xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>	/* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28 
29 #include <asm/local.h>
30 
31 static void update_pages_handler(struct work_struct *work);
32 
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 	trace_seq_puts(s, "# compressed entry header\n");
39 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41 	trace_seq_puts(s, "\tarray       :   32 bits\n");
42 	trace_seq_putc(s, '\n');
43 	trace_seq_printf(s, "\tpadding     : type == %d\n",
44 			 RINGBUF_TYPE_PADDING);
45 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 			 RINGBUF_TYPE_TIME_EXTEND);
47 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 			 RINGBUF_TYPE_TIME_STAMP);
49 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
50 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 
52 	return !trace_seq_has_overflowed(s);
53 }
54 
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122 
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF		(1 << 20)
125 
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT		4U
130 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
132 #define RB_ALIGN_DATA		__aligned(RB_ALIGNMENT)
133 
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
136 
137 enum {
138 	RB_LEN_TIME_EXTEND = 8,
139 	RB_LEN_TIME_STAMP =  8,
140 };
141 
142 #define skip_time_extend(event) \
143 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144 
145 #define extended_time(event) \
146 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147 
148 static inline int rb_null_event(struct ring_buffer_event *event)
149 {
150 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
151 }
152 
153 static void rb_event_set_padding(struct ring_buffer_event *event)
154 {
155 	/* padding has a NULL time_delta */
156 	event->type_len = RINGBUF_TYPE_PADDING;
157 	event->time_delta = 0;
158 }
159 
160 static unsigned
161 rb_event_data_length(struct ring_buffer_event *event)
162 {
163 	unsigned length;
164 
165 	if (event->type_len)
166 		length = event->type_len * RB_ALIGNMENT;
167 	else
168 		length = event->array[0];
169 	return length + RB_EVNT_HDR_SIZE;
170 }
171 
172 /*
173  * Return the length of the given event. Will return
174  * the length of the time extend if the event is a
175  * time extend.
176  */
177 static inline unsigned
178 rb_event_length(struct ring_buffer_event *event)
179 {
180 	switch (event->type_len) {
181 	case RINGBUF_TYPE_PADDING:
182 		if (rb_null_event(event))
183 			/* undefined */
184 			return -1;
185 		return  event->array[0] + RB_EVNT_HDR_SIZE;
186 
187 	case RINGBUF_TYPE_TIME_EXTEND:
188 		return RB_LEN_TIME_EXTEND;
189 
190 	case RINGBUF_TYPE_TIME_STAMP:
191 		return RB_LEN_TIME_STAMP;
192 
193 	case RINGBUF_TYPE_DATA:
194 		return rb_event_data_length(event);
195 	default:
196 		BUG();
197 	}
198 	/* not hit */
199 	return 0;
200 }
201 
202 /*
203  * Return total length of time extend and data,
204  *   or just the event length for all other events.
205  */
206 static inline unsigned
207 rb_event_ts_length(struct ring_buffer_event *event)
208 {
209 	unsigned len = 0;
210 
211 	if (extended_time(event)) {
212 		/* time extends include the data event after it */
213 		len = RB_LEN_TIME_EXTEND;
214 		event = skip_time_extend(event);
215 	}
216 	return len + rb_event_length(event);
217 }
218 
219 /**
220  * ring_buffer_event_length - return the length of the event
221  * @event: the event to get the length of
222  *
223  * Returns the size of the data load of a data event.
224  * If the event is something other than a data event, it
225  * returns the size of the event itself. With the exception
226  * of a TIME EXTEND, where it still returns the size of the
227  * data load of the data event after it.
228  */
229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230 {
231 	unsigned length;
232 
233 	if (extended_time(event))
234 		event = skip_time_extend(event);
235 
236 	length = rb_event_length(event);
237 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238 		return length;
239 	length -= RB_EVNT_HDR_SIZE;
240 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241                 length -= sizeof(event->array[0]);
242 	return length;
243 }
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
245 
246 /* inline for ring buffer fast paths */
247 static __always_inline void *
248 rb_event_data(struct ring_buffer_event *event)
249 {
250 	if (extended_time(event))
251 		event = skip_time_extend(event);
252 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253 	/* If length is in len field, then array[0] has the data */
254 	if (event->type_len)
255 		return (void *)&event->array[0];
256 	/* Otherwise length is in array[0] and array[1] has the data */
257 	return (void *)&event->array[1];
258 }
259 
260 /**
261  * ring_buffer_event_data - return the data of the event
262  * @event: the event to get the data from
263  */
264 void *ring_buffer_event_data(struct ring_buffer_event *event)
265 {
266 	return rb_event_data(event);
267 }
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
269 
270 #define for_each_buffer_cpu(buffer, cpu)		\
271 	for_each_cpu(cpu, buffer->cpumask)
272 
273 #define TS_SHIFT	27
274 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
275 #define TS_DELTA_TEST	(~TS_MASK)
276 
277 /**
278  * ring_buffer_event_time_stamp - return the event's extended timestamp
279  * @event: the event to get the timestamp of
280  *
281  * Returns the extended timestamp associated with a data event.
282  * An extended time_stamp is a 64-bit timestamp represented
283  * internally in a special way that makes the best use of space
284  * contained within a ring buffer event.  This function decodes
285  * it and maps it to a straight u64 value.
286  */
287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
288 {
289 	u64 ts;
290 
291 	ts = event->array[0];
292 	ts <<= TS_SHIFT;
293 	ts += event->time_delta;
294 
295 	return ts;
296 }
297 
298 /* Flag when events were overwritten */
299 #define RB_MISSED_EVENTS	(1 << 31)
300 /* Missed count stored at end */
301 #define RB_MISSED_STORED	(1 << 30)
302 
303 struct buffer_data_page {
304 	u64		 time_stamp;	/* page time stamp */
305 	local_t		 commit;	/* write committed index */
306 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
307 };
308 
309 /*
310  * Note, the buffer_page list must be first. The buffer pages
311  * are allocated in cache lines, which means that each buffer
312  * page will be at the beginning of a cache line, and thus
313  * the least significant bits will be zero. We use this to
314  * add flags in the list struct pointers, to make the ring buffer
315  * lockless.
316  */
317 struct buffer_page {
318 	struct list_head list;		/* list of buffer pages */
319 	local_t		 write;		/* index for next write */
320 	unsigned	 read;		/* index for next read */
321 	local_t		 entries;	/* entries on this page */
322 	unsigned long	 real_end;	/* real end of data */
323 	struct buffer_data_page *page;	/* Actual data page */
324 };
325 
326 /*
327  * The buffer page counters, write and entries, must be reset
328  * atomically when crossing page boundaries. To synchronize this
329  * update, two counters are inserted into the number. One is
330  * the actual counter for the write position or count on the page.
331  *
332  * The other is a counter of updaters. Before an update happens
333  * the update partition of the counter is incremented. This will
334  * allow the updater to update the counter atomically.
335  *
336  * The counter is 20 bits, and the state data is 12.
337  */
338 #define RB_WRITE_MASK		0xfffff
339 #define RB_WRITE_INTCNT		(1 << 20)
340 
341 static void rb_init_page(struct buffer_data_page *bpage)
342 {
343 	local_set(&bpage->commit, 0);
344 }
345 
346 /*
347  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
348  * this issue out.
349  */
350 static void free_buffer_page(struct buffer_page *bpage)
351 {
352 	free_page((unsigned long)bpage->page);
353 	kfree(bpage);
354 }
355 
356 /*
357  * We need to fit the time_stamp delta into 27 bits.
358  */
359 static inline int test_time_stamp(u64 delta)
360 {
361 	if (delta & TS_DELTA_TEST)
362 		return 1;
363 	return 0;
364 }
365 
366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
367 
368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
370 
371 int ring_buffer_print_page_header(struct trace_seq *s)
372 {
373 	struct buffer_data_page field;
374 
375 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
377 			 (unsigned int)sizeof(field.time_stamp),
378 			 (unsigned int)is_signed_type(u64));
379 
380 	trace_seq_printf(s, "\tfield: local_t commit;\t"
381 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
382 			 (unsigned int)offsetof(typeof(field), commit),
383 			 (unsigned int)sizeof(field.commit),
384 			 (unsigned int)is_signed_type(long));
385 
386 	trace_seq_printf(s, "\tfield: int overwrite;\t"
387 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
388 			 (unsigned int)offsetof(typeof(field), commit),
389 			 1,
390 			 (unsigned int)is_signed_type(long));
391 
392 	trace_seq_printf(s, "\tfield: char data;\t"
393 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
394 			 (unsigned int)offsetof(typeof(field), data),
395 			 (unsigned int)BUF_PAGE_SIZE,
396 			 (unsigned int)is_signed_type(char));
397 
398 	return !trace_seq_has_overflowed(s);
399 }
400 
401 struct rb_irq_work {
402 	struct irq_work			work;
403 	wait_queue_head_t		waiters;
404 	wait_queue_head_t		full_waiters;
405 	bool				waiters_pending;
406 	bool				full_waiters_pending;
407 	bool				wakeup_full;
408 };
409 
410 /*
411  * Structure to hold event state and handle nested events.
412  */
413 struct rb_event_info {
414 	u64			ts;
415 	u64			delta;
416 	unsigned long		length;
417 	struct buffer_page	*tail_page;
418 	int			add_timestamp;
419 };
420 
421 /*
422  * Used for which event context the event is in.
423  *  NMI     = 0
424  *  IRQ     = 1
425  *  SOFTIRQ = 2
426  *  NORMAL  = 3
427  *
428  * See trace_recursive_lock() comment below for more details.
429  */
430 enum {
431 	RB_CTX_NMI,
432 	RB_CTX_IRQ,
433 	RB_CTX_SOFTIRQ,
434 	RB_CTX_NORMAL,
435 	RB_CTX_MAX
436 };
437 
438 /*
439  * head_page == tail_page && head == tail then buffer is empty.
440  */
441 struct ring_buffer_per_cpu {
442 	int				cpu;
443 	atomic_t			record_disabled;
444 	struct trace_buffer	*buffer;
445 	raw_spinlock_t			reader_lock;	/* serialize readers */
446 	arch_spinlock_t			lock;
447 	struct lock_class_key		lock_key;
448 	struct buffer_data_page		*free_page;
449 	unsigned long			nr_pages;
450 	unsigned int			current_context;
451 	struct list_head		*pages;
452 	struct buffer_page		*head_page;	/* read from head */
453 	struct buffer_page		*tail_page;	/* write to tail */
454 	struct buffer_page		*commit_page;	/* committed pages */
455 	struct buffer_page		*reader_page;
456 	unsigned long			lost_events;
457 	unsigned long			last_overrun;
458 	unsigned long			nest;
459 	local_t				entries_bytes;
460 	local_t				entries;
461 	local_t				overrun;
462 	local_t				commit_overrun;
463 	local_t				dropped_events;
464 	local_t				committing;
465 	local_t				commits;
466 	local_t				pages_touched;
467 	local_t				pages_read;
468 	long				last_pages_touch;
469 	size_t				shortest_full;
470 	unsigned long			read;
471 	unsigned long			read_bytes;
472 	u64				write_stamp;
473 	u64				read_stamp;
474 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
475 	long				nr_pages_to_update;
476 	struct list_head		new_pages; /* new pages to add */
477 	struct work_struct		update_pages_work;
478 	struct completion		update_done;
479 
480 	struct rb_irq_work		irq_work;
481 };
482 
483 struct trace_buffer {
484 	unsigned			flags;
485 	int				cpus;
486 	atomic_t			record_disabled;
487 	atomic_t			resize_disabled;
488 	cpumask_var_t			cpumask;
489 
490 	struct lock_class_key		*reader_lock_key;
491 
492 	struct mutex			mutex;
493 
494 	struct ring_buffer_per_cpu	**buffers;
495 
496 	struct hlist_node		node;
497 	u64				(*clock)(void);
498 
499 	struct rb_irq_work		irq_work;
500 	bool				time_stamp_abs;
501 };
502 
503 struct ring_buffer_iter {
504 	struct ring_buffer_per_cpu	*cpu_buffer;
505 	unsigned long			head;
506 	struct buffer_page		*head_page;
507 	struct buffer_page		*cache_reader_page;
508 	unsigned long			cache_read;
509 	u64				read_stamp;
510 };
511 
512 /**
513  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
514  * @buffer: The ring_buffer to get the number of pages from
515  * @cpu: The cpu of the ring_buffer to get the number of pages from
516  *
517  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
518  */
519 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
520 {
521 	return buffer->buffers[cpu]->nr_pages;
522 }
523 
524 /**
525  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
526  * @buffer: The ring_buffer to get the number of pages from
527  * @cpu: The cpu of the ring_buffer to get the number of pages from
528  *
529  * Returns the number of pages that have content in the ring buffer.
530  */
531 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
532 {
533 	size_t read;
534 	size_t cnt;
535 
536 	read = local_read(&buffer->buffers[cpu]->pages_read);
537 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
538 	/* The reader can read an empty page, but not more than that */
539 	if (cnt < read) {
540 		WARN_ON_ONCE(read > cnt + 1);
541 		return 0;
542 	}
543 
544 	return cnt - read;
545 }
546 
547 /*
548  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
549  *
550  * Schedules a delayed work to wake up any task that is blocked on the
551  * ring buffer waiters queue.
552  */
553 static void rb_wake_up_waiters(struct irq_work *work)
554 {
555 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
556 
557 	wake_up_all(&rbwork->waiters);
558 	if (rbwork->wakeup_full) {
559 		rbwork->wakeup_full = false;
560 		wake_up_all(&rbwork->full_waiters);
561 	}
562 }
563 
564 /**
565  * ring_buffer_wait - wait for input to the ring buffer
566  * @buffer: buffer to wait on
567  * @cpu: the cpu buffer to wait on
568  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
569  *
570  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
571  * as data is added to any of the @buffer's cpu buffers. Otherwise
572  * it will wait for data to be added to a specific cpu buffer.
573  */
574 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
575 {
576 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
577 	DEFINE_WAIT(wait);
578 	struct rb_irq_work *work;
579 	int ret = 0;
580 
581 	/*
582 	 * Depending on what the caller is waiting for, either any
583 	 * data in any cpu buffer, or a specific buffer, put the
584 	 * caller on the appropriate wait queue.
585 	 */
586 	if (cpu == RING_BUFFER_ALL_CPUS) {
587 		work = &buffer->irq_work;
588 		/* Full only makes sense on per cpu reads */
589 		full = 0;
590 	} else {
591 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
592 			return -ENODEV;
593 		cpu_buffer = buffer->buffers[cpu];
594 		work = &cpu_buffer->irq_work;
595 	}
596 
597 
598 	while (true) {
599 		if (full)
600 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
601 		else
602 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
603 
604 		/*
605 		 * The events can happen in critical sections where
606 		 * checking a work queue can cause deadlocks.
607 		 * After adding a task to the queue, this flag is set
608 		 * only to notify events to try to wake up the queue
609 		 * using irq_work.
610 		 *
611 		 * We don't clear it even if the buffer is no longer
612 		 * empty. The flag only causes the next event to run
613 		 * irq_work to do the work queue wake up. The worse
614 		 * that can happen if we race with !trace_empty() is that
615 		 * an event will cause an irq_work to try to wake up
616 		 * an empty queue.
617 		 *
618 		 * There's no reason to protect this flag either, as
619 		 * the work queue and irq_work logic will do the necessary
620 		 * synchronization for the wake ups. The only thing
621 		 * that is necessary is that the wake up happens after
622 		 * a task has been queued. It's OK for spurious wake ups.
623 		 */
624 		if (full)
625 			work->full_waiters_pending = true;
626 		else
627 			work->waiters_pending = true;
628 
629 		if (signal_pending(current)) {
630 			ret = -EINTR;
631 			break;
632 		}
633 
634 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
635 			break;
636 
637 		if (cpu != RING_BUFFER_ALL_CPUS &&
638 		    !ring_buffer_empty_cpu(buffer, cpu)) {
639 			unsigned long flags;
640 			bool pagebusy;
641 			size_t nr_pages;
642 			size_t dirty;
643 
644 			if (!full)
645 				break;
646 
647 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
648 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
649 			nr_pages = cpu_buffer->nr_pages;
650 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
651 			if (!cpu_buffer->shortest_full ||
652 			    cpu_buffer->shortest_full < full)
653 				cpu_buffer->shortest_full = full;
654 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
655 			if (!pagebusy &&
656 			    (!nr_pages || (dirty * 100) > full * nr_pages))
657 				break;
658 		}
659 
660 		schedule();
661 	}
662 
663 	if (full)
664 		finish_wait(&work->full_waiters, &wait);
665 	else
666 		finish_wait(&work->waiters, &wait);
667 
668 	return ret;
669 }
670 
671 /**
672  * ring_buffer_poll_wait - poll on buffer input
673  * @buffer: buffer to wait on
674  * @cpu: the cpu buffer to wait on
675  * @filp: the file descriptor
676  * @poll_table: The poll descriptor
677  *
678  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
679  * as data is added to any of the @buffer's cpu buffers. Otherwise
680  * it will wait for data to be added to a specific cpu buffer.
681  *
682  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
683  * zero otherwise.
684  */
685 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
686 			  struct file *filp, poll_table *poll_table)
687 {
688 	struct ring_buffer_per_cpu *cpu_buffer;
689 	struct rb_irq_work *work;
690 
691 	if (cpu == RING_BUFFER_ALL_CPUS)
692 		work = &buffer->irq_work;
693 	else {
694 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
695 			return -EINVAL;
696 
697 		cpu_buffer = buffer->buffers[cpu];
698 		work = &cpu_buffer->irq_work;
699 	}
700 
701 	poll_wait(filp, &work->waiters, poll_table);
702 	work->waiters_pending = true;
703 	/*
704 	 * There's a tight race between setting the waiters_pending and
705 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
706 	 * is set, the next event will wake the task up, but we can get stuck
707 	 * if there's only a single event in.
708 	 *
709 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
710 	 * but adding a memory barrier to all events will cause too much of a
711 	 * performance hit in the fast path.  We only need a memory barrier when
712 	 * the buffer goes from empty to having content.  But as this race is
713 	 * extremely small, and it's not a problem if another event comes in, we
714 	 * will fix it later.
715 	 */
716 	smp_mb();
717 
718 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
719 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
720 		return EPOLLIN | EPOLLRDNORM;
721 	return 0;
722 }
723 
724 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
725 #define RB_WARN_ON(b, cond)						\
726 	({								\
727 		int _____ret = unlikely(cond);				\
728 		if (_____ret) {						\
729 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
730 				struct ring_buffer_per_cpu *__b =	\
731 					(void *)b;			\
732 				atomic_inc(&__b->buffer->record_disabled); \
733 			} else						\
734 				atomic_inc(&b->record_disabled);	\
735 			WARN_ON(1);					\
736 		}							\
737 		_____ret;						\
738 	})
739 
740 /* Up this if you want to test the TIME_EXTENTS and normalization */
741 #define DEBUG_SHIFT 0
742 
743 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
744 {
745 	/* shift to debug/test normalization and TIME_EXTENTS */
746 	return buffer->clock() << DEBUG_SHIFT;
747 }
748 
749 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
750 {
751 	u64 time;
752 
753 	preempt_disable_notrace();
754 	time = rb_time_stamp(buffer);
755 	preempt_enable_notrace();
756 
757 	return time;
758 }
759 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
760 
761 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
762 				      int cpu, u64 *ts)
763 {
764 	/* Just stupid testing the normalize function and deltas */
765 	*ts >>= DEBUG_SHIFT;
766 }
767 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
768 
769 /*
770  * Making the ring buffer lockless makes things tricky.
771  * Although writes only happen on the CPU that they are on,
772  * and they only need to worry about interrupts. Reads can
773  * happen on any CPU.
774  *
775  * The reader page is always off the ring buffer, but when the
776  * reader finishes with a page, it needs to swap its page with
777  * a new one from the buffer. The reader needs to take from
778  * the head (writes go to the tail). But if a writer is in overwrite
779  * mode and wraps, it must push the head page forward.
780  *
781  * Here lies the problem.
782  *
783  * The reader must be careful to replace only the head page, and
784  * not another one. As described at the top of the file in the
785  * ASCII art, the reader sets its old page to point to the next
786  * page after head. It then sets the page after head to point to
787  * the old reader page. But if the writer moves the head page
788  * during this operation, the reader could end up with the tail.
789  *
790  * We use cmpxchg to help prevent this race. We also do something
791  * special with the page before head. We set the LSB to 1.
792  *
793  * When the writer must push the page forward, it will clear the
794  * bit that points to the head page, move the head, and then set
795  * the bit that points to the new head page.
796  *
797  * We also don't want an interrupt coming in and moving the head
798  * page on another writer. Thus we use the second LSB to catch
799  * that too. Thus:
800  *
801  * head->list->prev->next        bit 1          bit 0
802  *                              -------        -------
803  * Normal page                     0              0
804  * Points to head page             0              1
805  * New head page                   1              0
806  *
807  * Note we can not trust the prev pointer of the head page, because:
808  *
809  * +----+       +-----+        +-----+
810  * |    |------>|  T  |---X--->|  N  |
811  * |    |<------|     |        |     |
812  * +----+       +-----+        +-----+
813  *   ^                           ^ |
814  *   |          +-----+          | |
815  *   +----------|  R  |----------+ |
816  *              |     |<-----------+
817  *              +-----+
818  *
819  * Key:  ---X-->  HEAD flag set in pointer
820  *         T      Tail page
821  *         R      Reader page
822  *         N      Next page
823  *
824  * (see __rb_reserve_next() to see where this happens)
825  *
826  *  What the above shows is that the reader just swapped out
827  *  the reader page with a page in the buffer, but before it
828  *  could make the new header point back to the new page added
829  *  it was preempted by a writer. The writer moved forward onto
830  *  the new page added by the reader and is about to move forward
831  *  again.
832  *
833  *  You can see, it is legitimate for the previous pointer of
834  *  the head (or any page) not to point back to itself. But only
835  *  temporarily.
836  */
837 
838 #define RB_PAGE_NORMAL		0UL
839 #define RB_PAGE_HEAD		1UL
840 #define RB_PAGE_UPDATE		2UL
841 
842 
843 #define RB_FLAG_MASK		3UL
844 
845 /* PAGE_MOVED is not part of the mask */
846 #define RB_PAGE_MOVED		4UL
847 
848 /*
849  * rb_list_head - remove any bit
850  */
851 static struct list_head *rb_list_head(struct list_head *list)
852 {
853 	unsigned long val = (unsigned long)list;
854 
855 	return (struct list_head *)(val & ~RB_FLAG_MASK);
856 }
857 
858 /*
859  * rb_is_head_page - test if the given page is the head page
860  *
861  * Because the reader may move the head_page pointer, we can
862  * not trust what the head page is (it may be pointing to
863  * the reader page). But if the next page is a header page,
864  * its flags will be non zero.
865  */
866 static inline int
867 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
868 		struct buffer_page *page, struct list_head *list)
869 {
870 	unsigned long val;
871 
872 	val = (unsigned long)list->next;
873 
874 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
875 		return RB_PAGE_MOVED;
876 
877 	return val & RB_FLAG_MASK;
878 }
879 
880 /*
881  * rb_is_reader_page
882  *
883  * The unique thing about the reader page, is that, if the
884  * writer is ever on it, the previous pointer never points
885  * back to the reader page.
886  */
887 static bool rb_is_reader_page(struct buffer_page *page)
888 {
889 	struct list_head *list = page->list.prev;
890 
891 	return rb_list_head(list->next) != &page->list;
892 }
893 
894 /*
895  * rb_set_list_to_head - set a list_head to be pointing to head.
896  */
897 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
898 				struct list_head *list)
899 {
900 	unsigned long *ptr;
901 
902 	ptr = (unsigned long *)&list->next;
903 	*ptr |= RB_PAGE_HEAD;
904 	*ptr &= ~RB_PAGE_UPDATE;
905 }
906 
907 /*
908  * rb_head_page_activate - sets up head page
909  */
910 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
911 {
912 	struct buffer_page *head;
913 
914 	head = cpu_buffer->head_page;
915 	if (!head)
916 		return;
917 
918 	/*
919 	 * Set the previous list pointer to have the HEAD flag.
920 	 */
921 	rb_set_list_to_head(cpu_buffer, head->list.prev);
922 }
923 
924 static void rb_list_head_clear(struct list_head *list)
925 {
926 	unsigned long *ptr = (unsigned long *)&list->next;
927 
928 	*ptr &= ~RB_FLAG_MASK;
929 }
930 
931 /*
932  * rb_head_page_deactivate - clears head page ptr (for free list)
933  */
934 static void
935 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
936 {
937 	struct list_head *hd;
938 
939 	/* Go through the whole list and clear any pointers found. */
940 	rb_list_head_clear(cpu_buffer->pages);
941 
942 	list_for_each(hd, cpu_buffer->pages)
943 		rb_list_head_clear(hd);
944 }
945 
946 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
947 			    struct buffer_page *head,
948 			    struct buffer_page *prev,
949 			    int old_flag, int new_flag)
950 {
951 	struct list_head *list;
952 	unsigned long val = (unsigned long)&head->list;
953 	unsigned long ret;
954 
955 	list = &prev->list;
956 
957 	val &= ~RB_FLAG_MASK;
958 
959 	ret = cmpxchg((unsigned long *)&list->next,
960 		      val | old_flag, val | new_flag);
961 
962 	/* check if the reader took the page */
963 	if ((ret & ~RB_FLAG_MASK) != val)
964 		return RB_PAGE_MOVED;
965 
966 	return ret & RB_FLAG_MASK;
967 }
968 
969 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
970 				   struct buffer_page *head,
971 				   struct buffer_page *prev,
972 				   int old_flag)
973 {
974 	return rb_head_page_set(cpu_buffer, head, prev,
975 				old_flag, RB_PAGE_UPDATE);
976 }
977 
978 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
979 				 struct buffer_page *head,
980 				 struct buffer_page *prev,
981 				 int old_flag)
982 {
983 	return rb_head_page_set(cpu_buffer, head, prev,
984 				old_flag, RB_PAGE_HEAD);
985 }
986 
987 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
988 				   struct buffer_page *head,
989 				   struct buffer_page *prev,
990 				   int old_flag)
991 {
992 	return rb_head_page_set(cpu_buffer, head, prev,
993 				old_flag, RB_PAGE_NORMAL);
994 }
995 
996 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
997 			       struct buffer_page **bpage)
998 {
999 	struct list_head *p = rb_list_head((*bpage)->list.next);
1000 
1001 	*bpage = list_entry(p, struct buffer_page, list);
1002 }
1003 
1004 static struct buffer_page *
1005 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1006 {
1007 	struct buffer_page *head;
1008 	struct buffer_page *page;
1009 	struct list_head *list;
1010 	int i;
1011 
1012 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1013 		return NULL;
1014 
1015 	/* sanity check */
1016 	list = cpu_buffer->pages;
1017 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1018 		return NULL;
1019 
1020 	page = head = cpu_buffer->head_page;
1021 	/*
1022 	 * It is possible that the writer moves the header behind
1023 	 * where we started, and we miss in one loop.
1024 	 * A second loop should grab the header, but we'll do
1025 	 * three loops just because I'm paranoid.
1026 	 */
1027 	for (i = 0; i < 3; i++) {
1028 		do {
1029 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1030 				cpu_buffer->head_page = page;
1031 				return page;
1032 			}
1033 			rb_inc_page(cpu_buffer, &page);
1034 		} while (page != head);
1035 	}
1036 
1037 	RB_WARN_ON(cpu_buffer, 1);
1038 
1039 	return NULL;
1040 }
1041 
1042 static int rb_head_page_replace(struct buffer_page *old,
1043 				struct buffer_page *new)
1044 {
1045 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1046 	unsigned long val;
1047 	unsigned long ret;
1048 
1049 	val = *ptr & ~RB_FLAG_MASK;
1050 	val |= RB_PAGE_HEAD;
1051 
1052 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1053 
1054 	return ret == val;
1055 }
1056 
1057 /*
1058  * rb_tail_page_update - move the tail page forward
1059  */
1060 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1061 			       struct buffer_page *tail_page,
1062 			       struct buffer_page *next_page)
1063 {
1064 	unsigned long old_entries;
1065 	unsigned long old_write;
1066 
1067 	/*
1068 	 * The tail page now needs to be moved forward.
1069 	 *
1070 	 * We need to reset the tail page, but without messing
1071 	 * with possible erasing of data brought in by interrupts
1072 	 * that have moved the tail page and are currently on it.
1073 	 *
1074 	 * We add a counter to the write field to denote this.
1075 	 */
1076 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1077 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1078 
1079 	local_inc(&cpu_buffer->pages_touched);
1080 	/*
1081 	 * Just make sure we have seen our old_write and synchronize
1082 	 * with any interrupts that come in.
1083 	 */
1084 	barrier();
1085 
1086 	/*
1087 	 * If the tail page is still the same as what we think
1088 	 * it is, then it is up to us to update the tail
1089 	 * pointer.
1090 	 */
1091 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1092 		/* Zero the write counter */
1093 		unsigned long val = old_write & ~RB_WRITE_MASK;
1094 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1095 
1096 		/*
1097 		 * This will only succeed if an interrupt did
1098 		 * not come in and change it. In which case, we
1099 		 * do not want to modify it.
1100 		 *
1101 		 * We add (void) to let the compiler know that we do not care
1102 		 * about the return value of these functions. We use the
1103 		 * cmpxchg to only update if an interrupt did not already
1104 		 * do it for us. If the cmpxchg fails, we don't care.
1105 		 */
1106 		(void)local_cmpxchg(&next_page->write, old_write, val);
1107 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1108 
1109 		/*
1110 		 * No need to worry about races with clearing out the commit.
1111 		 * it only can increment when a commit takes place. But that
1112 		 * only happens in the outer most nested commit.
1113 		 */
1114 		local_set(&next_page->page->commit, 0);
1115 
1116 		/* Again, either we update tail_page or an interrupt does */
1117 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1118 	}
1119 }
1120 
1121 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1122 			  struct buffer_page *bpage)
1123 {
1124 	unsigned long val = (unsigned long)bpage;
1125 
1126 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1127 		return 1;
1128 
1129 	return 0;
1130 }
1131 
1132 /**
1133  * rb_check_list - make sure a pointer to a list has the last bits zero
1134  */
1135 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1136 			 struct list_head *list)
1137 {
1138 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1139 		return 1;
1140 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1141 		return 1;
1142 	return 0;
1143 }
1144 
1145 /**
1146  * rb_check_pages - integrity check of buffer pages
1147  * @cpu_buffer: CPU buffer with pages to test
1148  *
1149  * As a safety measure we check to make sure the data pages have not
1150  * been corrupted.
1151  */
1152 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1153 {
1154 	struct list_head *head = cpu_buffer->pages;
1155 	struct buffer_page *bpage, *tmp;
1156 
1157 	/* Reset the head page if it exists */
1158 	if (cpu_buffer->head_page)
1159 		rb_set_head_page(cpu_buffer);
1160 
1161 	rb_head_page_deactivate(cpu_buffer);
1162 
1163 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1164 		return -1;
1165 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1166 		return -1;
1167 
1168 	if (rb_check_list(cpu_buffer, head))
1169 		return -1;
1170 
1171 	list_for_each_entry_safe(bpage, tmp, head, list) {
1172 		if (RB_WARN_ON(cpu_buffer,
1173 			       bpage->list.next->prev != &bpage->list))
1174 			return -1;
1175 		if (RB_WARN_ON(cpu_buffer,
1176 			       bpage->list.prev->next != &bpage->list))
1177 			return -1;
1178 		if (rb_check_list(cpu_buffer, &bpage->list))
1179 			return -1;
1180 	}
1181 
1182 	rb_head_page_activate(cpu_buffer);
1183 
1184 	return 0;
1185 }
1186 
1187 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1188 {
1189 	struct buffer_page *bpage, *tmp;
1190 	bool user_thread = current->mm != NULL;
1191 	gfp_t mflags;
1192 	long i;
1193 
1194 	/*
1195 	 * Check if the available memory is there first.
1196 	 * Note, si_mem_available() only gives us a rough estimate of available
1197 	 * memory. It may not be accurate. But we don't care, we just want
1198 	 * to prevent doing any allocation when it is obvious that it is
1199 	 * not going to succeed.
1200 	 */
1201 	i = si_mem_available();
1202 	if (i < nr_pages)
1203 		return -ENOMEM;
1204 
1205 	/*
1206 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1207 	 * gracefully without invoking oom-killer and the system is not
1208 	 * destabilized.
1209 	 */
1210 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1211 
1212 	/*
1213 	 * If a user thread allocates too much, and si_mem_available()
1214 	 * reports there's enough memory, even though there is not.
1215 	 * Make sure the OOM killer kills this thread. This can happen
1216 	 * even with RETRY_MAYFAIL because another task may be doing
1217 	 * an allocation after this task has taken all memory.
1218 	 * This is the task the OOM killer needs to take out during this
1219 	 * loop, even if it was triggered by an allocation somewhere else.
1220 	 */
1221 	if (user_thread)
1222 		set_current_oom_origin();
1223 	for (i = 0; i < nr_pages; i++) {
1224 		struct page *page;
1225 
1226 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1227 				    mflags, cpu_to_node(cpu));
1228 		if (!bpage)
1229 			goto free_pages;
1230 
1231 		list_add(&bpage->list, pages);
1232 
1233 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1234 		if (!page)
1235 			goto free_pages;
1236 		bpage->page = page_address(page);
1237 		rb_init_page(bpage->page);
1238 
1239 		if (user_thread && fatal_signal_pending(current))
1240 			goto free_pages;
1241 	}
1242 	if (user_thread)
1243 		clear_current_oom_origin();
1244 
1245 	return 0;
1246 
1247 free_pages:
1248 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1249 		list_del_init(&bpage->list);
1250 		free_buffer_page(bpage);
1251 	}
1252 	if (user_thread)
1253 		clear_current_oom_origin();
1254 
1255 	return -ENOMEM;
1256 }
1257 
1258 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1259 			     unsigned long nr_pages)
1260 {
1261 	LIST_HEAD(pages);
1262 
1263 	WARN_ON(!nr_pages);
1264 
1265 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1266 		return -ENOMEM;
1267 
1268 	/*
1269 	 * The ring buffer page list is a circular list that does not
1270 	 * start and end with a list head. All page list items point to
1271 	 * other pages.
1272 	 */
1273 	cpu_buffer->pages = pages.next;
1274 	list_del(&pages);
1275 
1276 	cpu_buffer->nr_pages = nr_pages;
1277 
1278 	rb_check_pages(cpu_buffer);
1279 
1280 	return 0;
1281 }
1282 
1283 static struct ring_buffer_per_cpu *
1284 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1285 {
1286 	struct ring_buffer_per_cpu *cpu_buffer;
1287 	struct buffer_page *bpage;
1288 	struct page *page;
1289 	int ret;
1290 
1291 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1292 				  GFP_KERNEL, cpu_to_node(cpu));
1293 	if (!cpu_buffer)
1294 		return NULL;
1295 
1296 	cpu_buffer->cpu = cpu;
1297 	cpu_buffer->buffer = buffer;
1298 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1299 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1300 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1301 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1302 	init_completion(&cpu_buffer->update_done);
1303 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1304 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1305 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1306 
1307 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1308 			    GFP_KERNEL, cpu_to_node(cpu));
1309 	if (!bpage)
1310 		goto fail_free_buffer;
1311 
1312 	rb_check_bpage(cpu_buffer, bpage);
1313 
1314 	cpu_buffer->reader_page = bpage;
1315 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1316 	if (!page)
1317 		goto fail_free_reader;
1318 	bpage->page = page_address(page);
1319 	rb_init_page(bpage->page);
1320 
1321 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1322 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1323 
1324 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1325 	if (ret < 0)
1326 		goto fail_free_reader;
1327 
1328 	cpu_buffer->head_page
1329 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1330 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1331 
1332 	rb_head_page_activate(cpu_buffer);
1333 
1334 	return cpu_buffer;
1335 
1336  fail_free_reader:
1337 	free_buffer_page(cpu_buffer->reader_page);
1338 
1339  fail_free_buffer:
1340 	kfree(cpu_buffer);
1341 	return NULL;
1342 }
1343 
1344 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1345 {
1346 	struct list_head *head = cpu_buffer->pages;
1347 	struct buffer_page *bpage, *tmp;
1348 
1349 	free_buffer_page(cpu_buffer->reader_page);
1350 
1351 	rb_head_page_deactivate(cpu_buffer);
1352 
1353 	if (head) {
1354 		list_for_each_entry_safe(bpage, tmp, head, list) {
1355 			list_del_init(&bpage->list);
1356 			free_buffer_page(bpage);
1357 		}
1358 		bpage = list_entry(head, struct buffer_page, list);
1359 		free_buffer_page(bpage);
1360 	}
1361 
1362 	kfree(cpu_buffer);
1363 }
1364 
1365 /**
1366  * __ring_buffer_alloc - allocate a new ring_buffer
1367  * @size: the size in bytes per cpu that is needed.
1368  * @flags: attributes to set for the ring buffer.
1369  * @key: ring buffer reader_lock_key.
1370  *
1371  * Currently the only flag that is available is the RB_FL_OVERWRITE
1372  * flag. This flag means that the buffer will overwrite old data
1373  * when the buffer wraps. If this flag is not set, the buffer will
1374  * drop data when the tail hits the head.
1375  */
1376 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1377 					struct lock_class_key *key)
1378 {
1379 	struct trace_buffer *buffer;
1380 	long nr_pages;
1381 	int bsize;
1382 	int cpu;
1383 	int ret;
1384 
1385 	/* keep it in its own cache line */
1386 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1387 			 GFP_KERNEL);
1388 	if (!buffer)
1389 		return NULL;
1390 
1391 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1392 		goto fail_free_buffer;
1393 
1394 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1395 	buffer->flags = flags;
1396 	buffer->clock = trace_clock_local;
1397 	buffer->reader_lock_key = key;
1398 
1399 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1400 	init_waitqueue_head(&buffer->irq_work.waiters);
1401 
1402 	/* need at least two pages */
1403 	if (nr_pages < 2)
1404 		nr_pages = 2;
1405 
1406 	buffer->cpus = nr_cpu_ids;
1407 
1408 	bsize = sizeof(void *) * nr_cpu_ids;
1409 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1410 				  GFP_KERNEL);
1411 	if (!buffer->buffers)
1412 		goto fail_free_cpumask;
1413 
1414 	cpu = raw_smp_processor_id();
1415 	cpumask_set_cpu(cpu, buffer->cpumask);
1416 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1417 	if (!buffer->buffers[cpu])
1418 		goto fail_free_buffers;
1419 
1420 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1421 	if (ret < 0)
1422 		goto fail_free_buffers;
1423 
1424 	mutex_init(&buffer->mutex);
1425 
1426 	return buffer;
1427 
1428  fail_free_buffers:
1429 	for_each_buffer_cpu(buffer, cpu) {
1430 		if (buffer->buffers[cpu])
1431 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1432 	}
1433 	kfree(buffer->buffers);
1434 
1435  fail_free_cpumask:
1436 	free_cpumask_var(buffer->cpumask);
1437 
1438  fail_free_buffer:
1439 	kfree(buffer);
1440 	return NULL;
1441 }
1442 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1443 
1444 /**
1445  * ring_buffer_free - free a ring buffer.
1446  * @buffer: the buffer to free.
1447  */
1448 void
1449 ring_buffer_free(struct trace_buffer *buffer)
1450 {
1451 	int cpu;
1452 
1453 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1454 
1455 	for_each_buffer_cpu(buffer, cpu)
1456 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1457 
1458 	kfree(buffer->buffers);
1459 	free_cpumask_var(buffer->cpumask);
1460 
1461 	kfree(buffer);
1462 }
1463 EXPORT_SYMBOL_GPL(ring_buffer_free);
1464 
1465 void ring_buffer_set_clock(struct trace_buffer *buffer,
1466 			   u64 (*clock)(void))
1467 {
1468 	buffer->clock = clock;
1469 }
1470 
1471 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1472 {
1473 	buffer->time_stamp_abs = abs;
1474 }
1475 
1476 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1477 {
1478 	return buffer->time_stamp_abs;
1479 }
1480 
1481 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1482 
1483 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1484 {
1485 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1486 }
1487 
1488 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1489 {
1490 	return local_read(&bpage->write) & RB_WRITE_MASK;
1491 }
1492 
1493 static int
1494 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1495 {
1496 	struct list_head *tail_page, *to_remove, *next_page;
1497 	struct buffer_page *to_remove_page, *tmp_iter_page;
1498 	struct buffer_page *last_page, *first_page;
1499 	unsigned long nr_removed;
1500 	unsigned long head_bit;
1501 	int page_entries;
1502 
1503 	head_bit = 0;
1504 
1505 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1506 	atomic_inc(&cpu_buffer->record_disabled);
1507 	/*
1508 	 * We don't race with the readers since we have acquired the reader
1509 	 * lock. We also don't race with writers after disabling recording.
1510 	 * This makes it easy to figure out the first and the last page to be
1511 	 * removed from the list. We unlink all the pages in between including
1512 	 * the first and last pages. This is done in a busy loop so that we
1513 	 * lose the least number of traces.
1514 	 * The pages are freed after we restart recording and unlock readers.
1515 	 */
1516 	tail_page = &cpu_buffer->tail_page->list;
1517 
1518 	/*
1519 	 * tail page might be on reader page, we remove the next page
1520 	 * from the ring buffer
1521 	 */
1522 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1523 		tail_page = rb_list_head(tail_page->next);
1524 	to_remove = tail_page;
1525 
1526 	/* start of pages to remove */
1527 	first_page = list_entry(rb_list_head(to_remove->next),
1528 				struct buffer_page, list);
1529 
1530 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1531 		to_remove = rb_list_head(to_remove)->next;
1532 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1533 	}
1534 
1535 	next_page = rb_list_head(to_remove)->next;
1536 
1537 	/*
1538 	 * Now we remove all pages between tail_page and next_page.
1539 	 * Make sure that we have head_bit value preserved for the
1540 	 * next page
1541 	 */
1542 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1543 						head_bit);
1544 	next_page = rb_list_head(next_page);
1545 	next_page->prev = tail_page;
1546 
1547 	/* make sure pages points to a valid page in the ring buffer */
1548 	cpu_buffer->pages = next_page;
1549 
1550 	/* update head page */
1551 	if (head_bit)
1552 		cpu_buffer->head_page = list_entry(next_page,
1553 						struct buffer_page, list);
1554 
1555 	/*
1556 	 * change read pointer to make sure any read iterators reset
1557 	 * themselves
1558 	 */
1559 	cpu_buffer->read = 0;
1560 
1561 	/* pages are removed, resume tracing and then free the pages */
1562 	atomic_dec(&cpu_buffer->record_disabled);
1563 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1564 
1565 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1566 
1567 	/* last buffer page to remove */
1568 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1569 				list);
1570 	tmp_iter_page = first_page;
1571 
1572 	do {
1573 		cond_resched();
1574 
1575 		to_remove_page = tmp_iter_page;
1576 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1577 
1578 		/* update the counters */
1579 		page_entries = rb_page_entries(to_remove_page);
1580 		if (page_entries) {
1581 			/*
1582 			 * If something was added to this page, it was full
1583 			 * since it is not the tail page. So we deduct the
1584 			 * bytes consumed in ring buffer from here.
1585 			 * Increment overrun to account for the lost events.
1586 			 */
1587 			local_add(page_entries, &cpu_buffer->overrun);
1588 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1589 		}
1590 
1591 		/*
1592 		 * We have already removed references to this list item, just
1593 		 * free up the buffer_page and its page
1594 		 */
1595 		free_buffer_page(to_remove_page);
1596 		nr_removed--;
1597 
1598 	} while (to_remove_page != last_page);
1599 
1600 	RB_WARN_ON(cpu_buffer, nr_removed);
1601 
1602 	return nr_removed == 0;
1603 }
1604 
1605 static int
1606 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1607 {
1608 	struct list_head *pages = &cpu_buffer->new_pages;
1609 	int retries, success;
1610 
1611 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1612 	/*
1613 	 * We are holding the reader lock, so the reader page won't be swapped
1614 	 * in the ring buffer. Now we are racing with the writer trying to
1615 	 * move head page and the tail page.
1616 	 * We are going to adapt the reader page update process where:
1617 	 * 1. We first splice the start and end of list of new pages between
1618 	 *    the head page and its previous page.
1619 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1620 	 *    start of new pages list.
1621 	 * 3. Finally, we update the head->prev to the end of new list.
1622 	 *
1623 	 * We will try this process 10 times, to make sure that we don't keep
1624 	 * spinning.
1625 	 */
1626 	retries = 10;
1627 	success = 0;
1628 	while (retries--) {
1629 		struct list_head *head_page, *prev_page, *r;
1630 		struct list_head *last_page, *first_page;
1631 		struct list_head *head_page_with_bit;
1632 
1633 		head_page = &rb_set_head_page(cpu_buffer)->list;
1634 		if (!head_page)
1635 			break;
1636 		prev_page = head_page->prev;
1637 
1638 		first_page = pages->next;
1639 		last_page  = pages->prev;
1640 
1641 		head_page_with_bit = (struct list_head *)
1642 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1643 
1644 		last_page->next = head_page_with_bit;
1645 		first_page->prev = prev_page;
1646 
1647 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1648 
1649 		if (r == head_page_with_bit) {
1650 			/*
1651 			 * yay, we replaced the page pointer to our new list,
1652 			 * now, we just have to update to head page's prev
1653 			 * pointer to point to end of list
1654 			 */
1655 			head_page->prev = last_page;
1656 			success = 1;
1657 			break;
1658 		}
1659 	}
1660 
1661 	if (success)
1662 		INIT_LIST_HEAD(pages);
1663 	/*
1664 	 * If we weren't successful in adding in new pages, warn and stop
1665 	 * tracing
1666 	 */
1667 	RB_WARN_ON(cpu_buffer, !success);
1668 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1669 
1670 	/* free pages if they weren't inserted */
1671 	if (!success) {
1672 		struct buffer_page *bpage, *tmp;
1673 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1674 					 list) {
1675 			list_del_init(&bpage->list);
1676 			free_buffer_page(bpage);
1677 		}
1678 	}
1679 	return success;
1680 }
1681 
1682 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1683 {
1684 	int success;
1685 
1686 	if (cpu_buffer->nr_pages_to_update > 0)
1687 		success = rb_insert_pages(cpu_buffer);
1688 	else
1689 		success = rb_remove_pages(cpu_buffer,
1690 					-cpu_buffer->nr_pages_to_update);
1691 
1692 	if (success)
1693 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1694 }
1695 
1696 static void update_pages_handler(struct work_struct *work)
1697 {
1698 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1699 			struct ring_buffer_per_cpu, update_pages_work);
1700 	rb_update_pages(cpu_buffer);
1701 	complete(&cpu_buffer->update_done);
1702 }
1703 
1704 /**
1705  * ring_buffer_resize - resize the ring buffer
1706  * @buffer: the buffer to resize.
1707  * @size: the new size.
1708  * @cpu_id: the cpu buffer to resize
1709  *
1710  * Minimum size is 2 * BUF_PAGE_SIZE.
1711  *
1712  * Returns 0 on success and < 0 on failure.
1713  */
1714 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1715 			int cpu_id)
1716 {
1717 	struct ring_buffer_per_cpu *cpu_buffer;
1718 	unsigned long nr_pages;
1719 	int cpu, err = 0;
1720 
1721 	/*
1722 	 * Always succeed at resizing a non-existent buffer:
1723 	 */
1724 	if (!buffer)
1725 		return size;
1726 
1727 	/* Make sure the requested buffer exists */
1728 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1729 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1730 		return size;
1731 
1732 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1733 
1734 	/* we need a minimum of two pages */
1735 	if (nr_pages < 2)
1736 		nr_pages = 2;
1737 
1738 	size = nr_pages * BUF_PAGE_SIZE;
1739 
1740 	/*
1741 	 * Don't succeed if resizing is disabled, as a reader might be
1742 	 * manipulating the ring buffer and is expecting a sane state while
1743 	 * this is true.
1744 	 */
1745 	if (atomic_read(&buffer->resize_disabled))
1746 		return -EBUSY;
1747 
1748 	/* prevent another thread from changing buffer sizes */
1749 	mutex_lock(&buffer->mutex);
1750 
1751 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1752 		/* calculate the pages to update */
1753 		for_each_buffer_cpu(buffer, cpu) {
1754 			cpu_buffer = buffer->buffers[cpu];
1755 
1756 			cpu_buffer->nr_pages_to_update = nr_pages -
1757 							cpu_buffer->nr_pages;
1758 			/*
1759 			 * nothing more to do for removing pages or no update
1760 			 */
1761 			if (cpu_buffer->nr_pages_to_update <= 0)
1762 				continue;
1763 			/*
1764 			 * to add pages, make sure all new pages can be
1765 			 * allocated without receiving ENOMEM
1766 			 */
1767 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1768 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1769 						&cpu_buffer->new_pages, cpu)) {
1770 				/* not enough memory for new pages */
1771 				err = -ENOMEM;
1772 				goto out_err;
1773 			}
1774 		}
1775 
1776 		get_online_cpus();
1777 		/*
1778 		 * Fire off all the required work handlers
1779 		 * We can't schedule on offline CPUs, but it's not necessary
1780 		 * since we can change their buffer sizes without any race.
1781 		 */
1782 		for_each_buffer_cpu(buffer, cpu) {
1783 			cpu_buffer = buffer->buffers[cpu];
1784 			if (!cpu_buffer->nr_pages_to_update)
1785 				continue;
1786 
1787 			/* Can't run something on an offline CPU. */
1788 			if (!cpu_online(cpu)) {
1789 				rb_update_pages(cpu_buffer);
1790 				cpu_buffer->nr_pages_to_update = 0;
1791 			} else {
1792 				schedule_work_on(cpu,
1793 						&cpu_buffer->update_pages_work);
1794 			}
1795 		}
1796 
1797 		/* wait for all the updates to complete */
1798 		for_each_buffer_cpu(buffer, cpu) {
1799 			cpu_buffer = buffer->buffers[cpu];
1800 			if (!cpu_buffer->nr_pages_to_update)
1801 				continue;
1802 
1803 			if (cpu_online(cpu))
1804 				wait_for_completion(&cpu_buffer->update_done);
1805 			cpu_buffer->nr_pages_to_update = 0;
1806 		}
1807 
1808 		put_online_cpus();
1809 	} else {
1810 		/* Make sure this CPU has been initialized */
1811 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1812 			goto out;
1813 
1814 		cpu_buffer = buffer->buffers[cpu_id];
1815 
1816 		if (nr_pages == cpu_buffer->nr_pages)
1817 			goto out;
1818 
1819 		cpu_buffer->nr_pages_to_update = nr_pages -
1820 						cpu_buffer->nr_pages;
1821 
1822 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1823 		if (cpu_buffer->nr_pages_to_update > 0 &&
1824 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1825 					    &cpu_buffer->new_pages, cpu_id)) {
1826 			err = -ENOMEM;
1827 			goto out_err;
1828 		}
1829 
1830 		get_online_cpus();
1831 
1832 		/* Can't run something on an offline CPU. */
1833 		if (!cpu_online(cpu_id))
1834 			rb_update_pages(cpu_buffer);
1835 		else {
1836 			schedule_work_on(cpu_id,
1837 					 &cpu_buffer->update_pages_work);
1838 			wait_for_completion(&cpu_buffer->update_done);
1839 		}
1840 
1841 		cpu_buffer->nr_pages_to_update = 0;
1842 		put_online_cpus();
1843 	}
1844 
1845  out:
1846 	/*
1847 	 * The ring buffer resize can happen with the ring buffer
1848 	 * enabled, so that the update disturbs the tracing as little
1849 	 * as possible. But if the buffer is disabled, we do not need
1850 	 * to worry about that, and we can take the time to verify
1851 	 * that the buffer is not corrupt.
1852 	 */
1853 	if (atomic_read(&buffer->record_disabled)) {
1854 		atomic_inc(&buffer->record_disabled);
1855 		/*
1856 		 * Even though the buffer was disabled, we must make sure
1857 		 * that it is truly disabled before calling rb_check_pages.
1858 		 * There could have been a race between checking
1859 		 * record_disable and incrementing it.
1860 		 */
1861 		synchronize_rcu();
1862 		for_each_buffer_cpu(buffer, cpu) {
1863 			cpu_buffer = buffer->buffers[cpu];
1864 			rb_check_pages(cpu_buffer);
1865 		}
1866 		atomic_dec(&buffer->record_disabled);
1867 	}
1868 
1869 	mutex_unlock(&buffer->mutex);
1870 	return size;
1871 
1872  out_err:
1873 	for_each_buffer_cpu(buffer, cpu) {
1874 		struct buffer_page *bpage, *tmp;
1875 
1876 		cpu_buffer = buffer->buffers[cpu];
1877 		cpu_buffer->nr_pages_to_update = 0;
1878 
1879 		if (list_empty(&cpu_buffer->new_pages))
1880 			continue;
1881 
1882 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1883 					list) {
1884 			list_del_init(&bpage->list);
1885 			free_buffer_page(bpage);
1886 		}
1887 	}
1888 	mutex_unlock(&buffer->mutex);
1889 	return err;
1890 }
1891 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1892 
1893 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
1894 {
1895 	mutex_lock(&buffer->mutex);
1896 	if (val)
1897 		buffer->flags |= RB_FL_OVERWRITE;
1898 	else
1899 		buffer->flags &= ~RB_FL_OVERWRITE;
1900 	mutex_unlock(&buffer->mutex);
1901 }
1902 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1903 
1904 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1905 {
1906 	return bpage->page->data + index;
1907 }
1908 
1909 static __always_inline struct ring_buffer_event *
1910 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1911 {
1912 	return __rb_page_index(cpu_buffer->reader_page,
1913 			       cpu_buffer->reader_page->read);
1914 }
1915 
1916 static __always_inline struct ring_buffer_event *
1917 rb_iter_head_event(struct ring_buffer_iter *iter)
1918 {
1919 	return __rb_page_index(iter->head_page, iter->head);
1920 }
1921 
1922 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1923 {
1924 	return local_read(&bpage->page->commit);
1925 }
1926 
1927 /* Size is determined by what has been committed */
1928 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1929 {
1930 	return rb_page_commit(bpage);
1931 }
1932 
1933 static __always_inline unsigned
1934 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1935 {
1936 	return rb_page_commit(cpu_buffer->commit_page);
1937 }
1938 
1939 static __always_inline unsigned
1940 rb_event_index(struct ring_buffer_event *event)
1941 {
1942 	unsigned long addr = (unsigned long)event;
1943 
1944 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1945 }
1946 
1947 static void rb_inc_iter(struct ring_buffer_iter *iter)
1948 {
1949 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950 
1951 	/*
1952 	 * The iterator could be on the reader page (it starts there).
1953 	 * But the head could have moved, since the reader was
1954 	 * found. Check for this case and assign the iterator
1955 	 * to the head page instead of next.
1956 	 */
1957 	if (iter->head_page == cpu_buffer->reader_page)
1958 		iter->head_page = rb_set_head_page(cpu_buffer);
1959 	else
1960 		rb_inc_page(cpu_buffer, &iter->head_page);
1961 
1962 	iter->read_stamp = iter->head_page->page->time_stamp;
1963 	iter->head = 0;
1964 }
1965 
1966 /*
1967  * rb_handle_head_page - writer hit the head page
1968  *
1969  * Returns: +1 to retry page
1970  *           0 to continue
1971  *          -1 on error
1972  */
1973 static int
1974 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1975 		    struct buffer_page *tail_page,
1976 		    struct buffer_page *next_page)
1977 {
1978 	struct buffer_page *new_head;
1979 	int entries;
1980 	int type;
1981 	int ret;
1982 
1983 	entries = rb_page_entries(next_page);
1984 
1985 	/*
1986 	 * The hard part is here. We need to move the head
1987 	 * forward, and protect against both readers on
1988 	 * other CPUs and writers coming in via interrupts.
1989 	 */
1990 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1991 				       RB_PAGE_HEAD);
1992 
1993 	/*
1994 	 * type can be one of four:
1995 	 *  NORMAL - an interrupt already moved it for us
1996 	 *  HEAD   - we are the first to get here.
1997 	 *  UPDATE - we are the interrupt interrupting
1998 	 *           a current move.
1999 	 *  MOVED  - a reader on another CPU moved the next
2000 	 *           pointer to its reader page. Give up
2001 	 *           and try again.
2002 	 */
2003 
2004 	switch (type) {
2005 	case RB_PAGE_HEAD:
2006 		/*
2007 		 * We changed the head to UPDATE, thus
2008 		 * it is our responsibility to update
2009 		 * the counters.
2010 		 */
2011 		local_add(entries, &cpu_buffer->overrun);
2012 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2013 
2014 		/*
2015 		 * The entries will be zeroed out when we move the
2016 		 * tail page.
2017 		 */
2018 
2019 		/* still more to do */
2020 		break;
2021 
2022 	case RB_PAGE_UPDATE:
2023 		/*
2024 		 * This is an interrupt that interrupt the
2025 		 * previous update. Still more to do.
2026 		 */
2027 		break;
2028 	case RB_PAGE_NORMAL:
2029 		/*
2030 		 * An interrupt came in before the update
2031 		 * and processed this for us.
2032 		 * Nothing left to do.
2033 		 */
2034 		return 1;
2035 	case RB_PAGE_MOVED:
2036 		/*
2037 		 * The reader is on another CPU and just did
2038 		 * a swap with our next_page.
2039 		 * Try again.
2040 		 */
2041 		return 1;
2042 	default:
2043 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2044 		return -1;
2045 	}
2046 
2047 	/*
2048 	 * Now that we are here, the old head pointer is
2049 	 * set to UPDATE. This will keep the reader from
2050 	 * swapping the head page with the reader page.
2051 	 * The reader (on another CPU) will spin till
2052 	 * we are finished.
2053 	 *
2054 	 * We just need to protect against interrupts
2055 	 * doing the job. We will set the next pointer
2056 	 * to HEAD. After that, we set the old pointer
2057 	 * to NORMAL, but only if it was HEAD before.
2058 	 * otherwise we are an interrupt, and only
2059 	 * want the outer most commit to reset it.
2060 	 */
2061 	new_head = next_page;
2062 	rb_inc_page(cpu_buffer, &new_head);
2063 
2064 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2065 				    RB_PAGE_NORMAL);
2066 
2067 	/*
2068 	 * Valid returns are:
2069 	 *  HEAD   - an interrupt came in and already set it.
2070 	 *  NORMAL - One of two things:
2071 	 *            1) We really set it.
2072 	 *            2) A bunch of interrupts came in and moved
2073 	 *               the page forward again.
2074 	 */
2075 	switch (ret) {
2076 	case RB_PAGE_HEAD:
2077 	case RB_PAGE_NORMAL:
2078 		/* OK */
2079 		break;
2080 	default:
2081 		RB_WARN_ON(cpu_buffer, 1);
2082 		return -1;
2083 	}
2084 
2085 	/*
2086 	 * It is possible that an interrupt came in,
2087 	 * set the head up, then more interrupts came in
2088 	 * and moved it again. When we get back here,
2089 	 * the page would have been set to NORMAL but we
2090 	 * just set it back to HEAD.
2091 	 *
2092 	 * How do you detect this? Well, if that happened
2093 	 * the tail page would have moved.
2094 	 */
2095 	if (ret == RB_PAGE_NORMAL) {
2096 		struct buffer_page *buffer_tail_page;
2097 
2098 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2099 		/*
2100 		 * If the tail had moved passed next, then we need
2101 		 * to reset the pointer.
2102 		 */
2103 		if (buffer_tail_page != tail_page &&
2104 		    buffer_tail_page != next_page)
2105 			rb_head_page_set_normal(cpu_buffer, new_head,
2106 						next_page,
2107 						RB_PAGE_HEAD);
2108 	}
2109 
2110 	/*
2111 	 * If this was the outer most commit (the one that
2112 	 * changed the original pointer from HEAD to UPDATE),
2113 	 * then it is up to us to reset it to NORMAL.
2114 	 */
2115 	if (type == RB_PAGE_HEAD) {
2116 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2117 					      tail_page,
2118 					      RB_PAGE_UPDATE);
2119 		if (RB_WARN_ON(cpu_buffer,
2120 			       ret != RB_PAGE_UPDATE))
2121 			return -1;
2122 	}
2123 
2124 	return 0;
2125 }
2126 
2127 static inline void
2128 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2129 	      unsigned long tail, struct rb_event_info *info)
2130 {
2131 	struct buffer_page *tail_page = info->tail_page;
2132 	struct ring_buffer_event *event;
2133 	unsigned long length = info->length;
2134 
2135 	/*
2136 	 * Only the event that crossed the page boundary
2137 	 * must fill the old tail_page with padding.
2138 	 */
2139 	if (tail >= BUF_PAGE_SIZE) {
2140 		/*
2141 		 * If the page was filled, then we still need
2142 		 * to update the real_end. Reset it to zero
2143 		 * and the reader will ignore it.
2144 		 */
2145 		if (tail == BUF_PAGE_SIZE)
2146 			tail_page->real_end = 0;
2147 
2148 		local_sub(length, &tail_page->write);
2149 		return;
2150 	}
2151 
2152 	event = __rb_page_index(tail_page, tail);
2153 
2154 	/* account for padding bytes */
2155 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2156 
2157 	/*
2158 	 * Save the original length to the meta data.
2159 	 * This will be used by the reader to add lost event
2160 	 * counter.
2161 	 */
2162 	tail_page->real_end = tail;
2163 
2164 	/*
2165 	 * If this event is bigger than the minimum size, then
2166 	 * we need to be careful that we don't subtract the
2167 	 * write counter enough to allow another writer to slip
2168 	 * in on this page.
2169 	 * We put in a discarded commit instead, to make sure
2170 	 * that this space is not used again.
2171 	 *
2172 	 * If we are less than the minimum size, we don't need to
2173 	 * worry about it.
2174 	 */
2175 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2176 		/* No room for any events */
2177 
2178 		/* Mark the rest of the page with padding */
2179 		rb_event_set_padding(event);
2180 
2181 		/* Set the write back to the previous setting */
2182 		local_sub(length, &tail_page->write);
2183 		return;
2184 	}
2185 
2186 	/* Put in a discarded event */
2187 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2188 	event->type_len = RINGBUF_TYPE_PADDING;
2189 	/* time delta must be non zero */
2190 	event->time_delta = 1;
2191 
2192 	/* Set write to end of buffer */
2193 	length = (tail + length) - BUF_PAGE_SIZE;
2194 	local_sub(length, &tail_page->write);
2195 }
2196 
2197 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2198 
2199 /*
2200  * This is the slow path, force gcc not to inline it.
2201  */
2202 static noinline struct ring_buffer_event *
2203 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2204 	     unsigned long tail, struct rb_event_info *info)
2205 {
2206 	struct buffer_page *tail_page = info->tail_page;
2207 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2208 	struct trace_buffer *buffer = cpu_buffer->buffer;
2209 	struct buffer_page *next_page;
2210 	int ret;
2211 
2212 	next_page = tail_page;
2213 
2214 	rb_inc_page(cpu_buffer, &next_page);
2215 
2216 	/*
2217 	 * If for some reason, we had an interrupt storm that made
2218 	 * it all the way around the buffer, bail, and warn
2219 	 * about it.
2220 	 */
2221 	if (unlikely(next_page == commit_page)) {
2222 		local_inc(&cpu_buffer->commit_overrun);
2223 		goto out_reset;
2224 	}
2225 
2226 	/*
2227 	 * This is where the fun begins!
2228 	 *
2229 	 * We are fighting against races between a reader that
2230 	 * could be on another CPU trying to swap its reader
2231 	 * page with the buffer head.
2232 	 *
2233 	 * We are also fighting against interrupts coming in and
2234 	 * moving the head or tail on us as well.
2235 	 *
2236 	 * If the next page is the head page then we have filled
2237 	 * the buffer, unless the commit page is still on the
2238 	 * reader page.
2239 	 */
2240 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2241 
2242 		/*
2243 		 * If the commit is not on the reader page, then
2244 		 * move the header page.
2245 		 */
2246 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2247 			/*
2248 			 * If we are not in overwrite mode,
2249 			 * this is easy, just stop here.
2250 			 */
2251 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2252 				local_inc(&cpu_buffer->dropped_events);
2253 				goto out_reset;
2254 			}
2255 
2256 			ret = rb_handle_head_page(cpu_buffer,
2257 						  tail_page,
2258 						  next_page);
2259 			if (ret < 0)
2260 				goto out_reset;
2261 			if (ret)
2262 				goto out_again;
2263 		} else {
2264 			/*
2265 			 * We need to be careful here too. The
2266 			 * commit page could still be on the reader
2267 			 * page. We could have a small buffer, and
2268 			 * have filled up the buffer with events
2269 			 * from interrupts and such, and wrapped.
2270 			 *
2271 			 * Note, if the tail page is also the on the
2272 			 * reader_page, we let it move out.
2273 			 */
2274 			if (unlikely((cpu_buffer->commit_page !=
2275 				      cpu_buffer->tail_page) &&
2276 				     (cpu_buffer->commit_page ==
2277 				      cpu_buffer->reader_page))) {
2278 				local_inc(&cpu_buffer->commit_overrun);
2279 				goto out_reset;
2280 			}
2281 		}
2282 	}
2283 
2284 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2285 
2286  out_again:
2287 
2288 	rb_reset_tail(cpu_buffer, tail, info);
2289 
2290 	/* Commit what we have for now. */
2291 	rb_end_commit(cpu_buffer);
2292 	/* rb_end_commit() decs committing */
2293 	local_inc(&cpu_buffer->committing);
2294 
2295 	/* fail and let the caller try again */
2296 	return ERR_PTR(-EAGAIN);
2297 
2298  out_reset:
2299 	/* reset write */
2300 	rb_reset_tail(cpu_buffer, tail, info);
2301 
2302 	return NULL;
2303 }
2304 
2305 /* Slow path, do not inline */
2306 static noinline struct ring_buffer_event *
2307 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2308 {
2309 	if (abs)
2310 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2311 	else
2312 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2313 
2314 	/* Not the first event on the page, or not delta? */
2315 	if (abs || rb_event_index(event)) {
2316 		event->time_delta = delta & TS_MASK;
2317 		event->array[0] = delta >> TS_SHIFT;
2318 	} else {
2319 		/* nope, just zero it */
2320 		event->time_delta = 0;
2321 		event->array[0] = 0;
2322 	}
2323 
2324 	return skip_time_extend(event);
2325 }
2326 
2327 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2328 				     struct ring_buffer_event *event);
2329 
2330 /**
2331  * rb_update_event - update event type and data
2332  * @cpu_buffer: The per cpu buffer of the @event
2333  * @event: the event to update
2334  * @info: The info to update the @event with (contains length and delta)
2335  *
2336  * Update the type and data fields of the @event. The length
2337  * is the actual size that is written to the ring buffer,
2338  * and with this, we can determine what to place into the
2339  * data field.
2340  */
2341 static void
2342 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2343 		struct ring_buffer_event *event,
2344 		struct rb_event_info *info)
2345 {
2346 	unsigned length = info->length;
2347 	u64 delta = info->delta;
2348 
2349 	/* Only a commit updates the timestamp */
2350 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2351 		delta = 0;
2352 
2353 	/*
2354 	 * If we need to add a timestamp, then we
2355 	 * add it to the start of the reserved space.
2356 	 */
2357 	if (unlikely(info->add_timestamp)) {
2358 		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2359 
2360 		event = rb_add_time_stamp(event, info->delta, abs);
2361 		length -= RB_LEN_TIME_EXTEND;
2362 		delta = 0;
2363 	}
2364 
2365 	event->time_delta = delta;
2366 	length -= RB_EVNT_HDR_SIZE;
2367 	if (length > RB_MAX_SMALL_DATA) {
2368 		event->type_len = 0;
2369 		event->array[0] = length;
2370 	} else
2371 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2372 }
2373 
2374 static unsigned rb_calculate_event_length(unsigned length)
2375 {
2376 	struct ring_buffer_event event; /* Used only for sizeof array */
2377 
2378 	/* zero length can cause confusions */
2379 	if (!length)
2380 		length++;
2381 
2382 	if (length > RB_MAX_SMALL_DATA)
2383 		length += sizeof(event.array[0]);
2384 
2385 	length += RB_EVNT_HDR_SIZE;
2386 	length = ALIGN(length, RB_ALIGNMENT);
2387 
2388 	/*
2389 	 * In case the time delta is larger than the 27 bits for it
2390 	 * in the header, we need to add a timestamp. If another
2391 	 * event comes in when trying to discard this one to increase
2392 	 * the length, then the timestamp will be added in the allocated
2393 	 * space of this event. If length is bigger than the size needed
2394 	 * for the TIME_EXTEND, then padding has to be used. The events
2395 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2396 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2397 	 * As length is a multiple of 4, we only need to worry if it
2398 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2399 	 */
2400 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2401 		length += RB_ALIGNMENT;
2402 
2403 	return length;
2404 }
2405 
2406 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2407 static inline bool sched_clock_stable(void)
2408 {
2409 	return true;
2410 }
2411 #endif
2412 
2413 static inline int
2414 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2415 		  struct ring_buffer_event *event)
2416 {
2417 	unsigned long new_index, old_index;
2418 	struct buffer_page *bpage;
2419 	unsigned long index;
2420 	unsigned long addr;
2421 
2422 	new_index = rb_event_index(event);
2423 	old_index = new_index + rb_event_ts_length(event);
2424 	addr = (unsigned long)event;
2425 	addr &= PAGE_MASK;
2426 
2427 	bpage = READ_ONCE(cpu_buffer->tail_page);
2428 
2429 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2430 		unsigned long write_mask =
2431 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2432 		unsigned long event_length = rb_event_length(event);
2433 		/*
2434 		 * This is on the tail page. It is possible that
2435 		 * a write could come in and move the tail page
2436 		 * and write to the next page. That is fine
2437 		 * because we just shorten what is on this page.
2438 		 */
2439 		old_index += write_mask;
2440 		new_index += write_mask;
2441 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2442 		if (index == old_index) {
2443 			/* update counters */
2444 			local_sub(event_length, &cpu_buffer->entries_bytes);
2445 			return 1;
2446 		}
2447 	}
2448 
2449 	/* could not discard */
2450 	return 0;
2451 }
2452 
2453 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2454 {
2455 	local_inc(&cpu_buffer->committing);
2456 	local_inc(&cpu_buffer->commits);
2457 }
2458 
2459 static __always_inline void
2460 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2461 {
2462 	unsigned long max_count;
2463 
2464 	/*
2465 	 * We only race with interrupts and NMIs on this CPU.
2466 	 * If we own the commit event, then we can commit
2467 	 * all others that interrupted us, since the interruptions
2468 	 * are in stack format (they finish before they come
2469 	 * back to us). This allows us to do a simple loop to
2470 	 * assign the commit to the tail.
2471 	 */
2472  again:
2473 	max_count = cpu_buffer->nr_pages * 100;
2474 
2475 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2476 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2477 			return;
2478 		if (RB_WARN_ON(cpu_buffer,
2479 			       rb_is_reader_page(cpu_buffer->tail_page)))
2480 			return;
2481 		local_set(&cpu_buffer->commit_page->page->commit,
2482 			  rb_page_write(cpu_buffer->commit_page));
2483 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2484 		/* Only update the write stamp if the page has an event */
2485 		if (rb_page_write(cpu_buffer->commit_page))
2486 			cpu_buffer->write_stamp =
2487 				cpu_buffer->commit_page->page->time_stamp;
2488 		/* add barrier to keep gcc from optimizing too much */
2489 		barrier();
2490 	}
2491 	while (rb_commit_index(cpu_buffer) !=
2492 	       rb_page_write(cpu_buffer->commit_page)) {
2493 
2494 		local_set(&cpu_buffer->commit_page->page->commit,
2495 			  rb_page_write(cpu_buffer->commit_page));
2496 		RB_WARN_ON(cpu_buffer,
2497 			   local_read(&cpu_buffer->commit_page->page->commit) &
2498 			   ~RB_WRITE_MASK);
2499 		barrier();
2500 	}
2501 
2502 	/* again, keep gcc from optimizing */
2503 	barrier();
2504 
2505 	/*
2506 	 * If an interrupt came in just after the first while loop
2507 	 * and pushed the tail page forward, we will be left with
2508 	 * a dangling commit that will never go forward.
2509 	 */
2510 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2511 		goto again;
2512 }
2513 
2514 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515 {
2516 	unsigned long commits;
2517 
2518 	if (RB_WARN_ON(cpu_buffer,
2519 		       !local_read(&cpu_buffer->committing)))
2520 		return;
2521 
2522  again:
2523 	commits = local_read(&cpu_buffer->commits);
2524 	/* synchronize with interrupts */
2525 	barrier();
2526 	if (local_read(&cpu_buffer->committing) == 1)
2527 		rb_set_commit_to_write(cpu_buffer);
2528 
2529 	local_dec(&cpu_buffer->committing);
2530 
2531 	/* synchronize with interrupts */
2532 	barrier();
2533 
2534 	/*
2535 	 * Need to account for interrupts coming in between the
2536 	 * updating of the commit page and the clearing of the
2537 	 * committing counter.
2538 	 */
2539 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2540 	    !local_read(&cpu_buffer->committing)) {
2541 		local_inc(&cpu_buffer->committing);
2542 		goto again;
2543 	}
2544 }
2545 
2546 static inline void rb_event_discard(struct ring_buffer_event *event)
2547 {
2548 	if (extended_time(event))
2549 		event = skip_time_extend(event);
2550 
2551 	/* array[0] holds the actual length for the discarded event */
2552 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2553 	event->type_len = RINGBUF_TYPE_PADDING;
2554 	/* time delta must be non zero */
2555 	if (!event->time_delta)
2556 		event->time_delta = 1;
2557 }
2558 
2559 static __always_inline bool
2560 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561 		   struct ring_buffer_event *event)
2562 {
2563 	unsigned long addr = (unsigned long)event;
2564 	unsigned long index;
2565 
2566 	index = rb_event_index(event);
2567 	addr &= PAGE_MASK;
2568 
2569 	return cpu_buffer->commit_page->page == (void *)addr &&
2570 		rb_commit_index(cpu_buffer) == index;
2571 }
2572 
2573 static __always_inline void
2574 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2575 		      struct ring_buffer_event *event)
2576 {
2577 	u64 delta;
2578 
2579 	/*
2580 	 * The event first in the commit queue updates the
2581 	 * time stamp.
2582 	 */
2583 	if (rb_event_is_commit(cpu_buffer, event)) {
2584 		/*
2585 		 * A commit event that is first on a page
2586 		 * updates the write timestamp with the page stamp
2587 		 */
2588 		if (!rb_event_index(event))
2589 			cpu_buffer->write_stamp =
2590 				cpu_buffer->commit_page->page->time_stamp;
2591 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2592 			delta = ring_buffer_event_time_stamp(event);
2593 			cpu_buffer->write_stamp += delta;
2594 		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2595 			delta = ring_buffer_event_time_stamp(event);
2596 			cpu_buffer->write_stamp = delta;
2597 		} else
2598 			cpu_buffer->write_stamp += event->time_delta;
2599 	}
2600 }
2601 
2602 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2603 		      struct ring_buffer_event *event)
2604 {
2605 	local_inc(&cpu_buffer->entries);
2606 	rb_update_write_stamp(cpu_buffer, event);
2607 	rb_end_commit(cpu_buffer);
2608 }
2609 
2610 static __always_inline void
2611 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2612 {
2613 	size_t nr_pages;
2614 	size_t dirty;
2615 	size_t full;
2616 
2617 	if (buffer->irq_work.waiters_pending) {
2618 		buffer->irq_work.waiters_pending = false;
2619 		/* irq_work_queue() supplies it's own memory barriers */
2620 		irq_work_queue(&buffer->irq_work.work);
2621 	}
2622 
2623 	if (cpu_buffer->irq_work.waiters_pending) {
2624 		cpu_buffer->irq_work.waiters_pending = false;
2625 		/* irq_work_queue() supplies it's own memory barriers */
2626 		irq_work_queue(&cpu_buffer->irq_work.work);
2627 	}
2628 
2629 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2630 		return;
2631 
2632 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2633 		return;
2634 
2635 	if (!cpu_buffer->irq_work.full_waiters_pending)
2636 		return;
2637 
2638 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2639 
2640 	full = cpu_buffer->shortest_full;
2641 	nr_pages = cpu_buffer->nr_pages;
2642 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2643 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2644 		return;
2645 
2646 	cpu_buffer->irq_work.wakeup_full = true;
2647 	cpu_buffer->irq_work.full_waiters_pending = false;
2648 	/* irq_work_queue() supplies it's own memory barriers */
2649 	irq_work_queue(&cpu_buffer->irq_work.work);
2650 }
2651 
2652 /*
2653  * The lock and unlock are done within a preempt disable section.
2654  * The current_context per_cpu variable can only be modified
2655  * by the current task between lock and unlock. But it can
2656  * be modified more than once via an interrupt. To pass this
2657  * information from the lock to the unlock without having to
2658  * access the 'in_interrupt()' functions again (which do show
2659  * a bit of overhead in something as critical as function tracing,
2660  * we use a bitmask trick.
2661  *
2662  *  bit 0 =  NMI context
2663  *  bit 1 =  IRQ context
2664  *  bit 2 =  SoftIRQ context
2665  *  bit 3 =  normal context.
2666  *
2667  * This works because this is the order of contexts that can
2668  * preempt other contexts. A SoftIRQ never preempts an IRQ
2669  * context.
2670  *
2671  * When the context is determined, the corresponding bit is
2672  * checked and set (if it was set, then a recursion of that context
2673  * happened).
2674  *
2675  * On unlock, we need to clear this bit. To do so, just subtract
2676  * 1 from the current_context and AND it to itself.
2677  *
2678  * (binary)
2679  *  101 - 1 = 100
2680  *  101 & 100 = 100 (clearing bit zero)
2681  *
2682  *  1010 - 1 = 1001
2683  *  1010 & 1001 = 1000 (clearing bit 1)
2684  *
2685  * The least significant bit can be cleared this way, and it
2686  * just so happens that it is the same bit corresponding to
2687  * the current context.
2688  */
2689 
2690 static __always_inline int
2691 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2692 {
2693 	unsigned int val = cpu_buffer->current_context;
2694 	unsigned long pc = preempt_count();
2695 	int bit;
2696 
2697 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2698 		bit = RB_CTX_NORMAL;
2699 	else
2700 		bit = pc & NMI_MASK ? RB_CTX_NMI :
2701 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2702 
2703 	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2704 		return 1;
2705 
2706 	val |= (1 << (bit + cpu_buffer->nest));
2707 	cpu_buffer->current_context = val;
2708 
2709 	return 0;
2710 }
2711 
2712 static __always_inline void
2713 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2714 {
2715 	cpu_buffer->current_context &=
2716 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2717 }
2718 
2719 /* The recursive locking above uses 4 bits */
2720 #define NESTED_BITS 4
2721 
2722 /**
2723  * ring_buffer_nest_start - Allow to trace while nested
2724  * @buffer: The ring buffer to modify
2725  *
2726  * The ring buffer has a safety mechanism to prevent recursion.
2727  * But there may be a case where a trace needs to be done while
2728  * tracing something else. In this case, calling this function
2729  * will allow this function to nest within a currently active
2730  * ring_buffer_lock_reserve().
2731  *
2732  * Call this function before calling another ring_buffer_lock_reserve() and
2733  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2734  */
2735 void ring_buffer_nest_start(struct trace_buffer *buffer)
2736 {
2737 	struct ring_buffer_per_cpu *cpu_buffer;
2738 	int cpu;
2739 
2740 	/* Enabled by ring_buffer_nest_end() */
2741 	preempt_disable_notrace();
2742 	cpu = raw_smp_processor_id();
2743 	cpu_buffer = buffer->buffers[cpu];
2744 	/* This is the shift value for the above recursive locking */
2745 	cpu_buffer->nest += NESTED_BITS;
2746 }
2747 
2748 /**
2749  * ring_buffer_nest_end - Allow to trace while nested
2750  * @buffer: The ring buffer to modify
2751  *
2752  * Must be called after ring_buffer_nest_start() and after the
2753  * ring_buffer_unlock_commit().
2754  */
2755 void ring_buffer_nest_end(struct trace_buffer *buffer)
2756 {
2757 	struct ring_buffer_per_cpu *cpu_buffer;
2758 	int cpu;
2759 
2760 	/* disabled by ring_buffer_nest_start() */
2761 	cpu = raw_smp_processor_id();
2762 	cpu_buffer = buffer->buffers[cpu];
2763 	/* This is the shift value for the above recursive locking */
2764 	cpu_buffer->nest -= NESTED_BITS;
2765 	preempt_enable_notrace();
2766 }
2767 
2768 /**
2769  * ring_buffer_unlock_commit - commit a reserved
2770  * @buffer: The buffer to commit to
2771  * @event: The event pointer to commit.
2772  *
2773  * This commits the data to the ring buffer, and releases any locks held.
2774  *
2775  * Must be paired with ring_buffer_lock_reserve.
2776  */
2777 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
2778 			      struct ring_buffer_event *event)
2779 {
2780 	struct ring_buffer_per_cpu *cpu_buffer;
2781 	int cpu = raw_smp_processor_id();
2782 
2783 	cpu_buffer = buffer->buffers[cpu];
2784 
2785 	rb_commit(cpu_buffer, event);
2786 
2787 	rb_wakeups(buffer, cpu_buffer);
2788 
2789 	trace_recursive_unlock(cpu_buffer);
2790 
2791 	preempt_enable_notrace();
2792 
2793 	return 0;
2794 }
2795 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2796 
2797 static noinline void
2798 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2799 		    struct rb_event_info *info)
2800 {
2801 	WARN_ONCE(info->delta > (1ULL << 59),
2802 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2803 		  (unsigned long long)info->delta,
2804 		  (unsigned long long)info->ts,
2805 		  (unsigned long long)cpu_buffer->write_stamp,
2806 		  sched_clock_stable() ? "" :
2807 		  "If you just came from a suspend/resume,\n"
2808 		  "please switch to the trace global clock:\n"
2809 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2810 		  "or add trace_clock=global to the kernel command line\n");
2811 	info->add_timestamp = 1;
2812 }
2813 
2814 static struct ring_buffer_event *
2815 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2816 		  struct rb_event_info *info)
2817 {
2818 	struct ring_buffer_event *event;
2819 	struct buffer_page *tail_page;
2820 	unsigned long tail, write;
2821 
2822 	/*
2823 	 * If the time delta since the last event is too big to
2824 	 * hold in the time field of the event, then we append a
2825 	 * TIME EXTEND event ahead of the data event.
2826 	 */
2827 	if (unlikely(info->add_timestamp))
2828 		info->length += RB_LEN_TIME_EXTEND;
2829 
2830 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2831 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2832 	write = local_add_return(info->length, &tail_page->write);
2833 
2834 	/* set write to only the index of the write */
2835 	write &= RB_WRITE_MASK;
2836 	tail = write - info->length;
2837 
2838 	/*
2839 	 * If this is the first commit on the page, then it has the same
2840 	 * timestamp as the page itself.
2841 	 */
2842 	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2843 		info->delta = 0;
2844 
2845 	/* See if we shot pass the end of this buffer page */
2846 	if (unlikely(write > BUF_PAGE_SIZE))
2847 		return rb_move_tail(cpu_buffer, tail, info);
2848 
2849 	/* We reserved something on the buffer */
2850 
2851 	event = __rb_page_index(tail_page, tail);
2852 	rb_update_event(cpu_buffer, event, info);
2853 
2854 	local_inc(&tail_page->entries);
2855 
2856 	/*
2857 	 * If this is the first commit on the page, then update
2858 	 * its timestamp.
2859 	 */
2860 	if (!tail)
2861 		tail_page->page->time_stamp = info->ts;
2862 
2863 	/* account for these added bytes */
2864 	local_add(info->length, &cpu_buffer->entries_bytes);
2865 
2866 	return event;
2867 }
2868 
2869 static __always_inline struct ring_buffer_event *
2870 rb_reserve_next_event(struct trace_buffer *buffer,
2871 		      struct ring_buffer_per_cpu *cpu_buffer,
2872 		      unsigned long length)
2873 {
2874 	struct ring_buffer_event *event;
2875 	struct rb_event_info info;
2876 	int nr_loops = 0;
2877 	u64 diff;
2878 
2879 	rb_start_commit(cpu_buffer);
2880 
2881 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2882 	/*
2883 	 * Due to the ability to swap a cpu buffer from a buffer
2884 	 * it is possible it was swapped before we committed.
2885 	 * (committing stops a swap). We check for it here and
2886 	 * if it happened, we have to fail the write.
2887 	 */
2888 	barrier();
2889 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2890 		local_dec(&cpu_buffer->committing);
2891 		local_dec(&cpu_buffer->commits);
2892 		return NULL;
2893 	}
2894 #endif
2895 
2896 	info.length = rb_calculate_event_length(length);
2897  again:
2898 	info.add_timestamp = 0;
2899 	info.delta = 0;
2900 
2901 	/*
2902 	 * We allow for interrupts to reenter here and do a trace.
2903 	 * If one does, it will cause this original code to loop
2904 	 * back here. Even with heavy interrupts happening, this
2905 	 * should only happen a few times in a row. If this happens
2906 	 * 1000 times in a row, there must be either an interrupt
2907 	 * storm or we have something buggy.
2908 	 * Bail!
2909 	 */
2910 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2911 		goto out_fail;
2912 
2913 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2914 	diff = info.ts - cpu_buffer->write_stamp;
2915 
2916 	/* make sure this diff is calculated here */
2917 	barrier();
2918 
2919 	if (ring_buffer_time_stamp_abs(buffer)) {
2920 		info.delta = info.ts;
2921 		rb_handle_timestamp(cpu_buffer, &info);
2922 	} else /* Did the write stamp get updated already? */
2923 		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2924 		info.delta = diff;
2925 		if (unlikely(test_time_stamp(info.delta)))
2926 			rb_handle_timestamp(cpu_buffer, &info);
2927 	}
2928 
2929 	event = __rb_reserve_next(cpu_buffer, &info);
2930 
2931 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2932 		if (info.add_timestamp)
2933 			info.length -= RB_LEN_TIME_EXTEND;
2934 		goto again;
2935 	}
2936 
2937 	if (!event)
2938 		goto out_fail;
2939 
2940 	return event;
2941 
2942  out_fail:
2943 	rb_end_commit(cpu_buffer);
2944 	return NULL;
2945 }
2946 
2947 /**
2948  * ring_buffer_lock_reserve - reserve a part of the buffer
2949  * @buffer: the ring buffer to reserve from
2950  * @length: the length of the data to reserve (excluding event header)
2951  *
2952  * Returns a reserved event on the ring buffer to copy directly to.
2953  * The user of this interface will need to get the body to write into
2954  * and can use the ring_buffer_event_data() interface.
2955  *
2956  * The length is the length of the data needed, not the event length
2957  * which also includes the event header.
2958  *
2959  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2960  * If NULL is returned, then nothing has been allocated or locked.
2961  */
2962 struct ring_buffer_event *
2963 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
2964 {
2965 	struct ring_buffer_per_cpu *cpu_buffer;
2966 	struct ring_buffer_event *event;
2967 	int cpu;
2968 
2969 	/* If we are tracing schedule, we don't want to recurse */
2970 	preempt_disable_notrace();
2971 
2972 	if (unlikely(atomic_read(&buffer->record_disabled)))
2973 		goto out;
2974 
2975 	cpu = raw_smp_processor_id();
2976 
2977 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2978 		goto out;
2979 
2980 	cpu_buffer = buffer->buffers[cpu];
2981 
2982 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2983 		goto out;
2984 
2985 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2986 		goto out;
2987 
2988 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2989 		goto out;
2990 
2991 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2992 	if (!event)
2993 		goto out_unlock;
2994 
2995 	return event;
2996 
2997  out_unlock:
2998 	trace_recursive_unlock(cpu_buffer);
2999  out:
3000 	preempt_enable_notrace();
3001 	return NULL;
3002 }
3003 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3004 
3005 /*
3006  * Decrement the entries to the page that an event is on.
3007  * The event does not even need to exist, only the pointer
3008  * to the page it is on. This may only be called before the commit
3009  * takes place.
3010  */
3011 static inline void
3012 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3013 		   struct ring_buffer_event *event)
3014 {
3015 	unsigned long addr = (unsigned long)event;
3016 	struct buffer_page *bpage = cpu_buffer->commit_page;
3017 	struct buffer_page *start;
3018 
3019 	addr &= PAGE_MASK;
3020 
3021 	/* Do the likely case first */
3022 	if (likely(bpage->page == (void *)addr)) {
3023 		local_dec(&bpage->entries);
3024 		return;
3025 	}
3026 
3027 	/*
3028 	 * Because the commit page may be on the reader page we
3029 	 * start with the next page and check the end loop there.
3030 	 */
3031 	rb_inc_page(cpu_buffer, &bpage);
3032 	start = bpage;
3033 	do {
3034 		if (bpage->page == (void *)addr) {
3035 			local_dec(&bpage->entries);
3036 			return;
3037 		}
3038 		rb_inc_page(cpu_buffer, &bpage);
3039 	} while (bpage != start);
3040 
3041 	/* commit not part of this buffer?? */
3042 	RB_WARN_ON(cpu_buffer, 1);
3043 }
3044 
3045 /**
3046  * ring_buffer_commit_discard - discard an event that has not been committed
3047  * @buffer: the ring buffer
3048  * @event: non committed event to discard
3049  *
3050  * Sometimes an event that is in the ring buffer needs to be ignored.
3051  * This function lets the user discard an event in the ring buffer
3052  * and then that event will not be read later.
3053  *
3054  * This function only works if it is called before the item has been
3055  * committed. It will try to free the event from the ring buffer
3056  * if another event has not been added behind it.
3057  *
3058  * If another event has been added behind it, it will set the event
3059  * up as discarded, and perform the commit.
3060  *
3061  * If this function is called, do not call ring_buffer_unlock_commit on
3062  * the event.
3063  */
3064 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3065 				struct ring_buffer_event *event)
3066 {
3067 	struct ring_buffer_per_cpu *cpu_buffer;
3068 	int cpu;
3069 
3070 	/* The event is discarded regardless */
3071 	rb_event_discard(event);
3072 
3073 	cpu = smp_processor_id();
3074 	cpu_buffer = buffer->buffers[cpu];
3075 
3076 	/*
3077 	 * This must only be called if the event has not been
3078 	 * committed yet. Thus we can assume that preemption
3079 	 * is still disabled.
3080 	 */
3081 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3082 
3083 	rb_decrement_entry(cpu_buffer, event);
3084 	if (rb_try_to_discard(cpu_buffer, event))
3085 		goto out;
3086 
3087 	/*
3088 	 * The commit is still visible by the reader, so we
3089 	 * must still update the timestamp.
3090 	 */
3091 	rb_update_write_stamp(cpu_buffer, event);
3092  out:
3093 	rb_end_commit(cpu_buffer);
3094 
3095 	trace_recursive_unlock(cpu_buffer);
3096 
3097 	preempt_enable_notrace();
3098 
3099 }
3100 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3101 
3102 /**
3103  * ring_buffer_write - write data to the buffer without reserving
3104  * @buffer: The ring buffer to write to.
3105  * @length: The length of the data being written (excluding the event header)
3106  * @data: The data to write to the buffer.
3107  *
3108  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3109  * one function. If you already have the data to write to the buffer, it
3110  * may be easier to simply call this function.
3111  *
3112  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3113  * and not the length of the event which would hold the header.
3114  */
3115 int ring_buffer_write(struct trace_buffer *buffer,
3116 		      unsigned long length,
3117 		      void *data)
3118 {
3119 	struct ring_buffer_per_cpu *cpu_buffer;
3120 	struct ring_buffer_event *event;
3121 	void *body;
3122 	int ret = -EBUSY;
3123 	int cpu;
3124 
3125 	preempt_disable_notrace();
3126 
3127 	if (atomic_read(&buffer->record_disabled))
3128 		goto out;
3129 
3130 	cpu = raw_smp_processor_id();
3131 
3132 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133 		goto out;
3134 
3135 	cpu_buffer = buffer->buffers[cpu];
3136 
3137 	if (atomic_read(&cpu_buffer->record_disabled))
3138 		goto out;
3139 
3140 	if (length > BUF_MAX_DATA_SIZE)
3141 		goto out;
3142 
3143 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3144 		goto out;
3145 
3146 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3147 	if (!event)
3148 		goto out_unlock;
3149 
3150 	body = rb_event_data(event);
3151 
3152 	memcpy(body, data, length);
3153 
3154 	rb_commit(cpu_buffer, event);
3155 
3156 	rb_wakeups(buffer, cpu_buffer);
3157 
3158 	ret = 0;
3159 
3160  out_unlock:
3161 	trace_recursive_unlock(cpu_buffer);
3162 
3163  out:
3164 	preempt_enable_notrace();
3165 
3166 	return ret;
3167 }
3168 EXPORT_SYMBOL_GPL(ring_buffer_write);
3169 
3170 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3171 {
3172 	struct buffer_page *reader = cpu_buffer->reader_page;
3173 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3174 	struct buffer_page *commit = cpu_buffer->commit_page;
3175 
3176 	/* In case of error, head will be NULL */
3177 	if (unlikely(!head))
3178 		return true;
3179 
3180 	return reader->read == rb_page_commit(reader) &&
3181 		(commit == reader ||
3182 		 (commit == head &&
3183 		  head->read == rb_page_commit(commit)));
3184 }
3185 
3186 /**
3187  * ring_buffer_record_disable - stop all writes into the buffer
3188  * @buffer: The ring buffer to stop writes to.
3189  *
3190  * This prevents all writes to the buffer. Any attempt to write
3191  * to the buffer after this will fail and return NULL.
3192  *
3193  * The caller should call synchronize_rcu() after this.
3194  */
3195 void ring_buffer_record_disable(struct trace_buffer *buffer)
3196 {
3197 	atomic_inc(&buffer->record_disabled);
3198 }
3199 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3200 
3201 /**
3202  * ring_buffer_record_enable - enable writes to the buffer
3203  * @buffer: The ring buffer to enable writes
3204  *
3205  * Note, multiple disables will need the same number of enables
3206  * to truly enable the writing (much like preempt_disable).
3207  */
3208 void ring_buffer_record_enable(struct trace_buffer *buffer)
3209 {
3210 	atomic_dec(&buffer->record_disabled);
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3213 
3214 /**
3215  * ring_buffer_record_off - stop all writes into the buffer
3216  * @buffer: The ring buffer to stop writes to.
3217  *
3218  * This prevents all writes to the buffer. Any attempt to write
3219  * to the buffer after this will fail and return NULL.
3220  *
3221  * This is different than ring_buffer_record_disable() as
3222  * it works like an on/off switch, where as the disable() version
3223  * must be paired with a enable().
3224  */
3225 void ring_buffer_record_off(struct trace_buffer *buffer)
3226 {
3227 	unsigned int rd;
3228 	unsigned int new_rd;
3229 
3230 	do {
3231 		rd = atomic_read(&buffer->record_disabled);
3232 		new_rd = rd | RB_BUFFER_OFF;
3233 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3234 }
3235 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3236 
3237 /**
3238  * ring_buffer_record_on - restart writes into the buffer
3239  * @buffer: The ring buffer to start writes to.
3240  *
3241  * This enables all writes to the buffer that was disabled by
3242  * ring_buffer_record_off().
3243  *
3244  * This is different than ring_buffer_record_enable() as
3245  * it works like an on/off switch, where as the enable() version
3246  * must be paired with a disable().
3247  */
3248 void ring_buffer_record_on(struct trace_buffer *buffer)
3249 {
3250 	unsigned int rd;
3251 	unsigned int new_rd;
3252 
3253 	do {
3254 		rd = atomic_read(&buffer->record_disabled);
3255 		new_rd = rd & ~RB_BUFFER_OFF;
3256 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3257 }
3258 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3259 
3260 /**
3261  * ring_buffer_record_is_on - return true if the ring buffer can write
3262  * @buffer: The ring buffer to see if write is enabled
3263  *
3264  * Returns true if the ring buffer is in a state that it accepts writes.
3265  */
3266 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3267 {
3268 	return !atomic_read(&buffer->record_disabled);
3269 }
3270 
3271 /**
3272  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3273  * @buffer: The ring buffer to see if write is set enabled
3274  *
3275  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3276  * Note that this does NOT mean it is in a writable state.
3277  *
3278  * It may return true when the ring buffer has been disabled by
3279  * ring_buffer_record_disable(), as that is a temporary disabling of
3280  * the ring buffer.
3281  */
3282 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3283 {
3284 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3285 }
3286 
3287 /**
3288  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3289  * @buffer: The ring buffer to stop writes to.
3290  * @cpu: The CPU buffer to stop
3291  *
3292  * This prevents all writes to the buffer. Any attempt to write
3293  * to the buffer after this will fail and return NULL.
3294  *
3295  * The caller should call synchronize_rcu() after this.
3296  */
3297 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3298 {
3299 	struct ring_buffer_per_cpu *cpu_buffer;
3300 
3301 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302 		return;
3303 
3304 	cpu_buffer = buffer->buffers[cpu];
3305 	atomic_inc(&cpu_buffer->record_disabled);
3306 }
3307 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3308 
3309 /**
3310  * ring_buffer_record_enable_cpu - enable writes to the buffer
3311  * @buffer: The ring buffer to enable writes
3312  * @cpu: The CPU to enable.
3313  *
3314  * Note, multiple disables will need the same number of enables
3315  * to truly enable the writing (much like preempt_disable).
3316  */
3317 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3318 {
3319 	struct ring_buffer_per_cpu *cpu_buffer;
3320 
3321 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322 		return;
3323 
3324 	cpu_buffer = buffer->buffers[cpu];
3325 	atomic_dec(&cpu_buffer->record_disabled);
3326 }
3327 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3328 
3329 /*
3330  * The total entries in the ring buffer is the running counter
3331  * of entries entered into the ring buffer, minus the sum of
3332  * the entries read from the ring buffer and the number of
3333  * entries that were overwritten.
3334  */
3335 static inline unsigned long
3336 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3337 {
3338 	return local_read(&cpu_buffer->entries) -
3339 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3340 }
3341 
3342 /**
3343  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3344  * @buffer: The ring buffer
3345  * @cpu: The per CPU buffer to read from.
3346  */
3347 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3348 {
3349 	unsigned long flags;
3350 	struct ring_buffer_per_cpu *cpu_buffer;
3351 	struct buffer_page *bpage;
3352 	u64 ret = 0;
3353 
3354 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3355 		return 0;
3356 
3357 	cpu_buffer = buffer->buffers[cpu];
3358 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3359 	/*
3360 	 * if the tail is on reader_page, oldest time stamp is on the reader
3361 	 * page
3362 	 */
3363 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3364 		bpage = cpu_buffer->reader_page;
3365 	else
3366 		bpage = rb_set_head_page(cpu_buffer);
3367 	if (bpage)
3368 		ret = bpage->page->time_stamp;
3369 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3370 
3371 	return ret;
3372 }
3373 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3374 
3375 /**
3376  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3377  * @buffer: The ring buffer
3378  * @cpu: The per CPU buffer to read from.
3379  */
3380 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3381 {
3382 	struct ring_buffer_per_cpu *cpu_buffer;
3383 	unsigned long ret;
3384 
3385 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386 		return 0;
3387 
3388 	cpu_buffer = buffer->buffers[cpu];
3389 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3390 
3391 	return ret;
3392 }
3393 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3394 
3395 /**
3396  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3397  * @buffer: The ring buffer
3398  * @cpu: The per CPU buffer to get the entries from.
3399  */
3400 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3401 {
3402 	struct ring_buffer_per_cpu *cpu_buffer;
3403 
3404 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3405 		return 0;
3406 
3407 	cpu_buffer = buffer->buffers[cpu];
3408 
3409 	return rb_num_of_entries(cpu_buffer);
3410 }
3411 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3412 
3413 /**
3414  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3415  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3416  * @buffer: The ring buffer
3417  * @cpu: The per CPU buffer to get the number of overruns from
3418  */
3419 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3420 {
3421 	struct ring_buffer_per_cpu *cpu_buffer;
3422 	unsigned long ret;
3423 
3424 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425 		return 0;
3426 
3427 	cpu_buffer = buffer->buffers[cpu];
3428 	ret = local_read(&cpu_buffer->overrun);
3429 
3430 	return ret;
3431 }
3432 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3433 
3434 /**
3435  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3436  * commits failing due to the buffer wrapping around while there are uncommitted
3437  * events, such as during an interrupt storm.
3438  * @buffer: The ring buffer
3439  * @cpu: The per CPU buffer to get the number of overruns from
3440  */
3441 unsigned long
3442 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3443 {
3444 	struct ring_buffer_per_cpu *cpu_buffer;
3445 	unsigned long ret;
3446 
3447 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448 		return 0;
3449 
3450 	cpu_buffer = buffer->buffers[cpu];
3451 	ret = local_read(&cpu_buffer->commit_overrun);
3452 
3453 	return ret;
3454 }
3455 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3456 
3457 /**
3458  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3459  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3460  * @buffer: The ring buffer
3461  * @cpu: The per CPU buffer to get the number of overruns from
3462  */
3463 unsigned long
3464 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3465 {
3466 	struct ring_buffer_per_cpu *cpu_buffer;
3467 	unsigned long ret;
3468 
3469 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3470 		return 0;
3471 
3472 	cpu_buffer = buffer->buffers[cpu];
3473 	ret = local_read(&cpu_buffer->dropped_events);
3474 
3475 	return ret;
3476 }
3477 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3478 
3479 /**
3480  * ring_buffer_read_events_cpu - get the number of events successfully read
3481  * @buffer: The ring buffer
3482  * @cpu: The per CPU buffer to get the number of events read
3483  */
3484 unsigned long
3485 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3486 {
3487 	struct ring_buffer_per_cpu *cpu_buffer;
3488 
3489 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3490 		return 0;
3491 
3492 	cpu_buffer = buffer->buffers[cpu];
3493 	return cpu_buffer->read;
3494 }
3495 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3496 
3497 /**
3498  * ring_buffer_entries - get the number of entries in a buffer
3499  * @buffer: The ring buffer
3500  *
3501  * Returns the total number of entries in the ring buffer
3502  * (all CPU entries)
3503  */
3504 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3505 {
3506 	struct ring_buffer_per_cpu *cpu_buffer;
3507 	unsigned long entries = 0;
3508 	int cpu;
3509 
3510 	/* if you care about this being correct, lock the buffer */
3511 	for_each_buffer_cpu(buffer, cpu) {
3512 		cpu_buffer = buffer->buffers[cpu];
3513 		entries += rb_num_of_entries(cpu_buffer);
3514 	}
3515 
3516 	return entries;
3517 }
3518 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3519 
3520 /**
3521  * ring_buffer_overruns - get the number of overruns in buffer
3522  * @buffer: The ring buffer
3523  *
3524  * Returns the total number of overruns in the ring buffer
3525  * (all CPU entries)
3526  */
3527 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3528 {
3529 	struct ring_buffer_per_cpu *cpu_buffer;
3530 	unsigned long overruns = 0;
3531 	int cpu;
3532 
3533 	/* if you care about this being correct, lock the buffer */
3534 	for_each_buffer_cpu(buffer, cpu) {
3535 		cpu_buffer = buffer->buffers[cpu];
3536 		overruns += local_read(&cpu_buffer->overrun);
3537 	}
3538 
3539 	return overruns;
3540 }
3541 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3542 
3543 static void rb_iter_reset(struct ring_buffer_iter *iter)
3544 {
3545 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3546 
3547 	/* Iterator usage is expected to have record disabled */
3548 	iter->head_page = cpu_buffer->reader_page;
3549 	iter->head = cpu_buffer->reader_page->read;
3550 
3551 	iter->cache_reader_page = iter->head_page;
3552 	iter->cache_read = cpu_buffer->read;
3553 
3554 	if (iter->head)
3555 		iter->read_stamp = cpu_buffer->read_stamp;
3556 	else
3557 		iter->read_stamp = iter->head_page->page->time_stamp;
3558 }
3559 
3560 /**
3561  * ring_buffer_iter_reset - reset an iterator
3562  * @iter: The iterator to reset
3563  *
3564  * Resets the iterator, so that it will start from the beginning
3565  * again.
3566  */
3567 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3568 {
3569 	struct ring_buffer_per_cpu *cpu_buffer;
3570 	unsigned long flags;
3571 
3572 	if (!iter)
3573 		return;
3574 
3575 	cpu_buffer = iter->cpu_buffer;
3576 
3577 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3578 	rb_iter_reset(iter);
3579 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3580 }
3581 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3582 
3583 /**
3584  * ring_buffer_iter_empty - check if an iterator has no more to read
3585  * @iter: The iterator to check
3586  */
3587 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3588 {
3589 	struct ring_buffer_per_cpu *cpu_buffer;
3590 	struct buffer_page *reader;
3591 	struct buffer_page *head_page;
3592 	struct buffer_page *commit_page;
3593 	unsigned commit;
3594 
3595 	cpu_buffer = iter->cpu_buffer;
3596 
3597 	/* Remember, trace recording is off when iterator is in use */
3598 	reader = cpu_buffer->reader_page;
3599 	head_page = cpu_buffer->head_page;
3600 	commit_page = cpu_buffer->commit_page;
3601 	commit = rb_page_commit(commit_page);
3602 
3603 	return ((iter->head_page == commit_page && iter->head == commit) ||
3604 		(iter->head_page == reader && commit_page == head_page &&
3605 		 head_page->read == commit &&
3606 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3607 }
3608 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3609 
3610 static void
3611 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3612 		     struct ring_buffer_event *event)
3613 {
3614 	u64 delta;
3615 
3616 	switch (event->type_len) {
3617 	case RINGBUF_TYPE_PADDING:
3618 		return;
3619 
3620 	case RINGBUF_TYPE_TIME_EXTEND:
3621 		delta = ring_buffer_event_time_stamp(event);
3622 		cpu_buffer->read_stamp += delta;
3623 		return;
3624 
3625 	case RINGBUF_TYPE_TIME_STAMP:
3626 		delta = ring_buffer_event_time_stamp(event);
3627 		cpu_buffer->read_stamp = delta;
3628 		return;
3629 
3630 	case RINGBUF_TYPE_DATA:
3631 		cpu_buffer->read_stamp += event->time_delta;
3632 		return;
3633 
3634 	default:
3635 		BUG();
3636 	}
3637 	return;
3638 }
3639 
3640 static void
3641 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3642 			  struct ring_buffer_event *event)
3643 {
3644 	u64 delta;
3645 
3646 	switch (event->type_len) {
3647 	case RINGBUF_TYPE_PADDING:
3648 		return;
3649 
3650 	case RINGBUF_TYPE_TIME_EXTEND:
3651 		delta = ring_buffer_event_time_stamp(event);
3652 		iter->read_stamp += delta;
3653 		return;
3654 
3655 	case RINGBUF_TYPE_TIME_STAMP:
3656 		delta = ring_buffer_event_time_stamp(event);
3657 		iter->read_stamp = delta;
3658 		return;
3659 
3660 	case RINGBUF_TYPE_DATA:
3661 		iter->read_stamp += event->time_delta;
3662 		return;
3663 
3664 	default:
3665 		BUG();
3666 	}
3667 	return;
3668 }
3669 
3670 static struct buffer_page *
3671 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3672 {
3673 	struct buffer_page *reader = NULL;
3674 	unsigned long overwrite;
3675 	unsigned long flags;
3676 	int nr_loops = 0;
3677 	int ret;
3678 
3679 	local_irq_save(flags);
3680 	arch_spin_lock(&cpu_buffer->lock);
3681 
3682  again:
3683 	/*
3684 	 * This should normally only loop twice. But because the
3685 	 * start of the reader inserts an empty page, it causes
3686 	 * a case where we will loop three times. There should be no
3687 	 * reason to loop four times (that I know of).
3688 	 */
3689 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3690 		reader = NULL;
3691 		goto out;
3692 	}
3693 
3694 	reader = cpu_buffer->reader_page;
3695 
3696 	/* If there's more to read, return this page */
3697 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3698 		goto out;
3699 
3700 	/* Never should we have an index greater than the size */
3701 	if (RB_WARN_ON(cpu_buffer,
3702 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3703 		goto out;
3704 
3705 	/* check if we caught up to the tail */
3706 	reader = NULL;
3707 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3708 		goto out;
3709 
3710 	/* Don't bother swapping if the ring buffer is empty */
3711 	if (rb_num_of_entries(cpu_buffer) == 0)
3712 		goto out;
3713 
3714 	/*
3715 	 * Reset the reader page to size zero.
3716 	 */
3717 	local_set(&cpu_buffer->reader_page->write, 0);
3718 	local_set(&cpu_buffer->reader_page->entries, 0);
3719 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3720 	cpu_buffer->reader_page->real_end = 0;
3721 
3722  spin:
3723 	/*
3724 	 * Splice the empty reader page into the list around the head.
3725 	 */
3726 	reader = rb_set_head_page(cpu_buffer);
3727 	if (!reader)
3728 		goto out;
3729 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3730 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3731 
3732 	/*
3733 	 * cpu_buffer->pages just needs to point to the buffer, it
3734 	 *  has no specific buffer page to point to. Lets move it out
3735 	 *  of our way so we don't accidentally swap it.
3736 	 */
3737 	cpu_buffer->pages = reader->list.prev;
3738 
3739 	/* The reader page will be pointing to the new head */
3740 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3741 
3742 	/*
3743 	 * We want to make sure we read the overruns after we set up our
3744 	 * pointers to the next object. The writer side does a
3745 	 * cmpxchg to cross pages which acts as the mb on the writer
3746 	 * side. Note, the reader will constantly fail the swap
3747 	 * while the writer is updating the pointers, so this
3748 	 * guarantees that the overwrite recorded here is the one we
3749 	 * want to compare with the last_overrun.
3750 	 */
3751 	smp_mb();
3752 	overwrite = local_read(&(cpu_buffer->overrun));
3753 
3754 	/*
3755 	 * Here's the tricky part.
3756 	 *
3757 	 * We need to move the pointer past the header page.
3758 	 * But we can only do that if a writer is not currently
3759 	 * moving it. The page before the header page has the
3760 	 * flag bit '1' set if it is pointing to the page we want.
3761 	 * but if the writer is in the process of moving it
3762 	 * than it will be '2' or already moved '0'.
3763 	 */
3764 
3765 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3766 
3767 	/*
3768 	 * If we did not convert it, then we must try again.
3769 	 */
3770 	if (!ret)
3771 		goto spin;
3772 
3773 	/*
3774 	 * Yay! We succeeded in replacing the page.
3775 	 *
3776 	 * Now make the new head point back to the reader page.
3777 	 */
3778 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3779 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3780 
3781 	local_inc(&cpu_buffer->pages_read);
3782 
3783 	/* Finally update the reader page to the new head */
3784 	cpu_buffer->reader_page = reader;
3785 	cpu_buffer->reader_page->read = 0;
3786 
3787 	if (overwrite != cpu_buffer->last_overrun) {
3788 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3789 		cpu_buffer->last_overrun = overwrite;
3790 	}
3791 
3792 	goto again;
3793 
3794  out:
3795 	/* Update the read_stamp on the first event */
3796 	if (reader && reader->read == 0)
3797 		cpu_buffer->read_stamp = reader->page->time_stamp;
3798 
3799 	arch_spin_unlock(&cpu_buffer->lock);
3800 	local_irq_restore(flags);
3801 
3802 	return reader;
3803 }
3804 
3805 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3806 {
3807 	struct ring_buffer_event *event;
3808 	struct buffer_page *reader;
3809 	unsigned length;
3810 
3811 	reader = rb_get_reader_page(cpu_buffer);
3812 
3813 	/* This function should not be called when buffer is empty */
3814 	if (RB_WARN_ON(cpu_buffer, !reader))
3815 		return;
3816 
3817 	event = rb_reader_event(cpu_buffer);
3818 
3819 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3820 		cpu_buffer->read++;
3821 
3822 	rb_update_read_stamp(cpu_buffer, event);
3823 
3824 	length = rb_event_length(event);
3825 	cpu_buffer->reader_page->read += length;
3826 }
3827 
3828 static void rb_advance_iter(struct ring_buffer_iter *iter)
3829 {
3830 	struct ring_buffer_per_cpu *cpu_buffer;
3831 	struct ring_buffer_event *event;
3832 	unsigned length;
3833 
3834 	cpu_buffer = iter->cpu_buffer;
3835 
3836 	/*
3837 	 * Check if we are at the end of the buffer.
3838 	 */
3839 	if (iter->head >= rb_page_size(iter->head_page)) {
3840 		/* discarded commits can make the page empty */
3841 		if (iter->head_page == cpu_buffer->commit_page)
3842 			return;
3843 		rb_inc_iter(iter);
3844 		return;
3845 	}
3846 
3847 	event = rb_iter_head_event(iter);
3848 
3849 	length = rb_event_length(event);
3850 
3851 	/*
3852 	 * This should not be called to advance the header if we are
3853 	 * at the tail of the buffer.
3854 	 */
3855 	if (RB_WARN_ON(cpu_buffer,
3856 		       (iter->head_page == cpu_buffer->commit_page) &&
3857 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3858 		return;
3859 
3860 	rb_update_iter_read_stamp(iter, event);
3861 
3862 	iter->head += length;
3863 
3864 	/* check for end of page padding */
3865 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3866 	    (iter->head_page != cpu_buffer->commit_page))
3867 		rb_inc_iter(iter);
3868 }
3869 
3870 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3871 {
3872 	return cpu_buffer->lost_events;
3873 }
3874 
3875 static struct ring_buffer_event *
3876 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3877 	       unsigned long *lost_events)
3878 {
3879 	struct ring_buffer_event *event;
3880 	struct buffer_page *reader;
3881 	int nr_loops = 0;
3882 
3883 	if (ts)
3884 		*ts = 0;
3885  again:
3886 	/*
3887 	 * We repeat when a time extend is encountered.
3888 	 * Since the time extend is always attached to a data event,
3889 	 * we should never loop more than once.
3890 	 * (We never hit the following condition more than twice).
3891 	 */
3892 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3893 		return NULL;
3894 
3895 	reader = rb_get_reader_page(cpu_buffer);
3896 	if (!reader)
3897 		return NULL;
3898 
3899 	event = rb_reader_event(cpu_buffer);
3900 
3901 	switch (event->type_len) {
3902 	case RINGBUF_TYPE_PADDING:
3903 		if (rb_null_event(event))
3904 			RB_WARN_ON(cpu_buffer, 1);
3905 		/*
3906 		 * Because the writer could be discarding every
3907 		 * event it creates (which would probably be bad)
3908 		 * if we were to go back to "again" then we may never
3909 		 * catch up, and will trigger the warn on, or lock
3910 		 * the box. Return the padding, and we will release
3911 		 * the current locks, and try again.
3912 		 */
3913 		return event;
3914 
3915 	case RINGBUF_TYPE_TIME_EXTEND:
3916 		/* Internal data, OK to advance */
3917 		rb_advance_reader(cpu_buffer);
3918 		goto again;
3919 
3920 	case RINGBUF_TYPE_TIME_STAMP:
3921 		if (ts) {
3922 			*ts = ring_buffer_event_time_stamp(event);
3923 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3924 							 cpu_buffer->cpu, ts);
3925 		}
3926 		/* Internal data, OK to advance */
3927 		rb_advance_reader(cpu_buffer);
3928 		goto again;
3929 
3930 	case RINGBUF_TYPE_DATA:
3931 		if (ts && !(*ts)) {
3932 			*ts = cpu_buffer->read_stamp + event->time_delta;
3933 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3934 							 cpu_buffer->cpu, ts);
3935 		}
3936 		if (lost_events)
3937 			*lost_events = rb_lost_events(cpu_buffer);
3938 		return event;
3939 
3940 	default:
3941 		BUG();
3942 	}
3943 
3944 	return NULL;
3945 }
3946 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3947 
3948 static struct ring_buffer_event *
3949 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3950 {
3951 	struct trace_buffer *buffer;
3952 	struct ring_buffer_per_cpu *cpu_buffer;
3953 	struct ring_buffer_event *event;
3954 	int nr_loops = 0;
3955 
3956 	if (ts)
3957 		*ts = 0;
3958 
3959 	cpu_buffer = iter->cpu_buffer;
3960 	buffer = cpu_buffer->buffer;
3961 
3962 	/*
3963 	 * Check if someone performed a consuming read to
3964 	 * the buffer. A consuming read invalidates the iterator
3965 	 * and we need to reset the iterator in this case.
3966 	 */
3967 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3968 		     iter->cache_reader_page != cpu_buffer->reader_page))
3969 		rb_iter_reset(iter);
3970 
3971  again:
3972 	if (ring_buffer_iter_empty(iter))
3973 		return NULL;
3974 
3975 	/*
3976 	 * We repeat when a time extend is encountered or we hit
3977 	 * the end of the page. Since the time extend is always attached
3978 	 * to a data event, we should never loop more than three times.
3979 	 * Once for going to next page, once on time extend, and
3980 	 * finally once to get the event.
3981 	 * (We never hit the following condition more than thrice).
3982 	 */
3983 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3984 		return NULL;
3985 
3986 	if (rb_per_cpu_empty(cpu_buffer))
3987 		return NULL;
3988 
3989 	if (iter->head >= rb_page_size(iter->head_page)) {
3990 		rb_inc_iter(iter);
3991 		goto again;
3992 	}
3993 
3994 	event = rb_iter_head_event(iter);
3995 
3996 	switch (event->type_len) {
3997 	case RINGBUF_TYPE_PADDING:
3998 		if (rb_null_event(event)) {
3999 			rb_inc_iter(iter);
4000 			goto again;
4001 		}
4002 		rb_advance_iter(iter);
4003 		return event;
4004 
4005 	case RINGBUF_TYPE_TIME_EXTEND:
4006 		/* Internal data, OK to advance */
4007 		rb_advance_iter(iter);
4008 		goto again;
4009 
4010 	case RINGBUF_TYPE_TIME_STAMP:
4011 		if (ts) {
4012 			*ts = ring_buffer_event_time_stamp(event);
4013 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4014 							 cpu_buffer->cpu, ts);
4015 		}
4016 		/* Internal data, OK to advance */
4017 		rb_advance_iter(iter);
4018 		goto again;
4019 
4020 	case RINGBUF_TYPE_DATA:
4021 		if (ts && !(*ts)) {
4022 			*ts = iter->read_stamp + event->time_delta;
4023 			ring_buffer_normalize_time_stamp(buffer,
4024 							 cpu_buffer->cpu, ts);
4025 		}
4026 		return event;
4027 
4028 	default:
4029 		BUG();
4030 	}
4031 
4032 	return NULL;
4033 }
4034 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4035 
4036 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4037 {
4038 	if (likely(!in_nmi())) {
4039 		raw_spin_lock(&cpu_buffer->reader_lock);
4040 		return true;
4041 	}
4042 
4043 	/*
4044 	 * If an NMI die dumps out the content of the ring buffer
4045 	 * trylock must be used to prevent a deadlock if the NMI
4046 	 * preempted a task that holds the ring buffer locks. If
4047 	 * we get the lock then all is fine, if not, then continue
4048 	 * to do the read, but this can corrupt the ring buffer,
4049 	 * so it must be permanently disabled from future writes.
4050 	 * Reading from NMI is a oneshot deal.
4051 	 */
4052 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4053 		return true;
4054 
4055 	/* Continue without locking, but disable the ring buffer */
4056 	atomic_inc(&cpu_buffer->record_disabled);
4057 	return false;
4058 }
4059 
4060 static inline void
4061 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4062 {
4063 	if (likely(locked))
4064 		raw_spin_unlock(&cpu_buffer->reader_lock);
4065 	return;
4066 }
4067 
4068 /**
4069  * ring_buffer_peek - peek at the next event to be read
4070  * @buffer: The ring buffer to read
4071  * @cpu: The cpu to peak at
4072  * @ts: The timestamp counter of this event.
4073  * @lost_events: a variable to store if events were lost (may be NULL)
4074  *
4075  * This will return the event that will be read next, but does
4076  * not consume the data.
4077  */
4078 struct ring_buffer_event *
4079 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4080 		 unsigned long *lost_events)
4081 {
4082 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4083 	struct ring_buffer_event *event;
4084 	unsigned long flags;
4085 	bool dolock;
4086 
4087 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4088 		return NULL;
4089 
4090  again:
4091 	local_irq_save(flags);
4092 	dolock = rb_reader_lock(cpu_buffer);
4093 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4094 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4095 		rb_advance_reader(cpu_buffer);
4096 	rb_reader_unlock(cpu_buffer, dolock);
4097 	local_irq_restore(flags);
4098 
4099 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4100 		goto again;
4101 
4102 	return event;
4103 }
4104 
4105 /**
4106  * ring_buffer_iter_peek - peek at the next event to be read
4107  * @iter: The ring buffer iterator
4108  * @ts: The timestamp counter of this event.
4109  *
4110  * This will return the event that will be read next, but does
4111  * not increment the iterator.
4112  */
4113 struct ring_buffer_event *
4114 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4115 {
4116 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4117 	struct ring_buffer_event *event;
4118 	unsigned long flags;
4119 
4120  again:
4121 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4122 	event = rb_iter_peek(iter, ts);
4123 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4124 
4125 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4126 		goto again;
4127 
4128 	return event;
4129 }
4130 
4131 /**
4132  * ring_buffer_consume - return an event and consume it
4133  * @buffer: The ring buffer to get the next event from
4134  * @cpu: the cpu to read the buffer from
4135  * @ts: a variable to store the timestamp (may be NULL)
4136  * @lost_events: a variable to store if events were lost (may be NULL)
4137  *
4138  * Returns the next event in the ring buffer, and that event is consumed.
4139  * Meaning, that sequential reads will keep returning a different event,
4140  * and eventually empty the ring buffer if the producer is slower.
4141  */
4142 struct ring_buffer_event *
4143 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4144 		    unsigned long *lost_events)
4145 {
4146 	struct ring_buffer_per_cpu *cpu_buffer;
4147 	struct ring_buffer_event *event = NULL;
4148 	unsigned long flags;
4149 	bool dolock;
4150 
4151  again:
4152 	/* might be called in atomic */
4153 	preempt_disable();
4154 
4155 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4156 		goto out;
4157 
4158 	cpu_buffer = buffer->buffers[cpu];
4159 	local_irq_save(flags);
4160 	dolock = rb_reader_lock(cpu_buffer);
4161 
4162 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4163 	if (event) {
4164 		cpu_buffer->lost_events = 0;
4165 		rb_advance_reader(cpu_buffer);
4166 	}
4167 
4168 	rb_reader_unlock(cpu_buffer, dolock);
4169 	local_irq_restore(flags);
4170 
4171  out:
4172 	preempt_enable();
4173 
4174 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4175 		goto again;
4176 
4177 	return event;
4178 }
4179 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4180 
4181 /**
4182  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4183  * @buffer: The ring buffer to read from
4184  * @cpu: The cpu buffer to iterate over
4185  * @flags: gfp flags to use for memory allocation
4186  *
4187  * This performs the initial preparations necessary to iterate
4188  * through the buffer.  Memory is allocated, buffer recording
4189  * is disabled, and the iterator pointer is returned to the caller.
4190  *
4191  * Disabling buffer recording prevents the reading from being
4192  * corrupted. This is not a consuming read, so a producer is not
4193  * expected.
4194  *
4195  * After a sequence of ring_buffer_read_prepare calls, the user is
4196  * expected to make at least one call to ring_buffer_read_prepare_sync.
4197  * Afterwards, ring_buffer_read_start is invoked to get things going
4198  * for real.
4199  *
4200  * This overall must be paired with ring_buffer_read_finish.
4201  */
4202 struct ring_buffer_iter *
4203 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4204 {
4205 	struct ring_buffer_per_cpu *cpu_buffer;
4206 	struct ring_buffer_iter *iter;
4207 
4208 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4209 		return NULL;
4210 
4211 	iter = kmalloc(sizeof(*iter), flags);
4212 	if (!iter)
4213 		return NULL;
4214 
4215 	cpu_buffer = buffer->buffers[cpu];
4216 
4217 	iter->cpu_buffer = cpu_buffer;
4218 
4219 	atomic_inc(&buffer->resize_disabled);
4220 	atomic_inc(&cpu_buffer->record_disabled);
4221 
4222 	return iter;
4223 }
4224 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4225 
4226 /**
4227  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4228  *
4229  * All previously invoked ring_buffer_read_prepare calls to prepare
4230  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4231  * calls on those iterators are allowed.
4232  */
4233 void
4234 ring_buffer_read_prepare_sync(void)
4235 {
4236 	synchronize_rcu();
4237 }
4238 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4239 
4240 /**
4241  * ring_buffer_read_start - start a non consuming read of the buffer
4242  * @iter: The iterator returned by ring_buffer_read_prepare
4243  *
4244  * This finalizes the startup of an iteration through the buffer.
4245  * The iterator comes from a call to ring_buffer_read_prepare and
4246  * an intervening ring_buffer_read_prepare_sync must have been
4247  * performed.
4248  *
4249  * Must be paired with ring_buffer_read_finish.
4250  */
4251 void
4252 ring_buffer_read_start(struct ring_buffer_iter *iter)
4253 {
4254 	struct ring_buffer_per_cpu *cpu_buffer;
4255 	unsigned long flags;
4256 
4257 	if (!iter)
4258 		return;
4259 
4260 	cpu_buffer = iter->cpu_buffer;
4261 
4262 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4263 	arch_spin_lock(&cpu_buffer->lock);
4264 	rb_iter_reset(iter);
4265 	arch_spin_unlock(&cpu_buffer->lock);
4266 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4267 }
4268 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4269 
4270 /**
4271  * ring_buffer_read_finish - finish reading the iterator of the buffer
4272  * @iter: The iterator retrieved by ring_buffer_start
4273  *
4274  * This re-enables the recording to the buffer, and frees the
4275  * iterator.
4276  */
4277 void
4278 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4279 {
4280 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4281 	unsigned long flags;
4282 
4283 	/*
4284 	 * Ring buffer is disabled from recording, here's a good place
4285 	 * to check the integrity of the ring buffer.
4286 	 * Must prevent readers from trying to read, as the check
4287 	 * clears the HEAD page and readers require it.
4288 	 */
4289 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4290 	rb_check_pages(cpu_buffer);
4291 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4292 
4293 	atomic_dec(&cpu_buffer->record_disabled);
4294 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4295 	kfree(iter);
4296 }
4297 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4298 
4299 /**
4300  * ring_buffer_read - read the next item in the ring buffer by the iterator
4301  * @iter: The ring buffer iterator
4302  * @ts: The time stamp of the event read.
4303  *
4304  * This reads the next event in the ring buffer and increments the iterator.
4305  */
4306 struct ring_buffer_event *
4307 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4308 {
4309 	struct ring_buffer_event *event;
4310 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4311 	unsigned long flags;
4312 
4313 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4314  again:
4315 	event = rb_iter_peek(iter, ts);
4316 	if (!event)
4317 		goto out;
4318 
4319 	if (event->type_len == RINGBUF_TYPE_PADDING)
4320 		goto again;
4321 
4322 	rb_advance_iter(iter);
4323  out:
4324 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4325 
4326 	return event;
4327 }
4328 EXPORT_SYMBOL_GPL(ring_buffer_read);
4329 
4330 /**
4331  * ring_buffer_size - return the size of the ring buffer (in bytes)
4332  * @buffer: The ring buffer.
4333  * @cpu: The CPU to get ring buffer size from.
4334  */
4335 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4336 {
4337 	/*
4338 	 * Earlier, this method returned
4339 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4340 	 * Since the nr_pages field is now removed, we have converted this to
4341 	 * return the per cpu buffer value.
4342 	 */
4343 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4344 		return 0;
4345 
4346 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4347 }
4348 EXPORT_SYMBOL_GPL(ring_buffer_size);
4349 
4350 static void
4351 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4352 {
4353 	rb_head_page_deactivate(cpu_buffer);
4354 
4355 	cpu_buffer->head_page
4356 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4357 	local_set(&cpu_buffer->head_page->write, 0);
4358 	local_set(&cpu_buffer->head_page->entries, 0);
4359 	local_set(&cpu_buffer->head_page->page->commit, 0);
4360 
4361 	cpu_buffer->head_page->read = 0;
4362 
4363 	cpu_buffer->tail_page = cpu_buffer->head_page;
4364 	cpu_buffer->commit_page = cpu_buffer->head_page;
4365 
4366 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4367 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4368 	local_set(&cpu_buffer->reader_page->write, 0);
4369 	local_set(&cpu_buffer->reader_page->entries, 0);
4370 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4371 	cpu_buffer->reader_page->read = 0;
4372 
4373 	local_set(&cpu_buffer->entries_bytes, 0);
4374 	local_set(&cpu_buffer->overrun, 0);
4375 	local_set(&cpu_buffer->commit_overrun, 0);
4376 	local_set(&cpu_buffer->dropped_events, 0);
4377 	local_set(&cpu_buffer->entries, 0);
4378 	local_set(&cpu_buffer->committing, 0);
4379 	local_set(&cpu_buffer->commits, 0);
4380 	local_set(&cpu_buffer->pages_touched, 0);
4381 	local_set(&cpu_buffer->pages_read, 0);
4382 	cpu_buffer->last_pages_touch = 0;
4383 	cpu_buffer->shortest_full = 0;
4384 	cpu_buffer->read = 0;
4385 	cpu_buffer->read_bytes = 0;
4386 
4387 	cpu_buffer->write_stamp = 0;
4388 	cpu_buffer->read_stamp = 0;
4389 
4390 	cpu_buffer->lost_events = 0;
4391 	cpu_buffer->last_overrun = 0;
4392 
4393 	rb_head_page_activate(cpu_buffer);
4394 }
4395 
4396 /**
4397  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4398  * @buffer: The ring buffer to reset a per cpu buffer of
4399  * @cpu: The CPU buffer to be reset
4400  */
4401 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4402 {
4403 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4404 	unsigned long flags;
4405 
4406 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4407 		return;
4408 
4409 	atomic_inc(&buffer->resize_disabled);
4410 	atomic_inc(&cpu_buffer->record_disabled);
4411 
4412 	/* Make sure all commits have finished */
4413 	synchronize_rcu();
4414 
4415 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4416 
4417 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4418 		goto out;
4419 
4420 	arch_spin_lock(&cpu_buffer->lock);
4421 
4422 	rb_reset_cpu(cpu_buffer);
4423 
4424 	arch_spin_unlock(&cpu_buffer->lock);
4425 
4426  out:
4427 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4428 
4429 	atomic_dec(&cpu_buffer->record_disabled);
4430 	atomic_dec(&buffer->resize_disabled);
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4433 
4434 /**
4435  * ring_buffer_reset - reset a ring buffer
4436  * @buffer: The ring buffer to reset all cpu buffers
4437  */
4438 void ring_buffer_reset(struct trace_buffer *buffer)
4439 {
4440 	int cpu;
4441 
4442 	for_each_buffer_cpu(buffer, cpu)
4443 		ring_buffer_reset_cpu(buffer, cpu);
4444 }
4445 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4446 
4447 /**
4448  * rind_buffer_empty - is the ring buffer empty?
4449  * @buffer: The ring buffer to test
4450  */
4451 bool ring_buffer_empty(struct trace_buffer *buffer)
4452 {
4453 	struct ring_buffer_per_cpu *cpu_buffer;
4454 	unsigned long flags;
4455 	bool dolock;
4456 	int cpu;
4457 	int ret;
4458 
4459 	/* yes this is racy, but if you don't like the race, lock the buffer */
4460 	for_each_buffer_cpu(buffer, cpu) {
4461 		cpu_buffer = buffer->buffers[cpu];
4462 		local_irq_save(flags);
4463 		dolock = rb_reader_lock(cpu_buffer);
4464 		ret = rb_per_cpu_empty(cpu_buffer);
4465 		rb_reader_unlock(cpu_buffer, dolock);
4466 		local_irq_restore(flags);
4467 
4468 		if (!ret)
4469 			return false;
4470 	}
4471 
4472 	return true;
4473 }
4474 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4475 
4476 /**
4477  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4478  * @buffer: The ring buffer
4479  * @cpu: The CPU buffer to test
4480  */
4481 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4482 {
4483 	struct ring_buffer_per_cpu *cpu_buffer;
4484 	unsigned long flags;
4485 	bool dolock;
4486 	int ret;
4487 
4488 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4489 		return true;
4490 
4491 	cpu_buffer = buffer->buffers[cpu];
4492 	local_irq_save(flags);
4493 	dolock = rb_reader_lock(cpu_buffer);
4494 	ret = rb_per_cpu_empty(cpu_buffer);
4495 	rb_reader_unlock(cpu_buffer, dolock);
4496 	local_irq_restore(flags);
4497 
4498 	return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4501 
4502 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4503 /**
4504  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4505  * @buffer_a: One buffer to swap with
4506  * @buffer_b: The other buffer to swap with
4507  * @cpu: the CPU of the buffers to swap
4508  *
4509  * This function is useful for tracers that want to take a "snapshot"
4510  * of a CPU buffer and has another back up buffer lying around.
4511  * it is expected that the tracer handles the cpu buffer not being
4512  * used at the moment.
4513  */
4514 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
4515 			 struct trace_buffer *buffer_b, int cpu)
4516 {
4517 	struct ring_buffer_per_cpu *cpu_buffer_a;
4518 	struct ring_buffer_per_cpu *cpu_buffer_b;
4519 	int ret = -EINVAL;
4520 
4521 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4522 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4523 		goto out;
4524 
4525 	cpu_buffer_a = buffer_a->buffers[cpu];
4526 	cpu_buffer_b = buffer_b->buffers[cpu];
4527 
4528 	/* At least make sure the two buffers are somewhat the same */
4529 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4530 		goto out;
4531 
4532 	ret = -EAGAIN;
4533 
4534 	if (atomic_read(&buffer_a->record_disabled))
4535 		goto out;
4536 
4537 	if (atomic_read(&buffer_b->record_disabled))
4538 		goto out;
4539 
4540 	if (atomic_read(&cpu_buffer_a->record_disabled))
4541 		goto out;
4542 
4543 	if (atomic_read(&cpu_buffer_b->record_disabled))
4544 		goto out;
4545 
4546 	/*
4547 	 * We can't do a synchronize_rcu here because this
4548 	 * function can be called in atomic context.
4549 	 * Normally this will be called from the same CPU as cpu.
4550 	 * If not it's up to the caller to protect this.
4551 	 */
4552 	atomic_inc(&cpu_buffer_a->record_disabled);
4553 	atomic_inc(&cpu_buffer_b->record_disabled);
4554 
4555 	ret = -EBUSY;
4556 	if (local_read(&cpu_buffer_a->committing))
4557 		goto out_dec;
4558 	if (local_read(&cpu_buffer_b->committing))
4559 		goto out_dec;
4560 
4561 	buffer_a->buffers[cpu] = cpu_buffer_b;
4562 	buffer_b->buffers[cpu] = cpu_buffer_a;
4563 
4564 	cpu_buffer_b->buffer = buffer_a;
4565 	cpu_buffer_a->buffer = buffer_b;
4566 
4567 	ret = 0;
4568 
4569 out_dec:
4570 	atomic_dec(&cpu_buffer_a->record_disabled);
4571 	atomic_dec(&cpu_buffer_b->record_disabled);
4572 out:
4573 	return ret;
4574 }
4575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4577 
4578 /**
4579  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4580  * @buffer: the buffer to allocate for.
4581  * @cpu: the cpu buffer to allocate.
4582  *
4583  * This function is used in conjunction with ring_buffer_read_page.
4584  * When reading a full page from the ring buffer, these functions
4585  * can be used to speed up the process. The calling function should
4586  * allocate a few pages first with this function. Then when it
4587  * needs to get pages from the ring buffer, it passes the result
4588  * of this function into ring_buffer_read_page, which will swap
4589  * the page that was allocated, with the read page of the buffer.
4590  *
4591  * Returns:
4592  *  The page allocated, or ERR_PTR
4593  */
4594 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
4595 {
4596 	struct ring_buffer_per_cpu *cpu_buffer;
4597 	struct buffer_data_page *bpage = NULL;
4598 	unsigned long flags;
4599 	struct page *page;
4600 
4601 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4602 		return ERR_PTR(-ENODEV);
4603 
4604 	cpu_buffer = buffer->buffers[cpu];
4605 	local_irq_save(flags);
4606 	arch_spin_lock(&cpu_buffer->lock);
4607 
4608 	if (cpu_buffer->free_page) {
4609 		bpage = cpu_buffer->free_page;
4610 		cpu_buffer->free_page = NULL;
4611 	}
4612 
4613 	arch_spin_unlock(&cpu_buffer->lock);
4614 	local_irq_restore(flags);
4615 
4616 	if (bpage)
4617 		goto out;
4618 
4619 	page = alloc_pages_node(cpu_to_node(cpu),
4620 				GFP_KERNEL | __GFP_NORETRY, 0);
4621 	if (!page)
4622 		return ERR_PTR(-ENOMEM);
4623 
4624 	bpage = page_address(page);
4625 
4626  out:
4627 	rb_init_page(bpage);
4628 
4629 	return bpage;
4630 }
4631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4632 
4633 /**
4634  * ring_buffer_free_read_page - free an allocated read page
4635  * @buffer: the buffer the page was allocate for
4636  * @cpu: the cpu buffer the page came from
4637  * @data: the page to free
4638  *
4639  * Free a page allocated from ring_buffer_alloc_read_page.
4640  */
4641 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
4642 {
4643 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4644 	struct buffer_data_page *bpage = data;
4645 	struct page *page = virt_to_page(bpage);
4646 	unsigned long flags;
4647 
4648 	/* If the page is still in use someplace else, we can't reuse it */
4649 	if (page_ref_count(page) > 1)
4650 		goto out;
4651 
4652 	local_irq_save(flags);
4653 	arch_spin_lock(&cpu_buffer->lock);
4654 
4655 	if (!cpu_buffer->free_page) {
4656 		cpu_buffer->free_page = bpage;
4657 		bpage = NULL;
4658 	}
4659 
4660 	arch_spin_unlock(&cpu_buffer->lock);
4661 	local_irq_restore(flags);
4662 
4663  out:
4664 	free_page((unsigned long)bpage);
4665 }
4666 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4667 
4668 /**
4669  * ring_buffer_read_page - extract a page from the ring buffer
4670  * @buffer: buffer to extract from
4671  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4672  * @len: amount to extract
4673  * @cpu: the cpu of the buffer to extract
4674  * @full: should the extraction only happen when the page is full.
4675  *
4676  * This function will pull out a page from the ring buffer and consume it.
4677  * @data_page must be the address of the variable that was returned
4678  * from ring_buffer_alloc_read_page. This is because the page might be used
4679  * to swap with a page in the ring buffer.
4680  *
4681  * for example:
4682  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4683  *	if (IS_ERR(rpage))
4684  *		return PTR_ERR(rpage);
4685  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4686  *	if (ret >= 0)
4687  *		process_page(rpage, ret);
4688  *
4689  * When @full is set, the function will not return true unless
4690  * the writer is off the reader page.
4691  *
4692  * Note: it is up to the calling functions to handle sleeps and wakeups.
4693  *  The ring buffer can be used anywhere in the kernel and can not
4694  *  blindly call wake_up. The layer that uses the ring buffer must be
4695  *  responsible for that.
4696  *
4697  * Returns:
4698  *  >=0 if data has been transferred, returns the offset of consumed data.
4699  *  <0 if no data has been transferred.
4700  */
4701 int ring_buffer_read_page(struct trace_buffer *buffer,
4702 			  void **data_page, size_t len, int cpu, int full)
4703 {
4704 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4705 	struct ring_buffer_event *event;
4706 	struct buffer_data_page *bpage;
4707 	struct buffer_page *reader;
4708 	unsigned long missed_events;
4709 	unsigned long flags;
4710 	unsigned int commit;
4711 	unsigned int read;
4712 	u64 save_timestamp;
4713 	int ret = -1;
4714 
4715 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4716 		goto out;
4717 
4718 	/*
4719 	 * If len is not big enough to hold the page header, then
4720 	 * we can not copy anything.
4721 	 */
4722 	if (len <= BUF_PAGE_HDR_SIZE)
4723 		goto out;
4724 
4725 	len -= BUF_PAGE_HDR_SIZE;
4726 
4727 	if (!data_page)
4728 		goto out;
4729 
4730 	bpage = *data_page;
4731 	if (!bpage)
4732 		goto out;
4733 
4734 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4735 
4736 	reader = rb_get_reader_page(cpu_buffer);
4737 	if (!reader)
4738 		goto out_unlock;
4739 
4740 	event = rb_reader_event(cpu_buffer);
4741 
4742 	read = reader->read;
4743 	commit = rb_page_commit(reader);
4744 
4745 	/* Check if any events were dropped */
4746 	missed_events = cpu_buffer->lost_events;
4747 
4748 	/*
4749 	 * If this page has been partially read or
4750 	 * if len is not big enough to read the rest of the page or
4751 	 * a writer is still on the page, then
4752 	 * we must copy the data from the page to the buffer.
4753 	 * Otherwise, we can simply swap the page with the one passed in.
4754 	 */
4755 	if (read || (len < (commit - read)) ||
4756 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4757 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4758 		unsigned int rpos = read;
4759 		unsigned int pos = 0;
4760 		unsigned int size;
4761 
4762 		if (full)
4763 			goto out_unlock;
4764 
4765 		if (len > (commit - read))
4766 			len = (commit - read);
4767 
4768 		/* Always keep the time extend and data together */
4769 		size = rb_event_ts_length(event);
4770 
4771 		if (len < size)
4772 			goto out_unlock;
4773 
4774 		/* save the current timestamp, since the user will need it */
4775 		save_timestamp = cpu_buffer->read_stamp;
4776 
4777 		/* Need to copy one event at a time */
4778 		do {
4779 			/* We need the size of one event, because
4780 			 * rb_advance_reader only advances by one event,
4781 			 * whereas rb_event_ts_length may include the size of
4782 			 * one or two events.
4783 			 * We have already ensured there's enough space if this
4784 			 * is a time extend. */
4785 			size = rb_event_length(event);
4786 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4787 
4788 			len -= size;
4789 
4790 			rb_advance_reader(cpu_buffer);
4791 			rpos = reader->read;
4792 			pos += size;
4793 
4794 			if (rpos >= commit)
4795 				break;
4796 
4797 			event = rb_reader_event(cpu_buffer);
4798 			/* Always keep the time extend and data together */
4799 			size = rb_event_ts_length(event);
4800 		} while (len >= size);
4801 
4802 		/* update bpage */
4803 		local_set(&bpage->commit, pos);
4804 		bpage->time_stamp = save_timestamp;
4805 
4806 		/* we copied everything to the beginning */
4807 		read = 0;
4808 	} else {
4809 		/* update the entry counter */
4810 		cpu_buffer->read += rb_page_entries(reader);
4811 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4812 
4813 		/* swap the pages */
4814 		rb_init_page(bpage);
4815 		bpage = reader->page;
4816 		reader->page = *data_page;
4817 		local_set(&reader->write, 0);
4818 		local_set(&reader->entries, 0);
4819 		reader->read = 0;
4820 		*data_page = bpage;
4821 
4822 		/*
4823 		 * Use the real_end for the data size,
4824 		 * This gives us a chance to store the lost events
4825 		 * on the page.
4826 		 */
4827 		if (reader->real_end)
4828 			local_set(&bpage->commit, reader->real_end);
4829 	}
4830 	ret = read;
4831 
4832 	cpu_buffer->lost_events = 0;
4833 
4834 	commit = local_read(&bpage->commit);
4835 	/*
4836 	 * Set a flag in the commit field if we lost events
4837 	 */
4838 	if (missed_events) {
4839 		/* If there is room at the end of the page to save the
4840 		 * missed events, then record it there.
4841 		 */
4842 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4843 			memcpy(&bpage->data[commit], &missed_events,
4844 			       sizeof(missed_events));
4845 			local_add(RB_MISSED_STORED, &bpage->commit);
4846 			commit += sizeof(missed_events);
4847 		}
4848 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4849 	}
4850 
4851 	/*
4852 	 * This page may be off to user land. Zero it out here.
4853 	 */
4854 	if (commit < BUF_PAGE_SIZE)
4855 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4856 
4857  out_unlock:
4858 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4859 
4860  out:
4861 	return ret;
4862 }
4863 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4864 
4865 /*
4866  * We only allocate new buffers, never free them if the CPU goes down.
4867  * If we were to free the buffer, then the user would lose any trace that was in
4868  * the buffer.
4869  */
4870 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4871 {
4872 	struct trace_buffer *buffer;
4873 	long nr_pages_same;
4874 	int cpu_i;
4875 	unsigned long nr_pages;
4876 
4877 	buffer = container_of(node, struct trace_buffer, node);
4878 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4879 		return 0;
4880 
4881 	nr_pages = 0;
4882 	nr_pages_same = 1;
4883 	/* check if all cpu sizes are same */
4884 	for_each_buffer_cpu(buffer, cpu_i) {
4885 		/* fill in the size from first enabled cpu */
4886 		if (nr_pages == 0)
4887 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4888 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4889 			nr_pages_same = 0;
4890 			break;
4891 		}
4892 	}
4893 	/* allocate minimum pages, user can later expand it */
4894 	if (!nr_pages_same)
4895 		nr_pages = 2;
4896 	buffer->buffers[cpu] =
4897 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4898 	if (!buffer->buffers[cpu]) {
4899 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4900 		     cpu);
4901 		return -ENOMEM;
4902 	}
4903 	smp_wmb();
4904 	cpumask_set_cpu(cpu, buffer->cpumask);
4905 	return 0;
4906 }
4907 
4908 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4909 /*
4910  * This is a basic integrity check of the ring buffer.
4911  * Late in the boot cycle this test will run when configured in.
4912  * It will kick off a thread per CPU that will go into a loop
4913  * writing to the per cpu ring buffer various sizes of data.
4914  * Some of the data will be large items, some small.
4915  *
4916  * Another thread is created that goes into a spin, sending out
4917  * IPIs to the other CPUs to also write into the ring buffer.
4918  * this is to test the nesting ability of the buffer.
4919  *
4920  * Basic stats are recorded and reported. If something in the
4921  * ring buffer should happen that's not expected, a big warning
4922  * is displayed and all ring buffers are disabled.
4923  */
4924 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4925 
4926 struct rb_test_data {
4927 	struct trace_buffer *buffer;
4928 	unsigned long		events;
4929 	unsigned long		bytes_written;
4930 	unsigned long		bytes_alloc;
4931 	unsigned long		bytes_dropped;
4932 	unsigned long		events_nested;
4933 	unsigned long		bytes_written_nested;
4934 	unsigned long		bytes_alloc_nested;
4935 	unsigned long		bytes_dropped_nested;
4936 	int			min_size_nested;
4937 	int			max_size_nested;
4938 	int			max_size;
4939 	int			min_size;
4940 	int			cpu;
4941 	int			cnt;
4942 };
4943 
4944 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4945 
4946 /* 1 meg per cpu */
4947 #define RB_TEST_BUFFER_SIZE	1048576
4948 
4949 static char rb_string[] __initdata =
4950 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4951 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4952 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4953 
4954 static bool rb_test_started __initdata;
4955 
4956 struct rb_item {
4957 	int size;
4958 	char str[];
4959 };
4960 
4961 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4962 {
4963 	struct ring_buffer_event *event;
4964 	struct rb_item *item;
4965 	bool started;
4966 	int event_len;
4967 	int size;
4968 	int len;
4969 	int cnt;
4970 
4971 	/* Have nested writes different that what is written */
4972 	cnt = data->cnt + (nested ? 27 : 0);
4973 
4974 	/* Multiply cnt by ~e, to make some unique increment */
4975 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
4976 
4977 	len = size + sizeof(struct rb_item);
4978 
4979 	started = rb_test_started;
4980 	/* read rb_test_started before checking buffer enabled */
4981 	smp_rmb();
4982 
4983 	event = ring_buffer_lock_reserve(data->buffer, len);
4984 	if (!event) {
4985 		/* Ignore dropped events before test starts. */
4986 		if (started) {
4987 			if (nested)
4988 				data->bytes_dropped += len;
4989 			else
4990 				data->bytes_dropped_nested += len;
4991 		}
4992 		return len;
4993 	}
4994 
4995 	event_len = ring_buffer_event_length(event);
4996 
4997 	if (RB_WARN_ON(data->buffer, event_len < len))
4998 		goto out;
4999 
5000 	item = ring_buffer_event_data(event);
5001 	item->size = size;
5002 	memcpy(item->str, rb_string, size);
5003 
5004 	if (nested) {
5005 		data->bytes_alloc_nested += event_len;
5006 		data->bytes_written_nested += len;
5007 		data->events_nested++;
5008 		if (!data->min_size_nested || len < data->min_size_nested)
5009 			data->min_size_nested = len;
5010 		if (len > data->max_size_nested)
5011 			data->max_size_nested = len;
5012 	} else {
5013 		data->bytes_alloc += event_len;
5014 		data->bytes_written += len;
5015 		data->events++;
5016 		if (!data->min_size || len < data->min_size)
5017 			data->max_size = len;
5018 		if (len > data->max_size)
5019 			data->max_size = len;
5020 	}
5021 
5022  out:
5023 	ring_buffer_unlock_commit(data->buffer, event);
5024 
5025 	return 0;
5026 }
5027 
5028 static __init int rb_test(void *arg)
5029 {
5030 	struct rb_test_data *data = arg;
5031 
5032 	while (!kthread_should_stop()) {
5033 		rb_write_something(data, false);
5034 		data->cnt++;
5035 
5036 		set_current_state(TASK_INTERRUPTIBLE);
5037 		/* Now sleep between a min of 100-300us and a max of 1ms */
5038 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5039 	}
5040 
5041 	return 0;
5042 }
5043 
5044 static __init void rb_ipi(void *ignore)
5045 {
5046 	struct rb_test_data *data;
5047 	int cpu = smp_processor_id();
5048 
5049 	data = &rb_data[cpu];
5050 	rb_write_something(data, true);
5051 }
5052 
5053 static __init int rb_hammer_test(void *arg)
5054 {
5055 	while (!kthread_should_stop()) {
5056 
5057 		/* Send an IPI to all cpus to write data! */
5058 		smp_call_function(rb_ipi, NULL, 1);
5059 		/* No sleep, but for non preempt, let others run */
5060 		schedule();
5061 	}
5062 
5063 	return 0;
5064 }
5065 
5066 static __init int test_ringbuffer(void)
5067 {
5068 	struct task_struct *rb_hammer;
5069 	struct trace_buffer *buffer;
5070 	int cpu;
5071 	int ret = 0;
5072 
5073 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5074 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5075 		return 0;
5076 	}
5077 
5078 	pr_info("Running ring buffer tests...\n");
5079 
5080 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5081 	if (WARN_ON(!buffer))
5082 		return 0;
5083 
5084 	/* Disable buffer so that threads can't write to it yet */
5085 	ring_buffer_record_off(buffer);
5086 
5087 	for_each_online_cpu(cpu) {
5088 		rb_data[cpu].buffer = buffer;
5089 		rb_data[cpu].cpu = cpu;
5090 		rb_data[cpu].cnt = cpu;
5091 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5092 						 "rbtester/%d", cpu);
5093 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5094 			pr_cont("FAILED\n");
5095 			ret = PTR_ERR(rb_threads[cpu]);
5096 			goto out_free;
5097 		}
5098 
5099 		kthread_bind(rb_threads[cpu], cpu);
5100  		wake_up_process(rb_threads[cpu]);
5101 	}
5102 
5103 	/* Now create the rb hammer! */
5104 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5105 	if (WARN_ON(IS_ERR(rb_hammer))) {
5106 		pr_cont("FAILED\n");
5107 		ret = PTR_ERR(rb_hammer);
5108 		goto out_free;
5109 	}
5110 
5111 	ring_buffer_record_on(buffer);
5112 	/*
5113 	 * Show buffer is enabled before setting rb_test_started.
5114 	 * Yes there's a small race window where events could be
5115 	 * dropped and the thread wont catch it. But when a ring
5116 	 * buffer gets enabled, there will always be some kind of
5117 	 * delay before other CPUs see it. Thus, we don't care about
5118 	 * those dropped events. We care about events dropped after
5119 	 * the threads see that the buffer is active.
5120 	 */
5121 	smp_wmb();
5122 	rb_test_started = true;
5123 
5124 	set_current_state(TASK_INTERRUPTIBLE);
5125 	/* Just run for 10 seconds */;
5126 	schedule_timeout(10 * HZ);
5127 
5128 	kthread_stop(rb_hammer);
5129 
5130  out_free:
5131 	for_each_online_cpu(cpu) {
5132 		if (!rb_threads[cpu])
5133 			break;
5134 		kthread_stop(rb_threads[cpu]);
5135 	}
5136 	if (ret) {
5137 		ring_buffer_free(buffer);
5138 		return ret;
5139 	}
5140 
5141 	/* Report! */
5142 	pr_info("finished\n");
5143 	for_each_online_cpu(cpu) {
5144 		struct ring_buffer_event *event;
5145 		struct rb_test_data *data = &rb_data[cpu];
5146 		struct rb_item *item;
5147 		unsigned long total_events;
5148 		unsigned long total_dropped;
5149 		unsigned long total_written;
5150 		unsigned long total_alloc;
5151 		unsigned long total_read = 0;
5152 		unsigned long total_size = 0;
5153 		unsigned long total_len = 0;
5154 		unsigned long total_lost = 0;
5155 		unsigned long lost;
5156 		int big_event_size;
5157 		int small_event_size;
5158 
5159 		ret = -1;
5160 
5161 		total_events = data->events + data->events_nested;
5162 		total_written = data->bytes_written + data->bytes_written_nested;
5163 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5164 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5165 
5166 		big_event_size = data->max_size + data->max_size_nested;
5167 		small_event_size = data->min_size + data->min_size_nested;
5168 
5169 		pr_info("CPU %d:\n", cpu);
5170 		pr_info("              events:    %ld\n", total_events);
5171 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5172 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5173 		pr_info("       written bytes:    %ld\n", total_written);
5174 		pr_info("       biggest event:    %d\n", big_event_size);
5175 		pr_info("      smallest event:    %d\n", small_event_size);
5176 
5177 		if (RB_WARN_ON(buffer, total_dropped))
5178 			break;
5179 
5180 		ret = 0;
5181 
5182 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5183 			total_lost += lost;
5184 			item = ring_buffer_event_data(event);
5185 			total_len += ring_buffer_event_length(event);
5186 			total_size += item->size + sizeof(struct rb_item);
5187 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5188 				pr_info("FAILED!\n");
5189 				pr_info("buffer had: %.*s\n", item->size, item->str);
5190 				pr_info("expected:   %.*s\n", item->size, rb_string);
5191 				RB_WARN_ON(buffer, 1);
5192 				ret = -1;
5193 				break;
5194 			}
5195 			total_read++;
5196 		}
5197 		if (ret)
5198 			break;
5199 
5200 		ret = -1;
5201 
5202 		pr_info("         read events:   %ld\n", total_read);
5203 		pr_info("         lost events:   %ld\n", total_lost);
5204 		pr_info("        total events:   %ld\n", total_lost + total_read);
5205 		pr_info("  recorded len bytes:   %ld\n", total_len);
5206 		pr_info(" recorded size bytes:   %ld\n", total_size);
5207 		if (total_lost)
5208 			pr_info(" With dropped events, record len and size may not match\n"
5209 				" alloced and written from above\n");
5210 		if (!total_lost) {
5211 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5212 				       total_size != total_written))
5213 				break;
5214 		}
5215 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5216 			break;
5217 
5218 		ret = 0;
5219 	}
5220 	if (!ret)
5221 		pr_info("Ring buffer PASSED!\n");
5222 
5223 	ring_buffer_free(buffer);
5224 	return 0;
5225 }
5226 
5227 late_initcall(test_ringbuffer);
5228 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5229