1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/sched/clock.h> 10 #include <linux/trace_seq.h> 11 #include <linux/spinlock.h> 12 #include <linux/irq_work.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 #include <linux/oom.h> 26 27 #include <asm/local.h> 28 29 static void update_pages_handler(struct work_struct *work); 30 31 /* 32 * The ring buffer header is special. We must manually up keep it. 33 */ 34 int ring_buffer_print_entry_header(struct trace_seq *s) 35 { 36 trace_seq_puts(s, "# compressed entry header\n"); 37 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 38 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 39 trace_seq_puts(s, "\tarray : 32 bits\n"); 40 trace_seq_putc(s, '\n'); 41 trace_seq_printf(s, "\tpadding : type == %d\n", 42 RINGBUF_TYPE_PADDING); 43 trace_seq_printf(s, "\ttime_extend : type == %d\n", 44 RINGBUF_TYPE_TIME_EXTEND); 45 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 46 RINGBUF_TYPE_TIME_STAMP); 47 trace_seq_printf(s, "\tdata max type_len == %d\n", 48 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 49 50 return !trace_seq_has_overflowed(s); 51 } 52 53 /* 54 * The ring buffer is made up of a list of pages. A separate list of pages is 55 * allocated for each CPU. A writer may only write to a buffer that is 56 * associated with the CPU it is currently executing on. A reader may read 57 * from any per cpu buffer. 58 * 59 * The reader is special. For each per cpu buffer, the reader has its own 60 * reader page. When a reader has read the entire reader page, this reader 61 * page is swapped with another page in the ring buffer. 62 * 63 * Now, as long as the writer is off the reader page, the reader can do what 64 * ever it wants with that page. The writer will never write to that page 65 * again (as long as it is out of the ring buffer). 66 * 67 * Here's some silly ASCII art. 68 * 69 * +------+ 70 * |reader| RING BUFFER 71 * |page | 72 * +------+ +---+ +---+ +---+ 73 * | |-->| |-->| | 74 * +---+ +---+ +---+ 75 * ^ | 76 * | | 77 * +---------------+ 78 * 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page |------------------v 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * ^ | |-->| |-->| | 96 * | +---+ +---+ +---+ 97 * | | 98 * | | 99 * +------------------------------+ 100 * 101 * 102 * +------+ 103 * |buffer| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | | | |-->| | 107 * | New +---+ +---+ +---+ 108 * | Reader------^ | 109 * | page | 110 * +------------------------------+ 111 * 112 * 113 * After we make this swap, the reader can hand this page off to the splice 114 * code and be done with it. It can even allocate a new page if it needs to 115 * and swap that into the ring buffer. 116 * 117 * We will be using cmpxchg soon to make all this lockless. 118 * 119 */ 120 121 /* Used for individual buffers (after the counter) */ 122 #define RB_BUFFER_OFF (1 << 20) 123 124 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 125 126 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 127 #define RB_ALIGNMENT 4U 128 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 129 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 130 131 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 132 # define RB_FORCE_8BYTE_ALIGNMENT 0 133 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 134 #else 135 # define RB_FORCE_8BYTE_ALIGNMENT 1 136 # define RB_ARCH_ALIGNMENT 8U 137 #endif 138 139 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 140 141 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 142 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 143 144 enum { 145 RB_LEN_TIME_EXTEND = 8, 146 RB_LEN_TIME_STAMP = 8, 147 }; 148 149 #define skip_time_extend(event) \ 150 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 151 152 #define extended_time(event) \ 153 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 154 155 static inline int rb_null_event(struct ring_buffer_event *event) 156 { 157 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 158 } 159 160 static void rb_event_set_padding(struct ring_buffer_event *event) 161 { 162 /* padding has a NULL time_delta */ 163 event->type_len = RINGBUF_TYPE_PADDING; 164 event->time_delta = 0; 165 } 166 167 static unsigned 168 rb_event_data_length(struct ring_buffer_event *event) 169 { 170 unsigned length; 171 172 if (event->type_len) 173 length = event->type_len * RB_ALIGNMENT; 174 else 175 length = event->array[0]; 176 return length + RB_EVNT_HDR_SIZE; 177 } 178 179 /* 180 * Return the length of the given event. Will return 181 * the length of the time extend if the event is a 182 * time extend. 183 */ 184 static inline unsigned 185 rb_event_length(struct ring_buffer_event *event) 186 { 187 switch (event->type_len) { 188 case RINGBUF_TYPE_PADDING: 189 if (rb_null_event(event)) 190 /* undefined */ 191 return -1; 192 return event->array[0] + RB_EVNT_HDR_SIZE; 193 194 case RINGBUF_TYPE_TIME_EXTEND: 195 return RB_LEN_TIME_EXTEND; 196 197 case RINGBUF_TYPE_TIME_STAMP: 198 return RB_LEN_TIME_STAMP; 199 200 case RINGBUF_TYPE_DATA: 201 return rb_event_data_length(event); 202 default: 203 BUG(); 204 } 205 /* not hit */ 206 return 0; 207 } 208 209 /* 210 * Return total length of time extend and data, 211 * or just the event length for all other events. 212 */ 213 static inline unsigned 214 rb_event_ts_length(struct ring_buffer_event *event) 215 { 216 unsigned len = 0; 217 218 if (extended_time(event)) { 219 /* time extends include the data event after it */ 220 len = RB_LEN_TIME_EXTEND; 221 event = skip_time_extend(event); 222 } 223 return len + rb_event_length(event); 224 } 225 226 /** 227 * ring_buffer_event_length - return the length of the event 228 * @event: the event to get the length of 229 * 230 * Returns the size of the data load of a data event. 231 * If the event is something other than a data event, it 232 * returns the size of the event itself. With the exception 233 * of a TIME EXTEND, where it still returns the size of the 234 * data load of the data event after it. 235 */ 236 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 237 { 238 unsigned length; 239 240 if (extended_time(event)) 241 event = skip_time_extend(event); 242 243 length = rb_event_length(event); 244 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 245 return length; 246 length -= RB_EVNT_HDR_SIZE; 247 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 248 length -= sizeof(event->array[0]); 249 return length; 250 } 251 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 252 253 /* inline for ring buffer fast paths */ 254 static __always_inline void * 255 rb_event_data(struct ring_buffer_event *event) 256 { 257 if (extended_time(event)) 258 event = skip_time_extend(event); 259 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 260 /* If length is in len field, then array[0] has the data */ 261 if (event->type_len) 262 return (void *)&event->array[0]; 263 /* Otherwise length is in array[0] and array[1] has the data */ 264 return (void *)&event->array[1]; 265 } 266 267 /** 268 * ring_buffer_event_data - return the data of the event 269 * @event: the event to get the data from 270 */ 271 void *ring_buffer_event_data(struct ring_buffer_event *event) 272 { 273 return rb_event_data(event); 274 } 275 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 276 277 #define for_each_buffer_cpu(buffer, cpu) \ 278 for_each_cpu(cpu, buffer->cpumask) 279 280 #define TS_SHIFT 27 281 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 282 #define TS_DELTA_TEST (~TS_MASK) 283 284 /** 285 * ring_buffer_event_time_stamp - return the event's extended timestamp 286 * @event: the event to get the timestamp of 287 * 288 * Returns the extended timestamp associated with a data event. 289 * An extended time_stamp is a 64-bit timestamp represented 290 * internally in a special way that makes the best use of space 291 * contained within a ring buffer event. This function decodes 292 * it and maps it to a straight u64 value. 293 */ 294 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 295 { 296 u64 ts; 297 298 ts = event->array[0]; 299 ts <<= TS_SHIFT; 300 ts += event->time_delta; 301 302 return ts; 303 } 304 305 /* Flag when events were overwritten */ 306 #define RB_MISSED_EVENTS (1 << 31) 307 /* Missed count stored at end */ 308 #define RB_MISSED_STORED (1 << 30) 309 310 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED) 311 312 struct buffer_data_page { 313 u64 time_stamp; /* page time stamp */ 314 local_t commit; /* write committed index */ 315 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 316 }; 317 318 /* 319 * Note, the buffer_page list must be first. The buffer pages 320 * are allocated in cache lines, which means that each buffer 321 * page will be at the beginning of a cache line, and thus 322 * the least significant bits will be zero. We use this to 323 * add flags in the list struct pointers, to make the ring buffer 324 * lockless. 325 */ 326 struct buffer_page { 327 struct list_head list; /* list of buffer pages */ 328 local_t write; /* index for next write */ 329 unsigned read; /* index for next read */ 330 local_t entries; /* entries on this page */ 331 unsigned long real_end; /* real end of data */ 332 struct buffer_data_page *page; /* Actual data page */ 333 }; 334 335 /* 336 * The buffer page counters, write and entries, must be reset 337 * atomically when crossing page boundaries. To synchronize this 338 * update, two counters are inserted into the number. One is 339 * the actual counter for the write position or count on the page. 340 * 341 * The other is a counter of updaters. Before an update happens 342 * the update partition of the counter is incremented. This will 343 * allow the updater to update the counter atomically. 344 * 345 * The counter is 20 bits, and the state data is 12. 346 */ 347 #define RB_WRITE_MASK 0xfffff 348 #define RB_WRITE_INTCNT (1 << 20) 349 350 static void rb_init_page(struct buffer_data_page *bpage) 351 { 352 local_set(&bpage->commit, 0); 353 } 354 355 /** 356 * ring_buffer_page_len - the size of data on the page. 357 * @page: The page to read 358 * 359 * Returns the amount of data on the page, including buffer page header. 360 */ 361 size_t ring_buffer_page_len(void *page) 362 { 363 struct buffer_data_page *bpage = page; 364 365 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS) 366 + BUF_PAGE_HDR_SIZE; 367 } 368 369 /* 370 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 371 * this issue out. 372 */ 373 static void free_buffer_page(struct buffer_page *bpage) 374 { 375 free_page((unsigned long)bpage->page); 376 kfree(bpage); 377 } 378 379 /* 380 * We need to fit the time_stamp delta into 27 bits. 381 */ 382 static inline int test_time_stamp(u64 delta) 383 { 384 if (delta & TS_DELTA_TEST) 385 return 1; 386 return 0; 387 } 388 389 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 390 391 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 392 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 393 394 int ring_buffer_print_page_header(struct trace_seq *s) 395 { 396 struct buffer_data_page field; 397 398 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 399 "offset:0;\tsize:%u;\tsigned:%u;\n", 400 (unsigned int)sizeof(field.time_stamp), 401 (unsigned int)is_signed_type(u64)); 402 403 trace_seq_printf(s, "\tfield: local_t commit;\t" 404 "offset:%u;\tsize:%u;\tsigned:%u;\n", 405 (unsigned int)offsetof(typeof(field), commit), 406 (unsigned int)sizeof(field.commit), 407 (unsigned int)is_signed_type(long)); 408 409 trace_seq_printf(s, "\tfield: int overwrite;\t" 410 "offset:%u;\tsize:%u;\tsigned:%u;\n", 411 (unsigned int)offsetof(typeof(field), commit), 412 1, 413 (unsigned int)is_signed_type(long)); 414 415 trace_seq_printf(s, "\tfield: char data;\t" 416 "offset:%u;\tsize:%u;\tsigned:%u;\n", 417 (unsigned int)offsetof(typeof(field), data), 418 (unsigned int)BUF_PAGE_SIZE, 419 (unsigned int)is_signed_type(char)); 420 421 return !trace_seq_has_overflowed(s); 422 } 423 424 struct rb_irq_work { 425 struct irq_work work; 426 wait_queue_head_t waiters; 427 wait_queue_head_t full_waiters; 428 bool waiters_pending; 429 bool full_waiters_pending; 430 bool wakeup_full; 431 }; 432 433 /* 434 * Structure to hold event state and handle nested events. 435 */ 436 struct rb_event_info { 437 u64 ts; 438 u64 delta; 439 unsigned long length; 440 struct buffer_page *tail_page; 441 int add_timestamp; 442 }; 443 444 /* 445 * Used for which event context the event is in. 446 * NMI = 0 447 * IRQ = 1 448 * SOFTIRQ = 2 449 * NORMAL = 3 450 * 451 * See trace_recursive_lock() comment below for more details. 452 */ 453 enum { 454 RB_CTX_NMI, 455 RB_CTX_IRQ, 456 RB_CTX_SOFTIRQ, 457 RB_CTX_NORMAL, 458 RB_CTX_MAX 459 }; 460 461 /* 462 * head_page == tail_page && head == tail then buffer is empty. 463 */ 464 struct ring_buffer_per_cpu { 465 int cpu; 466 atomic_t record_disabled; 467 struct ring_buffer *buffer; 468 raw_spinlock_t reader_lock; /* serialize readers */ 469 arch_spinlock_t lock; 470 struct lock_class_key lock_key; 471 struct buffer_data_page *free_page; 472 unsigned long nr_pages; 473 unsigned int current_context; 474 struct list_head *pages; 475 struct buffer_page *head_page; /* read from head */ 476 struct buffer_page *tail_page; /* write to tail */ 477 struct buffer_page *commit_page; /* committed pages */ 478 struct buffer_page *reader_page; 479 unsigned long lost_events; 480 unsigned long last_overrun; 481 unsigned long nest; 482 local_t entries_bytes; 483 local_t entries; 484 local_t overrun; 485 local_t commit_overrun; 486 local_t dropped_events; 487 local_t committing; 488 local_t commits; 489 unsigned long read; 490 unsigned long read_bytes; 491 u64 write_stamp; 492 u64 read_stamp; 493 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 494 long nr_pages_to_update; 495 struct list_head new_pages; /* new pages to add */ 496 struct work_struct update_pages_work; 497 struct completion update_done; 498 499 struct rb_irq_work irq_work; 500 }; 501 502 struct ring_buffer { 503 unsigned flags; 504 int cpus; 505 atomic_t record_disabled; 506 atomic_t resize_disabled; 507 cpumask_var_t cpumask; 508 509 struct lock_class_key *reader_lock_key; 510 511 struct mutex mutex; 512 513 struct ring_buffer_per_cpu **buffers; 514 515 struct hlist_node node; 516 u64 (*clock)(void); 517 518 struct rb_irq_work irq_work; 519 bool time_stamp_abs; 520 }; 521 522 struct ring_buffer_iter { 523 struct ring_buffer_per_cpu *cpu_buffer; 524 unsigned long head; 525 struct buffer_page *head_page; 526 struct buffer_page *cache_reader_page; 527 unsigned long cache_read; 528 u64 read_stamp; 529 }; 530 531 /* 532 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 533 * 534 * Schedules a delayed work to wake up any task that is blocked on the 535 * ring buffer waiters queue. 536 */ 537 static void rb_wake_up_waiters(struct irq_work *work) 538 { 539 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 540 541 wake_up_all(&rbwork->waiters); 542 if (rbwork->wakeup_full) { 543 rbwork->wakeup_full = false; 544 wake_up_all(&rbwork->full_waiters); 545 } 546 } 547 548 /** 549 * ring_buffer_wait - wait for input to the ring buffer 550 * @buffer: buffer to wait on 551 * @cpu: the cpu buffer to wait on 552 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 553 * 554 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 555 * as data is added to any of the @buffer's cpu buffers. Otherwise 556 * it will wait for data to be added to a specific cpu buffer. 557 */ 558 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 559 { 560 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 561 DEFINE_WAIT(wait); 562 struct rb_irq_work *work; 563 int ret = 0; 564 565 /* 566 * Depending on what the caller is waiting for, either any 567 * data in any cpu buffer, or a specific buffer, put the 568 * caller on the appropriate wait queue. 569 */ 570 if (cpu == RING_BUFFER_ALL_CPUS) { 571 work = &buffer->irq_work; 572 /* Full only makes sense on per cpu reads */ 573 full = false; 574 } else { 575 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 576 return -ENODEV; 577 cpu_buffer = buffer->buffers[cpu]; 578 work = &cpu_buffer->irq_work; 579 } 580 581 582 while (true) { 583 if (full) 584 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 585 else 586 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 587 588 /* 589 * The events can happen in critical sections where 590 * checking a work queue can cause deadlocks. 591 * After adding a task to the queue, this flag is set 592 * only to notify events to try to wake up the queue 593 * using irq_work. 594 * 595 * We don't clear it even if the buffer is no longer 596 * empty. The flag only causes the next event to run 597 * irq_work to do the work queue wake up. The worse 598 * that can happen if we race with !trace_empty() is that 599 * an event will cause an irq_work to try to wake up 600 * an empty queue. 601 * 602 * There's no reason to protect this flag either, as 603 * the work queue and irq_work logic will do the necessary 604 * synchronization for the wake ups. The only thing 605 * that is necessary is that the wake up happens after 606 * a task has been queued. It's OK for spurious wake ups. 607 */ 608 if (full) 609 work->full_waiters_pending = true; 610 else 611 work->waiters_pending = true; 612 613 if (signal_pending(current)) { 614 ret = -EINTR; 615 break; 616 } 617 618 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 619 break; 620 621 if (cpu != RING_BUFFER_ALL_CPUS && 622 !ring_buffer_empty_cpu(buffer, cpu)) { 623 unsigned long flags; 624 bool pagebusy; 625 626 if (!full) 627 break; 628 629 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 630 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 631 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 632 633 if (!pagebusy) 634 break; 635 } 636 637 schedule(); 638 } 639 640 if (full) 641 finish_wait(&work->full_waiters, &wait); 642 else 643 finish_wait(&work->waiters, &wait); 644 645 return ret; 646 } 647 648 /** 649 * ring_buffer_poll_wait - poll on buffer input 650 * @buffer: buffer to wait on 651 * @cpu: the cpu buffer to wait on 652 * @filp: the file descriptor 653 * @poll_table: The poll descriptor 654 * 655 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 656 * as data is added to any of the @buffer's cpu buffers. Otherwise 657 * it will wait for data to be added to a specific cpu buffer. 658 * 659 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 660 * zero otherwise. 661 */ 662 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 663 struct file *filp, poll_table *poll_table) 664 { 665 struct ring_buffer_per_cpu *cpu_buffer; 666 struct rb_irq_work *work; 667 668 if (cpu == RING_BUFFER_ALL_CPUS) 669 work = &buffer->irq_work; 670 else { 671 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 672 return -EINVAL; 673 674 cpu_buffer = buffer->buffers[cpu]; 675 work = &cpu_buffer->irq_work; 676 } 677 678 poll_wait(filp, &work->waiters, poll_table); 679 work->waiters_pending = true; 680 /* 681 * There's a tight race between setting the waiters_pending and 682 * checking if the ring buffer is empty. Once the waiters_pending bit 683 * is set, the next event will wake the task up, but we can get stuck 684 * if there's only a single event in. 685 * 686 * FIXME: Ideally, we need a memory barrier on the writer side as well, 687 * but adding a memory barrier to all events will cause too much of a 688 * performance hit in the fast path. We only need a memory barrier when 689 * the buffer goes from empty to having content. But as this race is 690 * extremely small, and it's not a problem if another event comes in, we 691 * will fix it later. 692 */ 693 smp_mb(); 694 695 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 696 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 697 return EPOLLIN | EPOLLRDNORM; 698 return 0; 699 } 700 701 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 702 #define RB_WARN_ON(b, cond) \ 703 ({ \ 704 int _____ret = unlikely(cond); \ 705 if (_____ret) { \ 706 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 707 struct ring_buffer_per_cpu *__b = \ 708 (void *)b; \ 709 atomic_inc(&__b->buffer->record_disabled); \ 710 } else \ 711 atomic_inc(&b->record_disabled); \ 712 WARN_ON(1); \ 713 } \ 714 _____ret; \ 715 }) 716 717 /* Up this if you want to test the TIME_EXTENTS and normalization */ 718 #define DEBUG_SHIFT 0 719 720 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 721 { 722 /* shift to debug/test normalization and TIME_EXTENTS */ 723 return buffer->clock() << DEBUG_SHIFT; 724 } 725 726 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 727 { 728 u64 time; 729 730 preempt_disable_notrace(); 731 time = rb_time_stamp(buffer); 732 preempt_enable_no_resched_notrace(); 733 734 return time; 735 } 736 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 737 738 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 739 int cpu, u64 *ts) 740 { 741 /* Just stupid testing the normalize function and deltas */ 742 *ts >>= DEBUG_SHIFT; 743 } 744 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 745 746 /* 747 * Making the ring buffer lockless makes things tricky. 748 * Although writes only happen on the CPU that they are on, 749 * and they only need to worry about interrupts. Reads can 750 * happen on any CPU. 751 * 752 * The reader page is always off the ring buffer, but when the 753 * reader finishes with a page, it needs to swap its page with 754 * a new one from the buffer. The reader needs to take from 755 * the head (writes go to the tail). But if a writer is in overwrite 756 * mode and wraps, it must push the head page forward. 757 * 758 * Here lies the problem. 759 * 760 * The reader must be careful to replace only the head page, and 761 * not another one. As described at the top of the file in the 762 * ASCII art, the reader sets its old page to point to the next 763 * page after head. It then sets the page after head to point to 764 * the old reader page. But if the writer moves the head page 765 * during this operation, the reader could end up with the tail. 766 * 767 * We use cmpxchg to help prevent this race. We also do something 768 * special with the page before head. We set the LSB to 1. 769 * 770 * When the writer must push the page forward, it will clear the 771 * bit that points to the head page, move the head, and then set 772 * the bit that points to the new head page. 773 * 774 * We also don't want an interrupt coming in and moving the head 775 * page on another writer. Thus we use the second LSB to catch 776 * that too. Thus: 777 * 778 * head->list->prev->next bit 1 bit 0 779 * ------- ------- 780 * Normal page 0 0 781 * Points to head page 0 1 782 * New head page 1 0 783 * 784 * Note we can not trust the prev pointer of the head page, because: 785 * 786 * +----+ +-----+ +-----+ 787 * | |------>| T |---X--->| N | 788 * | |<------| | | | 789 * +----+ +-----+ +-----+ 790 * ^ ^ | 791 * | +-----+ | | 792 * +----------| R |----------+ | 793 * | |<-----------+ 794 * +-----+ 795 * 796 * Key: ---X--> HEAD flag set in pointer 797 * T Tail page 798 * R Reader page 799 * N Next page 800 * 801 * (see __rb_reserve_next() to see where this happens) 802 * 803 * What the above shows is that the reader just swapped out 804 * the reader page with a page in the buffer, but before it 805 * could make the new header point back to the new page added 806 * it was preempted by a writer. The writer moved forward onto 807 * the new page added by the reader and is about to move forward 808 * again. 809 * 810 * You can see, it is legitimate for the previous pointer of 811 * the head (or any page) not to point back to itself. But only 812 * temporarially. 813 */ 814 815 #define RB_PAGE_NORMAL 0UL 816 #define RB_PAGE_HEAD 1UL 817 #define RB_PAGE_UPDATE 2UL 818 819 820 #define RB_FLAG_MASK 3UL 821 822 /* PAGE_MOVED is not part of the mask */ 823 #define RB_PAGE_MOVED 4UL 824 825 /* 826 * rb_list_head - remove any bit 827 */ 828 static struct list_head *rb_list_head(struct list_head *list) 829 { 830 unsigned long val = (unsigned long)list; 831 832 return (struct list_head *)(val & ~RB_FLAG_MASK); 833 } 834 835 /* 836 * rb_is_head_page - test if the given page is the head page 837 * 838 * Because the reader may move the head_page pointer, we can 839 * not trust what the head page is (it may be pointing to 840 * the reader page). But if the next page is a header page, 841 * its flags will be non zero. 842 */ 843 static inline int 844 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 845 struct buffer_page *page, struct list_head *list) 846 { 847 unsigned long val; 848 849 val = (unsigned long)list->next; 850 851 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 852 return RB_PAGE_MOVED; 853 854 return val & RB_FLAG_MASK; 855 } 856 857 /* 858 * rb_is_reader_page 859 * 860 * The unique thing about the reader page, is that, if the 861 * writer is ever on it, the previous pointer never points 862 * back to the reader page. 863 */ 864 static bool rb_is_reader_page(struct buffer_page *page) 865 { 866 struct list_head *list = page->list.prev; 867 868 return rb_list_head(list->next) != &page->list; 869 } 870 871 /* 872 * rb_set_list_to_head - set a list_head to be pointing to head. 873 */ 874 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 875 struct list_head *list) 876 { 877 unsigned long *ptr; 878 879 ptr = (unsigned long *)&list->next; 880 *ptr |= RB_PAGE_HEAD; 881 *ptr &= ~RB_PAGE_UPDATE; 882 } 883 884 /* 885 * rb_head_page_activate - sets up head page 886 */ 887 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 888 { 889 struct buffer_page *head; 890 891 head = cpu_buffer->head_page; 892 if (!head) 893 return; 894 895 /* 896 * Set the previous list pointer to have the HEAD flag. 897 */ 898 rb_set_list_to_head(cpu_buffer, head->list.prev); 899 } 900 901 static void rb_list_head_clear(struct list_head *list) 902 { 903 unsigned long *ptr = (unsigned long *)&list->next; 904 905 *ptr &= ~RB_FLAG_MASK; 906 } 907 908 /* 909 * rb_head_page_dactivate - clears head page ptr (for free list) 910 */ 911 static void 912 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 913 { 914 struct list_head *hd; 915 916 /* Go through the whole list and clear any pointers found. */ 917 rb_list_head_clear(cpu_buffer->pages); 918 919 list_for_each(hd, cpu_buffer->pages) 920 rb_list_head_clear(hd); 921 } 922 923 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 924 struct buffer_page *head, 925 struct buffer_page *prev, 926 int old_flag, int new_flag) 927 { 928 struct list_head *list; 929 unsigned long val = (unsigned long)&head->list; 930 unsigned long ret; 931 932 list = &prev->list; 933 934 val &= ~RB_FLAG_MASK; 935 936 ret = cmpxchg((unsigned long *)&list->next, 937 val | old_flag, val | new_flag); 938 939 /* check if the reader took the page */ 940 if ((ret & ~RB_FLAG_MASK) != val) 941 return RB_PAGE_MOVED; 942 943 return ret & RB_FLAG_MASK; 944 } 945 946 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 947 struct buffer_page *head, 948 struct buffer_page *prev, 949 int old_flag) 950 { 951 return rb_head_page_set(cpu_buffer, head, prev, 952 old_flag, RB_PAGE_UPDATE); 953 } 954 955 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 956 struct buffer_page *head, 957 struct buffer_page *prev, 958 int old_flag) 959 { 960 return rb_head_page_set(cpu_buffer, head, prev, 961 old_flag, RB_PAGE_HEAD); 962 } 963 964 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 965 struct buffer_page *head, 966 struct buffer_page *prev, 967 int old_flag) 968 { 969 return rb_head_page_set(cpu_buffer, head, prev, 970 old_flag, RB_PAGE_NORMAL); 971 } 972 973 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 974 struct buffer_page **bpage) 975 { 976 struct list_head *p = rb_list_head((*bpage)->list.next); 977 978 *bpage = list_entry(p, struct buffer_page, list); 979 } 980 981 static struct buffer_page * 982 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 983 { 984 struct buffer_page *head; 985 struct buffer_page *page; 986 struct list_head *list; 987 int i; 988 989 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 990 return NULL; 991 992 /* sanity check */ 993 list = cpu_buffer->pages; 994 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 995 return NULL; 996 997 page = head = cpu_buffer->head_page; 998 /* 999 * It is possible that the writer moves the header behind 1000 * where we started, and we miss in one loop. 1001 * A second loop should grab the header, but we'll do 1002 * three loops just because I'm paranoid. 1003 */ 1004 for (i = 0; i < 3; i++) { 1005 do { 1006 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1007 cpu_buffer->head_page = page; 1008 return page; 1009 } 1010 rb_inc_page(cpu_buffer, &page); 1011 } while (page != head); 1012 } 1013 1014 RB_WARN_ON(cpu_buffer, 1); 1015 1016 return NULL; 1017 } 1018 1019 static int rb_head_page_replace(struct buffer_page *old, 1020 struct buffer_page *new) 1021 { 1022 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1023 unsigned long val; 1024 unsigned long ret; 1025 1026 val = *ptr & ~RB_FLAG_MASK; 1027 val |= RB_PAGE_HEAD; 1028 1029 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1030 1031 return ret == val; 1032 } 1033 1034 /* 1035 * rb_tail_page_update - move the tail page forward 1036 */ 1037 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1038 struct buffer_page *tail_page, 1039 struct buffer_page *next_page) 1040 { 1041 unsigned long old_entries; 1042 unsigned long old_write; 1043 1044 /* 1045 * The tail page now needs to be moved forward. 1046 * 1047 * We need to reset the tail page, but without messing 1048 * with possible erasing of data brought in by interrupts 1049 * that have moved the tail page and are currently on it. 1050 * 1051 * We add a counter to the write field to denote this. 1052 */ 1053 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1054 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1055 1056 /* 1057 * Just make sure we have seen our old_write and synchronize 1058 * with any interrupts that come in. 1059 */ 1060 barrier(); 1061 1062 /* 1063 * If the tail page is still the same as what we think 1064 * it is, then it is up to us to update the tail 1065 * pointer. 1066 */ 1067 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1068 /* Zero the write counter */ 1069 unsigned long val = old_write & ~RB_WRITE_MASK; 1070 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1071 1072 /* 1073 * This will only succeed if an interrupt did 1074 * not come in and change it. In which case, we 1075 * do not want to modify it. 1076 * 1077 * We add (void) to let the compiler know that we do not care 1078 * about the return value of these functions. We use the 1079 * cmpxchg to only update if an interrupt did not already 1080 * do it for us. If the cmpxchg fails, we don't care. 1081 */ 1082 (void)local_cmpxchg(&next_page->write, old_write, val); 1083 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1084 1085 /* 1086 * No need to worry about races with clearing out the commit. 1087 * it only can increment when a commit takes place. But that 1088 * only happens in the outer most nested commit. 1089 */ 1090 local_set(&next_page->page->commit, 0); 1091 1092 /* Again, either we update tail_page or an interrupt does */ 1093 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1094 } 1095 } 1096 1097 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1098 struct buffer_page *bpage) 1099 { 1100 unsigned long val = (unsigned long)bpage; 1101 1102 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1103 return 1; 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * rb_check_list - make sure a pointer to a list has the last bits zero 1110 */ 1111 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1112 struct list_head *list) 1113 { 1114 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1115 return 1; 1116 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1117 return 1; 1118 return 0; 1119 } 1120 1121 /** 1122 * rb_check_pages - integrity check of buffer pages 1123 * @cpu_buffer: CPU buffer with pages to test 1124 * 1125 * As a safety measure we check to make sure the data pages have not 1126 * been corrupted. 1127 */ 1128 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1129 { 1130 struct list_head *head = cpu_buffer->pages; 1131 struct buffer_page *bpage, *tmp; 1132 1133 /* Reset the head page if it exists */ 1134 if (cpu_buffer->head_page) 1135 rb_set_head_page(cpu_buffer); 1136 1137 rb_head_page_deactivate(cpu_buffer); 1138 1139 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1140 return -1; 1141 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1142 return -1; 1143 1144 if (rb_check_list(cpu_buffer, head)) 1145 return -1; 1146 1147 list_for_each_entry_safe(bpage, tmp, head, list) { 1148 if (RB_WARN_ON(cpu_buffer, 1149 bpage->list.next->prev != &bpage->list)) 1150 return -1; 1151 if (RB_WARN_ON(cpu_buffer, 1152 bpage->list.prev->next != &bpage->list)) 1153 return -1; 1154 if (rb_check_list(cpu_buffer, &bpage->list)) 1155 return -1; 1156 } 1157 1158 rb_head_page_activate(cpu_buffer); 1159 1160 return 0; 1161 } 1162 1163 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1164 { 1165 struct buffer_page *bpage, *tmp; 1166 bool user_thread = current->mm != NULL; 1167 gfp_t mflags; 1168 long i; 1169 1170 /* 1171 * Check if the available memory is there first. 1172 * Note, si_mem_available() only gives us a rough estimate of available 1173 * memory. It may not be accurate. But we don't care, we just want 1174 * to prevent doing any allocation when it is obvious that it is 1175 * not going to succeed. 1176 */ 1177 i = si_mem_available(); 1178 if (i < nr_pages) 1179 return -ENOMEM; 1180 1181 /* 1182 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1183 * gracefully without invoking oom-killer and the system is not 1184 * destabilized. 1185 */ 1186 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1187 1188 /* 1189 * If a user thread allocates too much, and si_mem_available() 1190 * reports there's enough memory, even though there is not. 1191 * Make sure the OOM killer kills this thread. This can happen 1192 * even with RETRY_MAYFAIL because another task may be doing 1193 * an allocation after this task has taken all memory. 1194 * This is the task the OOM killer needs to take out during this 1195 * loop, even if it was triggered by an allocation somewhere else. 1196 */ 1197 if (user_thread) 1198 set_current_oom_origin(); 1199 for (i = 0; i < nr_pages; i++) { 1200 struct page *page; 1201 1202 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1203 mflags, cpu_to_node(cpu)); 1204 if (!bpage) 1205 goto free_pages; 1206 1207 list_add(&bpage->list, pages); 1208 1209 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1210 if (!page) 1211 goto free_pages; 1212 bpage->page = page_address(page); 1213 rb_init_page(bpage->page); 1214 1215 if (user_thread && fatal_signal_pending(current)) 1216 goto free_pages; 1217 } 1218 if (user_thread) 1219 clear_current_oom_origin(); 1220 1221 return 0; 1222 1223 free_pages: 1224 list_for_each_entry_safe(bpage, tmp, pages, list) { 1225 list_del_init(&bpage->list); 1226 free_buffer_page(bpage); 1227 } 1228 if (user_thread) 1229 clear_current_oom_origin(); 1230 1231 return -ENOMEM; 1232 } 1233 1234 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1235 unsigned long nr_pages) 1236 { 1237 LIST_HEAD(pages); 1238 1239 WARN_ON(!nr_pages); 1240 1241 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1242 return -ENOMEM; 1243 1244 /* 1245 * The ring buffer page list is a circular list that does not 1246 * start and end with a list head. All page list items point to 1247 * other pages. 1248 */ 1249 cpu_buffer->pages = pages.next; 1250 list_del(&pages); 1251 1252 cpu_buffer->nr_pages = nr_pages; 1253 1254 rb_check_pages(cpu_buffer); 1255 1256 return 0; 1257 } 1258 1259 static struct ring_buffer_per_cpu * 1260 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1261 { 1262 struct ring_buffer_per_cpu *cpu_buffer; 1263 struct buffer_page *bpage; 1264 struct page *page; 1265 int ret; 1266 1267 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1268 GFP_KERNEL, cpu_to_node(cpu)); 1269 if (!cpu_buffer) 1270 return NULL; 1271 1272 cpu_buffer->cpu = cpu; 1273 cpu_buffer->buffer = buffer; 1274 raw_spin_lock_init(&cpu_buffer->reader_lock); 1275 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1276 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1277 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1278 init_completion(&cpu_buffer->update_done); 1279 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1280 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1281 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1282 1283 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1284 GFP_KERNEL, cpu_to_node(cpu)); 1285 if (!bpage) 1286 goto fail_free_buffer; 1287 1288 rb_check_bpage(cpu_buffer, bpage); 1289 1290 cpu_buffer->reader_page = bpage; 1291 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1292 if (!page) 1293 goto fail_free_reader; 1294 bpage->page = page_address(page); 1295 rb_init_page(bpage->page); 1296 1297 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1298 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1299 1300 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1301 if (ret < 0) 1302 goto fail_free_reader; 1303 1304 cpu_buffer->head_page 1305 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1306 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1307 1308 rb_head_page_activate(cpu_buffer); 1309 1310 return cpu_buffer; 1311 1312 fail_free_reader: 1313 free_buffer_page(cpu_buffer->reader_page); 1314 1315 fail_free_buffer: 1316 kfree(cpu_buffer); 1317 return NULL; 1318 } 1319 1320 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1321 { 1322 struct list_head *head = cpu_buffer->pages; 1323 struct buffer_page *bpage, *tmp; 1324 1325 free_buffer_page(cpu_buffer->reader_page); 1326 1327 rb_head_page_deactivate(cpu_buffer); 1328 1329 if (head) { 1330 list_for_each_entry_safe(bpage, tmp, head, list) { 1331 list_del_init(&bpage->list); 1332 free_buffer_page(bpage); 1333 } 1334 bpage = list_entry(head, struct buffer_page, list); 1335 free_buffer_page(bpage); 1336 } 1337 1338 kfree(cpu_buffer); 1339 } 1340 1341 /** 1342 * __ring_buffer_alloc - allocate a new ring_buffer 1343 * @size: the size in bytes per cpu that is needed. 1344 * @flags: attributes to set for the ring buffer. 1345 * 1346 * Currently the only flag that is available is the RB_FL_OVERWRITE 1347 * flag. This flag means that the buffer will overwrite old data 1348 * when the buffer wraps. If this flag is not set, the buffer will 1349 * drop data when the tail hits the head. 1350 */ 1351 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1352 struct lock_class_key *key) 1353 { 1354 struct ring_buffer *buffer; 1355 long nr_pages; 1356 int bsize; 1357 int cpu; 1358 int ret; 1359 1360 /* keep it in its own cache line */ 1361 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1362 GFP_KERNEL); 1363 if (!buffer) 1364 return NULL; 1365 1366 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1367 goto fail_free_buffer; 1368 1369 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1370 buffer->flags = flags; 1371 buffer->clock = trace_clock_local; 1372 buffer->reader_lock_key = key; 1373 1374 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1375 init_waitqueue_head(&buffer->irq_work.waiters); 1376 1377 /* need at least two pages */ 1378 if (nr_pages < 2) 1379 nr_pages = 2; 1380 1381 buffer->cpus = nr_cpu_ids; 1382 1383 bsize = sizeof(void *) * nr_cpu_ids; 1384 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1385 GFP_KERNEL); 1386 if (!buffer->buffers) 1387 goto fail_free_cpumask; 1388 1389 cpu = raw_smp_processor_id(); 1390 cpumask_set_cpu(cpu, buffer->cpumask); 1391 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1392 if (!buffer->buffers[cpu]) 1393 goto fail_free_buffers; 1394 1395 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1396 if (ret < 0) 1397 goto fail_free_buffers; 1398 1399 mutex_init(&buffer->mutex); 1400 1401 return buffer; 1402 1403 fail_free_buffers: 1404 for_each_buffer_cpu(buffer, cpu) { 1405 if (buffer->buffers[cpu]) 1406 rb_free_cpu_buffer(buffer->buffers[cpu]); 1407 } 1408 kfree(buffer->buffers); 1409 1410 fail_free_cpumask: 1411 free_cpumask_var(buffer->cpumask); 1412 1413 fail_free_buffer: 1414 kfree(buffer); 1415 return NULL; 1416 } 1417 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1418 1419 /** 1420 * ring_buffer_free - free a ring buffer. 1421 * @buffer: the buffer to free. 1422 */ 1423 void 1424 ring_buffer_free(struct ring_buffer *buffer) 1425 { 1426 int cpu; 1427 1428 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1429 1430 for_each_buffer_cpu(buffer, cpu) 1431 rb_free_cpu_buffer(buffer->buffers[cpu]); 1432 1433 kfree(buffer->buffers); 1434 free_cpumask_var(buffer->cpumask); 1435 1436 kfree(buffer); 1437 } 1438 EXPORT_SYMBOL_GPL(ring_buffer_free); 1439 1440 void ring_buffer_set_clock(struct ring_buffer *buffer, 1441 u64 (*clock)(void)) 1442 { 1443 buffer->clock = clock; 1444 } 1445 1446 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs) 1447 { 1448 buffer->time_stamp_abs = abs; 1449 } 1450 1451 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer) 1452 { 1453 return buffer->time_stamp_abs; 1454 } 1455 1456 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1457 1458 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1459 { 1460 return local_read(&bpage->entries) & RB_WRITE_MASK; 1461 } 1462 1463 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1464 { 1465 return local_read(&bpage->write) & RB_WRITE_MASK; 1466 } 1467 1468 static int 1469 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1470 { 1471 struct list_head *tail_page, *to_remove, *next_page; 1472 struct buffer_page *to_remove_page, *tmp_iter_page; 1473 struct buffer_page *last_page, *first_page; 1474 unsigned long nr_removed; 1475 unsigned long head_bit; 1476 int page_entries; 1477 1478 head_bit = 0; 1479 1480 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1481 atomic_inc(&cpu_buffer->record_disabled); 1482 /* 1483 * We don't race with the readers since we have acquired the reader 1484 * lock. We also don't race with writers after disabling recording. 1485 * This makes it easy to figure out the first and the last page to be 1486 * removed from the list. We unlink all the pages in between including 1487 * the first and last pages. This is done in a busy loop so that we 1488 * lose the least number of traces. 1489 * The pages are freed after we restart recording and unlock readers. 1490 */ 1491 tail_page = &cpu_buffer->tail_page->list; 1492 1493 /* 1494 * tail page might be on reader page, we remove the next page 1495 * from the ring buffer 1496 */ 1497 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1498 tail_page = rb_list_head(tail_page->next); 1499 to_remove = tail_page; 1500 1501 /* start of pages to remove */ 1502 first_page = list_entry(rb_list_head(to_remove->next), 1503 struct buffer_page, list); 1504 1505 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1506 to_remove = rb_list_head(to_remove)->next; 1507 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1508 } 1509 1510 next_page = rb_list_head(to_remove)->next; 1511 1512 /* 1513 * Now we remove all pages between tail_page and next_page. 1514 * Make sure that we have head_bit value preserved for the 1515 * next page 1516 */ 1517 tail_page->next = (struct list_head *)((unsigned long)next_page | 1518 head_bit); 1519 next_page = rb_list_head(next_page); 1520 next_page->prev = tail_page; 1521 1522 /* make sure pages points to a valid page in the ring buffer */ 1523 cpu_buffer->pages = next_page; 1524 1525 /* update head page */ 1526 if (head_bit) 1527 cpu_buffer->head_page = list_entry(next_page, 1528 struct buffer_page, list); 1529 1530 /* 1531 * change read pointer to make sure any read iterators reset 1532 * themselves 1533 */ 1534 cpu_buffer->read = 0; 1535 1536 /* pages are removed, resume tracing and then free the pages */ 1537 atomic_dec(&cpu_buffer->record_disabled); 1538 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1539 1540 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1541 1542 /* last buffer page to remove */ 1543 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1544 list); 1545 tmp_iter_page = first_page; 1546 1547 do { 1548 to_remove_page = tmp_iter_page; 1549 rb_inc_page(cpu_buffer, &tmp_iter_page); 1550 1551 /* update the counters */ 1552 page_entries = rb_page_entries(to_remove_page); 1553 if (page_entries) { 1554 /* 1555 * If something was added to this page, it was full 1556 * since it is not the tail page. So we deduct the 1557 * bytes consumed in ring buffer from here. 1558 * Increment overrun to account for the lost events. 1559 */ 1560 local_add(page_entries, &cpu_buffer->overrun); 1561 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1562 } 1563 1564 /* 1565 * We have already removed references to this list item, just 1566 * free up the buffer_page and its page 1567 */ 1568 free_buffer_page(to_remove_page); 1569 nr_removed--; 1570 1571 } while (to_remove_page != last_page); 1572 1573 RB_WARN_ON(cpu_buffer, nr_removed); 1574 1575 return nr_removed == 0; 1576 } 1577 1578 static int 1579 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1580 { 1581 struct list_head *pages = &cpu_buffer->new_pages; 1582 int retries, success; 1583 1584 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1585 /* 1586 * We are holding the reader lock, so the reader page won't be swapped 1587 * in the ring buffer. Now we are racing with the writer trying to 1588 * move head page and the tail page. 1589 * We are going to adapt the reader page update process where: 1590 * 1. We first splice the start and end of list of new pages between 1591 * the head page and its previous page. 1592 * 2. We cmpxchg the prev_page->next to point from head page to the 1593 * start of new pages list. 1594 * 3. Finally, we update the head->prev to the end of new list. 1595 * 1596 * We will try this process 10 times, to make sure that we don't keep 1597 * spinning. 1598 */ 1599 retries = 10; 1600 success = 0; 1601 while (retries--) { 1602 struct list_head *head_page, *prev_page, *r; 1603 struct list_head *last_page, *first_page; 1604 struct list_head *head_page_with_bit; 1605 1606 head_page = &rb_set_head_page(cpu_buffer)->list; 1607 if (!head_page) 1608 break; 1609 prev_page = head_page->prev; 1610 1611 first_page = pages->next; 1612 last_page = pages->prev; 1613 1614 head_page_with_bit = (struct list_head *) 1615 ((unsigned long)head_page | RB_PAGE_HEAD); 1616 1617 last_page->next = head_page_with_bit; 1618 first_page->prev = prev_page; 1619 1620 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1621 1622 if (r == head_page_with_bit) { 1623 /* 1624 * yay, we replaced the page pointer to our new list, 1625 * now, we just have to update to head page's prev 1626 * pointer to point to end of list 1627 */ 1628 head_page->prev = last_page; 1629 success = 1; 1630 break; 1631 } 1632 } 1633 1634 if (success) 1635 INIT_LIST_HEAD(pages); 1636 /* 1637 * If we weren't successful in adding in new pages, warn and stop 1638 * tracing 1639 */ 1640 RB_WARN_ON(cpu_buffer, !success); 1641 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1642 1643 /* free pages if they weren't inserted */ 1644 if (!success) { 1645 struct buffer_page *bpage, *tmp; 1646 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1647 list) { 1648 list_del_init(&bpage->list); 1649 free_buffer_page(bpage); 1650 } 1651 } 1652 return success; 1653 } 1654 1655 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1656 { 1657 int success; 1658 1659 if (cpu_buffer->nr_pages_to_update > 0) 1660 success = rb_insert_pages(cpu_buffer); 1661 else 1662 success = rb_remove_pages(cpu_buffer, 1663 -cpu_buffer->nr_pages_to_update); 1664 1665 if (success) 1666 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1667 } 1668 1669 static void update_pages_handler(struct work_struct *work) 1670 { 1671 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1672 struct ring_buffer_per_cpu, update_pages_work); 1673 rb_update_pages(cpu_buffer); 1674 complete(&cpu_buffer->update_done); 1675 } 1676 1677 /** 1678 * ring_buffer_resize - resize the ring buffer 1679 * @buffer: the buffer to resize. 1680 * @size: the new size. 1681 * @cpu_id: the cpu buffer to resize 1682 * 1683 * Minimum size is 2 * BUF_PAGE_SIZE. 1684 * 1685 * Returns 0 on success and < 0 on failure. 1686 */ 1687 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1688 int cpu_id) 1689 { 1690 struct ring_buffer_per_cpu *cpu_buffer; 1691 unsigned long nr_pages; 1692 int cpu, err = 0; 1693 1694 /* 1695 * Always succeed at resizing a non-existent buffer: 1696 */ 1697 if (!buffer) 1698 return size; 1699 1700 /* Make sure the requested buffer exists */ 1701 if (cpu_id != RING_BUFFER_ALL_CPUS && 1702 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1703 return size; 1704 1705 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1706 1707 /* we need a minimum of two pages */ 1708 if (nr_pages < 2) 1709 nr_pages = 2; 1710 1711 size = nr_pages * BUF_PAGE_SIZE; 1712 1713 /* 1714 * Don't succeed if resizing is disabled, as a reader might be 1715 * manipulating the ring buffer and is expecting a sane state while 1716 * this is true. 1717 */ 1718 if (atomic_read(&buffer->resize_disabled)) 1719 return -EBUSY; 1720 1721 /* prevent another thread from changing buffer sizes */ 1722 mutex_lock(&buffer->mutex); 1723 1724 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1725 /* calculate the pages to update */ 1726 for_each_buffer_cpu(buffer, cpu) { 1727 cpu_buffer = buffer->buffers[cpu]; 1728 1729 cpu_buffer->nr_pages_to_update = nr_pages - 1730 cpu_buffer->nr_pages; 1731 /* 1732 * nothing more to do for removing pages or no update 1733 */ 1734 if (cpu_buffer->nr_pages_to_update <= 0) 1735 continue; 1736 /* 1737 * to add pages, make sure all new pages can be 1738 * allocated without receiving ENOMEM 1739 */ 1740 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1741 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1742 &cpu_buffer->new_pages, cpu)) { 1743 /* not enough memory for new pages */ 1744 err = -ENOMEM; 1745 goto out_err; 1746 } 1747 } 1748 1749 get_online_cpus(); 1750 /* 1751 * Fire off all the required work handlers 1752 * We can't schedule on offline CPUs, but it's not necessary 1753 * since we can change their buffer sizes without any race. 1754 */ 1755 for_each_buffer_cpu(buffer, cpu) { 1756 cpu_buffer = buffer->buffers[cpu]; 1757 if (!cpu_buffer->nr_pages_to_update) 1758 continue; 1759 1760 /* Can't run something on an offline CPU. */ 1761 if (!cpu_online(cpu)) { 1762 rb_update_pages(cpu_buffer); 1763 cpu_buffer->nr_pages_to_update = 0; 1764 } else { 1765 schedule_work_on(cpu, 1766 &cpu_buffer->update_pages_work); 1767 } 1768 } 1769 1770 /* wait for all the updates to complete */ 1771 for_each_buffer_cpu(buffer, cpu) { 1772 cpu_buffer = buffer->buffers[cpu]; 1773 if (!cpu_buffer->nr_pages_to_update) 1774 continue; 1775 1776 if (cpu_online(cpu)) 1777 wait_for_completion(&cpu_buffer->update_done); 1778 cpu_buffer->nr_pages_to_update = 0; 1779 } 1780 1781 put_online_cpus(); 1782 } else { 1783 /* Make sure this CPU has been intitialized */ 1784 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1785 goto out; 1786 1787 cpu_buffer = buffer->buffers[cpu_id]; 1788 1789 if (nr_pages == cpu_buffer->nr_pages) 1790 goto out; 1791 1792 cpu_buffer->nr_pages_to_update = nr_pages - 1793 cpu_buffer->nr_pages; 1794 1795 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1796 if (cpu_buffer->nr_pages_to_update > 0 && 1797 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1798 &cpu_buffer->new_pages, cpu_id)) { 1799 err = -ENOMEM; 1800 goto out_err; 1801 } 1802 1803 get_online_cpus(); 1804 1805 /* Can't run something on an offline CPU. */ 1806 if (!cpu_online(cpu_id)) 1807 rb_update_pages(cpu_buffer); 1808 else { 1809 schedule_work_on(cpu_id, 1810 &cpu_buffer->update_pages_work); 1811 wait_for_completion(&cpu_buffer->update_done); 1812 } 1813 1814 cpu_buffer->nr_pages_to_update = 0; 1815 put_online_cpus(); 1816 } 1817 1818 out: 1819 /* 1820 * The ring buffer resize can happen with the ring buffer 1821 * enabled, so that the update disturbs the tracing as little 1822 * as possible. But if the buffer is disabled, we do not need 1823 * to worry about that, and we can take the time to verify 1824 * that the buffer is not corrupt. 1825 */ 1826 if (atomic_read(&buffer->record_disabled)) { 1827 atomic_inc(&buffer->record_disabled); 1828 /* 1829 * Even though the buffer was disabled, we must make sure 1830 * that it is truly disabled before calling rb_check_pages. 1831 * There could have been a race between checking 1832 * record_disable and incrementing it. 1833 */ 1834 synchronize_sched(); 1835 for_each_buffer_cpu(buffer, cpu) { 1836 cpu_buffer = buffer->buffers[cpu]; 1837 rb_check_pages(cpu_buffer); 1838 } 1839 atomic_dec(&buffer->record_disabled); 1840 } 1841 1842 mutex_unlock(&buffer->mutex); 1843 return size; 1844 1845 out_err: 1846 for_each_buffer_cpu(buffer, cpu) { 1847 struct buffer_page *bpage, *tmp; 1848 1849 cpu_buffer = buffer->buffers[cpu]; 1850 cpu_buffer->nr_pages_to_update = 0; 1851 1852 if (list_empty(&cpu_buffer->new_pages)) 1853 continue; 1854 1855 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1856 list) { 1857 list_del_init(&bpage->list); 1858 free_buffer_page(bpage); 1859 } 1860 } 1861 mutex_unlock(&buffer->mutex); 1862 return err; 1863 } 1864 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1865 1866 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1867 { 1868 mutex_lock(&buffer->mutex); 1869 if (val) 1870 buffer->flags |= RB_FL_OVERWRITE; 1871 else 1872 buffer->flags &= ~RB_FL_OVERWRITE; 1873 mutex_unlock(&buffer->mutex); 1874 } 1875 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1876 1877 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1878 { 1879 return bpage->page->data + index; 1880 } 1881 1882 static __always_inline struct ring_buffer_event * 1883 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1884 { 1885 return __rb_page_index(cpu_buffer->reader_page, 1886 cpu_buffer->reader_page->read); 1887 } 1888 1889 static __always_inline struct ring_buffer_event * 1890 rb_iter_head_event(struct ring_buffer_iter *iter) 1891 { 1892 return __rb_page_index(iter->head_page, iter->head); 1893 } 1894 1895 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1896 { 1897 return local_read(&bpage->page->commit); 1898 } 1899 1900 /* Size is determined by what has been committed */ 1901 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1902 { 1903 return rb_page_commit(bpage); 1904 } 1905 1906 static __always_inline unsigned 1907 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1908 { 1909 return rb_page_commit(cpu_buffer->commit_page); 1910 } 1911 1912 static __always_inline unsigned 1913 rb_event_index(struct ring_buffer_event *event) 1914 { 1915 unsigned long addr = (unsigned long)event; 1916 1917 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1918 } 1919 1920 static void rb_inc_iter(struct ring_buffer_iter *iter) 1921 { 1922 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1923 1924 /* 1925 * The iterator could be on the reader page (it starts there). 1926 * But the head could have moved, since the reader was 1927 * found. Check for this case and assign the iterator 1928 * to the head page instead of next. 1929 */ 1930 if (iter->head_page == cpu_buffer->reader_page) 1931 iter->head_page = rb_set_head_page(cpu_buffer); 1932 else 1933 rb_inc_page(cpu_buffer, &iter->head_page); 1934 1935 iter->read_stamp = iter->head_page->page->time_stamp; 1936 iter->head = 0; 1937 } 1938 1939 /* 1940 * rb_handle_head_page - writer hit the head page 1941 * 1942 * Returns: +1 to retry page 1943 * 0 to continue 1944 * -1 on error 1945 */ 1946 static int 1947 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1948 struct buffer_page *tail_page, 1949 struct buffer_page *next_page) 1950 { 1951 struct buffer_page *new_head; 1952 int entries; 1953 int type; 1954 int ret; 1955 1956 entries = rb_page_entries(next_page); 1957 1958 /* 1959 * The hard part is here. We need to move the head 1960 * forward, and protect against both readers on 1961 * other CPUs and writers coming in via interrupts. 1962 */ 1963 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1964 RB_PAGE_HEAD); 1965 1966 /* 1967 * type can be one of four: 1968 * NORMAL - an interrupt already moved it for us 1969 * HEAD - we are the first to get here. 1970 * UPDATE - we are the interrupt interrupting 1971 * a current move. 1972 * MOVED - a reader on another CPU moved the next 1973 * pointer to its reader page. Give up 1974 * and try again. 1975 */ 1976 1977 switch (type) { 1978 case RB_PAGE_HEAD: 1979 /* 1980 * We changed the head to UPDATE, thus 1981 * it is our responsibility to update 1982 * the counters. 1983 */ 1984 local_add(entries, &cpu_buffer->overrun); 1985 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1986 1987 /* 1988 * The entries will be zeroed out when we move the 1989 * tail page. 1990 */ 1991 1992 /* still more to do */ 1993 break; 1994 1995 case RB_PAGE_UPDATE: 1996 /* 1997 * This is an interrupt that interrupt the 1998 * previous update. Still more to do. 1999 */ 2000 break; 2001 case RB_PAGE_NORMAL: 2002 /* 2003 * An interrupt came in before the update 2004 * and processed this for us. 2005 * Nothing left to do. 2006 */ 2007 return 1; 2008 case RB_PAGE_MOVED: 2009 /* 2010 * The reader is on another CPU and just did 2011 * a swap with our next_page. 2012 * Try again. 2013 */ 2014 return 1; 2015 default: 2016 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2017 return -1; 2018 } 2019 2020 /* 2021 * Now that we are here, the old head pointer is 2022 * set to UPDATE. This will keep the reader from 2023 * swapping the head page with the reader page. 2024 * The reader (on another CPU) will spin till 2025 * we are finished. 2026 * 2027 * We just need to protect against interrupts 2028 * doing the job. We will set the next pointer 2029 * to HEAD. After that, we set the old pointer 2030 * to NORMAL, but only if it was HEAD before. 2031 * otherwise we are an interrupt, and only 2032 * want the outer most commit to reset it. 2033 */ 2034 new_head = next_page; 2035 rb_inc_page(cpu_buffer, &new_head); 2036 2037 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2038 RB_PAGE_NORMAL); 2039 2040 /* 2041 * Valid returns are: 2042 * HEAD - an interrupt came in and already set it. 2043 * NORMAL - One of two things: 2044 * 1) We really set it. 2045 * 2) A bunch of interrupts came in and moved 2046 * the page forward again. 2047 */ 2048 switch (ret) { 2049 case RB_PAGE_HEAD: 2050 case RB_PAGE_NORMAL: 2051 /* OK */ 2052 break; 2053 default: 2054 RB_WARN_ON(cpu_buffer, 1); 2055 return -1; 2056 } 2057 2058 /* 2059 * It is possible that an interrupt came in, 2060 * set the head up, then more interrupts came in 2061 * and moved it again. When we get back here, 2062 * the page would have been set to NORMAL but we 2063 * just set it back to HEAD. 2064 * 2065 * How do you detect this? Well, if that happened 2066 * the tail page would have moved. 2067 */ 2068 if (ret == RB_PAGE_NORMAL) { 2069 struct buffer_page *buffer_tail_page; 2070 2071 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2072 /* 2073 * If the tail had moved passed next, then we need 2074 * to reset the pointer. 2075 */ 2076 if (buffer_tail_page != tail_page && 2077 buffer_tail_page != next_page) 2078 rb_head_page_set_normal(cpu_buffer, new_head, 2079 next_page, 2080 RB_PAGE_HEAD); 2081 } 2082 2083 /* 2084 * If this was the outer most commit (the one that 2085 * changed the original pointer from HEAD to UPDATE), 2086 * then it is up to us to reset it to NORMAL. 2087 */ 2088 if (type == RB_PAGE_HEAD) { 2089 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2090 tail_page, 2091 RB_PAGE_UPDATE); 2092 if (RB_WARN_ON(cpu_buffer, 2093 ret != RB_PAGE_UPDATE)) 2094 return -1; 2095 } 2096 2097 return 0; 2098 } 2099 2100 static inline void 2101 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2102 unsigned long tail, struct rb_event_info *info) 2103 { 2104 struct buffer_page *tail_page = info->tail_page; 2105 struct ring_buffer_event *event; 2106 unsigned long length = info->length; 2107 2108 /* 2109 * Only the event that crossed the page boundary 2110 * must fill the old tail_page with padding. 2111 */ 2112 if (tail >= BUF_PAGE_SIZE) { 2113 /* 2114 * If the page was filled, then we still need 2115 * to update the real_end. Reset it to zero 2116 * and the reader will ignore it. 2117 */ 2118 if (tail == BUF_PAGE_SIZE) 2119 tail_page->real_end = 0; 2120 2121 local_sub(length, &tail_page->write); 2122 return; 2123 } 2124 2125 event = __rb_page_index(tail_page, tail); 2126 2127 /* account for padding bytes */ 2128 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2129 2130 /* 2131 * Save the original length to the meta data. 2132 * This will be used by the reader to add lost event 2133 * counter. 2134 */ 2135 tail_page->real_end = tail; 2136 2137 /* 2138 * If this event is bigger than the minimum size, then 2139 * we need to be careful that we don't subtract the 2140 * write counter enough to allow another writer to slip 2141 * in on this page. 2142 * We put in a discarded commit instead, to make sure 2143 * that this space is not used again. 2144 * 2145 * If we are less than the minimum size, we don't need to 2146 * worry about it. 2147 */ 2148 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2149 /* No room for any events */ 2150 2151 /* Mark the rest of the page with padding */ 2152 rb_event_set_padding(event); 2153 2154 /* Set the write back to the previous setting */ 2155 local_sub(length, &tail_page->write); 2156 return; 2157 } 2158 2159 /* Put in a discarded event */ 2160 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2161 event->type_len = RINGBUF_TYPE_PADDING; 2162 /* time delta must be non zero */ 2163 event->time_delta = 1; 2164 2165 /* Set write to end of buffer */ 2166 length = (tail + length) - BUF_PAGE_SIZE; 2167 local_sub(length, &tail_page->write); 2168 } 2169 2170 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2171 2172 /* 2173 * This is the slow path, force gcc not to inline it. 2174 */ 2175 static noinline struct ring_buffer_event * 2176 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2177 unsigned long tail, struct rb_event_info *info) 2178 { 2179 struct buffer_page *tail_page = info->tail_page; 2180 struct buffer_page *commit_page = cpu_buffer->commit_page; 2181 struct ring_buffer *buffer = cpu_buffer->buffer; 2182 struct buffer_page *next_page; 2183 int ret; 2184 2185 next_page = tail_page; 2186 2187 rb_inc_page(cpu_buffer, &next_page); 2188 2189 /* 2190 * If for some reason, we had an interrupt storm that made 2191 * it all the way around the buffer, bail, and warn 2192 * about it. 2193 */ 2194 if (unlikely(next_page == commit_page)) { 2195 local_inc(&cpu_buffer->commit_overrun); 2196 goto out_reset; 2197 } 2198 2199 /* 2200 * This is where the fun begins! 2201 * 2202 * We are fighting against races between a reader that 2203 * could be on another CPU trying to swap its reader 2204 * page with the buffer head. 2205 * 2206 * We are also fighting against interrupts coming in and 2207 * moving the head or tail on us as well. 2208 * 2209 * If the next page is the head page then we have filled 2210 * the buffer, unless the commit page is still on the 2211 * reader page. 2212 */ 2213 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2214 2215 /* 2216 * If the commit is not on the reader page, then 2217 * move the header page. 2218 */ 2219 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2220 /* 2221 * If we are not in overwrite mode, 2222 * this is easy, just stop here. 2223 */ 2224 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2225 local_inc(&cpu_buffer->dropped_events); 2226 goto out_reset; 2227 } 2228 2229 ret = rb_handle_head_page(cpu_buffer, 2230 tail_page, 2231 next_page); 2232 if (ret < 0) 2233 goto out_reset; 2234 if (ret) 2235 goto out_again; 2236 } else { 2237 /* 2238 * We need to be careful here too. The 2239 * commit page could still be on the reader 2240 * page. We could have a small buffer, and 2241 * have filled up the buffer with events 2242 * from interrupts and such, and wrapped. 2243 * 2244 * Note, if the tail page is also the on the 2245 * reader_page, we let it move out. 2246 */ 2247 if (unlikely((cpu_buffer->commit_page != 2248 cpu_buffer->tail_page) && 2249 (cpu_buffer->commit_page == 2250 cpu_buffer->reader_page))) { 2251 local_inc(&cpu_buffer->commit_overrun); 2252 goto out_reset; 2253 } 2254 } 2255 } 2256 2257 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2258 2259 out_again: 2260 2261 rb_reset_tail(cpu_buffer, tail, info); 2262 2263 /* Commit what we have for now. */ 2264 rb_end_commit(cpu_buffer); 2265 /* rb_end_commit() decs committing */ 2266 local_inc(&cpu_buffer->committing); 2267 2268 /* fail and let the caller try again */ 2269 return ERR_PTR(-EAGAIN); 2270 2271 out_reset: 2272 /* reset write */ 2273 rb_reset_tail(cpu_buffer, tail, info); 2274 2275 return NULL; 2276 } 2277 2278 /* Slow path, do not inline */ 2279 static noinline struct ring_buffer_event * 2280 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2281 { 2282 if (abs) 2283 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2284 else 2285 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2286 2287 /* Not the first event on the page, or not delta? */ 2288 if (abs || rb_event_index(event)) { 2289 event->time_delta = delta & TS_MASK; 2290 event->array[0] = delta >> TS_SHIFT; 2291 } else { 2292 /* nope, just zero it */ 2293 event->time_delta = 0; 2294 event->array[0] = 0; 2295 } 2296 2297 return skip_time_extend(event); 2298 } 2299 2300 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2301 struct ring_buffer_event *event); 2302 2303 /** 2304 * rb_update_event - update event type and data 2305 * @event: the event to update 2306 * @type: the type of event 2307 * @length: the size of the event field in the ring buffer 2308 * 2309 * Update the type and data fields of the event. The length 2310 * is the actual size that is written to the ring buffer, 2311 * and with this, we can determine what to place into the 2312 * data field. 2313 */ 2314 static void 2315 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2316 struct ring_buffer_event *event, 2317 struct rb_event_info *info) 2318 { 2319 unsigned length = info->length; 2320 u64 delta = info->delta; 2321 2322 /* Only a commit updates the timestamp */ 2323 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2324 delta = 0; 2325 2326 /* 2327 * If we need to add a timestamp, then we 2328 * add it to the start of the resevered space. 2329 */ 2330 if (unlikely(info->add_timestamp)) { 2331 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer); 2332 2333 event = rb_add_time_stamp(event, info->delta, abs); 2334 length -= RB_LEN_TIME_EXTEND; 2335 delta = 0; 2336 } 2337 2338 event->time_delta = delta; 2339 length -= RB_EVNT_HDR_SIZE; 2340 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2341 event->type_len = 0; 2342 event->array[0] = length; 2343 } else 2344 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2345 } 2346 2347 static unsigned rb_calculate_event_length(unsigned length) 2348 { 2349 struct ring_buffer_event event; /* Used only for sizeof array */ 2350 2351 /* zero length can cause confusions */ 2352 if (!length) 2353 length++; 2354 2355 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2356 length += sizeof(event.array[0]); 2357 2358 length += RB_EVNT_HDR_SIZE; 2359 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2360 2361 /* 2362 * In case the time delta is larger than the 27 bits for it 2363 * in the header, we need to add a timestamp. If another 2364 * event comes in when trying to discard this one to increase 2365 * the length, then the timestamp will be added in the allocated 2366 * space of this event. If length is bigger than the size needed 2367 * for the TIME_EXTEND, then padding has to be used. The events 2368 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2369 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2370 * As length is a multiple of 4, we only need to worry if it 2371 * is 12 (RB_LEN_TIME_EXTEND + 4). 2372 */ 2373 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2374 length += RB_ALIGNMENT; 2375 2376 return length; 2377 } 2378 2379 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2380 static inline bool sched_clock_stable(void) 2381 { 2382 return true; 2383 } 2384 #endif 2385 2386 static inline int 2387 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2388 struct ring_buffer_event *event) 2389 { 2390 unsigned long new_index, old_index; 2391 struct buffer_page *bpage; 2392 unsigned long index; 2393 unsigned long addr; 2394 2395 new_index = rb_event_index(event); 2396 old_index = new_index + rb_event_ts_length(event); 2397 addr = (unsigned long)event; 2398 addr &= PAGE_MASK; 2399 2400 bpage = READ_ONCE(cpu_buffer->tail_page); 2401 2402 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2403 unsigned long write_mask = 2404 local_read(&bpage->write) & ~RB_WRITE_MASK; 2405 unsigned long event_length = rb_event_length(event); 2406 /* 2407 * This is on the tail page. It is possible that 2408 * a write could come in and move the tail page 2409 * and write to the next page. That is fine 2410 * because we just shorten what is on this page. 2411 */ 2412 old_index += write_mask; 2413 new_index += write_mask; 2414 index = local_cmpxchg(&bpage->write, old_index, new_index); 2415 if (index == old_index) { 2416 /* update counters */ 2417 local_sub(event_length, &cpu_buffer->entries_bytes); 2418 return 1; 2419 } 2420 } 2421 2422 /* could not discard */ 2423 return 0; 2424 } 2425 2426 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2427 { 2428 local_inc(&cpu_buffer->committing); 2429 local_inc(&cpu_buffer->commits); 2430 } 2431 2432 static __always_inline void 2433 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2434 { 2435 unsigned long max_count; 2436 2437 /* 2438 * We only race with interrupts and NMIs on this CPU. 2439 * If we own the commit event, then we can commit 2440 * all others that interrupted us, since the interruptions 2441 * are in stack format (they finish before they come 2442 * back to us). This allows us to do a simple loop to 2443 * assign the commit to the tail. 2444 */ 2445 again: 2446 max_count = cpu_buffer->nr_pages * 100; 2447 2448 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2449 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2450 return; 2451 if (RB_WARN_ON(cpu_buffer, 2452 rb_is_reader_page(cpu_buffer->tail_page))) 2453 return; 2454 local_set(&cpu_buffer->commit_page->page->commit, 2455 rb_page_write(cpu_buffer->commit_page)); 2456 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2457 /* Only update the write stamp if the page has an event */ 2458 if (rb_page_write(cpu_buffer->commit_page)) 2459 cpu_buffer->write_stamp = 2460 cpu_buffer->commit_page->page->time_stamp; 2461 /* add barrier to keep gcc from optimizing too much */ 2462 barrier(); 2463 } 2464 while (rb_commit_index(cpu_buffer) != 2465 rb_page_write(cpu_buffer->commit_page)) { 2466 2467 local_set(&cpu_buffer->commit_page->page->commit, 2468 rb_page_write(cpu_buffer->commit_page)); 2469 RB_WARN_ON(cpu_buffer, 2470 local_read(&cpu_buffer->commit_page->page->commit) & 2471 ~RB_WRITE_MASK); 2472 barrier(); 2473 } 2474 2475 /* again, keep gcc from optimizing */ 2476 barrier(); 2477 2478 /* 2479 * If an interrupt came in just after the first while loop 2480 * and pushed the tail page forward, we will be left with 2481 * a dangling commit that will never go forward. 2482 */ 2483 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2484 goto again; 2485 } 2486 2487 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2488 { 2489 unsigned long commits; 2490 2491 if (RB_WARN_ON(cpu_buffer, 2492 !local_read(&cpu_buffer->committing))) 2493 return; 2494 2495 again: 2496 commits = local_read(&cpu_buffer->commits); 2497 /* synchronize with interrupts */ 2498 barrier(); 2499 if (local_read(&cpu_buffer->committing) == 1) 2500 rb_set_commit_to_write(cpu_buffer); 2501 2502 local_dec(&cpu_buffer->committing); 2503 2504 /* synchronize with interrupts */ 2505 barrier(); 2506 2507 /* 2508 * Need to account for interrupts coming in between the 2509 * updating of the commit page and the clearing of the 2510 * committing counter. 2511 */ 2512 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2513 !local_read(&cpu_buffer->committing)) { 2514 local_inc(&cpu_buffer->committing); 2515 goto again; 2516 } 2517 } 2518 2519 static inline void rb_event_discard(struct ring_buffer_event *event) 2520 { 2521 if (extended_time(event)) 2522 event = skip_time_extend(event); 2523 2524 /* array[0] holds the actual length for the discarded event */ 2525 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2526 event->type_len = RINGBUF_TYPE_PADDING; 2527 /* time delta must be non zero */ 2528 if (!event->time_delta) 2529 event->time_delta = 1; 2530 } 2531 2532 static __always_inline bool 2533 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2534 struct ring_buffer_event *event) 2535 { 2536 unsigned long addr = (unsigned long)event; 2537 unsigned long index; 2538 2539 index = rb_event_index(event); 2540 addr &= PAGE_MASK; 2541 2542 return cpu_buffer->commit_page->page == (void *)addr && 2543 rb_commit_index(cpu_buffer) == index; 2544 } 2545 2546 static __always_inline void 2547 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2548 struct ring_buffer_event *event) 2549 { 2550 u64 delta; 2551 2552 /* 2553 * The event first in the commit queue updates the 2554 * time stamp. 2555 */ 2556 if (rb_event_is_commit(cpu_buffer, event)) { 2557 /* 2558 * A commit event that is first on a page 2559 * updates the write timestamp with the page stamp 2560 */ 2561 if (!rb_event_index(event)) 2562 cpu_buffer->write_stamp = 2563 cpu_buffer->commit_page->page->time_stamp; 2564 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2565 delta = ring_buffer_event_time_stamp(event); 2566 cpu_buffer->write_stamp += delta; 2567 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 2568 delta = ring_buffer_event_time_stamp(event); 2569 cpu_buffer->write_stamp = delta; 2570 } else 2571 cpu_buffer->write_stamp += event->time_delta; 2572 } 2573 } 2574 2575 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2576 struct ring_buffer_event *event) 2577 { 2578 local_inc(&cpu_buffer->entries); 2579 rb_update_write_stamp(cpu_buffer, event); 2580 rb_end_commit(cpu_buffer); 2581 } 2582 2583 static __always_inline void 2584 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2585 { 2586 bool pagebusy; 2587 2588 if (buffer->irq_work.waiters_pending) { 2589 buffer->irq_work.waiters_pending = false; 2590 /* irq_work_queue() supplies it's own memory barriers */ 2591 irq_work_queue(&buffer->irq_work.work); 2592 } 2593 2594 if (cpu_buffer->irq_work.waiters_pending) { 2595 cpu_buffer->irq_work.waiters_pending = false; 2596 /* irq_work_queue() supplies it's own memory barriers */ 2597 irq_work_queue(&cpu_buffer->irq_work.work); 2598 } 2599 2600 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2601 2602 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2603 cpu_buffer->irq_work.wakeup_full = true; 2604 cpu_buffer->irq_work.full_waiters_pending = false; 2605 /* irq_work_queue() supplies it's own memory barriers */ 2606 irq_work_queue(&cpu_buffer->irq_work.work); 2607 } 2608 } 2609 2610 /* 2611 * The lock and unlock are done within a preempt disable section. 2612 * The current_context per_cpu variable can only be modified 2613 * by the current task between lock and unlock. But it can 2614 * be modified more than once via an interrupt. To pass this 2615 * information from the lock to the unlock without having to 2616 * access the 'in_interrupt()' functions again (which do show 2617 * a bit of overhead in something as critical as function tracing, 2618 * we use a bitmask trick. 2619 * 2620 * bit 0 = NMI context 2621 * bit 1 = IRQ context 2622 * bit 2 = SoftIRQ context 2623 * bit 3 = normal context. 2624 * 2625 * This works because this is the order of contexts that can 2626 * preempt other contexts. A SoftIRQ never preempts an IRQ 2627 * context. 2628 * 2629 * When the context is determined, the corresponding bit is 2630 * checked and set (if it was set, then a recursion of that context 2631 * happened). 2632 * 2633 * On unlock, we need to clear this bit. To do so, just subtract 2634 * 1 from the current_context and AND it to itself. 2635 * 2636 * (binary) 2637 * 101 - 1 = 100 2638 * 101 & 100 = 100 (clearing bit zero) 2639 * 2640 * 1010 - 1 = 1001 2641 * 1010 & 1001 = 1000 (clearing bit 1) 2642 * 2643 * The least significant bit can be cleared this way, and it 2644 * just so happens that it is the same bit corresponding to 2645 * the current context. 2646 */ 2647 2648 static __always_inline int 2649 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2650 { 2651 unsigned int val = cpu_buffer->current_context; 2652 unsigned long pc = preempt_count(); 2653 int bit; 2654 2655 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 2656 bit = RB_CTX_NORMAL; 2657 else 2658 bit = pc & NMI_MASK ? RB_CTX_NMI : 2659 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 2660 2661 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 2662 return 1; 2663 2664 val |= (1 << (bit + cpu_buffer->nest)); 2665 cpu_buffer->current_context = val; 2666 2667 return 0; 2668 } 2669 2670 static __always_inline void 2671 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2672 { 2673 cpu_buffer->current_context &= 2674 cpu_buffer->current_context - (1 << cpu_buffer->nest); 2675 } 2676 2677 /* The recursive locking above uses 4 bits */ 2678 #define NESTED_BITS 4 2679 2680 /** 2681 * ring_buffer_nest_start - Allow to trace while nested 2682 * @buffer: The ring buffer to modify 2683 * 2684 * The ring buffer has a safty mechanism to prevent recursion. 2685 * But there may be a case where a trace needs to be done while 2686 * tracing something else. In this case, calling this function 2687 * will allow this function to nest within a currently active 2688 * ring_buffer_lock_reserve(). 2689 * 2690 * Call this function before calling another ring_buffer_lock_reserve() and 2691 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 2692 */ 2693 void ring_buffer_nest_start(struct ring_buffer *buffer) 2694 { 2695 struct ring_buffer_per_cpu *cpu_buffer; 2696 int cpu; 2697 2698 /* Enabled by ring_buffer_nest_end() */ 2699 preempt_disable_notrace(); 2700 cpu = raw_smp_processor_id(); 2701 cpu_buffer = buffer->buffers[cpu]; 2702 /* This is the shift value for the above recusive locking */ 2703 cpu_buffer->nest += NESTED_BITS; 2704 } 2705 2706 /** 2707 * ring_buffer_nest_end - Allow to trace while nested 2708 * @buffer: The ring buffer to modify 2709 * 2710 * Must be called after ring_buffer_nest_start() and after the 2711 * ring_buffer_unlock_commit(). 2712 */ 2713 void ring_buffer_nest_end(struct ring_buffer *buffer) 2714 { 2715 struct ring_buffer_per_cpu *cpu_buffer; 2716 int cpu; 2717 2718 /* disabled by ring_buffer_nest_start() */ 2719 cpu = raw_smp_processor_id(); 2720 cpu_buffer = buffer->buffers[cpu]; 2721 /* This is the shift value for the above recusive locking */ 2722 cpu_buffer->nest -= NESTED_BITS; 2723 preempt_enable_notrace(); 2724 } 2725 2726 /** 2727 * ring_buffer_unlock_commit - commit a reserved 2728 * @buffer: The buffer to commit to 2729 * @event: The event pointer to commit. 2730 * 2731 * This commits the data to the ring buffer, and releases any locks held. 2732 * 2733 * Must be paired with ring_buffer_lock_reserve. 2734 */ 2735 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2736 struct ring_buffer_event *event) 2737 { 2738 struct ring_buffer_per_cpu *cpu_buffer; 2739 int cpu = raw_smp_processor_id(); 2740 2741 cpu_buffer = buffer->buffers[cpu]; 2742 2743 rb_commit(cpu_buffer, event); 2744 2745 rb_wakeups(buffer, cpu_buffer); 2746 2747 trace_recursive_unlock(cpu_buffer); 2748 2749 preempt_enable_notrace(); 2750 2751 return 0; 2752 } 2753 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2754 2755 static noinline void 2756 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2757 struct rb_event_info *info) 2758 { 2759 WARN_ONCE(info->delta > (1ULL << 59), 2760 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2761 (unsigned long long)info->delta, 2762 (unsigned long long)info->ts, 2763 (unsigned long long)cpu_buffer->write_stamp, 2764 sched_clock_stable() ? "" : 2765 "If you just came from a suspend/resume,\n" 2766 "please switch to the trace global clock:\n" 2767 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2768 "or add trace_clock=global to the kernel command line\n"); 2769 info->add_timestamp = 1; 2770 } 2771 2772 static struct ring_buffer_event * 2773 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2774 struct rb_event_info *info) 2775 { 2776 struct ring_buffer_event *event; 2777 struct buffer_page *tail_page; 2778 unsigned long tail, write; 2779 2780 /* 2781 * If the time delta since the last event is too big to 2782 * hold in the time field of the event, then we append a 2783 * TIME EXTEND event ahead of the data event. 2784 */ 2785 if (unlikely(info->add_timestamp)) 2786 info->length += RB_LEN_TIME_EXTEND; 2787 2788 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2789 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2790 write = local_add_return(info->length, &tail_page->write); 2791 2792 /* set write to only the index of the write */ 2793 write &= RB_WRITE_MASK; 2794 tail = write - info->length; 2795 2796 /* 2797 * If this is the first commit on the page, then it has the same 2798 * timestamp as the page itself. 2799 */ 2800 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer)) 2801 info->delta = 0; 2802 2803 /* See if we shot pass the end of this buffer page */ 2804 if (unlikely(write > BUF_PAGE_SIZE)) 2805 return rb_move_tail(cpu_buffer, tail, info); 2806 2807 /* We reserved something on the buffer */ 2808 2809 event = __rb_page_index(tail_page, tail); 2810 rb_update_event(cpu_buffer, event, info); 2811 2812 local_inc(&tail_page->entries); 2813 2814 /* 2815 * If this is the first commit on the page, then update 2816 * its timestamp. 2817 */ 2818 if (!tail) 2819 tail_page->page->time_stamp = info->ts; 2820 2821 /* account for these added bytes */ 2822 local_add(info->length, &cpu_buffer->entries_bytes); 2823 2824 return event; 2825 } 2826 2827 static __always_inline struct ring_buffer_event * 2828 rb_reserve_next_event(struct ring_buffer *buffer, 2829 struct ring_buffer_per_cpu *cpu_buffer, 2830 unsigned long length) 2831 { 2832 struct ring_buffer_event *event; 2833 struct rb_event_info info; 2834 int nr_loops = 0; 2835 u64 diff; 2836 2837 rb_start_commit(cpu_buffer); 2838 2839 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2840 /* 2841 * Due to the ability to swap a cpu buffer from a buffer 2842 * it is possible it was swapped before we committed. 2843 * (committing stops a swap). We check for it here and 2844 * if it happened, we have to fail the write. 2845 */ 2846 barrier(); 2847 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2848 local_dec(&cpu_buffer->committing); 2849 local_dec(&cpu_buffer->commits); 2850 return NULL; 2851 } 2852 #endif 2853 2854 info.length = rb_calculate_event_length(length); 2855 again: 2856 info.add_timestamp = 0; 2857 info.delta = 0; 2858 2859 /* 2860 * We allow for interrupts to reenter here and do a trace. 2861 * If one does, it will cause this original code to loop 2862 * back here. Even with heavy interrupts happening, this 2863 * should only happen a few times in a row. If this happens 2864 * 1000 times in a row, there must be either an interrupt 2865 * storm or we have something buggy. 2866 * Bail! 2867 */ 2868 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2869 goto out_fail; 2870 2871 info.ts = rb_time_stamp(cpu_buffer->buffer); 2872 diff = info.ts - cpu_buffer->write_stamp; 2873 2874 /* make sure this diff is calculated here */ 2875 barrier(); 2876 2877 if (ring_buffer_time_stamp_abs(buffer)) { 2878 info.delta = info.ts; 2879 rb_handle_timestamp(cpu_buffer, &info); 2880 } else /* Did the write stamp get updated already? */ 2881 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2882 info.delta = diff; 2883 if (unlikely(test_time_stamp(info.delta))) 2884 rb_handle_timestamp(cpu_buffer, &info); 2885 } 2886 2887 event = __rb_reserve_next(cpu_buffer, &info); 2888 2889 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2890 if (info.add_timestamp) 2891 info.length -= RB_LEN_TIME_EXTEND; 2892 goto again; 2893 } 2894 2895 if (!event) 2896 goto out_fail; 2897 2898 return event; 2899 2900 out_fail: 2901 rb_end_commit(cpu_buffer); 2902 return NULL; 2903 } 2904 2905 /** 2906 * ring_buffer_lock_reserve - reserve a part of the buffer 2907 * @buffer: the ring buffer to reserve from 2908 * @length: the length of the data to reserve (excluding event header) 2909 * 2910 * Returns a reseverd event on the ring buffer to copy directly to. 2911 * The user of this interface will need to get the body to write into 2912 * and can use the ring_buffer_event_data() interface. 2913 * 2914 * The length is the length of the data needed, not the event length 2915 * which also includes the event header. 2916 * 2917 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2918 * If NULL is returned, then nothing has been allocated or locked. 2919 */ 2920 struct ring_buffer_event * 2921 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2922 { 2923 struct ring_buffer_per_cpu *cpu_buffer; 2924 struct ring_buffer_event *event; 2925 int cpu; 2926 2927 /* If we are tracing schedule, we don't want to recurse */ 2928 preempt_disable_notrace(); 2929 2930 if (unlikely(atomic_read(&buffer->record_disabled))) 2931 goto out; 2932 2933 cpu = raw_smp_processor_id(); 2934 2935 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2936 goto out; 2937 2938 cpu_buffer = buffer->buffers[cpu]; 2939 2940 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2941 goto out; 2942 2943 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2944 goto out; 2945 2946 if (unlikely(trace_recursive_lock(cpu_buffer))) 2947 goto out; 2948 2949 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2950 if (!event) 2951 goto out_unlock; 2952 2953 return event; 2954 2955 out_unlock: 2956 trace_recursive_unlock(cpu_buffer); 2957 out: 2958 preempt_enable_notrace(); 2959 return NULL; 2960 } 2961 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2962 2963 /* 2964 * Decrement the entries to the page that an event is on. 2965 * The event does not even need to exist, only the pointer 2966 * to the page it is on. This may only be called before the commit 2967 * takes place. 2968 */ 2969 static inline void 2970 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2971 struct ring_buffer_event *event) 2972 { 2973 unsigned long addr = (unsigned long)event; 2974 struct buffer_page *bpage = cpu_buffer->commit_page; 2975 struct buffer_page *start; 2976 2977 addr &= PAGE_MASK; 2978 2979 /* Do the likely case first */ 2980 if (likely(bpage->page == (void *)addr)) { 2981 local_dec(&bpage->entries); 2982 return; 2983 } 2984 2985 /* 2986 * Because the commit page may be on the reader page we 2987 * start with the next page and check the end loop there. 2988 */ 2989 rb_inc_page(cpu_buffer, &bpage); 2990 start = bpage; 2991 do { 2992 if (bpage->page == (void *)addr) { 2993 local_dec(&bpage->entries); 2994 return; 2995 } 2996 rb_inc_page(cpu_buffer, &bpage); 2997 } while (bpage != start); 2998 2999 /* commit not part of this buffer?? */ 3000 RB_WARN_ON(cpu_buffer, 1); 3001 } 3002 3003 /** 3004 * ring_buffer_commit_discard - discard an event that has not been committed 3005 * @buffer: the ring buffer 3006 * @event: non committed event to discard 3007 * 3008 * Sometimes an event that is in the ring buffer needs to be ignored. 3009 * This function lets the user discard an event in the ring buffer 3010 * and then that event will not be read later. 3011 * 3012 * This function only works if it is called before the the item has been 3013 * committed. It will try to free the event from the ring buffer 3014 * if another event has not been added behind it. 3015 * 3016 * If another event has been added behind it, it will set the event 3017 * up as discarded, and perform the commit. 3018 * 3019 * If this function is called, do not call ring_buffer_unlock_commit on 3020 * the event. 3021 */ 3022 void ring_buffer_discard_commit(struct ring_buffer *buffer, 3023 struct ring_buffer_event *event) 3024 { 3025 struct ring_buffer_per_cpu *cpu_buffer; 3026 int cpu; 3027 3028 /* The event is discarded regardless */ 3029 rb_event_discard(event); 3030 3031 cpu = smp_processor_id(); 3032 cpu_buffer = buffer->buffers[cpu]; 3033 3034 /* 3035 * This must only be called if the event has not been 3036 * committed yet. Thus we can assume that preemption 3037 * is still disabled. 3038 */ 3039 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3040 3041 rb_decrement_entry(cpu_buffer, event); 3042 if (rb_try_to_discard(cpu_buffer, event)) 3043 goto out; 3044 3045 /* 3046 * The commit is still visible by the reader, so we 3047 * must still update the timestamp. 3048 */ 3049 rb_update_write_stamp(cpu_buffer, event); 3050 out: 3051 rb_end_commit(cpu_buffer); 3052 3053 trace_recursive_unlock(cpu_buffer); 3054 3055 preempt_enable_notrace(); 3056 3057 } 3058 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3059 3060 /** 3061 * ring_buffer_write - write data to the buffer without reserving 3062 * @buffer: The ring buffer to write to. 3063 * @length: The length of the data being written (excluding the event header) 3064 * @data: The data to write to the buffer. 3065 * 3066 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3067 * one function. If you already have the data to write to the buffer, it 3068 * may be easier to simply call this function. 3069 * 3070 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3071 * and not the length of the event which would hold the header. 3072 */ 3073 int ring_buffer_write(struct ring_buffer *buffer, 3074 unsigned long length, 3075 void *data) 3076 { 3077 struct ring_buffer_per_cpu *cpu_buffer; 3078 struct ring_buffer_event *event; 3079 void *body; 3080 int ret = -EBUSY; 3081 int cpu; 3082 3083 preempt_disable_notrace(); 3084 3085 if (atomic_read(&buffer->record_disabled)) 3086 goto out; 3087 3088 cpu = raw_smp_processor_id(); 3089 3090 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3091 goto out; 3092 3093 cpu_buffer = buffer->buffers[cpu]; 3094 3095 if (atomic_read(&cpu_buffer->record_disabled)) 3096 goto out; 3097 3098 if (length > BUF_MAX_DATA_SIZE) 3099 goto out; 3100 3101 if (unlikely(trace_recursive_lock(cpu_buffer))) 3102 goto out; 3103 3104 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3105 if (!event) 3106 goto out_unlock; 3107 3108 body = rb_event_data(event); 3109 3110 memcpy(body, data, length); 3111 3112 rb_commit(cpu_buffer, event); 3113 3114 rb_wakeups(buffer, cpu_buffer); 3115 3116 ret = 0; 3117 3118 out_unlock: 3119 trace_recursive_unlock(cpu_buffer); 3120 3121 out: 3122 preempt_enable_notrace(); 3123 3124 return ret; 3125 } 3126 EXPORT_SYMBOL_GPL(ring_buffer_write); 3127 3128 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3129 { 3130 struct buffer_page *reader = cpu_buffer->reader_page; 3131 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3132 struct buffer_page *commit = cpu_buffer->commit_page; 3133 3134 /* In case of error, head will be NULL */ 3135 if (unlikely(!head)) 3136 return true; 3137 3138 return reader->read == rb_page_commit(reader) && 3139 (commit == reader || 3140 (commit == head && 3141 head->read == rb_page_commit(commit))); 3142 } 3143 3144 /** 3145 * ring_buffer_record_disable - stop all writes into the buffer 3146 * @buffer: The ring buffer to stop writes to. 3147 * 3148 * This prevents all writes to the buffer. Any attempt to write 3149 * to the buffer after this will fail and return NULL. 3150 * 3151 * The caller should call synchronize_sched() after this. 3152 */ 3153 void ring_buffer_record_disable(struct ring_buffer *buffer) 3154 { 3155 atomic_inc(&buffer->record_disabled); 3156 } 3157 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3158 3159 /** 3160 * ring_buffer_record_enable - enable writes to the buffer 3161 * @buffer: The ring buffer to enable writes 3162 * 3163 * Note, multiple disables will need the same number of enables 3164 * to truly enable the writing (much like preempt_disable). 3165 */ 3166 void ring_buffer_record_enable(struct ring_buffer *buffer) 3167 { 3168 atomic_dec(&buffer->record_disabled); 3169 } 3170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3171 3172 /** 3173 * ring_buffer_record_off - stop all writes into the buffer 3174 * @buffer: The ring buffer to stop writes to. 3175 * 3176 * This prevents all writes to the buffer. Any attempt to write 3177 * to the buffer after this will fail and return NULL. 3178 * 3179 * This is different than ring_buffer_record_disable() as 3180 * it works like an on/off switch, where as the disable() version 3181 * must be paired with a enable(). 3182 */ 3183 void ring_buffer_record_off(struct ring_buffer *buffer) 3184 { 3185 unsigned int rd; 3186 unsigned int new_rd; 3187 3188 do { 3189 rd = atomic_read(&buffer->record_disabled); 3190 new_rd = rd | RB_BUFFER_OFF; 3191 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3192 } 3193 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3194 3195 /** 3196 * ring_buffer_record_on - restart writes into the buffer 3197 * @buffer: The ring buffer to start writes to. 3198 * 3199 * This enables all writes to the buffer that was disabled by 3200 * ring_buffer_record_off(). 3201 * 3202 * This is different than ring_buffer_record_enable() as 3203 * it works like an on/off switch, where as the enable() version 3204 * must be paired with a disable(). 3205 */ 3206 void ring_buffer_record_on(struct ring_buffer *buffer) 3207 { 3208 unsigned int rd; 3209 unsigned int new_rd; 3210 3211 do { 3212 rd = atomic_read(&buffer->record_disabled); 3213 new_rd = rd & ~RB_BUFFER_OFF; 3214 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3215 } 3216 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3217 3218 /** 3219 * ring_buffer_record_is_on - return true if the ring buffer can write 3220 * @buffer: The ring buffer to see if write is enabled 3221 * 3222 * Returns true if the ring buffer is in a state that it accepts writes. 3223 */ 3224 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3225 { 3226 return !atomic_read(&buffer->record_disabled); 3227 } 3228 3229 /** 3230 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3231 * @buffer: The ring buffer to stop writes to. 3232 * @cpu: The CPU buffer to stop 3233 * 3234 * This prevents all writes to the buffer. Any attempt to write 3235 * to the buffer after this will fail and return NULL. 3236 * 3237 * The caller should call synchronize_sched() after this. 3238 */ 3239 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3240 { 3241 struct ring_buffer_per_cpu *cpu_buffer; 3242 3243 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3244 return; 3245 3246 cpu_buffer = buffer->buffers[cpu]; 3247 atomic_inc(&cpu_buffer->record_disabled); 3248 } 3249 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3250 3251 /** 3252 * ring_buffer_record_enable_cpu - enable writes to the buffer 3253 * @buffer: The ring buffer to enable writes 3254 * @cpu: The CPU to enable. 3255 * 3256 * Note, multiple disables will need the same number of enables 3257 * to truly enable the writing (much like preempt_disable). 3258 */ 3259 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3260 { 3261 struct ring_buffer_per_cpu *cpu_buffer; 3262 3263 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3264 return; 3265 3266 cpu_buffer = buffer->buffers[cpu]; 3267 atomic_dec(&cpu_buffer->record_disabled); 3268 } 3269 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3270 3271 /* 3272 * The total entries in the ring buffer is the running counter 3273 * of entries entered into the ring buffer, minus the sum of 3274 * the entries read from the ring buffer and the number of 3275 * entries that were overwritten. 3276 */ 3277 static inline unsigned long 3278 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3279 { 3280 return local_read(&cpu_buffer->entries) - 3281 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3282 } 3283 3284 /** 3285 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3286 * @buffer: The ring buffer 3287 * @cpu: The per CPU buffer to read from. 3288 */ 3289 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3290 { 3291 unsigned long flags; 3292 struct ring_buffer_per_cpu *cpu_buffer; 3293 struct buffer_page *bpage; 3294 u64 ret = 0; 3295 3296 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3297 return 0; 3298 3299 cpu_buffer = buffer->buffers[cpu]; 3300 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3301 /* 3302 * if the tail is on reader_page, oldest time stamp is on the reader 3303 * page 3304 */ 3305 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3306 bpage = cpu_buffer->reader_page; 3307 else 3308 bpage = rb_set_head_page(cpu_buffer); 3309 if (bpage) 3310 ret = bpage->page->time_stamp; 3311 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3312 3313 return ret; 3314 } 3315 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3316 3317 /** 3318 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3319 * @buffer: The ring buffer 3320 * @cpu: The per CPU buffer to read from. 3321 */ 3322 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3323 { 3324 struct ring_buffer_per_cpu *cpu_buffer; 3325 unsigned long ret; 3326 3327 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3328 return 0; 3329 3330 cpu_buffer = buffer->buffers[cpu]; 3331 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3332 3333 return ret; 3334 } 3335 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3336 3337 /** 3338 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3339 * @buffer: The ring buffer 3340 * @cpu: The per CPU buffer to get the entries from. 3341 */ 3342 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3343 { 3344 struct ring_buffer_per_cpu *cpu_buffer; 3345 3346 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3347 return 0; 3348 3349 cpu_buffer = buffer->buffers[cpu]; 3350 3351 return rb_num_of_entries(cpu_buffer); 3352 } 3353 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3354 3355 /** 3356 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3357 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3358 * @buffer: The ring buffer 3359 * @cpu: The per CPU buffer to get the number of overruns from 3360 */ 3361 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3362 { 3363 struct ring_buffer_per_cpu *cpu_buffer; 3364 unsigned long ret; 3365 3366 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3367 return 0; 3368 3369 cpu_buffer = buffer->buffers[cpu]; 3370 ret = local_read(&cpu_buffer->overrun); 3371 3372 return ret; 3373 } 3374 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3375 3376 /** 3377 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3378 * commits failing due to the buffer wrapping around while there are uncommitted 3379 * events, such as during an interrupt storm. 3380 * @buffer: The ring buffer 3381 * @cpu: The per CPU buffer to get the number of overruns from 3382 */ 3383 unsigned long 3384 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3385 { 3386 struct ring_buffer_per_cpu *cpu_buffer; 3387 unsigned long ret; 3388 3389 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3390 return 0; 3391 3392 cpu_buffer = buffer->buffers[cpu]; 3393 ret = local_read(&cpu_buffer->commit_overrun); 3394 3395 return ret; 3396 } 3397 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3398 3399 /** 3400 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3401 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3402 * @buffer: The ring buffer 3403 * @cpu: The per CPU buffer to get the number of overruns from 3404 */ 3405 unsigned long 3406 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3407 { 3408 struct ring_buffer_per_cpu *cpu_buffer; 3409 unsigned long ret; 3410 3411 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3412 return 0; 3413 3414 cpu_buffer = buffer->buffers[cpu]; 3415 ret = local_read(&cpu_buffer->dropped_events); 3416 3417 return ret; 3418 } 3419 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3420 3421 /** 3422 * ring_buffer_read_events_cpu - get the number of events successfully read 3423 * @buffer: The ring buffer 3424 * @cpu: The per CPU buffer to get the number of events read 3425 */ 3426 unsigned long 3427 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3428 { 3429 struct ring_buffer_per_cpu *cpu_buffer; 3430 3431 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3432 return 0; 3433 3434 cpu_buffer = buffer->buffers[cpu]; 3435 return cpu_buffer->read; 3436 } 3437 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3438 3439 /** 3440 * ring_buffer_entries - get the number of entries in a buffer 3441 * @buffer: The ring buffer 3442 * 3443 * Returns the total number of entries in the ring buffer 3444 * (all CPU entries) 3445 */ 3446 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3447 { 3448 struct ring_buffer_per_cpu *cpu_buffer; 3449 unsigned long entries = 0; 3450 int cpu; 3451 3452 /* if you care about this being correct, lock the buffer */ 3453 for_each_buffer_cpu(buffer, cpu) { 3454 cpu_buffer = buffer->buffers[cpu]; 3455 entries += rb_num_of_entries(cpu_buffer); 3456 } 3457 3458 return entries; 3459 } 3460 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3461 3462 /** 3463 * ring_buffer_overruns - get the number of overruns in buffer 3464 * @buffer: The ring buffer 3465 * 3466 * Returns the total number of overruns in the ring buffer 3467 * (all CPU entries) 3468 */ 3469 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3470 { 3471 struct ring_buffer_per_cpu *cpu_buffer; 3472 unsigned long overruns = 0; 3473 int cpu; 3474 3475 /* if you care about this being correct, lock the buffer */ 3476 for_each_buffer_cpu(buffer, cpu) { 3477 cpu_buffer = buffer->buffers[cpu]; 3478 overruns += local_read(&cpu_buffer->overrun); 3479 } 3480 3481 return overruns; 3482 } 3483 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3484 3485 static void rb_iter_reset(struct ring_buffer_iter *iter) 3486 { 3487 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3488 3489 /* Iterator usage is expected to have record disabled */ 3490 iter->head_page = cpu_buffer->reader_page; 3491 iter->head = cpu_buffer->reader_page->read; 3492 3493 iter->cache_reader_page = iter->head_page; 3494 iter->cache_read = cpu_buffer->read; 3495 3496 if (iter->head) 3497 iter->read_stamp = cpu_buffer->read_stamp; 3498 else 3499 iter->read_stamp = iter->head_page->page->time_stamp; 3500 } 3501 3502 /** 3503 * ring_buffer_iter_reset - reset an iterator 3504 * @iter: The iterator to reset 3505 * 3506 * Resets the iterator, so that it will start from the beginning 3507 * again. 3508 */ 3509 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3510 { 3511 struct ring_buffer_per_cpu *cpu_buffer; 3512 unsigned long flags; 3513 3514 if (!iter) 3515 return; 3516 3517 cpu_buffer = iter->cpu_buffer; 3518 3519 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3520 rb_iter_reset(iter); 3521 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3522 } 3523 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3524 3525 /** 3526 * ring_buffer_iter_empty - check if an iterator has no more to read 3527 * @iter: The iterator to check 3528 */ 3529 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3530 { 3531 struct ring_buffer_per_cpu *cpu_buffer; 3532 struct buffer_page *reader; 3533 struct buffer_page *head_page; 3534 struct buffer_page *commit_page; 3535 unsigned commit; 3536 3537 cpu_buffer = iter->cpu_buffer; 3538 3539 /* Remember, trace recording is off when iterator is in use */ 3540 reader = cpu_buffer->reader_page; 3541 head_page = cpu_buffer->head_page; 3542 commit_page = cpu_buffer->commit_page; 3543 commit = rb_page_commit(commit_page); 3544 3545 return ((iter->head_page == commit_page && iter->head == commit) || 3546 (iter->head_page == reader && commit_page == head_page && 3547 head_page->read == commit && 3548 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3549 } 3550 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3551 3552 static void 3553 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3554 struct ring_buffer_event *event) 3555 { 3556 u64 delta; 3557 3558 switch (event->type_len) { 3559 case RINGBUF_TYPE_PADDING: 3560 return; 3561 3562 case RINGBUF_TYPE_TIME_EXTEND: 3563 delta = ring_buffer_event_time_stamp(event); 3564 cpu_buffer->read_stamp += delta; 3565 return; 3566 3567 case RINGBUF_TYPE_TIME_STAMP: 3568 delta = ring_buffer_event_time_stamp(event); 3569 cpu_buffer->read_stamp = delta; 3570 return; 3571 3572 case RINGBUF_TYPE_DATA: 3573 cpu_buffer->read_stamp += event->time_delta; 3574 return; 3575 3576 default: 3577 BUG(); 3578 } 3579 return; 3580 } 3581 3582 static void 3583 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3584 struct ring_buffer_event *event) 3585 { 3586 u64 delta; 3587 3588 switch (event->type_len) { 3589 case RINGBUF_TYPE_PADDING: 3590 return; 3591 3592 case RINGBUF_TYPE_TIME_EXTEND: 3593 delta = ring_buffer_event_time_stamp(event); 3594 iter->read_stamp += delta; 3595 return; 3596 3597 case RINGBUF_TYPE_TIME_STAMP: 3598 delta = ring_buffer_event_time_stamp(event); 3599 iter->read_stamp = delta; 3600 return; 3601 3602 case RINGBUF_TYPE_DATA: 3603 iter->read_stamp += event->time_delta; 3604 return; 3605 3606 default: 3607 BUG(); 3608 } 3609 return; 3610 } 3611 3612 static struct buffer_page * 3613 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3614 { 3615 struct buffer_page *reader = NULL; 3616 unsigned long overwrite; 3617 unsigned long flags; 3618 int nr_loops = 0; 3619 int ret; 3620 3621 local_irq_save(flags); 3622 arch_spin_lock(&cpu_buffer->lock); 3623 3624 again: 3625 /* 3626 * This should normally only loop twice. But because the 3627 * start of the reader inserts an empty page, it causes 3628 * a case where we will loop three times. There should be no 3629 * reason to loop four times (that I know of). 3630 */ 3631 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3632 reader = NULL; 3633 goto out; 3634 } 3635 3636 reader = cpu_buffer->reader_page; 3637 3638 /* If there's more to read, return this page */ 3639 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3640 goto out; 3641 3642 /* Never should we have an index greater than the size */ 3643 if (RB_WARN_ON(cpu_buffer, 3644 cpu_buffer->reader_page->read > rb_page_size(reader))) 3645 goto out; 3646 3647 /* check if we caught up to the tail */ 3648 reader = NULL; 3649 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3650 goto out; 3651 3652 /* Don't bother swapping if the ring buffer is empty */ 3653 if (rb_num_of_entries(cpu_buffer) == 0) 3654 goto out; 3655 3656 /* 3657 * Reset the reader page to size zero. 3658 */ 3659 local_set(&cpu_buffer->reader_page->write, 0); 3660 local_set(&cpu_buffer->reader_page->entries, 0); 3661 local_set(&cpu_buffer->reader_page->page->commit, 0); 3662 cpu_buffer->reader_page->real_end = 0; 3663 3664 spin: 3665 /* 3666 * Splice the empty reader page into the list around the head. 3667 */ 3668 reader = rb_set_head_page(cpu_buffer); 3669 if (!reader) 3670 goto out; 3671 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3672 cpu_buffer->reader_page->list.prev = reader->list.prev; 3673 3674 /* 3675 * cpu_buffer->pages just needs to point to the buffer, it 3676 * has no specific buffer page to point to. Lets move it out 3677 * of our way so we don't accidentally swap it. 3678 */ 3679 cpu_buffer->pages = reader->list.prev; 3680 3681 /* The reader page will be pointing to the new head */ 3682 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3683 3684 /* 3685 * We want to make sure we read the overruns after we set up our 3686 * pointers to the next object. The writer side does a 3687 * cmpxchg to cross pages which acts as the mb on the writer 3688 * side. Note, the reader will constantly fail the swap 3689 * while the writer is updating the pointers, so this 3690 * guarantees that the overwrite recorded here is the one we 3691 * want to compare with the last_overrun. 3692 */ 3693 smp_mb(); 3694 overwrite = local_read(&(cpu_buffer->overrun)); 3695 3696 /* 3697 * Here's the tricky part. 3698 * 3699 * We need to move the pointer past the header page. 3700 * But we can only do that if a writer is not currently 3701 * moving it. The page before the header page has the 3702 * flag bit '1' set if it is pointing to the page we want. 3703 * but if the writer is in the process of moving it 3704 * than it will be '2' or already moved '0'. 3705 */ 3706 3707 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3708 3709 /* 3710 * If we did not convert it, then we must try again. 3711 */ 3712 if (!ret) 3713 goto spin; 3714 3715 /* 3716 * Yeah! We succeeded in replacing the page. 3717 * 3718 * Now make the new head point back to the reader page. 3719 */ 3720 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3721 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3722 3723 /* Finally update the reader page to the new head */ 3724 cpu_buffer->reader_page = reader; 3725 cpu_buffer->reader_page->read = 0; 3726 3727 if (overwrite != cpu_buffer->last_overrun) { 3728 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3729 cpu_buffer->last_overrun = overwrite; 3730 } 3731 3732 goto again; 3733 3734 out: 3735 /* Update the read_stamp on the first event */ 3736 if (reader && reader->read == 0) 3737 cpu_buffer->read_stamp = reader->page->time_stamp; 3738 3739 arch_spin_unlock(&cpu_buffer->lock); 3740 local_irq_restore(flags); 3741 3742 return reader; 3743 } 3744 3745 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3746 { 3747 struct ring_buffer_event *event; 3748 struct buffer_page *reader; 3749 unsigned length; 3750 3751 reader = rb_get_reader_page(cpu_buffer); 3752 3753 /* This function should not be called when buffer is empty */ 3754 if (RB_WARN_ON(cpu_buffer, !reader)) 3755 return; 3756 3757 event = rb_reader_event(cpu_buffer); 3758 3759 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3760 cpu_buffer->read++; 3761 3762 rb_update_read_stamp(cpu_buffer, event); 3763 3764 length = rb_event_length(event); 3765 cpu_buffer->reader_page->read += length; 3766 } 3767 3768 static void rb_advance_iter(struct ring_buffer_iter *iter) 3769 { 3770 struct ring_buffer_per_cpu *cpu_buffer; 3771 struct ring_buffer_event *event; 3772 unsigned length; 3773 3774 cpu_buffer = iter->cpu_buffer; 3775 3776 /* 3777 * Check if we are at the end of the buffer. 3778 */ 3779 if (iter->head >= rb_page_size(iter->head_page)) { 3780 /* discarded commits can make the page empty */ 3781 if (iter->head_page == cpu_buffer->commit_page) 3782 return; 3783 rb_inc_iter(iter); 3784 return; 3785 } 3786 3787 event = rb_iter_head_event(iter); 3788 3789 length = rb_event_length(event); 3790 3791 /* 3792 * This should not be called to advance the header if we are 3793 * at the tail of the buffer. 3794 */ 3795 if (RB_WARN_ON(cpu_buffer, 3796 (iter->head_page == cpu_buffer->commit_page) && 3797 (iter->head + length > rb_commit_index(cpu_buffer)))) 3798 return; 3799 3800 rb_update_iter_read_stamp(iter, event); 3801 3802 iter->head += length; 3803 3804 /* check for end of page padding */ 3805 if ((iter->head >= rb_page_size(iter->head_page)) && 3806 (iter->head_page != cpu_buffer->commit_page)) 3807 rb_inc_iter(iter); 3808 } 3809 3810 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3811 { 3812 return cpu_buffer->lost_events; 3813 } 3814 3815 static struct ring_buffer_event * 3816 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3817 unsigned long *lost_events) 3818 { 3819 struct ring_buffer_event *event; 3820 struct buffer_page *reader; 3821 int nr_loops = 0; 3822 3823 if (ts) 3824 *ts = 0; 3825 again: 3826 /* 3827 * We repeat when a time extend is encountered. 3828 * Since the time extend is always attached to a data event, 3829 * we should never loop more than once. 3830 * (We never hit the following condition more than twice). 3831 */ 3832 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3833 return NULL; 3834 3835 reader = rb_get_reader_page(cpu_buffer); 3836 if (!reader) 3837 return NULL; 3838 3839 event = rb_reader_event(cpu_buffer); 3840 3841 switch (event->type_len) { 3842 case RINGBUF_TYPE_PADDING: 3843 if (rb_null_event(event)) 3844 RB_WARN_ON(cpu_buffer, 1); 3845 /* 3846 * Because the writer could be discarding every 3847 * event it creates (which would probably be bad) 3848 * if we were to go back to "again" then we may never 3849 * catch up, and will trigger the warn on, or lock 3850 * the box. Return the padding, and we will release 3851 * the current locks, and try again. 3852 */ 3853 return event; 3854 3855 case RINGBUF_TYPE_TIME_EXTEND: 3856 /* Internal data, OK to advance */ 3857 rb_advance_reader(cpu_buffer); 3858 goto again; 3859 3860 case RINGBUF_TYPE_TIME_STAMP: 3861 if (ts) { 3862 *ts = ring_buffer_event_time_stamp(event); 3863 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3864 cpu_buffer->cpu, ts); 3865 } 3866 /* Internal data, OK to advance */ 3867 rb_advance_reader(cpu_buffer); 3868 goto again; 3869 3870 case RINGBUF_TYPE_DATA: 3871 if (ts && !(*ts)) { 3872 *ts = cpu_buffer->read_stamp + event->time_delta; 3873 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3874 cpu_buffer->cpu, ts); 3875 } 3876 if (lost_events) 3877 *lost_events = rb_lost_events(cpu_buffer); 3878 return event; 3879 3880 default: 3881 BUG(); 3882 } 3883 3884 return NULL; 3885 } 3886 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3887 3888 static struct ring_buffer_event * 3889 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3890 { 3891 struct ring_buffer *buffer; 3892 struct ring_buffer_per_cpu *cpu_buffer; 3893 struct ring_buffer_event *event; 3894 int nr_loops = 0; 3895 3896 if (ts) 3897 *ts = 0; 3898 3899 cpu_buffer = iter->cpu_buffer; 3900 buffer = cpu_buffer->buffer; 3901 3902 /* 3903 * Check if someone performed a consuming read to 3904 * the buffer. A consuming read invalidates the iterator 3905 * and we need to reset the iterator in this case. 3906 */ 3907 if (unlikely(iter->cache_read != cpu_buffer->read || 3908 iter->cache_reader_page != cpu_buffer->reader_page)) 3909 rb_iter_reset(iter); 3910 3911 again: 3912 if (ring_buffer_iter_empty(iter)) 3913 return NULL; 3914 3915 /* 3916 * We repeat when a time extend is encountered or we hit 3917 * the end of the page. Since the time extend is always attached 3918 * to a data event, we should never loop more than three times. 3919 * Once for going to next page, once on time extend, and 3920 * finally once to get the event. 3921 * (We never hit the following condition more than thrice). 3922 */ 3923 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3924 return NULL; 3925 3926 if (rb_per_cpu_empty(cpu_buffer)) 3927 return NULL; 3928 3929 if (iter->head >= rb_page_size(iter->head_page)) { 3930 rb_inc_iter(iter); 3931 goto again; 3932 } 3933 3934 event = rb_iter_head_event(iter); 3935 3936 switch (event->type_len) { 3937 case RINGBUF_TYPE_PADDING: 3938 if (rb_null_event(event)) { 3939 rb_inc_iter(iter); 3940 goto again; 3941 } 3942 rb_advance_iter(iter); 3943 return event; 3944 3945 case RINGBUF_TYPE_TIME_EXTEND: 3946 /* Internal data, OK to advance */ 3947 rb_advance_iter(iter); 3948 goto again; 3949 3950 case RINGBUF_TYPE_TIME_STAMP: 3951 if (ts) { 3952 *ts = ring_buffer_event_time_stamp(event); 3953 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3954 cpu_buffer->cpu, ts); 3955 } 3956 /* Internal data, OK to advance */ 3957 rb_advance_iter(iter); 3958 goto again; 3959 3960 case RINGBUF_TYPE_DATA: 3961 if (ts && !(*ts)) { 3962 *ts = iter->read_stamp + event->time_delta; 3963 ring_buffer_normalize_time_stamp(buffer, 3964 cpu_buffer->cpu, ts); 3965 } 3966 return event; 3967 3968 default: 3969 BUG(); 3970 } 3971 3972 return NULL; 3973 } 3974 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3975 3976 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3977 { 3978 if (likely(!in_nmi())) { 3979 raw_spin_lock(&cpu_buffer->reader_lock); 3980 return true; 3981 } 3982 3983 /* 3984 * If an NMI die dumps out the content of the ring buffer 3985 * trylock must be used to prevent a deadlock if the NMI 3986 * preempted a task that holds the ring buffer locks. If 3987 * we get the lock then all is fine, if not, then continue 3988 * to do the read, but this can corrupt the ring buffer, 3989 * so it must be permanently disabled from future writes. 3990 * Reading from NMI is a oneshot deal. 3991 */ 3992 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3993 return true; 3994 3995 /* Continue without locking, but disable the ring buffer */ 3996 atomic_inc(&cpu_buffer->record_disabled); 3997 return false; 3998 } 3999 4000 static inline void 4001 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4002 { 4003 if (likely(locked)) 4004 raw_spin_unlock(&cpu_buffer->reader_lock); 4005 return; 4006 } 4007 4008 /** 4009 * ring_buffer_peek - peek at the next event to be read 4010 * @buffer: The ring buffer to read 4011 * @cpu: The cpu to peak at 4012 * @ts: The timestamp counter of this event. 4013 * @lost_events: a variable to store if events were lost (may be NULL) 4014 * 4015 * This will return the event that will be read next, but does 4016 * not consume the data. 4017 */ 4018 struct ring_buffer_event * 4019 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 4020 unsigned long *lost_events) 4021 { 4022 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4023 struct ring_buffer_event *event; 4024 unsigned long flags; 4025 bool dolock; 4026 4027 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4028 return NULL; 4029 4030 again: 4031 local_irq_save(flags); 4032 dolock = rb_reader_lock(cpu_buffer); 4033 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4034 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4035 rb_advance_reader(cpu_buffer); 4036 rb_reader_unlock(cpu_buffer, dolock); 4037 local_irq_restore(flags); 4038 4039 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4040 goto again; 4041 4042 return event; 4043 } 4044 4045 /** 4046 * ring_buffer_iter_peek - peek at the next event to be read 4047 * @iter: The ring buffer iterator 4048 * @ts: The timestamp counter of this event. 4049 * 4050 * This will return the event that will be read next, but does 4051 * not increment the iterator. 4052 */ 4053 struct ring_buffer_event * 4054 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4055 { 4056 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4057 struct ring_buffer_event *event; 4058 unsigned long flags; 4059 4060 again: 4061 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4062 event = rb_iter_peek(iter, ts); 4063 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4064 4065 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4066 goto again; 4067 4068 return event; 4069 } 4070 4071 /** 4072 * ring_buffer_consume - return an event and consume it 4073 * @buffer: The ring buffer to get the next event from 4074 * @cpu: the cpu to read the buffer from 4075 * @ts: a variable to store the timestamp (may be NULL) 4076 * @lost_events: a variable to store if events were lost (may be NULL) 4077 * 4078 * Returns the next event in the ring buffer, and that event is consumed. 4079 * Meaning, that sequential reads will keep returning a different event, 4080 * and eventually empty the ring buffer if the producer is slower. 4081 */ 4082 struct ring_buffer_event * 4083 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 4084 unsigned long *lost_events) 4085 { 4086 struct ring_buffer_per_cpu *cpu_buffer; 4087 struct ring_buffer_event *event = NULL; 4088 unsigned long flags; 4089 bool dolock; 4090 4091 again: 4092 /* might be called in atomic */ 4093 preempt_disable(); 4094 4095 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4096 goto out; 4097 4098 cpu_buffer = buffer->buffers[cpu]; 4099 local_irq_save(flags); 4100 dolock = rb_reader_lock(cpu_buffer); 4101 4102 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4103 if (event) { 4104 cpu_buffer->lost_events = 0; 4105 rb_advance_reader(cpu_buffer); 4106 } 4107 4108 rb_reader_unlock(cpu_buffer, dolock); 4109 local_irq_restore(flags); 4110 4111 out: 4112 preempt_enable(); 4113 4114 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4115 goto again; 4116 4117 return event; 4118 } 4119 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4120 4121 /** 4122 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4123 * @buffer: The ring buffer to read from 4124 * @cpu: The cpu buffer to iterate over 4125 * 4126 * This performs the initial preparations necessary to iterate 4127 * through the buffer. Memory is allocated, buffer recording 4128 * is disabled, and the iterator pointer is returned to the caller. 4129 * 4130 * Disabling buffer recordng prevents the reading from being 4131 * corrupted. This is not a consuming read, so a producer is not 4132 * expected. 4133 * 4134 * After a sequence of ring_buffer_read_prepare calls, the user is 4135 * expected to make at least one call to ring_buffer_read_prepare_sync. 4136 * Afterwards, ring_buffer_read_start is invoked to get things going 4137 * for real. 4138 * 4139 * This overall must be paired with ring_buffer_read_finish. 4140 */ 4141 struct ring_buffer_iter * 4142 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4143 { 4144 struct ring_buffer_per_cpu *cpu_buffer; 4145 struct ring_buffer_iter *iter; 4146 4147 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4148 return NULL; 4149 4150 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4151 if (!iter) 4152 return NULL; 4153 4154 cpu_buffer = buffer->buffers[cpu]; 4155 4156 iter->cpu_buffer = cpu_buffer; 4157 4158 atomic_inc(&buffer->resize_disabled); 4159 atomic_inc(&cpu_buffer->record_disabled); 4160 4161 return iter; 4162 } 4163 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4164 4165 /** 4166 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4167 * 4168 * All previously invoked ring_buffer_read_prepare calls to prepare 4169 * iterators will be synchronized. Afterwards, read_buffer_read_start 4170 * calls on those iterators are allowed. 4171 */ 4172 void 4173 ring_buffer_read_prepare_sync(void) 4174 { 4175 synchronize_sched(); 4176 } 4177 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4178 4179 /** 4180 * ring_buffer_read_start - start a non consuming read of the buffer 4181 * @iter: The iterator returned by ring_buffer_read_prepare 4182 * 4183 * This finalizes the startup of an iteration through the buffer. 4184 * The iterator comes from a call to ring_buffer_read_prepare and 4185 * an intervening ring_buffer_read_prepare_sync must have been 4186 * performed. 4187 * 4188 * Must be paired with ring_buffer_read_finish. 4189 */ 4190 void 4191 ring_buffer_read_start(struct ring_buffer_iter *iter) 4192 { 4193 struct ring_buffer_per_cpu *cpu_buffer; 4194 unsigned long flags; 4195 4196 if (!iter) 4197 return; 4198 4199 cpu_buffer = iter->cpu_buffer; 4200 4201 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4202 arch_spin_lock(&cpu_buffer->lock); 4203 rb_iter_reset(iter); 4204 arch_spin_unlock(&cpu_buffer->lock); 4205 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4206 } 4207 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4208 4209 /** 4210 * ring_buffer_read_finish - finish reading the iterator of the buffer 4211 * @iter: The iterator retrieved by ring_buffer_start 4212 * 4213 * This re-enables the recording to the buffer, and frees the 4214 * iterator. 4215 */ 4216 void 4217 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4218 { 4219 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4220 unsigned long flags; 4221 4222 /* 4223 * Ring buffer is disabled from recording, here's a good place 4224 * to check the integrity of the ring buffer. 4225 * Must prevent readers from trying to read, as the check 4226 * clears the HEAD page and readers require it. 4227 */ 4228 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4229 rb_check_pages(cpu_buffer); 4230 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4231 4232 atomic_dec(&cpu_buffer->record_disabled); 4233 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4234 kfree(iter); 4235 } 4236 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4237 4238 /** 4239 * ring_buffer_read - read the next item in the ring buffer by the iterator 4240 * @iter: The ring buffer iterator 4241 * @ts: The time stamp of the event read. 4242 * 4243 * This reads the next event in the ring buffer and increments the iterator. 4244 */ 4245 struct ring_buffer_event * 4246 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4247 { 4248 struct ring_buffer_event *event; 4249 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4250 unsigned long flags; 4251 4252 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4253 again: 4254 event = rb_iter_peek(iter, ts); 4255 if (!event) 4256 goto out; 4257 4258 if (event->type_len == RINGBUF_TYPE_PADDING) 4259 goto again; 4260 4261 rb_advance_iter(iter); 4262 out: 4263 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4264 4265 return event; 4266 } 4267 EXPORT_SYMBOL_GPL(ring_buffer_read); 4268 4269 /** 4270 * ring_buffer_size - return the size of the ring buffer (in bytes) 4271 * @buffer: The ring buffer. 4272 */ 4273 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4274 { 4275 /* 4276 * Earlier, this method returned 4277 * BUF_PAGE_SIZE * buffer->nr_pages 4278 * Since the nr_pages field is now removed, we have converted this to 4279 * return the per cpu buffer value. 4280 */ 4281 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4282 return 0; 4283 4284 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4285 } 4286 EXPORT_SYMBOL_GPL(ring_buffer_size); 4287 4288 static void 4289 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4290 { 4291 rb_head_page_deactivate(cpu_buffer); 4292 4293 cpu_buffer->head_page 4294 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4295 local_set(&cpu_buffer->head_page->write, 0); 4296 local_set(&cpu_buffer->head_page->entries, 0); 4297 local_set(&cpu_buffer->head_page->page->commit, 0); 4298 4299 cpu_buffer->head_page->read = 0; 4300 4301 cpu_buffer->tail_page = cpu_buffer->head_page; 4302 cpu_buffer->commit_page = cpu_buffer->head_page; 4303 4304 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4305 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4306 local_set(&cpu_buffer->reader_page->write, 0); 4307 local_set(&cpu_buffer->reader_page->entries, 0); 4308 local_set(&cpu_buffer->reader_page->page->commit, 0); 4309 cpu_buffer->reader_page->read = 0; 4310 4311 local_set(&cpu_buffer->entries_bytes, 0); 4312 local_set(&cpu_buffer->overrun, 0); 4313 local_set(&cpu_buffer->commit_overrun, 0); 4314 local_set(&cpu_buffer->dropped_events, 0); 4315 local_set(&cpu_buffer->entries, 0); 4316 local_set(&cpu_buffer->committing, 0); 4317 local_set(&cpu_buffer->commits, 0); 4318 cpu_buffer->read = 0; 4319 cpu_buffer->read_bytes = 0; 4320 4321 cpu_buffer->write_stamp = 0; 4322 cpu_buffer->read_stamp = 0; 4323 4324 cpu_buffer->lost_events = 0; 4325 cpu_buffer->last_overrun = 0; 4326 4327 rb_head_page_activate(cpu_buffer); 4328 } 4329 4330 /** 4331 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4332 * @buffer: The ring buffer to reset a per cpu buffer of 4333 * @cpu: The CPU buffer to be reset 4334 */ 4335 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4336 { 4337 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4338 unsigned long flags; 4339 4340 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4341 return; 4342 4343 atomic_inc(&buffer->resize_disabled); 4344 atomic_inc(&cpu_buffer->record_disabled); 4345 4346 /* Make sure all commits have finished */ 4347 synchronize_sched(); 4348 4349 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4350 4351 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4352 goto out; 4353 4354 arch_spin_lock(&cpu_buffer->lock); 4355 4356 rb_reset_cpu(cpu_buffer); 4357 4358 arch_spin_unlock(&cpu_buffer->lock); 4359 4360 out: 4361 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4362 4363 atomic_dec(&cpu_buffer->record_disabled); 4364 atomic_dec(&buffer->resize_disabled); 4365 } 4366 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4367 4368 /** 4369 * ring_buffer_reset - reset a ring buffer 4370 * @buffer: The ring buffer to reset all cpu buffers 4371 */ 4372 void ring_buffer_reset(struct ring_buffer *buffer) 4373 { 4374 int cpu; 4375 4376 for_each_buffer_cpu(buffer, cpu) 4377 ring_buffer_reset_cpu(buffer, cpu); 4378 } 4379 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4380 4381 /** 4382 * rind_buffer_empty - is the ring buffer empty? 4383 * @buffer: The ring buffer to test 4384 */ 4385 bool ring_buffer_empty(struct ring_buffer *buffer) 4386 { 4387 struct ring_buffer_per_cpu *cpu_buffer; 4388 unsigned long flags; 4389 bool dolock; 4390 int cpu; 4391 int ret; 4392 4393 /* yes this is racy, but if you don't like the race, lock the buffer */ 4394 for_each_buffer_cpu(buffer, cpu) { 4395 cpu_buffer = buffer->buffers[cpu]; 4396 local_irq_save(flags); 4397 dolock = rb_reader_lock(cpu_buffer); 4398 ret = rb_per_cpu_empty(cpu_buffer); 4399 rb_reader_unlock(cpu_buffer, dolock); 4400 local_irq_restore(flags); 4401 4402 if (!ret) 4403 return false; 4404 } 4405 4406 return true; 4407 } 4408 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4409 4410 /** 4411 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4412 * @buffer: The ring buffer 4413 * @cpu: The CPU buffer to test 4414 */ 4415 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4416 { 4417 struct ring_buffer_per_cpu *cpu_buffer; 4418 unsigned long flags; 4419 bool dolock; 4420 int ret; 4421 4422 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4423 return true; 4424 4425 cpu_buffer = buffer->buffers[cpu]; 4426 local_irq_save(flags); 4427 dolock = rb_reader_lock(cpu_buffer); 4428 ret = rb_per_cpu_empty(cpu_buffer); 4429 rb_reader_unlock(cpu_buffer, dolock); 4430 local_irq_restore(flags); 4431 4432 return ret; 4433 } 4434 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4435 4436 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4437 /** 4438 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4439 * @buffer_a: One buffer to swap with 4440 * @buffer_b: The other buffer to swap with 4441 * 4442 * This function is useful for tracers that want to take a "snapshot" 4443 * of a CPU buffer and has another back up buffer lying around. 4444 * it is expected that the tracer handles the cpu buffer not being 4445 * used at the moment. 4446 */ 4447 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4448 struct ring_buffer *buffer_b, int cpu) 4449 { 4450 struct ring_buffer_per_cpu *cpu_buffer_a; 4451 struct ring_buffer_per_cpu *cpu_buffer_b; 4452 int ret = -EINVAL; 4453 4454 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4455 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4456 goto out; 4457 4458 cpu_buffer_a = buffer_a->buffers[cpu]; 4459 cpu_buffer_b = buffer_b->buffers[cpu]; 4460 4461 /* At least make sure the two buffers are somewhat the same */ 4462 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4463 goto out; 4464 4465 ret = -EAGAIN; 4466 4467 if (atomic_read(&buffer_a->record_disabled)) 4468 goto out; 4469 4470 if (atomic_read(&buffer_b->record_disabled)) 4471 goto out; 4472 4473 if (atomic_read(&cpu_buffer_a->record_disabled)) 4474 goto out; 4475 4476 if (atomic_read(&cpu_buffer_b->record_disabled)) 4477 goto out; 4478 4479 /* 4480 * We can't do a synchronize_sched here because this 4481 * function can be called in atomic context. 4482 * Normally this will be called from the same CPU as cpu. 4483 * If not it's up to the caller to protect this. 4484 */ 4485 atomic_inc(&cpu_buffer_a->record_disabled); 4486 atomic_inc(&cpu_buffer_b->record_disabled); 4487 4488 ret = -EBUSY; 4489 if (local_read(&cpu_buffer_a->committing)) 4490 goto out_dec; 4491 if (local_read(&cpu_buffer_b->committing)) 4492 goto out_dec; 4493 4494 buffer_a->buffers[cpu] = cpu_buffer_b; 4495 buffer_b->buffers[cpu] = cpu_buffer_a; 4496 4497 cpu_buffer_b->buffer = buffer_a; 4498 cpu_buffer_a->buffer = buffer_b; 4499 4500 ret = 0; 4501 4502 out_dec: 4503 atomic_dec(&cpu_buffer_a->record_disabled); 4504 atomic_dec(&cpu_buffer_b->record_disabled); 4505 out: 4506 return ret; 4507 } 4508 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4509 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4510 4511 /** 4512 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4513 * @buffer: the buffer to allocate for. 4514 * @cpu: the cpu buffer to allocate. 4515 * 4516 * This function is used in conjunction with ring_buffer_read_page. 4517 * When reading a full page from the ring buffer, these functions 4518 * can be used to speed up the process. The calling function should 4519 * allocate a few pages first with this function. Then when it 4520 * needs to get pages from the ring buffer, it passes the result 4521 * of this function into ring_buffer_read_page, which will swap 4522 * the page that was allocated, with the read page of the buffer. 4523 * 4524 * Returns: 4525 * The page allocated, or ERR_PTR 4526 */ 4527 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4528 { 4529 struct ring_buffer_per_cpu *cpu_buffer; 4530 struct buffer_data_page *bpage = NULL; 4531 unsigned long flags; 4532 struct page *page; 4533 4534 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4535 return ERR_PTR(-ENODEV); 4536 4537 cpu_buffer = buffer->buffers[cpu]; 4538 local_irq_save(flags); 4539 arch_spin_lock(&cpu_buffer->lock); 4540 4541 if (cpu_buffer->free_page) { 4542 bpage = cpu_buffer->free_page; 4543 cpu_buffer->free_page = NULL; 4544 } 4545 4546 arch_spin_unlock(&cpu_buffer->lock); 4547 local_irq_restore(flags); 4548 4549 if (bpage) 4550 goto out; 4551 4552 page = alloc_pages_node(cpu_to_node(cpu), 4553 GFP_KERNEL | __GFP_NORETRY, 0); 4554 if (!page) 4555 return ERR_PTR(-ENOMEM); 4556 4557 bpage = page_address(page); 4558 4559 out: 4560 rb_init_page(bpage); 4561 4562 return bpage; 4563 } 4564 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4565 4566 /** 4567 * ring_buffer_free_read_page - free an allocated read page 4568 * @buffer: the buffer the page was allocate for 4569 * @cpu: the cpu buffer the page came from 4570 * @data: the page to free 4571 * 4572 * Free a page allocated from ring_buffer_alloc_read_page. 4573 */ 4574 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data) 4575 { 4576 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4577 struct buffer_data_page *bpage = data; 4578 struct page *page = virt_to_page(bpage); 4579 unsigned long flags; 4580 4581 /* If the page is still in use someplace else, we can't reuse it */ 4582 if (page_ref_count(page) > 1) 4583 goto out; 4584 4585 local_irq_save(flags); 4586 arch_spin_lock(&cpu_buffer->lock); 4587 4588 if (!cpu_buffer->free_page) { 4589 cpu_buffer->free_page = bpage; 4590 bpage = NULL; 4591 } 4592 4593 arch_spin_unlock(&cpu_buffer->lock); 4594 local_irq_restore(flags); 4595 4596 out: 4597 free_page((unsigned long)bpage); 4598 } 4599 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4600 4601 /** 4602 * ring_buffer_read_page - extract a page from the ring buffer 4603 * @buffer: buffer to extract from 4604 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4605 * @len: amount to extract 4606 * @cpu: the cpu of the buffer to extract 4607 * @full: should the extraction only happen when the page is full. 4608 * 4609 * This function will pull out a page from the ring buffer and consume it. 4610 * @data_page must be the address of the variable that was returned 4611 * from ring_buffer_alloc_read_page. This is because the page might be used 4612 * to swap with a page in the ring buffer. 4613 * 4614 * for example: 4615 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4616 * if (IS_ERR(rpage)) 4617 * return PTR_ERR(rpage); 4618 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4619 * if (ret >= 0) 4620 * process_page(rpage, ret); 4621 * 4622 * When @full is set, the function will not return true unless 4623 * the writer is off the reader page. 4624 * 4625 * Note: it is up to the calling functions to handle sleeps and wakeups. 4626 * The ring buffer can be used anywhere in the kernel and can not 4627 * blindly call wake_up. The layer that uses the ring buffer must be 4628 * responsible for that. 4629 * 4630 * Returns: 4631 * >=0 if data has been transferred, returns the offset of consumed data. 4632 * <0 if no data has been transferred. 4633 */ 4634 int ring_buffer_read_page(struct ring_buffer *buffer, 4635 void **data_page, size_t len, int cpu, int full) 4636 { 4637 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4638 struct ring_buffer_event *event; 4639 struct buffer_data_page *bpage; 4640 struct buffer_page *reader; 4641 unsigned long missed_events; 4642 unsigned long flags; 4643 unsigned int commit; 4644 unsigned int read; 4645 u64 save_timestamp; 4646 int ret = -1; 4647 4648 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4649 goto out; 4650 4651 /* 4652 * If len is not big enough to hold the page header, then 4653 * we can not copy anything. 4654 */ 4655 if (len <= BUF_PAGE_HDR_SIZE) 4656 goto out; 4657 4658 len -= BUF_PAGE_HDR_SIZE; 4659 4660 if (!data_page) 4661 goto out; 4662 4663 bpage = *data_page; 4664 if (!bpage) 4665 goto out; 4666 4667 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4668 4669 reader = rb_get_reader_page(cpu_buffer); 4670 if (!reader) 4671 goto out_unlock; 4672 4673 event = rb_reader_event(cpu_buffer); 4674 4675 read = reader->read; 4676 commit = rb_page_commit(reader); 4677 4678 /* Check if any events were dropped */ 4679 missed_events = cpu_buffer->lost_events; 4680 4681 /* 4682 * If this page has been partially read or 4683 * if len is not big enough to read the rest of the page or 4684 * a writer is still on the page, then 4685 * we must copy the data from the page to the buffer. 4686 * Otherwise, we can simply swap the page with the one passed in. 4687 */ 4688 if (read || (len < (commit - read)) || 4689 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4690 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4691 unsigned int rpos = read; 4692 unsigned int pos = 0; 4693 unsigned int size; 4694 4695 if (full) 4696 goto out_unlock; 4697 4698 if (len > (commit - read)) 4699 len = (commit - read); 4700 4701 /* Always keep the time extend and data together */ 4702 size = rb_event_ts_length(event); 4703 4704 if (len < size) 4705 goto out_unlock; 4706 4707 /* save the current timestamp, since the user will need it */ 4708 save_timestamp = cpu_buffer->read_stamp; 4709 4710 /* Need to copy one event at a time */ 4711 do { 4712 /* We need the size of one event, because 4713 * rb_advance_reader only advances by one event, 4714 * whereas rb_event_ts_length may include the size of 4715 * one or two events. 4716 * We have already ensured there's enough space if this 4717 * is a time extend. */ 4718 size = rb_event_length(event); 4719 memcpy(bpage->data + pos, rpage->data + rpos, size); 4720 4721 len -= size; 4722 4723 rb_advance_reader(cpu_buffer); 4724 rpos = reader->read; 4725 pos += size; 4726 4727 if (rpos >= commit) 4728 break; 4729 4730 event = rb_reader_event(cpu_buffer); 4731 /* Always keep the time extend and data together */ 4732 size = rb_event_ts_length(event); 4733 } while (len >= size); 4734 4735 /* update bpage */ 4736 local_set(&bpage->commit, pos); 4737 bpage->time_stamp = save_timestamp; 4738 4739 /* we copied everything to the beginning */ 4740 read = 0; 4741 } else { 4742 /* update the entry counter */ 4743 cpu_buffer->read += rb_page_entries(reader); 4744 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4745 4746 /* swap the pages */ 4747 rb_init_page(bpage); 4748 bpage = reader->page; 4749 reader->page = *data_page; 4750 local_set(&reader->write, 0); 4751 local_set(&reader->entries, 0); 4752 reader->read = 0; 4753 *data_page = bpage; 4754 4755 /* 4756 * Use the real_end for the data size, 4757 * This gives us a chance to store the lost events 4758 * on the page. 4759 */ 4760 if (reader->real_end) 4761 local_set(&bpage->commit, reader->real_end); 4762 } 4763 ret = read; 4764 4765 cpu_buffer->lost_events = 0; 4766 4767 commit = local_read(&bpage->commit); 4768 /* 4769 * Set a flag in the commit field if we lost events 4770 */ 4771 if (missed_events) { 4772 /* If there is room at the end of the page to save the 4773 * missed events, then record it there. 4774 */ 4775 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4776 memcpy(&bpage->data[commit], &missed_events, 4777 sizeof(missed_events)); 4778 local_add(RB_MISSED_STORED, &bpage->commit); 4779 commit += sizeof(missed_events); 4780 } 4781 local_add(RB_MISSED_EVENTS, &bpage->commit); 4782 } 4783 4784 /* 4785 * This page may be off to user land. Zero it out here. 4786 */ 4787 if (commit < BUF_PAGE_SIZE) 4788 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4789 4790 out_unlock: 4791 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4792 4793 out: 4794 return ret; 4795 } 4796 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4797 4798 /* 4799 * We only allocate new buffers, never free them if the CPU goes down. 4800 * If we were to free the buffer, then the user would lose any trace that was in 4801 * the buffer. 4802 */ 4803 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4804 { 4805 struct ring_buffer *buffer; 4806 long nr_pages_same; 4807 int cpu_i; 4808 unsigned long nr_pages; 4809 4810 buffer = container_of(node, struct ring_buffer, node); 4811 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4812 return 0; 4813 4814 nr_pages = 0; 4815 nr_pages_same = 1; 4816 /* check if all cpu sizes are same */ 4817 for_each_buffer_cpu(buffer, cpu_i) { 4818 /* fill in the size from first enabled cpu */ 4819 if (nr_pages == 0) 4820 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4821 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4822 nr_pages_same = 0; 4823 break; 4824 } 4825 } 4826 /* allocate minimum pages, user can later expand it */ 4827 if (!nr_pages_same) 4828 nr_pages = 2; 4829 buffer->buffers[cpu] = 4830 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4831 if (!buffer->buffers[cpu]) { 4832 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4833 cpu); 4834 return -ENOMEM; 4835 } 4836 smp_wmb(); 4837 cpumask_set_cpu(cpu, buffer->cpumask); 4838 return 0; 4839 } 4840 4841 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4842 /* 4843 * This is a basic integrity check of the ring buffer. 4844 * Late in the boot cycle this test will run when configured in. 4845 * It will kick off a thread per CPU that will go into a loop 4846 * writing to the per cpu ring buffer various sizes of data. 4847 * Some of the data will be large items, some small. 4848 * 4849 * Another thread is created that goes into a spin, sending out 4850 * IPIs to the other CPUs to also write into the ring buffer. 4851 * this is to test the nesting ability of the buffer. 4852 * 4853 * Basic stats are recorded and reported. If something in the 4854 * ring buffer should happen that's not expected, a big warning 4855 * is displayed and all ring buffers are disabled. 4856 */ 4857 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4858 4859 struct rb_test_data { 4860 struct ring_buffer *buffer; 4861 unsigned long events; 4862 unsigned long bytes_written; 4863 unsigned long bytes_alloc; 4864 unsigned long bytes_dropped; 4865 unsigned long events_nested; 4866 unsigned long bytes_written_nested; 4867 unsigned long bytes_alloc_nested; 4868 unsigned long bytes_dropped_nested; 4869 int min_size_nested; 4870 int max_size_nested; 4871 int max_size; 4872 int min_size; 4873 int cpu; 4874 int cnt; 4875 }; 4876 4877 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4878 4879 /* 1 meg per cpu */ 4880 #define RB_TEST_BUFFER_SIZE 1048576 4881 4882 static char rb_string[] __initdata = 4883 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4884 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4885 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4886 4887 static bool rb_test_started __initdata; 4888 4889 struct rb_item { 4890 int size; 4891 char str[]; 4892 }; 4893 4894 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4895 { 4896 struct ring_buffer_event *event; 4897 struct rb_item *item; 4898 bool started; 4899 int event_len; 4900 int size; 4901 int len; 4902 int cnt; 4903 4904 /* Have nested writes different that what is written */ 4905 cnt = data->cnt + (nested ? 27 : 0); 4906 4907 /* Multiply cnt by ~e, to make some unique increment */ 4908 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4909 4910 len = size + sizeof(struct rb_item); 4911 4912 started = rb_test_started; 4913 /* read rb_test_started before checking buffer enabled */ 4914 smp_rmb(); 4915 4916 event = ring_buffer_lock_reserve(data->buffer, len); 4917 if (!event) { 4918 /* Ignore dropped events before test starts. */ 4919 if (started) { 4920 if (nested) 4921 data->bytes_dropped += len; 4922 else 4923 data->bytes_dropped_nested += len; 4924 } 4925 return len; 4926 } 4927 4928 event_len = ring_buffer_event_length(event); 4929 4930 if (RB_WARN_ON(data->buffer, event_len < len)) 4931 goto out; 4932 4933 item = ring_buffer_event_data(event); 4934 item->size = size; 4935 memcpy(item->str, rb_string, size); 4936 4937 if (nested) { 4938 data->bytes_alloc_nested += event_len; 4939 data->bytes_written_nested += len; 4940 data->events_nested++; 4941 if (!data->min_size_nested || len < data->min_size_nested) 4942 data->min_size_nested = len; 4943 if (len > data->max_size_nested) 4944 data->max_size_nested = len; 4945 } else { 4946 data->bytes_alloc += event_len; 4947 data->bytes_written += len; 4948 data->events++; 4949 if (!data->min_size || len < data->min_size) 4950 data->max_size = len; 4951 if (len > data->max_size) 4952 data->max_size = len; 4953 } 4954 4955 out: 4956 ring_buffer_unlock_commit(data->buffer, event); 4957 4958 return 0; 4959 } 4960 4961 static __init int rb_test(void *arg) 4962 { 4963 struct rb_test_data *data = arg; 4964 4965 while (!kthread_should_stop()) { 4966 rb_write_something(data, false); 4967 data->cnt++; 4968 4969 set_current_state(TASK_INTERRUPTIBLE); 4970 /* Now sleep between a min of 100-300us and a max of 1ms */ 4971 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4972 } 4973 4974 return 0; 4975 } 4976 4977 static __init void rb_ipi(void *ignore) 4978 { 4979 struct rb_test_data *data; 4980 int cpu = smp_processor_id(); 4981 4982 data = &rb_data[cpu]; 4983 rb_write_something(data, true); 4984 } 4985 4986 static __init int rb_hammer_test(void *arg) 4987 { 4988 while (!kthread_should_stop()) { 4989 4990 /* Send an IPI to all cpus to write data! */ 4991 smp_call_function(rb_ipi, NULL, 1); 4992 /* No sleep, but for non preempt, let others run */ 4993 schedule(); 4994 } 4995 4996 return 0; 4997 } 4998 4999 static __init int test_ringbuffer(void) 5000 { 5001 struct task_struct *rb_hammer; 5002 struct ring_buffer *buffer; 5003 int cpu; 5004 int ret = 0; 5005 5006 pr_info("Running ring buffer tests...\n"); 5007 5008 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5009 if (WARN_ON(!buffer)) 5010 return 0; 5011 5012 /* Disable buffer so that threads can't write to it yet */ 5013 ring_buffer_record_off(buffer); 5014 5015 for_each_online_cpu(cpu) { 5016 rb_data[cpu].buffer = buffer; 5017 rb_data[cpu].cpu = cpu; 5018 rb_data[cpu].cnt = cpu; 5019 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5020 "rbtester/%d", cpu); 5021 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5022 pr_cont("FAILED\n"); 5023 ret = PTR_ERR(rb_threads[cpu]); 5024 goto out_free; 5025 } 5026 5027 kthread_bind(rb_threads[cpu], cpu); 5028 wake_up_process(rb_threads[cpu]); 5029 } 5030 5031 /* Now create the rb hammer! */ 5032 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5033 if (WARN_ON(IS_ERR(rb_hammer))) { 5034 pr_cont("FAILED\n"); 5035 ret = PTR_ERR(rb_hammer); 5036 goto out_free; 5037 } 5038 5039 ring_buffer_record_on(buffer); 5040 /* 5041 * Show buffer is enabled before setting rb_test_started. 5042 * Yes there's a small race window where events could be 5043 * dropped and the thread wont catch it. But when a ring 5044 * buffer gets enabled, there will always be some kind of 5045 * delay before other CPUs see it. Thus, we don't care about 5046 * those dropped events. We care about events dropped after 5047 * the threads see that the buffer is active. 5048 */ 5049 smp_wmb(); 5050 rb_test_started = true; 5051 5052 set_current_state(TASK_INTERRUPTIBLE); 5053 /* Just run for 10 seconds */; 5054 schedule_timeout(10 * HZ); 5055 5056 kthread_stop(rb_hammer); 5057 5058 out_free: 5059 for_each_online_cpu(cpu) { 5060 if (!rb_threads[cpu]) 5061 break; 5062 kthread_stop(rb_threads[cpu]); 5063 } 5064 if (ret) { 5065 ring_buffer_free(buffer); 5066 return ret; 5067 } 5068 5069 /* Report! */ 5070 pr_info("finished\n"); 5071 for_each_online_cpu(cpu) { 5072 struct ring_buffer_event *event; 5073 struct rb_test_data *data = &rb_data[cpu]; 5074 struct rb_item *item; 5075 unsigned long total_events; 5076 unsigned long total_dropped; 5077 unsigned long total_written; 5078 unsigned long total_alloc; 5079 unsigned long total_read = 0; 5080 unsigned long total_size = 0; 5081 unsigned long total_len = 0; 5082 unsigned long total_lost = 0; 5083 unsigned long lost; 5084 int big_event_size; 5085 int small_event_size; 5086 5087 ret = -1; 5088 5089 total_events = data->events + data->events_nested; 5090 total_written = data->bytes_written + data->bytes_written_nested; 5091 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5092 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5093 5094 big_event_size = data->max_size + data->max_size_nested; 5095 small_event_size = data->min_size + data->min_size_nested; 5096 5097 pr_info("CPU %d:\n", cpu); 5098 pr_info(" events: %ld\n", total_events); 5099 pr_info(" dropped bytes: %ld\n", total_dropped); 5100 pr_info(" alloced bytes: %ld\n", total_alloc); 5101 pr_info(" written bytes: %ld\n", total_written); 5102 pr_info(" biggest event: %d\n", big_event_size); 5103 pr_info(" smallest event: %d\n", small_event_size); 5104 5105 if (RB_WARN_ON(buffer, total_dropped)) 5106 break; 5107 5108 ret = 0; 5109 5110 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5111 total_lost += lost; 5112 item = ring_buffer_event_data(event); 5113 total_len += ring_buffer_event_length(event); 5114 total_size += item->size + sizeof(struct rb_item); 5115 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5116 pr_info("FAILED!\n"); 5117 pr_info("buffer had: %.*s\n", item->size, item->str); 5118 pr_info("expected: %.*s\n", item->size, rb_string); 5119 RB_WARN_ON(buffer, 1); 5120 ret = -1; 5121 break; 5122 } 5123 total_read++; 5124 } 5125 if (ret) 5126 break; 5127 5128 ret = -1; 5129 5130 pr_info(" read events: %ld\n", total_read); 5131 pr_info(" lost events: %ld\n", total_lost); 5132 pr_info(" total events: %ld\n", total_lost + total_read); 5133 pr_info(" recorded len bytes: %ld\n", total_len); 5134 pr_info(" recorded size bytes: %ld\n", total_size); 5135 if (total_lost) 5136 pr_info(" With dropped events, record len and size may not match\n" 5137 " alloced and written from above\n"); 5138 if (!total_lost) { 5139 if (RB_WARN_ON(buffer, total_len != total_alloc || 5140 total_size != total_written)) 5141 break; 5142 } 5143 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5144 break; 5145 5146 ret = 0; 5147 } 5148 if (!ret) 5149 pr_info("Ring buffer PASSED!\n"); 5150 5151 ring_buffer_free(buffer); 5152 return 0; 5153 } 5154 5155 late_initcall(test_ringbuffer); 5156 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5157