1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_events.h> 8 #include <linux/ring_buffer.h> 9 #include <linux/trace_clock.h> 10 #include <linux/sched/clock.h> 11 #include <linux/trace_seq.h> 12 #include <linux/spinlock.h> 13 #include <linux/irq_work.h> 14 #include <linux/uaccess.h> 15 #include <linux/hardirq.h> 16 #include <linux/kthread.h> /* for self test */ 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/oom.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 trace_seq_puts(s, "# compressed entry header\n"); 38 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 39 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 40 trace_seq_puts(s, "\tarray : 32 bits\n"); 41 trace_seq_putc(s, '\n'); 42 trace_seq_printf(s, "\tpadding : type == %d\n", 43 RINGBUF_TYPE_PADDING); 44 trace_seq_printf(s, "\ttime_extend : type == %d\n", 45 RINGBUF_TYPE_TIME_EXTEND); 46 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 47 RINGBUF_TYPE_TIME_STAMP); 48 trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return !trace_seq_has_overflowed(s); 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* Used for individual buffers (after the counter) */ 123 #define RB_BUFFER_OFF (1 << 20) 124 125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 126 127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 128 #define RB_ALIGNMENT 4U 129 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 130 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 131 #define RB_ALIGN_DATA __aligned(RB_ALIGNMENT) 132 133 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 134 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 135 136 enum { 137 RB_LEN_TIME_EXTEND = 8, 138 RB_LEN_TIME_STAMP = 8, 139 }; 140 141 #define skip_time_extend(event) \ 142 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 143 144 #define extended_time(event) \ 145 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 146 147 static inline int rb_null_event(struct ring_buffer_event *event) 148 { 149 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 150 } 151 152 static void rb_event_set_padding(struct ring_buffer_event *event) 153 { 154 /* padding has a NULL time_delta */ 155 event->type_len = RINGBUF_TYPE_PADDING; 156 event->time_delta = 0; 157 } 158 159 static unsigned 160 rb_event_data_length(struct ring_buffer_event *event) 161 { 162 unsigned length; 163 164 if (event->type_len) 165 length = event->type_len * RB_ALIGNMENT; 166 else 167 length = event->array[0]; 168 return length + RB_EVNT_HDR_SIZE; 169 } 170 171 /* 172 * Return the length of the given event. Will return 173 * the length of the time extend if the event is a 174 * time extend. 175 */ 176 static inline unsigned 177 rb_event_length(struct ring_buffer_event *event) 178 { 179 switch (event->type_len) { 180 case RINGBUF_TYPE_PADDING: 181 if (rb_null_event(event)) 182 /* undefined */ 183 return -1; 184 return event->array[0] + RB_EVNT_HDR_SIZE; 185 186 case RINGBUF_TYPE_TIME_EXTEND: 187 return RB_LEN_TIME_EXTEND; 188 189 case RINGBUF_TYPE_TIME_STAMP: 190 return RB_LEN_TIME_STAMP; 191 192 case RINGBUF_TYPE_DATA: 193 return rb_event_data_length(event); 194 default: 195 BUG(); 196 } 197 /* not hit */ 198 return 0; 199 } 200 201 /* 202 * Return total length of time extend and data, 203 * or just the event length for all other events. 204 */ 205 static inline unsigned 206 rb_event_ts_length(struct ring_buffer_event *event) 207 { 208 unsigned len = 0; 209 210 if (extended_time(event)) { 211 /* time extends include the data event after it */ 212 len = RB_LEN_TIME_EXTEND; 213 event = skip_time_extend(event); 214 } 215 return len + rb_event_length(event); 216 } 217 218 /** 219 * ring_buffer_event_length - return the length of the event 220 * @event: the event to get the length of 221 * 222 * Returns the size of the data load of a data event. 223 * If the event is something other than a data event, it 224 * returns the size of the event itself. With the exception 225 * of a TIME EXTEND, where it still returns the size of the 226 * data load of the data event after it. 227 */ 228 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 229 { 230 unsigned length; 231 232 if (extended_time(event)) 233 event = skip_time_extend(event); 234 235 length = rb_event_length(event); 236 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 237 return length; 238 length -= RB_EVNT_HDR_SIZE; 239 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 240 length -= sizeof(event->array[0]); 241 return length; 242 } 243 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 244 245 /* inline for ring buffer fast paths */ 246 static __always_inline void * 247 rb_event_data(struct ring_buffer_event *event) 248 { 249 if (extended_time(event)) 250 event = skip_time_extend(event); 251 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 252 /* If length is in len field, then array[0] has the data */ 253 if (event->type_len) 254 return (void *)&event->array[0]; 255 /* Otherwise length is in array[0] and array[1] has the data */ 256 return (void *)&event->array[1]; 257 } 258 259 /** 260 * ring_buffer_event_data - return the data of the event 261 * @event: the event to get the data from 262 */ 263 void *ring_buffer_event_data(struct ring_buffer_event *event) 264 { 265 return rb_event_data(event); 266 } 267 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 268 269 #define for_each_buffer_cpu(buffer, cpu) \ 270 for_each_cpu(cpu, buffer->cpumask) 271 272 #define TS_SHIFT 27 273 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 274 #define TS_DELTA_TEST (~TS_MASK) 275 276 /** 277 * ring_buffer_event_time_stamp - return the event's extended timestamp 278 * @event: the event to get the timestamp of 279 * 280 * Returns the extended timestamp associated with a data event. 281 * An extended time_stamp is a 64-bit timestamp represented 282 * internally in a special way that makes the best use of space 283 * contained within a ring buffer event. This function decodes 284 * it and maps it to a straight u64 value. 285 */ 286 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 287 { 288 u64 ts; 289 290 ts = event->array[0]; 291 ts <<= TS_SHIFT; 292 ts += event->time_delta; 293 294 return ts; 295 } 296 297 /* Flag when events were overwritten */ 298 #define RB_MISSED_EVENTS (1 << 31) 299 /* Missed count stored at end */ 300 #define RB_MISSED_STORED (1 << 30) 301 302 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED) 303 304 struct buffer_data_page { 305 u64 time_stamp; /* page time stamp */ 306 local_t commit; /* write committed index */ 307 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 308 }; 309 310 /* 311 * Note, the buffer_page list must be first. The buffer pages 312 * are allocated in cache lines, which means that each buffer 313 * page will be at the beginning of a cache line, and thus 314 * the least significant bits will be zero. We use this to 315 * add flags in the list struct pointers, to make the ring buffer 316 * lockless. 317 */ 318 struct buffer_page { 319 struct list_head list; /* list of buffer pages */ 320 local_t write; /* index for next write */ 321 unsigned read; /* index for next read */ 322 local_t entries; /* entries on this page */ 323 unsigned long real_end; /* real end of data */ 324 struct buffer_data_page *page; /* Actual data page */ 325 }; 326 327 /* 328 * The buffer page counters, write and entries, must be reset 329 * atomically when crossing page boundaries. To synchronize this 330 * update, two counters are inserted into the number. One is 331 * the actual counter for the write position or count on the page. 332 * 333 * The other is a counter of updaters. Before an update happens 334 * the update partition of the counter is incremented. This will 335 * allow the updater to update the counter atomically. 336 * 337 * The counter is 20 bits, and the state data is 12. 338 */ 339 #define RB_WRITE_MASK 0xfffff 340 #define RB_WRITE_INTCNT (1 << 20) 341 342 static void rb_init_page(struct buffer_data_page *bpage) 343 { 344 local_set(&bpage->commit, 0); 345 } 346 347 /* 348 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 349 * this issue out. 350 */ 351 static void free_buffer_page(struct buffer_page *bpage) 352 { 353 free_page((unsigned long)bpage->page); 354 kfree(bpage); 355 } 356 357 /* 358 * We need to fit the time_stamp delta into 27 bits. 359 */ 360 static inline int test_time_stamp(u64 delta) 361 { 362 if (delta & TS_DELTA_TEST) 363 return 1; 364 return 0; 365 } 366 367 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 368 369 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 370 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 371 372 int ring_buffer_print_page_header(struct trace_seq *s) 373 { 374 struct buffer_data_page field; 375 376 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 377 "offset:0;\tsize:%u;\tsigned:%u;\n", 378 (unsigned int)sizeof(field.time_stamp), 379 (unsigned int)is_signed_type(u64)); 380 381 trace_seq_printf(s, "\tfield: local_t commit;\t" 382 "offset:%u;\tsize:%u;\tsigned:%u;\n", 383 (unsigned int)offsetof(typeof(field), commit), 384 (unsigned int)sizeof(field.commit), 385 (unsigned int)is_signed_type(long)); 386 387 trace_seq_printf(s, "\tfield: int overwrite;\t" 388 "offset:%u;\tsize:%u;\tsigned:%u;\n", 389 (unsigned int)offsetof(typeof(field), commit), 390 1, 391 (unsigned int)is_signed_type(long)); 392 393 trace_seq_printf(s, "\tfield: char data;\t" 394 "offset:%u;\tsize:%u;\tsigned:%u;\n", 395 (unsigned int)offsetof(typeof(field), data), 396 (unsigned int)BUF_PAGE_SIZE, 397 (unsigned int)is_signed_type(char)); 398 399 return !trace_seq_has_overflowed(s); 400 } 401 402 struct rb_irq_work { 403 struct irq_work work; 404 wait_queue_head_t waiters; 405 wait_queue_head_t full_waiters; 406 bool waiters_pending; 407 bool full_waiters_pending; 408 bool wakeup_full; 409 }; 410 411 /* 412 * Structure to hold event state and handle nested events. 413 */ 414 struct rb_event_info { 415 u64 ts; 416 u64 delta; 417 unsigned long length; 418 struct buffer_page *tail_page; 419 int add_timestamp; 420 }; 421 422 /* 423 * Used for which event context the event is in. 424 * NMI = 0 425 * IRQ = 1 426 * SOFTIRQ = 2 427 * NORMAL = 3 428 * 429 * See trace_recursive_lock() comment below for more details. 430 */ 431 enum { 432 RB_CTX_NMI, 433 RB_CTX_IRQ, 434 RB_CTX_SOFTIRQ, 435 RB_CTX_NORMAL, 436 RB_CTX_MAX 437 }; 438 439 /* 440 * head_page == tail_page && head == tail then buffer is empty. 441 */ 442 struct ring_buffer_per_cpu { 443 int cpu; 444 atomic_t record_disabled; 445 struct ring_buffer *buffer; 446 raw_spinlock_t reader_lock; /* serialize readers */ 447 arch_spinlock_t lock; 448 struct lock_class_key lock_key; 449 struct buffer_data_page *free_page; 450 unsigned long nr_pages; 451 unsigned int current_context; 452 struct list_head *pages; 453 struct buffer_page *head_page; /* read from head */ 454 struct buffer_page *tail_page; /* write to tail */ 455 struct buffer_page *commit_page; /* committed pages */ 456 struct buffer_page *reader_page; 457 unsigned long lost_events; 458 unsigned long last_overrun; 459 unsigned long nest; 460 local_t entries_bytes; 461 local_t entries; 462 local_t overrun; 463 local_t commit_overrun; 464 local_t dropped_events; 465 local_t committing; 466 local_t commits; 467 local_t pages_touched; 468 local_t pages_read; 469 long last_pages_touch; 470 size_t shortest_full; 471 unsigned long read; 472 unsigned long read_bytes; 473 u64 write_stamp; 474 u64 read_stamp; 475 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 476 long nr_pages_to_update; 477 struct list_head new_pages; /* new pages to add */ 478 struct work_struct update_pages_work; 479 struct completion update_done; 480 481 struct rb_irq_work irq_work; 482 }; 483 484 struct ring_buffer { 485 unsigned flags; 486 int cpus; 487 atomic_t record_disabled; 488 atomic_t resize_disabled; 489 cpumask_var_t cpumask; 490 491 struct lock_class_key *reader_lock_key; 492 493 struct mutex mutex; 494 495 struct ring_buffer_per_cpu **buffers; 496 497 struct hlist_node node; 498 u64 (*clock)(void); 499 500 struct rb_irq_work irq_work; 501 bool time_stamp_abs; 502 }; 503 504 struct ring_buffer_iter { 505 struct ring_buffer_per_cpu *cpu_buffer; 506 unsigned long head; 507 struct buffer_page *head_page; 508 struct buffer_page *cache_reader_page; 509 unsigned long cache_read; 510 u64 read_stamp; 511 }; 512 513 /** 514 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 515 * @buffer: The ring_buffer to get the number of pages from 516 * @cpu: The cpu of the ring_buffer to get the number of pages from 517 * 518 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 519 */ 520 size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu) 521 { 522 return buffer->buffers[cpu]->nr_pages; 523 } 524 525 /** 526 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 527 * @buffer: The ring_buffer to get the number of pages from 528 * @cpu: The cpu of the ring_buffer to get the number of pages from 529 * 530 * Returns the number of pages that have content in the ring buffer. 531 */ 532 size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu) 533 { 534 size_t read; 535 size_t cnt; 536 537 read = local_read(&buffer->buffers[cpu]->pages_read); 538 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 539 /* The reader can read an empty page, but not more than that */ 540 if (cnt < read) { 541 WARN_ON_ONCE(read > cnt + 1); 542 return 0; 543 } 544 545 return cnt - read; 546 } 547 548 /* 549 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 550 * 551 * Schedules a delayed work to wake up any task that is blocked on the 552 * ring buffer waiters queue. 553 */ 554 static void rb_wake_up_waiters(struct irq_work *work) 555 { 556 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 557 558 wake_up_all(&rbwork->waiters); 559 if (rbwork->wakeup_full) { 560 rbwork->wakeup_full = false; 561 wake_up_all(&rbwork->full_waiters); 562 } 563 } 564 565 /** 566 * ring_buffer_wait - wait for input to the ring buffer 567 * @buffer: buffer to wait on 568 * @cpu: the cpu buffer to wait on 569 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 570 * 571 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 572 * as data is added to any of the @buffer's cpu buffers. Otherwise 573 * it will wait for data to be added to a specific cpu buffer. 574 */ 575 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full) 576 { 577 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 578 DEFINE_WAIT(wait); 579 struct rb_irq_work *work; 580 int ret = 0; 581 582 /* 583 * Depending on what the caller is waiting for, either any 584 * data in any cpu buffer, or a specific buffer, put the 585 * caller on the appropriate wait queue. 586 */ 587 if (cpu == RING_BUFFER_ALL_CPUS) { 588 work = &buffer->irq_work; 589 /* Full only makes sense on per cpu reads */ 590 full = 0; 591 } else { 592 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 593 return -ENODEV; 594 cpu_buffer = buffer->buffers[cpu]; 595 work = &cpu_buffer->irq_work; 596 } 597 598 599 while (true) { 600 if (full) 601 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 602 else 603 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 604 605 /* 606 * The events can happen in critical sections where 607 * checking a work queue can cause deadlocks. 608 * After adding a task to the queue, this flag is set 609 * only to notify events to try to wake up the queue 610 * using irq_work. 611 * 612 * We don't clear it even if the buffer is no longer 613 * empty. The flag only causes the next event to run 614 * irq_work to do the work queue wake up. The worse 615 * that can happen if we race with !trace_empty() is that 616 * an event will cause an irq_work to try to wake up 617 * an empty queue. 618 * 619 * There's no reason to protect this flag either, as 620 * the work queue and irq_work logic will do the necessary 621 * synchronization for the wake ups. The only thing 622 * that is necessary is that the wake up happens after 623 * a task has been queued. It's OK for spurious wake ups. 624 */ 625 if (full) 626 work->full_waiters_pending = true; 627 else 628 work->waiters_pending = true; 629 630 if (signal_pending(current)) { 631 ret = -EINTR; 632 break; 633 } 634 635 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 636 break; 637 638 if (cpu != RING_BUFFER_ALL_CPUS && 639 !ring_buffer_empty_cpu(buffer, cpu)) { 640 unsigned long flags; 641 bool pagebusy; 642 size_t nr_pages; 643 size_t dirty; 644 645 if (!full) 646 break; 647 648 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 649 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 650 nr_pages = cpu_buffer->nr_pages; 651 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 652 if (!cpu_buffer->shortest_full || 653 cpu_buffer->shortest_full < full) 654 cpu_buffer->shortest_full = full; 655 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 656 if (!pagebusy && 657 (!nr_pages || (dirty * 100) > full * nr_pages)) 658 break; 659 } 660 661 schedule(); 662 } 663 664 if (full) 665 finish_wait(&work->full_waiters, &wait); 666 else 667 finish_wait(&work->waiters, &wait); 668 669 return ret; 670 } 671 672 /** 673 * ring_buffer_poll_wait - poll on buffer input 674 * @buffer: buffer to wait on 675 * @cpu: the cpu buffer to wait on 676 * @filp: the file descriptor 677 * @poll_table: The poll descriptor 678 * 679 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 680 * as data is added to any of the @buffer's cpu buffers. Otherwise 681 * it will wait for data to be added to a specific cpu buffer. 682 * 683 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 684 * zero otherwise. 685 */ 686 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 687 struct file *filp, poll_table *poll_table) 688 { 689 struct ring_buffer_per_cpu *cpu_buffer; 690 struct rb_irq_work *work; 691 692 if (cpu == RING_BUFFER_ALL_CPUS) 693 work = &buffer->irq_work; 694 else { 695 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 696 return -EINVAL; 697 698 cpu_buffer = buffer->buffers[cpu]; 699 work = &cpu_buffer->irq_work; 700 } 701 702 poll_wait(filp, &work->waiters, poll_table); 703 work->waiters_pending = true; 704 /* 705 * There's a tight race between setting the waiters_pending and 706 * checking if the ring buffer is empty. Once the waiters_pending bit 707 * is set, the next event will wake the task up, but we can get stuck 708 * if there's only a single event in. 709 * 710 * FIXME: Ideally, we need a memory barrier on the writer side as well, 711 * but adding a memory barrier to all events will cause too much of a 712 * performance hit in the fast path. We only need a memory barrier when 713 * the buffer goes from empty to having content. But as this race is 714 * extremely small, and it's not a problem if another event comes in, we 715 * will fix it later. 716 */ 717 smp_mb(); 718 719 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 720 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 721 return EPOLLIN | EPOLLRDNORM; 722 return 0; 723 } 724 725 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 726 #define RB_WARN_ON(b, cond) \ 727 ({ \ 728 int _____ret = unlikely(cond); \ 729 if (_____ret) { \ 730 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 731 struct ring_buffer_per_cpu *__b = \ 732 (void *)b; \ 733 atomic_inc(&__b->buffer->record_disabled); \ 734 } else \ 735 atomic_inc(&b->record_disabled); \ 736 WARN_ON(1); \ 737 } \ 738 _____ret; \ 739 }) 740 741 /* Up this if you want to test the TIME_EXTENTS and normalization */ 742 #define DEBUG_SHIFT 0 743 744 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 745 { 746 /* shift to debug/test normalization and TIME_EXTENTS */ 747 return buffer->clock() << DEBUG_SHIFT; 748 } 749 750 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 751 { 752 u64 time; 753 754 preempt_disable_notrace(); 755 time = rb_time_stamp(buffer); 756 preempt_enable_notrace(); 757 758 return time; 759 } 760 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 761 762 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 763 int cpu, u64 *ts) 764 { 765 /* Just stupid testing the normalize function and deltas */ 766 *ts >>= DEBUG_SHIFT; 767 } 768 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 769 770 /* 771 * Making the ring buffer lockless makes things tricky. 772 * Although writes only happen on the CPU that they are on, 773 * and they only need to worry about interrupts. Reads can 774 * happen on any CPU. 775 * 776 * The reader page is always off the ring buffer, but when the 777 * reader finishes with a page, it needs to swap its page with 778 * a new one from the buffer. The reader needs to take from 779 * the head (writes go to the tail). But if a writer is in overwrite 780 * mode and wraps, it must push the head page forward. 781 * 782 * Here lies the problem. 783 * 784 * The reader must be careful to replace only the head page, and 785 * not another one. As described at the top of the file in the 786 * ASCII art, the reader sets its old page to point to the next 787 * page after head. It then sets the page after head to point to 788 * the old reader page. But if the writer moves the head page 789 * during this operation, the reader could end up with the tail. 790 * 791 * We use cmpxchg to help prevent this race. We also do something 792 * special with the page before head. We set the LSB to 1. 793 * 794 * When the writer must push the page forward, it will clear the 795 * bit that points to the head page, move the head, and then set 796 * the bit that points to the new head page. 797 * 798 * We also don't want an interrupt coming in and moving the head 799 * page on another writer. Thus we use the second LSB to catch 800 * that too. Thus: 801 * 802 * head->list->prev->next bit 1 bit 0 803 * ------- ------- 804 * Normal page 0 0 805 * Points to head page 0 1 806 * New head page 1 0 807 * 808 * Note we can not trust the prev pointer of the head page, because: 809 * 810 * +----+ +-----+ +-----+ 811 * | |------>| T |---X--->| N | 812 * | |<------| | | | 813 * +----+ +-----+ +-----+ 814 * ^ ^ | 815 * | +-----+ | | 816 * +----------| R |----------+ | 817 * | |<-----------+ 818 * +-----+ 819 * 820 * Key: ---X--> HEAD flag set in pointer 821 * T Tail page 822 * R Reader page 823 * N Next page 824 * 825 * (see __rb_reserve_next() to see where this happens) 826 * 827 * What the above shows is that the reader just swapped out 828 * the reader page with a page in the buffer, but before it 829 * could make the new header point back to the new page added 830 * it was preempted by a writer. The writer moved forward onto 831 * the new page added by the reader and is about to move forward 832 * again. 833 * 834 * You can see, it is legitimate for the previous pointer of 835 * the head (or any page) not to point back to itself. But only 836 * temporarily. 837 */ 838 839 #define RB_PAGE_NORMAL 0UL 840 #define RB_PAGE_HEAD 1UL 841 #define RB_PAGE_UPDATE 2UL 842 843 844 #define RB_FLAG_MASK 3UL 845 846 /* PAGE_MOVED is not part of the mask */ 847 #define RB_PAGE_MOVED 4UL 848 849 /* 850 * rb_list_head - remove any bit 851 */ 852 static struct list_head *rb_list_head(struct list_head *list) 853 { 854 unsigned long val = (unsigned long)list; 855 856 return (struct list_head *)(val & ~RB_FLAG_MASK); 857 } 858 859 /* 860 * rb_is_head_page - test if the given page is the head page 861 * 862 * Because the reader may move the head_page pointer, we can 863 * not trust what the head page is (it may be pointing to 864 * the reader page). But if the next page is a header page, 865 * its flags will be non zero. 866 */ 867 static inline int 868 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 869 struct buffer_page *page, struct list_head *list) 870 { 871 unsigned long val; 872 873 val = (unsigned long)list->next; 874 875 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 876 return RB_PAGE_MOVED; 877 878 return val & RB_FLAG_MASK; 879 } 880 881 /* 882 * rb_is_reader_page 883 * 884 * The unique thing about the reader page, is that, if the 885 * writer is ever on it, the previous pointer never points 886 * back to the reader page. 887 */ 888 static bool rb_is_reader_page(struct buffer_page *page) 889 { 890 struct list_head *list = page->list.prev; 891 892 return rb_list_head(list->next) != &page->list; 893 } 894 895 /* 896 * rb_set_list_to_head - set a list_head to be pointing to head. 897 */ 898 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 899 struct list_head *list) 900 { 901 unsigned long *ptr; 902 903 ptr = (unsigned long *)&list->next; 904 *ptr |= RB_PAGE_HEAD; 905 *ptr &= ~RB_PAGE_UPDATE; 906 } 907 908 /* 909 * rb_head_page_activate - sets up head page 910 */ 911 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 912 { 913 struct buffer_page *head; 914 915 head = cpu_buffer->head_page; 916 if (!head) 917 return; 918 919 /* 920 * Set the previous list pointer to have the HEAD flag. 921 */ 922 rb_set_list_to_head(cpu_buffer, head->list.prev); 923 } 924 925 static void rb_list_head_clear(struct list_head *list) 926 { 927 unsigned long *ptr = (unsigned long *)&list->next; 928 929 *ptr &= ~RB_FLAG_MASK; 930 } 931 932 /* 933 * rb_head_page_deactivate - clears head page ptr (for free list) 934 */ 935 static void 936 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 937 { 938 struct list_head *hd; 939 940 /* Go through the whole list and clear any pointers found. */ 941 rb_list_head_clear(cpu_buffer->pages); 942 943 list_for_each(hd, cpu_buffer->pages) 944 rb_list_head_clear(hd); 945 } 946 947 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 948 struct buffer_page *head, 949 struct buffer_page *prev, 950 int old_flag, int new_flag) 951 { 952 struct list_head *list; 953 unsigned long val = (unsigned long)&head->list; 954 unsigned long ret; 955 956 list = &prev->list; 957 958 val &= ~RB_FLAG_MASK; 959 960 ret = cmpxchg((unsigned long *)&list->next, 961 val | old_flag, val | new_flag); 962 963 /* check if the reader took the page */ 964 if ((ret & ~RB_FLAG_MASK) != val) 965 return RB_PAGE_MOVED; 966 967 return ret & RB_FLAG_MASK; 968 } 969 970 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 971 struct buffer_page *head, 972 struct buffer_page *prev, 973 int old_flag) 974 { 975 return rb_head_page_set(cpu_buffer, head, prev, 976 old_flag, RB_PAGE_UPDATE); 977 } 978 979 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 980 struct buffer_page *head, 981 struct buffer_page *prev, 982 int old_flag) 983 { 984 return rb_head_page_set(cpu_buffer, head, prev, 985 old_flag, RB_PAGE_HEAD); 986 } 987 988 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 989 struct buffer_page *head, 990 struct buffer_page *prev, 991 int old_flag) 992 { 993 return rb_head_page_set(cpu_buffer, head, prev, 994 old_flag, RB_PAGE_NORMAL); 995 } 996 997 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 998 struct buffer_page **bpage) 999 { 1000 struct list_head *p = rb_list_head((*bpage)->list.next); 1001 1002 *bpage = list_entry(p, struct buffer_page, list); 1003 } 1004 1005 static struct buffer_page * 1006 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1007 { 1008 struct buffer_page *head; 1009 struct buffer_page *page; 1010 struct list_head *list; 1011 int i; 1012 1013 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1014 return NULL; 1015 1016 /* sanity check */ 1017 list = cpu_buffer->pages; 1018 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1019 return NULL; 1020 1021 page = head = cpu_buffer->head_page; 1022 /* 1023 * It is possible that the writer moves the header behind 1024 * where we started, and we miss in one loop. 1025 * A second loop should grab the header, but we'll do 1026 * three loops just because I'm paranoid. 1027 */ 1028 for (i = 0; i < 3; i++) { 1029 do { 1030 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1031 cpu_buffer->head_page = page; 1032 return page; 1033 } 1034 rb_inc_page(cpu_buffer, &page); 1035 } while (page != head); 1036 } 1037 1038 RB_WARN_ON(cpu_buffer, 1); 1039 1040 return NULL; 1041 } 1042 1043 static int rb_head_page_replace(struct buffer_page *old, 1044 struct buffer_page *new) 1045 { 1046 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1047 unsigned long val; 1048 unsigned long ret; 1049 1050 val = *ptr & ~RB_FLAG_MASK; 1051 val |= RB_PAGE_HEAD; 1052 1053 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1054 1055 return ret == val; 1056 } 1057 1058 /* 1059 * rb_tail_page_update - move the tail page forward 1060 */ 1061 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1062 struct buffer_page *tail_page, 1063 struct buffer_page *next_page) 1064 { 1065 unsigned long old_entries; 1066 unsigned long old_write; 1067 1068 /* 1069 * The tail page now needs to be moved forward. 1070 * 1071 * We need to reset the tail page, but without messing 1072 * with possible erasing of data brought in by interrupts 1073 * that have moved the tail page and are currently on it. 1074 * 1075 * We add a counter to the write field to denote this. 1076 */ 1077 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1078 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1079 1080 local_inc(&cpu_buffer->pages_touched); 1081 /* 1082 * Just make sure we have seen our old_write and synchronize 1083 * with any interrupts that come in. 1084 */ 1085 barrier(); 1086 1087 /* 1088 * If the tail page is still the same as what we think 1089 * it is, then it is up to us to update the tail 1090 * pointer. 1091 */ 1092 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1093 /* Zero the write counter */ 1094 unsigned long val = old_write & ~RB_WRITE_MASK; 1095 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1096 1097 /* 1098 * This will only succeed if an interrupt did 1099 * not come in and change it. In which case, we 1100 * do not want to modify it. 1101 * 1102 * We add (void) to let the compiler know that we do not care 1103 * about the return value of these functions. We use the 1104 * cmpxchg to only update if an interrupt did not already 1105 * do it for us. If the cmpxchg fails, we don't care. 1106 */ 1107 (void)local_cmpxchg(&next_page->write, old_write, val); 1108 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1109 1110 /* 1111 * No need to worry about races with clearing out the commit. 1112 * it only can increment when a commit takes place. But that 1113 * only happens in the outer most nested commit. 1114 */ 1115 local_set(&next_page->page->commit, 0); 1116 1117 /* Again, either we update tail_page or an interrupt does */ 1118 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1119 } 1120 } 1121 1122 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1123 struct buffer_page *bpage) 1124 { 1125 unsigned long val = (unsigned long)bpage; 1126 1127 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1128 return 1; 1129 1130 return 0; 1131 } 1132 1133 /** 1134 * rb_check_list - make sure a pointer to a list has the last bits zero 1135 */ 1136 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1137 struct list_head *list) 1138 { 1139 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1140 return 1; 1141 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1142 return 1; 1143 return 0; 1144 } 1145 1146 /** 1147 * rb_check_pages - integrity check of buffer pages 1148 * @cpu_buffer: CPU buffer with pages to test 1149 * 1150 * As a safety measure we check to make sure the data pages have not 1151 * been corrupted. 1152 */ 1153 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1154 { 1155 struct list_head *head = cpu_buffer->pages; 1156 struct buffer_page *bpage, *tmp; 1157 1158 /* Reset the head page if it exists */ 1159 if (cpu_buffer->head_page) 1160 rb_set_head_page(cpu_buffer); 1161 1162 rb_head_page_deactivate(cpu_buffer); 1163 1164 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1165 return -1; 1166 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1167 return -1; 1168 1169 if (rb_check_list(cpu_buffer, head)) 1170 return -1; 1171 1172 list_for_each_entry_safe(bpage, tmp, head, list) { 1173 if (RB_WARN_ON(cpu_buffer, 1174 bpage->list.next->prev != &bpage->list)) 1175 return -1; 1176 if (RB_WARN_ON(cpu_buffer, 1177 bpage->list.prev->next != &bpage->list)) 1178 return -1; 1179 if (rb_check_list(cpu_buffer, &bpage->list)) 1180 return -1; 1181 } 1182 1183 rb_head_page_activate(cpu_buffer); 1184 1185 return 0; 1186 } 1187 1188 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1189 { 1190 struct buffer_page *bpage, *tmp; 1191 bool user_thread = current->mm != NULL; 1192 gfp_t mflags; 1193 long i; 1194 1195 /* 1196 * Check if the available memory is there first. 1197 * Note, si_mem_available() only gives us a rough estimate of available 1198 * memory. It may not be accurate. But we don't care, we just want 1199 * to prevent doing any allocation when it is obvious that it is 1200 * not going to succeed. 1201 */ 1202 i = si_mem_available(); 1203 if (i < nr_pages) 1204 return -ENOMEM; 1205 1206 /* 1207 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1208 * gracefully without invoking oom-killer and the system is not 1209 * destabilized. 1210 */ 1211 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1212 1213 /* 1214 * If a user thread allocates too much, and si_mem_available() 1215 * reports there's enough memory, even though there is not. 1216 * Make sure the OOM killer kills this thread. This can happen 1217 * even with RETRY_MAYFAIL because another task may be doing 1218 * an allocation after this task has taken all memory. 1219 * This is the task the OOM killer needs to take out during this 1220 * loop, even if it was triggered by an allocation somewhere else. 1221 */ 1222 if (user_thread) 1223 set_current_oom_origin(); 1224 for (i = 0; i < nr_pages; i++) { 1225 struct page *page; 1226 1227 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1228 mflags, cpu_to_node(cpu)); 1229 if (!bpage) 1230 goto free_pages; 1231 1232 list_add(&bpage->list, pages); 1233 1234 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1235 if (!page) 1236 goto free_pages; 1237 bpage->page = page_address(page); 1238 rb_init_page(bpage->page); 1239 1240 if (user_thread && fatal_signal_pending(current)) 1241 goto free_pages; 1242 } 1243 if (user_thread) 1244 clear_current_oom_origin(); 1245 1246 return 0; 1247 1248 free_pages: 1249 list_for_each_entry_safe(bpage, tmp, pages, list) { 1250 list_del_init(&bpage->list); 1251 free_buffer_page(bpage); 1252 } 1253 if (user_thread) 1254 clear_current_oom_origin(); 1255 1256 return -ENOMEM; 1257 } 1258 1259 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1260 unsigned long nr_pages) 1261 { 1262 LIST_HEAD(pages); 1263 1264 WARN_ON(!nr_pages); 1265 1266 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1267 return -ENOMEM; 1268 1269 /* 1270 * The ring buffer page list is a circular list that does not 1271 * start and end with a list head. All page list items point to 1272 * other pages. 1273 */ 1274 cpu_buffer->pages = pages.next; 1275 list_del(&pages); 1276 1277 cpu_buffer->nr_pages = nr_pages; 1278 1279 rb_check_pages(cpu_buffer); 1280 1281 return 0; 1282 } 1283 1284 static struct ring_buffer_per_cpu * 1285 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1286 { 1287 struct ring_buffer_per_cpu *cpu_buffer; 1288 struct buffer_page *bpage; 1289 struct page *page; 1290 int ret; 1291 1292 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1293 GFP_KERNEL, cpu_to_node(cpu)); 1294 if (!cpu_buffer) 1295 return NULL; 1296 1297 cpu_buffer->cpu = cpu; 1298 cpu_buffer->buffer = buffer; 1299 raw_spin_lock_init(&cpu_buffer->reader_lock); 1300 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1301 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1302 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1303 init_completion(&cpu_buffer->update_done); 1304 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1305 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1306 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1307 1308 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1309 GFP_KERNEL, cpu_to_node(cpu)); 1310 if (!bpage) 1311 goto fail_free_buffer; 1312 1313 rb_check_bpage(cpu_buffer, bpage); 1314 1315 cpu_buffer->reader_page = bpage; 1316 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1317 if (!page) 1318 goto fail_free_reader; 1319 bpage->page = page_address(page); 1320 rb_init_page(bpage->page); 1321 1322 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1323 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1324 1325 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1326 if (ret < 0) 1327 goto fail_free_reader; 1328 1329 cpu_buffer->head_page 1330 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1331 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1332 1333 rb_head_page_activate(cpu_buffer); 1334 1335 return cpu_buffer; 1336 1337 fail_free_reader: 1338 free_buffer_page(cpu_buffer->reader_page); 1339 1340 fail_free_buffer: 1341 kfree(cpu_buffer); 1342 return NULL; 1343 } 1344 1345 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1346 { 1347 struct list_head *head = cpu_buffer->pages; 1348 struct buffer_page *bpage, *tmp; 1349 1350 free_buffer_page(cpu_buffer->reader_page); 1351 1352 rb_head_page_deactivate(cpu_buffer); 1353 1354 if (head) { 1355 list_for_each_entry_safe(bpage, tmp, head, list) { 1356 list_del_init(&bpage->list); 1357 free_buffer_page(bpage); 1358 } 1359 bpage = list_entry(head, struct buffer_page, list); 1360 free_buffer_page(bpage); 1361 } 1362 1363 kfree(cpu_buffer); 1364 } 1365 1366 /** 1367 * __ring_buffer_alloc - allocate a new ring_buffer 1368 * @size: the size in bytes per cpu that is needed. 1369 * @flags: attributes to set for the ring buffer. 1370 * 1371 * Currently the only flag that is available is the RB_FL_OVERWRITE 1372 * flag. This flag means that the buffer will overwrite old data 1373 * when the buffer wraps. If this flag is not set, the buffer will 1374 * drop data when the tail hits the head. 1375 */ 1376 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1377 struct lock_class_key *key) 1378 { 1379 struct ring_buffer *buffer; 1380 long nr_pages; 1381 int bsize; 1382 int cpu; 1383 int ret; 1384 1385 /* keep it in its own cache line */ 1386 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1387 GFP_KERNEL); 1388 if (!buffer) 1389 return NULL; 1390 1391 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1392 goto fail_free_buffer; 1393 1394 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1395 buffer->flags = flags; 1396 buffer->clock = trace_clock_local; 1397 buffer->reader_lock_key = key; 1398 1399 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1400 init_waitqueue_head(&buffer->irq_work.waiters); 1401 1402 /* need at least two pages */ 1403 if (nr_pages < 2) 1404 nr_pages = 2; 1405 1406 buffer->cpus = nr_cpu_ids; 1407 1408 bsize = sizeof(void *) * nr_cpu_ids; 1409 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1410 GFP_KERNEL); 1411 if (!buffer->buffers) 1412 goto fail_free_cpumask; 1413 1414 cpu = raw_smp_processor_id(); 1415 cpumask_set_cpu(cpu, buffer->cpumask); 1416 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1417 if (!buffer->buffers[cpu]) 1418 goto fail_free_buffers; 1419 1420 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1421 if (ret < 0) 1422 goto fail_free_buffers; 1423 1424 mutex_init(&buffer->mutex); 1425 1426 return buffer; 1427 1428 fail_free_buffers: 1429 for_each_buffer_cpu(buffer, cpu) { 1430 if (buffer->buffers[cpu]) 1431 rb_free_cpu_buffer(buffer->buffers[cpu]); 1432 } 1433 kfree(buffer->buffers); 1434 1435 fail_free_cpumask: 1436 free_cpumask_var(buffer->cpumask); 1437 1438 fail_free_buffer: 1439 kfree(buffer); 1440 return NULL; 1441 } 1442 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1443 1444 /** 1445 * ring_buffer_free - free a ring buffer. 1446 * @buffer: the buffer to free. 1447 */ 1448 void 1449 ring_buffer_free(struct ring_buffer *buffer) 1450 { 1451 int cpu; 1452 1453 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1454 1455 for_each_buffer_cpu(buffer, cpu) 1456 rb_free_cpu_buffer(buffer->buffers[cpu]); 1457 1458 kfree(buffer->buffers); 1459 free_cpumask_var(buffer->cpumask); 1460 1461 kfree(buffer); 1462 } 1463 EXPORT_SYMBOL_GPL(ring_buffer_free); 1464 1465 void ring_buffer_set_clock(struct ring_buffer *buffer, 1466 u64 (*clock)(void)) 1467 { 1468 buffer->clock = clock; 1469 } 1470 1471 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs) 1472 { 1473 buffer->time_stamp_abs = abs; 1474 } 1475 1476 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer) 1477 { 1478 return buffer->time_stamp_abs; 1479 } 1480 1481 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1482 1483 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1484 { 1485 return local_read(&bpage->entries) & RB_WRITE_MASK; 1486 } 1487 1488 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1489 { 1490 return local_read(&bpage->write) & RB_WRITE_MASK; 1491 } 1492 1493 static int 1494 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1495 { 1496 struct list_head *tail_page, *to_remove, *next_page; 1497 struct buffer_page *to_remove_page, *tmp_iter_page; 1498 struct buffer_page *last_page, *first_page; 1499 unsigned long nr_removed; 1500 unsigned long head_bit; 1501 int page_entries; 1502 1503 head_bit = 0; 1504 1505 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1506 atomic_inc(&cpu_buffer->record_disabled); 1507 /* 1508 * We don't race with the readers since we have acquired the reader 1509 * lock. We also don't race with writers after disabling recording. 1510 * This makes it easy to figure out the first and the last page to be 1511 * removed from the list. We unlink all the pages in between including 1512 * the first and last pages. This is done in a busy loop so that we 1513 * lose the least number of traces. 1514 * The pages are freed after we restart recording and unlock readers. 1515 */ 1516 tail_page = &cpu_buffer->tail_page->list; 1517 1518 /* 1519 * tail page might be on reader page, we remove the next page 1520 * from the ring buffer 1521 */ 1522 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1523 tail_page = rb_list_head(tail_page->next); 1524 to_remove = tail_page; 1525 1526 /* start of pages to remove */ 1527 first_page = list_entry(rb_list_head(to_remove->next), 1528 struct buffer_page, list); 1529 1530 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1531 to_remove = rb_list_head(to_remove)->next; 1532 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1533 } 1534 1535 next_page = rb_list_head(to_remove)->next; 1536 1537 /* 1538 * Now we remove all pages between tail_page and next_page. 1539 * Make sure that we have head_bit value preserved for the 1540 * next page 1541 */ 1542 tail_page->next = (struct list_head *)((unsigned long)next_page | 1543 head_bit); 1544 next_page = rb_list_head(next_page); 1545 next_page->prev = tail_page; 1546 1547 /* make sure pages points to a valid page in the ring buffer */ 1548 cpu_buffer->pages = next_page; 1549 1550 /* update head page */ 1551 if (head_bit) 1552 cpu_buffer->head_page = list_entry(next_page, 1553 struct buffer_page, list); 1554 1555 /* 1556 * change read pointer to make sure any read iterators reset 1557 * themselves 1558 */ 1559 cpu_buffer->read = 0; 1560 1561 /* pages are removed, resume tracing and then free the pages */ 1562 atomic_dec(&cpu_buffer->record_disabled); 1563 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1564 1565 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1566 1567 /* last buffer page to remove */ 1568 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1569 list); 1570 tmp_iter_page = first_page; 1571 1572 do { 1573 cond_resched(); 1574 1575 to_remove_page = tmp_iter_page; 1576 rb_inc_page(cpu_buffer, &tmp_iter_page); 1577 1578 /* update the counters */ 1579 page_entries = rb_page_entries(to_remove_page); 1580 if (page_entries) { 1581 /* 1582 * If something was added to this page, it was full 1583 * since it is not the tail page. So we deduct the 1584 * bytes consumed in ring buffer from here. 1585 * Increment overrun to account for the lost events. 1586 */ 1587 local_add(page_entries, &cpu_buffer->overrun); 1588 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1589 } 1590 1591 /* 1592 * We have already removed references to this list item, just 1593 * free up the buffer_page and its page 1594 */ 1595 free_buffer_page(to_remove_page); 1596 nr_removed--; 1597 1598 } while (to_remove_page != last_page); 1599 1600 RB_WARN_ON(cpu_buffer, nr_removed); 1601 1602 return nr_removed == 0; 1603 } 1604 1605 static int 1606 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1607 { 1608 struct list_head *pages = &cpu_buffer->new_pages; 1609 int retries, success; 1610 1611 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1612 /* 1613 * We are holding the reader lock, so the reader page won't be swapped 1614 * in the ring buffer. Now we are racing with the writer trying to 1615 * move head page and the tail page. 1616 * We are going to adapt the reader page update process where: 1617 * 1. We first splice the start and end of list of new pages between 1618 * the head page and its previous page. 1619 * 2. We cmpxchg the prev_page->next to point from head page to the 1620 * start of new pages list. 1621 * 3. Finally, we update the head->prev to the end of new list. 1622 * 1623 * We will try this process 10 times, to make sure that we don't keep 1624 * spinning. 1625 */ 1626 retries = 10; 1627 success = 0; 1628 while (retries--) { 1629 struct list_head *head_page, *prev_page, *r; 1630 struct list_head *last_page, *first_page; 1631 struct list_head *head_page_with_bit; 1632 1633 head_page = &rb_set_head_page(cpu_buffer)->list; 1634 if (!head_page) 1635 break; 1636 prev_page = head_page->prev; 1637 1638 first_page = pages->next; 1639 last_page = pages->prev; 1640 1641 head_page_with_bit = (struct list_head *) 1642 ((unsigned long)head_page | RB_PAGE_HEAD); 1643 1644 last_page->next = head_page_with_bit; 1645 first_page->prev = prev_page; 1646 1647 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1648 1649 if (r == head_page_with_bit) { 1650 /* 1651 * yay, we replaced the page pointer to our new list, 1652 * now, we just have to update to head page's prev 1653 * pointer to point to end of list 1654 */ 1655 head_page->prev = last_page; 1656 success = 1; 1657 break; 1658 } 1659 } 1660 1661 if (success) 1662 INIT_LIST_HEAD(pages); 1663 /* 1664 * If we weren't successful in adding in new pages, warn and stop 1665 * tracing 1666 */ 1667 RB_WARN_ON(cpu_buffer, !success); 1668 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1669 1670 /* free pages if they weren't inserted */ 1671 if (!success) { 1672 struct buffer_page *bpage, *tmp; 1673 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1674 list) { 1675 list_del_init(&bpage->list); 1676 free_buffer_page(bpage); 1677 } 1678 } 1679 return success; 1680 } 1681 1682 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1683 { 1684 int success; 1685 1686 if (cpu_buffer->nr_pages_to_update > 0) 1687 success = rb_insert_pages(cpu_buffer); 1688 else 1689 success = rb_remove_pages(cpu_buffer, 1690 -cpu_buffer->nr_pages_to_update); 1691 1692 if (success) 1693 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1694 } 1695 1696 static void update_pages_handler(struct work_struct *work) 1697 { 1698 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1699 struct ring_buffer_per_cpu, update_pages_work); 1700 rb_update_pages(cpu_buffer); 1701 complete(&cpu_buffer->update_done); 1702 } 1703 1704 /** 1705 * ring_buffer_resize - resize the ring buffer 1706 * @buffer: the buffer to resize. 1707 * @size: the new size. 1708 * @cpu_id: the cpu buffer to resize 1709 * 1710 * Minimum size is 2 * BUF_PAGE_SIZE. 1711 * 1712 * Returns 0 on success and < 0 on failure. 1713 */ 1714 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1715 int cpu_id) 1716 { 1717 struct ring_buffer_per_cpu *cpu_buffer; 1718 unsigned long nr_pages; 1719 int cpu, err = 0; 1720 1721 /* 1722 * Always succeed at resizing a non-existent buffer: 1723 */ 1724 if (!buffer) 1725 return size; 1726 1727 /* Make sure the requested buffer exists */ 1728 if (cpu_id != RING_BUFFER_ALL_CPUS && 1729 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1730 return size; 1731 1732 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1733 1734 /* we need a minimum of two pages */ 1735 if (nr_pages < 2) 1736 nr_pages = 2; 1737 1738 size = nr_pages * BUF_PAGE_SIZE; 1739 1740 /* 1741 * Don't succeed if resizing is disabled, as a reader might be 1742 * manipulating the ring buffer and is expecting a sane state while 1743 * this is true. 1744 */ 1745 if (atomic_read(&buffer->resize_disabled)) 1746 return -EBUSY; 1747 1748 /* prevent another thread from changing buffer sizes */ 1749 mutex_lock(&buffer->mutex); 1750 1751 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1752 /* calculate the pages to update */ 1753 for_each_buffer_cpu(buffer, cpu) { 1754 cpu_buffer = buffer->buffers[cpu]; 1755 1756 cpu_buffer->nr_pages_to_update = nr_pages - 1757 cpu_buffer->nr_pages; 1758 /* 1759 * nothing more to do for removing pages or no update 1760 */ 1761 if (cpu_buffer->nr_pages_to_update <= 0) 1762 continue; 1763 /* 1764 * to add pages, make sure all new pages can be 1765 * allocated without receiving ENOMEM 1766 */ 1767 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1768 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1769 &cpu_buffer->new_pages, cpu)) { 1770 /* not enough memory for new pages */ 1771 err = -ENOMEM; 1772 goto out_err; 1773 } 1774 } 1775 1776 get_online_cpus(); 1777 /* 1778 * Fire off all the required work handlers 1779 * We can't schedule on offline CPUs, but it's not necessary 1780 * since we can change their buffer sizes without any race. 1781 */ 1782 for_each_buffer_cpu(buffer, cpu) { 1783 cpu_buffer = buffer->buffers[cpu]; 1784 if (!cpu_buffer->nr_pages_to_update) 1785 continue; 1786 1787 /* Can't run something on an offline CPU. */ 1788 if (!cpu_online(cpu)) { 1789 rb_update_pages(cpu_buffer); 1790 cpu_buffer->nr_pages_to_update = 0; 1791 } else { 1792 schedule_work_on(cpu, 1793 &cpu_buffer->update_pages_work); 1794 } 1795 } 1796 1797 /* wait for all the updates to complete */ 1798 for_each_buffer_cpu(buffer, cpu) { 1799 cpu_buffer = buffer->buffers[cpu]; 1800 if (!cpu_buffer->nr_pages_to_update) 1801 continue; 1802 1803 if (cpu_online(cpu)) 1804 wait_for_completion(&cpu_buffer->update_done); 1805 cpu_buffer->nr_pages_to_update = 0; 1806 } 1807 1808 put_online_cpus(); 1809 } else { 1810 /* Make sure this CPU has been initialized */ 1811 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1812 goto out; 1813 1814 cpu_buffer = buffer->buffers[cpu_id]; 1815 1816 if (nr_pages == cpu_buffer->nr_pages) 1817 goto out; 1818 1819 cpu_buffer->nr_pages_to_update = nr_pages - 1820 cpu_buffer->nr_pages; 1821 1822 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1823 if (cpu_buffer->nr_pages_to_update > 0 && 1824 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1825 &cpu_buffer->new_pages, cpu_id)) { 1826 err = -ENOMEM; 1827 goto out_err; 1828 } 1829 1830 get_online_cpus(); 1831 1832 /* Can't run something on an offline CPU. */ 1833 if (!cpu_online(cpu_id)) 1834 rb_update_pages(cpu_buffer); 1835 else { 1836 schedule_work_on(cpu_id, 1837 &cpu_buffer->update_pages_work); 1838 wait_for_completion(&cpu_buffer->update_done); 1839 } 1840 1841 cpu_buffer->nr_pages_to_update = 0; 1842 put_online_cpus(); 1843 } 1844 1845 out: 1846 /* 1847 * The ring buffer resize can happen with the ring buffer 1848 * enabled, so that the update disturbs the tracing as little 1849 * as possible. But if the buffer is disabled, we do not need 1850 * to worry about that, and we can take the time to verify 1851 * that the buffer is not corrupt. 1852 */ 1853 if (atomic_read(&buffer->record_disabled)) { 1854 atomic_inc(&buffer->record_disabled); 1855 /* 1856 * Even though the buffer was disabled, we must make sure 1857 * that it is truly disabled before calling rb_check_pages. 1858 * There could have been a race between checking 1859 * record_disable and incrementing it. 1860 */ 1861 synchronize_rcu(); 1862 for_each_buffer_cpu(buffer, cpu) { 1863 cpu_buffer = buffer->buffers[cpu]; 1864 rb_check_pages(cpu_buffer); 1865 } 1866 atomic_dec(&buffer->record_disabled); 1867 } 1868 1869 mutex_unlock(&buffer->mutex); 1870 return size; 1871 1872 out_err: 1873 for_each_buffer_cpu(buffer, cpu) { 1874 struct buffer_page *bpage, *tmp; 1875 1876 cpu_buffer = buffer->buffers[cpu]; 1877 cpu_buffer->nr_pages_to_update = 0; 1878 1879 if (list_empty(&cpu_buffer->new_pages)) 1880 continue; 1881 1882 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1883 list) { 1884 list_del_init(&bpage->list); 1885 free_buffer_page(bpage); 1886 } 1887 } 1888 mutex_unlock(&buffer->mutex); 1889 return err; 1890 } 1891 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1892 1893 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1894 { 1895 mutex_lock(&buffer->mutex); 1896 if (val) 1897 buffer->flags |= RB_FL_OVERWRITE; 1898 else 1899 buffer->flags &= ~RB_FL_OVERWRITE; 1900 mutex_unlock(&buffer->mutex); 1901 } 1902 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1903 1904 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1905 { 1906 return bpage->page->data + index; 1907 } 1908 1909 static __always_inline struct ring_buffer_event * 1910 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1911 { 1912 return __rb_page_index(cpu_buffer->reader_page, 1913 cpu_buffer->reader_page->read); 1914 } 1915 1916 static __always_inline struct ring_buffer_event * 1917 rb_iter_head_event(struct ring_buffer_iter *iter) 1918 { 1919 return __rb_page_index(iter->head_page, iter->head); 1920 } 1921 1922 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1923 { 1924 return local_read(&bpage->page->commit); 1925 } 1926 1927 /* Size is determined by what has been committed */ 1928 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1929 { 1930 return rb_page_commit(bpage); 1931 } 1932 1933 static __always_inline unsigned 1934 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1935 { 1936 return rb_page_commit(cpu_buffer->commit_page); 1937 } 1938 1939 static __always_inline unsigned 1940 rb_event_index(struct ring_buffer_event *event) 1941 { 1942 unsigned long addr = (unsigned long)event; 1943 1944 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1945 } 1946 1947 static void rb_inc_iter(struct ring_buffer_iter *iter) 1948 { 1949 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1950 1951 /* 1952 * The iterator could be on the reader page (it starts there). 1953 * But the head could have moved, since the reader was 1954 * found. Check for this case and assign the iterator 1955 * to the head page instead of next. 1956 */ 1957 if (iter->head_page == cpu_buffer->reader_page) 1958 iter->head_page = rb_set_head_page(cpu_buffer); 1959 else 1960 rb_inc_page(cpu_buffer, &iter->head_page); 1961 1962 iter->read_stamp = iter->head_page->page->time_stamp; 1963 iter->head = 0; 1964 } 1965 1966 /* 1967 * rb_handle_head_page - writer hit the head page 1968 * 1969 * Returns: +1 to retry page 1970 * 0 to continue 1971 * -1 on error 1972 */ 1973 static int 1974 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1975 struct buffer_page *tail_page, 1976 struct buffer_page *next_page) 1977 { 1978 struct buffer_page *new_head; 1979 int entries; 1980 int type; 1981 int ret; 1982 1983 entries = rb_page_entries(next_page); 1984 1985 /* 1986 * The hard part is here. We need to move the head 1987 * forward, and protect against both readers on 1988 * other CPUs and writers coming in via interrupts. 1989 */ 1990 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1991 RB_PAGE_HEAD); 1992 1993 /* 1994 * type can be one of four: 1995 * NORMAL - an interrupt already moved it for us 1996 * HEAD - we are the first to get here. 1997 * UPDATE - we are the interrupt interrupting 1998 * a current move. 1999 * MOVED - a reader on another CPU moved the next 2000 * pointer to its reader page. Give up 2001 * and try again. 2002 */ 2003 2004 switch (type) { 2005 case RB_PAGE_HEAD: 2006 /* 2007 * We changed the head to UPDATE, thus 2008 * it is our responsibility to update 2009 * the counters. 2010 */ 2011 local_add(entries, &cpu_buffer->overrun); 2012 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2013 2014 /* 2015 * The entries will be zeroed out when we move the 2016 * tail page. 2017 */ 2018 2019 /* still more to do */ 2020 break; 2021 2022 case RB_PAGE_UPDATE: 2023 /* 2024 * This is an interrupt that interrupt the 2025 * previous update. Still more to do. 2026 */ 2027 break; 2028 case RB_PAGE_NORMAL: 2029 /* 2030 * An interrupt came in before the update 2031 * and processed this for us. 2032 * Nothing left to do. 2033 */ 2034 return 1; 2035 case RB_PAGE_MOVED: 2036 /* 2037 * The reader is on another CPU and just did 2038 * a swap with our next_page. 2039 * Try again. 2040 */ 2041 return 1; 2042 default: 2043 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2044 return -1; 2045 } 2046 2047 /* 2048 * Now that we are here, the old head pointer is 2049 * set to UPDATE. This will keep the reader from 2050 * swapping the head page with the reader page. 2051 * The reader (on another CPU) will spin till 2052 * we are finished. 2053 * 2054 * We just need to protect against interrupts 2055 * doing the job. We will set the next pointer 2056 * to HEAD. After that, we set the old pointer 2057 * to NORMAL, but only if it was HEAD before. 2058 * otherwise we are an interrupt, and only 2059 * want the outer most commit to reset it. 2060 */ 2061 new_head = next_page; 2062 rb_inc_page(cpu_buffer, &new_head); 2063 2064 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2065 RB_PAGE_NORMAL); 2066 2067 /* 2068 * Valid returns are: 2069 * HEAD - an interrupt came in and already set it. 2070 * NORMAL - One of two things: 2071 * 1) We really set it. 2072 * 2) A bunch of interrupts came in and moved 2073 * the page forward again. 2074 */ 2075 switch (ret) { 2076 case RB_PAGE_HEAD: 2077 case RB_PAGE_NORMAL: 2078 /* OK */ 2079 break; 2080 default: 2081 RB_WARN_ON(cpu_buffer, 1); 2082 return -1; 2083 } 2084 2085 /* 2086 * It is possible that an interrupt came in, 2087 * set the head up, then more interrupts came in 2088 * and moved it again. When we get back here, 2089 * the page would have been set to NORMAL but we 2090 * just set it back to HEAD. 2091 * 2092 * How do you detect this? Well, if that happened 2093 * the tail page would have moved. 2094 */ 2095 if (ret == RB_PAGE_NORMAL) { 2096 struct buffer_page *buffer_tail_page; 2097 2098 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2099 /* 2100 * If the tail had moved passed next, then we need 2101 * to reset the pointer. 2102 */ 2103 if (buffer_tail_page != tail_page && 2104 buffer_tail_page != next_page) 2105 rb_head_page_set_normal(cpu_buffer, new_head, 2106 next_page, 2107 RB_PAGE_HEAD); 2108 } 2109 2110 /* 2111 * If this was the outer most commit (the one that 2112 * changed the original pointer from HEAD to UPDATE), 2113 * then it is up to us to reset it to NORMAL. 2114 */ 2115 if (type == RB_PAGE_HEAD) { 2116 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2117 tail_page, 2118 RB_PAGE_UPDATE); 2119 if (RB_WARN_ON(cpu_buffer, 2120 ret != RB_PAGE_UPDATE)) 2121 return -1; 2122 } 2123 2124 return 0; 2125 } 2126 2127 static inline void 2128 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2129 unsigned long tail, struct rb_event_info *info) 2130 { 2131 struct buffer_page *tail_page = info->tail_page; 2132 struct ring_buffer_event *event; 2133 unsigned long length = info->length; 2134 2135 /* 2136 * Only the event that crossed the page boundary 2137 * must fill the old tail_page with padding. 2138 */ 2139 if (tail >= BUF_PAGE_SIZE) { 2140 /* 2141 * If the page was filled, then we still need 2142 * to update the real_end. Reset it to zero 2143 * and the reader will ignore it. 2144 */ 2145 if (tail == BUF_PAGE_SIZE) 2146 tail_page->real_end = 0; 2147 2148 local_sub(length, &tail_page->write); 2149 return; 2150 } 2151 2152 event = __rb_page_index(tail_page, tail); 2153 2154 /* account for padding bytes */ 2155 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2156 2157 /* 2158 * Save the original length to the meta data. 2159 * This will be used by the reader to add lost event 2160 * counter. 2161 */ 2162 tail_page->real_end = tail; 2163 2164 /* 2165 * If this event is bigger than the minimum size, then 2166 * we need to be careful that we don't subtract the 2167 * write counter enough to allow another writer to slip 2168 * in on this page. 2169 * We put in a discarded commit instead, to make sure 2170 * that this space is not used again. 2171 * 2172 * If we are less than the minimum size, we don't need to 2173 * worry about it. 2174 */ 2175 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2176 /* No room for any events */ 2177 2178 /* Mark the rest of the page with padding */ 2179 rb_event_set_padding(event); 2180 2181 /* Set the write back to the previous setting */ 2182 local_sub(length, &tail_page->write); 2183 return; 2184 } 2185 2186 /* Put in a discarded event */ 2187 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2188 event->type_len = RINGBUF_TYPE_PADDING; 2189 /* time delta must be non zero */ 2190 event->time_delta = 1; 2191 2192 /* Set write to end of buffer */ 2193 length = (tail + length) - BUF_PAGE_SIZE; 2194 local_sub(length, &tail_page->write); 2195 } 2196 2197 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2198 2199 /* 2200 * This is the slow path, force gcc not to inline it. 2201 */ 2202 static noinline struct ring_buffer_event * 2203 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2204 unsigned long tail, struct rb_event_info *info) 2205 { 2206 struct buffer_page *tail_page = info->tail_page; 2207 struct buffer_page *commit_page = cpu_buffer->commit_page; 2208 struct ring_buffer *buffer = cpu_buffer->buffer; 2209 struct buffer_page *next_page; 2210 int ret; 2211 2212 next_page = tail_page; 2213 2214 rb_inc_page(cpu_buffer, &next_page); 2215 2216 /* 2217 * If for some reason, we had an interrupt storm that made 2218 * it all the way around the buffer, bail, and warn 2219 * about it. 2220 */ 2221 if (unlikely(next_page == commit_page)) { 2222 local_inc(&cpu_buffer->commit_overrun); 2223 goto out_reset; 2224 } 2225 2226 /* 2227 * This is where the fun begins! 2228 * 2229 * We are fighting against races between a reader that 2230 * could be on another CPU trying to swap its reader 2231 * page with the buffer head. 2232 * 2233 * We are also fighting against interrupts coming in and 2234 * moving the head or tail on us as well. 2235 * 2236 * If the next page is the head page then we have filled 2237 * the buffer, unless the commit page is still on the 2238 * reader page. 2239 */ 2240 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2241 2242 /* 2243 * If the commit is not on the reader page, then 2244 * move the header page. 2245 */ 2246 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2247 /* 2248 * If we are not in overwrite mode, 2249 * this is easy, just stop here. 2250 */ 2251 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2252 local_inc(&cpu_buffer->dropped_events); 2253 goto out_reset; 2254 } 2255 2256 ret = rb_handle_head_page(cpu_buffer, 2257 tail_page, 2258 next_page); 2259 if (ret < 0) 2260 goto out_reset; 2261 if (ret) 2262 goto out_again; 2263 } else { 2264 /* 2265 * We need to be careful here too. The 2266 * commit page could still be on the reader 2267 * page. We could have a small buffer, and 2268 * have filled up the buffer with events 2269 * from interrupts and such, and wrapped. 2270 * 2271 * Note, if the tail page is also the on the 2272 * reader_page, we let it move out. 2273 */ 2274 if (unlikely((cpu_buffer->commit_page != 2275 cpu_buffer->tail_page) && 2276 (cpu_buffer->commit_page == 2277 cpu_buffer->reader_page))) { 2278 local_inc(&cpu_buffer->commit_overrun); 2279 goto out_reset; 2280 } 2281 } 2282 } 2283 2284 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2285 2286 out_again: 2287 2288 rb_reset_tail(cpu_buffer, tail, info); 2289 2290 /* Commit what we have for now. */ 2291 rb_end_commit(cpu_buffer); 2292 /* rb_end_commit() decs committing */ 2293 local_inc(&cpu_buffer->committing); 2294 2295 /* fail and let the caller try again */ 2296 return ERR_PTR(-EAGAIN); 2297 2298 out_reset: 2299 /* reset write */ 2300 rb_reset_tail(cpu_buffer, tail, info); 2301 2302 return NULL; 2303 } 2304 2305 /* Slow path, do not inline */ 2306 static noinline struct ring_buffer_event * 2307 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2308 { 2309 if (abs) 2310 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2311 else 2312 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2313 2314 /* Not the first event on the page, or not delta? */ 2315 if (abs || rb_event_index(event)) { 2316 event->time_delta = delta & TS_MASK; 2317 event->array[0] = delta >> TS_SHIFT; 2318 } else { 2319 /* nope, just zero it */ 2320 event->time_delta = 0; 2321 event->array[0] = 0; 2322 } 2323 2324 return skip_time_extend(event); 2325 } 2326 2327 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2328 struct ring_buffer_event *event); 2329 2330 /** 2331 * rb_update_event - update event type and data 2332 * @event: the event to update 2333 * @type: the type of event 2334 * @length: the size of the event field in the ring buffer 2335 * 2336 * Update the type and data fields of the event. The length 2337 * is the actual size that is written to the ring buffer, 2338 * and with this, we can determine what to place into the 2339 * data field. 2340 */ 2341 static void 2342 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2343 struct ring_buffer_event *event, 2344 struct rb_event_info *info) 2345 { 2346 unsigned length = info->length; 2347 u64 delta = info->delta; 2348 2349 /* Only a commit updates the timestamp */ 2350 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2351 delta = 0; 2352 2353 /* 2354 * If we need to add a timestamp, then we 2355 * add it to the start of the reserved space. 2356 */ 2357 if (unlikely(info->add_timestamp)) { 2358 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer); 2359 2360 event = rb_add_time_stamp(event, info->delta, abs); 2361 length -= RB_LEN_TIME_EXTEND; 2362 delta = 0; 2363 } 2364 2365 event->time_delta = delta; 2366 length -= RB_EVNT_HDR_SIZE; 2367 if (length > RB_MAX_SMALL_DATA) { 2368 event->type_len = 0; 2369 event->array[0] = length; 2370 } else 2371 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2372 } 2373 2374 static unsigned rb_calculate_event_length(unsigned length) 2375 { 2376 struct ring_buffer_event event; /* Used only for sizeof array */ 2377 2378 /* zero length can cause confusions */ 2379 if (!length) 2380 length++; 2381 2382 if (length > RB_MAX_SMALL_DATA) 2383 length += sizeof(event.array[0]); 2384 2385 length += RB_EVNT_HDR_SIZE; 2386 length = ALIGN(length, RB_ALIGNMENT); 2387 2388 /* 2389 * In case the time delta is larger than the 27 bits for it 2390 * in the header, we need to add a timestamp. If another 2391 * event comes in when trying to discard this one to increase 2392 * the length, then the timestamp will be added in the allocated 2393 * space of this event. If length is bigger than the size needed 2394 * for the TIME_EXTEND, then padding has to be used. The events 2395 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2396 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2397 * As length is a multiple of 4, we only need to worry if it 2398 * is 12 (RB_LEN_TIME_EXTEND + 4). 2399 */ 2400 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2401 length += RB_ALIGNMENT; 2402 2403 return length; 2404 } 2405 2406 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2407 static inline bool sched_clock_stable(void) 2408 { 2409 return true; 2410 } 2411 #endif 2412 2413 static inline int 2414 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2415 struct ring_buffer_event *event) 2416 { 2417 unsigned long new_index, old_index; 2418 struct buffer_page *bpage; 2419 unsigned long index; 2420 unsigned long addr; 2421 2422 new_index = rb_event_index(event); 2423 old_index = new_index + rb_event_ts_length(event); 2424 addr = (unsigned long)event; 2425 addr &= PAGE_MASK; 2426 2427 bpage = READ_ONCE(cpu_buffer->tail_page); 2428 2429 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2430 unsigned long write_mask = 2431 local_read(&bpage->write) & ~RB_WRITE_MASK; 2432 unsigned long event_length = rb_event_length(event); 2433 /* 2434 * This is on the tail page. It is possible that 2435 * a write could come in and move the tail page 2436 * and write to the next page. That is fine 2437 * because we just shorten what is on this page. 2438 */ 2439 old_index += write_mask; 2440 new_index += write_mask; 2441 index = local_cmpxchg(&bpage->write, old_index, new_index); 2442 if (index == old_index) { 2443 /* update counters */ 2444 local_sub(event_length, &cpu_buffer->entries_bytes); 2445 return 1; 2446 } 2447 } 2448 2449 /* could not discard */ 2450 return 0; 2451 } 2452 2453 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2454 { 2455 local_inc(&cpu_buffer->committing); 2456 local_inc(&cpu_buffer->commits); 2457 } 2458 2459 static __always_inline void 2460 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2461 { 2462 unsigned long max_count; 2463 2464 /* 2465 * We only race with interrupts and NMIs on this CPU. 2466 * If we own the commit event, then we can commit 2467 * all others that interrupted us, since the interruptions 2468 * are in stack format (they finish before they come 2469 * back to us). This allows us to do a simple loop to 2470 * assign the commit to the tail. 2471 */ 2472 again: 2473 max_count = cpu_buffer->nr_pages * 100; 2474 2475 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2476 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2477 return; 2478 if (RB_WARN_ON(cpu_buffer, 2479 rb_is_reader_page(cpu_buffer->tail_page))) 2480 return; 2481 local_set(&cpu_buffer->commit_page->page->commit, 2482 rb_page_write(cpu_buffer->commit_page)); 2483 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2484 /* Only update the write stamp if the page has an event */ 2485 if (rb_page_write(cpu_buffer->commit_page)) 2486 cpu_buffer->write_stamp = 2487 cpu_buffer->commit_page->page->time_stamp; 2488 /* add barrier to keep gcc from optimizing too much */ 2489 barrier(); 2490 } 2491 while (rb_commit_index(cpu_buffer) != 2492 rb_page_write(cpu_buffer->commit_page)) { 2493 2494 local_set(&cpu_buffer->commit_page->page->commit, 2495 rb_page_write(cpu_buffer->commit_page)); 2496 RB_WARN_ON(cpu_buffer, 2497 local_read(&cpu_buffer->commit_page->page->commit) & 2498 ~RB_WRITE_MASK); 2499 barrier(); 2500 } 2501 2502 /* again, keep gcc from optimizing */ 2503 barrier(); 2504 2505 /* 2506 * If an interrupt came in just after the first while loop 2507 * and pushed the tail page forward, we will be left with 2508 * a dangling commit that will never go forward. 2509 */ 2510 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2511 goto again; 2512 } 2513 2514 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2515 { 2516 unsigned long commits; 2517 2518 if (RB_WARN_ON(cpu_buffer, 2519 !local_read(&cpu_buffer->committing))) 2520 return; 2521 2522 again: 2523 commits = local_read(&cpu_buffer->commits); 2524 /* synchronize with interrupts */ 2525 barrier(); 2526 if (local_read(&cpu_buffer->committing) == 1) 2527 rb_set_commit_to_write(cpu_buffer); 2528 2529 local_dec(&cpu_buffer->committing); 2530 2531 /* synchronize with interrupts */ 2532 barrier(); 2533 2534 /* 2535 * Need to account for interrupts coming in between the 2536 * updating of the commit page and the clearing of the 2537 * committing counter. 2538 */ 2539 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2540 !local_read(&cpu_buffer->committing)) { 2541 local_inc(&cpu_buffer->committing); 2542 goto again; 2543 } 2544 } 2545 2546 static inline void rb_event_discard(struct ring_buffer_event *event) 2547 { 2548 if (extended_time(event)) 2549 event = skip_time_extend(event); 2550 2551 /* array[0] holds the actual length for the discarded event */ 2552 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2553 event->type_len = RINGBUF_TYPE_PADDING; 2554 /* time delta must be non zero */ 2555 if (!event->time_delta) 2556 event->time_delta = 1; 2557 } 2558 2559 static __always_inline bool 2560 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2561 struct ring_buffer_event *event) 2562 { 2563 unsigned long addr = (unsigned long)event; 2564 unsigned long index; 2565 2566 index = rb_event_index(event); 2567 addr &= PAGE_MASK; 2568 2569 return cpu_buffer->commit_page->page == (void *)addr && 2570 rb_commit_index(cpu_buffer) == index; 2571 } 2572 2573 static __always_inline void 2574 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2575 struct ring_buffer_event *event) 2576 { 2577 u64 delta; 2578 2579 /* 2580 * The event first in the commit queue updates the 2581 * time stamp. 2582 */ 2583 if (rb_event_is_commit(cpu_buffer, event)) { 2584 /* 2585 * A commit event that is first on a page 2586 * updates the write timestamp with the page stamp 2587 */ 2588 if (!rb_event_index(event)) 2589 cpu_buffer->write_stamp = 2590 cpu_buffer->commit_page->page->time_stamp; 2591 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2592 delta = ring_buffer_event_time_stamp(event); 2593 cpu_buffer->write_stamp += delta; 2594 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 2595 delta = ring_buffer_event_time_stamp(event); 2596 cpu_buffer->write_stamp = delta; 2597 } else 2598 cpu_buffer->write_stamp += event->time_delta; 2599 } 2600 } 2601 2602 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2603 struct ring_buffer_event *event) 2604 { 2605 local_inc(&cpu_buffer->entries); 2606 rb_update_write_stamp(cpu_buffer, event); 2607 rb_end_commit(cpu_buffer); 2608 } 2609 2610 static __always_inline void 2611 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2612 { 2613 size_t nr_pages; 2614 size_t dirty; 2615 size_t full; 2616 2617 if (buffer->irq_work.waiters_pending) { 2618 buffer->irq_work.waiters_pending = false; 2619 /* irq_work_queue() supplies it's own memory barriers */ 2620 irq_work_queue(&buffer->irq_work.work); 2621 } 2622 2623 if (cpu_buffer->irq_work.waiters_pending) { 2624 cpu_buffer->irq_work.waiters_pending = false; 2625 /* irq_work_queue() supplies it's own memory barriers */ 2626 irq_work_queue(&cpu_buffer->irq_work.work); 2627 } 2628 2629 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2630 return; 2631 2632 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2633 return; 2634 2635 if (!cpu_buffer->irq_work.full_waiters_pending) 2636 return; 2637 2638 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2639 2640 full = cpu_buffer->shortest_full; 2641 nr_pages = cpu_buffer->nr_pages; 2642 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2643 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2644 return; 2645 2646 cpu_buffer->irq_work.wakeup_full = true; 2647 cpu_buffer->irq_work.full_waiters_pending = false; 2648 /* irq_work_queue() supplies it's own memory barriers */ 2649 irq_work_queue(&cpu_buffer->irq_work.work); 2650 } 2651 2652 /* 2653 * The lock and unlock are done within a preempt disable section. 2654 * The current_context per_cpu variable can only be modified 2655 * by the current task between lock and unlock. But it can 2656 * be modified more than once via an interrupt. To pass this 2657 * information from the lock to the unlock without having to 2658 * access the 'in_interrupt()' functions again (which do show 2659 * a bit of overhead in something as critical as function tracing, 2660 * we use a bitmask trick. 2661 * 2662 * bit 0 = NMI context 2663 * bit 1 = IRQ context 2664 * bit 2 = SoftIRQ context 2665 * bit 3 = normal context. 2666 * 2667 * This works because this is the order of contexts that can 2668 * preempt other contexts. A SoftIRQ never preempts an IRQ 2669 * context. 2670 * 2671 * When the context is determined, the corresponding bit is 2672 * checked and set (if it was set, then a recursion of that context 2673 * happened). 2674 * 2675 * On unlock, we need to clear this bit. To do so, just subtract 2676 * 1 from the current_context and AND it to itself. 2677 * 2678 * (binary) 2679 * 101 - 1 = 100 2680 * 101 & 100 = 100 (clearing bit zero) 2681 * 2682 * 1010 - 1 = 1001 2683 * 1010 & 1001 = 1000 (clearing bit 1) 2684 * 2685 * The least significant bit can be cleared this way, and it 2686 * just so happens that it is the same bit corresponding to 2687 * the current context. 2688 */ 2689 2690 static __always_inline int 2691 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2692 { 2693 unsigned int val = cpu_buffer->current_context; 2694 unsigned long pc = preempt_count(); 2695 int bit; 2696 2697 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 2698 bit = RB_CTX_NORMAL; 2699 else 2700 bit = pc & NMI_MASK ? RB_CTX_NMI : 2701 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 2702 2703 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 2704 return 1; 2705 2706 val |= (1 << (bit + cpu_buffer->nest)); 2707 cpu_buffer->current_context = val; 2708 2709 return 0; 2710 } 2711 2712 static __always_inline void 2713 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2714 { 2715 cpu_buffer->current_context &= 2716 cpu_buffer->current_context - (1 << cpu_buffer->nest); 2717 } 2718 2719 /* The recursive locking above uses 4 bits */ 2720 #define NESTED_BITS 4 2721 2722 /** 2723 * ring_buffer_nest_start - Allow to trace while nested 2724 * @buffer: The ring buffer to modify 2725 * 2726 * The ring buffer has a safety mechanism to prevent recursion. 2727 * But there may be a case where a trace needs to be done while 2728 * tracing something else. In this case, calling this function 2729 * will allow this function to nest within a currently active 2730 * ring_buffer_lock_reserve(). 2731 * 2732 * Call this function before calling another ring_buffer_lock_reserve() and 2733 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 2734 */ 2735 void ring_buffer_nest_start(struct ring_buffer *buffer) 2736 { 2737 struct ring_buffer_per_cpu *cpu_buffer; 2738 int cpu; 2739 2740 /* Enabled by ring_buffer_nest_end() */ 2741 preempt_disable_notrace(); 2742 cpu = raw_smp_processor_id(); 2743 cpu_buffer = buffer->buffers[cpu]; 2744 /* This is the shift value for the above recursive locking */ 2745 cpu_buffer->nest += NESTED_BITS; 2746 } 2747 2748 /** 2749 * ring_buffer_nest_end - Allow to trace while nested 2750 * @buffer: The ring buffer to modify 2751 * 2752 * Must be called after ring_buffer_nest_start() and after the 2753 * ring_buffer_unlock_commit(). 2754 */ 2755 void ring_buffer_nest_end(struct ring_buffer *buffer) 2756 { 2757 struct ring_buffer_per_cpu *cpu_buffer; 2758 int cpu; 2759 2760 /* disabled by ring_buffer_nest_start() */ 2761 cpu = raw_smp_processor_id(); 2762 cpu_buffer = buffer->buffers[cpu]; 2763 /* This is the shift value for the above recursive locking */ 2764 cpu_buffer->nest -= NESTED_BITS; 2765 preempt_enable_notrace(); 2766 } 2767 2768 /** 2769 * ring_buffer_unlock_commit - commit a reserved 2770 * @buffer: The buffer to commit to 2771 * @event: The event pointer to commit. 2772 * 2773 * This commits the data to the ring buffer, and releases any locks held. 2774 * 2775 * Must be paired with ring_buffer_lock_reserve. 2776 */ 2777 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2778 struct ring_buffer_event *event) 2779 { 2780 struct ring_buffer_per_cpu *cpu_buffer; 2781 int cpu = raw_smp_processor_id(); 2782 2783 cpu_buffer = buffer->buffers[cpu]; 2784 2785 rb_commit(cpu_buffer, event); 2786 2787 rb_wakeups(buffer, cpu_buffer); 2788 2789 trace_recursive_unlock(cpu_buffer); 2790 2791 preempt_enable_notrace(); 2792 2793 return 0; 2794 } 2795 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2796 2797 static noinline void 2798 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2799 struct rb_event_info *info) 2800 { 2801 WARN_ONCE(info->delta > (1ULL << 59), 2802 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2803 (unsigned long long)info->delta, 2804 (unsigned long long)info->ts, 2805 (unsigned long long)cpu_buffer->write_stamp, 2806 sched_clock_stable() ? "" : 2807 "If you just came from a suspend/resume,\n" 2808 "please switch to the trace global clock:\n" 2809 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2810 "or add trace_clock=global to the kernel command line\n"); 2811 info->add_timestamp = 1; 2812 } 2813 2814 static struct ring_buffer_event * 2815 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2816 struct rb_event_info *info) 2817 { 2818 struct ring_buffer_event *event; 2819 struct buffer_page *tail_page; 2820 unsigned long tail, write; 2821 2822 /* 2823 * If the time delta since the last event is too big to 2824 * hold in the time field of the event, then we append a 2825 * TIME EXTEND event ahead of the data event. 2826 */ 2827 if (unlikely(info->add_timestamp)) 2828 info->length += RB_LEN_TIME_EXTEND; 2829 2830 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2831 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2832 write = local_add_return(info->length, &tail_page->write); 2833 2834 /* set write to only the index of the write */ 2835 write &= RB_WRITE_MASK; 2836 tail = write - info->length; 2837 2838 /* 2839 * If this is the first commit on the page, then it has the same 2840 * timestamp as the page itself. 2841 */ 2842 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer)) 2843 info->delta = 0; 2844 2845 /* See if we shot pass the end of this buffer page */ 2846 if (unlikely(write > BUF_PAGE_SIZE)) 2847 return rb_move_tail(cpu_buffer, tail, info); 2848 2849 /* We reserved something on the buffer */ 2850 2851 event = __rb_page_index(tail_page, tail); 2852 rb_update_event(cpu_buffer, event, info); 2853 2854 local_inc(&tail_page->entries); 2855 2856 /* 2857 * If this is the first commit on the page, then update 2858 * its timestamp. 2859 */ 2860 if (!tail) 2861 tail_page->page->time_stamp = info->ts; 2862 2863 /* account for these added bytes */ 2864 local_add(info->length, &cpu_buffer->entries_bytes); 2865 2866 return event; 2867 } 2868 2869 static __always_inline struct ring_buffer_event * 2870 rb_reserve_next_event(struct ring_buffer *buffer, 2871 struct ring_buffer_per_cpu *cpu_buffer, 2872 unsigned long length) 2873 { 2874 struct ring_buffer_event *event; 2875 struct rb_event_info info; 2876 int nr_loops = 0; 2877 u64 diff; 2878 2879 rb_start_commit(cpu_buffer); 2880 2881 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2882 /* 2883 * Due to the ability to swap a cpu buffer from a buffer 2884 * it is possible it was swapped before we committed. 2885 * (committing stops a swap). We check for it here and 2886 * if it happened, we have to fail the write. 2887 */ 2888 barrier(); 2889 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2890 local_dec(&cpu_buffer->committing); 2891 local_dec(&cpu_buffer->commits); 2892 return NULL; 2893 } 2894 #endif 2895 2896 info.length = rb_calculate_event_length(length); 2897 again: 2898 info.add_timestamp = 0; 2899 info.delta = 0; 2900 2901 /* 2902 * We allow for interrupts to reenter here and do a trace. 2903 * If one does, it will cause this original code to loop 2904 * back here. Even with heavy interrupts happening, this 2905 * should only happen a few times in a row. If this happens 2906 * 1000 times in a row, there must be either an interrupt 2907 * storm or we have something buggy. 2908 * Bail! 2909 */ 2910 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2911 goto out_fail; 2912 2913 info.ts = rb_time_stamp(cpu_buffer->buffer); 2914 diff = info.ts - cpu_buffer->write_stamp; 2915 2916 /* make sure this diff is calculated here */ 2917 barrier(); 2918 2919 if (ring_buffer_time_stamp_abs(buffer)) { 2920 info.delta = info.ts; 2921 rb_handle_timestamp(cpu_buffer, &info); 2922 } else /* Did the write stamp get updated already? */ 2923 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2924 info.delta = diff; 2925 if (unlikely(test_time_stamp(info.delta))) 2926 rb_handle_timestamp(cpu_buffer, &info); 2927 } 2928 2929 event = __rb_reserve_next(cpu_buffer, &info); 2930 2931 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2932 if (info.add_timestamp) 2933 info.length -= RB_LEN_TIME_EXTEND; 2934 goto again; 2935 } 2936 2937 if (!event) 2938 goto out_fail; 2939 2940 return event; 2941 2942 out_fail: 2943 rb_end_commit(cpu_buffer); 2944 return NULL; 2945 } 2946 2947 /** 2948 * ring_buffer_lock_reserve - reserve a part of the buffer 2949 * @buffer: the ring buffer to reserve from 2950 * @length: the length of the data to reserve (excluding event header) 2951 * 2952 * Returns a reserved event on the ring buffer to copy directly to. 2953 * The user of this interface will need to get the body to write into 2954 * and can use the ring_buffer_event_data() interface. 2955 * 2956 * The length is the length of the data needed, not the event length 2957 * which also includes the event header. 2958 * 2959 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2960 * If NULL is returned, then nothing has been allocated or locked. 2961 */ 2962 struct ring_buffer_event * 2963 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2964 { 2965 struct ring_buffer_per_cpu *cpu_buffer; 2966 struct ring_buffer_event *event; 2967 int cpu; 2968 2969 /* If we are tracing schedule, we don't want to recurse */ 2970 preempt_disable_notrace(); 2971 2972 if (unlikely(atomic_read(&buffer->record_disabled))) 2973 goto out; 2974 2975 cpu = raw_smp_processor_id(); 2976 2977 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2978 goto out; 2979 2980 cpu_buffer = buffer->buffers[cpu]; 2981 2982 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2983 goto out; 2984 2985 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2986 goto out; 2987 2988 if (unlikely(trace_recursive_lock(cpu_buffer))) 2989 goto out; 2990 2991 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2992 if (!event) 2993 goto out_unlock; 2994 2995 return event; 2996 2997 out_unlock: 2998 trace_recursive_unlock(cpu_buffer); 2999 out: 3000 preempt_enable_notrace(); 3001 return NULL; 3002 } 3003 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3004 3005 /* 3006 * Decrement the entries to the page that an event is on. 3007 * The event does not even need to exist, only the pointer 3008 * to the page it is on. This may only be called before the commit 3009 * takes place. 3010 */ 3011 static inline void 3012 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3013 struct ring_buffer_event *event) 3014 { 3015 unsigned long addr = (unsigned long)event; 3016 struct buffer_page *bpage = cpu_buffer->commit_page; 3017 struct buffer_page *start; 3018 3019 addr &= PAGE_MASK; 3020 3021 /* Do the likely case first */ 3022 if (likely(bpage->page == (void *)addr)) { 3023 local_dec(&bpage->entries); 3024 return; 3025 } 3026 3027 /* 3028 * Because the commit page may be on the reader page we 3029 * start with the next page and check the end loop there. 3030 */ 3031 rb_inc_page(cpu_buffer, &bpage); 3032 start = bpage; 3033 do { 3034 if (bpage->page == (void *)addr) { 3035 local_dec(&bpage->entries); 3036 return; 3037 } 3038 rb_inc_page(cpu_buffer, &bpage); 3039 } while (bpage != start); 3040 3041 /* commit not part of this buffer?? */ 3042 RB_WARN_ON(cpu_buffer, 1); 3043 } 3044 3045 /** 3046 * ring_buffer_commit_discard - discard an event that has not been committed 3047 * @buffer: the ring buffer 3048 * @event: non committed event to discard 3049 * 3050 * Sometimes an event that is in the ring buffer needs to be ignored. 3051 * This function lets the user discard an event in the ring buffer 3052 * and then that event will not be read later. 3053 * 3054 * This function only works if it is called before the item has been 3055 * committed. It will try to free the event from the ring buffer 3056 * if another event has not been added behind it. 3057 * 3058 * If another event has been added behind it, it will set the event 3059 * up as discarded, and perform the commit. 3060 * 3061 * If this function is called, do not call ring_buffer_unlock_commit on 3062 * the event. 3063 */ 3064 void ring_buffer_discard_commit(struct ring_buffer *buffer, 3065 struct ring_buffer_event *event) 3066 { 3067 struct ring_buffer_per_cpu *cpu_buffer; 3068 int cpu; 3069 3070 /* The event is discarded regardless */ 3071 rb_event_discard(event); 3072 3073 cpu = smp_processor_id(); 3074 cpu_buffer = buffer->buffers[cpu]; 3075 3076 /* 3077 * This must only be called if the event has not been 3078 * committed yet. Thus we can assume that preemption 3079 * is still disabled. 3080 */ 3081 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3082 3083 rb_decrement_entry(cpu_buffer, event); 3084 if (rb_try_to_discard(cpu_buffer, event)) 3085 goto out; 3086 3087 /* 3088 * The commit is still visible by the reader, so we 3089 * must still update the timestamp. 3090 */ 3091 rb_update_write_stamp(cpu_buffer, event); 3092 out: 3093 rb_end_commit(cpu_buffer); 3094 3095 trace_recursive_unlock(cpu_buffer); 3096 3097 preempt_enable_notrace(); 3098 3099 } 3100 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3101 3102 /** 3103 * ring_buffer_write - write data to the buffer without reserving 3104 * @buffer: The ring buffer to write to. 3105 * @length: The length of the data being written (excluding the event header) 3106 * @data: The data to write to the buffer. 3107 * 3108 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3109 * one function. If you already have the data to write to the buffer, it 3110 * may be easier to simply call this function. 3111 * 3112 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3113 * and not the length of the event which would hold the header. 3114 */ 3115 int ring_buffer_write(struct ring_buffer *buffer, 3116 unsigned long length, 3117 void *data) 3118 { 3119 struct ring_buffer_per_cpu *cpu_buffer; 3120 struct ring_buffer_event *event; 3121 void *body; 3122 int ret = -EBUSY; 3123 int cpu; 3124 3125 preempt_disable_notrace(); 3126 3127 if (atomic_read(&buffer->record_disabled)) 3128 goto out; 3129 3130 cpu = raw_smp_processor_id(); 3131 3132 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3133 goto out; 3134 3135 cpu_buffer = buffer->buffers[cpu]; 3136 3137 if (atomic_read(&cpu_buffer->record_disabled)) 3138 goto out; 3139 3140 if (length > BUF_MAX_DATA_SIZE) 3141 goto out; 3142 3143 if (unlikely(trace_recursive_lock(cpu_buffer))) 3144 goto out; 3145 3146 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3147 if (!event) 3148 goto out_unlock; 3149 3150 body = rb_event_data(event); 3151 3152 memcpy(body, data, length); 3153 3154 rb_commit(cpu_buffer, event); 3155 3156 rb_wakeups(buffer, cpu_buffer); 3157 3158 ret = 0; 3159 3160 out_unlock: 3161 trace_recursive_unlock(cpu_buffer); 3162 3163 out: 3164 preempt_enable_notrace(); 3165 3166 return ret; 3167 } 3168 EXPORT_SYMBOL_GPL(ring_buffer_write); 3169 3170 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3171 { 3172 struct buffer_page *reader = cpu_buffer->reader_page; 3173 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3174 struct buffer_page *commit = cpu_buffer->commit_page; 3175 3176 /* In case of error, head will be NULL */ 3177 if (unlikely(!head)) 3178 return true; 3179 3180 return reader->read == rb_page_commit(reader) && 3181 (commit == reader || 3182 (commit == head && 3183 head->read == rb_page_commit(commit))); 3184 } 3185 3186 /** 3187 * ring_buffer_record_disable - stop all writes into the buffer 3188 * @buffer: The ring buffer to stop writes to. 3189 * 3190 * This prevents all writes to the buffer. Any attempt to write 3191 * to the buffer after this will fail and return NULL. 3192 * 3193 * The caller should call synchronize_rcu() after this. 3194 */ 3195 void ring_buffer_record_disable(struct ring_buffer *buffer) 3196 { 3197 atomic_inc(&buffer->record_disabled); 3198 } 3199 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3200 3201 /** 3202 * ring_buffer_record_enable - enable writes to the buffer 3203 * @buffer: The ring buffer to enable writes 3204 * 3205 * Note, multiple disables will need the same number of enables 3206 * to truly enable the writing (much like preempt_disable). 3207 */ 3208 void ring_buffer_record_enable(struct ring_buffer *buffer) 3209 { 3210 atomic_dec(&buffer->record_disabled); 3211 } 3212 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3213 3214 /** 3215 * ring_buffer_record_off - stop all writes into the buffer 3216 * @buffer: The ring buffer to stop writes to. 3217 * 3218 * This prevents all writes to the buffer. Any attempt to write 3219 * to the buffer after this will fail and return NULL. 3220 * 3221 * This is different than ring_buffer_record_disable() as 3222 * it works like an on/off switch, where as the disable() version 3223 * must be paired with a enable(). 3224 */ 3225 void ring_buffer_record_off(struct ring_buffer *buffer) 3226 { 3227 unsigned int rd; 3228 unsigned int new_rd; 3229 3230 do { 3231 rd = atomic_read(&buffer->record_disabled); 3232 new_rd = rd | RB_BUFFER_OFF; 3233 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3234 } 3235 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3236 3237 /** 3238 * ring_buffer_record_on - restart writes into the buffer 3239 * @buffer: The ring buffer to start writes to. 3240 * 3241 * This enables all writes to the buffer that was disabled by 3242 * ring_buffer_record_off(). 3243 * 3244 * This is different than ring_buffer_record_enable() as 3245 * it works like an on/off switch, where as the enable() version 3246 * must be paired with a disable(). 3247 */ 3248 void ring_buffer_record_on(struct ring_buffer *buffer) 3249 { 3250 unsigned int rd; 3251 unsigned int new_rd; 3252 3253 do { 3254 rd = atomic_read(&buffer->record_disabled); 3255 new_rd = rd & ~RB_BUFFER_OFF; 3256 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3257 } 3258 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3259 3260 /** 3261 * ring_buffer_record_is_on - return true if the ring buffer can write 3262 * @buffer: The ring buffer to see if write is enabled 3263 * 3264 * Returns true if the ring buffer is in a state that it accepts writes. 3265 */ 3266 bool ring_buffer_record_is_on(struct ring_buffer *buffer) 3267 { 3268 return !atomic_read(&buffer->record_disabled); 3269 } 3270 3271 /** 3272 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3273 * @buffer: The ring buffer to see if write is set enabled 3274 * 3275 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3276 * Note that this does NOT mean it is in a writable state. 3277 * 3278 * It may return true when the ring buffer has been disabled by 3279 * ring_buffer_record_disable(), as that is a temporary disabling of 3280 * the ring buffer. 3281 */ 3282 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer) 3283 { 3284 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3285 } 3286 3287 /** 3288 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3289 * @buffer: The ring buffer to stop writes to. 3290 * @cpu: The CPU buffer to stop 3291 * 3292 * This prevents all writes to the buffer. Any attempt to write 3293 * to the buffer after this will fail and return NULL. 3294 * 3295 * The caller should call synchronize_rcu() after this. 3296 */ 3297 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3298 { 3299 struct ring_buffer_per_cpu *cpu_buffer; 3300 3301 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3302 return; 3303 3304 cpu_buffer = buffer->buffers[cpu]; 3305 atomic_inc(&cpu_buffer->record_disabled); 3306 } 3307 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3308 3309 /** 3310 * ring_buffer_record_enable_cpu - enable writes to the buffer 3311 * @buffer: The ring buffer to enable writes 3312 * @cpu: The CPU to enable. 3313 * 3314 * Note, multiple disables will need the same number of enables 3315 * to truly enable the writing (much like preempt_disable). 3316 */ 3317 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3318 { 3319 struct ring_buffer_per_cpu *cpu_buffer; 3320 3321 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3322 return; 3323 3324 cpu_buffer = buffer->buffers[cpu]; 3325 atomic_dec(&cpu_buffer->record_disabled); 3326 } 3327 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3328 3329 /* 3330 * The total entries in the ring buffer is the running counter 3331 * of entries entered into the ring buffer, minus the sum of 3332 * the entries read from the ring buffer and the number of 3333 * entries that were overwritten. 3334 */ 3335 static inline unsigned long 3336 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3337 { 3338 return local_read(&cpu_buffer->entries) - 3339 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3340 } 3341 3342 /** 3343 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3344 * @buffer: The ring buffer 3345 * @cpu: The per CPU buffer to read from. 3346 */ 3347 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3348 { 3349 unsigned long flags; 3350 struct ring_buffer_per_cpu *cpu_buffer; 3351 struct buffer_page *bpage; 3352 u64 ret = 0; 3353 3354 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3355 return 0; 3356 3357 cpu_buffer = buffer->buffers[cpu]; 3358 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3359 /* 3360 * if the tail is on reader_page, oldest time stamp is on the reader 3361 * page 3362 */ 3363 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3364 bpage = cpu_buffer->reader_page; 3365 else 3366 bpage = rb_set_head_page(cpu_buffer); 3367 if (bpage) 3368 ret = bpage->page->time_stamp; 3369 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3370 3371 return ret; 3372 } 3373 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3374 3375 /** 3376 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3377 * @buffer: The ring buffer 3378 * @cpu: The per CPU buffer to read from. 3379 */ 3380 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3381 { 3382 struct ring_buffer_per_cpu *cpu_buffer; 3383 unsigned long ret; 3384 3385 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3386 return 0; 3387 3388 cpu_buffer = buffer->buffers[cpu]; 3389 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3390 3391 return ret; 3392 } 3393 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3394 3395 /** 3396 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3397 * @buffer: The ring buffer 3398 * @cpu: The per CPU buffer to get the entries from. 3399 */ 3400 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3401 { 3402 struct ring_buffer_per_cpu *cpu_buffer; 3403 3404 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3405 return 0; 3406 3407 cpu_buffer = buffer->buffers[cpu]; 3408 3409 return rb_num_of_entries(cpu_buffer); 3410 } 3411 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3412 3413 /** 3414 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3415 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3416 * @buffer: The ring buffer 3417 * @cpu: The per CPU buffer to get the number of overruns from 3418 */ 3419 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3420 { 3421 struct ring_buffer_per_cpu *cpu_buffer; 3422 unsigned long ret; 3423 3424 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3425 return 0; 3426 3427 cpu_buffer = buffer->buffers[cpu]; 3428 ret = local_read(&cpu_buffer->overrun); 3429 3430 return ret; 3431 } 3432 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3433 3434 /** 3435 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3436 * commits failing due to the buffer wrapping around while there are uncommitted 3437 * events, such as during an interrupt storm. 3438 * @buffer: The ring buffer 3439 * @cpu: The per CPU buffer to get the number of overruns from 3440 */ 3441 unsigned long 3442 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3443 { 3444 struct ring_buffer_per_cpu *cpu_buffer; 3445 unsigned long ret; 3446 3447 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3448 return 0; 3449 3450 cpu_buffer = buffer->buffers[cpu]; 3451 ret = local_read(&cpu_buffer->commit_overrun); 3452 3453 return ret; 3454 } 3455 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3456 3457 /** 3458 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3459 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3460 * @buffer: The ring buffer 3461 * @cpu: The per CPU buffer to get the number of overruns from 3462 */ 3463 unsigned long 3464 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3465 { 3466 struct ring_buffer_per_cpu *cpu_buffer; 3467 unsigned long ret; 3468 3469 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3470 return 0; 3471 3472 cpu_buffer = buffer->buffers[cpu]; 3473 ret = local_read(&cpu_buffer->dropped_events); 3474 3475 return ret; 3476 } 3477 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3478 3479 /** 3480 * ring_buffer_read_events_cpu - get the number of events successfully read 3481 * @buffer: The ring buffer 3482 * @cpu: The per CPU buffer to get the number of events read 3483 */ 3484 unsigned long 3485 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3486 { 3487 struct ring_buffer_per_cpu *cpu_buffer; 3488 3489 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3490 return 0; 3491 3492 cpu_buffer = buffer->buffers[cpu]; 3493 return cpu_buffer->read; 3494 } 3495 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3496 3497 /** 3498 * ring_buffer_entries - get the number of entries in a buffer 3499 * @buffer: The ring buffer 3500 * 3501 * Returns the total number of entries in the ring buffer 3502 * (all CPU entries) 3503 */ 3504 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3505 { 3506 struct ring_buffer_per_cpu *cpu_buffer; 3507 unsigned long entries = 0; 3508 int cpu; 3509 3510 /* if you care about this being correct, lock the buffer */ 3511 for_each_buffer_cpu(buffer, cpu) { 3512 cpu_buffer = buffer->buffers[cpu]; 3513 entries += rb_num_of_entries(cpu_buffer); 3514 } 3515 3516 return entries; 3517 } 3518 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3519 3520 /** 3521 * ring_buffer_overruns - get the number of overruns in buffer 3522 * @buffer: The ring buffer 3523 * 3524 * Returns the total number of overruns in the ring buffer 3525 * (all CPU entries) 3526 */ 3527 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3528 { 3529 struct ring_buffer_per_cpu *cpu_buffer; 3530 unsigned long overruns = 0; 3531 int cpu; 3532 3533 /* if you care about this being correct, lock the buffer */ 3534 for_each_buffer_cpu(buffer, cpu) { 3535 cpu_buffer = buffer->buffers[cpu]; 3536 overruns += local_read(&cpu_buffer->overrun); 3537 } 3538 3539 return overruns; 3540 } 3541 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3542 3543 static void rb_iter_reset(struct ring_buffer_iter *iter) 3544 { 3545 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3546 3547 /* Iterator usage is expected to have record disabled */ 3548 iter->head_page = cpu_buffer->reader_page; 3549 iter->head = cpu_buffer->reader_page->read; 3550 3551 iter->cache_reader_page = iter->head_page; 3552 iter->cache_read = cpu_buffer->read; 3553 3554 if (iter->head) 3555 iter->read_stamp = cpu_buffer->read_stamp; 3556 else 3557 iter->read_stamp = iter->head_page->page->time_stamp; 3558 } 3559 3560 /** 3561 * ring_buffer_iter_reset - reset an iterator 3562 * @iter: The iterator to reset 3563 * 3564 * Resets the iterator, so that it will start from the beginning 3565 * again. 3566 */ 3567 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3568 { 3569 struct ring_buffer_per_cpu *cpu_buffer; 3570 unsigned long flags; 3571 3572 if (!iter) 3573 return; 3574 3575 cpu_buffer = iter->cpu_buffer; 3576 3577 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3578 rb_iter_reset(iter); 3579 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3580 } 3581 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3582 3583 /** 3584 * ring_buffer_iter_empty - check if an iterator has no more to read 3585 * @iter: The iterator to check 3586 */ 3587 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3588 { 3589 struct ring_buffer_per_cpu *cpu_buffer; 3590 struct buffer_page *reader; 3591 struct buffer_page *head_page; 3592 struct buffer_page *commit_page; 3593 unsigned commit; 3594 3595 cpu_buffer = iter->cpu_buffer; 3596 3597 /* Remember, trace recording is off when iterator is in use */ 3598 reader = cpu_buffer->reader_page; 3599 head_page = cpu_buffer->head_page; 3600 commit_page = cpu_buffer->commit_page; 3601 commit = rb_page_commit(commit_page); 3602 3603 return ((iter->head_page == commit_page && iter->head == commit) || 3604 (iter->head_page == reader && commit_page == head_page && 3605 head_page->read == commit && 3606 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3607 } 3608 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3609 3610 static void 3611 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3612 struct ring_buffer_event *event) 3613 { 3614 u64 delta; 3615 3616 switch (event->type_len) { 3617 case RINGBUF_TYPE_PADDING: 3618 return; 3619 3620 case RINGBUF_TYPE_TIME_EXTEND: 3621 delta = ring_buffer_event_time_stamp(event); 3622 cpu_buffer->read_stamp += delta; 3623 return; 3624 3625 case RINGBUF_TYPE_TIME_STAMP: 3626 delta = ring_buffer_event_time_stamp(event); 3627 cpu_buffer->read_stamp = delta; 3628 return; 3629 3630 case RINGBUF_TYPE_DATA: 3631 cpu_buffer->read_stamp += event->time_delta; 3632 return; 3633 3634 default: 3635 BUG(); 3636 } 3637 return; 3638 } 3639 3640 static void 3641 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3642 struct ring_buffer_event *event) 3643 { 3644 u64 delta; 3645 3646 switch (event->type_len) { 3647 case RINGBUF_TYPE_PADDING: 3648 return; 3649 3650 case RINGBUF_TYPE_TIME_EXTEND: 3651 delta = ring_buffer_event_time_stamp(event); 3652 iter->read_stamp += delta; 3653 return; 3654 3655 case RINGBUF_TYPE_TIME_STAMP: 3656 delta = ring_buffer_event_time_stamp(event); 3657 iter->read_stamp = delta; 3658 return; 3659 3660 case RINGBUF_TYPE_DATA: 3661 iter->read_stamp += event->time_delta; 3662 return; 3663 3664 default: 3665 BUG(); 3666 } 3667 return; 3668 } 3669 3670 static struct buffer_page * 3671 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3672 { 3673 struct buffer_page *reader = NULL; 3674 unsigned long overwrite; 3675 unsigned long flags; 3676 int nr_loops = 0; 3677 int ret; 3678 3679 local_irq_save(flags); 3680 arch_spin_lock(&cpu_buffer->lock); 3681 3682 again: 3683 /* 3684 * This should normally only loop twice. But because the 3685 * start of the reader inserts an empty page, it causes 3686 * a case where we will loop three times. There should be no 3687 * reason to loop four times (that I know of). 3688 */ 3689 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3690 reader = NULL; 3691 goto out; 3692 } 3693 3694 reader = cpu_buffer->reader_page; 3695 3696 /* If there's more to read, return this page */ 3697 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3698 goto out; 3699 3700 /* Never should we have an index greater than the size */ 3701 if (RB_WARN_ON(cpu_buffer, 3702 cpu_buffer->reader_page->read > rb_page_size(reader))) 3703 goto out; 3704 3705 /* check if we caught up to the tail */ 3706 reader = NULL; 3707 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3708 goto out; 3709 3710 /* Don't bother swapping if the ring buffer is empty */ 3711 if (rb_num_of_entries(cpu_buffer) == 0) 3712 goto out; 3713 3714 /* 3715 * Reset the reader page to size zero. 3716 */ 3717 local_set(&cpu_buffer->reader_page->write, 0); 3718 local_set(&cpu_buffer->reader_page->entries, 0); 3719 local_set(&cpu_buffer->reader_page->page->commit, 0); 3720 cpu_buffer->reader_page->real_end = 0; 3721 3722 spin: 3723 /* 3724 * Splice the empty reader page into the list around the head. 3725 */ 3726 reader = rb_set_head_page(cpu_buffer); 3727 if (!reader) 3728 goto out; 3729 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3730 cpu_buffer->reader_page->list.prev = reader->list.prev; 3731 3732 /* 3733 * cpu_buffer->pages just needs to point to the buffer, it 3734 * has no specific buffer page to point to. Lets move it out 3735 * of our way so we don't accidentally swap it. 3736 */ 3737 cpu_buffer->pages = reader->list.prev; 3738 3739 /* The reader page will be pointing to the new head */ 3740 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3741 3742 /* 3743 * We want to make sure we read the overruns after we set up our 3744 * pointers to the next object. The writer side does a 3745 * cmpxchg to cross pages which acts as the mb on the writer 3746 * side. Note, the reader will constantly fail the swap 3747 * while the writer is updating the pointers, so this 3748 * guarantees that the overwrite recorded here is the one we 3749 * want to compare with the last_overrun. 3750 */ 3751 smp_mb(); 3752 overwrite = local_read(&(cpu_buffer->overrun)); 3753 3754 /* 3755 * Here's the tricky part. 3756 * 3757 * We need to move the pointer past the header page. 3758 * But we can only do that if a writer is not currently 3759 * moving it. The page before the header page has the 3760 * flag bit '1' set if it is pointing to the page we want. 3761 * but if the writer is in the process of moving it 3762 * than it will be '2' or already moved '0'. 3763 */ 3764 3765 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3766 3767 /* 3768 * If we did not convert it, then we must try again. 3769 */ 3770 if (!ret) 3771 goto spin; 3772 3773 /* 3774 * Yay! We succeeded in replacing the page. 3775 * 3776 * Now make the new head point back to the reader page. 3777 */ 3778 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3779 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3780 3781 local_inc(&cpu_buffer->pages_read); 3782 3783 /* Finally update the reader page to the new head */ 3784 cpu_buffer->reader_page = reader; 3785 cpu_buffer->reader_page->read = 0; 3786 3787 if (overwrite != cpu_buffer->last_overrun) { 3788 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3789 cpu_buffer->last_overrun = overwrite; 3790 } 3791 3792 goto again; 3793 3794 out: 3795 /* Update the read_stamp on the first event */ 3796 if (reader && reader->read == 0) 3797 cpu_buffer->read_stamp = reader->page->time_stamp; 3798 3799 arch_spin_unlock(&cpu_buffer->lock); 3800 local_irq_restore(flags); 3801 3802 return reader; 3803 } 3804 3805 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3806 { 3807 struct ring_buffer_event *event; 3808 struct buffer_page *reader; 3809 unsigned length; 3810 3811 reader = rb_get_reader_page(cpu_buffer); 3812 3813 /* This function should not be called when buffer is empty */ 3814 if (RB_WARN_ON(cpu_buffer, !reader)) 3815 return; 3816 3817 event = rb_reader_event(cpu_buffer); 3818 3819 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3820 cpu_buffer->read++; 3821 3822 rb_update_read_stamp(cpu_buffer, event); 3823 3824 length = rb_event_length(event); 3825 cpu_buffer->reader_page->read += length; 3826 } 3827 3828 static void rb_advance_iter(struct ring_buffer_iter *iter) 3829 { 3830 struct ring_buffer_per_cpu *cpu_buffer; 3831 struct ring_buffer_event *event; 3832 unsigned length; 3833 3834 cpu_buffer = iter->cpu_buffer; 3835 3836 /* 3837 * Check if we are at the end of the buffer. 3838 */ 3839 if (iter->head >= rb_page_size(iter->head_page)) { 3840 /* discarded commits can make the page empty */ 3841 if (iter->head_page == cpu_buffer->commit_page) 3842 return; 3843 rb_inc_iter(iter); 3844 return; 3845 } 3846 3847 event = rb_iter_head_event(iter); 3848 3849 length = rb_event_length(event); 3850 3851 /* 3852 * This should not be called to advance the header if we are 3853 * at the tail of the buffer. 3854 */ 3855 if (RB_WARN_ON(cpu_buffer, 3856 (iter->head_page == cpu_buffer->commit_page) && 3857 (iter->head + length > rb_commit_index(cpu_buffer)))) 3858 return; 3859 3860 rb_update_iter_read_stamp(iter, event); 3861 3862 iter->head += length; 3863 3864 /* check for end of page padding */ 3865 if ((iter->head >= rb_page_size(iter->head_page)) && 3866 (iter->head_page != cpu_buffer->commit_page)) 3867 rb_inc_iter(iter); 3868 } 3869 3870 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3871 { 3872 return cpu_buffer->lost_events; 3873 } 3874 3875 static struct ring_buffer_event * 3876 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3877 unsigned long *lost_events) 3878 { 3879 struct ring_buffer_event *event; 3880 struct buffer_page *reader; 3881 int nr_loops = 0; 3882 3883 if (ts) 3884 *ts = 0; 3885 again: 3886 /* 3887 * We repeat when a time extend is encountered. 3888 * Since the time extend is always attached to a data event, 3889 * we should never loop more than once. 3890 * (We never hit the following condition more than twice). 3891 */ 3892 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3893 return NULL; 3894 3895 reader = rb_get_reader_page(cpu_buffer); 3896 if (!reader) 3897 return NULL; 3898 3899 event = rb_reader_event(cpu_buffer); 3900 3901 switch (event->type_len) { 3902 case RINGBUF_TYPE_PADDING: 3903 if (rb_null_event(event)) 3904 RB_WARN_ON(cpu_buffer, 1); 3905 /* 3906 * Because the writer could be discarding every 3907 * event it creates (which would probably be bad) 3908 * if we were to go back to "again" then we may never 3909 * catch up, and will trigger the warn on, or lock 3910 * the box. Return the padding, and we will release 3911 * the current locks, and try again. 3912 */ 3913 return event; 3914 3915 case RINGBUF_TYPE_TIME_EXTEND: 3916 /* Internal data, OK to advance */ 3917 rb_advance_reader(cpu_buffer); 3918 goto again; 3919 3920 case RINGBUF_TYPE_TIME_STAMP: 3921 if (ts) { 3922 *ts = ring_buffer_event_time_stamp(event); 3923 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3924 cpu_buffer->cpu, ts); 3925 } 3926 /* Internal data, OK to advance */ 3927 rb_advance_reader(cpu_buffer); 3928 goto again; 3929 3930 case RINGBUF_TYPE_DATA: 3931 if (ts && !(*ts)) { 3932 *ts = cpu_buffer->read_stamp + event->time_delta; 3933 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3934 cpu_buffer->cpu, ts); 3935 } 3936 if (lost_events) 3937 *lost_events = rb_lost_events(cpu_buffer); 3938 return event; 3939 3940 default: 3941 BUG(); 3942 } 3943 3944 return NULL; 3945 } 3946 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3947 3948 static struct ring_buffer_event * 3949 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3950 { 3951 struct ring_buffer *buffer; 3952 struct ring_buffer_per_cpu *cpu_buffer; 3953 struct ring_buffer_event *event; 3954 int nr_loops = 0; 3955 3956 if (ts) 3957 *ts = 0; 3958 3959 cpu_buffer = iter->cpu_buffer; 3960 buffer = cpu_buffer->buffer; 3961 3962 /* 3963 * Check if someone performed a consuming read to 3964 * the buffer. A consuming read invalidates the iterator 3965 * and we need to reset the iterator in this case. 3966 */ 3967 if (unlikely(iter->cache_read != cpu_buffer->read || 3968 iter->cache_reader_page != cpu_buffer->reader_page)) 3969 rb_iter_reset(iter); 3970 3971 again: 3972 if (ring_buffer_iter_empty(iter)) 3973 return NULL; 3974 3975 /* 3976 * We repeat when a time extend is encountered or we hit 3977 * the end of the page. Since the time extend is always attached 3978 * to a data event, we should never loop more than three times. 3979 * Once for going to next page, once on time extend, and 3980 * finally once to get the event. 3981 * (We never hit the following condition more than thrice). 3982 */ 3983 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3984 return NULL; 3985 3986 if (rb_per_cpu_empty(cpu_buffer)) 3987 return NULL; 3988 3989 if (iter->head >= rb_page_size(iter->head_page)) { 3990 rb_inc_iter(iter); 3991 goto again; 3992 } 3993 3994 event = rb_iter_head_event(iter); 3995 3996 switch (event->type_len) { 3997 case RINGBUF_TYPE_PADDING: 3998 if (rb_null_event(event)) { 3999 rb_inc_iter(iter); 4000 goto again; 4001 } 4002 rb_advance_iter(iter); 4003 return event; 4004 4005 case RINGBUF_TYPE_TIME_EXTEND: 4006 /* Internal data, OK to advance */ 4007 rb_advance_iter(iter); 4008 goto again; 4009 4010 case RINGBUF_TYPE_TIME_STAMP: 4011 if (ts) { 4012 *ts = ring_buffer_event_time_stamp(event); 4013 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4014 cpu_buffer->cpu, ts); 4015 } 4016 /* Internal data, OK to advance */ 4017 rb_advance_iter(iter); 4018 goto again; 4019 4020 case RINGBUF_TYPE_DATA: 4021 if (ts && !(*ts)) { 4022 *ts = iter->read_stamp + event->time_delta; 4023 ring_buffer_normalize_time_stamp(buffer, 4024 cpu_buffer->cpu, ts); 4025 } 4026 return event; 4027 4028 default: 4029 BUG(); 4030 } 4031 4032 return NULL; 4033 } 4034 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4035 4036 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4037 { 4038 if (likely(!in_nmi())) { 4039 raw_spin_lock(&cpu_buffer->reader_lock); 4040 return true; 4041 } 4042 4043 /* 4044 * If an NMI die dumps out the content of the ring buffer 4045 * trylock must be used to prevent a deadlock if the NMI 4046 * preempted a task that holds the ring buffer locks. If 4047 * we get the lock then all is fine, if not, then continue 4048 * to do the read, but this can corrupt the ring buffer, 4049 * so it must be permanently disabled from future writes. 4050 * Reading from NMI is a oneshot deal. 4051 */ 4052 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4053 return true; 4054 4055 /* Continue without locking, but disable the ring buffer */ 4056 atomic_inc(&cpu_buffer->record_disabled); 4057 return false; 4058 } 4059 4060 static inline void 4061 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4062 { 4063 if (likely(locked)) 4064 raw_spin_unlock(&cpu_buffer->reader_lock); 4065 return; 4066 } 4067 4068 /** 4069 * ring_buffer_peek - peek at the next event to be read 4070 * @buffer: The ring buffer to read 4071 * @cpu: The cpu to peak at 4072 * @ts: The timestamp counter of this event. 4073 * @lost_events: a variable to store if events were lost (may be NULL) 4074 * 4075 * This will return the event that will be read next, but does 4076 * not consume the data. 4077 */ 4078 struct ring_buffer_event * 4079 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 4080 unsigned long *lost_events) 4081 { 4082 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4083 struct ring_buffer_event *event; 4084 unsigned long flags; 4085 bool dolock; 4086 4087 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4088 return NULL; 4089 4090 again: 4091 local_irq_save(flags); 4092 dolock = rb_reader_lock(cpu_buffer); 4093 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4094 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4095 rb_advance_reader(cpu_buffer); 4096 rb_reader_unlock(cpu_buffer, dolock); 4097 local_irq_restore(flags); 4098 4099 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4100 goto again; 4101 4102 return event; 4103 } 4104 4105 /** 4106 * ring_buffer_iter_peek - peek at the next event to be read 4107 * @iter: The ring buffer iterator 4108 * @ts: The timestamp counter of this event. 4109 * 4110 * This will return the event that will be read next, but does 4111 * not increment the iterator. 4112 */ 4113 struct ring_buffer_event * 4114 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4115 { 4116 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4117 struct ring_buffer_event *event; 4118 unsigned long flags; 4119 4120 again: 4121 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4122 event = rb_iter_peek(iter, ts); 4123 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4124 4125 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4126 goto again; 4127 4128 return event; 4129 } 4130 4131 /** 4132 * ring_buffer_consume - return an event and consume it 4133 * @buffer: The ring buffer to get the next event from 4134 * @cpu: the cpu to read the buffer from 4135 * @ts: a variable to store the timestamp (may be NULL) 4136 * @lost_events: a variable to store if events were lost (may be NULL) 4137 * 4138 * Returns the next event in the ring buffer, and that event is consumed. 4139 * Meaning, that sequential reads will keep returning a different event, 4140 * and eventually empty the ring buffer if the producer is slower. 4141 */ 4142 struct ring_buffer_event * 4143 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 4144 unsigned long *lost_events) 4145 { 4146 struct ring_buffer_per_cpu *cpu_buffer; 4147 struct ring_buffer_event *event = NULL; 4148 unsigned long flags; 4149 bool dolock; 4150 4151 again: 4152 /* might be called in atomic */ 4153 preempt_disable(); 4154 4155 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4156 goto out; 4157 4158 cpu_buffer = buffer->buffers[cpu]; 4159 local_irq_save(flags); 4160 dolock = rb_reader_lock(cpu_buffer); 4161 4162 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4163 if (event) { 4164 cpu_buffer->lost_events = 0; 4165 rb_advance_reader(cpu_buffer); 4166 } 4167 4168 rb_reader_unlock(cpu_buffer, dolock); 4169 local_irq_restore(flags); 4170 4171 out: 4172 preempt_enable(); 4173 4174 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4175 goto again; 4176 4177 return event; 4178 } 4179 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4180 4181 /** 4182 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4183 * @buffer: The ring buffer to read from 4184 * @cpu: The cpu buffer to iterate over 4185 * @flags: gfp flags to use for memory allocation 4186 * 4187 * This performs the initial preparations necessary to iterate 4188 * through the buffer. Memory is allocated, buffer recording 4189 * is disabled, and the iterator pointer is returned to the caller. 4190 * 4191 * Disabling buffer recording prevents the reading from being 4192 * corrupted. This is not a consuming read, so a producer is not 4193 * expected. 4194 * 4195 * After a sequence of ring_buffer_read_prepare calls, the user is 4196 * expected to make at least one call to ring_buffer_read_prepare_sync. 4197 * Afterwards, ring_buffer_read_start is invoked to get things going 4198 * for real. 4199 * 4200 * This overall must be paired with ring_buffer_read_finish. 4201 */ 4202 struct ring_buffer_iter * 4203 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags) 4204 { 4205 struct ring_buffer_per_cpu *cpu_buffer; 4206 struct ring_buffer_iter *iter; 4207 4208 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4209 return NULL; 4210 4211 iter = kmalloc(sizeof(*iter), flags); 4212 if (!iter) 4213 return NULL; 4214 4215 cpu_buffer = buffer->buffers[cpu]; 4216 4217 iter->cpu_buffer = cpu_buffer; 4218 4219 atomic_inc(&buffer->resize_disabled); 4220 atomic_inc(&cpu_buffer->record_disabled); 4221 4222 return iter; 4223 } 4224 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4225 4226 /** 4227 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4228 * 4229 * All previously invoked ring_buffer_read_prepare calls to prepare 4230 * iterators will be synchronized. Afterwards, read_buffer_read_start 4231 * calls on those iterators are allowed. 4232 */ 4233 void 4234 ring_buffer_read_prepare_sync(void) 4235 { 4236 synchronize_rcu(); 4237 } 4238 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4239 4240 /** 4241 * ring_buffer_read_start - start a non consuming read of the buffer 4242 * @iter: The iterator returned by ring_buffer_read_prepare 4243 * 4244 * This finalizes the startup of an iteration through the buffer. 4245 * The iterator comes from a call to ring_buffer_read_prepare and 4246 * an intervening ring_buffer_read_prepare_sync must have been 4247 * performed. 4248 * 4249 * Must be paired with ring_buffer_read_finish. 4250 */ 4251 void 4252 ring_buffer_read_start(struct ring_buffer_iter *iter) 4253 { 4254 struct ring_buffer_per_cpu *cpu_buffer; 4255 unsigned long flags; 4256 4257 if (!iter) 4258 return; 4259 4260 cpu_buffer = iter->cpu_buffer; 4261 4262 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4263 arch_spin_lock(&cpu_buffer->lock); 4264 rb_iter_reset(iter); 4265 arch_spin_unlock(&cpu_buffer->lock); 4266 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4267 } 4268 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4269 4270 /** 4271 * ring_buffer_read_finish - finish reading the iterator of the buffer 4272 * @iter: The iterator retrieved by ring_buffer_start 4273 * 4274 * This re-enables the recording to the buffer, and frees the 4275 * iterator. 4276 */ 4277 void 4278 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4279 { 4280 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4281 unsigned long flags; 4282 4283 /* 4284 * Ring buffer is disabled from recording, here's a good place 4285 * to check the integrity of the ring buffer. 4286 * Must prevent readers from trying to read, as the check 4287 * clears the HEAD page and readers require it. 4288 */ 4289 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4290 rb_check_pages(cpu_buffer); 4291 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4292 4293 atomic_dec(&cpu_buffer->record_disabled); 4294 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4295 kfree(iter); 4296 } 4297 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4298 4299 /** 4300 * ring_buffer_read - read the next item in the ring buffer by the iterator 4301 * @iter: The ring buffer iterator 4302 * @ts: The time stamp of the event read. 4303 * 4304 * This reads the next event in the ring buffer and increments the iterator. 4305 */ 4306 struct ring_buffer_event * 4307 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4308 { 4309 struct ring_buffer_event *event; 4310 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4311 unsigned long flags; 4312 4313 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4314 again: 4315 event = rb_iter_peek(iter, ts); 4316 if (!event) 4317 goto out; 4318 4319 if (event->type_len == RINGBUF_TYPE_PADDING) 4320 goto again; 4321 4322 rb_advance_iter(iter); 4323 out: 4324 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4325 4326 return event; 4327 } 4328 EXPORT_SYMBOL_GPL(ring_buffer_read); 4329 4330 /** 4331 * ring_buffer_size - return the size of the ring buffer (in bytes) 4332 * @buffer: The ring buffer. 4333 */ 4334 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4335 { 4336 /* 4337 * Earlier, this method returned 4338 * BUF_PAGE_SIZE * buffer->nr_pages 4339 * Since the nr_pages field is now removed, we have converted this to 4340 * return the per cpu buffer value. 4341 */ 4342 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4343 return 0; 4344 4345 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4346 } 4347 EXPORT_SYMBOL_GPL(ring_buffer_size); 4348 4349 static void 4350 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4351 { 4352 rb_head_page_deactivate(cpu_buffer); 4353 4354 cpu_buffer->head_page 4355 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4356 local_set(&cpu_buffer->head_page->write, 0); 4357 local_set(&cpu_buffer->head_page->entries, 0); 4358 local_set(&cpu_buffer->head_page->page->commit, 0); 4359 4360 cpu_buffer->head_page->read = 0; 4361 4362 cpu_buffer->tail_page = cpu_buffer->head_page; 4363 cpu_buffer->commit_page = cpu_buffer->head_page; 4364 4365 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4366 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4367 local_set(&cpu_buffer->reader_page->write, 0); 4368 local_set(&cpu_buffer->reader_page->entries, 0); 4369 local_set(&cpu_buffer->reader_page->page->commit, 0); 4370 cpu_buffer->reader_page->read = 0; 4371 4372 local_set(&cpu_buffer->entries_bytes, 0); 4373 local_set(&cpu_buffer->overrun, 0); 4374 local_set(&cpu_buffer->commit_overrun, 0); 4375 local_set(&cpu_buffer->dropped_events, 0); 4376 local_set(&cpu_buffer->entries, 0); 4377 local_set(&cpu_buffer->committing, 0); 4378 local_set(&cpu_buffer->commits, 0); 4379 local_set(&cpu_buffer->pages_touched, 0); 4380 local_set(&cpu_buffer->pages_read, 0); 4381 cpu_buffer->last_pages_touch = 0; 4382 cpu_buffer->shortest_full = 0; 4383 cpu_buffer->read = 0; 4384 cpu_buffer->read_bytes = 0; 4385 4386 cpu_buffer->write_stamp = 0; 4387 cpu_buffer->read_stamp = 0; 4388 4389 cpu_buffer->lost_events = 0; 4390 cpu_buffer->last_overrun = 0; 4391 4392 rb_head_page_activate(cpu_buffer); 4393 } 4394 4395 /** 4396 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4397 * @buffer: The ring buffer to reset a per cpu buffer of 4398 * @cpu: The CPU buffer to be reset 4399 */ 4400 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4401 { 4402 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4403 unsigned long flags; 4404 4405 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4406 return; 4407 4408 atomic_inc(&buffer->resize_disabled); 4409 atomic_inc(&cpu_buffer->record_disabled); 4410 4411 /* Make sure all commits have finished */ 4412 synchronize_rcu(); 4413 4414 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4415 4416 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4417 goto out; 4418 4419 arch_spin_lock(&cpu_buffer->lock); 4420 4421 rb_reset_cpu(cpu_buffer); 4422 4423 arch_spin_unlock(&cpu_buffer->lock); 4424 4425 out: 4426 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4427 4428 atomic_dec(&cpu_buffer->record_disabled); 4429 atomic_dec(&buffer->resize_disabled); 4430 } 4431 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4432 4433 /** 4434 * ring_buffer_reset - reset a ring buffer 4435 * @buffer: The ring buffer to reset all cpu buffers 4436 */ 4437 void ring_buffer_reset(struct ring_buffer *buffer) 4438 { 4439 int cpu; 4440 4441 for_each_buffer_cpu(buffer, cpu) 4442 ring_buffer_reset_cpu(buffer, cpu); 4443 } 4444 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4445 4446 /** 4447 * rind_buffer_empty - is the ring buffer empty? 4448 * @buffer: The ring buffer to test 4449 */ 4450 bool ring_buffer_empty(struct ring_buffer *buffer) 4451 { 4452 struct ring_buffer_per_cpu *cpu_buffer; 4453 unsigned long flags; 4454 bool dolock; 4455 int cpu; 4456 int ret; 4457 4458 /* yes this is racy, but if you don't like the race, lock the buffer */ 4459 for_each_buffer_cpu(buffer, cpu) { 4460 cpu_buffer = buffer->buffers[cpu]; 4461 local_irq_save(flags); 4462 dolock = rb_reader_lock(cpu_buffer); 4463 ret = rb_per_cpu_empty(cpu_buffer); 4464 rb_reader_unlock(cpu_buffer, dolock); 4465 local_irq_restore(flags); 4466 4467 if (!ret) 4468 return false; 4469 } 4470 4471 return true; 4472 } 4473 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4474 4475 /** 4476 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4477 * @buffer: The ring buffer 4478 * @cpu: The CPU buffer to test 4479 */ 4480 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4481 { 4482 struct ring_buffer_per_cpu *cpu_buffer; 4483 unsigned long flags; 4484 bool dolock; 4485 int ret; 4486 4487 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4488 return true; 4489 4490 cpu_buffer = buffer->buffers[cpu]; 4491 local_irq_save(flags); 4492 dolock = rb_reader_lock(cpu_buffer); 4493 ret = rb_per_cpu_empty(cpu_buffer); 4494 rb_reader_unlock(cpu_buffer, dolock); 4495 local_irq_restore(flags); 4496 4497 return ret; 4498 } 4499 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4500 4501 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4502 /** 4503 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4504 * @buffer_a: One buffer to swap with 4505 * @buffer_b: The other buffer to swap with 4506 * 4507 * This function is useful for tracers that want to take a "snapshot" 4508 * of a CPU buffer and has another back up buffer lying around. 4509 * it is expected that the tracer handles the cpu buffer not being 4510 * used at the moment. 4511 */ 4512 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4513 struct ring_buffer *buffer_b, int cpu) 4514 { 4515 struct ring_buffer_per_cpu *cpu_buffer_a; 4516 struct ring_buffer_per_cpu *cpu_buffer_b; 4517 int ret = -EINVAL; 4518 4519 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4520 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4521 goto out; 4522 4523 cpu_buffer_a = buffer_a->buffers[cpu]; 4524 cpu_buffer_b = buffer_b->buffers[cpu]; 4525 4526 /* At least make sure the two buffers are somewhat the same */ 4527 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4528 goto out; 4529 4530 ret = -EAGAIN; 4531 4532 if (atomic_read(&buffer_a->record_disabled)) 4533 goto out; 4534 4535 if (atomic_read(&buffer_b->record_disabled)) 4536 goto out; 4537 4538 if (atomic_read(&cpu_buffer_a->record_disabled)) 4539 goto out; 4540 4541 if (atomic_read(&cpu_buffer_b->record_disabled)) 4542 goto out; 4543 4544 /* 4545 * We can't do a synchronize_rcu here because this 4546 * function can be called in atomic context. 4547 * Normally this will be called from the same CPU as cpu. 4548 * If not it's up to the caller to protect this. 4549 */ 4550 atomic_inc(&cpu_buffer_a->record_disabled); 4551 atomic_inc(&cpu_buffer_b->record_disabled); 4552 4553 ret = -EBUSY; 4554 if (local_read(&cpu_buffer_a->committing)) 4555 goto out_dec; 4556 if (local_read(&cpu_buffer_b->committing)) 4557 goto out_dec; 4558 4559 buffer_a->buffers[cpu] = cpu_buffer_b; 4560 buffer_b->buffers[cpu] = cpu_buffer_a; 4561 4562 cpu_buffer_b->buffer = buffer_a; 4563 cpu_buffer_a->buffer = buffer_b; 4564 4565 ret = 0; 4566 4567 out_dec: 4568 atomic_dec(&cpu_buffer_a->record_disabled); 4569 atomic_dec(&cpu_buffer_b->record_disabled); 4570 out: 4571 return ret; 4572 } 4573 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4574 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4575 4576 /** 4577 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4578 * @buffer: the buffer to allocate for. 4579 * @cpu: the cpu buffer to allocate. 4580 * 4581 * This function is used in conjunction with ring_buffer_read_page. 4582 * When reading a full page from the ring buffer, these functions 4583 * can be used to speed up the process. The calling function should 4584 * allocate a few pages first with this function. Then when it 4585 * needs to get pages from the ring buffer, it passes the result 4586 * of this function into ring_buffer_read_page, which will swap 4587 * the page that was allocated, with the read page of the buffer. 4588 * 4589 * Returns: 4590 * The page allocated, or ERR_PTR 4591 */ 4592 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4593 { 4594 struct ring_buffer_per_cpu *cpu_buffer; 4595 struct buffer_data_page *bpage = NULL; 4596 unsigned long flags; 4597 struct page *page; 4598 4599 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4600 return ERR_PTR(-ENODEV); 4601 4602 cpu_buffer = buffer->buffers[cpu]; 4603 local_irq_save(flags); 4604 arch_spin_lock(&cpu_buffer->lock); 4605 4606 if (cpu_buffer->free_page) { 4607 bpage = cpu_buffer->free_page; 4608 cpu_buffer->free_page = NULL; 4609 } 4610 4611 arch_spin_unlock(&cpu_buffer->lock); 4612 local_irq_restore(flags); 4613 4614 if (bpage) 4615 goto out; 4616 4617 page = alloc_pages_node(cpu_to_node(cpu), 4618 GFP_KERNEL | __GFP_NORETRY, 0); 4619 if (!page) 4620 return ERR_PTR(-ENOMEM); 4621 4622 bpage = page_address(page); 4623 4624 out: 4625 rb_init_page(bpage); 4626 4627 return bpage; 4628 } 4629 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4630 4631 /** 4632 * ring_buffer_free_read_page - free an allocated read page 4633 * @buffer: the buffer the page was allocate for 4634 * @cpu: the cpu buffer the page came from 4635 * @data: the page to free 4636 * 4637 * Free a page allocated from ring_buffer_alloc_read_page. 4638 */ 4639 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data) 4640 { 4641 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4642 struct buffer_data_page *bpage = data; 4643 struct page *page = virt_to_page(bpage); 4644 unsigned long flags; 4645 4646 /* If the page is still in use someplace else, we can't reuse it */ 4647 if (page_ref_count(page) > 1) 4648 goto out; 4649 4650 local_irq_save(flags); 4651 arch_spin_lock(&cpu_buffer->lock); 4652 4653 if (!cpu_buffer->free_page) { 4654 cpu_buffer->free_page = bpage; 4655 bpage = NULL; 4656 } 4657 4658 arch_spin_unlock(&cpu_buffer->lock); 4659 local_irq_restore(flags); 4660 4661 out: 4662 free_page((unsigned long)bpage); 4663 } 4664 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4665 4666 /** 4667 * ring_buffer_read_page - extract a page from the ring buffer 4668 * @buffer: buffer to extract from 4669 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4670 * @len: amount to extract 4671 * @cpu: the cpu of the buffer to extract 4672 * @full: should the extraction only happen when the page is full. 4673 * 4674 * This function will pull out a page from the ring buffer and consume it. 4675 * @data_page must be the address of the variable that was returned 4676 * from ring_buffer_alloc_read_page. This is because the page might be used 4677 * to swap with a page in the ring buffer. 4678 * 4679 * for example: 4680 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4681 * if (IS_ERR(rpage)) 4682 * return PTR_ERR(rpage); 4683 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4684 * if (ret >= 0) 4685 * process_page(rpage, ret); 4686 * 4687 * When @full is set, the function will not return true unless 4688 * the writer is off the reader page. 4689 * 4690 * Note: it is up to the calling functions to handle sleeps and wakeups. 4691 * The ring buffer can be used anywhere in the kernel and can not 4692 * blindly call wake_up. The layer that uses the ring buffer must be 4693 * responsible for that. 4694 * 4695 * Returns: 4696 * >=0 if data has been transferred, returns the offset of consumed data. 4697 * <0 if no data has been transferred. 4698 */ 4699 int ring_buffer_read_page(struct ring_buffer *buffer, 4700 void **data_page, size_t len, int cpu, int full) 4701 { 4702 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4703 struct ring_buffer_event *event; 4704 struct buffer_data_page *bpage; 4705 struct buffer_page *reader; 4706 unsigned long missed_events; 4707 unsigned long flags; 4708 unsigned int commit; 4709 unsigned int read; 4710 u64 save_timestamp; 4711 int ret = -1; 4712 4713 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4714 goto out; 4715 4716 /* 4717 * If len is not big enough to hold the page header, then 4718 * we can not copy anything. 4719 */ 4720 if (len <= BUF_PAGE_HDR_SIZE) 4721 goto out; 4722 4723 len -= BUF_PAGE_HDR_SIZE; 4724 4725 if (!data_page) 4726 goto out; 4727 4728 bpage = *data_page; 4729 if (!bpage) 4730 goto out; 4731 4732 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4733 4734 reader = rb_get_reader_page(cpu_buffer); 4735 if (!reader) 4736 goto out_unlock; 4737 4738 event = rb_reader_event(cpu_buffer); 4739 4740 read = reader->read; 4741 commit = rb_page_commit(reader); 4742 4743 /* Check if any events were dropped */ 4744 missed_events = cpu_buffer->lost_events; 4745 4746 /* 4747 * If this page has been partially read or 4748 * if len is not big enough to read the rest of the page or 4749 * a writer is still on the page, then 4750 * we must copy the data from the page to the buffer. 4751 * Otherwise, we can simply swap the page with the one passed in. 4752 */ 4753 if (read || (len < (commit - read)) || 4754 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4755 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4756 unsigned int rpos = read; 4757 unsigned int pos = 0; 4758 unsigned int size; 4759 4760 if (full) 4761 goto out_unlock; 4762 4763 if (len > (commit - read)) 4764 len = (commit - read); 4765 4766 /* Always keep the time extend and data together */ 4767 size = rb_event_ts_length(event); 4768 4769 if (len < size) 4770 goto out_unlock; 4771 4772 /* save the current timestamp, since the user will need it */ 4773 save_timestamp = cpu_buffer->read_stamp; 4774 4775 /* Need to copy one event at a time */ 4776 do { 4777 /* We need the size of one event, because 4778 * rb_advance_reader only advances by one event, 4779 * whereas rb_event_ts_length may include the size of 4780 * one or two events. 4781 * We have already ensured there's enough space if this 4782 * is a time extend. */ 4783 size = rb_event_length(event); 4784 memcpy(bpage->data + pos, rpage->data + rpos, size); 4785 4786 len -= size; 4787 4788 rb_advance_reader(cpu_buffer); 4789 rpos = reader->read; 4790 pos += size; 4791 4792 if (rpos >= commit) 4793 break; 4794 4795 event = rb_reader_event(cpu_buffer); 4796 /* Always keep the time extend and data together */ 4797 size = rb_event_ts_length(event); 4798 } while (len >= size); 4799 4800 /* update bpage */ 4801 local_set(&bpage->commit, pos); 4802 bpage->time_stamp = save_timestamp; 4803 4804 /* we copied everything to the beginning */ 4805 read = 0; 4806 } else { 4807 /* update the entry counter */ 4808 cpu_buffer->read += rb_page_entries(reader); 4809 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4810 4811 /* swap the pages */ 4812 rb_init_page(bpage); 4813 bpage = reader->page; 4814 reader->page = *data_page; 4815 local_set(&reader->write, 0); 4816 local_set(&reader->entries, 0); 4817 reader->read = 0; 4818 *data_page = bpage; 4819 4820 /* 4821 * Use the real_end for the data size, 4822 * This gives us a chance to store the lost events 4823 * on the page. 4824 */ 4825 if (reader->real_end) 4826 local_set(&bpage->commit, reader->real_end); 4827 } 4828 ret = read; 4829 4830 cpu_buffer->lost_events = 0; 4831 4832 commit = local_read(&bpage->commit); 4833 /* 4834 * Set a flag in the commit field if we lost events 4835 */ 4836 if (missed_events) { 4837 /* If there is room at the end of the page to save the 4838 * missed events, then record it there. 4839 */ 4840 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4841 memcpy(&bpage->data[commit], &missed_events, 4842 sizeof(missed_events)); 4843 local_add(RB_MISSED_STORED, &bpage->commit); 4844 commit += sizeof(missed_events); 4845 } 4846 local_add(RB_MISSED_EVENTS, &bpage->commit); 4847 } 4848 4849 /* 4850 * This page may be off to user land. Zero it out here. 4851 */ 4852 if (commit < BUF_PAGE_SIZE) 4853 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4854 4855 out_unlock: 4856 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4857 4858 out: 4859 return ret; 4860 } 4861 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4862 4863 /* 4864 * We only allocate new buffers, never free them if the CPU goes down. 4865 * If we were to free the buffer, then the user would lose any trace that was in 4866 * the buffer. 4867 */ 4868 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4869 { 4870 struct ring_buffer *buffer; 4871 long nr_pages_same; 4872 int cpu_i; 4873 unsigned long nr_pages; 4874 4875 buffer = container_of(node, struct ring_buffer, node); 4876 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4877 return 0; 4878 4879 nr_pages = 0; 4880 nr_pages_same = 1; 4881 /* check if all cpu sizes are same */ 4882 for_each_buffer_cpu(buffer, cpu_i) { 4883 /* fill in the size from first enabled cpu */ 4884 if (nr_pages == 0) 4885 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4886 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4887 nr_pages_same = 0; 4888 break; 4889 } 4890 } 4891 /* allocate minimum pages, user can later expand it */ 4892 if (!nr_pages_same) 4893 nr_pages = 2; 4894 buffer->buffers[cpu] = 4895 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4896 if (!buffer->buffers[cpu]) { 4897 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4898 cpu); 4899 return -ENOMEM; 4900 } 4901 smp_wmb(); 4902 cpumask_set_cpu(cpu, buffer->cpumask); 4903 return 0; 4904 } 4905 4906 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4907 /* 4908 * This is a basic integrity check of the ring buffer. 4909 * Late in the boot cycle this test will run when configured in. 4910 * It will kick off a thread per CPU that will go into a loop 4911 * writing to the per cpu ring buffer various sizes of data. 4912 * Some of the data will be large items, some small. 4913 * 4914 * Another thread is created that goes into a spin, sending out 4915 * IPIs to the other CPUs to also write into the ring buffer. 4916 * this is to test the nesting ability of the buffer. 4917 * 4918 * Basic stats are recorded and reported. If something in the 4919 * ring buffer should happen that's not expected, a big warning 4920 * is displayed and all ring buffers are disabled. 4921 */ 4922 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4923 4924 struct rb_test_data { 4925 struct ring_buffer *buffer; 4926 unsigned long events; 4927 unsigned long bytes_written; 4928 unsigned long bytes_alloc; 4929 unsigned long bytes_dropped; 4930 unsigned long events_nested; 4931 unsigned long bytes_written_nested; 4932 unsigned long bytes_alloc_nested; 4933 unsigned long bytes_dropped_nested; 4934 int min_size_nested; 4935 int max_size_nested; 4936 int max_size; 4937 int min_size; 4938 int cpu; 4939 int cnt; 4940 }; 4941 4942 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4943 4944 /* 1 meg per cpu */ 4945 #define RB_TEST_BUFFER_SIZE 1048576 4946 4947 static char rb_string[] __initdata = 4948 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4949 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4950 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4951 4952 static bool rb_test_started __initdata; 4953 4954 struct rb_item { 4955 int size; 4956 char str[]; 4957 }; 4958 4959 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4960 { 4961 struct ring_buffer_event *event; 4962 struct rb_item *item; 4963 bool started; 4964 int event_len; 4965 int size; 4966 int len; 4967 int cnt; 4968 4969 /* Have nested writes different that what is written */ 4970 cnt = data->cnt + (nested ? 27 : 0); 4971 4972 /* Multiply cnt by ~e, to make some unique increment */ 4973 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 4974 4975 len = size + sizeof(struct rb_item); 4976 4977 started = rb_test_started; 4978 /* read rb_test_started before checking buffer enabled */ 4979 smp_rmb(); 4980 4981 event = ring_buffer_lock_reserve(data->buffer, len); 4982 if (!event) { 4983 /* Ignore dropped events before test starts. */ 4984 if (started) { 4985 if (nested) 4986 data->bytes_dropped += len; 4987 else 4988 data->bytes_dropped_nested += len; 4989 } 4990 return len; 4991 } 4992 4993 event_len = ring_buffer_event_length(event); 4994 4995 if (RB_WARN_ON(data->buffer, event_len < len)) 4996 goto out; 4997 4998 item = ring_buffer_event_data(event); 4999 item->size = size; 5000 memcpy(item->str, rb_string, size); 5001 5002 if (nested) { 5003 data->bytes_alloc_nested += event_len; 5004 data->bytes_written_nested += len; 5005 data->events_nested++; 5006 if (!data->min_size_nested || len < data->min_size_nested) 5007 data->min_size_nested = len; 5008 if (len > data->max_size_nested) 5009 data->max_size_nested = len; 5010 } else { 5011 data->bytes_alloc += event_len; 5012 data->bytes_written += len; 5013 data->events++; 5014 if (!data->min_size || len < data->min_size) 5015 data->max_size = len; 5016 if (len > data->max_size) 5017 data->max_size = len; 5018 } 5019 5020 out: 5021 ring_buffer_unlock_commit(data->buffer, event); 5022 5023 return 0; 5024 } 5025 5026 static __init int rb_test(void *arg) 5027 { 5028 struct rb_test_data *data = arg; 5029 5030 while (!kthread_should_stop()) { 5031 rb_write_something(data, false); 5032 data->cnt++; 5033 5034 set_current_state(TASK_INTERRUPTIBLE); 5035 /* Now sleep between a min of 100-300us and a max of 1ms */ 5036 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5037 } 5038 5039 return 0; 5040 } 5041 5042 static __init void rb_ipi(void *ignore) 5043 { 5044 struct rb_test_data *data; 5045 int cpu = smp_processor_id(); 5046 5047 data = &rb_data[cpu]; 5048 rb_write_something(data, true); 5049 } 5050 5051 static __init int rb_hammer_test(void *arg) 5052 { 5053 while (!kthread_should_stop()) { 5054 5055 /* Send an IPI to all cpus to write data! */ 5056 smp_call_function(rb_ipi, NULL, 1); 5057 /* No sleep, but for non preempt, let others run */ 5058 schedule(); 5059 } 5060 5061 return 0; 5062 } 5063 5064 static __init int test_ringbuffer(void) 5065 { 5066 struct task_struct *rb_hammer; 5067 struct ring_buffer *buffer; 5068 int cpu; 5069 int ret = 0; 5070 5071 pr_info("Running ring buffer tests...\n"); 5072 5073 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5074 if (WARN_ON(!buffer)) 5075 return 0; 5076 5077 /* Disable buffer so that threads can't write to it yet */ 5078 ring_buffer_record_off(buffer); 5079 5080 for_each_online_cpu(cpu) { 5081 rb_data[cpu].buffer = buffer; 5082 rb_data[cpu].cpu = cpu; 5083 rb_data[cpu].cnt = cpu; 5084 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5085 "rbtester/%d", cpu); 5086 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5087 pr_cont("FAILED\n"); 5088 ret = PTR_ERR(rb_threads[cpu]); 5089 goto out_free; 5090 } 5091 5092 kthread_bind(rb_threads[cpu], cpu); 5093 wake_up_process(rb_threads[cpu]); 5094 } 5095 5096 /* Now create the rb hammer! */ 5097 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5098 if (WARN_ON(IS_ERR(rb_hammer))) { 5099 pr_cont("FAILED\n"); 5100 ret = PTR_ERR(rb_hammer); 5101 goto out_free; 5102 } 5103 5104 ring_buffer_record_on(buffer); 5105 /* 5106 * Show buffer is enabled before setting rb_test_started. 5107 * Yes there's a small race window where events could be 5108 * dropped and the thread wont catch it. But when a ring 5109 * buffer gets enabled, there will always be some kind of 5110 * delay before other CPUs see it. Thus, we don't care about 5111 * those dropped events. We care about events dropped after 5112 * the threads see that the buffer is active. 5113 */ 5114 smp_wmb(); 5115 rb_test_started = true; 5116 5117 set_current_state(TASK_INTERRUPTIBLE); 5118 /* Just run for 10 seconds */; 5119 schedule_timeout(10 * HZ); 5120 5121 kthread_stop(rb_hammer); 5122 5123 out_free: 5124 for_each_online_cpu(cpu) { 5125 if (!rb_threads[cpu]) 5126 break; 5127 kthread_stop(rb_threads[cpu]); 5128 } 5129 if (ret) { 5130 ring_buffer_free(buffer); 5131 return ret; 5132 } 5133 5134 /* Report! */ 5135 pr_info("finished\n"); 5136 for_each_online_cpu(cpu) { 5137 struct ring_buffer_event *event; 5138 struct rb_test_data *data = &rb_data[cpu]; 5139 struct rb_item *item; 5140 unsigned long total_events; 5141 unsigned long total_dropped; 5142 unsigned long total_written; 5143 unsigned long total_alloc; 5144 unsigned long total_read = 0; 5145 unsigned long total_size = 0; 5146 unsigned long total_len = 0; 5147 unsigned long total_lost = 0; 5148 unsigned long lost; 5149 int big_event_size; 5150 int small_event_size; 5151 5152 ret = -1; 5153 5154 total_events = data->events + data->events_nested; 5155 total_written = data->bytes_written + data->bytes_written_nested; 5156 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5157 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5158 5159 big_event_size = data->max_size + data->max_size_nested; 5160 small_event_size = data->min_size + data->min_size_nested; 5161 5162 pr_info("CPU %d:\n", cpu); 5163 pr_info(" events: %ld\n", total_events); 5164 pr_info(" dropped bytes: %ld\n", total_dropped); 5165 pr_info(" alloced bytes: %ld\n", total_alloc); 5166 pr_info(" written bytes: %ld\n", total_written); 5167 pr_info(" biggest event: %d\n", big_event_size); 5168 pr_info(" smallest event: %d\n", small_event_size); 5169 5170 if (RB_WARN_ON(buffer, total_dropped)) 5171 break; 5172 5173 ret = 0; 5174 5175 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5176 total_lost += lost; 5177 item = ring_buffer_event_data(event); 5178 total_len += ring_buffer_event_length(event); 5179 total_size += item->size + sizeof(struct rb_item); 5180 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5181 pr_info("FAILED!\n"); 5182 pr_info("buffer had: %.*s\n", item->size, item->str); 5183 pr_info("expected: %.*s\n", item->size, rb_string); 5184 RB_WARN_ON(buffer, 1); 5185 ret = -1; 5186 break; 5187 } 5188 total_read++; 5189 } 5190 if (ret) 5191 break; 5192 5193 ret = -1; 5194 5195 pr_info(" read events: %ld\n", total_read); 5196 pr_info(" lost events: %ld\n", total_lost); 5197 pr_info(" total events: %ld\n", total_lost + total_read); 5198 pr_info(" recorded len bytes: %ld\n", total_len); 5199 pr_info(" recorded size bytes: %ld\n", total_size); 5200 if (total_lost) 5201 pr_info(" With dropped events, record len and size may not match\n" 5202 " alloced and written from above\n"); 5203 if (!total_lost) { 5204 if (RB_WARN_ON(buffer, total_len != total_alloc || 5205 total_size != total_written)) 5206 break; 5207 } 5208 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5209 break; 5210 5211 ret = 0; 5212 } 5213 if (!ret) 5214 pr_info("Ring buffer PASSED!\n"); 5215 5216 ring_buffer_free(buffer); 5217 return 0; 5218 } 5219 5220 late_initcall(test_ringbuffer); 5221 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5222