1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 /* 33 * The "absolute" timestamp in the buffer is only 59 bits. 34 * If a clock has the 5 MSBs set, it needs to be saved and 35 * reinserted. 36 */ 37 #define TS_MSB (0xf8ULL << 56) 38 #define ABS_TS_MASK (~TS_MSB) 39 40 static void update_pages_handler(struct work_struct *work); 41 42 /* 43 * The ring buffer header is special. We must manually up keep it. 44 */ 45 int ring_buffer_print_entry_header(struct trace_seq *s) 46 { 47 trace_seq_puts(s, "# compressed entry header\n"); 48 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 49 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 50 trace_seq_puts(s, "\tarray : 32 bits\n"); 51 trace_seq_putc(s, '\n'); 52 trace_seq_printf(s, "\tpadding : type == %d\n", 53 RINGBUF_TYPE_PADDING); 54 trace_seq_printf(s, "\ttime_extend : type == %d\n", 55 RINGBUF_TYPE_TIME_EXTEND); 56 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 57 RINGBUF_TYPE_TIME_STAMP); 58 trace_seq_printf(s, "\tdata max type_len == %d\n", 59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 60 61 return !trace_seq_has_overflowed(s); 62 } 63 64 /* 65 * The ring buffer is made up of a list of pages. A separate list of pages is 66 * allocated for each CPU. A writer may only write to a buffer that is 67 * associated with the CPU it is currently executing on. A reader may read 68 * from any per cpu buffer. 69 * 70 * The reader is special. For each per cpu buffer, the reader has its own 71 * reader page. When a reader has read the entire reader page, this reader 72 * page is swapped with another page in the ring buffer. 73 * 74 * Now, as long as the writer is off the reader page, the reader can do what 75 * ever it wants with that page. The writer will never write to that page 76 * again (as long as it is out of the ring buffer). 77 * 78 * Here's some silly ASCII art. 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page | 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * | |-->| |-->| | 96 * +---+ +---+ +---+ 97 * ^ | 98 * | | 99 * +---------------+ 100 * 101 * 102 * +------+ 103 * |reader| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | |-->| |-->| | 107 * | +---+ +---+ +---+ 108 * | | 109 * | | 110 * +------------------------------+ 111 * 112 * 113 * +------+ 114 * |buffer| RING BUFFER 115 * |page |------------------v 116 * +------+ +---+ +---+ +---+ 117 * ^ | | | |-->| | 118 * | New +---+ +---+ +---+ 119 * | Reader------^ | 120 * | page | 121 * +------------------------------+ 122 * 123 * 124 * After we make this swap, the reader can hand this page off to the splice 125 * code and be done with it. It can even allocate a new page if it needs to 126 * and swap that into the ring buffer. 127 * 128 * We will be using cmpxchg soon to make all this lockless. 129 * 130 */ 131 132 /* Used for individual buffers (after the counter) */ 133 #define RB_BUFFER_OFF (1 << 20) 134 135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 136 137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 138 #define RB_ALIGNMENT 4U 139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 141 142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 143 # define RB_FORCE_8BYTE_ALIGNMENT 0 144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 145 #else 146 # define RB_FORCE_8BYTE_ALIGNMENT 1 147 # define RB_ARCH_ALIGNMENT 8U 148 #endif 149 150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 151 152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 154 155 enum { 156 RB_LEN_TIME_EXTEND = 8, 157 RB_LEN_TIME_STAMP = 8, 158 }; 159 160 #define skip_time_extend(event) \ 161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 162 163 #define extended_time(event) \ 164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 165 166 static inline int rb_null_event(struct ring_buffer_event *event) 167 { 168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 169 } 170 171 static void rb_event_set_padding(struct ring_buffer_event *event) 172 { 173 /* padding has a NULL time_delta */ 174 event->type_len = RINGBUF_TYPE_PADDING; 175 event->time_delta = 0; 176 } 177 178 static unsigned 179 rb_event_data_length(struct ring_buffer_event *event) 180 { 181 unsigned length; 182 183 if (event->type_len) 184 length = event->type_len * RB_ALIGNMENT; 185 else 186 length = event->array[0]; 187 return length + RB_EVNT_HDR_SIZE; 188 } 189 190 /* 191 * Return the length of the given event. Will return 192 * the length of the time extend if the event is a 193 * time extend. 194 */ 195 static inline unsigned 196 rb_event_length(struct ring_buffer_event *event) 197 { 198 switch (event->type_len) { 199 case RINGBUF_TYPE_PADDING: 200 if (rb_null_event(event)) 201 /* undefined */ 202 return -1; 203 return event->array[0] + RB_EVNT_HDR_SIZE; 204 205 case RINGBUF_TYPE_TIME_EXTEND: 206 return RB_LEN_TIME_EXTEND; 207 208 case RINGBUF_TYPE_TIME_STAMP: 209 return RB_LEN_TIME_STAMP; 210 211 case RINGBUF_TYPE_DATA: 212 return rb_event_data_length(event); 213 default: 214 WARN_ON_ONCE(1); 215 } 216 /* not hit */ 217 return 0; 218 } 219 220 /* 221 * Return total length of time extend and data, 222 * or just the event length for all other events. 223 */ 224 static inline unsigned 225 rb_event_ts_length(struct ring_buffer_event *event) 226 { 227 unsigned len = 0; 228 229 if (extended_time(event)) { 230 /* time extends include the data event after it */ 231 len = RB_LEN_TIME_EXTEND; 232 event = skip_time_extend(event); 233 } 234 return len + rb_event_length(event); 235 } 236 237 /** 238 * ring_buffer_event_length - return the length of the event 239 * @event: the event to get the length of 240 * 241 * Returns the size of the data load of a data event. 242 * If the event is something other than a data event, it 243 * returns the size of the event itself. With the exception 244 * of a TIME EXTEND, where it still returns the size of the 245 * data load of the data event after it. 246 */ 247 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 248 { 249 unsigned length; 250 251 if (extended_time(event)) 252 event = skip_time_extend(event); 253 254 length = rb_event_length(event); 255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 256 return length; 257 length -= RB_EVNT_HDR_SIZE; 258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 259 length -= sizeof(event->array[0]); 260 return length; 261 } 262 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 263 264 /* inline for ring buffer fast paths */ 265 static __always_inline void * 266 rb_event_data(struct ring_buffer_event *event) 267 { 268 if (extended_time(event)) 269 event = skip_time_extend(event); 270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 271 /* If length is in len field, then array[0] has the data */ 272 if (event->type_len) 273 return (void *)&event->array[0]; 274 /* Otherwise length is in array[0] and array[1] has the data */ 275 return (void *)&event->array[1]; 276 } 277 278 /** 279 * ring_buffer_event_data - return the data of the event 280 * @event: the event to get the data from 281 */ 282 void *ring_buffer_event_data(struct ring_buffer_event *event) 283 { 284 return rb_event_data(event); 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 287 288 #define for_each_buffer_cpu(buffer, cpu) \ 289 for_each_cpu(cpu, buffer->cpumask) 290 291 #define for_each_online_buffer_cpu(buffer, cpu) \ 292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 293 294 #define TS_SHIFT 27 295 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 296 #define TS_DELTA_TEST (~TS_MASK) 297 298 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 299 { 300 u64 ts; 301 302 ts = event->array[0]; 303 ts <<= TS_SHIFT; 304 ts += event->time_delta; 305 306 return ts; 307 } 308 309 /* Flag when events were overwritten */ 310 #define RB_MISSED_EVENTS (1 << 31) 311 /* Missed count stored at end */ 312 #define RB_MISSED_STORED (1 << 30) 313 314 struct buffer_data_page { 315 u64 time_stamp; /* page time stamp */ 316 local_t commit; /* write committed index */ 317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 318 }; 319 320 /* 321 * Note, the buffer_page list must be first. The buffer pages 322 * are allocated in cache lines, which means that each buffer 323 * page will be at the beginning of a cache line, and thus 324 * the least significant bits will be zero. We use this to 325 * add flags in the list struct pointers, to make the ring buffer 326 * lockless. 327 */ 328 struct buffer_page { 329 struct list_head list; /* list of buffer pages */ 330 local_t write; /* index for next write */ 331 unsigned read; /* index for next read */ 332 local_t entries; /* entries on this page */ 333 unsigned long real_end; /* real end of data */ 334 struct buffer_data_page *page; /* Actual data page */ 335 }; 336 337 /* 338 * The buffer page counters, write and entries, must be reset 339 * atomically when crossing page boundaries. To synchronize this 340 * update, two counters are inserted into the number. One is 341 * the actual counter for the write position or count on the page. 342 * 343 * The other is a counter of updaters. Before an update happens 344 * the update partition of the counter is incremented. This will 345 * allow the updater to update the counter atomically. 346 * 347 * The counter is 20 bits, and the state data is 12. 348 */ 349 #define RB_WRITE_MASK 0xfffff 350 #define RB_WRITE_INTCNT (1 << 20) 351 352 static void rb_init_page(struct buffer_data_page *bpage) 353 { 354 local_set(&bpage->commit, 0); 355 } 356 357 /* 358 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 359 * this issue out. 360 */ 361 static void free_buffer_page(struct buffer_page *bpage) 362 { 363 free_page((unsigned long)bpage->page); 364 kfree(bpage); 365 } 366 367 /* 368 * We need to fit the time_stamp delta into 27 bits. 369 */ 370 static inline int test_time_stamp(u64 delta) 371 { 372 if (delta & TS_DELTA_TEST) 373 return 1; 374 return 0; 375 } 376 377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 378 379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 381 382 int ring_buffer_print_page_header(struct trace_seq *s) 383 { 384 struct buffer_data_page field; 385 386 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 387 "offset:0;\tsize:%u;\tsigned:%u;\n", 388 (unsigned int)sizeof(field.time_stamp), 389 (unsigned int)is_signed_type(u64)); 390 391 trace_seq_printf(s, "\tfield: local_t commit;\t" 392 "offset:%u;\tsize:%u;\tsigned:%u;\n", 393 (unsigned int)offsetof(typeof(field), commit), 394 (unsigned int)sizeof(field.commit), 395 (unsigned int)is_signed_type(long)); 396 397 trace_seq_printf(s, "\tfield: int overwrite;\t" 398 "offset:%u;\tsize:%u;\tsigned:%u;\n", 399 (unsigned int)offsetof(typeof(field), commit), 400 1, 401 (unsigned int)is_signed_type(long)); 402 403 trace_seq_printf(s, "\tfield: char data;\t" 404 "offset:%u;\tsize:%u;\tsigned:%u;\n", 405 (unsigned int)offsetof(typeof(field), data), 406 (unsigned int)BUF_PAGE_SIZE, 407 (unsigned int)is_signed_type(char)); 408 409 return !trace_seq_has_overflowed(s); 410 } 411 412 struct rb_irq_work { 413 struct irq_work work; 414 wait_queue_head_t waiters; 415 wait_queue_head_t full_waiters; 416 long wait_index; 417 bool waiters_pending; 418 bool full_waiters_pending; 419 bool wakeup_full; 420 }; 421 422 /* 423 * Structure to hold event state and handle nested events. 424 */ 425 struct rb_event_info { 426 u64 ts; 427 u64 delta; 428 u64 before; 429 u64 after; 430 unsigned long length; 431 struct buffer_page *tail_page; 432 int add_timestamp; 433 }; 434 435 /* 436 * Used for the add_timestamp 437 * NONE 438 * EXTEND - wants a time extend 439 * ABSOLUTE - the buffer requests all events to have absolute time stamps 440 * FORCE - force a full time stamp. 441 */ 442 enum { 443 RB_ADD_STAMP_NONE = 0, 444 RB_ADD_STAMP_EXTEND = BIT(1), 445 RB_ADD_STAMP_ABSOLUTE = BIT(2), 446 RB_ADD_STAMP_FORCE = BIT(3) 447 }; 448 /* 449 * Used for which event context the event is in. 450 * TRANSITION = 0 451 * NMI = 1 452 * IRQ = 2 453 * SOFTIRQ = 3 454 * NORMAL = 4 455 * 456 * See trace_recursive_lock() comment below for more details. 457 */ 458 enum { 459 RB_CTX_TRANSITION, 460 RB_CTX_NMI, 461 RB_CTX_IRQ, 462 RB_CTX_SOFTIRQ, 463 RB_CTX_NORMAL, 464 RB_CTX_MAX 465 }; 466 467 #if BITS_PER_LONG == 32 468 #define RB_TIME_32 469 #endif 470 471 /* To test on 64 bit machines */ 472 //#define RB_TIME_32 473 474 #ifdef RB_TIME_32 475 476 struct rb_time_struct { 477 local_t cnt; 478 local_t top; 479 local_t bottom; 480 local_t msb; 481 }; 482 #else 483 #include <asm/local64.h> 484 struct rb_time_struct { 485 local64_t time; 486 }; 487 #endif 488 typedef struct rb_time_struct rb_time_t; 489 490 #define MAX_NEST 5 491 492 /* 493 * head_page == tail_page && head == tail then buffer is empty. 494 */ 495 struct ring_buffer_per_cpu { 496 int cpu; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 struct trace_buffer *buffer; 500 raw_spinlock_t reader_lock; /* serialize readers */ 501 arch_spinlock_t lock; 502 struct lock_class_key lock_key; 503 struct buffer_data_page *free_page; 504 unsigned long nr_pages; 505 unsigned int current_context; 506 struct list_head *pages; 507 struct buffer_page *head_page; /* read from head */ 508 struct buffer_page *tail_page; /* write to tail */ 509 struct buffer_page *commit_page; /* committed pages */ 510 struct buffer_page *reader_page; 511 unsigned long lost_events; 512 unsigned long last_overrun; 513 unsigned long nest; 514 local_t entries_bytes; 515 local_t entries; 516 local_t overrun; 517 local_t commit_overrun; 518 local_t dropped_events; 519 local_t committing; 520 local_t commits; 521 local_t pages_touched; 522 local_t pages_lost; 523 local_t pages_read; 524 long last_pages_touch; 525 size_t shortest_full; 526 unsigned long read; 527 unsigned long read_bytes; 528 rb_time_t write_stamp; 529 rb_time_t before_stamp; 530 u64 event_stamp[MAX_NEST]; 531 u64 read_stamp; 532 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 533 long nr_pages_to_update; 534 struct list_head new_pages; /* new pages to add */ 535 struct work_struct update_pages_work; 536 struct completion update_done; 537 538 struct rb_irq_work irq_work; 539 }; 540 541 struct trace_buffer { 542 unsigned flags; 543 int cpus; 544 atomic_t record_disabled; 545 cpumask_var_t cpumask; 546 547 struct lock_class_key *reader_lock_key; 548 549 struct mutex mutex; 550 551 struct ring_buffer_per_cpu **buffers; 552 553 struct hlist_node node; 554 u64 (*clock)(void); 555 556 struct rb_irq_work irq_work; 557 bool time_stamp_abs; 558 }; 559 560 struct ring_buffer_iter { 561 struct ring_buffer_per_cpu *cpu_buffer; 562 unsigned long head; 563 unsigned long next_event; 564 struct buffer_page *head_page; 565 struct buffer_page *cache_reader_page; 566 unsigned long cache_read; 567 u64 read_stamp; 568 u64 page_stamp; 569 struct ring_buffer_event *event; 570 int missed_events; 571 }; 572 573 #ifdef RB_TIME_32 574 575 /* 576 * On 32 bit machines, local64_t is very expensive. As the ring 577 * buffer doesn't need all the features of a true 64 bit atomic, 578 * on 32 bit, it uses these functions (64 still uses local64_t). 579 * 580 * For the ring buffer, 64 bit required operations for the time is 581 * the following: 582 * 583 * - Reads may fail if it interrupted a modification of the time stamp. 584 * It will succeed if it did not interrupt another write even if 585 * the read itself is interrupted by a write. 586 * It returns whether it was successful or not. 587 * 588 * - Writes always succeed and will overwrite other writes and writes 589 * that were done by events interrupting the current write. 590 * 591 * - A write followed by a read of the same time stamp will always succeed, 592 * but may not contain the same value. 593 * 594 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 595 * Other than that, it acts like a normal cmpxchg. 596 * 597 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 598 * (bottom being the least significant 30 bits of the 60 bit time stamp). 599 * 600 * The two most significant bits of each half holds a 2 bit counter (0-3). 601 * Each update will increment this counter by one. 602 * When reading the top and bottom, if the two counter bits match then the 603 * top and bottom together make a valid 60 bit number. 604 */ 605 #define RB_TIME_SHIFT 30 606 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 607 #define RB_TIME_MSB_SHIFT 60 608 609 static inline int rb_time_cnt(unsigned long val) 610 { 611 return (val >> RB_TIME_SHIFT) & 3; 612 } 613 614 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 615 { 616 u64 val; 617 618 val = top & RB_TIME_VAL_MASK; 619 val <<= RB_TIME_SHIFT; 620 val |= bottom & RB_TIME_VAL_MASK; 621 622 return val; 623 } 624 625 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 626 { 627 unsigned long top, bottom, msb; 628 unsigned long c; 629 630 /* 631 * If the read is interrupted by a write, then the cnt will 632 * be different. Loop until both top and bottom have been read 633 * without interruption. 634 */ 635 do { 636 c = local_read(&t->cnt); 637 top = local_read(&t->top); 638 bottom = local_read(&t->bottom); 639 msb = local_read(&t->msb); 640 } while (c != local_read(&t->cnt)); 641 642 *cnt = rb_time_cnt(top); 643 644 /* If top and bottom counts don't match, this interrupted a write */ 645 if (*cnt != rb_time_cnt(bottom)) 646 return false; 647 648 /* The shift to msb will lose its cnt bits */ 649 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT); 650 return true; 651 } 652 653 static bool rb_time_read(rb_time_t *t, u64 *ret) 654 { 655 unsigned long cnt; 656 657 return __rb_time_read(t, ret, &cnt); 658 } 659 660 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 661 { 662 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 663 } 664 665 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom, 666 unsigned long *msb) 667 { 668 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 669 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 670 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT); 671 } 672 673 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 674 { 675 val = rb_time_val_cnt(val, cnt); 676 local_set(t, val); 677 } 678 679 static void rb_time_set(rb_time_t *t, u64 val) 680 { 681 unsigned long cnt, top, bottom, msb; 682 683 rb_time_split(val, &top, &bottom, &msb); 684 685 /* Writes always succeed with a valid number even if it gets interrupted. */ 686 do { 687 cnt = local_inc_return(&t->cnt); 688 rb_time_val_set(&t->top, top, cnt); 689 rb_time_val_set(&t->bottom, bottom, cnt); 690 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt); 691 } while (cnt != local_read(&t->cnt)); 692 } 693 694 static inline bool 695 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 696 { 697 unsigned long ret; 698 699 ret = local_cmpxchg(l, expect, set); 700 return ret == expect; 701 } 702 703 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 704 { 705 unsigned long cnt, top, bottom, msb; 706 unsigned long cnt2, top2, bottom2, msb2; 707 u64 val; 708 709 /* The cmpxchg always fails if it interrupted an update */ 710 if (!__rb_time_read(t, &val, &cnt2)) 711 return false; 712 713 if (val != expect) 714 return false; 715 716 cnt = local_read(&t->cnt); 717 if ((cnt & 3) != cnt2) 718 return false; 719 720 cnt2 = cnt + 1; 721 722 rb_time_split(val, &top, &bottom, &msb); 723 top = rb_time_val_cnt(top, cnt); 724 bottom = rb_time_val_cnt(bottom, cnt); 725 726 rb_time_split(set, &top2, &bottom2, &msb2); 727 top2 = rb_time_val_cnt(top2, cnt2); 728 bottom2 = rb_time_val_cnt(bottom2, cnt2); 729 730 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 731 return false; 732 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2)) 733 return false; 734 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 735 return false; 736 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 737 return false; 738 return true; 739 } 740 741 #else /* 64 bits */ 742 743 /* local64_t always succeeds */ 744 745 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 746 { 747 *ret = local64_read(&t->time); 748 return true; 749 } 750 static void rb_time_set(rb_time_t *t, u64 val) 751 { 752 local64_set(&t->time, val); 753 } 754 755 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 756 { 757 u64 val; 758 val = local64_cmpxchg(&t->time, expect, set); 759 return val == expect; 760 } 761 #endif 762 763 /* 764 * Enable this to make sure that the event passed to 765 * ring_buffer_event_time_stamp() is not committed and also 766 * is on the buffer that it passed in. 767 */ 768 //#define RB_VERIFY_EVENT 769 #ifdef RB_VERIFY_EVENT 770 static struct list_head *rb_list_head(struct list_head *list); 771 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 772 void *event) 773 { 774 struct buffer_page *page = cpu_buffer->commit_page; 775 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 776 struct list_head *next; 777 long commit, write; 778 unsigned long addr = (unsigned long)event; 779 bool done = false; 780 int stop = 0; 781 782 /* Make sure the event exists and is not committed yet */ 783 do { 784 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 785 done = true; 786 commit = local_read(&page->page->commit); 787 write = local_read(&page->write); 788 if (addr >= (unsigned long)&page->page->data[commit] && 789 addr < (unsigned long)&page->page->data[write]) 790 return; 791 792 next = rb_list_head(page->list.next); 793 page = list_entry(next, struct buffer_page, list); 794 } while (!done); 795 WARN_ON_ONCE(1); 796 } 797 #else 798 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 799 void *event) 800 { 801 } 802 #endif 803 804 /* 805 * The absolute time stamp drops the 5 MSBs and some clocks may 806 * require them. The rb_fix_abs_ts() will take a previous full 807 * time stamp, and add the 5 MSB of that time stamp on to the 808 * saved absolute time stamp. Then they are compared in case of 809 * the unlikely event that the latest time stamp incremented 810 * the 5 MSB. 811 */ 812 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 813 { 814 if (save_ts & TS_MSB) { 815 abs |= save_ts & TS_MSB; 816 /* Check for overflow */ 817 if (unlikely(abs < save_ts)) 818 abs += 1ULL << 59; 819 } 820 return abs; 821 } 822 823 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 824 825 /** 826 * ring_buffer_event_time_stamp - return the event's current time stamp 827 * @buffer: The buffer that the event is on 828 * @event: the event to get the time stamp of 829 * 830 * Note, this must be called after @event is reserved, and before it is 831 * committed to the ring buffer. And must be called from the same 832 * context where the event was reserved (normal, softirq, irq, etc). 833 * 834 * Returns the time stamp associated with the current event. 835 * If the event has an extended time stamp, then that is used as 836 * the time stamp to return. 837 * In the highly unlikely case that the event was nested more than 838 * the max nesting, then the write_stamp of the buffer is returned, 839 * otherwise current time is returned, but that really neither of 840 * the last two cases should ever happen. 841 */ 842 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 843 struct ring_buffer_event *event) 844 { 845 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 846 unsigned int nest; 847 u64 ts; 848 849 /* If the event includes an absolute time, then just use that */ 850 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 851 ts = rb_event_time_stamp(event); 852 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 853 } 854 855 nest = local_read(&cpu_buffer->committing); 856 verify_event(cpu_buffer, event); 857 if (WARN_ON_ONCE(!nest)) 858 goto fail; 859 860 /* Read the current saved nesting level time stamp */ 861 if (likely(--nest < MAX_NEST)) 862 return cpu_buffer->event_stamp[nest]; 863 864 /* Shouldn't happen, warn if it does */ 865 WARN_ONCE(1, "nest (%d) greater than max", nest); 866 867 fail: 868 /* Can only fail on 32 bit */ 869 if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) 870 /* Screw it, just read the current time */ 871 ts = rb_time_stamp(cpu_buffer->buffer); 872 873 return ts; 874 } 875 876 /** 877 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 878 * @buffer: The ring_buffer to get the number of pages from 879 * @cpu: The cpu of the ring_buffer to get the number of pages from 880 * 881 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 882 */ 883 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 884 { 885 return buffer->buffers[cpu]->nr_pages; 886 } 887 888 /** 889 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 890 * @buffer: The ring_buffer to get the number of pages from 891 * @cpu: The cpu of the ring_buffer to get the number of pages from 892 * 893 * Returns the number of pages that have content in the ring buffer. 894 */ 895 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 896 { 897 size_t read; 898 size_t lost; 899 size_t cnt; 900 901 read = local_read(&buffer->buffers[cpu]->pages_read); 902 lost = local_read(&buffer->buffers[cpu]->pages_lost); 903 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 904 905 if (WARN_ON_ONCE(cnt < lost)) 906 return 0; 907 908 cnt -= lost; 909 910 /* The reader can read an empty page, but not more than that */ 911 if (cnt < read) { 912 WARN_ON_ONCE(read > cnt + 1); 913 return 0; 914 } 915 916 return cnt - read; 917 } 918 919 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 920 { 921 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 922 size_t nr_pages; 923 size_t dirty; 924 925 nr_pages = cpu_buffer->nr_pages; 926 if (!nr_pages || !full) 927 return true; 928 929 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 930 931 return (dirty * 100) > (full * nr_pages); 932 } 933 934 /* 935 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 936 * 937 * Schedules a delayed work to wake up any task that is blocked on the 938 * ring buffer waiters queue. 939 */ 940 static void rb_wake_up_waiters(struct irq_work *work) 941 { 942 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 943 944 wake_up_all(&rbwork->waiters); 945 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 946 rbwork->wakeup_full = false; 947 rbwork->full_waiters_pending = false; 948 wake_up_all(&rbwork->full_waiters); 949 } 950 } 951 952 /** 953 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 954 * @buffer: The ring buffer to wake waiters on 955 * 956 * In the case of a file that represents a ring buffer is closing, 957 * it is prudent to wake up any waiters that are on this. 958 */ 959 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 960 { 961 struct ring_buffer_per_cpu *cpu_buffer; 962 struct rb_irq_work *rbwork; 963 964 if (!buffer) 965 return; 966 967 if (cpu == RING_BUFFER_ALL_CPUS) { 968 969 /* Wake up individual ones too. One level recursion */ 970 for_each_buffer_cpu(buffer, cpu) 971 ring_buffer_wake_waiters(buffer, cpu); 972 973 rbwork = &buffer->irq_work; 974 } else { 975 if (WARN_ON_ONCE(!buffer->buffers)) 976 return; 977 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 978 return; 979 980 cpu_buffer = buffer->buffers[cpu]; 981 /* The CPU buffer may not have been initialized yet */ 982 if (!cpu_buffer) 983 return; 984 rbwork = &cpu_buffer->irq_work; 985 } 986 987 rbwork->wait_index++; 988 /* make sure the waiters see the new index */ 989 smp_wmb(); 990 991 rb_wake_up_waiters(&rbwork->work); 992 } 993 994 /** 995 * ring_buffer_wait - wait for input to the ring buffer 996 * @buffer: buffer to wait on 997 * @cpu: the cpu buffer to wait on 998 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 999 * 1000 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1001 * as data is added to any of the @buffer's cpu buffers. Otherwise 1002 * it will wait for data to be added to a specific cpu buffer. 1003 */ 1004 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 1005 { 1006 struct ring_buffer_per_cpu *cpu_buffer; 1007 DEFINE_WAIT(wait); 1008 struct rb_irq_work *work; 1009 long wait_index; 1010 int ret = 0; 1011 1012 /* 1013 * Depending on what the caller is waiting for, either any 1014 * data in any cpu buffer, or a specific buffer, put the 1015 * caller on the appropriate wait queue. 1016 */ 1017 if (cpu == RING_BUFFER_ALL_CPUS) { 1018 work = &buffer->irq_work; 1019 /* Full only makes sense on per cpu reads */ 1020 full = 0; 1021 } else { 1022 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1023 return -ENODEV; 1024 cpu_buffer = buffer->buffers[cpu]; 1025 work = &cpu_buffer->irq_work; 1026 } 1027 1028 wait_index = READ_ONCE(work->wait_index); 1029 1030 while (true) { 1031 if (full) 1032 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 1033 else 1034 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 1035 1036 /* 1037 * The events can happen in critical sections where 1038 * checking a work queue can cause deadlocks. 1039 * After adding a task to the queue, this flag is set 1040 * only to notify events to try to wake up the queue 1041 * using irq_work. 1042 * 1043 * We don't clear it even if the buffer is no longer 1044 * empty. The flag only causes the next event to run 1045 * irq_work to do the work queue wake up. The worse 1046 * that can happen if we race with !trace_empty() is that 1047 * an event will cause an irq_work to try to wake up 1048 * an empty queue. 1049 * 1050 * There's no reason to protect this flag either, as 1051 * the work queue and irq_work logic will do the necessary 1052 * synchronization for the wake ups. The only thing 1053 * that is necessary is that the wake up happens after 1054 * a task has been queued. It's OK for spurious wake ups. 1055 */ 1056 if (full) 1057 work->full_waiters_pending = true; 1058 else 1059 work->waiters_pending = true; 1060 1061 if (signal_pending(current)) { 1062 ret = -EINTR; 1063 break; 1064 } 1065 1066 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 1067 break; 1068 1069 if (cpu != RING_BUFFER_ALL_CPUS && 1070 !ring_buffer_empty_cpu(buffer, cpu)) { 1071 unsigned long flags; 1072 bool pagebusy; 1073 bool done; 1074 1075 if (!full) 1076 break; 1077 1078 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1079 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 1080 done = !pagebusy && full_hit(buffer, cpu, full); 1081 1082 if (!cpu_buffer->shortest_full || 1083 cpu_buffer->shortest_full > full) 1084 cpu_buffer->shortest_full = full; 1085 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1086 if (done) 1087 break; 1088 } 1089 1090 schedule(); 1091 1092 /* Make sure to see the new wait index */ 1093 smp_rmb(); 1094 if (wait_index != work->wait_index) 1095 break; 1096 } 1097 1098 if (full) 1099 finish_wait(&work->full_waiters, &wait); 1100 else 1101 finish_wait(&work->waiters, &wait); 1102 1103 return ret; 1104 } 1105 1106 /** 1107 * ring_buffer_poll_wait - poll on buffer input 1108 * @buffer: buffer to wait on 1109 * @cpu: the cpu buffer to wait on 1110 * @filp: the file descriptor 1111 * @poll_table: The poll descriptor 1112 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1113 * 1114 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1115 * as data is added to any of the @buffer's cpu buffers. Otherwise 1116 * it will wait for data to be added to a specific cpu buffer. 1117 * 1118 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1119 * zero otherwise. 1120 */ 1121 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1122 struct file *filp, poll_table *poll_table, int full) 1123 { 1124 struct ring_buffer_per_cpu *cpu_buffer; 1125 struct rb_irq_work *work; 1126 1127 if (cpu == RING_BUFFER_ALL_CPUS) { 1128 work = &buffer->irq_work; 1129 full = 0; 1130 } else { 1131 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1132 return -EINVAL; 1133 1134 cpu_buffer = buffer->buffers[cpu]; 1135 work = &cpu_buffer->irq_work; 1136 } 1137 1138 if (full) { 1139 poll_wait(filp, &work->full_waiters, poll_table); 1140 work->full_waiters_pending = true; 1141 } else { 1142 poll_wait(filp, &work->waiters, poll_table); 1143 work->waiters_pending = true; 1144 } 1145 1146 /* 1147 * There's a tight race between setting the waiters_pending and 1148 * checking if the ring buffer is empty. Once the waiters_pending bit 1149 * is set, the next event will wake the task up, but we can get stuck 1150 * if there's only a single event in. 1151 * 1152 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1153 * but adding a memory barrier to all events will cause too much of a 1154 * performance hit in the fast path. We only need a memory barrier when 1155 * the buffer goes from empty to having content. But as this race is 1156 * extremely small, and it's not a problem if another event comes in, we 1157 * will fix it later. 1158 */ 1159 smp_mb(); 1160 1161 if (full) 1162 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0; 1163 1164 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1165 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1166 return EPOLLIN | EPOLLRDNORM; 1167 return 0; 1168 } 1169 1170 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1171 #define RB_WARN_ON(b, cond) \ 1172 ({ \ 1173 int _____ret = unlikely(cond); \ 1174 if (_____ret) { \ 1175 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1176 struct ring_buffer_per_cpu *__b = \ 1177 (void *)b; \ 1178 atomic_inc(&__b->buffer->record_disabled); \ 1179 } else \ 1180 atomic_inc(&b->record_disabled); \ 1181 WARN_ON(1); \ 1182 } \ 1183 _____ret; \ 1184 }) 1185 1186 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1187 #define DEBUG_SHIFT 0 1188 1189 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1190 { 1191 u64 ts; 1192 1193 /* Skip retpolines :-( */ 1194 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1195 ts = trace_clock_local(); 1196 else 1197 ts = buffer->clock(); 1198 1199 /* shift to debug/test normalization and TIME_EXTENTS */ 1200 return ts << DEBUG_SHIFT; 1201 } 1202 1203 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1204 { 1205 u64 time; 1206 1207 preempt_disable_notrace(); 1208 time = rb_time_stamp(buffer); 1209 preempt_enable_notrace(); 1210 1211 return time; 1212 } 1213 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1214 1215 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1216 int cpu, u64 *ts) 1217 { 1218 /* Just stupid testing the normalize function and deltas */ 1219 *ts >>= DEBUG_SHIFT; 1220 } 1221 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1222 1223 /* 1224 * Making the ring buffer lockless makes things tricky. 1225 * Although writes only happen on the CPU that they are on, 1226 * and they only need to worry about interrupts. Reads can 1227 * happen on any CPU. 1228 * 1229 * The reader page is always off the ring buffer, but when the 1230 * reader finishes with a page, it needs to swap its page with 1231 * a new one from the buffer. The reader needs to take from 1232 * the head (writes go to the tail). But if a writer is in overwrite 1233 * mode and wraps, it must push the head page forward. 1234 * 1235 * Here lies the problem. 1236 * 1237 * The reader must be careful to replace only the head page, and 1238 * not another one. As described at the top of the file in the 1239 * ASCII art, the reader sets its old page to point to the next 1240 * page after head. It then sets the page after head to point to 1241 * the old reader page. But if the writer moves the head page 1242 * during this operation, the reader could end up with the tail. 1243 * 1244 * We use cmpxchg to help prevent this race. We also do something 1245 * special with the page before head. We set the LSB to 1. 1246 * 1247 * When the writer must push the page forward, it will clear the 1248 * bit that points to the head page, move the head, and then set 1249 * the bit that points to the new head page. 1250 * 1251 * We also don't want an interrupt coming in and moving the head 1252 * page on another writer. Thus we use the second LSB to catch 1253 * that too. Thus: 1254 * 1255 * head->list->prev->next bit 1 bit 0 1256 * ------- ------- 1257 * Normal page 0 0 1258 * Points to head page 0 1 1259 * New head page 1 0 1260 * 1261 * Note we can not trust the prev pointer of the head page, because: 1262 * 1263 * +----+ +-----+ +-----+ 1264 * | |------>| T |---X--->| N | 1265 * | |<------| | | | 1266 * +----+ +-----+ +-----+ 1267 * ^ ^ | 1268 * | +-----+ | | 1269 * +----------| R |----------+ | 1270 * | |<-----------+ 1271 * +-----+ 1272 * 1273 * Key: ---X--> HEAD flag set in pointer 1274 * T Tail page 1275 * R Reader page 1276 * N Next page 1277 * 1278 * (see __rb_reserve_next() to see where this happens) 1279 * 1280 * What the above shows is that the reader just swapped out 1281 * the reader page with a page in the buffer, but before it 1282 * could make the new header point back to the new page added 1283 * it was preempted by a writer. The writer moved forward onto 1284 * the new page added by the reader and is about to move forward 1285 * again. 1286 * 1287 * You can see, it is legitimate for the previous pointer of 1288 * the head (or any page) not to point back to itself. But only 1289 * temporarily. 1290 */ 1291 1292 #define RB_PAGE_NORMAL 0UL 1293 #define RB_PAGE_HEAD 1UL 1294 #define RB_PAGE_UPDATE 2UL 1295 1296 1297 #define RB_FLAG_MASK 3UL 1298 1299 /* PAGE_MOVED is not part of the mask */ 1300 #define RB_PAGE_MOVED 4UL 1301 1302 /* 1303 * rb_list_head - remove any bit 1304 */ 1305 static struct list_head *rb_list_head(struct list_head *list) 1306 { 1307 unsigned long val = (unsigned long)list; 1308 1309 return (struct list_head *)(val & ~RB_FLAG_MASK); 1310 } 1311 1312 /* 1313 * rb_is_head_page - test if the given page is the head page 1314 * 1315 * Because the reader may move the head_page pointer, we can 1316 * not trust what the head page is (it may be pointing to 1317 * the reader page). But if the next page is a header page, 1318 * its flags will be non zero. 1319 */ 1320 static inline int 1321 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1322 { 1323 unsigned long val; 1324 1325 val = (unsigned long)list->next; 1326 1327 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1328 return RB_PAGE_MOVED; 1329 1330 return val & RB_FLAG_MASK; 1331 } 1332 1333 /* 1334 * rb_is_reader_page 1335 * 1336 * The unique thing about the reader page, is that, if the 1337 * writer is ever on it, the previous pointer never points 1338 * back to the reader page. 1339 */ 1340 static bool rb_is_reader_page(struct buffer_page *page) 1341 { 1342 struct list_head *list = page->list.prev; 1343 1344 return rb_list_head(list->next) != &page->list; 1345 } 1346 1347 /* 1348 * rb_set_list_to_head - set a list_head to be pointing to head. 1349 */ 1350 static void rb_set_list_to_head(struct list_head *list) 1351 { 1352 unsigned long *ptr; 1353 1354 ptr = (unsigned long *)&list->next; 1355 *ptr |= RB_PAGE_HEAD; 1356 *ptr &= ~RB_PAGE_UPDATE; 1357 } 1358 1359 /* 1360 * rb_head_page_activate - sets up head page 1361 */ 1362 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1363 { 1364 struct buffer_page *head; 1365 1366 head = cpu_buffer->head_page; 1367 if (!head) 1368 return; 1369 1370 /* 1371 * Set the previous list pointer to have the HEAD flag. 1372 */ 1373 rb_set_list_to_head(head->list.prev); 1374 } 1375 1376 static void rb_list_head_clear(struct list_head *list) 1377 { 1378 unsigned long *ptr = (unsigned long *)&list->next; 1379 1380 *ptr &= ~RB_FLAG_MASK; 1381 } 1382 1383 /* 1384 * rb_head_page_deactivate - clears head page ptr (for free list) 1385 */ 1386 static void 1387 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1388 { 1389 struct list_head *hd; 1390 1391 /* Go through the whole list and clear any pointers found. */ 1392 rb_list_head_clear(cpu_buffer->pages); 1393 1394 list_for_each(hd, cpu_buffer->pages) 1395 rb_list_head_clear(hd); 1396 } 1397 1398 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1399 struct buffer_page *head, 1400 struct buffer_page *prev, 1401 int old_flag, int new_flag) 1402 { 1403 struct list_head *list; 1404 unsigned long val = (unsigned long)&head->list; 1405 unsigned long ret; 1406 1407 list = &prev->list; 1408 1409 val &= ~RB_FLAG_MASK; 1410 1411 ret = cmpxchg((unsigned long *)&list->next, 1412 val | old_flag, val | new_flag); 1413 1414 /* check if the reader took the page */ 1415 if ((ret & ~RB_FLAG_MASK) != val) 1416 return RB_PAGE_MOVED; 1417 1418 return ret & RB_FLAG_MASK; 1419 } 1420 1421 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1422 struct buffer_page *head, 1423 struct buffer_page *prev, 1424 int old_flag) 1425 { 1426 return rb_head_page_set(cpu_buffer, head, prev, 1427 old_flag, RB_PAGE_UPDATE); 1428 } 1429 1430 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1431 struct buffer_page *head, 1432 struct buffer_page *prev, 1433 int old_flag) 1434 { 1435 return rb_head_page_set(cpu_buffer, head, prev, 1436 old_flag, RB_PAGE_HEAD); 1437 } 1438 1439 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1440 struct buffer_page *head, 1441 struct buffer_page *prev, 1442 int old_flag) 1443 { 1444 return rb_head_page_set(cpu_buffer, head, prev, 1445 old_flag, RB_PAGE_NORMAL); 1446 } 1447 1448 static inline void rb_inc_page(struct buffer_page **bpage) 1449 { 1450 struct list_head *p = rb_list_head((*bpage)->list.next); 1451 1452 *bpage = list_entry(p, struct buffer_page, list); 1453 } 1454 1455 static struct buffer_page * 1456 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1457 { 1458 struct buffer_page *head; 1459 struct buffer_page *page; 1460 struct list_head *list; 1461 int i; 1462 1463 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1464 return NULL; 1465 1466 /* sanity check */ 1467 list = cpu_buffer->pages; 1468 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1469 return NULL; 1470 1471 page = head = cpu_buffer->head_page; 1472 /* 1473 * It is possible that the writer moves the header behind 1474 * where we started, and we miss in one loop. 1475 * A second loop should grab the header, but we'll do 1476 * three loops just because I'm paranoid. 1477 */ 1478 for (i = 0; i < 3; i++) { 1479 do { 1480 if (rb_is_head_page(page, page->list.prev)) { 1481 cpu_buffer->head_page = page; 1482 return page; 1483 } 1484 rb_inc_page(&page); 1485 } while (page != head); 1486 } 1487 1488 RB_WARN_ON(cpu_buffer, 1); 1489 1490 return NULL; 1491 } 1492 1493 static int rb_head_page_replace(struct buffer_page *old, 1494 struct buffer_page *new) 1495 { 1496 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1497 unsigned long val; 1498 unsigned long ret; 1499 1500 val = *ptr & ~RB_FLAG_MASK; 1501 val |= RB_PAGE_HEAD; 1502 1503 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1504 1505 return ret == val; 1506 } 1507 1508 /* 1509 * rb_tail_page_update - move the tail page forward 1510 */ 1511 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1512 struct buffer_page *tail_page, 1513 struct buffer_page *next_page) 1514 { 1515 unsigned long old_entries; 1516 unsigned long old_write; 1517 1518 /* 1519 * The tail page now needs to be moved forward. 1520 * 1521 * We need to reset the tail page, but without messing 1522 * with possible erasing of data brought in by interrupts 1523 * that have moved the tail page and are currently on it. 1524 * 1525 * We add a counter to the write field to denote this. 1526 */ 1527 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1528 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1529 1530 local_inc(&cpu_buffer->pages_touched); 1531 /* 1532 * Just make sure we have seen our old_write and synchronize 1533 * with any interrupts that come in. 1534 */ 1535 barrier(); 1536 1537 /* 1538 * If the tail page is still the same as what we think 1539 * it is, then it is up to us to update the tail 1540 * pointer. 1541 */ 1542 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1543 /* Zero the write counter */ 1544 unsigned long val = old_write & ~RB_WRITE_MASK; 1545 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1546 1547 /* 1548 * This will only succeed if an interrupt did 1549 * not come in and change it. In which case, we 1550 * do not want to modify it. 1551 * 1552 * We add (void) to let the compiler know that we do not care 1553 * about the return value of these functions. We use the 1554 * cmpxchg to only update if an interrupt did not already 1555 * do it for us. If the cmpxchg fails, we don't care. 1556 */ 1557 (void)local_cmpxchg(&next_page->write, old_write, val); 1558 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1559 1560 /* 1561 * No need to worry about races with clearing out the commit. 1562 * it only can increment when a commit takes place. But that 1563 * only happens in the outer most nested commit. 1564 */ 1565 local_set(&next_page->page->commit, 0); 1566 1567 /* Again, either we update tail_page or an interrupt does */ 1568 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1569 } 1570 } 1571 1572 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1573 struct buffer_page *bpage) 1574 { 1575 unsigned long val = (unsigned long)bpage; 1576 1577 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1578 return 1; 1579 1580 return 0; 1581 } 1582 1583 /** 1584 * rb_check_pages - integrity check of buffer pages 1585 * @cpu_buffer: CPU buffer with pages to test 1586 * 1587 * As a safety measure we check to make sure the data pages have not 1588 * been corrupted. 1589 */ 1590 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1591 { 1592 struct list_head *head = rb_list_head(cpu_buffer->pages); 1593 struct list_head *tmp; 1594 1595 if (RB_WARN_ON(cpu_buffer, 1596 rb_list_head(rb_list_head(head->next)->prev) != head)) 1597 return -1; 1598 1599 if (RB_WARN_ON(cpu_buffer, 1600 rb_list_head(rb_list_head(head->prev)->next) != head)) 1601 return -1; 1602 1603 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1604 if (RB_WARN_ON(cpu_buffer, 1605 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1606 return -1; 1607 1608 if (RB_WARN_ON(cpu_buffer, 1609 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1610 return -1; 1611 } 1612 1613 return 0; 1614 } 1615 1616 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1617 long nr_pages, struct list_head *pages) 1618 { 1619 struct buffer_page *bpage, *tmp; 1620 bool user_thread = current->mm != NULL; 1621 gfp_t mflags; 1622 long i; 1623 1624 /* 1625 * Check if the available memory is there first. 1626 * Note, si_mem_available() only gives us a rough estimate of available 1627 * memory. It may not be accurate. But we don't care, we just want 1628 * to prevent doing any allocation when it is obvious that it is 1629 * not going to succeed. 1630 */ 1631 i = si_mem_available(); 1632 if (i < nr_pages) 1633 return -ENOMEM; 1634 1635 /* 1636 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1637 * gracefully without invoking oom-killer and the system is not 1638 * destabilized. 1639 */ 1640 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1641 1642 /* 1643 * If a user thread allocates too much, and si_mem_available() 1644 * reports there's enough memory, even though there is not. 1645 * Make sure the OOM killer kills this thread. This can happen 1646 * even with RETRY_MAYFAIL because another task may be doing 1647 * an allocation after this task has taken all memory. 1648 * This is the task the OOM killer needs to take out during this 1649 * loop, even if it was triggered by an allocation somewhere else. 1650 */ 1651 if (user_thread) 1652 set_current_oom_origin(); 1653 for (i = 0; i < nr_pages; i++) { 1654 struct page *page; 1655 1656 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1657 mflags, cpu_to_node(cpu_buffer->cpu)); 1658 if (!bpage) 1659 goto free_pages; 1660 1661 rb_check_bpage(cpu_buffer, bpage); 1662 1663 list_add(&bpage->list, pages); 1664 1665 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1666 if (!page) 1667 goto free_pages; 1668 bpage->page = page_address(page); 1669 rb_init_page(bpage->page); 1670 1671 if (user_thread && fatal_signal_pending(current)) 1672 goto free_pages; 1673 } 1674 if (user_thread) 1675 clear_current_oom_origin(); 1676 1677 return 0; 1678 1679 free_pages: 1680 list_for_each_entry_safe(bpage, tmp, pages, list) { 1681 list_del_init(&bpage->list); 1682 free_buffer_page(bpage); 1683 } 1684 if (user_thread) 1685 clear_current_oom_origin(); 1686 1687 return -ENOMEM; 1688 } 1689 1690 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1691 unsigned long nr_pages) 1692 { 1693 LIST_HEAD(pages); 1694 1695 WARN_ON(!nr_pages); 1696 1697 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1698 return -ENOMEM; 1699 1700 /* 1701 * The ring buffer page list is a circular list that does not 1702 * start and end with a list head. All page list items point to 1703 * other pages. 1704 */ 1705 cpu_buffer->pages = pages.next; 1706 list_del(&pages); 1707 1708 cpu_buffer->nr_pages = nr_pages; 1709 1710 rb_check_pages(cpu_buffer); 1711 1712 return 0; 1713 } 1714 1715 static struct ring_buffer_per_cpu * 1716 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1717 { 1718 struct ring_buffer_per_cpu *cpu_buffer; 1719 struct buffer_page *bpage; 1720 struct page *page; 1721 int ret; 1722 1723 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1724 GFP_KERNEL, cpu_to_node(cpu)); 1725 if (!cpu_buffer) 1726 return NULL; 1727 1728 cpu_buffer->cpu = cpu; 1729 cpu_buffer->buffer = buffer; 1730 raw_spin_lock_init(&cpu_buffer->reader_lock); 1731 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1732 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1733 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1734 init_completion(&cpu_buffer->update_done); 1735 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1736 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1737 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1738 1739 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1740 GFP_KERNEL, cpu_to_node(cpu)); 1741 if (!bpage) 1742 goto fail_free_buffer; 1743 1744 rb_check_bpage(cpu_buffer, bpage); 1745 1746 cpu_buffer->reader_page = bpage; 1747 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1748 if (!page) 1749 goto fail_free_reader; 1750 bpage->page = page_address(page); 1751 rb_init_page(bpage->page); 1752 1753 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1754 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1755 1756 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1757 if (ret < 0) 1758 goto fail_free_reader; 1759 1760 cpu_buffer->head_page 1761 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1762 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1763 1764 rb_head_page_activate(cpu_buffer); 1765 1766 return cpu_buffer; 1767 1768 fail_free_reader: 1769 free_buffer_page(cpu_buffer->reader_page); 1770 1771 fail_free_buffer: 1772 kfree(cpu_buffer); 1773 return NULL; 1774 } 1775 1776 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1777 { 1778 struct list_head *head = cpu_buffer->pages; 1779 struct buffer_page *bpage, *tmp; 1780 1781 free_buffer_page(cpu_buffer->reader_page); 1782 1783 if (head) { 1784 rb_head_page_deactivate(cpu_buffer); 1785 1786 list_for_each_entry_safe(bpage, tmp, head, list) { 1787 list_del_init(&bpage->list); 1788 free_buffer_page(bpage); 1789 } 1790 bpage = list_entry(head, struct buffer_page, list); 1791 free_buffer_page(bpage); 1792 } 1793 1794 kfree(cpu_buffer); 1795 } 1796 1797 /** 1798 * __ring_buffer_alloc - allocate a new ring_buffer 1799 * @size: the size in bytes per cpu that is needed. 1800 * @flags: attributes to set for the ring buffer. 1801 * @key: ring buffer reader_lock_key. 1802 * 1803 * Currently the only flag that is available is the RB_FL_OVERWRITE 1804 * flag. This flag means that the buffer will overwrite old data 1805 * when the buffer wraps. If this flag is not set, the buffer will 1806 * drop data when the tail hits the head. 1807 */ 1808 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1809 struct lock_class_key *key) 1810 { 1811 struct trace_buffer *buffer; 1812 long nr_pages; 1813 int bsize; 1814 int cpu; 1815 int ret; 1816 1817 /* keep it in its own cache line */ 1818 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1819 GFP_KERNEL); 1820 if (!buffer) 1821 return NULL; 1822 1823 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1824 goto fail_free_buffer; 1825 1826 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1827 buffer->flags = flags; 1828 buffer->clock = trace_clock_local; 1829 buffer->reader_lock_key = key; 1830 1831 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1832 init_waitqueue_head(&buffer->irq_work.waiters); 1833 1834 /* need at least two pages */ 1835 if (nr_pages < 2) 1836 nr_pages = 2; 1837 1838 buffer->cpus = nr_cpu_ids; 1839 1840 bsize = sizeof(void *) * nr_cpu_ids; 1841 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1842 GFP_KERNEL); 1843 if (!buffer->buffers) 1844 goto fail_free_cpumask; 1845 1846 cpu = raw_smp_processor_id(); 1847 cpumask_set_cpu(cpu, buffer->cpumask); 1848 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1849 if (!buffer->buffers[cpu]) 1850 goto fail_free_buffers; 1851 1852 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1853 if (ret < 0) 1854 goto fail_free_buffers; 1855 1856 mutex_init(&buffer->mutex); 1857 1858 return buffer; 1859 1860 fail_free_buffers: 1861 for_each_buffer_cpu(buffer, cpu) { 1862 if (buffer->buffers[cpu]) 1863 rb_free_cpu_buffer(buffer->buffers[cpu]); 1864 } 1865 kfree(buffer->buffers); 1866 1867 fail_free_cpumask: 1868 free_cpumask_var(buffer->cpumask); 1869 1870 fail_free_buffer: 1871 kfree(buffer); 1872 return NULL; 1873 } 1874 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1875 1876 /** 1877 * ring_buffer_free - free a ring buffer. 1878 * @buffer: the buffer to free. 1879 */ 1880 void 1881 ring_buffer_free(struct trace_buffer *buffer) 1882 { 1883 int cpu; 1884 1885 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1886 1887 for_each_buffer_cpu(buffer, cpu) 1888 rb_free_cpu_buffer(buffer->buffers[cpu]); 1889 1890 kfree(buffer->buffers); 1891 free_cpumask_var(buffer->cpumask); 1892 1893 kfree(buffer); 1894 } 1895 EXPORT_SYMBOL_GPL(ring_buffer_free); 1896 1897 void ring_buffer_set_clock(struct trace_buffer *buffer, 1898 u64 (*clock)(void)) 1899 { 1900 buffer->clock = clock; 1901 } 1902 1903 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1904 { 1905 buffer->time_stamp_abs = abs; 1906 } 1907 1908 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1909 { 1910 return buffer->time_stamp_abs; 1911 } 1912 1913 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1914 1915 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1916 { 1917 return local_read(&bpage->entries) & RB_WRITE_MASK; 1918 } 1919 1920 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1921 { 1922 return local_read(&bpage->write) & RB_WRITE_MASK; 1923 } 1924 1925 static int 1926 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1927 { 1928 struct list_head *tail_page, *to_remove, *next_page; 1929 struct buffer_page *to_remove_page, *tmp_iter_page; 1930 struct buffer_page *last_page, *first_page; 1931 unsigned long nr_removed; 1932 unsigned long head_bit; 1933 int page_entries; 1934 1935 head_bit = 0; 1936 1937 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1938 atomic_inc(&cpu_buffer->record_disabled); 1939 /* 1940 * We don't race with the readers since we have acquired the reader 1941 * lock. We also don't race with writers after disabling recording. 1942 * This makes it easy to figure out the first and the last page to be 1943 * removed from the list. We unlink all the pages in between including 1944 * the first and last pages. This is done in a busy loop so that we 1945 * lose the least number of traces. 1946 * The pages are freed after we restart recording and unlock readers. 1947 */ 1948 tail_page = &cpu_buffer->tail_page->list; 1949 1950 /* 1951 * tail page might be on reader page, we remove the next page 1952 * from the ring buffer 1953 */ 1954 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1955 tail_page = rb_list_head(tail_page->next); 1956 to_remove = tail_page; 1957 1958 /* start of pages to remove */ 1959 first_page = list_entry(rb_list_head(to_remove->next), 1960 struct buffer_page, list); 1961 1962 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1963 to_remove = rb_list_head(to_remove)->next; 1964 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1965 } 1966 1967 next_page = rb_list_head(to_remove)->next; 1968 1969 /* 1970 * Now we remove all pages between tail_page and next_page. 1971 * Make sure that we have head_bit value preserved for the 1972 * next page 1973 */ 1974 tail_page->next = (struct list_head *)((unsigned long)next_page | 1975 head_bit); 1976 next_page = rb_list_head(next_page); 1977 next_page->prev = tail_page; 1978 1979 /* make sure pages points to a valid page in the ring buffer */ 1980 cpu_buffer->pages = next_page; 1981 1982 /* update head page */ 1983 if (head_bit) 1984 cpu_buffer->head_page = list_entry(next_page, 1985 struct buffer_page, list); 1986 1987 /* 1988 * change read pointer to make sure any read iterators reset 1989 * themselves 1990 */ 1991 cpu_buffer->read = 0; 1992 1993 /* pages are removed, resume tracing and then free the pages */ 1994 atomic_dec(&cpu_buffer->record_disabled); 1995 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1996 1997 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1998 1999 /* last buffer page to remove */ 2000 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2001 list); 2002 tmp_iter_page = first_page; 2003 2004 do { 2005 cond_resched(); 2006 2007 to_remove_page = tmp_iter_page; 2008 rb_inc_page(&tmp_iter_page); 2009 2010 /* update the counters */ 2011 page_entries = rb_page_entries(to_remove_page); 2012 if (page_entries) { 2013 /* 2014 * If something was added to this page, it was full 2015 * since it is not the tail page. So we deduct the 2016 * bytes consumed in ring buffer from here. 2017 * Increment overrun to account for the lost events. 2018 */ 2019 local_add(page_entries, &cpu_buffer->overrun); 2020 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2021 local_inc(&cpu_buffer->pages_lost); 2022 } 2023 2024 /* 2025 * We have already removed references to this list item, just 2026 * free up the buffer_page and its page 2027 */ 2028 free_buffer_page(to_remove_page); 2029 nr_removed--; 2030 2031 } while (to_remove_page != last_page); 2032 2033 RB_WARN_ON(cpu_buffer, nr_removed); 2034 2035 return nr_removed == 0; 2036 } 2037 2038 static int 2039 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2040 { 2041 struct list_head *pages = &cpu_buffer->new_pages; 2042 int retries, success; 2043 unsigned long flags; 2044 2045 /* Can be called at early boot up, where interrupts must not been enabled */ 2046 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2047 /* 2048 * We are holding the reader lock, so the reader page won't be swapped 2049 * in the ring buffer. Now we are racing with the writer trying to 2050 * move head page and the tail page. 2051 * We are going to adapt the reader page update process where: 2052 * 1. We first splice the start and end of list of new pages between 2053 * the head page and its previous page. 2054 * 2. We cmpxchg the prev_page->next to point from head page to the 2055 * start of new pages list. 2056 * 3. Finally, we update the head->prev to the end of new list. 2057 * 2058 * We will try this process 10 times, to make sure that we don't keep 2059 * spinning. 2060 */ 2061 retries = 10; 2062 success = 0; 2063 while (retries--) { 2064 struct list_head *head_page, *prev_page, *r; 2065 struct list_head *last_page, *first_page; 2066 struct list_head *head_page_with_bit; 2067 2068 head_page = &rb_set_head_page(cpu_buffer)->list; 2069 if (!head_page) 2070 break; 2071 prev_page = head_page->prev; 2072 2073 first_page = pages->next; 2074 last_page = pages->prev; 2075 2076 head_page_with_bit = (struct list_head *) 2077 ((unsigned long)head_page | RB_PAGE_HEAD); 2078 2079 last_page->next = head_page_with_bit; 2080 first_page->prev = prev_page; 2081 2082 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 2083 2084 if (r == head_page_with_bit) { 2085 /* 2086 * yay, we replaced the page pointer to our new list, 2087 * now, we just have to update to head page's prev 2088 * pointer to point to end of list 2089 */ 2090 head_page->prev = last_page; 2091 success = 1; 2092 break; 2093 } 2094 } 2095 2096 if (success) 2097 INIT_LIST_HEAD(pages); 2098 /* 2099 * If we weren't successful in adding in new pages, warn and stop 2100 * tracing 2101 */ 2102 RB_WARN_ON(cpu_buffer, !success); 2103 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2104 2105 /* free pages if they weren't inserted */ 2106 if (!success) { 2107 struct buffer_page *bpage, *tmp; 2108 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2109 list) { 2110 list_del_init(&bpage->list); 2111 free_buffer_page(bpage); 2112 } 2113 } 2114 return success; 2115 } 2116 2117 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2118 { 2119 int success; 2120 2121 if (cpu_buffer->nr_pages_to_update > 0) 2122 success = rb_insert_pages(cpu_buffer); 2123 else 2124 success = rb_remove_pages(cpu_buffer, 2125 -cpu_buffer->nr_pages_to_update); 2126 2127 if (success) 2128 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2129 } 2130 2131 static void update_pages_handler(struct work_struct *work) 2132 { 2133 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2134 struct ring_buffer_per_cpu, update_pages_work); 2135 rb_update_pages(cpu_buffer); 2136 complete(&cpu_buffer->update_done); 2137 } 2138 2139 /** 2140 * ring_buffer_resize - resize the ring buffer 2141 * @buffer: the buffer to resize. 2142 * @size: the new size. 2143 * @cpu_id: the cpu buffer to resize 2144 * 2145 * Minimum size is 2 * BUF_PAGE_SIZE. 2146 * 2147 * Returns 0 on success and < 0 on failure. 2148 */ 2149 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2150 int cpu_id) 2151 { 2152 struct ring_buffer_per_cpu *cpu_buffer; 2153 unsigned long nr_pages; 2154 int cpu, err; 2155 2156 /* 2157 * Always succeed at resizing a non-existent buffer: 2158 */ 2159 if (!buffer) 2160 return 0; 2161 2162 /* Make sure the requested buffer exists */ 2163 if (cpu_id != RING_BUFFER_ALL_CPUS && 2164 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2165 return 0; 2166 2167 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 2168 2169 /* we need a minimum of two pages */ 2170 if (nr_pages < 2) 2171 nr_pages = 2; 2172 2173 /* prevent another thread from changing buffer sizes */ 2174 mutex_lock(&buffer->mutex); 2175 2176 2177 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2178 /* 2179 * Don't succeed if resizing is disabled, as a reader might be 2180 * manipulating the ring buffer and is expecting a sane state while 2181 * this is true. 2182 */ 2183 for_each_buffer_cpu(buffer, cpu) { 2184 cpu_buffer = buffer->buffers[cpu]; 2185 if (atomic_read(&cpu_buffer->resize_disabled)) { 2186 err = -EBUSY; 2187 goto out_err_unlock; 2188 } 2189 } 2190 2191 /* calculate the pages to update */ 2192 for_each_buffer_cpu(buffer, cpu) { 2193 cpu_buffer = buffer->buffers[cpu]; 2194 2195 cpu_buffer->nr_pages_to_update = nr_pages - 2196 cpu_buffer->nr_pages; 2197 /* 2198 * nothing more to do for removing pages or no update 2199 */ 2200 if (cpu_buffer->nr_pages_to_update <= 0) 2201 continue; 2202 /* 2203 * to add pages, make sure all new pages can be 2204 * allocated without receiving ENOMEM 2205 */ 2206 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2207 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2208 &cpu_buffer->new_pages)) { 2209 /* not enough memory for new pages */ 2210 err = -ENOMEM; 2211 goto out_err; 2212 } 2213 } 2214 2215 cpus_read_lock(); 2216 /* 2217 * Fire off all the required work handlers 2218 * We can't schedule on offline CPUs, but it's not necessary 2219 * since we can change their buffer sizes without any race. 2220 */ 2221 for_each_buffer_cpu(buffer, cpu) { 2222 cpu_buffer = buffer->buffers[cpu]; 2223 if (!cpu_buffer->nr_pages_to_update) 2224 continue; 2225 2226 /* Can't run something on an offline CPU. */ 2227 if (!cpu_online(cpu)) { 2228 rb_update_pages(cpu_buffer); 2229 cpu_buffer->nr_pages_to_update = 0; 2230 } else { 2231 /* Run directly if possible. */ 2232 migrate_disable(); 2233 if (cpu != smp_processor_id()) { 2234 migrate_enable(); 2235 schedule_work_on(cpu, 2236 &cpu_buffer->update_pages_work); 2237 } else { 2238 update_pages_handler(&cpu_buffer->update_pages_work); 2239 migrate_enable(); 2240 } 2241 } 2242 } 2243 2244 /* wait for all the updates to complete */ 2245 for_each_buffer_cpu(buffer, cpu) { 2246 cpu_buffer = buffer->buffers[cpu]; 2247 if (!cpu_buffer->nr_pages_to_update) 2248 continue; 2249 2250 if (cpu_online(cpu)) 2251 wait_for_completion(&cpu_buffer->update_done); 2252 cpu_buffer->nr_pages_to_update = 0; 2253 } 2254 2255 cpus_read_unlock(); 2256 } else { 2257 cpu_buffer = buffer->buffers[cpu_id]; 2258 2259 if (nr_pages == cpu_buffer->nr_pages) 2260 goto out; 2261 2262 /* 2263 * Don't succeed if resizing is disabled, as a reader might be 2264 * manipulating the ring buffer and is expecting a sane state while 2265 * this is true. 2266 */ 2267 if (atomic_read(&cpu_buffer->resize_disabled)) { 2268 err = -EBUSY; 2269 goto out_err_unlock; 2270 } 2271 2272 cpu_buffer->nr_pages_to_update = nr_pages - 2273 cpu_buffer->nr_pages; 2274 2275 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2276 if (cpu_buffer->nr_pages_to_update > 0 && 2277 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2278 &cpu_buffer->new_pages)) { 2279 err = -ENOMEM; 2280 goto out_err; 2281 } 2282 2283 cpus_read_lock(); 2284 2285 /* Can't run something on an offline CPU. */ 2286 if (!cpu_online(cpu_id)) 2287 rb_update_pages(cpu_buffer); 2288 else { 2289 /* Run directly if possible. */ 2290 migrate_disable(); 2291 if (cpu_id == smp_processor_id()) { 2292 rb_update_pages(cpu_buffer); 2293 migrate_enable(); 2294 } else { 2295 migrate_enable(); 2296 schedule_work_on(cpu_id, 2297 &cpu_buffer->update_pages_work); 2298 wait_for_completion(&cpu_buffer->update_done); 2299 } 2300 } 2301 2302 cpu_buffer->nr_pages_to_update = 0; 2303 cpus_read_unlock(); 2304 } 2305 2306 out: 2307 /* 2308 * The ring buffer resize can happen with the ring buffer 2309 * enabled, so that the update disturbs the tracing as little 2310 * as possible. But if the buffer is disabled, we do not need 2311 * to worry about that, and we can take the time to verify 2312 * that the buffer is not corrupt. 2313 */ 2314 if (atomic_read(&buffer->record_disabled)) { 2315 atomic_inc(&buffer->record_disabled); 2316 /* 2317 * Even though the buffer was disabled, we must make sure 2318 * that it is truly disabled before calling rb_check_pages. 2319 * There could have been a race between checking 2320 * record_disable and incrementing it. 2321 */ 2322 synchronize_rcu(); 2323 for_each_buffer_cpu(buffer, cpu) { 2324 cpu_buffer = buffer->buffers[cpu]; 2325 rb_check_pages(cpu_buffer); 2326 } 2327 atomic_dec(&buffer->record_disabled); 2328 } 2329 2330 mutex_unlock(&buffer->mutex); 2331 return 0; 2332 2333 out_err: 2334 for_each_buffer_cpu(buffer, cpu) { 2335 struct buffer_page *bpage, *tmp; 2336 2337 cpu_buffer = buffer->buffers[cpu]; 2338 cpu_buffer->nr_pages_to_update = 0; 2339 2340 if (list_empty(&cpu_buffer->new_pages)) 2341 continue; 2342 2343 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2344 list) { 2345 list_del_init(&bpage->list); 2346 free_buffer_page(bpage); 2347 } 2348 } 2349 out_err_unlock: 2350 mutex_unlock(&buffer->mutex); 2351 return err; 2352 } 2353 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2354 2355 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2356 { 2357 mutex_lock(&buffer->mutex); 2358 if (val) 2359 buffer->flags |= RB_FL_OVERWRITE; 2360 else 2361 buffer->flags &= ~RB_FL_OVERWRITE; 2362 mutex_unlock(&buffer->mutex); 2363 } 2364 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2365 2366 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2367 { 2368 return bpage->page->data + index; 2369 } 2370 2371 static __always_inline struct ring_buffer_event * 2372 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2373 { 2374 return __rb_page_index(cpu_buffer->reader_page, 2375 cpu_buffer->reader_page->read); 2376 } 2377 2378 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2379 { 2380 return local_read(&bpage->page->commit); 2381 } 2382 2383 static struct ring_buffer_event * 2384 rb_iter_head_event(struct ring_buffer_iter *iter) 2385 { 2386 struct ring_buffer_event *event; 2387 struct buffer_page *iter_head_page = iter->head_page; 2388 unsigned long commit; 2389 unsigned length; 2390 2391 if (iter->head != iter->next_event) 2392 return iter->event; 2393 2394 /* 2395 * When the writer goes across pages, it issues a cmpxchg which 2396 * is a mb(), which will synchronize with the rmb here. 2397 * (see rb_tail_page_update() and __rb_reserve_next()) 2398 */ 2399 commit = rb_page_commit(iter_head_page); 2400 smp_rmb(); 2401 event = __rb_page_index(iter_head_page, iter->head); 2402 length = rb_event_length(event); 2403 2404 /* 2405 * READ_ONCE() doesn't work on functions and we don't want the 2406 * compiler doing any crazy optimizations with length. 2407 */ 2408 barrier(); 2409 2410 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2411 /* Writer corrupted the read? */ 2412 goto reset; 2413 2414 memcpy(iter->event, event, length); 2415 /* 2416 * If the page stamp is still the same after this rmb() then the 2417 * event was safely copied without the writer entering the page. 2418 */ 2419 smp_rmb(); 2420 2421 /* Make sure the page didn't change since we read this */ 2422 if (iter->page_stamp != iter_head_page->page->time_stamp || 2423 commit > rb_page_commit(iter_head_page)) 2424 goto reset; 2425 2426 iter->next_event = iter->head + length; 2427 return iter->event; 2428 reset: 2429 /* Reset to the beginning */ 2430 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2431 iter->head = 0; 2432 iter->next_event = 0; 2433 iter->missed_events = 1; 2434 return NULL; 2435 } 2436 2437 /* Size is determined by what has been committed */ 2438 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2439 { 2440 return rb_page_commit(bpage); 2441 } 2442 2443 static __always_inline unsigned 2444 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2445 { 2446 return rb_page_commit(cpu_buffer->commit_page); 2447 } 2448 2449 static __always_inline unsigned 2450 rb_event_index(struct ring_buffer_event *event) 2451 { 2452 unsigned long addr = (unsigned long)event; 2453 2454 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2455 } 2456 2457 static void rb_inc_iter(struct ring_buffer_iter *iter) 2458 { 2459 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2460 2461 /* 2462 * The iterator could be on the reader page (it starts there). 2463 * But the head could have moved, since the reader was 2464 * found. Check for this case and assign the iterator 2465 * to the head page instead of next. 2466 */ 2467 if (iter->head_page == cpu_buffer->reader_page) 2468 iter->head_page = rb_set_head_page(cpu_buffer); 2469 else 2470 rb_inc_page(&iter->head_page); 2471 2472 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2473 iter->head = 0; 2474 iter->next_event = 0; 2475 } 2476 2477 /* 2478 * rb_handle_head_page - writer hit the head page 2479 * 2480 * Returns: +1 to retry page 2481 * 0 to continue 2482 * -1 on error 2483 */ 2484 static int 2485 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2486 struct buffer_page *tail_page, 2487 struct buffer_page *next_page) 2488 { 2489 struct buffer_page *new_head; 2490 int entries; 2491 int type; 2492 int ret; 2493 2494 entries = rb_page_entries(next_page); 2495 2496 /* 2497 * The hard part is here. We need to move the head 2498 * forward, and protect against both readers on 2499 * other CPUs and writers coming in via interrupts. 2500 */ 2501 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2502 RB_PAGE_HEAD); 2503 2504 /* 2505 * type can be one of four: 2506 * NORMAL - an interrupt already moved it for us 2507 * HEAD - we are the first to get here. 2508 * UPDATE - we are the interrupt interrupting 2509 * a current move. 2510 * MOVED - a reader on another CPU moved the next 2511 * pointer to its reader page. Give up 2512 * and try again. 2513 */ 2514 2515 switch (type) { 2516 case RB_PAGE_HEAD: 2517 /* 2518 * We changed the head to UPDATE, thus 2519 * it is our responsibility to update 2520 * the counters. 2521 */ 2522 local_add(entries, &cpu_buffer->overrun); 2523 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2524 local_inc(&cpu_buffer->pages_lost); 2525 2526 /* 2527 * The entries will be zeroed out when we move the 2528 * tail page. 2529 */ 2530 2531 /* still more to do */ 2532 break; 2533 2534 case RB_PAGE_UPDATE: 2535 /* 2536 * This is an interrupt that interrupt the 2537 * previous update. Still more to do. 2538 */ 2539 break; 2540 case RB_PAGE_NORMAL: 2541 /* 2542 * An interrupt came in before the update 2543 * and processed this for us. 2544 * Nothing left to do. 2545 */ 2546 return 1; 2547 case RB_PAGE_MOVED: 2548 /* 2549 * The reader is on another CPU and just did 2550 * a swap with our next_page. 2551 * Try again. 2552 */ 2553 return 1; 2554 default: 2555 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2556 return -1; 2557 } 2558 2559 /* 2560 * Now that we are here, the old head pointer is 2561 * set to UPDATE. This will keep the reader from 2562 * swapping the head page with the reader page. 2563 * The reader (on another CPU) will spin till 2564 * we are finished. 2565 * 2566 * We just need to protect against interrupts 2567 * doing the job. We will set the next pointer 2568 * to HEAD. After that, we set the old pointer 2569 * to NORMAL, but only if it was HEAD before. 2570 * otherwise we are an interrupt, and only 2571 * want the outer most commit to reset it. 2572 */ 2573 new_head = next_page; 2574 rb_inc_page(&new_head); 2575 2576 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2577 RB_PAGE_NORMAL); 2578 2579 /* 2580 * Valid returns are: 2581 * HEAD - an interrupt came in and already set it. 2582 * NORMAL - One of two things: 2583 * 1) We really set it. 2584 * 2) A bunch of interrupts came in and moved 2585 * the page forward again. 2586 */ 2587 switch (ret) { 2588 case RB_PAGE_HEAD: 2589 case RB_PAGE_NORMAL: 2590 /* OK */ 2591 break; 2592 default: 2593 RB_WARN_ON(cpu_buffer, 1); 2594 return -1; 2595 } 2596 2597 /* 2598 * It is possible that an interrupt came in, 2599 * set the head up, then more interrupts came in 2600 * and moved it again. When we get back here, 2601 * the page would have been set to NORMAL but we 2602 * just set it back to HEAD. 2603 * 2604 * How do you detect this? Well, if that happened 2605 * the tail page would have moved. 2606 */ 2607 if (ret == RB_PAGE_NORMAL) { 2608 struct buffer_page *buffer_tail_page; 2609 2610 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2611 /* 2612 * If the tail had moved passed next, then we need 2613 * to reset the pointer. 2614 */ 2615 if (buffer_tail_page != tail_page && 2616 buffer_tail_page != next_page) 2617 rb_head_page_set_normal(cpu_buffer, new_head, 2618 next_page, 2619 RB_PAGE_HEAD); 2620 } 2621 2622 /* 2623 * If this was the outer most commit (the one that 2624 * changed the original pointer from HEAD to UPDATE), 2625 * then it is up to us to reset it to NORMAL. 2626 */ 2627 if (type == RB_PAGE_HEAD) { 2628 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2629 tail_page, 2630 RB_PAGE_UPDATE); 2631 if (RB_WARN_ON(cpu_buffer, 2632 ret != RB_PAGE_UPDATE)) 2633 return -1; 2634 } 2635 2636 return 0; 2637 } 2638 2639 static inline void 2640 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2641 unsigned long tail, struct rb_event_info *info) 2642 { 2643 struct buffer_page *tail_page = info->tail_page; 2644 struct ring_buffer_event *event; 2645 unsigned long length = info->length; 2646 2647 /* 2648 * Only the event that crossed the page boundary 2649 * must fill the old tail_page with padding. 2650 */ 2651 if (tail >= BUF_PAGE_SIZE) { 2652 /* 2653 * If the page was filled, then we still need 2654 * to update the real_end. Reset it to zero 2655 * and the reader will ignore it. 2656 */ 2657 if (tail == BUF_PAGE_SIZE) 2658 tail_page->real_end = 0; 2659 2660 local_sub(length, &tail_page->write); 2661 return; 2662 } 2663 2664 event = __rb_page_index(tail_page, tail); 2665 2666 /* account for padding bytes */ 2667 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2668 2669 /* 2670 * Save the original length to the meta data. 2671 * This will be used by the reader to add lost event 2672 * counter. 2673 */ 2674 tail_page->real_end = tail; 2675 2676 /* 2677 * If this event is bigger than the minimum size, then 2678 * we need to be careful that we don't subtract the 2679 * write counter enough to allow another writer to slip 2680 * in on this page. 2681 * We put in a discarded commit instead, to make sure 2682 * that this space is not used again. 2683 * 2684 * If we are less than the minimum size, we don't need to 2685 * worry about it. 2686 */ 2687 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2688 /* No room for any events */ 2689 2690 /* Mark the rest of the page with padding */ 2691 rb_event_set_padding(event); 2692 2693 /* Make sure the padding is visible before the write update */ 2694 smp_wmb(); 2695 2696 /* Set the write back to the previous setting */ 2697 local_sub(length, &tail_page->write); 2698 return; 2699 } 2700 2701 /* Put in a discarded event */ 2702 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2703 event->type_len = RINGBUF_TYPE_PADDING; 2704 /* time delta must be non zero */ 2705 event->time_delta = 1; 2706 2707 /* Make sure the padding is visible before the tail_page->write update */ 2708 smp_wmb(); 2709 2710 /* Set write to end of buffer */ 2711 length = (tail + length) - BUF_PAGE_SIZE; 2712 local_sub(length, &tail_page->write); 2713 } 2714 2715 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2716 2717 /* 2718 * This is the slow path, force gcc not to inline it. 2719 */ 2720 static noinline struct ring_buffer_event * 2721 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2722 unsigned long tail, struct rb_event_info *info) 2723 { 2724 struct buffer_page *tail_page = info->tail_page; 2725 struct buffer_page *commit_page = cpu_buffer->commit_page; 2726 struct trace_buffer *buffer = cpu_buffer->buffer; 2727 struct buffer_page *next_page; 2728 int ret; 2729 2730 next_page = tail_page; 2731 2732 rb_inc_page(&next_page); 2733 2734 /* 2735 * If for some reason, we had an interrupt storm that made 2736 * it all the way around the buffer, bail, and warn 2737 * about it. 2738 */ 2739 if (unlikely(next_page == commit_page)) { 2740 local_inc(&cpu_buffer->commit_overrun); 2741 goto out_reset; 2742 } 2743 2744 /* 2745 * This is where the fun begins! 2746 * 2747 * We are fighting against races between a reader that 2748 * could be on another CPU trying to swap its reader 2749 * page with the buffer head. 2750 * 2751 * We are also fighting against interrupts coming in and 2752 * moving the head or tail on us as well. 2753 * 2754 * If the next page is the head page then we have filled 2755 * the buffer, unless the commit page is still on the 2756 * reader page. 2757 */ 2758 if (rb_is_head_page(next_page, &tail_page->list)) { 2759 2760 /* 2761 * If the commit is not on the reader page, then 2762 * move the header page. 2763 */ 2764 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2765 /* 2766 * If we are not in overwrite mode, 2767 * this is easy, just stop here. 2768 */ 2769 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2770 local_inc(&cpu_buffer->dropped_events); 2771 goto out_reset; 2772 } 2773 2774 ret = rb_handle_head_page(cpu_buffer, 2775 tail_page, 2776 next_page); 2777 if (ret < 0) 2778 goto out_reset; 2779 if (ret) 2780 goto out_again; 2781 } else { 2782 /* 2783 * We need to be careful here too. The 2784 * commit page could still be on the reader 2785 * page. We could have a small buffer, and 2786 * have filled up the buffer with events 2787 * from interrupts and such, and wrapped. 2788 * 2789 * Note, if the tail page is also on the 2790 * reader_page, we let it move out. 2791 */ 2792 if (unlikely((cpu_buffer->commit_page != 2793 cpu_buffer->tail_page) && 2794 (cpu_buffer->commit_page == 2795 cpu_buffer->reader_page))) { 2796 local_inc(&cpu_buffer->commit_overrun); 2797 goto out_reset; 2798 } 2799 } 2800 } 2801 2802 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2803 2804 out_again: 2805 2806 rb_reset_tail(cpu_buffer, tail, info); 2807 2808 /* Commit what we have for now. */ 2809 rb_end_commit(cpu_buffer); 2810 /* rb_end_commit() decs committing */ 2811 local_inc(&cpu_buffer->committing); 2812 2813 /* fail and let the caller try again */ 2814 return ERR_PTR(-EAGAIN); 2815 2816 out_reset: 2817 /* reset write */ 2818 rb_reset_tail(cpu_buffer, tail, info); 2819 2820 return NULL; 2821 } 2822 2823 /* Slow path */ 2824 static struct ring_buffer_event * 2825 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2826 { 2827 if (abs) 2828 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2829 else 2830 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2831 2832 /* Not the first event on the page, or not delta? */ 2833 if (abs || rb_event_index(event)) { 2834 event->time_delta = delta & TS_MASK; 2835 event->array[0] = delta >> TS_SHIFT; 2836 } else { 2837 /* nope, just zero it */ 2838 event->time_delta = 0; 2839 event->array[0] = 0; 2840 } 2841 2842 return skip_time_extend(event); 2843 } 2844 2845 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2846 static inline bool sched_clock_stable(void) 2847 { 2848 return true; 2849 } 2850 #endif 2851 2852 static void 2853 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2854 struct rb_event_info *info) 2855 { 2856 u64 write_stamp; 2857 2858 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2859 (unsigned long long)info->delta, 2860 (unsigned long long)info->ts, 2861 (unsigned long long)info->before, 2862 (unsigned long long)info->after, 2863 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2864 sched_clock_stable() ? "" : 2865 "If you just came from a suspend/resume,\n" 2866 "please switch to the trace global clock:\n" 2867 " echo global > /sys/kernel/tracing/trace_clock\n" 2868 "or add trace_clock=global to the kernel command line\n"); 2869 } 2870 2871 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2872 struct ring_buffer_event **event, 2873 struct rb_event_info *info, 2874 u64 *delta, 2875 unsigned int *length) 2876 { 2877 bool abs = info->add_timestamp & 2878 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2879 2880 if (unlikely(info->delta > (1ULL << 59))) { 2881 /* 2882 * Some timers can use more than 59 bits, and when a timestamp 2883 * is added to the buffer, it will lose those bits. 2884 */ 2885 if (abs && (info->ts & TS_MSB)) { 2886 info->delta &= ABS_TS_MASK; 2887 2888 /* did the clock go backwards */ 2889 } else if (info->before == info->after && info->before > info->ts) { 2890 /* not interrupted */ 2891 static int once; 2892 2893 /* 2894 * This is possible with a recalibrating of the TSC. 2895 * Do not produce a call stack, but just report it. 2896 */ 2897 if (!once) { 2898 once++; 2899 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2900 info->before, info->ts); 2901 } 2902 } else 2903 rb_check_timestamp(cpu_buffer, info); 2904 if (!abs) 2905 info->delta = 0; 2906 } 2907 *event = rb_add_time_stamp(*event, info->delta, abs); 2908 *length -= RB_LEN_TIME_EXTEND; 2909 *delta = 0; 2910 } 2911 2912 /** 2913 * rb_update_event - update event type and data 2914 * @cpu_buffer: The per cpu buffer of the @event 2915 * @event: the event to update 2916 * @info: The info to update the @event with (contains length and delta) 2917 * 2918 * Update the type and data fields of the @event. The length 2919 * is the actual size that is written to the ring buffer, 2920 * and with this, we can determine what to place into the 2921 * data field. 2922 */ 2923 static void 2924 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2925 struct ring_buffer_event *event, 2926 struct rb_event_info *info) 2927 { 2928 unsigned length = info->length; 2929 u64 delta = info->delta; 2930 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2931 2932 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2933 cpu_buffer->event_stamp[nest] = info->ts; 2934 2935 /* 2936 * If we need to add a timestamp, then we 2937 * add it to the start of the reserved space. 2938 */ 2939 if (unlikely(info->add_timestamp)) 2940 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2941 2942 event->time_delta = delta; 2943 length -= RB_EVNT_HDR_SIZE; 2944 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2945 event->type_len = 0; 2946 event->array[0] = length; 2947 } else 2948 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2949 } 2950 2951 static unsigned rb_calculate_event_length(unsigned length) 2952 { 2953 struct ring_buffer_event event; /* Used only for sizeof array */ 2954 2955 /* zero length can cause confusions */ 2956 if (!length) 2957 length++; 2958 2959 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2960 length += sizeof(event.array[0]); 2961 2962 length += RB_EVNT_HDR_SIZE; 2963 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2964 2965 /* 2966 * In case the time delta is larger than the 27 bits for it 2967 * in the header, we need to add a timestamp. If another 2968 * event comes in when trying to discard this one to increase 2969 * the length, then the timestamp will be added in the allocated 2970 * space of this event. If length is bigger than the size needed 2971 * for the TIME_EXTEND, then padding has to be used. The events 2972 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2973 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2974 * As length is a multiple of 4, we only need to worry if it 2975 * is 12 (RB_LEN_TIME_EXTEND + 4). 2976 */ 2977 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2978 length += RB_ALIGNMENT; 2979 2980 return length; 2981 } 2982 2983 static u64 rb_time_delta(struct ring_buffer_event *event) 2984 { 2985 switch (event->type_len) { 2986 case RINGBUF_TYPE_PADDING: 2987 return 0; 2988 2989 case RINGBUF_TYPE_TIME_EXTEND: 2990 return rb_event_time_stamp(event); 2991 2992 case RINGBUF_TYPE_TIME_STAMP: 2993 return 0; 2994 2995 case RINGBUF_TYPE_DATA: 2996 return event->time_delta; 2997 default: 2998 return 0; 2999 } 3000 } 3001 3002 static inline int 3003 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3004 struct ring_buffer_event *event) 3005 { 3006 unsigned long new_index, old_index; 3007 struct buffer_page *bpage; 3008 unsigned long index; 3009 unsigned long addr; 3010 u64 write_stamp; 3011 u64 delta; 3012 3013 new_index = rb_event_index(event); 3014 old_index = new_index + rb_event_ts_length(event); 3015 addr = (unsigned long)event; 3016 addr &= PAGE_MASK; 3017 3018 bpage = READ_ONCE(cpu_buffer->tail_page); 3019 3020 delta = rb_time_delta(event); 3021 3022 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 3023 return 0; 3024 3025 /* Make sure the write stamp is read before testing the location */ 3026 barrier(); 3027 3028 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3029 unsigned long write_mask = 3030 local_read(&bpage->write) & ~RB_WRITE_MASK; 3031 unsigned long event_length = rb_event_length(event); 3032 3033 /* Something came in, can't discard */ 3034 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 3035 write_stamp, write_stamp - delta)) 3036 return 0; 3037 3038 /* 3039 * It's possible that the event time delta is zero 3040 * (has the same time stamp as the previous event) 3041 * in which case write_stamp and before_stamp could 3042 * be the same. In such a case, force before_stamp 3043 * to be different than write_stamp. It doesn't 3044 * matter what it is, as long as its different. 3045 */ 3046 if (!delta) 3047 rb_time_set(&cpu_buffer->before_stamp, 0); 3048 3049 /* 3050 * If an event were to come in now, it would see that the 3051 * write_stamp and the before_stamp are different, and assume 3052 * that this event just added itself before updating 3053 * the write stamp. The interrupting event will fix the 3054 * write stamp for us, and use the before stamp as its delta. 3055 */ 3056 3057 /* 3058 * This is on the tail page. It is possible that 3059 * a write could come in and move the tail page 3060 * and write to the next page. That is fine 3061 * because we just shorten what is on this page. 3062 */ 3063 old_index += write_mask; 3064 new_index += write_mask; 3065 index = local_cmpxchg(&bpage->write, old_index, new_index); 3066 if (index == old_index) { 3067 /* update counters */ 3068 local_sub(event_length, &cpu_buffer->entries_bytes); 3069 return 1; 3070 } 3071 } 3072 3073 /* could not discard */ 3074 return 0; 3075 } 3076 3077 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3078 { 3079 local_inc(&cpu_buffer->committing); 3080 local_inc(&cpu_buffer->commits); 3081 } 3082 3083 static __always_inline void 3084 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3085 { 3086 unsigned long max_count; 3087 3088 /* 3089 * We only race with interrupts and NMIs on this CPU. 3090 * If we own the commit event, then we can commit 3091 * all others that interrupted us, since the interruptions 3092 * are in stack format (they finish before they come 3093 * back to us). This allows us to do a simple loop to 3094 * assign the commit to the tail. 3095 */ 3096 again: 3097 max_count = cpu_buffer->nr_pages * 100; 3098 3099 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3100 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3101 return; 3102 if (RB_WARN_ON(cpu_buffer, 3103 rb_is_reader_page(cpu_buffer->tail_page))) 3104 return; 3105 local_set(&cpu_buffer->commit_page->page->commit, 3106 rb_page_write(cpu_buffer->commit_page)); 3107 rb_inc_page(&cpu_buffer->commit_page); 3108 /* add barrier to keep gcc from optimizing too much */ 3109 barrier(); 3110 } 3111 while (rb_commit_index(cpu_buffer) != 3112 rb_page_write(cpu_buffer->commit_page)) { 3113 3114 local_set(&cpu_buffer->commit_page->page->commit, 3115 rb_page_write(cpu_buffer->commit_page)); 3116 RB_WARN_ON(cpu_buffer, 3117 local_read(&cpu_buffer->commit_page->page->commit) & 3118 ~RB_WRITE_MASK); 3119 barrier(); 3120 } 3121 3122 /* again, keep gcc from optimizing */ 3123 barrier(); 3124 3125 /* 3126 * If an interrupt came in just after the first while loop 3127 * and pushed the tail page forward, we will be left with 3128 * a dangling commit that will never go forward. 3129 */ 3130 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3131 goto again; 3132 } 3133 3134 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3135 { 3136 unsigned long commits; 3137 3138 if (RB_WARN_ON(cpu_buffer, 3139 !local_read(&cpu_buffer->committing))) 3140 return; 3141 3142 again: 3143 commits = local_read(&cpu_buffer->commits); 3144 /* synchronize with interrupts */ 3145 barrier(); 3146 if (local_read(&cpu_buffer->committing) == 1) 3147 rb_set_commit_to_write(cpu_buffer); 3148 3149 local_dec(&cpu_buffer->committing); 3150 3151 /* synchronize with interrupts */ 3152 barrier(); 3153 3154 /* 3155 * Need to account for interrupts coming in between the 3156 * updating of the commit page and the clearing of the 3157 * committing counter. 3158 */ 3159 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3160 !local_read(&cpu_buffer->committing)) { 3161 local_inc(&cpu_buffer->committing); 3162 goto again; 3163 } 3164 } 3165 3166 static inline void rb_event_discard(struct ring_buffer_event *event) 3167 { 3168 if (extended_time(event)) 3169 event = skip_time_extend(event); 3170 3171 /* array[0] holds the actual length for the discarded event */ 3172 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3173 event->type_len = RINGBUF_TYPE_PADDING; 3174 /* time delta must be non zero */ 3175 if (!event->time_delta) 3176 event->time_delta = 1; 3177 } 3178 3179 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3180 { 3181 local_inc(&cpu_buffer->entries); 3182 rb_end_commit(cpu_buffer); 3183 } 3184 3185 static __always_inline void 3186 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3187 { 3188 if (buffer->irq_work.waiters_pending) { 3189 buffer->irq_work.waiters_pending = false; 3190 /* irq_work_queue() supplies it's own memory barriers */ 3191 irq_work_queue(&buffer->irq_work.work); 3192 } 3193 3194 if (cpu_buffer->irq_work.waiters_pending) { 3195 cpu_buffer->irq_work.waiters_pending = false; 3196 /* irq_work_queue() supplies it's own memory barriers */ 3197 irq_work_queue(&cpu_buffer->irq_work.work); 3198 } 3199 3200 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3201 return; 3202 3203 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3204 return; 3205 3206 if (!cpu_buffer->irq_work.full_waiters_pending) 3207 return; 3208 3209 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3210 3211 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3212 return; 3213 3214 cpu_buffer->irq_work.wakeup_full = true; 3215 cpu_buffer->irq_work.full_waiters_pending = false; 3216 /* irq_work_queue() supplies it's own memory barriers */ 3217 irq_work_queue(&cpu_buffer->irq_work.work); 3218 } 3219 3220 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3221 # define do_ring_buffer_record_recursion() \ 3222 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3223 #else 3224 # define do_ring_buffer_record_recursion() do { } while (0) 3225 #endif 3226 3227 /* 3228 * The lock and unlock are done within a preempt disable section. 3229 * The current_context per_cpu variable can only be modified 3230 * by the current task between lock and unlock. But it can 3231 * be modified more than once via an interrupt. To pass this 3232 * information from the lock to the unlock without having to 3233 * access the 'in_interrupt()' functions again (which do show 3234 * a bit of overhead in something as critical as function tracing, 3235 * we use a bitmask trick. 3236 * 3237 * bit 1 = NMI context 3238 * bit 2 = IRQ context 3239 * bit 3 = SoftIRQ context 3240 * bit 4 = normal context. 3241 * 3242 * This works because this is the order of contexts that can 3243 * preempt other contexts. A SoftIRQ never preempts an IRQ 3244 * context. 3245 * 3246 * When the context is determined, the corresponding bit is 3247 * checked and set (if it was set, then a recursion of that context 3248 * happened). 3249 * 3250 * On unlock, we need to clear this bit. To do so, just subtract 3251 * 1 from the current_context and AND it to itself. 3252 * 3253 * (binary) 3254 * 101 - 1 = 100 3255 * 101 & 100 = 100 (clearing bit zero) 3256 * 3257 * 1010 - 1 = 1001 3258 * 1010 & 1001 = 1000 (clearing bit 1) 3259 * 3260 * The least significant bit can be cleared this way, and it 3261 * just so happens that it is the same bit corresponding to 3262 * the current context. 3263 * 3264 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3265 * is set when a recursion is detected at the current context, and if 3266 * the TRANSITION bit is already set, it will fail the recursion. 3267 * This is needed because there's a lag between the changing of 3268 * interrupt context and updating the preempt count. In this case, 3269 * a false positive will be found. To handle this, one extra recursion 3270 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3271 * bit is already set, then it is considered a recursion and the function 3272 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3273 * 3274 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3275 * to be cleared. Even if it wasn't the context that set it. That is, 3276 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3277 * is called before preempt_count() is updated, since the check will 3278 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3279 * NMI then comes in, it will set the NMI bit, but when the NMI code 3280 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3281 * and leave the NMI bit set. But this is fine, because the interrupt 3282 * code that set the TRANSITION bit will then clear the NMI bit when it 3283 * calls trace_recursive_unlock(). If another NMI comes in, it will 3284 * set the TRANSITION bit and continue. 3285 * 3286 * Note: The TRANSITION bit only handles a single transition between context. 3287 */ 3288 3289 static __always_inline int 3290 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3291 { 3292 unsigned int val = cpu_buffer->current_context; 3293 int bit = interrupt_context_level(); 3294 3295 bit = RB_CTX_NORMAL - bit; 3296 3297 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3298 /* 3299 * It is possible that this was called by transitioning 3300 * between interrupt context, and preempt_count() has not 3301 * been updated yet. In this case, use the TRANSITION bit. 3302 */ 3303 bit = RB_CTX_TRANSITION; 3304 if (val & (1 << (bit + cpu_buffer->nest))) { 3305 do_ring_buffer_record_recursion(); 3306 return 1; 3307 } 3308 } 3309 3310 val |= (1 << (bit + cpu_buffer->nest)); 3311 cpu_buffer->current_context = val; 3312 3313 return 0; 3314 } 3315 3316 static __always_inline void 3317 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3318 { 3319 cpu_buffer->current_context &= 3320 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3321 } 3322 3323 /* The recursive locking above uses 5 bits */ 3324 #define NESTED_BITS 5 3325 3326 /** 3327 * ring_buffer_nest_start - Allow to trace while nested 3328 * @buffer: The ring buffer to modify 3329 * 3330 * The ring buffer has a safety mechanism to prevent recursion. 3331 * But there may be a case where a trace needs to be done while 3332 * tracing something else. In this case, calling this function 3333 * will allow this function to nest within a currently active 3334 * ring_buffer_lock_reserve(). 3335 * 3336 * Call this function before calling another ring_buffer_lock_reserve() and 3337 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3338 */ 3339 void ring_buffer_nest_start(struct trace_buffer *buffer) 3340 { 3341 struct ring_buffer_per_cpu *cpu_buffer; 3342 int cpu; 3343 3344 /* Enabled by ring_buffer_nest_end() */ 3345 preempt_disable_notrace(); 3346 cpu = raw_smp_processor_id(); 3347 cpu_buffer = buffer->buffers[cpu]; 3348 /* This is the shift value for the above recursive locking */ 3349 cpu_buffer->nest += NESTED_BITS; 3350 } 3351 3352 /** 3353 * ring_buffer_nest_end - Allow to trace while nested 3354 * @buffer: The ring buffer to modify 3355 * 3356 * Must be called after ring_buffer_nest_start() and after the 3357 * ring_buffer_unlock_commit(). 3358 */ 3359 void ring_buffer_nest_end(struct trace_buffer *buffer) 3360 { 3361 struct ring_buffer_per_cpu *cpu_buffer; 3362 int cpu; 3363 3364 /* disabled by ring_buffer_nest_start() */ 3365 cpu = raw_smp_processor_id(); 3366 cpu_buffer = buffer->buffers[cpu]; 3367 /* This is the shift value for the above recursive locking */ 3368 cpu_buffer->nest -= NESTED_BITS; 3369 preempt_enable_notrace(); 3370 } 3371 3372 /** 3373 * ring_buffer_unlock_commit - commit a reserved 3374 * @buffer: The buffer to commit to 3375 * @event: The event pointer to commit. 3376 * 3377 * This commits the data to the ring buffer, and releases any locks held. 3378 * 3379 * Must be paired with ring_buffer_lock_reserve. 3380 */ 3381 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3382 { 3383 struct ring_buffer_per_cpu *cpu_buffer; 3384 int cpu = raw_smp_processor_id(); 3385 3386 cpu_buffer = buffer->buffers[cpu]; 3387 3388 rb_commit(cpu_buffer); 3389 3390 rb_wakeups(buffer, cpu_buffer); 3391 3392 trace_recursive_unlock(cpu_buffer); 3393 3394 preempt_enable_notrace(); 3395 3396 return 0; 3397 } 3398 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3399 3400 /* Special value to validate all deltas on a page. */ 3401 #define CHECK_FULL_PAGE 1L 3402 3403 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3404 static void dump_buffer_page(struct buffer_data_page *bpage, 3405 struct rb_event_info *info, 3406 unsigned long tail) 3407 { 3408 struct ring_buffer_event *event; 3409 u64 ts, delta; 3410 int e; 3411 3412 ts = bpage->time_stamp; 3413 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3414 3415 for (e = 0; e < tail; e += rb_event_length(event)) { 3416 3417 event = (struct ring_buffer_event *)(bpage->data + e); 3418 3419 switch (event->type_len) { 3420 3421 case RINGBUF_TYPE_TIME_EXTEND: 3422 delta = rb_event_time_stamp(event); 3423 ts += delta; 3424 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3425 break; 3426 3427 case RINGBUF_TYPE_TIME_STAMP: 3428 delta = rb_event_time_stamp(event); 3429 ts = rb_fix_abs_ts(delta, ts); 3430 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3431 break; 3432 3433 case RINGBUF_TYPE_PADDING: 3434 ts += event->time_delta; 3435 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3436 break; 3437 3438 case RINGBUF_TYPE_DATA: 3439 ts += event->time_delta; 3440 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3441 break; 3442 3443 default: 3444 break; 3445 } 3446 } 3447 } 3448 3449 static DEFINE_PER_CPU(atomic_t, checking); 3450 static atomic_t ts_dump; 3451 3452 /* 3453 * Check if the current event time stamp matches the deltas on 3454 * the buffer page. 3455 */ 3456 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3457 struct rb_event_info *info, 3458 unsigned long tail) 3459 { 3460 struct ring_buffer_event *event; 3461 struct buffer_data_page *bpage; 3462 u64 ts, delta; 3463 bool full = false; 3464 int e; 3465 3466 bpage = info->tail_page->page; 3467 3468 if (tail == CHECK_FULL_PAGE) { 3469 full = true; 3470 tail = local_read(&bpage->commit); 3471 } else if (info->add_timestamp & 3472 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3473 /* Ignore events with absolute time stamps */ 3474 return; 3475 } 3476 3477 /* 3478 * Do not check the first event (skip possible extends too). 3479 * Also do not check if previous events have not been committed. 3480 */ 3481 if (tail <= 8 || tail > local_read(&bpage->commit)) 3482 return; 3483 3484 /* 3485 * If this interrupted another event, 3486 */ 3487 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3488 goto out; 3489 3490 ts = bpage->time_stamp; 3491 3492 for (e = 0; e < tail; e += rb_event_length(event)) { 3493 3494 event = (struct ring_buffer_event *)(bpage->data + e); 3495 3496 switch (event->type_len) { 3497 3498 case RINGBUF_TYPE_TIME_EXTEND: 3499 delta = rb_event_time_stamp(event); 3500 ts += delta; 3501 break; 3502 3503 case RINGBUF_TYPE_TIME_STAMP: 3504 delta = rb_event_time_stamp(event); 3505 ts = rb_fix_abs_ts(delta, ts); 3506 break; 3507 3508 case RINGBUF_TYPE_PADDING: 3509 if (event->time_delta == 1) 3510 break; 3511 fallthrough; 3512 case RINGBUF_TYPE_DATA: 3513 ts += event->time_delta; 3514 break; 3515 3516 default: 3517 RB_WARN_ON(cpu_buffer, 1); 3518 } 3519 } 3520 if ((full && ts > info->ts) || 3521 (!full && ts + info->delta != info->ts)) { 3522 /* If another report is happening, ignore this one */ 3523 if (atomic_inc_return(&ts_dump) != 1) { 3524 atomic_dec(&ts_dump); 3525 goto out; 3526 } 3527 atomic_inc(&cpu_buffer->record_disabled); 3528 /* There's some cases in boot up that this can happen */ 3529 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3530 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3531 cpu_buffer->cpu, 3532 ts + info->delta, info->ts, info->delta, 3533 info->before, info->after, 3534 full ? " (full)" : ""); 3535 dump_buffer_page(bpage, info, tail); 3536 atomic_dec(&ts_dump); 3537 /* Do not re-enable checking */ 3538 return; 3539 } 3540 out: 3541 atomic_dec(this_cpu_ptr(&checking)); 3542 } 3543 #else 3544 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3545 struct rb_event_info *info, 3546 unsigned long tail) 3547 { 3548 } 3549 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3550 3551 static struct ring_buffer_event * 3552 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3553 struct rb_event_info *info) 3554 { 3555 struct ring_buffer_event *event; 3556 struct buffer_page *tail_page; 3557 unsigned long tail, write, w; 3558 bool a_ok; 3559 bool b_ok; 3560 3561 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3562 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3563 3564 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3565 barrier(); 3566 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3567 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3568 barrier(); 3569 info->ts = rb_time_stamp(cpu_buffer->buffer); 3570 3571 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3572 info->delta = info->ts; 3573 } else { 3574 /* 3575 * If interrupting an event time update, we may need an 3576 * absolute timestamp. 3577 * Don't bother if this is the start of a new page (w == 0). 3578 */ 3579 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3580 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3581 info->length += RB_LEN_TIME_EXTEND; 3582 } else { 3583 info->delta = info->ts - info->after; 3584 if (unlikely(test_time_stamp(info->delta))) { 3585 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3586 info->length += RB_LEN_TIME_EXTEND; 3587 } 3588 } 3589 } 3590 3591 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3592 3593 /*C*/ write = local_add_return(info->length, &tail_page->write); 3594 3595 /* set write to only the index of the write */ 3596 write &= RB_WRITE_MASK; 3597 3598 tail = write - info->length; 3599 3600 /* See if we shot pass the end of this buffer page */ 3601 if (unlikely(write > BUF_PAGE_SIZE)) { 3602 /* before and after may now different, fix it up*/ 3603 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3604 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3605 if (a_ok && b_ok && info->before != info->after) 3606 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3607 info->before, info->after); 3608 if (a_ok && b_ok) 3609 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3610 return rb_move_tail(cpu_buffer, tail, info); 3611 } 3612 3613 if (likely(tail == w)) { 3614 u64 save_before; 3615 bool s_ok; 3616 3617 /* Nothing interrupted us between A and C */ 3618 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3619 barrier(); 3620 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3621 RB_WARN_ON(cpu_buffer, !s_ok); 3622 if (likely(!(info->add_timestamp & 3623 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3624 /* This did not interrupt any time update */ 3625 info->delta = info->ts - info->after; 3626 else 3627 /* Just use full timestamp for interrupting event */ 3628 info->delta = info->ts; 3629 barrier(); 3630 check_buffer(cpu_buffer, info, tail); 3631 if (unlikely(info->ts != save_before)) { 3632 /* SLOW PATH - Interrupted between C and E */ 3633 3634 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3635 RB_WARN_ON(cpu_buffer, !a_ok); 3636 3637 /* Write stamp must only go forward */ 3638 if (save_before > info->after) { 3639 /* 3640 * We do not care about the result, only that 3641 * it gets updated atomically. 3642 */ 3643 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3644 info->after, save_before); 3645 } 3646 } 3647 } else { 3648 u64 ts; 3649 /* SLOW PATH - Interrupted between A and C */ 3650 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3651 /* Was interrupted before here, write_stamp must be valid */ 3652 RB_WARN_ON(cpu_buffer, !a_ok); 3653 ts = rb_time_stamp(cpu_buffer->buffer); 3654 barrier(); 3655 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3656 info->after < ts && 3657 rb_time_cmpxchg(&cpu_buffer->write_stamp, 3658 info->after, ts)) { 3659 /* Nothing came after this event between C and E */ 3660 info->delta = ts - info->after; 3661 } else { 3662 /* 3663 * Interrupted between C and E: 3664 * Lost the previous events time stamp. Just set the 3665 * delta to zero, and this will be the same time as 3666 * the event this event interrupted. And the events that 3667 * came after this will still be correct (as they would 3668 * have built their delta on the previous event. 3669 */ 3670 info->delta = 0; 3671 } 3672 info->ts = ts; 3673 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3674 } 3675 3676 /* 3677 * If this is the first commit on the page, then it has the same 3678 * timestamp as the page itself. 3679 */ 3680 if (unlikely(!tail && !(info->add_timestamp & 3681 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3682 info->delta = 0; 3683 3684 /* We reserved something on the buffer */ 3685 3686 event = __rb_page_index(tail_page, tail); 3687 rb_update_event(cpu_buffer, event, info); 3688 3689 local_inc(&tail_page->entries); 3690 3691 /* 3692 * If this is the first commit on the page, then update 3693 * its timestamp. 3694 */ 3695 if (unlikely(!tail)) 3696 tail_page->page->time_stamp = info->ts; 3697 3698 /* account for these added bytes */ 3699 local_add(info->length, &cpu_buffer->entries_bytes); 3700 3701 return event; 3702 } 3703 3704 static __always_inline struct ring_buffer_event * 3705 rb_reserve_next_event(struct trace_buffer *buffer, 3706 struct ring_buffer_per_cpu *cpu_buffer, 3707 unsigned long length) 3708 { 3709 struct ring_buffer_event *event; 3710 struct rb_event_info info; 3711 int nr_loops = 0; 3712 int add_ts_default; 3713 3714 rb_start_commit(cpu_buffer); 3715 /* The commit page can not change after this */ 3716 3717 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3718 /* 3719 * Due to the ability to swap a cpu buffer from a buffer 3720 * it is possible it was swapped before we committed. 3721 * (committing stops a swap). We check for it here and 3722 * if it happened, we have to fail the write. 3723 */ 3724 barrier(); 3725 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3726 local_dec(&cpu_buffer->committing); 3727 local_dec(&cpu_buffer->commits); 3728 return NULL; 3729 } 3730 #endif 3731 3732 info.length = rb_calculate_event_length(length); 3733 3734 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3735 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3736 info.length += RB_LEN_TIME_EXTEND; 3737 } else { 3738 add_ts_default = RB_ADD_STAMP_NONE; 3739 } 3740 3741 again: 3742 info.add_timestamp = add_ts_default; 3743 info.delta = 0; 3744 3745 /* 3746 * We allow for interrupts to reenter here and do a trace. 3747 * If one does, it will cause this original code to loop 3748 * back here. Even with heavy interrupts happening, this 3749 * should only happen a few times in a row. If this happens 3750 * 1000 times in a row, there must be either an interrupt 3751 * storm or we have something buggy. 3752 * Bail! 3753 */ 3754 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3755 goto out_fail; 3756 3757 event = __rb_reserve_next(cpu_buffer, &info); 3758 3759 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3760 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3761 info.length -= RB_LEN_TIME_EXTEND; 3762 goto again; 3763 } 3764 3765 if (likely(event)) 3766 return event; 3767 out_fail: 3768 rb_end_commit(cpu_buffer); 3769 return NULL; 3770 } 3771 3772 /** 3773 * ring_buffer_lock_reserve - reserve a part of the buffer 3774 * @buffer: the ring buffer to reserve from 3775 * @length: the length of the data to reserve (excluding event header) 3776 * 3777 * Returns a reserved event on the ring buffer to copy directly to. 3778 * The user of this interface will need to get the body to write into 3779 * and can use the ring_buffer_event_data() interface. 3780 * 3781 * The length is the length of the data needed, not the event length 3782 * which also includes the event header. 3783 * 3784 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3785 * If NULL is returned, then nothing has been allocated or locked. 3786 */ 3787 struct ring_buffer_event * 3788 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3789 { 3790 struct ring_buffer_per_cpu *cpu_buffer; 3791 struct ring_buffer_event *event; 3792 int cpu; 3793 3794 /* If we are tracing schedule, we don't want to recurse */ 3795 preempt_disable_notrace(); 3796 3797 if (unlikely(atomic_read(&buffer->record_disabled))) 3798 goto out; 3799 3800 cpu = raw_smp_processor_id(); 3801 3802 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3803 goto out; 3804 3805 cpu_buffer = buffer->buffers[cpu]; 3806 3807 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3808 goto out; 3809 3810 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3811 goto out; 3812 3813 if (unlikely(trace_recursive_lock(cpu_buffer))) 3814 goto out; 3815 3816 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3817 if (!event) 3818 goto out_unlock; 3819 3820 return event; 3821 3822 out_unlock: 3823 trace_recursive_unlock(cpu_buffer); 3824 out: 3825 preempt_enable_notrace(); 3826 return NULL; 3827 } 3828 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3829 3830 /* 3831 * Decrement the entries to the page that an event is on. 3832 * The event does not even need to exist, only the pointer 3833 * to the page it is on. This may only be called before the commit 3834 * takes place. 3835 */ 3836 static inline void 3837 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3838 struct ring_buffer_event *event) 3839 { 3840 unsigned long addr = (unsigned long)event; 3841 struct buffer_page *bpage = cpu_buffer->commit_page; 3842 struct buffer_page *start; 3843 3844 addr &= PAGE_MASK; 3845 3846 /* Do the likely case first */ 3847 if (likely(bpage->page == (void *)addr)) { 3848 local_dec(&bpage->entries); 3849 return; 3850 } 3851 3852 /* 3853 * Because the commit page may be on the reader page we 3854 * start with the next page and check the end loop there. 3855 */ 3856 rb_inc_page(&bpage); 3857 start = bpage; 3858 do { 3859 if (bpage->page == (void *)addr) { 3860 local_dec(&bpage->entries); 3861 return; 3862 } 3863 rb_inc_page(&bpage); 3864 } while (bpage != start); 3865 3866 /* commit not part of this buffer?? */ 3867 RB_WARN_ON(cpu_buffer, 1); 3868 } 3869 3870 /** 3871 * ring_buffer_discard_commit - discard an event that has not been committed 3872 * @buffer: the ring buffer 3873 * @event: non committed event to discard 3874 * 3875 * Sometimes an event that is in the ring buffer needs to be ignored. 3876 * This function lets the user discard an event in the ring buffer 3877 * and then that event will not be read later. 3878 * 3879 * This function only works if it is called before the item has been 3880 * committed. It will try to free the event from the ring buffer 3881 * if another event has not been added behind it. 3882 * 3883 * If another event has been added behind it, it will set the event 3884 * up as discarded, and perform the commit. 3885 * 3886 * If this function is called, do not call ring_buffer_unlock_commit on 3887 * the event. 3888 */ 3889 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3890 struct ring_buffer_event *event) 3891 { 3892 struct ring_buffer_per_cpu *cpu_buffer; 3893 int cpu; 3894 3895 /* The event is discarded regardless */ 3896 rb_event_discard(event); 3897 3898 cpu = smp_processor_id(); 3899 cpu_buffer = buffer->buffers[cpu]; 3900 3901 /* 3902 * This must only be called if the event has not been 3903 * committed yet. Thus we can assume that preemption 3904 * is still disabled. 3905 */ 3906 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3907 3908 rb_decrement_entry(cpu_buffer, event); 3909 if (rb_try_to_discard(cpu_buffer, event)) 3910 goto out; 3911 3912 out: 3913 rb_end_commit(cpu_buffer); 3914 3915 trace_recursive_unlock(cpu_buffer); 3916 3917 preempt_enable_notrace(); 3918 3919 } 3920 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3921 3922 /** 3923 * ring_buffer_write - write data to the buffer without reserving 3924 * @buffer: The ring buffer to write to. 3925 * @length: The length of the data being written (excluding the event header) 3926 * @data: The data to write to the buffer. 3927 * 3928 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3929 * one function. If you already have the data to write to the buffer, it 3930 * may be easier to simply call this function. 3931 * 3932 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3933 * and not the length of the event which would hold the header. 3934 */ 3935 int ring_buffer_write(struct trace_buffer *buffer, 3936 unsigned long length, 3937 void *data) 3938 { 3939 struct ring_buffer_per_cpu *cpu_buffer; 3940 struct ring_buffer_event *event; 3941 void *body; 3942 int ret = -EBUSY; 3943 int cpu; 3944 3945 preempt_disable_notrace(); 3946 3947 if (atomic_read(&buffer->record_disabled)) 3948 goto out; 3949 3950 cpu = raw_smp_processor_id(); 3951 3952 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3953 goto out; 3954 3955 cpu_buffer = buffer->buffers[cpu]; 3956 3957 if (atomic_read(&cpu_buffer->record_disabled)) 3958 goto out; 3959 3960 if (length > BUF_MAX_DATA_SIZE) 3961 goto out; 3962 3963 if (unlikely(trace_recursive_lock(cpu_buffer))) 3964 goto out; 3965 3966 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3967 if (!event) 3968 goto out_unlock; 3969 3970 body = rb_event_data(event); 3971 3972 memcpy(body, data, length); 3973 3974 rb_commit(cpu_buffer); 3975 3976 rb_wakeups(buffer, cpu_buffer); 3977 3978 ret = 0; 3979 3980 out_unlock: 3981 trace_recursive_unlock(cpu_buffer); 3982 3983 out: 3984 preempt_enable_notrace(); 3985 3986 return ret; 3987 } 3988 EXPORT_SYMBOL_GPL(ring_buffer_write); 3989 3990 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3991 { 3992 struct buffer_page *reader = cpu_buffer->reader_page; 3993 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3994 struct buffer_page *commit = cpu_buffer->commit_page; 3995 3996 /* In case of error, head will be NULL */ 3997 if (unlikely(!head)) 3998 return true; 3999 4000 /* Reader should exhaust content in reader page */ 4001 if (reader->read != rb_page_commit(reader)) 4002 return false; 4003 4004 /* 4005 * If writers are committing on the reader page, knowing all 4006 * committed content has been read, the ring buffer is empty. 4007 */ 4008 if (commit == reader) 4009 return true; 4010 4011 /* 4012 * If writers are committing on a page other than reader page 4013 * and head page, there should always be content to read. 4014 */ 4015 if (commit != head) 4016 return false; 4017 4018 /* 4019 * Writers are committing on the head page, we just need 4020 * to care about there're committed data, and the reader will 4021 * swap reader page with head page when it is to read data. 4022 */ 4023 return rb_page_commit(commit) == 0; 4024 } 4025 4026 /** 4027 * ring_buffer_record_disable - stop all writes into the buffer 4028 * @buffer: The ring buffer to stop writes to. 4029 * 4030 * This prevents all writes to the buffer. Any attempt to write 4031 * to the buffer after this will fail and return NULL. 4032 * 4033 * The caller should call synchronize_rcu() after this. 4034 */ 4035 void ring_buffer_record_disable(struct trace_buffer *buffer) 4036 { 4037 atomic_inc(&buffer->record_disabled); 4038 } 4039 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4040 4041 /** 4042 * ring_buffer_record_enable - enable writes to the buffer 4043 * @buffer: The ring buffer to enable writes 4044 * 4045 * Note, multiple disables will need the same number of enables 4046 * to truly enable the writing (much like preempt_disable). 4047 */ 4048 void ring_buffer_record_enable(struct trace_buffer *buffer) 4049 { 4050 atomic_dec(&buffer->record_disabled); 4051 } 4052 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4053 4054 /** 4055 * ring_buffer_record_off - stop all writes into the buffer 4056 * @buffer: The ring buffer to stop writes to. 4057 * 4058 * This prevents all writes to the buffer. Any attempt to write 4059 * to the buffer after this will fail and return NULL. 4060 * 4061 * This is different than ring_buffer_record_disable() as 4062 * it works like an on/off switch, where as the disable() version 4063 * must be paired with a enable(). 4064 */ 4065 void ring_buffer_record_off(struct trace_buffer *buffer) 4066 { 4067 unsigned int rd; 4068 unsigned int new_rd; 4069 4070 do { 4071 rd = atomic_read(&buffer->record_disabled); 4072 new_rd = rd | RB_BUFFER_OFF; 4073 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 4074 } 4075 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4076 4077 /** 4078 * ring_buffer_record_on - restart writes into the buffer 4079 * @buffer: The ring buffer to start writes to. 4080 * 4081 * This enables all writes to the buffer that was disabled by 4082 * ring_buffer_record_off(). 4083 * 4084 * This is different than ring_buffer_record_enable() as 4085 * it works like an on/off switch, where as the enable() version 4086 * must be paired with a disable(). 4087 */ 4088 void ring_buffer_record_on(struct trace_buffer *buffer) 4089 { 4090 unsigned int rd; 4091 unsigned int new_rd; 4092 4093 do { 4094 rd = atomic_read(&buffer->record_disabled); 4095 new_rd = rd & ~RB_BUFFER_OFF; 4096 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 4097 } 4098 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4099 4100 /** 4101 * ring_buffer_record_is_on - return true if the ring buffer can write 4102 * @buffer: The ring buffer to see if write is enabled 4103 * 4104 * Returns true if the ring buffer is in a state that it accepts writes. 4105 */ 4106 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4107 { 4108 return !atomic_read(&buffer->record_disabled); 4109 } 4110 4111 /** 4112 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4113 * @buffer: The ring buffer to see if write is set enabled 4114 * 4115 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4116 * Note that this does NOT mean it is in a writable state. 4117 * 4118 * It may return true when the ring buffer has been disabled by 4119 * ring_buffer_record_disable(), as that is a temporary disabling of 4120 * the ring buffer. 4121 */ 4122 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4123 { 4124 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4125 } 4126 4127 /** 4128 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4129 * @buffer: The ring buffer to stop writes to. 4130 * @cpu: The CPU buffer to stop 4131 * 4132 * This prevents all writes to the buffer. Any attempt to write 4133 * to the buffer after this will fail and return NULL. 4134 * 4135 * The caller should call synchronize_rcu() after this. 4136 */ 4137 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4138 { 4139 struct ring_buffer_per_cpu *cpu_buffer; 4140 4141 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4142 return; 4143 4144 cpu_buffer = buffer->buffers[cpu]; 4145 atomic_inc(&cpu_buffer->record_disabled); 4146 } 4147 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4148 4149 /** 4150 * ring_buffer_record_enable_cpu - enable writes to the buffer 4151 * @buffer: The ring buffer to enable writes 4152 * @cpu: The CPU to enable. 4153 * 4154 * Note, multiple disables will need the same number of enables 4155 * to truly enable the writing (much like preempt_disable). 4156 */ 4157 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4158 { 4159 struct ring_buffer_per_cpu *cpu_buffer; 4160 4161 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4162 return; 4163 4164 cpu_buffer = buffer->buffers[cpu]; 4165 atomic_dec(&cpu_buffer->record_disabled); 4166 } 4167 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4168 4169 /* 4170 * The total entries in the ring buffer is the running counter 4171 * of entries entered into the ring buffer, minus the sum of 4172 * the entries read from the ring buffer and the number of 4173 * entries that were overwritten. 4174 */ 4175 static inline unsigned long 4176 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4177 { 4178 return local_read(&cpu_buffer->entries) - 4179 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4180 } 4181 4182 /** 4183 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4184 * @buffer: The ring buffer 4185 * @cpu: The per CPU buffer to read from. 4186 */ 4187 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4188 { 4189 unsigned long flags; 4190 struct ring_buffer_per_cpu *cpu_buffer; 4191 struct buffer_page *bpage; 4192 u64 ret = 0; 4193 4194 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4195 return 0; 4196 4197 cpu_buffer = buffer->buffers[cpu]; 4198 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4199 /* 4200 * if the tail is on reader_page, oldest time stamp is on the reader 4201 * page 4202 */ 4203 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4204 bpage = cpu_buffer->reader_page; 4205 else 4206 bpage = rb_set_head_page(cpu_buffer); 4207 if (bpage) 4208 ret = bpage->page->time_stamp; 4209 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4210 4211 return ret; 4212 } 4213 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4214 4215 /** 4216 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 4217 * @buffer: The ring buffer 4218 * @cpu: The per CPU buffer to read from. 4219 */ 4220 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4221 { 4222 struct ring_buffer_per_cpu *cpu_buffer; 4223 unsigned long ret; 4224 4225 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4226 return 0; 4227 4228 cpu_buffer = buffer->buffers[cpu]; 4229 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4230 4231 return ret; 4232 } 4233 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4234 4235 /** 4236 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4237 * @buffer: The ring buffer 4238 * @cpu: The per CPU buffer to get the entries from. 4239 */ 4240 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4241 { 4242 struct ring_buffer_per_cpu *cpu_buffer; 4243 4244 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4245 return 0; 4246 4247 cpu_buffer = buffer->buffers[cpu]; 4248 4249 return rb_num_of_entries(cpu_buffer); 4250 } 4251 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4252 4253 /** 4254 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4255 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4256 * @buffer: The ring buffer 4257 * @cpu: The per CPU buffer to get the number of overruns from 4258 */ 4259 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4260 { 4261 struct ring_buffer_per_cpu *cpu_buffer; 4262 unsigned long ret; 4263 4264 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4265 return 0; 4266 4267 cpu_buffer = buffer->buffers[cpu]; 4268 ret = local_read(&cpu_buffer->overrun); 4269 4270 return ret; 4271 } 4272 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4273 4274 /** 4275 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4276 * commits failing due to the buffer wrapping around while there are uncommitted 4277 * events, such as during an interrupt storm. 4278 * @buffer: The ring buffer 4279 * @cpu: The per CPU buffer to get the number of overruns from 4280 */ 4281 unsigned long 4282 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4283 { 4284 struct ring_buffer_per_cpu *cpu_buffer; 4285 unsigned long ret; 4286 4287 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4288 return 0; 4289 4290 cpu_buffer = buffer->buffers[cpu]; 4291 ret = local_read(&cpu_buffer->commit_overrun); 4292 4293 return ret; 4294 } 4295 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4296 4297 /** 4298 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4299 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4300 * @buffer: The ring buffer 4301 * @cpu: The per CPU buffer to get the number of overruns from 4302 */ 4303 unsigned long 4304 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4305 { 4306 struct ring_buffer_per_cpu *cpu_buffer; 4307 unsigned long ret; 4308 4309 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4310 return 0; 4311 4312 cpu_buffer = buffer->buffers[cpu]; 4313 ret = local_read(&cpu_buffer->dropped_events); 4314 4315 return ret; 4316 } 4317 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4318 4319 /** 4320 * ring_buffer_read_events_cpu - get the number of events successfully read 4321 * @buffer: The ring buffer 4322 * @cpu: The per CPU buffer to get the number of events read 4323 */ 4324 unsigned long 4325 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4326 { 4327 struct ring_buffer_per_cpu *cpu_buffer; 4328 4329 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4330 return 0; 4331 4332 cpu_buffer = buffer->buffers[cpu]; 4333 return cpu_buffer->read; 4334 } 4335 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4336 4337 /** 4338 * ring_buffer_entries - get the number of entries in a buffer 4339 * @buffer: The ring buffer 4340 * 4341 * Returns the total number of entries in the ring buffer 4342 * (all CPU entries) 4343 */ 4344 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4345 { 4346 struct ring_buffer_per_cpu *cpu_buffer; 4347 unsigned long entries = 0; 4348 int cpu; 4349 4350 /* if you care about this being correct, lock the buffer */ 4351 for_each_buffer_cpu(buffer, cpu) { 4352 cpu_buffer = buffer->buffers[cpu]; 4353 entries += rb_num_of_entries(cpu_buffer); 4354 } 4355 4356 return entries; 4357 } 4358 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4359 4360 /** 4361 * ring_buffer_overruns - get the number of overruns in buffer 4362 * @buffer: The ring buffer 4363 * 4364 * Returns the total number of overruns in the ring buffer 4365 * (all CPU entries) 4366 */ 4367 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4368 { 4369 struct ring_buffer_per_cpu *cpu_buffer; 4370 unsigned long overruns = 0; 4371 int cpu; 4372 4373 /* if you care about this being correct, lock the buffer */ 4374 for_each_buffer_cpu(buffer, cpu) { 4375 cpu_buffer = buffer->buffers[cpu]; 4376 overruns += local_read(&cpu_buffer->overrun); 4377 } 4378 4379 return overruns; 4380 } 4381 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4382 4383 static void rb_iter_reset(struct ring_buffer_iter *iter) 4384 { 4385 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4386 4387 /* Iterator usage is expected to have record disabled */ 4388 iter->head_page = cpu_buffer->reader_page; 4389 iter->head = cpu_buffer->reader_page->read; 4390 iter->next_event = iter->head; 4391 4392 iter->cache_reader_page = iter->head_page; 4393 iter->cache_read = cpu_buffer->read; 4394 4395 if (iter->head) { 4396 iter->read_stamp = cpu_buffer->read_stamp; 4397 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4398 } else { 4399 iter->read_stamp = iter->head_page->page->time_stamp; 4400 iter->page_stamp = iter->read_stamp; 4401 } 4402 } 4403 4404 /** 4405 * ring_buffer_iter_reset - reset an iterator 4406 * @iter: The iterator to reset 4407 * 4408 * Resets the iterator, so that it will start from the beginning 4409 * again. 4410 */ 4411 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4412 { 4413 struct ring_buffer_per_cpu *cpu_buffer; 4414 unsigned long flags; 4415 4416 if (!iter) 4417 return; 4418 4419 cpu_buffer = iter->cpu_buffer; 4420 4421 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4422 rb_iter_reset(iter); 4423 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4424 } 4425 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4426 4427 /** 4428 * ring_buffer_iter_empty - check if an iterator has no more to read 4429 * @iter: The iterator to check 4430 */ 4431 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4432 { 4433 struct ring_buffer_per_cpu *cpu_buffer; 4434 struct buffer_page *reader; 4435 struct buffer_page *head_page; 4436 struct buffer_page *commit_page; 4437 struct buffer_page *curr_commit_page; 4438 unsigned commit; 4439 u64 curr_commit_ts; 4440 u64 commit_ts; 4441 4442 cpu_buffer = iter->cpu_buffer; 4443 reader = cpu_buffer->reader_page; 4444 head_page = cpu_buffer->head_page; 4445 commit_page = cpu_buffer->commit_page; 4446 commit_ts = commit_page->page->time_stamp; 4447 4448 /* 4449 * When the writer goes across pages, it issues a cmpxchg which 4450 * is a mb(), which will synchronize with the rmb here. 4451 * (see rb_tail_page_update()) 4452 */ 4453 smp_rmb(); 4454 commit = rb_page_commit(commit_page); 4455 /* We want to make sure that the commit page doesn't change */ 4456 smp_rmb(); 4457 4458 /* Make sure commit page didn't change */ 4459 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4460 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4461 4462 /* If the commit page changed, then there's more data */ 4463 if (curr_commit_page != commit_page || 4464 curr_commit_ts != commit_ts) 4465 return 0; 4466 4467 /* Still racy, as it may return a false positive, but that's OK */ 4468 return ((iter->head_page == commit_page && iter->head >= commit) || 4469 (iter->head_page == reader && commit_page == head_page && 4470 head_page->read == commit && 4471 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4472 } 4473 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4474 4475 static void 4476 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4477 struct ring_buffer_event *event) 4478 { 4479 u64 delta; 4480 4481 switch (event->type_len) { 4482 case RINGBUF_TYPE_PADDING: 4483 return; 4484 4485 case RINGBUF_TYPE_TIME_EXTEND: 4486 delta = rb_event_time_stamp(event); 4487 cpu_buffer->read_stamp += delta; 4488 return; 4489 4490 case RINGBUF_TYPE_TIME_STAMP: 4491 delta = rb_event_time_stamp(event); 4492 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4493 cpu_buffer->read_stamp = delta; 4494 return; 4495 4496 case RINGBUF_TYPE_DATA: 4497 cpu_buffer->read_stamp += event->time_delta; 4498 return; 4499 4500 default: 4501 RB_WARN_ON(cpu_buffer, 1); 4502 } 4503 return; 4504 } 4505 4506 static void 4507 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4508 struct ring_buffer_event *event) 4509 { 4510 u64 delta; 4511 4512 switch (event->type_len) { 4513 case RINGBUF_TYPE_PADDING: 4514 return; 4515 4516 case RINGBUF_TYPE_TIME_EXTEND: 4517 delta = rb_event_time_stamp(event); 4518 iter->read_stamp += delta; 4519 return; 4520 4521 case RINGBUF_TYPE_TIME_STAMP: 4522 delta = rb_event_time_stamp(event); 4523 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4524 iter->read_stamp = delta; 4525 return; 4526 4527 case RINGBUF_TYPE_DATA: 4528 iter->read_stamp += event->time_delta; 4529 return; 4530 4531 default: 4532 RB_WARN_ON(iter->cpu_buffer, 1); 4533 } 4534 return; 4535 } 4536 4537 static struct buffer_page * 4538 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4539 { 4540 struct buffer_page *reader = NULL; 4541 unsigned long overwrite; 4542 unsigned long flags; 4543 int nr_loops = 0; 4544 int ret; 4545 4546 local_irq_save(flags); 4547 arch_spin_lock(&cpu_buffer->lock); 4548 4549 again: 4550 /* 4551 * This should normally only loop twice. But because the 4552 * start of the reader inserts an empty page, it causes 4553 * a case where we will loop three times. There should be no 4554 * reason to loop four times (that I know of). 4555 */ 4556 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4557 reader = NULL; 4558 goto out; 4559 } 4560 4561 reader = cpu_buffer->reader_page; 4562 4563 /* If there's more to read, return this page */ 4564 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4565 goto out; 4566 4567 /* Never should we have an index greater than the size */ 4568 if (RB_WARN_ON(cpu_buffer, 4569 cpu_buffer->reader_page->read > rb_page_size(reader))) 4570 goto out; 4571 4572 /* check if we caught up to the tail */ 4573 reader = NULL; 4574 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4575 goto out; 4576 4577 /* Don't bother swapping if the ring buffer is empty */ 4578 if (rb_num_of_entries(cpu_buffer) == 0) 4579 goto out; 4580 4581 /* 4582 * Reset the reader page to size zero. 4583 */ 4584 local_set(&cpu_buffer->reader_page->write, 0); 4585 local_set(&cpu_buffer->reader_page->entries, 0); 4586 local_set(&cpu_buffer->reader_page->page->commit, 0); 4587 cpu_buffer->reader_page->real_end = 0; 4588 4589 spin: 4590 /* 4591 * Splice the empty reader page into the list around the head. 4592 */ 4593 reader = rb_set_head_page(cpu_buffer); 4594 if (!reader) 4595 goto out; 4596 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4597 cpu_buffer->reader_page->list.prev = reader->list.prev; 4598 4599 /* 4600 * cpu_buffer->pages just needs to point to the buffer, it 4601 * has no specific buffer page to point to. Lets move it out 4602 * of our way so we don't accidentally swap it. 4603 */ 4604 cpu_buffer->pages = reader->list.prev; 4605 4606 /* The reader page will be pointing to the new head */ 4607 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4608 4609 /* 4610 * We want to make sure we read the overruns after we set up our 4611 * pointers to the next object. The writer side does a 4612 * cmpxchg to cross pages which acts as the mb on the writer 4613 * side. Note, the reader will constantly fail the swap 4614 * while the writer is updating the pointers, so this 4615 * guarantees that the overwrite recorded here is the one we 4616 * want to compare with the last_overrun. 4617 */ 4618 smp_mb(); 4619 overwrite = local_read(&(cpu_buffer->overrun)); 4620 4621 /* 4622 * Here's the tricky part. 4623 * 4624 * We need to move the pointer past the header page. 4625 * But we can only do that if a writer is not currently 4626 * moving it. The page before the header page has the 4627 * flag bit '1' set if it is pointing to the page we want. 4628 * but if the writer is in the process of moving it 4629 * than it will be '2' or already moved '0'. 4630 */ 4631 4632 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4633 4634 /* 4635 * If we did not convert it, then we must try again. 4636 */ 4637 if (!ret) 4638 goto spin; 4639 4640 /* 4641 * Yay! We succeeded in replacing the page. 4642 * 4643 * Now make the new head point back to the reader page. 4644 */ 4645 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4646 rb_inc_page(&cpu_buffer->head_page); 4647 4648 local_inc(&cpu_buffer->pages_read); 4649 4650 /* Finally update the reader page to the new head */ 4651 cpu_buffer->reader_page = reader; 4652 cpu_buffer->reader_page->read = 0; 4653 4654 if (overwrite != cpu_buffer->last_overrun) { 4655 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4656 cpu_buffer->last_overrun = overwrite; 4657 } 4658 4659 goto again; 4660 4661 out: 4662 /* Update the read_stamp on the first event */ 4663 if (reader && reader->read == 0) 4664 cpu_buffer->read_stamp = reader->page->time_stamp; 4665 4666 arch_spin_unlock(&cpu_buffer->lock); 4667 local_irq_restore(flags); 4668 4669 /* 4670 * The writer has preempt disable, wait for it. But not forever 4671 * Although, 1 second is pretty much "forever" 4672 */ 4673 #define USECS_WAIT 1000000 4674 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4675 /* If the write is past the end of page, a writer is still updating it */ 4676 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE)) 4677 break; 4678 4679 udelay(1); 4680 4681 /* Get the latest version of the reader write value */ 4682 smp_rmb(); 4683 } 4684 4685 /* The writer is not moving forward? Something is wrong */ 4686 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4687 reader = NULL; 4688 4689 /* 4690 * Make sure we see any padding after the write update 4691 * (see rb_reset_tail()) 4692 */ 4693 smp_rmb(); 4694 4695 4696 return reader; 4697 } 4698 4699 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4700 { 4701 struct ring_buffer_event *event; 4702 struct buffer_page *reader; 4703 unsigned length; 4704 4705 reader = rb_get_reader_page(cpu_buffer); 4706 4707 /* This function should not be called when buffer is empty */ 4708 if (RB_WARN_ON(cpu_buffer, !reader)) 4709 return; 4710 4711 event = rb_reader_event(cpu_buffer); 4712 4713 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4714 cpu_buffer->read++; 4715 4716 rb_update_read_stamp(cpu_buffer, event); 4717 4718 length = rb_event_length(event); 4719 cpu_buffer->reader_page->read += length; 4720 } 4721 4722 static void rb_advance_iter(struct ring_buffer_iter *iter) 4723 { 4724 struct ring_buffer_per_cpu *cpu_buffer; 4725 4726 cpu_buffer = iter->cpu_buffer; 4727 4728 /* If head == next_event then we need to jump to the next event */ 4729 if (iter->head == iter->next_event) { 4730 /* If the event gets overwritten again, there's nothing to do */ 4731 if (rb_iter_head_event(iter) == NULL) 4732 return; 4733 } 4734 4735 iter->head = iter->next_event; 4736 4737 /* 4738 * Check if we are at the end of the buffer. 4739 */ 4740 if (iter->next_event >= rb_page_size(iter->head_page)) { 4741 /* discarded commits can make the page empty */ 4742 if (iter->head_page == cpu_buffer->commit_page) 4743 return; 4744 rb_inc_iter(iter); 4745 return; 4746 } 4747 4748 rb_update_iter_read_stamp(iter, iter->event); 4749 } 4750 4751 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4752 { 4753 return cpu_buffer->lost_events; 4754 } 4755 4756 static struct ring_buffer_event * 4757 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4758 unsigned long *lost_events) 4759 { 4760 struct ring_buffer_event *event; 4761 struct buffer_page *reader; 4762 int nr_loops = 0; 4763 4764 if (ts) 4765 *ts = 0; 4766 again: 4767 /* 4768 * We repeat when a time extend is encountered. 4769 * Since the time extend is always attached to a data event, 4770 * we should never loop more than once. 4771 * (We never hit the following condition more than twice). 4772 */ 4773 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4774 return NULL; 4775 4776 reader = rb_get_reader_page(cpu_buffer); 4777 if (!reader) 4778 return NULL; 4779 4780 event = rb_reader_event(cpu_buffer); 4781 4782 switch (event->type_len) { 4783 case RINGBUF_TYPE_PADDING: 4784 if (rb_null_event(event)) 4785 RB_WARN_ON(cpu_buffer, 1); 4786 /* 4787 * Because the writer could be discarding every 4788 * event it creates (which would probably be bad) 4789 * if we were to go back to "again" then we may never 4790 * catch up, and will trigger the warn on, or lock 4791 * the box. Return the padding, and we will release 4792 * the current locks, and try again. 4793 */ 4794 return event; 4795 4796 case RINGBUF_TYPE_TIME_EXTEND: 4797 /* Internal data, OK to advance */ 4798 rb_advance_reader(cpu_buffer); 4799 goto again; 4800 4801 case RINGBUF_TYPE_TIME_STAMP: 4802 if (ts) { 4803 *ts = rb_event_time_stamp(event); 4804 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4805 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4806 cpu_buffer->cpu, ts); 4807 } 4808 /* Internal data, OK to advance */ 4809 rb_advance_reader(cpu_buffer); 4810 goto again; 4811 4812 case RINGBUF_TYPE_DATA: 4813 if (ts && !(*ts)) { 4814 *ts = cpu_buffer->read_stamp + event->time_delta; 4815 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4816 cpu_buffer->cpu, ts); 4817 } 4818 if (lost_events) 4819 *lost_events = rb_lost_events(cpu_buffer); 4820 return event; 4821 4822 default: 4823 RB_WARN_ON(cpu_buffer, 1); 4824 } 4825 4826 return NULL; 4827 } 4828 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4829 4830 static struct ring_buffer_event * 4831 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4832 { 4833 struct trace_buffer *buffer; 4834 struct ring_buffer_per_cpu *cpu_buffer; 4835 struct ring_buffer_event *event; 4836 int nr_loops = 0; 4837 4838 if (ts) 4839 *ts = 0; 4840 4841 cpu_buffer = iter->cpu_buffer; 4842 buffer = cpu_buffer->buffer; 4843 4844 /* 4845 * Check if someone performed a consuming read to 4846 * the buffer. A consuming read invalidates the iterator 4847 * and we need to reset the iterator in this case. 4848 */ 4849 if (unlikely(iter->cache_read != cpu_buffer->read || 4850 iter->cache_reader_page != cpu_buffer->reader_page)) 4851 rb_iter_reset(iter); 4852 4853 again: 4854 if (ring_buffer_iter_empty(iter)) 4855 return NULL; 4856 4857 /* 4858 * As the writer can mess with what the iterator is trying 4859 * to read, just give up if we fail to get an event after 4860 * three tries. The iterator is not as reliable when reading 4861 * the ring buffer with an active write as the consumer is. 4862 * Do not warn if the three failures is reached. 4863 */ 4864 if (++nr_loops > 3) 4865 return NULL; 4866 4867 if (rb_per_cpu_empty(cpu_buffer)) 4868 return NULL; 4869 4870 if (iter->head >= rb_page_size(iter->head_page)) { 4871 rb_inc_iter(iter); 4872 goto again; 4873 } 4874 4875 event = rb_iter_head_event(iter); 4876 if (!event) 4877 goto again; 4878 4879 switch (event->type_len) { 4880 case RINGBUF_TYPE_PADDING: 4881 if (rb_null_event(event)) { 4882 rb_inc_iter(iter); 4883 goto again; 4884 } 4885 rb_advance_iter(iter); 4886 return event; 4887 4888 case RINGBUF_TYPE_TIME_EXTEND: 4889 /* Internal data, OK to advance */ 4890 rb_advance_iter(iter); 4891 goto again; 4892 4893 case RINGBUF_TYPE_TIME_STAMP: 4894 if (ts) { 4895 *ts = rb_event_time_stamp(event); 4896 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4897 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4898 cpu_buffer->cpu, ts); 4899 } 4900 /* Internal data, OK to advance */ 4901 rb_advance_iter(iter); 4902 goto again; 4903 4904 case RINGBUF_TYPE_DATA: 4905 if (ts && !(*ts)) { 4906 *ts = iter->read_stamp + event->time_delta; 4907 ring_buffer_normalize_time_stamp(buffer, 4908 cpu_buffer->cpu, ts); 4909 } 4910 return event; 4911 4912 default: 4913 RB_WARN_ON(cpu_buffer, 1); 4914 } 4915 4916 return NULL; 4917 } 4918 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4919 4920 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4921 { 4922 if (likely(!in_nmi())) { 4923 raw_spin_lock(&cpu_buffer->reader_lock); 4924 return true; 4925 } 4926 4927 /* 4928 * If an NMI die dumps out the content of the ring buffer 4929 * trylock must be used to prevent a deadlock if the NMI 4930 * preempted a task that holds the ring buffer locks. If 4931 * we get the lock then all is fine, if not, then continue 4932 * to do the read, but this can corrupt the ring buffer, 4933 * so it must be permanently disabled from future writes. 4934 * Reading from NMI is a oneshot deal. 4935 */ 4936 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4937 return true; 4938 4939 /* Continue without locking, but disable the ring buffer */ 4940 atomic_inc(&cpu_buffer->record_disabled); 4941 return false; 4942 } 4943 4944 static inline void 4945 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4946 { 4947 if (likely(locked)) 4948 raw_spin_unlock(&cpu_buffer->reader_lock); 4949 return; 4950 } 4951 4952 /** 4953 * ring_buffer_peek - peek at the next event to be read 4954 * @buffer: The ring buffer to read 4955 * @cpu: The cpu to peak at 4956 * @ts: The timestamp counter of this event. 4957 * @lost_events: a variable to store if events were lost (may be NULL) 4958 * 4959 * This will return the event that will be read next, but does 4960 * not consume the data. 4961 */ 4962 struct ring_buffer_event * 4963 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4964 unsigned long *lost_events) 4965 { 4966 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4967 struct ring_buffer_event *event; 4968 unsigned long flags; 4969 bool dolock; 4970 4971 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4972 return NULL; 4973 4974 again: 4975 local_irq_save(flags); 4976 dolock = rb_reader_lock(cpu_buffer); 4977 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4978 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4979 rb_advance_reader(cpu_buffer); 4980 rb_reader_unlock(cpu_buffer, dolock); 4981 local_irq_restore(flags); 4982 4983 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4984 goto again; 4985 4986 return event; 4987 } 4988 4989 /** ring_buffer_iter_dropped - report if there are dropped events 4990 * @iter: The ring buffer iterator 4991 * 4992 * Returns true if there was dropped events since the last peek. 4993 */ 4994 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4995 { 4996 bool ret = iter->missed_events != 0; 4997 4998 iter->missed_events = 0; 4999 return ret; 5000 } 5001 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5002 5003 /** 5004 * ring_buffer_iter_peek - peek at the next event to be read 5005 * @iter: The ring buffer iterator 5006 * @ts: The timestamp counter of this event. 5007 * 5008 * This will return the event that will be read next, but does 5009 * not increment the iterator. 5010 */ 5011 struct ring_buffer_event * 5012 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5013 { 5014 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5015 struct ring_buffer_event *event; 5016 unsigned long flags; 5017 5018 again: 5019 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5020 event = rb_iter_peek(iter, ts); 5021 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5022 5023 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5024 goto again; 5025 5026 return event; 5027 } 5028 5029 /** 5030 * ring_buffer_consume - return an event and consume it 5031 * @buffer: The ring buffer to get the next event from 5032 * @cpu: the cpu to read the buffer from 5033 * @ts: a variable to store the timestamp (may be NULL) 5034 * @lost_events: a variable to store if events were lost (may be NULL) 5035 * 5036 * Returns the next event in the ring buffer, and that event is consumed. 5037 * Meaning, that sequential reads will keep returning a different event, 5038 * and eventually empty the ring buffer if the producer is slower. 5039 */ 5040 struct ring_buffer_event * 5041 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5042 unsigned long *lost_events) 5043 { 5044 struct ring_buffer_per_cpu *cpu_buffer; 5045 struct ring_buffer_event *event = NULL; 5046 unsigned long flags; 5047 bool dolock; 5048 5049 again: 5050 /* might be called in atomic */ 5051 preempt_disable(); 5052 5053 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5054 goto out; 5055 5056 cpu_buffer = buffer->buffers[cpu]; 5057 local_irq_save(flags); 5058 dolock = rb_reader_lock(cpu_buffer); 5059 5060 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5061 if (event) { 5062 cpu_buffer->lost_events = 0; 5063 rb_advance_reader(cpu_buffer); 5064 } 5065 5066 rb_reader_unlock(cpu_buffer, dolock); 5067 local_irq_restore(flags); 5068 5069 out: 5070 preempt_enable(); 5071 5072 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5073 goto again; 5074 5075 return event; 5076 } 5077 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5078 5079 /** 5080 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5081 * @buffer: The ring buffer to read from 5082 * @cpu: The cpu buffer to iterate over 5083 * @flags: gfp flags to use for memory allocation 5084 * 5085 * This performs the initial preparations necessary to iterate 5086 * through the buffer. Memory is allocated, buffer recording 5087 * is disabled, and the iterator pointer is returned to the caller. 5088 * 5089 * Disabling buffer recording prevents the reading from being 5090 * corrupted. This is not a consuming read, so a producer is not 5091 * expected. 5092 * 5093 * After a sequence of ring_buffer_read_prepare calls, the user is 5094 * expected to make at least one call to ring_buffer_read_prepare_sync. 5095 * Afterwards, ring_buffer_read_start is invoked to get things going 5096 * for real. 5097 * 5098 * This overall must be paired with ring_buffer_read_finish. 5099 */ 5100 struct ring_buffer_iter * 5101 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5102 { 5103 struct ring_buffer_per_cpu *cpu_buffer; 5104 struct ring_buffer_iter *iter; 5105 5106 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5107 return NULL; 5108 5109 iter = kzalloc(sizeof(*iter), flags); 5110 if (!iter) 5111 return NULL; 5112 5113 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 5114 if (!iter->event) { 5115 kfree(iter); 5116 return NULL; 5117 } 5118 5119 cpu_buffer = buffer->buffers[cpu]; 5120 5121 iter->cpu_buffer = cpu_buffer; 5122 5123 atomic_inc(&cpu_buffer->resize_disabled); 5124 5125 return iter; 5126 } 5127 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5128 5129 /** 5130 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5131 * 5132 * All previously invoked ring_buffer_read_prepare calls to prepare 5133 * iterators will be synchronized. Afterwards, read_buffer_read_start 5134 * calls on those iterators are allowed. 5135 */ 5136 void 5137 ring_buffer_read_prepare_sync(void) 5138 { 5139 synchronize_rcu(); 5140 } 5141 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5142 5143 /** 5144 * ring_buffer_read_start - start a non consuming read of the buffer 5145 * @iter: The iterator returned by ring_buffer_read_prepare 5146 * 5147 * This finalizes the startup of an iteration through the buffer. 5148 * The iterator comes from a call to ring_buffer_read_prepare and 5149 * an intervening ring_buffer_read_prepare_sync must have been 5150 * performed. 5151 * 5152 * Must be paired with ring_buffer_read_finish. 5153 */ 5154 void 5155 ring_buffer_read_start(struct ring_buffer_iter *iter) 5156 { 5157 struct ring_buffer_per_cpu *cpu_buffer; 5158 unsigned long flags; 5159 5160 if (!iter) 5161 return; 5162 5163 cpu_buffer = iter->cpu_buffer; 5164 5165 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5166 arch_spin_lock(&cpu_buffer->lock); 5167 rb_iter_reset(iter); 5168 arch_spin_unlock(&cpu_buffer->lock); 5169 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5170 } 5171 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5172 5173 /** 5174 * ring_buffer_read_finish - finish reading the iterator of the buffer 5175 * @iter: The iterator retrieved by ring_buffer_start 5176 * 5177 * This re-enables the recording to the buffer, and frees the 5178 * iterator. 5179 */ 5180 void 5181 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5182 { 5183 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5184 unsigned long flags; 5185 5186 /* 5187 * Ring buffer is disabled from recording, here's a good place 5188 * to check the integrity of the ring buffer. 5189 * Must prevent readers from trying to read, as the check 5190 * clears the HEAD page and readers require it. 5191 */ 5192 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5193 rb_check_pages(cpu_buffer); 5194 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5195 5196 atomic_dec(&cpu_buffer->resize_disabled); 5197 kfree(iter->event); 5198 kfree(iter); 5199 } 5200 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5201 5202 /** 5203 * ring_buffer_iter_advance - advance the iterator to the next location 5204 * @iter: The ring buffer iterator 5205 * 5206 * Move the location of the iterator such that the next read will 5207 * be the next location of the iterator. 5208 */ 5209 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5210 { 5211 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5212 unsigned long flags; 5213 5214 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5215 5216 rb_advance_iter(iter); 5217 5218 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5219 } 5220 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5221 5222 /** 5223 * ring_buffer_size - return the size of the ring buffer (in bytes) 5224 * @buffer: The ring buffer. 5225 * @cpu: The CPU to get ring buffer size from. 5226 */ 5227 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5228 { 5229 /* 5230 * Earlier, this method returned 5231 * BUF_PAGE_SIZE * buffer->nr_pages 5232 * Since the nr_pages field is now removed, we have converted this to 5233 * return the per cpu buffer value. 5234 */ 5235 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5236 return 0; 5237 5238 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 5239 } 5240 EXPORT_SYMBOL_GPL(ring_buffer_size); 5241 5242 static void 5243 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5244 { 5245 rb_head_page_deactivate(cpu_buffer); 5246 5247 cpu_buffer->head_page 5248 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5249 local_set(&cpu_buffer->head_page->write, 0); 5250 local_set(&cpu_buffer->head_page->entries, 0); 5251 local_set(&cpu_buffer->head_page->page->commit, 0); 5252 5253 cpu_buffer->head_page->read = 0; 5254 5255 cpu_buffer->tail_page = cpu_buffer->head_page; 5256 cpu_buffer->commit_page = cpu_buffer->head_page; 5257 5258 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5259 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5260 local_set(&cpu_buffer->reader_page->write, 0); 5261 local_set(&cpu_buffer->reader_page->entries, 0); 5262 local_set(&cpu_buffer->reader_page->page->commit, 0); 5263 cpu_buffer->reader_page->read = 0; 5264 5265 local_set(&cpu_buffer->entries_bytes, 0); 5266 local_set(&cpu_buffer->overrun, 0); 5267 local_set(&cpu_buffer->commit_overrun, 0); 5268 local_set(&cpu_buffer->dropped_events, 0); 5269 local_set(&cpu_buffer->entries, 0); 5270 local_set(&cpu_buffer->committing, 0); 5271 local_set(&cpu_buffer->commits, 0); 5272 local_set(&cpu_buffer->pages_touched, 0); 5273 local_set(&cpu_buffer->pages_lost, 0); 5274 local_set(&cpu_buffer->pages_read, 0); 5275 cpu_buffer->last_pages_touch = 0; 5276 cpu_buffer->shortest_full = 0; 5277 cpu_buffer->read = 0; 5278 cpu_buffer->read_bytes = 0; 5279 5280 rb_time_set(&cpu_buffer->write_stamp, 0); 5281 rb_time_set(&cpu_buffer->before_stamp, 0); 5282 5283 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5284 5285 cpu_buffer->lost_events = 0; 5286 cpu_buffer->last_overrun = 0; 5287 5288 rb_head_page_activate(cpu_buffer); 5289 } 5290 5291 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5292 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5293 { 5294 unsigned long flags; 5295 5296 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5297 5298 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5299 goto out; 5300 5301 arch_spin_lock(&cpu_buffer->lock); 5302 5303 rb_reset_cpu(cpu_buffer); 5304 5305 arch_spin_unlock(&cpu_buffer->lock); 5306 5307 out: 5308 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5309 } 5310 5311 /** 5312 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5313 * @buffer: The ring buffer to reset a per cpu buffer of 5314 * @cpu: The CPU buffer to be reset 5315 */ 5316 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5317 { 5318 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5319 5320 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5321 return; 5322 5323 /* prevent another thread from changing buffer sizes */ 5324 mutex_lock(&buffer->mutex); 5325 5326 atomic_inc(&cpu_buffer->resize_disabled); 5327 atomic_inc(&cpu_buffer->record_disabled); 5328 5329 /* Make sure all commits have finished */ 5330 synchronize_rcu(); 5331 5332 reset_disabled_cpu_buffer(cpu_buffer); 5333 5334 atomic_dec(&cpu_buffer->record_disabled); 5335 atomic_dec(&cpu_buffer->resize_disabled); 5336 5337 mutex_unlock(&buffer->mutex); 5338 } 5339 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5340 5341 /** 5342 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5343 * @buffer: The ring buffer to reset a per cpu buffer of 5344 * @cpu: The CPU buffer to be reset 5345 */ 5346 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5347 { 5348 struct ring_buffer_per_cpu *cpu_buffer; 5349 int cpu; 5350 5351 /* prevent another thread from changing buffer sizes */ 5352 mutex_lock(&buffer->mutex); 5353 5354 for_each_online_buffer_cpu(buffer, cpu) { 5355 cpu_buffer = buffer->buffers[cpu]; 5356 5357 atomic_inc(&cpu_buffer->resize_disabled); 5358 atomic_inc(&cpu_buffer->record_disabled); 5359 } 5360 5361 /* Make sure all commits have finished */ 5362 synchronize_rcu(); 5363 5364 for_each_online_buffer_cpu(buffer, cpu) { 5365 cpu_buffer = buffer->buffers[cpu]; 5366 5367 reset_disabled_cpu_buffer(cpu_buffer); 5368 5369 atomic_dec(&cpu_buffer->record_disabled); 5370 atomic_dec(&cpu_buffer->resize_disabled); 5371 } 5372 5373 mutex_unlock(&buffer->mutex); 5374 } 5375 5376 /** 5377 * ring_buffer_reset - reset a ring buffer 5378 * @buffer: The ring buffer to reset all cpu buffers 5379 */ 5380 void ring_buffer_reset(struct trace_buffer *buffer) 5381 { 5382 struct ring_buffer_per_cpu *cpu_buffer; 5383 int cpu; 5384 5385 /* prevent another thread from changing buffer sizes */ 5386 mutex_lock(&buffer->mutex); 5387 5388 for_each_buffer_cpu(buffer, cpu) { 5389 cpu_buffer = buffer->buffers[cpu]; 5390 5391 atomic_inc(&cpu_buffer->resize_disabled); 5392 atomic_inc(&cpu_buffer->record_disabled); 5393 } 5394 5395 /* Make sure all commits have finished */ 5396 synchronize_rcu(); 5397 5398 for_each_buffer_cpu(buffer, cpu) { 5399 cpu_buffer = buffer->buffers[cpu]; 5400 5401 reset_disabled_cpu_buffer(cpu_buffer); 5402 5403 atomic_dec(&cpu_buffer->record_disabled); 5404 atomic_dec(&cpu_buffer->resize_disabled); 5405 } 5406 5407 mutex_unlock(&buffer->mutex); 5408 } 5409 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5410 5411 /** 5412 * ring_buffer_empty - is the ring buffer empty? 5413 * @buffer: The ring buffer to test 5414 */ 5415 bool ring_buffer_empty(struct trace_buffer *buffer) 5416 { 5417 struct ring_buffer_per_cpu *cpu_buffer; 5418 unsigned long flags; 5419 bool dolock; 5420 int cpu; 5421 int ret; 5422 5423 /* yes this is racy, but if you don't like the race, lock the buffer */ 5424 for_each_buffer_cpu(buffer, cpu) { 5425 cpu_buffer = buffer->buffers[cpu]; 5426 local_irq_save(flags); 5427 dolock = rb_reader_lock(cpu_buffer); 5428 ret = rb_per_cpu_empty(cpu_buffer); 5429 rb_reader_unlock(cpu_buffer, dolock); 5430 local_irq_restore(flags); 5431 5432 if (!ret) 5433 return false; 5434 } 5435 5436 return true; 5437 } 5438 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5439 5440 /** 5441 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5442 * @buffer: The ring buffer 5443 * @cpu: The CPU buffer to test 5444 */ 5445 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5446 { 5447 struct ring_buffer_per_cpu *cpu_buffer; 5448 unsigned long flags; 5449 bool dolock; 5450 int ret; 5451 5452 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5453 return true; 5454 5455 cpu_buffer = buffer->buffers[cpu]; 5456 local_irq_save(flags); 5457 dolock = rb_reader_lock(cpu_buffer); 5458 ret = rb_per_cpu_empty(cpu_buffer); 5459 rb_reader_unlock(cpu_buffer, dolock); 5460 local_irq_restore(flags); 5461 5462 return ret; 5463 } 5464 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5465 5466 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5467 /** 5468 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5469 * @buffer_a: One buffer to swap with 5470 * @buffer_b: The other buffer to swap with 5471 * @cpu: the CPU of the buffers to swap 5472 * 5473 * This function is useful for tracers that want to take a "snapshot" 5474 * of a CPU buffer and has another back up buffer lying around. 5475 * it is expected that the tracer handles the cpu buffer not being 5476 * used at the moment. 5477 */ 5478 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5479 struct trace_buffer *buffer_b, int cpu) 5480 { 5481 struct ring_buffer_per_cpu *cpu_buffer_a; 5482 struct ring_buffer_per_cpu *cpu_buffer_b; 5483 int ret = -EINVAL; 5484 5485 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5486 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5487 goto out; 5488 5489 cpu_buffer_a = buffer_a->buffers[cpu]; 5490 cpu_buffer_b = buffer_b->buffers[cpu]; 5491 5492 /* At least make sure the two buffers are somewhat the same */ 5493 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5494 goto out; 5495 5496 ret = -EAGAIN; 5497 5498 if (atomic_read(&buffer_a->record_disabled)) 5499 goto out; 5500 5501 if (atomic_read(&buffer_b->record_disabled)) 5502 goto out; 5503 5504 if (atomic_read(&cpu_buffer_a->record_disabled)) 5505 goto out; 5506 5507 if (atomic_read(&cpu_buffer_b->record_disabled)) 5508 goto out; 5509 5510 /* 5511 * We can't do a synchronize_rcu here because this 5512 * function can be called in atomic context. 5513 * Normally this will be called from the same CPU as cpu. 5514 * If not it's up to the caller to protect this. 5515 */ 5516 atomic_inc(&cpu_buffer_a->record_disabled); 5517 atomic_inc(&cpu_buffer_b->record_disabled); 5518 5519 ret = -EBUSY; 5520 if (local_read(&cpu_buffer_a->committing)) 5521 goto out_dec; 5522 if (local_read(&cpu_buffer_b->committing)) 5523 goto out_dec; 5524 5525 buffer_a->buffers[cpu] = cpu_buffer_b; 5526 buffer_b->buffers[cpu] = cpu_buffer_a; 5527 5528 cpu_buffer_b->buffer = buffer_a; 5529 cpu_buffer_a->buffer = buffer_b; 5530 5531 ret = 0; 5532 5533 out_dec: 5534 atomic_dec(&cpu_buffer_a->record_disabled); 5535 atomic_dec(&cpu_buffer_b->record_disabled); 5536 out: 5537 return ret; 5538 } 5539 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5540 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5541 5542 /** 5543 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5544 * @buffer: the buffer to allocate for. 5545 * @cpu: the cpu buffer to allocate. 5546 * 5547 * This function is used in conjunction with ring_buffer_read_page. 5548 * When reading a full page from the ring buffer, these functions 5549 * can be used to speed up the process. The calling function should 5550 * allocate a few pages first with this function. Then when it 5551 * needs to get pages from the ring buffer, it passes the result 5552 * of this function into ring_buffer_read_page, which will swap 5553 * the page that was allocated, with the read page of the buffer. 5554 * 5555 * Returns: 5556 * The page allocated, or ERR_PTR 5557 */ 5558 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5559 { 5560 struct ring_buffer_per_cpu *cpu_buffer; 5561 struct buffer_data_page *bpage = NULL; 5562 unsigned long flags; 5563 struct page *page; 5564 5565 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5566 return ERR_PTR(-ENODEV); 5567 5568 cpu_buffer = buffer->buffers[cpu]; 5569 local_irq_save(flags); 5570 arch_spin_lock(&cpu_buffer->lock); 5571 5572 if (cpu_buffer->free_page) { 5573 bpage = cpu_buffer->free_page; 5574 cpu_buffer->free_page = NULL; 5575 } 5576 5577 arch_spin_unlock(&cpu_buffer->lock); 5578 local_irq_restore(flags); 5579 5580 if (bpage) 5581 goto out; 5582 5583 page = alloc_pages_node(cpu_to_node(cpu), 5584 GFP_KERNEL | __GFP_NORETRY, 0); 5585 if (!page) 5586 return ERR_PTR(-ENOMEM); 5587 5588 bpage = page_address(page); 5589 5590 out: 5591 rb_init_page(bpage); 5592 5593 return bpage; 5594 } 5595 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5596 5597 /** 5598 * ring_buffer_free_read_page - free an allocated read page 5599 * @buffer: the buffer the page was allocate for 5600 * @cpu: the cpu buffer the page came from 5601 * @data: the page to free 5602 * 5603 * Free a page allocated from ring_buffer_alloc_read_page. 5604 */ 5605 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5606 { 5607 struct ring_buffer_per_cpu *cpu_buffer; 5608 struct buffer_data_page *bpage = data; 5609 struct page *page = virt_to_page(bpage); 5610 unsigned long flags; 5611 5612 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5613 return; 5614 5615 cpu_buffer = buffer->buffers[cpu]; 5616 5617 /* If the page is still in use someplace else, we can't reuse it */ 5618 if (page_ref_count(page) > 1) 5619 goto out; 5620 5621 local_irq_save(flags); 5622 arch_spin_lock(&cpu_buffer->lock); 5623 5624 if (!cpu_buffer->free_page) { 5625 cpu_buffer->free_page = bpage; 5626 bpage = NULL; 5627 } 5628 5629 arch_spin_unlock(&cpu_buffer->lock); 5630 local_irq_restore(flags); 5631 5632 out: 5633 free_page((unsigned long)bpage); 5634 } 5635 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5636 5637 /** 5638 * ring_buffer_read_page - extract a page from the ring buffer 5639 * @buffer: buffer to extract from 5640 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5641 * @len: amount to extract 5642 * @cpu: the cpu of the buffer to extract 5643 * @full: should the extraction only happen when the page is full. 5644 * 5645 * This function will pull out a page from the ring buffer and consume it. 5646 * @data_page must be the address of the variable that was returned 5647 * from ring_buffer_alloc_read_page. This is because the page might be used 5648 * to swap with a page in the ring buffer. 5649 * 5650 * for example: 5651 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5652 * if (IS_ERR(rpage)) 5653 * return PTR_ERR(rpage); 5654 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5655 * if (ret >= 0) 5656 * process_page(rpage, ret); 5657 * 5658 * When @full is set, the function will not return true unless 5659 * the writer is off the reader page. 5660 * 5661 * Note: it is up to the calling functions to handle sleeps and wakeups. 5662 * The ring buffer can be used anywhere in the kernel and can not 5663 * blindly call wake_up. The layer that uses the ring buffer must be 5664 * responsible for that. 5665 * 5666 * Returns: 5667 * >=0 if data has been transferred, returns the offset of consumed data. 5668 * <0 if no data has been transferred. 5669 */ 5670 int ring_buffer_read_page(struct trace_buffer *buffer, 5671 void **data_page, size_t len, int cpu, int full) 5672 { 5673 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5674 struct ring_buffer_event *event; 5675 struct buffer_data_page *bpage; 5676 struct buffer_page *reader; 5677 unsigned long missed_events; 5678 unsigned long flags; 5679 unsigned int commit; 5680 unsigned int read; 5681 u64 save_timestamp; 5682 int ret = -1; 5683 5684 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5685 goto out; 5686 5687 /* 5688 * If len is not big enough to hold the page header, then 5689 * we can not copy anything. 5690 */ 5691 if (len <= BUF_PAGE_HDR_SIZE) 5692 goto out; 5693 5694 len -= BUF_PAGE_HDR_SIZE; 5695 5696 if (!data_page) 5697 goto out; 5698 5699 bpage = *data_page; 5700 if (!bpage) 5701 goto out; 5702 5703 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5704 5705 reader = rb_get_reader_page(cpu_buffer); 5706 if (!reader) 5707 goto out_unlock; 5708 5709 event = rb_reader_event(cpu_buffer); 5710 5711 read = reader->read; 5712 commit = rb_page_commit(reader); 5713 5714 /* Check if any events were dropped */ 5715 missed_events = cpu_buffer->lost_events; 5716 5717 /* 5718 * If this page has been partially read or 5719 * if len is not big enough to read the rest of the page or 5720 * a writer is still on the page, then 5721 * we must copy the data from the page to the buffer. 5722 * Otherwise, we can simply swap the page with the one passed in. 5723 */ 5724 if (read || (len < (commit - read)) || 5725 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5726 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5727 unsigned int rpos = read; 5728 unsigned int pos = 0; 5729 unsigned int size; 5730 5731 /* 5732 * If a full page is expected, this can still be returned 5733 * if there's been a previous partial read and the 5734 * rest of the page can be read and the commit page is off 5735 * the reader page. 5736 */ 5737 if (full && 5738 (!read || (len < (commit - read)) || 5739 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5740 goto out_unlock; 5741 5742 if (len > (commit - read)) 5743 len = (commit - read); 5744 5745 /* Always keep the time extend and data together */ 5746 size = rb_event_ts_length(event); 5747 5748 if (len < size) 5749 goto out_unlock; 5750 5751 /* save the current timestamp, since the user will need it */ 5752 save_timestamp = cpu_buffer->read_stamp; 5753 5754 /* Need to copy one event at a time */ 5755 do { 5756 /* We need the size of one event, because 5757 * rb_advance_reader only advances by one event, 5758 * whereas rb_event_ts_length may include the size of 5759 * one or two events. 5760 * We have already ensured there's enough space if this 5761 * is a time extend. */ 5762 size = rb_event_length(event); 5763 memcpy(bpage->data + pos, rpage->data + rpos, size); 5764 5765 len -= size; 5766 5767 rb_advance_reader(cpu_buffer); 5768 rpos = reader->read; 5769 pos += size; 5770 5771 if (rpos >= commit) 5772 break; 5773 5774 event = rb_reader_event(cpu_buffer); 5775 /* Always keep the time extend and data together */ 5776 size = rb_event_ts_length(event); 5777 } while (len >= size); 5778 5779 /* update bpage */ 5780 local_set(&bpage->commit, pos); 5781 bpage->time_stamp = save_timestamp; 5782 5783 /* we copied everything to the beginning */ 5784 read = 0; 5785 } else { 5786 /* update the entry counter */ 5787 cpu_buffer->read += rb_page_entries(reader); 5788 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5789 5790 /* swap the pages */ 5791 rb_init_page(bpage); 5792 bpage = reader->page; 5793 reader->page = *data_page; 5794 local_set(&reader->write, 0); 5795 local_set(&reader->entries, 0); 5796 reader->read = 0; 5797 *data_page = bpage; 5798 5799 /* 5800 * Use the real_end for the data size, 5801 * This gives us a chance to store the lost events 5802 * on the page. 5803 */ 5804 if (reader->real_end) 5805 local_set(&bpage->commit, reader->real_end); 5806 } 5807 ret = read; 5808 5809 cpu_buffer->lost_events = 0; 5810 5811 commit = local_read(&bpage->commit); 5812 /* 5813 * Set a flag in the commit field if we lost events 5814 */ 5815 if (missed_events) { 5816 /* If there is room at the end of the page to save the 5817 * missed events, then record it there. 5818 */ 5819 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5820 memcpy(&bpage->data[commit], &missed_events, 5821 sizeof(missed_events)); 5822 local_add(RB_MISSED_STORED, &bpage->commit); 5823 commit += sizeof(missed_events); 5824 } 5825 local_add(RB_MISSED_EVENTS, &bpage->commit); 5826 } 5827 5828 /* 5829 * This page may be off to user land. Zero it out here. 5830 */ 5831 if (commit < BUF_PAGE_SIZE) 5832 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5833 5834 out_unlock: 5835 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5836 5837 out: 5838 return ret; 5839 } 5840 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5841 5842 /* 5843 * We only allocate new buffers, never free them if the CPU goes down. 5844 * If we were to free the buffer, then the user would lose any trace that was in 5845 * the buffer. 5846 */ 5847 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5848 { 5849 struct trace_buffer *buffer; 5850 long nr_pages_same; 5851 int cpu_i; 5852 unsigned long nr_pages; 5853 5854 buffer = container_of(node, struct trace_buffer, node); 5855 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5856 return 0; 5857 5858 nr_pages = 0; 5859 nr_pages_same = 1; 5860 /* check if all cpu sizes are same */ 5861 for_each_buffer_cpu(buffer, cpu_i) { 5862 /* fill in the size from first enabled cpu */ 5863 if (nr_pages == 0) 5864 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5865 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5866 nr_pages_same = 0; 5867 break; 5868 } 5869 } 5870 /* allocate minimum pages, user can later expand it */ 5871 if (!nr_pages_same) 5872 nr_pages = 2; 5873 buffer->buffers[cpu] = 5874 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5875 if (!buffer->buffers[cpu]) { 5876 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5877 cpu); 5878 return -ENOMEM; 5879 } 5880 smp_wmb(); 5881 cpumask_set_cpu(cpu, buffer->cpumask); 5882 return 0; 5883 } 5884 5885 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5886 /* 5887 * This is a basic integrity check of the ring buffer. 5888 * Late in the boot cycle this test will run when configured in. 5889 * It will kick off a thread per CPU that will go into a loop 5890 * writing to the per cpu ring buffer various sizes of data. 5891 * Some of the data will be large items, some small. 5892 * 5893 * Another thread is created that goes into a spin, sending out 5894 * IPIs to the other CPUs to also write into the ring buffer. 5895 * this is to test the nesting ability of the buffer. 5896 * 5897 * Basic stats are recorded and reported. If something in the 5898 * ring buffer should happen that's not expected, a big warning 5899 * is displayed and all ring buffers are disabled. 5900 */ 5901 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5902 5903 struct rb_test_data { 5904 struct trace_buffer *buffer; 5905 unsigned long events; 5906 unsigned long bytes_written; 5907 unsigned long bytes_alloc; 5908 unsigned long bytes_dropped; 5909 unsigned long events_nested; 5910 unsigned long bytes_written_nested; 5911 unsigned long bytes_alloc_nested; 5912 unsigned long bytes_dropped_nested; 5913 int min_size_nested; 5914 int max_size_nested; 5915 int max_size; 5916 int min_size; 5917 int cpu; 5918 int cnt; 5919 }; 5920 5921 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5922 5923 /* 1 meg per cpu */ 5924 #define RB_TEST_BUFFER_SIZE 1048576 5925 5926 static char rb_string[] __initdata = 5927 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5928 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5929 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5930 5931 static bool rb_test_started __initdata; 5932 5933 struct rb_item { 5934 int size; 5935 char str[]; 5936 }; 5937 5938 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5939 { 5940 struct ring_buffer_event *event; 5941 struct rb_item *item; 5942 bool started; 5943 int event_len; 5944 int size; 5945 int len; 5946 int cnt; 5947 5948 /* Have nested writes different that what is written */ 5949 cnt = data->cnt + (nested ? 27 : 0); 5950 5951 /* Multiply cnt by ~e, to make some unique increment */ 5952 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5953 5954 len = size + sizeof(struct rb_item); 5955 5956 started = rb_test_started; 5957 /* read rb_test_started before checking buffer enabled */ 5958 smp_rmb(); 5959 5960 event = ring_buffer_lock_reserve(data->buffer, len); 5961 if (!event) { 5962 /* Ignore dropped events before test starts. */ 5963 if (started) { 5964 if (nested) 5965 data->bytes_dropped += len; 5966 else 5967 data->bytes_dropped_nested += len; 5968 } 5969 return len; 5970 } 5971 5972 event_len = ring_buffer_event_length(event); 5973 5974 if (RB_WARN_ON(data->buffer, event_len < len)) 5975 goto out; 5976 5977 item = ring_buffer_event_data(event); 5978 item->size = size; 5979 memcpy(item->str, rb_string, size); 5980 5981 if (nested) { 5982 data->bytes_alloc_nested += event_len; 5983 data->bytes_written_nested += len; 5984 data->events_nested++; 5985 if (!data->min_size_nested || len < data->min_size_nested) 5986 data->min_size_nested = len; 5987 if (len > data->max_size_nested) 5988 data->max_size_nested = len; 5989 } else { 5990 data->bytes_alloc += event_len; 5991 data->bytes_written += len; 5992 data->events++; 5993 if (!data->min_size || len < data->min_size) 5994 data->max_size = len; 5995 if (len > data->max_size) 5996 data->max_size = len; 5997 } 5998 5999 out: 6000 ring_buffer_unlock_commit(data->buffer); 6001 6002 return 0; 6003 } 6004 6005 static __init int rb_test(void *arg) 6006 { 6007 struct rb_test_data *data = arg; 6008 6009 while (!kthread_should_stop()) { 6010 rb_write_something(data, false); 6011 data->cnt++; 6012 6013 set_current_state(TASK_INTERRUPTIBLE); 6014 /* Now sleep between a min of 100-300us and a max of 1ms */ 6015 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6016 } 6017 6018 return 0; 6019 } 6020 6021 static __init void rb_ipi(void *ignore) 6022 { 6023 struct rb_test_data *data; 6024 int cpu = smp_processor_id(); 6025 6026 data = &rb_data[cpu]; 6027 rb_write_something(data, true); 6028 } 6029 6030 static __init int rb_hammer_test(void *arg) 6031 { 6032 while (!kthread_should_stop()) { 6033 6034 /* Send an IPI to all cpus to write data! */ 6035 smp_call_function(rb_ipi, NULL, 1); 6036 /* No sleep, but for non preempt, let others run */ 6037 schedule(); 6038 } 6039 6040 return 0; 6041 } 6042 6043 static __init int test_ringbuffer(void) 6044 { 6045 struct task_struct *rb_hammer; 6046 struct trace_buffer *buffer; 6047 int cpu; 6048 int ret = 0; 6049 6050 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6051 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6052 return 0; 6053 } 6054 6055 pr_info("Running ring buffer tests...\n"); 6056 6057 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6058 if (WARN_ON(!buffer)) 6059 return 0; 6060 6061 /* Disable buffer so that threads can't write to it yet */ 6062 ring_buffer_record_off(buffer); 6063 6064 for_each_online_cpu(cpu) { 6065 rb_data[cpu].buffer = buffer; 6066 rb_data[cpu].cpu = cpu; 6067 rb_data[cpu].cnt = cpu; 6068 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6069 cpu, "rbtester/%u"); 6070 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6071 pr_cont("FAILED\n"); 6072 ret = PTR_ERR(rb_threads[cpu]); 6073 goto out_free; 6074 } 6075 } 6076 6077 /* Now create the rb hammer! */ 6078 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6079 if (WARN_ON(IS_ERR(rb_hammer))) { 6080 pr_cont("FAILED\n"); 6081 ret = PTR_ERR(rb_hammer); 6082 goto out_free; 6083 } 6084 6085 ring_buffer_record_on(buffer); 6086 /* 6087 * Show buffer is enabled before setting rb_test_started. 6088 * Yes there's a small race window where events could be 6089 * dropped and the thread wont catch it. But when a ring 6090 * buffer gets enabled, there will always be some kind of 6091 * delay before other CPUs see it. Thus, we don't care about 6092 * those dropped events. We care about events dropped after 6093 * the threads see that the buffer is active. 6094 */ 6095 smp_wmb(); 6096 rb_test_started = true; 6097 6098 set_current_state(TASK_INTERRUPTIBLE); 6099 /* Just run for 10 seconds */; 6100 schedule_timeout(10 * HZ); 6101 6102 kthread_stop(rb_hammer); 6103 6104 out_free: 6105 for_each_online_cpu(cpu) { 6106 if (!rb_threads[cpu]) 6107 break; 6108 kthread_stop(rb_threads[cpu]); 6109 } 6110 if (ret) { 6111 ring_buffer_free(buffer); 6112 return ret; 6113 } 6114 6115 /* Report! */ 6116 pr_info("finished\n"); 6117 for_each_online_cpu(cpu) { 6118 struct ring_buffer_event *event; 6119 struct rb_test_data *data = &rb_data[cpu]; 6120 struct rb_item *item; 6121 unsigned long total_events; 6122 unsigned long total_dropped; 6123 unsigned long total_written; 6124 unsigned long total_alloc; 6125 unsigned long total_read = 0; 6126 unsigned long total_size = 0; 6127 unsigned long total_len = 0; 6128 unsigned long total_lost = 0; 6129 unsigned long lost; 6130 int big_event_size; 6131 int small_event_size; 6132 6133 ret = -1; 6134 6135 total_events = data->events + data->events_nested; 6136 total_written = data->bytes_written + data->bytes_written_nested; 6137 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6138 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6139 6140 big_event_size = data->max_size + data->max_size_nested; 6141 small_event_size = data->min_size + data->min_size_nested; 6142 6143 pr_info("CPU %d:\n", cpu); 6144 pr_info(" events: %ld\n", total_events); 6145 pr_info(" dropped bytes: %ld\n", total_dropped); 6146 pr_info(" alloced bytes: %ld\n", total_alloc); 6147 pr_info(" written bytes: %ld\n", total_written); 6148 pr_info(" biggest event: %d\n", big_event_size); 6149 pr_info(" smallest event: %d\n", small_event_size); 6150 6151 if (RB_WARN_ON(buffer, total_dropped)) 6152 break; 6153 6154 ret = 0; 6155 6156 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6157 total_lost += lost; 6158 item = ring_buffer_event_data(event); 6159 total_len += ring_buffer_event_length(event); 6160 total_size += item->size + sizeof(struct rb_item); 6161 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6162 pr_info("FAILED!\n"); 6163 pr_info("buffer had: %.*s\n", item->size, item->str); 6164 pr_info("expected: %.*s\n", item->size, rb_string); 6165 RB_WARN_ON(buffer, 1); 6166 ret = -1; 6167 break; 6168 } 6169 total_read++; 6170 } 6171 if (ret) 6172 break; 6173 6174 ret = -1; 6175 6176 pr_info(" read events: %ld\n", total_read); 6177 pr_info(" lost events: %ld\n", total_lost); 6178 pr_info(" total events: %ld\n", total_lost + total_read); 6179 pr_info(" recorded len bytes: %ld\n", total_len); 6180 pr_info(" recorded size bytes: %ld\n", total_size); 6181 if (total_lost) { 6182 pr_info(" With dropped events, record len and size may not match\n" 6183 " alloced and written from above\n"); 6184 } else { 6185 if (RB_WARN_ON(buffer, total_len != total_alloc || 6186 total_size != total_written)) 6187 break; 6188 } 6189 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6190 break; 6191 6192 ret = 0; 6193 } 6194 if (!ret) 6195 pr_info("Ring buffer PASSED!\n"); 6196 6197 ring_buffer_free(buffer); 6198 return 0; 6199 } 6200 6201 late_initcall(test_ringbuffer); 6202 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6203