1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/ftrace_irq.h> 9 #include <linux/spinlock.h> 10 #include <linux/debugfs.h> 11 #include <linux/uaccess.h> 12 #include <linux/hardirq.h> 13 #include <linux/kmemcheck.h> 14 #include <linux/module.h> 15 #include <linux/percpu.h> 16 #include <linux/mutex.h> 17 #include <linux/init.h> 18 #include <linux/hash.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/fs.h> 22 23 #include "trace.h" 24 25 /* 26 * The ring buffer header is special. We must manually up keep it. 27 */ 28 int ring_buffer_print_entry_header(struct trace_seq *s) 29 { 30 int ret; 31 32 ret = trace_seq_printf(s, "# compressed entry header\n"); 33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 35 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 36 ret = trace_seq_printf(s, "\n"); 37 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 38 RINGBUF_TYPE_PADDING); 39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 40 RINGBUF_TYPE_TIME_EXTEND); 41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 43 44 return ret; 45 } 46 47 /* 48 * The ring buffer is made up of a list of pages. A separate list of pages is 49 * allocated for each CPU. A writer may only write to a buffer that is 50 * associated with the CPU it is currently executing on. A reader may read 51 * from any per cpu buffer. 52 * 53 * The reader is special. For each per cpu buffer, the reader has its own 54 * reader page. When a reader has read the entire reader page, this reader 55 * page is swapped with another page in the ring buffer. 56 * 57 * Now, as long as the writer is off the reader page, the reader can do what 58 * ever it wants with that page. The writer will never write to that page 59 * again (as long as it is out of the ring buffer). 60 * 61 * Here's some silly ASCII art. 62 * 63 * +------+ 64 * |reader| RING BUFFER 65 * |page | 66 * +------+ +---+ +---+ +---+ 67 * | |-->| |-->| | 68 * +---+ +---+ +---+ 69 * ^ | 70 * | | 71 * +---------------+ 72 * 73 * 74 * +------+ 75 * |reader| RING BUFFER 76 * |page |------------------v 77 * +------+ +---+ +---+ +---+ 78 * | |-->| |-->| | 79 * +---+ +---+ +---+ 80 * ^ | 81 * | | 82 * +---------------+ 83 * 84 * 85 * +------+ 86 * |reader| RING BUFFER 87 * |page |------------------v 88 * +------+ +---+ +---+ +---+ 89 * ^ | |-->| |-->| | 90 * | +---+ +---+ +---+ 91 * | | 92 * | | 93 * +------------------------------+ 94 * 95 * 96 * +------+ 97 * |buffer| RING BUFFER 98 * |page |------------------v 99 * +------+ +---+ +---+ +---+ 100 * ^ | | | |-->| | 101 * | New +---+ +---+ +---+ 102 * | Reader------^ | 103 * | page | 104 * +------------------------------+ 105 * 106 * 107 * After we make this swap, the reader can hand this page off to the splice 108 * code and be done with it. It can even allocate a new page if it needs to 109 * and swap that into the ring buffer. 110 * 111 * We will be using cmpxchg soon to make all this lockless. 112 * 113 */ 114 115 /* 116 * A fast way to enable or disable all ring buffers is to 117 * call tracing_on or tracing_off. Turning off the ring buffers 118 * prevents all ring buffers from being recorded to. 119 * Turning this switch on, makes it OK to write to the 120 * ring buffer, if the ring buffer is enabled itself. 121 * 122 * There's three layers that must be on in order to write 123 * to the ring buffer. 124 * 125 * 1) This global flag must be set. 126 * 2) The ring buffer must be enabled for recording. 127 * 3) The per cpu buffer must be enabled for recording. 128 * 129 * In case of an anomaly, this global flag has a bit set that 130 * will permantly disable all ring buffers. 131 */ 132 133 /* 134 * Global flag to disable all recording to ring buffers 135 * This has two bits: ON, DISABLED 136 * 137 * ON DISABLED 138 * ---- ---------- 139 * 0 0 : ring buffers are off 140 * 1 0 : ring buffers are on 141 * X 1 : ring buffers are permanently disabled 142 */ 143 144 enum { 145 RB_BUFFERS_ON_BIT = 0, 146 RB_BUFFERS_DISABLED_BIT = 1, 147 }; 148 149 enum { 150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 152 }; 153 154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 155 156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 157 158 /** 159 * tracing_on - enable all tracing buffers 160 * 161 * This function enables all tracing buffers that may have been 162 * disabled with tracing_off. 163 */ 164 void tracing_on(void) 165 { 166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 167 } 168 EXPORT_SYMBOL_GPL(tracing_on); 169 170 /** 171 * tracing_off - turn off all tracing buffers 172 * 173 * This function stops all tracing buffers from recording data. 174 * It does not disable any overhead the tracers themselves may 175 * be causing. This function simply causes all recording to 176 * the ring buffers to fail. 177 */ 178 void tracing_off(void) 179 { 180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 181 } 182 EXPORT_SYMBOL_GPL(tracing_off); 183 184 /** 185 * tracing_off_permanent - permanently disable ring buffers 186 * 187 * This function, once called, will disable all ring buffers 188 * permanently. 189 */ 190 void tracing_off_permanent(void) 191 { 192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 193 } 194 195 /** 196 * tracing_is_on - show state of ring buffers enabled 197 */ 198 int tracing_is_on(void) 199 { 200 return ring_buffer_flags == RB_BUFFERS_ON; 201 } 202 EXPORT_SYMBOL_GPL(tracing_is_on); 203 204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 205 #define RB_ALIGNMENT 4U 206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 208 209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 211 212 enum { 213 RB_LEN_TIME_EXTEND = 8, 214 RB_LEN_TIME_STAMP = 16, 215 }; 216 217 static inline int rb_null_event(struct ring_buffer_event *event) 218 { 219 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 220 } 221 222 static void rb_event_set_padding(struct ring_buffer_event *event) 223 { 224 /* padding has a NULL time_delta */ 225 event->type_len = RINGBUF_TYPE_PADDING; 226 event->time_delta = 0; 227 } 228 229 static unsigned 230 rb_event_data_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len) 235 length = event->type_len * RB_ALIGNMENT; 236 else 237 length = event->array[0]; 238 return length + RB_EVNT_HDR_SIZE; 239 } 240 241 /* inline for ring buffer fast paths */ 242 static unsigned 243 rb_event_length(struct ring_buffer_event *event) 244 { 245 switch (event->type_len) { 246 case RINGBUF_TYPE_PADDING: 247 if (rb_null_event(event)) 248 /* undefined */ 249 return -1; 250 return event->array[0] + RB_EVNT_HDR_SIZE; 251 252 case RINGBUF_TYPE_TIME_EXTEND: 253 return RB_LEN_TIME_EXTEND; 254 255 case RINGBUF_TYPE_TIME_STAMP: 256 return RB_LEN_TIME_STAMP; 257 258 case RINGBUF_TYPE_DATA: 259 return rb_event_data_length(event); 260 default: 261 BUG(); 262 } 263 /* not hit */ 264 return 0; 265 } 266 267 /** 268 * ring_buffer_event_length - return the length of the event 269 * @event: the event to get the length of 270 */ 271 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 272 { 273 unsigned length = rb_event_length(event); 274 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 275 return length; 276 length -= RB_EVNT_HDR_SIZE; 277 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 278 length -= sizeof(event->array[0]); 279 return length; 280 } 281 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 282 283 /* inline for ring buffer fast paths */ 284 static void * 285 rb_event_data(struct ring_buffer_event *event) 286 { 287 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 288 /* If length is in len field, then array[0] has the data */ 289 if (event->type_len) 290 return (void *)&event->array[0]; 291 /* Otherwise length is in array[0] and array[1] has the data */ 292 return (void *)&event->array[1]; 293 } 294 295 /** 296 * ring_buffer_event_data - return the data of the event 297 * @event: the event to get the data from 298 */ 299 void *ring_buffer_event_data(struct ring_buffer_event *event) 300 { 301 return rb_event_data(event); 302 } 303 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 304 305 #define for_each_buffer_cpu(buffer, cpu) \ 306 for_each_cpu(cpu, buffer->cpumask) 307 308 #define TS_SHIFT 27 309 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 310 #define TS_DELTA_TEST (~TS_MASK) 311 312 struct buffer_data_page { 313 u64 time_stamp; /* page time stamp */ 314 local_t commit; /* write committed index */ 315 unsigned char data[]; /* data of buffer page */ 316 }; 317 318 /* 319 * Note, the buffer_page list must be first. The buffer pages 320 * are allocated in cache lines, which means that each buffer 321 * page will be at the beginning of a cache line, and thus 322 * the least significant bits will be zero. We use this to 323 * add flags in the list struct pointers, to make the ring buffer 324 * lockless. 325 */ 326 struct buffer_page { 327 struct list_head list; /* list of buffer pages */ 328 local_t write; /* index for next write */ 329 unsigned read; /* index for next read */ 330 local_t entries; /* entries on this page */ 331 struct buffer_data_page *page; /* Actual data page */ 332 }; 333 334 /* 335 * The buffer page counters, write and entries, must be reset 336 * atomically when crossing page boundaries. To synchronize this 337 * update, two counters are inserted into the number. One is 338 * the actual counter for the write position or count on the page. 339 * 340 * The other is a counter of updaters. Before an update happens 341 * the update partition of the counter is incremented. This will 342 * allow the updater to update the counter atomically. 343 * 344 * The counter is 20 bits, and the state data is 12. 345 */ 346 #define RB_WRITE_MASK 0xfffff 347 #define RB_WRITE_INTCNT (1 << 20) 348 349 static void rb_init_page(struct buffer_data_page *bpage) 350 { 351 local_set(&bpage->commit, 0); 352 } 353 354 /** 355 * ring_buffer_page_len - the size of data on the page. 356 * @page: The page to read 357 * 358 * Returns the amount of data on the page, including buffer page header. 359 */ 360 size_t ring_buffer_page_len(void *page) 361 { 362 return local_read(&((struct buffer_data_page *)page)->commit) 363 + BUF_PAGE_HDR_SIZE; 364 } 365 366 /* 367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 368 * this issue out. 369 */ 370 static void free_buffer_page(struct buffer_page *bpage) 371 { 372 free_page((unsigned long)bpage->page); 373 kfree(bpage); 374 } 375 376 /* 377 * We need to fit the time_stamp delta into 27 bits. 378 */ 379 static inline int test_time_stamp(u64 delta) 380 { 381 if (delta & TS_DELTA_TEST) 382 return 1; 383 return 0; 384 } 385 386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 387 388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 390 391 /* Max number of timestamps that can fit on a page */ 392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP) 393 394 int ring_buffer_print_page_header(struct trace_seq *s) 395 { 396 struct buffer_data_page field; 397 int ret; 398 399 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 400 "offset:0;\tsize:%u;\tsigned:%u;\n", 401 (unsigned int)sizeof(field.time_stamp), 402 (unsigned int)is_signed_type(u64)); 403 404 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 405 "offset:%u;\tsize:%u;\tsigned:%u;\n", 406 (unsigned int)offsetof(typeof(field), commit), 407 (unsigned int)sizeof(field.commit), 408 (unsigned int)is_signed_type(long)); 409 410 ret = trace_seq_printf(s, "\tfield: char data;\t" 411 "offset:%u;\tsize:%u;\tsigned:%u;\n", 412 (unsigned int)offsetof(typeof(field), data), 413 (unsigned int)BUF_PAGE_SIZE, 414 (unsigned int)is_signed_type(char)); 415 416 return ret; 417 } 418 419 /* 420 * head_page == tail_page && head == tail then buffer is empty. 421 */ 422 struct ring_buffer_per_cpu { 423 int cpu; 424 struct ring_buffer *buffer; 425 spinlock_t reader_lock; /* serialize readers */ 426 arch_spinlock_t lock; 427 struct lock_class_key lock_key; 428 struct list_head *pages; 429 struct buffer_page *head_page; /* read from head */ 430 struct buffer_page *tail_page; /* write to tail */ 431 struct buffer_page *commit_page; /* committed pages */ 432 struct buffer_page *reader_page; 433 local_t commit_overrun; 434 local_t overrun; 435 local_t entries; 436 local_t committing; 437 local_t commits; 438 unsigned long read; 439 u64 write_stamp; 440 u64 read_stamp; 441 atomic_t record_disabled; 442 }; 443 444 struct ring_buffer { 445 unsigned pages; 446 unsigned flags; 447 int cpus; 448 atomic_t record_disabled; 449 cpumask_var_t cpumask; 450 451 struct lock_class_key *reader_lock_key; 452 453 struct mutex mutex; 454 455 struct ring_buffer_per_cpu **buffers; 456 457 #ifdef CONFIG_HOTPLUG_CPU 458 struct notifier_block cpu_notify; 459 #endif 460 u64 (*clock)(void); 461 }; 462 463 struct ring_buffer_iter { 464 struct ring_buffer_per_cpu *cpu_buffer; 465 unsigned long head; 466 struct buffer_page *head_page; 467 u64 read_stamp; 468 }; 469 470 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 471 #define RB_WARN_ON(b, cond) \ 472 ({ \ 473 int _____ret = unlikely(cond); \ 474 if (_____ret) { \ 475 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 476 struct ring_buffer_per_cpu *__b = \ 477 (void *)b; \ 478 atomic_inc(&__b->buffer->record_disabled); \ 479 } else \ 480 atomic_inc(&b->record_disabled); \ 481 WARN_ON(1); \ 482 } \ 483 _____ret; \ 484 }) 485 486 /* Up this if you want to test the TIME_EXTENTS and normalization */ 487 #define DEBUG_SHIFT 0 488 489 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 490 { 491 /* shift to debug/test normalization and TIME_EXTENTS */ 492 return buffer->clock() << DEBUG_SHIFT; 493 } 494 495 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 496 { 497 u64 time; 498 499 preempt_disable_notrace(); 500 time = rb_time_stamp(buffer); 501 preempt_enable_no_resched_notrace(); 502 503 return time; 504 } 505 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 506 507 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 508 int cpu, u64 *ts) 509 { 510 /* Just stupid testing the normalize function and deltas */ 511 *ts >>= DEBUG_SHIFT; 512 } 513 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 514 515 /* 516 * Making the ring buffer lockless makes things tricky. 517 * Although writes only happen on the CPU that they are on, 518 * and they only need to worry about interrupts. Reads can 519 * happen on any CPU. 520 * 521 * The reader page is always off the ring buffer, but when the 522 * reader finishes with a page, it needs to swap its page with 523 * a new one from the buffer. The reader needs to take from 524 * the head (writes go to the tail). But if a writer is in overwrite 525 * mode and wraps, it must push the head page forward. 526 * 527 * Here lies the problem. 528 * 529 * The reader must be careful to replace only the head page, and 530 * not another one. As described at the top of the file in the 531 * ASCII art, the reader sets its old page to point to the next 532 * page after head. It then sets the page after head to point to 533 * the old reader page. But if the writer moves the head page 534 * during this operation, the reader could end up with the tail. 535 * 536 * We use cmpxchg to help prevent this race. We also do something 537 * special with the page before head. We set the LSB to 1. 538 * 539 * When the writer must push the page forward, it will clear the 540 * bit that points to the head page, move the head, and then set 541 * the bit that points to the new head page. 542 * 543 * We also don't want an interrupt coming in and moving the head 544 * page on another writer. Thus we use the second LSB to catch 545 * that too. Thus: 546 * 547 * head->list->prev->next bit 1 bit 0 548 * ------- ------- 549 * Normal page 0 0 550 * Points to head page 0 1 551 * New head page 1 0 552 * 553 * Note we can not trust the prev pointer of the head page, because: 554 * 555 * +----+ +-----+ +-----+ 556 * | |------>| T |---X--->| N | 557 * | |<------| | | | 558 * +----+ +-----+ +-----+ 559 * ^ ^ | 560 * | +-----+ | | 561 * +----------| R |----------+ | 562 * | |<-----------+ 563 * +-----+ 564 * 565 * Key: ---X--> HEAD flag set in pointer 566 * T Tail page 567 * R Reader page 568 * N Next page 569 * 570 * (see __rb_reserve_next() to see where this happens) 571 * 572 * What the above shows is that the reader just swapped out 573 * the reader page with a page in the buffer, but before it 574 * could make the new header point back to the new page added 575 * it was preempted by a writer. The writer moved forward onto 576 * the new page added by the reader and is about to move forward 577 * again. 578 * 579 * You can see, it is legitimate for the previous pointer of 580 * the head (or any page) not to point back to itself. But only 581 * temporarially. 582 */ 583 584 #define RB_PAGE_NORMAL 0UL 585 #define RB_PAGE_HEAD 1UL 586 #define RB_PAGE_UPDATE 2UL 587 588 589 #define RB_FLAG_MASK 3UL 590 591 /* PAGE_MOVED is not part of the mask */ 592 #define RB_PAGE_MOVED 4UL 593 594 /* 595 * rb_list_head - remove any bit 596 */ 597 static struct list_head *rb_list_head(struct list_head *list) 598 { 599 unsigned long val = (unsigned long)list; 600 601 return (struct list_head *)(val & ~RB_FLAG_MASK); 602 } 603 604 /* 605 * rb_is_head_page - test if the given page is the head page 606 * 607 * Because the reader may move the head_page pointer, we can 608 * not trust what the head page is (it may be pointing to 609 * the reader page). But if the next page is a header page, 610 * its flags will be non zero. 611 */ 612 static int inline 613 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 614 struct buffer_page *page, struct list_head *list) 615 { 616 unsigned long val; 617 618 val = (unsigned long)list->next; 619 620 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 621 return RB_PAGE_MOVED; 622 623 return val & RB_FLAG_MASK; 624 } 625 626 /* 627 * rb_is_reader_page 628 * 629 * The unique thing about the reader page, is that, if the 630 * writer is ever on it, the previous pointer never points 631 * back to the reader page. 632 */ 633 static int rb_is_reader_page(struct buffer_page *page) 634 { 635 struct list_head *list = page->list.prev; 636 637 return rb_list_head(list->next) != &page->list; 638 } 639 640 /* 641 * rb_set_list_to_head - set a list_head to be pointing to head. 642 */ 643 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 644 struct list_head *list) 645 { 646 unsigned long *ptr; 647 648 ptr = (unsigned long *)&list->next; 649 *ptr |= RB_PAGE_HEAD; 650 *ptr &= ~RB_PAGE_UPDATE; 651 } 652 653 /* 654 * rb_head_page_activate - sets up head page 655 */ 656 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 657 { 658 struct buffer_page *head; 659 660 head = cpu_buffer->head_page; 661 if (!head) 662 return; 663 664 /* 665 * Set the previous list pointer to have the HEAD flag. 666 */ 667 rb_set_list_to_head(cpu_buffer, head->list.prev); 668 } 669 670 static void rb_list_head_clear(struct list_head *list) 671 { 672 unsigned long *ptr = (unsigned long *)&list->next; 673 674 *ptr &= ~RB_FLAG_MASK; 675 } 676 677 /* 678 * rb_head_page_dactivate - clears head page ptr (for free list) 679 */ 680 static void 681 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 682 { 683 struct list_head *hd; 684 685 /* Go through the whole list and clear any pointers found. */ 686 rb_list_head_clear(cpu_buffer->pages); 687 688 list_for_each(hd, cpu_buffer->pages) 689 rb_list_head_clear(hd); 690 } 691 692 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 693 struct buffer_page *head, 694 struct buffer_page *prev, 695 int old_flag, int new_flag) 696 { 697 struct list_head *list; 698 unsigned long val = (unsigned long)&head->list; 699 unsigned long ret; 700 701 list = &prev->list; 702 703 val &= ~RB_FLAG_MASK; 704 705 ret = cmpxchg((unsigned long *)&list->next, 706 val | old_flag, val | new_flag); 707 708 /* check if the reader took the page */ 709 if ((ret & ~RB_FLAG_MASK) != val) 710 return RB_PAGE_MOVED; 711 712 return ret & RB_FLAG_MASK; 713 } 714 715 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 716 struct buffer_page *head, 717 struct buffer_page *prev, 718 int old_flag) 719 { 720 return rb_head_page_set(cpu_buffer, head, prev, 721 old_flag, RB_PAGE_UPDATE); 722 } 723 724 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 725 struct buffer_page *head, 726 struct buffer_page *prev, 727 int old_flag) 728 { 729 return rb_head_page_set(cpu_buffer, head, prev, 730 old_flag, RB_PAGE_HEAD); 731 } 732 733 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 734 struct buffer_page *head, 735 struct buffer_page *prev, 736 int old_flag) 737 { 738 return rb_head_page_set(cpu_buffer, head, prev, 739 old_flag, RB_PAGE_NORMAL); 740 } 741 742 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 743 struct buffer_page **bpage) 744 { 745 struct list_head *p = rb_list_head((*bpage)->list.next); 746 747 *bpage = list_entry(p, struct buffer_page, list); 748 } 749 750 static struct buffer_page * 751 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 752 { 753 struct buffer_page *head; 754 struct buffer_page *page; 755 struct list_head *list; 756 int i; 757 758 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 759 return NULL; 760 761 /* sanity check */ 762 list = cpu_buffer->pages; 763 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 764 return NULL; 765 766 page = head = cpu_buffer->head_page; 767 /* 768 * It is possible that the writer moves the header behind 769 * where we started, and we miss in one loop. 770 * A second loop should grab the header, but we'll do 771 * three loops just because I'm paranoid. 772 */ 773 for (i = 0; i < 3; i++) { 774 do { 775 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 776 cpu_buffer->head_page = page; 777 return page; 778 } 779 rb_inc_page(cpu_buffer, &page); 780 } while (page != head); 781 } 782 783 RB_WARN_ON(cpu_buffer, 1); 784 785 return NULL; 786 } 787 788 static int rb_head_page_replace(struct buffer_page *old, 789 struct buffer_page *new) 790 { 791 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 792 unsigned long val; 793 unsigned long ret; 794 795 val = *ptr & ~RB_FLAG_MASK; 796 val |= RB_PAGE_HEAD; 797 798 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 799 800 return ret == val; 801 } 802 803 /* 804 * rb_tail_page_update - move the tail page forward 805 * 806 * Returns 1 if moved tail page, 0 if someone else did. 807 */ 808 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 809 struct buffer_page *tail_page, 810 struct buffer_page *next_page) 811 { 812 struct buffer_page *old_tail; 813 unsigned long old_entries; 814 unsigned long old_write; 815 int ret = 0; 816 817 /* 818 * The tail page now needs to be moved forward. 819 * 820 * We need to reset the tail page, but without messing 821 * with possible erasing of data brought in by interrupts 822 * that have moved the tail page and are currently on it. 823 * 824 * We add a counter to the write field to denote this. 825 */ 826 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 827 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 828 829 /* 830 * Just make sure we have seen our old_write and synchronize 831 * with any interrupts that come in. 832 */ 833 barrier(); 834 835 /* 836 * If the tail page is still the same as what we think 837 * it is, then it is up to us to update the tail 838 * pointer. 839 */ 840 if (tail_page == cpu_buffer->tail_page) { 841 /* Zero the write counter */ 842 unsigned long val = old_write & ~RB_WRITE_MASK; 843 unsigned long eval = old_entries & ~RB_WRITE_MASK; 844 845 /* 846 * This will only succeed if an interrupt did 847 * not come in and change it. In which case, we 848 * do not want to modify it. 849 * 850 * We add (void) to let the compiler know that we do not care 851 * about the return value of these functions. We use the 852 * cmpxchg to only update if an interrupt did not already 853 * do it for us. If the cmpxchg fails, we don't care. 854 */ 855 (void)local_cmpxchg(&next_page->write, old_write, val); 856 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 857 858 /* 859 * No need to worry about races with clearing out the commit. 860 * it only can increment when a commit takes place. But that 861 * only happens in the outer most nested commit. 862 */ 863 local_set(&next_page->page->commit, 0); 864 865 old_tail = cmpxchg(&cpu_buffer->tail_page, 866 tail_page, next_page); 867 868 if (old_tail == tail_page) 869 ret = 1; 870 } 871 872 return ret; 873 } 874 875 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 876 struct buffer_page *bpage) 877 { 878 unsigned long val = (unsigned long)bpage; 879 880 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 881 return 1; 882 883 return 0; 884 } 885 886 /** 887 * rb_check_list - make sure a pointer to a list has the last bits zero 888 */ 889 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 890 struct list_head *list) 891 { 892 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 893 return 1; 894 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 895 return 1; 896 return 0; 897 } 898 899 /** 900 * check_pages - integrity check of buffer pages 901 * @cpu_buffer: CPU buffer with pages to test 902 * 903 * As a safety measure we check to make sure the data pages have not 904 * been corrupted. 905 */ 906 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 907 { 908 struct list_head *head = cpu_buffer->pages; 909 struct buffer_page *bpage, *tmp; 910 911 rb_head_page_deactivate(cpu_buffer); 912 913 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 914 return -1; 915 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 916 return -1; 917 918 if (rb_check_list(cpu_buffer, head)) 919 return -1; 920 921 list_for_each_entry_safe(bpage, tmp, head, list) { 922 if (RB_WARN_ON(cpu_buffer, 923 bpage->list.next->prev != &bpage->list)) 924 return -1; 925 if (RB_WARN_ON(cpu_buffer, 926 bpage->list.prev->next != &bpage->list)) 927 return -1; 928 if (rb_check_list(cpu_buffer, &bpage->list)) 929 return -1; 930 } 931 932 rb_head_page_activate(cpu_buffer); 933 934 return 0; 935 } 936 937 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 938 unsigned nr_pages) 939 { 940 struct buffer_page *bpage, *tmp; 941 unsigned long addr; 942 LIST_HEAD(pages); 943 unsigned i; 944 945 WARN_ON(!nr_pages); 946 947 for (i = 0; i < nr_pages; i++) { 948 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 949 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); 950 if (!bpage) 951 goto free_pages; 952 953 rb_check_bpage(cpu_buffer, bpage); 954 955 list_add(&bpage->list, &pages); 956 957 addr = __get_free_page(GFP_KERNEL); 958 if (!addr) 959 goto free_pages; 960 bpage->page = (void *)addr; 961 rb_init_page(bpage->page); 962 } 963 964 /* 965 * The ring buffer page list is a circular list that does not 966 * start and end with a list head. All page list items point to 967 * other pages. 968 */ 969 cpu_buffer->pages = pages.next; 970 list_del(&pages); 971 972 rb_check_pages(cpu_buffer); 973 974 return 0; 975 976 free_pages: 977 list_for_each_entry_safe(bpage, tmp, &pages, list) { 978 list_del_init(&bpage->list); 979 free_buffer_page(bpage); 980 } 981 return -ENOMEM; 982 } 983 984 static struct ring_buffer_per_cpu * 985 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) 986 { 987 struct ring_buffer_per_cpu *cpu_buffer; 988 struct buffer_page *bpage; 989 unsigned long addr; 990 int ret; 991 992 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 993 GFP_KERNEL, cpu_to_node(cpu)); 994 if (!cpu_buffer) 995 return NULL; 996 997 cpu_buffer->cpu = cpu; 998 cpu_buffer->buffer = buffer; 999 spin_lock_init(&cpu_buffer->reader_lock); 1000 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1001 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1002 1003 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1004 GFP_KERNEL, cpu_to_node(cpu)); 1005 if (!bpage) 1006 goto fail_free_buffer; 1007 1008 rb_check_bpage(cpu_buffer, bpage); 1009 1010 cpu_buffer->reader_page = bpage; 1011 addr = __get_free_page(GFP_KERNEL); 1012 if (!addr) 1013 goto fail_free_reader; 1014 bpage->page = (void *)addr; 1015 rb_init_page(bpage->page); 1016 1017 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1018 1019 ret = rb_allocate_pages(cpu_buffer, buffer->pages); 1020 if (ret < 0) 1021 goto fail_free_reader; 1022 1023 cpu_buffer->head_page 1024 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1025 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1026 1027 rb_head_page_activate(cpu_buffer); 1028 1029 return cpu_buffer; 1030 1031 fail_free_reader: 1032 free_buffer_page(cpu_buffer->reader_page); 1033 1034 fail_free_buffer: 1035 kfree(cpu_buffer); 1036 return NULL; 1037 } 1038 1039 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1040 { 1041 struct list_head *head = cpu_buffer->pages; 1042 struct buffer_page *bpage, *tmp; 1043 1044 free_buffer_page(cpu_buffer->reader_page); 1045 1046 rb_head_page_deactivate(cpu_buffer); 1047 1048 if (head) { 1049 list_for_each_entry_safe(bpage, tmp, head, list) { 1050 list_del_init(&bpage->list); 1051 free_buffer_page(bpage); 1052 } 1053 bpage = list_entry(head, struct buffer_page, list); 1054 free_buffer_page(bpage); 1055 } 1056 1057 kfree(cpu_buffer); 1058 } 1059 1060 #ifdef CONFIG_HOTPLUG_CPU 1061 static int rb_cpu_notify(struct notifier_block *self, 1062 unsigned long action, void *hcpu); 1063 #endif 1064 1065 /** 1066 * ring_buffer_alloc - allocate a new ring_buffer 1067 * @size: the size in bytes per cpu that is needed. 1068 * @flags: attributes to set for the ring buffer. 1069 * 1070 * Currently the only flag that is available is the RB_FL_OVERWRITE 1071 * flag. This flag means that the buffer will overwrite old data 1072 * when the buffer wraps. If this flag is not set, the buffer will 1073 * drop data when the tail hits the head. 1074 */ 1075 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1076 struct lock_class_key *key) 1077 { 1078 struct ring_buffer *buffer; 1079 int bsize; 1080 int cpu; 1081 1082 /* keep it in its own cache line */ 1083 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1084 GFP_KERNEL); 1085 if (!buffer) 1086 return NULL; 1087 1088 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1089 goto fail_free_buffer; 1090 1091 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1092 buffer->flags = flags; 1093 buffer->clock = trace_clock_local; 1094 buffer->reader_lock_key = key; 1095 1096 /* need at least two pages */ 1097 if (buffer->pages < 2) 1098 buffer->pages = 2; 1099 1100 /* 1101 * In case of non-hotplug cpu, if the ring-buffer is allocated 1102 * in early initcall, it will not be notified of secondary cpus. 1103 * In that off case, we need to allocate for all possible cpus. 1104 */ 1105 #ifdef CONFIG_HOTPLUG_CPU 1106 get_online_cpus(); 1107 cpumask_copy(buffer->cpumask, cpu_online_mask); 1108 #else 1109 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1110 #endif 1111 buffer->cpus = nr_cpu_ids; 1112 1113 bsize = sizeof(void *) * nr_cpu_ids; 1114 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1115 GFP_KERNEL); 1116 if (!buffer->buffers) 1117 goto fail_free_cpumask; 1118 1119 for_each_buffer_cpu(buffer, cpu) { 1120 buffer->buffers[cpu] = 1121 rb_allocate_cpu_buffer(buffer, cpu); 1122 if (!buffer->buffers[cpu]) 1123 goto fail_free_buffers; 1124 } 1125 1126 #ifdef CONFIG_HOTPLUG_CPU 1127 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1128 buffer->cpu_notify.priority = 0; 1129 register_cpu_notifier(&buffer->cpu_notify); 1130 #endif 1131 1132 put_online_cpus(); 1133 mutex_init(&buffer->mutex); 1134 1135 return buffer; 1136 1137 fail_free_buffers: 1138 for_each_buffer_cpu(buffer, cpu) { 1139 if (buffer->buffers[cpu]) 1140 rb_free_cpu_buffer(buffer->buffers[cpu]); 1141 } 1142 kfree(buffer->buffers); 1143 1144 fail_free_cpumask: 1145 free_cpumask_var(buffer->cpumask); 1146 put_online_cpus(); 1147 1148 fail_free_buffer: 1149 kfree(buffer); 1150 return NULL; 1151 } 1152 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1153 1154 /** 1155 * ring_buffer_free - free a ring buffer. 1156 * @buffer: the buffer to free. 1157 */ 1158 void 1159 ring_buffer_free(struct ring_buffer *buffer) 1160 { 1161 int cpu; 1162 1163 get_online_cpus(); 1164 1165 #ifdef CONFIG_HOTPLUG_CPU 1166 unregister_cpu_notifier(&buffer->cpu_notify); 1167 #endif 1168 1169 for_each_buffer_cpu(buffer, cpu) 1170 rb_free_cpu_buffer(buffer->buffers[cpu]); 1171 1172 put_online_cpus(); 1173 1174 kfree(buffer->buffers); 1175 free_cpumask_var(buffer->cpumask); 1176 1177 kfree(buffer); 1178 } 1179 EXPORT_SYMBOL_GPL(ring_buffer_free); 1180 1181 void ring_buffer_set_clock(struct ring_buffer *buffer, 1182 u64 (*clock)(void)) 1183 { 1184 buffer->clock = clock; 1185 } 1186 1187 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1188 1189 static void 1190 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) 1191 { 1192 struct buffer_page *bpage; 1193 struct list_head *p; 1194 unsigned i; 1195 1196 spin_lock_irq(&cpu_buffer->reader_lock); 1197 rb_head_page_deactivate(cpu_buffer); 1198 1199 for (i = 0; i < nr_pages; i++) { 1200 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1201 return; 1202 p = cpu_buffer->pages->next; 1203 bpage = list_entry(p, struct buffer_page, list); 1204 list_del_init(&bpage->list); 1205 free_buffer_page(bpage); 1206 } 1207 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1208 return; 1209 1210 rb_reset_cpu(cpu_buffer); 1211 rb_check_pages(cpu_buffer); 1212 1213 spin_unlock_irq(&cpu_buffer->reader_lock); 1214 } 1215 1216 static void 1217 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, 1218 struct list_head *pages, unsigned nr_pages) 1219 { 1220 struct buffer_page *bpage; 1221 struct list_head *p; 1222 unsigned i; 1223 1224 spin_lock_irq(&cpu_buffer->reader_lock); 1225 rb_head_page_deactivate(cpu_buffer); 1226 1227 for (i = 0; i < nr_pages; i++) { 1228 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 1229 return; 1230 p = pages->next; 1231 bpage = list_entry(p, struct buffer_page, list); 1232 list_del_init(&bpage->list); 1233 list_add_tail(&bpage->list, cpu_buffer->pages); 1234 } 1235 rb_reset_cpu(cpu_buffer); 1236 rb_check_pages(cpu_buffer); 1237 1238 spin_unlock_irq(&cpu_buffer->reader_lock); 1239 } 1240 1241 /** 1242 * ring_buffer_resize - resize the ring buffer 1243 * @buffer: the buffer to resize. 1244 * @size: the new size. 1245 * 1246 * Minimum size is 2 * BUF_PAGE_SIZE. 1247 * 1248 * Returns -1 on failure. 1249 */ 1250 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) 1251 { 1252 struct ring_buffer_per_cpu *cpu_buffer; 1253 unsigned nr_pages, rm_pages, new_pages; 1254 struct buffer_page *bpage, *tmp; 1255 unsigned long buffer_size; 1256 unsigned long addr; 1257 LIST_HEAD(pages); 1258 int i, cpu; 1259 1260 /* 1261 * Always succeed at resizing a non-existent buffer: 1262 */ 1263 if (!buffer) 1264 return size; 1265 1266 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1267 size *= BUF_PAGE_SIZE; 1268 buffer_size = buffer->pages * BUF_PAGE_SIZE; 1269 1270 /* we need a minimum of two pages */ 1271 if (size < BUF_PAGE_SIZE * 2) 1272 size = BUF_PAGE_SIZE * 2; 1273 1274 if (size == buffer_size) 1275 return size; 1276 1277 atomic_inc(&buffer->record_disabled); 1278 1279 /* Make sure all writers are done with this buffer. */ 1280 synchronize_sched(); 1281 1282 mutex_lock(&buffer->mutex); 1283 get_online_cpus(); 1284 1285 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1286 1287 if (size < buffer_size) { 1288 1289 /* easy case, just free pages */ 1290 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) 1291 goto out_fail; 1292 1293 rm_pages = buffer->pages - nr_pages; 1294 1295 for_each_buffer_cpu(buffer, cpu) { 1296 cpu_buffer = buffer->buffers[cpu]; 1297 rb_remove_pages(cpu_buffer, rm_pages); 1298 } 1299 goto out; 1300 } 1301 1302 /* 1303 * This is a bit more difficult. We only want to add pages 1304 * when we can allocate enough for all CPUs. We do this 1305 * by allocating all the pages and storing them on a local 1306 * link list. If we succeed in our allocation, then we 1307 * add these pages to the cpu_buffers. Otherwise we just free 1308 * them all and return -ENOMEM; 1309 */ 1310 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) 1311 goto out_fail; 1312 1313 new_pages = nr_pages - buffer->pages; 1314 1315 for_each_buffer_cpu(buffer, cpu) { 1316 for (i = 0; i < new_pages; i++) { 1317 bpage = kzalloc_node(ALIGN(sizeof(*bpage), 1318 cache_line_size()), 1319 GFP_KERNEL, cpu_to_node(cpu)); 1320 if (!bpage) 1321 goto free_pages; 1322 list_add(&bpage->list, &pages); 1323 addr = __get_free_page(GFP_KERNEL); 1324 if (!addr) 1325 goto free_pages; 1326 bpage->page = (void *)addr; 1327 rb_init_page(bpage->page); 1328 } 1329 } 1330 1331 for_each_buffer_cpu(buffer, cpu) { 1332 cpu_buffer = buffer->buffers[cpu]; 1333 rb_insert_pages(cpu_buffer, &pages, new_pages); 1334 } 1335 1336 if (RB_WARN_ON(buffer, !list_empty(&pages))) 1337 goto out_fail; 1338 1339 out: 1340 buffer->pages = nr_pages; 1341 put_online_cpus(); 1342 mutex_unlock(&buffer->mutex); 1343 1344 atomic_dec(&buffer->record_disabled); 1345 1346 return size; 1347 1348 free_pages: 1349 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1350 list_del_init(&bpage->list); 1351 free_buffer_page(bpage); 1352 } 1353 put_online_cpus(); 1354 mutex_unlock(&buffer->mutex); 1355 atomic_dec(&buffer->record_disabled); 1356 return -ENOMEM; 1357 1358 /* 1359 * Something went totally wrong, and we are too paranoid 1360 * to even clean up the mess. 1361 */ 1362 out_fail: 1363 put_online_cpus(); 1364 mutex_unlock(&buffer->mutex); 1365 atomic_dec(&buffer->record_disabled); 1366 return -1; 1367 } 1368 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1369 1370 static inline void * 1371 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1372 { 1373 return bpage->data + index; 1374 } 1375 1376 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1377 { 1378 return bpage->page->data + index; 1379 } 1380 1381 static inline struct ring_buffer_event * 1382 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1383 { 1384 return __rb_page_index(cpu_buffer->reader_page, 1385 cpu_buffer->reader_page->read); 1386 } 1387 1388 static inline struct ring_buffer_event * 1389 rb_iter_head_event(struct ring_buffer_iter *iter) 1390 { 1391 return __rb_page_index(iter->head_page, iter->head); 1392 } 1393 1394 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1395 { 1396 return local_read(&bpage->write) & RB_WRITE_MASK; 1397 } 1398 1399 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1400 { 1401 return local_read(&bpage->page->commit); 1402 } 1403 1404 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1405 { 1406 return local_read(&bpage->entries) & RB_WRITE_MASK; 1407 } 1408 1409 /* Size is determined by what has been commited */ 1410 static inline unsigned rb_page_size(struct buffer_page *bpage) 1411 { 1412 return rb_page_commit(bpage); 1413 } 1414 1415 static inline unsigned 1416 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1417 { 1418 return rb_page_commit(cpu_buffer->commit_page); 1419 } 1420 1421 static inline unsigned 1422 rb_event_index(struct ring_buffer_event *event) 1423 { 1424 unsigned long addr = (unsigned long)event; 1425 1426 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1427 } 1428 1429 static inline int 1430 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1431 struct ring_buffer_event *event) 1432 { 1433 unsigned long addr = (unsigned long)event; 1434 unsigned long index; 1435 1436 index = rb_event_index(event); 1437 addr &= PAGE_MASK; 1438 1439 return cpu_buffer->commit_page->page == (void *)addr && 1440 rb_commit_index(cpu_buffer) == index; 1441 } 1442 1443 static void 1444 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1445 { 1446 unsigned long max_count; 1447 1448 /* 1449 * We only race with interrupts and NMIs on this CPU. 1450 * If we own the commit event, then we can commit 1451 * all others that interrupted us, since the interruptions 1452 * are in stack format (they finish before they come 1453 * back to us). This allows us to do a simple loop to 1454 * assign the commit to the tail. 1455 */ 1456 again: 1457 max_count = cpu_buffer->buffer->pages * 100; 1458 1459 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1460 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1461 return; 1462 if (RB_WARN_ON(cpu_buffer, 1463 rb_is_reader_page(cpu_buffer->tail_page))) 1464 return; 1465 local_set(&cpu_buffer->commit_page->page->commit, 1466 rb_page_write(cpu_buffer->commit_page)); 1467 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1468 cpu_buffer->write_stamp = 1469 cpu_buffer->commit_page->page->time_stamp; 1470 /* add barrier to keep gcc from optimizing too much */ 1471 barrier(); 1472 } 1473 while (rb_commit_index(cpu_buffer) != 1474 rb_page_write(cpu_buffer->commit_page)) { 1475 1476 local_set(&cpu_buffer->commit_page->page->commit, 1477 rb_page_write(cpu_buffer->commit_page)); 1478 RB_WARN_ON(cpu_buffer, 1479 local_read(&cpu_buffer->commit_page->page->commit) & 1480 ~RB_WRITE_MASK); 1481 barrier(); 1482 } 1483 1484 /* again, keep gcc from optimizing */ 1485 barrier(); 1486 1487 /* 1488 * If an interrupt came in just after the first while loop 1489 * and pushed the tail page forward, we will be left with 1490 * a dangling commit that will never go forward. 1491 */ 1492 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1493 goto again; 1494 } 1495 1496 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1497 { 1498 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1499 cpu_buffer->reader_page->read = 0; 1500 } 1501 1502 static void rb_inc_iter(struct ring_buffer_iter *iter) 1503 { 1504 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1505 1506 /* 1507 * The iterator could be on the reader page (it starts there). 1508 * But the head could have moved, since the reader was 1509 * found. Check for this case and assign the iterator 1510 * to the head page instead of next. 1511 */ 1512 if (iter->head_page == cpu_buffer->reader_page) 1513 iter->head_page = rb_set_head_page(cpu_buffer); 1514 else 1515 rb_inc_page(cpu_buffer, &iter->head_page); 1516 1517 iter->read_stamp = iter->head_page->page->time_stamp; 1518 iter->head = 0; 1519 } 1520 1521 /** 1522 * ring_buffer_update_event - update event type and data 1523 * @event: the even to update 1524 * @type: the type of event 1525 * @length: the size of the event field in the ring buffer 1526 * 1527 * Update the type and data fields of the event. The length 1528 * is the actual size that is written to the ring buffer, 1529 * and with this, we can determine what to place into the 1530 * data field. 1531 */ 1532 static void 1533 rb_update_event(struct ring_buffer_event *event, 1534 unsigned type, unsigned length) 1535 { 1536 event->type_len = type; 1537 1538 switch (type) { 1539 1540 case RINGBUF_TYPE_PADDING: 1541 case RINGBUF_TYPE_TIME_EXTEND: 1542 case RINGBUF_TYPE_TIME_STAMP: 1543 break; 1544 1545 case 0: 1546 length -= RB_EVNT_HDR_SIZE; 1547 if (length > RB_MAX_SMALL_DATA) 1548 event->array[0] = length; 1549 else 1550 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1551 break; 1552 default: 1553 BUG(); 1554 } 1555 } 1556 1557 /* 1558 * rb_handle_head_page - writer hit the head page 1559 * 1560 * Returns: +1 to retry page 1561 * 0 to continue 1562 * -1 on error 1563 */ 1564 static int 1565 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1566 struct buffer_page *tail_page, 1567 struct buffer_page *next_page) 1568 { 1569 struct buffer_page *new_head; 1570 int entries; 1571 int type; 1572 int ret; 1573 1574 entries = rb_page_entries(next_page); 1575 1576 /* 1577 * The hard part is here. We need to move the head 1578 * forward, and protect against both readers on 1579 * other CPUs and writers coming in via interrupts. 1580 */ 1581 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1582 RB_PAGE_HEAD); 1583 1584 /* 1585 * type can be one of four: 1586 * NORMAL - an interrupt already moved it for us 1587 * HEAD - we are the first to get here. 1588 * UPDATE - we are the interrupt interrupting 1589 * a current move. 1590 * MOVED - a reader on another CPU moved the next 1591 * pointer to its reader page. Give up 1592 * and try again. 1593 */ 1594 1595 switch (type) { 1596 case RB_PAGE_HEAD: 1597 /* 1598 * We changed the head to UPDATE, thus 1599 * it is our responsibility to update 1600 * the counters. 1601 */ 1602 local_add(entries, &cpu_buffer->overrun); 1603 1604 /* 1605 * The entries will be zeroed out when we move the 1606 * tail page. 1607 */ 1608 1609 /* still more to do */ 1610 break; 1611 1612 case RB_PAGE_UPDATE: 1613 /* 1614 * This is an interrupt that interrupt the 1615 * previous update. Still more to do. 1616 */ 1617 break; 1618 case RB_PAGE_NORMAL: 1619 /* 1620 * An interrupt came in before the update 1621 * and processed this for us. 1622 * Nothing left to do. 1623 */ 1624 return 1; 1625 case RB_PAGE_MOVED: 1626 /* 1627 * The reader is on another CPU and just did 1628 * a swap with our next_page. 1629 * Try again. 1630 */ 1631 return 1; 1632 default: 1633 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1634 return -1; 1635 } 1636 1637 /* 1638 * Now that we are here, the old head pointer is 1639 * set to UPDATE. This will keep the reader from 1640 * swapping the head page with the reader page. 1641 * The reader (on another CPU) will spin till 1642 * we are finished. 1643 * 1644 * We just need to protect against interrupts 1645 * doing the job. We will set the next pointer 1646 * to HEAD. After that, we set the old pointer 1647 * to NORMAL, but only if it was HEAD before. 1648 * otherwise we are an interrupt, and only 1649 * want the outer most commit to reset it. 1650 */ 1651 new_head = next_page; 1652 rb_inc_page(cpu_buffer, &new_head); 1653 1654 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1655 RB_PAGE_NORMAL); 1656 1657 /* 1658 * Valid returns are: 1659 * HEAD - an interrupt came in and already set it. 1660 * NORMAL - One of two things: 1661 * 1) We really set it. 1662 * 2) A bunch of interrupts came in and moved 1663 * the page forward again. 1664 */ 1665 switch (ret) { 1666 case RB_PAGE_HEAD: 1667 case RB_PAGE_NORMAL: 1668 /* OK */ 1669 break; 1670 default: 1671 RB_WARN_ON(cpu_buffer, 1); 1672 return -1; 1673 } 1674 1675 /* 1676 * It is possible that an interrupt came in, 1677 * set the head up, then more interrupts came in 1678 * and moved it again. When we get back here, 1679 * the page would have been set to NORMAL but we 1680 * just set it back to HEAD. 1681 * 1682 * How do you detect this? Well, if that happened 1683 * the tail page would have moved. 1684 */ 1685 if (ret == RB_PAGE_NORMAL) { 1686 /* 1687 * If the tail had moved passed next, then we need 1688 * to reset the pointer. 1689 */ 1690 if (cpu_buffer->tail_page != tail_page && 1691 cpu_buffer->tail_page != next_page) 1692 rb_head_page_set_normal(cpu_buffer, new_head, 1693 next_page, 1694 RB_PAGE_HEAD); 1695 } 1696 1697 /* 1698 * If this was the outer most commit (the one that 1699 * changed the original pointer from HEAD to UPDATE), 1700 * then it is up to us to reset it to NORMAL. 1701 */ 1702 if (type == RB_PAGE_HEAD) { 1703 ret = rb_head_page_set_normal(cpu_buffer, next_page, 1704 tail_page, 1705 RB_PAGE_UPDATE); 1706 if (RB_WARN_ON(cpu_buffer, 1707 ret != RB_PAGE_UPDATE)) 1708 return -1; 1709 } 1710 1711 return 0; 1712 } 1713 1714 static unsigned rb_calculate_event_length(unsigned length) 1715 { 1716 struct ring_buffer_event event; /* Used only for sizeof array */ 1717 1718 /* zero length can cause confusions */ 1719 if (!length) 1720 length = 1; 1721 1722 if (length > RB_MAX_SMALL_DATA) 1723 length += sizeof(event.array[0]); 1724 1725 length += RB_EVNT_HDR_SIZE; 1726 length = ALIGN(length, RB_ALIGNMENT); 1727 1728 return length; 1729 } 1730 1731 static inline void 1732 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 1733 struct buffer_page *tail_page, 1734 unsigned long tail, unsigned long length) 1735 { 1736 struct ring_buffer_event *event; 1737 1738 /* 1739 * Only the event that crossed the page boundary 1740 * must fill the old tail_page with padding. 1741 */ 1742 if (tail >= BUF_PAGE_SIZE) { 1743 local_sub(length, &tail_page->write); 1744 return; 1745 } 1746 1747 event = __rb_page_index(tail_page, tail); 1748 kmemcheck_annotate_bitfield(event, bitfield); 1749 1750 /* 1751 * If this event is bigger than the minimum size, then 1752 * we need to be careful that we don't subtract the 1753 * write counter enough to allow another writer to slip 1754 * in on this page. 1755 * We put in a discarded commit instead, to make sure 1756 * that this space is not used again. 1757 * 1758 * If we are less than the minimum size, we don't need to 1759 * worry about it. 1760 */ 1761 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 1762 /* No room for any events */ 1763 1764 /* Mark the rest of the page with padding */ 1765 rb_event_set_padding(event); 1766 1767 /* Set the write back to the previous setting */ 1768 local_sub(length, &tail_page->write); 1769 return; 1770 } 1771 1772 /* Put in a discarded event */ 1773 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 1774 event->type_len = RINGBUF_TYPE_PADDING; 1775 /* time delta must be non zero */ 1776 event->time_delta = 1; 1777 1778 /* Set write to end of buffer */ 1779 length = (tail + length) - BUF_PAGE_SIZE; 1780 local_sub(length, &tail_page->write); 1781 } 1782 1783 static struct ring_buffer_event * 1784 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 1785 unsigned long length, unsigned long tail, 1786 struct buffer_page *tail_page, u64 *ts) 1787 { 1788 struct buffer_page *commit_page = cpu_buffer->commit_page; 1789 struct ring_buffer *buffer = cpu_buffer->buffer; 1790 struct buffer_page *next_page; 1791 int ret; 1792 1793 next_page = tail_page; 1794 1795 rb_inc_page(cpu_buffer, &next_page); 1796 1797 /* 1798 * If for some reason, we had an interrupt storm that made 1799 * it all the way around the buffer, bail, and warn 1800 * about it. 1801 */ 1802 if (unlikely(next_page == commit_page)) { 1803 local_inc(&cpu_buffer->commit_overrun); 1804 goto out_reset; 1805 } 1806 1807 /* 1808 * This is where the fun begins! 1809 * 1810 * We are fighting against races between a reader that 1811 * could be on another CPU trying to swap its reader 1812 * page with the buffer head. 1813 * 1814 * We are also fighting against interrupts coming in and 1815 * moving the head or tail on us as well. 1816 * 1817 * If the next page is the head page then we have filled 1818 * the buffer, unless the commit page is still on the 1819 * reader page. 1820 */ 1821 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 1822 1823 /* 1824 * If the commit is not on the reader page, then 1825 * move the header page. 1826 */ 1827 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 1828 /* 1829 * If we are not in overwrite mode, 1830 * this is easy, just stop here. 1831 */ 1832 if (!(buffer->flags & RB_FL_OVERWRITE)) 1833 goto out_reset; 1834 1835 ret = rb_handle_head_page(cpu_buffer, 1836 tail_page, 1837 next_page); 1838 if (ret < 0) 1839 goto out_reset; 1840 if (ret) 1841 goto out_again; 1842 } else { 1843 /* 1844 * We need to be careful here too. The 1845 * commit page could still be on the reader 1846 * page. We could have a small buffer, and 1847 * have filled up the buffer with events 1848 * from interrupts and such, and wrapped. 1849 * 1850 * Note, if the tail page is also the on the 1851 * reader_page, we let it move out. 1852 */ 1853 if (unlikely((cpu_buffer->commit_page != 1854 cpu_buffer->tail_page) && 1855 (cpu_buffer->commit_page == 1856 cpu_buffer->reader_page))) { 1857 local_inc(&cpu_buffer->commit_overrun); 1858 goto out_reset; 1859 } 1860 } 1861 } 1862 1863 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 1864 if (ret) { 1865 /* 1866 * Nested commits always have zero deltas, so 1867 * just reread the time stamp 1868 */ 1869 *ts = rb_time_stamp(buffer); 1870 next_page->page->time_stamp = *ts; 1871 } 1872 1873 out_again: 1874 1875 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1876 1877 /* fail and let the caller try again */ 1878 return ERR_PTR(-EAGAIN); 1879 1880 out_reset: 1881 /* reset write */ 1882 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1883 1884 return NULL; 1885 } 1886 1887 static struct ring_buffer_event * 1888 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 1889 unsigned type, unsigned long length, u64 *ts) 1890 { 1891 struct buffer_page *tail_page; 1892 struct ring_buffer_event *event; 1893 unsigned long tail, write; 1894 1895 tail_page = cpu_buffer->tail_page; 1896 write = local_add_return(length, &tail_page->write); 1897 1898 /* set write to only the index of the write */ 1899 write &= RB_WRITE_MASK; 1900 tail = write - length; 1901 1902 /* See if we shot pass the end of this buffer page */ 1903 if (write > BUF_PAGE_SIZE) 1904 return rb_move_tail(cpu_buffer, length, tail, 1905 tail_page, ts); 1906 1907 /* We reserved something on the buffer */ 1908 1909 event = __rb_page_index(tail_page, tail); 1910 kmemcheck_annotate_bitfield(event, bitfield); 1911 rb_update_event(event, type, length); 1912 1913 /* The passed in type is zero for DATA */ 1914 if (likely(!type)) 1915 local_inc(&tail_page->entries); 1916 1917 /* 1918 * If this is the first commit on the page, then update 1919 * its timestamp. 1920 */ 1921 if (!tail) 1922 tail_page->page->time_stamp = *ts; 1923 1924 return event; 1925 } 1926 1927 static inline int 1928 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 1929 struct ring_buffer_event *event) 1930 { 1931 unsigned long new_index, old_index; 1932 struct buffer_page *bpage; 1933 unsigned long index; 1934 unsigned long addr; 1935 1936 new_index = rb_event_index(event); 1937 old_index = new_index + rb_event_length(event); 1938 addr = (unsigned long)event; 1939 addr &= PAGE_MASK; 1940 1941 bpage = cpu_buffer->tail_page; 1942 1943 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 1944 unsigned long write_mask = 1945 local_read(&bpage->write) & ~RB_WRITE_MASK; 1946 /* 1947 * This is on the tail page. It is possible that 1948 * a write could come in and move the tail page 1949 * and write to the next page. That is fine 1950 * because we just shorten what is on this page. 1951 */ 1952 old_index += write_mask; 1953 new_index += write_mask; 1954 index = local_cmpxchg(&bpage->write, old_index, new_index); 1955 if (index == old_index) 1956 return 1; 1957 } 1958 1959 /* could not discard */ 1960 return 0; 1961 } 1962 1963 static int 1964 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 1965 u64 *ts, u64 *delta) 1966 { 1967 struct ring_buffer_event *event; 1968 static int once; 1969 int ret; 1970 1971 if (unlikely(*delta > (1ULL << 59) && !once++)) { 1972 printk(KERN_WARNING "Delta way too big! %llu" 1973 " ts=%llu write stamp = %llu\n", 1974 (unsigned long long)*delta, 1975 (unsigned long long)*ts, 1976 (unsigned long long)cpu_buffer->write_stamp); 1977 WARN_ON(1); 1978 } 1979 1980 /* 1981 * The delta is too big, we to add a 1982 * new timestamp. 1983 */ 1984 event = __rb_reserve_next(cpu_buffer, 1985 RINGBUF_TYPE_TIME_EXTEND, 1986 RB_LEN_TIME_EXTEND, 1987 ts); 1988 if (!event) 1989 return -EBUSY; 1990 1991 if (PTR_ERR(event) == -EAGAIN) 1992 return -EAGAIN; 1993 1994 /* Only a commited time event can update the write stamp */ 1995 if (rb_event_is_commit(cpu_buffer, event)) { 1996 /* 1997 * If this is the first on the page, then it was 1998 * updated with the page itself. Try to discard it 1999 * and if we can't just make it zero. 2000 */ 2001 if (rb_event_index(event)) { 2002 event->time_delta = *delta & TS_MASK; 2003 event->array[0] = *delta >> TS_SHIFT; 2004 } else { 2005 /* try to discard, since we do not need this */ 2006 if (!rb_try_to_discard(cpu_buffer, event)) { 2007 /* nope, just zero it */ 2008 event->time_delta = 0; 2009 event->array[0] = 0; 2010 } 2011 } 2012 cpu_buffer->write_stamp = *ts; 2013 /* let the caller know this was the commit */ 2014 ret = 1; 2015 } else { 2016 /* Try to discard the event */ 2017 if (!rb_try_to_discard(cpu_buffer, event)) { 2018 /* Darn, this is just wasted space */ 2019 event->time_delta = 0; 2020 event->array[0] = 0; 2021 } 2022 ret = 0; 2023 } 2024 2025 *delta = 0; 2026 2027 return ret; 2028 } 2029 2030 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2031 { 2032 local_inc(&cpu_buffer->committing); 2033 local_inc(&cpu_buffer->commits); 2034 } 2035 2036 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2037 { 2038 unsigned long commits; 2039 2040 if (RB_WARN_ON(cpu_buffer, 2041 !local_read(&cpu_buffer->committing))) 2042 return; 2043 2044 again: 2045 commits = local_read(&cpu_buffer->commits); 2046 /* synchronize with interrupts */ 2047 barrier(); 2048 if (local_read(&cpu_buffer->committing) == 1) 2049 rb_set_commit_to_write(cpu_buffer); 2050 2051 local_dec(&cpu_buffer->committing); 2052 2053 /* synchronize with interrupts */ 2054 barrier(); 2055 2056 /* 2057 * Need to account for interrupts coming in between the 2058 * updating of the commit page and the clearing of the 2059 * committing counter. 2060 */ 2061 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2062 !local_read(&cpu_buffer->committing)) { 2063 local_inc(&cpu_buffer->committing); 2064 goto again; 2065 } 2066 } 2067 2068 static struct ring_buffer_event * 2069 rb_reserve_next_event(struct ring_buffer *buffer, 2070 struct ring_buffer_per_cpu *cpu_buffer, 2071 unsigned long length) 2072 { 2073 struct ring_buffer_event *event; 2074 u64 ts, delta = 0; 2075 int commit = 0; 2076 int nr_loops = 0; 2077 2078 rb_start_commit(cpu_buffer); 2079 2080 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2081 /* 2082 * Due to the ability to swap a cpu buffer from a buffer 2083 * it is possible it was swapped before we committed. 2084 * (committing stops a swap). We check for it here and 2085 * if it happened, we have to fail the write. 2086 */ 2087 barrier(); 2088 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2089 local_dec(&cpu_buffer->committing); 2090 local_dec(&cpu_buffer->commits); 2091 return NULL; 2092 } 2093 #endif 2094 2095 length = rb_calculate_event_length(length); 2096 again: 2097 /* 2098 * We allow for interrupts to reenter here and do a trace. 2099 * If one does, it will cause this original code to loop 2100 * back here. Even with heavy interrupts happening, this 2101 * should only happen a few times in a row. If this happens 2102 * 1000 times in a row, there must be either an interrupt 2103 * storm or we have something buggy. 2104 * Bail! 2105 */ 2106 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2107 goto out_fail; 2108 2109 ts = rb_time_stamp(cpu_buffer->buffer); 2110 2111 /* 2112 * Only the first commit can update the timestamp. 2113 * Yes there is a race here. If an interrupt comes in 2114 * just after the conditional and it traces too, then it 2115 * will also check the deltas. More than one timestamp may 2116 * also be made. But only the entry that did the actual 2117 * commit will be something other than zero. 2118 */ 2119 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page && 2120 rb_page_write(cpu_buffer->tail_page) == 2121 rb_commit_index(cpu_buffer))) { 2122 u64 diff; 2123 2124 diff = ts - cpu_buffer->write_stamp; 2125 2126 /* make sure this diff is calculated here */ 2127 barrier(); 2128 2129 /* Did the write stamp get updated already? */ 2130 if (unlikely(ts < cpu_buffer->write_stamp)) 2131 goto get_event; 2132 2133 delta = diff; 2134 if (unlikely(test_time_stamp(delta))) { 2135 2136 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta); 2137 if (commit == -EBUSY) 2138 goto out_fail; 2139 2140 if (commit == -EAGAIN) 2141 goto again; 2142 2143 RB_WARN_ON(cpu_buffer, commit < 0); 2144 } 2145 } 2146 2147 get_event: 2148 event = __rb_reserve_next(cpu_buffer, 0, length, &ts); 2149 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2150 goto again; 2151 2152 if (!event) 2153 goto out_fail; 2154 2155 if (!rb_event_is_commit(cpu_buffer, event)) 2156 delta = 0; 2157 2158 event->time_delta = delta; 2159 2160 return event; 2161 2162 out_fail: 2163 rb_end_commit(cpu_buffer); 2164 return NULL; 2165 } 2166 2167 #ifdef CONFIG_TRACING 2168 2169 #define TRACE_RECURSIVE_DEPTH 16 2170 2171 static int trace_recursive_lock(void) 2172 { 2173 current->trace_recursion++; 2174 2175 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH)) 2176 return 0; 2177 2178 /* Disable all tracing before we do anything else */ 2179 tracing_off_permanent(); 2180 2181 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2182 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2183 current->trace_recursion, 2184 hardirq_count() >> HARDIRQ_SHIFT, 2185 softirq_count() >> SOFTIRQ_SHIFT, 2186 in_nmi()); 2187 2188 WARN_ON_ONCE(1); 2189 return -1; 2190 } 2191 2192 static void trace_recursive_unlock(void) 2193 { 2194 WARN_ON_ONCE(!current->trace_recursion); 2195 2196 current->trace_recursion--; 2197 } 2198 2199 #else 2200 2201 #define trace_recursive_lock() (0) 2202 #define trace_recursive_unlock() do { } while (0) 2203 2204 #endif 2205 2206 static DEFINE_PER_CPU(int, rb_need_resched); 2207 2208 /** 2209 * ring_buffer_lock_reserve - reserve a part of the buffer 2210 * @buffer: the ring buffer to reserve from 2211 * @length: the length of the data to reserve (excluding event header) 2212 * 2213 * Returns a reseverd event on the ring buffer to copy directly to. 2214 * The user of this interface will need to get the body to write into 2215 * and can use the ring_buffer_event_data() interface. 2216 * 2217 * The length is the length of the data needed, not the event length 2218 * which also includes the event header. 2219 * 2220 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2221 * If NULL is returned, then nothing has been allocated or locked. 2222 */ 2223 struct ring_buffer_event * 2224 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2225 { 2226 struct ring_buffer_per_cpu *cpu_buffer; 2227 struct ring_buffer_event *event; 2228 int cpu, resched; 2229 2230 if (ring_buffer_flags != RB_BUFFERS_ON) 2231 return NULL; 2232 2233 if (atomic_read(&buffer->record_disabled)) 2234 return NULL; 2235 2236 /* If we are tracing schedule, we don't want to recurse */ 2237 resched = ftrace_preempt_disable(); 2238 2239 if (trace_recursive_lock()) 2240 goto out_nocheck; 2241 2242 cpu = raw_smp_processor_id(); 2243 2244 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2245 goto out; 2246 2247 cpu_buffer = buffer->buffers[cpu]; 2248 2249 if (atomic_read(&cpu_buffer->record_disabled)) 2250 goto out; 2251 2252 if (length > BUF_MAX_DATA_SIZE) 2253 goto out; 2254 2255 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2256 if (!event) 2257 goto out; 2258 2259 /* 2260 * Need to store resched state on this cpu. 2261 * Only the first needs to. 2262 */ 2263 2264 if (preempt_count() == 1) 2265 per_cpu(rb_need_resched, cpu) = resched; 2266 2267 return event; 2268 2269 out: 2270 trace_recursive_unlock(); 2271 2272 out_nocheck: 2273 ftrace_preempt_enable(resched); 2274 return NULL; 2275 } 2276 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2277 2278 static void 2279 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2280 struct ring_buffer_event *event) 2281 { 2282 /* 2283 * The event first in the commit queue updates the 2284 * time stamp. 2285 */ 2286 if (rb_event_is_commit(cpu_buffer, event)) 2287 cpu_buffer->write_stamp += event->time_delta; 2288 } 2289 2290 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2291 struct ring_buffer_event *event) 2292 { 2293 local_inc(&cpu_buffer->entries); 2294 rb_update_write_stamp(cpu_buffer, event); 2295 rb_end_commit(cpu_buffer); 2296 } 2297 2298 /** 2299 * ring_buffer_unlock_commit - commit a reserved 2300 * @buffer: The buffer to commit to 2301 * @event: The event pointer to commit. 2302 * 2303 * This commits the data to the ring buffer, and releases any locks held. 2304 * 2305 * Must be paired with ring_buffer_lock_reserve. 2306 */ 2307 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2308 struct ring_buffer_event *event) 2309 { 2310 struct ring_buffer_per_cpu *cpu_buffer; 2311 int cpu = raw_smp_processor_id(); 2312 2313 cpu_buffer = buffer->buffers[cpu]; 2314 2315 rb_commit(cpu_buffer, event); 2316 2317 trace_recursive_unlock(); 2318 2319 /* 2320 * Only the last preempt count needs to restore preemption. 2321 */ 2322 if (preempt_count() == 1) 2323 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2324 else 2325 preempt_enable_no_resched_notrace(); 2326 2327 return 0; 2328 } 2329 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2330 2331 static inline void rb_event_discard(struct ring_buffer_event *event) 2332 { 2333 /* array[0] holds the actual length for the discarded event */ 2334 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2335 event->type_len = RINGBUF_TYPE_PADDING; 2336 /* time delta must be non zero */ 2337 if (!event->time_delta) 2338 event->time_delta = 1; 2339 } 2340 2341 /* 2342 * Decrement the entries to the page that an event is on. 2343 * The event does not even need to exist, only the pointer 2344 * to the page it is on. This may only be called before the commit 2345 * takes place. 2346 */ 2347 static inline void 2348 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2349 struct ring_buffer_event *event) 2350 { 2351 unsigned long addr = (unsigned long)event; 2352 struct buffer_page *bpage = cpu_buffer->commit_page; 2353 struct buffer_page *start; 2354 2355 addr &= PAGE_MASK; 2356 2357 /* Do the likely case first */ 2358 if (likely(bpage->page == (void *)addr)) { 2359 local_dec(&bpage->entries); 2360 return; 2361 } 2362 2363 /* 2364 * Because the commit page may be on the reader page we 2365 * start with the next page and check the end loop there. 2366 */ 2367 rb_inc_page(cpu_buffer, &bpage); 2368 start = bpage; 2369 do { 2370 if (bpage->page == (void *)addr) { 2371 local_dec(&bpage->entries); 2372 return; 2373 } 2374 rb_inc_page(cpu_buffer, &bpage); 2375 } while (bpage != start); 2376 2377 /* commit not part of this buffer?? */ 2378 RB_WARN_ON(cpu_buffer, 1); 2379 } 2380 2381 /** 2382 * ring_buffer_commit_discard - discard an event that has not been committed 2383 * @buffer: the ring buffer 2384 * @event: non committed event to discard 2385 * 2386 * Sometimes an event that is in the ring buffer needs to be ignored. 2387 * This function lets the user discard an event in the ring buffer 2388 * and then that event will not be read later. 2389 * 2390 * This function only works if it is called before the the item has been 2391 * committed. It will try to free the event from the ring buffer 2392 * if another event has not been added behind it. 2393 * 2394 * If another event has been added behind it, it will set the event 2395 * up as discarded, and perform the commit. 2396 * 2397 * If this function is called, do not call ring_buffer_unlock_commit on 2398 * the event. 2399 */ 2400 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2401 struct ring_buffer_event *event) 2402 { 2403 struct ring_buffer_per_cpu *cpu_buffer; 2404 int cpu; 2405 2406 /* The event is discarded regardless */ 2407 rb_event_discard(event); 2408 2409 cpu = smp_processor_id(); 2410 cpu_buffer = buffer->buffers[cpu]; 2411 2412 /* 2413 * This must only be called if the event has not been 2414 * committed yet. Thus we can assume that preemption 2415 * is still disabled. 2416 */ 2417 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2418 2419 rb_decrement_entry(cpu_buffer, event); 2420 if (rb_try_to_discard(cpu_buffer, event)) 2421 goto out; 2422 2423 /* 2424 * The commit is still visible by the reader, so we 2425 * must still update the timestamp. 2426 */ 2427 rb_update_write_stamp(cpu_buffer, event); 2428 out: 2429 rb_end_commit(cpu_buffer); 2430 2431 trace_recursive_unlock(); 2432 2433 /* 2434 * Only the last preempt count needs to restore preemption. 2435 */ 2436 if (preempt_count() == 1) 2437 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2438 else 2439 preempt_enable_no_resched_notrace(); 2440 2441 } 2442 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2443 2444 /** 2445 * ring_buffer_write - write data to the buffer without reserving 2446 * @buffer: The ring buffer to write to. 2447 * @length: The length of the data being written (excluding the event header) 2448 * @data: The data to write to the buffer. 2449 * 2450 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2451 * one function. If you already have the data to write to the buffer, it 2452 * may be easier to simply call this function. 2453 * 2454 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2455 * and not the length of the event which would hold the header. 2456 */ 2457 int ring_buffer_write(struct ring_buffer *buffer, 2458 unsigned long length, 2459 void *data) 2460 { 2461 struct ring_buffer_per_cpu *cpu_buffer; 2462 struct ring_buffer_event *event; 2463 void *body; 2464 int ret = -EBUSY; 2465 int cpu, resched; 2466 2467 if (ring_buffer_flags != RB_BUFFERS_ON) 2468 return -EBUSY; 2469 2470 if (atomic_read(&buffer->record_disabled)) 2471 return -EBUSY; 2472 2473 resched = ftrace_preempt_disable(); 2474 2475 cpu = raw_smp_processor_id(); 2476 2477 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2478 goto out; 2479 2480 cpu_buffer = buffer->buffers[cpu]; 2481 2482 if (atomic_read(&cpu_buffer->record_disabled)) 2483 goto out; 2484 2485 if (length > BUF_MAX_DATA_SIZE) 2486 goto out; 2487 2488 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2489 if (!event) 2490 goto out; 2491 2492 body = rb_event_data(event); 2493 2494 memcpy(body, data, length); 2495 2496 rb_commit(cpu_buffer, event); 2497 2498 ret = 0; 2499 out: 2500 ftrace_preempt_enable(resched); 2501 2502 return ret; 2503 } 2504 EXPORT_SYMBOL_GPL(ring_buffer_write); 2505 2506 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2507 { 2508 struct buffer_page *reader = cpu_buffer->reader_page; 2509 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2510 struct buffer_page *commit = cpu_buffer->commit_page; 2511 2512 /* In case of error, head will be NULL */ 2513 if (unlikely(!head)) 2514 return 1; 2515 2516 return reader->read == rb_page_commit(reader) && 2517 (commit == reader || 2518 (commit == head && 2519 head->read == rb_page_commit(commit))); 2520 } 2521 2522 /** 2523 * ring_buffer_record_disable - stop all writes into the buffer 2524 * @buffer: The ring buffer to stop writes to. 2525 * 2526 * This prevents all writes to the buffer. Any attempt to write 2527 * to the buffer after this will fail and return NULL. 2528 * 2529 * The caller should call synchronize_sched() after this. 2530 */ 2531 void ring_buffer_record_disable(struct ring_buffer *buffer) 2532 { 2533 atomic_inc(&buffer->record_disabled); 2534 } 2535 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2536 2537 /** 2538 * ring_buffer_record_enable - enable writes to the buffer 2539 * @buffer: The ring buffer to enable writes 2540 * 2541 * Note, multiple disables will need the same number of enables 2542 * to truely enable the writing (much like preempt_disable). 2543 */ 2544 void ring_buffer_record_enable(struct ring_buffer *buffer) 2545 { 2546 atomic_dec(&buffer->record_disabled); 2547 } 2548 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2549 2550 /** 2551 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2552 * @buffer: The ring buffer to stop writes to. 2553 * @cpu: The CPU buffer to stop 2554 * 2555 * This prevents all writes to the buffer. Any attempt to write 2556 * to the buffer after this will fail and return NULL. 2557 * 2558 * The caller should call synchronize_sched() after this. 2559 */ 2560 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2561 { 2562 struct ring_buffer_per_cpu *cpu_buffer; 2563 2564 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2565 return; 2566 2567 cpu_buffer = buffer->buffers[cpu]; 2568 atomic_inc(&cpu_buffer->record_disabled); 2569 } 2570 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2571 2572 /** 2573 * ring_buffer_record_enable_cpu - enable writes to the buffer 2574 * @buffer: The ring buffer to enable writes 2575 * @cpu: The CPU to enable. 2576 * 2577 * Note, multiple disables will need the same number of enables 2578 * to truely enable the writing (much like preempt_disable). 2579 */ 2580 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2581 { 2582 struct ring_buffer_per_cpu *cpu_buffer; 2583 2584 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2585 return; 2586 2587 cpu_buffer = buffer->buffers[cpu]; 2588 atomic_dec(&cpu_buffer->record_disabled); 2589 } 2590 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2591 2592 /** 2593 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2594 * @buffer: The ring buffer 2595 * @cpu: The per CPU buffer to get the entries from. 2596 */ 2597 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2598 { 2599 struct ring_buffer_per_cpu *cpu_buffer; 2600 unsigned long ret; 2601 2602 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2603 return 0; 2604 2605 cpu_buffer = buffer->buffers[cpu]; 2606 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun)) 2607 - cpu_buffer->read; 2608 2609 return ret; 2610 } 2611 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 2612 2613 /** 2614 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 2615 * @buffer: The ring buffer 2616 * @cpu: The per CPU buffer to get the number of overruns from 2617 */ 2618 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 2619 { 2620 struct ring_buffer_per_cpu *cpu_buffer; 2621 unsigned long ret; 2622 2623 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2624 return 0; 2625 2626 cpu_buffer = buffer->buffers[cpu]; 2627 ret = local_read(&cpu_buffer->overrun); 2628 2629 return ret; 2630 } 2631 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 2632 2633 /** 2634 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 2635 * @buffer: The ring buffer 2636 * @cpu: The per CPU buffer to get the number of overruns from 2637 */ 2638 unsigned long 2639 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 2640 { 2641 struct ring_buffer_per_cpu *cpu_buffer; 2642 unsigned long ret; 2643 2644 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2645 return 0; 2646 2647 cpu_buffer = buffer->buffers[cpu]; 2648 ret = local_read(&cpu_buffer->commit_overrun); 2649 2650 return ret; 2651 } 2652 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 2653 2654 /** 2655 * ring_buffer_entries - get the number of entries in a buffer 2656 * @buffer: The ring buffer 2657 * 2658 * Returns the total number of entries in the ring buffer 2659 * (all CPU entries) 2660 */ 2661 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 2662 { 2663 struct ring_buffer_per_cpu *cpu_buffer; 2664 unsigned long entries = 0; 2665 int cpu; 2666 2667 /* if you care about this being correct, lock the buffer */ 2668 for_each_buffer_cpu(buffer, cpu) { 2669 cpu_buffer = buffer->buffers[cpu]; 2670 entries += (local_read(&cpu_buffer->entries) - 2671 local_read(&cpu_buffer->overrun)) - cpu_buffer->read; 2672 } 2673 2674 return entries; 2675 } 2676 EXPORT_SYMBOL_GPL(ring_buffer_entries); 2677 2678 /** 2679 * ring_buffer_overruns - get the number of overruns in buffer 2680 * @buffer: The ring buffer 2681 * 2682 * Returns the total number of overruns in the ring buffer 2683 * (all CPU entries) 2684 */ 2685 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 2686 { 2687 struct ring_buffer_per_cpu *cpu_buffer; 2688 unsigned long overruns = 0; 2689 int cpu; 2690 2691 /* if you care about this being correct, lock the buffer */ 2692 for_each_buffer_cpu(buffer, cpu) { 2693 cpu_buffer = buffer->buffers[cpu]; 2694 overruns += local_read(&cpu_buffer->overrun); 2695 } 2696 2697 return overruns; 2698 } 2699 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 2700 2701 static void rb_iter_reset(struct ring_buffer_iter *iter) 2702 { 2703 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2704 2705 /* Iterator usage is expected to have record disabled */ 2706 if (list_empty(&cpu_buffer->reader_page->list)) { 2707 iter->head_page = rb_set_head_page(cpu_buffer); 2708 if (unlikely(!iter->head_page)) 2709 return; 2710 iter->head = iter->head_page->read; 2711 } else { 2712 iter->head_page = cpu_buffer->reader_page; 2713 iter->head = cpu_buffer->reader_page->read; 2714 } 2715 if (iter->head) 2716 iter->read_stamp = cpu_buffer->read_stamp; 2717 else 2718 iter->read_stamp = iter->head_page->page->time_stamp; 2719 } 2720 2721 /** 2722 * ring_buffer_iter_reset - reset an iterator 2723 * @iter: The iterator to reset 2724 * 2725 * Resets the iterator, so that it will start from the beginning 2726 * again. 2727 */ 2728 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 2729 { 2730 struct ring_buffer_per_cpu *cpu_buffer; 2731 unsigned long flags; 2732 2733 if (!iter) 2734 return; 2735 2736 cpu_buffer = iter->cpu_buffer; 2737 2738 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2739 rb_iter_reset(iter); 2740 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2741 } 2742 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 2743 2744 /** 2745 * ring_buffer_iter_empty - check if an iterator has no more to read 2746 * @iter: The iterator to check 2747 */ 2748 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 2749 { 2750 struct ring_buffer_per_cpu *cpu_buffer; 2751 2752 cpu_buffer = iter->cpu_buffer; 2753 2754 return iter->head_page == cpu_buffer->commit_page && 2755 iter->head == rb_commit_index(cpu_buffer); 2756 } 2757 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 2758 2759 static void 2760 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2761 struct ring_buffer_event *event) 2762 { 2763 u64 delta; 2764 2765 switch (event->type_len) { 2766 case RINGBUF_TYPE_PADDING: 2767 return; 2768 2769 case RINGBUF_TYPE_TIME_EXTEND: 2770 delta = event->array[0]; 2771 delta <<= TS_SHIFT; 2772 delta += event->time_delta; 2773 cpu_buffer->read_stamp += delta; 2774 return; 2775 2776 case RINGBUF_TYPE_TIME_STAMP: 2777 /* FIXME: not implemented */ 2778 return; 2779 2780 case RINGBUF_TYPE_DATA: 2781 cpu_buffer->read_stamp += event->time_delta; 2782 return; 2783 2784 default: 2785 BUG(); 2786 } 2787 return; 2788 } 2789 2790 static void 2791 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 2792 struct ring_buffer_event *event) 2793 { 2794 u64 delta; 2795 2796 switch (event->type_len) { 2797 case RINGBUF_TYPE_PADDING: 2798 return; 2799 2800 case RINGBUF_TYPE_TIME_EXTEND: 2801 delta = event->array[0]; 2802 delta <<= TS_SHIFT; 2803 delta += event->time_delta; 2804 iter->read_stamp += delta; 2805 return; 2806 2807 case RINGBUF_TYPE_TIME_STAMP: 2808 /* FIXME: not implemented */ 2809 return; 2810 2811 case RINGBUF_TYPE_DATA: 2812 iter->read_stamp += event->time_delta; 2813 return; 2814 2815 default: 2816 BUG(); 2817 } 2818 return; 2819 } 2820 2821 static struct buffer_page * 2822 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 2823 { 2824 struct buffer_page *reader = NULL; 2825 unsigned long flags; 2826 int nr_loops = 0; 2827 int ret; 2828 2829 local_irq_save(flags); 2830 arch_spin_lock(&cpu_buffer->lock); 2831 2832 again: 2833 /* 2834 * This should normally only loop twice. But because the 2835 * start of the reader inserts an empty page, it causes 2836 * a case where we will loop three times. There should be no 2837 * reason to loop four times (that I know of). 2838 */ 2839 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 2840 reader = NULL; 2841 goto out; 2842 } 2843 2844 reader = cpu_buffer->reader_page; 2845 2846 /* If there's more to read, return this page */ 2847 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 2848 goto out; 2849 2850 /* Never should we have an index greater than the size */ 2851 if (RB_WARN_ON(cpu_buffer, 2852 cpu_buffer->reader_page->read > rb_page_size(reader))) 2853 goto out; 2854 2855 /* check if we caught up to the tail */ 2856 reader = NULL; 2857 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 2858 goto out; 2859 2860 /* 2861 * Reset the reader page to size zero. 2862 */ 2863 local_set(&cpu_buffer->reader_page->write, 0); 2864 local_set(&cpu_buffer->reader_page->entries, 0); 2865 local_set(&cpu_buffer->reader_page->page->commit, 0); 2866 2867 spin: 2868 /* 2869 * Splice the empty reader page into the list around the head. 2870 */ 2871 reader = rb_set_head_page(cpu_buffer); 2872 cpu_buffer->reader_page->list.next = reader->list.next; 2873 cpu_buffer->reader_page->list.prev = reader->list.prev; 2874 2875 /* 2876 * cpu_buffer->pages just needs to point to the buffer, it 2877 * has no specific buffer page to point to. Lets move it out 2878 * of our way so we don't accidently swap it. 2879 */ 2880 cpu_buffer->pages = reader->list.prev; 2881 2882 /* The reader page will be pointing to the new head */ 2883 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 2884 2885 /* 2886 * Here's the tricky part. 2887 * 2888 * We need to move the pointer past the header page. 2889 * But we can only do that if a writer is not currently 2890 * moving it. The page before the header page has the 2891 * flag bit '1' set if it is pointing to the page we want. 2892 * but if the writer is in the process of moving it 2893 * than it will be '2' or already moved '0'. 2894 */ 2895 2896 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 2897 2898 /* 2899 * If we did not convert it, then we must try again. 2900 */ 2901 if (!ret) 2902 goto spin; 2903 2904 /* 2905 * Yeah! We succeeded in replacing the page. 2906 * 2907 * Now make the new head point back to the reader page. 2908 */ 2909 reader->list.next->prev = &cpu_buffer->reader_page->list; 2910 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 2911 2912 /* Finally update the reader page to the new head */ 2913 cpu_buffer->reader_page = reader; 2914 rb_reset_reader_page(cpu_buffer); 2915 2916 goto again; 2917 2918 out: 2919 arch_spin_unlock(&cpu_buffer->lock); 2920 local_irq_restore(flags); 2921 2922 return reader; 2923 } 2924 2925 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 2926 { 2927 struct ring_buffer_event *event; 2928 struct buffer_page *reader; 2929 unsigned length; 2930 2931 reader = rb_get_reader_page(cpu_buffer); 2932 2933 /* This function should not be called when buffer is empty */ 2934 if (RB_WARN_ON(cpu_buffer, !reader)) 2935 return; 2936 2937 event = rb_reader_event(cpu_buffer); 2938 2939 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 2940 cpu_buffer->read++; 2941 2942 rb_update_read_stamp(cpu_buffer, event); 2943 2944 length = rb_event_length(event); 2945 cpu_buffer->reader_page->read += length; 2946 } 2947 2948 static void rb_advance_iter(struct ring_buffer_iter *iter) 2949 { 2950 struct ring_buffer *buffer; 2951 struct ring_buffer_per_cpu *cpu_buffer; 2952 struct ring_buffer_event *event; 2953 unsigned length; 2954 2955 cpu_buffer = iter->cpu_buffer; 2956 buffer = cpu_buffer->buffer; 2957 2958 /* 2959 * Check if we are at the end of the buffer. 2960 */ 2961 if (iter->head >= rb_page_size(iter->head_page)) { 2962 /* discarded commits can make the page empty */ 2963 if (iter->head_page == cpu_buffer->commit_page) 2964 return; 2965 rb_inc_iter(iter); 2966 return; 2967 } 2968 2969 event = rb_iter_head_event(iter); 2970 2971 length = rb_event_length(event); 2972 2973 /* 2974 * This should not be called to advance the header if we are 2975 * at the tail of the buffer. 2976 */ 2977 if (RB_WARN_ON(cpu_buffer, 2978 (iter->head_page == cpu_buffer->commit_page) && 2979 (iter->head + length > rb_commit_index(cpu_buffer)))) 2980 return; 2981 2982 rb_update_iter_read_stamp(iter, event); 2983 2984 iter->head += length; 2985 2986 /* check for end of page padding */ 2987 if ((iter->head >= rb_page_size(iter->head_page)) && 2988 (iter->head_page != cpu_buffer->commit_page)) 2989 rb_advance_iter(iter); 2990 } 2991 2992 static struct ring_buffer_event * 2993 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) 2994 { 2995 struct ring_buffer_event *event; 2996 struct buffer_page *reader; 2997 int nr_loops = 0; 2998 2999 again: 3000 /* 3001 * We repeat when a timestamp is encountered. It is possible 3002 * to get multiple timestamps from an interrupt entering just 3003 * as one timestamp is about to be written, or from discarded 3004 * commits. The most that we can have is the number on a single page. 3005 */ 3006 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3007 return NULL; 3008 3009 reader = rb_get_reader_page(cpu_buffer); 3010 if (!reader) 3011 return NULL; 3012 3013 event = rb_reader_event(cpu_buffer); 3014 3015 switch (event->type_len) { 3016 case RINGBUF_TYPE_PADDING: 3017 if (rb_null_event(event)) 3018 RB_WARN_ON(cpu_buffer, 1); 3019 /* 3020 * Because the writer could be discarding every 3021 * event it creates (which would probably be bad) 3022 * if we were to go back to "again" then we may never 3023 * catch up, and will trigger the warn on, or lock 3024 * the box. Return the padding, and we will release 3025 * the current locks, and try again. 3026 */ 3027 return event; 3028 3029 case RINGBUF_TYPE_TIME_EXTEND: 3030 /* Internal data, OK to advance */ 3031 rb_advance_reader(cpu_buffer); 3032 goto again; 3033 3034 case RINGBUF_TYPE_TIME_STAMP: 3035 /* FIXME: not implemented */ 3036 rb_advance_reader(cpu_buffer); 3037 goto again; 3038 3039 case RINGBUF_TYPE_DATA: 3040 if (ts) { 3041 *ts = cpu_buffer->read_stamp + event->time_delta; 3042 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3043 cpu_buffer->cpu, ts); 3044 } 3045 return event; 3046 3047 default: 3048 BUG(); 3049 } 3050 3051 return NULL; 3052 } 3053 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3054 3055 static struct ring_buffer_event * 3056 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3057 { 3058 struct ring_buffer *buffer; 3059 struct ring_buffer_per_cpu *cpu_buffer; 3060 struct ring_buffer_event *event; 3061 int nr_loops = 0; 3062 3063 if (ring_buffer_iter_empty(iter)) 3064 return NULL; 3065 3066 cpu_buffer = iter->cpu_buffer; 3067 buffer = cpu_buffer->buffer; 3068 3069 again: 3070 /* 3071 * We repeat when a timestamp is encountered. 3072 * We can get multiple timestamps by nested interrupts or also 3073 * if filtering is on (discarding commits). Since discarding 3074 * commits can be frequent we can get a lot of timestamps. 3075 * But we limit them by not adding timestamps if they begin 3076 * at the start of a page. 3077 */ 3078 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3079 return NULL; 3080 3081 if (rb_per_cpu_empty(cpu_buffer)) 3082 return NULL; 3083 3084 event = rb_iter_head_event(iter); 3085 3086 switch (event->type_len) { 3087 case RINGBUF_TYPE_PADDING: 3088 if (rb_null_event(event)) { 3089 rb_inc_iter(iter); 3090 goto again; 3091 } 3092 rb_advance_iter(iter); 3093 return event; 3094 3095 case RINGBUF_TYPE_TIME_EXTEND: 3096 /* Internal data, OK to advance */ 3097 rb_advance_iter(iter); 3098 goto again; 3099 3100 case RINGBUF_TYPE_TIME_STAMP: 3101 /* FIXME: not implemented */ 3102 rb_advance_iter(iter); 3103 goto again; 3104 3105 case RINGBUF_TYPE_DATA: 3106 if (ts) { 3107 *ts = iter->read_stamp + event->time_delta; 3108 ring_buffer_normalize_time_stamp(buffer, 3109 cpu_buffer->cpu, ts); 3110 } 3111 return event; 3112 3113 default: 3114 BUG(); 3115 } 3116 3117 return NULL; 3118 } 3119 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3120 3121 static inline int rb_ok_to_lock(void) 3122 { 3123 /* 3124 * If an NMI die dumps out the content of the ring buffer 3125 * do not grab locks. We also permanently disable the ring 3126 * buffer too. A one time deal is all you get from reading 3127 * the ring buffer from an NMI. 3128 */ 3129 if (likely(!in_nmi())) 3130 return 1; 3131 3132 tracing_off_permanent(); 3133 return 0; 3134 } 3135 3136 /** 3137 * ring_buffer_peek - peek at the next event to be read 3138 * @buffer: The ring buffer to read 3139 * @cpu: The cpu to peak at 3140 * @ts: The timestamp counter of this event. 3141 * 3142 * This will return the event that will be read next, but does 3143 * not consume the data. 3144 */ 3145 struct ring_buffer_event * 3146 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) 3147 { 3148 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3149 struct ring_buffer_event *event; 3150 unsigned long flags; 3151 int dolock; 3152 3153 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3154 return NULL; 3155 3156 dolock = rb_ok_to_lock(); 3157 again: 3158 local_irq_save(flags); 3159 if (dolock) 3160 spin_lock(&cpu_buffer->reader_lock); 3161 event = rb_buffer_peek(cpu_buffer, ts); 3162 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3163 rb_advance_reader(cpu_buffer); 3164 if (dolock) 3165 spin_unlock(&cpu_buffer->reader_lock); 3166 local_irq_restore(flags); 3167 3168 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3169 goto again; 3170 3171 return event; 3172 } 3173 3174 /** 3175 * ring_buffer_iter_peek - peek at the next event to be read 3176 * @iter: The ring buffer iterator 3177 * @ts: The timestamp counter of this event. 3178 * 3179 * This will return the event that will be read next, but does 3180 * not increment the iterator. 3181 */ 3182 struct ring_buffer_event * 3183 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3184 { 3185 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3186 struct ring_buffer_event *event; 3187 unsigned long flags; 3188 3189 again: 3190 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3191 event = rb_iter_peek(iter, ts); 3192 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3193 3194 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3195 goto again; 3196 3197 return event; 3198 } 3199 3200 /** 3201 * ring_buffer_consume - return an event and consume it 3202 * @buffer: The ring buffer to get the next event from 3203 * 3204 * Returns the next event in the ring buffer, and that event is consumed. 3205 * Meaning, that sequential reads will keep returning a different event, 3206 * and eventually empty the ring buffer if the producer is slower. 3207 */ 3208 struct ring_buffer_event * 3209 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) 3210 { 3211 struct ring_buffer_per_cpu *cpu_buffer; 3212 struct ring_buffer_event *event = NULL; 3213 unsigned long flags; 3214 int dolock; 3215 3216 dolock = rb_ok_to_lock(); 3217 3218 again: 3219 /* might be called in atomic */ 3220 preempt_disable(); 3221 3222 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3223 goto out; 3224 3225 cpu_buffer = buffer->buffers[cpu]; 3226 local_irq_save(flags); 3227 if (dolock) 3228 spin_lock(&cpu_buffer->reader_lock); 3229 3230 event = rb_buffer_peek(cpu_buffer, ts); 3231 if (event) 3232 rb_advance_reader(cpu_buffer); 3233 3234 if (dolock) 3235 spin_unlock(&cpu_buffer->reader_lock); 3236 local_irq_restore(flags); 3237 3238 out: 3239 preempt_enable(); 3240 3241 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3242 goto again; 3243 3244 return event; 3245 } 3246 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3247 3248 /** 3249 * ring_buffer_read_start - start a non consuming read of the buffer 3250 * @buffer: The ring buffer to read from 3251 * @cpu: The cpu buffer to iterate over 3252 * 3253 * This starts up an iteration through the buffer. It also disables 3254 * the recording to the buffer until the reading is finished. 3255 * This prevents the reading from being corrupted. This is not 3256 * a consuming read, so a producer is not expected. 3257 * 3258 * Must be paired with ring_buffer_finish. 3259 */ 3260 struct ring_buffer_iter * 3261 ring_buffer_read_start(struct ring_buffer *buffer, int cpu) 3262 { 3263 struct ring_buffer_per_cpu *cpu_buffer; 3264 struct ring_buffer_iter *iter; 3265 unsigned long flags; 3266 3267 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3268 return NULL; 3269 3270 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3271 if (!iter) 3272 return NULL; 3273 3274 cpu_buffer = buffer->buffers[cpu]; 3275 3276 iter->cpu_buffer = cpu_buffer; 3277 3278 atomic_inc(&cpu_buffer->record_disabled); 3279 synchronize_sched(); 3280 3281 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3282 arch_spin_lock(&cpu_buffer->lock); 3283 rb_iter_reset(iter); 3284 arch_spin_unlock(&cpu_buffer->lock); 3285 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3286 3287 return iter; 3288 } 3289 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3290 3291 /** 3292 * ring_buffer_finish - finish reading the iterator of the buffer 3293 * @iter: The iterator retrieved by ring_buffer_start 3294 * 3295 * This re-enables the recording to the buffer, and frees the 3296 * iterator. 3297 */ 3298 void 3299 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3300 { 3301 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3302 3303 atomic_dec(&cpu_buffer->record_disabled); 3304 kfree(iter); 3305 } 3306 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3307 3308 /** 3309 * ring_buffer_read - read the next item in the ring buffer by the iterator 3310 * @iter: The ring buffer iterator 3311 * @ts: The time stamp of the event read. 3312 * 3313 * This reads the next event in the ring buffer and increments the iterator. 3314 */ 3315 struct ring_buffer_event * 3316 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3317 { 3318 struct ring_buffer_event *event; 3319 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3320 unsigned long flags; 3321 3322 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3323 again: 3324 event = rb_iter_peek(iter, ts); 3325 if (!event) 3326 goto out; 3327 3328 if (event->type_len == RINGBUF_TYPE_PADDING) 3329 goto again; 3330 3331 rb_advance_iter(iter); 3332 out: 3333 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3334 3335 return event; 3336 } 3337 EXPORT_SYMBOL_GPL(ring_buffer_read); 3338 3339 /** 3340 * ring_buffer_size - return the size of the ring buffer (in bytes) 3341 * @buffer: The ring buffer. 3342 */ 3343 unsigned long ring_buffer_size(struct ring_buffer *buffer) 3344 { 3345 return BUF_PAGE_SIZE * buffer->pages; 3346 } 3347 EXPORT_SYMBOL_GPL(ring_buffer_size); 3348 3349 static void 3350 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3351 { 3352 rb_head_page_deactivate(cpu_buffer); 3353 3354 cpu_buffer->head_page 3355 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3356 local_set(&cpu_buffer->head_page->write, 0); 3357 local_set(&cpu_buffer->head_page->entries, 0); 3358 local_set(&cpu_buffer->head_page->page->commit, 0); 3359 3360 cpu_buffer->head_page->read = 0; 3361 3362 cpu_buffer->tail_page = cpu_buffer->head_page; 3363 cpu_buffer->commit_page = cpu_buffer->head_page; 3364 3365 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3366 local_set(&cpu_buffer->reader_page->write, 0); 3367 local_set(&cpu_buffer->reader_page->entries, 0); 3368 local_set(&cpu_buffer->reader_page->page->commit, 0); 3369 cpu_buffer->reader_page->read = 0; 3370 3371 local_set(&cpu_buffer->commit_overrun, 0); 3372 local_set(&cpu_buffer->overrun, 0); 3373 local_set(&cpu_buffer->entries, 0); 3374 local_set(&cpu_buffer->committing, 0); 3375 local_set(&cpu_buffer->commits, 0); 3376 cpu_buffer->read = 0; 3377 3378 cpu_buffer->write_stamp = 0; 3379 cpu_buffer->read_stamp = 0; 3380 3381 rb_head_page_activate(cpu_buffer); 3382 } 3383 3384 /** 3385 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3386 * @buffer: The ring buffer to reset a per cpu buffer of 3387 * @cpu: The CPU buffer to be reset 3388 */ 3389 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3390 { 3391 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3392 unsigned long flags; 3393 3394 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3395 return; 3396 3397 atomic_inc(&cpu_buffer->record_disabled); 3398 3399 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3400 3401 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3402 goto out; 3403 3404 arch_spin_lock(&cpu_buffer->lock); 3405 3406 rb_reset_cpu(cpu_buffer); 3407 3408 arch_spin_unlock(&cpu_buffer->lock); 3409 3410 out: 3411 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3412 3413 atomic_dec(&cpu_buffer->record_disabled); 3414 } 3415 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3416 3417 /** 3418 * ring_buffer_reset - reset a ring buffer 3419 * @buffer: The ring buffer to reset all cpu buffers 3420 */ 3421 void ring_buffer_reset(struct ring_buffer *buffer) 3422 { 3423 int cpu; 3424 3425 for_each_buffer_cpu(buffer, cpu) 3426 ring_buffer_reset_cpu(buffer, cpu); 3427 } 3428 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3429 3430 /** 3431 * rind_buffer_empty - is the ring buffer empty? 3432 * @buffer: The ring buffer to test 3433 */ 3434 int ring_buffer_empty(struct ring_buffer *buffer) 3435 { 3436 struct ring_buffer_per_cpu *cpu_buffer; 3437 unsigned long flags; 3438 int dolock; 3439 int cpu; 3440 int ret; 3441 3442 dolock = rb_ok_to_lock(); 3443 3444 /* yes this is racy, but if you don't like the race, lock the buffer */ 3445 for_each_buffer_cpu(buffer, cpu) { 3446 cpu_buffer = buffer->buffers[cpu]; 3447 local_irq_save(flags); 3448 if (dolock) 3449 spin_lock(&cpu_buffer->reader_lock); 3450 ret = rb_per_cpu_empty(cpu_buffer); 3451 if (dolock) 3452 spin_unlock(&cpu_buffer->reader_lock); 3453 local_irq_restore(flags); 3454 3455 if (!ret) 3456 return 0; 3457 } 3458 3459 return 1; 3460 } 3461 EXPORT_SYMBOL_GPL(ring_buffer_empty); 3462 3463 /** 3464 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 3465 * @buffer: The ring buffer 3466 * @cpu: The CPU buffer to test 3467 */ 3468 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 3469 { 3470 struct ring_buffer_per_cpu *cpu_buffer; 3471 unsigned long flags; 3472 int dolock; 3473 int ret; 3474 3475 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3476 return 1; 3477 3478 dolock = rb_ok_to_lock(); 3479 3480 cpu_buffer = buffer->buffers[cpu]; 3481 local_irq_save(flags); 3482 if (dolock) 3483 spin_lock(&cpu_buffer->reader_lock); 3484 ret = rb_per_cpu_empty(cpu_buffer); 3485 if (dolock) 3486 spin_unlock(&cpu_buffer->reader_lock); 3487 local_irq_restore(flags); 3488 3489 return ret; 3490 } 3491 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3492 3493 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3494 /** 3495 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3496 * @buffer_a: One buffer to swap with 3497 * @buffer_b: The other buffer to swap with 3498 * 3499 * This function is useful for tracers that want to take a "snapshot" 3500 * of a CPU buffer and has another back up buffer lying around. 3501 * it is expected that the tracer handles the cpu buffer not being 3502 * used at the moment. 3503 */ 3504 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 3505 struct ring_buffer *buffer_b, int cpu) 3506 { 3507 struct ring_buffer_per_cpu *cpu_buffer_a; 3508 struct ring_buffer_per_cpu *cpu_buffer_b; 3509 int ret = -EINVAL; 3510 3511 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 3512 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 3513 goto out; 3514 3515 /* At least make sure the two buffers are somewhat the same */ 3516 if (buffer_a->pages != buffer_b->pages) 3517 goto out; 3518 3519 ret = -EAGAIN; 3520 3521 if (ring_buffer_flags != RB_BUFFERS_ON) 3522 goto out; 3523 3524 if (atomic_read(&buffer_a->record_disabled)) 3525 goto out; 3526 3527 if (atomic_read(&buffer_b->record_disabled)) 3528 goto out; 3529 3530 cpu_buffer_a = buffer_a->buffers[cpu]; 3531 cpu_buffer_b = buffer_b->buffers[cpu]; 3532 3533 if (atomic_read(&cpu_buffer_a->record_disabled)) 3534 goto out; 3535 3536 if (atomic_read(&cpu_buffer_b->record_disabled)) 3537 goto out; 3538 3539 /* 3540 * We can't do a synchronize_sched here because this 3541 * function can be called in atomic context. 3542 * Normally this will be called from the same CPU as cpu. 3543 * If not it's up to the caller to protect this. 3544 */ 3545 atomic_inc(&cpu_buffer_a->record_disabled); 3546 atomic_inc(&cpu_buffer_b->record_disabled); 3547 3548 ret = -EBUSY; 3549 if (local_read(&cpu_buffer_a->committing)) 3550 goto out_dec; 3551 if (local_read(&cpu_buffer_b->committing)) 3552 goto out_dec; 3553 3554 buffer_a->buffers[cpu] = cpu_buffer_b; 3555 buffer_b->buffers[cpu] = cpu_buffer_a; 3556 3557 cpu_buffer_b->buffer = buffer_a; 3558 cpu_buffer_a->buffer = buffer_b; 3559 3560 ret = 0; 3561 3562 out_dec: 3563 atomic_dec(&cpu_buffer_a->record_disabled); 3564 atomic_dec(&cpu_buffer_b->record_disabled); 3565 out: 3566 return ret; 3567 } 3568 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 3569 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 3570 3571 /** 3572 * ring_buffer_alloc_read_page - allocate a page to read from buffer 3573 * @buffer: the buffer to allocate for. 3574 * 3575 * This function is used in conjunction with ring_buffer_read_page. 3576 * When reading a full page from the ring buffer, these functions 3577 * can be used to speed up the process. The calling function should 3578 * allocate a few pages first with this function. Then when it 3579 * needs to get pages from the ring buffer, it passes the result 3580 * of this function into ring_buffer_read_page, which will swap 3581 * the page that was allocated, with the read page of the buffer. 3582 * 3583 * Returns: 3584 * The page allocated, or NULL on error. 3585 */ 3586 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer) 3587 { 3588 struct buffer_data_page *bpage; 3589 unsigned long addr; 3590 3591 addr = __get_free_page(GFP_KERNEL); 3592 if (!addr) 3593 return NULL; 3594 3595 bpage = (void *)addr; 3596 3597 rb_init_page(bpage); 3598 3599 return bpage; 3600 } 3601 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 3602 3603 /** 3604 * ring_buffer_free_read_page - free an allocated read page 3605 * @buffer: the buffer the page was allocate for 3606 * @data: the page to free 3607 * 3608 * Free a page allocated from ring_buffer_alloc_read_page. 3609 */ 3610 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 3611 { 3612 free_page((unsigned long)data); 3613 } 3614 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 3615 3616 /** 3617 * ring_buffer_read_page - extract a page from the ring buffer 3618 * @buffer: buffer to extract from 3619 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 3620 * @len: amount to extract 3621 * @cpu: the cpu of the buffer to extract 3622 * @full: should the extraction only happen when the page is full. 3623 * 3624 * This function will pull out a page from the ring buffer and consume it. 3625 * @data_page must be the address of the variable that was returned 3626 * from ring_buffer_alloc_read_page. This is because the page might be used 3627 * to swap with a page in the ring buffer. 3628 * 3629 * for example: 3630 * rpage = ring_buffer_alloc_read_page(buffer); 3631 * if (!rpage) 3632 * return error; 3633 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 3634 * if (ret >= 0) 3635 * process_page(rpage, ret); 3636 * 3637 * When @full is set, the function will not return true unless 3638 * the writer is off the reader page. 3639 * 3640 * Note: it is up to the calling functions to handle sleeps and wakeups. 3641 * The ring buffer can be used anywhere in the kernel and can not 3642 * blindly call wake_up. The layer that uses the ring buffer must be 3643 * responsible for that. 3644 * 3645 * Returns: 3646 * >=0 if data has been transferred, returns the offset of consumed data. 3647 * <0 if no data has been transferred. 3648 */ 3649 int ring_buffer_read_page(struct ring_buffer *buffer, 3650 void **data_page, size_t len, int cpu, int full) 3651 { 3652 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3653 struct ring_buffer_event *event; 3654 struct buffer_data_page *bpage; 3655 struct buffer_page *reader; 3656 unsigned long flags; 3657 unsigned int commit; 3658 unsigned int read; 3659 u64 save_timestamp; 3660 int ret = -1; 3661 3662 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3663 goto out; 3664 3665 /* 3666 * If len is not big enough to hold the page header, then 3667 * we can not copy anything. 3668 */ 3669 if (len <= BUF_PAGE_HDR_SIZE) 3670 goto out; 3671 3672 len -= BUF_PAGE_HDR_SIZE; 3673 3674 if (!data_page) 3675 goto out; 3676 3677 bpage = *data_page; 3678 if (!bpage) 3679 goto out; 3680 3681 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3682 3683 reader = rb_get_reader_page(cpu_buffer); 3684 if (!reader) 3685 goto out_unlock; 3686 3687 event = rb_reader_event(cpu_buffer); 3688 3689 read = reader->read; 3690 commit = rb_page_commit(reader); 3691 3692 /* 3693 * If this page has been partially read or 3694 * if len is not big enough to read the rest of the page or 3695 * a writer is still on the page, then 3696 * we must copy the data from the page to the buffer. 3697 * Otherwise, we can simply swap the page with the one passed in. 3698 */ 3699 if (read || (len < (commit - read)) || 3700 cpu_buffer->reader_page == cpu_buffer->commit_page) { 3701 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 3702 unsigned int rpos = read; 3703 unsigned int pos = 0; 3704 unsigned int size; 3705 3706 if (full) 3707 goto out_unlock; 3708 3709 if (len > (commit - read)) 3710 len = (commit - read); 3711 3712 size = rb_event_length(event); 3713 3714 if (len < size) 3715 goto out_unlock; 3716 3717 /* save the current timestamp, since the user will need it */ 3718 save_timestamp = cpu_buffer->read_stamp; 3719 3720 /* Need to copy one event at a time */ 3721 do { 3722 memcpy(bpage->data + pos, rpage->data + rpos, size); 3723 3724 len -= size; 3725 3726 rb_advance_reader(cpu_buffer); 3727 rpos = reader->read; 3728 pos += size; 3729 3730 event = rb_reader_event(cpu_buffer); 3731 size = rb_event_length(event); 3732 } while (len > size); 3733 3734 /* update bpage */ 3735 local_set(&bpage->commit, pos); 3736 bpage->time_stamp = save_timestamp; 3737 3738 /* we copied everything to the beginning */ 3739 read = 0; 3740 } else { 3741 /* update the entry counter */ 3742 cpu_buffer->read += rb_page_entries(reader); 3743 3744 /* swap the pages */ 3745 rb_init_page(bpage); 3746 bpage = reader->page; 3747 reader->page = *data_page; 3748 local_set(&reader->write, 0); 3749 local_set(&reader->entries, 0); 3750 reader->read = 0; 3751 *data_page = bpage; 3752 } 3753 ret = read; 3754 3755 out_unlock: 3756 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3757 3758 out: 3759 return ret; 3760 } 3761 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 3762 3763 #ifdef CONFIG_TRACING 3764 static ssize_t 3765 rb_simple_read(struct file *filp, char __user *ubuf, 3766 size_t cnt, loff_t *ppos) 3767 { 3768 unsigned long *p = filp->private_data; 3769 char buf[64]; 3770 int r; 3771 3772 if (test_bit(RB_BUFFERS_DISABLED_BIT, p)) 3773 r = sprintf(buf, "permanently disabled\n"); 3774 else 3775 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p)); 3776 3777 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 3778 } 3779 3780 static ssize_t 3781 rb_simple_write(struct file *filp, const char __user *ubuf, 3782 size_t cnt, loff_t *ppos) 3783 { 3784 unsigned long *p = filp->private_data; 3785 char buf[64]; 3786 unsigned long val; 3787 int ret; 3788 3789 if (cnt >= sizeof(buf)) 3790 return -EINVAL; 3791 3792 if (copy_from_user(&buf, ubuf, cnt)) 3793 return -EFAULT; 3794 3795 buf[cnt] = 0; 3796 3797 ret = strict_strtoul(buf, 10, &val); 3798 if (ret < 0) 3799 return ret; 3800 3801 if (val) 3802 set_bit(RB_BUFFERS_ON_BIT, p); 3803 else 3804 clear_bit(RB_BUFFERS_ON_BIT, p); 3805 3806 (*ppos)++; 3807 3808 return cnt; 3809 } 3810 3811 static const struct file_operations rb_simple_fops = { 3812 .open = tracing_open_generic, 3813 .read = rb_simple_read, 3814 .write = rb_simple_write, 3815 }; 3816 3817 3818 static __init int rb_init_debugfs(void) 3819 { 3820 struct dentry *d_tracer; 3821 3822 d_tracer = tracing_init_dentry(); 3823 3824 trace_create_file("tracing_on", 0644, d_tracer, 3825 &ring_buffer_flags, &rb_simple_fops); 3826 3827 return 0; 3828 } 3829 3830 fs_initcall(rb_init_debugfs); 3831 #endif 3832 3833 #ifdef CONFIG_HOTPLUG_CPU 3834 static int rb_cpu_notify(struct notifier_block *self, 3835 unsigned long action, void *hcpu) 3836 { 3837 struct ring_buffer *buffer = 3838 container_of(self, struct ring_buffer, cpu_notify); 3839 long cpu = (long)hcpu; 3840 3841 switch (action) { 3842 case CPU_UP_PREPARE: 3843 case CPU_UP_PREPARE_FROZEN: 3844 if (cpumask_test_cpu(cpu, buffer->cpumask)) 3845 return NOTIFY_OK; 3846 3847 buffer->buffers[cpu] = 3848 rb_allocate_cpu_buffer(buffer, cpu); 3849 if (!buffer->buffers[cpu]) { 3850 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 3851 cpu); 3852 return NOTIFY_OK; 3853 } 3854 smp_wmb(); 3855 cpumask_set_cpu(cpu, buffer->cpumask); 3856 break; 3857 case CPU_DOWN_PREPARE: 3858 case CPU_DOWN_PREPARE_FROZEN: 3859 /* 3860 * Do nothing. 3861 * If we were to free the buffer, then the user would 3862 * lose any trace that was in the buffer. 3863 */ 3864 break; 3865 default: 3866 break; 3867 } 3868 return NOTIFY_OK; 3869 } 3870 #endif 3871