1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/debugfs.h> 12 #include <linux/uaccess.h> 13 #include <linux/hardirq.h> 14 #include <linux/kmemcheck.h> 15 #include <linux/module.h> 16 #include <linux/percpu.h> 17 #include <linux/mutex.h> 18 #include <linux/slab.h> 19 #include <linux/init.h> 20 #include <linux/hash.h> 21 #include <linux/list.h> 22 #include <linux/cpu.h> 23 #include <linux/fs.h> 24 25 #include <asm/local.h> 26 27 static void update_pages_handler(struct work_struct *work); 28 29 /* 30 * The ring buffer header is special. We must manually up keep it. 31 */ 32 int ring_buffer_print_entry_header(struct trace_seq *s) 33 { 34 int ret; 35 36 ret = trace_seq_printf(s, "# compressed entry header\n"); 37 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 38 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 39 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 40 ret = trace_seq_printf(s, "\n"); 41 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 42 RINGBUF_TYPE_PADDING); 43 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 44 RINGBUF_TYPE_TIME_EXTEND); 45 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 46 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 47 48 return ret; 49 } 50 51 /* 52 * The ring buffer is made up of a list of pages. A separate list of pages is 53 * allocated for each CPU. A writer may only write to a buffer that is 54 * associated with the CPU it is currently executing on. A reader may read 55 * from any per cpu buffer. 56 * 57 * The reader is special. For each per cpu buffer, the reader has its own 58 * reader page. When a reader has read the entire reader page, this reader 59 * page is swapped with another page in the ring buffer. 60 * 61 * Now, as long as the writer is off the reader page, the reader can do what 62 * ever it wants with that page. The writer will never write to that page 63 * again (as long as it is out of the ring buffer). 64 * 65 * Here's some silly ASCII art. 66 * 67 * +------+ 68 * |reader| RING BUFFER 69 * |page | 70 * +------+ +---+ +---+ +---+ 71 * | |-->| |-->| | 72 * +---+ +---+ +---+ 73 * ^ | 74 * | | 75 * +---------------+ 76 * 77 * 78 * +------+ 79 * |reader| RING BUFFER 80 * |page |------------------v 81 * +------+ +---+ +---+ +---+ 82 * | |-->| |-->| | 83 * +---+ +---+ +---+ 84 * ^ | 85 * | | 86 * +---------------+ 87 * 88 * 89 * +------+ 90 * |reader| RING BUFFER 91 * |page |------------------v 92 * +------+ +---+ +---+ +---+ 93 * ^ | |-->| |-->| | 94 * | +---+ +---+ +---+ 95 * | | 96 * | | 97 * +------------------------------+ 98 * 99 * 100 * +------+ 101 * |buffer| RING BUFFER 102 * |page |------------------v 103 * +------+ +---+ +---+ +---+ 104 * ^ | | | |-->| | 105 * | New +---+ +---+ +---+ 106 * | Reader------^ | 107 * | page | 108 * +------------------------------+ 109 * 110 * 111 * After we make this swap, the reader can hand this page off to the splice 112 * code and be done with it. It can even allocate a new page if it needs to 113 * and swap that into the ring buffer. 114 * 115 * We will be using cmpxchg soon to make all this lockless. 116 * 117 */ 118 119 /* 120 * A fast way to enable or disable all ring buffers is to 121 * call tracing_on or tracing_off. Turning off the ring buffers 122 * prevents all ring buffers from being recorded to. 123 * Turning this switch on, makes it OK to write to the 124 * ring buffer, if the ring buffer is enabled itself. 125 * 126 * There's three layers that must be on in order to write 127 * to the ring buffer. 128 * 129 * 1) This global flag must be set. 130 * 2) The ring buffer must be enabled for recording. 131 * 3) The per cpu buffer must be enabled for recording. 132 * 133 * In case of an anomaly, this global flag has a bit set that 134 * will permantly disable all ring buffers. 135 */ 136 137 /* 138 * Global flag to disable all recording to ring buffers 139 * This has two bits: ON, DISABLED 140 * 141 * ON DISABLED 142 * ---- ---------- 143 * 0 0 : ring buffers are off 144 * 1 0 : ring buffers are on 145 * X 1 : ring buffers are permanently disabled 146 */ 147 148 enum { 149 RB_BUFFERS_ON_BIT = 0, 150 RB_BUFFERS_DISABLED_BIT = 1, 151 }; 152 153 enum { 154 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 155 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 156 }; 157 158 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 159 160 /* Used for individual buffers (after the counter) */ 161 #define RB_BUFFER_OFF (1 << 20) 162 163 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 164 165 /** 166 * tracing_off_permanent - permanently disable ring buffers 167 * 168 * This function, once called, will disable all ring buffers 169 * permanently. 170 */ 171 void tracing_off_permanent(void) 172 { 173 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 174 } 175 176 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 177 #define RB_ALIGNMENT 4U 178 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 179 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 180 181 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 182 # define RB_FORCE_8BYTE_ALIGNMENT 0 183 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 184 #else 185 # define RB_FORCE_8BYTE_ALIGNMENT 1 186 # define RB_ARCH_ALIGNMENT 8U 187 #endif 188 189 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 190 191 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 192 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 193 194 enum { 195 RB_LEN_TIME_EXTEND = 8, 196 RB_LEN_TIME_STAMP = 16, 197 }; 198 199 #define skip_time_extend(event) \ 200 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 201 202 static inline int rb_null_event(struct ring_buffer_event *event) 203 { 204 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 205 } 206 207 static void rb_event_set_padding(struct ring_buffer_event *event) 208 { 209 /* padding has a NULL time_delta */ 210 event->type_len = RINGBUF_TYPE_PADDING; 211 event->time_delta = 0; 212 } 213 214 static unsigned 215 rb_event_data_length(struct ring_buffer_event *event) 216 { 217 unsigned length; 218 219 if (event->type_len) 220 length = event->type_len * RB_ALIGNMENT; 221 else 222 length = event->array[0]; 223 return length + RB_EVNT_HDR_SIZE; 224 } 225 226 /* 227 * Return the length of the given event. Will return 228 * the length of the time extend if the event is a 229 * time extend. 230 */ 231 static inline unsigned 232 rb_event_length(struct ring_buffer_event *event) 233 { 234 switch (event->type_len) { 235 case RINGBUF_TYPE_PADDING: 236 if (rb_null_event(event)) 237 /* undefined */ 238 return -1; 239 return event->array[0] + RB_EVNT_HDR_SIZE; 240 241 case RINGBUF_TYPE_TIME_EXTEND: 242 return RB_LEN_TIME_EXTEND; 243 244 case RINGBUF_TYPE_TIME_STAMP: 245 return RB_LEN_TIME_STAMP; 246 247 case RINGBUF_TYPE_DATA: 248 return rb_event_data_length(event); 249 default: 250 BUG(); 251 } 252 /* not hit */ 253 return 0; 254 } 255 256 /* 257 * Return total length of time extend and data, 258 * or just the event length for all other events. 259 */ 260 static inline unsigned 261 rb_event_ts_length(struct ring_buffer_event *event) 262 { 263 unsigned len = 0; 264 265 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 266 /* time extends include the data event after it */ 267 len = RB_LEN_TIME_EXTEND; 268 event = skip_time_extend(event); 269 } 270 return len + rb_event_length(event); 271 } 272 273 /** 274 * ring_buffer_event_length - return the length of the event 275 * @event: the event to get the length of 276 * 277 * Returns the size of the data load of a data event. 278 * If the event is something other than a data event, it 279 * returns the size of the event itself. With the exception 280 * of a TIME EXTEND, where it still returns the size of the 281 * data load of the data event after it. 282 */ 283 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 284 { 285 unsigned length; 286 287 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 288 event = skip_time_extend(event); 289 290 length = rb_event_length(event); 291 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 292 return length; 293 length -= RB_EVNT_HDR_SIZE; 294 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 295 length -= sizeof(event->array[0]); 296 return length; 297 } 298 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 299 300 /* inline for ring buffer fast paths */ 301 static void * 302 rb_event_data(struct ring_buffer_event *event) 303 { 304 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 305 event = skip_time_extend(event); 306 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 307 /* If length is in len field, then array[0] has the data */ 308 if (event->type_len) 309 return (void *)&event->array[0]; 310 /* Otherwise length is in array[0] and array[1] has the data */ 311 return (void *)&event->array[1]; 312 } 313 314 /** 315 * ring_buffer_event_data - return the data of the event 316 * @event: the event to get the data from 317 */ 318 void *ring_buffer_event_data(struct ring_buffer_event *event) 319 { 320 return rb_event_data(event); 321 } 322 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 323 324 #define for_each_buffer_cpu(buffer, cpu) \ 325 for_each_cpu(cpu, buffer->cpumask) 326 327 #define TS_SHIFT 27 328 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 329 #define TS_DELTA_TEST (~TS_MASK) 330 331 /* Flag when events were overwritten */ 332 #define RB_MISSED_EVENTS (1 << 31) 333 /* Missed count stored at end */ 334 #define RB_MISSED_STORED (1 << 30) 335 336 struct buffer_data_page { 337 u64 time_stamp; /* page time stamp */ 338 local_t commit; /* write committed index */ 339 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 340 }; 341 342 /* 343 * Note, the buffer_page list must be first. The buffer pages 344 * are allocated in cache lines, which means that each buffer 345 * page will be at the beginning of a cache line, and thus 346 * the least significant bits will be zero. We use this to 347 * add flags in the list struct pointers, to make the ring buffer 348 * lockless. 349 */ 350 struct buffer_page { 351 struct list_head list; /* list of buffer pages */ 352 local_t write; /* index for next write */ 353 unsigned read; /* index for next read */ 354 local_t entries; /* entries on this page */ 355 unsigned long real_end; /* real end of data */ 356 struct buffer_data_page *page; /* Actual data page */ 357 }; 358 359 /* 360 * The buffer page counters, write and entries, must be reset 361 * atomically when crossing page boundaries. To synchronize this 362 * update, two counters are inserted into the number. One is 363 * the actual counter for the write position or count on the page. 364 * 365 * The other is a counter of updaters. Before an update happens 366 * the update partition of the counter is incremented. This will 367 * allow the updater to update the counter atomically. 368 * 369 * The counter is 20 bits, and the state data is 12. 370 */ 371 #define RB_WRITE_MASK 0xfffff 372 #define RB_WRITE_INTCNT (1 << 20) 373 374 static void rb_init_page(struct buffer_data_page *bpage) 375 { 376 local_set(&bpage->commit, 0); 377 } 378 379 /** 380 * ring_buffer_page_len - the size of data on the page. 381 * @page: The page to read 382 * 383 * Returns the amount of data on the page, including buffer page header. 384 */ 385 size_t ring_buffer_page_len(void *page) 386 { 387 return local_read(&((struct buffer_data_page *)page)->commit) 388 + BUF_PAGE_HDR_SIZE; 389 } 390 391 /* 392 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 393 * this issue out. 394 */ 395 static void free_buffer_page(struct buffer_page *bpage) 396 { 397 free_page((unsigned long)bpage->page); 398 kfree(bpage); 399 } 400 401 /* 402 * We need to fit the time_stamp delta into 27 bits. 403 */ 404 static inline int test_time_stamp(u64 delta) 405 { 406 if (delta & TS_DELTA_TEST) 407 return 1; 408 return 0; 409 } 410 411 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 412 413 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 414 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 415 416 int ring_buffer_print_page_header(struct trace_seq *s) 417 { 418 struct buffer_data_page field; 419 int ret; 420 421 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 422 "offset:0;\tsize:%u;\tsigned:%u;\n", 423 (unsigned int)sizeof(field.time_stamp), 424 (unsigned int)is_signed_type(u64)); 425 426 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 427 "offset:%u;\tsize:%u;\tsigned:%u;\n", 428 (unsigned int)offsetof(typeof(field), commit), 429 (unsigned int)sizeof(field.commit), 430 (unsigned int)is_signed_type(long)); 431 432 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 433 "offset:%u;\tsize:%u;\tsigned:%u;\n", 434 (unsigned int)offsetof(typeof(field), commit), 435 1, 436 (unsigned int)is_signed_type(long)); 437 438 ret = trace_seq_printf(s, "\tfield: char data;\t" 439 "offset:%u;\tsize:%u;\tsigned:%u;\n", 440 (unsigned int)offsetof(typeof(field), data), 441 (unsigned int)BUF_PAGE_SIZE, 442 (unsigned int)is_signed_type(char)); 443 444 return ret; 445 } 446 447 /* 448 * head_page == tail_page && head == tail then buffer is empty. 449 */ 450 struct ring_buffer_per_cpu { 451 int cpu; 452 atomic_t record_disabled; 453 struct ring_buffer *buffer; 454 raw_spinlock_t reader_lock; /* serialize readers */ 455 arch_spinlock_t lock; 456 struct lock_class_key lock_key; 457 unsigned int nr_pages; 458 struct list_head *pages; 459 struct buffer_page *head_page; /* read from head */ 460 struct buffer_page *tail_page; /* write to tail */ 461 struct buffer_page *commit_page; /* committed pages */ 462 struct buffer_page *reader_page; 463 unsigned long lost_events; 464 unsigned long last_overrun; 465 local_t entries_bytes; 466 local_t entries; 467 local_t overrun; 468 local_t commit_overrun; 469 local_t dropped_events; 470 local_t committing; 471 local_t commits; 472 unsigned long read; 473 unsigned long read_bytes; 474 u64 write_stamp; 475 u64 read_stamp; 476 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 477 int nr_pages_to_update; 478 struct list_head new_pages; /* new pages to add */ 479 struct work_struct update_pages_work; 480 struct completion update_done; 481 }; 482 483 struct ring_buffer { 484 unsigned flags; 485 int cpus; 486 atomic_t record_disabled; 487 atomic_t resize_disabled; 488 cpumask_var_t cpumask; 489 490 struct lock_class_key *reader_lock_key; 491 492 struct mutex mutex; 493 494 struct ring_buffer_per_cpu **buffers; 495 496 #ifdef CONFIG_HOTPLUG_CPU 497 struct notifier_block cpu_notify; 498 #endif 499 u64 (*clock)(void); 500 }; 501 502 struct ring_buffer_iter { 503 struct ring_buffer_per_cpu *cpu_buffer; 504 unsigned long head; 505 struct buffer_page *head_page; 506 struct buffer_page *cache_reader_page; 507 unsigned long cache_read; 508 u64 read_stamp; 509 }; 510 511 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 512 #define RB_WARN_ON(b, cond) \ 513 ({ \ 514 int _____ret = unlikely(cond); \ 515 if (_____ret) { \ 516 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 517 struct ring_buffer_per_cpu *__b = \ 518 (void *)b; \ 519 atomic_inc(&__b->buffer->record_disabled); \ 520 } else \ 521 atomic_inc(&b->record_disabled); \ 522 WARN_ON(1); \ 523 } \ 524 _____ret; \ 525 }) 526 527 /* Up this if you want to test the TIME_EXTENTS and normalization */ 528 #define DEBUG_SHIFT 0 529 530 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 531 { 532 /* shift to debug/test normalization and TIME_EXTENTS */ 533 return buffer->clock() << DEBUG_SHIFT; 534 } 535 536 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 537 { 538 u64 time; 539 540 preempt_disable_notrace(); 541 time = rb_time_stamp(buffer); 542 preempt_enable_no_resched_notrace(); 543 544 return time; 545 } 546 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 547 548 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 549 int cpu, u64 *ts) 550 { 551 /* Just stupid testing the normalize function and deltas */ 552 *ts >>= DEBUG_SHIFT; 553 } 554 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 555 556 /* 557 * Making the ring buffer lockless makes things tricky. 558 * Although writes only happen on the CPU that they are on, 559 * and they only need to worry about interrupts. Reads can 560 * happen on any CPU. 561 * 562 * The reader page is always off the ring buffer, but when the 563 * reader finishes with a page, it needs to swap its page with 564 * a new one from the buffer. The reader needs to take from 565 * the head (writes go to the tail). But if a writer is in overwrite 566 * mode and wraps, it must push the head page forward. 567 * 568 * Here lies the problem. 569 * 570 * The reader must be careful to replace only the head page, and 571 * not another one. As described at the top of the file in the 572 * ASCII art, the reader sets its old page to point to the next 573 * page after head. It then sets the page after head to point to 574 * the old reader page. But if the writer moves the head page 575 * during this operation, the reader could end up with the tail. 576 * 577 * We use cmpxchg to help prevent this race. We also do something 578 * special with the page before head. We set the LSB to 1. 579 * 580 * When the writer must push the page forward, it will clear the 581 * bit that points to the head page, move the head, and then set 582 * the bit that points to the new head page. 583 * 584 * We also don't want an interrupt coming in and moving the head 585 * page on another writer. Thus we use the second LSB to catch 586 * that too. Thus: 587 * 588 * head->list->prev->next bit 1 bit 0 589 * ------- ------- 590 * Normal page 0 0 591 * Points to head page 0 1 592 * New head page 1 0 593 * 594 * Note we can not trust the prev pointer of the head page, because: 595 * 596 * +----+ +-----+ +-----+ 597 * | |------>| T |---X--->| N | 598 * | |<------| | | | 599 * +----+ +-----+ +-----+ 600 * ^ ^ | 601 * | +-----+ | | 602 * +----------| R |----------+ | 603 * | |<-----------+ 604 * +-----+ 605 * 606 * Key: ---X--> HEAD flag set in pointer 607 * T Tail page 608 * R Reader page 609 * N Next page 610 * 611 * (see __rb_reserve_next() to see where this happens) 612 * 613 * What the above shows is that the reader just swapped out 614 * the reader page with a page in the buffer, but before it 615 * could make the new header point back to the new page added 616 * it was preempted by a writer. The writer moved forward onto 617 * the new page added by the reader and is about to move forward 618 * again. 619 * 620 * You can see, it is legitimate for the previous pointer of 621 * the head (or any page) not to point back to itself. But only 622 * temporarially. 623 */ 624 625 #define RB_PAGE_NORMAL 0UL 626 #define RB_PAGE_HEAD 1UL 627 #define RB_PAGE_UPDATE 2UL 628 629 630 #define RB_FLAG_MASK 3UL 631 632 /* PAGE_MOVED is not part of the mask */ 633 #define RB_PAGE_MOVED 4UL 634 635 /* 636 * rb_list_head - remove any bit 637 */ 638 static struct list_head *rb_list_head(struct list_head *list) 639 { 640 unsigned long val = (unsigned long)list; 641 642 return (struct list_head *)(val & ~RB_FLAG_MASK); 643 } 644 645 /* 646 * rb_is_head_page - test if the given page is the head page 647 * 648 * Because the reader may move the head_page pointer, we can 649 * not trust what the head page is (it may be pointing to 650 * the reader page). But if the next page is a header page, 651 * its flags will be non zero. 652 */ 653 static inline int 654 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 655 struct buffer_page *page, struct list_head *list) 656 { 657 unsigned long val; 658 659 val = (unsigned long)list->next; 660 661 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 662 return RB_PAGE_MOVED; 663 664 return val & RB_FLAG_MASK; 665 } 666 667 /* 668 * rb_is_reader_page 669 * 670 * The unique thing about the reader page, is that, if the 671 * writer is ever on it, the previous pointer never points 672 * back to the reader page. 673 */ 674 static int rb_is_reader_page(struct buffer_page *page) 675 { 676 struct list_head *list = page->list.prev; 677 678 return rb_list_head(list->next) != &page->list; 679 } 680 681 /* 682 * rb_set_list_to_head - set a list_head to be pointing to head. 683 */ 684 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 685 struct list_head *list) 686 { 687 unsigned long *ptr; 688 689 ptr = (unsigned long *)&list->next; 690 *ptr |= RB_PAGE_HEAD; 691 *ptr &= ~RB_PAGE_UPDATE; 692 } 693 694 /* 695 * rb_head_page_activate - sets up head page 696 */ 697 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 698 { 699 struct buffer_page *head; 700 701 head = cpu_buffer->head_page; 702 if (!head) 703 return; 704 705 /* 706 * Set the previous list pointer to have the HEAD flag. 707 */ 708 rb_set_list_to_head(cpu_buffer, head->list.prev); 709 } 710 711 static void rb_list_head_clear(struct list_head *list) 712 { 713 unsigned long *ptr = (unsigned long *)&list->next; 714 715 *ptr &= ~RB_FLAG_MASK; 716 } 717 718 /* 719 * rb_head_page_dactivate - clears head page ptr (for free list) 720 */ 721 static void 722 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 723 { 724 struct list_head *hd; 725 726 /* Go through the whole list and clear any pointers found. */ 727 rb_list_head_clear(cpu_buffer->pages); 728 729 list_for_each(hd, cpu_buffer->pages) 730 rb_list_head_clear(hd); 731 } 732 733 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 734 struct buffer_page *head, 735 struct buffer_page *prev, 736 int old_flag, int new_flag) 737 { 738 struct list_head *list; 739 unsigned long val = (unsigned long)&head->list; 740 unsigned long ret; 741 742 list = &prev->list; 743 744 val &= ~RB_FLAG_MASK; 745 746 ret = cmpxchg((unsigned long *)&list->next, 747 val | old_flag, val | new_flag); 748 749 /* check if the reader took the page */ 750 if ((ret & ~RB_FLAG_MASK) != val) 751 return RB_PAGE_MOVED; 752 753 return ret & RB_FLAG_MASK; 754 } 755 756 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 757 struct buffer_page *head, 758 struct buffer_page *prev, 759 int old_flag) 760 { 761 return rb_head_page_set(cpu_buffer, head, prev, 762 old_flag, RB_PAGE_UPDATE); 763 } 764 765 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 766 struct buffer_page *head, 767 struct buffer_page *prev, 768 int old_flag) 769 { 770 return rb_head_page_set(cpu_buffer, head, prev, 771 old_flag, RB_PAGE_HEAD); 772 } 773 774 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 775 struct buffer_page *head, 776 struct buffer_page *prev, 777 int old_flag) 778 { 779 return rb_head_page_set(cpu_buffer, head, prev, 780 old_flag, RB_PAGE_NORMAL); 781 } 782 783 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 784 struct buffer_page **bpage) 785 { 786 struct list_head *p = rb_list_head((*bpage)->list.next); 787 788 *bpage = list_entry(p, struct buffer_page, list); 789 } 790 791 static struct buffer_page * 792 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 793 { 794 struct buffer_page *head; 795 struct buffer_page *page; 796 struct list_head *list; 797 int i; 798 799 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 800 return NULL; 801 802 /* sanity check */ 803 list = cpu_buffer->pages; 804 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 805 return NULL; 806 807 page = head = cpu_buffer->head_page; 808 /* 809 * It is possible that the writer moves the header behind 810 * where we started, and we miss in one loop. 811 * A second loop should grab the header, but we'll do 812 * three loops just because I'm paranoid. 813 */ 814 for (i = 0; i < 3; i++) { 815 do { 816 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 817 cpu_buffer->head_page = page; 818 return page; 819 } 820 rb_inc_page(cpu_buffer, &page); 821 } while (page != head); 822 } 823 824 RB_WARN_ON(cpu_buffer, 1); 825 826 return NULL; 827 } 828 829 static int rb_head_page_replace(struct buffer_page *old, 830 struct buffer_page *new) 831 { 832 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 833 unsigned long val; 834 unsigned long ret; 835 836 val = *ptr & ~RB_FLAG_MASK; 837 val |= RB_PAGE_HEAD; 838 839 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 840 841 return ret == val; 842 } 843 844 /* 845 * rb_tail_page_update - move the tail page forward 846 * 847 * Returns 1 if moved tail page, 0 if someone else did. 848 */ 849 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 850 struct buffer_page *tail_page, 851 struct buffer_page *next_page) 852 { 853 struct buffer_page *old_tail; 854 unsigned long old_entries; 855 unsigned long old_write; 856 int ret = 0; 857 858 /* 859 * The tail page now needs to be moved forward. 860 * 861 * We need to reset the tail page, but without messing 862 * with possible erasing of data brought in by interrupts 863 * that have moved the tail page and are currently on it. 864 * 865 * We add a counter to the write field to denote this. 866 */ 867 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 868 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 869 870 /* 871 * Just make sure we have seen our old_write and synchronize 872 * with any interrupts that come in. 873 */ 874 barrier(); 875 876 /* 877 * If the tail page is still the same as what we think 878 * it is, then it is up to us to update the tail 879 * pointer. 880 */ 881 if (tail_page == cpu_buffer->tail_page) { 882 /* Zero the write counter */ 883 unsigned long val = old_write & ~RB_WRITE_MASK; 884 unsigned long eval = old_entries & ~RB_WRITE_MASK; 885 886 /* 887 * This will only succeed if an interrupt did 888 * not come in and change it. In which case, we 889 * do not want to modify it. 890 * 891 * We add (void) to let the compiler know that we do not care 892 * about the return value of these functions. We use the 893 * cmpxchg to only update if an interrupt did not already 894 * do it for us. If the cmpxchg fails, we don't care. 895 */ 896 (void)local_cmpxchg(&next_page->write, old_write, val); 897 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 898 899 /* 900 * No need to worry about races with clearing out the commit. 901 * it only can increment when a commit takes place. But that 902 * only happens in the outer most nested commit. 903 */ 904 local_set(&next_page->page->commit, 0); 905 906 old_tail = cmpxchg(&cpu_buffer->tail_page, 907 tail_page, next_page); 908 909 if (old_tail == tail_page) 910 ret = 1; 911 } 912 913 return ret; 914 } 915 916 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 917 struct buffer_page *bpage) 918 { 919 unsigned long val = (unsigned long)bpage; 920 921 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 922 return 1; 923 924 return 0; 925 } 926 927 /** 928 * rb_check_list - make sure a pointer to a list has the last bits zero 929 */ 930 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 931 struct list_head *list) 932 { 933 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 934 return 1; 935 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 936 return 1; 937 return 0; 938 } 939 940 /** 941 * check_pages - integrity check of buffer pages 942 * @cpu_buffer: CPU buffer with pages to test 943 * 944 * As a safety measure we check to make sure the data pages have not 945 * been corrupted. 946 */ 947 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 948 { 949 struct list_head *head = cpu_buffer->pages; 950 struct buffer_page *bpage, *tmp; 951 952 /* Reset the head page if it exists */ 953 if (cpu_buffer->head_page) 954 rb_set_head_page(cpu_buffer); 955 956 rb_head_page_deactivate(cpu_buffer); 957 958 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 959 return -1; 960 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 961 return -1; 962 963 if (rb_check_list(cpu_buffer, head)) 964 return -1; 965 966 list_for_each_entry_safe(bpage, tmp, head, list) { 967 if (RB_WARN_ON(cpu_buffer, 968 bpage->list.next->prev != &bpage->list)) 969 return -1; 970 if (RB_WARN_ON(cpu_buffer, 971 bpage->list.prev->next != &bpage->list)) 972 return -1; 973 if (rb_check_list(cpu_buffer, &bpage->list)) 974 return -1; 975 } 976 977 rb_head_page_activate(cpu_buffer); 978 979 return 0; 980 } 981 982 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 983 { 984 int i; 985 struct buffer_page *bpage, *tmp; 986 987 for (i = 0; i < nr_pages; i++) { 988 struct page *page; 989 /* 990 * __GFP_NORETRY flag makes sure that the allocation fails 991 * gracefully without invoking oom-killer and the system is 992 * not destabilized. 993 */ 994 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 995 GFP_KERNEL | __GFP_NORETRY, 996 cpu_to_node(cpu)); 997 if (!bpage) 998 goto free_pages; 999 1000 list_add(&bpage->list, pages); 1001 1002 page = alloc_pages_node(cpu_to_node(cpu), 1003 GFP_KERNEL | __GFP_NORETRY, 0); 1004 if (!page) 1005 goto free_pages; 1006 bpage->page = page_address(page); 1007 rb_init_page(bpage->page); 1008 } 1009 1010 return 0; 1011 1012 free_pages: 1013 list_for_each_entry_safe(bpage, tmp, pages, list) { 1014 list_del_init(&bpage->list); 1015 free_buffer_page(bpage); 1016 } 1017 1018 return -ENOMEM; 1019 } 1020 1021 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1022 unsigned nr_pages) 1023 { 1024 LIST_HEAD(pages); 1025 1026 WARN_ON(!nr_pages); 1027 1028 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1029 return -ENOMEM; 1030 1031 /* 1032 * The ring buffer page list is a circular list that does not 1033 * start and end with a list head. All page list items point to 1034 * other pages. 1035 */ 1036 cpu_buffer->pages = pages.next; 1037 list_del(&pages); 1038 1039 cpu_buffer->nr_pages = nr_pages; 1040 1041 rb_check_pages(cpu_buffer); 1042 1043 return 0; 1044 } 1045 1046 static struct ring_buffer_per_cpu * 1047 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1048 { 1049 struct ring_buffer_per_cpu *cpu_buffer; 1050 struct buffer_page *bpage; 1051 struct page *page; 1052 int ret; 1053 1054 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1055 GFP_KERNEL, cpu_to_node(cpu)); 1056 if (!cpu_buffer) 1057 return NULL; 1058 1059 cpu_buffer->cpu = cpu; 1060 cpu_buffer->buffer = buffer; 1061 raw_spin_lock_init(&cpu_buffer->reader_lock); 1062 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1063 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1064 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1065 init_completion(&cpu_buffer->update_done); 1066 1067 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1068 GFP_KERNEL, cpu_to_node(cpu)); 1069 if (!bpage) 1070 goto fail_free_buffer; 1071 1072 rb_check_bpage(cpu_buffer, bpage); 1073 1074 cpu_buffer->reader_page = bpage; 1075 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1076 if (!page) 1077 goto fail_free_reader; 1078 bpage->page = page_address(page); 1079 rb_init_page(bpage->page); 1080 1081 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1082 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1083 1084 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1085 if (ret < 0) 1086 goto fail_free_reader; 1087 1088 cpu_buffer->head_page 1089 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1090 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1091 1092 rb_head_page_activate(cpu_buffer); 1093 1094 return cpu_buffer; 1095 1096 fail_free_reader: 1097 free_buffer_page(cpu_buffer->reader_page); 1098 1099 fail_free_buffer: 1100 kfree(cpu_buffer); 1101 return NULL; 1102 } 1103 1104 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1105 { 1106 struct list_head *head = cpu_buffer->pages; 1107 struct buffer_page *bpage, *tmp; 1108 1109 free_buffer_page(cpu_buffer->reader_page); 1110 1111 rb_head_page_deactivate(cpu_buffer); 1112 1113 if (head) { 1114 list_for_each_entry_safe(bpage, tmp, head, list) { 1115 list_del_init(&bpage->list); 1116 free_buffer_page(bpage); 1117 } 1118 bpage = list_entry(head, struct buffer_page, list); 1119 free_buffer_page(bpage); 1120 } 1121 1122 kfree(cpu_buffer); 1123 } 1124 1125 #ifdef CONFIG_HOTPLUG_CPU 1126 static int rb_cpu_notify(struct notifier_block *self, 1127 unsigned long action, void *hcpu); 1128 #endif 1129 1130 /** 1131 * ring_buffer_alloc - allocate a new ring_buffer 1132 * @size: the size in bytes per cpu that is needed. 1133 * @flags: attributes to set for the ring buffer. 1134 * 1135 * Currently the only flag that is available is the RB_FL_OVERWRITE 1136 * flag. This flag means that the buffer will overwrite old data 1137 * when the buffer wraps. If this flag is not set, the buffer will 1138 * drop data when the tail hits the head. 1139 */ 1140 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1141 struct lock_class_key *key) 1142 { 1143 struct ring_buffer *buffer; 1144 int bsize; 1145 int cpu, nr_pages; 1146 1147 /* keep it in its own cache line */ 1148 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1149 GFP_KERNEL); 1150 if (!buffer) 1151 return NULL; 1152 1153 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1154 goto fail_free_buffer; 1155 1156 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1157 buffer->flags = flags; 1158 buffer->clock = trace_clock_local; 1159 buffer->reader_lock_key = key; 1160 1161 /* need at least two pages */ 1162 if (nr_pages < 2) 1163 nr_pages = 2; 1164 1165 /* 1166 * In case of non-hotplug cpu, if the ring-buffer is allocated 1167 * in early initcall, it will not be notified of secondary cpus. 1168 * In that off case, we need to allocate for all possible cpus. 1169 */ 1170 #ifdef CONFIG_HOTPLUG_CPU 1171 get_online_cpus(); 1172 cpumask_copy(buffer->cpumask, cpu_online_mask); 1173 #else 1174 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1175 #endif 1176 buffer->cpus = nr_cpu_ids; 1177 1178 bsize = sizeof(void *) * nr_cpu_ids; 1179 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1180 GFP_KERNEL); 1181 if (!buffer->buffers) 1182 goto fail_free_cpumask; 1183 1184 for_each_buffer_cpu(buffer, cpu) { 1185 buffer->buffers[cpu] = 1186 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1187 if (!buffer->buffers[cpu]) 1188 goto fail_free_buffers; 1189 } 1190 1191 #ifdef CONFIG_HOTPLUG_CPU 1192 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1193 buffer->cpu_notify.priority = 0; 1194 register_cpu_notifier(&buffer->cpu_notify); 1195 #endif 1196 1197 put_online_cpus(); 1198 mutex_init(&buffer->mutex); 1199 1200 return buffer; 1201 1202 fail_free_buffers: 1203 for_each_buffer_cpu(buffer, cpu) { 1204 if (buffer->buffers[cpu]) 1205 rb_free_cpu_buffer(buffer->buffers[cpu]); 1206 } 1207 kfree(buffer->buffers); 1208 1209 fail_free_cpumask: 1210 free_cpumask_var(buffer->cpumask); 1211 put_online_cpus(); 1212 1213 fail_free_buffer: 1214 kfree(buffer); 1215 return NULL; 1216 } 1217 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1218 1219 /** 1220 * ring_buffer_free - free a ring buffer. 1221 * @buffer: the buffer to free. 1222 */ 1223 void 1224 ring_buffer_free(struct ring_buffer *buffer) 1225 { 1226 int cpu; 1227 1228 get_online_cpus(); 1229 1230 #ifdef CONFIG_HOTPLUG_CPU 1231 unregister_cpu_notifier(&buffer->cpu_notify); 1232 #endif 1233 1234 for_each_buffer_cpu(buffer, cpu) 1235 rb_free_cpu_buffer(buffer->buffers[cpu]); 1236 1237 put_online_cpus(); 1238 1239 kfree(buffer->buffers); 1240 free_cpumask_var(buffer->cpumask); 1241 1242 kfree(buffer); 1243 } 1244 EXPORT_SYMBOL_GPL(ring_buffer_free); 1245 1246 void ring_buffer_set_clock(struct ring_buffer *buffer, 1247 u64 (*clock)(void)) 1248 { 1249 buffer->clock = clock; 1250 } 1251 1252 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1253 1254 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1255 { 1256 return local_read(&bpage->entries) & RB_WRITE_MASK; 1257 } 1258 1259 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1260 { 1261 return local_read(&bpage->write) & RB_WRITE_MASK; 1262 } 1263 1264 static int 1265 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1266 { 1267 struct list_head *tail_page, *to_remove, *next_page; 1268 struct buffer_page *to_remove_page, *tmp_iter_page; 1269 struct buffer_page *last_page, *first_page; 1270 unsigned int nr_removed; 1271 unsigned long head_bit; 1272 int page_entries; 1273 1274 head_bit = 0; 1275 1276 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1277 atomic_inc(&cpu_buffer->record_disabled); 1278 /* 1279 * We don't race with the readers since we have acquired the reader 1280 * lock. We also don't race with writers after disabling recording. 1281 * This makes it easy to figure out the first and the last page to be 1282 * removed from the list. We unlink all the pages in between including 1283 * the first and last pages. This is done in a busy loop so that we 1284 * lose the least number of traces. 1285 * The pages are freed after we restart recording and unlock readers. 1286 */ 1287 tail_page = &cpu_buffer->tail_page->list; 1288 1289 /* 1290 * tail page might be on reader page, we remove the next page 1291 * from the ring buffer 1292 */ 1293 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1294 tail_page = rb_list_head(tail_page->next); 1295 to_remove = tail_page; 1296 1297 /* start of pages to remove */ 1298 first_page = list_entry(rb_list_head(to_remove->next), 1299 struct buffer_page, list); 1300 1301 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1302 to_remove = rb_list_head(to_remove)->next; 1303 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1304 } 1305 1306 next_page = rb_list_head(to_remove)->next; 1307 1308 /* 1309 * Now we remove all pages between tail_page and next_page. 1310 * Make sure that we have head_bit value preserved for the 1311 * next page 1312 */ 1313 tail_page->next = (struct list_head *)((unsigned long)next_page | 1314 head_bit); 1315 next_page = rb_list_head(next_page); 1316 next_page->prev = tail_page; 1317 1318 /* make sure pages points to a valid page in the ring buffer */ 1319 cpu_buffer->pages = next_page; 1320 1321 /* update head page */ 1322 if (head_bit) 1323 cpu_buffer->head_page = list_entry(next_page, 1324 struct buffer_page, list); 1325 1326 /* 1327 * change read pointer to make sure any read iterators reset 1328 * themselves 1329 */ 1330 cpu_buffer->read = 0; 1331 1332 /* pages are removed, resume tracing and then free the pages */ 1333 atomic_dec(&cpu_buffer->record_disabled); 1334 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1335 1336 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1337 1338 /* last buffer page to remove */ 1339 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1340 list); 1341 tmp_iter_page = first_page; 1342 1343 do { 1344 to_remove_page = tmp_iter_page; 1345 rb_inc_page(cpu_buffer, &tmp_iter_page); 1346 1347 /* update the counters */ 1348 page_entries = rb_page_entries(to_remove_page); 1349 if (page_entries) { 1350 /* 1351 * If something was added to this page, it was full 1352 * since it is not the tail page. So we deduct the 1353 * bytes consumed in ring buffer from here. 1354 * Increment overrun to account for the lost events. 1355 */ 1356 local_add(page_entries, &cpu_buffer->overrun); 1357 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1358 } 1359 1360 /* 1361 * We have already removed references to this list item, just 1362 * free up the buffer_page and its page 1363 */ 1364 free_buffer_page(to_remove_page); 1365 nr_removed--; 1366 1367 } while (to_remove_page != last_page); 1368 1369 RB_WARN_ON(cpu_buffer, nr_removed); 1370 1371 return nr_removed == 0; 1372 } 1373 1374 static int 1375 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1376 { 1377 struct list_head *pages = &cpu_buffer->new_pages; 1378 int retries, success; 1379 1380 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1381 /* 1382 * We are holding the reader lock, so the reader page won't be swapped 1383 * in the ring buffer. Now we are racing with the writer trying to 1384 * move head page and the tail page. 1385 * We are going to adapt the reader page update process where: 1386 * 1. We first splice the start and end of list of new pages between 1387 * the head page and its previous page. 1388 * 2. We cmpxchg the prev_page->next to point from head page to the 1389 * start of new pages list. 1390 * 3. Finally, we update the head->prev to the end of new list. 1391 * 1392 * We will try this process 10 times, to make sure that we don't keep 1393 * spinning. 1394 */ 1395 retries = 10; 1396 success = 0; 1397 while (retries--) { 1398 struct list_head *head_page, *prev_page, *r; 1399 struct list_head *last_page, *first_page; 1400 struct list_head *head_page_with_bit; 1401 1402 head_page = &rb_set_head_page(cpu_buffer)->list; 1403 if (!head_page) 1404 break; 1405 prev_page = head_page->prev; 1406 1407 first_page = pages->next; 1408 last_page = pages->prev; 1409 1410 head_page_with_bit = (struct list_head *) 1411 ((unsigned long)head_page | RB_PAGE_HEAD); 1412 1413 last_page->next = head_page_with_bit; 1414 first_page->prev = prev_page; 1415 1416 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1417 1418 if (r == head_page_with_bit) { 1419 /* 1420 * yay, we replaced the page pointer to our new list, 1421 * now, we just have to update to head page's prev 1422 * pointer to point to end of list 1423 */ 1424 head_page->prev = last_page; 1425 success = 1; 1426 break; 1427 } 1428 } 1429 1430 if (success) 1431 INIT_LIST_HEAD(pages); 1432 /* 1433 * If we weren't successful in adding in new pages, warn and stop 1434 * tracing 1435 */ 1436 RB_WARN_ON(cpu_buffer, !success); 1437 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1438 1439 /* free pages if they weren't inserted */ 1440 if (!success) { 1441 struct buffer_page *bpage, *tmp; 1442 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1443 list) { 1444 list_del_init(&bpage->list); 1445 free_buffer_page(bpage); 1446 } 1447 } 1448 return success; 1449 } 1450 1451 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1452 { 1453 int success; 1454 1455 if (cpu_buffer->nr_pages_to_update > 0) 1456 success = rb_insert_pages(cpu_buffer); 1457 else 1458 success = rb_remove_pages(cpu_buffer, 1459 -cpu_buffer->nr_pages_to_update); 1460 1461 if (success) 1462 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1463 } 1464 1465 static void update_pages_handler(struct work_struct *work) 1466 { 1467 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1468 struct ring_buffer_per_cpu, update_pages_work); 1469 rb_update_pages(cpu_buffer); 1470 complete(&cpu_buffer->update_done); 1471 } 1472 1473 /** 1474 * ring_buffer_resize - resize the ring buffer 1475 * @buffer: the buffer to resize. 1476 * @size: the new size. 1477 * 1478 * Minimum size is 2 * BUF_PAGE_SIZE. 1479 * 1480 * Returns 0 on success and < 0 on failure. 1481 */ 1482 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1483 int cpu_id) 1484 { 1485 struct ring_buffer_per_cpu *cpu_buffer; 1486 unsigned nr_pages; 1487 int cpu, err = 0; 1488 1489 /* 1490 * Always succeed at resizing a non-existent buffer: 1491 */ 1492 if (!buffer) 1493 return size; 1494 1495 /* Make sure the requested buffer exists */ 1496 if (cpu_id != RING_BUFFER_ALL_CPUS && 1497 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1498 return size; 1499 1500 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1501 size *= BUF_PAGE_SIZE; 1502 1503 /* we need a minimum of two pages */ 1504 if (size < BUF_PAGE_SIZE * 2) 1505 size = BUF_PAGE_SIZE * 2; 1506 1507 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1508 1509 /* 1510 * Don't succeed if resizing is disabled, as a reader might be 1511 * manipulating the ring buffer and is expecting a sane state while 1512 * this is true. 1513 */ 1514 if (atomic_read(&buffer->resize_disabled)) 1515 return -EBUSY; 1516 1517 /* prevent another thread from changing buffer sizes */ 1518 mutex_lock(&buffer->mutex); 1519 1520 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1521 /* calculate the pages to update */ 1522 for_each_buffer_cpu(buffer, cpu) { 1523 cpu_buffer = buffer->buffers[cpu]; 1524 1525 cpu_buffer->nr_pages_to_update = nr_pages - 1526 cpu_buffer->nr_pages; 1527 /* 1528 * nothing more to do for removing pages or no update 1529 */ 1530 if (cpu_buffer->nr_pages_to_update <= 0) 1531 continue; 1532 /* 1533 * to add pages, make sure all new pages can be 1534 * allocated without receiving ENOMEM 1535 */ 1536 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1537 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1538 &cpu_buffer->new_pages, cpu)) { 1539 /* not enough memory for new pages */ 1540 err = -ENOMEM; 1541 goto out_err; 1542 } 1543 } 1544 1545 get_online_cpus(); 1546 /* 1547 * Fire off all the required work handlers 1548 * We can't schedule on offline CPUs, but it's not necessary 1549 * since we can change their buffer sizes without any race. 1550 */ 1551 for_each_buffer_cpu(buffer, cpu) { 1552 cpu_buffer = buffer->buffers[cpu]; 1553 if (!cpu_buffer->nr_pages_to_update) 1554 continue; 1555 1556 if (cpu_online(cpu)) 1557 schedule_work_on(cpu, 1558 &cpu_buffer->update_pages_work); 1559 else 1560 rb_update_pages(cpu_buffer); 1561 } 1562 1563 /* wait for all the updates to complete */ 1564 for_each_buffer_cpu(buffer, cpu) { 1565 cpu_buffer = buffer->buffers[cpu]; 1566 if (!cpu_buffer->nr_pages_to_update) 1567 continue; 1568 1569 if (cpu_online(cpu)) 1570 wait_for_completion(&cpu_buffer->update_done); 1571 cpu_buffer->nr_pages_to_update = 0; 1572 } 1573 1574 put_online_cpus(); 1575 } else { 1576 /* Make sure this CPU has been intitialized */ 1577 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1578 goto out; 1579 1580 cpu_buffer = buffer->buffers[cpu_id]; 1581 1582 if (nr_pages == cpu_buffer->nr_pages) 1583 goto out; 1584 1585 cpu_buffer->nr_pages_to_update = nr_pages - 1586 cpu_buffer->nr_pages; 1587 1588 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1589 if (cpu_buffer->nr_pages_to_update > 0 && 1590 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1591 &cpu_buffer->new_pages, cpu_id)) { 1592 err = -ENOMEM; 1593 goto out_err; 1594 } 1595 1596 get_online_cpus(); 1597 1598 if (cpu_online(cpu_id)) { 1599 schedule_work_on(cpu_id, 1600 &cpu_buffer->update_pages_work); 1601 wait_for_completion(&cpu_buffer->update_done); 1602 } else 1603 rb_update_pages(cpu_buffer); 1604 1605 cpu_buffer->nr_pages_to_update = 0; 1606 put_online_cpus(); 1607 } 1608 1609 out: 1610 /* 1611 * The ring buffer resize can happen with the ring buffer 1612 * enabled, so that the update disturbs the tracing as little 1613 * as possible. But if the buffer is disabled, we do not need 1614 * to worry about that, and we can take the time to verify 1615 * that the buffer is not corrupt. 1616 */ 1617 if (atomic_read(&buffer->record_disabled)) { 1618 atomic_inc(&buffer->record_disabled); 1619 /* 1620 * Even though the buffer was disabled, we must make sure 1621 * that it is truly disabled before calling rb_check_pages. 1622 * There could have been a race between checking 1623 * record_disable and incrementing it. 1624 */ 1625 synchronize_sched(); 1626 for_each_buffer_cpu(buffer, cpu) { 1627 cpu_buffer = buffer->buffers[cpu]; 1628 rb_check_pages(cpu_buffer); 1629 } 1630 atomic_dec(&buffer->record_disabled); 1631 } 1632 1633 mutex_unlock(&buffer->mutex); 1634 return size; 1635 1636 out_err: 1637 for_each_buffer_cpu(buffer, cpu) { 1638 struct buffer_page *bpage, *tmp; 1639 1640 cpu_buffer = buffer->buffers[cpu]; 1641 cpu_buffer->nr_pages_to_update = 0; 1642 1643 if (list_empty(&cpu_buffer->new_pages)) 1644 continue; 1645 1646 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1647 list) { 1648 list_del_init(&bpage->list); 1649 free_buffer_page(bpage); 1650 } 1651 } 1652 mutex_unlock(&buffer->mutex); 1653 return err; 1654 } 1655 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1656 1657 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1658 { 1659 mutex_lock(&buffer->mutex); 1660 if (val) 1661 buffer->flags |= RB_FL_OVERWRITE; 1662 else 1663 buffer->flags &= ~RB_FL_OVERWRITE; 1664 mutex_unlock(&buffer->mutex); 1665 } 1666 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1667 1668 static inline void * 1669 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1670 { 1671 return bpage->data + index; 1672 } 1673 1674 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1675 { 1676 return bpage->page->data + index; 1677 } 1678 1679 static inline struct ring_buffer_event * 1680 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1681 { 1682 return __rb_page_index(cpu_buffer->reader_page, 1683 cpu_buffer->reader_page->read); 1684 } 1685 1686 static inline struct ring_buffer_event * 1687 rb_iter_head_event(struct ring_buffer_iter *iter) 1688 { 1689 return __rb_page_index(iter->head_page, iter->head); 1690 } 1691 1692 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1693 { 1694 return local_read(&bpage->page->commit); 1695 } 1696 1697 /* Size is determined by what has been committed */ 1698 static inline unsigned rb_page_size(struct buffer_page *bpage) 1699 { 1700 return rb_page_commit(bpage); 1701 } 1702 1703 static inline unsigned 1704 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1705 { 1706 return rb_page_commit(cpu_buffer->commit_page); 1707 } 1708 1709 static inline unsigned 1710 rb_event_index(struct ring_buffer_event *event) 1711 { 1712 unsigned long addr = (unsigned long)event; 1713 1714 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1715 } 1716 1717 static inline int 1718 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1719 struct ring_buffer_event *event) 1720 { 1721 unsigned long addr = (unsigned long)event; 1722 unsigned long index; 1723 1724 index = rb_event_index(event); 1725 addr &= PAGE_MASK; 1726 1727 return cpu_buffer->commit_page->page == (void *)addr && 1728 rb_commit_index(cpu_buffer) == index; 1729 } 1730 1731 static void 1732 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1733 { 1734 unsigned long max_count; 1735 1736 /* 1737 * We only race with interrupts and NMIs on this CPU. 1738 * If we own the commit event, then we can commit 1739 * all others that interrupted us, since the interruptions 1740 * are in stack format (they finish before they come 1741 * back to us). This allows us to do a simple loop to 1742 * assign the commit to the tail. 1743 */ 1744 again: 1745 max_count = cpu_buffer->nr_pages * 100; 1746 1747 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1748 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1749 return; 1750 if (RB_WARN_ON(cpu_buffer, 1751 rb_is_reader_page(cpu_buffer->tail_page))) 1752 return; 1753 local_set(&cpu_buffer->commit_page->page->commit, 1754 rb_page_write(cpu_buffer->commit_page)); 1755 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1756 cpu_buffer->write_stamp = 1757 cpu_buffer->commit_page->page->time_stamp; 1758 /* add barrier to keep gcc from optimizing too much */ 1759 barrier(); 1760 } 1761 while (rb_commit_index(cpu_buffer) != 1762 rb_page_write(cpu_buffer->commit_page)) { 1763 1764 local_set(&cpu_buffer->commit_page->page->commit, 1765 rb_page_write(cpu_buffer->commit_page)); 1766 RB_WARN_ON(cpu_buffer, 1767 local_read(&cpu_buffer->commit_page->page->commit) & 1768 ~RB_WRITE_MASK); 1769 barrier(); 1770 } 1771 1772 /* again, keep gcc from optimizing */ 1773 barrier(); 1774 1775 /* 1776 * If an interrupt came in just after the first while loop 1777 * and pushed the tail page forward, we will be left with 1778 * a dangling commit that will never go forward. 1779 */ 1780 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1781 goto again; 1782 } 1783 1784 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1785 { 1786 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1787 cpu_buffer->reader_page->read = 0; 1788 } 1789 1790 static void rb_inc_iter(struct ring_buffer_iter *iter) 1791 { 1792 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1793 1794 /* 1795 * The iterator could be on the reader page (it starts there). 1796 * But the head could have moved, since the reader was 1797 * found. Check for this case and assign the iterator 1798 * to the head page instead of next. 1799 */ 1800 if (iter->head_page == cpu_buffer->reader_page) 1801 iter->head_page = rb_set_head_page(cpu_buffer); 1802 else 1803 rb_inc_page(cpu_buffer, &iter->head_page); 1804 1805 iter->read_stamp = iter->head_page->page->time_stamp; 1806 iter->head = 0; 1807 } 1808 1809 /* Slow path, do not inline */ 1810 static noinline struct ring_buffer_event * 1811 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1812 { 1813 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1814 1815 /* Not the first event on the page? */ 1816 if (rb_event_index(event)) { 1817 event->time_delta = delta & TS_MASK; 1818 event->array[0] = delta >> TS_SHIFT; 1819 } else { 1820 /* nope, just zero it */ 1821 event->time_delta = 0; 1822 event->array[0] = 0; 1823 } 1824 1825 return skip_time_extend(event); 1826 } 1827 1828 /** 1829 * rb_update_event - update event type and data 1830 * @event: the even to update 1831 * @type: the type of event 1832 * @length: the size of the event field in the ring buffer 1833 * 1834 * Update the type and data fields of the event. The length 1835 * is the actual size that is written to the ring buffer, 1836 * and with this, we can determine what to place into the 1837 * data field. 1838 */ 1839 static void 1840 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1841 struct ring_buffer_event *event, unsigned length, 1842 int add_timestamp, u64 delta) 1843 { 1844 /* Only a commit updates the timestamp */ 1845 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 1846 delta = 0; 1847 1848 /* 1849 * If we need to add a timestamp, then we 1850 * add it to the start of the resevered space. 1851 */ 1852 if (unlikely(add_timestamp)) { 1853 event = rb_add_time_stamp(event, delta); 1854 length -= RB_LEN_TIME_EXTEND; 1855 delta = 0; 1856 } 1857 1858 event->time_delta = delta; 1859 length -= RB_EVNT_HDR_SIZE; 1860 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 1861 event->type_len = 0; 1862 event->array[0] = length; 1863 } else 1864 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1865 } 1866 1867 /* 1868 * rb_handle_head_page - writer hit the head page 1869 * 1870 * Returns: +1 to retry page 1871 * 0 to continue 1872 * -1 on error 1873 */ 1874 static int 1875 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1876 struct buffer_page *tail_page, 1877 struct buffer_page *next_page) 1878 { 1879 struct buffer_page *new_head; 1880 int entries; 1881 int type; 1882 int ret; 1883 1884 entries = rb_page_entries(next_page); 1885 1886 /* 1887 * The hard part is here. We need to move the head 1888 * forward, and protect against both readers on 1889 * other CPUs and writers coming in via interrupts. 1890 */ 1891 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1892 RB_PAGE_HEAD); 1893 1894 /* 1895 * type can be one of four: 1896 * NORMAL - an interrupt already moved it for us 1897 * HEAD - we are the first to get here. 1898 * UPDATE - we are the interrupt interrupting 1899 * a current move. 1900 * MOVED - a reader on another CPU moved the next 1901 * pointer to its reader page. Give up 1902 * and try again. 1903 */ 1904 1905 switch (type) { 1906 case RB_PAGE_HEAD: 1907 /* 1908 * We changed the head to UPDATE, thus 1909 * it is our responsibility to update 1910 * the counters. 1911 */ 1912 local_add(entries, &cpu_buffer->overrun); 1913 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1914 1915 /* 1916 * The entries will be zeroed out when we move the 1917 * tail page. 1918 */ 1919 1920 /* still more to do */ 1921 break; 1922 1923 case RB_PAGE_UPDATE: 1924 /* 1925 * This is an interrupt that interrupt the 1926 * previous update. Still more to do. 1927 */ 1928 break; 1929 case RB_PAGE_NORMAL: 1930 /* 1931 * An interrupt came in before the update 1932 * and processed this for us. 1933 * Nothing left to do. 1934 */ 1935 return 1; 1936 case RB_PAGE_MOVED: 1937 /* 1938 * The reader is on another CPU and just did 1939 * a swap with our next_page. 1940 * Try again. 1941 */ 1942 return 1; 1943 default: 1944 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1945 return -1; 1946 } 1947 1948 /* 1949 * Now that we are here, the old head pointer is 1950 * set to UPDATE. This will keep the reader from 1951 * swapping the head page with the reader page. 1952 * The reader (on another CPU) will spin till 1953 * we are finished. 1954 * 1955 * We just need to protect against interrupts 1956 * doing the job. We will set the next pointer 1957 * to HEAD. After that, we set the old pointer 1958 * to NORMAL, but only if it was HEAD before. 1959 * otherwise we are an interrupt, and only 1960 * want the outer most commit to reset it. 1961 */ 1962 new_head = next_page; 1963 rb_inc_page(cpu_buffer, &new_head); 1964 1965 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1966 RB_PAGE_NORMAL); 1967 1968 /* 1969 * Valid returns are: 1970 * HEAD - an interrupt came in and already set it. 1971 * NORMAL - One of two things: 1972 * 1) We really set it. 1973 * 2) A bunch of interrupts came in and moved 1974 * the page forward again. 1975 */ 1976 switch (ret) { 1977 case RB_PAGE_HEAD: 1978 case RB_PAGE_NORMAL: 1979 /* OK */ 1980 break; 1981 default: 1982 RB_WARN_ON(cpu_buffer, 1); 1983 return -1; 1984 } 1985 1986 /* 1987 * It is possible that an interrupt came in, 1988 * set the head up, then more interrupts came in 1989 * and moved it again. When we get back here, 1990 * the page would have been set to NORMAL but we 1991 * just set it back to HEAD. 1992 * 1993 * How do you detect this? Well, if that happened 1994 * the tail page would have moved. 1995 */ 1996 if (ret == RB_PAGE_NORMAL) { 1997 /* 1998 * If the tail had moved passed next, then we need 1999 * to reset the pointer. 2000 */ 2001 if (cpu_buffer->tail_page != tail_page && 2002 cpu_buffer->tail_page != next_page) 2003 rb_head_page_set_normal(cpu_buffer, new_head, 2004 next_page, 2005 RB_PAGE_HEAD); 2006 } 2007 2008 /* 2009 * If this was the outer most commit (the one that 2010 * changed the original pointer from HEAD to UPDATE), 2011 * then it is up to us to reset it to NORMAL. 2012 */ 2013 if (type == RB_PAGE_HEAD) { 2014 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2015 tail_page, 2016 RB_PAGE_UPDATE); 2017 if (RB_WARN_ON(cpu_buffer, 2018 ret != RB_PAGE_UPDATE)) 2019 return -1; 2020 } 2021 2022 return 0; 2023 } 2024 2025 static unsigned rb_calculate_event_length(unsigned length) 2026 { 2027 struct ring_buffer_event event; /* Used only for sizeof array */ 2028 2029 /* zero length can cause confusions */ 2030 if (!length) 2031 length = 1; 2032 2033 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2034 length += sizeof(event.array[0]); 2035 2036 length += RB_EVNT_HDR_SIZE; 2037 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2038 2039 return length; 2040 } 2041 2042 static inline void 2043 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2044 struct buffer_page *tail_page, 2045 unsigned long tail, unsigned long length) 2046 { 2047 struct ring_buffer_event *event; 2048 2049 /* 2050 * Only the event that crossed the page boundary 2051 * must fill the old tail_page with padding. 2052 */ 2053 if (tail >= BUF_PAGE_SIZE) { 2054 /* 2055 * If the page was filled, then we still need 2056 * to update the real_end. Reset it to zero 2057 * and the reader will ignore it. 2058 */ 2059 if (tail == BUF_PAGE_SIZE) 2060 tail_page->real_end = 0; 2061 2062 local_sub(length, &tail_page->write); 2063 return; 2064 } 2065 2066 event = __rb_page_index(tail_page, tail); 2067 kmemcheck_annotate_bitfield(event, bitfield); 2068 2069 /* account for padding bytes */ 2070 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2071 2072 /* 2073 * Save the original length to the meta data. 2074 * This will be used by the reader to add lost event 2075 * counter. 2076 */ 2077 tail_page->real_end = tail; 2078 2079 /* 2080 * If this event is bigger than the minimum size, then 2081 * we need to be careful that we don't subtract the 2082 * write counter enough to allow another writer to slip 2083 * in on this page. 2084 * We put in a discarded commit instead, to make sure 2085 * that this space is not used again. 2086 * 2087 * If we are less than the minimum size, we don't need to 2088 * worry about it. 2089 */ 2090 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2091 /* No room for any events */ 2092 2093 /* Mark the rest of the page with padding */ 2094 rb_event_set_padding(event); 2095 2096 /* Set the write back to the previous setting */ 2097 local_sub(length, &tail_page->write); 2098 return; 2099 } 2100 2101 /* Put in a discarded event */ 2102 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2103 event->type_len = RINGBUF_TYPE_PADDING; 2104 /* time delta must be non zero */ 2105 event->time_delta = 1; 2106 2107 /* Set write to end of buffer */ 2108 length = (tail + length) - BUF_PAGE_SIZE; 2109 local_sub(length, &tail_page->write); 2110 } 2111 2112 /* 2113 * This is the slow path, force gcc not to inline it. 2114 */ 2115 static noinline struct ring_buffer_event * 2116 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2117 unsigned long length, unsigned long tail, 2118 struct buffer_page *tail_page, u64 ts) 2119 { 2120 struct buffer_page *commit_page = cpu_buffer->commit_page; 2121 struct ring_buffer *buffer = cpu_buffer->buffer; 2122 struct buffer_page *next_page; 2123 int ret; 2124 2125 next_page = tail_page; 2126 2127 rb_inc_page(cpu_buffer, &next_page); 2128 2129 /* 2130 * If for some reason, we had an interrupt storm that made 2131 * it all the way around the buffer, bail, and warn 2132 * about it. 2133 */ 2134 if (unlikely(next_page == commit_page)) { 2135 local_inc(&cpu_buffer->commit_overrun); 2136 goto out_reset; 2137 } 2138 2139 /* 2140 * This is where the fun begins! 2141 * 2142 * We are fighting against races between a reader that 2143 * could be on another CPU trying to swap its reader 2144 * page with the buffer head. 2145 * 2146 * We are also fighting against interrupts coming in and 2147 * moving the head or tail on us as well. 2148 * 2149 * If the next page is the head page then we have filled 2150 * the buffer, unless the commit page is still on the 2151 * reader page. 2152 */ 2153 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2154 2155 /* 2156 * If the commit is not on the reader page, then 2157 * move the header page. 2158 */ 2159 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2160 /* 2161 * If we are not in overwrite mode, 2162 * this is easy, just stop here. 2163 */ 2164 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2165 local_inc(&cpu_buffer->dropped_events); 2166 goto out_reset; 2167 } 2168 2169 ret = rb_handle_head_page(cpu_buffer, 2170 tail_page, 2171 next_page); 2172 if (ret < 0) 2173 goto out_reset; 2174 if (ret) 2175 goto out_again; 2176 } else { 2177 /* 2178 * We need to be careful here too. The 2179 * commit page could still be on the reader 2180 * page. We could have a small buffer, and 2181 * have filled up the buffer with events 2182 * from interrupts and such, and wrapped. 2183 * 2184 * Note, if the tail page is also the on the 2185 * reader_page, we let it move out. 2186 */ 2187 if (unlikely((cpu_buffer->commit_page != 2188 cpu_buffer->tail_page) && 2189 (cpu_buffer->commit_page == 2190 cpu_buffer->reader_page))) { 2191 local_inc(&cpu_buffer->commit_overrun); 2192 goto out_reset; 2193 } 2194 } 2195 } 2196 2197 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2198 if (ret) { 2199 /* 2200 * Nested commits always have zero deltas, so 2201 * just reread the time stamp 2202 */ 2203 ts = rb_time_stamp(buffer); 2204 next_page->page->time_stamp = ts; 2205 } 2206 2207 out_again: 2208 2209 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2210 2211 /* fail and let the caller try again */ 2212 return ERR_PTR(-EAGAIN); 2213 2214 out_reset: 2215 /* reset write */ 2216 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2217 2218 return NULL; 2219 } 2220 2221 static struct ring_buffer_event * 2222 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2223 unsigned long length, u64 ts, 2224 u64 delta, int add_timestamp) 2225 { 2226 struct buffer_page *tail_page; 2227 struct ring_buffer_event *event; 2228 unsigned long tail, write; 2229 2230 /* 2231 * If the time delta since the last event is too big to 2232 * hold in the time field of the event, then we append a 2233 * TIME EXTEND event ahead of the data event. 2234 */ 2235 if (unlikely(add_timestamp)) 2236 length += RB_LEN_TIME_EXTEND; 2237 2238 tail_page = cpu_buffer->tail_page; 2239 write = local_add_return(length, &tail_page->write); 2240 2241 /* set write to only the index of the write */ 2242 write &= RB_WRITE_MASK; 2243 tail = write - length; 2244 2245 /* See if we shot pass the end of this buffer page */ 2246 if (unlikely(write > BUF_PAGE_SIZE)) 2247 return rb_move_tail(cpu_buffer, length, tail, 2248 tail_page, ts); 2249 2250 /* We reserved something on the buffer */ 2251 2252 event = __rb_page_index(tail_page, tail); 2253 kmemcheck_annotate_bitfield(event, bitfield); 2254 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2255 2256 local_inc(&tail_page->entries); 2257 2258 /* 2259 * If this is the first commit on the page, then update 2260 * its timestamp. 2261 */ 2262 if (!tail) 2263 tail_page->page->time_stamp = ts; 2264 2265 /* account for these added bytes */ 2266 local_add(length, &cpu_buffer->entries_bytes); 2267 2268 return event; 2269 } 2270 2271 static inline int 2272 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2273 struct ring_buffer_event *event) 2274 { 2275 unsigned long new_index, old_index; 2276 struct buffer_page *bpage; 2277 unsigned long index; 2278 unsigned long addr; 2279 2280 new_index = rb_event_index(event); 2281 old_index = new_index + rb_event_ts_length(event); 2282 addr = (unsigned long)event; 2283 addr &= PAGE_MASK; 2284 2285 bpage = cpu_buffer->tail_page; 2286 2287 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2288 unsigned long write_mask = 2289 local_read(&bpage->write) & ~RB_WRITE_MASK; 2290 unsigned long event_length = rb_event_length(event); 2291 /* 2292 * This is on the tail page. It is possible that 2293 * a write could come in and move the tail page 2294 * and write to the next page. That is fine 2295 * because we just shorten what is on this page. 2296 */ 2297 old_index += write_mask; 2298 new_index += write_mask; 2299 index = local_cmpxchg(&bpage->write, old_index, new_index); 2300 if (index == old_index) { 2301 /* update counters */ 2302 local_sub(event_length, &cpu_buffer->entries_bytes); 2303 return 1; 2304 } 2305 } 2306 2307 /* could not discard */ 2308 return 0; 2309 } 2310 2311 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2312 { 2313 local_inc(&cpu_buffer->committing); 2314 local_inc(&cpu_buffer->commits); 2315 } 2316 2317 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2318 { 2319 unsigned long commits; 2320 2321 if (RB_WARN_ON(cpu_buffer, 2322 !local_read(&cpu_buffer->committing))) 2323 return; 2324 2325 again: 2326 commits = local_read(&cpu_buffer->commits); 2327 /* synchronize with interrupts */ 2328 barrier(); 2329 if (local_read(&cpu_buffer->committing) == 1) 2330 rb_set_commit_to_write(cpu_buffer); 2331 2332 local_dec(&cpu_buffer->committing); 2333 2334 /* synchronize with interrupts */ 2335 barrier(); 2336 2337 /* 2338 * Need to account for interrupts coming in between the 2339 * updating of the commit page and the clearing of the 2340 * committing counter. 2341 */ 2342 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2343 !local_read(&cpu_buffer->committing)) { 2344 local_inc(&cpu_buffer->committing); 2345 goto again; 2346 } 2347 } 2348 2349 static struct ring_buffer_event * 2350 rb_reserve_next_event(struct ring_buffer *buffer, 2351 struct ring_buffer_per_cpu *cpu_buffer, 2352 unsigned long length) 2353 { 2354 struct ring_buffer_event *event; 2355 u64 ts, delta; 2356 int nr_loops = 0; 2357 int add_timestamp; 2358 u64 diff; 2359 2360 rb_start_commit(cpu_buffer); 2361 2362 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2363 /* 2364 * Due to the ability to swap a cpu buffer from a buffer 2365 * it is possible it was swapped before we committed. 2366 * (committing stops a swap). We check for it here and 2367 * if it happened, we have to fail the write. 2368 */ 2369 barrier(); 2370 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2371 local_dec(&cpu_buffer->committing); 2372 local_dec(&cpu_buffer->commits); 2373 return NULL; 2374 } 2375 #endif 2376 2377 length = rb_calculate_event_length(length); 2378 again: 2379 add_timestamp = 0; 2380 delta = 0; 2381 2382 /* 2383 * We allow for interrupts to reenter here and do a trace. 2384 * If one does, it will cause this original code to loop 2385 * back here. Even with heavy interrupts happening, this 2386 * should only happen a few times in a row. If this happens 2387 * 1000 times in a row, there must be either an interrupt 2388 * storm or we have something buggy. 2389 * Bail! 2390 */ 2391 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2392 goto out_fail; 2393 2394 ts = rb_time_stamp(cpu_buffer->buffer); 2395 diff = ts - cpu_buffer->write_stamp; 2396 2397 /* make sure this diff is calculated here */ 2398 barrier(); 2399 2400 /* Did the write stamp get updated already? */ 2401 if (likely(ts >= cpu_buffer->write_stamp)) { 2402 delta = diff; 2403 if (unlikely(test_time_stamp(delta))) { 2404 int local_clock_stable = 1; 2405 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2406 local_clock_stable = sched_clock_stable; 2407 #endif 2408 WARN_ONCE(delta > (1ULL << 59), 2409 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2410 (unsigned long long)delta, 2411 (unsigned long long)ts, 2412 (unsigned long long)cpu_buffer->write_stamp, 2413 local_clock_stable ? "" : 2414 "If you just came from a suspend/resume,\n" 2415 "please switch to the trace global clock:\n" 2416 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2417 add_timestamp = 1; 2418 } 2419 } 2420 2421 event = __rb_reserve_next(cpu_buffer, length, ts, 2422 delta, add_timestamp); 2423 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2424 goto again; 2425 2426 if (!event) 2427 goto out_fail; 2428 2429 return event; 2430 2431 out_fail: 2432 rb_end_commit(cpu_buffer); 2433 return NULL; 2434 } 2435 2436 #ifdef CONFIG_TRACING 2437 2438 /* 2439 * The lock and unlock are done within a preempt disable section. 2440 * The current_context per_cpu variable can only be modified 2441 * by the current task between lock and unlock. But it can 2442 * be modified more than once via an interrupt. To pass this 2443 * information from the lock to the unlock without having to 2444 * access the 'in_interrupt()' functions again (which do show 2445 * a bit of overhead in something as critical as function tracing, 2446 * we use a bitmask trick. 2447 * 2448 * bit 0 = NMI context 2449 * bit 1 = IRQ context 2450 * bit 2 = SoftIRQ context 2451 * bit 3 = normal context. 2452 * 2453 * This works because this is the order of contexts that can 2454 * preempt other contexts. A SoftIRQ never preempts an IRQ 2455 * context. 2456 * 2457 * When the context is determined, the corresponding bit is 2458 * checked and set (if it was set, then a recursion of that context 2459 * happened). 2460 * 2461 * On unlock, we need to clear this bit. To do so, just subtract 2462 * 1 from the current_context and AND it to itself. 2463 * 2464 * (binary) 2465 * 101 - 1 = 100 2466 * 101 & 100 = 100 (clearing bit zero) 2467 * 2468 * 1010 - 1 = 1001 2469 * 1010 & 1001 = 1000 (clearing bit 1) 2470 * 2471 * The least significant bit can be cleared this way, and it 2472 * just so happens that it is the same bit corresponding to 2473 * the current context. 2474 */ 2475 static DEFINE_PER_CPU(unsigned int, current_context); 2476 2477 static __always_inline int trace_recursive_lock(void) 2478 { 2479 unsigned int val = this_cpu_read(current_context); 2480 int bit; 2481 2482 if (in_interrupt()) { 2483 if (in_nmi()) 2484 bit = 0; 2485 else if (in_irq()) 2486 bit = 1; 2487 else 2488 bit = 2; 2489 } else 2490 bit = 3; 2491 2492 if (unlikely(val & (1 << bit))) 2493 return 1; 2494 2495 val |= (1 << bit); 2496 this_cpu_write(current_context, val); 2497 2498 return 0; 2499 } 2500 2501 static __always_inline void trace_recursive_unlock(void) 2502 { 2503 unsigned int val = this_cpu_read(current_context); 2504 2505 val--; 2506 val &= this_cpu_read(current_context); 2507 this_cpu_write(current_context, val); 2508 } 2509 2510 #else 2511 2512 #define trace_recursive_lock() (0) 2513 #define trace_recursive_unlock() do { } while (0) 2514 2515 #endif 2516 2517 /** 2518 * ring_buffer_lock_reserve - reserve a part of the buffer 2519 * @buffer: the ring buffer to reserve from 2520 * @length: the length of the data to reserve (excluding event header) 2521 * 2522 * Returns a reseverd event on the ring buffer to copy directly to. 2523 * The user of this interface will need to get the body to write into 2524 * and can use the ring_buffer_event_data() interface. 2525 * 2526 * The length is the length of the data needed, not the event length 2527 * which also includes the event header. 2528 * 2529 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2530 * If NULL is returned, then nothing has been allocated or locked. 2531 */ 2532 struct ring_buffer_event * 2533 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2534 { 2535 struct ring_buffer_per_cpu *cpu_buffer; 2536 struct ring_buffer_event *event; 2537 int cpu; 2538 2539 if (ring_buffer_flags != RB_BUFFERS_ON) 2540 return NULL; 2541 2542 /* If we are tracing schedule, we don't want to recurse */ 2543 preempt_disable_notrace(); 2544 2545 if (atomic_read(&buffer->record_disabled)) 2546 goto out_nocheck; 2547 2548 if (trace_recursive_lock()) 2549 goto out_nocheck; 2550 2551 cpu = raw_smp_processor_id(); 2552 2553 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2554 goto out; 2555 2556 cpu_buffer = buffer->buffers[cpu]; 2557 2558 if (atomic_read(&cpu_buffer->record_disabled)) 2559 goto out; 2560 2561 if (length > BUF_MAX_DATA_SIZE) 2562 goto out; 2563 2564 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2565 if (!event) 2566 goto out; 2567 2568 return event; 2569 2570 out: 2571 trace_recursive_unlock(); 2572 2573 out_nocheck: 2574 preempt_enable_notrace(); 2575 return NULL; 2576 } 2577 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2578 2579 static void 2580 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2581 struct ring_buffer_event *event) 2582 { 2583 u64 delta; 2584 2585 /* 2586 * The event first in the commit queue updates the 2587 * time stamp. 2588 */ 2589 if (rb_event_is_commit(cpu_buffer, event)) { 2590 /* 2591 * A commit event that is first on a page 2592 * updates the write timestamp with the page stamp 2593 */ 2594 if (!rb_event_index(event)) 2595 cpu_buffer->write_stamp = 2596 cpu_buffer->commit_page->page->time_stamp; 2597 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2598 delta = event->array[0]; 2599 delta <<= TS_SHIFT; 2600 delta += event->time_delta; 2601 cpu_buffer->write_stamp += delta; 2602 } else 2603 cpu_buffer->write_stamp += event->time_delta; 2604 } 2605 } 2606 2607 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2608 struct ring_buffer_event *event) 2609 { 2610 local_inc(&cpu_buffer->entries); 2611 rb_update_write_stamp(cpu_buffer, event); 2612 rb_end_commit(cpu_buffer); 2613 } 2614 2615 /** 2616 * ring_buffer_unlock_commit - commit a reserved 2617 * @buffer: The buffer to commit to 2618 * @event: The event pointer to commit. 2619 * 2620 * This commits the data to the ring buffer, and releases any locks held. 2621 * 2622 * Must be paired with ring_buffer_lock_reserve. 2623 */ 2624 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2625 struct ring_buffer_event *event) 2626 { 2627 struct ring_buffer_per_cpu *cpu_buffer; 2628 int cpu = raw_smp_processor_id(); 2629 2630 cpu_buffer = buffer->buffers[cpu]; 2631 2632 rb_commit(cpu_buffer, event); 2633 2634 trace_recursive_unlock(); 2635 2636 preempt_enable_notrace(); 2637 2638 return 0; 2639 } 2640 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2641 2642 static inline void rb_event_discard(struct ring_buffer_event *event) 2643 { 2644 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2645 event = skip_time_extend(event); 2646 2647 /* array[0] holds the actual length for the discarded event */ 2648 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2649 event->type_len = RINGBUF_TYPE_PADDING; 2650 /* time delta must be non zero */ 2651 if (!event->time_delta) 2652 event->time_delta = 1; 2653 } 2654 2655 /* 2656 * Decrement the entries to the page that an event is on. 2657 * The event does not even need to exist, only the pointer 2658 * to the page it is on. This may only be called before the commit 2659 * takes place. 2660 */ 2661 static inline void 2662 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2663 struct ring_buffer_event *event) 2664 { 2665 unsigned long addr = (unsigned long)event; 2666 struct buffer_page *bpage = cpu_buffer->commit_page; 2667 struct buffer_page *start; 2668 2669 addr &= PAGE_MASK; 2670 2671 /* Do the likely case first */ 2672 if (likely(bpage->page == (void *)addr)) { 2673 local_dec(&bpage->entries); 2674 return; 2675 } 2676 2677 /* 2678 * Because the commit page may be on the reader page we 2679 * start with the next page and check the end loop there. 2680 */ 2681 rb_inc_page(cpu_buffer, &bpage); 2682 start = bpage; 2683 do { 2684 if (bpage->page == (void *)addr) { 2685 local_dec(&bpage->entries); 2686 return; 2687 } 2688 rb_inc_page(cpu_buffer, &bpage); 2689 } while (bpage != start); 2690 2691 /* commit not part of this buffer?? */ 2692 RB_WARN_ON(cpu_buffer, 1); 2693 } 2694 2695 /** 2696 * ring_buffer_commit_discard - discard an event that has not been committed 2697 * @buffer: the ring buffer 2698 * @event: non committed event to discard 2699 * 2700 * Sometimes an event that is in the ring buffer needs to be ignored. 2701 * This function lets the user discard an event in the ring buffer 2702 * and then that event will not be read later. 2703 * 2704 * This function only works if it is called before the the item has been 2705 * committed. It will try to free the event from the ring buffer 2706 * if another event has not been added behind it. 2707 * 2708 * If another event has been added behind it, it will set the event 2709 * up as discarded, and perform the commit. 2710 * 2711 * If this function is called, do not call ring_buffer_unlock_commit on 2712 * the event. 2713 */ 2714 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2715 struct ring_buffer_event *event) 2716 { 2717 struct ring_buffer_per_cpu *cpu_buffer; 2718 int cpu; 2719 2720 /* The event is discarded regardless */ 2721 rb_event_discard(event); 2722 2723 cpu = smp_processor_id(); 2724 cpu_buffer = buffer->buffers[cpu]; 2725 2726 /* 2727 * This must only be called if the event has not been 2728 * committed yet. Thus we can assume that preemption 2729 * is still disabled. 2730 */ 2731 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2732 2733 rb_decrement_entry(cpu_buffer, event); 2734 if (rb_try_to_discard(cpu_buffer, event)) 2735 goto out; 2736 2737 /* 2738 * The commit is still visible by the reader, so we 2739 * must still update the timestamp. 2740 */ 2741 rb_update_write_stamp(cpu_buffer, event); 2742 out: 2743 rb_end_commit(cpu_buffer); 2744 2745 trace_recursive_unlock(); 2746 2747 preempt_enable_notrace(); 2748 2749 } 2750 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2751 2752 /** 2753 * ring_buffer_write - write data to the buffer without reserving 2754 * @buffer: The ring buffer to write to. 2755 * @length: The length of the data being written (excluding the event header) 2756 * @data: The data to write to the buffer. 2757 * 2758 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2759 * one function. If you already have the data to write to the buffer, it 2760 * may be easier to simply call this function. 2761 * 2762 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2763 * and not the length of the event which would hold the header. 2764 */ 2765 int ring_buffer_write(struct ring_buffer *buffer, 2766 unsigned long length, 2767 void *data) 2768 { 2769 struct ring_buffer_per_cpu *cpu_buffer; 2770 struct ring_buffer_event *event; 2771 void *body; 2772 int ret = -EBUSY; 2773 int cpu; 2774 2775 if (ring_buffer_flags != RB_BUFFERS_ON) 2776 return -EBUSY; 2777 2778 preempt_disable_notrace(); 2779 2780 if (atomic_read(&buffer->record_disabled)) 2781 goto out; 2782 2783 cpu = raw_smp_processor_id(); 2784 2785 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2786 goto out; 2787 2788 cpu_buffer = buffer->buffers[cpu]; 2789 2790 if (atomic_read(&cpu_buffer->record_disabled)) 2791 goto out; 2792 2793 if (length > BUF_MAX_DATA_SIZE) 2794 goto out; 2795 2796 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2797 if (!event) 2798 goto out; 2799 2800 body = rb_event_data(event); 2801 2802 memcpy(body, data, length); 2803 2804 rb_commit(cpu_buffer, event); 2805 2806 ret = 0; 2807 out: 2808 preempt_enable_notrace(); 2809 2810 return ret; 2811 } 2812 EXPORT_SYMBOL_GPL(ring_buffer_write); 2813 2814 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2815 { 2816 struct buffer_page *reader = cpu_buffer->reader_page; 2817 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2818 struct buffer_page *commit = cpu_buffer->commit_page; 2819 2820 /* In case of error, head will be NULL */ 2821 if (unlikely(!head)) 2822 return 1; 2823 2824 return reader->read == rb_page_commit(reader) && 2825 (commit == reader || 2826 (commit == head && 2827 head->read == rb_page_commit(commit))); 2828 } 2829 2830 /** 2831 * ring_buffer_record_disable - stop all writes into the buffer 2832 * @buffer: The ring buffer to stop writes to. 2833 * 2834 * This prevents all writes to the buffer. Any attempt to write 2835 * to the buffer after this will fail and return NULL. 2836 * 2837 * The caller should call synchronize_sched() after this. 2838 */ 2839 void ring_buffer_record_disable(struct ring_buffer *buffer) 2840 { 2841 atomic_inc(&buffer->record_disabled); 2842 } 2843 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2844 2845 /** 2846 * ring_buffer_record_enable - enable writes to the buffer 2847 * @buffer: The ring buffer to enable writes 2848 * 2849 * Note, multiple disables will need the same number of enables 2850 * to truly enable the writing (much like preempt_disable). 2851 */ 2852 void ring_buffer_record_enable(struct ring_buffer *buffer) 2853 { 2854 atomic_dec(&buffer->record_disabled); 2855 } 2856 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2857 2858 /** 2859 * ring_buffer_record_off - stop all writes into the buffer 2860 * @buffer: The ring buffer to stop writes to. 2861 * 2862 * This prevents all writes to the buffer. Any attempt to write 2863 * to the buffer after this will fail and return NULL. 2864 * 2865 * This is different than ring_buffer_record_disable() as 2866 * it works like an on/off switch, where as the disable() version 2867 * must be paired with a enable(). 2868 */ 2869 void ring_buffer_record_off(struct ring_buffer *buffer) 2870 { 2871 unsigned int rd; 2872 unsigned int new_rd; 2873 2874 do { 2875 rd = atomic_read(&buffer->record_disabled); 2876 new_rd = rd | RB_BUFFER_OFF; 2877 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2878 } 2879 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 2880 2881 /** 2882 * ring_buffer_record_on - restart writes into the buffer 2883 * @buffer: The ring buffer to start writes to. 2884 * 2885 * This enables all writes to the buffer that was disabled by 2886 * ring_buffer_record_off(). 2887 * 2888 * This is different than ring_buffer_record_enable() as 2889 * it works like an on/off switch, where as the enable() version 2890 * must be paired with a disable(). 2891 */ 2892 void ring_buffer_record_on(struct ring_buffer *buffer) 2893 { 2894 unsigned int rd; 2895 unsigned int new_rd; 2896 2897 do { 2898 rd = atomic_read(&buffer->record_disabled); 2899 new_rd = rd & ~RB_BUFFER_OFF; 2900 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2901 } 2902 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 2903 2904 /** 2905 * ring_buffer_record_is_on - return true if the ring buffer can write 2906 * @buffer: The ring buffer to see if write is enabled 2907 * 2908 * Returns true if the ring buffer is in a state that it accepts writes. 2909 */ 2910 int ring_buffer_record_is_on(struct ring_buffer *buffer) 2911 { 2912 return !atomic_read(&buffer->record_disabled); 2913 } 2914 2915 /** 2916 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2917 * @buffer: The ring buffer to stop writes to. 2918 * @cpu: The CPU buffer to stop 2919 * 2920 * This prevents all writes to the buffer. Any attempt to write 2921 * to the buffer after this will fail and return NULL. 2922 * 2923 * The caller should call synchronize_sched() after this. 2924 */ 2925 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2926 { 2927 struct ring_buffer_per_cpu *cpu_buffer; 2928 2929 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2930 return; 2931 2932 cpu_buffer = buffer->buffers[cpu]; 2933 atomic_inc(&cpu_buffer->record_disabled); 2934 } 2935 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2936 2937 /** 2938 * ring_buffer_record_enable_cpu - enable writes to the buffer 2939 * @buffer: The ring buffer to enable writes 2940 * @cpu: The CPU to enable. 2941 * 2942 * Note, multiple disables will need the same number of enables 2943 * to truly enable the writing (much like preempt_disable). 2944 */ 2945 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2946 { 2947 struct ring_buffer_per_cpu *cpu_buffer; 2948 2949 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2950 return; 2951 2952 cpu_buffer = buffer->buffers[cpu]; 2953 atomic_dec(&cpu_buffer->record_disabled); 2954 } 2955 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2956 2957 /* 2958 * The total entries in the ring buffer is the running counter 2959 * of entries entered into the ring buffer, minus the sum of 2960 * the entries read from the ring buffer and the number of 2961 * entries that were overwritten. 2962 */ 2963 static inline unsigned long 2964 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 2965 { 2966 return local_read(&cpu_buffer->entries) - 2967 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 2968 } 2969 2970 /** 2971 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 2972 * @buffer: The ring buffer 2973 * @cpu: The per CPU buffer to read from. 2974 */ 2975 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 2976 { 2977 unsigned long flags; 2978 struct ring_buffer_per_cpu *cpu_buffer; 2979 struct buffer_page *bpage; 2980 u64 ret = 0; 2981 2982 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2983 return 0; 2984 2985 cpu_buffer = buffer->buffers[cpu]; 2986 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2987 /* 2988 * if the tail is on reader_page, oldest time stamp is on the reader 2989 * page 2990 */ 2991 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2992 bpage = cpu_buffer->reader_page; 2993 else 2994 bpage = rb_set_head_page(cpu_buffer); 2995 if (bpage) 2996 ret = bpage->page->time_stamp; 2997 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2998 2999 return ret; 3000 } 3001 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3002 3003 /** 3004 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3005 * @buffer: The ring buffer 3006 * @cpu: The per CPU buffer to read from. 3007 */ 3008 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3009 { 3010 struct ring_buffer_per_cpu *cpu_buffer; 3011 unsigned long ret; 3012 3013 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3014 return 0; 3015 3016 cpu_buffer = buffer->buffers[cpu]; 3017 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3018 3019 return ret; 3020 } 3021 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3022 3023 /** 3024 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3025 * @buffer: The ring buffer 3026 * @cpu: The per CPU buffer to get the entries from. 3027 */ 3028 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3029 { 3030 struct ring_buffer_per_cpu *cpu_buffer; 3031 3032 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3033 return 0; 3034 3035 cpu_buffer = buffer->buffers[cpu]; 3036 3037 return rb_num_of_entries(cpu_buffer); 3038 } 3039 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3040 3041 /** 3042 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3043 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3044 * @buffer: The ring buffer 3045 * @cpu: The per CPU buffer to get the number of overruns from 3046 */ 3047 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3048 { 3049 struct ring_buffer_per_cpu *cpu_buffer; 3050 unsigned long ret; 3051 3052 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3053 return 0; 3054 3055 cpu_buffer = buffer->buffers[cpu]; 3056 ret = local_read(&cpu_buffer->overrun); 3057 3058 return ret; 3059 } 3060 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3061 3062 /** 3063 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3064 * commits failing due to the buffer wrapping around while there are uncommitted 3065 * events, such as during an interrupt storm. 3066 * @buffer: The ring buffer 3067 * @cpu: The per CPU buffer to get the number of overruns from 3068 */ 3069 unsigned long 3070 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3071 { 3072 struct ring_buffer_per_cpu *cpu_buffer; 3073 unsigned long ret; 3074 3075 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3076 return 0; 3077 3078 cpu_buffer = buffer->buffers[cpu]; 3079 ret = local_read(&cpu_buffer->commit_overrun); 3080 3081 return ret; 3082 } 3083 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3084 3085 /** 3086 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3087 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3088 * @buffer: The ring buffer 3089 * @cpu: The per CPU buffer to get the number of overruns from 3090 */ 3091 unsigned long 3092 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3093 { 3094 struct ring_buffer_per_cpu *cpu_buffer; 3095 unsigned long ret; 3096 3097 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3098 return 0; 3099 3100 cpu_buffer = buffer->buffers[cpu]; 3101 ret = local_read(&cpu_buffer->dropped_events); 3102 3103 return ret; 3104 } 3105 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3106 3107 /** 3108 * ring_buffer_read_events_cpu - get the number of events successfully read 3109 * @buffer: The ring buffer 3110 * @cpu: The per CPU buffer to get the number of events read 3111 */ 3112 unsigned long 3113 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3114 { 3115 struct ring_buffer_per_cpu *cpu_buffer; 3116 3117 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3118 return 0; 3119 3120 cpu_buffer = buffer->buffers[cpu]; 3121 return cpu_buffer->read; 3122 } 3123 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3124 3125 /** 3126 * ring_buffer_entries - get the number of entries in a buffer 3127 * @buffer: The ring buffer 3128 * 3129 * Returns the total number of entries in the ring buffer 3130 * (all CPU entries) 3131 */ 3132 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3133 { 3134 struct ring_buffer_per_cpu *cpu_buffer; 3135 unsigned long entries = 0; 3136 int cpu; 3137 3138 /* if you care about this being correct, lock the buffer */ 3139 for_each_buffer_cpu(buffer, cpu) { 3140 cpu_buffer = buffer->buffers[cpu]; 3141 entries += rb_num_of_entries(cpu_buffer); 3142 } 3143 3144 return entries; 3145 } 3146 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3147 3148 /** 3149 * ring_buffer_overruns - get the number of overruns in buffer 3150 * @buffer: The ring buffer 3151 * 3152 * Returns the total number of overruns in the ring buffer 3153 * (all CPU entries) 3154 */ 3155 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3156 { 3157 struct ring_buffer_per_cpu *cpu_buffer; 3158 unsigned long overruns = 0; 3159 int cpu; 3160 3161 /* if you care about this being correct, lock the buffer */ 3162 for_each_buffer_cpu(buffer, cpu) { 3163 cpu_buffer = buffer->buffers[cpu]; 3164 overruns += local_read(&cpu_buffer->overrun); 3165 } 3166 3167 return overruns; 3168 } 3169 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3170 3171 static void rb_iter_reset(struct ring_buffer_iter *iter) 3172 { 3173 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3174 3175 /* Iterator usage is expected to have record disabled */ 3176 if (list_empty(&cpu_buffer->reader_page->list)) { 3177 iter->head_page = rb_set_head_page(cpu_buffer); 3178 if (unlikely(!iter->head_page)) 3179 return; 3180 iter->head = iter->head_page->read; 3181 } else { 3182 iter->head_page = cpu_buffer->reader_page; 3183 iter->head = cpu_buffer->reader_page->read; 3184 } 3185 if (iter->head) 3186 iter->read_stamp = cpu_buffer->read_stamp; 3187 else 3188 iter->read_stamp = iter->head_page->page->time_stamp; 3189 iter->cache_reader_page = cpu_buffer->reader_page; 3190 iter->cache_read = cpu_buffer->read; 3191 } 3192 3193 /** 3194 * ring_buffer_iter_reset - reset an iterator 3195 * @iter: The iterator to reset 3196 * 3197 * Resets the iterator, so that it will start from the beginning 3198 * again. 3199 */ 3200 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3201 { 3202 struct ring_buffer_per_cpu *cpu_buffer; 3203 unsigned long flags; 3204 3205 if (!iter) 3206 return; 3207 3208 cpu_buffer = iter->cpu_buffer; 3209 3210 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3211 rb_iter_reset(iter); 3212 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3213 } 3214 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3215 3216 /** 3217 * ring_buffer_iter_empty - check if an iterator has no more to read 3218 * @iter: The iterator to check 3219 */ 3220 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3221 { 3222 struct ring_buffer_per_cpu *cpu_buffer; 3223 3224 cpu_buffer = iter->cpu_buffer; 3225 3226 return iter->head_page == cpu_buffer->commit_page && 3227 iter->head == rb_commit_index(cpu_buffer); 3228 } 3229 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3230 3231 static void 3232 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3233 struct ring_buffer_event *event) 3234 { 3235 u64 delta; 3236 3237 switch (event->type_len) { 3238 case RINGBUF_TYPE_PADDING: 3239 return; 3240 3241 case RINGBUF_TYPE_TIME_EXTEND: 3242 delta = event->array[0]; 3243 delta <<= TS_SHIFT; 3244 delta += event->time_delta; 3245 cpu_buffer->read_stamp += delta; 3246 return; 3247 3248 case RINGBUF_TYPE_TIME_STAMP: 3249 /* FIXME: not implemented */ 3250 return; 3251 3252 case RINGBUF_TYPE_DATA: 3253 cpu_buffer->read_stamp += event->time_delta; 3254 return; 3255 3256 default: 3257 BUG(); 3258 } 3259 return; 3260 } 3261 3262 static void 3263 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3264 struct ring_buffer_event *event) 3265 { 3266 u64 delta; 3267 3268 switch (event->type_len) { 3269 case RINGBUF_TYPE_PADDING: 3270 return; 3271 3272 case RINGBUF_TYPE_TIME_EXTEND: 3273 delta = event->array[0]; 3274 delta <<= TS_SHIFT; 3275 delta += event->time_delta; 3276 iter->read_stamp += delta; 3277 return; 3278 3279 case RINGBUF_TYPE_TIME_STAMP: 3280 /* FIXME: not implemented */ 3281 return; 3282 3283 case RINGBUF_TYPE_DATA: 3284 iter->read_stamp += event->time_delta; 3285 return; 3286 3287 default: 3288 BUG(); 3289 } 3290 return; 3291 } 3292 3293 static struct buffer_page * 3294 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3295 { 3296 struct buffer_page *reader = NULL; 3297 unsigned long overwrite; 3298 unsigned long flags; 3299 int nr_loops = 0; 3300 int ret; 3301 3302 local_irq_save(flags); 3303 arch_spin_lock(&cpu_buffer->lock); 3304 3305 again: 3306 /* 3307 * This should normally only loop twice. But because the 3308 * start of the reader inserts an empty page, it causes 3309 * a case where we will loop three times. There should be no 3310 * reason to loop four times (that I know of). 3311 */ 3312 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3313 reader = NULL; 3314 goto out; 3315 } 3316 3317 reader = cpu_buffer->reader_page; 3318 3319 /* If there's more to read, return this page */ 3320 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3321 goto out; 3322 3323 /* Never should we have an index greater than the size */ 3324 if (RB_WARN_ON(cpu_buffer, 3325 cpu_buffer->reader_page->read > rb_page_size(reader))) 3326 goto out; 3327 3328 /* check if we caught up to the tail */ 3329 reader = NULL; 3330 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3331 goto out; 3332 3333 /* Don't bother swapping if the ring buffer is empty */ 3334 if (rb_num_of_entries(cpu_buffer) == 0) 3335 goto out; 3336 3337 /* 3338 * Reset the reader page to size zero. 3339 */ 3340 local_set(&cpu_buffer->reader_page->write, 0); 3341 local_set(&cpu_buffer->reader_page->entries, 0); 3342 local_set(&cpu_buffer->reader_page->page->commit, 0); 3343 cpu_buffer->reader_page->real_end = 0; 3344 3345 spin: 3346 /* 3347 * Splice the empty reader page into the list around the head. 3348 */ 3349 reader = rb_set_head_page(cpu_buffer); 3350 if (!reader) 3351 goto out; 3352 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3353 cpu_buffer->reader_page->list.prev = reader->list.prev; 3354 3355 /* 3356 * cpu_buffer->pages just needs to point to the buffer, it 3357 * has no specific buffer page to point to. Lets move it out 3358 * of our way so we don't accidentally swap it. 3359 */ 3360 cpu_buffer->pages = reader->list.prev; 3361 3362 /* The reader page will be pointing to the new head */ 3363 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3364 3365 /* 3366 * We want to make sure we read the overruns after we set up our 3367 * pointers to the next object. The writer side does a 3368 * cmpxchg to cross pages which acts as the mb on the writer 3369 * side. Note, the reader will constantly fail the swap 3370 * while the writer is updating the pointers, so this 3371 * guarantees that the overwrite recorded here is the one we 3372 * want to compare with the last_overrun. 3373 */ 3374 smp_mb(); 3375 overwrite = local_read(&(cpu_buffer->overrun)); 3376 3377 /* 3378 * Here's the tricky part. 3379 * 3380 * We need to move the pointer past the header page. 3381 * But we can only do that if a writer is not currently 3382 * moving it. The page before the header page has the 3383 * flag bit '1' set if it is pointing to the page we want. 3384 * but if the writer is in the process of moving it 3385 * than it will be '2' or already moved '0'. 3386 */ 3387 3388 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3389 3390 /* 3391 * If we did not convert it, then we must try again. 3392 */ 3393 if (!ret) 3394 goto spin; 3395 3396 /* 3397 * Yeah! We succeeded in replacing the page. 3398 * 3399 * Now make the new head point back to the reader page. 3400 */ 3401 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3402 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3403 3404 /* Finally update the reader page to the new head */ 3405 cpu_buffer->reader_page = reader; 3406 rb_reset_reader_page(cpu_buffer); 3407 3408 if (overwrite != cpu_buffer->last_overrun) { 3409 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3410 cpu_buffer->last_overrun = overwrite; 3411 } 3412 3413 goto again; 3414 3415 out: 3416 arch_spin_unlock(&cpu_buffer->lock); 3417 local_irq_restore(flags); 3418 3419 return reader; 3420 } 3421 3422 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3423 { 3424 struct ring_buffer_event *event; 3425 struct buffer_page *reader; 3426 unsigned length; 3427 3428 reader = rb_get_reader_page(cpu_buffer); 3429 3430 /* This function should not be called when buffer is empty */ 3431 if (RB_WARN_ON(cpu_buffer, !reader)) 3432 return; 3433 3434 event = rb_reader_event(cpu_buffer); 3435 3436 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3437 cpu_buffer->read++; 3438 3439 rb_update_read_stamp(cpu_buffer, event); 3440 3441 length = rb_event_length(event); 3442 cpu_buffer->reader_page->read += length; 3443 } 3444 3445 static void rb_advance_iter(struct ring_buffer_iter *iter) 3446 { 3447 struct ring_buffer_per_cpu *cpu_buffer; 3448 struct ring_buffer_event *event; 3449 unsigned length; 3450 3451 cpu_buffer = iter->cpu_buffer; 3452 3453 /* 3454 * Check if we are at the end of the buffer. 3455 */ 3456 if (iter->head >= rb_page_size(iter->head_page)) { 3457 /* discarded commits can make the page empty */ 3458 if (iter->head_page == cpu_buffer->commit_page) 3459 return; 3460 rb_inc_iter(iter); 3461 return; 3462 } 3463 3464 event = rb_iter_head_event(iter); 3465 3466 length = rb_event_length(event); 3467 3468 /* 3469 * This should not be called to advance the header if we are 3470 * at the tail of the buffer. 3471 */ 3472 if (RB_WARN_ON(cpu_buffer, 3473 (iter->head_page == cpu_buffer->commit_page) && 3474 (iter->head + length > rb_commit_index(cpu_buffer)))) 3475 return; 3476 3477 rb_update_iter_read_stamp(iter, event); 3478 3479 iter->head += length; 3480 3481 /* check for end of page padding */ 3482 if ((iter->head >= rb_page_size(iter->head_page)) && 3483 (iter->head_page != cpu_buffer->commit_page)) 3484 rb_inc_iter(iter); 3485 } 3486 3487 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3488 { 3489 return cpu_buffer->lost_events; 3490 } 3491 3492 static struct ring_buffer_event * 3493 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3494 unsigned long *lost_events) 3495 { 3496 struct ring_buffer_event *event; 3497 struct buffer_page *reader; 3498 int nr_loops = 0; 3499 3500 again: 3501 /* 3502 * We repeat when a time extend is encountered. 3503 * Since the time extend is always attached to a data event, 3504 * we should never loop more than once. 3505 * (We never hit the following condition more than twice). 3506 */ 3507 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3508 return NULL; 3509 3510 reader = rb_get_reader_page(cpu_buffer); 3511 if (!reader) 3512 return NULL; 3513 3514 event = rb_reader_event(cpu_buffer); 3515 3516 switch (event->type_len) { 3517 case RINGBUF_TYPE_PADDING: 3518 if (rb_null_event(event)) 3519 RB_WARN_ON(cpu_buffer, 1); 3520 /* 3521 * Because the writer could be discarding every 3522 * event it creates (which would probably be bad) 3523 * if we were to go back to "again" then we may never 3524 * catch up, and will trigger the warn on, or lock 3525 * the box. Return the padding, and we will release 3526 * the current locks, and try again. 3527 */ 3528 return event; 3529 3530 case RINGBUF_TYPE_TIME_EXTEND: 3531 /* Internal data, OK to advance */ 3532 rb_advance_reader(cpu_buffer); 3533 goto again; 3534 3535 case RINGBUF_TYPE_TIME_STAMP: 3536 /* FIXME: not implemented */ 3537 rb_advance_reader(cpu_buffer); 3538 goto again; 3539 3540 case RINGBUF_TYPE_DATA: 3541 if (ts) { 3542 *ts = cpu_buffer->read_stamp + event->time_delta; 3543 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3544 cpu_buffer->cpu, ts); 3545 } 3546 if (lost_events) 3547 *lost_events = rb_lost_events(cpu_buffer); 3548 return event; 3549 3550 default: 3551 BUG(); 3552 } 3553 3554 return NULL; 3555 } 3556 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3557 3558 static struct ring_buffer_event * 3559 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3560 { 3561 struct ring_buffer *buffer; 3562 struct ring_buffer_per_cpu *cpu_buffer; 3563 struct ring_buffer_event *event; 3564 int nr_loops = 0; 3565 3566 cpu_buffer = iter->cpu_buffer; 3567 buffer = cpu_buffer->buffer; 3568 3569 /* 3570 * Check if someone performed a consuming read to 3571 * the buffer. A consuming read invalidates the iterator 3572 * and we need to reset the iterator in this case. 3573 */ 3574 if (unlikely(iter->cache_read != cpu_buffer->read || 3575 iter->cache_reader_page != cpu_buffer->reader_page)) 3576 rb_iter_reset(iter); 3577 3578 again: 3579 if (ring_buffer_iter_empty(iter)) 3580 return NULL; 3581 3582 /* 3583 * We repeat when a time extend is encountered. 3584 * Since the time extend is always attached to a data event, 3585 * we should never loop more than once. 3586 * (We never hit the following condition more than twice). 3587 */ 3588 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3589 return NULL; 3590 3591 if (rb_per_cpu_empty(cpu_buffer)) 3592 return NULL; 3593 3594 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3595 rb_inc_iter(iter); 3596 goto again; 3597 } 3598 3599 event = rb_iter_head_event(iter); 3600 3601 switch (event->type_len) { 3602 case RINGBUF_TYPE_PADDING: 3603 if (rb_null_event(event)) { 3604 rb_inc_iter(iter); 3605 goto again; 3606 } 3607 rb_advance_iter(iter); 3608 return event; 3609 3610 case RINGBUF_TYPE_TIME_EXTEND: 3611 /* Internal data, OK to advance */ 3612 rb_advance_iter(iter); 3613 goto again; 3614 3615 case RINGBUF_TYPE_TIME_STAMP: 3616 /* FIXME: not implemented */ 3617 rb_advance_iter(iter); 3618 goto again; 3619 3620 case RINGBUF_TYPE_DATA: 3621 if (ts) { 3622 *ts = iter->read_stamp + event->time_delta; 3623 ring_buffer_normalize_time_stamp(buffer, 3624 cpu_buffer->cpu, ts); 3625 } 3626 return event; 3627 3628 default: 3629 BUG(); 3630 } 3631 3632 return NULL; 3633 } 3634 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3635 3636 static inline int rb_ok_to_lock(void) 3637 { 3638 /* 3639 * If an NMI die dumps out the content of the ring buffer 3640 * do not grab locks. We also permanently disable the ring 3641 * buffer too. A one time deal is all you get from reading 3642 * the ring buffer from an NMI. 3643 */ 3644 if (likely(!in_nmi())) 3645 return 1; 3646 3647 tracing_off_permanent(); 3648 return 0; 3649 } 3650 3651 /** 3652 * ring_buffer_peek - peek at the next event to be read 3653 * @buffer: The ring buffer to read 3654 * @cpu: The cpu to peak at 3655 * @ts: The timestamp counter of this event. 3656 * @lost_events: a variable to store if events were lost (may be NULL) 3657 * 3658 * This will return the event that will be read next, but does 3659 * not consume the data. 3660 */ 3661 struct ring_buffer_event * 3662 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3663 unsigned long *lost_events) 3664 { 3665 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3666 struct ring_buffer_event *event; 3667 unsigned long flags; 3668 int dolock; 3669 3670 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3671 return NULL; 3672 3673 dolock = rb_ok_to_lock(); 3674 again: 3675 local_irq_save(flags); 3676 if (dolock) 3677 raw_spin_lock(&cpu_buffer->reader_lock); 3678 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3679 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3680 rb_advance_reader(cpu_buffer); 3681 if (dolock) 3682 raw_spin_unlock(&cpu_buffer->reader_lock); 3683 local_irq_restore(flags); 3684 3685 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3686 goto again; 3687 3688 return event; 3689 } 3690 3691 /** 3692 * ring_buffer_iter_peek - peek at the next event to be read 3693 * @iter: The ring buffer iterator 3694 * @ts: The timestamp counter of this event. 3695 * 3696 * This will return the event that will be read next, but does 3697 * not increment the iterator. 3698 */ 3699 struct ring_buffer_event * 3700 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3701 { 3702 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3703 struct ring_buffer_event *event; 3704 unsigned long flags; 3705 3706 again: 3707 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3708 event = rb_iter_peek(iter, ts); 3709 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3710 3711 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3712 goto again; 3713 3714 return event; 3715 } 3716 3717 /** 3718 * ring_buffer_consume - return an event and consume it 3719 * @buffer: The ring buffer to get the next event from 3720 * @cpu: the cpu to read the buffer from 3721 * @ts: a variable to store the timestamp (may be NULL) 3722 * @lost_events: a variable to store if events were lost (may be NULL) 3723 * 3724 * Returns the next event in the ring buffer, and that event is consumed. 3725 * Meaning, that sequential reads will keep returning a different event, 3726 * and eventually empty the ring buffer if the producer is slower. 3727 */ 3728 struct ring_buffer_event * 3729 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3730 unsigned long *lost_events) 3731 { 3732 struct ring_buffer_per_cpu *cpu_buffer; 3733 struct ring_buffer_event *event = NULL; 3734 unsigned long flags; 3735 int dolock; 3736 3737 dolock = rb_ok_to_lock(); 3738 3739 again: 3740 /* might be called in atomic */ 3741 preempt_disable(); 3742 3743 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3744 goto out; 3745 3746 cpu_buffer = buffer->buffers[cpu]; 3747 local_irq_save(flags); 3748 if (dolock) 3749 raw_spin_lock(&cpu_buffer->reader_lock); 3750 3751 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3752 if (event) { 3753 cpu_buffer->lost_events = 0; 3754 rb_advance_reader(cpu_buffer); 3755 } 3756 3757 if (dolock) 3758 raw_spin_unlock(&cpu_buffer->reader_lock); 3759 local_irq_restore(flags); 3760 3761 out: 3762 preempt_enable(); 3763 3764 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3765 goto again; 3766 3767 return event; 3768 } 3769 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3770 3771 /** 3772 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3773 * @buffer: The ring buffer to read from 3774 * @cpu: The cpu buffer to iterate over 3775 * 3776 * This performs the initial preparations necessary to iterate 3777 * through the buffer. Memory is allocated, buffer recording 3778 * is disabled, and the iterator pointer is returned to the caller. 3779 * 3780 * Disabling buffer recordng prevents the reading from being 3781 * corrupted. This is not a consuming read, so a producer is not 3782 * expected. 3783 * 3784 * After a sequence of ring_buffer_read_prepare calls, the user is 3785 * expected to make at least one call to ring_buffer_prepare_sync. 3786 * Afterwards, ring_buffer_read_start is invoked to get things going 3787 * for real. 3788 * 3789 * This overall must be paired with ring_buffer_finish. 3790 */ 3791 struct ring_buffer_iter * 3792 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3793 { 3794 struct ring_buffer_per_cpu *cpu_buffer; 3795 struct ring_buffer_iter *iter; 3796 3797 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3798 return NULL; 3799 3800 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3801 if (!iter) 3802 return NULL; 3803 3804 cpu_buffer = buffer->buffers[cpu]; 3805 3806 iter->cpu_buffer = cpu_buffer; 3807 3808 atomic_inc(&buffer->resize_disabled); 3809 atomic_inc(&cpu_buffer->record_disabled); 3810 3811 return iter; 3812 } 3813 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3814 3815 /** 3816 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3817 * 3818 * All previously invoked ring_buffer_read_prepare calls to prepare 3819 * iterators will be synchronized. Afterwards, read_buffer_read_start 3820 * calls on those iterators are allowed. 3821 */ 3822 void 3823 ring_buffer_read_prepare_sync(void) 3824 { 3825 synchronize_sched(); 3826 } 3827 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3828 3829 /** 3830 * ring_buffer_read_start - start a non consuming read of the buffer 3831 * @iter: The iterator returned by ring_buffer_read_prepare 3832 * 3833 * This finalizes the startup of an iteration through the buffer. 3834 * The iterator comes from a call to ring_buffer_read_prepare and 3835 * an intervening ring_buffer_read_prepare_sync must have been 3836 * performed. 3837 * 3838 * Must be paired with ring_buffer_finish. 3839 */ 3840 void 3841 ring_buffer_read_start(struct ring_buffer_iter *iter) 3842 { 3843 struct ring_buffer_per_cpu *cpu_buffer; 3844 unsigned long flags; 3845 3846 if (!iter) 3847 return; 3848 3849 cpu_buffer = iter->cpu_buffer; 3850 3851 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3852 arch_spin_lock(&cpu_buffer->lock); 3853 rb_iter_reset(iter); 3854 arch_spin_unlock(&cpu_buffer->lock); 3855 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3856 } 3857 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3858 3859 /** 3860 * ring_buffer_finish - finish reading the iterator of the buffer 3861 * @iter: The iterator retrieved by ring_buffer_start 3862 * 3863 * This re-enables the recording to the buffer, and frees the 3864 * iterator. 3865 */ 3866 void 3867 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3868 { 3869 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3870 unsigned long flags; 3871 3872 /* 3873 * Ring buffer is disabled from recording, here's a good place 3874 * to check the integrity of the ring buffer. 3875 * Must prevent readers from trying to read, as the check 3876 * clears the HEAD page and readers require it. 3877 */ 3878 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3879 rb_check_pages(cpu_buffer); 3880 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3881 3882 atomic_dec(&cpu_buffer->record_disabled); 3883 atomic_dec(&cpu_buffer->buffer->resize_disabled); 3884 kfree(iter); 3885 } 3886 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3887 3888 /** 3889 * ring_buffer_read - read the next item in the ring buffer by the iterator 3890 * @iter: The ring buffer iterator 3891 * @ts: The time stamp of the event read. 3892 * 3893 * This reads the next event in the ring buffer and increments the iterator. 3894 */ 3895 struct ring_buffer_event * 3896 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3897 { 3898 struct ring_buffer_event *event; 3899 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3900 unsigned long flags; 3901 3902 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3903 again: 3904 event = rb_iter_peek(iter, ts); 3905 if (!event) 3906 goto out; 3907 3908 if (event->type_len == RINGBUF_TYPE_PADDING) 3909 goto again; 3910 3911 rb_advance_iter(iter); 3912 out: 3913 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3914 3915 return event; 3916 } 3917 EXPORT_SYMBOL_GPL(ring_buffer_read); 3918 3919 /** 3920 * ring_buffer_size - return the size of the ring buffer (in bytes) 3921 * @buffer: The ring buffer. 3922 */ 3923 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 3924 { 3925 /* 3926 * Earlier, this method returned 3927 * BUF_PAGE_SIZE * buffer->nr_pages 3928 * Since the nr_pages field is now removed, we have converted this to 3929 * return the per cpu buffer value. 3930 */ 3931 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3932 return 0; 3933 3934 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 3935 } 3936 EXPORT_SYMBOL_GPL(ring_buffer_size); 3937 3938 static void 3939 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3940 { 3941 rb_head_page_deactivate(cpu_buffer); 3942 3943 cpu_buffer->head_page 3944 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3945 local_set(&cpu_buffer->head_page->write, 0); 3946 local_set(&cpu_buffer->head_page->entries, 0); 3947 local_set(&cpu_buffer->head_page->page->commit, 0); 3948 3949 cpu_buffer->head_page->read = 0; 3950 3951 cpu_buffer->tail_page = cpu_buffer->head_page; 3952 cpu_buffer->commit_page = cpu_buffer->head_page; 3953 3954 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3955 INIT_LIST_HEAD(&cpu_buffer->new_pages); 3956 local_set(&cpu_buffer->reader_page->write, 0); 3957 local_set(&cpu_buffer->reader_page->entries, 0); 3958 local_set(&cpu_buffer->reader_page->page->commit, 0); 3959 cpu_buffer->reader_page->read = 0; 3960 3961 local_set(&cpu_buffer->entries_bytes, 0); 3962 local_set(&cpu_buffer->overrun, 0); 3963 local_set(&cpu_buffer->commit_overrun, 0); 3964 local_set(&cpu_buffer->dropped_events, 0); 3965 local_set(&cpu_buffer->entries, 0); 3966 local_set(&cpu_buffer->committing, 0); 3967 local_set(&cpu_buffer->commits, 0); 3968 cpu_buffer->read = 0; 3969 cpu_buffer->read_bytes = 0; 3970 3971 cpu_buffer->write_stamp = 0; 3972 cpu_buffer->read_stamp = 0; 3973 3974 cpu_buffer->lost_events = 0; 3975 cpu_buffer->last_overrun = 0; 3976 3977 rb_head_page_activate(cpu_buffer); 3978 } 3979 3980 /** 3981 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3982 * @buffer: The ring buffer to reset a per cpu buffer of 3983 * @cpu: The CPU buffer to be reset 3984 */ 3985 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3986 { 3987 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3988 unsigned long flags; 3989 3990 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3991 return; 3992 3993 atomic_inc(&buffer->resize_disabled); 3994 atomic_inc(&cpu_buffer->record_disabled); 3995 3996 /* Make sure all commits have finished */ 3997 synchronize_sched(); 3998 3999 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4000 4001 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4002 goto out; 4003 4004 arch_spin_lock(&cpu_buffer->lock); 4005 4006 rb_reset_cpu(cpu_buffer); 4007 4008 arch_spin_unlock(&cpu_buffer->lock); 4009 4010 out: 4011 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4012 4013 atomic_dec(&cpu_buffer->record_disabled); 4014 atomic_dec(&buffer->resize_disabled); 4015 } 4016 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4017 4018 /** 4019 * ring_buffer_reset - reset a ring buffer 4020 * @buffer: The ring buffer to reset all cpu buffers 4021 */ 4022 void ring_buffer_reset(struct ring_buffer *buffer) 4023 { 4024 int cpu; 4025 4026 for_each_buffer_cpu(buffer, cpu) 4027 ring_buffer_reset_cpu(buffer, cpu); 4028 } 4029 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4030 4031 /** 4032 * rind_buffer_empty - is the ring buffer empty? 4033 * @buffer: The ring buffer to test 4034 */ 4035 int ring_buffer_empty(struct ring_buffer *buffer) 4036 { 4037 struct ring_buffer_per_cpu *cpu_buffer; 4038 unsigned long flags; 4039 int dolock; 4040 int cpu; 4041 int ret; 4042 4043 dolock = rb_ok_to_lock(); 4044 4045 /* yes this is racy, but if you don't like the race, lock the buffer */ 4046 for_each_buffer_cpu(buffer, cpu) { 4047 cpu_buffer = buffer->buffers[cpu]; 4048 local_irq_save(flags); 4049 if (dolock) 4050 raw_spin_lock(&cpu_buffer->reader_lock); 4051 ret = rb_per_cpu_empty(cpu_buffer); 4052 if (dolock) 4053 raw_spin_unlock(&cpu_buffer->reader_lock); 4054 local_irq_restore(flags); 4055 4056 if (!ret) 4057 return 0; 4058 } 4059 4060 return 1; 4061 } 4062 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4063 4064 /** 4065 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4066 * @buffer: The ring buffer 4067 * @cpu: The CPU buffer to test 4068 */ 4069 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4070 { 4071 struct ring_buffer_per_cpu *cpu_buffer; 4072 unsigned long flags; 4073 int dolock; 4074 int ret; 4075 4076 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4077 return 1; 4078 4079 dolock = rb_ok_to_lock(); 4080 4081 cpu_buffer = buffer->buffers[cpu]; 4082 local_irq_save(flags); 4083 if (dolock) 4084 raw_spin_lock(&cpu_buffer->reader_lock); 4085 ret = rb_per_cpu_empty(cpu_buffer); 4086 if (dolock) 4087 raw_spin_unlock(&cpu_buffer->reader_lock); 4088 local_irq_restore(flags); 4089 4090 return ret; 4091 } 4092 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4093 4094 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4095 /** 4096 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4097 * @buffer_a: One buffer to swap with 4098 * @buffer_b: The other buffer to swap with 4099 * 4100 * This function is useful for tracers that want to take a "snapshot" 4101 * of a CPU buffer and has another back up buffer lying around. 4102 * it is expected that the tracer handles the cpu buffer not being 4103 * used at the moment. 4104 */ 4105 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4106 struct ring_buffer *buffer_b, int cpu) 4107 { 4108 struct ring_buffer_per_cpu *cpu_buffer_a; 4109 struct ring_buffer_per_cpu *cpu_buffer_b; 4110 int ret = -EINVAL; 4111 4112 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4113 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4114 goto out; 4115 4116 cpu_buffer_a = buffer_a->buffers[cpu]; 4117 cpu_buffer_b = buffer_b->buffers[cpu]; 4118 4119 /* At least make sure the two buffers are somewhat the same */ 4120 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4121 goto out; 4122 4123 ret = -EAGAIN; 4124 4125 if (ring_buffer_flags != RB_BUFFERS_ON) 4126 goto out; 4127 4128 if (atomic_read(&buffer_a->record_disabled)) 4129 goto out; 4130 4131 if (atomic_read(&buffer_b->record_disabled)) 4132 goto out; 4133 4134 if (atomic_read(&cpu_buffer_a->record_disabled)) 4135 goto out; 4136 4137 if (atomic_read(&cpu_buffer_b->record_disabled)) 4138 goto out; 4139 4140 /* 4141 * We can't do a synchronize_sched here because this 4142 * function can be called in atomic context. 4143 * Normally this will be called from the same CPU as cpu. 4144 * If not it's up to the caller to protect this. 4145 */ 4146 atomic_inc(&cpu_buffer_a->record_disabled); 4147 atomic_inc(&cpu_buffer_b->record_disabled); 4148 4149 ret = -EBUSY; 4150 if (local_read(&cpu_buffer_a->committing)) 4151 goto out_dec; 4152 if (local_read(&cpu_buffer_b->committing)) 4153 goto out_dec; 4154 4155 buffer_a->buffers[cpu] = cpu_buffer_b; 4156 buffer_b->buffers[cpu] = cpu_buffer_a; 4157 4158 cpu_buffer_b->buffer = buffer_a; 4159 cpu_buffer_a->buffer = buffer_b; 4160 4161 ret = 0; 4162 4163 out_dec: 4164 atomic_dec(&cpu_buffer_a->record_disabled); 4165 atomic_dec(&cpu_buffer_b->record_disabled); 4166 out: 4167 return ret; 4168 } 4169 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4170 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4171 4172 /** 4173 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4174 * @buffer: the buffer to allocate for. 4175 * 4176 * This function is used in conjunction with ring_buffer_read_page. 4177 * When reading a full page from the ring buffer, these functions 4178 * can be used to speed up the process. The calling function should 4179 * allocate a few pages first with this function. Then when it 4180 * needs to get pages from the ring buffer, it passes the result 4181 * of this function into ring_buffer_read_page, which will swap 4182 * the page that was allocated, with the read page of the buffer. 4183 * 4184 * Returns: 4185 * The page allocated, or NULL on error. 4186 */ 4187 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4188 { 4189 struct buffer_data_page *bpage; 4190 struct page *page; 4191 4192 page = alloc_pages_node(cpu_to_node(cpu), 4193 GFP_KERNEL | __GFP_NORETRY, 0); 4194 if (!page) 4195 return NULL; 4196 4197 bpage = page_address(page); 4198 4199 rb_init_page(bpage); 4200 4201 return bpage; 4202 } 4203 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4204 4205 /** 4206 * ring_buffer_free_read_page - free an allocated read page 4207 * @buffer: the buffer the page was allocate for 4208 * @data: the page to free 4209 * 4210 * Free a page allocated from ring_buffer_alloc_read_page. 4211 */ 4212 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4213 { 4214 free_page((unsigned long)data); 4215 } 4216 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4217 4218 /** 4219 * ring_buffer_read_page - extract a page from the ring buffer 4220 * @buffer: buffer to extract from 4221 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4222 * @len: amount to extract 4223 * @cpu: the cpu of the buffer to extract 4224 * @full: should the extraction only happen when the page is full. 4225 * 4226 * This function will pull out a page from the ring buffer and consume it. 4227 * @data_page must be the address of the variable that was returned 4228 * from ring_buffer_alloc_read_page. This is because the page might be used 4229 * to swap with a page in the ring buffer. 4230 * 4231 * for example: 4232 * rpage = ring_buffer_alloc_read_page(buffer); 4233 * if (!rpage) 4234 * return error; 4235 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4236 * if (ret >= 0) 4237 * process_page(rpage, ret); 4238 * 4239 * When @full is set, the function will not return true unless 4240 * the writer is off the reader page. 4241 * 4242 * Note: it is up to the calling functions to handle sleeps and wakeups. 4243 * The ring buffer can be used anywhere in the kernel and can not 4244 * blindly call wake_up. The layer that uses the ring buffer must be 4245 * responsible for that. 4246 * 4247 * Returns: 4248 * >=0 if data has been transferred, returns the offset of consumed data. 4249 * <0 if no data has been transferred. 4250 */ 4251 int ring_buffer_read_page(struct ring_buffer *buffer, 4252 void **data_page, size_t len, int cpu, int full) 4253 { 4254 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4255 struct ring_buffer_event *event; 4256 struct buffer_data_page *bpage; 4257 struct buffer_page *reader; 4258 unsigned long missed_events; 4259 unsigned long flags; 4260 unsigned int commit; 4261 unsigned int read; 4262 u64 save_timestamp; 4263 int ret = -1; 4264 4265 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4266 goto out; 4267 4268 /* 4269 * If len is not big enough to hold the page header, then 4270 * we can not copy anything. 4271 */ 4272 if (len <= BUF_PAGE_HDR_SIZE) 4273 goto out; 4274 4275 len -= BUF_PAGE_HDR_SIZE; 4276 4277 if (!data_page) 4278 goto out; 4279 4280 bpage = *data_page; 4281 if (!bpage) 4282 goto out; 4283 4284 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4285 4286 reader = rb_get_reader_page(cpu_buffer); 4287 if (!reader) 4288 goto out_unlock; 4289 4290 event = rb_reader_event(cpu_buffer); 4291 4292 read = reader->read; 4293 commit = rb_page_commit(reader); 4294 4295 /* Check if any events were dropped */ 4296 missed_events = cpu_buffer->lost_events; 4297 4298 /* 4299 * If this page has been partially read or 4300 * if len is not big enough to read the rest of the page or 4301 * a writer is still on the page, then 4302 * we must copy the data from the page to the buffer. 4303 * Otherwise, we can simply swap the page with the one passed in. 4304 */ 4305 if (read || (len < (commit - read)) || 4306 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4307 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4308 unsigned int rpos = read; 4309 unsigned int pos = 0; 4310 unsigned int size; 4311 4312 if (full) 4313 goto out_unlock; 4314 4315 if (len > (commit - read)) 4316 len = (commit - read); 4317 4318 /* Always keep the time extend and data together */ 4319 size = rb_event_ts_length(event); 4320 4321 if (len < size) 4322 goto out_unlock; 4323 4324 /* save the current timestamp, since the user will need it */ 4325 save_timestamp = cpu_buffer->read_stamp; 4326 4327 /* Need to copy one event at a time */ 4328 do { 4329 /* We need the size of one event, because 4330 * rb_advance_reader only advances by one event, 4331 * whereas rb_event_ts_length may include the size of 4332 * one or two events. 4333 * We have already ensured there's enough space if this 4334 * is a time extend. */ 4335 size = rb_event_length(event); 4336 memcpy(bpage->data + pos, rpage->data + rpos, size); 4337 4338 len -= size; 4339 4340 rb_advance_reader(cpu_buffer); 4341 rpos = reader->read; 4342 pos += size; 4343 4344 if (rpos >= commit) 4345 break; 4346 4347 event = rb_reader_event(cpu_buffer); 4348 /* Always keep the time extend and data together */ 4349 size = rb_event_ts_length(event); 4350 } while (len >= size); 4351 4352 /* update bpage */ 4353 local_set(&bpage->commit, pos); 4354 bpage->time_stamp = save_timestamp; 4355 4356 /* we copied everything to the beginning */ 4357 read = 0; 4358 } else { 4359 /* update the entry counter */ 4360 cpu_buffer->read += rb_page_entries(reader); 4361 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4362 4363 /* swap the pages */ 4364 rb_init_page(bpage); 4365 bpage = reader->page; 4366 reader->page = *data_page; 4367 local_set(&reader->write, 0); 4368 local_set(&reader->entries, 0); 4369 reader->read = 0; 4370 *data_page = bpage; 4371 4372 /* 4373 * Use the real_end for the data size, 4374 * This gives us a chance to store the lost events 4375 * on the page. 4376 */ 4377 if (reader->real_end) 4378 local_set(&bpage->commit, reader->real_end); 4379 } 4380 ret = read; 4381 4382 cpu_buffer->lost_events = 0; 4383 4384 commit = local_read(&bpage->commit); 4385 /* 4386 * Set a flag in the commit field if we lost events 4387 */ 4388 if (missed_events) { 4389 /* If there is room at the end of the page to save the 4390 * missed events, then record it there. 4391 */ 4392 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4393 memcpy(&bpage->data[commit], &missed_events, 4394 sizeof(missed_events)); 4395 local_add(RB_MISSED_STORED, &bpage->commit); 4396 commit += sizeof(missed_events); 4397 } 4398 local_add(RB_MISSED_EVENTS, &bpage->commit); 4399 } 4400 4401 /* 4402 * This page may be off to user land. Zero it out here. 4403 */ 4404 if (commit < BUF_PAGE_SIZE) 4405 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4406 4407 out_unlock: 4408 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4409 4410 out: 4411 return ret; 4412 } 4413 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4414 4415 #ifdef CONFIG_HOTPLUG_CPU 4416 static int rb_cpu_notify(struct notifier_block *self, 4417 unsigned long action, void *hcpu) 4418 { 4419 struct ring_buffer *buffer = 4420 container_of(self, struct ring_buffer, cpu_notify); 4421 long cpu = (long)hcpu; 4422 int cpu_i, nr_pages_same; 4423 unsigned int nr_pages; 4424 4425 switch (action) { 4426 case CPU_UP_PREPARE: 4427 case CPU_UP_PREPARE_FROZEN: 4428 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4429 return NOTIFY_OK; 4430 4431 nr_pages = 0; 4432 nr_pages_same = 1; 4433 /* check if all cpu sizes are same */ 4434 for_each_buffer_cpu(buffer, cpu_i) { 4435 /* fill in the size from first enabled cpu */ 4436 if (nr_pages == 0) 4437 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4438 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4439 nr_pages_same = 0; 4440 break; 4441 } 4442 } 4443 /* allocate minimum pages, user can later expand it */ 4444 if (!nr_pages_same) 4445 nr_pages = 2; 4446 buffer->buffers[cpu] = 4447 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4448 if (!buffer->buffers[cpu]) { 4449 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4450 cpu); 4451 return NOTIFY_OK; 4452 } 4453 smp_wmb(); 4454 cpumask_set_cpu(cpu, buffer->cpumask); 4455 break; 4456 case CPU_DOWN_PREPARE: 4457 case CPU_DOWN_PREPARE_FROZEN: 4458 /* 4459 * Do nothing. 4460 * If we were to free the buffer, then the user would 4461 * lose any trace that was in the buffer. 4462 */ 4463 break; 4464 default: 4465 break; 4466 } 4467 return NOTIFY_OK; 4468 } 4469 #endif 4470