1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_events.h> 8 #include <linux/ring_buffer.h> 9 #include <linux/trace_clock.h> 10 #include <linux/sched/clock.h> 11 #include <linux/trace_seq.h> 12 #include <linux/spinlock.h> 13 #include <linux/irq_work.h> 14 #include <linux/security.h> 15 #include <linux/uaccess.h> 16 #include <linux/hardirq.h> 17 #include <linux/kthread.h> /* for self test */ 18 #include <linux/module.h> 19 #include <linux/percpu.h> 20 #include <linux/mutex.h> 21 #include <linux/delay.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/list.h> 26 #include <linux/cpu.h> 27 #include <linux/oom.h> 28 29 #include <asm/local.h> 30 31 static void update_pages_handler(struct work_struct *work); 32 33 /* 34 * The ring buffer header is special. We must manually up keep it. 35 */ 36 int ring_buffer_print_entry_header(struct trace_seq *s) 37 { 38 trace_seq_puts(s, "# compressed entry header\n"); 39 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 40 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 41 trace_seq_puts(s, "\tarray : 32 bits\n"); 42 trace_seq_putc(s, '\n'); 43 trace_seq_printf(s, "\tpadding : type == %d\n", 44 RINGBUF_TYPE_PADDING); 45 trace_seq_printf(s, "\ttime_extend : type == %d\n", 46 RINGBUF_TYPE_TIME_EXTEND); 47 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 48 RINGBUF_TYPE_TIME_STAMP); 49 trace_seq_printf(s, "\tdata max type_len == %d\n", 50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 51 52 return !trace_seq_has_overflowed(s); 53 } 54 55 /* 56 * The ring buffer is made up of a list of pages. A separate list of pages is 57 * allocated for each CPU. A writer may only write to a buffer that is 58 * associated with the CPU it is currently executing on. A reader may read 59 * from any per cpu buffer. 60 * 61 * The reader is special. For each per cpu buffer, the reader has its own 62 * reader page. When a reader has read the entire reader page, this reader 63 * page is swapped with another page in the ring buffer. 64 * 65 * Now, as long as the writer is off the reader page, the reader can do what 66 * ever it wants with that page. The writer will never write to that page 67 * again (as long as it is out of the ring buffer). 68 * 69 * Here's some silly ASCII art. 70 * 71 * +------+ 72 * |reader| RING BUFFER 73 * |page | 74 * +------+ +---+ +---+ +---+ 75 * | |-->| |-->| | 76 * +---+ +---+ +---+ 77 * ^ | 78 * | | 79 * +---------------+ 80 * 81 * 82 * +------+ 83 * |reader| RING BUFFER 84 * |page |------------------v 85 * +------+ +---+ +---+ +---+ 86 * | |-->| |-->| | 87 * +---+ +---+ +---+ 88 * ^ | 89 * | | 90 * +---------------+ 91 * 92 * 93 * +------+ 94 * |reader| RING BUFFER 95 * |page |------------------v 96 * +------+ +---+ +---+ +---+ 97 * ^ | |-->| |-->| | 98 * | +---+ +---+ +---+ 99 * | | 100 * | | 101 * +------------------------------+ 102 * 103 * 104 * +------+ 105 * |buffer| RING BUFFER 106 * |page |------------------v 107 * +------+ +---+ +---+ +---+ 108 * ^ | | | |-->| | 109 * | New +---+ +---+ +---+ 110 * | Reader------^ | 111 * | page | 112 * +------------------------------+ 113 * 114 * 115 * After we make this swap, the reader can hand this page off to the splice 116 * code and be done with it. It can even allocate a new page if it needs to 117 * and swap that into the ring buffer. 118 * 119 * We will be using cmpxchg soon to make all this lockless. 120 * 121 */ 122 123 /* Used for individual buffers (after the counter) */ 124 #define RB_BUFFER_OFF (1 << 20) 125 126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 127 128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 129 #define RB_ALIGNMENT 4U 130 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 131 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 132 #define RB_ALIGN_DATA __aligned(RB_ALIGNMENT) 133 134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 136 137 enum { 138 RB_LEN_TIME_EXTEND = 8, 139 RB_LEN_TIME_STAMP = 8, 140 }; 141 142 #define skip_time_extend(event) \ 143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 144 145 #define extended_time(event) \ 146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 147 148 static inline int rb_null_event(struct ring_buffer_event *event) 149 { 150 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 151 } 152 153 static void rb_event_set_padding(struct ring_buffer_event *event) 154 { 155 /* padding has a NULL time_delta */ 156 event->type_len = RINGBUF_TYPE_PADDING; 157 event->time_delta = 0; 158 } 159 160 static unsigned 161 rb_event_data_length(struct ring_buffer_event *event) 162 { 163 unsigned length; 164 165 if (event->type_len) 166 length = event->type_len * RB_ALIGNMENT; 167 else 168 length = event->array[0]; 169 return length + RB_EVNT_HDR_SIZE; 170 } 171 172 /* 173 * Return the length of the given event. Will return 174 * the length of the time extend if the event is a 175 * time extend. 176 */ 177 static inline unsigned 178 rb_event_length(struct ring_buffer_event *event) 179 { 180 switch (event->type_len) { 181 case RINGBUF_TYPE_PADDING: 182 if (rb_null_event(event)) 183 /* undefined */ 184 return -1; 185 return event->array[0] + RB_EVNT_HDR_SIZE; 186 187 case RINGBUF_TYPE_TIME_EXTEND: 188 return RB_LEN_TIME_EXTEND; 189 190 case RINGBUF_TYPE_TIME_STAMP: 191 return RB_LEN_TIME_STAMP; 192 193 case RINGBUF_TYPE_DATA: 194 return rb_event_data_length(event); 195 default: 196 BUG(); 197 } 198 /* not hit */ 199 return 0; 200 } 201 202 /* 203 * Return total length of time extend and data, 204 * or just the event length for all other events. 205 */ 206 static inline unsigned 207 rb_event_ts_length(struct ring_buffer_event *event) 208 { 209 unsigned len = 0; 210 211 if (extended_time(event)) { 212 /* time extends include the data event after it */ 213 len = RB_LEN_TIME_EXTEND; 214 event = skip_time_extend(event); 215 } 216 return len + rb_event_length(event); 217 } 218 219 /** 220 * ring_buffer_event_length - return the length of the event 221 * @event: the event to get the length of 222 * 223 * Returns the size of the data load of a data event. 224 * If the event is something other than a data event, it 225 * returns the size of the event itself. With the exception 226 * of a TIME EXTEND, where it still returns the size of the 227 * data load of the data event after it. 228 */ 229 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 230 { 231 unsigned length; 232 233 if (extended_time(event)) 234 event = skip_time_extend(event); 235 236 length = rb_event_length(event); 237 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 238 return length; 239 length -= RB_EVNT_HDR_SIZE; 240 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 241 length -= sizeof(event->array[0]); 242 return length; 243 } 244 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 245 246 /* inline for ring buffer fast paths */ 247 static __always_inline void * 248 rb_event_data(struct ring_buffer_event *event) 249 { 250 if (extended_time(event)) 251 event = skip_time_extend(event); 252 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 253 /* If length is in len field, then array[0] has the data */ 254 if (event->type_len) 255 return (void *)&event->array[0]; 256 /* Otherwise length is in array[0] and array[1] has the data */ 257 return (void *)&event->array[1]; 258 } 259 260 /** 261 * ring_buffer_event_data - return the data of the event 262 * @event: the event to get the data from 263 */ 264 void *ring_buffer_event_data(struct ring_buffer_event *event) 265 { 266 return rb_event_data(event); 267 } 268 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 269 270 #define for_each_buffer_cpu(buffer, cpu) \ 271 for_each_cpu(cpu, buffer->cpumask) 272 273 #define TS_SHIFT 27 274 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 275 #define TS_DELTA_TEST (~TS_MASK) 276 277 /** 278 * ring_buffer_event_time_stamp - return the event's extended timestamp 279 * @event: the event to get the timestamp of 280 * 281 * Returns the extended timestamp associated with a data event. 282 * An extended time_stamp is a 64-bit timestamp represented 283 * internally in a special way that makes the best use of space 284 * contained within a ring buffer event. This function decodes 285 * it and maps it to a straight u64 value. 286 */ 287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 288 { 289 u64 ts; 290 291 ts = event->array[0]; 292 ts <<= TS_SHIFT; 293 ts += event->time_delta; 294 295 return ts; 296 } 297 298 /* Flag when events were overwritten */ 299 #define RB_MISSED_EVENTS (1 << 31) 300 /* Missed count stored at end */ 301 #define RB_MISSED_STORED (1 << 30) 302 303 struct buffer_data_page { 304 u64 time_stamp; /* page time stamp */ 305 local_t commit; /* write committed index */ 306 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 307 }; 308 309 /* 310 * Note, the buffer_page list must be first. The buffer pages 311 * are allocated in cache lines, which means that each buffer 312 * page will be at the beginning of a cache line, and thus 313 * the least significant bits will be zero. We use this to 314 * add flags in the list struct pointers, to make the ring buffer 315 * lockless. 316 */ 317 struct buffer_page { 318 struct list_head list; /* list of buffer pages */ 319 local_t write; /* index for next write */ 320 unsigned read; /* index for next read */ 321 local_t entries; /* entries on this page */ 322 unsigned long real_end; /* real end of data */ 323 struct buffer_data_page *page; /* Actual data page */ 324 }; 325 326 /* 327 * The buffer page counters, write and entries, must be reset 328 * atomically when crossing page boundaries. To synchronize this 329 * update, two counters are inserted into the number. One is 330 * the actual counter for the write position or count on the page. 331 * 332 * The other is a counter of updaters. Before an update happens 333 * the update partition of the counter is incremented. This will 334 * allow the updater to update the counter atomically. 335 * 336 * The counter is 20 bits, and the state data is 12. 337 */ 338 #define RB_WRITE_MASK 0xfffff 339 #define RB_WRITE_INTCNT (1 << 20) 340 341 static void rb_init_page(struct buffer_data_page *bpage) 342 { 343 local_set(&bpage->commit, 0); 344 } 345 346 /* 347 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 348 * this issue out. 349 */ 350 static void free_buffer_page(struct buffer_page *bpage) 351 { 352 free_page((unsigned long)bpage->page); 353 kfree(bpage); 354 } 355 356 /* 357 * We need to fit the time_stamp delta into 27 bits. 358 */ 359 static inline int test_time_stamp(u64 delta) 360 { 361 if (delta & TS_DELTA_TEST) 362 return 1; 363 return 0; 364 } 365 366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 367 368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 370 371 int ring_buffer_print_page_header(struct trace_seq *s) 372 { 373 struct buffer_data_page field; 374 375 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 376 "offset:0;\tsize:%u;\tsigned:%u;\n", 377 (unsigned int)sizeof(field.time_stamp), 378 (unsigned int)is_signed_type(u64)); 379 380 trace_seq_printf(s, "\tfield: local_t commit;\t" 381 "offset:%u;\tsize:%u;\tsigned:%u;\n", 382 (unsigned int)offsetof(typeof(field), commit), 383 (unsigned int)sizeof(field.commit), 384 (unsigned int)is_signed_type(long)); 385 386 trace_seq_printf(s, "\tfield: int overwrite;\t" 387 "offset:%u;\tsize:%u;\tsigned:%u;\n", 388 (unsigned int)offsetof(typeof(field), commit), 389 1, 390 (unsigned int)is_signed_type(long)); 391 392 trace_seq_printf(s, "\tfield: char data;\t" 393 "offset:%u;\tsize:%u;\tsigned:%u;\n", 394 (unsigned int)offsetof(typeof(field), data), 395 (unsigned int)BUF_PAGE_SIZE, 396 (unsigned int)is_signed_type(char)); 397 398 return !trace_seq_has_overflowed(s); 399 } 400 401 struct rb_irq_work { 402 struct irq_work work; 403 wait_queue_head_t waiters; 404 wait_queue_head_t full_waiters; 405 bool waiters_pending; 406 bool full_waiters_pending; 407 bool wakeup_full; 408 }; 409 410 /* 411 * Structure to hold event state and handle nested events. 412 */ 413 struct rb_event_info { 414 u64 ts; 415 u64 delta; 416 unsigned long length; 417 struct buffer_page *tail_page; 418 int add_timestamp; 419 }; 420 421 /* 422 * Used for which event context the event is in. 423 * NMI = 0 424 * IRQ = 1 425 * SOFTIRQ = 2 426 * NORMAL = 3 427 * 428 * See trace_recursive_lock() comment below for more details. 429 */ 430 enum { 431 RB_CTX_NMI, 432 RB_CTX_IRQ, 433 RB_CTX_SOFTIRQ, 434 RB_CTX_NORMAL, 435 RB_CTX_MAX 436 }; 437 438 /* 439 * head_page == tail_page && head == tail then buffer is empty. 440 */ 441 struct ring_buffer_per_cpu { 442 int cpu; 443 atomic_t record_disabled; 444 struct trace_buffer *buffer; 445 raw_spinlock_t reader_lock; /* serialize readers */ 446 arch_spinlock_t lock; 447 struct lock_class_key lock_key; 448 struct buffer_data_page *free_page; 449 unsigned long nr_pages; 450 unsigned int current_context; 451 struct list_head *pages; 452 struct buffer_page *head_page; /* read from head */ 453 struct buffer_page *tail_page; /* write to tail */ 454 struct buffer_page *commit_page; /* committed pages */ 455 struct buffer_page *reader_page; 456 unsigned long lost_events; 457 unsigned long last_overrun; 458 unsigned long nest; 459 local_t entries_bytes; 460 local_t entries; 461 local_t overrun; 462 local_t commit_overrun; 463 local_t dropped_events; 464 local_t committing; 465 local_t commits; 466 local_t pages_touched; 467 local_t pages_read; 468 long last_pages_touch; 469 size_t shortest_full; 470 unsigned long read; 471 unsigned long read_bytes; 472 u64 write_stamp; 473 u64 read_stamp; 474 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 475 long nr_pages_to_update; 476 struct list_head new_pages; /* new pages to add */ 477 struct work_struct update_pages_work; 478 struct completion update_done; 479 480 struct rb_irq_work irq_work; 481 }; 482 483 struct trace_buffer { 484 unsigned flags; 485 int cpus; 486 atomic_t record_disabled; 487 atomic_t resize_disabled; 488 cpumask_var_t cpumask; 489 490 struct lock_class_key *reader_lock_key; 491 492 struct mutex mutex; 493 494 struct ring_buffer_per_cpu **buffers; 495 496 struct hlist_node node; 497 u64 (*clock)(void); 498 499 struct rb_irq_work irq_work; 500 bool time_stamp_abs; 501 }; 502 503 struct ring_buffer_iter { 504 struct ring_buffer_per_cpu *cpu_buffer; 505 unsigned long head; 506 struct buffer_page *head_page; 507 struct buffer_page *cache_reader_page; 508 unsigned long cache_read; 509 u64 read_stamp; 510 }; 511 512 /** 513 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 514 * @buffer: The ring_buffer to get the number of pages from 515 * @cpu: The cpu of the ring_buffer to get the number of pages from 516 * 517 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 518 */ 519 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 520 { 521 return buffer->buffers[cpu]->nr_pages; 522 } 523 524 /** 525 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 526 * @buffer: The ring_buffer to get the number of pages from 527 * @cpu: The cpu of the ring_buffer to get the number of pages from 528 * 529 * Returns the number of pages that have content in the ring buffer. 530 */ 531 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 532 { 533 size_t read; 534 size_t cnt; 535 536 read = local_read(&buffer->buffers[cpu]->pages_read); 537 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 538 /* The reader can read an empty page, but not more than that */ 539 if (cnt < read) { 540 WARN_ON_ONCE(read > cnt + 1); 541 return 0; 542 } 543 544 return cnt - read; 545 } 546 547 /* 548 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 549 * 550 * Schedules a delayed work to wake up any task that is blocked on the 551 * ring buffer waiters queue. 552 */ 553 static void rb_wake_up_waiters(struct irq_work *work) 554 { 555 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 556 557 wake_up_all(&rbwork->waiters); 558 if (rbwork->wakeup_full) { 559 rbwork->wakeup_full = false; 560 wake_up_all(&rbwork->full_waiters); 561 } 562 } 563 564 /** 565 * ring_buffer_wait - wait for input to the ring buffer 566 * @buffer: buffer to wait on 567 * @cpu: the cpu buffer to wait on 568 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 569 * 570 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 571 * as data is added to any of the @buffer's cpu buffers. Otherwise 572 * it will wait for data to be added to a specific cpu buffer. 573 */ 574 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 575 { 576 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 577 DEFINE_WAIT(wait); 578 struct rb_irq_work *work; 579 int ret = 0; 580 581 /* 582 * Depending on what the caller is waiting for, either any 583 * data in any cpu buffer, or a specific buffer, put the 584 * caller on the appropriate wait queue. 585 */ 586 if (cpu == RING_BUFFER_ALL_CPUS) { 587 work = &buffer->irq_work; 588 /* Full only makes sense on per cpu reads */ 589 full = 0; 590 } else { 591 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 592 return -ENODEV; 593 cpu_buffer = buffer->buffers[cpu]; 594 work = &cpu_buffer->irq_work; 595 } 596 597 598 while (true) { 599 if (full) 600 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 601 else 602 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 603 604 /* 605 * The events can happen in critical sections where 606 * checking a work queue can cause deadlocks. 607 * After adding a task to the queue, this flag is set 608 * only to notify events to try to wake up the queue 609 * using irq_work. 610 * 611 * We don't clear it even if the buffer is no longer 612 * empty. The flag only causes the next event to run 613 * irq_work to do the work queue wake up. The worse 614 * that can happen if we race with !trace_empty() is that 615 * an event will cause an irq_work to try to wake up 616 * an empty queue. 617 * 618 * There's no reason to protect this flag either, as 619 * the work queue and irq_work logic will do the necessary 620 * synchronization for the wake ups. The only thing 621 * that is necessary is that the wake up happens after 622 * a task has been queued. It's OK for spurious wake ups. 623 */ 624 if (full) 625 work->full_waiters_pending = true; 626 else 627 work->waiters_pending = true; 628 629 if (signal_pending(current)) { 630 ret = -EINTR; 631 break; 632 } 633 634 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 635 break; 636 637 if (cpu != RING_BUFFER_ALL_CPUS && 638 !ring_buffer_empty_cpu(buffer, cpu)) { 639 unsigned long flags; 640 bool pagebusy; 641 size_t nr_pages; 642 size_t dirty; 643 644 if (!full) 645 break; 646 647 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 648 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 649 nr_pages = cpu_buffer->nr_pages; 650 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 651 if (!cpu_buffer->shortest_full || 652 cpu_buffer->shortest_full < full) 653 cpu_buffer->shortest_full = full; 654 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 655 if (!pagebusy && 656 (!nr_pages || (dirty * 100) > full * nr_pages)) 657 break; 658 } 659 660 schedule(); 661 } 662 663 if (full) 664 finish_wait(&work->full_waiters, &wait); 665 else 666 finish_wait(&work->waiters, &wait); 667 668 return ret; 669 } 670 671 /** 672 * ring_buffer_poll_wait - poll on buffer input 673 * @buffer: buffer to wait on 674 * @cpu: the cpu buffer to wait on 675 * @filp: the file descriptor 676 * @poll_table: The poll descriptor 677 * 678 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 679 * as data is added to any of the @buffer's cpu buffers. Otherwise 680 * it will wait for data to be added to a specific cpu buffer. 681 * 682 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 683 * zero otherwise. 684 */ 685 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 686 struct file *filp, poll_table *poll_table) 687 { 688 struct ring_buffer_per_cpu *cpu_buffer; 689 struct rb_irq_work *work; 690 691 if (cpu == RING_BUFFER_ALL_CPUS) 692 work = &buffer->irq_work; 693 else { 694 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 695 return -EINVAL; 696 697 cpu_buffer = buffer->buffers[cpu]; 698 work = &cpu_buffer->irq_work; 699 } 700 701 poll_wait(filp, &work->waiters, poll_table); 702 work->waiters_pending = true; 703 /* 704 * There's a tight race between setting the waiters_pending and 705 * checking if the ring buffer is empty. Once the waiters_pending bit 706 * is set, the next event will wake the task up, but we can get stuck 707 * if there's only a single event in. 708 * 709 * FIXME: Ideally, we need a memory barrier on the writer side as well, 710 * but adding a memory barrier to all events will cause too much of a 711 * performance hit in the fast path. We only need a memory barrier when 712 * the buffer goes from empty to having content. But as this race is 713 * extremely small, and it's not a problem if another event comes in, we 714 * will fix it later. 715 */ 716 smp_mb(); 717 718 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 719 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 720 return EPOLLIN | EPOLLRDNORM; 721 return 0; 722 } 723 724 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 725 #define RB_WARN_ON(b, cond) \ 726 ({ \ 727 int _____ret = unlikely(cond); \ 728 if (_____ret) { \ 729 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 730 struct ring_buffer_per_cpu *__b = \ 731 (void *)b; \ 732 atomic_inc(&__b->buffer->record_disabled); \ 733 } else \ 734 atomic_inc(&b->record_disabled); \ 735 WARN_ON(1); \ 736 } \ 737 _____ret; \ 738 }) 739 740 /* Up this if you want to test the TIME_EXTENTS and normalization */ 741 #define DEBUG_SHIFT 0 742 743 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 744 { 745 /* shift to debug/test normalization and TIME_EXTENTS */ 746 return buffer->clock() << DEBUG_SHIFT; 747 } 748 749 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu) 750 { 751 u64 time; 752 753 preempt_disable_notrace(); 754 time = rb_time_stamp(buffer); 755 preempt_enable_notrace(); 756 757 return time; 758 } 759 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 760 761 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 762 int cpu, u64 *ts) 763 { 764 /* Just stupid testing the normalize function and deltas */ 765 *ts >>= DEBUG_SHIFT; 766 } 767 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 768 769 /* 770 * Making the ring buffer lockless makes things tricky. 771 * Although writes only happen on the CPU that they are on, 772 * and they only need to worry about interrupts. Reads can 773 * happen on any CPU. 774 * 775 * The reader page is always off the ring buffer, but when the 776 * reader finishes with a page, it needs to swap its page with 777 * a new one from the buffer. The reader needs to take from 778 * the head (writes go to the tail). But if a writer is in overwrite 779 * mode and wraps, it must push the head page forward. 780 * 781 * Here lies the problem. 782 * 783 * The reader must be careful to replace only the head page, and 784 * not another one. As described at the top of the file in the 785 * ASCII art, the reader sets its old page to point to the next 786 * page after head. It then sets the page after head to point to 787 * the old reader page. But if the writer moves the head page 788 * during this operation, the reader could end up with the tail. 789 * 790 * We use cmpxchg to help prevent this race. We also do something 791 * special with the page before head. We set the LSB to 1. 792 * 793 * When the writer must push the page forward, it will clear the 794 * bit that points to the head page, move the head, and then set 795 * the bit that points to the new head page. 796 * 797 * We also don't want an interrupt coming in and moving the head 798 * page on another writer. Thus we use the second LSB to catch 799 * that too. Thus: 800 * 801 * head->list->prev->next bit 1 bit 0 802 * ------- ------- 803 * Normal page 0 0 804 * Points to head page 0 1 805 * New head page 1 0 806 * 807 * Note we can not trust the prev pointer of the head page, because: 808 * 809 * +----+ +-----+ +-----+ 810 * | |------>| T |---X--->| N | 811 * | |<------| | | | 812 * +----+ +-----+ +-----+ 813 * ^ ^ | 814 * | +-----+ | | 815 * +----------| R |----------+ | 816 * | |<-----------+ 817 * +-----+ 818 * 819 * Key: ---X--> HEAD flag set in pointer 820 * T Tail page 821 * R Reader page 822 * N Next page 823 * 824 * (see __rb_reserve_next() to see where this happens) 825 * 826 * What the above shows is that the reader just swapped out 827 * the reader page with a page in the buffer, but before it 828 * could make the new header point back to the new page added 829 * it was preempted by a writer. The writer moved forward onto 830 * the new page added by the reader and is about to move forward 831 * again. 832 * 833 * You can see, it is legitimate for the previous pointer of 834 * the head (or any page) not to point back to itself. But only 835 * temporarily. 836 */ 837 838 #define RB_PAGE_NORMAL 0UL 839 #define RB_PAGE_HEAD 1UL 840 #define RB_PAGE_UPDATE 2UL 841 842 843 #define RB_FLAG_MASK 3UL 844 845 /* PAGE_MOVED is not part of the mask */ 846 #define RB_PAGE_MOVED 4UL 847 848 /* 849 * rb_list_head - remove any bit 850 */ 851 static struct list_head *rb_list_head(struct list_head *list) 852 { 853 unsigned long val = (unsigned long)list; 854 855 return (struct list_head *)(val & ~RB_FLAG_MASK); 856 } 857 858 /* 859 * rb_is_head_page - test if the given page is the head page 860 * 861 * Because the reader may move the head_page pointer, we can 862 * not trust what the head page is (it may be pointing to 863 * the reader page). But if the next page is a header page, 864 * its flags will be non zero. 865 */ 866 static inline int 867 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 868 struct buffer_page *page, struct list_head *list) 869 { 870 unsigned long val; 871 872 val = (unsigned long)list->next; 873 874 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 875 return RB_PAGE_MOVED; 876 877 return val & RB_FLAG_MASK; 878 } 879 880 /* 881 * rb_is_reader_page 882 * 883 * The unique thing about the reader page, is that, if the 884 * writer is ever on it, the previous pointer never points 885 * back to the reader page. 886 */ 887 static bool rb_is_reader_page(struct buffer_page *page) 888 { 889 struct list_head *list = page->list.prev; 890 891 return rb_list_head(list->next) != &page->list; 892 } 893 894 /* 895 * rb_set_list_to_head - set a list_head to be pointing to head. 896 */ 897 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 898 struct list_head *list) 899 { 900 unsigned long *ptr; 901 902 ptr = (unsigned long *)&list->next; 903 *ptr |= RB_PAGE_HEAD; 904 *ptr &= ~RB_PAGE_UPDATE; 905 } 906 907 /* 908 * rb_head_page_activate - sets up head page 909 */ 910 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 911 { 912 struct buffer_page *head; 913 914 head = cpu_buffer->head_page; 915 if (!head) 916 return; 917 918 /* 919 * Set the previous list pointer to have the HEAD flag. 920 */ 921 rb_set_list_to_head(cpu_buffer, head->list.prev); 922 } 923 924 static void rb_list_head_clear(struct list_head *list) 925 { 926 unsigned long *ptr = (unsigned long *)&list->next; 927 928 *ptr &= ~RB_FLAG_MASK; 929 } 930 931 /* 932 * rb_head_page_deactivate - clears head page ptr (for free list) 933 */ 934 static void 935 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 936 { 937 struct list_head *hd; 938 939 /* Go through the whole list and clear any pointers found. */ 940 rb_list_head_clear(cpu_buffer->pages); 941 942 list_for_each(hd, cpu_buffer->pages) 943 rb_list_head_clear(hd); 944 } 945 946 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 947 struct buffer_page *head, 948 struct buffer_page *prev, 949 int old_flag, int new_flag) 950 { 951 struct list_head *list; 952 unsigned long val = (unsigned long)&head->list; 953 unsigned long ret; 954 955 list = &prev->list; 956 957 val &= ~RB_FLAG_MASK; 958 959 ret = cmpxchg((unsigned long *)&list->next, 960 val | old_flag, val | new_flag); 961 962 /* check if the reader took the page */ 963 if ((ret & ~RB_FLAG_MASK) != val) 964 return RB_PAGE_MOVED; 965 966 return ret & RB_FLAG_MASK; 967 } 968 969 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 970 struct buffer_page *head, 971 struct buffer_page *prev, 972 int old_flag) 973 { 974 return rb_head_page_set(cpu_buffer, head, prev, 975 old_flag, RB_PAGE_UPDATE); 976 } 977 978 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 979 struct buffer_page *head, 980 struct buffer_page *prev, 981 int old_flag) 982 { 983 return rb_head_page_set(cpu_buffer, head, prev, 984 old_flag, RB_PAGE_HEAD); 985 } 986 987 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 988 struct buffer_page *head, 989 struct buffer_page *prev, 990 int old_flag) 991 { 992 return rb_head_page_set(cpu_buffer, head, prev, 993 old_flag, RB_PAGE_NORMAL); 994 } 995 996 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 997 struct buffer_page **bpage) 998 { 999 struct list_head *p = rb_list_head((*bpage)->list.next); 1000 1001 *bpage = list_entry(p, struct buffer_page, list); 1002 } 1003 1004 static struct buffer_page * 1005 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1006 { 1007 struct buffer_page *head; 1008 struct buffer_page *page; 1009 struct list_head *list; 1010 int i; 1011 1012 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1013 return NULL; 1014 1015 /* sanity check */ 1016 list = cpu_buffer->pages; 1017 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1018 return NULL; 1019 1020 page = head = cpu_buffer->head_page; 1021 /* 1022 * It is possible that the writer moves the header behind 1023 * where we started, and we miss in one loop. 1024 * A second loop should grab the header, but we'll do 1025 * three loops just because I'm paranoid. 1026 */ 1027 for (i = 0; i < 3; i++) { 1028 do { 1029 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1030 cpu_buffer->head_page = page; 1031 return page; 1032 } 1033 rb_inc_page(cpu_buffer, &page); 1034 } while (page != head); 1035 } 1036 1037 RB_WARN_ON(cpu_buffer, 1); 1038 1039 return NULL; 1040 } 1041 1042 static int rb_head_page_replace(struct buffer_page *old, 1043 struct buffer_page *new) 1044 { 1045 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1046 unsigned long val; 1047 unsigned long ret; 1048 1049 val = *ptr & ~RB_FLAG_MASK; 1050 val |= RB_PAGE_HEAD; 1051 1052 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1053 1054 return ret == val; 1055 } 1056 1057 /* 1058 * rb_tail_page_update - move the tail page forward 1059 */ 1060 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1061 struct buffer_page *tail_page, 1062 struct buffer_page *next_page) 1063 { 1064 unsigned long old_entries; 1065 unsigned long old_write; 1066 1067 /* 1068 * The tail page now needs to be moved forward. 1069 * 1070 * We need to reset the tail page, but without messing 1071 * with possible erasing of data brought in by interrupts 1072 * that have moved the tail page and are currently on it. 1073 * 1074 * We add a counter to the write field to denote this. 1075 */ 1076 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1077 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1078 1079 local_inc(&cpu_buffer->pages_touched); 1080 /* 1081 * Just make sure we have seen our old_write and synchronize 1082 * with any interrupts that come in. 1083 */ 1084 barrier(); 1085 1086 /* 1087 * If the tail page is still the same as what we think 1088 * it is, then it is up to us to update the tail 1089 * pointer. 1090 */ 1091 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1092 /* Zero the write counter */ 1093 unsigned long val = old_write & ~RB_WRITE_MASK; 1094 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1095 1096 /* 1097 * This will only succeed if an interrupt did 1098 * not come in and change it. In which case, we 1099 * do not want to modify it. 1100 * 1101 * We add (void) to let the compiler know that we do not care 1102 * about the return value of these functions. We use the 1103 * cmpxchg to only update if an interrupt did not already 1104 * do it for us. If the cmpxchg fails, we don't care. 1105 */ 1106 (void)local_cmpxchg(&next_page->write, old_write, val); 1107 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1108 1109 /* 1110 * No need to worry about races with clearing out the commit. 1111 * it only can increment when a commit takes place. But that 1112 * only happens in the outer most nested commit. 1113 */ 1114 local_set(&next_page->page->commit, 0); 1115 1116 /* Again, either we update tail_page or an interrupt does */ 1117 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1118 } 1119 } 1120 1121 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1122 struct buffer_page *bpage) 1123 { 1124 unsigned long val = (unsigned long)bpage; 1125 1126 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1127 return 1; 1128 1129 return 0; 1130 } 1131 1132 /** 1133 * rb_check_list - make sure a pointer to a list has the last bits zero 1134 */ 1135 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1136 struct list_head *list) 1137 { 1138 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1139 return 1; 1140 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1141 return 1; 1142 return 0; 1143 } 1144 1145 /** 1146 * rb_check_pages - integrity check of buffer pages 1147 * @cpu_buffer: CPU buffer with pages to test 1148 * 1149 * As a safety measure we check to make sure the data pages have not 1150 * been corrupted. 1151 */ 1152 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1153 { 1154 struct list_head *head = cpu_buffer->pages; 1155 struct buffer_page *bpage, *tmp; 1156 1157 /* Reset the head page if it exists */ 1158 if (cpu_buffer->head_page) 1159 rb_set_head_page(cpu_buffer); 1160 1161 rb_head_page_deactivate(cpu_buffer); 1162 1163 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1164 return -1; 1165 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1166 return -1; 1167 1168 if (rb_check_list(cpu_buffer, head)) 1169 return -1; 1170 1171 list_for_each_entry_safe(bpage, tmp, head, list) { 1172 if (RB_WARN_ON(cpu_buffer, 1173 bpage->list.next->prev != &bpage->list)) 1174 return -1; 1175 if (RB_WARN_ON(cpu_buffer, 1176 bpage->list.prev->next != &bpage->list)) 1177 return -1; 1178 if (rb_check_list(cpu_buffer, &bpage->list)) 1179 return -1; 1180 } 1181 1182 rb_head_page_activate(cpu_buffer); 1183 1184 return 0; 1185 } 1186 1187 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1188 { 1189 struct buffer_page *bpage, *tmp; 1190 bool user_thread = current->mm != NULL; 1191 gfp_t mflags; 1192 long i; 1193 1194 /* 1195 * Check if the available memory is there first. 1196 * Note, si_mem_available() only gives us a rough estimate of available 1197 * memory. It may not be accurate. But we don't care, we just want 1198 * to prevent doing any allocation when it is obvious that it is 1199 * not going to succeed. 1200 */ 1201 i = si_mem_available(); 1202 if (i < nr_pages) 1203 return -ENOMEM; 1204 1205 /* 1206 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1207 * gracefully without invoking oom-killer and the system is not 1208 * destabilized. 1209 */ 1210 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1211 1212 /* 1213 * If a user thread allocates too much, and si_mem_available() 1214 * reports there's enough memory, even though there is not. 1215 * Make sure the OOM killer kills this thread. This can happen 1216 * even with RETRY_MAYFAIL because another task may be doing 1217 * an allocation after this task has taken all memory. 1218 * This is the task the OOM killer needs to take out during this 1219 * loop, even if it was triggered by an allocation somewhere else. 1220 */ 1221 if (user_thread) 1222 set_current_oom_origin(); 1223 for (i = 0; i < nr_pages; i++) { 1224 struct page *page; 1225 1226 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1227 mflags, cpu_to_node(cpu)); 1228 if (!bpage) 1229 goto free_pages; 1230 1231 list_add(&bpage->list, pages); 1232 1233 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1234 if (!page) 1235 goto free_pages; 1236 bpage->page = page_address(page); 1237 rb_init_page(bpage->page); 1238 1239 if (user_thread && fatal_signal_pending(current)) 1240 goto free_pages; 1241 } 1242 if (user_thread) 1243 clear_current_oom_origin(); 1244 1245 return 0; 1246 1247 free_pages: 1248 list_for_each_entry_safe(bpage, tmp, pages, list) { 1249 list_del_init(&bpage->list); 1250 free_buffer_page(bpage); 1251 } 1252 if (user_thread) 1253 clear_current_oom_origin(); 1254 1255 return -ENOMEM; 1256 } 1257 1258 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1259 unsigned long nr_pages) 1260 { 1261 LIST_HEAD(pages); 1262 1263 WARN_ON(!nr_pages); 1264 1265 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1266 return -ENOMEM; 1267 1268 /* 1269 * The ring buffer page list is a circular list that does not 1270 * start and end with a list head. All page list items point to 1271 * other pages. 1272 */ 1273 cpu_buffer->pages = pages.next; 1274 list_del(&pages); 1275 1276 cpu_buffer->nr_pages = nr_pages; 1277 1278 rb_check_pages(cpu_buffer); 1279 1280 return 0; 1281 } 1282 1283 static struct ring_buffer_per_cpu * 1284 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1285 { 1286 struct ring_buffer_per_cpu *cpu_buffer; 1287 struct buffer_page *bpage; 1288 struct page *page; 1289 int ret; 1290 1291 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1292 GFP_KERNEL, cpu_to_node(cpu)); 1293 if (!cpu_buffer) 1294 return NULL; 1295 1296 cpu_buffer->cpu = cpu; 1297 cpu_buffer->buffer = buffer; 1298 raw_spin_lock_init(&cpu_buffer->reader_lock); 1299 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1300 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1301 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1302 init_completion(&cpu_buffer->update_done); 1303 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1304 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1305 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1306 1307 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1308 GFP_KERNEL, cpu_to_node(cpu)); 1309 if (!bpage) 1310 goto fail_free_buffer; 1311 1312 rb_check_bpage(cpu_buffer, bpage); 1313 1314 cpu_buffer->reader_page = bpage; 1315 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1316 if (!page) 1317 goto fail_free_reader; 1318 bpage->page = page_address(page); 1319 rb_init_page(bpage->page); 1320 1321 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1322 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1323 1324 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1325 if (ret < 0) 1326 goto fail_free_reader; 1327 1328 cpu_buffer->head_page 1329 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1330 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1331 1332 rb_head_page_activate(cpu_buffer); 1333 1334 return cpu_buffer; 1335 1336 fail_free_reader: 1337 free_buffer_page(cpu_buffer->reader_page); 1338 1339 fail_free_buffer: 1340 kfree(cpu_buffer); 1341 return NULL; 1342 } 1343 1344 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1345 { 1346 struct list_head *head = cpu_buffer->pages; 1347 struct buffer_page *bpage, *tmp; 1348 1349 free_buffer_page(cpu_buffer->reader_page); 1350 1351 rb_head_page_deactivate(cpu_buffer); 1352 1353 if (head) { 1354 list_for_each_entry_safe(bpage, tmp, head, list) { 1355 list_del_init(&bpage->list); 1356 free_buffer_page(bpage); 1357 } 1358 bpage = list_entry(head, struct buffer_page, list); 1359 free_buffer_page(bpage); 1360 } 1361 1362 kfree(cpu_buffer); 1363 } 1364 1365 /** 1366 * __ring_buffer_alloc - allocate a new ring_buffer 1367 * @size: the size in bytes per cpu that is needed. 1368 * @flags: attributes to set for the ring buffer. 1369 * @key: ring buffer reader_lock_key. 1370 * 1371 * Currently the only flag that is available is the RB_FL_OVERWRITE 1372 * flag. This flag means that the buffer will overwrite old data 1373 * when the buffer wraps. If this flag is not set, the buffer will 1374 * drop data when the tail hits the head. 1375 */ 1376 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1377 struct lock_class_key *key) 1378 { 1379 struct trace_buffer *buffer; 1380 long nr_pages; 1381 int bsize; 1382 int cpu; 1383 int ret; 1384 1385 /* keep it in its own cache line */ 1386 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1387 GFP_KERNEL); 1388 if (!buffer) 1389 return NULL; 1390 1391 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1392 goto fail_free_buffer; 1393 1394 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1395 buffer->flags = flags; 1396 buffer->clock = trace_clock_local; 1397 buffer->reader_lock_key = key; 1398 1399 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1400 init_waitqueue_head(&buffer->irq_work.waiters); 1401 1402 /* need at least two pages */ 1403 if (nr_pages < 2) 1404 nr_pages = 2; 1405 1406 buffer->cpus = nr_cpu_ids; 1407 1408 bsize = sizeof(void *) * nr_cpu_ids; 1409 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1410 GFP_KERNEL); 1411 if (!buffer->buffers) 1412 goto fail_free_cpumask; 1413 1414 cpu = raw_smp_processor_id(); 1415 cpumask_set_cpu(cpu, buffer->cpumask); 1416 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1417 if (!buffer->buffers[cpu]) 1418 goto fail_free_buffers; 1419 1420 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1421 if (ret < 0) 1422 goto fail_free_buffers; 1423 1424 mutex_init(&buffer->mutex); 1425 1426 return buffer; 1427 1428 fail_free_buffers: 1429 for_each_buffer_cpu(buffer, cpu) { 1430 if (buffer->buffers[cpu]) 1431 rb_free_cpu_buffer(buffer->buffers[cpu]); 1432 } 1433 kfree(buffer->buffers); 1434 1435 fail_free_cpumask: 1436 free_cpumask_var(buffer->cpumask); 1437 1438 fail_free_buffer: 1439 kfree(buffer); 1440 return NULL; 1441 } 1442 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1443 1444 /** 1445 * ring_buffer_free - free a ring buffer. 1446 * @buffer: the buffer to free. 1447 */ 1448 void 1449 ring_buffer_free(struct trace_buffer *buffer) 1450 { 1451 int cpu; 1452 1453 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1454 1455 for_each_buffer_cpu(buffer, cpu) 1456 rb_free_cpu_buffer(buffer->buffers[cpu]); 1457 1458 kfree(buffer->buffers); 1459 free_cpumask_var(buffer->cpumask); 1460 1461 kfree(buffer); 1462 } 1463 EXPORT_SYMBOL_GPL(ring_buffer_free); 1464 1465 void ring_buffer_set_clock(struct trace_buffer *buffer, 1466 u64 (*clock)(void)) 1467 { 1468 buffer->clock = clock; 1469 } 1470 1471 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1472 { 1473 buffer->time_stamp_abs = abs; 1474 } 1475 1476 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1477 { 1478 return buffer->time_stamp_abs; 1479 } 1480 1481 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1482 1483 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1484 { 1485 return local_read(&bpage->entries) & RB_WRITE_MASK; 1486 } 1487 1488 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1489 { 1490 return local_read(&bpage->write) & RB_WRITE_MASK; 1491 } 1492 1493 static int 1494 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1495 { 1496 struct list_head *tail_page, *to_remove, *next_page; 1497 struct buffer_page *to_remove_page, *tmp_iter_page; 1498 struct buffer_page *last_page, *first_page; 1499 unsigned long nr_removed; 1500 unsigned long head_bit; 1501 int page_entries; 1502 1503 head_bit = 0; 1504 1505 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1506 atomic_inc(&cpu_buffer->record_disabled); 1507 /* 1508 * We don't race with the readers since we have acquired the reader 1509 * lock. We also don't race with writers after disabling recording. 1510 * This makes it easy to figure out the first and the last page to be 1511 * removed from the list. We unlink all the pages in between including 1512 * the first and last pages. This is done in a busy loop so that we 1513 * lose the least number of traces. 1514 * The pages are freed after we restart recording and unlock readers. 1515 */ 1516 tail_page = &cpu_buffer->tail_page->list; 1517 1518 /* 1519 * tail page might be on reader page, we remove the next page 1520 * from the ring buffer 1521 */ 1522 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1523 tail_page = rb_list_head(tail_page->next); 1524 to_remove = tail_page; 1525 1526 /* start of pages to remove */ 1527 first_page = list_entry(rb_list_head(to_remove->next), 1528 struct buffer_page, list); 1529 1530 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1531 to_remove = rb_list_head(to_remove)->next; 1532 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1533 } 1534 1535 next_page = rb_list_head(to_remove)->next; 1536 1537 /* 1538 * Now we remove all pages between tail_page and next_page. 1539 * Make sure that we have head_bit value preserved for the 1540 * next page 1541 */ 1542 tail_page->next = (struct list_head *)((unsigned long)next_page | 1543 head_bit); 1544 next_page = rb_list_head(next_page); 1545 next_page->prev = tail_page; 1546 1547 /* make sure pages points to a valid page in the ring buffer */ 1548 cpu_buffer->pages = next_page; 1549 1550 /* update head page */ 1551 if (head_bit) 1552 cpu_buffer->head_page = list_entry(next_page, 1553 struct buffer_page, list); 1554 1555 /* 1556 * change read pointer to make sure any read iterators reset 1557 * themselves 1558 */ 1559 cpu_buffer->read = 0; 1560 1561 /* pages are removed, resume tracing and then free the pages */ 1562 atomic_dec(&cpu_buffer->record_disabled); 1563 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1564 1565 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1566 1567 /* last buffer page to remove */ 1568 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1569 list); 1570 tmp_iter_page = first_page; 1571 1572 do { 1573 cond_resched(); 1574 1575 to_remove_page = tmp_iter_page; 1576 rb_inc_page(cpu_buffer, &tmp_iter_page); 1577 1578 /* update the counters */ 1579 page_entries = rb_page_entries(to_remove_page); 1580 if (page_entries) { 1581 /* 1582 * If something was added to this page, it was full 1583 * since it is not the tail page. So we deduct the 1584 * bytes consumed in ring buffer from here. 1585 * Increment overrun to account for the lost events. 1586 */ 1587 local_add(page_entries, &cpu_buffer->overrun); 1588 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1589 } 1590 1591 /* 1592 * We have already removed references to this list item, just 1593 * free up the buffer_page and its page 1594 */ 1595 free_buffer_page(to_remove_page); 1596 nr_removed--; 1597 1598 } while (to_remove_page != last_page); 1599 1600 RB_WARN_ON(cpu_buffer, nr_removed); 1601 1602 return nr_removed == 0; 1603 } 1604 1605 static int 1606 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1607 { 1608 struct list_head *pages = &cpu_buffer->new_pages; 1609 int retries, success; 1610 1611 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1612 /* 1613 * We are holding the reader lock, so the reader page won't be swapped 1614 * in the ring buffer. Now we are racing with the writer trying to 1615 * move head page and the tail page. 1616 * We are going to adapt the reader page update process where: 1617 * 1. We first splice the start and end of list of new pages between 1618 * the head page and its previous page. 1619 * 2. We cmpxchg the prev_page->next to point from head page to the 1620 * start of new pages list. 1621 * 3. Finally, we update the head->prev to the end of new list. 1622 * 1623 * We will try this process 10 times, to make sure that we don't keep 1624 * spinning. 1625 */ 1626 retries = 10; 1627 success = 0; 1628 while (retries--) { 1629 struct list_head *head_page, *prev_page, *r; 1630 struct list_head *last_page, *first_page; 1631 struct list_head *head_page_with_bit; 1632 1633 head_page = &rb_set_head_page(cpu_buffer)->list; 1634 if (!head_page) 1635 break; 1636 prev_page = head_page->prev; 1637 1638 first_page = pages->next; 1639 last_page = pages->prev; 1640 1641 head_page_with_bit = (struct list_head *) 1642 ((unsigned long)head_page | RB_PAGE_HEAD); 1643 1644 last_page->next = head_page_with_bit; 1645 first_page->prev = prev_page; 1646 1647 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1648 1649 if (r == head_page_with_bit) { 1650 /* 1651 * yay, we replaced the page pointer to our new list, 1652 * now, we just have to update to head page's prev 1653 * pointer to point to end of list 1654 */ 1655 head_page->prev = last_page; 1656 success = 1; 1657 break; 1658 } 1659 } 1660 1661 if (success) 1662 INIT_LIST_HEAD(pages); 1663 /* 1664 * If we weren't successful in adding in new pages, warn and stop 1665 * tracing 1666 */ 1667 RB_WARN_ON(cpu_buffer, !success); 1668 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1669 1670 /* free pages if they weren't inserted */ 1671 if (!success) { 1672 struct buffer_page *bpage, *tmp; 1673 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1674 list) { 1675 list_del_init(&bpage->list); 1676 free_buffer_page(bpage); 1677 } 1678 } 1679 return success; 1680 } 1681 1682 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1683 { 1684 int success; 1685 1686 if (cpu_buffer->nr_pages_to_update > 0) 1687 success = rb_insert_pages(cpu_buffer); 1688 else 1689 success = rb_remove_pages(cpu_buffer, 1690 -cpu_buffer->nr_pages_to_update); 1691 1692 if (success) 1693 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1694 } 1695 1696 static void update_pages_handler(struct work_struct *work) 1697 { 1698 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1699 struct ring_buffer_per_cpu, update_pages_work); 1700 rb_update_pages(cpu_buffer); 1701 complete(&cpu_buffer->update_done); 1702 } 1703 1704 /** 1705 * ring_buffer_resize - resize the ring buffer 1706 * @buffer: the buffer to resize. 1707 * @size: the new size. 1708 * @cpu_id: the cpu buffer to resize 1709 * 1710 * Minimum size is 2 * BUF_PAGE_SIZE. 1711 * 1712 * Returns 0 on success and < 0 on failure. 1713 */ 1714 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 1715 int cpu_id) 1716 { 1717 struct ring_buffer_per_cpu *cpu_buffer; 1718 unsigned long nr_pages; 1719 int cpu, err = 0; 1720 1721 /* 1722 * Always succeed at resizing a non-existent buffer: 1723 */ 1724 if (!buffer) 1725 return size; 1726 1727 /* Make sure the requested buffer exists */ 1728 if (cpu_id != RING_BUFFER_ALL_CPUS && 1729 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1730 return size; 1731 1732 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1733 1734 /* we need a minimum of two pages */ 1735 if (nr_pages < 2) 1736 nr_pages = 2; 1737 1738 size = nr_pages * BUF_PAGE_SIZE; 1739 1740 /* 1741 * Don't succeed if resizing is disabled, as a reader might be 1742 * manipulating the ring buffer and is expecting a sane state while 1743 * this is true. 1744 */ 1745 if (atomic_read(&buffer->resize_disabled)) 1746 return -EBUSY; 1747 1748 /* prevent another thread from changing buffer sizes */ 1749 mutex_lock(&buffer->mutex); 1750 1751 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1752 /* calculate the pages to update */ 1753 for_each_buffer_cpu(buffer, cpu) { 1754 cpu_buffer = buffer->buffers[cpu]; 1755 1756 cpu_buffer->nr_pages_to_update = nr_pages - 1757 cpu_buffer->nr_pages; 1758 /* 1759 * nothing more to do for removing pages or no update 1760 */ 1761 if (cpu_buffer->nr_pages_to_update <= 0) 1762 continue; 1763 /* 1764 * to add pages, make sure all new pages can be 1765 * allocated without receiving ENOMEM 1766 */ 1767 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1768 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1769 &cpu_buffer->new_pages, cpu)) { 1770 /* not enough memory for new pages */ 1771 err = -ENOMEM; 1772 goto out_err; 1773 } 1774 } 1775 1776 get_online_cpus(); 1777 /* 1778 * Fire off all the required work handlers 1779 * We can't schedule on offline CPUs, but it's not necessary 1780 * since we can change their buffer sizes without any race. 1781 */ 1782 for_each_buffer_cpu(buffer, cpu) { 1783 cpu_buffer = buffer->buffers[cpu]; 1784 if (!cpu_buffer->nr_pages_to_update) 1785 continue; 1786 1787 /* Can't run something on an offline CPU. */ 1788 if (!cpu_online(cpu)) { 1789 rb_update_pages(cpu_buffer); 1790 cpu_buffer->nr_pages_to_update = 0; 1791 } else { 1792 schedule_work_on(cpu, 1793 &cpu_buffer->update_pages_work); 1794 } 1795 } 1796 1797 /* wait for all the updates to complete */ 1798 for_each_buffer_cpu(buffer, cpu) { 1799 cpu_buffer = buffer->buffers[cpu]; 1800 if (!cpu_buffer->nr_pages_to_update) 1801 continue; 1802 1803 if (cpu_online(cpu)) 1804 wait_for_completion(&cpu_buffer->update_done); 1805 cpu_buffer->nr_pages_to_update = 0; 1806 } 1807 1808 put_online_cpus(); 1809 } else { 1810 /* Make sure this CPU has been initialized */ 1811 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1812 goto out; 1813 1814 cpu_buffer = buffer->buffers[cpu_id]; 1815 1816 if (nr_pages == cpu_buffer->nr_pages) 1817 goto out; 1818 1819 cpu_buffer->nr_pages_to_update = nr_pages - 1820 cpu_buffer->nr_pages; 1821 1822 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1823 if (cpu_buffer->nr_pages_to_update > 0 && 1824 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1825 &cpu_buffer->new_pages, cpu_id)) { 1826 err = -ENOMEM; 1827 goto out_err; 1828 } 1829 1830 get_online_cpus(); 1831 1832 /* Can't run something on an offline CPU. */ 1833 if (!cpu_online(cpu_id)) 1834 rb_update_pages(cpu_buffer); 1835 else { 1836 schedule_work_on(cpu_id, 1837 &cpu_buffer->update_pages_work); 1838 wait_for_completion(&cpu_buffer->update_done); 1839 } 1840 1841 cpu_buffer->nr_pages_to_update = 0; 1842 put_online_cpus(); 1843 } 1844 1845 out: 1846 /* 1847 * The ring buffer resize can happen with the ring buffer 1848 * enabled, so that the update disturbs the tracing as little 1849 * as possible. But if the buffer is disabled, we do not need 1850 * to worry about that, and we can take the time to verify 1851 * that the buffer is not corrupt. 1852 */ 1853 if (atomic_read(&buffer->record_disabled)) { 1854 atomic_inc(&buffer->record_disabled); 1855 /* 1856 * Even though the buffer was disabled, we must make sure 1857 * that it is truly disabled before calling rb_check_pages. 1858 * There could have been a race between checking 1859 * record_disable and incrementing it. 1860 */ 1861 synchronize_rcu(); 1862 for_each_buffer_cpu(buffer, cpu) { 1863 cpu_buffer = buffer->buffers[cpu]; 1864 rb_check_pages(cpu_buffer); 1865 } 1866 atomic_dec(&buffer->record_disabled); 1867 } 1868 1869 mutex_unlock(&buffer->mutex); 1870 return size; 1871 1872 out_err: 1873 for_each_buffer_cpu(buffer, cpu) { 1874 struct buffer_page *bpage, *tmp; 1875 1876 cpu_buffer = buffer->buffers[cpu]; 1877 cpu_buffer->nr_pages_to_update = 0; 1878 1879 if (list_empty(&cpu_buffer->new_pages)) 1880 continue; 1881 1882 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1883 list) { 1884 list_del_init(&bpage->list); 1885 free_buffer_page(bpage); 1886 } 1887 } 1888 mutex_unlock(&buffer->mutex); 1889 return err; 1890 } 1891 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1892 1893 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 1894 { 1895 mutex_lock(&buffer->mutex); 1896 if (val) 1897 buffer->flags |= RB_FL_OVERWRITE; 1898 else 1899 buffer->flags &= ~RB_FL_OVERWRITE; 1900 mutex_unlock(&buffer->mutex); 1901 } 1902 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1903 1904 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1905 { 1906 return bpage->page->data + index; 1907 } 1908 1909 static __always_inline struct ring_buffer_event * 1910 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1911 { 1912 return __rb_page_index(cpu_buffer->reader_page, 1913 cpu_buffer->reader_page->read); 1914 } 1915 1916 static __always_inline struct ring_buffer_event * 1917 rb_iter_head_event(struct ring_buffer_iter *iter) 1918 { 1919 return __rb_page_index(iter->head_page, iter->head); 1920 } 1921 1922 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1923 { 1924 return local_read(&bpage->page->commit); 1925 } 1926 1927 /* Size is determined by what has been committed */ 1928 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1929 { 1930 return rb_page_commit(bpage); 1931 } 1932 1933 static __always_inline unsigned 1934 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1935 { 1936 return rb_page_commit(cpu_buffer->commit_page); 1937 } 1938 1939 static __always_inline unsigned 1940 rb_event_index(struct ring_buffer_event *event) 1941 { 1942 unsigned long addr = (unsigned long)event; 1943 1944 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1945 } 1946 1947 static void rb_inc_iter(struct ring_buffer_iter *iter) 1948 { 1949 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1950 1951 /* 1952 * The iterator could be on the reader page (it starts there). 1953 * But the head could have moved, since the reader was 1954 * found. Check for this case and assign the iterator 1955 * to the head page instead of next. 1956 */ 1957 if (iter->head_page == cpu_buffer->reader_page) 1958 iter->head_page = rb_set_head_page(cpu_buffer); 1959 else 1960 rb_inc_page(cpu_buffer, &iter->head_page); 1961 1962 iter->read_stamp = iter->head_page->page->time_stamp; 1963 iter->head = 0; 1964 } 1965 1966 /* 1967 * rb_handle_head_page - writer hit the head page 1968 * 1969 * Returns: +1 to retry page 1970 * 0 to continue 1971 * -1 on error 1972 */ 1973 static int 1974 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1975 struct buffer_page *tail_page, 1976 struct buffer_page *next_page) 1977 { 1978 struct buffer_page *new_head; 1979 int entries; 1980 int type; 1981 int ret; 1982 1983 entries = rb_page_entries(next_page); 1984 1985 /* 1986 * The hard part is here. We need to move the head 1987 * forward, and protect against both readers on 1988 * other CPUs and writers coming in via interrupts. 1989 */ 1990 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1991 RB_PAGE_HEAD); 1992 1993 /* 1994 * type can be one of four: 1995 * NORMAL - an interrupt already moved it for us 1996 * HEAD - we are the first to get here. 1997 * UPDATE - we are the interrupt interrupting 1998 * a current move. 1999 * MOVED - a reader on another CPU moved the next 2000 * pointer to its reader page. Give up 2001 * and try again. 2002 */ 2003 2004 switch (type) { 2005 case RB_PAGE_HEAD: 2006 /* 2007 * We changed the head to UPDATE, thus 2008 * it is our responsibility to update 2009 * the counters. 2010 */ 2011 local_add(entries, &cpu_buffer->overrun); 2012 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2013 2014 /* 2015 * The entries will be zeroed out when we move the 2016 * tail page. 2017 */ 2018 2019 /* still more to do */ 2020 break; 2021 2022 case RB_PAGE_UPDATE: 2023 /* 2024 * This is an interrupt that interrupt the 2025 * previous update. Still more to do. 2026 */ 2027 break; 2028 case RB_PAGE_NORMAL: 2029 /* 2030 * An interrupt came in before the update 2031 * and processed this for us. 2032 * Nothing left to do. 2033 */ 2034 return 1; 2035 case RB_PAGE_MOVED: 2036 /* 2037 * The reader is on another CPU and just did 2038 * a swap with our next_page. 2039 * Try again. 2040 */ 2041 return 1; 2042 default: 2043 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2044 return -1; 2045 } 2046 2047 /* 2048 * Now that we are here, the old head pointer is 2049 * set to UPDATE. This will keep the reader from 2050 * swapping the head page with the reader page. 2051 * The reader (on another CPU) will spin till 2052 * we are finished. 2053 * 2054 * We just need to protect against interrupts 2055 * doing the job. We will set the next pointer 2056 * to HEAD. After that, we set the old pointer 2057 * to NORMAL, but only if it was HEAD before. 2058 * otherwise we are an interrupt, and only 2059 * want the outer most commit to reset it. 2060 */ 2061 new_head = next_page; 2062 rb_inc_page(cpu_buffer, &new_head); 2063 2064 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2065 RB_PAGE_NORMAL); 2066 2067 /* 2068 * Valid returns are: 2069 * HEAD - an interrupt came in and already set it. 2070 * NORMAL - One of two things: 2071 * 1) We really set it. 2072 * 2) A bunch of interrupts came in and moved 2073 * the page forward again. 2074 */ 2075 switch (ret) { 2076 case RB_PAGE_HEAD: 2077 case RB_PAGE_NORMAL: 2078 /* OK */ 2079 break; 2080 default: 2081 RB_WARN_ON(cpu_buffer, 1); 2082 return -1; 2083 } 2084 2085 /* 2086 * It is possible that an interrupt came in, 2087 * set the head up, then more interrupts came in 2088 * and moved it again. When we get back here, 2089 * the page would have been set to NORMAL but we 2090 * just set it back to HEAD. 2091 * 2092 * How do you detect this? Well, if that happened 2093 * the tail page would have moved. 2094 */ 2095 if (ret == RB_PAGE_NORMAL) { 2096 struct buffer_page *buffer_tail_page; 2097 2098 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2099 /* 2100 * If the tail had moved passed next, then we need 2101 * to reset the pointer. 2102 */ 2103 if (buffer_tail_page != tail_page && 2104 buffer_tail_page != next_page) 2105 rb_head_page_set_normal(cpu_buffer, new_head, 2106 next_page, 2107 RB_PAGE_HEAD); 2108 } 2109 2110 /* 2111 * If this was the outer most commit (the one that 2112 * changed the original pointer from HEAD to UPDATE), 2113 * then it is up to us to reset it to NORMAL. 2114 */ 2115 if (type == RB_PAGE_HEAD) { 2116 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2117 tail_page, 2118 RB_PAGE_UPDATE); 2119 if (RB_WARN_ON(cpu_buffer, 2120 ret != RB_PAGE_UPDATE)) 2121 return -1; 2122 } 2123 2124 return 0; 2125 } 2126 2127 static inline void 2128 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2129 unsigned long tail, struct rb_event_info *info) 2130 { 2131 struct buffer_page *tail_page = info->tail_page; 2132 struct ring_buffer_event *event; 2133 unsigned long length = info->length; 2134 2135 /* 2136 * Only the event that crossed the page boundary 2137 * must fill the old tail_page with padding. 2138 */ 2139 if (tail >= BUF_PAGE_SIZE) { 2140 /* 2141 * If the page was filled, then we still need 2142 * to update the real_end. Reset it to zero 2143 * and the reader will ignore it. 2144 */ 2145 if (tail == BUF_PAGE_SIZE) 2146 tail_page->real_end = 0; 2147 2148 local_sub(length, &tail_page->write); 2149 return; 2150 } 2151 2152 event = __rb_page_index(tail_page, tail); 2153 2154 /* account for padding bytes */ 2155 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2156 2157 /* 2158 * Save the original length to the meta data. 2159 * This will be used by the reader to add lost event 2160 * counter. 2161 */ 2162 tail_page->real_end = tail; 2163 2164 /* 2165 * If this event is bigger than the minimum size, then 2166 * we need to be careful that we don't subtract the 2167 * write counter enough to allow another writer to slip 2168 * in on this page. 2169 * We put in a discarded commit instead, to make sure 2170 * that this space is not used again. 2171 * 2172 * If we are less than the minimum size, we don't need to 2173 * worry about it. 2174 */ 2175 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2176 /* No room for any events */ 2177 2178 /* Mark the rest of the page with padding */ 2179 rb_event_set_padding(event); 2180 2181 /* Set the write back to the previous setting */ 2182 local_sub(length, &tail_page->write); 2183 return; 2184 } 2185 2186 /* Put in a discarded event */ 2187 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2188 event->type_len = RINGBUF_TYPE_PADDING; 2189 /* time delta must be non zero */ 2190 event->time_delta = 1; 2191 2192 /* Set write to end of buffer */ 2193 length = (tail + length) - BUF_PAGE_SIZE; 2194 local_sub(length, &tail_page->write); 2195 } 2196 2197 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2198 2199 /* 2200 * This is the slow path, force gcc not to inline it. 2201 */ 2202 static noinline struct ring_buffer_event * 2203 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2204 unsigned long tail, struct rb_event_info *info) 2205 { 2206 struct buffer_page *tail_page = info->tail_page; 2207 struct buffer_page *commit_page = cpu_buffer->commit_page; 2208 struct trace_buffer *buffer = cpu_buffer->buffer; 2209 struct buffer_page *next_page; 2210 int ret; 2211 2212 next_page = tail_page; 2213 2214 rb_inc_page(cpu_buffer, &next_page); 2215 2216 /* 2217 * If for some reason, we had an interrupt storm that made 2218 * it all the way around the buffer, bail, and warn 2219 * about it. 2220 */ 2221 if (unlikely(next_page == commit_page)) { 2222 local_inc(&cpu_buffer->commit_overrun); 2223 goto out_reset; 2224 } 2225 2226 /* 2227 * This is where the fun begins! 2228 * 2229 * We are fighting against races between a reader that 2230 * could be on another CPU trying to swap its reader 2231 * page with the buffer head. 2232 * 2233 * We are also fighting against interrupts coming in and 2234 * moving the head or tail on us as well. 2235 * 2236 * If the next page is the head page then we have filled 2237 * the buffer, unless the commit page is still on the 2238 * reader page. 2239 */ 2240 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2241 2242 /* 2243 * If the commit is not on the reader page, then 2244 * move the header page. 2245 */ 2246 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2247 /* 2248 * If we are not in overwrite mode, 2249 * this is easy, just stop here. 2250 */ 2251 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2252 local_inc(&cpu_buffer->dropped_events); 2253 goto out_reset; 2254 } 2255 2256 ret = rb_handle_head_page(cpu_buffer, 2257 tail_page, 2258 next_page); 2259 if (ret < 0) 2260 goto out_reset; 2261 if (ret) 2262 goto out_again; 2263 } else { 2264 /* 2265 * We need to be careful here too. The 2266 * commit page could still be on the reader 2267 * page. We could have a small buffer, and 2268 * have filled up the buffer with events 2269 * from interrupts and such, and wrapped. 2270 * 2271 * Note, if the tail page is also the on the 2272 * reader_page, we let it move out. 2273 */ 2274 if (unlikely((cpu_buffer->commit_page != 2275 cpu_buffer->tail_page) && 2276 (cpu_buffer->commit_page == 2277 cpu_buffer->reader_page))) { 2278 local_inc(&cpu_buffer->commit_overrun); 2279 goto out_reset; 2280 } 2281 } 2282 } 2283 2284 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2285 2286 out_again: 2287 2288 rb_reset_tail(cpu_buffer, tail, info); 2289 2290 /* Commit what we have for now. */ 2291 rb_end_commit(cpu_buffer); 2292 /* rb_end_commit() decs committing */ 2293 local_inc(&cpu_buffer->committing); 2294 2295 /* fail and let the caller try again */ 2296 return ERR_PTR(-EAGAIN); 2297 2298 out_reset: 2299 /* reset write */ 2300 rb_reset_tail(cpu_buffer, tail, info); 2301 2302 return NULL; 2303 } 2304 2305 /* Slow path, do not inline */ 2306 static noinline struct ring_buffer_event * 2307 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2308 { 2309 if (abs) 2310 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2311 else 2312 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2313 2314 /* Not the first event on the page, or not delta? */ 2315 if (abs || rb_event_index(event)) { 2316 event->time_delta = delta & TS_MASK; 2317 event->array[0] = delta >> TS_SHIFT; 2318 } else { 2319 /* nope, just zero it */ 2320 event->time_delta = 0; 2321 event->array[0] = 0; 2322 } 2323 2324 return skip_time_extend(event); 2325 } 2326 2327 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2328 struct ring_buffer_event *event); 2329 2330 /** 2331 * rb_update_event - update event type and data 2332 * @cpu_buffer: The per cpu buffer of the @event 2333 * @event: the event to update 2334 * @info: The info to update the @event with (contains length and delta) 2335 * 2336 * Update the type and data fields of the @event. The length 2337 * is the actual size that is written to the ring buffer, 2338 * and with this, we can determine what to place into the 2339 * data field. 2340 */ 2341 static void 2342 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2343 struct ring_buffer_event *event, 2344 struct rb_event_info *info) 2345 { 2346 unsigned length = info->length; 2347 u64 delta = info->delta; 2348 2349 /* Only a commit updates the timestamp */ 2350 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2351 delta = 0; 2352 2353 /* 2354 * If we need to add a timestamp, then we 2355 * add it to the start of the reserved space. 2356 */ 2357 if (unlikely(info->add_timestamp)) { 2358 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer); 2359 2360 event = rb_add_time_stamp(event, info->delta, abs); 2361 length -= RB_LEN_TIME_EXTEND; 2362 delta = 0; 2363 } 2364 2365 event->time_delta = delta; 2366 length -= RB_EVNT_HDR_SIZE; 2367 if (length > RB_MAX_SMALL_DATA) { 2368 event->type_len = 0; 2369 event->array[0] = length; 2370 } else 2371 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2372 } 2373 2374 static unsigned rb_calculate_event_length(unsigned length) 2375 { 2376 struct ring_buffer_event event; /* Used only for sizeof array */ 2377 2378 /* zero length can cause confusions */ 2379 if (!length) 2380 length++; 2381 2382 if (length > RB_MAX_SMALL_DATA) 2383 length += sizeof(event.array[0]); 2384 2385 length += RB_EVNT_HDR_SIZE; 2386 length = ALIGN(length, RB_ALIGNMENT); 2387 2388 /* 2389 * In case the time delta is larger than the 27 bits for it 2390 * in the header, we need to add a timestamp. If another 2391 * event comes in when trying to discard this one to increase 2392 * the length, then the timestamp will be added in the allocated 2393 * space of this event. If length is bigger than the size needed 2394 * for the TIME_EXTEND, then padding has to be used. The events 2395 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2396 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2397 * As length is a multiple of 4, we only need to worry if it 2398 * is 12 (RB_LEN_TIME_EXTEND + 4). 2399 */ 2400 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2401 length += RB_ALIGNMENT; 2402 2403 return length; 2404 } 2405 2406 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2407 static inline bool sched_clock_stable(void) 2408 { 2409 return true; 2410 } 2411 #endif 2412 2413 static inline int 2414 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2415 struct ring_buffer_event *event) 2416 { 2417 unsigned long new_index, old_index; 2418 struct buffer_page *bpage; 2419 unsigned long index; 2420 unsigned long addr; 2421 2422 new_index = rb_event_index(event); 2423 old_index = new_index + rb_event_ts_length(event); 2424 addr = (unsigned long)event; 2425 addr &= PAGE_MASK; 2426 2427 bpage = READ_ONCE(cpu_buffer->tail_page); 2428 2429 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2430 unsigned long write_mask = 2431 local_read(&bpage->write) & ~RB_WRITE_MASK; 2432 unsigned long event_length = rb_event_length(event); 2433 /* 2434 * This is on the tail page. It is possible that 2435 * a write could come in and move the tail page 2436 * and write to the next page. That is fine 2437 * because we just shorten what is on this page. 2438 */ 2439 old_index += write_mask; 2440 new_index += write_mask; 2441 index = local_cmpxchg(&bpage->write, old_index, new_index); 2442 if (index == old_index) { 2443 /* update counters */ 2444 local_sub(event_length, &cpu_buffer->entries_bytes); 2445 return 1; 2446 } 2447 } 2448 2449 /* could not discard */ 2450 return 0; 2451 } 2452 2453 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2454 { 2455 local_inc(&cpu_buffer->committing); 2456 local_inc(&cpu_buffer->commits); 2457 } 2458 2459 static __always_inline void 2460 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2461 { 2462 unsigned long max_count; 2463 2464 /* 2465 * We only race with interrupts and NMIs on this CPU. 2466 * If we own the commit event, then we can commit 2467 * all others that interrupted us, since the interruptions 2468 * are in stack format (they finish before they come 2469 * back to us). This allows us to do a simple loop to 2470 * assign the commit to the tail. 2471 */ 2472 again: 2473 max_count = cpu_buffer->nr_pages * 100; 2474 2475 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2476 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2477 return; 2478 if (RB_WARN_ON(cpu_buffer, 2479 rb_is_reader_page(cpu_buffer->tail_page))) 2480 return; 2481 local_set(&cpu_buffer->commit_page->page->commit, 2482 rb_page_write(cpu_buffer->commit_page)); 2483 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2484 /* Only update the write stamp if the page has an event */ 2485 if (rb_page_write(cpu_buffer->commit_page)) 2486 cpu_buffer->write_stamp = 2487 cpu_buffer->commit_page->page->time_stamp; 2488 /* add barrier to keep gcc from optimizing too much */ 2489 barrier(); 2490 } 2491 while (rb_commit_index(cpu_buffer) != 2492 rb_page_write(cpu_buffer->commit_page)) { 2493 2494 local_set(&cpu_buffer->commit_page->page->commit, 2495 rb_page_write(cpu_buffer->commit_page)); 2496 RB_WARN_ON(cpu_buffer, 2497 local_read(&cpu_buffer->commit_page->page->commit) & 2498 ~RB_WRITE_MASK); 2499 barrier(); 2500 } 2501 2502 /* again, keep gcc from optimizing */ 2503 barrier(); 2504 2505 /* 2506 * If an interrupt came in just after the first while loop 2507 * and pushed the tail page forward, we will be left with 2508 * a dangling commit that will never go forward. 2509 */ 2510 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2511 goto again; 2512 } 2513 2514 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2515 { 2516 unsigned long commits; 2517 2518 if (RB_WARN_ON(cpu_buffer, 2519 !local_read(&cpu_buffer->committing))) 2520 return; 2521 2522 again: 2523 commits = local_read(&cpu_buffer->commits); 2524 /* synchronize with interrupts */ 2525 barrier(); 2526 if (local_read(&cpu_buffer->committing) == 1) 2527 rb_set_commit_to_write(cpu_buffer); 2528 2529 local_dec(&cpu_buffer->committing); 2530 2531 /* synchronize with interrupts */ 2532 barrier(); 2533 2534 /* 2535 * Need to account for interrupts coming in between the 2536 * updating of the commit page and the clearing of the 2537 * committing counter. 2538 */ 2539 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2540 !local_read(&cpu_buffer->committing)) { 2541 local_inc(&cpu_buffer->committing); 2542 goto again; 2543 } 2544 } 2545 2546 static inline void rb_event_discard(struct ring_buffer_event *event) 2547 { 2548 if (extended_time(event)) 2549 event = skip_time_extend(event); 2550 2551 /* array[0] holds the actual length for the discarded event */ 2552 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2553 event->type_len = RINGBUF_TYPE_PADDING; 2554 /* time delta must be non zero */ 2555 if (!event->time_delta) 2556 event->time_delta = 1; 2557 } 2558 2559 static __always_inline bool 2560 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2561 struct ring_buffer_event *event) 2562 { 2563 unsigned long addr = (unsigned long)event; 2564 unsigned long index; 2565 2566 index = rb_event_index(event); 2567 addr &= PAGE_MASK; 2568 2569 return cpu_buffer->commit_page->page == (void *)addr && 2570 rb_commit_index(cpu_buffer) == index; 2571 } 2572 2573 static __always_inline void 2574 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2575 struct ring_buffer_event *event) 2576 { 2577 u64 delta; 2578 2579 /* 2580 * The event first in the commit queue updates the 2581 * time stamp. 2582 */ 2583 if (rb_event_is_commit(cpu_buffer, event)) { 2584 /* 2585 * A commit event that is first on a page 2586 * updates the write timestamp with the page stamp 2587 */ 2588 if (!rb_event_index(event)) 2589 cpu_buffer->write_stamp = 2590 cpu_buffer->commit_page->page->time_stamp; 2591 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2592 delta = ring_buffer_event_time_stamp(event); 2593 cpu_buffer->write_stamp += delta; 2594 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 2595 delta = ring_buffer_event_time_stamp(event); 2596 cpu_buffer->write_stamp = delta; 2597 } else 2598 cpu_buffer->write_stamp += event->time_delta; 2599 } 2600 } 2601 2602 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2603 struct ring_buffer_event *event) 2604 { 2605 local_inc(&cpu_buffer->entries); 2606 rb_update_write_stamp(cpu_buffer, event); 2607 rb_end_commit(cpu_buffer); 2608 } 2609 2610 static __always_inline void 2611 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2612 { 2613 size_t nr_pages; 2614 size_t dirty; 2615 size_t full; 2616 2617 if (buffer->irq_work.waiters_pending) { 2618 buffer->irq_work.waiters_pending = false; 2619 /* irq_work_queue() supplies it's own memory barriers */ 2620 irq_work_queue(&buffer->irq_work.work); 2621 } 2622 2623 if (cpu_buffer->irq_work.waiters_pending) { 2624 cpu_buffer->irq_work.waiters_pending = false; 2625 /* irq_work_queue() supplies it's own memory barriers */ 2626 irq_work_queue(&cpu_buffer->irq_work.work); 2627 } 2628 2629 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2630 return; 2631 2632 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2633 return; 2634 2635 if (!cpu_buffer->irq_work.full_waiters_pending) 2636 return; 2637 2638 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2639 2640 full = cpu_buffer->shortest_full; 2641 nr_pages = cpu_buffer->nr_pages; 2642 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2643 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2644 return; 2645 2646 cpu_buffer->irq_work.wakeup_full = true; 2647 cpu_buffer->irq_work.full_waiters_pending = false; 2648 /* irq_work_queue() supplies it's own memory barriers */ 2649 irq_work_queue(&cpu_buffer->irq_work.work); 2650 } 2651 2652 /* 2653 * The lock and unlock are done within a preempt disable section. 2654 * The current_context per_cpu variable can only be modified 2655 * by the current task between lock and unlock. But it can 2656 * be modified more than once via an interrupt. To pass this 2657 * information from the lock to the unlock without having to 2658 * access the 'in_interrupt()' functions again (which do show 2659 * a bit of overhead in something as critical as function tracing, 2660 * we use a bitmask trick. 2661 * 2662 * bit 0 = NMI context 2663 * bit 1 = IRQ context 2664 * bit 2 = SoftIRQ context 2665 * bit 3 = normal context. 2666 * 2667 * This works because this is the order of contexts that can 2668 * preempt other contexts. A SoftIRQ never preempts an IRQ 2669 * context. 2670 * 2671 * When the context is determined, the corresponding bit is 2672 * checked and set (if it was set, then a recursion of that context 2673 * happened). 2674 * 2675 * On unlock, we need to clear this bit. To do so, just subtract 2676 * 1 from the current_context and AND it to itself. 2677 * 2678 * (binary) 2679 * 101 - 1 = 100 2680 * 101 & 100 = 100 (clearing bit zero) 2681 * 2682 * 1010 - 1 = 1001 2683 * 1010 & 1001 = 1000 (clearing bit 1) 2684 * 2685 * The least significant bit can be cleared this way, and it 2686 * just so happens that it is the same bit corresponding to 2687 * the current context. 2688 */ 2689 2690 static __always_inline int 2691 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2692 { 2693 unsigned int val = cpu_buffer->current_context; 2694 unsigned long pc = preempt_count(); 2695 int bit; 2696 2697 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 2698 bit = RB_CTX_NORMAL; 2699 else 2700 bit = pc & NMI_MASK ? RB_CTX_NMI : 2701 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 2702 2703 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 2704 return 1; 2705 2706 val |= (1 << (bit + cpu_buffer->nest)); 2707 cpu_buffer->current_context = val; 2708 2709 return 0; 2710 } 2711 2712 static __always_inline void 2713 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2714 { 2715 cpu_buffer->current_context &= 2716 cpu_buffer->current_context - (1 << cpu_buffer->nest); 2717 } 2718 2719 /* The recursive locking above uses 4 bits */ 2720 #define NESTED_BITS 4 2721 2722 /** 2723 * ring_buffer_nest_start - Allow to trace while nested 2724 * @buffer: The ring buffer to modify 2725 * 2726 * The ring buffer has a safety mechanism to prevent recursion. 2727 * But there may be a case where a trace needs to be done while 2728 * tracing something else. In this case, calling this function 2729 * will allow this function to nest within a currently active 2730 * ring_buffer_lock_reserve(). 2731 * 2732 * Call this function before calling another ring_buffer_lock_reserve() and 2733 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 2734 */ 2735 void ring_buffer_nest_start(struct trace_buffer *buffer) 2736 { 2737 struct ring_buffer_per_cpu *cpu_buffer; 2738 int cpu; 2739 2740 /* Enabled by ring_buffer_nest_end() */ 2741 preempt_disable_notrace(); 2742 cpu = raw_smp_processor_id(); 2743 cpu_buffer = buffer->buffers[cpu]; 2744 /* This is the shift value for the above recursive locking */ 2745 cpu_buffer->nest += NESTED_BITS; 2746 } 2747 2748 /** 2749 * ring_buffer_nest_end - Allow to trace while nested 2750 * @buffer: The ring buffer to modify 2751 * 2752 * Must be called after ring_buffer_nest_start() and after the 2753 * ring_buffer_unlock_commit(). 2754 */ 2755 void ring_buffer_nest_end(struct trace_buffer *buffer) 2756 { 2757 struct ring_buffer_per_cpu *cpu_buffer; 2758 int cpu; 2759 2760 /* disabled by ring_buffer_nest_start() */ 2761 cpu = raw_smp_processor_id(); 2762 cpu_buffer = buffer->buffers[cpu]; 2763 /* This is the shift value for the above recursive locking */ 2764 cpu_buffer->nest -= NESTED_BITS; 2765 preempt_enable_notrace(); 2766 } 2767 2768 /** 2769 * ring_buffer_unlock_commit - commit a reserved 2770 * @buffer: The buffer to commit to 2771 * @event: The event pointer to commit. 2772 * 2773 * This commits the data to the ring buffer, and releases any locks held. 2774 * 2775 * Must be paired with ring_buffer_lock_reserve. 2776 */ 2777 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 2778 struct ring_buffer_event *event) 2779 { 2780 struct ring_buffer_per_cpu *cpu_buffer; 2781 int cpu = raw_smp_processor_id(); 2782 2783 cpu_buffer = buffer->buffers[cpu]; 2784 2785 rb_commit(cpu_buffer, event); 2786 2787 rb_wakeups(buffer, cpu_buffer); 2788 2789 trace_recursive_unlock(cpu_buffer); 2790 2791 preempt_enable_notrace(); 2792 2793 return 0; 2794 } 2795 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2796 2797 static noinline void 2798 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2799 struct rb_event_info *info) 2800 { 2801 WARN_ONCE(info->delta > (1ULL << 59), 2802 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2803 (unsigned long long)info->delta, 2804 (unsigned long long)info->ts, 2805 (unsigned long long)cpu_buffer->write_stamp, 2806 sched_clock_stable() ? "" : 2807 "If you just came from a suspend/resume,\n" 2808 "please switch to the trace global clock:\n" 2809 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2810 "or add trace_clock=global to the kernel command line\n"); 2811 info->add_timestamp = 1; 2812 } 2813 2814 static struct ring_buffer_event * 2815 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2816 struct rb_event_info *info) 2817 { 2818 struct ring_buffer_event *event; 2819 struct buffer_page *tail_page; 2820 unsigned long tail, write; 2821 2822 /* 2823 * If the time delta since the last event is too big to 2824 * hold in the time field of the event, then we append a 2825 * TIME EXTEND event ahead of the data event. 2826 */ 2827 if (unlikely(info->add_timestamp)) 2828 info->length += RB_LEN_TIME_EXTEND; 2829 2830 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2831 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2832 write = local_add_return(info->length, &tail_page->write); 2833 2834 /* set write to only the index of the write */ 2835 write &= RB_WRITE_MASK; 2836 tail = write - info->length; 2837 2838 /* 2839 * If this is the first commit on the page, then it has the same 2840 * timestamp as the page itself. 2841 */ 2842 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer)) 2843 info->delta = 0; 2844 2845 /* See if we shot pass the end of this buffer page */ 2846 if (unlikely(write > BUF_PAGE_SIZE)) 2847 return rb_move_tail(cpu_buffer, tail, info); 2848 2849 /* We reserved something on the buffer */ 2850 2851 event = __rb_page_index(tail_page, tail); 2852 rb_update_event(cpu_buffer, event, info); 2853 2854 local_inc(&tail_page->entries); 2855 2856 /* 2857 * If this is the first commit on the page, then update 2858 * its timestamp. 2859 */ 2860 if (!tail) 2861 tail_page->page->time_stamp = info->ts; 2862 2863 /* account for these added bytes */ 2864 local_add(info->length, &cpu_buffer->entries_bytes); 2865 2866 return event; 2867 } 2868 2869 static __always_inline struct ring_buffer_event * 2870 rb_reserve_next_event(struct trace_buffer *buffer, 2871 struct ring_buffer_per_cpu *cpu_buffer, 2872 unsigned long length) 2873 { 2874 struct ring_buffer_event *event; 2875 struct rb_event_info info; 2876 int nr_loops = 0; 2877 u64 diff; 2878 2879 rb_start_commit(cpu_buffer); 2880 2881 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2882 /* 2883 * Due to the ability to swap a cpu buffer from a buffer 2884 * it is possible it was swapped before we committed. 2885 * (committing stops a swap). We check for it here and 2886 * if it happened, we have to fail the write. 2887 */ 2888 barrier(); 2889 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2890 local_dec(&cpu_buffer->committing); 2891 local_dec(&cpu_buffer->commits); 2892 return NULL; 2893 } 2894 #endif 2895 2896 info.length = rb_calculate_event_length(length); 2897 again: 2898 info.add_timestamp = 0; 2899 info.delta = 0; 2900 2901 /* 2902 * We allow for interrupts to reenter here and do a trace. 2903 * If one does, it will cause this original code to loop 2904 * back here. Even with heavy interrupts happening, this 2905 * should only happen a few times in a row. If this happens 2906 * 1000 times in a row, there must be either an interrupt 2907 * storm or we have something buggy. 2908 * Bail! 2909 */ 2910 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2911 goto out_fail; 2912 2913 info.ts = rb_time_stamp(cpu_buffer->buffer); 2914 diff = info.ts - cpu_buffer->write_stamp; 2915 2916 /* make sure this diff is calculated here */ 2917 barrier(); 2918 2919 if (ring_buffer_time_stamp_abs(buffer)) { 2920 info.delta = info.ts; 2921 rb_handle_timestamp(cpu_buffer, &info); 2922 } else /* Did the write stamp get updated already? */ 2923 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2924 info.delta = diff; 2925 if (unlikely(test_time_stamp(info.delta))) 2926 rb_handle_timestamp(cpu_buffer, &info); 2927 } 2928 2929 event = __rb_reserve_next(cpu_buffer, &info); 2930 2931 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2932 if (info.add_timestamp) 2933 info.length -= RB_LEN_TIME_EXTEND; 2934 goto again; 2935 } 2936 2937 if (!event) 2938 goto out_fail; 2939 2940 return event; 2941 2942 out_fail: 2943 rb_end_commit(cpu_buffer); 2944 return NULL; 2945 } 2946 2947 /** 2948 * ring_buffer_lock_reserve - reserve a part of the buffer 2949 * @buffer: the ring buffer to reserve from 2950 * @length: the length of the data to reserve (excluding event header) 2951 * 2952 * Returns a reserved event on the ring buffer to copy directly to. 2953 * The user of this interface will need to get the body to write into 2954 * and can use the ring_buffer_event_data() interface. 2955 * 2956 * The length is the length of the data needed, not the event length 2957 * which also includes the event header. 2958 * 2959 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2960 * If NULL is returned, then nothing has been allocated or locked. 2961 */ 2962 struct ring_buffer_event * 2963 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 2964 { 2965 struct ring_buffer_per_cpu *cpu_buffer; 2966 struct ring_buffer_event *event; 2967 int cpu; 2968 2969 /* If we are tracing schedule, we don't want to recurse */ 2970 preempt_disable_notrace(); 2971 2972 if (unlikely(atomic_read(&buffer->record_disabled))) 2973 goto out; 2974 2975 cpu = raw_smp_processor_id(); 2976 2977 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2978 goto out; 2979 2980 cpu_buffer = buffer->buffers[cpu]; 2981 2982 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2983 goto out; 2984 2985 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2986 goto out; 2987 2988 if (unlikely(trace_recursive_lock(cpu_buffer))) 2989 goto out; 2990 2991 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2992 if (!event) 2993 goto out_unlock; 2994 2995 return event; 2996 2997 out_unlock: 2998 trace_recursive_unlock(cpu_buffer); 2999 out: 3000 preempt_enable_notrace(); 3001 return NULL; 3002 } 3003 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3004 3005 /* 3006 * Decrement the entries to the page that an event is on. 3007 * The event does not even need to exist, only the pointer 3008 * to the page it is on. This may only be called before the commit 3009 * takes place. 3010 */ 3011 static inline void 3012 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3013 struct ring_buffer_event *event) 3014 { 3015 unsigned long addr = (unsigned long)event; 3016 struct buffer_page *bpage = cpu_buffer->commit_page; 3017 struct buffer_page *start; 3018 3019 addr &= PAGE_MASK; 3020 3021 /* Do the likely case first */ 3022 if (likely(bpage->page == (void *)addr)) { 3023 local_dec(&bpage->entries); 3024 return; 3025 } 3026 3027 /* 3028 * Because the commit page may be on the reader page we 3029 * start with the next page and check the end loop there. 3030 */ 3031 rb_inc_page(cpu_buffer, &bpage); 3032 start = bpage; 3033 do { 3034 if (bpage->page == (void *)addr) { 3035 local_dec(&bpage->entries); 3036 return; 3037 } 3038 rb_inc_page(cpu_buffer, &bpage); 3039 } while (bpage != start); 3040 3041 /* commit not part of this buffer?? */ 3042 RB_WARN_ON(cpu_buffer, 1); 3043 } 3044 3045 /** 3046 * ring_buffer_commit_discard - discard an event that has not been committed 3047 * @buffer: the ring buffer 3048 * @event: non committed event to discard 3049 * 3050 * Sometimes an event that is in the ring buffer needs to be ignored. 3051 * This function lets the user discard an event in the ring buffer 3052 * and then that event will not be read later. 3053 * 3054 * This function only works if it is called before the item has been 3055 * committed. It will try to free the event from the ring buffer 3056 * if another event has not been added behind it. 3057 * 3058 * If another event has been added behind it, it will set the event 3059 * up as discarded, and perform the commit. 3060 * 3061 * If this function is called, do not call ring_buffer_unlock_commit on 3062 * the event. 3063 */ 3064 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3065 struct ring_buffer_event *event) 3066 { 3067 struct ring_buffer_per_cpu *cpu_buffer; 3068 int cpu; 3069 3070 /* The event is discarded regardless */ 3071 rb_event_discard(event); 3072 3073 cpu = smp_processor_id(); 3074 cpu_buffer = buffer->buffers[cpu]; 3075 3076 /* 3077 * This must only be called if the event has not been 3078 * committed yet. Thus we can assume that preemption 3079 * is still disabled. 3080 */ 3081 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3082 3083 rb_decrement_entry(cpu_buffer, event); 3084 if (rb_try_to_discard(cpu_buffer, event)) 3085 goto out; 3086 3087 /* 3088 * The commit is still visible by the reader, so we 3089 * must still update the timestamp. 3090 */ 3091 rb_update_write_stamp(cpu_buffer, event); 3092 out: 3093 rb_end_commit(cpu_buffer); 3094 3095 trace_recursive_unlock(cpu_buffer); 3096 3097 preempt_enable_notrace(); 3098 3099 } 3100 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3101 3102 /** 3103 * ring_buffer_write - write data to the buffer without reserving 3104 * @buffer: The ring buffer to write to. 3105 * @length: The length of the data being written (excluding the event header) 3106 * @data: The data to write to the buffer. 3107 * 3108 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3109 * one function. If you already have the data to write to the buffer, it 3110 * may be easier to simply call this function. 3111 * 3112 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3113 * and not the length of the event which would hold the header. 3114 */ 3115 int ring_buffer_write(struct trace_buffer *buffer, 3116 unsigned long length, 3117 void *data) 3118 { 3119 struct ring_buffer_per_cpu *cpu_buffer; 3120 struct ring_buffer_event *event; 3121 void *body; 3122 int ret = -EBUSY; 3123 int cpu; 3124 3125 preempt_disable_notrace(); 3126 3127 if (atomic_read(&buffer->record_disabled)) 3128 goto out; 3129 3130 cpu = raw_smp_processor_id(); 3131 3132 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3133 goto out; 3134 3135 cpu_buffer = buffer->buffers[cpu]; 3136 3137 if (atomic_read(&cpu_buffer->record_disabled)) 3138 goto out; 3139 3140 if (length > BUF_MAX_DATA_SIZE) 3141 goto out; 3142 3143 if (unlikely(trace_recursive_lock(cpu_buffer))) 3144 goto out; 3145 3146 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3147 if (!event) 3148 goto out_unlock; 3149 3150 body = rb_event_data(event); 3151 3152 memcpy(body, data, length); 3153 3154 rb_commit(cpu_buffer, event); 3155 3156 rb_wakeups(buffer, cpu_buffer); 3157 3158 ret = 0; 3159 3160 out_unlock: 3161 trace_recursive_unlock(cpu_buffer); 3162 3163 out: 3164 preempt_enable_notrace(); 3165 3166 return ret; 3167 } 3168 EXPORT_SYMBOL_GPL(ring_buffer_write); 3169 3170 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3171 { 3172 struct buffer_page *reader = cpu_buffer->reader_page; 3173 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3174 struct buffer_page *commit = cpu_buffer->commit_page; 3175 3176 /* In case of error, head will be NULL */ 3177 if (unlikely(!head)) 3178 return true; 3179 3180 return reader->read == rb_page_commit(reader) && 3181 (commit == reader || 3182 (commit == head && 3183 head->read == rb_page_commit(commit))); 3184 } 3185 3186 /** 3187 * ring_buffer_record_disable - stop all writes into the buffer 3188 * @buffer: The ring buffer to stop writes to. 3189 * 3190 * This prevents all writes to the buffer. Any attempt to write 3191 * to the buffer after this will fail and return NULL. 3192 * 3193 * The caller should call synchronize_rcu() after this. 3194 */ 3195 void ring_buffer_record_disable(struct trace_buffer *buffer) 3196 { 3197 atomic_inc(&buffer->record_disabled); 3198 } 3199 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3200 3201 /** 3202 * ring_buffer_record_enable - enable writes to the buffer 3203 * @buffer: The ring buffer to enable writes 3204 * 3205 * Note, multiple disables will need the same number of enables 3206 * to truly enable the writing (much like preempt_disable). 3207 */ 3208 void ring_buffer_record_enable(struct trace_buffer *buffer) 3209 { 3210 atomic_dec(&buffer->record_disabled); 3211 } 3212 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3213 3214 /** 3215 * ring_buffer_record_off - stop all writes into the buffer 3216 * @buffer: The ring buffer to stop writes to. 3217 * 3218 * This prevents all writes to the buffer. Any attempt to write 3219 * to the buffer after this will fail and return NULL. 3220 * 3221 * This is different than ring_buffer_record_disable() as 3222 * it works like an on/off switch, where as the disable() version 3223 * must be paired with a enable(). 3224 */ 3225 void ring_buffer_record_off(struct trace_buffer *buffer) 3226 { 3227 unsigned int rd; 3228 unsigned int new_rd; 3229 3230 do { 3231 rd = atomic_read(&buffer->record_disabled); 3232 new_rd = rd | RB_BUFFER_OFF; 3233 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3234 } 3235 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3236 3237 /** 3238 * ring_buffer_record_on - restart writes into the buffer 3239 * @buffer: The ring buffer to start writes to. 3240 * 3241 * This enables all writes to the buffer that was disabled by 3242 * ring_buffer_record_off(). 3243 * 3244 * This is different than ring_buffer_record_enable() as 3245 * it works like an on/off switch, where as the enable() version 3246 * must be paired with a disable(). 3247 */ 3248 void ring_buffer_record_on(struct trace_buffer *buffer) 3249 { 3250 unsigned int rd; 3251 unsigned int new_rd; 3252 3253 do { 3254 rd = atomic_read(&buffer->record_disabled); 3255 new_rd = rd & ~RB_BUFFER_OFF; 3256 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3257 } 3258 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3259 3260 /** 3261 * ring_buffer_record_is_on - return true if the ring buffer can write 3262 * @buffer: The ring buffer to see if write is enabled 3263 * 3264 * Returns true if the ring buffer is in a state that it accepts writes. 3265 */ 3266 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 3267 { 3268 return !atomic_read(&buffer->record_disabled); 3269 } 3270 3271 /** 3272 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3273 * @buffer: The ring buffer to see if write is set enabled 3274 * 3275 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3276 * Note that this does NOT mean it is in a writable state. 3277 * 3278 * It may return true when the ring buffer has been disabled by 3279 * ring_buffer_record_disable(), as that is a temporary disabling of 3280 * the ring buffer. 3281 */ 3282 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 3283 { 3284 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3285 } 3286 3287 /** 3288 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3289 * @buffer: The ring buffer to stop writes to. 3290 * @cpu: The CPU buffer to stop 3291 * 3292 * This prevents all writes to the buffer. Any attempt to write 3293 * to the buffer after this will fail and return NULL. 3294 * 3295 * The caller should call synchronize_rcu() after this. 3296 */ 3297 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 3298 { 3299 struct ring_buffer_per_cpu *cpu_buffer; 3300 3301 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3302 return; 3303 3304 cpu_buffer = buffer->buffers[cpu]; 3305 atomic_inc(&cpu_buffer->record_disabled); 3306 } 3307 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3308 3309 /** 3310 * ring_buffer_record_enable_cpu - enable writes to the buffer 3311 * @buffer: The ring buffer to enable writes 3312 * @cpu: The CPU to enable. 3313 * 3314 * Note, multiple disables will need the same number of enables 3315 * to truly enable the writing (much like preempt_disable). 3316 */ 3317 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 3318 { 3319 struct ring_buffer_per_cpu *cpu_buffer; 3320 3321 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3322 return; 3323 3324 cpu_buffer = buffer->buffers[cpu]; 3325 atomic_dec(&cpu_buffer->record_disabled); 3326 } 3327 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3328 3329 /* 3330 * The total entries in the ring buffer is the running counter 3331 * of entries entered into the ring buffer, minus the sum of 3332 * the entries read from the ring buffer and the number of 3333 * entries that were overwritten. 3334 */ 3335 static inline unsigned long 3336 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3337 { 3338 return local_read(&cpu_buffer->entries) - 3339 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3340 } 3341 3342 /** 3343 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3344 * @buffer: The ring buffer 3345 * @cpu: The per CPU buffer to read from. 3346 */ 3347 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 3348 { 3349 unsigned long flags; 3350 struct ring_buffer_per_cpu *cpu_buffer; 3351 struct buffer_page *bpage; 3352 u64 ret = 0; 3353 3354 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3355 return 0; 3356 3357 cpu_buffer = buffer->buffers[cpu]; 3358 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3359 /* 3360 * if the tail is on reader_page, oldest time stamp is on the reader 3361 * page 3362 */ 3363 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3364 bpage = cpu_buffer->reader_page; 3365 else 3366 bpage = rb_set_head_page(cpu_buffer); 3367 if (bpage) 3368 ret = bpage->page->time_stamp; 3369 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3370 3371 return ret; 3372 } 3373 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3374 3375 /** 3376 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3377 * @buffer: The ring buffer 3378 * @cpu: The per CPU buffer to read from. 3379 */ 3380 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 3381 { 3382 struct ring_buffer_per_cpu *cpu_buffer; 3383 unsigned long ret; 3384 3385 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3386 return 0; 3387 3388 cpu_buffer = buffer->buffers[cpu]; 3389 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3390 3391 return ret; 3392 } 3393 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3394 3395 /** 3396 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3397 * @buffer: The ring buffer 3398 * @cpu: The per CPU buffer to get the entries from. 3399 */ 3400 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 3401 { 3402 struct ring_buffer_per_cpu *cpu_buffer; 3403 3404 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3405 return 0; 3406 3407 cpu_buffer = buffer->buffers[cpu]; 3408 3409 return rb_num_of_entries(cpu_buffer); 3410 } 3411 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3412 3413 /** 3414 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3415 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3416 * @buffer: The ring buffer 3417 * @cpu: The per CPU buffer to get the number of overruns from 3418 */ 3419 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 3420 { 3421 struct ring_buffer_per_cpu *cpu_buffer; 3422 unsigned long ret; 3423 3424 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3425 return 0; 3426 3427 cpu_buffer = buffer->buffers[cpu]; 3428 ret = local_read(&cpu_buffer->overrun); 3429 3430 return ret; 3431 } 3432 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3433 3434 /** 3435 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3436 * commits failing due to the buffer wrapping around while there are uncommitted 3437 * events, such as during an interrupt storm. 3438 * @buffer: The ring buffer 3439 * @cpu: The per CPU buffer to get the number of overruns from 3440 */ 3441 unsigned long 3442 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 3443 { 3444 struct ring_buffer_per_cpu *cpu_buffer; 3445 unsigned long ret; 3446 3447 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3448 return 0; 3449 3450 cpu_buffer = buffer->buffers[cpu]; 3451 ret = local_read(&cpu_buffer->commit_overrun); 3452 3453 return ret; 3454 } 3455 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3456 3457 /** 3458 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3459 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3460 * @buffer: The ring buffer 3461 * @cpu: The per CPU buffer to get the number of overruns from 3462 */ 3463 unsigned long 3464 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 3465 { 3466 struct ring_buffer_per_cpu *cpu_buffer; 3467 unsigned long ret; 3468 3469 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3470 return 0; 3471 3472 cpu_buffer = buffer->buffers[cpu]; 3473 ret = local_read(&cpu_buffer->dropped_events); 3474 3475 return ret; 3476 } 3477 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3478 3479 /** 3480 * ring_buffer_read_events_cpu - get the number of events successfully read 3481 * @buffer: The ring buffer 3482 * @cpu: The per CPU buffer to get the number of events read 3483 */ 3484 unsigned long 3485 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 3486 { 3487 struct ring_buffer_per_cpu *cpu_buffer; 3488 3489 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3490 return 0; 3491 3492 cpu_buffer = buffer->buffers[cpu]; 3493 return cpu_buffer->read; 3494 } 3495 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3496 3497 /** 3498 * ring_buffer_entries - get the number of entries in a buffer 3499 * @buffer: The ring buffer 3500 * 3501 * Returns the total number of entries in the ring buffer 3502 * (all CPU entries) 3503 */ 3504 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 3505 { 3506 struct ring_buffer_per_cpu *cpu_buffer; 3507 unsigned long entries = 0; 3508 int cpu; 3509 3510 /* if you care about this being correct, lock the buffer */ 3511 for_each_buffer_cpu(buffer, cpu) { 3512 cpu_buffer = buffer->buffers[cpu]; 3513 entries += rb_num_of_entries(cpu_buffer); 3514 } 3515 3516 return entries; 3517 } 3518 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3519 3520 /** 3521 * ring_buffer_overruns - get the number of overruns in buffer 3522 * @buffer: The ring buffer 3523 * 3524 * Returns the total number of overruns in the ring buffer 3525 * (all CPU entries) 3526 */ 3527 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 3528 { 3529 struct ring_buffer_per_cpu *cpu_buffer; 3530 unsigned long overruns = 0; 3531 int cpu; 3532 3533 /* if you care about this being correct, lock the buffer */ 3534 for_each_buffer_cpu(buffer, cpu) { 3535 cpu_buffer = buffer->buffers[cpu]; 3536 overruns += local_read(&cpu_buffer->overrun); 3537 } 3538 3539 return overruns; 3540 } 3541 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3542 3543 static void rb_iter_reset(struct ring_buffer_iter *iter) 3544 { 3545 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3546 3547 /* Iterator usage is expected to have record disabled */ 3548 iter->head_page = cpu_buffer->reader_page; 3549 iter->head = cpu_buffer->reader_page->read; 3550 3551 iter->cache_reader_page = iter->head_page; 3552 iter->cache_read = cpu_buffer->read; 3553 3554 if (iter->head) 3555 iter->read_stamp = cpu_buffer->read_stamp; 3556 else 3557 iter->read_stamp = iter->head_page->page->time_stamp; 3558 } 3559 3560 /** 3561 * ring_buffer_iter_reset - reset an iterator 3562 * @iter: The iterator to reset 3563 * 3564 * Resets the iterator, so that it will start from the beginning 3565 * again. 3566 */ 3567 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3568 { 3569 struct ring_buffer_per_cpu *cpu_buffer; 3570 unsigned long flags; 3571 3572 if (!iter) 3573 return; 3574 3575 cpu_buffer = iter->cpu_buffer; 3576 3577 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3578 rb_iter_reset(iter); 3579 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3580 } 3581 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3582 3583 /** 3584 * ring_buffer_iter_empty - check if an iterator has no more to read 3585 * @iter: The iterator to check 3586 */ 3587 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3588 { 3589 struct ring_buffer_per_cpu *cpu_buffer; 3590 struct buffer_page *reader; 3591 struct buffer_page *head_page; 3592 struct buffer_page *commit_page; 3593 unsigned commit; 3594 3595 cpu_buffer = iter->cpu_buffer; 3596 3597 /* Remember, trace recording is off when iterator is in use */ 3598 reader = cpu_buffer->reader_page; 3599 head_page = cpu_buffer->head_page; 3600 commit_page = cpu_buffer->commit_page; 3601 commit = rb_page_commit(commit_page); 3602 3603 return ((iter->head_page == commit_page && iter->head == commit) || 3604 (iter->head_page == reader && commit_page == head_page && 3605 head_page->read == commit && 3606 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3607 } 3608 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3609 3610 static void 3611 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3612 struct ring_buffer_event *event) 3613 { 3614 u64 delta; 3615 3616 switch (event->type_len) { 3617 case RINGBUF_TYPE_PADDING: 3618 return; 3619 3620 case RINGBUF_TYPE_TIME_EXTEND: 3621 delta = ring_buffer_event_time_stamp(event); 3622 cpu_buffer->read_stamp += delta; 3623 return; 3624 3625 case RINGBUF_TYPE_TIME_STAMP: 3626 delta = ring_buffer_event_time_stamp(event); 3627 cpu_buffer->read_stamp = delta; 3628 return; 3629 3630 case RINGBUF_TYPE_DATA: 3631 cpu_buffer->read_stamp += event->time_delta; 3632 return; 3633 3634 default: 3635 BUG(); 3636 } 3637 return; 3638 } 3639 3640 static void 3641 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3642 struct ring_buffer_event *event) 3643 { 3644 u64 delta; 3645 3646 switch (event->type_len) { 3647 case RINGBUF_TYPE_PADDING: 3648 return; 3649 3650 case RINGBUF_TYPE_TIME_EXTEND: 3651 delta = ring_buffer_event_time_stamp(event); 3652 iter->read_stamp += delta; 3653 return; 3654 3655 case RINGBUF_TYPE_TIME_STAMP: 3656 delta = ring_buffer_event_time_stamp(event); 3657 iter->read_stamp = delta; 3658 return; 3659 3660 case RINGBUF_TYPE_DATA: 3661 iter->read_stamp += event->time_delta; 3662 return; 3663 3664 default: 3665 BUG(); 3666 } 3667 return; 3668 } 3669 3670 static struct buffer_page * 3671 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3672 { 3673 struct buffer_page *reader = NULL; 3674 unsigned long overwrite; 3675 unsigned long flags; 3676 int nr_loops = 0; 3677 int ret; 3678 3679 local_irq_save(flags); 3680 arch_spin_lock(&cpu_buffer->lock); 3681 3682 again: 3683 /* 3684 * This should normally only loop twice. But because the 3685 * start of the reader inserts an empty page, it causes 3686 * a case where we will loop three times. There should be no 3687 * reason to loop four times (that I know of). 3688 */ 3689 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3690 reader = NULL; 3691 goto out; 3692 } 3693 3694 reader = cpu_buffer->reader_page; 3695 3696 /* If there's more to read, return this page */ 3697 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3698 goto out; 3699 3700 /* Never should we have an index greater than the size */ 3701 if (RB_WARN_ON(cpu_buffer, 3702 cpu_buffer->reader_page->read > rb_page_size(reader))) 3703 goto out; 3704 3705 /* check if we caught up to the tail */ 3706 reader = NULL; 3707 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3708 goto out; 3709 3710 /* Don't bother swapping if the ring buffer is empty */ 3711 if (rb_num_of_entries(cpu_buffer) == 0) 3712 goto out; 3713 3714 /* 3715 * Reset the reader page to size zero. 3716 */ 3717 local_set(&cpu_buffer->reader_page->write, 0); 3718 local_set(&cpu_buffer->reader_page->entries, 0); 3719 local_set(&cpu_buffer->reader_page->page->commit, 0); 3720 cpu_buffer->reader_page->real_end = 0; 3721 3722 spin: 3723 /* 3724 * Splice the empty reader page into the list around the head. 3725 */ 3726 reader = rb_set_head_page(cpu_buffer); 3727 if (!reader) 3728 goto out; 3729 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3730 cpu_buffer->reader_page->list.prev = reader->list.prev; 3731 3732 /* 3733 * cpu_buffer->pages just needs to point to the buffer, it 3734 * has no specific buffer page to point to. Lets move it out 3735 * of our way so we don't accidentally swap it. 3736 */ 3737 cpu_buffer->pages = reader->list.prev; 3738 3739 /* The reader page will be pointing to the new head */ 3740 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3741 3742 /* 3743 * We want to make sure we read the overruns after we set up our 3744 * pointers to the next object. The writer side does a 3745 * cmpxchg to cross pages which acts as the mb on the writer 3746 * side. Note, the reader will constantly fail the swap 3747 * while the writer is updating the pointers, so this 3748 * guarantees that the overwrite recorded here is the one we 3749 * want to compare with the last_overrun. 3750 */ 3751 smp_mb(); 3752 overwrite = local_read(&(cpu_buffer->overrun)); 3753 3754 /* 3755 * Here's the tricky part. 3756 * 3757 * We need to move the pointer past the header page. 3758 * But we can only do that if a writer is not currently 3759 * moving it. The page before the header page has the 3760 * flag bit '1' set if it is pointing to the page we want. 3761 * but if the writer is in the process of moving it 3762 * than it will be '2' or already moved '0'. 3763 */ 3764 3765 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3766 3767 /* 3768 * If we did not convert it, then we must try again. 3769 */ 3770 if (!ret) 3771 goto spin; 3772 3773 /* 3774 * Yay! We succeeded in replacing the page. 3775 * 3776 * Now make the new head point back to the reader page. 3777 */ 3778 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3779 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3780 3781 local_inc(&cpu_buffer->pages_read); 3782 3783 /* Finally update the reader page to the new head */ 3784 cpu_buffer->reader_page = reader; 3785 cpu_buffer->reader_page->read = 0; 3786 3787 if (overwrite != cpu_buffer->last_overrun) { 3788 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3789 cpu_buffer->last_overrun = overwrite; 3790 } 3791 3792 goto again; 3793 3794 out: 3795 /* Update the read_stamp on the first event */ 3796 if (reader && reader->read == 0) 3797 cpu_buffer->read_stamp = reader->page->time_stamp; 3798 3799 arch_spin_unlock(&cpu_buffer->lock); 3800 local_irq_restore(flags); 3801 3802 return reader; 3803 } 3804 3805 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3806 { 3807 struct ring_buffer_event *event; 3808 struct buffer_page *reader; 3809 unsigned length; 3810 3811 reader = rb_get_reader_page(cpu_buffer); 3812 3813 /* This function should not be called when buffer is empty */ 3814 if (RB_WARN_ON(cpu_buffer, !reader)) 3815 return; 3816 3817 event = rb_reader_event(cpu_buffer); 3818 3819 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3820 cpu_buffer->read++; 3821 3822 rb_update_read_stamp(cpu_buffer, event); 3823 3824 length = rb_event_length(event); 3825 cpu_buffer->reader_page->read += length; 3826 } 3827 3828 static void rb_advance_iter(struct ring_buffer_iter *iter) 3829 { 3830 struct ring_buffer_per_cpu *cpu_buffer; 3831 struct ring_buffer_event *event; 3832 unsigned length; 3833 3834 cpu_buffer = iter->cpu_buffer; 3835 3836 /* 3837 * Check if we are at the end of the buffer. 3838 */ 3839 if (iter->head >= rb_page_size(iter->head_page)) { 3840 /* discarded commits can make the page empty */ 3841 if (iter->head_page == cpu_buffer->commit_page) 3842 return; 3843 rb_inc_iter(iter); 3844 return; 3845 } 3846 3847 event = rb_iter_head_event(iter); 3848 3849 length = rb_event_length(event); 3850 3851 /* 3852 * This should not be called to advance the header if we are 3853 * at the tail of the buffer. 3854 */ 3855 if (RB_WARN_ON(cpu_buffer, 3856 (iter->head_page == cpu_buffer->commit_page) && 3857 (iter->head + length > rb_commit_index(cpu_buffer)))) 3858 return; 3859 3860 rb_update_iter_read_stamp(iter, event); 3861 3862 iter->head += length; 3863 3864 /* check for end of page padding */ 3865 if ((iter->head >= rb_page_size(iter->head_page)) && 3866 (iter->head_page != cpu_buffer->commit_page)) 3867 rb_inc_iter(iter); 3868 } 3869 3870 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3871 { 3872 return cpu_buffer->lost_events; 3873 } 3874 3875 static struct ring_buffer_event * 3876 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3877 unsigned long *lost_events) 3878 { 3879 struct ring_buffer_event *event; 3880 struct buffer_page *reader; 3881 int nr_loops = 0; 3882 3883 if (ts) 3884 *ts = 0; 3885 again: 3886 /* 3887 * We repeat when a time extend is encountered. 3888 * Since the time extend is always attached to a data event, 3889 * we should never loop more than once. 3890 * (We never hit the following condition more than twice). 3891 */ 3892 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3893 return NULL; 3894 3895 reader = rb_get_reader_page(cpu_buffer); 3896 if (!reader) 3897 return NULL; 3898 3899 event = rb_reader_event(cpu_buffer); 3900 3901 switch (event->type_len) { 3902 case RINGBUF_TYPE_PADDING: 3903 if (rb_null_event(event)) 3904 RB_WARN_ON(cpu_buffer, 1); 3905 /* 3906 * Because the writer could be discarding every 3907 * event it creates (which would probably be bad) 3908 * if we were to go back to "again" then we may never 3909 * catch up, and will trigger the warn on, or lock 3910 * the box. Return the padding, and we will release 3911 * the current locks, and try again. 3912 */ 3913 return event; 3914 3915 case RINGBUF_TYPE_TIME_EXTEND: 3916 /* Internal data, OK to advance */ 3917 rb_advance_reader(cpu_buffer); 3918 goto again; 3919 3920 case RINGBUF_TYPE_TIME_STAMP: 3921 if (ts) { 3922 *ts = ring_buffer_event_time_stamp(event); 3923 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3924 cpu_buffer->cpu, ts); 3925 } 3926 /* Internal data, OK to advance */ 3927 rb_advance_reader(cpu_buffer); 3928 goto again; 3929 3930 case RINGBUF_TYPE_DATA: 3931 if (ts && !(*ts)) { 3932 *ts = cpu_buffer->read_stamp + event->time_delta; 3933 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3934 cpu_buffer->cpu, ts); 3935 } 3936 if (lost_events) 3937 *lost_events = rb_lost_events(cpu_buffer); 3938 return event; 3939 3940 default: 3941 BUG(); 3942 } 3943 3944 return NULL; 3945 } 3946 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3947 3948 static struct ring_buffer_event * 3949 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3950 { 3951 struct trace_buffer *buffer; 3952 struct ring_buffer_per_cpu *cpu_buffer; 3953 struct ring_buffer_event *event; 3954 int nr_loops = 0; 3955 3956 if (ts) 3957 *ts = 0; 3958 3959 cpu_buffer = iter->cpu_buffer; 3960 buffer = cpu_buffer->buffer; 3961 3962 /* 3963 * Check if someone performed a consuming read to 3964 * the buffer. A consuming read invalidates the iterator 3965 * and we need to reset the iterator in this case. 3966 */ 3967 if (unlikely(iter->cache_read != cpu_buffer->read || 3968 iter->cache_reader_page != cpu_buffer->reader_page)) 3969 rb_iter_reset(iter); 3970 3971 again: 3972 if (ring_buffer_iter_empty(iter)) 3973 return NULL; 3974 3975 /* 3976 * We repeat when a time extend is encountered or we hit 3977 * the end of the page. Since the time extend is always attached 3978 * to a data event, we should never loop more than three times. 3979 * Once for going to next page, once on time extend, and 3980 * finally once to get the event. 3981 * (We never hit the following condition more than thrice). 3982 */ 3983 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3984 return NULL; 3985 3986 if (rb_per_cpu_empty(cpu_buffer)) 3987 return NULL; 3988 3989 if (iter->head >= rb_page_size(iter->head_page)) { 3990 rb_inc_iter(iter); 3991 goto again; 3992 } 3993 3994 event = rb_iter_head_event(iter); 3995 3996 switch (event->type_len) { 3997 case RINGBUF_TYPE_PADDING: 3998 if (rb_null_event(event)) { 3999 rb_inc_iter(iter); 4000 goto again; 4001 } 4002 rb_advance_iter(iter); 4003 return event; 4004 4005 case RINGBUF_TYPE_TIME_EXTEND: 4006 /* Internal data, OK to advance */ 4007 rb_advance_iter(iter); 4008 goto again; 4009 4010 case RINGBUF_TYPE_TIME_STAMP: 4011 if (ts) { 4012 *ts = ring_buffer_event_time_stamp(event); 4013 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4014 cpu_buffer->cpu, ts); 4015 } 4016 /* Internal data, OK to advance */ 4017 rb_advance_iter(iter); 4018 goto again; 4019 4020 case RINGBUF_TYPE_DATA: 4021 if (ts && !(*ts)) { 4022 *ts = iter->read_stamp + event->time_delta; 4023 ring_buffer_normalize_time_stamp(buffer, 4024 cpu_buffer->cpu, ts); 4025 } 4026 return event; 4027 4028 default: 4029 BUG(); 4030 } 4031 4032 return NULL; 4033 } 4034 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4035 4036 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4037 { 4038 if (likely(!in_nmi())) { 4039 raw_spin_lock(&cpu_buffer->reader_lock); 4040 return true; 4041 } 4042 4043 /* 4044 * If an NMI die dumps out the content of the ring buffer 4045 * trylock must be used to prevent a deadlock if the NMI 4046 * preempted a task that holds the ring buffer locks. If 4047 * we get the lock then all is fine, if not, then continue 4048 * to do the read, but this can corrupt the ring buffer, 4049 * so it must be permanently disabled from future writes. 4050 * Reading from NMI is a oneshot deal. 4051 */ 4052 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4053 return true; 4054 4055 /* Continue without locking, but disable the ring buffer */ 4056 atomic_inc(&cpu_buffer->record_disabled); 4057 return false; 4058 } 4059 4060 static inline void 4061 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4062 { 4063 if (likely(locked)) 4064 raw_spin_unlock(&cpu_buffer->reader_lock); 4065 return; 4066 } 4067 4068 /** 4069 * ring_buffer_peek - peek at the next event to be read 4070 * @buffer: The ring buffer to read 4071 * @cpu: The cpu to peak at 4072 * @ts: The timestamp counter of this event. 4073 * @lost_events: a variable to store if events were lost (may be NULL) 4074 * 4075 * This will return the event that will be read next, but does 4076 * not consume the data. 4077 */ 4078 struct ring_buffer_event * 4079 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4080 unsigned long *lost_events) 4081 { 4082 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4083 struct ring_buffer_event *event; 4084 unsigned long flags; 4085 bool dolock; 4086 4087 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4088 return NULL; 4089 4090 again: 4091 local_irq_save(flags); 4092 dolock = rb_reader_lock(cpu_buffer); 4093 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4094 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4095 rb_advance_reader(cpu_buffer); 4096 rb_reader_unlock(cpu_buffer, dolock); 4097 local_irq_restore(flags); 4098 4099 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4100 goto again; 4101 4102 return event; 4103 } 4104 4105 /** 4106 * ring_buffer_iter_peek - peek at the next event to be read 4107 * @iter: The ring buffer iterator 4108 * @ts: The timestamp counter of this event. 4109 * 4110 * This will return the event that will be read next, but does 4111 * not increment the iterator. 4112 */ 4113 struct ring_buffer_event * 4114 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4115 { 4116 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4117 struct ring_buffer_event *event; 4118 unsigned long flags; 4119 4120 again: 4121 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4122 event = rb_iter_peek(iter, ts); 4123 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4124 4125 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4126 goto again; 4127 4128 return event; 4129 } 4130 4131 /** 4132 * ring_buffer_consume - return an event and consume it 4133 * @buffer: The ring buffer to get the next event from 4134 * @cpu: the cpu to read the buffer from 4135 * @ts: a variable to store the timestamp (may be NULL) 4136 * @lost_events: a variable to store if events were lost (may be NULL) 4137 * 4138 * Returns the next event in the ring buffer, and that event is consumed. 4139 * Meaning, that sequential reads will keep returning a different event, 4140 * and eventually empty the ring buffer if the producer is slower. 4141 */ 4142 struct ring_buffer_event * 4143 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4144 unsigned long *lost_events) 4145 { 4146 struct ring_buffer_per_cpu *cpu_buffer; 4147 struct ring_buffer_event *event = NULL; 4148 unsigned long flags; 4149 bool dolock; 4150 4151 again: 4152 /* might be called in atomic */ 4153 preempt_disable(); 4154 4155 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4156 goto out; 4157 4158 cpu_buffer = buffer->buffers[cpu]; 4159 local_irq_save(flags); 4160 dolock = rb_reader_lock(cpu_buffer); 4161 4162 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4163 if (event) { 4164 cpu_buffer->lost_events = 0; 4165 rb_advance_reader(cpu_buffer); 4166 } 4167 4168 rb_reader_unlock(cpu_buffer, dolock); 4169 local_irq_restore(flags); 4170 4171 out: 4172 preempt_enable(); 4173 4174 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4175 goto again; 4176 4177 return event; 4178 } 4179 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4180 4181 /** 4182 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4183 * @buffer: The ring buffer to read from 4184 * @cpu: The cpu buffer to iterate over 4185 * @flags: gfp flags to use for memory allocation 4186 * 4187 * This performs the initial preparations necessary to iterate 4188 * through the buffer. Memory is allocated, buffer recording 4189 * is disabled, and the iterator pointer is returned to the caller. 4190 * 4191 * Disabling buffer recording prevents the reading from being 4192 * corrupted. This is not a consuming read, so a producer is not 4193 * expected. 4194 * 4195 * After a sequence of ring_buffer_read_prepare calls, the user is 4196 * expected to make at least one call to ring_buffer_read_prepare_sync. 4197 * Afterwards, ring_buffer_read_start is invoked to get things going 4198 * for real. 4199 * 4200 * This overall must be paired with ring_buffer_read_finish. 4201 */ 4202 struct ring_buffer_iter * 4203 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 4204 { 4205 struct ring_buffer_per_cpu *cpu_buffer; 4206 struct ring_buffer_iter *iter; 4207 4208 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4209 return NULL; 4210 4211 iter = kmalloc(sizeof(*iter), flags); 4212 if (!iter) 4213 return NULL; 4214 4215 cpu_buffer = buffer->buffers[cpu]; 4216 4217 iter->cpu_buffer = cpu_buffer; 4218 4219 atomic_inc(&buffer->resize_disabled); 4220 atomic_inc(&cpu_buffer->record_disabled); 4221 4222 return iter; 4223 } 4224 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4225 4226 /** 4227 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4228 * 4229 * All previously invoked ring_buffer_read_prepare calls to prepare 4230 * iterators will be synchronized. Afterwards, read_buffer_read_start 4231 * calls on those iterators are allowed. 4232 */ 4233 void 4234 ring_buffer_read_prepare_sync(void) 4235 { 4236 synchronize_rcu(); 4237 } 4238 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4239 4240 /** 4241 * ring_buffer_read_start - start a non consuming read of the buffer 4242 * @iter: The iterator returned by ring_buffer_read_prepare 4243 * 4244 * This finalizes the startup of an iteration through the buffer. 4245 * The iterator comes from a call to ring_buffer_read_prepare and 4246 * an intervening ring_buffer_read_prepare_sync must have been 4247 * performed. 4248 * 4249 * Must be paired with ring_buffer_read_finish. 4250 */ 4251 void 4252 ring_buffer_read_start(struct ring_buffer_iter *iter) 4253 { 4254 struct ring_buffer_per_cpu *cpu_buffer; 4255 unsigned long flags; 4256 4257 if (!iter) 4258 return; 4259 4260 cpu_buffer = iter->cpu_buffer; 4261 4262 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4263 arch_spin_lock(&cpu_buffer->lock); 4264 rb_iter_reset(iter); 4265 arch_spin_unlock(&cpu_buffer->lock); 4266 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4267 } 4268 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4269 4270 /** 4271 * ring_buffer_read_finish - finish reading the iterator of the buffer 4272 * @iter: The iterator retrieved by ring_buffer_start 4273 * 4274 * This re-enables the recording to the buffer, and frees the 4275 * iterator. 4276 */ 4277 void 4278 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4279 { 4280 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4281 unsigned long flags; 4282 4283 /* 4284 * Ring buffer is disabled from recording, here's a good place 4285 * to check the integrity of the ring buffer. 4286 * Must prevent readers from trying to read, as the check 4287 * clears the HEAD page and readers require it. 4288 */ 4289 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4290 rb_check_pages(cpu_buffer); 4291 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4292 4293 atomic_dec(&cpu_buffer->record_disabled); 4294 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4295 kfree(iter); 4296 } 4297 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4298 4299 /** 4300 * ring_buffer_read - read the next item in the ring buffer by the iterator 4301 * @iter: The ring buffer iterator 4302 * @ts: The time stamp of the event read. 4303 * 4304 * This reads the next event in the ring buffer and increments the iterator. 4305 */ 4306 struct ring_buffer_event * 4307 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4308 { 4309 struct ring_buffer_event *event; 4310 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4311 unsigned long flags; 4312 4313 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4314 again: 4315 event = rb_iter_peek(iter, ts); 4316 if (!event) 4317 goto out; 4318 4319 if (event->type_len == RINGBUF_TYPE_PADDING) 4320 goto again; 4321 4322 rb_advance_iter(iter); 4323 out: 4324 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4325 4326 return event; 4327 } 4328 EXPORT_SYMBOL_GPL(ring_buffer_read); 4329 4330 /** 4331 * ring_buffer_size - return the size of the ring buffer (in bytes) 4332 * @buffer: The ring buffer. 4333 * @cpu: The CPU to get ring buffer size from. 4334 */ 4335 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 4336 { 4337 /* 4338 * Earlier, this method returned 4339 * BUF_PAGE_SIZE * buffer->nr_pages 4340 * Since the nr_pages field is now removed, we have converted this to 4341 * return the per cpu buffer value. 4342 */ 4343 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4344 return 0; 4345 4346 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4347 } 4348 EXPORT_SYMBOL_GPL(ring_buffer_size); 4349 4350 static void 4351 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4352 { 4353 rb_head_page_deactivate(cpu_buffer); 4354 4355 cpu_buffer->head_page 4356 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4357 local_set(&cpu_buffer->head_page->write, 0); 4358 local_set(&cpu_buffer->head_page->entries, 0); 4359 local_set(&cpu_buffer->head_page->page->commit, 0); 4360 4361 cpu_buffer->head_page->read = 0; 4362 4363 cpu_buffer->tail_page = cpu_buffer->head_page; 4364 cpu_buffer->commit_page = cpu_buffer->head_page; 4365 4366 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4367 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4368 local_set(&cpu_buffer->reader_page->write, 0); 4369 local_set(&cpu_buffer->reader_page->entries, 0); 4370 local_set(&cpu_buffer->reader_page->page->commit, 0); 4371 cpu_buffer->reader_page->read = 0; 4372 4373 local_set(&cpu_buffer->entries_bytes, 0); 4374 local_set(&cpu_buffer->overrun, 0); 4375 local_set(&cpu_buffer->commit_overrun, 0); 4376 local_set(&cpu_buffer->dropped_events, 0); 4377 local_set(&cpu_buffer->entries, 0); 4378 local_set(&cpu_buffer->committing, 0); 4379 local_set(&cpu_buffer->commits, 0); 4380 local_set(&cpu_buffer->pages_touched, 0); 4381 local_set(&cpu_buffer->pages_read, 0); 4382 cpu_buffer->last_pages_touch = 0; 4383 cpu_buffer->shortest_full = 0; 4384 cpu_buffer->read = 0; 4385 cpu_buffer->read_bytes = 0; 4386 4387 cpu_buffer->write_stamp = 0; 4388 cpu_buffer->read_stamp = 0; 4389 4390 cpu_buffer->lost_events = 0; 4391 cpu_buffer->last_overrun = 0; 4392 4393 rb_head_page_activate(cpu_buffer); 4394 } 4395 4396 /** 4397 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4398 * @buffer: The ring buffer to reset a per cpu buffer of 4399 * @cpu: The CPU buffer to be reset 4400 */ 4401 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 4402 { 4403 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4404 unsigned long flags; 4405 4406 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4407 return; 4408 4409 atomic_inc(&buffer->resize_disabled); 4410 atomic_inc(&cpu_buffer->record_disabled); 4411 4412 /* Make sure all commits have finished */ 4413 synchronize_rcu(); 4414 4415 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4416 4417 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4418 goto out; 4419 4420 arch_spin_lock(&cpu_buffer->lock); 4421 4422 rb_reset_cpu(cpu_buffer); 4423 4424 arch_spin_unlock(&cpu_buffer->lock); 4425 4426 out: 4427 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4428 4429 atomic_dec(&cpu_buffer->record_disabled); 4430 atomic_dec(&buffer->resize_disabled); 4431 } 4432 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4433 4434 /** 4435 * ring_buffer_reset - reset a ring buffer 4436 * @buffer: The ring buffer to reset all cpu buffers 4437 */ 4438 void ring_buffer_reset(struct trace_buffer *buffer) 4439 { 4440 int cpu; 4441 4442 for_each_buffer_cpu(buffer, cpu) 4443 ring_buffer_reset_cpu(buffer, cpu); 4444 } 4445 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4446 4447 /** 4448 * rind_buffer_empty - is the ring buffer empty? 4449 * @buffer: The ring buffer to test 4450 */ 4451 bool ring_buffer_empty(struct trace_buffer *buffer) 4452 { 4453 struct ring_buffer_per_cpu *cpu_buffer; 4454 unsigned long flags; 4455 bool dolock; 4456 int cpu; 4457 int ret; 4458 4459 /* yes this is racy, but if you don't like the race, lock the buffer */ 4460 for_each_buffer_cpu(buffer, cpu) { 4461 cpu_buffer = buffer->buffers[cpu]; 4462 local_irq_save(flags); 4463 dolock = rb_reader_lock(cpu_buffer); 4464 ret = rb_per_cpu_empty(cpu_buffer); 4465 rb_reader_unlock(cpu_buffer, dolock); 4466 local_irq_restore(flags); 4467 4468 if (!ret) 4469 return false; 4470 } 4471 4472 return true; 4473 } 4474 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4475 4476 /** 4477 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4478 * @buffer: The ring buffer 4479 * @cpu: The CPU buffer to test 4480 */ 4481 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 4482 { 4483 struct ring_buffer_per_cpu *cpu_buffer; 4484 unsigned long flags; 4485 bool dolock; 4486 int ret; 4487 4488 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4489 return true; 4490 4491 cpu_buffer = buffer->buffers[cpu]; 4492 local_irq_save(flags); 4493 dolock = rb_reader_lock(cpu_buffer); 4494 ret = rb_per_cpu_empty(cpu_buffer); 4495 rb_reader_unlock(cpu_buffer, dolock); 4496 local_irq_restore(flags); 4497 4498 return ret; 4499 } 4500 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4501 4502 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4503 /** 4504 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4505 * @buffer_a: One buffer to swap with 4506 * @buffer_b: The other buffer to swap with 4507 * @cpu: the CPU of the buffers to swap 4508 * 4509 * This function is useful for tracers that want to take a "snapshot" 4510 * of a CPU buffer and has another back up buffer lying around. 4511 * it is expected that the tracer handles the cpu buffer not being 4512 * used at the moment. 4513 */ 4514 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 4515 struct trace_buffer *buffer_b, int cpu) 4516 { 4517 struct ring_buffer_per_cpu *cpu_buffer_a; 4518 struct ring_buffer_per_cpu *cpu_buffer_b; 4519 int ret = -EINVAL; 4520 4521 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4522 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4523 goto out; 4524 4525 cpu_buffer_a = buffer_a->buffers[cpu]; 4526 cpu_buffer_b = buffer_b->buffers[cpu]; 4527 4528 /* At least make sure the two buffers are somewhat the same */ 4529 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4530 goto out; 4531 4532 ret = -EAGAIN; 4533 4534 if (atomic_read(&buffer_a->record_disabled)) 4535 goto out; 4536 4537 if (atomic_read(&buffer_b->record_disabled)) 4538 goto out; 4539 4540 if (atomic_read(&cpu_buffer_a->record_disabled)) 4541 goto out; 4542 4543 if (atomic_read(&cpu_buffer_b->record_disabled)) 4544 goto out; 4545 4546 /* 4547 * We can't do a synchronize_rcu here because this 4548 * function can be called in atomic context. 4549 * Normally this will be called from the same CPU as cpu. 4550 * If not it's up to the caller to protect this. 4551 */ 4552 atomic_inc(&cpu_buffer_a->record_disabled); 4553 atomic_inc(&cpu_buffer_b->record_disabled); 4554 4555 ret = -EBUSY; 4556 if (local_read(&cpu_buffer_a->committing)) 4557 goto out_dec; 4558 if (local_read(&cpu_buffer_b->committing)) 4559 goto out_dec; 4560 4561 buffer_a->buffers[cpu] = cpu_buffer_b; 4562 buffer_b->buffers[cpu] = cpu_buffer_a; 4563 4564 cpu_buffer_b->buffer = buffer_a; 4565 cpu_buffer_a->buffer = buffer_b; 4566 4567 ret = 0; 4568 4569 out_dec: 4570 atomic_dec(&cpu_buffer_a->record_disabled); 4571 atomic_dec(&cpu_buffer_b->record_disabled); 4572 out: 4573 return ret; 4574 } 4575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4577 4578 /** 4579 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4580 * @buffer: the buffer to allocate for. 4581 * @cpu: the cpu buffer to allocate. 4582 * 4583 * This function is used in conjunction with ring_buffer_read_page. 4584 * When reading a full page from the ring buffer, these functions 4585 * can be used to speed up the process. The calling function should 4586 * allocate a few pages first with this function. Then when it 4587 * needs to get pages from the ring buffer, it passes the result 4588 * of this function into ring_buffer_read_page, which will swap 4589 * the page that was allocated, with the read page of the buffer. 4590 * 4591 * Returns: 4592 * The page allocated, or ERR_PTR 4593 */ 4594 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 4595 { 4596 struct ring_buffer_per_cpu *cpu_buffer; 4597 struct buffer_data_page *bpage = NULL; 4598 unsigned long flags; 4599 struct page *page; 4600 4601 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4602 return ERR_PTR(-ENODEV); 4603 4604 cpu_buffer = buffer->buffers[cpu]; 4605 local_irq_save(flags); 4606 arch_spin_lock(&cpu_buffer->lock); 4607 4608 if (cpu_buffer->free_page) { 4609 bpage = cpu_buffer->free_page; 4610 cpu_buffer->free_page = NULL; 4611 } 4612 4613 arch_spin_unlock(&cpu_buffer->lock); 4614 local_irq_restore(flags); 4615 4616 if (bpage) 4617 goto out; 4618 4619 page = alloc_pages_node(cpu_to_node(cpu), 4620 GFP_KERNEL | __GFP_NORETRY, 0); 4621 if (!page) 4622 return ERR_PTR(-ENOMEM); 4623 4624 bpage = page_address(page); 4625 4626 out: 4627 rb_init_page(bpage); 4628 4629 return bpage; 4630 } 4631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4632 4633 /** 4634 * ring_buffer_free_read_page - free an allocated read page 4635 * @buffer: the buffer the page was allocate for 4636 * @cpu: the cpu buffer the page came from 4637 * @data: the page to free 4638 * 4639 * Free a page allocated from ring_buffer_alloc_read_page. 4640 */ 4641 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 4642 { 4643 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4644 struct buffer_data_page *bpage = data; 4645 struct page *page = virt_to_page(bpage); 4646 unsigned long flags; 4647 4648 /* If the page is still in use someplace else, we can't reuse it */ 4649 if (page_ref_count(page) > 1) 4650 goto out; 4651 4652 local_irq_save(flags); 4653 arch_spin_lock(&cpu_buffer->lock); 4654 4655 if (!cpu_buffer->free_page) { 4656 cpu_buffer->free_page = bpage; 4657 bpage = NULL; 4658 } 4659 4660 arch_spin_unlock(&cpu_buffer->lock); 4661 local_irq_restore(flags); 4662 4663 out: 4664 free_page((unsigned long)bpage); 4665 } 4666 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4667 4668 /** 4669 * ring_buffer_read_page - extract a page from the ring buffer 4670 * @buffer: buffer to extract from 4671 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4672 * @len: amount to extract 4673 * @cpu: the cpu of the buffer to extract 4674 * @full: should the extraction only happen when the page is full. 4675 * 4676 * This function will pull out a page from the ring buffer and consume it. 4677 * @data_page must be the address of the variable that was returned 4678 * from ring_buffer_alloc_read_page. This is because the page might be used 4679 * to swap with a page in the ring buffer. 4680 * 4681 * for example: 4682 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4683 * if (IS_ERR(rpage)) 4684 * return PTR_ERR(rpage); 4685 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4686 * if (ret >= 0) 4687 * process_page(rpage, ret); 4688 * 4689 * When @full is set, the function will not return true unless 4690 * the writer is off the reader page. 4691 * 4692 * Note: it is up to the calling functions to handle sleeps and wakeups. 4693 * The ring buffer can be used anywhere in the kernel and can not 4694 * blindly call wake_up. The layer that uses the ring buffer must be 4695 * responsible for that. 4696 * 4697 * Returns: 4698 * >=0 if data has been transferred, returns the offset of consumed data. 4699 * <0 if no data has been transferred. 4700 */ 4701 int ring_buffer_read_page(struct trace_buffer *buffer, 4702 void **data_page, size_t len, int cpu, int full) 4703 { 4704 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4705 struct ring_buffer_event *event; 4706 struct buffer_data_page *bpage; 4707 struct buffer_page *reader; 4708 unsigned long missed_events; 4709 unsigned long flags; 4710 unsigned int commit; 4711 unsigned int read; 4712 u64 save_timestamp; 4713 int ret = -1; 4714 4715 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4716 goto out; 4717 4718 /* 4719 * If len is not big enough to hold the page header, then 4720 * we can not copy anything. 4721 */ 4722 if (len <= BUF_PAGE_HDR_SIZE) 4723 goto out; 4724 4725 len -= BUF_PAGE_HDR_SIZE; 4726 4727 if (!data_page) 4728 goto out; 4729 4730 bpage = *data_page; 4731 if (!bpage) 4732 goto out; 4733 4734 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4735 4736 reader = rb_get_reader_page(cpu_buffer); 4737 if (!reader) 4738 goto out_unlock; 4739 4740 event = rb_reader_event(cpu_buffer); 4741 4742 read = reader->read; 4743 commit = rb_page_commit(reader); 4744 4745 /* Check if any events were dropped */ 4746 missed_events = cpu_buffer->lost_events; 4747 4748 /* 4749 * If this page has been partially read or 4750 * if len is not big enough to read the rest of the page or 4751 * a writer is still on the page, then 4752 * we must copy the data from the page to the buffer. 4753 * Otherwise, we can simply swap the page with the one passed in. 4754 */ 4755 if (read || (len < (commit - read)) || 4756 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4757 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4758 unsigned int rpos = read; 4759 unsigned int pos = 0; 4760 unsigned int size; 4761 4762 if (full) 4763 goto out_unlock; 4764 4765 if (len > (commit - read)) 4766 len = (commit - read); 4767 4768 /* Always keep the time extend and data together */ 4769 size = rb_event_ts_length(event); 4770 4771 if (len < size) 4772 goto out_unlock; 4773 4774 /* save the current timestamp, since the user will need it */ 4775 save_timestamp = cpu_buffer->read_stamp; 4776 4777 /* Need to copy one event at a time */ 4778 do { 4779 /* We need the size of one event, because 4780 * rb_advance_reader only advances by one event, 4781 * whereas rb_event_ts_length may include the size of 4782 * one or two events. 4783 * We have already ensured there's enough space if this 4784 * is a time extend. */ 4785 size = rb_event_length(event); 4786 memcpy(bpage->data + pos, rpage->data + rpos, size); 4787 4788 len -= size; 4789 4790 rb_advance_reader(cpu_buffer); 4791 rpos = reader->read; 4792 pos += size; 4793 4794 if (rpos >= commit) 4795 break; 4796 4797 event = rb_reader_event(cpu_buffer); 4798 /* Always keep the time extend and data together */ 4799 size = rb_event_ts_length(event); 4800 } while (len >= size); 4801 4802 /* update bpage */ 4803 local_set(&bpage->commit, pos); 4804 bpage->time_stamp = save_timestamp; 4805 4806 /* we copied everything to the beginning */ 4807 read = 0; 4808 } else { 4809 /* update the entry counter */ 4810 cpu_buffer->read += rb_page_entries(reader); 4811 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4812 4813 /* swap the pages */ 4814 rb_init_page(bpage); 4815 bpage = reader->page; 4816 reader->page = *data_page; 4817 local_set(&reader->write, 0); 4818 local_set(&reader->entries, 0); 4819 reader->read = 0; 4820 *data_page = bpage; 4821 4822 /* 4823 * Use the real_end for the data size, 4824 * This gives us a chance to store the lost events 4825 * on the page. 4826 */ 4827 if (reader->real_end) 4828 local_set(&bpage->commit, reader->real_end); 4829 } 4830 ret = read; 4831 4832 cpu_buffer->lost_events = 0; 4833 4834 commit = local_read(&bpage->commit); 4835 /* 4836 * Set a flag in the commit field if we lost events 4837 */ 4838 if (missed_events) { 4839 /* If there is room at the end of the page to save the 4840 * missed events, then record it there. 4841 */ 4842 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4843 memcpy(&bpage->data[commit], &missed_events, 4844 sizeof(missed_events)); 4845 local_add(RB_MISSED_STORED, &bpage->commit); 4846 commit += sizeof(missed_events); 4847 } 4848 local_add(RB_MISSED_EVENTS, &bpage->commit); 4849 } 4850 4851 /* 4852 * This page may be off to user land. Zero it out here. 4853 */ 4854 if (commit < BUF_PAGE_SIZE) 4855 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4856 4857 out_unlock: 4858 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4859 4860 out: 4861 return ret; 4862 } 4863 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4864 4865 /* 4866 * We only allocate new buffers, never free them if the CPU goes down. 4867 * If we were to free the buffer, then the user would lose any trace that was in 4868 * the buffer. 4869 */ 4870 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4871 { 4872 struct trace_buffer *buffer; 4873 long nr_pages_same; 4874 int cpu_i; 4875 unsigned long nr_pages; 4876 4877 buffer = container_of(node, struct trace_buffer, node); 4878 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4879 return 0; 4880 4881 nr_pages = 0; 4882 nr_pages_same = 1; 4883 /* check if all cpu sizes are same */ 4884 for_each_buffer_cpu(buffer, cpu_i) { 4885 /* fill in the size from first enabled cpu */ 4886 if (nr_pages == 0) 4887 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4888 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4889 nr_pages_same = 0; 4890 break; 4891 } 4892 } 4893 /* allocate minimum pages, user can later expand it */ 4894 if (!nr_pages_same) 4895 nr_pages = 2; 4896 buffer->buffers[cpu] = 4897 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4898 if (!buffer->buffers[cpu]) { 4899 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4900 cpu); 4901 return -ENOMEM; 4902 } 4903 smp_wmb(); 4904 cpumask_set_cpu(cpu, buffer->cpumask); 4905 return 0; 4906 } 4907 4908 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4909 /* 4910 * This is a basic integrity check of the ring buffer. 4911 * Late in the boot cycle this test will run when configured in. 4912 * It will kick off a thread per CPU that will go into a loop 4913 * writing to the per cpu ring buffer various sizes of data. 4914 * Some of the data will be large items, some small. 4915 * 4916 * Another thread is created that goes into a spin, sending out 4917 * IPIs to the other CPUs to also write into the ring buffer. 4918 * this is to test the nesting ability of the buffer. 4919 * 4920 * Basic stats are recorded and reported. If something in the 4921 * ring buffer should happen that's not expected, a big warning 4922 * is displayed and all ring buffers are disabled. 4923 */ 4924 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4925 4926 struct rb_test_data { 4927 struct trace_buffer *buffer; 4928 unsigned long events; 4929 unsigned long bytes_written; 4930 unsigned long bytes_alloc; 4931 unsigned long bytes_dropped; 4932 unsigned long events_nested; 4933 unsigned long bytes_written_nested; 4934 unsigned long bytes_alloc_nested; 4935 unsigned long bytes_dropped_nested; 4936 int min_size_nested; 4937 int max_size_nested; 4938 int max_size; 4939 int min_size; 4940 int cpu; 4941 int cnt; 4942 }; 4943 4944 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4945 4946 /* 1 meg per cpu */ 4947 #define RB_TEST_BUFFER_SIZE 1048576 4948 4949 static char rb_string[] __initdata = 4950 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4951 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4952 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4953 4954 static bool rb_test_started __initdata; 4955 4956 struct rb_item { 4957 int size; 4958 char str[]; 4959 }; 4960 4961 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4962 { 4963 struct ring_buffer_event *event; 4964 struct rb_item *item; 4965 bool started; 4966 int event_len; 4967 int size; 4968 int len; 4969 int cnt; 4970 4971 /* Have nested writes different that what is written */ 4972 cnt = data->cnt + (nested ? 27 : 0); 4973 4974 /* Multiply cnt by ~e, to make some unique increment */ 4975 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 4976 4977 len = size + sizeof(struct rb_item); 4978 4979 started = rb_test_started; 4980 /* read rb_test_started before checking buffer enabled */ 4981 smp_rmb(); 4982 4983 event = ring_buffer_lock_reserve(data->buffer, len); 4984 if (!event) { 4985 /* Ignore dropped events before test starts. */ 4986 if (started) { 4987 if (nested) 4988 data->bytes_dropped += len; 4989 else 4990 data->bytes_dropped_nested += len; 4991 } 4992 return len; 4993 } 4994 4995 event_len = ring_buffer_event_length(event); 4996 4997 if (RB_WARN_ON(data->buffer, event_len < len)) 4998 goto out; 4999 5000 item = ring_buffer_event_data(event); 5001 item->size = size; 5002 memcpy(item->str, rb_string, size); 5003 5004 if (nested) { 5005 data->bytes_alloc_nested += event_len; 5006 data->bytes_written_nested += len; 5007 data->events_nested++; 5008 if (!data->min_size_nested || len < data->min_size_nested) 5009 data->min_size_nested = len; 5010 if (len > data->max_size_nested) 5011 data->max_size_nested = len; 5012 } else { 5013 data->bytes_alloc += event_len; 5014 data->bytes_written += len; 5015 data->events++; 5016 if (!data->min_size || len < data->min_size) 5017 data->max_size = len; 5018 if (len > data->max_size) 5019 data->max_size = len; 5020 } 5021 5022 out: 5023 ring_buffer_unlock_commit(data->buffer, event); 5024 5025 return 0; 5026 } 5027 5028 static __init int rb_test(void *arg) 5029 { 5030 struct rb_test_data *data = arg; 5031 5032 while (!kthread_should_stop()) { 5033 rb_write_something(data, false); 5034 data->cnt++; 5035 5036 set_current_state(TASK_INTERRUPTIBLE); 5037 /* Now sleep between a min of 100-300us and a max of 1ms */ 5038 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5039 } 5040 5041 return 0; 5042 } 5043 5044 static __init void rb_ipi(void *ignore) 5045 { 5046 struct rb_test_data *data; 5047 int cpu = smp_processor_id(); 5048 5049 data = &rb_data[cpu]; 5050 rb_write_something(data, true); 5051 } 5052 5053 static __init int rb_hammer_test(void *arg) 5054 { 5055 while (!kthread_should_stop()) { 5056 5057 /* Send an IPI to all cpus to write data! */ 5058 smp_call_function(rb_ipi, NULL, 1); 5059 /* No sleep, but for non preempt, let others run */ 5060 schedule(); 5061 } 5062 5063 return 0; 5064 } 5065 5066 static __init int test_ringbuffer(void) 5067 { 5068 struct task_struct *rb_hammer; 5069 struct trace_buffer *buffer; 5070 int cpu; 5071 int ret = 0; 5072 5073 if (security_locked_down(LOCKDOWN_TRACEFS)) { 5074 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 5075 return 0; 5076 } 5077 5078 pr_info("Running ring buffer tests...\n"); 5079 5080 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5081 if (WARN_ON(!buffer)) 5082 return 0; 5083 5084 /* Disable buffer so that threads can't write to it yet */ 5085 ring_buffer_record_off(buffer); 5086 5087 for_each_online_cpu(cpu) { 5088 rb_data[cpu].buffer = buffer; 5089 rb_data[cpu].cpu = cpu; 5090 rb_data[cpu].cnt = cpu; 5091 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5092 "rbtester/%d", cpu); 5093 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5094 pr_cont("FAILED\n"); 5095 ret = PTR_ERR(rb_threads[cpu]); 5096 goto out_free; 5097 } 5098 5099 kthread_bind(rb_threads[cpu], cpu); 5100 wake_up_process(rb_threads[cpu]); 5101 } 5102 5103 /* Now create the rb hammer! */ 5104 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5105 if (WARN_ON(IS_ERR(rb_hammer))) { 5106 pr_cont("FAILED\n"); 5107 ret = PTR_ERR(rb_hammer); 5108 goto out_free; 5109 } 5110 5111 ring_buffer_record_on(buffer); 5112 /* 5113 * Show buffer is enabled before setting rb_test_started. 5114 * Yes there's a small race window where events could be 5115 * dropped and the thread wont catch it. But when a ring 5116 * buffer gets enabled, there will always be some kind of 5117 * delay before other CPUs see it. Thus, we don't care about 5118 * those dropped events. We care about events dropped after 5119 * the threads see that the buffer is active. 5120 */ 5121 smp_wmb(); 5122 rb_test_started = true; 5123 5124 set_current_state(TASK_INTERRUPTIBLE); 5125 /* Just run for 10 seconds */; 5126 schedule_timeout(10 * HZ); 5127 5128 kthread_stop(rb_hammer); 5129 5130 out_free: 5131 for_each_online_cpu(cpu) { 5132 if (!rb_threads[cpu]) 5133 break; 5134 kthread_stop(rb_threads[cpu]); 5135 } 5136 if (ret) { 5137 ring_buffer_free(buffer); 5138 return ret; 5139 } 5140 5141 /* Report! */ 5142 pr_info("finished\n"); 5143 for_each_online_cpu(cpu) { 5144 struct ring_buffer_event *event; 5145 struct rb_test_data *data = &rb_data[cpu]; 5146 struct rb_item *item; 5147 unsigned long total_events; 5148 unsigned long total_dropped; 5149 unsigned long total_written; 5150 unsigned long total_alloc; 5151 unsigned long total_read = 0; 5152 unsigned long total_size = 0; 5153 unsigned long total_len = 0; 5154 unsigned long total_lost = 0; 5155 unsigned long lost; 5156 int big_event_size; 5157 int small_event_size; 5158 5159 ret = -1; 5160 5161 total_events = data->events + data->events_nested; 5162 total_written = data->bytes_written + data->bytes_written_nested; 5163 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5164 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5165 5166 big_event_size = data->max_size + data->max_size_nested; 5167 small_event_size = data->min_size + data->min_size_nested; 5168 5169 pr_info("CPU %d:\n", cpu); 5170 pr_info(" events: %ld\n", total_events); 5171 pr_info(" dropped bytes: %ld\n", total_dropped); 5172 pr_info(" alloced bytes: %ld\n", total_alloc); 5173 pr_info(" written bytes: %ld\n", total_written); 5174 pr_info(" biggest event: %d\n", big_event_size); 5175 pr_info(" smallest event: %d\n", small_event_size); 5176 5177 if (RB_WARN_ON(buffer, total_dropped)) 5178 break; 5179 5180 ret = 0; 5181 5182 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5183 total_lost += lost; 5184 item = ring_buffer_event_data(event); 5185 total_len += ring_buffer_event_length(event); 5186 total_size += item->size + sizeof(struct rb_item); 5187 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5188 pr_info("FAILED!\n"); 5189 pr_info("buffer had: %.*s\n", item->size, item->str); 5190 pr_info("expected: %.*s\n", item->size, rb_string); 5191 RB_WARN_ON(buffer, 1); 5192 ret = -1; 5193 break; 5194 } 5195 total_read++; 5196 } 5197 if (ret) 5198 break; 5199 5200 ret = -1; 5201 5202 pr_info(" read events: %ld\n", total_read); 5203 pr_info(" lost events: %ld\n", total_lost); 5204 pr_info(" total events: %ld\n", total_lost + total_read); 5205 pr_info(" recorded len bytes: %ld\n", total_len); 5206 pr_info(" recorded size bytes: %ld\n", total_size); 5207 if (total_lost) 5208 pr_info(" With dropped events, record len and size may not match\n" 5209 " alloced and written from above\n"); 5210 if (!total_lost) { 5211 if (RB_WARN_ON(buffer, total_len != total_alloc || 5212 total_size != total_written)) 5213 break; 5214 } 5215 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5216 break; 5217 5218 ret = 0; 5219 } 5220 if (!ret) 5221 pr_info("Ring buffer PASSED!\n"); 5222 5223 ring_buffer_free(buffer); 5224 return 0; 5225 } 5226 5227 late_initcall(test_ringbuffer); 5228 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5229