xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 861e10be)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/debugfs.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kmemcheck.h>
15 #include <linux/module.h>
16 #include <linux/percpu.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/hash.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/fs.h>
24 
25 #include <asm/local.h>
26 
27 static void update_pages_handler(struct work_struct *work);
28 
29 /*
30  * The ring buffer header is special. We must manually up keep it.
31  */
32 int ring_buffer_print_entry_header(struct trace_seq *s)
33 {
34 	int ret;
35 
36 	ret = trace_seq_printf(s, "# compressed entry header\n");
37 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
38 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
39 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
40 	ret = trace_seq_printf(s, "\n");
41 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
42 			       RINGBUF_TYPE_PADDING);
43 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
44 			       RINGBUF_TYPE_TIME_EXTEND);
45 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
46 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47 
48 	return ret;
49 }
50 
51 /*
52  * The ring buffer is made up of a list of pages. A separate list of pages is
53  * allocated for each CPU. A writer may only write to a buffer that is
54  * associated with the CPU it is currently executing on.  A reader may read
55  * from any per cpu buffer.
56  *
57  * The reader is special. For each per cpu buffer, the reader has its own
58  * reader page. When a reader has read the entire reader page, this reader
59  * page is swapped with another page in the ring buffer.
60  *
61  * Now, as long as the writer is off the reader page, the reader can do what
62  * ever it wants with that page. The writer will never write to that page
63  * again (as long as it is out of the ring buffer).
64  *
65  * Here's some silly ASCII art.
66  *
67  *   +------+
68  *   |reader|          RING BUFFER
69  *   |page  |
70  *   +------+        +---+   +---+   +---+
71  *                   |   |-->|   |-->|   |
72  *                   +---+   +---+   +---+
73  *                     ^               |
74  *                     |               |
75  *                     +---------------+
76  *
77  *
78  *   +------+
79  *   |reader|          RING BUFFER
80  *   |page  |------------------v
81  *   +------+        +---+   +---+   +---+
82  *                   |   |-->|   |-->|   |
83  *                   +---+   +---+   +---+
84  *                     ^               |
85  *                     |               |
86  *                     +---------------+
87  *
88  *
89  *   +------+
90  *   |reader|          RING BUFFER
91  *   |page  |------------------v
92  *   +------+        +---+   +---+   +---+
93  *      ^            |   |-->|   |-->|   |
94  *      |            +---+   +---+   +---+
95  *      |                              |
96  *      |                              |
97  *      +------------------------------+
98  *
99  *
100  *   +------+
101  *   |buffer|          RING BUFFER
102  *   |page  |------------------v
103  *   +------+        +---+   +---+   +---+
104  *      ^            |   |   |   |-->|   |
105  *      |   New      +---+   +---+   +---+
106  *      |  Reader------^               |
107  *      |   page                       |
108  *      +------------------------------+
109  *
110  *
111  * After we make this swap, the reader can hand this page off to the splice
112  * code and be done with it. It can even allocate a new page if it needs to
113  * and swap that into the ring buffer.
114  *
115  * We will be using cmpxchg soon to make all this lockless.
116  *
117  */
118 
119 /*
120  * A fast way to enable or disable all ring buffers is to
121  * call tracing_on or tracing_off. Turning off the ring buffers
122  * prevents all ring buffers from being recorded to.
123  * Turning this switch on, makes it OK to write to the
124  * ring buffer, if the ring buffer is enabled itself.
125  *
126  * There's three layers that must be on in order to write
127  * to the ring buffer.
128  *
129  * 1) This global flag must be set.
130  * 2) The ring buffer must be enabled for recording.
131  * 3) The per cpu buffer must be enabled for recording.
132  *
133  * In case of an anomaly, this global flag has a bit set that
134  * will permantly disable all ring buffers.
135  */
136 
137 /*
138  * Global flag to disable all recording to ring buffers
139  *  This has two bits: ON, DISABLED
140  *
141  *  ON   DISABLED
142  * ---- ----------
143  *   0      0        : ring buffers are off
144  *   1      0        : ring buffers are on
145  *   X      1        : ring buffers are permanently disabled
146  */
147 
148 enum {
149 	RB_BUFFERS_ON_BIT	= 0,
150 	RB_BUFFERS_DISABLED_BIT	= 1,
151 };
152 
153 enum {
154 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
155 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
156 };
157 
158 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
159 
160 /* Used for individual buffers (after the counter) */
161 #define RB_BUFFER_OFF		(1 << 20)
162 
163 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
164 
165 /**
166  * tracing_off_permanent - permanently disable ring buffers
167  *
168  * This function, once called, will disable all ring buffers
169  * permanently.
170  */
171 void tracing_off_permanent(void)
172 {
173 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
174 }
175 
176 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
177 #define RB_ALIGNMENT		4U
178 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
179 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
180 
181 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
182 # define RB_FORCE_8BYTE_ALIGNMENT	0
183 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
184 #else
185 # define RB_FORCE_8BYTE_ALIGNMENT	1
186 # define RB_ARCH_ALIGNMENT		8U
187 #endif
188 
189 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
190 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
191 
192 enum {
193 	RB_LEN_TIME_EXTEND = 8,
194 	RB_LEN_TIME_STAMP = 16,
195 };
196 
197 #define skip_time_extend(event) \
198 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
199 
200 static inline int rb_null_event(struct ring_buffer_event *event)
201 {
202 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
203 }
204 
205 static void rb_event_set_padding(struct ring_buffer_event *event)
206 {
207 	/* padding has a NULL time_delta */
208 	event->type_len = RINGBUF_TYPE_PADDING;
209 	event->time_delta = 0;
210 }
211 
212 static unsigned
213 rb_event_data_length(struct ring_buffer_event *event)
214 {
215 	unsigned length;
216 
217 	if (event->type_len)
218 		length = event->type_len * RB_ALIGNMENT;
219 	else
220 		length = event->array[0];
221 	return length + RB_EVNT_HDR_SIZE;
222 }
223 
224 /*
225  * Return the length of the given event. Will return
226  * the length of the time extend if the event is a
227  * time extend.
228  */
229 static inline unsigned
230 rb_event_length(struct ring_buffer_event *event)
231 {
232 	switch (event->type_len) {
233 	case RINGBUF_TYPE_PADDING:
234 		if (rb_null_event(event))
235 			/* undefined */
236 			return -1;
237 		return  event->array[0] + RB_EVNT_HDR_SIZE;
238 
239 	case RINGBUF_TYPE_TIME_EXTEND:
240 		return RB_LEN_TIME_EXTEND;
241 
242 	case RINGBUF_TYPE_TIME_STAMP:
243 		return RB_LEN_TIME_STAMP;
244 
245 	case RINGBUF_TYPE_DATA:
246 		return rb_event_data_length(event);
247 	default:
248 		BUG();
249 	}
250 	/* not hit */
251 	return 0;
252 }
253 
254 /*
255  * Return total length of time extend and data,
256  *   or just the event length for all other events.
257  */
258 static inline unsigned
259 rb_event_ts_length(struct ring_buffer_event *event)
260 {
261 	unsigned len = 0;
262 
263 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
264 		/* time extends include the data event after it */
265 		len = RB_LEN_TIME_EXTEND;
266 		event = skip_time_extend(event);
267 	}
268 	return len + rb_event_length(event);
269 }
270 
271 /**
272  * ring_buffer_event_length - return the length of the event
273  * @event: the event to get the length of
274  *
275  * Returns the size of the data load of a data event.
276  * If the event is something other than a data event, it
277  * returns the size of the event itself. With the exception
278  * of a TIME EXTEND, where it still returns the size of the
279  * data load of the data event after it.
280  */
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 {
283 	unsigned length;
284 
285 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
286 		event = skip_time_extend(event);
287 
288 	length = rb_event_length(event);
289 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
290 		return length;
291 	length -= RB_EVNT_HDR_SIZE;
292 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
293                 length -= sizeof(event->array[0]);
294 	return length;
295 }
296 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
297 
298 /* inline for ring buffer fast paths */
299 static void *
300 rb_event_data(struct ring_buffer_event *event)
301 {
302 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
303 		event = skip_time_extend(event);
304 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
305 	/* If length is in len field, then array[0] has the data */
306 	if (event->type_len)
307 		return (void *)&event->array[0];
308 	/* Otherwise length is in array[0] and array[1] has the data */
309 	return (void *)&event->array[1];
310 }
311 
312 /**
313  * ring_buffer_event_data - return the data of the event
314  * @event: the event to get the data from
315  */
316 void *ring_buffer_event_data(struct ring_buffer_event *event)
317 {
318 	return rb_event_data(event);
319 }
320 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
321 
322 #define for_each_buffer_cpu(buffer, cpu)		\
323 	for_each_cpu(cpu, buffer->cpumask)
324 
325 #define TS_SHIFT	27
326 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
327 #define TS_DELTA_TEST	(~TS_MASK)
328 
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS	(1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED	(1 << 30)
333 
334 struct buffer_data_page {
335 	u64		 time_stamp;	/* page time stamp */
336 	local_t		 commit;	/* write committed index */
337 	unsigned char	 data[];	/* data of buffer page */
338 };
339 
340 /*
341  * Note, the buffer_page list must be first. The buffer pages
342  * are allocated in cache lines, which means that each buffer
343  * page will be at the beginning of a cache line, and thus
344  * the least significant bits will be zero. We use this to
345  * add flags in the list struct pointers, to make the ring buffer
346  * lockless.
347  */
348 struct buffer_page {
349 	struct list_head list;		/* list of buffer pages */
350 	local_t		 write;		/* index for next write */
351 	unsigned	 read;		/* index for next read */
352 	local_t		 entries;	/* entries on this page */
353 	unsigned long	 real_end;	/* real end of data */
354 	struct buffer_data_page *page;	/* Actual data page */
355 };
356 
357 /*
358  * The buffer page counters, write and entries, must be reset
359  * atomically when crossing page boundaries. To synchronize this
360  * update, two counters are inserted into the number. One is
361  * the actual counter for the write position or count on the page.
362  *
363  * The other is a counter of updaters. Before an update happens
364  * the update partition of the counter is incremented. This will
365  * allow the updater to update the counter atomically.
366  *
367  * The counter is 20 bits, and the state data is 12.
368  */
369 #define RB_WRITE_MASK		0xfffff
370 #define RB_WRITE_INTCNT		(1 << 20)
371 
372 static void rb_init_page(struct buffer_data_page *bpage)
373 {
374 	local_set(&bpage->commit, 0);
375 }
376 
377 /**
378  * ring_buffer_page_len - the size of data on the page.
379  * @page: The page to read
380  *
381  * Returns the amount of data on the page, including buffer page header.
382  */
383 size_t ring_buffer_page_len(void *page)
384 {
385 	return local_read(&((struct buffer_data_page *)page)->commit)
386 		+ BUF_PAGE_HDR_SIZE;
387 }
388 
389 /*
390  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
391  * this issue out.
392  */
393 static void free_buffer_page(struct buffer_page *bpage)
394 {
395 	free_page((unsigned long)bpage->page);
396 	kfree(bpage);
397 }
398 
399 /*
400  * We need to fit the time_stamp delta into 27 bits.
401  */
402 static inline int test_time_stamp(u64 delta)
403 {
404 	if (delta & TS_DELTA_TEST)
405 		return 1;
406 	return 0;
407 }
408 
409 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
410 
411 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
412 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
413 
414 int ring_buffer_print_page_header(struct trace_seq *s)
415 {
416 	struct buffer_data_page field;
417 	int ret;
418 
419 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
421 			       (unsigned int)sizeof(field.time_stamp),
422 			       (unsigned int)is_signed_type(u64));
423 
424 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
425 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
426 			       (unsigned int)offsetof(typeof(field), commit),
427 			       (unsigned int)sizeof(field.commit),
428 			       (unsigned int)is_signed_type(long));
429 
430 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
431 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
432 			       (unsigned int)offsetof(typeof(field), commit),
433 			       1,
434 			       (unsigned int)is_signed_type(long));
435 
436 	ret = trace_seq_printf(s, "\tfield: char data;\t"
437 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
438 			       (unsigned int)offsetof(typeof(field), data),
439 			       (unsigned int)BUF_PAGE_SIZE,
440 			       (unsigned int)is_signed_type(char));
441 
442 	return ret;
443 }
444 
445 /*
446  * head_page == tail_page && head == tail then buffer is empty.
447  */
448 struct ring_buffer_per_cpu {
449 	int				cpu;
450 	atomic_t			record_disabled;
451 	struct ring_buffer		*buffer;
452 	raw_spinlock_t			reader_lock;	/* serialize readers */
453 	arch_spinlock_t			lock;
454 	struct lock_class_key		lock_key;
455 	unsigned int			nr_pages;
456 	struct list_head		*pages;
457 	struct buffer_page		*head_page;	/* read from head */
458 	struct buffer_page		*tail_page;	/* write to tail */
459 	struct buffer_page		*commit_page;	/* committed pages */
460 	struct buffer_page		*reader_page;
461 	unsigned long			lost_events;
462 	unsigned long			last_overrun;
463 	local_t				entries_bytes;
464 	local_t				entries;
465 	local_t				overrun;
466 	local_t				commit_overrun;
467 	local_t				dropped_events;
468 	local_t				committing;
469 	local_t				commits;
470 	unsigned long			read;
471 	unsigned long			read_bytes;
472 	u64				write_stamp;
473 	u64				read_stamp;
474 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
475 	int				nr_pages_to_update;
476 	struct list_head		new_pages; /* new pages to add */
477 	struct work_struct		update_pages_work;
478 	struct completion		update_done;
479 };
480 
481 struct ring_buffer {
482 	unsigned			flags;
483 	int				cpus;
484 	atomic_t			record_disabled;
485 	atomic_t			resize_disabled;
486 	cpumask_var_t			cpumask;
487 
488 	struct lock_class_key		*reader_lock_key;
489 
490 	struct mutex			mutex;
491 
492 	struct ring_buffer_per_cpu	**buffers;
493 
494 #ifdef CONFIG_HOTPLUG_CPU
495 	struct notifier_block		cpu_notify;
496 #endif
497 	u64				(*clock)(void);
498 };
499 
500 struct ring_buffer_iter {
501 	struct ring_buffer_per_cpu	*cpu_buffer;
502 	unsigned long			head;
503 	struct buffer_page		*head_page;
504 	struct buffer_page		*cache_reader_page;
505 	unsigned long			cache_read;
506 	u64				read_stamp;
507 };
508 
509 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
510 #define RB_WARN_ON(b, cond)						\
511 	({								\
512 		int _____ret = unlikely(cond);				\
513 		if (_____ret) {						\
514 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
515 				struct ring_buffer_per_cpu *__b =	\
516 					(void *)b;			\
517 				atomic_inc(&__b->buffer->record_disabled); \
518 			} else						\
519 				atomic_inc(&b->record_disabled);	\
520 			WARN_ON(1);					\
521 		}							\
522 		_____ret;						\
523 	})
524 
525 /* Up this if you want to test the TIME_EXTENTS and normalization */
526 #define DEBUG_SHIFT 0
527 
528 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
529 {
530 	/* shift to debug/test normalization and TIME_EXTENTS */
531 	return buffer->clock() << DEBUG_SHIFT;
532 }
533 
534 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
535 {
536 	u64 time;
537 
538 	preempt_disable_notrace();
539 	time = rb_time_stamp(buffer);
540 	preempt_enable_no_resched_notrace();
541 
542 	return time;
543 }
544 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
545 
546 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
547 				      int cpu, u64 *ts)
548 {
549 	/* Just stupid testing the normalize function and deltas */
550 	*ts >>= DEBUG_SHIFT;
551 }
552 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
553 
554 /*
555  * Making the ring buffer lockless makes things tricky.
556  * Although writes only happen on the CPU that they are on,
557  * and they only need to worry about interrupts. Reads can
558  * happen on any CPU.
559  *
560  * The reader page is always off the ring buffer, but when the
561  * reader finishes with a page, it needs to swap its page with
562  * a new one from the buffer. The reader needs to take from
563  * the head (writes go to the tail). But if a writer is in overwrite
564  * mode and wraps, it must push the head page forward.
565  *
566  * Here lies the problem.
567  *
568  * The reader must be careful to replace only the head page, and
569  * not another one. As described at the top of the file in the
570  * ASCII art, the reader sets its old page to point to the next
571  * page after head. It then sets the page after head to point to
572  * the old reader page. But if the writer moves the head page
573  * during this operation, the reader could end up with the tail.
574  *
575  * We use cmpxchg to help prevent this race. We also do something
576  * special with the page before head. We set the LSB to 1.
577  *
578  * When the writer must push the page forward, it will clear the
579  * bit that points to the head page, move the head, and then set
580  * the bit that points to the new head page.
581  *
582  * We also don't want an interrupt coming in and moving the head
583  * page on another writer. Thus we use the second LSB to catch
584  * that too. Thus:
585  *
586  * head->list->prev->next        bit 1          bit 0
587  *                              -------        -------
588  * Normal page                     0              0
589  * Points to head page             0              1
590  * New head page                   1              0
591  *
592  * Note we can not trust the prev pointer of the head page, because:
593  *
594  * +----+       +-----+        +-----+
595  * |    |------>|  T  |---X--->|  N  |
596  * |    |<------|     |        |     |
597  * +----+       +-----+        +-----+
598  *   ^                           ^ |
599  *   |          +-----+          | |
600  *   +----------|  R  |----------+ |
601  *              |     |<-----------+
602  *              +-----+
603  *
604  * Key:  ---X-->  HEAD flag set in pointer
605  *         T      Tail page
606  *         R      Reader page
607  *         N      Next page
608  *
609  * (see __rb_reserve_next() to see where this happens)
610  *
611  *  What the above shows is that the reader just swapped out
612  *  the reader page with a page in the buffer, but before it
613  *  could make the new header point back to the new page added
614  *  it was preempted by a writer. The writer moved forward onto
615  *  the new page added by the reader and is about to move forward
616  *  again.
617  *
618  *  You can see, it is legitimate for the previous pointer of
619  *  the head (or any page) not to point back to itself. But only
620  *  temporarially.
621  */
622 
623 #define RB_PAGE_NORMAL		0UL
624 #define RB_PAGE_HEAD		1UL
625 #define RB_PAGE_UPDATE		2UL
626 
627 
628 #define RB_FLAG_MASK		3UL
629 
630 /* PAGE_MOVED is not part of the mask */
631 #define RB_PAGE_MOVED		4UL
632 
633 /*
634  * rb_list_head - remove any bit
635  */
636 static struct list_head *rb_list_head(struct list_head *list)
637 {
638 	unsigned long val = (unsigned long)list;
639 
640 	return (struct list_head *)(val & ~RB_FLAG_MASK);
641 }
642 
643 /*
644  * rb_is_head_page - test if the given page is the head page
645  *
646  * Because the reader may move the head_page pointer, we can
647  * not trust what the head page is (it may be pointing to
648  * the reader page). But if the next page is a header page,
649  * its flags will be non zero.
650  */
651 static inline int
652 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
653 		struct buffer_page *page, struct list_head *list)
654 {
655 	unsigned long val;
656 
657 	val = (unsigned long)list->next;
658 
659 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
660 		return RB_PAGE_MOVED;
661 
662 	return val & RB_FLAG_MASK;
663 }
664 
665 /*
666  * rb_is_reader_page
667  *
668  * The unique thing about the reader page, is that, if the
669  * writer is ever on it, the previous pointer never points
670  * back to the reader page.
671  */
672 static int rb_is_reader_page(struct buffer_page *page)
673 {
674 	struct list_head *list = page->list.prev;
675 
676 	return rb_list_head(list->next) != &page->list;
677 }
678 
679 /*
680  * rb_set_list_to_head - set a list_head to be pointing to head.
681  */
682 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
683 				struct list_head *list)
684 {
685 	unsigned long *ptr;
686 
687 	ptr = (unsigned long *)&list->next;
688 	*ptr |= RB_PAGE_HEAD;
689 	*ptr &= ~RB_PAGE_UPDATE;
690 }
691 
692 /*
693  * rb_head_page_activate - sets up head page
694  */
695 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
696 {
697 	struct buffer_page *head;
698 
699 	head = cpu_buffer->head_page;
700 	if (!head)
701 		return;
702 
703 	/*
704 	 * Set the previous list pointer to have the HEAD flag.
705 	 */
706 	rb_set_list_to_head(cpu_buffer, head->list.prev);
707 }
708 
709 static void rb_list_head_clear(struct list_head *list)
710 {
711 	unsigned long *ptr = (unsigned long *)&list->next;
712 
713 	*ptr &= ~RB_FLAG_MASK;
714 }
715 
716 /*
717  * rb_head_page_dactivate - clears head page ptr (for free list)
718  */
719 static void
720 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
721 {
722 	struct list_head *hd;
723 
724 	/* Go through the whole list and clear any pointers found. */
725 	rb_list_head_clear(cpu_buffer->pages);
726 
727 	list_for_each(hd, cpu_buffer->pages)
728 		rb_list_head_clear(hd);
729 }
730 
731 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
732 			    struct buffer_page *head,
733 			    struct buffer_page *prev,
734 			    int old_flag, int new_flag)
735 {
736 	struct list_head *list;
737 	unsigned long val = (unsigned long)&head->list;
738 	unsigned long ret;
739 
740 	list = &prev->list;
741 
742 	val &= ~RB_FLAG_MASK;
743 
744 	ret = cmpxchg((unsigned long *)&list->next,
745 		      val | old_flag, val | new_flag);
746 
747 	/* check if the reader took the page */
748 	if ((ret & ~RB_FLAG_MASK) != val)
749 		return RB_PAGE_MOVED;
750 
751 	return ret & RB_FLAG_MASK;
752 }
753 
754 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
755 				   struct buffer_page *head,
756 				   struct buffer_page *prev,
757 				   int old_flag)
758 {
759 	return rb_head_page_set(cpu_buffer, head, prev,
760 				old_flag, RB_PAGE_UPDATE);
761 }
762 
763 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
764 				 struct buffer_page *head,
765 				 struct buffer_page *prev,
766 				 int old_flag)
767 {
768 	return rb_head_page_set(cpu_buffer, head, prev,
769 				old_flag, RB_PAGE_HEAD);
770 }
771 
772 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
773 				   struct buffer_page *head,
774 				   struct buffer_page *prev,
775 				   int old_flag)
776 {
777 	return rb_head_page_set(cpu_buffer, head, prev,
778 				old_flag, RB_PAGE_NORMAL);
779 }
780 
781 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
782 			       struct buffer_page **bpage)
783 {
784 	struct list_head *p = rb_list_head((*bpage)->list.next);
785 
786 	*bpage = list_entry(p, struct buffer_page, list);
787 }
788 
789 static struct buffer_page *
790 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
791 {
792 	struct buffer_page *head;
793 	struct buffer_page *page;
794 	struct list_head *list;
795 	int i;
796 
797 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
798 		return NULL;
799 
800 	/* sanity check */
801 	list = cpu_buffer->pages;
802 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
803 		return NULL;
804 
805 	page = head = cpu_buffer->head_page;
806 	/*
807 	 * It is possible that the writer moves the header behind
808 	 * where we started, and we miss in one loop.
809 	 * A second loop should grab the header, but we'll do
810 	 * three loops just because I'm paranoid.
811 	 */
812 	for (i = 0; i < 3; i++) {
813 		do {
814 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
815 				cpu_buffer->head_page = page;
816 				return page;
817 			}
818 			rb_inc_page(cpu_buffer, &page);
819 		} while (page != head);
820 	}
821 
822 	RB_WARN_ON(cpu_buffer, 1);
823 
824 	return NULL;
825 }
826 
827 static int rb_head_page_replace(struct buffer_page *old,
828 				struct buffer_page *new)
829 {
830 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
831 	unsigned long val;
832 	unsigned long ret;
833 
834 	val = *ptr & ~RB_FLAG_MASK;
835 	val |= RB_PAGE_HEAD;
836 
837 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
838 
839 	return ret == val;
840 }
841 
842 /*
843  * rb_tail_page_update - move the tail page forward
844  *
845  * Returns 1 if moved tail page, 0 if someone else did.
846  */
847 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
848 			       struct buffer_page *tail_page,
849 			       struct buffer_page *next_page)
850 {
851 	struct buffer_page *old_tail;
852 	unsigned long old_entries;
853 	unsigned long old_write;
854 	int ret = 0;
855 
856 	/*
857 	 * The tail page now needs to be moved forward.
858 	 *
859 	 * We need to reset the tail page, but without messing
860 	 * with possible erasing of data brought in by interrupts
861 	 * that have moved the tail page and are currently on it.
862 	 *
863 	 * We add a counter to the write field to denote this.
864 	 */
865 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
866 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
867 
868 	/*
869 	 * Just make sure we have seen our old_write and synchronize
870 	 * with any interrupts that come in.
871 	 */
872 	barrier();
873 
874 	/*
875 	 * If the tail page is still the same as what we think
876 	 * it is, then it is up to us to update the tail
877 	 * pointer.
878 	 */
879 	if (tail_page == cpu_buffer->tail_page) {
880 		/* Zero the write counter */
881 		unsigned long val = old_write & ~RB_WRITE_MASK;
882 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
883 
884 		/*
885 		 * This will only succeed if an interrupt did
886 		 * not come in and change it. In which case, we
887 		 * do not want to modify it.
888 		 *
889 		 * We add (void) to let the compiler know that we do not care
890 		 * about the return value of these functions. We use the
891 		 * cmpxchg to only update if an interrupt did not already
892 		 * do it for us. If the cmpxchg fails, we don't care.
893 		 */
894 		(void)local_cmpxchg(&next_page->write, old_write, val);
895 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
896 
897 		/*
898 		 * No need to worry about races with clearing out the commit.
899 		 * it only can increment when a commit takes place. But that
900 		 * only happens in the outer most nested commit.
901 		 */
902 		local_set(&next_page->page->commit, 0);
903 
904 		old_tail = cmpxchg(&cpu_buffer->tail_page,
905 				   tail_page, next_page);
906 
907 		if (old_tail == tail_page)
908 			ret = 1;
909 	}
910 
911 	return ret;
912 }
913 
914 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
915 			  struct buffer_page *bpage)
916 {
917 	unsigned long val = (unsigned long)bpage;
918 
919 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
920 		return 1;
921 
922 	return 0;
923 }
924 
925 /**
926  * rb_check_list - make sure a pointer to a list has the last bits zero
927  */
928 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
929 			 struct list_head *list)
930 {
931 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
932 		return 1;
933 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
934 		return 1;
935 	return 0;
936 }
937 
938 /**
939  * check_pages - integrity check of buffer pages
940  * @cpu_buffer: CPU buffer with pages to test
941  *
942  * As a safety measure we check to make sure the data pages have not
943  * been corrupted.
944  */
945 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
946 {
947 	struct list_head *head = cpu_buffer->pages;
948 	struct buffer_page *bpage, *tmp;
949 
950 	/* Reset the head page if it exists */
951 	if (cpu_buffer->head_page)
952 		rb_set_head_page(cpu_buffer);
953 
954 	rb_head_page_deactivate(cpu_buffer);
955 
956 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
957 		return -1;
958 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
959 		return -1;
960 
961 	if (rb_check_list(cpu_buffer, head))
962 		return -1;
963 
964 	list_for_each_entry_safe(bpage, tmp, head, list) {
965 		if (RB_WARN_ON(cpu_buffer,
966 			       bpage->list.next->prev != &bpage->list))
967 			return -1;
968 		if (RB_WARN_ON(cpu_buffer,
969 			       bpage->list.prev->next != &bpage->list))
970 			return -1;
971 		if (rb_check_list(cpu_buffer, &bpage->list))
972 			return -1;
973 	}
974 
975 	rb_head_page_activate(cpu_buffer);
976 
977 	return 0;
978 }
979 
980 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
981 {
982 	int i;
983 	struct buffer_page *bpage, *tmp;
984 
985 	for (i = 0; i < nr_pages; i++) {
986 		struct page *page;
987 		/*
988 		 * __GFP_NORETRY flag makes sure that the allocation fails
989 		 * gracefully without invoking oom-killer and the system is
990 		 * not destabilized.
991 		 */
992 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
993 				    GFP_KERNEL | __GFP_NORETRY,
994 				    cpu_to_node(cpu));
995 		if (!bpage)
996 			goto free_pages;
997 
998 		list_add(&bpage->list, pages);
999 
1000 		page = alloc_pages_node(cpu_to_node(cpu),
1001 					GFP_KERNEL | __GFP_NORETRY, 0);
1002 		if (!page)
1003 			goto free_pages;
1004 		bpage->page = page_address(page);
1005 		rb_init_page(bpage->page);
1006 	}
1007 
1008 	return 0;
1009 
1010 free_pages:
1011 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1012 		list_del_init(&bpage->list);
1013 		free_buffer_page(bpage);
1014 	}
1015 
1016 	return -ENOMEM;
1017 }
1018 
1019 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1020 			     unsigned nr_pages)
1021 {
1022 	LIST_HEAD(pages);
1023 
1024 	WARN_ON(!nr_pages);
1025 
1026 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1027 		return -ENOMEM;
1028 
1029 	/*
1030 	 * The ring buffer page list is a circular list that does not
1031 	 * start and end with a list head. All page list items point to
1032 	 * other pages.
1033 	 */
1034 	cpu_buffer->pages = pages.next;
1035 	list_del(&pages);
1036 
1037 	cpu_buffer->nr_pages = nr_pages;
1038 
1039 	rb_check_pages(cpu_buffer);
1040 
1041 	return 0;
1042 }
1043 
1044 static struct ring_buffer_per_cpu *
1045 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1046 {
1047 	struct ring_buffer_per_cpu *cpu_buffer;
1048 	struct buffer_page *bpage;
1049 	struct page *page;
1050 	int ret;
1051 
1052 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1053 				  GFP_KERNEL, cpu_to_node(cpu));
1054 	if (!cpu_buffer)
1055 		return NULL;
1056 
1057 	cpu_buffer->cpu = cpu;
1058 	cpu_buffer->buffer = buffer;
1059 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1060 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1061 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1062 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1063 	init_completion(&cpu_buffer->update_done);
1064 
1065 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1066 			    GFP_KERNEL, cpu_to_node(cpu));
1067 	if (!bpage)
1068 		goto fail_free_buffer;
1069 
1070 	rb_check_bpage(cpu_buffer, bpage);
1071 
1072 	cpu_buffer->reader_page = bpage;
1073 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1074 	if (!page)
1075 		goto fail_free_reader;
1076 	bpage->page = page_address(page);
1077 	rb_init_page(bpage->page);
1078 
1079 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1080 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1081 
1082 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1083 	if (ret < 0)
1084 		goto fail_free_reader;
1085 
1086 	cpu_buffer->head_page
1087 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1088 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1089 
1090 	rb_head_page_activate(cpu_buffer);
1091 
1092 	return cpu_buffer;
1093 
1094  fail_free_reader:
1095 	free_buffer_page(cpu_buffer->reader_page);
1096 
1097  fail_free_buffer:
1098 	kfree(cpu_buffer);
1099 	return NULL;
1100 }
1101 
1102 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1103 {
1104 	struct list_head *head = cpu_buffer->pages;
1105 	struct buffer_page *bpage, *tmp;
1106 
1107 	free_buffer_page(cpu_buffer->reader_page);
1108 
1109 	rb_head_page_deactivate(cpu_buffer);
1110 
1111 	if (head) {
1112 		list_for_each_entry_safe(bpage, tmp, head, list) {
1113 			list_del_init(&bpage->list);
1114 			free_buffer_page(bpage);
1115 		}
1116 		bpage = list_entry(head, struct buffer_page, list);
1117 		free_buffer_page(bpage);
1118 	}
1119 
1120 	kfree(cpu_buffer);
1121 }
1122 
1123 #ifdef CONFIG_HOTPLUG_CPU
1124 static int rb_cpu_notify(struct notifier_block *self,
1125 			 unsigned long action, void *hcpu);
1126 #endif
1127 
1128 /**
1129  * ring_buffer_alloc - allocate a new ring_buffer
1130  * @size: the size in bytes per cpu that is needed.
1131  * @flags: attributes to set for the ring buffer.
1132  *
1133  * Currently the only flag that is available is the RB_FL_OVERWRITE
1134  * flag. This flag means that the buffer will overwrite old data
1135  * when the buffer wraps. If this flag is not set, the buffer will
1136  * drop data when the tail hits the head.
1137  */
1138 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1139 					struct lock_class_key *key)
1140 {
1141 	struct ring_buffer *buffer;
1142 	int bsize;
1143 	int cpu, nr_pages;
1144 
1145 	/* keep it in its own cache line */
1146 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1147 			 GFP_KERNEL);
1148 	if (!buffer)
1149 		return NULL;
1150 
1151 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1152 		goto fail_free_buffer;
1153 
1154 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1155 	buffer->flags = flags;
1156 	buffer->clock = trace_clock_local;
1157 	buffer->reader_lock_key = key;
1158 
1159 	/* need at least two pages */
1160 	if (nr_pages < 2)
1161 		nr_pages = 2;
1162 
1163 	/*
1164 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1165 	 * in early initcall, it will not be notified of secondary cpus.
1166 	 * In that off case, we need to allocate for all possible cpus.
1167 	 */
1168 #ifdef CONFIG_HOTPLUG_CPU
1169 	get_online_cpus();
1170 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1171 #else
1172 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1173 #endif
1174 	buffer->cpus = nr_cpu_ids;
1175 
1176 	bsize = sizeof(void *) * nr_cpu_ids;
1177 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1178 				  GFP_KERNEL);
1179 	if (!buffer->buffers)
1180 		goto fail_free_cpumask;
1181 
1182 	for_each_buffer_cpu(buffer, cpu) {
1183 		buffer->buffers[cpu] =
1184 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1185 		if (!buffer->buffers[cpu])
1186 			goto fail_free_buffers;
1187 	}
1188 
1189 #ifdef CONFIG_HOTPLUG_CPU
1190 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1191 	buffer->cpu_notify.priority = 0;
1192 	register_cpu_notifier(&buffer->cpu_notify);
1193 #endif
1194 
1195 	put_online_cpus();
1196 	mutex_init(&buffer->mutex);
1197 
1198 	return buffer;
1199 
1200  fail_free_buffers:
1201 	for_each_buffer_cpu(buffer, cpu) {
1202 		if (buffer->buffers[cpu])
1203 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1204 	}
1205 	kfree(buffer->buffers);
1206 
1207  fail_free_cpumask:
1208 	free_cpumask_var(buffer->cpumask);
1209 	put_online_cpus();
1210 
1211  fail_free_buffer:
1212 	kfree(buffer);
1213 	return NULL;
1214 }
1215 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1216 
1217 /**
1218  * ring_buffer_free - free a ring buffer.
1219  * @buffer: the buffer to free.
1220  */
1221 void
1222 ring_buffer_free(struct ring_buffer *buffer)
1223 {
1224 	int cpu;
1225 
1226 	get_online_cpus();
1227 
1228 #ifdef CONFIG_HOTPLUG_CPU
1229 	unregister_cpu_notifier(&buffer->cpu_notify);
1230 #endif
1231 
1232 	for_each_buffer_cpu(buffer, cpu)
1233 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1234 
1235 	put_online_cpus();
1236 
1237 	kfree(buffer->buffers);
1238 	free_cpumask_var(buffer->cpumask);
1239 
1240 	kfree(buffer);
1241 }
1242 EXPORT_SYMBOL_GPL(ring_buffer_free);
1243 
1244 void ring_buffer_set_clock(struct ring_buffer *buffer,
1245 			   u64 (*clock)(void))
1246 {
1247 	buffer->clock = clock;
1248 }
1249 
1250 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1251 
1252 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1253 {
1254 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1255 }
1256 
1257 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1258 {
1259 	return local_read(&bpage->write) & RB_WRITE_MASK;
1260 }
1261 
1262 static int
1263 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1264 {
1265 	struct list_head *tail_page, *to_remove, *next_page;
1266 	struct buffer_page *to_remove_page, *tmp_iter_page;
1267 	struct buffer_page *last_page, *first_page;
1268 	unsigned int nr_removed;
1269 	unsigned long head_bit;
1270 	int page_entries;
1271 
1272 	head_bit = 0;
1273 
1274 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1275 	atomic_inc(&cpu_buffer->record_disabled);
1276 	/*
1277 	 * We don't race with the readers since we have acquired the reader
1278 	 * lock. We also don't race with writers after disabling recording.
1279 	 * This makes it easy to figure out the first and the last page to be
1280 	 * removed from the list. We unlink all the pages in between including
1281 	 * the first and last pages. This is done in a busy loop so that we
1282 	 * lose the least number of traces.
1283 	 * The pages are freed after we restart recording and unlock readers.
1284 	 */
1285 	tail_page = &cpu_buffer->tail_page->list;
1286 
1287 	/*
1288 	 * tail page might be on reader page, we remove the next page
1289 	 * from the ring buffer
1290 	 */
1291 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1292 		tail_page = rb_list_head(tail_page->next);
1293 	to_remove = tail_page;
1294 
1295 	/* start of pages to remove */
1296 	first_page = list_entry(rb_list_head(to_remove->next),
1297 				struct buffer_page, list);
1298 
1299 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1300 		to_remove = rb_list_head(to_remove)->next;
1301 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1302 	}
1303 
1304 	next_page = rb_list_head(to_remove)->next;
1305 
1306 	/*
1307 	 * Now we remove all pages between tail_page and next_page.
1308 	 * Make sure that we have head_bit value preserved for the
1309 	 * next page
1310 	 */
1311 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1312 						head_bit);
1313 	next_page = rb_list_head(next_page);
1314 	next_page->prev = tail_page;
1315 
1316 	/* make sure pages points to a valid page in the ring buffer */
1317 	cpu_buffer->pages = next_page;
1318 
1319 	/* update head page */
1320 	if (head_bit)
1321 		cpu_buffer->head_page = list_entry(next_page,
1322 						struct buffer_page, list);
1323 
1324 	/*
1325 	 * change read pointer to make sure any read iterators reset
1326 	 * themselves
1327 	 */
1328 	cpu_buffer->read = 0;
1329 
1330 	/* pages are removed, resume tracing and then free the pages */
1331 	atomic_dec(&cpu_buffer->record_disabled);
1332 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1333 
1334 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1335 
1336 	/* last buffer page to remove */
1337 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1338 				list);
1339 	tmp_iter_page = first_page;
1340 
1341 	do {
1342 		to_remove_page = tmp_iter_page;
1343 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1344 
1345 		/* update the counters */
1346 		page_entries = rb_page_entries(to_remove_page);
1347 		if (page_entries) {
1348 			/*
1349 			 * If something was added to this page, it was full
1350 			 * since it is not the tail page. So we deduct the
1351 			 * bytes consumed in ring buffer from here.
1352 			 * Increment overrun to account for the lost events.
1353 			 */
1354 			local_add(page_entries, &cpu_buffer->overrun);
1355 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1356 		}
1357 
1358 		/*
1359 		 * We have already removed references to this list item, just
1360 		 * free up the buffer_page and its page
1361 		 */
1362 		free_buffer_page(to_remove_page);
1363 		nr_removed--;
1364 
1365 	} while (to_remove_page != last_page);
1366 
1367 	RB_WARN_ON(cpu_buffer, nr_removed);
1368 
1369 	return nr_removed == 0;
1370 }
1371 
1372 static int
1373 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1374 {
1375 	struct list_head *pages = &cpu_buffer->new_pages;
1376 	int retries, success;
1377 
1378 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1379 	/*
1380 	 * We are holding the reader lock, so the reader page won't be swapped
1381 	 * in the ring buffer. Now we are racing with the writer trying to
1382 	 * move head page and the tail page.
1383 	 * We are going to adapt the reader page update process where:
1384 	 * 1. We first splice the start and end of list of new pages between
1385 	 *    the head page and its previous page.
1386 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1387 	 *    start of new pages list.
1388 	 * 3. Finally, we update the head->prev to the end of new list.
1389 	 *
1390 	 * We will try this process 10 times, to make sure that we don't keep
1391 	 * spinning.
1392 	 */
1393 	retries = 10;
1394 	success = 0;
1395 	while (retries--) {
1396 		struct list_head *head_page, *prev_page, *r;
1397 		struct list_head *last_page, *first_page;
1398 		struct list_head *head_page_with_bit;
1399 
1400 		head_page = &rb_set_head_page(cpu_buffer)->list;
1401 		if (!head_page)
1402 			break;
1403 		prev_page = head_page->prev;
1404 
1405 		first_page = pages->next;
1406 		last_page  = pages->prev;
1407 
1408 		head_page_with_bit = (struct list_head *)
1409 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1410 
1411 		last_page->next = head_page_with_bit;
1412 		first_page->prev = prev_page;
1413 
1414 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1415 
1416 		if (r == head_page_with_bit) {
1417 			/*
1418 			 * yay, we replaced the page pointer to our new list,
1419 			 * now, we just have to update to head page's prev
1420 			 * pointer to point to end of list
1421 			 */
1422 			head_page->prev = last_page;
1423 			success = 1;
1424 			break;
1425 		}
1426 	}
1427 
1428 	if (success)
1429 		INIT_LIST_HEAD(pages);
1430 	/*
1431 	 * If we weren't successful in adding in new pages, warn and stop
1432 	 * tracing
1433 	 */
1434 	RB_WARN_ON(cpu_buffer, !success);
1435 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1436 
1437 	/* free pages if they weren't inserted */
1438 	if (!success) {
1439 		struct buffer_page *bpage, *tmp;
1440 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1441 					 list) {
1442 			list_del_init(&bpage->list);
1443 			free_buffer_page(bpage);
1444 		}
1445 	}
1446 	return success;
1447 }
1448 
1449 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1450 {
1451 	int success;
1452 
1453 	if (cpu_buffer->nr_pages_to_update > 0)
1454 		success = rb_insert_pages(cpu_buffer);
1455 	else
1456 		success = rb_remove_pages(cpu_buffer,
1457 					-cpu_buffer->nr_pages_to_update);
1458 
1459 	if (success)
1460 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1461 }
1462 
1463 static void update_pages_handler(struct work_struct *work)
1464 {
1465 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1466 			struct ring_buffer_per_cpu, update_pages_work);
1467 	rb_update_pages(cpu_buffer);
1468 	complete(&cpu_buffer->update_done);
1469 }
1470 
1471 /**
1472  * ring_buffer_resize - resize the ring buffer
1473  * @buffer: the buffer to resize.
1474  * @size: the new size.
1475  *
1476  * Minimum size is 2 * BUF_PAGE_SIZE.
1477  *
1478  * Returns 0 on success and < 0 on failure.
1479  */
1480 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1481 			int cpu_id)
1482 {
1483 	struct ring_buffer_per_cpu *cpu_buffer;
1484 	unsigned nr_pages;
1485 	int cpu, err = 0;
1486 
1487 	/*
1488 	 * Always succeed at resizing a non-existent buffer:
1489 	 */
1490 	if (!buffer)
1491 		return size;
1492 
1493 	/* Make sure the requested buffer exists */
1494 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1495 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1496 		return size;
1497 
1498 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1499 	size *= BUF_PAGE_SIZE;
1500 
1501 	/* we need a minimum of two pages */
1502 	if (size < BUF_PAGE_SIZE * 2)
1503 		size = BUF_PAGE_SIZE * 2;
1504 
1505 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1506 
1507 	/*
1508 	 * Don't succeed if resizing is disabled, as a reader might be
1509 	 * manipulating the ring buffer and is expecting a sane state while
1510 	 * this is true.
1511 	 */
1512 	if (atomic_read(&buffer->resize_disabled))
1513 		return -EBUSY;
1514 
1515 	/* prevent another thread from changing buffer sizes */
1516 	mutex_lock(&buffer->mutex);
1517 
1518 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1519 		/* calculate the pages to update */
1520 		for_each_buffer_cpu(buffer, cpu) {
1521 			cpu_buffer = buffer->buffers[cpu];
1522 
1523 			cpu_buffer->nr_pages_to_update = nr_pages -
1524 							cpu_buffer->nr_pages;
1525 			/*
1526 			 * nothing more to do for removing pages or no update
1527 			 */
1528 			if (cpu_buffer->nr_pages_to_update <= 0)
1529 				continue;
1530 			/*
1531 			 * to add pages, make sure all new pages can be
1532 			 * allocated without receiving ENOMEM
1533 			 */
1534 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1535 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1536 						&cpu_buffer->new_pages, cpu)) {
1537 				/* not enough memory for new pages */
1538 				err = -ENOMEM;
1539 				goto out_err;
1540 			}
1541 		}
1542 
1543 		get_online_cpus();
1544 		/*
1545 		 * Fire off all the required work handlers
1546 		 * We can't schedule on offline CPUs, but it's not necessary
1547 		 * since we can change their buffer sizes without any race.
1548 		 */
1549 		for_each_buffer_cpu(buffer, cpu) {
1550 			cpu_buffer = buffer->buffers[cpu];
1551 			if (!cpu_buffer->nr_pages_to_update)
1552 				continue;
1553 
1554 			if (cpu_online(cpu))
1555 				schedule_work_on(cpu,
1556 						&cpu_buffer->update_pages_work);
1557 			else
1558 				rb_update_pages(cpu_buffer);
1559 		}
1560 
1561 		/* wait for all the updates to complete */
1562 		for_each_buffer_cpu(buffer, cpu) {
1563 			cpu_buffer = buffer->buffers[cpu];
1564 			if (!cpu_buffer->nr_pages_to_update)
1565 				continue;
1566 
1567 			if (cpu_online(cpu))
1568 				wait_for_completion(&cpu_buffer->update_done);
1569 			cpu_buffer->nr_pages_to_update = 0;
1570 		}
1571 
1572 		put_online_cpus();
1573 	} else {
1574 		/* Make sure this CPU has been intitialized */
1575 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1576 			goto out;
1577 
1578 		cpu_buffer = buffer->buffers[cpu_id];
1579 
1580 		if (nr_pages == cpu_buffer->nr_pages)
1581 			goto out;
1582 
1583 		cpu_buffer->nr_pages_to_update = nr_pages -
1584 						cpu_buffer->nr_pages;
1585 
1586 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1587 		if (cpu_buffer->nr_pages_to_update > 0 &&
1588 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1589 					    &cpu_buffer->new_pages, cpu_id)) {
1590 			err = -ENOMEM;
1591 			goto out_err;
1592 		}
1593 
1594 		get_online_cpus();
1595 
1596 		if (cpu_online(cpu_id)) {
1597 			schedule_work_on(cpu_id,
1598 					 &cpu_buffer->update_pages_work);
1599 			wait_for_completion(&cpu_buffer->update_done);
1600 		} else
1601 			rb_update_pages(cpu_buffer);
1602 
1603 		cpu_buffer->nr_pages_to_update = 0;
1604 		put_online_cpus();
1605 	}
1606 
1607  out:
1608 	/*
1609 	 * The ring buffer resize can happen with the ring buffer
1610 	 * enabled, so that the update disturbs the tracing as little
1611 	 * as possible. But if the buffer is disabled, we do not need
1612 	 * to worry about that, and we can take the time to verify
1613 	 * that the buffer is not corrupt.
1614 	 */
1615 	if (atomic_read(&buffer->record_disabled)) {
1616 		atomic_inc(&buffer->record_disabled);
1617 		/*
1618 		 * Even though the buffer was disabled, we must make sure
1619 		 * that it is truly disabled before calling rb_check_pages.
1620 		 * There could have been a race between checking
1621 		 * record_disable and incrementing it.
1622 		 */
1623 		synchronize_sched();
1624 		for_each_buffer_cpu(buffer, cpu) {
1625 			cpu_buffer = buffer->buffers[cpu];
1626 			rb_check_pages(cpu_buffer);
1627 		}
1628 		atomic_dec(&buffer->record_disabled);
1629 	}
1630 
1631 	mutex_unlock(&buffer->mutex);
1632 	return size;
1633 
1634  out_err:
1635 	for_each_buffer_cpu(buffer, cpu) {
1636 		struct buffer_page *bpage, *tmp;
1637 
1638 		cpu_buffer = buffer->buffers[cpu];
1639 		cpu_buffer->nr_pages_to_update = 0;
1640 
1641 		if (list_empty(&cpu_buffer->new_pages))
1642 			continue;
1643 
1644 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1645 					list) {
1646 			list_del_init(&bpage->list);
1647 			free_buffer_page(bpage);
1648 		}
1649 	}
1650 	mutex_unlock(&buffer->mutex);
1651 	return err;
1652 }
1653 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1654 
1655 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1656 {
1657 	mutex_lock(&buffer->mutex);
1658 	if (val)
1659 		buffer->flags |= RB_FL_OVERWRITE;
1660 	else
1661 		buffer->flags &= ~RB_FL_OVERWRITE;
1662 	mutex_unlock(&buffer->mutex);
1663 }
1664 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1665 
1666 static inline void *
1667 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1668 {
1669 	return bpage->data + index;
1670 }
1671 
1672 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1673 {
1674 	return bpage->page->data + index;
1675 }
1676 
1677 static inline struct ring_buffer_event *
1678 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1679 {
1680 	return __rb_page_index(cpu_buffer->reader_page,
1681 			       cpu_buffer->reader_page->read);
1682 }
1683 
1684 static inline struct ring_buffer_event *
1685 rb_iter_head_event(struct ring_buffer_iter *iter)
1686 {
1687 	return __rb_page_index(iter->head_page, iter->head);
1688 }
1689 
1690 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1691 {
1692 	return local_read(&bpage->page->commit);
1693 }
1694 
1695 /* Size is determined by what has been committed */
1696 static inline unsigned rb_page_size(struct buffer_page *bpage)
1697 {
1698 	return rb_page_commit(bpage);
1699 }
1700 
1701 static inline unsigned
1702 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1703 {
1704 	return rb_page_commit(cpu_buffer->commit_page);
1705 }
1706 
1707 static inline unsigned
1708 rb_event_index(struct ring_buffer_event *event)
1709 {
1710 	unsigned long addr = (unsigned long)event;
1711 
1712 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1713 }
1714 
1715 static inline int
1716 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1717 		   struct ring_buffer_event *event)
1718 {
1719 	unsigned long addr = (unsigned long)event;
1720 	unsigned long index;
1721 
1722 	index = rb_event_index(event);
1723 	addr &= PAGE_MASK;
1724 
1725 	return cpu_buffer->commit_page->page == (void *)addr &&
1726 		rb_commit_index(cpu_buffer) == index;
1727 }
1728 
1729 static void
1730 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1731 {
1732 	unsigned long max_count;
1733 
1734 	/*
1735 	 * We only race with interrupts and NMIs on this CPU.
1736 	 * If we own the commit event, then we can commit
1737 	 * all others that interrupted us, since the interruptions
1738 	 * are in stack format (they finish before they come
1739 	 * back to us). This allows us to do a simple loop to
1740 	 * assign the commit to the tail.
1741 	 */
1742  again:
1743 	max_count = cpu_buffer->nr_pages * 100;
1744 
1745 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1746 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1747 			return;
1748 		if (RB_WARN_ON(cpu_buffer,
1749 			       rb_is_reader_page(cpu_buffer->tail_page)))
1750 			return;
1751 		local_set(&cpu_buffer->commit_page->page->commit,
1752 			  rb_page_write(cpu_buffer->commit_page));
1753 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1754 		cpu_buffer->write_stamp =
1755 			cpu_buffer->commit_page->page->time_stamp;
1756 		/* add barrier to keep gcc from optimizing too much */
1757 		barrier();
1758 	}
1759 	while (rb_commit_index(cpu_buffer) !=
1760 	       rb_page_write(cpu_buffer->commit_page)) {
1761 
1762 		local_set(&cpu_buffer->commit_page->page->commit,
1763 			  rb_page_write(cpu_buffer->commit_page));
1764 		RB_WARN_ON(cpu_buffer,
1765 			   local_read(&cpu_buffer->commit_page->page->commit) &
1766 			   ~RB_WRITE_MASK);
1767 		barrier();
1768 	}
1769 
1770 	/* again, keep gcc from optimizing */
1771 	barrier();
1772 
1773 	/*
1774 	 * If an interrupt came in just after the first while loop
1775 	 * and pushed the tail page forward, we will be left with
1776 	 * a dangling commit that will never go forward.
1777 	 */
1778 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1779 		goto again;
1780 }
1781 
1782 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1783 {
1784 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1785 	cpu_buffer->reader_page->read = 0;
1786 }
1787 
1788 static void rb_inc_iter(struct ring_buffer_iter *iter)
1789 {
1790 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1791 
1792 	/*
1793 	 * The iterator could be on the reader page (it starts there).
1794 	 * But the head could have moved, since the reader was
1795 	 * found. Check for this case and assign the iterator
1796 	 * to the head page instead of next.
1797 	 */
1798 	if (iter->head_page == cpu_buffer->reader_page)
1799 		iter->head_page = rb_set_head_page(cpu_buffer);
1800 	else
1801 		rb_inc_page(cpu_buffer, &iter->head_page);
1802 
1803 	iter->read_stamp = iter->head_page->page->time_stamp;
1804 	iter->head = 0;
1805 }
1806 
1807 /* Slow path, do not inline */
1808 static noinline struct ring_buffer_event *
1809 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1810 {
1811 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1812 
1813 	/* Not the first event on the page? */
1814 	if (rb_event_index(event)) {
1815 		event->time_delta = delta & TS_MASK;
1816 		event->array[0] = delta >> TS_SHIFT;
1817 	} else {
1818 		/* nope, just zero it */
1819 		event->time_delta = 0;
1820 		event->array[0] = 0;
1821 	}
1822 
1823 	return skip_time_extend(event);
1824 }
1825 
1826 /**
1827  * rb_update_event - update event type and data
1828  * @event: the even to update
1829  * @type: the type of event
1830  * @length: the size of the event field in the ring buffer
1831  *
1832  * Update the type and data fields of the event. The length
1833  * is the actual size that is written to the ring buffer,
1834  * and with this, we can determine what to place into the
1835  * data field.
1836  */
1837 static void
1838 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1839 		struct ring_buffer_event *event, unsigned length,
1840 		int add_timestamp, u64 delta)
1841 {
1842 	/* Only a commit updates the timestamp */
1843 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1844 		delta = 0;
1845 
1846 	/*
1847 	 * If we need to add a timestamp, then we
1848 	 * add it to the start of the resevered space.
1849 	 */
1850 	if (unlikely(add_timestamp)) {
1851 		event = rb_add_time_stamp(event, delta);
1852 		length -= RB_LEN_TIME_EXTEND;
1853 		delta = 0;
1854 	}
1855 
1856 	event->time_delta = delta;
1857 	length -= RB_EVNT_HDR_SIZE;
1858 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1859 		event->type_len = 0;
1860 		event->array[0] = length;
1861 	} else
1862 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1863 }
1864 
1865 /*
1866  * rb_handle_head_page - writer hit the head page
1867  *
1868  * Returns: +1 to retry page
1869  *           0 to continue
1870  *          -1 on error
1871  */
1872 static int
1873 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1874 		    struct buffer_page *tail_page,
1875 		    struct buffer_page *next_page)
1876 {
1877 	struct buffer_page *new_head;
1878 	int entries;
1879 	int type;
1880 	int ret;
1881 
1882 	entries = rb_page_entries(next_page);
1883 
1884 	/*
1885 	 * The hard part is here. We need to move the head
1886 	 * forward, and protect against both readers on
1887 	 * other CPUs and writers coming in via interrupts.
1888 	 */
1889 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1890 				       RB_PAGE_HEAD);
1891 
1892 	/*
1893 	 * type can be one of four:
1894 	 *  NORMAL - an interrupt already moved it for us
1895 	 *  HEAD   - we are the first to get here.
1896 	 *  UPDATE - we are the interrupt interrupting
1897 	 *           a current move.
1898 	 *  MOVED  - a reader on another CPU moved the next
1899 	 *           pointer to its reader page. Give up
1900 	 *           and try again.
1901 	 */
1902 
1903 	switch (type) {
1904 	case RB_PAGE_HEAD:
1905 		/*
1906 		 * We changed the head to UPDATE, thus
1907 		 * it is our responsibility to update
1908 		 * the counters.
1909 		 */
1910 		local_add(entries, &cpu_buffer->overrun);
1911 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1912 
1913 		/*
1914 		 * The entries will be zeroed out when we move the
1915 		 * tail page.
1916 		 */
1917 
1918 		/* still more to do */
1919 		break;
1920 
1921 	case RB_PAGE_UPDATE:
1922 		/*
1923 		 * This is an interrupt that interrupt the
1924 		 * previous update. Still more to do.
1925 		 */
1926 		break;
1927 	case RB_PAGE_NORMAL:
1928 		/*
1929 		 * An interrupt came in before the update
1930 		 * and processed this for us.
1931 		 * Nothing left to do.
1932 		 */
1933 		return 1;
1934 	case RB_PAGE_MOVED:
1935 		/*
1936 		 * The reader is on another CPU and just did
1937 		 * a swap with our next_page.
1938 		 * Try again.
1939 		 */
1940 		return 1;
1941 	default:
1942 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1943 		return -1;
1944 	}
1945 
1946 	/*
1947 	 * Now that we are here, the old head pointer is
1948 	 * set to UPDATE. This will keep the reader from
1949 	 * swapping the head page with the reader page.
1950 	 * The reader (on another CPU) will spin till
1951 	 * we are finished.
1952 	 *
1953 	 * We just need to protect against interrupts
1954 	 * doing the job. We will set the next pointer
1955 	 * to HEAD. After that, we set the old pointer
1956 	 * to NORMAL, but only if it was HEAD before.
1957 	 * otherwise we are an interrupt, and only
1958 	 * want the outer most commit to reset it.
1959 	 */
1960 	new_head = next_page;
1961 	rb_inc_page(cpu_buffer, &new_head);
1962 
1963 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1964 				    RB_PAGE_NORMAL);
1965 
1966 	/*
1967 	 * Valid returns are:
1968 	 *  HEAD   - an interrupt came in and already set it.
1969 	 *  NORMAL - One of two things:
1970 	 *            1) We really set it.
1971 	 *            2) A bunch of interrupts came in and moved
1972 	 *               the page forward again.
1973 	 */
1974 	switch (ret) {
1975 	case RB_PAGE_HEAD:
1976 	case RB_PAGE_NORMAL:
1977 		/* OK */
1978 		break;
1979 	default:
1980 		RB_WARN_ON(cpu_buffer, 1);
1981 		return -1;
1982 	}
1983 
1984 	/*
1985 	 * It is possible that an interrupt came in,
1986 	 * set the head up, then more interrupts came in
1987 	 * and moved it again. When we get back here,
1988 	 * the page would have been set to NORMAL but we
1989 	 * just set it back to HEAD.
1990 	 *
1991 	 * How do you detect this? Well, if that happened
1992 	 * the tail page would have moved.
1993 	 */
1994 	if (ret == RB_PAGE_NORMAL) {
1995 		/*
1996 		 * If the tail had moved passed next, then we need
1997 		 * to reset the pointer.
1998 		 */
1999 		if (cpu_buffer->tail_page != tail_page &&
2000 		    cpu_buffer->tail_page != next_page)
2001 			rb_head_page_set_normal(cpu_buffer, new_head,
2002 						next_page,
2003 						RB_PAGE_HEAD);
2004 	}
2005 
2006 	/*
2007 	 * If this was the outer most commit (the one that
2008 	 * changed the original pointer from HEAD to UPDATE),
2009 	 * then it is up to us to reset it to NORMAL.
2010 	 */
2011 	if (type == RB_PAGE_HEAD) {
2012 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2013 					      tail_page,
2014 					      RB_PAGE_UPDATE);
2015 		if (RB_WARN_ON(cpu_buffer,
2016 			       ret != RB_PAGE_UPDATE))
2017 			return -1;
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 static unsigned rb_calculate_event_length(unsigned length)
2024 {
2025 	struct ring_buffer_event event; /* Used only for sizeof array */
2026 
2027 	/* zero length can cause confusions */
2028 	if (!length)
2029 		length = 1;
2030 
2031 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2032 		length += sizeof(event.array[0]);
2033 
2034 	length += RB_EVNT_HDR_SIZE;
2035 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2036 
2037 	return length;
2038 }
2039 
2040 static inline void
2041 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2042 	      struct buffer_page *tail_page,
2043 	      unsigned long tail, unsigned long length)
2044 {
2045 	struct ring_buffer_event *event;
2046 
2047 	/*
2048 	 * Only the event that crossed the page boundary
2049 	 * must fill the old tail_page with padding.
2050 	 */
2051 	if (tail >= BUF_PAGE_SIZE) {
2052 		/*
2053 		 * If the page was filled, then we still need
2054 		 * to update the real_end. Reset it to zero
2055 		 * and the reader will ignore it.
2056 		 */
2057 		if (tail == BUF_PAGE_SIZE)
2058 			tail_page->real_end = 0;
2059 
2060 		local_sub(length, &tail_page->write);
2061 		return;
2062 	}
2063 
2064 	event = __rb_page_index(tail_page, tail);
2065 	kmemcheck_annotate_bitfield(event, bitfield);
2066 
2067 	/* account for padding bytes */
2068 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2069 
2070 	/*
2071 	 * Save the original length to the meta data.
2072 	 * This will be used by the reader to add lost event
2073 	 * counter.
2074 	 */
2075 	tail_page->real_end = tail;
2076 
2077 	/*
2078 	 * If this event is bigger than the minimum size, then
2079 	 * we need to be careful that we don't subtract the
2080 	 * write counter enough to allow another writer to slip
2081 	 * in on this page.
2082 	 * We put in a discarded commit instead, to make sure
2083 	 * that this space is not used again.
2084 	 *
2085 	 * If we are less than the minimum size, we don't need to
2086 	 * worry about it.
2087 	 */
2088 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2089 		/* No room for any events */
2090 
2091 		/* Mark the rest of the page with padding */
2092 		rb_event_set_padding(event);
2093 
2094 		/* Set the write back to the previous setting */
2095 		local_sub(length, &tail_page->write);
2096 		return;
2097 	}
2098 
2099 	/* Put in a discarded event */
2100 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2101 	event->type_len = RINGBUF_TYPE_PADDING;
2102 	/* time delta must be non zero */
2103 	event->time_delta = 1;
2104 
2105 	/* Set write to end of buffer */
2106 	length = (tail + length) - BUF_PAGE_SIZE;
2107 	local_sub(length, &tail_page->write);
2108 }
2109 
2110 /*
2111  * This is the slow path, force gcc not to inline it.
2112  */
2113 static noinline struct ring_buffer_event *
2114 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2115 	     unsigned long length, unsigned long tail,
2116 	     struct buffer_page *tail_page, u64 ts)
2117 {
2118 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2119 	struct ring_buffer *buffer = cpu_buffer->buffer;
2120 	struct buffer_page *next_page;
2121 	int ret;
2122 
2123 	next_page = tail_page;
2124 
2125 	rb_inc_page(cpu_buffer, &next_page);
2126 
2127 	/*
2128 	 * If for some reason, we had an interrupt storm that made
2129 	 * it all the way around the buffer, bail, and warn
2130 	 * about it.
2131 	 */
2132 	if (unlikely(next_page == commit_page)) {
2133 		local_inc(&cpu_buffer->commit_overrun);
2134 		goto out_reset;
2135 	}
2136 
2137 	/*
2138 	 * This is where the fun begins!
2139 	 *
2140 	 * We are fighting against races between a reader that
2141 	 * could be on another CPU trying to swap its reader
2142 	 * page with the buffer head.
2143 	 *
2144 	 * We are also fighting against interrupts coming in and
2145 	 * moving the head or tail on us as well.
2146 	 *
2147 	 * If the next page is the head page then we have filled
2148 	 * the buffer, unless the commit page is still on the
2149 	 * reader page.
2150 	 */
2151 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2152 
2153 		/*
2154 		 * If the commit is not on the reader page, then
2155 		 * move the header page.
2156 		 */
2157 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2158 			/*
2159 			 * If we are not in overwrite mode,
2160 			 * this is easy, just stop here.
2161 			 */
2162 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2163 				local_inc(&cpu_buffer->dropped_events);
2164 				goto out_reset;
2165 			}
2166 
2167 			ret = rb_handle_head_page(cpu_buffer,
2168 						  tail_page,
2169 						  next_page);
2170 			if (ret < 0)
2171 				goto out_reset;
2172 			if (ret)
2173 				goto out_again;
2174 		} else {
2175 			/*
2176 			 * We need to be careful here too. The
2177 			 * commit page could still be on the reader
2178 			 * page. We could have a small buffer, and
2179 			 * have filled up the buffer with events
2180 			 * from interrupts and such, and wrapped.
2181 			 *
2182 			 * Note, if the tail page is also the on the
2183 			 * reader_page, we let it move out.
2184 			 */
2185 			if (unlikely((cpu_buffer->commit_page !=
2186 				      cpu_buffer->tail_page) &&
2187 				     (cpu_buffer->commit_page ==
2188 				      cpu_buffer->reader_page))) {
2189 				local_inc(&cpu_buffer->commit_overrun);
2190 				goto out_reset;
2191 			}
2192 		}
2193 	}
2194 
2195 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2196 	if (ret) {
2197 		/*
2198 		 * Nested commits always have zero deltas, so
2199 		 * just reread the time stamp
2200 		 */
2201 		ts = rb_time_stamp(buffer);
2202 		next_page->page->time_stamp = ts;
2203 	}
2204 
2205  out_again:
2206 
2207 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2208 
2209 	/* fail and let the caller try again */
2210 	return ERR_PTR(-EAGAIN);
2211 
2212  out_reset:
2213 	/* reset write */
2214 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2215 
2216 	return NULL;
2217 }
2218 
2219 static struct ring_buffer_event *
2220 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2221 		  unsigned long length, u64 ts,
2222 		  u64 delta, int add_timestamp)
2223 {
2224 	struct buffer_page *tail_page;
2225 	struct ring_buffer_event *event;
2226 	unsigned long tail, write;
2227 
2228 	/*
2229 	 * If the time delta since the last event is too big to
2230 	 * hold in the time field of the event, then we append a
2231 	 * TIME EXTEND event ahead of the data event.
2232 	 */
2233 	if (unlikely(add_timestamp))
2234 		length += RB_LEN_TIME_EXTEND;
2235 
2236 	tail_page = cpu_buffer->tail_page;
2237 	write = local_add_return(length, &tail_page->write);
2238 
2239 	/* set write to only the index of the write */
2240 	write &= RB_WRITE_MASK;
2241 	tail = write - length;
2242 
2243 	/* See if we shot pass the end of this buffer page */
2244 	if (unlikely(write > BUF_PAGE_SIZE))
2245 		return rb_move_tail(cpu_buffer, length, tail,
2246 				    tail_page, ts);
2247 
2248 	/* We reserved something on the buffer */
2249 
2250 	event = __rb_page_index(tail_page, tail);
2251 	kmemcheck_annotate_bitfield(event, bitfield);
2252 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2253 
2254 	local_inc(&tail_page->entries);
2255 
2256 	/*
2257 	 * If this is the first commit on the page, then update
2258 	 * its timestamp.
2259 	 */
2260 	if (!tail)
2261 		tail_page->page->time_stamp = ts;
2262 
2263 	/* account for these added bytes */
2264 	local_add(length, &cpu_buffer->entries_bytes);
2265 
2266 	return event;
2267 }
2268 
2269 static inline int
2270 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2271 		  struct ring_buffer_event *event)
2272 {
2273 	unsigned long new_index, old_index;
2274 	struct buffer_page *bpage;
2275 	unsigned long index;
2276 	unsigned long addr;
2277 
2278 	new_index = rb_event_index(event);
2279 	old_index = new_index + rb_event_ts_length(event);
2280 	addr = (unsigned long)event;
2281 	addr &= PAGE_MASK;
2282 
2283 	bpage = cpu_buffer->tail_page;
2284 
2285 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2286 		unsigned long write_mask =
2287 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2288 		unsigned long event_length = rb_event_length(event);
2289 		/*
2290 		 * This is on the tail page. It is possible that
2291 		 * a write could come in and move the tail page
2292 		 * and write to the next page. That is fine
2293 		 * because we just shorten what is on this page.
2294 		 */
2295 		old_index += write_mask;
2296 		new_index += write_mask;
2297 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2298 		if (index == old_index) {
2299 			/* update counters */
2300 			local_sub(event_length, &cpu_buffer->entries_bytes);
2301 			return 1;
2302 		}
2303 	}
2304 
2305 	/* could not discard */
2306 	return 0;
2307 }
2308 
2309 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2310 {
2311 	local_inc(&cpu_buffer->committing);
2312 	local_inc(&cpu_buffer->commits);
2313 }
2314 
2315 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2316 {
2317 	unsigned long commits;
2318 
2319 	if (RB_WARN_ON(cpu_buffer,
2320 		       !local_read(&cpu_buffer->committing)))
2321 		return;
2322 
2323  again:
2324 	commits = local_read(&cpu_buffer->commits);
2325 	/* synchronize with interrupts */
2326 	barrier();
2327 	if (local_read(&cpu_buffer->committing) == 1)
2328 		rb_set_commit_to_write(cpu_buffer);
2329 
2330 	local_dec(&cpu_buffer->committing);
2331 
2332 	/* synchronize with interrupts */
2333 	barrier();
2334 
2335 	/*
2336 	 * Need to account for interrupts coming in between the
2337 	 * updating of the commit page and the clearing of the
2338 	 * committing counter.
2339 	 */
2340 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2341 	    !local_read(&cpu_buffer->committing)) {
2342 		local_inc(&cpu_buffer->committing);
2343 		goto again;
2344 	}
2345 }
2346 
2347 static struct ring_buffer_event *
2348 rb_reserve_next_event(struct ring_buffer *buffer,
2349 		      struct ring_buffer_per_cpu *cpu_buffer,
2350 		      unsigned long length)
2351 {
2352 	struct ring_buffer_event *event;
2353 	u64 ts, delta;
2354 	int nr_loops = 0;
2355 	int add_timestamp;
2356 	u64 diff;
2357 
2358 	rb_start_commit(cpu_buffer);
2359 
2360 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2361 	/*
2362 	 * Due to the ability to swap a cpu buffer from a buffer
2363 	 * it is possible it was swapped before we committed.
2364 	 * (committing stops a swap). We check for it here and
2365 	 * if it happened, we have to fail the write.
2366 	 */
2367 	barrier();
2368 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2369 		local_dec(&cpu_buffer->committing);
2370 		local_dec(&cpu_buffer->commits);
2371 		return NULL;
2372 	}
2373 #endif
2374 
2375 	length = rb_calculate_event_length(length);
2376  again:
2377 	add_timestamp = 0;
2378 	delta = 0;
2379 
2380 	/*
2381 	 * We allow for interrupts to reenter here and do a trace.
2382 	 * If one does, it will cause this original code to loop
2383 	 * back here. Even with heavy interrupts happening, this
2384 	 * should only happen a few times in a row. If this happens
2385 	 * 1000 times in a row, there must be either an interrupt
2386 	 * storm or we have something buggy.
2387 	 * Bail!
2388 	 */
2389 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2390 		goto out_fail;
2391 
2392 	ts = rb_time_stamp(cpu_buffer->buffer);
2393 	diff = ts - cpu_buffer->write_stamp;
2394 
2395 	/* make sure this diff is calculated here */
2396 	barrier();
2397 
2398 	/* Did the write stamp get updated already? */
2399 	if (likely(ts >= cpu_buffer->write_stamp)) {
2400 		delta = diff;
2401 		if (unlikely(test_time_stamp(delta))) {
2402 			int local_clock_stable = 1;
2403 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2404 			local_clock_stable = sched_clock_stable;
2405 #endif
2406 			WARN_ONCE(delta > (1ULL << 59),
2407 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2408 				  (unsigned long long)delta,
2409 				  (unsigned long long)ts,
2410 				  (unsigned long long)cpu_buffer->write_stamp,
2411 				  local_clock_stable ? "" :
2412 				  "If you just came from a suspend/resume,\n"
2413 				  "please switch to the trace global clock:\n"
2414 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2415 			add_timestamp = 1;
2416 		}
2417 	}
2418 
2419 	event = __rb_reserve_next(cpu_buffer, length, ts,
2420 				  delta, add_timestamp);
2421 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2422 		goto again;
2423 
2424 	if (!event)
2425 		goto out_fail;
2426 
2427 	return event;
2428 
2429  out_fail:
2430 	rb_end_commit(cpu_buffer);
2431 	return NULL;
2432 }
2433 
2434 #ifdef CONFIG_TRACING
2435 
2436 /*
2437  * The lock and unlock are done within a preempt disable section.
2438  * The current_context per_cpu variable can only be modified
2439  * by the current task between lock and unlock. But it can
2440  * be modified more than once via an interrupt. To pass this
2441  * information from the lock to the unlock without having to
2442  * access the 'in_interrupt()' functions again (which do show
2443  * a bit of overhead in something as critical as function tracing,
2444  * we use a bitmask trick.
2445  *
2446  *  bit 0 =  NMI context
2447  *  bit 1 =  IRQ context
2448  *  bit 2 =  SoftIRQ context
2449  *  bit 3 =  normal context.
2450  *
2451  * This works because this is the order of contexts that can
2452  * preempt other contexts. A SoftIRQ never preempts an IRQ
2453  * context.
2454  *
2455  * When the context is determined, the corresponding bit is
2456  * checked and set (if it was set, then a recursion of that context
2457  * happened).
2458  *
2459  * On unlock, we need to clear this bit. To do so, just subtract
2460  * 1 from the current_context and AND it to itself.
2461  *
2462  * (binary)
2463  *  101 - 1 = 100
2464  *  101 & 100 = 100 (clearing bit zero)
2465  *
2466  *  1010 - 1 = 1001
2467  *  1010 & 1001 = 1000 (clearing bit 1)
2468  *
2469  * The least significant bit can be cleared this way, and it
2470  * just so happens that it is the same bit corresponding to
2471  * the current context.
2472  */
2473 static DEFINE_PER_CPU(unsigned int, current_context);
2474 
2475 static __always_inline int trace_recursive_lock(void)
2476 {
2477 	unsigned int val = this_cpu_read(current_context);
2478 	int bit;
2479 
2480 	if (in_interrupt()) {
2481 		if (in_nmi())
2482 			bit = 0;
2483 		else if (in_irq())
2484 			bit = 1;
2485 		else
2486 			bit = 2;
2487 	} else
2488 		bit = 3;
2489 
2490 	if (unlikely(val & (1 << bit)))
2491 		return 1;
2492 
2493 	val |= (1 << bit);
2494 	this_cpu_write(current_context, val);
2495 
2496 	return 0;
2497 }
2498 
2499 static __always_inline void trace_recursive_unlock(void)
2500 {
2501 	unsigned int val = this_cpu_read(current_context);
2502 
2503 	val--;
2504 	val &= this_cpu_read(current_context);
2505 	this_cpu_write(current_context, val);
2506 }
2507 
2508 #else
2509 
2510 #define trace_recursive_lock()		(0)
2511 #define trace_recursive_unlock()	do { } while (0)
2512 
2513 #endif
2514 
2515 /**
2516  * ring_buffer_lock_reserve - reserve a part of the buffer
2517  * @buffer: the ring buffer to reserve from
2518  * @length: the length of the data to reserve (excluding event header)
2519  *
2520  * Returns a reseverd event on the ring buffer to copy directly to.
2521  * The user of this interface will need to get the body to write into
2522  * and can use the ring_buffer_event_data() interface.
2523  *
2524  * The length is the length of the data needed, not the event length
2525  * which also includes the event header.
2526  *
2527  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2528  * If NULL is returned, then nothing has been allocated or locked.
2529  */
2530 struct ring_buffer_event *
2531 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2532 {
2533 	struct ring_buffer_per_cpu *cpu_buffer;
2534 	struct ring_buffer_event *event;
2535 	int cpu;
2536 
2537 	if (ring_buffer_flags != RB_BUFFERS_ON)
2538 		return NULL;
2539 
2540 	/* If we are tracing schedule, we don't want to recurse */
2541 	preempt_disable_notrace();
2542 
2543 	if (atomic_read(&buffer->record_disabled))
2544 		goto out_nocheck;
2545 
2546 	if (trace_recursive_lock())
2547 		goto out_nocheck;
2548 
2549 	cpu = raw_smp_processor_id();
2550 
2551 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2552 		goto out;
2553 
2554 	cpu_buffer = buffer->buffers[cpu];
2555 
2556 	if (atomic_read(&cpu_buffer->record_disabled))
2557 		goto out;
2558 
2559 	if (length > BUF_MAX_DATA_SIZE)
2560 		goto out;
2561 
2562 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2563 	if (!event)
2564 		goto out;
2565 
2566 	return event;
2567 
2568  out:
2569 	trace_recursive_unlock();
2570 
2571  out_nocheck:
2572 	preempt_enable_notrace();
2573 	return NULL;
2574 }
2575 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2576 
2577 static void
2578 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2579 		      struct ring_buffer_event *event)
2580 {
2581 	u64 delta;
2582 
2583 	/*
2584 	 * The event first in the commit queue updates the
2585 	 * time stamp.
2586 	 */
2587 	if (rb_event_is_commit(cpu_buffer, event)) {
2588 		/*
2589 		 * A commit event that is first on a page
2590 		 * updates the write timestamp with the page stamp
2591 		 */
2592 		if (!rb_event_index(event))
2593 			cpu_buffer->write_stamp =
2594 				cpu_buffer->commit_page->page->time_stamp;
2595 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2596 			delta = event->array[0];
2597 			delta <<= TS_SHIFT;
2598 			delta += event->time_delta;
2599 			cpu_buffer->write_stamp += delta;
2600 		} else
2601 			cpu_buffer->write_stamp += event->time_delta;
2602 	}
2603 }
2604 
2605 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2606 		      struct ring_buffer_event *event)
2607 {
2608 	local_inc(&cpu_buffer->entries);
2609 	rb_update_write_stamp(cpu_buffer, event);
2610 	rb_end_commit(cpu_buffer);
2611 }
2612 
2613 /**
2614  * ring_buffer_unlock_commit - commit a reserved
2615  * @buffer: The buffer to commit to
2616  * @event: The event pointer to commit.
2617  *
2618  * This commits the data to the ring buffer, and releases any locks held.
2619  *
2620  * Must be paired with ring_buffer_lock_reserve.
2621  */
2622 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2623 			      struct ring_buffer_event *event)
2624 {
2625 	struct ring_buffer_per_cpu *cpu_buffer;
2626 	int cpu = raw_smp_processor_id();
2627 
2628 	cpu_buffer = buffer->buffers[cpu];
2629 
2630 	rb_commit(cpu_buffer, event);
2631 
2632 	trace_recursive_unlock();
2633 
2634 	preempt_enable_notrace();
2635 
2636 	return 0;
2637 }
2638 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2639 
2640 static inline void rb_event_discard(struct ring_buffer_event *event)
2641 {
2642 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2643 		event = skip_time_extend(event);
2644 
2645 	/* array[0] holds the actual length for the discarded event */
2646 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2647 	event->type_len = RINGBUF_TYPE_PADDING;
2648 	/* time delta must be non zero */
2649 	if (!event->time_delta)
2650 		event->time_delta = 1;
2651 }
2652 
2653 /*
2654  * Decrement the entries to the page that an event is on.
2655  * The event does not even need to exist, only the pointer
2656  * to the page it is on. This may only be called before the commit
2657  * takes place.
2658  */
2659 static inline void
2660 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2661 		   struct ring_buffer_event *event)
2662 {
2663 	unsigned long addr = (unsigned long)event;
2664 	struct buffer_page *bpage = cpu_buffer->commit_page;
2665 	struct buffer_page *start;
2666 
2667 	addr &= PAGE_MASK;
2668 
2669 	/* Do the likely case first */
2670 	if (likely(bpage->page == (void *)addr)) {
2671 		local_dec(&bpage->entries);
2672 		return;
2673 	}
2674 
2675 	/*
2676 	 * Because the commit page may be on the reader page we
2677 	 * start with the next page and check the end loop there.
2678 	 */
2679 	rb_inc_page(cpu_buffer, &bpage);
2680 	start = bpage;
2681 	do {
2682 		if (bpage->page == (void *)addr) {
2683 			local_dec(&bpage->entries);
2684 			return;
2685 		}
2686 		rb_inc_page(cpu_buffer, &bpage);
2687 	} while (bpage != start);
2688 
2689 	/* commit not part of this buffer?? */
2690 	RB_WARN_ON(cpu_buffer, 1);
2691 }
2692 
2693 /**
2694  * ring_buffer_commit_discard - discard an event that has not been committed
2695  * @buffer: the ring buffer
2696  * @event: non committed event to discard
2697  *
2698  * Sometimes an event that is in the ring buffer needs to be ignored.
2699  * This function lets the user discard an event in the ring buffer
2700  * and then that event will not be read later.
2701  *
2702  * This function only works if it is called before the the item has been
2703  * committed. It will try to free the event from the ring buffer
2704  * if another event has not been added behind it.
2705  *
2706  * If another event has been added behind it, it will set the event
2707  * up as discarded, and perform the commit.
2708  *
2709  * If this function is called, do not call ring_buffer_unlock_commit on
2710  * the event.
2711  */
2712 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2713 				struct ring_buffer_event *event)
2714 {
2715 	struct ring_buffer_per_cpu *cpu_buffer;
2716 	int cpu;
2717 
2718 	/* The event is discarded regardless */
2719 	rb_event_discard(event);
2720 
2721 	cpu = smp_processor_id();
2722 	cpu_buffer = buffer->buffers[cpu];
2723 
2724 	/*
2725 	 * This must only be called if the event has not been
2726 	 * committed yet. Thus we can assume that preemption
2727 	 * is still disabled.
2728 	 */
2729 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2730 
2731 	rb_decrement_entry(cpu_buffer, event);
2732 	if (rb_try_to_discard(cpu_buffer, event))
2733 		goto out;
2734 
2735 	/*
2736 	 * The commit is still visible by the reader, so we
2737 	 * must still update the timestamp.
2738 	 */
2739 	rb_update_write_stamp(cpu_buffer, event);
2740  out:
2741 	rb_end_commit(cpu_buffer);
2742 
2743 	trace_recursive_unlock();
2744 
2745 	preempt_enable_notrace();
2746 
2747 }
2748 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2749 
2750 /**
2751  * ring_buffer_write - write data to the buffer without reserving
2752  * @buffer: The ring buffer to write to.
2753  * @length: The length of the data being written (excluding the event header)
2754  * @data: The data to write to the buffer.
2755  *
2756  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2757  * one function. If you already have the data to write to the buffer, it
2758  * may be easier to simply call this function.
2759  *
2760  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2761  * and not the length of the event which would hold the header.
2762  */
2763 int ring_buffer_write(struct ring_buffer *buffer,
2764 		      unsigned long length,
2765 		      void *data)
2766 {
2767 	struct ring_buffer_per_cpu *cpu_buffer;
2768 	struct ring_buffer_event *event;
2769 	void *body;
2770 	int ret = -EBUSY;
2771 	int cpu;
2772 
2773 	if (ring_buffer_flags != RB_BUFFERS_ON)
2774 		return -EBUSY;
2775 
2776 	preempt_disable_notrace();
2777 
2778 	if (atomic_read(&buffer->record_disabled))
2779 		goto out;
2780 
2781 	cpu = raw_smp_processor_id();
2782 
2783 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2784 		goto out;
2785 
2786 	cpu_buffer = buffer->buffers[cpu];
2787 
2788 	if (atomic_read(&cpu_buffer->record_disabled))
2789 		goto out;
2790 
2791 	if (length > BUF_MAX_DATA_SIZE)
2792 		goto out;
2793 
2794 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2795 	if (!event)
2796 		goto out;
2797 
2798 	body = rb_event_data(event);
2799 
2800 	memcpy(body, data, length);
2801 
2802 	rb_commit(cpu_buffer, event);
2803 
2804 	ret = 0;
2805  out:
2806 	preempt_enable_notrace();
2807 
2808 	return ret;
2809 }
2810 EXPORT_SYMBOL_GPL(ring_buffer_write);
2811 
2812 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2813 {
2814 	struct buffer_page *reader = cpu_buffer->reader_page;
2815 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2816 	struct buffer_page *commit = cpu_buffer->commit_page;
2817 
2818 	/* In case of error, head will be NULL */
2819 	if (unlikely(!head))
2820 		return 1;
2821 
2822 	return reader->read == rb_page_commit(reader) &&
2823 		(commit == reader ||
2824 		 (commit == head &&
2825 		  head->read == rb_page_commit(commit)));
2826 }
2827 
2828 /**
2829  * ring_buffer_record_disable - stop all writes into the buffer
2830  * @buffer: The ring buffer to stop writes to.
2831  *
2832  * This prevents all writes to the buffer. Any attempt to write
2833  * to the buffer after this will fail and return NULL.
2834  *
2835  * The caller should call synchronize_sched() after this.
2836  */
2837 void ring_buffer_record_disable(struct ring_buffer *buffer)
2838 {
2839 	atomic_inc(&buffer->record_disabled);
2840 }
2841 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2842 
2843 /**
2844  * ring_buffer_record_enable - enable writes to the buffer
2845  * @buffer: The ring buffer to enable writes
2846  *
2847  * Note, multiple disables will need the same number of enables
2848  * to truly enable the writing (much like preempt_disable).
2849  */
2850 void ring_buffer_record_enable(struct ring_buffer *buffer)
2851 {
2852 	atomic_dec(&buffer->record_disabled);
2853 }
2854 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2855 
2856 /**
2857  * ring_buffer_record_off - stop all writes into the buffer
2858  * @buffer: The ring buffer to stop writes to.
2859  *
2860  * This prevents all writes to the buffer. Any attempt to write
2861  * to the buffer after this will fail and return NULL.
2862  *
2863  * This is different than ring_buffer_record_disable() as
2864  * it works like an on/off switch, where as the disable() version
2865  * must be paired with a enable().
2866  */
2867 void ring_buffer_record_off(struct ring_buffer *buffer)
2868 {
2869 	unsigned int rd;
2870 	unsigned int new_rd;
2871 
2872 	do {
2873 		rd = atomic_read(&buffer->record_disabled);
2874 		new_rd = rd | RB_BUFFER_OFF;
2875 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2876 }
2877 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2878 
2879 /**
2880  * ring_buffer_record_on - restart writes into the buffer
2881  * @buffer: The ring buffer to start writes to.
2882  *
2883  * This enables all writes to the buffer that was disabled by
2884  * ring_buffer_record_off().
2885  *
2886  * This is different than ring_buffer_record_enable() as
2887  * it works like an on/off switch, where as the enable() version
2888  * must be paired with a disable().
2889  */
2890 void ring_buffer_record_on(struct ring_buffer *buffer)
2891 {
2892 	unsigned int rd;
2893 	unsigned int new_rd;
2894 
2895 	do {
2896 		rd = atomic_read(&buffer->record_disabled);
2897 		new_rd = rd & ~RB_BUFFER_OFF;
2898 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2899 }
2900 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2901 
2902 /**
2903  * ring_buffer_record_is_on - return true if the ring buffer can write
2904  * @buffer: The ring buffer to see if write is enabled
2905  *
2906  * Returns true if the ring buffer is in a state that it accepts writes.
2907  */
2908 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2909 {
2910 	return !atomic_read(&buffer->record_disabled);
2911 }
2912 
2913 /**
2914  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2915  * @buffer: The ring buffer to stop writes to.
2916  * @cpu: The CPU buffer to stop
2917  *
2918  * This prevents all writes to the buffer. Any attempt to write
2919  * to the buffer after this will fail and return NULL.
2920  *
2921  * The caller should call synchronize_sched() after this.
2922  */
2923 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2924 {
2925 	struct ring_buffer_per_cpu *cpu_buffer;
2926 
2927 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2928 		return;
2929 
2930 	cpu_buffer = buffer->buffers[cpu];
2931 	atomic_inc(&cpu_buffer->record_disabled);
2932 }
2933 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2934 
2935 /**
2936  * ring_buffer_record_enable_cpu - enable writes to the buffer
2937  * @buffer: The ring buffer to enable writes
2938  * @cpu: The CPU to enable.
2939  *
2940  * Note, multiple disables will need the same number of enables
2941  * to truly enable the writing (much like preempt_disable).
2942  */
2943 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2944 {
2945 	struct ring_buffer_per_cpu *cpu_buffer;
2946 
2947 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2948 		return;
2949 
2950 	cpu_buffer = buffer->buffers[cpu];
2951 	atomic_dec(&cpu_buffer->record_disabled);
2952 }
2953 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2954 
2955 /*
2956  * The total entries in the ring buffer is the running counter
2957  * of entries entered into the ring buffer, minus the sum of
2958  * the entries read from the ring buffer and the number of
2959  * entries that were overwritten.
2960  */
2961 static inline unsigned long
2962 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2963 {
2964 	return local_read(&cpu_buffer->entries) -
2965 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2966 }
2967 
2968 /**
2969  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2970  * @buffer: The ring buffer
2971  * @cpu: The per CPU buffer to read from.
2972  */
2973 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2974 {
2975 	unsigned long flags;
2976 	struct ring_buffer_per_cpu *cpu_buffer;
2977 	struct buffer_page *bpage;
2978 	u64 ret = 0;
2979 
2980 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2981 		return 0;
2982 
2983 	cpu_buffer = buffer->buffers[cpu];
2984 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2985 	/*
2986 	 * if the tail is on reader_page, oldest time stamp is on the reader
2987 	 * page
2988 	 */
2989 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2990 		bpage = cpu_buffer->reader_page;
2991 	else
2992 		bpage = rb_set_head_page(cpu_buffer);
2993 	if (bpage)
2994 		ret = bpage->page->time_stamp;
2995 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2996 
2997 	return ret;
2998 }
2999 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3000 
3001 /**
3002  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3003  * @buffer: The ring buffer
3004  * @cpu: The per CPU buffer to read from.
3005  */
3006 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3007 {
3008 	struct ring_buffer_per_cpu *cpu_buffer;
3009 	unsigned long ret;
3010 
3011 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3012 		return 0;
3013 
3014 	cpu_buffer = buffer->buffers[cpu];
3015 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3016 
3017 	return ret;
3018 }
3019 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3020 
3021 /**
3022  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3023  * @buffer: The ring buffer
3024  * @cpu: The per CPU buffer to get the entries from.
3025  */
3026 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3027 {
3028 	struct ring_buffer_per_cpu *cpu_buffer;
3029 
3030 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3031 		return 0;
3032 
3033 	cpu_buffer = buffer->buffers[cpu];
3034 
3035 	return rb_num_of_entries(cpu_buffer);
3036 }
3037 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3038 
3039 /**
3040  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3041  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3042  * @buffer: The ring buffer
3043  * @cpu: The per CPU buffer to get the number of overruns from
3044  */
3045 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3046 {
3047 	struct ring_buffer_per_cpu *cpu_buffer;
3048 	unsigned long ret;
3049 
3050 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3051 		return 0;
3052 
3053 	cpu_buffer = buffer->buffers[cpu];
3054 	ret = local_read(&cpu_buffer->overrun);
3055 
3056 	return ret;
3057 }
3058 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3059 
3060 /**
3061  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3062  * commits failing due to the buffer wrapping around while there are uncommitted
3063  * events, such as during an interrupt storm.
3064  * @buffer: The ring buffer
3065  * @cpu: The per CPU buffer to get the number of overruns from
3066  */
3067 unsigned long
3068 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3069 {
3070 	struct ring_buffer_per_cpu *cpu_buffer;
3071 	unsigned long ret;
3072 
3073 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3074 		return 0;
3075 
3076 	cpu_buffer = buffer->buffers[cpu];
3077 	ret = local_read(&cpu_buffer->commit_overrun);
3078 
3079 	return ret;
3080 }
3081 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3082 
3083 /**
3084  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3085  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3086  * @buffer: The ring buffer
3087  * @cpu: The per CPU buffer to get the number of overruns from
3088  */
3089 unsigned long
3090 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3091 {
3092 	struct ring_buffer_per_cpu *cpu_buffer;
3093 	unsigned long ret;
3094 
3095 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3096 		return 0;
3097 
3098 	cpu_buffer = buffer->buffers[cpu];
3099 	ret = local_read(&cpu_buffer->dropped_events);
3100 
3101 	return ret;
3102 }
3103 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3104 
3105 /**
3106  * ring_buffer_read_events_cpu - get the number of events successfully read
3107  * @buffer: The ring buffer
3108  * @cpu: The per CPU buffer to get the number of events read
3109  */
3110 unsigned long
3111 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3112 {
3113 	struct ring_buffer_per_cpu *cpu_buffer;
3114 
3115 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3116 		return 0;
3117 
3118 	cpu_buffer = buffer->buffers[cpu];
3119 	return cpu_buffer->read;
3120 }
3121 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3122 
3123 /**
3124  * ring_buffer_entries - get the number of entries in a buffer
3125  * @buffer: The ring buffer
3126  *
3127  * Returns the total number of entries in the ring buffer
3128  * (all CPU entries)
3129  */
3130 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3131 {
3132 	struct ring_buffer_per_cpu *cpu_buffer;
3133 	unsigned long entries = 0;
3134 	int cpu;
3135 
3136 	/* if you care about this being correct, lock the buffer */
3137 	for_each_buffer_cpu(buffer, cpu) {
3138 		cpu_buffer = buffer->buffers[cpu];
3139 		entries += rb_num_of_entries(cpu_buffer);
3140 	}
3141 
3142 	return entries;
3143 }
3144 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3145 
3146 /**
3147  * ring_buffer_overruns - get the number of overruns in buffer
3148  * @buffer: The ring buffer
3149  *
3150  * Returns the total number of overruns in the ring buffer
3151  * (all CPU entries)
3152  */
3153 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3154 {
3155 	struct ring_buffer_per_cpu *cpu_buffer;
3156 	unsigned long overruns = 0;
3157 	int cpu;
3158 
3159 	/* if you care about this being correct, lock the buffer */
3160 	for_each_buffer_cpu(buffer, cpu) {
3161 		cpu_buffer = buffer->buffers[cpu];
3162 		overruns += local_read(&cpu_buffer->overrun);
3163 	}
3164 
3165 	return overruns;
3166 }
3167 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3168 
3169 static void rb_iter_reset(struct ring_buffer_iter *iter)
3170 {
3171 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3172 
3173 	/* Iterator usage is expected to have record disabled */
3174 	if (list_empty(&cpu_buffer->reader_page->list)) {
3175 		iter->head_page = rb_set_head_page(cpu_buffer);
3176 		if (unlikely(!iter->head_page))
3177 			return;
3178 		iter->head = iter->head_page->read;
3179 	} else {
3180 		iter->head_page = cpu_buffer->reader_page;
3181 		iter->head = cpu_buffer->reader_page->read;
3182 	}
3183 	if (iter->head)
3184 		iter->read_stamp = cpu_buffer->read_stamp;
3185 	else
3186 		iter->read_stamp = iter->head_page->page->time_stamp;
3187 	iter->cache_reader_page = cpu_buffer->reader_page;
3188 	iter->cache_read = cpu_buffer->read;
3189 }
3190 
3191 /**
3192  * ring_buffer_iter_reset - reset an iterator
3193  * @iter: The iterator to reset
3194  *
3195  * Resets the iterator, so that it will start from the beginning
3196  * again.
3197  */
3198 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3199 {
3200 	struct ring_buffer_per_cpu *cpu_buffer;
3201 	unsigned long flags;
3202 
3203 	if (!iter)
3204 		return;
3205 
3206 	cpu_buffer = iter->cpu_buffer;
3207 
3208 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3209 	rb_iter_reset(iter);
3210 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3213 
3214 /**
3215  * ring_buffer_iter_empty - check if an iterator has no more to read
3216  * @iter: The iterator to check
3217  */
3218 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3219 {
3220 	struct ring_buffer_per_cpu *cpu_buffer;
3221 
3222 	cpu_buffer = iter->cpu_buffer;
3223 
3224 	return iter->head_page == cpu_buffer->commit_page &&
3225 		iter->head == rb_commit_index(cpu_buffer);
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3228 
3229 static void
3230 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3231 		     struct ring_buffer_event *event)
3232 {
3233 	u64 delta;
3234 
3235 	switch (event->type_len) {
3236 	case RINGBUF_TYPE_PADDING:
3237 		return;
3238 
3239 	case RINGBUF_TYPE_TIME_EXTEND:
3240 		delta = event->array[0];
3241 		delta <<= TS_SHIFT;
3242 		delta += event->time_delta;
3243 		cpu_buffer->read_stamp += delta;
3244 		return;
3245 
3246 	case RINGBUF_TYPE_TIME_STAMP:
3247 		/* FIXME: not implemented */
3248 		return;
3249 
3250 	case RINGBUF_TYPE_DATA:
3251 		cpu_buffer->read_stamp += event->time_delta;
3252 		return;
3253 
3254 	default:
3255 		BUG();
3256 	}
3257 	return;
3258 }
3259 
3260 static void
3261 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3262 			  struct ring_buffer_event *event)
3263 {
3264 	u64 delta;
3265 
3266 	switch (event->type_len) {
3267 	case RINGBUF_TYPE_PADDING:
3268 		return;
3269 
3270 	case RINGBUF_TYPE_TIME_EXTEND:
3271 		delta = event->array[0];
3272 		delta <<= TS_SHIFT;
3273 		delta += event->time_delta;
3274 		iter->read_stamp += delta;
3275 		return;
3276 
3277 	case RINGBUF_TYPE_TIME_STAMP:
3278 		/* FIXME: not implemented */
3279 		return;
3280 
3281 	case RINGBUF_TYPE_DATA:
3282 		iter->read_stamp += event->time_delta;
3283 		return;
3284 
3285 	default:
3286 		BUG();
3287 	}
3288 	return;
3289 }
3290 
3291 static struct buffer_page *
3292 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3293 {
3294 	struct buffer_page *reader = NULL;
3295 	unsigned long overwrite;
3296 	unsigned long flags;
3297 	int nr_loops = 0;
3298 	int ret;
3299 
3300 	local_irq_save(flags);
3301 	arch_spin_lock(&cpu_buffer->lock);
3302 
3303  again:
3304 	/*
3305 	 * This should normally only loop twice. But because the
3306 	 * start of the reader inserts an empty page, it causes
3307 	 * a case where we will loop three times. There should be no
3308 	 * reason to loop four times (that I know of).
3309 	 */
3310 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3311 		reader = NULL;
3312 		goto out;
3313 	}
3314 
3315 	reader = cpu_buffer->reader_page;
3316 
3317 	/* If there's more to read, return this page */
3318 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3319 		goto out;
3320 
3321 	/* Never should we have an index greater than the size */
3322 	if (RB_WARN_ON(cpu_buffer,
3323 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3324 		goto out;
3325 
3326 	/* check if we caught up to the tail */
3327 	reader = NULL;
3328 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3329 		goto out;
3330 
3331 	/* Don't bother swapping if the ring buffer is empty */
3332 	if (rb_num_of_entries(cpu_buffer) == 0)
3333 		goto out;
3334 
3335 	/*
3336 	 * Reset the reader page to size zero.
3337 	 */
3338 	local_set(&cpu_buffer->reader_page->write, 0);
3339 	local_set(&cpu_buffer->reader_page->entries, 0);
3340 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3341 	cpu_buffer->reader_page->real_end = 0;
3342 
3343  spin:
3344 	/*
3345 	 * Splice the empty reader page into the list around the head.
3346 	 */
3347 	reader = rb_set_head_page(cpu_buffer);
3348 	if (!reader)
3349 		goto out;
3350 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3351 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3352 
3353 	/*
3354 	 * cpu_buffer->pages just needs to point to the buffer, it
3355 	 *  has no specific buffer page to point to. Lets move it out
3356 	 *  of our way so we don't accidentally swap it.
3357 	 */
3358 	cpu_buffer->pages = reader->list.prev;
3359 
3360 	/* The reader page will be pointing to the new head */
3361 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3362 
3363 	/*
3364 	 * We want to make sure we read the overruns after we set up our
3365 	 * pointers to the next object. The writer side does a
3366 	 * cmpxchg to cross pages which acts as the mb on the writer
3367 	 * side. Note, the reader will constantly fail the swap
3368 	 * while the writer is updating the pointers, so this
3369 	 * guarantees that the overwrite recorded here is the one we
3370 	 * want to compare with the last_overrun.
3371 	 */
3372 	smp_mb();
3373 	overwrite = local_read(&(cpu_buffer->overrun));
3374 
3375 	/*
3376 	 * Here's the tricky part.
3377 	 *
3378 	 * We need to move the pointer past the header page.
3379 	 * But we can only do that if a writer is not currently
3380 	 * moving it. The page before the header page has the
3381 	 * flag bit '1' set if it is pointing to the page we want.
3382 	 * but if the writer is in the process of moving it
3383 	 * than it will be '2' or already moved '0'.
3384 	 */
3385 
3386 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3387 
3388 	/*
3389 	 * If we did not convert it, then we must try again.
3390 	 */
3391 	if (!ret)
3392 		goto spin;
3393 
3394 	/*
3395 	 * Yeah! We succeeded in replacing the page.
3396 	 *
3397 	 * Now make the new head point back to the reader page.
3398 	 */
3399 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3400 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3401 
3402 	/* Finally update the reader page to the new head */
3403 	cpu_buffer->reader_page = reader;
3404 	rb_reset_reader_page(cpu_buffer);
3405 
3406 	if (overwrite != cpu_buffer->last_overrun) {
3407 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3408 		cpu_buffer->last_overrun = overwrite;
3409 	}
3410 
3411 	goto again;
3412 
3413  out:
3414 	arch_spin_unlock(&cpu_buffer->lock);
3415 	local_irq_restore(flags);
3416 
3417 	return reader;
3418 }
3419 
3420 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3421 {
3422 	struct ring_buffer_event *event;
3423 	struct buffer_page *reader;
3424 	unsigned length;
3425 
3426 	reader = rb_get_reader_page(cpu_buffer);
3427 
3428 	/* This function should not be called when buffer is empty */
3429 	if (RB_WARN_ON(cpu_buffer, !reader))
3430 		return;
3431 
3432 	event = rb_reader_event(cpu_buffer);
3433 
3434 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3435 		cpu_buffer->read++;
3436 
3437 	rb_update_read_stamp(cpu_buffer, event);
3438 
3439 	length = rb_event_length(event);
3440 	cpu_buffer->reader_page->read += length;
3441 }
3442 
3443 static void rb_advance_iter(struct ring_buffer_iter *iter)
3444 {
3445 	struct ring_buffer_per_cpu *cpu_buffer;
3446 	struct ring_buffer_event *event;
3447 	unsigned length;
3448 
3449 	cpu_buffer = iter->cpu_buffer;
3450 
3451 	/*
3452 	 * Check if we are at the end of the buffer.
3453 	 */
3454 	if (iter->head >= rb_page_size(iter->head_page)) {
3455 		/* discarded commits can make the page empty */
3456 		if (iter->head_page == cpu_buffer->commit_page)
3457 			return;
3458 		rb_inc_iter(iter);
3459 		return;
3460 	}
3461 
3462 	event = rb_iter_head_event(iter);
3463 
3464 	length = rb_event_length(event);
3465 
3466 	/*
3467 	 * This should not be called to advance the header if we are
3468 	 * at the tail of the buffer.
3469 	 */
3470 	if (RB_WARN_ON(cpu_buffer,
3471 		       (iter->head_page == cpu_buffer->commit_page) &&
3472 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3473 		return;
3474 
3475 	rb_update_iter_read_stamp(iter, event);
3476 
3477 	iter->head += length;
3478 
3479 	/* check for end of page padding */
3480 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3481 	    (iter->head_page != cpu_buffer->commit_page))
3482 		rb_inc_iter(iter);
3483 }
3484 
3485 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3486 {
3487 	return cpu_buffer->lost_events;
3488 }
3489 
3490 static struct ring_buffer_event *
3491 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3492 	       unsigned long *lost_events)
3493 {
3494 	struct ring_buffer_event *event;
3495 	struct buffer_page *reader;
3496 	int nr_loops = 0;
3497 
3498  again:
3499 	/*
3500 	 * We repeat when a time extend is encountered.
3501 	 * Since the time extend is always attached to a data event,
3502 	 * we should never loop more than once.
3503 	 * (We never hit the following condition more than twice).
3504 	 */
3505 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3506 		return NULL;
3507 
3508 	reader = rb_get_reader_page(cpu_buffer);
3509 	if (!reader)
3510 		return NULL;
3511 
3512 	event = rb_reader_event(cpu_buffer);
3513 
3514 	switch (event->type_len) {
3515 	case RINGBUF_TYPE_PADDING:
3516 		if (rb_null_event(event))
3517 			RB_WARN_ON(cpu_buffer, 1);
3518 		/*
3519 		 * Because the writer could be discarding every
3520 		 * event it creates (which would probably be bad)
3521 		 * if we were to go back to "again" then we may never
3522 		 * catch up, and will trigger the warn on, or lock
3523 		 * the box. Return the padding, and we will release
3524 		 * the current locks, and try again.
3525 		 */
3526 		return event;
3527 
3528 	case RINGBUF_TYPE_TIME_EXTEND:
3529 		/* Internal data, OK to advance */
3530 		rb_advance_reader(cpu_buffer);
3531 		goto again;
3532 
3533 	case RINGBUF_TYPE_TIME_STAMP:
3534 		/* FIXME: not implemented */
3535 		rb_advance_reader(cpu_buffer);
3536 		goto again;
3537 
3538 	case RINGBUF_TYPE_DATA:
3539 		if (ts) {
3540 			*ts = cpu_buffer->read_stamp + event->time_delta;
3541 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3542 							 cpu_buffer->cpu, ts);
3543 		}
3544 		if (lost_events)
3545 			*lost_events = rb_lost_events(cpu_buffer);
3546 		return event;
3547 
3548 	default:
3549 		BUG();
3550 	}
3551 
3552 	return NULL;
3553 }
3554 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3555 
3556 static struct ring_buffer_event *
3557 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3558 {
3559 	struct ring_buffer *buffer;
3560 	struct ring_buffer_per_cpu *cpu_buffer;
3561 	struct ring_buffer_event *event;
3562 	int nr_loops = 0;
3563 
3564 	cpu_buffer = iter->cpu_buffer;
3565 	buffer = cpu_buffer->buffer;
3566 
3567 	/*
3568 	 * Check if someone performed a consuming read to
3569 	 * the buffer. A consuming read invalidates the iterator
3570 	 * and we need to reset the iterator in this case.
3571 	 */
3572 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3573 		     iter->cache_reader_page != cpu_buffer->reader_page))
3574 		rb_iter_reset(iter);
3575 
3576  again:
3577 	if (ring_buffer_iter_empty(iter))
3578 		return NULL;
3579 
3580 	/*
3581 	 * We repeat when a time extend is encountered.
3582 	 * Since the time extend is always attached to a data event,
3583 	 * we should never loop more than once.
3584 	 * (We never hit the following condition more than twice).
3585 	 */
3586 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3587 		return NULL;
3588 
3589 	if (rb_per_cpu_empty(cpu_buffer))
3590 		return NULL;
3591 
3592 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3593 		rb_inc_iter(iter);
3594 		goto again;
3595 	}
3596 
3597 	event = rb_iter_head_event(iter);
3598 
3599 	switch (event->type_len) {
3600 	case RINGBUF_TYPE_PADDING:
3601 		if (rb_null_event(event)) {
3602 			rb_inc_iter(iter);
3603 			goto again;
3604 		}
3605 		rb_advance_iter(iter);
3606 		return event;
3607 
3608 	case RINGBUF_TYPE_TIME_EXTEND:
3609 		/* Internal data, OK to advance */
3610 		rb_advance_iter(iter);
3611 		goto again;
3612 
3613 	case RINGBUF_TYPE_TIME_STAMP:
3614 		/* FIXME: not implemented */
3615 		rb_advance_iter(iter);
3616 		goto again;
3617 
3618 	case RINGBUF_TYPE_DATA:
3619 		if (ts) {
3620 			*ts = iter->read_stamp + event->time_delta;
3621 			ring_buffer_normalize_time_stamp(buffer,
3622 							 cpu_buffer->cpu, ts);
3623 		}
3624 		return event;
3625 
3626 	default:
3627 		BUG();
3628 	}
3629 
3630 	return NULL;
3631 }
3632 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3633 
3634 static inline int rb_ok_to_lock(void)
3635 {
3636 	/*
3637 	 * If an NMI die dumps out the content of the ring buffer
3638 	 * do not grab locks. We also permanently disable the ring
3639 	 * buffer too. A one time deal is all you get from reading
3640 	 * the ring buffer from an NMI.
3641 	 */
3642 	if (likely(!in_nmi()))
3643 		return 1;
3644 
3645 	tracing_off_permanent();
3646 	return 0;
3647 }
3648 
3649 /**
3650  * ring_buffer_peek - peek at the next event to be read
3651  * @buffer: The ring buffer to read
3652  * @cpu: The cpu to peak at
3653  * @ts: The timestamp counter of this event.
3654  * @lost_events: a variable to store if events were lost (may be NULL)
3655  *
3656  * This will return the event that will be read next, but does
3657  * not consume the data.
3658  */
3659 struct ring_buffer_event *
3660 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3661 		 unsigned long *lost_events)
3662 {
3663 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3664 	struct ring_buffer_event *event;
3665 	unsigned long flags;
3666 	int dolock;
3667 
3668 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3669 		return NULL;
3670 
3671 	dolock = rb_ok_to_lock();
3672  again:
3673 	local_irq_save(flags);
3674 	if (dolock)
3675 		raw_spin_lock(&cpu_buffer->reader_lock);
3676 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3677 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3678 		rb_advance_reader(cpu_buffer);
3679 	if (dolock)
3680 		raw_spin_unlock(&cpu_buffer->reader_lock);
3681 	local_irq_restore(flags);
3682 
3683 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3684 		goto again;
3685 
3686 	return event;
3687 }
3688 
3689 /**
3690  * ring_buffer_iter_peek - peek at the next event to be read
3691  * @iter: The ring buffer iterator
3692  * @ts: The timestamp counter of this event.
3693  *
3694  * This will return the event that will be read next, but does
3695  * not increment the iterator.
3696  */
3697 struct ring_buffer_event *
3698 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3699 {
3700 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3701 	struct ring_buffer_event *event;
3702 	unsigned long flags;
3703 
3704  again:
3705 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3706 	event = rb_iter_peek(iter, ts);
3707 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3708 
3709 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3710 		goto again;
3711 
3712 	return event;
3713 }
3714 
3715 /**
3716  * ring_buffer_consume - return an event and consume it
3717  * @buffer: The ring buffer to get the next event from
3718  * @cpu: the cpu to read the buffer from
3719  * @ts: a variable to store the timestamp (may be NULL)
3720  * @lost_events: a variable to store if events were lost (may be NULL)
3721  *
3722  * Returns the next event in the ring buffer, and that event is consumed.
3723  * Meaning, that sequential reads will keep returning a different event,
3724  * and eventually empty the ring buffer if the producer is slower.
3725  */
3726 struct ring_buffer_event *
3727 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3728 		    unsigned long *lost_events)
3729 {
3730 	struct ring_buffer_per_cpu *cpu_buffer;
3731 	struct ring_buffer_event *event = NULL;
3732 	unsigned long flags;
3733 	int dolock;
3734 
3735 	dolock = rb_ok_to_lock();
3736 
3737  again:
3738 	/* might be called in atomic */
3739 	preempt_disable();
3740 
3741 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742 		goto out;
3743 
3744 	cpu_buffer = buffer->buffers[cpu];
3745 	local_irq_save(flags);
3746 	if (dolock)
3747 		raw_spin_lock(&cpu_buffer->reader_lock);
3748 
3749 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3750 	if (event) {
3751 		cpu_buffer->lost_events = 0;
3752 		rb_advance_reader(cpu_buffer);
3753 	}
3754 
3755 	if (dolock)
3756 		raw_spin_unlock(&cpu_buffer->reader_lock);
3757 	local_irq_restore(flags);
3758 
3759  out:
3760 	preempt_enable();
3761 
3762 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3763 		goto again;
3764 
3765 	return event;
3766 }
3767 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3768 
3769 /**
3770  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3771  * @buffer: The ring buffer to read from
3772  * @cpu: The cpu buffer to iterate over
3773  *
3774  * This performs the initial preparations necessary to iterate
3775  * through the buffer.  Memory is allocated, buffer recording
3776  * is disabled, and the iterator pointer is returned to the caller.
3777  *
3778  * Disabling buffer recordng prevents the reading from being
3779  * corrupted. This is not a consuming read, so a producer is not
3780  * expected.
3781  *
3782  * After a sequence of ring_buffer_read_prepare calls, the user is
3783  * expected to make at least one call to ring_buffer_prepare_sync.
3784  * Afterwards, ring_buffer_read_start is invoked to get things going
3785  * for real.
3786  *
3787  * This overall must be paired with ring_buffer_finish.
3788  */
3789 struct ring_buffer_iter *
3790 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3791 {
3792 	struct ring_buffer_per_cpu *cpu_buffer;
3793 	struct ring_buffer_iter *iter;
3794 
3795 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3796 		return NULL;
3797 
3798 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3799 	if (!iter)
3800 		return NULL;
3801 
3802 	cpu_buffer = buffer->buffers[cpu];
3803 
3804 	iter->cpu_buffer = cpu_buffer;
3805 
3806 	atomic_inc(&buffer->resize_disabled);
3807 	atomic_inc(&cpu_buffer->record_disabled);
3808 
3809 	return iter;
3810 }
3811 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3812 
3813 /**
3814  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3815  *
3816  * All previously invoked ring_buffer_read_prepare calls to prepare
3817  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3818  * calls on those iterators are allowed.
3819  */
3820 void
3821 ring_buffer_read_prepare_sync(void)
3822 {
3823 	synchronize_sched();
3824 }
3825 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3826 
3827 /**
3828  * ring_buffer_read_start - start a non consuming read of the buffer
3829  * @iter: The iterator returned by ring_buffer_read_prepare
3830  *
3831  * This finalizes the startup of an iteration through the buffer.
3832  * The iterator comes from a call to ring_buffer_read_prepare and
3833  * an intervening ring_buffer_read_prepare_sync must have been
3834  * performed.
3835  *
3836  * Must be paired with ring_buffer_finish.
3837  */
3838 void
3839 ring_buffer_read_start(struct ring_buffer_iter *iter)
3840 {
3841 	struct ring_buffer_per_cpu *cpu_buffer;
3842 	unsigned long flags;
3843 
3844 	if (!iter)
3845 		return;
3846 
3847 	cpu_buffer = iter->cpu_buffer;
3848 
3849 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3850 	arch_spin_lock(&cpu_buffer->lock);
3851 	rb_iter_reset(iter);
3852 	arch_spin_unlock(&cpu_buffer->lock);
3853 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3854 }
3855 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3856 
3857 /**
3858  * ring_buffer_finish - finish reading the iterator of the buffer
3859  * @iter: The iterator retrieved by ring_buffer_start
3860  *
3861  * This re-enables the recording to the buffer, and frees the
3862  * iterator.
3863  */
3864 void
3865 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3866 {
3867 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3868 	unsigned long flags;
3869 
3870 	/*
3871 	 * Ring buffer is disabled from recording, here's a good place
3872 	 * to check the integrity of the ring buffer.
3873 	 * Must prevent readers from trying to read, as the check
3874 	 * clears the HEAD page and readers require it.
3875 	 */
3876 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3877 	rb_check_pages(cpu_buffer);
3878 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3879 
3880 	atomic_dec(&cpu_buffer->record_disabled);
3881 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3882 	kfree(iter);
3883 }
3884 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3885 
3886 /**
3887  * ring_buffer_read - read the next item in the ring buffer by the iterator
3888  * @iter: The ring buffer iterator
3889  * @ts: The time stamp of the event read.
3890  *
3891  * This reads the next event in the ring buffer and increments the iterator.
3892  */
3893 struct ring_buffer_event *
3894 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3895 {
3896 	struct ring_buffer_event *event;
3897 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3898 	unsigned long flags;
3899 
3900 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3901  again:
3902 	event = rb_iter_peek(iter, ts);
3903 	if (!event)
3904 		goto out;
3905 
3906 	if (event->type_len == RINGBUF_TYPE_PADDING)
3907 		goto again;
3908 
3909 	rb_advance_iter(iter);
3910  out:
3911 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3912 
3913 	return event;
3914 }
3915 EXPORT_SYMBOL_GPL(ring_buffer_read);
3916 
3917 /**
3918  * ring_buffer_size - return the size of the ring buffer (in bytes)
3919  * @buffer: The ring buffer.
3920  */
3921 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3922 {
3923 	/*
3924 	 * Earlier, this method returned
3925 	 *	BUF_PAGE_SIZE * buffer->nr_pages
3926 	 * Since the nr_pages field is now removed, we have converted this to
3927 	 * return the per cpu buffer value.
3928 	 */
3929 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3930 		return 0;
3931 
3932 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3933 }
3934 EXPORT_SYMBOL_GPL(ring_buffer_size);
3935 
3936 static void
3937 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3938 {
3939 	rb_head_page_deactivate(cpu_buffer);
3940 
3941 	cpu_buffer->head_page
3942 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3943 	local_set(&cpu_buffer->head_page->write, 0);
3944 	local_set(&cpu_buffer->head_page->entries, 0);
3945 	local_set(&cpu_buffer->head_page->page->commit, 0);
3946 
3947 	cpu_buffer->head_page->read = 0;
3948 
3949 	cpu_buffer->tail_page = cpu_buffer->head_page;
3950 	cpu_buffer->commit_page = cpu_buffer->head_page;
3951 
3952 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3953 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3954 	local_set(&cpu_buffer->reader_page->write, 0);
3955 	local_set(&cpu_buffer->reader_page->entries, 0);
3956 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3957 	cpu_buffer->reader_page->read = 0;
3958 
3959 	local_set(&cpu_buffer->entries_bytes, 0);
3960 	local_set(&cpu_buffer->overrun, 0);
3961 	local_set(&cpu_buffer->commit_overrun, 0);
3962 	local_set(&cpu_buffer->dropped_events, 0);
3963 	local_set(&cpu_buffer->entries, 0);
3964 	local_set(&cpu_buffer->committing, 0);
3965 	local_set(&cpu_buffer->commits, 0);
3966 	cpu_buffer->read = 0;
3967 	cpu_buffer->read_bytes = 0;
3968 
3969 	cpu_buffer->write_stamp = 0;
3970 	cpu_buffer->read_stamp = 0;
3971 
3972 	cpu_buffer->lost_events = 0;
3973 	cpu_buffer->last_overrun = 0;
3974 
3975 	rb_head_page_activate(cpu_buffer);
3976 }
3977 
3978 /**
3979  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3980  * @buffer: The ring buffer to reset a per cpu buffer of
3981  * @cpu: The CPU buffer to be reset
3982  */
3983 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3984 {
3985 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3986 	unsigned long flags;
3987 
3988 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3989 		return;
3990 
3991 	atomic_inc(&buffer->resize_disabled);
3992 	atomic_inc(&cpu_buffer->record_disabled);
3993 
3994 	/* Make sure all commits have finished */
3995 	synchronize_sched();
3996 
3997 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3998 
3999 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4000 		goto out;
4001 
4002 	arch_spin_lock(&cpu_buffer->lock);
4003 
4004 	rb_reset_cpu(cpu_buffer);
4005 
4006 	arch_spin_unlock(&cpu_buffer->lock);
4007 
4008  out:
4009 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4010 
4011 	atomic_dec(&cpu_buffer->record_disabled);
4012 	atomic_dec(&buffer->resize_disabled);
4013 }
4014 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4015 
4016 /**
4017  * ring_buffer_reset - reset a ring buffer
4018  * @buffer: The ring buffer to reset all cpu buffers
4019  */
4020 void ring_buffer_reset(struct ring_buffer *buffer)
4021 {
4022 	int cpu;
4023 
4024 	for_each_buffer_cpu(buffer, cpu)
4025 		ring_buffer_reset_cpu(buffer, cpu);
4026 }
4027 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4028 
4029 /**
4030  * rind_buffer_empty - is the ring buffer empty?
4031  * @buffer: The ring buffer to test
4032  */
4033 int ring_buffer_empty(struct ring_buffer *buffer)
4034 {
4035 	struct ring_buffer_per_cpu *cpu_buffer;
4036 	unsigned long flags;
4037 	int dolock;
4038 	int cpu;
4039 	int ret;
4040 
4041 	dolock = rb_ok_to_lock();
4042 
4043 	/* yes this is racy, but if you don't like the race, lock the buffer */
4044 	for_each_buffer_cpu(buffer, cpu) {
4045 		cpu_buffer = buffer->buffers[cpu];
4046 		local_irq_save(flags);
4047 		if (dolock)
4048 			raw_spin_lock(&cpu_buffer->reader_lock);
4049 		ret = rb_per_cpu_empty(cpu_buffer);
4050 		if (dolock)
4051 			raw_spin_unlock(&cpu_buffer->reader_lock);
4052 		local_irq_restore(flags);
4053 
4054 		if (!ret)
4055 			return 0;
4056 	}
4057 
4058 	return 1;
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4061 
4062 /**
4063  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4064  * @buffer: The ring buffer
4065  * @cpu: The CPU buffer to test
4066  */
4067 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4068 {
4069 	struct ring_buffer_per_cpu *cpu_buffer;
4070 	unsigned long flags;
4071 	int dolock;
4072 	int ret;
4073 
4074 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4075 		return 1;
4076 
4077 	dolock = rb_ok_to_lock();
4078 
4079 	cpu_buffer = buffer->buffers[cpu];
4080 	local_irq_save(flags);
4081 	if (dolock)
4082 		raw_spin_lock(&cpu_buffer->reader_lock);
4083 	ret = rb_per_cpu_empty(cpu_buffer);
4084 	if (dolock)
4085 		raw_spin_unlock(&cpu_buffer->reader_lock);
4086 	local_irq_restore(flags);
4087 
4088 	return ret;
4089 }
4090 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4091 
4092 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4093 /**
4094  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4095  * @buffer_a: One buffer to swap with
4096  * @buffer_b: The other buffer to swap with
4097  *
4098  * This function is useful for tracers that want to take a "snapshot"
4099  * of a CPU buffer and has another back up buffer lying around.
4100  * it is expected that the tracer handles the cpu buffer not being
4101  * used at the moment.
4102  */
4103 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4104 			 struct ring_buffer *buffer_b, int cpu)
4105 {
4106 	struct ring_buffer_per_cpu *cpu_buffer_a;
4107 	struct ring_buffer_per_cpu *cpu_buffer_b;
4108 	int ret = -EINVAL;
4109 
4110 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4111 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4112 		goto out;
4113 
4114 	cpu_buffer_a = buffer_a->buffers[cpu];
4115 	cpu_buffer_b = buffer_b->buffers[cpu];
4116 
4117 	/* At least make sure the two buffers are somewhat the same */
4118 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4119 		goto out;
4120 
4121 	ret = -EAGAIN;
4122 
4123 	if (ring_buffer_flags != RB_BUFFERS_ON)
4124 		goto out;
4125 
4126 	if (atomic_read(&buffer_a->record_disabled))
4127 		goto out;
4128 
4129 	if (atomic_read(&buffer_b->record_disabled))
4130 		goto out;
4131 
4132 	if (atomic_read(&cpu_buffer_a->record_disabled))
4133 		goto out;
4134 
4135 	if (atomic_read(&cpu_buffer_b->record_disabled))
4136 		goto out;
4137 
4138 	/*
4139 	 * We can't do a synchronize_sched here because this
4140 	 * function can be called in atomic context.
4141 	 * Normally this will be called from the same CPU as cpu.
4142 	 * If not it's up to the caller to protect this.
4143 	 */
4144 	atomic_inc(&cpu_buffer_a->record_disabled);
4145 	atomic_inc(&cpu_buffer_b->record_disabled);
4146 
4147 	ret = -EBUSY;
4148 	if (local_read(&cpu_buffer_a->committing))
4149 		goto out_dec;
4150 	if (local_read(&cpu_buffer_b->committing))
4151 		goto out_dec;
4152 
4153 	buffer_a->buffers[cpu] = cpu_buffer_b;
4154 	buffer_b->buffers[cpu] = cpu_buffer_a;
4155 
4156 	cpu_buffer_b->buffer = buffer_a;
4157 	cpu_buffer_a->buffer = buffer_b;
4158 
4159 	ret = 0;
4160 
4161 out_dec:
4162 	atomic_dec(&cpu_buffer_a->record_disabled);
4163 	atomic_dec(&cpu_buffer_b->record_disabled);
4164 out:
4165 	return ret;
4166 }
4167 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4168 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4169 
4170 /**
4171  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4172  * @buffer: the buffer to allocate for.
4173  *
4174  * This function is used in conjunction with ring_buffer_read_page.
4175  * When reading a full page from the ring buffer, these functions
4176  * can be used to speed up the process. The calling function should
4177  * allocate a few pages first with this function. Then when it
4178  * needs to get pages from the ring buffer, it passes the result
4179  * of this function into ring_buffer_read_page, which will swap
4180  * the page that was allocated, with the read page of the buffer.
4181  *
4182  * Returns:
4183  *  The page allocated, or NULL on error.
4184  */
4185 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4186 {
4187 	struct buffer_data_page *bpage;
4188 	struct page *page;
4189 
4190 	page = alloc_pages_node(cpu_to_node(cpu),
4191 				GFP_KERNEL | __GFP_NORETRY, 0);
4192 	if (!page)
4193 		return NULL;
4194 
4195 	bpage = page_address(page);
4196 
4197 	rb_init_page(bpage);
4198 
4199 	return bpage;
4200 }
4201 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4202 
4203 /**
4204  * ring_buffer_free_read_page - free an allocated read page
4205  * @buffer: the buffer the page was allocate for
4206  * @data: the page to free
4207  *
4208  * Free a page allocated from ring_buffer_alloc_read_page.
4209  */
4210 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4211 {
4212 	free_page((unsigned long)data);
4213 }
4214 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4215 
4216 /**
4217  * ring_buffer_read_page - extract a page from the ring buffer
4218  * @buffer: buffer to extract from
4219  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4220  * @len: amount to extract
4221  * @cpu: the cpu of the buffer to extract
4222  * @full: should the extraction only happen when the page is full.
4223  *
4224  * This function will pull out a page from the ring buffer and consume it.
4225  * @data_page must be the address of the variable that was returned
4226  * from ring_buffer_alloc_read_page. This is because the page might be used
4227  * to swap with a page in the ring buffer.
4228  *
4229  * for example:
4230  *	rpage = ring_buffer_alloc_read_page(buffer);
4231  *	if (!rpage)
4232  *		return error;
4233  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4234  *	if (ret >= 0)
4235  *		process_page(rpage, ret);
4236  *
4237  * When @full is set, the function will not return true unless
4238  * the writer is off the reader page.
4239  *
4240  * Note: it is up to the calling functions to handle sleeps and wakeups.
4241  *  The ring buffer can be used anywhere in the kernel and can not
4242  *  blindly call wake_up. The layer that uses the ring buffer must be
4243  *  responsible for that.
4244  *
4245  * Returns:
4246  *  >=0 if data has been transferred, returns the offset of consumed data.
4247  *  <0 if no data has been transferred.
4248  */
4249 int ring_buffer_read_page(struct ring_buffer *buffer,
4250 			  void **data_page, size_t len, int cpu, int full)
4251 {
4252 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4253 	struct ring_buffer_event *event;
4254 	struct buffer_data_page *bpage;
4255 	struct buffer_page *reader;
4256 	unsigned long missed_events;
4257 	unsigned long flags;
4258 	unsigned int commit;
4259 	unsigned int read;
4260 	u64 save_timestamp;
4261 	int ret = -1;
4262 
4263 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4264 		goto out;
4265 
4266 	/*
4267 	 * If len is not big enough to hold the page header, then
4268 	 * we can not copy anything.
4269 	 */
4270 	if (len <= BUF_PAGE_HDR_SIZE)
4271 		goto out;
4272 
4273 	len -= BUF_PAGE_HDR_SIZE;
4274 
4275 	if (!data_page)
4276 		goto out;
4277 
4278 	bpage = *data_page;
4279 	if (!bpage)
4280 		goto out;
4281 
4282 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4283 
4284 	reader = rb_get_reader_page(cpu_buffer);
4285 	if (!reader)
4286 		goto out_unlock;
4287 
4288 	event = rb_reader_event(cpu_buffer);
4289 
4290 	read = reader->read;
4291 	commit = rb_page_commit(reader);
4292 
4293 	/* Check if any events were dropped */
4294 	missed_events = cpu_buffer->lost_events;
4295 
4296 	/*
4297 	 * If this page has been partially read or
4298 	 * if len is not big enough to read the rest of the page or
4299 	 * a writer is still on the page, then
4300 	 * we must copy the data from the page to the buffer.
4301 	 * Otherwise, we can simply swap the page with the one passed in.
4302 	 */
4303 	if (read || (len < (commit - read)) ||
4304 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4305 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4306 		unsigned int rpos = read;
4307 		unsigned int pos = 0;
4308 		unsigned int size;
4309 
4310 		if (full)
4311 			goto out_unlock;
4312 
4313 		if (len > (commit - read))
4314 			len = (commit - read);
4315 
4316 		/* Always keep the time extend and data together */
4317 		size = rb_event_ts_length(event);
4318 
4319 		if (len < size)
4320 			goto out_unlock;
4321 
4322 		/* save the current timestamp, since the user will need it */
4323 		save_timestamp = cpu_buffer->read_stamp;
4324 
4325 		/* Need to copy one event at a time */
4326 		do {
4327 			/* We need the size of one event, because
4328 			 * rb_advance_reader only advances by one event,
4329 			 * whereas rb_event_ts_length may include the size of
4330 			 * one or two events.
4331 			 * We have already ensured there's enough space if this
4332 			 * is a time extend. */
4333 			size = rb_event_length(event);
4334 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4335 
4336 			len -= size;
4337 
4338 			rb_advance_reader(cpu_buffer);
4339 			rpos = reader->read;
4340 			pos += size;
4341 
4342 			if (rpos >= commit)
4343 				break;
4344 
4345 			event = rb_reader_event(cpu_buffer);
4346 			/* Always keep the time extend and data together */
4347 			size = rb_event_ts_length(event);
4348 		} while (len >= size);
4349 
4350 		/* update bpage */
4351 		local_set(&bpage->commit, pos);
4352 		bpage->time_stamp = save_timestamp;
4353 
4354 		/* we copied everything to the beginning */
4355 		read = 0;
4356 	} else {
4357 		/* update the entry counter */
4358 		cpu_buffer->read += rb_page_entries(reader);
4359 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4360 
4361 		/* swap the pages */
4362 		rb_init_page(bpage);
4363 		bpage = reader->page;
4364 		reader->page = *data_page;
4365 		local_set(&reader->write, 0);
4366 		local_set(&reader->entries, 0);
4367 		reader->read = 0;
4368 		*data_page = bpage;
4369 
4370 		/*
4371 		 * Use the real_end for the data size,
4372 		 * This gives us a chance to store the lost events
4373 		 * on the page.
4374 		 */
4375 		if (reader->real_end)
4376 			local_set(&bpage->commit, reader->real_end);
4377 	}
4378 	ret = read;
4379 
4380 	cpu_buffer->lost_events = 0;
4381 
4382 	commit = local_read(&bpage->commit);
4383 	/*
4384 	 * Set a flag in the commit field if we lost events
4385 	 */
4386 	if (missed_events) {
4387 		/* If there is room at the end of the page to save the
4388 		 * missed events, then record it there.
4389 		 */
4390 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4391 			memcpy(&bpage->data[commit], &missed_events,
4392 			       sizeof(missed_events));
4393 			local_add(RB_MISSED_STORED, &bpage->commit);
4394 			commit += sizeof(missed_events);
4395 		}
4396 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4397 	}
4398 
4399 	/*
4400 	 * This page may be off to user land. Zero it out here.
4401 	 */
4402 	if (commit < BUF_PAGE_SIZE)
4403 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4404 
4405  out_unlock:
4406 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4407 
4408  out:
4409 	return ret;
4410 }
4411 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4412 
4413 #ifdef CONFIG_HOTPLUG_CPU
4414 static int rb_cpu_notify(struct notifier_block *self,
4415 			 unsigned long action, void *hcpu)
4416 {
4417 	struct ring_buffer *buffer =
4418 		container_of(self, struct ring_buffer, cpu_notify);
4419 	long cpu = (long)hcpu;
4420 	int cpu_i, nr_pages_same;
4421 	unsigned int nr_pages;
4422 
4423 	switch (action) {
4424 	case CPU_UP_PREPARE:
4425 	case CPU_UP_PREPARE_FROZEN:
4426 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4427 			return NOTIFY_OK;
4428 
4429 		nr_pages = 0;
4430 		nr_pages_same = 1;
4431 		/* check if all cpu sizes are same */
4432 		for_each_buffer_cpu(buffer, cpu_i) {
4433 			/* fill in the size from first enabled cpu */
4434 			if (nr_pages == 0)
4435 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4436 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4437 				nr_pages_same = 0;
4438 				break;
4439 			}
4440 		}
4441 		/* allocate minimum pages, user can later expand it */
4442 		if (!nr_pages_same)
4443 			nr_pages = 2;
4444 		buffer->buffers[cpu] =
4445 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4446 		if (!buffer->buffers[cpu]) {
4447 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4448 			     cpu);
4449 			return NOTIFY_OK;
4450 		}
4451 		smp_wmb();
4452 		cpumask_set_cpu(cpu, buffer->cpumask);
4453 		break;
4454 	case CPU_DOWN_PREPARE:
4455 	case CPU_DOWN_PREPARE_FROZEN:
4456 		/*
4457 		 * Do nothing.
4458 		 *  If we were to free the buffer, then the user would
4459 		 *  lose any trace that was in the buffer.
4460 		 */
4461 		break;
4462 	default:
4463 		break;
4464 	}
4465 	return NOTIFY_OK;
4466 }
4467 #endif
4468