1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/debugfs.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/kmemcheck.h> 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/fs.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 int ret; 38 39 ret = trace_seq_puts(s, "# compressed entry header\n"); 40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n"); 41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 42 ret = trace_seq_puts(s, "\tarray : 32 bits\n"); 43 ret = trace_seq_putc(s, '\n'); 44 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return ret; 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* 123 * A fast way to enable or disable all ring buffers is to 124 * call tracing_on or tracing_off. Turning off the ring buffers 125 * prevents all ring buffers from being recorded to. 126 * Turning this switch on, makes it OK to write to the 127 * ring buffer, if the ring buffer is enabled itself. 128 * 129 * There's three layers that must be on in order to write 130 * to the ring buffer. 131 * 132 * 1) This global flag must be set. 133 * 2) The ring buffer must be enabled for recording. 134 * 3) The per cpu buffer must be enabled for recording. 135 * 136 * In case of an anomaly, this global flag has a bit set that 137 * will permantly disable all ring buffers. 138 */ 139 140 /* 141 * Global flag to disable all recording to ring buffers 142 * This has two bits: ON, DISABLED 143 * 144 * ON DISABLED 145 * ---- ---------- 146 * 0 0 : ring buffers are off 147 * 1 0 : ring buffers are on 148 * X 1 : ring buffers are permanently disabled 149 */ 150 151 enum { 152 RB_BUFFERS_ON_BIT = 0, 153 RB_BUFFERS_DISABLED_BIT = 1, 154 }; 155 156 enum { 157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 159 }; 160 161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 162 163 /* Used for individual buffers (after the counter) */ 164 #define RB_BUFFER_OFF (1 << 20) 165 166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 167 168 /** 169 * tracing_off_permanent - permanently disable ring buffers 170 * 171 * This function, once called, will disable all ring buffers 172 * permanently. 173 */ 174 void tracing_off_permanent(void) 175 { 176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 177 } 178 179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 180 #define RB_ALIGNMENT 4U 181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 183 184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 185 # define RB_FORCE_8BYTE_ALIGNMENT 0 186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 187 #else 188 # define RB_FORCE_8BYTE_ALIGNMENT 1 189 # define RB_ARCH_ALIGNMENT 8U 190 #endif 191 192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 193 194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 196 197 enum { 198 RB_LEN_TIME_EXTEND = 8, 199 RB_LEN_TIME_STAMP = 16, 200 }; 201 202 #define skip_time_extend(event) \ 203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 204 205 static inline int rb_null_event(struct ring_buffer_event *event) 206 { 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 208 } 209 210 static void rb_event_set_padding(struct ring_buffer_event *event) 211 { 212 /* padding has a NULL time_delta */ 213 event->type_len = RINGBUF_TYPE_PADDING; 214 event->time_delta = 0; 215 } 216 217 static unsigned 218 rb_event_data_length(struct ring_buffer_event *event) 219 { 220 unsigned length; 221 222 if (event->type_len) 223 length = event->type_len * RB_ALIGNMENT; 224 else 225 length = event->array[0]; 226 return length + RB_EVNT_HDR_SIZE; 227 } 228 229 /* 230 * Return the length of the given event. Will return 231 * the length of the time extend if the event is a 232 * time extend. 233 */ 234 static inline unsigned 235 rb_event_length(struct ring_buffer_event *event) 236 { 237 switch (event->type_len) { 238 case RINGBUF_TYPE_PADDING: 239 if (rb_null_event(event)) 240 /* undefined */ 241 return -1; 242 return event->array[0] + RB_EVNT_HDR_SIZE; 243 244 case RINGBUF_TYPE_TIME_EXTEND: 245 return RB_LEN_TIME_EXTEND; 246 247 case RINGBUF_TYPE_TIME_STAMP: 248 return RB_LEN_TIME_STAMP; 249 250 case RINGBUF_TYPE_DATA: 251 return rb_event_data_length(event); 252 default: 253 BUG(); 254 } 255 /* not hit */ 256 return 0; 257 } 258 259 /* 260 * Return total length of time extend and data, 261 * or just the event length for all other events. 262 */ 263 static inline unsigned 264 rb_event_ts_length(struct ring_buffer_event *event) 265 { 266 unsigned len = 0; 267 268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 269 /* time extends include the data event after it */ 270 len = RB_LEN_TIME_EXTEND; 271 event = skip_time_extend(event); 272 } 273 return len + rb_event_length(event); 274 } 275 276 /** 277 * ring_buffer_event_length - return the length of the event 278 * @event: the event to get the length of 279 * 280 * Returns the size of the data load of a data event. 281 * If the event is something other than a data event, it 282 * returns the size of the event itself. With the exception 283 * of a TIME EXTEND, where it still returns the size of the 284 * data load of the data event after it. 285 */ 286 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 287 { 288 unsigned length; 289 290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 291 event = skip_time_extend(event); 292 293 length = rb_event_length(event); 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 295 return length; 296 length -= RB_EVNT_HDR_SIZE; 297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 298 length -= sizeof(event->array[0]); 299 return length; 300 } 301 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 302 303 /* inline for ring buffer fast paths */ 304 static void * 305 rb_event_data(struct ring_buffer_event *event) 306 { 307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 308 event = skip_time_extend(event); 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 310 /* If length is in len field, then array[0] has the data */ 311 if (event->type_len) 312 return (void *)&event->array[0]; 313 /* Otherwise length is in array[0] and array[1] has the data */ 314 return (void *)&event->array[1]; 315 } 316 317 /** 318 * ring_buffer_event_data - return the data of the event 319 * @event: the event to get the data from 320 */ 321 void *ring_buffer_event_data(struct ring_buffer_event *event) 322 { 323 return rb_event_data(event); 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 326 327 #define for_each_buffer_cpu(buffer, cpu) \ 328 for_each_cpu(cpu, buffer->cpumask) 329 330 #define TS_SHIFT 27 331 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 332 #define TS_DELTA_TEST (~TS_MASK) 333 334 /* Flag when events were overwritten */ 335 #define RB_MISSED_EVENTS (1 << 31) 336 /* Missed count stored at end */ 337 #define RB_MISSED_STORED (1 << 30) 338 339 struct buffer_data_page { 340 u64 time_stamp; /* page time stamp */ 341 local_t commit; /* write committed index */ 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 343 }; 344 345 /* 346 * Note, the buffer_page list must be first. The buffer pages 347 * are allocated in cache lines, which means that each buffer 348 * page will be at the beginning of a cache line, and thus 349 * the least significant bits will be zero. We use this to 350 * add flags in the list struct pointers, to make the ring buffer 351 * lockless. 352 */ 353 struct buffer_page { 354 struct list_head list; /* list of buffer pages */ 355 local_t write; /* index for next write */ 356 unsigned read; /* index for next read */ 357 local_t entries; /* entries on this page */ 358 unsigned long real_end; /* real end of data */ 359 struct buffer_data_page *page; /* Actual data page */ 360 }; 361 362 /* 363 * The buffer page counters, write and entries, must be reset 364 * atomically when crossing page boundaries. To synchronize this 365 * update, two counters are inserted into the number. One is 366 * the actual counter for the write position or count on the page. 367 * 368 * The other is a counter of updaters. Before an update happens 369 * the update partition of the counter is incremented. This will 370 * allow the updater to update the counter atomically. 371 * 372 * The counter is 20 bits, and the state data is 12. 373 */ 374 #define RB_WRITE_MASK 0xfffff 375 #define RB_WRITE_INTCNT (1 << 20) 376 377 static void rb_init_page(struct buffer_data_page *bpage) 378 { 379 local_set(&bpage->commit, 0); 380 } 381 382 /** 383 * ring_buffer_page_len - the size of data on the page. 384 * @page: The page to read 385 * 386 * Returns the amount of data on the page, including buffer page header. 387 */ 388 size_t ring_buffer_page_len(void *page) 389 { 390 return local_read(&((struct buffer_data_page *)page)->commit) 391 + BUF_PAGE_HDR_SIZE; 392 } 393 394 /* 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 396 * this issue out. 397 */ 398 static void free_buffer_page(struct buffer_page *bpage) 399 { 400 free_page((unsigned long)bpage->page); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline int test_time_stamp(u64 delta) 408 { 409 if (delta & TS_DELTA_TEST) 410 return 1; 411 return 0; 412 } 413 414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 415 416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 418 419 int ring_buffer_print_page_header(struct trace_seq *s) 420 { 421 struct buffer_data_page field; 422 int ret; 423 424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 425 "offset:0;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)sizeof(field.time_stamp), 427 (unsigned int)is_signed_type(u64)); 428 429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 (unsigned int)sizeof(field.commit), 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), commit), 438 1, 439 (unsigned int)is_signed_type(long)); 440 441 ret = trace_seq_printf(s, "\tfield: char data;\t" 442 "offset:%u;\tsize:%u;\tsigned:%u;\n", 443 (unsigned int)offsetof(typeof(field), data), 444 (unsigned int)BUF_PAGE_SIZE, 445 (unsigned int)is_signed_type(char)); 446 447 return ret; 448 } 449 450 struct rb_irq_work { 451 struct irq_work work; 452 wait_queue_head_t waiters; 453 bool waiters_pending; 454 }; 455 456 /* 457 * head_page == tail_page && head == tail then buffer is empty. 458 */ 459 struct ring_buffer_per_cpu { 460 int cpu; 461 atomic_t record_disabled; 462 struct ring_buffer *buffer; 463 raw_spinlock_t reader_lock; /* serialize readers */ 464 arch_spinlock_t lock; 465 struct lock_class_key lock_key; 466 unsigned int nr_pages; 467 struct list_head *pages; 468 struct buffer_page *head_page; /* read from head */ 469 struct buffer_page *tail_page; /* write to tail */ 470 struct buffer_page *commit_page; /* committed pages */ 471 struct buffer_page *reader_page; 472 unsigned long lost_events; 473 unsigned long last_overrun; 474 local_t entries_bytes; 475 local_t entries; 476 local_t overrun; 477 local_t commit_overrun; 478 local_t dropped_events; 479 local_t committing; 480 local_t commits; 481 unsigned long read; 482 unsigned long read_bytes; 483 u64 write_stamp; 484 u64 read_stamp; 485 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 486 int nr_pages_to_update; 487 struct list_head new_pages; /* new pages to add */ 488 struct work_struct update_pages_work; 489 struct completion update_done; 490 491 struct rb_irq_work irq_work; 492 }; 493 494 struct ring_buffer { 495 unsigned flags; 496 int cpus; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 cpumask_var_t cpumask; 500 501 struct lock_class_key *reader_lock_key; 502 503 struct mutex mutex; 504 505 struct ring_buffer_per_cpu **buffers; 506 507 #ifdef CONFIG_HOTPLUG_CPU 508 struct notifier_block cpu_notify; 509 #endif 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 }; 514 515 struct ring_buffer_iter { 516 struct ring_buffer_per_cpu *cpu_buffer; 517 unsigned long head; 518 struct buffer_page *head_page; 519 struct buffer_page *cache_reader_page; 520 unsigned long cache_read; 521 u64 read_stamp; 522 }; 523 524 /* 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 526 * 527 * Schedules a delayed work to wake up any task that is blocked on the 528 * ring buffer waiters queue. 529 */ 530 static void rb_wake_up_waiters(struct irq_work *work) 531 { 532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 533 534 wake_up_all(&rbwork->waiters); 535 } 536 537 /** 538 * ring_buffer_wait - wait for input to the ring buffer 539 * @buffer: buffer to wait on 540 * @cpu: the cpu buffer to wait on 541 * 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 543 * as data is added to any of the @buffer's cpu buffers. Otherwise 544 * it will wait for data to be added to a specific cpu buffer. 545 */ 546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu) 547 { 548 struct ring_buffer_per_cpu *cpu_buffer; 549 DEFINE_WAIT(wait); 550 struct rb_irq_work *work; 551 552 /* 553 * Depending on what the caller is waiting for, either any 554 * data in any cpu buffer, or a specific buffer, put the 555 * caller on the appropriate wait queue. 556 */ 557 if (cpu == RING_BUFFER_ALL_CPUS) 558 work = &buffer->irq_work; 559 else { 560 cpu_buffer = buffer->buffers[cpu]; 561 work = &cpu_buffer->irq_work; 562 } 563 564 565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 566 567 /* 568 * The events can happen in critical sections where 569 * checking a work queue can cause deadlocks. 570 * After adding a task to the queue, this flag is set 571 * only to notify events to try to wake up the queue 572 * using irq_work. 573 * 574 * We don't clear it even if the buffer is no longer 575 * empty. The flag only causes the next event to run 576 * irq_work to do the work queue wake up. The worse 577 * that can happen if we race with !trace_empty() is that 578 * an event will cause an irq_work to try to wake up 579 * an empty queue. 580 * 581 * There's no reason to protect this flag either, as 582 * the work queue and irq_work logic will do the necessary 583 * synchronization for the wake ups. The only thing 584 * that is necessary is that the wake up happens after 585 * a task has been queued. It's OK for spurious wake ups. 586 */ 587 work->waiters_pending = true; 588 589 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) || 590 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu))) 591 schedule(); 592 593 finish_wait(&work->waiters, &wait); 594 } 595 596 /** 597 * ring_buffer_poll_wait - poll on buffer input 598 * @buffer: buffer to wait on 599 * @cpu: the cpu buffer to wait on 600 * @filp: the file descriptor 601 * @poll_table: The poll descriptor 602 * 603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 604 * as data is added to any of the @buffer's cpu buffers. Otherwise 605 * it will wait for data to be added to a specific cpu buffer. 606 * 607 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 608 * zero otherwise. 609 */ 610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 611 struct file *filp, poll_table *poll_table) 612 { 613 struct ring_buffer_per_cpu *cpu_buffer; 614 struct rb_irq_work *work; 615 616 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 617 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 618 return POLLIN | POLLRDNORM; 619 620 if (cpu == RING_BUFFER_ALL_CPUS) 621 work = &buffer->irq_work; 622 else { 623 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 624 return -EINVAL; 625 626 cpu_buffer = buffer->buffers[cpu]; 627 work = &cpu_buffer->irq_work; 628 } 629 630 work->waiters_pending = true; 631 poll_wait(filp, &work->waiters, poll_table); 632 633 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 634 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 635 return POLLIN | POLLRDNORM; 636 return 0; 637 } 638 639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 640 #define RB_WARN_ON(b, cond) \ 641 ({ \ 642 int _____ret = unlikely(cond); \ 643 if (_____ret) { \ 644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 645 struct ring_buffer_per_cpu *__b = \ 646 (void *)b; \ 647 atomic_inc(&__b->buffer->record_disabled); \ 648 } else \ 649 atomic_inc(&b->record_disabled); \ 650 WARN_ON(1); \ 651 } \ 652 _____ret; \ 653 }) 654 655 /* Up this if you want to test the TIME_EXTENTS and normalization */ 656 #define DEBUG_SHIFT 0 657 658 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 659 { 660 /* shift to debug/test normalization and TIME_EXTENTS */ 661 return buffer->clock() << DEBUG_SHIFT; 662 } 663 664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 665 { 666 u64 time; 667 668 preempt_disable_notrace(); 669 time = rb_time_stamp(buffer); 670 preempt_enable_no_resched_notrace(); 671 672 return time; 673 } 674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 675 676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 677 int cpu, u64 *ts) 678 { 679 /* Just stupid testing the normalize function and deltas */ 680 *ts >>= DEBUG_SHIFT; 681 } 682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 683 684 /* 685 * Making the ring buffer lockless makes things tricky. 686 * Although writes only happen on the CPU that they are on, 687 * and they only need to worry about interrupts. Reads can 688 * happen on any CPU. 689 * 690 * The reader page is always off the ring buffer, but when the 691 * reader finishes with a page, it needs to swap its page with 692 * a new one from the buffer. The reader needs to take from 693 * the head (writes go to the tail). But if a writer is in overwrite 694 * mode and wraps, it must push the head page forward. 695 * 696 * Here lies the problem. 697 * 698 * The reader must be careful to replace only the head page, and 699 * not another one. As described at the top of the file in the 700 * ASCII art, the reader sets its old page to point to the next 701 * page after head. It then sets the page after head to point to 702 * the old reader page. But if the writer moves the head page 703 * during this operation, the reader could end up with the tail. 704 * 705 * We use cmpxchg to help prevent this race. We also do something 706 * special with the page before head. We set the LSB to 1. 707 * 708 * When the writer must push the page forward, it will clear the 709 * bit that points to the head page, move the head, and then set 710 * the bit that points to the new head page. 711 * 712 * We also don't want an interrupt coming in and moving the head 713 * page on another writer. Thus we use the second LSB to catch 714 * that too. Thus: 715 * 716 * head->list->prev->next bit 1 bit 0 717 * ------- ------- 718 * Normal page 0 0 719 * Points to head page 0 1 720 * New head page 1 0 721 * 722 * Note we can not trust the prev pointer of the head page, because: 723 * 724 * +----+ +-----+ +-----+ 725 * | |------>| T |---X--->| N | 726 * | |<------| | | | 727 * +----+ +-----+ +-----+ 728 * ^ ^ | 729 * | +-----+ | | 730 * +----------| R |----------+ | 731 * | |<-----------+ 732 * +-----+ 733 * 734 * Key: ---X--> HEAD flag set in pointer 735 * T Tail page 736 * R Reader page 737 * N Next page 738 * 739 * (see __rb_reserve_next() to see where this happens) 740 * 741 * What the above shows is that the reader just swapped out 742 * the reader page with a page in the buffer, but before it 743 * could make the new header point back to the new page added 744 * it was preempted by a writer. The writer moved forward onto 745 * the new page added by the reader and is about to move forward 746 * again. 747 * 748 * You can see, it is legitimate for the previous pointer of 749 * the head (or any page) not to point back to itself. But only 750 * temporarially. 751 */ 752 753 #define RB_PAGE_NORMAL 0UL 754 #define RB_PAGE_HEAD 1UL 755 #define RB_PAGE_UPDATE 2UL 756 757 758 #define RB_FLAG_MASK 3UL 759 760 /* PAGE_MOVED is not part of the mask */ 761 #define RB_PAGE_MOVED 4UL 762 763 /* 764 * rb_list_head - remove any bit 765 */ 766 static struct list_head *rb_list_head(struct list_head *list) 767 { 768 unsigned long val = (unsigned long)list; 769 770 return (struct list_head *)(val & ~RB_FLAG_MASK); 771 } 772 773 /* 774 * rb_is_head_page - test if the given page is the head page 775 * 776 * Because the reader may move the head_page pointer, we can 777 * not trust what the head page is (it may be pointing to 778 * the reader page). But if the next page is a header page, 779 * its flags will be non zero. 780 */ 781 static inline int 782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 783 struct buffer_page *page, struct list_head *list) 784 { 785 unsigned long val; 786 787 val = (unsigned long)list->next; 788 789 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 790 return RB_PAGE_MOVED; 791 792 return val & RB_FLAG_MASK; 793 } 794 795 /* 796 * rb_is_reader_page 797 * 798 * The unique thing about the reader page, is that, if the 799 * writer is ever on it, the previous pointer never points 800 * back to the reader page. 801 */ 802 static int rb_is_reader_page(struct buffer_page *page) 803 { 804 struct list_head *list = page->list.prev; 805 806 return rb_list_head(list->next) != &page->list; 807 } 808 809 /* 810 * rb_set_list_to_head - set a list_head to be pointing to head. 811 */ 812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 813 struct list_head *list) 814 { 815 unsigned long *ptr; 816 817 ptr = (unsigned long *)&list->next; 818 *ptr |= RB_PAGE_HEAD; 819 *ptr &= ~RB_PAGE_UPDATE; 820 } 821 822 /* 823 * rb_head_page_activate - sets up head page 824 */ 825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 826 { 827 struct buffer_page *head; 828 829 head = cpu_buffer->head_page; 830 if (!head) 831 return; 832 833 /* 834 * Set the previous list pointer to have the HEAD flag. 835 */ 836 rb_set_list_to_head(cpu_buffer, head->list.prev); 837 } 838 839 static void rb_list_head_clear(struct list_head *list) 840 { 841 unsigned long *ptr = (unsigned long *)&list->next; 842 843 *ptr &= ~RB_FLAG_MASK; 844 } 845 846 /* 847 * rb_head_page_dactivate - clears head page ptr (for free list) 848 */ 849 static void 850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 851 { 852 struct list_head *hd; 853 854 /* Go through the whole list and clear any pointers found. */ 855 rb_list_head_clear(cpu_buffer->pages); 856 857 list_for_each(hd, cpu_buffer->pages) 858 rb_list_head_clear(hd); 859 } 860 861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 862 struct buffer_page *head, 863 struct buffer_page *prev, 864 int old_flag, int new_flag) 865 { 866 struct list_head *list; 867 unsigned long val = (unsigned long)&head->list; 868 unsigned long ret; 869 870 list = &prev->list; 871 872 val &= ~RB_FLAG_MASK; 873 874 ret = cmpxchg((unsigned long *)&list->next, 875 val | old_flag, val | new_flag); 876 877 /* check if the reader took the page */ 878 if ((ret & ~RB_FLAG_MASK) != val) 879 return RB_PAGE_MOVED; 880 881 return ret & RB_FLAG_MASK; 882 } 883 884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 885 struct buffer_page *head, 886 struct buffer_page *prev, 887 int old_flag) 888 { 889 return rb_head_page_set(cpu_buffer, head, prev, 890 old_flag, RB_PAGE_UPDATE); 891 } 892 893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 894 struct buffer_page *head, 895 struct buffer_page *prev, 896 int old_flag) 897 { 898 return rb_head_page_set(cpu_buffer, head, prev, 899 old_flag, RB_PAGE_HEAD); 900 } 901 902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 903 struct buffer_page *head, 904 struct buffer_page *prev, 905 int old_flag) 906 { 907 return rb_head_page_set(cpu_buffer, head, prev, 908 old_flag, RB_PAGE_NORMAL); 909 } 910 911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 912 struct buffer_page **bpage) 913 { 914 struct list_head *p = rb_list_head((*bpage)->list.next); 915 916 *bpage = list_entry(p, struct buffer_page, list); 917 } 918 919 static struct buffer_page * 920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 921 { 922 struct buffer_page *head; 923 struct buffer_page *page; 924 struct list_head *list; 925 int i; 926 927 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 928 return NULL; 929 930 /* sanity check */ 931 list = cpu_buffer->pages; 932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 933 return NULL; 934 935 page = head = cpu_buffer->head_page; 936 /* 937 * It is possible that the writer moves the header behind 938 * where we started, and we miss in one loop. 939 * A second loop should grab the header, but we'll do 940 * three loops just because I'm paranoid. 941 */ 942 for (i = 0; i < 3; i++) { 943 do { 944 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 945 cpu_buffer->head_page = page; 946 return page; 947 } 948 rb_inc_page(cpu_buffer, &page); 949 } while (page != head); 950 } 951 952 RB_WARN_ON(cpu_buffer, 1); 953 954 return NULL; 955 } 956 957 static int rb_head_page_replace(struct buffer_page *old, 958 struct buffer_page *new) 959 { 960 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 961 unsigned long val; 962 unsigned long ret; 963 964 val = *ptr & ~RB_FLAG_MASK; 965 val |= RB_PAGE_HEAD; 966 967 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 968 969 return ret == val; 970 } 971 972 /* 973 * rb_tail_page_update - move the tail page forward 974 * 975 * Returns 1 if moved tail page, 0 if someone else did. 976 */ 977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 978 struct buffer_page *tail_page, 979 struct buffer_page *next_page) 980 { 981 struct buffer_page *old_tail; 982 unsigned long old_entries; 983 unsigned long old_write; 984 int ret = 0; 985 986 /* 987 * The tail page now needs to be moved forward. 988 * 989 * We need to reset the tail page, but without messing 990 * with possible erasing of data brought in by interrupts 991 * that have moved the tail page and are currently on it. 992 * 993 * We add a counter to the write field to denote this. 994 */ 995 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 996 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 997 998 /* 999 * Just make sure we have seen our old_write and synchronize 1000 * with any interrupts that come in. 1001 */ 1002 barrier(); 1003 1004 /* 1005 * If the tail page is still the same as what we think 1006 * it is, then it is up to us to update the tail 1007 * pointer. 1008 */ 1009 if (tail_page == cpu_buffer->tail_page) { 1010 /* Zero the write counter */ 1011 unsigned long val = old_write & ~RB_WRITE_MASK; 1012 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1013 1014 /* 1015 * This will only succeed if an interrupt did 1016 * not come in and change it. In which case, we 1017 * do not want to modify it. 1018 * 1019 * We add (void) to let the compiler know that we do not care 1020 * about the return value of these functions. We use the 1021 * cmpxchg to only update if an interrupt did not already 1022 * do it for us. If the cmpxchg fails, we don't care. 1023 */ 1024 (void)local_cmpxchg(&next_page->write, old_write, val); 1025 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1026 1027 /* 1028 * No need to worry about races with clearing out the commit. 1029 * it only can increment when a commit takes place. But that 1030 * only happens in the outer most nested commit. 1031 */ 1032 local_set(&next_page->page->commit, 0); 1033 1034 old_tail = cmpxchg(&cpu_buffer->tail_page, 1035 tail_page, next_page); 1036 1037 if (old_tail == tail_page) 1038 ret = 1; 1039 } 1040 1041 return ret; 1042 } 1043 1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1045 struct buffer_page *bpage) 1046 { 1047 unsigned long val = (unsigned long)bpage; 1048 1049 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1050 return 1; 1051 1052 return 0; 1053 } 1054 1055 /** 1056 * rb_check_list - make sure a pointer to a list has the last bits zero 1057 */ 1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1059 struct list_head *list) 1060 { 1061 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1062 return 1; 1063 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1064 return 1; 1065 return 0; 1066 } 1067 1068 /** 1069 * rb_check_pages - integrity check of buffer pages 1070 * @cpu_buffer: CPU buffer with pages to test 1071 * 1072 * As a safety measure we check to make sure the data pages have not 1073 * been corrupted. 1074 */ 1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1076 { 1077 struct list_head *head = cpu_buffer->pages; 1078 struct buffer_page *bpage, *tmp; 1079 1080 /* Reset the head page if it exists */ 1081 if (cpu_buffer->head_page) 1082 rb_set_head_page(cpu_buffer); 1083 1084 rb_head_page_deactivate(cpu_buffer); 1085 1086 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1087 return -1; 1088 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1089 return -1; 1090 1091 if (rb_check_list(cpu_buffer, head)) 1092 return -1; 1093 1094 list_for_each_entry_safe(bpage, tmp, head, list) { 1095 if (RB_WARN_ON(cpu_buffer, 1096 bpage->list.next->prev != &bpage->list)) 1097 return -1; 1098 if (RB_WARN_ON(cpu_buffer, 1099 bpage->list.prev->next != &bpage->list)) 1100 return -1; 1101 if (rb_check_list(cpu_buffer, &bpage->list)) 1102 return -1; 1103 } 1104 1105 rb_head_page_activate(cpu_buffer); 1106 1107 return 0; 1108 } 1109 1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1111 { 1112 int i; 1113 struct buffer_page *bpage, *tmp; 1114 1115 for (i = 0; i < nr_pages; i++) { 1116 struct page *page; 1117 /* 1118 * __GFP_NORETRY flag makes sure that the allocation fails 1119 * gracefully without invoking oom-killer and the system is 1120 * not destabilized. 1121 */ 1122 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1123 GFP_KERNEL | __GFP_NORETRY, 1124 cpu_to_node(cpu)); 1125 if (!bpage) 1126 goto free_pages; 1127 1128 list_add(&bpage->list, pages); 1129 1130 page = alloc_pages_node(cpu_to_node(cpu), 1131 GFP_KERNEL | __GFP_NORETRY, 0); 1132 if (!page) 1133 goto free_pages; 1134 bpage->page = page_address(page); 1135 rb_init_page(bpage->page); 1136 } 1137 1138 return 0; 1139 1140 free_pages: 1141 list_for_each_entry_safe(bpage, tmp, pages, list) { 1142 list_del_init(&bpage->list); 1143 free_buffer_page(bpage); 1144 } 1145 1146 return -ENOMEM; 1147 } 1148 1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1150 unsigned nr_pages) 1151 { 1152 LIST_HEAD(pages); 1153 1154 WARN_ON(!nr_pages); 1155 1156 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1157 return -ENOMEM; 1158 1159 /* 1160 * The ring buffer page list is a circular list that does not 1161 * start and end with a list head. All page list items point to 1162 * other pages. 1163 */ 1164 cpu_buffer->pages = pages.next; 1165 list_del(&pages); 1166 1167 cpu_buffer->nr_pages = nr_pages; 1168 1169 rb_check_pages(cpu_buffer); 1170 1171 return 0; 1172 } 1173 1174 static struct ring_buffer_per_cpu * 1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1176 { 1177 struct ring_buffer_per_cpu *cpu_buffer; 1178 struct buffer_page *bpage; 1179 struct page *page; 1180 int ret; 1181 1182 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1183 GFP_KERNEL, cpu_to_node(cpu)); 1184 if (!cpu_buffer) 1185 return NULL; 1186 1187 cpu_buffer->cpu = cpu; 1188 cpu_buffer->buffer = buffer; 1189 raw_spin_lock_init(&cpu_buffer->reader_lock); 1190 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1191 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1192 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1193 init_completion(&cpu_buffer->update_done); 1194 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1195 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1196 1197 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1198 GFP_KERNEL, cpu_to_node(cpu)); 1199 if (!bpage) 1200 goto fail_free_buffer; 1201 1202 rb_check_bpage(cpu_buffer, bpage); 1203 1204 cpu_buffer->reader_page = bpage; 1205 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1206 if (!page) 1207 goto fail_free_reader; 1208 bpage->page = page_address(page); 1209 rb_init_page(bpage->page); 1210 1211 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1212 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1213 1214 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1215 if (ret < 0) 1216 goto fail_free_reader; 1217 1218 cpu_buffer->head_page 1219 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1220 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1221 1222 rb_head_page_activate(cpu_buffer); 1223 1224 return cpu_buffer; 1225 1226 fail_free_reader: 1227 free_buffer_page(cpu_buffer->reader_page); 1228 1229 fail_free_buffer: 1230 kfree(cpu_buffer); 1231 return NULL; 1232 } 1233 1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1235 { 1236 struct list_head *head = cpu_buffer->pages; 1237 struct buffer_page *bpage, *tmp; 1238 1239 free_buffer_page(cpu_buffer->reader_page); 1240 1241 rb_head_page_deactivate(cpu_buffer); 1242 1243 if (head) { 1244 list_for_each_entry_safe(bpage, tmp, head, list) { 1245 list_del_init(&bpage->list); 1246 free_buffer_page(bpage); 1247 } 1248 bpage = list_entry(head, struct buffer_page, list); 1249 free_buffer_page(bpage); 1250 } 1251 1252 kfree(cpu_buffer); 1253 } 1254 1255 #ifdef CONFIG_HOTPLUG_CPU 1256 static int rb_cpu_notify(struct notifier_block *self, 1257 unsigned long action, void *hcpu); 1258 #endif 1259 1260 /** 1261 * __ring_buffer_alloc - allocate a new ring_buffer 1262 * @size: the size in bytes per cpu that is needed. 1263 * @flags: attributes to set for the ring buffer. 1264 * 1265 * Currently the only flag that is available is the RB_FL_OVERWRITE 1266 * flag. This flag means that the buffer will overwrite old data 1267 * when the buffer wraps. If this flag is not set, the buffer will 1268 * drop data when the tail hits the head. 1269 */ 1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1271 struct lock_class_key *key) 1272 { 1273 struct ring_buffer *buffer; 1274 int bsize; 1275 int cpu, nr_pages; 1276 1277 /* keep it in its own cache line */ 1278 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1279 GFP_KERNEL); 1280 if (!buffer) 1281 return NULL; 1282 1283 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1284 goto fail_free_buffer; 1285 1286 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1287 buffer->flags = flags; 1288 buffer->clock = trace_clock_local; 1289 buffer->reader_lock_key = key; 1290 1291 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1292 init_waitqueue_head(&buffer->irq_work.waiters); 1293 1294 /* need at least two pages */ 1295 if (nr_pages < 2) 1296 nr_pages = 2; 1297 1298 /* 1299 * In case of non-hotplug cpu, if the ring-buffer is allocated 1300 * in early initcall, it will not be notified of secondary cpus. 1301 * In that off case, we need to allocate for all possible cpus. 1302 */ 1303 #ifdef CONFIG_HOTPLUG_CPU 1304 cpu_notifier_register_begin(); 1305 cpumask_copy(buffer->cpumask, cpu_online_mask); 1306 #else 1307 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1308 #endif 1309 buffer->cpus = nr_cpu_ids; 1310 1311 bsize = sizeof(void *) * nr_cpu_ids; 1312 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1313 GFP_KERNEL); 1314 if (!buffer->buffers) 1315 goto fail_free_cpumask; 1316 1317 for_each_buffer_cpu(buffer, cpu) { 1318 buffer->buffers[cpu] = 1319 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1320 if (!buffer->buffers[cpu]) 1321 goto fail_free_buffers; 1322 } 1323 1324 #ifdef CONFIG_HOTPLUG_CPU 1325 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1326 buffer->cpu_notify.priority = 0; 1327 __register_cpu_notifier(&buffer->cpu_notify); 1328 cpu_notifier_register_done(); 1329 #endif 1330 1331 mutex_init(&buffer->mutex); 1332 1333 return buffer; 1334 1335 fail_free_buffers: 1336 for_each_buffer_cpu(buffer, cpu) { 1337 if (buffer->buffers[cpu]) 1338 rb_free_cpu_buffer(buffer->buffers[cpu]); 1339 } 1340 kfree(buffer->buffers); 1341 1342 fail_free_cpumask: 1343 free_cpumask_var(buffer->cpumask); 1344 #ifdef CONFIG_HOTPLUG_CPU 1345 cpu_notifier_register_done(); 1346 #endif 1347 1348 fail_free_buffer: 1349 kfree(buffer); 1350 return NULL; 1351 } 1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1353 1354 /** 1355 * ring_buffer_free - free a ring buffer. 1356 * @buffer: the buffer to free. 1357 */ 1358 void 1359 ring_buffer_free(struct ring_buffer *buffer) 1360 { 1361 int cpu; 1362 1363 #ifdef CONFIG_HOTPLUG_CPU 1364 cpu_notifier_register_begin(); 1365 __unregister_cpu_notifier(&buffer->cpu_notify); 1366 #endif 1367 1368 for_each_buffer_cpu(buffer, cpu) 1369 rb_free_cpu_buffer(buffer->buffers[cpu]); 1370 1371 #ifdef CONFIG_HOTPLUG_CPU 1372 cpu_notifier_register_done(); 1373 #endif 1374 1375 kfree(buffer->buffers); 1376 free_cpumask_var(buffer->cpumask); 1377 1378 kfree(buffer); 1379 } 1380 EXPORT_SYMBOL_GPL(ring_buffer_free); 1381 1382 void ring_buffer_set_clock(struct ring_buffer *buffer, 1383 u64 (*clock)(void)) 1384 { 1385 buffer->clock = clock; 1386 } 1387 1388 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1389 1390 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1391 { 1392 return local_read(&bpage->entries) & RB_WRITE_MASK; 1393 } 1394 1395 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1396 { 1397 return local_read(&bpage->write) & RB_WRITE_MASK; 1398 } 1399 1400 static int 1401 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1402 { 1403 struct list_head *tail_page, *to_remove, *next_page; 1404 struct buffer_page *to_remove_page, *tmp_iter_page; 1405 struct buffer_page *last_page, *first_page; 1406 unsigned int nr_removed; 1407 unsigned long head_bit; 1408 int page_entries; 1409 1410 head_bit = 0; 1411 1412 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1413 atomic_inc(&cpu_buffer->record_disabled); 1414 /* 1415 * We don't race with the readers since we have acquired the reader 1416 * lock. We also don't race with writers after disabling recording. 1417 * This makes it easy to figure out the first and the last page to be 1418 * removed from the list. We unlink all the pages in between including 1419 * the first and last pages. This is done in a busy loop so that we 1420 * lose the least number of traces. 1421 * The pages are freed after we restart recording and unlock readers. 1422 */ 1423 tail_page = &cpu_buffer->tail_page->list; 1424 1425 /* 1426 * tail page might be on reader page, we remove the next page 1427 * from the ring buffer 1428 */ 1429 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1430 tail_page = rb_list_head(tail_page->next); 1431 to_remove = tail_page; 1432 1433 /* start of pages to remove */ 1434 first_page = list_entry(rb_list_head(to_remove->next), 1435 struct buffer_page, list); 1436 1437 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1438 to_remove = rb_list_head(to_remove)->next; 1439 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1440 } 1441 1442 next_page = rb_list_head(to_remove)->next; 1443 1444 /* 1445 * Now we remove all pages between tail_page and next_page. 1446 * Make sure that we have head_bit value preserved for the 1447 * next page 1448 */ 1449 tail_page->next = (struct list_head *)((unsigned long)next_page | 1450 head_bit); 1451 next_page = rb_list_head(next_page); 1452 next_page->prev = tail_page; 1453 1454 /* make sure pages points to a valid page in the ring buffer */ 1455 cpu_buffer->pages = next_page; 1456 1457 /* update head page */ 1458 if (head_bit) 1459 cpu_buffer->head_page = list_entry(next_page, 1460 struct buffer_page, list); 1461 1462 /* 1463 * change read pointer to make sure any read iterators reset 1464 * themselves 1465 */ 1466 cpu_buffer->read = 0; 1467 1468 /* pages are removed, resume tracing and then free the pages */ 1469 atomic_dec(&cpu_buffer->record_disabled); 1470 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1471 1472 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1473 1474 /* last buffer page to remove */ 1475 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1476 list); 1477 tmp_iter_page = first_page; 1478 1479 do { 1480 to_remove_page = tmp_iter_page; 1481 rb_inc_page(cpu_buffer, &tmp_iter_page); 1482 1483 /* update the counters */ 1484 page_entries = rb_page_entries(to_remove_page); 1485 if (page_entries) { 1486 /* 1487 * If something was added to this page, it was full 1488 * since it is not the tail page. So we deduct the 1489 * bytes consumed in ring buffer from here. 1490 * Increment overrun to account for the lost events. 1491 */ 1492 local_add(page_entries, &cpu_buffer->overrun); 1493 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1494 } 1495 1496 /* 1497 * We have already removed references to this list item, just 1498 * free up the buffer_page and its page 1499 */ 1500 free_buffer_page(to_remove_page); 1501 nr_removed--; 1502 1503 } while (to_remove_page != last_page); 1504 1505 RB_WARN_ON(cpu_buffer, nr_removed); 1506 1507 return nr_removed == 0; 1508 } 1509 1510 static int 1511 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1512 { 1513 struct list_head *pages = &cpu_buffer->new_pages; 1514 int retries, success; 1515 1516 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1517 /* 1518 * We are holding the reader lock, so the reader page won't be swapped 1519 * in the ring buffer. Now we are racing with the writer trying to 1520 * move head page and the tail page. 1521 * We are going to adapt the reader page update process where: 1522 * 1. We first splice the start and end of list of new pages between 1523 * the head page and its previous page. 1524 * 2. We cmpxchg the prev_page->next to point from head page to the 1525 * start of new pages list. 1526 * 3. Finally, we update the head->prev to the end of new list. 1527 * 1528 * We will try this process 10 times, to make sure that we don't keep 1529 * spinning. 1530 */ 1531 retries = 10; 1532 success = 0; 1533 while (retries--) { 1534 struct list_head *head_page, *prev_page, *r; 1535 struct list_head *last_page, *first_page; 1536 struct list_head *head_page_with_bit; 1537 1538 head_page = &rb_set_head_page(cpu_buffer)->list; 1539 if (!head_page) 1540 break; 1541 prev_page = head_page->prev; 1542 1543 first_page = pages->next; 1544 last_page = pages->prev; 1545 1546 head_page_with_bit = (struct list_head *) 1547 ((unsigned long)head_page | RB_PAGE_HEAD); 1548 1549 last_page->next = head_page_with_bit; 1550 first_page->prev = prev_page; 1551 1552 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1553 1554 if (r == head_page_with_bit) { 1555 /* 1556 * yay, we replaced the page pointer to our new list, 1557 * now, we just have to update to head page's prev 1558 * pointer to point to end of list 1559 */ 1560 head_page->prev = last_page; 1561 success = 1; 1562 break; 1563 } 1564 } 1565 1566 if (success) 1567 INIT_LIST_HEAD(pages); 1568 /* 1569 * If we weren't successful in adding in new pages, warn and stop 1570 * tracing 1571 */ 1572 RB_WARN_ON(cpu_buffer, !success); 1573 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1574 1575 /* free pages if they weren't inserted */ 1576 if (!success) { 1577 struct buffer_page *bpage, *tmp; 1578 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1579 list) { 1580 list_del_init(&bpage->list); 1581 free_buffer_page(bpage); 1582 } 1583 } 1584 return success; 1585 } 1586 1587 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1588 { 1589 int success; 1590 1591 if (cpu_buffer->nr_pages_to_update > 0) 1592 success = rb_insert_pages(cpu_buffer); 1593 else 1594 success = rb_remove_pages(cpu_buffer, 1595 -cpu_buffer->nr_pages_to_update); 1596 1597 if (success) 1598 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1599 } 1600 1601 static void update_pages_handler(struct work_struct *work) 1602 { 1603 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1604 struct ring_buffer_per_cpu, update_pages_work); 1605 rb_update_pages(cpu_buffer); 1606 complete(&cpu_buffer->update_done); 1607 } 1608 1609 /** 1610 * ring_buffer_resize - resize the ring buffer 1611 * @buffer: the buffer to resize. 1612 * @size: the new size. 1613 * @cpu_id: the cpu buffer to resize 1614 * 1615 * Minimum size is 2 * BUF_PAGE_SIZE. 1616 * 1617 * Returns 0 on success and < 0 on failure. 1618 */ 1619 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1620 int cpu_id) 1621 { 1622 struct ring_buffer_per_cpu *cpu_buffer; 1623 unsigned nr_pages; 1624 int cpu, err = 0; 1625 1626 /* 1627 * Always succeed at resizing a non-existent buffer: 1628 */ 1629 if (!buffer) 1630 return size; 1631 1632 /* Make sure the requested buffer exists */ 1633 if (cpu_id != RING_BUFFER_ALL_CPUS && 1634 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1635 return size; 1636 1637 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1638 size *= BUF_PAGE_SIZE; 1639 1640 /* we need a minimum of two pages */ 1641 if (size < BUF_PAGE_SIZE * 2) 1642 size = BUF_PAGE_SIZE * 2; 1643 1644 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1645 1646 /* 1647 * Don't succeed if resizing is disabled, as a reader might be 1648 * manipulating the ring buffer and is expecting a sane state while 1649 * this is true. 1650 */ 1651 if (atomic_read(&buffer->resize_disabled)) 1652 return -EBUSY; 1653 1654 /* prevent another thread from changing buffer sizes */ 1655 mutex_lock(&buffer->mutex); 1656 1657 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1658 /* calculate the pages to update */ 1659 for_each_buffer_cpu(buffer, cpu) { 1660 cpu_buffer = buffer->buffers[cpu]; 1661 1662 cpu_buffer->nr_pages_to_update = nr_pages - 1663 cpu_buffer->nr_pages; 1664 /* 1665 * nothing more to do for removing pages or no update 1666 */ 1667 if (cpu_buffer->nr_pages_to_update <= 0) 1668 continue; 1669 /* 1670 * to add pages, make sure all new pages can be 1671 * allocated without receiving ENOMEM 1672 */ 1673 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1674 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1675 &cpu_buffer->new_pages, cpu)) { 1676 /* not enough memory for new pages */ 1677 err = -ENOMEM; 1678 goto out_err; 1679 } 1680 } 1681 1682 get_online_cpus(); 1683 /* 1684 * Fire off all the required work handlers 1685 * We can't schedule on offline CPUs, but it's not necessary 1686 * since we can change their buffer sizes without any race. 1687 */ 1688 for_each_buffer_cpu(buffer, cpu) { 1689 cpu_buffer = buffer->buffers[cpu]; 1690 if (!cpu_buffer->nr_pages_to_update) 1691 continue; 1692 1693 /* The update must run on the CPU that is being updated. */ 1694 preempt_disable(); 1695 if (cpu == smp_processor_id() || !cpu_online(cpu)) { 1696 rb_update_pages(cpu_buffer); 1697 cpu_buffer->nr_pages_to_update = 0; 1698 } else { 1699 /* 1700 * Can not disable preemption for schedule_work_on() 1701 * on PREEMPT_RT. 1702 */ 1703 preempt_enable(); 1704 schedule_work_on(cpu, 1705 &cpu_buffer->update_pages_work); 1706 preempt_disable(); 1707 } 1708 preempt_enable(); 1709 } 1710 1711 /* wait for all the updates to complete */ 1712 for_each_buffer_cpu(buffer, cpu) { 1713 cpu_buffer = buffer->buffers[cpu]; 1714 if (!cpu_buffer->nr_pages_to_update) 1715 continue; 1716 1717 if (cpu_online(cpu)) 1718 wait_for_completion(&cpu_buffer->update_done); 1719 cpu_buffer->nr_pages_to_update = 0; 1720 } 1721 1722 put_online_cpus(); 1723 } else { 1724 /* Make sure this CPU has been intitialized */ 1725 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1726 goto out; 1727 1728 cpu_buffer = buffer->buffers[cpu_id]; 1729 1730 if (nr_pages == cpu_buffer->nr_pages) 1731 goto out; 1732 1733 cpu_buffer->nr_pages_to_update = nr_pages - 1734 cpu_buffer->nr_pages; 1735 1736 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1737 if (cpu_buffer->nr_pages_to_update > 0 && 1738 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1739 &cpu_buffer->new_pages, cpu_id)) { 1740 err = -ENOMEM; 1741 goto out_err; 1742 } 1743 1744 get_online_cpus(); 1745 1746 preempt_disable(); 1747 /* The update must run on the CPU that is being updated. */ 1748 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id)) 1749 rb_update_pages(cpu_buffer); 1750 else { 1751 /* 1752 * Can not disable preemption for schedule_work_on() 1753 * on PREEMPT_RT. 1754 */ 1755 preempt_enable(); 1756 schedule_work_on(cpu_id, 1757 &cpu_buffer->update_pages_work); 1758 wait_for_completion(&cpu_buffer->update_done); 1759 preempt_disable(); 1760 } 1761 preempt_enable(); 1762 1763 cpu_buffer->nr_pages_to_update = 0; 1764 put_online_cpus(); 1765 } 1766 1767 out: 1768 /* 1769 * The ring buffer resize can happen with the ring buffer 1770 * enabled, so that the update disturbs the tracing as little 1771 * as possible. But if the buffer is disabled, we do not need 1772 * to worry about that, and we can take the time to verify 1773 * that the buffer is not corrupt. 1774 */ 1775 if (atomic_read(&buffer->record_disabled)) { 1776 atomic_inc(&buffer->record_disabled); 1777 /* 1778 * Even though the buffer was disabled, we must make sure 1779 * that it is truly disabled before calling rb_check_pages. 1780 * There could have been a race between checking 1781 * record_disable and incrementing it. 1782 */ 1783 synchronize_sched(); 1784 for_each_buffer_cpu(buffer, cpu) { 1785 cpu_buffer = buffer->buffers[cpu]; 1786 rb_check_pages(cpu_buffer); 1787 } 1788 atomic_dec(&buffer->record_disabled); 1789 } 1790 1791 mutex_unlock(&buffer->mutex); 1792 return size; 1793 1794 out_err: 1795 for_each_buffer_cpu(buffer, cpu) { 1796 struct buffer_page *bpage, *tmp; 1797 1798 cpu_buffer = buffer->buffers[cpu]; 1799 cpu_buffer->nr_pages_to_update = 0; 1800 1801 if (list_empty(&cpu_buffer->new_pages)) 1802 continue; 1803 1804 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1805 list) { 1806 list_del_init(&bpage->list); 1807 free_buffer_page(bpage); 1808 } 1809 } 1810 mutex_unlock(&buffer->mutex); 1811 return err; 1812 } 1813 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1814 1815 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1816 { 1817 mutex_lock(&buffer->mutex); 1818 if (val) 1819 buffer->flags |= RB_FL_OVERWRITE; 1820 else 1821 buffer->flags &= ~RB_FL_OVERWRITE; 1822 mutex_unlock(&buffer->mutex); 1823 } 1824 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1825 1826 static inline void * 1827 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1828 { 1829 return bpage->data + index; 1830 } 1831 1832 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1833 { 1834 return bpage->page->data + index; 1835 } 1836 1837 static inline struct ring_buffer_event * 1838 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1839 { 1840 return __rb_page_index(cpu_buffer->reader_page, 1841 cpu_buffer->reader_page->read); 1842 } 1843 1844 static inline struct ring_buffer_event * 1845 rb_iter_head_event(struct ring_buffer_iter *iter) 1846 { 1847 return __rb_page_index(iter->head_page, iter->head); 1848 } 1849 1850 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1851 { 1852 return local_read(&bpage->page->commit); 1853 } 1854 1855 /* Size is determined by what has been committed */ 1856 static inline unsigned rb_page_size(struct buffer_page *bpage) 1857 { 1858 return rb_page_commit(bpage); 1859 } 1860 1861 static inline unsigned 1862 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1863 { 1864 return rb_page_commit(cpu_buffer->commit_page); 1865 } 1866 1867 static inline unsigned 1868 rb_event_index(struct ring_buffer_event *event) 1869 { 1870 unsigned long addr = (unsigned long)event; 1871 1872 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1873 } 1874 1875 static inline int 1876 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1877 struct ring_buffer_event *event) 1878 { 1879 unsigned long addr = (unsigned long)event; 1880 unsigned long index; 1881 1882 index = rb_event_index(event); 1883 addr &= PAGE_MASK; 1884 1885 return cpu_buffer->commit_page->page == (void *)addr && 1886 rb_commit_index(cpu_buffer) == index; 1887 } 1888 1889 static void 1890 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1891 { 1892 unsigned long max_count; 1893 1894 /* 1895 * We only race with interrupts and NMIs on this CPU. 1896 * If we own the commit event, then we can commit 1897 * all others that interrupted us, since the interruptions 1898 * are in stack format (they finish before they come 1899 * back to us). This allows us to do a simple loop to 1900 * assign the commit to the tail. 1901 */ 1902 again: 1903 max_count = cpu_buffer->nr_pages * 100; 1904 1905 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1906 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1907 return; 1908 if (RB_WARN_ON(cpu_buffer, 1909 rb_is_reader_page(cpu_buffer->tail_page))) 1910 return; 1911 local_set(&cpu_buffer->commit_page->page->commit, 1912 rb_page_write(cpu_buffer->commit_page)); 1913 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1914 cpu_buffer->write_stamp = 1915 cpu_buffer->commit_page->page->time_stamp; 1916 /* add barrier to keep gcc from optimizing too much */ 1917 barrier(); 1918 } 1919 while (rb_commit_index(cpu_buffer) != 1920 rb_page_write(cpu_buffer->commit_page)) { 1921 1922 local_set(&cpu_buffer->commit_page->page->commit, 1923 rb_page_write(cpu_buffer->commit_page)); 1924 RB_WARN_ON(cpu_buffer, 1925 local_read(&cpu_buffer->commit_page->page->commit) & 1926 ~RB_WRITE_MASK); 1927 barrier(); 1928 } 1929 1930 /* again, keep gcc from optimizing */ 1931 barrier(); 1932 1933 /* 1934 * If an interrupt came in just after the first while loop 1935 * and pushed the tail page forward, we will be left with 1936 * a dangling commit that will never go forward. 1937 */ 1938 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1939 goto again; 1940 } 1941 1942 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1943 { 1944 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1945 cpu_buffer->reader_page->read = 0; 1946 } 1947 1948 static void rb_inc_iter(struct ring_buffer_iter *iter) 1949 { 1950 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1951 1952 /* 1953 * The iterator could be on the reader page (it starts there). 1954 * But the head could have moved, since the reader was 1955 * found. Check for this case and assign the iterator 1956 * to the head page instead of next. 1957 */ 1958 if (iter->head_page == cpu_buffer->reader_page) 1959 iter->head_page = rb_set_head_page(cpu_buffer); 1960 else 1961 rb_inc_page(cpu_buffer, &iter->head_page); 1962 1963 iter->read_stamp = iter->head_page->page->time_stamp; 1964 iter->head = 0; 1965 } 1966 1967 /* Slow path, do not inline */ 1968 static noinline struct ring_buffer_event * 1969 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1970 { 1971 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1972 1973 /* Not the first event on the page? */ 1974 if (rb_event_index(event)) { 1975 event->time_delta = delta & TS_MASK; 1976 event->array[0] = delta >> TS_SHIFT; 1977 } else { 1978 /* nope, just zero it */ 1979 event->time_delta = 0; 1980 event->array[0] = 0; 1981 } 1982 1983 return skip_time_extend(event); 1984 } 1985 1986 /** 1987 * rb_update_event - update event type and data 1988 * @event: the even to update 1989 * @type: the type of event 1990 * @length: the size of the event field in the ring buffer 1991 * 1992 * Update the type and data fields of the event. The length 1993 * is the actual size that is written to the ring buffer, 1994 * and with this, we can determine what to place into the 1995 * data field. 1996 */ 1997 static void 1998 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1999 struct ring_buffer_event *event, unsigned length, 2000 int add_timestamp, u64 delta) 2001 { 2002 /* Only a commit updates the timestamp */ 2003 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2004 delta = 0; 2005 2006 /* 2007 * If we need to add a timestamp, then we 2008 * add it to the start of the resevered space. 2009 */ 2010 if (unlikely(add_timestamp)) { 2011 event = rb_add_time_stamp(event, delta); 2012 length -= RB_LEN_TIME_EXTEND; 2013 delta = 0; 2014 } 2015 2016 event->time_delta = delta; 2017 length -= RB_EVNT_HDR_SIZE; 2018 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2019 event->type_len = 0; 2020 event->array[0] = length; 2021 } else 2022 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2023 } 2024 2025 /* 2026 * rb_handle_head_page - writer hit the head page 2027 * 2028 * Returns: +1 to retry page 2029 * 0 to continue 2030 * -1 on error 2031 */ 2032 static int 2033 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2034 struct buffer_page *tail_page, 2035 struct buffer_page *next_page) 2036 { 2037 struct buffer_page *new_head; 2038 int entries; 2039 int type; 2040 int ret; 2041 2042 entries = rb_page_entries(next_page); 2043 2044 /* 2045 * The hard part is here. We need to move the head 2046 * forward, and protect against both readers on 2047 * other CPUs and writers coming in via interrupts. 2048 */ 2049 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2050 RB_PAGE_HEAD); 2051 2052 /* 2053 * type can be one of four: 2054 * NORMAL - an interrupt already moved it for us 2055 * HEAD - we are the first to get here. 2056 * UPDATE - we are the interrupt interrupting 2057 * a current move. 2058 * MOVED - a reader on another CPU moved the next 2059 * pointer to its reader page. Give up 2060 * and try again. 2061 */ 2062 2063 switch (type) { 2064 case RB_PAGE_HEAD: 2065 /* 2066 * We changed the head to UPDATE, thus 2067 * it is our responsibility to update 2068 * the counters. 2069 */ 2070 local_add(entries, &cpu_buffer->overrun); 2071 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2072 2073 /* 2074 * The entries will be zeroed out when we move the 2075 * tail page. 2076 */ 2077 2078 /* still more to do */ 2079 break; 2080 2081 case RB_PAGE_UPDATE: 2082 /* 2083 * This is an interrupt that interrupt the 2084 * previous update. Still more to do. 2085 */ 2086 break; 2087 case RB_PAGE_NORMAL: 2088 /* 2089 * An interrupt came in before the update 2090 * and processed this for us. 2091 * Nothing left to do. 2092 */ 2093 return 1; 2094 case RB_PAGE_MOVED: 2095 /* 2096 * The reader is on another CPU and just did 2097 * a swap with our next_page. 2098 * Try again. 2099 */ 2100 return 1; 2101 default: 2102 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2103 return -1; 2104 } 2105 2106 /* 2107 * Now that we are here, the old head pointer is 2108 * set to UPDATE. This will keep the reader from 2109 * swapping the head page with the reader page. 2110 * The reader (on another CPU) will spin till 2111 * we are finished. 2112 * 2113 * We just need to protect against interrupts 2114 * doing the job. We will set the next pointer 2115 * to HEAD. After that, we set the old pointer 2116 * to NORMAL, but only if it was HEAD before. 2117 * otherwise we are an interrupt, and only 2118 * want the outer most commit to reset it. 2119 */ 2120 new_head = next_page; 2121 rb_inc_page(cpu_buffer, &new_head); 2122 2123 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2124 RB_PAGE_NORMAL); 2125 2126 /* 2127 * Valid returns are: 2128 * HEAD - an interrupt came in and already set it. 2129 * NORMAL - One of two things: 2130 * 1) We really set it. 2131 * 2) A bunch of interrupts came in and moved 2132 * the page forward again. 2133 */ 2134 switch (ret) { 2135 case RB_PAGE_HEAD: 2136 case RB_PAGE_NORMAL: 2137 /* OK */ 2138 break; 2139 default: 2140 RB_WARN_ON(cpu_buffer, 1); 2141 return -1; 2142 } 2143 2144 /* 2145 * It is possible that an interrupt came in, 2146 * set the head up, then more interrupts came in 2147 * and moved it again. When we get back here, 2148 * the page would have been set to NORMAL but we 2149 * just set it back to HEAD. 2150 * 2151 * How do you detect this? Well, if that happened 2152 * the tail page would have moved. 2153 */ 2154 if (ret == RB_PAGE_NORMAL) { 2155 /* 2156 * If the tail had moved passed next, then we need 2157 * to reset the pointer. 2158 */ 2159 if (cpu_buffer->tail_page != tail_page && 2160 cpu_buffer->tail_page != next_page) 2161 rb_head_page_set_normal(cpu_buffer, new_head, 2162 next_page, 2163 RB_PAGE_HEAD); 2164 } 2165 2166 /* 2167 * If this was the outer most commit (the one that 2168 * changed the original pointer from HEAD to UPDATE), 2169 * then it is up to us to reset it to NORMAL. 2170 */ 2171 if (type == RB_PAGE_HEAD) { 2172 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2173 tail_page, 2174 RB_PAGE_UPDATE); 2175 if (RB_WARN_ON(cpu_buffer, 2176 ret != RB_PAGE_UPDATE)) 2177 return -1; 2178 } 2179 2180 return 0; 2181 } 2182 2183 static unsigned rb_calculate_event_length(unsigned length) 2184 { 2185 struct ring_buffer_event event; /* Used only for sizeof array */ 2186 2187 /* zero length can cause confusions */ 2188 if (!length) 2189 length = 1; 2190 2191 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2192 length += sizeof(event.array[0]); 2193 2194 length += RB_EVNT_HDR_SIZE; 2195 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2196 2197 return length; 2198 } 2199 2200 static inline void 2201 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2202 struct buffer_page *tail_page, 2203 unsigned long tail, unsigned long length) 2204 { 2205 struct ring_buffer_event *event; 2206 2207 /* 2208 * Only the event that crossed the page boundary 2209 * must fill the old tail_page with padding. 2210 */ 2211 if (tail >= BUF_PAGE_SIZE) { 2212 /* 2213 * If the page was filled, then we still need 2214 * to update the real_end. Reset it to zero 2215 * and the reader will ignore it. 2216 */ 2217 if (tail == BUF_PAGE_SIZE) 2218 tail_page->real_end = 0; 2219 2220 local_sub(length, &tail_page->write); 2221 return; 2222 } 2223 2224 event = __rb_page_index(tail_page, tail); 2225 kmemcheck_annotate_bitfield(event, bitfield); 2226 2227 /* account for padding bytes */ 2228 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2229 2230 /* 2231 * Save the original length to the meta data. 2232 * This will be used by the reader to add lost event 2233 * counter. 2234 */ 2235 tail_page->real_end = tail; 2236 2237 /* 2238 * If this event is bigger than the minimum size, then 2239 * we need to be careful that we don't subtract the 2240 * write counter enough to allow another writer to slip 2241 * in on this page. 2242 * We put in a discarded commit instead, to make sure 2243 * that this space is not used again. 2244 * 2245 * If we are less than the minimum size, we don't need to 2246 * worry about it. 2247 */ 2248 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2249 /* No room for any events */ 2250 2251 /* Mark the rest of the page with padding */ 2252 rb_event_set_padding(event); 2253 2254 /* Set the write back to the previous setting */ 2255 local_sub(length, &tail_page->write); 2256 return; 2257 } 2258 2259 /* Put in a discarded event */ 2260 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2261 event->type_len = RINGBUF_TYPE_PADDING; 2262 /* time delta must be non zero */ 2263 event->time_delta = 1; 2264 2265 /* Set write to end of buffer */ 2266 length = (tail + length) - BUF_PAGE_SIZE; 2267 local_sub(length, &tail_page->write); 2268 } 2269 2270 /* 2271 * This is the slow path, force gcc not to inline it. 2272 */ 2273 static noinline struct ring_buffer_event * 2274 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2275 unsigned long length, unsigned long tail, 2276 struct buffer_page *tail_page, u64 ts) 2277 { 2278 struct buffer_page *commit_page = cpu_buffer->commit_page; 2279 struct ring_buffer *buffer = cpu_buffer->buffer; 2280 struct buffer_page *next_page; 2281 int ret; 2282 2283 next_page = tail_page; 2284 2285 rb_inc_page(cpu_buffer, &next_page); 2286 2287 /* 2288 * If for some reason, we had an interrupt storm that made 2289 * it all the way around the buffer, bail, and warn 2290 * about it. 2291 */ 2292 if (unlikely(next_page == commit_page)) { 2293 local_inc(&cpu_buffer->commit_overrun); 2294 goto out_reset; 2295 } 2296 2297 /* 2298 * This is where the fun begins! 2299 * 2300 * We are fighting against races between a reader that 2301 * could be on another CPU trying to swap its reader 2302 * page with the buffer head. 2303 * 2304 * We are also fighting against interrupts coming in and 2305 * moving the head or tail on us as well. 2306 * 2307 * If the next page is the head page then we have filled 2308 * the buffer, unless the commit page is still on the 2309 * reader page. 2310 */ 2311 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2312 2313 /* 2314 * If the commit is not on the reader page, then 2315 * move the header page. 2316 */ 2317 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2318 /* 2319 * If we are not in overwrite mode, 2320 * this is easy, just stop here. 2321 */ 2322 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2323 local_inc(&cpu_buffer->dropped_events); 2324 goto out_reset; 2325 } 2326 2327 ret = rb_handle_head_page(cpu_buffer, 2328 tail_page, 2329 next_page); 2330 if (ret < 0) 2331 goto out_reset; 2332 if (ret) 2333 goto out_again; 2334 } else { 2335 /* 2336 * We need to be careful here too. The 2337 * commit page could still be on the reader 2338 * page. We could have a small buffer, and 2339 * have filled up the buffer with events 2340 * from interrupts and such, and wrapped. 2341 * 2342 * Note, if the tail page is also the on the 2343 * reader_page, we let it move out. 2344 */ 2345 if (unlikely((cpu_buffer->commit_page != 2346 cpu_buffer->tail_page) && 2347 (cpu_buffer->commit_page == 2348 cpu_buffer->reader_page))) { 2349 local_inc(&cpu_buffer->commit_overrun); 2350 goto out_reset; 2351 } 2352 } 2353 } 2354 2355 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2356 if (ret) { 2357 /* 2358 * Nested commits always have zero deltas, so 2359 * just reread the time stamp 2360 */ 2361 ts = rb_time_stamp(buffer); 2362 next_page->page->time_stamp = ts; 2363 } 2364 2365 out_again: 2366 2367 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2368 2369 /* fail and let the caller try again */ 2370 return ERR_PTR(-EAGAIN); 2371 2372 out_reset: 2373 /* reset write */ 2374 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2375 2376 return NULL; 2377 } 2378 2379 static struct ring_buffer_event * 2380 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2381 unsigned long length, u64 ts, 2382 u64 delta, int add_timestamp) 2383 { 2384 struct buffer_page *tail_page; 2385 struct ring_buffer_event *event; 2386 unsigned long tail, write; 2387 2388 /* 2389 * If the time delta since the last event is too big to 2390 * hold in the time field of the event, then we append a 2391 * TIME EXTEND event ahead of the data event. 2392 */ 2393 if (unlikely(add_timestamp)) 2394 length += RB_LEN_TIME_EXTEND; 2395 2396 tail_page = cpu_buffer->tail_page; 2397 write = local_add_return(length, &tail_page->write); 2398 2399 /* set write to only the index of the write */ 2400 write &= RB_WRITE_MASK; 2401 tail = write - length; 2402 2403 /* 2404 * If this is the first commit on the page, then it has the same 2405 * timestamp as the page itself. 2406 */ 2407 if (!tail) 2408 delta = 0; 2409 2410 /* See if we shot pass the end of this buffer page */ 2411 if (unlikely(write > BUF_PAGE_SIZE)) 2412 return rb_move_tail(cpu_buffer, length, tail, 2413 tail_page, ts); 2414 2415 /* We reserved something on the buffer */ 2416 2417 event = __rb_page_index(tail_page, tail); 2418 kmemcheck_annotate_bitfield(event, bitfield); 2419 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2420 2421 local_inc(&tail_page->entries); 2422 2423 /* 2424 * If this is the first commit on the page, then update 2425 * its timestamp. 2426 */ 2427 if (!tail) 2428 tail_page->page->time_stamp = ts; 2429 2430 /* account for these added bytes */ 2431 local_add(length, &cpu_buffer->entries_bytes); 2432 2433 return event; 2434 } 2435 2436 static inline int 2437 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2438 struct ring_buffer_event *event) 2439 { 2440 unsigned long new_index, old_index; 2441 struct buffer_page *bpage; 2442 unsigned long index; 2443 unsigned long addr; 2444 2445 new_index = rb_event_index(event); 2446 old_index = new_index + rb_event_ts_length(event); 2447 addr = (unsigned long)event; 2448 addr &= PAGE_MASK; 2449 2450 bpage = cpu_buffer->tail_page; 2451 2452 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2453 unsigned long write_mask = 2454 local_read(&bpage->write) & ~RB_WRITE_MASK; 2455 unsigned long event_length = rb_event_length(event); 2456 /* 2457 * This is on the tail page. It is possible that 2458 * a write could come in and move the tail page 2459 * and write to the next page. That is fine 2460 * because we just shorten what is on this page. 2461 */ 2462 old_index += write_mask; 2463 new_index += write_mask; 2464 index = local_cmpxchg(&bpage->write, old_index, new_index); 2465 if (index == old_index) { 2466 /* update counters */ 2467 local_sub(event_length, &cpu_buffer->entries_bytes); 2468 return 1; 2469 } 2470 } 2471 2472 /* could not discard */ 2473 return 0; 2474 } 2475 2476 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2477 { 2478 local_inc(&cpu_buffer->committing); 2479 local_inc(&cpu_buffer->commits); 2480 } 2481 2482 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2483 { 2484 unsigned long commits; 2485 2486 if (RB_WARN_ON(cpu_buffer, 2487 !local_read(&cpu_buffer->committing))) 2488 return; 2489 2490 again: 2491 commits = local_read(&cpu_buffer->commits); 2492 /* synchronize with interrupts */ 2493 barrier(); 2494 if (local_read(&cpu_buffer->committing) == 1) 2495 rb_set_commit_to_write(cpu_buffer); 2496 2497 local_dec(&cpu_buffer->committing); 2498 2499 /* synchronize with interrupts */ 2500 barrier(); 2501 2502 /* 2503 * Need to account for interrupts coming in between the 2504 * updating of the commit page and the clearing of the 2505 * committing counter. 2506 */ 2507 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2508 !local_read(&cpu_buffer->committing)) { 2509 local_inc(&cpu_buffer->committing); 2510 goto again; 2511 } 2512 } 2513 2514 static struct ring_buffer_event * 2515 rb_reserve_next_event(struct ring_buffer *buffer, 2516 struct ring_buffer_per_cpu *cpu_buffer, 2517 unsigned long length) 2518 { 2519 struct ring_buffer_event *event; 2520 u64 ts, delta; 2521 int nr_loops = 0; 2522 int add_timestamp; 2523 u64 diff; 2524 2525 rb_start_commit(cpu_buffer); 2526 2527 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2528 /* 2529 * Due to the ability to swap a cpu buffer from a buffer 2530 * it is possible it was swapped before we committed. 2531 * (committing stops a swap). We check for it here and 2532 * if it happened, we have to fail the write. 2533 */ 2534 barrier(); 2535 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2536 local_dec(&cpu_buffer->committing); 2537 local_dec(&cpu_buffer->commits); 2538 return NULL; 2539 } 2540 #endif 2541 2542 length = rb_calculate_event_length(length); 2543 again: 2544 add_timestamp = 0; 2545 delta = 0; 2546 2547 /* 2548 * We allow for interrupts to reenter here and do a trace. 2549 * If one does, it will cause this original code to loop 2550 * back here. Even with heavy interrupts happening, this 2551 * should only happen a few times in a row. If this happens 2552 * 1000 times in a row, there must be either an interrupt 2553 * storm or we have something buggy. 2554 * Bail! 2555 */ 2556 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2557 goto out_fail; 2558 2559 ts = rb_time_stamp(cpu_buffer->buffer); 2560 diff = ts - cpu_buffer->write_stamp; 2561 2562 /* make sure this diff is calculated here */ 2563 barrier(); 2564 2565 /* Did the write stamp get updated already? */ 2566 if (likely(ts >= cpu_buffer->write_stamp)) { 2567 delta = diff; 2568 if (unlikely(test_time_stamp(delta))) { 2569 int local_clock_stable = 1; 2570 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2571 local_clock_stable = sched_clock_stable(); 2572 #endif 2573 WARN_ONCE(delta > (1ULL << 59), 2574 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2575 (unsigned long long)delta, 2576 (unsigned long long)ts, 2577 (unsigned long long)cpu_buffer->write_stamp, 2578 local_clock_stable ? "" : 2579 "If you just came from a suspend/resume,\n" 2580 "please switch to the trace global clock:\n" 2581 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2582 add_timestamp = 1; 2583 } 2584 } 2585 2586 event = __rb_reserve_next(cpu_buffer, length, ts, 2587 delta, add_timestamp); 2588 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2589 goto again; 2590 2591 if (!event) 2592 goto out_fail; 2593 2594 return event; 2595 2596 out_fail: 2597 rb_end_commit(cpu_buffer); 2598 return NULL; 2599 } 2600 2601 #ifdef CONFIG_TRACING 2602 2603 /* 2604 * The lock and unlock are done within a preempt disable section. 2605 * The current_context per_cpu variable can only be modified 2606 * by the current task between lock and unlock. But it can 2607 * be modified more than once via an interrupt. To pass this 2608 * information from the lock to the unlock without having to 2609 * access the 'in_interrupt()' functions again (which do show 2610 * a bit of overhead in something as critical as function tracing, 2611 * we use a bitmask trick. 2612 * 2613 * bit 0 = NMI context 2614 * bit 1 = IRQ context 2615 * bit 2 = SoftIRQ context 2616 * bit 3 = normal context. 2617 * 2618 * This works because this is the order of contexts that can 2619 * preempt other contexts. A SoftIRQ never preempts an IRQ 2620 * context. 2621 * 2622 * When the context is determined, the corresponding bit is 2623 * checked and set (if it was set, then a recursion of that context 2624 * happened). 2625 * 2626 * On unlock, we need to clear this bit. To do so, just subtract 2627 * 1 from the current_context and AND it to itself. 2628 * 2629 * (binary) 2630 * 101 - 1 = 100 2631 * 101 & 100 = 100 (clearing bit zero) 2632 * 2633 * 1010 - 1 = 1001 2634 * 1010 & 1001 = 1000 (clearing bit 1) 2635 * 2636 * The least significant bit can be cleared this way, and it 2637 * just so happens that it is the same bit corresponding to 2638 * the current context. 2639 */ 2640 static DEFINE_PER_CPU(unsigned int, current_context); 2641 2642 static __always_inline int trace_recursive_lock(void) 2643 { 2644 unsigned int val = this_cpu_read(current_context); 2645 int bit; 2646 2647 if (in_interrupt()) { 2648 if (in_nmi()) 2649 bit = 0; 2650 else if (in_irq()) 2651 bit = 1; 2652 else 2653 bit = 2; 2654 } else 2655 bit = 3; 2656 2657 if (unlikely(val & (1 << bit))) 2658 return 1; 2659 2660 val |= (1 << bit); 2661 this_cpu_write(current_context, val); 2662 2663 return 0; 2664 } 2665 2666 static __always_inline void trace_recursive_unlock(void) 2667 { 2668 unsigned int val = this_cpu_read(current_context); 2669 2670 val--; 2671 val &= this_cpu_read(current_context); 2672 this_cpu_write(current_context, val); 2673 } 2674 2675 #else 2676 2677 #define trace_recursive_lock() (0) 2678 #define trace_recursive_unlock() do { } while (0) 2679 2680 #endif 2681 2682 /** 2683 * ring_buffer_lock_reserve - reserve a part of the buffer 2684 * @buffer: the ring buffer to reserve from 2685 * @length: the length of the data to reserve (excluding event header) 2686 * 2687 * Returns a reseverd event on the ring buffer to copy directly to. 2688 * The user of this interface will need to get the body to write into 2689 * and can use the ring_buffer_event_data() interface. 2690 * 2691 * The length is the length of the data needed, not the event length 2692 * which also includes the event header. 2693 * 2694 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2695 * If NULL is returned, then nothing has been allocated or locked. 2696 */ 2697 struct ring_buffer_event * 2698 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2699 { 2700 struct ring_buffer_per_cpu *cpu_buffer; 2701 struct ring_buffer_event *event; 2702 int cpu; 2703 2704 if (ring_buffer_flags != RB_BUFFERS_ON) 2705 return NULL; 2706 2707 /* If we are tracing schedule, we don't want to recurse */ 2708 preempt_disable_notrace(); 2709 2710 if (atomic_read(&buffer->record_disabled)) 2711 goto out_nocheck; 2712 2713 if (trace_recursive_lock()) 2714 goto out_nocheck; 2715 2716 cpu = raw_smp_processor_id(); 2717 2718 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2719 goto out; 2720 2721 cpu_buffer = buffer->buffers[cpu]; 2722 2723 if (atomic_read(&cpu_buffer->record_disabled)) 2724 goto out; 2725 2726 if (length > BUF_MAX_DATA_SIZE) 2727 goto out; 2728 2729 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2730 if (!event) 2731 goto out; 2732 2733 return event; 2734 2735 out: 2736 trace_recursive_unlock(); 2737 2738 out_nocheck: 2739 preempt_enable_notrace(); 2740 return NULL; 2741 } 2742 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2743 2744 static void 2745 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2746 struct ring_buffer_event *event) 2747 { 2748 u64 delta; 2749 2750 /* 2751 * The event first in the commit queue updates the 2752 * time stamp. 2753 */ 2754 if (rb_event_is_commit(cpu_buffer, event)) { 2755 /* 2756 * A commit event that is first on a page 2757 * updates the write timestamp with the page stamp 2758 */ 2759 if (!rb_event_index(event)) 2760 cpu_buffer->write_stamp = 2761 cpu_buffer->commit_page->page->time_stamp; 2762 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2763 delta = event->array[0]; 2764 delta <<= TS_SHIFT; 2765 delta += event->time_delta; 2766 cpu_buffer->write_stamp += delta; 2767 } else 2768 cpu_buffer->write_stamp += event->time_delta; 2769 } 2770 } 2771 2772 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2773 struct ring_buffer_event *event) 2774 { 2775 local_inc(&cpu_buffer->entries); 2776 rb_update_write_stamp(cpu_buffer, event); 2777 rb_end_commit(cpu_buffer); 2778 } 2779 2780 static __always_inline void 2781 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2782 { 2783 if (buffer->irq_work.waiters_pending) { 2784 buffer->irq_work.waiters_pending = false; 2785 /* irq_work_queue() supplies it's own memory barriers */ 2786 irq_work_queue(&buffer->irq_work.work); 2787 } 2788 2789 if (cpu_buffer->irq_work.waiters_pending) { 2790 cpu_buffer->irq_work.waiters_pending = false; 2791 /* irq_work_queue() supplies it's own memory barriers */ 2792 irq_work_queue(&cpu_buffer->irq_work.work); 2793 } 2794 } 2795 2796 /** 2797 * ring_buffer_unlock_commit - commit a reserved 2798 * @buffer: The buffer to commit to 2799 * @event: The event pointer to commit. 2800 * 2801 * This commits the data to the ring buffer, and releases any locks held. 2802 * 2803 * Must be paired with ring_buffer_lock_reserve. 2804 */ 2805 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2806 struct ring_buffer_event *event) 2807 { 2808 struct ring_buffer_per_cpu *cpu_buffer; 2809 int cpu = raw_smp_processor_id(); 2810 2811 cpu_buffer = buffer->buffers[cpu]; 2812 2813 rb_commit(cpu_buffer, event); 2814 2815 rb_wakeups(buffer, cpu_buffer); 2816 2817 trace_recursive_unlock(); 2818 2819 preempt_enable_notrace(); 2820 2821 return 0; 2822 } 2823 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2824 2825 static inline void rb_event_discard(struct ring_buffer_event *event) 2826 { 2827 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2828 event = skip_time_extend(event); 2829 2830 /* array[0] holds the actual length for the discarded event */ 2831 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2832 event->type_len = RINGBUF_TYPE_PADDING; 2833 /* time delta must be non zero */ 2834 if (!event->time_delta) 2835 event->time_delta = 1; 2836 } 2837 2838 /* 2839 * Decrement the entries to the page that an event is on. 2840 * The event does not even need to exist, only the pointer 2841 * to the page it is on. This may only be called before the commit 2842 * takes place. 2843 */ 2844 static inline void 2845 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2846 struct ring_buffer_event *event) 2847 { 2848 unsigned long addr = (unsigned long)event; 2849 struct buffer_page *bpage = cpu_buffer->commit_page; 2850 struct buffer_page *start; 2851 2852 addr &= PAGE_MASK; 2853 2854 /* Do the likely case first */ 2855 if (likely(bpage->page == (void *)addr)) { 2856 local_dec(&bpage->entries); 2857 return; 2858 } 2859 2860 /* 2861 * Because the commit page may be on the reader page we 2862 * start with the next page and check the end loop there. 2863 */ 2864 rb_inc_page(cpu_buffer, &bpage); 2865 start = bpage; 2866 do { 2867 if (bpage->page == (void *)addr) { 2868 local_dec(&bpage->entries); 2869 return; 2870 } 2871 rb_inc_page(cpu_buffer, &bpage); 2872 } while (bpage != start); 2873 2874 /* commit not part of this buffer?? */ 2875 RB_WARN_ON(cpu_buffer, 1); 2876 } 2877 2878 /** 2879 * ring_buffer_commit_discard - discard an event that has not been committed 2880 * @buffer: the ring buffer 2881 * @event: non committed event to discard 2882 * 2883 * Sometimes an event that is in the ring buffer needs to be ignored. 2884 * This function lets the user discard an event in the ring buffer 2885 * and then that event will not be read later. 2886 * 2887 * This function only works if it is called before the the item has been 2888 * committed. It will try to free the event from the ring buffer 2889 * if another event has not been added behind it. 2890 * 2891 * If another event has been added behind it, it will set the event 2892 * up as discarded, and perform the commit. 2893 * 2894 * If this function is called, do not call ring_buffer_unlock_commit on 2895 * the event. 2896 */ 2897 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2898 struct ring_buffer_event *event) 2899 { 2900 struct ring_buffer_per_cpu *cpu_buffer; 2901 int cpu; 2902 2903 /* The event is discarded regardless */ 2904 rb_event_discard(event); 2905 2906 cpu = smp_processor_id(); 2907 cpu_buffer = buffer->buffers[cpu]; 2908 2909 /* 2910 * This must only be called if the event has not been 2911 * committed yet. Thus we can assume that preemption 2912 * is still disabled. 2913 */ 2914 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2915 2916 rb_decrement_entry(cpu_buffer, event); 2917 if (rb_try_to_discard(cpu_buffer, event)) 2918 goto out; 2919 2920 /* 2921 * The commit is still visible by the reader, so we 2922 * must still update the timestamp. 2923 */ 2924 rb_update_write_stamp(cpu_buffer, event); 2925 out: 2926 rb_end_commit(cpu_buffer); 2927 2928 trace_recursive_unlock(); 2929 2930 preempt_enable_notrace(); 2931 2932 } 2933 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2934 2935 /** 2936 * ring_buffer_write - write data to the buffer without reserving 2937 * @buffer: The ring buffer to write to. 2938 * @length: The length of the data being written (excluding the event header) 2939 * @data: The data to write to the buffer. 2940 * 2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2942 * one function. If you already have the data to write to the buffer, it 2943 * may be easier to simply call this function. 2944 * 2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2946 * and not the length of the event which would hold the header. 2947 */ 2948 int ring_buffer_write(struct ring_buffer *buffer, 2949 unsigned long length, 2950 void *data) 2951 { 2952 struct ring_buffer_per_cpu *cpu_buffer; 2953 struct ring_buffer_event *event; 2954 void *body; 2955 int ret = -EBUSY; 2956 int cpu; 2957 2958 if (ring_buffer_flags != RB_BUFFERS_ON) 2959 return -EBUSY; 2960 2961 preempt_disable_notrace(); 2962 2963 if (atomic_read(&buffer->record_disabled)) 2964 goto out; 2965 2966 cpu = raw_smp_processor_id(); 2967 2968 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2969 goto out; 2970 2971 cpu_buffer = buffer->buffers[cpu]; 2972 2973 if (atomic_read(&cpu_buffer->record_disabled)) 2974 goto out; 2975 2976 if (length > BUF_MAX_DATA_SIZE) 2977 goto out; 2978 2979 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2980 if (!event) 2981 goto out; 2982 2983 body = rb_event_data(event); 2984 2985 memcpy(body, data, length); 2986 2987 rb_commit(cpu_buffer, event); 2988 2989 rb_wakeups(buffer, cpu_buffer); 2990 2991 ret = 0; 2992 out: 2993 preempt_enable_notrace(); 2994 2995 return ret; 2996 } 2997 EXPORT_SYMBOL_GPL(ring_buffer_write); 2998 2999 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3000 { 3001 struct buffer_page *reader = cpu_buffer->reader_page; 3002 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3003 struct buffer_page *commit = cpu_buffer->commit_page; 3004 3005 /* In case of error, head will be NULL */ 3006 if (unlikely(!head)) 3007 return 1; 3008 3009 return reader->read == rb_page_commit(reader) && 3010 (commit == reader || 3011 (commit == head && 3012 head->read == rb_page_commit(commit))); 3013 } 3014 3015 /** 3016 * ring_buffer_record_disable - stop all writes into the buffer 3017 * @buffer: The ring buffer to stop writes to. 3018 * 3019 * This prevents all writes to the buffer. Any attempt to write 3020 * to the buffer after this will fail and return NULL. 3021 * 3022 * The caller should call synchronize_sched() after this. 3023 */ 3024 void ring_buffer_record_disable(struct ring_buffer *buffer) 3025 { 3026 atomic_inc(&buffer->record_disabled); 3027 } 3028 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3029 3030 /** 3031 * ring_buffer_record_enable - enable writes to the buffer 3032 * @buffer: The ring buffer to enable writes 3033 * 3034 * Note, multiple disables will need the same number of enables 3035 * to truly enable the writing (much like preempt_disable). 3036 */ 3037 void ring_buffer_record_enable(struct ring_buffer *buffer) 3038 { 3039 atomic_dec(&buffer->record_disabled); 3040 } 3041 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3042 3043 /** 3044 * ring_buffer_record_off - stop all writes into the buffer 3045 * @buffer: The ring buffer to stop writes to. 3046 * 3047 * This prevents all writes to the buffer. Any attempt to write 3048 * to the buffer after this will fail and return NULL. 3049 * 3050 * This is different than ring_buffer_record_disable() as 3051 * it works like an on/off switch, where as the disable() version 3052 * must be paired with a enable(). 3053 */ 3054 void ring_buffer_record_off(struct ring_buffer *buffer) 3055 { 3056 unsigned int rd; 3057 unsigned int new_rd; 3058 3059 do { 3060 rd = atomic_read(&buffer->record_disabled); 3061 new_rd = rd | RB_BUFFER_OFF; 3062 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3063 } 3064 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3065 3066 /** 3067 * ring_buffer_record_on - restart writes into the buffer 3068 * @buffer: The ring buffer to start writes to. 3069 * 3070 * This enables all writes to the buffer that was disabled by 3071 * ring_buffer_record_off(). 3072 * 3073 * This is different than ring_buffer_record_enable() as 3074 * it works like an on/off switch, where as the enable() version 3075 * must be paired with a disable(). 3076 */ 3077 void ring_buffer_record_on(struct ring_buffer *buffer) 3078 { 3079 unsigned int rd; 3080 unsigned int new_rd; 3081 3082 do { 3083 rd = atomic_read(&buffer->record_disabled); 3084 new_rd = rd & ~RB_BUFFER_OFF; 3085 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3086 } 3087 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3088 3089 /** 3090 * ring_buffer_record_is_on - return true if the ring buffer can write 3091 * @buffer: The ring buffer to see if write is enabled 3092 * 3093 * Returns true if the ring buffer is in a state that it accepts writes. 3094 */ 3095 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3096 { 3097 return !atomic_read(&buffer->record_disabled); 3098 } 3099 3100 /** 3101 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3102 * @buffer: The ring buffer to stop writes to. 3103 * @cpu: The CPU buffer to stop 3104 * 3105 * This prevents all writes to the buffer. Any attempt to write 3106 * to the buffer after this will fail and return NULL. 3107 * 3108 * The caller should call synchronize_sched() after this. 3109 */ 3110 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3111 { 3112 struct ring_buffer_per_cpu *cpu_buffer; 3113 3114 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3115 return; 3116 3117 cpu_buffer = buffer->buffers[cpu]; 3118 atomic_inc(&cpu_buffer->record_disabled); 3119 } 3120 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3121 3122 /** 3123 * ring_buffer_record_enable_cpu - enable writes to the buffer 3124 * @buffer: The ring buffer to enable writes 3125 * @cpu: The CPU to enable. 3126 * 3127 * Note, multiple disables will need the same number of enables 3128 * to truly enable the writing (much like preempt_disable). 3129 */ 3130 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3131 { 3132 struct ring_buffer_per_cpu *cpu_buffer; 3133 3134 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3135 return; 3136 3137 cpu_buffer = buffer->buffers[cpu]; 3138 atomic_dec(&cpu_buffer->record_disabled); 3139 } 3140 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3141 3142 /* 3143 * The total entries in the ring buffer is the running counter 3144 * of entries entered into the ring buffer, minus the sum of 3145 * the entries read from the ring buffer and the number of 3146 * entries that were overwritten. 3147 */ 3148 static inline unsigned long 3149 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3150 { 3151 return local_read(&cpu_buffer->entries) - 3152 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3153 } 3154 3155 /** 3156 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3157 * @buffer: The ring buffer 3158 * @cpu: The per CPU buffer to read from. 3159 */ 3160 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3161 { 3162 unsigned long flags; 3163 struct ring_buffer_per_cpu *cpu_buffer; 3164 struct buffer_page *bpage; 3165 u64 ret = 0; 3166 3167 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3168 return 0; 3169 3170 cpu_buffer = buffer->buffers[cpu]; 3171 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3172 /* 3173 * if the tail is on reader_page, oldest time stamp is on the reader 3174 * page 3175 */ 3176 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3177 bpage = cpu_buffer->reader_page; 3178 else 3179 bpage = rb_set_head_page(cpu_buffer); 3180 if (bpage) 3181 ret = bpage->page->time_stamp; 3182 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3183 3184 return ret; 3185 } 3186 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3187 3188 /** 3189 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3190 * @buffer: The ring buffer 3191 * @cpu: The per CPU buffer to read from. 3192 */ 3193 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3194 { 3195 struct ring_buffer_per_cpu *cpu_buffer; 3196 unsigned long ret; 3197 3198 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3199 return 0; 3200 3201 cpu_buffer = buffer->buffers[cpu]; 3202 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3203 3204 return ret; 3205 } 3206 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3207 3208 /** 3209 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3210 * @buffer: The ring buffer 3211 * @cpu: The per CPU buffer to get the entries from. 3212 */ 3213 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3214 { 3215 struct ring_buffer_per_cpu *cpu_buffer; 3216 3217 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3218 return 0; 3219 3220 cpu_buffer = buffer->buffers[cpu]; 3221 3222 return rb_num_of_entries(cpu_buffer); 3223 } 3224 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3225 3226 /** 3227 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3228 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3229 * @buffer: The ring buffer 3230 * @cpu: The per CPU buffer to get the number of overruns from 3231 */ 3232 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3233 { 3234 struct ring_buffer_per_cpu *cpu_buffer; 3235 unsigned long ret; 3236 3237 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3238 return 0; 3239 3240 cpu_buffer = buffer->buffers[cpu]; 3241 ret = local_read(&cpu_buffer->overrun); 3242 3243 return ret; 3244 } 3245 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3246 3247 /** 3248 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3249 * commits failing due to the buffer wrapping around while there are uncommitted 3250 * events, such as during an interrupt storm. 3251 * @buffer: The ring buffer 3252 * @cpu: The per CPU buffer to get the number of overruns from 3253 */ 3254 unsigned long 3255 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3256 { 3257 struct ring_buffer_per_cpu *cpu_buffer; 3258 unsigned long ret; 3259 3260 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3261 return 0; 3262 3263 cpu_buffer = buffer->buffers[cpu]; 3264 ret = local_read(&cpu_buffer->commit_overrun); 3265 3266 return ret; 3267 } 3268 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3269 3270 /** 3271 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3272 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3273 * @buffer: The ring buffer 3274 * @cpu: The per CPU buffer to get the number of overruns from 3275 */ 3276 unsigned long 3277 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3278 { 3279 struct ring_buffer_per_cpu *cpu_buffer; 3280 unsigned long ret; 3281 3282 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3283 return 0; 3284 3285 cpu_buffer = buffer->buffers[cpu]; 3286 ret = local_read(&cpu_buffer->dropped_events); 3287 3288 return ret; 3289 } 3290 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3291 3292 /** 3293 * ring_buffer_read_events_cpu - get the number of events successfully read 3294 * @buffer: The ring buffer 3295 * @cpu: The per CPU buffer to get the number of events read 3296 */ 3297 unsigned long 3298 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3299 { 3300 struct ring_buffer_per_cpu *cpu_buffer; 3301 3302 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3303 return 0; 3304 3305 cpu_buffer = buffer->buffers[cpu]; 3306 return cpu_buffer->read; 3307 } 3308 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3309 3310 /** 3311 * ring_buffer_entries - get the number of entries in a buffer 3312 * @buffer: The ring buffer 3313 * 3314 * Returns the total number of entries in the ring buffer 3315 * (all CPU entries) 3316 */ 3317 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3318 { 3319 struct ring_buffer_per_cpu *cpu_buffer; 3320 unsigned long entries = 0; 3321 int cpu; 3322 3323 /* if you care about this being correct, lock the buffer */ 3324 for_each_buffer_cpu(buffer, cpu) { 3325 cpu_buffer = buffer->buffers[cpu]; 3326 entries += rb_num_of_entries(cpu_buffer); 3327 } 3328 3329 return entries; 3330 } 3331 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3332 3333 /** 3334 * ring_buffer_overruns - get the number of overruns in buffer 3335 * @buffer: The ring buffer 3336 * 3337 * Returns the total number of overruns in the ring buffer 3338 * (all CPU entries) 3339 */ 3340 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3341 { 3342 struct ring_buffer_per_cpu *cpu_buffer; 3343 unsigned long overruns = 0; 3344 int cpu; 3345 3346 /* if you care about this being correct, lock the buffer */ 3347 for_each_buffer_cpu(buffer, cpu) { 3348 cpu_buffer = buffer->buffers[cpu]; 3349 overruns += local_read(&cpu_buffer->overrun); 3350 } 3351 3352 return overruns; 3353 } 3354 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3355 3356 static void rb_iter_reset(struct ring_buffer_iter *iter) 3357 { 3358 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3359 3360 /* Iterator usage is expected to have record disabled */ 3361 if (list_empty(&cpu_buffer->reader_page->list)) { 3362 iter->head_page = rb_set_head_page(cpu_buffer); 3363 if (unlikely(!iter->head_page)) 3364 return; 3365 iter->head = iter->head_page->read; 3366 } else { 3367 iter->head_page = cpu_buffer->reader_page; 3368 iter->head = cpu_buffer->reader_page->read; 3369 } 3370 if (iter->head) 3371 iter->read_stamp = cpu_buffer->read_stamp; 3372 else 3373 iter->read_stamp = iter->head_page->page->time_stamp; 3374 iter->cache_reader_page = cpu_buffer->reader_page; 3375 iter->cache_read = cpu_buffer->read; 3376 } 3377 3378 /** 3379 * ring_buffer_iter_reset - reset an iterator 3380 * @iter: The iterator to reset 3381 * 3382 * Resets the iterator, so that it will start from the beginning 3383 * again. 3384 */ 3385 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3386 { 3387 struct ring_buffer_per_cpu *cpu_buffer; 3388 unsigned long flags; 3389 3390 if (!iter) 3391 return; 3392 3393 cpu_buffer = iter->cpu_buffer; 3394 3395 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3396 rb_iter_reset(iter); 3397 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3398 } 3399 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3400 3401 /** 3402 * ring_buffer_iter_empty - check if an iterator has no more to read 3403 * @iter: The iterator to check 3404 */ 3405 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3406 { 3407 struct ring_buffer_per_cpu *cpu_buffer; 3408 3409 cpu_buffer = iter->cpu_buffer; 3410 3411 return iter->head_page == cpu_buffer->commit_page && 3412 iter->head == rb_commit_index(cpu_buffer); 3413 } 3414 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3415 3416 static void 3417 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3418 struct ring_buffer_event *event) 3419 { 3420 u64 delta; 3421 3422 switch (event->type_len) { 3423 case RINGBUF_TYPE_PADDING: 3424 return; 3425 3426 case RINGBUF_TYPE_TIME_EXTEND: 3427 delta = event->array[0]; 3428 delta <<= TS_SHIFT; 3429 delta += event->time_delta; 3430 cpu_buffer->read_stamp += delta; 3431 return; 3432 3433 case RINGBUF_TYPE_TIME_STAMP: 3434 /* FIXME: not implemented */ 3435 return; 3436 3437 case RINGBUF_TYPE_DATA: 3438 cpu_buffer->read_stamp += event->time_delta; 3439 return; 3440 3441 default: 3442 BUG(); 3443 } 3444 return; 3445 } 3446 3447 static void 3448 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3449 struct ring_buffer_event *event) 3450 { 3451 u64 delta; 3452 3453 switch (event->type_len) { 3454 case RINGBUF_TYPE_PADDING: 3455 return; 3456 3457 case RINGBUF_TYPE_TIME_EXTEND: 3458 delta = event->array[0]; 3459 delta <<= TS_SHIFT; 3460 delta += event->time_delta; 3461 iter->read_stamp += delta; 3462 return; 3463 3464 case RINGBUF_TYPE_TIME_STAMP: 3465 /* FIXME: not implemented */ 3466 return; 3467 3468 case RINGBUF_TYPE_DATA: 3469 iter->read_stamp += event->time_delta; 3470 return; 3471 3472 default: 3473 BUG(); 3474 } 3475 return; 3476 } 3477 3478 static struct buffer_page * 3479 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3480 { 3481 struct buffer_page *reader = NULL; 3482 unsigned long overwrite; 3483 unsigned long flags; 3484 int nr_loops = 0; 3485 int ret; 3486 3487 local_irq_save(flags); 3488 arch_spin_lock(&cpu_buffer->lock); 3489 3490 again: 3491 /* 3492 * This should normally only loop twice. But because the 3493 * start of the reader inserts an empty page, it causes 3494 * a case where we will loop three times. There should be no 3495 * reason to loop four times (that I know of). 3496 */ 3497 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3498 reader = NULL; 3499 goto out; 3500 } 3501 3502 reader = cpu_buffer->reader_page; 3503 3504 /* If there's more to read, return this page */ 3505 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3506 goto out; 3507 3508 /* Never should we have an index greater than the size */ 3509 if (RB_WARN_ON(cpu_buffer, 3510 cpu_buffer->reader_page->read > rb_page_size(reader))) 3511 goto out; 3512 3513 /* check if we caught up to the tail */ 3514 reader = NULL; 3515 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3516 goto out; 3517 3518 /* Don't bother swapping if the ring buffer is empty */ 3519 if (rb_num_of_entries(cpu_buffer) == 0) 3520 goto out; 3521 3522 /* 3523 * Reset the reader page to size zero. 3524 */ 3525 local_set(&cpu_buffer->reader_page->write, 0); 3526 local_set(&cpu_buffer->reader_page->entries, 0); 3527 local_set(&cpu_buffer->reader_page->page->commit, 0); 3528 cpu_buffer->reader_page->real_end = 0; 3529 3530 spin: 3531 /* 3532 * Splice the empty reader page into the list around the head. 3533 */ 3534 reader = rb_set_head_page(cpu_buffer); 3535 if (!reader) 3536 goto out; 3537 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3538 cpu_buffer->reader_page->list.prev = reader->list.prev; 3539 3540 /* 3541 * cpu_buffer->pages just needs to point to the buffer, it 3542 * has no specific buffer page to point to. Lets move it out 3543 * of our way so we don't accidentally swap it. 3544 */ 3545 cpu_buffer->pages = reader->list.prev; 3546 3547 /* The reader page will be pointing to the new head */ 3548 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3549 3550 /* 3551 * We want to make sure we read the overruns after we set up our 3552 * pointers to the next object. The writer side does a 3553 * cmpxchg to cross pages which acts as the mb on the writer 3554 * side. Note, the reader will constantly fail the swap 3555 * while the writer is updating the pointers, so this 3556 * guarantees that the overwrite recorded here is the one we 3557 * want to compare with the last_overrun. 3558 */ 3559 smp_mb(); 3560 overwrite = local_read(&(cpu_buffer->overrun)); 3561 3562 /* 3563 * Here's the tricky part. 3564 * 3565 * We need to move the pointer past the header page. 3566 * But we can only do that if a writer is not currently 3567 * moving it. The page before the header page has the 3568 * flag bit '1' set if it is pointing to the page we want. 3569 * but if the writer is in the process of moving it 3570 * than it will be '2' or already moved '0'. 3571 */ 3572 3573 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3574 3575 /* 3576 * If we did not convert it, then we must try again. 3577 */ 3578 if (!ret) 3579 goto spin; 3580 3581 /* 3582 * Yeah! We succeeded in replacing the page. 3583 * 3584 * Now make the new head point back to the reader page. 3585 */ 3586 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3587 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3588 3589 /* Finally update the reader page to the new head */ 3590 cpu_buffer->reader_page = reader; 3591 rb_reset_reader_page(cpu_buffer); 3592 3593 if (overwrite != cpu_buffer->last_overrun) { 3594 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3595 cpu_buffer->last_overrun = overwrite; 3596 } 3597 3598 goto again; 3599 3600 out: 3601 arch_spin_unlock(&cpu_buffer->lock); 3602 local_irq_restore(flags); 3603 3604 return reader; 3605 } 3606 3607 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3608 { 3609 struct ring_buffer_event *event; 3610 struct buffer_page *reader; 3611 unsigned length; 3612 3613 reader = rb_get_reader_page(cpu_buffer); 3614 3615 /* This function should not be called when buffer is empty */ 3616 if (RB_WARN_ON(cpu_buffer, !reader)) 3617 return; 3618 3619 event = rb_reader_event(cpu_buffer); 3620 3621 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3622 cpu_buffer->read++; 3623 3624 rb_update_read_stamp(cpu_buffer, event); 3625 3626 length = rb_event_length(event); 3627 cpu_buffer->reader_page->read += length; 3628 } 3629 3630 static void rb_advance_iter(struct ring_buffer_iter *iter) 3631 { 3632 struct ring_buffer_per_cpu *cpu_buffer; 3633 struct ring_buffer_event *event; 3634 unsigned length; 3635 3636 cpu_buffer = iter->cpu_buffer; 3637 3638 /* 3639 * Check if we are at the end of the buffer. 3640 */ 3641 if (iter->head >= rb_page_size(iter->head_page)) { 3642 /* discarded commits can make the page empty */ 3643 if (iter->head_page == cpu_buffer->commit_page) 3644 return; 3645 rb_inc_iter(iter); 3646 return; 3647 } 3648 3649 event = rb_iter_head_event(iter); 3650 3651 length = rb_event_length(event); 3652 3653 /* 3654 * This should not be called to advance the header if we are 3655 * at the tail of the buffer. 3656 */ 3657 if (RB_WARN_ON(cpu_buffer, 3658 (iter->head_page == cpu_buffer->commit_page) && 3659 (iter->head + length > rb_commit_index(cpu_buffer)))) 3660 return; 3661 3662 rb_update_iter_read_stamp(iter, event); 3663 3664 iter->head += length; 3665 3666 /* check for end of page padding */ 3667 if ((iter->head >= rb_page_size(iter->head_page)) && 3668 (iter->head_page != cpu_buffer->commit_page)) 3669 rb_inc_iter(iter); 3670 } 3671 3672 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3673 { 3674 return cpu_buffer->lost_events; 3675 } 3676 3677 static struct ring_buffer_event * 3678 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3679 unsigned long *lost_events) 3680 { 3681 struct ring_buffer_event *event; 3682 struct buffer_page *reader; 3683 int nr_loops = 0; 3684 3685 again: 3686 /* 3687 * We repeat when a time extend is encountered. 3688 * Since the time extend is always attached to a data event, 3689 * we should never loop more than once. 3690 * (We never hit the following condition more than twice). 3691 */ 3692 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3693 return NULL; 3694 3695 reader = rb_get_reader_page(cpu_buffer); 3696 if (!reader) 3697 return NULL; 3698 3699 event = rb_reader_event(cpu_buffer); 3700 3701 switch (event->type_len) { 3702 case RINGBUF_TYPE_PADDING: 3703 if (rb_null_event(event)) 3704 RB_WARN_ON(cpu_buffer, 1); 3705 /* 3706 * Because the writer could be discarding every 3707 * event it creates (which would probably be bad) 3708 * if we were to go back to "again" then we may never 3709 * catch up, and will trigger the warn on, or lock 3710 * the box. Return the padding, and we will release 3711 * the current locks, and try again. 3712 */ 3713 return event; 3714 3715 case RINGBUF_TYPE_TIME_EXTEND: 3716 /* Internal data, OK to advance */ 3717 rb_advance_reader(cpu_buffer); 3718 goto again; 3719 3720 case RINGBUF_TYPE_TIME_STAMP: 3721 /* FIXME: not implemented */ 3722 rb_advance_reader(cpu_buffer); 3723 goto again; 3724 3725 case RINGBUF_TYPE_DATA: 3726 if (ts) { 3727 *ts = cpu_buffer->read_stamp + event->time_delta; 3728 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3729 cpu_buffer->cpu, ts); 3730 } 3731 if (lost_events) 3732 *lost_events = rb_lost_events(cpu_buffer); 3733 return event; 3734 3735 default: 3736 BUG(); 3737 } 3738 3739 return NULL; 3740 } 3741 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3742 3743 static struct ring_buffer_event * 3744 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3745 { 3746 struct ring_buffer *buffer; 3747 struct ring_buffer_per_cpu *cpu_buffer; 3748 struct ring_buffer_event *event; 3749 int nr_loops = 0; 3750 3751 cpu_buffer = iter->cpu_buffer; 3752 buffer = cpu_buffer->buffer; 3753 3754 /* 3755 * Check if someone performed a consuming read to 3756 * the buffer. A consuming read invalidates the iterator 3757 * and we need to reset the iterator in this case. 3758 */ 3759 if (unlikely(iter->cache_read != cpu_buffer->read || 3760 iter->cache_reader_page != cpu_buffer->reader_page)) 3761 rb_iter_reset(iter); 3762 3763 again: 3764 if (ring_buffer_iter_empty(iter)) 3765 return NULL; 3766 3767 /* 3768 * We repeat when a time extend is encountered. 3769 * Since the time extend is always attached to a data event, 3770 * we should never loop more than once. 3771 * (We never hit the following condition more than twice). 3772 */ 3773 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3774 return NULL; 3775 3776 if (rb_per_cpu_empty(cpu_buffer)) 3777 return NULL; 3778 3779 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3780 rb_inc_iter(iter); 3781 goto again; 3782 } 3783 3784 event = rb_iter_head_event(iter); 3785 3786 switch (event->type_len) { 3787 case RINGBUF_TYPE_PADDING: 3788 if (rb_null_event(event)) { 3789 rb_inc_iter(iter); 3790 goto again; 3791 } 3792 rb_advance_iter(iter); 3793 return event; 3794 3795 case RINGBUF_TYPE_TIME_EXTEND: 3796 /* Internal data, OK to advance */ 3797 rb_advance_iter(iter); 3798 goto again; 3799 3800 case RINGBUF_TYPE_TIME_STAMP: 3801 /* FIXME: not implemented */ 3802 rb_advance_iter(iter); 3803 goto again; 3804 3805 case RINGBUF_TYPE_DATA: 3806 if (ts) { 3807 *ts = iter->read_stamp + event->time_delta; 3808 ring_buffer_normalize_time_stamp(buffer, 3809 cpu_buffer->cpu, ts); 3810 } 3811 return event; 3812 3813 default: 3814 BUG(); 3815 } 3816 3817 return NULL; 3818 } 3819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3820 3821 static inline int rb_ok_to_lock(void) 3822 { 3823 /* 3824 * If an NMI die dumps out the content of the ring buffer 3825 * do not grab locks. We also permanently disable the ring 3826 * buffer too. A one time deal is all you get from reading 3827 * the ring buffer from an NMI. 3828 */ 3829 if (likely(!in_nmi())) 3830 return 1; 3831 3832 tracing_off_permanent(); 3833 return 0; 3834 } 3835 3836 /** 3837 * ring_buffer_peek - peek at the next event to be read 3838 * @buffer: The ring buffer to read 3839 * @cpu: The cpu to peak at 3840 * @ts: The timestamp counter of this event. 3841 * @lost_events: a variable to store if events were lost (may be NULL) 3842 * 3843 * This will return the event that will be read next, but does 3844 * not consume the data. 3845 */ 3846 struct ring_buffer_event * 3847 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3848 unsigned long *lost_events) 3849 { 3850 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3851 struct ring_buffer_event *event; 3852 unsigned long flags; 3853 int dolock; 3854 3855 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3856 return NULL; 3857 3858 dolock = rb_ok_to_lock(); 3859 again: 3860 local_irq_save(flags); 3861 if (dolock) 3862 raw_spin_lock(&cpu_buffer->reader_lock); 3863 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3864 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3865 rb_advance_reader(cpu_buffer); 3866 if (dolock) 3867 raw_spin_unlock(&cpu_buffer->reader_lock); 3868 local_irq_restore(flags); 3869 3870 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3871 goto again; 3872 3873 return event; 3874 } 3875 3876 /** 3877 * ring_buffer_iter_peek - peek at the next event to be read 3878 * @iter: The ring buffer iterator 3879 * @ts: The timestamp counter of this event. 3880 * 3881 * This will return the event that will be read next, but does 3882 * not increment the iterator. 3883 */ 3884 struct ring_buffer_event * 3885 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3886 { 3887 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3888 struct ring_buffer_event *event; 3889 unsigned long flags; 3890 3891 again: 3892 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3893 event = rb_iter_peek(iter, ts); 3894 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3895 3896 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3897 goto again; 3898 3899 return event; 3900 } 3901 3902 /** 3903 * ring_buffer_consume - return an event and consume it 3904 * @buffer: The ring buffer to get the next event from 3905 * @cpu: the cpu to read the buffer from 3906 * @ts: a variable to store the timestamp (may be NULL) 3907 * @lost_events: a variable to store if events were lost (may be NULL) 3908 * 3909 * Returns the next event in the ring buffer, and that event is consumed. 3910 * Meaning, that sequential reads will keep returning a different event, 3911 * and eventually empty the ring buffer if the producer is slower. 3912 */ 3913 struct ring_buffer_event * 3914 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3915 unsigned long *lost_events) 3916 { 3917 struct ring_buffer_per_cpu *cpu_buffer; 3918 struct ring_buffer_event *event = NULL; 3919 unsigned long flags; 3920 int dolock; 3921 3922 dolock = rb_ok_to_lock(); 3923 3924 again: 3925 /* might be called in atomic */ 3926 preempt_disable(); 3927 3928 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3929 goto out; 3930 3931 cpu_buffer = buffer->buffers[cpu]; 3932 local_irq_save(flags); 3933 if (dolock) 3934 raw_spin_lock(&cpu_buffer->reader_lock); 3935 3936 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3937 if (event) { 3938 cpu_buffer->lost_events = 0; 3939 rb_advance_reader(cpu_buffer); 3940 } 3941 3942 if (dolock) 3943 raw_spin_unlock(&cpu_buffer->reader_lock); 3944 local_irq_restore(flags); 3945 3946 out: 3947 preempt_enable(); 3948 3949 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3950 goto again; 3951 3952 return event; 3953 } 3954 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3955 3956 /** 3957 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3958 * @buffer: The ring buffer to read from 3959 * @cpu: The cpu buffer to iterate over 3960 * 3961 * This performs the initial preparations necessary to iterate 3962 * through the buffer. Memory is allocated, buffer recording 3963 * is disabled, and the iterator pointer is returned to the caller. 3964 * 3965 * Disabling buffer recordng prevents the reading from being 3966 * corrupted. This is not a consuming read, so a producer is not 3967 * expected. 3968 * 3969 * After a sequence of ring_buffer_read_prepare calls, the user is 3970 * expected to make at least one call to ring_buffer_read_prepare_sync. 3971 * Afterwards, ring_buffer_read_start is invoked to get things going 3972 * for real. 3973 * 3974 * This overall must be paired with ring_buffer_read_finish. 3975 */ 3976 struct ring_buffer_iter * 3977 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3978 { 3979 struct ring_buffer_per_cpu *cpu_buffer; 3980 struct ring_buffer_iter *iter; 3981 3982 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3983 return NULL; 3984 3985 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3986 if (!iter) 3987 return NULL; 3988 3989 cpu_buffer = buffer->buffers[cpu]; 3990 3991 iter->cpu_buffer = cpu_buffer; 3992 3993 atomic_inc(&buffer->resize_disabled); 3994 atomic_inc(&cpu_buffer->record_disabled); 3995 3996 return iter; 3997 } 3998 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3999 4000 /** 4001 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4002 * 4003 * All previously invoked ring_buffer_read_prepare calls to prepare 4004 * iterators will be synchronized. Afterwards, read_buffer_read_start 4005 * calls on those iterators are allowed. 4006 */ 4007 void 4008 ring_buffer_read_prepare_sync(void) 4009 { 4010 synchronize_sched(); 4011 } 4012 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4013 4014 /** 4015 * ring_buffer_read_start - start a non consuming read of the buffer 4016 * @iter: The iterator returned by ring_buffer_read_prepare 4017 * 4018 * This finalizes the startup of an iteration through the buffer. 4019 * The iterator comes from a call to ring_buffer_read_prepare and 4020 * an intervening ring_buffer_read_prepare_sync must have been 4021 * performed. 4022 * 4023 * Must be paired with ring_buffer_read_finish. 4024 */ 4025 void 4026 ring_buffer_read_start(struct ring_buffer_iter *iter) 4027 { 4028 struct ring_buffer_per_cpu *cpu_buffer; 4029 unsigned long flags; 4030 4031 if (!iter) 4032 return; 4033 4034 cpu_buffer = iter->cpu_buffer; 4035 4036 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4037 arch_spin_lock(&cpu_buffer->lock); 4038 rb_iter_reset(iter); 4039 arch_spin_unlock(&cpu_buffer->lock); 4040 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4041 } 4042 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4043 4044 /** 4045 * ring_buffer_read_finish - finish reading the iterator of the buffer 4046 * @iter: The iterator retrieved by ring_buffer_start 4047 * 4048 * This re-enables the recording to the buffer, and frees the 4049 * iterator. 4050 */ 4051 void 4052 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4053 { 4054 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4055 unsigned long flags; 4056 4057 /* 4058 * Ring buffer is disabled from recording, here's a good place 4059 * to check the integrity of the ring buffer. 4060 * Must prevent readers from trying to read, as the check 4061 * clears the HEAD page and readers require it. 4062 */ 4063 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4064 rb_check_pages(cpu_buffer); 4065 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4066 4067 atomic_dec(&cpu_buffer->record_disabled); 4068 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4069 kfree(iter); 4070 } 4071 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4072 4073 /** 4074 * ring_buffer_read - read the next item in the ring buffer by the iterator 4075 * @iter: The ring buffer iterator 4076 * @ts: The time stamp of the event read. 4077 * 4078 * This reads the next event in the ring buffer and increments the iterator. 4079 */ 4080 struct ring_buffer_event * 4081 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4082 { 4083 struct ring_buffer_event *event; 4084 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4085 unsigned long flags; 4086 4087 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4088 again: 4089 event = rb_iter_peek(iter, ts); 4090 if (!event) 4091 goto out; 4092 4093 if (event->type_len == RINGBUF_TYPE_PADDING) 4094 goto again; 4095 4096 rb_advance_iter(iter); 4097 out: 4098 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4099 4100 return event; 4101 } 4102 EXPORT_SYMBOL_GPL(ring_buffer_read); 4103 4104 /** 4105 * ring_buffer_size - return the size of the ring buffer (in bytes) 4106 * @buffer: The ring buffer. 4107 */ 4108 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4109 { 4110 /* 4111 * Earlier, this method returned 4112 * BUF_PAGE_SIZE * buffer->nr_pages 4113 * Since the nr_pages field is now removed, we have converted this to 4114 * return the per cpu buffer value. 4115 */ 4116 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4117 return 0; 4118 4119 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4120 } 4121 EXPORT_SYMBOL_GPL(ring_buffer_size); 4122 4123 static void 4124 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4125 { 4126 rb_head_page_deactivate(cpu_buffer); 4127 4128 cpu_buffer->head_page 4129 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4130 local_set(&cpu_buffer->head_page->write, 0); 4131 local_set(&cpu_buffer->head_page->entries, 0); 4132 local_set(&cpu_buffer->head_page->page->commit, 0); 4133 4134 cpu_buffer->head_page->read = 0; 4135 4136 cpu_buffer->tail_page = cpu_buffer->head_page; 4137 cpu_buffer->commit_page = cpu_buffer->head_page; 4138 4139 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4140 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4141 local_set(&cpu_buffer->reader_page->write, 0); 4142 local_set(&cpu_buffer->reader_page->entries, 0); 4143 local_set(&cpu_buffer->reader_page->page->commit, 0); 4144 cpu_buffer->reader_page->read = 0; 4145 4146 local_set(&cpu_buffer->entries_bytes, 0); 4147 local_set(&cpu_buffer->overrun, 0); 4148 local_set(&cpu_buffer->commit_overrun, 0); 4149 local_set(&cpu_buffer->dropped_events, 0); 4150 local_set(&cpu_buffer->entries, 0); 4151 local_set(&cpu_buffer->committing, 0); 4152 local_set(&cpu_buffer->commits, 0); 4153 cpu_buffer->read = 0; 4154 cpu_buffer->read_bytes = 0; 4155 4156 cpu_buffer->write_stamp = 0; 4157 cpu_buffer->read_stamp = 0; 4158 4159 cpu_buffer->lost_events = 0; 4160 cpu_buffer->last_overrun = 0; 4161 4162 rb_head_page_activate(cpu_buffer); 4163 } 4164 4165 /** 4166 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4167 * @buffer: The ring buffer to reset a per cpu buffer of 4168 * @cpu: The CPU buffer to be reset 4169 */ 4170 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4171 { 4172 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4173 unsigned long flags; 4174 4175 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4176 return; 4177 4178 atomic_inc(&buffer->resize_disabled); 4179 atomic_inc(&cpu_buffer->record_disabled); 4180 4181 /* Make sure all commits have finished */ 4182 synchronize_sched(); 4183 4184 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4185 4186 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4187 goto out; 4188 4189 arch_spin_lock(&cpu_buffer->lock); 4190 4191 rb_reset_cpu(cpu_buffer); 4192 4193 arch_spin_unlock(&cpu_buffer->lock); 4194 4195 out: 4196 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4197 4198 atomic_dec(&cpu_buffer->record_disabled); 4199 atomic_dec(&buffer->resize_disabled); 4200 } 4201 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4202 4203 /** 4204 * ring_buffer_reset - reset a ring buffer 4205 * @buffer: The ring buffer to reset all cpu buffers 4206 */ 4207 void ring_buffer_reset(struct ring_buffer *buffer) 4208 { 4209 int cpu; 4210 4211 for_each_buffer_cpu(buffer, cpu) 4212 ring_buffer_reset_cpu(buffer, cpu); 4213 } 4214 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4215 4216 /** 4217 * rind_buffer_empty - is the ring buffer empty? 4218 * @buffer: The ring buffer to test 4219 */ 4220 int ring_buffer_empty(struct ring_buffer *buffer) 4221 { 4222 struct ring_buffer_per_cpu *cpu_buffer; 4223 unsigned long flags; 4224 int dolock; 4225 int cpu; 4226 int ret; 4227 4228 dolock = rb_ok_to_lock(); 4229 4230 /* yes this is racy, but if you don't like the race, lock the buffer */ 4231 for_each_buffer_cpu(buffer, cpu) { 4232 cpu_buffer = buffer->buffers[cpu]; 4233 local_irq_save(flags); 4234 if (dolock) 4235 raw_spin_lock(&cpu_buffer->reader_lock); 4236 ret = rb_per_cpu_empty(cpu_buffer); 4237 if (dolock) 4238 raw_spin_unlock(&cpu_buffer->reader_lock); 4239 local_irq_restore(flags); 4240 4241 if (!ret) 4242 return 0; 4243 } 4244 4245 return 1; 4246 } 4247 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4248 4249 /** 4250 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4251 * @buffer: The ring buffer 4252 * @cpu: The CPU buffer to test 4253 */ 4254 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4255 { 4256 struct ring_buffer_per_cpu *cpu_buffer; 4257 unsigned long flags; 4258 int dolock; 4259 int ret; 4260 4261 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4262 return 1; 4263 4264 dolock = rb_ok_to_lock(); 4265 4266 cpu_buffer = buffer->buffers[cpu]; 4267 local_irq_save(flags); 4268 if (dolock) 4269 raw_spin_lock(&cpu_buffer->reader_lock); 4270 ret = rb_per_cpu_empty(cpu_buffer); 4271 if (dolock) 4272 raw_spin_unlock(&cpu_buffer->reader_lock); 4273 local_irq_restore(flags); 4274 4275 return ret; 4276 } 4277 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4278 4279 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4280 /** 4281 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4282 * @buffer_a: One buffer to swap with 4283 * @buffer_b: The other buffer to swap with 4284 * 4285 * This function is useful for tracers that want to take a "snapshot" 4286 * of a CPU buffer and has another back up buffer lying around. 4287 * it is expected that the tracer handles the cpu buffer not being 4288 * used at the moment. 4289 */ 4290 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4291 struct ring_buffer *buffer_b, int cpu) 4292 { 4293 struct ring_buffer_per_cpu *cpu_buffer_a; 4294 struct ring_buffer_per_cpu *cpu_buffer_b; 4295 int ret = -EINVAL; 4296 4297 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4298 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4299 goto out; 4300 4301 cpu_buffer_a = buffer_a->buffers[cpu]; 4302 cpu_buffer_b = buffer_b->buffers[cpu]; 4303 4304 /* At least make sure the two buffers are somewhat the same */ 4305 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4306 goto out; 4307 4308 ret = -EAGAIN; 4309 4310 if (ring_buffer_flags != RB_BUFFERS_ON) 4311 goto out; 4312 4313 if (atomic_read(&buffer_a->record_disabled)) 4314 goto out; 4315 4316 if (atomic_read(&buffer_b->record_disabled)) 4317 goto out; 4318 4319 if (atomic_read(&cpu_buffer_a->record_disabled)) 4320 goto out; 4321 4322 if (atomic_read(&cpu_buffer_b->record_disabled)) 4323 goto out; 4324 4325 /* 4326 * We can't do a synchronize_sched here because this 4327 * function can be called in atomic context. 4328 * Normally this will be called from the same CPU as cpu. 4329 * If not it's up to the caller to protect this. 4330 */ 4331 atomic_inc(&cpu_buffer_a->record_disabled); 4332 atomic_inc(&cpu_buffer_b->record_disabled); 4333 4334 ret = -EBUSY; 4335 if (local_read(&cpu_buffer_a->committing)) 4336 goto out_dec; 4337 if (local_read(&cpu_buffer_b->committing)) 4338 goto out_dec; 4339 4340 buffer_a->buffers[cpu] = cpu_buffer_b; 4341 buffer_b->buffers[cpu] = cpu_buffer_a; 4342 4343 cpu_buffer_b->buffer = buffer_a; 4344 cpu_buffer_a->buffer = buffer_b; 4345 4346 ret = 0; 4347 4348 out_dec: 4349 atomic_dec(&cpu_buffer_a->record_disabled); 4350 atomic_dec(&cpu_buffer_b->record_disabled); 4351 out: 4352 return ret; 4353 } 4354 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4355 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4356 4357 /** 4358 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4359 * @buffer: the buffer to allocate for. 4360 * @cpu: the cpu buffer to allocate. 4361 * 4362 * This function is used in conjunction with ring_buffer_read_page. 4363 * When reading a full page from the ring buffer, these functions 4364 * can be used to speed up the process. The calling function should 4365 * allocate a few pages first with this function. Then when it 4366 * needs to get pages from the ring buffer, it passes the result 4367 * of this function into ring_buffer_read_page, which will swap 4368 * the page that was allocated, with the read page of the buffer. 4369 * 4370 * Returns: 4371 * The page allocated, or NULL on error. 4372 */ 4373 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4374 { 4375 struct buffer_data_page *bpage; 4376 struct page *page; 4377 4378 page = alloc_pages_node(cpu_to_node(cpu), 4379 GFP_KERNEL | __GFP_NORETRY, 0); 4380 if (!page) 4381 return NULL; 4382 4383 bpage = page_address(page); 4384 4385 rb_init_page(bpage); 4386 4387 return bpage; 4388 } 4389 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4390 4391 /** 4392 * ring_buffer_free_read_page - free an allocated read page 4393 * @buffer: the buffer the page was allocate for 4394 * @data: the page to free 4395 * 4396 * Free a page allocated from ring_buffer_alloc_read_page. 4397 */ 4398 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4399 { 4400 free_page((unsigned long)data); 4401 } 4402 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4403 4404 /** 4405 * ring_buffer_read_page - extract a page from the ring buffer 4406 * @buffer: buffer to extract from 4407 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4408 * @len: amount to extract 4409 * @cpu: the cpu of the buffer to extract 4410 * @full: should the extraction only happen when the page is full. 4411 * 4412 * This function will pull out a page from the ring buffer and consume it. 4413 * @data_page must be the address of the variable that was returned 4414 * from ring_buffer_alloc_read_page. This is because the page might be used 4415 * to swap with a page in the ring buffer. 4416 * 4417 * for example: 4418 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4419 * if (!rpage) 4420 * return error; 4421 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4422 * if (ret >= 0) 4423 * process_page(rpage, ret); 4424 * 4425 * When @full is set, the function will not return true unless 4426 * the writer is off the reader page. 4427 * 4428 * Note: it is up to the calling functions to handle sleeps and wakeups. 4429 * The ring buffer can be used anywhere in the kernel and can not 4430 * blindly call wake_up. The layer that uses the ring buffer must be 4431 * responsible for that. 4432 * 4433 * Returns: 4434 * >=0 if data has been transferred, returns the offset of consumed data. 4435 * <0 if no data has been transferred. 4436 */ 4437 int ring_buffer_read_page(struct ring_buffer *buffer, 4438 void **data_page, size_t len, int cpu, int full) 4439 { 4440 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4441 struct ring_buffer_event *event; 4442 struct buffer_data_page *bpage; 4443 struct buffer_page *reader; 4444 unsigned long missed_events; 4445 unsigned long flags; 4446 unsigned int commit; 4447 unsigned int read; 4448 u64 save_timestamp; 4449 int ret = -1; 4450 4451 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4452 goto out; 4453 4454 /* 4455 * If len is not big enough to hold the page header, then 4456 * we can not copy anything. 4457 */ 4458 if (len <= BUF_PAGE_HDR_SIZE) 4459 goto out; 4460 4461 len -= BUF_PAGE_HDR_SIZE; 4462 4463 if (!data_page) 4464 goto out; 4465 4466 bpage = *data_page; 4467 if (!bpage) 4468 goto out; 4469 4470 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4471 4472 reader = rb_get_reader_page(cpu_buffer); 4473 if (!reader) 4474 goto out_unlock; 4475 4476 event = rb_reader_event(cpu_buffer); 4477 4478 read = reader->read; 4479 commit = rb_page_commit(reader); 4480 4481 /* Check if any events were dropped */ 4482 missed_events = cpu_buffer->lost_events; 4483 4484 /* 4485 * If this page has been partially read or 4486 * if len is not big enough to read the rest of the page or 4487 * a writer is still on the page, then 4488 * we must copy the data from the page to the buffer. 4489 * Otherwise, we can simply swap the page with the one passed in. 4490 */ 4491 if (read || (len < (commit - read)) || 4492 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4493 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4494 unsigned int rpos = read; 4495 unsigned int pos = 0; 4496 unsigned int size; 4497 4498 if (full) 4499 goto out_unlock; 4500 4501 if (len > (commit - read)) 4502 len = (commit - read); 4503 4504 /* Always keep the time extend and data together */ 4505 size = rb_event_ts_length(event); 4506 4507 if (len < size) 4508 goto out_unlock; 4509 4510 /* save the current timestamp, since the user will need it */ 4511 save_timestamp = cpu_buffer->read_stamp; 4512 4513 /* Need to copy one event at a time */ 4514 do { 4515 /* We need the size of one event, because 4516 * rb_advance_reader only advances by one event, 4517 * whereas rb_event_ts_length may include the size of 4518 * one or two events. 4519 * We have already ensured there's enough space if this 4520 * is a time extend. */ 4521 size = rb_event_length(event); 4522 memcpy(bpage->data + pos, rpage->data + rpos, size); 4523 4524 len -= size; 4525 4526 rb_advance_reader(cpu_buffer); 4527 rpos = reader->read; 4528 pos += size; 4529 4530 if (rpos >= commit) 4531 break; 4532 4533 event = rb_reader_event(cpu_buffer); 4534 /* Always keep the time extend and data together */ 4535 size = rb_event_ts_length(event); 4536 } while (len >= size); 4537 4538 /* update bpage */ 4539 local_set(&bpage->commit, pos); 4540 bpage->time_stamp = save_timestamp; 4541 4542 /* we copied everything to the beginning */ 4543 read = 0; 4544 } else { 4545 /* update the entry counter */ 4546 cpu_buffer->read += rb_page_entries(reader); 4547 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4548 4549 /* swap the pages */ 4550 rb_init_page(bpage); 4551 bpage = reader->page; 4552 reader->page = *data_page; 4553 local_set(&reader->write, 0); 4554 local_set(&reader->entries, 0); 4555 reader->read = 0; 4556 *data_page = bpage; 4557 4558 /* 4559 * Use the real_end for the data size, 4560 * This gives us a chance to store the lost events 4561 * on the page. 4562 */ 4563 if (reader->real_end) 4564 local_set(&bpage->commit, reader->real_end); 4565 } 4566 ret = read; 4567 4568 cpu_buffer->lost_events = 0; 4569 4570 commit = local_read(&bpage->commit); 4571 /* 4572 * Set a flag in the commit field if we lost events 4573 */ 4574 if (missed_events) { 4575 /* If there is room at the end of the page to save the 4576 * missed events, then record it there. 4577 */ 4578 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4579 memcpy(&bpage->data[commit], &missed_events, 4580 sizeof(missed_events)); 4581 local_add(RB_MISSED_STORED, &bpage->commit); 4582 commit += sizeof(missed_events); 4583 } 4584 local_add(RB_MISSED_EVENTS, &bpage->commit); 4585 } 4586 4587 /* 4588 * This page may be off to user land. Zero it out here. 4589 */ 4590 if (commit < BUF_PAGE_SIZE) 4591 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4592 4593 out_unlock: 4594 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4595 4596 out: 4597 return ret; 4598 } 4599 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4600 4601 #ifdef CONFIG_HOTPLUG_CPU 4602 static int rb_cpu_notify(struct notifier_block *self, 4603 unsigned long action, void *hcpu) 4604 { 4605 struct ring_buffer *buffer = 4606 container_of(self, struct ring_buffer, cpu_notify); 4607 long cpu = (long)hcpu; 4608 int cpu_i, nr_pages_same; 4609 unsigned int nr_pages; 4610 4611 switch (action) { 4612 case CPU_UP_PREPARE: 4613 case CPU_UP_PREPARE_FROZEN: 4614 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4615 return NOTIFY_OK; 4616 4617 nr_pages = 0; 4618 nr_pages_same = 1; 4619 /* check if all cpu sizes are same */ 4620 for_each_buffer_cpu(buffer, cpu_i) { 4621 /* fill in the size from first enabled cpu */ 4622 if (nr_pages == 0) 4623 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4624 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4625 nr_pages_same = 0; 4626 break; 4627 } 4628 } 4629 /* allocate minimum pages, user can later expand it */ 4630 if (!nr_pages_same) 4631 nr_pages = 2; 4632 buffer->buffers[cpu] = 4633 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4634 if (!buffer->buffers[cpu]) { 4635 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4636 cpu); 4637 return NOTIFY_OK; 4638 } 4639 smp_wmb(); 4640 cpumask_set_cpu(cpu, buffer->cpumask); 4641 break; 4642 case CPU_DOWN_PREPARE: 4643 case CPU_DOWN_PREPARE_FROZEN: 4644 /* 4645 * Do nothing. 4646 * If we were to free the buffer, then the user would 4647 * lose any trace that was in the buffer. 4648 */ 4649 break; 4650 default: 4651 break; 4652 } 4653 return NOTIFY_OK; 4654 } 4655 #endif 4656 4657 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4658 /* 4659 * This is a basic integrity check of the ring buffer. 4660 * Late in the boot cycle this test will run when configured in. 4661 * It will kick off a thread per CPU that will go into a loop 4662 * writing to the per cpu ring buffer various sizes of data. 4663 * Some of the data will be large items, some small. 4664 * 4665 * Another thread is created that goes into a spin, sending out 4666 * IPIs to the other CPUs to also write into the ring buffer. 4667 * this is to test the nesting ability of the buffer. 4668 * 4669 * Basic stats are recorded and reported. If something in the 4670 * ring buffer should happen that's not expected, a big warning 4671 * is displayed and all ring buffers are disabled. 4672 */ 4673 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4674 4675 struct rb_test_data { 4676 struct ring_buffer *buffer; 4677 unsigned long events; 4678 unsigned long bytes_written; 4679 unsigned long bytes_alloc; 4680 unsigned long bytes_dropped; 4681 unsigned long events_nested; 4682 unsigned long bytes_written_nested; 4683 unsigned long bytes_alloc_nested; 4684 unsigned long bytes_dropped_nested; 4685 int min_size_nested; 4686 int max_size_nested; 4687 int max_size; 4688 int min_size; 4689 int cpu; 4690 int cnt; 4691 }; 4692 4693 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4694 4695 /* 1 meg per cpu */ 4696 #define RB_TEST_BUFFER_SIZE 1048576 4697 4698 static char rb_string[] __initdata = 4699 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4700 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4701 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4702 4703 static bool rb_test_started __initdata; 4704 4705 struct rb_item { 4706 int size; 4707 char str[]; 4708 }; 4709 4710 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4711 { 4712 struct ring_buffer_event *event; 4713 struct rb_item *item; 4714 bool started; 4715 int event_len; 4716 int size; 4717 int len; 4718 int cnt; 4719 4720 /* Have nested writes different that what is written */ 4721 cnt = data->cnt + (nested ? 27 : 0); 4722 4723 /* Multiply cnt by ~e, to make some unique increment */ 4724 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4725 4726 len = size + sizeof(struct rb_item); 4727 4728 started = rb_test_started; 4729 /* read rb_test_started before checking buffer enabled */ 4730 smp_rmb(); 4731 4732 event = ring_buffer_lock_reserve(data->buffer, len); 4733 if (!event) { 4734 /* Ignore dropped events before test starts. */ 4735 if (started) { 4736 if (nested) 4737 data->bytes_dropped += len; 4738 else 4739 data->bytes_dropped_nested += len; 4740 } 4741 return len; 4742 } 4743 4744 event_len = ring_buffer_event_length(event); 4745 4746 if (RB_WARN_ON(data->buffer, event_len < len)) 4747 goto out; 4748 4749 item = ring_buffer_event_data(event); 4750 item->size = size; 4751 memcpy(item->str, rb_string, size); 4752 4753 if (nested) { 4754 data->bytes_alloc_nested += event_len; 4755 data->bytes_written_nested += len; 4756 data->events_nested++; 4757 if (!data->min_size_nested || len < data->min_size_nested) 4758 data->min_size_nested = len; 4759 if (len > data->max_size_nested) 4760 data->max_size_nested = len; 4761 } else { 4762 data->bytes_alloc += event_len; 4763 data->bytes_written += len; 4764 data->events++; 4765 if (!data->min_size || len < data->min_size) 4766 data->max_size = len; 4767 if (len > data->max_size) 4768 data->max_size = len; 4769 } 4770 4771 out: 4772 ring_buffer_unlock_commit(data->buffer, event); 4773 4774 return 0; 4775 } 4776 4777 static __init int rb_test(void *arg) 4778 { 4779 struct rb_test_data *data = arg; 4780 4781 while (!kthread_should_stop()) { 4782 rb_write_something(data, false); 4783 data->cnt++; 4784 4785 set_current_state(TASK_INTERRUPTIBLE); 4786 /* Now sleep between a min of 100-300us and a max of 1ms */ 4787 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4788 } 4789 4790 return 0; 4791 } 4792 4793 static __init void rb_ipi(void *ignore) 4794 { 4795 struct rb_test_data *data; 4796 int cpu = smp_processor_id(); 4797 4798 data = &rb_data[cpu]; 4799 rb_write_something(data, true); 4800 } 4801 4802 static __init int rb_hammer_test(void *arg) 4803 { 4804 while (!kthread_should_stop()) { 4805 4806 /* Send an IPI to all cpus to write data! */ 4807 smp_call_function(rb_ipi, NULL, 1); 4808 /* No sleep, but for non preempt, let others run */ 4809 schedule(); 4810 } 4811 4812 return 0; 4813 } 4814 4815 static __init int test_ringbuffer(void) 4816 { 4817 struct task_struct *rb_hammer; 4818 struct ring_buffer *buffer; 4819 int cpu; 4820 int ret = 0; 4821 4822 pr_info("Running ring buffer tests...\n"); 4823 4824 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4825 if (WARN_ON(!buffer)) 4826 return 0; 4827 4828 /* Disable buffer so that threads can't write to it yet */ 4829 ring_buffer_record_off(buffer); 4830 4831 for_each_online_cpu(cpu) { 4832 rb_data[cpu].buffer = buffer; 4833 rb_data[cpu].cpu = cpu; 4834 rb_data[cpu].cnt = cpu; 4835 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4836 "rbtester/%d", cpu); 4837 if (WARN_ON(!rb_threads[cpu])) { 4838 pr_cont("FAILED\n"); 4839 ret = -1; 4840 goto out_free; 4841 } 4842 4843 kthread_bind(rb_threads[cpu], cpu); 4844 wake_up_process(rb_threads[cpu]); 4845 } 4846 4847 /* Now create the rb hammer! */ 4848 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4849 if (WARN_ON(!rb_hammer)) { 4850 pr_cont("FAILED\n"); 4851 ret = -1; 4852 goto out_free; 4853 } 4854 4855 ring_buffer_record_on(buffer); 4856 /* 4857 * Show buffer is enabled before setting rb_test_started. 4858 * Yes there's a small race window where events could be 4859 * dropped and the thread wont catch it. But when a ring 4860 * buffer gets enabled, there will always be some kind of 4861 * delay before other CPUs see it. Thus, we don't care about 4862 * those dropped events. We care about events dropped after 4863 * the threads see that the buffer is active. 4864 */ 4865 smp_wmb(); 4866 rb_test_started = true; 4867 4868 set_current_state(TASK_INTERRUPTIBLE); 4869 /* Just run for 10 seconds */; 4870 schedule_timeout(10 * HZ); 4871 4872 kthread_stop(rb_hammer); 4873 4874 out_free: 4875 for_each_online_cpu(cpu) { 4876 if (!rb_threads[cpu]) 4877 break; 4878 kthread_stop(rb_threads[cpu]); 4879 } 4880 if (ret) { 4881 ring_buffer_free(buffer); 4882 return ret; 4883 } 4884 4885 /* Report! */ 4886 pr_info("finished\n"); 4887 for_each_online_cpu(cpu) { 4888 struct ring_buffer_event *event; 4889 struct rb_test_data *data = &rb_data[cpu]; 4890 struct rb_item *item; 4891 unsigned long total_events; 4892 unsigned long total_dropped; 4893 unsigned long total_written; 4894 unsigned long total_alloc; 4895 unsigned long total_read = 0; 4896 unsigned long total_size = 0; 4897 unsigned long total_len = 0; 4898 unsigned long total_lost = 0; 4899 unsigned long lost; 4900 int big_event_size; 4901 int small_event_size; 4902 4903 ret = -1; 4904 4905 total_events = data->events + data->events_nested; 4906 total_written = data->bytes_written + data->bytes_written_nested; 4907 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4908 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4909 4910 big_event_size = data->max_size + data->max_size_nested; 4911 small_event_size = data->min_size + data->min_size_nested; 4912 4913 pr_info("CPU %d:\n", cpu); 4914 pr_info(" events: %ld\n", total_events); 4915 pr_info(" dropped bytes: %ld\n", total_dropped); 4916 pr_info(" alloced bytes: %ld\n", total_alloc); 4917 pr_info(" written bytes: %ld\n", total_written); 4918 pr_info(" biggest event: %d\n", big_event_size); 4919 pr_info(" smallest event: %d\n", small_event_size); 4920 4921 if (RB_WARN_ON(buffer, total_dropped)) 4922 break; 4923 4924 ret = 0; 4925 4926 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4927 total_lost += lost; 4928 item = ring_buffer_event_data(event); 4929 total_len += ring_buffer_event_length(event); 4930 total_size += item->size + sizeof(struct rb_item); 4931 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4932 pr_info("FAILED!\n"); 4933 pr_info("buffer had: %.*s\n", item->size, item->str); 4934 pr_info("expected: %.*s\n", item->size, rb_string); 4935 RB_WARN_ON(buffer, 1); 4936 ret = -1; 4937 break; 4938 } 4939 total_read++; 4940 } 4941 if (ret) 4942 break; 4943 4944 ret = -1; 4945 4946 pr_info(" read events: %ld\n", total_read); 4947 pr_info(" lost events: %ld\n", total_lost); 4948 pr_info(" total events: %ld\n", total_lost + total_read); 4949 pr_info(" recorded len bytes: %ld\n", total_len); 4950 pr_info(" recorded size bytes: %ld\n", total_size); 4951 if (total_lost) 4952 pr_info(" With dropped events, record len and size may not match\n" 4953 " alloced and written from above\n"); 4954 if (!total_lost) { 4955 if (RB_WARN_ON(buffer, total_len != total_alloc || 4956 total_size != total_written)) 4957 break; 4958 } 4959 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4960 break; 4961 4962 ret = 0; 4963 } 4964 if (!ret) 4965 pr_info("Ring buffer PASSED!\n"); 4966 4967 ring_buffer_free(buffer); 4968 return 0; 4969 } 4970 4971 late_initcall(test_ringbuffer); 4972 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4973