xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision b6dcefde)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include "trace.h"
24 
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30 	int ret;
31 
32 	ret = trace_seq_printf(s, "# compressed entry header\n");
33 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36 	ret = trace_seq_printf(s, "\n");
37 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38 			       RINGBUF_TYPE_PADDING);
39 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 			       RINGBUF_TYPE_TIME_EXTEND);
41 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43 
44 	return ret;
45 }
46 
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114 
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132 
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143 
144 enum {
145 	RB_BUFFERS_ON_BIT	= 0,
146 	RB_BUFFERS_DISABLED_BIT	= 1,
147 };
148 
149 enum {
150 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
151 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153 
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155 
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157 
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169 
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183 
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194 
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200 	return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203 
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT		4U
206 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
208 
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211 
212 enum {
213 	RB_LEN_TIME_EXTEND = 8,
214 	RB_LEN_TIME_STAMP = 16,
215 };
216 
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
220 }
221 
222 static void rb_event_set_padding(struct ring_buffer_event *event)
223 {
224 	/* padding has a NULL time_delta */
225 	event->type_len = RINGBUF_TYPE_PADDING;
226 	event->time_delta = 0;
227 }
228 
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len)
235 		length = event->type_len * RB_ALIGNMENT;
236 	else
237 		length = event->array[0];
238 	return length + RB_EVNT_HDR_SIZE;
239 }
240 
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245 	switch (event->type_len) {
246 	case RINGBUF_TYPE_PADDING:
247 		if (rb_null_event(event))
248 			/* undefined */
249 			return -1;
250 		return  event->array[0] + RB_EVNT_HDR_SIZE;
251 
252 	case RINGBUF_TYPE_TIME_EXTEND:
253 		return RB_LEN_TIME_EXTEND;
254 
255 	case RINGBUF_TYPE_TIME_STAMP:
256 		return RB_LEN_TIME_STAMP;
257 
258 	case RINGBUF_TYPE_DATA:
259 		return rb_event_data_length(event);
260 	default:
261 		BUG();
262 	}
263 	/* not hit */
264 	return 0;
265 }
266 
267 /**
268  * ring_buffer_event_length - return the length of the event
269  * @event: the event to get the length of
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length = rb_event_length(event);
274 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275 		return length;
276 	length -= RB_EVNT_HDR_SIZE;
277 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278                 length -= sizeof(event->array[0]);
279 	return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282 
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288 	/* If length is in len field, then array[0] has the data */
289 	if (event->type_len)
290 		return (void *)&event->array[0];
291 	/* Otherwise length is in array[0] and array[1] has the data */
292 	return (void *)&event->array[1];
293 }
294 
295 /**
296  * ring_buffer_event_data - return the data of the event
297  * @event: the event to get the data from
298  */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301 	return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304 
305 #define for_each_buffer_cpu(buffer, cpu)		\
306 	for_each_cpu(cpu, buffer->cpumask)
307 
308 #define TS_SHIFT	27
309 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST	(~TS_MASK)
311 
312 struct buffer_data_page {
313 	u64		 time_stamp;	/* page time stamp */
314 	local_t		 commit;	/* write committed index */
315 	unsigned char	 data[];	/* data of buffer page */
316 };
317 
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327 	struct list_head list;		/* list of buffer pages */
328 	local_t		 write;		/* index for next write */
329 	unsigned	 read;		/* index for next read */
330 	local_t		 entries;	/* entries on this page */
331 	struct buffer_data_page *page;	/* Actual data page */
332 };
333 
334 /*
335  * The buffer page counters, write and entries, must be reset
336  * atomically when crossing page boundaries. To synchronize this
337  * update, two counters are inserted into the number. One is
338  * the actual counter for the write position or count on the page.
339  *
340  * The other is a counter of updaters. Before an update happens
341  * the update partition of the counter is incremented. This will
342  * allow the updater to update the counter atomically.
343  *
344  * The counter is 20 bits, and the state data is 12.
345  */
346 #define RB_WRITE_MASK		0xfffff
347 #define RB_WRITE_INTCNT		(1 << 20)
348 
349 static void rb_init_page(struct buffer_data_page *bpage)
350 {
351 	local_set(&bpage->commit, 0);
352 }
353 
354 /**
355  * ring_buffer_page_len - the size of data on the page.
356  * @page: The page to read
357  *
358  * Returns the amount of data on the page, including buffer page header.
359  */
360 size_t ring_buffer_page_len(void *page)
361 {
362 	return local_read(&((struct buffer_data_page *)page)->commit)
363 		+ BUF_PAGE_HDR_SIZE;
364 }
365 
366 /*
367  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368  * this issue out.
369  */
370 static void free_buffer_page(struct buffer_page *bpage)
371 {
372 	free_page((unsigned long)bpage->page);
373 	kfree(bpage);
374 }
375 
376 /*
377  * We need to fit the time_stamp delta into 27 bits.
378  */
379 static inline int test_time_stamp(u64 delta)
380 {
381 	if (delta & TS_DELTA_TEST)
382 		return 1;
383 	return 0;
384 }
385 
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
387 
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390 
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393 
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396 	struct buffer_data_page field;
397 	int ret;
398 
399 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
401 			       (unsigned int)sizeof(field.time_stamp),
402 			       (unsigned int)is_signed_type(u64));
403 
404 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
405 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 			       (unsigned int)offsetof(typeof(field), commit),
407 			       (unsigned int)sizeof(field.commit),
408 			       (unsigned int)is_signed_type(long));
409 
410 	ret = trace_seq_printf(s, "\tfield: char data;\t"
411 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 			       (unsigned int)offsetof(typeof(field), data),
413 			       (unsigned int)BUF_PAGE_SIZE,
414 			       (unsigned int)is_signed_type(char));
415 
416 	return ret;
417 }
418 
419 /*
420  * head_page == tail_page && head == tail then buffer is empty.
421  */
422 struct ring_buffer_per_cpu {
423 	int				cpu;
424 	struct ring_buffer		*buffer;
425 	spinlock_t			reader_lock;	/* serialize readers */
426 	arch_spinlock_t			lock;
427 	struct lock_class_key		lock_key;
428 	struct list_head		*pages;
429 	struct buffer_page		*head_page;	/* read from head */
430 	struct buffer_page		*tail_page;	/* write to tail */
431 	struct buffer_page		*commit_page;	/* committed pages */
432 	struct buffer_page		*reader_page;
433 	local_t				commit_overrun;
434 	local_t				overrun;
435 	local_t				entries;
436 	local_t				committing;
437 	local_t				commits;
438 	unsigned long			read;
439 	u64				write_stamp;
440 	u64				read_stamp;
441 	atomic_t			record_disabled;
442 };
443 
444 struct ring_buffer {
445 	unsigned			pages;
446 	unsigned			flags;
447 	int				cpus;
448 	atomic_t			record_disabled;
449 	cpumask_var_t			cpumask;
450 
451 	struct lock_class_key		*reader_lock_key;
452 
453 	struct mutex			mutex;
454 
455 	struct ring_buffer_per_cpu	**buffers;
456 
457 #ifdef CONFIG_HOTPLUG_CPU
458 	struct notifier_block		cpu_notify;
459 #endif
460 	u64				(*clock)(void);
461 };
462 
463 struct ring_buffer_iter {
464 	struct ring_buffer_per_cpu	*cpu_buffer;
465 	unsigned long			head;
466 	struct buffer_page		*head_page;
467 	struct buffer_page		*cache_reader_page;
468 	unsigned long			cache_read;
469 	u64				read_stamp;
470 };
471 
472 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
473 #define RB_WARN_ON(b, cond)						\
474 	({								\
475 		int _____ret = unlikely(cond);				\
476 		if (_____ret) {						\
477 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
478 				struct ring_buffer_per_cpu *__b =	\
479 					(void *)b;			\
480 				atomic_inc(&__b->buffer->record_disabled); \
481 			} else						\
482 				atomic_inc(&b->record_disabled);	\
483 			WARN_ON(1);					\
484 		}							\
485 		_____ret;						\
486 	})
487 
488 /* Up this if you want to test the TIME_EXTENTS and normalization */
489 #define DEBUG_SHIFT 0
490 
491 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
492 {
493 	/* shift to debug/test normalization and TIME_EXTENTS */
494 	return buffer->clock() << DEBUG_SHIFT;
495 }
496 
497 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
498 {
499 	u64 time;
500 
501 	preempt_disable_notrace();
502 	time = rb_time_stamp(buffer);
503 	preempt_enable_no_resched_notrace();
504 
505 	return time;
506 }
507 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
508 
509 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
510 				      int cpu, u64 *ts)
511 {
512 	/* Just stupid testing the normalize function and deltas */
513 	*ts >>= DEBUG_SHIFT;
514 }
515 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
516 
517 /*
518  * Making the ring buffer lockless makes things tricky.
519  * Although writes only happen on the CPU that they are on,
520  * and they only need to worry about interrupts. Reads can
521  * happen on any CPU.
522  *
523  * The reader page is always off the ring buffer, but when the
524  * reader finishes with a page, it needs to swap its page with
525  * a new one from the buffer. The reader needs to take from
526  * the head (writes go to the tail). But if a writer is in overwrite
527  * mode and wraps, it must push the head page forward.
528  *
529  * Here lies the problem.
530  *
531  * The reader must be careful to replace only the head page, and
532  * not another one. As described at the top of the file in the
533  * ASCII art, the reader sets its old page to point to the next
534  * page after head. It then sets the page after head to point to
535  * the old reader page. But if the writer moves the head page
536  * during this operation, the reader could end up with the tail.
537  *
538  * We use cmpxchg to help prevent this race. We also do something
539  * special with the page before head. We set the LSB to 1.
540  *
541  * When the writer must push the page forward, it will clear the
542  * bit that points to the head page, move the head, and then set
543  * the bit that points to the new head page.
544  *
545  * We also don't want an interrupt coming in and moving the head
546  * page on another writer. Thus we use the second LSB to catch
547  * that too. Thus:
548  *
549  * head->list->prev->next        bit 1          bit 0
550  *                              -------        -------
551  * Normal page                     0              0
552  * Points to head page             0              1
553  * New head page                   1              0
554  *
555  * Note we can not trust the prev pointer of the head page, because:
556  *
557  * +----+       +-----+        +-----+
558  * |    |------>|  T  |---X--->|  N  |
559  * |    |<------|     |        |     |
560  * +----+       +-----+        +-----+
561  *   ^                           ^ |
562  *   |          +-----+          | |
563  *   +----------|  R  |----------+ |
564  *              |     |<-----------+
565  *              +-----+
566  *
567  * Key:  ---X-->  HEAD flag set in pointer
568  *         T      Tail page
569  *         R      Reader page
570  *         N      Next page
571  *
572  * (see __rb_reserve_next() to see where this happens)
573  *
574  *  What the above shows is that the reader just swapped out
575  *  the reader page with a page in the buffer, but before it
576  *  could make the new header point back to the new page added
577  *  it was preempted by a writer. The writer moved forward onto
578  *  the new page added by the reader and is about to move forward
579  *  again.
580  *
581  *  You can see, it is legitimate for the previous pointer of
582  *  the head (or any page) not to point back to itself. But only
583  *  temporarially.
584  */
585 
586 #define RB_PAGE_NORMAL		0UL
587 #define RB_PAGE_HEAD		1UL
588 #define RB_PAGE_UPDATE		2UL
589 
590 
591 #define RB_FLAG_MASK		3UL
592 
593 /* PAGE_MOVED is not part of the mask */
594 #define RB_PAGE_MOVED		4UL
595 
596 /*
597  * rb_list_head - remove any bit
598  */
599 static struct list_head *rb_list_head(struct list_head *list)
600 {
601 	unsigned long val = (unsigned long)list;
602 
603 	return (struct list_head *)(val & ~RB_FLAG_MASK);
604 }
605 
606 /*
607  * rb_is_head_page - test if the given page is the head page
608  *
609  * Because the reader may move the head_page pointer, we can
610  * not trust what the head page is (it may be pointing to
611  * the reader page). But if the next page is a header page,
612  * its flags will be non zero.
613  */
614 static int inline
615 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
616 		struct buffer_page *page, struct list_head *list)
617 {
618 	unsigned long val;
619 
620 	val = (unsigned long)list->next;
621 
622 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
623 		return RB_PAGE_MOVED;
624 
625 	return val & RB_FLAG_MASK;
626 }
627 
628 /*
629  * rb_is_reader_page
630  *
631  * The unique thing about the reader page, is that, if the
632  * writer is ever on it, the previous pointer never points
633  * back to the reader page.
634  */
635 static int rb_is_reader_page(struct buffer_page *page)
636 {
637 	struct list_head *list = page->list.prev;
638 
639 	return rb_list_head(list->next) != &page->list;
640 }
641 
642 /*
643  * rb_set_list_to_head - set a list_head to be pointing to head.
644  */
645 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
646 				struct list_head *list)
647 {
648 	unsigned long *ptr;
649 
650 	ptr = (unsigned long *)&list->next;
651 	*ptr |= RB_PAGE_HEAD;
652 	*ptr &= ~RB_PAGE_UPDATE;
653 }
654 
655 /*
656  * rb_head_page_activate - sets up head page
657  */
658 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
659 {
660 	struct buffer_page *head;
661 
662 	head = cpu_buffer->head_page;
663 	if (!head)
664 		return;
665 
666 	/*
667 	 * Set the previous list pointer to have the HEAD flag.
668 	 */
669 	rb_set_list_to_head(cpu_buffer, head->list.prev);
670 }
671 
672 static void rb_list_head_clear(struct list_head *list)
673 {
674 	unsigned long *ptr = (unsigned long *)&list->next;
675 
676 	*ptr &= ~RB_FLAG_MASK;
677 }
678 
679 /*
680  * rb_head_page_dactivate - clears head page ptr (for free list)
681  */
682 static void
683 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
684 {
685 	struct list_head *hd;
686 
687 	/* Go through the whole list and clear any pointers found. */
688 	rb_list_head_clear(cpu_buffer->pages);
689 
690 	list_for_each(hd, cpu_buffer->pages)
691 		rb_list_head_clear(hd);
692 }
693 
694 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
695 			    struct buffer_page *head,
696 			    struct buffer_page *prev,
697 			    int old_flag, int new_flag)
698 {
699 	struct list_head *list;
700 	unsigned long val = (unsigned long)&head->list;
701 	unsigned long ret;
702 
703 	list = &prev->list;
704 
705 	val &= ~RB_FLAG_MASK;
706 
707 	ret = cmpxchg((unsigned long *)&list->next,
708 		      val | old_flag, val | new_flag);
709 
710 	/* check if the reader took the page */
711 	if ((ret & ~RB_FLAG_MASK) != val)
712 		return RB_PAGE_MOVED;
713 
714 	return ret & RB_FLAG_MASK;
715 }
716 
717 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
718 				   struct buffer_page *head,
719 				   struct buffer_page *prev,
720 				   int old_flag)
721 {
722 	return rb_head_page_set(cpu_buffer, head, prev,
723 				old_flag, RB_PAGE_UPDATE);
724 }
725 
726 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
727 				 struct buffer_page *head,
728 				 struct buffer_page *prev,
729 				 int old_flag)
730 {
731 	return rb_head_page_set(cpu_buffer, head, prev,
732 				old_flag, RB_PAGE_HEAD);
733 }
734 
735 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
736 				   struct buffer_page *head,
737 				   struct buffer_page *prev,
738 				   int old_flag)
739 {
740 	return rb_head_page_set(cpu_buffer, head, prev,
741 				old_flag, RB_PAGE_NORMAL);
742 }
743 
744 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
745 			       struct buffer_page **bpage)
746 {
747 	struct list_head *p = rb_list_head((*bpage)->list.next);
748 
749 	*bpage = list_entry(p, struct buffer_page, list);
750 }
751 
752 static struct buffer_page *
753 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
754 {
755 	struct buffer_page *head;
756 	struct buffer_page *page;
757 	struct list_head *list;
758 	int i;
759 
760 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
761 		return NULL;
762 
763 	/* sanity check */
764 	list = cpu_buffer->pages;
765 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
766 		return NULL;
767 
768 	page = head = cpu_buffer->head_page;
769 	/*
770 	 * It is possible that the writer moves the header behind
771 	 * where we started, and we miss in one loop.
772 	 * A second loop should grab the header, but we'll do
773 	 * three loops just because I'm paranoid.
774 	 */
775 	for (i = 0; i < 3; i++) {
776 		do {
777 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
778 				cpu_buffer->head_page = page;
779 				return page;
780 			}
781 			rb_inc_page(cpu_buffer, &page);
782 		} while (page != head);
783 	}
784 
785 	RB_WARN_ON(cpu_buffer, 1);
786 
787 	return NULL;
788 }
789 
790 static int rb_head_page_replace(struct buffer_page *old,
791 				struct buffer_page *new)
792 {
793 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
794 	unsigned long val;
795 	unsigned long ret;
796 
797 	val = *ptr & ~RB_FLAG_MASK;
798 	val |= RB_PAGE_HEAD;
799 
800 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
801 
802 	return ret == val;
803 }
804 
805 /*
806  * rb_tail_page_update - move the tail page forward
807  *
808  * Returns 1 if moved tail page, 0 if someone else did.
809  */
810 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
811 			       struct buffer_page *tail_page,
812 			       struct buffer_page *next_page)
813 {
814 	struct buffer_page *old_tail;
815 	unsigned long old_entries;
816 	unsigned long old_write;
817 	int ret = 0;
818 
819 	/*
820 	 * The tail page now needs to be moved forward.
821 	 *
822 	 * We need to reset the tail page, but without messing
823 	 * with possible erasing of data brought in by interrupts
824 	 * that have moved the tail page and are currently on it.
825 	 *
826 	 * We add a counter to the write field to denote this.
827 	 */
828 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
829 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
830 
831 	/*
832 	 * Just make sure we have seen our old_write and synchronize
833 	 * with any interrupts that come in.
834 	 */
835 	barrier();
836 
837 	/*
838 	 * If the tail page is still the same as what we think
839 	 * it is, then it is up to us to update the tail
840 	 * pointer.
841 	 */
842 	if (tail_page == cpu_buffer->tail_page) {
843 		/* Zero the write counter */
844 		unsigned long val = old_write & ~RB_WRITE_MASK;
845 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
846 
847 		/*
848 		 * This will only succeed if an interrupt did
849 		 * not come in and change it. In which case, we
850 		 * do not want to modify it.
851 		 *
852 		 * We add (void) to let the compiler know that we do not care
853 		 * about the return value of these functions. We use the
854 		 * cmpxchg to only update if an interrupt did not already
855 		 * do it for us. If the cmpxchg fails, we don't care.
856 		 */
857 		(void)local_cmpxchg(&next_page->write, old_write, val);
858 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
859 
860 		/*
861 		 * No need to worry about races with clearing out the commit.
862 		 * it only can increment when a commit takes place. But that
863 		 * only happens in the outer most nested commit.
864 		 */
865 		local_set(&next_page->page->commit, 0);
866 
867 		old_tail = cmpxchg(&cpu_buffer->tail_page,
868 				   tail_page, next_page);
869 
870 		if (old_tail == tail_page)
871 			ret = 1;
872 	}
873 
874 	return ret;
875 }
876 
877 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
878 			  struct buffer_page *bpage)
879 {
880 	unsigned long val = (unsigned long)bpage;
881 
882 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
883 		return 1;
884 
885 	return 0;
886 }
887 
888 /**
889  * rb_check_list - make sure a pointer to a list has the last bits zero
890  */
891 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
892 			 struct list_head *list)
893 {
894 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
895 		return 1;
896 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
897 		return 1;
898 	return 0;
899 }
900 
901 /**
902  * check_pages - integrity check of buffer pages
903  * @cpu_buffer: CPU buffer with pages to test
904  *
905  * As a safety measure we check to make sure the data pages have not
906  * been corrupted.
907  */
908 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
909 {
910 	struct list_head *head = cpu_buffer->pages;
911 	struct buffer_page *bpage, *tmp;
912 
913 	rb_head_page_deactivate(cpu_buffer);
914 
915 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
916 		return -1;
917 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
918 		return -1;
919 
920 	if (rb_check_list(cpu_buffer, head))
921 		return -1;
922 
923 	list_for_each_entry_safe(bpage, tmp, head, list) {
924 		if (RB_WARN_ON(cpu_buffer,
925 			       bpage->list.next->prev != &bpage->list))
926 			return -1;
927 		if (RB_WARN_ON(cpu_buffer,
928 			       bpage->list.prev->next != &bpage->list))
929 			return -1;
930 		if (rb_check_list(cpu_buffer, &bpage->list))
931 			return -1;
932 	}
933 
934 	rb_head_page_activate(cpu_buffer);
935 
936 	return 0;
937 }
938 
939 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
940 			     unsigned nr_pages)
941 {
942 	struct buffer_page *bpage, *tmp;
943 	unsigned long addr;
944 	LIST_HEAD(pages);
945 	unsigned i;
946 
947 	WARN_ON(!nr_pages);
948 
949 	for (i = 0; i < nr_pages; i++) {
950 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
951 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
952 		if (!bpage)
953 			goto free_pages;
954 
955 		rb_check_bpage(cpu_buffer, bpage);
956 
957 		list_add(&bpage->list, &pages);
958 
959 		addr = __get_free_page(GFP_KERNEL);
960 		if (!addr)
961 			goto free_pages;
962 		bpage->page = (void *)addr;
963 		rb_init_page(bpage->page);
964 	}
965 
966 	/*
967 	 * The ring buffer page list is a circular list that does not
968 	 * start and end with a list head. All page list items point to
969 	 * other pages.
970 	 */
971 	cpu_buffer->pages = pages.next;
972 	list_del(&pages);
973 
974 	rb_check_pages(cpu_buffer);
975 
976 	return 0;
977 
978  free_pages:
979 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
980 		list_del_init(&bpage->list);
981 		free_buffer_page(bpage);
982 	}
983 	return -ENOMEM;
984 }
985 
986 static struct ring_buffer_per_cpu *
987 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
988 {
989 	struct ring_buffer_per_cpu *cpu_buffer;
990 	struct buffer_page *bpage;
991 	unsigned long addr;
992 	int ret;
993 
994 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
995 				  GFP_KERNEL, cpu_to_node(cpu));
996 	if (!cpu_buffer)
997 		return NULL;
998 
999 	cpu_buffer->cpu = cpu;
1000 	cpu_buffer->buffer = buffer;
1001 	spin_lock_init(&cpu_buffer->reader_lock);
1002 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1003 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1004 
1005 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1006 			    GFP_KERNEL, cpu_to_node(cpu));
1007 	if (!bpage)
1008 		goto fail_free_buffer;
1009 
1010 	rb_check_bpage(cpu_buffer, bpage);
1011 
1012 	cpu_buffer->reader_page = bpage;
1013 	addr = __get_free_page(GFP_KERNEL);
1014 	if (!addr)
1015 		goto fail_free_reader;
1016 	bpage->page = (void *)addr;
1017 	rb_init_page(bpage->page);
1018 
1019 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1020 
1021 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1022 	if (ret < 0)
1023 		goto fail_free_reader;
1024 
1025 	cpu_buffer->head_page
1026 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1027 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1028 
1029 	rb_head_page_activate(cpu_buffer);
1030 
1031 	return cpu_buffer;
1032 
1033  fail_free_reader:
1034 	free_buffer_page(cpu_buffer->reader_page);
1035 
1036  fail_free_buffer:
1037 	kfree(cpu_buffer);
1038 	return NULL;
1039 }
1040 
1041 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1042 {
1043 	struct list_head *head = cpu_buffer->pages;
1044 	struct buffer_page *bpage, *tmp;
1045 
1046 	free_buffer_page(cpu_buffer->reader_page);
1047 
1048 	rb_head_page_deactivate(cpu_buffer);
1049 
1050 	if (head) {
1051 		list_for_each_entry_safe(bpage, tmp, head, list) {
1052 			list_del_init(&bpage->list);
1053 			free_buffer_page(bpage);
1054 		}
1055 		bpage = list_entry(head, struct buffer_page, list);
1056 		free_buffer_page(bpage);
1057 	}
1058 
1059 	kfree(cpu_buffer);
1060 }
1061 
1062 #ifdef CONFIG_HOTPLUG_CPU
1063 static int rb_cpu_notify(struct notifier_block *self,
1064 			 unsigned long action, void *hcpu);
1065 #endif
1066 
1067 /**
1068  * ring_buffer_alloc - allocate a new ring_buffer
1069  * @size: the size in bytes per cpu that is needed.
1070  * @flags: attributes to set for the ring buffer.
1071  *
1072  * Currently the only flag that is available is the RB_FL_OVERWRITE
1073  * flag. This flag means that the buffer will overwrite old data
1074  * when the buffer wraps. If this flag is not set, the buffer will
1075  * drop data when the tail hits the head.
1076  */
1077 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1078 					struct lock_class_key *key)
1079 {
1080 	struct ring_buffer *buffer;
1081 	int bsize;
1082 	int cpu;
1083 
1084 	/* keep it in its own cache line */
1085 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1086 			 GFP_KERNEL);
1087 	if (!buffer)
1088 		return NULL;
1089 
1090 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1091 		goto fail_free_buffer;
1092 
1093 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1094 	buffer->flags = flags;
1095 	buffer->clock = trace_clock_local;
1096 	buffer->reader_lock_key = key;
1097 
1098 	/* need at least two pages */
1099 	if (buffer->pages < 2)
1100 		buffer->pages = 2;
1101 
1102 	/*
1103 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1104 	 * in early initcall, it will not be notified of secondary cpus.
1105 	 * In that off case, we need to allocate for all possible cpus.
1106 	 */
1107 #ifdef CONFIG_HOTPLUG_CPU
1108 	get_online_cpus();
1109 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1110 #else
1111 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1112 #endif
1113 	buffer->cpus = nr_cpu_ids;
1114 
1115 	bsize = sizeof(void *) * nr_cpu_ids;
1116 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1117 				  GFP_KERNEL);
1118 	if (!buffer->buffers)
1119 		goto fail_free_cpumask;
1120 
1121 	for_each_buffer_cpu(buffer, cpu) {
1122 		buffer->buffers[cpu] =
1123 			rb_allocate_cpu_buffer(buffer, cpu);
1124 		if (!buffer->buffers[cpu])
1125 			goto fail_free_buffers;
1126 	}
1127 
1128 #ifdef CONFIG_HOTPLUG_CPU
1129 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1130 	buffer->cpu_notify.priority = 0;
1131 	register_cpu_notifier(&buffer->cpu_notify);
1132 #endif
1133 
1134 	put_online_cpus();
1135 	mutex_init(&buffer->mutex);
1136 
1137 	return buffer;
1138 
1139  fail_free_buffers:
1140 	for_each_buffer_cpu(buffer, cpu) {
1141 		if (buffer->buffers[cpu])
1142 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1143 	}
1144 	kfree(buffer->buffers);
1145 
1146  fail_free_cpumask:
1147 	free_cpumask_var(buffer->cpumask);
1148 	put_online_cpus();
1149 
1150  fail_free_buffer:
1151 	kfree(buffer);
1152 	return NULL;
1153 }
1154 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1155 
1156 /**
1157  * ring_buffer_free - free a ring buffer.
1158  * @buffer: the buffer to free.
1159  */
1160 void
1161 ring_buffer_free(struct ring_buffer *buffer)
1162 {
1163 	int cpu;
1164 
1165 	get_online_cpus();
1166 
1167 #ifdef CONFIG_HOTPLUG_CPU
1168 	unregister_cpu_notifier(&buffer->cpu_notify);
1169 #endif
1170 
1171 	for_each_buffer_cpu(buffer, cpu)
1172 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1173 
1174 	put_online_cpus();
1175 
1176 	kfree(buffer->buffers);
1177 	free_cpumask_var(buffer->cpumask);
1178 
1179 	kfree(buffer);
1180 }
1181 EXPORT_SYMBOL_GPL(ring_buffer_free);
1182 
1183 void ring_buffer_set_clock(struct ring_buffer *buffer,
1184 			   u64 (*clock)(void))
1185 {
1186 	buffer->clock = clock;
1187 }
1188 
1189 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1190 
1191 static void
1192 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1193 {
1194 	struct buffer_page *bpage;
1195 	struct list_head *p;
1196 	unsigned i;
1197 
1198 	spin_lock_irq(&cpu_buffer->reader_lock);
1199 	rb_head_page_deactivate(cpu_buffer);
1200 
1201 	for (i = 0; i < nr_pages; i++) {
1202 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1203 			return;
1204 		p = cpu_buffer->pages->next;
1205 		bpage = list_entry(p, struct buffer_page, list);
1206 		list_del_init(&bpage->list);
1207 		free_buffer_page(bpage);
1208 	}
1209 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1210 		return;
1211 
1212 	rb_reset_cpu(cpu_buffer);
1213 	rb_check_pages(cpu_buffer);
1214 
1215 	spin_unlock_irq(&cpu_buffer->reader_lock);
1216 }
1217 
1218 static void
1219 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1220 		struct list_head *pages, unsigned nr_pages)
1221 {
1222 	struct buffer_page *bpage;
1223 	struct list_head *p;
1224 	unsigned i;
1225 
1226 	spin_lock_irq(&cpu_buffer->reader_lock);
1227 	rb_head_page_deactivate(cpu_buffer);
1228 
1229 	for (i = 0; i < nr_pages; i++) {
1230 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1231 			return;
1232 		p = pages->next;
1233 		bpage = list_entry(p, struct buffer_page, list);
1234 		list_del_init(&bpage->list);
1235 		list_add_tail(&bpage->list, cpu_buffer->pages);
1236 	}
1237 	rb_reset_cpu(cpu_buffer);
1238 	rb_check_pages(cpu_buffer);
1239 
1240 	spin_unlock_irq(&cpu_buffer->reader_lock);
1241 }
1242 
1243 /**
1244  * ring_buffer_resize - resize the ring buffer
1245  * @buffer: the buffer to resize.
1246  * @size: the new size.
1247  *
1248  * Minimum size is 2 * BUF_PAGE_SIZE.
1249  *
1250  * Returns -1 on failure.
1251  */
1252 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1253 {
1254 	struct ring_buffer_per_cpu *cpu_buffer;
1255 	unsigned nr_pages, rm_pages, new_pages;
1256 	struct buffer_page *bpage, *tmp;
1257 	unsigned long buffer_size;
1258 	unsigned long addr;
1259 	LIST_HEAD(pages);
1260 	int i, cpu;
1261 
1262 	/*
1263 	 * Always succeed at resizing a non-existent buffer:
1264 	 */
1265 	if (!buffer)
1266 		return size;
1267 
1268 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1269 	size *= BUF_PAGE_SIZE;
1270 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1271 
1272 	/* we need a minimum of two pages */
1273 	if (size < BUF_PAGE_SIZE * 2)
1274 		size = BUF_PAGE_SIZE * 2;
1275 
1276 	if (size == buffer_size)
1277 		return size;
1278 
1279 	atomic_inc(&buffer->record_disabled);
1280 
1281 	/* Make sure all writers are done with this buffer. */
1282 	synchronize_sched();
1283 
1284 	mutex_lock(&buffer->mutex);
1285 	get_online_cpus();
1286 
1287 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1288 
1289 	if (size < buffer_size) {
1290 
1291 		/* easy case, just free pages */
1292 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1293 			goto out_fail;
1294 
1295 		rm_pages = buffer->pages - nr_pages;
1296 
1297 		for_each_buffer_cpu(buffer, cpu) {
1298 			cpu_buffer = buffer->buffers[cpu];
1299 			rb_remove_pages(cpu_buffer, rm_pages);
1300 		}
1301 		goto out;
1302 	}
1303 
1304 	/*
1305 	 * This is a bit more difficult. We only want to add pages
1306 	 * when we can allocate enough for all CPUs. We do this
1307 	 * by allocating all the pages and storing them on a local
1308 	 * link list. If we succeed in our allocation, then we
1309 	 * add these pages to the cpu_buffers. Otherwise we just free
1310 	 * them all and return -ENOMEM;
1311 	 */
1312 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1313 		goto out_fail;
1314 
1315 	new_pages = nr_pages - buffer->pages;
1316 
1317 	for_each_buffer_cpu(buffer, cpu) {
1318 		for (i = 0; i < new_pages; i++) {
1319 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1320 						  cache_line_size()),
1321 					    GFP_KERNEL, cpu_to_node(cpu));
1322 			if (!bpage)
1323 				goto free_pages;
1324 			list_add(&bpage->list, &pages);
1325 			addr = __get_free_page(GFP_KERNEL);
1326 			if (!addr)
1327 				goto free_pages;
1328 			bpage->page = (void *)addr;
1329 			rb_init_page(bpage->page);
1330 		}
1331 	}
1332 
1333 	for_each_buffer_cpu(buffer, cpu) {
1334 		cpu_buffer = buffer->buffers[cpu];
1335 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1336 	}
1337 
1338 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1339 		goto out_fail;
1340 
1341  out:
1342 	buffer->pages = nr_pages;
1343 	put_online_cpus();
1344 	mutex_unlock(&buffer->mutex);
1345 
1346 	atomic_dec(&buffer->record_disabled);
1347 
1348 	return size;
1349 
1350  free_pages:
1351 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1352 		list_del_init(&bpage->list);
1353 		free_buffer_page(bpage);
1354 	}
1355 	put_online_cpus();
1356 	mutex_unlock(&buffer->mutex);
1357 	atomic_dec(&buffer->record_disabled);
1358 	return -ENOMEM;
1359 
1360 	/*
1361 	 * Something went totally wrong, and we are too paranoid
1362 	 * to even clean up the mess.
1363 	 */
1364  out_fail:
1365 	put_online_cpus();
1366 	mutex_unlock(&buffer->mutex);
1367 	atomic_dec(&buffer->record_disabled);
1368 	return -1;
1369 }
1370 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1371 
1372 static inline void *
1373 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1374 {
1375 	return bpage->data + index;
1376 }
1377 
1378 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1379 {
1380 	return bpage->page->data + index;
1381 }
1382 
1383 static inline struct ring_buffer_event *
1384 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1385 {
1386 	return __rb_page_index(cpu_buffer->reader_page,
1387 			       cpu_buffer->reader_page->read);
1388 }
1389 
1390 static inline struct ring_buffer_event *
1391 rb_iter_head_event(struct ring_buffer_iter *iter)
1392 {
1393 	return __rb_page_index(iter->head_page, iter->head);
1394 }
1395 
1396 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1397 {
1398 	return local_read(&bpage->write) & RB_WRITE_MASK;
1399 }
1400 
1401 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1402 {
1403 	return local_read(&bpage->page->commit);
1404 }
1405 
1406 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1407 {
1408 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1409 }
1410 
1411 /* Size is determined by what has been commited */
1412 static inline unsigned rb_page_size(struct buffer_page *bpage)
1413 {
1414 	return rb_page_commit(bpage);
1415 }
1416 
1417 static inline unsigned
1418 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1419 {
1420 	return rb_page_commit(cpu_buffer->commit_page);
1421 }
1422 
1423 static inline unsigned
1424 rb_event_index(struct ring_buffer_event *event)
1425 {
1426 	unsigned long addr = (unsigned long)event;
1427 
1428 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1429 }
1430 
1431 static inline int
1432 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1433 		   struct ring_buffer_event *event)
1434 {
1435 	unsigned long addr = (unsigned long)event;
1436 	unsigned long index;
1437 
1438 	index = rb_event_index(event);
1439 	addr &= PAGE_MASK;
1440 
1441 	return cpu_buffer->commit_page->page == (void *)addr &&
1442 		rb_commit_index(cpu_buffer) == index;
1443 }
1444 
1445 static void
1446 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1447 {
1448 	unsigned long max_count;
1449 
1450 	/*
1451 	 * We only race with interrupts and NMIs on this CPU.
1452 	 * If we own the commit event, then we can commit
1453 	 * all others that interrupted us, since the interruptions
1454 	 * are in stack format (they finish before they come
1455 	 * back to us). This allows us to do a simple loop to
1456 	 * assign the commit to the tail.
1457 	 */
1458  again:
1459 	max_count = cpu_buffer->buffer->pages * 100;
1460 
1461 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1462 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1463 			return;
1464 		if (RB_WARN_ON(cpu_buffer,
1465 			       rb_is_reader_page(cpu_buffer->tail_page)))
1466 			return;
1467 		local_set(&cpu_buffer->commit_page->page->commit,
1468 			  rb_page_write(cpu_buffer->commit_page));
1469 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1470 		cpu_buffer->write_stamp =
1471 			cpu_buffer->commit_page->page->time_stamp;
1472 		/* add barrier to keep gcc from optimizing too much */
1473 		barrier();
1474 	}
1475 	while (rb_commit_index(cpu_buffer) !=
1476 	       rb_page_write(cpu_buffer->commit_page)) {
1477 
1478 		local_set(&cpu_buffer->commit_page->page->commit,
1479 			  rb_page_write(cpu_buffer->commit_page));
1480 		RB_WARN_ON(cpu_buffer,
1481 			   local_read(&cpu_buffer->commit_page->page->commit) &
1482 			   ~RB_WRITE_MASK);
1483 		barrier();
1484 	}
1485 
1486 	/* again, keep gcc from optimizing */
1487 	barrier();
1488 
1489 	/*
1490 	 * If an interrupt came in just after the first while loop
1491 	 * and pushed the tail page forward, we will be left with
1492 	 * a dangling commit that will never go forward.
1493 	 */
1494 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1495 		goto again;
1496 }
1497 
1498 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1499 {
1500 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1501 	cpu_buffer->reader_page->read = 0;
1502 }
1503 
1504 static void rb_inc_iter(struct ring_buffer_iter *iter)
1505 {
1506 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1507 
1508 	/*
1509 	 * The iterator could be on the reader page (it starts there).
1510 	 * But the head could have moved, since the reader was
1511 	 * found. Check for this case and assign the iterator
1512 	 * to the head page instead of next.
1513 	 */
1514 	if (iter->head_page == cpu_buffer->reader_page)
1515 		iter->head_page = rb_set_head_page(cpu_buffer);
1516 	else
1517 		rb_inc_page(cpu_buffer, &iter->head_page);
1518 
1519 	iter->read_stamp = iter->head_page->page->time_stamp;
1520 	iter->head = 0;
1521 }
1522 
1523 /**
1524  * ring_buffer_update_event - update event type and data
1525  * @event: the even to update
1526  * @type: the type of event
1527  * @length: the size of the event field in the ring buffer
1528  *
1529  * Update the type and data fields of the event. The length
1530  * is the actual size that is written to the ring buffer,
1531  * and with this, we can determine what to place into the
1532  * data field.
1533  */
1534 static void
1535 rb_update_event(struct ring_buffer_event *event,
1536 			 unsigned type, unsigned length)
1537 {
1538 	event->type_len = type;
1539 
1540 	switch (type) {
1541 
1542 	case RINGBUF_TYPE_PADDING:
1543 	case RINGBUF_TYPE_TIME_EXTEND:
1544 	case RINGBUF_TYPE_TIME_STAMP:
1545 		break;
1546 
1547 	case 0:
1548 		length -= RB_EVNT_HDR_SIZE;
1549 		if (length > RB_MAX_SMALL_DATA)
1550 			event->array[0] = length;
1551 		else
1552 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1553 		break;
1554 	default:
1555 		BUG();
1556 	}
1557 }
1558 
1559 /*
1560  * rb_handle_head_page - writer hit the head page
1561  *
1562  * Returns: +1 to retry page
1563  *           0 to continue
1564  *          -1 on error
1565  */
1566 static int
1567 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1568 		    struct buffer_page *tail_page,
1569 		    struct buffer_page *next_page)
1570 {
1571 	struct buffer_page *new_head;
1572 	int entries;
1573 	int type;
1574 	int ret;
1575 
1576 	entries = rb_page_entries(next_page);
1577 
1578 	/*
1579 	 * The hard part is here. We need to move the head
1580 	 * forward, and protect against both readers on
1581 	 * other CPUs and writers coming in via interrupts.
1582 	 */
1583 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1584 				       RB_PAGE_HEAD);
1585 
1586 	/*
1587 	 * type can be one of four:
1588 	 *  NORMAL - an interrupt already moved it for us
1589 	 *  HEAD   - we are the first to get here.
1590 	 *  UPDATE - we are the interrupt interrupting
1591 	 *           a current move.
1592 	 *  MOVED  - a reader on another CPU moved the next
1593 	 *           pointer to its reader page. Give up
1594 	 *           and try again.
1595 	 */
1596 
1597 	switch (type) {
1598 	case RB_PAGE_HEAD:
1599 		/*
1600 		 * We changed the head to UPDATE, thus
1601 		 * it is our responsibility to update
1602 		 * the counters.
1603 		 */
1604 		local_add(entries, &cpu_buffer->overrun);
1605 
1606 		/*
1607 		 * The entries will be zeroed out when we move the
1608 		 * tail page.
1609 		 */
1610 
1611 		/* still more to do */
1612 		break;
1613 
1614 	case RB_PAGE_UPDATE:
1615 		/*
1616 		 * This is an interrupt that interrupt the
1617 		 * previous update. Still more to do.
1618 		 */
1619 		break;
1620 	case RB_PAGE_NORMAL:
1621 		/*
1622 		 * An interrupt came in before the update
1623 		 * and processed this for us.
1624 		 * Nothing left to do.
1625 		 */
1626 		return 1;
1627 	case RB_PAGE_MOVED:
1628 		/*
1629 		 * The reader is on another CPU and just did
1630 		 * a swap with our next_page.
1631 		 * Try again.
1632 		 */
1633 		return 1;
1634 	default:
1635 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1636 		return -1;
1637 	}
1638 
1639 	/*
1640 	 * Now that we are here, the old head pointer is
1641 	 * set to UPDATE. This will keep the reader from
1642 	 * swapping the head page with the reader page.
1643 	 * The reader (on another CPU) will spin till
1644 	 * we are finished.
1645 	 *
1646 	 * We just need to protect against interrupts
1647 	 * doing the job. We will set the next pointer
1648 	 * to HEAD. After that, we set the old pointer
1649 	 * to NORMAL, but only if it was HEAD before.
1650 	 * otherwise we are an interrupt, and only
1651 	 * want the outer most commit to reset it.
1652 	 */
1653 	new_head = next_page;
1654 	rb_inc_page(cpu_buffer, &new_head);
1655 
1656 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1657 				    RB_PAGE_NORMAL);
1658 
1659 	/*
1660 	 * Valid returns are:
1661 	 *  HEAD   - an interrupt came in and already set it.
1662 	 *  NORMAL - One of two things:
1663 	 *            1) We really set it.
1664 	 *            2) A bunch of interrupts came in and moved
1665 	 *               the page forward again.
1666 	 */
1667 	switch (ret) {
1668 	case RB_PAGE_HEAD:
1669 	case RB_PAGE_NORMAL:
1670 		/* OK */
1671 		break;
1672 	default:
1673 		RB_WARN_ON(cpu_buffer, 1);
1674 		return -1;
1675 	}
1676 
1677 	/*
1678 	 * It is possible that an interrupt came in,
1679 	 * set the head up, then more interrupts came in
1680 	 * and moved it again. When we get back here,
1681 	 * the page would have been set to NORMAL but we
1682 	 * just set it back to HEAD.
1683 	 *
1684 	 * How do you detect this? Well, if that happened
1685 	 * the tail page would have moved.
1686 	 */
1687 	if (ret == RB_PAGE_NORMAL) {
1688 		/*
1689 		 * If the tail had moved passed next, then we need
1690 		 * to reset the pointer.
1691 		 */
1692 		if (cpu_buffer->tail_page != tail_page &&
1693 		    cpu_buffer->tail_page != next_page)
1694 			rb_head_page_set_normal(cpu_buffer, new_head,
1695 						next_page,
1696 						RB_PAGE_HEAD);
1697 	}
1698 
1699 	/*
1700 	 * If this was the outer most commit (the one that
1701 	 * changed the original pointer from HEAD to UPDATE),
1702 	 * then it is up to us to reset it to NORMAL.
1703 	 */
1704 	if (type == RB_PAGE_HEAD) {
1705 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1706 					      tail_page,
1707 					      RB_PAGE_UPDATE);
1708 		if (RB_WARN_ON(cpu_buffer,
1709 			       ret != RB_PAGE_UPDATE))
1710 			return -1;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 static unsigned rb_calculate_event_length(unsigned length)
1717 {
1718 	struct ring_buffer_event event; /* Used only for sizeof array */
1719 
1720 	/* zero length can cause confusions */
1721 	if (!length)
1722 		length = 1;
1723 
1724 	if (length > RB_MAX_SMALL_DATA)
1725 		length += sizeof(event.array[0]);
1726 
1727 	length += RB_EVNT_HDR_SIZE;
1728 	length = ALIGN(length, RB_ALIGNMENT);
1729 
1730 	return length;
1731 }
1732 
1733 static inline void
1734 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1735 	      struct buffer_page *tail_page,
1736 	      unsigned long tail, unsigned long length)
1737 {
1738 	struct ring_buffer_event *event;
1739 
1740 	/*
1741 	 * Only the event that crossed the page boundary
1742 	 * must fill the old tail_page with padding.
1743 	 */
1744 	if (tail >= BUF_PAGE_SIZE) {
1745 		local_sub(length, &tail_page->write);
1746 		return;
1747 	}
1748 
1749 	event = __rb_page_index(tail_page, tail);
1750 	kmemcheck_annotate_bitfield(event, bitfield);
1751 
1752 	/*
1753 	 * If this event is bigger than the minimum size, then
1754 	 * we need to be careful that we don't subtract the
1755 	 * write counter enough to allow another writer to slip
1756 	 * in on this page.
1757 	 * We put in a discarded commit instead, to make sure
1758 	 * that this space is not used again.
1759 	 *
1760 	 * If we are less than the minimum size, we don't need to
1761 	 * worry about it.
1762 	 */
1763 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1764 		/* No room for any events */
1765 
1766 		/* Mark the rest of the page with padding */
1767 		rb_event_set_padding(event);
1768 
1769 		/* Set the write back to the previous setting */
1770 		local_sub(length, &tail_page->write);
1771 		return;
1772 	}
1773 
1774 	/* Put in a discarded event */
1775 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1776 	event->type_len = RINGBUF_TYPE_PADDING;
1777 	/* time delta must be non zero */
1778 	event->time_delta = 1;
1779 
1780 	/* Set write to end of buffer */
1781 	length = (tail + length) - BUF_PAGE_SIZE;
1782 	local_sub(length, &tail_page->write);
1783 }
1784 
1785 static struct ring_buffer_event *
1786 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1787 	     unsigned long length, unsigned long tail,
1788 	     struct buffer_page *tail_page, u64 *ts)
1789 {
1790 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1791 	struct ring_buffer *buffer = cpu_buffer->buffer;
1792 	struct buffer_page *next_page;
1793 	int ret;
1794 
1795 	next_page = tail_page;
1796 
1797 	rb_inc_page(cpu_buffer, &next_page);
1798 
1799 	/*
1800 	 * If for some reason, we had an interrupt storm that made
1801 	 * it all the way around the buffer, bail, and warn
1802 	 * about it.
1803 	 */
1804 	if (unlikely(next_page == commit_page)) {
1805 		local_inc(&cpu_buffer->commit_overrun);
1806 		goto out_reset;
1807 	}
1808 
1809 	/*
1810 	 * This is where the fun begins!
1811 	 *
1812 	 * We are fighting against races between a reader that
1813 	 * could be on another CPU trying to swap its reader
1814 	 * page with the buffer head.
1815 	 *
1816 	 * We are also fighting against interrupts coming in and
1817 	 * moving the head or tail on us as well.
1818 	 *
1819 	 * If the next page is the head page then we have filled
1820 	 * the buffer, unless the commit page is still on the
1821 	 * reader page.
1822 	 */
1823 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1824 
1825 		/*
1826 		 * If the commit is not on the reader page, then
1827 		 * move the header page.
1828 		 */
1829 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1830 			/*
1831 			 * If we are not in overwrite mode,
1832 			 * this is easy, just stop here.
1833 			 */
1834 			if (!(buffer->flags & RB_FL_OVERWRITE))
1835 				goto out_reset;
1836 
1837 			ret = rb_handle_head_page(cpu_buffer,
1838 						  tail_page,
1839 						  next_page);
1840 			if (ret < 0)
1841 				goto out_reset;
1842 			if (ret)
1843 				goto out_again;
1844 		} else {
1845 			/*
1846 			 * We need to be careful here too. The
1847 			 * commit page could still be on the reader
1848 			 * page. We could have a small buffer, and
1849 			 * have filled up the buffer with events
1850 			 * from interrupts and such, and wrapped.
1851 			 *
1852 			 * Note, if the tail page is also the on the
1853 			 * reader_page, we let it move out.
1854 			 */
1855 			if (unlikely((cpu_buffer->commit_page !=
1856 				      cpu_buffer->tail_page) &&
1857 				     (cpu_buffer->commit_page ==
1858 				      cpu_buffer->reader_page))) {
1859 				local_inc(&cpu_buffer->commit_overrun);
1860 				goto out_reset;
1861 			}
1862 		}
1863 	}
1864 
1865 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1866 	if (ret) {
1867 		/*
1868 		 * Nested commits always have zero deltas, so
1869 		 * just reread the time stamp
1870 		 */
1871 		*ts = rb_time_stamp(buffer);
1872 		next_page->page->time_stamp = *ts;
1873 	}
1874 
1875  out_again:
1876 
1877 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1878 
1879 	/* fail and let the caller try again */
1880 	return ERR_PTR(-EAGAIN);
1881 
1882  out_reset:
1883 	/* reset write */
1884 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1885 
1886 	return NULL;
1887 }
1888 
1889 static struct ring_buffer_event *
1890 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1891 		  unsigned type, unsigned long length, u64 *ts)
1892 {
1893 	struct buffer_page *tail_page;
1894 	struct ring_buffer_event *event;
1895 	unsigned long tail, write;
1896 
1897 	tail_page = cpu_buffer->tail_page;
1898 	write = local_add_return(length, &tail_page->write);
1899 
1900 	/* set write to only the index of the write */
1901 	write &= RB_WRITE_MASK;
1902 	tail = write - length;
1903 
1904 	/* See if we shot pass the end of this buffer page */
1905 	if (write > BUF_PAGE_SIZE)
1906 		return rb_move_tail(cpu_buffer, length, tail,
1907 				    tail_page, ts);
1908 
1909 	/* We reserved something on the buffer */
1910 
1911 	event = __rb_page_index(tail_page, tail);
1912 	kmemcheck_annotate_bitfield(event, bitfield);
1913 	rb_update_event(event, type, length);
1914 
1915 	/* The passed in type is zero for DATA */
1916 	if (likely(!type))
1917 		local_inc(&tail_page->entries);
1918 
1919 	/*
1920 	 * If this is the first commit on the page, then update
1921 	 * its timestamp.
1922 	 */
1923 	if (!tail)
1924 		tail_page->page->time_stamp = *ts;
1925 
1926 	return event;
1927 }
1928 
1929 static inline int
1930 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1931 		  struct ring_buffer_event *event)
1932 {
1933 	unsigned long new_index, old_index;
1934 	struct buffer_page *bpage;
1935 	unsigned long index;
1936 	unsigned long addr;
1937 
1938 	new_index = rb_event_index(event);
1939 	old_index = new_index + rb_event_length(event);
1940 	addr = (unsigned long)event;
1941 	addr &= PAGE_MASK;
1942 
1943 	bpage = cpu_buffer->tail_page;
1944 
1945 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1946 		unsigned long write_mask =
1947 			local_read(&bpage->write) & ~RB_WRITE_MASK;
1948 		/*
1949 		 * This is on the tail page. It is possible that
1950 		 * a write could come in and move the tail page
1951 		 * and write to the next page. That is fine
1952 		 * because we just shorten what is on this page.
1953 		 */
1954 		old_index += write_mask;
1955 		new_index += write_mask;
1956 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1957 		if (index == old_index)
1958 			return 1;
1959 	}
1960 
1961 	/* could not discard */
1962 	return 0;
1963 }
1964 
1965 static int
1966 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1967 		  u64 *ts, u64 *delta)
1968 {
1969 	struct ring_buffer_event *event;
1970 	static int once;
1971 	int ret;
1972 
1973 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1974 		printk(KERN_WARNING "Delta way too big! %llu"
1975 		       " ts=%llu write stamp = %llu\n",
1976 		       (unsigned long long)*delta,
1977 		       (unsigned long long)*ts,
1978 		       (unsigned long long)cpu_buffer->write_stamp);
1979 		WARN_ON(1);
1980 	}
1981 
1982 	/*
1983 	 * The delta is too big, we to add a
1984 	 * new timestamp.
1985 	 */
1986 	event = __rb_reserve_next(cpu_buffer,
1987 				  RINGBUF_TYPE_TIME_EXTEND,
1988 				  RB_LEN_TIME_EXTEND,
1989 				  ts);
1990 	if (!event)
1991 		return -EBUSY;
1992 
1993 	if (PTR_ERR(event) == -EAGAIN)
1994 		return -EAGAIN;
1995 
1996 	/* Only a commited time event can update the write stamp */
1997 	if (rb_event_is_commit(cpu_buffer, event)) {
1998 		/*
1999 		 * If this is the first on the page, then it was
2000 		 * updated with the page itself. Try to discard it
2001 		 * and if we can't just make it zero.
2002 		 */
2003 		if (rb_event_index(event)) {
2004 			event->time_delta = *delta & TS_MASK;
2005 			event->array[0] = *delta >> TS_SHIFT;
2006 		} else {
2007 			/* try to discard, since we do not need this */
2008 			if (!rb_try_to_discard(cpu_buffer, event)) {
2009 				/* nope, just zero it */
2010 				event->time_delta = 0;
2011 				event->array[0] = 0;
2012 			}
2013 		}
2014 		cpu_buffer->write_stamp = *ts;
2015 		/* let the caller know this was the commit */
2016 		ret = 1;
2017 	} else {
2018 		/* Try to discard the event */
2019 		if (!rb_try_to_discard(cpu_buffer, event)) {
2020 			/* Darn, this is just wasted space */
2021 			event->time_delta = 0;
2022 			event->array[0] = 0;
2023 		}
2024 		ret = 0;
2025 	}
2026 
2027 	*delta = 0;
2028 
2029 	return ret;
2030 }
2031 
2032 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2033 {
2034 	local_inc(&cpu_buffer->committing);
2035 	local_inc(&cpu_buffer->commits);
2036 }
2037 
2038 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2039 {
2040 	unsigned long commits;
2041 
2042 	if (RB_WARN_ON(cpu_buffer,
2043 		       !local_read(&cpu_buffer->committing)))
2044 		return;
2045 
2046  again:
2047 	commits = local_read(&cpu_buffer->commits);
2048 	/* synchronize with interrupts */
2049 	barrier();
2050 	if (local_read(&cpu_buffer->committing) == 1)
2051 		rb_set_commit_to_write(cpu_buffer);
2052 
2053 	local_dec(&cpu_buffer->committing);
2054 
2055 	/* synchronize with interrupts */
2056 	barrier();
2057 
2058 	/*
2059 	 * Need to account for interrupts coming in between the
2060 	 * updating of the commit page and the clearing of the
2061 	 * committing counter.
2062 	 */
2063 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2064 	    !local_read(&cpu_buffer->committing)) {
2065 		local_inc(&cpu_buffer->committing);
2066 		goto again;
2067 	}
2068 }
2069 
2070 static struct ring_buffer_event *
2071 rb_reserve_next_event(struct ring_buffer *buffer,
2072 		      struct ring_buffer_per_cpu *cpu_buffer,
2073 		      unsigned long length)
2074 {
2075 	struct ring_buffer_event *event;
2076 	u64 ts, delta = 0;
2077 	int commit = 0;
2078 	int nr_loops = 0;
2079 
2080 	rb_start_commit(cpu_buffer);
2081 
2082 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2083 	/*
2084 	 * Due to the ability to swap a cpu buffer from a buffer
2085 	 * it is possible it was swapped before we committed.
2086 	 * (committing stops a swap). We check for it here and
2087 	 * if it happened, we have to fail the write.
2088 	 */
2089 	barrier();
2090 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2091 		local_dec(&cpu_buffer->committing);
2092 		local_dec(&cpu_buffer->commits);
2093 		return NULL;
2094 	}
2095 #endif
2096 
2097 	length = rb_calculate_event_length(length);
2098  again:
2099 	/*
2100 	 * We allow for interrupts to reenter here and do a trace.
2101 	 * If one does, it will cause this original code to loop
2102 	 * back here. Even with heavy interrupts happening, this
2103 	 * should only happen a few times in a row. If this happens
2104 	 * 1000 times in a row, there must be either an interrupt
2105 	 * storm or we have something buggy.
2106 	 * Bail!
2107 	 */
2108 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2109 		goto out_fail;
2110 
2111 	ts = rb_time_stamp(cpu_buffer->buffer);
2112 
2113 	/*
2114 	 * Only the first commit can update the timestamp.
2115 	 * Yes there is a race here. If an interrupt comes in
2116 	 * just after the conditional and it traces too, then it
2117 	 * will also check the deltas. More than one timestamp may
2118 	 * also be made. But only the entry that did the actual
2119 	 * commit will be something other than zero.
2120 	 */
2121 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2122 		   rb_page_write(cpu_buffer->tail_page) ==
2123 		   rb_commit_index(cpu_buffer))) {
2124 		u64 diff;
2125 
2126 		diff = ts - cpu_buffer->write_stamp;
2127 
2128 		/* make sure this diff is calculated here */
2129 		barrier();
2130 
2131 		/* Did the write stamp get updated already? */
2132 		if (unlikely(ts < cpu_buffer->write_stamp))
2133 			goto get_event;
2134 
2135 		delta = diff;
2136 		if (unlikely(test_time_stamp(delta))) {
2137 
2138 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2139 			if (commit == -EBUSY)
2140 				goto out_fail;
2141 
2142 			if (commit == -EAGAIN)
2143 				goto again;
2144 
2145 			RB_WARN_ON(cpu_buffer, commit < 0);
2146 		}
2147 	}
2148 
2149  get_event:
2150 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2151 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2152 		goto again;
2153 
2154 	if (!event)
2155 		goto out_fail;
2156 
2157 	if (!rb_event_is_commit(cpu_buffer, event))
2158 		delta = 0;
2159 
2160 	event->time_delta = delta;
2161 
2162 	return event;
2163 
2164  out_fail:
2165 	rb_end_commit(cpu_buffer);
2166 	return NULL;
2167 }
2168 
2169 #ifdef CONFIG_TRACING
2170 
2171 #define TRACE_RECURSIVE_DEPTH 16
2172 
2173 static int trace_recursive_lock(void)
2174 {
2175 	current->trace_recursion++;
2176 
2177 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2178 		return 0;
2179 
2180 	/* Disable all tracing before we do anything else */
2181 	tracing_off_permanent();
2182 
2183 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2184 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2185 		    current->trace_recursion,
2186 		    hardirq_count() >> HARDIRQ_SHIFT,
2187 		    softirq_count() >> SOFTIRQ_SHIFT,
2188 		    in_nmi());
2189 
2190 	WARN_ON_ONCE(1);
2191 	return -1;
2192 }
2193 
2194 static void trace_recursive_unlock(void)
2195 {
2196 	WARN_ON_ONCE(!current->trace_recursion);
2197 
2198 	current->trace_recursion--;
2199 }
2200 
2201 #else
2202 
2203 #define trace_recursive_lock()		(0)
2204 #define trace_recursive_unlock()	do { } while (0)
2205 
2206 #endif
2207 
2208 static DEFINE_PER_CPU(int, rb_need_resched);
2209 
2210 /**
2211  * ring_buffer_lock_reserve - reserve a part of the buffer
2212  * @buffer: the ring buffer to reserve from
2213  * @length: the length of the data to reserve (excluding event header)
2214  *
2215  * Returns a reseverd event on the ring buffer to copy directly to.
2216  * The user of this interface will need to get the body to write into
2217  * and can use the ring_buffer_event_data() interface.
2218  *
2219  * The length is the length of the data needed, not the event length
2220  * which also includes the event header.
2221  *
2222  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2223  * If NULL is returned, then nothing has been allocated or locked.
2224  */
2225 struct ring_buffer_event *
2226 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2227 {
2228 	struct ring_buffer_per_cpu *cpu_buffer;
2229 	struct ring_buffer_event *event;
2230 	int cpu, resched;
2231 
2232 	if (ring_buffer_flags != RB_BUFFERS_ON)
2233 		return NULL;
2234 
2235 	if (atomic_read(&buffer->record_disabled))
2236 		return NULL;
2237 
2238 	/* If we are tracing schedule, we don't want to recurse */
2239 	resched = ftrace_preempt_disable();
2240 
2241 	if (trace_recursive_lock())
2242 		goto out_nocheck;
2243 
2244 	cpu = raw_smp_processor_id();
2245 
2246 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2247 		goto out;
2248 
2249 	cpu_buffer = buffer->buffers[cpu];
2250 
2251 	if (atomic_read(&cpu_buffer->record_disabled))
2252 		goto out;
2253 
2254 	if (length > BUF_MAX_DATA_SIZE)
2255 		goto out;
2256 
2257 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2258 	if (!event)
2259 		goto out;
2260 
2261 	/*
2262 	 * Need to store resched state on this cpu.
2263 	 * Only the first needs to.
2264 	 */
2265 
2266 	if (preempt_count() == 1)
2267 		per_cpu(rb_need_resched, cpu) = resched;
2268 
2269 	return event;
2270 
2271  out:
2272 	trace_recursive_unlock();
2273 
2274  out_nocheck:
2275 	ftrace_preempt_enable(resched);
2276 	return NULL;
2277 }
2278 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2279 
2280 static void
2281 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2282 		      struct ring_buffer_event *event)
2283 {
2284 	/*
2285 	 * The event first in the commit queue updates the
2286 	 * time stamp.
2287 	 */
2288 	if (rb_event_is_commit(cpu_buffer, event))
2289 		cpu_buffer->write_stamp += event->time_delta;
2290 }
2291 
2292 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2293 		      struct ring_buffer_event *event)
2294 {
2295 	local_inc(&cpu_buffer->entries);
2296 	rb_update_write_stamp(cpu_buffer, event);
2297 	rb_end_commit(cpu_buffer);
2298 }
2299 
2300 /**
2301  * ring_buffer_unlock_commit - commit a reserved
2302  * @buffer: The buffer to commit to
2303  * @event: The event pointer to commit.
2304  *
2305  * This commits the data to the ring buffer, and releases any locks held.
2306  *
2307  * Must be paired with ring_buffer_lock_reserve.
2308  */
2309 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2310 			      struct ring_buffer_event *event)
2311 {
2312 	struct ring_buffer_per_cpu *cpu_buffer;
2313 	int cpu = raw_smp_processor_id();
2314 
2315 	cpu_buffer = buffer->buffers[cpu];
2316 
2317 	rb_commit(cpu_buffer, event);
2318 
2319 	trace_recursive_unlock();
2320 
2321 	/*
2322 	 * Only the last preempt count needs to restore preemption.
2323 	 */
2324 	if (preempt_count() == 1)
2325 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2326 	else
2327 		preempt_enable_no_resched_notrace();
2328 
2329 	return 0;
2330 }
2331 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2332 
2333 static inline void rb_event_discard(struct ring_buffer_event *event)
2334 {
2335 	/* array[0] holds the actual length for the discarded event */
2336 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2337 	event->type_len = RINGBUF_TYPE_PADDING;
2338 	/* time delta must be non zero */
2339 	if (!event->time_delta)
2340 		event->time_delta = 1;
2341 }
2342 
2343 /*
2344  * Decrement the entries to the page that an event is on.
2345  * The event does not even need to exist, only the pointer
2346  * to the page it is on. This may only be called before the commit
2347  * takes place.
2348  */
2349 static inline void
2350 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2351 		   struct ring_buffer_event *event)
2352 {
2353 	unsigned long addr = (unsigned long)event;
2354 	struct buffer_page *bpage = cpu_buffer->commit_page;
2355 	struct buffer_page *start;
2356 
2357 	addr &= PAGE_MASK;
2358 
2359 	/* Do the likely case first */
2360 	if (likely(bpage->page == (void *)addr)) {
2361 		local_dec(&bpage->entries);
2362 		return;
2363 	}
2364 
2365 	/*
2366 	 * Because the commit page may be on the reader page we
2367 	 * start with the next page and check the end loop there.
2368 	 */
2369 	rb_inc_page(cpu_buffer, &bpage);
2370 	start = bpage;
2371 	do {
2372 		if (bpage->page == (void *)addr) {
2373 			local_dec(&bpage->entries);
2374 			return;
2375 		}
2376 		rb_inc_page(cpu_buffer, &bpage);
2377 	} while (bpage != start);
2378 
2379 	/* commit not part of this buffer?? */
2380 	RB_WARN_ON(cpu_buffer, 1);
2381 }
2382 
2383 /**
2384  * ring_buffer_commit_discard - discard an event that has not been committed
2385  * @buffer: the ring buffer
2386  * @event: non committed event to discard
2387  *
2388  * Sometimes an event that is in the ring buffer needs to be ignored.
2389  * This function lets the user discard an event in the ring buffer
2390  * and then that event will not be read later.
2391  *
2392  * This function only works if it is called before the the item has been
2393  * committed. It will try to free the event from the ring buffer
2394  * if another event has not been added behind it.
2395  *
2396  * If another event has been added behind it, it will set the event
2397  * up as discarded, and perform the commit.
2398  *
2399  * If this function is called, do not call ring_buffer_unlock_commit on
2400  * the event.
2401  */
2402 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2403 				struct ring_buffer_event *event)
2404 {
2405 	struct ring_buffer_per_cpu *cpu_buffer;
2406 	int cpu;
2407 
2408 	/* The event is discarded regardless */
2409 	rb_event_discard(event);
2410 
2411 	cpu = smp_processor_id();
2412 	cpu_buffer = buffer->buffers[cpu];
2413 
2414 	/*
2415 	 * This must only be called if the event has not been
2416 	 * committed yet. Thus we can assume that preemption
2417 	 * is still disabled.
2418 	 */
2419 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2420 
2421 	rb_decrement_entry(cpu_buffer, event);
2422 	if (rb_try_to_discard(cpu_buffer, event))
2423 		goto out;
2424 
2425 	/*
2426 	 * The commit is still visible by the reader, so we
2427 	 * must still update the timestamp.
2428 	 */
2429 	rb_update_write_stamp(cpu_buffer, event);
2430  out:
2431 	rb_end_commit(cpu_buffer);
2432 
2433 	trace_recursive_unlock();
2434 
2435 	/*
2436 	 * Only the last preempt count needs to restore preemption.
2437 	 */
2438 	if (preempt_count() == 1)
2439 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2440 	else
2441 		preempt_enable_no_resched_notrace();
2442 
2443 }
2444 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2445 
2446 /**
2447  * ring_buffer_write - write data to the buffer without reserving
2448  * @buffer: The ring buffer to write to.
2449  * @length: The length of the data being written (excluding the event header)
2450  * @data: The data to write to the buffer.
2451  *
2452  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2453  * one function. If you already have the data to write to the buffer, it
2454  * may be easier to simply call this function.
2455  *
2456  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2457  * and not the length of the event which would hold the header.
2458  */
2459 int ring_buffer_write(struct ring_buffer *buffer,
2460 			unsigned long length,
2461 			void *data)
2462 {
2463 	struct ring_buffer_per_cpu *cpu_buffer;
2464 	struct ring_buffer_event *event;
2465 	void *body;
2466 	int ret = -EBUSY;
2467 	int cpu, resched;
2468 
2469 	if (ring_buffer_flags != RB_BUFFERS_ON)
2470 		return -EBUSY;
2471 
2472 	if (atomic_read(&buffer->record_disabled))
2473 		return -EBUSY;
2474 
2475 	resched = ftrace_preempt_disable();
2476 
2477 	cpu = raw_smp_processor_id();
2478 
2479 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2480 		goto out;
2481 
2482 	cpu_buffer = buffer->buffers[cpu];
2483 
2484 	if (atomic_read(&cpu_buffer->record_disabled))
2485 		goto out;
2486 
2487 	if (length > BUF_MAX_DATA_SIZE)
2488 		goto out;
2489 
2490 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2491 	if (!event)
2492 		goto out;
2493 
2494 	body = rb_event_data(event);
2495 
2496 	memcpy(body, data, length);
2497 
2498 	rb_commit(cpu_buffer, event);
2499 
2500 	ret = 0;
2501  out:
2502 	ftrace_preempt_enable(resched);
2503 
2504 	return ret;
2505 }
2506 EXPORT_SYMBOL_GPL(ring_buffer_write);
2507 
2508 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2509 {
2510 	struct buffer_page *reader = cpu_buffer->reader_page;
2511 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2512 	struct buffer_page *commit = cpu_buffer->commit_page;
2513 
2514 	/* In case of error, head will be NULL */
2515 	if (unlikely(!head))
2516 		return 1;
2517 
2518 	return reader->read == rb_page_commit(reader) &&
2519 		(commit == reader ||
2520 		 (commit == head &&
2521 		  head->read == rb_page_commit(commit)));
2522 }
2523 
2524 /**
2525  * ring_buffer_record_disable - stop all writes into the buffer
2526  * @buffer: The ring buffer to stop writes to.
2527  *
2528  * This prevents all writes to the buffer. Any attempt to write
2529  * to the buffer after this will fail and return NULL.
2530  *
2531  * The caller should call synchronize_sched() after this.
2532  */
2533 void ring_buffer_record_disable(struct ring_buffer *buffer)
2534 {
2535 	atomic_inc(&buffer->record_disabled);
2536 }
2537 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2538 
2539 /**
2540  * ring_buffer_record_enable - enable writes to the buffer
2541  * @buffer: The ring buffer to enable writes
2542  *
2543  * Note, multiple disables will need the same number of enables
2544  * to truely enable the writing (much like preempt_disable).
2545  */
2546 void ring_buffer_record_enable(struct ring_buffer *buffer)
2547 {
2548 	atomic_dec(&buffer->record_disabled);
2549 }
2550 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2551 
2552 /**
2553  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2554  * @buffer: The ring buffer to stop writes to.
2555  * @cpu: The CPU buffer to stop
2556  *
2557  * This prevents all writes to the buffer. Any attempt to write
2558  * to the buffer after this will fail and return NULL.
2559  *
2560  * The caller should call synchronize_sched() after this.
2561  */
2562 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2563 {
2564 	struct ring_buffer_per_cpu *cpu_buffer;
2565 
2566 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2567 		return;
2568 
2569 	cpu_buffer = buffer->buffers[cpu];
2570 	atomic_inc(&cpu_buffer->record_disabled);
2571 }
2572 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2573 
2574 /**
2575  * ring_buffer_record_enable_cpu - enable writes to the buffer
2576  * @buffer: The ring buffer to enable writes
2577  * @cpu: The CPU to enable.
2578  *
2579  * Note, multiple disables will need the same number of enables
2580  * to truely enable the writing (much like preempt_disable).
2581  */
2582 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2583 {
2584 	struct ring_buffer_per_cpu *cpu_buffer;
2585 
2586 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2587 		return;
2588 
2589 	cpu_buffer = buffer->buffers[cpu];
2590 	atomic_dec(&cpu_buffer->record_disabled);
2591 }
2592 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2593 
2594 /**
2595  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2596  * @buffer: The ring buffer
2597  * @cpu: The per CPU buffer to get the entries from.
2598  */
2599 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2600 {
2601 	struct ring_buffer_per_cpu *cpu_buffer;
2602 	unsigned long ret;
2603 
2604 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2605 		return 0;
2606 
2607 	cpu_buffer = buffer->buffers[cpu];
2608 	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2609 		- cpu_buffer->read;
2610 
2611 	return ret;
2612 }
2613 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2614 
2615 /**
2616  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2617  * @buffer: The ring buffer
2618  * @cpu: The per CPU buffer to get the number of overruns from
2619  */
2620 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2621 {
2622 	struct ring_buffer_per_cpu *cpu_buffer;
2623 	unsigned long ret;
2624 
2625 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2626 		return 0;
2627 
2628 	cpu_buffer = buffer->buffers[cpu];
2629 	ret = local_read(&cpu_buffer->overrun);
2630 
2631 	return ret;
2632 }
2633 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2634 
2635 /**
2636  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2637  * @buffer: The ring buffer
2638  * @cpu: The per CPU buffer to get the number of overruns from
2639  */
2640 unsigned long
2641 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2642 {
2643 	struct ring_buffer_per_cpu *cpu_buffer;
2644 	unsigned long ret;
2645 
2646 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2647 		return 0;
2648 
2649 	cpu_buffer = buffer->buffers[cpu];
2650 	ret = local_read(&cpu_buffer->commit_overrun);
2651 
2652 	return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2655 
2656 /**
2657  * ring_buffer_entries - get the number of entries in a buffer
2658  * @buffer: The ring buffer
2659  *
2660  * Returns the total number of entries in the ring buffer
2661  * (all CPU entries)
2662  */
2663 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2664 {
2665 	struct ring_buffer_per_cpu *cpu_buffer;
2666 	unsigned long entries = 0;
2667 	int cpu;
2668 
2669 	/* if you care about this being correct, lock the buffer */
2670 	for_each_buffer_cpu(buffer, cpu) {
2671 		cpu_buffer = buffer->buffers[cpu];
2672 		entries += (local_read(&cpu_buffer->entries) -
2673 			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2674 	}
2675 
2676 	return entries;
2677 }
2678 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2679 
2680 /**
2681  * ring_buffer_overruns - get the number of overruns in buffer
2682  * @buffer: The ring buffer
2683  *
2684  * Returns the total number of overruns in the ring buffer
2685  * (all CPU entries)
2686  */
2687 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2688 {
2689 	struct ring_buffer_per_cpu *cpu_buffer;
2690 	unsigned long overruns = 0;
2691 	int cpu;
2692 
2693 	/* if you care about this being correct, lock the buffer */
2694 	for_each_buffer_cpu(buffer, cpu) {
2695 		cpu_buffer = buffer->buffers[cpu];
2696 		overruns += local_read(&cpu_buffer->overrun);
2697 	}
2698 
2699 	return overruns;
2700 }
2701 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2702 
2703 static void rb_iter_reset(struct ring_buffer_iter *iter)
2704 {
2705 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2706 
2707 	/* Iterator usage is expected to have record disabled */
2708 	if (list_empty(&cpu_buffer->reader_page->list)) {
2709 		iter->head_page = rb_set_head_page(cpu_buffer);
2710 		if (unlikely(!iter->head_page))
2711 			return;
2712 		iter->head = iter->head_page->read;
2713 	} else {
2714 		iter->head_page = cpu_buffer->reader_page;
2715 		iter->head = cpu_buffer->reader_page->read;
2716 	}
2717 	if (iter->head)
2718 		iter->read_stamp = cpu_buffer->read_stamp;
2719 	else
2720 		iter->read_stamp = iter->head_page->page->time_stamp;
2721 	iter->cache_reader_page = cpu_buffer->reader_page;
2722 	iter->cache_read = cpu_buffer->read;
2723 }
2724 
2725 /**
2726  * ring_buffer_iter_reset - reset an iterator
2727  * @iter: The iterator to reset
2728  *
2729  * Resets the iterator, so that it will start from the beginning
2730  * again.
2731  */
2732 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2733 {
2734 	struct ring_buffer_per_cpu *cpu_buffer;
2735 	unsigned long flags;
2736 
2737 	if (!iter)
2738 		return;
2739 
2740 	cpu_buffer = iter->cpu_buffer;
2741 
2742 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2743 	rb_iter_reset(iter);
2744 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2745 }
2746 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2747 
2748 /**
2749  * ring_buffer_iter_empty - check if an iterator has no more to read
2750  * @iter: The iterator to check
2751  */
2752 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2753 {
2754 	struct ring_buffer_per_cpu *cpu_buffer;
2755 
2756 	cpu_buffer = iter->cpu_buffer;
2757 
2758 	return iter->head_page == cpu_buffer->commit_page &&
2759 		iter->head == rb_commit_index(cpu_buffer);
2760 }
2761 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2762 
2763 static void
2764 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2765 		     struct ring_buffer_event *event)
2766 {
2767 	u64 delta;
2768 
2769 	switch (event->type_len) {
2770 	case RINGBUF_TYPE_PADDING:
2771 		return;
2772 
2773 	case RINGBUF_TYPE_TIME_EXTEND:
2774 		delta = event->array[0];
2775 		delta <<= TS_SHIFT;
2776 		delta += event->time_delta;
2777 		cpu_buffer->read_stamp += delta;
2778 		return;
2779 
2780 	case RINGBUF_TYPE_TIME_STAMP:
2781 		/* FIXME: not implemented */
2782 		return;
2783 
2784 	case RINGBUF_TYPE_DATA:
2785 		cpu_buffer->read_stamp += event->time_delta;
2786 		return;
2787 
2788 	default:
2789 		BUG();
2790 	}
2791 	return;
2792 }
2793 
2794 static void
2795 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2796 			  struct ring_buffer_event *event)
2797 {
2798 	u64 delta;
2799 
2800 	switch (event->type_len) {
2801 	case RINGBUF_TYPE_PADDING:
2802 		return;
2803 
2804 	case RINGBUF_TYPE_TIME_EXTEND:
2805 		delta = event->array[0];
2806 		delta <<= TS_SHIFT;
2807 		delta += event->time_delta;
2808 		iter->read_stamp += delta;
2809 		return;
2810 
2811 	case RINGBUF_TYPE_TIME_STAMP:
2812 		/* FIXME: not implemented */
2813 		return;
2814 
2815 	case RINGBUF_TYPE_DATA:
2816 		iter->read_stamp += event->time_delta;
2817 		return;
2818 
2819 	default:
2820 		BUG();
2821 	}
2822 	return;
2823 }
2824 
2825 static struct buffer_page *
2826 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2827 {
2828 	struct buffer_page *reader = NULL;
2829 	unsigned long flags;
2830 	int nr_loops = 0;
2831 	int ret;
2832 
2833 	local_irq_save(flags);
2834 	arch_spin_lock(&cpu_buffer->lock);
2835 
2836  again:
2837 	/*
2838 	 * This should normally only loop twice. But because the
2839 	 * start of the reader inserts an empty page, it causes
2840 	 * a case where we will loop three times. There should be no
2841 	 * reason to loop four times (that I know of).
2842 	 */
2843 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2844 		reader = NULL;
2845 		goto out;
2846 	}
2847 
2848 	reader = cpu_buffer->reader_page;
2849 
2850 	/* If there's more to read, return this page */
2851 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2852 		goto out;
2853 
2854 	/* Never should we have an index greater than the size */
2855 	if (RB_WARN_ON(cpu_buffer,
2856 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2857 		goto out;
2858 
2859 	/* check if we caught up to the tail */
2860 	reader = NULL;
2861 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2862 		goto out;
2863 
2864 	/*
2865 	 * Reset the reader page to size zero.
2866 	 */
2867 	local_set(&cpu_buffer->reader_page->write, 0);
2868 	local_set(&cpu_buffer->reader_page->entries, 0);
2869 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2870 
2871  spin:
2872 	/*
2873 	 * Splice the empty reader page into the list around the head.
2874 	 */
2875 	reader = rb_set_head_page(cpu_buffer);
2876 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2877 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2878 
2879 	/*
2880 	 * cpu_buffer->pages just needs to point to the buffer, it
2881 	 *  has no specific buffer page to point to. Lets move it out
2882 	 *  of our way so we don't accidently swap it.
2883 	 */
2884 	cpu_buffer->pages = reader->list.prev;
2885 
2886 	/* The reader page will be pointing to the new head */
2887 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2888 
2889 	/*
2890 	 * Here's the tricky part.
2891 	 *
2892 	 * We need to move the pointer past the header page.
2893 	 * But we can only do that if a writer is not currently
2894 	 * moving it. The page before the header page has the
2895 	 * flag bit '1' set if it is pointing to the page we want.
2896 	 * but if the writer is in the process of moving it
2897 	 * than it will be '2' or already moved '0'.
2898 	 */
2899 
2900 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2901 
2902 	/*
2903 	 * If we did not convert it, then we must try again.
2904 	 */
2905 	if (!ret)
2906 		goto spin;
2907 
2908 	/*
2909 	 * Yeah! We succeeded in replacing the page.
2910 	 *
2911 	 * Now make the new head point back to the reader page.
2912 	 */
2913 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2914 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2915 
2916 	/* Finally update the reader page to the new head */
2917 	cpu_buffer->reader_page = reader;
2918 	rb_reset_reader_page(cpu_buffer);
2919 
2920 	goto again;
2921 
2922  out:
2923 	arch_spin_unlock(&cpu_buffer->lock);
2924 	local_irq_restore(flags);
2925 
2926 	return reader;
2927 }
2928 
2929 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2930 {
2931 	struct ring_buffer_event *event;
2932 	struct buffer_page *reader;
2933 	unsigned length;
2934 
2935 	reader = rb_get_reader_page(cpu_buffer);
2936 
2937 	/* This function should not be called when buffer is empty */
2938 	if (RB_WARN_ON(cpu_buffer, !reader))
2939 		return;
2940 
2941 	event = rb_reader_event(cpu_buffer);
2942 
2943 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2944 		cpu_buffer->read++;
2945 
2946 	rb_update_read_stamp(cpu_buffer, event);
2947 
2948 	length = rb_event_length(event);
2949 	cpu_buffer->reader_page->read += length;
2950 }
2951 
2952 static void rb_advance_iter(struct ring_buffer_iter *iter)
2953 {
2954 	struct ring_buffer *buffer;
2955 	struct ring_buffer_per_cpu *cpu_buffer;
2956 	struct ring_buffer_event *event;
2957 	unsigned length;
2958 
2959 	cpu_buffer = iter->cpu_buffer;
2960 	buffer = cpu_buffer->buffer;
2961 
2962 	/*
2963 	 * Check if we are at the end of the buffer.
2964 	 */
2965 	if (iter->head >= rb_page_size(iter->head_page)) {
2966 		/* discarded commits can make the page empty */
2967 		if (iter->head_page == cpu_buffer->commit_page)
2968 			return;
2969 		rb_inc_iter(iter);
2970 		return;
2971 	}
2972 
2973 	event = rb_iter_head_event(iter);
2974 
2975 	length = rb_event_length(event);
2976 
2977 	/*
2978 	 * This should not be called to advance the header if we are
2979 	 * at the tail of the buffer.
2980 	 */
2981 	if (RB_WARN_ON(cpu_buffer,
2982 		       (iter->head_page == cpu_buffer->commit_page) &&
2983 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2984 		return;
2985 
2986 	rb_update_iter_read_stamp(iter, event);
2987 
2988 	iter->head += length;
2989 
2990 	/* check for end of page padding */
2991 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2992 	    (iter->head_page != cpu_buffer->commit_page))
2993 		rb_advance_iter(iter);
2994 }
2995 
2996 static struct ring_buffer_event *
2997 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
2998 {
2999 	struct ring_buffer_event *event;
3000 	struct buffer_page *reader;
3001 	int nr_loops = 0;
3002 
3003  again:
3004 	/*
3005 	 * We repeat when a timestamp is encountered. It is possible
3006 	 * to get multiple timestamps from an interrupt entering just
3007 	 * as one timestamp is about to be written, or from discarded
3008 	 * commits. The most that we can have is the number on a single page.
3009 	 */
3010 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3011 		return NULL;
3012 
3013 	reader = rb_get_reader_page(cpu_buffer);
3014 	if (!reader)
3015 		return NULL;
3016 
3017 	event = rb_reader_event(cpu_buffer);
3018 
3019 	switch (event->type_len) {
3020 	case RINGBUF_TYPE_PADDING:
3021 		if (rb_null_event(event))
3022 			RB_WARN_ON(cpu_buffer, 1);
3023 		/*
3024 		 * Because the writer could be discarding every
3025 		 * event it creates (which would probably be bad)
3026 		 * if we were to go back to "again" then we may never
3027 		 * catch up, and will trigger the warn on, or lock
3028 		 * the box. Return the padding, and we will release
3029 		 * the current locks, and try again.
3030 		 */
3031 		return event;
3032 
3033 	case RINGBUF_TYPE_TIME_EXTEND:
3034 		/* Internal data, OK to advance */
3035 		rb_advance_reader(cpu_buffer);
3036 		goto again;
3037 
3038 	case RINGBUF_TYPE_TIME_STAMP:
3039 		/* FIXME: not implemented */
3040 		rb_advance_reader(cpu_buffer);
3041 		goto again;
3042 
3043 	case RINGBUF_TYPE_DATA:
3044 		if (ts) {
3045 			*ts = cpu_buffer->read_stamp + event->time_delta;
3046 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3047 							 cpu_buffer->cpu, ts);
3048 		}
3049 		return event;
3050 
3051 	default:
3052 		BUG();
3053 	}
3054 
3055 	return NULL;
3056 }
3057 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3058 
3059 static struct ring_buffer_event *
3060 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3061 {
3062 	struct ring_buffer *buffer;
3063 	struct ring_buffer_per_cpu *cpu_buffer;
3064 	struct ring_buffer_event *event;
3065 	int nr_loops = 0;
3066 
3067 	cpu_buffer = iter->cpu_buffer;
3068 	buffer = cpu_buffer->buffer;
3069 
3070 	/*
3071 	 * Check if someone performed a consuming read to
3072 	 * the buffer. A consuming read invalidates the iterator
3073 	 * and we need to reset the iterator in this case.
3074 	 */
3075 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3076 		     iter->cache_reader_page != cpu_buffer->reader_page))
3077 		rb_iter_reset(iter);
3078 
3079  again:
3080 	if (ring_buffer_iter_empty(iter))
3081 		return NULL;
3082 
3083 	/*
3084 	 * We repeat when a timestamp is encountered.
3085 	 * We can get multiple timestamps by nested interrupts or also
3086 	 * if filtering is on (discarding commits). Since discarding
3087 	 * commits can be frequent we can get a lot of timestamps.
3088 	 * But we limit them by not adding timestamps if they begin
3089 	 * at the start of a page.
3090 	 */
3091 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3092 		return NULL;
3093 
3094 	if (rb_per_cpu_empty(cpu_buffer))
3095 		return NULL;
3096 
3097 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3098 		rb_inc_iter(iter);
3099 		goto again;
3100 	}
3101 
3102 	event = rb_iter_head_event(iter);
3103 
3104 	switch (event->type_len) {
3105 	case RINGBUF_TYPE_PADDING:
3106 		if (rb_null_event(event)) {
3107 			rb_inc_iter(iter);
3108 			goto again;
3109 		}
3110 		rb_advance_iter(iter);
3111 		return event;
3112 
3113 	case RINGBUF_TYPE_TIME_EXTEND:
3114 		/* Internal data, OK to advance */
3115 		rb_advance_iter(iter);
3116 		goto again;
3117 
3118 	case RINGBUF_TYPE_TIME_STAMP:
3119 		/* FIXME: not implemented */
3120 		rb_advance_iter(iter);
3121 		goto again;
3122 
3123 	case RINGBUF_TYPE_DATA:
3124 		if (ts) {
3125 			*ts = iter->read_stamp + event->time_delta;
3126 			ring_buffer_normalize_time_stamp(buffer,
3127 							 cpu_buffer->cpu, ts);
3128 		}
3129 		return event;
3130 
3131 	default:
3132 		BUG();
3133 	}
3134 
3135 	return NULL;
3136 }
3137 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3138 
3139 static inline int rb_ok_to_lock(void)
3140 {
3141 	/*
3142 	 * If an NMI die dumps out the content of the ring buffer
3143 	 * do not grab locks. We also permanently disable the ring
3144 	 * buffer too. A one time deal is all you get from reading
3145 	 * the ring buffer from an NMI.
3146 	 */
3147 	if (likely(!in_nmi()))
3148 		return 1;
3149 
3150 	tracing_off_permanent();
3151 	return 0;
3152 }
3153 
3154 /**
3155  * ring_buffer_peek - peek at the next event to be read
3156  * @buffer: The ring buffer to read
3157  * @cpu: The cpu to peak at
3158  * @ts: The timestamp counter of this event.
3159  *
3160  * This will return the event that will be read next, but does
3161  * not consume the data.
3162  */
3163 struct ring_buffer_event *
3164 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3165 {
3166 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3167 	struct ring_buffer_event *event;
3168 	unsigned long flags;
3169 	int dolock;
3170 
3171 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3172 		return NULL;
3173 
3174 	dolock = rb_ok_to_lock();
3175  again:
3176 	local_irq_save(flags);
3177 	if (dolock)
3178 		spin_lock(&cpu_buffer->reader_lock);
3179 	event = rb_buffer_peek(cpu_buffer, ts);
3180 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3181 		rb_advance_reader(cpu_buffer);
3182 	if (dolock)
3183 		spin_unlock(&cpu_buffer->reader_lock);
3184 	local_irq_restore(flags);
3185 
3186 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3187 		goto again;
3188 
3189 	return event;
3190 }
3191 
3192 /**
3193  * ring_buffer_iter_peek - peek at the next event to be read
3194  * @iter: The ring buffer iterator
3195  * @ts: The timestamp counter of this event.
3196  *
3197  * This will return the event that will be read next, but does
3198  * not increment the iterator.
3199  */
3200 struct ring_buffer_event *
3201 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3202 {
3203 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3204 	struct ring_buffer_event *event;
3205 	unsigned long flags;
3206 
3207  again:
3208 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3209 	event = rb_iter_peek(iter, ts);
3210 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3211 
3212 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3213 		goto again;
3214 
3215 	return event;
3216 }
3217 
3218 /**
3219  * ring_buffer_consume - return an event and consume it
3220  * @buffer: The ring buffer to get the next event from
3221  *
3222  * Returns the next event in the ring buffer, and that event is consumed.
3223  * Meaning, that sequential reads will keep returning a different event,
3224  * and eventually empty the ring buffer if the producer is slower.
3225  */
3226 struct ring_buffer_event *
3227 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3228 {
3229 	struct ring_buffer_per_cpu *cpu_buffer;
3230 	struct ring_buffer_event *event = NULL;
3231 	unsigned long flags;
3232 	int dolock;
3233 
3234 	dolock = rb_ok_to_lock();
3235 
3236  again:
3237 	/* might be called in atomic */
3238 	preempt_disable();
3239 
3240 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3241 		goto out;
3242 
3243 	cpu_buffer = buffer->buffers[cpu];
3244 	local_irq_save(flags);
3245 	if (dolock)
3246 		spin_lock(&cpu_buffer->reader_lock);
3247 
3248 	event = rb_buffer_peek(cpu_buffer, ts);
3249 	if (event)
3250 		rb_advance_reader(cpu_buffer);
3251 
3252 	if (dolock)
3253 		spin_unlock(&cpu_buffer->reader_lock);
3254 	local_irq_restore(flags);
3255 
3256  out:
3257 	preempt_enable();
3258 
3259 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3260 		goto again;
3261 
3262 	return event;
3263 }
3264 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3265 
3266 /**
3267  * ring_buffer_read_start - start a non consuming read of the buffer
3268  * @buffer: The ring buffer to read from
3269  * @cpu: The cpu buffer to iterate over
3270  *
3271  * This starts up an iteration through the buffer. It also disables
3272  * the recording to the buffer until the reading is finished.
3273  * This prevents the reading from being corrupted. This is not
3274  * a consuming read, so a producer is not expected.
3275  *
3276  * Must be paired with ring_buffer_finish.
3277  */
3278 struct ring_buffer_iter *
3279 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3280 {
3281 	struct ring_buffer_per_cpu *cpu_buffer;
3282 	struct ring_buffer_iter *iter;
3283 	unsigned long flags;
3284 
3285 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3286 		return NULL;
3287 
3288 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3289 	if (!iter)
3290 		return NULL;
3291 
3292 	cpu_buffer = buffer->buffers[cpu];
3293 
3294 	iter->cpu_buffer = cpu_buffer;
3295 
3296 	atomic_inc(&cpu_buffer->record_disabled);
3297 	synchronize_sched();
3298 
3299 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3300 	arch_spin_lock(&cpu_buffer->lock);
3301 	rb_iter_reset(iter);
3302 	arch_spin_unlock(&cpu_buffer->lock);
3303 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3304 
3305 	return iter;
3306 }
3307 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3308 
3309 /**
3310  * ring_buffer_finish - finish reading the iterator of the buffer
3311  * @iter: The iterator retrieved by ring_buffer_start
3312  *
3313  * This re-enables the recording to the buffer, and frees the
3314  * iterator.
3315  */
3316 void
3317 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3318 {
3319 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3320 
3321 	atomic_dec(&cpu_buffer->record_disabled);
3322 	kfree(iter);
3323 }
3324 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3325 
3326 /**
3327  * ring_buffer_read - read the next item in the ring buffer by the iterator
3328  * @iter: The ring buffer iterator
3329  * @ts: The time stamp of the event read.
3330  *
3331  * This reads the next event in the ring buffer and increments the iterator.
3332  */
3333 struct ring_buffer_event *
3334 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3335 {
3336 	struct ring_buffer_event *event;
3337 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3338 	unsigned long flags;
3339 
3340 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3341  again:
3342 	event = rb_iter_peek(iter, ts);
3343 	if (!event)
3344 		goto out;
3345 
3346 	if (event->type_len == RINGBUF_TYPE_PADDING)
3347 		goto again;
3348 
3349 	rb_advance_iter(iter);
3350  out:
3351 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3352 
3353 	return event;
3354 }
3355 EXPORT_SYMBOL_GPL(ring_buffer_read);
3356 
3357 /**
3358  * ring_buffer_size - return the size of the ring buffer (in bytes)
3359  * @buffer: The ring buffer.
3360  */
3361 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3362 {
3363 	return BUF_PAGE_SIZE * buffer->pages;
3364 }
3365 EXPORT_SYMBOL_GPL(ring_buffer_size);
3366 
3367 static void
3368 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3369 {
3370 	rb_head_page_deactivate(cpu_buffer);
3371 
3372 	cpu_buffer->head_page
3373 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3374 	local_set(&cpu_buffer->head_page->write, 0);
3375 	local_set(&cpu_buffer->head_page->entries, 0);
3376 	local_set(&cpu_buffer->head_page->page->commit, 0);
3377 
3378 	cpu_buffer->head_page->read = 0;
3379 
3380 	cpu_buffer->tail_page = cpu_buffer->head_page;
3381 	cpu_buffer->commit_page = cpu_buffer->head_page;
3382 
3383 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3384 	local_set(&cpu_buffer->reader_page->write, 0);
3385 	local_set(&cpu_buffer->reader_page->entries, 0);
3386 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3387 	cpu_buffer->reader_page->read = 0;
3388 
3389 	local_set(&cpu_buffer->commit_overrun, 0);
3390 	local_set(&cpu_buffer->overrun, 0);
3391 	local_set(&cpu_buffer->entries, 0);
3392 	local_set(&cpu_buffer->committing, 0);
3393 	local_set(&cpu_buffer->commits, 0);
3394 	cpu_buffer->read = 0;
3395 
3396 	cpu_buffer->write_stamp = 0;
3397 	cpu_buffer->read_stamp = 0;
3398 
3399 	rb_head_page_activate(cpu_buffer);
3400 }
3401 
3402 /**
3403  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3404  * @buffer: The ring buffer to reset a per cpu buffer of
3405  * @cpu: The CPU buffer to be reset
3406  */
3407 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3408 {
3409 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3410 	unsigned long flags;
3411 
3412 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3413 		return;
3414 
3415 	atomic_inc(&cpu_buffer->record_disabled);
3416 
3417 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3418 
3419 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3420 		goto out;
3421 
3422 	arch_spin_lock(&cpu_buffer->lock);
3423 
3424 	rb_reset_cpu(cpu_buffer);
3425 
3426 	arch_spin_unlock(&cpu_buffer->lock);
3427 
3428  out:
3429 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3430 
3431 	atomic_dec(&cpu_buffer->record_disabled);
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3434 
3435 /**
3436  * ring_buffer_reset - reset a ring buffer
3437  * @buffer: The ring buffer to reset all cpu buffers
3438  */
3439 void ring_buffer_reset(struct ring_buffer *buffer)
3440 {
3441 	int cpu;
3442 
3443 	for_each_buffer_cpu(buffer, cpu)
3444 		ring_buffer_reset_cpu(buffer, cpu);
3445 }
3446 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3447 
3448 /**
3449  * rind_buffer_empty - is the ring buffer empty?
3450  * @buffer: The ring buffer to test
3451  */
3452 int ring_buffer_empty(struct ring_buffer *buffer)
3453 {
3454 	struct ring_buffer_per_cpu *cpu_buffer;
3455 	unsigned long flags;
3456 	int dolock;
3457 	int cpu;
3458 	int ret;
3459 
3460 	dolock = rb_ok_to_lock();
3461 
3462 	/* yes this is racy, but if you don't like the race, lock the buffer */
3463 	for_each_buffer_cpu(buffer, cpu) {
3464 		cpu_buffer = buffer->buffers[cpu];
3465 		local_irq_save(flags);
3466 		if (dolock)
3467 			spin_lock(&cpu_buffer->reader_lock);
3468 		ret = rb_per_cpu_empty(cpu_buffer);
3469 		if (dolock)
3470 			spin_unlock(&cpu_buffer->reader_lock);
3471 		local_irq_restore(flags);
3472 
3473 		if (!ret)
3474 			return 0;
3475 	}
3476 
3477 	return 1;
3478 }
3479 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3480 
3481 /**
3482  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3483  * @buffer: The ring buffer
3484  * @cpu: The CPU buffer to test
3485  */
3486 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3487 {
3488 	struct ring_buffer_per_cpu *cpu_buffer;
3489 	unsigned long flags;
3490 	int dolock;
3491 	int ret;
3492 
3493 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3494 		return 1;
3495 
3496 	dolock = rb_ok_to_lock();
3497 
3498 	cpu_buffer = buffer->buffers[cpu];
3499 	local_irq_save(flags);
3500 	if (dolock)
3501 		spin_lock(&cpu_buffer->reader_lock);
3502 	ret = rb_per_cpu_empty(cpu_buffer);
3503 	if (dolock)
3504 		spin_unlock(&cpu_buffer->reader_lock);
3505 	local_irq_restore(flags);
3506 
3507 	return ret;
3508 }
3509 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3510 
3511 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3512 /**
3513  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3514  * @buffer_a: One buffer to swap with
3515  * @buffer_b: The other buffer to swap with
3516  *
3517  * This function is useful for tracers that want to take a "snapshot"
3518  * of a CPU buffer and has another back up buffer lying around.
3519  * it is expected that the tracer handles the cpu buffer not being
3520  * used at the moment.
3521  */
3522 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3523 			 struct ring_buffer *buffer_b, int cpu)
3524 {
3525 	struct ring_buffer_per_cpu *cpu_buffer_a;
3526 	struct ring_buffer_per_cpu *cpu_buffer_b;
3527 	int ret = -EINVAL;
3528 
3529 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3530 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3531 		goto out;
3532 
3533 	/* At least make sure the two buffers are somewhat the same */
3534 	if (buffer_a->pages != buffer_b->pages)
3535 		goto out;
3536 
3537 	ret = -EAGAIN;
3538 
3539 	if (ring_buffer_flags != RB_BUFFERS_ON)
3540 		goto out;
3541 
3542 	if (atomic_read(&buffer_a->record_disabled))
3543 		goto out;
3544 
3545 	if (atomic_read(&buffer_b->record_disabled))
3546 		goto out;
3547 
3548 	cpu_buffer_a = buffer_a->buffers[cpu];
3549 	cpu_buffer_b = buffer_b->buffers[cpu];
3550 
3551 	if (atomic_read(&cpu_buffer_a->record_disabled))
3552 		goto out;
3553 
3554 	if (atomic_read(&cpu_buffer_b->record_disabled))
3555 		goto out;
3556 
3557 	/*
3558 	 * We can't do a synchronize_sched here because this
3559 	 * function can be called in atomic context.
3560 	 * Normally this will be called from the same CPU as cpu.
3561 	 * If not it's up to the caller to protect this.
3562 	 */
3563 	atomic_inc(&cpu_buffer_a->record_disabled);
3564 	atomic_inc(&cpu_buffer_b->record_disabled);
3565 
3566 	ret = -EBUSY;
3567 	if (local_read(&cpu_buffer_a->committing))
3568 		goto out_dec;
3569 	if (local_read(&cpu_buffer_b->committing))
3570 		goto out_dec;
3571 
3572 	buffer_a->buffers[cpu] = cpu_buffer_b;
3573 	buffer_b->buffers[cpu] = cpu_buffer_a;
3574 
3575 	cpu_buffer_b->buffer = buffer_a;
3576 	cpu_buffer_a->buffer = buffer_b;
3577 
3578 	ret = 0;
3579 
3580 out_dec:
3581 	atomic_dec(&cpu_buffer_a->record_disabled);
3582 	atomic_dec(&cpu_buffer_b->record_disabled);
3583 out:
3584 	return ret;
3585 }
3586 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3587 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3588 
3589 /**
3590  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3591  * @buffer: the buffer to allocate for.
3592  *
3593  * This function is used in conjunction with ring_buffer_read_page.
3594  * When reading a full page from the ring buffer, these functions
3595  * can be used to speed up the process. The calling function should
3596  * allocate a few pages first with this function. Then when it
3597  * needs to get pages from the ring buffer, it passes the result
3598  * of this function into ring_buffer_read_page, which will swap
3599  * the page that was allocated, with the read page of the buffer.
3600  *
3601  * Returns:
3602  *  The page allocated, or NULL on error.
3603  */
3604 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3605 {
3606 	struct buffer_data_page *bpage;
3607 	unsigned long addr;
3608 
3609 	addr = __get_free_page(GFP_KERNEL);
3610 	if (!addr)
3611 		return NULL;
3612 
3613 	bpage = (void *)addr;
3614 
3615 	rb_init_page(bpage);
3616 
3617 	return bpage;
3618 }
3619 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3620 
3621 /**
3622  * ring_buffer_free_read_page - free an allocated read page
3623  * @buffer: the buffer the page was allocate for
3624  * @data: the page to free
3625  *
3626  * Free a page allocated from ring_buffer_alloc_read_page.
3627  */
3628 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3629 {
3630 	free_page((unsigned long)data);
3631 }
3632 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3633 
3634 /**
3635  * ring_buffer_read_page - extract a page from the ring buffer
3636  * @buffer: buffer to extract from
3637  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3638  * @len: amount to extract
3639  * @cpu: the cpu of the buffer to extract
3640  * @full: should the extraction only happen when the page is full.
3641  *
3642  * This function will pull out a page from the ring buffer and consume it.
3643  * @data_page must be the address of the variable that was returned
3644  * from ring_buffer_alloc_read_page. This is because the page might be used
3645  * to swap with a page in the ring buffer.
3646  *
3647  * for example:
3648  *	rpage = ring_buffer_alloc_read_page(buffer);
3649  *	if (!rpage)
3650  *		return error;
3651  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3652  *	if (ret >= 0)
3653  *		process_page(rpage, ret);
3654  *
3655  * When @full is set, the function will not return true unless
3656  * the writer is off the reader page.
3657  *
3658  * Note: it is up to the calling functions to handle sleeps and wakeups.
3659  *  The ring buffer can be used anywhere in the kernel and can not
3660  *  blindly call wake_up. The layer that uses the ring buffer must be
3661  *  responsible for that.
3662  *
3663  * Returns:
3664  *  >=0 if data has been transferred, returns the offset of consumed data.
3665  *  <0 if no data has been transferred.
3666  */
3667 int ring_buffer_read_page(struct ring_buffer *buffer,
3668 			  void **data_page, size_t len, int cpu, int full)
3669 {
3670 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3671 	struct ring_buffer_event *event;
3672 	struct buffer_data_page *bpage;
3673 	struct buffer_page *reader;
3674 	unsigned long flags;
3675 	unsigned int commit;
3676 	unsigned int read;
3677 	u64 save_timestamp;
3678 	int ret = -1;
3679 
3680 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3681 		goto out;
3682 
3683 	/*
3684 	 * If len is not big enough to hold the page header, then
3685 	 * we can not copy anything.
3686 	 */
3687 	if (len <= BUF_PAGE_HDR_SIZE)
3688 		goto out;
3689 
3690 	len -= BUF_PAGE_HDR_SIZE;
3691 
3692 	if (!data_page)
3693 		goto out;
3694 
3695 	bpage = *data_page;
3696 	if (!bpage)
3697 		goto out;
3698 
3699 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3700 
3701 	reader = rb_get_reader_page(cpu_buffer);
3702 	if (!reader)
3703 		goto out_unlock;
3704 
3705 	event = rb_reader_event(cpu_buffer);
3706 
3707 	read = reader->read;
3708 	commit = rb_page_commit(reader);
3709 
3710 	/*
3711 	 * If this page has been partially read or
3712 	 * if len is not big enough to read the rest of the page or
3713 	 * a writer is still on the page, then
3714 	 * we must copy the data from the page to the buffer.
3715 	 * Otherwise, we can simply swap the page with the one passed in.
3716 	 */
3717 	if (read || (len < (commit - read)) ||
3718 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3719 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3720 		unsigned int rpos = read;
3721 		unsigned int pos = 0;
3722 		unsigned int size;
3723 
3724 		if (full)
3725 			goto out_unlock;
3726 
3727 		if (len > (commit - read))
3728 			len = (commit - read);
3729 
3730 		size = rb_event_length(event);
3731 
3732 		if (len < size)
3733 			goto out_unlock;
3734 
3735 		/* save the current timestamp, since the user will need it */
3736 		save_timestamp = cpu_buffer->read_stamp;
3737 
3738 		/* Need to copy one event at a time */
3739 		do {
3740 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3741 
3742 			len -= size;
3743 
3744 			rb_advance_reader(cpu_buffer);
3745 			rpos = reader->read;
3746 			pos += size;
3747 
3748 			event = rb_reader_event(cpu_buffer);
3749 			size = rb_event_length(event);
3750 		} while (len > size);
3751 
3752 		/* update bpage */
3753 		local_set(&bpage->commit, pos);
3754 		bpage->time_stamp = save_timestamp;
3755 
3756 		/* we copied everything to the beginning */
3757 		read = 0;
3758 	} else {
3759 		/* update the entry counter */
3760 		cpu_buffer->read += rb_page_entries(reader);
3761 
3762 		/* swap the pages */
3763 		rb_init_page(bpage);
3764 		bpage = reader->page;
3765 		reader->page = *data_page;
3766 		local_set(&reader->write, 0);
3767 		local_set(&reader->entries, 0);
3768 		reader->read = 0;
3769 		*data_page = bpage;
3770 	}
3771 	ret = read;
3772 
3773  out_unlock:
3774 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3775 
3776  out:
3777 	return ret;
3778 }
3779 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3780 
3781 #ifdef CONFIG_TRACING
3782 static ssize_t
3783 rb_simple_read(struct file *filp, char __user *ubuf,
3784 	       size_t cnt, loff_t *ppos)
3785 {
3786 	unsigned long *p = filp->private_data;
3787 	char buf[64];
3788 	int r;
3789 
3790 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3791 		r = sprintf(buf, "permanently disabled\n");
3792 	else
3793 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3794 
3795 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3796 }
3797 
3798 static ssize_t
3799 rb_simple_write(struct file *filp, const char __user *ubuf,
3800 		size_t cnt, loff_t *ppos)
3801 {
3802 	unsigned long *p = filp->private_data;
3803 	char buf[64];
3804 	unsigned long val;
3805 	int ret;
3806 
3807 	if (cnt >= sizeof(buf))
3808 		return -EINVAL;
3809 
3810 	if (copy_from_user(&buf, ubuf, cnt))
3811 		return -EFAULT;
3812 
3813 	buf[cnt] = 0;
3814 
3815 	ret = strict_strtoul(buf, 10, &val);
3816 	if (ret < 0)
3817 		return ret;
3818 
3819 	if (val)
3820 		set_bit(RB_BUFFERS_ON_BIT, p);
3821 	else
3822 		clear_bit(RB_BUFFERS_ON_BIT, p);
3823 
3824 	(*ppos)++;
3825 
3826 	return cnt;
3827 }
3828 
3829 static const struct file_operations rb_simple_fops = {
3830 	.open		= tracing_open_generic,
3831 	.read		= rb_simple_read,
3832 	.write		= rb_simple_write,
3833 };
3834 
3835 
3836 static __init int rb_init_debugfs(void)
3837 {
3838 	struct dentry *d_tracer;
3839 
3840 	d_tracer = tracing_init_dentry();
3841 
3842 	trace_create_file("tracing_on", 0644, d_tracer,
3843 			    &ring_buffer_flags, &rb_simple_fops);
3844 
3845 	return 0;
3846 }
3847 
3848 fs_initcall(rb_init_debugfs);
3849 #endif
3850 
3851 #ifdef CONFIG_HOTPLUG_CPU
3852 static int rb_cpu_notify(struct notifier_block *self,
3853 			 unsigned long action, void *hcpu)
3854 {
3855 	struct ring_buffer *buffer =
3856 		container_of(self, struct ring_buffer, cpu_notify);
3857 	long cpu = (long)hcpu;
3858 
3859 	switch (action) {
3860 	case CPU_UP_PREPARE:
3861 	case CPU_UP_PREPARE_FROZEN:
3862 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3863 			return NOTIFY_OK;
3864 
3865 		buffer->buffers[cpu] =
3866 			rb_allocate_cpu_buffer(buffer, cpu);
3867 		if (!buffer->buffers[cpu]) {
3868 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3869 			     cpu);
3870 			return NOTIFY_OK;
3871 		}
3872 		smp_wmb();
3873 		cpumask_set_cpu(cpu, buffer->cpumask);
3874 		break;
3875 	case CPU_DOWN_PREPARE:
3876 	case CPU_DOWN_PREPARE_FROZEN:
3877 		/*
3878 		 * Do nothing.
3879 		 *  If we were to free the buffer, then the user would
3880 		 *  lose any trace that was in the buffer.
3881 		 */
3882 		break;
3883 	default:
3884 		break;
3885 	}
3886 	return NOTIFY_OK;
3887 }
3888 #endif
3889