1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 /* 33 * The "absolute" timestamp in the buffer is only 59 bits. 34 * If a clock has the 5 MSBs set, it needs to be saved and 35 * reinserted. 36 */ 37 #define TS_MSB (0xf8ULL << 56) 38 #define ABS_TS_MASK (~TS_MSB) 39 40 static void update_pages_handler(struct work_struct *work); 41 42 /* 43 * The ring buffer header is special. We must manually up keep it. 44 */ 45 int ring_buffer_print_entry_header(struct trace_seq *s) 46 { 47 trace_seq_puts(s, "# compressed entry header\n"); 48 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 49 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 50 trace_seq_puts(s, "\tarray : 32 bits\n"); 51 trace_seq_putc(s, '\n'); 52 trace_seq_printf(s, "\tpadding : type == %d\n", 53 RINGBUF_TYPE_PADDING); 54 trace_seq_printf(s, "\ttime_extend : type == %d\n", 55 RINGBUF_TYPE_TIME_EXTEND); 56 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 57 RINGBUF_TYPE_TIME_STAMP); 58 trace_seq_printf(s, "\tdata max type_len == %d\n", 59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 60 61 return !trace_seq_has_overflowed(s); 62 } 63 64 /* 65 * The ring buffer is made up of a list of pages. A separate list of pages is 66 * allocated for each CPU. A writer may only write to a buffer that is 67 * associated with the CPU it is currently executing on. A reader may read 68 * from any per cpu buffer. 69 * 70 * The reader is special. For each per cpu buffer, the reader has its own 71 * reader page. When a reader has read the entire reader page, this reader 72 * page is swapped with another page in the ring buffer. 73 * 74 * Now, as long as the writer is off the reader page, the reader can do what 75 * ever it wants with that page. The writer will never write to that page 76 * again (as long as it is out of the ring buffer). 77 * 78 * Here's some silly ASCII art. 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page | 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * | |-->| |-->| | 96 * +---+ +---+ +---+ 97 * ^ | 98 * | | 99 * +---------------+ 100 * 101 * 102 * +------+ 103 * |reader| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | |-->| |-->| | 107 * | +---+ +---+ +---+ 108 * | | 109 * | | 110 * +------------------------------+ 111 * 112 * 113 * +------+ 114 * |buffer| RING BUFFER 115 * |page |------------------v 116 * +------+ +---+ +---+ +---+ 117 * ^ | | | |-->| | 118 * | New +---+ +---+ +---+ 119 * | Reader------^ | 120 * | page | 121 * +------------------------------+ 122 * 123 * 124 * After we make this swap, the reader can hand this page off to the splice 125 * code and be done with it. It can even allocate a new page if it needs to 126 * and swap that into the ring buffer. 127 * 128 * We will be using cmpxchg soon to make all this lockless. 129 * 130 */ 131 132 /* Used for individual buffers (after the counter) */ 133 #define RB_BUFFER_OFF (1 << 20) 134 135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 136 137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 138 #define RB_ALIGNMENT 4U 139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 141 142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 143 # define RB_FORCE_8BYTE_ALIGNMENT 0 144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 145 #else 146 # define RB_FORCE_8BYTE_ALIGNMENT 1 147 # define RB_ARCH_ALIGNMENT 8U 148 #endif 149 150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 151 152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 154 155 enum { 156 RB_LEN_TIME_EXTEND = 8, 157 RB_LEN_TIME_STAMP = 8, 158 }; 159 160 #define skip_time_extend(event) \ 161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 162 163 #define extended_time(event) \ 164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 165 166 static inline bool rb_null_event(struct ring_buffer_event *event) 167 { 168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 169 } 170 171 static void rb_event_set_padding(struct ring_buffer_event *event) 172 { 173 /* padding has a NULL time_delta */ 174 event->type_len = RINGBUF_TYPE_PADDING; 175 event->time_delta = 0; 176 } 177 178 static unsigned 179 rb_event_data_length(struct ring_buffer_event *event) 180 { 181 unsigned length; 182 183 if (event->type_len) 184 length = event->type_len * RB_ALIGNMENT; 185 else 186 length = event->array[0]; 187 return length + RB_EVNT_HDR_SIZE; 188 } 189 190 /* 191 * Return the length of the given event. Will return 192 * the length of the time extend if the event is a 193 * time extend. 194 */ 195 static inline unsigned 196 rb_event_length(struct ring_buffer_event *event) 197 { 198 switch (event->type_len) { 199 case RINGBUF_TYPE_PADDING: 200 if (rb_null_event(event)) 201 /* undefined */ 202 return -1; 203 return event->array[0] + RB_EVNT_HDR_SIZE; 204 205 case RINGBUF_TYPE_TIME_EXTEND: 206 return RB_LEN_TIME_EXTEND; 207 208 case RINGBUF_TYPE_TIME_STAMP: 209 return RB_LEN_TIME_STAMP; 210 211 case RINGBUF_TYPE_DATA: 212 return rb_event_data_length(event); 213 default: 214 WARN_ON_ONCE(1); 215 } 216 /* not hit */ 217 return 0; 218 } 219 220 /* 221 * Return total length of time extend and data, 222 * or just the event length for all other events. 223 */ 224 static inline unsigned 225 rb_event_ts_length(struct ring_buffer_event *event) 226 { 227 unsigned len = 0; 228 229 if (extended_time(event)) { 230 /* time extends include the data event after it */ 231 len = RB_LEN_TIME_EXTEND; 232 event = skip_time_extend(event); 233 } 234 return len + rb_event_length(event); 235 } 236 237 /** 238 * ring_buffer_event_length - return the length of the event 239 * @event: the event to get the length of 240 * 241 * Returns the size of the data load of a data event. 242 * If the event is something other than a data event, it 243 * returns the size of the event itself. With the exception 244 * of a TIME EXTEND, where it still returns the size of the 245 * data load of the data event after it. 246 */ 247 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 248 { 249 unsigned length; 250 251 if (extended_time(event)) 252 event = skip_time_extend(event); 253 254 length = rb_event_length(event); 255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 256 return length; 257 length -= RB_EVNT_HDR_SIZE; 258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 259 length -= sizeof(event->array[0]); 260 return length; 261 } 262 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 263 264 /* inline for ring buffer fast paths */ 265 static __always_inline void * 266 rb_event_data(struct ring_buffer_event *event) 267 { 268 if (extended_time(event)) 269 event = skip_time_extend(event); 270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 271 /* If length is in len field, then array[0] has the data */ 272 if (event->type_len) 273 return (void *)&event->array[0]; 274 /* Otherwise length is in array[0] and array[1] has the data */ 275 return (void *)&event->array[1]; 276 } 277 278 /** 279 * ring_buffer_event_data - return the data of the event 280 * @event: the event to get the data from 281 */ 282 void *ring_buffer_event_data(struct ring_buffer_event *event) 283 { 284 return rb_event_data(event); 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 287 288 #define for_each_buffer_cpu(buffer, cpu) \ 289 for_each_cpu(cpu, buffer->cpumask) 290 291 #define for_each_online_buffer_cpu(buffer, cpu) \ 292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 293 294 #define TS_SHIFT 27 295 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 296 #define TS_DELTA_TEST (~TS_MASK) 297 298 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 299 { 300 u64 ts; 301 302 ts = event->array[0]; 303 ts <<= TS_SHIFT; 304 ts += event->time_delta; 305 306 return ts; 307 } 308 309 /* Flag when events were overwritten */ 310 #define RB_MISSED_EVENTS (1 << 31) 311 /* Missed count stored at end */ 312 #define RB_MISSED_STORED (1 << 30) 313 314 struct buffer_data_page { 315 u64 time_stamp; /* page time stamp */ 316 local_t commit; /* write committed index */ 317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 318 }; 319 320 /* 321 * Note, the buffer_page list must be first. The buffer pages 322 * are allocated in cache lines, which means that each buffer 323 * page will be at the beginning of a cache line, and thus 324 * the least significant bits will be zero. We use this to 325 * add flags in the list struct pointers, to make the ring buffer 326 * lockless. 327 */ 328 struct buffer_page { 329 struct list_head list; /* list of buffer pages */ 330 local_t write; /* index for next write */ 331 unsigned read; /* index for next read */ 332 local_t entries; /* entries on this page */ 333 unsigned long real_end; /* real end of data */ 334 struct buffer_data_page *page; /* Actual data page */ 335 }; 336 337 /* 338 * The buffer page counters, write and entries, must be reset 339 * atomically when crossing page boundaries. To synchronize this 340 * update, two counters are inserted into the number. One is 341 * the actual counter for the write position or count on the page. 342 * 343 * The other is a counter of updaters. Before an update happens 344 * the update partition of the counter is incremented. This will 345 * allow the updater to update the counter atomically. 346 * 347 * The counter is 20 bits, and the state data is 12. 348 */ 349 #define RB_WRITE_MASK 0xfffff 350 #define RB_WRITE_INTCNT (1 << 20) 351 352 static void rb_init_page(struct buffer_data_page *bpage) 353 { 354 local_set(&bpage->commit, 0); 355 } 356 357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 358 { 359 return local_read(&bpage->page->commit); 360 } 361 362 static void free_buffer_page(struct buffer_page *bpage) 363 { 364 free_page((unsigned long)bpage->page); 365 kfree(bpage); 366 } 367 368 /* 369 * We need to fit the time_stamp delta into 27 bits. 370 */ 371 static inline bool test_time_stamp(u64 delta) 372 { 373 return !!(delta & TS_DELTA_TEST); 374 } 375 376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 377 378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 380 381 int ring_buffer_print_page_header(struct trace_seq *s) 382 { 383 struct buffer_data_page field; 384 385 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 386 "offset:0;\tsize:%u;\tsigned:%u;\n", 387 (unsigned int)sizeof(field.time_stamp), 388 (unsigned int)is_signed_type(u64)); 389 390 trace_seq_printf(s, "\tfield: local_t commit;\t" 391 "offset:%u;\tsize:%u;\tsigned:%u;\n", 392 (unsigned int)offsetof(typeof(field), commit), 393 (unsigned int)sizeof(field.commit), 394 (unsigned int)is_signed_type(long)); 395 396 trace_seq_printf(s, "\tfield: int overwrite;\t" 397 "offset:%u;\tsize:%u;\tsigned:%u;\n", 398 (unsigned int)offsetof(typeof(field), commit), 399 1, 400 (unsigned int)is_signed_type(long)); 401 402 trace_seq_printf(s, "\tfield: char data;\t" 403 "offset:%u;\tsize:%u;\tsigned:%u;\n", 404 (unsigned int)offsetof(typeof(field), data), 405 (unsigned int)BUF_PAGE_SIZE, 406 (unsigned int)is_signed_type(char)); 407 408 return !trace_seq_has_overflowed(s); 409 } 410 411 struct rb_irq_work { 412 struct irq_work work; 413 wait_queue_head_t waiters; 414 wait_queue_head_t full_waiters; 415 bool waiters_pending; 416 bool full_waiters_pending; 417 bool wakeup_full; 418 }; 419 420 /* 421 * Structure to hold event state and handle nested events. 422 */ 423 struct rb_event_info { 424 u64 ts; 425 u64 delta; 426 u64 before; 427 u64 after; 428 unsigned long length; 429 struct buffer_page *tail_page; 430 int add_timestamp; 431 }; 432 433 /* 434 * Used for the add_timestamp 435 * NONE 436 * EXTEND - wants a time extend 437 * ABSOLUTE - the buffer requests all events to have absolute time stamps 438 * FORCE - force a full time stamp. 439 */ 440 enum { 441 RB_ADD_STAMP_NONE = 0, 442 RB_ADD_STAMP_EXTEND = BIT(1), 443 RB_ADD_STAMP_ABSOLUTE = BIT(2), 444 RB_ADD_STAMP_FORCE = BIT(3) 445 }; 446 /* 447 * Used for which event context the event is in. 448 * TRANSITION = 0 449 * NMI = 1 450 * IRQ = 2 451 * SOFTIRQ = 3 452 * NORMAL = 4 453 * 454 * See trace_recursive_lock() comment below for more details. 455 */ 456 enum { 457 RB_CTX_TRANSITION, 458 RB_CTX_NMI, 459 RB_CTX_IRQ, 460 RB_CTX_SOFTIRQ, 461 RB_CTX_NORMAL, 462 RB_CTX_MAX 463 }; 464 465 #if BITS_PER_LONG == 32 466 #define RB_TIME_32 467 #endif 468 469 /* To test on 64 bit machines */ 470 //#define RB_TIME_32 471 472 #ifdef RB_TIME_32 473 474 struct rb_time_struct { 475 local_t cnt; 476 local_t top; 477 local_t bottom; 478 local_t msb; 479 }; 480 #else 481 #include <asm/local64.h> 482 struct rb_time_struct { 483 local64_t time; 484 }; 485 #endif 486 typedef struct rb_time_struct rb_time_t; 487 488 #define MAX_NEST 5 489 490 /* 491 * head_page == tail_page && head == tail then buffer is empty. 492 */ 493 struct ring_buffer_per_cpu { 494 int cpu; 495 atomic_t record_disabled; 496 atomic_t resize_disabled; 497 struct trace_buffer *buffer; 498 raw_spinlock_t reader_lock; /* serialize readers */ 499 arch_spinlock_t lock; 500 struct lock_class_key lock_key; 501 struct buffer_data_page *free_page; 502 unsigned long nr_pages; 503 unsigned int current_context; 504 struct list_head *pages; 505 struct buffer_page *head_page; /* read from head */ 506 struct buffer_page *tail_page; /* write to tail */ 507 struct buffer_page *commit_page; /* committed pages */ 508 struct buffer_page *reader_page; 509 unsigned long lost_events; 510 unsigned long last_overrun; 511 unsigned long nest; 512 local_t entries_bytes; 513 local_t entries; 514 local_t overrun; 515 local_t commit_overrun; 516 local_t dropped_events; 517 local_t committing; 518 local_t commits; 519 local_t pages_touched; 520 local_t pages_lost; 521 local_t pages_read; 522 long last_pages_touch; 523 size_t shortest_full; 524 unsigned long read; 525 unsigned long read_bytes; 526 rb_time_t write_stamp; 527 rb_time_t before_stamp; 528 u64 event_stamp[MAX_NEST]; 529 u64 read_stamp; 530 /* pages removed since last reset */ 531 unsigned long pages_removed; 532 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 533 long nr_pages_to_update; 534 struct list_head new_pages; /* new pages to add */ 535 struct work_struct update_pages_work; 536 struct completion update_done; 537 538 struct rb_irq_work irq_work; 539 }; 540 541 struct trace_buffer { 542 unsigned flags; 543 int cpus; 544 atomic_t record_disabled; 545 atomic_t resizing; 546 cpumask_var_t cpumask; 547 548 struct lock_class_key *reader_lock_key; 549 550 struct mutex mutex; 551 552 struct ring_buffer_per_cpu **buffers; 553 554 struct hlist_node node; 555 u64 (*clock)(void); 556 557 struct rb_irq_work irq_work; 558 bool time_stamp_abs; 559 }; 560 561 struct ring_buffer_iter { 562 struct ring_buffer_per_cpu *cpu_buffer; 563 unsigned long head; 564 unsigned long next_event; 565 struct buffer_page *head_page; 566 struct buffer_page *cache_reader_page; 567 unsigned long cache_read; 568 unsigned long cache_pages_removed; 569 u64 read_stamp; 570 u64 page_stamp; 571 struct ring_buffer_event *event; 572 int missed_events; 573 }; 574 575 #ifdef RB_TIME_32 576 577 /* 578 * On 32 bit machines, local64_t is very expensive. As the ring 579 * buffer doesn't need all the features of a true 64 bit atomic, 580 * on 32 bit, it uses these functions (64 still uses local64_t). 581 * 582 * For the ring buffer, 64 bit required operations for the time is 583 * the following: 584 * 585 * - Reads may fail if it interrupted a modification of the time stamp. 586 * It will succeed if it did not interrupt another write even if 587 * the read itself is interrupted by a write. 588 * It returns whether it was successful or not. 589 * 590 * - Writes always succeed and will overwrite other writes and writes 591 * that were done by events interrupting the current write. 592 * 593 * - A write followed by a read of the same time stamp will always succeed, 594 * but may not contain the same value. 595 * 596 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 597 * Other than that, it acts like a normal cmpxchg. 598 * 599 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 600 * (bottom being the least significant 30 bits of the 60 bit time stamp). 601 * 602 * The two most significant bits of each half holds a 2 bit counter (0-3). 603 * Each update will increment this counter by one. 604 * When reading the top and bottom, if the two counter bits match then the 605 * top and bottom together make a valid 60 bit number. 606 */ 607 #define RB_TIME_SHIFT 30 608 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 609 #define RB_TIME_MSB_SHIFT 60 610 611 static inline int rb_time_cnt(unsigned long val) 612 { 613 return (val >> RB_TIME_SHIFT) & 3; 614 } 615 616 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 617 { 618 u64 val; 619 620 val = top & RB_TIME_VAL_MASK; 621 val <<= RB_TIME_SHIFT; 622 val |= bottom & RB_TIME_VAL_MASK; 623 624 return val; 625 } 626 627 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 628 { 629 unsigned long top, bottom, msb; 630 unsigned long c; 631 632 /* 633 * If the read is interrupted by a write, then the cnt will 634 * be different. Loop until both top and bottom have been read 635 * without interruption. 636 */ 637 do { 638 c = local_read(&t->cnt); 639 top = local_read(&t->top); 640 bottom = local_read(&t->bottom); 641 msb = local_read(&t->msb); 642 } while (c != local_read(&t->cnt)); 643 644 *cnt = rb_time_cnt(top); 645 646 /* If top, msb or bottom counts don't match, this interrupted a write */ 647 if (*cnt != rb_time_cnt(msb) || *cnt != rb_time_cnt(bottom)) 648 return false; 649 650 /* The shift to msb will lose its cnt bits */ 651 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT); 652 return true; 653 } 654 655 static bool rb_time_read(rb_time_t *t, u64 *ret) 656 { 657 unsigned long cnt; 658 659 return __rb_time_read(t, ret, &cnt); 660 } 661 662 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 663 { 664 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 665 } 666 667 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom, 668 unsigned long *msb) 669 { 670 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 671 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 672 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT); 673 } 674 675 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 676 { 677 val = rb_time_val_cnt(val, cnt); 678 local_set(t, val); 679 } 680 681 static void rb_time_set(rb_time_t *t, u64 val) 682 { 683 unsigned long cnt, top, bottom, msb; 684 685 rb_time_split(val, &top, &bottom, &msb); 686 687 /* Writes always succeed with a valid number even if it gets interrupted. */ 688 do { 689 cnt = local_inc_return(&t->cnt); 690 rb_time_val_set(&t->top, top, cnt); 691 rb_time_val_set(&t->bottom, bottom, cnt); 692 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt); 693 } while (cnt != local_read(&t->cnt)); 694 } 695 696 static inline bool 697 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 698 { 699 return local_try_cmpxchg(l, &expect, set); 700 } 701 702 #else /* 64 bits */ 703 704 /* local64_t always succeeds */ 705 706 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 707 { 708 *ret = local64_read(&t->time); 709 return true; 710 } 711 static void rb_time_set(rb_time_t *t, u64 val) 712 { 713 local64_set(&t->time, val); 714 } 715 #endif 716 717 /* 718 * Enable this to make sure that the event passed to 719 * ring_buffer_event_time_stamp() is not committed and also 720 * is on the buffer that it passed in. 721 */ 722 //#define RB_VERIFY_EVENT 723 #ifdef RB_VERIFY_EVENT 724 static struct list_head *rb_list_head(struct list_head *list); 725 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 726 void *event) 727 { 728 struct buffer_page *page = cpu_buffer->commit_page; 729 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 730 struct list_head *next; 731 long commit, write; 732 unsigned long addr = (unsigned long)event; 733 bool done = false; 734 int stop = 0; 735 736 /* Make sure the event exists and is not committed yet */ 737 do { 738 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 739 done = true; 740 commit = local_read(&page->page->commit); 741 write = local_read(&page->write); 742 if (addr >= (unsigned long)&page->page->data[commit] && 743 addr < (unsigned long)&page->page->data[write]) 744 return; 745 746 next = rb_list_head(page->list.next); 747 page = list_entry(next, struct buffer_page, list); 748 } while (!done); 749 WARN_ON_ONCE(1); 750 } 751 #else 752 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 753 void *event) 754 { 755 } 756 #endif 757 758 /* 759 * The absolute time stamp drops the 5 MSBs and some clocks may 760 * require them. The rb_fix_abs_ts() will take a previous full 761 * time stamp, and add the 5 MSB of that time stamp on to the 762 * saved absolute time stamp. Then they are compared in case of 763 * the unlikely event that the latest time stamp incremented 764 * the 5 MSB. 765 */ 766 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 767 { 768 if (save_ts & TS_MSB) { 769 abs |= save_ts & TS_MSB; 770 /* Check for overflow */ 771 if (unlikely(abs < save_ts)) 772 abs += 1ULL << 59; 773 } 774 return abs; 775 } 776 777 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 778 779 /** 780 * ring_buffer_event_time_stamp - return the event's current time stamp 781 * @buffer: The buffer that the event is on 782 * @event: the event to get the time stamp of 783 * 784 * Note, this must be called after @event is reserved, and before it is 785 * committed to the ring buffer. And must be called from the same 786 * context where the event was reserved (normal, softirq, irq, etc). 787 * 788 * Returns the time stamp associated with the current event. 789 * If the event has an extended time stamp, then that is used as 790 * the time stamp to return. 791 * In the highly unlikely case that the event was nested more than 792 * the max nesting, then the write_stamp of the buffer is returned, 793 * otherwise current time is returned, but that really neither of 794 * the last two cases should ever happen. 795 */ 796 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 797 struct ring_buffer_event *event) 798 { 799 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 800 unsigned int nest; 801 u64 ts; 802 803 /* If the event includes an absolute time, then just use that */ 804 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 805 ts = rb_event_time_stamp(event); 806 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 807 } 808 809 nest = local_read(&cpu_buffer->committing); 810 verify_event(cpu_buffer, event); 811 if (WARN_ON_ONCE(!nest)) 812 goto fail; 813 814 /* Read the current saved nesting level time stamp */ 815 if (likely(--nest < MAX_NEST)) 816 return cpu_buffer->event_stamp[nest]; 817 818 /* Shouldn't happen, warn if it does */ 819 WARN_ONCE(1, "nest (%d) greater than max", nest); 820 821 fail: 822 /* Can only fail on 32 bit */ 823 if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) 824 /* Screw it, just read the current time */ 825 ts = rb_time_stamp(cpu_buffer->buffer); 826 827 return ts; 828 } 829 830 /** 831 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 832 * @buffer: The ring_buffer to get the number of pages from 833 * @cpu: The cpu of the ring_buffer to get the number of pages from 834 * 835 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 836 */ 837 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 838 { 839 return buffer->buffers[cpu]->nr_pages; 840 } 841 842 /** 843 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 844 * @buffer: The ring_buffer to get the number of pages from 845 * @cpu: The cpu of the ring_buffer to get the number of pages from 846 * 847 * Returns the number of pages that have content in the ring buffer. 848 */ 849 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 850 { 851 size_t read; 852 size_t lost; 853 size_t cnt; 854 855 read = local_read(&buffer->buffers[cpu]->pages_read); 856 lost = local_read(&buffer->buffers[cpu]->pages_lost); 857 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 858 859 if (WARN_ON_ONCE(cnt < lost)) 860 return 0; 861 862 cnt -= lost; 863 864 /* The reader can read an empty page, but not more than that */ 865 if (cnt < read) { 866 WARN_ON_ONCE(read > cnt + 1); 867 return 0; 868 } 869 870 return cnt - read; 871 } 872 873 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 874 { 875 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 876 size_t nr_pages; 877 size_t dirty; 878 879 nr_pages = cpu_buffer->nr_pages; 880 if (!nr_pages || !full) 881 return true; 882 883 /* 884 * Add one as dirty will never equal nr_pages, as the sub-buffer 885 * that the writer is on is not counted as dirty. 886 * This is needed if "buffer_percent" is set to 100. 887 */ 888 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 889 890 return (dirty * 100) >= (full * nr_pages); 891 } 892 893 /* 894 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 895 * 896 * Schedules a delayed work to wake up any task that is blocked on the 897 * ring buffer waiters queue. 898 */ 899 static void rb_wake_up_waiters(struct irq_work *work) 900 { 901 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 902 903 wake_up_all(&rbwork->waiters); 904 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 905 /* Only cpu_buffer sets the above flags */ 906 struct ring_buffer_per_cpu *cpu_buffer = 907 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 908 909 /* Called from interrupt context */ 910 raw_spin_lock(&cpu_buffer->reader_lock); 911 rbwork->wakeup_full = false; 912 rbwork->full_waiters_pending = false; 913 914 /* Waking up all waiters, they will reset the shortest full */ 915 cpu_buffer->shortest_full = 0; 916 raw_spin_unlock(&cpu_buffer->reader_lock); 917 918 wake_up_all(&rbwork->full_waiters); 919 } 920 } 921 922 /** 923 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 924 * @buffer: The ring buffer to wake waiters on 925 * @cpu: The CPU buffer to wake waiters on 926 * 927 * In the case of a file that represents a ring buffer is closing, 928 * it is prudent to wake up any waiters that are on this. 929 */ 930 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 931 { 932 struct ring_buffer_per_cpu *cpu_buffer; 933 struct rb_irq_work *rbwork; 934 935 if (!buffer) 936 return; 937 938 if (cpu == RING_BUFFER_ALL_CPUS) { 939 940 /* Wake up individual ones too. One level recursion */ 941 for_each_buffer_cpu(buffer, cpu) 942 ring_buffer_wake_waiters(buffer, cpu); 943 944 rbwork = &buffer->irq_work; 945 } else { 946 if (WARN_ON_ONCE(!buffer->buffers)) 947 return; 948 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 949 return; 950 951 cpu_buffer = buffer->buffers[cpu]; 952 /* The CPU buffer may not have been initialized yet */ 953 if (!cpu_buffer) 954 return; 955 rbwork = &cpu_buffer->irq_work; 956 } 957 958 /* This can be called in any context */ 959 irq_work_queue(&rbwork->work); 960 } 961 962 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 963 { 964 struct ring_buffer_per_cpu *cpu_buffer; 965 bool ret = false; 966 967 /* Reads of all CPUs always waits for any data */ 968 if (cpu == RING_BUFFER_ALL_CPUS) 969 return !ring_buffer_empty(buffer); 970 971 cpu_buffer = buffer->buffers[cpu]; 972 973 if (!ring_buffer_empty_cpu(buffer, cpu)) { 974 unsigned long flags; 975 bool pagebusy; 976 977 if (!full) 978 return true; 979 980 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 981 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 982 ret = !pagebusy && full_hit(buffer, cpu, full); 983 984 if (!ret && (!cpu_buffer->shortest_full || 985 cpu_buffer->shortest_full > full)) { 986 cpu_buffer->shortest_full = full; 987 } 988 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 989 } 990 return ret; 991 } 992 993 static inline bool 994 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 995 int cpu, int full, ring_buffer_cond_fn cond, void *data) 996 { 997 if (rb_watermark_hit(buffer, cpu, full)) 998 return true; 999 1000 if (cond(data)) 1001 return true; 1002 1003 /* 1004 * The events can happen in critical sections where 1005 * checking a work queue can cause deadlocks. 1006 * After adding a task to the queue, this flag is set 1007 * only to notify events to try to wake up the queue 1008 * using irq_work. 1009 * 1010 * We don't clear it even if the buffer is no longer 1011 * empty. The flag only causes the next event to run 1012 * irq_work to do the work queue wake up. The worse 1013 * that can happen if we race with !trace_empty() is that 1014 * an event will cause an irq_work to try to wake up 1015 * an empty queue. 1016 * 1017 * There's no reason to protect this flag either, as 1018 * the work queue and irq_work logic will do the necessary 1019 * synchronization for the wake ups. The only thing 1020 * that is necessary is that the wake up happens after 1021 * a task has been queued. It's OK for spurious wake ups. 1022 */ 1023 if (full) 1024 rbwork->full_waiters_pending = true; 1025 else 1026 rbwork->waiters_pending = true; 1027 1028 return false; 1029 } 1030 1031 /* 1032 * The default wait condition for ring_buffer_wait() is to just to exit the 1033 * wait loop the first time it is woken up. 1034 */ 1035 static bool rb_wait_once(void *data) 1036 { 1037 long *once = data; 1038 1039 /* wait_event() actually calls this twice before scheduling*/ 1040 if (*once > 1) 1041 return true; 1042 1043 (*once)++; 1044 return false; 1045 } 1046 1047 /** 1048 * ring_buffer_wait - wait for input to the ring buffer 1049 * @buffer: buffer to wait on 1050 * @cpu: the cpu buffer to wait on 1051 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1052 * 1053 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1054 * as data is added to any of the @buffer's cpu buffers. Otherwise 1055 * it will wait for data to be added to a specific cpu buffer. 1056 */ 1057 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 1058 { 1059 struct ring_buffer_per_cpu *cpu_buffer; 1060 struct wait_queue_head *waitq; 1061 ring_buffer_cond_fn cond; 1062 struct rb_irq_work *rbwork; 1063 void *data; 1064 long once = 0; 1065 int ret = 0; 1066 1067 cond = rb_wait_once; 1068 data = &once; 1069 1070 /* 1071 * Depending on what the caller is waiting for, either any 1072 * data in any cpu buffer, or a specific buffer, put the 1073 * caller on the appropriate wait queue. 1074 */ 1075 if (cpu == RING_BUFFER_ALL_CPUS) { 1076 rbwork = &buffer->irq_work; 1077 /* Full only makes sense on per cpu reads */ 1078 full = 0; 1079 } else { 1080 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1081 return -ENODEV; 1082 cpu_buffer = buffer->buffers[cpu]; 1083 rbwork = &cpu_buffer->irq_work; 1084 } 1085 1086 if (full) 1087 waitq = &rbwork->full_waiters; 1088 else 1089 waitq = &rbwork->waiters; 1090 1091 ret = wait_event_interruptible((*waitq), 1092 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 1093 1094 return ret; 1095 } 1096 1097 /** 1098 * ring_buffer_poll_wait - poll on buffer input 1099 * @buffer: buffer to wait on 1100 * @cpu: the cpu buffer to wait on 1101 * @filp: the file descriptor 1102 * @poll_table: The poll descriptor 1103 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1104 * 1105 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1106 * as data is added to any of the @buffer's cpu buffers. Otherwise 1107 * it will wait for data to be added to a specific cpu buffer. 1108 * 1109 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1110 * zero otherwise. 1111 */ 1112 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1113 struct file *filp, poll_table *poll_table, int full) 1114 { 1115 struct ring_buffer_per_cpu *cpu_buffer; 1116 struct rb_irq_work *rbwork; 1117 1118 if (cpu == RING_BUFFER_ALL_CPUS) { 1119 rbwork = &buffer->irq_work; 1120 full = 0; 1121 } else { 1122 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1123 return EPOLLERR; 1124 1125 cpu_buffer = buffer->buffers[cpu]; 1126 rbwork = &cpu_buffer->irq_work; 1127 } 1128 1129 if (full) { 1130 unsigned long flags; 1131 1132 poll_wait(filp, &rbwork->full_waiters, poll_table); 1133 1134 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1135 if (!cpu_buffer->shortest_full || 1136 cpu_buffer->shortest_full > full) 1137 cpu_buffer->shortest_full = full; 1138 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1139 if (full_hit(buffer, cpu, full)) 1140 return EPOLLIN | EPOLLRDNORM; 1141 /* 1142 * Only allow full_waiters_pending update to be seen after 1143 * the shortest_full is set. If the writer sees the 1144 * full_waiters_pending flag set, it will compare the 1145 * amount in the ring buffer to shortest_full. If the amount 1146 * in the ring buffer is greater than the shortest_full 1147 * percent, it will call the irq_work handler to wake up 1148 * this list. The irq_handler will reset shortest_full 1149 * back to zero. That's done under the reader_lock, but 1150 * the below smp_mb() makes sure that the update to 1151 * full_waiters_pending doesn't leak up into the above. 1152 */ 1153 smp_mb(); 1154 rbwork->full_waiters_pending = true; 1155 return 0; 1156 } 1157 1158 poll_wait(filp, &rbwork->waiters, poll_table); 1159 rbwork->waiters_pending = true; 1160 1161 /* 1162 * There's a tight race between setting the waiters_pending and 1163 * checking if the ring buffer is empty. Once the waiters_pending bit 1164 * is set, the next event will wake the task up, but we can get stuck 1165 * if there's only a single event in. 1166 * 1167 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1168 * but adding a memory barrier to all events will cause too much of a 1169 * performance hit in the fast path. We only need a memory barrier when 1170 * the buffer goes from empty to having content. But as this race is 1171 * extremely small, and it's not a problem if another event comes in, we 1172 * will fix it later. 1173 */ 1174 smp_mb(); 1175 1176 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1177 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1178 return EPOLLIN | EPOLLRDNORM; 1179 return 0; 1180 } 1181 1182 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1183 #define RB_WARN_ON(b, cond) \ 1184 ({ \ 1185 int _____ret = unlikely(cond); \ 1186 if (_____ret) { \ 1187 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1188 struct ring_buffer_per_cpu *__b = \ 1189 (void *)b; \ 1190 atomic_inc(&__b->buffer->record_disabled); \ 1191 } else \ 1192 atomic_inc(&b->record_disabled); \ 1193 WARN_ON(1); \ 1194 } \ 1195 _____ret; \ 1196 }) 1197 1198 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1199 #define DEBUG_SHIFT 0 1200 1201 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1202 { 1203 u64 ts; 1204 1205 /* Skip retpolines :-( */ 1206 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1207 ts = trace_clock_local(); 1208 else 1209 ts = buffer->clock(); 1210 1211 /* shift to debug/test normalization and TIME_EXTENTS */ 1212 return ts << DEBUG_SHIFT; 1213 } 1214 1215 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1216 { 1217 u64 time; 1218 1219 preempt_disable_notrace(); 1220 time = rb_time_stamp(buffer); 1221 preempt_enable_notrace(); 1222 1223 return time; 1224 } 1225 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1226 1227 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1228 int cpu, u64 *ts) 1229 { 1230 /* Just stupid testing the normalize function and deltas */ 1231 *ts >>= DEBUG_SHIFT; 1232 } 1233 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1234 1235 /* 1236 * Making the ring buffer lockless makes things tricky. 1237 * Although writes only happen on the CPU that they are on, 1238 * and they only need to worry about interrupts. Reads can 1239 * happen on any CPU. 1240 * 1241 * The reader page is always off the ring buffer, but when the 1242 * reader finishes with a page, it needs to swap its page with 1243 * a new one from the buffer. The reader needs to take from 1244 * the head (writes go to the tail). But if a writer is in overwrite 1245 * mode and wraps, it must push the head page forward. 1246 * 1247 * Here lies the problem. 1248 * 1249 * The reader must be careful to replace only the head page, and 1250 * not another one. As described at the top of the file in the 1251 * ASCII art, the reader sets its old page to point to the next 1252 * page after head. It then sets the page after head to point to 1253 * the old reader page. But if the writer moves the head page 1254 * during this operation, the reader could end up with the tail. 1255 * 1256 * We use cmpxchg to help prevent this race. We also do something 1257 * special with the page before head. We set the LSB to 1. 1258 * 1259 * When the writer must push the page forward, it will clear the 1260 * bit that points to the head page, move the head, and then set 1261 * the bit that points to the new head page. 1262 * 1263 * We also don't want an interrupt coming in and moving the head 1264 * page on another writer. Thus we use the second LSB to catch 1265 * that too. Thus: 1266 * 1267 * head->list->prev->next bit 1 bit 0 1268 * ------- ------- 1269 * Normal page 0 0 1270 * Points to head page 0 1 1271 * New head page 1 0 1272 * 1273 * Note we can not trust the prev pointer of the head page, because: 1274 * 1275 * +----+ +-----+ +-----+ 1276 * | |------>| T |---X--->| N | 1277 * | |<------| | | | 1278 * +----+ +-----+ +-----+ 1279 * ^ ^ | 1280 * | +-----+ | | 1281 * +----------| R |----------+ | 1282 * | |<-----------+ 1283 * +-----+ 1284 * 1285 * Key: ---X--> HEAD flag set in pointer 1286 * T Tail page 1287 * R Reader page 1288 * N Next page 1289 * 1290 * (see __rb_reserve_next() to see where this happens) 1291 * 1292 * What the above shows is that the reader just swapped out 1293 * the reader page with a page in the buffer, but before it 1294 * could make the new header point back to the new page added 1295 * it was preempted by a writer. The writer moved forward onto 1296 * the new page added by the reader and is about to move forward 1297 * again. 1298 * 1299 * You can see, it is legitimate for the previous pointer of 1300 * the head (or any page) not to point back to itself. But only 1301 * temporarily. 1302 */ 1303 1304 #define RB_PAGE_NORMAL 0UL 1305 #define RB_PAGE_HEAD 1UL 1306 #define RB_PAGE_UPDATE 2UL 1307 1308 1309 #define RB_FLAG_MASK 3UL 1310 1311 /* PAGE_MOVED is not part of the mask */ 1312 #define RB_PAGE_MOVED 4UL 1313 1314 /* 1315 * rb_list_head - remove any bit 1316 */ 1317 static struct list_head *rb_list_head(struct list_head *list) 1318 { 1319 unsigned long val = (unsigned long)list; 1320 1321 return (struct list_head *)(val & ~RB_FLAG_MASK); 1322 } 1323 1324 /* 1325 * rb_is_head_page - test if the given page is the head page 1326 * 1327 * Because the reader may move the head_page pointer, we can 1328 * not trust what the head page is (it may be pointing to 1329 * the reader page). But if the next page is a header page, 1330 * its flags will be non zero. 1331 */ 1332 static inline int 1333 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1334 { 1335 unsigned long val; 1336 1337 val = (unsigned long)list->next; 1338 1339 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1340 return RB_PAGE_MOVED; 1341 1342 return val & RB_FLAG_MASK; 1343 } 1344 1345 /* 1346 * rb_is_reader_page 1347 * 1348 * The unique thing about the reader page, is that, if the 1349 * writer is ever on it, the previous pointer never points 1350 * back to the reader page. 1351 */ 1352 static bool rb_is_reader_page(struct buffer_page *page) 1353 { 1354 struct list_head *list = page->list.prev; 1355 1356 return rb_list_head(list->next) != &page->list; 1357 } 1358 1359 /* 1360 * rb_set_list_to_head - set a list_head to be pointing to head. 1361 */ 1362 static void rb_set_list_to_head(struct list_head *list) 1363 { 1364 unsigned long *ptr; 1365 1366 ptr = (unsigned long *)&list->next; 1367 *ptr |= RB_PAGE_HEAD; 1368 *ptr &= ~RB_PAGE_UPDATE; 1369 } 1370 1371 /* 1372 * rb_head_page_activate - sets up head page 1373 */ 1374 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1375 { 1376 struct buffer_page *head; 1377 1378 head = cpu_buffer->head_page; 1379 if (!head) 1380 return; 1381 1382 /* 1383 * Set the previous list pointer to have the HEAD flag. 1384 */ 1385 rb_set_list_to_head(head->list.prev); 1386 } 1387 1388 static void rb_list_head_clear(struct list_head *list) 1389 { 1390 unsigned long *ptr = (unsigned long *)&list->next; 1391 1392 *ptr &= ~RB_FLAG_MASK; 1393 } 1394 1395 /* 1396 * rb_head_page_deactivate - clears head page ptr (for free list) 1397 */ 1398 static void 1399 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1400 { 1401 struct list_head *hd; 1402 1403 /* Go through the whole list and clear any pointers found. */ 1404 rb_list_head_clear(cpu_buffer->pages); 1405 1406 list_for_each(hd, cpu_buffer->pages) 1407 rb_list_head_clear(hd); 1408 } 1409 1410 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1411 struct buffer_page *head, 1412 struct buffer_page *prev, 1413 int old_flag, int new_flag) 1414 { 1415 struct list_head *list; 1416 unsigned long val = (unsigned long)&head->list; 1417 unsigned long ret; 1418 1419 list = &prev->list; 1420 1421 val &= ~RB_FLAG_MASK; 1422 1423 ret = cmpxchg((unsigned long *)&list->next, 1424 val | old_flag, val | new_flag); 1425 1426 /* check if the reader took the page */ 1427 if ((ret & ~RB_FLAG_MASK) != val) 1428 return RB_PAGE_MOVED; 1429 1430 return ret & RB_FLAG_MASK; 1431 } 1432 1433 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1434 struct buffer_page *head, 1435 struct buffer_page *prev, 1436 int old_flag) 1437 { 1438 return rb_head_page_set(cpu_buffer, head, prev, 1439 old_flag, RB_PAGE_UPDATE); 1440 } 1441 1442 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1443 struct buffer_page *head, 1444 struct buffer_page *prev, 1445 int old_flag) 1446 { 1447 return rb_head_page_set(cpu_buffer, head, prev, 1448 old_flag, RB_PAGE_HEAD); 1449 } 1450 1451 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1452 struct buffer_page *head, 1453 struct buffer_page *prev, 1454 int old_flag) 1455 { 1456 return rb_head_page_set(cpu_buffer, head, prev, 1457 old_flag, RB_PAGE_NORMAL); 1458 } 1459 1460 static inline void rb_inc_page(struct buffer_page **bpage) 1461 { 1462 struct list_head *p = rb_list_head((*bpage)->list.next); 1463 1464 *bpage = list_entry(p, struct buffer_page, list); 1465 } 1466 1467 static struct buffer_page * 1468 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1469 { 1470 struct buffer_page *head; 1471 struct buffer_page *page; 1472 struct list_head *list; 1473 int i; 1474 1475 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1476 return NULL; 1477 1478 /* sanity check */ 1479 list = cpu_buffer->pages; 1480 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1481 return NULL; 1482 1483 page = head = cpu_buffer->head_page; 1484 /* 1485 * It is possible that the writer moves the header behind 1486 * where we started, and we miss in one loop. 1487 * A second loop should grab the header, but we'll do 1488 * three loops just because I'm paranoid. 1489 */ 1490 for (i = 0; i < 3; i++) { 1491 do { 1492 if (rb_is_head_page(page, page->list.prev)) { 1493 cpu_buffer->head_page = page; 1494 return page; 1495 } 1496 rb_inc_page(&page); 1497 } while (page != head); 1498 } 1499 1500 RB_WARN_ON(cpu_buffer, 1); 1501 1502 return NULL; 1503 } 1504 1505 static bool rb_head_page_replace(struct buffer_page *old, 1506 struct buffer_page *new) 1507 { 1508 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1509 unsigned long val; 1510 1511 val = *ptr & ~RB_FLAG_MASK; 1512 val |= RB_PAGE_HEAD; 1513 1514 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1515 } 1516 1517 /* 1518 * rb_tail_page_update - move the tail page forward 1519 */ 1520 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1521 struct buffer_page *tail_page, 1522 struct buffer_page *next_page) 1523 { 1524 unsigned long old_entries; 1525 unsigned long old_write; 1526 1527 /* 1528 * The tail page now needs to be moved forward. 1529 * 1530 * We need to reset the tail page, but without messing 1531 * with possible erasing of data brought in by interrupts 1532 * that have moved the tail page and are currently on it. 1533 * 1534 * We add a counter to the write field to denote this. 1535 */ 1536 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1537 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1538 1539 /* 1540 * Just make sure we have seen our old_write and synchronize 1541 * with any interrupts that come in. 1542 */ 1543 barrier(); 1544 1545 /* 1546 * If the tail page is still the same as what we think 1547 * it is, then it is up to us to update the tail 1548 * pointer. 1549 */ 1550 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1551 /* Zero the write counter */ 1552 unsigned long val = old_write & ~RB_WRITE_MASK; 1553 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1554 1555 /* 1556 * This will only succeed if an interrupt did 1557 * not come in and change it. In which case, we 1558 * do not want to modify it. 1559 * 1560 * We add (void) to let the compiler know that we do not care 1561 * about the return value of these functions. We use the 1562 * cmpxchg to only update if an interrupt did not already 1563 * do it for us. If the cmpxchg fails, we don't care. 1564 */ 1565 (void)local_cmpxchg(&next_page->write, old_write, val); 1566 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1567 1568 /* 1569 * No need to worry about races with clearing out the commit. 1570 * it only can increment when a commit takes place. But that 1571 * only happens in the outer most nested commit. 1572 */ 1573 local_set(&next_page->page->commit, 0); 1574 1575 /* Either we update tail_page or an interrupt does */ 1576 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1577 local_inc(&cpu_buffer->pages_touched); 1578 } 1579 } 1580 1581 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1582 struct buffer_page *bpage) 1583 { 1584 unsigned long val = (unsigned long)bpage; 1585 1586 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1587 } 1588 1589 /** 1590 * rb_check_pages - integrity check of buffer pages 1591 * @cpu_buffer: CPU buffer with pages to test 1592 * 1593 * As a safety measure we check to make sure the data pages have not 1594 * been corrupted. 1595 */ 1596 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1597 { 1598 struct list_head *head = rb_list_head(cpu_buffer->pages); 1599 struct list_head *tmp; 1600 1601 if (RB_WARN_ON(cpu_buffer, 1602 rb_list_head(rb_list_head(head->next)->prev) != head)) 1603 return; 1604 1605 if (RB_WARN_ON(cpu_buffer, 1606 rb_list_head(rb_list_head(head->prev)->next) != head)) 1607 return; 1608 1609 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1610 if (RB_WARN_ON(cpu_buffer, 1611 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1612 return; 1613 1614 if (RB_WARN_ON(cpu_buffer, 1615 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1616 return; 1617 } 1618 } 1619 1620 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1621 long nr_pages, struct list_head *pages) 1622 { 1623 struct buffer_page *bpage, *tmp; 1624 bool user_thread = current->mm != NULL; 1625 gfp_t mflags; 1626 long i; 1627 1628 /* 1629 * Check if the available memory is there first. 1630 * Note, si_mem_available() only gives us a rough estimate of available 1631 * memory. It may not be accurate. But we don't care, we just want 1632 * to prevent doing any allocation when it is obvious that it is 1633 * not going to succeed. 1634 */ 1635 i = si_mem_available(); 1636 if (i < nr_pages) 1637 return -ENOMEM; 1638 1639 /* 1640 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1641 * gracefully without invoking oom-killer and the system is not 1642 * destabilized. 1643 */ 1644 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1645 1646 /* 1647 * If a user thread allocates too much, and si_mem_available() 1648 * reports there's enough memory, even though there is not. 1649 * Make sure the OOM killer kills this thread. This can happen 1650 * even with RETRY_MAYFAIL because another task may be doing 1651 * an allocation after this task has taken all memory. 1652 * This is the task the OOM killer needs to take out during this 1653 * loop, even if it was triggered by an allocation somewhere else. 1654 */ 1655 if (user_thread) 1656 set_current_oom_origin(); 1657 for (i = 0; i < nr_pages; i++) { 1658 struct page *page; 1659 1660 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1661 mflags, cpu_to_node(cpu_buffer->cpu)); 1662 if (!bpage) 1663 goto free_pages; 1664 1665 rb_check_bpage(cpu_buffer, bpage); 1666 1667 list_add(&bpage->list, pages); 1668 1669 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1670 if (!page) 1671 goto free_pages; 1672 bpage->page = page_address(page); 1673 rb_init_page(bpage->page); 1674 1675 if (user_thread && fatal_signal_pending(current)) 1676 goto free_pages; 1677 } 1678 if (user_thread) 1679 clear_current_oom_origin(); 1680 1681 return 0; 1682 1683 free_pages: 1684 list_for_each_entry_safe(bpage, tmp, pages, list) { 1685 list_del_init(&bpage->list); 1686 free_buffer_page(bpage); 1687 } 1688 if (user_thread) 1689 clear_current_oom_origin(); 1690 1691 return -ENOMEM; 1692 } 1693 1694 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1695 unsigned long nr_pages) 1696 { 1697 LIST_HEAD(pages); 1698 1699 WARN_ON(!nr_pages); 1700 1701 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1702 return -ENOMEM; 1703 1704 /* 1705 * The ring buffer page list is a circular list that does not 1706 * start and end with a list head. All page list items point to 1707 * other pages. 1708 */ 1709 cpu_buffer->pages = pages.next; 1710 list_del(&pages); 1711 1712 cpu_buffer->nr_pages = nr_pages; 1713 1714 rb_check_pages(cpu_buffer); 1715 1716 return 0; 1717 } 1718 1719 static struct ring_buffer_per_cpu * 1720 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1721 { 1722 struct ring_buffer_per_cpu *cpu_buffer; 1723 struct buffer_page *bpage; 1724 struct page *page; 1725 int ret; 1726 1727 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1728 GFP_KERNEL, cpu_to_node(cpu)); 1729 if (!cpu_buffer) 1730 return NULL; 1731 1732 cpu_buffer->cpu = cpu; 1733 cpu_buffer->buffer = buffer; 1734 raw_spin_lock_init(&cpu_buffer->reader_lock); 1735 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1736 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1737 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1738 init_completion(&cpu_buffer->update_done); 1739 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1740 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1741 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1742 1743 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1744 GFP_KERNEL, cpu_to_node(cpu)); 1745 if (!bpage) 1746 goto fail_free_buffer; 1747 1748 rb_check_bpage(cpu_buffer, bpage); 1749 1750 cpu_buffer->reader_page = bpage; 1751 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1752 if (!page) 1753 goto fail_free_reader; 1754 bpage->page = page_address(page); 1755 rb_init_page(bpage->page); 1756 1757 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1758 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1759 1760 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1761 if (ret < 0) 1762 goto fail_free_reader; 1763 1764 cpu_buffer->head_page 1765 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1766 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1767 1768 rb_head_page_activate(cpu_buffer); 1769 1770 return cpu_buffer; 1771 1772 fail_free_reader: 1773 free_buffer_page(cpu_buffer->reader_page); 1774 1775 fail_free_buffer: 1776 kfree(cpu_buffer); 1777 return NULL; 1778 } 1779 1780 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1781 { 1782 struct list_head *head = cpu_buffer->pages; 1783 struct buffer_page *bpage, *tmp; 1784 1785 irq_work_sync(&cpu_buffer->irq_work.work); 1786 1787 free_buffer_page(cpu_buffer->reader_page); 1788 1789 if (head) { 1790 rb_head_page_deactivate(cpu_buffer); 1791 1792 list_for_each_entry_safe(bpage, tmp, head, list) { 1793 list_del_init(&bpage->list); 1794 free_buffer_page(bpage); 1795 } 1796 bpage = list_entry(head, struct buffer_page, list); 1797 free_buffer_page(bpage); 1798 } 1799 1800 free_page((unsigned long)cpu_buffer->free_page); 1801 1802 kfree(cpu_buffer); 1803 } 1804 1805 /** 1806 * __ring_buffer_alloc - allocate a new ring_buffer 1807 * @size: the size in bytes per cpu that is needed. 1808 * @flags: attributes to set for the ring buffer. 1809 * @key: ring buffer reader_lock_key. 1810 * 1811 * Currently the only flag that is available is the RB_FL_OVERWRITE 1812 * flag. This flag means that the buffer will overwrite old data 1813 * when the buffer wraps. If this flag is not set, the buffer will 1814 * drop data when the tail hits the head. 1815 */ 1816 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1817 struct lock_class_key *key) 1818 { 1819 struct trace_buffer *buffer; 1820 long nr_pages; 1821 int bsize; 1822 int cpu; 1823 int ret; 1824 1825 /* keep it in its own cache line */ 1826 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1827 GFP_KERNEL); 1828 if (!buffer) 1829 return NULL; 1830 1831 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1832 goto fail_free_buffer; 1833 1834 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1835 buffer->flags = flags; 1836 buffer->clock = trace_clock_local; 1837 buffer->reader_lock_key = key; 1838 1839 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1840 init_waitqueue_head(&buffer->irq_work.waiters); 1841 1842 /* need at least two pages */ 1843 if (nr_pages < 2) 1844 nr_pages = 2; 1845 1846 buffer->cpus = nr_cpu_ids; 1847 1848 bsize = sizeof(void *) * nr_cpu_ids; 1849 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1850 GFP_KERNEL); 1851 if (!buffer->buffers) 1852 goto fail_free_cpumask; 1853 1854 cpu = raw_smp_processor_id(); 1855 cpumask_set_cpu(cpu, buffer->cpumask); 1856 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1857 if (!buffer->buffers[cpu]) 1858 goto fail_free_buffers; 1859 1860 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1861 if (ret < 0) 1862 goto fail_free_buffers; 1863 1864 mutex_init(&buffer->mutex); 1865 1866 return buffer; 1867 1868 fail_free_buffers: 1869 for_each_buffer_cpu(buffer, cpu) { 1870 if (buffer->buffers[cpu]) 1871 rb_free_cpu_buffer(buffer->buffers[cpu]); 1872 } 1873 kfree(buffer->buffers); 1874 1875 fail_free_cpumask: 1876 free_cpumask_var(buffer->cpumask); 1877 1878 fail_free_buffer: 1879 kfree(buffer); 1880 return NULL; 1881 } 1882 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1883 1884 /** 1885 * ring_buffer_free - free a ring buffer. 1886 * @buffer: the buffer to free. 1887 */ 1888 void 1889 ring_buffer_free(struct trace_buffer *buffer) 1890 { 1891 int cpu; 1892 1893 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1894 1895 irq_work_sync(&buffer->irq_work.work); 1896 1897 for_each_buffer_cpu(buffer, cpu) 1898 rb_free_cpu_buffer(buffer->buffers[cpu]); 1899 1900 kfree(buffer->buffers); 1901 free_cpumask_var(buffer->cpumask); 1902 1903 kfree(buffer); 1904 } 1905 EXPORT_SYMBOL_GPL(ring_buffer_free); 1906 1907 void ring_buffer_set_clock(struct trace_buffer *buffer, 1908 u64 (*clock)(void)) 1909 { 1910 buffer->clock = clock; 1911 } 1912 1913 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1914 { 1915 buffer->time_stamp_abs = abs; 1916 } 1917 1918 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1919 { 1920 return buffer->time_stamp_abs; 1921 } 1922 1923 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1924 1925 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1926 { 1927 return local_read(&bpage->entries) & RB_WRITE_MASK; 1928 } 1929 1930 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1931 { 1932 return local_read(&bpage->write) & RB_WRITE_MASK; 1933 } 1934 1935 static bool 1936 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1937 { 1938 struct list_head *tail_page, *to_remove, *next_page; 1939 struct buffer_page *to_remove_page, *tmp_iter_page; 1940 struct buffer_page *last_page, *first_page; 1941 unsigned long nr_removed; 1942 unsigned long head_bit; 1943 int page_entries; 1944 1945 head_bit = 0; 1946 1947 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1948 atomic_inc(&cpu_buffer->record_disabled); 1949 /* 1950 * We don't race with the readers since we have acquired the reader 1951 * lock. We also don't race with writers after disabling recording. 1952 * This makes it easy to figure out the first and the last page to be 1953 * removed from the list. We unlink all the pages in between including 1954 * the first and last pages. This is done in a busy loop so that we 1955 * lose the least number of traces. 1956 * The pages are freed after we restart recording and unlock readers. 1957 */ 1958 tail_page = &cpu_buffer->tail_page->list; 1959 1960 /* 1961 * tail page might be on reader page, we remove the next page 1962 * from the ring buffer 1963 */ 1964 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1965 tail_page = rb_list_head(tail_page->next); 1966 to_remove = tail_page; 1967 1968 /* start of pages to remove */ 1969 first_page = list_entry(rb_list_head(to_remove->next), 1970 struct buffer_page, list); 1971 1972 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1973 to_remove = rb_list_head(to_remove)->next; 1974 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1975 } 1976 /* Read iterators need to reset themselves when some pages removed */ 1977 cpu_buffer->pages_removed += nr_removed; 1978 1979 next_page = rb_list_head(to_remove)->next; 1980 1981 /* 1982 * Now we remove all pages between tail_page and next_page. 1983 * Make sure that we have head_bit value preserved for the 1984 * next page 1985 */ 1986 tail_page->next = (struct list_head *)((unsigned long)next_page | 1987 head_bit); 1988 next_page = rb_list_head(next_page); 1989 next_page->prev = tail_page; 1990 1991 /* make sure pages points to a valid page in the ring buffer */ 1992 cpu_buffer->pages = next_page; 1993 1994 /* update head page */ 1995 if (head_bit) 1996 cpu_buffer->head_page = list_entry(next_page, 1997 struct buffer_page, list); 1998 1999 /* pages are removed, resume tracing and then free the pages */ 2000 atomic_dec(&cpu_buffer->record_disabled); 2001 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2002 2003 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2004 2005 /* last buffer page to remove */ 2006 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2007 list); 2008 tmp_iter_page = first_page; 2009 2010 do { 2011 cond_resched(); 2012 2013 to_remove_page = tmp_iter_page; 2014 rb_inc_page(&tmp_iter_page); 2015 2016 /* update the counters */ 2017 page_entries = rb_page_entries(to_remove_page); 2018 if (page_entries) { 2019 /* 2020 * If something was added to this page, it was full 2021 * since it is not the tail page. So we deduct the 2022 * bytes consumed in ring buffer from here. 2023 * Increment overrun to account for the lost events. 2024 */ 2025 local_add(page_entries, &cpu_buffer->overrun); 2026 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2027 local_inc(&cpu_buffer->pages_lost); 2028 } 2029 2030 /* 2031 * We have already removed references to this list item, just 2032 * free up the buffer_page and its page 2033 */ 2034 free_buffer_page(to_remove_page); 2035 nr_removed--; 2036 2037 } while (to_remove_page != last_page); 2038 2039 RB_WARN_ON(cpu_buffer, nr_removed); 2040 2041 return nr_removed == 0; 2042 } 2043 2044 static bool 2045 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2046 { 2047 struct list_head *pages = &cpu_buffer->new_pages; 2048 unsigned long flags; 2049 bool success; 2050 int retries; 2051 2052 /* Can be called at early boot up, where interrupts must not been enabled */ 2053 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2054 /* 2055 * We are holding the reader lock, so the reader page won't be swapped 2056 * in the ring buffer. Now we are racing with the writer trying to 2057 * move head page and the tail page. 2058 * We are going to adapt the reader page update process where: 2059 * 1. We first splice the start and end of list of new pages between 2060 * the head page and its previous page. 2061 * 2. We cmpxchg the prev_page->next to point from head page to the 2062 * start of new pages list. 2063 * 3. Finally, we update the head->prev to the end of new list. 2064 * 2065 * We will try this process 10 times, to make sure that we don't keep 2066 * spinning. 2067 */ 2068 retries = 10; 2069 success = false; 2070 while (retries--) { 2071 struct list_head *head_page, *prev_page, *r; 2072 struct list_head *last_page, *first_page; 2073 struct list_head *head_page_with_bit; 2074 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2075 2076 if (!hpage) 2077 break; 2078 head_page = &hpage->list; 2079 prev_page = head_page->prev; 2080 2081 first_page = pages->next; 2082 last_page = pages->prev; 2083 2084 head_page_with_bit = (struct list_head *) 2085 ((unsigned long)head_page | RB_PAGE_HEAD); 2086 2087 last_page->next = head_page_with_bit; 2088 first_page->prev = prev_page; 2089 2090 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 2091 2092 if (r == head_page_with_bit) { 2093 /* 2094 * yay, we replaced the page pointer to our new list, 2095 * now, we just have to update to head page's prev 2096 * pointer to point to end of list 2097 */ 2098 head_page->prev = last_page; 2099 success = true; 2100 break; 2101 } 2102 } 2103 2104 if (success) 2105 INIT_LIST_HEAD(pages); 2106 /* 2107 * If we weren't successful in adding in new pages, warn and stop 2108 * tracing 2109 */ 2110 RB_WARN_ON(cpu_buffer, !success); 2111 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2112 2113 /* free pages if they weren't inserted */ 2114 if (!success) { 2115 struct buffer_page *bpage, *tmp; 2116 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2117 list) { 2118 list_del_init(&bpage->list); 2119 free_buffer_page(bpage); 2120 } 2121 } 2122 return success; 2123 } 2124 2125 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2126 { 2127 bool success; 2128 2129 if (cpu_buffer->nr_pages_to_update > 0) 2130 success = rb_insert_pages(cpu_buffer); 2131 else 2132 success = rb_remove_pages(cpu_buffer, 2133 -cpu_buffer->nr_pages_to_update); 2134 2135 if (success) 2136 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2137 } 2138 2139 static void update_pages_handler(struct work_struct *work) 2140 { 2141 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2142 struct ring_buffer_per_cpu, update_pages_work); 2143 rb_update_pages(cpu_buffer); 2144 complete(&cpu_buffer->update_done); 2145 } 2146 2147 /** 2148 * ring_buffer_resize - resize the ring buffer 2149 * @buffer: the buffer to resize. 2150 * @size: the new size. 2151 * @cpu_id: the cpu buffer to resize 2152 * 2153 * Minimum size is 2 * BUF_PAGE_SIZE. 2154 * 2155 * Returns 0 on success and < 0 on failure. 2156 */ 2157 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2158 int cpu_id) 2159 { 2160 struct ring_buffer_per_cpu *cpu_buffer; 2161 unsigned long nr_pages; 2162 int cpu, err; 2163 2164 /* 2165 * Always succeed at resizing a non-existent buffer: 2166 */ 2167 if (!buffer) 2168 return 0; 2169 2170 /* Make sure the requested buffer exists */ 2171 if (cpu_id != RING_BUFFER_ALL_CPUS && 2172 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2173 return 0; 2174 2175 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 2176 2177 /* we need a minimum of two pages */ 2178 if (nr_pages < 2) 2179 nr_pages = 2; 2180 2181 /* prevent another thread from changing buffer sizes */ 2182 mutex_lock(&buffer->mutex); 2183 atomic_inc(&buffer->resizing); 2184 2185 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2186 /* 2187 * Don't succeed if resizing is disabled, as a reader might be 2188 * manipulating the ring buffer and is expecting a sane state while 2189 * this is true. 2190 */ 2191 for_each_buffer_cpu(buffer, cpu) { 2192 cpu_buffer = buffer->buffers[cpu]; 2193 if (atomic_read(&cpu_buffer->resize_disabled)) { 2194 err = -EBUSY; 2195 goto out_err_unlock; 2196 } 2197 } 2198 2199 /* calculate the pages to update */ 2200 for_each_buffer_cpu(buffer, cpu) { 2201 cpu_buffer = buffer->buffers[cpu]; 2202 2203 cpu_buffer->nr_pages_to_update = nr_pages - 2204 cpu_buffer->nr_pages; 2205 /* 2206 * nothing more to do for removing pages or no update 2207 */ 2208 if (cpu_buffer->nr_pages_to_update <= 0) 2209 continue; 2210 /* 2211 * to add pages, make sure all new pages can be 2212 * allocated without receiving ENOMEM 2213 */ 2214 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2215 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2216 &cpu_buffer->new_pages)) { 2217 /* not enough memory for new pages */ 2218 err = -ENOMEM; 2219 goto out_err; 2220 } 2221 2222 cond_resched(); 2223 } 2224 2225 cpus_read_lock(); 2226 /* 2227 * Fire off all the required work handlers 2228 * We can't schedule on offline CPUs, but it's not necessary 2229 * since we can change their buffer sizes without any race. 2230 */ 2231 for_each_buffer_cpu(buffer, cpu) { 2232 cpu_buffer = buffer->buffers[cpu]; 2233 if (!cpu_buffer->nr_pages_to_update) 2234 continue; 2235 2236 /* Can't run something on an offline CPU. */ 2237 if (!cpu_online(cpu)) { 2238 rb_update_pages(cpu_buffer); 2239 cpu_buffer->nr_pages_to_update = 0; 2240 } else { 2241 /* Run directly if possible. */ 2242 migrate_disable(); 2243 if (cpu != smp_processor_id()) { 2244 migrate_enable(); 2245 schedule_work_on(cpu, 2246 &cpu_buffer->update_pages_work); 2247 } else { 2248 update_pages_handler(&cpu_buffer->update_pages_work); 2249 migrate_enable(); 2250 } 2251 } 2252 } 2253 2254 /* wait for all the updates to complete */ 2255 for_each_buffer_cpu(buffer, cpu) { 2256 cpu_buffer = buffer->buffers[cpu]; 2257 if (!cpu_buffer->nr_pages_to_update) 2258 continue; 2259 2260 if (cpu_online(cpu)) 2261 wait_for_completion(&cpu_buffer->update_done); 2262 cpu_buffer->nr_pages_to_update = 0; 2263 } 2264 2265 cpus_read_unlock(); 2266 } else { 2267 cpu_buffer = buffer->buffers[cpu_id]; 2268 2269 if (nr_pages == cpu_buffer->nr_pages) 2270 goto out; 2271 2272 /* 2273 * Don't succeed if resizing is disabled, as a reader might be 2274 * manipulating the ring buffer and is expecting a sane state while 2275 * this is true. 2276 */ 2277 if (atomic_read(&cpu_buffer->resize_disabled)) { 2278 err = -EBUSY; 2279 goto out_err_unlock; 2280 } 2281 2282 cpu_buffer->nr_pages_to_update = nr_pages - 2283 cpu_buffer->nr_pages; 2284 2285 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2286 if (cpu_buffer->nr_pages_to_update > 0 && 2287 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2288 &cpu_buffer->new_pages)) { 2289 err = -ENOMEM; 2290 goto out_err; 2291 } 2292 2293 cpus_read_lock(); 2294 2295 /* Can't run something on an offline CPU. */ 2296 if (!cpu_online(cpu_id)) 2297 rb_update_pages(cpu_buffer); 2298 else { 2299 /* Run directly if possible. */ 2300 migrate_disable(); 2301 if (cpu_id == smp_processor_id()) { 2302 rb_update_pages(cpu_buffer); 2303 migrate_enable(); 2304 } else { 2305 migrate_enable(); 2306 schedule_work_on(cpu_id, 2307 &cpu_buffer->update_pages_work); 2308 wait_for_completion(&cpu_buffer->update_done); 2309 } 2310 } 2311 2312 cpu_buffer->nr_pages_to_update = 0; 2313 cpus_read_unlock(); 2314 } 2315 2316 out: 2317 /* 2318 * The ring buffer resize can happen with the ring buffer 2319 * enabled, so that the update disturbs the tracing as little 2320 * as possible. But if the buffer is disabled, we do not need 2321 * to worry about that, and we can take the time to verify 2322 * that the buffer is not corrupt. 2323 */ 2324 if (atomic_read(&buffer->record_disabled)) { 2325 atomic_inc(&buffer->record_disabled); 2326 /* 2327 * Even though the buffer was disabled, we must make sure 2328 * that it is truly disabled before calling rb_check_pages. 2329 * There could have been a race between checking 2330 * record_disable and incrementing it. 2331 */ 2332 synchronize_rcu(); 2333 for_each_buffer_cpu(buffer, cpu) { 2334 cpu_buffer = buffer->buffers[cpu]; 2335 rb_check_pages(cpu_buffer); 2336 } 2337 atomic_dec(&buffer->record_disabled); 2338 } 2339 2340 atomic_dec(&buffer->resizing); 2341 mutex_unlock(&buffer->mutex); 2342 return 0; 2343 2344 out_err: 2345 for_each_buffer_cpu(buffer, cpu) { 2346 struct buffer_page *bpage, *tmp; 2347 2348 cpu_buffer = buffer->buffers[cpu]; 2349 cpu_buffer->nr_pages_to_update = 0; 2350 2351 if (list_empty(&cpu_buffer->new_pages)) 2352 continue; 2353 2354 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2355 list) { 2356 list_del_init(&bpage->list); 2357 free_buffer_page(bpage); 2358 } 2359 } 2360 out_err_unlock: 2361 atomic_dec(&buffer->resizing); 2362 mutex_unlock(&buffer->mutex); 2363 return err; 2364 } 2365 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2366 2367 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2368 { 2369 mutex_lock(&buffer->mutex); 2370 if (val) 2371 buffer->flags |= RB_FL_OVERWRITE; 2372 else 2373 buffer->flags &= ~RB_FL_OVERWRITE; 2374 mutex_unlock(&buffer->mutex); 2375 } 2376 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2377 2378 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2379 { 2380 return bpage->page->data + index; 2381 } 2382 2383 static __always_inline struct ring_buffer_event * 2384 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2385 { 2386 return __rb_page_index(cpu_buffer->reader_page, 2387 cpu_buffer->reader_page->read); 2388 } 2389 2390 static struct ring_buffer_event * 2391 rb_iter_head_event(struct ring_buffer_iter *iter) 2392 { 2393 struct ring_buffer_event *event; 2394 struct buffer_page *iter_head_page = iter->head_page; 2395 unsigned long commit; 2396 unsigned length; 2397 2398 if (iter->head != iter->next_event) 2399 return iter->event; 2400 2401 /* 2402 * When the writer goes across pages, it issues a cmpxchg which 2403 * is a mb(), which will synchronize with the rmb here. 2404 * (see rb_tail_page_update() and __rb_reserve_next()) 2405 */ 2406 commit = rb_page_commit(iter_head_page); 2407 smp_rmb(); 2408 2409 /* An event needs to be at least 8 bytes in size */ 2410 if (iter->head > commit - 8) 2411 goto reset; 2412 2413 event = __rb_page_index(iter_head_page, iter->head); 2414 length = rb_event_length(event); 2415 2416 /* 2417 * READ_ONCE() doesn't work on functions and we don't want the 2418 * compiler doing any crazy optimizations with length. 2419 */ 2420 barrier(); 2421 2422 if ((iter->head + length) > commit || length > BUF_PAGE_SIZE) 2423 /* Writer corrupted the read? */ 2424 goto reset; 2425 2426 memcpy(iter->event, event, length); 2427 /* 2428 * If the page stamp is still the same after this rmb() then the 2429 * event was safely copied without the writer entering the page. 2430 */ 2431 smp_rmb(); 2432 2433 /* Make sure the page didn't change since we read this */ 2434 if (iter->page_stamp != iter_head_page->page->time_stamp || 2435 commit > rb_page_commit(iter_head_page)) 2436 goto reset; 2437 2438 iter->next_event = iter->head + length; 2439 return iter->event; 2440 reset: 2441 /* Reset to the beginning */ 2442 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2443 iter->head = 0; 2444 iter->next_event = 0; 2445 iter->missed_events = 1; 2446 return NULL; 2447 } 2448 2449 /* Size is determined by what has been committed */ 2450 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2451 { 2452 return rb_page_commit(bpage); 2453 } 2454 2455 static __always_inline unsigned 2456 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2457 { 2458 return rb_page_commit(cpu_buffer->commit_page); 2459 } 2460 2461 static __always_inline unsigned 2462 rb_event_index(struct ring_buffer_event *event) 2463 { 2464 unsigned long addr = (unsigned long)event; 2465 2466 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2467 } 2468 2469 static void rb_inc_iter(struct ring_buffer_iter *iter) 2470 { 2471 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2472 2473 /* 2474 * The iterator could be on the reader page (it starts there). 2475 * But the head could have moved, since the reader was 2476 * found. Check for this case and assign the iterator 2477 * to the head page instead of next. 2478 */ 2479 if (iter->head_page == cpu_buffer->reader_page) 2480 iter->head_page = rb_set_head_page(cpu_buffer); 2481 else 2482 rb_inc_page(&iter->head_page); 2483 2484 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2485 iter->head = 0; 2486 iter->next_event = 0; 2487 } 2488 2489 /* 2490 * rb_handle_head_page - writer hit the head page 2491 * 2492 * Returns: +1 to retry page 2493 * 0 to continue 2494 * -1 on error 2495 */ 2496 static int 2497 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2498 struct buffer_page *tail_page, 2499 struct buffer_page *next_page) 2500 { 2501 struct buffer_page *new_head; 2502 int entries; 2503 int type; 2504 int ret; 2505 2506 entries = rb_page_entries(next_page); 2507 2508 /* 2509 * The hard part is here. We need to move the head 2510 * forward, and protect against both readers on 2511 * other CPUs and writers coming in via interrupts. 2512 */ 2513 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2514 RB_PAGE_HEAD); 2515 2516 /* 2517 * type can be one of four: 2518 * NORMAL - an interrupt already moved it for us 2519 * HEAD - we are the first to get here. 2520 * UPDATE - we are the interrupt interrupting 2521 * a current move. 2522 * MOVED - a reader on another CPU moved the next 2523 * pointer to its reader page. Give up 2524 * and try again. 2525 */ 2526 2527 switch (type) { 2528 case RB_PAGE_HEAD: 2529 /* 2530 * We changed the head to UPDATE, thus 2531 * it is our responsibility to update 2532 * the counters. 2533 */ 2534 local_add(entries, &cpu_buffer->overrun); 2535 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 2536 local_inc(&cpu_buffer->pages_lost); 2537 2538 /* 2539 * The entries will be zeroed out when we move the 2540 * tail page. 2541 */ 2542 2543 /* still more to do */ 2544 break; 2545 2546 case RB_PAGE_UPDATE: 2547 /* 2548 * This is an interrupt that interrupt the 2549 * previous update. Still more to do. 2550 */ 2551 break; 2552 case RB_PAGE_NORMAL: 2553 /* 2554 * An interrupt came in before the update 2555 * and processed this for us. 2556 * Nothing left to do. 2557 */ 2558 return 1; 2559 case RB_PAGE_MOVED: 2560 /* 2561 * The reader is on another CPU and just did 2562 * a swap with our next_page. 2563 * Try again. 2564 */ 2565 return 1; 2566 default: 2567 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2568 return -1; 2569 } 2570 2571 /* 2572 * Now that we are here, the old head pointer is 2573 * set to UPDATE. This will keep the reader from 2574 * swapping the head page with the reader page. 2575 * The reader (on another CPU) will spin till 2576 * we are finished. 2577 * 2578 * We just need to protect against interrupts 2579 * doing the job. We will set the next pointer 2580 * to HEAD. After that, we set the old pointer 2581 * to NORMAL, but only if it was HEAD before. 2582 * otherwise we are an interrupt, and only 2583 * want the outer most commit to reset it. 2584 */ 2585 new_head = next_page; 2586 rb_inc_page(&new_head); 2587 2588 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2589 RB_PAGE_NORMAL); 2590 2591 /* 2592 * Valid returns are: 2593 * HEAD - an interrupt came in and already set it. 2594 * NORMAL - One of two things: 2595 * 1) We really set it. 2596 * 2) A bunch of interrupts came in and moved 2597 * the page forward again. 2598 */ 2599 switch (ret) { 2600 case RB_PAGE_HEAD: 2601 case RB_PAGE_NORMAL: 2602 /* OK */ 2603 break; 2604 default: 2605 RB_WARN_ON(cpu_buffer, 1); 2606 return -1; 2607 } 2608 2609 /* 2610 * It is possible that an interrupt came in, 2611 * set the head up, then more interrupts came in 2612 * and moved it again. When we get back here, 2613 * the page would have been set to NORMAL but we 2614 * just set it back to HEAD. 2615 * 2616 * How do you detect this? Well, if that happened 2617 * the tail page would have moved. 2618 */ 2619 if (ret == RB_PAGE_NORMAL) { 2620 struct buffer_page *buffer_tail_page; 2621 2622 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2623 /* 2624 * If the tail had moved passed next, then we need 2625 * to reset the pointer. 2626 */ 2627 if (buffer_tail_page != tail_page && 2628 buffer_tail_page != next_page) 2629 rb_head_page_set_normal(cpu_buffer, new_head, 2630 next_page, 2631 RB_PAGE_HEAD); 2632 } 2633 2634 /* 2635 * If this was the outer most commit (the one that 2636 * changed the original pointer from HEAD to UPDATE), 2637 * then it is up to us to reset it to NORMAL. 2638 */ 2639 if (type == RB_PAGE_HEAD) { 2640 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2641 tail_page, 2642 RB_PAGE_UPDATE); 2643 if (RB_WARN_ON(cpu_buffer, 2644 ret != RB_PAGE_UPDATE)) 2645 return -1; 2646 } 2647 2648 return 0; 2649 } 2650 2651 static inline void 2652 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2653 unsigned long tail, struct rb_event_info *info) 2654 { 2655 struct buffer_page *tail_page = info->tail_page; 2656 struct ring_buffer_event *event; 2657 unsigned long length = info->length; 2658 2659 /* 2660 * Only the event that crossed the page boundary 2661 * must fill the old tail_page with padding. 2662 */ 2663 if (tail >= BUF_PAGE_SIZE) { 2664 /* 2665 * If the page was filled, then we still need 2666 * to update the real_end. Reset it to zero 2667 * and the reader will ignore it. 2668 */ 2669 if (tail == BUF_PAGE_SIZE) 2670 tail_page->real_end = 0; 2671 2672 local_sub(length, &tail_page->write); 2673 return; 2674 } 2675 2676 event = __rb_page_index(tail_page, tail); 2677 2678 /* 2679 * Save the original length to the meta data. 2680 * This will be used by the reader to add lost event 2681 * counter. 2682 */ 2683 tail_page->real_end = tail; 2684 2685 /* 2686 * If this event is bigger than the minimum size, then 2687 * we need to be careful that we don't subtract the 2688 * write counter enough to allow another writer to slip 2689 * in on this page. 2690 * We put in a discarded commit instead, to make sure 2691 * that this space is not used again, and this space will 2692 * not be accounted into 'entries_bytes'. 2693 * 2694 * If we are less than the minimum size, we don't need to 2695 * worry about it. 2696 */ 2697 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2698 /* No room for any events */ 2699 2700 /* Mark the rest of the page with padding */ 2701 rb_event_set_padding(event); 2702 2703 /* Make sure the padding is visible before the write update */ 2704 smp_wmb(); 2705 2706 /* Set the write back to the previous setting */ 2707 local_sub(length, &tail_page->write); 2708 return; 2709 } 2710 2711 /* Put in a discarded event */ 2712 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2713 event->type_len = RINGBUF_TYPE_PADDING; 2714 /* time delta must be non zero */ 2715 event->time_delta = 1; 2716 2717 /* account for padding bytes */ 2718 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2719 2720 /* Make sure the padding is visible before the tail_page->write update */ 2721 smp_wmb(); 2722 2723 /* Set write to end of buffer */ 2724 length = (tail + length) - BUF_PAGE_SIZE; 2725 local_sub(length, &tail_page->write); 2726 } 2727 2728 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2729 2730 /* 2731 * This is the slow path, force gcc not to inline it. 2732 */ 2733 static noinline struct ring_buffer_event * 2734 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2735 unsigned long tail, struct rb_event_info *info) 2736 { 2737 struct buffer_page *tail_page = info->tail_page; 2738 struct buffer_page *commit_page = cpu_buffer->commit_page; 2739 struct trace_buffer *buffer = cpu_buffer->buffer; 2740 struct buffer_page *next_page; 2741 int ret; 2742 2743 next_page = tail_page; 2744 2745 rb_inc_page(&next_page); 2746 2747 /* 2748 * If for some reason, we had an interrupt storm that made 2749 * it all the way around the buffer, bail, and warn 2750 * about it. 2751 */ 2752 if (unlikely(next_page == commit_page)) { 2753 local_inc(&cpu_buffer->commit_overrun); 2754 goto out_reset; 2755 } 2756 2757 /* 2758 * This is where the fun begins! 2759 * 2760 * We are fighting against races between a reader that 2761 * could be on another CPU trying to swap its reader 2762 * page with the buffer head. 2763 * 2764 * We are also fighting against interrupts coming in and 2765 * moving the head or tail on us as well. 2766 * 2767 * If the next page is the head page then we have filled 2768 * the buffer, unless the commit page is still on the 2769 * reader page. 2770 */ 2771 if (rb_is_head_page(next_page, &tail_page->list)) { 2772 2773 /* 2774 * If the commit is not on the reader page, then 2775 * move the header page. 2776 */ 2777 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2778 /* 2779 * If we are not in overwrite mode, 2780 * this is easy, just stop here. 2781 */ 2782 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2783 local_inc(&cpu_buffer->dropped_events); 2784 goto out_reset; 2785 } 2786 2787 ret = rb_handle_head_page(cpu_buffer, 2788 tail_page, 2789 next_page); 2790 if (ret < 0) 2791 goto out_reset; 2792 if (ret) 2793 goto out_again; 2794 } else { 2795 /* 2796 * We need to be careful here too. The 2797 * commit page could still be on the reader 2798 * page. We could have a small buffer, and 2799 * have filled up the buffer with events 2800 * from interrupts and such, and wrapped. 2801 * 2802 * Note, if the tail page is also on the 2803 * reader_page, we let it move out. 2804 */ 2805 if (unlikely((cpu_buffer->commit_page != 2806 cpu_buffer->tail_page) && 2807 (cpu_buffer->commit_page == 2808 cpu_buffer->reader_page))) { 2809 local_inc(&cpu_buffer->commit_overrun); 2810 goto out_reset; 2811 } 2812 } 2813 } 2814 2815 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2816 2817 out_again: 2818 2819 rb_reset_tail(cpu_buffer, tail, info); 2820 2821 /* Commit what we have for now. */ 2822 rb_end_commit(cpu_buffer); 2823 /* rb_end_commit() decs committing */ 2824 local_inc(&cpu_buffer->committing); 2825 2826 /* fail and let the caller try again */ 2827 return ERR_PTR(-EAGAIN); 2828 2829 out_reset: 2830 /* reset write */ 2831 rb_reset_tail(cpu_buffer, tail, info); 2832 2833 return NULL; 2834 } 2835 2836 /* Slow path */ 2837 static struct ring_buffer_event * 2838 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2839 { 2840 if (abs) 2841 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2842 else 2843 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2844 2845 /* Not the first event on the page, or not delta? */ 2846 if (abs || rb_event_index(event)) { 2847 event->time_delta = delta & TS_MASK; 2848 event->array[0] = delta >> TS_SHIFT; 2849 } else { 2850 /* nope, just zero it */ 2851 event->time_delta = 0; 2852 event->array[0] = 0; 2853 } 2854 2855 return skip_time_extend(event); 2856 } 2857 2858 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2859 static inline bool sched_clock_stable(void) 2860 { 2861 return true; 2862 } 2863 #endif 2864 2865 static void 2866 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2867 struct rb_event_info *info) 2868 { 2869 u64 write_stamp; 2870 2871 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2872 (unsigned long long)info->delta, 2873 (unsigned long long)info->ts, 2874 (unsigned long long)info->before, 2875 (unsigned long long)info->after, 2876 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2877 sched_clock_stable() ? "" : 2878 "If you just came from a suspend/resume,\n" 2879 "please switch to the trace global clock:\n" 2880 " echo global > /sys/kernel/tracing/trace_clock\n" 2881 "or add trace_clock=global to the kernel command line\n"); 2882 } 2883 2884 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2885 struct ring_buffer_event **event, 2886 struct rb_event_info *info, 2887 u64 *delta, 2888 unsigned int *length) 2889 { 2890 bool abs = info->add_timestamp & 2891 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2892 2893 if (unlikely(info->delta > (1ULL << 59))) { 2894 /* 2895 * Some timers can use more than 59 bits, and when a timestamp 2896 * is added to the buffer, it will lose those bits. 2897 */ 2898 if (abs && (info->ts & TS_MSB)) { 2899 info->delta &= ABS_TS_MASK; 2900 2901 /* did the clock go backwards */ 2902 } else if (info->before == info->after && info->before > info->ts) { 2903 /* not interrupted */ 2904 static int once; 2905 2906 /* 2907 * This is possible with a recalibrating of the TSC. 2908 * Do not produce a call stack, but just report it. 2909 */ 2910 if (!once) { 2911 once++; 2912 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2913 info->before, info->ts); 2914 } 2915 } else 2916 rb_check_timestamp(cpu_buffer, info); 2917 if (!abs) 2918 info->delta = 0; 2919 } 2920 *event = rb_add_time_stamp(*event, info->delta, abs); 2921 *length -= RB_LEN_TIME_EXTEND; 2922 *delta = 0; 2923 } 2924 2925 /** 2926 * rb_update_event - update event type and data 2927 * @cpu_buffer: The per cpu buffer of the @event 2928 * @event: the event to update 2929 * @info: The info to update the @event with (contains length and delta) 2930 * 2931 * Update the type and data fields of the @event. The length 2932 * is the actual size that is written to the ring buffer, 2933 * and with this, we can determine what to place into the 2934 * data field. 2935 */ 2936 static void 2937 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2938 struct ring_buffer_event *event, 2939 struct rb_event_info *info) 2940 { 2941 unsigned length = info->length; 2942 u64 delta = info->delta; 2943 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2944 2945 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2946 cpu_buffer->event_stamp[nest] = info->ts; 2947 2948 /* 2949 * If we need to add a timestamp, then we 2950 * add it to the start of the reserved space. 2951 */ 2952 if (unlikely(info->add_timestamp)) 2953 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2954 2955 event->time_delta = delta; 2956 length -= RB_EVNT_HDR_SIZE; 2957 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2958 event->type_len = 0; 2959 event->array[0] = length; 2960 } else 2961 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2962 } 2963 2964 static unsigned rb_calculate_event_length(unsigned length) 2965 { 2966 struct ring_buffer_event event; /* Used only for sizeof array */ 2967 2968 /* zero length can cause confusions */ 2969 if (!length) 2970 length++; 2971 2972 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2973 length += sizeof(event.array[0]); 2974 2975 length += RB_EVNT_HDR_SIZE; 2976 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2977 2978 /* 2979 * In case the time delta is larger than the 27 bits for it 2980 * in the header, we need to add a timestamp. If another 2981 * event comes in when trying to discard this one to increase 2982 * the length, then the timestamp will be added in the allocated 2983 * space of this event. If length is bigger than the size needed 2984 * for the TIME_EXTEND, then padding has to be used. The events 2985 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2986 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2987 * As length is a multiple of 4, we only need to worry if it 2988 * is 12 (RB_LEN_TIME_EXTEND + 4). 2989 */ 2990 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2991 length += RB_ALIGNMENT; 2992 2993 return length; 2994 } 2995 2996 static inline bool 2997 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2998 struct ring_buffer_event *event) 2999 { 3000 unsigned long new_index, old_index; 3001 struct buffer_page *bpage; 3002 unsigned long addr; 3003 3004 new_index = rb_event_index(event); 3005 old_index = new_index + rb_event_ts_length(event); 3006 addr = (unsigned long)event; 3007 addr &= PAGE_MASK; 3008 3009 bpage = READ_ONCE(cpu_buffer->tail_page); 3010 3011 /* 3012 * Make sure the tail_page is still the same and 3013 * the next write location is the end of this event 3014 */ 3015 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3016 unsigned long write_mask = 3017 local_read(&bpage->write) & ~RB_WRITE_MASK; 3018 unsigned long event_length = rb_event_length(event); 3019 3020 /* 3021 * For the before_stamp to be different than the write_stamp 3022 * to make sure that the next event adds an absolute 3023 * value and does not rely on the saved write stamp, which 3024 * is now going to be bogus. 3025 * 3026 * By setting the before_stamp to zero, the next event 3027 * is not going to use the write_stamp and will instead 3028 * create an absolute timestamp. This means there's no 3029 * reason to update the wirte_stamp! 3030 */ 3031 rb_time_set(&cpu_buffer->before_stamp, 0); 3032 3033 /* 3034 * If an event were to come in now, it would see that the 3035 * write_stamp and the before_stamp are different, and assume 3036 * that this event just added itself before updating 3037 * the write stamp. The interrupting event will fix the 3038 * write stamp for us, and use an absolute timestamp. 3039 */ 3040 3041 /* 3042 * This is on the tail page. It is possible that 3043 * a write could come in and move the tail page 3044 * and write to the next page. That is fine 3045 * because we just shorten what is on this page. 3046 */ 3047 old_index += write_mask; 3048 new_index += write_mask; 3049 3050 /* caution: old_index gets updated on cmpxchg failure */ 3051 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3052 /* update counters */ 3053 local_sub(event_length, &cpu_buffer->entries_bytes); 3054 return true; 3055 } 3056 } 3057 3058 /* could not discard */ 3059 return false; 3060 } 3061 3062 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3063 { 3064 local_inc(&cpu_buffer->committing); 3065 local_inc(&cpu_buffer->commits); 3066 } 3067 3068 static __always_inline void 3069 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3070 { 3071 unsigned long max_count; 3072 3073 /* 3074 * We only race with interrupts and NMIs on this CPU. 3075 * If we own the commit event, then we can commit 3076 * all others that interrupted us, since the interruptions 3077 * are in stack format (they finish before they come 3078 * back to us). This allows us to do a simple loop to 3079 * assign the commit to the tail. 3080 */ 3081 again: 3082 max_count = cpu_buffer->nr_pages * 100; 3083 3084 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3085 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3086 return; 3087 if (RB_WARN_ON(cpu_buffer, 3088 rb_is_reader_page(cpu_buffer->tail_page))) 3089 return; 3090 /* 3091 * No need for a memory barrier here, as the update 3092 * of the tail_page did it for this page. 3093 */ 3094 local_set(&cpu_buffer->commit_page->page->commit, 3095 rb_page_write(cpu_buffer->commit_page)); 3096 rb_inc_page(&cpu_buffer->commit_page); 3097 /* add barrier to keep gcc from optimizing too much */ 3098 barrier(); 3099 } 3100 while (rb_commit_index(cpu_buffer) != 3101 rb_page_write(cpu_buffer->commit_page)) { 3102 3103 /* Make sure the readers see the content of what is committed. */ 3104 smp_wmb(); 3105 local_set(&cpu_buffer->commit_page->page->commit, 3106 rb_page_write(cpu_buffer->commit_page)); 3107 RB_WARN_ON(cpu_buffer, 3108 local_read(&cpu_buffer->commit_page->page->commit) & 3109 ~RB_WRITE_MASK); 3110 barrier(); 3111 } 3112 3113 /* again, keep gcc from optimizing */ 3114 barrier(); 3115 3116 /* 3117 * If an interrupt came in just after the first while loop 3118 * and pushed the tail page forward, we will be left with 3119 * a dangling commit that will never go forward. 3120 */ 3121 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3122 goto again; 3123 } 3124 3125 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3126 { 3127 unsigned long commits; 3128 3129 if (RB_WARN_ON(cpu_buffer, 3130 !local_read(&cpu_buffer->committing))) 3131 return; 3132 3133 again: 3134 commits = local_read(&cpu_buffer->commits); 3135 /* synchronize with interrupts */ 3136 barrier(); 3137 if (local_read(&cpu_buffer->committing) == 1) 3138 rb_set_commit_to_write(cpu_buffer); 3139 3140 local_dec(&cpu_buffer->committing); 3141 3142 /* synchronize with interrupts */ 3143 barrier(); 3144 3145 /* 3146 * Need to account for interrupts coming in between the 3147 * updating of the commit page and the clearing of the 3148 * committing counter. 3149 */ 3150 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3151 !local_read(&cpu_buffer->committing)) { 3152 local_inc(&cpu_buffer->committing); 3153 goto again; 3154 } 3155 } 3156 3157 static inline void rb_event_discard(struct ring_buffer_event *event) 3158 { 3159 if (extended_time(event)) 3160 event = skip_time_extend(event); 3161 3162 /* array[0] holds the actual length for the discarded event */ 3163 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3164 event->type_len = RINGBUF_TYPE_PADDING; 3165 /* time delta must be non zero */ 3166 if (!event->time_delta) 3167 event->time_delta = 1; 3168 } 3169 3170 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3171 { 3172 local_inc(&cpu_buffer->entries); 3173 rb_end_commit(cpu_buffer); 3174 } 3175 3176 static __always_inline void 3177 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3178 { 3179 if (buffer->irq_work.waiters_pending) { 3180 buffer->irq_work.waiters_pending = false; 3181 /* irq_work_queue() supplies it's own memory barriers */ 3182 irq_work_queue(&buffer->irq_work.work); 3183 } 3184 3185 if (cpu_buffer->irq_work.waiters_pending) { 3186 cpu_buffer->irq_work.waiters_pending = false; 3187 /* irq_work_queue() supplies it's own memory barriers */ 3188 irq_work_queue(&cpu_buffer->irq_work.work); 3189 } 3190 3191 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3192 return; 3193 3194 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3195 return; 3196 3197 if (!cpu_buffer->irq_work.full_waiters_pending) 3198 return; 3199 3200 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3201 3202 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3203 return; 3204 3205 cpu_buffer->irq_work.wakeup_full = true; 3206 cpu_buffer->irq_work.full_waiters_pending = false; 3207 /* irq_work_queue() supplies it's own memory barriers */ 3208 irq_work_queue(&cpu_buffer->irq_work.work); 3209 } 3210 3211 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3212 # define do_ring_buffer_record_recursion() \ 3213 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3214 #else 3215 # define do_ring_buffer_record_recursion() do { } while (0) 3216 #endif 3217 3218 /* 3219 * The lock and unlock are done within a preempt disable section. 3220 * The current_context per_cpu variable can only be modified 3221 * by the current task between lock and unlock. But it can 3222 * be modified more than once via an interrupt. To pass this 3223 * information from the lock to the unlock without having to 3224 * access the 'in_interrupt()' functions again (which do show 3225 * a bit of overhead in something as critical as function tracing, 3226 * we use a bitmask trick. 3227 * 3228 * bit 1 = NMI context 3229 * bit 2 = IRQ context 3230 * bit 3 = SoftIRQ context 3231 * bit 4 = normal context. 3232 * 3233 * This works because this is the order of contexts that can 3234 * preempt other contexts. A SoftIRQ never preempts an IRQ 3235 * context. 3236 * 3237 * When the context is determined, the corresponding bit is 3238 * checked and set (if it was set, then a recursion of that context 3239 * happened). 3240 * 3241 * On unlock, we need to clear this bit. To do so, just subtract 3242 * 1 from the current_context and AND it to itself. 3243 * 3244 * (binary) 3245 * 101 - 1 = 100 3246 * 101 & 100 = 100 (clearing bit zero) 3247 * 3248 * 1010 - 1 = 1001 3249 * 1010 & 1001 = 1000 (clearing bit 1) 3250 * 3251 * The least significant bit can be cleared this way, and it 3252 * just so happens that it is the same bit corresponding to 3253 * the current context. 3254 * 3255 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3256 * is set when a recursion is detected at the current context, and if 3257 * the TRANSITION bit is already set, it will fail the recursion. 3258 * This is needed because there's a lag between the changing of 3259 * interrupt context and updating the preempt count. In this case, 3260 * a false positive will be found. To handle this, one extra recursion 3261 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3262 * bit is already set, then it is considered a recursion and the function 3263 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3264 * 3265 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3266 * to be cleared. Even if it wasn't the context that set it. That is, 3267 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3268 * is called before preempt_count() is updated, since the check will 3269 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3270 * NMI then comes in, it will set the NMI bit, but when the NMI code 3271 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3272 * and leave the NMI bit set. But this is fine, because the interrupt 3273 * code that set the TRANSITION bit will then clear the NMI bit when it 3274 * calls trace_recursive_unlock(). If another NMI comes in, it will 3275 * set the TRANSITION bit and continue. 3276 * 3277 * Note: The TRANSITION bit only handles a single transition between context. 3278 */ 3279 3280 static __always_inline bool 3281 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3282 { 3283 unsigned int val = cpu_buffer->current_context; 3284 int bit = interrupt_context_level(); 3285 3286 bit = RB_CTX_NORMAL - bit; 3287 3288 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3289 /* 3290 * It is possible that this was called by transitioning 3291 * between interrupt context, and preempt_count() has not 3292 * been updated yet. In this case, use the TRANSITION bit. 3293 */ 3294 bit = RB_CTX_TRANSITION; 3295 if (val & (1 << (bit + cpu_buffer->nest))) { 3296 do_ring_buffer_record_recursion(); 3297 return true; 3298 } 3299 } 3300 3301 val |= (1 << (bit + cpu_buffer->nest)); 3302 cpu_buffer->current_context = val; 3303 3304 return false; 3305 } 3306 3307 static __always_inline void 3308 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3309 { 3310 cpu_buffer->current_context &= 3311 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3312 } 3313 3314 /* The recursive locking above uses 5 bits */ 3315 #define NESTED_BITS 5 3316 3317 /** 3318 * ring_buffer_nest_start - Allow to trace while nested 3319 * @buffer: The ring buffer to modify 3320 * 3321 * The ring buffer has a safety mechanism to prevent recursion. 3322 * But there may be a case where a trace needs to be done while 3323 * tracing something else. In this case, calling this function 3324 * will allow this function to nest within a currently active 3325 * ring_buffer_lock_reserve(). 3326 * 3327 * Call this function before calling another ring_buffer_lock_reserve() and 3328 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3329 */ 3330 void ring_buffer_nest_start(struct trace_buffer *buffer) 3331 { 3332 struct ring_buffer_per_cpu *cpu_buffer; 3333 int cpu; 3334 3335 /* Enabled by ring_buffer_nest_end() */ 3336 preempt_disable_notrace(); 3337 cpu = raw_smp_processor_id(); 3338 cpu_buffer = buffer->buffers[cpu]; 3339 /* This is the shift value for the above recursive locking */ 3340 cpu_buffer->nest += NESTED_BITS; 3341 } 3342 3343 /** 3344 * ring_buffer_nest_end - Allow to trace while nested 3345 * @buffer: The ring buffer to modify 3346 * 3347 * Must be called after ring_buffer_nest_start() and after the 3348 * ring_buffer_unlock_commit(). 3349 */ 3350 void ring_buffer_nest_end(struct trace_buffer *buffer) 3351 { 3352 struct ring_buffer_per_cpu *cpu_buffer; 3353 int cpu; 3354 3355 /* disabled by ring_buffer_nest_start() */ 3356 cpu = raw_smp_processor_id(); 3357 cpu_buffer = buffer->buffers[cpu]; 3358 /* This is the shift value for the above recursive locking */ 3359 cpu_buffer->nest -= NESTED_BITS; 3360 preempt_enable_notrace(); 3361 } 3362 3363 /** 3364 * ring_buffer_unlock_commit - commit a reserved 3365 * @buffer: The buffer to commit to 3366 * 3367 * This commits the data to the ring buffer, and releases any locks held. 3368 * 3369 * Must be paired with ring_buffer_lock_reserve. 3370 */ 3371 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3372 { 3373 struct ring_buffer_per_cpu *cpu_buffer; 3374 int cpu = raw_smp_processor_id(); 3375 3376 cpu_buffer = buffer->buffers[cpu]; 3377 3378 rb_commit(cpu_buffer); 3379 3380 rb_wakeups(buffer, cpu_buffer); 3381 3382 trace_recursive_unlock(cpu_buffer); 3383 3384 preempt_enable_notrace(); 3385 3386 return 0; 3387 } 3388 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3389 3390 /* Special value to validate all deltas on a page. */ 3391 #define CHECK_FULL_PAGE 1L 3392 3393 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3394 static void dump_buffer_page(struct buffer_data_page *bpage, 3395 struct rb_event_info *info, 3396 unsigned long tail) 3397 { 3398 struct ring_buffer_event *event; 3399 u64 ts, delta; 3400 int e; 3401 3402 ts = bpage->time_stamp; 3403 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3404 3405 for (e = 0; e < tail; e += rb_event_length(event)) { 3406 3407 event = (struct ring_buffer_event *)(bpage->data + e); 3408 3409 switch (event->type_len) { 3410 3411 case RINGBUF_TYPE_TIME_EXTEND: 3412 delta = rb_event_time_stamp(event); 3413 ts += delta; 3414 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3415 break; 3416 3417 case RINGBUF_TYPE_TIME_STAMP: 3418 delta = rb_event_time_stamp(event); 3419 ts = rb_fix_abs_ts(delta, ts); 3420 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3421 break; 3422 3423 case RINGBUF_TYPE_PADDING: 3424 ts += event->time_delta; 3425 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3426 break; 3427 3428 case RINGBUF_TYPE_DATA: 3429 ts += event->time_delta; 3430 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3431 break; 3432 3433 default: 3434 break; 3435 } 3436 } 3437 } 3438 3439 static DEFINE_PER_CPU(atomic_t, checking); 3440 static atomic_t ts_dump; 3441 3442 /* 3443 * Check if the current event time stamp matches the deltas on 3444 * the buffer page. 3445 */ 3446 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3447 struct rb_event_info *info, 3448 unsigned long tail) 3449 { 3450 struct ring_buffer_event *event; 3451 struct buffer_data_page *bpage; 3452 u64 ts, delta; 3453 bool full = false; 3454 int e; 3455 3456 bpage = info->tail_page->page; 3457 3458 if (tail == CHECK_FULL_PAGE) { 3459 full = true; 3460 tail = local_read(&bpage->commit); 3461 } else if (info->add_timestamp & 3462 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3463 /* Ignore events with absolute time stamps */ 3464 return; 3465 } 3466 3467 /* 3468 * Do not check the first event (skip possible extends too). 3469 * Also do not check if previous events have not been committed. 3470 */ 3471 if (tail <= 8 || tail > local_read(&bpage->commit)) 3472 return; 3473 3474 /* 3475 * If this interrupted another event, 3476 */ 3477 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3478 goto out; 3479 3480 ts = bpage->time_stamp; 3481 3482 for (e = 0; e < tail; e += rb_event_length(event)) { 3483 3484 event = (struct ring_buffer_event *)(bpage->data + e); 3485 3486 switch (event->type_len) { 3487 3488 case RINGBUF_TYPE_TIME_EXTEND: 3489 delta = rb_event_time_stamp(event); 3490 ts += delta; 3491 break; 3492 3493 case RINGBUF_TYPE_TIME_STAMP: 3494 delta = rb_event_time_stamp(event); 3495 ts = rb_fix_abs_ts(delta, ts); 3496 break; 3497 3498 case RINGBUF_TYPE_PADDING: 3499 if (event->time_delta == 1) 3500 break; 3501 fallthrough; 3502 case RINGBUF_TYPE_DATA: 3503 ts += event->time_delta; 3504 break; 3505 3506 default: 3507 RB_WARN_ON(cpu_buffer, 1); 3508 } 3509 } 3510 if ((full && ts > info->ts) || 3511 (!full && ts + info->delta != info->ts)) { 3512 /* If another report is happening, ignore this one */ 3513 if (atomic_inc_return(&ts_dump) != 1) { 3514 atomic_dec(&ts_dump); 3515 goto out; 3516 } 3517 atomic_inc(&cpu_buffer->record_disabled); 3518 /* There's some cases in boot up that this can happen */ 3519 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3520 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3521 cpu_buffer->cpu, 3522 ts + info->delta, info->ts, info->delta, 3523 info->before, info->after, 3524 full ? " (full)" : ""); 3525 dump_buffer_page(bpage, info, tail); 3526 atomic_dec(&ts_dump); 3527 /* Do not re-enable checking */ 3528 return; 3529 } 3530 out: 3531 atomic_dec(this_cpu_ptr(&checking)); 3532 } 3533 #else 3534 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3535 struct rb_event_info *info, 3536 unsigned long tail) 3537 { 3538 } 3539 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3540 3541 static struct ring_buffer_event * 3542 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3543 struct rb_event_info *info) 3544 { 3545 struct ring_buffer_event *event; 3546 struct buffer_page *tail_page; 3547 unsigned long tail, write, w; 3548 bool a_ok; 3549 bool b_ok; 3550 3551 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3552 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3553 3554 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3555 barrier(); 3556 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3557 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3558 barrier(); 3559 info->ts = rb_time_stamp(cpu_buffer->buffer); 3560 3561 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3562 info->delta = info->ts; 3563 } else { 3564 /* 3565 * If interrupting an event time update, we may need an 3566 * absolute timestamp. 3567 * Don't bother if this is the start of a new page (w == 0). 3568 */ 3569 if (!w) { 3570 /* Use the sub-buffer timestamp */ 3571 info->delta = 0; 3572 } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) { 3573 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3574 info->length += RB_LEN_TIME_EXTEND; 3575 } else { 3576 info->delta = info->ts - info->after; 3577 if (unlikely(test_time_stamp(info->delta))) { 3578 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3579 info->length += RB_LEN_TIME_EXTEND; 3580 } 3581 } 3582 } 3583 3584 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3585 3586 /*C*/ write = local_add_return(info->length, &tail_page->write); 3587 3588 /* set write to only the index of the write */ 3589 write &= RB_WRITE_MASK; 3590 3591 tail = write - info->length; 3592 3593 /* See if we shot pass the end of this buffer page */ 3594 if (unlikely(write > BUF_PAGE_SIZE)) { 3595 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3596 return rb_move_tail(cpu_buffer, tail, info); 3597 } 3598 3599 if (likely(tail == w)) { 3600 /* Nothing interrupted us between A and C */ 3601 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3602 /* 3603 * If something came in between C and D, the write stamp 3604 * may now not be in sync. But that's fine as the before_stamp 3605 * will be different and then next event will just be forced 3606 * to use an absolute timestamp. 3607 */ 3608 if (likely(!(info->add_timestamp & 3609 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3610 /* This did not interrupt any time update */ 3611 info->delta = info->ts - info->after; 3612 else 3613 /* Just use full timestamp for interrupting event */ 3614 info->delta = info->ts; 3615 check_buffer(cpu_buffer, info, tail); 3616 } else { 3617 u64 ts; 3618 /* SLOW PATH - Interrupted between A and C */ 3619 3620 /* Save the old before_stamp */ 3621 a_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3622 RB_WARN_ON(cpu_buffer, !a_ok); 3623 3624 /* 3625 * Read a new timestamp and update the before_stamp to make 3626 * the next event after this one force using an absolute 3627 * timestamp. This is in case an interrupt were to come in 3628 * between E and F. 3629 */ 3630 ts = rb_time_stamp(cpu_buffer->buffer); 3631 rb_time_set(&cpu_buffer->before_stamp, ts); 3632 3633 barrier(); 3634 /*E*/ a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3635 /* Was interrupted before here, write_stamp must be valid */ 3636 RB_WARN_ON(cpu_buffer, !a_ok); 3637 barrier(); 3638 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3639 info->after == info->before && info->after < ts) { 3640 /* 3641 * Nothing came after this event between C and F, it is 3642 * safe to use info->after for the delta as it 3643 * matched info->before and is still valid. 3644 */ 3645 info->delta = ts - info->after; 3646 } else { 3647 /* 3648 * Interrupted between C and F: 3649 * Lost the previous events time stamp. Just set the 3650 * delta to zero, and this will be the same time as 3651 * the event this event interrupted. And the events that 3652 * came after this will still be correct (as they would 3653 * have built their delta on the previous event. 3654 */ 3655 info->delta = 0; 3656 } 3657 info->ts = ts; 3658 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3659 } 3660 3661 /* 3662 * If this is the first commit on the page, then it has the same 3663 * timestamp as the page itself. 3664 */ 3665 if (unlikely(!tail && !(info->add_timestamp & 3666 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3667 info->delta = 0; 3668 3669 /* We reserved something on the buffer */ 3670 3671 event = __rb_page_index(tail_page, tail); 3672 rb_update_event(cpu_buffer, event, info); 3673 3674 local_inc(&tail_page->entries); 3675 3676 /* 3677 * If this is the first commit on the page, then update 3678 * its timestamp. 3679 */ 3680 if (unlikely(!tail)) 3681 tail_page->page->time_stamp = info->ts; 3682 3683 /* account for these added bytes */ 3684 local_add(info->length, &cpu_buffer->entries_bytes); 3685 3686 return event; 3687 } 3688 3689 static __always_inline struct ring_buffer_event * 3690 rb_reserve_next_event(struct trace_buffer *buffer, 3691 struct ring_buffer_per_cpu *cpu_buffer, 3692 unsigned long length) 3693 { 3694 struct ring_buffer_event *event; 3695 struct rb_event_info info; 3696 int nr_loops = 0; 3697 int add_ts_default; 3698 3699 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 3700 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 3701 (unlikely(in_nmi()))) { 3702 return NULL; 3703 } 3704 3705 rb_start_commit(cpu_buffer); 3706 /* The commit page can not change after this */ 3707 3708 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3709 /* 3710 * Due to the ability to swap a cpu buffer from a buffer 3711 * it is possible it was swapped before we committed. 3712 * (committing stops a swap). We check for it here and 3713 * if it happened, we have to fail the write. 3714 */ 3715 barrier(); 3716 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3717 local_dec(&cpu_buffer->committing); 3718 local_dec(&cpu_buffer->commits); 3719 return NULL; 3720 } 3721 #endif 3722 3723 info.length = rb_calculate_event_length(length); 3724 3725 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3726 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3727 info.length += RB_LEN_TIME_EXTEND; 3728 if (info.length > BUF_MAX_DATA_SIZE) 3729 goto out_fail; 3730 } else { 3731 add_ts_default = RB_ADD_STAMP_NONE; 3732 } 3733 3734 again: 3735 info.add_timestamp = add_ts_default; 3736 info.delta = 0; 3737 3738 /* 3739 * We allow for interrupts to reenter here and do a trace. 3740 * If one does, it will cause this original code to loop 3741 * back here. Even with heavy interrupts happening, this 3742 * should only happen a few times in a row. If this happens 3743 * 1000 times in a row, there must be either an interrupt 3744 * storm or we have something buggy. 3745 * Bail! 3746 */ 3747 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3748 goto out_fail; 3749 3750 event = __rb_reserve_next(cpu_buffer, &info); 3751 3752 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3753 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3754 info.length -= RB_LEN_TIME_EXTEND; 3755 goto again; 3756 } 3757 3758 if (likely(event)) 3759 return event; 3760 out_fail: 3761 rb_end_commit(cpu_buffer); 3762 return NULL; 3763 } 3764 3765 /** 3766 * ring_buffer_lock_reserve - reserve a part of the buffer 3767 * @buffer: the ring buffer to reserve from 3768 * @length: the length of the data to reserve (excluding event header) 3769 * 3770 * Returns a reserved event on the ring buffer to copy directly to. 3771 * The user of this interface will need to get the body to write into 3772 * and can use the ring_buffer_event_data() interface. 3773 * 3774 * The length is the length of the data needed, not the event length 3775 * which also includes the event header. 3776 * 3777 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3778 * If NULL is returned, then nothing has been allocated or locked. 3779 */ 3780 struct ring_buffer_event * 3781 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3782 { 3783 struct ring_buffer_per_cpu *cpu_buffer; 3784 struct ring_buffer_event *event; 3785 int cpu; 3786 3787 /* If we are tracing schedule, we don't want to recurse */ 3788 preempt_disable_notrace(); 3789 3790 if (unlikely(atomic_read(&buffer->record_disabled))) 3791 goto out; 3792 3793 cpu = raw_smp_processor_id(); 3794 3795 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3796 goto out; 3797 3798 cpu_buffer = buffer->buffers[cpu]; 3799 3800 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3801 goto out; 3802 3803 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3804 goto out; 3805 3806 if (unlikely(trace_recursive_lock(cpu_buffer))) 3807 goto out; 3808 3809 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3810 if (!event) 3811 goto out_unlock; 3812 3813 return event; 3814 3815 out_unlock: 3816 trace_recursive_unlock(cpu_buffer); 3817 out: 3818 preempt_enable_notrace(); 3819 return NULL; 3820 } 3821 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3822 3823 /* 3824 * Decrement the entries to the page that an event is on. 3825 * The event does not even need to exist, only the pointer 3826 * to the page it is on. This may only be called before the commit 3827 * takes place. 3828 */ 3829 static inline void 3830 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3831 struct ring_buffer_event *event) 3832 { 3833 unsigned long addr = (unsigned long)event; 3834 struct buffer_page *bpage = cpu_buffer->commit_page; 3835 struct buffer_page *start; 3836 3837 addr &= PAGE_MASK; 3838 3839 /* Do the likely case first */ 3840 if (likely(bpage->page == (void *)addr)) { 3841 local_dec(&bpage->entries); 3842 return; 3843 } 3844 3845 /* 3846 * Because the commit page may be on the reader page we 3847 * start with the next page and check the end loop there. 3848 */ 3849 rb_inc_page(&bpage); 3850 start = bpage; 3851 do { 3852 if (bpage->page == (void *)addr) { 3853 local_dec(&bpage->entries); 3854 return; 3855 } 3856 rb_inc_page(&bpage); 3857 } while (bpage != start); 3858 3859 /* commit not part of this buffer?? */ 3860 RB_WARN_ON(cpu_buffer, 1); 3861 } 3862 3863 /** 3864 * ring_buffer_discard_commit - discard an event that has not been committed 3865 * @buffer: the ring buffer 3866 * @event: non committed event to discard 3867 * 3868 * Sometimes an event that is in the ring buffer needs to be ignored. 3869 * This function lets the user discard an event in the ring buffer 3870 * and then that event will not be read later. 3871 * 3872 * This function only works if it is called before the item has been 3873 * committed. It will try to free the event from the ring buffer 3874 * if another event has not been added behind it. 3875 * 3876 * If another event has been added behind it, it will set the event 3877 * up as discarded, and perform the commit. 3878 * 3879 * If this function is called, do not call ring_buffer_unlock_commit on 3880 * the event. 3881 */ 3882 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3883 struct ring_buffer_event *event) 3884 { 3885 struct ring_buffer_per_cpu *cpu_buffer; 3886 int cpu; 3887 3888 /* The event is discarded regardless */ 3889 rb_event_discard(event); 3890 3891 cpu = smp_processor_id(); 3892 cpu_buffer = buffer->buffers[cpu]; 3893 3894 /* 3895 * This must only be called if the event has not been 3896 * committed yet. Thus we can assume that preemption 3897 * is still disabled. 3898 */ 3899 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3900 3901 rb_decrement_entry(cpu_buffer, event); 3902 if (rb_try_to_discard(cpu_buffer, event)) 3903 goto out; 3904 3905 out: 3906 rb_end_commit(cpu_buffer); 3907 3908 trace_recursive_unlock(cpu_buffer); 3909 3910 preempt_enable_notrace(); 3911 3912 } 3913 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3914 3915 /** 3916 * ring_buffer_write - write data to the buffer without reserving 3917 * @buffer: The ring buffer to write to. 3918 * @length: The length of the data being written (excluding the event header) 3919 * @data: The data to write to the buffer. 3920 * 3921 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3922 * one function. If you already have the data to write to the buffer, it 3923 * may be easier to simply call this function. 3924 * 3925 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3926 * and not the length of the event which would hold the header. 3927 */ 3928 int ring_buffer_write(struct trace_buffer *buffer, 3929 unsigned long length, 3930 void *data) 3931 { 3932 struct ring_buffer_per_cpu *cpu_buffer; 3933 struct ring_buffer_event *event; 3934 void *body; 3935 int ret = -EBUSY; 3936 int cpu; 3937 3938 preempt_disable_notrace(); 3939 3940 if (atomic_read(&buffer->record_disabled)) 3941 goto out; 3942 3943 cpu = raw_smp_processor_id(); 3944 3945 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3946 goto out; 3947 3948 cpu_buffer = buffer->buffers[cpu]; 3949 3950 if (atomic_read(&cpu_buffer->record_disabled)) 3951 goto out; 3952 3953 if (length > BUF_MAX_DATA_SIZE) 3954 goto out; 3955 3956 if (unlikely(trace_recursive_lock(cpu_buffer))) 3957 goto out; 3958 3959 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3960 if (!event) 3961 goto out_unlock; 3962 3963 body = rb_event_data(event); 3964 3965 memcpy(body, data, length); 3966 3967 rb_commit(cpu_buffer); 3968 3969 rb_wakeups(buffer, cpu_buffer); 3970 3971 ret = 0; 3972 3973 out_unlock: 3974 trace_recursive_unlock(cpu_buffer); 3975 3976 out: 3977 preempt_enable_notrace(); 3978 3979 return ret; 3980 } 3981 EXPORT_SYMBOL_GPL(ring_buffer_write); 3982 3983 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3984 { 3985 struct buffer_page *reader = cpu_buffer->reader_page; 3986 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3987 struct buffer_page *commit = cpu_buffer->commit_page; 3988 3989 /* In case of error, head will be NULL */ 3990 if (unlikely(!head)) 3991 return true; 3992 3993 /* Reader should exhaust content in reader page */ 3994 if (reader->read != rb_page_commit(reader)) 3995 return false; 3996 3997 /* 3998 * If writers are committing on the reader page, knowing all 3999 * committed content has been read, the ring buffer is empty. 4000 */ 4001 if (commit == reader) 4002 return true; 4003 4004 /* 4005 * If writers are committing on a page other than reader page 4006 * and head page, there should always be content to read. 4007 */ 4008 if (commit != head) 4009 return false; 4010 4011 /* 4012 * Writers are committing on the head page, we just need 4013 * to care about there're committed data, and the reader will 4014 * swap reader page with head page when it is to read data. 4015 */ 4016 return rb_page_commit(commit) == 0; 4017 } 4018 4019 /** 4020 * ring_buffer_record_disable - stop all writes into the buffer 4021 * @buffer: The ring buffer to stop writes to. 4022 * 4023 * This prevents all writes to the buffer. Any attempt to write 4024 * to the buffer after this will fail and return NULL. 4025 * 4026 * The caller should call synchronize_rcu() after this. 4027 */ 4028 void ring_buffer_record_disable(struct trace_buffer *buffer) 4029 { 4030 atomic_inc(&buffer->record_disabled); 4031 } 4032 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4033 4034 /** 4035 * ring_buffer_record_enable - enable writes to the buffer 4036 * @buffer: The ring buffer to enable writes 4037 * 4038 * Note, multiple disables will need the same number of enables 4039 * to truly enable the writing (much like preempt_disable). 4040 */ 4041 void ring_buffer_record_enable(struct trace_buffer *buffer) 4042 { 4043 atomic_dec(&buffer->record_disabled); 4044 } 4045 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4046 4047 /** 4048 * ring_buffer_record_off - stop all writes into the buffer 4049 * @buffer: The ring buffer to stop writes to. 4050 * 4051 * This prevents all writes to the buffer. Any attempt to write 4052 * to the buffer after this will fail and return NULL. 4053 * 4054 * This is different than ring_buffer_record_disable() as 4055 * it works like an on/off switch, where as the disable() version 4056 * must be paired with a enable(). 4057 */ 4058 void ring_buffer_record_off(struct trace_buffer *buffer) 4059 { 4060 unsigned int rd; 4061 unsigned int new_rd; 4062 4063 rd = atomic_read(&buffer->record_disabled); 4064 do { 4065 new_rd = rd | RB_BUFFER_OFF; 4066 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4067 } 4068 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4069 4070 /** 4071 * ring_buffer_record_on - restart writes into the buffer 4072 * @buffer: The ring buffer to start writes to. 4073 * 4074 * This enables all writes to the buffer that was disabled by 4075 * ring_buffer_record_off(). 4076 * 4077 * This is different than ring_buffer_record_enable() as 4078 * it works like an on/off switch, where as the enable() version 4079 * must be paired with a disable(). 4080 */ 4081 void ring_buffer_record_on(struct trace_buffer *buffer) 4082 { 4083 unsigned int rd; 4084 unsigned int new_rd; 4085 4086 rd = atomic_read(&buffer->record_disabled); 4087 do { 4088 new_rd = rd & ~RB_BUFFER_OFF; 4089 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4090 } 4091 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4092 4093 /** 4094 * ring_buffer_record_is_on - return true if the ring buffer can write 4095 * @buffer: The ring buffer to see if write is enabled 4096 * 4097 * Returns true if the ring buffer is in a state that it accepts writes. 4098 */ 4099 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4100 { 4101 return !atomic_read(&buffer->record_disabled); 4102 } 4103 4104 /** 4105 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4106 * @buffer: The ring buffer to see if write is set enabled 4107 * 4108 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4109 * Note that this does NOT mean it is in a writable state. 4110 * 4111 * It may return true when the ring buffer has been disabled by 4112 * ring_buffer_record_disable(), as that is a temporary disabling of 4113 * the ring buffer. 4114 */ 4115 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4116 { 4117 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4118 } 4119 4120 /** 4121 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4122 * @buffer: The ring buffer to stop writes to. 4123 * @cpu: The CPU buffer to stop 4124 * 4125 * This prevents all writes to the buffer. Any attempt to write 4126 * to the buffer after this will fail and return NULL. 4127 * 4128 * The caller should call synchronize_rcu() after this. 4129 */ 4130 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4131 { 4132 struct ring_buffer_per_cpu *cpu_buffer; 4133 4134 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4135 return; 4136 4137 cpu_buffer = buffer->buffers[cpu]; 4138 atomic_inc(&cpu_buffer->record_disabled); 4139 } 4140 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4141 4142 /** 4143 * ring_buffer_record_enable_cpu - enable writes to the buffer 4144 * @buffer: The ring buffer to enable writes 4145 * @cpu: The CPU to enable. 4146 * 4147 * Note, multiple disables will need the same number of enables 4148 * to truly enable the writing (much like preempt_disable). 4149 */ 4150 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4151 { 4152 struct ring_buffer_per_cpu *cpu_buffer; 4153 4154 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4155 return; 4156 4157 cpu_buffer = buffer->buffers[cpu]; 4158 atomic_dec(&cpu_buffer->record_disabled); 4159 } 4160 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4161 4162 /* 4163 * The total entries in the ring buffer is the running counter 4164 * of entries entered into the ring buffer, minus the sum of 4165 * the entries read from the ring buffer and the number of 4166 * entries that were overwritten. 4167 */ 4168 static inline unsigned long 4169 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4170 { 4171 return local_read(&cpu_buffer->entries) - 4172 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4173 } 4174 4175 /** 4176 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4177 * @buffer: The ring buffer 4178 * @cpu: The per CPU buffer to read from. 4179 */ 4180 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4181 { 4182 unsigned long flags; 4183 struct ring_buffer_per_cpu *cpu_buffer; 4184 struct buffer_page *bpage; 4185 u64 ret = 0; 4186 4187 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4188 return 0; 4189 4190 cpu_buffer = buffer->buffers[cpu]; 4191 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4192 /* 4193 * if the tail is on reader_page, oldest time stamp is on the reader 4194 * page 4195 */ 4196 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4197 bpage = cpu_buffer->reader_page; 4198 else 4199 bpage = rb_set_head_page(cpu_buffer); 4200 if (bpage) 4201 ret = bpage->page->time_stamp; 4202 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4203 4204 return ret; 4205 } 4206 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4207 4208 /** 4209 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4210 * @buffer: The ring buffer 4211 * @cpu: The per CPU buffer to read from. 4212 */ 4213 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4214 { 4215 struct ring_buffer_per_cpu *cpu_buffer; 4216 unsigned long ret; 4217 4218 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4219 return 0; 4220 4221 cpu_buffer = buffer->buffers[cpu]; 4222 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4223 4224 return ret; 4225 } 4226 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4227 4228 /** 4229 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4230 * @buffer: The ring buffer 4231 * @cpu: The per CPU buffer to get the entries from. 4232 */ 4233 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4234 { 4235 struct ring_buffer_per_cpu *cpu_buffer; 4236 4237 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4238 return 0; 4239 4240 cpu_buffer = buffer->buffers[cpu]; 4241 4242 return rb_num_of_entries(cpu_buffer); 4243 } 4244 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4245 4246 /** 4247 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4248 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4249 * @buffer: The ring buffer 4250 * @cpu: The per CPU buffer to get the number of overruns from 4251 */ 4252 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4253 { 4254 struct ring_buffer_per_cpu *cpu_buffer; 4255 unsigned long ret; 4256 4257 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4258 return 0; 4259 4260 cpu_buffer = buffer->buffers[cpu]; 4261 ret = local_read(&cpu_buffer->overrun); 4262 4263 return ret; 4264 } 4265 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4266 4267 /** 4268 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4269 * commits failing due to the buffer wrapping around while there are uncommitted 4270 * events, such as during an interrupt storm. 4271 * @buffer: The ring buffer 4272 * @cpu: The per CPU buffer to get the number of overruns from 4273 */ 4274 unsigned long 4275 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4276 { 4277 struct ring_buffer_per_cpu *cpu_buffer; 4278 unsigned long ret; 4279 4280 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4281 return 0; 4282 4283 cpu_buffer = buffer->buffers[cpu]; 4284 ret = local_read(&cpu_buffer->commit_overrun); 4285 4286 return ret; 4287 } 4288 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4289 4290 /** 4291 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4292 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4293 * @buffer: The ring buffer 4294 * @cpu: The per CPU buffer to get the number of overruns from 4295 */ 4296 unsigned long 4297 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4298 { 4299 struct ring_buffer_per_cpu *cpu_buffer; 4300 unsigned long ret; 4301 4302 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4303 return 0; 4304 4305 cpu_buffer = buffer->buffers[cpu]; 4306 ret = local_read(&cpu_buffer->dropped_events); 4307 4308 return ret; 4309 } 4310 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4311 4312 /** 4313 * ring_buffer_read_events_cpu - get the number of events successfully read 4314 * @buffer: The ring buffer 4315 * @cpu: The per CPU buffer to get the number of events read 4316 */ 4317 unsigned long 4318 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4319 { 4320 struct ring_buffer_per_cpu *cpu_buffer; 4321 4322 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4323 return 0; 4324 4325 cpu_buffer = buffer->buffers[cpu]; 4326 return cpu_buffer->read; 4327 } 4328 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4329 4330 /** 4331 * ring_buffer_entries - get the number of entries in a buffer 4332 * @buffer: The ring buffer 4333 * 4334 * Returns the total number of entries in the ring buffer 4335 * (all CPU entries) 4336 */ 4337 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4338 { 4339 struct ring_buffer_per_cpu *cpu_buffer; 4340 unsigned long entries = 0; 4341 int cpu; 4342 4343 /* if you care about this being correct, lock the buffer */ 4344 for_each_buffer_cpu(buffer, cpu) { 4345 cpu_buffer = buffer->buffers[cpu]; 4346 entries += rb_num_of_entries(cpu_buffer); 4347 } 4348 4349 return entries; 4350 } 4351 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4352 4353 /** 4354 * ring_buffer_overruns - get the number of overruns in buffer 4355 * @buffer: The ring buffer 4356 * 4357 * Returns the total number of overruns in the ring buffer 4358 * (all CPU entries) 4359 */ 4360 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4361 { 4362 struct ring_buffer_per_cpu *cpu_buffer; 4363 unsigned long overruns = 0; 4364 int cpu; 4365 4366 /* if you care about this being correct, lock the buffer */ 4367 for_each_buffer_cpu(buffer, cpu) { 4368 cpu_buffer = buffer->buffers[cpu]; 4369 overruns += local_read(&cpu_buffer->overrun); 4370 } 4371 4372 return overruns; 4373 } 4374 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4375 4376 static void rb_iter_reset(struct ring_buffer_iter *iter) 4377 { 4378 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4379 4380 /* Iterator usage is expected to have record disabled */ 4381 iter->head_page = cpu_buffer->reader_page; 4382 iter->head = cpu_buffer->reader_page->read; 4383 iter->next_event = iter->head; 4384 4385 iter->cache_reader_page = iter->head_page; 4386 iter->cache_read = cpu_buffer->read; 4387 iter->cache_pages_removed = cpu_buffer->pages_removed; 4388 4389 if (iter->head) { 4390 iter->read_stamp = cpu_buffer->read_stamp; 4391 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4392 } else { 4393 iter->read_stamp = iter->head_page->page->time_stamp; 4394 iter->page_stamp = iter->read_stamp; 4395 } 4396 } 4397 4398 /** 4399 * ring_buffer_iter_reset - reset an iterator 4400 * @iter: The iterator to reset 4401 * 4402 * Resets the iterator, so that it will start from the beginning 4403 * again. 4404 */ 4405 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4406 { 4407 struct ring_buffer_per_cpu *cpu_buffer; 4408 unsigned long flags; 4409 4410 if (!iter) 4411 return; 4412 4413 cpu_buffer = iter->cpu_buffer; 4414 4415 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4416 rb_iter_reset(iter); 4417 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4418 } 4419 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4420 4421 /** 4422 * ring_buffer_iter_empty - check if an iterator has no more to read 4423 * @iter: The iterator to check 4424 */ 4425 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4426 { 4427 struct ring_buffer_per_cpu *cpu_buffer; 4428 struct buffer_page *reader; 4429 struct buffer_page *head_page; 4430 struct buffer_page *commit_page; 4431 struct buffer_page *curr_commit_page; 4432 unsigned commit; 4433 u64 curr_commit_ts; 4434 u64 commit_ts; 4435 4436 cpu_buffer = iter->cpu_buffer; 4437 reader = cpu_buffer->reader_page; 4438 head_page = cpu_buffer->head_page; 4439 commit_page = READ_ONCE(cpu_buffer->commit_page); 4440 commit_ts = commit_page->page->time_stamp; 4441 4442 /* 4443 * When the writer goes across pages, it issues a cmpxchg which 4444 * is a mb(), which will synchronize with the rmb here. 4445 * (see rb_tail_page_update()) 4446 */ 4447 smp_rmb(); 4448 commit = rb_page_commit(commit_page); 4449 /* We want to make sure that the commit page doesn't change */ 4450 smp_rmb(); 4451 4452 /* Make sure commit page didn't change */ 4453 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4454 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4455 4456 /* If the commit page changed, then there's more data */ 4457 if (curr_commit_page != commit_page || 4458 curr_commit_ts != commit_ts) 4459 return 0; 4460 4461 /* Still racy, as it may return a false positive, but that's OK */ 4462 return ((iter->head_page == commit_page && iter->head >= commit) || 4463 (iter->head_page == reader && commit_page == head_page && 4464 head_page->read == commit && 4465 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4466 } 4467 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4468 4469 static void 4470 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4471 struct ring_buffer_event *event) 4472 { 4473 u64 delta; 4474 4475 switch (event->type_len) { 4476 case RINGBUF_TYPE_PADDING: 4477 return; 4478 4479 case RINGBUF_TYPE_TIME_EXTEND: 4480 delta = rb_event_time_stamp(event); 4481 cpu_buffer->read_stamp += delta; 4482 return; 4483 4484 case RINGBUF_TYPE_TIME_STAMP: 4485 delta = rb_event_time_stamp(event); 4486 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4487 cpu_buffer->read_stamp = delta; 4488 return; 4489 4490 case RINGBUF_TYPE_DATA: 4491 cpu_buffer->read_stamp += event->time_delta; 4492 return; 4493 4494 default: 4495 RB_WARN_ON(cpu_buffer, 1); 4496 } 4497 } 4498 4499 static void 4500 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4501 struct ring_buffer_event *event) 4502 { 4503 u64 delta; 4504 4505 switch (event->type_len) { 4506 case RINGBUF_TYPE_PADDING: 4507 return; 4508 4509 case RINGBUF_TYPE_TIME_EXTEND: 4510 delta = rb_event_time_stamp(event); 4511 iter->read_stamp += delta; 4512 return; 4513 4514 case RINGBUF_TYPE_TIME_STAMP: 4515 delta = rb_event_time_stamp(event); 4516 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4517 iter->read_stamp = delta; 4518 return; 4519 4520 case RINGBUF_TYPE_DATA: 4521 iter->read_stamp += event->time_delta; 4522 return; 4523 4524 default: 4525 RB_WARN_ON(iter->cpu_buffer, 1); 4526 } 4527 } 4528 4529 static struct buffer_page * 4530 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4531 { 4532 struct buffer_page *reader = NULL; 4533 unsigned long overwrite; 4534 unsigned long flags; 4535 int nr_loops = 0; 4536 bool ret; 4537 4538 local_irq_save(flags); 4539 arch_spin_lock(&cpu_buffer->lock); 4540 4541 again: 4542 /* 4543 * This should normally only loop twice. But because the 4544 * start of the reader inserts an empty page, it causes 4545 * a case where we will loop three times. There should be no 4546 * reason to loop four times (that I know of). 4547 */ 4548 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4549 reader = NULL; 4550 goto out; 4551 } 4552 4553 reader = cpu_buffer->reader_page; 4554 4555 /* If there's more to read, return this page */ 4556 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4557 goto out; 4558 4559 /* Never should we have an index greater than the size */ 4560 if (RB_WARN_ON(cpu_buffer, 4561 cpu_buffer->reader_page->read > rb_page_size(reader))) 4562 goto out; 4563 4564 /* check if we caught up to the tail */ 4565 reader = NULL; 4566 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4567 goto out; 4568 4569 /* Don't bother swapping if the ring buffer is empty */ 4570 if (rb_num_of_entries(cpu_buffer) == 0) 4571 goto out; 4572 4573 /* 4574 * Reset the reader page to size zero. 4575 */ 4576 local_set(&cpu_buffer->reader_page->write, 0); 4577 local_set(&cpu_buffer->reader_page->entries, 0); 4578 local_set(&cpu_buffer->reader_page->page->commit, 0); 4579 cpu_buffer->reader_page->real_end = 0; 4580 4581 spin: 4582 /* 4583 * Splice the empty reader page into the list around the head. 4584 */ 4585 reader = rb_set_head_page(cpu_buffer); 4586 if (!reader) 4587 goto out; 4588 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4589 cpu_buffer->reader_page->list.prev = reader->list.prev; 4590 4591 /* 4592 * cpu_buffer->pages just needs to point to the buffer, it 4593 * has no specific buffer page to point to. Lets move it out 4594 * of our way so we don't accidentally swap it. 4595 */ 4596 cpu_buffer->pages = reader->list.prev; 4597 4598 /* The reader page will be pointing to the new head */ 4599 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4600 4601 /* 4602 * We want to make sure we read the overruns after we set up our 4603 * pointers to the next object. The writer side does a 4604 * cmpxchg to cross pages which acts as the mb on the writer 4605 * side. Note, the reader will constantly fail the swap 4606 * while the writer is updating the pointers, so this 4607 * guarantees that the overwrite recorded here is the one we 4608 * want to compare with the last_overrun. 4609 */ 4610 smp_mb(); 4611 overwrite = local_read(&(cpu_buffer->overrun)); 4612 4613 /* 4614 * Here's the tricky part. 4615 * 4616 * We need to move the pointer past the header page. 4617 * But we can only do that if a writer is not currently 4618 * moving it. The page before the header page has the 4619 * flag bit '1' set if it is pointing to the page we want. 4620 * but if the writer is in the process of moving it 4621 * than it will be '2' or already moved '0'. 4622 */ 4623 4624 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4625 4626 /* 4627 * If we did not convert it, then we must try again. 4628 */ 4629 if (!ret) 4630 goto spin; 4631 4632 /* 4633 * Yay! We succeeded in replacing the page. 4634 * 4635 * Now make the new head point back to the reader page. 4636 */ 4637 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4638 rb_inc_page(&cpu_buffer->head_page); 4639 4640 local_inc(&cpu_buffer->pages_read); 4641 4642 /* Finally update the reader page to the new head */ 4643 cpu_buffer->reader_page = reader; 4644 cpu_buffer->reader_page->read = 0; 4645 4646 if (overwrite != cpu_buffer->last_overrun) { 4647 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4648 cpu_buffer->last_overrun = overwrite; 4649 } 4650 4651 goto again; 4652 4653 out: 4654 /* Update the read_stamp on the first event */ 4655 if (reader && reader->read == 0) 4656 cpu_buffer->read_stamp = reader->page->time_stamp; 4657 4658 arch_spin_unlock(&cpu_buffer->lock); 4659 local_irq_restore(flags); 4660 4661 /* 4662 * The writer has preempt disable, wait for it. But not forever 4663 * Although, 1 second is pretty much "forever" 4664 */ 4665 #define USECS_WAIT 1000000 4666 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4667 /* If the write is past the end of page, a writer is still updating it */ 4668 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE)) 4669 break; 4670 4671 udelay(1); 4672 4673 /* Get the latest version of the reader write value */ 4674 smp_rmb(); 4675 } 4676 4677 /* The writer is not moving forward? Something is wrong */ 4678 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4679 reader = NULL; 4680 4681 /* 4682 * Make sure we see any padding after the write update 4683 * (see rb_reset_tail()). 4684 * 4685 * In addition, a writer may be writing on the reader page 4686 * if the page has not been fully filled, so the read barrier 4687 * is also needed to make sure we see the content of what is 4688 * committed by the writer (see rb_set_commit_to_write()). 4689 */ 4690 smp_rmb(); 4691 4692 4693 return reader; 4694 } 4695 4696 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4697 { 4698 struct ring_buffer_event *event; 4699 struct buffer_page *reader; 4700 unsigned length; 4701 4702 reader = rb_get_reader_page(cpu_buffer); 4703 4704 /* This function should not be called when buffer is empty */ 4705 if (RB_WARN_ON(cpu_buffer, !reader)) 4706 return; 4707 4708 event = rb_reader_event(cpu_buffer); 4709 4710 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4711 cpu_buffer->read++; 4712 4713 rb_update_read_stamp(cpu_buffer, event); 4714 4715 length = rb_event_length(event); 4716 cpu_buffer->reader_page->read += length; 4717 cpu_buffer->read_bytes += length; 4718 } 4719 4720 static void rb_advance_iter(struct ring_buffer_iter *iter) 4721 { 4722 struct ring_buffer_per_cpu *cpu_buffer; 4723 4724 cpu_buffer = iter->cpu_buffer; 4725 4726 /* If head == next_event then we need to jump to the next event */ 4727 if (iter->head == iter->next_event) { 4728 /* If the event gets overwritten again, there's nothing to do */ 4729 if (rb_iter_head_event(iter) == NULL) 4730 return; 4731 } 4732 4733 iter->head = iter->next_event; 4734 4735 /* 4736 * Check if we are at the end of the buffer. 4737 */ 4738 if (iter->next_event >= rb_page_size(iter->head_page)) { 4739 /* discarded commits can make the page empty */ 4740 if (iter->head_page == cpu_buffer->commit_page) 4741 return; 4742 rb_inc_iter(iter); 4743 return; 4744 } 4745 4746 rb_update_iter_read_stamp(iter, iter->event); 4747 } 4748 4749 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4750 { 4751 return cpu_buffer->lost_events; 4752 } 4753 4754 static struct ring_buffer_event * 4755 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4756 unsigned long *lost_events) 4757 { 4758 struct ring_buffer_event *event; 4759 struct buffer_page *reader; 4760 int nr_loops = 0; 4761 4762 if (ts) 4763 *ts = 0; 4764 again: 4765 /* 4766 * We repeat when a time extend is encountered. 4767 * Since the time extend is always attached to a data event, 4768 * we should never loop more than once. 4769 * (We never hit the following condition more than twice). 4770 */ 4771 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4772 return NULL; 4773 4774 reader = rb_get_reader_page(cpu_buffer); 4775 if (!reader) 4776 return NULL; 4777 4778 event = rb_reader_event(cpu_buffer); 4779 4780 switch (event->type_len) { 4781 case RINGBUF_TYPE_PADDING: 4782 if (rb_null_event(event)) 4783 RB_WARN_ON(cpu_buffer, 1); 4784 /* 4785 * Because the writer could be discarding every 4786 * event it creates (which would probably be bad) 4787 * if we were to go back to "again" then we may never 4788 * catch up, and will trigger the warn on, or lock 4789 * the box. Return the padding, and we will release 4790 * the current locks, and try again. 4791 */ 4792 return event; 4793 4794 case RINGBUF_TYPE_TIME_EXTEND: 4795 /* Internal data, OK to advance */ 4796 rb_advance_reader(cpu_buffer); 4797 goto again; 4798 4799 case RINGBUF_TYPE_TIME_STAMP: 4800 if (ts) { 4801 *ts = rb_event_time_stamp(event); 4802 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4803 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4804 cpu_buffer->cpu, ts); 4805 } 4806 /* Internal data, OK to advance */ 4807 rb_advance_reader(cpu_buffer); 4808 goto again; 4809 4810 case RINGBUF_TYPE_DATA: 4811 if (ts && !(*ts)) { 4812 *ts = cpu_buffer->read_stamp + event->time_delta; 4813 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4814 cpu_buffer->cpu, ts); 4815 } 4816 if (lost_events) 4817 *lost_events = rb_lost_events(cpu_buffer); 4818 return event; 4819 4820 default: 4821 RB_WARN_ON(cpu_buffer, 1); 4822 } 4823 4824 return NULL; 4825 } 4826 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4827 4828 static struct ring_buffer_event * 4829 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4830 { 4831 struct trace_buffer *buffer; 4832 struct ring_buffer_per_cpu *cpu_buffer; 4833 struct ring_buffer_event *event; 4834 int nr_loops = 0; 4835 4836 if (ts) 4837 *ts = 0; 4838 4839 cpu_buffer = iter->cpu_buffer; 4840 buffer = cpu_buffer->buffer; 4841 4842 /* 4843 * Check if someone performed a consuming read to the buffer 4844 * or removed some pages from the buffer. In these cases, 4845 * iterator was invalidated and we need to reset it. 4846 */ 4847 if (unlikely(iter->cache_read != cpu_buffer->read || 4848 iter->cache_reader_page != cpu_buffer->reader_page || 4849 iter->cache_pages_removed != cpu_buffer->pages_removed)) 4850 rb_iter_reset(iter); 4851 4852 again: 4853 if (ring_buffer_iter_empty(iter)) 4854 return NULL; 4855 4856 /* 4857 * As the writer can mess with what the iterator is trying 4858 * to read, just give up if we fail to get an event after 4859 * three tries. The iterator is not as reliable when reading 4860 * the ring buffer with an active write as the consumer is. 4861 * Do not warn if the three failures is reached. 4862 */ 4863 if (++nr_loops > 3) 4864 return NULL; 4865 4866 if (rb_per_cpu_empty(cpu_buffer)) 4867 return NULL; 4868 4869 if (iter->head >= rb_page_size(iter->head_page)) { 4870 rb_inc_iter(iter); 4871 goto again; 4872 } 4873 4874 event = rb_iter_head_event(iter); 4875 if (!event) 4876 goto again; 4877 4878 switch (event->type_len) { 4879 case RINGBUF_TYPE_PADDING: 4880 if (rb_null_event(event)) { 4881 rb_inc_iter(iter); 4882 goto again; 4883 } 4884 rb_advance_iter(iter); 4885 return event; 4886 4887 case RINGBUF_TYPE_TIME_EXTEND: 4888 /* Internal data, OK to advance */ 4889 rb_advance_iter(iter); 4890 goto again; 4891 4892 case RINGBUF_TYPE_TIME_STAMP: 4893 if (ts) { 4894 *ts = rb_event_time_stamp(event); 4895 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4896 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4897 cpu_buffer->cpu, ts); 4898 } 4899 /* Internal data, OK to advance */ 4900 rb_advance_iter(iter); 4901 goto again; 4902 4903 case RINGBUF_TYPE_DATA: 4904 if (ts && !(*ts)) { 4905 *ts = iter->read_stamp + event->time_delta; 4906 ring_buffer_normalize_time_stamp(buffer, 4907 cpu_buffer->cpu, ts); 4908 } 4909 return event; 4910 4911 default: 4912 RB_WARN_ON(cpu_buffer, 1); 4913 } 4914 4915 return NULL; 4916 } 4917 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4918 4919 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4920 { 4921 if (likely(!in_nmi())) { 4922 raw_spin_lock(&cpu_buffer->reader_lock); 4923 return true; 4924 } 4925 4926 /* 4927 * If an NMI die dumps out the content of the ring buffer 4928 * trylock must be used to prevent a deadlock if the NMI 4929 * preempted a task that holds the ring buffer locks. If 4930 * we get the lock then all is fine, if not, then continue 4931 * to do the read, but this can corrupt the ring buffer, 4932 * so it must be permanently disabled from future writes. 4933 * Reading from NMI is a oneshot deal. 4934 */ 4935 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4936 return true; 4937 4938 /* Continue without locking, but disable the ring buffer */ 4939 atomic_inc(&cpu_buffer->record_disabled); 4940 return false; 4941 } 4942 4943 static inline void 4944 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4945 { 4946 if (likely(locked)) 4947 raw_spin_unlock(&cpu_buffer->reader_lock); 4948 } 4949 4950 /** 4951 * ring_buffer_peek - peek at the next event to be read 4952 * @buffer: The ring buffer to read 4953 * @cpu: The cpu to peak at 4954 * @ts: The timestamp counter of this event. 4955 * @lost_events: a variable to store if events were lost (may be NULL) 4956 * 4957 * This will return the event that will be read next, but does 4958 * not consume the data. 4959 */ 4960 struct ring_buffer_event * 4961 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4962 unsigned long *lost_events) 4963 { 4964 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4965 struct ring_buffer_event *event; 4966 unsigned long flags; 4967 bool dolock; 4968 4969 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4970 return NULL; 4971 4972 again: 4973 local_irq_save(flags); 4974 dolock = rb_reader_lock(cpu_buffer); 4975 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4976 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4977 rb_advance_reader(cpu_buffer); 4978 rb_reader_unlock(cpu_buffer, dolock); 4979 local_irq_restore(flags); 4980 4981 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4982 goto again; 4983 4984 return event; 4985 } 4986 4987 /** ring_buffer_iter_dropped - report if there are dropped events 4988 * @iter: The ring buffer iterator 4989 * 4990 * Returns true if there was dropped events since the last peek. 4991 */ 4992 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4993 { 4994 bool ret = iter->missed_events != 0; 4995 4996 iter->missed_events = 0; 4997 return ret; 4998 } 4999 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5000 5001 /** 5002 * ring_buffer_iter_peek - peek at the next event to be read 5003 * @iter: The ring buffer iterator 5004 * @ts: The timestamp counter of this event. 5005 * 5006 * This will return the event that will be read next, but does 5007 * not increment the iterator. 5008 */ 5009 struct ring_buffer_event * 5010 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5011 { 5012 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5013 struct ring_buffer_event *event; 5014 unsigned long flags; 5015 5016 again: 5017 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5018 event = rb_iter_peek(iter, ts); 5019 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5020 5021 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5022 goto again; 5023 5024 return event; 5025 } 5026 5027 /** 5028 * ring_buffer_consume - return an event and consume it 5029 * @buffer: The ring buffer to get the next event from 5030 * @cpu: the cpu to read the buffer from 5031 * @ts: a variable to store the timestamp (may be NULL) 5032 * @lost_events: a variable to store if events were lost (may be NULL) 5033 * 5034 * Returns the next event in the ring buffer, and that event is consumed. 5035 * Meaning, that sequential reads will keep returning a different event, 5036 * and eventually empty the ring buffer if the producer is slower. 5037 */ 5038 struct ring_buffer_event * 5039 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5040 unsigned long *lost_events) 5041 { 5042 struct ring_buffer_per_cpu *cpu_buffer; 5043 struct ring_buffer_event *event = NULL; 5044 unsigned long flags; 5045 bool dolock; 5046 5047 again: 5048 /* might be called in atomic */ 5049 preempt_disable(); 5050 5051 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5052 goto out; 5053 5054 cpu_buffer = buffer->buffers[cpu]; 5055 local_irq_save(flags); 5056 dolock = rb_reader_lock(cpu_buffer); 5057 5058 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5059 if (event) { 5060 cpu_buffer->lost_events = 0; 5061 rb_advance_reader(cpu_buffer); 5062 } 5063 5064 rb_reader_unlock(cpu_buffer, dolock); 5065 local_irq_restore(flags); 5066 5067 out: 5068 preempt_enable(); 5069 5070 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5071 goto again; 5072 5073 return event; 5074 } 5075 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5076 5077 /** 5078 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5079 * @buffer: The ring buffer to read from 5080 * @cpu: The cpu buffer to iterate over 5081 * @flags: gfp flags to use for memory allocation 5082 * 5083 * This performs the initial preparations necessary to iterate 5084 * through the buffer. Memory is allocated, buffer recording 5085 * is disabled, and the iterator pointer is returned to the caller. 5086 * 5087 * Disabling buffer recording prevents the reading from being 5088 * corrupted. This is not a consuming read, so a producer is not 5089 * expected. 5090 * 5091 * After a sequence of ring_buffer_read_prepare calls, the user is 5092 * expected to make at least one call to ring_buffer_read_prepare_sync. 5093 * Afterwards, ring_buffer_read_start is invoked to get things going 5094 * for real. 5095 * 5096 * This overall must be paired with ring_buffer_read_finish. 5097 */ 5098 struct ring_buffer_iter * 5099 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5100 { 5101 struct ring_buffer_per_cpu *cpu_buffer; 5102 struct ring_buffer_iter *iter; 5103 5104 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5105 return NULL; 5106 5107 iter = kzalloc(sizeof(*iter), flags); 5108 if (!iter) 5109 return NULL; 5110 5111 /* Holds the entire event: data and meta data */ 5112 iter->event = kmalloc(BUF_PAGE_SIZE, flags); 5113 if (!iter->event) { 5114 kfree(iter); 5115 return NULL; 5116 } 5117 5118 cpu_buffer = buffer->buffers[cpu]; 5119 5120 iter->cpu_buffer = cpu_buffer; 5121 5122 atomic_inc(&cpu_buffer->resize_disabled); 5123 5124 return iter; 5125 } 5126 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5127 5128 /** 5129 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5130 * 5131 * All previously invoked ring_buffer_read_prepare calls to prepare 5132 * iterators will be synchronized. Afterwards, read_buffer_read_start 5133 * calls on those iterators are allowed. 5134 */ 5135 void 5136 ring_buffer_read_prepare_sync(void) 5137 { 5138 synchronize_rcu(); 5139 } 5140 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5141 5142 /** 5143 * ring_buffer_read_start - start a non consuming read of the buffer 5144 * @iter: The iterator returned by ring_buffer_read_prepare 5145 * 5146 * This finalizes the startup of an iteration through the buffer. 5147 * The iterator comes from a call to ring_buffer_read_prepare and 5148 * an intervening ring_buffer_read_prepare_sync must have been 5149 * performed. 5150 * 5151 * Must be paired with ring_buffer_read_finish. 5152 */ 5153 void 5154 ring_buffer_read_start(struct ring_buffer_iter *iter) 5155 { 5156 struct ring_buffer_per_cpu *cpu_buffer; 5157 unsigned long flags; 5158 5159 if (!iter) 5160 return; 5161 5162 cpu_buffer = iter->cpu_buffer; 5163 5164 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5165 arch_spin_lock(&cpu_buffer->lock); 5166 rb_iter_reset(iter); 5167 arch_spin_unlock(&cpu_buffer->lock); 5168 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5169 } 5170 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5171 5172 /** 5173 * ring_buffer_read_finish - finish reading the iterator of the buffer 5174 * @iter: The iterator retrieved by ring_buffer_start 5175 * 5176 * This re-enables the recording to the buffer, and frees the 5177 * iterator. 5178 */ 5179 void 5180 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5181 { 5182 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5183 unsigned long flags; 5184 5185 /* 5186 * Ring buffer is disabled from recording, here's a good place 5187 * to check the integrity of the ring buffer. 5188 * Must prevent readers from trying to read, as the check 5189 * clears the HEAD page and readers require it. 5190 */ 5191 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5192 rb_check_pages(cpu_buffer); 5193 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5194 5195 atomic_dec(&cpu_buffer->resize_disabled); 5196 kfree(iter->event); 5197 kfree(iter); 5198 } 5199 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5200 5201 /** 5202 * ring_buffer_iter_advance - advance the iterator to the next location 5203 * @iter: The ring buffer iterator 5204 * 5205 * Move the location of the iterator such that the next read will 5206 * be the next location of the iterator. 5207 */ 5208 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5209 { 5210 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5211 unsigned long flags; 5212 5213 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5214 5215 rb_advance_iter(iter); 5216 5217 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5218 } 5219 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5220 5221 /** 5222 * ring_buffer_size - return the size of the ring buffer (in bytes) 5223 * @buffer: The ring buffer. 5224 * @cpu: The CPU to get ring buffer size from. 5225 */ 5226 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5227 { 5228 /* 5229 * Earlier, this method returned 5230 * BUF_PAGE_SIZE * buffer->nr_pages 5231 * Since the nr_pages field is now removed, we have converted this to 5232 * return the per cpu buffer value. 5233 */ 5234 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5235 return 0; 5236 5237 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 5238 } 5239 EXPORT_SYMBOL_GPL(ring_buffer_size); 5240 5241 static void rb_clear_buffer_page(struct buffer_page *page) 5242 { 5243 local_set(&page->write, 0); 5244 local_set(&page->entries, 0); 5245 rb_init_page(page->page); 5246 page->read = 0; 5247 } 5248 5249 static void 5250 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5251 { 5252 struct buffer_page *page; 5253 5254 rb_head_page_deactivate(cpu_buffer); 5255 5256 cpu_buffer->head_page 5257 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5258 rb_clear_buffer_page(cpu_buffer->head_page); 5259 list_for_each_entry(page, cpu_buffer->pages, list) { 5260 rb_clear_buffer_page(page); 5261 } 5262 5263 cpu_buffer->tail_page = cpu_buffer->head_page; 5264 cpu_buffer->commit_page = cpu_buffer->head_page; 5265 5266 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5267 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5268 rb_clear_buffer_page(cpu_buffer->reader_page); 5269 5270 local_set(&cpu_buffer->entries_bytes, 0); 5271 local_set(&cpu_buffer->overrun, 0); 5272 local_set(&cpu_buffer->commit_overrun, 0); 5273 local_set(&cpu_buffer->dropped_events, 0); 5274 local_set(&cpu_buffer->entries, 0); 5275 local_set(&cpu_buffer->committing, 0); 5276 local_set(&cpu_buffer->commits, 0); 5277 local_set(&cpu_buffer->pages_touched, 0); 5278 local_set(&cpu_buffer->pages_lost, 0); 5279 local_set(&cpu_buffer->pages_read, 0); 5280 cpu_buffer->last_pages_touch = 0; 5281 cpu_buffer->shortest_full = 0; 5282 cpu_buffer->read = 0; 5283 cpu_buffer->read_bytes = 0; 5284 5285 rb_time_set(&cpu_buffer->write_stamp, 0); 5286 rb_time_set(&cpu_buffer->before_stamp, 0); 5287 5288 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5289 5290 cpu_buffer->lost_events = 0; 5291 cpu_buffer->last_overrun = 0; 5292 5293 rb_head_page_activate(cpu_buffer); 5294 cpu_buffer->pages_removed = 0; 5295 } 5296 5297 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5298 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5299 { 5300 unsigned long flags; 5301 5302 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5303 5304 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5305 goto out; 5306 5307 arch_spin_lock(&cpu_buffer->lock); 5308 5309 rb_reset_cpu(cpu_buffer); 5310 5311 arch_spin_unlock(&cpu_buffer->lock); 5312 5313 out: 5314 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5315 } 5316 5317 /** 5318 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5319 * @buffer: The ring buffer to reset a per cpu buffer of 5320 * @cpu: The CPU buffer to be reset 5321 */ 5322 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5323 { 5324 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5325 5326 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5327 return; 5328 5329 /* prevent another thread from changing buffer sizes */ 5330 mutex_lock(&buffer->mutex); 5331 5332 atomic_inc(&cpu_buffer->resize_disabled); 5333 atomic_inc(&cpu_buffer->record_disabled); 5334 5335 /* Make sure all commits have finished */ 5336 synchronize_rcu(); 5337 5338 reset_disabled_cpu_buffer(cpu_buffer); 5339 5340 atomic_dec(&cpu_buffer->record_disabled); 5341 atomic_dec(&cpu_buffer->resize_disabled); 5342 5343 mutex_unlock(&buffer->mutex); 5344 } 5345 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5346 5347 /* Flag to ensure proper resetting of atomic variables */ 5348 #define RESET_BIT (1 << 30) 5349 5350 /** 5351 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5352 * @buffer: The ring buffer to reset a per cpu buffer of 5353 */ 5354 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5355 { 5356 struct ring_buffer_per_cpu *cpu_buffer; 5357 int cpu; 5358 5359 /* prevent another thread from changing buffer sizes */ 5360 mutex_lock(&buffer->mutex); 5361 5362 for_each_online_buffer_cpu(buffer, cpu) { 5363 cpu_buffer = buffer->buffers[cpu]; 5364 5365 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 5366 atomic_inc(&cpu_buffer->record_disabled); 5367 } 5368 5369 /* Make sure all commits have finished */ 5370 synchronize_rcu(); 5371 5372 for_each_buffer_cpu(buffer, cpu) { 5373 cpu_buffer = buffer->buffers[cpu]; 5374 5375 /* 5376 * If a CPU came online during the synchronize_rcu(), then 5377 * ignore it. 5378 */ 5379 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 5380 continue; 5381 5382 reset_disabled_cpu_buffer(cpu_buffer); 5383 5384 atomic_dec(&cpu_buffer->record_disabled); 5385 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 5386 } 5387 5388 mutex_unlock(&buffer->mutex); 5389 } 5390 5391 /** 5392 * ring_buffer_reset - reset a ring buffer 5393 * @buffer: The ring buffer to reset all cpu buffers 5394 */ 5395 void ring_buffer_reset(struct trace_buffer *buffer) 5396 { 5397 struct ring_buffer_per_cpu *cpu_buffer; 5398 int cpu; 5399 5400 /* prevent another thread from changing buffer sizes */ 5401 mutex_lock(&buffer->mutex); 5402 5403 for_each_buffer_cpu(buffer, cpu) { 5404 cpu_buffer = buffer->buffers[cpu]; 5405 5406 atomic_inc(&cpu_buffer->resize_disabled); 5407 atomic_inc(&cpu_buffer->record_disabled); 5408 } 5409 5410 /* Make sure all commits have finished */ 5411 synchronize_rcu(); 5412 5413 for_each_buffer_cpu(buffer, cpu) { 5414 cpu_buffer = buffer->buffers[cpu]; 5415 5416 reset_disabled_cpu_buffer(cpu_buffer); 5417 5418 atomic_dec(&cpu_buffer->record_disabled); 5419 atomic_dec(&cpu_buffer->resize_disabled); 5420 } 5421 5422 mutex_unlock(&buffer->mutex); 5423 } 5424 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5425 5426 /** 5427 * ring_buffer_empty - is the ring buffer empty? 5428 * @buffer: The ring buffer to test 5429 */ 5430 bool ring_buffer_empty(struct trace_buffer *buffer) 5431 { 5432 struct ring_buffer_per_cpu *cpu_buffer; 5433 unsigned long flags; 5434 bool dolock; 5435 bool ret; 5436 int cpu; 5437 5438 /* yes this is racy, but if you don't like the race, lock the buffer */ 5439 for_each_buffer_cpu(buffer, cpu) { 5440 cpu_buffer = buffer->buffers[cpu]; 5441 local_irq_save(flags); 5442 dolock = rb_reader_lock(cpu_buffer); 5443 ret = rb_per_cpu_empty(cpu_buffer); 5444 rb_reader_unlock(cpu_buffer, dolock); 5445 local_irq_restore(flags); 5446 5447 if (!ret) 5448 return false; 5449 } 5450 5451 return true; 5452 } 5453 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5454 5455 /** 5456 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5457 * @buffer: The ring buffer 5458 * @cpu: The CPU buffer to test 5459 */ 5460 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5461 { 5462 struct ring_buffer_per_cpu *cpu_buffer; 5463 unsigned long flags; 5464 bool dolock; 5465 bool ret; 5466 5467 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5468 return true; 5469 5470 cpu_buffer = buffer->buffers[cpu]; 5471 local_irq_save(flags); 5472 dolock = rb_reader_lock(cpu_buffer); 5473 ret = rb_per_cpu_empty(cpu_buffer); 5474 rb_reader_unlock(cpu_buffer, dolock); 5475 local_irq_restore(flags); 5476 5477 return ret; 5478 } 5479 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5480 5481 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5482 /** 5483 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5484 * @buffer_a: One buffer to swap with 5485 * @buffer_b: The other buffer to swap with 5486 * @cpu: the CPU of the buffers to swap 5487 * 5488 * This function is useful for tracers that want to take a "snapshot" 5489 * of a CPU buffer and has another back up buffer lying around. 5490 * it is expected that the tracer handles the cpu buffer not being 5491 * used at the moment. 5492 */ 5493 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5494 struct trace_buffer *buffer_b, int cpu) 5495 { 5496 struct ring_buffer_per_cpu *cpu_buffer_a; 5497 struct ring_buffer_per_cpu *cpu_buffer_b; 5498 int ret = -EINVAL; 5499 5500 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5501 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5502 goto out; 5503 5504 cpu_buffer_a = buffer_a->buffers[cpu]; 5505 cpu_buffer_b = buffer_b->buffers[cpu]; 5506 5507 /* At least make sure the two buffers are somewhat the same */ 5508 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5509 goto out; 5510 5511 ret = -EAGAIN; 5512 5513 if (atomic_read(&buffer_a->record_disabled)) 5514 goto out; 5515 5516 if (atomic_read(&buffer_b->record_disabled)) 5517 goto out; 5518 5519 if (atomic_read(&cpu_buffer_a->record_disabled)) 5520 goto out; 5521 5522 if (atomic_read(&cpu_buffer_b->record_disabled)) 5523 goto out; 5524 5525 /* 5526 * We can't do a synchronize_rcu here because this 5527 * function can be called in atomic context. 5528 * Normally this will be called from the same CPU as cpu. 5529 * If not it's up to the caller to protect this. 5530 */ 5531 atomic_inc(&cpu_buffer_a->record_disabled); 5532 atomic_inc(&cpu_buffer_b->record_disabled); 5533 5534 ret = -EBUSY; 5535 if (local_read(&cpu_buffer_a->committing)) 5536 goto out_dec; 5537 if (local_read(&cpu_buffer_b->committing)) 5538 goto out_dec; 5539 5540 /* 5541 * When resize is in progress, we cannot swap it because 5542 * it will mess the state of the cpu buffer. 5543 */ 5544 if (atomic_read(&buffer_a->resizing)) 5545 goto out_dec; 5546 if (atomic_read(&buffer_b->resizing)) 5547 goto out_dec; 5548 5549 buffer_a->buffers[cpu] = cpu_buffer_b; 5550 buffer_b->buffers[cpu] = cpu_buffer_a; 5551 5552 cpu_buffer_b->buffer = buffer_a; 5553 cpu_buffer_a->buffer = buffer_b; 5554 5555 ret = 0; 5556 5557 out_dec: 5558 atomic_dec(&cpu_buffer_a->record_disabled); 5559 atomic_dec(&cpu_buffer_b->record_disabled); 5560 out: 5561 return ret; 5562 } 5563 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5564 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5565 5566 /** 5567 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5568 * @buffer: the buffer to allocate for. 5569 * @cpu: the cpu buffer to allocate. 5570 * 5571 * This function is used in conjunction with ring_buffer_read_page. 5572 * When reading a full page from the ring buffer, these functions 5573 * can be used to speed up the process. The calling function should 5574 * allocate a few pages first with this function. Then when it 5575 * needs to get pages from the ring buffer, it passes the result 5576 * of this function into ring_buffer_read_page, which will swap 5577 * the page that was allocated, with the read page of the buffer. 5578 * 5579 * Returns: 5580 * The page allocated, or ERR_PTR 5581 */ 5582 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5583 { 5584 struct ring_buffer_per_cpu *cpu_buffer; 5585 struct buffer_data_page *bpage = NULL; 5586 unsigned long flags; 5587 struct page *page; 5588 5589 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5590 return ERR_PTR(-ENODEV); 5591 5592 cpu_buffer = buffer->buffers[cpu]; 5593 local_irq_save(flags); 5594 arch_spin_lock(&cpu_buffer->lock); 5595 5596 if (cpu_buffer->free_page) { 5597 bpage = cpu_buffer->free_page; 5598 cpu_buffer->free_page = NULL; 5599 } 5600 5601 arch_spin_unlock(&cpu_buffer->lock); 5602 local_irq_restore(flags); 5603 5604 if (bpage) 5605 goto out; 5606 5607 page = alloc_pages_node(cpu_to_node(cpu), 5608 GFP_KERNEL | __GFP_NORETRY, 0); 5609 if (!page) 5610 return ERR_PTR(-ENOMEM); 5611 5612 bpage = page_address(page); 5613 5614 out: 5615 rb_init_page(bpage); 5616 5617 return bpage; 5618 } 5619 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5620 5621 /** 5622 * ring_buffer_free_read_page - free an allocated read page 5623 * @buffer: the buffer the page was allocate for 5624 * @cpu: the cpu buffer the page came from 5625 * @data: the page to free 5626 * 5627 * Free a page allocated from ring_buffer_alloc_read_page. 5628 */ 5629 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5630 { 5631 struct ring_buffer_per_cpu *cpu_buffer; 5632 struct buffer_data_page *bpage = data; 5633 struct page *page = virt_to_page(bpage); 5634 unsigned long flags; 5635 5636 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5637 return; 5638 5639 cpu_buffer = buffer->buffers[cpu]; 5640 5641 /* If the page is still in use someplace else, we can't reuse it */ 5642 if (page_ref_count(page) > 1) 5643 goto out; 5644 5645 local_irq_save(flags); 5646 arch_spin_lock(&cpu_buffer->lock); 5647 5648 if (!cpu_buffer->free_page) { 5649 cpu_buffer->free_page = bpage; 5650 bpage = NULL; 5651 } 5652 5653 arch_spin_unlock(&cpu_buffer->lock); 5654 local_irq_restore(flags); 5655 5656 out: 5657 free_page((unsigned long)bpage); 5658 } 5659 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5660 5661 /** 5662 * ring_buffer_read_page - extract a page from the ring buffer 5663 * @buffer: buffer to extract from 5664 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5665 * @len: amount to extract 5666 * @cpu: the cpu of the buffer to extract 5667 * @full: should the extraction only happen when the page is full. 5668 * 5669 * This function will pull out a page from the ring buffer and consume it. 5670 * @data_page must be the address of the variable that was returned 5671 * from ring_buffer_alloc_read_page. This is because the page might be used 5672 * to swap with a page in the ring buffer. 5673 * 5674 * for example: 5675 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5676 * if (IS_ERR(rpage)) 5677 * return PTR_ERR(rpage); 5678 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5679 * if (ret >= 0) 5680 * process_page(rpage, ret); 5681 * 5682 * When @full is set, the function will not return true unless 5683 * the writer is off the reader page. 5684 * 5685 * Note: it is up to the calling functions to handle sleeps and wakeups. 5686 * The ring buffer can be used anywhere in the kernel and can not 5687 * blindly call wake_up. The layer that uses the ring buffer must be 5688 * responsible for that. 5689 * 5690 * Returns: 5691 * >=0 if data has been transferred, returns the offset of consumed data. 5692 * <0 if no data has been transferred. 5693 */ 5694 int ring_buffer_read_page(struct trace_buffer *buffer, 5695 void **data_page, size_t len, int cpu, int full) 5696 { 5697 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5698 struct ring_buffer_event *event; 5699 struct buffer_data_page *bpage; 5700 struct buffer_page *reader; 5701 unsigned long missed_events; 5702 unsigned long flags; 5703 unsigned int commit; 5704 unsigned int read; 5705 u64 save_timestamp; 5706 int ret = -1; 5707 5708 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5709 goto out; 5710 5711 /* 5712 * If len is not big enough to hold the page header, then 5713 * we can not copy anything. 5714 */ 5715 if (len <= BUF_PAGE_HDR_SIZE) 5716 goto out; 5717 5718 len -= BUF_PAGE_HDR_SIZE; 5719 5720 if (!data_page) 5721 goto out; 5722 5723 bpage = *data_page; 5724 if (!bpage) 5725 goto out; 5726 5727 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5728 5729 reader = rb_get_reader_page(cpu_buffer); 5730 if (!reader) 5731 goto out_unlock; 5732 5733 event = rb_reader_event(cpu_buffer); 5734 5735 read = reader->read; 5736 commit = rb_page_commit(reader); 5737 5738 /* Check if any events were dropped */ 5739 missed_events = cpu_buffer->lost_events; 5740 5741 /* 5742 * If this page has been partially read or 5743 * if len is not big enough to read the rest of the page or 5744 * a writer is still on the page, then 5745 * we must copy the data from the page to the buffer. 5746 * Otherwise, we can simply swap the page with the one passed in. 5747 */ 5748 if (read || (len < (commit - read)) || 5749 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5750 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5751 unsigned int rpos = read; 5752 unsigned int pos = 0; 5753 unsigned int size; 5754 5755 /* 5756 * If a full page is expected, this can still be returned 5757 * if there's been a previous partial read and the 5758 * rest of the page can be read and the commit page is off 5759 * the reader page. 5760 */ 5761 if (full && 5762 (!read || (len < (commit - read)) || 5763 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5764 goto out_unlock; 5765 5766 if (len > (commit - read)) 5767 len = (commit - read); 5768 5769 /* Always keep the time extend and data together */ 5770 size = rb_event_ts_length(event); 5771 5772 if (len < size) 5773 goto out_unlock; 5774 5775 /* save the current timestamp, since the user will need it */ 5776 save_timestamp = cpu_buffer->read_stamp; 5777 5778 /* Need to copy one event at a time */ 5779 do { 5780 /* We need the size of one event, because 5781 * rb_advance_reader only advances by one event, 5782 * whereas rb_event_ts_length may include the size of 5783 * one or two events. 5784 * We have already ensured there's enough space if this 5785 * is a time extend. */ 5786 size = rb_event_length(event); 5787 memcpy(bpage->data + pos, rpage->data + rpos, size); 5788 5789 len -= size; 5790 5791 rb_advance_reader(cpu_buffer); 5792 rpos = reader->read; 5793 pos += size; 5794 5795 if (rpos >= commit) 5796 break; 5797 5798 event = rb_reader_event(cpu_buffer); 5799 /* Always keep the time extend and data together */ 5800 size = rb_event_ts_length(event); 5801 } while (len >= size); 5802 5803 /* update bpage */ 5804 local_set(&bpage->commit, pos); 5805 bpage->time_stamp = save_timestamp; 5806 5807 /* we copied everything to the beginning */ 5808 read = 0; 5809 } else { 5810 /* update the entry counter */ 5811 cpu_buffer->read += rb_page_entries(reader); 5812 cpu_buffer->read_bytes += rb_page_commit(reader); 5813 5814 /* swap the pages */ 5815 rb_init_page(bpage); 5816 bpage = reader->page; 5817 reader->page = *data_page; 5818 local_set(&reader->write, 0); 5819 local_set(&reader->entries, 0); 5820 reader->read = 0; 5821 *data_page = bpage; 5822 5823 /* 5824 * Use the real_end for the data size, 5825 * This gives us a chance to store the lost events 5826 * on the page. 5827 */ 5828 if (reader->real_end) 5829 local_set(&bpage->commit, reader->real_end); 5830 } 5831 ret = read; 5832 5833 cpu_buffer->lost_events = 0; 5834 5835 commit = local_read(&bpage->commit); 5836 /* 5837 * Set a flag in the commit field if we lost events 5838 */ 5839 if (missed_events) { 5840 /* If there is room at the end of the page to save the 5841 * missed events, then record it there. 5842 */ 5843 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5844 memcpy(&bpage->data[commit], &missed_events, 5845 sizeof(missed_events)); 5846 local_add(RB_MISSED_STORED, &bpage->commit); 5847 commit += sizeof(missed_events); 5848 } 5849 local_add(RB_MISSED_EVENTS, &bpage->commit); 5850 } 5851 5852 /* 5853 * This page may be off to user land. Zero it out here. 5854 */ 5855 if (commit < BUF_PAGE_SIZE) 5856 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5857 5858 out_unlock: 5859 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5860 5861 out: 5862 return ret; 5863 } 5864 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5865 5866 /* 5867 * We only allocate new buffers, never free them if the CPU goes down. 5868 * If we were to free the buffer, then the user would lose any trace that was in 5869 * the buffer. 5870 */ 5871 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5872 { 5873 struct trace_buffer *buffer; 5874 long nr_pages_same; 5875 int cpu_i; 5876 unsigned long nr_pages; 5877 5878 buffer = container_of(node, struct trace_buffer, node); 5879 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5880 return 0; 5881 5882 nr_pages = 0; 5883 nr_pages_same = 1; 5884 /* check if all cpu sizes are same */ 5885 for_each_buffer_cpu(buffer, cpu_i) { 5886 /* fill in the size from first enabled cpu */ 5887 if (nr_pages == 0) 5888 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5889 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5890 nr_pages_same = 0; 5891 break; 5892 } 5893 } 5894 /* allocate minimum pages, user can later expand it */ 5895 if (!nr_pages_same) 5896 nr_pages = 2; 5897 buffer->buffers[cpu] = 5898 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5899 if (!buffer->buffers[cpu]) { 5900 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5901 cpu); 5902 return -ENOMEM; 5903 } 5904 smp_wmb(); 5905 cpumask_set_cpu(cpu, buffer->cpumask); 5906 return 0; 5907 } 5908 5909 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5910 /* 5911 * This is a basic integrity check of the ring buffer. 5912 * Late in the boot cycle this test will run when configured in. 5913 * It will kick off a thread per CPU that will go into a loop 5914 * writing to the per cpu ring buffer various sizes of data. 5915 * Some of the data will be large items, some small. 5916 * 5917 * Another thread is created that goes into a spin, sending out 5918 * IPIs to the other CPUs to also write into the ring buffer. 5919 * this is to test the nesting ability of the buffer. 5920 * 5921 * Basic stats are recorded and reported. If something in the 5922 * ring buffer should happen that's not expected, a big warning 5923 * is displayed and all ring buffers are disabled. 5924 */ 5925 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5926 5927 struct rb_test_data { 5928 struct trace_buffer *buffer; 5929 unsigned long events; 5930 unsigned long bytes_written; 5931 unsigned long bytes_alloc; 5932 unsigned long bytes_dropped; 5933 unsigned long events_nested; 5934 unsigned long bytes_written_nested; 5935 unsigned long bytes_alloc_nested; 5936 unsigned long bytes_dropped_nested; 5937 int min_size_nested; 5938 int max_size_nested; 5939 int max_size; 5940 int min_size; 5941 int cpu; 5942 int cnt; 5943 }; 5944 5945 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5946 5947 /* 1 meg per cpu */ 5948 #define RB_TEST_BUFFER_SIZE 1048576 5949 5950 static char rb_string[] __initdata = 5951 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5952 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5953 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5954 5955 static bool rb_test_started __initdata; 5956 5957 struct rb_item { 5958 int size; 5959 char str[]; 5960 }; 5961 5962 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5963 { 5964 struct ring_buffer_event *event; 5965 struct rb_item *item; 5966 bool started; 5967 int event_len; 5968 int size; 5969 int len; 5970 int cnt; 5971 5972 /* Have nested writes different that what is written */ 5973 cnt = data->cnt + (nested ? 27 : 0); 5974 5975 /* Multiply cnt by ~e, to make some unique increment */ 5976 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5977 5978 len = size + sizeof(struct rb_item); 5979 5980 started = rb_test_started; 5981 /* read rb_test_started before checking buffer enabled */ 5982 smp_rmb(); 5983 5984 event = ring_buffer_lock_reserve(data->buffer, len); 5985 if (!event) { 5986 /* Ignore dropped events before test starts. */ 5987 if (started) { 5988 if (nested) 5989 data->bytes_dropped += len; 5990 else 5991 data->bytes_dropped_nested += len; 5992 } 5993 return len; 5994 } 5995 5996 event_len = ring_buffer_event_length(event); 5997 5998 if (RB_WARN_ON(data->buffer, event_len < len)) 5999 goto out; 6000 6001 item = ring_buffer_event_data(event); 6002 item->size = size; 6003 memcpy(item->str, rb_string, size); 6004 6005 if (nested) { 6006 data->bytes_alloc_nested += event_len; 6007 data->bytes_written_nested += len; 6008 data->events_nested++; 6009 if (!data->min_size_nested || len < data->min_size_nested) 6010 data->min_size_nested = len; 6011 if (len > data->max_size_nested) 6012 data->max_size_nested = len; 6013 } else { 6014 data->bytes_alloc += event_len; 6015 data->bytes_written += len; 6016 data->events++; 6017 if (!data->min_size || len < data->min_size) 6018 data->max_size = len; 6019 if (len > data->max_size) 6020 data->max_size = len; 6021 } 6022 6023 out: 6024 ring_buffer_unlock_commit(data->buffer); 6025 6026 return 0; 6027 } 6028 6029 static __init int rb_test(void *arg) 6030 { 6031 struct rb_test_data *data = arg; 6032 6033 while (!kthread_should_stop()) { 6034 rb_write_something(data, false); 6035 data->cnt++; 6036 6037 set_current_state(TASK_INTERRUPTIBLE); 6038 /* Now sleep between a min of 100-300us and a max of 1ms */ 6039 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6040 } 6041 6042 return 0; 6043 } 6044 6045 static __init void rb_ipi(void *ignore) 6046 { 6047 struct rb_test_data *data; 6048 int cpu = smp_processor_id(); 6049 6050 data = &rb_data[cpu]; 6051 rb_write_something(data, true); 6052 } 6053 6054 static __init int rb_hammer_test(void *arg) 6055 { 6056 while (!kthread_should_stop()) { 6057 6058 /* Send an IPI to all cpus to write data! */ 6059 smp_call_function(rb_ipi, NULL, 1); 6060 /* No sleep, but for non preempt, let others run */ 6061 schedule(); 6062 } 6063 6064 return 0; 6065 } 6066 6067 static __init int test_ringbuffer(void) 6068 { 6069 struct task_struct *rb_hammer; 6070 struct trace_buffer *buffer; 6071 int cpu; 6072 int ret = 0; 6073 6074 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6075 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6076 return 0; 6077 } 6078 6079 pr_info("Running ring buffer tests...\n"); 6080 6081 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6082 if (WARN_ON(!buffer)) 6083 return 0; 6084 6085 /* Disable buffer so that threads can't write to it yet */ 6086 ring_buffer_record_off(buffer); 6087 6088 for_each_online_cpu(cpu) { 6089 rb_data[cpu].buffer = buffer; 6090 rb_data[cpu].cpu = cpu; 6091 rb_data[cpu].cnt = cpu; 6092 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6093 cpu, "rbtester/%u"); 6094 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6095 pr_cont("FAILED\n"); 6096 ret = PTR_ERR(rb_threads[cpu]); 6097 goto out_free; 6098 } 6099 } 6100 6101 /* Now create the rb hammer! */ 6102 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6103 if (WARN_ON(IS_ERR(rb_hammer))) { 6104 pr_cont("FAILED\n"); 6105 ret = PTR_ERR(rb_hammer); 6106 goto out_free; 6107 } 6108 6109 ring_buffer_record_on(buffer); 6110 /* 6111 * Show buffer is enabled before setting rb_test_started. 6112 * Yes there's a small race window where events could be 6113 * dropped and the thread wont catch it. But when a ring 6114 * buffer gets enabled, there will always be some kind of 6115 * delay before other CPUs see it. Thus, we don't care about 6116 * those dropped events. We care about events dropped after 6117 * the threads see that the buffer is active. 6118 */ 6119 smp_wmb(); 6120 rb_test_started = true; 6121 6122 set_current_state(TASK_INTERRUPTIBLE); 6123 /* Just run for 10 seconds */; 6124 schedule_timeout(10 * HZ); 6125 6126 kthread_stop(rb_hammer); 6127 6128 out_free: 6129 for_each_online_cpu(cpu) { 6130 if (!rb_threads[cpu]) 6131 break; 6132 kthread_stop(rb_threads[cpu]); 6133 } 6134 if (ret) { 6135 ring_buffer_free(buffer); 6136 return ret; 6137 } 6138 6139 /* Report! */ 6140 pr_info("finished\n"); 6141 for_each_online_cpu(cpu) { 6142 struct ring_buffer_event *event; 6143 struct rb_test_data *data = &rb_data[cpu]; 6144 struct rb_item *item; 6145 unsigned long total_events; 6146 unsigned long total_dropped; 6147 unsigned long total_written; 6148 unsigned long total_alloc; 6149 unsigned long total_read = 0; 6150 unsigned long total_size = 0; 6151 unsigned long total_len = 0; 6152 unsigned long total_lost = 0; 6153 unsigned long lost; 6154 int big_event_size; 6155 int small_event_size; 6156 6157 ret = -1; 6158 6159 total_events = data->events + data->events_nested; 6160 total_written = data->bytes_written + data->bytes_written_nested; 6161 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6162 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6163 6164 big_event_size = data->max_size + data->max_size_nested; 6165 small_event_size = data->min_size + data->min_size_nested; 6166 6167 pr_info("CPU %d:\n", cpu); 6168 pr_info(" events: %ld\n", total_events); 6169 pr_info(" dropped bytes: %ld\n", total_dropped); 6170 pr_info(" alloced bytes: %ld\n", total_alloc); 6171 pr_info(" written bytes: %ld\n", total_written); 6172 pr_info(" biggest event: %d\n", big_event_size); 6173 pr_info(" smallest event: %d\n", small_event_size); 6174 6175 if (RB_WARN_ON(buffer, total_dropped)) 6176 break; 6177 6178 ret = 0; 6179 6180 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6181 total_lost += lost; 6182 item = ring_buffer_event_data(event); 6183 total_len += ring_buffer_event_length(event); 6184 total_size += item->size + sizeof(struct rb_item); 6185 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6186 pr_info("FAILED!\n"); 6187 pr_info("buffer had: %.*s\n", item->size, item->str); 6188 pr_info("expected: %.*s\n", item->size, rb_string); 6189 RB_WARN_ON(buffer, 1); 6190 ret = -1; 6191 break; 6192 } 6193 total_read++; 6194 } 6195 if (ret) 6196 break; 6197 6198 ret = -1; 6199 6200 pr_info(" read events: %ld\n", total_read); 6201 pr_info(" lost events: %ld\n", total_lost); 6202 pr_info(" total events: %ld\n", total_lost + total_read); 6203 pr_info(" recorded len bytes: %ld\n", total_len); 6204 pr_info(" recorded size bytes: %ld\n", total_size); 6205 if (total_lost) { 6206 pr_info(" With dropped events, record len and size may not match\n" 6207 " alloced and written from above\n"); 6208 } else { 6209 if (RB_WARN_ON(buffer, total_len != total_alloc || 6210 total_size != total_written)) 6211 break; 6212 } 6213 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6214 break; 6215 6216 ret = 0; 6217 } 6218 if (!ret) 6219 pr_info("Ring buffer PASSED!\n"); 6220 6221 ring_buffer_free(buffer); 6222 return 0; 6223 } 6224 6225 late_initcall(test_ringbuffer); 6226 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6227