1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/debugfs.h> 12 #include <linux/uaccess.h> 13 #include <linux/hardirq.h> 14 #include <linux/kmemcheck.h> 15 #include <linux/module.h> 16 #include <linux/percpu.h> 17 #include <linux/mutex.h> 18 #include <linux/slab.h> 19 #include <linux/init.h> 20 #include <linux/hash.h> 21 #include <linux/list.h> 22 #include <linux/cpu.h> 23 #include <linux/fs.h> 24 25 #include <asm/local.h> 26 27 static void update_pages_handler(struct work_struct *work); 28 29 /* 30 * The ring buffer header is special. We must manually up keep it. 31 */ 32 int ring_buffer_print_entry_header(struct trace_seq *s) 33 { 34 int ret; 35 36 ret = trace_seq_printf(s, "# compressed entry header\n"); 37 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 38 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 39 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 40 ret = trace_seq_printf(s, "\n"); 41 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 42 RINGBUF_TYPE_PADDING); 43 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 44 RINGBUF_TYPE_TIME_EXTEND); 45 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 46 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 47 48 return ret; 49 } 50 51 /* 52 * The ring buffer is made up of a list of pages. A separate list of pages is 53 * allocated for each CPU. A writer may only write to a buffer that is 54 * associated with the CPU it is currently executing on. A reader may read 55 * from any per cpu buffer. 56 * 57 * The reader is special. For each per cpu buffer, the reader has its own 58 * reader page. When a reader has read the entire reader page, this reader 59 * page is swapped with another page in the ring buffer. 60 * 61 * Now, as long as the writer is off the reader page, the reader can do what 62 * ever it wants with that page. The writer will never write to that page 63 * again (as long as it is out of the ring buffer). 64 * 65 * Here's some silly ASCII art. 66 * 67 * +------+ 68 * |reader| RING BUFFER 69 * |page | 70 * +------+ +---+ +---+ +---+ 71 * | |-->| |-->| | 72 * +---+ +---+ +---+ 73 * ^ | 74 * | | 75 * +---------------+ 76 * 77 * 78 * +------+ 79 * |reader| RING BUFFER 80 * |page |------------------v 81 * +------+ +---+ +---+ +---+ 82 * | |-->| |-->| | 83 * +---+ +---+ +---+ 84 * ^ | 85 * | | 86 * +---------------+ 87 * 88 * 89 * +------+ 90 * |reader| RING BUFFER 91 * |page |------------------v 92 * +------+ +---+ +---+ +---+ 93 * ^ | |-->| |-->| | 94 * | +---+ +---+ +---+ 95 * | | 96 * | | 97 * +------------------------------+ 98 * 99 * 100 * +------+ 101 * |buffer| RING BUFFER 102 * |page |------------------v 103 * +------+ +---+ +---+ +---+ 104 * ^ | | | |-->| | 105 * | New +---+ +---+ +---+ 106 * | Reader------^ | 107 * | page | 108 * +------------------------------+ 109 * 110 * 111 * After we make this swap, the reader can hand this page off to the splice 112 * code and be done with it. It can even allocate a new page if it needs to 113 * and swap that into the ring buffer. 114 * 115 * We will be using cmpxchg soon to make all this lockless. 116 * 117 */ 118 119 /* 120 * A fast way to enable or disable all ring buffers is to 121 * call tracing_on or tracing_off. Turning off the ring buffers 122 * prevents all ring buffers from being recorded to. 123 * Turning this switch on, makes it OK to write to the 124 * ring buffer, if the ring buffer is enabled itself. 125 * 126 * There's three layers that must be on in order to write 127 * to the ring buffer. 128 * 129 * 1) This global flag must be set. 130 * 2) The ring buffer must be enabled for recording. 131 * 3) The per cpu buffer must be enabled for recording. 132 * 133 * In case of an anomaly, this global flag has a bit set that 134 * will permantly disable all ring buffers. 135 */ 136 137 /* 138 * Global flag to disable all recording to ring buffers 139 * This has two bits: ON, DISABLED 140 * 141 * ON DISABLED 142 * ---- ---------- 143 * 0 0 : ring buffers are off 144 * 1 0 : ring buffers are on 145 * X 1 : ring buffers are permanently disabled 146 */ 147 148 enum { 149 RB_BUFFERS_ON_BIT = 0, 150 RB_BUFFERS_DISABLED_BIT = 1, 151 }; 152 153 enum { 154 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 155 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 156 }; 157 158 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 159 160 /* Used for individual buffers (after the counter) */ 161 #define RB_BUFFER_OFF (1 << 20) 162 163 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 164 165 /** 166 * tracing_off_permanent - permanently disable ring buffers 167 * 168 * This function, once called, will disable all ring buffers 169 * permanently. 170 */ 171 void tracing_off_permanent(void) 172 { 173 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 174 } 175 176 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 177 #define RB_ALIGNMENT 4U 178 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 179 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 180 181 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 182 # define RB_FORCE_8BYTE_ALIGNMENT 0 183 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 184 #else 185 # define RB_FORCE_8BYTE_ALIGNMENT 1 186 # define RB_ARCH_ALIGNMENT 8U 187 #endif 188 189 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 190 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 191 192 enum { 193 RB_LEN_TIME_EXTEND = 8, 194 RB_LEN_TIME_STAMP = 16, 195 }; 196 197 #define skip_time_extend(event) \ 198 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 199 200 static inline int rb_null_event(struct ring_buffer_event *event) 201 { 202 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 203 } 204 205 static void rb_event_set_padding(struct ring_buffer_event *event) 206 { 207 /* padding has a NULL time_delta */ 208 event->type_len = RINGBUF_TYPE_PADDING; 209 event->time_delta = 0; 210 } 211 212 static unsigned 213 rb_event_data_length(struct ring_buffer_event *event) 214 { 215 unsigned length; 216 217 if (event->type_len) 218 length = event->type_len * RB_ALIGNMENT; 219 else 220 length = event->array[0]; 221 return length + RB_EVNT_HDR_SIZE; 222 } 223 224 /* 225 * Return the length of the given event. Will return 226 * the length of the time extend if the event is a 227 * time extend. 228 */ 229 static inline unsigned 230 rb_event_length(struct ring_buffer_event *event) 231 { 232 switch (event->type_len) { 233 case RINGBUF_TYPE_PADDING: 234 if (rb_null_event(event)) 235 /* undefined */ 236 return -1; 237 return event->array[0] + RB_EVNT_HDR_SIZE; 238 239 case RINGBUF_TYPE_TIME_EXTEND: 240 return RB_LEN_TIME_EXTEND; 241 242 case RINGBUF_TYPE_TIME_STAMP: 243 return RB_LEN_TIME_STAMP; 244 245 case RINGBUF_TYPE_DATA: 246 return rb_event_data_length(event); 247 default: 248 BUG(); 249 } 250 /* not hit */ 251 return 0; 252 } 253 254 /* 255 * Return total length of time extend and data, 256 * or just the event length for all other events. 257 */ 258 static inline unsigned 259 rb_event_ts_length(struct ring_buffer_event *event) 260 { 261 unsigned len = 0; 262 263 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 264 /* time extends include the data event after it */ 265 len = RB_LEN_TIME_EXTEND; 266 event = skip_time_extend(event); 267 } 268 return len + rb_event_length(event); 269 } 270 271 /** 272 * ring_buffer_event_length - return the length of the event 273 * @event: the event to get the length of 274 * 275 * Returns the size of the data load of a data event. 276 * If the event is something other than a data event, it 277 * returns the size of the event itself. With the exception 278 * of a TIME EXTEND, where it still returns the size of the 279 * data load of the data event after it. 280 */ 281 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 282 { 283 unsigned length; 284 285 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 286 event = skip_time_extend(event); 287 288 length = rb_event_length(event); 289 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 290 return length; 291 length -= RB_EVNT_HDR_SIZE; 292 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 293 length -= sizeof(event->array[0]); 294 return length; 295 } 296 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 297 298 /* inline for ring buffer fast paths */ 299 static void * 300 rb_event_data(struct ring_buffer_event *event) 301 { 302 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 303 event = skip_time_extend(event); 304 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 305 /* If length is in len field, then array[0] has the data */ 306 if (event->type_len) 307 return (void *)&event->array[0]; 308 /* Otherwise length is in array[0] and array[1] has the data */ 309 return (void *)&event->array[1]; 310 } 311 312 /** 313 * ring_buffer_event_data - return the data of the event 314 * @event: the event to get the data from 315 */ 316 void *ring_buffer_event_data(struct ring_buffer_event *event) 317 { 318 return rb_event_data(event); 319 } 320 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 321 322 #define for_each_buffer_cpu(buffer, cpu) \ 323 for_each_cpu(cpu, buffer->cpumask) 324 325 #define TS_SHIFT 27 326 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 327 #define TS_DELTA_TEST (~TS_MASK) 328 329 /* Flag when events were overwritten */ 330 #define RB_MISSED_EVENTS (1 << 31) 331 /* Missed count stored at end */ 332 #define RB_MISSED_STORED (1 << 30) 333 334 struct buffer_data_page { 335 u64 time_stamp; /* page time stamp */ 336 local_t commit; /* write committed index */ 337 unsigned char data[]; /* data of buffer page */ 338 }; 339 340 /* 341 * Note, the buffer_page list must be first. The buffer pages 342 * are allocated in cache lines, which means that each buffer 343 * page will be at the beginning of a cache line, and thus 344 * the least significant bits will be zero. We use this to 345 * add flags in the list struct pointers, to make the ring buffer 346 * lockless. 347 */ 348 struct buffer_page { 349 struct list_head list; /* list of buffer pages */ 350 local_t write; /* index for next write */ 351 unsigned read; /* index for next read */ 352 local_t entries; /* entries on this page */ 353 unsigned long real_end; /* real end of data */ 354 struct buffer_data_page *page; /* Actual data page */ 355 }; 356 357 /* 358 * The buffer page counters, write and entries, must be reset 359 * atomically when crossing page boundaries. To synchronize this 360 * update, two counters are inserted into the number. One is 361 * the actual counter for the write position or count on the page. 362 * 363 * The other is a counter of updaters. Before an update happens 364 * the update partition of the counter is incremented. This will 365 * allow the updater to update the counter atomically. 366 * 367 * The counter is 20 bits, and the state data is 12. 368 */ 369 #define RB_WRITE_MASK 0xfffff 370 #define RB_WRITE_INTCNT (1 << 20) 371 372 static void rb_init_page(struct buffer_data_page *bpage) 373 { 374 local_set(&bpage->commit, 0); 375 } 376 377 /** 378 * ring_buffer_page_len - the size of data on the page. 379 * @page: The page to read 380 * 381 * Returns the amount of data on the page, including buffer page header. 382 */ 383 size_t ring_buffer_page_len(void *page) 384 { 385 return local_read(&((struct buffer_data_page *)page)->commit) 386 + BUF_PAGE_HDR_SIZE; 387 } 388 389 /* 390 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 391 * this issue out. 392 */ 393 static void free_buffer_page(struct buffer_page *bpage) 394 { 395 free_page((unsigned long)bpage->page); 396 kfree(bpage); 397 } 398 399 /* 400 * We need to fit the time_stamp delta into 27 bits. 401 */ 402 static inline int test_time_stamp(u64 delta) 403 { 404 if (delta & TS_DELTA_TEST) 405 return 1; 406 return 0; 407 } 408 409 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 410 411 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 412 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 413 414 int ring_buffer_print_page_header(struct trace_seq *s) 415 { 416 struct buffer_data_page field; 417 int ret; 418 419 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 420 "offset:0;\tsize:%u;\tsigned:%u;\n", 421 (unsigned int)sizeof(field.time_stamp), 422 (unsigned int)is_signed_type(u64)); 423 424 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 425 "offset:%u;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)offsetof(typeof(field), commit), 427 (unsigned int)sizeof(field.commit), 428 (unsigned int)is_signed_type(long)); 429 430 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 431 "offset:%u;\tsize:%u;\tsigned:%u;\n", 432 (unsigned int)offsetof(typeof(field), commit), 433 1, 434 (unsigned int)is_signed_type(long)); 435 436 ret = trace_seq_printf(s, "\tfield: char data;\t" 437 "offset:%u;\tsize:%u;\tsigned:%u;\n", 438 (unsigned int)offsetof(typeof(field), data), 439 (unsigned int)BUF_PAGE_SIZE, 440 (unsigned int)is_signed_type(char)); 441 442 return ret; 443 } 444 445 /* 446 * head_page == tail_page && head == tail then buffer is empty. 447 */ 448 struct ring_buffer_per_cpu { 449 int cpu; 450 atomic_t record_disabled; 451 struct ring_buffer *buffer; 452 raw_spinlock_t reader_lock; /* serialize readers */ 453 arch_spinlock_t lock; 454 struct lock_class_key lock_key; 455 unsigned int nr_pages; 456 struct list_head *pages; 457 struct buffer_page *head_page; /* read from head */ 458 struct buffer_page *tail_page; /* write to tail */ 459 struct buffer_page *commit_page; /* committed pages */ 460 struct buffer_page *reader_page; 461 unsigned long lost_events; 462 unsigned long last_overrun; 463 local_t entries_bytes; 464 local_t entries; 465 local_t overrun; 466 local_t commit_overrun; 467 local_t dropped_events; 468 local_t committing; 469 local_t commits; 470 unsigned long read; 471 unsigned long read_bytes; 472 u64 write_stamp; 473 u64 read_stamp; 474 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 475 int nr_pages_to_update; 476 struct list_head new_pages; /* new pages to add */ 477 struct work_struct update_pages_work; 478 struct completion update_done; 479 }; 480 481 struct ring_buffer { 482 unsigned flags; 483 int cpus; 484 atomic_t record_disabled; 485 atomic_t resize_disabled; 486 cpumask_var_t cpumask; 487 488 struct lock_class_key *reader_lock_key; 489 490 struct mutex mutex; 491 492 struct ring_buffer_per_cpu **buffers; 493 494 #ifdef CONFIG_HOTPLUG_CPU 495 struct notifier_block cpu_notify; 496 #endif 497 u64 (*clock)(void); 498 }; 499 500 struct ring_buffer_iter { 501 struct ring_buffer_per_cpu *cpu_buffer; 502 unsigned long head; 503 struct buffer_page *head_page; 504 struct buffer_page *cache_reader_page; 505 unsigned long cache_read; 506 u64 read_stamp; 507 }; 508 509 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 510 #define RB_WARN_ON(b, cond) \ 511 ({ \ 512 int _____ret = unlikely(cond); \ 513 if (_____ret) { \ 514 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 515 struct ring_buffer_per_cpu *__b = \ 516 (void *)b; \ 517 atomic_inc(&__b->buffer->record_disabled); \ 518 } else \ 519 atomic_inc(&b->record_disabled); \ 520 WARN_ON(1); \ 521 } \ 522 _____ret; \ 523 }) 524 525 /* Up this if you want to test the TIME_EXTENTS and normalization */ 526 #define DEBUG_SHIFT 0 527 528 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 529 { 530 /* shift to debug/test normalization and TIME_EXTENTS */ 531 return buffer->clock() << DEBUG_SHIFT; 532 } 533 534 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 535 { 536 u64 time; 537 538 preempt_disable_notrace(); 539 time = rb_time_stamp(buffer); 540 preempt_enable_no_resched_notrace(); 541 542 return time; 543 } 544 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 545 546 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 547 int cpu, u64 *ts) 548 { 549 /* Just stupid testing the normalize function and deltas */ 550 *ts >>= DEBUG_SHIFT; 551 } 552 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 553 554 /* 555 * Making the ring buffer lockless makes things tricky. 556 * Although writes only happen on the CPU that they are on, 557 * and they only need to worry about interrupts. Reads can 558 * happen on any CPU. 559 * 560 * The reader page is always off the ring buffer, but when the 561 * reader finishes with a page, it needs to swap its page with 562 * a new one from the buffer. The reader needs to take from 563 * the head (writes go to the tail). But if a writer is in overwrite 564 * mode and wraps, it must push the head page forward. 565 * 566 * Here lies the problem. 567 * 568 * The reader must be careful to replace only the head page, and 569 * not another one. As described at the top of the file in the 570 * ASCII art, the reader sets its old page to point to the next 571 * page after head. It then sets the page after head to point to 572 * the old reader page. But if the writer moves the head page 573 * during this operation, the reader could end up with the tail. 574 * 575 * We use cmpxchg to help prevent this race. We also do something 576 * special with the page before head. We set the LSB to 1. 577 * 578 * When the writer must push the page forward, it will clear the 579 * bit that points to the head page, move the head, and then set 580 * the bit that points to the new head page. 581 * 582 * We also don't want an interrupt coming in and moving the head 583 * page on another writer. Thus we use the second LSB to catch 584 * that too. Thus: 585 * 586 * head->list->prev->next bit 1 bit 0 587 * ------- ------- 588 * Normal page 0 0 589 * Points to head page 0 1 590 * New head page 1 0 591 * 592 * Note we can not trust the prev pointer of the head page, because: 593 * 594 * +----+ +-----+ +-----+ 595 * | |------>| T |---X--->| N | 596 * | |<------| | | | 597 * +----+ +-----+ +-----+ 598 * ^ ^ | 599 * | +-----+ | | 600 * +----------| R |----------+ | 601 * | |<-----------+ 602 * +-----+ 603 * 604 * Key: ---X--> HEAD flag set in pointer 605 * T Tail page 606 * R Reader page 607 * N Next page 608 * 609 * (see __rb_reserve_next() to see where this happens) 610 * 611 * What the above shows is that the reader just swapped out 612 * the reader page with a page in the buffer, but before it 613 * could make the new header point back to the new page added 614 * it was preempted by a writer. The writer moved forward onto 615 * the new page added by the reader and is about to move forward 616 * again. 617 * 618 * You can see, it is legitimate for the previous pointer of 619 * the head (or any page) not to point back to itself. But only 620 * temporarially. 621 */ 622 623 #define RB_PAGE_NORMAL 0UL 624 #define RB_PAGE_HEAD 1UL 625 #define RB_PAGE_UPDATE 2UL 626 627 628 #define RB_FLAG_MASK 3UL 629 630 /* PAGE_MOVED is not part of the mask */ 631 #define RB_PAGE_MOVED 4UL 632 633 /* 634 * rb_list_head - remove any bit 635 */ 636 static struct list_head *rb_list_head(struct list_head *list) 637 { 638 unsigned long val = (unsigned long)list; 639 640 return (struct list_head *)(val & ~RB_FLAG_MASK); 641 } 642 643 /* 644 * rb_is_head_page - test if the given page is the head page 645 * 646 * Because the reader may move the head_page pointer, we can 647 * not trust what the head page is (it may be pointing to 648 * the reader page). But if the next page is a header page, 649 * its flags will be non zero. 650 */ 651 static inline int 652 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 653 struct buffer_page *page, struct list_head *list) 654 { 655 unsigned long val; 656 657 val = (unsigned long)list->next; 658 659 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 660 return RB_PAGE_MOVED; 661 662 return val & RB_FLAG_MASK; 663 } 664 665 /* 666 * rb_is_reader_page 667 * 668 * The unique thing about the reader page, is that, if the 669 * writer is ever on it, the previous pointer never points 670 * back to the reader page. 671 */ 672 static int rb_is_reader_page(struct buffer_page *page) 673 { 674 struct list_head *list = page->list.prev; 675 676 return rb_list_head(list->next) != &page->list; 677 } 678 679 /* 680 * rb_set_list_to_head - set a list_head to be pointing to head. 681 */ 682 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 683 struct list_head *list) 684 { 685 unsigned long *ptr; 686 687 ptr = (unsigned long *)&list->next; 688 *ptr |= RB_PAGE_HEAD; 689 *ptr &= ~RB_PAGE_UPDATE; 690 } 691 692 /* 693 * rb_head_page_activate - sets up head page 694 */ 695 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 696 { 697 struct buffer_page *head; 698 699 head = cpu_buffer->head_page; 700 if (!head) 701 return; 702 703 /* 704 * Set the previous list pointer to have the HEAD flag. 705 */ 706 rb_set_list_to_head(cpu_buffer, head->list.prev); 707 } 708 709 static void rb_list_head_clear(struct list_head *list) 710 { 711 unsigned long *ptr = (unsigned long *)&list->next; 712 713 *ptr &= ~RB_FLAG_MASK; 714 } 715 716 /* 717 * rb_head_page_dactivate - clears head page ptr (for free list) 718 */ 719 static void 720 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 721 { 722 struct list_head *hd; 723 724 /* Go through the whole list and clear any pointers found. */ 725 rb_list_head_clear(cpu_buffer->pages); 726 727 list_for_each(hd, cpu_buffer->pages) 728 rb_list_head_clear(hd); 729 } 730 731 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 732 struct buffer_page *head, 733 struct buffer_page *prev, 734 int old_flag, int new_flag) 735 { 736 struct list_head *list; 737 unsigned long val = (unsigned long)&head->list; 738 unsigned long ret; 739 740 list = &prev->list; 741 742 val &= ~RB_FLAG_MASK; 743 744 ret = cmpxchg((unsigned long *)&list->next, 745 val | old_flag, val | new_flag); 746 747 /* check if the reader took the page */ 748 if ((ret & ~RB_FLAG_MASK) != val) 749 return RB_PAGE_MOVED; 750 751 return ret & RB_FLAG_MASK; 752 } 753 754 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 755 struct buffer_page *head, 756 struct buffer_page *prev, 757 int old_flag) 758 { 759 return rb_head_page_set(cpu_buffer, head, prev, 760 old_flag, RB_PAGE_UPDATE); 761 } 762 763 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 764 struct buffer_page *head, 765 struct buffer_page *prev, 766 int old_flag) 767 { 768 return rb_head_page_set(cpu_buffer, head, prev, 769 old_flag, RB_PAGE_HEAD); 770 } 771 772 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 773 struct buffer_page *head, 774 struct buffer_page *prev, 775 int old_flag) 776 { 777 return rb_head_page_set(cpu_buffer, head, prev, 778 old_flag, RB_PAGE_NORMAL); 779 } 780 781 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 782 struct buffer_page **bpage) 783 { 784 struct list_head *p = rb_list_head((*bpage)->list.next); 785 786 *bpage = list_entry(p, struct buffer_page, list); 787 } 788 789 static struct buffer_page * 790 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 791 { 792 struct buffer_page *head; 793 struct buffer_page *page; 794 struct list_head *list; 795 int i; 796 797 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 798 return NULL; 799 800 /* sanity check */ 801 list = cpu_buffer->pages; 802 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 803 return NULL; 804 805 page = head = cpu_buffer->head_page; 806 /* 807 * It is possible that the writer moves the header behind 808 * where we started, and we miss in one loop. 809 * A second loop should grab the header, but we'll do 810 * three loops just because I'm paranoid. 811 */ 812 for (i = 0; i < 3; i++) { 813 do { 814 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 815 cpu_buffer->head_page = page; 816 return page; 817 } 818 rb_inc_page(cpu_buffer, &page); 819 } while (page != head); 820 } 821 822 RB_WARN_ON(cpu_buffer, 1); 823 824 return NULL; 825 } 826 827 static int rb_head_page_replace(struct buffer_page *old, 828 struct buffer_page *new) 829 { 830 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 831 unsigned long val; 832 unsigned long ret; 833 834 val = *ptr & ~RB_FLAG_MASK; 835 val |= RB_PAGE_HEAD; 836 837 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 838 839 return ret == val; 840 } 841 842 /* 843 * rb_tail_page_update - move the tail page forward 844 * 845 * Returns 1 if moved tail page, 0 if someone else did. 846 */ 847 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 848 struct buffer_page *tail_page, 849 struct buffer_page *next_page) 850 { 851 struct buffer_page *old_tail; 852 unsigned long old_entries; 853 unsigned long old_write; 854 int ret = 0; 855 856 /* 857 * The tail page now needs to be moved forward. 858 * 859 * We need to reset the tail page, but without messing 860 * with possible erasing of data brought in by interrupts 861 * that have moved the tail page and are currently on it. 862 * 863 * We add a counter to the write field to denote this. 864 */ 865 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 866 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 867 868 /* 869 * Just make sure we have seen our old_write and synchronize 870 * with any interrupts that come in. 871 */ 872 barrier(); 873 874 /* 875 * If the tail page is still the same as what we think 876 * it is, then it is up to us to update the tail 877 * pointer. 878 */ 879 if (tail_page == cpu_buffer->tail_page) { 880 /* Zero the write counter */ 881 unsigned long val = old_write & ~RB_WRITE_MASK; 882 unsigned long eval = old_entries & ~RB_WRITE_MASK; 883 884 /* 885 * This will only succeed if an interrupt did 886 * not come in and change it. In which case, we 887 * do not want to modify it. 888 * 889 * We add (void) to let the compiler know that we do not care 890 * about the return value of these functions. We use the 891 * cmpxchg to only update if an interrupt did not already 892 * do it for us. If the cmpxchg fails, we don't care. 893 */ 894 (void)local_cmpxchg(&next_page->write, old_write, val); 895 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 896 897 /* 898 * No need to worry about races with clearing out the commit. 899 * it only can increment when a commit takes place. But that 900 * only happens in the outer most nested commit. 901 */ 902 local_set(&next_page->page->commit, 0); 903 904 old_tail = cmpxchg(&cpu_buffer->tail_page, 905 tail_page, next_page); 906 907 if (old_tail == tail_page) 908 ret = 1; 909 } 910 911 return ret; 912 } 913 914 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 915 struct buffer_page *bpage) 916 { 917 unsigned long val = (unsigned long)bpage; 918 919 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 920 return 1; 921 922 return 0; 923 } 924 925 /** 926 * rb_check_list - make sure a pointer to a list has the last bits zero 927 */ 928 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 929 struct list_head *list) 930 { 931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 932 return 1; 933 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 934 return 1; 935 return 0; 936 } 937 938 /** 939 * check_pages - integrity check of buffer pages 940 * @cpu_buffer: CPU buffer with pages to test 941 * 942 * As a safety measure we check to make sure the data pages have not 943 * been corrupted. 944 */ 945 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 946 { 947 struct list_head *head = cpu_buffer->pages; 948 struct buffer_page *bpage, *tmp; 949 950 /* Reset the head page if it exists */ 951 if (cpu_buffer->head_page) 952 rb_set_head_page(cpu_buffer); 953 954 rb_head_page_deactivate(cpu_buffer); 955 956 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 957 return -1; 958 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 959 return -1; 960 961 if (rb_check_list(cpu_buffer, head)) 962 return -1; 963 964 list_for_each_entry_safe(bpage, tmp, head, list) { 965 if (RB_WARN_ON(cpu_buffer, 966 bpage->list.next->prev != &bpage->list)) 967 return -1; 968 if (RB_WARN_ON(cpu_buffer, 969 bpage->list.prev->next != &bpage->list)) 970 return -1; 971 if (rb_check_list(cpu_buffer, &bpage->list)) 972 return -1; 973 } 974 975 rb_head_page_activate(cpu_buffer); 976 977 return 0; 978 } 979 980 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 981 { 982 int i; 983 struct buffer_page *bpage, *tmp; 984 985 for (i = 0; i < nr_pages; i++) { 986 struct page *page; 987 /* 988 * __GFP_NORETRY flag makes sure that the allocation fails 989 * gracefully without invoking oom-killer and the system is 990 * not destabilized. 991 */ 992 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 993 GFP_KERNEL | __GFP_NORETRY, 994 cpu_to_node(cpu)); 995 if (!bpage) 996 goto free_pages; 997 998 list_add(&bpage->list, pages); 999 1000 page = alloc_pages_node(cpu_to_node(cpu), 1001 GFP_KERNEL | __GFP_NORETRY, 0); 1002 if (!page) 1003 goto free_pages; 1004 bpage->page = page_address(page); 1005 rb_init_page(bpage->page); 1006 } 1007 1008 return 0; 1009 1010 free_pages: 1011 list_for_each_entry_safe(bpage, tmp, pages, list) { 1012 list_del_init(&bpage->list); 1013 free_buffer_page(bpage); 1014 } 1015 1016 return -ENOMEM; 1017 } 1018 1019 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1020 unsigned nr_pages) 1021 { 1022 LIST_HEAD(pages); 1023 1024 WARN_ON(!nr_pages); 1025 1026 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1027 return -ENOMEM; 1028 1029 /* 1030 * The ring buffer page list is a circular list that does not 1031 * start and end with a list head. All page list items point to 1032 * other pages. 1033 */ 1034 cpu_buffer->pages = pages.next; 1035 list_del(&pages); 1036 1037 cpu_buffer->nr_pages = nr_pages; 1038 1039 rb_check_pages(cpu_buffer); 1040 1041 return 0; 1042 } 1043 1044 static struct ring_buffer_per_cpu * 1045 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1046 { 1047 struct ring_buffer_per_cpu *cpu_buffer; 1048 struct buffer_page *bpage; 1049 struct page *page; 1050 int ret; 1051 1052 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1053 GFP_KERNEL, cpu_to_node(cpu)); 1054 if (!cpu_buffer) 1055 return NULL; 1056 1057 cpu_buffer->cpu = cpu; 1058 cpu_buffer->buffer = buffer; 1059 raw_spin_lock_init(&cpu_buffer->reader_lock); 1060 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1061 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1062 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1063 init_completion(&cpu_buffer->update_done); 1064 1065 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1066 GFP_KERNEL, cpu_to_node(cpu)); 1067 if (!bpage) 1068 goto fail_free_buffer; 1069 1070 rb_check_bpage(cpu_buffer, bpage); 1071 1072 cpu_buffer->reader_page = bpage; 1073 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1074 if (!page) 1075 goto fail_free_reader; 1076 bpage->page = page_address(page); 1077 rb_init_page(bpage->page); 1078 1079 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1080 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1081 1082 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1083 if (ret < 0) 1084 goto fail_free_reader; 1085 1086 cpu_buffer->head_page 1087 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1088 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1089 1090 rb_head_page_activate(cpu_buffer); 1091 1092 return cpu_buffer; 1093 1094 fail_free_reader: 1095 free_buffer_page(cpu_buffer->reader_page); 1096 1097 fail_free_buffer: 1098 kfree(cpu_buffer); 1099 return NULL; 1100 } 1101 1102 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1103 { 1104 struct list_head *head = cpu_buffer->pages; 1105 struct buffer_page *bpage, *tmp; 1106 1107 free_buffer_page(cpu_buffer->reader_page); 1108 1109 rb_head_page_deactivate(cpu_buffer); 1110 1111 if (head) { 1112 list_for_each_entry_safe(bpage, tmp, head, list) { 1113 list_del_init(&bpage->list); 1114 free_buffer_page(bpage); 1115 } 1116 bpage = list_entry(head, struct buffer_page, list); 1117 free_buffer_page(bpage); 1118 } 1119 1120 kfree(cpu_buffer); 1121 } 1122 1123 #ifdef CONFIG_HOTPLUG_CPU 1124 static int rb_cpu_notify(struct notifier_block *self, 1125 unsigned long action, void *hcpu); 1126 #endif 1127 1128 /** 1129 * ring_buffer_alloc - allocate a new ring_buffer 1130 * @size: the size in bytes per cpu that is needed. 1131 * @flags: attributes to set for the ring buffer. 1132 * 1133 * Currently the only flag that is available is the RB_FL_OVERWRITE 1134 * flag. This flag means that the buffer will overwrite old data 1135 * when the buffer wraps. If this flag is not set, the buffer will 1136 * drop data when the tail hits the head. 1137 */ 1138 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1139 struct lock_class_key *key) 1140 { 1141 struct ring_buffer *buffer; 1142 int bsize; 1143 int cpu, nr_pages; 1144 1145 /* keep it in its own cache line */ 1146 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1147 GFP_KERNEL); 1148 if (!buffer) 1149 return NULL; 1150 1151 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1152 goto fail_free_buffer; 1153 1154 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1155 buffer->flags = flags; 1156 buffer->clock = trace_clock_local; 1157 buffer->reader_lock_key = key; 1158 1159 /* need at least two pages */ 1160 if (nr_pages < 2) 1161 nr_pages = 2; 1162 1163 /* 1164 * In case of non-hotplug cpu, if the ring-buffer is allocated 1165 * in early initcall, it will not be notified of secondary cpus. 1166 * In that off case, we need to allocate for all possible cpus. 1167 */ 1168 #ifdef CONFIG_HOTPLUG_CPU 1169 get_online_cpus(); 1170 cpumask_copy(buffer->cpumask, cpu_online_mask); 1171 #else 1172 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1173 #endif 1174 buffer->cpus = nr_cpu_ids; 1175 1176 bsize = sizeof(void *) * nr_cpu_ids; 1177 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1178 GFP_KERNEL); 1179 if (!buffer->buffers) 1180 goto fail_free_cpumask; 1181 1182 for_each_buffer_cpu(buffer, cpu) { 1183 buffer->buffers[cpu] = 1184 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1185 if (!buffer->buffers[cpu]) 1186 goto fail_free_buffers; 1187 } 1188 1189 #ifdef CONFIG_HOTPLUG_CPU 1190 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1191 buffer->cpu_notify.priority = 0; 1192 register_cpu_notifier(&buffer->cpu_notify); 1193 #endif 1194 1195 put_online_cpus(); 1196 mutex_init(&buffer->mutex); 1197 1198 return buffer; 1199 1200 fail_free_buffers: 1201 for_each_buffer_cpu(buffer, cpu) { 1202 if (buffer->buffers[cpu]) 1203 rb_free_cpu_buffer(buffer->buffers[cpu]); 1204 } 1205 kfree(buffer->buffers); 1206 1207 fail_free_cpumask: 1208 free_cpumask_var(buffer->cpumask); 1209 put_online_cpus(); 1210 1211 fail_free_buffer: 1212 kfree(buffer); 1213 return NULL; 1214 } 1215 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1216 1217 /** 1218 * ring_buffer_free - free a ring buffer. 1219 * @buffer: the buffer to free. 1220 */ 1221 void 1222 ring_buffer_free(struct ring_buffer *buffer) 1223 { 1224 int cpu; 1225 1226 get_online_cpus(); 1227 1228 #ifdef CONFIG_HOTPLUG_CPU 1229 unregister_cpu_notifier(&buffer->cpu_notify); 1230 #endif 1231 1232 for_each_buffer_cpu(buffer, cpu) 1233 rb_free_cpu_buffer(buffer->buffers[cpu]); 1234 1235 put_online_cpus(); 1236 1237 kfree(buffer->buffers); 1238 free_cpumask_var(buffer->cpumask); 1239 1240 kfree(buffer); 1241 } 1242 EXPORT_SYMBOL_GPL(ring_buffer_free); 1243 1244 void ring_buffer_set_clock(struct ring_buffer *buffer, 1245 u64 (*clock)(void)) 1246 { 1247 buffer->clock = clock; 1248 } 1249 1250 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1251 1252 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1253 { 1254 return local_read(&bpage->entries) & RB_WRITE_MASK; 1255 } 1256 1257 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1258 { 1259 return local_read(&bpage->write) & RB_WRITE_MASK; 1260 } 1261 1262 static int 1263 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1264 { 1265 struct list_head *tail_page, *to_remove, *next_page; 1266 struct buffer_page *to_remove_page, *tmp_iter_page; 1267 struct buffer_page *last_page, *first_page; 1268 unsigned int nr_removed; 1269 unsigned long head_bit; 1270 int page_entries; 1271 1272 head_bit = 0; 1273 1274 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1275 atomic_inc(&cpu_buffer->record_disabled); 1276 /* 1277 * We don't race with the readers since we have acquired the reader 1278 * lock. We also don't race with writers after disabling recording. 1279 * This makes it easy to figure out the first and the last page to be 1280 * removed from the list. We unlink all the pages in between including 1281 * the first and last pages. This is done in a busy loop so that we 1282 * lose the least number of traces. 1283 * The pages are freed after we restart recording and unlock readers. 1284 */ 1285 tail_page = &cpu_buffer->tail_page->list; 1286 1287 /* 1288 * tail page might be on reader page, we remove the next page 1289 * from the ring buffer 1290 */ 1291 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1292 tail_page = rb_list_head(tail_page->next); 1293 to_remove = tail_page; 1294 1295 /* start of pages to remove */ 1296 first_page = list_entry(rb_list_head(to_remove->next), 1297 struct buffer_page, list); 1298 1299 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1300 to_remove = rb_list_head(to_remove)->next; 1301 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1302 } 1303 1304 next_page = rb_list_head(to_remove)->next; 1305 1306 /* 1307 * Now we remove all pages between tail_page and next_page. 1308 * Make sure that we have head_bit value preserved for the 1309 * next page 1310 */ 1311 tail_page->next = (struct list_head *)((unsigned long)next_page | 1312 head_bit); 1313 next_page = rb_list_head(next_page); 1314 next_page->prev = tail_page; 1315 1316 /* make sure pages points to a valid page in the ring buffer */ 1317 cpu_buffer->pages = next_page; 1318 1319 /* update head page */ 1320 if (head_bit) 1321 cpu_buffer->head_page = list_entry(next_page, 1322 struct buffer_page, list); 1323 1324 /* 1325 * change read pointer to make sure any read iterators reset 1326 * themselves 1327 */ 1328 cpu_buffer->read = 0; 1329 1330 /* pages are removed, resume tracing and then free the pages */ 1331 atomic_dec(&cpu_buffer->record_disabled); 1332 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1333 1334 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1335 1336 /* last buffer page to remove */ 1337 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1338 list); 1339 tmp_iter_page = first_page; 1340 1341 do { 1342 to_remove_page = tmp_iter_page; 1343 rb_inc_page(cpu_buffer, &tmp_iter_page); 1344 1345 /* update the counters */ 1346 page_entries = rb_page_entries(to_remove_page); 1347 if (page_entries) { 1348 /* 1349 * If something was added to this page, it was full 1350 * since it is not the tail page. So we deduct the 1351 * bytes consumed in ring buffer from here. 1352 * Increment overrun to account for the lost events. 1353 */ 1354 local_add(page_entries, &cpu_buffer->overrun); 1355 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1356 } 1357 1358 /* 1359 * We have already removed references to this list item, just 1360 * free up the buffer_page and its page 1361 */ 1362 free_buffer_page(to_remove_page); 1363 nr_removed--; 1364 1365 } while (to_remove_page != last_page); 1366 1367 RB_WARN_ON(cpu_buffer, nr_removed); 1368 1369 return nr_removed == 0; 1370 } 1371 1372 static int 1373 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1374 { 1375 struct list_head *pages = &cpu_buffer->new_pages; 1376 int retries, success; 1377 1378 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1379 /* 1380 * We are holding the reader lock, so the reader page won't be swapped 1381 * in the ring buffer. Now we are racing with the writer trying to 1382 * move head page and the tail page. 1383 * We are going to adapt the reader page update process where: 1384 * 1. We first splice the start and end of list of new pages between 1385 * the head page and its previous page. 1386 * 2. We cmpxchg the prev_page->next to point from head page to the 1387 * start of new pages list. 1388 * 3. Finally, we update the head->prev to the end of new list. 1389 * 1390 * We will try this process 10 times, to make sure that we don't keep 1391 * spinning. 1392 */ 1393 retries = 10; 1394 success = 0; 1395 while (retries--) { 1396 struct list_head *head_page, *prev_page, *r; 1397 struct list_head *last_page, *first_page; 1398 struct list_head *head_page_with_bit; 1399 1400 head_page = &rb_set_head_page(cpu_buffer)->list; 1401 if (!head_page) 1402 break; 1403 prev_page = head_page->prev; 1404 1405 first_page = pages->next; 1406 last_page = pages->prev; 1407 1408 head_page_with_bit = (struct list_head *) 1409 ((unsigned long)head_page | RB_PAGE_HEAD); 1410 1411 last_page->next = head_page_with_bit; 1412 first_page->prev = prev_page; 1413 1414 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1415 1416 if (r == head_page_with_bit) { 1417 /* 1418 * yay, we replaced the page pointer to our new list, 1419 * now, we just have to update to head page's prev 1420 * pointer to point to end of list 1421 */ 1422 head_page->prev = last_page; 1423 success = 1; 1424 break; 1425 } 1426 } 1427 1428 if (success) 1429 INIT_LIST_HEAD(pages); 1430 /* 1431 * If we weren't successful in adding in new pages, warn and stop 1432 * tracing 1433 */ 1434 RB_WARN_ON(cpu_buffer, !success); 1435 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1436 1437 /* free pages if they weren't inserted */ 1438 if (!success) { 1439 struct buffer_page *bpage, *tmp; 1440 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1441 list) { 1442 list_del_init(&bpage->list); 1443 free_buffer_page(bpage); 1444 } 1445 } 1446 return success; 1447 } 1448 1449 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1450 { 1451 int success; 1452 1453 if (cpu_buffer->nr_pages_to_update > 0) 1454 success = rb_insert_pages(cpu_buffer); 1455 else 1456 success = rb_remove_pages(cpu_buffer, 1457 -cpu_buffer->nr_pages_to_update); 1458 1459 if (success) 1460 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1461 } 1462 1463 static void update_pages_handler(struct work_struct *work) 1464 { 1465 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1466 struct ring_buffer_per_cpu, update_pages_work); 1467 rb_update_pages(cpu_buffer); 1468 complete(&cpu_buffer->update_done); 1469 } 1470 1471 /** 1472 * ring_buffer_resize - resize the ring buffer 1473 * @buffer: the buffer to resize. 1474 * @size: the new size. 1475 * 1476 * Minimum size is 2 * BUF_PAGE_SIZE. 1477 * 1478 * Returns 0 on success and < 0 on failure. 1479 */ 1480 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1481 int cpu_id) 1482 { 1483 struct ring_buffer_per_cpu *cpu_buffer; 1484 unsigned nr_pages; 1485 int cpu, err = 0; 1486 1487 /* 1488 * Always succeed at resizing a non-existent buffer: 1489 */ 1490 if (!buffer) 1491 return size; 1492 1493 /* Make sure the requested buffer exists */ 1494 if (cpu_id != RING_BUFFER_ALL_CPUS && 1495 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1496 return size; 1497 1498 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1499 size *= BUF_PAGE_SIZE; 1500 1501 /* we need a minimum of two pages */ 1502 if (size < BUF_PAGE_SIZE * 2) 1503 size = BUF_PAGE_SIZE * 2; 1504 1505 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1506 1507 /* 1508 * Don't succeed if resizing is disabled, as a reader might be 1509 * manipulating the ring buffer and is expecting a sane state while 1510 * this is true. 1511 */ 1512 if (atomic_read(&buffer->resize_disabled)) 1513 return -EBUSY; 1514 1515 /* prevent another thread from changing buffer sizes */ 1516 mutex_lock(&buffer->mutex); 1517 1518 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1519 /* calculate the pages to update */ 1520 for_each_buffer_cpu(buffer, cpu) { 1521 cpu_buffer = buffer->buffers[cpu]; 1522 1523 cpu_buffer->nr_pages_to_update = nr_pages - 1524 cpu_buffer->nr_pages; 1525 /* 1526 * nothing more to do for removing pages or no update 1527 */ 1528 if (cpu_buffer->nr_pages_to_update <= 0) 1529 continue; 1530 /* 1531 * to add pages, make sure all new pages can be 1532 * allocated without receiving ENOMEM 1533 */ 1534 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1535 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1536 &cpu_buffer->new_pages, cpu)) { 1537 /* not enough memory for new pages */ 1538 err = -ENOMEM; 1539 goto out_err; 1540 } 1541 } 1542 1543 get_online_cpus(); 1544 /* 1545 * Fire off all the required work handlers 1546 * We can't schedule on offline CPUs, but it's not necessary 1547 * since we can change their buffer sizes without any race. 1548 */ 1549 for_each_buffer_cpu(buffer, cpu) { 1550 cpu_buffer = buffer->buffers[cpu]; 1551 if (!cpu_buffer->nr_pages_to_update) 1552 continue; 1553 1554 if (cpu_online(cpu)) 1555 schedule_work_on(cpu, 1556 &cpu_buffer->update_pages_work); 1557 else 1558 rb_update_pages(cpu_buffer); 1559 } 1560 1561 /* wait for all the updates to complete */ 1562 for_each_buffer_cpu(buffer, cpu) { 1563 cpu_buffer = buffer->buffers[cpu]; 1564 if (!cpu_buffer->nr_pages_to_update) 1565 continue; 1566 1567 if (cpu_online(cpu)) 1568 wait_for_completion(&cpu_buffer->update_done); 1569 cpu_buffer->nr_pages_to_update = 0; 1570 } 1571 1572 put_online_cpus(); 1573 } else { 1574 /* Make sure this CPU has been intitialized */ 1575 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1576 goto out; 1577 1578 cpu_buffer = buffer->buffers[cpu_id]; 1579 1580 if (nr_pages == cpu_buffer->nr_pages) 1581 goto out; 1582 1583 cpu_buffer->nr_pages_to_update = nr_pages - 1584 cpu_buffer->nr_pages; 1585 1586 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1587 if (cpu_buffer->nr_pages_to_update > 0 && 1588 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1589 &cpu_buffer->new_pages, cpu_id)) { 1590 err = -ENOMEM; 1591 goto out_err; 1592 } 1593 1594 get_online_cpus(); 1595 1596 if (cpu_online(cpu_id)) { 1597 schedule_work_on(cpu_id, 1598 &cpu_buffer->update_pages_work); 1599 wait_for_completion(&cpu_buffer->update_done); 1600 } else 1601 rb_update_pages(cpu_buffer); 1602 1603 cpu_buffer->nr_pages_to_update = 0; 1604 put_online_cpus(); 1605 } 1606 1607 out: 1608 /* 1609 * The ring buffer resize can happen with the ring buffer 1610 * enabled, so that the update disturbs the tracing as little 1611 * as possible. But if the buffer is disabled, we do not need 1612 * to worry about that, and we can take the time to verify 1613 * that the buffer is not corrupt. 1614 */ 1615 if (atomic_read(&buffer->record_disabled)) { 1616 atomic_inc(&buffer->record_disabled); 1617 /* 1618 * Even though the buffer was disabled, we must make sure 1619 * that it is truly disabled before calling rb_check_pages. 1620 * There could have been a race between checking 1621 * record_disable and incrementing it. 1622 */ 1623 synchronize_sched(); 1624 for_each_buffer_cpu(buffer, cpu) { 1625 cpu_buffer = buffer->buffers[cpu]; 1626 rb_check_pages(cpu_buffer); 1627 } 1628 atomic_dec(&buffer->record_disabled); 1629 } 1630 1631 mutex_unlock(&buffer->mutex); 1632 return size; 1633 1634 out_err: 1635 for_each_buffer_cpu(buffer, cpu) { 1636 struct buffer_page *bpage, *tmp; 1637 1638 cpu_buffer = buffer->buffers[cpu]; 1639 cpu_buffer->nr_pages_to_update = 0; 1640 1641 if (list_empty(&cpu_buffer->new_pages)) 1642 continue; 1643 1644 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1645 list) { 1646 list_del_init(&bpage->list); 1647 free_buffer_page(bpage); 1648 } 1649 } 1650 mutex_unlock(&buffer->mutex); 1651 return err; 1652 } 1653 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1654 1655 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1656 { 1657 mutex_lock(&buffer->mutex); 1658 if (val) 1659 buffer->flags |= RB_FL_OVERWRITE; 1660 else 1661 buffer->flags &= ~RB_FL_OVERWRITE; 1662 mutex_unlock(&buffer->mutex); 1663 } 1664 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1665 1666 static inline void * 1667 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1668 { 1669 return bpage->data + index; 1670 } 1671 1672 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1673 { 1674 return bpage->page->data + index; 1675 } 1676 1677 static inline struct ring_buffer_event * 1678 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1679 { 1680 return __rb_page_index(cpu_buffer->reader_page, 1681 cpu_buffer->reader_page->read); 1682 } 1683 1684 static inline struct ring_buffer_event * 1685 rb_iter_head_event(struct ring_buffer_iter *iter) 1686 { 1687 return __rb_page_index(iter->head_page, iter->head); 1688 } 1689 1690 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1691 { 1692 return local_read(&bpage->page->commit); 1693 } 1694 1695 /* Size is determined by what has been committed */ 1696 static inline unsigned rb_page_size(struct buffer_page *bpage) 1697 { 1698 return rb_page_commit(bpage); 1699 } 1700 1701 static inline unsigned 1702 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1703 { 1704 return rb_page_commit(cpu_buffer->commit_page); 1705 } 1706 1707 static inline unsigned 1708 rb_event_index(struct ring_buffer_event *event) 1709 { 1710 unsigned long addr = (unsigned long)event; 1711 1712 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1713 } 1714 1715 static inline int 1716 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1717 struct ring_buffer_event *event) 1718 { 1719 unsigned long addr = (unsigned long)event; 1720 unsigned long index; 1721 1722 index = rb_event_index(event); 1723 addr &= PAGE_MASK; 1724 1725 return cpu_buffer->commit_page->page == (void *)addr && 1726 rb_commit_index(cpu_buffer) == index; 1727 } 1728 1729 static void 1730 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1731 { 1732 unsigned long max_count; 1733 1734 /* 1735 * We only race with interrupts and NMIs on this CPU. 1736 * If we own the commit event, then we can commit 1737 * all others that interrupted us, since the interruptions 1738 * are in stack format (they finish before they come 1739 * back to us). This allows us to do a simple loop to 1740 * assign the commit to the tail. 1741 */ 1742 again: 1743 max_count = cpu_buffer->nr_pages * 100; 1744 1745 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1746 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1747 return; 1748 if (RB_WARN_ON(cpu_buffer, 1749 rb_is_reader_page(cpu_buffer->tail_page))) 1750 return; 1751 local_set(&cpu_buffer->commit_page->page->commit, 1752 rb_page_write(cpu_buffer->commit_page)); 1753 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1754 cpu_buffer->write_stamp = 1755 cpu_buffer->commit_page->page->time_stamp; 1756 /* add barrier to keep gcc from optimizing too much */ 1757 barrier(); 1758 } 1759 while (rb_commit_index(cpu_buffer) != 1760 rb_page_write(cpu_buffer->commit_page)) { 1761 1762 local_set(&cpu_buffer->commit_page->page->commit, 1763 rb_page_write(cpu_buffer->commit_page)); 1764 RB_WARN_ON(cpu_buffer, 1765 local_read(&cpu_buffer->commit_page->page->commit) & 1766 ~RB_WRITE_MASK); 1767 barrier(); 1768 } 1769 1770 /* again, keep gcc from optimizing */ 1771 barrier(); 1772 1773 /* 1774 * If an interrupt came in just after the first while loop 1775 * and pushed the tail page forward, we will be left with 1776 * a dangling commit that will never go forward. 1777 */ 1778 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1779 goto again; 1780 } 1781 1782 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1783 { 1784 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1785 cpu_buffer->reader_page->read = 0; 1786 } 1787 1788 static void rb_inc_iter(struct ring_buffer_iter *iter) 1789 { 1790 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1791 1792 /* 1793 * The iterator could be on the reader page (it starts there). 1794 * But the head could have moved, since the reader was 1795 * found. Check for this case and assign the iterator 1796 * to the head page instead of next. 1797 */ 1798 if (iter->head_page == cpu_buffer->reader_page) 1799 iter->head_page = rb_set_head_page(cpu_buffer); 1800 else 1801 rb_inc_page(cpu_buffer, &iter->head_page); 1802 1803 iter->read_stamp = iter->head_page->page->time_stamp; 1804 iter->head = 0; 1805 } 1806 1807 /* Slow path, do not inline */ 1808 static noinline struct ring_buffer_event * 1809 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1810 { 1811 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1812 1813 /* Not the first event on the page? */ 1814 if (rb_event_index(event)) { 1815 event->time_delta = delta & TS_MASK; 1816 event->array[0] = delta >> TS_SHIFT; 1817 } else { 1818 /* nope, just zero it */ 1819 event->time_delta = 0; 1820 event->array[0] = 0; 1821 } 1822 1823 return skip_time_extend(event); 1824 } 1825 1826 /** 1827 * rb_update_event - update event type and data 1828 * @event: the even to update 1829 * @type: the type of event 1830 * @length: the size of the event field in the ring buffer 1831 * 1832 * Update the type and data fields of the event. The length 1833 * is the actual size that is written to the ring buffer, 1834 * and with this, we can determine what to place into the 1835 * data field. 1836 */ 1837 static void 1838 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1839 struct ring_buffer_event *event, unsigned length, 1840 int add_timestamp, u64 delta) 1841 { 1842 /* Only a commit updates the timestamp */ 1843 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 1844 delta = 0; 1845 1846 /* 1847 * If we need to add a timestamp, then we 1848 * add it to the start of the resevered space. 1849 */ 1850 if (unlikely(add_timestamp)) { 1851 event = rb_add_time_stamp(event, delta); 1852 length -= RB_LEN_TIME_EXTEND; 1853 delta = 0; 1854 } 1855 1856 event->time_delta = delta; 1857 length -= RB_EVNT_HDR_SIZE; 1858 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 1859 event->type_len = 0; 1860 event->array[0] = length; 1861 } else 1862 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1863 } 1864 1865 /* 1866 * rb_handle_head_page - writer hit the head page 1867 * 1868 * Returns: +1 to retry page 1869 * 0 to continue 1870 * -1 on error 1871 */ 1872 static int 1873 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1874 struct buffer_page *tail_page, 1875 struct buffer_page *next_page) 1876 { 1877 struct buffer_page *new_head; 1878 int entries; 1879 int type; 1880 int ret; 1881 1882 entries = rb_page_entries(next_page); 1883 1884 /* 1885 * The hard part is here. We need to move the head 1886 * forward, and protect against both readers on 1887 * other CPUs and writers coming in via interrupts. 1888 */ 1889 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1890 RB_PAGE_HEAD); 1891 1892 /* 1893 * type can be one of four: 1894 * NORMAL - an interrupt already moved it for us 1895 * HEAD - we are the first to get here. 1896 * UPDATE - we are the interrupt interrupting 1897 * a current move. 1898 * MOVED - a reader on another CPU moved the next 1899 * pointer to its reader page. Give up 1900 * and try again. 1901 */ 1902 1903 switch (type) { 1904 case RB_PAGE_HEAD: 1905 /* 1906 * We changed the head to UPDATE, thus 1907 * it is our responsibility to update 1908 * the counters. 1909 */ 1910 local_add(entries, &cpu_buffer->overrun); 1911 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1912 1913 /* 1914 * The entries will be zeroed out when we move the 1915 * tail page. 1916 */ 1917 1918 /* still more to do */ 1919 break; 1920 1921 case RB_PAGE_UPDATE: 1922 /* 1923 * This is an interrupt that interrupt the 1924 * previous update. Still more to do. 1925 */ 1926 break; 1927 case RB_PAGE_NORMAL: 1928 /* 1929 * An interrupt came in before the update 1930 * and processed this for us. 1931 * Nothing left to do. 1932 */ 1933 return 1; 1934 case RB_PAGE_MOVED: 1935 /* 1936 * The reader is on another CPU and just did 1937 * a swap with our next_page. 1938 * Try again. 1939 */ 1940 return 1; 1941 default: 1942 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1943 return -1; 1944 } 1945 1946 /* 1947 * Now that we are here, the old head pointer is 1948 * set to UPDATE. This will keep the reader from 1949 * swapping the head page with the reader page. 1950 * The reader (on another CPU) will spin till 1951 * we are finished. 1952 * 1953 * We just need to protect against interrupts 1954 * doing the job. We will set the next pointer 1955 * to HEAD. After that, we set the old pointer 1956 * to NORMAL, but only if it was HEAD before. 1957 * otherwise we are an interrupt, and only 1958 * want the outer most commit to reset it. 1959 */ 1960 new_head = next_page; 1961 rb_inc_page(cpu_buffer, &new_head); 1962 1963 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1964 RB_PAGE_NORMAL); 1965 1966 /* 1967 * Valid returns are: 1968 * HEAD - an interrupt came in and already set it. 1969 * NORMAL - One of two things: 1970 * 1) We really set it. 1971 * 2) A bunch of interrupts came in and moved 1972 * the page forward again. 1973 */ 1974 switch (ret) { 1975 case RB_PAGE_HEAD: 1976 case RB_PAGE_NORMAL: 1977 /* OK */ 1978 break; 1979 default: 1980 RB_WARN_ON(cpu_buffer, 1); 1981 return -1; 1982 } 1983 1984 /* 1985 * It is possible that an interrupt came in, 1986 * set the head up, then more interrupts came in 1987 * and moved it again. When we get back here, 1988 * the page would have been set to NORMAL but we 1989 * just set it back to HEAD. 1990 * 1991 * How do you detect this? Well, if that happened 1992 * the tail page would have moved. 1993 */ 1994 if (ret == RB_PAGE_NORMAL) { 1995 /* 1996 * If the tail had moved passed next, then we need 1997 * to reset the pointer. 1998 */ 1999 if (cpu_buffer->tail_page != tail_page && 2000 cpu_buffer->tail_page != next_page) 2001 rb_head_page_set_normal(cpu_buffer, new_head, 2002 next_page, 2003 RB_PAGE_HEAD); 2004 } 2005 2006 /* 2007 * If this was the outer most commit (the one that 2008 * changed the original pointer from HEAD to UPDATE), 2009 * then it is up to us to reset it to NORMAL. 2010 */ 2011 if (type == RB_PAGE_HEAD) { 2012 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2013 tail_page, 2014 RB_PAGE_UPDATE); 2015 if (RB_WARN_ON(cpu_buffer, 2016 ret != RB_PAGE_UPDATE)) 2017 return -1; 2018 } 2019 2020 return 0; 2021 } 2022 2023 static unsigned rb_calculate_event_length(unsigned length) 2024 { 2025 struct ring_buffer_event event; /* Used only for sizeof array */ 2026 2027 /* zero length can cause confusions */ 2028 if (!length) 2029 length = 1; 2030 2031 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2032 length += sizeof(event.array[0]); 2033 2034 length += RB_EVNT_HDR_SIZE; 2035 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2036 2037 return length; 2038 } 2039 2040 static inline void 2041 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2042 struct buffer_page *tail_page, 2043 unsigned long tail, unsigned long length) 2044 { 2045 struct ring_buffer_event *event; 2046 2047 /* 2048 * Only the event that crossed the page boundary 2049 * must fill the old tail_page with padding. 2050 */ 2051 if (tail >= BUF_PAGE_SIZE) { 2052 /* 2053 * If the page was filled, then we still need 2054 * to update the real_end. Reset it to zero 2055 * and the reader will ignore it. 2056 */ 2057 if (tail == BUF_PAGE_SIZE) 2058 tail_page->real_end = 0; 2059 2060 local_sub(length, &tail_page->write); 2061 return; 2062 } 2063 2064 event = __rb_page_index(tail_page, tail); 2065 kmemcheck_annotate_bitfield(event, bitfield); 2066 2067 /* account for padding bytes */ 2068 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2069 2070 /* 2071 * Save the original length to the meta data. 2072 * This will be used by the reader to add lost event 2073 * counter. 2074 */ 2075 tail_page->real_end = tail; 2076 2077 /* 2078 * If this event is bigger than the minimum size, then 2079 * we need to be careful that we don't subtract the 2080 * write counter enough to allow another writer to slip 2081 * in on this page. 2082 * We put in a discarded commit instead, to make sure 2083 * that this space is not used again. 2084 * 2085 * If we are less than the minimum size, we don't need to 2086 * worry about it. 2087 */ 2088 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2089 /* No room for any events */ 2090 2091 /* Mark the rest of the page with padding */ 2092 rb_event_set_padding(event); 2093 2094 /* Set the write back to the previous setting */ 2095 local_sub(length, &tail_page->write); 2096 return; 2097 } 2098 2099 /* Put in a discarded event */ 2100 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2101 event->type_len = RINGBUF_TYPE_PADDING; 2102 /* time delta must be non zero */ 2103 event->time_delta = 1; 2104 2105 /* Set write to end of buffer */ 2106 length = (tail + length) - BUF_PAGE_SIZE; 2107 local_sub(length, &tail_page->write); 2108 } 2109 2110 /* 2111 * This is the slow path, force gcc not to inline it. 2112 */ 2113 static noinline struct ring_buffer_event * 2114 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2115 unsigned long length, unsigned long tail, 2116 struct buffer_page *tail_page, u64 ts) 2117 { 2118 struct buffer_page *commit_page = cpu_buffer->commit_page; 2119 struct ring_buffer *buffer = cpu_buffer->buffer; 2120 struct buffer_page *next_page; 2121 int ret; 2122 2123 next_page = tail_page; 2124 2125 rb_inc_page(cpu_buffer, &next_page); 2126 2127 /* 2128 * If for some reason, we had an interrupt storm that made 2129 * it all the way around the buffer, bail, and warn 2130 * about it. 2131 */ 2132 if (unlikely(next_page == commit_page)) { 2133 local_inc(&cpu_buffer->commit_overrun); 2134 goto out_reset; 2135 } 2136 2137 /* 2138 * This is where the fun begins! 2139 * 2140 * We are fighting against races between a reader that 2141 * could be on another CPU trying to swap its reader 2142 * page with the buffer head. 2143 * 2144 * We are also fighting against interrupts coming in and 2145 * moving the head or tail on us as well. 2146 * 2147 * If the next page is the head page then we have filled 2148 * the buffer, unless the commit page is still on the 2149 * reader page. 2150 */ 2151 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2152 2153 /* 2154 * If the commit is not on the reader page, then 2155 * move the header page. 2156 */ 2157 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2158 /* 2159 * If we are not in overwrite mode, 2160 * this is easy, just stop here. 2161 */ 2162 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2163 local_inc(&cpu_buffer->dropped_events); 2164 goto out_reset; 2165 } 2166 2167 ret = rb_handle_head_page(cpu_buffer, 2168 tail_page, 2169 next_page); 2170 if (ret < 0) 2171 goto out_reset; 2172 if (ret) 2173 goto out_again; 2174 } else { 2175 /* 2176 * We need to be careful here too. The 2177 * commit page could still be on the reader 2178 * page. We could have a small buffer, and 2179 * have filled up the buffer with events 2180 * from interrupts and such, and wrapped. 2181 * 2182 * Note, if the tail page is also the on the 2183 * reader_page, we let it move out. 2184 */ 2185 if (unlikely((cpu_buffer->commit_page != 2186 cpu_buffer->tail_page) && 2187 (cpu_buffer->commit_page == 2188 cpu_buffer->reader_page))) { 2189 local_inc(&cpu_buffer->commit_overrun); 2190 goto out_reset; 2191 } 2192 } 2193 } 2194 2195 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2196 if (ret) { 2197 /* 2198 * Nested commits always have zero deltas, so 2199 * just reread the time stamp 2200 */ 2201 ts = rb_time_stamp(buffer); 2202 next_page->page->time_stamp = ts; 2203 } 2204 2205 out_again: 2206 2207 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2208 2209 /* fail and let the caller try again */ 2210 return ERR_PTR(-EAGAIN); 2211 2212 out_reset: 2213 /* reset write */ 2214 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2215 2216 return NULL; 2217 } 2218 2219 static struct ring_buffer_event * 2220 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2221 unsigned long length, u64 ts, 2222 u64 delta, int add_timestamp) 2223 { 2224 struct buffer_page *tail_page; 2225 struct ring_buffer_event *event; 2226 unsigned long tail, write; 2227 2228 /* 2229 * If the time delta since the last event is too big to 2230 * hold in the time field of the event, then we append a 2231 * TIME EXTEND event ahead of the data event. 2232 */ 2233 if (unlikely(add_timestamp)) 2234 length += RB_LEN_TIME_EXTEND; 2235 2236 tail_page = cpu_buffer->tail_page; 2237 write = local_add_return(length, &tail_page->write); 2238 2239 /* set write to only the index of the write */ 2240 write &= RB_WRITE_MASK; 2241 tail = write - length; 2242 2243 /* See if we shot pass the end of this buffer page */ 2244 if (unlikely(write > BUF_PAGE_SIZE)) 2245 return rb_move_tail(cpu_buffer, length, tail, 2246 tail_page, ts); 2247 2248 /* We reserved something on the buffer */ 2249 2250 event = __rb_page_index(tail_page, tail); 2251 kmemcheck_annotate_bitfield(event, bitfield); 2252 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2253 2254 local_inc(&tail_page->entries); 2255 2256 /* 2257 * If this is the first commit on the page, then update 2258 * its timestamp. 2259 */ 2260 if (!tail) 2261 tail_page->page->time_stamp = ts; 2262 2263 /* account for these added bytes */ 2264 local_add(length, &cpu_buffer->entries_bytes); 2265 2266 return event; 2267 } 2268 2269 static inline int 2270 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2271 struct ring_buffer_event *event) 2272 { 2273 unsigned long new_index, old_index; 2274 struct buffer_page *bpage; 2275 unsigned long index; 2276 unsigned long addr; 2277 2278 new_index = rb_event_index(event); 2279 old_index = new_index + rb_event_ts_length(event); 2280 addr = (unsigned long)event; 2281 addr &= PAGE_MASK; 2282 2283 bpage = cpu_buffer->tail_page; 2284 2285 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2286 unsigned long write_mask = 2287 local_read(&bpage->write) & ~RB_WRITE_MASK; 2288 unsigned long event_length = rb_event_length(event); 2289 /* 2290 * This is on the tail page. It is possible that 2291 * a write could come in and move the tail page 2292 * and write to the next page. That is fine 2293 * because we just shorten what is on this page. 2294 */ 2295 old_index += write_mask; 2296 new_index += write_mask; 2297 index = local_cmpxchg(&bpage->write, old_index, new_index); 2298 if (index == old_index) { 2299 /* update counters */ 2300 local_sub(event_length, &cpu_buffer->entries_bytes); 2301 return 1; 2302 } 2303 } 2304 2305 /* could not discard */ 2306 return 0; 2307 } 2308 2309 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2310 { 2311 local_inc(&cpu_buffer->committing); 2312 local_inc(&cpu_buffer->commits); 2313 } 2314 2315 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2316 { 2317 unsigned long commits; 2318 2319 if (RB_WARN_ON(cpu_buffer, 2320 !local_read(&cpu_buffer->committing))) 2321 return; 2322 2323 again: 2324 commits = local_read(&cpu_buffer->commits); 2325 /* synchronize with interrupts */ 2326 barrier(); 2327 if (local_read(&cpu_buffer->committing) == 1) 2328 rb_set_commit_to_write(cpu_buffer); 2329 2330 local_dec(&cpu_buffer->committing); 2331 2332 /* synchronize with interrupts */ 2333 barrier(); 2334 2335 /* 2336 * Need to account for interrupts coming in between the 2337 * updating of the commit page and the clearing of the 2338 * committing counter. 2339 */ 2340 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2341 !local_read(&cpu_buffer->committing)) { 2342 local_inc(&cpu_buffer->committing); 2343 goto again; 2344 } 2345 } 2346 2347 static struct ring_buffer_event * 2348 rb_reserve_next_event(struct ring_buffer *buffer, 2349 struct ring_buffer_per_cpu *cpu_buffer, 2350 unsigned long length) 2351 { 2352 struct ring_buffer_event *event; 2353 u64 ts, delta; 2354 int nr_loops = 0; 2355 int add_timestamp; 2356 u64 diff; 2357 2358 rb_start_commit(cpu_buffer); 2359 2360 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2361 /* 2362 * Due to the ability to swap a cpu buffer from a buffer 2363 * it is possible it was swapped before we committed. 2364 * (committing stops a swap). We check for it here and 2365 * if it happened, we have to fail the write. 2366 */ 2367 barrier(); 2368 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2369 local_dec(&cpu_buffer->committing); 2370 local_dec(&cpu_buffer->commits); 2371 return NULL; 2372 } 2373 #endif 2374 2375 length = rb_calculate_event_length(length); 2376 again: 2377 add_timestamp = 0; 2378 delta = 0; 2379 2380 /* 2381 * We allow for interrupts to reenter here and do a trace. 2382 * If one does, it will cause this original code to loop 2383 * back here. Even with heavy interrupts happening, this 2384 * should only happen a few times in a row. If this happens 2385 * 1000 times in a row, there must be either an interrupt 2386 * storm or we have something buggy. 2387 * Bail! 2388 */ 2389 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2390 goto out_fail; 2391 2392 ts = rb_time_stamp(cpu_buffer->buffer); 2393 diff = ts - cpu_buffer->write_stamp; 2394 2395 /* make sure this diff is calculated here */ 2396 barrier(); 2397 2398 /* Did the write stamp get updated already? */ 2399 if (likely(ts >= cpu_buffer->write_stamp)) { 2400 delta = diff; 2401 if (unlikely(test_time_stamp(delta))) { 2402 int local_clock_stable = 1; 2403 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2404 local_clock_stable = sched_clock_stable; 2405 #endif 2406 WARN_ONCE(delta > (1ULL << 59), 2407 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2408 (unsigned long long)delta, 2409 (unsigned long long)ts, 2410 (unsigned long long)cpu_buffer->write_stamp, 2411 local_clock_stable ? "" : 2412 "If you just came from a suspend/resume,\n" 2413 "please switch to the trace global clock:\n" 2414 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2415 add_timestamp = 1; 2416 } 2417 } 2418 2419 event = __rb_reserve_next(cpu_buffer, length, ts, 2420 delta, add_timestamp); 2421 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2422 goto again; 2423 2424 if (!event) 2425 goto out_fail; 2426 2427 return event; 2428 2429 out_fail: 2430 rb_end_commit(cpu_buffer); 2431 return NULL; 2432 } 2433 2434 #ifdef CONFIG_TRACING 2435 2436 /* 2437 * The lock and unlock are done within a preempt disable section. 2438 * The current_context per_cpu variable can only be modified 2439 * by the current task between lock and unlock. But it can 2440 * be modified more than once via an interrupt. To pass this 2441 * information from the lock to the unlock without having to 2442 * access the 'in_interrupt()' functions again (which do show 2443 * a bit of overhead in something as critical as function tracing, 2444 * we use a bitmask trick. 2445 * 2446 * bit 0 = NMI context 2447 * bit 1 = IRQ context 2448 * bit 2 = SoftIRQ context 2449 * bit 3 = normal context. 2450 * 2451 * This works because this is the order of contexts that can 2452 * preempt other contexts. A SoftIRQ never preempts an IRQ 2453 * context. 2454 * 2455 * When the context is determined, the corresponding bit is 2456 * checked and set (if it was set, then a recursion of that context 2457 * happened). 2458 * 2459 * On unlock, we need to clear this bit. To do so, just subtract 2460 * 1 from the current_context and AND it to itself. 2461 * 2462 * (binary) 2463 * 101 - 1 = 100 2464 * 101 & 100 = 100 (clearing bit zero) 2465 * 2466 * 1010 - 1 = 1001 2467 * 1010 & 1001 = 1000 (clearing bit 1) 2468 * 2469 * The least significant bit can be cleared this way, and it 2470 * just so happens that it is the same bit corresponding to 2471 * the current context. 2472 */ 2473 static DEFINE_PER_CPU(unsigned int, current_context); 2474 2475 static __always_inline int trace_recursive_lock(void) 2476 { 2477 unsigned int val = this_cpu_read(current_context); 2478 int bit; 2479 2480 if (in_interrupt()) { 2481 if (in_nmi()) 2482 bit = 0; 2483 else if (in_irq()) 2484 bit = 1; 2485 else 2486 bit = 2; 2487 } else 2488 bit = 3; 2489 2490 if (unlikely(val & (1 << bit))) 2491 return 1; 2492 2493 val |= (1 << bit); 2494 this_cpu_write(current_context, val); 2495 2496 return 0; 2497 } 2498 2499 static __always_inline void trace_recursive_unlock(void) 2500 { 2501 unsigned int val = this_cpu_read(current_context); 2502 2503 val--; 2504 val &= this_cpu_read(current_context); 2505 this_cpu_write(current_context, val); 2506 } 2507 2508 #else 2509 2510 #define trace_recursive_lock() (0) 2511 #define trace_recursive_unlock() do { } while (0) 2512 2513 #endif 2514 2515 /** 2516 * ring_buffer_lock_reserve - reserve a part of the buffer 2517 * @buffer: the ring buffer to reserve from 2518 * @length: the length of the data to reserve (excluding event header) 2519 * 2520 * Returns a reseverd event on the ring buffer to copy directly to. 2521 * The user of this interface will need to get the body to write into 2522 * and can use the ring_buffer_event_data() interface. 2523 * 2524 * The length is the length of the data needed, not the event length 2525 * which also includes the event header. 2526 * 2527 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2528 * If NULL is returned, then nothing has been allocated or locked. 2529 */ 2530 struct ring_buffer_event * 2531 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2532 { 2533 struct ring_buffer_per_cpu *cpu_buffer; 2534 struct ring_buffer_event *event; 2535 int cpu; 2536 2537 if (ring_buffer_flags != RB_BUFFERS_ON) 2538 return NULL; 2539 2540 /* If we are tracing schedule, we don't want to recurse */ 2541 preempt_disable_notrace(); 2542 2543 if (atomic_read(&buffer->record_disabled)) 2544 goto out_nocheck; 2545 2546 if (trace_recursive_lock()) 2547 goto out_nocheck; 2548 2549 cpu = raw_smp_processor_id(); 2550 2551 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2552 goto out; 2553 2554 cpu_buffer = buffer->buffers[cpu]; 2555 2556 if (atomic_read(&cpu_buffer->record_disabled)) 2557 goto out; 2558 2559 if (length > BUF_MAX_DATA_SIZE) 2560 goto out; 2561 2562 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2563 if (!event) 2564 goto out; 2565 2566 return event; 2567 2568 out: 2569 trace_recursive_unlock(); 2570 2571 out_nocheck: 2572 preempt_enable_notrace(); 2573 return NULL; 2574 } 2575 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2576 2577 static void 2578 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2579 struct ring_buffer_event *event) 2580 { 2581 u64 delta; 2582 2583 /* 2584 * The event first in the commit queue updates the 2585 * time stamp. 2586 */ 2587 if (rb_event_is_commit(cpu_buffer, event)) { 2588 /* 2589 * A commit event that is first on a page 2590 * updates the write timestamp with the page stamp 2591 */ 2592 if (!rb_event_index(event)) 2593 cpu_buffer->write_stamp = 2594 cpu_buffer->commit_page->page->time_stamp; 2595 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2596 delta = event->array[0]; 2597 delta <<= TS_SHIFT; 2598 delta += event->time_delta; 2599 cpu_buffer->write_stamp += delta; 2600 } else 2601 cpu_buffer->write_stamp += event->time_delta; 2602 } 2603 } 2604 2605 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2606 struct ring_buffer_event *event) 2607 { 2608 local_inc(&cpu_buffer->entries); 2609 rb_update_write_stamp(cpu_buffer, event); 2610 rb_end_commit(cpu_buffer); 2611 } 2612 2613 /** 2614 * ring_buffer_unlock_commit - commit a reserved 2615 * @buffer: The buffer to commit to 2616 * @event: The event pointer to commit. 2617 * 2618 * This commits the data to the ring buffer, and releases any locks held. 2619 * 2620 * Must be paired with ring_buffer_lock_reserve. 2621 */ 2622 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2623 struct ring_buffer_event *event) 2624 { 2625 struct ring_buffer_per_cpu *cpu_buffer; 2626 int cpu = raw_smp_processor_id(); 2627 2628 cpu_buffer = buffer->buffers[cpu]; 2629 2630 rb_commit(cpu_buffer, event); 2631 2632 trace_recursive_unlock(); 2633 2634 preempt_enable_notrace(); 2635 2636 return 0; 2637 } 2638 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2639 2640 static inline void rb_event_discard(struct ring_buffer_event *event) 2641 { 2642 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2643 event = skip_time_extend(event); 2644 2645 /* array[0] holds the actual length for the discarded event */ 2646 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2647 event->type_len = RINGBUF_TYPE_PADDING; 2648 /* time delta must be non zero */ 2649 if (!event->time_delta) 2650 event->time_delta = 1; 2651 } 2652 2653 /* 2654 * Decrement the entries to the page that an event is on. 2655 * The event does not even need to exist, only the pointer 2656 * to the page it is on. This may only be called before the commit 2657 * takes place. 2658 */ 2659 static inline void 2660 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2661 struct ring_buffer_event *event) 2662 { 2663 unsigned long addr = (unsigned long)event; 2664 struct buffer_page *bpage = cpu_buffer->commit_page; 2665 struct buffer_page *start; 2666 2667 addr &= PAGE_MASK; 2668 2669 /* Do the likely case first */ 2670 if (likely(bpage->page == (void *)addr)) { 2671 local_dec(&bpage->entries); 2672 return; 2673 } 2674 2675 /* 2676 * Because the commit page may be on the reader page we 2677 * start with the next page and check the end loop there. 2678 */ 2679 rb_inc_page(cpu_buffer, &bpage); 2680 start = bpage; 2681 do { 2682 if (bpage->page == (void *)addr) { 2683 local_dec(&bpage->entries); 2684 return; 2685 } 2686 rb_inc_page(cpu_buffer, &bpage); 2687 } while (bpage != start); 2688 2689 /* commit not part of this buffer?? */ 2690 RB_WARN_ON(cpu_buffer, 1); 2691 } 2692 2693 /** 2694 * ring_buffer_commit_discard - discard an event that has not been committed 2695 * @buffer: the ring buffer 2696 * @event: non committed event to discard 2697 * 2698 * Sometimes an event that is in the ring buffer needs to be ignored. 2699 * This function lets the user discard an event in the ring buffer 2700 * and then that event will not be read later. 2701 * 2702 * This function only works if it is called before the the item has been 2703 * committed. It will try to free the event from the ring buffer 2704 * if another event has not been added behind it. 2705 * 2706 * If another event has been added behind it, it will set the event 2707 * up as discarded, and perform the commit. 2708 * 2709 * If this function is called, do not call ring_buffer_unlock_commit on 2710 * the event. 2711 */ 2712 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2713 struct ring_buffer_event *event) 2714 { 2715 struct ring_buffer_per_cpu *cpu_buffer; 2716 int cpu; 2717 2718 /* The event is discarded regardless */ 2719 rb_event_discard(event); 2720 2721 cpu = smp_processor_id(); 2722 cpu_buffer = buffer->buffers[cpu]; 2723 2724 /* 2725 * This must only be called if the event has not been 2726 * committed yet. Thus we can assume that preemption 2727 * is still disabled. 2728 */ 2729 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2730 2731 rb_decrement_entry(cpu_buffer, event); 2732 if (rb_try_to_discard(cpu_buffer, event)) 2733 goto out; 2734 2735 /* 2736 * The commit is still visible by the reader, so we 2737 * must still update the timestamp. 2738 */ 2739 rb_update_write_stamp(cpu_buffer, event); 2740 out: 2741 rb_end_commit(cpu_buffer); 2742 2743 trace_recursive_unlock(); 2744 2745 preempt_enable_notrace(); 2746 2747 } 2748 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2749 2750 /** 2751 * ring_buffer_write - write data to the buffer without reserving 2752 * @buffer: The ring buffer to write to. 2753 * @length: The length of the data being written (excluding the event header) 2754 * @data: The data to write to the buffer. 2755 * 2756 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2757 * one function. If you already have the data to write to the buffer, it 2758 * may be easier to simply call this function. 2759 * 2760 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2761 * and not the length of the event which would hold the header. 2762 */ 2763 int ring_buffer_write(struct ring_buffer *buffer, 2764 unsigned long length, 2765 void *data) 2766 { 2767 struct ring_buffer_per_cpu *cpu_buffer; 2768 struct ring_buffer_event *event; 2769 void *body; 2770 int ret = -EBUSY; 2771 int cpu; 2772 2773 if (ring_buffer_flags != RB_BUFFERS_ON) 2774 return -EBUSY; 2775 2776 preempt_disable_notrace(); 2777 2778 if (atomic_read(&buffer->record_disabled)) 2779 goto out; 2780 2781 cpu = raw_smp_processor_id(); 2782 2783 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2784 goto out; 2785 2786 cpu_buffer = buffer->buffers[cpu]; 2787 2788 if (atomic_read(&cpu_buffer->record_disabled)) 2789 goto out; 2790 2791 if (length > BUF_MAX_DATA_SIZE) 2792 goto out; 2793 2794 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2795 if (!event) 2796 goto out; 2797 2798 body = rb_event_data(event); 2799 2800 memcpy(body, data, length); 2801 2802 rb_commit(cpu_buffer, event); 2803 2804 ret = 0; 2805 out: 2806 preempt_enable_notrace(); 2807 2808 return ret; 2809 } 2810 EXPORT_SYMBOL_GPL(ring_buffer_write); 2811 2812 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2813 { 2814 struct buffer_page *reader = cpu_buffer->reader_page; 2815 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2816 struct buffer_page *commit = cpu_buffer->commit_page; 2817 2818 /* In case of error, head will be NULL */ 2819 if (unlikely(!head)) 2820 return 1; 2821 2822 return reader->read == rb_page_commit(reader) && 2823 (commit == reader || 2824 (commit == head && 2825 head->read == rb_page_commit(commit))); 2826 } 2827 2828 /** 2829 * ring_buffer_record_disable - stop all writes into the buffer 2830 * @buffer: The ring buffer to stop writes to. 2831 * 2832 * This prevents all writes to the buffer. Any attempt to write 2833 * to the buffer after this will fail and return NULL. 2834 * 2835 * The caller should call synchronize_sched() after this. 2836 */ 2837 void ring_buffer_record_disable(struct ring_buffer *buffer) 2838 { 2839 atomic_inc(&buffer->record_disabled); 2840 } 2841 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2842 2843 /** 2844 * ring_buffer_record_enable - enable writes to the buffer 2845 * @buffer: The ring buffer to enable writes 2846 * 2847 * Note, multiple disables will need the same number of enables 2848 * to truly enable the writing (much like preempt_disable). 2849 */ 2850 void ring_buffer_record_enable(struct ring_buffer *buffer) 2851 { 2852 atomic_dec(&buffer->record_disabled); 2853 } 2854 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2855 2856 /** 2857 * ring_buffer_record_off - stop all writes into the buffer 2858 * @buffer: The ring buffer to stop writes to. 2859 * 2860 * This prevents all writes to the buffer. Any attempt to write 2861 * to the buffer after this will fail and return NULL. 2862 * 2863 * This is different than ring_buffer_record_disable() as 2864 * it works like an on/off switch, where as the disable() version 2865 * must be paired with a enable(). 2866 */ 2867 void ring_buffer_record_off(struct ring_buffer *buffer) 2868 { 2869 unsigned int rd; 2870 unsigned int new_rd; 2871 2872 do { 2873 rd = atomic_read(&buffer->record_disabled); 2874 new_rd = rd | RB_BUFFER_OFF; 2875 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2876 } 2877 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 2878 2879 /** 2880 * ring_buffer_record_on - restart writes into the buffer 2881 * @buffer: The ring buffer to start writes to. 2882 * 2883 * This enables all writes to the buffer that was disabled by 2884 * ring_buffer_record_off(). 2885 * 2886 * This is different than ring_buffer_record_enable() as 2887 * it works like an on/off switch, where as the enable() version 2888 * must be paired with a disable(). 2889 */ 2890 void ring_buffer_record_on(struct ring_buffer *buffer) 2891 { 2892 unsigned int rd; 2893 unsigned int new_rd; 2894 2895 do { 2896 rd = atomic_read(&buffer->record_disabled); 2897 new_rd = rd & ~RB_BUFFER_OFF; 2898 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2899 } 2900 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 2901 2902 /** 2903 * ring_buffer_record_is_on - return true if the ring buffer can write 2904 * @buffer: The ring buffer to see if write is enabled 2905 * 2906 * Returns true if the ring buffer is in a state that it accepts writes. 2907 */ 2908 int ring_buffer_record_is_on(struct ring_buffer *buffer) 2909 { 2910 return !atomic_read(&buffer->record_disabled); 2911 } 2912 2913 /** 2914 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2915 * @buffer: The ring buffer to stop writes to. 2916 * @cpu: The CPU buffer to stop 2917 * 2918 * This prevents all writes to the buffer. Any attempt to write 2919 * to the buffer after this will fail and return NULL. 2920 * 2921 * The caller should call synchronize_sched() after this. 2922 */ 2923 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2924 { 2925 struct ring_buffer_per_cpu *cpu_buffer; 2926 2927 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2928 return; 2929 2930 cpu_buffer = buffer->buffers[cpu]; 2931 atomic_inc(&cpu_buffer->record_disabled); 2932 } 2933 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2934 2935 /** 2936 * ring_buffer_record_enable_cpu - enable writes to the buffer 2937 * @buffer: The ring buffer to enable writes 2938 * @cpu: The CPU to enable. 2939 * 2940 * Note, multiple disables will need the same number of enables 2941 * to truly enable the writing (much like preempt_disable). 2942 */ 2943 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2944 { 2945 struct ring_buffer_per_cpu *cpu_buffer; 2946 2947 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2948 return; 2949 2950 cpu_buffer = buffer->buffers[cpu]; 2951 atomic_dec(&cpu_buffer->record_disabled); 2952 } 2953 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2954 2955 /* 2956 * The total entries in the ring buffer is the running counter 2957 * of entries entered into the ring buffer, minus the sum of 2958 * the entries read from the ring buffer and the number of 2959 * entries that were overwritten. 2960 */ 2961 static inline unsigned long 2962 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 2963 { 2964 return local_read(&cpu_buffer->entries) - 2965 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 2966 } 2967 2968 /** 2969 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 2970 * @buffer: The ring buffer 2971 * @cpu: The per CPU buffer to read from. 2972 */ 2973 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 2974 { 2975 unsigned long flags; 2976 struct ring_buffer_per_cpu *cpu_buffer; 2977 struct buffer_page *bpage; 2978 u64 ret = 0; 2979 2980 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2981 return 0; 2982 2983 cpu_buffer = buffer->buffers[cpu]; 2984 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2985 /* 2986 * if the tail is on reader_page, oldest time stamp is on the reader 2987 * page 2988 */ 2989 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2990 bpage = cpu_buffer->reader_page; 2991 else 2992 bpage = rb_set_head_page(cpu_buffer); 2993 if (bpage) 2994 ret = bpage->page->time_stamp; 2995 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2996 2997 return ret; 2998 } 2999 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3000 3001 /** 3002 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3003 * @buffer: The ring buffer 3004 * @cpu: The per CPU buffer to read from. 3005 */ 3006 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3007 { 3008 struct ring_buffer_per_cpu *cpu_buffer; 3009 unsigned long ret; 3010 3011 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3012 return 0; 3013 3014 cpu_buffer = buffer->buffers[cpu]; 3015 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3016 3017 return ret; 3018 } 3019 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3020 3021 /** 3022 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3023 * @buffer: The ring buffer 3024 * @cpu: The per CPU buffer to get the entries from. 3025 */ 3026 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3027 { 3028 struct ring_buffer_per_cpu *cpu_buffer; 3029 3030 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3031 return 0; 3032 3033 cpu_buffer = buffer->buffers[cpu]; 3034 3035 return rb_num_of_entries(cpu_buffer); 3036 } 3037 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3038 3039 /** 3040 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3041 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3042 * @buffer: The ring buffer 3043 * @cpu: The per CPU buffer to get the number of overruns from 3044 */ 3045 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3046 { 3047 struct ring_buffer_per_cpu *cpu_buffer; 3048 unsigned long ret; 3049 3050 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3051 return 0; 3052 3053 cpu_buffer = buffer->buffers[cpu]; 3054 ret = local_read(&cpu_buffer->overrun); 3055 3056 return ret; 3057 } 3058 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3059 3060 /** 3061 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3062 * commits failing due to the buffer wrapping around while there are uncommitted 3063 * events, such as during an interrupt storm. 3064 * @buffer: The ring buffer 3065 * @cpu: The per CPU buffer to get the number of overruns from 3066 */ 3067 unsigned long 3068 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3069 { 3070 struct ring_buffer_per_cpu *cpu_buffer; 3071 unsigned long ret; 3072 3073 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3074 return 0; 3075 3076 cpu_buffer = buffer->buffers[cpu]; 3077 ret = local_read(&cpu_buffer->commit_overrun); 3078 3079 return ret; 3080 } 3081 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3082 3083 /** 3084 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3085 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3086 * @buffer: The ring buffer 3087 * @cpu: The per CPU buffer to get the number of overruns from 3088 */ 3089 unsigned long 3090 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3091 { 3092 struct ring_buffer_per_cpu *cpu_buffer; 3093 unsigned long ret; 3094 3095 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3096 return 0; 3097 3098 cpu_buffer = buffer->buffers[cpu]; 3099 ret = local_read(&cpu_buffer->dropped_events); 3100 3101 return ret; 3102 } 3103 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3104 3105 /** 3106 * ring_buffer_read_events_cpu - get the number of events successfully read 3107 * @buffer: The ring buffer 3108 * @cpu: The per CPU buffer to get the number of events read 3109 */ 3110 unsigned long 3111 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3112 { 3113 struct ring_buffer_per_cpu *cpu_buffer; 3114 3115 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3116 return 0; 3117 3118 cpu_buffer = buffer->buffers[cpu]; 3119 return cpu_buffer->read; 3120 } 3121 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3122 3123 /** 3124 * ring_buffer_entries - get the number of entries in a buffer 3125 * @buffer: The ring buffer 3126 * 3127 * Returns the total number of entries in the ring buffer 3128 * (all CPU entries) 3129 */ 3130 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3131 { 3132 struct ring_buffer_per_cpu *cpu_buffer; 3133 unsigned long entries = 0; 3134 int cpu; 3135 3136 /* if you care about this being correct, lock the buffer */ 3137 for_each_buffer_cpu(buffer, cpu) { 3138 cpu_buffer = buffer->buffers[cpu]; 3139 entries += rb_num_of_entries(cpu_buffer); 3140 } 3141 3142 return entries; 3143 } 3144 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3145 3146 /** 3147 * ring_buffer_overruns - get the number of overruns in buffer 3148 * @buffer: The ring buffer 3149 * 3150 * Returns the total number of overruns in the ring buffer 3151 * (all CPU entries) 3152 */ 3153 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3154 { 3155 struct ring_buffer_per_cpu *cpu_buffer; 3156 unsigned long overruns = 0; 3157 int cpu; 3158 3159 /* if you care about this being correct, lock the buffer */ 3160 for_each_buffer_cpu(buffer, cpu) { 3161 cpu_buffer = buffer->buffers[cpu]; 3162 overruns += local_read(&cpu_buffer->overrun); 3163 } 3164 3165 return overruns; 3166 } 3167 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3168 3169 static void rb_iter_reset(struct ring_buffer_iter *iter) 3170 { 3171 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3172 3173 /* Iterator usage is expected to have record disabled */ 3174 if (list_empty(&cpu_buffer->reader_page->list)) { 3175 iter->head_page = rb_set_head_page(cpu_buffer); 3176 if (unlikely(!iter->head_page)) 3177 return; 3178 iter->head = iter->head_page->read; 3179 } else { 3180 iter->head_page = cpu_buffer->reader_page; 3181 iter->head = cpu_buffer->reader_page->read; 3182 } 3183 if (iter->head) 3184 iter->read_stamp = cpu_buffer->read_stamp; 3185 else 3186 iter->read_stamp = iter->head_page->page->time_stamp; 3187 iter->cache_reader_page = cpu_buffer->reader_page; 3188 iter->cache_read = cpu_buffer->read; 3189 } 3190 3191 /** 3192 * ring_buffer_iter_reset - reset an iterator 3193 * @iter: The iterator to reset 3194 * 3195 * Resets the iterator, so that it will start from the beginning 3196 * again. 3197 */ 3198 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3199 { 3200 struct ring_buffer_per_cpu *cpu_buffer; 3201 unsigned long flags; 3202 3203 if (!iter) 3204 return; 3205 3206 cpu_buffer = iter->cpu_buffer; 3207 3208 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3209 rb_iter_reset(iter); 3210 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3211 } 3212 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3213 3214 /** 3215 * ring_buffer_iter_empty - check if an iterator has no more to read 3216 * @iter: The iterator to check 3217 */ 3218 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3219 { 3220 struct ring_buffer_per_cpu *cpu_buffer; 3221 3222 cpu_buffer = iter->cpu_buffer; 3223 3224 return iter->head_page == cpu_buffer->commit_page && 3225 iter->head == rb_commit_index(cpu_buffer); 3226 } 3227 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3228 3229 static void 3230 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3231 struct ring_buffer_event *event) 3232 { 3233 u64 delta; 3234 3235 switch (event->type_len) { 3236 case RINGBUF_TYPE_PADDING: 3237 return; 3238 3239 case RINGBUF_TYPE_TIME_EXTEND: 3240 delta = event->array[0]; 3241 delta <<= TS_SHIFT; 3242 delta += event->time_delta; 3243 cpu_buffer->read_stamp += delta; 3244 return; 3245 3246 case RINGBUF_TYPE_TIME_STAMP: 3247 /* FIXME: not implemented */ 3248 return; 3249 3250 case RINGBUF_TYPE_DATA: 3251 cpu_buffer->read_stamp += event->time_delta; 3252 return; 3253 3254 default: 3255 BUG(); 3256 } 3257 return; 3258 } 3259 3260 static void 3261 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3262 struct ring_buffer_event *event) 3263 { 3264 u64 delta; 3265 3266 switch (event->type_len) { 3267 case RINGBUF_TYPE_PADDING: 3268 return; 3269 3270 case RINGBUF_TYPE_TIME_EXTEND: 3271 delta = event->array[0]; 3272 delta <<= TS_SHIFT; 3273 delta += event->time_delta; 3274 iter->read_stamp += delta; 3275 return; 3276 3277 case RINGBUF_TYPE_TIME_STAMP: 3278 /* FIXME: not implemented */ 3279 return; 3280 3281 case RINGBUF_TYPE_DATA: 3282 iter->read_stamp += event->time_delta; 3283 return; 3284 3285 default: 3286 BUG(); 3287 } 3288 return; 3289 } 3290 3291 static struct buffer_page * 3292 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3293 { 3294 struct buffer_page *reader = NULL; 3295 unsigned long overwrite; 3296 unsigned long flags; 3297 int nr_loops = 0; 3298 int ret; 3299 3300 local_irq_save(flags); 3301 arch_spin_lock(&cpu_buffer->lock); 3302 3303 again: 3304 /* 3305 * This should normally only loop twice. But because the 3306 * start of the reader inserts an empty page, it causes 3307 * a case where we will loop three times. There should be no 3308 * reason to loop four times (that I know of). 3309 */ 3310 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3311 reader = NULL; 3312 goto out; 3313 } 3314 3315 reader = cpu_buffer->reader_page; 3316 3317 /* If there's more to read, return this page */ 3318 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3319 goto out; 3320 3321 /* Never should we have an index greater than the size */ 3322 if (RB_WARN_ON(cpu_buffer, 3323 cpu_buffer->reader_page->read > rb_page_size(reader))) 3324 goto out; 3325 3326 /* check if we caught up to the tail */ 3327 reader = NULL; 3328 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3329 goto out; 3330 3331 /* Don't bother swapping if the ring buffer is empty */ 3332 if (rb_num_of_entries(cpu_buffer) == 0) 3333 goto out; 3334 3335 /* 3336 * Reset the reader page to size zero. 3337 */ 3338 local_set(&cpu_buffer->reader_page->write, 0); 3339 local_set(&cpu_buffer->reader_page->entries, 0); 3340 local_set(&cpu_buffer->reader_page->page->commit, 0); 3341 cpu_buffer->reader_page->real_end = 0; 3342 3343 spin: 3344 /* 3345 * Splice the empty reader page into the list around the head. 3346 */ 3347 reader = rb_set_head_page(cpu_buffer); 3348 if (!reader) 3349 goto out; 3350 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3351 cpu_buffer->reader_page->list.prev = reader->list.prev; 3352 3353 /* 3354 * cpu_buffer->pages just needs to point to the buffer, it 3355 * has no specific buffer page to point to. Lets move it out 3356 * of our way so we don't accidentally swap it. 3357 */ 3358 cpu_buffer->pages = reader->list.prev; 3359 3360 /* The reader page will be pointing to the new head */ 3361 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3362 3363 /* 3364 * We want to make sure we read the overruns after we set up our 3365 * pointers to the next object. The writer side does a 3366 * cmpxchg to cross pages which acts as the mb on the writer 3367 * side. Note, the reader will constantly fail the swap 3368 * while the writer is updating the pointers, so this 3369 * guarantees that the overwrite recorded here is the one we 3370 * want to compare with the last_overrun. 3371 */ 3372 smp_mb(); 3373 overwrite = local_read(&(cpu_buffer->overrun)); 3374 3375 /* 3376 * Here's the tricky part. 3377 * 3378 * We need to move the pointer past the header page. 3379 * But we can only do that if a writer is not currently 3380 * moving it. The page before the header page has the 3381 * flag bit '1' set if it is pointing to the page we want. 3382 * but if the writer is in the process of moving it 3383 * than it will be '2' or already moved '0'. 3384 */ 3385 3386 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3387 3388 /* 3389 * If we did not convert it, then we must try again. 3390 */ 3391 if (!ret) 3392 goto spin; 3393 3394 /* 3395 * Yeah! We succeeded in replacing the page. 3396 * 3397 * Now make the new head point back to the reader page. 3398 */ 3399 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3400 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3401 3402 /* Finally update the reader page to the new head */ 3403 cpu_buffer->reader_page = reader; 3404 rb_reset_reader_page(cpu_buffer); 3405 3406 if (overwrite != cpu_buffer->last_overrun) { 3407 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3408 cpu_buffer->last_overrun = overwrite; 3409 } 3410 3411 goto again; 3412 3413 out: 3414 arch_spin_unlock(&cpu_buffer->lock); 3415 local_irq_restore(flags); 3416 3417 return reader; 3418 } 3419 3420 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3421 { 3422 struct ring_buffer_event *event; 3423 struct buffer_page *reader; 3424 unsigned length; 3425 3426 reader = rb_get_reader_page(cpu_buffer); 3427 3428 /* This function should not be called when buffer is empty */ 3429 if (RB_WARN_ON(cpu_buffer, !reader)) 3430 return; 3431 3432 event = rb_reader_event(cpu_buffer); 3433 3434 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3435 cpu_buffer->read++; 3436 3437 rb_update_read_stamp(cpu_buffer, event); 3438 3439 length = rb_event_length(event); 3440 cpu_buffer->reader_page->read += length; 3441 } 3442 3443 static void rb_advance_iter(struct ring_buffer_iter *iter) 3444 { 3445 struct ring_buffer_per_cpu *cpu_buffer; 3446 struct ring_buffer_event *event; 3447 unsigned length; 3448 3449 cpu_buffer = iter->cpu_buffer; 3450 3451 /* 3452 * Check if we are at the end of the buffer. 3453 */ 3454 if (iter->head >= rb_page_size(iter->head_page)) { 3455 /* discarded commits can make the page empty */ 3456 if (iter->head_page == cpu_buffer->commit_page) 3457 return; 3458 rb_inc_iter(iter); 3459 return; 3460 } 3461 3462 event = rb_iter_head_event(iter); 3463 3464 length = rb_event_length(event); 3465 3466 /* 3467 * This should not be called to advance the header if we are 3468 * at the tail of the buffer. 3469 */ 3470 if (RB_WARN_ON(cpu_buffer, 3471 (iter->head_page == cpu_buffer->commit_page) && 3472 (iter->head + length > rb_commit_index(cpu_buffer)))) 3473 return; 3474 3475 rb_update_iter_read_stamp(iter, event); 3476 3477 iter->head += length; 3478 3479 /* check for end of page padding */ 3480 if ((iter->head >= rb_page_size(iter->head_page)) && 3481 (iter->head_page != cpu_buffer->commit_page)) 3482 rb_inc_iter(iter); 3483 } 3484 3485 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3486 { 3487 return cpu_buffer->lost_events; 3488 } 3489 3490 static struct ring_buffer_event * 3491 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3492 unsigned long *lost_events) 3493 { 3494 struct ring_buffer_event *event; 3495 struct buffer_page *reader; 3496 int nr_loops = 0; 3497 3498 again: 3499 /* 3500 * We repeat when a time extend is encountered. 3501 * Since the time extend is always attached to a data event, 3502 * we should never loop more than once. 3503 * (We never hit the following condition more than twice). 3504 */ 3505 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3506 return NULL; 3507 3508 reader = rb_get_reader_page(cpu_buffer); 3509 if (!reader) 3510 return NULL; 3511 3512 event = rb_reader_event(cpu_buffer); 3513 3514 switch (event->type_len) { 3515 case RINGBUF_TYPE_PADDING: 3516 if (rb_null_event(event)) 3517 RB_WARN_ON(cpu_buffer, 1); 3518 /* 3519 * Because the writer could be discarding every 3520 * event it creates (which would probably be bad) 3521 * if we were to go back to "again" then we may never 3522 * catch up, and will trigger the warn on, or lock 3523 * the box. Return the padding, and we will release 3524 * the current locks, and try again. 3525 */ 3526 return event; 3527 3528 case RINGBUF_TYPE_TIME_EXTEND: 3529 /* Internal data, OK to advance */ 3530 rb_advance_reader(cpu_buffer); 3531 goto again; 3532 3533 case RINGBUF_TYPE_TIME_STAMP: 3534 /* FIXME: not implemented */ 3535 rb_advance_reader(cpu_buffer); 3536 goto again; 3537 3538 case RINGBUF_TYPE_DATA: 3539 if (ts) { 3540 *ts = cpu_buffer->read_stamp + event->time_delta; 3541 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3542 cpu_buffer->cpu, ts); 3543 } 3544 if (lost_events) 3545 *lost_events = rb_lost_events(cpu_buffer); 3546 return event; 3547 3548 default: 3549 BUG(); 3550 } 3551 3552 return NULL; 3553 } 3554 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3555 3556 static struct ring_buffer_event * 3557 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3558 { 3559 struct ring_buffer *buffer; 3560 struct ring_buffer_per_cpu *cpu_buffer; 3561 struct ring_buffer_event *event; 3562 int nr_loops = 0; 3563 3564 cpu_buffer = iter->cpu_buffer; 3565 buffer = cpu_buffer->buffer; 3566 3567 /* 3568 * Check if someone performed a consuming read to 3569 * the buffer. A consuming read invalidates the iterator 3570 * and we need to reset the iterator in this case. 3571 */ 3572 if (unlikely(iter->cache_read != cpu_buffer->read || 3573 iter->cache_reader_page != cpu_buffer->reader_page)) 3574 rb_iter_reset(iter); 3575 3576 again: 3577 if (ring_buffer_iter_empty(iter)) 3578 return NULL; 3579 3580 /* 3581 * We repeat when a time extend is encountered. 3582 * Since the time extend is always attached to a data event, 3583 * we should never loop more than once. 3584 * (We never hit the following condition more than twice). 3585 */ 3586 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3587 return NULL; 3588 3589 if (rb_per_cpu_empty(cpu_buffer)) 3590 return NULL; 3591 3592 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3593 rb_inc_iter(iter); 3594 goto again; 3595 } 3596 3597 event = rb_iter_head_event(iter); 3598 3599 switch (event->type_len) { 3600 case RINGBUF_TYPE_PADDING: 3601 if (rb_null_event(event)) { 3602 rb_inc_iter(iter); 3603 goto again; 3604 } 3605 rb_advance_iter(iter); 3606 return event; 3607 3608 case RINGBUF_TYPE_TIME_EXTEND: 3609 /* Internal data, OK to advance */ 3610 rb_advance_iter(iter); 3611 goto again; 3612 3613 case RINGBUF_TYPE_TIME_STAMP: 3614 /* FIXME: not implemented */ 3615 rb_advance_iter(iter); 3616 goto again; 3617 3618 case RINGBUF_TYPE_DATA: 3619 if (ts) { 3620 *ts = iter->read_stamp + event->time_delta; 3621 ring_buffer_normalize_time_stamp(buffer, 3622 cpu_buffer->cpu, ts); 3623 } 3624 return event; 3625 3626 default: 3627 BUG(); 3628 } 3629 3630 return NULL; 3631 } 3632 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3633 3634 static inline int rb_ok_to_lock(void) 3635 { 3636 /* 3637 * If an NMI die dumps out the content of the ring buffer 3638 * do not grab locks. We also permanently disable the ring 3639 * buffer too. A one time deal is all you get from reading 3640 * the ring buffer from an NMI. 3641 */ 3642 if (likely(!in_nmi())) 3643 return 1; 3644 3645 tracing_off_permanent(); 3646 return 0; 3647 } 3648 3649 /** 3650 * ring_buffer_peek - peek at the next event to be read 3651 * @buffer: The ring buffer to read 3652 * @cpu: The cpu to peak at 3653 * @ts: The timestamp counter of this event. 3654 * @lost_events: a variable to store if events were lost (may be NULL) 3655 * 3656 * This will return the event that will be read next, but does 3657 * not consume the data. 3658 */ 3659 struct ring_buffer_event * 3660 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3661 unsigned long *lost_events) 3662 { 3663 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3664 struct ring_buffer_event *event; 3665 unsigned long flags; 3666 int dolock; 3667 3668 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3669 return NULL; 3670 3671 dolock = rb_ok_to_lock(); 3672 again: 3673 local_irq_save(flags); 3674 if (dolock) 3675 raw_spin_lock(&cpu_buffer->reader_lock); 3676 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3677 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3678 rb_advance_reader(cpu_buffer); 3679 if (dolock) 3680 raw_spin_unlock(&cpu_buffer->reader_lock); 3681 local_irq_restore(flags); 3682 3683 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3684 goto again; 3685 3686 return event; 3687 } 3688 3689 /** 3690 * ring_buffer_iter_peek - peek at the next event to be read 3691 * @iter: The ring buffer iterator 3692 * @ts: The timestamp counter of this event. 3693 * 3694 * This will return the event that will be read next, but does 3695 * not increment the iterator. 3696 */ 3697 struct ring_buffer_event * 3698 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3699 { 3700 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3701 struct ring_buffer_event *event; 3702 unsigned long flags; 3703 3704 again: 3705 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3706 event = rb_iter_peek(iter, ts); 3707 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3708 3709 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3710 goto again; 3711 3712 return event; 3713 } 3714 3715 /** 3716 * ring_buffer_consume - return an event and consume it 3717 * @buffer: The ring buffer to get the next event from 3718 * @cpu: the cpu to read the buffer from 3719 * @ts: a variable to store the timestamp (may be NULL) 3720 * @lost_events: a variable to store if events were lost (may be NULL) 3721 * 3722 * Returns the next event in the ring buffer, and that event is consumed. 3723 * Meaning, that sequential reads will keep returning a different event, 3724 * and eventually empty the ring buffer if the producer is slower. 3725 */ 3726 struct ring_buffer_event * 3727 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3728 unsigned long *lost_events) 3729 { 3730 struct ring_buffer_per_cpu *cpu_buffer; 3731 struct ring_buffer_event *event = NULL; 3732 unsigned long flags; 3733 int dolock; 3734 3735 dolock = rb_ok_to_lock(); 3736 3737 again: 3738 /* might be called in atomic */ 3739 preempt_disable(); 3740 3741 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3742 goto out; 3743 3744 cpu_buffer = buffer->buffers[cpu]; 3745 local_irq_save(flags); 3746 if (dolock) 3747 raw_spin_lock(&cpu_buffer->reader_lock); 3748 3749 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3750 if (event) { 3751 cpu_buffer->lost_events = 0; 3752 rb_advance_reader(cpu_buffer); 3753 } 3754 3755 if (dolock) 3756 raw_spin_unlock(&cpu_buffer->reader_lock); 3757 local_irq_restore(flags); 3758 3759 out: 3760 preempt_enable(); 3761 3762 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3763 goto again; 3764 3765 return event; 3766 } 3767 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3768 3769 /** 3770 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3771 * @buffer: The ring buffer to read from 3772 * @cpu: The cpu buffer to iterate over 3773 * 3774 * This performs the initial preparations necessary to iterate 3775 * through the buffer. Memory is allocated, buffer recording 3776 * is disabled, and the iterator pointer is returned to the caller. 3777 * 3778 * Disabling buffer recordng prevents the reading from being 3779 * corrupted. This is not a consuming read, so a producer is not 3780 * expected. 3781 * 3782 * After a sequence of ring_buffer_read_prepare calls, the user is 3783 * expected to make at least one call to ring_buffer_prepare_sync. 3784 * Afterwards, ring_buffer_read_start is invoked to get things going 3785 * for real. 3786 * 3787 * This overall must be paired with ring_buffer_finish. 3788 */ 3789 struct ring_buffer_iter * 3790 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3791 { 3792 struct ring_buffer_per_cpu *cpu_buffer; 3793 struct ring_buffer_iter *iter; 3794 3795 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3796 return NULL; 3797 3798 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3799 if (!iter) 3800 return NULL; 3801 3802 cpu_buffer = buffer->buffers[cpu]; 3803 3804 iter->cpu_buffer = cpu_buffer; 3805 3806 atomic_inc(&buffer->resize_disabled); 3807 atomic_inc(&cpu_buffer->record_disabled); 3808 3809 return iter; 3810 } 3811 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3812 3813 /** 3814 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3815 * 3816 * All previously invoked ring_buffer_read_prepare calls to prepare 3817 * iterators will be synchronized. Afterwards, read_buffer_read_start 3818 * calls on those iterators are allowed. 3819 */ 3820 void 3821 ring_buffer_read_prepare_sync(void) 3822 { 3823 synchronize_sched(); 3824 } 3825 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3826 3827 /** 3828 * ring_buffer_read_start - start a non consuming read of the buffer 3829 * @iter: The iterator returned by ring_buffer_read_prepare 3830 * 3831 * This finalizes the startup of an iteration through the buffer. 3832 * The iterator comes from a call to ring_buffer_read_prepare and 3833 * an intervening ring_buffer_read_prepare_sync must have been 3834 * performed. 3835 * 3836 * Must be paired with ring_buffer_finish. 3837 */ 3838 void 3839 ring_buffer_read_start(struct ring_buffer_iter *iter) 3840 { 3841 struct ring_buffer_per_cpu *cpu_buffer; 3842 unsigned long flags; 3843 3844 if (!iter) 3845 return; 3846 3847 cpu_buffer = iter->cpu_buffer; 3848 3849 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3850 arch_spin_lock(&cpu_buffer->lock); 3851 rb_iter_reset(iter); 3852 arch_spin_unlock(&cpu_buffer->lock); 3853 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3854 } 3855 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3856 3857 /** 3858 * ring_buffer_finish - finish reading the iterator of the buffer 3859 * @iter: The iterator retrieved by ring_buffer_start 3860 * 3861 * This re-enables the recording to the buffer, and frees the 3862 * iterator. 3863 */ 3864 void 3865 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3866 { 3867 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3868 unsigned long flags; 3869 3870 /* 3871 * Ring buffer is disabled from recording, here's a good place 3872 * to check the integrity of the ring buffer. 3873 * Must prevent readers from trying to read, as the check 3874 * clears the HEAD page and readers require it. 3875 */ 3876 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3877 rb_check_pages(cpu_buffer); 3878 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3879 3880 atomic_dec(&cpu_buffer->record_disabled); 3881 atomic_dec(&cpu_buffer->buffer->resize_disabled); 3882 kfree(iter); 3883 } 3884 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3885 3886 /** 3887 * ring_buffer_read - read the next item in the ring buffer by the iterator 3888 * @iter: The ring buffer iterator 3889 * @ts: The time stamp of the event read. 3890 * 3891 * This reads the next event in the ring buffer and increments the iterator. 3892 */ 3893 struct ring_buffer_event * 3894 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3895 { 3896 struct ring_buffer_event *event; 3897 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3898 unsigned long flags; 3899 3900 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3901 again: 3902 event = rb_iter_peek(iter, ts); 3903 if (!event) 3904 goto out; 3905 3906 if (event->type_len == RINGBUF_TYPE_PADDING) 3907 goto again; 3908 3909 rb_advance_iter(iter); 3910 out: 3911 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3912 3913 return event; 3914 } 3915 EXPORT_SYMBOL_GPL(ring_buffer_read); 3916 3917 /** 3918 * ring_buffer_size - return the size of the ring buffer (in bytes) 3919 * @buffer: The ring buffer. 3920 */ 3921 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 3922 { 3923 /* 3924 * Earlier, this method returned 3925 * BUF_PAGE_SIZE * buffer->nr_pages 3926 * Since the nr_pages field is now removed, we have converted this to 3927 * return the per cpu buffer value. 3928 */ 3929 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3930 return 0; 3931 3932 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 3933 } 3934 EXPORT_SYMBOL_GPL(ring_buffer_size); 3935 3936 static void 3937 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3938 { 3939 rb_head_page_deactivate(cpu_buffer); 3940 3941 cpu_buffer->head_page 3942 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3943 local_set(&cpu_buffer->head_page->write, 0); 3944 local_set(&cpu_buffer->head_page->entries, 0); 3945 local_set(&cpu_buffer->head_page->page->commit, 0); 3946 3947 cpu_buffer->head_page->read = 0; 3948 3949 cpu_buffer->tail_page = cpu_buffer->head_page; 3950 cpu_buffer->commit_page = cpu_buffer->head_page; 3951 3952 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3953 INIT_LIST_HEAD(&cpu_buffer->new_pages); 3954 local_set(&cpu_buffer->reader_page->write, 0); 3955 local_set(&cpu_buffer->reader_page->entries, 0); 3956 local_set(&cpu_buffer->reader_page->page->commit, 0); 3957 cpu_buffer->reader_page->read = 0; 3958 3959 local_set(&cpu_buffer->entries_bytes, 0); 3960 local_set(&cpu_buffer->overrun, 0); 3961 local_set(&cpu_buffer->commit_overrun, 0); 3962 local_set(&cpu_buffer->dropped_events, 0); 3963 local_set(&cpu_buffer->entries, 0); 3964 local_set(&cpu_buffer->committing, 0); 3965 local_set(&cpu_buffer->commits, 0); 3966 cpu_buffer->read = 0; 3967 cpu_buffer->read_bytes = 0; 3968 3969 cpu_buffer->write_stamp = 0; 3970 cpu_buffer->read_stamp = 0; 3971 3972 cpu_buffer->lost_events = 0; 3973 cpu_buffer->last_overrun = 0; 3974 3975 rb_head_page_activate(cpu_buffer); 3976 } 3977 3978 /** 3979 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3980 * @buffer: The ring buffer to reset a per cpu buffer of 3981 * @cpu: The CPU buffer to be reset 3982 */ 3983 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3984 { 3985 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3986 unsigned long flags; 3987 3988 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3989 return; 3990 3991 atomic_inc(&buffer->resize_disabled); 3992 atomic_inc(&cpu_buffer->record_disabled); 3993 3994 /* Make sure all commits have finished */ 3995 synchronize_sched(); 3996 3997 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3998 3999 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4000 goto out; 4001 4002 arch_spin_lock(&cpu_buffer->lock); 4003 4004 rb_reset_cpu(cpu_buffer); 4005 4006 arch_spin_unlock(&cpu_buffer->lock); 4007 4008 out: 4009 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4010 4011 atomic_dec(&cpu_buffer->record_disabled); 4012 atomic_dec(&buffer->resize_disabled); 4013 } 4014 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4015 4016 /** 4017 * ring_buffer_reset - reset a ring buffer 4018 * @buffer: The ring buffer to reset all cpu buffers 4019 */ 4020 void ring_buffer_reset(struct ring_buffer *buffer) 4021 { 4022 int cpu; 4023 4024 for_each_buffer_cpu(buffer, cpu) 4025 ring_buffer_reset_cpu(buffer, cpu); 4026 } 4027 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4028 4029 /** 4030 * rind_buffer_empty - is the ring buffer empty? 4031 * @buffer: The ring buffer to test 4032 */ 4033 int ring_buffer_empty(struct ring_buffer *buffer) 4034 { 4035 struct ring_buffer_per_cpu *cpu_buffer; 4036 unsigned long flags; 4037 int dolock; 4038 int cpu; 4039 int ret; 4040 4041 dolock = rb_ok_to_lock(); 4042 4043 /* yes this is racy, but if you don't like the race, lock the buffer */ 4044 for_each_buffer_cpu(buffer, cpu) { 4045 cpu_buffer = buffer->buffers[cpu]; 4046 local_irq_save(flags); 4047 if (dolock) 4048 raw_spin_lock(&cpu_buffer->reader_lock); 4049 ret = rb_per_cpu_empty(cpu_buffer); 4050 if (dolock) 4051 raw_spin_unlock(&cpu_buffer->reader_lock); 4052 local_irq_restore(flags); 4053 4054 if (!ret) 4055 return 0; 4056 } 4057 4058 return 1; 4059 } 4060 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4061 4062 /** 4063 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4064 * @buffer: The ring buffer 4065 * @cpu: The CPU buffer to test 4066 */ 4067 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4068 { 4069 struct ring_buffer_per_cpu *cpu_buffer; 4070 unsigned long flags; 4071 int dolock; 4072 int ret; 4073 4074 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4075 return 1; 4076 4077 dolock = rb_ok_to_lock(); 4078 4079 cpu_buffer = buffer->buffers[cpu]; 4080 local_irq_save(flags); 4081 if (dolock) 4082 raw_spin_lock(&cpu_buffer->reader_lock); 4083 ret = rb_per_cpu_empty(cpu_buffer); 4084 if (dolock) 4085 raw_spin_unlock(&cpu_buffer->reader_lock); 4086 local_irq_restore(flags); 4087 4088 return ret; 4089 } 4090 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4091 4092 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4093 /** 4094 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4095 * @buffer_a: One buffer to swap with 4096 * @buffer_b: The other buffer to swap with 4097 * 4098 * This function is useful for tracers that want to take a "snapshot" 4099 * of a CPU buffer and has another back up buffer lying around. 4100 * it is expected that the tracer handles the cpu buffer not being 4101 * used at the moment. 4102 */ 4103 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4104 struct ring_buffer *buffer_b, int cpu) 4105 { 4106 struct ring_buffer_per_cpu *cpu_buffer_a; 4107 struct ring_buffer_per_cpu *cpu_buffer_b; 4108 int ret = -EINVAL; 4109 4110 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4111 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4112 goto out; 4113 4114 cpu_buffer_a = buffer_a->buffers[cpu]; 4115 cpu_buffer_b = buffer_b->buffers[cpu]; 4116 4117 /* At least make sure the two buffers are somewhat the same */ 4118 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4119 goto out; 4120 4121 ret = -EAGAIN; 4122 4123 if (ring_buffer_flags != RB_BUFFERS_ON) 4124 goto out; 4125 4126 if (atomic_read(&buffer_a->record_disabled)) 4127 goto out; 4128 4129 if (atomic_read(&buffer_b->record_disabled)) 4130 goto out; 4131 4132 if (atomic_read(&cpu_buffer_a->record_disabled)) 4133 goto out; 4134 4135 if (atomic_read(&cpu_buffer_b->record_disabled)) 4136 goto out; 4137 4138 /* 4139 * We can't do a synchronize_sched here because this 4140 * function can be called in atomic context. 4141 * Normally this will be called from the same CPU as cpu. 4142 * If not it's up to the caller to protect this. 4143 */ 4144 atomic_inc(&cpu_buffer_a->record_disabled); 4145 atomic_inc(&cpu_buffer_b->record_disabled); 4146 4147 ret = -EBUSY; 4148 if (local_read(&cpu_buffer_a->committing)) 4149 goto out_dec; 4150 if (local_read(&cpu_buffer_b->committing)) 4151 goto out_dec; 4152 4153 buffer_a->buffers[cpu] = cpu_buffer_b; 4154 buffer_b->buffers[cpu] = cpu_buffer_a; 4155 4156 cpu_buffer_b->buffer = buffer_a; 4157 cpu_buffer_a->buffer = buffer_b; 4158 4159 ret = 0; 4160 4161 out_dec: 4162 atomic_dec(&cpu_buffer_a->record_disabled); 4163 atomic_dec(&cpu_buffer_b->record_disabled); 4164 out: 4165 return ret; 4166 } 4167 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4168 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4169 4170 /** 4171 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4172 * @buffer: the buffer to allocate for. 4173 * 4174 * This function is used in conjunction with ring_buffer_read_page. 4175 * When reading a full page from the ring buffer, these functions 4176 * can be used to speed up the process. The calling function should 4177 * allocate a few pages first with this function. Then when it 4178 * needs to get pages from the ring buffer, it passes the result 4179 * of this function into ring_buffer_read_page, which will swap 4180 * the page that was allocated, with the read page of the buffer. 4181 * 4182 * Returns: 4183 * The page allocated, or NULL on error. 4184 */ 4185 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4186 { 4187 struct buffer_data_page *bpage; 4188 struct page *page; 4189 4190 page = alloc_pages_node(cpu_to_node(cpu), 4191 GFP_KERNEL | __GFP_NORETRY, 0); 4192 if (!page) 4193 return NULL; 4194 4195 bpage = page_address(page); 4196 4197 rb_init_page(bpage); 4198 4199 return bpage; 4200 } 4201 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4202 4203 /** 4204 * ring_buffer_free_read_page - free an allocated read page 4205 * @buffer: the buffer the page was allocate for 4206 * @data: the page to free 4207 * 4208 * Free a page allocated from ring_buffer_alloc_read_page. 4209 */ 4210 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4211 { 4212 free_page((unsigned long)data); 4213 } 4214 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4215 4216 /** 4217 * ring_buffer_read_page - extract a page from the ring buffer 4218 * @buffer: buffer to extract from 4219 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4220 * @len: amount to extract 4221 * @cpu: the cpu of the buffer to extract 4222 * @full: should the extraction only happen when the page is full. 4223 * 4224 * This function will pull out a page from the ring buffer and consume it. 4225 * @data_page must be the address of the variable that was returned 4226 * from ring_buffer_alloc_read_page. This is because the page might be used 4227 * to swap with a page in the ring buffer. 4228 * 4229 * for example: 4230 * rpage = ring_buffer_alloc_read_page(buffer); 4231 * if (!rpage) 4232 * return error; 4233 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4234 * if (ret >= 0) 4235 * process_page(rpage, ret); 4236 * 4237 * When @full is set, the function will not return true unless 4238 * the writer is off the reader page. 4239 * 4240 * Note: it is up to the calling functions to handle sleeps and wakeups. 4241 * The ring buffer can be used anywhere in the kernel and can not 4242 * blindly call wake_up. The layer that uses the ring buffer must be 4243 * responsible for that. 4244 * 4245 * Returns: 4246 * >=0 if data has been transferred, returns the offset of consumed data. 4247 * <0 if no data has been transferred. 4248 */ 4249 int ring_buffer_read_page(struct ring_buffer *buffer, 4250 void **data_page, size_t len, int cpu, int full) 4251 { 4252 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4253 struct ring_buffer_event *event; 4254 struct buffer_data_page *bpage; 4255 struct buffer_page *reader; 4256 unsigned long missed_events; 4257 unsigned long flags; 4258 unsigned int commit; 4259 unsigned int read; 4260 u64 save_timestamp; 4261 int ret = -1; 4262 4263 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4264 goto out; 4265 4266 /* 4267 * If len is not big enough to hold the page header, then 4268 * we can not copy anything. 4269 */ 4270 if (len <= BUF_PAGE_HDR_SIZE) 4271 goto out; 4272 4273 len -= BUF_PAGE_HDR_SIZE; 4274 4275 if (!data_page) 4276 goto out; 4277 4278 bpage = *data_page; 4279 if (!bpage) 4280 goto out; 4281 4282 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4283 4284 reader = rb_get_reader_page(cpu_buffer); 4285 if (!reader) 4286 goto out_unlock; 4287 4288 event = rb_reader_event(cpu_buffer); 4289 4290 read = reader->read; 4291 commit = rb_page_commit(reader); 4292 4293 /* Check if any events were dropped */ 4294 missed_events = cpu_buffer->lost_events; 4295 4296 /* 4297 * If this page has been partially read or 4298 * if len is not big enough to read the rest of the page or 4299 * a writer is still on the page, then 4300 * we must copy the data from the page to the buffer. 4301 * Otherwise, we can simply swap the page with the one passed in. 4302 */ 4303 if (read || (len < (commit - read)) || 4304 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4305 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4306 unsigned int rpos = read; 4307 unsigned int pos = 0; 4308 unsigned int size; 4309 4310 if (full) 4311 goto out_unlock; 4312 4313 if (len > (commit - read)) 4314 len = (commit - read); 4315 4316 /* Always keep the time extend and data together */ 4317 size = rb_event_ts_length(event); 4318 4319 if (len < size) 4320 goto out_unlock; 4321 4322 /* save the current timestamp, since the user will need it */ 4323 save_timestamp = cpu_buffer->read_stamp; 4324 4325 /* Need to copy one event at a time */ 4326 do { 4327 /* We need the size of one event, because 4328 * rb_advance_reader only advances by one event, 4329 * whereas rb_event_ts_length may include the size of 4330 * one or two events. 4331 * We have already ensured there's enough space if this 4332 * is a time extend. */ 4333 size = rb_event_length(event); 4334 memcpy(bpage->data + pos, rpage->data + rpos, size); 4335 4336 len -= size; 4337 4338 rb_advance_reader(cpu_buffer); 4339 rpos = reader->read; 4340 pos += size; 4341 4342 if (rpos >= commit) 4343 break; 4344 4345 event = rb_reader_event(cpu_buffer); 4346 /* Always keep the time extend and data together */ 4347 size = rb_event_ts_length(event); 4348 } while (len >= size); 4349 4350 /* update bpage */ 4351 local_set(&bpage->commit, pos); 4352 bpage->time_stamp = save_timestamp; 4353 4354 /* we copied everything to the beginning */ 4355 read = 0; 4356 } else { 4357 /* update the entry counter */ 4358 cpu_buffer->read += rb_page_entries(reader); 4359 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4360 4361 /* swap the pages */ 4362 rb_init_page(bpage); 4363 bpage = reader->page; 4364 reader->page = *data_page; 4365 local_set(&reader->write, 0); 4366 local_set(&reader->entries, 0); 4367 reader->read = 0; 4368 *data_page = bpage; 4369 4370 /* 4371 * Use the real_end for the data size, 4372 * This gives us a chance to store the lost events 4373 * on the page. 4374 */ 4375 if (reader->real_end) 4376 local_set(&bpage->commit, reader->real_end); 4377 } 4378 ret = read; 4379 4380 cpu_buffer->lost_events = 0; 4381 4382 commit = local_read(&bpage->commit); 4383 /* 4384 * Set a flag in the commit field if we lost events 4385 */ 4386 if (missed_events) { 4387 /* If there is room at the end of the page to save the 4388 * missed events, then record it there. 4389 */ 4390 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4391 memcpy(&bpage->data[commit], &missed_events, 4392 sizeof(missed_events)); 4393 local_add(RB_MISSED_STORED, &bpage->commit); 4394 commit += sizeof(missed_events); 4395 } 4396 local_add(RB_MISSED_EVENTS, &bpage->commit); 4397 } 4398 4399 /* 4400 * This page may be off to user land. Zero it out here. 4401 */ 4402 if (commit < BUF_PAGE_SIZE) 4403 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4404 4405 out_unlock: 4406 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4407 4408 out: 4409 return ret; 4410 } 4411 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4412 4413 #ifdef CONFIG_HOTPLUG_CPU 4414 static int rb_cpu_notify(struct notifier_block *self, 4415 unsigned long action, void *hcpu) 4416 { 4417 struct ring_buffer *buffer = 4418 container_of(self, struct ring_buffer, cpu_notify); 4419 long cpu = (long)hcpu; 4420 int cpu_i, nr_pages_same; 4421 unsigned int nr_pages; 4422 4423 switch (action) { 4424 case CPU_UP_PREPARE: 4425 case CPU_UP_PREPARE_FROZEN: 4426 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4427 return NOTIFY_OK; 4428 4429 nr_pages = 0; 4430 nr_pages_same = 1; 4431 /* check if all cpu sizes are same */ 4432 for_each_buffer_cpu(buffer, cpu_i) { 4433 /* fill in the size from first enabled cpu */ 4434 if (nr_pages == 0) 4435 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4436 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4437 nr_pages_same = 0; 4438 break; 4439 } 4440 } 4441 /* allocate minimum pages, user can later expand it */ 4442 if (!nr_pages_same) 4443 nr_pages = 2; 4444 buffer->buffers[cpu] = 4445 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4446 if (!buffer->buffers[cpu]) { 4447 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4448 cpu); 4449 return NOTIFY_OK; 4450 } 4451 smp_wmb(); 4452 cpumask_set_cpu(cpu, buffer->cpumask); 4453 break; 4454 case CPU_DOWN_PREPARE: 4455 case CPU_DOWN_PREPARE_FROZEN: 4456 /* 4457 * Do nothing. 4458 * If we were to free the buffer, then the user would 4459 * lose any trace that was in the buffer. 4460 */ 4461 break; 4462 default: 4463 break; 4464 } 4465 return NOTIFY_OK; 4466 } 4467 #endif 4468