xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 7dd65feb)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include "trace.h"
24 
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30 	int ret;
31 
32 	ret = trace_seq_printf(s, "# compressed entry header\n");
33 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36 	ret = trace_seq_printf(s, "\n");
37 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38 			       RINGBUF_TYPE_PADDING);
39 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 			       RINGBUF_TYPE_TIME_EXTEND);
41 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43 
44 	return ret;
45 }
46 
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114 
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132 
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143 
144 enum {
145 	RB_BUFFERS_ON_BIT	= 0,
146 	RB_BUFFERS_DISABLED_BIT	= 1,
147 };
148 
149 enum {
150 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
151 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153 
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155 
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157 
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169 
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183 
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194 
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200 	return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203 
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT		4U
206 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
208 
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211 
212 enum {
213 	RB_LEN_TIME_EXTEND = 8,
214 	RB_LEN_TIME_STAMP = 16,
215 };
216 
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
220 }
221 
222 static void rb_event_set_padding(struct ring_buffer_event *event)
223 {
224 	/* padding has a NULL time_delta */
225 	event->type_len = RINGBUF_TYPE_PADDING;
226 	event->time_delta = 0;
227 }
228 
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len)
235 		length = event->type_len * RB_ALIGNMENT;
236 	else
237 		length = event->array[0];
238 	return length + RB_EVNT_HDR_SIZE;
239 }
240 
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245 	switch (event->type_len) {
246 	case RINGBUF_TYPE_PADDING:
247 		if (rb_null_event(event))
248 			/* undefined */
249 			return -1;
250 		return  event->array[0] + RB_EVNT_HDR_SIZE;
251 
252 	case RINGBUF_TYPE_TIME_EXTEND:
253 		return RB_LEN_TIME_EXTEND;
254 
255 	case RINGBUF_TYPE_TIME_STAMP:
256 		return RB_LEN_TIME_STAMP;
257 
258 	case RINGBUF_TYPE_DATA:
259 		return rb_event_data_length(event);
260 	default:
261 		BUG();
262 	}
263 	/* not hit */
264 	return 0;
265 }
266 
267 /**
268  * ring_buffer_event_length - return the length of the event
269  * @event: the event to get the length of
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length = rb_event_length(event);
274 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275 		return length;
276 	length -= RB_EVNT_HDR_SIZE;
277 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278                 length -= sizeof(event->array[0]);
279 	return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282 
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288 	/* If length is in len field, then array[0] has the data */
289 	if (event->type_len)
290 		return (void *)&event->array[0];
291 	/* Otherwise length is in array[0] and array[1] has the data */
292 	return (void *)&event->array[1];
293 }
294 
295 /**
296  * ring_buffer_event_data - return the data of the event
297  * @event: the event to get the data from
298  */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301 	return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304 
305 #define for_each_buffer_cpu(buffer, cpu)		\
306 	for_each_cpu(cpu, buffer->cpumask)
307 
308 #define TS_SHIFT	27
309 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST	(~TS_MASK)
311 
312 struct buffer_data_page {
313 	u64		 time_stamp;	/* page time stamp */
314 	local_t		 commit;	/* write committed index */
315 	unsigned char	 data[];	/* data of buffer page */
316 };
317 
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327 	struct list_head list;		/* list of buffer pages */
328 	local_t		 write;		/* index for next write */
329 	unsigned	 read;		/* index for next read */
330 	local_t		 entries;	/* entries on this page */
331 	struct buffer_data_page *page;	/* Actual data page */
332 };
333 
334 /*
335  * The buffer page counters, write and entries, must be reset
336  * atomically when crossing page boundaries. To synchronize this
337  * update, two counters are inserted into the number. One is
338  * the actual counter for the write position or count on the page.
339  *
340  * The other is a counter of updaters. Before an update happens
341  * the update partition of the counter is incremented. This will
342  * allow the updater to update the counter atomically.
343  *
344  * The counter is 20 bits, and the state data is 12.
345  */
346 #define RB_WRITE_MASK		0xfffff
347 #define RB_WRITE_INTCNT		(1 << 20)
348 
349 static void rb_init_page(struct buffer_data_page *bpage)
350 {
351 	local_set(&bpage->commit, 0);
352 }
353 
354 /**
355  * ring_buffer_page_len - the size of data on the page.
356  * @page: The page to read
357  *
358  * Returns the amount of data on the page, including buffer page header.
359  */
360 size_t ring_buffer_page_len(void *page)
361 {
362 	return local_read(&((struct buffer_data_page *)page)->commit)
363 		+ BUF_PAGE_HDR_SIZE;
364 }
365 
366 /*
367  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368  * this issue out.
369  */
370 static void free_buffer_page(struct buffer_page *bpage)
371 {
372 	free_page((unsigned long)bpage->page);
373 	kfree(bpage);
374 }
375 
376 /*
377  * We need to fit the time_stamp delta into 27 bits.
378  */
379 static inline int test_time_stamp(u64 delta)
380 {
381 	if (delta & TS_DELTA_TEST)
382 		return 1;
383 	return 0;
384 }
385 
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
387 
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390 
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393 
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396 	struct buffer_data_page field;
397 	int ret;
398 
399 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
401 			       (unsigned int)sizeof(field.time_stamp),
402 			       (unsigned int)is_signed_type(u64));
403 
404 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
405 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 			       (unsigned int)offsetof(typeof(field), commit),
407 			       (unsigned int)sizeof(field.commit),
408 			       (unsigned int)is_signed_type(long));
409 
410 	ret = trace_seq_printf(s, "\tfield: char data;\t"
411 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 			       (unsigned int)offsetof(typeof(field), data),
413 			       (unsigned int)BUF_PAGE_SIZE,
414 			       (unsigned int)is_signed_type(char));
415 
416 	return ret;
417 }
418 
419 /*
420  * head_page == tail_page && head == tail then buffer is empty.
421  */
422 struct ring_buffer_per_cpu {
423 	int				cpu;
424 	struct ring_buffer		*buffer;
425 	spinlock_t			reader_lock;	/* serialize readers */
426 	arch_spinlock_t			lock;
427 	struct lock_class_key		lock_key;
428 	struct list_head		*pages;
429 	struct buffer_page		*head_page;	/* read from head */
430 	struct buffer_page		*tail_page;	/* write to tail */
431 	struct buffer_page		*commit_page;	/* committed pages */
432 	struct buffer_page		*reader_page;
433 	local_t				commit_overrun;
434 	local_t				overrun;
435 	local_t				entries;
436 	local_t				committing;
437 	local_t				commits;
438 	unsigned long			read;
439 	u64				write_stamp;
440 	u64				read_stamp;
441 	atomic_t			record_disabled;
442 };
443 
444 struct ring_buffer {
445 	unsigned			pages;
446 	unsigned			flags;
447 	int				cpus;
448 	atomic_t			record_disabled;
449 	cpumask_var_t			cpumask;
450 
451 	struct lock_class_key		*reader_lock_key;
452 
453 	struct mutex			mutex;
454 
455 	struct ring_buffer_per_cpu	**buffers;
456 
457 #ifdef CONFIG_HOTPLUG_CPU
458 	struct notifier_block		cpu_notify;
459 #endif
460 	u64				(*clock)(void);
461 };
462 
463 struct ring_buffer_iter {
464 	struct ring_buffer_per_cpu	*cpu_buffer;
465 	unsigned long			head;
466 	struct buffer_page		*head_page;
467 	u64				read_stamp;
468 };
469 
470 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
471 #define RB_WARN_ON(b, cond)						\
472 	({								\
473 		int _____ret = unlikely(cond);				\
474 		if (_____ret) {						\
475 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
476 				struct ring_buffer_per_cpu *__b =	\
477 					(void *)b;			\
478 				atomic_inc(&__b->buffer->record_disabled); \
479 			} else						\
480 				atomic_inc(&b->record_disabled);	\
481 			WARN_ON(1);					\
482 		}							\
483 		_____ret;						\
484 	})
485 
486 /* Up this if you want to test the TIME_EXTENTS and normalization */
487 #define DEBUG_SHIFT 0
488 
489 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
490 {
491 	/* shift to debug/test normalization and TIME_EXTENTS */
492 	return buffer->clock() << DEBUG_SHIFT;
493 }
494 
495 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
496 {
497 	u64 time;
498 
499 	preempt_disable_notrace();
500 	time = rb_time_stamp(buffer);
501 	preempt_enable_no_resched_notrace();
502 
503 	return time;
504 }
505 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
506 
507 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
508 				      int cpu, u64 *ts)
509 {
510 	/* Just stupid testing the normalize function and deltas */
511 	*ts >>= DEBUG_SHIFT;
512 }
513 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
514 
515 /*
516  * Making the ring buffer lockless makes things tricky.
517  * Although writes only happen on the CPU that they are on,
518  * and they only need to worry about interrupts. Reads can
519  * happen on any CPU.
520  *
521  * The reader page is always off the ring buffer, but when the
522  * reader finishes with a page, it needs to swap its page with
523  * a new one from the buffer. The reader needs to take from
524  * the head (writes go to the tail). But if a writer is in overwrite
525  * mode and wraps, it must push the head page forward.
526  *
527  * Here lies the problem.
528  *
529  * The reader must be careful to replace only the head page, and
530  * not another one. As described at the top of the file in the
531  * ASCII art, the reader sets its old page to point to the next
532  * page after head. It then sets the page after head to point to
533  * the old reader page. But if the writer moves the head page
534  * during this operation, the reader could end up with the tail.
535  *
536  * We use cmpxchg to help prevent this race. We also do something
537  * special with the page before head. We set the LSB to 1.
538  *
539  * When the writer must push the page forward, it will clear the
540  * bit that points to the head page, move the head, and then set
541  * the bit that points to the new head page.
542  *
543  * We also don't want an interrupt coming in and moving the head
544  * page on another writer. Thus we use the second LSB to catch
545  * that too. Thus:
546  *
547  * head->list->prev->next        bit 1          bit 0
548  *                              -------        -------
549  * Normal page                     0              0
550  * Points to head page             0              1
551  * New head page                   1              0
552  *
553  * Note we can not trust the prev pointer of the head page, because:
554  *
555  * +----+       +-----+        +-----+
556  * |    |------>|  T  |---X--->|  N  |
557  * |    |<------|     |        |     |
558  * +----+       +-----+        +-----+
559  *   ^                           ^ |
560  *   |          +-----+          | |
561  *   +----------|  R  |----------+ |
562  *              |     |<-----------+
563  *              +-----+
564  *
565  * Key:  ---X-->  HEAD flag set in pointer
566  *         T      Tail page
567  *         R      Reader page
568  *         N      Next page
569  *
570  * (see __rb_reserve_next() to see where this happens)
571  *
572  *  What the above shows is that the reader just swapped out
573  *  the reader page with a page in the buffer, but before it
574  *  could make the new header point back to the new page added
575  *  it was preempted by a writer. The writer moved forward onto
576  *  the new page added by the reader and is about to move forward
577  *  again.
578  *
579  *  You can see, it is legitimate for the previous pointer of
580  *  the head (or any page) not to point back to itself. But only
581  *  temporarially.
582  */
583 
584 #define RB_PAGE_NORMAL		0UL
585 #define RB_PAGE_HEAD		1UL
586 #define RB_PAGE_UPDATE		2UL
587 
588 
589 #define RB_FLAG_MASK		3UL
590 
591 /* PAGE_MOVED is not part of the mask */
592 #define RB_PAGE_MOVED		4UL
593 
594 /*
595  * rb_list_head - remove any bit
596  */
597 static struct list_head *rb_list_head(struct list_head *list)
598 {
599 	unsigned long val = (unsigned long)list;
600 
601 	return (struct list_head *)(val & ~RB_FLAG_MASK);
602 }
603 
604 /*
605  * rb_is_head_page - test if the given page is the head page
606  *
607  * Because the reader may move the head_page pointer, we can
608  * not trust what the head page is (it may be pointing to
609  * the reader page). But if the next page is a header page,
610  * its flags will be non zero.
611  */
612 static int inline
613 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
614 		struct buffer_page *page, struct list_head *list)
615 {
616 	unsigned long val;
617 
618 	val = (unsigned long)list->next;
619 
620 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
621 		return RB_PAGE_MOVED;
622 
623 	return val & RB_FLAG_MASK;
624 }
625 
626 /*
627  * rb_is_reader_page
628  *
629  * The unique thing about the reader page, is that, if the
630  * writer is ever on it, the previous pointer never points
631  * back to the reader page.
632  */
633 static int rb_is_reader_page(struct buffer_page *page)
634 {
635 	struct list_head *list = page->list.prev;
636 
637 	return rb_list_head(list->next) != &page->list;
638 }
639 
640 /*
641  * rb_set_list_to_head - set a list_head to be pointing to head.
642  */
643 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
644 				struct list_head *list)
645 {
646 	unsigned long *ptr;
647 
648 	ptr = (unsigned long *)&list->next;
649 	*ptr |= RB_PAGE_HEAD;
650 	*ptr &= ~RB_PAGE_UPDATE;
651 }
652 
653 /*
654  * rb_head_page_activate - sets up head page
655  */
656 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
657 {
658 	struct buffer_page *head;
659 
660 	head = cpu_buffer->head_page;
661 	if (!head)
662 		return;
663 
664 	/*
665 	 * Set the previous list pointer to have the HEAD flag.
666 	 */
667 	rb_set_list_to_head(cpu_buffer, head->list.prev);
668 }
669 
670 static void rb_list_head_clear(struct list_head *list)
671 {
672 	unsigned long *ptr = (unsigned long *)&list->next;
673 
674 	*ptr &= ~RB_FLAG_MASK;
675 }
676 
677 /*
678  * rb_head_page_dactivate - clears head page ptr (for free list)
679  */
680 static void
681 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
682 {
683 	struct list_head *hd;
684 
685 	/* Go through the whole list and clear any pointers found. */
686 	rb_list_head_clear(cpu_buffer->pages);
687 
688 	list_for_each(hd, cpu_buffer->pages)
689 		rb_list_head_clear(hd);
690 }
691 
692 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
693 			    struct buffer_page *head,
694 			    struct buffer_page *prev,
695 			    int old_flag, int new_flag)
696 {
697 	struct list_head *list;
698 	unsigned long val = (unsigned long)&head->list;
699 	unsigned long ret;
700 
701 	list = &prev->list;
702 
703 	val &= ~RB_FLAG_MASK;
704 
705 	ret = cmpxchg((unsigned long *)&list->next,
706 		      val | old_flag, val | new_flag);
707 
708 	/* check if the reader took the page */
709 	if ((ret & ~RB_FLAG_MASK) != val)
710 		return RB_PAGE_MOVED;
711 
712 	return ret & RB_FLAG_MASK;
713 }
714 
715 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
716 				   struct buffer_page *head,
717 				   struct buffer_page *prev,
718 				   int old_flag)
719 {
720 	return rb_head_page_set(cpu_buffer, head, prev,
721 				old_flag, RB_PAGE_UPDATE);
722 }
723 
724 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
725 				 struct buffer_page *head,
726 				 struct buffer_page *prev,
727 				 int old_flag)
728 {
729 	return rb_head_page_set(cpu_buffer, head, prev,
730 				old_flag, RB_PAGE_HEAD);
731 }
732 
733 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
734 				   struct buffer_page *head,
735 				   struct buffer_page *prev,
736 				   int old_flag)
737 {
738 	return rb_head_page_set(cpu_buffer, head, prev,
739 				old_flag, RB_PAGE_NORMAL);
740 }
741 
742 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
743 			       struct buffer_page **bpage)
744 {
745 	struct list_head *p = rb_list_head((*bpage)->list.next);
746 
747 	*bpage = list_entry(p, struct buffer_page, list);
748 }
749 
750 static struct buffer_page *
751 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
752 {
753 	struct buffer_page *head;
754 	struct buffer_page *page;
755 	struct list_head *list;
756 	int i;
757 
758 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
759 		return NULL;
760 
761 	/* sanity check */
762 	list = cpu_buffer->pages;
763 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
764 		return NULL;
765 
766 	page = head = cpu_buffer->head_page;
767 	/*
768 	 * It is possible that the writer moves the header behind
769 	 * where we started, and we miss in one loop.
770 	 * A second loop should grab the header, but we'll do
771 	 * three loops just because I'm paranoid.
772 	 */
773 	for (i = 0; i < 3; i++) {
774 		do {
775 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
776 				cpu_buffer->head_page = page;
777 				return page;
778 			}
779 			rb_inc_page(cpu_buffer, &page);
780 		} while (page != head);
781 	}
782 
783 	RB_WARN_ON(cpu_buffer, 1);
784 
785 	return NULL;
786 }
787 
788 static int rb_head_page_replace(struct buffer_page *old,
789 				struct buffer_page *new)
790 {
791 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
792 	unsigned long val;
793 	unsigned long ret;
794 
795 	val = *ptr & ~RB_FLAG_MASK;
796 	val |= RB_PAGE_HEAD;
797 
798 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
799 
800 	return ret == val;
801 }
802 
803 /*
804  * rb_tail_page_update - move the tail page forward
805  *
806  * Returns 1 if moved tail page, 0 if someone else did.
807  */
808 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
809 			       struct buffer_page *tail_page,
810 			       struct buffer_page *next_page)
811 {
812 	struct buffer_page *old_tail;
813 	unsigned long old_entries;
814 	unsigned long old_write;
815 	int ret = 0;
816 
817 	/*
818 	 * The tail page now needs to be moved forward.
819 	 *
820 	 * We need to reset the tail page, but without messing
821 	 * with possible erasing of data brought in by interrupts
822 	 * that have moved the tail page and are currently on it.
823 	 *
824 	 * We add a counter to the write field to denote this.
825 	 */
826 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
827 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
828 
829 	/*
830 	 * Just make sure we have seen our old_write and synchronize
831 	 * with any interrupts that come in.
832 	 */
833 	barrier();
834 
835 	/*
836 	 * If the tail page is still the same as what we think
837 	 * it is, then it is up to us to update the tail
838 	 * pointer.
839 	 */
840 	if (tail_page == cpu_buffer->tail_page) {
841 		/* Zero the write counter */
842 		unsigned long val = old_write & ~RB_WRITE_MASK;
843 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
844 
845 		/*
846 		 * This will only succeed if an interrupt did
847 		 * not come in and change it. In which case, we
848 		 * do not want to modify it.
849 		 *
850 		 * We add (void) to let the compiler know that we do not care
851 		 * about the return value of these functions. We use the
852 		 * cmpxchg to only update if an interrupt did not already
853 		 * do it for us. If the cmpxchg fails, we don't care.
854 		 */
855 		(void)local_cmpxchg(&next_page->write, old_write, val);
856 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
857 
858 		/*
859 		 * No need to worry about races with clearing out the commit.
860 		 * it only can increment when a commit takes place. But that
861 		 * only happens in the outer most nested commit.
862 		 */
863 		local_set(&next_page->page->commit, 0);
864 
865 		old_tail = cmpxchg(&cpu_buffer->tail_page,
866 				   tail_page, next_page);
867 
868 		if (old_tail == tail_page)
869 			ret = 1;
870 	}
871 
872 	return ret;
873 }
874 
875 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
876 			  struct buffer_page *bpage)
877 {
878 	unsigned long val = (unsigned long)bpage;
879 
880 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
881 		return 1;
882 
883 	return 0;
884 }
885 
886 /**
887  * rb_check_list - make sure a pointer to a list has the last bits zero
888  */
889 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
890 			 struct list_head *list)
891 {
892 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
893 		return 1;
894 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
895 		return 1;
896 	return 0;
897 }
898 
899 /**
900  * check_pages - integrity check of buffer pages
901  * @cpu_buffer: CPU buffer with pages to test
902  *
903  * As a safety measure we check to make sure the data pages have not
904  * been corrupted.
905  */
906 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
907 {
908 	struct list_head *head = cpu_buffer->pages;
909 	struct buffer_page *bpage, *tmp;
910 
911 	rb_head_page_deactivate(cpu_buffer);
912 
913 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
914 		return -1;
915 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
916 		return -1;
917 
918 	if (rb_check_list(cpu_buffer, head))
919 		return -1;
920 
921 	list_for_each_entry_safe(bpage, tmp, head, list) {
922 		if (RB_WARN_ON(cpu_buffer,
923 			       bpage->list.next->prev != &bpage->list))
924 			return -1;
925 		if (RB_WARN_ON(cpu_buffer,
926 			       bpage->list.prev->next != &bpage->list))
927 			return -1;
928 		if (rb_check_list(cpu_buffer, &bpage->list))
929 			return -1;
930 	}
931 
932 	rb_head_page_activate(cpu_buffer);
933 
934 	return 0;
935 }
936 
937 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
938 			     unsigned nr_pages)
939 {
940 	struct buffer_page *bpage, *tmp;
941 	unsigned long addr;
942 	LIST_HEAD(pages);
943 	unsigned i;
944 
945 	WARN_ON(!nr_pages);
946 
947 	for (i = 0; i < nr_pages; i++) {
948 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
949 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
950 		if (!bpage)
951 			goto free_pages;
952 
953 		rb_check_bpage(cpu_buffer, bpage);
954 
955 		list_add(&bpage->list, &pages);
956 
957 		addr = __get_free_page(GFP_KERNEL);
958 		if (!addr)
959 			goto free_pages;
960 		bpage->page = (void *)addr;
961 		rb_init_page(bpage->page);
962 	}
963 
964 	/*
965 	 * The ring buffer page list is a circular list that does not
966 	 * start and end with a list head. All page list items point to
967 	 * other pages.
968 	 */
969 	cpu_buffer->pages = pages.next;
970 	list_del(&pages);
971 
972 	rb_check_pages(cpu_buffer);
973 
974 	return 0;
975 
976  free_pages:
977 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
978 		list_del_init(&bpage->list);
979 		free_buffer_page(bpage);
980 	}
981 	return -ENOMEM;
982 }
983 
984 static struct ring_buffer_per_cpu *
985 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
986 {
987 	struct ring_buffer_per_cpu *cpu_buffer;
988 	struct buffer_page *bpage;
989 	unsigned long addr;
990 	int ret;
991 
992 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
993 				  GFP_KERNEL, cpu_to_node(cpu));
994 	if (!cpu_buffer)
995 		return NULL;
996 
997 	cpu_buffer->cpu = cpu;
998 	cpu_buffer->buffer = buffer;
999 	spin_lock_init(&cpu_buffer->reader_lock);
1000 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1001 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1002 
1003 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1004 			    GFP_KERNEL, cpu_to_node(cpu));
1005 	if (!bpage)
1006 		goto fail_free_buffer;
1007 
1008 	rb_check_bpage(cpu_buffer, bpage);
1009 
1010 	cpu_buffer->reader_page = bpage;
1011 	addr = __get_free_page(GFP_KERNEL);
1012 	if (!addr)
1013 		goto fail_free_reader;
1014 	bpage->page = (void *)addr;
1015 	rb_init_page(bpage->page);
1016 
1017 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1018 
1019 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1020 	if (ret < 0)
1021 		goto fail_free_reader;
1022 
1023 	cpu_buffer->head_page
1024 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1025 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1026 
1027 	rb_head_page_activate(cpu_buffer);
1028 
1029 	return cpu_buffer;
1030 
1031  fail_free_reader:
1032 	free_buffer_page(cpu_buffer->reader_page);
1033 
1034  fail_free_buffer:
1035 	kfree(cpu_buffer);
1036 	return NULL;
1037 }
1038 
1039 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1040 {
1041 	struct list_head *head = cpu_buffer->pages;
1042 	struct buffer_page *bpage, *tmp;
1043 
1044 	free_buffer_page(cpu_buffer->reader_page);
1045 
1046 	rb_head_page_deactivate(cpu_buffer);
1047 
1048 	if (head) {
1049 		list_for_each_entry_safe(bpage, tmp, head, list) {
1050 			list_del_init(&bpage->list);
1051 			free_buffer_page(bpage);
1052 		}
1053 		bpage = list_entry(head, struct buffer_page, list);
1054 		free_buffer_page(bpage);
1055 	}
1056 
1057 	kfree(cpu_buffer);
1058 }
1059 
1060 #ifdef CONFIG_HOTPLUG_CPU
1061 static int rb_cpu_notify(struct notifier_block *self,
1062 			 unsigned long action, void *hcpu);
1063 #endif
1064 
1065 /**
1066  * ring_buffer_alloc - allocate a new ring_buffer
1067  * @size: the size in bytes per cpu that is needed.
1068  * @flags: attributes to set for the ring buffer.
1069  *
1070  * Currently the only flag that is available is the RB_FL_OVERWRITE
1071  * flag. This flag means that the buffer will overwrite old data
1072  * when the buffer wraps. If this flag is not set, the buffer will
1073  * drop data when the tail hits the head.
1074  */
1075 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1076 					struct lock_class_key *key)
1077 {
1078 	struct ring_buffer *buffer;
1079 	int bsize;
1080 	int cpu;
1081 
1082 	/* keep it in its own cache line */
1083 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1084 			 GFP_KERNEL);
1085 	if (!buffer)
1086 		return NULL;
1087 
1088 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1089 		goto fail_free_buffer;
1090 
1091 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1092 	buffer->flags = flags;
1093 	buffer->clock = trace_clock_local;
1094 	buffer->reader_lock_key = key;
1095 
1096 	/* need at least two pages */
1097 	if (buffer->pages < 2)
1098 		buffer->pages = 2;
1099 
1100 	/*
1101 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1102 	 * in early initcall, it will not be notified of secondary cpus.
1103 	 * In that off case, we need to allocate for all possible cpus.
1104 	 */
1105 #ifdef CONFIG_HOTPLUG_CPU
1106 	get_online_cpus();
1107 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1108 #else
1109 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1110 #endif
1111 	buffer->cpus = nr_cpu_ids;
1112 
1113 	bsize = sizeof(void *) * nr_cpu_ids;
1114 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1115 				  GFP_KERNEL);
1116 	if (!buffer->buffers)
1117 		goto fail_free_cpumask;
1118 
1119 	for_each_buffer_cpu(buffer, cpu) {
1120 		buffer->buffers[cpu] =
1121 			rb_allocate_cpu_buffer(buffer, cpu);
1122 		if (!buffer->buffers[cpu])
1123 			goto fail_free_buffers;
1124 	}
1125 
1126 #ifdef CONFIG_HOTPLUG_CPU
1127 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1128 	buffer->cpu_notify.priority = 0;
1129 	register_cpu_notifier(&buffer->cpu_notify);
1130 #endif
1131 
1132 	put_online_cpus();
1133 	mutex_init(&buffer->mutex);
1134 
1135 	return buffer;
1136 
1137  fail_free_buffers:
1138 	for_each_buffer_cpu(buffer, cpu) {
1139 		if (buffer->buffers[cpu])
1140 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1141 	}
1142 	kfree(buffer->buffers);
1143 
1144  fail_free_cpumask:
1145 	free_cpumask_var(buffer->cpumask);
1146 	put_online_cpus();
1147 
1148  fail_free_buffer:
1149 	kfree(buffer);
1150 	return NULL;
1151 }
1152 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1153 
1154 /**
1155  * ring_buffer_free - free a ring buffer.
1156  * @buffer: the buffer to free.
1157  */
1158 void
1159 ring_buffer_free(struct ring_buffer *buffer)
1160 {
1161 	int cpu;
1162 
1163 	get_online_cpus();
1164 
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 	unregister_cpu_notifier(&buffer->cpu_notify);
1167 #endif
1168 
1169 	for_each_buffer_cpu(buffer, cpu)
1170 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1171 
1172 	put_online_cpus();
1173 
1174 	kfree(buffer->buffers);
1175 	free_cpumask_var(buffer->cpumask);
1176 
1177 	kfree(buffer);
1178 }
1179 EXPORT_SYMBOL_GPL(ring_buffer_free);
1180 
1181 void ring_buffer_set_clock(struct ring_buffer *buffer,
1182 			   u64 (*clock)(void))
1183 {
1184 	buffer->clock = clock;
1185 }
1186 
1187 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1188 
1189 static void
1190 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1191 {
1192 	struct buffer_page *bpage;
1193 	struct list_head *p;
1194 	unsigned i;
1195 
1196 	spin_lock_irq(&cpu_buffer->reader_lock);
1197 	rb_head_page_deactivate(cpu_buffer);
1198 
1199 	for (i = 0; i < nr_pages; i++) {
1200 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1201 			return;
1202 		p = cpu_buffer->pages->next;
1203 		bpage = list_entry(p, struct buffer_page, list);
1204 		list_del_init(&bpage->list);
1205 		free_buffer_page(bpage);
1206 	}
1207 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1208 		return;
1209 
1210 	rb_reset_cpu(cpu_buffer);
1211 	rb_check_pages(cpu_buffer);
1212 
1213 	spin_unlock_irq(&cpu_buffer->reader_lock);
1214 }
1215 
1216 static void
1217 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1218 		struct list_head *pages, unsigned nr_pages)
1219 {
1220 	struct buffer_page *bpage;
1221 	struct list_head *p;
1222 	unsigned i;
1223 
1224 	spin_lock_irq(&cpu_buffer->reader_lock);
1225 	rb_head_page_deactivate(cpu_buffer);
1226 
1227 	for (i = 0; i < nr_pages; i++) {
1228 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1229 			return;
1230 		p = pages->next;
1231 		bpage = list_entry(p, struct buffer_page, list);
1232 		list_del_init(&bpage->list);
1233 		list_add_tail(&bpage->list, cpu_buffer->pages);
1234 	}
1235 	rb_reset_cpu(cpu_buffer);
1236 	rb_check_pages(cpu_buffer);
1237 
1238 	spin_unlock_irq(&cpu_buffer->reader_lock);
1239 }
1240 
1241 /**
1242  * ring_buffer_resize - resize the ring buffer
1243  * @buffer: the buffer to resize.
1244  * @size: the new size.
1245  *
1246  * Minimum size is 2 * BUF_PAGE_SIZE.
1247  *
1248  * Returns -1 on failure.
1249  */
1250 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1251 {
1252 	struct ring_buffer_per_cpu *cpu_buffer;
1253 	unsigned nr_pages, rm_pages, new_pages;
1254 	struct buffer_page *bpage, *tmp;
1255 	unsigned long buffer_size;
1256 	unsigned long addr;
1257 	LIST_HEAD(pages);
1258 	int i, cpu;
1259 
1260 	/*
1261 	 * Always succeed at resizing a non-existent buffer:
1262 	 */
1263 	if (!buffer)
1264 		return size;
1265 
1266 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1267 	size *= BUF_PAGE_SIZE;
1268 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1269 
1270 	/* we need a minimum of two pages */
1271 	if (size < BUF_PAGE_SIZE * 2)
1272 		size = BUF_PAGE_SIZE * 2;
1273 
1274 	if (size == buffer_size)
1275 		return size;
1276 
1277 	atomic_inc(&buffer->record_disabled);
1278 
1279 	/* Make sure all writers are done with this buffer. */
1280 	synchronize_sched();
1281 
1282 	mutex_lock(&buffer->mutex);
1283 	get_online_cpus();
1284 
1285 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1286 
1287 	if (size < buffer_size) {
1288 
1289 		/* easy case, just free pages */
1290 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1291 			goto out_fail;
1292 
1293 		rm_pages = buffer->pages - nr_pages;
1294 
1295 		for_each_buffer_cpu(buffer, cpu) {
1296 			cpu_buffer = buffer->buffers[cpu];
1297 			rb_remove_pages(cpu_buffer, rm_pages);
1298 		}
1299 		goto out;
1300 	}
1301 
1302 	/*
1303 	 * This is a bit more difficult. We only want to add pages
1304 	 * when we can allocate enough for all CPUs. We do this
1305 	 * by allocating all the pages and storing them on a local
1306 	 * link list. If we succeed in our allocation, then we
1307 	 * add these pages to the cpu_buffers. Otherwise we just free
1308 	 * them all and return -ENOMEM;
1309 	 */
1310 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1311 		goto out_fail;
1312 
1313 	new_pages = nr_pages - buffer->pages;
1314 
1315 	for_each_buffer_cpu(buffer, cpu) {
1316 		for (i = 0; i < new_pages; i++) {
1317 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1318 						  cache_line_size()),
1319 					    GFP_KERNEL, cpu_to_node(cpu));
1320 			if (!bpage)
1321 				goto free_pages;
1322 			list_add(&bpage->list, &pages);
1323 			addr = __get_free_page(GFP_KERNEL);
1324 			if (!addr)
1325 				goto free_pages;
1326 			bpage->page = (void *)addr;
1327 			rb_init_page(bpage->page);
1328 		}
1329 	}
1330 
1331 	for_each_buffer_cpu(buffer, cpu) {
1332 		cpu_buffer = buffer->buffers[cpu];
1333 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1334 	}
1335 
1336 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1337 		goto out_fail;
1338 
1339  out:
1340 	buffer->pages = nr_pages;
1341 	put_online_cpus();
1342 	mutex_unlock(&buffer->mutex);
1343 
1344 	atomic_dec(&buffer->record_disabled);
1345 
1346 	return size;
1347 
1348  free_pages:
1349 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1350 		list_del_init(&bpage->list);
1351 		free_buffer_page(bpage);
1352 	}
1353 	put_online_cpus();
1354 	mutex_unlock(&buffer->mutex);
1355 	atomic_dec(&buffer->record_disabled);
1356 	return -ENOMEM;
1357 
1358 	/*
1359 	 * Something went totally wrong, and we are too paranoid
1360 	 * to even clean up the mess.
1361 	 */
1362  out_fail:
1363 	put_online_cpus();
1364 	mutex_unlock(&buffer->mutex);
1365 	atomic_dec(&buffer->record_disabled);
1366 	return -1;
1367 }
1368 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1369 
1370 static inline void *
1371 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1372 {
1373 	return bpage->data + index;
1374 }
1375 
1376 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1377 {
1378 	return bpage->page->data + index;
1379 }
1380 
1381 static inline struct ring_buffer_event *
1382 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1383 {
1384 	return __rb_page_index(cpu_buffer->reader_page,
1385 			       cpu_buffer->reader_page->read);
1386 }
1387 
1388 static inline struct ring_buffer_event *
1389 rb_iter_head_event(struct ring_buffer_iter *iter)
1390 {
1391 	return __rb_page_index(iter->head_page, iter->head);
1392 }
1393 
1394 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1395 {
1396 	return local_read(&bpage->write) & RB_WRITE_MASK;
1397 }
1398 
1399 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1400 {
1401 	return local_read(&bpage->page->commit);
1402 }
1403 
1404 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1405 {
1406 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1407 }
1408 
1409 /* Size is determined by what has been commited */
1410 static inline unsigned rb_page_size(struct buffer_page *bpage)
1411 {
1412 	return rb_page_commit(bpage);
1413 }
1414 
1415 static inline unsigned
1416 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1417 {
1418 	return rb_page_commit(cpu_buffer->commit_page);
1419 }
1420 
1421 static inline unsigned
1422 rb_event_index(struct ring_buffer_event *event)
1423 {
1424 	unsigned long addr = (unsigned long)event;
1425 
1426 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1427 }
1428 
1429 static inline int
1430 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1431 		   struct ring_buffer_event *event)
1432 {
1433 	unsigned long addr = (unsigned long)event;
1434 	unsigned long index;
1435 
1436 	index = rb_event_index(event);
1437 	addr &= PAGE_MASK;
1438 
1439 	return cpu_buffer->commit_page->page == (void *)addr &&
1440 		rb_commit_index(cpu_buffer) == index;
1441 }
1442 
1443 static void
1444 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1445 {
1446 	unsigned long max_count;
1447 
1448 	/*
1449 	 * We only race with interrupts and NMIs on this CPU.
1450 	 * If we own the commit event, then we can commit
1451 	 * all others that interrupted us, since the interruptions
1452 	 * are in stack format (they finish before they come
1453 	 * back to us). This allows us to do a simple loop to
1454 	 * assign the commit to the tail.
1455 	 */
1456  again:
1457 	max_count = cpu_buffer->buffer->pages * 100;
1458 
1459 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1460 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1461 			return;
1462 		if (RB_WARN_ON(cpu_buffer,
1463 			       rb_is_reader_page(cpu_buffer->tail_page)))
1464 			return;
1465 		local_set(&cpu_buffer->commit_page->page->commit,
1466 			  rb_page_write(cpu_buffer->commit_page));
1467 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1468 		cpu_buffer->write_stamp =
1469 			cpu_buffer->commit_page->page->time_stamp;
1470 		/* add barrier to keep gcc from optimizing too much */
1471 		barrier();
1472 	}
1473 	while (rb_commit_index(cpu_buffer) !=
1474 	       rb_page_write(cpu_buffer->commit_page)) {
1475 
1476 		local_set(&cpu_buffer->commit_page->page->commit,
1477 			  rb_page_write(cpu_buffer->commit_page));
1478 		RB_WARN_ON(cpu_buffer,
1479 			   local_read(&cpu_buffer->commit_page->page->commit) &
1480 			   ~RB_WRITE_MASK);
1481 		barrier();
1482 	}
1483 
1484 	/* again, keep gcc from optimizing */
1485 	barrier();
1486 
1487 	/*
1488 	 * If an interrupt came in just after the first while loop
1489 	 * and pushed the tail page forward, we will be left with
1490 	 * a dangling commit that will never go forward.
1491 	 */
1492 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1493 		goto again;
1494 }
1495 
1496 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1497 {
1498 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1499 	cpu_buffer->reader_page->read = 0;
1500 }
1501 
1502 static void rb_inc_iter(struct ring_buffer_iter *iter)
1503 {
1504 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1505 
1506 	/*
1507 	 * The iterator could be on the reader page (it starts there).
1508 	 * But the head could have moved, since the reader was
1509 	 * found. Check for this case and assign the iterator
1510 	 * to the head page instead of next.
1511 	 */
1512 	if (iter->head_page == cpu_buffer->reader_page)
1513 		iter->head_page = rb_set_head_page(cpu_buffer);
1514 	else
1515 		rb_inc_page(cpu_buffer, &iter->head_page);
1516 
1517 	iter->read_stamp = iter->head_page->page->time_stamp;
1518 	iter->head = 0;
1519 }
1520 
1521 /**
1522  * ring_buffer_update_event - update event type and data
1523  * @event: the even to update
1524  * @type: the type of event
1525  * @length: the size of the event field in the ring buffer
1526  *
1527  * Update the type and data fields of the event. The length
1528  * is the actual size that is written to the ring buffer,
1529  * and with this, we can determine what to place into the
1530  * data field.
1531  */
1532 static void
1533 rb_update_event(struct ring_buffer_event *event,
1534 			 unsigned type, unsigned length)
1535 {
1536 	event->type_len = type;
1537 
1538 	switch (type) {
1539 
1540 	case RINGBUF_TYPE_PADDING:
1541 	case RINGBUF_TYPE_TIME_EXTEND:
1542 	case RINGBUF_TYPE_TIME_STAMP:
1543 		break;
1544 
1545 	case 0:
1546 		length -= RB_EVNT_HDR_SIZE;
1547 		if (length > RB_MAX_SMALL_DATA)
1548 			event->array[0] = length;
1549 		else
1550 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1551 		break;
1552 	default:
1553 		BUG();
1554 	}
1555 }
1556 
1557 /*
1558  * rb_handle_head_page - writer hit the head page
1559  *
1560  * Returns: +1 to retry page
1561  *           0 to continue
1562  *          -1 on error
1563  */
1564 static int
1565 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1566 		    struct buffer_page *tail_page,
1567 		    struct buffer_page *next_page)
1568 {
1569 	struct buffer_page *new_head;
1570 	int entries;
1571 	int type;
1572 	int ret;
1573 
1574 	entries = rb_page_entries(next_page);
1575 
1576 	/*
1577 	 * The hard part is here. We need to move the head
1578 	 * forward, and protect against both readers on
1579 	 * other CPUs and writers coming in via interrupts.
1580 	 */
1581 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1582 				       RB_PAGE_HEAD);
1583 
1584 	/*
1585 	 * type can be one of four:
1586 	 *  NORMAL - an interrupt already moved it for us
1587 	 *  HEAD   - we are the first to get here.
1588 	 *  UPDATE - we are the interrupt interrupting
1589 	 *           a current move.
1590 	 *  MOVED  - a reader on another CPU moved the next
1591 	 *           pointer to its reader page. Give up
1592 	 *           and try again.
1593 	 */
1594 
1595 	switch (type) {
1596 	case RB_PAGE_HEAD:
1597 		/*
1598 		 * We changed the head to UPDATE, thus
1599 		 * it is our responsibility to update
1600 		 * the counters.
1601 		 */
1602 		local_add(entries, &cpu_buffer->overrun);
1603 
1604 		/*
1605 		 * The entries will be zeroed out when we move the
1606 		 * tail page.
1607 		 */
1608 
1609 		/* still more to do */
1610 		break;
1611 
1612 	case RB_PAGE_UPDATE:
1613 		/*
1614 		 * This is an interrupt that interrupt the
1615 		 * previous update. Still more to do.
1616 		 */
1617 		break;
1618 	case RB_PAGE_NORMAL:
1619 		/*
1620 		 * An interrupt came in before the update
1621 		 * and processed this for us.
1622 		 * Nothing left to do.
1623 		 */
1624 		return 1;
1625 	case RB_PAGE_MOVED:
1626 		/*
1627 		 * The reader is on another CPU and just did
1628 		 * a swap with our next_page.
1629 		 * Try again.
1630 		 */
1631 		return 1;
1632 	default:
1633 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1634 		return -1;
1635 	}
1636 
1637 	/*
1638 	 * Now that we are here, the old head pointer is
1639 	 * set to UPDATE. This will keep the reader from
1640 	 * swapping the head page with the reader page.
1641 	 * The reader (on another CPU) will spin till
1642 	 * we are finished.
1643 	 *
1644 	 * We just need to protect against interrupts
1645 	 * doing the job. We will set the next pointer
1646 	 * to HEAD. After that, we set the old pointer
1647 	 * to NORMAL, but only if it was HEAD before.
1648 	 * otherwise we are an interrupt, and only
1649 	 * want the outer most commit to reset it.
1650 	 */
1651 	new_head = next_page;
1652 	rb_inc_page(cpu_buffer, &new_head);
1653 
1654 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1655 				    RB_PAGE_NORMAL);
1656 
1657 	/*
1658 	 * Valid returns are:
1659 	 *  HEAD   - an interrupt came in and already set it.
1660 	 *  NORMAL - One of two things:
1661 	 *            1) We really set it.
1662 	 *            2) A bunch of interrupts came in and moved
1663 	 *               the page forward again.
1664 	 */
1665 	switch (ret) {
1666 	case RB_PAGE_HEAD:
1667 	case RB_PAGE_NORMAL:
1668 		/* OK */
1669 		break;
1670 	default:
1671 		RB_WARN_ON(cpu_buffer, 1);
1672 		return -1;
1673 	}
1674 
1675 	/*
1676 	 * It is possible that an interrupt came in,
1677 	 * set the head up, then more interrupts came in
1678 	 * and moved it again. When we get back here,
1679 	 * the page would have been set to NORMAL but we
1680 	 * just set it back to HEAD.
1681 	 *
1682 	 * How do you detect this? Well, if that happened
1683 	 * the tail page would have moved.
1684 	 */
1685 	if (ret == RB_PAGE_NORMAL) {
1686 		/*
1687 		 * If the tail had moved passed next, then we need
1688 		 * to reset the pointer.
1689 		 */
1690 		if (cpu_buffer->tail_page != tail_page &&
1691 		    cpu_buffer->tail_page != next_page)
1692 			rb_head_page_set_normal(cpu_buffer, new_head,
1693 						next_page,
1694 						RB_PAGE_HEAD);
1695 	}
1696 
1697 	/*
1698 	 * If this was the outer most commit (the one that
1699 	 * changed the original pointer from HEAD to UPDATE),
1700 	 * then it is up to us to reset it to NORMAL.
1701 	 */
1702 	if (type == RB_PAGE_HEAD) {
1703 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1704 					      tail_page,
1705 					      RB_PAGE_UPDATE);
1706 		if (RB_WARN_ON(cpu_buffer,
1707 			       ret != RB_PAGE_UPDATE))
1708 			return -1;
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 static unsigned rb_calculate_event_length(unsigned length)
1715 {
1716 	struct ring_buffer_event event; /* Used only for sizeof array */
1717 
1718 	/* zero length can cause confusions */
1719 	if (!length)
1720 		length = 1;
1721 
1722 	if (length > RB_MAX_SMALL_DATA)
1723 		length += sizeof(event.array[0]);
1724 
1725 	length += RB_EVNT_HDR_SIZE;
1726 	length = ALIGN(length, RB_ALIGNMENT);
1727 
1728 	return length;
1729 }
1730 
1731 static inline void
1732 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1733 	      struct buffer_page *tail_page,
1734 	      unsigned long tail, unsigned long length)
1735 {
1736 	struct ring_buffer_event *event;
1737 
1738 	/*
1739 	 * Only the event that crossed the page boundary
1740 	 * must fill the old tail_page with padding.
1741 	 */
1742 	if (tail >= BUF_PAGE_SIZE) {
1743 		local_sub(length, &tail_page->write);
1744 		return;
1745 	}
1746 
1747 	event = __rb_page_index(tail_page, tail);
1748 	kmemcheck_annotate_bitfield(event, bitfield);
1749 
1750 	/*
1751 	 * If this event is bigger than the minimum size, then
1752 	 * we need to be careful that we don't subtract the
1753 	 * write counter enough to allow another writer to slip
1754 	 * in on this page.
1755 	 * We put in a discarded commit instead, to make sure
1756 	 * that this space is not used again.
1757 	 *
1758 	 * If we are less than the minimum size, we don't need to
1759 	 * worry about it.
1760 	 */
1761 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1762 		/* No room for any events */
1763 
1764 		/* Mark the rest of the page with padding */
1765 		rb_event_set_padding(event);
1766 
1767 		/* Set the write back to the previous setting */
1768 		local_sub(length, &tail_page->write);
1769 		return;
1770 	}
1771 
1772 	/* Put in a discarded event */
1773 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1774 	event->type_len = RINGBUF_TYPE_PADDING;
1775 	/* time delta must be non zero */
1776 	event->time_delta = 1;
1777 
1778 	/* Set write to end of buffer */
1779 	length = (tail + length) - BUF_PAGE_SIZE;
1780 	local_sub(length, &tail_page->write);
1781 }
1782 
1783 static struct ring_buffer_event *
1784 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1785 	     unsigned long length, unsigned long tail,
1786 	     struct buffer_page *tail_page, u64 *ts)
1787 {
1788 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1789 	struct ring_buffer *buffer = cpu_buffer->buffer;
1790 	struct buffer_page *next_page;
1791 	int ret;
1792 
1793 	next_page = tail_page;
1794 
1795 	rb_inc_page(cpu_buffer, &next_page);
1796 
1797 	/*
1798 	 * If for some reason, we had an interrupt storm that made
1799 	 * it all the way around the buffer, bail, and warn
1800 	 * about it.
1801 	 */
1802 	if (unlikely(next_page == commit_page)) {
1803 		local_inc(&cpu_buffer->commit_overrun);
1804 		goto out_reset;
1805 	}
1806 
1807 	/*
1808 	 * This is where the fun begins!
1809 	 *
1810 	 * We are fighting against races between a reader that
1811 	 * could be on another CPU trying to swap its reader
1812 	 * page with the buffer head.
1813 	 *
1814 	 * We are also fighting against interrupts coming in and
1815 	 * moving the head or tail on us as well.
1816 	 *
1817 	 * If the next page is the head page then we have filled
1818 	 * the buffer, unless the commit page is still on the
1819 	 * reader page.
1820 	 */
1821 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1822 
1823 		/*
1824 		 * If the commit is not on the reader page, then
1825 		 * move the header page.
1826 		 */
1827 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1828 			/*
1829 			 * If we are not in overwrite mode,
1830 			 * this is easy, just stop here.
1831 			 */
1832 			if (!(buffer->flags & RB_FL_OVERWRITE))
1833 				goto out_reset;
1834 
1835 			ret = rb_handle_head_page(cpu_buffer,
1836 						  tail_page,
1837 						  next_page);
1838 			if (ret < 0)
1839 				goto out_reset;
1840 			if (ret)
1841 				goto out_again;
1842 		} else {
1843 			/*
1844 			 * We need to be careful here too. The
1845 			 * commit page could still be on the reader
1846 			 * page. We could have a small buffer, and
1847 			 * have filled up the buffer with events
1848 			 * from interrupts and such, and wrapped.
1849 			 *
1850 			 * Note, if the tail page is also the on the
1851 			 * reader_page, we let it move out.
1852 			 */
1853 			if (unlikely((cpu_buffer->commit_page !=
1854 				      cpu_buffer->tail_page) &&
1855 				     (cpu_buffer->commit_page ==
1856 				      cpu_buffer->reader_page))) {
1857 				local_inc(&cpu_buffer->commit_overrun);
1858 				goto out_reset;
1859 			}
1860 		}
1861 	}
1862 
1863 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1864 	if (ret) {
1865 		/*
1866 		 * Nested commits always have zero deltas, so
1867 		 * just reread the time stamp
1868 		 */
1869 		*ts = rb_time_stamp(buffer);
1870 		next_page->page->time_stamp = *ts;
1871 	}
1872 
1873  out_again:
1874 
1875 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1876 
1877 	/* fail and let the caller try again */
1878 	return ERR_PTR(-EAGAIN);
1879 
1880  out_reset:
1881 	/* reset write */
1882 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1883 
1884 	return NULL;
1885 }
1886 
1887 static struct ring_buffer_event *
1888 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1889 		  unsigned type, unsigned long length, u64 *ts)
1890 {
1891 	struct buffer_page *tail_page;
1892 	struct ring_buffer_event *event;
1893 	unsigned long tail, write;
1894 
1895 	tail_page = cpu_buffer->tail_page;
1896 	write = local_add_return(length, &tail_page->write);
1897 
1898 	/* set write to only the index of the write */
1899 	write &= RB_WRITE_MASK;
1900 	tail = write - length;
1901 
1902 	/* See if we shot pass the end of this buffer page */
1903 	if (write > BUF_PAGE_SIZE)
1904 		return rb_move_tail(cpu_buffer, length, tail,
1905 				    tail_page, ts);
1906 
1907 	/* We reserved something on the buffer */
1908 
1909 	event = __rb_page_index(tail_page, tail);
1910 	kmemcheck_annotate_bitfield(event, bitfield);
1911 	rb_update_event(event, type, length);
1912 
1913 	/* The passed in type is zero for DATA */
1914 	if (likely(!type))
1915 		local_inc(&tail_page->entries);
1916 
1917 	/*
1918 	 * If this is the first commit on the page, then update
1919 	 * its timestamp.
1920 	 */
1921 	if (!tail)
1922 		tail_page->page->time_stamp = *ts;
1923 
1924 	return event;
1925 }
1926 
1927 static inline int
1928 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1929 		  struct ring_buffer_event *event)
1930 {
1931 	unsigned long new_index, old_index;
1932 	struct buffer_page *bpage;
1933 	unsigned long index;
1934 	unsigned long addr;
1935 
1936 	new_index = rb_event_index(event);
1937 	old_index = new_index + rb_event_length(event);
1938 	addr = (unsigned long)event;
1939 	addr &= PAGE_MASK;
1940 
1941 	bpage = cpu_buffer->tail_page;
1942 
1943 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1944 		unsigned long write_mask =
1945 			local_read(&bpage->write) & ~RB_WRITE_MASK;
1946 		/*
1947 		 * This is on the tail page. It is possible that
1948 		 * a write could come in and move the tail page
1949 		 * and write to the next page. That is fine
1950 		 * because we just shorten what is on this page.
1951 		 */
1952 		old_index += write_mask;
1953 		new_index += write_mask;
1954 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1955 		if (index == old_index)
1956 			return 1;
1957 	}
1958 
1959 	/* could not discard */
1960 	return 0;
1961 }
1962 
1963 static int
1964 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1965 		  u64 *ts, u64 *delta)
1966 {
1967 	struct ring_buffer_event *event;
1968 	static int once;
1969 	int ret;
1970 
1971 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1972 		printk(KERN_WARNING "Delta way too big! %llu"
1973 		       " ts=%llu write stamp = %llu\n",
1974 		       (unsigned long long)*delta,
1975 		       (unsigned long long)*ts,
1976 		       (unsigned long long)cpu_buffer->write_stamp);
1977 		WARN_ON(1);
1978 	}
1979 
1980 	/*
1981 	 * The delta is too big, we to add a
1982 	 * new timestamp.
1983 	 */
1984 	event = __rb_reserve_next(cpu_buffer,
1985 				  RINGBUF_TYPE_TIME_EXTEND,
1986 				  RB_LEN_TIME_EXTEND,
1987 				  ts);
1988 	if (!event)
1989 		return -EBUSY;
1990 
1991 	if (PTR_ERR(event) == -EAGAIN)
1992 		return -EAGAIN;
1993 
1994 	/* Only a commited time event can update the write stamp */
1995 	if (rb_event_is_commit(cpu_buffer, event)) {
1996 		/*
1997 		 * If this is the first on the page, then it was
1998 		 * updated with the page itself. Try to discard it
1999 		 * and if we can't just make it zero.
2000 		 */
2001 		if (rb_event_index(event)) {
2002 			event->time_delta = *delta & TS_MASK;
2003 			event->array[0] = *delta >> TS_SHIFT;
2004 		} else {
2005 			/* try to discard, since we do not need this */
2006 			if (!rb_try_to_discard(cpu_buffer, event)) {
2007 				/* nope, just zero it */
2008 				event->time_delta = 0;
2009 				event->array[0] = 0;
2010 			}
2011 		}
2012 		cpu_buffer->write_stamp = *ts;
2013 		/* let the caller know this was the commit */
2014 		ret = 1;
2015 	} else {
2016 		/* Try to discard the event */
2017 		if (!rb_try_to_discard(cpu_buffer, event)) {
2018 			/* Darn, this is just wasted space */
2019 			event->time_delta = 0;
2020 			event->array[0] = 0;
2021 		}
2022 		ret = 0;
2023 	}
2024 
2025 	*delta = 0;
2026 
2027 	return ret;
2028 }
2029 
2030 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2031 {
2032 	local_inc(&cpu_buffer->committing);
2033 	local_inc(&cpu_buffer->commits);
2034 }
2035 
2036 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2037 {
2038 	unsigned long commits;
2039 
2040 	if (RB_WARN_ON(cpu_buffer,
2041 		       !local_read(&cpu_buffer->committing)))
2042 		return;
2043 
2044  again:
2045 	commits = local_read(&cpu_buffer->commits);
2046 	/* synchronize with interrupts */
2047 	barrier();
2048 	if (local_read(&cpu_buffer->committing) == 1)
2049 		rb_set_commit_to_write(cpu_buffer);
2050 
2051 	local_dec(&cpu_buffer->committing);
2052 
2053 	/* synchronize with interrupts */
2054 	barrier();
2055 
2056 	/*
2057 	 * Need to account for interrupts coming in between the
2058 	 * updating of the commit page and the clearing of the
2059 	 * committing counter.
2060 	 */
2061 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2062 	    !local_read(&cpu_buffer->committing)) {
2063 		local_inc(&cpu_buffer->committing);
2064 		goto again;
2065 	}
2066 }
2067 
2068 static struct ring_buffer_event *
2069 rb_reserve_next_event(struct ring_buffer *buffer,
2070 		      struct ring_buffer_per_cpu *cpu_buffer,
2071 		      unsigned long length)
2072 {
2073 	struct ring_buffer_event *event;
2074 	u64 ts, delta = 0;
2075 	int commit = 0;
2076 	int nr_loops = 0;
2077 
2078 	rb_start_commit(cpu_buffer);
2079 
2080 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2081 	/*
2082 	 * Due to the ability to swap a cpu buffer from a buffer
2083 	 * it is possible it was swapped before we committed.
2084 	 * (committing stops a swap). We check for it here and
2085 	 * if it happened, we have to fail the write.
2086 	 */
2087 	barrier();
2088 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2089 		local_dec(&cpu_buffer->committing);
2090 		local_dec(&cpu_buffer->commits);
2091 		return NULL;
2092 	}
2093 #endif
2094 
2095 	length = rb_calculate_event_length(length);
2096  again:
2097 	/*
2098 	 * We allow for interrupts to reenter here and do a trace.
2099 	 * If one does, it will cause this original code to loop
2100 	 * back here. Even with heavy interrupts happening, this
2101 	 * should only happen a few times in a row. If this happens
2102 	 * 1000 times in a row, there must be either an interrupt
2103 	 * storm or we have something buggy.
2104 	 * Bail!
2105 	 */
2106 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2107 		goto out_fail;
2108 
2109 	ts = rb_time_stamp(cpu_buffer->buffer);
2110 
2111 	/*
2112 	 * Only the first commit can update the timestamp.
2113 	 * Yes there is a race here. If an interrupt comes in
2114 	 * just after the conditional and it traces too, then it
2115 	 * will also check the deltas. More than one timestamp may
2116 	 * also be made. But only the entry that did the actual
2117 	 * commit will be something other than zero.
2118 	 */
2119 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2120 		   rb_page_write(cpu_buffer->tail_page) ==
2121 		   rb_commit_index(cpu_buffer))) {
2122 		u64 diff;
2123 
2124 		diff = ts - cpu_buffer->write_stamp;
2125 
2126 		/* make sure this diff is calculated here */
2127 		barrier();
2128 
2129 		/* Did the write stamp get updated already? */
2130 		if (unlikely(ts < cpu_buffer->write_stamp))
2131 			goto get_event;
2132 
2133 		delta = diff;
2134 		if (unlikely(test_time_stamp(delta))) {
2135 
2136 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2137 			if (commit == -EBUSY)
2138 				goto out_fail;
2139 
2140 			if (commit == -EAGAIN)
2141 				goto again;
2142 
2143 			RB_WARN_ON(cpu_buffer, commit < 0);
2144 		}
2145 	}
2146 
2147  get_event:
2148 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2149 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2150 		goto again;
2151 
2152 	if (!event)
2153 		goto out_fail;
2154 
2155 	if (!rb_event_is_commit(cpu_buffer, event))
2156 		delta = 0;
2157 
2158 	event->time_delta = delta;
2159 
2160 	return event;
2161 
2162  out_fail:
2163 	rb_end_commit(cpu_buffer);
2164 	return NULL;
2165 }
2166 
2167 #ifdef CONFIG_TRACING
2168 
2169 #define TRACE_RECURSIVE_DEPTH 16
2170 
2171 static int trace_recursive_lock(void)
2172 {
2173 	current->trace_recursion++;
2174 
2175 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2176 		return 0;
2177 
2178 	/* Disable all tracing before we do anything else */
2179 	tracing_off_permanent();
2180 
2181 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2182 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2183 		    current->trace_recursion,
2184 		    hardirq_count() >> HARDIRQ_SHIFT,
2185 		    softirq_count() >> SOFTIRQ_SHIFT,
2186 		    in_nmi());
2187 
2188 	WARN_ON_ONCE(1);
2189 	return -1;
2190 }
2191 
2192 static void trace_recursive_unlock(void)
2193 {
2194 	WARN_ON_ONCE(!current->trace_recursion);
2195 
2196 	current->trace_recursion--;
2197 }
2198 
2199 #else
2200 
2201 #define trace_recursive_lock()		(0)
2202 #define trace_recursive_unlock()	do { } while (0)
2203 
2204 #endif
2205 
2206 static DEFINE_PER_CPU(int, rb_need_resched);
2207 
2208 /**
2209  * ring_buffer_lock_reserve - reserve a part of the buffer
2210  * @buffer: the ring buffer to reserve from
2211  * @length: the length of the data to reserve (excluding event header)
2212  *
2213  * Returns a reseverd event on the ring buffer to copy directly to.
2214  * The user of this interface will need to get the body to write into
2215  * and can use the ring_buffer_event_data() interface.
2216  *
2217  * The length is the length of the data needed, not the event length
2218  * which also includes the event header.
2219  *
2220  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2221  * If NULL is returned, then nothing has been allocated or locked.
2222  */
2223 struct ring_buffer_event *
2224 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2225 {
2226 	struct ring_buffer_per_cpu *cpu_buffer;
2227 	struct ring_buffer_event *event;
2228 	int cpu, resched;
2229 
2230 	if (ring_buffer_flags != RB_BUFFERS_ON)
2231 		return NULL;
2232 
2233 	if (atomic_read(&buffer->record_disabled))
2234 		return NULL;
2235 
2236 	/* If we are tracing schedule, we don't want to recurse */
2237 	resched = ftrace_preempt_disable();
2238 
2239 	if (trace_recursive_lock())
2240 		goto out_nocheck;
2241 
2242 	cpu = raw_smp_processor_id();
2243 
2244 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2245 		goto out;
2246 
2247 	cpu_buffer = buffer->buffers[cpu];
2248 
2249 	if (atomic_read(&cpu_buffer->record_disabled))
2250 		goto out;
2251 
2252 	if (length > BUF_MAX_DATA_SIZE)
2253 		goto out;
2254 
2255 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2256 	if (!event)
2257 		goto out;
2258 
2259 	/*
2260 	 * Need to store resched state on this cpu.
2261 	 * Only the first needs to.
2262 	 */
2263 
2264 	if (preempt_count() == 1)
2265 		per_cpu(rb_need_resched, cpu) = resched;
2266 
2267 	return event;
2268 
2269  out:
2270 	trace_recursive_unlock();
2271 
2272  out_nocheck:
2273 	ftrace_preempt_enable(resched);
2274 	return NULL;
2275 }
2276 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2277 
2278 static void
2279 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2280 		      struct ring_buffer_event *event)
2281 {
2282 	/*
2283 	 * The event first in the commit queue updates the
2284 	 * time stamp.
2285 	 */
2286 	if (rb_event_is_commit(cpu_buffer, event))
2287 		cpu_buffer->write_stamp += event->time_delta;
2288 }
2289 
2290 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2291 		      struct ring_buffer_event *event)
2292 {
2293 	local_inc(&cpu_buffer->entries);
2294 	rb_update_write_stamp(cpu_buffer, event);
2295 	rb_end_commit(cpu_buffer);
2296 }
2297 
2298 /**
2299  * ring_buffer_unlock_commit - commit a reserved
2300  * @buffer: The buffer to commit to
2301  * @event: The event pointer to commit.
2302  *
2303  * This commits the data to the ring buffer, and releases any locks held.
2304  *
2305  * Must be paired with ring_buffer_lock_reserve.
2306  */
2307 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2308 			      struct ring_buffer_event *event)
2309 {
2310 	struct ring_buffer_per_cpu *cpu_buffer;
2311 	int cpu = raw_smp_processor_id();
2312 
2313 	cpu_buffer = buffer->buffers[cpu];
2314 
2315 	rb_commit(cpu_buffer, event);
2316 
2317 	trace_recursive_unlock();
2318 
2319 	/*
2320 	 * Only the last preempt count needs to restore preemption.
2321 	 */
2322 	if (preempt_count() == 1)
2323 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2324 	else
2325 		preempt_enable_no_resched_notrace();
2326 
2327 	return 0;
2328 }
2329 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2330 
2331 static inline void rb_event_discard(struct ring_buffer_event *event)
2332 {
2333 	/* array[0] holds the actual length for the discarded event */
2334 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2335 	event->type_len = RINGBUF_TYPE_PADDING;
2336 	/* time delta must be non zero */
2337 	if (!event->time_delta)
2338 		event->time_delta = 1;
2339 }
2340 
2341 /*
2342  * Decrement the entries to the page that an event is on.
2343  * The event does not even need to exist, only the pointer
2344  * to the page it is on. This may only be called before the commit
2345  * takes place.
2346  */
2347 static inline void
2348 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2349 		   struct ring_buffer_event *event)
2350 {
2351 	unsigned long addr = (unsigned long)event;
2352 	struct buffer_page *bpage = cpu_buffer->commit_page;
2353 	struct buffer_page *start;
2354 
2355 	addr &= PAGE_MASK;
2356 
2357 	/* Do the likely case first */
2358 	if (likely(bpage->page == (void *)addr)) {
2359 		local_dec(&bpage->entries);
2360 		return;
2361 	}
2362 
2363 	/*
2364 	 * Because the commit page may be on the reader page we
2365 	 * start with the next page and check the end loop there.
2366 	 */
2367 	rb_inc_page(cpu_buffer, &bpage);
2368 	start = bpage;
2369 	do {
2370 		if (bpage->page == (void *)addr) {
2371 			local_dec(&bpage->entries);
2372 			return;
2373 		}
2374 		rb_inc_page(cpu_buffer, &bpage);
2375 	} while (bpage != start);
2376 
2377 	/* commit not part of this buffer?? */
2378 	RB_WARN_ON(cpu_buffer, 1);
2379 }
2380 
2381 /**
2382  * ring_buffer_commit_discard - discard an event that has not been committed
2383  * @buffer: the ring buffer
2384  * @event: non committed event to discard
2385  *
2386  * Sometimes an event that is in the ring buffer needs to be ignored.
2387  * This function lets the user discard an event in the ring buffer
2388  * and then that event will not be read later.
2389  *
2390  * This function only works if it is called before the the item has been
2391  * committed. It will try to free the event from the ring buffer
2392  * if another event has not been added behind it.
2393  *
2394  * If another event has been added behind it, it will set the event
2395  * up as discarded, and perform the commit.
2396  *
2397  * If this function is called, do not call ring_buffer_unlock_commit on
2398  * the event.
2399  */
2400 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2401 				struct ring_buffer_event *event)
2402 {
2403 	struct ring_buffer_per_cpu *cpu_buffer;
2404 	int cpu;
2405 
2406 	/* The event is discarded regardless */
2407 	rb_event_discard(event);
2408 
2409 	cpu = smp_processor_id();
2410 	cpu_buffer = buffer->buffers[cpu];
2411 
2412 	/*
2413 	 * This must only be called if the event has not been
2414 	 * committed yet. Thus we can assume that preemption
2415 	 * is still disabled.
2416 	 */
2417 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2418 
2419 	rb_decrement_entry(cpu_buffer, event);
2420 	if (rb_try_to_discard(cpu_buffer, event))
2421 		goto out;
2422 
2423 	/*
2424 	 * The commit is still visible by the reader, so we
2425 	 * must still update the timestamp.
2426 	 */
2427 	rb_update_write_stamp(cpu_buffer, event);
2428  out:
2429 	rb_end_commit(cpu_buffer);
2430 
2431 	trace_recursive_unlock();
2432 
2433 	/*
2434 	 * Only the last preempt count needs to restore preemption.
2435 	 */
2436 	if (preempt_count() == 1)
2437 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2438 	else
2439 		preempt_enable_no_resched_notrace();
2440 
2441 }
2442 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2443 
2444 /**
2445  * ring_buffer_write - write data to the buffer without reserving
2446  * @buffer: The ring buffer to write to.
2447  * @length: The length of the data being written (excluding the event header)
2448  * @data: The data to write to the buffer.
2449  *
2450  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2451  * one function. If you already have the data to write to the buffer, it
2452  * may be easier to simply call this function.
2453  *
2454  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2455  * and not the length of the event which would hold the header.
2456  */
2457 int ring_buffer_write(struct ring_buffer *buffer,
2458 			unsigned long length,
2459 			void *data)
2460 {
2461 	struct ring_buffer_per_cpu *cpu_buffer;
2462 	struct ring_buffer_event *event;
2463 	void *body;
2464 	int ret = -EBUSY;
2465 	int cpu, resched;
2466 
2467 	if (ring_buffer_flags != RB_BUFFERS_ON)
2468 		return -EBUSY;
2469 
2470 	if (atomic_read(&buffer->record_disabled))
2471 		return -EBUSY;
2472 
2473 	resched = ftrace_preempt_disable();
2474 
2475 	cpu = raw_smp_processor_id();
2476 
2477 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2478 		goto out;
2479 
2480 	cpu_buffer = buffer->buffers[cpu];
2481 
2482 	if (atomic_read(&cpu_buffer->record_disabled))
2483 		goto out;
2484 
2485 	if (length > BUF_MAX_DATA_SIZE)
2486 		goto out;
2487 
2488 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2489 	if (!event)
2490 		goto out;
2491 
2492 	body = rb_event_data(event);
2493 
2494 	memcpy(body, data, length);
2495 
2496 	rb_commit(cpu_buffer, event);
2497 
2498 	ret = 0;
2499  out:
2500 	ftrace_preempt_enable(resched);
2501 
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(ring_buffer_write);
2505 
2506 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2507 {
2508 	struct buffer_page *reader = cpu_buffer->reader_page;
2509 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2510 	struct buffer_page *commit = cpu_buffer->commit_page;
2511 
2512 	/* In case of error, head will be NULL */
2513 	if (unlikely(!head))
2514 		return 1;
2515 
2516 	return reader->read == rb_page_commit(reader) &&
2517 		(commit == reader ||
2518 		 (commit == head &&
2519 		  head->read == rb_page_commit(commit)));
2520 }
2521 
2522 /**
2523  * ring_buffer_record_disable - stop all writes into the buffer
2524  * @buffer: The ring buffer to stop writes to.
2525  *
2526  * This prevents all writes to the buffer. Any attempt to write
2527  * to the buffer after this will fail and return NULL.
2528  *
2529  * The caller should call synchronize_sched() after this.
2530  */
2531 void ring_buffer_record_disable(struct ring_buffer *buffer)
2532 {
2533 	atomic_inc(&buffer->record_disabled);
2534 }
2535 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2536 
2537 /**
2538  * ring_buffer_record_enable - enable writes to the buffer
2539  * @buffer: The ring buffer to enable writes
2540  *
2541  * Note, multiple disables will need the same number of enables
2542  * to truely enable the writing (much like preempt_disable).
2543  */
2544 void ring_buffer_record_enable(struct ring_buffer *buffer)
2545 {
2546 	atomic_dec(&buffer->record_disabled);
2547 }
2548 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2549 
2550 /**
2551  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2552  * @buffer: The ring buffer to stop writes to.
2553  * @cpu: The CPU buffer to stop
2554  *
2555  * This prevents all writes to the buffer. Any attempt to write
2556  * to the buffer after this will fail and return NULL.
2557  *
2558  * The caller should call synchronize_sched() after this.
2559  */
2560 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2561 {
2562 	struct ring_buffer_per_cpu *cpu_buffer;
2563 
2564 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2565 		return;
2566 
2567 	cpu_buffer = buffer->buffers[cpu];
2568 	atomic_inc(&cpu_buffer->record_disabled);
2569 }
2570 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2571 
2572 /**
2573  * ring_buffer_record_enable_cpu - enable writes to the buffer
2574  * @buffer: The ring buffer to enable writes
2575  * @cpu: The CPU to enable.
2576  *
2577  * Note, multiple disables will need the same number of enables
2578  * to truely enable the writing (much like preempt_disable).
2579  */
2580 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2581 {
2582 	struct ring_buffer_per_cpu *cpu_buffer;
2583 
2584 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2585 		return;
2586 
2587 	cpu_buffer = buffer->buffers[cpu];
2588 	atomic_dec(&cpu_buffer->record_disabled);
2589 }
2590 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2591 
2592 /**
2593  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2594  * @buffer: The ring buffer
2595  * @cpu: The per CPU buffer to get the entries from.
2596  */
2597 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2598 {
2599 	struct ring_buffer_per_cpu *cpu_buffer;
2600 	unsigned long ret;
2601 
2602 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2603 		return 0;
2604 
2605 	cpu_buffer = buffer->buffers[cpu];
2606 	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2607 		- cpu_buffer->read;
2608 
2609 	return ret;
2610 }
2611 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2612 
2613 /**
2614  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2615  * @buffer: The ring buffer
2616  * @cpu: The per CPU buffer to get the number of overruns from
2617  */
2618 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2619 {
2620 	struct ring_buffer_per_cpu *cpu_buffer;
2621 	unsigned long ret;
2622 
2623 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2624 		return 0;
2625 
2626 	cpu_buffer = buffer->buffers[cpu];
2627 	ret = local_read(&cpu_buffer->overrun);
2628 
2629 	return ret;
2630 }
2631 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2632 
2633 /**
2634  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2635  * @buffer: The ring buffer
2636  * @cpu: The per CPU buffer to get the number of overruns from
2637  */
2638 unsigned long
2639 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2640 {
2641 	struct ring_buffer_per_cpu *cpu_buffer;
2642 	unsigned long ret;
2643 
2644 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2645 		return 0;
2646 
2647 	cpu_buffer = buffer->buffers[cpu];
2648 	ret = local_read(&cpu_buffer->commit_overrun);
2649 
2650 	return ret;
2651 }
2652 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2653 
2654 /**
2655  * ring_buffer_entries - get the number of entries in a buffer
2656  * @buffer: The ring buffer
2657  *
2658  * Returns the total number of entries in the ring buffer
2659  * (all CPU entries)
2660  */
2661 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2662 {
2663 	struct ring_buffer_per_cpu *cpu_buffer;
2664 	unsigned long entries = 0;
2665 	int cpu;
2666 
2667 	/* if you care about this being correct, lock the buffer */
2668 	for_each_buffer_cpu(buffer, cpu) {
2669 		cpu_buffer = buffer->buffers[cpu];
2670 		entries += (local_read(&cpu_buffer->entries) -
2671 			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2672 	}
2673 
2674 	return entries;
2675 }
2676 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2677 
2678 /**
2679  * ring_buffer_overruns - get the number of overruns in buffer
2680  * @buffer: The ring buffer
2681  *
2682  * Returns the total number of overruns in the ring buffer
2683  * (all CPU entries)
2684  */
2685 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2686 {
2687 	struct ring_buffer_per_cpu *cpu_buffer;
2688 	unsigned long overruns = 0;
2689 	int cpu;
2690 
2691 	/* if you care about this being correct, lock the buffer */
2692 	for_each_buffer_cpu(buffer, cpu) {
2693 		cpu_buffer = buffer->buffers[cpu];
2694 		overruns += local_read(&cpu_buffer->overrun);
2695 	}
2696 
2697 	return overruns;
2698 }
2699 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2700 
2701 static void rb_iter_reset(struct ring_buffer_iter *iter)
2702 {
2703 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2704 
2705 	/* Iterator usage is expected to have record disabled */
2706 	if (list_empty(&cpu_buffer->reader_page->list)) {
2707 		iter->head_page = rb_set_head_page(cpu_buffer);
2708 		if (unlikely(!iter->head_page))
2709 			return;
2710 		iter->head = iter->head_page->read;
2711 	} else {
2712 		iter->head_page = cpu_buffer->reader_page;
2713 		iter->head = cpu_buffer->reader_page->read;
2714 	}
2715 	if (iter->head)
2716 		iter->read_stamp = cpu_buffer->read_stamp;
2717 	else
2718 		iter->read_stamp = iter->head_page->page->time_stamp;
2719 }
2720 
2721 /**
2722  * ring_buffer_iter_reset - reset an iterator
2723  * @iter: The iterator to reset
2724  *
2725  * Resets the iterator, so that it will start from the beginning
2726  * again.
2727  */
2728 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2729 {
2730 	struct ring_buffer_per_cpu *cpu_buffer;
2731 	unsigned long flags;
2732 
2733 	if (!iter)
2734 		return;
2735 
2736 	cpu_buffer = iter->cpu_buffer;
2737 
2738 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2739 	rb_iter_reset(iter);
2740 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2741 }
2742 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2743 
2744 /**
2745  * ring_buffer_iter_empty - check if an iterator has no more to read
2746  * @iter: The iterator to check
2747  */
2748 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2749 {
2750 	struct ring_buffer_per_cpu *cpu_buffer;
2751 
2752 	cpu_buffer = iter->cpu_buffer;
2753 
2754 	return iter->head_page == cpu_buffer->commit_page &&
2755 		iter->head == rb_commit_index(cpu_buffer);
2756 }
2757 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2758 
2759 static void
2760 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2761 		     struct ring_buffer_event *event)
2762 {
2763 	u64 delta;
2764 
2765 	switch (event->type_len) {
2766 	case RINGBUF_TYPE_PADDING:
2767 		return;
2768 
2769 	case RINGBUF_TYPE_TIME_EXTEND:
2770 		delta = event->array[0];
2771 		delta <<= TS_SHIFT;
2772 		delta += event->time_delta;
2773 		cpu_buffer->read_stamp += delta;
2774 		return;
2775 
2776 	case RINGBUF_TYPE_TIME_STAMP:
2777 		/* FIXME: not implemented */
2778 		return;
2779 
2780 	case RINGBUF_TYPE_DATA:
2781 		cpu_buffer->read_stamp += event->time_delta;
2782 		return;
2783 
2784 	default:
2785 		BUG();
2786 	}
2787 	return;
2788 }
2789 
2790 static void
2791 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2792 			  struct ring_buffer_event *event)
2793 {
2794 	u64 delta;
2795 
2796 	switch (event->type_len) {
2797 	case RINGBUF_TYPE_PADDING:
2798 		return;
2799 
2800 	case RINGBUF_TYPE_TIME_EXTEND:
2801 		delta = event->array[0];
2802 		delta <<= TS_SHIFT;
2803 		delta += event->time_delta;
2804 		iter->read_stamp += delta;
2805 		return;
2806 
2807 	case RINGBUF_TYPE_TIME_STAMP:
2808 		/* FIXME: not implemented */
2809 		return;
2810 
2811 	case RINGBUF_TYPE_DATA:
2812 		iter->read_stamp += event->time_delta;
2813 		return;
2814 
2815 	default:
2816 		BUG();
2817 	}
2818 	return;
2819 }
2820 
2821 static struct buffer_page *
2822 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2823 {
2824 	struct buffer_page *reader = NULL;
2825 	unsigned long flags;
2826 	int nr_loops = 0;
2827 	int ret;
2828 
2829 	local_irq_save(flags);
2830 	arch_spin_lock(&cpu_buffer->lock);
2831 
2832  again:
2833 	/*
2834 	 * This should normally only loop twice. But because the
2835 	 * start of the reader inserts an empty page, it causes
2836 	 * a case where we will loop three times. There should be no
2837 	 * reason to loop four times (that I know of).
2838 	 */
2839 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2840 		reader = NULL;
2841 		goto out;
2842 	}
2843 
2844 	reader = cpu_buffer->reader_page;
2845 
2846 	/* If there's more to read, return this page */
2847 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2848 		goto out;
2849 
2850 	/* Never should we have an index greater than the size */
2851 	if (RB_WARN_ON(cpu_buffer,
2852 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2853 		goto out;
2854 
2855 	/* check if we caught up to the tail */
2856 	reader = NULL;
2857 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2858 		goto out;
2859 
2860 	/*
2861 	 * Reset the reader page to size zero.
2862 	 */
2863 	local_set(&cpu_buffer->reader_page->write, 0);
2864 	local_set(&cpu_buffer->reader_page->entries, 0);
2865 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2866 
2867  spin:
2868 	/*
2869 	 * Splice the empty reader page into the list around the head.
2870 	 */
2871 	reader = rb_set_head_page(cpu_buffer);
2872 	cpu_buffer->reader_page->list.next = reader->list.next;
2873 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2874 
2875 	/*
2876 	 * cpu_buffer->pages just needs to point to the buffer, it
2877 	 *  has no specific buffer page to point to. Lets move it out
2878 	 *  of our way so we don't accidently swap it.
2879 	 */
2880 	cpu_buffer->pages = reader->list.prev;
2881 
2882 	/* The reader page will be pointing to the new head */
2883 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2884 
2885 	/*
2886 	 * Here's the tricky part.
2887 	 *
2888 	 * We need to move the pointer past the header page.
2889 	 * But we can only do that if a writer is not currently
2890 	 * moving it. The page before the header page has the
2891 	 * flag bit '1' set if it is pointing to the page we want.
2892 	 * but if the writer is in the process of moving it
2893 	 * than it will be '2' or already moved '0'.
2894 	 */
2895 
2896 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2897 
2898 	/*
2899 	 * If we did not convert it, then we must try again.
2900 	 */
2901 	if (!ret)
2902 		goto spin;
2903 
2904 	/*
2905 	 * Yeah! We succeeded in replacing the page.
2906 	 *
2907 	 * Now make the new head point back to the reader page.
2908 	 */
2909 	reader->list.next->prev = &cpu_buffer->reader_page->list;
2910 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2911 
2912 	/* Finally update the reader page to the new head */
2913 	cpu_buffer->reader_page = reader;
2914 	rb_reset_reader_page(cpu_buffer);
2915 
2916 	goto again;
2917 
2918  out:
2919 	arch_spin_unlock(&cpu_buffer->lock);
2920 	local_irq_restore(flags);
2921 
2922 	return reader;
2923 }
2924 
2925 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2926 {
2927 	struct ring_buffer_event *event;
2928 	struct buffer_page *reader;
2929 	unsigned length;
2930 
2931 	reader = rb_get_reader_page(cpu_buffer);
2932 
2933 	/* This function should not be called when buffer is empty */
2934 	if (RB_WARN_ON(cpu_buffer, !reader))
2935 		return;
2936 
2937 	event = rb_reader_event(cpu_buffer);
2938 
2939 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2940 		cpu_buffer->read++;
2941 
2942 	rb_update_read_stamp(cpu_buffer, event);
2943 
2944 	length = rb_event_length(event);
2945 	cpu_buffer->reader_page->read += length;
2946 }
2947 
2948 static void rb_advance_iter(struct ring_buffer_iter *iter)
2949 {
2950 	struct ring_buffer *buffer;
2951 	struct ring_buffer_per_cpu *cpu_buffer;
2952 	struct ring_buffer_event *event;
2953 	unsigned length;
2954 
2955 	cpu_buffer = iter->cpu_buffer;
2956 	buffer = cpu_buffer->buffer;
2957 
2958 	/*
2959 	 * Check if we are at the end of the buffer.
2960 	 */
2961 	if (iter->head >= rb_page_size(iter->head_page)) {
2962 		/* discarded commits can make the page empty */
2963 		if (iter->head_page == cpu_buffer->commit_page)
2964 			return;
2965 		rb_inc_iter(iter);
2966 		return;
2967 	}
2968 
2969 	event = rb_iter_head_event(iter);
2970 
2971 	length = rb_event_length(event);
2972 
2973 	/*
2974 	 * This should not be called to advance the header if we are
2975 	 * at the tail of the buffer.
2976 	 */
2977 	if (RB_WARN_ON(cpu_buffer,
2978 		       (iter->head_page == cpu_buffer->commit_page) &&
2979 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2980 		return;
2981 
2982 	rb_update_iter_read_stamp(iter, event);
2983 
2984 	iter->head += length;
2985 
2986 	/* check for end of page padding */
2987 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2988 	    (iter->head_page != cpu_buffer->commit_page))
2989 		rb_advance_iter(iter);
2990 }
2991 
2992 static struct ring_buffer_event *
2993 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
2994 {
2995 	struct ring_buffer_event *event;
2996 	struct buffer_page *reader;
2997 	int nr_loops = 0;
2998 
2999  again:
3000 	/*
3001 	 * We repeat when a timestamp is encountered. It is possible
3002 	 * to get multiple timestamps from an interrupt entering just
3003 	 * as one timestamp is about to be written, or from discarded
3004 	 * commits. The most that we can have is the number on a single page.
3005 	 */
3006 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3007 		return NULL;
3008 
3009 	reader = rb_get_reader_page(cpu_buffer);
3010 	if (!reader)
3011 		return NULL;
3012 
3013 	event = rb_reader_event(cpu_buffer);
3014 
3015 	switch (event->type_len) {
3016 	case RINGBUF_TYPE_PADDING:
3017 		if (rb_null_event(event))
3018 			RB_WARN_ON(cpu_buffer, 1);
3019 		/*
3020 		 * Because the writer could be discarding every
3021 		 * event it creates (which would probably be bad)
3022 		 * if we were to go back to "again" then we may never
3023 		 * catch up, and will trigger the warn on, or lock
3024 		 * the box. Return the padding, and we will release
3025 		 * the current locks, and try again.
3026 		 */
3027 		return event;
3028 
3029 	case RINGBUF_TYPE_TIME_EXTEND:
3030 		/* Internal data, OK to advance */
3031 		rb_advance_reader(cpu_buffer);
3032 		goto again;
3033 
3034 	case RINGBUF_TYPE_TIME_STAMP:
3035 		/* FIXME: not implemented */
3036 		rb_advance_reader(cpu_buffer);
3037 		goto again;
3038 
3039 	case RINGBUF_TYPE_DATA:
3040 		if (ts) {
3041 			*ts = cpu_buffer->read_stamp + event->time_delta;
3042 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3043 							 cpu_buffer->cpu, ts);
3044 		}
3045 		return event;
3046 
3047 	default:
3048 		BUG();
3049 	}
3050 
3051 	return NULL;
3052 }
3053 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3054 
3055 static struct ring_buffer_event *
3056 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3057 {
3058 	struct ring_buffer *buffer;
3059 	struct ring_buffer_per_cpu *cpu_buffer;
3060 	struct ring_buffer_event *event;
3061 	int nr_loops = 0;
3062 
3063 	if (ring_buffer_iter_empty(iter))
3064 		return NULL;
3065 
3066 	cpu_buffer = iter->cpu_buffer;
3067 	buffer = cpu_buffer->buffer;
3068 
3069  again:
3070 	/*
3071 	 * We repeat when a timestamp is encountered.
3072 	 * We can get multiple timestamps by nested interrupts or also
3073 	 * if filtering is on (discarding commits). Since discarding
3074 	 * commits can be frequent we can get a lot of timestamps.
3075 	 * But we limit them by not adding timestamps if they begin
3076 	 * at the start of a page.
3077 	 */
3078 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3079 		return NULL;
3080 
3081 	if (rb_per_cpu_empty(cpu_buffer))
3082 		return NULL;
3083 
3084 	event = rb_iter_head_event(iter);
3085 
3086 	switch (event->type_len) {
3087 	case RINGBUF_TYPE_PADDING:
3088 		if (rb_null_event(event)) {
3089 			rb_inc_iter(iter);
3090 			goto again;
3091 		}
3092 		rb_advance_iter(iter);
3093 		return event;
3094 
3095 	case RINGBUF_TYPE_TIME_EXTEND:
3096 		/* Internal data, OK to advance */
3097 		rb_advance_iter(iter);
3098 		goto again;
3099 
3100 	case RINGBUF_TYPE_TIME_STAMP:
3101 		/* FIXME: not implemented */
3102 		rb_advance_iter(iter);
3103 		goto again;
3104 
3105 	case RINGBUF_TYPE_DATA:
3106 		if (ts) {
3107 			*ts = iter->read_stamp + event->time_delta;
3108 			ring_buffer_normalize_time_stamp(buffer,
3109 							 cpu_buffer->cpu, ts);
3110 		}
3111 		return event;
3112 
3113 	default:
3114 		BUG();
3115 	}
3116 
3117 	return NULL;
3118 }
3119 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3120 
3121 static inline int rb_ok_to_lock(void)
3122 {
3123 	/*
3124 	 * If an NMI die dumps out the content of the ring buffer
3125 	 * do not grab locks. We also permanently disable the ring
3126 	 * buffer too. A one time deal is all you get from reading
3127 	 * the ring buffer from an NMI.
3128 	 */
3129 	if (likely(!in_nmi()))
3130 		return 1;
3131 
3132 	tracing_off_permanent();
3133 	return 0;
3134 }
3135 
3136 /**
3137  * ring_buffer_peek - peek at the next event to be read
3138  * @buffer: The ring buffer to read
3139  * @cpu: The cpu to peak at
3140  * @ts: The timestamp counter of this event.
3141  *
3142  * This will return the event that will be read next, but does
3143  * not consume the data.
3144  */
3145 struct ring_buffer_event *
3146 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3147 {
3148 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3149 	struct ring_buffer_event *event;
3150 	unsigned long flags;
3151 	int dolock;
3152 
3153 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3154 		return NULL;
3155 
3156 	dolock = rb_ok_to_lock();
3157  again:
3158 	local_irq_save(flags);
3159 	if (dolock)
3160 		spin_lock(&cpu_buffer->reader_lock);
3161 	event = rb_buffer_peek(cpu_buffer, ts);
3162 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3163 		rb_advance_reader(cpu_buffer);
3164 	if (dolock)
3165 		spin_unlock(&cpu_buffer->reader_lock);
3166 	local_irq_restore(flags);
3167 
3168 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3169 		goto again;
3170 
3171 	return event;
3172 }
3173 
3174 /**
3175  * ring_buffer_iter_peek - peek at the next event to be read
3176  * @iter: The ring buffer iterator
3177  * @ts: The timestamp counter of this event.
3178  *
3179  * This will return the event that will be read next, but does
3180  * not increment the iterator.
3181  */
3182 struct ring_buffer_event *
3183 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3184 {
3185 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3186 	struct ring_buffer_event *event;
3187 	unsigned long flags;
3188 
3189  again:
3190 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3191 	event = rb_iter_peek(iter, ts);
3192 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3193 
3194 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3195 		goto again;
3196 
3197 	return event;
3198 }
3199 
3200 /**
3201  * ring_buffer_consume - return an event and consume it
3202  * @buffer: The ring buffer to get the next event from
3203  *
3204  * Returns the next event in the ring buffer, and that event is consumed.
3205  * Meaning, that sequential reads will keep returning a different event,
3206  * and eventually empty the ring buffer if the producer is slower.
3207  */
3208 struct ring_buffer_event *
3209 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3210 {
3211 	struct ring_buffer_per_cpu *cpu_buffer;
3212 	struct ring_buffer_event *event = NULL;
3213 	unsigned long flags;
3214 	int dolock;
3215 
3216 	dolock = rb_ok_to_lock();
3217 
3218  again:
3219 	/* might be called in atomic */
3220 	preempt_disable();
3221 
3222 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3223 		goto out;
3224 
3225 	cpu_buffer = buffer->buffers[cpu];
3226 	local_irq_save(flags);
3227 	if (dolock)
3228 		spin_lock(&cpu_buffer->reader_lock);
3229 
3230 	event = rb_buffer_peek(cpu_buffer, ts);
3231 	if (event)
3232 		rb_advance_reader(cpu_buffer);
3233 
3234 	if (dolock)
3235 		spin_unlock(&cpu_buffer->reader_lock);
3236 	local_irq_restore(flags);
3237 
3238  out:
3239 	preempt_enable();
3240 
3241 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3242 		goto again;
3243 
3244 	return event;
3245 }
3246 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3247 
3248 /**
3249  * ring_buffer_read_start - start a non consuming read of the buffer
3250  * @buffer: The ring buffer to read from
3251  * @cpu: The cpu buffer to iterate over
3252  *
3253  * This starts up an iteration through the buffer. It also disables
3254  * the recording to the buffer until the reading is finished.
3255  * This prevents the reading from being corrupted. This is not
3256  * a consuming read, so a producer is not expected.
3257  *
3258  * Must be paired with ring_buffer_finish.
3259  */
3260 struct ring_buffer_iter *
3261 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3262 {
3263 	struct ring_buffer_per_cpu *cpu_buffer;
3264 	struct ring_buffer_iter *iter;
3265 	unsigned long flags;
3266 
3267 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3268 		return NULL;
3269 
3270 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3271 	if (!iter)
3272 		return NULL;
3273 
3274 	cpu_buffer = buffer->buffers[cpu];
3275 
3276 	iter->cpu_buffer = cpu_buffer;
3277 
3278 	atomic_inc(&cpu_buffer->record_disabled);
3279 	synchronize_sched();
3280 
3281 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3282 	arch_spin_lock(&cpu_buffer->lock);
3283 	rb_iter_reset(iter);
3284 	arch_spin_unlock(&cpu_buffer->lock);
3285 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3286 
3287 	return iter;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3290 
3291 /**
3292  * ring_buffer_finish - finish reading the iterator of the buffer
3293  * @iter: The iterator retrieved by ring_buffer_start
3294  *
3295  * This re-enables the recording to the buffer, and frees the
3296  * iterator.
3297  */
3298 void
3299 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3300 {
3301 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3302 
3303 	atomic_dec(&cpu_buffer->record_disabled);
3304 	kfree(iter);
3305 }
3306 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3307 
3308 /**
3309  * ring_buffer_read - read the next item in the ring buffer by the iterator
3310  * @iter: The ring buffer iterator
3311  * @ts: The time stamp of the event read.
3312  *
3313  * This reads the next event in the ring buffer and increments the iterator.
3314  */
3315 struct ring_buffer_event *
3316 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3317 {
3318 	struct ring_buffer_event *event;
3319 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3320 	unsigned long flags;
3321 
3322 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3323  again:
3324 	event = rb_iter_peek(iter, ts);
3325 	if (!event)
3326 		goto out;
3327 
3328 	if (event->type_len == RINGBUF_TYPE_PADDING)
3329 		goto again;
3330 
3331 	rb_advance_iter(iter);
3332  out:
3333 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3334 
3335 	return event;
3336 }
3337 EXPORT_SYMBOL_GPL(ring_buffer_read);
3338 
3339 /**
3340  * ring_buffer_size - return the size of the ring buffer (in bytes)
3341  * @buffer: The ring buffer.
3342  */
3343 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3344 {
3345 	return BUF_PAGE_SIZE * buffer->pages;
3346 }
3347 EXPORT_SYMBOL_GPL(ring_buffer_size);
3348 
3349 static void
3350 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3351 {
3352 	rb_head_page_deactivate(cpu_buffer);
3353 
3354 	cpu_buffer->head_page
3355 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3356 	local_set(&cpu_buffer->head_page->write, 0);
3357 	local_set(&cpu_buffer->head_page->entries, 0);
3358 	local_set(&cpu_buffer->head_page->page->commit, 0);
3359 
3360 	cpu_buffer->head_page->read = 0;
3361 
3362 	cpu_buffer->tail_page = cpu_buffer->head_page;
3363 	cpu_buffer->commit_page = cpu_buffer->head_page;
3364 
3365 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3366 	local_set(&cpu_buffer->reader_page->write, 0);
3367 	local_set(&cpu_buffer->reader_page->entries, 0);
3368 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3369 	cpu_buffer->reader_page->read = 0;
3370 
3371 	local_set(&cpu_buffer->commit_overrun, 0);
3372 	local_set(&cpu_buffer->overrun, 0);
3373 	local_set(&cpu_buffer->entries, 0);
3374 	local_set(&cpu_buffer->committing, 0);
3375 	local_set(&cpu_buffer->commits, 0);
3376 	cpu_buffer->read = 0;
3377 
3378 	cpu_buffer->write_stamp = 0;
3379 	cpu_buffer->read_stamp = 0;
3380 
3381 	rb_head_page_activate(cpu_buffer);
3382 }
3383 
3384 /**
3385  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3386  * @buffer: The ring buffer to reset a per cpu buffer of
3387  * @cpu: The CPU buffer to be reset
3388  */
3389 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3390 {
3391 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3392 	unsigned long flags;
3393 
3394 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3395 		return;
3396 
3397 	atomic_inc(&cpu_buffer->record_disabled);
3398 
3399 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3400 
3401 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3402 		goto out;
3403 
3404 	arch_spin_lock(&cpu_buffer->lock);
3405 
3406 	rb_reset_cpu(cpu_buffer);
3407 
3408 	arch_spin_unlock(&cpu_buffer->lock);
3409 
3410  out:
3411 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3412 
3413 	atomic_dec(&cpu_buffer->record_disabled);
3414 }
3415 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3416 
3417 /**
3418  * ring_buffer_reset - reset a ring buffer
3419  * @buffer: The ring buffer to reset all cpu buffers
3420  */
3421 void ring_buffer_reset(struct ring_buffer *buffer)
3422 {
3423 	int cpu;
3424 
3425 	for_each_buffer_cpu(buffer, cpu)
3426 		ring_buffer_reset_cpu(buffer, cpu);
3427 }
3428 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3429 
3430 /**
3431  * rind_buffer_empty - is the ring buffer empty?
3432  * @buffer: The ring buffer to test
3433  */
3434 int ring_buffer_empty(struct ring_buffer *buffer)
3435 {
3436 	struct ring_buffer_per_cpu *cpu_buffer;
3437 	unsigned long flags;
3438 	int dolock;
3439 	int cpu;
3440 	int ret;
3441 
3442 	dolock = rb_ok_to_lock();
3443 
3444 	/* yes this is racy, but if you don't like the race, lock the buffer */
3445 	for_each_buffer_cpu(buffer, cpu) {
3446 		cpu_buffer = buffer->buffers[cpu];
3447 		local_irq_save(flags);
3448 		if (dolock)
3449 			spin_lock(&cpu_buffer->reader_lock);
3450 		ret = rb_per_cpu_empty(cpu_buffer);
3451 		if (dolock)
3452 			spin_unlock(&cpu_buffer->reader_lock);
3453 		local_irq_restore(flags);
3454 
3455 		if (!ret)
3456 			return 0;
3457 	}
3458 
3459 	return 1;
3460 }
3461 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3462 
3463 /**
3464  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3465  * @buffer: The ring buffer
3466  * @cpu: The CPU buffer to test
3467  */
3468 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3469 {
3470 	struct ring_buffer_per_cpu *cpu_buffer;
3471 	unsigned long flags;
3472 	int dolock;
3473 	int ret;
3474 
3475 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3476 		return 1;
3477 
3478 	dolock = rb_ok_to_lock();
3479 
3480 	cpu_buffer = buffer->buffers[cpu];
3481 	local_irq_save(flags);
3482 	if (dolock)
3483 		spin_lock(&cpu_buffer->reader_lock);
3484 	ret = rb_per_cpu_empty(cpu_buffer);
3485 	if (dolock)
3486 		spin_unlock(&cpu_buffer->reader_lock);
3487 	local_irq_restore(flags);
3488 
3489 	return ret;
3490 }
3491 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3492 
3493 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3494 /**
3495  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3496  * @buffer_a: One buffer to swap with
3497  * @buffer_b: The other buffer to swap with
3498  *
3499  * This function is useful for tracers that want to take a "snapshot"
3500  * of a CPU buffer and has another back up buffer lying around.
3501  * it is expected that the tracer handles the cpu buffer not being
3502  * used at the moment.
3503  */
3504 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3505 			 struct ring_buffer *buffer_b, int cpu)
3506 {
3507 	struct ring_buffer_per_cpu *cpu_buffer_a;
3508 	struct ring_buffer_per_cpu *cpu_buffer_b;
3509 	int ret = -EINVAL;
3510 
3511 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3512 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3513 		goto out;
3514 
3515 	/* At least make sure the two buffers are somewhat the same */
3516 	if (buffer_a->pages != buffer_b->pages)
3517 		goto out;
3518 
3519 	ret = -EAGAIN;
3520 
3521 	if (ring_buffer_flags != RB_BUFFERS_ON)
3522 		goto out;
3523 
3524 	if (atomic_read(&buffer_a->record_disabled))
3525 		goto out;
3526 
3527 	if (atomic_read(&buffer_b->record_disabled))
3528 		goto out;
3529 
3530 	cpu_buffer_a = buffer_a->buffers[cpu];
3531 	cpu_buffer_b = buffer_b->buffers[cpu];
3532 
3533 	if (atomic_read(&cpu_buffer_a->record_disabled))
3534 		goto out;
3535 
3536 	if (atomic_read(&cpu_buffer_b->record_disabled))
3537 		goto out;
3538 
3539 	/*
3540 	 * We can't do a synchronize_sched here because this
3541 	 * function can be called in atomic context.
3542 	 * Normally this will be called from the same CPU as cpu.
3543 	 * If not it's up to the caller to protect this.
3544 	 */
3545 	atomic_inc(&cpu_buffer_a->record_disabled);
3546 	atomic_inc(&cpu_buffer_b->record_disabled);
3547 
3548 	ret = -EBUSY;
3549 	if (local_read(&cpu_buffer_a->committing))
3550 		goto out_dec;
3551 	if (local_read(&cpu_buffer_b->committing))
3552 		goto out_dec;
3553 
3554 	buffer_a->buffers[cpu] = cpu_buffer_b;
3555 	buffer_b->buffers[cpu] = cpu_buffer_a;
3556 
3557 	cpu_buffer_b->buffer = buffer_a;
3558 	cpu_buffer_a->buffer = buffer_b;
3559 
3560 	ret = 0;
3561 
3562 out_dec:
3563 	atomic_dec(&cpu_buffer_a->record_disabled);
3564 	atomic_dec(&cpu_buffer_b->record_disabled);
3565 out:
3566 	return ret;
3567 }
3568 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3569 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3570 
3571 /**
3572  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3573  * @buffer: the buffer to allocate for.
3574  *
3575  * This function is used in conjunction with ring_buffer_read_page.
3576  * When reading a full page from the ring buffer, these functions
3577  * can be used to speed up the process. The calling function should
3578  * allocate a few pages first with this function. Then when it
3579  * needs to get pages from the ring buffer, it passes the result
3580  * of this function into ring_buffer_read_page, which will swap
3581  * the page that was allocated, with the read page of the buffer.
3582  *
3583  * Returns:
3584  *  The page allocated, or NULL on error.
3585  */
3586 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3587 {
3588 	struct buffer_data_page *bpage;
3589 	unsigned long addr;
3590 
3591 	addr = __get_free_page(GFP_KERNEL);
3592 	if (!addr)
3593 		return NULL;
3594 
3595 	bpage = (void *)addr;
3596 
3597 	rb_init_page(bpage);
3598 
3599 	return bpage;
3600 }
3601 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3602 
3603 /**
3604  * ring_buffer_free_read_page - free an allocated read page
3605  * @buffer: the buffer the page was allocate for
3606  * @data: the page to free
3607  *
3608  * Free a page allocated from ring_buffer_alloc_read_page.
3609  */
3610 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3611 {
3612 	free_page((unsigned long)data);
3613 }
3614 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3615 
3616 /**
3617  * ring_buffer_read_page - extract a page from the ring buffer
3618  * @buffer: buffer to extract from
3619  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3620  * @len: amount to extract
3621  * @cpu: the cpu of the buffer to extract
3622  * @full: should the extraction only happen when the page is full.
3623  *
3624  * This function will pull out a page from the ring buffer and consume it.
3625  * @data_page must be the address of the variable that was returned
3626  * from ring_buffer_alloc_read_page. This is because the page might be used
3627  * to swap with a page in the ring buffer.
3628  *
3629  * for example:
3630  *	rpage = ring_buffer_alloc_read_page(buffer);
3631  *	if (!rpage)
3632  *		return error;
3633  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3634  *	if (ret >= 0)
3635  *		process_page(rpage, ret);
3636  *
3637  * When @full is set, the function will not return true unless
3638  * the writer is off the reader page.
3639  *
3640  * Note: it is up to the calling functions to handle sleeps and wakeups.
3641  *  The ring buffer can be used anywhere in the kernel and can not
3642  *  blindly call wake_up. The layer that uses the ring buffer must be
3643  *  responsible for that.
3644  *
3645  * Returns:
3646  *  >=0 if data has been transferred, returns the offset of consumed data.
3647  *  <0 if no data has been transferred.
3648  */
3649 int ring_buffer_read_page(struct ring_buffer *buffer,
3650 			  void **data_page, size_t len, int cpu, int full)
3651 {
3652 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3653 	struct ring_buffer_event *event;
3654 	struct buffer_data_page *bpage;
3655 	struct buffer_page *reader;
3656 	unsigned long flags;
3657 	unsigned int commit;
3658 	unsigned int read;
3659 	u64 save_timestamp;
3660 	int ret = -1;
3661 
3662 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3663 		goto out;
3664 
3665 	/*
3666 	 * If len is not big enough to hold the page header, then
3667 	 * we can not copy anything.
3668 	 */
3669 	if (len <= BUF_PAGE_HDR_SIZE)
3670 		goto out;
3671 
3672 	len -= BUF_PAGE_HDR_SIZE;
3673 
3674 	if (!data_page)
3675 		goto out;
3676 
3677 	bpage = *data_page;
3678 	if (!bpage)
3679 		goto out;
3680 
3681 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3682 
3683 	reader = rb_get_reader_page(cpu_buffer);
3684 	if (!reader)
3685 		goto out_unlock;
3686 
3687 	event = rb_reader_event(cpu_buffer);
3688 
3689 	read = reader->read;
3690 	commit = rb_page_commit(reader);
3691 
3692 	/*
3693 	 * If this page has been partially read or
3694 	 * if len is not big enough to read the rest of the page or
3695 	 * a writer is still on the page, then
3696 	 * we must copy the data from the page to the buffer.
3697 	 * Otherwise, we can simply swap the page with the one passed in.
3698 	 */
3699 	if (read || (len < (commit - read)) ||
3700 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3701 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3702 		unsigned int rpos = read;
3703 		unsigned int pos = 0;
3704 		unsigned int size;
3705 
3706 		if (full)
3707 			goto out_unlock;
3708 
3709 		if (len > (commit - read))
3710 			len = (commit - read);
3711 
3712 		size = rb_event_length(event);
3713 
3714 		if (len < size)
3715 			goto out_unlock;
3716 
3717 		/* save the current timestamp, since the user will need it */
3718 		save_timestamp = cpu_buffer->read_stamp;
3719 
3720 		/* Need to copy one event at a time */
3721 		do {
3722 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3723 
3724 			len -= size;
3725 
3726 			rb_advance_reader(cpu_buffer);
3727 			rpos = reader->read;
3728 			pos += size;
3729 
3730 			event = rb_reader_event(cpu_buffer);
3731 			size = rb_event_length(event);
3732 		} while (len > size);
3733 
3734 		/* update bpage */
3735 		local_set(&bpage->commit, pos);
3736 		bpage->time_stamp = save_timestamp;
3737 
3738 		/* we copied everything to the beginning */
3739 		read = 0;
3740 	} else {
3741 		/* update the entry counter */
3742 		cpu_buffer->read += rb_page_entries(reader);
3743 
3744 		/* swap the pages */
3745 		rb_init_page(bpage);
3746 		bpage = reader->page;
3747 		reader->page = *data_page;
3748 		local_set(&reader->write, 0);
3749 		local_set(&reader->entries, 0);
3750 		reader->read = 0;
3751 		*data_page = bpage;
3752 	}
3753 	ret = read;
3754 
3755  out_unlock:
3756 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3757 
3758  out:
3759 	return ret;
3760 }
3761 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3762 
3763 #ifdef CONFIG_TRACING
3764 static ssize_t
3765 rb_simple_read(struct file *filp, char __user *ubuf,
3766 	       size_t cnt, loff_t *ppos)
3767 {
3768 	unsigned long *p = filp->private_data;
3769 	char buf[64];
3770 	int r;
3771 
3772 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3773 		r = sprintf(buf, "permanently disabled\n");
3774 	else
3775 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3776 
3777 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3778 }
3779 
3780 static ssize_t
3781 rb_simple_write(struct file *filp, const char __user *ubuf,
3782 		size_t cnt, loff_t *ppos)
3783 {
3784 	unsigned long *p = filp->private_data;
3785 	char buf[64];
3786 	unsigned long val;
3787 	int ret;
3788 
3789 	if (cnt >= sizeof(buf))
3790 		return -EINVAL;
3791 
3792 	if (copy_from_user(&buf, ubuf, cnt))
3793 		return -EFAULT;
3794 
3795 	buf[cnt] = 0;
3796 
3797 	ret = strict_strtoul(buf, 10, &val);
3798 	if (ret < 0)
3799 		return ret;
3800 
3801 	if (val)
3802 		set_bit(RB_BUFFERS_ON_BIT, p);
3803 	else
3804 		clear_bit(RB_BUFFERS_ON_BIT, p);
3805 
3806 	(*ppos)++;
3807 
3808 	return cnt;
3809 }
3810 
3811 static const struct file_operations rb_simple_fops = {
3812 	.open		= tracing_open_generic,
3813 	.read		= rb_simple_read,
3814 	.write		= rb_simple_write,
3815 };
3816 
3817 
3818 static __init int rb_init_debugfs(void)
3819 {
3820 	struct dentry *d_tracer;
3821 
3822 	d_tracer = tracing_init_dentry();
3823 
3824 	trace_create_file("tracing_on", 0644, d_tracer,
3825 			    &ring_buffer_flags, &rb_simple_fops);
3826 
3827 	return 0;
3828 }
3829 
3830 fs_initcall(rb_init_debugfs);
3831 #endif
3832 
3833 #ifdef CONFIG_HOTPLUG_CPU
3834 static int rb_cpu_notify(struct notifier_block *self,
3835 			 unsigned long action, void *hcpu)
3836 {
3837 	struct ring_buffer *buffer =
3838 		container_of(self, struct ring_buffer, cpu_notify);
3839 	long cpu = (long)hcpu;
3840 
3841 	switch (action) {
3842 	case CPU_UP_PREPARE:
3843 	case CPU_UP_PREPARE_FROZEN:
3844 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3845 			return NOTIFY_OK;
3846 
3847 		buffer->buffers[cpu] =
3848 			rb_allocate_cpu_buffer(buffer, cpu);
3849 		if (!buffer->buffers[cpu]) {
3850 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3851 			     cpu);
3852 			return NOTIFY_OK;
3853 		}
3854 		smp_wmb();
3855 		cpumask_set_cpu(cpu, buffer->cpumask);
3856 		break;
3857 	case CPU_DOWN_PREPARE:
3858 	case CPU_DOWN_PREPARE_FROZEN:
3859 		/*
3860 		 * Do nothing.
3861 		 *  If we were to free the buffer, then the user would
3862 		 *  lose any trace that was in the buffer.
3863 		 */
3864 		break;
3865 	default:
3866 		break;
3867 	}
3868 	return NOTIFY_OK;
3869 }
3870 #endif
3871