1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/uaccess.h> 13 #include <linux/hardirq.h> 14 #include <linux/kthread.h> /* for self test */ 15 #include <linux/kmemcheck.h> 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* Used for individual buffers (after the counter) */ 119 #define RB_BUFFER_OFF (1 << 20) 120 121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 122 123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 124 #define RB_ALIGNMENT 4U 125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 127 128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 129 # define RB_FORCE_8BYTE_ALIGNMENT 0 130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 131 #else 132 # define RB_FORCE_8BYTE_ALIGNMENT 1 133 # define RB_ARCH_ALIGNMENT 8U 134 #endif 135 136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 137 138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 140 141 enum { 142 RB_LEN_TIME_EXTEND = 8, 143 RB_LEN_TIME_STAMP = 16, 144 }; 145 146 #define skip_time_extend(event) \ 147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 148 149 static inline int rb_null_event(struct ring_buffer_event *event) 150 { 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 152 } 153 154 static void rb_event_set_padding(struct ring_buffer_event *event) 155 { 156 /* padding has a NULL time_delta */ 157 event->type_len = RINGBUF_TYPE_PADDING; 158 event->time_delta = 0; 159 } 160 161 static unsigned 162 rb_event_data_length(struct ring_buffer_event *event) 163 { 164 unsigned length; 165 166 if (event->type_len) 167 length = event->type_len * RB_ALIGNMENT; 168 else 169 length = event->array[0]; 170 return length + RB_EVNT_HDR_SIZE; 171 } 172 173 /* 174 * Return the length of the given event. Will return 175 * the length of the time extend if the event is a 176 * time extend. 177 */ 178 static inline unsigned 179 rb_event_length(struct ring_buffer_event *event) 180 { 181 switch (event->type_len) { 182 case RINGBUF_TYPE_PADDING: 183 if (rb_null_event(event)) 184 /* undefined */ 185 return -1; 186 return event->array[0] + RB_EVNT_HDR_SIZE; 187 188 case RINGBUF_TYPE_TIME_EXTEND: 189 return RB_LEN_TIME_EXTEND; 190 191 case RINGBUF_TYPE_TIME_STAMP: 192 return RB_LEN_TIME_STAMP; 193 194 case RINGBUF_TYPE_DATA: 195 return rb_event_data_length(event); 196 default: 197 BUG(); 198 } 199 /* not hit */ 200 return 0; 201 } 202 203 /* 204 * Return total length of time extend and data, 205 * or just the event length for all other events. 206 */ 207 static inline unsigned 208 rb_event_ts_length(struct ring_buffer_event *event) 209 { 210 unsigned len = 0; 211 212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 213 /* time extends include the data event after it */ 214 len = RB_LEN_TIME_EXTEND; 215 event = skip_time_extend(event); 216 } 217 return len + rb_event_length(event); 218 } 219 220 /** 221 * ring_buffer_event_length - return the length of the event 222 * @event: the event to get the length of 223 * 224 * Returns the size of the data load of a data event. 225 * If the event is something other than a data event, it 226 * returns the size of the event itself. With the exception 227 * of a TIME EXTEND, where it still returns the size of the 228 * data load of the data event after it. 229 */ 230 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 235 event = skip_time_extend(event); 236 237 length = rb_event_length(event); 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 239 return length; 240 length -= RB_EVNT_HDR_SIZE; 241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 242 length -= sizeof(event->array[0]); 243 return length; 244 } 245 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 246 247 /* inline for ring buffer fast paths */ 248 static __always_inline void * 249 rb_event_data(struct ring_buffer_event *event) 250 { 251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 252 event = skip_time_extend(event); 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 254 /* If length is in len field, then array[0] has the data */ 255 if (event->type_len) 256 return (void *)&event->array[0]; 257 /* Otherwise length is in array[0] and array[1] has the data */ 258 return (void *)&event->array[1]; 259 } 260 261 /** 262 * ring_buffer_event_data - return the data of the event 263 * @event: the event to get the data from 264 */ 265 void *ring_buffer_event_data(struct ring_buffer_event *event) 266 { 267 return rb_event_data(event); 268 } 269 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 270 271 #define for_each_buffer_cpu(buffer, cpu) \ 272 for_each_cpu(cpu, buffer->cpumask) 273 274 #define TS_SHIFT 27 275 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 276 #define TS_DELTA_TEST (~TS_MASK) 277 278 /* Flag when events were overwritten */ 279 #define RB_MISSED_EVENTS (1 << 31) 280 /* Missed count stored at end */ 281 #define RB_MISSED_STORED (1 << 30) 282 283 struct buffer_data_page { 284 u64 time_stamp; /* page time stamp */ 285 local_t commit; /* write committed index */ 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 287 }; 288 289 /* 290 * Note, the buffer_page list must be first. The buffer pages 291 * are allocated in cache lines, which means that each buffer 292 * page will be at the beginning of a cache line, and thus 293 * the least significant bits will be zero. We use this to 294 * add flags in the list struct pointers, to make the ring buffer 295 * lockless. 296 */ 297 struct buffer_page { 298 struct list_head list; /* list of buffer pages */ 299 local_t write; /* index for next write */ 300 unsigned read; /* index for next read */ 301 local_t entries; /* entries on this page */ 302 unsigned long real_end; /* real end of data */ 303 struct buffer_data_page *page; /* Actual data page */ 304 }; 305 306 /* 307 * The buffer page counters, write and entries, must be reset 308 * atomically when crossing page boundaries. To synchronize this 309 * update, two counters are inserted into the number. One is 310 * the actual counter for the write position or count on the page. 311 * 312 * The other is a counter of updaters. Before an update happens 313 * the update partition of the counter is incremented. This will 314 * allow the updater to update the counter atomically. 315 * 316 * The counter is 20 bits, and the state data is 12. 317 */ 318 #define RB_WRITE_MASK 0xfffff 319 #define RB_WRITE_INTCNT (1 << 20) 320 321 static void rb_init_page(struct buffer_data_page *bpage) 322 { 323 local_set(&bpage->commit, 0); 324 } 325 326 /** 327 * ring_buffer_page_len - the size of data on the page. 328 * @page: The page to read 329 * 330 * Returns the amount of data on the page, including buffer page header. 331 */ 332 size_t ring_buffer_page_len(void *page) 333 { 334 return local_read(&((struct buffer_data_page *)page)->commit) 335 + BUF_PAGE_HDR_SIZE; 336 } 337 338 /* 339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 340 * this issue out. 341 */ 342 static void free_buffer_page(struct buffer_page *bpage) 343 { 344 free_page((unsigned long)bpage->page); 345 kfree(bpage); 346 } 347 348 /* 349 * We need to fit the time_stamp delta into 27 bits. 350 */ 351 static inline int test_time_stamp(u64 delta) 352 { 353 if (delta & TS_DELTA_TEST) 354 return 1; 355 return 0; 356 } 357 358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 359 360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 362 363 int ring_buffer_print_page_header(struct trace_seq *s) 364 { 365 struct buffer_data_page field; 366 367 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 368 "offset:0;\tsize:%u;\tsigned:%u;\n", 369 (unsigned int)sizeof(field.time_stamp), 370 (unsigned int)is_signed_type(u64)); 371 372 trace_seq_printf(s, "\tfield: local_t commit;\t" 373 "offset:%u;\tsize:%u;\tsigned:%u;\n", 374 (unsigned int)offsetof(typeof(field), commit), 375 (unsigned int)sizeof(field.commit), 376 (unsigned int)is_signed_type(long)); 377 378 trace_seq_printf(s, "\tfield: int overwrite;\t" 379 "offset:%u;\tsize:%u;\tsigned:%u;\n", 380 (unsigned int)offsetof(typeof(field), commit), 381 1, 382 (unsigned int)is_signed_type(long)); 383 384 trace_seq_printf(s, "\tfield: char data;\t" 385 "offset:%u;\tsize:%u;\tsigned:%u;\n", 386 (unsigned int)offsetof(typeof(field), data), 387 (unsigned int)BUF_PAGE_SIZE, 388 (unsigned int)is_signed_type(char)); 389 390 return !trace_seq_has_overflowed(s); 391 } 392 393 struct rb_irq_work { 394 struct irq_work work; 395 wait_queue_head_t waiters; 396 wait_queue_head_t full_waiters; 397 bool waiters_pending; 398 bool full_waiters_pending; 399 bool wakeup_full; 400 }; 401 402 /* 403 * Structure to hold event state and handle nested events. 404 */ 405 struct rb_event_info { 406 u64 ts; 407 u64 delta; 408 unsigned long length; 409 struct buffer_page *tail_page; 410 int add_timestamp; 411 }; 412 413 /* 414 * Used for which event context the event is in. 415 * NMI = 0 416 * IRQ = 1 417 * SOFTIRQ = 2 418 * NORMAL = 3 419 * 420 * See trace_recursive_lock() comment below for more details. 421 */ 422 enum { 423 RB_CTX_NMI, 424 RB_CTX_IRQ, 425 RB_CTX_SOFTIRQ, 426 RB_CTX_NORMAL, 427 RB_CTX_MAX 428 }; 429 430 /* 431 * head_page == tail_page && head == tail then buffer is empty. 432 */ 433 struct ring_buffer_per_cpu { 434 int cpu; 435 atomic_t record_disabled; 436 struct ring_buffer *buffer; 437 raw_spinlock_t reader_lock; /* serialize readers */ 438 arch_spinlock_t lock; 439 struct lock_class_key lock_key; 440 unsigned long nr_pages; 441 unsigned int current_context; 442 struct list_head *pages; 443 struct buffer_page *head_page; /* read from head */ 444 struct buffer_page *tail_page; /* write to tail */ 445 struct buffer_page *commit_page; /* committed pages */ 446 struct buffer_page *reader_page; 447 unsigned long lost_events; 448 unsigned long last_overrun; 449 local_t entries_bytes; 450 local_t entries; 451 local_t overrun; 452 local_t commit_overrun; 453 local_t dropped_events; 454 local_t committing; 455 local_t commits; 456 unsigned long read; 457 unsigned long read_bytes; 458 u64 write_stamp; 459 u64 read_stamp; 460 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 461 long nr_pages_to_update; 462 struct list_head new_pages; /* new pages to add */ 463 struct work_struct update_pages_work; 464 struct completion update_done; 465 466 struct rb_irq_work irq_work; 467 }; 468 469 struct ring_buffer { 470 unsigned flags; 471 int cpus; 472 atomic_t record_disabled; 473 atomic_t resize_disabled; 474 cpumask_var_t cpumask; 475 476 struct lock_class_key *reader_lock_key; 477 478 struct mutex mutex; 479 480 struct ring_buffer_per_cpu **buffers; 481 482 struct hlist_node node; 483 u64 (*clock)(void); 484 485 struct rb_irq_work irq_work; 486 }; 487 488 struct ring_buffer_iter { 489 struct ring_buffer_per_cpu *cpu_buffer; 490 unsigned long head; 491 struct buffer_page *head_page; 492 struct buffer_page *cache_reader_page; 493 unsigned long cache_read; 494 u64 read_stamp; 495 }; 496 497 /* 498 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 499 * 500 * Schedules a delayed work to wake up any task that is blocked on the 501 * ring buffer waiters queue. 502 */ 503 static void rb_wake_up_waiters(struct irq_work *work) 504 { 505 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 506 507 wake_up_all(&rbwork->waiters); 508 if (rbwork->wakeup_full) { 509 rbwork->wakeup_full = false; 510 wake_up_all(&rbwork->full_waiters); 511 } 512 } 513 514 /** 515 * ring_buffer_wait - wait for input to the ring buffer 516 * @buffer: buffer to wait on 517 * @cpu: the cpu buffer to wait on 518 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 519 * 520 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 521 * as data is added to any of the @buffer's cpu buffers. Otherwise 522 * it will wait for data to be added to a specific cpu buffer. 523 */ 524 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 525 { 526 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 527 DEFINE_WAIT(wait); 528 struct rb_irq_work *work; 529 int ret = 0; 530 531 /* 532 * Depending on what the caller is waiting for, either any 533 * data in any cpu buffer, or a specific buffer, put the 534 * caller on the appropriate wait queue. 535 */ 536 if (cpu == RING_BUFFER_ALL_CPUS) { 537 work = &buffer->irq_work; 538 /* Full only makes sense on per cpu reads */ 539 full = false; 540 } else { 541 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 542 return -ENODEV; 543 cpu_buffer = buffer->buffers[cpu]; 544 work = &cpu_buffer->irq_work; 545 } 546 547 548 while (true) { 549 if (full) 550 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 551 else 552 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 553 554 /* 555 * The events can happen in critical sections where 556 * checking a work queue can cause deadlocks. 557 * After adding a task to the queue, this flag is set 558 * only to notify events to try to wake up the queue 559 * using irq_work. 560 * 561 * We don't clear it even if the buffer is no longer 562 * empty. The flag only causes the next event to run 563 * irq_work to do the work queue wake up. The worse 564 * that can happen if we race with !trace_empty() is that 565 * an event will cause an irq_work to try to wake up 566 * an empty queue. 567 * 568 * There's no reason to protect this flag either, as 569 * the work queue and irq_work logic will do the necessary 570 * synchronization for the wake ups. The only thing 571 * that is necessary is that the wake up happens after 572 * a task has been queued. It's OK for spurious wake ups. 573 */ 574 if (full) 575 work->full_waiters_pending = true; 576 else 577 work->waiters_pending = true; 578 579 if (signal_pending(current)) { 580 ret = -EINTR; 581 break; 582 } 583 584 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 585 break; 586 587 if (cpu != RING_BUFFER_ALL_CPUS && 588 !ring_buffer_empty_cpu(buffer, cpu)) { 589 unsigned long flags; 590 bool pagebusy; 591 592 if (!full) 593 break; 594 595 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 596 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 597 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 598 599 if (!pagebusy) 600 break; 601 } 602 603 schedule(); 604 } 605 606 if (full) 607 finish_wait(&work->full_waiters, &wait); 608 else 609 finish_wait(&work->waiters, &wait); 610 611 return ret; 612 } 613 614 /** 615 * ring_buffer_poll_wait - poll on buffer input 616 * @buffer: buffer to wait on 617 * @cpu: the cpu buffer to wait on 618 * @filp: the file descriptor 619 * @poll_table: The poll descriptor 620 * 621 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 622 * as data is added to any of the @buffer's cpu buffers. Otherwise 623 * it will wait for data to be added to a specific cpu buffer. 624 * 625 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 626 * zero otherwise. 627 */ 628 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 629 struct file *filp, poll_table *poll_table) 630 { 631 struct ring_buffer_per_cpu *cpu_buffer; 632 struct rb_irq_work *work; 633 634 if (cpu == RING_BUFFER_ALL_CPUS) 635 work = &buffer->irq_work; 636 else { 637 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 638 return -EINVAL; 639 640 cpu_buffer = buffer->buffers[cpu]; 641 work = &cpu_buffer->irq_work; 642 } 643 644 poll_wait(filp, &work->waiters, poll_table); 645 work->waiters_pending = true; 646 /* 647 * There's a tight race between setting the waiters_pending and 648 * checking if the ring buffer is empty. Once the waiters_pending bit 649 * is set, the next event will wake the task up, but we can get stuck 650 * if there's only a single event in. 651 * 652 * FIXME: Ideally, we need a memory barrier on the writer side as well, 653 * but adding a memory barrier to all events will cause too much of a 654 * performance hit in the fast path. We only need a memory barrier when 655 * the buffer goes from empty to having content. But as this race is 656 * extremely small, and it's not a problem if another event comes in, we 657 * will fix it later. 658 */ 659 smp_mb(); 660 661 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 662 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 663 return POLLIN | POLLRDNORM; 664 return 0; 665 } 666 667 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 668 #define RB_WARN_ON(b, cond) \ 669 ({ \ 670 int _____ret = unlikely(cond); \ 671 if (_____ret) { \ 672 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 673 struct ring_buffer_per_cpu *__b = \ 674 (void *)b; \ 675 atomic_inc(&__b->buffer->record_disabled); \ 676 } else \ 677 atomic_inc(&b->record_disabled); \ 678 WARN_ON(1); \ 679 } \ 680 _____ret; \ 681 }) 682 683 /* Up this if you want to test the TIME_EXTENTS and normalization */ 684 #define DEBUG_SHIFT 0 685 686 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 687 { 688 /* shift to debug/test normalization and TIME_EXTENTS */ 689 return buffer->clock() << DEBUG_SHIFT; 690 } 691 692 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 693 { 694 u64 time; 695 696 preempt_disable_notrace(); 697 time = rb_time_stamp(buffer); 698 preempt_enable_no_resched_notrace(); 699 700 return time; 701 } 702 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 703 704 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 705 int cpu, u64 *ts) 706 { 707 /* Just stupid testing the normalize function and deltas */ 708 *ts >>= DEBUG_SHIFT; 709 } 710 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 711 712 /* 713 * Making the ring buffer lockless makes things tricky. 714 * Although writes only happen on the CPU that they are on, 715 * and they only need to worry about interrupts. Reads can 716 * happen on any CPU. 717 * 718 * The reader page is always off the ring buffer, but when the 719 * reader finishes with a page, it needs to swap its page with 720 * a new one from the buffer. The reader needs to take from 721 * the head (writes go to the tail). But if a writer is in overwrite 722 * mode and wraps, it must push the head page forward. 723 * 724 * Here lies the problem. 725 * 726 * The reader must be careful to replace only the head page, and 727 * not another one. As described at the top of the file in the 728 * ASCII art, the reader sets its old page to point to the next 729 * page after head. It then sets the page after head to point to 730 * the old reader page. But if the writer moves the head page 731 * during this operation, the reader could end up with the tail. 732 * 733 * We use cmpxchg to help prevent this race. We also do something 734 * special with the page before head. We set the LSB to 1. 735 * 736 * When the writer must push the page forward, it will clear the 737 * bit that points to the head page, move the head, and then set 738 * the bit that points to the new head page. 739 * 740 * We also don't want an interrupt coming in and moving the head 741 * page on another writer. Thus we use the second LSB to catch 742 * that too. Thus: 743 * 744 * head->list->prev->next bit 1 bit 0 745 * ------- ------- 746 * Normal page 0 0 747 * Points to head page 0 1 748 * New head page 1 0 749 * 750 * Note we can not trust the prev pointer of the head page, because: 751 * 752 * +----+ +-----+ +-----+ 753 * | |------>| T |---X--->| N | 754 * | |<------| | | | 755 * +----+ +-----+ +-----+ 756 * ^ ^ | 757 * | +-----+ | | 758 * +----------| R |----------+ | 759 * | |<-----------+ 760 * +-----+ 761 * 762 * Key: ---X--> HEAD flag set in pointer 763 * T Tail page 764 * R Reader page 765 * N Next page 766 * 767 * (see __rb_reserve_next() to see where this happens) 768 * 769 * What the above shows is that the reader just swapped out 770 * the reader page with a page in the buffer, but before it 771 * could make the new header point back to the new page added 772 * it was preempted by a writer. The writer moved forward onto 773 * the new page added by the reader and is about to move forward 774 * again. 775 * 776 * You can see, it is legitimate for the previous pointer of 777 * the head (or any page) not to point back to itself. But only 778 * temporarially. 779 */ 780 781 #define RB_PAGE_NORMAL 0UL 782 #define RB_PAGE_HEAD 1UL 783 #define RB_PAGE_UPDATE 2UL 784 785 786 #define RB_FLAG_MASK 3UL 787 788 /* PAGE_MOVED is not part of the mask */ 789 #define RB_PAGE_MOVED 4UL 790 791 /* 792 * rb_list_head - remove any bit 793 */ 794 static struct list_head *rb_list_head(struct list_head *list) 795 { 796 unsigned long val = (unsigned long)list; 797 798 return (struct list_head *)(val & ~RB_FLAG_MASK); 799 } 800 801 /* 802 * rb_is_head_page - test if the given page is the head page 803 * 804 * Because the reader may move the head_page pointer, we can 805 * not trust what the head page is (it may be pointing to 806 * the reader page). But if the next page is a header page, 807 * its flags will be non zero. 808 */ 809 static inline int 810 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 811 struct buffer_page *page, struct list_head *list) 812 { 813 unsigned long val; 814 815 val = (unsigned long)list->next; 816 817 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 818 return RB_PAGE_MOVED; 819 820 return val & RB_FLAG_MASK; 821 } 822 823 /* 824 * rb_is_reader_page 825 * 826 * The unique thing about the reader page, is that, if the 827 * writer is ever on it, the previous pointer never points 828 * back to the reader page. 829 */ 830 static bool rb_is_reader_page(struct buffer_page *page) 831 { 832 struct list_head *list = page->list.prev; 833 834 return rb_list_head(list->next) != &page->list; 835 } 836 837 /* 838 * rb_set_list_to_head - set a list_head to be pointing to head. 839 */ 840 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 841 struct list_head *list) 842 { 843 unsigned long *ptr; 844 845 ptr = (unsigned long *)&list->next; 846 *ptr |= RB_PAGE_HEAD; 847 *ptr &= ~RB_PAGE_UPDATE; 848 } 849 850 /* 851 * rb_head_page_activate - sets up head page 852 */ 853 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 854 { 855 struct buffer_page *head; 856 857 head = cpu_buffer->head_page; 858 if (!head) 859 return; 860 861 /* 862 * Set the previous list pointer to have the HEAD flag. 863 */ 864 rb_set_list_to_head(cpu_buffer, head->list.prev); 865 } 866 867 static void rb_list_head_clear(struct list_head *list) 868 { 869 unsigned long *ptr = (unsigned long *)&list->next; 870 871 *ptr &= ~RB_FLAG_MASK; 872 } 873 874 /* 875 * rb_head_page_dactivate - clears head page ptr (for free list) 876 */ 877 static void 878 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 879 { 880 struct list_head *hd; 881 882 /* Go through the whole list and clear any pointers found. */ 883 rb_list_head_clear(cpu_buffer->pages); 884 885 list_for_each(hd, cpu_buffer->pages) 886 rb_list_head_clear(hd); 887 } 888 889 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 890 struct buffer_page *head, 891 struct buffer_page *prev, 892 int old_flag, int new_flag) 893 { 894 struct list_head *list; 895 unsigned long val = (unsigned long)&head->list; 896 unsigned long ret; 897 898 list = &prev->list; 899 900 val &= ~RB_FLAG_MASK; 901 902 ret = cmpxchg((unsigned long *)&list->next, 903 val | old_flag, val | new_flag); 904 905 /* check if the reader took the page */ 906 if ((ret & ~RB_FLAG_MASK) != val) 907 return RB_PAGE_MOVED; 908 909 return ret & RB_FLAG_MASK; 910 } 911 912 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 913 struct buffer_page *head, 914 struct buffer_page *prev, 915 int old_flag) 916 { 917 return rb_head_page_set(cpu_buffer, head, prev, 918 old_flag, RB_PAGE_UPDATE); 919 } 920 921 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 922 struct buffer_page *head, 923 struct buffer_page *prev, 924 int old_flag) 925 { 926 return rb_head_page_set(cpu_buffer, head, prev, 927 old_flag, RB_PAGE_HEAD); 928 } 929 930 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 931 struct buffer_page *head, 932 struct buffer_page *prev, 933 int old_flag) 934 { 935 return rb_head_page_set(cpu_buffer, head, prev, 936 old_flag, RB_PAGE_NORMAL); 937 } 938 939 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 940 struct buffer_page **bpage) 941 { 942 struct list_head *p = rb_list_head((*bpage)->list.next); 943 944 *bpage = list_entry(p, struct buffer_page, list); 945 } 946 947 static struct buffer_page * 948 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 949 { 950 struct buffer_page *head; 951 struct buffer_page *page; 952 struct list_head *list; 953 int i; 954 955 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 956 return NULL; 957 958 /* sanity check */ 959 list = cpu_buffer->pages; 960 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 961 return NULL; 962 963 page = head = cpu_buffer->head_page; 964 /* 965 * It is possible that the writer moves the header behind 966 * where we started, and we miss in one loop. 967 * A second loop should grab the header, but we'll do 968 * three loops just because I'm paranoid. 969 */ 970 for (i = 0; i < 3; i++) { 971 do { 972 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 973 cpu_buffer->head_page = page; 974 return page; 975 } 976 rb_inc_page(cpu_buffer, &page); 977 } while (page != head); 978 } 979 980 RB_WARN_ON(cpu_buffer, 1); 981 982 return NULL; 983 } 984 985 static int rb_head_page_replace(struct buffer_page *old, 986 struct buffer_page *new) 987 { 988 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 989 unsigned long val; 990 unsigned long ret; 991 992 val = *ptr & ~RB_FLAG_MASK; 993 val |= RB_PAGE_HEAD; 994 995 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 996 997 return ret == val; 998 } 999 1000 /* 1001 * rb_tail_page_update - move the tail page forward 1002 */ 1003 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1004 struct buffer_page *tail_page, 1005 struct buffer_page *next_page) 1006 { 1007 unsigned long old_entries; 1008 unsigned long old_write; 1009 1010 /* 1011 * The tail page now needs to be moved forward. 1012 * 1013 * We need to reset the tail page, but without messing 1014 * with possible erasing of data brought in by interrupts 1015 * that have moved the tail page and are currently on it. 1016 * 1017 * We add a counter to the write field to denote this. 1018 */ 1019 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1020 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1021 1022 /* 1023 * Just make sure we have seen our old_write and synchronize 1024 * with any interrupts that come in. 1025 */ 1026 barrier(); 1027 1028 /* 1029 * If the tail page is still the same as what we think 1030 * it is, then it is up to us to update the tail 1031 * pointer. 1032 */ 1033 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1034 /* Zero the write counter */ 1035 unsigned long val = old_write & ~RB_WRITE_MASK; 1036 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1037 1038 /* 1039 * This will only succeed if an interrupt did 1040 * not come in and change it. In which case, we 1041 * do not want to modify it. 1042 * 1043 * We add (void) to let the compiler know that we do not care 1044 * about the return value of these functions. We use the 1045 * cmpxchg to only update if an interrupt did not already 1046 * do it for us. If the cmpxchg fails, we don't care. 1047 */ 1048 (void)local_cmpxchg(&next_page->write, old_write, val); 1049 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1050 1051 /* 1052 * No need to worry about races with clearing out the commit. 1053 * it only can increment when a commit takes place. But that 1054 * only happens in the outer most nested commit. 1055 */ 1056 local_set(&next_page->page->commit, 0); 1057 1058 /* Again, either we update tail_page or an interrupt does */ 1059 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1060 } 1061 } 1062 1063 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1064 struct buffer_page *bpage) 1065 { 1066 unsigned long val = (unsigned long)bpage; 1067 1068 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1069 return 1; 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * rb_check_list - make sure a pointer to a list has the last bits zero 1076 */ 1077 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1078 struct list_head *list) 1079 { 1080 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1081 return 1; 1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1083 return 1; 1084 return 0; 1085 } 1086 1087 /** 1088 * rb_check_pages - integrity check of buffer pages 1089 * @cpu_buffer: CPU buffer with pages to test 1090 * 1091 * As a safety measure we check to make sure the data pages have not 1092 * been corrupted. 1093 */ 1094 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1095 { 1096 struct list_head *head = cpu_buffer->pages; 1097 struct buffer_page *bpage, *tmp; 1098 1099 /* Reset the head page if it exists */ 1100 if (cpu_buffer->head_page) 1101 rb_set_head_page(cpu_buffer); 1102 1103 rb_head_page_deactivate(cpu_buffer); 1104 1105 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1106 return -1; 1107 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1108 return -1; 1109 1110 if (rb_check_list(cpu_buffer, head)) 1111 return -1; 1112 1113 list_for_each_entry_safe(bpage, tmp, head, list) { 1114 if (RB_WARN_ON(cpu_buffer, 1115 bpage->list.next->prev != &bpage->list)) 1116 return -1; 1117 if (RB_WARN_ON(cpu_buffer, 1118 bpage->list.prev->next != &bpage->list)) 1119 return -1; 1120 if (rb_check_list(cpu_buffer, &bpage->list)) 1121 return -1; 1122 } 1123 1124 rb_head_page_activate(cpu_buffer); 1125 1126 return 0; 1127 } 1128 1129 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1130 { 1131 struct buffer_page *bpage, *tmp; 1132 long i; 1133 1134 for (i = 0; i < nr_pages; i++) { 1135 struct page *page; 1136 /* 1137 * __GFP_NORETRY flag makes sure that the allocation fails 1138 * gracefully without invoking oom-killer and the system is 1139 * not destabilized. 1140 */ 1141 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1142 GFP_KERNEL | __GFP_NORETRY, 1143 cpu_to_node(cpu)); 1144 if (!bpage) 1145 goto free_pages; 1146 1147 list_add(&bpage->list, pages); 1148 1149 page = alloc_pages_node(cpu_to_node(cpu), 1150 GFP_KERNEL | __GFP_NORETRY, 0); 1151 if (!page) 1152 goto free_pages; 1153 bpage->page = page_address(page); 1154 rb_init_page(bpage->page); 1155 } 1156 1157 return 0; 1158 1159 free_pages: 1160 list_for_each_entry_safe(bpage, tmp, pages, list) { 1161 list_del_init(&bpage->list); 1162 free_buffer_page(bpage); 1163 } 1164 1165 return -ENOMEM; 1166 } 1167 1168 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1169 unsigned long nr_pages) 1170 { 1171 LIST_HEAD(pages); 1172 1173 WARN_ON(!nr_pages); 1174 1175 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1176 return -ENOMEM; 1177 1178 /* 1179 * The ring buffer page list is a circular list that does not 1180 * start and end with a list head. All page list items point to 1181 * other pages. 1182 */ 1183 cpu_buffer->pages = pages.next; 1184 list_del(&pages); 1185 1186 cpu_buffer->nr_pages = nr_pages; 1187 1188 rb_check_pages(cpu_buffer); 1189 1190 return 0; 1191 } 1192 1193 static struct ring_buffer_per_cpu * 1194 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1195 { 1196 struct ring_buffer_per_cpu *cpu_buffer; 1197 struct buffer_page *bpage; 1198 struct page *page; 1199 int ret; 1200 1201 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1202 GFP_KERNEL, cpu_to_node(cpu)); 1203 if (!cpu_buffer) 1204 return NULL; 1205 1206 cpu_buffer->cpu = cpu; 1207 cpu_buffer->buffer = buffer; 1208 raw_spin_lock_init(&cpu_buffer->reader_lock); 1209 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1210 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1211 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1212 init_completion(&cpu_buffer->update_done); 1213 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1214 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1215 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1216 1217 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1218 GFP_KERNEL, cpu_to_node(cpu)); 1219 if (!bpage) 1220 goto fail_free_buffer; 1221 1222 rb_check_bpage(cpu_buffer, bpage); 1223 1224 cpu_buffer->reader_page = bpage; 1225 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1226 if (!page) 1227 goto fail_free_reader; 1228 bpage->page = page_address(page); 1229 rb_init_page(bpage->page); 1230 1231 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1232 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1233 1234 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1235 if (ret < 0) 1236 goto fail_free_reader; 1237 1238 cpu_buffer->head_page 1239 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1240 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1241 1242 rb_head_page_activate(cpu_buffer); 1243 1244 return cpu_buffer; 1245 1246 fail_free_reader: 1247 free_buffer_page(cpu_buffer->reader_page); 1248 1249 fail_free_buffer: 1250 kfree(cpu_buffer); 1251 return NULL; 1252 } 1253 1254 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1255 { 1256 struct list_head *head = cpu_buffer->pages; 1257 struct buffer_page *bpage, *tmp; 1258 1259 free_buffer_page(cpu_buffer->reader_page); 1260 1261 rb_head_page_deactivate(cpu_buffer); 1262 1263 if (head) { 1264 list_for_each_entry_safe(bpage, tmp, head, list) { 1265 list_del_init(&bpage->list); 1266 free_buffer_page(bpage); 1267 } 1268 bpage = list_entry(head, struct buffer_page, list); 1269 free_buffer_page(bpage); 1270 } 1271 1272 kfree(cpu_buffer); 1273 } 1274 1275 /** 1276 * __ring_buffer_alloc - allocate a new ring_buffer 1277 * @size: the size in bytes per cpu that is needed. 1278 * @flags: attributes to set for the ring buffer. 1279 * 1280 * Currently the only flag that is available is the RB_FL_OVERWRITE 1281 * flag. This flag means that the buffer will overwrite old data 1282 * when the buffer wraps. If this flag is not set, the buffer will 1283 * drop data when the tail hits the head. 1284 */ 1285 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1286 struct lock_class_key *key) 1287 { 1288 struct ring_buffer *buffer; 1289 long nr_pages; 1290 int bsize; 1291 int cpu; 1292 int ret; 1293 1294 /* keep it in its own cache line */ 1295 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1296 GFP_KERNEL); 1297 if (!buffer) 1298 return NULL; 1299 1300 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1301 goto fail_free_buffer; 1302 1303 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1304 buffer->flags = flags; 1305 buffer->clock = trace_clock_local; 1306 buffer->reader_lock_key = key; 1307 1308 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1309 init_waitqueue_head(&buffer->irq_work.waiters); 1310 1311 /* need at least two pages */ 1312 if (nr_pages < 2) 1313 nr_pages = 2; 1314 1315 buffer->cpus = nr_cpu_ids; 1316 1317 bsize = sizeof(void *) * nr_cpu_ids; 1318 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1319 GFP_KERNEL); 1320 if (!buffer->buffers) 1321 goto fail_free_cpumask; 1322 1323 cpu = raw_smp_processor_id(); 1324 cpumask_set_cpu(cpu, buffer->cpumask); 1325 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1326 if (!buffer->buffers[cpu]) 1327 goto fail_free_buffers; 1328 1329 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1330 if (ret < 0) 1331 goto fail_free_buffers; 1332 1333 mutex_init(&buffer->mutex); 1334 1335 return buffer; 1336 1337 fail_free_buffers: 1338 for_each_buffer_cpu(buffer, cpu) { 1339 if (buffer->buffers[cpu]) 1340 rb_free_cpu_buffer(buffer->buffers[cpu]); 1341 } 1342 kfree(buffer->buffers); 1343 1344 fail_free_cpumask: 1345 free_cpumask_var(buffer->cpumask); 1346 1347 fail_free_buffer: 1348 kfree(buffer); 1349 return NULL; 1350 } 1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1352 1353 /** 1354 * ring_buffer_free - free a ring buffer. 1355 * @buffer: the buffer to free. 1356 */ 1357 void 1358 ring_buffer_free(struct ring_buffer *buffer) 1359 { 1360 int cpu; 1361 1362 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1363 1364 for_each_buffer_cpu(buffer, cpu) 1365 rb_free_cpu_buffer(buffer->buffers[cpu]); 1366 1367 kfree(buffer->buffers); 1368 free_cpumask_var(buffer->cpumask); 1369 1370 kfree(buffer); 1371 } 1372 EXPORT_SYMBOL_GPL(ring_buffer_free); 1373 1374 void ring_buffer_set_clock(struct ring_buffer *buffer, 1375 u64 (*clock)(void)) 1376 { 1377 buffer->clock = clock; 1378 } 1379 1380 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1381 1382 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1383 { 1384 return local_read(&bpage->entries) & RB_WRITE_MASK; 1385 } 1386 1387 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1388 { 1389 return local_read(&bpage->write) & RB_WRITE_MASK; 1390 } 1391 1392 static int 1393 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1394 { 1395 struct list_head *tail_page, *to_remove, *next_page; 1396 struct buffer_page *to_remove_page, *tmp_iter_page; 1397 struct buffer_page *last_page, *first_page; 1398 unsigned long nr_removed; 1399 unsigned long head_bit; 1400 int page_entries; 1401 1402 head_bit = 0; 1403 1404 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1405 atomic_inc(&cpu_buffer->record_disabled); 1406 /* 1407 * We don't race with the readers since we have acquired the reader 1408 * lock. We also don't race with writers after disabling recording. 1409 * This makes it easy to figure out the first and the last page to be 1410 * removed from the list. We unlink all the pages in between including 1411 * the first and last pages. This is done in a busy loop so that we 1412 * lose the least number of traces. 1413 * The pages are freed after we restart recording and unlock readers. 1414 */ 1415 tail_page = &cpu_buffer->tail_page->list; 1416 1417 /* 1418 * tail page might be on reader page, we remove the next page 1419 * from the ring buffer 1420 */ 1421 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1422 tail_page = rb_list_head(tail_page->next); 1423 to_remove = tail_page; 1424 1425 /* start of pages to remove */ 1426 first_page = list_entry(rb_list_head(to_remove->next), 1427 struct buffer_page, list); 1428 1429 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1430 to_remove = rb_list_head(to_remove)->next; 1431 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1432 } 1433 1434 next_page = rb_list_head(to_remove)->next; 1435 1436 /* 1437 * Now we remove all pages between tail_page and next_page. 1438 * Make sure that we have head_bit value preserved for the 1439 * next page 1440 */ 1441 tail_page->next = (struct list_head *)((unsigned long)next_page | 1442 head_bit); 1443 next_page = rb_list_head(next_page); 1444 next_page->prev = tail_page; 1445 1446 /* make sure pages points to a valid page in the ring buffer */ 1447 cpu_buffer->pages = next_page; 1448 1449 /* update head page */ 1450 if (head_bit) 1451 cpu_buffer->head_page = list_entry(next_page, 1452 struct buffer_page, list); 1453 1454 /* 1455 * change read pointer to make sure any read iterators reset 1456 * themselves 1457 */ 1458 cpu_buffer->read = 0; 1459 1460 /* pages are removed, resume tracing and then free the pages */ 1461 atomic_dec(&cpu_buffer->record_disabled); 1462 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1463 1464 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1465 1466 /* last buffer page to remove */ 1467 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1468 list); 1469 tmp_iter_page = first_page; 1470 1471 do { 1472 to_remove_page = tmp_iter_page; 1473 rb_inc_page(cpu_buffer, &tmp_iter_page); 1474 1475 /* update the counters */ 1476 page_entries = rb_page_entries(to_remove_page); 1477 if (page_entries) { 1478 /* 1479 * If something was added to this page, it was full 1480 * since it is not the tail page. So we deduct the 1481 * bytes consumed in ring buffer from here. 1482 * Increment overrun to account for the lost events. 1483 */ 1484 local_add(page_entries, &cpu_buffer->overrun); 1485 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1486 } 1487 1488 /* 1489 * We have already removed references to this list item, just 1490 * free up the buffer_page and its page 1491 */ 1492 free_buffer_page(to_remove_page); 1493 nr_removed--; 1494 1495 } while (to_remove_page != last_page); 1496 1497 RB_WARN_ON(cpu_buffer, nr_removed); 1498 1499 return nr_removed == 0; 1500 } 1501 1502 static int 1503 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1504 { 1505 struct list_head *pages = &cpu_buffer->new_pages; 1506 int retries, success; 1507 1508 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1509 /* 1510 * We are holding the reader lock, so the reader page won't be swapped 1511 * in the ring buffer. Now we are racing with the writer trying to 1512 * move head page and the tail page. 1513 * We are going to adapt the reader page update process where: 1514 * 1. We first splice the start and end of list of new pages between 1515 * the head page and its previous page. 1516 * 2. We cmpxchg the prev_page->next to point from head page to the 1517 * start of new pages list. 1518 * 3. Finally, we update the head->prev to the end of new list. 1519 * 1520 * We will try this process 10 times, to make sure that we don't keep 1521 * spinning. 1522 */ 1523 retries = 10; 1524 success = 0; 1525 while (retries--) { 1526 struct list_head *head_page, *prev_page, *r; 1527 struct list_head *last_page, *first_page; 1528 struct list_head *head_page_with_bit; 1529 1530 head_page = &rb_set_head_page(cpu_buffer)->list; 1531 if (!head_page) 1532 break; 1533 prev_page = head_page->prev; 1534 1535 first_page = pages->next; 1536 last_page = pages->prev; 1537 1538 head_page_with_bit = (struct list_head *) 1539 ((unsigned long)head_page | RB_PAGE_HEAD); 1540 1541 last_page->next = head_page_with_bit; 1542 first_page->prev = prev_page; 1543 1544 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1545 1546 if (r == head_page_with_bit) { 1547 /* 1548 * yay, we replaced the page pointer to our new list, 1549 * now, we just have to update to head page's prev 1550 * pointer to point to end of list 1551 */ 1552 head_page->prev = last_page; 1553 success = 1; 1554 break; 1555 } 1556 } 1557 1558 if (success) 1559 INIT_LIST_HEAD(pages); 1560 /* 1561 * If we weren't successful in adding in new pages, warn and stop 1562 * tracing 1563 */ 1564 RB_WARN_ON(cpu_buffer, !success); 1565 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1566 1567 /* free pages if they weren't inserted */ 1568 if (!success) { 1569 struct buffer_page *bpage, *tmp; 1570 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1571 list) { 1572 list_del_init(&bpage->list); 1573 free_buffer_page(bpage); 1574 } 1575 } 1576 return success; 1577 } 1578 1579 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1580 { 1581 int success; 1582 1583 if (cpu_buffer->nr_pages_to_update > 0) 1584 success = rb_insert_pages(cpu_buffer); 1585 else 1586 success = rb_remove_pages(cpu_buffer, 1587 -cpu_buffer->nr_pages_to_update); 1588 1589 if (success) 1590 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1591 } 1592 1593 static void update_pages_handler(struct work_struct *work) 1594 { 1595 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1596 struct ring_buffer_per_cpu, update_pages_work); 1597 rb_update_pages(cpu_buffer); 1598 complete(&cpu_buffer->update_done); 1599 } 1600 1601 /** 1602 * ring_buffer_resize - resize the ring buffer 1603 * @buffer: the buffer to resize. 1604 * @size: the new size. 1605 * @cpu_id: the cpu buffer to resize 1606 * 1607 * Minimum size is 2 * BUF_PAGE_SIZE. 1608 * 1609 * Returns 0 on success and < 0 on failure. 1610 */ 1611 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1612 int cpu_id) 1613 { 1614 struct ring_buffer_per_cpu *cpu_buffer; 1615 unsigned long nr_pages; 1616 int cpu, err = 0; 1617 1618 /* 1619 * Always succeed at resizing a non-existent buffer: 1620 */ 1621 if (!buffer) 1622 return size; 1623 1624 /* Make sure the requested buffer exists */ 1625 if (cpu_id != RING_BUFFER_ALL_CPUS && 1626 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1627 return size; 1628 1629 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1630 1631 /* we need a minimum of two pages */ 1632 if (nr_pages < 2) 1633 nr_pages = 2; 1634 1635 size = nr_pages * BUF_PAGE_SIZE; 1636 1637 /* 1638 * Don't succeed if resizing is disabled, as a reader might be 1639 * manipulating the ring buffer and is expecting a sane state while 1640 * this is true. 1641 */ 1642 if (atomic_read(&buffer->resize_disabled)) 1643 return -EBUSY; 1644 1645 /* prevent another thread from changing buffer sizes */ 1646 mutex_lock(&buffer->mutex); 1647 1648 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1649 /* calculate the pages to update */ 1650 for_each_buffer_cpu(buffer, cpu) { 1651 cpu_buffer = buffer->buffers[cpu]; 1652 1653 cpu_buffer->nr_pages_to_update = nr_pages - 1654 cpu_buffer->nr_pages; 1655 /* 1656 * nothing more to do for removing pages or no update 1657 */ 1658 if (cpu_buffer->nr_pages_to_update <= 0) 1659 continue; 1660 /* 1661 * to add pages, make sure all new pages can be 1662 * allocated without receiving ENOMEM 1663 */ 1664 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1665 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1666 &cpu_buffer->new_pages, cpu)) { 1667 /* not enough memory for new pages */ 1668 err = -ENOMEM; 1669 goto out_err; 1670 } 1671 } 1672 1673 get_online_cpus(); 1674 /* 1675 * Fire off all the required work handlers 1676 * We can't schedule on offline CPUs, but it's not necessary 1677 * since we can change their buffer sizes without any race. 1678 */ 1679 for_each_buffer_cpu(buffer, cpu) { 1680 cpu_buffer = buffer->buffers[cpu]; 1681 if (!cpu_buffer->nr_pages_to_update) 1682 continue; 1683 1684 /* Can't run something on an offline CPU. */ 1685 if (!cpu_online(cpu)) { 1686 rb_update_pages(cpu_buffer); 1687 cpu_buffer->nr_pages_to_update = 0; 1688 } else { 1689 schedule_work_on(cpu, 1690 &cpu_buffer->update_pages_work); 1691 } 1692 } 1693 1694 /* wait for all the updates to complete */ 1695 for_each_buffer_cpu(buffer, cpu) { 1696 cpu_buffer = buffer->buffers[cpu]; 1697 if (!cpu_buffer->nr_pages_to_update) 1698 continue; 1699 1700 if (cpu_online(cpu)) 1701 wait_for_completion(&cpu_buffer->update_done); 1702 cpu_buffer->nr_pages_to_update = 0; 1703 } 1704 1705 put_online_cpus(); 1706 } else { 1707 /* Make sure this CPU has been intitialized */ 1708 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1709 goto out; 1710 1711 cpu_buffer = buffer->buffers[cpu_id]; 1712 1713 if (nr_pages == cpu_buffer->nr_pages) 1714 goto out; 1715 1716 cpu_buffer->nr_pages_to_update = nr_pages - 1717 cpu_buffer->nr_pages; 1718 1719 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1720 if (cpu_buffer->nr_pages_to_update > 0 && 1721 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1722 &cpu_buffer->new_pages, cpu_id)) { 1723 err = -ENOMEM; 1724 goto out_err; 1725 } 1726 1727 get_online_cpus(); 1728 1729 /* Can't run something on an offline CPU. */ 1730 if (!cpu_online(cpu_id)) 1731 rb_update_pages(cpu_buffer); 1732 else { 1733 schedule_work_on(cpu_id, 1734 &cpu_buffer->update_pages_work); 1735 wait_for_completion(&cpu_buffer->update_done); 1736 } 1737 1738 cpu_buffer->nr_pages_to_update = 0; 1739 put_online_cpus(); 1740 } 1741 1742 out: 1743 /* 1744 * The ring buffer resize can happen with the ring buffer 1745 * enabled, so that the update disturbs the tracing as little 1746 * as possible. But if the buffer is disabled, we do not need 1747 * to worry about that, and we can take the time to verify 1748 * that the buffer is not corrupt. 1749 */ 1750 if (atomic_read(&buffer->record_disabled)) { 1751 atomic_inc(&buffer->record_disabled); 1752 /* 1753 * Even though the buffer was disabled, we must make sure 1754 * that it is truly disabled before calling rb_check_pages. 1755 * There could have been a race between checking 1756 * record_disable and incrementing it. 1757 */ 1758 synchronize_sched(); 1759 for_each_buffer_cpu(buffer, cpu) { 1760 cpu_buffer = buffer->buffers[cpu]; 1761 rb_check_pages(cpu_buffer); 1762 } 1763 atomic_dec(&buffer->record_disabled); 1764 } 1765 1766 mutex_unlock(&buffer->mutex); 1767 return size; 1768 1769 out_err: 1770 for_each_buffer_cpu(buffer, cpu) { 1771 struct buffer_page *bpage, *tmp; 1772 1773 cpu_buffer = buffer->buffers[cpu]; 1774 cpu_buffer->nr_pages_to_update = 0; 1775 1776 if (list_empty(&cpu_buffer->new_pages)) 1777 continue; 1778 1779 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1780 list) { 1781 list_del_init(&bpage->list); 1782 free_buffer_page(bpage); 1783 } 1784 } 1785 mutex_unlock(&buffer->mutex); 1786 return err; 1787 } 1788 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1789 1790 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1791 { 1792 mutex_lock(&buffer->mutex); 1793 if (val) 1794 buffer->flags |= RB_FL_OVERWRITE; 1795 else 1796 buffer->flags &= ~RB_FL_OVERWRITE; 1797 mutex_unlock(&buffer->mutex); 1798 } 1799 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1800 1801 static __always_inline void * 1802 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1803 { 1804 return bpage->data + index; 1805 } 1806 1807 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1808 { 1809 return bpage->page->data + index; 1810 } 1811 1812 static __always_inline struct ring_buffer_event * 1813 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1814 { 1815 return __rb_page_index(cpu_buffer->reader_page, 1816 cpu_buffer->reader_page->read); 1817 } 1818 1819 static __always_inline struct ring_buffer_event * 1820 rb_iter_head_event(struct ring_buffer_iter *iter) 1821 { 1822 return __rb_page_index(iter->head_page, iter->head); 1823 } 1824 1825 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1826 { 1827 return local_read(&bpage->page->commit); 1828 } 1829 1830 /* Size is determined by what has been committed */ 1831 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1832 { 1833 return rb_page_commit(bpage); 1834 } 1835 1836 static __always_inline unsigned 1837 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1838 { 1839 return rb_page_commit(cpu_buffer->commit_page); 1840 } 1841 1842 static __always_inline unsigned 1843 rb_event_index(struct ring_buffer_event *event) 1844 { 1845 unsigned long addr = (unsigned long)event; 1846 1847 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1848 } 1849 1850 static void rb_inc_iter(struct ring_buffer_iter *iter) 1851 { 1852 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1853 1854 /* 1855 * The iterator could be on the reader page (it starts there). 1856 * But the head could have moved, since the reader was 1857 * found. Check for this case and assign the iterator 1858 * to the head page instead of next. 1859 */ 1860 if (iter->head_page == cpu_buffer->reader_page) 1861 iter->head_page = rb_set_head_page(cpu_buffer); 1862 else 1863 rb_inc_page(cpu_buffer, &iter->head_page); 1864 1865 iter->read_stamp = iter->head_page->page->time_stamp; 1866 iter->head = 0; 1867 } 1868 1869 /* 1870 * rb_handle_head_page - writer hit the head page 1871 * 1872 * Returns: +1 to retry page 1873 * 0 to continue 1874 * -1 on error 1875 */ 1876 static int 1877 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1878 struct buffer_page *tail_page, 1879 struct buffer_page *next_page) 1880 { 1881 struct buffer_page *new_head; 1882 int entries; 1883 int type; 1884 int ret; 1885 1886 entries = rb_page_entries(next_page); 1887 1888 /* 1889 * The hard part is here. We need to move the head 1890 * forward, and protect against both readers on 1891 * other CPUs and writers coming in via interrupts. 1892 */ 1893 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1894 RB_PAGE_HEAD); 1895 1896 /* 1897 * type can be one of four: 1898 * NORMAL - an interrupt already moved it for us 1899 * HEAD - we are the first to get here. 1900 * UPDATE - we are the interrupt interrupting 1901 * a current move. 1902 * MOVED - a reader on another CPU moved the next 1903 * pointer to its reader page. Give up 1904 * and try again. 1905 */ 1906 1907 switch (type) { 1908 case RB_PAGE_HEAD: 1909 /* 1910 * We changed the head to UPDATE, thus 1911 * it is our responsibility to update 1912 * the counters. 1913 */ 1914 local_add(entries, &cpu_buffer->overrun); 1915 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1916 1917 /* 1918 * The entries will be zeroed out when we move the 1919 * tail page. 1920 */ 1921 1922 /* still more to do */ 1923 break; 1924 1925 case RB_PAGE_UPDATE: 1926 /* 1927 * This is an interrupt that interrupt the 1928 * previous update. Still more to do. 1929 */ 1930 break; 1931 case RB_PAGE_NORMAL: 1932 /* 1933 * An interrupt came in before the update 1934 * and processed this for us. 1935 * Nothing left to do. 1936 */ 1937 return 1; 1938 case RB_PAGE_MOVED: 1939 /* 1940 * The reader is on another CPU and just did 1941 * a swap with our next_page. 1942 * Try again. 1943 */ 1944 return 1; 1945 default: 1946 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1947 return -1; 1948 } 1949 1950 /* 1951 * Now that we are here, the old head pointer is 1952 * set to UPDATE. This will keep the reader from 1953 * swapping the head page with the reader page. 1954 * The reader (on another CPU) will spin till 1955 * we are finished. 1956 * 1957 * We just need to protect against interrupts 1958 * doing the job. We will set the next pointer 1959 * to HEAD. After that, we set the old pointer 1960 * to NORMAL, but only if it was HEAD before. 1961 * otherwise we are an interrupt, and only 1962 * want the outer most commit to reset it. 1963 */ 1964 new_head = next_page; 1965 rb_inc_page(cpu_buffer, &new_head); 1966 1967 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1968 RB_PAGE_NORMAL); 1969 1970 /* 1971 * Valid returns are: 1972 * HEAD - an interrupt came in and already set it. 1973 * NORMAL - One of two things: 1974 * 1) We really set it. 1975 * 2) A bunch of interrupts came in and moved 1976 * the page forward again. 1977 */ 1978 switch (ret) { 1979 case RB_PAGE_HEAD: 1980 case RB_PAGE_NORMAL: 1981 /* OK */ 1982 break; 1983 default: 1984 RB_WARN_ON(cpu_buffer, 1); 1985 return -1; 1986 } 1987 1988 /* 1989 * It is possible that an interrupt came in, 1990 * set the head up, then more interrupts came in 1991 * and moved it again. When we get back here, 1992 * the page would have been set to NORMAL but we 1993 * just set it back to HEAD. 1994 * 1995 * How do you detect this? Well, if that happened 1996 * the tail page would have moved. 1997 */ 1998 if (ret == RB_PAGE_NORMAL) { 1999 struct buffer_page *buffer_tail_page; 2000 2001 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2002 /* 2003 * If the tail had moved passed next, then we need 2004 * to reset the pointer. 2005 */ 2006 if (buffer_tail_page != tail_page && 2007 buffer_tail_page != next_page) 2008 rb_head_page_set_normal(cpu_buffer, new_head, 2009 next_page, 2010 RB_PAGE_HEAD); 2011 } 2012 2013 /* 2014 * If this was the outer most commit (the one that 2015 * changed the original pointer from HEAD to UPDATE), 2016 * then it is up to us to reset it to NORMAL. 2017 */ 2018 if (type == RB_PAGE_HEAD) { 2019 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2020 tail_page, 2021 RB_PAGE_UPDATE); 2022 if (RB_WARN_ON(cpu_buffer, 2023 ret != RB_PAGE_UPDATE)) 2024 return -1; 2025 } 2026 2027 return 0; 2028 } 2029 2030 static inline void 2031 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2032 unsigned long tail, struct rb_event_info *info) 2033 { 2034 struct buffer_page *tail_page = info->tail_page; 2035 struct ring_buffer_event *event; 2036 unsigned long length = info->length; 2037 2038 /* 2039 * Only the event that crossed the page boundary 2040 * must fill the old tail_page with padding. 2041 */ 2042 if (tail >= BUF_PAGE_SIZE) { 2043 /* 2044 * If the page was filled, then we still need 2045 * to update the real_end. Reset it to zero 2046 * and the reader will ignore it. 2047 */ 2048 if (tail == BUF_PAGE_SIZE) 2049 tail_page->real_end = 0; 2050 2051 local_sub(length, &tail_page->write); 2052 return; 2053 } 2054 2055 event = __rb_page_index(tail_page, tail); 2056 kmemcheck_annotate_bitfield(event, bitfield); 2057 2058 /* account for padding bytes */ 2059 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2060 2061 /* 2062 * Save the original length to the meta data. 2063 * This will be used by the reader to add lost event 2064 * counter. 2065 */ 2066 tail_page->real_end = tail; 2067 2068 /* 2069 * If this event is bigger than the minimum size, then 2070 * we need to be careful that we don't subtract the 2071 * write counter enough to allow another writer to slip 2072 * in on this page. 2073 * We put in a discarded commit instead, to make sure 2074 * that this space is not used again. 2075 * 2076 * If we are less than the minimum size, we don't need to 2077 * worry about it. 2078 */ 2079 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2080 /* No room for any events */ 2081 2082 /* Mark the rest of the page with padding */ 2083 rb_event_set_padding(event); 2084 2085 /* Set the write back to the previous setting */ 2086 local_sub(length, &tail_page->write); 2087 return; 2088 } 2089 2090 /* Put in a discarded event */ 2091 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2092 event->type_len = RINGBUF_TYPE_PADDING; 2093 /* time delta must be non zero */ 2094 event->time_delta = 1; 2095 2096 /* Set write to end of buffer */ 2097 length = (tail + length) - BUF_PAGE_SIZE; 2098 local_sub(length, &tail_page->write); 2099 } 2100 2101 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2102 2103 /* 2104 * This is the slow path, force gcc not to inline it. 2105 */ 2106 static noinline struct ring_buffer_event * 2107 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2108 unsigned long tail, struct rb_event_info *info) 2109 { 2110 struct buffer_page *tail_page = info->tail_page; 2111 struct buffer_page *commit_page = cpu_buffer->commit_page; 2112 struct ring_buffer *buffer = cpu_buffer->buffer; 2113 struct buffer_page *next_page; 2114 int ret; 2115 2116 next_page = tail_page; 2117 2118 rb_inc_page(cpu_buffer, &next_page); 2119 2120 /* 2121 * If for some reason, we had an interrupt storm that made 2122 * it all the way around the buffer, bail, and warn 2123 * about it. 2124 */ 2125 if (unlikely(next_page == commit_page)) { 2126 local_inc(&cpu_buffer->commit_overrun); 2127 goto out_reset; 2128 } 2129 2130 /* 2131 * This is where the fun begins! 2132 * 2133 * We are fighting against races between a reader that 2134 * could be on another CPU trying to swap its reader 2135 * page with the buffer head. 2136 * 2137 * We are also fighting against interrupts coming in and 2138 * moving the head or tail on us as well. 2139 * 2140 * If the next page is the head page then we have filled 2141 * the buffer, unless the commit page is still on the 2142 * reader page. 2143 */ 2144 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2145 2146 /* 2147 * If the commit is not on the reader page, then 2148 * move the header page. 2149 */ 2150 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2151 /* 2152 * If we are not in overwrite mode, 2153 * this is easy, just stop here. 2154 */ 2155 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2156 local_inc(&cpu_buffer->dropped_events); 2157 goto out_reset; 2158 } 2159 2160 ret = rb_handle_head_page(cpu_buffer, 2161 tail_page, 2162 next_page); 2163 if (ret < 0) 2164 goto out_reset; 2165 if (ret) 2166 goto out_again; 2167 } else { 2168 /* 2169 * We need to be careful here too. The 2170 * commit page could still be on the reader 2171 * page. We could have a small buffer, and 2172 * have filled up the buffer with events 2173 * from interrupts and such, and wrapped. 2174 * 2175 * Note, if the tail page is also the on the 2176 * reader_page, we let it move out. 2177 */ 2178 if (unlikely((cpu_buffer->commit_page != 2179 cpu_buffer->tail_page) && 2180 (cpu_buffer->commit_page == 2181 cpu_buffer->reader_page))) { 2182 local_inc(&cpu_buffer->commit_overrun); 2183 goto out_reset; 2184 } 2185 } 2186 } 2187 2188 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2189 2190 out_again: 2191 2192 rb_reset_tail(cpu_buffer, tail, info); 2193 2194 /* Commit what we have for now. */ 2195 rb_end_commit(cpu_buffer); 2196 /* rb_end_commit() decs committing */ 2197 local_inc(&cpu_buffer->committing); 2198 2199 /* fail and let the caller try again */ 2200 return ERR_PTR(-EAGAIN); 2201 2202 out_reset: 2203 /* reset write */ 2204 rb_reset_tail(cpu_buffer, tail, info); 2205 2206 return NULL; 2207 } 2208 2209 /* Slow path, do not inline */ 2210 static noinline struct ring_buffer_event * 2211 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2212 { 2213 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2214 2215 /* Not the first event on the page? */ 2216 if (rb_event_index(event)) { 2217 event->time_delta = delta & TS_MASK; 2218 event->array[0] = delta >> TS_SHIFT; 2219 } else { 2220 /* nope, just zero it */ 2221 event->time_delta = 0; 2222 event->array[0] = 0; 2223 } 2224 2225 return skip_time_extend(event); 2226 } 2227 2228 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2229 struct ring_buffer_event *event); 2230 2231 /** 2232 * rb_update_event - update event type and data 2233 * @event: the event to update 2234 * @type: the type of event 2235 * @length: the size of the event field in the ring buffer 2236 * 2237 * Update the type and data fields of the event. The length 2238 * is the actual size that is written to the ring buffer, 2239 * and with this, we can determine what to place into the 2240 * data field. 2241 */ 2242 static void 2243 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2244 struct ring_buffer_event *event, 2245 struct rb_event_info *info) 2246 { 2247 unsigned length = info->length; 2248 u64 delta = info->delta; 2249 2250 /* Only a commit updates the timestamp */ 2251 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2252 delta = 0; 2253 2254 /* 2255 * If we need to add a timestamp, then we 2256 * add it to the start of the resevered space. 2257 */ 2258 if (unlikely(info->add_timestamp)) { 2259 event = rb_add_time_stamp(event, delta); 2260 length -= RB_LEN_TIME_EXTEND; 2261 delta = 0; 2262 } 2263 2264 event->time_delta = delta; 2265 length -= RB_EVNT_HDR_SIZE; 2266 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2267 event->type_len = 0; 2268 event->array[0] = length; 2269 } else 2270 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2271 } 2272 2273 static unsigned rb_calculate_event_length(unsigned length) 2274 { 2275 struct ring_buffer_event event; /* Used only for sizeof array */ 2276 2277 /* zero length can cause confusions */ 2278 if (!length) 2279 length++; 2280 2281 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2282 length += sizeof(event.array[0]); 2283 2284 length += RB_EVNT_HDR_SIZE; 2285 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2286 2287 /* 2288 * In case the time delta is larger than the 27 bits for it 2289 * in the header, we need to add a timestamp. If another 2290 * event comes in when trying to discard this one to increase 2291 * the length, then the timestamp will be added in the allocated 2292 * space of this event. If length is bigger than the size needed 2293 * for the TIME_EXTEND, then padding has to be used. The events 2294 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2295 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2296 * As length is a multiple of 4, we only need to worry if it 2297 * is 12 (RB_LEN_TIME_EXTEND + 4). 2298 */ 2299 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2300 length += RB_ALIGNMENT; 2301 2302 return length; 2303 } 2304 2305 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2306 static inline bool sched_clock_stable(void) 2307 { 2308 return true; 2309 } 2310 #endif 2311 2312 static inline int 2313 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2314 struct ring_buffer_event *event) 2315 { 2316 unsigned long new_index, old_index; 2317 struct buffer_page *bpage; 2318 unsigned long index; 2319 unsigned long addr; 2320 2321 new_index = rb_event_index(event); 2322 old_index = new_index + rb_event_ts_length(event); 2323 addr = (unsigned long)event; 2324 addr &= PAGE_MASK; 2325 2326 bpage = READ_ONCE(cpu_buffer->tail_page); 2327 2328 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2329 unsigned long write_mask = 2330 local_read(&bpage->write) & ~RB_WRITE_MASK; 2331 unsigned long event_length = rb_event_length(event); 2332 /* 2333 * This is on the tail page. It is possible that 2334 * a write could come in and move the tail page 2335 * and write to the next page. That is fine 2336 * because we just shorten what is on this page. 2337 */ 2338 old_index += write_mask; 2339 new_index += write_mask; 2340 index = local_cmpxchg(&bpage->write, old_index, new_index); 2341 if (index == old_index) { 2342 /* update counters */ 2343 local_sub(event_length, &cpu_buffer->entries_bytes); 2344 return 1; 2345 } 2346 } 2347 2348 /* could not discard */ 2349 return 0; 2350 } 2351 2352 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2353 { 2354 local_inc(&cpu_buffer->committing); 2355 local_inc(&cpu_buffer->commits); 2356 } 2357 2358 static __always_inline void 2359 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2360 { 2361 unsigned long max_count; 2362 2363 /* 2364 * We only race with interrupts and NMIs on this CPU. 2365 * If we own the commit event, then we can commit 2366 * all others that interrupted us, since the interruptions 2367 * are in stack format (they finish before they come 2368 * back to us). This allows us to do a simple loop to 2369 * assign the commit to the tail. 2370 */ 2371 again: 2372 max_count = cpu_buffer->nr_pages * 100; 2373 2374 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2375 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2376 return; 2377 if (RB_WARN_ON(cpu_buffer, 2378 rb_is_reader_page(cpu_buffer->tail_page))) 2379 return; 2380 local_set(&cpu_buffer->commit_page->page->commit, 2381 rb_page_write(cpu_buffer->commit_page)); 2382 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2383 /* Only update the write stamp if the page has an event */ 2384 if (rb_page_write(cpu_buffer->commit_page)) 2385 cpu_buffer->write_stamp = 2386 cpu_buffer->commit_page->page->time_stamp; 2387 /* add barrier to keep gcc from optimizing too much */ 2388 barrier(); 2389 } 2390 while (rb_commit_index(cpu_buffer) != 2391 rb_page_write(cpu_buffer->commit_page)) { 2392 2393 local_set(&cpu_buffer->commit_page->page->commit, 2394 rb_page_write(cpu_buffer->commit_page)); 2395 RB_WARN_ON(cpu_buffer, 2396 local_read(&cpu_buffer->commit_page->page->commit) & 2397 ~RB_WRITE_MASK); 2398 barrier(); 2399 } 2400 2401 /* again, keep gcc from optimizing */ 2402 barrier(); 2403 2404 /* 2405 * If an interrupt came in just after the first while loop 2406 * and pushed the tail page forward, we will be left with 2407 * a dangling commit that will never go forward. 2408 */ 2409 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2410 goto again; 2411 } 2412 2413 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2414 { 2415 unsigned long commits; 2416 2417 if (RB_WARN_ON(cpu_buffer, 2418 !local_read(&cpu_buffer->committing))) 2419 return; 2420 2421 again: 2422 commits = local_read(&cpu_buffer->commits); 2423 /* synchronize with interrupts */ 2424 barrier(); 2425 if (local_read(&cpu_buffer->committing) == 1) 2426 rb_set_commit_to_write(cpu_buffer); 2427 2428 local_dec(&cpu_buffer->committing); 2429 2430 /* synchronize with interrupts */ 2431 barrier(); 2432 2433 /* 2434 * Need to account for interrupts coming in between the 2435 * updating of the commit page and the clearing of the 2436 * committing counter. 2437 */ 2438 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2439 !local_read(&cpu_buffer->committing)) { 2440 local_inc(&cpu_buffer->committing); 2441 goto again; 2442 } 2443 } 2444 2445 static inline void rb_event_discard(struct ring_buffer_event *event) 2446 { 2447 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2448 event = skip_time_extend(event); 2449 2450 /* array[0] holds the actual length for the discarded event */ 2451 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2452 event->type_len = RINGBUF_TYPE_PADDING; 2453 /* time delta must be non zero */ 2454 if (!event->time_delta) 2455 event->time_delta = 1; 2456 } 2457 2458 static __always_inline bool 2459 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2460 struct ring_buffer_event *event) 2461 { 2462 unsigned long addr = (unsigned long)event; 2463 unsigned long index; 2464 2465 index = rb_event_index(event); 2466 addr &= PAGE_MASK; 2467 2468 return cpu_buffer->commit_page->page == (void *)addr && 2469 rb_commit_index(cpu_buffer) == index; 2470 } 2471 2472 static __always_inline void 2473 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2474 struct ring_buffer_event *event) 2475 { 2476 u64 delta; 2477 2478 /* 2479 * The event first in the commit queue updates the 2480 * time stamp. 2481 */ 2482 if (rb_event_is_commit(cpu_buffer, event)) { 2483 /* 2484 * A commit event that is first on a page 2485 * updates the write timestamp with the page stamp 2486 */ 2487 if (!rb_event_index(event)) 2488 cpu_buffer->write_stamp = 2489 cpu_buffer->commit_page->page->time_stamp; 2490 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2491 delta = event->array[0]; 2492 delta <<= TS_SHIFT; 2493 delta += event->time_delta; 2494 cpu_buffer->write_stamp += delta; 2495 } else 2496 cpu_buffer->write_stamp += event->time_delta; 2497 } 2498 } 2499 2500 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2501 struct ring_buffer_event *event) 2502 { 2503 local_inc(&cpu_buffer->entries); 2504 rb_update_write_stamp(cpu_buffer, event); 2505 rb_end_commit(cpu_buffer); 2506 } 2507 2508 static __always_inline void 2509 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2510 { 2511 bool pagebusy; 2512 2513 if (buffer->irq_work.waiters_pending) { 2514 buffer->irq_work.waiters_pending = false; 2515 /* irq_work_queue() supplies it's own memory barriers */ 2516 irq_work_queue(&buffer->irq_work.work); 2517 } 2518 2519 if (cpu_buffer->irq_work.waiters_pending) { 2520 cpu_buffer->irq_work.waiters_pending = false; 2521 /* irq_work_queue() supplies it's own memory barriers */ 2522 irq_work_queue(&cpu_buffer->irq_work.work); 2523 } 2524 2525 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2526 2527 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2528 cpu_buffer->irq_work.wakeup_full = true; 2529 cpu_buffer->irq_work.full_waiters_pending = false; 2530 /* irq_work_queue() supplies it's own memory barriers */ 2531 irq_work_queue(&cpu_buffer->irq_work.work); 2532 } 2533 } 2534 2535 /* 2536 * The lock and unlock are done within a preempt disable section. 2537 * The current_context per_cpu variable can only be modified 2538 * by the current task between lock and unlock. But it can 2539 * be modified more than once via an interrupt. To pass this 2540 * information from the lock to the unlock without having to 2541 * access the 'in_interrupt()' functions again (which do show 2542 * a bit of overhead in something as critical as function tracing, 2543 * we use a bitmask trick. 2544 * 2545 * bit 0 = NMI context 2546 * bit 1 = IRQ context 2547 * bit 2 = SoftIRQ context 2548 * bit 3 = normal context. 2549 * 2550 * This works because this is the order of contexts that can 2551 * preempt other contexts. A SoftIRQ never preempts an IRQ 2552 * context. 2553 * 2554 * When the context is determined, the corresponding bit is 2555 * checked and set (if it was set, then a recursion of that context 2556 * happened). 2557 * 2558 * On unlock, we need to clear this bit. To do so, just subtract 2559 * 1 from the current_context and AND it to itself. 2560 * 2561 * (binary) 2562 * 101 - 1 = 100 2563 * 101 & 100 = 100 (clearing bit zero) 2564 * 2565 * 1010 - 1 = 1001 2566 * 1010 & 1001 = 1000 (clearing bit 1) 2567 * 2568 * The least significant bit can be cleared this way, and it 2569 * just so happens that it is the same bit corresponding to 2570 * the current context. 2571 */ 2572 2573 static __always_inline int 2574 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2575 { 2576 unsigned int val = cpu_buffer->current_context; 2577 int bit; 2578 2579 if (in_interrupt()) { 2580 if (in_nmi()) 2581 bit = RB_CTX_NMI; 2582 else if (in_irq()) 2583 bit = RB_CTX_IRQ; 2584 else 2585 bit = RB_CTX_SOFTIRQ; 2586 } else 2587 bit = RB_CTX_NORMAL; 2588 2589 if (unlikely(val & (1 << bit))) 2590 return 1; 2591 2592 val |= (1 << bit); 2593 cpu_buffer->current_context = val; 2594 2595 return 0; 2596 } 2597 2598 static __always_inline void 2599 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2600 { 2601 cpu_buffer->current_context &= cpu_buffer->current_context - 1; 2602 } 2603 2604 /** 2605 * ring_buffer_unlock_commit - commit a reserved 2606 * @buffer: The buffer to commit to 2607 * @event: The event pointer to commit. 2608 * 2609 * This commits the data to the ring buffer, and releases any locks held. 2610 * 2611 * Must be paired with ring_buffer_lock_reserve. 2612 */ 2613 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2614 struct ring_buffer_event *event) 2615 { 2616 struct ring_buffer_per_cpu *cpu_buffer; 2617 int cpu = raw_smp_processor_id(); 2618 2619 cpu_buffer = buffer->buffers[cpu]; 2620 2621 rb_commit(cpu_buffer, event); 2622 2623 rb_wakeups(buffer, cpu_buffer); 2624 2625 trace_recursive_unlock(cpu_buffer); 2626 2627 preempt_enable_notrace(); 2628 2629 return 0; 2630 } 2631 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2632 2633 static noinline void 2634 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2635 struct rb_event_info *info) 2636 { 2637 WARN_ONCE(info->delta > (1ULL << 59), 2638 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2639 (unsigned long long)info->delta, 2640 (unsigned long long)info->ts, 2641 (unsigned long long)cpu_buffer->write_stamp, 2642 sched_clock_stable() ? "" : 2643 "If you just came from a suspend/resume,\n" 2644 "please switch to the trace global clock:\n" 2645 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2646 info->add_timestamp = 1; 2647 } 2648 2649 static struct ring_buffer_event * 2650 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2651 struct rb_event_info *info) 2652 { 2653 struct ring_buffer_event *event; 2654 struct buffer_page *tail_page; 2655 unsigned long tail, write; 2656 2657 /* 2658 * If the time delta since the last event is too big to 2659 * hold in the time field of the event, then we append a 2660 * TIME EXTEND event ahead of the data event. 2661 */ 2662 if (unlikely(info->add_timestamp)) 2663 info->length += RB_LEN_TIME_EXTEND; 2664 2665 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2666 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2667 write = local_add_return(info->length, &tail_page->write); 2668 2669 /* set write to only the index of the write */ 2670 write &= RB_WRITE_MASK; 2671 tail = write - info->length; 2672 2673 /* 2674 * If this is the first commit on the page, then it has the same 2675 * timestamp as the page itself. 2676 */ 2677 if (!tail) 2678 info->delta = 0; 2679 2680 /* See if we shot pass the end of this buffer page */ 2681 if (unlikely(write > BUF_PAGE_SIZE)) 2682 return rb_move_tail(cpu_buffer, tail, info); 2683 2684 /* We reserved something on the buffer */ 2685 2686 event = __rb_page_index(tail_page, tail); 2687 kmemcheck_annotate_bitfield(event, bitfield); 2688 rb_update_event(cpu_buffer, event, info); 2689 2690 local_inc(&tail_page->entries); 2691 2692 /* 2693 * If this is the first commit on the page, then update 2694 * its timestamp. 2695 */ 2696 if (!tail) 2697 tail_page->page->time_stamp = info->ts; 2698 2699 /* account for these added bytes */ 2700 local_add(info->length, &cpu_buffer->entries_bytes); 2701 2702 return event; 2703 } 2704 2705 static __always_inline struct ring_buffer_event * 2706 rb_reserve_next_event(struct ring_buffer *buffer, 2707 struct ring_buffer_per_cpu *cpu_buffer, 2708 unsigned long length) 2709 { 2710 struct ring_buffer_event *event; 2711 struct rb_event_info info; 2712 int nr_loops = 0; 2713 u64 diff; 2714 2715 rb_start_commit(cpu_buffer); 2716 2717 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2718 /* 2719 * Due to the ability to swap a cpu buffer from a buffer 2720 * it is possible it was swapped before we committed. 2721 * (committing stops a swap). We check for it here and 2722 * if it happened, we have to fail the write. 2723 */ 2724 barrier(); 2725 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2726 local_dec(&cpu_buffer->committing); 2727 local_dec(&cpu_buffer->commits); 2728 return NULL; 2729 } 2730 #endif 2731 2732 info.length = rb_calculate_event_length(length); 2733 again: 2734 info.add_timestamp = 0; 2735 info.delta = 0; 2736 2737 /* 2738 * We allow for interrupts to reenter here and do a trace. 2739 * If one does, it will cause this original code to loop 2740 * back here. Even with heavy interrupts happening, this 2741 * should only happen a few times in a row. If this happens 2742 * 1000 times in a row, there must be either an interrupt 2743 * storm or we have something buggy. 2744 * Bail! 2745 */ 2746 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2747 goto out_fail; 2748 2749 info.ts = rb_time_stamp(cpu_buffer->buffer); 2750 diff = info.ts - cpu_buffer->write_stamp; 2751 2752 /* make sure this diff is calculated here */ 2753 barrier(); 2754 2755 /* Did the write stamp get updated already? */ 2756 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2757 info.delta = diff; 2758 if (unlikely(test_time_stamp(info.delta))) 2759 rb_handle_timestamp(cpu_buffer, &info); 2760 } 2761 2762 event = __rb_reserve_next(cpu_buffer, &info); 2763 2764 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2765 if (info.add_timestamp) 2766 info.length -= RB_LEN_TIME_EXTEND; 2767 goto again; 2768 } 2769 2770 if (!event) 2771 goto out_fail; 2772 2773 return event; 2774 2775 out_fail: 2776 rb_end_commit(cpu_buffer); 2777 return NULL; 2778 } 2779 2780 /** 2781 * ring_buffer_lock_reserve - reserve a part of the buffer 2782 * @buffer: the ring buffer to reserve from 2783 * @length: the length of the data to reserve (excluding event header) 2784 * 2785 * Returns a reseverd event on the ring buffer to copy directly to. 2786 * The user of this interface will need to get the body to write into 2787 * and can use the ring_buffer_event_data() interface. 2788 * 2789 * The length is the length of the data needed, not the event length 2790 * which also includes the event header. 2791 * 2792 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2793 * If NULL is returned, then nothing has been allocated or locked. 2794 */ 2795 struct ring_buffer_event * 2796 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2797 { 2798 struct ring_buffer_per_cpu *cpu_buffer; 2799 struct ring_buffer_event *event; 2800 int cpu; 2801 2802 /* If we are tracing schedule, we don't want to recurse */ 2803 preempt_disable_notrace(); 2804 2805 if (unlikely(atomic_read(&buffer->record_disabled))) 2806 goto out; 2807 2808 cpu = raw_smp_processor_id(); 2809 2810 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2811 goto out; 2812 2813 cpu_buffer = buffer->buffers[cpu]; 2814 2815 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2816 goto out; 2817 2818 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2819 goto out; 2820 2821 if (unlikely(trace_recursive_lock(cpu_buffer))) 2822 goto out; 2823 2824 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2825 if (!event) 2826 goto out_unlock; 2827 2828 return event; 2829 2830 out_unlock: 2831 trace_recursive_unlock(cpu_buffer); 2832 out: 2833 preempt_enable_notrace(); 2834 return NULL; 2835 } 2836 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2837 2838 /* 2839 * Decrement the entries to the page that an event is on. 2840 * The event does not even need to exist, only the pointer 2841 * to the page it is on. This may only be called before the commit 2842 * takes place. 2843 */ 2844 static inline void 2845 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2846 struct ring_buffer_event *event) 2847 { 2848 unsigned long addr = (unsigned long)event; 2849 struct buffer_page *bpage = cpu_buffer->commit_page; 2850 struct buffer_page *start; 2851 2852 addr &= PAGE_MASK; 2853 2854 /* Do the likely case first */ 2855 if (likely(bpage->page == (void *)addr)) { 2856 local_dec(&bpage->entries); 2857 return; 2858 } 2859 2860 /* 2861 * Because the commit page may be on the reader page we 2862 * start with the next page and check the end loop there. 2863 */ 2864 rb_inc_page(cpu_buffer, &bpage); 2865 start = bpage; 2866 do { 2867 if (bpage->page == (void *)addr) { 2868 local_dec(&bpage->entries); 2869 return; 2870 } 2871 rb_inc_page(cpu_buffer, &bpage); 2872 } while (bpage != start); 2873 2874 /* commit not part of this buffer?? */ 2875 RB_WARN_ON(cpu_buffer, 1); 2876 } 2877 2878 /** 2879 * ring_buffer_commit_discard - discard an event that has not been committed 2880 * @buffer: the ring buffer 2881 * @event: non committed event to discard 2882 * 2883 * Sometimes an event that is in the ring buffer needs to be ignored. 2884 * This function lets the user discard an event in the ring buffer 2885 * and then that event will not be read later. 2886 * 2887 * This function only works if it is called before the the item has been 2888 * committed. It will try to free the event from the ring buffer 2889 * if another event has not been added behind it. 2890 * 2891 * If another event has been added behind it, it will set the event 2892 * up as discarded, and perform the commit. 2893 * 2894 * If this function is called, do not call ring_buffer_unlock_commit on 2895 * the event. 2896 */ 2897 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2898 struct ring_buffer_event *event) 2899 { 2900 struct ring_buffer_per_cpu *cpu_buffer; 2901 int cpu; 2902 2903 /* The event is discarded regardless */ 2904 rb_event_discard(event); 2905 2906 cpu = smp_processor_id(); 2907 cpu_buffer = buffer->buffers[cpu]; 2908 2909 /* 2910 * This must only be called if the event has not been 2911 * committed yet. Thus we can assume that preemption 2912 * is still disabled. 2913 */ 2914 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2915 2916 rb_decrement_entry(cpu_buffer, event); 2917 if (rb_try_to_discard(cpu_buffer, event)) 2918 goto out; 2919 2920 /* 2921 * The commit is still visible by the reader, so we 2922 * must still update the timestamp. 2923 */ 2924 rb_update_write_stamp(cpu_buffer, event); 2925 out: 2926 rb_end_commit(cpu_buffer); 2927 2928 trace_recursive_unlock(cpu_buffer); 2929 2930 preempt_enable_notrace(); 2931 2932 } 2933 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2934 2935 /** 2936 * ring_buffer_write - write data to the buffer without reserving 2937 * @buffer: The ring buffer to write to. 2938 * @length: The length of the data being written (excluding the event header) 2939 * @data: The data to write to the buffer. 2940 * 2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2942 * one function. If you already have the data to write to the buffer, it 2943 * may be easier to simply call this function. 2944 * 2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2946 * and not the length of the event which would hold the header. 2947 */ 2948 int ring_buffer_write(struct ring_buffer *buffer, 2949 unsigned long length, 2950 void *data) 2951 { 2952 struct ring_buffer_per_cpu *cpu_buffer; 2953 struct ring_buffer_event *event; 2954 void *body; 2955 int ret = -EBUSY; 2956 int cpu; 2957 2958 preempt_disable_notrace(); 2959 2960 if (atomic_read(&buffer->record_disabled)) 2961 goto out; 2962 2963 cpu = raw_smp_processor_id(); 2964 2965 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2966 goto out; 2967 2968 cpu_buffer = buffer->buffers[cpu]; 2969 2970 if (atomic_read(&cpu_buffer->record_disabled)) 2971 goto out; 2972 2973 if (length > BUF_MAX_DATA_SIZE) 2974 goto out; 2975 2976 if (unlikely(trace_recursive_lock(cpu_buffer))) 2977 goto out; 2978 2979 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2980 if (!event) 2981 goto out_unlock; 2982 2983 body = rb_event_data(event); 2984 2985 memcpy(body, data, length); 2986 2987 rb_commit(cpu_buffer, event); 2988 2989 rb_wakeups(buffer, cpu_buffer); 2990 2991 ret = 0; 2992 2993 out_unlock: 2994 trace_recursive_unlock(cpu_buffer); 2995 2996 out: 2997 preempt_enable_notrace(); 2998 2999 return ret; 3000 } 3001 EXPORT_SYMBOL_GPL(ring_buffer_write); 3002 3003 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3004 { 3005 struct buffer_page *reader = cpu_buffer->reader_page; 3006 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3007 struct buffer_page *commit = cpu_buffer->commit_page; 3008 3009 /* In case of error, head will be NULL */ 3010 if (unlikely(!head)) 3011 return true; 3012 3013 return reader->read == rb_page_commit(reader) && 3014 (commit == reader || 3015 (commit == head && 3016 head->read == rb_page_commit(commit))); 3017 } 3018 3019 /** 3020 * ring_buffer_record_disable - stop all writes into the buffer 3021 * @buffer: The ring buffer to stop writes to. 3022 * 3023 * This prevents all writes to the buffer. Any attempt to write 3024 * to the buffer after this will fail and return NULL. 3025 * 3026 * The caller should call synchronize_sched() after this. 3027 */ 3028 void ring_buffer_record_disable(struct ring_buffer *buffer) 3029 { 3030 atomic_inc(&buffer->record_disabled); 3031 } 3032 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3033 3034 /** 3035 * ring_buffer_record_enable - enable writes to the buffer 3036 * @buffer: The ring buffer to enable writes 3037 * 3038 * Note, multiple disables will need the same number of enables 3039 * to truly enable the writing (much like preempt_disable). 3040 */ 3041 void ring_buffer_record_enable(struct ring_buffer *buffer) 3042 { 3043 atomic_dec(&buffer->record_disabled); 3044 } 3045 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3046 3047 /** 3048 * ring_buffer_record_off - stop all writes into the buffer 3049 * @buffer: The ring buffer to stop writes to. 3050 * 3051 * This prevents all writes to the buffer. Any attempt to write 3052 * to the buffer after this will fail and return NULL. 3053 * 3054 * This is different than ring_buffer_record_disable() as 3055 * it works like an on/off switch, where as the disable() version 3056 * must be paired with a enable(). 3057 */ 3058 void ring_buffer_record_off(struct ring_buffer *buffer) 3059 { 3060 unsigned int rd; 3061 unsigned int new_rd; 3062 3063 do { 3064 rd = atomic_read(&buffer->record_disabled); 3065 new_rd = rd | RB_BUFFER_OFF; 3066 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3067 } 3068 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3069 3070 /** 3071 * ring_buffer_record_on - restart writes into the buffer 3072 * @buffer: The ring buffer to start writes to. 3073 * 3074 * This enables all writes to the buffer that was disabled by 3075 * ring_buffer_record_off(). 3076 * 3077 * This is different than ring_buffer_record_enable() as 3078 * it works like an on/off switch, where as the enable() version 3079 * must be paired with a disable(). 3080 */ 3081 void ring_buffer_record_on(struct ring_buffer *buffer) 3082 { 3083 unsigned int rd; 3084 unsigned int new_rd; 3085 3086 do { 3087 rd = atomic_read(&buffer->record_disabled); 3088 new_rd = rd & ~RB_BUFFER_OFF; 3089 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3090 } 3091 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3092 3093 /** 3094 * ring_buffer_record_is_on - return true if the ring buffer can write 3095 * @buffer: The ring buffer to see if write is enabled 3096 * 3097 * Returns true if the ring buffer is in a state that it accepts writes. 3098 */ 3099 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3100 { 3101 return !atomic_read(&buffer->record_disabled); 3102 } 3103 3104 /** 3105 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3106 * @buffer: The ring buffer to stop writes to. 3107 * @cpu: The CPU buffer to stop 3108 * 3109 * This prevents all writes to the buffer. Any attempt to write 3110 * to the buffer after this will fail and return NULL. 3111 * 3112 * The caller should call synchronize_sched() after this. 3113 */ 3114 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3115 { 3116 struct ring_buffer_per_cpu *cpu_buffer; 3117 3118 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3119 return; 3120 3121 cpu_buffer = buffer->buffers[cpu]; 3122 atomic_inc(&cpu_buffer->record_disabled); 3123 } 3124 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3125 3126 /** 3127 * ring_buffer_record_enable_cpu - enable writes to the buffer 3128 * @buffer: The ring buffer to enable writes 3129 * @cpu: The CPU to enable. 3130 * 3131 * Note, multiple disables will need the same number of enables 3132 * to truly enable the writing (much like preempt_disable). 3133 */ 3134 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3135 { 3136 struct ring_buffer_per_cpu *cpu_buffer; 3137 3138 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3139 return; 3140 3141 cpu_buffer = buffer->buffers[cpu]; 3142 atomic_dec(&cpu_buffer->record_disabled); 3143 } 3144 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3145 3146 /* 3147 * The total entries in the ring buffer is the running counter 3148 * of entries entered into the ring buffer, minus the sum of 3149 * the entries read from the ring buffer and the number of 3150 * entries that were overwritten. 3151 */ 3152 static inline unsigned long 3153 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3154 { 3155 return local_read(&cpu_buffer->entries) - 3156 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3157 } 3158 3159 /** 3160 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3161 * @buffer: The ring buffer 3162 * @cpu: The per CPU buffer to read from. 3163 */ 3164 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3165 { 3166 unsigned long flags; 3167 struct ring_buffer_per_cpu *cpu_buffer; 3168 struct buffer_page *bpage; 3169 u64 ret = 0; 3170 3171 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3172 return 0; 3173 3174 cpu_buffer = buffer->buffers[cpu]; 3175 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3176 /* 3177 * if the tail is on reader_page, oldest time stamp is on the reader 3178 * page 3179 */ 3180 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3181 bpage = cpu_buffer->reader_page; 3182 else 3183 bpage = rb_set_head_page(cpu_buffer); 3184 if (bpage) 3185 ret = bpage->page->time_stamp; 3186 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3187 3188 return ret; 3189 } 3190 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3191 3192 /** 3193 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3194 * @buffer: The ring buffer 3195 * @cpu: The per CPU buffer to read from. 3196 */ 3197 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3198 { 3199 struct ring_buffer_per_cpu *cpu_buffer; 3200 unsigned long ret; 3201 3202 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3203 return 0; 3204 3205 cpu_buffer = buffer->buffers[cpu]; 3206 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3207 3208 return ret; 3209 } 3210 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3211 3212 /** 3213 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3214 * @buffer: The ring buffer 3215 * @cpu: The per CPU buffer to get the entries from. 3216 */ 3217 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3218 { 3219 struct ring_buffer_per_cpu *cpu_buffer; 3220 3221 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3222 return 0; 3223 3224 cpu_buffer = buffer->buffers[cpu]; 3225 3226 return rb_num_of_entries(cpu_buffer); 3227 } 3228 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3229 3230 /** 3231 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3232 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3233 * @buffer: The ring buffer 3234 * @cpu: The per CPU buffer to get the number of overruns from 3235 */ 3236 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3237 { 3238 struct ring_buffer_per_cpu *cpu_buffer; 3239 unsigned long ret; 3240 3241 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3242 return 0; 3243 3244 cpu_buffer = buffer->buffers[cpu]; 3245 ret = local_read(&cpu_buffer->overrun); 3246 3247 return ret; 3248 } 3249 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3250 3251 /** 3252 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3253 * commits failing due to the buffer wrapping around while there are uncommitted 3254 * events, such as during an interrupt storm. 3255 * @buffer: The ring buffer 3256 * @cpu: The per CPU buffer to get the number of overruns from 3257 */ 3258 unsigned long 3259 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3260 { 3261 struct ring_buffer_per_cpu *cpu_buffer; 3262 unsigned long ret; 3263 3264 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3265 return 0; 3266 3267 cpu_buffer = buffer->buffers[cpu]; 3268 ret = local_read(&cpu_buffer->commit_overrun); 3269 3270 return ret; 3271 } 3272 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3273 3274 /** 3275 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3276 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3277 * @buffer: The ring buffer 3278 * @cpu: The per CPU buffer to get the number of overruns from 3279 */ 3280 unsigned long 3281 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3282 { 3283 struct ring_buffer_per_cpu *cpu_buffer; 3284 unsigned long ret; 3285 3286 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3287 return 0; 3288 3289 cpu_buffer = buffer->buffers[cpu]; 3290 ret = local_read(&cpu_buffer->dropped_events); 3291 3292 return ret; 3293 } 3294 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3295 3296 /** 3297 * ring_buffer_read_events_cpu - get the number of events successfully read 3298 * @buffer: The ring buffer 3299 * @cpu: The per CPU buffer to get the number of events read 3300 */ 3301 unsigned long 3302 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3303 { 3304 struct ring_buffer_per_cpu *cpu_buffer; 3305 3306 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3307 return 0; 3308 3309 cpu_buffer = buffer->buffers[cpu]; 3310 return cpu_buffer->read; 3311 } 3312 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3313 3314 /** 3315 * ring_buffer_entries - get the number of entries in a buffer 3316 * @buffer: The ring buffer 3317 * 3318 * Returns the total number of entries in the ring buffer 3319 * (all CPU entries) 3320 */ 3321 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3322 { 3323 struct ring_buffer_per_cpu *cpu_buffer; 3324 unsigned long entries = 0; 3325 int cpu; 3326 3327 /* if you care about this being correct, lock the buffer */ 3328 for_each_buffer_cpu(buffer, cpu) { 3329 cpu_buffer = buffer->buffers[cpu]; 3330 entries += rb_num_of_entries(cpu_buffer); 3331 } 3332 3333 return entries; 3334 } 3335 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3336 3337 /** 3338 * ring_buffer_overruns - get the number of overruns in buffer 3339 * @buffer: The ring buffer 3340 * 3341 * Returns the total number of overruns in the ring buffer 3342 * (all CPU entries) 3343 */ 3344 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3345 { 3346 struct ring_buffer_per_cpu *cpu_buffer; 3347 unsigned long overruns = 0; 3348 int cpu; 3349 3350 /* if you care about this being correct, lock the buffer */ 3351 for_each_buffer_cpu(buffer, cpu) { 3352 cpu_buffer = buffer->buffers[cpu]; 3353 overruns += local_read(&cpu_buffer->overrun); 3354 } 3355 3356 return overruns; 3357 } 3358 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3359 3360 static void rb_iter_reset(struct ring_buffer_iter *iter) 3361 { 3362 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3363 3364 /* Iterator usage is expected to have record disabled */ 3365 iter->head_page = cpu_buffer->reader_page; 3366 iter->head = cpu_buffer->reader_page->read; 3367 3368 iter->cache_reader_page = iter->head_page; 3369 iter->cache_read = cpu_buffer->read; 3370 3371 if (iter->head) 3372 iter->read_stamp = cpu_buffer->read_stamp; 3373 else 3374 iter->read_stamp = iter->head_page->page->time_stamp; 3375 } 3376 3377 /** 3378 * ring_buffer_iter_reset - reset an iterator 3379 * @iter: The iterator to reset 3380 * 3381 * Resets the iterator, so that it will start from the beginning 3382 * again. 3383 */ 3384 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3385 { 3386 struct ring_buffer_per_cpu *cpu_buffer; 3387 unsigned long flags; 3388 3389 if (!iter) 3390 return; 3391 3392 cpu_buffer = iter->cpu_buffer; 3393 3394 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3395 rb_iter_reset(iter); 3396 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3397 } 3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3399 3400 /** 3401 * ring_buffer_iter_empty - check if an iterator has no more to read 3402 * @iter: The iterator to check 3403 */ 3404 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3405 { 3406 struct ring_buffer_per_cpu *cpu_buffer; 3407 3408 cpu_buffer = iter->cpu_buffer; 3409 3410 return iter->head_page == cpu_buffer->commit_page && 3411 iter->head == rb_commit_index(cpu_buffer); 3412 } 3413 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3414 3415 static void 3416 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3417 struct ring_buffer_event *event) 3418 { 3419 u64 delta; 3420 3421 switch (event->type_len) { 3422 case RINGBUF_TYPE_PADDING: 3423 return; 3424 3425 case RINGBUF_TYPE_TIME_EXTEND: 3426 delta = event->array[0]; 3427 delta <<= TS_SHIFT; 3428 delta += event->time_delta; 3429 cpu_buffer->read_stamp += delta; 3430 return; 3431 3432 case RINGBUF_TYPE_TIME_STAMP: 3433 /* FIXME: not implemented */ 3434 return; 3435 3436 case RINGBUF_TYPE_DATA: 3437 cpu_buffer->read_stamp += event->time_delta; 3438 return; 3439 3440 default: 3441 BUG(); 3442 } 3443 return; 3444 } 3445 3446 static void 3447 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3448 struct ring_buffer_event *event) 3449 { 3450 u64 delta; 3451 3452 switch (event->type_len) { 3453 case RINGBUF_TYPE_PADDING: 3454 return; 3455 3456 case RINGBUF_TYPE_TIME_EXTEND: 3457 delta = event->array[0]; 3458 delta <<= TS_SHIFT; 3459 delta += event->time_delta; 3460 iter->read_stamp += delta; 3461 return; 3462 3463 case RINGBUF_TYPE_TIME_STAMP: 3464 /* FIXME: not implemented */ 3465 return; 3466 3467 case RINGBUF_TYPE_DATA: 3468 iter->read_stamp += event->time_delta; 3469 return; 3470 3471 default: 3472 BUG(); 3473 } 3474 return; 3475 } 3476 3477 static struct buffer_page * 3478 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3479 { 3480 struct buffer_page *reader = NULL; 3481 unsigned long overwrite; 3482 unsigned long flags; 3483 int nr_loops = 0; 3484 int ret; 3485 3486 local_irq_save(flags); 3487 arch_spin_lock(&cpu_buffer->lock); 3488 3489 again: 3490 /* 3491 * This should normally only loop twice. But because the 3492 * start of the reader inserts an empty page, it causes 3493 * a case where we will loop three times. There should be no 3494 * reason to loop four times (that I know of). 3495 */ 3496 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3497 reader = NULL; 3498 goto out; 3499 } 3500 3501 reader = cpu_buffer->reader_page; 3502 3503 /* If there's more to read, return this page */ 3504 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3505 goto out; 3506 3507 /* Never should we have an index greater than the size */ 3508 if (RB_WARN_ON(cpu_buffer, 3509 cpu_buffer->reader_page->read > rb_page_size(reader))) 3510 goto out; 3511 3512 /* check if we caught up to the tail */ 3513 reader = NULL; 3514 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3515 goto out; 3516 3517 /* Don't bother swapping if the ring buffer is empty */ 3518 if (rb_num_of_entries(cpu_buffer) == 0) 3519 goto out; 3520 3521 /* 3522 * Reset the reader page to size zero. 3523 */ 3524 local_set(&cpu_buffer->reader_page->write, 0); 3525 local_set(&cpu_buffer->reader_page->entries, 0); 3526 local_set(&cpu_buffer->reader_page->page->commit, 0); 3527 cpu_buffer->reader_page->real_end = 0; 3528 3529 spin: 3530 /* 3531 * Splice the empty reader page into the list around the head. 3532 */ 3533 reader = rb_set_head_page(cpu_buffer); 3534 if (!reader) 3535 goto out; 3536 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3537 cpu_buffer->reader_page->list.prev = reader->list.prev; 3538 3539 /* 3540 * cpu_buffer->pages just needs to point to the buffer, it 3541 * has no specific buffer page to point to. Lets move it out 3542 * of our way so we don't accidentally swap it. 3543 */ 3544 cpu_buffer->pages = reader->list.prev; 3545 3546 /* The reader page will be pointing to the new head */ 3547 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3548 3549 /* 3550 * We want to make sure we read the overruns after we set up our 3551 * pointers to the next object. The writer side does a 3552 * cmpxchg to cross pages which acts as the mb on the writer 3553 * side. Note, the reader will constantly fail the swap 3554 * while the writer is updating the pointers, so this 3555 * guarantees that the overwrite recorded here is the one we 3556 * want to compare with the last_overrun. 3557 */ 3558 smp_mb(); 3559 overwrite = local_read(&(cpu_buffer->overrun)); 3560 3561 /* 3562 * Here's the tricky part. 3563 * 3564 * We need to move the pointer past the header page. 3565 * But we can only do that if a writer is not currently 3566 * moving it. The page before the header page has the 3567 * flag bit '1' set if it is pointing to the page we want. 3568 * but if the writer is in the process of moving it 3569 * than it will be '2' or already moved '0'. 3570 */ 3571 3572 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3573 3574 /* 3575 * If we did not convert it, then we must try again. 3576 */ 3577 if (!ret) 3578 goto spin; 3579 3580 /* 3581 * Yeah! We succeeded in replacing the page. 3582 * 3583 * Now make the new head point back to the reader page. 3584 */ 3585 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3586 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3587 3588 /* Finally update the reader page to the new head */ 3589 cpu_buffer->reader_page = reader; 3590 cpu_buffer->reader_page->read = 0; 3591 3592 if (overwrite != cpu_buffer->last_overrun) { 3593 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3594 cpu_buffer->last_overrun = overwrite; 3595 } 3596 3597 goto again; 3598 3599 out: 3600 /* Update the read_stamp on the first event */ 3601 if (reader && reader->read == 0) 3602 cpu_buffer->read_stamp = reader->page->time_stamp; 3603 3604 arch_spin_unlock(&cpu_buffer->lock); 3605 local_irq_restore(flags); 3606 3607 return reader; 3608 } 3609 3610 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3611 { 3612 struct ring_buffer_event *event; 3613 struct buffer_page *reader; 3614 unsigned length; 3615 3616 reader = rb_get_reader_page(cpu_buffer); 3617 3618 /* This function should not be called when buffer is empty */ 3619 if (RB_WARN_ON(cpu_buffer, !reader)) 3620 return; 3621 3622 event = rb_reader_event(cpu_buffer); 3623 3624 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3625 cpu_buffer->read++; 3626 3627 rb_update_read_stamp(cpu_buffer, event); 3628 3629 length = rb_event_length(event); 3630 cpu_buffer->reader_page->read += length; 3631 } 3632 3633 static void rb_advance_iter(struct ring_buffer_iter *iter) 3634 { 3635 struct ring_buffer_per_cpu *cpu_buffer; 3636 struct ring_buffer_event *event; 3637 unsigned length; 3638 3639 cpu_buffer = iter->cpu_buffer; 3640 3641 /* 3642 * Check if we are at the end of the buffer. 3643 */ 3644 if (iter->head >= rb_page_size(iter->head_page)) { 3645 /* discarded commits can make the page empty */ 3646 if (iter->head_page == cpu_buffer->commit_page) 3647 return; 3648 rb_inc_iter(iter); 3649 return; 3650 } 3651 3652 event = rb_iter_head_event(iter); 3653 3654 length = rb_event_length(event); 3655 3656 /* 3657 * This should not be called to advance the header if we are 3658 * at the tail of the buffer. 3659 */ 3660 if (RB_WARN_ON(cpu_buffer, 3661 (iter->head_page == cpu_buffer->commit_page) && 3662 (iter->head + length > rb_commit_index(cpu_buffer)))) 3663 return; 3664 3665 rb_update_iter_read_stamp(iter, event); 3666 3667 iter->head += length; 3668 3669 /* check for end of page padding */ 3670 if ((iter->head >= rb_page_size(iter->head_page)) && 3671 (iter->head_page != cpu_buffer->commit_page)) 3672 rb_inc_iter(iter); 3673 } 3674 3675 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3676 { 3677 return cpu_buffer->lost_events; 3678 } 3679 3680 static struct ring_buffer_event * 3681 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3682 unsigned long *lost_events) 3683 { 3684 struct ring_buffer_event *event; 3685 struct buffer_page *reader; 3686 int nr_loops = 0; 3687 3688 again: 3689 /* 3690 * We repeat when a time extend is encountered. 3691 * Since the time extend is always attached to a data event, 3692 * we should never loop more than once. 3693 * (We never hit the following condition more than twice). 3694 */ 3695 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3696 return NULL; 3697 3698 reader = rb_get_reader_page(cpu_buffer); 3699 if (!reader) 3700 return NULL; 3701 3702 event = rb_reader_event(cpu_buffer); 3703 3704 switch (event->type_len) { 3705 case RINGBUF_TYPE_PADDING: 3706 if (rb_null_event(event)) 3707 RB_WARN_ON(cpu_buffer, 1); 3708 /* 3709 * Because the writer could be discarding every 3710 * event it creates (which would probably be bad) 3711 * if we were to go back to "again" then we may never 3712 * catch up, and will trigger the warn on, or lock 3713 * the box. Return the padding, and we will release 3714 * the current locks, and try again. 3715 */ 3716 return event; 3717 3718 case RINGBUF_TYPE_TIME_EXTEND: 3719 /* Internal data, OK to advance */ 3720 rb_advance_reader(cpu_buffer); 3721 goto again; 3722 3723 case RINGBUF_TYPE_TIME_STAMP: 3724 /* FIXME: not implemented */ 3725 rb_advance_reader(cpu_buffer); 3726 goto again; 3727 3728 case RINGBUF_TYPE_DATA: 3729 if (ts) { 3730 *ts = cpu_buffer->read_stamp + event->time_delta; 3731 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3732 cpu_buffer->cpu, ts); 3733 } 3734 if (lost_events) 3735 *lost_events = rb_lost_events(cpu_buffer); 3736 return event; 3737 3738 default: 3739 BUG(); 3740 } 3741 3742 return NULL; 3743 } 3744 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3745 3746 static struct ring_buffer_event * 3747 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3748 { 3749 struct ring_buffer *buffer; 3750 struct ring_buffer_per_cpu *cpu_buffer; 3751 struct ring_buffer_event *event; 3752 int nr_loops = 0; 3753 3754 cpu_buffer = iter->cpu_buffer; 3755 buffer = cpu_buffer->buffer; 3756 3757 /* 3758 * Check if someone performed a consuming read to 3759 * the buffer. A consuming read invalidates the iterator 3760 * and we need to reset the iterator in this case. 3761 */ 3762 if (unlikely(iter->cache_read != cpu_buffer->read || 3763 iter->cache_reader_page != cpu_buffer->reader_page)) 3764 rb_iter_reset(iter); 3765 3766 again: 3767 if (ring_buffer_iter_empty(iter)) 3768 return NULL; 3769 3770 /* 3771 * We repeat when a time extend is encountered or we hit 3772 * the end of the page. Since the time extend is always attached 3773 * to a data event, we should never loop more than three times. 3774 * Once for going to next page, once on time extend, and 3775 * finally once to get the event. 3776 * (We never hit the following condition more than thrice). 3777 */ 3778 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3779 return NULL; 3780 3781 if (rb_per_cpu_empty(cpu_buffer)) 3782 return NULL; 3783 3784 if (iter->head >= rb_page_size(iter->head_page)) { 3785 rb_inc_iter(iter); 3786 goto again; 3787 } 3788 3789 event = rb_iter_head_event(iter); 3790 3791 switch (event->type_len) { 3792 case RINGBUF_TYPE_PADDING: 3793 if (rb_null_event(event)) { 3794 rb_inc_iter(iter); 3795 goto again; 3796 } 3797 rb_advance_iter(iter); 3798 return event; 3799 3800 case RINGBUF_TYPE_TIME_EXTEND: 3801 /* Internal data, OK to advance */ 3802 rb_advance_iter(iter); 3803 goto again; 3804 3805 case RINGBUF_TYPE_TIME_STAMP: 3806 /* FIXME: not implemented */ 3807 rb_advance_iter(iter); 3808 goto again; 3809 3810 case RINGBUF_TYPE_DATA: 3811 if (ts) { 3812 *ts = iter->read_stamp + event->time_delta; 3813 ring_buffer_normalize_time_stamp(buffer, 3814 cpu_buffer->cpu, ts); 3815 } 3816 return event; 3817 3818 default: 3819 BUG(); 3820 } 3821 3822 return NULL; 3823 } 3824 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3825 3826 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3827 { 3828 if (likely(!in_nmi())) { 3829 raw_spin_lock(&cpu_buffer->reader_lock); 3830 return true; 3831 } 3832 3833 /* 3834 * If an NMI die dumps out the content of the ring buffer 3835 * trylock must be used to prevent a deadlock if the NMI 3836 * preempted a task that holds the ring buffer locks. If 3837 * we get the lock then all is fine, if not, then continue 3838 * to do the read, but this can corrupt the ring buffer, 3839 * so it must be permanently disabled from future writes. 3840 * Reading from NMI is a oneshot deal. 3841 */ 3842 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3843 return true; 3844 3845 /* Continue without locking, but disable the ring buffer */ 3846 atomic_inc(&cpu_buffer->record_disabled); 3847 return false; 3848 } 3849 3850 static inline void 3851 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 3852 { 3853 if (likely(locked)) 3854 raw_spin_unlock(&cpu_buffer->reader_lock); 3855 return; 3856 } 3857 3858 /** 3859 * ring_buffer_peek - peek at the next event to be read 3860 * @buffer: The ring buffer to read 3861 * @cpu: The cpu to peak at 3862 * @ts: The timestamp counter of this event. 3863 * @lost_events: a variable to store if events were lost (may be NULL) 3864 * 3865 * This will return the event that will be read next, but does 3866 * not consume the data. 3867 */ 3868 struct ring_buffer_event * 3869 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3870 unsigned long *lost_events) 3871 { 3872 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3873 struct ring_buffer_event *event; 3874 unsigned long flags; 3875 bool dolock; 3876 3877 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3878 return NULL; 3879 3880 again: 3881 local_irq_save(flags); 3882 dolock = rb_reader_lock(cpu_buffer); 3883 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3884 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3885 rb_advance_reader(cpu_buffer); 3886 rb_reader_unlock(cpu_buffer, dolock); 3887 local_irq_restore(flags); 3888 3889 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3890 goto again; 3891 3892 return event; 3893 } 3894 3895 /** 3896 * ring_buffer_iter_peek - peek at the next event to be read 3897 * @iter: The ring buffer iterator 3898 * @ts: The timestamp counter of this event. 3899 * 3900 * This will return the event that will be read next, but does 3901 * not increment the iterator. 3902 */ 3903 struct ring_buffer_event * 3904 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3905 { 3906 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3907 struct ring_buffer_event *event; 3908 unsigned long flags; 3909 3910 again: 3911 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3912 event = rb_iter_peek(iter, ts); 3913 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3914 3915 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3916 goto again; 3917 3918 return event; 3919 } 3920 3921 /** 3922 * ring_buffer_consume - return an event and consume it 3923 * @buffer: The ring buffer to get the next event from 3924 * @cpu: the cpu to read the buffer from 3925 * @ts: a variable to store the timestamp (may be NULL) 3926 * @lost_events: a variable to store if events were lost (may be NULL) 3927 * 3928 * Returns the next event in the ring buffer, and that event is consumed. 3929 * Meaning, that sequential reads will keep returning a different event, 3930 * and eventually empty the ring buffer if the producer is slower. 3931 */ 3932 struct ring_buffer_event * 3933 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3934 unsigned long *lost_events) 3935 { 3936 struct ring_buffer_per_cpu *cpu_buffer; 3937 struct ring_buffer_event *event = NULL; 3938 unsigned long flags; 3939 bool dolock; 3940 3941 again: 3942 /* might be called in atomic */ 3943 preempt_disable(); 3944 3945 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3946 goto out; 3947 3948 cpu_buffer = buffer->buffers[cpu]; 3949 local_irq_save(flags); 3950 dolock = rb_reader_lock(cpu_buffer); 3951 3952 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3953 if (event) { 3954 cpu_buffer->lost_events = 0; 3955 rb_advance_reader(cpu_buffer); 3956 } 3957 3958 rb_reader_unlock(cpu_buffer, dolock); 3959 local_irq_restore(flags); 3960 3961 out: 3962 preempt_enable(); 3963 3964 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3965 goto again; 3966 3967 return event; 3968 } 3969 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3970 3971 /** 3972 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3973 * @buffer: The ring buffer to read from 3974 * @cpu: The cpu buffer to iterate over 3975 * 3976 * This performs the initial preparations necessary to iterate 3977 * through the buffer. Memory is allocated, buffer recording 3978 * is disabled, and the iterator pointer is returned to the caller. 3979 * 3980 * Disabling buffer recordng prevents the reading from being 3981 * corrupted. This is not a consuming read, so a producer is not 3982 * expected. 3983 * 3984 * After a sequence of ring_buffer_read_prepare calls, the user is 3985 * expected to make at least one call to ring_buffer_read_prepare_sync. 3986 * Afterwards, ring_buffer_read_start is invoked to get things going 3987 * for real. 3988 * 3989 * This overall must be paired with ring_buffer_read_finish. 3990 */ 3991 struct ring_buffer_iter * 3992 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3993 { 3994 struct ring_buffer_per_cpu *cpu_buffer; 3995 struct ring_buffer_iter *iter; 3996 3997 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3998 return NULL; 3999 4000 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4001 if (!iter) 4002 return NULL; 4003 4004 cpu_buffer = buffer->buffers[cpu]; 4005 4006 iter->cpu_buffer = cpu_buffer; 4007 4008 atomic_inc(&buffer->resize_disabled); 4009 atomic_inc(&cpu_buffer->record_disabled); 4010 4011 return iter; 4012 } 4013 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4014 4015 /** 4016 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4017 * 4018 * All previously invoked ring_buffer_read_prepare calls to prepare 4019 * iterators will be synchronized. Afterwards, read_buffer_read_start 4020 * calls on those iterators are allowed. 4021 */ 4022 void 4023 ring_buffer_read_prepare_sync(void) 4024 { 4025 synchronize_sched(); 4026 } 4027 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4028 4029 /** 4030 * ring_buffer_read_start - start a non consuming read of the buffer 4031 * @iter: The iterator returned by ring_buffer_read_prepare 4032 * 4033 * This finalizes the startup of an iteration through the buffer. 4034 * The iterator comes from a call to ring_buffer_read_prepare and 4035 * an intervening ring_buffer_read_prepare_sync must have been 4036 * performed. 4037 * 4038 * Must be paired with ring_buffer_read_finish. 4039 */ 4040 void 4041 ring_buffer_read_start(struct ring_buffer_iter *iter) 4042 { 4043 struct ring_buffer_per_cpu *cpu_buffer; 4044 unsigned long flags; 4045 4046 if (!iter) 4047 return; 4048 4049 cpu_buffer = iter->cpu_buffer; 4050 4051 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4052 arch_spin_lock(&cpu_buffer->lock); 4053 rb_iter_reset(iter); 4054 arch_spin_unlock(&cpu_buffer->lock); 4055 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4056 } 4057 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4058 4059 /** 4060 * ring_buffer_read_finish - finish reading the iterator of the buffer 4061 * @iter: The iterator retrieved by ring_buffer_start 4062 * 4063 * This re-enables the recording to the buffer, and frees the 4064 * iterator. 4065 */ 4066 void 4067 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4068 { 4069 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4070 unsigned long flags; 4071 4072 /* 4073 * Ring buffer is disabled from recording, here's a good place 4074 * to check the integrity of the ring buffer. 4075 * Must prevent readers from trying to read, as the check 4076 * clears the HEAD page and readers require it. 4077 */ 4078 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4079 rb_check_pages(cpu_buffer); 4080 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4081 4082 atomic_dec(&cpu_buffer->record_disabled); 4083 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4084 kfree(iter); 4085 } 4086 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4087 4088 /** 4089 * ring_buffer_read - read the next item in the ring buffer by the iterator 4090 * @iter: The ring buffer iterator 4091 * @ts: The time stamp of the event read. 4092 * 4093 * This reads the next event in the ring buffer and increments the iterator. 4094 */ 4095 struct ring_buffer_event * 4096 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4097 { 4098 struct ring_buffer_event *event; 4099 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4100 unsigned long flags; 4101 4102 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4103 again: 4104 event = rb_iter_peek(iter, ts); 4105 if (!event) 4106 goto out; 4107 4108 if (event->type_len == RINGBUF_TYPE_PADDING) 4109 goto again; 4110 4111 rb_advance_iter(iter); 4112 out: 4113 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4114 4115 return event; 4116 } 4117 EXPORT_SYMBOL_GPL(ring_buffer_read); 4118 4119 /** 4120 * ring_buffer_size - return the size of the ring buffer (in bytes) 4121 * @buffer: The ring buffer. 4122 */ 4123 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4124 { 4125 /* 4126 * Earlier, this method returned 4127 * BUF_PAGE_SIZE * buffer->nr_pages 4128 * Since the nr_pages field is now removed, we have converted this to 4129 * return the per cpu buffer value. 4130 */ 4131 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4132 return 0; 4133 4134 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4135 } 4136 EXPORT_SYMBOL_GPL(ring_buffer_size); 4137 4138 static void 4139 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4140 { 4141 rb_head_page_deactivate(cpu_buffer); 4142 4143 cpu_buffer->head_page 4144 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4145 local_set(&cpu_buffer->head_page->write, 0); 4146 local_set(&cpu_buffer->head_page->entries, 0); 4147 local_set(&cpu_buffer->head_page->page->commit, 0); 4148 4149 cpu_buffer->head_page->read = 0; 4150 4151 cpu_buffer->tail_page = cpu_buffer->head_page; 4152 cpu_buffer->commit_page = cpu_buffer->head_page; 4153 4154 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4155 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4156 local_set(&cpu_buffer->reader_page->write, 0); 4157 local_set(&cpu_buffer->reader_page->entries, 0); 4158 local_set(&cpu_buffer->reader_page->page->commit, 0); 4159 cpu_buffer->reader_page->read = 0; 4160 4161 local_set(&cpu_buffer->entries_bytes, 0); 4162 local_set(&cpu_buffer->overrun, 0); 4163 local_set(&cpu_buffer->commit_overrun, 0); 4164 local_set(&cpu_buffer->dropped_events, 0); 4165 local_set(&cpu_buffer->entries, 0); 4166 local_set(&cpu_buffer->committing, 0); 4167 local_set(&cpu_buffer->commits, 0); 4168 cpu_buffer->read = 0; 4169 cpu_buffer->read_bytes = 0; 4170 4171 cpu_buffer->write_stamp = 0; 4172 cpu_buffer->read_stamp = 0; 4173 4174 cpu_buffer->lost_events = 0; 4175 cpu_buffer->last_overrun = 0; 4176 4177 rb_head_page_activate(cpu_buffer); 4178 } 4179 4180 /** 4181 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4182 * @buffer: The ring buffer to reset a per cpu buffer of 4183 * @cpu: The CPU buffer to be reset 4184 */ 4185 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4186 { 4187 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4188 unsigned long flags; 4189 4190 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4191 return; 4192 4193 atomic_inc(&buffer->resize_disabled); 4194 atomic_inc(&cpu_buffer->record_disabled); 4195 4196 /* Make sure all commits have finished */ 4197 synchronize_sched(); 4198 4199 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4200 4201 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4202 goto out; 4203 4204 arch_spin_lock(&cpu_buffer->lock); 4205 4206 rb_reset_cpu(cpu_buffer); 4207 4208 arch_spin_unlock(&cpu_buffer->lock); 4209 4210 out: 4211 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4212 4213 atomic_dec(&cpu_buffer->record_disabled); 4214 atomic_dec(&buffer->resize_disabled); 4215 } 4216 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4217 4218 /** 4219 * ring_buffer_reset - reset a ring buffer 4220 * @buffer: The ring buffer to reset all cpu buffers 4221 */ 4222 void ring_buffer_reset(struct ring_buffer *buffer) 4223 { 4224 int cpu; 4225 4226 for_each_buffer_cpu(buffer, cpu) 4227 ring_buffer_reset_cpu(buffer, cpu); 4228 } 4229 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4230 4231 /** 4232 * rind_buffer_empty - is the ring buffer empty? 4233 * @buffer: The ring buffer to test 4234 */ 4235 bool ring_buffer_empty(struct ring_buffer *buffer) 4236 { 4237 struct ring_buffer_per_cpu *cpu_buffer; 4238 unsigned long flags; 4239 bool dolock; 4240 int cpu; 4241 int ret; 4242 4243 /* yes this is racy, but if you don't like the race, lock the buffer */ 4244 for_each_buffer_cpu(buffer, cpu) { 4245 cpu_buffer = buffer->buffers[cpu]; 4246 local_irq_save(flags); 4247 dolock = rb_reader_lock(cpu_buffer); 4248 ret = rb_per_cpu_empty(cpu_buffer); 4249 rb_reader_unlock(cpu_buffer, dolock); 4250 local_irq_restore(flags); 4251 4252 if (!ret) 4253 return false; 4254 } 4255 4256 return true; 4257 } 4258 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4259 4260 /** 4261 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4262 * @buffer: The ring buffer 4263 * @cpu: The CPU buffer to test 4264 */ 4265 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4266 { 4267 struct ring_buffer_per_cpu *cpu_buffer; 4268 unsigned long flags; 4269 bool dolock; 4270 int ret; 4271 4272 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4273 return true; 4274 4275 cpu_buffer = buffer->buffers[cpu]; 4276 local_irq_save(flags); 4277 dolock = rb_reader_lock(cpu_buffer); 4278 ret = rb_per_cpu_empty(cpu_buffer); 4279 rb_reader_unlock(cpu_buffer, dolock); 4280 local_irq_restore(flags); 4281 4282 return ret; 4283 } 4284 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4285 4286 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4287 /** 4288 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4289 * @buffer_a: One buffer to swap with 4290 * @buffer_b: The other buffer to swap with 4291 * 4292 * This function is useful for tracers that want to take a "snapshot" 4293 * of a CPU buffer and has another back up buffer lying around. 4294 * it is expected that the tracer handles the cpu buffer not being 4295 * used at the moment. 4296 */ 4297 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4298 struct ring_buffer *buffer_b, int cpu) 4299 { 4300 struct ring_buffer_per_cpu *cpu_buffer_a; 4301 struct ring_buffer_per_cpu *cpu_buffer_b; 4302 int ret = -EINVAL; 4303 4304 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4305 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4306 goto out; 4307 4308 cpu_buffer_a = buffer_a->buffers[cpu]; 4309 cpu_buffer_b = buffer_b->buffers[cpu]; 4310 4311 /* At least make sure the two buffers are somewhat the same */ 4312 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4313 goto out; 4314 4315 ret = -EAGAIN; 4316 4317 if (atomic_read(&buffer_a->record_disabled)) 4318 goto out; 4319 4320 if (atomic_read(&buffer_b->record_disabled)) 4321 goto out; 4322 4323 if (atomic_read(&cpu_buffer_a->record_disabled)) 4324 goto out; 4325 4326 if (atomic_read(&cpu_buffer_b->record_disabled)) 4327 goto out; 4328 4329 /* 4330 * We can't do a synchronize_sched here because this 4331 * function can be called in atomic context. 4332 * Normally this will be called from the same CPU as cpu. 4333 * If not it's up to the caller to protect this. 4334 */ 4335 atomic_inc(&cpu_buffer_a->record_disabled); 4336 atomic_inc(&cpu_buffer_b->record_disabled); 4337 4338 ret = -EBUSY; 4339 if (local_read(&cpu_buffer_a->committing)) 4340 goto out_dec; 4341 if (local_read(&cpu_buffer_b->committing)) 4342 goto out_dec; 4343 4344 buffer_a->buffers[cpu] = cpu_buffer_b; 4345 buffer_b->buffers[cpu] = cpu_buffer_a; 4346 4347 cpu_buffer_b->buffer = buffer_a; 4348 cpu_buffer_a->buffer = buffer_b; 4349 4350 ret = 0; 4351 4352 out_dec: 4353 atomic_dec(&cpu_buffer_a->record_disabled); 4354 atomic_dec(&cpu_buffer_b->record_disabled); 4355 out: 4356 return ret; 4357 } 4358 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4359 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4360 4361 /** 4362 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4363 * @buffer: the buffer to allocate for. 4364 * @cpu: the cpu buffer to allocate. 4365 * 4366 * This function is used in conjunction with ring_buffer_read_page. 4367 * When reading a full page from the ring buffer, these functions 4368 * can be used to speed up the process. The calling function should 4369 * allocate a few pages first with this function. Then when it 4370 * needs to get pages from the ring buffer, it passes the result 4371 * of this function into ring_buffer_read_page, which will swap 4372 * the page that was allocated, with the read page of the buffer. 4373 * 4374 * Returns: 4375 * The page allocated, or NULL on error. 4376 */ 4377 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4378 { 4379 struct buffer_data_page *bpage; 4380 struct page *page; 4381 4382 page = alloc_pages_node(cpu_to_node(cpu), 4383 GFP_KERNEL | __GFP_NORETRY, 0); 4384 if (!page) 4385 return NULL; 4386 4387 bpage = page_address(page); 4388 4389 rb_init_page(bpage); 4390 4391 return bpage; 4392 } 4393 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4394 4395 /** 4396 * ring_buffer_free_read_page - free an allocated read page 4397 * @buffer: the buffer the page was allocate for 4398 * @data: the page to free 4399 * 4400 * Free a page allocated from ring_buffer_alloc_read_page. 4401 */ 4402 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4403 { 4404 free_page((unsigned long)data); 4405 } 4406 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4407 4408 /** 4409 * ring_buffer_read_page - extract a page from the ring buffer 4410 * @buffer: buffer to extract from 4411 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4412 * @len: amount to extract 4413 * @cpu: the cpu of the buffer to extract 4414 * @full: should the extraction only happen when the page is full. 4415 * 4416 * This function will pull out a page from the ring buffer and consume it. 4417 * @data_page must be the address of the variable that was returned 4418 * from ring_buffer_alloc_read_page. This is because the page might be used 4419 * to swap with a page in the ring buffer. 4420 * 4421 * for example: 4422 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4423 * if (!rpage) 4424 * return error; 4425 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4426 * if (ret >= 0) 4427 * process_page(rpage, ret); 4428 * 4429 * When @full is set, the function will not return true unless 4430 * the writer is off the reader page. 4431 * 4432 * Note: it is up to the calling functions to handle sleeps and wakeups. 4433 * The ring buffer can be used anywhere in the kernel and can not 4434 * blindly call wake_up. The layer that uses the ring buffer must be 4435 * responsible for that. 4436 * 4437 * Returns: 4438 * >=0 if data has been transferred, returns the offset of consumed data. 4439 * <0 if no data has been transferred. 4440 */ 4441 int ring_buffer_read_page(struct ring_buffer *buffer, 4442 void **data_page, size_t len, int cpu, int full) 4443 { 4444 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4445 struct ring_buffer_event *event; 4446 struct buffer_data_page *bpage; 4447 struct buffer_page *reader; 4448 unsigned long missed_events; 4449 unsigned long flags; 4450 unsigned int commit; 4451 unsigned int read; 4452 u64 save_timestamp; 4453 int ret = -1; 4454 4455 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4456 goto out; 4457 4458 /* 4459 * If len is not big enough to hold the page header, then 4460 * we can not copy anything. 4461 */ 4462 if (len <= BUF_PAGE_HDR_SIZE) 4463 goto out; 4464 4465 len -= BUF_PAGE_HDR_SIZE; 4466 4467 if (!data_page) 4468 goto out; 4469 4470 bpage = *data_page; 4471 if (!bpage) 4472 goto out; 4473 4474 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4475 4476 reader = rb_get_reader_page(cpu_buffer); 4477 if (!reader) 4478 goto out_unlock; 4479 4480 event = rb_reader_event(cpu_buffer); 4481 4482 read = reader->read; 4483 commit = rb_page_commit(reader); 4484 4485 /* Check if any events were dropped */ 4486 missed_events = cpu_buffer->lost_events; 4487 4488 /* 4489 * If this page has been partially read or 4490 * if len is not big enough to read the rest of the page or 4491 * a writer is still on the page, then 4492 * we must copy the data from the page to the buffer. 4493 * Otherwise, we can simply swap the page with the one passed in. 4494 */ 4495 if (read || (len < (commit - read)) || 4496 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4497 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4498 unsigned int rpos = read; 4499 unsigned int pos = 0; 4500 unsigned int size; 4501 4502 if (full) 4503 goto out_unlock; 4504 4505 if (len > (commit - read)) 4506 len = (commit - read); 4507 4508 /* Always keep the time extend and data together */ 4509 size = rb_event_ts_length(event); 4510 4511 if (len < size) 4512 goto out_unlock; 4513 4514 /* save the current timestamp, since the user will need it */ 4515 save_timestamp = cpu_buffer->read_stamp; 4516 4517 /* Need to copy one event at a time */ 4518 do { 4519 /* We need the size of one event, because 4520 * rb_advance_reader only advances by one event, 4521 * whereas rb_event_ts_length may include the size of 4522 * one or two events. 4523 * We have already ensured there's enough space if this 4524 * is a time extend. */ 4525 size = rb_event_length(event); 4526 memcpy(bpage->data + pos, rpage->data + rpos, size); 4527 4528 len -= size; 4529 4530 rb_advance_reader(cpu_buffer); 4531 rpos = reader->read; 4532 pos += size; 4533 4534 if (rpos >= commit) 4535 break; 4536 4537 event = rb_reader_event(cpu_buffer); 4538 /* Always keep the time extend and data together */ 4539 size = rb_event_ts_length(event); 4540 } while (len >= size); 4541 4542 /* update bpage */ 4543 local_set(&bpage->commit, pos); 4544 bpage->time_stamp = save_timestamp; 4545 4546 /* we copied everything to the beginning */ 4547 read = 0; 4548 } else { 4549 /* update the entry counter */ 4550 cpu_buffer->read += rb_page_entries(reader); 4551 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4552 4553 /* swap the pages */ 4554 rb_init_page(bpage); 4555 bpage = reader->page; 4556 reader->page = *data_page; 4557 local_set(&reader->write, 0); 4558 local_set(&reader->entries, 0); 4559 reader->read = 0; 4560 *data_page = bpage; 4561 4562 /* 4563 * Use the real_end for the data size, 4564 * This gives us a chance to store the lost events 4565 * on the page. 4566 */ 4567 if (reader->real_end) 4568 local_set(&bpage->commit, reader->real_end); 4569 } 4570 ret = read; 4571 4572 cpu_buffer->lost_events = 0; 4573 4574 commit = local_read(&bpage->commit); 4575 /* 4576 * Set a flag in the commit field if we lost events 4577 */ 4578 if (missed_events) { 4579 /* If there is room at the end of the page to save the 4580 * missed events, then record it there. 4581 */ 4582 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4583 memcpy(&bpage->data[commit], &missed_events, 4584 sizeof(missed_events)); 4585 local_add(RB_MISSED_STORED, &bpage->commit); 4586 commit += sizeof(missed_events); 4587 } 4588 local_add(RB_MISSED_EVENTS, &bpage->commit); 4589 } 4590 4591 /* 4592 * This page may be off to user land. Zero it out here. 4593 */ 4594 if (commit < BUF_PAGE_SIZE) 4595 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4596 4597 out_unlock: 4598 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4599 4600 out: 4601 return ret; 4602 } 4603 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4604 4605 /* 4606 * We only allocate new buffers, never free them if the CPU goes down. 4607 * If we were to free the buffer, then the user would lose any trace that was in 4608 * the buffer. 4609 */ 4610 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4611 { 4612 struct ring_buffer *buffer; 4613 long nr_pages_same; 4614 int cpu_i; 4615 unsigned long nr_pages; 4616 4617 buffer = container_of(node, struct ring_buffer, node); 4618 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4619 return 0; 4620 4621 nr_pages = 0; 4622 nr_pages_same = 1; 4623 /* check if all cpu sizes are same */ 4624 for_each_buffer_cpu(buffer, cpu_i) { 4625 /* fill in the size from first enabled cpu */ 4626 if (nr_pages == 0) 4627 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4628 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4629 nr_pages_same = 0; 4630 break; 4631 } 4632 } 4633 /* allocate minimum pages, user can later expand it */ 4634 if (!nr_pages_same) 4635 nr_pages = 2; 4636 buffer->buffers[cpu] = 4637 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4638 if (!buffer->buffers[cpu]) { 4639 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4640 cpu); 4641 return -ENOMEM; 4642 } 4643 smp_wmb(); 4644 cpumask_set_cpu(cpu, buffer->cpumask); 4645 return 0; 4646 } 4647 4648 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4649 /* 4650 * This is a basic integrity check of the ring buffer. 4651 * Late in the boot cycle this test will run when configured in. 4652 * It will kick off a thread per CPU that will go into a loop 4653 * writing to the per cpu ring buffer various sizes of data. 4654 * Some of the data will be large items, some small. 4655 * 4656 * Another thread is created that goes into a spin, sending out 4657 * IPIs to the other CPUs to also write into the ring buffer. 4658 * this is to test the nesting ability of the buffer. 4659 * 4660 * Basic stats are recorded and reported. If something in the 4661 * ring buffer should happen that's not expected, a big warning 4662 * is displayed and all ring buffers are disabled. 4663 */ 4664 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4665 4666 struct rb_test_data { 4667 struct ring_buffer *buffer; 4668 unsigned long events; 4669 unsigned long bytes_written; 4670 unsigned long bytes_alloc; 4671 unsigned long bytes_dropped; 4672 unsigned long events_nested; 4673 unsigned long bytes_written_nested; 4674 unsigned long bytes_alloc_nested; 4675 unsigned long bytes_dropped_nested; 4676 int min_size_nested; 4677 int max_size_nested; 4678 int max_size; 4679 int min_size; 4680 int cpu; 4681 int cnt; 4682 }; 4683 4684 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4685 4686 /* 1 meg per cpu */ 4687 #define RB_TEST_BUFFER_SIZE 1048576 4688 4689 static char rb_string[] __initdata = 4690 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4691 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4692 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4693 4694 static bool rb_test_started __initdata; 4695 4696 struct rb_item { 4697 int size; 4698 char str[]; 4699 }; 4700 4701 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4702 { 4703 struct ring_buffer_event *event; 4704 struct rb_item *item; 4705 bool started; 4706 int event_len; 4707 int size; 4708 int len; 4709 int cnt; 4710 4711 /* Have nested writes different that what is written */ 4712 cnt = data->cnt + (nested ? 27 : 0); 4713 4714 /* Multiply cnt by ~e, to make some unique increment */ 4715 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4716 4717 len = size + sizeof(struct rb_item); 4718 4719 started = rb_test_started; 4720 /* read rb_test_started before checking buffer enabled */ 4721 smp_rmb(); 4722 4723 event = ring_buffer_lock_reserve(data->buffer, len); 4724 if (!event) { 4725 /* Ignore dropped events before test starts. */ 4726 if (started) { 4727 if (nested) 4728 data->bytes_dropped += len; 4729 else 4730 data->bytes_dropped_nested += len; 4731 } 4732 return len; 4733 } 4734 4735 event_len = ring_buffer_event_length(event); 4736 4737 if (RB_WARN_ON(data->buffer, event_len < len)) 4738 goto out; 4739 4740 item = ring_buffer_event_data(event); 4741 item->size = size; 4742 memcpy(item->str, rb_string, size); 4743 4744 if (nested) { 4745 data->bytes_alloc_nested += event_len; 4746 data->bytes_written_nested += len; 4747 data->events_nested++; 4748 if (!data->min_size_nested || len < data->min_size_nested) 4749 data->min_size_nested = len; 4750 if (len > data->max_size_nested) 4751 data->max_size_nested = len; 4752 } else { 4753 data->bytes_alloc += event_len; 4754 data->bytes_written += len; 4755 data->events++; 4756 if (!data->min_size || len < data->min_size) 4757 data->max_size = len; 4758 if (len > data->max_size) 4759 data->max_size = len; 4760 } 4761 4762 out: 4763 ring_buffer_unlock_commit(data->buffer, event); 4764 4765 return 0; 4766 } 4767 4768 static __init int rb_test(void *arg) 4769 { 4770 struct rb_test_data *data = arg; 4771 4772 while (!kthread_should_stop()) { 4773 rb_write_something(data, false); 4774 data->cnt++; 4775 4776 set_current_state(TASK_INTERRUPTIBLE); 4777 /* Now sleep between a min of 100-300us and a max of 1ms */ 4778 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4779 } 4780 4781 return 0; 4782 } 4783 4784 static __init void rb_ipi(void *ignore) 4785 { 4786 struct rb_test_data *data; 4787 int cpu = smp_processor_id(); 4788 4789 data = &rb_data[cpu]; 4790 rb_write_something(data, true); 4791 } 4792 4793 static __init int rb_hammer_test(void *arg) 4794 { 4795 while (!kthread_should_stop()) { 4796 4797 /* Send an IPI to all cpus to write data! */ 4798 smp_call_function(rb_ipi, NULL, 1); 4799 /* No sleep, but for non preempt, let others run */ 4800 schedule(); 4801 } 4802 4803 return 0; 4804 } 4805 4806 static __init int test_ringbuffer(void) 4807 { 4808 struct task_struct *rb_hammer; 4809 struct ring_buffer *buffer; 4810 int cpu; 4811 int ret = 0; 4812 4813 pr_info("Running ring buffer tests...\n"); 4814 4815 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4816 if (WARN_ON(!buffer)) 4817 return 0; 4818 4819 /* Disable buffer so that threads can't write to it yet */ 4820 ring_buffer_record_off(buffer); 4821 4822 for_each_online_cpu(cpu) { 4823 rb_data[cpu].buffer = buffer; 4824 rb_data[cpu].cpu = cpu; 4825 rb_data[cpu].cnt = cpu; 4826 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4827 "rbtester/%d", cpu); 4828 if (WARN_ON(!rb_threads[cpu])) { 4829 pr_cont("FAILED\n"); 4830 ret = -1; 4831 goto out_free; 4832 } 4833 4834 kthread_bind(rb_threads[cpu], cpu); 4835 wake_up_process(rb_threads[cpu]); 4836 } 4837 4838 /* Now create the rb hammer! */ 4839 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4840 if (WARN_ON(!rb_hammer)) { 4841 pr_cont("FAILED\n"); 4842 ret = -1; 4843 goto out_free; 4844 } 4845 4846 ring_buffer_record_on(buffer); 4847 /* 4848 * Show buffer is enabled before setting rb_test_started. 4849 * Yes there's a small race window where events could be 4850 * dropped and the thread wont catch it. But when a ring 4851 * buffer gets enabled, there will always be some kind of 4852 * delay before other CPUs see it. Thus, we don't care about 4853 * those dropped events. We care about events dropped after 4854 * the threads see that the buffer is active. 4855 */ 4856 smp_wmb(); 4857 rb_test_started = true; 4858 4859 set_current_state(TASK_INTERRUPTIBLE); 4860 /* Just run for 10 seconds */; 4861 schedule_timeout(10 * HZ); 4862 4863 kthread_stop(rb_hammer); 4864 4865 out_free: 4866 for_each_online_cpu(cpu) { 4867 if (!rb_threads[cpu]) 4868 break; 4869 kthread_stop(rb_threads[cpu]); 4870 } 4871 if (ret) { 4872 ring_buffer_free(buffer); 4873 return ret; 4874 } 4875 4876 /* Report! */ 4877 pr_info("finished\n"); 4878 for_each_online_cpu(cpu) { 4879 struct ring_buffer_event *event; 4880 struct rb_test_data *data = &rb_data[cpu]; 4881 struct rb_item *item; 4882 unsigned long total_events; 4883 unsigned long total_dropped; 4884 unsigned long total_written; 4885 unsigned long total_alloc; 4886 unsigned long total_read = 0; 4887 unsigned long total_size = 0; 4888 unsigned long total_len = 0; 4889 unsigned long total_lost = 0; 4890 unsigned long lost; 4891 int big_event_size; 4892 int small_event_size; 4893 4894 ret = -1; 4895 4896 total_events = data->events + data->events_nested; 4897 total_written = data->bytes_written + data->bytes_written_nested; 4898 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4899 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4900 4901 big_event_size = data->max_size + data->max_size_nested; 4902 small_event_size = data->min_size + data->min_size_nested; 4903 4904 pr_info("CPU %d:\n", cpu); 4905 pr_info(" events: %ld\n", total_events); 4906 pr_info(" dropped bytes: %ld\n", total_dropped); 4907 pr_info(" alloced bytes: %ld\n", total_alloc); 4908 pr_info(" written bytes: %ld\n", total_written); 4909 pr_info(" biggest event: %d\n", big_event_size); 4910 pr_info(" smallest event: %d\n", small_event_size); 4911 4912 if (RB_WARN_ON(buffer, total_dropped)) 4913 break; 4914 4915 ret = 0; 4916 4917 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4918 total_lost += lost; 4919 item = ring_buffer_event_data(event); 4920 total_len += ring_buffer_event_length(event); 4921 total_size += item->size + sizeof(struct rb_item); 4922 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4923 pr_info("FAILED!\n"); 4924 pr_info("buffer had: %.*s\n", item->size, item->str); 4925 pr_info("expected: %.*s\n", item->size, rb_string); 4926 RB_WARN_ON(buffer, 1); 4927 ret = -1; 4928 break; 4929 } 4930 total_read++; 4931 } 4932 if (ret) 4933 break; 4934 4935 ret = -1; 4936 4937 pr_info(" read events: %ld\n", total_read); 4938 pr_info(" lost events: %ld\n", total_lost); 4939 pr_info(" total events: %ld\n", total_lost + total_read); 4940 pr_info(" recorded len bytes: %ld\n", total_len); 4941 pr_info(" recorded size bytes: %ld\n", total_size); 4942 if (total_lost) 4943 pr_info(" With dropped events, record len and size may not match\n" 4944 " alloced and written from above\n"); 4945 if (!total_lost) { 4946 if (RB_WARN_ON(buffer, total_len != total_alloc || 4947 total_size != total_written)) 4948 break; 4949 } 4950 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4951 break; 4952 4953 ret = 0; 4954 } 4955 if (!ret) 4956 pr_info("Ring buffer PASSED!\n"); 4957 4958 ring_buffer_free(buffer); 4959 return 0; 4960 } 4961 4962 late_initcall(test_ringbuffer); 4963 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4964