xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 8730046c)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>	/* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 struct buffer_data_page {
284 	u64		 time_stamp;	/* page time stamp */
285 	local_t		 commit;	/* write committed index */
286 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
287 };
288 
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298 	struct list_head list;		/* list of buffer pages */
299 	local_t		 write;		/* index for next write */
300 	unsigned	 read;		/* index for next read */
301 	local_t		 entries;	/* entries on this page */
302 	unsigned long	 real_end;	/* real end of data */
303 	struct buffer_data_page *page;	/* Actual data page */
304 };
305 
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK		0xfffff
319 #define RB_WRITE_INTCNT		(1 << 20)
320 
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 	local_set(&bpage->commit, 0);
324 }
325 
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334 	return local_read(&((struct buffer_data_page *)page)->commit)
335 		+ BUF_PAGE_HDR_SIZE;
336 }
337 
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 	free_page((unsigned long)bpage->page);
345 	kfree(bpage);
346 }
347 
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353 	if (delta & TS_DELTA_TEST)
354 		return 1;
355 	return 0;
356 }
357 
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359 
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362 
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 	struct buffer_data_page field;
366 
367 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 			 (unsigned int)sizeof(field.time_stamp),
370 			 (unsigned int)is_signed_type(u64));
371 
372 	trace_seq_printf(s, "\tfield: local_t commit;\t"
373 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 			 (unsigned int)offsetof(typeof(field), commit),
375 			 (unsigned int)sizeof(field.commit),
376 			 (unsigned int)is_signed_type(long));
377 
378 	trace_seq_printf(s, "\tfield: int overwrite;\t"
379 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)offsetof(typeof(field), commit),
381 			 1,
382 			 (unsigned int)is_signed_type(long));
383 
384 	trace_seq_printf(s, "\tfield: char data;\t"
385 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 			 (unsigned int)offsetof(typeof(field), data),
387 			 (unsigned int)BUF_PAGE_SIZE,
388 			 (unsigned int)is_signed_type(char));
389 
390 	return !trace_seq_has_overflowed(s);
391 }
392 
393 struct rb_irq_work {
394 	struct irq_work			work;
395 	wait_queue_head_t		waiters;
396 	wait_queue_head_t		full_waiters;
397 	bool				waiters_pending;
398 	bool				full_waiters_pending;
399 	bool				wakeup_full;
400 };
401 
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406 	u64			ts;
407 	u64			delta;
408 	unsigned long		length;
409 	struct buffer_page	*tail_page;
410 	int			add_timestamp;
411 };
412 
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423 	RB_CTX_NMI,
424 	RB_CTX_IRQ,
425 	RB_CTX_SOFTIRQ,
426 	RB_CTX_NORMAL,
427 	RB_CTX_MAX
428 };
429 
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434 	int				cpu;
435 	atomic_t			record_disabled;
436 	struct ring_buffer		*buffer;
437 	raw_spinlock_t			reader_lock;	/* serialize readers */
438 	arch_spinlock_t			lock;
439 	struct lock_class_key		lock_key;
440 	unsigned long			nr_pages;
441 	unsigned int			current_context;
442 	struct list_head		*pages;
443 	struct buffer_page		*head_page;	/* read from head */
444 	struct buffer_page		*tail_page;	/* write to tail */
445 	struct buffer_page		*commit_page;	/* committed pages */
446 	struct buffer_page		*reader_page;
447 	unsigned long			lost_events;
448 	unsigned long			last_overrun;
449 	local_t				entries_bytes;
450 	local_t				entries;
451 	local_t				overrun;
452 	local_t				commit_overrun;
453 	local_t				dropped_events;
454 	local_t				committing;
455 	local_t				commits;
456 	unsigned long			read;
457 	unsigned long			read_bytes;
458 	u64				write_stamp;
459 	u64				read_stamp;
460 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
461 	long				nr_pages_to_update;
462 	struct list_head		new_pages; /* new pages to add */
463 	struct work_struct		update_pages_work;
464 	struct completion		update_done;
465 
466 	struct rb_irq_work		irq_work;
467 };
468 
469 struct ring_buffer {
470 	unsigned			flags;
471 	int				cpus;
472 	atomic_t			record_disabled;
473 	atomic_t			resize_disabled;
474 	cpumask_var_t			cpumask;
475 
476 	struct lock_class_key		*reader_lock_key;
477 
478 	struct mutex			mutex;
479 
480 	struct ring_buffer_per_cpu	**buffers;
481 
482 	struct hlist_node		node;
483 	u64				(*clock)(void);
484 
485 	struct rb_irq_work		irq_work;
486 };
487 
488 struct ring_buffer_iter {
489 	struct ring_buffer_per_cpu	*cpu_buffer;
490 	unsigned long			head;
491 	struct buffer_page		*head_page;
492 	struct buffer_page		*cache_reader_page;
493 	unsigned long			cache_read;
494 	u64				read_stamp;
495 };
496 
497 /*
498  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
499  *
500  * Schedules a delayed work to wake up any task that is blocked on the
501  * ring buffer waiters queue.
502  */
503 static void rb_wake_up_waiters(struct irq_work *work)
504 {
505 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
506 
507 	wake_up_all(&rbwork->waiters);
508 	if (rbwork->wakeup_full) {
509 		rbwork->wakeup_full = false;
510 		wake_up_all(&rbwork->full_waiters);
511 	}
512 }
513 
514 /**
515  * ring_buffer_wait - wait for input to the ring buffer
516  * @buffer: buffer to wait on
517  * @cpu: the cpu buffer to wait on
518  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
519  *
520  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
521  * as data is added to any of the @buffer's cpu buffers. Otherwise
522  * it will wait for data to be added to a specific cpu buffer.
523  */
524 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
525 {
526 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
527 	DEFINE_WAIT(wait);
528 	struct rb_irq_work *work;
529 	int ret = 0;
530 
531 	/*
532 	 * Depending on what the caller is waiting for, either any
533 	 * data in any cpu buffer, or a specific buffer, put the
534 	 * caller on the appropriate wait queue.
535 	 */
536 	if (cpu == RING_BUFFER_ALL_CPUS) {
537 		work = &buffer->irq_work;
538 		/* Full only makes sense on per cpu reads */
539 		full = false;
540 	} else {
541 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
542 			return -ENODEV;
543 		cpu_buffer = buffer->buffers[cpu];
544 		work = &cpu_buffer->irq_work;
545 	}
546 
547 
548 	while (true) {
549 		if (full)
550 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
551 		else
552 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
553 
554 		/*
555 		 * The events can happen in critical sections where
556 		 * checking a work queue can cause deadlocks.
557 		 * After adding a task to the queue, this flag is set
558 		 * only to notify events to try to wake up the queue
559 		 * using irq_work.
560 		 *
561 		 * We don't clear it even if the buffer is no longer
562 		 * empty. The flag only causes the next event to run
563 		 * irq_work to do the work queue wake up. The worse
564 		 * that can happen if we race with !trace_empty() is that
565 		 * an event will cause an irq_work to try to wake up
566 		 * an empty queue.
567 		 *
568 		 * There's no reason to protect this flag either, as
569 		 * the work queue and irq_work logic will do the necessary
570 		 * synchronization for the wake ups. The only thing
571 		 * that is necessary is that the wake up happens after
572 		 * a task has been queued. It's OK for spurious wake ups.
573 		 */
574 		if (full)
575 			work->full_waiters_pending = true;
576 		else
577 			work->waiters_pending = true;
578 
579 		if (signal_pending(current)) {
580 			ret = -EINTR;
581 			break;
582 		}
583 
584 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
585 			break;
586 
587 		if (cpu != RING_BUFFER_ALL_CPUS &&
588 		    !ring_buffer_empty_cpu(buffer, cpu)) {
589 			unsigned long flags;
590 			bool pagebusy;
591 
592 			if (!full)
593 				break;
594 
595 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
596 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
597 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
598 
599 			if (!pagebusy)
600 				break;
601 		}
602 
603 		schedule();
604 	}
605 
606 	if (full)
607 		finish_wait(&work->full_waiters, &wait);
608 	else
609 		finish_wait(&work->waiters, &wait);
610 
611 	return ret;
612 }
613 
614 /**
615  * ring_buffer_poll_wait - poll on buffer input
616  * @buffer: buffer to wait on
617  * @cpu: the cpu buffer to wait on
618  * @filp: the file descriptor
619  * @poll_table: The poll descriptor
620  *
621  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
622  * as data is added to any of the @buffer's cpu buffers. Otherwise
623  * it will wait for data to be added to a specific cpu buffer.
624  *
625  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
626  * zero otherwise.
627  */
628 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
629 			  struct file *filp, poll_table *poll_table)
630 {
631 	struct ring_buffer_per_cpu *cpu_buffer;
632 	struct rb_irq_work *work;
633 
634 	if (cpu == RING_BUFFER_ALL_CPUS)
635 		work = &buffer->irq_work;
636 	else {
637 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
638 			return -EINVAL;
639 
640 		cpu_buffer = buffer->buffers[cpu];
641 		work = &cpu_buffer->irq_work;
642 	}
643 
644 	poll_wait(filp, &work->waiters, poll_table);
645 	work->waiters_pending = true;
646 	/*
647 	 * There's a tight race between setting the waiters_pending and
648 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
649 	 * is set, the next event will wake the task up, but we can get stuck
650 	 * if there's only a single event in.
651 	 *
652 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
653 	 * but adding a memory barrier to all events will cause too much of a
654 	 * performance hit in the fast path.  We only need a memory barrier when
655 	 * the buffer goes from empty to having content.  But as this race is
656 	 * extremely small, and it's not a problem if another event comes in, we
657 	 * will fix it later.
658 	 */
659 	smp_mb();
660 
661 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
662 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
663 		return POLLIN | POLLRDNORM;
664 	return 0;
665 }
666 
667 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
668 #define RB_WARN_ON(b, cond)						\
669 	({								\
670 		int _____ret = unlikely(cond);				\
671 		if (_____ret) {						\
672 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
673 				struct ring_buffer_per_cpu *__b =	\
674 					(void *)b;			\
675 				atomic_inc(&__b->buffer->record_disabled); \
676 			} else						\
677 				atomic_inc(&b->record_disabled);	\
678 			WARN_ON(1);					\
679 		}							\
680 		_____ret;						\
681 	})
682 
683 /* Up this if you want to test the TIME_EXTENTS and normalization */
684 #define DEBUG_SHIFT 0
685 
686 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
687 {
688 	/* shift to debug/test normalization and TIME_EXTENTS */
689 	return buffer->clock() << DEBUG_SHIFT;
690 }
691 
692 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
693 {
694 	u64 time;
695 
696 	preempt_disable_notrace();
697 	time = rb_time_stamp(buffer);
698 	preempt_enable_no_resched_notrace();
699 
700 	return time;
701 }
702 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
703 
704 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
705 				      int cpu, u64 *ts)
706 {
707 	/* Just stupid testing the normalize function and deltas */
708 	*ts >>= DEBUG_SHIFT;
709 }
710 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
711 
712 /*
713  * Making the ring buffer lockless makes things tricky.
714  * Although writes only happen on the CPU that they are on,
715  * and they only need to worry about interrupts. Reads can
716  * happen on any CPU.
717  *
718  * The reader page is always off the ring buffer, but when the
719  * reader finishes with a page, it needs to swap its page with
720  * a new one from the buffer. The reader needs to take from
721  * the head (writes go to the tail). But if a writer is in overwrite
722  * mode and wraps, it must push the head page forward.
723  *
724  * Here lies the problem.
725  *
726  * The reader must be careful to replace only the head page, and
727  * not another one. As described at the top of the file in the
728  * ASCII art, the reader sets its old page to point to the next
729  * page after head. It then sets the page after head to point to
730  * the old reader page. But if the writer moves the head page
731  * during this operation, the reader could end up with the tail.
732  *
733  * We use cmpxchg to help prevent this race. We also do something
734  * special with the page before head. We set the LSB to 1.
735  *
736  * When the writer must push the page forward, it will clear the
737  * bit that points to the head page, move the head, and then set
738  * the bit that points to the new head page.
739  *
740  * We also don't want an interrupt coming in and moving the head
741  * page on another writer. Thus we use the second LSB to catch
742  * that too. Thus:
743  *
744  * head->list->prev->next        bit 1          bit 0
745  *                              -------        -------
746  * Normal page                     0              0
747  * Points to head page             0              1
748  * New head page                   1              0
749  *
750  * Note we can not trust the prev pointer of the head page, because:
751  *
752  * +----+       +-----+        +-----+
753  * |    |------>|  T  |---X--->|  N  |
754  * |    |<------|     |        |     |
755  * +----+       +-----+        +-----+
756  *   ^                           ^ |
757  *   |          +-----+          | |
758  *   +----------|  R  |----------+ |
759  *              |     |<-----------+
760  *              +-----+
761  *
762  * Key:  ---X-->  HEAD flag set in pointer
763  *         T      Tail page
764  *         R      Reader page
765  *         N      Next page
766  *
767  * (see __rb_reserve_next() to see where this happens)
768  *
769  *  What the above shows is that the reader just swapped out
770  *  the reader page with a page in the buffer, but before it
771  *  could make the new header point back to the new page added
772  *  it was preempted by a writer. The writer moved forward onto
773  *  the new page added by the reader and is about to move forward
774  *  again.
775  *
776  *  You can see, it is legitimate for the previous pointer of
777  *  the head (or any page) not to point back to itself. But only
778  *  temporarially.
779  */
780 
781 #define RB_PAGE_NORMAL		0UL
782 #define RB_PAGE_HEAD		1UL
783 #define RB_PAGE_UPDATE		2UL
784 
785 
786 #define RB_FLAG_MASK		3UL
787 
788 /* PAGE_MOVED is not part of the mask */
789 #define RB_PAGE_MOVED		4UL
790 
791 /*
792  * rb_list_head - remove any bit
793  */
794 static struct list_head *rb_list_head(struct list_head *list)
795 {
796 	unsigned long val = (unsigned long)list;
797 
798 	return (struct list_head *)(val & ~RB_FLAG_MASK);
799 }
800 
801 /*
802  * rb_is_head_page - test if the given page is the head page
803  *
804  * Because the reader may move the head_page pointer, we can
805  * not trust what the head page is (it may be pointing to
806  * the reader page). But if the next page is a header page,
807  * its flags will be non zero.
808  */
809 static inline int
810 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
811 		struct buffer_page *page, struct list_head *list)
812 {
813 	unsigned long val;
814 
815 	val = (unsigned long)list->next;
816 
817 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
818 		return RB_PAGE_MOVED;
819 
820 	return val & RB_FLAG_MASK;
821 }
822 
823 /*
824  * rb_is_reader_page
825  *
826  * The unique thing about the reader page, is that, if the
827  * writer is ever on it, the previous pointer never points
828  * back to the reader page.
829  */
830 static bool rb_is_reader_page(struct buffer_page *page)
831 {
832 	struct list_head *list = page->list.prev;
833 
834 	return rb_list_head(list->next) != &page->list;
835 }
836 
837 /*
838  * rb_set_list_to_head - set a list_head to be pointing to head.
839  */
840 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
841 				struct list_head *list)
842 {
843 	unsigned long *ptr;
844 
845 	ptr = (unsigned long *)&list->next;
846 	*ptr |= RB_PAGE_HEAD;
847 	*ptr &= ~RB_PAGE_UPDATE;
848 }
849 
850 /*
851  * rb_head_page_activate - sets up head page
852  */
853 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
854 {
855 	struct buffer_page *head;
856 
857 	head = cpu_buffer->head_page;
858 	if (!head)
859 		return;
860 
861 	/*
862 	 * Set the previous list pointer to have the HEAD flag.
863 	 */
864 	rb_set_list_to_head(cpu_buffer, head->list.prev);
865 }
866 
867 static void rb_list_head_clear(struct list_head *list)
868 {
869 	unsigned long *ptr = (unsigned long *)&list->next;
870 
871 	*ptr &= ~RB_FLAG_MASK;
872 }
873 
874 /*
875  * rb_head_page_dactivate - clears head page ptr (for free list)
876  */
877 static void
878 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
879 {
880 	struct list_head *hd;
881 
882 	/* Go through the whole list and clear any pointers found. */
883 	rb_list_head_clear(cpu_buffer->pages);
884 
885 	list_for_each(hd, cpu_buffer->pages)
886 		rb_list_head_clear(hd);
887 }
888 
889 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
890 			    struct buffer_page *head,
891 			    struct buffer_page *prev,
892 			    int old_flag, int new_flag)
893 {
894 	struct list_head *list;
895 	unsigned long val = (unsigned long)&head->list;
896 	unsigned long ret;
897 
898 	list = &prev->list;
899 
900 	val &= ~RB_FLAG_MASK;
901 
902 	ret = cmpxchg((unsigned long *)&list->next,
903 		      val | old_flag, val | new_flag);
904 
905 	/* check if the reader took the page */
906 	if ((ret & ~RB_FLAG_MASK) != val)
907 		return RB_PAGE_MOVED;
908 
909 	return ret & RB_FLAG_MASK;
910 }
911 
912 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
913 				   struct buffer_page *head,
914 				   struct buffer_page *prev,
915 				   int old_flag)
916 {
917 	return rb_head_page_set(cpu_buffer, head, prev,
918 				old_flag, RB_PAGE_UPDATE);
919 }
920 
921 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
922 				 struct buffer_page *head,
923 				 struct buffer_page *prev,
924 				 int old_flag)
925 {
926 	return rb_head_page_set(cpu_buffer, head, prev,
927 				old_flag, RB_PAGE_HEAD);
928 }
929 
930 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
931 				   struct buffer_page *head,
932 				   struct buffer_page *prev,
933 				   int old_flag)
934 {
935 	return rb_head_page_set(cpu_buffer, head, prev,
936 				old_flag, RB_PAGE_NORMAL);
937 }
938 
939 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
940 			       struct buffer_page **bpage)
941 {
942 	struct list_head *p = rb_list_head((*bpage)->list.next);
943 
944 	*bpage = list_entry(p, struct buffer_page, list);
945 }
946 
947 static struct buffer_page *
948 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
949 {
950 	struct buffer_page *head;
951 	struct buffer_page *page;
952 	struct list_head *list;
953 	int i;
954 
955 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
956 		return NULL;
957 
958 	/* sanity check */
959 	list = cpu_buffer->pages;
960 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
961 		return NULL;
962 
963 	page = head = cpu_buffer->head_page;
964 	/*
965 	 * It is possible that the writer moves the header behind
966 	 * where we started, and we miss in one loop.
967 	 * A second loop should grab the header, but we'll do
968 	 * three loops just because I'm paranoid.
969 	 */
970 	for (i = 0; i < 3; i++) {
971 		do {
972 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
973 				cpu_buffer->head_page = page;
974 				return page;
975 			}
976 			rb_inc_page(cpu_buffer, &page);
977 		} while (page != head);
978 	}
979 
980 	RB_WARN_ON(cpu_buffer, 1);
981 
982 	return NULL;
983 }
984 
985 static int rb_head_page_replace(struct buffer_page *old,
986 				struct buffer_page *new)
987 {
988 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
989 	unsigned long val;
990 	unsigned long ret;
991 
992 	val = *ptr & ~RB_FLAG_MASK;
993 	val |= RB_PAGE_HEAD;
994 
995 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
996 
997 	return ret == val;
998 }
999 
1000 /*
1001  * rb_tail_page_update - move the tail page forward
1002  */
1003 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1004 			       struct buffer_page *tail_page,
1005 			       struct buffer_page *next_page)
1006 {
1007 	unsigned long old_entries;
1008 	unsigned long old_write;
1009 
1010 	/*
1011 	 * The tail page now needs to be moved forward.
1012 	 *
1013 	 * We need to reset the tail page, but without messing
1014 	 * with possible erasing of data brought in by interrupts
1015 	 * that have moved the tail page and are currently on it.
1016 	 *
1017 	 * We add a counter to the write field to denote this.
1018 	 */
1019 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1020 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1021 
1022 	/*
1023 	 * Just make sure we have seen our old_write and synchronize
1024 	 * with any interrupts that come in.
1025 	 */
1026 	barrier();
1027 
1028 	/*
1029 	 * If the tail page is still the same as what we think
1030 	 * it is, then it is up to us to update the tail
1031 	 * pointer.
1032 	 */
1033 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1034 		/* Zero the write counter */
1035 		unsigned long val = old_write & ~RB_WRITE_MASK;
1036 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1037 
1038 		/*
1039 		 * This will only succeed if an interrupt did
1040 		 * not come in and change it. In which case, we
1041 		 * do not want to modify it.
1042 		 *
1043 		 * We add (void) to let the compiler know that we do not care
1044 		 * about the return value of these functions. We use the
1045 		 * cmpxchg to only update if an interrupt did not already
1046 		 * do it for us. If the cmpxchg fails, we don't care.
1047 		 */
1048 		(void)local_cmpxchg(&next_page->write, old_write, val);
1049 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1050 
1051 		/*
1052 		 * No need to worry about races with clearing out the commit.
1053 		 * it only can increment when a commit takes place. But that
1054 		 * only happens in the outer most nested commit.
1055 		 */
1056 		local_set(&next_page->page->commit, 0);
1057 
1058 		/* Again, either we update tail_page or an interrupt does */
1059 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1060 	}
1061 }
1062 
1063 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1064 			  struct buffer_page *bpage)
1065 {
1066 	unsigned long val = (unsigned long)bpage;
1067 
1068 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1069 		return 1;
1070 
1071 	return 0;
1072 }
1073 
1074 /**
1075  * rb_check_list - make sure a pointer to a list has the last bits zero
1076  */
1077 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1078 			 struct list_head *list)
1079 {
1080 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1081 		return 1;
1082 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1083 		return 1;
1084 	return 0;
1085 }
1086 
1087 /**
1088  * rb_check_pages - integrity check of buffer pages
1089  * @cpu_buffer: CPU buffer with pages to test
1090  *
1091  * As a safety measure we check to make sure the data pages have not
1092  * been corrupted.
1093  */
1094 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1095 {
1096 	struct list_head *head = cpu_buffer->pages;
1097 	struct buffer_page *bpage, *tmp;
1098 
1099 	/* Reset the head page if it exists */
1100 	if (cpu_buffer->head_page)
1101 		rb_set_head_page(cpu_buffer);
1102 
1103 	rb_head_page_deactivate(cpu_buffer);
1104 
1105 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1106 		return -1;
1107 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1108 		return -1;
1109 
1110 	if (rb_check_list(cpu_buffer, head))
1111 		return -1;
1112 
1113 	list_for_each_entry_safe(bpage, tmp, head, list) {
1114 		if (RB_WARN_ON(cpu_buffer,
1115 			       bpage->list.next->prev != &bpage->list))
1116 			return -1;
1117 		if (RB_WARN_ON(cpu_buffer,
1118 			       bpage->list.prev->next != &bpage->list))
1119 			return -1;
1120 		if (rb_check_list(cpu_buffer, &bpage->list))
1121 			return -1;
1122 	}
1123 
1124 	rb_head_page_activate(cpu_buffer);
1125 
1126 	return 0;
1127 }
1128 
1129 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1130 {
1131 	struct buffer_page *bpage, *tmp;
1132 	long i;
1133 
1134 	for (i = 0; i < nr_pages; i++) {
1135 		struct page *page;
1136 		/*
1137 		 * __GFP_NORETRY flag makes sure that the allocation fails
1138 		 * gracefully without invoking oom-killer and the system is
1139 		 * not destabilized.
1140 		 */
1141 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1142 				    GFP_KERNEL | __GFP_NORETRY,
1143 				    cpu_to_node(cpu));
1144 		if (!bpage)
1145 			goto free_pages;
1146 
1147 		list_add(&bpage->list, pages);
1148 
1149 		page = alloc_pages_node(cpu_to_node(cpu),
1150 					GFP_KERNEL | __GFP_NORETRY, 0);
1151 		if (!page)
1152 			goto free_pages;
1153 		bpage->page = page_address(page);
1154 		rb_init_page(bpage->page);
1155 	}
1156 
1157 	return 0;
1158 
1159 free_pages:
1160 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1161 		list_del_init(&bpage->list);
1162 		free_buffer_page(bpage);
1163 	}
1164 
1165 	return -ENOMEM;
1166 }
1167 
1168 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1169 			     unsigned long nr_pages)
1170 {
1171 	LIST_HEAD(pages);
1172 
1173 	WARN_ON(!nr_pages);
1174 
1175 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1176 		return -ENOMEM;
1177 
1178 	/*
1179 	 * The ring buffer page list is a circular list that does not
1180 	 * start and end with a list head. All page list items point to
1181 	 * other pages.
1182 	 */
1183 	cpu_buffer->pages = pages.next;
1184 	list_del(&pages);
1185 
1186 	cpu_buffer->nr_pages = nr_pages;
1187 
1188 	rb_check_pages(cpu_buffer);
1189 
1190 	return 0;
1191 }
1192 
1193 static struct ring_buffer_per_cpu *
1194 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1195 {
1196 	struct ring_buffer_per_cpu *cpu_buffer;
1197 	struct buffer_page *bpage;
1198 	struct page *page;
1199 	int ret;
1200 
1201 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1202 				  GFP_KERNEL, cpu_to_node(cpu));
1203 	if (!cpu_buffer)
1204 		return NULL;
1205 
1206 	cpu_buffer->cpu = cpu;
1207 	cpu_buffer->buffer = buffer;
1208 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1209 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1210 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1211 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1212 	init_completion(&cpu_buffer->update_done);
1213 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1214 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1215 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1216 
1217 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1218 			    GFP_KERNEL, cpu_to_node(cpu));
1219 	if (!bpage)
1220 		goto fail_free_buffer;
1221 
1222 	rb_check_bpage(cpu_buffer, bpage);
1223 
1224 	cpu_buffer->reader_page = bpage;
1225 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1226 	if (!page)
1227 		goto fail_free_reader;
1228 	bpage->page = page_address(page);
1229 	rb_init_page(bpage->page);
1230 
1231 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1232 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1233 
1234 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1235 	if (ret < 0)
1236 		goto fail_free_reader;
1237 
1238 	cpu_buffer->head_page
1239 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1240 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1241 
1242 	rb_head_page_activate(cpu_buffer);
1243 
1244 	return cpu_buffer;
1245 
1246  fail_free_reader:
1247 	free_buffer_page(cpu_buffer->reader_page);
1248 
1249  fail_free_buffer:
1250 	kfree(cpu_buffer);
1251 	return NULL;
1252 }
1253 
1254 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1255 {
1256 	struct list_head *head = cpu_buffer->pages;
1257 	struct buffer_page *bpage, *tmp;
1258 
1259 	free_buffer_page(cpu_buffer->reader_page);
1260 
1261 	rb_head_page_deactivate(cpu_buffer);
1262 
1263 	if (head) {
1264 		list_for_each_entry_safe(bpage, tmp, head, list) {
1265 			list_del_init(&bpage->list);
1266 			free_buffer_page(bpage);
1267 		}
1268 		bpage = list_entry(head, struct buffer_page, list);
1269 		free_buffer_page(bpage);
1270 	}
1271 
1272 	kfree(cpu_buffer);
1273 }
1274 
1275 /**
1276  * __ring_buffer_alloc - allocate a new ring_buffer
1277  * @size: the size in bytes per cpu that is needed.
1278  * @flags: attributes to set for the ring buffer.
1279  *
1280  * Currently the only flag that is available is the RB_FL_OVERWRITE
1281  * flag. This flag means that the buffer will overwrite old data
1282  * when the buffer wraps. If this flag is not set, the buffer will
1283  * drop data when the tail hits the head.
1284  */
1285 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1286 					struct lock_class_key *key)
1287 {
1288 	struct ring_buffer *buffer;
1289 	long nr_pages;
1290 	int bsize;
1291 	int cpu;
1292 	int ret;
1293 
1294 	/* keep it in its own cache line */
1295 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1296 			 GFP_KERNEL);
1297 	if (!buffer)
1298 		return NULL;
1299 
1300 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1301 		goto fail_free_buffer;
1302 
1303 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1304 	buffer->flags = flags;
1305 	buffer->clock = trace_clock_local;
1306 	buffer->reader_lock_key = key;
1307 
1308 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1309 	init_waitqueue_head(&buffer->irq_work.waiters);
1310 
1311 	/* need at least two pages */
1312 	if (nr_pages < 2)
1313 		nr_pages = 2;
1314 
1315 	buffer->cpus = nr_cpu_ids;
1316 
1317 	bsize = sizeof(void *) * nr_cpu_ids;
1318 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1319 				  GFP_KERNEL);
1320 	if (!buffer->buffers)
1321 		goto fail_free_cpumask;
1322 
1323 	cpu = raw_smp_processor_id();
1324 	cpumask_set_cpu(cpu, buffer->cpumask);
1325 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1326 	if (!buffer->buffers[cpu])
1327 		goto fail_free_buffers;
1328 
1329 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1330 	if (ret < 0)
1331 		goto fail_free_buffers;
1332 
1333 	mutex_init(&buffer->mutex);
1334 
1335 	return buffer;
1336 
1337  fail_free_buffers:
1338 	for_each_buffer_cpu(buffer, cpu) {
1339 		if (buffer->buffers[cpu])
1340 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1341 	}
1342 	kfree(buffer->buffers);
1343 
1344  fail_free_cpumask:
1345 	free_cpumask_var(buffer->cpumask);
1346 
1347  fail_free_buffer:
1348 	kfree(buffer);
1349 	return NULL;
1350 }
1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1352 
1353 /**
1354  * ring_buffer_free - free a ring buffer.
1355  * @buffer: the buffer to free.
1356  */
1357 void
1358 ring_buffer_free(struct ring_buffer *buffer)
1359 {
1360 	int cpu;
1361 
1362 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1363 
1364 	for_each_buffer_cpu(buffer, cpu)
1365 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1366 
1367 	kfree(buffer->buffers);
1368 	free_cpumask_var(buffer->cpumask);
1369 
1370 	kfree(buffer);
1371 }
1372 EXPORT_SYMBOL_GPL(ring_buffer_free);
1373 
1374 void ring_buffer_set_clock(struct ring_buffer *buffer,
1375 			   u64 (*clock)(void))
1376 {
1377 	buffer->clock = clock;
1378 }
1379 
1380 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1381 
1382 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1383 {
1384 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1385 }
1386 
1387 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1388 {
1389 	return local_read(&bpage->write) & RB_WRITE_MASK;
1390 }
1391 
1392 static int
1393 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1394 {
1395 	struct list_head *tail_page, *to_remove, *next_page;
1396 	struct buffer_page *to_remove_page, *tmp_iter_page;
1397 	struct buffer_page *last_page, *first_page;
1398 	unsigned long nr_removed;
1399 	unsigned long head_bit;
1400 	int page_entries;
1401 
1402 	head_bit = 0;
1403 
1404 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1405 	atomic_inc(&cpu_buffer->record_disabled);
1406 	/*
1407 	 * We don't race with the readers since we have acquired the reader
1408 	 * lock. We also don't race with writers after disabling recording.
1409 	 * This makes it easy to figure out the first and the last page to be
1410 	 * removed from the list. We unlink all the pages in between including
1411 	 * the first and last pages. This is done in a busy loop so that we
1412 	 * lose the least number of traces.
1413 	 * The pages are freed after we restart recording and unlock readers.
1414 	 */
1415 	tail_page = &cpu_buffer->tail_page->list;
1416 
1417 	/*
1418 	 * tail page might be on reader page, we remove the next page
1419 	 * from the ring buffer
1420 	 */
1421 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1422 		tail_page = rb_list_head(tail_page->next);
1423 	to_remove = tail_page;
1424 
1425 	/* start of pages to remove */
1426 	first_page = list_entry(rb_list_head(to_remove->next),
1427 				struct buffer_page, list);
1428 
1429 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1430 		to_remove = rb_list_head(to_remove)->next;
1431 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1432 	}
1433 
1434 	next_page = rb_list_head(to_remove)->next;
1435 
1436 	/*
1437 	 * Now we remove all pages between tail_page and next_page.
1438 	 * Make sure that we have head_bit value preserved for the
1439 	 * next page
1440 	 */
1441 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1442 						head_bit);
1443 	next_page = rb_list_head(next_page);
1444 	next_page->prev = tail_page;
1445 
1446 	/* make sure pages points to a valid page in the ring buffer */
1447 	cpu_buffer->pages = next_page;
1448 
1449 	/* update head page */
1450 	if (head_bit)
1451 		cpu_buffer->head_page = list_entry(next_page,
1452 						struct buffer_page, list);
1453 
1454 	/*
1455 	 * change read pointer to make sure any read iterators reset
1456 	 * themselves
1457 	 */
1458 	cpu_buffer->read = 0;
1459 
1460 	/* pages are removed, resume tracing and then free the pages */
1461 	atomic_dec(&cpu_buffer->record_disabled);
1462 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1463 
1464 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1465 
1466 	/* last buffer page to remove */
1467 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1468 				list);
1469 	tmp_iter_page = first_page;
1470 
1471 	do {
1472 		to_remove_page = tmp_iter_page;
1473 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1474 
1475 		/* update the counters */
1476 		page_entries = rb_page_entries(to_remove_page);
1477 		if (page_entries) {
1478 			/*
1479 			 * If something was added to this page, it was full
1480 			 * since it is not the tail page. So we deduct the
1481 			 * bytes consumed in ring buffer from here.
1482 			 * Increment overrun to account for the lost events.
1483 			 */
1484 			local_add(page_entries, &cpu_buffer->overrun);
1485 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1486 		}
1487 
1488 		/*
1489 		 * We have already removed references to this list item, just
1490 		 * free up the buffer_page and its page
1491 		 */
1492 		free_buffer_page(to_remove_page);
1493 		nr_removed--;
1494 
1495 	} while (to_remove_page != last_page);
1496 
1497 	RB_WARN_ON(cpu_buffer, nr_removed);
1498 
1499 	return nr_removed == 0;
1500 }
1501 
1502 static int
1503 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1504 {
1505 	struct list_head *pages = &cpu_buffer->new_pages;
1506 	int retries, success;
1507 
1508 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1509 	/*
1510 	 * We are holding the reader lock, so the reader page won't be swapped
1511 	 * in the ring buffer. Now we are racing with the writer trying to
1512 	 * move head page and the tail page.
1513 	 * We are going to adapt the reader page update process where:
1514 	 * 1. We first splice the start and end of list of new pages between
1515 	 *    the head page and its previous page.
1516 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1517 	 *    start of new pages list.
1518 	 * 3. Finally, we update the head->prev to the end of new list.
1519 	 *
1520 	 * We will try this process 10 times, to make sure that we don't keep
1521 	 * spinning.
1522 	 */
1523 	retries = 10;
1524 	success = 0;
1525 	while (retries--) {
1526 		struct list_head *head_page, *prev_page, *r;
1527 		struct list_head *last_page, *first_page;
1528 		struct list_head *head_page_with_bit;
1529 
1530 		head_page = &rb_set_head_page(cpu_buffer)->list;
1531 		if (!head_page)
1532 			break;
1533 		prev_page = head_page->prev;
1534 
1535 		first_page = pages->next;
1536 		last_page  = pages->prev;
1537 
1538 		head_page_with_bit = (struct list_head *)
1539 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1540 
1541 		last_page->next = head_page_with_bit;
1542 		first_page->prev = prev_page;
1543 
1544 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1545 
1546 		if (r == head_page_with_bit) {
1547 			/*
1548 			 * yay, we replaced the page pointer to our new list,
1549 			 * now, we just have to update to head page's prev
1550 			 * pointer to point to end of list
1551 			 */
1552 			head_page->prev = last_page;
1553 			success = 1;
1554 			break;
1555 		}
1556 	}
1557 
1558 	if (success)
1559 		INIT_LIST_HEAD(pages);
1560 	/*
1561 	 * If we weren't successful in adding in new pages, warn and stop
1562 	 * tracing
1563 	 */
1564 	RB_WARN_ON(cpu_buffer, !success);
1565 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1566 
1567 	/* free pages if they weren't inserted */
1568 	if (!success) {
1569 		struct buffer_page *bpage, *tmp;
1570 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1571 					 list) {
1572 			list_del_init(&bpage->list);
1573 			free_buffer_page(bpage);
1574 		}
1575 	}
1576 	return success;
1577 }
1578 
1579 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1580 {
1581 	int success;
1582 
1583 	if (cpu_buffer->nr_pages_to_update > 0)
1584 		success = rb_insert_pages(cpu_buffer);
1585 	else
1586 		success = rb_remove_pages(cpu_buffer,
1587 					-cpu_buffer->nr_pages_to_update);
1588 
1589 	if (success)
1590 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1591 }
1592 
1593 static void update_pages_handler(struct work_struct *work)
1594 {
1595 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1596 			struct ring_buffer_per_cpu, update_pages_work);
1597 	rb_update_pages(cpu_buffer);
1598 	complete(&cpu_buffer->update_done);
1599 }
1600 
1601 /**
1602  * ring_buffer_resize - resize the ring buffer
1603  * @buffer: the buffer to resize.
1604  * @size: the new size.
1605  * @cpu_id: the cpu buffer to resize
1606  *
1607  * Minimum size is 2 * BUF_PAGE_SIZE.
1608  *
1609  * Returns 0 on success and < 0 on failure.
1610  */
1611 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1612 			int cpu_id)
1613 {
1614 	struct ring_buffer_per_cpu *cpu_buffer;
1615 	unsigned long nr_pages;
1616 	int cpu, err = 0;
1617 
1618 	/*
1619 	 * Always succeed at resizing a non-existent buffer:
1620 	 */
1621 	if (!buffer)
1622 		return size;
1623 
1624 	/* Make sure the requested buffer exists */
1625 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1626 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1627 		return size;
1628 
1629 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1630 
1631 	/* we need a minimum of two pages */
1632 	if (nr_pages < 2)
1633 		nr_pages = 2;
1634 
1635 	size = nr_pages * BUF_PAGE_SIZE;
1636 
1637 	/*
1638 	 * Don't succeed if resizing is disabled, as a reader might be
1639 	 * manipulating the ring buffer and is expecting a sane state while
1640 	 * this is true.
1641 	 */
1642 	if (atomic_read(&buffer->resize_disabled))
1643 		return -EBUSY;
1644 
1645 	/* prevent another thread from changing buffer sizes */
1646 	mutex_lock(&buffer->mutex);
1647 
1648 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1649 		/* calculate the pages to update */
1650 		for_each_buffer_cpu(buffer, cpu) {
1651 			cpu_buffer = buffer->buffers[cpu];
1652 
1653 			cpu_buffer->nr_pages_to_update = nr_pages -
1654 							cpu_buffer->nr_pages;
1655 			/*
1656 			 * nothing more to do for removing pages or no update
1657 			 */
1658 			if (cpu_buffer->nr_pages_to_update <= 0)
1659 				continue;
1660 			/*
1661 			 * to add pages, make sure all new pages can be
1662 			 * allocated without receiving ENOMEM
1663 			 */
1664 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1665 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1666 						&cpu_buffer->new_pages, cpu)) {
1667 				/* not enough memory for new pages */
1668 				err = -ENOMEM;
1669 				goto out_err;
1670 			}
1671 		}
1672 
1673 		get_online_cpus();
1674 		/*
1675 		 * Fire off all the required work handlers
1676 		 * We can't schedule on offline CPUs, but it's not necessary
1677 		 * since we can change their buffer sizes without any race.
1678 		 */
1679 		for_each_buffer_cpu(buffer, cpu) {
1680 			cpu_buffer = buffer->buffers[cpu];
1681 			if (!cpu_buffer->nr_pages_to_update)
1682 				continue;
1683 
1684 			/* Can't run something on an offline CPU. */
1685 			if (!cpu_online(cpu)) {
1686 				rb_update_pages(cpu_buffer);
1687 				cpu_buffer->nr_pages_to_update = 0;
1688 			} else {
1689 				schedule_work_on(cpu,
1690 						&cpu_buffer->update_pages_work);
1691 			}
1692 		}
1693 
1694 		/* wait for all the updates to complete */
1695 		for_each_buffer_cpu(buffer, cpu) {
1696 			cpu_buffer = buffer->buffers[cpu];
1697 			if (!cpu_buffer->nr_pages_to_update)
1698 				continue;
1699 
1700 			if (cpu_online(cpu))
1701 				wait_for_completion(&cpu_buffer->update_done);
1702 			cpu_buffer->nr_pages_to_update = 0;
1703 		}
1704 
1705 		put_online_cpus();
1706 	} else {
1707 		/* Make sure this CPU has been intitialized */
1708 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1709 			goto out;
1710 
1711 		cpu_buffer = buffer->buffers[cpu_id];
1712 
1713 		if (nr_pages == cpu_buffer->nr_pages)
1714 			goto out;
1715 
1716 		cpu_buffer->nr_pages_to_update = nr_pages -
1717 						cpu_buffer->nr_pages;
1718 
1719 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1720 		if (cpu_buffer->nr_pages_to_update > 0 &&
1721 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1722 					    &cpu_buffer->new_pages, cpu_id)) {
1723 			err = -ENOMEM;
1724 			goto out_err;
1725 		}
1726 
1727 		get_online_cpus();
1728 
1729 		/* Can't run something on an offline CPU. */
1730 		if (!cpu_online(cpu_id))
1731 			rb_update_pages(cpu_buffer);
1732 		else {
1733 			schedule_work_on(cpu_id,
1734 					 &cpu_buffer->update_pages_work);
1735 			wait_for_completion(&cpu_buffer->update_done);
1736 		}
1737 
1738 		cpu_buffer->nr_pages_to_update = 0;
1739 		put_online_cpus();
1740 	}
1741 
1742  out:
1743 	/*
1744 	 * The ring buffer resize can happen with the ring buffer
1745 	 * enabled, so that the update disturbs the tracing as little
1746 	 * as possible. But if the buffer is disabled, we do not need
1747 	 * to worry about that, and we can take the time to verify
1748 	 * that the buffer is not corrupt.
1749 	 */
1750 	if (atomic_read(&buffer->record_disabled)) {
1751 		atomic_inc(&buffer->record_disabled);
1752 		/*
1753 		 * Even though the buffer was disabled, we must make sure
1754 		 * that it is truly disabled before calling rb_check_pages.
1755 		 * There could have been a race between checking
1756 		 * record_disable and incrementing it.
1757 		 */
1758 		synchronize_sched();
1759 		for_each_buffer_cpu(buffer, cpu) {
1760 			cpu_buffer = buffer->buffers[cpu];
1761 			rb_check_pages(cpu_buffer);
1762 		}
1763 		atomic_dec(&buffer->record_disabled);
1764 	}
1765 
1766 	mutex_unlock(&buffer->mutex);
1767 	return size;
1768 
1769  out_err:
1770 	for_each_buffer_cpu(buffer, cpu) {
1771 		struct buffer_page *bpage, *tmp;
1772 
1773 		cpu_buffer = buffer->buffers[cpu];
1774 		cpu_buffer->nr_pages_to_update = 0;
1775 
1776 		if (list_empty(&cpu_buffer->new_pages))
1777 			continue;
1778 
1779 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1780 					list) {
1781 			list_del_init(&bpage->list);
1782 			free_buffer_page(bpage);
1783 		}
1784 	}
1785 	mutex_unlock(&buffer->mutex);
1786 	return err;
1787 }
1788 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1789 
1790 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1791 {
1792 	mutex_lock(&buffer->mutex);
1793 	if (val)
1794 		buffer->flags |= RB_FL_OVERWRITE;
1795 	else
1796 		buffer->flags &= ~RB_FL_OVERWRITE;
1797 	mutex_unlock(&buffer->mutex);
1798 }
1799 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1800 
1801 static __always_inline void *
1802 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1803 {
1804 	return bpage->data + index;
1805 }
1806 
1807 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1808 {
1809 	return bpage->page->data + index;
1810 }
1811 
1812 static __always_inline struct ring_buffer_event *
1813 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1814 {
1815 	return __rb_page_index(cpu_buffer->reader_page,
1816 			       cpu_buffer->reader_page->read);
1817 }
1818 
1819 static __always_inline struct ring_buffer_event *
1820 rb_iter_head_event(struct ring_buffer_iter *iter)
1821 {
1822 	return __rb_page_index(iter->head_page, iter->head);
1823 }
1824 
1825 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1826 {
1827 	return local_read(&bpage->page->commit);
1828 }
1829 
1830 /* Size is determined by what has been committed */
1831 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1832 {
1833 	return rb_page_commit(bpage);
1834 }
1835 
1836 static __always_inline unsigned
1837 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1838 {
1839 	return rb_page_commit(cpu_buffer->commit_page);
1840 }
1841 
1842 static __always_inline unsigned
1843 rb_event_index(struct ring_buffer_event *event)
1844 {
1845 	unsigned long addr = (unsigned long)event;
1846 
1847 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1848 }
1849 
1850 static void rb_inc_iter(struct ring_buffer_iter *iter)
1851 {
1852 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1853 
1854 	/*
1855 	 * The iterator could be on the reader page (it starts there).
1856 	 * But the head could have moved, since the reader was
1857 	 * found. Check for this case and assign the iterator
1858 	 * to the head page instead of next.
1859 	 */
1860 	if (iter->head_page == cpu_buffer->reader_page)
1861 		iter->head_page = rb_set_head_page(cpu_buffer);
1862 	else
1863 		rb_inc_page(cpu_buffer, &iter->head_page);
1864 
1865 	iter->read_stamp = iter->head_page->page->time_stamp;
1866 	iter->head = 0;
1867 }
1868 
1869 /*
1870  * rb_handle_head_page - writer hit the head page
1871  *
1872  * Returns: +1 to retry page
1873  *           0 to continue
1874  *          -1 on error
1875  */
1876 static int
1877 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1878 		    struct buffer_page *tail_page,
1879 		    struct buffer_page *next_page)
1880 {
1881 	struct buffer_page *new_head;
1882 	int entries;
1883 	int type;
1884 	int ret;
1885 
1886 	entries = rb_page_entries(next_page);
1887 
1888 	/*
1889 	 * The hard part is here. We need to move the head
1890 	 * forward, and protect against both readers on
1891 	 * other CPUs and writers coming in via interrupts.
1892 	 */
1893 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1894 				       RB_PAGE_HEAD);
1895 
1896 	/*
1897 	 * type can be one of four:
1898 	 *  NORMAL - an interrupt already moved it for us
1899 	 *  HEAD   - we are the first to get here.
1900 	 *  UPDATE - we are the interrupt interrupting
1901 	 *           a current move.
1902 	 *  MOVED  - a reader on another CPU moved the next
1903 	 *           pointer to its reader page. Give up
1904 	 *           and try again.
1905 	 */
1906 
1907 	switch (type) {
1908 	case RB_PAGE_HEAD:
1909 		/*
1910 		 * We changed the head to UPDATE, thus
1911 		 * it is our responsibility to update
1912 		 * the counters.
1913 		 */
1914 		local_add(entries, &cpu_buffer->overrun);
1915 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1916 
1917 		/*
1918 		 * The entries will be zeroed out when we move the
1919 		 * tail page.
1920 		 */
1921 
1922 		/* still more to do */
1923 		break;
1924 
1925 	case RB_PAGE_UPDATE:
1926 		/*
1927 		 * This is an interrupt that interrupt the
1928 		 * previous update. Still more to do.
1929 		 */
1930 		break;
1931 	case RB_PAGE_NORMAL:
1932 		/*
1933 		 * An interrupt came in before the update
1934 		 * and processed this for us.
1935 		 * Nothing left to do.
1936 		 */
1937 		return 1;
1938 	case RB_PAGE_MOVED:
1939 		/*
1940 		 * The reader is on another CPU and just did
1941 		 * a swap with our next_page.
1942 		 * Try again.
1943 		 */
1944 		return 1;
1945 	default:
1946 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1947 		return -1;
1948 	}
1949 
1950 	/*
1951 	 * Now that we are here, the old head pointer is
1952 	 * set to UPDATE. This will keep the reader from
1953 	 * swapping the head page with the reader page.
1954 	 * The reader (on another CPU) will spin till
1955 	 * we are finished.
1956 	 *
1957 	 * We just need to protect against interrupts
1958 	 * doing the job. We will set the next pointer
1959 	 * to HEAD. After that, we set the old pointer
1960 	 * to NORMAL, but only if it was HEAD before.
1961 	 * otherwise we are an interrupt, and only
1962 	 * want the outer most commit to reset it.
1963 	 */
1964 	new_head = next_page;
1965 	rb_inc_page(cpu_buffer, &new_head);
1966 
1967 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1968 				    RB_PAGE_NORMAL);
1969 
1970 	/*
1971 	 * Valid returns are:
1972 	 *  HEAD   - an interrupt came in and already set it.
1973 	 *  NORMAL - One of two things:
1974 	 *            1) We really set it.
1975 	 *            2) A bunch of interrupts came in and moved
1976 	 *               the page forward again.
1977 	 */
1978 	switch (ret) {
1979 	case RB_PAGE_HEAD:
1980 	case RB_PAGE_NORMAL:
1981 		/* OK */
1982 		break;
1983 	default:
1984 		RB_WARN_ON(cpu_buffer, 1);
1985 		return -1;
1986 	}
1987 
1988 	/*
1989 	 * It is possible that an interrupt came in,
1990 	 * set the head up, then more interrupts came in
1991 	 * and moved it again. When we get back here,
1992 	 * the page would have been set to NORMAL but we
1993 	 * just set it back to HEAD.
1994 	 *
1995 	 * How do you detect this? Well, if that happened
1996 	 * the tail page would have moved.
1997 	 */
1998 	if (ret == RB_PAGE_NORMAL) {
1999 		struct buffer_page *buffer_tail_page;
2000 
2001 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2002 		/*
2003 		 * If the tail had moved passed next, then we need
2004 		 * to reset the pointer.
2005 		 */
2006 		if (buffer_tail_page != tail_page &&
2007 		    buffer_tail_page != next_page)
2008 			rb_head_page_set_normal(cpu_buffer, new_head,
2009 						next_page,
2010 						RB_PAGE_HEAD);
2011 	}
2012 
2013 	/*
2014 	 * If this was the outer most commit (the one that
2015 	 * changed the original pointer from HEAD to UPDATE),
2016 	 * then it is up to us to reset it to NORMAL.
2017 	 */
2018 	if (type == RB_PAGE_HEAD) {
2019 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2020 					      tail_page,
2021 					      RB_PAGE_UPDATE);
2022 		if (RB_WARN_ON(cpu_buffer,
2023 			       ret != RB_PAGE_UPDATE))
2024 			return -1;
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 static inline void
2031 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2032 	      unsigned long tail, struct rb_event_info *info)
2033 {
2034 	struct buffer_page *tail_page = info->tail_page;
2035 	struct ring_buffer_event *event;
2036 	unsigned long length = info->length;
2037 
2038 	/*
2039 	 * Only the event that crossed the page boundary
2040 	 * must fill the old tail_page with padding.
2041 	 */
2042 	if (tail >= BUF_PAGE_SIZE) {
2043 		/*
2044 		 * If the page was filled, then we still need
2045 		 * to update the real_end. Reset it to zero
2046 		 * and the reader will ignore it.
2047 		 */
2048 		if (tail == BUF_PAGE_SIZE)
2049 			tail_page->real_end = 0;
2050 
2051 		local_sub(length, &tail_page->write);
2052 		return;
2053 	}
2054 
2055 	event = __rb_page_index(tail_page, tail);
2056 	kmemcheck_annotate_bitfield(event, bitfield);
2057 
2058 	/* account for padding bytes */
2059 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2060 
2061 	/*
2062 	 * Save the original length to the meta data.
2063 	 * This will be used by the reader to add lost event
2064 	 * counter.
2065 	 */
2066 	tail_page->real_end = tail;
2067 
2068 	/*
2069 	 * If this event is bigger than the minimum size, then
2070 	 * we need to be careful that we don't subtract the
2071 	 * write counter enough to allow another writer to slip
2072 	 * in on this page.
2073 	 * We put in a discarded commit instead, to make sure
2074 	 * that this space is not used again.
2075 	 *
2076 	 * If we are less than the minimum size, we don't need to
2077 	 * worry about it.
2078 	 */
2079 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2080 		/* No room for any events */
2081 
2082 		/* Mark the rest of the page with padding */
2083 		rb_event_set_padding(event);
2084 
2085 		/* Set the write back to the previous setting */
2086 		local_sub(length, &tail_page->write);
2087 		return;
2088 	}
2089 
2090 	/* Put in a discarded event */
2091 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2092 	event->type_len = RINGBUF_TYPE_PADDING;
2093 	/* time delta must be non zero */
2094 	event->time_delta = 1;
2095 
2096 	/* Set write to end of buffer */
2097 	length = (tail + length) - BUF_PAGE_SIZE;
2098 	local_sub(length, &tail_page->write);
2099 }
2100 
2101 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2102 
2103 /*
2104  * This is the slow path, force gcc not to inline it.
2105  */
2106 static noinline struct ring_buffer_event *
2107 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2108 	     unsigned long tail, struct rb_event_info *info)
2109 {
2110 	struct buffer_page *tail_page = info->tail_page;
2111 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2112 	struct ring_buffer *buffer = cpu_buffer->buffer;
2113 	struct buffer_page *next_page;
2114 	int ret;
2115 
2116 	next_page = tail_page;
2117 
2118 	rb_inc_page(cpu_buffer, &next_page);
2119 
2120 	/*
2121 	 * If for some reason, we had an interrupt storm that made
2122 	 * it all the way around the buffer, bail, and warn
2123 	 * about it.
2124 	 */
2125 	if (unlikely(next_page == commit_page)) {
2126 		local_inc(&cpu_buffer->commit_overrun);
2127 		goto out_reset;
2128 	}
2129 
2130 	/*
2131 	 * This is where the fun begins!
2132 	 *
2133 	 * We are fighting against races between a reader that
2134 	 * could be on another CPU trying to swap its reader
2135 	 * page with the buffer head.
2136 	 *
2137 	 * We are also fighting against interrupts coming in and
2138 	 * moving the head or tail on us as well.
2139 	 *
2140 	 * If the next page is the head page then we have filled
2141 	 * the buffer, unless the commit page is still on the
2142 	 * reader page.
2143 	 */
2144 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2145 
2146 		/*
2147 		 * If the commit is not on the reader page, then
2148 		 * move the header page.
2149 		 */
2150 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2151 			/*
2152 			 * If we are not in overwrite mode,
2153 			 * this is easy, just stop here.
2154 			 */
2155 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2156 				local_inc(&cpu_buffer->dropped_events);
2157 				goto out_reset;
2158 			}
2159 
2160 			ret = rb_handle_head_page(cpu_buffer,
2161 						  tail_page,
2162 						  next_page);
2163 			if (ret < 0)
2164 				goto out_reset;
2165 			if (ret)
2166 				goto out_again;
2167 		} else {
2168 			/*
2169 			 * We need to be careful here too. The
2170 			 * commit page could still be on the reader
2171 			 * page. We could have a small buffer, and
2172 			 * have filled up the buffer with events
2173 			 * from interrupts and such, and wrapped.
2174 			 *
2175 			 * Note, if the tail page is also the on the
2176 			 * reader_page, we let it move out.
2177 			 */
2178 			if (unlikely((cpu_buffer->commit_page !=
2179 				      cpu_buffer->tail_page) &&
2180 				     (cpu_buffer->commit_page ==
2181 				      cpu_buffer->reader_page))) {
2182 				local_inc(&cpu_buffer->commit_overrun);
2183 				goto out_reset;
2184 			}
2185 		}
2186 	}
2187 
2188 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2189 
2190  out_again:
2191 
2192 	rb_reset_tail(cpu_buffer, tail, info);
2193 
2194 	/* Commit what we have for now. */
2195 	rb_end_commit(cpu_buffer);
2196 	/* rb_end_commit() decs committing */
2197 	local_inc(&cpu_buffer->committing);
2198 
2199 	/* fail and let the caller try again */
2200 	return ERR_PTR(-EAGAIN);
2201 
2202  out_reset:
2203 	/* reset write */
2204 	rb_reset_tail(cpu_buffer, tail, info);
2205 
2206 	return NULL;
2207 }
2208 
2209 /* Slow path, do not inline */
2210 static noinline struct ring_buffer_event *
2211 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2212 {
2213 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2214 
2215 	/* Not the first event on the page? */
2216 	if (rb_event_index(event)) {
2217 		event->time_delta = delta & TS_MASK;
2218 		event->array[0] = delta >> TS_SHIFT;
2219 	} else {
2220 		/* nope, just zero it */
2221 		event->time_delta = 0;
2222 		event->array[0] = 0;
2223 	}
2224 
2225 	return skip_time_extend(event);
2226 }
2227 
2228 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2229 				     struct ring_buffer_event *event);
2230 
2231 /**
2232  * rb_update_event - update event type and data
2233  * @event: the event to update
2234  * @type: the type of event
2235  * @length: the size of the event field in the ring buffer
2236  *
2237  * Update the type and data fields of the event. The length
2238  * is the actual size that is written to the ring buffer,
2239  * and with this, we can determine what to place into the
2240  * data field.
2241  */
2242 static void
2243 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2244 		struct ring_buffer_event *event,
2245 		struct rb_event_info *info)
2246 {
2247 	unsigned length = info->length;
2248 	u64 delta = info->delta;
2249 
2250 	/* Only a commit updates the timestamp */
2251 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2252 		delta = 0;
2253 
2254 	/*
2255 	 * If we need to add a timestamp, then we
2256 	 * add it to the start of the resevered space.
2257 	 */
2258 	if (unlikely(info->add_timestamp)) {
2259 		event = rb_add_time_stamp(event, delta);
2260 		length -= RB_LEN_TIME_EXTEND;
2261 		delta = 0;
2262 	}
2263 
2264 	event->time_delta = delta;
2265 	length -= RB_EVNT_HDR_SIZE;
2266 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2267 		event->type_len = 0;
2268 		event->array[0] = length;
2269 	} else
2270 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2271 }
2272 
2273 static unsigned rb_calculate_event_length(unsigned length)
2274 {
2275 	struct ring_buffer_event event; /* Used only for sizeof array */
2276 
2277 	/* zero length can cause confusions */
2278 	if (!length)
2279 		length++;
2280 
2281 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2282 		length += sizeof(event.array[0]);
2283 
2284 	length += RB_EVNT_HDR_SIZE;
2285 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2286 
2287 	/*
2288 	 * In case the time delta is larger than the 27 bits for it
2289 	 * in the header, we need to add a timestamp. If another
2290 	 * event comes in when trying to discard this one to increase
2291 	 * the length, then the timestamp will be added in the allocated
2292 	 * space of this event. If length is bigger than the size needed
2293 	 * for the TIME_EXTEND, then padding has to be used. The events
2294 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2295 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2296 	 * As length is a multiple of 4, we only need to worry if it
2297 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2298 	 */
2299 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2300 		length += RB_ALIGNMENT;
2301 
2302 	return length;
2303 }
2304 
2305 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2306 static inline bool sched_clock_stable(void)
2307 {
2308 	return true;
2309 }
2310 #endif
2311 
2312 static inline int
2313 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2314 		  struct ring_buffer_event *event)
2315 {
2316 	unsigned long new_index, old_index;
2317 	struct buffer_page *bpage;
2318 	unsigned long index;
2319 	unsigned long addr;
2320 
2321 	new_index = rb_event_index(event);
2322 	old_index = new_index + rb_event_ts_length(event);
2323 	addr = (unsigned long)event;
2324 	addr &= PAGE_MASK;
2325 
2326 	bpage = READ_ONCE(cpu_buffer->tail_page);
2327 
2328 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2329 		unsigned long write_mask =
2330 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2331 		unsigned long event_length = rb_event_length(event);
2332 		/*
2333 		 * This is on the tail page. It is possible that
2334 		 * a write could come in and move the tail page
2335 		 * and write to the next page. That is fine
2336 		 * because we just shorten what is on this page.
2337 		 */
2338 		old_index += write_mask;
2339 		new_index += write_mask;
2340 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2341 		if (index == old_index) {
2342 			/* update counters */
2343 			local_sub(event_length, &cpu_buffer->entries_bytes);
2344 			return 1;
2345 		}
2346 	}
2347 
2348 	/* could not discard */
2349 	return 0;
2350 }
2351 
2352 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2353 {
2354 	local_inc(&cpu_buffer->committing);
2355 	local_inc(&cpu_buffer->commits);
2356 }
2357 
2358 static __always_inline void
2359 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2360 {
2361 	unsigned long max_count;
2362 
2363 	/*
2364 	 * We only race with interrupts and NMIs on this CPU.
2365 	 * If we own the commit event, then we can commit
2366 	 * all others that interrupted us, since the interruptions
2367 	 * are in stack format (they finish before they come
2368 	 * back to us). This allows us to do a simple loop to
2369 	 * assign the commit to the tail.
2370 	 */
2371  again:
2372 	max_count = cpu_buffer->nr_pages * 100;
2373 
2374 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2375 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2376 			return;
2377 		if (RB_WARN_ON(cpu_buffer,
2378 			       rb_is_reader_page(cpu_buffer->tail_page)))
2379 			return;
2380 		local_set(&cpu_buffer->commit_page->page->commit,
2381 			  rb_page_write(cpu_buffer->commit_page));
2382 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2383 		/* Only update the write stamp if the page has an event */
2384 		if (rb_page_write(cpu_buffer->commit_page))
2385 			cpu_buffer->write_stamp =
2386 				cpu_buffer->commit_page->page->time_stamp;
2387 		/* add barrier to keep gcc from optimizing too much */
2388 		barrier();
2389 	}
2390 	while (rb_commit_index(cpu_buffer) !=
2391 	       rb_page_write(cpu_buffer->commit_page)) {
2392 
2393 		local_set(&cpu_buffer->commit_page->page->commit,
2394 			  rb_page_write(cpu_buffer->commit_page));
2395 		RB_WARN_ON(cpu_buffer,
2396 			   local_read(&cpu_buffer->commit_page->page->commit) &
2397 			   ~RB_WRITE_MASK);
2398 		barrier();
2399 	}
2400 
2401 	/* again, keep gcc from optimizing */
2402 	barrier();
2403 
2404 	/*
2405 	 * If an interrupt came in just after the first while loop
2406 	 * and pushed the tail page forward, we will be left with
2407 	 * a dangling commit that will never go forward.
2408 	 */
2409 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2410 		goto again;
2411 }
2412 
2413 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2414 {
2415 	unsigned long commits;
2416 
2417 	if (RB_WARN_ON(cpu_buffer,
2418 		       !local_read(&cpu_buffer->committing)))
2419 		return;
2420 
2421  again:
2422 	commits = local_read(&cpu_buffer->commits);
2423 	/* synchronize with interrupts */
2424 	barrier();
2425 	if (local_read(&cpu_buffer->committing) == 1)
2426 		rb_set_commit_to_write(cpu_buffer);
2427 
2428 	local_dec(&cpu_buffer->committing);
2429 
2430 	/* synchronize with interrupts */
2431 	barrier();
2432 
2433 	/*
2434 	 * Need to account for interrupts coming in between the
2435 	 * updating of the commit page and the clearing of the
2436 	 * committing counter.
2437 	 */
2438 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2439 	    !local_read(&cpu_buffer->committing)) {
2440 		local_inc(&cpu_buffer->committing);
2441 		goto again;
2442 	}
2443 }
2444 
2445 static inline void rb_event_discard(struct ring_buffer_event *event)
2446 {
2447 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2448 		event = skip_time_extend(event);
2449 
2450 	/* array[0] holds the actual length for the discarded event */
2451 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2452 	event->type_len = RINGBUF_TYPE_PADDING;
2453 	/* time delta must be non zero */
2454 	if (!event->time_delta)
2455 		event->time_delta = 1;
2456 }
2457 
2458 static __always_inline bool
2459 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2460 		   struct ring_buffer_event *event)
2461 {
2462 	unsigned long addr = (unsigned long)event;
2463 	unsigned long index;
2464 
2465 	index = rb_event_index(event);
2466 	addr &= PAGE_MASK;
2467 
2468 	return cpu_buffer->commit_page->page == (void *)addr &&
2469 		rb_commit_index(cpu_buffer) == index;
2470 }
2471 
2472 static __always_inline void
2473 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2474 		      struct ring_buffer_event *event)
2475 {
2476 	u64 delta;
2477 
2478 	/*
2479 	 * The event first in the commit queue updates the
2480 	 * time stamp.
2481 	 */
2482 	if (rb_event_is_commit(cpu_buffer, event)) {
2483 		/*
2484 		 * A commit event that is first on a page
2485 		 * updates the write timestamp with the page stamp
2486 		 */
2487 		if (!rb_event_index(event))
2488 			cpu_buffer->write_stamp =
2489 				cpu_buffer->commit_page->page->time_stamp;
2490 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2491 			delta = event->array[0];
2492 			delta <<= TS_SHIFT;
2493 			delta += event->time_delta;
2494 			cpu_buffer->write_stamp += delta;
2495 		} else
2496 			cpu_buffer->write_stamp += event->time_delta;
2497 	}
2498 }
2499 
2500 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2501 		      struct ring_buffer_event *event)
2502 {
2503 	local_inc(&cpu_buffer->entries);
2504 	rb_update_write_stamp(cpu_buffer, event);
2505 	rb_end_commit(cpu_buffer);
2506 }
2507 
2508 static __always_inline void
2509 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2510 {
2511 	bool pagebusy;
2512 
2513 	if (buffer->irq_work.waiters_pending) {
2514 		buffer->irq_work.waiters_pending = false;
2515 		/* irq_work_queue() supplies it's own memory barriers */
2516 		irq_work_queue(&buffer->irq_work.work);
2517 	}
2518 
2519 	if (cpu_buffer->irq_work.waiters_pending) {
2520 		cpu_buffer->irq_work.waiters_pending = false;
2521 		/* irq_work_queue() supplies it's own memory barriers */
2522 		irq_work_queue(&cpu_buffer->irq_work.work);
2523 	}
2524 
2525 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2526 
2527 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2528 		cpu_buffer->irq_work.wakeup_full = true;
2529 		cpu_buffer->irq_work.full_waiters_pending = false;
2530 		/* irq_work_queue() supplies it's own memory barriers */
2531 		irq_work_queue(&cpu_buffer->irq_work.work);
2532 	}
2533 }
2534 
2535 /*
2536  * The lock and unlock are done within a preempt disable section.
2537  * The current_context per_cpu variable can only be modified
2538  * by the current task between lock and unlock. But it can
2539  * be modified more than once via an interrupt. To pass this
2540  * information from the lock to the unlock without having to
2541  * access the 'in_interrupt()' functions again (which do show
2542  * a bit of overhead in something as critical as function tracing,
2543  * we use a bitmask trick.
2544  *
2545  *  bit 0 =  NMI context
2546  *  bit 1 =  IRQ context
2547  *  bit 2 =  SoftIRQ context
2548  *  bit 3 =  normal context.
2549  *
2550  * This works because this is the order of contexts that can
2551  * preempt other contexts. A SoftIRQ never preempts an IRQ
2552  * context.
2553  *
2554  * When the context is determined, the corresponding bit is
2555  * checked and set (if it was set, then a recursion of that context
2556  * happened).
2557  *
2558  * On unlock, we need to clear this bit. To do so, just subtract
2559  * 1 from the current_context and AND it to itself.
2560  *
2561  * (binary)
2562  *  101 - 1 = 100
2563  *  101 & 100 = 100 (clearing bit zero)
2564  *
2565  *  1010 - 1 = 1001
2566  *  1010 & 1001 = 1000 (clearing bit 1)
2567  *
2568  * The least significant bit can be cleared this way, and it
2569  * just so happens that it is the same bit corresponding to
2570  * the current context.
2571  */
2572 
2573 static __always_inline int
2574 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2575 {
2576 	unsigned int val = cpu_buffer->current_context;
2577 	int bit;
2578 
2579 	if (in_interrupt()) {
2580 		if (in_nmi())
2581 			bit = RB_CTX_NMI;
2582 		else if (in_irq())
2583 			bit = RB_CTX_IRQ;
2584 		else
2585 			bit = RB_CTX_SOFTIRQ;
2586 	} else
2587 		bit = RB_CTX_NORMAL;
2588 
2589 	if (unlikely(val & (1 << bit)))
2590 		return 1;
2591 
2592 	val |= (1 << bit);
2593 	cpu_buffer->current_context = val;
2594 
2595 	return 0;
2596 }
2597 
2598 static __always_inline void
2599 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2600 {
2601 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2602 }
2603 
2604 /**
2605  * ring_buffer_unlock_commit - commit a reserved
2606  * @buffer: The buffer to commit to
2607  * @event: The event pointer to commit.
2608  *
2609  * This commits the data to the ring buffer, and releases any locks held.
2610  *
2611  * Must be paired with ring_buffer_lock_reserve.
2612  */
2613 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2614 			      struct ring_buffer_event *event)
2615 {
2616 	struct ring_buffer_per_cpu *cpu_buffer;
2617 	int cpu = raw_smp_processor_id();
2618 
2619 	cpu_buffer = buffer->buffers[cpu];
2620 
2621 	rb_commit(cpu_buffer, event);
2622 
2623 	rb_wakeups(buffer, cpu_buffer);
2624 
2625 	trace_recursive_unlock(cpu_buffer);
2626 
2627 	preempt_enable_notrace();
2628 
2629 	return 0;
2630 }
2631 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2632 
2633 static noinline void
2634 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2635 		    struct rb_event_info *info)
2636 {
2637 	WARN_ONCE(info->delta > (1ULL << 59),
2638 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2639 		  (unsigned long long)info->delta,
2640 		  (unsigned long long)info->ts,
2641 		  (unsigned long long)cpu_buffer->write_stamp,
2642 		  sched_clock_stable() ? "" :
2643 		  "If you just came from a suspend/resume,\n"
2644 		  "please switch to the trace global clock:\n"
2645 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2646 	info->add_timestamp = 1;
2647 }
2648 
2649 static struct ring_buffer_event *
2650 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2651 		  struct rb_event_info *info)
2652 {
2653 	struct ring_buffer_event *event;
2654 	struct buffer_page *tail_page;
2655 	unsigned long tail, write;
2656 
2657 	/*
2658 	 * If the time delta since the last event is too big to
2659 	 * hold in the time field of the event, then we append a
2660 	 * TIME EXTEND event ahead of the data event.
2661 	 */
2662 	if (unlikely(info->add_timestamp))
2663 		info->length += RB_LEN_TIME_EXTEND;
2664 
2665 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2666 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2667 	write = local_add_return(info->length, &tail_page->write);
2668 
2669 	/* set write to only the index of the write */
2670 	write &= RB_WRITE_MASK;
2671 	tail = write - info->length;
2672 
2673 	/*
2674 	 * If this is the first commit on the page, then it has the same
2675 	 * timestamp as the page itself.
2676 	 */
2677 	if (!tail)
2678 		info->delta = 0;
2679 
2680 	/* See if we shot pass the end of this buffer page */
2681 	if (unlikely(write > BUF_PAGE_SIZE))
2682 		return rb_move_tail(cpu_buffer, tail, info);
2683 
2684 	/* We reserved something on the buffer */
2685 
2686 	event = __rb_page_index(tail_page, tail);
2687 	kmemcheck_annotate_bitfield(event, bitfield);
2688 	rb_update_event(cpu_buffer, event, info);
2689 
2690 	local_inc(&tail_page->entries);
2691 
2692 	/*
2693 	 * If this is the first commit on the page, then update
2694 	 * its timestamp.
2695 	 */
2696 	if (!tail)
2697 		tail_page->page->time_stamp = info->ts;
2698 
2699 	/* account for these added bytes */
2700 	local_add(info->length, &cpu_buffer->entries_bytes);
2701 
2702 	return event;
2703 }
2704 
2705 static __always_inline struct ring_buffer_event *
2706 rb_reserve_next_event(struct ring_buffer *buffer,
2707 		      struct ring_buffer_per_cpu *cpu_buffer,
2708 		      unsigned long length)
2709 {
2710 	struct ring_buffer_event *event;
2711 	struct rb_event_info info;
2712 	int nr_loops = 0;
2713 	u64 diff;
2714 
2715 	rb_start_commit(cpu_buffer);
2716 
2717 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2718 	/*
2719 	 * Due to the ability to swap a cpu buffer from a buffer
2720 	 * it is possible it was swapped before we committed.
2721 	 * (committing stops a swap). We check for it here and
2722 	 * if it happened, we have to fail the write.
2723 	 */
2724 	barrier();
2725 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2726 		local_dec(&cpu_buffer->committing);
2727 		local_dec(&cpu_buffer->commits);
2728 		return NULL;
2729 	}
2730 #endif
2731 
2732 	info.length = rb_calculate_event_length(length);
2733  again:
2734 	info.add_timestamp = 0;
2735 	info.delta = 0;
2736 
2737 	/*
2738 	 * We allow for interrupts to reenter here and do a trace.
2739 	 * If one does, it will cause this original code to loop
2740 	 * back here. Even with heavy interrupts happening, this
2741 	 * should only happen a few times in a row. If this happens
2742 	 * 1000 times in a row, there must be either an interrupt
2743 	 * storm or we have something buggy.
2744 	 * Bail!
2745 	 */
2746 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2747 		goto out_fail;
2748 
2749 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2750 	diff = info.ts - cpu_buffer->write_stamp;
2751 
2752 	/* make sure this diff is calculated here */
2753 	barrier();
2754 
2755 	/* Did the write stamp get updated already? */
2756 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2757 		info.delta = diff;
2758 		if (unlikely(test_time_stamp(info.delta)))
2759 			rb_handle_timestamp(cpu_buffer, &info);
2760 	}
2761 
2762 	event = __rb_reserve_next(cpu_buffer, &info);
2763 
2764 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2765 		if (info.add_timestamp)
2766 			info.length -= RB_LEN_TIME_EXTEND;
2767 		goto again;
2768 	}
2769 
2770 	if (!event)
2771 		goto out_fail;
2772 
2773 	return event;
2774 
2775  out_fail:
2776 	rb_end_commit(cpu_buffer);
2777 	return NULL;
2778 }
2779 
2780 /**
2781  * ring_buffer_lock_reserve - reserve a part of the buffer
2782  * @buffer: the ring buffer to reserve from
2783  * @length: the length of the data to reserve (excluding event header)
2784  *
2785  * Returns a reseverd event on the ring buffer to copy directly to.
2786  * The user of this interface will need to get the body to write into
2787  * and can use the ring_buffer_event_data() interface.
2788  *
2789  * The length is the length of the data needed, not the event length
2790  * which also includes the event header.
2791  *
2792  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2793  * If NULL is returned, then nothing has been allocated or locked.
2794  */
2795 struct ring_buffer_event *
2796 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2797 {
2798 	struct ring_buffer_per_cpu *cpu_buffer;
2799 	struct ring_buffer_event *event;
2800 	int cpu;
2801 
2802 	/* If we are tracing schedule, we don't want to recurse */
2803 	preempt_disable_notrace();
2804 
2805 	if (unlikely(atomic_read(&buffer->record_disabled)))
2806 		goto out;
2807 
2808 	cpu = raw_smp_processor_id();
2809 
2810 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2811 		goto out;
2812 
2813 	cpu_buffer = buffer->buffers[cpu];
2814 
2815 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2816 		goto out;
2817 
2818 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2819 		goto out;
2820 
2821 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2822 		goto out;
2823 
2824 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2825 	if (!event)
2826 		goto out_unlock;
2827 
2828 	return event;
2829 
2830  out_unlock:
2831 	trace_recursive_unlock(cpu_buffer);
2832  out:
2833 	preempt_enable_notrace();
2834 	return NULL;
2835 }
2836 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2837 
2838 /*
2839  * Decrement the entries to the page that an event is on.
2840  * The event does not even need to exist, only the pointer
2841  * to the page it is on. This may only be called before the commit
2842  * takes place.
2843  */
2844 static inline void
2845 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2846 		   struct ring_buffer_event *event)
2847 {
2848 	unsigned long addr = (unsigned long)event;
2849 	struct buffer_page *bpage = cpu_buffer->commit_page;
2850 	struct buffer_page *start;
2851 
2852 	addr &= PAGE_MASK;
2853 
2854 	/* Do the likely case first */
2855 	if (likely(bpage->page == (void *)addr)) {
2856 		local_dec(&bpage->entries);
2857 		return;
2858 	}
2859 
2860 	/*
2861 	 * Because the commit page may be on the reader page we
2862 	 * start with the next page and check the end loop there.
2863 	 */
2864 	rb_inc_page(cpu_buffer, &bpage);
2865 	start = bpage;
2866 	do {
2867 		if (bpage->page == (void *)addr) {
2868 			local_dec(&bpage->entries);
2869 			return;
2870 		}
2871 		rb_inc_page(cpu_buffer, &bpage);
2872 	} while (bpage != start);
2873 
2874 	/* commit not part of this buffer?? */
2875 	RB_WARN_ON(cpu_buffer, 1);
2876 }
2877 
2878 /**
2879  * ring_buffer_commit_discard - discard an event that has not been committed
2880  * @buffer: the ring buffer
2881  * @event: non committed event to discard
2882  *
2883  * Sometimes an event that is in the ring buffer needs to be ignored.
2884  * This function lets the user discard an event in the ring buffer
2885  * and then that event will not be read later.
2886  *
2887  * This function only works if it is called before the the item has been
2888  * committed. It will try to free the event from the ring buffer
2889  * if another event has not been added behind it.
2890  *
2891  * If another event has been added behind it, it will set the event
2892  * up as discarded, and perform the commit.
2893  *
2894  * If this function is called, do not call ring_buffer_unlock_commit on
2895  * the event.
2896  */
2897 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2898 				struct ring_buffer_event *event)
2899 {
2900 	struct ring_buffer_per_cpu *cpu_buffer;
2901 	int cpu;
2902 
2903 	/* The event is discarded regardless */
2904 	rb_event_discard(event);
2905 
2906 	cpu = smp_processor_id();
2907 	cpu_buffer = buffer->buffers[cpu];
2908 
2909 	/*
2910 	 * This must only be called if the event has not been
2911 	 * committed yet. Thus we can assume that preemption
2912 	 * is still disabled.
2913 	 */
2914 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2915 
2916 	rb_decrement_entry(cpu_buffer, event);
2917 	if (rb_try_to_discard(cpu_buffer, event))
2918 		goto out;
2919 
2920 	/*
2921 	 * The commit is still visible by the reader, so we
2922 	 * must still update the timestamp.
2923 	 */
2924 	rb_update_write_stamp(cpu_buffer, event);
2925  out:
2926 	rb_end_commit(cpu_buffer);
2927 
2928 	trace_recursive_unlock(cpu_buffer);
2929 
2930 	preempt_enable_notrace();
2931 
2932 }
2933 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2934 
2935 /**
2936  * ring_buffer_write - write data to the buffer without reserving
2937  * @buffer: The ring buffer to write to.
2938  * @length: The length of the data being written (excluding the event header)
2939  * @data: The data to write to the buffer.
2940  *
2941  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942  * one function. If you already have the data to write to the buffer, it
2943  * may be easier to simply call this function.
2944  *
2945  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946  * and not the length of the event which would hold the header.
2947  */
2948 int ring_buffer_write(struct ring_buffer *buffer,
2949 		      unsigned long length,
2950 		      void *data)
2951 {
2952 	struct ring_buffer_per_cpu *cpu_buffer;
2953 	struct ring_buffer_event *event;
2954 	void *body;
2955 	int ret = -EBUSY;
2956 	int cpu;
2957 
2958 	preempt_disable_notrace();
2959 
2960 	if (atomic_read(&buffer->record_disabled))
2961 		goto out;
2962 
2963 	cpu = raw_smp_processor_id();
2964 
2965 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966 		goto out;
2967 
2968 	cpu_buffer = buffer->buffers[cpu];
2969 
2970 	if (atomic_read(&cpu_buffer->record_disabled))
2971 		goto out;
2972 
2973 	if (length > BUF_MAX_DATA_SIZE)
2974 		goto out;
2975 
2976 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2977 		goto out;
2978 
2979 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2980 	if (!event)
2981 		goto out_unlock;
2982 
2983 	body = rb_event_data(event);
2984 
2985 	memcpy(body, data, length);
2986 
2987 	rb_commit(cpu_buffer, event);
2988 
2989 	rb_wakeups(buffer, cpu_buffer);
2990 
2991 	ret = 0;
2992 
2993  out_unlock:
2994 	trace_recursive_unlock(cpu_buffer);
2995 
2996  out:
2997 	preempt_enable_notrace();
2998 
2999 	return ret;
3000 }
3001 EXPORT_SYMBOL_GPL(ring_buffer_write);
3002 
3003 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3004 {
3005 	struct buffer_page *reader = cpu_buffer->reader_page;
3006 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3007 	struct buffer_page *commit = cpu_buffer->commit_page;
3008 
3009 	/* In case of error, head will be NULL */
3010 	if (unlikely(!head))
3011 		return true;
3012 
3013 	return reader->read == rb_page_commit(reader) &&
3014 		(commit == reader ||
3015 		 (commit == head &&
3016 		  head->read == rb_page_commit(commit)));
3017 }
3018 
3019 /**
3020  * ring_buffer_record_disable - stop all writes into the buffer
3021  * @buffer: The ring buffer to stop writes to.
3022  *
3023  * This prevents all writes to the buffer. Any attempt to write
3024  * to the buffer after this will fail and return NULL.
3025  *
3026  * The caller should call synchronize_sched() after this.
3027  */
3028 void ring_buffer_record_disable(struct ring_buffer *buffer)
3029 {
3030 	atomic_inc(&buffer->record_disabled);
3031 }
3032 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3033 
3034 /**
3035  * ring_buffer_record_enable - enable writes to the buffer
3036  * @buffer: The ring buffer to enable writes
3037  *
3038  * Note, multiple disables will need the same number of enables
3039  * to truly enable the writing (much like preempt_disable).
3040  */
3041 void ring_buffer_record_enable(struct ring_buffer *buffer)
3042 {
3043 	atomic_dec(&buffer->record_disabled);
3044 }
3045 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3046 
3047 /**
3048  * ring_buffer_record_off - stop all writes into the buffer
3049  * @buffer: The ring buffer to stop writes to.
3050  *
3051  * This prevents all writes to the buffer. Any attempt to write
3052  * to the buffer after this will fail and return NULL.
3053  *
3054  * This is different than ring_buffer_record_disable() as
3055  * it works like an on/off switch, where as the disable() version
3056  * must be paired with a enable().
3057  */
3058 void ring_buffer_record_off(struct ring_buffer *buffer)
3059 {
3060 	unsigned int rd;
3061 	unsigned int new_rd;
3062 
3063 	do {
3064 		rd = atomic_read(&buffer->record_disabled);
3065 		new_rd = rd | RB_BUFFER_OFF;
3066 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3067 }
3068 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3069 
3070 /**
3071  * ring_buffer_record_on - restart writes into the buffer
3072  * @buffer: The ring buffer to start writes to.
3073  *
3074  * This enables all writes to the buffer that was disabled by
3075  * ring_buffer_record_off().
3076  *
3077  * This is different than ring_buffer_record_enable() as
3078  * it works like an on/off switch, where as the enable() version
3079  * must be paired with a disable().
3080  */
3081 void ring_buffer_record_on(struct ring_buffer *buffer)
3082 {
3083 	unsigned int rd;
3084 	unsigned int new_rd;
3085 
3086 	do {
3087 		rd = atomic_read(&buffer->record_disabled);
3088 		new_rd = rd & ~RB_BUFFER_OFF;
3089 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3090 }
3091 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3092 
3093 /**
3094  * ring_buffer_record_is_on - return true if the ring buffer can write
3095  * @buffer: The ring buffer to see if write is enabled
3096  *
3097  * Returns true if the ring buffer is in a state that it accepts writes.
3098  */
3099 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3100 {
3101 	return !atomic_read(&buffer->record_disabled);
3102 }
3103 
3104 /**
3105  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3106  * @buffer: The ring buffer to stop writes to.
3107  * @cpu: The CPU buffer to stop
3108  *
3109  * This prevents all writes to the buffer. Any attempt to write
3110  * to the buffer after this will fail and return NULL.
3111  *
3112  * The caller should call synchronize_sched() after this.
3113  */
3114 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3115 {
3116 	struct ring_buffer_per_cpu *cpu_buffer;
3117 
3118 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3119 		return;
3120 
3121 	cpu_buffer = buffer->buffers[cpu];
3122 	atomic_inc(&cpu_buffer->record_disabled);
3123 }
3124 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3125 
3126 /**
3127  * ring_buffer_record_enable_cpu - enable writes to the buffer
3128  * @buffer: The ring buffer to enable writes
3129  * @cpu: The CPU to enable.
3130  *
3131  * Note, multiple disables will need the same number of enables
3132  * to truly enable the writing (much like preempt_disable).
3133  */
3134 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3135 {
3136 	struct ring_buffer_per_cpu *cpu_buffer;
3137 
3138 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3139 		return;
3140 
3141 	cpu_buffer = buffer->buffers[cpu];
3142 	atomic_dec(&cpu_buffer->record_disabled);
3143 }
3144 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3145 
3146 /*
3147  * The total entries in the ring buffer is the running counter
3148  * of entries entered into the ring buffer, minus the sum of
3149  * the entries read from the ring buffer and the number of
3150  * entries that were overwritten.
3151  */
3152 static inline unsigned long
3153 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3154 {
3155 	return local_read(&cpu_buffer->entries) -
3156 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3157 }
3158 
3159 /**
3160  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3161  * @buffer: The ring buffer
3162  * @cpu: The per CPU buffer to read from.
3163  */
3164 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3165 {
3166 	unsigned long flags;
3167 	struct ring_buffer_per_cpu *cpu_buffer;
3168 	struct buffer_page *bpage;
3169 	u64 ret = 0;
3170 
3171 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3172 		return 0;
3173 
3174 	cpu_buffer = buffer->buffers[cpu];
3175 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3176 	/*
3177 	 * if the tail is on reader_page, oldest time stamp is on the reader
3178 	 * page
3179 	 */
3180 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3181 		bpage = cpu_buffer->reader_page;
3182 	else
3183 		bpage = rb_set_head_page(cpu_buffer);
3184 	if (bpage)
3185 		ret = bpage->page->time_stamp;
3186 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3187 
3188 	return ret;
3189 }
3190 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3191 
3192 /**
3193  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3194  * @buffer: The ring buffer
3195  * @cpu: The per CPU buffer to read from.
3196  */
3197 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3198 {
3199 	struct ring_buffer_per_cpu *cpu_buffer;
3200 	unsigned long ret;
3201 
3202 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203 		return 0;
3204 
3205 	cpu_buffer = buffer->buffers[cpu];
3206 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3207 
3208 	return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3211 
3212 /**
3213  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3214  * @buffer: The ring buffer
3215  * @cpu: The per CPU buffer to get the entries from.
3216  */
3217 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3218 {
3219 	struct ring_buffer_per_cpu *cpu_buffer;
3220 
3221 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3222 		return 0;
3223 
3224 	cpu_buffer = buffer->buffers[cpu];
3225 
3226 	return rb_num_of_entries(cpu_buffer);
3227 }
3228 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3229 
3230 /**
3231  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3232  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3233  * @buffer: The ring buffer
3234  * @cpu: The per CPU buffer to get the number of overruns from
3235  */
3236 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3237 {
3238 	struct ring_buffer_per_cpu *cpu_buffer;
3239 	unsigned long ret;
3240 
3241 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242 		return 0;
3243 
3244 	cpu_buffer = buffer->buffers[cpu];
3245 	ret = local_read(&cpu_buffer->overrun);
3246 
3247 	return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3250 
3251 /**
3252  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3253  * commits failing due to the buffer wrapping around while there are uncommitted
3254  * events, such as during an interrupt storm.
3255  * @buffer: The ring buffer
3256  * @cpu: The per CPU buffer to get the number of overruns from
3257  */
3258 unsigned long
3259 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3260 {
3261 	struct ring_buffer_per_cpu *cpu_buffer;
3262 	unsigned long ret;
3263 
3264 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3265 		return 0;
3266 
3267 	cpu_buffer = buffer->buffers[cpu];
3268 	ret = local_read(&cpu_buffer->commit_overrun);
3269 
3270 	return ret;
3271 }
3272 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3273 
3274 /**
3275  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3276  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3277  * @buffer: The ring buffer
3278  * @cpu: The per CPU buffer to get the number of overruns from
3279  */
3280 unsigned long
3281 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3282 {
3283 	struct ring_buffer_per_cpu *cpu_buffer;
3284 	unsigned long ret;
3285 
3286 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3287 		return 0;
3288 
3289 	cpu_buffer = buffer->buffers[cpu];
3290 	ret = local_read(&cpu_buffer->dropped_events);
3291 
3292 	return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3295 
3296 /**
3297  * ring_buffer_read_events_cpu - get the number of events successfully read
3298  * @buffer: The ring buffer
3299  * @cpu: The per CPU buffer to get the number of events read
3300  */
3301 unsigned long
3302 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3303 {
3304 	struct ring_buffer_per_cpu *cpu_buffer;
3305 
3306 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307 		return 0;
3308 
3309 	cpu_buffer = buffer->buffers[cpu];
3310 	return cpu_buffer->read;
3311 }
3312 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3313 
3314 /**
3315  * ring_buffer_entries - get the number of entries in a buffer
3316  * @buffer: The ring buffer
3317  *
3318  * Returns the total number of entries in the ring buffer
3319  * (all CPU entries)
3320  */
3321 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3322 {
3323 	struct ring_buffer_per_cpu *cpu_buffer;
3324 	unsigned long entries = 0;
3325 	int cpu;
3326 
3327 	/* if you care about this being correct, lock the buffer */
3328 	for_each_buffer_cpu(buffer, cpu) {
3329 		cpu_buffer = buffer->buffers[cpu];
3330 		entries += rb_num_of_entries(cpu_buffer);
3331 	}
3332 
3333 	return entries;
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3336 
3337 /**
3338  * ring_buffer_overruns - get the number of overruns in buffer
3339  * @buffer: The ring buffer
3340  *
3341  * Returns the total number of overruns in the ring buffer
3342  * (all CPU entries)
3343  */
3344 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3345 {
3346 	struct ring_buffer_per_cpu *cpu_buffer;
3347 	unsigned long overruns = 0;
3348 	int cpu;
3349 
3350 	/* if you care about this being correct, lock the buffer */
3351 	for_each_buffer_cpu(buffer, cpu) {
3352 		cpu_buffer = buffer->buffers[cpu];
3353 		overruns += local_read(&cpu_buffer->overrun);
3354 	}
3355 
3356 	return overruns;
3357 }
3358 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3359 
3360 static void rb_iter_reset(struct ring_buffer_iter *iter)
3361 {
3362 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3363 
3364 	/* Iterator usage is expected to have record disabled */
3365 	iter->head_page = cpu_buffer->reader_page;
3366 	iter->head = cpu_buffer->reader_page->read;
3367 
3368 	iter->cache_reader_page = iter->head_page;
3369 	iter->cache_read = cpu_buffer->read;
3370 
3371 	if (iter->head)
3372 		iter->read_stamp = cpu_buffer->read_stamp;
3373 	else
3374 		iter->read_stamp = iter->head_page->page->time_stamp;
3375 }
3376 
3377 /**
3378  * ring_buffer_iter_reset - reset an iterator
3379  * @iter: The iterator to reset
3380  *
3381  * Resets the iterator, so that it will start from the beginning
3382  * again.
3383  */
3384 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3385 {
3386 	struct ring_buffer_per_cpu *cpu_buffer;
3387 	unsigned long flags;
3388 
3389 	if (!iter)
3390 		return;
3391 
3392 	cpu_buffer = iter->cpu_buffer;
3393 
3394 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3395 	rb_iter_reset(iter);
3396 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3399 
3400 /**
3401  * ring_buffer_iter_empty - check if an iterator has no more to read
3402  * @iter: The iterator to check
3403  */
3404 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3405 {
3406 	struct ring_buffer_per_cpu *cpu_buffer;
3407 
3408 	cpu_buffer = iter->cpu_buffer;
3409 
3410 	return iter->head_page == cpu_buffer->commit_page &&
3411 		iter->head == rb_commit_index(cpu_buffer);
3412 }
3413 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3414 
3415 static void
3416 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3417 		     struct ring_buffer_event *event)
3418 {
3419 	u64 delta;
3420 
3421 	switch (event->type_len) {
3422 	case RINGBUF_TYPE_PADDING:
3423 		return;
3424 
3425 	case RINGBUF_TYPE_TIME_EXTEND:
3426 		delta = event->array[0];
3427 		delta <<= TS_SHIFT;
3428 		delta += event->time_delta;
3429 		cpu_buffer->read_stamp += delta;
3430 		return;
3431 
3432 	case RINGBUF_TYPE_TIME_STAMP:
3433 		/* FIXME: not implemented */
3434 		return;
3435 
3436 	case RINGBUF_TYPE_DATA:
3437 		cpu_buffer->read_stamp += event->time_delta;
3438 		return;
3439 
3440 	default:
3441 		BUG();
3442 	}
3443 	return;
3444 }
3445 
3446 static void
3447 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3448 			  struct ring_buffer_event *event)
3449 {
3450 	u64 delta;
3451 
3452 	switch (event->type_len) {
3453 	case RINGBUF_TYPE_PADDING:
3454 		return;
3455 
3456 	case RINGBUF_TYPE_TIME_EXTEND:
3457 		delta = event->array[0];
3458 		delta <<= TS_SHIFT;
3459 		delta += event->time_delta;
3460 		iter->read_stamp += delta;
3461 		return;
3462 
3463 	case RINGBUF_TYPE_TIME_STAMP:
3464 		/* FIXME: not implemented */
3465 		return;
3466 
3467 	case RINGBUF_TYPE_DATA:
3468 		iter->read_stamp += event->time_delta;
3469 		return;
3470 
3471 	default:
3472 		BUG();
3473 	}
3474 	return;
3475 }
3476 
3477 static struct buffer_page *
3478 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3479 {
3480 	struct buffer_page *reader = NULL;
3481 	unsigned long overwrite;
3482 	unsigned long flags;
3483 	int nr_loops = 0;
3484 	int ret;
3485 
3486 	local_irq_save(flags);
3487 	arch_spin_lock(&cpu_buffer->lock);
3488 
3489  again:
3490 	/*
3491 	 * This should normally only loop twice. But because the
3492 	 * start of the reader inserts an empty page, it causes
3493 	 * a case where we will loop three times. There should be no
3494 	 * reason to loop four times (that I know of).
3495 	 */
3496 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3497 		reader = NULL;
3498 		goto out;
3499 	}
3500 
3501 	reader = cpu_buffer->reader_page;
3502 
3503 	/* If there's more to read, return this page */
3504 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3505 		goto out;
3506 
3507 	/* Never should we have an index greater than the size */
3508 	if (RB_WARN_ON(cpu_buffer,
3509 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3510 		goto out;
3511 
3512 	/* check if we caught up to the tail */
3513 	reader = NULL;
3514 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3515 		goto out;
3516 
3517 	/* Don't bother swapping if the ring buffer is empty */
3518 	if (rb_num_of_entries(cpu_buffer) == 0)
3519 		goto out;
3520 
3521 	/*
3522 	 * Reset the reader page to size zero.
3523 	 */
3524 	local_set(&cpu_buffer->reader_page->write, 0);
3525 	local_set(&cpu_buffer->reader_page->entries, 0);
3526 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3527 	cpu_buffer->reader_page->real_end = 0;
3528 
3529  spin:
3530 	/*
3531 	 * Splice the empty reader page into the list around the head.
3532 	 */
3533 	reader = rb_set_head_page(cpu_buffer);
3534 	if (!reader)
3535 		goto out;
3536 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3537 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3538 
3539 	/*
3540 	 * cpu_buffer->pages just needs to point to the buffer, it
3541 	 *  has no specific buffer page to point to. Lets move it out
3542 	 *  of our way so we don't accidentally swap it.
3543 	 */
3544 	cpu_buffer->pages = reader->list.prev;
3545 
3546 	/* The reader page will be pointing to the new head */
3547 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3548 
3549 	/*
3550 	 * We want to make sure we read the overruns after we set up our
3551 	 * pointers to the next object. The writer side does a
3552 	 * cmpxchg to cross pages which acts as the mb on the writer
3553 	 * side. Note, the reader will constantly fail the swap
3554 	 * while the writer is updating the pointers, so this
3555 	 * guarantees that the overwrite recorded here is the one we
3556 	 * want to compare with the last_overrun.
3557 	 */
3558 	smp_mb();
3559 	overwrite = local_read(&(cpu_buffer->overrun));
3560 
3561 	/*
3562 	 * Here's the tricky part.
3563 	 *
3564 	 * We need to move the pointer past the header page.
3565 	 * But we can only do that if a writer is not currently
3566 	 * moving it. The page before the header page has the
3567 	 * flag bit '1' set if it is pointing to the page we want.
3568 	 * but if the writer is in the process of moving it
3569 	 * than it will be '2' or already moved '0'.
3570 	 */
3571 
3572 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3573 
3574 	/*
3575 	 * If we did not convert it, then we must try again.
3576 	 */
3577 	if (!ret)
3578 		goto spin;
3579 
3580 	/*
3581 	 * Yeah! We succeeded in replacing the page.
3582 	 *
3583 	 * Now make the new head point back to the reader page.
3584 	 */
3585 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3586 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3587 
3588 	/* Finally update the reader page to the new head */
3589 	cpu_buffer->reader_page = reader;
3590 	cpu_buffer->reader_page->read = 0;
3591 
3592 	if (overwrite != cpu_buffer->last_overrun) {
3593 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3594 		cpu_buffer->last_overrun = overwrite;
3595 	}
3596 
3597 	goto again;
3598 
3599  out:
3600 	/* Update the read_stamp on the first event */
3601 	if (reader && reader->read == 0)
3602 		cpu_buffer->read_stamp = reader->page->time_stamp;
3603 
3604 	arch_spin_unlock(&cpu_buffer->lock);
3605 	local_irq_restore(flags);
3606 
3607 	return reader;
3608 }
3609 
3610 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3611 {
3612 	struct ring_buffer_event *event;
3613 	struct buffer_page *reader;
3614 	unsigned length;
3615 
3616 	reader = rb_get_reader_page(cpu_buffer);
3617 
3618 	/* This function should not be called when buffer is empty */
3619 	if (RB_WARN_ON(cpu_buffer, !reader))
3620 		return;
3621 
3622 	event = rb_reader_event(cpu_buffer);
3623 
3624 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3625 		cpu_buffer->read++;
3626 
3627 	rb_update_read_stamp(cpu_buffer, event);
3628 
3629 	length = rb_event_length(event);
3630 	cpu_buffer->reader_page->read += length;
3631 }
3632 
3633 static void rb_advance_iter(struct ring_buffer_iter *iter)
3634 {
3635 	struct ring_buffer_per_cpu *cpu_buffer;
3636 	struct ring_buffer_event *event;
3637 	unsigned length;
3638 
3639 	cpu_buffer = iter->cpu_buffer;
3640 
3641 	/*
3642 	 * Check if we are at the end of the buffer.
3643 	 */
3644 	if (iter->head >= rb_page_size(iter->head_page)) {
3645 		/* discarded commits can make the page empty */
3646 		if (iter->head_page == cpu_buffer->commit_page)
3647 			return;
3648 		rb_inc_iter(iter);
3649 		return;
3650 	}
3651 
3652 	event = rb_iter_head_event(iter);
3653 
3654 	length = rb_event_length(event);
3655 
3656 	/*
3657 	 * This should not be called to advance the header if we are
3658 	 * at the tail of the buffer.
3659 	 */
3660 	if (RB_WARN_ON(cpu_buffer,
3661 		       (iter->head_page == cpu_buffer->commit_page) &&
3662 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3663 		return;
3664 
3665 	rb_update_iter_read_stamp(iter, event);
3666 
3667 	iter->head += length;
3668 
3669 	/* check for end of page padding */
3670 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3671 	    (iter->head_page != cpu_buffer->commit_page))
3672 		rb_inc_iter(iter);
3673 }
3674 
3675 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3676 {
3677 	return cpu_buffer->lost_events;
3678 }
3679 
3680 static struct ring_buffer_event *
3681 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3682 	       unsigned long *lost_events)
3683 {
3684 	struct ring_buffer_event *event;
3685 	struct buffer_page *reader;
3686 	int nr_loops = 0;
3687 
3688  again:
3689 	/*
3690 	 * We repeat when a time extend is encountered.
3691 	 * Since the time extend is always attached to a data event,
3692 	 * we should never loop more than once.
3693 	 * (We never hit the following condition more than twice).
3694 	 */
3695 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3696 		return NULL;
3697 
3698 	reader = rb_get_reader_page(cpu_buffer);
3699 	if (!reader)
3700 		return NULL;
3701 
3702 	event = rb_reader_event(cpu_buffer);
3703 
3704 	switch (event->type_len) {
3705 	case RINGBUF_TYPE_PADDING:
3706 		if (rb_null_event(event))
3707 			RB_WARN_ON(cpu_buffer, 1);
3708 		/*
3709 		 * Because the writer could be discarding every
3710 		 * event it creates (which would probably be bad)
3711 		 * if we were to go back to "again" then we may never
3712 		 * catch up, and will trigger the warn on, or lock
3713 		 * the box. Return the padding, and we will release
3714 		 * the current locks, and try again.
3715 		 */
3716 		return event;
3717 
3718 	case RINGBUF_TYPE_TIME_EXTEND:
3719 		/* Internal data, OK to advance */
3720 		rb_advance_reader(cpu_buffer);
3721 		goto again;
3722 
3723 	case RINGBUF_TYPE_TIME_STAMP:
3724 		/* FIXME: not implemented */
3725 		rb_advance_reader(cpu_buffer);
3726 		goto again;
3727 
3728 	case RINGBUF_TYPE_DATA:
3729 		if (ts) {
3730 			*ts = cpu_buffer->read_stamp + event->time_delta;
3731 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3732 							 cpu_buffer->cpu, ts);
3733 		}
3734 		if (lost_events)
3735 			*lost_events = rb_lost_events(cpu_buffer);
3736 		return event;
3737 
3738 	default:
3739 		BUG();
3740 	}
3741 
3742 	return NULL;
3743 }
3744 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3745 
3746 static struct ring_buffer_event *
3747 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3748 {
3749 	struct ring_buffer *buffer;
3750 	struct ring_buffer_per_cpu *cpu_buffer;
3751 	struct ring_buffer_event *event;
3752 	int nr_loops = 0;
3753 
3754 	cpu_buffer = iter->cpu_buffer;
3755 	buffer = cpu_buffer->buffer;
3756 
3757 	/*
3758 	 * Check if someone performed a consuming read to
3759 	 * the buffer. A consuming read invalidates the iterator
3760 	 * and we need to reset the iterator in this case.
3761 	 */
3762 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3763 		     iter->cache_reader_page != cpu_buffer->reader_page))
3764 		rb_iter_reset(iter);
3765 
3766  again:
3767 	if (ring_buffer_iter_empty(iter))
3768 		return NULL;
3769 
3770 	/*
3771 	 * We repeat when a time extend is encountered or we hit
3772 	 * the end of the page. Since the time extend is always attached
3773 	 * to a data event, we should never loop more than three times.
3774 	 * Once for going to next page, once on time extend, and
3775 	 * finally once to get the event.
3776 	 * (We never hit the following condition more than thrice).
3777 	 */
3778 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3779 		return NULL;
3780 
3781 	if (rb_per_cpu_empty(cpu_buffer))
3782 		return NULL;
3783 
3784 	if (iter->head >= rb_page_size(iter->head_page)) {
3785 		rb_inc_iter(iter);
3786 		goto again;
3787 	}
3788 
3789 	event = rb_iter_head_event(iter);
3790 
3791 	switch (event->type_len) {
3792 	case RINGBUF_TYPE_PADDING:
3793 		if (rb_null_event(event)) {
3794 			rb_inc_iter(iter);
3795 			goto again;
3796 		}
3797 		rb_advance_iter(iter);
3798 		return event;
3799 
3800 	case RINGBUF_TYPE_TIME_EXTEND:
3801 		/* Internal data, OK to advance */
3802 		rb_advance_iter(iter);
3803 		goto again;
3804 
3805 	case RINGBUF_TYPE_TIME_STAMP:
3806 		/* FIXME: not implemented */
3807 		rb_advance_iter(iter);
3808 		goto again;
3809 
3810 	case RINGBUF_TYPE_DATA:
3811 		if (ts) {
3812 			*ts = iter->read_stamp + event->time_delta;
3813 			ring_buffer_normalize_time_stamp(buffer,
3814 							 cpu_buffer->cpu, ts);
3815 		}
3816 		return event;
3817 
3818 	default:
3819 		BUG();
3820 	}
3821 
3822 	return NULL;
3823 }
3824 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3825 
3826 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3827 {
3828 	if (likely(!in_nmi())) {
3829 		raw_spin_lock(&cpu_buffer->reader_lock);
3830 		return true;
3831 	}
3832 
3833 	/*
3834 	 * If an NMI die dumps out the content of the ring buffer
3835 	 * trylock must be used to prevent a deadlock if the NMI
3836 	 * preempted a task that holds the ring buffer locks. If
3837 	 * we get the lock then all is fine, if not, then continue
3838 	 * to do the read, but this can corrupt the ring buffer,
3839 	 * so it must be permanently disabled from future writes.
3840 	 * Reading from NMI is a oneshot deal.
3841 	 */
3842 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3843 		return true;
3844 
3845 	/* Continue without locking, but disable the ring buffer */
3846 	atomic_inc(&cpu_buffer->record_disabled);
3847 	return false;
3848 }
3849 
3850 static inline void
3851 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3852 {
3853 	if (likely(locked))
3854 		raw_spin_unlock(&cpu_buffer->reader_lock);
3855 	return;
3856 }
3857 
3858 /**
3859  * ring_buffer_peek - peek at the next event to be read
3860  * @buffer: The ring buffer to read
3861  * @cpu: The cpu to peak at
3862  * @ts: The timestamp counter of this event.
3863  * @lost_events: a variable to store if events were lost (may be NULL)
3864  *
3865  * This will return the event that will be read next, but does
3866  * not consume the data.
3867  */
3868 struct ring_buffer_event *
3869 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3870 		 unsigned long *lost_events)
3871 {
3872 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3873 	struct ring_buffer_event *event;
3874 	unsigned long flags;
3875 	bool dolock;
3876 
3877 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3878 		return NULL;
3879 
3880  again:
3881 	local_irq_save(flags);
3882 	dolock = rb_reader_lock(cpu_buffer);
3883 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3884 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3885 		rb_advance_reader(cpu_buffer);
3886 	rb_reader_unlock(cpu_buffer, dolock);
3887 	local_irq_restore(flags);
3888 
3889 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3890 		goto again;
3891 
3892 	return event;
3893 }
3894 
3895 /**
3896  * ring_buffer_iter_peek - peek at the next event to be read
3897  * @iter: The ring buffer iterator
3898  * @ts: The timestamp counter of this event.
3899  *
3900  * This will return the event that will be read next, but does
3901  * not increment the iterator.
3902  */
3903 struct ring_buffer_event *
3904 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3905 {
3906 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3907 	struct ring_buffer_event *event;
3908 	unsigned long flags;
3909 
3910  again:
3911 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3912 	event = rb_iter_peek(iter, ts);
3913 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3914 
3915 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3916 		goto again;
3917 
3918 	return event;
3919 }
3920 
3921 /**
3922  * ring_buffer_consume - return an event and consume it
3923  * @buffer: The ring buffer to get the next event from
3924  * @cpu: the cpu to read the buffer from
3925  * @ts: a variable to store the timestamp (may be NULL)
3926  * @lost_events: a variable to store if events were lost (may be NULL)
3927  *
3928  * Returns the next event in the ring buffer, and that event is consumed.
3929  * Meaning, that sequential reads will keep returning a different event,
3930  * and eventually empty the ring buffer if the producer is slower.
3931  */
3932 struct ring_buffer_event *
3933 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3934 		    unsigned long *lost_events)
3935 {
3936 	struct ring_buffer_per_cpu *cpu_buffer;
3937 	struct ring_buffer_event *event = NULL;
3938 	unsigned long flags;
3939 	bool dolock;
3940 
3941  again:
3942 	/* might be called in atomic */
3943 	preempt_disable();
3944 
3945 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3946 		goto out;
3947 
3948 	cpu_buffer = buffer->buffers[cpu];
3949 	local_irq_save(flags);
3950 	dolock = rb_reader_lock(cpu_buffer);
3951 
3952 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3953 	if (event) {
3954 		cpu_buffer->lost_events = 0;
3955 		rb_advance_reader(cpu_buffer);
3956 	}
3957 
3958 	rb_reader_unlock(cpu_buffer, dolock);
3959 	local_irq_restore(flags);
3960 
3961  out:
3962 	preempt_enable();
3963 
3964 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3965 		goto again;
3966 
3967 	return event;
3968 }
3969 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3970 
3971 /**
3972  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3973  * @buffer: The ring buffer to read from
3974  * @cpu: The cpu buffer to iterate over
3975  *
3976  * This performs the initial preparations necessary to iterate
3977  * through the buffer.  Memory is allocated, buffer recording
3978  * is disabled, and the iterator pointer is returned to the caller.
3979  *
3980  * Disabling buffer recordng prevents the reading from being
3981  * corrupted. This is not a consuming read, so a producer is not
3982  * expected.
3983  *
3984  * After a sequence of ring_buffer_read_prepare calls, the user is
3985  * expected to make at least one call to ring_buffer_read_prepare_sync.
3986  * Afterwards, ring_buffer_read_start is invoked to get things going
3987  * for real.
3988  *
3989  * This overall must be paired with ring_buffer_read_finish.
3990  */
3991 struct ring_buffer_iter *
3992 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3993 {
3994 	struct ring_buffer_per_cpu *cpu_buffer;
3995 	struct ring_buffer_iter *iter;
3996 
3997 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3998 		return NULL;
3999 
4000 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4001 	if (!iter)
4002 		return NULL;
4003 
4004 	cpu_buffer = buffer->buffers[cpu];
4005 
4006 	iter->cpu_buffer = cpu_buffer;
4007 
4008 	atomic_inc(&buffer->resize_disabled);
4009 	atomic_inc(&cpu_buffer->record_disabled);
4010 
4011 	return iter;
4012 }
4013 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4014 
4015 /**
4016  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4017  *
4018  * All previously invoked ring_buffer_read_prepare calls to prepare
4019  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4020  * calls on those iterators are allowed.
4021  */
4022 void
4023 ring_buffer_read_prepare_sync(void)
4024 {
4025 	synchronize_sched();
4026 }
4027 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4028 
4029 /**
4030  * ring_buffer_read_start - start a non consuming read of the buffer
4031  * @iter: The iterator returned by ring_buffer_read_prepare
4032  *
4033  * This finalizes the startup of an iteration through the buffer.
4034  * The iterator comes from a call to ring_buffer_read_prepare and
4035  * an intervening ring_buffer_read_prepare_sync must have been
4036  * performed.
4037  *
4038  * Must be paired with ring_buffer_read_finish.
4039  */
4040 void
4041 ring_buffer_read_start(struct ring_buffer_iter *iter)
4042 {
4043 	struct ring_buffer_per_cpu *cpu_buffer;
4044 	unsigned long flags;
4045 
4046 	if (!iter)
4047 		return;
4048 
4049 	cpu_buffer = iter->cpu_buffer;
4050 
4051 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4052 	arch_spin_lock(&cpu_buffer->lock);
4053 	rb_iter_reset(iter);
4054 	arch_spin_unlock(&cpu_buffer->lock);
4055 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4056 }
4057 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4058 
4059 /**
4060  * ring_buffer_read_finish - finish reading the iterator of the buffer
4061  * @iter: The iterator retrieved by ring_buffer_start
4062  *
4063  * This re-enables the recording to the buffer, and frees the
4064  * iterator.
4065  */
4066 void
4067 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4068 {
4069 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4070 	unsigned long flags;
4071 
4072 	/*
4073 	 * Ring buffer is disabled from recording, here's a good place
4074 	 * to check the integrity of the ring buffer.
4075 	 * Must prevent readers from trying to read, as the check
4076 	 * clears the HEAD page and readers require it.
4077 	 */
4078 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4079 	rb_check_pages(cpu_buffer);
4080 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4081 
4082 	atomic_dec(&cpu_buffer->record_disabled);
4083 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4084 	kfree(iter);
4085 }
4086 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4087 
4088 /**
4089  * ring_buffer_read - read the next item in the ring buffer by the iterator
4090  * @iter: The ring buffer iterator
4091  * @ts: The time stamp of the event read.
4092  *
4093  * This reads the next event in the ring buffer and increments the iterator.
4094  */
4095 struct ring_buffer_event *
4096 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4097 {
4098 	struct ring_buffer_event *event;
4099 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4100 	unsigned long flags;
4101 
4102 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4103  again:
4104 	event = rb_iter_peek(iter, ts);
4105 	if (!event)
4106 		goto out;
4107 
4108 	if (event->type_len == RINGBUF_TYPE_PADDING)
4109 		goto again;
4110 
4111 	rb_advance_iter(iter);
4112  out:
4113 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4114 
4115 	return event;
4116 }
4117 EXPORT_SYMBOL_GPL(ring_buffer_read);
4118 
4119 /**
4120  * ring_buffer_size - return the size of the ring buffer (in bytes)
4121  * @buffer: The ring buffer.
4122  */
4123 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4124 {
4125 	/*
4126 	 * Earlier, this method returned
4127 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4128 	 * Since the nr_pages field is now removed, we have converted this to
4129 	 * return the per cpu buffer value.
4130 	 */
4131 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4132 		return 0;
4133 
4134 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4135 }
4136 EXPORT_SYMBOL_GPL(ring_buffer_size);
4137 
4138 static void
4139 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4140 {
4141 	rb_head_page_deactivate(cpu_buffer);
4142 
4143 	cpu_buffer->head_page
4144 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4145 	local_set(&cpu_buffer->head_page->write, 0);
4146 	local_set(&cpu_buffer->head_page->entries, 0);
4147 	local_set(&cpu_buffer->head_page->page->commit, 0);
4148 
4149 	cpu_buffer->head_page->read = 0;
4150 
4151 	cpu_buffer->tail_page = cpu_buffer->head_page;
4152 	cpu_buffer->commit_page = cpu_buffer->head_page;
4153 
4154 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4155 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4156 	local_set(&cpu_buffer->reader_page->write, 0);
4157 	local_set(&cpu_buffer->reader_page->entries, 0);
4158 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4159 	cpu_buffer->reader_page->read = 0;
4160 
4161 	local_set(&cpu_buffer->entries_bytes, 0);
4162 	local_set(&cpu_buffer->overrun, 0);
4163 	local_set(&cpu_buffer->commit_overrun, 0);
4164 	local_set(&cpu_buffer->dropped_events, 0);
4165 	local_set(&cpu_buffer->entries, 0);
4166 	local_set(&cpu_buffer->committing, 0);
4167 	local_set(&cpu_buffer->commits, 0);
4168 	cpu_buffer->read = 0;
4169 	cpu_buffer->read_bytes = 0;
4170 
4171 	cpu_buffer->write_stamp = 0;
4172 	cpu_buffer->read_stamp = 0;
4173 
4174 	cpu_buffer->lost_events = 0;
4175 	cpu_buffer->last_overrun = 0;
4176 
4177 	rb_head_page_activate(cpu_buffer);
4178 }
4179 
4180 /**
4181  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4182  * @buffer: The ring buffer to reset a per cpu buffer of
4183  * @cpu: The CPU buffer to be reset
4184  */
4185 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4186 {
4187 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4188 	unsigned long flags;
4189 
4190 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4191 		return;
4192 
4193 	atomic_inc(&buffer->resize_disabled);
4194 	atomic_inc(&cpu_buffer->record_disabled);
4195 
4196 	/* Make sure all commits have finished */
4197 	synchronize_sched();
4198 
4199 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4200 
4201 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4202 		goto out;
4203 
4204 	arch_spin_lock(&cpu_buffer->lock);
4205 
4206 	rb_reset_cpu(cpu_buffer);
4207 
4208 	arch_spin_unlock(&cpu_buffer->lock);
4209 
4210  out:
4211 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4212 
4213 	atomic_dec(&cpu_buffer->record_disabled);
4214 	atomic_dec(&buffer->resize_disabled);
4215 }
4216 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4217 
4218 /**
4219  * ring_buffer_reset - reset a ring buffer
4220  * @buffer: The ring buffer to reset all cpu buffers
4221  */
4222 void ring_buffer_reset(struct ring_buffer *buffer)
4223 {
4224 	int cpu;
4225 
4226 	for_each_buffer_cpu(buffer, cpu)
4227 		ring_buffer_reset_cpu(buffer, cpu);
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4230 
4231 /**
4232  * rind_buffer_empty - is the ring buffer empty?
4233  * @buffer: The ring buffer to test
4234  */
4235 bool ring_buffer_empty(struct ring_buffer *buffer)
4236 {
4237 	struct ring_buffer_per_cpu *cpu_buffer;
4238 	unsigned long flags;
4239 	bool dolock;
4240 	int cpu;
4241 	int ret;
4242 
4243 	/* yes this is racy, but if you don't like the race, lock the buffer */
4244 	for_each_buffer_cpu(buffer, cpu) {
4245 		cpu_buffer = buffer->buffers[cpu];
4246 		local_irq_save(flags);
4247 		dolock = rb_reader_lock(cpu_buffer);
4248 		ret = rb_per_cpu_empty(cpu_buffer);
4249 		rb_reader_unlock(cpu_buffer, dolock);
4250 		local_irq_restore(flags);
4251 
4252 		if (!ret)
4253 			return false;
4254 	}
4255 
4256 	return true;
4257 }
4258 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4259 
4260 /**
4261  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4262  * @buffer: The ring buffer
4263  * @cpu: The CPU buffer to test
4264  */
4265 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4266 {
4267 	struct ring_buffer_per_cpu *cpu_buffer;
4268 	unsigned long flags;
4269 	bool dolock;
4270 	int ret;
4271 
4272 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4273 		return true;
4274 
4275 	cpu_buffer = buffer->buffers[cpu];
4276 	local_irq_save(flags);
4277 	dolock = rb_reader_lock(cpu_buffer);
4278 	ret = rb_per_cpu_empty(cpu_buffer);
4279 	rb_reader_unlock(cpu_buffer, dolock);
4280 	local_irq_restore(flags);
4281 
4282 	return ret;
4283 }
4284 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4285 
4286 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4287 /**
4288  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4289  * @buffer_a: One buffer to swap with
4290  * @buffer_b: The other buffer to swap with
4291  *
4292  * This function is useful for tracers that want to take a "snapshot"
4293  * of a CPU buffer and has another back up buffer lying around.
4294  * it is expected that the tracer handles the cpu buffer not being
4295  * used at the moment.
4296  */
4297 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4298 			 struct ring_buffer *buffer_b, int cpu)
4299 {
4300 	struct ring_buffer_per_cpu *cpu_buffer_a;
4301 	struct ring_buffer_per_cpu *cpu_buffer_b;
4302 	int ret = -EINVAL;
4303 
4304 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4305 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4306 		goto out;
4307 
4308 	cpu_buffer_a = buffer_a->buffers[cpu];
4309 	cpu_buffer_b = buffer_b->buffers[cpu];
4310 
4311 	/* At least make sure the two buffers are somewhat the same */
4312 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4313 		goto out;
4314 
4315 	ret = -EAGAIN;
4316 
4317 	if (atomic_read(&buffer_a->record_disabled))
4318 		goto out;
4319 
4320 	if (atomic_read(&buffer_b->record_disabled))
4321 		goto out;
4322 
4323 	if (atomic_read(&cpu_buffer_a->record_disabled))
4324 		goto out;
4325 
4326 	if (atomic_read(&cpu_buffer_b->record_disabled))
4327 		goto out;
4328 
4329 	/*
4330 	 * We can't do a synchronize_sched here because this
4331 	 * function can be called in atomic context.
4332 	 * Normally this will be called from the same CPU as cpu.
4333 	 * If not it's up to the caller to protect this.
4334 	 */
4335 	atomic_inc(&cpu_buffer_a->record_disabled);
4336 	atomic_inc(&cpu_buffer_b->record_disabled);
4337 
4338 	ret = -EBUSY;
4339 	if (local_read(&cpu_buffer_a->committing))
4340 		goto out_dec;
4341 	if (local_read(&cpu_buffer_b->committing))
4342 		goto out_dec;
4343 
4344 	buffer_a->buffers[cpu] = cpu_buffer_b;
4345 	buffer_b->buffers[cpu] = cpu_buffer_a;
4346 
4347 	cpu_buffer_b->buffer = buffer_a;
4348 	cpu_buffer_a->buffer = buffer_b;
4349 
4350 	ret = 0;
4351 
4352 out_dec:
4353 	atomic_dec(&cpu_buffer_a->record_disabled);
4354 	atomic_dec(&cpu_buffer_b->record_disabled);
4355 out:
4356 	return ret;
4357 }
4358 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4359 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4360 
4361 /**
4362  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4363  * @buffer: the buffer to allocate for.
4364  * @cpu: the cpu buffer to allocate.
4365  *
4366  * This function is used in conjunction with ring_buffer_read_page.
4367  * When reading a full page from the ring buffer, these functions
4368  * can be used to speed up the process. The calling function should
4369  * allocate a few pages first with this function. Then when it
4370  * needs to get pages from the ring buffer, it passes the result
4371  * of this function into ring_buffer_read_page, which will swap
4372  * the page that was allocated, with the read page of the buffer.
4373  *
4374  * Returns:
4375  *  The page allocated, or NULL on error.
4376  */
4377 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4378 {
4379 	struct buffer_data_page *bpage;
4380 	struct page *page;
4381 
4382 	page = alloc_pages_node(cpu_to_node(cpu),
4383 				GFP_KERNEL | __GFP_NORETRY, 0);
4384 	if (!page)
4385 		return NULL;
4386 
4387 	bpage = page_address(page);
4388 
4389 	rb_init_page(bpage);
4390 
4391 	return bpage;
4392 }
4393 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4394 
4395 /**
4396  * ring_buffer_free_read_page - free an allocated read page
4397  * @buffer: the buffer the page was allocate for
4398  * @data: the page to free
4399  *
4400  * Free a page allocated from ring_buffer_alloc_read_page.
4401  */
4402 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4403 {
4404 	free_page((unsigned long)data);
4405 }
4406 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4407 
4408 /**
4409  * ring_buffer_read_page - extract a page from the ring buffer
4410  * @buffer: buffer to extract from
4411  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4412  * @len: amount to extract
4413  * @cpu: the cpu of the buffer to extract
4414  * @full: should the extraction only happen when the page is full.
4415  *
4416  * This function will pull out a page from the ring buffer and consume it.
4417  * @data_page must be the address of the variable that was returned
4418  * from ring_buffer_alloc_read_page. This is because the page might be used
4419  * to swap with a page in the ring buffer.
4420  *
4421  * for example:
4422  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4423  *	if (!rpage)
4424  *		return error;
4425  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4426  *	if (ret >= 0)
4427  *		process_page(rpage, ret);
4428  *
4429  * When @full is set, the function will not return true unless
4430  * the writer is off the reader page.
4431  *
4432  * Note: it is up to the calling functions to handle sleeps and wakeups.
4433  *  The ring buffer can be used anywhere in the kernel and can not
4434  *  blindly call wake_up. The layer that uses the ring buffer must be
4435  *  responsible for that.
4436  *
4437  * Returns:
4438  *  >=0 if data has been transferred, returns the offset of consumed data.
4439  *  <0 if no data has been transferred.
4440  */
4441 int ring_buffer_read_page(struct ring_buffer *buffer,
4442 			  void **data_page, size_t len, int cpu, int full)
4443 {
4444 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4445 	struct ring_buffer_event *event;
4446 	struct buffer_data_page *bpage;
4447 	struct buffer_page *reader;
4448 	unsigned long missed_events;
4449 	unsigned long flags;
4450 	unsigned int commit;
4451 	unsigned int read;
4452 	u64 save_timestamp;
4453 	int ret = -1;
4454 
4455 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4456 		goto out;
4457 
4458 	/*
4459 	 * If len is not big enough to hold the page header, then
4460 	 * we can not copy anything.
4461 	 */
4462 	if (len <= BUF_PAGE_HDR_SIZE)
4463 		goto out;
4464 
4465 	len -= BUF_PAGE_HDR_SIZE;
4466 
4467 	if (!data_page)
4468 		goto out;
4469 
4470 	bpage = *data_page;
4471 	if (!bpage)
4472 		goto out;
4473 
4474 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4475 
4476 	reader = rb_get_reader_page(cpu_buffer);
4477 	if (!reader)
4478 		goto out_unlock;
4479 
4480 	event = rb_reader_event(cpu_buffer);
4481 
4482 	read = reader->read;
4483 	commit = rb_page_commit(reader);
4484 
4485 	/* Check if any events were dropped */
4486 	missed_events = cpu_buffer->lost_events;
4487 
4488 	/*
4489 	 * If this page has been partially read or
4490 	 * if len is not big enough to read the rest of the page or
4491 	 * a writer is still on the page, then
4492 	 * we must copy the data from the page to the buffer.
4493 	 * Otherwise, we can simply swap the page with the one passed in.
4494 	 */
4495 	if (read || (len < (commit - read)) ||
4496 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4497 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4498 		unsigned int rpos = read;
4499 		unsigned int pos = 0;
4500 		unsigned int size;
4501 
4502 		if (full)
4503 			goto out_unlock;
4504 
4505 		if (len > (commit - read))
4506 			len = (commit - read);
4507 
4508 		/* Always keep the time extend and data together */
4509 		size = rb_event_ts_length(event);
4510 
4511 		if (len < size)
4512 			goto out_unlock;
4513 
4514 		/* save the current timestamp, since the user will need it */
4515 		save_timestamp = cpu_buffer->read_stamp;
4516 
4517 		/* Need to copy one event at a time */
4518 		do {
4519 			/* We need the size of one event, because
4520 			 * rb_advance_reader only advances by one event,
4521 			 * whereas rb_event_ts_length may include the size of
4522 			 * one or two events.
4523 			 * We have already ensured there's enough space if this
4524 			 * is a time extend. */
4525 			size = rb_event_length(event);
4526 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4527 
4528 			len -= size;
4529 
4530 			rb_advance_reader(cpu_buffer);
4531 			rpos = reader->read;
4532 			pos += size;
4533 
4534 			if (rpos >= commit)
4535 				break;
4536 
4537 			event = rb_reader_event(cpu_buffer);
4538 			/* Always keep the time extend and data together */
4539 			size = rb_event_ts_length(event);
4540 		} while (len >= size);
4541 
4542 		/* update bpage */
4543 		local_set(&bpage->commit, pos);
4544 		bpage->time_stamp = save_timestamp;
4545 
4546 		/* we copied everything to the beginning */
4547 		read = 0;
4548 	} else {
4549 		/* update the entry counter */
4550 		cpu_buffer->read += rb_page_entries(reader);
4551 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4552 
4553 		/* swap the pages */
4554 		rb_init_page(bpage);
4555 		bpage = reader->page;
4556 		reader->page = *data_page;
4557 		local_set(&reader->write, 0);
4558 		local_set(&reader->entries, 0);
4559 		reader->read = 0;
4560 		*data_page = bpage;
4561 
4562 		/*
4563 		 * Use the real_end for the data size,
4564 		 * This gives us a chance to store the lost events
4565 		 * on the page.
4566 		 */
4567 		if (reader->real_end)
4568 			local_set(&bpage->commit, reader->real_end);
4569 	}
4570 	ret = read;
4571 
4572 	cpu_buffer->lost_events = 0;
4573 
4574 	commit = local_read(&bpage->commit);
4575 	/*
4576 	 * Set a flag in the commit field if we lost events
4577 	 */
4578 	if (missed_events) {
4579 		/* If there is room at the end of the page to save the
4580 		 * missed events, then record it there.
4581 		 */
4582 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4583 			memcpy(&bpage->data[commit], &missed_events,
4584 			       sizeof(missed_events));
4585 			local_add(RB_MISSED_STORED, &bpage->commit);
4586 			commit += sizeof(missed_events);
4587 		}
4588 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4589 	}
4590 
4591 	/*
4592 	 * This page may be off to user land. Zero it out here.
4593 	 */
4594 	if (commit < BUF_PAGE_SIZE)
4595 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4596 
4597  out_unlock:
4598 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4599 
4600  out:
4601 	return ret;
4602 }
4603 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4604 
4605 /*
4606  * We only allocate new buffers, never free them if the CPU goes down.
4607  * If we were to free the buffer, then the user would lose any trace that was in
4608  * the buffer.
4609  */
4610 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4611 {
4612 	struct ring_buffer *buffer;
4613 	long nr_pages_same;
4614 	int cpu_i;
4615 	unsigned long nr_pages;
4616 
4617 	buffer = container_of(node, struct ring_buffer, node);
4618 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4619 		return 0;
4620 
4621 	nr_pages = 0;
4622 	nr_pages_same = 1;
4623 	/* check if all cpu sizes are same */
4624 	for_each_buffer_cpu(buffer, cpu_i) {
4625 		/* fill in the size from first enabled cpu */
4626 		if (nr_pages == 0)
4627 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4628 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4629 			nr_pages_same = 0;
4630 			break;
4631 		}
4632 	}
4633 	/* allocate minimum pages, user can later expand it */
4634 	if (!nr_pages_same)
4635 		nr_pages = 2;
4636 	buffer->buffers[cpu] =
4637 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4638 	if (!buffer->buffers[cpu]) {
4639 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4640 		     cpu);
4641 		return -ENOMEM;
4642 	}
4643 	smp_wmb();
4644 	cpumask_set_cpu(cpu, buffer->cpumask);
4645 	return 0;
4646 }
4647 
4648 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4649 /*
4650  * This is a basic integrity check of the ring buffer.
4651  * Late in the boot cycle this test will run when configured in.
4652  * It will kick off a thread per CPU that will go into a loop
4653  * writing to the per cpu ring buffer various sizes of data.
4654  * Some of the data will be large items, some small.
4655  *
4656  * Another thread is created that goes into a spin, sending out
4657  * IPIs to the other CPUs to also write into the ring buffer.
4658  * this is to test the nesting ability of the buffer.
4659  *
4660  * Basic stats are recorded and reported. If something in the
4661  * ring buffer should happen that's not expected, a big warning
4662  * is displayed and all ring buffers are disabled.
4663  */
4664 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4665 
4666 struct rb_test_data {
4667 	struct ring_buffer	*buffer;
4668 	unsigned long		events;
4669 	unsigned long		bytes_written;
4670 	unsigned long		bytes_alloc;
4671 	unsigned long		bytes_dropped;
4672 	unsigned long		events_nested;
4673 	unsigned long		bytes_written_nested;
4674 	unsigned long		bytes_alloc_nested;
4675 	unsigned long		bytes_dropped_nested;
4676 	int			min_size_nested;
4677 	int			max_size_nested;
4678 	int			max_size;
4679 	int			min_size;
4680 	int			cpu;
4681 	int			cnt;
4682 };
4683 
4684 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4685 
4686 /* 1 meg per cpu */
4687 #define RB_TEST_BUFFER_SIZE	1048576
4688 
4689 static char rb_string[] __initdata =
4690 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4691 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4692 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4693 
4694 static bool rb_test_started __initdata;
4695 
4696 struct rb_item {
4697 	int size;
4698 	char str[];
4699 };
4700 
4701 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4702 {
4703 	struct ring_buffer_event *event;
4704 	struct rb_item *item;
4705 	bool started;
4706 	int event_len;
4707 	int size;
4708 	int len;
4709 	int cnt;
4710 
4711 	/* Have nested writes different that what is written */
4712 	cnt = data->cnt + (nested ? 27 : 0);
4713 
4714 	/* Multiply cnt by ~e, to make some unique increment */
4715 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4716 
4717 	len = size + sizeof(struct rb_item);
4718 
4719 	started = rb_test_started;
4720 	/* read rb_test_started before checking buffer enabled */
4721 	smp_rmb();
4722 
4723 	event = ring_buffer_lock_reserve(data->buffer, len);
4724 	if (!event) {
4725 		/* Ignore dropped events before test starts. */
4726 		if (started) {
4727 			if (nested)
4728 				data->bytes_dropped += len;
4729 			else
4730 				data->bytes_dropped_nested += len;
4731 		}
4732 		return len;
4733 	}
4734 
4735 	event_len = ring_buffer_event_length(event);
4736 
4737 	if (RB_WARN_ON(data->buffer, event_len < len))
4738 		goto out;
4739 
4740 	item = ring_buffer_event_data(event);
4741 	item->size = size;
4742 	memcpy(item->str, rb_string, size);
4743 
4744 	if (nested) {
4745 		data->bytes_alloc_nested += event_len;
4746 		data->bytes_written_nested += len;
4747 		data->events_nested++;
4748 		if (!data->min_size_nested || len < data->min_size_nested)
4749 			data->min_size_nested = len;
4750 		if (len > data->max_size_nested)
4751 			data->max_size_nested = len;
4752 	} else {
4753 		data->bytes_alloc += event_len;
4754 		data->bytes_written += len;
4755 		data->events++;
4756 		if (!data->min_size || len < data->min_size)
4757 			data->max_size = len;
4758 		if (len > data->max_size)
4759 			data->max_size = len;
4760 	}
4761 
4762  out:
4763 	ring_buffer_unlock_commit(data->buffer, event);
4764 
4765 	return 0;
4766 }
4767 
4768 static __init int rb_test(void *arg)
4769 {
4770 	struct rb_test_data *data = arg;
4771 
4772 	while (!kthread_should_stop()) {
4773 		rb_write_something(data, false);
4774 		data->cnt++;
4775 
4776 		set_current_state(TASK_INTERRUPTIBLE);
4777 		/* Now sleep between a min of 100-300us and a max of 1ms */
4778 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4779 	}
4780 
4781 	return 0;
4782 }
4783 
4784 static __init void rb_ipi(void *ignore)
4785 {
4786 	struct rb_test_data *data;
4787 	int cpu = smp_processor_id();
4788 
4789 	data = &rb_data[cpu];
4790 	rb_write_something(data, true);
4791 }
4792 
4793 static __init int rb_hammer_test(void *arg)
4794 {
4795 	while (!kthread_should_stop()) {
4796 
4797 		/* Send an IPI to all cpus to write data! */
4798 		smp_call_function(rb_ipi, NULL, 1);
4799 		/* No sleep, but for non preempt, let others run */
4800 		schedule();
4801 	}
4802 
4803 	return 0;
4804 }
4805 
4806 static __init int test_ringbuffer(void)
4807 {
4808 	struct task_struct *rb_hammer;
4809 	struct ring_buffer *buffer;
4810 	int cpu;
4811 	int ret = 0;
4812 
4813 	pr_info("Running ring buffer tests...\n");
4814 
4815 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4816 	if (WARN_ON(!buffer))
4817 		return 0;
4818 
4819 	/* Disable buffer so that threads can't write to it yet */
4820 	ring_buffer_record_off(buffer);
4821 
4822 	for_each_online_cpu(cpu) {
4823 		rb_data[cpu].buffer = buffer;
4824 		rb_data[cpu].cpu = cpu;
4825 		rb_data[cpu].cnt = cpu;
4826 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4827 						 "rbtester/%d", cpu);
4828 		if (WARN_ON(!rb_threads[cpu])) {
4829 			pr_cont("FAILED\n");
4830 			ret = -1;
4831 			goto out_free;
4832 		}
4833 
4834 		kthread_bind(rb_threads[cpu], cpu);
4835  		wake_up_process(rb_threads[cpu]);
4836 	}
4837 
4838 	/* Now create the rb hammer! */
4839 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4840 	if (WARN_ON(!rb_hammer)) {
4841 		pr_cont("FAILED\n");
4842 		ret = -1;
4843 		goto out_free;
4844 	}
4845 
4846 	ring_buffer_record_on(buffer);
4847 	/*
4848 	 * Show buffer is enabled before setting rb_test_started.
4849 	 * Yes there's a small race window where events could be
4850 	 * dropped and the thread wont catch it. But when a ring
4851 	 * buffer gets enabled, there will always be some kind of
4852 	 * delay before other CPUs see it. Thus, we don't care about
4853 	 * those dropped events. We care about events dropped after
4854 	 * the threads see that the buffer is active.
4855 	 */
4856 	smp_wmb();
4857 	rb_test_started = true;
4858 
4859 	set_current_state(TASK_INTERRUPTIBLE);
4860 	/* Just run for 10 seconds */;
4861 	schedule_timeout(10 * HZ);
4862 
4863 	kthread_stop(rb_hammer);
4864 
4865  out_free:
4866 	for_each_online_cpu(cpu) {
4867 		if (!rb_threads[cpu])
4868 			break;
4869 		kthread_stop(rb_threads[cpu]);
4870 	}
4871 	if (ret) {
4872 		ring_buffer_free(buffer);
4873 		return ret;
4874 	}
4875 
4876 	/* Report! */
4877 	pr_info("finished\n");
4878 	for_each_online_cpu(cpu) {
4879 		struct ring_buffer_event *event;
4880 		struct rb_test_data *data = &rb_data[cpu];
4881 		struct rb_item *item;
4882 		unsigned long total_events;
4883 		unsigned long total_dropped;
4884 		unsigned long total_written;
4885 		unsigned long total_alloc;
4886 		unsigned long total_read = 0;
4887 		unsigned long total_size = 0;
4888 		unsigned long total_len = 0;
4889 		unsigned long total_lost = 0;
4890 		unsigned long lost;
4891 		int big_event_size;
4892 		int small_event_size;
4893 
4894 		ret = -1;
4895 
4896 		total_events = data->events + data->events_nested;
4897 		total_written = data->bytes_written + data->bytes_written_nested;
4898 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4899 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4900 
4901 		big_event_size = data->max_size + data->max_size_nested;
4902 		small_event_size = data->min_size + data->min_size_nested;
4903 
4904 		pr_info("CPU %d:\n", cpu);
4905 		pr_info("              events:    %ld\n", total_events);
4906 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4907 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4908 		pr_info("       written bytes:    %ld\n", total_written);
4909 		pr_info("       biggest event:    %d\n", big_event_size);
4910 		pr_info("      smallest event:    %d\n", small_event_size);
4911 
4912 		if (RB_WARN_ON(buffer, total_dropped))
4913 			break;
4914 
4915 		ret = 0;
4916 
4917 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4918 			total_lost += lost;
4919 			item = ring_buffer_event_data(event);
4920 			total_len += ring_buffer_event_length(event);
4921 			total_size += item->size + sizeof(struct rb_item);
4922 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4923 				pr_info("FAILED!\n");
4924 				pr_info("buffer had: %.*s\n", item->size, item->str);
4925 				pr_info("expected:   %.*s\n", item->size, rb_string);
4926 				RB_WARN_ON(buffer, 1);
4927 				ret = -1;
4928 				break;
4929 			}
4930 			total_read++;
4931 		}
4932 		if (ret)
4933 			break;
4934 
4935 		ret = -1;
4936 
4937 		pr_info("         read events:   %ld\n", total_read);
4938 		pr_info("         lost events:   %ld\n", total_lost);
4939 		pr_info("        total events:   %ld\n", total_lost + total_read);
4940 		pr_info("  recorded len bytes:   %ld\n", total_len);
4941 		pr_info(" recorded size bytes:   %ld\n", total_size);
4942 		if (total_lost)
4943 			pr_info(" With dropped events, record len and size may not match\n"
4944 				" alloced and written from above\n");
4945 		if (!total_lost) {
4946 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4947 				       total_size != total_written))
4948 				break;
4949 		}
4950 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4951 			break;
4952 
4953 		ret = 0;
4954 	}
4955 	if (!ret)
4956 		pr_info("Ring buffer PASSED!\n");
4957 
4958 	ring_buffer_free(buffer);
4959 	return 0;
4960 }
4961 
4962 late_initcall(test_ringbuffer);
4963 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4964