1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_events.h> 8 #include <linux/ring_buffer.h> 9 #include <linux/trace_clock.h> 10 #include <linux/sched/clock.h> 11 #include <linux/trace_seq.h> 12 #include <linux/spinlock.h> 13 #include <linux/irq_work.h> 14 #include <linux/uaccess.h> 15 #include <linux/hardirq.h> 16 #include <linux/kthread.h> /* for self test */ 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/oom.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 trace_seq_puts(s, "# compressed entry header\n"); 38 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 39 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 40 trace_seq_puts(s, "\tarray : 32 bits\n"); 41 trace_seq_putc(s, '\n'); 42 trace_seq_printf(s, "\tpadding : type == %d\n", 43 RINGBUF_TYPE_PADDING); 44 trace_seq_printf(s, "\ttime_extend : type == %d\n", 45 RINGBUF_TYPE_TIME_EXTEND); 46 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 47 RINGBUF_TYPE_TIME_STAMP); 48 trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return !trace_seq_has_overflowed(s); 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* Used for individual buffers (after the counter) */ 123 #define RB_BUFFER_OFF (1 << 20) 124 125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 126 127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 128 #define RB_ALIGNMENT 4U 129 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 130 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 131 132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 133 # define RB_FORCE_8BYTE_ALIGNMENT 0 134 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 135 #else 136 # define RB_FORCE_8BYTE_ALIGNMENT 1 137 # define RB_ARCH_ALIGNMENT 8U 138 #endif 139 140 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 141 142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 144 145 enum { 146 RB_LEN_TIME_EXTEND = 8, 147 RB_LEN_TIME_STAMP = 8, 148 }; 149 150 #define skip_time_extend(event) \ 151 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 152 153 #define extended_time(event) \ 154 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 155 156 static inline int rb_null_event(struct ring_buffer_event *event) 157 { 158 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 159 } 160 161 static void rb_event_set_padding(struct ring_buffer_event *event) 162 { 163 /* padding has a NULL time_delta */ 164 event->type_len = RINGBUF_TYPE_PADDING; 165 event->time_delta = 0; 166 } 167 168 static unsigned 169 rb_event_data_length(struct ring_buffer_event *event) 170 { 171 unsigned length; 172 173 if (event->type_len) 174 length = event->type_len * RB_ALIGNMENT; 175 else 176 length = event->array[0]; 177 return length + RB_EVNT_HDR_SIZE; 178 } 179 180 /* 181 * Return the length of the given event. Will return 182 * the length of the time extend if the event is a 183 * time extend. 184 */ 185 static inline unsigned 186 rb_event_length(struct ring_buffer_event *event) 187 { 188 switch (event->type_len) { 189 case RINGBUF_TYPE_PADDING: 190 if (rb_null_event(event)) 191 /* undefined */ 192 return -1; 193 return event->array[0] + RB_EVNT_HDR_SIZE; 194 195 case RINGBUF_TYPE_TIME_EXTEND: 196 return RB_LEN_TIME_EXTEND; 197 198 case RINGBUF_TYPE_TIME_STAMP: 199 return RB_LEN_TIME_STAMP; 200 201 case RINGBUF_TYPE_DATA: 202 return rb_event_data_length(event); 203 default: 204 BUG(); 205 } 206 /* not hit */ 207 return 0; 208 } 209 210 /* 211 * Return total length of time extend and data, 212 * or just the event length for all other events. 213 */ 214 static inline unsigned 215 rb_event_ts_length(struct ring_buffer_event *event) 216 { 217 unsigned len = 0; 218 219 if (extended_time(event)) { 220 /* time extends include the data event after it */ 221 len = RB_LEN_TIME_EXTEND; 222 event = skip_time_extend(event); 223 } 224 return len + rb_event_length(event); 225 } 226 227 /** 228 * ring_buffer_event_length - return the length of the event 229 * @event: the event to get the length of 230 * 231 * Returns the size of the data load of a data event. 232 * If the event is something other than a data event, it 233 * returns the size of the event itself. With the exception 234 * of a TIME EXTEND, where it still returns the size of the 235 * data load of the data event after it. 236 */ 237 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 238 { 239 unsigned length; 240 241 if (extended_time(event)) 242 event = skip_time_extend(event); 243 244 length = rb_event_length(event); 245 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 246 return length; 247 length -= RB_EVNT_HDR_SIZE; 248 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 249 length -= sizeof(event->array[0]); 250 return length; 251 } 252 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 253 254 /* inline for ring buffer fast paths */ 255 static __always_inline void * 256 rb_event_data(struct ring_buffer_event *event) 257 { 258 if (extended_time(event)) 259 event = skip_time_extend(event); 260 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 261 /* If length is in len field, then array[0] has the data */ 262 if (event->type_len) 263 return (void *)&event->array[0]; 264 /* Otherwise length is in array[0] and array[1] has the data */ 265 return (void *)&event->array[1]; 266 } 267 268 /** 269 * ring_buffer_event_data - return the data of the event 270 * @event: the event to get the data from 271 */ 272 void *ring_buffer_event_data(struct ring_buffer_event *event) 273 { 274 return rb_event_data(event); 275 } 276 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 277 278 #define for_each_buffer_cpu(buffer, cpu) \ 279 for_each_cpu(cpu, buffer->cpumask) 280 281 #define TS_SHIFT 27 282 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 283 #define TS_DELTA_TEST (~TS_MASK) 284 285 /** 286 * ring_buffer_event_time_stamp - return the event's extended timestamp 287 * @event: the event to get the timestamp of 288 * 289 * Returns the extended timestamp associated with a data event. 290 * An extended time_stamp is a 64-bit timestamp represented 291 * internally in a special way that makes the best use of space 292 * contained within a ring buffer event. This function decodes 293 * it and maps it to a straight u64 value. 294 */ 295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 296 { 297 u64 ts; 298 299 ts = event->array[0]; 300 ts <<= TS_SHIFT; 301 ts += event->time_delta; 302 303 return ts; 304 } 305 306 /* Flag when events were overwritten */ 307 #define RB_MISSED_EVENTS (1 << 31) 308 /* Missed count stored at end */ 309 #define RB_MISSED_STORED (1 << 30) 310 311 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED) 312 313 struct buffer_data_page { 314 u64 time_stamp; /* page time stamp */ 315 local_t commit; /* write committed index */ 316 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 317 }; 318 319 /* 320 * Note, the buffer_page list must be first. The buffer pages 321 * are allocated in cache lines, which means that each buffer 322 * page will be at the beginning of a cache line, and thus 323 * the least significant bits will be zero. We use this to 324 * add flags in the list struct pointers, to make the ring buffer 325 * lockless. 326 */ 327 struct buffer_page { 328 struct list_head list; /* list of buffer pages */ 329 local_t write; /* index for next write */ 330 unsigned read; /* index for next read */ 331 local_t entries; /* entries on this page */ 332 unsigned long real_end; /* real end of data */ 333 struct buffer_data_page *page; /* Actual data page */ 334 }; 335 336 /* 337 * The buffer page counters, write and entries, must be reset 338 * atomically when crossing page boundaries. To synchronize this 339 * update, two counters are inserted into the number. One is 340 * the actual counter for the write position or count on the page. 341 * 342 * The other is a counter of updaters. Before an update happens 343 * the update partition of the counter is incremented. This will 344 * allow the updater to update the counter atomically. 345 * 346 * The counter is 20 bits, and the state data is 12. 347 */ 348 #define RB_WRITE_MASK 0xfffff 349 #define RB_WRITE_INTCNT (1 << 20) 350 351 static void rb_init_page(struct buffer_data_page *bpage) 352 { 353 local_set(&bpage->commit, 0); 354 } 355 356 /** 357 * ring_buffer_page_len - the size of data on the page. 358 * @page: The page to read 359 * 360 * Returns the amount of data on the page, including buffer page header. 361 */ 362 size_t ring_buffer_page_len(void *page) 363 { 364 struct buffer_data_page *bpage = page; 365 366 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS) 367 + BUF_PAGE_HDR_SIZE; 368 } 369 370 /* 371 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 372 * this issue out. 373 */ 374 static void free_buffer_page(struct buffer_page *bpage) 375 { 376 free_page((unsigned long)bpage->page); 377 kfree(bpage); 378 } 379 380 /* 381 * We need to fit the time_stamp delta into 27 bits. 382 */ 383 static inline int test_time_stamp(u64 delta) 384 { 385 if (delta & TS_DELTA_TEST) 386 return 1; 387 return 0; 388 } 389 390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 391 392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 394 395 int ring_buffer_print_page_header(struct trace_seq *s) 396 { 397 struct buffer_data_page field; 398 399 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 400 "offset:0;\tsize:%u;\tsigned:%u;\n", 401 (unsigned int)sizeof(field.time_stamp), 402 (unsigned int)is_signed_type(u64)); 403 404 trace_seq_printf(s, "\tfield: local_t commit;\t" 405 "offset:%u;\tsize:%u;\tsigned:%u;\n", 406 (unsigned int)offsetof(typeof(field), commit), 407 (unsigned int)sizeof(field.commit), 408 (unsigned int)is_signed_type(long)); 409 410 trace_seq_printf(s, "\tfield: int overwrite;\t" 411 "offset:%u;\tsize:%u;\tsigned:%u;\n", 412 (unsigned int)offsetof(typeof(field), commit), 413 1, 414 (unsigned int)is_signed_type(long)); 415 416 trace_seq_printf(s, "\tfield: char data;\t" 417 "offset:%u;\tsize:%u;\tsigned:%u;\n", 418 (unsigned int)offsetof(typeof(field), data), 419 (unsigned int)BUF_PAGE_SIZE, 420 (unsigned int)is_signed_type(char)); 421 422 return !trace_seq_has_overflowed(s); 423 } 424 425 struct rb_irq_work { 426 struct irq_work work; 427 wait_queue_head_t waiters; 428 wait_queue_head_t full_waiters; 429 bool waiters_pending; 430 bool full_waiters_pending; 431 bool wakeup_full; 432 }; 433 434 /* 435 * Structure to hold event state and handle nested events. 436 */ 437 struct rb_event_info { 438 u64 ts; 439 u64 delta; 440 unsigned long length; 441 struct buffer_page *tail_page; 442 int add_timestamp; 443 }; 444 445 /* 446 * Used for which event context the event is in. 447 * NMI = 0 448 * IRQ = 1 449 * SOFTIRQ = 2 450 * NORMAL = 3 451 * 452 * See trace_recursive_lock() comment below for more details. 453 */ 454 enum { 455 RB_CTX_NMI, 456 RB_CTX_IRQ, 457 RB_CTX_SOFTIRQ, 458 RB_CTX_NORMAL, 459 RB_CTX_MAX 460 }; 461 462 /* 463 * head_page == tail_page && head == tail then buffer is empty. 464 */ 465 struct ring_buffer_per_cpu { 466 int cpu; 467 atomic_t record_disabled; 468 struct ring_buffer *buffer; 469 raw_spinlock_t reader_lock; /* serialize readers */ 470 arch_spinlock_t lock; 471 struct lock_class_key lock_key; 472 struct buffer_data_page *free_page; 473 unsigned long nr_pages; 474 unsigned int current_context; 475 struct list_head *pages; 476 struct buffer_page *head_page; /* read from head */ 477 struct buffer_page *tail_page; /* write to tail */ 478 struct buffer_page *commit_page; /* committed pages */ 479 struct buffer_page *reader_page; 480 unsigned long lost_events; 481 unsigned long last_overrun; 482 unsigned long nest; 483 local_t entries_bytes; 484 local_t entries; 485 local_t overrun; 486 local_t commit_overrun; 487 local_t dropped_events; 488 local_t committing; 489 local_t commits; 490 local_t pages_touched; 491 local_t pages_read; 492 long last_pages_touch; 493 size_t shortest_full; 494 unsigned long read; 495 unsigned long read_bytes; 496 u64 write_stamp; 497 u64 read_stamp; 498 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 499 long nr_pages_to_update; 500 struct list_head new_pages; /* new pages to add */ 501 struct work_struct update_pages_work; 502 struct completion update_done; 503 504 struct rb_irq_work irq_work; 505 }; 506 507 struct ring_buffer { 508 unsigned flags; 509 int cpus; 510 atomic_t record_disabled; 511 atomic_t resize_disabled; 512 cpumask_var_t cpumask; 513 514 struct lock_class_key *reader_lock_key; 515 516 struct mutex mutex; 517 518 struct ring_buffer_per_cpu **buffers; 519 520 struct hlist_node node; 521 u64 (*clock)(void); 522 523 struct rb_irq_work irq_work; 524 bool time_stamp_abs; 525 }; 526 527 struct ring_buffer_iter { 528 struct ring_buffer_per_cpu *cpu_buffer; 529 unsigned long head; 530 struct buffer_page *head_page; 531 struct buffer_page *cache_reader_page; 532 unsigned long cache_read; 533 u64 read_stamp; 534 }; 535 536 /** 537 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 538 * @buffer: The ring_buffer to get the number of pages from 539 * @cpu: The cpu of the ring_buffer to get the number of pages from 540 * 541 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 542 */ 543 size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu) 544 { 545 return buffer->buffers[cpu]->nr_pages; 546 } 547 548 /** 549 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 550 * @buffer: The ring_buffer to get the number of pages from 551 * @cpu: The cpu of the ring_buffer to get the number of pages from 552 * 553 * Returns the number of pages that have content in the ring buffer. 554 */ 555 size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu) 556 { 557 size_t read; 558 size_t cnt; 559 560 read = local_read(&buffer->buffers[cpu]->pages_read); 561 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 562 /* The reader can read an empty page, but not more than that */ 563 if (cnt < read) { 564 WARN_ON_ONCE(read > cnt + 1); 565 return 0; 566 } 567 568 return cnt - read; 569 } 570 571 /* 572 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 573 * 574 * Schedules a delayed work to wake up any task that is blocked on the 575 * ring buffer waiters queue. 576 */ 577 static void rb_wake_up_waiters(struct irq_work *work) 578 { 579 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 580 581 wake_up_all(&rbwork->waiters); 582 if (rbwork->wakeup_full) { 583 rbwork->wakeup_full = false; 584 wake_up_all(&rbwork->full_waiters); 585 } 586 } 587 588 /** 589 * ring_buffer_wait - wait for input to the ring buffer 590 * @buffer: buffer to wait on 591 * @cpu: the cpu buffer to wait on 592 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 593 * 594 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 595 * as data is added to any of the @buffer's cpu buffers. Otherwise 596 * it will wait for data to be added to a specific cpu buffer. 597 */ 598 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full) 599 { 600 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 601 DEFINE_WAIT(wait); 602 struct rb_irq_work *work; 603 int ret = 0; 604 605 /* 606 * Depending on what the caller is waiting for, either any 607 * data in any cpu buffer, or a specific buffer, put the 608 * caller on the appropriate wait queue. 609 */ 610 if (cpu == RING_BUFFER_ALL_CPUS) { 611 work = &buffer->irq_work; 612 /* Full only makes sense on per cpu reads */ 613 full = 0; 614 } else { 615 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 616 return -ENODEV; 617 cpu_buffer = buffer->buffers[cpu]; 618 work = &cpu_buffer->irq_work; 619 } 620 621 622 while (true) { 623 if (full) 624 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 625 else 626 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 627 628 /* 629 * The events can happen in critical sections where 630 * checking a work queue can cause deadlocks. 631 * After adding a task to the queue, this flag is set 632 * only to notify events to try to wake up the queue 633 * using irq_work. 634 * 635 * We don't clear it even if the buffer is no longer 636 * empty. The flag only causes the next event to run 637 * irq_work to do the work queue wake up. The worse 638 * that can happen if we race with !trace_empty() is that 639 * an event will cause an irq_work to try to wake up 640 * an empty queue. 641 * 642 * There's no reason to protect this flag either, as 643 * the work queue and irq_work logic will do the necessary 644 * synchronization for the wake ups. The only thing 645 * that is necessary is that the wake up happens after 646 * a task has been queued. It's OK for spurious wake ups. 647 */ 648 if (full) 649 work->full_waiters_pending = true; 650 else 651 work->waiters_pending = true; 652 653 if (signal_pending(current)) { 654 ret = -EINTR; 655 break; 656 } 657 658 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 659 break; 660 661 if (cpu != RING_BUFFER_ALL_CPUS && 662 !ring_buffer_empty_cpu(buffer, cpu)) { 663 unsigned long flags; 664 bool pagebusy; 665 size_t nr_pages; 666 size_t dirty; 667 668 if (!full) 669 break; 670 671 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 672 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 673 nr_pages = cpu_buffer->nr_pages; 674 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 675 if (!cpu_buffer->shortest_full || 676 cpu_buffer->shortest_full < full) 677 cpu_buffer->shortest_full = full; 678 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 679 if (!pagebusy && 680 (!nr_pages || (dirty * 100) > full * nr_pages)) 681 break; 682 } 683 684 schedule(); 685 } 686 687 if (full) 688 finish_wait(&work->full_waiters, &wait); 689 else 690 finish_wait(&work->waiters, &wait); 691 692 return ret; 693 } 694 695 /** 696 * ring_buffer_poll_wait - poll on buffer input 697 * @buffer: buffer to wait on 698 * @cpu: the cpu buffer to wait on 699 * @filp: the file descriptor 700 * @poll_table: The poll descriptor 701 * 702 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 703 * as data is added to any of the @buffer's cpu buffers. Otherwise 704 * it will wait for data to be added to a specific cpu buffer. 705 * 706 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 707 * zero otherwise. 708 */ 709 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 710 struct file *filp, poll_table *poll_table) 711 { 712 struct ring_buffer_per_cpu *cpu_buffer; 713 struct rb_irq_work *work; 714 715 if (cpu == RING_BUFFER_ALL_CPUS) 716 work = &buffer->irq_work; 717 else { 718 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 719 return -EINVAL; 720 721 cpu_buffer = buffer->buffers[cpu]; 722 work = &cpu_buffer->irq_work; 723 } 724 725 poll_wait(filp, &work->waiters, poll_table); 726 work->waiters_pending = true; 727 /* 728 * There's a tight race between setting the waiters_pending and 729 * checking if the ring buffer is empty. Once the waiters_pending bit 730 * is set, the next event will wake the task up, but we can get stuck 731 * if there's only a single event in. 732 * 733 * FIXME: Ideally, we need a memory barrier on the writer side as well, 734 * but adding a memory barrier to all events will cause too much of a 735 * performance hit in the fast path. We only need a memory barrier when 736 * the buffer goes from empty to having content. But as this race is 737 * extremely small, and it's not a problem if another event comes in, we 738 * will fix it later. 739 */ 740 smp_mb(); 741 742 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 743 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 744 return EPOLLIN | EPOLLRDNORM; 745 return 0; 746 } 747 748 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 749 #define RB_WARN_ON(b, cond) \ 750 ({ \ 751 int _____ret = unlikely(cond); \ 752 if (_____ret) { \ 753 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 754 struct ring_buffer_per_cpu *__b = \ 755 (void *)b; \ 756 atomic_inc(&__b->buffer->record_disabled); \ 757 } else \ 758 atomic_inc(&b->record_disabled); \ 759 WARN_ON(1); \ 760 } \ 761 _____ret; \ 762 }) 763 764 /* Up this if you want to test the TIME_EXTENTS and normalization */ 765 #define DEBUG_SHIFT 0 766 767 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 768 { 769 /* shift to debug/test normalization and TIME_EXTENTS */ 770 return buffer->clock() << DEBUG_SHIFT; 771 } 772 773 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 774 { 775 u64 time; 776 777 preempt_disable_notrace(); 778 time = rb_time_stamp(buffer); 779 preempt_enable_no_resched_notrace(); 780 781 return time; 782 } 783 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 784 785 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 786 int cpu, u64 *ts) 787 { 788 /* Just stupid testing the normalize function and deltas */ 789 *ts >>= DEBUG_SHIFT; 790 } 791 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 792 793 /* 794 * Making the ring buffer lockless makes things tricky. 795 * Although writes only happen on the CPU that they are on, 796 * and they only need to worry about interrupts. Reads can 797 * happen on any CPU. 798 * 799 * The reader page is always off the ring buffer, but when the 800 * reader finishes with a page, it needs to swap its page with 801 * a new one from the buffer. The reader needs to take from 802 * the head (writes go to the tail). But if a writer is in overwrite 803 * mode and wraps, it must push the head page forward. 804 * 805 * Here lies the problem. 806 * 807 * The reader must be careful to replace only the head page, and 808 * not another one. As described at the top of the file in the 809 * ASCII art, the reader sets its old page to point to the next 810 * page after head. It then sets the page after head to point to 811 * the old reader page. But if the writer moves the head page 812 * during this operation, the reader could end up with the tail. 813 * 814 * We use cmpxchg to help prevent this race. We also do something 815 * special with the page before head. We set the LSB to 1. 816 * 817 * When the writer must push the page forward, it will clear the 818 * bit that points to the head page, move the head, and then set 819 * the bit that points to the new head page. 820 * 821 * We also don't want an interrupt coming in and moving the head 822 * page on another writer. Thus we use the second LSB to catch 823 * that too. Thus: 824 * 825 * head->list->prev->next bit 1 bit 0 826 * ------- ------- 827 * Normal page 0 0 828 * Points to head page 0 1 829 * New head page 1 0 830 * 831 * Note we can not trust the prev pointer of the head page, because: 832 * 833 * +----+ +-----+ +-----+ 834 * | |------>| T |---X--->| N | 835 * | |<------| | | | 836 * +----+ +-----+ +-----+ 837 * ^ ^ | 838 * | +-----+ | | 839 * +----------| R |----------+ | 840 * | |<-----------+ 841 * +-----+ 842 * 843 * Key: ---X--> HEAD flag set in pointer 844 * T Tail page 845 * R Reader page 846 * N Next page 847 * 848 * (see __rb_reserve_next() to see where this happens) 849 * 850 * What the above shows is that the reader just swapped out 851 * the reader page with a page in the buffer, but before it 852 * could make the new header point back to the new page added 853 * it was preempted by a writer. The writer moved forward onto 854 * the new page added by the reader and is about to move forward 855 * again. 856 * 857 * You can see, it is legitimate for the previous pointer of 858 * the head (or any page) not to point back to itself. But only 859 * temporarily. 860 */ 861 862 #define RB_PAGE_NORMAL 0UL 863 #define RB_PAGE_HEAD 1UL 864 #define RB_PAGE_UPDATE 2UL 865 866 867 #define RB_FLAG_MASK 3UL 868 869 /* PAGE_MOVED is not part of the mask */ 870 #define RB_PAGE_MOVED 4UL 871 872 /* 873 * rb_list_head - remove any bit 874 */ 875 static struct list_head *rb_list_head(struct list_head *list) 876 { 877 unsigned long val = (unsigned long)list; 878 879 return (struct list_head *)(val & ~RB_FLAG_MASK); 880 } 881 882 /* 883 * rb_is_head_page - test if the given page is the head page 884 * 885 * Because the reader may move the head_page pointer, we can 886 * not trust what the head page is (it may be pointing to 887 * the reader page). But if the next page is a header page, 888 * its flags will be non zero. 889 */ 890 static inline int 891 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 892 struct buffer_page *page, struct list_head *list) 893 { 894 unsigned long val; 895 896 val = (unsigned long)list->next; 897 898 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 899 return RB_PAGE_MOVED; 900 901 return val & RB_FLAG_MASK; 902 } 903 904 /* 905 * rb_is_reader_page 906 * 907 * The unique thing about the reader page, is that, if the 908 * writer is ever on it, the previous pointer never points 909 * back to the reader page. 910 */ 911 static bool rb_is_reader_page(struct buffer_page *page) 912 { 913 struct list_head *list = page->list.prev; 914 915 return rb_list_head(list->next) != &page->list; 916 } 917 918 /* 919 * rb_set_list_to_head - set a list_head to be pointing to head. 920 */ 921 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 922 struct list_head *list) 923 { 924 unsigned long *ptr; 925 926 ptr = (unsigned long *)&list->next; 927 *ptr |= RB_PAGE_HEAD; 928 *ptr &= ~RB_PAGE_UPDATE; 929 } 930 931 /* 932 * rb_head_page_activate - sets up head page 933 */ 934 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 935 { 936 struct buffer_page *head; 937 938 head = cpu_buffer->head_page; 939 if (!head) 940 return; 941 942 /* 943 * Set the previous list pointer to have the HEAD flag. 944 */ 945 rb_set_list_to_head(cpu_buffer, head->list.prev); 946 } 947 948 static void rb_list_head_clear(struct list_head *list) 949 { 950 unsigned long *ptr = (unsigned long *)&list->next; 951 952 *ptr &= ~RB_FLAG_MASK; 953 } 954 955 /* 956 * rb_head_page_deactivate - clears head page ptr (for free list) 957 */ 958 static void 959 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 960 { 961 struct list_head *hd; 962 963 /* Go through the whole list and clear any pointers found. */ 964 rb_list_head_clear(cpu_buffer->pages); 965 966 list_for_each(hd, cpu_buffer->pages) 967 rb_list_head_clear(hd); 968 } 969 970 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 971 struct buffer_page *head, 972 struct buffer_page *prev, 973 int old_flag, int new_flag) 974 { 975 struct list_head *list; 976 unsigned long val = (unsigned long)&head->list; 977 unsigned long ret; 978 979 list = &prev->list; 980 981 val &= ~RB_FLAG_MASK; 982 983 ret = cmpxchg((unsigned long *)&list->next, 984 val | old_flag, val | new_flag); 985 986 /* check if the reader took the page */ 987 if ((ret & ~RB_FLAG_MASK) != val) 988 return RB_PAGE_MOVED; 989 990 return ret & RB_FLAG_MASK; 991 } 992 993 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 994 struct buffer_page *head, 995 struct buffer_page *prev, 996 int old_flag) 997 { 998 return rb_head_page_set(cpu_buffer, head, prev, 999 old_flag, RB_PAGE_UPDATE); 1000 } 1001 1002 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1003 struct buffer_page *head, 1004 struct buffer_page *prev, 1005 int old_flag) 1006 { 1007 return rb_head_page_set(cpu_buffer, head, prev, 1008 old_flag, RB_PAGE_HEAD); 1009 } 1010 1011 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1012 struct buffer_page *head, 1013 struct buffer_page *prev, 1014 int old_flag) 1015 { 1016 return rb_head_page_set(cpu_buffer, head, prev, 1017 old_flag, RB_PAGE_NORMAL); 1018 } 1019 1020 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 1021 struct buffer_page **bpage) 1022 { 1023 struct list_head *p = rb_list_head((*bpage)->list.next); 1024 1025 *bpage = list_entry(p, struct buffer_page, list); 1026 } 1027 1028 static struct buffer_page * 1029 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1030 { 1031 struct buffer_page *head; 1032 struct buffer_page *page; 1033 struct list_head *list; 1034 int i; 1035 1036 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1037 return NULL; 1038 1039 /* sanity check */ 1040 list = cpu_buffer->pages; 1041 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1042 return NULL; 1043 1044 page = head = cpu_buffer->head_page; 1045 /* 1046 * It is possible that the writer moves the header behind 1047 * where we started, and we miss in one loop. 1048 * A second loop should grab the header, but we'll do 1049 * three loops just because I'm paranoid. 1050 */ 1051 for (i = 0; i < 3; i++) { 1052 do { 1053 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1054 cpu_buffer->head_page = page; 1055 return page; 1056 } 1057 rb_inc_page(cpu_buffer, &page); 1058 } while (page != head); 1059 } 1060 1061 RB_WARN_ON(cpu_buffer, 1); 1062 1063 return NULL; 1064 } 1065 1066 static int rb_head_page_replace(struct buffer_page *old, 1067 struct buffer_page *new) 1068 { 1069 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1070 unsigned long val; 1071 unsigned long ret; 1072 1073 val = *ptr & ~RB_FLAG_MASK; 1074 val |= RB_PAGE_HEAD; 1075 1076 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1077 1078 return ret == val; 1079 } 1080 1081 /* 1082 * rb_tail_page_update - move the tail page forward 1083 */ 1084 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1085 struct buffer_page *tail_page, 1086 struct buffer_page *next_page) 1087 { 1088 unsigned long old_entries; 1089 unsigned long old_write; 1090 1091 /* 1092 * The tail page now needs to be moved forward. 1093 * 1094 * We need to reset the tail page, but without messing 1095 * with possible erasing of data brought in by interrupts 1096 * that have moved the tail page and are currently on it. 1097 * 1098 * We add a counter to the write field to denote this. 1099 */ 1100 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1101 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1102 1103 local_inc(&cpu_buffer->pages_touched); 1104 /* 1105 * Just make sure we have seen our old_write and synchronize 1106 * with any interrupts that come in. 1107 */ 1108 barrier(); 1109 1110 /* 1111 * If the tail page is still the same as what we think 1112 * it is, then it is up to us to update the tail 1113 * pointer. 1114 */ 1115 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1116 /* Zero the write counter */ 1117 unsigned long val = old_write & ~RB_WRITE_MASK; 1118 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1119 1120 /* 1121 * This will only succeed if an interrupt did 1122 * not come in and change it. In which case, we 1123 * do not want to modify it. 1124 * 1125 * We add (void) to let the compiler know that we do not care 1126 * about the return value of these functions. We use the 1127 * cmpxchg to only update if an interrupt did not already 1128 * do it for us. If the cmpxchg fails, we don't care. 1129 */ 1130 (void)local_cmpxchg(&next_page->write, old_write, val); 1131 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1132 1133 /* 1134 * No need to worry about races with clearing out the commit. 1135 * it only can increment when a commit takes place. But that 1136 * only happens in the outer most nested commit. 1137 */ 1138 local_set(&next_page->page->commit, 0); 1139 1140 /* Again, either we update tail_page or an interrupt does */ 1141 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1142 } 1143 } 1144 1145 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1146 struct buffer_page *bpage) 1147 { 1148 unsigned long val = (unsigned long)bpage; 1149 1150 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1151 return 1; 1152 1153 return 0; 1154 } 1155 1156 /** 1157 * rb_check_list - make sure a pointer to a list has the last bits zero 1158 */ 1159 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1160 struct list_head *list) 1161 { 1162 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1163 return 1; 1164 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1165 return 1; 1166 return 0; 1167 } 1168 1169 /** 1170 * rb_check_pages - integrity check of buffer pages 1171 * @cpu_buffer: CPU buffer with pages to test 1172 * 1173 * As a safety measure we check to make sure the data pages have not 1174 * been corrupted. 1175 */ 1176 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1177 { 1178 struct list_head *head = cpu_buffer->pages; 1179 struct buffer_page *bpage, *tmp; 1180 1181 /* Reset the head page if it exists */ 1182 if (cpu_buffer->head_page) 1183 rb_set_head_page(cpu_buffer); 1184 1185 rb_head_page_deactivate(cpu_buffer); 1186 1187 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1188 return -1; 1189 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1190 return -1; 1191 1192 if (rb_check_list(cpu_buffer, head)) 1193 return -1; 1194 1195 list_for_each_entry_safe(bpage, tmp, head, list) { 1196 if (RB_WARN_ON(cpu_buffer, 1197 bpage->list.next->prev != &bpage->list)) 1198 return -1; 1199 if (RB_WARN_ON(cpu_buffer, 1200 bpage->list.prev->next != &bpage->list)) 1201 return -1; 1202 if (rb_check_list(cpu_buffer, &bpage->list)) 1203 return -1; 1204 } 1205 1206 rb_head_page_activate(cpu_buffer); 1207 1208 return 0; 1209 } 1210 1211 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1212 { 1213 struct buffer_page *bpage, *tmp; 1214 bool user_thread = current->mm != NULL; 1215 gfp_t mflags; 1216 long i; 1217 1218 /* 1219 * Check if the available memory is there first. 1220 * Note, si_mem_available() only gives us a rough estimate of available 1221 * memory. It may not be accurate. But we don't care, we just want 1222 * to prevent doing any allocation when it is obvious that it is 1223 * not going to succeed. 1224 */ 1225 i = si_mem_available(); 1226 if (i < nr_pages) 1227 return -ENOMEM; 1228 1229 /* 1230 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1231 * gracefully without invoking oom-killer and the system is not 1232 * destabilized. 1233 */ 1234 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1235 1236 /* 1237 * If a user thread allocates too much, and si_mem_available() 1238 * reports there's enough memory, even though there is not. 1239 * Make sure the OOM killer kills this thread. This can happen 1240 * even with RETRY_MAYFAIL because another task may be doing 1241 * an allocation after this task has taken all memory. 1242 * This is the task the OOM killer needs to take out during this 1243 * loop, even if it was triggered by an allocation somewhere else. 1244 */ 1245 if (user_thread) 1246 set_current_oom_origin(); 1247 for (i = 0; i < nr_pages; i++) { 1248 struct page *page; 1249 1250 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1251 mflags, cpu_to_node(cpu)); 1252 if (!bpage) 1253 goto free_pages; 1254 1255 list_add(&bpage->list, pages); 1256 1257 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1258 if (!page) 1259 goto free_pages; 1260 bpage->page = page_address(page); 1261 rb_init_page(bpage->page); 1262 1263 if (user_thread && fatal_signal_pending(current)) 1264 goto free_pages; 1265 } 1266 if (user_thread) 1267 clear_current_oom_origin(); 1268 1269 return 0; 1270 1271 free_pages: 1272 list_for_each_entry_safe(bpage, tmp, pages, list) { 1273 list_del_init(&bpage->list); 1274 free_buffer_page(bpage); 1275 } 1276 if (user_thread) 1277 clear_current_oom_origin(); 1278 1279 return -ENOMEM; 1280 } 1281 1282 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1283 unsigned long nr_pages) 1284 { 1285 LIST_HEAD(pages); 1286 1287 WARN_ON(!nr_pages); 1288 1289 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1290 return -ENOMEM; 1291 1292 /* 1293 * The ring buffer page list is a circular list that does not 1294 * start and end with a list head. All page list items point to 1295 * other pages. 1296 */ 1297 cpu_buffer->pages = pages.next; 1298 list_del(&pages); 1299 1300 cpu_buffer->nr_pages = nr_pages; 1301 1302 rb_check_pages(cpu_buffer); 1303 1304 return 0; 1305 } 1306 1307 static struct ring_buffer_per_cpu * 1308 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1309 { 1310 struct ring_buffer_per_cpu *cpu_buffer; 1311 struct buffer_page *bpage; 1312 struct page *page; 1313 int ret; 1314 1315 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1316 GFP_KERNEL, cpu_to_node(cpu)); 1317 if (!cpu_buffer) 1318 return NULL; 1319 1320 cpu_buffer->cpu = cpu; 1321 cpu_buffer->buffer = buffer; 1322 raw_spin_lock_init(&cpu_buffer->reader_lock); 1323 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1324 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1325 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1326 init_completion(&cpu_buffer->update_done); 1327 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1328 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1329 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1330 1331 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1332 GFP_KERNEL, cpu_to_node(cpu)); 1333 if (!bpage) 1334 goto fail_free_buffer; 1335 1336 rb_check_bpage(cpu_buffer, bpage); 1337 1338 cpu_buffer->reader_page = bpage; 1339 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1340 if (!page) 1341 goto fail_free_reader; 1342 bpage->page = page_address(page); 1343 rb_init_page(bpage->page); 1344 1345 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1346 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1347 1348 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1349 if (ret < 0) 1350 goto fail_free_reader; 1351 1352 cpu_buffer->head_page 1353 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1354 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1355 1356 rb_head_page_activate(cpu_buffer); 1357 1358 return cpu_buffer; 1359 1360 fail_free_reader: 1361 free_buffer_page(cpu_buffer->reader_page); 1362 1363 fail_free_buffer: 1364 kfree(cpu_buffer); 1365 return NULL; 1366 } 1367 1368 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1369 { 1370 struct list_head *head = cpu_buffer->pages; 1371 struct buffer_page *bpage, *tmp; 1372 1373 free_buffer_page(cpu_buffer->reader_page); 1374 1375 rb_head_page_deactivate(cpu_buffer); 1376 1377 if (head) { 1378 list_for_each_entry_safe(bpage, tmp, head, list) { 1379 list_del_init(&bpage->list); 1380 free_buffer_page(bpage); 1381 } 1382 bpage = list_entry(head, struct buffer_page, list); 1383 free_buffer_page(bpage); 1384 } 1385 1386 kfree(cpu_buffer); 1387 } 1388 1389 /** 1390 * __ring_buffer_alloc - allocate a new ring_buffer 1391 * @size: the size in bytes per cpu that is needed. 1392 * @flags: attributes to set for the ring buffer. 1393 * 1394 * Currently the only flag that is available is the RB_FL_OVERWRITE 1395 * flag. This flag means that the buffer will overwrite old data 1396 * when the buffer wraps. If this flag is not set, the buffer will 1397 * drop data when the tail hits the head. 1398 */ 1399 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1400 struct lock_class_key *key) 1401 { 1402 struct ring_buffer *buffer; 1403 long nr_pages; 1404 int bsize; 1405 int cpu; 1406 int ret; 1407 1408 /* keep it in its own cache line */ 1409 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1410 GFP_KERNEL); 1411 if (!buffer) 1412 return NULL; 1413 1414 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1415 goto fail_free_buffer; 1416 1417 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1418 buffer->flags = flags; 1419 buffer->clock = trace_clock_local; 1420 buffer->reader_lock_key = key; 1421 1422 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1423 init_waitqueue_head(&buffer->irq_work.waiters); 1424 1425 /* need at least two pages */ 1426 if (nr_pages < 2) 1427 nr_pages = 2; 1428 1429 buffer->cpus = nr_cpu_ids; 1430 1431 bsize = sizeof(void *) * nr_cpu_ids; 1432 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1433 GFP_KERNEL); 1434 if (!buffer->buffers) 1435 goto fail_free_cpumask; 1436 1437 cpu = raw_smp_processor_id(); 1438 cpumask_set_cpu(cpu, buffer->cpumask); 1439 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1440 if (!buffer->buffers[cpu]) 1441 goto fail_free_buffers; 1442 1443 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1444 if (ret < 0) 1445 goto fail_free_buffers; 1446 1447 mutex_init(&buffer->mutex); 1448 1449 return buffer; 1450 1451 fail_free_buffers: 1452 for_each_buffer_cpu(buffer, cpu) { 1453 if (buffer->buffers[cpu]) 1454 rb_free_cpu_buffer(buffer->buffers[cpu]); 1455 } 1456 kfree(buffer->buffers); 1457 1458 fail_free_cpumask: 1459 free_cpumask_var(buffer->cpumask); 1460 1461 fail_free_buffer: 1462 kfree(buffer); 1463 return NULL; 1464 } 1465 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1466 1467 /** 1468 * ring_buffer_free - free a ring buffer. 1469 * @buffer: the buffer to free. 1470 */ 1471 void 1472 ring_buffer_free(struct ring_buffer *buffer) 1473 { 1474 int cpu; 1475 1476 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1477 1478 for_each_buffer_cpu(buffer, cpu) 1479 rb_free_cpu_buffer(buffer->buffers[cpu]); 1480 1481 kfree(buffer->buffers); 1482 free_cpumask_var(buffer->cpumask); 1483 1484 kfree(buffer); 1485 } 1486 EXPORT_SYMBOL_GPL(ring_buffer_free); 1487 1488 void ring_buffer_set_clock(struct ring_buffer *buffer, 1489 u64 (*clock)(void)) 1490 { 1491 buffer->clock = clock; 1492 } 1493 1494 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs) 1495 { 1496 buffer->time_stamp_abs = abs; 1497 } 1498 1499 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer) 1500 { 1501 return buffer->time_stamp_abs; 1502 } 1503 1504 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1505 1506 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1507 { 1508 return local_read(&bpage->entries) & RB_WRITE_MASK; 1509 } 1510 1511 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1512 { 1513 return local_read(&bpage->write) & RB_WRITE_MASK; 1514 } 1515 1516 static int 1517 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1518 { 1519 struct list_head *tail_page, *to_remove, *next_page; 1520 struct buffer_page *to_remove_page, *tmp_iter_page; 1521 struct buffer_page *last_page, *first_page; 1522 unsigned long nr_removed; 1523 unsigned long head_bit; 1524 int page_entries; 1525 1526 head_bit = 0; 1527 1528 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1529 atomic_inc(&cpu_buffer->record_disabled); 1530 /* 1531 * We don't race with the readers since we have acquired the reader 1532 * lock. We also don't race with writers after disabling recording. 1533 * This makes it easy to figure out the first and the last page to be 1534 * removed from the list. We unlink all the pages in between including 1535 * the first and last pages. This is done in a busy loop so that we 1536 * lose the least number of traces. 1537 * The pages are freed after we restart recording and unlock readers. 1538 */ 1539 tail_page = &cpu_buffer->tail_page->list; 1540 1541 /* 1542 * tail page might be on reader page, we remove the next page 1543 * from the ring buffer 1544 */ 1545 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1546 tail_page = rb_list_head(tail_page->next); 1547 to_remove = tail_page; 1548 1549 /* start of pages to remove */ 1550 first_page = list_entry(rb_list_head(to_remove->next), 1551 struct buffer_page, list); 1552 1553 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1554 to_remove = rb_list_head(to_remove)->next; 1555 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1556 } 1557 1558 next_page = rb_list_head(to_remove)->next; 1559 1560 /* 1561 * Now we remove all pages between tail_page and next_page. 1562 * Make sure that we have head_bit value preserved for the 1563 * next page 1564 */ 1565 tail_page->next = (struct list_head *)((unsigned long)next_page | 1566 head_bit); 1567 next_page = rb_list_head(next_page); 1568 next_page->prev = tail_page; 1569 1570 /* make sure pages points to a valid page in the ring buffer */ 1571 cpu_buffer->pages = next_page; 1572 1573 /* update head page */ 1574 if (head_bit) 1575 cpu_buffer->head_page = list_entry(next_page, 1576 struct buffer_page, list); 1577 1578 /* 1579 * change read pointer to make sure any read iterators reset 1580 * themselves 1581 */ 1582 cpu_buffer->read = 0; 1583 1584 /* pages are removed, resume tracing and then free the pages */ 1585 atomic_dec(&cpu_buffer->record_disabled); 1586 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1587 1588 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1589 1590 /* last buffer page to remove */ 1591 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1592 list); 1593 tmp_iter_page = first_page; 1594 1595 do { 1596 cond_resched(); 1597 1598 to_remove_page = tmp_iter_page; 1599 rb_inc_page(cpu_buffer, &tmp_iter_page); 1600 1601 /* update the counters */ 1602 page_entries = rb_page_entries(to_remove_page); 1603 if (page_entries) { 1604 /* 1605 * If something was added to this page, it was full 1606 * since it is not the tail page. So we deduct the 1607 * bytes consumed in ring buffer from here. 1608 * Increment overrun to account for the lost events. 1609 */ 1610 local_add(page_entries, &cpu_buffer->overrun); 1611 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1612 } 1613 1614 /* 1615 * We have already removed references to this list item, just 1616 * free up the buffer_page and its page 1617 */ 1618 free_buffer_page(to_remove_page); 1619 nr_removed--; 1620 1621 } while (to_remove_page != last_page); 1622 1623 RB_WARN_ON(cpu_buffer, nr_removed); 1624 1625 return nr_removed == 0; 1626 } 1627 1628 static int 1629 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1630 { 1631 struct list_head *pages = &cpu_buffer->new_pages; 1632 int retries, success; 1633 1634 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1635 /* 1636 * We are holding the reader lock, so the reader page won't be swapped 1637 * in the ring buffer. Now we are racing with the writer trying to 1638 * move head page and the tail page. 1639 * We are going to adapt the reader page update process where: 1640 * 1. We first splice the start and end of list of new pages between 1641 * the head page and its previous page. 1642 * 2. We cmpxchg the prev_page->next to point from head page to the 1643 * start of new pages list. 1644 * 3. Finally, we update the head->prev to the end of new list. 1645 * 1646 * We will try this process 10 times, to make sure that we don't keep 1647 * spinning. 1648 */ 1649 retries = 10; 1650 success = 0; 1651 while (retries--) { 1652 struct list_head *head_page, *prev_page, *r; 1653 struct list_head *last_page, *first_page; 1654 struct list_head *head_page_with_bit; 1655 1656 head_page = &rb_set_head_page(cpu_buffer)->list; 1657 if (!head_page) 1658 break; 1659 prev_page = head_page->prev; 1660 1661 first_page = pages->next; 1662 last_page = pages->prev; 1663 1664 head_page_with_bit = (struct list_head *) 1665 ((unsigned long)head_page | RB_PAGE_HEAD); 1666 1667 last_page->next = head_page_with_bit; 1668 first_page->prev = prev_page; 1669 1670 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1671 1672 if (r == head_page_with_bit) { 1673 /* 1674 * yay, we replaced the page pointer to our new list, 1675 * now, we just have to update to head page's prev 1676 * pointer to point to end of list 1677 */ 1678 head_page->prev = last_page; 1679 success = 1; 1680 break; 1681 } 1682 } 1683 1684 if (success) 1685 INIT_LIST_HEAD(pages); 1686 /* 1687 * If we weren't successful in adding in new pages, warn and stop 1688 * tracing 1689 */ 1690 RB_WARN_ON(cpu_buffer, !success); 1691 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1692 1693 /* free pages if they weren't inserted */ 1694 if (!success) { 1695 struct buffer_page *bpage, *tmp; 1696 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1697 list) { 1698 list_del_init(&bpage->list); 1699 free_buffer_page(bpage); 1700 } 1701 } 1702 return success; 1703 } 1704 1705 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1706 { 1707 int success; 1708 1709 if (cpu_buffer->nr_pages_to_update > 0) 1710 success = rb_insert_pages(cpu_buffer); 1711 else 1712 success = rb_remove_pages(cpu_buffer, 1713 -cpu_buffer->nr_pages_to_update); 1714 1715 if (success) 1716 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1717 } 1718 1719 static void update_pages_handler(struct work_struct *work) 1720 { 1721 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1722 struct ring_buffer_per_cpu, update_pages_work); 1723 rb_update_pages(cpu_buffer); 1724 complete(&cpu_buffer->update_done); 1725 } 1726 1727 /** 1728 * ring_buffer_resize - resize the ring buffer 1729 * @buffer: the buffer to resize. 1730 * @size: the new size. 1731 * @cpu_id: the cpu buffer to resize 1732 * 1733 * Minimum size is 2 * BUF_PAGE_SIZE. 1734 * 1735 * Returns 0 on success and < 0 on failure. 1736 */ 1737 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1738 int cpu_id) 1739 { 1740 struct ring_buffer_per_cpu *cpu_buffer; 1741 unsigned long nr_pages; 1742 int cpu, err = 0; 1743 1744 /* 1745 * Always succeed at resizing a non-existent buffer: 1746 */ 1747 if (!buffer) 1748 return size; 1749 1750 /* Make sure the requested buffer exists */ 1751 if (cpu_id != RING_BUFFER_ALL_CPUS && 1752 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1753 return size; 1754 1755 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1756 1757 /* we need a minimum of two pages */ 1758 if (nr_pages < 2) 1759 nr_pages = 2; 1760 1761 size = nr_pages * BUF_PAGE_SIZE; 1762 1763 /* 1764 * Don't succeed if resizing is disabled, as a reader might be 1765 * manipulating the ring buffer and is expecting a sane state while 1766 * this is true. 1767 */ 1768 if (atomic_read(&buffer->resize_disabled)) 1769 return -EBUSY; 1770 1771 /* prevent another thread from changing buffer sizes */ 1772 mutex_lock(&buffer->mutex); 1773 1774 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1775 /* calculate the pages to update */ 1776 for_each_buffer_cpu(buffer, cpu) { 1777 cpu_buffer = buffer->buffers[cpu]; 1778 1779 cpu_buffer->nr_pages_to_update = nr_pages - 1780 cpu_buffer->nr_pages; 1781 /* 1782 * nothing more to do for removing pages or no update 1783 */ 1784 if (cpu_buffer->nr_pages_to_update <= 0) 1785 continue; 1786 /* 1787 * to add pages, make sure all new pages can be 1788 * allocated without receiving ENOMEM 1789 */ 1790 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1791 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1792 &cpu_buffer->new_pages, cpu)) { 1793 /* not enough memory for new pages */ 1794 err = -ENOMEM; 1795 goto out_err; 1796 } 1797 } 1798 1799 get_online_cpus(); 1800 /* 1801 * Fire off all the required work handlers 1802 * We can't schedule on offline CPUs, but it's not necessary 1803 * since we can change their buffer sizes without any race. 1804 */ 1805 for_each_buffer_cpu(buffer, cpu) { 1806 cpu_buffer = buffer->buffers[cpu]; 1807 if (!cpu_buffer->nr_pages_to_update) 1808 continue; 1809 1810 /* Can't run something on an offline CPU. */ 1811 if (!cpu_online(cpu)) { 1812 rb_update_pages(cpu_buffer); 1813 cpu_buffer->nr_pages_to_update = 0; 1814 } else { 1815 schedule_work_on(cpu, 1816 &cpu_buffer->update_pages_work); 1817 } 1818 } 1819 1820 /* wait for all the updates to complete */ 1821 for_each_buffer_cpu(buffer, cpu) { 1822 cpu_buffer = buffer->buffers[cpu]; 1823 if (!cpu_buffer->nr_pages_to_update) 1824 continue; 1825 1826 if (cpu_online(cpu)) 1827 wait_for_completion(&cpu_buffer->update_done); 1828 cpu_buffer->nr_pages_to_update = 0; 1829 } 1830 1831 put_online_cpus(); 1832 } else { 1833 /* Make sure this CPU has been initialized */ 1834 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1835 goto out; 1836 1837 cpu_buffer = buffer->buffers[cpu_id]; 1838 1839 if (nr_pages == cpu_buffer->nr_pages) 1840 goto out; 1841 1842 cpu_buffer->nr_pages_to_update = nr_pages - 1843 cpu_buffer->nr_pages; 1844 1845 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1846 if (cpu_buffer->nr_pages_to_update > 0 && 1847 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1848 &cpu_buffer->new_pages, cpu_id)) { 1849 err = -ENOMEM; 1850 goto out_err; 1851 } 1852 1853 get_online_cpus(); 1854 1855 /* Can't run something on an offline CPU. */ 1856 if (!cpu_online(cpu_id)) 1857 rb_update_pages(cpu_buffer); 1858 else { 1859 schedule_work_on(cpu_id, 1860 &cpu_buffer->update_pages_work); 1861 wait_for_completion(&cpu_buffer->update_done); 1862 } 1863 1864 cpu_buffer->nr_pages_to_update = 0; 1865 put_online_cpus(); 1866 } 1867 1868 out: 1869 /* 1870 * The ring buffer resize can happen with the ring buffer 1871 * enabled, so that the update disturbs the tracing as little 1872 * as possible. But if the buffer is disabled, we do not need 1873 * to worry about that, and we can take the time to verify 1874 * that the buffer is not corrupt. 1875 */ 1876 if (atomic_read(&buffer->record_disabled)) { 1877 atomic_inc(&buffer->record_disabled); 1878 /* 1879 * Even though the buffer was disabled, we must make sure 1880 * that it is truly disabled before calling rb_check_pages. 1881 * There could have been a race between checking 1882 * record_disable and incrementing it. 1883 */ 1884 synchronize_rcu(); 1885 for_each_buffer_cpu(buffer, cpu) { 1886 cpu_buffer = buffer->buffers[cpu]; 1887 rb_check_pages(cpu_buffer); 1888 } 1889 atomic_dec(&buffer->record_disabled); 1890 } 1891 1892 mutex_unlock(&buffer->mutex); 1893 return size; 1894 1895 out_err: 1896 for_each_buffer_cpu(buffer, cpu) { 1897 struct buffer_page *bpage, *tmp; 1898 1899 cpu_buffer = buffer->buffers[cpu]; 1900 cpu_buffer->nr_pages_to_update = 0; 1901 1902 if (list_empty(&cpu_buffer->new_pages)) 1903 continue; 1904 1905 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1906 list) { 1907 list_del_init(&bpage->list); 1908 free_buffer_page(bpage); 1909 } 1910 } 1911 mutex_unlock(&buffer->mutex); 1912 return err; 1913 } 1914 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1915 1916 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1917 { 1918 mutex_lock(&buffer->mutex); 1919 if (val) 1920 buffer->flags |= RB_FL_OVERWRITE; 1921 else 1922 buffer->flags &= ~RB_FL_OVERWRITE; 1923 mutex_unlock(&buffer->mutex); 1924 } 1925 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1926 1927 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1928 { 1929 return bpage->page->data + index; 1930 } 1931 1932 static __always_inline struct ring_buffer_event * 1933 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1934 { 1935 return __rb_page_index(cpu_buffer->reader_page, 1936 cpu_buffer->reader_page->read); 1937 } 1938 1939 static __always_inline struct ring_buffer_event * 1940 rb_iter_head_event(struct ring_buffer_iter *iter) 1941 { 1942 return __rb_page_index(iter->head_page, iter->head); 1943 } 1944 1945 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1946 { 1947 return local_read(&bpage->page->commit); 1948 } 1949 1950 /* Size is determined by what has been committed */ 1951 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1952 { 1953 return rb_page_commit(bpage); 1954 } 1955 1956 static __always_inline unsigned 1957 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1958 { 1959 return rb_page_commit(cpu_buffer->commit_page); 1960 } 1961 1962 static __always_inline unsigned 1963 rb_event_index(struct ring_buffer_event *event) 1964 { 1965 unsigned long addr = (unsigned long)event; 1966 1967 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1968 } 1969 1970 static void rb_inc_iter(struct ring_buffer_iter *iter) 1971 { 1972 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1973 1974 /* 1975 * The iterator could be on the reader page (it starts there). 1976 * But the head could have moved, since the reader was 1977 * found. Check for this case and assign the iterator 1978 * to the head page instead of next. 1979 */ 1980 if (iter->head_page == cpu_buffer->reader_page) 1981 iter->head_page = rb_set_head_page(cpu_buffer); 1982 else 1983 rb_inc_page(cpu_buffer, &iter->head_page); 1984 1985 iter->read_stamp = iter->head_page->page->time_stamp; 1986 iter->head = 0; 1987 } 1988 1989 /* 1990 * rb_handle_head_page - writer hit the head page 1991 * 1992 * Returns: +1 to retry page 1993 * 0 to continue 1994 * -1 on error 1995 */ 1996 static int 1997 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1998 struct buffer_page *tail_page, 1999 struct buffer_page *next_page) 2000 { 2001 struct buffer_page *new_head; 2002 int entries; 2003 int type; 2004 int ret; 2005 2006 entries = rb_page_entries(next_page); 2007 2008 /* 2009 * The hard part is here. We need to move the head 2010 * forward, and protect against both readers on 2011 * other CPUs and writers coming in via interrupts. 2012 */ 2013 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2014 RB_PAGE_HEAD); 2015 2016 /* 2017 * type can be one of four: 2018 * NORMAL - an interrupt already moved it for us 2019 * HEAD - we are the first to get here. 2020 * UPDATE - we are the interrupt interrupting 2021 * a current move. 2022 * MOVED - a reader on another CPU moved the next 2023 * pointer to its reader page. Give up 2024 * and try again. 2025 */ 2026 2027 switch (type) { 2028 case RB_PAGE_HEAD: 2029 /* 2030 * We changed the head to UPDATE, thus 2031 * it is our responsibility to update 2032 * the counters. 2033 */ 2034 local_add(entries, &cpu_buffer->overrun); 2035 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2036 2037 /* 2038 * The entries will be zeroed out when we move the 2039 * tail page. 2040 */ 2041 2042 /* still more to do */ 2043 break; 2044 2045 case RB_PAGE_UPDATE: 2046 /* 2047 * This is an interrupt that interrupt the 2048 * previous update. Still more to do. 2049 */ 2050 break; 2051 case RB_PAGE_NORMAL: 2052 /* 2053 * An interrupt came in before the update 2054 * and processed this for us. 2055 * Nothing left to do. 2056 */ 2057 return 1; 2058 case RB_PAGE_MOVED: 2059 /* 2060 * The reader is on another CPU and just did 2061 * a swap with our next_page. 2062 * Try again. 2063 */ 2064 return 1; 2065 default: 2066 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2067 return -1; 2068 } 2069 2070 /* 2071 * Now that we are here, the old head pointer is 2072 * set to UPDATE. This will keep the reader from 2073 * swapping the head page with the reader page. 2074 * The reader (on another CPU) will spin till 2075 * we are finished. 2076 * 2077 * We just need to protect against interrupts 2078 * doing the job. We will set the next pointer 2079 * to HEAD. After that, we set the old pointer 2080 * to NORMAL, but only if it was HEAD before. 2081 * otherwise we are an interrupt, and only 2082 * want the outer most commit to reset it. 2083 */ 2084 new_head = next_page; 2085 rb_inc_page(cpu_buffer, &new_head); 2086 2087 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2088 RB_PAGE_NORMAL); 2089 2090 /* 2091 * Valid returns are: 2092 * HEAD - an interrupt came in and already set it. 2093 * NORMAL - One of two things: 2094 * 1) We really set it. 2095 * 2) A bunch of interrupts came in and moved 2096 * the page forward again. 2097 */ 2098 switch (ret) { 2099 case RB_PAGE_HEAD: 2100 case RB_PAGE_NORMAL: 2101 /* OK */ 2102 break; 2103 default: 2104 RB_WARN_ON(cpu_buffer, 1); 2105 return -1; 2106 } 2107 2108 /* 2109 * It is possible that an interrupt came in, 2110 * set the head up, then more interrupts came in 2111 * and moved it again. When we get back here, 2112 * the page would have been set to NORMAL but we 2113 * just set it back to HEAD. 2114 * 2115 * How do you detect this? Well, if that happened 2116 * the tail page would have moved. 2117 */ 2118 if (ret == RB_PAGE_NORMAL) { 2119 struct buffer_page *buffer_tail_page; 2120 2121 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2122 /* 2123 * If the tail had moved passed next, then we need 2124 * to reset the pointer. 2125 */ 2126 if (buffer_tail_page != tail_page && 2127 buffer_tail_page != next_page) 2128 rb_head_page_set_normal(cpu_buffer, new_head, 2129 next_page, 2130 RB_PAGE_HEAD); 2131 } 2132 2133 /* 2134 * If this was the outer most commit (the one that 2135 * changed the original pointer from HEAD to UPDATE), 2136 * then it is up to us to reset it to NORMAL. 2137 */ 2138 if (type == RB_PAGE_HEAD) { 2139 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2140 tail_page, 2141 RB_PAGE_UPDATE); 2142 if (RB_WARN_ON(cpu_buffer, 2143 ret != RB_PAGE_UPDATE)) 2144 return -1; 2145 } 2146 2147 return 0; 2148 } 2149 2150 static inline void 2151 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2152 unsigned long tail, struct rb_event_info *info) 2153 { 2154 struct buffer_page *tail_page = info->tail_page; 2155 struct ring_buffer_event *event; 2156 unsigned long length = info->length; 2157 2158 /* 2159 * Only the event that crossed the page boundary 2160 * must fill the old tail_page with padding. 2161 */ 2162 if (tail >= BUF_PAGE_SIZE) { 2163 /* 2164 * If the page was filled, then we still need 2165 * to update the real_end. Reset it to zero 2166 * and the reader will ignore it. 2167 */ 2168 if (tail == BUF_PAGE_SIZE) 2169 tail_page->real_end = 0; 2170 2171 local_sub(length, &tail_page->write); 2172 return; 2173 } 2174 2175 event = __rb_page_index(tail_page, tail); 2176 2177 /* account for padding bytes */ 2178 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2179 2180 /* 2181 * Save the original length to the meta data. 2182 * This will be used by the reader to add lost event 2183 * counter. 2184 */ 2185 tail_page->real_end = tail; 2186 2187 /* 2188 * If this event is bigger than the minimum size, then 2189 * we need to be careful that we don't subtract the 2190 * write counter enough to allow another writer to slip 2191 * in on this page. 2192 * We put in a discarded commit instead, to make sure 2193 * that this space is not used again. 2194 * 2195 * If we are less than the minimum size, we don't need to 2196 * worry about it. 2197 */ 2198 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2199 /* No room for any events */ 2200 2201 /* Mark the rest of the page with padding */ 2202 rb_event_set_padding(event); 2203 2204 /* Set the write back to the previous setting */ 2205 local_sub(length, &tail_page->write); 2206 return; 2207 } 2208 2209 /* Put in a discarded event */ 2210 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2211 event->type_len = RINGBUF_TYPE_PADDING; 2212 /* time delta must be non zero */ 2213 event->time_delta = 1; 2214 2215 /* Set write to end of buffer */ 2216 length = (tail + length) - BUF_PAGE_SIZE; 2217 local_sub(length, &tail_page->write); 2218 } 2219 2220 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2221 2222 /* 2223 * This is the slow path, force gcc not to inline it. 2224 */ 2225 static noinline struct ring_buffer_event * 2226 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2227 unsigned long tail, struct rb_event_info *info) 2228 { 2229 struct buffer_page *tail_page = info->tail_page; 2230 struct buffer_page *commit_page = cpu_buffer->commit_page; 2231 struct ring_buffer *buffer = cpu_buffer->buffer; 2232 struct buffer_page *next_page; 2233 int ret; 2234 2235 next_page = tail_page; 2236 2237 rb_inc_page(cpu_buffer, &next_page); 2238 2239 /* 2240 * If for some reason, we had an interrupt storm that made 2241 * it all the way around the buffer, bail, and warn 2242 * about it. 2243 */ 2244 if (unlikely(next_page == commit_page)) { 2245 local_inc(&cpu_buffer->commit_overrun); 2246 goto out_reset; 2247 } 2248 2249 /* 2250 * This is where the fun begins! 2251 * 2252 * We are fighting against races between a reader that 2253 * could be on another CPU trying to swap its reader 2254 * page with the buffer head. 2255 * 2256 * We are also fighting against interrupts coming in and 2257 * moving the head or tail on us as well. 2258 * 2259 * If the next page is the head page then we have filled 2260 * the buffer, unless the commit page is still on the 2261 * reader page. 2262 */ 2263 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2264 2265 /* 2266 * If the commit is not on the reader page, then 2267 * move the header page. 2268 */ 2269 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2270 /* 2271 * If we are not in overwrite mode, 2272 * this is easy, just stop here. 2273 */ 2274 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2275 local_inc(&cpu_buffer->dropped_events); 2276 goto out_reset; 2277 } 2278 2279 ret = rb_handle_head_page(cpu_buffer, 2280 tail_page, 2281 next_page); 2282 if (ret < 0) 2283 goto out_reset; 2284 if (ret) 2285 goto out_again; 2286 } else { 2287 /* 2288 * We need to be careful here too. The 2289 * commit page could still be on the reader 2290 * page. We could have a small buffer, and 2291 * have filled up the buffer with events 2292 * from interrupts and such, and wrapped. 2293 * 2294 * Note, if the tail page is also the on the 2295 * reader_page, we let it move out. 2296 */ 2297 if (unlikely((cpu_buffer->commit_page != 2298 cpu_buffer->tail_page) && 2299 (cpu_buffer->commit_page == 2300 cpu_buffer->reader_page))) { 2301 local_inc(&cpu_buffer->commit_overrun); 2302 goto out_reset; 2303 } 2304 } 2305 } 2306 2307 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2308 2309 out_again: 2310 2311 rb_reset_tail(cpu_buffer, tail, info); 2312 2313 /* Commit what we have for now. */ 2314 rb_end_commit(cpu_buffer); 2315 /* rb_end_commit() decs committing */ 2316 local_inc(&cpu_buffer->committing); 2317 2318 /* fail and let the caller try again */ 2319 return ERR_PTR(-EAGAIN); 2320 2321 out_reset: 2322 /* reset write */ 2323 rb_reset_tail(cpu_buffer, tail, info); 2324 2325 return NULL; 2326 } 2327 2328 /* Slow path, do not inline */ 2329 static noinline struct ring_buffer_event * 2330 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2331 { 2332 if (abs) 2333 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2334 else 2335 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2336 2337 /* Not the first event on the page, or not delta? */ 2338 if (abs || rb_event_index(event)) { 2339 event->time_delta = delta & TS_MASK; 2340 event->array[0] = delta >> TS_SHIFT; 2341 } else { 2342 /* nope, just zero it */ 2343 event->time_delta = 0; 2344 event->array[0] = 0; 2345 } 2346 2347 return skip_time_extend(event); 2348 } 2349 2350 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2351 struct ring_buffer_event *event); 2352 2353 /** 2354 * rb_update_event - update event type and data 2355 * @event: the event to update 2356 * @type: the type of event 2357 * @length: the size of the event field in the ring buffer 2358 * 2359 * Update the type and data fields of the event. The length 2360 * is the actual size that is written to the ring buffer, 2361 * and with this, we can determine what to place into the 2362 * data field. 2363 */ 2364 static void 2365 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2366 struct ring_buffer_event *event, 2367 struct rb_event_info *info) 2368 { 2369 unsigned length = info->length; 2370 u64 delta = info->delta; 2371 2372 /* Only a commit updates the timestamp */ 2373 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2374 delta = 0; 2375 2376 /* 2377 * If we need to add a timestamp, then we 2378 * add it to the start of the reserved space. 2379 */ 2380 if (unlikely(info->add_timestamp)) { 2381 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer); 2382 2383 event = rb_add_time_stamp(event, info->delta, abs); 2384 length -= RB_LEN_TIME_EXTEND; 2385 delta = 0; 2386 } 2387 2388 event->time_delta = delta; 2389 length -= RB_EVNT_HDR_SIZE; 2390 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2391 event->type_len = 0; 2392 event->array[0] = length; 2393 } else 2394 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2395 } 2396 2397 static unsigned rb_calculate_event_length(unsigned length) 2398 { 2399 struct ring_buffer_event event; /* Used only for sizeof array */ 2400 2401 /* zero length can cause confusions */ 2402 if (!length) 2403 length++; 2404 2405 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2406 length += sizeof(event.array[0]); 2407 2408 length += RB_EVNT_HDR_SIZE; 2409 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2410 2411 /* 2412 * In case the time delta is larger than the 27 bits for it 2413 * in the header, we need to add a timestamp. If another 2414 * event comes in when trying to discard this one to increase 2415 * the length, then the timestamp will be added in the allocated 2416 * space of this event. If length is bigger than the size needed 2417 * for the TIME_EXTEND, then padding has to be used. The events 2418 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2419 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2420 * As length is a multiple of 4, we only need to worry if it 2421 * is 12 (RB_LEN_TIME_EXTEND + 4). 2422 */ 2423 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2424 length += RB_ALIGNMENT; 2425 2426 return length; 2427 } 2428 2429 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2430 static inline bool sched_clock_stable(void) 2431 { 2432 return true; 2433 } 2434 #endif 2435 2436 static inline int 2437 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2438 struct ring_buffer_event *event) 2439 { 2440 unsigned long new_index, old_index; 2441 struct buffer_page *bpage; 2442 unsigned long index; 2443 unsigned long addr; 2444 2445 new_index = rb_event_index(event); 2446 old_index = new_index + rb_event_ts_length(event); 2447 addr = (unsigned long)event; 2448 addr &= PAGE_MASK; 2449 2450 bpage = READ_ONCE(cpu_buffer->tail_page); 2451 2452 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2453 unsigned long write_mask = 2454 local_read(&bpage->write) & ~RB_WRITE_MASK; 2455 unsigned long event_length = rb_event_length(event); 2456 /* 2457 * This is on the tail page. It is possible that 2458 * a write could come in and move the tail page 2459 * and write to the next page. That is fine 2460 * because we just shorten what is on this page. 2461 */ 2462 old_index += write_mask; 2463 new_index += write_mask; 2464 index = local_cmpxchg(&bpage->write, old_index, new_index); 2465 if (index == old_index) { 2466 /* update counters */ 2467 local_sub(event_length, &cpu_buffer->entries_bytes); 2468 return 1; 2469 } 2470 } 2471 2472 /* could not discard */ 2473 return 0; 2474 } 2475 2476 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2477 { 2478 local_inc(&cpu_buffer->committing); 2479 local_inc(&cpu_buffer->commits); 2480 } 2481 2482 static __always_inline void 2483 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2484 { 2485 unsigned long max_count; 2486 2487 /* 2488 * We only race with interrupts and NMIs on this CPU. 2489 * If we own the commit event, then we can commit 2490 * all others that interrupted us, since the interruptions 2491 * are in stack format (they finish before they come 2492 * back to us). This allows us to do a simple loop to 2493 * assign the commit to the tail. 2494 */ 2495 again: 2496 max_count = cpu_buffer->nr_pages * 100; 2497 2498 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2499 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2500 return; 2501 if (RB_WARN_ON(cpu_buffer, 2502 rb_is_reader_page(cpu_buffer->tail_page))) 2503 return; 2504 local_set(&cpu_buffer->commit_page->page->commit, 2505 rb_page_write(cpu_buffer->commit_page)); 2506 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2507 /* Only update the write stamp if the page has an event */ 2508 if (rb_page_write(cpu_buffer->commit_page)) 2509 cpu_buffer->write_stamp = 2510 cpu_buffer->commit_page->page->time_stamp; 2511 /* add barrier to keep gcc from optimizing too much */ 2512 barrier(); 2513 } 2514 while (rb_commit_index(cpu_buffer) != 2515 rb_page_write(cpu_buffer->commit_page)) { 2516 2517 local_set(&cpu_buffer->commit_page->page->commit, 2518 rb_page_write(cpu_buffer->commit_page)); 2519 RB_WARN_ON(cpu_buffer, 2520 local_read(&cpu_buffer->commit_page->page->commit) & 2521 ~RB_WRITE_MASK); 2522 barrier(); 2523 } 2524 2525 /* again, keep gcc from optimizing */ 2526 barrier(); 2527 2528 /* 2529 * If an interrupt came in just after the first while loop 2530 * and pushed the tail page forward, we will be left with 2531 * a dangling commit that will never go forward. 2532 */ 2533 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2534 goto again; 2535 } 2536 2537 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2538 { 2539 unsigned long commits; 2540 2541 if (RB_WARN_ON(cpu_buffer, 2542 !local_read(&cpu_buffer->committing))) 2543 return; 2544 2545 again: 2546 commits = local_read(&cpu_buffer->commits); 2547 /* synchronize with interrupts */ 2548 barrier(); 2549 if (local_read(&cpu_buffer->committing) == 1) 2550 rb_set_commit_to_write(cpu_buffer); 2551 2552 local_dec(&cpu_buffer->committing); 2553 2554 /* synchronize with interrupts */ 2555 barrier(); 2556 2557 /* 2558 * Need to account for interrupts coming in between the 2559 * updating of the commit page and the clearing of the 2560 * committing counter. 2561 */ 2562 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2563 !local_read(&cpu_buffer->committing)) { 2564 local_inc(&cpu_buffer->committing); 2565 goto again; 2566 } 2567 } 2568 2569 static inline void rb_event_discard(struct ring_buffer_event *event) 2570 { 2571 if (extended_time(event)) 2572 event = skip_time_extend(event); 2573 2574 /* array[0] holds the actual length for the discarded event */ 2575 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2576 event->type_len = RINGBUF_TYPE_PADDING; 2577 /* time delta must be non zero */ 2578 if (!event->time_delta) 2579 event->time_delta = 1; 2580 } 2581 2582 static __always_inline bool 2583 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2584 struct ring_buffer_event *event) 2585 { 2586 unsigned long addr = (unsigned long)event; 2587 unsigned long index; 2588 2589 index = rb_event_index(event); 2590 addr &= PAGE_MASK; 2591 2592 return cpu_buffer->commit_page->page == (void *)addr && 2593 rb_commit_index(cpu_buffer) == index; 2594 } 2595 2596 static __always_inline void 2597 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2598 struct ring_buffer_event *event) 2599 { 2600 u64 delta; 2601 2602 /* 2603 * The event first in the commit queue updates the 2604 * time stamp. 2605 */ 2606 if (rb_event_is_commit(cpu_buffer, event)) { 2607 /* 2608 * A commit event that is first on a page 2609 * updates the write timestamp with the page stamp 2610 */ 2611 if (!rb_event_index(event)) 2612 cpu_buffer->write_stamp = 2613 cpu_buffer->commit_page->page->time_stamp; 2614 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2615 delta = ring_buffer_event_time_stamp(event); 2616 cpu_buffer->write_stamp += delta; 2617 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 2618 delta = ring_buffer_event_time_stamp(event); 2619 cpu_buffer->write_stamp = delta; 2620 } else 2621 cpu_buffer->write_stamp += event->time_delta; 2622 } 2623 } 2624 2625 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2626 struct ring_buffer_event *event) 2627 { 2628 local_inc(&cpu_buffer->entries); 2629 rb_update_write_stamp(cpu_buffer, event); 2630 rb_end_commit(cpu_buffer); 2631 } 2632 2633 static __always_inline void 2634 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2635 { 2636 size_t nr_pages; 2637 size_t dirty; 2638 size_t full; 2639 2640 if (buffer->irq_work.waiters_pending) { 2641 buffer->irq_work.waiters_pending = false; 2642 /* irq_work_queue() supplies it's own memory barriers */ 2643 irq_work_queue(&buffer->irq_work.work); 2644 } 2645 2646 if (cpu_buffer->irq_work.waiters_pending) { 2647 cpu_buffer->irq_work.waiters_pending = false; 2648 /* irq_work_queue() supplies it's own memory barriers */ 2649 irq_work_queue(&cpu_buffer->irq_work.work); 2650 } 2651 2652 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2653 return; 2654 2655 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2656 return; 2657 2658 if (!cpu_buffer->irq_work.full_waiters_pending) 2659 return; 2660 2661 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2662 2663 full = cpu_buffer->shortest_full; 2664 nr_pages = cpu_buffer->nr_pages; 2665 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2666 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2667 return; 2668 2669 cpu_buffer->irq_work.wakeup_full = true; 2670 cpu_buffer->irq_work.full_waiters_pending = false; 2671 /* irq_work_queue() supplies it's own memory barriers */ 2672 irq_work_queue(&cpu_buffer->irq_work.work); 2673 } 2674 2675 /* 2676 * The lock and unlock are done within a preempt disable section. 2677 * The current_context per_cpu variable can only be modified 2678 * by the current task between lock and unlock. But it can 2679 * be modified more than once via an interrupt. To pass this 2680 * information from the lock to the unlock without having to 2681 * access the 'in_interrupt()' functions again (which do show 2682 * a bit of overhead in something as critical as function tracing, 2683 * we use a bitmask trick. 2684 * 2685 * bit 0 = NMI context 2686 * bit 1 = IRQ context 2687 * bit 2 = SoftIRQ context 2688 * bit 3 = normal context. 2689 * 2690 * This works because this is the order of contexts that can 2691 * preempt other contexts. A SoftIRQ never preempts an IRQ 2692 * context. 2693 * 2694 * When the context is determined, the corresponding bit is 2695 * checked and set (if it was set, then a recursion of that context 2696 * happened). 2697 * 2698 * On unlock, we need to clear this bit. To do so, just subtract 2699 * 1 from the current_context and AND it to itself. 2700 * 2701 * (binary) 2702 * 101 - 1 = 100 2703 * 101 & 100 = 100 (clearing bit zero) 2704 * 2705 * 1010 - 1 = 1001 2706 * 1010 & 1001 = 1000 (clearing bit 1) 2707 * 2708 * The least significant bit can be cleared this way, and it 2709 * just so happens that it is the same bit corresponding to 2710 * the current context. 2711 */ 2712 2713 static __always_inline int 2714 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2715 { 2716 unsigned int val = cpu_buffer->current_context; 2717 unsigned long pc = preempt_count(); 2718 int bit; 2719 2720 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 2721 bit = RB_CTX_NORMAL; 2722 else 2723 bit = pc & NMI_MASK ? RB_CTX_NMI : 2724 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 2725 2726 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 2727 return 1; 2728 2729 val |= (1 << (bit + cpu_buffer->nest)); 2730 cpu_buffer->current_context = val; 2731 2732 return 0; 2733 } 2734 2735 static __always_inline void 2736 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2737 { 2738 cpu_buffer->current_context &= 2739 cpu_buffer->current_context - (1 << cpu_buffer->nest); 2740 } 2741 2742 /* The recursive locking above uses 4 bits */ 2743 #define NESTED_BITS 4 2744 2745 /** 2746 * ring_buffer_nest_start - Allow to trace while nested 2747 * @buffer: The ring buffer to modify 2748 * 2749 * The ring buffer has a safety mechanism to prevent recursion. 2750 * But there may be a case where a trace needs to be done while 2751 * tracing something else. In this case, calling this function 2752 * will allow this function to nest within a currently active 2753 * ring_buffer_lock_reserve(). 2754 * 2755 * Call this function before calling another ring_buffer_lock_reserve() and 2756 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 2757 */ 2758 void ring_buffer_nest_start(struct ring_buffer *buffer) 2759 { 2760 struct ring_buffer_per_cpu *cpu_buffer; 2761 int cpu; 2762 2763 /* Enabled by ring_buffer_nest_end() */ 2764 preempt_disable_notrace(); 2765 cpu = raw_smp_processor_id(); 2766 cpu_buffer = buffer->buffers[cpu]; 2767 /* This is the shift value for the above recursive locking */ 2768 cpu_buffer->nest += NESTED_BITS; 2769 } 2770 2771 /** 2772 * ring_buffer_nest_end - Allow to trace while nested 2773 * @buffer: The ring buffer to modify 2774 * 2775 * Must be called after ring_buffer_nest_start() and after the 2776 * ring_buffer_unlock_commit(). 2777 */ 2778 void ring_buffer_nest_end(struct ring_buffer *buffer) 2779 { 2780 struct ring_buffer_per_cpu *cpu_buffer; 2781 int cpu; 2782 2783 /* disabled by ring_buffer_nest_start() */ 2784 cpu = raw_smp_processor_id(); 2785 cpu_buffer = buffer->buffers[cpu]; 2786 /* This is the shift value for the above recursive locking */ 2787 cpu_buffer->nest -= NESTED_BITS; 2788 preempt_enable_notrace(); 2789 } 2790 2791 /** 2792 * ring_buffer_unlock_commit - commit a reserved 2793 * @buffer: The buffer to commit to 2794 * @event: The event pointer to commit. 2795 * 2796 * This commits the data to the ring buffer, and releases any locks held. 2797 * 2798 * Must be paired with ring_buffer_lock_reserve. 2799 */ 2800 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2801 struct ring_buffer_event *event) 2802 { 2803 struct ring_buffer_per_cpu *cpu_buffer; 2804 int cpu = raw_smp_processor_id(); 2805 2806 cpu_buffer = buffer->buffers[cpu]; 2807 2808 rb_commit(cpu_buffer, event); 2809 2810 rb_wakeups(buffer, cpu_buffer); 2811 2812 trace_recursive_unlock(cpu_buffer); 2813 2814 preempt_enable_notrace(); 2815 2816 return 0; 2817 } 2818 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2819 2820 static noinline void 2821 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2822 struct rb_event_info *info) 2823 { 2824 WARN_ONCE(info->delta > (1ULL << 59), 2825 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2826 (unsigned long long)info->delta, 2827 (unsigned long long)info->ts, 2828 (unsigned long long)cpu_buffer->write_stamp, 2829 sched_clock_stable() ? "" : 2830 "If you just came from a suspend/resume,\n" 2831 "please switch to the trace global clock:\n" 2832 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2833 "or add trace_clock=global to the kernel command line\n"); 2834 info->add_timestamp = 1; 2835 } 2836 2837 static struct ring_buffer_event * 2838 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2839 struct rb_event_info *info) 2840 { 2841 struct ring_buffer_event *event; 2842 struct buffer_page *tail_page; 2843 unsigned long tail, write; 2844 2845 /* 2846 * If the time delta since the last event is too big to 2847 * hold in the time field of the event, then we append a 2848 * TIME EXTEND event ahead of the data event. 2849 */ 2850 if (unlikely(info->add_timestamp)) 2851 info->length += RB_LEN_TIME_EXTEND; 2852 2853 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2854 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2855 write = local_add_return(info->length, &tail_page->write); 2856 2857 /* set write to only the index of the write */ 2858 write &= RB_WRITE_MASK; 2859 tail = write - info->length; 2860 2861 /* 2862 * If this is the first commit on the page, then it has the same 2863 * timestamp as the page itself. 2864 */ 2865 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer)) 2866 info->delta = 0; 2867 2868 /* See if we shot pass the end of this buffer page */ 2869 if (unlikely(write > BUF_PAGE_SIZE)) 2870 return rb_move_tail(cpu_buffer, tail, info); 2871 2872 /* We reserved something on the buffer */ 2873 2874 event = __rb_page_index(tail_page, tail); 2875 rb_update_event(cpu_buffer, event, info); 2876 2877 local_inc(&tail_page->entries); 2878 2879 /* 2880 * If this is the first commit on the page, then update 2881 * its timestamp. 2882 */ 2883 if (!tail) 2884 tail_page->page->time_stamp = info->ts; 2885 2886 /* account for these added bytes */ 2887 local_add(info->length, &cpu_buffer->entries_bytes); 2888 2889 return event; 2890 } 2891 2892 static __always_inline struct ring_buffer_event * 2893 rb_reserve_next_event(struct ring_buffer *buffer, 2894 struct ring_buffer_per_cpu *cpu_buffer, 2895 unsigned long length) 2896 { 2897 struct ring_buffer_event *event; 2898 struct rb_event_info info; 2899 int nr_loops = 0; 2900 u64 diff; 2901 2902 rb_start_commit(cpu_buffer); 2903 2904 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2905 /* 2906 * Due to the ability to swap a cpu buffer from a buffer 2907 * it is possible it was swapped before we committed. 2908 * (committing stops a swap). We check for it here and 2909 * if it happened, we have to fail the write. 2910 */ 2911 barrier(); 2912 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2913 local_dec(&cpu_buffer->committing); 2914 local_dec(&cpu_buffer->commits); 2915 return NULL; 2916 } 2917 #endif 2918 2919 info.length = rb_calculate_event_length(length); 2920 again: 2921 info.add_timestamp = 0; 2922 info.delta = 0; 2923 2924 /* 2925 * We allow for interrupts to reenter here and do a trace. 2926 * If one does, it will cause this original code to loop 2927 * back here. Even with heavy interrupts happening, this 2928 * should only happen a few times in a row. If this happens 2929 * 1000 times in a row, there must be either an interrupt 2930 * storm or we have something buggy. 2931 * Bail! 2932 */ 2933 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2934 goto out_fail; 2935 2936 info.ts = rb_time_stamp(cpu_buffer->buffer); 2937 diff = info.ts - cpu_buffer->write_stamp; 2938 2939 /* make sure this diff is calculated here */ 2940 barrier(); 2941 2942 if (ring_buffer_time_stamp_abs(buffer)) { 2943 info.delta = info.ts; 2944 rb_handle_timestamp(cpu_buffer, &info); 2945 } else /* Did the write stamp get updated already? */ 2946 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2947 info.delta = diff; 2948 if (unlikely(test_time_stamp(info.delta))) 2949 rb_handle_timestamp(cpu_buffer, &info); 2950 } 2951 2952 event = __rb_reserve_next(cpu_buffer, &info); 2953 2954 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2955 if (info.add_timestamp) 2956 info.length -= RB_LEN_TIME_EXTEND; 2957 goto again; 2958 } 2959 2960 if (!event) 2961 goto out_fail; 2962 2963 return event; 2964 2965 out_fail: 2966 rb_end_commit(cpu_buffer); 2967 return NULL; 2968 } 2969 2970 /** 2971 * ring_buffer_lock_reserve - reserve a part of the buffer 2972 * @buffer: the ring buffer to reserve from 2973 * @length: the length of the data to reserve (excluding event header) 2974 * 2975 * Returns a reserved event on the ring buffer to copy directly to. 2976 * The user of this interface will need to get the body to write into 2977 * and can use the ring_buffer_event_data() interface. 2978 * 2979 * The length is the length of the data needed, not the event length 2980 * which also includes the event header. 2981 * 2982 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2983 * If NULL is returned, then nothing has been allocated or locked. 2984 */ 2985 struct ring_buffer_event * 2986 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2987 { 2988 struct ring_buffer_per_cpu *cpu_buffer; 2989 struct ring_buffer_event *event; 2990 int cpu; 2991 2992 /* If we are tracing schedule, we don't want to recurse */ 2993 preempt_disable_notrace(); 2994 2995 if (unlikely(atomic_read(&buffer->record_disabled))) 2996 goto out; 2997 2998 cpu = raw_smp_processor_id(); 2999 3000 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3001 goto out; 3002 3003 cpu_buffer = buffer->buffers[cpu]; 3004 3005 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3006 goto out; 3007 3008 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3009 goto out; 3010 3011 if (unlikely(trace_recursive_lock(cpu_buffer))) 3012 goto out; 3013 3014 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3015 if (!event) 3016 goto out_unlock; 3017 3018 return event; 3019 3020 out_unlock: 3021 trace_recursive_unlock(cpu_buffer); 3022 out: 3023 preempt_enable_notrace(); 3024 return NULL; 3025 } 3026 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3027 3028 /* 3029 * Decrement the entries to the page that an event is on. 3030 * The event does not even need to exist, only the pointer 3031 * to the page it is on. This may only be called before the commit 3032 * takes place. 3033 */ 3034 static inline void 3035 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3036 struct ring_buffer_event *event) 3037 { 3038 unsigned long addr = (unsigned long)event; 3039 struct buffer_page *bpage = cpu_buffer->commit_page; 3040 struct buffer_page *start; 3041 3042 addr &= PAGE_MASK; 3043 3044 /* Do the likely case first */ 3045 if (likely(bpage->page == (void *)addr)) { 3046 local_dec(&bpage->entries); 3047 return; 3048 } 3049 3050 /* 3051 * Because the commit page may be on the reader page we 3052 * start with the next page and check the end loop there. 3053 */ 3054 rb_inc_page(cpu_buffer, &bpage); 3055 start = bpage; 3056 do { 3057 if (bpage->page == (void *)addr) { 3058 local_dec(&bpage->entries); 3059 return; 3060 } 3061 rb_inc_page(cpu_buffer, &bpage); 3062 } while (bpage != start); 3063 3064 /* commit not part of this buffer?? */ 3065 RB_WARN_ON(cpu_buffer, 1); 3066 } 3067 3068 /** 3069 * ring_buffer_commit_discard - discard an event that has not been committed 3070 * @buffer: the ring buffer 3071 * @event: non committed event to discard 3072 * 3073 * Sometimes an event that is in the ring buffer needs to be ignored. 3074 * This function lets the user discard an event in the ring buffer 3075 * and then that event will not be read later. 3076 * 3077 * This function only works if it is called before the item has been 3078 * committed. It will try to free the event from the ring buffer 3079 * if another event has not been added behind it. 3080 * 3081 * If another event has been added behind it, it will set the event 3082 * up as discarded, and perform the commit. 3083 * 3084 * If this function is called, do not call ring_buffer_unlock_commit on 3085 * the event. 3086 */ 3087 void ring_buffer_discard_commit(struct ring_buffer *buffer, 3088 struct ring_buffer_event *event) 3089 { 3090 struct ring_buffer_per_cpu *cpu_buffer; 3091 int cpu; 3092 3093 /* The event is discarded regardless */ 3094 rb_event_discard(event); 3095 3096 cpu = smp_processor_id(); 3097 cpu_buffer = buffer->buffers[cpu]; 3098 3099 /* 3100 * This must only be called if the event has not been 3101 * committed yet. Thus we can assume that preemption 3102 * is still disabled. 3103 */ 3104 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3105 3106 rb_decrement_entry(cpu_buffer, event); 3107 if (rb_try_to_discard(cpu_buffer, event)) 3108 goto out; 3109 3110 /* 3111 * The commit is still visible by the reader, so we 3112 * must still update the timestamp. 3113 */ 3114 rb_update_write_stamp(cpu_buffer, event); 3115 out: 3116 rb_end_commit(cpu_buffer); 3117 3118 trace_recursive_unlock(cpu_buffer); 3119 3120 preempt_enable_notrace(); 3121 3122 } 3123 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3124 3125 /** 3126 * ring_buffer_write - write data to the buffer without reserving 3127 * @buffer: The ring buffer to write to. 3128 * @length: The length of the data being written (excluding the event header) 3129 * @data: The data to write to the buffer. 3130 * 3131 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3132 * one function. If you already have the data to write to the buffer, it 3133 * may be easier to simply call this function. 3134 * 3135 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3136 * and not the length of the event which would hold the header. 3137 */ 3138 int ring_buffer_write(struct ring_buffer *buffer, 3139 unsigned long length, 3140 void *data) 3141 { 3142 struct ring_buffer_per_cpu *cpu_buffer; 3143 struct ring_buffer_event *event; 3144 void *body; 3145 int ret = -EBUSY; 3146 int cpu; 3147 3148 preempt_disable_notrace(); 3149 3150 if (atomic_read(&buffer->record_disabled)) 3151 goto out; 3152 3153 cpu = raw_smp_processor_id(); 3154 3155 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3156 goto out; 3157 3158 cpu_buffer = buffer->buffers[cpu]; 3159 3160 if (atomic_read(&cpu_buffer->record_disabled)) 3161 goto out; 3162 3163 if (length > BUF_MAX_DATA_SIZE) 3164 goto out; 3165 3166 if (unlikely(trace_recursive_lock(cpu_buffer))) 3167 goto out; 3168 3169 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3170 if (!event) 3171 goto out_unlock; 3172 3173 body = rb_event_data(event); 3174 3175 memcpy(body, data, length); 3176 3177 rb_commit(cpu_buffer, event); 3178 3179 rb_wakeups(buffer, cpu_buffer); 3180 3181 ret = 0; 3182 3183 out_unlock: 3184 trace_recursive_unlock(cpu_buffer); 3185 3186 out: 3187 preempt_enable_notrace(); 3188 3189 return ret; 3190 } 3191 EXPORT_SYMBOL_GPL(ring_buffer_write); 3192 3193 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3194 { 3195 struct buffer_page *reader = cpu_buffer->reader_page; 3196 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3197 struct buffer_page *commit = cpu_buffer->commit_page; 3198 3199 /* In case of error, head will be NULL */ 3200 if (unlikely(!head)) 3201 return true; 3202 3203 return reader->read == rb_page_commit(reader) && 3204 (commit == reader || 3205 (commit == head && 3206 head->read == rb_page_commit(commit))); 3207 } 3208 3209 /** 3210 * ring_buffer_record_disable - stop all writes into the buffer 3211 * @buffer: The ring buffer to stop writes to. 3212 * 3213 * This prevents all writes to the buffer. Any attempt to write 3214 * to the buffer after this will fail and return NULL. 3215 * 3216 * The caller should call synchronize_rcu() after this. 3217 */ 3218 void ring_buffer_record_disable(struct ring_buffer *buffer) 3219 { 3220 atomic_inc(&buffer->record_disabled); 3221 } 3222 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3223 3224 /** 3225 * ring_buffer_record_enable - enable writes to the buffer 3226 * @buffer: The ring buffer to enable writes 3227 * 3228 * Note, multiple disables will need the same number of enables 3229 * to truly enable the writing (much like preempt_disable). 3230 */ 3231 void ring_buffer_record_enable(struct ring_buffer *buffer) 3232 { 3233 atomic_dec(&buffer->record_disabled); 3234 } 3235 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3236 3237 /** 3238 * ring_buffer_record_off - stop all writes into the buffer 3239 * @buffer: The ring buffer to stop writes to. 3240 * 3241 * This prevents all writes to the buffer. Any attempt to write 3242 * to the buffer after this will fail and return NULL. 3243 * 3244 * This is different than ring_buffer_record_disable() as 3245 * it works like an on/off switch, where as the disable() version 3246 * must be paired with a enable(). 3247 */ 3248 void ring_buffer_record_off(struct ring_buffer *buffer) 3249 { 3250 unsigned int rd; 3251 unsigned int new_rd; 3252 3253 do { 3254 rd = atomic_read(&buffer->record_disabled); 3255 new_rd = rd | RB_BUFFER_OFF; 3256 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3257 } 3258 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3259 3260 /** 3261 * ring_buffer_record_on - restart writes into the buffer 3262 * @buffer: The ring buffer to start writes to. 3263 * 3264 * This enables all writes to the buffer that was disabled by 3265 * ring_buffer_record_off(). 3266 * 3267 * This is different than ring_buffer_record_enable() as 3268 * it works like an on/off switch, where as the enable() version 3269 * must be paired with a disable(). 3270 */ 3271 void ring_buffer_record_on(struct ring_buffer *buffer) 3272 { 3273 unsigned int rd; 3274 unsigned int new_rd; 3275 3276 do { 3277 rd = atomic_read(&buffer->record_disabled); 3278 new_rd = rd & ~RB_BUFFER_OFF; 3279 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3280 } 3281 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3282 3283 /** 3284 * ring_buffer_record_is_on - return true if the ring buffer can write 3285 * @buffer: The ring buffer to see if write is enabled 3286 * 3287 * Returns true if the ring buffer is in a state that it accepts writes. 3288 */ 3289 bool ring_buffer_record_is_on(struct ring_buffer *buffer) 3290 { 3291 return !atomic_read(&buffer->record_disabled); 3292 } 3293 3294 /** 3295 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3296 * @buffer: The ring buffer to see if write is set enabled 3297 * 3298 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3299 * Note that this does NOT mean it is in a writable state. 3300 * 3301 * It may return true when the ring buffer has been disabled by 3302 * ring_buffer_record_disable(), as that is a temporary disabling of 3303 * the ring buffer. 3304 */ 3305 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer) 3306 { 3307 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3308 } 3309 3310 /** 3311 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3312 * @buffer: The ring buffer to stop writes to. 3313 * @cpu: The CPU buffer to stop 3314 * 3315 * This prevents all writes to the buffer. Any attempt to write 3316 * to the buffer after this will fail and return NULL. 3317 * 3318 * The caller should call synchronize_rcu() after this. 3319 */ 3320 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3321 { 3322 struct ring_buffer_per_cpu *cpu_buffer; 3323 3324 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3325 return; 3326 3327 cpu_buffer = buffer->buffers[cpu]; 3328 atomic_inc(&cpu_buffer->record_disabled); 3329 } 3330 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3331 3332 /** 3333 * ring_buffer_record_enable_cpu - enable writes to the buffer 3334 * @buffer: The ring buffer to enable writes 3335 * @cpu: The CPU to enable. 3336 * 3337 * Note, multiple disables will need the same number of enables 3338 * to truly enable the writing (much like preempt_disable). 3339 */ 3340 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3341 { 3342 struct ring_buffer_per_cpu *cpu_buffer; 3343 3344 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3345 return; 3346 3347 cpu_buffer = buffer->buffers[cpu]; 3348 atomic_dec(&cpu_buffer->record_disabled); 3349 } 3350 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3351 3352 /* 3353 * The total entries in the ring buffer is the running counter 3354 * of entries entered into the ring buffer, minus the sum of 3355 * the entries read from the ring buffer and the number of 3356 * entries that were overwritten. 3357 */ 3358 static inline unsigned long 3359 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3360 { 3361 return local_read(&cpu_buffer->entries) - 3362 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3363 } 3364 3365 /** 3366 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3367 * @buffer: The ring buffer 3368 * @cpu: The per CPU buffer to read from. 3369 */ 3370 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3371 { 3372 unsigned long flags; 3373 struct ring_buffer_per_cpu *cpu_buffer; 3374 struct buffer_page *bpage; 3375 u64 ret = 0; 3376 3377 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3378 return 0; 3379 3380 cpu_buffer = buffer->buffers[cpu]; 3381 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3382 /* 3383 * if the tail is on reader_page, oldest time stamp is on the reader 3384 * page 3385 */ 3386 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3387 bpage = cpu_buffer->reader_page; 3388 else 3389 bpage = rb_set_head_page(cpu_buffer); 3390 if (bpage) 3391 ret = bpage->page->time_stamp; 3392 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3393 3394 return ret; 3395 } 3396 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3397 3398 /** 3399 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3400 * @buffer: The ring buffer 3401 * @cpu: The per CPU buffer to read from. 3402 */ 3403 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3404 { 3405 struct ring_buffer_per_cpu *cpu_buffer; 3406 unsigned long ret; 3407 3408 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3409 return 0; 3410 3411 cpu_buffer = buffer->buffers[cpu]; 3412 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3413 3414 return ret; 3415 } 3416 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3417 3418 /** 3419 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3420 * @buffer: The ring buffer 3421 * @cpu: The per CPU buffer to get the entries from. 3422 */ 3423 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3424 { 3425 struct ring_buffer_per_cpu *cpu_buffer; 3426 3427 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3428 return 0; 3429 3430 cpu_buffer = buffer->buffers[cpu]; 3431 3432 return rb_num_of_entries(cpu_buffer); 3433 } 3434 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3435 3436 /** 3437 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3438 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3439 * @buffer: The ring buffer 3440 * @cpu: The per CPU buffer to get the number of overruns from 3441 */ 3442 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3443 { 3444 struct ring_buffer_per_cpu *cpu_buffer; 3445 unsigned long ret; 3446 3447 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3448 return 0; 3449 3450 cpu_buffer = buffer->buffers[cpu]; 3451 ret = local_read(&cpu_buffer->overrun); 3452 3453 return ret; 3454 } 3455 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3456 3457 /** 3458 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3459 * commits failing due to the buffer wrapping around while there are uncommitted 3460 * events, such as during an interrupt storm. 3461 * @buffer: The ring buffer 3462 * @cpu: The per CPU buffer to get the number of overruns from 3463 */ 3464 unsigned long 3465 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3466 { 3467 struct ring_buffer_per_cpu *cpu_buffer; 3468 unsigned long ret; 3469 3470 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3471 return 0; 3472 3473 cpu_buffer = buffer->buffers[cpu]; 3474 ret = local_read(&cpu_buffer->commit_overrun); 3475 3476 return ret; 3477 } 3478 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3479 3480 /** 3481 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3482 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3483 * @buffer: The ring buffer 3484 * @cpu: The per CPU buffer to get the number of overruns from 3485 */ 3486 unsigned long 3487 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3488 { 3489 struct ring_buffer_per_cpu *cpu_buffer; 3490 unsigned long ret; 3491 3492 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3493 return 0; 3494 3495 cpu_buffer = buffer->buffers[cpu]; 3496 ret = local_read(&cpu_buffer->dropped_events); 3497 3498 return ret; 3499 } 3500 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3501 3502 /** 3503 * ring_buffer_read_events_cpu - get the number of events successfully read 3504 * @buffer: The ring buffer 3505 * @cpu: The per CPU buffer to get the number of events read 3506 */ 3507 unsigned long 3508 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3509 { 3510 struct ring_buffer_per_cpu *cpu_buffer; 3511 3512 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3513 return 0; 3514 3515 cpu_buffer = buffer->buffers[cpu]; 3516 return cpu_buffer->read; 3517 } 3518 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3519 3520 /** 3521 * ring_buffer_entries - get the number of entries in a buffer 3522 * @buffer: The ring buffer 3523 * 3524 * Returns the total number of entries in the ring buffer 3525 * (all CPU entries) 3526 */ 3527 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3528 { 3529 struct ring_buffer_per_cpu *cpu_buffer; 3530 unsigned long entries = 0; 3531 int cpu; 3532 3533 /* if you care about this being correct, lock the buffer */ 3534 for_each_buffer_cpu(buffer, cpu) { 3535 cpu_buffer = buffer->buffers[cpu]; 3536 entries += rb_num_of_entries(cpu_buffer); 3537 } 3538 3539 return entries; 3540 } 3541 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3542 3543 /** 3544 * ring_buffer_overruns - get the number of overruns in buffer 3545 * @buffer: The ring buffer 3546 * 3547 * Returns the total number of overruns in the ring buffer 3548 * (all CPU entries) 3549 */ 3550 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3551 { 3552 struct ring_buffer_per_cpu *cpu_buffer; 3553 unsigned long overruns = 0; 3554 int cpu; 3555 3556 /* if you care about this being correct, lock the buffer */ 3557 for_each_buffer_cpu(buffer, cpu) { 3558 cpu_buffer = buffer->buffers[cpu]; 3559 overruns += local_read(&cpu_buffer->overrun); 3560 } 3561 3562 return overruns; 3563 } 3564 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3565 3566 static void rb_iter_reset(struct ring_buffer_iter *iter) 3567 { 3568 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3569 3570 /* Iterator usage is expected to have record disabled */ 3571 iter->head_page = cpu_buffer->reader_page; 3572 iter->head = cpu_buffer->reader_page->read; 3573 3574 iter->cache_reader_page = iter->head_page; 3575 iter->cache_read = cpu_buffer->read; 3576 3577 if (iter->head) 3578 iter->read_stamp = cpu_buffer->read_stamp; 3579 else 3580 iter->read_stamp = iter->head_page->page->time_stamp; 3581 } 3582 3583 /** 3584 * ring_buffer_iter_reset - reset an iterator 3585 * @iter: The iterator to reset 3586 * 3587 * Resets the iterator, so that it will start from the beginning 3588 * again. 3589 */ 3590 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3591 { 3592 struct ring_buffer_per_cpu *cpu_buffer; 3593 unsigned long flags; 3594 3595 if (!iter) 3596 return; 3597 3598 cpu_buffer = iter->cpu_buffer; 3599 3600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3601 rb_iter_reset(iter); 3602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3603 } 3604 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3605 3606 /** 3607 * ring_buffer_iter_empty - check if an iterator has no more to read 3608 * @iter: The iterator to check 3609 */ 3610 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3611 { 3612 struct ring_buffer_per_cpu *cpu_buffer; 3613 struct buffer_page *reader; 3614 struct buffer_page *head_page; 3615 struct buffer_page *commit_page; 3616 unsigned commit; 3617 3618 cpu_buffer = iter->cpu_buffer; 3619 3620 /* Remember, trace recording is off when iterator is in use */ 3621 reader = cpu_buffer->reader_page; 3622 head_page = cpu_buffer->head_page; 3623 commit_page = cpu_buffer->commit_page; 3624 commit = rb_page_commit(commit_page); 3625 3626 return ((iter->head_page == commit_page && iter->head == commit) || 3627 (iter->head_page == reader && commit_page == head_page && 3628 head_page->read == commit && 3629 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3630 } 3631 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3632 3633 static void 3634 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3635 struct ring_buffer_event *event) 3636 { 3637 u64 delta; 3638 3639 switch (event->type_len) { 3640 case RINGBUF_TYPE_PADDING: 3641 return; 3642 3643 case RINGBUF_TYPE_TIME_EXTEND: 3644 delta = ring_buffer_event_time_stamp(event); 3645 cpu_buffer->read_stamp += delta; 3646 return; 3647 3648 case RINGBUF_TYPE_TIME_STAMP: 3649 delta = ring_buffer_event_time_stamp(event); 3650 cpu_buffer->read_stamp = delta; 3651 return; 3652 3653 case RINGBUF_TYPE_DATA: 3654 cpu_buffer->read_stamp += event->time_delta; 3655 return; 3656 3657 default: 3658 BUG(); 3659 } 3660 return; 3661 } 3662 3663 static void 3664 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3665 struct ring_buffer_event *event) 3666 { 3667 u64 delta; 3668 3669 switch (event->type_len) { 3670 case RINGBUF_TYPE_PADDING: 3671 return; 3672 3673 case RINGBUF_TYPE_TIME_EXTEND: 3674 delta = ring_buffer_event_time_stamp(event); 3675 iter->read_stamp += delta; 3676 return; 3677 3678 case RINGBUF_TYPE_TIME_STAMP: 3679 delta = ring_buffer_event_time_stamp(event); 3680 iter->read_stamp = delta; 3681 return; 3682 3683 case RINGBUF_TYPE_DATA: 3684 iter->read_stamp += event->time_delta; 3685 return; 3686 3687 default: 3688 BUG(); 3689 } 3690 return; 3691 } 3692 3693 static struct buffer_page * 3694 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3695 { 3696 struct buffer_page *reader = NULL; 3697 unsigned long overwrite; 3698 unsigned long flags; 3699 int nr_loops = 0; 3700 int ret; 3701 3702 local_irq_save(flags); 3703 arch_spin_lock(&cpu_buffer->lock); 3704 3705 again: 3706 /* 3707 * This should normally only loop twice. But because the 3708 * start of the reader inserts an empty page, it causes 3709 * a case where we will loop three times. There should be no 3710 * reason to loop four times (that I know of). 3711 */ 3712 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3713 reader = NULL; 3714 goto out; 3715 } 3716 3717 reader = cpu_buffer->reader_page; 3718 3719 /* If there's more to read, return this page */ 3720 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3721 goto out; 3722 3723 /* Never should we have an index greater than the size */ 3724 if (RB_WARN_ON(cpu_buffer, 3725 cpu_buffer->reader_page->read > rb_page_size(reader))) 3726 goto out; 3727 3728 /* check if we caught up to the tail */ 3729 reader = NULL; 3730 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3731 goto out; 3732 3733 /* Don't bother swapping if the ring buffer is empty */ 3734 if (rb_num_of_entries(cpu_buffer) == 0) 3735 goto out; 3736 3737 /* 3738 * Reset the reader page to size zero. 3739 */ 3740 local_set(&cpu_buffer->reader_page->write, 0); 3741 local_set(&cpu_buffer->reader_page->entries, 0); 3742 local_set(&cpu_buffer->reader_page->page->commit, 0); 3743 cpu_buffer->reader_page->real_end = 0; 3744 3745 spin: 3746 /* 3747 * Splice the empty reader page into the list around the head. 3748 */ 3749 reader = rb_set_head_page(cpu_buffer); 3750 if (!reader) 3751 goto out; 3752 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3753 cpu_buffer->reader_page->list.prev = reader->list.prev; 3754 3755 /* 3756 * cpu_buffer->pages just needs to point to the buffer, it 3757 * has no specific buffer page to point to. Lets move it out 3758 * of our way so we don't accidentally swap it. 3759 */ 3760 cpu_buffer->pages = reader->list.prev; 3761 3762 /* The reader page will be pointing to the new head */ 3763 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3764 3765 /* 3766 * We want to make sure we read the overruns after we set up our 3767 * pointers to the next object. The writer side does a 3768 * cmpxchg to cross pages which acts as the mb on the writer 3769 * side. Note, the reader will constantly fail the swap 3770 * while the writer is updating the pointers, so this 3771 * guarantees that the overwrite recorded here is the one we 3772 * want to compare with the last_overrun. 3773 */ 3774 smp_mb(); 3775 overwrite = local_read(&(cpu_buffer->overrun)); 3776 3777 /* 3778 * Here's the tricky part. 3779 * 3780 * We need to move the pointer past the header page. 3781 * But we can only do that if a writer is not currently 3782 * moving it. The page before the header page has the 3783 * flag bit '1' set if it is pointing to the page we want. 3784 * but if the writer is in the process of moving it 3785 * than it will be '2' or already moved '0'. 3786 */ 3787 3788 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3789 3790 /* 3791 * If we did not convert it, then we must try again. 3792 */ 3793 if (!ret) 3794 goto spin; 3795 3796 /* 3797 * Yay! We succeeded in replacing the page. 3798 * 3799 * Now make the new head point back to the reader page. 3800 */ 3801 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3802 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3803 3804 local_inc(&cpu_buffer->pages_read); 3805 3806 /* Finally update the reader page to the new head */ 3807 cpu_buffer->reader_page = reader; 3808 cpu_buffer->reader_page->read = 0; 3809 3810 if (overwrite != cpu_buffer->last_overrun) { 3811 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3812 cpu_buffer->last_overrun = overwrite; 3813 } 3814 3815 goto again; 3816 3817 out: 3818 /* Update the read_stamp on the first event */ 3819 if (reader && reader->read == 0) 3820 cpu_buffer->read_stamp = reader->page->time_stamp; 3821 3822 arch_spin_unlock(&cpu_buffer->lock); 3823 local_irq_restore(flags); 3824 3825 return reader; 3826 } 3827 3828 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3829 { 3830 struct ring_buffer_event *event; 3831 struct buffer_page *reader; 3832 unsigned length; 3833 3834 reader = rb_get_reader_page(cpu_buffer); 3835 3836 /* This function should not be called when buffer is empty */ 3837 if (RB_WARN_ON(cpu_buffer, !reader)) 3838 return; 3839 3840 event = rb_reader_event(cpu_buffer); 3841 3842 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3843 cpu_buffer->read++; 3844 3845 rb_update_read_stamp(cpu_buffer, event); 3846 3847 length = rb_event_length(event); 3848 cpu_buffer->reader_page->read += length; 3849 } 3850 3851 static void rb_advance_iter(struct ring_buffer_iter *iter) 3852 { 3853 struct ring_buffer_per_cpu *cpu_buffer; 3854 struct ring_buffer_event *event; 3855 unsigned length; 3856 3857 cpu_buffer = iter->cpu_buffer; 3858 3859 /* 3860 * Check if we are at the end of the buffer. 3861 */ 3862 if (iter->head >= rb_page_size(iter->head_page)) { 3863 /* discarded commits can make the page empty */ 3864 if (iter->head_page == cpu_buffer->commit_page) 3865 return; 3866 rb_inc_iter(iter); 3867 return; 3868 } 3869 3870 event = rb_iter_head_event(iter); 3871 3872 length = rb_event_length(event); 3873 3874 /* 3875 * This should not be called to advance the header if we are 3876 * at the tail of the buffer. 3877 */ 3878 if (RB_WARN_ON(cpu_buffer, 3879 (iter->head_page == cpu_buffer->commit_page) && 3880 (iter->head + length > rb_commit_index(cpu_buffer)))) 3881 return; 3882 3883 rb_update_iter_read_stamp(iter, event); 3884 3885 iter->head += length; 3886 3887 /* check for end of page padding */ 3888 if ((iter->head >= rb_page_size(iter->head_page)) && 3889 (iter->head_page != cpu_buffer->commit_page)) 3890 rb_inc_iter(iter); 3891 } 3892 3893 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3894 { 3895 return cpu_buffer->lost_events; 3896 } 3897 3898 static struct ring_buffer_event * 3899 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3900 unsigned long *lost_events) 3901 { 3902 struct ring_buffer_event *event; 3903 struct buffer_page *reader; 3904 int nr_loops = 0; 3905 3906 if (ts) 3907 *ts = 0; 3908 again: 3909 /* 3910 * We repeat when a time extend is encountered. 3911 * Since the time extend is always attached to a data event, 3912 * we should never loop more than once. 3913 * (We never hit the following condition more than twice). 3914 */ 3915 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3916 return NULL; 3917 3918 reader = rb_get_reader_page(cpu_buffer); 3919 if (!reader) 3920 return NULL; 3921 3922 event = rb_reader_event(cpu_buffer); 3923 3924 switch (event->type_len) { 3925 case RINGBUF_TYPE_PADDING: 3926 if (rb_null_event(event)) 3927 RB_WARN_ON(cpu_buffer, 1); 3928 /* 3929 * Because the writer could be discarding every 3930 * event it creates (which would probably be bad) 3931 * if we were to go back to "again" then we may never 3932 * catch up, and will trigger the warn on, or lock 3933 * the box. Return the padding, and we will release 3934 * the current locks, and try again. 3935 */ 3936 return event; 3937 3938 case RINGBUF_TYPE_TIME_EXTEND: 3939 /* Internal data, OK to advance */ 3940 rb_advance_reader(cpu_buffer); 3941 goto again; 3942 3943 case RINGBUF_TYPE_TIME_STAMP: 3944 if (ts) { 3945 *ts = ring_buffer_event_time_stamp(event); 3946 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3947 cpu_buffer->cpu, ts); 3948 } 3949 /* Internal data, OK to advance */ 3950 rb_advance_reader(cpu_buffer); 3951 goto again; 3952 3953 case RINGBUF_TYPE_DATA: 3954 if (ts && !(*ts)) { 3955 *ts = cpu_buffer->read_stamp + event->time_delta; 3956 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3957 cpu_buffer->cpu, ts); 3958 } 3959 if (lost_events) 3960 *lost_events = rb_lost_events(cpu_buffer); 3961 return event; 3962 3963 default: 3964 BUG(); 3965 } 3966 3967 return NULL; 3968 } 3969 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3970 3971 static struct ring_buffer_event * 3972 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3973 { 3974 struct ring_buffer *buffer; 3975 struct ring_buffer_per_cpu *cpu_buffer; 3976 struct ring_buffer_event *event; 3977 int nr_loops = 0; 3978 3979 if (ts) 3980 *ts = 0; 3981 3982 cpu_buffer = iter->cpu_buffer; 3983 buffer = cpu_buffer->buffer; 3984 3985 /* 3986 * Check if someone performed a consuming read to 3987 * the buffer. A consuming read invalidates the iterator 3988 * and we need to reset the iterator in this case. 3989 */ 3990 if (unlikely(iter->cache_read != cpu_buffer->read || 3991 iter->cache_reader_page != cpu_buffer->reader_page)) 3992 rb_iter_reset(iter); 3993 3994 again: 3995 if (ring_buffer_iter_empty(iter)) 3996 return NULL; 3997 3998 /* 3999 * We repeat when a time extend is encountered or we hit 4000 * the end of the page. Since the time extend is always attached 4001 * to a data event, we should never loop more than three times. 4002 * Once for going to next page, once on time extend, and 4003 * finally once to get the event. 4004 * (We never hit the following condition more than thrice). 4005 */ 4006 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 4007 return NULL; 4008 4009 if (rb_per_cpu_empty(cpu_buffer)) 4010 return NULL; 4011 4012 if (iter->head >= rb_page_size(iter->head_page)) { 4013 rb_inc_iter(iter); 4014 goto again; 4015 } 4016 4017 event = rb_iter_head_event(iter); 4018 4019 switch (event->type_len) { 4020 case RINGBUF_TYPE_PADDING: 4021 if (rb_null_event(event)) { 4022 rb_inc_iter(iter); 4023 goto again; 4024 } 4025 rb_advance_iter(iter); 4026 return event; 4027 4028 case RINGBUF_TYPE_TIME_EXTEND: 4029 /* Internal data, OK to advance */ 4030 rb_advance_iter(iter); 4031 goto again; 4032 4033 case RINGBUF_TYPE_TIME_STAMP: 4034 if (ts) { 4035 *ts = ring_buffer_event_time_stamp(event); 4036 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4037 cpu_buffer->cpu, ts); 4038 } 4039 /* Internal data, OK to advance */ 4040 rb_advance_iter(iter); 4041 goto again; 4042 4043 case RINGBUF_TYPE_DATA: 4044 if (ts && !(*ts)) { 4045 *ts = iter->read_stamp + event->time_delta; 4046 ring_buffer_normalize_time_stamp(buffer, 4047 cpu_buffer->cpu, ts); 4048 } 4049 return event; 4050 4051 default: 4052 BUG(); 4053 } 4054 4055 return NULL; 4056 } 4057 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4058 4059 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4060 { 4061 if (likely(!in_nmi())) { 4062 raw_spin_lock(&cpu_buffer->reader_lock); 4063 return true; 4064 } 4065 4066 /* 4067 * If an NMI die dumps out the content of the ring buffer 4068 * trylock must be used to prevent a deadlock if the NMI 4069 * preempted a task that holds the ring buffer locks. If 4070 * we get the lock then all is fine, if not, then continue 4071 * to do the read, but this can corrupt the ring buffer, 4072 * so it must be permanently disabled from future writes. 4073 * Reading from NMI is a oneshot deal. 4074 */ 4075 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4076 return true; 4077 4078 /* Continue without locking, but disable the ring buffer */ 4079 atomic_inc(&cpu_buffer->record_disabled); 4080 return false; 4081 } 4082 4083 static inline void 4084 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4085 { 4086 if (likely(locked)) 4087 raw_spin_unlock(&cpu_buffer->reader_lock); 4088 return; 4089 } 4090 4091 /** 4092 * ring_buffer_peek - peek at the next event to be read 4093 * @buffer: The ring buffer to read 4094 * @cpu: The cpu to peak at 4095 * @ts: The timestamp counter of this event. 4096 * @lost_events: a variable to store if events were lost (may be NULL) 4097 * 4098 * This will return the event that will be read next, but does 4099 * not consume the data. 4100 */ 4101 struct ring_buffer_event * 4102 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 4103 unsigned long *lost_events) 4104 { 4105 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4106 struct ring_buffer_event *event; 4107 unsigned long flags; 4108 bool dolock; 4109 4110 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4111 return NULL; 4112 4113 again: 4114 local_irq_save(flags); 4115 dolock = rb_reader_lock(cpu_buffer); 4116 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4117 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4118 rb_advance_reader(cpu_buffer); 4119 rb_reader_unlock(cpu_buffer, dolock); 4120 local_irq_restore(flags); 4121 4122 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4123 goto again; 4124 4125 return event; 4126 } 4127 4128 /** 4129 * ring_buffer_iter_peek - peek at the next event to be read 4130 * @iter: The ring buffer iterator 4131 * @ts: The timestamp counter of this event. 4132 * 4133 * This will return the event that will be read next, but does 4134 * not increment the iterator. 4135 */ 4136 struct ring_buffer_event * 4137 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4138 { 4139 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4140 struct ring_buffer_event *event; 4141 unsigned long flags; 4142 4143 again: 4144 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4145 event = rb_iter_peek(iter, ts); 4146 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4147 4148 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4149 goto again; 4150 4151 return event; 4152 } 4153 4154 /** 4155 * ring_buffer_consume - return an event and consume it 4156 * @buffer: The ring buffer to get the next event from 4157 * @cpu: the cpu to read the buffer from 4158 * @ts: a variable to store the timestamp (may be NULL) 4159 * @lost_events: a variable to store if events were lost (may be NULL) 4160 * 4161 * Returns the next event in the ring buffer, and that event is consumed. 4162 * Meaning, that sequential reads will keep returning a different event, 4163 * and eventually empty the ring buffer if the producer is slower. 4164 */ 4165 struct ring_buffer_event * 4166 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 4167 unsigned long *lost_events) 4168 { 4169 struct ring_buffer_per_cpu *cpu_buffer; 4170 struct ring_buffer_event *event = NULL; 4171 unsigned long flags; 4172 bool dolock; 4173 4174 again: 4175 /* might be called in atomic */ 4176 preempt_disable(); 4177 4178 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4179 goto out; 4180 4181 cpu_buffer = buffer->buffers[cpu]; 4182 local_irq_save(flags); 4183 dolock = rb_reader_lock(cpu_buffer); 4184 4185 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4186 if (event) { 4187 cpu_buffer->lost_events = 0; 4188 rb_advance_reader(cpu_buffer); 4189 } 4190 4191 rb_reader_unlock(cpu_buffer, dolock); 4192 local_irq_restore(flags); 4193 4194 out: 4195 preempt_enable(); 4196 4197 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4198 goto again; 4199 4200 return event; 4201 } 4202 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4203 4204 /** 4205 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4206 * @buffer: The ring buffer to read from 4207 * @cpu: The cpu buffer to iterate over 4208 * 4209 * This performs the initial preparations necessary to iterate 4210 * through the buffer. Memory is allocated, buffer recording 4211 * is disabled, and the iterator pointer is returned to the caller. 4212 * 4213 * Disabling buffer recording prevents the reading from being 4214 * corrupted. This is not a consuming read, so a producer is not 4215 * expected. 4216 * 4217 * After a sequence of ring_buffer_read_prepare calls, the user is 4218 * expected to make at least one call to ring_buffer_read_prepare_sync. 4219 * Afterwards, ring_buffer_read_start is invoked to get things going 4220 * for real. 4221 * 4222 * This overall must be paired with ring_buffer_read_finish. 4223 */ 4224 struct ring_buffer_iter * 4225 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4226 { 4227 struct ring_buffer_per_cpu *cpu_buffer; 4228 struct ring_buffer_iter *iter; 4229 4230 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4231 return NULL; 4232 4233 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4234 if (!iter) 4235 return NULL; 4236 4237 cpu_buffer = buffer->buffers[cpu]; 4238 4239 iter->cpu_buffer = cpu_buffer; 4240 4241 atomic_inc(&buffer->resize_disabled); 4242 atomic_inc(&cpu_buffer->record_disabled); 4243 4244 return iter; 4245 } 4246 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4247 4248 /** 4249 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4250 * 4251 * All previously invoked ring_buffer_read_prepare calls to prepare 4252 * iterators will be synchronized. Afterwards, read_buffer_read_start 4253 * calls on those iterators are allowed. 4254 */ 4255 void 4256 ring_buffer_read_prepare_sync(void) 4257 { 4258 synchronize_rcu(); 4259 } 4260 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4261 4262 /** 4263 * ring_buffer_read_start - start a non consuming read of the buffer 4264 * @iter: The iterator returned by ring_buffer_read_prepare 4265 * 4266 * This finalizes the startup of an iteration through the buffer. 4267 * The iterator comes from a call to ring_buffer_read_prepare and 4268 * an intervening ring_buffer_read_prepare_sync must have been 4269 * performed. 4270 * 4271 * Must be paired with ring_buffer_read_finish. 4272 */ 4273 void 4274 ring_buffer_read_start(struct ring_buffer_iter *iter) 4275 { 4276 struct ring_buffer_per_cpu *cpu_buffer; 4277 unsigned long flags; 4278 4279 if (!iter) 4280 return; 4281 4282 cpu_buffer = iter->cpu_buffer; 4283 4284 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4285 arch_spin_lock(&cpu_buffer->lock); 4286 rb_iter_reset(iter); 4287 arch_spin_unlock(&cpu_buffer->lock); 4288 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4289 } 4290 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4291 4292 /** 4293 * ring_buffer_read_finish - finish reading the iterator of the buffer 4294 * @iter: The iterator retrieved by ring_buffer_start 4295 * 4296 * This re-enables the recording to the buffer, and frees the 4297 * iterator. 4298 */ 4299 void 4300 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4301 { 4302 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4303 unsigned long flags; 4304 4305 /* 4306 * Ring buffer is disabled from recording, here's a good place 4307 * to check the integrity of the ring buffer. 4308 * Must prevent readers from trying to read, as the check 4309 * clears the HEAD page and readers require it. 4310 */ 4311 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4312 rb_check_pages(cpu_buffer); 4313 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4314 4315 atomic_dec(&cpu_buffer->record_disabled); 4316 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4317 kfree(iter); 4318 } 4319 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4320 4321 /** 4322 * ring_buffer_read - read the next item in the ring buffer by the iterator 4323 * @iter: The ring buffer iterator 4324 * @ts: The time stamp of the event read. 4325 * 4326 * This reads the next event in the ring buffer and increments the iterator. 4327 */ 4328 struct ring_buffer_event * 4329 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4330 { 4331 struct ring_buffer_event *event; 4332 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4333 unsigned long flags; 4334 4335 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4336 again: 4337 event = rb_iter_peek(iter, ts); 4338 if (!event) 4339 goto out; 4340 4341 if (event->type_len == RINGBUF_TYPE_PADDING) 4342 goto again; 4343 4344 rb_advance_iter(iter); 4345 out: 4346 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4347 4348 return event; 4349 } 4350 EXPORT_SYMBOL_GPL(ring_buffer_read); 4351 4352 /** 4353 * ring_buffer_size - return the size of the ring buffer (in bytes) 4354 * @buffer: The ring buffer. 4355 */ 4356 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4357 { 4358 /* 4359 * Earlier, this method returned 4360 * BUF_PAGE_SIZE * buffer->nr_pages 4361 * Since the nr_pages field is now removed, we have converted this to 4362 * return the per cpu buffer value. 4363 */ 4364 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4365 return 0; 4366 4367 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4368 } 4369 EXPORT_SYMBOL_GPL(ring_buffer_size); 4370 4371 static void 4372 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4373 { 4374 rb_head_page_deactivate(cpu_buffer); 4375 4376 cpu_buffer->head_page 4377 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4378 local_set(&cpu_buffer->head_page->write, 0); 4379 local_set(&cpu_buffer->head_page->entries, 0); 4380 local_set(&cpu_buffer->head_page->page->commit, 0); 4381 4382 cpu_buffer->head_page->read = 0; 4383 4384 cpu_buffer->tail_page = cpu_buffer->head_page; 4385 cpu_buffer->commit_page = cpu_buffer->head_page; 4386 4387 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4388 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4389 local_set(&cpu_buffer->reader_page->write, 0); 4390 local_set(&cpu_buffer->reader_page->entries, 0); 4391 local_set(&cpu_buffer->reader_page->page->commit, 0); 4392 cpu_buffer->reader_page->read = 0; 4393 4394 local_set(&cpu_buffer->entries_bytes, 0); 4395 local_set(&cpu_buffer->overrun, 0); 4396 local_set(&cpu_buffer->commit_overrun, 0); 4397 local_set(&cpu_buffer->dropped_events, 0); 4398 local_set(&cpu_buffer->entries, 0); 4399 local_set(&cpu_buffer->committing, 0); 4400 local_set(&cpu_buffer->commits, 0); 4401 local_set(&cpu_buffer->pages_touched, 0); 4402 local_set(&cpu_buffer->pages_read, 0); 4403 cpu_buffer->last_pages_touch = 0; 4404 cpu_buffer->shortest_full = 0; 4405 cpu_buffer->read = 0; 4406 cpu_buffer->read_bytes = 0; 4407 4408 cpu_buffer->write_stamp = 0; 4409 cpu_buffer->read_stamp = 0; 4410 4411 cpu_buffer->lost_events = 0; 4412 cpu_buffer->last_overrun = 0; 4413 4414 rb_head_page_activate(cpu_buffer); 4415 } 4416 4417 /** 4418 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4419 * @buffer: The ring buffer to reset a per cpu buffer of 4420 * @cpu: The CPU buffer to be reset 4421 */ 4422 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4423 { 4424 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4425 unsigned long flags; 4426 4427 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4428 return; 4429 4430 atomic_inc(&buffer->resize_disabled); 4431 atomic_inc(&cpu_buffer->record_disabled); 4432 4433 /* Make sure all commits have finished */ 4434 synchronize_rcu(); 4435 4436 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4437 4438 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4439 goto out; 4440 4441 arch_spin_lock(&cpu_buffer->lock); 4442 4443 rb_reset_cpu(cpu_buffer); 4444 4445 arch_spin_unlock(&cpu_buffer->lock); 4446 4447 out: 4448 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4449 4450 atomic_dec(&cpu_buffer->record_disabled); 4451 atomic_dec(&buffer->resize_disabled); 4452 } 4453 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4454 4455 /** 4456 * ring_buffer_reset - reset a ring buffer 4457 * @buffer: The ring buffer to reset all cpu buffers 4458 */ 4459 void ring_buffer_reset(struct ring_buffer *buffer) 4460 { 4461 int cpu; 4462 4463 for_each_buffer_cpu(buffer, cpu) 4464 ring_buffer_reset_cpu(buffer, cpu); 4465 } 4466 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4467 4468 /** 4469 * rind_buffer_empty - is the ring buffer empty? 4470 * @buffer: The ring buffer to test 4471 */ 4472 bool ring_buffer_empty(struct ring_buffer *buffer) 4473 { 4474 struct ring_buffer_per_cpu *cpu_buffer; 4475 unsigned long flags; 4476 bool dolock; 4477 int cpu; 4478 int ret; 4479 4480 /* yes this is racy, but if you don't like the race, lock the buffer */ 4481 for_each_buffer_cpu(buffer, cpu) { 4482 cpu_buffer = buffer->buffers[cpu]; 4483 local_irq_save(flags); 4484 dolock = rb_reader_lock(cpu_buffer); 4485 ret = rb_per_cpu_empty(cpu_buffer); 4486 rb_reader_unlock(cpu_buffer, dolock); 4487 local_irq_restore(flags); 4488 4489 if (!ret) 4490 return false; 4491 } 4492 4493 return true; 4494 } 4495 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4496 4497 /** 4498 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4499 * @buffer: The ring buffer 4500 * @cpu: The CPU buffer to test 4501 */ 4502 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4503 { 4504 struct ring_buffer_per_cpu *cpu_buffer; 4505 unsigned long flags; 4506 bool dolock; 4507 int ret; 4508 4509 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4510 return true; 4511 4512 cpu_buffer = buffer->buffers[cpu]; 4513 local_irq_save(flags); 4514 dolock = rb_reader_lock(cpu_buffer); 4515 ret = rb_per_cpu_empty(cpu_buffer); 4516 rb_reader_unlock(cpu_buffer, dolock); 4517 local_irq_restore(flags); 4518 4519 return ret; 4520 } 4521 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4522 4523 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4524 /** 4525 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4526 * @buffer_a: One buffer to swap with 4527 * @buffer_b: The other buffer to swap with 4528 * 4529 * This function is useful for tracers that want to take a "snapshot" 4530 * of a CPU buffer and has another back up buffer lying around. 4531 * it is expected that the tracer handles the cpu buffer not being 4532 * used at the moment. 4533 */ 4534 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4535 struct ring_buffer *buffer_b, int cpu) 4536 { 4537 struct ring_buffer_per_cpu *cpu_buffer_a; 4538 struct ring_buffer_per_cpu *cpu_buffer_b; 4539 int ret = -EINVAL; 4540 4541 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4542 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4543 goto out; 4544 4545 cpu_buffer_a = buffer_a->buffers[cpu]; 4546 cpu_buffer_b = buffer_b->buffers[cpu]; 4547 4548 /* At least make sure the two buffers are somewhat the same */ 4549 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4550 goto out; 4551 4552 ret = -EAGAIN; 4553 4554 if (atomic_read(&buffer_a->record_disabled)) 4555 goto out; 4556 4557 if (atomic_read(&buffer_b->record_disabled)) 4558 goto out; 4559 4560 if (atomic_read(&cpu_buffer_a->record_disabled)) 4561 goto out; 4562 4563 if (atomic_read(&cpu_buffer_b->record_disabled)) 4564 goto out; 4565 4566 /* 4567 * We can't do a synchronize_rcu here because this 4568 * function can be called in atomic context. 4569 * Normally this will be called from the same CPU as cpu. 4570 * If not it's up to the caller to protect this. 4571 */ 4572 atomic_inc(&cpu_buffer_a->record_disabled); 4573 atomic_inc(&cpu_buffer_b->record_disabled); 4574 4575 ret = -EBUSY; 4576 if (local_read(&cpu_buffer_a->committing)) 4577 goto out_dec; 4578 if (local_read(&cpu_buffer_b->committing)) 4579 goto out_dec; 4580 4581 buffer_a->buffers[cpu] = cpu_buffer_b; 4582 buffer_b->buffers[cpu] = cpu_buffer_a; 4583 4584 cpu_buffer_b->buffer = buffer_a; 4585 cpu_buffer_a->buffer = buffer_b; 4586 4587 ret = 0; 4588 4589 out_dec: 4590 atomic_dec(&cpu_buffer_a->record_disabled); 4591 atomic_dec(&cpu_buffer_b->record_disabled); 4592 out: 4593 return ret; 4594 } 4595 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4596 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4597 4598 /** 4599 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4600 * @buffer: the buffer to allocate for. 4601 * @cpu: the cpu buffer to allocate. 4602 * 4603 * This function is used in conjunction with ring_buffer_read_page. 4604 * When reading a full page from the ring buffer, these functions 4605 * can be used to speed up the process. The calling function should 4606 * allocate a few pages first with this function. Then when it 4607 * needs to get pages from the ring buffer, it passes the result 4608 * of this function into ring_buffer_read_page, which will swap 4609 * the page that was allocated, with the read page of the buffer. 4610 * 4611 * Returns: 4612 * The page allocated, or ERR_PTR 4613 */ 4614 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4615 { 4616 struct ring_buffer_per_cpu *cpu_buffer; 4617 struct buffer_data_page *bpage = NULL; 4618 unsigned long flags; 4619 struct page *page; 4620 4621 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4622 return ERR_PTR(-ENODEV); 4623 4624 cpu_buffer = buffer->buffers[cpu]; 4625 local_irq_save(flags); 4626 arch_spin_lock(&cpu_buffer->lock); 4627 4628 if (cpu_buffer->free_page) { 4629 bpage = cpu_buffer->free_page; 4630 cpu_buffer->free_page = NULL; 4631 } 4632 4633 arch_spin_unlock(&cpu_buffer->lock); 4634 local_irq_restore(flags); 4635 4636 if (bpage) 4637 goto out; 4638 4639 page = alloc_pages_node(cpu_to_node(cpu), 4640 GFP_KERNEL | __GFP_NORETRY, 0); 4641 if (!page) 4642 return ERR_PTR(-ENOMEM); 4643 4644 bpage = page_address(page); 4645 4646 out: 4647 rb_init_page(bpage); 4648 4649 return bpage; 4650 } 4651 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4652 4653 /** 4654 * ring_buffer_free_read_page - free an allocated read page 4655 * @buffer: the buffer the page was allocate for 4656 * @cpu: the cpu buffer the page came from 4657 * @data: the page to free 4658 * 4659 * Free a page allocated from ring_buffer_alloc_read_page. 4660 */ 4661 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data) 4662 { 4663 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4664 struct buffer_data_page *bpage = data; 4665 struct page *page = virt_to_page(bpage); 4666 unsigned long flags; 4667 4668 /* If the page is still in use someplace else, we can't reuse it */ 4669 if (page_ref_count(page) > 1) 4670 goto out; 4671 4672 local_irq_save(flags); 4673 arch_spin_lock(&cpu_buffer->lock); 4674 4675 if (!cpu_buffer->free_page) { 4676 cpu_buffer->free_page = bpage; 4677 bpage = NULL; 4678 } 4679 4680 arch_spin_unlock(&cpu_buffer->lock); 4681 local_irq_restore(flags); 4682 4683 out: 4684 free_page((unsigned long)bpage); 4685 } 4686 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4687 4688 /** 4689 * ring_buffer_read_page - extract a page from the ring buffer 4690 * @buffer: buffer to extract from 4691 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4692 * @len: amount to extract 4693 * @cpu: the cpu of the buffer to extract 4694 * @full: should the extraction only happen when the page is full. 4695 * 4696 * This function will pull out a page from the ring buffer and consume it. 4697 * @data_page must be the address of the variable that was returned 4698 * from ring_buffer_alloc_read_page. This is because the page might be used 4699 * to swap with a page in the ring buffer. 4700 * 4701 * for example: 4702 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4703 * if (IS_ERR(rpage)) 4704 * return PTR_ERR(rpage); 4705 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4706 * if (ret >= 0) 4707 * process_page(rpage, ret); 4708 * 4709 * When @full is set, the function will not return true unless 4710 * the writer is off the reader page. 4711 * 4712 * Note: it is up to the calling functions to handle sleeps and wakeups. 4713 * The ring buffer can be used anywhere in the kernel and can not 4714 * blindly call wake_up. The layer that uses the ring buffer must be 4715 * responsible for that. 4716 * 4717 * Returns: 4718 * >=0 if data has been transferred, returns the offset of consumed data. 4719 * <0 if no data has been transferred. 4720 */ 4721 int ring_buffer_read_page(struct ring_buffer *buffer, 4722 void **data_page, size_t len, int cpu, int full) 4723 { 4724 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4725 struct ring_buffer_event *event; 4726 struct buffer_data_page *bpage; 4727 struct buffer_page *reader; 4728 unsigned long missed_events; 4729 unsigned long flags; 4730 unsigned int commit; 4731 unsigned int read; 4732 u64 save_timestamp; 4733 int ret = -1; 4734 4735 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4736 goto out; 4737 4738 /* 4739 * If len is not big enough to hold the page header, then 4740 * we can not copy anything. 4741 */ 4742 if (len <= BUF_PAGE_HDR_SIZE) 4743 goto out; 4744 4745 len -= BUF_PAGE_HDR_SIZE; 4746 4747 if (!data_page) 4748 goto out; 4749 4750 bpage = *data_page; 4751 if (!bpage) 4752 goto out; 4753 4754 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4755 4756 reader = rb_get_reader_page(cpu_buffer); 4757 if (!reader) 4758 goto out_unlock; 4759 4760 event = rb_reader_event(cpu_buffer); 4761 4762 read = reader->read; 4763 commit = rb_page_commit(reader); 4764 4765 /* Check if any events were dropped */ 4766 missed_events = cpu_buffer->lost_events; 4767 4768 /* 4769 * If this page has been partially read or 4770 * if len is not big enough to read the rest of the page or 4771 * a writer is still on the page, then 4772 * we must copy the data from the page to the buffer. 4773 * Otherwise, we can simply swap the page with the one passed in. 4774 */ 4775 if (read || (len < (commit - read)) || 4776 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4777 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4778 unsigned int rpos = read; 4779 unsigned int pos = 0; 4780 unsigned int size; 4781 4782 if (full) 4783 goto out_unlock; 4784 4785 if (len > (commit - read)) 4786 len = (commit - read); 4787 4788 /* Always keep the time extend and data together */ 4789 size = rb_event_ts_length(event); 4790 4791 if (len < size) 4792 goto out_unlock; 4793 4794 /* save the current timestamp, since the user will need it */ 4795 save_timestamp = cpu_buffer->read_stamp; 4796 4797 /* Need to copy one event at a time */ 4798 do { 4799 /* We need the size of one event, because 4800 * rb_advance_reader only advances by one event, 4801 * whereas rb_event_ts_length may include the size of 4802 * one or two events. 4803 * We have already ensured there's enough space if this 4804 * is a time extend. */ 4805 size = rb_event_length(event); 4806 memcpy(bpage->data + pos, rpage->data + rpos, size); 4807 4808 len -= size; 4809 4810 rb_advance_reader(cpu_buffer); 4811 rpos = reader->read; 4812 pos += size; 4813 4814 if (rpos >= commit) 4815 break; 4816 4817 event = rb_reader_event(cpu_buffer); 4818 /* Always keep the time extend and data together */ 4819 size = rb_event_ts_length(event); 4820 } while (len >= size); 4821 4822 /* update bpage */ 4823 local_set(&bpage->commit, pos); 4824 bpage->time_stamp = save_timestamp; 4825 4826 /* we copied everything to the beginning */ 4827 read = 0; 4828 } else { 4829 /* update the entry counter */ 4830 cpu_buffer->read += rb_page_entries(reader); 4831 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4832 4833 /* swap the pages */ 4834 rb_init_page(bpage); 4835 bpage = reader->page; 4836 reader->page = *data_page; 4837 local_set(&reader->write, 0); 4838 local_set(&reader->entries, 0); 4839 reader->read = 0; 4840 *data_page = bpage; 4841 4842 /* 4843 * Use the real_end for the data size, 4844 * This gives us a chance to store the lost events 4845 * on the page. 4846 */ 4847 if (reader->real_end) 4848 local_set(&bpage->commit, reader->real_end); 4849 } 4850 ret = read; 4851 4852 cpu_buffer->lost_events = 0; 4853 4854 commit = local_read(&bpage->commit); 4855 /* 4856 * Set a flag in the commit field if we lost events 4857 */ 4858 if (missed_events) { 4859 /* If there is room at the end of the page to save the 4860 * missed events, then record it there. 4861 */ 4862 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4863 memcpy(&bpage->data[commit], &missed_events, 4864 sizeof(missed_events)); 4865 local_add(RB_MISSED_STORED, &bpage->commit); 4866 commit += sizeof(missed_events); 4867 } 4868 local_add(RB_MISSED_EVENTS, &bpage->commit); 4869 } 4870 4871 /* 4872 * This page may be off to user land. Zero it out here. 4873 */ 4874 if (commit < BUF_PAGE_SIZE) 4875 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4876 4877 out_unlock: 4878 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4879 4880 out: 4881 return ret; 4882 } 4883 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4884 4885 /* 4886 * We only allocate new buffers, never free them if the CPU goes down. 4887 * If we were to free the buffer, then the user would lose any trace that was in 4888 * the buffer. 4889 */ 4890 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4891 { 4892 struct ring_buffer *buffer; 4893 long nr_pages_same; 4894 int cpu_i; 4895 unsigned long nr_pages; 4896 4897 buffer = container_of(node, struct ring_buffer, node); 4898 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4899 return 0; 4900 4901 nr_pages = 0; 4902 nr_pages_same = 1; 4903 /* check if all cpu sizes are same */ 4904 for_each_buffer_cpu(buffer, cpu_i) { 4905 /* fill in the size from first enabled cpu */ 4906 if (nr_pages == 0) 4907 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4908 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4909 nr_pages_same = 0; 4910 break; 4911 } 4912 } 4913 /* allocate minimum pages, user can later expand it */ 4914 if (!nr_pages_same) 4915 nr_pages = 2; 4916 buffer->buffers[cpu] = 4917 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4918 if (!buffer->buffers[cpu]) { 4919 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4920 cpu); 4921 return -ENOMEM; 4922 } 4923 smp_wmb(); 4924 cpumask_set_cpu(cpu, buffer->cpumask); 4925 return 0; 4926 } 4927 4928 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4929 /* 4930 * This is a basic integrity check of the ring buffer. 4931 * Late in the boot cycle this test will run when configured in. 4932 * It will kick off a thread per CPU that will go into a loop 4933 * writing to the per cpu ring buffer various sizes of data. 4934 * Some of the data will be large items, some small. 4935 * 4936 * Another thread is created that goes into a spin, sending out 4937 * IPIs to the other CPUs to also write into the ring buffer. 4938 * this is to test the nesting ability of the buffer. 4939 * 4940 * Basic stats are recorded and reported. If something in the 4941 * ring buffer should happen that's not expected, a big warning 4942 * is displayed and all ring buffers are disabled. 4943 */ 4944 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4945 4946 struct rb_test_data { 4947 struct ring_buffer *buffer; 4948 unsigned long events; 4949 unsigned long bytes_written; 4950 unsigned long bytes_alloc; 4951 unsigned long bytes_dropped; 4952 unsigned long events_nested; 4953 unsigned long bytes_written_nested; 4954 unsigned long bytes_alloc_nested; 4955 unsigned long bytes_dropped_nested; 4956 int min_size_nested; 4957 int max_size_nested; 4958 int max_size; 4959 int min_size; 4960 int cpu; 4961 int cnt; 4962 }; 4963 4964 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4965 4966 /* 1 meg per cpu */ 4967 #define RB_TEST_BUFFER_SIZE 1048576 4968 4969 static char rb_string[] __initdata = 4970 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4971 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4972 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4973 4974 static bool rb_test_started __initdata; 4975 4976 struct rb_item { 4977 int size; 4978 char str[]; 4979 }; 4980 4981 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4982 { 4983 struct ring_buffer_event *event; 4984 struct rb_item *item; 4985 bool started; 4986 int event_len; 4987 int size; 4988 int len; 4989 int cnt; 4990 4991 /* Have nested writes different that what is written */ 4992 cnt = data->cnt + (nested ? 27 : 0); 4993 4994 /* Multiply cnt by ~e, to make some unique increment */ 4995 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4996 4997 len = size + sizeof(struct rb_item); 4998 4999 started = rb_test_started; 5000 /* read rb_test_started before checking buffer enabled */ 5001 smp_rmb(); 5002 5003 event = ring_buffer_lock_reserve(data->buffer, len); 5004 if (!event) { 5005 /* Ignore dropped events before test starts. */ 5006 if (started) { 5007 if (nested) 5008 data->bytes_dropped += len; 5009 else 5010 data->bytes_dropped_nested += len; 5011 } 5012 return len; 5013 } 5014 5015 event_len = ring_buffer_event_length(event); 5016 5017 if (RB_WARN_ON(data->buffer, event_len < len)) 5018 goto out; 5019 5020 item = ring_buffer_event_data(event); 5021 item->size = size; 5022 memcpy(item->str, rb_string, size); 5023 5024 if (nested) { 5025 data->bytes_alloc_nested += event_len; 5026 data->bytes_written_nested += len; 5027 data->events_nested++; 5028 if (!data->min_size_nested || len < data->min_size_nested) 5029 data->min_size_nested = len; 5030 if (len > data->max_size_nested) 5031 data->max_size_nested = len; 5032 } else { 5033 data->bytes_alloc += event_len; 5034 data->bytes_written += len; 5035 data->events++; 5036 if (!data->min_size || len < data->min_size) 5037 data->max_size = len; 5038 if (len > data->max_size) 5039 data->max_size = len; 5040 } 5041 5042 out: 5043 ring_buffer_unlock_commit(data->buffer, event); 5044 5045 return 0; 5046 } 5047 5048 static __init int rb_test(void *arg) 5049 { 5050 struct rb_test_data *data = arg; 5051 5052 while (!kthread_should_stop()) { 5053 rb_write_something(data, false); 5054 data->cnt++; 5055 5056 set_current_state(TASK_INTERRUPTIBLE); 5057 /* Now sleep between a min of 100-300us and a max of 1ms */ 5058 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5059 } 5060 5061 return 0; 5062 } 5063 5064 static __init void rb_ipi(void *ignore) 5065 { 5066 struct rb_test_data *data; 5067 int cpu = smp_processor_id(); 5068 5069 data = &rb_data[cpu]; 5070 rb_write_something(data, true); 5071 } 5072 5073 static __init int rb_hammer_test(void *arg) 5074 { 5075 while (!kthread_should_stop()) { 5076 5077 /* Send an IPI to all cpus to write data! */ 5078 smp_call_function(rb_ipi, NULL, 1); 5079 /* No sleep, but for non preempt, let others run */ 5080 schedule(); 5081 } 5082 5083 return 0; 5084 } 5085 5086 static __init int test_ringbuffer(void) 5087 { 5088 struct task_struct *rb_hammer; 5089 struct ring_buffer *buffer; 5090 int cpu; 5091 int ret = 0; 5092 5093 pr_info("Running ring buffer tests...\n"); 5094 5095 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5096 if (WARN_ON(!buffer)) 5097 return 0; 5098 5099 /* Disable buffer so that threads can't write to it yet */ 5100 ring_buffer_record_off(buffer); 5101 5102 for_each_online_cpu(cpu) { 5103 rb_data[cpu].buffer = buffer; 5104 rb_data[cpu].cpu = cpu; 5105 rb_data[cpu].cnt = cpu; 5106 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5107 "rbtester/%d", cpu); 5108 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5109 pr_cont("FAILED\n"); 5110 ret = PTR_ERR(rb_threads[cpu]); 5111 goto out_free; 5112 } 5113 5114 kthread_bind(rb_threads[cpu], cpu); 5115 wake_up_process(rb_threads[cpu]); 5116 } 5117 5118 /* Now create the rb hammer! */ 5119 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5120 if (WARN_ON(IS_ERR(rb_hammer))) { 5121 pr_cont("FAILED\n"); 5122 ret = PTR_ERR(rb_hammer); 5123 goto out_free; 5124 } 5125 5126 ring_buffer_record_on(buffer); 5127 /* 5128 * Show buffer is enabled before setting rb_test_started. 5129 * Yes there's a small race window where events could be 5130 * dropped and the thread wont catch it. But when a ring 5131 * buffer gets enabled, there will always be some kind of 5132 * delay before other CPUs see it. Thus, we don't care about 5133 * those dropped events. We care about events dropped after 5134 * the threads see that the buffer is active. 5135 */ 5136 smp_wmb(); 5137 rb_test_started = true; 5138 5139 set_current_state(TASK_INTERRUPTIBLE); 5140 /* Just run for 10 seconds */; 5141 schedule_timeout(10 * HZ); 5142 5143 kthread_stop(rb_hammer); 5144 5145 out_free: 5146 for_each_online_cpu(cpu) { 5147 if (!rb_threads[cpu]) 5148 break; 5149 kthread_stop(rb_threads[cpu]); 5150 } 5151 if (ret) { 5152 ring_buffer_free(buffer); 5153 return ret; 5154 } 5155 5156 /* Report! */ 5157 pr_info("finished\n"); 5158 for_each_online_cpu(cpu) { 5159 struct ring_buffer_event *event; 5160 struct rb_test_data *data = &rb_data[cpu]; 5161 struct rb_item *item; 5162 unsigned long total_events; 5163 unsigned long total_dropped; 5164 unsigned long total_written; 5165 unsigned long total_alloc; 5166 unsigned long total_read = 0; 5167 unsigned long total_size = 0; 5168 unsigned long total_len = 0; 5169 unsigned long total_lost = 0; 5170 unsigned long lost; 5171 int big_event_size; 5172 int small_event_size; 5173 5174 ret = -1; 5175 5176 total_events = data->events + data->events_nested; 5177 total_written = data->bytes_written + data->bytes_written_nested; 5178 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5179 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5180 5181 big_event_size = data->max_size + data->max_size_nested; 5182 small_event_size = data->min_size + data->min_size_nested; 5183 5184 pr_info("CPU %d:\n", cpu); 5185 pr_info(" events: %ld\n", total_events); 5186 pr_info(" dropped bytes: %ld\n", total_dropped); 5187 pr_info(" alloced bytes: %ld\n", total_alloc); 5188 pr_info(" written bytes: %ld\n", total_written); 5189 pr_info(" biggest event: %d\n", big_event_size); 5190 pr_info(" smallest event: %d\n", small_event_size); 5191 5192 if (RB_WARN_ON(buffer, total_dropped)) 5193 break; 5194 5195 ret = 0; 5196 5197 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5198 total_lost += lost; 5199 item = ring_buffer_event_data(event); 5200 total_len += ring_buffer_event_length(event); 5201 total_size += item->size + sizeof(struct rb_item); 5202 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5203 pr_info("FAILED!\n"); 5204 pr_info("buffer had: %.*s\n", item->size, item->str); 5205 pr_info("expected: %.*s\n", item->size, rb_string); 5206 RB_WARN_ON(buffer, 1); 5207 ret = -1; 5208 break; 5209 } 5210 total_read++; 5211 } 5212 if (ret) 5213 break; 5214 5215 ret = -1; 5216 5217 pr_info(" read events: %ld\n", total_read); 5218 pr_info(" lost events: %ld\n", total_lost); 5219 pr_info(" total events: %ld\n", total_lost + total_read); 5220 pr_info(" recorded len bytes: %ld\n", total_len); 5221 pr_info(" recorded size bytes: %ld\n", total_size); 5222 if (total_lost) 5223 pr_info(" With dropped events, record len and size may not match\n" 5224 " alloced and written from above\n"); 5225 if (!total_lost) { 5226 if (RB_WARN_ON(buffer, total_len != total_alloc || 5227 total_size != total_written)) 5228 break; 5229 } 5230 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5231 break; 5232 5233 ret = 0; 5234 } 5235 if (!ret) 5236 pr_info("Ring buffer PASSED!\n"); 5237 5238 ring_buffer_free(buffer); 5239 return 0; 5240 } 5241 5242 late_initcall(test_ringbuffer); 5243 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5244