xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/debugfs.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kmemcheck.h>
15 #include <linux/module.h>
16 #include <linux/percpu.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/hash.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/fs.h>
24 
25 #include <asm/local.h>
26 
27 static void update_pages_handler(struct work_struct *work);
28 
29 /*
30  * The ring buffer header is special. We must manually up keep it.
31  */
32 int ring_buffer_print_entry_header(struct trace_seq *s)
33 {
34 	int ret;
35 
36 	ret = trace_seq_printf(s, "# compressed entry header\n");
37 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
38 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
39 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
40 	ret = trace_seq_printf(s, "\n");
41 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
42 			       RINGBUF_TYPE_PADDING);
43 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
44 			       RINGBUF_TYPE_TIME_EXTEND);
45 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
46 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47 
48 	return ret;
49 }
50 
51 /*
52  * The ring buffer is made up of a list of pages. A separate list of pages is
53  * allocated for each CPU. A writer may only write to a buffer that is
54  * associated with the CPU it is currently executing on.  A reader may read
55  * from any per cpu buffer.
56  *
57  * The reader is special. For each per cpu buffer, the reader has its own
58  * reader page. When a reader has read the entire reader page, this reader
59  * page is swapped with another page in the ring buffer.
60  *
61  * Now, as long as the writer is off the reader page, the reader can do what
62  * ever it wants with that page. The writer will never write to that page
63  * again (as long as it is out of the ring buffer).
64  *
65  * Here's some silly ASCII art.
66  *
67  *   +------+
68  *   |reader|          RING BUFFER
69  *   |page  |
70  *   +------+        +---+   +---+   +---+
71  *                   |   |-->|   |-->|   |
72  *                   +---+   +---+   +---+
73  *                     ^               |
74  *                     |               |
75  *                     +---------------+
76  *
77  *
78  *   +------+
79  *   |reader|          RING BUFFER
80  *   |page  |------------------v
81  *   +------+        +---+   +---+   +---+
82  *                   |   |-->|   |-->|   |
83  *                   +---+   +---+   +---+
84  *                     ^               |
85  *                     |               |
86  *                     +---------------+
87  *
88  *
89  *   +------+
90  *   |reader|          RING BUFFER
91  *   |page  |------------------v
92  *   +------+        +---+   +---+   +---+
93  *      ^            |   |-->|   |-->|   |
94  *      |            +---+   +---+   +---+
95  *      |                              |
96  *      |                              |
97  *      +------------------------------+
98  *
99  *
100  *   +------+
101  *   |buffer|          RING BUFFER
102  *   |page  |------------------v
103  *   +------+        +---+   +---+   +---+
104  *      ^            |   |   |   |-->|   |
105  *      |   New      +---+   +---+   +---+
106  *      |  Reader------^               |
107  *      |   page                       |
108  *      +------------------------------+
109  *
110  *
111  * After we make this swap, the reader can hand this page off to the splice
112  * code and be done with it. It can even allocate a new page if it needs to
113  * and swap that into the ring buffer.
114  *
115  * We will be using cmpxchg soon to make all this lockless.
116  *
117  */
118 
119 /*
120  * A fast way to enable or disable all ring buffers is to
121  * call tracing_on or tracing_off. Turning off the ring buffers
122  * prevents all ring buffers from being recorded to.
123  * Turning this switch on, makes it OK to write to the
124  * ring buffer, if the ring buffer is enabled itself.
125  *
126  * There's three layers that must be on in order to write
127  * to the ring buffer.
128  *
129  * 1) This global flag must be set.
130  * 2) The ring buffer must be enabled for recording.
131  * 3) The per cpu buffer must be enabled for recording.
132  *
133  * In case of an anomaly, this global flag has a bit set that
134  * will permantly disable all ring buffers.
135  */
136 
137 /*
138  * Global flag to disable all recording to ring buffers
139  *  This has two bits: ON, DISABLED
140  *
141  *  ON   DISABLED
142  * ---- ----------
143  *   0      0        : ring buffers are off
144  *   1      0        : ring buffers are on
145  *   X      1        : ring buffers are permanently disabled
146  */
147 
148 enum {
149 	RB_BUFFERS_ON_BIT	= 0,
150 	RB_BUFFERS_DISABLED_BIT	= 1,
151 };
152 
153 enum {
154 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
155 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
156 };
157 
158 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
159 
160 /* Used for individual buffers (after the counter) */
161 #define RB_BUFFER_OFF		(1 << 20)
162 
163 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
164 
165 /**
166  * tracing_off_permanent - permanently disable ring buffers
167  *
168  * This function, once called, will disable all ring buffers
169  * permanently.
170  */
171 void tracing_off_permanent(void)
172 {
173 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
174 }
175 
176 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
177 #define RB_ALIGNMENT		4U
178 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
179 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
180 
181 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
182 # define RB_FORCE_8BYTE_ALIGNMENT	0
183 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
184 #else
185 # define RB_FORCE_8BYTE_ALIGNMENT	1
186 # define RB_ARCH_ALIGNMENT		8U
187 #endif
188 
189 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
190 
191 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
192 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
193 
194 enum {
195 	RB_LEN_TIME_EXTEND = 8,
196 	RB_LEN_TIME_STAMP = 16,
197 };
198 
199 #define skip_time_extend(event) \
200 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
201 
202 static inline int rb_null_event(struct ring_buffer_event *event)
203 {
204 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
205 }
206 
207 static void rb_event_set_padding(struct ring_buffer_event *event)
208 {
209 	/* padding has a NULL time_delta */
210 	event->type_len = RINGBUF_TYPE_PADDING;
211 	event->time_delta = 0;
212 }
213 
214 static unsigned
215 rb_event_data_length(struct ring_buffer_event *event)
216 {
217 	unsigned length;
218 
219 	if (event->type_len)
220 		length = event->type_len * RB_ALIGNMENT;
221 	else
222 		length = event->array[0];
223 	return length + RB_EVNT_HDR_SIZE;
224 }
225 
226 /*
227  * Return the length of the given event. Will return
228  * the length of the time extend if the event is a
229  * time extend.
230  */
231 static inline unsigned
232 rb_event_length(struct ring_buffer_event *event)
233 {
234 	switch (event->type_len) {
235 	case RINGBUF_TYPE_PADDING:
236 		if (rb_null_event(event))
237 			/* undefined */
238 			return -1;
239 		return  event->array[0] + RB_EVNT_HDR_SIZE;
240 
241 	case RINGBUF_TYPE_TIME_EXTEND:
242 		return RB_LEN_TIME_EXTEND;
243 
244 	case RINGBUF_TYPE_TIME_STAMP:
245 		return RB_LEN_TIME_STAMP;
246 
247 	case RINGBUF_TYPE_DATA:
248 		return rb_event_data_length(event);
249 	default:
250 		BUG();
251 	}
252 	/* not hit */
253 	return 0;
254 }
255 
256 /*
257  * Return total length of time extend and data,
258  *   or just the event length for all other events.
259  */
260 static inline unsigned
261 rb_event_ts_length(struct ring_buffer_event *event)
262 {
263 	unsigned len = 0;
264 
265 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
266 		/* time extends include the data event after it */
267 		len = RB_LEN_TIME_EXTEND;
268 		event = skip_time_extend(event);
269 	}
270 	return len + rb_event_length(event);
271 }
272 
273 /**
274  * ring_buffer_event_length - return the length of the event
275  * @event: the event to get the length of
276  *
277  * Returns the size of the data load of a data event.
278  * If the event is something other than a data event, it
279  * returns the size of the event itself. With the exception
280  * of a TIME EXTEND, where it still returns the size of the
281  * data load of the data event after it.
282  */
283 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
284 {
285 	unsigned length;
286 
287 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
288 		event = skip_time_extend(event);
289 
290 	length = rb_event_length(event);
291 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
292 		return length;
293 	length -= RB_EVNT_HDR_SIZE;
294 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
295                 length -= sizeof(event->array[0]);
296 	return length;
297 }
298 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
299 
300 /* inline for ring buffer fast paths */
301 static void *
302 rb_event_data(struct ring_buffer_event *event)
303 {
304 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
305 		event = skip_time_extend(event);
306 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
307 	/* If length is in len field, then array[0] has the data */
308 	if (event->type_len)
309 		return (void *)&event->array[0];
310 	/* Otherwise length is in array[0] and array[1] has the data */
311 	return (void *)&event->array[1];
312 }
313 
314 /**
315  * ring_buffer_event_data - return the data of the event
316  * @event: the event to get the data from
317  */
318 void *ring_buffer_event_data(struct ring_buffer_event *event)
319 {
320 	return rb_event_data(event);
321 }
322 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
323 
324 #define for_each_buffer_cpu(buffer, cpu)		\
325 	for_each_cpu(cpu, buffer->cpumask)
326 
327 #define TS_SHIFT	27
328 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
329 #define TS_DELTA_TEST	(~TS_MASK)
330 
331 /* Flag when events were overwritten */
332 #define RB_MISSED_EVENTS	(1 << 31)
333 /* Missed count stored at end */
334 #define RB_MISSED_STORED	(1 << 30)
335 
336 struct buffer_data_page {
337 	u64		 time_stamp;	/* page time stamp */
338 	local_t		 commit;	/* write committed index */
339 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
340 };
341 
342 /*
343  * Note, the buffer_page list must be first. The buffer pages
344  * are allocated in cache lines, which means that each buffer
345  * page will be at the beginning of a cache line, and thus
346  * the least significant bits will be zero. We use this to
347  * add flags in the list struct pointers, to make the ring buffer
348  * lockless.
349  */
350 struct buffer_page {
351 	struct list_head list;		/* list of buffer pages */
352 	local_t		 write;		/* index for next write */
353 	unsigned	 read;		/* index for next read */
354 	local_t		 entries;	/* entries on this page */
355 	unsigned long	 real_end;	/* real end of data */
356 	struct buffer_data_page *page;	/* Actual data page */
357 };
358 
359 /*
360  * The buffer page counters, write and entries, must be reset
361  * atomically when crossing page boundaries. To synchronize this
362  * update, two counters are inserted into the number. One is
363  * the actual counter for the write position or count on the page.
364  *
365  * The other is a counter of updaters. Before an update happens
366  * the update partition of the counter is incremented. This will
367  * allow the updater to update the counter atomically.
368  *
369  * The counter is 20 bits, and the state data is 12.
370  */
371 #define RB_WRITE_MASK		0xfffff
372 #define RB_WRITE_INTCNT		(1 << 20)
373 
374 static void rb_init_page(struct buffer_data_page *bpage)
375 {
376 	local_set(&bpage->commit, 0);
377 }
378 
379 /**
380  * ring_buffer_page_len - the size of data on the page.
381  * @page: The page to read
382  *
383  * Returns the amount of data on the page, including buffer page header.
384  */
385 size_t ring_buffer_page_len(void *page)
386 {
387 	return local_read(&((struct buffer_data_page *)page)->commit)
388 		+ BUF_PAGE_HDR_SIZE;
389 }
390 
391 /*
392  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
393  * this issue out.
394  */
395 static void free_buffer_page(struct buffer_page *bpage)
396 {
397 	free_page((unsigned long)bpage->page);
398 	kfree(bpage);
399 }
400 
401 /*
402  * We need to fit the time_stamp delta into 27 bits.
403  */
404 static inline int test_time_stamp(u64 delta)
405 {
406 	if (delta & TS_DELTA_TEST)
407 		return 1;
408 	return 0;
409 }
410 
411 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
412 
413 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
414 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
415 
416 int ring_buffer_print_page_header(struct trace_seq *s)
417 {
418 	struct buffer_data_page field;
419 	int ret;
420 
421 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
422 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
423 			       (unsigned int)sizeof(field.time_stamp),
424 			       (unsigned int)is_signed_type(u64));
425 
426 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
427 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
428 			       (unsigned int)offsetof(typeof(field), commit),
429 			       (unsigned int)sizeof(field.commit),
430 			       (unsigned int)is_signed_type(long));
431 
432 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
433 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
434 			       (unsigned int)offsetof(typeof(field), commit),
435 			       1,
436 			       (unsigned int)is_signed_type(long));
437 
438 	ret = trace_seq_printf(s, "\tfield: char data;\t"
439 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
440 			       (unsigned int)offsetof(typeof(field), data),
441 			       (unsigned int)BUF_PAGE_SIZE,
442 			       (unsigned int)is_signed_type(char));
443 
444 	return ret;
445 }
446 
447 /*
448  * head_page == tail_page && head == tail then buffer is empty.
449  */
450 struct ring_buffer_per_cpu {
451 	int				cpu;
452 	atomic_t			record_disabled;
453 	struct ring_buffer		*buffer;
454 	raw_spinlock_t			reader_lock;	/* serialize readers */
455 	arch_spinlock_t			lock;
456 	struct lock_class_key		lock_key;
457 	unsigned int			nr_pages;
458 	struct list_head		*pages;
459 	struct buffer_page		*head_page;	/* read from head */
460 	struct buffer_page		*tail_page;	/* write to tail */
461 	struct buffer_page		*commit_page;	/* committed pages */
462 	struct buffer_page		*reader_page;
463 	unsigned long			lost_events;
464 	unsigned long			last_overrun;
465 	local_t				entries_bytes;
466 	local_t				entries;
467 	local_t				overrun;
468 	local_t				commit_overrun;
469 	local_t				dropped_events;
470 	local_t				committing;
471 	local_t				commits;
472 	unsigned long			read;
473 	unsigned long			read_bytes;
474 	u64				write_stamp;
475 	u64				read_stamp;
476 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
477 	int				nr_pages_to_update;
478 	struct list_head		new_pages; /* new pages to add */
479 	struct work_struct		update_pages_work;
480 	struct completion		update_done;
481 };
482 
483 struct ring_buffer {
484 	unsigned			flags;
485 	int				cpus;
486 	atomic_t			record_disabled;
487 	atomic_t			resize_disabled;
488 	cpumask_var_t			cpumask;
489 
490 	struct lock_class_key		*reader_lock_key;
491 
492 	struct mutex			mutex;
493 
494 	struct ring_buffer_per_cpu	**buffers;
495 
496 #ifdef CONFIG_HOTPLUG_CPU
497 	struct notifier_block		cpu_notify;
498 #endif
499 	u64				(*clock)(void);
500 };
501 
502 struct ring_buffer_iter {
503 	struct ring_buffer_per_cpu	*cpu_buffer;
504 	unsigned long			head;
505 	struct buffer_page		*head_page;
506 	struct buffer_page		*cache_reader_page;
507 	unsigned long			cache_read;
508 	u64				read_stamp;
509 };
510 
511 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
512 #define RB_WARN_ON(b, cond)						\
513 	({								\
514 		int _____ret = unlikely(cond);				\
515 		if (_____ret) {						\
516 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
517 				struct ring_buffer_per_cpu *__b =	\
518 					(void *)b;			\
519 				atomic_inc(&__b->buffer->record_disabled); \
520 			} else						\
521 				atomic_inc(&b->record_disabled);	\
522 			WARN_ON(1);					\
523 		}							\
524 		_____ret;						\
525 	})
526 
527 /* Up this if you want to test the TIME_EXTENTS and normalization */
528 #define DEBUG_SHIFT 0
529 
530 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
531 {
532 	/* shift to debug/test normalization and TIME_EXTENTS */
533 	return buffer->clock() << DEBUG_SHIFT;
534 }
535 
536 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
537 {
538 	u64 time;
539 
540 	preempt_disable_notrace();
541 	time = rb_time_stamp(buffer);
542 	preempt_enable_no_resched_notrace();
543 
544 	return time;
545 }
546 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
547 
548 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
549 				      int cpu, u64 *ts)
550 {
551 	/* Just stupid testing the normalize function and deltas */
552 	*ts >>= DEBUG_SHIFT;
553 }
554 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
555 
556 /*
557  * Making the ring buffer lockless makes things tricky.
558  * Although writes only happen on the CPU that they are on,
559  * and they only need to worry about interrupts. Reads can
560  * happen on any CPU.
561  *
562  * The reader page is always off the ring buffer, but when the
563  * reader finishes with a page, it needs to swap its page with
564  * a new one from the buffer. The reader needs to take from
565  * the head (writes go to the tail). But if a writer is in overwrite
566  * mode and wraps, it must push the head page forward.
567  *
568  * Here lies the problem.
569  *
570  * The reader must be careful to replace only the head page, and
571  * not another one. As described at the top of the file in the
572  * ASCII art, the reader sets its old page to point to the next
573  * page after head. It then sets the page after head to point to
574  * the old reader page. But if the writer moves the head page
575  * during this operation, the reader could end up with the tail.
576  *
577  * We use cmpxchg to help prevent this race. We also do something
578  * special with the page before head. We set the LSB to 1.
579  *
580  * When the writer must push the page forward, it will clear the
581  * bit that points to the head page, move the head, and then set
582  * the bit that points to the new head page.
583  *
584  * We also don't want an interrupt coming in and moving the head
585  * page on another writer. Thus we use the second LSB to catch
586  * that too. Thus:
587  *
588  * head->list->prev->next        bit 1          bit 0
589  *                              -------        -------
590  * Normal page                     0              0
591  * Points to head page             0              1
592  * New head page                   1              0
593  *
594  * Note we can not trust the prev pointer of the head page, because:
595  *
596  * +----+       +-----+        +-----+
597  * |    |------>|  T  |---X--->|  N  |
598  * |    |<------|     |        |     |
599  * +----+       +-----+        +-----+
600  *   ^                           ^ |
601  *   |          +-----+          | |
602  *   +----------|  R  |----------+ |
603  *              |     |<-----------+
604  *              +-----+
605  *
606  * Key:  ---X-->  HEAD flag set in pointer
607  *         T      Tail page
608  *         R      Reader page
609  *         N      Next page
610  *
611  * (see __rb_reserve_next() to see where this happens)
612  *
613  *  What the above shows is that the reader just swapped out
614  *  the reader page with a page in the buffer, but before it
615  *  could make the new header point back to the new page added
616  *  it was preempted by a writer. The writer moved forward onto
617  *  the new page added by the reader and is about to move forward
618  *  again.
619  *
620  *  You can see, it is legitimate for the previous pointer of
621  *  the head (or any page) not to point back to itself. But only
622  *  temporarially.
623  */
624 
625 #define RB_PAGE_NORMAL		0UL
626 #define RB_PAGE_HEAD		1UL
627 #define RB_PAGE_UPDATE		2UL
628 
629 
630 #define RB_FLAG_MASK		3UL
631 
632 /* PAGE_MOVED is not part of the mask */
633 #define RB_PAGE_MOVED		4UL
634 
635 /*
636  * rb_list_head - remove any bit
637  */
638 static struct list_head *rb_list_head(struct list_head *list)
639 {
640 	unsigned long val = (unsigned long)list;
641 
642 	return (struct list_head *)(val & ~RB_FLAG_MASK);
643 }
644 
645 /*
646  * rb_is_head_page - test if the given page is the head page
647  *
648  * Because the reader may move the head_page pointer, we can
649  * not trust what the head page is (it may be pointing to
650  * the reader page). But if the next page is a header page,
651  * its flags will be non zero.
652  */
653 static inline int
654 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
655 		struct buffer_page *page, struct list_head *list)
656 {
657 	unsigned long val;
658 
659 	val = (unsigned long)list->next;
660 
661 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
662 		return RB_PAGE_MOVED;
663 
664 	return val & RB_FLAG_MASK;
665 }
666 
667 /*
668  * rb_is_reader_page
669  *
670  * The unique thing about the reader page, is that, if the
671  * writer is ever on it, the previous pointer never points
672  * back to the reader page.
673  */
674 static int rb_is_reader_page(struct buffer_page *page)
675 {
676 	struct list_head *list = page->list.prev;
677 
678 	return rb_list_head(list->next) != &page->list;
679 }
680 
681 /*
682  * rb_set_list_to_head - set a list_head to be pointing to head.
683  */
684 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
685 				struct list_head *list)
686 {
687 	unsigned long *ptr;
688 
689 	ptr = (unsigned long *)&list->next;
690 	*ptr |= RB_PAGE_HEAD;
691 	*ptr &= ~RB_PAGE_UPDATE;
692 }
693 
694 /*
695  * rb_head_page_activate - sets up head page
696  */
697 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
698 {
699 	struct buffer_page *head;
700 
701 	head = cpu_buffer->head_page;
702 	if (!head)
703 		return;
704 
705 	/*
706 	 * Set the previous list pointer to have the HEAD flag.
707 	 */
708 	rb_set_list_to_head(cpu_buffer, head->list.prev);
709 }
710 
711 static void rb_list_head_clear(struct list_head *list)
712 {
713 	unsigned long *ptr = (unsigned long *)&list->next;
714 
715 	*ptr &= ~RB_FLAG_MASK;
716 }
717 
718 /*
719  * rb_head_page_dactivate - clears head page ptr (for free list)
720  */
721 static void
722 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
723 {
724 	struct list_head *hd;
725 
726 	/* Go through the whole list and clear any pointers found. */
727 	rb_list_head_clear(cpu_buffer->pages);
728 
729 	list_for_each(hd, cpu_buffer->pages)
730 		rb_list_head_clear(hd);
731 }
732 
733 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
734 			    struct buffer_page *head,
735 			    struct buffer_page *prev,
736 			    int old_flag, int new_flag)
737 {
738 	struct list_head *list;
739 	unsigned long val = (unsigned long)&head->list;
740 	unsigned long ret;
741 
742 	list = &prev->list;
743 
744 	val &= ~RB_FLAG_MASK;
745 
746 	ret = cmpxchg((unsigned long *)&list->next,
747 		      val | old_flag, val | new_flag);
748 
749 	/* check if the reader took the page */
750 	if ((ret & ~RB_FLAG_MASK) != val)
751 		return RB_PAGE_MOVED;
752 
753 	return ret & RB_FLAG_MASK;
754 }
755 
756 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
757 				   struct buffer_page *head,
758 				   struct buffer_page *prev,
759 				   int old_flag)
760 {
761 	return rb_head_page_set(cpu_buffer, head, prev,
762 				old_flag, RB_PAGE_UPDATE);
763 }
764 
765 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
766 				 struct buffer_page *head,
767 				 struct buffer_page *prev,
768 				 int old_flag)
769 {
770 	return rb_head_page_set(cpu_buffer, head, prev,
771 				old_flag, RB_PAGE_HEAD);
772 }
773 
774 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
775 				   struct buffer_page *head,
776 				   struct buffer_page *prev,
777 				   int old_flag)
778 {
779 	return rb_head_page_set(cpu_buffer, head, prev,
780 				old_flag, RB_PAGE_NORMAL);
781 }
782 
783 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
784 			       struct buffer_page **bpage)
785 {
786 	struct list_head *p = rb_list_head((*bpage)->list.next);
787 
788 	*bpage = list_entry(p, struct buffer_page, list);
789 }
790 
791 static struct buffer_page *
792 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
793 {
794 	struct buffer_page *head;
795 	struct buffer_page *page;
796 	struct list_head *list;
797 	int i;
798 
799 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
800 		return NULL;
801 
802 	/* sanity check */
803 	list = cpu_buffer->pages;
804 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
805 		return NULL;
806 
807 	page = head = cpu_buffer->head_page;
808 	/*
809 	 * It is possible that the writer moves the header behind
810 	 * where we started, and we miss in one loop.
811 	 * A second loop should grab the header, but we'll do
812 	 * three loops just because I'm paranoid.
813 	 */
814 	for (i = 0; i < 3; i++) {
815 		do {
816 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
817 				cpu_buffer->head_page = page;
818 				return page;
819 			}
820 			rb_inc_page(cpu_buffer, &page);
821 		} while (page != head);
822 	}
823 
824 	RB_WARN_ON(cpu_buffer, 1);
825 
826 	return NULL;
827 }
828 
829 static int rb_head_page_replace(struct buffer_page *old,
830 				struct buffer_page *new)
831 {
832 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
833 	unsigned long val;
834 	unsigned long ret;
835 
836 	val = *ptr & ~RB_FLAG_MASK;
837 	val |= RB_PAGE_HEAD;
838 
839 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
840 
841 	return ret == val;
842 }
843 
844 /*
845  * rb_tail_page_update - move the tail page forward
846  *
847  * Returns 1 if moved tail page, 0 if someone else did.
848  */
849 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
850 			       struct buffer_page *tail_page,
851 			       struct buffer_page *next_page)
852 {
853 	struct buffer_page *old_tail;
854 	unsigned long old_entries;
855 	unsigned long old_write;
856 	int ret = 0;
857 
858 	/*
859 	 * The tail page now needs to be moved forward.
860 	 *
861 	 * We need to reset the tail page, but without messing
862 	 * with possible erasing of data brought in by interrupts
863 	 * that have moved the tail page and are currently on it.
864 	 *
865 	 * We add a counter to the write field to denote this.
866 	 */
867 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
868 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
869 
870 	/*
871 	 * Just make sure we have seen our old_write and synchronize
872 	 * with any interrupts that come in.
873 	 */
874 	barrier();
875 
876 	/*
877 	 * If the tail page is still the same as what we think
878 	 * it is, then it is up to us to update the tail
879 	 * pointer.
880 	 */
881 	if (tail_page == cpu_buffer->tail_page) {
882 		/* Zero the write counter */
883 		unsigned long val = old_write & ~RB_WRITE_MASK;
884 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
885 
886 		/*
887 		 * This will only succeed if an interrupt did
888 		 * not come in and change it. In which case, we
889 		 * do not want to modify it.
890 		 *
891 		 * We add (void) to let the compiler know that we do not care
892 		 * about the return value of these functions. We use the
893 		 * cmpxchg to only update if an interrupt did not already
894 		 * do it for us. If the cmpxchg fails, we don't care.
895 		 */
896 		(void)local_cmpxchg(&next_page->write, old_write, val);
897 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
898 
899 		/*
900 		 * No need to worry about races with clearing out the commit.
901 		 * it only can increment when a commit takes place. But that
902 		 * only happens in the outer most nested commit.
903 		 */
904 		local_set(&next_page->page->commit, 0);
905 
906 		old_tail = cmpxchg(&cpu_buffer->tail_page,
907 				   tail_page, next_page);
908 
909 		if (old_tail == tail_page)
910 			ret = 1;
911 	}
912 
913 	return ret;
914 }
915 
916 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
917 			  struct buffer_page *bpage)
918 {
919 	unsigned long val = (unsigned long)bpage;
920 
921 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
922 		return 1;
923 
924 	return 0;
925 }
926 
927 /**
928  * rb_check_list - make sure a pointer to a list has the last bits zero
929  */
930 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
931 			 struct list_head *list)
932 {
933 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
934 		return 1;
935 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
936 		return 1;
937 	return 0;
938 }
939 
940 /**
941  * check_pages - integrity check of buffer pages
942  * @cpu_buffer: CPU buffer with pages to test
943  *
944  * As a safety measure we check to make sure the data pages have not
945  * been corrupted.
946  */
947 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
948 {
949 	struct list_head *head = cpu_buffer->pages;
950 	struct buffer_page *bpage, *tmp;
951 
952 	/* Reset the head page if it exists */
953 	if (cpu_buffer->head_page)
954 		rb_set_head_page(cpu_buffer);
955 
956 	rb_head_page_deactivate(cpu_buffer);
957 
958 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
959 		return -1;
960 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
961 		return -1;
962 
963 	if (rb_check_list(cpu_buffer, head))
964 		return -1;
965 
966 	list_for_each_entry_safe(bpage, tmp, head, list) {
967 		if (RB_WARN_ON(cpu_buffer,
968 			       bpage->list.next->prev != &bpage->list))
969 			return -1;
970 		if (RB_WARN_ON(cpu_buffer,
971 			       bpage->list.prev->next != &bpage->list))
972 			return -1;
973 		if (rb_check_list(cpu_buffer, &bpage->list))
974 			return -1;
975 	}
976 
977 	rb_head_page_activate(cpu_buffer);
978 
979 	return 0;
980 }
981 
982 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
983 {
984 	int i;
985 	struct buffer_page *bpage, *tmp;
986 
987 	for (i = 0; i < nr_pages; i++) {
988 		struct page *page;
989 		/*
990 		 * __GFP_NORETRY flag makes sure that the allocation fails
991 		 * gracefully without invoking oom-killer and the system is
992 		 * not destabilized.
993 		 */
994 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
995 				    GFP_KERNEL | __GFP_NORETRY,
996 				    cpu_to_node(cpu));
997 		if (!bpage)
998 			goto free_pages;
999 
1000 		list_add(&bpage->list, pages);
1001 
1002 		page = alloc_pages_node(cpu_to_node(cpu),
1003 					GFP_KERNEL | __GFP_NORETRY, 0);
1004 		if (!page)
1005 			goto free_pages;
1006 		bpage->page = page_address(page);
1007 		rb_init_page(bpage->page);
1008 	}
1009 
1010 	return 0;
1011 
1012 free_pages:
1013 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1014 		list_del_init(&bpage->list);
1015 		free_buffer_page(bpage);
1016 	}
1017 
1018 	return -ENOMEM;
1019 }
1020 
1021 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1022 			     unsigned nr_pages)
1023 {
1024 	LIST_HEAD(pages);
1025 
1026 	WARN_ON(!nr_pages);
1027 
1028 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1029 		return -ENOMEM;
1030 
1031 	/*
1032 	 * The ring buffer page list is a circular list that does not
1033 	 * start and end with a list head. All page list items point to
1034 	 * other pages.
1035 	 */
1036 	cpu_buffer->pages = pages.next;
1037 	list_del(&pages);
1038 
1039 	cpu_buffer->nr_pages = nr_pages;
1040 
1041 	rb_check_pages(cpu_buffer);
1042 
1043 	return 0;
1044 }
1045 
1046 static struct ring_buffer_per_cpu *
1047 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1048 {
1049 	struct ring_buffer_per_cpu *cpu_buffer;
1050 	struct buffer_page *bpage;
1051 	struct page *page;
1052 	int ret;
1053 
1054 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1055 				  GFP_KERNEL, cpu_to_node(cpu));
1056 	if (!cpu_buffer)
1057 		return NULL;
1058 
1059 	cpu_buffer->cpu = cpu;
1060 	cpu_buffer->buffer = buffer;
1061 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1062 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1063 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1064 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1065 	init_completion(&cpu_buffer->update_done);
1066 
1067 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1068 			    GFP_KERNEL, cpu_to_node(cpu));
1069 	if (!bpage)
1070 		goto fail_free_buffer;
1071 
1072 	rb_check_bpage(cpu_buffer, bpage);
1073 
1074 	cpu_buffer->reader_page = bpage;
1075 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1076 	if (!page)
1077 		goto fail_free_reader;
1078 	bpage->page = page_address(page);
1079 	rb_init_page(bpage->page);
1080 
1081 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1082 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1083 
1084 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1085 	if (ret < 0)
1086 		goto fail_free_reader;
1087 
1088 	cpu_buffer->head_page
1089 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1090 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1091 
1092 	rb_head_page_activate(cpu_buffer);
1093 
1094 	return cpu_buffer;
1095 
1096  fail_free_reader:
1097 	free_buffer_page(cpu_buffer->reader_page);
1098 
1099  fail_free_buffer:
1100 	kfree(cpu_buffer);
1101 	return NULL;
1102 }
1103 
1104 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1105 {
1106 	struct list_head *head = cpu_buffer->pages;
1107 	struct buffer_page *bpage, *tmp;
1108 
1109 	free_buffer_page(cpu_buffer->reader_page);
1110 
1111 	rb_head_page_deactivate(cpu_buffer);
1112 
1113 	if (head) {
1114 		list_for_each_entry_safe(bpage, tmp, head, list) {
1115 			list_del_init(&bpage->list);
1116 			free_buffer_page(bpage);
1117 		}
1118 		bpage = list_entry(head, struct buffer_page, list);
1119 		free_buffer_page(bpage);
1120 	}
1121 
1122 	kfree(cpu_buffer);
1123 }
1124 
1125 #ifdef CONFIG_HOTPLUG_CPU
1126 static int rb_cpu_notify(struct notifier_block *self,
1127 			 unsigned long action, void *hcpu);
1128 #endif
1129 
1130 /**
1131  * ring_buffer_alloc - allocate a new ring_buffer
1132  * @size: the size in bytes per cpu that is needed.
1133  * @flags: attributes to set for the ring buffer.
1134  *
1135  * Currently the only flag that is available is the RB_FL_OVERWRITE
1136  * flag. This flag means that the buffer will overwrite old data
1137  * when the buffer wraps. If this flag is not set, the buffer will
1138  * drop data when the tail hits the head.
1139  */
1140 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1141 					struct lock_class_key *key)
1142 {
1143 	struct ring_buffer *buffer;
1144 	int bsize;
1145 	int cpu, nr_pages;
1146 
1147 	/* keep it in its own cache line */
1148 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1149 			 GFP_KERNEL);
1150 	if (!buffer)
1151 		return NULL;
1152 
1153 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1154 		goto fail_free_buffer;
1155 
1156 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1157 	buffer->flags = flags;
1158 	buffer->clock = trace_clock_local;
1159 	buffer->reader_lock_key = key;
1160 
1161 	/* need at least two pages */
1162 	if (nr_pages < 2)
1163 		nr_pages = 2;
1164 
1165 	/*
1166 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1167 	 * in early initcall, it will not be notified of secondary cpus.
1168 	 * In that off case, we need to allocate for all possible cpus.
1169 	 */
1170 #ifdef CONFIG_HOTPLUG_CPU
1171 	get_online_cpus();
1172 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1173 #else
1174 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1175 #endif
1176 	buffer->cpus = nr_cpu_ids;
1177 
1178 	bsize = sizeof(void *) * nr_cpu_ids;
1179 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1180 				  GFP_KERNEL);
1181 	if (!buffer->buffers)
1182 		goto fail_free_cpumask;
1183 
1184 	for_each_buffer_cpu(buffer, cpu) {
1185 		buffer->buffers[cpu] =
1186 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1187 		if (!buffer->buffers[cpu])
1188 			goto fail_free_buffers;
1189 	}
1190 
1191 #ifdef CONFIG_HOTPLUG_CPU
1192 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1193 	buffer->cpu_notify.priority = 0;
1194 	register_cpu_notifier(&buffer->cpu_notify);
1195 #endif
1196 
1197 	put_online_cpus();
1198 	mutex_init(&buffer->mutex);
1199 
1200 	return buffer;
1201 
1202  fail_free_buffers:
1203 	for_each_buffer_cpu(buffer, cpu) {
1204 		if (buffer->buffers[cpu])
1205 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1206 	}
1207 	kfree(buffer->buffers);
1208 
1209  fail_free_cpumask:
1210 	free_cpumask_var(buffer->cpumask);
1211 	put_online_cpus();
1212 
1213  fail_free_buffer:
1214 	kfree(buffer);
1215 	return NULL;
1216 }
1217 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1218 
1219 /**
1220  * ring_buffer_free - free a ring buffer.
1221  * @buffer: the buffer to free.
1222  */
1223 void
1224 ring_buffer_free(struct ring_buffer *buffer)
1225 {
1226 	int cpu;
1227 
1228 	get_online_cpus();
1229 
1230 #ifdef CONFIG_HOTPLUG_CPU
1231 	unregister_cpu_notifier(&buffer->cpu_notify);
1232 #endif
1233 
1234 	for_each_buffer_cpu(buffer, cpu)
1235 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1236 
1237 	put_online_cpus();
1238 
1239 	kfree(buffer->buffers);
1240 	free_cpumask_var(buffer->cpumask);
1241 
1242 	kfree(buffer);
1243 }
1244 EXPORT_SYMBOL_GPL(ring_buffer_free);
1245 
1246 void ring_buffer_set_clock(struct ring_buffer *buffer,
1247 			   u64 (*clock)(void))
1248 {
1249 	buffer->clock = clock;
1250 }
1251 
1252 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1253 
1254 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1255 {
1256 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1257 }
1258 
1259 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1260 {
1261 	return local_read(&bpage->write) & RB_WRITE_MASK;
1262 }
1263 
1264 static int
1265 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1266 {
1267 	struct list_head *tail_page, *to_remove, *next_page;
1268 	struct buffer_page *to_remove_page, *tmp_iter_page;
1269 	struct buffer_page *last_page, *first_page;
1270 	unsigned int nr_removed;
1271 	unsigned long head_bit;
1272 	int page_entries;
1273 
1274 	head_bit = 0;
1275 
1276 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1277 	atomic_inc(&cpu_buffer->record_disabled);
1278 	/*
1279 	 * We don't race with the readers since we have acquired the reader
1280 	 * lock. We also don't race with writers after disabling recording.
1281 	 * This makes it easy to figure out the first and the last page to be
1282 	 * removed from the list. We unlink all the pages in between including
1283 	 * the first and last pages. This is done in a busy loop so that we
1284 	 * lose the least number of traces.
1285 	 * The pages are freed after we restart recording and unlock readers.
1286 	 */
1287 	tail_page = &cpu_buffer->tail_page->list;
1288 
1289 	/*
1290 	 * tail page might be on reader page, we remove the next page
1291 	 * from the ring buffer
1292 	 */
1293 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1294 		tail_page = rb_list_head(tail_page->next);
1295 	to_remove = tail_page;
1296 
1297 	/* start of pages to remove */
1298 	first_page = list_entry(rb_list_head(to_remove->next),
1299 				struct buffer_page, list);
1300 
1301 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1302 		to_remove = rb_list_head(to_remove)->next;
1303 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1304 	}
1305 
1306 	next_page = rb_list_head(to_remove)->next;
1307 
1308 	/*
1309 	 * Now we remove all pages between tail_page and next_page.
1310 	 * Make sure that we have head_bit value preserved for the
1311 	 * next page
1312 	 */
1313 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1314 						head_bit);
1315 	next_page = rb_list_head(next_page);
1316 	next_page->prev = tail_page;
1317 
1318 	/* make sure pages points to a valid page in the ring buffer */
1319 	cpu_buffer->pages = next_page;
1320 
1321 	/* update head page */
1322 	if (head_bit)
1323 		cpu_buffer->head_page = list_entry(next_page,
1324 						struct buffer_page, list);
1325 
1326 	/*
1327 	 * change read pointer to make sure any read iterators reset
1328 	 * themselves
1329 	 */
1330 	cpu_buffer->read = 0;
1331 
1332 	/* pages are removed, resume tracing and then free the pages */
1333 	atomic_dec(&cpu_buffer->record_disabled);
1334 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1335 
1336 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1337 
1338 	/* last buffer page to remove */
1339 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1340 				list);
1341 	tmp_iter_page = first_page;
1342 
1343 	do {
1344 		to_remove_page = tmp_iter_page;
1345 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1346 
1347 		/* update the counters */
1348 		page_entries = rb_page_entries(to_remove_page);
1349 		if (page_entries) {
1350 			/*
1351 			 * If something was added to this page, it was full
1352 			 * since it is not the tail page. So we deduct the
1353 			 * bytes consumed in ring buffer from here.
1354 			 * Increment overrun to account for the lost events.
1355 			 */
1356 			local_add(page_entries, &cpu_buffer->overrun);
1357 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1358 		}
1359 
1360 		/*
1361 		 * We have already removed references to this list item, just
1362 		 * free up the buffer_page and its page
1363 		 */
1364 		free_buffer_page(to_remove_page);
1365 		nr_removed--;
1366 
1367 	} while (to_remove_page != last_page);
1368 
1369 	RB_WARN_ON(cpu_buffer, nr_removed);
1370 
1371 	return nr_removed == 0;
1372 }
1373 
1374 static int
1375 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1376 {
1377 	struct list_head *pages = &cpu_buffer->new_pages;
1378 	int retries, success;
1379 
1380 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1381 	/*
1382 	 * We are holding the reader lock, so the reader page won't be swapped
1383 	 * in the ring buffer. Now we are racing with the writer trying to
1384 	 * move head page and the tail page.
1385 	 * We are going to adapt the reader page update process where:
1386 	 * 1. We first splice the start and end of list of new pages between
1387 	 *    the head page and its previous page.
1388 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1389 	 *    start of new pages list.
1390 	 * 3. Finally, we update the head->prev to the end of new list.
1391 	 *
1392 	 * We will try this process 10 times, to make sure that we don't keep
1393 	 * spinning.
1394 	 */
1395 	retries = 10;
1396 	success = 0;
1397 	while (retries--) {
1398 		struct list_head *head_page, *prev_page, *r;
1399 		struct list_head *last_page, *first_page;
1400 		struct list_head *head_page_with_bit;
1401 
1402 		head_page = &rb_set_head_page(cpu_buffer)->list;
1403 		if (!head_page)
1404 			break;
1405 		prev_page = head_page->prev;
1406 
1407 		first_page = pages->next;
1408 		last_page  = pages->prev;
1409 
1410 		head_page_with_bit = (struct list_head *)
1411 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1412 
1413 		last_page->next = head_page_with_bit;
1414 		first_page->prev = prev_page;
1415 
1416 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1417 
1418 		if (r == head_page_with_bit) {
1419 			/*
1420 			 * yay, we replaced the page pointer to our new list,
1421 			 * now, we just have to update to head page's prev
1422 			 * pointer to point to end of list
1423 			 */
1424 			head_page->prev = last_page;
1425 			success = 1;
1426 			break;
1427 		}
1428 	}
1429 
1430 	if (success)
1431 		INIT_LIST_HEAD(pages);
1432 	/*
1433 	 * If we weren't successful in adding in new pages, warn and stop
1434 	 * tracing
1435 	 */
1436 	RB_WARN_ON(cpu_buffer, !success);
1437 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1438 
1439 	/* free pages if they weren't inserted */
1440 	if (!success) {
1441 		struct buffer_page *bpage, *tmp;
1442 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1443 					 list) {
1444 			list_del_init(&bpage->list);
1445 			free_buffer_page(bpage);
1446 		}
1447 	}
1448 	return success;
1449 }
1450 
1451 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1452 {
1453 	int success;
1454 
1455 	if (cpu_buffer->nr_pages_to_update > 0)
1456 		success = rb_insert_pages(cpu_buffer);
1457 	else
1458 		success = rb_remove_pages(cpu_buffer,
1459 					-cpu_buffer->nr_pages_to_update);
1460 
1461 	if (success)
1462 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1463 }
1464 
1465 static void update_pages_handler(struct work_struct *work)
1466 {
1467 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1468 			struct ring_buffer_per_cpu, update_pages_work);
1469 	rb_update_pages(cpu_buffer);
1470 	complete(&cpu_buffer->update_done);
1471 }
1472 
1473 /**
1474  * ring_buffer_resize - resize the ring buffer
1475  * @buffer: the buffer to resize.
1476  * @size: the new size.
1477  *
1478  * Minimum size is 2 * BUF_PAGE_SIZE.
1479  *
1480  * Returns 0 on success and < 0 on failure.
1481  */
1482 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1483 			int cpu_id)
1484 {
1485 	struct ring_buffer_per_cpu *cpu_buffer;
1486 	unsigned nr_pages;
1487 	int cpu, err = 0;
1488 
1489 	/*
1490 	 * Always succeed at resizing a non-existent buffer:
1491 	 */
1492 	if (!buffer)
1493 		return size;
1494 
1495 	/* Make sure the requested buffer exists */
1496 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1497 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1498 		return size;
1499 
1500 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1501 	size *= BUF_PAGE_SIZE;
1502 
1503 	/* we need a minimum of two pages */
1504 	if (size < BUF_PAGE_SIZE * 2)
1505 		size = BUF_PAGE_SIZE * 2;
1506 
1507 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1508 
1509 	/*
1510 	 * Don't succeed if resizing is disabled, as a reader might be
1511 	 * manipulating the ring buffer and is expecting a sane state while
1512 	 * this is true.
1513 	 */
1514 	if (atomic_read(&buffer->resize_disabled))
1515 		return -EBUSY;
1516 
1517 	/* prevent another thread from changing buffer sizes */
1518 	mutex_lock(&buffer->mutex);
1519 
1520 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1521 		/* calculate the pages to update */
1522 		for_each_buffer_cpu(buffer, cpu) {
1523 			cpu_buffer = buffer->buffers[cpu];
1524 
1525 			cpu_buffer->nr_pages_to_update = nr_pages -
1526 							cpu_buffer->nr_pages;
1527 			/*
1528 			 * nothing more to do for removing pages or no update
1529 			 */
1530 			if (cpu_buffer->nr_pages_to_update <= 0)
1531 				continue;
1532 			/*
1533 			 * to add pages, make sure all new pages can be
1534 			 * allocated without receiving ENOMEM
1535 			 */
1536 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1537 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1538 						&cpu_buffer->new_pages, cpu)) {
1539 				/* not enough memory for new pages */
1540 				err = -ENOMEM;
1541 				goto out_err;
1542 			}
1543 		}
1544 
1545 		get_online_cpus();
1546 		/*
1547 		 * Fire off all the required work handlers
1548 		 * We can't schedule on offline CPUs, but it's not necessary
1549 		 * since we can change their buffer sizes without any race.
1550 		 */
1551 		for_each_buffer_cpu(buffer, cpu) {
1552 			cpu_buffer = buffer->buffers[cpu];
1553 			if (!cpu_buffer->nr_pages_to_update)
1554 				continue;
1555 
1556 			if (cpu_online(cpu))
1557 				schedule_work_on(cpu,
1558 						&cpu_buffer->update_pages_work);
1559 			else
1560 				rb_update_pages(cpu_buffer);
1561 		}
1562 
1563 		/* wait for all the updates to complete */
1564 		for_each_buffer_cpu(buffer, cpu) {
1565 			cpu_buffer = buffer->buffers[cpu];
1566 			if (!cpu_buffer->nr_pages_to_update)
1567 				continue;
1568 
1569 			if (cpu_online(cpu))
1570 				wait_for_completion(&cpu_buffer->update_done);
1571 			cpu_buffer->nr_pages_to_update = 0;
1572 		}
1573 
1574 		put_online_cpus();
1575 	} else {
1576 		/* Make sure this CPU has been intitialized */
1577 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1578 			goto out;
1579 
1580 		cpu_buffer = buffer->buffers[cpu_id];
1581 
1582 		if (nr_pages == cpu_buffer->nr_pages)
1583 			goto out;
1584 
1585 		cpu_buffer->nr_pages_to_update = nr_pages -
1586 						cpu_buffer->nr_pages;
1587 
1588 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1589 		if (cpu_buffer->nr_pages_to_update > 0 &&
1590 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1591 					    &cpu_buffer->new_pages, cpu_id)) {
1592 			err = -ENOMEM;
1593 			goto out_err;
1594 		}
1595 
1596 		get_online_cpus();
1597 
1598 		if (cpu_online(cpu_id)) {
1599 			schedule_work_on(cpu_id,
1600 					 &cpu_buffer->update_pages_work);
1601 			wait_for_completion(&cpu_buffer->update_done);
1602 		} else
1603 			rb_update_pages(cpu_buffer);
1604 
1605 		cpu_buffer->nr_pages_to_update = 0;
1606 		put_online_cpus();
1607 	}
1608 
1609  out:
1610 	/*
1611 	 * The ring buffer resize can happen with the ring buffer
1612 	 * enabled, so that the update disturbs the tracing as little
1613 	 * as possible. But if the buffer is disabled, we do not need
1614 	 * to worry about that, and we can take the time to verify
1615 	 * that the buffer is not corrupt.
1616 	 */
1617 	if (atomic_read(&buffer->record_disabled)) {
1618 		atomic_inc(&buffer->record_disabled);
1619 		/*
1620 		 * Even though the buffer was disabled, we must make sure
1621 		 * that it is truly disabled before calling rb_check_pages.
1622 		 * There could have been a race between checking
1623 		 * record_disable and incrementing it.
1624 		 */
1625 		synchronize_sched();
1626 		for_each_buffer_cpu(buffer, cpu) {
1627 			cpu_buffer = buffer->buffers[cpu];
1628 			rb_check_pages(cpu_buffer);
1629 		}
1630 		atomic_dec(&buffer->record_disabled);
1631 	}
1632 
1633 	mutex_unlock(&buffer->mutex);
1634 	return size;
1635 
1636  out_err:
1637 	for_each_buffer_cpu(buffer, cpu) {
1638 		struct buffer_page *bpage, *tmp;
1639 
1640 		cpu_buffer = buffer->buffers[cpu];
1641 		cpu_buffer->nr_pages_to_update = 0;
1642 
1643 		if (list_empty(&cpu_buffer->new_pages))
1644 			continue;
1645 
1646 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1647 					list) {
1648 			list_del_init(&bpage->list);
1649 			free_buffer_page(bpage);
1650 		}
1651 	}
1652 	mutex_unlock(&buffer->mutex);
1653 	return err;
1654 }
1655 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1656 
1657 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1658 {
1659 	mutex_lock(&buffer->mutex);
1660 	if (val)
1661 		buffer->flags |= RB_FL_OVERWRITE;
1662 	else
1663 		buffer->flags &= ~RB_FL_OVERWRITE;
1664 	mutex_unlock(&buffer->mutex);
1665 }
1666 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1667 
1668 static inline void *
1669 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1670 {
1671 	return bpage->data + index;
1672 }
1673 
1674 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1675 {
1676 	return bpage->page->data + index;
1677 }
1678 
1679 static inline struct ring_buffer_event *
1680 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1681 {
1682 	return __rb_page_index(cpu_buffer->reader_page,
1683 			       cpu_buffer->reader_page->read);
1684 }
1685 
1686 static inline struct ring_buffer_event *
1687 rb_iter_head_event(struct ring_buffer_iter *iter)
1688 {
1689 	return __rb_page_index(iter->head_page, iter->head);
1690 }
1691 
1692 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1693 {
1694 	return local_read(&bpage->page->commit);
1695 }
1696 
1697 /* Size is determined by what has been committed */
1698 static inline unsigned rb_page_size(struct buffer_page *bpage)
1699 {
1700 	return rb_page_commit(bpage);
1701 }
1702 
1703 static inline unsigned
1704 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1705 {
1706 	return rb_page_commit(cpu_buffer->commit_page);
1707 }
1708 
1709 static inline unsigned
1710 rb_event_index(struct ring_buffer_event *event)
1711 {
1712 	unsigned long addr = (unsigned long)event;
1713 
1714 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1715 }
1716 
1717 static inline int
1718 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1719 		   struct ring_buffer_event *event)
1720 {
1721 	unsigned long addr = (unsigned long)event;
1722 	unsigned long index;
1723 
1724 	index = rb_event_index(event);
1725 	addr &= PAGE_MASK;
1726 
1727 	return cpu_buffer->commit_page->page == (void *)addr &&
1728 		rb_commit_index(cpu_buffer) == index;
1729 }
1730 
1731 static void
1732 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1733 {
1734 	unsigned long max_count;
1735 
1736 	/*
1737 	 * We only race with interrupts and NMIs on this CPU.
1738 	 * If we own the commit event, then we can commit
1739 	 * all others that interrupted us, since the interruptions
1740 	 * are in stack format (they finish before they come
1741 	 * back to us). This allows us to do a simple loop to
1742 	 * assign the commit to the tail.
1743 	 */
1744  again:
1745 	max_count = cpu_buffer->nr_pages * 100;
1746 
1747 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1748 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1749 			return;
1750 		if (RB_WARN_ON(cpu_buffer,
1751 			       rb_is_reader_page(cpu_buffer->tail_page)))
1752 			return;
1753 		local_set(&cpu_buffer->commit_page->page->commit,
1754 			  rb_page_write(cpu_buffer->commit_page));
1755 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1756 		cpu_buffer->write_stamp =
1757 			cpu_buffer->commit_page->page->time_stamp;
1758 		/* add barrier to keep gcc from optimizing too much */
1759 		barrier();
1760 	}
1761 	while (rb_commit_index(cpu_buffer) !=
1762 	       rb_page_write(cpu_buffer->commit_page)) {
1763 
1764 		local_set(&cpu_buffer->commit_page->page->commit,
1765 			  rb_page_write(cpu_buffer->commit_page));
1766 		RB_WARN_ON(cpu_buffer,
1767 			   local_read(&cpu_buffer->commit_page->page->commit) &
1768 			   ~RB_WRITE_MASK);
1769 		barrier();
1770 	}
1771 
1772 	/* again, keep gcc from optimizing */
1773 	barrier();
1774 
1775 	/*
1776 	 * If an interrupt came in just after the first while loop
1777 	 * and pushed the tail page forward, we will be left with
1778 	 * a dangling commit that will never go forward.
1779 	 */
1780 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1781 		goto again;
1782 }
1783 
1784 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1785 {
1786 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1787 	cpu_buffer->reader_page->read = 0;
1788 }
1789 
1790 static void rb_inc_iter(struct ring_buffer_iter *iter)
1791 {
1792 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1793 
1794 	/*
1795 	 * The iterator could be on the reader page (it starts there).
1796 	 * But the head could have moved, since the reader was
1797 	 * found. Check for this case and assign the iterator
1798 	 * to the head page instead of next.
1799 	 */
1800 	if (iter->head_page == cpu_buffer->reader_page)
1801 		iter->head_page = rb_set_head_page(cpu_buffer);
1802 	else
1803 		rb_inc_page(cpu_buffer, &iter->head_page);
1804 
1805 	iter->read_stamp = iter->head_page->page->time_stamp;
1806 	iter->head = 0;
1807 }
1808 
1809 /* Slow path, do not inline */
1810 static noinline struct ring_buffer_event *
1811 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1812 {
1813 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1814 
1815 	/* Not the first event on the page? */
1816 	if (rb_event_index(event)) {
1817 		event->time_delta = delta & TS_MASK;
1818 		event->array[0] = delta >> TS_SHIFT;
1819 	} else {
1820 		/* nope, just zero it */
1821 		event->time_delta = 0;
1822 		event->array[0] = 0;
1823 	}
1824 
1825 	return skip_time_extend(event);
1826 }
1827 
1828 /**
1829  * rb_update_event - update event type and data
1830  * @event: the even to update
1831  * @type: the type of event
1832  * @length: the size of the event field in the ring buffer
1833  *
1834  * Update the type and data fields of the event. The length
1835  * is the actual size that is written to the ring buffer,
1836  * and with this, we can determine what to place into the
1837  * data field.
1838  */
1839 static void
1840 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1841 		struct ring_buffer_event *event, unsigned length,
1842 		int add_timestamp, u64 delta)
1843 {
1844 	/* Only a commit updates the timestamp */
1845 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1846 		delta = 0;
1847 
1848 	/*
1849 	 * If we need to add a timestamp, then we
1850 	 * add it to the start of the resevered space.
1851 	 */
1852 	if (unlikely(add_timestamp)) {
1853 		event = rb_add_time_stamp(event, delta);
1854 		length -= RB_LEN_TIME_EXTEND;
1855 		delta = 0;
1856 	}
1857 
1858 	event->time_delta = delta;
1859 	length -= RB_EVNT_HDR_SIZE;
1860 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1861 		event->type_len = 0;
1862 		event->array[0] = length;
1863 	} else
1864 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1865 }
1866 
1867 /*
1868  * rb_handle_head_page - writer hit the head page
1869  *
1870  * Returns: +1 to retry page
1871  *           0 to continue
1872  *          -1 on error
1873  */
1874 static int
1875 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1876 		    struct buffer_page *tail_page,
1877 		    struct buffer_page *next_page)
1878 {
1879 	struct buffer_page *new_head;
1880 	int entries;
1881 	int type;
1882 	int ret;
1883 
1884 	entries = rb_page_entries(next_page);
1885 
1886 	/*
1887 	 * The hard part is here. We need to move the head
1888 	 * forward, and protect against both readers on
1889 	 * other CPUs and writers coming in via interrupts.
1890 	 */
1891 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1892 				       RB_PAGE_HEAD);
1893 
1894 	/*
1895 	 * type can be one of four:
1896 	 *  NORMAL - an interrupt already moved it for us
1897 	 *  HEAD   - we are the first to get here.
1898 	 *  UPDATE - we are the interrupt interrupting
1899 	 *           a current move.
1900 	 *  MOVED  - a reader on another CPU moved the next
1901 	 *           pointer to its reader page. Give up
1902 	 *           and try again.
1903 	 */
1904 
1905 	switch (type) {
1906 	case RB_PAGE_HEAD:
1907 		/*
1908 		 * We changed the head to UPDATE, thus
1909 		 * it is our responsibility to update
1910 		 * the counters.
1911 		 */
1912 		local_add(entries, &cpu_buffer->overrun);
1913 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1914 
1915 		/*
1916 		 * The entries will be zeroed out when we move the
1917 		 * tail page.
1918 		 */
1919 
1920 		/* still more to do */
1921 		break;
1922 
1923 	case RB_PAGE_UPDATE:
1924 		/*
1925 		 * This is an interrupt that interrupt the
1926 		 * previous update. Still more to do.
1927 		 */
1928 		break;
1929 	case RB_PAGE_NORMAL:
1930 		/*
1931 		 * An interrupt came in before the update
1932 		 * and processed this for us.
1933 		 * Nothing left to do.
1934 		 */
1935 		return 1;
1936 	case RB_PAGE_MOVED:
1937 		/*
1938 		 * The reader is on another CPU and just did
1939 		 * a swap with our next_page.
1940 		 * Try again.
1941 		 */
1942 		return 1;
1943 	default:
1944 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1945 		return -1;
1946 	}
1947 
1948 	/*
1949 	 * Now that we are here, the old head pointer is
1950 	 * set to UPDATE. This will keep the reader from
1951 	 * swapping the head page with the reader page.
1952 	 * The reader (on another CPU) will spin till
1953 	 * we are finished.
1954 	 *
1955 	 * We just need to protect against interrupts
1956 	 * doing the job. We will set the next pointer
1957 	 * to HEAD. After that, we set the old pointer
1958 	 * to NORMAL, but only if it was HEAD before.
1959 	 * otherwise we are an interrupt, and only
1960 	 * want the outer most commit to reset it.
1961 	 */
1962 	new_head = next_page;
1963 	rb_inc_page(cpu_buffer, &new_head);
1964 
1965 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1966 				    RB_PAGE_NORMAL);
1967 
1968 	/*
1969 	 * Valid returns are:
1970 	 *  HEAD   - an interrupt came in and already set it.
1971 	 *  NORMAL - One of two things:
1972 	 *            1) We really set it.
1973 	 *            2) A bunch of interrupts came in and moved
1974 	 *               the page forward again.
1975 	 */
1976 	switch (ret) {
1977 	case RB_PAGE_HEAD:
1978 	case RB_PAGE_NORMAL:
1979 		/* OK */
1980 		break;
1981 	default:
1982 		RB_WARN_ON(cpu_buffer, 1);
1983 		return -1;
1984 	}
1985 
1986 	/*
1987 	 * It is possible that an interrupt came in,
1988 	 * set the head up, then more interrupts came in
1989 	 * and moved it again. When we get back here,
1990 	 * the page would have been set to NORMAL but we
1991 	 * just set it back to HEAD.
1992 	 *
1993 	 * How do you detect this? Well, if that happened
1994 	 * the tail page would have moved.
1995 	 */
1996 	if (ret == RB_PAGE_NORMAL) {
1997 		/*
1998 		 * If the tail had moved passed next, then we need
1999 		 * to reset the pointer.
2000 		 */
2001 		if (cpu_buffer->tail_page != tail_page &&
2002 		    cpu_buffer->tail_page != next_page)
2003 			rb_head_page_set_normal(cpu_buffer, new_head,
2004 						next_page,
2005 						RB_PAGE_HEAD);
2006 	}
2007 
2008 	/*
2009 	 * If this was the outer most commit (the one that
2010 	 * changed the original pointer from HEAD to UPDATE),
2011 	 * then it is up to us to reset it to NORMAL.
2012 	 */
2013 	if (type == RB_PAGE_HEAD) {
2014 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2015 					      tail_page,
2016 					      RB_PAGE_UPDATE);
2017 		if (RB_WARN_ON(cpu_buffer,
2018 			       ret != RB_PAGE_UPDATE))
2019 			return -1;
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 static unsigned rb_calculate_event_length(unsigned length)
2026 {
2027 	struct ring_buffer_event event; /* Used only for sizeof array */
2028 
2029 	/* zero length can cause confusions */
2030 	if (!length)
2031 		length = 1;
2032 
2033 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2034 		length += sizeof(event.array[0]);
2035 
2036 	length += RB_EVNT_HDR_SIZE;
2037 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2038 
2039 	return length;
2040 }
2041 
2042 static inline void
2043 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2044 	      struct buffer_page *tail_page,
2045 	      unsigned long tail, unsigned long length)
2046 {
2047 	struct ring_buffer_event *event;
2048 
2049 	/*
2050 	 * Only the event that crossed the page boundary
2051 	 * must fill the old tail_page with padding.
2052 	 */
2053 	if (tail >= BUF_PAGE_SIZE) {
2054 		/*
2055 		 * If the page was filled, then we still need
2056 		 * to update the real_end. Reset it to zero
2057 		 * and the reader will ignore it.
2058 		 */
2059 		if (tail == BUF_PAGE_SIZE)
2060 			tail_page->real_end = 0;
2061 
2062 		local_sub(length, &tail_page->write);
2063 		return;
2064 	}
2065 
2066 	event = __rb_page_index(tail_page, tail);
2067 	kmemcheck_annotate_bitfield(event, bitfield);
2068 
2069 	/* account for padding bytes */
2070 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2071 
2072 	/*
2073 	 * Save the original length to the meta data.
2074 	 * This will be used by the reader to add lost event
2075 	 * counter.
2076 	 */
2077 	tail_page->real_end = tail;
2078 
2079 	/*
2080 	 * If this event is bigger than the minimum size, then
2081 	 * we need to be careful that we don't subtract the
2082 	 * write counter enough to allow another writer to slip
2083 	 * in on this page.
2084 	 * We put in a discarded commit instead, to make sure
2085 	 * that this space is not used again.
2086 	 *
2087 	 * If we are less than the minimum size, we don't need to
2088 	 * worry about it.
2089 	 */
2090 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2091 		/* No room for any events */
2092 
2093 		/* Mark the rest of the page with padding */
2094 		rb_event_set_padding(event);
2095 
2096 		/* Set the write back to the previous setting */
2097 		local_sub(length, &tail_page->write);
2098 		return;
2099 	}
2100 
2101 	/* Put in a discarded event */
2102 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2103 	event->type_len = RINGBUF_TYPE_PADDING;
2104 	/* time delta must be non zero */
2105 	event->time_delta = 1;
2106 
2107 	/* Set write to end of buffer */
2108 	length = (tail + length) - BUF_PAGE_SIZE;
2109 	local_sub(length, &tail_page->write);
2110 }
2111 
2112 /*
2113  * This is the slow path, force gcc not to inline it.
2114  */
2115 static noinline struct ring_buffer_event *
2116 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2117 	     unsigned long length, unsigned long tail,
2118 	     struct buffer_page *tail_page, u64 ts)
2119 {
2120 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2121 	struct ring_buffer *buffer = cpu_buffer->buffer;
2122 	struct buffer_page *next_page;
2123 	int ret;
2124 
2125 	next_page = tail_page;
2126 
2127 	rb_inc_page(cpu_buffer, &next_page);
2128 
2129 	/*
2130 	 * If for some reason, we had an interrupt storm that made
2131 	 * it all the way around the buffer, bail, and warn
2132 	 * about it.
2133 	 */
2134 	if (unlikely(next_page == commit_page)) {
2135 		local_inc(&cpu_buffer->commit_overrun);
2136 		goto out_reset;
2137 	}
2138 
2139 	/*
2140 	 * This is where the fun begins!
2141 	 *
2142 	 * We are fighting against races between a reader that
2143 	 * could be on another CPU trying to swap its reader
2144 	 * page with the buffer head.
2145 	 *
2146 	 * We are also fighting against interrupts coming in and
2147 	 * moving the head or tail on us as well.
2148 	 *
2149 	 * If the next page is the head page then we have filled
2150 	 * the buffer, unless the commit page is still on the
2151 	 * reader page.
2152 	 */
2153 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2154 
2155 		/*
2156 		 * If the commit is not on the reader page, then
2157 		 * move the header page.
2158 		 */
2159 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2160 			/*
2161 			 * If we are not in overwrite mode,
2162 			 * this is easy, just stop here.
2163 			 */
2164 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2165 				local_inc(&cpu_buffer->dropped_events);
2166 				goto out_reset;
2167 			}
2168 
2169 			ret = rb_handle_head_page(cpu_buffer,
2170 						  tail_page,
2171 						  next_page);
2172 			if (ret < 0)
2173 				goto out_reset;
2174 			if (ret)
2175 				goto out_again;
2176 		} else {
2177 			/*
2178 			 * We need to be careful here too. The
2179 			 * commit page could still be on the reader
2180 			 * page. We could have a small buffer, and
2181 			 * have filled up the buffer with events
2182 			 * from interrupts and such, and wrapped.
2183 			 *
2184 			 * Note, if the tail page is also the on the
2185 			 * reader_page, we let it move out.
2186 			 */
2187 			if (unlikely((cpu_buffer->commit_page !=
2188 				      cpu_buffer->tail_page) &&
2189 				     (cpu_buffer->commit_page ==
2190 				      cpu_buffer->reader_page))) {
2191 				local_inc(&cpu_buffer->commit_overrun);
2192 				goto out_reset;
2193 			}
2194 		}
2195 	}
2196 
2197 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2198 	if (ret) {
2199 		/*
2200 		 * Nested commits always have zero deltas, so
2201 		 * just reread the time stamp
2202 		 */
2203 		ts = rb_time_stamp(buffer);
2204 		next_page->page->time_stamp = ts;
2205 	}
2206 
2207  out_again:
2208 
2209 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2210 
2211 	/* fail and let the caller try again */
2212 	return ERR_PTR(-EAGAIN);
2213 
2214  out_reset:
2215 	/* reset write */
2216 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2217 
2218 	return NULL;
2219 }
2220 
2221 static struct ring_buffer_event *
2222 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2223 		  unsigned long length, u64 ts,
2224 		  u64 delta, int add_timestamp)
2225 {
2226 	struct buffer_page *tail_page;
2227 	struct ring_buffer_event *event;
2228 	unsigned long tail, write;
2229 
2230 	/*
2231 	 * If the time delta since the last event is too big to
2232 	 * hold in the time field of the event, then we append a
2233 	 * TIME EXTEND event ahead of the data event.
2234 	 */
2235 	if (unlikely(add_timestamp))
2236 		length += RB_LEN_TIME_EXTEND;
2237 
2238 	tail_page = cpu_buffer->tail_page;
2239 	write = local_add_return(length, &tail_page->write);
2240 
2241 	/* set write to only the index of the write */
2242 	write &= RB_WRITE_MASK;
2243 	tail = write - length;
2244 
2245 	/* See if we shot pass the end of this buffer page */
2246 	if (unlikely(write > BUF_PAGE_SIZE))
2247 		return rb_move_tail(cpu_buffer, length, tail,
2248 				    tail_page, ts);
2249 
2250 	/* We reserved something on the buffer */
2251 
2252 	event = __rb_page_index(tail_page, tail);
2253 	kmemcheck_annotate_bitfield(event, bitfield);
2254 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2255 
2256 	local_inc(&tail_page->entries);
2257 
2258 	/*
2259 	 * If this is the first commit on the page, then update
2260 	 * its timestamp.
2261 	 */
2262 	if (!tail)
2263 		tail_page->page->time_stamp = ts;
2264 
2265 	/* account for these added bytes */
2266 	local_add(length, &cpu_buffer->entries_bytes);
2267 
2268 	return event;
2269 }
2270 
2271 static inline int
2272 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2273 		  struct ring_buffer_event *event)
2274 {
2275 	unsigned long new_index, old_index;
2276 	struct buffer_page *bpage;
2277 	unsigned long index;
2278 	unsigned long addr;
2279 
2280 	new_index = rb_event_index(event);
2281 	old_index = new_index + rb_event_ts_length(event);
2282 	addr = (unsigned long)event;
2283 	addr &= PAGE_MASK;
2284 
2285 	bpage = cpu_buffer->tail_page;
2286 
2287 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2288 		unsigned long write_mask =
2289 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2290 		unsigned long event_length = rb_event_length(event);
2291 		/*
2292 		 * This is on the tail page. It is possible that
2293 		 * a write could come in and move the tail page
2294 		 * and write to the next page. That is fine
2295 		 * because we just shorten what is on this page.
2296 		 */
2297 		old_index += write_mask;
2298 		new_index += write_mask;
2299 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2300 		if (index == old_index) {
2301 			/* update counters */
2302 			local_sub(event_length, &cpu_buffer->entries_bytes);
2303 			return 1;
2304 		}
2305 	}
2306 
2307 	/* could not discard */
2308 	return 0;
2309 }
2310 
2311 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2312 {
2313 	local_inc(&cpu_buffer->committing);
2314 	local_inc(&cpu_buffer->commits);
2315 }
2316 
2317 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2318 {
2319 	unsigned long commits;
2320 
2321 	if (RB_WARN_ON(cpu_buffer,
2322 		       !local_read(&cpu_buffer->committing)))
2323 		return;
2324 
2325  again:
2326 	commits = local_read(&cpu_buffer->commits);
2327 	/* synchronize with interrupts */
2328 	barrier();
2329 	if (local_read(&cpu_buffer->committing) == 1)
2330 		rb_set_commit_to_write(cpu_buffer);
2331 
2332 	local_dec(&cpu_buffer->committing);
2333 
2334 	/* synchronize with interrupts */
2335 	barrier();
2336 
2337 	/*
2338 	 * Need to account for interrupts coming in between the
2339 	 * updating of the commit page and the clearing of the
2340 	 * committing counter.
2341 	 */
2342 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2343 	    !local_read(&cpu_buffer->committing)) {
2344 		local_inc(&cpu_buffer->committing);
2345 		goto again;
2346 	}
2347 }
2348 
2349 static struct ring_buffer_event *
2350 rb_reserve_next_event(struct ring_buffer *buffer,
2351 		      struct ring_buffer_per_cpu *cpu_buffer,
2352 		      unsigned long length)
2353 {
2354 	struct ring_buffer_event *event;
2355 	u64 ts, delta;
2356 	int nr_loops = 0;
2357 	int add_timestamp;
2358 	u64 diff;
2359 
2360 	rb_start_commit(cpu_buffer);
2361 
2362 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2363 	/*
2364 	 * Due to the ability to swap a cpu buffer from a buffer
2365 	 * it is possible it was swapped before we committed.
2366 	 * (committing stops a swap). We check for it here and
2367 	 * if it happened, we have to fail the write.
2368 	 */
2369 	barrier();
2370 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2371 		local_dec(&cpu_buffer->committing);
2372 		local_dec(&cpu_buffer->commits);
2373 		return NULL;
2374 	}
2375 #endif
2376 
2377 	length = rb_calculate_event_length(length);
2378  again:
2379 	add_timestamp = 0;
2380 	delta = 0;
2381 
2382 	/*
2383 	 * We allow for interrupts to reenter here and do a trace.
2384 	 * If one does, it will cause this original code to loop
2385 	 * back here. Even with heavy interrupts happening, this
2386 	 * should only happen a few times in a row. If this happens
2387 	 * 1000 times in a row, there must be either an interrupt
2388 	 * storm or we have something buggy.
2389 	 * Bail!
2390 	 */
2391 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2392 		goto out_fail;
2393 
2394 	ts = rb_time_stamp(cpu_buffer->buffer);
2395 	diff = ts - cpu_buffer->write_stamp;
2396 
2397 	/* make sure this diff is calculated here */
2398 	barrier();
2399 
2400 	/* Did the write stamp get updated already? */
2401 	if (likely(ts >= cpu_buffer->write_stamp)) {
2402 		delta = diff;
2403 		if (unlikely(test_time_stamp(delta))) {
2404 			int local_clock_stable = 1;
2405 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2406 			local_clock_stable = sched_clock_stable;
2407 #endif
2408 			WARN_ONCE(delta > (1ULL << 59),
2409 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2410 				  (unsigned long long)delta,
2411 				  (unsigned long long)ts,
2412 				  (unsigned long long)cpu_buffer->write_stamp,
2413 				  local_clock_stable ? "" :
2414 				  "If you just came from a suspend/resume,\n"
2415 				  "please switch to the trace global clock:\n"
2416 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2417 			add_timestamp = 1;
2418 		}
2419 	}
2420 
2421 	event = __rb_reserve_next(cpu_buffer, length, ts,
2422 				  delta, add_timestamp);
2423 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2424 		goto again;
2425 
2426 	if (!event)
2427 		goto out_fail;
2428 
2429 	return event;
2430 
2431  out_fail:
2432 	rb_end_commit(cpu_buffer);
2433 	return NULL;
2434 }
2435 
2436 #ifdef CONFIG_TRACING
2437 
2438 /*
2439  * The lock and unlock are done within a preempt disable section.
2440  * The current_context per_cpu variable can only be modified
2441  * by the current task between lock and unlock. But it can
2442  * be modified more than once via an interrupt. To pass this
2443  * information from the lock to the unlock without having to
2444  * access the 'in_interrupt()' functions again (which do show
2445  * a bit of overhead in something as critical as function tracing,
2446  * we use a bitmask trick.
2447  *
2448  *  bit 0 =  NMI context
2449  *  bit 1 =  IRQ context
2450  *  bit 2 =  SoftIRQ context
2451  *  bit 3 =  normal context.
2452  *
2453  * This works because this is the order of contexts that can
2454  * preempt other contexts. A SoftIRQ never preempts an IRQ
2455  * context.
2456  *
2457  * When the context is determined, the corresponding bit is
2458  * checked and set (if it was set, then a recursion of that context
2459  * happened).
2460  *
2461  * On unlock, we need to clear this bit. To do so, just subtract
2462  * 1 from the current_context and AND it to itself.
2463  *
2464  * (binary)
2465  *  101 - 1 = 100
2466  *  101 & 100 = 100 (clearing bit zero)
2467  *
2468  *  1010 - 1 = 1001
2469  *  1010 & 1001 = 1000 (clearing bit 1)
2470  *
2471  * The least significant bit can be cleared this way, and it
2472  * just so happens that it is the same bit corresponding to
2473  * the current context.
2474  */
2475 static DEFINE_PER_CPU(unsigned int, current_context);
2476 
2477 static __always_inline int trace_recursive_lock(void)
2478 {
2479 	unsigned int val = this_cpu_read(current_context);
2480 	int bit;
2481 
2482 	if (in_interrupt()) {
2483 		if (in_nmi())
2484 			bit = 0;
2485 		else if (in_irq())
2486 			bit = 1;
2487 		else
2488 			bit = 2;
2489 	} else
2490 		bit = 3;
2491 
2492 	if (unlikely(val & (1 << bit)))
2493 		return 1;
2494 
2495 	val |= (1 << bit);
2496 	this_cpu_write(current_context, val);
2497 
2498 	return 0;
2499 }
2500 
2501 static __always_inline void trace_recursive_unlock(void)
2502 {
2503 	unsigned int val = this_cpu_read(current_context);
2504 
2505 	val--;
2506 	val &= this_cpu_read(current_context);
2507 	this_cpu_write(current_context, val);
2508 }
2509 
2510 #else
2511 
2512 #define trace_recursive_lock()		(0)
2513 #define trace_recursive_unlock()	do { } while (0)
2514 
2515 #endif
2516 
2517 /**
2518  * ring_buffer_lock_reserve - reserve a part of the buffer
2519  * @buffer: the ring buffer to reserve from
2520  * @length: the length of the data to reserve (excluding event header)
2521  *
2522  * Returns a reseverd event on the ring buffer to copy directly to.
2523  * The user of this interface will need to get the body to write into
2524  * and can use the ring_buffer_event_data() interface.
2525  *
2526  * The length is the length of the data needed, not the event length
2527  * which also includes the event header.
2528  *
2529  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2530  * If NULL is returned, then nothing has been allocated or locked.
2531  */
2532 struct ring_buffer_event *
2533 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2534 {
2535 	struct ring_buffer_per_cpu *cpu_buffer;
2536 	struct ring_buffer_event *event;
2537 	int cpu;
2538 
2539 	if (ring_buffer_flags != RB_BUFFERS_ON)
2540 		return NULL;
2541 
2542 	/* If we are tracing schedule, we don't want to recurse */
2543 	preempt_disable_notrace();
2544 
2545 	if (atomic_read(&buffer->record_disabled))
2546 		goto out_nocheck;
2547 
2548 	if (trace_recursive_lock())
2549 		goto out_nocheck;
2550 
2551 	cpu = raw_smp_processor_id();
2552 
2553 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2554 		goto out;
2555 
2556 	cpu_buffer = buffer->buffers[cpu];
2557 
2558 	if (atomic_read(&cpu_buffer->record_disabled))
2559 		goto out;
2560 
2561 	if (length > BUF_MAX_DATA_SIZE)
2562 		goto out;
2563 
2564 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2565 	if (!event)
2566 		goto out;
2567 
2568 	return event;
2569 
2570  out:
2571 	trace_recursive_unlock();
2572 
2573  out_nocheck:
2574 	preempt_enable_notrace();
2575 	return NULL;
2576 }
2577 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2578 
2579 static void
2580 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2581 		      struct ring_buffer_event *event)
2582 {
2583 	u64 delta;
2584 
2585 	/*
2586 	 * The event first in the commit queue updates the
2587 	 * time stamp.
2588 	 */
2589 	if (rb_event_is_commit(cpu_buffer, event)) {
2590 		/*
2591 		 * A commit event that is first on a page
2592 		 * updates the write timestamp with the page stamp
2593 		 */
2594 		if (!rb_event_index(event))
2595 			cpu_buffer->write_stamp =
2596 				cpu_buffer->commit_page->page->time_stamp;
2597 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2598 			delta = event->array[0];
2599 			delta <<= TS_SHIFT;
2600 			delta += event->time_delta;
2601 			cpu_buffer->write_stamp += delta;
2602 		} else
2603 			cpu_buffer->write_stamp += event->time_delta;
2604 	}
2605 }
2606 
2607 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2608 		      struct ring_buffer_event *event)
2609 {
2610 	local_inc(&cpu_buffer->entries);
2611 	rb_update_write_stamp(cpu_buffer, event);
2612 	rb_end_commit(cpu_buffer);
2613 }
2614 
2615 /**
2616  * ring_buffer_unlock_commit - commit a reserved
2617  * @buffer: The buffer to commit to
2618  * @event: The event pointer to commit.
2619  *
2620  * This commits the data to the ring buffer, and releases any locks held.
2621  *
2622  * Must be paired with ring_buffer_lock_reserve.
2623  */
2624 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2625 			      struct ring_buffer_event *event)
2626 {
2627 	struct ring_buffer_per_cpu *cpu_buffer;
2628 	int cpu = raw_smp_processor_id();
2629 
2630 	cpu_buffer = buffer->buffers[cpu];
2631 
2632 	rb_commit(cpu_buffer, event);
2633 
2634 	trace_recursive_unlock();
2635 
2636 	preempt_enable_notrace();
2637 
2638 	return 0;
2639 }
2640 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2641 
2642 static inline void rb_event_discard(struct ring_buffer_event *event)
2643 {
2644 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2645 		event = skip_time_extend(event);
2646 
2647 	/* array[0] holds the actual length for the discarded event */
2648 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2649 	event->type_len = RINGBUF_TYPE_PADDING;
2650 	/* time delta must be non zero */
2651 	if (!event->time_delta)
2652 		event->time_delta = 1;
2653 }
2654 
2655 /*
2656  * Decrement the entries to the page that an event is on.
2657  * The event does not even need to exist, only the pointer
2658  * to the page it is on. This may only be called before the commit
2659  * takes place.
2660  */
2661 static inline void
2662 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2663 		   struct ring_buffer_event *event)
2664 {
2665 	unsigned long addr = (unsigned long)event;
2666 	struct buffer_page *bpage = cpu_buffer->commit_page;
2667 	struct buffer_page *start;
2668 
2669 	addr &= PAGE_MASK;
2670 
2671 	/* Do the likely case first */
2672 	if (likely(bpage->page == (void *)addr)) {
2673 		local_dec(&bpage->entries);
2674 		return;
2675 	}
2676 
2677 	/*
2678 	 * Because the commit page may be on the reader page we
2679 	 * start with the next page and check the end loop there.
2680 	 */
2681 	rb_inc_page(cpu_buffer, &bpage);
2682 	start = bpage;
2683 	do {
2684 		if (bpage->page == (void *)addr) {
2685 			local_dec(&bpage->entries);
2686 			return;
2687 		}
2688 		rb_inc_page(cpu_buffer, &bpage);
2689 	} while (bpage != start);
2690 
2691 	/* commit not part of this buffer?? */
2692 	RB_WARN_ON(cpu_buffer, 1);
2693 }
2694 
2695 /**
2696  * ring_buffer_commit_discard - discard an event that has not been committed
2697  * @buffer: the ring buffer
2698  * @event: non committed event to discard
2699  *
2700  * Sometimes an event that is in the ring buffer needs to be ignored.
2701  * This function lets the user discard an event in the ring buffer
2702  * and then that event will not be read later.
2703  *
2704  * This function only works if it is called before the the item has been
2705  * committed. It will try to free the event from the ring buffer
2706  * if another event has not been added behind it.
2707  *
2708  * If another event has been added behind it, it will set the event
2709  * up as discarded, and perform the commit.
2710  *
2711  * If this function is called, do not call ring_buffer_unlock_commit on
2712  * the event.
2713  */
2714 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2715 				struct ring_buffer_event *event)
2716 {
2717 	struct ring_buffer_per_cpu *cpu_buffer;
2718 	int cpu;
2719 
2720 	/* The event is discarded regardless */
2721 	rb_event_discard(event);
2722 
2723 	cpu = smp_processor_id();
2724 	cpu_buffer = buffer->buffers[cpu];
2725 
2726 	/*
2727 	 * This must only be called if the event has not been
2728 	 * committed yet. Thus we can assume that preemption
2729 	 * is still disabled.
2730 	 */
2731 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2732 
2733 	rb_decrement_entry(cpu_buffer, event);
2734 	if (rb_try_to_discard(cpu_buffer, event))
2735 		goto out;
2736 
2737 	/*
2738 	 * The commit is still visible by the reader, so we
2739 	 * must still update the timestamp.
2740 	 */
2741 	rb_update_write_stamp(cpu_buffer, event);
2742  out:
2743 	rb_end_commit(cpu_buffer);
2744 
2745 	trace_recursive_unlock();
2746 
2747 	preempt_enable_notrace();
2748 
2749 }
2750 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2751 
2752 /**
2753  * ring_buffer_write - write data to the buffer without reserving
2754  * @buffer: The ring buffer to write to.
2755  * @length: The length of the data being written (excluding the event header)
2756  * @data: The data to write to the buffer.
2757  *
2758  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2759  * one function. If you already have the data to write to the buffer, it
2760  * may be easier to simply call this function.
2761  *
2762  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2763  * and not the length of the event which would hold the header.
2764  */
2765 int ring_buffer_write(struct ring_buffer *buffer,
2766 		      unsigned long length,
2767 		      void *data)
2768 {
2769 	struct ring_buffer_per_cpu *cpu_buffer;
2770 	struct ring_buffer_event *event;
2771 	void *body;
2772 	int ret = -EBUSY;
2773 	int cpu;
2774 
2775 	if (ring_buffer_flags != RB_BUFFERS_ON)
2776 		return -EBUSY;
2777 
2778 	preempt_disable_notrace();
2779 
2780 	if (atomic_read(&buffer->record_disabled))
2781 		goto out;
2782 
2783 	cpu = raw_smp_processor_id();
2784 
2785 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2786 		goto out;
2787 
2788 	cpu_buffer = buffer->buffers[cpu];
2789 
2790 	if (atomic_read(&cpu_buffer->record_disabled))
2791 		goto out;
2792 
2793 	if (length > BUF_MAX_DATA_SIZE)
2794 		goto out;
2795 
2796 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2797 	if (!event)
2798 		goto out;
2799 
2800 	body = rb_event_data(event);
2801 
2802 	memcpy(body, data, length);
2803 
2804 	rb_commit(cpu_buffer, event);
2805 
2806 	ret = 0;
2807  out:
2808 	preempt_enable_notrace();
2809 
2810 	return ret;
2811 }
2812 EXPORT_SYMBOL_GPL(ring_buffer_write);
2813 
2814 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2815 {
2816 	struct buffer_page *reader = cpu_buffer->reader_page;
2817 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2818 	struct buffer_page *commit = cpu_buffer->commit_page;
2819 
2820 	/* In case of error, head will be NULL */
2821 	if (unlikely(!head))
2822 		return 1;
2823 
2824 	return reader->read == rb_page_commit(reader) &&
2825 		(commit == reader ||
2826 		 (commit == head &&
2827 		  head->read == rb_page_commit(commit)));
2828 }
2829 
2830 /**
2831  * ring_buffer_record_disable - stop all writes into the buffer
2832  * @buffer: The ring buffer to stop writes to.
2833  *
2834  * This prevents all writes to the buffer. Any attempt to write
2835  * to the buffer after this will fail and return NULL.
2836  *
2837  * The caller should call synchronize_sched() after this.
2838  */
2839 void ring_buffer_record_disable(struct ring_buffer *buffer)
2840 {
2841 	atomic_inc(&buffer->record_disabled);
2842 }
2843 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2844 
2845 /**
2846  * ring_buffer_record_enable - enable writes to the buffer
2847  * @buffer: The ring buffer to enable writes
2848  *
2849  * Note, multiple disables will need the same number of enables
2850  * to truly enable the writing (much like preempt_disable).
2851  */
2852 void ring_buffer_record_enable(struct ring_buffer *buffer)
2853 {
2854 	atomic_dec(&buffer->record_disabled);
2855 }
2856 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2857 
2858 /**
2859  * ring_buffer_record_off - stop all writes into the buffer
2860  * @buffer: The ring buffer to stop writes to.
2861  *
2862  * This prevents all writes to the buffer. Any attempt to write
2863  * to the buffer after this will fail and return NULL.
2864  *
2865  * This is different than ring_buffer_record_disable() as
2866  * it works like an on/off switch, where as the disable() version
2867  * must be paired with a enable().
2868  */
2869 void ring_buffer_record_off(struct ring_buffer *buffer)
2870 {
2871 	unsigned int rd;
2872 	unsigned int new_rd;
2873 
2874 	do {
2875 		rd = atomic_read(&buffer->record_disabled);
2876 		new_rd = rd | RB_BUFFER_OFF;
2877 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2878 }
2879 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2880 
2881 /**
2882  * ring_buffer_record_on - restart writes into the buffer
2883  * @buffer: The ring buffer to start writes to.
2884  *
2885  * This enables all writes to the buffer that was disabled by
2886  * ring_buffer_record_off().
2887  *
2888  * This is different than ring_buffer_record_enable() as
2889  * it works like an on/off switch, where as the enable() version
2890  * must be paired with a disable().
2891  */
2892 void ring_buffer_record_on(struct ring_buffer *buffer)
2893 {
2894 	unsigned int rd;
2895 	unsigned int new_rd;
2896 
2897 	do {
2898 		rd = atomic_read(&buffer->record_disabled);
2899 		new_rd = rd & ~RB_BUFFER_OFF;
2900 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2901 }
2902 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2903 
2904 /**
2905  * ring_buffer_record_is_on - return true if the ring buffer can write
2906  * @buffer: The ring buffer to see if write is enabled
2907  *
2908  * Returns true if the ring buffer is in a state that it accepts writes.
2909  */
2910 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2911 {
2912 	return !atomic_read(&buffer->record_disabled);
2913 }
2914 
2915 /**
2916  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2917  * @buffer: The ring buffer to stop writes to.
2918  * @cpu: The CPU buffer to stop
2919  *
2920  * This prevents all writes to the buffer. Any attempt to write
2921  * to the buffer after this will fail and return NULL.
2922  *
2923  * The caller should call synchronize_sched() after this.
2924  */
2925 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2926 {
2927 	struct ring_buffer_per_cpu *cpu_buffer;
2928 
2929 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2930 		return;
2931 
2932 	cpu_buffer = buffer->buffers[cpu];
2933 	atomic_inc(&cpu_buffer->record_disabled);
2934 }
2935 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2936 
2937 /**
2938  * ring_buffer_record_enable_cpu - enable writes to the buffer
2939  * @buffer: The ring buffer to enable writes
2940  * @cpu: The CPU to enable.
2941  *
2942  * Note, multiple disables will need the same number of enables
2943  * to truly enable the writing (much like preempt_disable).
2944  */
2945 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2946 {
2947 	struct ring_buffer_per_cpu *cpu_buffer;
2948 
2949 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2950 		return;
2951 
2952 	cpu_buffer = buffer->buffers[cpu];
2953 	atomic_dec(&cpu_buffer->record_disabled);
2954 }
2955 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2956 
2957 /*
2958  * The total entries in the ring buffer is the running counter
2959  * of entries entered into the ring buffer, minus the sum of
2960  * the entries read from the ring buffer and the number of
2961  * entries that were overwritten.
2962  */
2963 static inline unsigned long
2964 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2965 {
2966 	return local_read(&cpu_buffer->entries) -
2967 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2968 }
2969 
2970 /**
2971  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2972  * @buffer: The ring buffer
2973  * @cpu: The per CPU buffer to read from.
2974  */
2975 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2976 {
2977 	unsigned long flags;
2978 	struct ring_buffer_per_cpu *cpu_buffer;
2979 	struct buffer_page *bpage;
2980 	u64 ret = 0;
2981 
2982 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2983 		return 0;
2984 
2985 	cpu_buffer = buffer->buffers[cpu];
2986 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2987 	/*
2988 	 * if the tail is on reader_page, oldest time stamp is on the reader
2989 	 * page
2990 	 */
2991 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2992 		bpage = cpu_buffer->reader_page;
2993 	else
2994 		bpage = rb_set_head_page(cpu_buffer);
2995 	if (bpage)
2996 		ret = bpage->page->time_stamp;
2997 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2998 
2999 	return ret;
3000 }
3001 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3002 
3003 /**
3004  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3005  * @buffer: The ring buffer
3006  * @cpu: The per CPU buffer to read from.
3007  */
3008 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3009 {
3010 	struct ring_buffer_per_cpu *cpu_buffer;
3011 	unsigned long ret;
3012 
3013 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3014 		return 0;
3015 
3016 	cpu_buffer = buffer->buffers[cpu];
3017 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3018 
3019 	return ret;
3020 }
3021 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3022 
3023 /**
3024  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3025  * @buffer: The ring buffer
3026  * @cpu: The per CPU buffer to get the entries from.
3027  */
3028 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3029 {
3030 	struct ring_buffer_per_cpu *cpu_buffer;
3031 
3032 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3033 		return 0;
3034 
3035 	cpu_buffer = buffer->buffers[cpu];
3036 
3037 	return rb_num_of_entries(cpu_buffer);
3038 }
3039 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3040 
3041 /**
3042  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3043  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3044  * @buffer: The ring buffer
3045  * @cpu: The per CPU buffer to get the number of overruns from
3046  */
3047 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3048 {
3049 	struct ring_buffer_per_cpu *cpu_buffer;
3050 	unsigned long ret;
3051 
3052 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3053 		return 0;
3054 
3055 	cpu_buffer = buffer->buffers[cpu];
3056 	ret = local_read(&cpu_buffer->overrun);
3057 
3058 	return ret;
3059 }
3060 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3061 
3062 /**
3063  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3064  * commits failing due to the buffer wrapping around while there are uncommitted
3065  * events, such as during an interrupt storm.
3066  * @buffer: The ring buffer
3067  * @cpu: The per CPU buffer to get the number of overruns from
3068  */
3069 unsigned long
3070 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3071 {
3072 	struct ring_buffer_per_cpu *cpu_buffer;
3073 	unsigned long ret;
3074 
3075 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3076 		return 0;
3077 
3078 	cpu_buffer = buffer->buffers[cpu];
3079 	ret = local_read(&cpu_buffer->commit_overrun);
3080 
3081 	return ret;
3082 }
3083 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3084 
3085 /**
3086  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3087  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3088  * @buffer: The ring buffer
3089  * @cpu: The per CPU buffer to get the number of overruns from
3090  */
3091 unsigned long
3092 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3093 {
3094 	struct ring_buffer_per_cpu *cpu_buffer;
3095 	unsigned long ret;
3096 
3097 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3098 		return 0;
3099 
3100 	cpu_buffer = buffer->buffers[cpu];
3101 	ret = local_read(&cpu_buffer->dropped_events);
3102 
3103 	return ret;
3104 }
3105 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3106 
3107 /**
3108  * ring_buffer_read_events_cpu - get the number of events successfully read
3109  * @buffer: The ring buffer
3110  * @cpu: The per CPU buffer to get the number of events read
3111  */
3112 unsigned long
3113 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3114 {
3115 	struct ring_buffer_per_cpu *cpu_buffer;
3116 
3117 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3118 		return 0;
3119 
3120 	cpu_buffer = buffer->buffers[cpu];
3121 	return cpu_buffer->read;
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3124 
3125 /**
3126  * ring_buffer_entries - get the number of entries in a buffer
3127  * @buffer: The ring buffer
3128  *
3129  * Returns the total number of entries in the ring buffer
3130  * (all CPU entries)
3131  */
3132 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3133 {
3134 	struct ring_buffer_per_cpu *cpu_buffer;
3135 	unsigned long entries = 0;
3136 	int cpu;
3137 
3138 	/* if you care about this being correct, lock the buffer */
3139 	for_each_buffer_cpu(buffer, cpu) {
3140 		cpu_buffer = buffer->buffers[cpu];
3141 		entries += rb_num_of_entries(cpu_buffer);
3142 	}
3143 
3144 	return entries;
3145 }
3146 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3147 
3148 /**
3149  * ring_buffer_overruns - get the number of overruns in buffer
3150  * @buffer: The ring buffer
3151  *
3152  * Returns the total number of overruns in the ring buffer
3153  * (all CPU entries)
3154  */
3155 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3156 {
3157 	struct ring_buffer_per_cpu *cpu_buffer;
3158 	unsigned long overruns = 0;
3159 	int cpu;
3160 
3161 	/* if you care about this being correct, lock the buffer */
3162 	for_each_buffer_cpu(buffer, cpu) {
3163 		cpu_buffer = buffer->buffers[cpu];
3164 		overruns += local_read(&cpu_buffer->overrun);
3165 	}
3166 
3167 	return overruns;
3168 }
3169 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3170 
3171 static void rb_iter_reset(struct ring_buffer_iter *iter)
3172 {
3173 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3174 
3175 	/* Iterator usage is expected to have record disabled */
3176 	if (list_empty(&cpu_buffer->reader_page->list)) {
3177 		iter->head_page = rb_set_head_page(cpu_buffer);
3178 		if (unlikely(!iter->head_page))
3179 			return;
3180 		iter->head = iter->head_page->read;
3181 	} else {
3182 		iter->head_page = cpu_buffer->reader_page;
3183 		iter->head = cpu_buffer->reader_page->read;
3184 	}
3185 	if (iter->head)
3186 		iter->read_stamp = cpu_buffer->read_stamp;
3187 	else
3188 		iter->read_stamp = iter->head_page->page->time_stamp;
3189 	iter->cache_reader_page = cpu_buffer->reader_page;
3190 	iter->cache_read = cpu_buffer->read;
3191 }
3192 
3193 /**
3194  * ring_buffer_iter_reset - reset an iterator
3195  * @iter: The iterator to reset
3196  *
3197  * Resets the iterator, so that it will start from the beginning
3198  * again.
3199  */
3200 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3201 {
3202 	struct ring_buffer_per_cpu *cpu_buffer;
3203 	unsigned long flags;
3204 
3205 	if (!iter)
3206 		return;
3207 
3208 	cpu_buffer = iter->cpu_buffer;
3209 
3210 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3211 	rb_iter_reset(iter);
3212 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3213 }
3214 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3215 
3216 /**
3217  * ring_buffer_iter_empty - check if an iterator has no more to read
3218  * @iter: The iterator to check
3219  */
3220 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3221 {
3222 	struct ring_buffer_per_cpu *cpu_buffer;
3223 
3224 	cpu_buffer = iter->cpu_buffer;
3225 
3226 	return iter->head_page == cpu_buffer->commit_page &&
3227 		iter->head == rb_commit_index(cpu_buffer);
3228 }
3229 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3230 
3231 static void
3232 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3233 		     struct ring_buffer_event *event)
3234 {
3235 	u64 delta;
3236 
3237 	switch (event->type_len) {
3238 	case RINGBUF_TYPE_PADDING:
3239 		return;
3240 
3241 	case RINGBUF_TYPE_TIME_EXTEND:
3242 		delta = event->array[0];
3243 		delta <<= TS_SHIFT;
3244 		delta += event->time_delta;
3245 		cpu_buffer->read_stamp += delta;
3246 		return;
3247 
3248 	case RINGBUF_TYPE_TIME_STAMP:
3249 		/* FIXME: not implemented */
3250 		return;
3251 
3252 	case RINGBUF_TYPE_DATA:
3253 		cpu_buffer->read_stamp += event->time_delta;
3254 		return;
3255 
3256 	default:
3257 		BUG();
3258 	}
3259 	return;
3260 }
3261 
3262 static void
3263 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3264 			  struct ring_buffer_event *event)
3265 {
3266 	u64 delta;
3267 
3268 	switch (event->type_len) {
3269 	case RINGBUF_TYPE_PADDING:
3270 		return;
3271 
3272 	case RINGBUF_TYPE_TIME_EXTEND:
3273 		delta = event->array[0];
3274 		delta <<= TS_SHIFT;
3275 		delta += event->time_delta;
3276 		iter->read_stamp += delta;
3277 		return;
3278 
3279 	case RINGBUF_TYPE_TIME_STAMP:
3280 		/* FIXME: not implemented */
3281 		return;
3282 
3283 	case RINGBUF_TYPE_DATA:
3284 		iter->read_stamp += event->time_delta;
3285 		return;
3286 
3287 	default:
3288 		BUG();
3289 	}
3290 	return;
3291 }
3292 
3293 static struct buffer_page *
3294 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3295 {
3296 	struct buffer_page *reader = NULL;
3297 	unsigned long overwrite;
3298 	unsigned long flags;
3299 	int nr_loops = 0;
3300 	int ret;
3301 
3302 	local_irq_save(flags);
3303 	arch_spin_lock(&cpu_buffer->lock);
3304 
3305  again:
3306 	/*
3307 	 * This should normally only loop twice. But because the
3308 	 * start of the reader inserts an empty page, it causes
3309 	 * a case where we will loop three times. There should be no
3310 	 * reason to loop four times (that I know of).
3311 	 */
3312 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3313 		reader = NULL;
3314 		goto out;
3315 	}
3316 
3317 	reader = cpu_buffer->reader_page;
3318 
3319 	/* If there's more to read, return this page */
3320 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3321 		goto out;
3322 
3323 	/* Never should we have an index greater than the size */
3324 	if (RB_WARN_ON(cpu_buffer,
3325 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3326 		goto out;
3327 
3328 	/* check if we caught up to the tail */
3329 	reader = NULL;
3330 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3331 		goto out;
3332 
3333 	/* Don't bother swapping if the ring buffer is empty */
3334 	if (rb_num_of_entries(cpu_buffer) == 0)
3335 		goto out;
3336 
3337 	/*
3338 	 * Reset the reader page to size zero.
3339 	 */
3340 	local_set(&cpu_buffer->reader_page->write, 0);
3341 	local_set(&cpu_buffer->reader_page->entries, 0);
3342 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3343 	cpu_buffer->reader_page->real_end = 0;
3344 
3345  spin:
3346 	/*
3347 	 * Splice the empty reader page into the list around the head.
3348 	 */
3349 	reader = rb_set_head_page(cpu_buffer);
3350 	if (!reader)
3351 		goto out;
3352 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3353 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3354 
3355 	/*
3356 	 * cpu_buffer->pages just needs to point to the buffer, it
3357 	 *  has no specific buffer page to point to. Lets move it out
3358 	 *  of our way so we don't accidentally swap it.
3359 	 */
3360 	cpu_buffer->pages = reader->list.prev;
3361 
3362 	/* The reader page will be pointing to the new head */
3363 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3364 
3365 	/*
3366 	 * We want to make sure we read the overruns after we set up our
3367 	 * pointers to the next object. The writer side does a
3368 	 * cmpxchg to cross pages which acts as the mb on the writer
3369 	 * side. Note, the reader will constantly fail the swap
3370 	 * while the writer is updating the pointers, so this
3371 	 * guarantees that the overwrite recorded here is the one we
3372 	 * want to compare with the last_overrun.
3373 	 */
3374 	smp_mb();
3375 	overwrite = local_read(&(cpu_buffer->overrun));
3376 
3377 	/*
3378 	 * Here's the tricky part.
3379 	 *
3380 	 * We need to move the pointer past the header page.
3381 	 * But we can only do that if a writer is not currently
3382 	 * moving it. The page before the header page has the
3383 	 * flag bit '1' set if it is pointing to the page we want.
3384 	 * but if the writer is in the process of moving it
3385 	 * than it will be '2' or already moved '0'.
3386 	 */
3387 
3388 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3389 
3390 	/*
3391 	 * If we did not convert it, then we must try again.
3392 	 */
3393 	if (!ret)
3394 		goto spin;
3395 
3396 	/*
3397 	 * Yeah! We succeeded in replacing the page.
3398 	 *
3399 	 * Now make the new head point back to the reader page.
3400 	 */
3401 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3402 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3403 
3404 	/* Finally update the reader page to the new head */
3405 	cpu_buffer->reader_page = reader;
3406 	rb_reset_reader_page(cpu_buffer);
3407 
3408 	if (overwrite != cpu_buffer->last_overrun) {
3409 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3410 		cpu_buffer->last_overrun = overwrite;
3411 	}
3412 
3413 	goto again;
3414 
3415  out:
3416 	arch_spin_unlock(&cpu_buffer->lock);
3417 	local_irq_restore(flags);
3418 
3419 	return reader;
3420 }
3421 
3422 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3423 {
3424 	struct ring_buffer_event *event;
3425 	struct buffer_page *reader;
3426 	unsigned length;
3427 
3428 	reader = rb_get_reader_page(cpu_buffer);
3429 
3430 	/* This function should not be called when buffer is empty */
3431 	if (RB_WARN_ON(cpu_buffer, !reader))
3432 		return;
3433 
3434 	event = rb_reader_event(cpu_buffer);
3435 
3436 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3437 		cpu_buffer->read++;
3438 
3439 	rb_update_read_stamp(cpu_buffer, event);
3440 
3441 	length = rb_event_length(event);
3442 	cpu_buffer->reader_page->read += length;
3443 }
3444 
3445 static void rb_advance_iter(struct ring_buffer_iter *iter)
3446 {
3447 	struct ring_buffer_per_cpu *cpu_buffer;
3448 	struct ring_buffer_event *event;
3449 	unsigned length;
3450 
3451 	cpu_buffer = iter->cpu_buffer;
3452 
3453 	/*
3454 	 * Check if we are at the end of the buffer.
3455 	 */
3456 	if (iter->head >= rb_page_size(iter->head_page)) {
3457 		/* discarded commits can make the page empty */
3458 		if (iter->head_page == cpu_buffer->commit_page)
3459 			return;
3460 		rb_inc_iter(iter);
3461 		return;
3462 	}
3463 
3464 	event = rb_iter_head_event(iter);
3465 
3466 	length = rb_event_length(event);
3467 
3468 	/*
3469 	 * This should not be called to advance the header if we are
3470 	 * at the tail of the buffer.
3471 	 */
3472 	if (RB_WARN_ON(cpu_buffer,
3473 		       (iter->head_page == cpu_buffer->commit_page) &&
3474 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3475 		return;
3476 
3477 	rb_update_iter_read_stamp(iter, event);
3478 
3479 	iter->head += length;
3480 
3481 	/* check for end of page padding */
3482 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3483 	    (iter->head_page != cpu_buffer->commit_page))
3484 		rb_inc_iter(iter);
3485 }
3486 
3487 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3488 {
3489 	return cpu_buffer->lost_events;
3490 }
3491 
3492 static struct ring_buffer_event *
3493 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3494 	       unsigned long *lost_events)
3495 {
3496 	struct ring_buffer_event *event;
3497 	struct buffer_page *reader;
3498 	int nr_loops = 0;
3499 
3500  again:
3501 	/*
3502 	 * We repeat when a time extend is encountered.
3503 	 * Since the time extend is always attached to a data event,
3504 	 * we should never loop more than once.
3505 	 * (We never hit the following condition more than twice).
3506 	 */
3507 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3508 		return NULL;
3509 
3510 	reader = rb_get_reader_page(cpu_buffer);
3511 	if (!reader)
3512 		return NULL;
3513 
3514 	event = rb_reader_event(cpu_buffer);
3515 
3516 	switch (event->type_len) {
3517 	case RINGBUF_TYPE_PADDING:
3518 		if (rb_null_event(event))
3519 			RB_WARN_ON(cpu_buffer, 1);
3520 		/*
3521 		 * Because the writer could be discarding every
3522 		 * event it creates (which would probably be bad)
3523 		 * if we were to go back to "again" then we may never
3524 		 * catch up, and will trigger the warn on, or lock
3525 		 * the box. Return the padding, and we will release
3526 		 * the current locks, and try again.
3527 		 */
3528 		return event;
3529 
3530 	case RINGBUF_TYPE_TIME_EXTEND:
3531 		/* Internal data, OK to advance */
3532 		rb_advance_reader(cpu_buffer);
3533 		goto again;
3534 
3535 	case RINGBUF_TYPE_TIME_STAMP:
3536 		/* FIXME: not implemented */
3537 		rb_advance_reader(cpu_buffer);
3538 		goto again;
3539 
3540 	case RINGBUF_TYPE_DATA:
3541 		if (ts) {
3542 			*ts = cpu_buffer->read_stamp + event->time_delta;
3543 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3544 							 cpu_buffer->cpu, ts);
3545 		}
3546 		if (lost_events)
3547 			*lost_events = rb_lost_events(cpu_buffer);
3548 		return event;
3549 
3550 	default:
3551 		BUG();
3552 	}
3553 
3554 	return NULL;
3555 }
3556 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3557 
3558 static struct ring_buffer_event *
3559 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3560 {
3561 	struct ring_buffer *buffer;
3562 	struct ring_buffer_per_cpu *cpu_buffer;
3563 	struct ring_buffer_event *event;
3564 	int nr_loops = 0;
3565 
3566 	cpu_buffer = iter->cpu_buffer;
3567 	buffer = cpu_buffer->buffer;
3568 
3569 	/*
3570 	 * Check if someone performed a consuming read to
3571 	 * the buffer. A consuming read invalidates the iterator
3572 	 * and we need to reset the iterator in this case.
3573 	 */
3574 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3575 		     iter->cache_reader_page != cpu_buffer->reader_page))
3576 		rb_iter_reset(iter);
3577 
3578  again:
3579 	if (ring_buffer_iter_empty(iter))
3580 		return NULL;
3581 
3582 	/*
3583 	 * We repeat when a time extend is encountered.
3584 	 * Since the time extend is always attached to a data event,
3585 	 * we should never loop more than once.
3586 	 * (We never hit the following condition more than twice).
3587 	 */
3588 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3589 		return NULL;
3590 
3591 	if (rb_per_cpu_empty(cpu_buffer))
3592 		return NULL;
3593 
3594 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3595 		rb_inc_iter(iter);
3596 		goto again;
3597 	}
3598 
3599 	event = rb_iter_head_event(iter);
3600 
3601 	switch (event->type_len) {
3602 	case RINGBUF_TYPE_PADDING:
3603 		if (rb_null_event(event)) {
3604 			rb_inc_iter(iter);
3605 			goto again;
3606 		}
3607 		rb_advance_iter(iter);
3608 		return event;
3609 
3610 	case RINGBUF_TYPE_TIME_EXTEND:
3611 		/* Internal data, OK to advance */
3612 		rb_advance_iter(iter);
3613 		goto again;
3614 
3615 	case RINGBUF_TYPE_TIME_STAMP:
3616 		/* FIXME: not implemented */
3617 		rb_advance_iter(iter);
3618 		goto again;
3619 
3620 	case RINGBUF_TYPE_DATA:
3621 		if (ts) {
3622 			*ts = iter->read_stamp + event->time_delta;
3623 			ring_buffer_normalize_time_stamp(buffer,
3624 							 cpu_buffer->cpu, ts);
3625 		}
3626 		return event;
3627 
3628 	default:
3629 		BUG();
3630 	}
3631 
3632 	return NULL;
3633 }
3634 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3635 
3636 static inline int rb_ok_to_lock(void)
3637 {
3638 	/*
3639 	 * If an NMI die dumps out the content of the ring buffer
3640 	 * do not grab locks. We also permanently disable the ring
3641 	 * buffer too. A one time deal is all you get from reading
3642 	 * the ring buffer from an NMI.
3643 	 */
3644 	if (likely(!in_nmi()))
3645 		return 1;
3646 
3647 	tracing_off_permanent();
3648 	return 0;
3649 }
3650 
3651 /**
3652  * ring_buffer_peek - peek at the next event to be read
3653  * @buffer: The ring buffer to read
3654  * @cpu: The cpu to peak at
3655  * @ts: The timestamp counter of this event.
3656  * @lost_events: a variable to store if events were lost (may be NULL)
3657  *
3658  * This will return the event that will be read next, but does
3659  * not consume the data.
3660  */
3661 struct ring_buffer_event *
3662 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3663 		 unsigned long *lost_events)
3664 {
3665 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3666 	struct ring_buffer_event *event;
3667 	unsigned long flags;
3668 	int dolock;
3669 
3670 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3671 		return NULL;
3672 
3673 	dolock = rb_ok_to_lock();
3674  again:
3675 	local_irq_save(flags);
3676 	if (dolock)
3677 		raw_spin_lock(&cpu_buffer->reader_lock);
3678 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3679 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3680 		rb_advance_reader(cpu_buffer);
3681 	if (dolock)
3682 		raw_spin_unlock(&cpu_buffer->reader_lock);
3683 	local_irq_restore(flags);
3684 
3685 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3686 		goto again;
3687 
3688 	return event;
3689 }
3690 
3691 /**
3692  * ring_buffer_iter_peek - peek at the next event to be read
3693  * @iter: The ring buffer iterator
3694  * @ts: The timestamp counter of this event.
3695  *
3696  * This will return the event that will be read next, but does
3697  * not increment the iterator.
3698  */
3699 struct ring_buffer_event *
3700 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3701 {
3702 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3703 	struct ring_buffer_event *event;
3704 	unsigned long flags;
3705 
3706  again:
3707 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3708 	event = rb_iter_peek(iter, ts);
3709 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3710 
3711 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3712 		goto again;
3713 
3714 	return event;
3715 }
3716 
3717 /**
3718  * ring_buffer_consume - return an event and consume it
3719  * @buffer: The ring buffer to get the next event from
3720  * @cpu: the cpu to read the buffer from
3721  * @ts: a variable to store the timestamp (may be NULL)
3722  * @lost_events: a variable to store if events were lost (may be NULL)
3723  *
3724  * Returns the next event in the ring buffer, and that event is consumed.
3725  * Meaning, that sequential reads will keep returning a different event,
3726  * and eventually empty the ring buffer if the producer is slower.
3727  */
3728 struct ring_buffer_event *
3729 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3730 		    unsigned long *lost_events)
3731 {
3732 	struct ring_buffer_per_cpu *cpu_buffer;
3733 	struct ring_buffer_event *event = NULL;
3734 	unsigned long flags;
3735 	int dolock;
3736 
3737 	dolock = rb_ok_to_lock();
3738 
3739  again:
3740 	/* might be called in atomic */
3741 	preempt_disable();
3742 
3743 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3744 		goto out;
3745 
3746 	cpu_buffer = buffer->buffers[cpu];
3747 	local_irq_save(flags);
3748 	if (dolock)
3749 		raw_spin_lock(&cpu_buffer->reader_lock);
3750 
3751 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3752 	if (event) {
3753 		cpu_buffer->lost_events = 0;
3754 		rb_advance_reader(cpu_buffer);
3755 	}
3756 
3757 	if (dolock)
3758 		raw_spin_unlock(&cpu_buffer->reader_lock);
3759 	local_irq_restore(flags);
3760 
3761  out:
3762 	preempt_enable();
3763 
3764 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3765 		goto again;
3766 
3767 	return event;
3768 }
3769 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3770 
3771 /**
3772  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3773  * @buffer: The ring buffer to read from
3774  * @cpu: The cpu buffer to iterate over
3775  *
3776  * This performs the initial preparations necessary to iterate
3777  * through the buffer.  Memory is allocated, buffer recording
3778  * is disabled, and the iterator pointer is returned to the caller.
3779  *
3780  * Disabling buffer recordng prevents the reading from being
3781  * corrupted. This is not a consuming read, so a producer is not
3782  * expected.
3783  *
3784  * After a sequence of ring_buffer_read_prepare calls, the user is
3785  * expected to make at least one call to ring_buffer_prepare_sync.
3786  * Afterwards, ring_buffer_read_start is invoked to get things going
3787  * for real.
3788  *
3789  * This overall must be paired with ring_buffer_finish.
3790  */
3791 struct ring_buffer_iter *
3792 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3793 {
3794 	struct ring_buffer_per_cpu *cpu_buffer;
3795 	struct ring_buffer_iter *iter;
3796 
3797 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3798 		return NULL;
3799 
3800 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3801 	if (!iter)
3802 		return NULL;
3803 
3804 	cpu_buffer = buffer->buffers[cpu];
3805 
3806 	iter->cpu_buffer = cpu_buffer;
3807 
3808 	atomic_inc(&buffer->resize_disabled);
3809 	atomic_inc(&cpu_buffer->record_disabled);
3810 
3811 	return iter;
3812 }
3813 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3814 
3815 /**
3816  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3817  *
3818  * All previously invoked ring_buffer_read_prepare calls to prepare
3819  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3820  * calls on those iterators are allowed.
3821  */
3822 void
3823 ring_buffer_read_prepare_sync(void)
3824 {
3825 	synchronize_sched();
3826 }
3827 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3828 
3829 /**
3830  * ring_buffer_read_start - start a non consuming read of the buffer
3831  * @iter: The iterator returned by ring_buffer_read_prepare
3832  *
3833  * This finalizes the startup of an iteration through the buffer.
3834  * The iterator comes from a call to ring_buffer_read_prepare and
3835  * an intervening ring_buffer_read_prepare_sync must have been
3836  * performed.
3837  *
3838  * Must be paired with ring_buffer_finish.
3839  */
3840 void
3841 ring_buffer_read_start(struct ring_buffer_iter *iter)
3842 {
3843 	struct ring_buffer_per_cpu *cpu_buffer;
3844 	unsigned long flags;
3845 
3846 	if (!iter)
3847 		return;
3848 
3849 	cpu_buffer = iter->cpu_buffer;
3850 
3851 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3852 	arch_spin_lock(&cpu_buffer->lock);
3853 	rb_iter_reset(iter);
3854 	arch_spin_unlock(&cpu_buffer->lock);
3855 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3856 }
3857 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3858 
3859 /**
3860  * ring_buffer_finish - finish reading the iterator of the buffer
3861  * @iter: The iterator retrieved by ring_buffer_start
3862  *
3863  * This re-enables the recording to the buffer, and frees the
3864  * iterator.
3865  */
3866 void
3867 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3868 {
3869 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3870 	unsigned long flags;
3871 
3872 	/*
3873 	 * Ring buffer is disabled from recording, here's a good place
3874 	 * to check the integrity of the ring buffer.
3875 	 * Must prevent readers from trying to read, as the check
3876 	 * clears the HEAD page and readers require it.
3877 	 */
3878 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3879 	rb_check_pages(cpu_buffer);
3880 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3881 
3882 	atomic_dec(&cpu_buffer->record_disabled);
3883 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3884 	kfree(iter);
3885 }
3886 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3887 
3888 /**
3889  * ring_buffer_read - read the next item in the ring buffer by the iterator
3890  * @iter: The ring buffer iterator
3891  * @ts: The time stamp of the event read.
3892  *
3893  * This reads the next event in the ring buffer and increments the iterator.
3894  */
3895 struct ring_buffer_event *
3896 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3897 {
3898 	struct ring_buffer_event *event;
3899 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3900 	unsigned long flags;
3901 
3902 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3903  again:
3904 	event = rb_iter_peek(iter, ts);
3905 	if (!event)
3906 		goto out;
3907 
3908 	if (event->type_len == RINGBUF_TYPE_PADDING)
3909 		goto again;
3910 
3911 	rb_advance_iter(iter);
3912  out:
3913 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3914 
3915 	return event;
3916 }
3917 EXPORT_SYMBOL_GPL(ring_buffer_read);
3918 
3919 /**
3920  * ring_buffer_size - return the size of the ring buffer (in bytes)
3921  * @buffer: The ring buffer.
3922  */
3923 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3924 {
3925 	/*
3926 	 * Earlier, this method returned
3927 	 *	BUF_PAGE_SIZE * buffer->nr_pages
3928 	 * Since the nr_pages field is now removed, we have converted this to
3929 	 * return the per cpu buffer value.
3930 	 */
3931 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3932 		return 0;
3933 
3934 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3935 }
3936 EXPORT_SYMBOL_GPL(ring_buffer_size);
3937 
3938 static void
3939 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3940 {
3941 	rb_head_page_deactivate(cpu_buffer);
3942 
3943 	cpu_buffer->head_page
3944 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3945 	local_set(&cpu_buffer->head_page->write, 0);
3946 	local_set(&cpu_buffer->head_page->entries, 0);
3947 	local_set(&cpu_buffer->head_page->page->commit, 0);
3948 
3949 	cpu_buffer->head_page->read = 0;
3950 
3951 	cpu_buffer->tail_page = cpu_buffer->head_page;
3952 	cpu_buffer->commit_page = cpu_buffer->head_page;
3953 
3954 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3955 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3956 	local_set(&cpu_buffer->reader_page->write, 0);
3957 	local_set(&cpu_buffer->reader_page->entries, 0);
3958 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3959 	cpu_buffer->reader_page->read = 0;
3960 
3961 	local_set(&cpu_buffer->entries_bytes, 0);
3962 	local_set(&cpu_buffer->overrun, 0);
3963 	local_set(&cpu_buffer->commit_overrun, 0);
3964 	local_set(&cpu_buffer->dropped_events, 0);
3965 	local_set(&cpu_buffer->entries, 0);
3966 	local_set(&cpu_buffer->committing, 0);
3967 	local_set(&cpu_buffer->commits, 0);
3968 	cpu_buffer->read = 0;
3969 	cpu_buffer->read_bytes = 0;
3970 
3971 	cpu_buffer->write_stamp = 0;
3972 	cpu_buffer->read_stamp = 0;
3973 
3974 	cpu_buffer->lost_events = 0;
3975 	cpu_buffer->last_overrun = 0;
3976 
3977 	rb_head_page_activate(cpu_buffer);
3978 }
3979 
3980 /**
3981  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3982  * @buffer: The ring buffer to reset a per cpu buffer of
3983  * @cpu: The CPU buffer to be reset
3984  */
3985 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3986 {
3987 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3988 	unsigned long flags;
3989 
3990 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3991 		return;
3992 
3993 	atomic_inc(&buffer->resize_disabled);
3994 	atomic_inc(&cpu_buffer->record_disabled);
3995 
3996 	/* Make sure all commits have finished */
3997 	synchronize_sched();
3998 
3999 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4000 
4001 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4002 		goto out;
4003 
4004 	arch_spin_lock(&cpu_buffer->lock);
4005 
4006 	rb_reset_cpu(cpu_buffer);
4007 
4008 	arch_spin_unlock(&cpu_buffer->lock);
4009 
4010  out:
4011 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4012 
4013 	atomic_dec(&cpu_buffer->record_disabled);
4014 	atomic_dec(&buffer->resize_disabled);
4015 }
4016 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4017 
4018 /**
4019  * ring_buffer_reset - reset a ring buffer
4020  * @buffer: The ring buffer to reset all cpu buffers
4021  */
4022 void ring_buffer_reset(struct ring_buffer *buffer)
4023 {
4024 	int cpu;
4025 
4026 	for_each_buffer_cpu(buffer, cpu)
4027 		ring_buffer_reset_cpu(buffer, cpu);
4028 }
4029 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4030 
4031 /**
4032  * rind_buffer_empty - is the ring buffer empty?
4033  * @buffer: The ring buffer to test
4034  */
4035 int ring_buffer_empty(struct ring_buffer *buffer)
4036 {
4037 	struct ring_buffer_per_cpu *cpu_buffer;
4038 	unsigned long flags;
4039 	int dolock;
4040 	int cpu;
4041 	int ret;
4042 
4043 	dolock = rb_ok_to_lock();
4044 
4045 	/* yes this is racy, but if you don't like the race, lock the buffer */
4046 	for_each_buffer_cpu(buffer, cpu) {
4047 		cpu_buffer = buffer->buffers[cpu];
4048 		local_irq_save(flags);
4049 		if (dolock)
4050 			raw_spin_lock(&cpu_buffer->reader_lock);
4051 		ret = rb_per_cpu_empty(cpu_buffer);
4052 		if (dolock)
4053 			raw_spin_unlock(&cpu_buffer->reader_lock);
4054 		local_irq_restore(flags);
4055 
4056 		if (!ret)
4057 			return 0;
4058 	}
4059 
4060 	return 1;
4061 }
4062 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4063 
4064 /**
4065  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4066  * @buffer: The ring buffer
4067  * @cpu: The CPU buffer to test
4068  */
4069 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4070 {
4071 	struct ring_buffer_per_cpu *cpu_buffer;
4072 	unsigned long flags;
4073 	int dolock;
4074 	int ret;
4075 
4076 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4077 		return 1;
4078 
4079 	dolock = rb_ok_to_lock();
4080 
4081 	cpu_buffer = buffer->buffers[cpu];
4082 	local_irq_save(flags);
4083 	if (dolock)
4084 		raw_spin_lock(&cpu_buffer->reader_lock);
4085 	ret = rb_per_cpu_empty(cpu_buffer);
4086 	if (dolock)
4087 		raw_spin_unlock(&cpu_buffer->reader_lock);
4088 	local_irq_restore(flags);
4089 
4090 	return ret;
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4093 
4094 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4095 /**
4096  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4097  * @buffer_a: One buffer to swap with
4098  * @buffer_b: The other buffer to swap with
4099  *
4100  * This function is useful for tracers that want to take a "snapshot"
4101  * of a CPU buffer and has another back up buffer lying around.
4102  * it is expected that the tracer handles the cpu buffer not being
4103  * used at the moment.
4104  */
4105 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4106 			 struct ring_buffer *buffer_b, int cpu)
4107 {
4108 	struct ring_buffer_per_cpu *cpu_buffer_a;
4109 	struct ring_buffer_per_cpu *cpu_buffer_b;
4110 	int ret = -EINVAL;
4111 
4112 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4113 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4114 		goto out;
4115 
4116 	cpu_buffer_a = buffer_a->buffers[cpu];
4117 	cpu_buffer_b = buffer_b->buffers[cpu];
4118 
4119 	/* At least make sure the two buffers are somewhat the same */
4120 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4121 		goto out;
4122 
4123 	ret = -EAGAIN;
4124 
4125 	if (ring_buffer_flags != RB_BUFFERS_ON)
4126 		goto out;
4127 
4128 	if (atomic_read(&buffer_a->record_disabled))
4129 		goto out;
4130 
4131 	if (atomic_read(&buffer_b->record_disabled))
4132 		goto out;
4133 
4134 	if (atomic_read(&cpu_buffer_a->record_disabled))
4135 		goto out;
4136 
4137 	if (atomic_read(&cpu_buffer_b->record_disabled))
4138 		goto out;
4139 
4140 	/*
4141 	 * We can't do a synchronize_sched here because this
4142 	 * function can be called in atomic context.
4143 	 * Normally this will be called from the same CPU as cpu.
4144 	 * If not it's up to the caller to protect this.
4145 	 */
4146 	atomic_inc(&cpu_buffer_a->record_disabled);
4147 	atomic_inc(&cpu_buffer_b->record_disabled);
4148 
4149 	ret = -EBUSY;
4150 	if (local_read(&cpu_buffer_a->committing))
4151 		goto out_dec;
4152 	if (local_read(&cpu_buffer_b->committing))
4153 		goto out_dec;
4154 
4155 	buffer_a->buffers[cpu] = cpu_buffer_b;
4156 	buffer_b->buffers[cpu] = cpu_buffer_a;
4157 
4158 	cpu_buffer_b->buffer = buffer_a;
4159 	cpu_buffer_a->buffer = buffer_b;
4160 
4161 	ret = 0;
4162 
4163 out_dec:
4164 	atomic_dec(&cpu_buffer_a->record_disabled);
4165 	atomic_dec(&cpu_buffer_b->record_disabled);
4166 out:
4167 	return ret;
4168 }
4169 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4170 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4171 
4172 /**
4173  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4174  * @buffer: the buffer to allocate for.
4175  *
4176  * This function is used in conjunction with ring_buffer_read_page.
4177  * When reading a full page from the ring buffer, these functions
4178  * can be used to speed up the process. The calling function should
4179  * allocate a few pages first with this function. Then when it
4180  * needs to get pages from the ring buffer, it passes the result
4181  * of this function into ring_buffer_read_page, which will swap
4182  * the page that was allocated, with the read page of the buffer.
4183  *
4184  * Returns:
4185  *  The page allocated, or NULL on error.
4186  */
4187 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4188 {
4189 	struct buffer_data_page *bpage;
4190 	struct page *page;
4191 
4192 	page = alloc_pages_node(cpu_to_node(cpu),
4193 				GFP_KERNEL | __GFP_NORETRY, 0);
4194 	if (!page)
4195 		return NULL;
4196 
4197 	bpage = page_address(page);
4198 
4199 	rb_init_page(bpage);
4200 
4201 	return bpage;
4202 }
4203 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4204 
4205 /**
4206  * ring_buffer_free_read_page - free an allocated read page
4207  * @buffer: the buffer the page was allocate for
4208  * @data: the page to free
4209  *
4210  * Free a page allocated from ring_buffer_alloc_read_page.
4211  */
4212 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4213 {
4214 	free_page((unsigned long)data);
4215 }
4216 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4217 
4218 /**
4219  * ring_buffer_read_page - extract a page from the ring buffer
4220  * @buffer: buffer to extract from
4221  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4222  * @len: amount to extract
4223  * @cpu: the cpu of the buffer to extract
4224  * @full: should the extraction only happen when the page is full.
4225  *
4226  * This function will pull out a page from the ring buffer and consume it.
4227  * @data_page must be the address of the variable that was returned
4228  * from ring_buffer_alloc_read_page. This is because the page might be used
4229  * to swap with a page in the ring buffer.
4230  *
4231  * for example:
4232  *	rpage = ring_buffer_alloc_read_page(buffer);
4233  *	if (!rpage)
4234  *		return error;
4235  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4236  *	if (ret >= 0)
4237  *		process_page(rpage, ret);
4238  *
4239  * When @full is set, the function will not return true unless
4240  * the writer is off the reader page.
4241  *
4242  * Note: it is up to the calling functions to handle sleeps and wakeups.
4243  *  The ring buffer can be used anywhere in the kernel and can not
4244  *  blindly call wake_up. The layer that uses the ring buffer must be
4245  *  responsible for that.
4246  *
4247  * Returns:
4248  *  >=0 if data has been transferred, returns the offset of consumed data.
4249  *  <0 if no data has been transferred.
4250  */
4251 int ring_buffer_read_page(struct ring_buffer *buffer,
4252 			  void **data_page, size_t len, int cpu, int full)
4253 {
4254 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4255 	struct ring_buffer_event *event;
4256 	struct buffer_data_page *bpage;
4257 	struct buffer_page *reader;
4258 	unsigned long missed_events;
4259 	unsigned long flags;
4260 	unsigned int commit;
4261 	unsigned int read;
4262 	u64 save_timestamp;
4263 	int ret = -1;
4264 
4265 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4266 		goto out;
4267 
4268 	/*
4269 	 * If len is not big enough to hold the page header, then
4270 	 * we can not copy anything.
4271 	 */
4272 	if (len <= BUF_PAGE_HDR_SIZE)
4273 		goto out;
4274 
4275 	len -= BUF_PAGE_HDR_SIZE;
4276 
4277 	if (!data_page)
4278 		goto out;
4279 
4280 	bpage = *data_page;
4281 	if (!bpage)
4282 		goto out;
4283 
4284 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4285 
4286 	reader = rb_get_reader_page(cpu_buffer);
4287 	if (!reader)
4288 		goto out_unlock;
4289 
4290 	event = rb_reader_event(cpu_buffer);
4291 
4292 	read = reader->read;
4293 	commit = rb_page_commit(reader);
4294 
4295 	/* Check if any events were dropped */
4296 	missed_events = cpu_buffer->lost_events;
4297 
4298 	/*
4299 	 * If this page has been partially read or
4300 	 * if len is not big enough to read the rest of the page or
4301 	 * a writer is still on the page, then
4302 	 * we must copy the data from the page to the buffer.
4303 	 * Otherwise, we can simply swap the page with the one passed in.
4304 	 */
4305 	if (read || (len < (commit - read)) ||
4306 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4307 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4308 		unsigned int rpos = read;
4309 		unsigned int pos = 0;
4310 		unsigned int size;
4311 
4312 		if (full)
4313 			goto out_unlock;
4314 
4315 		if (len > (commit - read))
4316 			len = (commit - read);
4317 
4318 		/* Always keep the time extend and data together */
4319 		size = rb_event_ts_length(event);
4320 
4321 		if (len < size)
4322 			goto out_unlock;
4323 
4324 		/* save the current timestamp, since the user will need it */
4325 		save_timestamp = cpu_buffer->read_stamp;
4326 
4327 		/* Need to copy one event at a time */
4328 		do {
4329 			/* We need the size of one event, because
4330 			 * rb_advance_reader only advances by one event,
4331 			 * whereas rb_event_ts_length may include the size of
4332 			 * one or two events.
4333 			 * We have already ensured there's enough space if this
4334 			 * is a time extend. */
4335 			size = rb_event_length(event);
4336 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4337 
4338 			len -= size;
4339 
4340 			rb_advance_reader(cpu_buffer);
4341 			rpos = reader->read;
4342 			pos += size;
4343 
4344 			if (rpos >= commit)
4345 				break;
4346 
4347 			event = rb_reader_event(cpu_buffer);
4348 			/* Always keep the time extend and data together */
4349 			size = rb_event_ts_length(event);
4350 		} while (len >= size);
4351 
4352 		/* update bpage */
4353 		local_set(&bpage->commit, pos);
4354 		bpage->time_stamp = save_timestamp;
4355 
4356 		/* we copied everything to the beginning */
4357 		read = 0;
4358 	} else {
4359 		/* update the entry counter */
4360 		cpu_buffer->read += rb_page_entries(reader);
4361 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4362 
4363 		/* swap the pages */
4364 		rb_init_page(bpage);
4365 		bpage = reader->page;
4366 		reader->page = *data_page;
4367 		local_set(&reader->write, 0);
4368 		local_set(&reader->entries, 0);
4369 		reader->read = 0;
4370 		*data_page = bpage;
4371 
4372 		/*
4373 		 * Use the real_end for the data size,
4374 		 * This gives us a chance to store the lost events
4375 		 * on the page.
4376 		 */
4377 		if (reader->real_end)
4378 			local_set(&bpage->commit, reader->real_end);
4379 	}
4380 	ret = read;
4381 
4382 	cpu_buffer->lost_events = 0;
4383 
4384 	commit = local_read(&bpage->commit);
4385 	/*
4386 	 * Set a flag in the commit field if we lost events
4387 	 */
4388 	if (missed_events) {
4389 		/* If there is room at the end of the page to save the
4390 		 * missed events, then record it there.
4391 		 */
4392 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4393 			memcpy(&bpage->data[commit], &missed_events,
4394 			       sizeof(missed_events));
4395 			local_add(RB_MISSED_STORED, &bpage->commit);
4396 			commit += sizeof(missed_events);
4397 		}
4398 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4399 	}
4400 
4401 	/*
4402 	 * This page may be off to user land. Zero it out here.
4403 	 */
4404 	if (commit < BUF_PAGE_SIZE)
4405 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4406 
4407  out_unlock:
4408 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4409 
4410  out:
4411 	return ret;
4412 }
4413 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4414 
4415 #ifdef CONFIG_HOTPLUG_CPU
4416 static int rb_cpu_notify(struct notifier_block *self,
4417 			 unsigned long action, void *hcpu)
4418 {
4419 	struct ring_buffer *buffer =
4420 		container_of(self, struct ring_buffer, cpu_notify);
4421 	long cpu = (long)hcpu;
4422 	int cpu_i, nr_pages_same;
4423 	unsigned int nr_pages;
4424 
4425 	switch (action) {
4426 	case CPU_UP_PREPARE:
4427 	case CPU_UP_PREPARE_FROZEN:
4428 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4429 			return NOTIFY_OK;
4430 
4431 		nr_pages = 0;
4432 		nr_pages_same = 1;
4433 		/* check if all cpu sizes are same */
4434 		for_each_buffer_cpu(buffer, cpu_i) {
4435 			/* fill in the size from first enabled cpu */
4436 			if (nr_pages == 0)
4437 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4438 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4439 				nr_pages_same = 0;
4440 				break;
4441 			}
4442 		}
4443 		/* allocate minimum pages, user can later expand it */
4444 		if (!nr_pages_same)
4445 			nr_pages = 2;
4446 		buffer->buffers[cpu] =
4447 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4448 		if (!buffer->buffers[cpu]) {
4449 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4450 			     cpu);
4451 			return NOTIFY_OK;
4452 		}
4453 		smp_wmb();
4454 		cpumask_set_cpu(cpu, buffer->cpumask);
4455 		break;
4456 	case CPU_DOWN_PREPARE:
4457 	case CPU_DOWN_PREPARE_FROZEN:
4458 		/*
4459 		 * Do nothing.
4460 		 *  If we were to free the buffer, then the user would
4461 		 *  lose any trace that was in the buffer.
4462 		 */
4463 		break;
4464 	default:
4465 		break;
4466 	}
4467 	return NOTIFY_OK;
4468 }
4469 #endif
4470