffer_page *prev, 938 int old_flag) 939 { 940 return rb_head_page_set(cpu_buffer, head, prev, 941 old_flag, RB_PAGE_NORMAL); 942 } 943 944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 945 struct buffer_page **bpage) 946 { 947 struct list_head *p = rb_list_head((*bpage)->list.next); 948 949 *bpage = list_entry(p, struct buffer_page, list); 950 } 951 952 static struct buffer_page * 953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 954 { 955 struct buffer_page *head; 956 struct buffer_page *page; 957 struct list_head *list; 958 int i; 959 960 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 961 return NULL; 962 963 /* sanity check */ 964 list = cpu_buffer->pages; 965 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 966 return NULL; 967 968 page = head = cpu_buffer->head_page; 969 /* 970 * It is possible that the writer moves the header behind 971 * where we started, and we miss in one loop. 972 * A second loop should grab the header, but we'll do 973 * three loops just because I'm paranoid. 974 */ 975 for (i = 0; i < 3; i++) { 976 do { 977 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 978 cpu_buffer->head_page = page; 979 return page; 980 } 981 rb_inc_page(cpu_buffer, &page); 982 } while (page != head); 983 } 984 985 RB_WARN_ON(cpu_buffer, 1); 986 987 return NULL; 988 } 989 990 static int rb_head_page_replace(struct buffer_page *old, 991 struct buffer_page *new) 992 { 993 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 994 unsigned long val; 995 unsigned long ret; 996 997 val = *ptr & ~RB_FLAG_MASK; 998 val |= RB_PAGE_HEAD; 999 1000 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1001 1002 return ret == val; 1003 } 1004 1005 /* 1006 * rb_tail_page_update - move the tail page forward 1007 */ 1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1009 struct buffer_page *tail_page, 1010 struct buffer_page *next_page) 1011 { 1012 unsigned long old_entries; 1013 unsigned long old_write; 1014 1015 /* 1016 * The tail page now needs to be moved forward. 1017 * 1018 * We need to reset the tail page, but without messing 1019 * with possible erasing of data brought in by interrupts 1020 * that have moved the tail page and are currently on it. 1021 * 1022 * We add a counter to the write field to denote this. 1023 */ 1024 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1025 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1026 1027 /* 1028 * Just make sure we have seen our old_write and synchronize 1029 * with any interrupts that come in. 1030 */ 1031 barrier(); 1032 1033 /* 1034 * If the tail page is still the same as what we think 1035 * it is, then it is up to us to update the tail 1036 * pointer. 1037 */ 1038 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1039 /* Zero the write counter */ 1040 unsigned long val = old_write & ~RB_WRITE_MASK; 1041 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1042 1043 /* 1044 * This will only succeed if an interrupt did 1045 * not come in and change it. In which case, we 1046 * do not want to modify it. 1047 * 1048 * We add (void) to let the compiler know that we do not care 1049 * about the return value of these functions. We use the 1050 * cmpxchg to only update if an interrupt did not already 1051 * do it for us. If the cmpxchg fails, we don't care. 1052 */ 1053 (void)local_cmpxchg(&next_page->write, old_write, val); 1054 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1055 1056 /* 1057 * No need to worry about races with clearing out the commit. 1058 * it only can increment when a commit takes place. But that 1059 * only happens in the outer most nested commit. 1060 */ 1061 local_set(&next_page->page->commit, 0); 1062 1063 /* Again, either we update tail_page or an interrupt does */ 1064 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1065 } 1066 } 1067 1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1069 struct buffer_page *bpage) 1070 { 1071 unsigned long val = (unsigned long)bpage; 1072 1073 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1074 return 1; 1075 1076 return 0; 1077 } 1078 1079 /** 1080 * rb_check_list - make sure a pointer to a list has the last bits zero 1081 */ 1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1083 struct list_head *list) 1084 { 1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1086 return 1; 1087 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1088 return 1; 1089 return 0; 1090 } 1091 1092 /** 1093 * rb_check_pages - integrity check of buffer pages 1094 * @cpu_buffer: CPU buffer with pages to test 1095 * 1096 * As a safety measure we check to make sure the data pages have not 1097 * been corrupted. 1098 */ 1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1100 { 1101 struct list_head *head = cpu_buffer->pages; 1102 struct buffer_page *bpage, *tmp; 1103 1104 /* Reset the head page if it exists */ 1105 if (cpu_buffer->head_page) 1106 rb_set_head_page(cpu_buffer); 1107 1108 rb_head_page_deactivate(cpu_buffer); 1109 1110 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1111 return -1; 1112 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1113 return -1; 1114 1115 if (rb_check_list(cpu_buffer, head)) 1116 return -1; 1117 1118 list_for_each_entry_safe(bpage, tmp, head, list) { 1119 if (RB_WARN_ON(cpu_buffer, 1120 bpage->list.next->prev != &bpage->list)) 1121 return -1; 1122 if (RB_WARN_ON(cpu_buffer, 1123 bpage->list.prev->next != &bpage->list)) 1124 return -1; 1125 if (rb_check_list(cpu_buffer, &bpage->list)) 1126 return -1; 1127 } 1128 1129 rb_head_page_activate(cpu_buffer); 1130 1131 return 0; 1132 } 1133 1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1135 { 1136 struct buffer_page *bpage, *tmp; 1137 long i; 1138 1139 for (i = 0; i < nr_pages; i++) { 1140 struct page *page; 1141 /* 1142 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1143 * gracefully without invoking oom-killer and the system is not 1144 * destabilized. 1145 */ 1146 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1147 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 1148 cpu_to_node(cpu)); 1149 if (!bpage) 1150 goto free_pages; 1151 1152 list_add(&bpage->list, pages); 1153 1154 page = alloc_pages_node(cpu_to_node(cpu), 1155 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0); 1156 if (!page) 1157 goto free_pages; 1158 bpage->page = page_address(page); 1159 rb_init_page(bpage->page); 1160 } 1161 1162 return 0; 1163 1164 free_pages: 1165 list_for_each_entry_safe(bpage, tmp, pages, list) { 1166 list_del_init(&bpage->list); 1167 free_buffer_page(bpage); 1168 } 1169 1170 return -ENOMEM; 1171 } 1172 1173 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1174 unsigned long nr_pages) 1175 { 1176 LIST_HEAD(pages); 1177 1178 WARN_ON(!nr_pages); 1179 1180 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1181 return -ENOMEM; 1182 1183 /* 1184 * The ring buffer page list is a circular list that does not 1185 * start and end with a list head. All page list items point to 1186 * other pages. 1187 */ 1188 cpu_buffer->pages = pages.next; 1189 list_del(&pages); 1190 1191 cpu_buffer->nr_pages = nr_pages; 1192 1193 rb_check_pages(cpu_buffer); 1194 1195 return 0; 1196 } 1197 1198 static struct ring_buffer_per_cpu * 1199 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1200 { 1201 struct ring_buffer_per_cpu *cpu_buffer; 1202 struct buffer_page *bpage; 1203 struct page *page; 1204 int ret; 1205 1206 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1207 GFP_KERNEL, cpu_to_node(cpu)); 1208 if (!cpu_buffer) 1209 return NULL; 1210 1211 cpu_buffer->cpu = cpu; 1212 cpu_buffer->buffer = buffer; 1213 raw_spin_lock_init(&cpu_buffer->reader_lock); 1214 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1215 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1216 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1217 init_completion(&cpu_buffer->update_done); 1218 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1219 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1220 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1221 1222 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1223 GFP_KERNEL, cpu_to_node(cpu)); 1224 if (!bpage) 1225 goto fail_free_buffer; 1226 1227 rb_check_bpage(cpu_buffer, bpage); 1228 1229 cpu_buffer->reader_page = bpage; 1230 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1231 if (!page) 1232 goto fail_free_reader; 1233 bpage->page = page_address(page); 1234 rb_init_page(bpage->page); 1235 1236 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1237 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1238 1239 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1240 if (ret < 0) 1241 goto fail_free_reader; 1242 1243 cpu_buffer->head_page 1244 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1245 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1246 1247 rb_head_page_activate(cpu_buffer); 1248 1249 return cpu_buffer; 1250 1251 fail_free_reader: 1252 free_buffer_page(cpu_buffer->reader_page); 1253 1254 fail_free_buffer: 1255 kfree(cpu_buffer); 1256 return NULL; 1257 } 1258 1259 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1260 { 1261 struct list_head *head = cpu_buffer->pages; 1262 struct buffer_page *bpage, *tmp; 1263 1264 free_buffer_page(cpu_buffer->reader_page); 1265 1266 rb_head_page_deactivate(cpu_buffer); 1267 1268 if (head) { 1269 list_for_each_entry_safe(bpage, tmp, head, list) { 1270 list_del_init(&bpage->list); 1271 free_buffer_page(bpage); 1272 } 1273 bpage = list_entry(head, struct buffer_page, list); 1274 free_buffer_page(bpage); 1275 } 1276 1277 kfree(cpu_buffer); 1278 } 1279 1280 /** 1281 * __ring_buffer_alloc - allocate a new ring_buffer 1282 * @size: the size in bytes per cpu that is needed. 1283 * @flags: attributes to set for the ring buffer. 1284 * 1285 * Currently the only flag that is available is the RB_FL_OVERWRITE 1286 * flag. This flag means that the buffer will overwrite old data 1287 * when the buffer wraps. If this flag is not set, the buffer will 1288 * drop data when the tail hits the head. 1289 */ 1290 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1291 struct lock_class_key *key) 1292 { 1293 struct ring_buffer *buffer; 1294 long nr_pages; 1295 int bsize; 1296 int cpu; 1297 int ret; 1298 1299 /* keep it in its own cache line */ 1300 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1301 GFP_KERNEL); 1302 if (!buffer) 1303 return NULL; 1304 1305 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1306 goto fail_free_buffer; 1307 1308 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1309 buffer->flags = flags; 1310 buffer->clock = trace_clock_local; 1311 buffer->reader_lock_key = key; 1312 1313 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1314 init_waitqueue_head(&buffer->irq_work.waiters); 1315 1316 /* need at least two pages */ 1317 if (nr_pages < 2) 1318 nr_pages = 2; 1319 1320 buffer->cpus = nr_cpu_ids; 1321 1322 bsize = sizeof(void *) * nr_cpu_ids; 1323 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1324 GFP_KERNEL); 1325 if (!buffer->buffers) 1326 goto fail_free_cpumask; 1327 1328 cpu = raw_smp_processor_id(); 1329 cpumask_set_cpu(cpu, buffer->cpumask); 1330 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1331 if (!buffer->buffers[cpu]) 1332 goto fail_free_buffers; 1333 1334 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1335 if (ret < 0) 1336 goto fail_free_buffers; 1337 1338 mutex_init(&buffer->mutex); 1339 1340 return buffer; 1341 1342 fail_free_buffers: 1343 for_each_buffer_cpu(buffer, cpu) { 1344 if (buffer->buffers[cpu]) 1345 rb_free_cpu_buffer(buffer->buffers[cpu]); 1346 } 1347 kfree(buffer->buffers); 1348 1349 fail_free_cpumask: 1350 free_cpumask_var(buffer->cpumask); 1351 1352 fail_free_buffer: 1353 kfree(buffer); 1354 return NULL; 1355 } 1356 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1357 1358 /** 1359 * ring_buffer_free - free a ring buffer. 1360 * @buffer: the buffer to free. 1361 */ 1362 void 1363 ring_buffer_free(struct ring_buffer *buffer) 1364 { 1365 int cpu; 1366 1367 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1368 1369 for_each_buffer_cpu(buffer, cpu) 1370 rb_free_cpu_buffer(buffer->buffers[cpu]); 1371 1372 kfree(buffer->buffers); 1373 free_cpumask_var(buffer->cpumask); 1374 1375 kfree(buffer); 1376 } 1377 EXPORT_SYMBOL_GPL(ring_buffer_free); 1378 1379 void ring_buffer_set_clock(struct ring_buffer *buffer, 1380 u64 (*clock)(void)) 1381 { 1382 buffer->clock = clock; 1383 } 1384 1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1386 1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1388 { 1389 return local_read(&bpage->entries) & RB_WRITE_MASK; 1390 } 1391 1392 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1393 { 1394 return local_read(&bpage->write) & RB_WRITE_MASK; 1395 } 1396 1397 static int 1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1399 { 1400 struct list_head *tail_page, *to_remove, *next_page; 1401 struct buffer_page *to_remove_page, *tmp_iter_page; 1402 struct buffer_page *last_page, *first_page; 1403 unsigned long nr_removed; 1404 unsigned long head_bit; 1405 int page_entries; 1406 1407 head_bit = 0; 1408 1409 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1410 atomic_inc(&cpu_buffer->record_disabled); 1411 /* 1412 * We don't race with the readers since we have acquired the reader 1413 * lock. We also don't race with writers after disabling recording. 1414 * This makes it easy to figure out the first and the last page to be 1415 * removed from the list. We unlink all the pages in between including 1416 * the first and last pages. This is done in a busy loop so that we 1417 * lose the least number of traces. 1418 * The pages are freed after we restart recording and unlock readers. 1419 */ 1420 tail_page = &cpu_buffer->tail_page->list; 1421 1422 /* 1423 * tail page might be on reader page, we remove the next page 1424 * from the ring buffer 1425 */ 1426 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1427 tail_page = rb_list_head(tail_page->next); 1428 to_remove = tail_page; 1429 1430 /* start of pages to remove */ 1431 first_page = list_entry(rb_list_head(to_remove->next), 1432 struct buffer_page, list); 1433 1434 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1435 to_remove = rb_list_head(to_remove)->next; 1436 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1437 } 1438 1439 next_page = rb_list_head(to_remove)->next; 1440 1441 /* 1442 * Now we remove all pages between tail_page and next_page. 1443 * Make sure that we have head_bit value preserved for the 1444 * next page 1445 */ 1446 tail_page->next = (struct list_head *)((unsigned long)next_page | 1447 head_bit); 1448 next_page = rb_list_head(next_page); 1449 next_page->prev = tail_page; 1450 1451 /* make sure pages points to a valid page in the ring buffer */ 1452 cpu_buffer->pages = next_page; 1453 1454 /* update head page */ 1455 if (head_bit) 1456 cpu_buffer->head_page = list_entry(next_page, 1457 struct buffer_page, list); 1458 1459 /* 1460 * change read pointer to make sure any read iterators reset 1461 * themselves 1462 */ 1463 cpu_buffer->read = 0; 1464 1465 /* pages are removed, resume tracing and then free the pages */ 1466 atomic_dec(&cpu_buffer->record_disabled); 1467 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1468 1469 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1470 1471 /* last buffer page to remove */ 1472 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1473 list); 1474 tmp_iter_page = first_page; 1475 1476 do { 1477 to_remove_page = tmp_iter_page; 1478 rb_inc_page(cpu_buffer, &tmp_iter_page); 1479 1480 /* update the counters */ 1481 page_entries = rb_page_entries(to_remove_page); 1482 if (page_entries) { 1483 /* 1484 * If something was added to this page, it was full 1485 * since it is not the tail page. So we deduct the 1486 * bytes consumed in ring buffer from here. 1487 * Increment overrun to account for the lost events. 1488 */ 1489 local_add(page_entries, &cpu_buffer->overrun); 1490 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1491 } 1492 1493 /* 1494 * We have already removed references to this list item, just 1495 * free up the buffer_page and its page 1496 */ 1497 free_buffer_page(to_remove_page); 1498 nr_removed--; 1499 1500 } while (to_remove_page != last_page); 1501 1502 RB_WARN_ON(cpu_buffer, nr_removed); 1503 1504 return nr_removed == 0; 1505 } 1506 1507 static int 1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1509 { 1510 struct list_head *pages = &cpu_buffer->new_pages; 1511 int retries, success; 1512 1513 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1514 /* 1515 * We are holding the reader lock, so the reader page won't be swapped 1516 * in the ring buffer. Now we are racing with the writer trying to 1517 * move head page and the tail page. 1518 * We are going to adapt the reader page update process where: 1519 * 1. We first splice the start and end of list of new pages between 1520 * the head page and its previous page. 1521 * 2. We cmpxchg the prev_page->next to point from head page to the 1522 * start of new pages list. 1523 * 3. Finally, we update the head->prev to the end of new list. 1524 * 1525 * We will try this process 10 times, to make sure that we don't keep 1526 * spinning. 1527 */ 1528 retries = 10; 1529 success = 0; 1530 while (retries--) { 1531 struct list_head *head_page, *prev_page, *r; 1532 struct list_head *last_page, *first_page; 1533 struct list_head *head_page_with_bit; 1534 1535 head_page = &rb_set_head_page(cpu_buffer)->list; 1536 if (!head_page) 1537 break; 1538 prev_page = head_page->prev; 1539 1540 first_page = pages->next; 1541 last_page = pages->prev; 1542 1543 head_page_with_bit = (struct list_head *) 1544 ((unsigned long)head_page | RB_PAGE_HEAD); 1545 1546 last_page->next = head_page_with_bit; 1547 first_page->prev = prev_page; 1548 1549 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1550 1551 if (r == head_page_with_bit) { 1552 /* 1553 * yay, we replaced the page pointer to our new list, 1554 * now, we just have to update to head page's prev 1555 * pointer to point to end of list 1556 */ 1557 head_page->prev = last_page; 1558 success = 1; 1559 break; 1560 } 1561 } 1562 1563 if (success) 1564 INIT_LIST_HEAD(pages); 1565 /* 1566 * If we weren't successful in adding in new pages, warn and stop 1567 * tracing 1568 */ 1569 RB_WARN_ON(cpu_buffer, !success); 1570 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1571 1572 /* free pages if they weren't inserted */ 1573 if (!success) { 1574 struct buffer_page *bpage, *tmp; 1575 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1576 list) { 1577 list_del_init(&bpage->list); 1578 free_buffer_page(bpage); 1579 } 1580 } 1581 return success; 1582 } 1583 1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1585 { 1586 int success; 1587 1588 if (cpu_buffer->nr_pages_to_update > 0) 1589 success = rb_insert_pages(cpu_buffer); 1590 else 1591 success = rb_remove_pages(cpu_buffer, 1592 -cpu_buffer->nr_pages_to_update); 1593 1594 if (success) 1595 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1596 } 1597 1598 static void update_pages_handler(struct work_struct *work) 1599 { 1600 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1601 struct ring_buffer_per_cpu, update_pages_work); 1602 rb_update_pages(cpu_buffer); 1603 complete(&cpu_buffer->update_done); 1604 } 1605 1606 /** 1607 * ring_buffer_resize - resize the ring buffer 1608 * @buffer: the buffer to resize. 1609 * @size: the new size. 1610 * @cpu_id: the cpu buffer to resize 1611 * 1612 * Minimum size is 2 * BUF_PAGE_SIZE. 1613 * 1614 * Returns 0 on success and < 0 on failure. 1615 */ 1616 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1617 int cpu_id) 1618 { 1619 struct ring_buffer_per_cpu *cpu_buffer; 1620 unsigned long nr_pages; 1621 int cpu, err = 0; 1622 1623 /* 1624 * Always succeed at resizing a non-existent buffer: 1625 */ 1626 if (!buffer) 1627 return size; 1628 1629 /* Make sure the requested buffer exists */ 1630 if (cpu_id != RING_BUFFER_ALL_CPUS && 1631 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1632 return size; 1633 1634 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1635 1636 /* we need a minimum of two pages */ 1637 if (nr_pages < 2) 1638 nr_pages = 2; 1639 1640 size = nr_pages * BUF_PAGE_SIZE; 1641 1642 /* 1643 * Don't succeed if resizing is disabled, as a reader might be 1644 * manipulating the ring buffer and is expecting a sane state while 1645 * this is true. 1646 */ 1647 if (atomic_read(&buffer->resize_disabled)) 1648 return -EBUSY; 1649 1650 /* prevent another thread from changing buffer sizes */ 1651 mutex_lock(&buffer->mutex); 1652 1653 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1654 /* calculate the pages to update */ 1655 for_each_buffer_cpu(buffer, cpu) { 1656 cpu_buffer = buffer->buffers[cpu]; 1657 1658 cpu_buffer->nr_pages_to_update = nr_pages - 1659 cpu_buffer->nr_pages; 1660 /* 1661 * nothing more to do for removing pages or no update 1662 */ 1663 if (cpu_buffer->nr_pages_to_update <= 0) 1664 continue; 1665 /* 1666 * to add pages, make sure all new pages can be 1667 * allocated without receiving ENOMEM 1668 */ 1669 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1670 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1671 &cpu_buffer->new_pages, cpu)) { 1672 /* not enough memory for new pages */ 1673 err = -ENOMEM; 1674 goto out_err; 1675 } 1676 } 1677 1678 get_online_cpus(); 1679 /* 1680 * Fire off all the required work handlers 1681 * We can't schedule on offline CPUs, but it's not necessary 1682 * since we can change their buffer sizes without any race. 1683 */ 1684 for_each_buffer_cpu(buffer, cpu) { 1685 cpu_buffer = buffer->buffers[cpu]; 1686 if (!cpu_buffer->nr_pages_to_update) 1687 continue; 1688 1689 /* Can't run something on an offline CPU. */ 1690 if (!cpu_online(cpu)) { 1691 rb_update_pages(cpu_buffer); 1692 cpu_buffer->nr_pages_to_update = 0; 1693 } else { 1694 schedule_work_on(cpu, 1695 &cpu_buffer->update_pages_work); 1696 } 1697 } 1698 1699 /* wait for all the updates to complete */ 1700 for_each_buffer_cpu(buffer, cpu) { 1701 cpu_buffer = buffer->buffers[cpu]; 1702 if (!cpu_buffer->nr_pages_to_update) 1703 continue; 1704 1705 if (cpu_online(cpu)) 1706 wait_for_completion(&cpu_buffer->update_done); 1707 cpu_buffer->nr_pages_to_update = 0; 1708 } 1709 1710 put_online_cpus(); 1711 } else { 1712 /* Make sure this CPU has been intitialized */ 1713 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1714 goto out; 1715 1716 cpu_buffer = buffer->buffers[cpu_id]; 1717 1718 if (nr_pages == cpu_buffer->nr_pages) 1719 goto out; 1720 1721 cpu_buffer->nr_pages_to_update = nr_pages - 1722 cpu_buffer->nr_pages; 1723 1724 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1725 if (cpu_buffer->nr_pages_to_update > 0 && 1726 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1727 &cpu_buffer->new_pages, cpu_id)) { 1728 err = -ENOMEM; 1729 goto out_err; 1730 } 1731 1732 get_online_cpus(); 1733 1734 /* Can't run something on an offline CPU. */ 1735 if (!cpu_online(cpu_id)) 1736 rb_update_pages(cpu_buffer); 1737 else { 1738 schedule_work_on(cpu_id, 1739 &cpu_buffer->update_pages_work); 1740 wait_for_completion(&cpu_buffer->update_done); 1741 } 1742 1743 cpu_buffer->nr_pages_to_update = 0; 1744 put_online_cpus(); 1745 } 1746 1747 out: 1748 /* 1749 * The ring buffer resize can happen with the ring buffer 1750 * enabled, so that the update disturbs the tracing as little 1751 * as possible. But if the buffer is disabled, we do not need 1752 * to worry about that, and we can take the time to verify 1753 * that the buffer is not corrupt. 1754 */ 1755 if (atomic_read(&buffer->record_disabled)) { 1756 atomic_inc(&buffer->record_disabled); 1757 /* 1758 * Even though the buffer was disabled, we must make sure 1759 * that it is truly disabled before calling rb_check_pages. 1760 * There could have been a race between checking 1761 * record_disable and incrementing it. 1762 */ 1763 synchronize_sched(); 1764 for_each_buffer_cpu(buffer, cpu) { 1765 cpu_buffer = buffer->buffers[cpu]; 1766 rb_check_pages(cpu_buffer); 1767 } 1768 atomic_dec(&buffer->record_disabled); 1769 } 1770 1771 mutex_unlock(&buffer->mutex); 1772 return size; 1773 1774 out_err: 1775 for_each_buffer_cpu(buffer, cpu) { 1776 struct buffer_page *bpage, *tmp; 1777 1778 cpu_buffer = buffer->buffers[cpu]; 1779 cpu_buffer->nr_pages_to_update = 0; 1780 1781 if (list_empty(&cpu_buffer->new_pages)) 1782 continue; 1783 1784 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1785 list) { 1786 list_del_init(&bpage->list); 1787 free_buffer_page(bpage); 1788 } 1789 } 1790 mutex_unlock(&buffer->mutex); 1791 return err; 1792 } 1793 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1794 1795 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1796 { 1797 mutex_lock(&buffer->mutex); 1798 if (val) 1799 buffer->flags |= RB_FL_OVERWRITE; 1800 else 1801 buffer->flags &= ~RB_FL_OVERWRITE; 1802 mutex_unlock(&buffer->mutex); 1803 } 1804 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1805 1806 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1807 { 1808 return bpage->page->data + index; 1809 } 1810 1811 static __always_inline struct ring_buffer_event * 1812 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1813 { 1814 return __rb_page_index(cpu_buffer->reader_page, 1815 cpu_buffer->reader_page->read); 1816 } 1817 1818 static __always_inline struct ring_buffer_event * 1819 rb_iter_head_event(struct ring_buffer_iter *iter) 1820 { 1821 return __rb_page_index(iter->head_page, iter->head); 1822 } 1823 1824 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1825 { 1826 return local_read(&bpage->page->commit); 1827 } 1828 1829 /* Size is determined by what has been committed */ 1830 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1831 { 1832 return rb_page_commit(bpage); 1833 } 1834 1835 static __always_inline unsigned 1836 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1837 { 1838 return rb_page_commit(cpu_buffer->commit_page); 1839 } 1840 1841 static __always_inline unsigned 1842 rb_event_index(struct ring_buffer_event *event) 1843 { 1844 unsigned long addr = (unsigned long)event; 1845 1846 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1847 } 1848 1849 static void rb_inc_iter(struct ring_buffer_iter *iter) 1850 { 1851 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1852 1853 /* 1854 * The iterator could be on the reader page (it starts there). 1855 * But the head could have moved, since the reader was 1856 * found. Check for this case and assign the iterator 1857 * to the head page instead of next. 1858 */ 1859 if (iter->head_page == cpu_buffer->reader_page) 1860 iter->head_page = rb_set_head_page(cpu_buffer); 1861 else 1862 rb_inc_page(cpu_buffer, &iter->head_page); 1863 1864 iter->read_stamp = iter->head_page->page->time_stamp; 1865 iter->head = 0; 1866 } 1867 1868 /* 1869 * rb_handle_head_page - writer hit the head page 1870 * 1871 * Returns: +1 to retry page 1872 * 0 to continue 1873 * -1 on error 1874 */ 1875 static int 1876 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1877 struct buffer_page *tail_page, 1878 struct buffer_page *next_page) 1879 { 1880 struct buffer_page *new_head; 1881 int entries; 1882 int type; 1883 int ret; 1884 1885 entries = rb_page_entries(next_page); 1886 1887 /* 1888 * The hard part is here. We need to move the head 1889 * forward, and protect against both readers on 1890 * other CPUs and writers coming in via interrupts. 1891 */ 1892 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1893 RB_PAGE_HEAD); 1894 1895 /* 1896 * type can be one of four: 1897 * NORMAL - an interrupt already moved it for us 1898 * HEAD - we are the first to get here. 1899 * UPDATE - we are the interrupt interrupting 1900 * a current move. 1901 * MOVED - a reader on another CPU moved the next 1902 * pointer to its reader page. Give up 1903 * and try again. 1904 */ 1905 1906 switch (type) { 1907 case RB_PAGE_HEAD: 1908 /* 1909 * We changed the head to UPDATE, thus 1910 * it is our responsibility to update 1911 * the counters. 1912 */ 1913 local_add(entries, &cpu_buffer->overrun); 1914 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1915 1916 /* 1917 * The entries will be zeroed out when we move the 1918 * tail page. 1919 */ 1920 1921 /* still more to do */ 1922 break; 1923 1924 case RB_PAGE_UPDATE: 1925 /* 1926 * This is an interrupt that interrupt the 1927 * previous update. Still more to do. 1928 */ 1929 break; 1930 case RB_PAGE_NORMAL: 1931 /* 1932 * An interrupt came in before the update 1933 * and processed this for us. 1934 * Nothing left to do. 1935 */ 1936 return 1; 1937 case RB_PAGE_MOVED: 1938 /* 1939 * The reader is on another CPU and just did 1940 * a swap with our next_page. 1941 * Try again. 1942 */ 1943 return 1; 1944 default: 1945 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1946 return -1; 1947 } 1948 1949 /* 1950 * Now that we are here, the old head pointer is 1951 * set to UPDATE. This will keep the reader from 1952 * swapping the head page with the reader page. 1953 * The reader (on another CPU) will spin till 1954 * we are finished. 1955 * 1956 * We just need to protect against interrupts 1957 * doing the job. We will set the next pointer 1958 * to HEAD. After that, we set the old pointer 1959 * to NORMAL, but only if it was HEAD before. 1960 * otherwise we are an interrupt, and only 1961 * want the outer most commit to reset it. 1962 */ 1963 new_head = next_page; 1964 rb_inc_page(cpu_buffer, &new_head); 1965 1966 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1967 RB_PAGE_NORMAL); 1968 1969 /* 1970 * Valid returns are: 1971 * HEAD - an interrupt came in and already set it. 1972 * NORMAL - One of two things: 1973 * 1) We really set it. 1974 * 2) A bunch of interrupts came in and moved 1975 * the page forward again. 1976 */ 1977 switch (ret) { 1978 case RB_PAGE_HEAD: 1979 case RB_PAGE_NORMAL: 1980 /* OK */ 1981 break; 1982 default: 1983 RB_WARN_ON(cpu_buffer, 1); 1984 return -1; 1985 } 1986 1987 /* 1988 * It is possible that an interrupt came in, 1989 * set the head up, then more interrupts came in 1990 * and moved it again. When we get back here, 1991 * the page would have been set to NORMAL but we 1992 * just set it back to HEAD. 1993 * 1994 * How do you detect this? Well, if that happened 1995 * the tail page would have moved. 1996 */ 1997 if (ret == RB_PAGE_NORMAL) { 1998 struct buffer_page *buffer_tail_page; 1999 2000 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2001 /* 2002 * If the tail had moved passed next, then we need 2003 * to reset the pointer. 2004 */ 2005 if (buffer_tail_page != tail_page && 2006 buffer_tail_page != next_page) 2007 rb_head_page_set_normal(cpu_buffer, new_head, 2008 next_page, 2009 RB_PAGE_HEAD); 2010 } 2011 2012 /* 2013 * If this was the outer most commit (the one that 2014 * changed the original pointer from HEAD to UPDATE), 2015 * then it is up to us to reset it to NORMAL. 2016 */ 2017 if (type == RB_PAGE_HEAD) { 2018 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2019 tail_page, 2020 RB_PAGE_UPDATE); 2021 if (RB_WARN_ON(cpu_buffer, 2022 ret != RB_PAGE_UPDATE)) 2023 return -1; 2024 } 2025 2026 return 0; 2027 } 2028 2029 static inline void 2030 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2031 unsigned long tail, struct rb_event_info *info) 2032 { 2033 struct buffer_page *tail_page = info->tail_page; 2034 struct ring_buffer_event *event; 2035 unsigned long length = info->length; 2036 2037 /* 2038 * Only the event that crossed the page boundary 2039 * must fill the old tail_page with padding. 2040 */ 2041 if (tail >= BUF_PAGE_SIZE) { 2042 /* 2043 * If the page was filled, then we still need 2044 * to update the real_end. Reset it to zero 2045 * and the reader will ignore it. 2046 */ 2047 if (tail == BUF_PAGE_SIZE) 2048 tail_page->real_end = 0; 2049 2050 local_sub(length, &tail_page->write); 2051 return; 2052 } 2053 2054 event = __rb_page_index(tail_page, tail); 2055 2056 /* account for padding bytes */ 2057 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2058 2059 /* 2060 * Save the original length to the meta data. 2061 * This will be used by the reader to add lost event 2062 * counter. 2063 */ 2064 tail_page->real_end = tail; 2065 2066 /* 2067 * If this event is bigger than the minimum size, then 2068 * we need to be careful that we don't subtract the 2069 * write counter enough to allow another writer to slip 2070 * in on this page. 2071 * We put in a discarded commit instead, to make sure 2072 * that this space is not used again. 2073 * 2074 * If we are less than the minimum size, we don't need to 2075 * worry about it. 2076 */ 2077 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2078 /* No room for any events */ 2079 2080 /* Mark the rest of the page with padding */ 2081 rb_event_set_padding(event); 2082 2083 /* Set the write back to the previous setting */ 2084 local_sub(length, &tail_page->write); 2085 return; 2086 } 2087 2088 /* Put in a discarded event */ 2089 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2090 event->type_len = RINGBUF_TYPE_PADDING; 2091 /* time delta must be non zero */ 2092 event->time_delta = 1; 2093 2094 /* Set write to end of buffer */ 2095 length = (tail + length) - BUF_PAGE_SIZE; 2096 local_sub(length, &tail_page->write); 2097 } 2098 2099 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2100 2101 /* 2102 * This is the slow path, force gcc not to inline it. 2103 */ 2104 static noinline struct ring_buffer_event * 2105 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2106 unsigned long tail, struct rb_event_info *info) 2107 { 2108 struct buffer_page *tail_page = info->tail_page; 2109 struct buffer_page *commit_page = cpu_buffer->commit_page; 2110 struct ring_buffer *buffer = cpu_buffer->buffer; 2111 struct buffer_page *next_page; 2112 int ret; 2113 2114 next_page = tail_page; 2115 2116 rb_inc_page(cpu_buffer, &next_page); 2117 2118 /* 2119 * If for some reason, we had an interrupt storm that made 2120 * it all the way around the buffer, bail, and warn 2121 * about it. 2122 */ 2123 if (unlikely(next_page == commit_page)) { 2124 local_inc(&cpu_buffer->commit_overrun); 2125 goto out_reset; 2126 } 2127 2128 /* 2129 * This is where the fun begins! 2130 * 2131 * We are fighting against races between a reader that 2132 * could be on another CPU trying to swap its reader 2133 * page with the buffer head. 2134 * 2135 * We are also fighting against interrupts coming in and 2136 * moving the head or tail on us as well. 2137 * 2138 * If the next page is the head page then we have filled 2139 * the buffer, unless the commit page is still on the 2140 * reader page. 2141 */ 2142 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2143 2144 /* 2145 * If the commit is not on the reader page, then 2146 * move the header page. 2147 */ 2148 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2149 /* 2150 * If we are not in overwrite mode, 2151 * this is easy, just stop here. 2152 */ 2153 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2154 local_inc(&cpu_buffer->dropped_events); 2155 goto out_reset; 2156 } 2157 2158 ret = rb_handle_head_page(cpu_buffer, 2159 tail_page, 2160 next_page); 2161 if (ret < 0) 2162 goto out_reset; 2163 if (ret) 2164 goto out_again; 2165 } else { 2166 /* 2167 * We need to be careful here too. The 2168 * commit page could still be on the reader 2169 * page. We could have a small buffer, and 2170 * have filled up the buffer with events 2171 * from interrupts and such, and wrapped. 2172 * 2173 * Note, if the tail page is also the on the 2174 * reader_page, we let it move out. 2175 */ 2176 if (unlikely((cpu_buffer->commit_page != 2177 cpu_buffer->tail_page) && 2178 (cpu_buffer->commit_page == 2179 cpu_buffer->reader_page))) { 2180 local_inc(&cpu_buffer->commit_overrun); 2181 goto out_reset; 2182 } 2183 } 2184 } 2185 2186 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2187 2188 out_again: 2189 2190 rb_reset_tail(cpu_buffer, tail, info); 2191 2192 /* Commit what we have for now. */ 2193 rb_end_commit(cpu_buffer); 2194 /* rb_end_commit() decs committing */ 2195 local_inc(&cpu_buffer->committing); 2196 2197 /* fail and let the caller try again */ 2198 return ERR_PTR(-EAGAIN); 2199 2200 out_reset: 2201 /* reset write */ 2202 rb_reset_tail(cpu_buffer, tail, info); 2203 2204 return NULL; 2205 } 2206 2207 /* Slow path, do not inline */ 2208 static noinline struct ring_buffer_event * 2209 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2210 { 2211 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2212 2213 /* Not the first event on the page? */ 2214 if (rb_event_index(event)) { 2215 event->time_delta = delta & TS_MASK; 2216 event->array[0] = delta >> TS_SHIFT; 2217 } else { 2218 /* nope, just zero it */ 2219 event->time_delta = 0; 2220 event->array[0] = 0; 2221 } 2222 2223 return skip_time_extend(event); 2224 } 2225 2226 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2227 struct ring_buffer_event *event); 2228 2229 /** 2230 * rb_update_event - update event type and data 2231 * @event: the event to update 2232 * @type: the type of event 2233 * @length: the size of the event field in the ring buffer 2234 * 2235 * Update the type and data fields of the event. The length 2236 * is the actual size that is written to the ring buffer, 2237 * and with this, we can determine what to place into the 2238 * data field. 2239 */ 2240 static void 2241 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2242 struct ring_buffer_event *event, 2243 struct rb_event_info *info) 2244 { 2245 unsigned length = info->length; 2246 u64 delta = info->delta; 2247 2248 /* Only a commit updates the timestamp */ 2249 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2250 delta = 0; 2251 2252 /* 2253 * If we need to add a timestamp, then we 2254 * add it to the start of the resevered space. 2255 */ 2256 if (unlikely(info->add_timestamp)) { 2257 event = rb_add_time_stamp(event, delta); 2258 length -= RB_LEN_TIME_EXTEND; 2259 delta = 0; 2260 } 2261 2262 event->time_delta = delta; 2263 length -= RB_EVNT_HDR_SIZE; 2264 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2265 event->type_len = 0; 2266 event->array[0] = length; 2267 } else 2268 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2269 } 2270 2271 static unsigned rb_calculate_event_length(unsigned length) 2272 { 2273 struct ring_buffer_event event; /* Used only for sizeof array */ 2274 2275 /* zero length can cause confusions */ 2276 if (!length) 2277 length++; 2278 2279 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2280 length += sizeof(event.array[0]); 2281 2282 length += RB_EVNT_HDR_SIZE; 2283 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2284 2285 /* 2286 * In case the time delta is larger than the 27 bits for it 2287 * in the header, we need to add a timestamp. If another 2288 * event comes in when trying to discard this one to increase 2289 * the length, then the timestamp will be added in the allocated 2290 * space of this event. If length is bigger than the size needed 2291 * for the TIME_EXTEND, then padding has to be used. The events 2292 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2293 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2294 * As length is a multiple of 4, we only need to worry if it 2295 * is 12 (RB_LEN_TIME_EXTEND + 4). 2296 */ 2297 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2298 length += RB_ALIGNMENT; 2299 2300 return length; 2301 } 2302 2303 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2304 static inline bool sched_clock_stable(void) 2305 { 2306 return true; 2307 } 2308 #endif 2309 2310 static inline int 2311 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2312 struct ring_buffer_event *event) 2313 { 2314 unsigned long new_index, old_index; 2315 struct buffer_page *bpage; 2316 unsigned long index; 2317 unsigned long addr; 2318 2319 new_index = rb_event_index(event); 2320 old_index = new_index + rb_event_ts_length(event); 2321 addr = (unsigned long)event; 2322 addr &= PAGE_MASK; 2323 2324 bpage = READ_ONCE(cpu_buffer->tail_page); 2325 2326 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2327 unsigned long write_mask = 2328 local_read(&bpage->write) & ~RB_WRITE_MASK; 2329 unsigned long event_length = rb_event_length(event); 2330 /* 2331 * This is on the tail page. It is possible that 2332 * a write could come in and move the tail page 2333 * and write to the next page. That is fine 2334 * because we just shorten what is on this page. 2335 */ 2336 old_index += write_mask; 2337 new_index += write_mask; 2338 index = local_cmpxchg(&bpage->write, old_index, new_index); 2339 if (index == old_index) { 2340 /* update counters */ 2341 local_sub(event_length, &cpu_buffer->entries_bytes); 2342 return 1; 2343 } 2344 } 2345 2346 /* could not discard */ 2347 return 0; 2348 } 2349 2350 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2351 { 2352 local_inc(&cpu_buffer->committing); 2353 local_inc(&cpu_buffer->commits); 2354 } 2355 2356 static __always_inline void 2357 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2358 { 2359 unsigned long max_count; 2360 2361 /* 2362 * We only race with interrupts and NMIs on this CPU. 2363 * If we own the commit event, then we can commit 2364 * all others that interrupted us, since the interruptions 2365 * are in stack format (they finish before they come 2366 * back to us). This allows us to do a simple loop to 2367 * assign the commit to the tail. 2368 */ 2369 again: 2370 max_count = cpu_buffer->nr_pages * 100; 2371 2372 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2373 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2374 return; 2375 if (RB_WARN_ON(cpu_buffer, 2376 rb_is_reader_page(cpu_buffer->tail_page))) 2377 return; 2378 local_set(&cpu_buffer->commit_page->page->commit, 2379 rb_page_write(cpu_buffer->commit_page)); 2380 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2381 /* Only update the write stamp if the page has an event */ 2382 if (rb_page_write(cpu_buffer->commit_page)) 2383 cpu_buffer->write_stamp = 2384 cpu_buffer->commit_page->page->time_stamp; 2385 /* add barrier to keep gcc from optimizing too much */ 2386 barrier(); 2387 } 2388 while (rb_commit_index(cpu_buffer) != 2389 rb_page_write(cpu_buffer->commit_page)) { 2390 2391 local_set(&cpu_buffer->commit_page->page->commit, 2392 rb_page_write(cpu_buffer->commit_page)); 2393 RB_WARN_ON(cpu_buffer, 2394 local_read(&cpu_buffer->commit_page->page->commit) & 2395 ~RB_WRITE_MASK); 2396 barrier(); 2397 } 2398 2399 /* again, keep gcc from optimizing */ 2400 barrier(); 2401 2402 /* 2403 * If an interrupt came in just after the first while loop 2404 * and pushed the tail page forward, we will be left with 2405 * a dangling commit that will never go forward. 2406 */ 2407 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2408 goto again; 2409 } 2410 2411 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2412 { 2413 unsigned long commits; 2414 2415 if (RB_WARN_ON(cpu_buffer, 2416 !local_read(&cpu_buffer->committing))) 2417 return; 2418 2419 again: 2420 commits = local_read(&cpu_buffer->commits); 2421 /* synchronize with interrupts */ 2422 barrier(); 2423 if (local_read(&cpu_buffer->committing) == 1) 2424 rb_set_commit_to_write(cpu_buffer); 2425 2426 local_dec(&cpu_buffer->committing); 2427 2428 /* synchronize with interrupts */ 2429 barrier(); 2430 2431 /* 2432 * Need to account for interrupts coming in between the 2433 * updating of the commit page and the clearing of the 2434 * committing counter. 2435 */ 2436 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2437 !local_read(&cpu_buffer->committing)) { 2438 local_inc(&cpu_buffer->committing); 2439 goto again; 2440 } 2441 } 2442 2443 static inline void rb_event_discard(struct ring_buffer_event *event) 2444 { 2445 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2446 event = skip_time_extend(event); 2447 2448 /* array[0] holds the actual length for the discarded event */ 2449 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2450 event->type_len = RINGBUF_TYPE_PADDING; 2451 /* time delta must be non zero */ 2452 if (!event->time_delta) 2453 event->time_delta = 1; 2454 } 2455 2456 static __always_inline bool 2457 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2458 struct ring_buffer_event *event) 2459 { 2460 unsigned long addr = (unsigned long)event; 2461 unsigned long index; 2462 2463 index = rb_event_index(event); 2464 addr &= PAGE_MASK; 2465 2466 return cpu_buffer->commit_page->page == (void *)addr && 2467 rb_commit_index(cpu_buffer) == index; 2468 } 2469 2470 static __always_inline void 2471 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2472 struct ring_buffer_event *event) 2473 { 2474 u64 delta; 2475 2476 /* 2477 * The event first in the commit queue updates the 2478 * time stamp. 2479 */ 2480 if (rb_event_is_commit(cpu_buffer, event)) { 2481 /* 2482 * A commit event that is first on a page 2483 * updates the write timestamp with the page stamp 2484 */ 2485 if (!rb_event_index(event)) 2486 cpu_buffer->write_stamp = 2487 cpu_buffer->commit_page->page->time_stamp; 2488 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2489 delta = event->array[0]; 2490 delta <<= TS_SHIFT; 2491 delta += event->time_delta; 2492 cpu_buffer->write_stamp += delta; 2493 } else 2494 cpu_buffer->write_stamp += event->time_delta; 2495 } 2496 } 2497 2498 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2499 struct ring_buffer_event *event) 2500 { 2501 local_inc(&cpu_buffer->entries); 2502 rb_update_write_stamp(cpu_buffer, event); 2503 rb_end_commit(cpu_buffer); 2504 } 2505 2506 static __always_inline void 2507 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2508 { 2509 bool pagebusy; 2510 2511 if (buffer->irq_work.waiters_pending) { 2512 buffer->irq_work.waiters_pending = false; 2513 /* irq_work_queue() supplies it's own memory barriers */ 2514 irq_work_queue(&buffer->irq_work.work); 2515 } 2516 2517 if (cpu_buffer->irq_work.waiters_pending) { 2518 cpu_buffer->irq_work.waiters_pending = false; 2519 /* irq_work_queue() supplies it's own memory barriers */ 2520 irq_work_queue(&cpu_buffer->irq_work.work); 2521 } 2522 2523 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2524 2525 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2526 cpu_buffer->irq_work.wakeup_full = true; 2527 cpu_buffer->irq_work.full_waiters_pending = false; 2528 /* irq_work_queue() supplies it's own memory barriers */ 2529 irq_work_queue(&cpu_buffer->irq_work.work); 2530 } 2531 } 2532 2533 /* 2534 * The lock and unlock are done within a preempt disable section. 2535 * The current_context per_cpu variable can only be modified 2536 * by the current task between lock and unlock. But it can 2537 * be modified more than once via an interrupt. There are four 2538 * different contexts that we need to consider. 2539 * 2540 * Normal context. 2541 * SoftIRQ context 2542 * IRQ context 2543 * NMI context 2544 * 2545 * If for some reason the ring buffer starts to recurse, we 2546 * only allow that to happen at most 4 times (one for each 2547 * context). If it happens 5 times, then we consider this a 2548 * recusive loop and do not let it go further. 2549 */ 2550 2551 static __always_inline int 2552 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2553 { 2554 if (cpu_buffer->current_context >= 4) 2555 return 1; 2556 2557 cpu_buffer->current_context++; 2558 /* Interrupts must see this update */ 2559 barrier(); 2560 2561 return 0; 2562 } 2563 2564 static __always_inline void 2565 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2566 { 2567 /* Don't let the dec leak out */ 2568 barrier(); 2569 cpu_buffer->current_context--; 2570 } 2571 2572 /** 2573 * ring_buffer_unlock_commit - commit a reserved 2574 * @buffer: The buffer to commit to 2575 * @event: The event pointer to commit. 2576 * 2577 * This commits the data to the ring buffer, and releases any locks held. 2578 * 2579 * Must be paired with ring_buffer_lock_reserve. 2580 */ 2581 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2582 struct ring_buffer_event *event) 2583 { 2584 struct ring_buffer_per_cpu *cpu_buffer; 2585 int cpu = raw_smp_processor_id(); 2586 2587 cpu_buffer = buffer->buffers[cpu]; 2588 2589 rb_commit(cpu_buffer, event); 2590 2591 rb_wakeups(buffer, cpu_buffer); 2592 2593 trace_recursive_unlock(cpu_buffer); 2594 2595 preempt_enable_notrace(); 2596 2597 return 0; 2598 } 2599 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2600 2601 static noinline void 2602 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2603 struct rb_event_info *info) 2604 { 2605 WARN_ONCE(info->delta > (1ULL << 59), 2606 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2607 (unsigned long long)info->delta, 2608 (unsigned long long)info->ts, 2609 (unsigned long long)cpu_buffer->write_stamp, 2610 sched_clock_stable() ? "" : 2611 "If you just came from a suspend/resume,\n" 2612 "please switch to the trace global clock:\n" 2613 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2614 info->add_timestamp = 1; 2615 } 2616 2617 static struct ring_buffer_event * 2618 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2619 struct rb_event_info *info) 2620 { 2621 struct ring_buffer_event *event; 2622 struct buffer_page *tail_page; 2623 unsigned long tail, write; 2624 2625 /* 2626 * If the time delta since the last event is too big to 2627 * hold in the time field of the event, then we append a 2628 * TIME EXTEND event ahead of the data event. 2629 */ 2630 if (unlikely(info->add_timestamp)) 2631 info->length += RB_LEN_TIME_EXTEND; 2632 2633 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2634 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2635 write = local_add_return(info->length, &tail_page->write); 2636 2637 /* set write to only the index of the write */ 2638 write &= RB_WRITE_MASK; 2639 tail = write - info->length; 2640 2641 /* 2642 * If this is the first commit on the page, then it has the same 2643 * timestamp as the page itself. 2644 */ 2645 if (!tail) 2646 info->delta = 0; 2647 2648 /* See if we shot pass the end of this buffer page */ 2649 if (unlikely(write > BUF_PAGE_SIZE)) 2650 return rb_move_tail(cpu_buffer, tail, info); 2651 2652 /* We reserved something on the buffer */ 2653 2654 event = __rb_page_index(tail_page, tail); 2655 rb_update_event(cpu_buffer, event, info); 2656 2657 local_inc(&tail_page->entries); 2658 2659 /* 2660 * If this is the first commit on the page, then update 2661 * its timestamp. 2662 */ 2663 if (!tail) 2664 tail_page->page->time_stamp = info->ts; 2665 2666 /* account for these added bytes */ 2667 local_add(info->length, &cpu_buffer->entries_bytes); 2668 2669 return event; 2670 } 2671 2672 static __always_inline struct ring_buffer_event * 2673 rb_reserve_next_event(struct ring_buffer *buffer, 2674 struct ring_buffer_per_cpu *cpu_buffer, 2675 unsigned long length) 2676 { 2677 struct ring_buffer_event *event; 2678 struct rb_event_info info; 2679 int nr_loops = 0; 2680 u64 diff; 2681 2682 rb_start_commit(cpu_buffer); 2683 2684 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2685 /* 2686 * Due to the ability to swap a cpu buffer from a buffer 2687 * it is possible it was swapped before we committed. 2688 * (committing stops a swap). We check for it here and 2689 * if it happened, we have to fail the write. 2690 */ 2691 barrier(); 2692 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2693 local_dec(&cpu_buffer->committing); 2694 local_dec(&cpu_buffer->commits); 2695 return NULL; 2696 } 2697 #endif 2698 2699 info.length = rb_calculate_event_length(length); 2700 again: 2701 info.add_timestamp = 0; 2702 info.delta = 0; 2703 2704 /* 2705 * We allow for interrupts to reenter here and do a trace. 2706 * If one does, it will cause this original code to loop 2707 * back here. Even with heavy interrupts happening, this 2708 * should only happen a few times in a row. If this happens 2709 * 1000 times in a row, there must be either an interrupt 2710 * storm or we have something buggy. 2711 * Bail! 2712 */ 2713 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2714 goto out_fail; 2715 2716 info.ts = rb_time_stamp(cpu_buffer->buffer); 2717 diff = info.ts - cpu_buffer->write_stamp; 2718 2719 /* make sure this diff is calculated here */ 2720 barrier(); 2721 2722 /* Did the write stamp get updated already? */ 2723 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2724 info.delta = diff; 2725 if (unlikely(test_time_stamp(info.delta))) 2726 rb_handle_timestamp(cpu_buffer, &info); 2727 } 2728 2729 event = __rb_reserve_next(cpu_buffer, &info); 2730 2731 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2732 if (info.add_timestamp) 2733 info.length -= RB_LEN_TIME_EXTEND; 2734 goto again; 2735 } 2736 2737 if (!event) 2738 goto out_fail; 2739 2740 return event; 2741 2742 out_fail: 2743 rb_end_commit(cpu_buffer); 2744 return NULL; 2745 } 2746 2747 /** 2748 * ring_buffer_lock_reserve - reserve a part of the buffer 2749 * @buffer: the ring buffer to reserve from 2750 * @length: the length of the data to reserve (excluding event header) 2751 * 2752 * Returns a reseverd event on the ring buffer to copy directly to. 2753 * The user of this interface will need to get the body to write into 2754 * and can use the ring_buffer_event_data() interface. 2755 * 2756 * The length is the length of the data needed, not the event length 2757 * which also includes the event header. 2758 * 2759 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2760 * If NULL is returned, then nothing has been allocated or locked. 2761 */ 2762 struct ring_buffer_event * 2763 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2764 { 2765 struct ring_buffer_per_cpu *cpu_buffer; 2766 struct ring_buffer_event *event; 2767 int cpu; 2768 2769 /* If we are tracing schedule, we don't want to recurse */ 2770 preempt_disable_notrace(); 2771 2772 if (unlikely(atomic_read(&buffer->record_disabled))) 2773 goto out; 2774 2775 cpu = raw_smp_processor_id(); 2776 2777 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2778 goto out; 2779 2780 cpu_buffer = buffer->buffers[cpu]; 2781 2782 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2783 goto out; 2784 2785 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2786 goto out; 2787 2788 if (unlikely(trace_recursive_lock(cpu_buffer))) 2789 goto out; 2790 2791 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2792 if (!event) 2793 goto out_unlock; 2794 2795 return event; 2796 2797 out_unlock: 2798 trace_recursive_unlock(cpu_buffer); 2799 out: 2800 preempt_enable_notrace(); 2801 return NULL; 2802 } 2803 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2804 2805 /* 2806 * Decrement the entries to the page that an event is on. 2807 * The event does not even need to exist, only the pointer 2808 * to the page it is on. This may only be called before the commit 2809 * takes place. 2810 */ 2811 static inline void 2812 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2813 struct ring_buffer_event *event) 2814 { 2815 unsigned long addr = (unsigned long)event; 2816 struct buffer_page *bpage = cpu_buffer->commit_page; 2817 struct buffer_page *start; 2818 2819 addr &= PAGE_MASK; 2820 2821 /* Do the likely case first */ 2822 if (likely(bpage->page == (void *)addr)) { 2823 local_dec(&bpage->entries); 2824 return; 2825 } 2826 2827 /* 2828 * Because the commit page may be on the reader page we 2829 * start with the next page and check the end loop there. 2830 */ 2831 rb_inc_page(cpu_buffer, &bpage); 2832 start = bpage; 2833 do { 2834 if (bpage->page == (void *)addr) { 2835 local_dec(&bpage->entries); 2836 return; 2837 } 2838 rb_inc_page(cpu_buffer, &bpage); 2839 } while (bpage != start); 2840 2841 /* commit not part of this buffer?? */ 2842 RB_WARN_ON(cpu_buffer, 1); 2843 } 2844 2845 /** 2846 * ring_buffer_commit_discard - discard an event that has not been committed 2847 * @buffer: the ring buffer 2848 * @event: non committed event to discard 2849 * 2850 * Sometimes an event that is in the ring buffer needs to be ignored. 2851 * This function lets the user discard an event in the ring buffer 2852 * and then that event will not be read later. 2853 * 2854 * This function only works if it is called before the the item has been 2855 * committed. It will try to free the event from the ring buffer 2856 * if another event has not been added behind it. 2857 * 2858 * If another event has been added behind it, it will set the event 2859 * up as discarded, and perform the commit. 2860 * 2861 * If this function is called, do not call ring_buffer_unlock_commit on 2862 * the event. 2863 */ 2864 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2865 struct ring_buffer_event *event) 2866 { 2867 struct ring_buffer_per_cpu *cpu_buffer; 2868 int cpu; 2869 2870 /* The event is discarded regardless */ 2871 rb_event_discard(event); 2872 2873 cpu = smp_processor_id(); 2874 cpu_buffer = buffer->buffers[cpu]; 2875 2876 /* 2877 * This must only be called if the event has not been 2878 * committed yet. Thus we can assume that preemption 2879 * is still disabled. 2880 */ 2881 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2882 2883 rb_decrement_entry(cpu_buffer, event); 2884 if (rb_try_to_discard(cpu_buffer, event)) 2885 goto out; 2886 2887 /* 2888 * The commit is still visible by the reader, so we 2889 * must still update the timestamp. 2890 */ 2891 rb_update_write_stamp(cpu_buffer, event); 2892 out: 2893 rb_end_commit(cpu_buffer); 2894 2895 trace_recursive_unlock(cpu_buffer); 2896 2897 preempt_enable_notrace(); 2898 2899 } 2900 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2901 2902 /** 2903 * ring_buffer_write - write data to the buffer without reserving 2904 * @buffer: The ring buffer to write to. 2905 * @length: The length of the data being written (excluding the event header) 2906 * @data: The data to write to the buffer. 2907 * 2908 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2909 * one function. If you already have the data to write to the buffer, it 2910 * may be easier to simply call this function. 2911 * 2912 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2913 * and not the length of the event which would hold the header. 2914 */ 2915 int ring_buffer_write(struct ring_buffer *buffer, 2916 unsigned long length, 2917 void *data) 2918 { 2919 struct ring_buffer_per_cpu *cpu_buffer; 2920 struct ring_buffer_event *event; 2921 void *body; 2922 int ret = -EBUSY; 2923 int cpu; 2924 2925 preempt_disable_notrace(); 2926 2927 if (atomic_read(&buffer->record_disabled)) 2928 goto out; 2929 2930 cpu = raw_smp_processor_id(); 2931 2932 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2933 goto out; 2934 2935 cpu_buffer = buffer->buffers[cpu]; 2936 2937 if (atomic_read(&cpu_buffer->record_disabled)) 2938 goto out; 2939 2940 if (length > BUF_MAX_DATA_SIZE) 2941 goto out; 2942 2943 if (unlikely(trace_recursive_lock(cpu_buffer))) 2944 goto out; 2945 2946 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2947 if (!event) 2948 goto out_unlock; 2949 2950 body = rb_event_data(event); 2951 2952 memcpy(body, data, length); 2953 2954 rb_commit(cpu_buffer, event); 2955 2956 rb_wakeups(buffer, cpu_buffer); 2957 2958 ret = 0; 2959 2960 out_unlock: 2961 trace_recursive_unlock(cpu_buffer); 2962 2963 out: 2964 preempt_enable_notrace(); 2965 2966 return ret; 2967 } 2968 EXPORT_SYMBOL_GPL(ring_buffer_write); 2969 2970 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2971 { 2972 struct buffer_page *reader = cpu_buffer->reader_page; 2973 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2974 struct buffer_page *commit = cpu_buffer->commit_page; 2975 2976 /* In case of error, head will be NULL */ 2977 if (unlikely(!head)) 2978 return true; 2979 2980 return reader->read == rb_page_commit(reader) && 2981 (commit == reader || 2982 (commit == head && 2983 head->read == rb_page_commit(commit))); 2984 } 2985 2986 /** 2987 * ring_buffer_record_disable - stop all writes into the buffer 2988 * @buffer: The ring buffer to stop writes to. 2989 * 2990 * This prevents all writes to the buffer. Any attempt to write 2991 * to the buffer after this will fail and return NULL. 2992 * 2993 * The caller should call synchronize_sched() after this. 2994 */ 2995 void ring_buffer_record_disable(struct ring_buffer *buffer) 2996 { 2997 atomic_inc(&buffer->record_disabled); 2998 } 2999 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3000 3001 /** 3002 * ring_buffer_record_enable - enable writes to the buffer 3003 * @buffer: The ring buffer to enable writes 3004 * 3005 * Note, multiple disables will need the same number of enables 3006 * to truly enable the writing (much like preempt_disable). 3007 */ 3008 void ring_buffer_record_enable(struct ring_buffer *buffer) 3009 { 3010 atomic_dec(&buffer->record_disabled); 3011 } 3012 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3013 3014 /** 3015 * ring_buffer_record_off - stop all writes into the buffer 3016 * @buffer: The ring buffer to stop writes to. 3017 * 3018 * This prevents all writes to the buffer. Any attempt to write 3019 * to the buffer after this will fail and return NULL. 3020 * 3021 * This is different than ring_buffer_record_disable() as 3022 * it works like an on/off switch, where as the disable() version 3023 * must be paired with a enable(). 3024 */ 3025 void ring_buffer_record_off(struct ring_buffer *buffer) 3026 { 3027 unsigned int rd; 3028 unsigned int new_rd; 3029 3030 do { 3031 rd = atomic_read(&buffer->record_disabled); 3032 new_rd = rd | RB_BUFFER_OFF; 3033 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3034 } 3035 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3036 3037 /** 3038 * ring_buffer_record_on - restart writes into the buffer 3039 * @buffer: The ring buffer to start writes to. 3040 * 3041 * This enables all writes to the buffer that was disabled by 3042 * ring_buffer_record_off(). 3043 * 3044 * This is different than ring_buffer_record_enable() as 3045 * it works like an on/off switch, where as the enable() version 3046 * must be paired with a disable(). 3047 */ 3048 void ring_buffer_record_on(struct ring_buffer *buffer) 3049 { 3050 unsigned int rd; 3051 unsigned int new_rd; 3052 3053 do { 3054 rd = atomic_read(&buffer->record_disabled); 3055 new_rd = rd & ~RB_BUFFER_OFF; 3056 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3057 } 3058 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3059 3060 /** 3061 * ring_buffer_record_is_on - return true if the ring buffer can write 3062 * @buffer: The ring buffer to see if write is enabled 3063 * 3064 * Returns true if the ring buffer is in a state that it accepts writes. 3065 */ 3066 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3067 { 3068 return !atomic_read(&buffer->record_disabled); 3069 } 3070 3071 /** 3072 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3073 * @buffer: The ring buffer to stop writes to. 3074 * @cpu: The CPU buffer to stop 3075 * 3076 * This prevents all writes to the buffer. Any attempt to write 3077 * to the buffer after this will fail and return NULL. 3078 * 3079 * The caller should call synchronize_sched() after this. 3080 */ 3081 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3082 { 3083 struct ring_buffer_per_cpu *cpu_buffer; 3084 3085 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3086 return; 3087 3088 cpu_buffer = buffer->buffers[cpu]; 3089 atomic_inc(&cpu_buffer->record_disabled); 3090 } 3091 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3092 3093 /** 3094 * ring_buffer_record_enable_cpu - enable writes to the buffer 3095 * @buffer: The ring buffer to enable writes 3096 * @cpu: The CPU to enable. 3097 * 3098 * Note, multiple disables will need the same number of enables 3099 * to truly enable the writing (much like preempt_disable). 3100 */ 3101 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3102 { 3103 struct ring_buffer_per_cpu *cpu_buffer; 3104 3105 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3106 return; 3107 3108 cpu_buffer = buffer->buffers[cpu]; 3109 atomic_dec(&cpu_buffer->record_disabled); 3110 } 3111 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3112 3113 /* 3114 * The total entries in the ring buffer is the running counter 3115 * of entries entered into the ring buffer, minus the sum of 3116 * the entries read from the ring buffer and the number of 3117 * entries that were overwritten. 3118 */ 3119 static inline unsigned long 3120 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3121 { 3122 return local_read(&cpu_buffer->entries) - 3123 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3124 } 3125 3126 /** 3127 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3128 * @buffer: The ring buffer 3129 * @cpu: The per CPU buffer to read from. 3130 */ 3131 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3132 { 3133 unsigned long flags; 3134 struct ring_buffer_per_cpu *cpu_buffer; 3135 struct buffer_page *bpage; 3136 u64 ret = 0; 3137 3138 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3139 return 0; 3140 3141 cpu_buffer = buffer->buffers[cpu]; 3142 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3143 /* 3144 * if the tail is on reader_page, oldest time stamp is on the reader 3145 * page 3146 */ 3147 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3148 bpage = cpu_buffer->reader_page; 3149 else 3150 bpage = rb_set_head_page(cpu_buffer); 3151 if (bpage) 3152 ret = bpage->page->time_stamp; 3153 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3154 3155 return ret; 3156 } 3157 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3158 3159 /** 3160 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3161 * @buffer: The ring buffer 3162 * @cpu: The per CPU buffer to read from. 3163 */ 3164 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3165 { 3166 struct ring_buffer_per_cpu *cpu_buffer; 3167 unsigned long ret; 3168 3169 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3170 return 0; 3171 3172 cpu_buffer = buffer->buffers[cpu]; 3173 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3174 3175 return ret; 3176 } 3177 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3178 3179 /** 3180 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3181 * @buffer: The ring buffer 3182 * @cpu: The per CPU buffer to get the entries from. 3183 */ 3184 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3185 { 3186 struct ring_buffer_per_cpu *cpu_buffer; 3187 3188 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3189 return 0; 3190 3191 cpu_buffer = buffer->buffers[cpu]; 3192 3193 return rb_num_of_entries(cpu_buffer); 3194 } 3195 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3196 3197 /** 3198 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3199 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3200 * @buffer: The ring buffer 3201 * @cpu: The per CPU buffer to get the number of overruns from 3202 */ 3203 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3204 { 3205 struct ring_buffer_per_cpu *cpu_buffer; 3206 unsigned long ret; 3207 3208 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3209 return 0; 3210 3211 cpu_buffer = buffer->buffers[cpu]; 3212 ret = local_read(&cpu_buffer->overrun); 3213 3214 return ret; 3215 } 3216 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3217 3218 /** 3219 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3220 * commits failing due to the buffer wrapping around while there are uncommitted 3221 * events, such as during an interrupt storm. 3222 * @buffer: The ring buffer 3223 * @cpu: The per CPU buffer to get the number of overruns from 3224 */ 3225 unsigned long 3226 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3227 { 3228 struct ring_buffer_per_cpu *cpu_buffer; 3229 unsigned long ret; 3230 3231 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3232 return 0; 3233 3234 cpu_buffer = buffer->buffers[cpu]; 3235 ret = local_read(&cpu_buffer->commit_overrun); 3236 3237 return ret; 3238 } 3239 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3240 3241 /** 3242 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3243 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3244 * @buffer: The ring buffer 3245 * @cpu: The per CPU buffer to get the number of overruns from 3246 */ 3247 unsigned long 3248 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3249 { 3250 struct ring_buffer_per_cpu *cpu_buffer; 3251 unsigned long ret; 3252 3253 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3254 return 0; 3255 3256 cpu_buffer = buffer->buffers[cpu]; 3257 ret = local_read(&cpu_buffer->dropped_events); 3258 3259 return ret; 3260 } 3261 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3262 3263 /** 3264 * ring_buffer_read_events_cpu - get the number of events successfully read 3265 * @buffer: The ring buffer 3266 * @cpu: The per CPU buffer to get the number of events read 3267 */ 3268 unsigned long 3269 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3270 { 3271 struct ring_buffer_per_cpu *cpu_buffer; 3272 3273 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3274 return 0; 3275 3276 cpu_buffer = buffer->buffers[cpu]; 3277 return cpu_buffer->read; 3278 } 3279 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3280 3281 /** 3282 * ring_buffer_entries - get the number of entries in a buffer 3283 * @buffer: The ring buffer 3284 * 3285 * Returns the total number of entries in the ring buffer 3286 * (all CPU entries) 3287 */ 3288 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3289 { 3290 struct ring_buffer_per_cpu *cpu_buffer; 3291 unsigned long entries = 0; 3292 int cpu; 3293 3294 /* if you care about this being correct, lock the buffer */ 3295 for_each_buffer_cpu(buffer, cpu) { 3296 cpu_buffer = buffer->buffers[cpu]; 3297 entries += rb_num_of_entries(cpu_buffer); 3298 } 3299 3300 return entries; 3301 } 3302 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3303 3304 /** 3305 * ring_buffer_overruns - get the number of overruns in buffer 3306 * @buffer: The ring buffer 3307 * 3308 * Returns the total number of overruns in the ring buffer 3309 * (all CPU entries) 3310 */ 3311 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3312 { 3313 struct ring_buffer_per_cpu *cpu_buffer; 3314 unsigned long overruns = 0; 3315 int cpu; 3316 3317 /* if you care about this being correct, lock the buffer */ 3318 for_each_buffer_cpu(buffer, cpu) { 3319 cpu_buffer = buffer->buffers[cpu]; 3320 overruns += local_read(&cpu_buffer->overrun); 3321 } 3322 3323 return overruns; 3324 } 3325 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3326 3327 static void rb_iter_reset(struct ring_buffer_iter *iter) 3328 { 3329 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3330 3331 /* Iterator usage is expected to have record disabled */ 3332 iter->head_page = cpu_buffer->reader_page; 3333 iter->head = cpu_buffer->reader_page->read; 3334 3335 iter->cache_reader_page = iter->head_page; 3336 iter->cache_read = cpu_buffer->read; 3337 3338 if (iter->head) 3339 iter->read_stamp = cpu_buffer->read_stamp; 3340 else 3341 iter->read_stamp = iter->head_page->page->time_stamp; 3342 } 3343 3344 /** 3345 * ring_buffer_iter_reset - reset an iterator 3346 * @iter: The iterator to reset 3347 * 3348 * Resets the iterator, so that it will start from the beginning 3349 * again. 3350 */ 3351 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3352 { 3353 struct ring_buffer_per_cpu *cpu_buffer; 3354 unsigned long flags; 3355 3356 if (!iter) 3357 return; 3358 3359 cpu_buffer = iter->cpu_buffer; 3360 3361 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3362 rb_iter_reset(iter); 3363 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3364 } 3365 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3366 3367 /** 3368 * ring_buffer_iter_empty - check if an iterator has no more to read 3369 * @iter: The iterator to check 3370 */ 3371 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3372 { 3373 struct ring_buffer_per_cpu *cpu_buffer; 3374 struct buffer_page *reader; 3375 struct buffer_page *head_page; 3376 struct buffer_page *commit_page; 3377 unsigned commit; 3378 3379 cpu_buffer = iter->cpu_buffer; 3380 3381 /* Remember, trace recording is off when iterator is in use */ 3382 reader = cpu_buffer->reader_page; 3383 head_page = cpu_buffer->head_page; 3384 commit_page = cpu_buffer->commit_page; 3385 commit = rb_page_commit(commit_page); 3386 3387 return ((iter->head_page == commit_page && iter->head == commit) || 3388 (iter->head_page == reader && commit_page == head_page && 3389 head_page->read == commit && 3390 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3391 } 3392 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3393 3394 static void 3395 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3396 struct ring_buffer_event *event) 3397 { 3398 u64 delta; 3399 3400 switch (event->type_len) { 3401 case RINGBUF_TYPE_PADDING: 3402 return; 3403 3404 case RINGBUF_TYPE_TIME_EXTEND: 3405 delta = event->array[0]; 3406 delta <<= TS_SHIFT; 3407 delta += event->time_delta; 3408 cpu_buffer->read_stamp += delta; 3409 return; 3410 3411 case RINGBUF_TYPE_TIME_STAMP: 3412 /* FIXME: not implemented */ 3413 return; 3414 3415 case RINGBUF_TYPE_DATA: 3416 cpu_buffer->read_stamp += event->time_delta; 3417 return; 3418 3419 default: 3420 BUG(); 3421 } 3422 return; 3423 } 3424 3425 static void 3426 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3427 struct ring_buffer_event *event) 3428 { 3429 u64 delta; 3430 3431 switch (event->type_len) { 3432 case RINGBUF_TYPE_PADDING: 3433 return; 3434 3435 case RINGBUF_TYPE_TIME_EXTEND: 3436 delta = event->array[0]; 3437 delta <<= TS_SHIFT; 3438 delta += event->time_delta; 3439 iter->read_stamp += delta; 3440 return; 3441 3442 case RINGBUF_TYPE_TIME_STAMP: 3443 /* FIXME: not implemented */ 3444 return; 3445 3446 case RINGBUF_TYPE_DATA: 3447 iter->read_stamp += event->time_delta; 3448 return; 3449 3450 default: 3451 BUG(); 3452 } 3453 return; 3454 } 3455 3456 static struct buffer_page * 3457 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3458 { 3459 struct buffer_page *reader = NULL; 3460 unsigned long overwrite; 3461 unsigned long flags; 3462 int nr_loops = 0; 3463 int ret; 3464 3465 local_irq_save(flags); 3466 arch_spin_lock(&cpu_buffer->lock); 3467 3468 again: 3469 /* 3470 * This should normally only loop twice. But because the 3471 * start of the reader inserts an empty page, it causes 3472 * a case where we will loop three times. There should be no 3473 * reason to loop four times (that I know of). 3474 */ 3475 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3476 reader = NULL; 3477 goto out; 3478 } 3479 3480 reader = cpu_buffer->reader_page; 3481 3482 /* If there's more to read, return this page */ 3483 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3484 goto out; 3485 3486 /* Never should we have an index greater than the size */ 3487 if (RB_WARN_ON(cpu_buffer, 3488 cpu_buffer->reader_page->read > rb_page_size(reader))) 3489 goto out; 3490 3491 /* check if we caught up to the tail */ 3492 reader = NULL; 3493 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3494 goto out; 3495 3496 /* Don't bother swapping if the ring buffer is empty */ 3497 if (rb_num_of_entries(cpu_buffer) == 0) 3498 goto out; 3499 3500 /* 3501 * Reset the reader page to size zero. 3502 */ 3503 local_set(&cpu_buffer->reader_page->write, 0); 3504 local_set(&cpu_buffer->reader_page->entries, 0); 3505 local_set(&cpu_buffer->reader_page->page->commit, 0); 3506 cpu_buffer->reader_page->real_end = 0; 3507 3508 spin: 3509 /* 3510 * Splice the empty reader page into the list around the head. 3511 */ 3512 reader = rb_set_head_page(cpu_buffer); 3513 if (!reader) 3514 goto out; 3515 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3516 cpu_buffer->reader_page->list.prev = reader->list.prev; 3517 3518 /* 3519 * cpu_buffer->pages just needs to point to the buffer, it 3520 * has no specific buffer page to point to. Lets move it out 3521 * of our way so we don't accidentally swap it. 3522 */ 3523 cpu_buffer->pages = reader->list.prev; 3524 3525 /* The reader page will be pointing to the new head */ 3526 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3527 3528 /* 3529 * We want to make sure we read the overruns after we set up our 3530 * pointers to the next object. The writer side does a 3531 * cmpxchg to cross pages which acts as the mb on the writer 3532 * side. Note, the reader will constantly fail the swap 3533 * while the writer is updating the pointers, so this 3534 * guarantees that the overwrite recorded here is the one we 3535 * want to compare with the last_overrun. 3536 */ 3537 smp_mb(); 3538 overwrite = local_read(&(cpu_buffer->overrun)); 3539 3540 /* 3541 * Here's the tricky part. 3542 * 3543 * We need to move the pointer past the header page. 3544 * But we can only do that if a writer is not currently 3545 * moving it. The page before the header page has the 3546 * flag bit '1' set if it is pointing to the page we want. 3547 * but if the writer is in the process of moving it 3548 * than it will be '2' or already moved '0'. 3549 */ 3550 3551 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3552 3553 /* 3554 * If we did not convert it, then we must try again. 3555 */ 3556 if (!ret) 3557 goto spin; 3558 3559 /* 3560 * Yeah! We succeeded in replacing the page. 3561 * 3562 * Now make the new head point back to the reader page. 3563 */ 3564 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3565 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3566 3567 /* Finally update the reader page to the new head */ 3568 cpu_buffer->reader_page = reader; 3569 cpu_buffer->reader_page->read = 0; 3570 3571 if (overwrite != cpu_buffer->last_overrun) { 3572 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3573 cpu_buffer->last_overrun = overwrite; 3574 } 3575 3576 goto again; 3577 3578 out: 3579 /* Update the read_stamp on the first event */ 3580 if (reader && reader->read == 0) 3581 cpu_buffer->read_stamp = reader->page->time_stamp; 3582 3583 arch_spin_unlock(&cpu_buffer->lock); 3584 local_irq_restore(flags); 3585 3586 return reader; 3587 } 3588 3589 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3590 { 3591 struct ring_buffer_event *event; 3592 struct buffer_page *reader; 3593 unsigned length; 3594 3595 reader = rb_get_reader_page(cpu_buffer); 3596 3597 /* This function should not be called when buffer is empty */ 3598 if (RB_WARN_ON(cpu_buffer, !reader)) 3599 return; 3600 3601 event = rb_reader_event(cpu_buffer); 3602 3603 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3604 cpu_buffer->read++; 3605 3606 rb_update_read_stamp(cpu_buffer, event); 3607 3608 length = rb_event_length(event); 3609 cpu_buffer->reader_page->read += length; 3610 } 3611 3612 static void rb_advance_iter(struct ring_buffer_iter *iter) 3613 { 3614 struct ring_buffer_per_cpu *cpu_buffer; 3615 struct ring_buffer_event *event; 3616 unsigned length; 3617 3618 cpu_buffer = iter->cpu_buffer; 3619 3620 /* 3621 * Check if we are at the end of the buffer. 3622 */ 3623 if (iter->head >= rb_page_size(iter->head_page)) { 3624 /* discarded commits can make the page empty */ 3625 if (iter->head_page == cpu_buffer->commit_page) 3626 return; 3627 rb_inc_iter(iter); 3628 return; 3629 } 3630 3631 event = rb_iter_head_event(iter); 3632 3633 length = rb_event_length(event); 3634 3635 /* 3636 * This should not be called to advance the header if we are 3637 * at the tail of the buffer. 3638 */ 3639 if (RB_WARN_ON(cpu_buffer, 3640 (iter->head_page == cpu_buffer->commit_page) && 3641 (iter->head + length > rb_commit_index(cpu_buffer)))) 3642 return; 3643 3644 rb_update_iter_read_stamp(iter, event); 3645 3646 iter->head += length; 3647 3648 /* check for end of page padding */ 3649 if ((iter->head >= rb_page_size(iter->head_page)) && 3650 (iter->head_page != cpu_buffer->commit_page)) 3651 rb_inc_iter(iter); 3652 } 3653 3654 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3655 { 3656 return cpu_buffer->lost_events; 3657 } 3658 3659 static struct ring_buffer_event * 3660 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3661 unsigned long *lost_events) 3662 { 3663 struct ring_buffer_event *event; 3664 struct buffer_page *reader; 3665 int nr_loops = 0; 3666 3667 again: 3668 /* 3669 * We repeat when a time extend is encountered. 3670 * Since the time extend is always attached to a data event, 3671 * we should never loop more than once. 3672 * (We never hit the following condition more than twice). 3673 */ 3674 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3675 return NULL; 3676 3677 reader = rb_get_reader_page(cpu_buffer); 3678 if (!reader) 3679 return NULL; 3680 3681 event = rb_reader_event(cpu_buffer); 3682 3683 switch (event->type_len) { 3684 case RINGBUF_TYPE_PADDING: 3685 if (rb_null_event(event)) 3686 RB_WARN_ON(cpu_buffer, 1); 3687 /* 3688 * Because the writer could be discarding every 3689 * event it creates (which would probably be bad) 3690 * if we were to go back to "again" then we may never 3691 * catch up, and will trigger the warn on, or lock 3692 * the box. Return the padding, and we will release 3693 * the current locks, and try again. 3694 */ 3695 return event; 3696 3697 case RINGBUF_TYPE_TIME_EXTEND: 3698 /* Internal data, OK to advance */ 3699 rb_advance_reader(cpu_buffer); 3700 goto again; 3701 3702 case RINGBUF_TYPE_TIME_STAMP: 3703 /* FIXME: not implemented */ 3704 rb_advance_reader(cpu_buffer); 3705 goto again; 3706 3707 case RINGBUF_TYPE_DATA: 3708 if (ts) { 3709 *ts = cpu_buffer->read_stamp + event->time_delta; 3710 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3711 cpu_buffer->cpu, ts); 3712 } 3713 if (lost_events) 3714 *lost_events = rb_lost_events(cpu_buffer); 3715 return event; 3716 3717 default: 3718 BUG(); 3719 } 3720 3721 return NULL; 3722 } 3723 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3724 3725 static struct ring_buffer_event * 3726 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3727 { 3728 struct ring_buffer *buffer; 3729 struct ring_buffer_per_cpu *cpu_buffer; 3730 struct ring_buffer_event *event; 3731 int nr_loops = 0; 3732 3733 cpu_buffer = iter->cpu_buffer; 3734 buffer = cpu_buffer->buffer; 3735 3736 /* 3737 * Check if someone performed a consuming read to 3738 * the buffer. A consuming read invalidates the iterator 3739 * and we need to reset the iterator in this case. 3740 */ 3741 if (unlikely(iter->cache_read != cpu_buffer->read || 3742 iter->cache_reader_page != cpu_buffer->reader_page)) 3743 rb_iter_reset(iter); 3744 3745 again: 3746 if (ring_buffer_iter_empty(iter)) 3747 return NULL; 3748 3749 /* 3750 * We repeat when a time extend is encountered or we hit 3751 * the end of the page. Since the time extend is always attached 3752 * to a data event, we should never loop more than three times. 3753 * Once for going to next page, once on time extend, and 3754 * finally once to get the event. 3755 * (We never hit the following condition more than thrice). 3756 */ 3757 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3758 return NULL; 3759 3760 if (rb_per_cpu_empty(cpu_buffer)) 3761 return NULL; 3762 3763 if (iter->head >= rb_page_size(iter->head_page)) { 3764 rb_inc_iter(iter); 3765 goto again; 3766 } 3767 3768 event = rb_iter_head_event(iter); 3769 3770 switch (event->type_len) { 3771 case RINGBUF_TYPE_PADDING: 3772 if (rb_null_event(event)) { 3773 rb_inc_iter(iter); 3774 goto again; 3775 } 3776 rb_advance_iter(iter); 3777 return event; 3778 3779 case RINGBUF_TYPE_TIME_EXTEND: 3780 /* Internal data, OK to advance */ 3781 rb_advance_iter(iter); 3782 goto again; 3783 3784 case RINGBUF_TYPE_TIME_STAMP: 3785 /* FIXME: not implemented */ 3786 rb_advance_iter(iter); 3787 goto again; 3788 3789 case RINGBUF_TYPE_DATA: 3790 if (ts) { 3791 *ts = iter->read_stamp + event->time_delta; 3792 ring_buffer_normalize_time_stamp(buffer, 3793 cpu_buffer->cpu, ts); 3794 } 3795 return event; 3796 3797 default: 3798 BUG(); 3799 } 3800 3801 return NULL; 3802 } 3803 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3804 3805 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3806 { 3807 if (likely(!in_nmi())) { 3808 raw_spin_lock(&cpu_buffer->reader_lock); 3809 return true; 3810 } 3811 3812 /* 3813 * If an NMI die dumps out the content of the ring buffer 3814 * trylock must be used to prevent a deadlock if the NMI 3815 * preempted a task that holds the ring buffer locks. If 3816 * we get the lock then all is fine, if not, then continue 3817 * to do the read, but this can corrupt the ring buffer, 3818 * so it must be permanently disabled from future writes. 3819 * Reading from NMI is a oneshot deal. 3820 */ 3821 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3822 return true; 3823 3824 /* Continue without locking, but disable the ring buffer */ 3825 atomic_inc(&cpu_buffer->record_disabled); 3826 return false; 3827 } 3828 3829 static inline void 3830 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 3831 { 3832 if (likely(locked)) 3833 raw_spin_unlock(&cpu_buffer->reader_lock); 3834 return; 3835 } 3836 3837 /** 3838 * ring_buffer_peek - peek at the next event to be read 3839 * @buffer: The ring buffer to read 3840 * @cpu: The cpu to peak at 3841 * @ts: The timestamp counter of this event. 3842 * @lost_events: a variable to store if events were lost (may be NULL) 3843 * 3844 * This will return the event that will be read next, but does 3845 * not consume the data. 3846 */ 3847 struct ring_buffer_event * 3848 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3849 unsigned long *lost_events) 3850 { 3851 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3852 struct ring_buffer_event *event; 3853 unsigned long flags; 3854 bool dolock; 3855 3856 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3857 return NULL; 3858 3859 again: 3860 local_irq_save(flags); 3861 dolock = rb_reader_lock(cpu_buffer); 3862 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3863 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3864 rb_advance_reader(cpu_buffer); 3865 rb_reader_unlock(cpu_buffer, dolock); 3866 local_irq_restore(flags); 3867 3868 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3869 goto again; 3870 3871 return event; 3872 } 3873 3874 /** 3875 * ring_buffer_iter_peek - peek at the next event to be read 3876 * @iter: The ring buffer iterator 3877 * @ts: The timestamp counter of this event. 3878 * 3879 * This will return the event that will be read next, but does 3880 * not increment the iterator. 3881 */ 3882 struct ring_buffer_event * 3883 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3884 { 3885 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3886 struct ring_buffer_event *event; 3887 unsigned long flags; 3888 3889 again: 3890 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3891 event = rb_iter_peek(iter, ts); 3892 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3893 3894 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3895 goto again; 3896 3897 return event; 3898 } 3899 3900 /** 3901 * ring_buffer_consume - return an event and consume it 3902 * @buffer: The ring buffer to get the next event from 3903 * @cpu: the cpu to read the buffer from 3904 * @ts: a variable to store the timestamp (may be NULL) 3905 * @lost_events: a variable to store if events were lost (may be NULL) 3906 * 3907 * Returns the next event in the ring buffer, and that event is consumed. 3908 * Meaning, that sequential reads will keep returning a different event, 3909 * and eventually empty the ring buffer if the producer is slower. 3910 */ 3911 struct ring_buffer_event * 3912 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3913 unsigned long *lost_events) 3914 { 3915 struct ring_buffer_per_cpu *cpu_buffer; 3916 struct ring_buffer_event *event = NULL; 3917 unsigned long flags; 3918 bool dolock; 3919 3920 again: 3921 /* might be called in atomic */ 3922 preempt_disable(); 3923 3924 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3925 goto out; 3926 3927 cpu_buffer = buffer->buffers[cpu]; 3928 local_irq_save(flags); 3929 dolock = rb_reader_lock(cpu_buffer); 3930 3931 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3932 if (event) { 3933 cpu_buffer->lost_events = 0; 3934 rb_advance_reader(cpu_buffer); 3935 } 3936 3937 rb_reader_unlock(cpu_buffer, dolock); 3938 local_irq_restore(flags); 3939 3940 out: 3941 preempt_enable(); 3942 3943 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3944 goto again; 3945 3946 return event; 3947 } 3948 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3949 3950 /** 3951 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3952 * @buffer: The ring buffer to read from 3953 * @cpu: The cpu buffer to iterate over 3954 * 3955 * This performs the initial preparations necessary to iterate 3956 * through the buffer. Memory is allocated, buffer recording 3957 * is disabled, and the iterator pointer is returned to the caller. 3958 * 3959 * Disabling buffer recordng prevents the reading from being 3960 * corrupted. This is not a consuming read, so a producer is not 3961 * expected. 3962 * 3963 * After a sequence of ring_buffer_read_prepare calls, the user is 3964 * expected to make at least one call to ring_buffer_read_prepare_sync. 3965 * Afterwards, ring_buffer_read_start is invoked to get things going 3966 * for real. 3967 * 3968 * This overall must be paired with ring_buffer_read_finish. 3969 */ 3970 struct ring_buffer_iter * 3971 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3972 { 3973 struct ring_buffer_per_cpu *cpu_buffer; 3974 struct ring_buffer_iter *iter; 3975 3976 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3977 return NULL; 3978 3979 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3980 if (!iter) 3981 return NULL; 3982 3983 cpu_buffer = buffer->buffers[cpu]; 3984 3985 iter->cpu_buffer = cpu_buffer; 3986 3987 atomic_inc(&buffer->resize_disabled); 3988 atomic_inc(&cpu_buffer->record_disabled); 3989 3990 return iter; 3991 } 3992 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3993 3994 /** 3995 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3996 * 3997 * All previously invoked ring_buffer_read_prepare calls to prepare 3998 * iterators will be synchronized. Afterwards, read_buffer_read_start 3999 * calls on those iterators are allowed. 4000 */ 4001 void 4002 ring_buffer_read_prepare_sync(void) 4003 { 4004 synchronize_sched(); 4005 } 4006 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4007 4008 /** 4009 * ring_buffer_read_start - start a non consuming read of the buffer 4010 * @iter: The iterator returned by ring_buffer_read_prepare 4011 * 4012 * This finalizes the startup of an iteration through the buffer. 4013 * The iterator comes from a call to ring_buffer_read_prepare and 4014 * an intervening ring_buffer_read_prepare_sync must have been 4015 * performed. 4016 * 4017 * Must be paired with ring_buffer_read_finish. 4018 */ 4019 void 4020 ring_buffer_read_start(struct ring_buffer_iter *iter) 4021 { 4022 struct ring_buffer_per_cpu *cpu_buffer; 4023 unsigned long flags; 4024 4025 if (!iter) 4026 return; 4027 4028 cpu_buffer = iter->cpu_buffer; 4029 4030 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4031 arch_spin_lock(&cpu_buffer->lock); 4032 rb_iter_reset(iter); 4033 arch_spin_unlock(&cpu_buffer->lock); 4034 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4035 } 4036 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4037 4038 /** 4039 * ring_buffer_read_finish - finish reading the iterator of the buffer 4040 * @iter: The iterator retrieved by ring_buffer_start 4041 * 4042 * This re-enables the recording to the buffer, and frees the 4043 * iterator. 4044 */ 4045 void 4046 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4047 { 4048 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4049 unsigned long flags; 4050 4051 /* 4052 * Ring buffer is disabled from recording, here's a good place 4053 * to check the integrity of the ring buffer. 4054 * Must prevent readers from trying to read, as the check 4055 * clears the HEAD page and readers require it. 4056 */ 4057 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4058 rb_check_pages(cpu_buffer); 4059 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4060 4061 atomic_dec(&cpu_buffer->record_disabled); 4062 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4063 kfree(iter); 4064 } 4065 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4066 4067 /** 4068 * ring_buffer_read - read the next item in the ring buffer by the iterator 4069 * @iter: The ring buffer iterator 4070 * @ts: The time stamp of the event read. 4071 * 4072 * This reads the next event in the ring buffer and increments the iterator. 4073 */ 4074 struct ring_buffer_event * 4075 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4076 { 4077 struct ring_buffer_event *event; 4078 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4079 unsigned long flags; 4080 4081 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4082 again: 4083 event = rb_iter_peek(iter, ts); 4084 if (!event) 4085 goto out; 4086 4087 if (event->type_len == RINGBUF_TYPE_PADDING) 4088 goto again; 4089 4090 rb_advance_iter(iter); 4091 out: 4092 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4093 4094 return event; 4095 } 4096 EXPORT_SYMBOL_GPL(ring_buffer_read); 4097 4098 /** 4099 * ring_buffer_size - return the size of the ring buffer (in bytes) 4100 * @buffer: The ring buffer. 4101 */ 4102 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4103 { 4104 /* 4105 * Earlier, this method returned 4106 * BUF_PAGE_SIZE * buffer->nr_pages 4107 * Since the nr_pages field is now removed, we have converted this to 4108 * return the per cpu buffer value. 4109 */ 4110 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4111 return 0; 4112 4113 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4114 } 4115 EXPORT_SYMBOL_GPL(ring_buffer_size); 4116 4117 static void 4118 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4119 { 4120 rb_head_page_deactivate(cpu_buffer); 4121 4122 cpu_buffer->head_page 4123 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4124 local_set(&cpu_buffer->head_page->write, 0); 4125 local_set(&cpu_buffer->head_page->entries, 0); 4126 local_set(&cpu_buffer->head_page->page->commit, 0); 4127 4128 cpu_buffer->head_page->read = 0; 4129 4130 cpu_buffer->tail_page = cpu_buffer->head_page; 4131 cpu_buffer->commit_page = cpu_buffer->head_page; 4132 4133 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4134 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4135 local_set(&cpu_buffer->reader_page->write, 0); 4136 local_set(&cpu_buffer->reader_page->entries, 0); 4137 local_set(&cpu_buffer->reader_page->page->commit, 0); 4138 cpu_buffer->reader_page->read = 0; 4139 4140 local_set(&cpu_buffer->entries_bytes, 0); 4141 local_set(&cpu_buffer->overrun, 0); 4142 local_set(&cpu_buffer->commit_overrun, 0); 4143 local_set(&cpu_buffer->dropped_events, 0); 4144 local_set(&cpu_buffer->entries, 0); 4145 local_set(&cpu_buffer->committing, 0); 4146 local_set(&cpu_buffer->commits, 0); 4147 cpu_buffer->read = 0; 4148 cpu_buffer->read_bytes = 0; 4149 4150 cpu_buffer->write_stamp = 0; 4151 cpu_buffer->read_stamp = 0; 4152 4153 cpu_buffer->lost_events = 0; 4154 cpu_buffer->last_overrun = 0; 4155 4156 rb_head_page_activate(cpu_buffer); 4157 } 4158 4159 /** 4160 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4161 * @buffer: The ring buffer to reset a per cpu buffer of 4162 * @cpu: The CPU buffer to be reset 4163 */ 4164 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4165 { 4166 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4167 unsigned long flags; 4168 4169 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4170 return; 4171 4172 atomic_inc(&buffer->resize_disabled); 4173 atomic_inc(&cpu_buffer->record_disabled); 4174 4175 /* Make sure all commits have finished */ 4176 synchronize_sched(); 4177 4178 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4179 4180 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4181 goto out; 4182 4183 arch_spin_lock(&cpu_buffer->lock); 4184 4185 rb_reset_cpu(cpu_buffer); 4186 4187 arch_spin_unlock(&cpu_buffer->lock); 4188 4189 out: 4190 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4191 4192 atomic_dec(&cpu_buffer->record_disabled); 4193 atomic_dec(&buffer->resize_disabled); 4194 } 4195 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4196 4197 /** 4198 * ring_buffer_reset - reset a ring buffer 4199 * @buffer: The ring buffer to reset all cpu buffers 4200 */ 4201 void ring_buffer_reset(struct ring_buffer *buffer) 4202 { 4203 int cpu; 4204 4205 for_each_buffer_cpu(buffer, cpu) 4206 ring_buffer_reset_cpu(buffer, cpu); 4207 } 4208 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4209 4210 /** 4211 * rind_buffer_empty - is the ring buffer empty? 4212 * @buffer: The ring buffer to test 4213 */ 4214 bool ring_buffer_empty(struct ring_buffer *buffer) 4215 { 4216 struct ring_buffer_per_cpu *cpu_buffer; 4217 unsigned long flags; 4218 bool dolock; 4219 int cpu; 4220 int ret; 4221 4222 /* yes this is racy, but if you don't like the race, lock the buffer */ 4223 for_each_buffer_cpu(buffer, cpu) { 4224 cpu_buffer = buffer->buffers[cpu]; 4225 local_irq_save(flags); 4226 dolock = rb_reader_lock(cpu_buffer); 4227 ret = rb_per_cpu_empty(cpu_buffer); 4228 rb_reader_unlock(cpu_buffer, dolock); 4229 local_irq_restore(flags); 4230 4231 if (!ret) 4232 return false; 4233 } 4234 4235 return true; 4236 } 4237 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4238 4239 /** 4240 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4241 * @buffer: The ring buffer 4242 * @cpu: The CPU buffer to test 4243 */ 4244 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4245 { 4246 struct ring_buffer_per_cpu *cpu_buffer; 4247 unsigned long flags; 4248 bool dolock; 4249 int ret; 4250 4251 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4252 return true; 4253 4254 cpu_buffer = buffer->buffers[cpu]; 4255 local_irq_save(flags); 4256 dolock = rb_reader_lock(cpu_buffer); 4257 ret = rb_per_cpu_empty(cpu_buffer); 4258 rb_reader_unlock(cpu_buffer, dolock); 4259 local_irq_restore(flags); 4260 4261 return ret; 4262 } 4263 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4264 4265 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4266 /** 4267 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4268 * @buffer_a: One buffer to swap with 4269 * @buffer_b: The other buffer to swap with 4270 * 4271 * This function is useful for tracers that want to take a "snapshot" 4272 * of a CPU buffer and has another back up buffer lying around. 4273 * it is expected that the tracer handles the cpu buffer not being 4274 * used at the moment. 4275 */ 4276 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4277 struct ring_buffer *buffer_b, int cpu) 4278 { 4279 struct ring_buffer_per_cpu *cpu_buffer_a; 4280 struct ring_buffer_per_cpu *cpu_buffer_b; 4281 int ret = -EINVAL; 4282 4283 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4284 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4285 goto out; 4286 4287 cpu_buffer_a = buffer_a->buffers[cpu]; 4288 cpu_buffer_b = buffer_b->buffers[cpu]; 4289 4290 /* At least make sure the two buffers are somewhat the same */ 4291 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4292 goto out; 4293 4294 ret = -EAGAIN; 4295 4296 if (atomic_read(&buffer_a->record_disabled)) 4297 goto out; 4298 4299 if (atomic_read(&buffer_b->record_disabled)) 4300 goto out; 4301 4302 if (atomic_read(&cpu_buffer_a->record_disabled)) 4303 goto out; 4304 4305 if (atomic_read(&cpu_buffer_b->record_disabled)) 4306 goto out; 4307 4308 /* 4309 * We can't do a synchronize_sched here because this 4310 * function can be called in atomic context. 4311 * Normally this will be called from the same CPU as cpu. 4312 * If not it's up to the caller to protect this. 4313 */ 4314 atomic_inc(&cpu_buffer_a->record_disabled); 4315 atomic_inc(&cpu_buffer_b->record_disabled); 4316 4317 ret = -EBUSY; 4318 if (local_read(&cpu_buffer_a->committing)) 4319 goto out_dec; 4320 if (local_read(&cpu_buffer_b->committing)) 4321 goto out_dec; 4322 4323 buffer_a->buffers[cpu] = cpu_buffer_b; 4324 buffer_b->buffers[cpu] = cpu_buffer_a; 4325 4326 cpu_buffer_b->buffer = buffer_a; 4327 cpu_buffer_a->buffer = buffer_b; 4328 4329 ret = 0; 4330 4331 out_dec: 4332 atomic_dec(&cpu_buffer_a->record_disabled); 4333 atomic_dec(&cpu_buffer_b->record_disabled); 4334 out: 4335 return ret; 4336 } 4337 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4338 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4339 4340 /** 4341 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4342 * @buffer: the buffer to allocate for. 4343 * @cpu: the cpu buffer to allocate. 4344 * 4345 * This function is used in conjunction with ring_buffer_read_page. 4346 * When reading a full page from the ring buffer, these functions 4347 * can be used to speed up the process. The calling function should 4348 * allocate a few pages first with this function. Then when it 4349 * needs to get pages from the ring buffer, it passes the result 4350 * of this function into ring_buffer_read_page, which will swap 4351 * the page that was allocated, with the read page of the buffer. 4352 * 4353 * Returns: 4354 * The page allocated, or ERR_PTR 4355 */ 4356 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4357 { 4358 struct ring_buffer_per_cpu *cpu_buffer; 4359 struct buffer_data_page *bpage = NULL; 4360 unsigned long flags; 4361 struct page *page; 4362 4363 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4364 return ERR_PTR(-ENODEV); 4365 4366 cpu_buffer = buffer->buffers[cpu]; 4367 local_irq_save(flags); 4368 arch_spin_lock(&cpu_buffer->lock); 4369 4370 if (cpu_buffer->free_page) { 4371 bpage = cpu_buffer->free_page; 4372 cpu_buffer->free_page = NULL; 4373 } 4374 4375 arch_spin_unlock(&cpu_buffer->lock); 4376 local_irq_restore(flags); 4377 4378 if (bpage) 4379 goto out; 4380 4381 page = alloc_pages_node(cpu_to_node(cpu), 4382 GFP_KERNEL | __GFP_NORETRY, 0); 4383 if (!page) 4384 return ERR_PTR(-ENOMEM); 4385 4386 bpage = page_address(page); 4387 4388 out: 4389 rb_init_page(bpage); 4390 4391 return bpage; 4392 } 4393 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4394 4395 /** 4396 * ring_buffer_free_read_page - free an allocated read page 4397 * @buffer: the buffer the page was allocate for 4398 * @cpu: the cpu buffer the page came from 4399 * @data: the page to free 4400 * 4401 * Free a page allocated from ring_buffer_alloc_read_page. 4402 */ 4403 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data) 4404 { 4405 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4406 struct buffer_data_page *bpage = data; 4407 struct page *page = virt_to_page(bpage); 4408 unsigned long flags; 4409 4410 /* If the page is still in use someplace else, we can't reuse it */ 4411 if (page_ref_count(page) > 1) 4412 goto out; 4413 4414 local_irq_save(flags); 4415 arch_spin_lock(&cpu_buffer->lock); 4416 4417 if (!cpu_buffer->free_page) { 4418 cpu_buffer->free_page = bpage; 4419 bpage = NULL; 4420 } 4421 4422 arch_spin_unlock(&cpu_buffer->lock); 4423 local_irq_restore(flags); 4424 4425 out: 4426 free_page((unsigned long)bpage); 4427 } 4428 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4429 4430 /** 4431 * ring_buffer_read_page - extract a page from the ring buffer 4432 * @buffer: buffer to extract from 4433 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4434 * @len: amount to extract 4435 * @cpu: the cpu of the buffer to extract 4436 * @full: should the extraction only happen when the page is full. 4437 * 4438 * This function will pull out a page from the ring buffer and consume it. 4439 * @data_page must be the address of the variable that was returned 4440 * from ring_buffer_alloc_read_page. This is because the page might be used 4441 * to swap with a page in the ring buffer. 4442 * 4443 * for example: 4444 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4445 * if (IS_ERR(rpage)) 4446 * return PTR_ERR(rpage); 4447 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4448 * if (ret >= 0) 4449 * process_page(rpage, ret); 4450 * 4451 * When @full is set, the function will not return true unless 4452 * the writer is off the reader page. 4453 * 4454 * Note: it is up to the calling functions to handle sleeps and wakeups. 4455 * The ring buffer can be used anywhere in the kernel and can not 4456 * blindly call wake_up. The layer that uses the ring buffer must be 4457 * responsible for that. 4458 * 4459 * Returns: 4460 * >=0 if data has been transferred, returns the offset of consumed data. 4461 * <0 if no data has been transferred. 4462 */ 4463 int ring_buffer_read_page(struct ring_buffer *buffer, 4464 void **data_page, size_t len, int cpu, int full) 4465 { 4466 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4467 struct ring_buffer_event *event; 4468 struct buffer_data_page *bpage; 4469 struct buffer_page *reader; 4470 unsigned long missed_events; 4471 unsigned long flags; 4472 unsigned int commit; 4473 unsigned int read; 4474 u64 save_timestamp; 4475 int ret = -1; 4476 4477 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4478 goto out; 4479 4480 /* 4481 * If len is not big enough to hold the page header, then 4482 * we can not copy anything. 4483 */ 4484 if (len <= BUF_PAGE_HDR_SIZE) 4485 goto out; 4486 4487 len -= BUF_PAGE_HDR_SIZE; 4488 4489 if (!data_page) 4490 goto out; 4491 4492 bpage = *data_page; 4493 if (!bpage) 4494 goto out; 4495 4496 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4497 4498 reader = rb_get_reader_page(cpu_buffer); 4499 if (!reader) 4500 goto out_unlock; 4501 4502 event = rb_reader_event(cpu_buffer); 4503 4504 read = reader->read; 4505 commit = rb_page_commit(reader); 4506 4507 /* Check if any events were dropped */ 4508 missed_events = cpu_buffer->lost_events; 4509 4510 /* 4511 * If this page has been partially read or 4512 * if len is not big enough to read the rest of the page or 4513 * a writer is still on the page, then 4514 * we must copy the data from the page to the buffer. 4515 * Otherwise, we can simply swap the page with the one passed in. 4516 */ 4517 if (read || (len < (commit - read)) || 4518 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4519 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4520 unsigned int rpos = read; 4521 unsigned int pos = 0; 4522 unsigned int size; 4523 4524 if (full) 4525 goto out_unlock; 4526 4527 if (len > (commit - read)) 4528 len = (commit - read); 4529 4530 /* Always keep the time extend and data together */ 4531 size = rb_event_ts_length(event); 4532 4533 if (len < size) 4534 goto out_unlock; 4535 4536 /* save the current timestamp, since the user will need it */ 4537 save_timestamp = cpu_buffer->read_stamp; 4538 4539 /* Need to copy one event at a time */ 4540 do { 4541 /* We need the size of one event, because 4542 * rb_advance_reader only advances by one event, 4543 * whereas rb_event_ts_length may include the size of 4544 * one or two events. 4545 * We have already ensured there's enough space if this 4546 * is a time extend. */ 4547 size = rb_event_length(event); 4548 memcpy(bpage->data + pos, rpage->data + rpos, size); 4549 4550 len -= size; 4551 4552 rb_advance_reader(cpu_buffer); 4553 rpos = reader->read; 4554 pos += size; 4555 4556 if (rpos >= commit) 4557 break; 4558 4559 event = rb_reader_event(cpu_buffer); 4560 /* Always keep the time extend and data together */ 4561 size = rb_event_ts_length(event); 4562 } while (len >= size); 4563 4564 /* update bpage */ 4565 local_set(&bpage->commit, pos); 4566 bpage->time_stamp = save_timestamp; 4567 4568 /* we copied everything to the beginning */ 4569 read = 0; 4570 } else { 4571 /* update the entry counter */ 4572 cpu_buffer->read += rb_page_entries(reader); 4573 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4574 4575 /* swap the pages */ 4576 rb_init_page(bpage); 4577 bpage = reader->page; 4578 reader->page = *data_page; 4579 local_set(&reader->write, 0); 4580 local_set(&reader->entries, 0); 4581 reader->read = 0; 4582 *data_page = bpage; 4583 4584 /* 4585 * Use the real_end for the data size, 4586 * This gives us a chance to store the lost events 4587 * on the page. 4588 */ 4589 if (reader->real_end) 4590 local_set(&bpage->commit, reader->real_end); 4591 } 4592 ret = read; 4593 4594 cpu_buffer->lost_events = 0; 4595 4596 commit = local_read(&bpage->commit); 4597 /* 4598 * Set a flag in the commit field if we lost events 4599 */ 4600 if (missed_events) { 4601 /* If there is room at the end of the page to save the 4602 * missed events, then record it there. 4603 */ 4604 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4605 memcpy(&bpage->data[commit], &missed_events, 4606 sizeof(missed_events)); 4607 local_add(RB_MISSED_STORED, &bpage->commit); 4608 commit += sizeof(missed_events); 4609 } 4610 local_add(RB_MISSED_EVENTS, &bpage->commit); 4611 } 4612 4613 /* 4614 * This page may be off to user land. Zero it out here. 4615 */ 4616 if (commit < BUF_PAGE_SIZE) 4617 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4618 4619 out_unlock: 4620 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4621 4622 out: 4623 return ret; 4624 } 4625 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4626 4627 /* 4628 * We only allocate new buffers, never free them if the CPU goes down. 4629 * If we were to free the buffer, then the user would lose any trace that was in 4630 * the buffer. 4631 */ 4632 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4633 { 4634 struct ring_buffer *buffer; 4635 long nr_pages_same; 4636 int cpu_i; 4637 unsigned long nr_pages; 4638 4639 buffer = container_of(node, struct ring_buffer, node); 4640 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4641 return 0; 4642 4643 nr_pages = 0; 4644 nr_pages_same = 1; 4645 /* check if all cpu sizes are same */ 4646 for_each_buffer_cpu(buffer, cpu_i) { 4647 /* fill in the size from first enabled cpu */ 4648 if (nr_pages == 0) 4649 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4650 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4651 nr_pages_same = 0; 4652 break; 4653 } 4654 } 4655 /* allocate minimum pages, user can later expand it */ 4656 if (!nr_pages_same) 4657 nr_pages = 2; 4658 buffer->buffers[cpu] = 4659 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4660 if (!buffer->buffers[cpu]) { 4661 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4662 cpu); 4663 return -ENOMEM; 4664 } 4665 smp_wmb(); 4666 cpumask_set_cpu(cpu, buffer->cpumask); 4667 return 0; 4668 } 4669 4670 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4671 /* 4672 * This is a basic integrity check of the ring buffer. 4673 * Late in the boot cycle this test will run when configured in. 4674 * It will kick off a thread per CPU that will go into a loop 4675 * writing to the per cpu ring buffer various sizes of data. 4676 * Some of the data will be large items, some small. 4677 * 4678 * Another thread is created that goes into a spin, sending out 4679 * IPIs to the other CPUs to also write into the ring buffer. 4680 * this is to test the nesting ability of the buffer. 4681 * 4682 * Basic stats are recorded and reported. If something in the 4683 * ring buffer should happen that's not expected, a big warning 4684 * is displayed and all ring buffers are disabled. 4685 */ 4686 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4687 4688 struct rb_test_data { 4689 struct ring_buffer *buffer; 4690 unsigned long events; 4691 unsigned long bytes_written; 4692 unsigned long bytes_alloc; 4693 unsigned long bytes_dropped; 4694 unsigned long events_nested; 4695 unsigned long bytes_written_nested; 4696 unsigned long bytes_alloc_nested; 4697 unsigned long bytes_dropped_nested; 4698 int min_size_nested; 4699 int max_size_nested; 4700 int max_size; 4701 int min_size; 4702 int cpu; 4703 int cnt; 4704 }; 4705 4706 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4707 4708 /* 1 meg per cpu */ 4709 #define RB_TEST_BUFFER_SIZE 1048576 4710 4711 static char rb_string[] __initdata = 4712 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4713 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4714 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4715 4716 static bool rb_test_started __initdata; 4717 4718 struct rb_item { 4719 int size; 4720 char str[]; 4721 }; 4722 4723 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4724 { 4725 struct ring_buffer_event *event; 4726 struct rb_item *item; 4727 bool started; 4728 int event_len; 4729 int size; 4730 int len; 4731 int cnt; 4732 4733 /* Have nested writes different that what is written */ 4734 cnt = data->cnt + (nested ? 27 : 0); 4735 4736 /* Multiply cnt by ~e, to make some unique increment */ 4737 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4738 4739 len = size + sizeof(struct rb_item); 4740 4741 started = rb_test_started; 4742 /* read rb_test_started before checking buffer enabled */ 4743 smp_rmb(); 4744 4745 event = ring_buffer_lock_reserve(data->buffer, len); 4746 if (!event) { 4747 /* Ignore dropped events before test starts. */ 4748 if (started) { 4749 if (nested) 4750 data->bytes_dropped += len; 4751 else 4752 data->bytes_dropped_nested += len; 4753 } 4754 return len; 4755 } 4756 4757 event_len = ring_buffer_event_length(event); 4758 4759 if (RB_WARN_ON(data->buffer, event_len < len)) 4760 goto out; 4761 4762 item = ring_buffer_event_data(event); 4763 item->size = size; 4764 memcpy(item->str, rb_string, size); 4765 4766 if (nested) { 4767 data->bytes_alloc_nested += event_len; 4768 data->bytes_written_nested += len; 4769 data->events_nested++; 4770 if (!data->min_size_nested || len < data->min_size_nested) 4771 data->min_size_nested = len; 4772 if (len > data->max_size_nested) 4773 data->max_size_nested = len; 4774 } else { 4775 data->bytes_alloc += event_len; 4776 data->bytes_written += len; 4777 data->events++; 4778 if (!data->min_size || len < data->min_size) 4779 data->max_size = len; 4780 if (len > data->max_size) 4781 data->max_size = len; 4782 } 4783 4784 out: 4785 ring_buffer_unlock_commit(data->buffer, event); 4786 4787 return 0; 4788 } 4789 4790 static __init int rb_test(void *arg) 4791 { 4792 struct rb_test_data *data = arg; 4793 4794 while (!kthread_should_stop()) { 4795 rb_write_something(data, false); 4796 data->cnt++; 4797 4798 set_current_state(TASK_INTERRUPTIBLE); 4799 /* Now sleep between a min of 100-300us and a max of 1ms */ 4800 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4801 } 4802 4803 return 0; 4804 } 4805 4806 static __init void rb_ipi(void *ignore) 4807 { 4808 struct rb_test_data *data; 4809 int cpu = smp_processor_id(); 4810 4811 data = &rb_data[cpu]; 4812 rb_write_something(data, true); 4813 } 4814 4815 static __init int rb_hammer_test(void *arg) 4816 { 4817 while (!kthread_should_stop()) { 4818 4819 /* Send an IPI to all cpus to write data! */ 4820 smp_call_function(rb_ipi, NULL, 1); 4821 /* No sleep, but for non preempt, let others run */ 4822 schedule(); 4823 } 4824 4825 return 0; 4826 } 4827 4828 static __init int test_ringbuffer(void) 4829 { 4830 struct task_struct *rb_hammer; 4831 struct ring_buffer *buffer; 4832 int cpu; 4833 int ret = 0; 4834 4835 pr_info("Running ring buffer tests...\n"); 4836 4837 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4838 if (WARN_ON(!buffer)) 4839 return 0; 4840 4841 /* Disable buffer so that threads can't write to it yet */ 4842 ring_buffer_record_off(buffer); 4843 4844 for_each_online_cpu(cpu) { 4845 rb_data[cpu].buffer = buffer; 4846 rb_data[cpu].cpu = cpu; 4847 rb_data[cpu].cnt = cpu; 4848 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4849 "rbtester/%d", cpu); 4850 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 4851 pr_cont("FAILED\n"); 4852 ret = PTR_ERR(rb_threads[cpu]); 4853 goto out_free; 4854 } 4855 4856 kthread_bind(rb_threads[cpu], cpu); 4857 wake_up_process(rb_threads[cpu]); 4858 } 4859 4860 /* Now create the rb hammer! */ 4861 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4862 if (WARN_ON(IS_ERR(rb_hammer))) { 4863 pr_cont("FAILED\n"); 4864 ret = PTR_ERR(rb_hammer); 4865 goto out_free; 4866 } 4867 4868 ring_buffer_record_on(buffer); 4869 /* 4870 * Show buffer is enabled before setting rb_test_started. 4871 * Yes there's a small race window where events could be 4872 * dropped and the thread wont catch it. But when a ring 4873 * buffer gets enabled, there will always be some kind of 4874 * delay before other CPUs see it. Thus, we don't care about 4875 * those dropped events. We care about events dropped after 4876 * the threads see that the buffer is active. 4877 */ 4878 smp_wmb(); 4879 rb_test_started = true; 4880 4881 set_current_state(TASK_INTERRUPTIBLE); 4882 /* Just run for 10 seconds */; 4883 schedule_timeout(10 * HZ); 4884 4885 kthread_stop(rb_hammer); 4886 4887 out_free: 4888 for_each_online_cpu(cpu) { 4889 if (!rb_threads[cpu]) 4890 break; 4891 kthread_stop(rb_threads[cpu]); 4892 } 4893 if (ret) { 4894 ring_buffer_free(buffer); 4895 return ret; 4896 } 4897 4898 /* Report! */ 4899 pr_info("finished\n"); 4900 for_each_online_cpu(cpu) { 4901 struct ring_buffer_event *event; 4902 struct rb_test_data *data = &rb_data[cpu]; 4903 struct rb_item *item; 4904 unsigned long total_events; 4905 unsigned long total_dropped; 4906 unsigned long total_written; 4907 unsigned long total_alloc; 4908 unsigned long total_read = 0; 4909 unsigned long total_size = 0; 4910 unsigned long total_len = 0; 4911 unsigned long total_lost = 0; 4912 unsigned long lost; 4913 int big_event_size; 4914 int small_event_size; 4915 4916 ret = -1; 4917 4918 total_events = data->events + data->events_nested; 4919 total_written = data->bytes_written + data->bytes_written_nested; 4920 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4921 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4922 4923 big_event_size = data->max_size + data->max_size_nested; 4924 small_event_size = data->min_size + data->min_size_nested; 4925 4926 pr_info("CPU %d:\n", cpu); 4927 pr_info(" events: %ld\n", total_events); 4928 pr_info(" dropped bytes: %ld\n", total_dropped); 4929 pr_info(" alloced bytes: %ld\n", total_alloc); 4930 pr_info(" written bytes: %ld\n", total_written); 4931 pr_info(" biggest event: %d\n", big_event_size); 4932 pr_info(" smallest event: %d\n", small_event_size); 4933 4934 if (RB_WARN_ON(buffer, total_dropped)) 4935 break; 4936 4937 ret = 0; 4938 4939 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4940 total_lost += lost; 4941 item = ring_buffer_event_data(event); 4942 total_len += ring_buffer_event_length(event); 4943 total_size += item->size + sizeof(struct rb_item); 4944 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4945 pr_info("FAILED!\n"); 4946 pr_info("buffer had: %.*s\n", item->size, item->str); 4947 pr_info("expected: %.*s\n", item->size, rb_string); 4948 RB_WARN_ON(buffer, 1); 4949 ret = -1; 4950 break; 4951 } 4952 total_read++; 4953 } 4954 if (ret) 4955 break; 4956 4957 ret = -1; 4958 4959 pr_info(" read events: %ld\n", total_read); 4960 pr_info(" lost events: %ld\n", total_lost); 4961 pr_info(" total events: %ld\n", total_lost + total_read); 4962 pr_info(" recorded len bytes: %ld\n", total_len); 4963 pr_info(" recorded size bytes: %ld\n", total_size); 4964 if (total_lost) 4965 pr_info(" With dropped events, record len and size may not match\n" 4966 " alloced and written from above\n"); 4967 if (!total_lost) { 4968 if (RB_WARN_ON(buffer, total_len != total_alloc || 4969 total_size != total_written)) 4970 break; 4971 } 4972 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4973 break; 4974 4975 ret = 0; 4976 } 4977 if (!ret) 4978 pr_info("Ring buffer PASSED!\n"); 4979 4980 ring_buffer_free(buffer); 4981 return 0; 4982 } 4983 4984 late_initcall(test_ringbuffer); 4985 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4986