xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 827beb77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 static void update_pages_handler(struct work_struct *work);
33 
34 /*
35  * The ring buffer header is special. We must manually up keep it.
36  */
37 int ring_buffer_print_entry_header(struct trace_seq *s)
38 {
39 	trace_seq_puts(s, "# compressed entry header\n");
40 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	trace_seq_putc(s, '\n');
44 	trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			 RINGBUF_TYPE_PADDING);
46 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			 RINGBUF_TYPE_TIME_EXTEND);
48 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
49 			 RINGBUF_TYPE_TIME_STAMP);
50 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
51 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
52 
53 	return !trace_seq_has_overflowed(s);
54 }
55 
56 /*
57  * The ring buffer is made up of a list of pages. A separate list of pages is
58  * allocated for each CPU. A writer may only write to a buffer that is
59  * associated with the CPU it is currently executing on.  A reader may read
60  * from any per cpu buffer.
61  *
62  * The reader is special. For each per cpu buffer, the reader has its own
63  * reader page. When a reader has read the entire reader page, this reader
64  * page is swapped with another page in the ring buffer.
65  *
66  * Now, as long as the writer is off the reader page, the reader can do what
67  * ever it wants with that page. The writer will never write to that page
68  * again (as long as it is out of the ring buffer).
69  *
70  * Here's some silly ASCII art.
71  *
72  *   +------+
73  *   |reader|          RING BUFFER
74  *   |page  |
75  *   +------+        +---+   +---+   +---+
76  *                   |   |-->|   |-->|   |
77  *                   +---+   +---+   +---+
78  *                     ^               |
79  *                     |               |
80  *                     +---------------+
81  *
82  *
83  *   +------+
84  *   |reader|          RING BUFFER
85  *   |page  |------------------v
86  *   +------+        +---+   +---+   +---+
87  *                   |   |-->|   |-->|   |
88  *                   +---+   +---+   +---+
89  *                     ^               |
90  *                     |               |
91  *                     +---------------+
92  *
93  *
94  *   +------+
95  *   |reader|          RING BUFFER
96  *   |page  |------------------v
97  *   +------+        +---+   +---+   +---+
98  *      ^            |   |-->|   |-->|   |
99  *      |            +---+   +---+   +---+
100  *      |                              |
101  *      |                              |
102  *      +------------------------------+
103  *
104  *
105  *   +------+
106  *   |buffer|          RING BUFFER
107  *   |page  |------------------v
108  *   +------+        +---+   +---+   +---+
109  *      ^            |   |   |   |-->|   |
110  *      |   New      +---+   +---+   +---+
111  *      |  Reader------^               |
112  *      |   page                       |
113  *      +------------------------------+
114  *
115  *
116  * After we make this swap, the reader can hand this page off to the splice
117  * code and be done with it. It can even allocate a new page if it needs to
118  * and swap that into the ring buffer.
119  *
120  * We will be using cmpxchg soon to make all this lockless.
121  *
122  */
123 
124 /* Used for individual buffers (after the counter) */
125 #define RB_BUFFER_OFF		(1 << 20)
126 
127 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
128 
129 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
130 #define RB_ALIGNMENT		4U
131 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
132 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
133 
134 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
135 # define RB_FORCE_8BYTE_ALIGNMENT	0
136 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
137 #else
138 # define RB_FORCE_8BYTE_ALIGNMENT	1
139 # define RB_ARCH_ALIGNMENT		8U
140 #endif
141 
142 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
143 
144 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
145 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
146 
147 enum {
148 	RB_LEN_TIME_EXTEND = 8,
149 	RB_LEN_TIME_STAMP =  8,
150 };
151 
152 #define skip_time_extend(event) \
153 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
154 
155 #define extended_time(event) \
156 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
157 
158 static inline int rb_null_event(struct ring_buffer_event *event)
159 {
160 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
161 }
162 
163 static void rb_event_set_padding(struct ring_buffer_event *event)
164 {
165 	/* padding has a NULL time_delta */
166 	event->type_len = RINGBUF_TYPE_PADDING;
167 	event->time_delta = 0;
168 }
169 
170 static unsigned
171 rb_event_data_length(struct ring_buffer_event *event)
172 {
173 	unsigned length;
174 
175 	if (event->type_len)
176 		length = event->type_len * RB_ALIGNMENT;
177 	else
178 		length = event->array[0];
179 	return length + RB_EVNT_HDR_SIZE;
180 }
181 
182 /*
183  * Return the length of the given event. Will return
184  * the length of the time extend if the event is a
185  * time extend.
186  */
187 static inline unsigned
188 rb_event_length(struct ring_buffer_event *event)
189 {
190 	switch (event->type_len) {
191 	case RINGBUF_TYPE_PADDING:
192 		if (rb_null_event(event))
193 			/* undefined */
194 			return -1;
195 		return  event->array[0] + RB_EVNT_HDR_SIZE;
196 
197 	case RINGBUF_TYPE_TIME_EXTEND:
198 		return RB_LEN_TIME_EXTEND;
199 
200 	case RINGBUF_TYPE_TIME_STAMP:
201 		return RB_LEN_TIME_STAMP;
202 
203 	case RINGBUF_TYPE_DATA:
204 		return rb_event_data_length(event);
205 	default:
206 		WARN_ON_ONCE(1);
207 	}
208 	/* not hit */
209 	return 0;
210 }
211 
212 /*
213  * Return total length of time extend and data,
214  *   or just the event length for all other events.
215  */
216 static inline unsigned
217 rb_event_ts_length(struct ring_buffer_event *event)
218 {
219 	unsigned len = 0;
220 
221 	if (extended_time(event)) {
222 		/* time extends include the data event after it */
223 		len = RB_LEN_TIME_EXTEND;
224 		event = skip_time_extend(event);
225 	}
226 	return len + rb_event_length(event);
227 }
228 
229 /**
230  * ring_buffer_event_length - return the length of the event
231  * @event: the event to get the length of
232  *
233  * Returns the size of the data load of a data event.
234  * If the event is something other than a data event, it
235  * returns the size of the event itself. With the exception
236  * of a TIME EXTEND, where it still returns the size of the
237  * data load of the data event after it.
238  */
239 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
240 {
241 	unsigned length;
242 
243 	if (extended_time(event))
244 		event = skip_time_extend(event);
245 
246 	length = rb_event_length(event);
247 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
248 		return length;
249 	length -= RB_EVNT_HDR_SIZE;
250 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
251                 length -= sizeof(event->array[0]);
252 	return length;
253 }
254 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
255 
256 /* inline for ring buffer fast paths */
257 static __always_inline void *
258 rb_event_data(struct ring_buffer_event *event)
259 {
260 	if (extended_time(event))
261 		event = skip_time_extend(event);
262 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
263 	/* If length is in len field, then array[0] has the data */
264 	if (event->type_len)
265 		return (void *)&event->array[0];
266 	/* Otherwise length is in array[0] and array[1] has the data */
267 	return (void *)&event->array[1];
268 }
269 
270 /**
271  * ring_buffer_event_data - return the data of the event
272  * @event: the event to get the data from
273  */
274 void *ring_buffer_event_data(struct ring_buffer_event *event)
275 {
276 	return rb_event_data(event);
277 }
278 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
279 
280 #define for_each_buffer_cpu(buffer, cpu)		\
281 	for_each_cpu(cpu, buffer->cpumask)
282 
283 #define for_each_online_buffer_cpu(buffer, cpu)		\
284 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
285 
286 #define TS_SHIFT	27
287 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
288 #define TS_DELTA_TEST	(~TS_MASK)
289 
290 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
291 {
292 	u64 ts;
293 
294 	ts = event->array[0];
295 	ts <<= TS_SHIFT;
296 	ts += event->time_delta;
297 
298 	return ts;
299 }
300 
301 /* Flag when events were overwritten */
302 #define RB_MISSED_EVENTS	(1 << 31)
303 /* Missed count stored at end */
304 #define RB_MISSED_STORED	(1 << 30)
305 
306 struct buffer_data_page {
307 	u64		 time_stamp;	/* page time stamp */
308 	local_t		 commit;	/* write committed index */
309 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
310 };
311 
312 /*
313  * Note, the buffer_page list must be first. The buffer pages
314  * are allocated in cache lines, which means that each buffer
315  * page will be at the beginning of a cache line, and thus
316  * the least significant bits will be zero. We use this to
317  * add flags in the list struct pointers, to make the ring buffer
318  * lockless.
319  */
320 struct buffer_page {
321 	struct list_head list;		/* list of buffer pages */
322 	local_t		 write;		/* index for next write */
323 	unsigned	 read;		/* index for next read */
324 	local_t		 entries;	/* entries on this page */
325 	unsigned long	 real_end;	/* real end of data */
326 	struct buffer_data_page *page;	/* Actual data page */
327 };
328 
329 /*
330  * The buffer page counters, write and entries, must be reset
331  * atomically when crossing page boundaries. To synchronize this
332  * update, two counters are inserted into the number. One is
333  * the actual counter for the write position or count on the page.
334  *
335  * The other is a counter of updaters. Before an update happens
336  * the update partition of the counter is incremented. This will
337  * allow the updater to update the counter atomically.
338  *
339  * The counter is 20 bits, and the state data is 12.
340  */
341 #define RB_WRITE_MASK		0xfffff
342 #define RB_WRITE_INTCNT		(1 << 20)
343 
344 static void rb_init_page(struct buffer_data_page *bpage)
345 {
346 	local_set(&bpage->commit, 0);
347 }
348 
349 /*
350  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351  * this issue out.
352  */
353 static void free_buffer_page(struct buffer_page *bpage)
354 {
355 	free_page((unsigned long)bpage->page);
356 	kfree(bpage);
357 }
358 
359 /*
360  * We need to fit the time_stamp delta into 27 bits.
361  */
362 static inline int test_time_stamp(u64 delta)
363 {
364 	if (delta & TS_DELTA_TEST)
365 		return 1;
366 	return 0;
367 }
368 
369 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
370 
371 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373 
374 int ring_buffer_print_page_header(struct trace_seq *s)
375 {
376 	struct buffer_data_page field;
377 
378 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)sizeof(field.time_stamp),
381 			 (unsigned int)is_signed_type(u64));
382 
383 	trace_seq_printf(s, "\tfield: local_t commit;\t"
384 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
385 			 (unsigned int)offsetof(typeof(field), commit),
386 			 (unsigned int)sizeof(field.commit),
387 			 (unsigned int)is_signed_type(long));
388 
389 	trace_seq_printf(s, "\tfield: int overwrite;\t"
390 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
391 			 (unsigned int)offsetof(typeof(field), commit),
392 			 1,
393 			 (unsigned int)is_signed_type(long));
394 
395 	trace_seq_printf(s, "\tfield: char data;\t"
396 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
397 			 (unsigned int)offsetof(typeof(field), data),
398 			 (unsigned int)BUF_PAGE_SIZE,
399 			 (unsigned int)is_signed_type(char));
400 
401 	return !trace_seq_has_overflowed(s);
402 }
403 
404 struct rb_irq_work {
405 	struct irq_work			work;
406 	wait_queue_head_t		waiters;
407 	wait_queue_head_t		full_waiters;
408 	bool				waiters_pending;
409 	bool				full_waiters_pending;
410 	bool				wakeup_full;
411 };
412 
413 /*
414  * Structure to hold event state and handle nested events.
415  */
416 struct rb_event_info {
417 	u64			ts;
418 	u64			delta;
419 	u64			before;
420 	u64			after;
421 	unsigned long		length;
422 	struct buffer_page	*tail_page;
423 	int			add_timestamp;
424 };
425 
426 /*
427  * Used for the add_timestamp
428  *  NONE
429  *  EXTEND - wants a time extend
430  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
431  *  FORCE - force a full time stamp.
432  */
433 enum {
434 	RB_ADD_STAMP_NONE		= 0,
435 	RB_ADD_STAMP_EXTEND		= BIT(1),
436 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
437 	RB_ADD_STAMP_FORCE		= BIT(3)
438 };
439 /*
440  * Used for which event context the event is in.
441  *  TRANSITION = 0
442  *  NMI     = 1
443  *  IRQ     = 2
444  *  SOFTIRQ = 3
445  *  NORMAL  = 4
446  *
447  * See trace_recursive_lock() comment below for more details.
448  */
449 enum {
450 	RB_CTX_TRANSITION,
451 	RB_CTX_NMI,
452 	RB_CTX_IRQ,
453 	RB_CTX_SOFTIRQ,
454 	RB_CTX_NORMAL,
455 	RB_CTX_MAX
456 };
457 
458 #if BITS_PER_LONG == 32
459 #define RB_TIME_32
460 #endif
461 
462 /* To test on 64 bit machines */
463 //#define RB_TIME_32
464 
465 #ifdef RB_TIME_32
466 
467 struct rb_time_struct {
468 	local_t		cnt;
469 	local_t		top;
470 	local_t		bottom;
471 };
472 #else
473 #include <asm/local64.h>
474 struct rb_time_struct {
475 	local64_t	time;
476 };
477 #endif
478 typedef struct rb_time_struct rb_time_t;
479 
480 #define MAX_NEST	5
481 
482 /*
483  * head_page == tail_page && head == tail then buffer is empty.
484  */
485 struct ring_buffer_per_cpu {
486 	int				cpu;
487 	atomic_t			record_disabled;
488 	atomic_t			resize_disabled;
489 	struct trace_buffer	*buffer;
490 	raw_spinlock_t			reader_lock;	/* serialize readers */
491 	arch_spinlock_t			lock;
492 	struct lock_class_key		lock_key;
493 	struct buffer_data_page		*free_page;
494 	unsigned long			nr_pages;
495 	unsigned int			current_context;
496 	struct list_head		*pages;
497 	struct buffer_page		*head_page;	/* read from head */
498 	struct buffer_page		*tail_page;	/* write to tail */
499 	struct buffer_page		*commit_page;	/* committed pages */
500 	struct buffer_page		*reader_page;
501 	unsigned long			lost_events;
502 	unsigned long			last_overrun;
503 	unsigned long			nest;
504 	local_t				entries_bytes;
505 	local_t				entries;
506 	local_t				overrun;
507 	local_t				commit_overrun;
508 	local_t				dropped_events;
509 	local_t				committing;
510 	local_t				commits;
511 	local_t				pages_touched;
512 	local_t				pages_read;
513 	long				last_pages_touch;
514 	size_t				shortest_full;
515 	unsigned long			read;
516 	unsigned long			read_bytes;
517 	rb_time_t			write_stamp;
518 	rb_time_t			before_stamp;
519 	u64				event_stamp[MAX_NEST];
520 	u64				read_stamp;
521 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
522 	long				nr_pages_to_update;
523 	struct list_head		new_pages; /* new pages to add */
524 	struct work_struct		update_pages_work;
525 	struct completion		update_done;
526 
527 	struct rb_irq_work		irq_work;
528 };
529 
530 struct trace_buffer {
531 	unsigned			flags;
532 	int				cpus;
533 	atomic_t			record_disabled;
534 	cpumask_var_t			cpumask;
535 
536 	struct lock_class_key		*reader_lock_key;
537 
538 	struct mutex			mutex;
539 
540 	struct ring_buffer_per_cpu	**buffers;
541 
542 	struct hlist_node		node;
543 	u64				(*clock)(void);
544 
545 	struct rb_irq_work		irq_work;
546 	bool				time_stamp_abs;
547 };
548 
549 struct ring_buffer_iter {
550 	struct ring_buffer_per_cpu	*cpu_buffer;
551 	unsigned long			head;
552 	unsigned long			next_event;
553 	struct buffer_page		*head_page;
554 	struct buffer_page		*cache_reader_page;
555 	unsigned long			cache_read;
556 	u64				read_stamp;
557 	u64				page_stamp;
558 	struct ring_buffer_event	*event;
559 	int				missed_events;
560 };
561 
562 #ifdef RB_TIME_32
563 
564 /*
565  * On 32 bit machines, local64_t is very expensive. As the ring
566  * buffer doesn't need all the features of a true 64 bit atomic,
567  * on 32 bit, it uses these functions (64 still uses local64_t).
568  *
569  * For the ring buffer, 64 bit required operations for the time is
570  * the following:
571  *
572  *  - Only need 59 bits (uses 60 to make it even).
573  *  - Reads may fail if it interrupted a modification of the time stamp.
574  *      It will succeed if it did not interrupt another write even if
575  *      the read itself is interrupted by a write.
576  *      It returns whether it was successful or not.
577  *
578  *  - Writes always succeed and will overwrite other writes and writes
579  *      that were done by events interrupting the current write.
580  *
581  *  - A write followed by a read of the same time stamp will always succeed,
582  *      but may not contain the same value.
583  *
584  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
585  *      Other than that, it acts like a normal cmpxchg.
586  *
587  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
588  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
589  *
590  * The two most significant bits of each half holds a 2 bit counter (0-3).
591  * Each update will increment this counter by one.
592  * When reading the top and bottom, if the two counter bits match then the
593  *  top and bottom together make a valid 60 bit number.
594  */
595 #define RB_TIME_SHIFT	30
596 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
597 
598 static inline int rb_time_cnt(unsigned long val)
599 {
600 	return (val >> RB_TIME_SHIFT) & 3;
601 }
602 
603 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
604 {
605 	u64 val;
606 
607 	val = top & RB_TIME_VAL_MASK;
608 	val <<= RB_TIME_SHIFT;
609 	val |= bottom & RB_TIME_VAL_MASK;
610 
611 	return val;
612 }
613 
614 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
615 {
616 	unsigned long top, bottom;
617 	unsigned long c;
618 
619 	/*
620 	 * If the read is interrupted by a write, then the cnt will
621 	 * be different. Loop until both top and bottom have been read
622 	 * without interruption.
623 	 */
624 	do {
625 		c = local_read(&t->cnt);
626 		top = local_read(&t->top);
627 		bottom = local_read(&t->bottom);
628 	} while (c != local_read(&t->cnt));
629 
630 	*cnt = rb_time_cnt(top);
631 
632 	/* If top and bottom counts don't match, this interrupted a write */
633 	if (*cnt != rb_time_cnt(bottom))
634 		return false;
635 
636 	*ret = rb_time_val(top, bottom);
637 	return true;
638 }
639 
640 static bool rb_time_read(rb_time_t *t, u64 *ret)
641 {
642 	unsigned long cnt;
643 
644 	return __rb_time_read(t, ret, &cnt);
645 }
646 
647 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
648 {
649 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
650 }
651 
652 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
653 {
654 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
655 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
656 }
657 
658 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
659 {
660 	val = rb_time_val_cnt(val, cnt);
661 	local_set(t, val);
662 }
663 
664 static void rb_time_set(rb_time_t *t, u64 val)
665 {
666 	unsigned long cnt, top, bottom;
667 
668 	rb_time_split(val, &top, &bottom);
669 
670 	/* Writes always succeed with a valid number even if it gets interrupted. */
671 	do {
672 		cnt = local_inc_return(&t->cnt);
673 		rb_time_val_set(&t->top, top, cnt);
674 		rb_time_val_set(&t->bottom, bottom, cnt);
675 	} while (cnt != local_read(&t->cnt));
676 }
677 
678 static inline bool
679 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
680 {
681 	unsigned long ret;
682 
683 	ret = local_cmpxchg(l, expect, set);
684 	return ret == expect;
685 }
686 
687 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
688 {
689 	unsigned long cnt, top, bottom;
690 	unsigned long cnt2, top2, bottom2;
691 	u64 val;
692 
693 	/* The cmpxchg always fails if it interrupted an update */
694 	 if (!__rb_time_read(t, &val, &cnt2))
695 		 return false;
696 
697 	 if (val != expect)
698 		 return false;
699 
700 	 cnt = local_read(&t->cnt);
701 	 if ((cnt & 3) != cnt2)
702 		 return false;
703 
704 	 cnt2 = cnt + 1;
705 
706 	 rb_time_split(val, &top, &bottom);
707 	 top = rb_time_val_cnt(top, cnt);
708 	 bottom = rb_time_val_cnt(bottom, cnt);
709 
710 	 rb_time_split(set, &top2, &bottom2);
711 	 top2 = rb_time_val_cnt(top2, cnt2);
712 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
713 
714 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
715 		return false;
716 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
717 		return false;
718 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
719 		return false;
720 	return true;
721 }
722 
723 #else /* 64 bits */
724 
725 /* local64_t always succeeds */
726 
727 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
728 {
729 	*ret = local64_read(&t->time);
730 	return true;
731 }
732 static void rb_time_set(rb_time_t *t, u64 val)
733 {
734 	local64_set(&t->time, val);
735 }
736 
737 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
738 {
739 	u64 val;
740 	val = local64_cmpxchg(&t->time, expect, set);
741 	return val == expect;
742 }
743 #endif
744 
745 /*
746  * Enable this to make sure that the event passed to
747  * ring_buffer_event_time_stamp() is not committed and also
748  * is on the buffer that it passed in.
749  */
750 //#define RB_VERIFY_EVENT
751 #ifdef RB_VERIFY_EVENT
752 static struct list_head *rb_list_head(struct list_head *list);
753 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
754 			 void *event)
755 {
756 	struct buffer_page *page = cpu_buffer->commit_page;
757 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
758 	struct list_head *next;
759 	long commit, write;
760 	unsigned long addr = (unsigned long)event;
761 	bool done = false;
762 	int stop = 0;
763 
764 	/* Make sure the event exists and is not committed yet */
765 	do {
766 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
767 			done = true;
768 		commit = local_read(&page->page->commit);
769 		write = local_read(&page->write);
770 		if (addr >= (unsigned long)&page->page->data[commit] &&
771 		    addr < (unsigned long)&page->page->data[write])
772 			return;
773 
774 		next = rb_list_head(page->list.next);
775 		page = list_entry(next, struct buffer_page, list);
776 	} while (!done);
777 	WARN_ON_ONCE(1);
778 }
779 #else
780 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
781 			 void *event)
782 {
783 }
784 #endif
785 
786 
787 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
788 
789 /**
790  * ring_buffer_event_time_stamp - return the event's current time stamp
791  * @buffer: The buffer that the event is on
792  * @event: the event to get the time stamp of
793  *
794  * Note, this must be called after @event is reserved, and before it is
795  * committed to the ring buffer. And must be called from the same
796  * context where the event was reserved (normal, softirq, irq, etc).
797  *
798  * Returns the time stamp associated with the current event.
799  * If the event has an extended time stamp, then that is used as
800  * the time stamp to return.
801  * In the highly unlikely case that the event was nested more than
802  * the max nesting, then the write_stamp of the buffer is returned,
803  * otherwise  current time is returned, but that really neither of
804  * the last two cases should ever happen.
805  */
806 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
807 				 struct ring_buffer_event *event)
808 {
809 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
810 	unsigned int nest;
811 	u64 ts;
812 
813 	/* If the event includes an absolute time, then just use that */
814 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP)
815 		return rb_event_time_stamp(event);
816 
817 	nest = local_read(&cpu_buffer->committing);
818 	verify_event(cpu_buffer, event);
819 	if (WARN_ON_ONCE(!nest))
820 		goto fail;
821 
822 	/* Read the current saved nesting level time stamp */
823 	if (likely(--nest < MAX_NEST))
824 		return cpu_buffer->event_stamp[nest];
825 
826 	/* Shouldn't happen, warn if it does */
827 	WARN_ONCE(1, "nest (%d) greater than max", nest);
828 
829  fail:
830 	/* Can only fail on 32 bit */
831 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
832 		/* Screw it, just read the current time */
833 		ts = rb_time_stamp(cpu_buffer->buffer);
834 
835 	return ts;
836 }
837 
838 /**
839  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
840  * @buffer: The ring_buffer to get the number of pages from
841  * @cpu: The cpu of the ring_buffer to get the number of pages from
842  *
843  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
844  */
845 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
846 {
847 	return buffer->buffers[cpu]->nr_pages;
848 }
849 
850 /**
851  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
852  * @buffer: The ring_buffer to get the number of pages from
853  * @cpu: The cpu of the ring_buffer to get the number of pages from
854  *
855  * Returns the number of pages that have content in the ring buffer.
856  */
857 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
858 {
859 	size_t read;
860 	size_t cnt;
861 
862 	read = local_read(&buffer->buffers[cpu]->pages_read);
863 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
864 	/* The reader can read an empty page, but not more than that */
865 	if (cnt < read) {
866 		WARN_ON_ONCE(read > cnt + 1);
867 		return 0;
868 	}
869 
870 	return cnt - read;
871 }
872 
873 /*
874  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
875  *
876  * Schedules a delayed work to wake up any task that is blocked on the
877  * ring buffer waiters queue.
878  */
879 static void rb_wake_up_waiters(struct irq_work *work)
880 {
881 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
882 
883 	wake_up_all(&rbwork->waiters);
884 	if (rbwork->wakeup_full) {
885 		rbwork->wakeup_full = false;
886 		wake_up_all(&rbwork->full_waiters);
887 	}
888 }
889 
890 /**
891  * ring_buffer_wait - wait for input to the ring buffer
892  * @buffer: buffer to wait on
893  * @cpu: the cpu buffer to wait on
894  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
895  *
896  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
897  * as data is added to any of the @buffer's cpu buffers. Otherwise
898  * it will wait for data to be added to a specific cpu buffer.
899  */
900 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
901 {
902 	struct ring_buffer_per_cpu *cpu_buffer;
903 	DEFINE_WAIT(wait);
904 	struct rb_irq_work *work;
905 	int ret = 0;
906 
907 	/*
908 	 * Depending on what the caller is waiting for, either any
909 	 * data in any cpu buffer, or a specific buffer, put the
910 	 * caller on the appropriate wait queue.
911 	 */
912 	if (cpu == RING_BUFFER_ALL_CPUS) {
913 		work = &buffer->irq_work;
914 		/* Full only makes sense on per cpu reads */
915 		full = 0;
916 	} else {
917 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
918 			return -ENODEV;
919 		cpu_buffer = buffer->buffers[cpu];
920 		work = &cpu_buffer->irq_work;
921 	}
922 
923 
924 	while (true) {
925 		if (full)
926 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
927 		else
928 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
929 
930 		/*
931 		 * The events can happen in critical sections where
932 		 * checking a work queue can cause deadlocks.
933 		 * After adding a task to the queue, this flag is set
934 		 * only to notify events to try to wake up the queue
935 		 * using irq_work.
936 		 *
937 		 * We don't clear it even if the buffer is no longer
938 		 * empty. The flag only causes the next event to run
939 		 * irq_work to do the work queue wake up. The worse
940 		 * that can happen if we race with !trace_empty() is that
941 		 * an event will cause an irq_work to try to wake up
942 		 * an empty queue.
943 		 *
944 		 * There's no reason to protect this flag either, as
945 		 * the work queue and irq_work logic will do the necessary
946 		 * synchronization for the wake ups. The only thing
947 		 * that is necessary is that the wake up happens after
948 		 * a task has been queued. It's OK for spurious wake ups.
949 		 */
950 		if (full)
951 			work->full_waiters_pending = true;
952 		else
953 			work->waiters_pending = true;
954 
955 		if (signal_pending(current)) {
956 			ret = -EINTR;
957 			break;
958 		}
959 
960 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
961 			break;
962 
963 		if (cpu != RING_BUFFER_ALL_CPUS &&
964 		    !ring_buffer_empty_cpu(buffer, cpu)) {
965 			unsigned long flags;
966 			bool pagebusy;
967 			size_t nr_pages;
968 			size_t dirty;
969 
970 			if (!full)
971 				break;
972 
973 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
974 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
975 			nr_pages = cpu_buffer->nr_pages;
976 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
977 			if (!cpu_buffer->shortest_full ||
978 			    cpu_buffer->shortest_full < full)
979 				cpu_buffer->shortest_full = full;
980 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
981 			if (!pagebusy &&
982 			    (!nr_pages || (dirty * 100) > full * nr_pages))
983 				break;
984 		}
985 
986 		schedule();
987 	}
988 
989 	if (full)
990 		finish_wait(&work->full_waiters, &wait);
991 	else
992 		finish_wait(&work->waiters, &wait);
993 
994 	return ret;
995 }
996 
997 /**
998  * ring_buffer_poll_wait - poll on buffer input
999  * @buffer: buffer to wait on
1000  * @cpu: the cpu buffer to wait on
1001  * @filp: the file descriptor
1002  * @poll_table: The poll descriptor
1003  *
1004  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1005  * as data is added to any of the @buffer's cpu buffers. Otherwise
1006  * it will wait for data to be added to a specific cpu buffer.
1007  *
1008  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1009  * zero otherwise.
1010  */
1011 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1012 			  struct file *filp, poll_table *poll_table)
1013 {
1014 	struct ring_buffer_per_cpu *cpu_buffer;
1015 	struct rb_irq_work *work;
1016 
1017 	if (cpu == RING_BUFFER_ALL_CPUS)
1018 		work = &buffer->irq_work;
1019 	else {
1020 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1021 			return -EINVAL;
1022 
1023 		cpu_buffer = buffer->buffers[cpu];
1024 		work = &cpu_buffer->irq_work;
1025 	}
1026 
1027 	poll_wait(filp, &work->waiters, poll_table);
1028 	work->waiters_pending = true;
1029 	/*
1030 	 * There's a tight race between setting the waiters_pending and
1031 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1032 	 * is set, the next event will wake the task up, but we can get stuck
1033 	 * if there's only a single event in.
1034 	 *
1035 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1036 	 * but adding a memory barrier to all events will cause too much of a
1037 	 * performance hit in the fast path.  We only need a memory barrier when
1038 	 * the buffer goes from empty to having content.  But as this race is
1039 	 * extremely small, and it's not a problem if another event comes in, we
1040 	 * will fix it later.
1041 	 */
1042 	smp_mb();
1043 
1044 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1045 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1046 		return EPOLLIN | EPOLLRDNORM;
1047 	return 0;
1048 }
1049 
1050 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1051 #define RB_WARN_ON(b, cond)						\
1052 	({								\
1053 		int _____ret = unlikely(cond);				\
1054 		if (_____ret) {						\
1055 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1056 				struct ring_buffer_per_cpu *__b =	\
1057 					(void *)b;			\
1058 				atomic_inc(&__b->buffer->record_disabled); \
1059 			} else						\
1060 				atomic_inc(&b->record_disabled);	\
1061 			WARN_ON(1);					\
1062 		}							\
1063 		_____ret;						\
1064 	})
1065 
1066 /* Up this if you want to test the TIME_EXTENTS and normalization */
1067 #define DEBUG_SHIFT 0
1068 
1069 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1070 {
1071 	u64 ts;
1072 
1073 	/* Skip retpolines :-( */
1074 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1075 		ts = trace_clock_local();
1076 	else
1077 		ts = buffer->clock();
1078 
1079 	/* shift to debug/test normalization and TIME_EXTENTS */
1080 	return ts << DEBUG_SHIFT;
1081 }
1082 
1083 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1084 {
1085 	u64 time;
1086 
1087 	preempt_disable_notrace();
1088 	time = rb_time_stamp(buffer);
1089 	preempt_enable_notrace();
1090 
1091 	return time;
1092 }
1093 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1094 
1095 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1096 				      int cpu, u64 *ts)
1097 {
1098 	/* Just stupid testing the normalize function and deltas */
1099 	*ts >>= DEBUG_SHIFT;
1100 }
1101 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1102 
1103 /*
1104  * Making the ring buffer lockless makes things tricky.
1105  * Although writes only happen on the CPU that they are on,
1106  * and they only need to worry about interrupts. Reads can
1107  * happen on any CPU.
1108  *
1109  * The reader page is always off the ring buffer, but when the
1110  * reader finishes with a page, it needs to swap its page with
1111  * a new one from the buffer. The reader needs to take from
1112  * the head (writes go to the tail). But if a writer is in overwrite
1113  * mode and wraps, it must push the head page forward.
1114  *
1115  * Here lies the problem.
1116  *
1117  * The reader must be careful to replace only the head page, and
1118  * not another one. As described at the top of the file in the
1119  * ASCII art, the reader sets its old page to point to the next
1120  * page after head. It then sets the page after head to point to
1121  * the old reader page. But if the writer moves the head page
1122  * during this operation, the reader could end up with the tail.
1123  *
1124  * We use cmpxchg to help prevent this race. We also do something
1125  * special with the page before head. We set the LSB to 1.
1126  *
1127  * When the writer must push the page forward, it will clear the
1128  * bit that points to the head page, move the head, and then set
1129  * the bit that points to the new head page.
1130  *
1131  * We also don't want an interrupt coming in and moving the head
1132  * page on another writer. Thus we use the second LSB to catch
1133  * that too. Thus:
1134  *
1135  * head->list->prev->next        bit 1          bit 0
1136  *                              -------        -------
1137  * Normal page                     0              0
1138  * Points to head page             0              1
1139  * New head page                   1              0
1140  *
1141  * Note we can not trust the prev pointer of the head page, because:
1142  *
1143  * +----+       +-----+        +-----+
1144  * |    |------>|  T  |---X--->|  N  |
1145  * |    |<------|     |        |     |
1146  * +----+       +-----+        +-----+
1147  *   ^                           ^ |
1148  *   |          +-----+          | |
1149  *   +----------|  R  |----------+ |
1150  *              |     |<-----------+
1151  *              +-----+
1152  *
1153  * Key:  ---X-->  HEAD flag set in pointer
1154  *         T      Tail page
1155  *         R      Reader page
1156  *         N      Next page
1157  *
1158  * (see __rb_reserve_next() to see where this happens)
1159  *
1160  *  What the above shows is that the reader just swapped out
1161  *  the reader page with a page in the buffer, but before it
1162  *  could make the new header point back to the new page added
1163  *  it was preempted by a writer. The writer moved forward onto
1164  *  the new page added by the reader and is about to move forward
1165  *  again.
1166  *
1167  *  You can see, it is legitimate for the previous pointer of
1168  *  the head (or any page) not to point back to itself. But only
1169  *  temporarily.
1170  */
1171 
1172 #define RB_PAGE_NORMAL		0UL
1173 #define RB_PAGE_HEAD		1UL
1174 #define RB_PAGE_UPDATE		2UL
1175 
1176 
1177 #define RB_FLAG_MASK		3UL
1178 
1179 /* PAGE_MOVED is not part of the mask */
1180 #define RB_PAGE_MOVED		4UL
1181 
1182 /*
1183  * rb_list_head - remove any bit
1184  */
1185 static struct list_head *rb_list_head(struct list_head *list)
1186 {
1187 	unsigned long val = (unsigned long)list;
1188 
1189 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1190 }
1191 
1192 /*
1193  * rb_is_head_page - test if the given page is the head page
1194  *
1195  * Because the reader may move the head_page pointer, we can
1196  * not trust what the head page is (it may be pointing to
1197  * the reader page). But if the next page is a header page,
1198  * its flags will be non zero.
1199  */
1200 static inline int
1201 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1202 {
1203 	unsigned long val;
1204 
1205 	val = (unsigned long)list->next;
1206 
1207 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1208 		return RB_PAGE_MOVED;
1209 
1210 	return val & RB_FLAG_MASK;
1211 }
1212 
1213 /*
1214  * rb_is_reader_page
1215  *
1216  * The unique thing about the reader page, is that, if the
1217  * writer is ever on it, the previous pointer never points
1218  * back to the reader page.
1219  */
1220 static bool rb_is_reader_page(struct buffer_page *page)
1221 {
1222 	struct list_head *list = page->list.prev;
1223 
1224 	return rb_list_head(list->next) != &page->list;
1225 }
1226 
1227 /*
1228  * rb_set_list_to_head - set a list_head to be pointing to head.
1229  */
1230 static void rb_set_list_to_head(struct list_head *list)
1231 {
1232 	unsigned long *ptr;
1233 
1234 	ptr = (unsigned long *)&list->next;
1235 	*ptr |= RB_PAGE_HEAD;
1236 	*ptr &= ~RB_PAGE_UPDATE;
1237 }
1238 
1239 /*
1240  * rb_head_page_activate - sets up head page
1241  */
1242 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1243 {
1244 	struct buffer_page *head;
1245 
1246 	head = cpu_buffer->head_page;
1247 	if (!head)
1248 		return;
1249 
1250 	/*
1251 	 * Set the previous list pointer to have the HEAD flag.
1252 	 */
1253 	rb_set_list_to_head(head->list.prev);
1254 }
1255 
1256 static void rb_list_head_clear(struct list_head *list)
1257 {
1258 	unsigned long *ptr = (unsigned long *)&list->next;
1259 
1260 	*ptr &= ~RB_FLAG_MASK;
1261 }
1262 
1263 /*
1264  * rb_head_page_deactivate - clears head page ptr (for free list)
1265  */
1266 static void
1267 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1268 {
1269 	struct list_head *hd;
1270 
1271 	/* Go through the whole list and clear any pointers found. */
1272 	rb_list_head_clear(cpu_buffer->pages);
1273 
1274 	list_for_each(hd, cpu_buffer->pages)
1275 		rb_list_head_clear(hd);
1276 }
1277 
1278 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1279 			    struct buffer_page *head,
1280 			    struct buffer_page *prev,
1281 			    int old_flag, int new_flag)
1282 {
1283 	struct list_head *list;
1284 	unsigned long val = (unsigned long)&head->list;
1285 	unsigned long ret;
1286 
1287 	list = &prev->list;
1288 
1289 	val &= ~RB_FLAG_MASK;
1290 
1291 	ret = cmpxchg((unsigned long *)&list->next,
1292 		      val | old_flag, val | new_flag);
1293 
1294 	/* check if the reader took the page */
1295 	if ((ret & ~RB_FLAG_MASK) != val)
1296 		return RB_PAGE_MOVED;
1297 
1298 	return ret & RB_FLAG_MASK;
1299 }
1300 
1301 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1302 				   struct buffer_page *head,
1303 				   struct buffer_page *prev,
1304 				   int old_flag)
1305 {
1306 	return rb_head_page_set(cpu_buffer, head, prev,
1307 				old_flag, RB_PAGE_UPDATE);
1308 }
1309 
1310 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1311 				 struct buffer_page *head,
1312 				 struct buffer_page *prev,
1313 				 int old_flag)
1314 {
1315 	return rb_head_page_set(cpu_buffer, head, prev,
1316 				old_flag, RB_PAGE_HEAD);
1317 }
1318 
1319 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1320 				   struct buffer_page *head,
1321 				   struct buffer_page *prev,
1322 				   int old_flag)
1323 {
1324 	return rb_head_page_set(cpu_buffer, head, prev,
1325 				old_flag, RB_PAGE_NORMAL);
1326 }
1327 
1328 static inline void rb_inc_page(struct buffer_page **bpage)
1329 {
1330 	struct list_head *p = rb_list_head((*bpage)->list.next);
1331 
1332 	*bpage = list_entry(p, struct buffer_page, list);
1333 }
1334 
1335 static struct buffer_page *
1336 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1337 {
1338 	struct buffer_page *head;
1339 	struct buffer_page *page;
1340 	struct list_head *list;
1341 	int i;
1342 
1343 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1344 		return NULL;
1345 
1346 	/* sanity check */
1347 	list = cpu_buffer->pages;
1348 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1349 		return NULL;
1350 
1351 	page = head = cpu_buffer->head_page;
1352 	/*
1353 	 * It is possible that the writer moves the header behind
1354 	 * where we started, and we miss in one loop.
1355 	 * A second loop should grab the header, but we'll do
1356 	 * three loops just because I'm paranoid.
1357 	 */
1358 	for (i = 0; i < 3; i++) {
1359 		do {
1360 			if (rb_is_head_page(page, page->list.prev)) {
1361 				cpu_buffer->head_page = page;
1362 				return page;
1363 			}
1364 			rb_inc_page(&page);
1365 		} while (page != head);
1366 	}
1367 
1368 	RB_WARN_ON(cpu_buffer, 1);
1369 
1370 	return NULL;
1371 }
1372 
1373 static int rb_head_page_replace(struct buffer_page *old,
1374 				struct buffer_page *new)
1375 {
1376 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1377 	unsigned long val;
1378 	unsigned long ret;
1379 
1380 	val = *ptr & ~RB_FLAG_MASK;
1381 	val |= RB_PAGE_HEAD;
1382 
1383 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1384 
1385 	return ret == val;
1386 }
1387 
1388 /*
1389  * rb_tail_page_update - move the tail page forward
1390  */
1391 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1392 			       struct buffer_page *tail_page,
1393 			       struct buffer_page *next_page)
1394 {
1395 	unsigned long old_entries;
1396 	unsigned long old_write;
1397 
1398 	/*
1399 	 * The tail page now needs to be moved forward.
1400 	 *
1401 	 * We need to reset the tail page, but without messing
1402 	 * with possible erasing of data brought in by interrupts
1403 	 * that have moved the tail page and are currently on it.
1404 	 *
1405 	 * We add a counter to the write field to denote this.
1406 	 */
1407 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1408 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1409 
1410 	local_inc(&cpu_buffer->pages_touched);
1411 	/*
1412 	 * Just make sure we have seen our old_write and synchronize
1413 	 * with any interrupts that come in.
1414 	 */
1415 	barrier();
1416 
1417 	/*
1418 	 * If the tail page is still the same as what we think
1419 	 * it is, then it is up to us to update the tail
1420 	 * pointer.
1421 	 */
1422 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1423 		/* Zero the write counter */
1424 		unsigned long val = old_write & ~RB_WRITE_MASK;
1425 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1426 
1427 		/*
1428 		 * This will only succeed if an interrupt did
1429 		 * not come in and change it. In which case, we
1430 		 * do not want to modify it.
1431 		 *
1432 		 * We add (void) to let the compiler know that we do not care
1433 		 * about the return value of these functions. We use the
1434 		 * cmpxchg to only update if an interrupt did not already
1435 		 * do it for us. If the cmpxchg fails, we don't care.
1436 		 */
1437 		(void)local_cmpxchg(&next_page->write, old_write, val);
1438 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1439 
1440 		/*
1441 		 * No need to worry about races with clearing out the commit.
1442 		 * it only can increment when a commit takes place. But that
1443 		 * only happens in the outer most nested commit.
1444 		 */
1445 		local_set(&next_page->page->commit, 0);
1446 
1447 		/* Again, either we update tail_page or an interrupt does */
1448 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1449 	}
1450 }
1451 
1452 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1453 			  struct buffer_page *bpage)
1454 {
1455 	unsigned long val = (unsigned long)bpage;
1456 
1457 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1458 		return 1;
1459 
1460 	return 0;
1461 }
1462 
1463 /**
1464  * rb_check_list - make sure a pointer to a list has the last bits zero
1465  */
1466 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1467 			 struct list_head *list)
1468 {
1469 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1470 		return 1;
1471 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1472 		return 1;
1473 	return 0;
1474 }
1475 
1476 /**
1477  * rb_check_pages - integrity check of buffer pages
1478  * @cpu_buffer: CPU buffer with pages to test
1479  *
1480  * As a safety measure we check to make sure the data pages have not
1481  * been corrupted.
1482  */
1483 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1484 {
1485 	struct list_head *head = cpu_buffer->pages;
1486 	struct buffer_page *bpage, *tmp;
1487 
1488 	/* Reset the head page if it exists */
1489 	if (cpu_buffer->head_page)
1490 		rb_set_head_page(cpu_buffer);
1491 
1492 	rb_head_page_deactivate(cpu_buffer);
1493 
1494 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1495 		return -1;
1496 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1497 		return -1;
1498 
1499 	if (rb_check_list(cpu_buffer, head))
1500 		return -1;
1501 
1502 	list_for_each_entry_safe(bpage, tmp, head, list) {
1503 		if (RB_WARN_ON(cpu_buffer,
1504 			       bpage->list.next->prev != &bpage->list))
1505 			return -1;
1506 		if (RB_WARN_ON(cpu_buffer,
1507 			       bpage->list.prev->next != &bpage->list))
1508 			return -1;
1509 		if (rb_check_list(cpu_buffer, &bpage->list))
1510 			return -1;
1511 	}
1512 
1513 	rb_head_page_activate(cpu_buffer);
1514 
1515 	return 0;
1516 }
1517 
1518 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1519 		long nr_pages, struct list_head *pages)
1520 {
1521 	struct buffer_page *bpage, *tmp;
1522 	bool user_thread = current->mm != NULL;
1523 	gfp_t mflags;
1524 	long i;
1525 
1526 	/*
1527 	 * Check if the available memory is there first.
1528 	 * Note, si_mem_available() only gives us a rough estimate of available
1529 	 * memory. It may not be accurate. But we don't care, we just want
1530 	 * to prevent doing any allocation when it is obvious that it is
1531 	 * not going to succeed.
1532 	 */
1533 	i = si_mem_available();
1534 	if (i < nr_pages)
1535 		return -ENOMEM;
1536 
1537 	/*
1538 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1539 	 * gracefully without invoking oom-killer and the system is not
1540 	 * destabilized.
1541 	 */
1542 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1543 
1544 	/*
1545 	 * If a user thread allocates too much, and si_mem_available()
1546 	 * reports there's enough memory, even though there is not.
1547 	 * Make sure the OOM killer kills this thread. This can happen
1548 	 * even with RETRY_MAYFAIL because another task may be doing
1549 	 * an allocation after this task has taken all memory.
1550 	 * This is the task the OOM killer needs to take out during this
1551 	 * loop, even if it was triggered by an allocation somewhere else.
1552 	 */
1553 	if (user_thread)
1554 		set_current_oom_origin();
1555 	for (i = 0; i < nr_pages; i++) {
1556 		struct page *page;
1557 
1558 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1559 				    mflags, cpu_to_node(cpu_buffer->cpu));
1560 		if (!bpage)
1561 			goto free_pages;
1562 
1563 		rb_check_bpage(cpu_buffer, bpage);
1564 
1565 		list_add(&bpage->list, pages);
1566 
1567 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1568 		if (!page)
1569 			goto free_pages;
1570 		bpage->page = page_address(page);
1571 		rb_init_page(bpage->page);
1572 
1573 		if (user_thread && fatal_signal_pending(current))
1574 			goto free_pages;
1575 	}
1576 	if (user_thread)
1577 		clear_current_oom_origin();
1578 
1579 	return 0;
1580 
1581 free_pages:
1582 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1583 		list_del_init(&bpage->list);
1584 		free_buffer_page(bpage);
1585 	}
1586 	if (user_thread)
1587 		clear_current_oom_origin();
1588 
1589 	return -ENOMEM;
1590 }
1591 
1592 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1593 			     unsigned long nr_pages)
1594 {
1595 	LIST_HEAD(pages);
1596 
1597 	WARN_ON(!nr_pages);
1598 
1599 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1600 		return -ENOMEM;
1601 
1602 	/*
1603 	 * The ring buffer page list is a circular list that does not
1604 	 * start and end with a list head. All page list items point to
1605 	 * other pages.
1606 	 */
1607 	cpu_buffer->pages = pages.next;
1608 	list_del(&pages);
1609 
1610 	cpu_buffer->nr_pages = nr_pages;
1611 
1612 	rb_check_pages(cpu_buffer);
1613 
1614 	return 0;
1615 }
1616 
1617 static struct ring_buffer_per_cpu *
1618 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1619 {
1620 	struct ring_buffer_per_cpu *cpu_buffer;
1621 	struct buffer_page *bpage;
1622 	struct page *page;
1623 	int ret;
1624 
1625 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1626 				  GFP_KERNEL, cpu_to_node(cpu));
1627 	if (!cpu_buffer)
1628 		return NULL;
1629 
1630 	cpu_buffer->cpu = cpu;
1631 	cpu_buffer->buffer = buffer;
1632 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1633 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1634 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1635 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1636 	init_completion(&cpu_buffer->update_done);
1637 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1638 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1639 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1640 
1641 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1642 			    GFP_KERNEL, cpu_to_node(cpu));
1643 	if (!bpage)
1644 		goto fail_free_buffer;
1645 
1646 	rb_check_bpage(cpu_buffer, bpage);
1647 
1648 	cpu_buffer->reader_page = bpage;
1649 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1650 	if (!page)
1651 		goto fail_free_reader;
1652 	bpage->page = page_address(page);
1653 	rb_init_page(bpage->page);
1654 
1655 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1656 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1657 
1658 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1659 	if (ret < 0)
1660 		goto fail_free_reader;
1661 
1662 	cpu_buffer->head_page
1663 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1664 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1665 
1666 	rb_head_page_activate(cpu_buffer);
1667 
1668 	return cpu_buffer;
1669 
1670  fail_free_reader:
1671 	free_buffer_page(cpu_buffer->reader_page);
1672 
1673  fail_free_buffer:
1674 	kfree(cpu_buffer);
1675 	return NULL;
1676 }
1677 
1678 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1679 {
1680 	struct list_head *head = cpu_buffer->pages;
1681 	struct buffer_page *bpage, *tmp;
1682 
1683 	free_buffer_page(cpu_buffer->reader_page);
1684 
1685 	rb_head_page_deactivate(cpu_buffer);
1686 
1687 	if (head) {
1688 		list_for_each_entry_safe(bpage, tmp, head, list) {
1689 			list_del_init(&bpage->list);
1690 			free_buffer_page(bpage);
1691 		}
1692 		bpage = list_entry(head, struct buffer_page, list);
1693 		free_buffer_page(bpage);
1694 	}
1695 
1696 	kfree(cpu_buffer);
1697 }
1698 
1699 /**
1700  * __ring_buffer_alloc - allocate a new ring_buffer
1701  * @size: the size in bytes per cpu that is needed.
1702  * @flags: attributes to set for the ring buffer.
1703  * @key: ring buffer reader_lock_key.
1704  *
1705  * Currently the only flag that is available is the RB_FL_OVERWRITE
1706  * flag. This flag means that the buffer will overwrite old data
1707  * when the buffer wraps. If this flag is not set, the buffer will
1708  * drop data when the tail hits the head.
1709  */
1710 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1711 					struct lock_class_key *key)
1712 {
1713 	struct trace_buffer *buffer;
1714 	long nr_pages;
1715 	int bsize;
1716 	int cpu;
1717 	int ret;
1718 
1719 	/* keep it in its own cache line */
1720 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1721 			 GFP_KERNEL);
1722 	if (!buffer)
1723 		return NULL;
1724 
1725 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1726 		goto fail_free_buffer;
1727 
1728 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1729 	buffer->flags = flags;
1730 	buffer->clock = trace_clock_local;
1731 	buffer->reader_lock_key = key;
1732 
1733 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1734 	init_waitqueue_head(&buffer->irq_work.waiters);
1735 
1736 	/* need at least two pages */
1737 	if (nr_pages < 2)
1738 		nr_pages = 2;
1739 
1740 	buffer->cpus = nr_cpu_ids;
1741 
1742 	bsize = sizeof(void *) * nr_cpu_ids;
1743 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1744 				  GFP_KERNEL);
1745 	if (!buffer->buffers)
1746 		goto fail_free_cpumask;
1747 
1748 	cpu = raw_smp_processor_id();
1749 	cpumask_set_cpu(cpu, buffer->cpumask);
1750 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1751 	if (!buffer->buffers[cpu])
1752 		goto fail_free_buffers;
1753 
1754 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1755 	if (ret < 0)
1756 		goto fail_free_buffers;
1757 
1758 	mutex_init(&buffer->mutex);
1759 
1760 	return buffer;
1761 
1762  fail_free_buffers:
1763 	for_each_buffer_cpu(buffer, cpu) {
1764 		if (buffer->buffers[cpu])
1765 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1766 	}
1767 	kfree(buffer->buffers);
1768 
1769  fail_free_cpumask:
1770 	free_cpumask_var(buffer->cpumask);
1771 
1772  fail_free_buffer:
1773 	kfree(buffer);
1774 	return NULL;
1775 }
1776 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1777 
1778 /**
1779  * ring_buffer_free - free a ring buffer.
1780  * @buffer: the buffer to free.
1781  */
1782 void
1783 ring_buffer_free(struct trace_buffer *buffer)
1784 {
1785 	int cpu;
1786 
1787 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1788 
1789 	for_each_buffer_cpu(buffer, cpu)
1790 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1791 
1792 	kfree(buffer->buffers);
1793 	free_cpumask_var(buffer->cpumask);
1794 
1795 	kfree(buffer);
1796 }
1797 EXPORT_SYMBOL_GPL(ring_buffer_free);
1798 
1799 void ring_buffer_set_clock(struct trace_buffer *buffer,
1800 			   u64 (*clock)(void))
1801 {
1802 	buffer->clock = clock;
1803 }
1804 
1805 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1806 {
1807 	buffer->time_stamp_abs = abs;
1808 }
1809 
1810 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1811 {
1812 	return buffer->time_stamp_abs;
1813 }
1814 
1815 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1816 
1817 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1818 {
1819 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1820 }
1821 
1822 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1823 {
1824 	return local_read(&bpage->write) & RB_WRITE_MASK;
1825 }
1826 
1827 static int
1828 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1829 {
1830 	struct list_head *tail_page, *to_remove, *next_page;
1831 	struct buffer_page *to_remove_page, *tmp_iter_page;
1832 	struct buffer_page *last_page, *first_page;
1833 	unsigned long nr_removed;
1834 	unsigned long head_bit;
1835 	int page_entries;
1836 
1837 	head_bit = 0;
1838 
1839 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1840 	atomic_inc(&cpu_buffer->record_disabled);
1841 	/*
1842 	 * We don't race with the readers since we have acquired the reader
1843 	 * lock. We also don't race with writers after disabling recording.
1844 	 * This makes it easy to figure out the first and the last page to be
1845 	 * removed from the list. We unlink all the pages in between including
1846 	 * the first and last pages. This is done in a busy loop so that we
1847 	 * lose the least number of traces.
1848 	 * The pages are freed after we restart recording and unlock readers.
1849 	 */
1850 	tail_page = &cpu_buffer->tail_page->list;
1851 
1852 	/*
1853 	 * tail page might be on reader page, we remove the next page
1854 	 * from the ring buffer
1855 	 */
1856 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1857 		tail_page = rb_list_head(tail_page->next);
1858 	to_remove = tail_page;
1859 
1860 	/* start of pages to remove */
1861 	first_page = list_entry(rb_list_head(to_remove->next),
1862 				struct buffer_page, list);
1863 
1864 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1865 		to_remove = rb_list_head(to_remove)->next;
1866 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1867 	}
1868 
1869 	next_page = rb_list_head(to_remove)->next;
1870 
1871 	/*
1872 	 * Now we remove all pages between tail_page and next_page.
1873 	 * Make sure that we have head_bit value preserved for the
1874 	 * next page
1875 	 */
1876 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1877 						head_bit);
1878 	next_page = rb_list_head(next_page);
1879 	next_page->prev = tail_page;
1880 
1881 	/* make sure pages points to a valid page in the ring buffer */
1882 	cpu_buffer->pages = next_page;
1883 
1884 	/* update head page */
1885 	if (head_bit)
1886 		cpu_buffer->head_page = list_entry(next_page,
1887 						struct buffer_page, list);
1888 
1889 	/*
1890 	 * change read pointer to make sure any read iterators reset
1891 	 * themselves
1892 	 */
1893 	cpu_buffer->read = 0;
1894 
1895 	/* pages are removed, resume tracing and then free the pages */
1896 	atomic_dec(&cpu_buffer->record_disabled);
1897 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1898 
1899 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1900 
1901 	/* last buffer page to remove */
1902 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1903 				list);
1904 	tmp_iter_page = first_page;
1905 
1906 	do {
1907 		cond_resched();
1908 
1909 		to_remove_page = tmp_iter_page;
1910 		rb_inc_page(&tmp_iter_page);
1911 
1912 		/* update the counters */
1913 		page_entries = rb_page_entries(to_remove_page);
1914 		if (page_entries) {
1915 			/*
1916 			 * If something was added to this page, it was full
1917 			 * since it is not the tail page. So we deduct the
1918 			 * bytes consumed in ring buffer from here.
1919 			 * Increment overrun to account for the lost events.
1920 			 */
1921 			local_add(page_entries, &cpu_buffer->overrun);
1922 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1923 		}
1924 
1925 		/*
1926 		 * We have already removed references to this list item, just
1927 		 * free up the buffer_page and its page
1928 		 */
1929 		free_buffer_page(to_remove_page);
1930 		nr_removed--;
1931 
1932 	} while (to_remove_page != last_page);
1933 
1934 	RB_WARN_ON(cpu_buffer, nr_removed);
1935 
1936 	return nr_removed == 0;
1937 }
1938 
1939 static int
1940 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1941 {
1942 	struct list_head *pages = &cpu_buffer->new_pages;
1943 	int retries, success;
1944 
1945 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1946 	/*
1947 	 * We are holding the reader lock, so the reader page won't be swapped
1948 	 * in the ring buffer. Now we are racing with the writer trying to
1949 	 * move head page and the tail page.
1950 	 * We are going to adapt the reader page update process where:
1951 	 * 1. We first splice the start and end of list of new pages between
1952 	 *    the head page and its previous page.
1953 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1954 	 *    start of new pages list.
1955 	 * 3. Finally, we update the head->prev to the end of new list.
1956 	 *
1957 	 * We will try this process 10 times, to make sure that we don't keep
1958 	 * spinning.
1959 	 */
1960 	retries = 10;
1961 	success = 0;
1962 	while (retries--) {
1963 		struct list_head *head_page, *prev_page, *r;
1964 		struct list_head *last_page, *first_page;
1965 		struct list_head *head_page_with_bit;
1966 
1967 		head_page = &rb_set_head_page(cpu_buffer)->list;
1968 		if (!head_page)
1969 			break;
1970 		prev_page = head_page->prev;
1971 
1972 		first_page = pages->next;
1973 		last_page  = pages->prev;
1974 
1975 		head_page_with_bit = (struct list_head *)
1976 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1977 
1978 		last_page->next = head_page_with_bit;
1979 		first_page->prev = prev_page;
1980 
1981 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1982 
1983 		if (r == head_page_with_bit) {
1984 			/*
1985 			 * yay, we replaced the page pointer to our new list,
1986 			 * now, we just have to update to head page's prev
1987 			 * pointer to point to end of list
1988 			 */
1989 			head_page->prev = last_page;
1990 			success = 1;
1991 			break;
1992 		}
1993 	}
1994 
1995 	if (success)
1996 		INIT_LIST_HEAD(pages);
1997 	/*
1998 	 * If we weren't successful in adding in new pages, warn and stop
1999 	 * tracing
2000 	 */
2001 	RB_WARN_ON(cpu_buffer, !success);
2002 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2003 
2004 	/* free pages if they weren't inserted */
2005 	if (!success) {
2006 		struct buffer_page *bpage, *tmp;
2007 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2008 					 list) {
2009 			list_del_init(&bpage->list);
2010 			free_buffer_page(bpage);
2011 		}
2012 	}
2013 	return success;
2014 }
2015 
2016 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2017 {
2018 	int success;
2019 
2020 	if (cpu_buffer->nr_pages_to_update > 0)
2021 		success = rb_insert_pages(cpu_buffer);
2022 	else
2023 		success = rb_remove_pages(cpu_buffer,
2024 					-cpu_buffer->nr_pages_to_update);
2025 
2026 	if (success)
2027 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2028 }
2029 
2030 static void update_pages_handler(struct work_struct *work)
2031 {
2032 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2033 			struct ring_buffer_per_cpu, update_pages_work);
2034 	rb_update_pages(cpu_buffer);
2035 	complete(&cpu_buffer->update_done);
2036 }
2037 
2038 /**
2039  * ring_buffer_resize - resize the ring buffer
2040  * @buffer: the buffer to resize.
2041  * @size: the new size.
2042  * @cpu_id: the cpu buffer to resize
2043  *
2044  * Minimum size is 2 * BUF_PAGE_SIZE.
2045  *
2046  * Returns 0 on success and < 0 on failure.
2047  */
2048 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2049 			int cpu_id)
2050 {
2051 	struct ring_buffer_per_cpu *cpu_buffer;
2052 	unsigned long nr_pages;
2053 	int cpu, err;
2054 
2055 	/*
2056 	 * Always succeed at resizing a non-existent buffer:
2057 	 */
2058 	if (!buffer)
2059 		return 0;
2060 
2061 	/* Make sure the requested buffer exists */
2062 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2063 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2064 		return 0;
2065 
2066 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2067 
2068 	/* we need a minimum of two pages */
2069 	if (nr_pages < 2)
2070 		nr_pages = 2;
2071 
2072 	/* prevent another thread from changing buffer sizes */
2073 	mutex_lock(&buffer->mutex);
2074 
2075 
2076 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2077 		/*
2078 		 * Don't succeed if resizing is disabled, as a reader might be
2079 		 * manipulating the ring buffer and is expecting a sane state while
2080 		 * this is true.
2081 		 */
2082 		for_each_buffer_cpu(buffer, cpu) {
2083 			cpu_buffer = buffer->buffers[cpu];
2084 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2085 				err = -EBUSY;
2086 				goto out_err_unlock;
2087 			}
2088 		}
2089 
2090 		/* calculate the pages to update */
2091 		for_each_buffer_cpu(buffer, cpu) {
2092 			cpu_buffer = buffer->buffers[cpu];
2093 
2094 			cpu_buffer->nr_pages_to_update = nr_pages -
2095 							cpu_buffer->nr_pages;
2096 			/*
2097 			 * nothing more to do for removing pages or no update
2098 			 */
2099 			if (cpu_buffer->nr_pages_to_update <= 0)
2100 				continue;
2101 			/*
2102 			 * to add pages, make sure all new pages can be
2103 			 * allocated without receiving ENOMEM
2104 			 */
2105 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2106 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2107 						&cpu_buffer->new_pages)) {
2108 				/* not enough memory for new pages */
2109 				err = -ENOMEM;
2110 				goto out_err;
2111 			}
2112 		}
2113 
2114 		cpus_read_lock();
2115 		/*
2116 		 * Fire off all the required work handlers
2117 		 * We can't schedule on offline CPUs, but it's not necessary
2118 		 * since we can change their buffer sizes without any race.
2119 		 */
2120 		for_each_buffer_cpu(buffer, cpu) {
2121 			cpu_buffer = buffer->buffers[cpu];
2122 			if (!cpu_buffer->nr_pages_to_update)
2123 				continue;
2124 
2125 			/* Can't run something on an offline CPU. */
2126 			if (!cpu_online(cpu)) {
2127 				rb_update_pages(cpu_buffer);
2128 				cpu_buffer->nr_pages_to_update = 0;
2129 			} else {
2130 				schedule_work_on(cpu,
2131 						&cpu_buffer->update_pages_work);
2132 			}
2133 		}
2134 
2135 		/* wait for all the updates to complete */
2136 		for_each_buffer_cpu(buffer, cpu) {
2137 			cpu_buffer = buffer->buffers[cpu];
2138 			if (!cpu_buffer->nr_pages_to_update)
2139 				continue;
2140 
2141 			if (cpu_online(cpu))
2142 				wait_for_completion(&cpu_buffer->update_done);
2143 			cpu_buffer->nr_pages_to_update = 0;
2144 		}
2145 
2146 		cpus_read_unlock();
2147 	} else {
2148 		cpu_buffer = buffer->buffers[cpu_id];
2149 
2150 		if (nr_pages == cpu_buffer->nr_pages)
2151 			goto out;
2152 
2153 		/*
2154 		 * Don't succeed if resizing is disabled, as a reader might be
2155 		 * manipulating the ring buffer and is expecting a sane state while
2156 		 * this is true.
2157 		 */
2158 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2159 			err = -EBUSY;
2160 			goto out_err_unlock;
2161 		}
2162 
2163 		cpu_buffer->nr_pages_to_update = nr_pages -
2164 						cpu_buffer->nr_pages;
2165 
2166 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2167 		if (cpu_buffer->nr_pages_to_update > 0 &&
2168 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2169 					    &cpu_buffer->new_pages)) {
2170 			err = -ENOMEM;
2171 			goto out_err;
2172 		}
2173 
2174 		cpus_read_lock();
2175 
2176 		/* Can't run something on an offline CPU. */
2177 		if (!cpu_online(cpu_id))
2178 			rb_update_pages(cpu_buffer);
2179 		else {
2180 			schedule_work_on(cpu_id,
2181 					 &cpu_buffer->update_pages_work);
2182 			wait_for_completion(&cpu_buffer->update_done);
2183 		}
2184 
2185 		cpu_buffer->nr_pages_to_update = 0;
2186 		cpus_read_unlock();
2187 	}
2188 
2189  out:
2190 	/*
2191 	 * The ring buffer resize can happen with the ring buffer
2192 	 * enabled, so that the update disturbs the tracing as little
2193 	 * as possible. But if the buffer is disabled, we do not need
2194 	 * to worry about that, and we can take the time to verify
2195 	 * that the buffer is not corrupt.
2196 	 */
2197 	if (atomic_read(&buffer->record_disabled)) {
2198 		atomic_inc(&buffer->record_disabled);
2199 		/*
2200 		 * Even though the buffer was disabled, we must make sure
2201 		 * that it is truly disabled before calling rb_check_pages.
2202 		 * There could have been a race between checking
2203 		 * record_disable and incrementing it.
2204 		 */
2205 		synchronize_rcu();
2206 		for_each_buffer_cpu(buffer, cpu) {
2207 			cpu_buffer = buffer->buffers[cpu];
2208 			rb_check_pages(cpu_buffer);
2209 		}
2210 		atomic_dec(&buffer->record_disabled);
2211 	}
2212 
2213 	mutex_unlock(&buffer->mutex);
2214 	return 0;
2215 
2216  out_err:
2217 	for_each_buffer_cpu(buffer, cpu) {
2218 		struct buffer_page *bpage, *tmp;
2219 
2220 		cpu_buffer = buffer->buffers[cpu];
2221 		cpu_buffer->nr_pages_to_update = 0;
2222 
2223 		if (list_empty(&cpu_buffer->new_pages))
2224 			continue;
2225 
2226 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2227 					list) {
2228 			list_del_init(&bpage->list);
2229 			free_buffer_page(bpage);
2230 		}
2231 	}
2232  out_err_unlock:
2233 	mutex_unlock(&buffer->mutex);
2234 	return err;
2235 }
2236 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2237 
2238 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2239 {
2240 	mutex_lock(&buffer->mutex);
2241 	if (val)
2242 		buffer->flags |= RB_FL_OVERWRITE;
2243 	else
2244 		buffer->flags &= ~RB_FL_OVERWRITE;
2245 	mutex_unlock(&buffer->mutex);
2246 }
2247 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2248 
2249 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2250 {
2251 	return bpage->page->data + index;
2252 }
2253 
2254 static __always_inline struct ring_buffer_event *
2255 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2256 {
2257 	return __rb_page_index(cpu_buffer->reader_page,
2258 			       cpu_buffer->reader_page->read);
2259 }
2260 
2261 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2262 {
2263 	return local_read(&bpage->page->commit);
2264 }
2265 
2266 static struct ring_buffer_event *
2267 rb_iter_head_event(struct ring_buffer_iter *iter)
2268 {
2269 	struct ring_buffer_event *event;
2270 	struct buffer_page *iter_head_page = iter->head_page;
2271 	unsigned long commit;
2272 	unsigned length;
2273 
2274 	if (iter->head != iter->next_event)
2275 		return iter->event;
2276 
2277 	/*
2278 	 * When the writer goes across pages, it issues a cmpxchg which
2279 	 * is a mb(), which will synchronize with the rmb here.
2280 	 * (see rb_tail_page_update() and __rb_reserve_next())
2281 	 */
2282 	commit = rb_page_commit(iter_head_page);
2283 	smp_rmb();
2284 	event = __rb_page_index(iter_head_page, iter->head);
2285 	length = rb_event_length(event);
2286 
2287 	/*
2288 	 * READ_ONCE() doesn't work on functions and we don't want the
2289 	 * compiler doing any crazy optimizations with length.
2290 	 */
2291 	barrier();
2292 
2293 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2294 		/* Writer corrupted the read? */
2295 		goto reset;
2296 
2297 	memcpy(iter->event, event, length);
2298 	/*
2299 	 * If the page stamp is still the same after this rmb() then the
2300 	 * event was safely copied without the writer entering the page.
2301 	 */
2302 	smp_rmb();
2303 
2304 	/* Make sure the page didn't change since we read this */
2305 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2306 	    commit > rb_page_commit(iter_head_page))
2307 		goto reset;
2308 
2309 	iter->next_event = iter->head + length;
2310 	return iter->event;
2311  reset:
2312 	/* Reset to the beginning */
2313 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2314 	iter->head = 0;
2315 	iter->next_event = 0;
2316 	iter->missed_events = 1;
2317 	return NULL;
2318 }
2319 
2320 /* Size is determined by what has been committed */
2321 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2322 {
2323 	return rb_page_commit(bpage);
2324 }
2325 
2326 static __always_inline unsigned
2327 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2328 {
2329 	return rb_page_commit(cpu_buffer->commit_page);
2330 }
2331 
2332 static __always_inline unsigned
2333 rb_event_index(struct ring_buffer_event *event)
2334 {
2335 	unsigned long addr = (unsigned long)event;
2336 
2337 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2338 }
2339 
2340 static void rb_inc_iter(struct ring_buffer_iter *iter)
2341 {
2342 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2343 
2344 	/*
2345 	 * The iterator could be on the reader page (it starts there).
2346 	 * But the head could have moved, since the reader was
2347 	 * found. Check for this case and assign the iterator
2348 	 * to the head page instead of next.
2349 	 */
2350 	if (iter->head_page == cpu_buffer->reader_page)
2351 		iter->head_page = rb_set_head_page(cpu_buffer);
2352 	else
2353 		rb_inc_page(&iter->head_page);
2354 
2355 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2356 	iter->head = 0;
2357 	iter->next_event = 0;
2358 }
2359 
2360 /*
2361  * rb_handle_head_page - writer hit the head page
2362  *
2363  * Returns: +1 to retry page
2364  *           0 to continue
2365  *          -1 on error
2366  */
2367 static int
2368 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2369 		    struct buffer_page *tail_page,
2370 		    struct buffer_page *next_page)
2371 {
2372 	struct buffer_page *new_head;
2373 	int entries;
2374 	int type;
2375 	int ret;
2376 
2377 	entries = rb_page_entries(next_page);
2378 
2379 	/*
2380 	 * The hard part is here. We need to move the head
2381 	 * forward, and protect against both readers on
2382 	 * other CPUs and writers coming in via interrupts.
2383 	 */
2384 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2385 				       RB_PAGE_HEAD);
2386 
2387 	/*
2388 	 * type can be one of four:
2389 	 *  NORMAL - an interrupt already moved it for us
2390 	 *  HEAD   - we are the first to get here.
2391 	 *  UPDATE - we are the interrupt interrupting
2392 	 *           a current move.
2393 	 *  MOVED  - a reader on another CPU moved the next
2394 	 *           pointer to its reader page. Give up
2395 	 *           and try again.
2396 	 */
2397 
2398 	switch (type) {
2399 	case RB_PAGE_HEAD:
2400 		/*
2401 		 * We changed the head to UPDATE, thus
2402 		 * it is our responsibility to update
2403 		 * the counters.
2404 		 */
2405 		local_add(entries, &cpu_buffer->overrun);
2406 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2407 
2408 		/*
2409 		 * The entries will be zeroed out when we move the
2410 		 * tail page.
2411 		 */
2412 
2413 		/* still more to do */
2414 		break;
2415 
2416 	case RB_PAGE_UPDATE:
2417 		/*
2418 		 * This is an interrupt that interrupt the
2419 		 * previous update. Still more to do.
2420 		 */
2421 		break;
2422 	case RB_PAGE_NORMAL:
2423 		/*
2424 		 * An interrupt came in before the update
2425 		 * and processed this for us.
2426 		 * Nothing left to do.
2427 		 */
2428 		return 1;
2429 	case RB_PAGE_MOVED:
2430 		/*
2431 		 * The reader is on another CPU and just did
2432 		 * a swap with our next_page.
2433 		 * Try again.
2434 		 */
2435 		return 1;
2436 	default:
2437 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2438 		return -1;
2439 	}
2440 
2441 	/*
2442 	 * Now that we are here, the old head pointer is
2443 	 * set to UPDATE. This will keep the reader from
2444 	 * swapping the head page with the reader page.
2445 	 * The reader (on another CPU) will spin till
2446 	 * we are finished.
2447 	 *
2448 	 * We just need to protect against interrupts
2449 	 * doing the job. We will set the next pointer
2450 	 * to HEAD. After that, we set the old pointer
2451 	 * to NORMAL, but only if it was HEAD before.
2452 	 * otherwise we are an interrupt, and only
2453 	 * want the outer most commit to reset it.
2454 	 */
2455 	new_head = next_page;
2456 	rb_inc_page(&new_head);
2457 
2458 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2459 				    RB_PAGE_NORMAL);
2460 
2461 	/*
2462 	 * Valid returns are:
2463 	 *  HEAD   - an interrupt came in and already set it.
2464 	 *  NORMAL - One of two things:
2465 	 *            1) We really set it.
2466 	 *            2) A bunch of interrupts came in and moved
2467 	 *               the page forward again.
2468 	 */
2469 	switch (ret) {
2470 	case RB_PAGE_HEAD:
2471 	case RB_PAGE_NORMAL:
2472 		/* OK */
2473 		break;
2474 	default:
2475 		RB_WARN_ON(cpu_buffer, 1);
2476 		return -1;
2477 	}
2478 
2479 	/*
2480 	 * It is possible that an interrupt came in,
2481 	 * set the head up, then more interrupts came in
2482 	 * and moved it again. When we get back here,
2483 	 * the page would have been set to NORMAL but we
2484 	 * just set it back to HEAD.
2485 	 *
2486 	 * How do you detect this? Well, if that happened
2487 	 * the tail page would have moved.
2488 	 */
2489 	if (ret == RB_PAGE_NORMAL) {
2490 		struct buffer_page *buffer_tail_page;
2491 
2492 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2493 		/*
2494 		 * If the tail had moved passed next, then we need
2495 		 * to reset the pointer.
2496 		 */
2497 		if (buffer_tail_page != tail_page &&
2498 		    buffer_tail_page != next_page)
2499 			rb_head_page_set_normal(cpu_buffer, new_head,
2500 						next_page,
2501 						RB_PAGE_HEAD);
2502 	}
2503 
2504 	/*
2505 	 * If this was the outer most commit (the one that
2506 	 * changed the original pointer from HEAD to UPDATE),
2507 	 * then it is up to us to reset it to NORMAL.
2508 	 */
2509 	if (type == RB_PAGE_HEAD) {
2510 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2511 					      tail_page,
2512 					      RB_PAGE_UPDATE);
2513 		if (RB_WARN_ON(cpu_buffer,
2514 			       ret != RB_PAGE_UPDATE))
2515 			return -1;
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 static inline void
2522 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2523 	      unsigned long tail, struct rb_event_info *info)
2524 {
2525 	struct buffer_page *tail_page = info->tail_page;
2526 	struct ring_buffer_event *event;
2527 	unsigned long length = info->length;
2528 
2529 	/*
2530 	 * Only the event that crossed the page boundary
2531 	 * must fill the old tail_page with padding.
2532 	 */
2533 	if (tail >= BUF_PAGE_SIZE) {
2534 		/*
2535 		 * If the page was filled, then we still need
2536 		 * to update the real_end. Reset it to zero
2537 		 * and the reader will ignore it.
2538 		 */
2539 		if (tail == BUF_PAGE_SIZE)
2540 			tail_page->real_end = 0;
2541 
2542 		local_sub(length, &tail_page->write);
2543 		return;
2544 	}
2545 
2546 	event = __rb_page_index(tail_page, tail);
2547 
2548 	/* account for padding bytes */
2549 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2550 
2551 	/*
2552 	 * Save the original length to the meta data.
2553 	 * This will be used by the reader to add lost event
2554 	 * counter.
2555 	 */
2556 	tail_page->real_end = tail;
2557 
2558 	/*
2559 	 * If this event is bigger than the minimum size, then
2560 	 * we need to be careful that we don't subtract the
2561 	 * write counter enough to allow another writer to slip
2562 	 * in on this page.
2563 	 * We put in a discarded commit instead, to make sure
2564 	 * that this space is not used again.
2565 	 *
2566 	 * If we are less than the minimum size, we don't need to
2567 	 * worry about it.
2568 	 */
2569 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2570 		/* No room for any events */
2571 
2572 		/* Mark the rest of the page with padding */
2573 		rb_event_set_padding(event);
2574 
2575 		/* Set the write back to the previous setting */
2576 		local_sub(length, &tail_page->write);
2577 		return;
2578 	}
2579 
2580 	/* Put in a discarded event */
2581 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2582 	event->type_len = RINGBUF_TYPE_PADDING;
2583 	/* time delta must be non zero */
2584 	event->time_delta = 1;
2585 
2586 	/* Set write to end of buffer */
2587 	length = (tail + length) - BUF_PAGE_SIZE;
2588 	local_sub(length, &tail_page->write);
2589 }
2590 
2591 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2592 
2593 /*
2594  * This is the slow path, force gcc not to inline it.
2595  */
2596 static noinline struct ring_buffer_event *
2597 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2598 	     unsigned long tail, struct rb_event_info *info)
2599 {
2600 	struct buffer_page *tail_page = info->tail_page;
2601 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2602 	struct trace_buffer *buffer = cpu_buffer->buffer;
2603 	struct buffer_page *next_page;
2604 	int ret;
2605 
2606 	next_page = tail_page;
2607 
2608 	rb_inc_page(&next_page);
2609 
2610 	/*
2611 	 * If for some reason, we had an interrupt storm that made
2612 	 * it all the way around the buffer, bail, and warn
2613 	 * about it.
2614 	 */
2615 	if (unlikely(next_page == commit_page)) {
2616 		local_inc(&cpu_buffer->commit_overrun);
2617 		goto out_reset;
2618 	}
2619 
2620 	/*
2621 	 * This is where the fun begins!
2622 	 *
2623 	 * We are fighting against races between a reader that
2624 	 * could be on another CPU trying to swap its reader
2625 	 * page with the buffer head.
2626 	 *
2627 	 * We are also fighting against interrupts coming in and
2628 	 * moving the head or tail on us as well.
2629 	 *
2630 	 * If the next page is the head page then we have filled
2631 	 * the buffer, unless the commit page is still on the
2632 	 * reader page.
2633 	 */
2634 	if (rb_is_head_page(next_page, &tail_page->list)) {
2635 
2636 		/*
2637 		 * If the commit is not on the reader page, then
2638 		 * move the header page.
2639 		 */
2640 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2641 			/*
2642 			 * If we are not in overwrite mode,
2643 			 * this is easy, just stop here.
2644 			 */
2645 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2646 				local_inc(&cpu_buffer->dropped_events);
2647 				goto out_reset;
2648 			}
2649 
2650 			ret = rb_handle_head_page(cpu_buffer,
2651 						  tail_page,
2652 						  next_page);
2653 			if (ret < 0)
2654 				goto out_reset;
2655 			if (ret)
2656 				goto out_again;
2657 		} else {
2658 			/*
2659 			 * We need to be careful here too. The
2660 			 * commit page could still be on the reader
2661 			 * page. We could have a small buffer, and
2662 			 * have filled up the buffer with events
2663 			 * from interrupts and such, and wrapped.
2664 			 *
2665 			 * Note, if the tail page is also on the
2666 			 * reader_page, we let it move out.
2667 			 */
2668 			if (unlikely((cpu_buffer->commit_page !=
2669 				      cpu_buffer->tail_page) &&
2670 				     (cpu_buffer->commit_page ==
2671 				      cpu_buffer->reader_page))) {
2672 				local_inc(&cpu_buffer->commit_overrun);
2673 				goto out_reset;
2674 			}
2675 		}
2676 	}
2677 
2678 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2679 
2680  out_again:
2681 
2682 	rb_reset_tail(cpu_buffer, tail, info);
2683 
2684 	/* Commit what we have for now. */
2685 	rb_end_commit(cpu_buffer);
2686 	/* rb_end_commit() decs committing */
2687 	local_inc(&cpu_buffer->committing);
2688 
2689 	/* fail and let the caller try again */
2690 	return ERR_PTR(-EAGAIN);
2691 
2692  out_reset:
2693 	/* reset write */
2694 	rb_reset_tail(cpu_buffer, tail, info);
2695 
2696 	return NULL;
2697 }
2698 
2699 /* Slow path */
2700 static struct ring_buffer_event *
2701 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2702 {
2703 	if (abs)
2704 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2705 	else
2706 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2707 
2708 	/* Not the first event on the page, or not delta? */
2709 	if (abs || rb_event_index(event)) {
2710 		event->time_delta = delta & TS_MASK;
2711 		event->array[0] = delta >> TS_SHIFT;
2712 	} else {
2713 		/* nope, just zero it */
2714 		event->time_delta = 0;
2715 		event->array[0] = 0;
2716 	}
2717 
2718 	return skip_time_extend(event);
2719 }
2720 
2721 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2722 static inline bool sched_clock_stable(void)
2723 {
2724 	return true;
2725 }
2726 #endif
2727 
2728 static void
2729 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2730 		   struct rb_event_info *info)
2731 {
2732 	u64 write_stamp;
2733 
2734 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2735 		  (unsigned long long)info->delta,
2736 		  (unsigned long long)info->ts,
2737 		  (unsigned long long)info->before,
2738 		  (unsigned long long)info->after,
2739 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2740 		  sched_clock_stable() ? "" :
2741 		  "If you just came from a suspend/resume,\n"
2742 		  "please switch to the trace global clock:\n"
2743 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2744 		  "or add trace_clock=global to the kernel command line\n");
2745 }
2746 
2747 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2748 				      struct ring_buffer_event **event,
2749 				      struct rb_event_info *info,
2750 				      u64 *delta,
2751 				      unsigned int *length)
2752 {
2753 	bool abs = info->add_timestamp &
2754 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2755 
2756 	if (unlikely(info->delta > (1ULL << 59))) {
2757 		/* did the clock go backwards */
2758 		if (info->before == info->after && info->before > info->ts) {
2759 			/* not interrupted */
2760 			static int once;
2761 
2762 			/*
2763 			 * This is possible with a recalibrating of the TSC.
2764 			 * Do not produce a call stack, but just report it.
2765 			 */
2766 			if (!once) {
2767 				once++;
2768 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2769 					info->before, info->ts);
2770 			}
2771 		} else
2772 			rb_check_timestamp(cpu_buffer, info);
2773 		if (!abs)
2774 			info->delta = 0;
2775 	}
2776 	*event = rb_add_time_stamp(*event, info->delta, abs);
2777 	*length -= RB_LEN_TIME_EXTEND;
2778 	*delta = 0;
2779 }
2780 
2781 /**
2782  * rb_update_event - update event type and data
2783  * @cpu_buffer: The per cpu buffer of the @event
2784  * @event: the event to update
2785  * @info: The info to update the @event with (contains length and delta)
2786  *
2787  * Update the type and data fields of the @event. The length
2788  * is the actual size that is written to the ring buffer,
2789  * and with this, we can determine what to place into the
2790  * data field.
2791  */
2792 static void
2793 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2794 		struct ring_buffer_event *event,
2795 		struct rb_event_info *info)
2796 {
2797 	unsigned length = info->length;
2798 	u64 delta = info->delta;
2799 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2800 
2801 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2802 		cpu_buffer->event_stamp[nest] = info->ts;
2803 
2804 	/*
2805 	 * If we need to add a timestamp, then we
2806 	 * add it to the start of the reserved space.
2807 	 */
2808 	if (unlikely(info->add_timestamp))
2809 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2810 
2811 	event->time_delta = delta;
2812 	length -= RB_EVNT_HDR_SIZE;
2813 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2814 		event->type_len = 0;
2815 		event->array[0] = length;
2816 	} else
2817 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2818 }
2819 
2820 static unsigned rb_calculate_event_length(unsigned length)
2821 {
2822 	struct ring_buffer_event event; /* Used only for sizeof array */
2823 
2824 	/* zero length can cause confusions */
2825 	if (!length)
2826 		length++;
2827 
2828 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2829 		length += sizeof(event.array[0]);
2830 
2831 	length += RB_EVNT_HDR_SIZE;
2832 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2833 
2834 	/*
2835 	 * In case the time delta is larger than the 27 bits for it
2836 	 * in the header, we need to add a timestamp. If another
2837 	 * event comes in when trying to discard this one to increase
2838 	 * the length, then the timestamp will be added in the allocated
2839 	 * space of this event. If length is bigger than the size needed
2840 	 * for the TIME_EXTEND, then padding has to be used. The events
2841 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2842 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2843 	 * As length is a multiple of 4, we only need to worry if it
2844 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2845 	 */
2846 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2847 		length += RB_ALIGNMENT;
2848 
2849 	return length;
2850 }
2851 
2852 static u64 rb_time_delta(struct ring_buffer_event *event)
2853 {
2854 	switch (event->type_len) {
2855 	case RINGBUF_TYPE_PADDING:
2856 		return 0;
2857 
2858 	case RINGBUF_TYPE_TIME_EXTEND:
2859 		return rb_event_time_stamp(event);
2860 
2861 	case RINGBUF_TYPE_TIME_STAMP:
2862 		return 0;
2863 
2864 	case RINGBUF_TYPE_DATA:
2865 		return event->time_delta;
2866 	default:
2867 		return 0;
2868 	}
2869 }
2870 
2871 static inline int
2872 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2873 		  struct ring_buffer_event *event)
2874 {
2875 	unsigned long new_index, old_index;
2876 	struct buffer_page *bpage;
2877 	unsigned long index;
2878 	unsigned long addr;
2879 	u64 write_stamp;
2880 	u64 delta;
2881 
2882 	new_index = rb_event_index(event);
2883 	old_index = new_index + rb_event_ts_length(event);
2884 	addr = (unsigned long)event;
2885 	addr &= PAGE_MASK;
2886 
2887 	bpage = READ_ONCE(cpu_buffer->tail_page);
2888 
2889 	delta = rb_time_delta(event);
2890 
2891 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2892 		return 0;
2893 
2894 	/* Make sure the write stamp is read before testing the location */
2895 	barrier();
2896 
2897 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2898 		unsigned long write_mask =
2899 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2900 		unsigned long event_length = rb_event_length(event);
2901 
2902 		/* Something came in, can't discard */
2903 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2904 				       write_stamp, write_stamp - delta))
2905 			return 0;
2906 
2907 		/*
2908 		 * It's possible that the event time delta is zero
2909 		 * (has the same time stamp as the previous event)
2910 		 * in which case write_stamp and before_stamp could
2911 		 * be the same. In such a case, force before_stamp
2912 		 * to be different than write_stamp. It doesn't
2913 		 * matter what it is, as long as its different.
2914 		 */
2915 		if (!delta)
2916 			rb_time_set(&cpu_buffer->before_stamp, 0);
2917 
2918 		/*
2919 		 * If an event were to come in now, it would see that the
2920 		 * write_stamp and the before_stamp are different, and assume
2921 		 * that this event just added itself before updating
2922 		 * the write stamp. The interrupting event will fix the
2923 		 * write stamp for us, and use the before stamp as its delta.
2924 		 */
2925 
2926 		/*
2927 		 * This is on the tail page. It is possible that
2928 		 * a write could come in and move the tail page
2929 		 * and write to the next page. That is fine
2930 		 * because we just shorten what is on this page.
2931 		 */
2932 		old_index += write_mask;
2933 		new_index += write_mask;
2934 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2935 		if (index == old_index) {
2936 			/* update counters */
2937 			local_sub(event_length, &cpu_buffer->entries_bytes);
2938 			return 1;
2939 		}
2940 	}
2941 
2942 	/* could not discard */
2943 	return 0;
2944 }
2945 
2946 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2947 {
2948 	local_inc(&cpu_buffer->committing);
2949 	local_inc(&cpu_buffer->commits);
2950 }
2951 
2952 static __always_inline void
2953 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2954 {
2955 	unsigned long max_count;
2956 
2957 	/*
2958 	 * We only race with interrupts and NMIs on this CPU.
2959 	 * If we own the commit event, then we can commit
2960 	 * all others that interrupted us, since the interruptions
2961 	 * are in stack format (they finish before they come
2962 	 * back to us). This allows us to do a simple loop to
2963 	 * assign the commit to the tail.
2964 	 */
2965  again:
2966 	max_count = cpu_buffer->nr_pages * 100;
2967 
2968 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2969 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2970 			return;
2971 		if (RB_WARN_ON(cpu_buffer,
2972 			       rb_is_reader_page(cpu_buffer->tail_page)))
2973 			return;
2974 		local_set(&cpu_buffer->commit_page->page->commit,
2975 			  rb_page_write(cpu_buffer->commit_page));
2976 		rb_inc_page(&cpu_buffer->commit_page);
2977 		/* add barrier to keep gcc from optimizing too much */
2978 		barrier();
2979 	}
2980 	while (rb_commit_index(cpu_buffer) !=
2981 	       rb_page_write(cpu_buffer->commit_page)) {
2982 
2983 		local_set(&cpu_buffer->commit_page->page->commit,
2984 			  rb_page_write(cpu_buffer->commit_page));
2985 		RB_WARN_ON(cpu_buffer,
2986 			   local_read(&cpu_buffer->commit_page->page->commit) &
2987 			   ~RB_WRITE_MASK);
2988 		barrier();
2989 	}
2990 
2991 	/* again, keep gcc from optimizing */
2992 	barrier();
2993 
2994 	/*
2995 	 * If an interrupt came in just after the first while loop
2996 	 * and pushed the tail page forward, we will be left with
2997 	 * a dangling commit that will never go forward.
2998 	 */
2999 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3000 		goto again;
3001 }
3002 
3003 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3004 {
3005 	unsigned long commits;
3006 
3007 	if (RB_WARN_ON(cpu_buffer,
3008 		       !local_read(&cpu_buffer->committing)))
3009 		return;
3010 
3011  again:
3012 	commits = local_read(&cpu_buffer->commits);
3013 	/* synchronize with interrupts */
3014 	barrier();
3015 	if (local_read(&cpu_buffer->committing) == 1)
3016 		rb_set_commit_to_write(cpu_buffer);
3017 
3018 	local_dec(&cpu_buffer->committing);
3019 
3020 	/* synchronize with interrupts */
3021 	barrier();
3022 
3023 	/*
3024 	 * Need to account for interrupts coming in between the
3025 	 * updating of the commit page and the clearing of the
3026 	 * committing counter.
3027 	 */
3028 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3029 	    !local_read(&cpu_buffer->committing)) {
3030 		local_inc(&cpu_buffer->committing);
3031 		goto again;
3032 	}
3033 }
3034 
3035 static inline void rb_event_discard(struct ring_buffer_event *event)
3036 {
3037 	if (extended_time(event))
3038 		event = skip_time_extend(event);
3039 
3040 	/* array[0] holds the actual length for the discarded event */
3041 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3042 	event->type_len = RINGBUF_TYPE_PADDING;
3043 	/* time delta must be non zero */
3044 	if (!event->time_delta)
3045 		event->time_delta = 1;
3046 }
3047 
3048 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3049 		      struct ring_buffer_event *event)
3050 {
3051 	local_inc(&cpu_buffer->entries);
3052 	rb_end_commit(cpu_buffer);
3053 }
3054 
3055 static __always_inline void
3056 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3057 {
3058 	size_t nr_pages;
3059 	size_t dirty;
3060 	size_t full;
3061 
3062 	if (buffer->irq_work.waiters_pending) {
3063 		buffer->irq_work.waiters_pending = false;
3064 		/* irq_work_queue() supplies it's own memory barriers */
3065 		irq_work_queue(&buffer->irq_work.work);
3066 	}
3067 
3068 	if (cpu_buffer->irq_work.waiters_pending) {
3069 		cpu_buffer->irq_work.waiters_pending = false;
3070 		/* irq_work_queue() supplies it's own memory barriers */
3071 		irq_work_queue(&cpu_buffer->irq_work.work);
3072 	}
3073 
3074 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3075 		return;
3076 
3077 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3078 		return;
3079 
3080 	if (!cpu_buffer->irq_work.full_waiters_pending)
3081 		return;
3082 
3083 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3084 
3085 	full = cpu_buffer->shortest_full;
3086 	nr_pages = cpu_buffer->nr_pages;
3087 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3088 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3089 		return;
3090 
3091 	cpu_buffer->irq_work.wakeup_full = true;
3092 	cpu_buffer->irq_work.full_waiters_pending = false;
3093 	/* irq_work_queue() supplies it's own memory barriers */
3094 	irq_work_queue(&cpu_buffer->irq_work.work);
3095 }
3096 
3097 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3098 # define do_ring_buffer_record_recursion()	\
3099 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3100 #else
3101 # define do_ring_buffer_record_recursion() do { } while (0)
3102 #endif
3103 
3104 /*
3105  * The lock and unlock are done within a preempt disable section.
3106  * The current_context per_cpu variable can only be modified
3107  * by the current task between lock and unlock. But it can
3108  * be modified more than once via an interrupt. To pass this
3109  * information from the lock to the unlock without having to
3110  * access the 'in_interrupt()' functions again (which do show
3111  * a bit of overhead in something as critical as function tracing,
3112  * we use a bitmask trick.
3113  *
3114  *  bit 1 =  NMI context
3115  *  bit 2 =  IRQ context
3116  *  bit 3 =  SoftIRQ context
3117  *  bit 4 =  normal context.
3118  *
3119  * This works because this is the order of contexts that can
3120  * preempt other contexts. A SoftIRQ never preempts an IRQ
3121  * context.
3122  *
3123  * When the context is determined, the corresponding bit is
3124  * checked and set (if it was set, then a recursion of that context
3125  * happened).
3126  *
3127  * On unlock, we need to clear this bit. To do so, just subtract
3128  * 1 from the current_context and AND it to itself.
3129  *
3130  * (binary)
3131  *  101 - 1 = 100
3132  *  101 & 100 = 100 (clearing bit zero)
3133  *
3134  *  1010 - 1 = 1001
3135  *  1010 & 1001 = 1000 (clearing bit 1)
3136  *
3137  * The least significant bit can be cleared this way, and it
3138  * just so happens that it is the same bit corresponding to
3139  * the current context.
3140  *
3141  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3142  * is set when a recursion is detected at the current context, and if
3143  * the TRANSITION bit is already set, it will fail the recursion.
3144  * This is needed because there's a lag between the changing of
3145  * interrupt context and updating the preempt count. In this case,
3146  * a false positive will be found. To handle this, one extra recursion
3147  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3148  * bit is already set, then it is considered a recursion and the function
3149  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3150  *
3151  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3152  * to be cleared. Even if it wasn't the context that set it. That is,
3153  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3154  * is called before preempt_count() is updated, since the check will
3155  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3156  * NMI then comes in, it will set the NMI bit, but when the NMI code
3157  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3158  * and leave the NMI bit set. But this is fine, because the interrupt
3159  * code that set the TRANSITION bit will then clear the NMI bit when it
3160  * calls trace_recursive_unlock(). If another NMI comes in, it will
3161  * set the TRANSITION bit and continue.
3162  *
3163  * Note: The TRANSITION bit only handles a single transition between context.
3164  */
3165 
3166 static __always_inline int
3167 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3168 {
3169 	unsigned int val = cpu_buffer->current_context;
3170 	int bit = interrupt_context_level();
3171 
3172 	bit = RB_CTX_NORMAL - bit;
3173 
3174 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3175 		/*
3176 		 * It is possible that this was called by transitioning
3177 		 * between interrupt context, and preempt_count() has not
3178 		 * been updated yet. In this case, use the TRANSITION bit.
3179 		 */
3180 		bit = RB_CTX_TRANSITION;
3181 		if (val & (1 << (bit + cpu_buffer->nest))) {
3182 			do_ring_buffer_record_recursion();
3183 			return 1;
3184 		}
3185 	}
3186 
3187 	val |= (1 << (bit + cpu_buffer->nest));
3188 	cpu_buffer->current_context = val;
3189 
3190 	return 0;
3191 }
3192 
3193 static __always_inline void
3194 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3195 {
3196 	cpu_buffer->current_context &=
3197 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3198 }
3199 
3200 /* The recursive locking above uses 5 bits */
3201 #define NESTED_BITS 5
3202 
3203 /**
3204  * ring_buffer_nest_start - Allow to trace while nested
3205  * @buffer: The ring buffer to modify
3206  *
3207  * The ring buffer has a safety mechanism to prevent recursion.
3208  * But there may be a case where a trace needs to be done while
3209  * tracing something else. In this case, calling this function
3210  * will allow this function to nest within a currently active
3211  * ring_buffer_lock_reserve().
3212  *
3213  * Call this function before calling another ring_buffer_lock_reserve() and
3214  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3215  */
3216 void ring_buffer_nest_start(struct trace_buffer *buffer)
3217 {
3218 	struct ring_buffer_per_cpu *cpu_buffer;
3219 	int cpu;
3220 
3221 	/* Enabled by ring_buffer_nest_end() */
3222 	preempt_disable_notrace();
3223 	cpu = raw_smp_processor_id();
3224 	cpu_buffer = buffer->buffers[cpu];
3225 	/* This is the shift value for the above recursive locking */
3226 	cpu_buffer->nest += NESTED_BITS;
3227 }
3228 
3229 /**
3230  * ring_buffer_nest_end - Allow to trace while nested
3231  * @buffer: The ring buffer to modify
3232  *
3233  * Must be called after ring_buffer_nest_start() and after the
3234  * ring_buffer_unlock_commit().
3235  */
3236 void ring_buffer_nest_end(struct trace_buffer *buffer)
3237 {
3238 	struct ring_buffer_per_cpu *cpu_buffer;
3239 	int cpu;
3240 
3241 	/* disabled by ring_buffer_nest_start() */
3242 	cpu = raw_smp_processor_id();
3243 	cpu_buffer = buffer->buffers[cpu];
3244 	/* This is the shift value for the above recursive locking */
3245 	cpu_buffer->nest -= NESTED_BITS;
3246 	preempt_enable_notrace();
3247 }
3248 
3249 /**
3250  * ring_buffer_unlock_commit - commit a reserved
3251  * @buffer: The buffer to commit to
3252  * @event: The event pointer to commit.
3253  *
3254  * This commits the data to the ring buffer, and releases any locks held.
3255  *
3256  * Must be paired with ring_buffer_lock_reserve.
3257  */
3258 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3259 			      struct ring_buffer_event *event)
3260 {
3261 	struct ring_buffer_per_cpu *cpu_buffer;
3262 	int cpu = raw_smp_processor_id();
3263 
3264 	cpu_buffer = buffer->buffers[cpu];
3265 
3266 	rb_commit(cpu_buffer, event);
3267 
3268 	rb_wakeups(buffer, cpu_buffer);
3269 
3270 	trace_recursive_unlock(cpu_buffer);
3271 
3272 	preempt_enable_notrace();
3273 
3274 	return 0;
3275 }
3276 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3277 
3278 /* Special value to validate all deltas on a page. */
3279 #define CHECK_FULL_PAGE		1L
3280 
3281 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3282 static void dump_buffer_page(struct buffer_data_page *bpage,
3283 			     struct rb_event_info *info,
3284 			     unsigned long tail)
3285 {
3286 	struct ring_buffer_event *event;
3287 	u64 ts, delta;
3288 	int e;
3289 
3290 	ts = bpage->time_stamp;
3291 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3292 
3293 	for (e = 0; e < tail; e += rb_event_length(event)) {
3294 
3295 		event = (struct ring_buffer_event *)(bpage->data + e);
3296 
3297 		switch (event->type_len) {
3298 
3299 		case RINGBUF_TYPE_TIME_EXTEND:
3300 			delta = rb_event_time_stamp(event);
3301 			ts += delta;
3302 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3303 			break;
3304 
3305 		case RINGBUF_TYPE_TIME_STAMP:
3306 			delta = rb_event_time_stamp(event);
3307 			ts = delta;
3308 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3309 			break;
3310 
3311 		case RINGBUF_TYPE_PADDING:
3312 			ts += event->time_delta;
3313 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3314 			break;
3315 
3316 		case RINGBUF_TYPE_DATA:
3317 			ts += event->time_delta;
3318 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3319 			break;
3320 
3321 		default:
3322 			break;
3323 		}
3324 	}
3325 }
3326 
3327 static DEFINE_PER_CPU(atomic_t, checking);
3328 static atomic_t ts_dump;
3329 
3330 /*
3331  * Check if the current event time stamp matches the deltas on
3332  * the buffer page.
3333  */
3334 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3335 			 struct rb_event_info *info,
3336 			 unsigned long tail)
3337 {
3338 	struct ring_buffer_event *event;
3339 	struct buffer_data_page *bpage;
3340 	u64 ts, delta;
3341 	bool full = false;
3342 	int e;
3343 
3344 	bpage = info->tail_page->page;
3345 
3346 	if (tail == CHECK_FULL_PAGE) {
3347 		full = true;
3348 		tail = local_read(&bpage->commit);
3349 	} else if (info->add_timestamp &
3350 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3351 		/* Ignore events with absolute time stamps */
3352 		return;
3353 	}
3354 
3355 	/*
3356 	 * Do not check the first event (skip possible extends too).
3357 	 * Also do not check if previous events have not been committed.
3358 	 */
3359 	if (tail <= 8 || tail > local_read(&bpage->commit))
3360 		return;
3361 
3362 	/*
3363 	 * If this interrupted another event,
3364 	 */
3365 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3366 		goto out;
3367 
3368 	ts = bpage->time_stamp;
3369 
3370 	for (e = 0; e < tail; e += rb_event_length(event)) {
3371 
3372 		event = (struct ring_buffer_event *)(bpage->data + e);
3373 
3374 		switch (event->type_len) {
3375 
3376 		case RINGBUF_TYPE_TIME_EXTEND:
3377 			delta = rb_event_time_stamp(event);
3378 			ts += delta;
3379 			break;
3380 
3381 		case RINGBUF_TYPE_TIME_STAMP:
3382 			delta = rb_event_time_stamp(event);
3383 			ts = delta;
3384 			break;
3385 
3386 		case RINGBUF_TYPE_PADDING:
3387 			if (event->time_delta == 1)
3388 				break;
3389 			fallthrough;
3390 		case RINGBUF_TYPE_DATA:
3391 			ts += event->time_delta;
3392 			break;
3393 
3394 		default:
3395 			RB_WARN_ON(cpu_buffer, 1);
3396 		}
3397 	}
3398 	if ((full && ts > info->ts) ||
3399 	    (!full && ts + info->delta != info->ts)) {
3400 		/* If another report is happening, ignore this one */
3401 		if (atomic_inc_return(&ts_dump) != 1) {
3402 			atomic_dec(&ts_dump);
3403 			goto out;
3404 		}
3405 		atomic_inc(&cpu_buffer->record_disabled);
3406 		/* There's some cases in boot up that this can happen */
3407 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3408 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3409 			cpu_buffer->cpu,
3410 			ts + info->delta, info->ts, info->delta,
3411 			info->before, info->after,
3412 			full ? " (full)" : "");
3413 		dump_buffer_page(bpage, info, tail);
3414 		atomic_dec(&ts_dump);
3415 		/* Do not re-enable checking */
3416 		return;
3417 	}
3418 out:
3419 	atomic_dec(this_cpu_ptr(&checking));
3420 }
3421 #else
3422 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3423 			 struct rb_event_info *info,
3424 			 unsigned long tail)
3425 {
3426 }
3427 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3428 
3429 static struct ring_buffer_event *
3430 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3431 		  struct rb_event_info *info)
3432 {
3433 	struct ring_buffer_event *event;
3434 	struct buffer_page *tail_page;
3435 	unsigned long tail, write, w;
3436 	bool a_ok;
3437 	bool b_ok;
3438 
3439 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3440 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3441 
3442  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3443 	barrier();
3444 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3445 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3446 	barrier();
3447 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3448 
3449 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3450 		info->delta = info->ts;
3451 	} else {
3452 		/*
3453 		 * If interrupting an event time update, we may need an
3454 		 * absolute timestamp.
3455 		 * Don't bother if this is the start of a new page (w == 0).
3456 		 */
3457 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3458 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3459 			info->length += RB_LEN_TIME_EXTEND;
3460 		} else {
3461 			info->delta = info->ts - info->after;
3462 			if (unlikely(test_time_stamp(info->delta))) {
3463 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3464 				info->length += RB_LEN_TIME_EXTEND;
3465 			}
3466 		}
3467 	}
3468 
3469  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3470 
3471  /*C*/	write = local_add_return(info->length, &tail_page->write);
3472 
3473 	/* set write to only the index of the write */
3474 	write &= RB_WRITE_MASK;
3475 
3476 	tail = write - info->length;
3477 
3478 	/* See if we shot pass the end of this buffer page */
3479 	if (unlikely(write > BUF_PAGE_SIZE)) {
3480 		/* before and after may now different, fix it up*/
3481 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3482 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3483 		if (a_ok && b_ok && info->before != info->after)
3484 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3485 					      info->before, info->after);
3486 		if (a_ok && b_ok)
3487 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3488 		return rb_move_tail(cpu_buffer, tail, info);
3489 	}
3490 
3491 	if (likely(tail == w)) {
3492 		u64 save_before;
3493 		bool s_ok;
3494 
3495 		/* Nothing interrupted us between A and C */
3496  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3497 		barrier();
3498  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3499 		RB_WARN_ON(cpu_buffer, !s_ok);
3500 		if (likely(!(info->add_timestamp &
3501 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3502 			/* This did not interrupt any time update */
3503 			info->delta = info->ts - info->after;
3504 		else
3505 			/* Just use full timestamp for interrupting event */
3506 			info->delta = info->ts;
3507 		barrier();
3508 		check_buffer(cpu_buffer, info, tail);
3509 		if (unlikely(info->ts != save_before)) {
3510 			/* SLOW PATH - Interrupted between C and E */
3511 
3512 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3513 			RB_WARN_ON(cpu_buffer, !a_ok);
3514 
3515 			/* Write stamp must only go forward */
3516 			if (save_before > info->after) {
3517 				/*
3518 				 * We do not care about the result, only that
3519 				 * it gets updated atomically.
3520 				 */
3521 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3522 						      info->after, save_before);
3523 			}
3524 		}
3525 	} else {
3526 		u64 ts;
3527 		/* SLOW PATH - Interrupted between A and C */
3528 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3529 		/* Was interrupted before here, write_stamp must be valid */
3530 		RB_WARN_ON(cpu_buffer, !a_ok);
3531 		ts = rb_time_stamp(cpu_buffer->buffer);
3532 		barrier();
3533  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3534 		    info->after < ts &&
3535 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3536 				    info->after, ts)) {
3537 			/* Nothing came after this event between C and E */
3538 			info->delta = ts - info->after;
3539 		} else {
3540 			/*
3541 			 * Interrupted between C and E:
3542 			 * Lost the previous events time stamp. Just set the
3543 			 * delta to zero, and this will be the same time as
3544 			 * the event this event interrupted. And the events that
3545 			 * came after this will still be correct (as they would
3546 			 * have built their delta on the previous event.
3547 			 */
3548 			info->delta = 0;
3549 		}
3550 		info->ts = ts;
3551 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3552 	}
3553 
3554 	/*
3555 	 * If this is the first commit on the page, then it has the same
3556 	 * timestamp as the page itself.
3557 	 */
3558 	if (unlikely(!tail && !(info->add_timestamp &
3559 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3560 		info->delta = 0;
3561 
3562 	/* We reserved something on the buffer */
3563 
3564 	event = __rb_page_index(tail_page, tail);
3565 	rb_update_event(cpu_buffer, event, info);
3566 
3567 	local_inc(&tail_page->entries);
3568 
3569 	/*
3570 	 * If this is the first commit on the page, then update
3571 	 * its timestamp.
3572 	 */
3573 	if (unlikely(!tail))
3574 		tail_page->page->time_stamp = info->ts;
3575 
3576 	/* account for these added bytes */
3577 	local_add(info->length, &cpu_buffer->entries_bytes);
3578 
3579 	return event;
3580 }
3581 
3582 static __always_inline struct ring_buffer_event *
3583 rb_reserve_next_event(struct trace_buffer *buffer,
3584 		      struct ring_buffer_per_cpu *cpu_buffer,
3585 		      unsigned long length)
3586 {
3587 	struct ring_buffer_event *event;
3588 	struct rb_event_info info;
3589 	int nr_loops = 0;
3590 	int add_ts_default;
3591 
3592 	rb_start_commit(cpu_buffer);
3593 	/* The commit page can not change after this */
3594 
3595 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3596 	/*
3597 	 * Due to the ability to swap a cpu buffer from a buffer
3598 	 * it is possible it was swapped before we committed.
3599 	 * (committing stops a swap). We check for it here and
3600 	 * if it happened, we have to fail the write.
3601 	 */
3602 	barrier();
3603 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3604 		local_dec(&cpu_buffer->committing);
3605 		local_dec(&cpu_buffer->commits);
3606 		return NULL;
3607 	}
3608 #endif
3609 
3610 	info.length = rb_calculate_event_length(length);
3611 
3612 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3613 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3614 		info.length += RB_LEN_TIME_EXTEND;
3615 	} else {
3616 		add_ts_default = RB_ADD_STAMP_NONE;
3617 	}
3618 
3619  again:
3620 	info.add_timestamp = add_ts_default;
3621 	info.delta = 0;
3622 
3623 	/*
3624 	 * We allow for interrupts to reenter here and do a trace.
3625 	 * If one does, it will cause this original code to loop
3626 	 * back here. Even with heavy interrupts happening, this
3627 	 * should only happen a few times in a row. If this happens
3628 	 * 1000 times in a row, there must be either an interrupt
3629 	 * storm or we have something buggy.
3630 	 * Bail!
3631 	 */
3632 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3633 		goto out_fail;
3634 
3635 	event = __rb_reserve_next(cpu_buffer, &info);
3636 
3637 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3638 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3639 			info.length -= RB_LEN_TIME_EXTEND;
3640 		goto again;
3641 	}
3642 
3643 	if (likely(event))
3644 		return event;
3645  out_fail:
3646 	rb_end_commit(cpu_buffer);
3647 	return NULL;
3648 }
3649 
3650 /**
3651  * ring_buffer_lock_reserve - reserve a part of the buffer
3652  * @buffer: the ring buffer to reserve from
3653  * @length: the length of the data to reserve (excluding event header)
3654  *
3655  * Returns a reserved event on the ring buffer to copy directly to.
3656  * The user of this interface will need to get the body to write into
3657  * and can use the ring_buffer_event_data() interface.
3658  *
3659  * The length is the length of the data needed, not the event length
3660  * which also includes the event header.
3661  *
3662  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3663  * If NULL is returned, then nothing has been allocated or locked.
3664  */
3665 struct ring_buffer_event *
3666 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3667 {
3668 	struct ring_buffer_per_cpu *cpu_buffer;
3669 	struct ring_buffer_event *event;
3670 	int cpu;
3671 
3672 	/* If we are tracing schedule, we don't want to recurse */
3673 	preempt_disable_notrace();
3674 
3675 	if (unlikely(atomic_read(&buffer->record_disabled)))
3676 		goto out;
3677 
3678 	cpu = raw_smp_processor_id();
3679 
3680 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3681 		goto out;
3682 
3683 	cpu_buffer = buffer->buffers[cpu];
3684 
3685 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3686 		goto out;
3687 
3688 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3689 		goto out;
3690 
3691 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3692 		goto out;
3693 
3694 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3695 	if (!event)
3696 		goto out_unlock;
3697 
3698 	return event;
3699 
3700  out_unlock:
3701 	trace_recursive_unlock(cpu_buffer);
3702  out:
3703 	preempt_enable_notrace();
3704 	return NULL;
3705 }
3706 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3707 
3708 /*
3709  * Decrement the entries to the page that an event is on.
3710  * The event does not even need to exist, only the pointer
3711  * to the page it is on. This may only be called before the commit
3712  * takes place.
3713  */
3714 static inline void
3715 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3716 		   struct ring_buffer_event *event)
3717 {
3718 	unsigned long addr = (unsigned long)event;
3719 	struct buffer_page *bpage = cpu_buffer->commit_page;
3720 	struct buffer_page *start;
3721 
3722 	addr &= PAGE_MASK;
3723 
3724 	/* Do the likely case first */
3725 	if (likely(bpage->page == (void *)addr)) {
3726 		local_dec(&bpage->entries);
3727 		return;
3728 	}
3729 
3730 	/*
3731 	 * Because the commit page may be on the reader page we
3732 	 * start with the next page and check the end loop there.
3733 	 */
3734 	rb_inc_page(&bpage);
3735 	start = bpage;
3736 	do {
3737 		if (bpage->page == (void *)addr) {
3738 			local_dec(&bpage->entries);
3739 			return;
3740 		}
3741 		rb_inc_page(&bpage);
3742 	} while (bpage != start);
3743 
3744 	/* commit not part of this buffer?? */
3745 	RB_WARN_ON(cpu_buffer, 1);
3746 }
3747 
3748 /**
3749  * ring_buffer_discard_commit - discard an event that has not been committed
3750  * @buffer: the ring buffer
3751  * @event: non committed event to discard
3752  *
3753  * Sometimes an event that is in the ring buffer needs to be ignored.
3754  * This function lets the user discard an event in the ring buffer
3755  * and then that event will not be read later.
3756  *
3757  * This function only works if it is called before the item has been
3758  * committed. It will try to free the event from the ring buffer
3759  * if another event has not been added behind it.
3760  *
3761  * If another event has been added behind it, it will set the event
3762  * up as discarded, and perform the commit.
3763  *
3764  * If this function is called, do not call ring_buffer_unlock_commit on
3765  * the event.
3766  */
3767 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3768 				struct ring_buffer_event *event)
3769 {
3770 	struct ring_buffer_per_cpu *cpu_buffer;
3771 	int cpu;
3772 
3773 	/* The event is discarded regardless */
3774 	rb_event_discard(event);
3775 
3776 	cpu = smp_processor_id();
3777 	cpu_buffer = buffer->buffers[cpu];
3778 
3779 	/*
3780 	 * This must only be called if the event has not been
3781 	 * committed yet. Thus we can assume that preemption
3782 	 * is still disabled.
3783 	 */
3784 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3785 
3786 	rb_decrement_entry(cpu_buffer, event);
3787 	if (rb_try_to_discard(cpu_buffer, event))
3788 		goto out;
3789 
3790  out:
3791 	rb_end_commit(cpu_buffer);
3792 
3793 	trace_recursive_unlock(cpu_buffer);
3794 
3795 	preempt_enable_notrace();
3796 
3797 }
3798 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3799 
3800 /**
3801  * ring_buffer_write - write data to the buffer without reserving
3802  * @buffer: The ring buffer to write to.
3803  * @length: The length of the data being written (excluding the event header)
3804  * @data: The data to write to the buffer.
3805  *
3806  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3807  * one function. If you already have the data to write to the buffer, it
3808  * may be easier to simply call this function.
3809  *
3810  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3811  * and not the length of the event which would hold the header.
3812  */
3813 int ring_buffer_write(struct trace_buffer *buffer,
3814 		      unsigned long length,
3815 		      void *data)
3816 {
3817 	struct ring_buffer_per_cpu *cpu_buffer;
3818 	struct ring_buffer_event *event;
3819 	void *body;
3820 	int ret = -EBUSY;
3821 	int cpu;
3822 
3823 	preempt_disable_notrace();
3824 
3825 	if (atomic_read(&buffer->record_disabled))
3826 		goto out;
3827 
3828 	cpu = raw_smp_processor_id();
3829 
3830 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3831 		goto out;
3832 
3833 	cpu_buffer = buffer->buffers[cpu];
3834 
3835 	if (atomic_read(&cpu_buffer->record_disabled))
3836 		goto out;
3837 
3838 	if (length > BUF_MAX_DATA_SIZE)
3839 		goto out;
3840 
3841 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3842 		goto out;
3843 
3844 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3845 	if (!event)
3846 		goto out_unlock;
3847 
3848 	body = rb_event_data(event);
3849 
3850 	memcpy(body, data, length);
3851 
3852 	rb_commit(cpu_buffer, event);
3853 
3854 	rb_wakeups(buffer, cpu_buffer);
3855 
3856 	ret = 0;
3857 
3858  out_unlock:
3859 	trace_recursive_unlock(cpu_buffer);
3860 
3861  out:
3862 	preempt_enable_notrace();
3863 
3864 	return ret;
3865 }
3866 EXPORT_SYMBOL_GPL(ring_buffer_write);
3867 
3868 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3869 {
3870 	struct buffer_page *reader = cpu_buffer->reader_page;
3871 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3872 	struct buffer_page *commit = cpu_buffer->commit_page;
3873 
3874 	/* In case of error, head will be NULL */
3875 	if (unlikely(!head))
3876 		return true;
3877 
3878 	/* Reader should exhaust content in reader page */
3879 	if (reader->read != rb_page_commit(reader))
3880 		return false;
3881 
3882 	/*
3883 	 * If writers are committing on the reader page, knowing all
3884 	 * committed content has been read, the ring buffer is empty.
3885 	 */
3886 	if (commit == reader)
3887 		return true;
3888 
3889 	/*
3890 	 * If writers are committing on a page other than reader page
3891 	 * and head page, there should always be content to read.
3892 	 */
3893 	if (commit != head)
3894 		return false;
3895 
3896 	/*
3897 	 * Writers are committing on the head page, we just need
3898 	 * to care about there're committed data, and the reader will
3899 	 * swap reader page with head page when it is to read data.
3900 	 */
3901 	return rb_page_commit(commit) == 0;
3902 }
3903 
3904 /**
3905  * ring_buffer_record_disable - stop all writes into the buffer
3906  * @buffer: The ring buffer to stop writes to.
3907  *
3908  * This prevents all writes to the buffer. Any attempt to write
3909  * to the buffer after this will fail and return NULL.
3910  *
3911  * The caller should call synchronize_rcu() after this.
3912  */
3913 void ring_buffer_record_disable(struct trace_buffer *buffer)
3914 {
3915 	atomic_inc(&buffer->record_disabled);
3916 }
3917 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3918 
3919 /**
3920  * ring_buffer_record_enable - enable writes to the buffer
3921  * @buffer: The ring buffer to enable writes
3922  *
3923  * Note, multiple disables will need the same number of enables
3924  * to truly enable the writing (much like preempt_disable).
3925  */
3926 void ring_buffer_record_enable(struct trace_buffer *buffer)
3927 {
3928 	atomic_dec(&buffer->record_disabled);
3929 }
3930 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3931 
3932 /**
3933  * ring_buffer_record_off - stop all writes into the buffer
3934  * @buffer: The ring buffer to stop writes to.
3935  *
3936  * This prevents all writes to the buffer. Any attempt to write
3937  * to the buffer after this will fail and return NULL.
3938  *
3939  * This is different than ring_buffer_record_disable() as
3940  * it works like an on/off switch, where as the disable() version
3941  * must be paired with a enable().
3942  */
3943 void ring_buffer_record_off(struct trace_buffer *buffer)
3944 {
3945 	unsigned int rd;
3946 	unsigned int new_rd;
3947 
3948 	do {
3949 		rd = atomic_read(&buffer->record_disabled);
3950 		new_rd = rd | RB_BUFFER_OFF;
3951 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3952 }
3953 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3954 
3955 /**
3956  * ring_buffer_record_on - restart writes into the buffer
3957  * @buffer: The ring buffer to start writes to.
3958  *
3959  * This enables all writes to the buffer that was disabled by
3960  * ring_buffer_record_off().
3961  *
3962  * This is different than ring_buffer_record_enable() as
3963  * it works like an on/off switch, where as the enable() version
3964  * must be paired with a disable().
3965  */
3966 void ring_buffer_record_on(struct trace_buffer *buffer)
3967 {
3968 	unsigned int rd;
3969 	unsigned int new_rd;
3970 
3971 	do {
3972 		rd = atomic_read(&buffer->record_disabled);
3973 		new_rd = rd & ~RB_BUFFER_OFF;
3974 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3975 }
3976 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3977 
3978 /**
3979  * ring_buffer_record_is_on - return true if the ring buffer can write
3980  * @buffer: The ring buffer to see if write is enabled
3981  *
3982  * Returns true if the ring buffer is in a state that it accepts writes.
3983  */
3984 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3985 {
3986 	return !atomic_read(&buffer->record_disabled);
3987 }
3988 
3989 /**
3990  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3991  * @buffer: The ring buffer to see if write is set enabled
3992  *
3993  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3994  * Note that this does NOT mean it is in a writable state.
3995  *
3996  * It may return true when the ring buffer has been disabled by
3997  * ring_buffer_record_disable(), as that is a temporary disabling of
3998  * the ring buffer.
3999  */
4000 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4001 {
4002 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4003 }
4004 
4005 /**
4006  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4007  * @buffer: The ring buffer to stop writes to.
4008  * @cpu: The CPU buffer to stop
4009  *
4010  * This prevents all writes to the buffer. Any attempt to write
4011  * to the buffer after this will fail and return NULL.
4012  *
4013  * The caller should call synchronize_rcu() after this.
4014  */
4015 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4016 {
4017 	struct ring_buffer_per_cpu *cpu_buffer;
4018 
4019 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4020 		return;
4021 
4022 	cpu_buffer = buffer->buffers[cpu];
4023 	atomic_inc(&cpu_buffer->record_disabled);
4024 }
4025 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4026 
4027 /**
4028  * ring_buffer_record_enable_cpu - enable writes to the buffer
4029  * @buffer: The ring buffer to enable writes
4030  * @cpu: The CPU to enable.
4031  *
4032  * Note, multiple disables will need the same number of enables
4033  * to truly enable the writing (much like preempt_disable).
4034  */
4035 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4036 {
4037 	struct ring_buffer_per_cpu *cpu_buffer;
4038 
4039 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4040 		return;
4041 
4042 	cpu_buffer = buffer->buffers[cpu];
4043 	atomic_dec(&cpu_buffer->record_disabled);
4044 }
4045 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4046 
4047 /*
4048  * The total entries in the ring buffer is the running counter
4049  * of entries entered into the ring buffer, minus the sum of
4050  * the entries read from the ring buffer and the number of
4051  * entries that were overwritten.
4052  */
4053 static inline unsigned long
4054 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4055 {
4056 	return local_read(&cpu_buffer->entries) -
4057 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4058 }
4059 
4060 /**
4061  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4062  * @buffer: The ring buffer
4063  * @cpu: The per CPU buffer to read from.
4064  */
4065 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4066 {
4067 	unsigned long flags;
4068 	struct ring_buffer_per_cpu *cpu_buffer;
4069 	struct buffer_page *bpage;
4070 	u64 ret = 0;
4071 
4072 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4073 		return 0;
4074 
4075 	cpu_buffer = buffer->buffers[cpu];
4076 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4077 	/*
4078 	 * if the tail is on reader_page, oldest time stamp is on the reader
4079 	 * page
4080 	 */
4081 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4082 		bpage = cpu_buffer->reader_page;
4083 	else
4084 		bpage = rb_set_head_page(cpu_buffer);
4085 	if (bpage)
4086 		ret = bpage->page->time_stamp;
4087 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4088 
4089 	return ret;
4090 }
4091 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4092 
4093 /**
4094  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4095  * @buffer: The ring buffer
4096  * @cpu: The per CPU buffer to read from.
4097  */
4098 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4099 {
4100 	struct ring_buffer_per_cpu *cpu_buffer;
4101 	unsigned long ret;
4102 
4103 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4104 		return 0;
4105 
4106 	cpu_buffer = buffer->buffers[cpu];
4107 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4108 
4109 	return ret;
4110 }
4111 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4112 
4113 /**
4114  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4115  * @buffer: The ring buffer
4116  * @cpu: The per CPU buffer to get the entries from.
4117  */
4118 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4119 {
4120 	struct ring_buffer_per_cpu *cpu_buffer;
4121 
4122 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4123 		return 0;
4124 
4125 	cpu_buffer = buffer->buffers[cpu];
4126 
4127 	return rb_num_of_entries(cpu_buffer);
4128 }
4129 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4130 
4131 /**
4132  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4133  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4134  * @buffer: The ring buffer
4135  * @cpu: The per CPU buffer to get the number of overruns from
4136  */
4137 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4138 {
4139 	struct ring_buffer_per_cpu *cpu_buffer;
4140 	unsigned long ret;
4141 
4142 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4143 		return 0;
4144 
4145 	cpu_buffer = buffer->buffers[cpu];
4146 	ret = local_read(&cpu_buffer->overrun);
4147 
4148 	return ret;
4149 }
4150 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4151 
4152 /**
4153  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4154  * commits failing due to the buffer wrapping around while there are uncommitted
4155  * events, such as during an interrupt storm.
4156  * @buffer: The ring buffer
4157  * @cpu: The per CPU buffer to get the number of overruns from
4158  */
4159 unsigned long
4160 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4161 {
4162 	struct ring_buffer_per_cpu *cpu_buffer;
4163 	unsigned long ret;
4164 
4165 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166 		return 0;
4167 
4168 	cpu_buffer = buffer->buffers[cpu];
4169 	ret = local_read(&cpu_buffer->commit_overrun);
4170 
4171 	return ret;
4172 }
4173 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4174 
4175 /**
4176  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4177  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4178  * @buffer: The ring buffer
4179  * @cpu: The per CPU buffer to get the number of overruns from
4180  */
4181 unsigned long
4182 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4183 {
4184 	struct ring_buffer_per_cpu *cpu_buffer;
4185 	unsigned long ret;
4186 
4187 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4188 		return 0;
4189 
4190 	cpu_buffer = buffer->buffers[cpu];
4191 	ret = local_read(&cpu_buffer->dropped_events);
4192 
4193 	return ret;
4194 }
4195 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4196 
4197 /**
4198  * ring_buffer_read_events_cpu - get the number of events successfully read
4199  * @buffer: The ring buffer
4200  * @cpu: The per CPU buffer to get the number of events read
4201  */
4202 unsigned long
4203 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4204 {
4205 	struct ring_buffer_per_cpu *cpu_buffer;
4206 
4207 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4208 		return 0;
4209 
4210 	cpu_buffer = buffer->buffers[cpu];
4211 	return cpu_buffer->read;
4212 }
4213 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4214 
4215 /**
4216  * ring_buffer_entries - get the number of entries in a buffer
4217  * @buffer: The ring buffer
4218  *
4219  * Returns the total number of entries in the ring buffer
4220  * (all CPU entries)
4221  */
4222 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4223 {
4224 	struct ring_buffer_per_cpu *cpu_buffer;
4225 	unsigned long entries = 0;
4226 	int cpu;
4227 
4228 	/* if you care about this being correct, lock the buffer */
4229 	for_each_buffer_cpu(buffer, cpu) {
4230 		cpu_buffer = buffer->buffers[cpu];
4231 		entries += rb_num_of_entries(cpu_buffer);
4232 	}
4233 
4234 	return entries;
4235 }
4236 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4237 
4238 /**
4239  * ring_buffer_overruns - get the number of overruns in buffer
4240  * @buffer: The ring buffer
4241  *
4242  * Returns the total number of overruns in the ring buffer
4243  * (all CPU entries)
4244  */
4245 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4246 {
4247 	struct ring_buffer_per_cpu *cpu_buffer;
4248 	unsigned long overruns = 0;
4249 	int cpu;
4250 
4251 	/* if you care about this being correct, lock the buffer */
4252 	for_each_buffer_cpu(buffer, cpu) {
4253 		cpu_buffer = buffer->buffers[cpu];
4254 		overruns += local_read(&cpu_buffer->overrun);
4255 	}
4256 
4257 	return overruns;
4258 }
4259 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4260 
4261 static void rb_iter_reset(struct ring_buffer_iter *iter)
4262 {
4263 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4264 
4265 	/* Iterator usage is expected to have record disabled */
4266 	iter->head_page = cpu_buffer->reader_page;
4267 	iter->head = cpu_buffer->reader_page->read;
4268 	iter->next_event = iter->head;
4269 
4270 	iter->cache_reader_page = iter->head_page;
4271 	iter->cache_read = cpu_buffer->read;
4272 
4273 	if (iter->head) {
4274 		iter->read_stamp = cpu_buffer->read_stamp;
4275 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4276 	} else {
4277 		iter->read_stamp = iter->head_page->page->time_stamp;
4278 		iter->page_stamp = iter->read_stamp;
4279 	}
4280 }
4281 
4282 /**
4283  * ring_buffer_iter_reset - reset an iterator
4284  * @iter: The iterator to reset
4285  *
4286  * Resets the iterator, so that it will start from the beginning
4287  * again.
4288  */
4289 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4290 {
4291 	struct ring_buffer_per_cpu *cpu_buffer;
4292 	unsigned long flags;
4293 
4294 	if (!iter)
4295 		return;
4296 
4297 	cpu_buffer = iter->cpu_buffer;
4298 
4299 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4300 	rb_iter_reset(iter);
4301 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4302 }
4303 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4304 
4305 /**
4306  * ring_buffer_iter_empty - check if an iterator has no more to read
4307  * @iter: The iterator to check
4308  */
4309 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4310 {
4311 	struct ring_buffer_per_cpu *cpu_buffer;
4312 	struct buffer_page *reader;
4313 	struct buffer_page *head_page;
4314 	struct buffer_page *commit_page;
4315 	struct buffer_page *curr_commit_page;
4316 	unsigned commit;
4317 	u64 curr_commit_ts;
4318 	u64 commit_ts;
4319 
4320 	cpu_buffer = iter->cpu_buffer;
4321 	reader = cpu_buffer->reader_page;
4322 	head_page = cpu_buffer->head_page;
4323 	commit_page = cpu_buffer->commit_page;
4324 	commit_ts = commit_page->page->time_stamp;
4325 
4326 	/*
4327 	 * When the writer goes across pages, it issues a cmpxchg which
4328 	 * is a mb(), which will synchronize with the rmb here.
4329 	 * (see rb_tail_page_update())
4330 	 */
4331 	smp_rmb();
4332 	commit = rb_page_commit(commit_page);
4333 	/* We want to make sure that the commit page doesn't change */
4334 	smp_rmb();
4335 
4336 	/* Make sure commit page didn't change */
4337 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4338 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4339 
4340 	/* If the commit page changed, then there's more data */
4341 	if (curr_commit_page != commit_page ||
4342 	    curr_commit_ts != commit_ts)
4343 		return 0;
4344 
4345 	/* Still racy, as it may return a false positive, but that's OK */
4346 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4347 		(iter->head_page == reader && commit_page == head_page &&
4348 		 head_page->read == commit &&
4349 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4350 }
4351 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4352 
4353 static void
4354 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4355 		     struct ring_buffer_event *event)
4356 {
4357 	u64 delta;
4358 
4359 	switch (event->type_len) {
4360 	case RINGBUF_TYPE_PADDING:
4361 		return;
4362 
4363 	case RINGBUF_TYPE_TIME_EXTEND:
4364 		delta = rb_event_time_stamp(event);
4365 		cpu_buffer->read_stamp += delta;
4366 		return;
4367 
4368 	case RINGBUF_TYPE_TIME_STAMP:
4369 		delta = rb_event_time_stamp(event);
4370 		cpu_buffer->read_stamp = delta;
4371 		return;
4372 
4373 	case RINGBUF_TYPE_DATA:
4374 		cpu_buffer->read_stamp += event->time_delta;
4375 		return;
4376 
4377 	default:
4378 		RB_WARN_ON(cpu_buffer, 1);
4379 	}
4380 	return;
4381 }
4382 
4383 static void
4384 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4385 			  struct ring_buffer_event *event)
4386 {
4387 	u64 delta;
4388 
4389 	switch (event->type_len) {
4390 	case RINGBUF_TYPE_PADDING:
4391 		return;
4392 
4393 	case RINGBUF_TYPE_TIME_EXTEND:
4394 		delta = rb_event_time_stamp(event);
4395 		iter->read_stamp += delta;
4396 		return;
4397 
4398 	case RINGBUF_TYPE_TIME_STAMP:
4399 		delta = rb_event_time_stamp(event);
4400 		iter->read_stamp = delta;
4401 		return;
4402 
4403 	case RINGBUF_TYPE_DATA:
4404 		iter->read_stamp += event->time_delta;
4405 		return;
4406 
4407 	default:
4408 		RB_WARN_ON(iter->cpu_buffer, 1);
4409 	}
4410 	return;
4411 }
4412 
4413 static struct buffer_page *
4414 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4415 {
4416 	struct buffer_page *reader = NULL;
4417 	unsigned long overwrite;
4418 	unsigned long flags;
4419 	int nr_loops = 0;
4420 	int ret;
4421 
4422 	local_irq_save(flags);
4423 	arch_spin_lock(&cpu_buffer->lock);
4424 
4425  again:
4426 	/*
4427 	 * This should normally only loop twice. But because the
4428 	 * start of the reader inserts an empty page, it causes
4429 	 * a case where we will loop three times. There should be no
4430 	 * reason to loop four times (that I know of).
4431 	 */
4432 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4433 		reader = NULL;
4434 		goto out;
4435 	}
4436 
4437 	reader = cpu_buffer->reader_page;
4438 
4439 	/* If there's more to read, return this page */
4440 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4441 		goto out;
4442 
4443 	/* Never should we have an index greater than the size */
4444 	if (RB_WARN_ON(cpu_buffer,
4445 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4446 		goto out;
4447 
4448 	/* check if we caught up to the tail */
4449 	reader = NULL;
4450 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4451 		goto out;
4452 
4453 	/* Don't bother swapping if the ring buffer is empty */
4454 	if (rb_num_of_entries(cpu_buffer) == 0)
4455 		goto out;
4456 
4457 	/*
4458 	 * Reset the reader page to size zero.
4459 	 */
4460 	local_set(&cpu_buffer->reader_page->write, 0);
4461 	local_set(&cpu_buffer->reader_page->entries, 0);
4462 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4463 	cpu_buffer->reader_page->real_end = 0;
4464 
4465  spin:
4466 	/*
4467 	 * Splice the empty reader page into the list around the head.
4468 	 */
4469 	reader = rb_set_head_page(cpu_buffer);
4470 	if (!reader)
4471 		goto out;
4472 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4473 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4474 
4475 	/*
4476 	 * cpu_buffer->pages just needs to point to the buffer, it
4477 	 *  has no specific buffer page to point to. Lets move it out
4478 	 *  of our way so we don't accidentally swap it.
4479 	 */
4480 	cpu_buffer->pages = reader->list.prev;
4481 
4482 	/* The reader page will be pointing to the new head */
4483 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4484 
4485 	/*
4486 	 * We want to make sure we read the overruns after we set up our
4487 	 * pointers to the next object. The writer side does a
4488 	 * cmpxchg to cross pages which acts as the mb on the writer
4489 	 * side. Note, the reader will constantly fail the swap
4490 	 * while the writer is updating the pointers, so this
4491 	 * guarantees that the overwrite recorded here is the one we
4492 	 * want to compare with the last_overrun.
4493 	 */
4494 	smp_mb();
4495 	overwrite = local_read(&(cpu_buffer->overrun));
4496 
4497 	/*
4498 	 * Here's the tricky part.
4499 	 *
4500 	 * We need to move the pointer past the header page.
4501 	 * But we can only do that if a writer is not currently
4502 	 * moving it. The page before the header page has the
4503 	 * flag bit '1' set if it is pointing to the page we want.
4504 	 * but if the writer is in the process of moving it
4505 	 * than it will be '2' or already moved '0'.
4506 	 */
4507 
4508 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4509 
4510 	/*
4511 	 * If we did not convert it, then we must try again.
4512 	 */
4513 	if (!ret)
4514 		goto spin;
4515 
4516 	/*
4517 	 * Yay! We succeeded in replacing the page.
4518 	 *
4519 	 * Now make the new head point back to the reader page.
4520 	 */
4521 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4522 	rb_inc_page(&cpu_buffer->head_page);
4523 
4524 	local_inc(&cpu_buffer->pages_read);
4525 
4526 	/* Finally update the reader page to the new head */
4527 	cpu_buffer->reader_page = reader;
4528 	cpu_buffer->reader_page->read = 0;
4529 
4530 	if (overwrite != cpu_buffer->last_overrun) {
4531 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4532 		cpu_buffer->last_overrun = overwrite;
4533 	}
4534 
4535 	goto again;
4536 
4537  out:
4538 	/* Update the read_stamp on the first event */
4539 	if (reader && reader->read == 0)
4540 		cpu_buffer->read_stamp = reader->page->time_stamp;
4541 
4542 	arch_spin_unlock(&cpu_buffer->lock);
4543 	local_irq_restore(flags);
4544 
4545 	return reader;
4546 }
4547 
4548 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4549 {
4550 	struct ring_buffer_event *event;
4551 	struct buffer_page *reader;
4552 	unsigned length;
4553 
4554 	reader = rb_get_reader_page(cpu_buffer);
4555 
4556 	/* This function should not be called when buffer is empty */
4557 	if (RB_WARN_ON(cpu_buffer, !reader))
4558 		return;
4559 
4560 	event = rb_reader_event(cpu_buffer);
4561 
4562 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4563 		cpu_buffer->read++;
4564 
4565 	rb_update_read_stamp(cpu_buffer, event);
4566 
4567 	length = rb_event_length(event);
4568 	cpu_buffer->reader_page->read += length;
4569 }
4570 
4571 static void rb_advance_iter(struct ring_buffer_iter *iter)
4572 {
4573 	struct ring_buffer_per_cpu *cpu_buffer;
4574 
4575 	cpu_buffer = iter->cpu_buffer;
4576 
4577 	/* If head == next_event then we need to jump to the next event */
4578 	if (iter->head == iter->next_event) {
4579 		/* If the event gets overwritten again, there's nothing to do */
4580 		if (rb_iter_head_event(iter) == NULL)
4581 			return;
4582 	}
4583 
4584 	iter->head = iter->next_event;
4585 
4586 	/*
4587 	 * Check if we are at the end of the buffer.
4588 	 */
4589 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4590 		/* discarded commits can make the page empty */
4591 		if (iter->head_page == cpu_buffer->commit_page)
4592 			return;
4593 		rb_inc_iter(iter);
4594 		return;
4595 	}
4596 
4597 	rb_update_iter_read_stamp(iter, iter->event);
4598 }
4599 
4600 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4601 {
4602 	return cpu_buffer->lost_events;
4603 }
4604 
4605 static struct ring_buffer_event *
4606 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4607 	       unsigned long *lost_events)
4608 {
4609 	struct ring_buffer_event *event;
4610 	struct buffer_page *reader;
4611 	int nr_loops = 0;
4612 
4613 	if (ts)
4614 		*ts = 0;
4615  again:
4616 	/*
4617 	 * We repeat when a time extend is encountered.
4618 	 * Since the time extend is always attached to a data event,
4619 	 * we should never loop more than once.
4620 	 * (We never hit the following condition more than twice).
4621 	 */
4622 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4623 		return NULL;
4624 
4625 	reader = rb_get_reader_page(cpu_buffer);
4626 	if (!reader)
4627 		return NULL;
4628 
4629 	event = rb_reader_event(cpu_buffer);
4630 
4631 	switch (event->type_len) {
4632 	case RINGBUF_TYPE_PADDING:
4633 		if (rb_null_event(event))
4634 			RB_WARN_ON(cpu_buffer, 1);
4635 		/*
4636 		 * Because the writer could be discarding every
4637 		 * event it creates (which would probably be bad)
4638 		 * if we were to go back to "again" then we may never
4639 		 * catch up, and will trigger the warn on, or lock
4640 		 * the box. Return the padding, and we will release
4641 		 * the current locks, and try again.
4642 		 */
4643 		return event;
4644 
4645 	case RINGBUF_TYPE_TIME_EXTEND:
4646 		/* Internal data, OK to advance */
4647 		rb_advance_reader(cpu_buffer);
4648 		goto again;
4649 
4650 	case RINGBUF_TYPE_TIME_STAMP:
4651 		if (ts) {
4652 			*ts = rb_event_time_stamp(event);
4653 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4654 							 cpu_buffer->cpu, ts);
4655 		}
4656 		/* Internal data, OK to advance */
4657 		rb_advance_reader(cpu_buffer);
4658 		goto again;
4659 
4660 	case RINGBUF_TYPE_DATA:
4661 		if (ts && !(*ts)) {
4662 			*ts = cpu_buffer->read_stamp + event->time_delta;
4663 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4664 							 cpu_buffer->cpu, ts);
4665 		}
4666 		if (lost_events)
4667 			*lost_events = rb_lost_events(cpu_buffer);
4668 		return event;
4669 
4670 	default:
4671 		RB_WARN_ON(cpu_buffer, 1);
4672 	}
4673 
4674 	return NULL;
4675 }
4676 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4677 
4678 static struct ring_buffer_event *
4679 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4680 {
4681 	struct trace_buffer *buffer;
4682 	struct ring_buffer_per_cpu *cpu_buffer;
4683 	struct ring_buffer_event *event;
4684 	int nr_loops = 0;
4685 
4686 	if (ts)
4687 		*ts = 0;
4688 
4689 	cpu_buffer = iter->cpu_buffer;
4690 	buffer = cpu_buffer->buffer;
4691 
4692 	/*
4693 	 * Check if someone performed a consuming read to
4694 	 * the buffer. A consuming read invalidates the iterator
4695 	 * and we need to reset the iterator in this case.
4696 	 */
4697 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4698 		     iter->cache_reader_page != cpu_buffer->reader_page))
4699 		rb_iter_reset(iter);
4700 
4701  again:
4702 	if (ring_buffer_iter_empty(iter))
4703 		return NULL;
4704 
4705 	/*
4706 	 * As the writer can mess with what the iterator is trying
4707 	 * to read, just give up if we fail to get an event after
4708 	 * three tries. The iterator is not as reliable when reading
4709 	 * the ring buffer with an active write as the consumer is.
4710 	 * Do not warn if the three failures is reached.
4711 	 */
4712 	if (++nr_loops > 3)
4713 		return NULL;
4714 
4715 	if (rb_per_cpu_empty(cpu_buffer))
4716 		return NULL;
4717 
4718 	if (iter->head >= rb_page_size(iter->head_page)) {
4719 		rb_inc_iter(iter);
4720 		goto again;
4721 	}
4722 
4723 	event = rb_iter_head_event(iter);
4724 	if (!event)
4725 		goto again;
4726 
4727 	switch (event->type_len) {
4728 	case RINGBUF_TYPE_PADDING:
4729 		if (rb_null_event(event)) {
4730 			rb_inc_iter(iter);
4731 			goto again;
4732 		}
4733 		rb_advance_iter(iter);
4734 		return event;
4735 
4736 	case RINGBUF_TYPE_TIME_EXTEND:
4737 		/* Internal data, OK to advance */
4738 		rb_advance_iter(iter);
4739 		goto again;
4740 
4741 	case RINGBUF_TYPE_TIME_STAMP:
4742 		if (ts) {
4743 			*ts = rb_event_time_stamp(event);
4744 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4745 							 cpu_buffer->cpu, ts);
4746 		}
4747 		/* Internal data, OK to advance */
4748 		rb_advance_iter(iter);
4749 		goto again;
4750 
4751 	case RINGBUF_TYPE_DATA:
4752 		if (ts && !(*ts)) {
4753 			*ts = iter->read_stamp + event->time_delta;
4754 			ring_buffer_normalize_time_stamp(buffer,
4755 							 cpu_buffer->cpu, ts);
4756 		}
4757 		return event;
4758 
4759 	default:
4760 		RB_WARN_ON(cpu_buffer, 1);
4761 	}
4762 
4763 	return NULL;
4764 }
4765 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4766 
4767 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4768 {
4769 	if (likely(!in_nmi())) {
4770 		raw_spin_lock(&cpu_buffer->reader_lock);
4771 		return true;
4772 	}
4773 
4774 	/*
4775 	 * If an NMI die dumps out the content of the ring buffer
4776 	 * trylock must be used to prevent a deadlock if the NMI
4777 	 * preempted a task that holds the ring buffer locks. If
4778 	 * we get the lock then all is fine, if not, then continue
4779 	 * to do the read, but this can corrupt the ring buffer,
4780 	 * so it must be permanently disabled from future writes.
4781 	 * Reading from NMI is a oneshot deal.
4782 	 */
4783 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4784 		return true;
4785 
4786 	/* Continue without locking, but disable the ring buffer */
4787 	atomic_inc(&cpu_buffer->record_disabled);
4788 	return false;
4789 }
4790 
4791 static inline void
4792 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4793 {
4794 	if (likely(locked))
4795 		raw_spin_unlock(&cpu_buffer->reader_lock);
4796 	return;
4797 }
4798 
4799 /**
4800  * ring_buffer_peek - peek at the next event to be read
4801  * @buffer: The ring buffer to read
4802  * @cpu: The cpu to peak at
4803  * @ts: The timestamp counter of this event.
4804  * @lost_events: a variable to store if events were lost (may be NULL)
4805  *
4806  * This will return the event that will be read next, but does
4807  * not consume the data.
4808  */
4809 struct ring_buffer_event *
4810 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4811 		 unsigned long *lost_events)
4812 {
4813 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4814 	struct ring_buffer_event *event;
4815 	unsigned long flags;
4816 	bool dolock;
4817 
4818 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4819 		return NULL;
4820 
4821  again:
4822 	local_irq_save(flags);
4823 	dolock = rb_reader_lock(cpu_buffer);
4824 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4825 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4826 		rb_advance_reader(cpu_buffer);
4827 	rb_reader_unlock(cpu_buffer, dolock);
4828 	local_irq_restore(flags);
4829 
4830 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4831 		goto again;
4832 
4833 	return event;
4834 }
4835 
4836 /** ring_buffer_iter_dropped - report if there are dropped events
4837  * @iter: The ring buffer iterator
4838  *
4839  * Returns true if there was dropped events since the last peek.
4840  */
4841 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4842 {
4843 	bool ret = iter->missed_events != 0;
4844 
4845 	iter->missed_events = 0;
4846 	return ret;
4847 }
4848 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4849 
4850 /**
4851  * ring_buffer_iter_peek - peek at the next event to be read
4852  * @iter: The ring buffer iterator
4853  * @ts: The timestamp counter of this event.
4854  *
4855  * This will return the event that will be read next, but does
4856  * not increment the iterator.
4857  */
4858 struct ring_buffer_event *
4859 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4860 {
4861 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4862 	struct ring_buffer_event *event;
4863 	unsigned long flags;
4864 
4865  again:
4866 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4867 	event = rb_iter_peek(iter, ts);
4868 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4869 
4870 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4871 		goto again;
4872 
4873 	return event;
4874 }
4875 
4876 /**
4877  * ring_buffer_consume - return an event and consume it
4878  * @buffer: The ring buffer to get the next event from
4879  * @cpu: the cpu to read the buffer from
4880  * @ts: a variable to store the timestamp (may be NULL)
4881  * @lost_events: a variable to store if events were lost (may be NULL)
4882  *
4883  * Returns the next event in the ring buffer, and that event is consumed.
4884  * Meaning, that sequential reads will keep returning a different event,
4885  * and eventually empty the ring buffer if the producer is slower.
4886  */
4887 struct ring_buffer_event *
4888 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4889 		    unsigned long *lost_events)
4890 {
4891 	struct ring_buffer_per_cpu *cpu_buffer;
4892 	struct ring_buffer_event *event = NULL;
4893 	unsigned long flags;
4894 	bool dolock;
4895 
4896  again:
4897 	/* might be called in atomic */
4898 	preempt_disable();
4899 
4900 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4901 		goto out;
4902 
4903 	cpu_buffer = buffer->buffers[cpu];
4904 	local_irq_save(flags);
4905 	dolock = rb_reader_lock(cpu_buffer);
4906 
4907 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4908 	if (event) {
4909 		cpu_buffer->lost_events = 0;
4910 		rb_advance_reader(cpu_buffer);
4911 	}
4912 
4913 	rb_reader_unlock(cpu_buffer, dolock);
4914 	local_irq_restore(flags);
4915 
4916  out:
4917 	preempt_enable();
4918 
4919 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4920 		goto again;
4921 
4922 	return event;
4923 }
4924 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4925 
4926 /**
4927  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4928  * @buffer: The ring buffer to read from
4929  * @cpu: The cpu buffer to iterate over
4930  * @flags: gfp flags to use for memory allocation
4931  *
4932  * This performs the initial preparations necessary to iterate
4933  * through the buffer.  Memory is allocated, buffer recording
4934  * is disabled, and the iterator pointer is returned to the caller.
4935  *
4936  * Disabling buffer recording prevents the reading from being
4937  * corrupted. This is not a consuming read, so a producer is not
4938  * expected.
4939  *
4940  * After a sequence of ring_buffer_read_prepare calls, the user is
4941  * expected to make at least one call to ring_buffer_read_prepare_sync.
4942  * Afterwards, ring_buffer_read_start is invoked to get things going
4943  * for real.
4944  *
4945  * This overall must be paired with ring_buffer_read_finish.
4946  */
4947 struct ring_buffer_iter *
4948 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4949 {
4950 	struct ring_buffer_per_cpu *cpu_buffer;
4951 	struct ring_buffer_iter *iter;
4952 
4953 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4954 		return NULL;
4955 
4956 	iter = kzalloc(sizeof(*iter), flags);
4957 	if (!iter)
4958 		return NULL;
4959 
4960 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4961 	if (!iter->event) {
4962 		kfree(iter);
4963 		return NULL;
4964 	}
4965 
4966 	cpu_buffer = buffer->buffers[cpu];
4967 
4968 	iter->cpu_buffer = cpu_buffer;
4969 
4970 	atomic_inc(&cpu_buffer->resize_disabled);
4971 
4972 	return iter;
4973 }
4974 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4975 
4976 /**
4977  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4978  *
4979  * All previously invoked ring_buffer_read_prepare calls to prepare
4980  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4981  * calls on those iterators are allowed.
4982  */
4983 void
4984 ring_buffer_read_prepare_sync(void)
4985 {
4986 	synchronize_rcu();
4987 }
4988 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4989 
4990 /**
4991  * ring_buffer_read_start - start a non consuming read of the buffer
4992  * @iter: The iterator returned by ring_buffer_read_prepare
4993  *
4994  * This finalizes the startup of an iteration through the buffer.
4995  * The iterator comes from a call to ring_buffer_read_prepare and
4996  * an intervening ring_buffer_read_prepare_sync must have been
4997  * performed.
4998  *
4999  * Must be paired with ring_buffer_read_finish.
5000  */
5001 void
5002 ring_buffer_read_start(struct ring_buffer_iter *iter)
5003 {
5004 	struct ring_buffer_per_cpu *cpu_buffer;
5005 	unsigned long flags;
5006 
5007 	if (!iter)
5008 		return;
5009 
5010 	cpu_buffer = iter->cpu_buffer;
5011 
5012 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5013 	arch_spin_lock(&cpu_buffer->lock);
5014 	rb_iter_reset(iter);
5015 	arch_spin_unlock(&cpu_buffer->lock);
5016 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5017 }
5018 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5019 
5020 /**
5021  * ring_buffer_read_finish - finish reading the iterator of the buffer
5022  * @iter: The iterator retrieved by ring_buffer_start
5023  *
5024  * This re-enables the recording to the buffer, and frees the
5025  * iterator.
5026  */
5027 void
5028 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5029 {
5030 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5031 	unsigned long flags;
5032 
5033 	/*
5034 	 * Ring buffer is disabled from recording, here's a good place
5035 	 * to check the integrity of the ring buffer.
5036 	 * Must prevent readers from trying to read, as the check
5037 	 * clears the HEAD page and readers require it.
5038 	 */
5039 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5040 	rb_check_pages(cpu_buffer);
5041 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5042 
5043 	atomic_dec(&cpu_buffer->resize_disabled);
5044 	kfree(iter->event);
5045 	kfree(iter);
5046 }
5047 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5048 
5049 /**
5050  * ring_buffer_iter_advance - advance the iterator to the next location
5051  * @iter: The ring buffer iterator
5052  *
5053  * Move the location of the iterator such that the next read will
5054  * be the next location of the iterator.
5055  */
5056 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5057 {
5058 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5059 	unsigned long flags;
5060 
5061 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5062 
5063 	rb_advance_iter(iter);
5064 
5065 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5066 }
5067 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5068 
5069 /**
5070  * ring_buffer_size - return the size of the ring buffer (in bytes)
5071  * @buffer: The ring buffer.
5072  * @cpu: The CPU to get ring buffer size from.
5073  */
5074 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5075 {
5076 	/*
5077 	 * Earlier, this method returned
5078 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5079 	 * Since the nr_pages field is now removed, we have converted this to
5080 	 * return the per cpu buffer value.
5081 	 */
5082 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5083 		return 0;
5084 
5085 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5086 }
5087 EXPORT_SYMBOL_GPL(ring_buffer_size);
5088 
5089 static void
5090 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5091 {
5092 	rb_head_page_deactivate(cpu_buffer);
5093 
5094 	cpu_buffer->head_page
5095 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5096 	local_set(&cpu_buffer->head_page->write, 0);
5097 	local_set(&cpu_buffer->head_page->entries, 0);
5098 	local_set(&cpu_buffer->head_page->page->commit, 0);
5099 
5100 	cpu_buffer->head_page->read = 0;
5101 
5102 	cpu_buffer->tail_page = cpu_buffer->head_page;
5103 	cpu_buffer->commit_page = cpu_buffer->head_page;
5104 
5105 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5106 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5107 	local_set(&cpu_buffer->reader_page->write, 0);
5108 	local_set(&cpu_buffer->reader_page->entries, 0);
5109 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5110 	cpu_buffer->reader_page->read = 0;
5111 
5112 	local_set(&cpu_buffer->entries_bytes, 0);
5113 	local_set(&cpu_buffer->overrun, 0);
5114 	local_set(&cpu_buffer->commit_overrun, 0);
5115 	local_set(&cpu_buffer->dropped_events, 0);
5116 	local_set(&cpu_buffer->entries, 0);
5117 	local_set(&cpu_buffer->committing, 0);
5118 	local_set(&cpu_buffer->commits, 0);
5119 	local_set(&cpu_buffer->pages_touched, 0);
5120 	local_set(&cpu_buffer->pages_read, 0);
5121 	cpu_buffer->last_pages_touch = 0;
5122 	cpu_buffer->shortest_full = 0;
5123 	cpu_buffer->read = 0;
5124 	cpu_buffer->read_bytes = 0;
5125 
5126 	rb_time_set(&cpu_buffer->write_stamp, 0);
5127 	rb_time_set(&cpu_buffer->before_stamp, 0);
5128 
5129 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5130 
5131 	cpu_buffer->lost_events = 0;
5132 	cpu_buffer->last_overrun = 0;
5133 
5134 	rb_head_page_activate(cpu_buffer);
5135 }
5136 
5137 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5138 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5139 {
5140 	unsigned long flags;
5141 
5142 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5143 
5144 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5145 		goto out;
5146 
5147 	arch_spin_lock(&cpu_buffer->lock);
5148 
5149 	rb_reset_cpu(cpu_buffer);
5150 
5151 	arch_spin_unlock(&cpu_buffer->lock);
5152 
5153  out:
5154 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5155 }
5156 
5157 /**
5158  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5159  * @buffer: The ring buffer to reset a per cpu buffer of
5160  * @cpu: The CPU buffer to be reset
5161  */
5162 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5163 {
5164 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5165 
5166 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5167 		return;
5168 
5169 	/* prevent another thread from changing buffer sizes */
5170 	mutex_lock(&buffer->mutex);
5171 
5172 	atomic_inc(&cpu_buffer->resize_disabled);
5173 	atomic_inc(&cpu_buffer->record_disabled);
5174 
5175 	/* Make sure all commits have finished */
5176 	synchronize_rcu();
5177 
5178 	reset_disabled_cpu_buffer(cpu_buffer);
5179 
5180 	atomic_dec(&cpu_buffer->record_disabled);
5181 	atomic_dec(&cpu_buffer->resize_disabled);
5182 
5183 	mutex_unlock(&buffer->mutex);
5184 }
5185 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5186 
5187 /**
5188  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5189  * @buffer: The ring buffer to reset a per cpu buffer of
5190  * @cpu: The CPU buffer to be reset
5191  */
5192 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5193 {
5194 	struct ring_buffer_per_cpu *cpu_buffer;
5195 	int cpu;
5196 
5197 	/* prevent another thread from changing buffer sizes */
5198 	mutex_lock(&buffer->mutex);
5199 
5200 	for_each_online_buffer_cpu(buffer, cpu) {
5201 		cpu_buffer = buffer->buffers[cpu];
5202 
5203 		atomic_inc(&cpu_buffer->resize_disabled);
5204 		atomic_inc(&cpu_buffer->record_disabled);
5205 	}
5206 
5207 	/* Make sure all commits have finished */
5208 	synchronize_rcu();
5209 
5210 	for_each_online_buffer_cpu(buffer, cpu) {
5211 		cpu_buffer = buffer->buffers[cpu];
5212 
5213 		reset_disabled_cpu_buffer(cpu_buffer);
5214 
5215 		atomic_dec(&cpu_buffer->record_disabled);
5216 		atomic_dec(&cpu_buffer->resize_disabled);
5217 	}
5218 
5219 	mutex_unlock(&buffer->mutex);
5220 }
5221 
5222 /**
5223  * ring_buffer_reset - reset a ring buffer
5224  * @buffer: The ring buffer to reset all cpu buffers
5225  */
5226 void ring_buffer_reset(struct trace_buffer *buffer)
5227 {
5228 	struct ring_buffer_per_cpu *cpu_buffer;
5229 	int cpu;
5230 
5231 	for_each_buffer_cpu(buffer, cpu) {
5232 		cpu_buffer = buffer->buffers[cpu];
5233 
5234 		atomic_inc(&cpu_buffer->resize_disabled);
5235 		atomic_inc(&cpu_buffer->record_disabled);
5236 	}
5237 
5238 	/* Make sure all commits have finished */
5239 	synchronize_rcu();
5240 
5241 	for_each_buffer_cpu(buffer, cpu) {
5242 		cpu_buffer = buffer->buffers[cpu];
5243 
5244 		reset_disabled_cpu_buffer(cpu_buffer);
5245 
5246 		atomic_dec(&cpu_buffer->record_disabled);
5247 		atomic_dec(&cpu_buffer->resize_disabled);
5248 	}
5249 }
5250 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5251 
5252 /**
5253  * rind_buffer_empty - is the ring buffer empty?
5254  * @buffer: The ring buffer to test
5255  */
5256 bool ring_buffer_empty(struct trace_buffer *buffer)
5257 {
5258 	struct ring_buffer_per_cpu *cpu_buffer;
5259 	unsigned long flags;
5260 	bool dolock;
5261 	int cpu;
5262 	int ret;
5263 
5264 	/* yes this is racy, but if you don't like the race, lock the buffer */
5265 	for_each_buffer_cpu(buffer, cpu) {
5266 		cpu_buffer = buffer->buffers[cpu];
5267 		local_irq_save(flags);
5268 		dolock = rb_reader_lock(cpu_buffer);
5269 		ret = rb_per_cpu_empty(cpu_buffer);
5270 		rb_reader_unlock(cpu_buffer, dolock);
5271 		local_irq_restore(flags);
5272 
5273 		if (!ret)
5274 			return false;
5275 	}
5276 
5277 	return true;
5278 }
5279 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5280 
5281 /**
5282  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5283  * @buffer: The ring buffer
5284  * @cpu: The CPU buffer to test
5285  */
5286 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5287 {
5288 	struct ring_buffer_per_cpu *cpu_buffer;
5289 	unsigned long flags;
5290 	bool dolock;
5291 	int ret;
5292 
5293 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5294 		return true;
5295 
5296 	cpu_buffer = buffer->buffers[cpu];
5297 	local_irq_save(flags);
5298 	dolock = rb_reader_lock(cpu_buffer);
5299 	ret = rb_per_cpu_empty(cpu_buffer);
5300 	rb_reader_unlock(cpu_buffer, dolock);
5301 	local_irq_restore(flags);
5302 
5303 	return ret;
5304 }
5305 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5306 
5307 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5308 /**
5309  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5310  * @buffer_a: One buffer to swap with
5311  * @buffer_b: The other buffer to swap with
5312  * @cpu: the CPU of the buffers to swap
5313  *
5314  * This function is useful for tracers that want to take a "snapshot"
5315  * of a CPU buffer and has another back up buffer lying around.
5316  * it is expected that the tracer handles the cpu buffer not being
5317  * used at the moment.
5318  */
5319 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5320 			 struct trace_buffer *buffer_b, int cpu)
5321 {
5322 	struct ring_buffer_per_cpu *cpu_buffer_a;
5323 	struct ring_buffer_per_cpu *cpu_buffer_b;
5324 	int ret = -EINVAL;
5325 
5326 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5327 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5328 		goto out;
5329 
5330 	cpu_buffer_a = buffer_a->buffers[cpu];
5331 	cpu_buffer_b = buffer_b->buffers[cpu];
5332 
5333 	/* At least make sure the two buffers are somewhat the same */
5334 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5335 		goto out;
5336 
5337 	ret = -EAGAIN;
5338 
5339 	if (atomic_read(&buffer_a->record_disabled))
5340 		goto out;
5341 
5342 	if (atomic_read(&buffer_b->record_disabled))
5343 		goto out;
5344 
5345 	if (atomic_read(&cpu_buffer_a->record_disabled))
5346 		goto out;
5347 
5348 	if (atomic_read(&cpu_buffer_b->record_disabled))
5349 		goto out;
5350 
5351 	/*
5352 	 * We can't do a synchronize_rcu here because this
5353 	 * function can be called in atomic context.
5354 	 * Normally this will be called from the same CPU as cpu.
5355 	 * If not it's up to the caller to protect this.
5356 	 */
5357 	atomic_inc(&cpu_buffer_a->record_disabled);
5358 	atomic_inc(&cpu_buffer_b->record_disabled);
5359 
5360 	ret = -EBUSY;
5361 	if (local_read(&cpu_buffer_a->committing))
5362 		goto out_dec;
5363 	if (local_read(&cpu_buffer_b->committing))
5364 		goto out_dec;
5365 
5366 	buffer_a->buffers[cpu] = cpu_buffer_b;
5367 	buffer_b->buffers[cpu] = cpu_buffer_a;
5368 
5369 	cpu_buffer_b->buffer = buffer_a;
5370 	cpu_buffer_a->buffer = buffer_b;
5371 
5372 	ret = 0;
5373 
5374 out_dec:
5375 	atomic_dec(&cpu_buffer_a->record_disabled);
5376 	atomic_dec(&cpu_buffer_b->record_disabled);
5377 out:
5378 	return ret;
5379 }
5380 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5381 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5382 
5383 /**
5384  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5385  * @buffer: the buffer to allocate for.
5386  * @cpu: the cpu buffer to allocate.
5387  *
5388  * This function is used in conjunction with ring_buffer_read_page.
5389  * When reading a full page from the ring buffer, these functions
5390  * can be used to speed up the process. The calling function should
5391  * allocate a few pages first with this function. Then when it
5392  * needs to get pages from the ring buffer, it passes the result
5393  * of this function into ring_buffer_read_page, which will swap
5394  * the page that was allocated, with the read page of the buffer.
5395  *
5396  * Returns:
5397  *  The page allocated, or ERR_PTR
5398  */
5399 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5400 {
5401 	struct ring_buffer_per_cpu *cpu_buffer;
5402 	struct buffer_data_page *bpage = NULL;
5403 	unsigned long flags;
5404 	struct page *page;
5405 
5406 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5407 		return ERR_PTR(-ENODEV);
5408 
5409 	cpu_buffer = buffer->buffers[cpu];
5410 	local_irq_save(flags);
5411 	arch_spin_lock(&cpu_buffer->lock);
5412 
5413 	if (cpu_buffer->free_page) {
5414 		bpage = cpu_buffer->free_page;
5415 		cpu_buffer->free_page = NULL;
5416 	}
5417 
5418 	arch_spin_unlock(&cpu_buffer->lock);
5419 	local_irq_restore(flags);
5420 
5421 	if (bpage)
5422 		goto out;
5423 
5424 	page = alloc_pages_node(cpu_to_node(cpu),
5425 				GFP_KERNEL | __GFP_NORETRY, 0);
5426 	if (!page)
5427 		return ERR_PTR(-ENOMEM);
5428 
5429 	bpage = page_address(page);
5430 
5431  out:
5432 	rb_init_page(bpage);
5433 
5434 	return bpage;
5435 }
5436 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5437 
5438 /**
5439  * ring_buffer_free_read_page - free an allocated read page
5440  * @buffer: the buffer the page was allocate for
5441  * @cpu: the cpu buffer the page came from
5442  * @data: the page to free
5443  *
5444  * Free a page allocated from ring_buffer_alloc_read_page.
5445  */
5446 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5447 {
5448 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5449 	struct buffer_data_page *bpage = data;
5450 	struct page *page = virt_to_page(bpage);
5451 	unsigned long flags;
5452 
5453 	/* If the page is still in use someplace else, we can't reuse it */
5454 	if (page_ref_count(page) > 1)
5455 		goto out;
5456 
5457 	local_irq_save(flags);
5458 	arch_spin_lock(&cpu_buffer->lock);
5459 
5460 	if (!cpu_buffer->free_page) {
5461 		cpu_buffer->free_page = bpage;
5462 		bpage = NULL;
5463 	}
5464 
5465 	arch_spin_unlock(&cpu_buffer->lock);
5466 	local_irq_restore(flags);
5467 
5468  out:
5469 	free_page((unsigned long)bpage);
5470 }
5471 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5472 
5473 /**
5474  * ring_buffer_read_page - extract a page from the ring buffer
5475  * @buffer: buffer to extract from
5476  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5477  * @len: amount to extract
5478  * @cpu: the cpu of the buffer to extract
5479  * @full: should the extraction only happen when the page is full.
5480  *
5481  * This function will pull out a page from the ring buffer and consume it.
5482  * @data_page must be the address of the variable that was returned
5483  * from ring_buffer_alloc_read_page. This is because the page might be used
5484  * to swap with a page in the ring buffer.
5485  *
5486  * for example:
5487  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5488  *	if (IS_ERR(rpage))
5489  *		return PTR_ERR(rpage);
5490  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5491  *	if (ret >= 0)
5492  *		process_page(rpage, ret);
5493  *
5494  * When @full is set, the function will not return true unless
5495  * the writer is off the reader page.
5496  *
5497  * Note: it is up to the calling functions to handle sleeps and wakeups.
5498  *  The ring buffer can be used anywhere in the kernel and can not
5499  *  blindly call wake_up. The layer that uses the ring buffer must be
5500  *  responsible for that.
5501  *
5502  * Returns:
5503  *  >=0 if data has been transferred, returns the offset of consumed data.
5504  *  <0 if no data has been transferred.
5505  */
5506 int ring_buffer_read_page(struct trace_buffer *buffer,
5507 			  void **data_page, size_t len, int cpu, int full)
5508 {
5509 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5510 	struct ring_buffer_event *event;
5511 	struct buffer_data_page *bpage;
5512 	struct buffer_page *reader;
5513 	unsigned long missed_events;
5514 	unsigned long flags;
5515 	unsigned int commit;
5516 	unsigned int read;
5517 	u64 save_timestamp;
5518 	int ret = -1;
5519 
5520 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5521 		goto out;
5522 
5523 	/*
5524 	 * If len is not big enough to hold the page header, then
5525 	 * we can not copy anything.
5526 	 */
5527 	if (len <= BUF_PAGE_HDR_SIZE)
5528 		goto out;
5529 
5530 	len -= BUF_PAGE_HDR_SIZE;
5531 
5532 	if (!data_page)
5533 		goto out;
5534 
5535 	bpage = *data_page;
5536 	if (!bpage)
5537 		goto out;
5538 
5539 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5540 
5541 	reader = rb_get_reader_page(cpu_buffer);
5542 	if (!reader)
5543 		goto out_unlock;
5544 
5545 	event = rb_reader_event(cpu_buffer);
5546 
5547 	read = reader->read;
5548 	commit = rb_page_commit(reader);
5549 
5550 	/* Check if any events were dropped */
5551 	missed_events = cpu_buffer->lost_events;
5552 
5553 	/*
5554 	 * If this page has been partially read or
5555 	 * if len is not big enough to read the rest of the page or
5556 	 * a writer is still on the page, then
5557 	 * we must copy the data from the page to the buffer.
5558 	 * Otherwise, we can simply swap the page with the one passed in.
5559 	 */
5560 	if (read || (len < (commit - read)) ||
5561 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5562 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5563 		unsigned int rpos = read;
5564 		unsigned int pos = 0;
5565 		unsigned int size;
5566 
5567 		if (full)
5568 			goto out_unlock;
5569 
5570 		if (len > (commit - read))
5571 			len = (commit - read);
5572 
5573 		/* Always keep the time extend and data together */
5574 		size = rb_event_ts_length(event);
5575 
5576 		if (len < size)
5577 			goto out_unlock;
5578 
5579 		/* save the current timestamp, since the user will need it */
5580 		save_timestamp = cpu_buffer->read_stamp;
5581 
5582 		/* Need to copy one event at a time */
5583 		do {
5584 			/* We need the size of one event, because
5585 			 * rb_advance_reader only advances by one event,
5586 			 * whereas rb_event_ts_length may include the size of
5587 			 * one or two events.
5588 			 * We have already ensured there's enough space if this
5589 			 * is a time extend. */
5590 			size = rb_event_length(event);
5591 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5592 
5593 			len -= size;
5594 
5595 			rb_advance_reader(cpu_buffer);
5596 			rpos = reader->read;
5597 			pos += size;
5598 
5599 			if (rpos >= commit)
5600 				break;
5601 
5602 			event = rb_reader_event(cpu_buffer);
5603 			/* Always keep the time extend and data together */
5604 			size = rb_event_ts_length(event);
5605 		} while (len >= size);
5606 
5607 		/* update bpage */
5608 		local_set(&bpage->commit, pos);
5609 		bpage->time_stamp = save_timestamp;
5610 
5611 		/* we copied everything to the beginning */
5612 		read = 0;
5613 	} else {
5614 		/* update the entry counter */
5615 		cpu_buffer->read += rb_page_entries(reader);
5616 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5617 
5618 		/* swap the pages */
5619 		rb_init_page(bpage);
5620 		bpage = reader->page;
5621 		reader->page = *data_page;
5622 		local_set(&reader->write, 0);
5623 		local_set(&reader->entries, 0);
5624 		reader->read = 0;
5625 		*data_page = bpage;
5626 
5627 		/*
5628 		 * Use the real_end for the data size,
5629 		 * This gives us a chance to store the lost events
5630 		 * on the page.
5631 		 */
5632 		if (reader->real_end)
5633 			local_set(&bpage->commit, reader->real_end);
5634 	}
5635 	ret = read;
5636 
5637 	cpu_buffer->lost_events = 0;
5638 
5639 	commit = local_read(&bpage->commit);
5640 	/*
5641 	 * Set a flag in the commit field if we lost events
5642 	 */
5643 	if (missed_events) {
5644 		/* If there is room at the end of the page to save the
5645 		 * missed events, then record it there.
5646 		 */
5647 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5648 			memcpy(&bpage->data[commit], &missed_events,
5649 			       sizeof(missed_events));
5650 			local_add(RB_MISSED_STORED, &bpage->commit);
5651 			commit += sizeof(missed_events);
5652 		}
5653 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5654 	}
5655 
5656 	/*
5657 	 * This page may be off to user land. Zero it out here.
5658 	 */
5659 	if (commit < BUF_PAGE_SIZE)
5660 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5661 
5662  out_unlock:
5663 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5664 
5665  out:
5666 	return ret;
5667 }
5668 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5669 
5670 /*
5671  * We only allocate new buffers, never free them if the CPU goes down.
5672  * If we were to free the buffer, then the user would lose any trace that was in
5673  * the buffer.
5674  */
5675 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5676 {
5677 	struct trace_buffer *buffer;
5678 	long nr_pages_same;
5679 	int cpu_i;
5680 	unsigned long nr_pages;
5681 
5682 	buffer = container_of(node, struct trace_buffer, node);
5683 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5684 		return 0;
5685 
5686 	nr_pages = 0;
5687 	nr_pages_same = 1;
5688 	/* check if all cpu sizes are same */
5689 	for_each_buffer_cpu(buffer, cpu_i) {
5690 		/* fill in the size from first enabled cpu */
5691 		if (nr_pages == 0)
5692 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5693 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5694 			nr_pages_same = 0;
5695 			break;
5696 		}
5697 	}
5698 	/* allocate minimum pages, user can later expand it */
5699 	if (!nr_pages_same)
5700 		nr_pages = 2;
5701 	buffer->buffers[cpu] =
5702 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5703 	if (!buffer->buffers[cpu]) {
5704 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5705 		     cpu);
5706 		return -ENOMEM;
5707 	}
5708 	smp_wmb();
5709 	cpumask_set_cpu(cpu, buffer->cpumask);
5710 	return 0;
5711 }
5712 
5713 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5714 /*
5715  * This is a basic integrity check of the ring buffer.
5716  * Late in the boot cycle this test will run when configured in.
5717  * It will kick off a thread per CPU that will go into a loop
5718  * writing to the per cpu ring buffer various sizes of data.
5719  * Some of the data will be large items, some small.
5720  *
5721  * Another thread is created that goes into a spin, sending out
5722  * IPIs to the other CPUs to also write into the ring buffer.
5723  * this is to test the nesting ability of the buffer.
5724  *
5725  * Basic stats are recorded and reported. If something in the
5726  * ring buffer should happen that's not expected, a big warning
5727  * is displayed and all ring buffers are disabled.
5728  */
5729 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5730 
5731 struct rb_test_data {
5732 	struct trace_buffer *buffer;
5733 	unsigned long		events;
5734 	unsigned long		bytes_written;
5735 	unsigned long		bytes_alloc;
5736 	unsigned long		bytes_dropped;
5737 	unsigned long		events_nested;
5738 	unsigned long		bytes_written_nested;
5739 	unsigned long		bytes_alloc_nested;
5740 	unsigned long		bytes_dropped_nested;
5741 	int			min_size_nested;
5742 	int			max_size_nested;
5743 	int			max_size;
5744 	int			min_size;
5745 	int			cpu;
5746 	int			cnt;
5747 };
5748 
5749 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5750 
5751 /* 1 meg per cpu */
5752 #define RB_TEST_BUFFER_SIZE	1048576
5753 
5754 static char rb_string[] __initdata =
5755 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5756 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5757 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5758 
5759 static bool rb_test_started __initdata;
5760 
5761 struct rb_item {
5762 	int size;
5763 	char str[];
5764 };
5765 
5766 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5767 {
5768 	struct ring_buffer_event *event;
5769 	struct rb_item *item;
5770 	bool started;
5771 	int event_len;
5772 	int size;
5773 	int len;
5774 	int cnt;
5775 
5776 	/* Have nested writes different that what is written */
5777 	cnt = data->cnt + (nested ? 27 : 0);
5778 
5779 	/* Multiply cnt by ~e, to make some unique increment */
5780 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5781 
5782 	len = size + sizeof(struct rb_item);
5783 
5784 	started = rb_test_started;
5785 	/* read rb_test_started before checking buffer enabled */
5786 	smp_rmb();
5787 
5788 	event = ring_buffer_lock_reserve(data->buffer, len);
5789 	if (!event) {
5790 		/* Ignore dropped events before test starts. */
5791 		if (started) {
5792 			if (nested)
5793 				data->bytes_dropped += len;
5794 			else
5795 				data->bytes_dropped_nested += len;
5796 		}
5797 		return len;
5798 	}
5799 
5800 	event_len = ring_buffer_event_length(event);
5801 
5802 	if (RB_WARN_ON(data->buffer, event_len < len))
5803 		goto out;
5804 
5805 	item = ring_buffer_event_data(event);
5806 	item->size = size;
5807 	memcpy(item->str, rb_string, size);
5808 
5809 	if (nested) {
5810 		data->bytes_alloc_nested += event_len;
5811 		data->bytes_written_nested += len;
5812 		data->events_nested++;
5813 		if (!data->min_size_nested || len < data->min_size_nested)
5814 			data->min_size_nested = len;
5815 		if (len > data->max_size_nested)
5816 			data->max_size_nested = len;
5817 	} else {
5818 		data->bytes_alloc += event_len;
5819 		data->bytes_written += len;
5820 		data->events++;
5821 		if (!data->min_size || len < data->min_size)
5822 			data->max_size = len;
5823 		if (len > data->max_size)
5824 			data->max_size = len;
5825 	}
5826 
5827  out:
5828 	ring_buffer_unlock_commit(data->buffer, event);
5829 
5830 	return 0;
5831 }
5832 
5833 static __init int rb_test(void *arg)
5834 {
5835 	struct rb_test_data *data = arg;
5836 
5837 	while (!kthread_should_stop()) {
5838 		rb_write_something(data, false);
5839 		data->cnt++;
5840 
5841 		set_current_state(TASK_INTERRUPTIBLE);
5842 		/* Now sleep between a min of 100-300us and a max of 1ms */
5843 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5844 	}
5845 
5846 	return 0;
5847 }
5848 
5849 static __init void rb_ipi(void *ignore)
5850 {
5851 	struct rb_test_data *data;
5852 	int cpu = smp_processor_id();
5853 
5854 	data = &rb_data[cpu];
5855 	rb_write_something(data, true);
5856 }
5857 
5858 static __init int rb_hammer_test(void *arg)
5859 {
5860 	while (!kthread_should_stop()) {
5861 
5862 		/* Send an IPI to all cpus to write data! */
5863 		smp_call_function(rb_ipi, NULL, 1);
5864 		/* No sleep, but for non preempt, let others run */
5865 		schedule();
5866 	}
5867 
5868 	return 0;
5869 }
5870 
5871 static __init int test_ringbuffer(void)
5872 {
5873 	struct task_struct *rb_hammer;
5874 	struct trace_buffer *buffer;
5875 	int cpu;
5876 	int ret = 0;
5877 
5878 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5879 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5880 		return 0;
5881 	}
5882 
5883 	pr_info("Running ring buffer tests...\n");
5884 
5885 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5886 	if (WARN_ON(!buffer))
5887 		return 0;
5888 
5889 	/* Disable buffer so that threads can't write to it yet */
5890 	ring_buffer_record_off(buffer);
5891 
5892 	for_each_online_cpu(cpu) {
5893 		rb_data[cpu].buffer = buffer;
5894 		rb_data[cpu].cpu = cpu;
5895 		rb_data[cpu].cnt = cpu;
5896 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5897 						 "rbtester/%d", cpu);
5898 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5899 			pr_cont("FAILED\n");
5900 			ret = PTR_ERR(rb_threads[cpu]);
5901 			goto out_free;
5902 		}
5903 
5904 		kthread_bind(rb_threads[cpu], cpu);
5905  		wake_up_process(rb_threads[cpu]);
5906 	}
5907 
5908 	/* Now create the rb hammer! */
5909 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5910 	if (WARN_ON(IS_ERR(rb_hammer))) {
5911 		pr_cont("FAILED\n");
5912 		ret = PTR_ERR(rb_hammer);
5913 		goto out_free;
5914 	}
5915 
5916 	ring_buffer_record_on(buffer);
5917 	/*
5918 	 * Show buffer is enabled before setting rb_test_started.
5919 	 * Yes there's a small race window where events could be
5920 	 * dropped and the thread wont catch it. But when a ring
5921 	 * buffer gets enabled, there will always be some kind of
5922 	 * delay before other CPUs see it. Thus, we don't care about
5923 	 * those dropped events. We care about events dropped after
5924 	 * the threads see that the buffer is active.
5925 	 */
5926 	smp_wmb();
5927 	rb_test_started = true;
5928 
5929 	set_current_state(TASK_INTERRUPTIBLE);
5930 	/* Just run for 10 seconds */;
5931 	schedule_timeout(10 * HZ);
5932 
5933 	kthread_stop(rb_hammer);
5934 
5935  out_free:
5936 	for_each_online_cpu(cpu) {
5937 		if (!rb_threads[cpu])
5938 			break;
5939 		kthread_stop(rb_threads[cpu]);
5940 	}
5941 	if (ret) {
5942 		ring_buffer_free(buffer);
5943 		return ret;
5944 	}
5945 
5946 	/* Report! */
5947 	pr_info("finished\n");
5948 	for_each_online_cpu(cpu) {
5949 		struct ring_buffer_event *event;
5950 		struct rb_test_data *data = &rb_data[cpu];
5951 		struct rb_item *item;
5952 		unsigned long total_events;
5953 		unsigned long total_dropped;
5954 		unsigned long total_written;
5955 		unsigned long total_alloc;
5956 		unsigned long total_read = 0;
5957 		unsigned long total_size = 0;
5958 		unsigned long total_len = 0;
5959 		unsigned long total_lost = 0;
5960 		unsigned long lost;
5961 		int big_event_size;
5962 		int small_event_size;
5963 
5964 		ret = -1;
5965 
5966 		total_events = data->events + data->events_nested;
5967 		total_written = data->bytes_written + data->bytes_written_nested;
5968 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5969 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5970 
5971 		big_event_size = data->max_size + data->max_size_nested;
5972 		small_event_size = data->min_size + data->min_size_nested;
5973 
5974 		pr_info("CPU %d:\n", cpu);
5975 		pr_info("              events:    %ld\n", total_events);
5976 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5977 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5978 		pr_info("       written bytes:    %ld\n", total_written);
5979 		pr_info("       biggest event:    %d\n", big_event_size);
5980 		pr_info("      smallest event:    %d\n", small_event_size);
5981 
5982 		if (RB_WARN_ON(buffer, total_dropped))
5983 			break;
5984 
5985 		ret = 0;
5986 
5987 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5988 			total_lost += lost;
5989 			item = ring_buffer_event_data(event);
5990 			total_len += ring_buffer_event_length(event);
5991 			total_size += item->size + sizeof(struct rb_item);
5992 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5993 				pr_info("FAILED!\n");
5994 				pr_info("buffer had: %.*s\n", item->size, item->str);
5995 				pr_info("expected:   %.*s\n", item->size, rb_string);
5996 				RB_WARN_ON(buffer, 1);
5997 				ret = -1;
5998 				break;
5999 			}
6000 			total_read++;
6001 		}
6002 		if (ret)
6003 			break;
6004 
6005 		ret = -1;
6006 
6007 		pr_info("         read events:   %ld\n", total_read);
6008 		pr_info("         lost events:   %ld\n", total_lost);
6009 		pr_info("        total events:   %ld\n", total_lost + total_read);
6010 		pr_info("  recorded len bytes:   %ld\n", total_len);
6011 		pr_info(" recorded size bytes:   %ld\n", total_size);
6012 		if (total_lost)
6013 			pr_info(" With dropped events, record len and size may not match\n"
6014 				" alloced and written from above\n");
6015 		if (!total_lost) {
6016 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6017 				       total_size != total_written))
6018 				break;
6019 		}
6020 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6021 			break;
6022 
6023 		ret = 0;
6024 	}
6025 	if (!ret)
6026 		pr_info("Ring buffer PASSED!\n");
6027 
6028 	ring_buffer_free(buffer);
6029 	return 0;
6030 }
6031 
6032 late_initcall(test_ringbuffer);
6033 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6034