xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 7587cdef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB		(0xf8ULL << 56)
38 #define ABS_TS_MASK	(~TS_MSB)
39 
40 static void update_pages_handler(struct work_struct *work);
41 
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 	trace_seq_puts(s, "# compressed entry header\n");
48 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50 	trace_seq_puts(s, "\tarray       :   32 bits\n");
51 	trace_seq_putc(s, '\n');
52 	trace_seq_printf(s, "\tpadding     : type == %d\n",
53 			 RINGBUF_TYPE_PADDING);
54 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 			 RINGBUF_TYPE_TIME_EXTEND);
56 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 			 RINGBUF_TYPE_TIME_STAMP);
58 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
59 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60 
61 	return !trace_seq_has_overflowed(s);
62 }
63 
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131 
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF		(1 << 20)
134 
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136 
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT		4U
139 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
141 
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT	0
144 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT	1
147 # define RB_ARCH_ALIGNMENT		8U
148 #endif
149 
150 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
151 
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154 
155 enum {
156 	RB_LEN_TIME_EXTEND = 8,
157 	RB_LEN_TIME_STAMP =  8,
158 };
159 
160 #define skip_time_extend(event) \
161 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162 
163 #define extended_time(event) \
164 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165 
166 static inline int rb_null_event(struct ring_buffer_event *event)
167 {
168 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170 
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 	/* padding has a NULL time_delta */
174 	event->type_len = RINGBUF_TYPE_PADDING;
175 	event->time_delta = 0;
176 }
177 
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 	unsigned length;
182 
183 	if (event->type_len)
184 		length = event->type_len * RB_ALIGNMENT;
185 	else
186 		length = event->array[0];
187 	return length + RB_EVNT_HDR_SIZE;
188 }
189 
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 	switch (event->type_len) {
199 	case RINGBUF_TYPE_PADDING:
200 		if (rb_null_event(event))
201 			/* undefined */
202 			return -1;
203 		return  event->array[0] + RB_EVNT_HDR_SIZE;
204 
205 	case RINGBUF_TYPE_TIME_EXTEND:
206 		return RB_LEN_TIME_EXTEND;
207 
208 	case RINGBUF_TYPE_TIME_STAMP:
209 		return RB_LEN_TIME_STAMP;
210 
211 	case RINGBUF_TYPE_DATA:
212 		return rb_event_data_length(event);
213 	default:
214 		WARN_ON_ONCE(1);
215 	}
216 	/* not hit */
217 	return 0;
218 }
219 
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 	unsigned len = 0;
228 
229 	if (extended_time(event)) {
230 		/* time extends include the data event after it */
231 		len = RB_LEN_TIME_EXTEND;
232 		event = skip_time_extend(event);
233 	}
234 	return len + rb_event_length(event);
235 }
236 
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 	unsigned length;
250 
251 	if (extended_time(event))
252 		event = skip_time_extend(event);
253 
254 	length = rb_event_length(event);
255 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 		return length;
257 	length -= RB_EVNT_HDR_SIZE;
258 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260 	return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263 
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 	if (extended_time(event))
269 		event = skip_time_extend(event);
270 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 	/* If length is in len field, then array[0] has the data */
272 	if (event->type_len)
273 		return (void *)&event->array[0];
274 	/* Otherwise length is in array[0] and array[1] has the data */
275 	return (void *)&event->array[1];
276 }
277 
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 	return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287 
288 #define for_each_buffer_cpu(buffer, cpu)		\
289 	for_each_cpu(cpu, buffer->cpumask)
290 
291 #define for_each_online_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293 
294 #define TS_SHIFT	27
295 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST	(~TS_MASK)
297 
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 	u64 ts;
301 
302 	ts = event->array[0];
303 	ts <<= TS_SHIFT;
304 	ts += event->time_delta;
305 
306 	return ts;
307 }
308 
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS	(1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED	(1 << 30)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 /*
358  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
359  * this issue out.
360  */
361 static void free_buffer_page(struct buffer_page *bpage)
362 {
363 	free_page((unsigned long)bpage->page);
364 	kfree(bpage);
365 }
366 
367 /*
368  * We need to fit the time_stamp delta into 27 bits.
369  */
370 static inline int test_time_stamp(u64 delta)
371 {
372 	if (delta & TS_DELTA_TEST)
373 		return 1;
374 	return 0;
375 }
376 
377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
378 
379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
381 
382 int ring_buffer_print_page_header(struct trace_seq *s)
383 {
384 	struct buffer_data_page field;
385 
386 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
387 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
388 			 (unsigned int)sizeof(field.time_stamp),
389 			 (unsigned int)is_signed_type(u64));
390 
391 	trace_seq_printf(s, "\tfield: local_t commit;\t"
392 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 			 (unsigned int)offsetof(typeof(field), commit),
394 			 (unsigned int)sizeof(field.commit),
395 			 (unsigned int)is_signed_type(long));
396 
397 	trace_seq_printf(s, "\tfield: int overwrite;\t"
398 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 			 (unsigned int)offsetof(typeof(field), commit),
400 			 1,
401 			 (unsigned int)is_signed_type(long));
402 
403 	trace_seq_printf(s, "\tfield: char data;\t"
404 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
405 			 (unsigned int)offsetof(typeof(field), data),
406 			 (unsigned int)BUF_PAGE_SIZE,
407 			 (unsigned int)is_signed_type(char));
408 
409 	return !trace_seq_has_overflowed(s);
410 }
411 
412 struct rb_irq_work {
413 	struct irq_work			work;
414 	wait_queue_head_t		waiters;
415 	wait_queue_head_t		full_waiters;
416 	long				wait_index;
417 	bool				waiters_pending;
418 	bool				full_waiters_pending;
419 	bool				wakeup_full;
420 };
421 
422 /*
423  * Structure to hold event state and handle nested events.
424  */
425 struct rb_event_info {
426 	u64			ts;
427 	u64			delta;
428 	u64			before;
429 	u64			after;
430 	unsigned long		length;
431 	struct buffer_page	*tail_page;
432 	int			add_timestamp;
433 };
434 
435 /*
436  * Used for the add_timestamp
437  *  NONE
438  *  EXTEND - wants a time extend
439  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
440  *  FORCE - force a full time stamp.
441  */
442 enum {
443 	RB_ADD_STAMP_NONE		= 0,
444 	RB_ADD_STAMP_EXTEND		= BIT(1),
445 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
446 	RB_ADD_STAMP_FORCE		= BIT(3)
447 };
448 /*
449  * Used for which event context the event is in.
450  *  TRANSITION = 0
451  *  NMI     = 1
452  *  IRQ     = 2
453  *  SOFTIRQ = 3
454  *  NORMAL  = 4
455  *
456  * See trace_recursive_lock() comment below for more details.
457  */
458 enum {
459 	RB_CTX_TRANSITION,
460 	RB_CTX_NMI,
461 	RB_CTX_IRQ,
462 	RB_CTX_SOFTIRQ,
463 	RB_CTX_NORMAL,
464 	RB_CTX_MAX
465 };
466 
467 #if BITS_PER_LONG == 32
468 #define RB_TIME_32
469 #endif
470 
471 /* To test on 64 bit machines */
472 //#define RB_TIME_32
473 
474 #ifdef RB_TIME_32
475 
476 struct rb_time_struct {
477 	local_t		cnt;
478 	local_t		top;
479 	local_t		bottom;
480 	local_t		msb;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485 	local64_t	time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489 
490 #define MAX_NEST	5
491 
492 /*
493  * head_page == tail_page && head == tail then buffer is empty.
494  */
495 struct ring_buffer_per_cpu {
496 	int				cpu;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	struct trace_buffer	*buffer;
500 	raw_spinlock_t			reader_lock;	/* serialize readers */
501 	arch_spinlock_t			lock;
502 	struct lock_class_key		lock_key;
503 	struct buffer_data_page		*free_page;
504 	unsigned long			nr_pages;
505 	unsigned int			current_context;
506 	struct list_head		*pages;
507 	struct buffer_page		*head_page;	/* read from head */
508 	struct buffer_page		*tail_page;	/* write to tail */
509 	struct buffer_page		*commit_page;	/* committed pages */
510 	struct buffer_page		*reader_page;
511 	unsigned long			lost_events;
512 	unsigned long			last_overrun;
513 	unsigned long			nest;
514 	local_t				entries_bytes;
515 	local_t				entries;
516 	local_t				overrun;
517 	local_t				commit_overrun;
518 	local_t				dropped_events;
519 	local_t				committing;
520 	local_t				commits;
521 	local_t				pages_touched;
522 	local_t				pages_read;
523 	long				last_pages_touch;
524 	size_t				shortest_full;
525 	unsigned long			read;
526 	unsigned long			read_bytes;
527 	rb_time_t			write_stamp;
528 	rb_time_t			before_stamp;
529 	u64				event_stamp[MAX_NEST];
530 	u64				read_stamp;
531 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
532 	long				nr_pages_to_update;
533 	struct list_head		new_pages; /* new pages to add */
534 	struct work_struct		update_pages_work;
535 	struct completion		update_done;
536 
537 	struct rb_irq_work		irq_work;
538 };
539 
540 struct trace_buffer {
541 	unsigned			flags;
542 	int				cpus;
543 	atomic_t			record_disabled;
544 	cpumask_var_t			cpumask;
545 
546 	struct lock_class_key		*reader_lock_key;
547 
548 	struct mutex			mutex;
549 
550 	struct ring_buffer_per_cpu	**buffers;
551 
552 	struct hlist_node		node;
553 	u64				(*clock)(void);
554 
555 	struct rb_irq_work		irq_work;
556 	bool				time_stamp_abs;
557 };
558 
559 struct ring_buffer_iter {
560 	struct ring_buffer_per_cpu	*cpu_buffer;
561 	unsigned long			head;
562 	unsigned long			next_event;
563 	struct buffer_page		*head_page;
564 	struct buffer_page		*cache_reader_page;
565 	unsigned long			cache_read;
566 	u64				read_stamp;
567 	u64				page_stamp;
568 	struct ring_buffer_event	*event;
569 	int				missed_events;
570 };
571 
572 #ifdef RB_TIME_32
573 
574 /*
575  * On 32 bit machines, local64_t is very expensive. As the ring
576  * buffer doesn't need all the features of a true 64 bit atomic,
577  * on 32 bit, it uses these functions (64 still uses local64_t).
578  *
579  * For the ring buffer, 64 bit required operations for the time is
580  * the following:
581  *
582  *  - Reads may fail if it interrupted a modification of the time stamp.
583  *      It will succeed if it did not interrupt another write even if
584  *      the read itself is interrupted by a write.
585  *      It returns whether it was successful or not.
586  *
587  *  - Writes always succeed and will overwrite other writes and writes
588  *      that were done by events interrupting the current write.
589  *
590  *  - A write followed by a read of the same time stamp will always succeed,
591  *      but may not contain the same value.
592  *
593  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
594  *      Other than that, it acts like a normal cmpxchg.
595  *
596  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
597  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
598  *
599  * The two most significant bits of each half holds a 2 bit counter (0-3).
600  * Each update will increment this counter by one.
601  * When reading the top and bottom, if the two counter bits match then the
602  *  top and bottom together make a valid 60 bit number.
603  */
604 #define RB_TIME_SHIFT	30
605 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
606 #define RB_TIME_MSB_SHIFT	 60
607 
608 static inline int rb_time_cnt(unsigned long val)
609 {
610 	return (val >> RB_TIME_SHIFT) & 3;
611 }
612 
613 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
614 {
615 	u64 val;
616 
617 	val = top & RB_TIME_VAL_MASK;
618 	val <<= RB_TIME_SHIFT;
619 	val |= bottom & RB_TIME_VAL_MASK;
620 
621 	return val;
622 }
623 
624 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
625 {
626 	unsigned long top, bottom, msb;
627 	unsigned long c;
628 
629 	/*
630 	 * If the read is interrupted by a write, then the cnt will
631 	 * be different. Loop until both top and bottom have been read
632 	 * without interruption.
633 	 */
634 	do {
635 		c = local_read(&t->cnt);
636 		top = local_read(&t->top);
637 		bottom = local_read(&t->bottom);
638 		msb = local_read(&t->msb);
639 	} while (c != local_read(&t->cnt));
640 
641 	*cnt = rb_time_cnt(top);
642 
643 	/* If top and bottom counts don't match, this interrupted a write */
644 	if (*cnt != rb_time_cnt(bottom))
645 		return false;
646 
647 	/* The shift to msb will lose its cnt bits */
648 	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
649 	return true;
650 }
651 
652 static bool rb_time_read(rb_time_t *t, u64 *ret)
653 {
654 	unsigned long cnt;
655 
656 	return __rb_time_read(t, ret, &cnt);
657 }
658 
659 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
660 {
661 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
662 }
663 
664 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
665 				 unsigned long *msb)
666 {
667 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
668 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
669 	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
670 }
671 
672 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
673 {
674 	val = rb_time_val_cnt(val, cnt);
675 	local_set(t, val);
676 }
677 
678 static void rb_time_set(rb_time_t *t, u64 val)
679 {
680 	unsigned long cnt, top, bottom, msb;
681 
682 	rb_time_split(val, &top, &bottom, &msb);
683 
684 	/* Writes always succeed with a valid number even if it gets interrupted. */
685 	do {
686 		cnt = local_inc_return(&t->cnt);
687 		rb_time_val_set(&t->top, top, cnt);
688 		rb_time_val_set(&t->bottom, bottom, cnt);
689 		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
690 	} while (cnt != local_read(&t->cnt));
691 }
692 
693 static inline bool
694 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
695 {
696 	unsigned long ret;
697 
698 	ret = local_cmpxchg(l, expect, set);
699 	return ret == expect;
700 }
701 
702 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
703 {
704 	unsigned long cnt, top, bottom, msb;
705 	unsigned long cnt2, top2, bottom2, msb2;
706 	u64 val;
707 
708 	/* The cmpxchg always fails if it interrupted an update */
709 	 if (!__rb_time_read(t, &val, &cnt2))
710 		 return false;
711 
712 	 if (val != expect)
713 		 return false;
714 
715 	 cnt = local_read(&t->cnt);
716 	 if ((cnt & 3) != cnt2)
717 		 return false;
718 
719 	 cnt2 = cnt + 1;
720 
721 	 rb_time_split(val, &top, &bottom, &msb);
722 	 top = rb_time_val_cnt(top, cnt);
723 	 bottom = rb_time_val_cnt(bottom, cnt);
724 
725 	 rb_time_split(set, &top2, &bottom2, &msb2);
726 	 top2 = rb_time_val_cnt(top2, cnt2);
727 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
728 
729 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
730 		return false;
731 	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
732 		return false;
733 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
734 		return false;
735 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
736 		return false;
737 	return true;
738 }
739 
740 #else /* 64 bits */
741 
742 /* local64_t always succeeds */
743 
744 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
745 {
746 	*ret = local64_read(&t->time);
747 	return true;
748 }
749 static void rb_time_set(rb_time_t *t, u64 val)
750 {
751 	local64_set(&t->time, val);
752 }
753 
754 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
755 {
756 	u64 val;
757 	val = local64_cmpxchg(&t->time, expect, set);
758 	return val == expect;
759 }
760 #endif
761 
762 /*
763  * Enable this to make sure that the event passed to
764  * ring_buffer_event_time_stamp() is not committed and also
765  * is on the buffer that it passed in.
766  */
767 //#define RB_VERIFY_EVENT
768 #ifdef RB_VERIFY_EVENT
769 static struct list_head *rb_list_head(struct list_head *list);
770 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
771 			 void *event)
772 {
773 	struct buffer_page *page = cpu_buffer->commit_page;
774 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
775 	struct list_head *next;
776 	long commit, write;
777 	unsigned long addr = (unsigned long)event;
778 	bool done = false;
779 	int stop = 0;
780 
781 	/* Make sure the event exists and is not committed yet */
782 	do {
783 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
784 			done = true;
785 		commit = local_read(&page->page->commit);
786 		write = local_read(&page->write);
787 		if (addr >= (unsigned long)&page->page->data[commit] &&
788 		    addr < (unsigned long)&page->page->data[write])
789 			return;
790 
791 		next = rb_list_head(page->list.next);
792 		page = list_entry(next, struct buffer_page, list);
793 	} while (!done);
794 	WARN_ON_ONCE(1);
795 }
796 #else
797 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
798 			 void *event)
799 {
800 }
801 #endif
802 
803 /*
804  * The absolute time stamp drops the 5 MSBs and some clocks may
805  * require them. The rb_fix_abs_ts() will take a previous full
806  * time stamp, and add the 5 MSB of that time stamp on to the
807  * saved absolute time stamp. Then they are compared in case of
808  * the unlikely event that the latest time stamp incremented
809  * the 5 MSB.
810  */
811 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
812 {
813 	if (save_ts & TS_MSB) {
814 		abs |= save_ts & TS_MSB;
815 		/* Check for overflow */
816 		if (unlikely(abs < save_ts))
817 			abs += 1ULL << 59;
818 	}
819 	return abs;
820 }
821 
822 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
823 
824 /**
825  * ring_buffer_event_time_stamp - return the event's current time stamp
826  * @buffer: The buffer that the event is on
827  * @event: the event to get the time stamp of
828  *
829  * Note, this must be called after @event is reserved, and before it is
830  * committed to the ring buffer. And must be called from the same
831  * context where the event was reserved (normal, softirq, irq, etc).
832  *
833  * Returns the time stamp associated with the current event.
834  * If the event has an extended time stamp, then that is used as
835  * the time stamp to return.
836  * In the highly unlikely case that the event was nested more than
837  * the max nesting, then the write_stamp of the buffer is returned,
838  * otherwise  current time is returned, but that really neither of
839  * the last two cases should ever happen.
840  */
841 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
842 				 struct ring_buffer_event *event)
843 {
844 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
845 	unsigned int nest;
846 	u64 ts;
847 
848 	/* If the event includes an absolute time, then just use that */
849 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
850 		ts = rb_event_time_stamp(event);
851 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
852 	}
853 
854 	nest = local_read(&cpu_buffer->committing);
855 	verify_event(cpu_buffer, event);
856 	if (WARN_ON_ONCE(!nest))
857 		goto fail;
858 
859 	/* Read the current saved nesting level time stamp */
860 	if (likely(--nest < MAX_NEST))
861 		return cpu_buffer->event_stamp[nest];
862 
863 	/* Shouldn't happen, warn if it does */
864 	WARN_ONCE(1, "nest (%d) greater than max", nest);
865 
866  fail:
867 	/* Can only fail on 32 bit */
868 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
869 		/* Screw it, just read the current time */
870 		ts = rb_time_stamp(cpu_buffer->buffer);
871 
872 	return ts;
873 }
874 
875 /**
876  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
877  * @buffer: The ring_buffer to get the number of pages from
878  * @cpu: The cpu of the ring_buffer to get the number of pages from
879  *
880  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
881  */
882 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
883 {
884 	return buffer->buffers[cpu]->nr_pages;
885 }
886 
887 /**
888  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
889  * @buffer: The ring_buffer to get the number of pages from
890  * @cpu: The cpu of the ring_buffer to get the number of pages from
891  *
892  * Returns the number of pages that have content in the ring buffer.
893  */
894 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
895 {
896 	size_t read;
897 	size_t cnt;
898 
899 	read = local_read(&buffer->buffers[cpu]->pages_read);
900 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
901 	/* The reader can read an empty page, but not more than that */
902 	if (cnt < read) {
903 		WARN_ON_ONCE(read > cnt + 1);
904 		return 0;
905 	}
906 
907 	return cnt - read;
908 }
909 
910 /*
911  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
912  *
913  * Schedules a delayed work to wake up any task that is blocked on the
914  * ring buffer waiters queue.
915  */
916 static void rb_wake_up_waiters(struct irq_work *work)
917 {
918 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
919 
920 	wake_up_all(&rbwork->waiters);
921 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
922 		rbwork->wakeup_full = false;
923 		rbwork->full_waiters_pending = false;
924 		wake_up_all(&rbwork->full_waiters);
925 	}
926 }
927 
928 /**
929  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
930  * @buffer: The ring buffer to wake waiters on
931  *
932  * In the case of a file that represents a ring buffer is closing,
933  * it is prudent to wake up any waiters that are on this.
934  */
935 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
936 {
937 	struct ring_buffer_per_cpu *cpu_buffer;
938 	struct rb_irq_work *rbwork;
939 
940 	if (!buffer)
941 		return;
942 
943 	if (cpu == RING_BUFFER_ALL_CPUS) {
944 
945 		/* Wake up individual ones too. One level recursion */
946 		for_each_buffer_cpu(buffer, cpu)
947 			ring_buffer_wake_waiters(buffer, cpu);
948 
949 		rbwork = &buffer->irq_work;
950 	} else {
951 		if (WARN_ON_ONCE(!buffer->buffers))
952 			return;
953 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
954 			return;
955 
956 		cpu_buffer = buffer->buffers[cpu];
957 		/* The CPU buffer may not have been initialized yet */
958 		if (!cpu_buffer)
959 			return;
960 		rbwork = &cpu_buffer->irq_work;
961 	}
962 
963 	rbwork->wait_index++;
964 	/* make sure the waiters see the new index */
965 	smp_wmb();
966 
967 	rb_wake_up_waiters(&rbwork->work);
968 }
969 
970 /**
971  * ring_buffer_wait - wait for input to the ring buffer
972  * @buffer: buffer to wait on
973  * @cpu: the cpu buffer to wait on
974  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
975  *
976  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
977  * as data is added to any of the @buffer's cpu buffers. Otherwise
978  * it will wait for data to be added to a specific cpu buffer.
979  */
980 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
981 {
982 	struct ring_buffer_per_cpu *cpu_buffer;
983 	DEFINE_WAIT(wait);
984 	struct rb_irq_work *work;
985 	long wait_index;
986 	int ret = 0;
987 
988 	/*
989 	 * Depending on what the caller is waiting for, either any
990 	 * data in any cpu buffer, or a specific buffer, put the
991 	 * caller on the appropriate wait queue.
992 	 */
993 	if (cpu == RING_BUFFER_ALL_CPUS) {
994 		work = &buffer->irq_work;
995 		/* Full only makes sense on per cpu reads */
996 		full = 0;
997 	} else {
998 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
999 			return -ENODEV;
1000 		cpu_buffer = buffer->buffers[cpu];
1001 		work = &cpu_buffer->irq_work;
1002 	}
1003 
1004 	wait_index = READ_ONCE(work->wait_index);
1005 
1006 	while (true) {
1007 		if (full)
1008 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1009 		else
1010 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1011 
1012 		/*
1013 		 * The events can happen in critical sections where
1014 		 * checking a work queue can cause deadlocks.
1015 		 * After adding a task to the queue, this flag is set
1016 		 * only to notify events to try to wake up the queue
1017 		 * using irq_work.
1018 		 *
1019 		 * We don't clear it even if the buffer is no longer
1020 		 * empty. The flag only causes the next event to run
1021 		 * irq_work to do the work queue wake up. The worse
1022 		 * that can happen if we race with !trace_empty() is that
1023 		 * an event will cause an irq_work to try to wake up
1024 		 * an empty queue.
1025 		 *
1026 		 * There's no reason to protect this flag either, as
1027 		 * the work queue and irq_work logic will do the necessary
1028 		 * synchronization for the wake ups. The only thing
1029 		 * that is necessary is that the wake up happens after
1030 		 * a task has been queued. It's OK for spurious wake ups.
1031 		 */
1032 		if (full)
1033 			work->full_waiters_pending = true;
1034 		else
1035 			work->waiters_pending = true;
1036 
1037 		if (signal_pending(current)) {
1038 			ret = -EINTR;
1039 			break;
1040 		}
1041 
1042 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1043 			break;
1044 
1045 		if (cpu != RING_BUFFER_ALL_CPUS &&
1046 		    !ring_buffer_empty_cpu(buffer, cpu)) {
1047 			unsigned long flags;
1048 			bool pagebusy;
1049 			size_t nr_pages;
1050 			size_t dirty;
1051 
1052 			if (!full)
1053 				break;
1054 
1055 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1056 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1057 			nr_pages = cpu_buffer->nr_pages;
1058 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
1059 			if (!cpu_buffer->shortest_full ||
1060 			    cpu_buffer->shortest_full > full)
1061 				cpu_buffer->shortest_full = full;
1062 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1063 			if (!pagebusy &&
1064 			    (!nr_pages || (dirty * 100) > full * nr_pages))
1065 				break;
1066 		}
1067 
1068 		schedule();
1069 
1070 		/* Make sure to see the new wait index */
1071 		smp_rmb();
1072 		if (wait_index != work->wait_index)
1073 			break;
1074 	}
1075 
1076 	if (full)
1077 		finish_wait(&work->full_waiters, &wait);
1078 	else
1079 		finish_wait(&work->waiters, &wait);
1080 
1081 	return ret;
1082 }
1083 
1084 /**
1085  * ring_buffer_poll_wait - poll on buffer input
1086  * @buffer: buffer to wait on
1087  * @cpu: the cpu buffer to wait on
1088  * @filp: the file descriptor
1089  * @poll_table: The poll descriptor
1090  *
1091  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1092  * as data is added to any of the @buffer's cpu buffers. Otherwise
1093  * it will wait for data to be added to a specific cpu buffer.
1094  *
1095  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1096  * zero otherwise.
1097  */
1098 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1099 			  struct file *filp, poll_table *poll_table)
1100 {
1101 	struct ring_buffer_per_cpu *cpu_buffer;
1102 	struct rb_irq_work *work;
1103 
1104 	if (cpu == RING_BUFFER_ALL_CPUS)
1105 		work = &buffer->irq_work;
1106 	else {
1107 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1108 			return -EINVAL;
1109 
1110 		cpu_buffer = buffer->buffers[cpu];
1111 		work = &cpu_buffer->irq_work;
1112 	}
1113 
1114 	poll_wait(filp, &work->waiters, poll_table);
1115 	work->waiters_pending = true;
1116 	/*
1117 	 * There's a tight race between setting the waiters_pending and
1118 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1119 	 * is set, the next event will wake the task up, but we can get stuck
1120 	 * if there's only a single event in.
1121 	 *
1122 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1123 	 * but adding a memory barrier to all events will cause too much of a
1124 	 * performance hit in the fast path.  We only need a memory barrier when
1125 	 * the buffer goes from empty to having content.  But as this race is
1126 	 * extremely small, and it's not a problem if another event comes in, we
1127 	 * will fix it later.
1128 	 */
1129 	smp_mb();
1130 
1131 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1132 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1133 		return EPOLLIN | EPOLLRDNORM;
1134 	return 0;
1135 }
1136 
1137 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1138 #define RB_WARN_ON(b, cond)						\
1139 	({								\
1140 		int _____ret = unlikely(cond);				\
1141 		if (_____ret) {						\
1142 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1143 				struct ring_buffer_per_cpu *__b =	\
1144 					(void *)b;			\
1145 				atomic_inc(&__b->buffer->record_disabled); \
1146 			} else						\
1147 				atomic_inc(&b->record_disabled);	\
1148 			WARN_ON(1);					\
1149 		}							\
1150 		_____ret;						\
1151 	})
1152 
1153 /* Up this if you want to test the TIME_EXTENTS and normalization */
1154 #define DEBUG_SHIFT 0
1155 
1156 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1157 {
1158 	u64 ts;
1159 
1160 	/* Skip retpolines :-( */
1161 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1162 		ts = trace_clock_local();
1163 	else
1164 		ts = buffer->clock();
1165 
1166 	/* shift to debug/test normalization and TIME_EXTENTS */
1167 	return ts << DEBUG_SHIFT;
1168 }
1169 
1170 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1171 {
1172 	u64 time;
1173 
1174 	preempt_disable_notrace();
1175 	time = rb_time_stamp(buffer);
1176 	preempt_enable_notrace();
1177 
1178 	return time;
1179 }
1180 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1181 
1182 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1183 				      int cpu, u64 *ts)
1184 {
1185 	/* Just stupid testing the normalize function and deltas */
1186 	*ts >>= DEBUG_SHIFT;
1187 }
1188 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1189 
1190 /*
1191  * Making the ring buffer lockless makes things tricky.
1192  * Although writes only happen on the CPU that they are on,
1193  * and they only need to worry about interrupts. Reads can
1194  * happen on any CPU.
1195  *
1196  * The reader page is always off the ring buffer, but when the
1197  * reader finishes with a page, it needs to swap its page with
1198  * a new one from the buffer. The reader needs to take from
1199  * the head (writes go to the tail). But if a writer is in overwrite
1200  * mode and wraps, it must push the head page forward.
1201  *
1202  * Here lies the problem.
1203  *
1204  * The reader must be careful to replace only the head page, and
1205  * not another one. As described at the top of the file in the
1206  * ASCII art, the reader sets its old page to point to the next
1207  * page after head. It then sets the page after head to point to
1208  * the old reader page. But if the writer moves the head page
1209  * during this operation, the reader could end up with the tail.
1210  *
1211  * We use cmpxchg to help prevent this race. We also do something
1212  * special with the page before head. We set the LSB to 1.
1213  *
1214  * When the writer must push the page forward, it will clear the
1215  * bit that points to the head page, move the head, and then set
1216  * the bit that points to the new head page.
1217  *
1218  * We also don't want an interrupt coming in and moving the head
1219  * page on another writer. Thus we use the second LSB to catch
1220  * that too. Thus:
1221  *
1222  * head->list->prev->next        bit 1          bit 0
1223  *                              -------        -------
1224  * Normal page                     0              0
1225  * Points to head page             0              1
1226  * New head page                   1              0
1227  *
1228  * Note we can not trust the prev pointer of the head page, because:
1229  *
1230  * +----+       +-----+        +-----+
1231  * |    |------>|  T  |---X--->|  N  |
1232  * |    |<------|     |        |     |
1233  * +----+       +-----+        +-----+
1234  *   ^                           ^ |
1235  *   |          +-----+          | |
1236  *   +----------|  R  |----------+ |
1237  *              |     |<-----------+
1238  *              +-----+
1239  *
1240  * Key:  ---X-->  HEAD flag set in pointer
1241  *         T      Tail page
1242  *         R      Reader page
1243  *         N      Next page
1244  *
1245  * (see __rb_reserve_next() to see where this happens)
1246  *
1247  *  What the above shows is that the reader just swapped out
1248  *  the reader page with a page in the buffer, but before it
1249  *  could make the new header point back to the new page added
1250  *  it was preempted by a writer. The writer moved forward onto
1251  *  the new page added by the reader and is about to move forward
1252  *  again.
1253  *
1254  *  You can see, it is legitimate for the previous pointer of
1255  *  the head (or any page) not to point back to itself. But only
1256  *  temporarily.
1257  */
1258 
1259 #define RB_PAGE_NORMAL		0UL
1260 #define RB_PAGE_HEAD		1UL
1261 #define RB_PAGE_UPDATE		2UL
1262 
1263 
1264 #define RB_FLAG_MASK		3UL
1265 
1266 /* PAGE_MOVED is not part of the mask */
1267 #define RB_PAGE_MOVED		4UL
1268 
1269 /*
1270  * rb_list_head - remove any bit
1271  */
1272 static struct list_head *rb_list_head(struct list_head *list)
1273 {
1274 	unsigned long val = (unsigned long)list;
1275 
1276 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1277 }
1278 
1279 /*
1280  * rb_is_head_page - test if the given page is the head page
1281  *
1282  * Because the reader may move the head_page pointer, we can
1283  * not trust what the head page is (it may be pointing to
1284  * the reader page). But if the next page is a header page,
1285  * its flags will be non zero.
1286  */
1287 static inline int
1288 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1289 {
1290 	unsigned long val;
1291 
1292 	val = (unsigned long)list->next;
1293 
1294 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1295 		return RB_PAGE_MOVED;
1296 
1297 	return val & RB_FLAG_MASK;
1298 }
1299 
1300 /*
1301  * rb_is_reader_page
1302  *
1303  * The unique thing about the reader page, is that, if the
1304  * writer is ever on it, the previous pointer never points
1305  * back to the reader page.
1306  */
1307 static bool rb_is_reader_page(struct buffer_page *page)
1308 {
1309 	struct list_head *list = page->list.prev;
1310 
1311 	return rb_list_head(list->next) != &page->list;
1312 }
1313 
1314 /*
1315  * rb_set_list_to_head - set a list_head to be pointing to head.
1316  */
1317 static void rb_set_list_to_head(struct list_head *list)
1318 {
1319 	unsigned long *ptr;
1320 
1321 	ptr = (unsigned long *)&list->next;
1322 	*ptr |= RB_PAGE_HEAD;
1323 	*ptr &= ~RB_PAGE_UPDATE;
1324 }
1325 
1326 /*
1327  * rb_head_page_activate - sets up head page
1328  */
1329 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1330 {
1331 	struct buffer_page *head;
1332 
1333 	head = cpu_buffer->head_page;
1334 	if (!head)
1335 		return;
1336 
1337 	/*
1338 	 * Set the previous list pointer to have the HEAD flag.
1339 	 */
1340 	rb_set_list_to_head(head->list.prev);
1341 }
1342 
1343 static void rb_list_head_clear(struct list_head *list)
1344 {
1345 	unsigned long *ptr = (unsigned long *)&list->next;
1346 
1347 	*ptr &= ~RB_FLAG_MASK;
1348 }
1349 
1350 /*
1351  * rb_head_page_deactivate - clears head page ptr (for free list)
1352  */
1353 static void
1354 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1355 {
1356 	struct list_head *hd;
1357 
1358 	/* Go through the whole list and clear any pointers found. */
1359 	rb_list_head_clear(cpu_buffer->pages);
1360 
1361 	list_for_each(hd, cpu_buffer->pages)
1362 		rb_list_head_clear(hd);
1363 }
1364 
1365 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1366 			    struct buffer_page *head,
1367 			    struct buffer_page *prev,
1368 			    int old_flag, int new_flag)
1369 {
1370 	struct list_head *list;
1371 	unsigned long val = (unsigned long)&head->list;
1372 	unsigned long ret;
1373 
1374 	list = &prev->list;
1375 
1376 	val &= ~RB_FLAG_MASK;
1377 
1378 	ret = cmpxchg((unsigned long *)&list->next,
1379 		      val | old_flag, val | new_flag);
1380 
1381 	/* check if the reader took the page */
1382 	if ((ret & ~RB_FLAG_MASK) != val)
1383 		return RB_PAGE_MOVED;
1384 
1385 	return ret & RB_FLAG_MASK;
1386 }
1387 
1388 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1389 				   struct buffer_page *head,
1390 				   struct buffer_page *prev,
1391 				   int old_flag)
1392 {
1393 	return rb_head_page_set(cpu_buffer, head, prev,
1394 				old_flag, RB_PAGE_UPDATE);
1395 }
1396 
1397 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1398 				 struct buffer_page *head,
1399 				 struct buffer_page *prev,
1400 				 int old_flag)
1401 {
1402 	return rb_head_page_set(cpu_buffer, head, prev,
1403 				old_flag, RB_PAGE_HEAD);
1404 }
1405 
1406 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1407 				   struct buffer_page *head,
1408 				   struct buffer_page *prev,
1409 				   int old_flag)
1410 {
1411 	return rb_head_page_set(cpu_buffer, head, prev,
1412 				old_flag, RB_PAGE_NORMAL);
1413 }
1414 
1415 static inline void rb_inc_page(struct buffer_page **bpage)
1416 {
1417 	struct list_head *p = rb_list_head((*bpage)->list.next);
1418 
1419 	*bpage = list_entry(p, struct buffer_page, list);
1420 }
1421 
1422 static struct buffer_page *
1423 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1424 {
1425 	struct buffer_page *head;
1426 	struct buffer_page *page;
1427 	struct list_head *list;
1428 	int i;
1429 
1430 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1431 		return NULL;
1432 
1433 	/* sanity check */
1434 	list = cpu_buffer->pages;
1435 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1436 		return NULL;
1437 
1438 	page = head = cpu_buffer->head_page;
1439 	/*
1440 	 * It is possible that the writer moves the header behind
1441 	 * where we started, and we miss in one loop.
1442 	 * A second loop should grab the header, but we'll do
1443 	 * three loops just because I'm paranoid.
1444 	 */
1445 	for (i = 0; i < 3; i++) {
1446 		do {
1447 			if (rb_is_head_page(page, page->list.prev)) {
1448 				cpu_buffer->head_page = page;
1449 				return page;
1450 			}
1451 			rb_inc_page(&page);
1452 		} while (page != head);
1453 	}
1454 
1455 	RB_WARN_ON(cpu_buffer, 1);
1456 
1457 	return NULL;
1458 }
1459 
1460 static int rb_head_page_replace(struct buffer_page *old,
1461 				struct buffer_page *new)
1462 {
1463 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1464 	unsigned long val;
1465 	unsigned long ret;
1466 
1467 	val = *ptr & ~RB_FLAG_MASK;
1468 	val |= RB_PAGE_HEAD;
1469 
1470 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1471 
1472 	return ret == val;
1473 }
1474 
1475 /*
1476  * rb_tail_page_update - move the tail page forward
1477  */
1478 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1479 			       struct buffer_page *tail_page,
1480 			       struct buffer_page *next_page)
1481 {
1482 	unsigned long old_entries;
1483 	unsigned long old_write;
1484 
1485 	/*
1486 	 * The tail page now needs to be moved forward.
1487 	 *
1488 	 * We need to reset the tail page, but without messing
1489 	 * with possible erasing of data brought in by interrupts
1490 	 * that have moved the tail page and are currently on it.
1491 	 *
1492 	 * We add a counter to the write field to denote this.
1493 	 */
1494 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1495 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1496 
1497 	local_inc(&cpu_buffer->pages_touched);
1498 	/*
1499 	 * Just make sure we have seen our old_write and synchronize
1500 	 * with any interrupts that come in.
1501 	 */
1502 	barrier();
1503 
1504 	/*
1505 	 * If the tail page is still the same as what we think
1506 	 * it is, then it is up to us to update the tail
1507 	 * pointer.
1508 	 */
1509 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1510 		/* Zero the write counter */
1511 		unsigned long val = old_write & ~RB_WRITE_MASK;
1512 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1513 
1514 		/*
1515 		 * This will only succeed if an interrupt did
1516 		 * not come in and change it. In which case, we
1517 		 * do not want to modify it.
1518 		 *
1519 		 * We add (void) to let the compiler know that we do not care
1520 		 * about the return value of these functions. We use the
1521 		 * cmpxchg to only update if an interrupt did not already
1522 		 * do it for us. If the cmpxchg fails, we don't care.
1523 		 */
1524 		(void)local_cmpxchg(&next_page->write, old_write, val);
1525 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1526 
1527 		/*
1528 		 * No need to worry about races with clearing out the commit.
1529 		 * it only can increment when a commit takes place. But that
1530 		 * only happens in the outer most nested commit.
1531 		 */
1532 		local_set(&next_page->page->commit, 0);
1533 
1534 		/* Again, either we update tail_page or an interrupt does */
1535 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1536 	}
1537 }
1538 
1539 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1540 			  struct buffer_page *bpage)
1541 {
1542 	unsigned long val = (unsigned long)bpage;
1543 
1544 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1545 		return 1;
1546 
1547 	return 0;
1548 }
1549 
1550 /**
1551  * rb_check_list - make sure a pointer to a list has the last bits zero
1552  */
1553 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1554 			 struct list_head *list)
1555 {
1556 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1557 		return 1;
1558 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1559 		return 1;
1560 	return 0;
1561 }
1562 
1563 /**
1564  * rb_check_pages - integrity check of buffer pages
1565  * @cpu_buffer: CPU buffer with pages to test
1566  *
1567  * As a safety measure we check to make sure the data pages have not
1568  * been corrupted.
1569  */
1570 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1571 {
1572 	struct list_head *head = cpu_buffer->pages;
1573 	struct buffer_page *bpage, *tmp;
1574 
1575 	/* Reset the head page if it exists */
1576 	if (cpu_buffer->head_page)
1577 		rb_set_head_page(cpu_buffer);
1578 
1579 	rb_head_page_deactivate(cpu_buffer);
1580 
1581 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1582 		return -1;
1583 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1584 		return -1;
1585 
1586 	if (rb_check_list(cpu_buffer, head))
1587 		return -1;
1588 
1589 	list_for_each_entry_safe(bpage, tmp, head, list) {
1590 		if (RB_WARN_ON(cpu_buffer,
1591 			       bpage->list.next->prev != &bpage->list))
1592 			return -1;
1593 		if (RB_WARN_ON(cpu_buffer,
1594 			       bpage->list.prev->next != &bpage->list))
1595 			return -1;
1596 		if (rb_check_list(cpu_buffer, &bpage->list))
1597 			return -1;
1598 	}
1599 
1600 	rb_head_page_activate(cpu_buffer);
1601 
1602 	return 0;
1603 }
1604 
1605 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1606 		long nr_pages, struct list_head *pages)
1607 {
1608 	struct buffer_page *bpage, *tmp;
1609 	bool user_thread = current->mm != NULL;
1610 	gfp_t mflags;
1611 	long i;
1612 
1613 	/*
1614 	 * Check if the available memory is there first.
1615 	 * Note, si_mem_available() only gives us a rough estimate of available
1616 	 * memory. It may not be accurate. But we don't care, we just want
1617 	 * to prevent doing any allocation when it is obvious that it is
1618 	 * not going to succeed.
1619 	 */
1620 	i = si_mem_available();
1621 	if (i < nr_pages)
1622 		return -ENOMEM;
1623 
1624 	/*
1625 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1626 	 * gracefully without invoking oom-killer and the system is not
1627 	 * destabilized.
1628 	 */
1629 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1630 
1631 	/*
1632 	 * If a user thread allocates too much, and si_mem_available()
1633 	 * reports there's enough memory, even though there is not.
1634 	 * Make sure the OOM killer kills this thread. This can happen
1635 	 * even with RETRY_MAYFAIL because another task may be doing
1636 	 * an allocation after this task has taken all memory.
1637 	 * This is the task the OOM killer needs to take out during this
1638 	 * loop, even if it was triggered by an allocation somewhere else.
1639 	 */
1640 	if (user_thread)
1641 		set_current_oom_origin();
1642 	for (i = 0; i < nr_pages; i++) {
1643 		struct page *page;
1644 
1645 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1646 				    mflags, cpu_to_node(cpu_buffer->cpu));
1647 		if (!bpage)
1648 			goto free_pages;
1649 
1650 		rb_check_bpage(cpu_buffer, bpage);
1651 
1652 		list_add(&bpage->list, pages);
1653 
1654 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1655 		if (!page)
1656 			goto free_pages;
1657 		bpage->page = page_address(page);
1658 		rb_init_page(bpage->page);
1659 
1660 		if (user_thread && fatal_signal_pending(current))
1661 			goto free_pages;
1662 	}
1663 	if (user_thread)
1664 		clear_current_oom_origin();
1665 
1666 	return 0;
1667 
1668 free_pages:
1669 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1670 		list_del_init(&bpage->list);
1671 		free_buffer_page(bpage);
1672 	}
1673 	if (user_thread)
1674 		clear_current_oom_origin();
1675 
1676 	return -ENOMEM;
1677 }
1678 
1679 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1680 			     unsigned long nr_pages)
1681 {
1682 	LIST_HEAD(pages);
1683 
1684 	WARN_ON(!nr_pages);
1685 
1686 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1687 		return -ENOMEM;
1688 
1689 	/*
1690 	 * The ring buffer page list is a circular list that does not
1691 	 * start and end with a list head. All page list items point to
1692 	 * other pages.
1693 	 */
1694 	cpu_buffer->pages = pages.next;
1695 	list_del(&pages);
1696 
1697 	cpu_buffer->nr_pages = nr_pages;
1698 
1699 	rb_check_pages(cpu_buffer);
1700 
1701 	return 0;
1702 }
1703 
1704 static struct ring_buffer_per_cpu *
1705 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1706 {
1707 	struct ring_buffer_per_cpu *cpu_buffer;
1708 	struct buffer_page *bpage;
1709 	struct page *page;
1710 	int ret;
1711 
1712 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1713 				  GFP_KERNEL, cpu_to_node(cpu));
1714 	if (!cpu_buffer)
1715 		return NULL;
1716 
1717 	cpu_buffer->cpu = cpu;
1718 	cpu_buffer->buffer = buffer;
1719 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1720 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1721 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1722 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1723 	init_completion(&cpu_buffer->update_done);
1724 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1725 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1726 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1727 
1728 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1729 			    GFP_KERNEL, cpu_to_node(cpu));
1730 	if (!bpage)
1731 		goto fail_free_buffer;
1732 
1733 	rb_check_bpage(cpu_buffer, bpage);
1734 
1735 	cpu_buffer->reader_page = bpage;
1736 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1737 	if (!page)
1738 		goto fail_free_reader;
1739 	bpage->page = page_address(page);
1740 	rb_init_page(bpage->page);
1741 
1742 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1743 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1744 
1745 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1746 	if (ret < 0)
1747 		goto fail_free_reader;
1748 
1749 	cpu_buffer->head_page
1750 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1751 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1752 
1753 	rb_head_page_activate(cpu_buffer);
1754 
1755 	return cpu_buffer;
1756 
1757  fail_free_reader:
1758 	free_buffer_page(cpu_buffer->reader_page);
1759 
1760  fail_free_buffer:
1761 	kfree(cpu_buffer);
1762 	return NULL;
1763 }
1764 
1765 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1766 {
1767 	struct list_head *head = cpu_buffer->pages;
1768 	struct buffer_page *bpage, *tmp;
1769 
1770 	free_buffer_page(cpu_buffer->reader_page);
1771 
1772 	rb_head_page_deactivate(cpu_buffer);
1773 
1774 	if (head) {
1775 		list_for_each_entry_safe(bpage, tmp, head, list) {
1776 			list_del_init(&bpage->list);
1777 			free_buffer_page(bpage);
1778 		}
1779 		bpage = list_entry(head, struct buffer_page, list);
1780 		free_buffer_page(bpage);
1781 	}
1782 
1783 	kfree(cpu_buffer);
1784 }
1785 
1786 /**
1787  * __ring_buffer_alloc - allocate a new ring_buffer
1788  * @size: the size in bytes per cpu that is needed.
1789  * @flags: attributes to set for the ring buffer.
1790  * @key: ring buffer reader_lock_key.
1791  *
1792  * Currently the only flag that is available is the RB_FL_OVERWRITE
1793  * flag. This flag means that the buffer will overwrite old data
1794  * when the buffer wraps. If this flag is not set, the buffer will
1795  * drop data when the tail hits the head.
1796  */
1797 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1798 					struct lock_class_key *key)
1799 {
1800 	struct trace_buffer *buffer;
1801 	long nr_pages;
1802 	int bsize;
1803 	int cpu;
1804 	int ret;
1805 
1806 	/* keep it in its own cache line */
1807 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1808 			 GFP_KERNEL);
1809 	if (!buffer)
1810 		return NULL;
1811 
1812 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1813 		goto fail_free_buffer;
1814 
1815 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1816 	buffer->flags = flags;
1817 	buffer->clock = trace_clock_local;
1818 	buffer->reader_lock_key = key;
1819 
1820 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1821 	init_waitqueue_head(&buffer->irq_work.waiters);
1822 
1823 	/* need at least two pages */
1824 	if (nr_pages < 2)
1825 		nr_pages = 2;
1826 
1827 	buffer->cpus = nr_cpu_ids;
1828 
1829 	bsize = sizeof(void *) * nr_cpu_ids;
1830 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1831 				  GFP_KERNEL);
1832 	if (!buffer->buffers)
1833 		goto fail_free_cpumask;
1834 
1835 	cpu = raw_smp_processor_id();
1836 	cpumask_set_cpu(cpu, buffer->cpumask);
1837 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1838 	if (!buffer->buffers[cpu])
1839 		goto fail_free_buffers;
1840 
1841 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1842 	if (ret < 0)
1843 		goto fail_free_buffers;
1844 
1845 	mutex_init(&buffer->mutex);
1846 
1847 	return buffer;
1848 
1849  fail_free_buffers:
1850 	for_each_buffer_cpu(buffer, cpu) {
1851 		if (buffer->buffers[cpu])
1852 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1853 	}
1854 	kfree(buffer->buffers);
1855 
1856  fail_free_cpumask:
1857 	free_cpumask_var(buffer->cpumask);
1858 
1859  fail_free_buffer:
1860 	kfree(buffer);
1861 	return NULL;
1862 }
1863 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1864 
1865 /**
1866  * ring_buffer_free - free a ring buffer.
1867  * @buffer: the buffer to free.
1868  */
1869 void
1870 ring_buffer_free(struct trace_buffer *buffer)
1871 {
1872 	int cpu;
1873 
1874 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1875 
1876 	for_each_buffer_cpu(buffer, cpu)
1877 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1878 
1879 	kfree(buffer->buffers);
1880 	free_cpumask_var(buffer->cpumask);
1881 
1882 	kfree(buffer);
1883 }
1884 EXPORT_SYMBOL_GPL(ring_buffer_free);
1885 
1886 void ring_buffer_set_clock(struct trace_buffer *buffer,
1887 			   u64 (*clock)(void))
1888 {
1889 	buffer->clock = clock;
1890 }
1891 
1892 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1893 {
1894 	buffer->time_stamp_abs = abs;
1895 }
1896 
1897 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1898 {
1899 	return buffer->time_stamp_abs;
1900 }
1901 
1902 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1903 
1904 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1905 {
1906 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1907 }
1908 
1909 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1910 {
1911 	return local_read(&bpage->write) & RB_WRITE_MASK;
1912 }
1913 
1914 static int
1915 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1916 {
1917 	struct list_head *tail_page, *to_remove, *next_page;
1918 	struct buffer_page *to_remove_page, *tmp_iter_page;
1919 	struct buffer_page *last_page, *first_page;
1920 	unsigned long nr_removed;
1921 	unsigned long head_bit;
1922 	int page_entries;
1923 
1924 	head_bit = 0;
1925 
1926 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1927 	atomic_inc(&cpu_buffer->record_disabled);
1928 	/*
1929 	 * We don't race with the readers since we have acquired the reader
1930 	 * lock. We also don't race with writers after disabling recording.
1931 	 * This makes it easy to figure out the first and the last page to be
1932 	 * removed from the list. We unlink all the pages in between including
1933 	 * the first and last pages. This is done in a busy loop so that we
1934 	 * lose the least number of traces.
1935 	 * The pages are freed after we restart recording and unlock readers.
1936 	 */
1937 	tail_page = &cpu_buffer->tail_page->list;
1938 
1939 	/*
1940 	 * tail page might be on reader page, we remove the next page
1941 	 * from the ring buffer
1942 	 */
1943 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1944 		tail_page = rb_list_head(tail_page->next);
1945 	to_remove = tail_page;
1946 
1947 	/* start of pages to remove */
1948 	first_page = list_entry(rb_list_head(to_remove->next),
1949 				struct buffer_page, list);
1950 
1951 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1952 		to_remove = rb_list_head(to_remove)->next;
1953 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1954 	}
1955 
1956 	next_page = rb_list_head(to_remove)->next;
1957 
1958 	/*
1959 	 * Now we remove all pages between tail_page and next_page.
1960 	 * Make sure that we have head_bit value preserved for the
1961 	 * next page
1962 	 */
1963 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1964 						head_bit);
1965 	next_page = rb_list_head(next_page);
1966 	next_page->prev = tail_page;
1967 
1968 	/* make sure pages points to a valid page in the ring buffer */
1969 	cpu_buffer->pages = next_page;
1970 
1971 	/* update head page */
1972 	if (head_bit)
1973 		cpu_buffer->head_page = list_entry(next_page,
1974 						struct buffer_page, list);
1975 
1976 	/*
1977 	 * change read pointer to make sure any read iterators reset
1978 	 * themselves
1979 	 */
1980 	cpu_buffer->read = 0;
1981 
1982 	/* pages are removed, resume tracing and then free the pages */
1983 	atomic_dec(&cpu_buffer->record_disabled);
1984 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1985 
1986 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1987 
1988 	/* last buffer page to remove */
1989 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1990 				list);
1991 	tmp_iter_page = first_page;
1992 
1993 	do {
1994 		cond_resched();
1995 
1996 		to_remove_page = tmp_iter_page;
1997 		rb_inc_page(&tmp_iter_page);
1998 
1999 		/* update the counters */
2000 		page_entries = rb_page_entries(to_remove_page);
2001 		if (page_entries) {
2002 			/*
2003 			 * If something was added to this page, it was full
2004 			 * since it is not the tail page. So we deduct the
2005 			 * bytes consumed in ring buffer from here.
2006 			 * Increment overrun to account for the lost events.
2007 			 */
2008 			local_add(page_entries, &cpu_buffer->overrun);
2009 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2010 		}
2011 
2012 		/*
2013 		 * We have already removed references to this list item, just
2014 		 * free up the buffer_page and its page
2015 		 */
2016 		free_buffer_page(to_remove_page);
2017 		nr_removed--;
2018 
2019 	} while (to_remove_page != last_page);
2020 
2021 	RB_WARN_ON(cpu_buffer, nr_removed);
2022 
2023 	return nr_removed == 0;
2024 }
2025 
2026 static int
2027 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2028 {
2029 	struct list_head *pages = &cpu_buffer->new_pages;
2030 	int retries, success;
2031 
2032 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2033 	/*
2034 	 * We are holding the reader lock, so the reader page won't be swapped
2035 	 * in the ring buffer. Now we are racing with the writer trying to
2036 	 * move head page and the tail page.
2037 	 * We are going to adapt the reader page update process where:
2038 	 * 1. We first splice the start and end of list of new pages between
2039 	 *    the head page and its previous page.
2040 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2041 	 *    start of new pages list.
2042 	 * 3. Finally, we update the head->prev to the end of new list.
2043 	 *
2044 	 * We will try this process 10 times, to make sure that we don't keep
2045 	 * spinning.
2046 	 */
2047 	retries = 10;
2048 	success = 0;
2049 	while (retries--) {
2050 		struct list_head *head_page, *prev_page, *r;
2051 		struct list_head *last_page, *first_page;
2052 		struct list_head *head_page_with_bit;
2053 
2054 		head_page = &rb_set_head_page(cpu_buffer)->list;
2055 		if (!head_page)
2056 			break;
2057 		prev_page = head_page->prev;
2058 
2059 		first_page = pages->next;
2060 		last_page  = pages->prev;
2061 
2062 		head_page_with_bit = (struct list_head *)
2063 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2064 
2065 		last_page->next = head_page_with_bit;
2066 		first_page->prev = prev_page;
2067 
2068 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2069 
2070 		if (r == head_page_with_bit) {
2071 			/*
2072 			 * yay, we replaced the page pointer to our new list,
2073 			 * now, we just have to update to head page's prev
2074 			 * pointer to point to end of list
2075 			 */
2076 			head_page->prev = last_page;
2077 			success = 1;
2078 			break;
2079 		}
2080 	}
2081 
2082 	if (success)
2083 		INIT_LIST_HEAD(pages);
2084 	/*
2085 	 * If we weren't successful in adding in new pages, warn and stop
2086 	 * tracing
2087 	 */
2088 	RB_WARN_ON(cpu_buffer, !success);
2089 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2090 
2091 	/* free pages if they weren't inserted */
2092 	if (!success) {
2093 		struct buffer_page *bpage, *tmp;
2094 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2095 					 list) {
2096 			list_del_init(&bpage->list);
2097 			free_buffer_page(bpage);
2098 		}
2099 	}
2100 	return success;
2101 }
2102 
2103 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2104 {
2105 	int success;
2106 
2107 	if (cpu_buffer->nr_pages_to_update > 0)
2108 		success = rb_insert_pages(cpu_buffer);
2109 	else
2110 		success = rb_remove_pages(cpu_buffer,
2111 					-cpu_buffer->nr_pages_to_update);
2112 
2113 	if (success)
2114 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2115 }
2116 
2117 static void update_pages_handler(struct work_struct *work)
2118 {
2119 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2120 			struct ring_buffer_per_cpu, update_pages_work);
2121 	rb_update_pages(cpu_buffer);
2122 	complete(&cpu_buffer->update_done);
2123 }
2124 
2125 /**
2126  * ring_buffer_resize - resize the ring buffer
2127  * @buffer: the buffer to resize.
2128  * @size: the new size.
2129  * @cpu_id: the cpu buffer to resize
2130  *
2131  * Minimum size is 2 * BUF_PAGE_SIZE.
2132  *
2133  * Returns 0 on success and < 0 on failure.
2134  */
2135 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2136 			int cpu_id)
2137 {
2138 	struct ring_buffer_per_cpu *cpu_buffer;
2139 	unsigned long nr_pages;
2140 	int cpu, err;
2141 
2142 	/*
2143 	 * Always succeed at resizing a non-existent buffer:
2144 	 */
2145 	if (!buffer)
2146 		return 0;
2147 
2148 	/* Make sure the requested buffer exists */
2149 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2150 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2151 		return 0;
2152 
2153 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2154 
2155 	/* we need a minimum of two pages */
2156 	if (nr_pages < 2)
2157 		nr_pages = 2;
2158 
2159 	/* prevent another thread from changing buffer sizes */
2160 	mutex_lock(&buffer->mutex);
2161 
2162 
2163 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2164 		/*
2165 		 * Don't succeed if resizing is disabled, as a reader might be
2166 		 * manipulating the ring buffer and is expecting a sane state while
2167 		 * this is true.
2168 		 */
2169 		for_each_buffer_cpu(buffer, cpu) {
2170 			cpu_buffer = buffer->buffers[cpu];
2171 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2172 				err = -EBUSY;
2173 				goto out_err_unlock;
2174 			}
2175 		}
2176 
2177 		/* calculate the pages to update */
2178 		for_each_buffer_cpu(buffer, cpu) {
2179 			cpu_buffer = buffer->buffers[cpu];
2180 
2181 			cpu_buffer->nr_pages_to_update = nr_pages -
2182 							cpu_buffer->nr_pages;
2183 			/*
2184 			 * nothing more to do for removing pages or no update
2185 			 */
2186 			if (cpu_buffer->nr_pages_to_update <= 0)
2187 				continue;
2188 			/*
2189 			 * to add pages, make sure all new pages can be
2190 			 * allocated without receiving ENOMEM
2191 			 */
2192 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2193 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2194 						&cpu_buffer->new_pages)) {
2195 				/* not enough memory for new pages */
2196 				err = -ENOMEM;
2197 				goto out_err;
2198 			}
2199 		}
2200 
2201 		cpus_read_lock();
2202 		/*
2203 		 * Fire off all the required work handlers
2204 		 * We can't schedule on offline CPUs, but it's not necessary
2205 		 * since we can change their buffer sizes without any race.
2206 		 */
2207 		for_each_buffer_cpu(buffer, cpu) {
2208 			cpu_buffer = buffer->buffers[cpu];
2209 			if (!cpu_buffer->nr_pages_to_update)
2210 				continue;
2211 
2212 			/* Can't run something on an offline CPU. */
2213 			if (!cpu_online(cpu)) {
2214 				rb_update_pages(cpu_buffer);
2215 				cpu_buffer->nr_pages_to_update = 0;
2216 			} else {
2217 				schedule_work_on(cpu,
2218 						&cpu_buffer->update_pages_work);
2219 			}
2220 		}
2221 
2222 		/* wait for all the updates to complete */
2223 		for_each_buffer_cpu(buffer, cpu) {
2224 			cpu_buffer = buffer->buffers[cpu];
2225 			if (!cpu_buffer->nr_pages_to_update)
2226 				continue;
2227 
2228 			if (cpu_online(cpu))
2229 				wait_for_completion(&cpu_buffer->update_done);
2230 			cpu_buffer->nr_pages_to_update = 0;
2231 		}
2232 
2233 		cpus_read_unlock();
2234 	} else {
2235 		cpu_buffer = buffer->buffers[cpu_id];
2236 
2237 		if (nr_pages == cpu_buffer->nr_pages)
2238 			goto out;
2239 
2240 		/*
2241 		 * Don't succeed if resizing is disabled, as a reader might be
2242 		 * manipulating the ring buffer and is expecting a sane state while
2243 		 * this is true.
2244 		 */
2245 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2246 			err = -EBUSY;
2247 			goto out_err_unlock;
2248 		}
2249 
2250 		cpu_buffer->nr_pages_to_update = nr_pages -
2251 						cpu_buffer->nr_pages;
2252 
2253 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2254 		if (cpu_buffer->nr_pages_to_update > 0 &&
2255 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2256 					    &cpu_buffer->new_pages)) {
2257 			err = -ENOMEM;
2258 			goto out_err;
2259 		}
2260 
2261 		cpus_read_lock();
2262 
2263 		/* Can't run something on an offline CPU. */
2264 		if (!cpu_online(cpu_id))
2265 			rb_update_pages(cpu_buffer);
2266 		else {
2267 			schedule_work_on(cpu_id,
2268 					 &cpu_buffer->update_pages_work);
2269 			wait_for_completion(&cpu_buffer->update_done);
2270 		}
2271 
2272 		cpu_buffer->nr_pages_to_update = 0;
2273 		cpus_read_unlock();
2274 	}
2275 
2276  out:
2277 	/*
2278 	 * The ring buffer resize can happen with the ring buffer
2279 	 * enabled, so that the update disturbs the tracing as little
2280 	 * as possible. But if the buffer is disabled, we do not need
2281 	 * to worry about that, and we can take the time to verify
2282 	 * that the buffer is not corrupt.
2283 	 */
2284 	if (atomic_read(&buffer->record_disabled)) {
2285 		atomic_inc(&buffer->record_disabled);
2286 		/*
2287 		 * Even though the buffer was disabled, we must make sure
2288 		 * that it is truly disabled before calling rb_check_pages.
2289 		 * There could have been a race between checking
2290 		 * record_disable and incrementing it.
2291 		 */
2292 		synchronize_rcu();
2293 		for_each_buffer_cpu(buffer, cpu) {
2294 			cpu_buffer = buffer->buffers[cpu];
2295 			rb_check_pages(cpu_buffer);
2296 		}
2297 		atomic_dec(&buffer->record_disabled);
2298 	}
2299 
2300 	mutex_unlock(&buffer->mutex);
2301 	return 0;
2302 
2303  out_err:
2304 	for_each_buffer_cpu(buffer, cpu) {
2305 		struct buffer_page *bpage, *tmp;
2306 
2307 		cpu_buffer = buffer->buffers[cpu];
2308 		cpu_buffer->nr_pages_to_update = 0;
2309 
2310 		if (list_empty(&cpu_buffer->new_pages))
2311 			continue;
2312 
2313 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2314 					list) {
2315 			list_del_init(&bpage->list);
2316 			free_buffer_page(bpage);
2317 		}
2318 	}
2319  out_err_unlock:
2320 	mutex_unlock(&buffer->mutex);
2321 	return err;
2322 }
2323 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2324 
2325 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2326 {
2327 	mutex_lock(&buffer->mutex);
2328 	if (val)
2329 		buffer->flags |= RB_FL_OVERWRITE;
2330 	else
2331 		buffer->flags &= ~RB_FL_OVERWRITE;
2332 	mutex_unlock(&buffer->mutex);
2333 }
2334 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2335 
2336 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2337 {
2338 	return bpage->page->data + index;
2339 }
2340 
2341 static __always_inline struct ring_buffer_event *
2342 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2343 {
2344 	return __rb_page_index(cpu_buffer->reader_page,
2345 			       cpu_buffer->reader_page->read);
2346 }
2347 
2348 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2349 {
2350 	return local_read(&bpage->page->commit);
2351 }
2352 
2353 static struct ring_buffer_event *
2354 rb_iter_head_event(struct ring_buffer_iter *iter)
2355 {
2356 	struct ring_buffer_event *event;
2357 	struct buffer_page *iter_head_page = iter->head_page;
2358 	unsigned long commit;
2359 	unsigned length;
2360 
2361 	if (iter->head != iter->next_event)
2362 		return iter->event;
2363 
2364 	/*
2365 	 * When the writer goes across pages, it issues a cmpxchg which
2366 	 * is a mb(), which will synchronize with the rmb here.
2367 	 * (see rb_tail_page_update() and __rb_reserve_next())
2368 	 */
2369 	commit = rb_page_commit(iter_head_page);
2370 	smp_rmb();
2371 	event = __rb_page_index(iter_head_page, iter->head);
2372 	length = rb_event_length(event);
2373 
2374 	/*
2375 	 * READ_ONCE() doesn't work on functions and we don't want the
2376 	 * compiler doing any crazy optimizations with length.
2377 	 */
2378 	barrier();
2379 
2380 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2381 		/* Writer corrupted the read? */
2382 		goto reset;
2383 
2384 	memcpy(iter->event, event, length);
2385 	/*
2386 	 * If the page stamp is still the same after this rmb() then the
2387 	 * event was safely copied without the writer entering the page.
2388 	 */
2389 	smp_rmb();
2390 
2391 	/* Make sure the page didn't change since we read this */
2392 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2393 	    commit > rb_page_commit(iter_head_page))
2394 		goto reset;
2395 
2396 	iter->next_event = iter->head + length;
2397 	return iter->event;
2398  reset:
2399 	/* Reset to the beginning */
2400 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2401 	iter->head = 0;
2402 	iter->next_event = 0;
2403 	iter->missed_events = 1;
2404 	return NULL;
2405 }
2406 
2407 /* Size is determined by what has been committed */
2408 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2409 {
2410 	return rb_page_commit(bpage);
2411 }
2412 
2413 static __always_inline unsigned
2414 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2415 {
2416 	return rb_page_commit(cpu_buffer->commit_page);
2417 }
2418 
2419 static __always_inline unsigned
2420 rb_event_index(struct ring_buffer_event *event)
2421 {
2422 	unsigned long addr = (unsigned long)event;
2423 
2424 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2425 }
2426 
2427 static void rb_inc_iter(struct ring_buffer_iter *iter)
2428 {
2429 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2430 
2431 	/*
2432 	 * The iterator could be on the reader page (it starts there).
2433 	 * But the head could have moved, since the reader was
2434 	 * found. Check for this case and assign the iterator
2435 	 * to the head page instead of next.
2436 	 */
2437 	if (iter->head_page == cpu_buffer->reader_page)
2438 		iter->head_page = rb_set_head_page(cpu_buffer);
2439 	else
2440 		rb_inc_page(&iter->head_page);
2441 
2442 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2443 	iter->head = 0;
2444 	iter->next_event = 0;
2445 }
2446 
2447 /*
2448  * rb_handle_head_page - writer hit the head page
2449  *
2450  * Returns: +1 to retry page
2451  *           0 to continue
2452  *          -1 on error
2453  */
2454 static int
2455 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2456 		    struct buffer_page *tail_page,
2457 		    struct buffer_page *next_page)
2458 {
2459 	struct buffer_page *new_head;
2460 	int entries;
2461 	int type;
2462 	int ret;
2463 
2464 	entries = rb_page_entries(next_page);
2465 
2466 	/*
2467 	 * The hard part is here. We need to move the head
2468 	 * forward, and protect against both readers on
2469 	 * other CPUs and writers coming in via interrupts.
2470 	 */
2471 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2472 				       RB_PAGE_HEAD);
2473 
2474 	/*
2475 	 * type can be one of four:
2476 	 *  NORMAL - an interrupt already moved it for us
2477 	 *  HEAD   - we are the first to get here.
2478 	 *  UPDATE - we are the interrupt interrupting
2479 	 *           a current move.
2480 	 *  MOVED  - a reader on another CPU moved the next
2481 	 *           pointer to its reader page. Give up
2482 	 *           and try again.
2483 	 */
2484 
2485 	switch (type) {
2486 	case RB_PAGE_HEAD:
2487 		/*
2488 		 * We changed the head to UPDATE, thus
2489 		 * it is our responsibility to update
2490 		 * the counters.
2491 		 */
2492 		local_add(entries, &cpu_buffer->overrun);
2493 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2494 
2495 		/*
2496 		 * The entries will be zeroed out when we move the
2497 		 * tail page.
2498 		 */
2499 
2500 		/* still more to do */
2501 		break;
2502 
2503 	case RB_PAGE_UPDATE:
2504 		/*
2505 		 * This is an interrupt that interrupt the
2506 		 * previous update. Still more to do.
2507 		 */
2508 		break;
2509 	case RB_PAGE_NORMAL:
2510 		/*
2511 		 * An interrupt came in before the update
2512 		 * and processed this for us.
2513 		 * Nothing left to do.
2514 		 */
2515 		return 1;
2516 	case RB_PAGE_MOVED:
2517 		/*
2518 		 * The reader is on another CPU and just did
2519 		 * a swap with our next_page.
2520 		 * Try again.
2521 		 */
2522 		return 1;
2523 	default:
2524 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2525 		return -1;
2526 	}
2527 
2528 	/*
2529 	 * Now that we are here, the old head pointer is
2530 	 * set to UPDATE. This will keep the reader from
2531 	 * swapping the head page with the reader page.
2532 	 * The reader (on another CPU) will spin till
2533 	 * we are finished.
2534 	 *
2535 	 * We just need to protect against interrupts
2536 	 * doing the job. We will set the next pointer
2537 	 * to HEAD. After that, we set the old pointer
2538 	 * to NORMAL, but only if it was HEAD before.
2539 	 * otherwise we are an interrupt, and only
2540 	 * want the outer most commit to reset it.
2541 	 */
2542 	new_head = next_page;
2543 	rb_inc_page(&new_head);
2544 
2545 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2546 				    RB_PAGE_NORMAL);
2547 
2548 	/*
2549 	 * Valid returns are:
2550 	 *  HEAD   - an interrupt came in and already set it.
2551 	 *  NORMAL - One of two things:
2552 	 *            1) We really set it.
2553 	 *            2) A bunch of interrupts came in and moved
2554 	 *               the page forward again.
2555 	 */
2556 	switch (ret) {
2557 	case RB_PAGE_HEAD:
2558 	case RB_PAGE_NORMAL:
2559 		/* OK */
2560 		break;
2561 	default:
2562 		RB_WARN_ON(cpu_buffer, 1);
2563 		return -1;
2564 	}
2565 
2566 	/*
2567 	 * It is possible that an interrupt came in,
2568 	 * set the head up, then more interrupts came in
2569 	 * and moved it again. When we get back here,
2570 	 * the page would have been set to NORMAL but we
2571 	 * just set it back to HEAD.
2572 	 *
2573 	 * How do you detect this? Well, if that happened
2574 	 * the tail page would have moved.
2575 	 */
2576 	if (ret == RB_PAGE_NORMAL) {
2577 		struct buffer_page *buffer_tail_page;
2578 
2579 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2580 		/*
2581 		 * If the tail had moved passed next, then we need
2582 		 * to reset the pointer.
2583 		 */
2584 		if (buffer_tail_page != tail_page &&
2585 		    buffer_tail_page != next_page)
2586 			rb_head_page_set_normal(cpu_buffer, new_head,
2587 						next_page,
2588 						RB_PAGE_HEAD);
2589 	}
2590 
2591 	/*
2592 	 * If this was the outer most commit (the one that
2593 	 * changed the original pointer from HEAD to UPDATE),
2594 	 * then it is up to us to reset it to NORMAL.
2595 	 */
2596 	if (type == RB_PAGE_HEAD) {
2597 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2598 					      tail_page,
2599 					      RB_PAGE_UPDATE);
2600 		if (RB_WARN_ON(cpu_buffer,
2601 			       ret != RB_PAGE_UPDATE))
2602 			return -1;
2603 	}
2604 
2605 	return 0;
2606 }
2607 
2608 static inline void
2609 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2610 	      unsigned long tail, struct rb_event_info *info)
2611 {
2612 	struct buffer_page *tail_page = info->tail_page;
2613 	struct ring_buffer_event *event;
2614 	unsigned long length = info->length;
2615 
2616 	/*
2617 	 * Only the event that crossed the page boundary
2618 	 * must fill the old tail_page with padding.
2619 	 */
2620 	if (tail >= BUF_PAGE_SIZE) {
2621 		/*
2622 		 * If the page was filled, then we still need
2623 		 * to update the real_end. Reset it to zero
2624 		 * and the reader will ignore it.
2625 		 */
2626 		if (tail == BUF_PAGE_SIZE)
2627 			tail_page->real_end = 0;
2628 
2629 		local_sub(length, &tail_page->write);
2630 		return;
2631 	}
2632 
2633 	event = __rb_page_index(tail_page, tail);
2634 
2635 	/* account for padding bytes */
2636 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2637 
2638 	/*
2639 	 * Save the original length to the meta data.
2640 	 * This will be used by the reader to add lost event
2641 	 * counter.
2642 	 */
2643 	tail_page->real_end = tail;
2644 
2645 	/*
2646 	 * If this event is bigger than the minimum size, then
2647 	 * we need to be careful that we don't subtract the
2648 	 * write counter enough to allow another writer to slip
2649 	 * in on this page.
2650 	 * We put in a discarded commit instead, to make sure
2651 	 * that this space is not used again.
2652 	 *
2653 	 * If we are less than the minimum size, we don't need to
2654 	 * worry about it.
2655 	 */
2656 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2657 		/* No room for any events */
2658 
2659 		/* Mark the rest of the page with padding */
2660 		rb_event_set_padding(event);
2661 
2662 		/* Make sure the padding is visible before the write update */
2663 		smp_wmb();
2664 
2665 		/* Set the write back to the previous setting */
2666 		local_sub(length, &tail_page->write);
2667 		return;
2668 	}
2669 
2670 	/* Put in a discarded event */
2671 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2672 	event->type_len = RINGBUF_TYPE_PADDING;
2673 	/* time delta must be non zero */
2674 	event->time_delta = 1;
2675 
2676 	/* Make sure the padding is visible before the tail_page->write update */
2677 	smp_wmb();
2678 
2679 	/* Set write to end of buffer */
2680 	length = (tail + length) - BUF_PAGE_SIZE;
2681 	local_sub(length, &tail_page->write);
2682 }
2683 
2684 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2685 
2686 /*
2687  * This is the slow path, force gcc not to inline it.
2688  */
2689 static noinline struct ring_buffer_event *
2690 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2691 	     unsigned long tail, struct rb_event_info *info)
2692 {
2693 	struct buffer_page *tail_page = info->tail_page;
2694 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2695 	struct trace_buffer *buffer = cpu_buffer->buffer;
2696 	struct buffer_page *next_page;
2697 	int ret;
2698 
2699 	next_page = tail_page;
2700 
2701 	rb_inc_page(&next_page);
2702 
2703 	/*
2704 	 * If for some reason, we had an interrupt storm that made
2705 	 * it all the way around the buffer, bail, and warn
2706 	 * about it.
2707 	 */
2708 	if (unlikely(next_page == commit_page)) {
2709 		local_inc(&cpu_buffer->commit_overrun);
2710 		goto out_reset;
2711 	}
2712 
2713 	/*
2714 	 * This is where the fun begins!
2715 	 *
2716 	 * We are fighting against races between a reader that
2717 	 * could be on another CPU trying to swap its reader
2718 	 * page with the buffer head.
2719 	 *
2720 	 * We are also fighting against interrupts coming in and
2721 	 * moving the head or tail on us as well.
2722 	 *
2723 	 * If the next page is the head page then we have filled
2724 	 * the buffer, unless the commit page is still on the
2725 	 * reader page.
2726 	 */
2727 	if (rb_is_head_page(next_page, &tail_page->list)) {
2728 
2729 		/*
2730 		 * If the commit is not on the reader page, then
2731 		 * move the header page.
2732 		 */
2733 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2734 			/*
2735 			 * If we are not in overwrite mode,
2736 			 * this is easy, just stop here.
2737 			 */
2738 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2739 				local_inc(&cpu_buffer->dropped_events);
2740 				goto out_reset;
2741 			}
2742 
2743 			ret = rb_handle_head_page(cpu_buffer,
2744 						  tail_page,
2745 						  next_page);
2746 			if (ret < 0)
2747 				goto out_reset;
2748 			if (ret)
2749 				goto out_again;
2750 		} else {
2751 			/*
2752 			 * We need to be careful here too. The
2753 			 * commit page could still be on the reader
2754 			 * page. We could have a small buffer, and
2755 			 * have filled up the buffer with events
2756 			 * from interrupts and such, and wrapped.
2757 			 *
2758 			 * Note, if the tail page is also on the
2759 			 * reader_page, we let it move out.
2760 			 */
2761 			if (unlikely((cpu_buffer->commit_page !=
2762 				      cpu_buffer->tail_page) &&
2763 				     (cpu_buffer->commit_page ==
2764 				      cpu_buffer->reader_page))) {
2765 				local_inc(&cpu_buffer->commit_overrun);
2766 				goto out_reset;
2767 			}
2768 		}
2769 	}
2770 
2771 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2772 
2773  out_again:
2774 
2775 	rb_reset_tail(cpu_buffer, tail, info);
2776 
2777 	/* Commit what we have for now. */
2778 	rb_end_commit(cpu_buffer);
2779 	/* rb_end_commit() decs committing */
2780 	local_inc(&cpu_buffer->committing);
2781 
2782 	/* fail and let the caller try again */
2783 	return ERR_PTR(-EAGAIN);
2784 
2785  out_reset:
2786 	/* reset write */
2787 	rb_reset_tail(cpu_buffer, tail, info);
2788 
2789 	return NULL;
2790 }
2791 
2792 /* Slow path */
2793 static struct ring_buffer_event *
2794 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2795 {
2796 	if (abs)
2797 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2798 	else
2799 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2800 
2801 	/* Not the first event on the page, or not delta? */
2802 	if (abs || rb_event_index(event)) {
2803 		event->time_delta = delta & TS_MASK;
2804 		event->array[0] = delta >> TS_SHIFT;
2805 	} else {
2806 		/* nope, just zero it */
2807 		event->time_delta = 0;
2808 		event->array[0] = 0;
2809 	}
2810 
2811 	return skip_time_extend(event);
2812 }
2813 
2814 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2815 static inline bool sched_clock_stable(void)
2816 {
2817 	return true;
2818 }
2819 #endif
2820 
2821 static void
2822 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2823 		   struct rb_event_info *info)
2824 {
2825 	u64 write_stamp;
2826 
2827 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2828 		  (unsigned long long)info->delta,
2829 		  (unsigned long long)info->ts,
2830 		  (unsigned long long)info->before,
2831 		  (unsigned long long)info->after,
2832 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2833 		  sched_clock_stable() ? "" :
2834 		  "If you just came from a suspend/resume,\n"
2835 		  "please switch to the trace global clock:\n"
2836 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2837 		  "or add trace_clock=global to the kernel command line\n");
2838 }
2839 
2840 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2841 				      struct ring_buffer_event **event,
2842 				      struct rb_event_info *info,
2843 				      u64 *delta,
2844 				      unsigned int *length)
2845 {
2846 	bool abs = info->add_timestamp &
2847 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2848 
2849 	if (unlikely(info->delta > (1ULL << 59))) {
2850 		/*
2851 		 * Some timers can use more than 59 bits, and when a timestamp
2852 		 * is added to the buffer, it will lose those bits.
2853 		 */
2854 		if (abs && (info->ts & TS_MSB)) {
2855 			info->delta &= ABS_TS_MASK;
2856 
2857 		/* did the clock go backwards */
2858 		} else if (info->before == info->after && info->before > info->ts) {
2859 			/* not interrupted */
2860 			static int once;
2861 
2862 			/*
2863 			 * This is possible with a recalibrating of the TSC.
2864 			 * Do not produce a call stack, but just report it.
2865 			 */
2866 			if (!once) {
2867 				once++;
2868 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2869 					info->before, info->ts);
2870 			}
2871 		} else
2872 			rb_check_timestamp(cpu_buffer, info);
2873 		if (!abs)
2874 			info->delta = 0;
2875 	}
2876 	*event = rb_add_time_stamp(*event, info->delta, abs);
2877 	*length -= RB_LEN_TIME_EXTEND;
2878 	*delta = 0;
2879 }
2880 
2881 /**
2882  * rb_update_event - update event type and data
2883  * @cpu_buffer: The per cpu buffer of the @event
2884  * @event: the event to update
2885  * @info: The info to update the @event with (contains length and delta)
2886  *
2887  * Update the type and data fields of the @event. The length
2888  * is the actual size that is written to the ring buffer,
2889  * and with this, we can determine what to place into the
2890  * data field.
2891  */
2892 static void
2893 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2894 		struct ring_buffer_event *event,
2895 		struct rb_event_info *info)
2896 {
2897 	unsigned length = info->length;
2898 	u64 delta = info->delta;
2899 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2900 
2901 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2902 		cpu_buffer->event_stamp[nest] = info->ts;
2903 
2904 	/*
2905 	 * If we need to add a timestamp, then we
2906 	 * add it to the start of the reserved space.
2907 	 */
2908 	if (unlikely(info->add_timestamp))
2909 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2910 
2911 	event->time_delta = delta;
2912 	length -= RB_EVNT_HDR_SIZE;
2913 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2914 		event->type_len = 0;
2915 		event->array[0] = length;
2916 	} else
2917 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2918 }
2919 
2920 static unsigned rb_calculate_event_length(unsigned length)
2921 {
2922 	struct ring_buffer_event event; /* Used only for sizeof array */
2923 
2924 	/* zero length can cause confusions */
2925 	if (!length)
2926 		length++;
2927 
2928 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2929 		length += sizeof(event.array[0]);
2930 
2931 	length += RB_EVNT_HDR_SIZE;
2932 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2933 
2934 	/*
2935 	 * In case the time delta is larger than the 27 bits for it
2936 	 * in the header, we need to add a timestamp. If another
2937 	 * event comes in when trying to discard this one to increase
2938 	 * the length, then the timestamp will be added in the allocated
2939 	 * space of this event. If length is bigger than the size needed
2940 	 * for the TIME_EXTEND, then padding has to be used. The events
2941 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2942 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2943 	 * As length is a multiple of 4, we only need to worry if it
2944 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2945 	 */
2946 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2947 		length += RB_ALIGNMENT;
2948 
2949 	return length;
2950 }
2951 
2952 static u64 rb_time_delta(struct ring_buffer_event *event)
2953 {
2954 	switch (event->type_len) {
2955 	case RINGBUF_TYPE_PADDING:
2956 		return 0;
2957 
2958 	case RINGBUF_TYPE_TIME_EXTEND:
2959 		return rb_event_time_stamp(event);
2960 
2961 	case RINGBUF_TYPE_TIME_STAMP:
2962 		return 0;
2963 
2964 	case RINGBUF_TYPE_DATA:
2965 		return event->time_delta;
2966 	default:
2967 		return 0;
2968 	}
2969 }
2970 
2971 static inline int
2972 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2973 		  struct ring_buffer_event *event)
2974 {
2975 	unsigned long new_index, old_index;
2976 	struct buffer_page *bpage;
2977 	unsigned long index;
2978 	unsigned long addr;
2979 	u64 write_stamp;
2980 	u64 delta;
2981 
2982 	new_index = rb_event_index(event);
2983 	old_index = new_index + rb_event_ts_length(event);
2984 	addr = (unsigned long)event;
2985 	addr &= PAGE_MASK;
2986 
2987 	bpage = READ_ONCE(cpu_buffer->tail_page);
2988 
2989 	delta = rb_time_delta(event);
2990 
2991 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2992 		return 0;
2993 
2994 	/* Make sure the write stamp is read before testing the location */
2995 	barrier();
2996 
2997 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2998 		unsigned long write_mask =
2999 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3000 		unsigned long event_length = rb_event_length(event);
3001 
3002 		/* Something came in, can't discard */
3003 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3004 				       write_stamp, write_stamp - delta))
3005 			return 0;
3006 
3007 		/*
3008 		 * It's possible that the event time delta is zero
3009 		 * (has the same time stamp as the previous event)
3010 		 * in which case write_stamp and before_stamp could
3011 		 * be the same. In such a case, force before_stamp
3012 		 * to be different than write_stamp. It doesn't
3013 		 * matter what it is, as long as its different.
3014 		 */
3015 		if (!delta)
3016 			rb_time_set(&cpu_buffer->before_stamp, 0);
3017 
3018 		/*
3019 		 * If an event were to come in now, it would see that the
3020 		 * write_stamp and the before_stamp are different, and assume
3021 		 * that this event just added itself before updating
3022 		 * the write stamp. The interrupting event will fix the
3023 		 * write stamp for us, and use the before stamp as its delta.
3024 		 */
3025 
3026 		/*
3027 		 * This is on the tail page. It is possible that
3028 		 * a write could come in and move the tail page
3029 		 * and write to the next page. That is fine
3030 		 * because we just shorten what is on this page.
3031 		 */
3032 		old_index += write_mask;
3033 		new_index += write_mask;
3034 		index = local_cmpxchg(&bpage->write, old_index, new_index);
3035 		if (index == old_index) {
3036 			/* update counters */
3037 			local_sub(event_length, &cpu_buffer->entries_bytes);
3038 			return 1;
3039 		}
3040 	}
3041 
3042 	/* could not discard */
3043 	return 0;
3044 }
3045 
3046 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3047 {
3048 	local_inc(&cpu_buffer->committing);
3049 	local_inc(&cpu_buffer->commits);
3050 }
3051 
3052 static __always_inline void
3053 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3054 {
3055 	unsigned long max_count;
3056 
3057 	/*
3058 	 * We only race with interrupts and NMIs on this CPU.
3059 	 * If we own the commit event, then we can commit
3060 	 * all others that interrupted us, since the interruptions
3061 	 * are in stack format (they finish before they come
3062 	 * back to us). This allows us to do a simple loop to
3063 	 * assign the commit to the tail.
3064 	 */
3065  again:
3066 	max_count = cpu_buffer->nr_pages * 100;
3067 
3068 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3069 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3070 			return;
3071 		if (RB_WARN_ON(cpu_buffer,
3072 			       rb_is_reader_page(cpu_buffer->tail_page)))
3073 			return;
3074 		local_set(&cpu_buffer->commit_page->page->commit,
3075 			  rb_page_write(cpu_buffer->commit_page));
3076 		rb_inc_page(&cpu_buffer->commit_page);
3077 		/* add barrier to keep gcc from optimizing too much */
3078 		barrier();
3079 	}
3080 	while (rb_commit_index(cpu_buffer) !=
3081 	       rb_page_write(cpu_buffer->commit_page)) {
3082 
3083 		local_set(&cpu_buffer->commit_page->page->commit,
3084 			  rb_page_write(cpu_buffer->commit_page));
3085 		RB_WARN_ON(cpu_buffer,
3086 			   local_read(&cpu_buffer->commit_page->page->commit) &
3087 			   ~RB_WRITE_MASK);
3088 		barrier();
3089 	}
3090 
3091 	/* again, keep gcc from optimizing */
3092 	barrier();
3093 
3094 	/*
3095 	 * If an interrupt came in just after the first while loop
3096 	 * and pushed the tail page forward, we will be left with
3097 	 * a dangling commit that will never go forward.
3098 	 */
3099 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3100 		goto again;
3101 }
3102 
3103 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3104 {
3105 	unsigned long commits;
3106 
3107 	if (RB_WARN_ON(cpu_buffer,
3108 		       !local_read(&cpu_buffer->committing)))
3109 		return;
3110 
3111  again:
3112 	commits = local_read(&cpu_buffer->commits);
3113 	/* synchronize with interrupts */
3114 	barrier();
3115 	if (local_read(&cpu_buffer->committing) == 1)
3116 		rb_set_commit_to_write(cpu_buffer);
3117 
3118 	local_dec(&cpu_buffer->committing);
3119 
3120 	/* synchronize with interrupts */
3121 	barrier();
3122 
3123 	/*
3124 	 * Need to account for interrupts coming in between the
3125 	 * updating of the commit page and the clearing of the
3126 	 * committing counter.
3127 	 */
3128 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3129 	    !local_read(&cpu_buffer->committing)) {
3130 		local_inc(&cpu_buffer->committing);
3131 		goto again;
3132 	}
3133 }
3134 
3135 static inline void rb_event_discard(struct ring_buffer_event *event)
3136 {
3137 	if (extended_time(event))
3138 		event = skip_time_extend(event);
3139 
3140 	/* array[0] holds the actual length for the discarded event */
3141 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3142 	event->type_len = RINGBUF_TYPE_PADDING;
3143 	/* time delta must be non zero */
3144 	if (!event->time_delta)
3145 		event->time_delta = 1;
3146 }
3147 
3148 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3149 		      struct ring_buffer_event *event)
3150 {
3151 	local_inc(&cpu_buffer->entries);
3152 	rb_end_commit(cpu_buffer);
3153 }
3154 
3155 static __always_inline void
3156 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3157 {
3158 	size_t nr_pages;
3159 	size_t dirty;
3160 	size_t full;
3161 
3162 	if (buffer->irq_work.waiters_pending) {
3163 		buffer->irq_work.waiters_pending = false;
3164 		/* irq_work_queue() supplies it's own memory barriers */
3165 		irq_work_queue(&buffer->irq_work.work);
3166 	}
3167 
3168 	if (cpu_buffer->irq_work.waiters_pending) {
3169 		cpu_buffer->irq_work.waiters_pending = false;
3170 		/* irq_work_queue() supplies it's own memory barriers */
3171 		irq_work_queue(&cpu_buffer->irq_work.work);
3172 	}
3173 
3174 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3175 		return;
3176 
3177 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3178 		return;
3179 
3180 	if (!cpu_buffer->irq_work.full_waiters_pending)
3181 		return;
3182 
3183 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3184 
3185 	full = cpu_buffer->shortest_full;
3186 	nr_pages = cpu_buffer->nr_pages;
3187 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3188 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3189 		return;
3190 
3191 	cpu_buffer->irq_work.wakeup_full = true;
3192 	cpu_buffer->irq_work.full_waiters_pending = false;
3193 	/* irq_work_queue() supplies it's own memory barriers */
3194 	irq_work_queue(&cpu_buffer->irq_work.work);
3195 }
3196 
3197 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3198 # define do_ring_buffer_record_recursion()	\
3199 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3200 #else
3201 # define do_ring_buffer_record_recursion() do { } while (0)
3202 #endif
3203 
3204 /*
3205  * The lock and unlock are done within a preempt disable section.
3206  * The current_context per_cpu variable can only be modified
3207  * by the current task between lock and unlock. But it can
3208  * be modified more than once via an interrupt. To pass this
3209  * information from the lock to the unlock without having to
3210  * access the 'in_interrupt()' functions again (which do show
3211  * a bit of overhead in something as critical as function tracing,
3212  * we use a bitmask trick.
3213  *
3214  *  bit 1 =  NMI context
3215  *  bit 2 =  IRQ context
3216  *  bit 3 =  SoftIRQ context
3217  *  bit 4 =  normal context.
3218  *
3219  * This works because this is the order of contexts that can
3220  * preempt other contexts. A SoftIRQ never preempts an IRQ
3221  * context.
3222  *
3223  * When the context is determined, the corresponding bit is
3224  * checked and set (if it was set, then a recursion of that context
3225  * happened).
3226  *
3227  * On unlock, we need to clear this bit. To do so, just subtract
3228  * 1 from the current_context and AND it to itself.
3229  *
3230  * (binary)
3231  *  101 - 1 = 100
3232  *  101 & 100 = 100 (clearing bit zero)
3233  *
3234  *  1010 - 1 = 1001
3235  *  1010 & 1001 = 1000 (clearing bit 1)
3236  *
3237  * The least significant bit can be cleared this way, and it
3238  * just so happens that it is the same bit corresponding to
3239  * the current context.
3240  *
3241  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3242  * is set when a recursion is detected at the current context, and if
3243  * the TRANSITION bit is already set, it will fail the recursion.
3244  * This is needed because there's a lag between the changing of
3245  * interrupt context and updating the preempt count. In this case,
3246  * a false positive will be found. To handle this, one extra recursion
3247  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3248  * bit is already set, then it is considered a recursion and the function
3249  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3250  *
3251  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3252  * to be cleared. Even if it wasn't the context that set it. That is,
3253  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3254  * is called before preempt_count() is updated, since the check will
3255  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3256  * NMI then comes in, it will set the NMI bit, but when the NMI code
3257  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3258  * and leave the NMI bit set. But this is fine, because the interrupt
3259  * code that set the TRANSITION bit will then clear the NMI bit when it
3260  * calls trace_recursive_unlock(). If another NMI comes in, it will
3261  * set the TRANSITION bit and continue.
3262  *
3263  * Note: The TRANSITION bit only handles a single transition between context.
3264  */
3265 
3266 static __always_inline int
3267 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3268 {
3269 	unsigned int val = cpu_buffer->current_context;
3270 	int bit = interrupt_context_level();
3271 
3272 	bit = RB_CTX_NORMAL - bit;
3273 
3274 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3275 		/*
3276 		 * It is possible that this was called by transitioning
3277 		 * between interrupt context, and preempt_count() has not
3278 		 * been updated yet. In this case, use the TRANSITION bit.
3279 		 */
3280 		bit = RB_CTX_TRANSITION;
3281 		if (val & (1 << (bit + cpu_buffer->nest))) {
3282 			do_ring_buffer_record_recursion();
3283 			return 1;
3284 		}
3285 	}
3286 
3287 	val |= (1 << (bit + cpu_buffer->nest));
3288 	cpu_buffer->current_context = val;
3289 
3290 	return 0;
3291 }
3292 
3293 static __always_inline void
3294 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3295 {
3296 	cpu_buffer->current_context &=
3297 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3298 }
3299 
3300 /* The recursive locking above uses 5 bits */
3301 #define NESTED_BITS 5
3302 
3303 /**
3304  * ring_buffer_nest_start - Allow to trace while nested
3305  * @buffer: The ring buffer to modify
3306  *
3307  * The ring buffer has a safety mechanism to prevent recursion.
3308  * But there may be a case where a trace needs to be done while
3309  * tracing something else. In this case, calling this function
3310  * will allow this function to nest within a currently active
3311  * ring_buffer_lock_reserve().
3312  *
3313  * Call this function before calling another ring_buffer_lock_reserve() and
3314  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3315  */
3316 void ring_buffer_nest_start(struct trace_buffer *buffer)
3317 {
3318 	struct ring_buffer_per_cpu *cpu_buffer;
3319 	int cpu;
3320 
3321 	/* Enabled by ring_buffer_nest_end() */
3322 	preempt_disable_notrace();
3323 	cpu = raw_smp_processor_id();
3324 	cpu_buffer = buffer->buffers[cpu];
3325 	/* This is the shift value for the above recursive locking */
3326 	cpu_buffer->nest += NESTED_BITS;
3327 }
3328 
3329 /**
3330  * ring_buffer_nest_end - Allow to trace while nested
3331  * @buffer: The ring buffer to modify
3332  *
3333  * Must be called after ring_buffer_nest_start() and after the
3334  * ring_buffer_unlock_commit().
3335  */
3336 void ring_buffer_nest_end(struct trace_buffer *buffer)
3337 {
3338 	struct ring_buffer_per_cpu *cpu_buffer;
3339 	int cpu;
3340 
3341 	/* disabled by ring_buffer_nest_start() */
3342 	cpu = raw_smp_processor_id();
3343 	cpu_buffer = buffer->buffers[cpu];
3344 	/* This is the shift value for the above recursive locking */
3345 	cpu_buffer->nest -= NESTED_BITS;
3346 	preempt_enable_notrace();
3347 }
3348 
3349 /**
3350  * ring_buffer_unlock_commit - commit a reserved
3351  * @buffer: The buffer to commit to
3352  * @event: The event pointer to commit.
3353  *
3354  * This commits the data to the ring buffer, and releases any locks held.
3355  *
3356  * Must be paired with ring_buffer_lock_reserve.
3357  */
3358 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3359 			      struct ring_buffer_event *event)
3360 {
3361 	struct ring_buffer_per_cpu *cpu_buffer;
3362 	int cpu = raw_smp_processor_id();
3363 
3364 	cpu_buffer = buffer->buffers[cpu];
3365 
3366 	rb_commit(cpu_buffer, event);
3367 
3368 	rb_wakeups(buffer, cpu_buffer);
3369 
3370 	trace_recursive_unlock(cpu_buffer);
3371 
3372 	preempt_enable_notrace();
3373 
3374 	return 0;
3375 }
3376 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3377 
3378 /* Special value to validate all deltas on a page. */
3379 #define CHECK_FULL_PAGE		1L
3380 
3381 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3382 static void dump_buffer_page(struct buffer_data_page *bpage,
3383 			     struct rb_event_info *info,
3384 			     unsigned long tail)
3385 {
3386 	struct ring_buffer_event *event;
3387 	u64 ts, delta;
3388 	int e;
3389 
3390 	ts = bpage->time_stamp;
3391 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3392 
3393 	for (e = 0; e < tail; e += rb_event_length(event)) {
3394 
3395 		event = (struct ring_buffer_event *)(bpage->data + e);
3396 
3397 		switch (event->type_len) {
3398 
3399 		case RINGBUF_TYPE_TIME_EXTEND:
3400 			delta = rb_event_time_stamp(event);
3401 			ts += delta;
3402 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3403 			break;
3404 
3405 		case RINGBUF_TYPE_TIME_STAMP:
3406 			delta = rb_event_time_stamp(event);
3407 			ts = rb_fix_abs_ts(delta, ts);
3408 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3409 			break;
3410 
3411 		case RINGBUF_TYPE_PADDING:
3412 			ts += event->time_delta;
3413 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3414 			break;
3415 
3416 		case RINGBUF_TYPE_DATA:
3417 			ts += event->time_delta;
3418 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3419 			break;
3420 
3421 		default:
3422 			break;
3423 		}
3424 	}
3425 }
3426 
3427 static DEFINE_PER_CPU(atomic_t, checking);
3428 static atomic_t ts_dump;
3429 
3430 /*
3431  * Check if the current event time stamp matches the deltas on
3432  * the buffer page.
3433  */
3434 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3435 			 struct rb_event_info *info,
3436 			 unsigned long tail)
3437 {
3438 	struct ring_buffer_event *event;
3439 	struct buffer_data_page *bpage;
3440 	u64 ts, delta;
3441 	bool full = false;
3442 	int e;
3443 
3444 	bpage = info->tail_page->page;
3445 
3446 	if (tail == CHECK_FULL_PAGE) {
3447 		full = true;
3448 		tail = local_read(&bpage->commit);
3449 	} else if (info->add_timestamp &
3450 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3451 		/* Ignore events with absolute time stamps */
3452 		return;
3453 	}
3454 
3455 	/*
3456 	 * Do not check the first event (skip possible extends too).
3457 	 * Also do not check if previous events have not been committed.
3458 	 */
3459 	if (tail <= 8 || tail > local_read(&bpage->commit))
3460 		return;
3461 
3462 	/*
3463 	 * If this interrupted another event,
3464 	 */
3465 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3466 		goto out;
3467 
3468 	ts = bpage->time_stamp;
3469 
3470 	for (e = 0; e < tail; e += rb_event_length(event)) {
3471 
3472 		event = (struct ring_buffer_event *)(bpage->data + e);
3473 
3474 		switch (event->type_len) {
3475 
3476 		case RINGBUF_TYPE_TIME_EXTEND:
3477 			delta = rb_event_time_stamp(event);
3478 			ts += delta;
3479 			break;
3480 
3481 		case RINGBUF_TYPE_TIME_STAMP:
3482 			delta = rb_event_time_stamp(event);
3483 			ts = rb_fix_abs_ts(delta, ts);
3484 			break;
3485 
3486 		case RINGBUF_TYPE_PADDING:
3487 			if (event->time_delta == 1)
3488 				break;
3489 			fallthrough;
3490 		case RINGBUF_TYPE_DATA:
3491 			ts += event->time_delta;
3492 			break;
3493 
3494 		default:
3495 			RB_WARN_ON(cpu_buffer, 1);
3496 		}
3497 	}
3498 	if ((full && ts > info->ts) ||
3499 	    (!full && ts + info->delta != info->ts)) {
3500 		/* If another report is happening, ignore this one */
3501 		if (atomic_inc_return(&ts_dump) != 1) {
3502 			atomic_dec(&ts_dump);
3503 			goto out;
3504 		}
3505 		atomic_inc(&cpu_buffer->record_disabled);
3506 		/* There's some cases in boot up that this can happen */
3507 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3508 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3509 			cpu_buffer->cpu,
3510 			ts + info->delta, info->ts, info->delta,
3511 			info->before, info->after,
3512 			full ? " (full)" : "");
3513 		dump_buffer_page(bpage, info, tail);
3514 		atomic_dec(&ts_dump);
3515 		/* Do not re-enable checking */
3516 		return;
3517 	}
3518 out:
3519 	atomic_dec(this_cpu_ptr(&checking));
3520 }
3521 #else
3522 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3523 			 struct rb_event_info *info,
3524 			 unsigned long tail)
3525 {
3526 }
3527 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3528 
3529 static struct ring_buffer_event *
3530 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3531 		  struct rb_event_info *info)
3532 {
3533 	struct ring_buffer_event *event;
3534 	struct buffer_page *tail_page;
3535 	unsigned long tail, write, w;
3536 	bool a_ok;
3537 	bool b_ok;
3538 
3539 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3540 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3541 
3542  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3543 	barrier();
3544 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3545 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3546 	barrier();
3547 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3548 
3549 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3550 		info->delta = info->ts;
3551 	} else {
3552 		/*
3553 		 * If interrupting an event time update, we may need an
3554 		 * absolute timestamp.
3555 		 * Don't bother if this is the start of a new page (w == 0).
3556 		 */
3557 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3558 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3559 			info->length += RB_LEN_TIME_EXTEND;
3560 		} else {
3561 			info->delta = info->ts - info->after;
3562 			if (unlikely(test_time_stamp(info->delta))) {
3563 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3564 				info->length += RB_LEN_TIME_EXTEND;
3565 			}
3566 		}
3567 	}
3568 
3569  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3570 
3571  /*C*/	write = local_add_return(info->length, &tail_page->write);
3572 
3573 	/* set write to only the index of the write */
3574 	write &= RB_WRITE_MASK;
3575 
3576 	tail = write - info->length;
3577 
3578 	/* See if we shot pass the end of this buffer page */
3579 	if (unlikely(write > BUF_PAGE_SIZE)) {
3580 		/* before and after may now different, fix it up*/
3581 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3582 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3583 		if (a_ok && b_ok && info->before != info->after)
3584 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3585 					      info->before, info->after);
3586 		if (a_ok && b_ok)
3587 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3588 		return rb_move_tail(cpu_buffer, tail, info);
3589 	}
3590 
3591 	if (likely(tail == w)) {
3592 		u64 save_before;
3593 		bool s_ok;
3594 
3595 		/* Nothing interrupted us between A and C */
3596  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3597 		barrier();
3598  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3599 		RB_WARN_ON(cpu_buffer, !s_ok);
3600 		if (likely(!(info->add_timestamp &
3601 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3602 			/* This did not interrupt any time update */
3603 			info->delta = info->ts - info->after;
3604 		else
3605 			/* Just use full timestamp for interrupting event */
3606 			info->delta = info->ts;
3607 		barrier();
3608 		check_buffer(cpu_buffer, info, tail);
3609 		if (unlikely(info->ts != save_before)) {
3610 			/* SLOW PATH - Interrupted between C and E */
3611 
3612 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3613 			RB_WARN_ON(cpu_buffer, !a_ok);
3614 
3615 			/* Write stamp must only go forward */
3616 			if (save_before > info->after) {
3617 				/*
3618 				 * We do not care about the result, only that
3619 				 * it gets updated atomically.
3620 				 */
3621 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3622 						      info->after, save_before);
3623 			}
3624 		}
3625 	} else {
3626 		u64 ts;
3627 		/* SLOW PATH - Interrupted between A and C */
3628 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3629 		/* Was interrupted before here, write_stamp must be valid */
3630 		RB_WARN_ON(cpu_buffer, !a_ok);
3631 		ts = rb_time_stamp(cpu_buffer->buffer);
3632 		barrier();
3633  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3634 		    info->after < ts &&
3635 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3636 				    info->after, ts)) {
3637 			/* Nothing came after this event between C and E */
3638 			info->delta = ts - info->after;
3639 		} else {
3640 			/*
3641 			 * Interrupted between C and E:
3642 			 * Lost the previous events time stamp. Just set the
3643 			 * delta to zero, and this will be the same time as
3644 			 * the event this event interrupted. And the events that
3645 			 * came after this will still be correct (as they would
3646 			 * have built their delta on the previous event.
3647 			 */
3648 			info->delta = 0;
3649 		}
3650 		info->ts = ts;
3651 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3652 	}
3653 
3654 	/*
3655 	 * If this is the first commit on the page, then it has the same
3656 	 * timestamp as the page itself.
3657 	 */
3658 	if (unlikely(!tail && !(info->add_timestamp &
3659 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3660 		info->delta = 0;
3661 
3662 	/* We reserved something on the buffer */
3663 
3664 	event = __rb_page_index(tail_page, tail);
3665 	rb_update_event(cpu_buffer, event, info);
3666 
3667 	local_inc(&tail_page->entries);
3668 
3669 	/*
3670 	 * If this is the first commit on the page, then update
3671 	 * its timestamp.
3672 	 */
3673 	if (unlikely(!tail))
3674 		tail_page->page->time_stamp = info->ts;
3675 
3676 	/* account for these added bytes */
3677 	local_add(info->length, &cpu_buffer->entries_bytes);
3678 
3679 	return event;
3680 }
3681 
3682 static __always_inline struct ring_buffer_event *
3683 rb_reserve_next_event(struct trace_buffer *buffer,
3684 		      struct ring_buffer_per_cpu *cpu_buffer,
3685 		      unsigned long length)
3686 {
3687 	struct ring_buffer_event *event;
3688 	struct rb_event_info info;
3689 	int nr_loops = 0;
3690 	int add_ts_default;
3691 
3692 	rb_start_commit(cpu_buffer);
3693 	/* The commit page can not change after this */
3694 
3695 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3696 	/*
3697 	 * Due to the ability to swap a cpu buffer from a buffer
3698 	 * it is possible it was swapped before we committed.
3699 	 * (committing stops a swap). We check for it here and
3700 	 * if it happened, we have to fail the write.
3701 	 */
3702 	barrier();
3703 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3704 		local_dec(&cpu_buffer->committing);
3705 		local_dec(&cpu_buffer->commits);
3706 		return NULL;
3707 	}
3708 #endif
3709 
3710 	info.length = rb_calculate_event_length(length);
3711 
3712 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3713 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3714 		info.length += RB_LEN_TIME_EXTEND;
3715 	} else {
3716 		add_ts_default = RB_ADD_STAMP_NONE;
3717 	}
3718 
3719  again:
3720 	info.add_timestamp = add_ts_default;
3721 	info.delta = 0;
3722 
3723 	/*
3724 	 * We allow for interrupts to reenter here and do a trace.
3725 	 * If one does, it will cause this original code to loop
3726 	 * back here. Even with heavy interrupts happening, this
3727 	 * should only happen a few times in a row. If this happens
3728 	 * 1000 times in a row, there must be either an interrupt
3729 	 * storm or we have something buggy.
3730 	 * Bail!
3731 	 */
3732 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3733 		goto out_fail;
3734 
3735 	event = __rb_reserve_next(cpu_buffer, &info);
3736 
3737 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3738 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3739 			info.length -= RB_LEN_TIME_EXTEND;
3740 		goto again;
3741 	}
3742 
3743 	if (likely(event))
3744 		return event;
3745  out_fail:
3746 	rb_end_commit(cpu_buffer);
3747 	return NULL;
3748 }
3749 
3750 /**
3751  * ring_buffer_lock_reserve - reserve a part of the buffer
3752  * @buffer: the ring buffer to reserve from
3753  * @length: the length of the data to reserve (excluding event header)
3754  *
3755  * Returns a reserved event on the ring buffer to copy directly to.
3756  * The user of this interface will need to get the body to write into
3757  * and can use the ring_buffer_event_data() interface.
3758  *
3759  * The length is the length of the data needed, not the event length
3760  * which also includes the event header.
3761  *
3762  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3763  * If NULL is returned, then nothing has been allocated or locked.
3764  */
3765 struct ring_buffer_event *
3766 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3767 {
3768 	struct ring_buffer_per_cpu *cpu_buffer;
3769 	struct ring_buffer_event *event;
3770 	int cpu;
3771 
3772 	/* If we are tracing schedule, we don't want to recurse */
3773 	preempt_disable_notrace();
3774 
3775 	if (unlikely(atomic_read(&buffer->record_disabled)))
3776 		goto out;
3777 
3778 	cpu = raw_smp_processor_id();
3779 
3780 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3781 		goto out;
3782 
3783 	cpu_buffer = buffer->buffers[cpu];
3784 
3785 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3786 		goto out;
3787 
3788 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3789 		goto out;
3790 
3791 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3792 		goto out;
3793 
3794 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3795 	if (!event)
3796 		goto out_unlock;
3797 
3798 	return event;
3799 
3800  out_unlock:
3801 	trace_recursive_unlock(cpu_buffer);
3802  out:
3803 	preempt_enable_notrace();
3804 	return NULL;
3805 }
3806 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3807 
3808 /*
3809  * Decrement the entries to the page that an event is on.
3810  * The event does not even need to exist, only the pointer
3811  * to the page it is on. This may only be called before the commit
3812  * takes place.
3813  */
3814 static inline void
3815 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3816 		   struct ring_buffer_event *event)
3817 {
3818 	unsigned long addr = (unsigned long)event;
3819 	struct buffer_page *bpage = cpu_buffer->commit_page;
3820 	struct buffer_page *start;
3821 
3822 	addr &= PAGE_MASK;
3823 
3824 	/* Do the likely case first */
3825 	if (likely(bpage->page == (void *)addr)) {
3826 		local_dec(&bpage->entries);
3827 		return;
3828 	}
3829 
3830 	/*
3831 	 * Because the commit page may be on the reader page we
3832 	 * start with the next page and check the end loop there.
3833 	 */
3834 	rb_inc_page(&bpage);
3835 	start = bpage;
3836 	do {
3837 		if (bpage->page == (void *)addr) {
3838 			local_dec(&bpage->entries);
3839 			return;
3840 		}
3841 		rb_inc_page(&bpage);
3842 	} while (bpage != start);
3843 
3844 	/* commit not part of this buffer?? */
3845 	RB_WARN_ON(cpu_buffer, 1);
3846 }
3847 
3848 /**
3849  * ring_buffer_discard_commit - discard an event that has not been committed
3850  * @buffer: the ring buffer
3851  * @event: non committed event to discard
3852  *
3853  * Sometimes an event that is in the ring buffer needs to be ignored.
3854  * This function lets the user discard an event in the ring buffer
3855  * and then that event will not be read later.
3856  *
3857  * This function only works if it is called before the item has been
3858  * committed. It will try to free the event from the ring buffer
3859  * if another event has not been added behind it.
3860  *
3861  * If another event has been added behind it, it will set the event
3862  * up as discarded, and perform the commit.
3863  *
3864  * If this function is called, do not call ring_buffer_unlock_commit on
3865  * the event.
3866  */
3867 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3868 				struct ring_buffer_event *event)
3869 {
3870 	struct ring_buffer_per_cpu *cpu_buffer;
3871 	int cpu;
3872 
3873 	/* The event is discarded regardless */
3874 	rb_event_discard(event);
3875 
3876 	cpu = smp_processor_id();
3877 	cpu_buffer = buffer->buffers[cpu];
3878 
3879 	/*
3880 	 * This must only be called if the event has not been
3881 	 * committed yet. Thus we can assume that preemption
3882 	 * is still disabled.
3883 	 */
3884 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3885 
3886 	rb_decrement_entry(cpu_buffer, event);
3887 	if (rb_try_to_discard(cpu_buffer, event))
3888 		goto out;
3889 
3890  out:
3891 	rb_end_commit(cpu_buffer);
3892 
3893 	trace_recursive_unlock(cpu_buffer);
3894 
3895 	preempt_enable_notrace();
3896 
3897 }
3898 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3899 
3900 /**
3901  * ring_buffer_write - write data to the buffer without reserving
3902  * @buffer: The ring buffer to write to.
3903  * @length: The length of the data being written (excluding the event header)
3904  * @data: The data to write to the buffer.
3905  *
3906  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3907  * one function. If you already have the data to write to the buffer, it
3908  * may be easier to simply call this function.
3909  *
3910  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3911  * and not the length of the event which would hold the header.
3912  */
3913 int ring_buffer_write(struct trace_buffer *buffer,
3914 		      unsigned long length,
3915 		      void *data)
3916 {
3917 	struct ring_buffer_per_cpu *cpu_buffer;
3918 	struct ring_buffer_event *event;
3919 	void *body;
3920 	int ret = -EBUSY;
3921 	int cpu;
3922 
3923 	preempt_disable_notrace();
3924 
3925 	if (atomic_read(&buffer->record_disabled))
3926 		goto out;
3927 
3928 	cpu = raw_smp_processor_id();
3929 
3930 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3931 		goto out;
3932 
3933 	cpu_buffer = buffer->buffers[cpu];
3934 
3935 	if (atomic_read(&cpu_buffer->record_disabled))
3936 		goto out;
3937 
3938 	if (length > BUF_MAX_DATA_SIZE)
3939 		goto out;
3940 
3941 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3942 		goto out;
3943 
3944 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3945 	if (!event)
3946 		goto out_unlock;
3947 
3948 	body = rb_event_data(event);
3949 
3950 	memcpy(body, data, length);
3951 
3952 	rb_commit(cpu_buffer, event);
3953 
3954 	rb_wakeups(buffer, cpu_buffer);
3955 
3956 	ret = 0;
3957 
3958  out_unlock:
3959 	trace_recursive_unlock(cpu_buffer);
3960 
3961  out:
3962 	preempt_enable_notrace();
3963 
3964 	return ret;
3965 }
3966 EXPORT_SYMBOL_GPL(ring_buffer_write);
3967 
3968 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3969 {
3970 	struct buffer_page *reader = cpu_buffer->reader_page;
3971 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3972 	struct buffer_page *commit = cpu_buffer->commit_page;
3973 
3974 	/* In case of error, head will be NULL */
3975 	if (unlikely(!head))
3976 		return true;
3977 
3978 	/* Reader should exhaust content in reader page */
3979 	if (reader->read != rb_page_commit(reader))
3980 		return false;
3981 
3982 	/*
3983 	 * If writers are committing on the reader page, knowing all
3984 	 * committed content has been read, the ring buffer is empty.
3985 	 */
3986 	if (commit == reader)
3987 		return true;
3988 
3989 	/*
3990 	 * If writers are committing on a page other than reader page
3991 	 * and head page, there should always be content to read.
3992 	 */
3993 	if (commit != head)
3994 		return false;
3995 
3996 	/*
3997 	 * Writers are committing on the head page, we just need
3998 	 * to care about there're committed data, and the reader will
3999 	 * swap reader page with head page when it is to read data.
4000 	 */
4001 	return rb_page_commit(commit) == 0;
4002 }
4003 
4004 /**
4005  * ring_buffer_record_disable - stop all writes into the buffer
4006  * @buffer: The ring buffer to stop writes to.
4007  *
4008  * This prevents all writes to the buffer. Any attempt to write
4009  * to the buffer after this will fail and return NULL.
4010  *
4011  * The caller should call synchronize_rcu() after this.
4012  */
4013 void ring_buffer_record_disable(struct trace_buffer *buffer)
4014 {
4015 	atomic_inc(&buffer->record_disabled);
4016 }
4017 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4018 
4019 /**
4020  * ring_buffer_record_enable - enable writes to the buffer
4021  * @buffer: The ring buffer to enable writes
4022  *
4023  * Note, multiple disables will need the same number of enables
4024  * to truly enable the writing (much like preempt_disable).
4025  */
4026 void ring_buffer_record_enable(struct trace_buffer *buffer)
4027 {
4028 	atomic_dec(&buffer->record_disabled);
4029 }
4030 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4031 
4032 /**
4033  * ring_buffer_record_off - stop all writes into the buffer
4034  * @buffer: The ring buffer to stop writes to.
4035  *
4036  * This prevents all writes to the buffer. Any attempt to write
4037  * to the buffer after this will fail and return NULL.
4038  *
4039  * This is different than ring_buffer_record_disable() as
4040  * it works like an on/off switch, where as the disable() version
4041  * must be paired with a enable().
4042  */
4043 void ring_buffer_record_off(struct trace_buffer *buffer)
4044 {
4045 	unsigned int rd;
4046 	unsigned int new_rd;
4047 
4048 	do {
4049 		rd = atomic_read(&buffer->record_disabled);
4050 		new_rd = rd | RB_BUFFER_OFF;
4051 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4052 }
4053 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4054 
4055 /**
4056  * ring_buffer_record_on - restart writes into the buffer
4057  * @buffer: The ring buffer to start writes to.
4058  *
4059  * This enables all writes to the buffer that was disabled by
4060  * ring_buffer_record_off().
4061  *
4062  * This is different than ring_buffer_record_enable() as
4063  * it works like an on/off switch, where as the enable() version
4064  * must be paired with a disable().
4065  */
4066 void ring_buffer_record_on(struct trace_buffer *buffer)
4067 {
4068 	unsigned int rd;
4069 	unsigned int new_rd;
4070 
4071 	do {
4072 		rd = atomic_read(&buffer->record_disabled);
4073 		new_rd = rd & ~RB_BUFFER_OFF;
4074 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4075 }
4076 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4077 
4078 /**
4079  * ring_buffer_record_is_on - return true if the ring buffer can write
4080  * @buffer: The ring buffer to see if write is enabled
4081  *
4082  * Returns true if the ring buffer is in a state that it accepts writes.
4083  */
4084 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4085 {
4086 	return !atomic_read(&buffer->record_disabled);
4087 }
4088 
4089 /**
4090  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4091  * @buffer: The ring buffer to see if write is set enabled
4092  *
4093  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4094  * Note that this does NOT mean it is in a writable state.
4095  *
4096  * It may return true when the ring buffer has been disabled by
4097  * ring_buffer_record_disable(), as that is a temporary disabling of
4098  * the ring buffer.
4099  */
4100 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4101 {
4102 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4103 }
4104 
4105 /**
4106  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4107  * @buffer: The ring buffer to stop writes to.
4108  * @cpu: The CPU buffer to stop
4109  *
4110  * This prevents all writes to the buffer. Any attempt to write
4111  * to the buffer after this will fail and return NULL.
4112  *
4113  * The caller should call synchronize_rcu() after this.
4114  */
4115 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4116 {
4117 	struct ring_buffer_per_cpu *cpu_buffer;
4118 
4119 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4120 		return;
4121 
4122 	cpu_buffer = buffer->buffers[cpu];
4123 	atomic_inc(&cpu_buffer->record_disabled);
4124 }
4125 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4126 
4127 /**
4128  * ring_buffer_record_enable_cpu - enable writes to the buffer
4129  * @buffer: The ring buffer to enable writes
4130  * @cpu: The CPU to enable.
4131  *
4132  * Note, multiple disables will need the same number of enables
4133  * to truly enable the writing (much like preempt_disable).
4134  */
4135 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4136 {
4137 	struct ring_buffer_per_cpu *cpu_buffer;
4138 
4139 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4140 		return;
4141 
4142 	cpu_buffer = buffer->buffers[cpu];
4143 	atomic_dec(&cpu_buffer->record_disabled);
4144 }
4145 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4146 
4147 /*
4148  * The total entries in the ring buffer is the running counter
4149  * of entries entered into the ring buffer, minus the sum of
4150  * the entries read from the ring buffer and the number of
4151  * entries that were overwritten.
4152  */
4153 static inline unsigned long
4154 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4155 {
4156 	return local_read(&cpu_buffer->entries) -
4157 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4158 }
4159 
4160 /**
4161  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4162  * @buffer: The ring buffer
4163  * @cpu: The per CPU buffer to read from.
4164  */
4165 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4166 {
4167 	unsigned long flags;
4168 	struct ring_buffer_per_cpu *cpu_buffer;
4169 	struct buffer_page *bpage;
4170 	u64 ret = 0;
4171 
4172 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4173 		return 0;
4174 
4175 	cpu_buffer = buffer->buffers[cpu];
4176 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4177 	/*
4178 	 * if the tail is on reader_page, oldest time stamp is on the reader
4179 	 * page
4180 	 */
4181 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4182 		bpage = cpu_buffer->reader_page;
4183 	else
4184 		bpage = rb_set_head_page(cpu_buffer);
4185 	if (bpage)
4186 		ret = bpage->page->time_stamp;
4187 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4188 
4189 	return ret;
4190 }
4191 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4192 
4193 /**
4194  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4195  * @buffer: The ring buffer
4196  * @cpu: The per CPU buffer to read from.
4197  */
4198 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4199 {
4200 	struct ring_buffer_per_cpu *cpu_buffer;
4201 	unsigned long ret;
4202 
4203 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4204 		return 0;
4205 
4206 	cpu_buffer = buffer->buffers[cpu];
4207 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4208 
4209 	return ret;
4210 }
4211 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4212 
4213 /**
4214  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4215  * @buffer: The ring buffer
4216  * @cpu: The per CPU buffer to get the entries from.
4217  */
4218 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4219 {
4220 	struct ring_buffer_per_cpu *cpu_buffer;
4221 
4222 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4223 		return 0;
4224 
4225 	cpu_buffer = buffer->buffers[cpu];
4226 
4227 	return rb_num_of_entries(cpu_buffer);
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4230 
4231 /**
4232  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4233  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4234  * @buffer: The ring buffer
4235  * @cpu: The per CPU buffer to get the number of overruns from
4236  */
4237 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4238 {
4239 	struct ring_buffer_per_cpu *cpu_buffer;
4240 	unsigned long ret;
4241 
4242 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4243 		return 0;
4244 
4245 	cpu_buffer = buffer->buffers[cpu];
4246 	ret = local_read(&cpu_buffer->overrun);
4247 
4248 	return ret;
4249 }
4250 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4251 
4252 /**
4253  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4254  * commits failing due to the buffer wrapping around while there are uncommitted
4255  * events, such as during an interrupt storm.
4256  * @buffer: The ring buffer
4257  * @cpu: The per CPU buffer to get the number of overruns from
4258  */
4259 unsigned long
4260 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4261 {
4262 	struct ring_buffer_per_cpu *cpu_buffer;
4263 	unsigned long ret;
4264 
4265 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4266 		return 0;
4267 
4268 	cpu_buffer = buffer->buffers[cpu];
4269 	ret = local_read(&cpu_buffer->commit_overrun);
4270 
4271 	return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4274 
4275 /**
4276  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4277  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4278  * @buffer: The ring buffer
4279  * @cpu: The per CPU buffer to get the number of overruns from
4280  */
4281 unsigned long
4282 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4283 {
4284 	struct ring_buffer_per_cpu *cpu_buffer;
4285 	unsigned long ret;
4286 
4287 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4288 		return 0;
4289 
4290 	cpu_buffer = buffer->buffers[cpu];
4291 	ret = local_read(&cpu_buffer->dropped_events);
4292 
4293 	return ret;
4294 }
4295 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4296 
4297 /**
4298  * ring_buffer_read_events_cpu - get the number of events successfully read
4299  * @buffer: The ring buffer
4300  * @cpu: The per CPU buffer to get the number of events read
4301  */
4302 unsigned long
4303 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4304 {
4305 	struct ring_buffer_per_cpu *cpu_buffer;
4306 
4307 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4308 		return 0;
4309 
4310 	cpu_buffer = buffer->buffers[cpu];
4311 	return cpu_buffer->read;
4312 }
4313 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4314 
4315 /**
4316  * ring_buffer_entries - get the number of entries in a buffer
4317  * @buffer: The ring buffer
4318  *
4319  * Returns the total number of entries in the ring buffer
4320  * (all CPU entries)
4321  */
4322 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4323 {
4324 	struct ring_buffer_per_cpu *cpu_buffer;
4325 	unsigned long entries = 0;
4326 	int cpu;
4327 
4328 	/* if you care about this being correct, lock the buffer */
4329 	for_each_buffer_cpu(buffer, cpu) {
4330 		cpu_buffer = buffer->buffers[cpu];
4331 		entries += rb_num_of_entries(cpu_buffer);
4332 	}
4333 
4334 	return entries;
4335 }
4336 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4337 
4338 /**
4339  * ring_buffer_overruns - get the number of overruns in buffer
4340  * @buffer: The ring buffer
4341  *
4342  * Returns the total number of overruns in the ring buffer
4343  * (all CPU entries)
4344  */
4345 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4346 {
4347 	struct ring_buffer_per_cpu *cpu_buffer;
4348 	unsigned long overruns = 0;
4349 	int cpu;
4350 
4351 	/* if you care about this being correct, lock the buffer */
4352 	for_each_buffer_cpu(buffer, cpu) {
4353 		cpu_buffer = buffer->buffers[cpu];
4354 		overruns += local_read(&cpu_buffer->overrun);
4355 	}
4356 
4357 	return overruns;
4358 }
4359 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4360 
4361 static void rb_iter_reset(struct ring_buffer_iter *iter)
4362 {
4363 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4364 
4365 	/* Iterator usage is expected to have record disabled */
4366 	iter->head_page = cpu_buffer->reader_page;
4367 	iter->head = cpu_buffer->reader_page->read;
4368 	iter->next_event = iter->head;
4369 
4370 	iter->cache_reader_page = iter->head_page;
4371 	iter->cache_read = cpu_buffer->read;
4372 
4373 	if (iter->head) {
4374 		iter->read_stamp = cpu_buffer->read_stamp;
4375 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4376 	} else {
4377 		iter->read_stamp = iter->head_page->page->time_stamp;
4378 		iter->page_stamp = iter->read_stamp;
4379 	}
4380 }
4381 
4382 /**
4383  * ring_buffer_iter_reset - reset an iterator
4384  * @iter: The iterator to reset
4385  *
4386  * Resets the iterator, so that it will start from the beginning
4387  * again.
4388  */
4389 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4390 {
4391 	struct ring_buffer_per_cpu *cpu_buffer;
4392 	unsigned long flags;
4393 
4394 	if (!iter)
4395 		return;
4396 
4397 	cpu_buffer = iter->cpu_buffer;
4398 
4399 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4400 	rb_iter_reset(iter);
4401 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4402 }
4403 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4404 
4405 /**
4406  * ring_buffer_iter_empty - check if an iterator has no more to read
4407  * @iter: The iterator to check
4408  */
4409 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4410 {
4411 	struct ring_buffer_per_cpu *cpu_buffer;
4412 	struct buffer_page *reader;
4413 	struct buffer_page *head_page;
4414 	struct buffer_page *commit_page;
4415 	struct buffer_page *curr_commit_page;
4416 	unsigned commit;
4417 	u64 curr_commit_ts;
4418 	u64 commit_ts;
4419 
4420 	cpu_buffer = iter->cpu_buffer;
4421 	reader = cpu_buffer->reader_page;
4422 	head_page = cpu_buffer->head_page;
4423 	commit_page = cpu_buffer->commit_page;
4424 	commit_ts = commit_page->page->time_stamp;
4425 
4426 	/*
4427 	 * When the writer goes across pages, it issues a cmpxchg which
4428 	 * is a mb(), which will synchronize with the rmb here.
4429 	 * (see rb_tail_page_update())
4430 	 */
4431 	smp_rmb();
4432 	commit = rb_page_commit(commit_page);
4433 	/* We want to make sure that the commit page doesn't change */
4434 	smp_rmb();
4435 
4436 	/* Make sure commit page didn't change */
4437 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4438 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4439 
4440 	/* If the commit page changed, then there's more data */
4441 	if (curr_commit_page != commit_page ||
4442 	    curr_commit_ts != commit_ts)
4443 		return 0;
4444 
4445 	/* Still racy, as it may return a false positive, but that's OK */
4446 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4447 		(iter->head_page == reader && commit_page == head_page &&
4448 		 head_page->read == commit &&
4449 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4450 }
4451 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4452 
4453 static void
4454 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4455 		     struct ring_buffer_event *event)
4456 {
4457 	u64 delta;
4458 
4459 	switch (event->type_len) {
4460 	case RINGBUF_TYPE_PADDING:
4461 		return;
4462 
4463 	case RINGBUF_TYPE_TIME_EXTEND:
4464 		delta = rb_event_time_stamp(event);
4465 		cpu_buffer->read_stamp += delta;
4466 		return;
4467 
4468 	case RINGBUF_TYPE_TIME_STAMP:
4469 		delta = rb_event_time_stamp(event);
4470 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4471 		cpu_buffer->read_stamp = delta;
4472 		return;
4473 
4474 	case RINGBUF_TYPE_DATA:
4475 		cpu_buffer->read_stamp += event->time_delta;
4476 		return;
4477 
4478 	default:
4479 		RB_WARN_ON(cpu_buffer, 1);
4480 	}
4481 	return;
4482 }
4483 
4484 static void
4485 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4486 			  struct ring_buffer_event *event)
4487 {
4488 	u64 delta;
4489 
4490 	switch (event->type_len) {
4491 	case RINGBUF_TYPE_PADDING:
4492 		return;
4493 
4494 	case RINGBUF_TYPE_TIME_EXTEND:
4495 		delta = rb_event_time_stamp(event);
4496 		iter->read_stamp += delta;
4497 		return;
4498 
4499 	case RINGBUF_TYPE_TIME_STAMP:
4500 		delta = rb_event_time_stamp(event);
4501 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4502 		iter->read_stamp = delta;
4503 		return;
4504 
4505 	case RINGBUF_TYPE_DATA:
4506 		iter->read_stamp += event->time_delta;
4507 		return;
4508 
4509 	default:
4510 		RB_WARN_ON(iter->cpu_buffer, 1);
4511 	}
4512 	return;
4513 }
4514 
4515 static struct buffer_page *
4516 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4517 {
4518 	struct buffer_page *reader = NULL;
4519 	unsigned long overwrite;
4520 	unsigned long flags;
4521 	int nr_loops = 0;
4522 	int ret;
4523 
4524 	local_irq_save(flags);
4525 	arch_spin_lock(&cpu_buffer->lock);
4526 
4527  again:
4528 	/*
4529 	 * This should normally only loop twice. But because the
4530 	 * start of the reader inserts an empty page, it causes
4531 	 * a case where we will loop three times. There should be no
4532 	 * reason to loop four times (that I know of).
4533 	 */
4534 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4535 		reader = NULL;
4536 		goto out;
4537 	}
4538 
4539 	reader = cpu_buffer->reader_page;
4540 
4541 	/* If there's more to read, return this page */
4542 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4543 		goto out;
4544 
4545 	/* Never should we have an index greater than the size */
4546 	if (RB_WARN_ON(cpu_buffer,
4547 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4548 		goto out;
4549 
4550 	/* check if we caught up to the tail */
4551 	reader = NULL;
4552 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4553 		goto out;
4554 
4555 	/* Don't bother swapping if the ring buffer is empty */
4556 	if (rb_num_of_entries(cpu_buffer) == 0)
4557 		goto out;
4558 
4559 	/*
4560 	 * Reset the reader page to size zero.
4561 	 */
4562 	local_set(&cpu_buffer->reader_page->write, 0);
4563 	local_set(&cpu_buffer->reader_page->entries, 0);
4564 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4565 	cpu_buffer->reader_page->real_end = 0;
4566 
4567  spin:
4568 	/*
4569 	 * Splice the empty reader page into the list around the head.
4570 	 */
4571 	reader = rb_set_head_page(cpu_buffer);
4572 	if (!reader)
4573 		goto out;
4574 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4575 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4576 
4577 	/*
4578 	 * cpu_buffer->pages just needs to point to the buffer, it
4579 	 *  has no specific buffer page to point to. Lets move it out
4580 	 *  of our way so we don't accidentally swap it.
4581 	 */
4582 	cpu_buffer->pages = reader->list.prev;
4583 
4584 	/* The reader page will be pointing to the new head */
4585 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4586 
4587 	/*
4588 	 * We want to make sure we read the overruns after we set up our
4589 	 * pointers to the next object. The writer side does a
4590 	 * cmpxchg to cross pages which acts as the mb on the writer
4591 	 * side. Note, the reader will constantly fail the swap
4592 	 * while the writer is updating the pointers, so this
4593 	 * guarantees that the overwrite recorded here is the one we
4594 	 * want to compare with the last_overrun.
4595 	 */
4596 	smp_mb();
4597 	overwrite = local_read(&(cpu_buffer->overrun));
4598 
4599 	/*
4600 	 * Here's the tricky part.
4601 	 *
4602 	 * We need to move the pointer past the header page.
4603 	 * But we can only do that if a writer is not currently
4604 	 * moving it. The page before the header page has the
4605 	 * flag bit '1' set if it is pointing to the page we want.
4606 	 * but if the writer is in the process of moving it
4607 	 * than it will be '2' or already moved '0'.
4608 	 */
4609 
4610 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4611 
4612 	/*
4613 	 * If we did not convert it, then we must try again.
4614 	 */
4615 	if (!ret)
4616 		goto spin;
4617 
4618 	/*
4619 	 * Yay! We succeeded in replacing the page.
4620 	 *
4621 	 * Now make the new head point back to the reader page.
4622 	 */
4623 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4624 	rb_inc_page(&cpu_buffer->head_page);
4625 
4626 	local_inc(&cpu_buffer->pages_read);
4627 
4628 	/* Finally update the reader page to the new head */
4629 	cpu_buffer->reader_page = reader;
4630 	cpu_buffer->reader_page->read = 0;
4631 
4632 	if (overwrite != cpu_buffer->last_overrun) {
4633 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4634 		cpu_buffer->last_overrun = overwrite;
4635 	}
4636 
4637 	goto again;
4638 
4639  out:
4640 	/* Update the read_stamp on the first event */
4641 	if (reader && reader->read == 0)
4642 		cpu_buffer->read_stamp = reader->page->time_stamp;
4643 
4644 	arch_spin_unlock(&cpu_buffer->lock);
4645 	local_irq_restore(flags);
4646 
4647 	/*
4648 	 * The writer has preempt disable, wait for it. But not forever
4649 	 * Although, 1 second is pretty much "forever"
4650 	 */
4651 #define USECS_WAIT	1000000
4652         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4653 		/* If the write is past the end of page, a writer is still updating it */
4654 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4655 			break;
4656 
4657 		udelay(1);
4658 
4659 		/* Get the latest version of the reader write value */
4660 		smp_rmb();
4661 	}
4662 
4663 	/* The writer is not moving forward? Something is wrong */
4664 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4665 		reader = NULL;
4666 
4667 	/*
4668 	 * Make sure we see any padding after the write update
4669 	 * (see rb_reset_tail())
4670 	 */
4671 	smp_rmb();
4672 
4673 
4674 	return reader;
4675 }
4676 
4677 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4678 {
4679 	struct ring_buffer_event *event;
4680 	struct buffer_page *reader;
4681 	unsigned length;
4682 
4683 	reader = rb_get_reader_page(cpu_buffer);
4684 
4685 	/* This function should not be called when buffer is empty */
4686 	if (RB_WARN_ON(cpu_buffer, !reader))
4687 		return;
4688 
4689 	event = rb_reader_event(cpu_buffer);
4690 
4691 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4692 		cpu_buffer->read++;
4693 
4694 	rb_update_read_stamp(cpu_buffer, event);
4695 
4696 	length = rb_event_length(event);
4697 	cpu_buffer->reader_page->read += length;
4698 }
4699 
4700 static void rb_advance_iter(struct ring_buffer_iter *iter)
4701 {
4702 	struct ring_buffer_per_cpu *cpu_buffer;
4703 
4704 	cpu_buffer = iter->cpu_buffer;
4705 
4706 	/* If head == next_event then we need to jump to the next event */
4707 	if (iter->head == iter->next_event) {
4708 		/* If the event gets overwritten again, there's nothing to do */
4709 		if (rb_iter_head_event(iter) == NULL)
4710 			return;
4711 	}
4712 
4713 	iter->head = iter->next_event;
4714 
4715 	/*
4716 	 * Check if we are at the end of the buffer.
4717 	 */
4718 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4719 		/* discarded commits can make the page empty */
4720 		if (iter->head_page == cpu_buffer->commit_page)
4721 			return;
4722 		rb_inc_iter(iter);
4723 		return;
4724 	}
4725 
4726 	rb_update_iter_read_stamp(iter, iter->event);
4727 }
4728 
4729 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4730 {
4731 	return cpu_buffer->lost_events;
4732 }
4733 
4734 static struct ring_buffer_event *
4735 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4736 	       unsigned long *lost_events)
4737 {
4738 	struct ring_buffer_event *event;
4739 	struct buffer_page *reader;
4740 	int nr_loops = 0;
4741 
4742 	if (ts)
4743 		*ts = 0;
4744  again:
4745 	/*
4746 	 * We repeat when a time extend is encountered.
4747 	 * Since the time extend is always attached to a data event,
4748 	 * we should never loop more than once.
4749 	 * (We never hit the following condition more than twice).
4750 	 */
4751 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4752 		return NULL;
4753 
4754 	reader = rb_get_reader_page(cpu_buffer);
4755 	if (!reader)
4756 		return NULL;
4757 
4758 	event = rb_reader_event(cpu_buffer);
4759 
4760 	switch (event->type_len) {
4761 	case RINGBUF_TYPE_PADDING:
4762 		if (rb_null_event(event))
4763 			RB_WARN_ON(cpu_buffer, 1);
4764 		/*
4765 		 * Because the writer could be discarding every
4766 		 * event it creates (which would probably be bad)
4767 		 * if we were to go back to "again" then we may never
4768 		 * catch up, and will trigger the warn on, or lock
4769 		 * the box. Return the padding, and we will release
4770 		 * the current locks, and try again.
4771 		 */
4772 		return event;
4773 
4774 	case RINGBUF_TYPE_TIME_EXTEND:
4775 		/* Internal data, OK to advance */
4776 		rb_advance_reader(cpu_buffer);
4777 		goto again;
4778 
4779 	case RINGBUF_TYPE_TIME_STAMP:
4780 		if (ts) {
4781 			*ts = rb_event_time_stamp(event);
4782 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4783 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4784 							 cpu_buffer->cpu, ts);
4785 		}
4786 		/* Internal data, OK to advance */
4787 		rb_advance_reader(cpu_buffer);
4788 		goto again;
4789 
4790 	case RINGBUF_TYPE_DATA:
4791 		if (ts && !(*ts)) {
4792 			*ts = cpu_buffer->read_stamp + event->time_delta;
4793 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4794 							 cpu_buffer->cpu, ts);
4795 		}
4796 		if (lost_events)
4797 			*lost_events = rb_lost_events(cpu_buffer);
4798 		return event;
4799 
4800 	default:
4801 		RB_WARN_ON(cpu_buffer, 1);
4802 	}
4803 
4804 	return NULL;
4805 }
4806 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4807 
4808 static struct ring_buffer_event *
4809 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4810 {
4811 	struct trace_buffer *buffer;
4812 	struct ring_buffer_per_cpu *cpu_buffer;
4813 	struct ring_buffer_event *event;
4814 	int nr_loops = 0;
4815 
4816 	if (ts)
4817 		*ts = 0;
4818 
4819 	cpu_buffer = iter->cpu_buffer;
4820 	buffer = cpu_buffer->buffer;
4821 
4822 	/*
4823 	 * Check if someone performed a consuming read to
4824 	 * the buffer. A consuming read invalidates the iterator
4825 	 * and we need to reset the iterator in this case.
4826 	 */
4827 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4828 		     iter->cache_reader_page != cpu_buffer->reader_page))
4829 		rb_iter_reset(iter);
4830 
4831  again:
4832 	if (ring_buffer_iter_empty(iter))
4833 		return NULL;
4834 
4835 	/*
4836 	 * As the writer can mess with what the iterator is trying
4837 	 * to read, just give up if we fail to get an event after
4838 	 * three tries. The iterator is not as reliable when reading
4839 	 * the ring buffer with an active write as the consumer is.
4840 	 * Do not warn if the three failures is reached.
4841 	 */
4842 	if (++nr_loops > 3)
4843 		return NULL;
4844 
4845 	if (rb_per_cpu_empty(cpu_buffer))
4846 		return NULL;
4847 
4848 	if (iter->head >= rb_page_size(iter->head_page)) {
4849 		rb_inc_iter(iter);
4850 		goto again;
4851 	}
4852 
4853 	event = rb_iter_head_event(iter);
4854 	if (!event)
4855 		goto again;
4856 
4857 	switch (event->type_len) {
4858 	case RINGBUF_TYPE_PADDING:
4859 		if (rb_null_event(event)) {
4860 			rb_inc_iter(iter);
4861 			goto again;
4862 		}
4863 		rb_advance_iter(iter);
4864 		return event;
4865 
4866 	case RINGBUF_TYPE_TIME_EXTEND:
4867 		/* Internal data, OK to advance */
4868 		rb_advance_iter(iter);
4869 		goto again;
4870 
4871 	case RINGBUF_TYPE_TIME_STAMP:
4872 		if (ts) {
4873 			*ts = rb_event_time_stamp(event);
4874 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4875 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4876 							 cpu_buffer->cpu, ts);
4877 		}
4878 		/* Internal data, OK to advance */
4879 		rb_advance_iter(iter);
4880 		goto again;
4881 
4882 	case RINGBUF_TYPE_DATA:
4883 		if (ts && !(*ts)) {
4884 			*ts = iter->read_stamp + event->time_delta;
4885 			ring_buffer_normalize_time_stamp(buffer,
4886 							 cpu_buffer->cpu, ts);
4887 		}
4888 		return event;
4889 
4890 	default:
4891 		RB_WARN_ON(cpu_buffer, 1);
4892 	}
4893 
4894 	return NULL;
4895 }
4896 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4897 
4898 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4899 {
4900 	if (likely(!in_nmi())) {
4901 		raw_spin_lock(&cpu_buffer->reader_lock);
4902 		return true;
4903 	}
4904 
4905 	/*
4906 	 * If an NMI die dumps out the content of the ring buffer
4907 	 * trylock must be used to prevent a deadlock if the NMI
4908 	 * preempted a task that holds the ring buffer locks. If
4909 	 * we get the lock then all is fine, if not, then continue
4910 	 * to do the read, but this can corrupt the ring buffer,
4911 	 * so it must be permanently disabled from future writes.
4912 	 * Reading from NMI is a oneshot deal.
4913 	 */
4914 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4915 		return true;
4916 
4917 	/* Continue without locking, but disable the ring buffer */
4918 	atomic_inc(&cpu_buffer->record_disabled);
4919 	return false;
4920 }
4921 
4922 static inline void
4923 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4924 {
4925 	if (likely(locked))
4926 		raw_spin_unlock(&cpu_buffer->reader_lock);
4927 	return;
4928 }
4929 
4930 /**
4931  * ring_buffer_peek - peek at the next event to be read
4932  * @buffer: The ring buffer to read
4933  * @cpu: The cpu to peak at
4934  * @ts: The timestamp counter of this event.
4935  * @lost_events: a variable to store if events were lost (may be NULL)
4936  *
4937  * This will return the event that will be read next, but does
4938  * not consume the data.
4939  */
4940 struct ring_buffer_event *
4941 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4942 		 unsigned long *lost_events)
4943 {
4944 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4945 	struct ring_buffer_event *event;
4946 	unsigned long flags;
4947 	bool dolock;
4948 
4949 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4950 		return NULL;
4951 
4952  again:
4953 	local_irq_save(flags);
4954 	dolock = rb_reader_lock(cpu_buffer);
4955 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4956 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4957 		rb_advance_reader(cpu_buffer);
4958 	rb_reader_unlock(cpu_buffer, dolock);
4959 	local_irq_restore(flags);
4960 
4961 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4962 		goto again;
4963 
4964 	return event;
4965 }
4966 
4967 /** ring_buffer_iter_dropped - report if there are dropped events
4968  * @iter: The ring buffer iterator
4969  *
4970  * Returns true if there was dropped events since the last peek.
4971  */
4972 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4973 {
4974 	bool ret = iter->missed_events != 0;
4975 
4976 	iter->missed_events = 0;
4977 	return ret;
4978 }
4979 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4980 
4981 /**
4982  * ring_buffer_iter_peek - peek at the next event to be read
4983  * @iter: The ring buffer iterator
4984  * @ts: The timestamp counter of this event.
4985  *
4986  * This will return the event that will be read next, but does
4987  * not increment the iterator.
4988  */
4989 struct ring_buffer_event *
4990 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4991 {
4992 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4993 	struct ring_buffer_event *event;
4994 	unsigned long flags;
4995 
4996  again:
4997 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4998 	event = rb_iter_peek(iter, ts);
4999 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5000 
5001 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5002 		goto again;
5003 
5004 	return event;
5005 }
5006 
5007 /**
5008  * ring_buffer_consume - return an event and consume it
5009  * @buffer: The ring buffer to get the next event from
5010  * @cpu: the cpu to read the buffer from
5011  * @ts: a variable to store the timestamp (may be NULL)
5012  * @lost_events: a variable to store if events were lost (may be NULL)
5013  *
5014  * Returns the next event in the ring buffer, and that event is consumed.
5015  * Meaning, that sequential reads will keep returning a different event,
5016  * and eventually empty the ring buffer if the producer is slower.
5017  */
5018 struct ring_buffer_event *
5019 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5020 		    unsigned long *lost_events)
5021 {
5022 	struct ring_buffer_per_cpu *cpu_buffer;
5023 	struct ring_buffer_event *event = NULL;
5024 	unsigned long flags;
5025 	bool dolock;
5026 
5027  again:
5028 	/* might be called in atomic */
5029 	preempt_disable();
5030 
5031 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5032 		goto out;
5033 
5034 	cpu_buffer = buffer->buffers[cpu];
5035 	local_irq_save(flags);
5036 	dolock = rb_reader_lock(cpu_buffer);
5037 
5038 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5039 	if (event) {
5040 		cpu_buffer->lost_events = 0;
5041 		rb_advance_reader(cpu_buffer);
5042 	}
5043 
5044 	rb_reader_unlock(cpu_buffer, dolock);
5045 	local_irq_restore(flags);
5046 
5047  out:
5048 	preempt_enable();
5049 
5050 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5051 		goto again;
5052 
5053 	return event;
5054 }
5055 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5056 
5057 /**
5058  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5059  * @buffer: The ring buffer to read from
5060  * @cpu: The cpu buffer to iterate over
5061  * @flags: gfp flags to use for memory allocation
5062  *
5063  * This performs the initial preparations necessary to iterate
5064  * through the buffer.  Memory is allocated, buffer recording
5065  * is disabled, and the iterator pointer is returned to the caller.
5066  *
5067  * Disabling buffer recording prevents the reading from being
5068  * corrupted. This is not a consuming read, so a producer is not
5069  * expected.
5070  *
5071  * After a sequence of ring_buffer_read_prepare calls, the user is
5072  * expected to make at least one call to ring_buffer_read_prepare_sync.
5073  * Afterwards, ring_buffer_read_start is invoked to get things going
5074  * for real.
5075  *
5076  * This overall must be paired with ring_buffer_read_finish.
5077  */
5078 struct ring_buffer_iter *
5079 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5080 {
5081 	struct ring_buffer_per_cpu *cpu_buffer;
5082 	struct ring_buffer_iter *iter;
5083 
5084 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5085 		return NULL;
5086 
5087 	iter = kzalloc(sizeof(*iter), flags);
5088 	if (!iter)
5089 		return NULL;
5090 
5091 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5092 	if (!iter->event) {
5093 		kfree(iter);
5094 		return NULL;
5095 	}
5096 
5097 	cpu_buffer = buffer->buffers[cpu];
5098 
5099 	iter->cpu_buffer = cpu_buffer;
5100 
5101 	atomic_inc(&cpu_buffer->resize_disabled);
5102 
5103 	return iter;
5104 }
5105 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5106 
5107 /**
5108  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5109  *
5110  * All previously invoked ring_buffer_read_prepare calls to prepare
5111  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5112  * calls on those iterators are allowed.
5113  */
5114 void
5115 ring_buffer_read_prepare_sync(void)
5116 {
5117 	synchronize_rcu();
5118 }
5119 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5120 
5121 /**
5122  * ring_buffer_read_start - start a non consuming read of the buffer
5123  * @iter: The iterator returned by ring_buffer_read_prepare
5124  *
5125  * This finalizes the startup of an iteration through the buffer.
5126  * The iterator comes from a call to ring_buffer_read_prepare and
5127  * an intervening ring_buffer_read_prepare_sync must have been
5128  * performed.
5129  *
5130  * Must be paired with ring_buffer_read_finish.
5131  */
5132 void
5133 ring_buffer_read_start(struct ring_buffer_iter *iter)
5134 {
5135 	struct ring_buffer_per_cpu *cpu_buffer;
5136 	unsigned long flags;
5137 
5138 	if (!iter)
5139 		return;
5140 
5141 	cpu_buffer = iter->cpu_buffer;
5142 
5143 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5144 	arch_spin_lock(&cpu_buffer->lock);
5145 	rb_iter_reset(iter);
5146 	arch_spin_unlock(&cpu_buffer->lock);
5147 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5148 }
5149 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5150 
5151 /**
5152  * ring_buffer_read_finish - finish reading the iterator of the buffer
5153  * @iter: The iterator retrieved by ring_buffer_start
5154  *
5155  * This re-enables the recording to the buffer, and frees the
5156  * iterator.
5157  */
5158 void
5159 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5160 {
5161 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5162 	unsigned long flags;
5163 
5164 	/*
5165 	 * Ring buffer is disabled from recording, here's a good place
5166 	 * to check the integrity of the ring buffer.
5167 	 * Must prevent readers from trying to read, as the check
5168 	 * clears the HEAD page and readers require it.
5169 	 */
5170 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5171 	rb_check_pages(cpu_buffer);
5172 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5173 
5174 	atomic_dec(&cpu_buffer->resize_disabled);
5175 	kfree(iter->event);
5176 	kfree(iter);
5177 }
5178 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5179 
5180 /**
5181  * ring_buffer_iter_advance - advance the iterator to the next location
5182  * @iter: The ring buffer iterator
5183  *
5184  * Move the location of the iterator such that the next read will
5185  * be the next location of the iterator.
5186  */
5187 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5188 {
5189 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5190 	unsigned long flags;
5191 
5192 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5193 
5194 	rb_advance_iter(iter);
5195 
5196 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5197 }
5198 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5199 
5200 /**
5201  * ring_buffer_size - return the size of the ring buffer (in bytes)
5202  * @buffer: The ring buffer.
5203  * @cpu: The CPU to get ring buffer size from.
5204  */
5205 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5206 {
5207 	/*
5208 	 * Earlier, this method returned
5209 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5210 	 * Since the nr_pages field is now removed, we have converted this to
5211 	 * return the per cpu buffer value.
5212 	 */
5213 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5214 		return 0;
5215 
5216 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5217 }
5218 EXPORT_SYMBOL_GPL(ring_buffer_size);
5219 
5220 static void
5221 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5222 {
5223 	rb_head_page_deactivate(cpu_buffer);
5224 
5225 	cpu_buffer->head_page
5226 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5227 	local_set(&cpu_buffer->head_page->write, 0);
5228 	local_set(&cpu_buffer->head_page->entries, 0);
5229 	local_set(&cpu_buffer->head_page->page->commit, 0);
5230 
5231 	cpu_buffer->head_page->read = 0;
5232 
5233 	cpu_buffer->tail_page = cpu_buffer->head_page;
5234 	cpu_buffer->commit_page = cpu_buffer->head_page;
5235 
5236 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5237 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5238 	local_set(&cpu_buffer->reader_page->write, 0);
5239 	local_set(&cpu_buffer->reader_page->entries, 0);
5240 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5241 	cpu_buffer->reader_page->read = 0;
5242 
5243 	local_set(&cpu_buffer->entries_bytes, 0);
5244 	local_set(&cpu_buffer->overrun, 0);
5245 	local_set(&cpu_buffer->commit_overrun, 0);
5246 	local_set(&cpu_buffer->dropped_events, 0);
5247 	local_set(&cpu_buffer->entries, 0);
5248 	local_set(&cpu_buffer->committing, 0);
5249 	local_set(&cpu_buffer->commits, 0);
5250 	local_set(&cpu_buffer->pages_touched, 0);
5251 	local_set(&cpu_buffer->pages_read, 0);
5252 	cpu_buffer->last_pages_touch = 0;
5253 	cpu_buffer->shortest_full = 0;
5254 	cpu_buffer->read = 0;
5255 	cpu_buffer->read_bytes = 0;
5256 
5257 	rb_time_set(&cpu_buffer->write_stamp, 0);
5258 	rb_time_set(&cpu_buffer->before_stamp, 0);
5259 
5260 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5261 
5262 	cpu_buffer->lost_events = 0;
5263 	cpu_buffer->last_overrun = 0;
5264 
5265 	rb_head_page_activate(cpu_buffer);
5266 }
5267 
5268 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5269 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5270 {
5271 	unsigned long flags;
5272 
5273 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5274 
5275 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5276 		goto out;
5277 
5278 	arch_spin_lock(&cpu_buffer->lock);
5279 
5280 	rb_reset_cpu(cpu_buffer);
5281 
5282 	arch_spin_unlock(&cpu_buffer->lock);
5283 
5284  out:
5285 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5286 }
5287 
5288 /**
5289  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5290  * @buffer: The ring buffer to reset a per cpu buffer of
5291  * @cpu: The CPU buffer to be reset
5292  */
5293 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5294 {
5295 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5296 
5297 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5298 		return;
5299 
5300 	/* prevent another thread from changing buffer sizes */
5301 	mutex_lock(&buffer->mutex);
5302 
5303 	atomic_inc(&cpu_buffer->resize_disabled);
5304 	atomic_inc(&cpu_buffer->record_disabled);
5305 
5306 	/* Make sure all commits have finished */
5307 	synchronize_rcu();
5308 
5309 	reset_disabled_cpu_buffer(cpu_buffer);
5310 
5311 	atomic_dec(&cpu_buffer->record_disabled);
5312 	atomic_dec(&cpu_buffer->resize_disabled);
5313 
5314 	mutex_unlock(&buffer->mutex);
5315 }
5316 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5317 
5318 /**
5319  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5320  * @buffer: The ring buffer to reset a per cpu buffer of
5321  * @cpu: The CPU buffer to be reset
5322  */
5323 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5324 {
5325 	struct ring_buffer_per_cpu *cpu_buffer;
5326 	int cpu;
5327 
5328 	/* prevent another thread from changing buffer sizes */
5329 	mutex_lock(&buffer->mutex);
5330 
5331 	for_each_online_buffer_cpu(buffer, cpu) {
5332 		cpu_buffer = buffer->buffers[cpu];
5333 
5334 		atomic_inc(&cpu_buffer->resize_disabled);
5335 		atomic_inc(&cpu_buffer->record_disabled);
5336 	}
5337 
5338 	/* Make sure all commits have finished */
5339 	synchronize_rcu();
5340 
5341 	for_each_online_buffer_cpu(buffer, cpu) {
5342 		cpu_buffer = buffer->buffers[cpu];
5343 
5344 		reset_disabled_cpu_buffer(cpu_buffer);
5345 
5346 		atomic_dec(&cpu_buffer->record_disabled);
5347 		atomic_dec(&cpu_buffer->resize_disabled);
5348 	}
5349 
5350 	mutex_unlock(&buffer->mutex);
5351 }
5352 
5353 /**
5354  * ring_buffer_reset - reset a ring buffer
5355  * @buffer: The ring buffer to reset all cpu buffers
5356  */
5357 void ring_buffer_reset(struct trace_buffer *buffer)
5358 {
5359 	struct ring_buffer_per_cpu *cpu_buffer;
5360 	int cpu;
5361 
5362 	/* prevent another thread from changing buffer sizes */
5363 	mutex_lock(&buffer->mutex);
5364 
5365 	for_each_buffer_cpu(buffer, cpu) {
5366 		cpu_buffer = buffer->buffers[cpu];
5367 
5368 		atomic_inc(&cpu_buffer->resize_disabled);
5369 		atomic_inc(&cpu_buffer->record_disabled);
5370 	}
5371 
5372 	/* Make sure all commits have finished */
5373 	synchronize_rcu();
5374 
5375 	for_each_buffer_cpu(buffer, cpu) {
5376 		cpu_buffer = buffer->buffers[cpu];
5377 
5378 		reset_disabled_cpu_buffer(cpu_buffer);
5379 
5380 		atomic_dec(&cpu_buffer->record_disabled);
5381 		atomic_dec(&cpu_buffer->resize_disabled);
5382 	}
5383 
5384 	mutex_unlock(&buffer->mutex);
5385 }
5386 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5387 
5388 /**
5389  * ring_buffer_empty - is the ring buffer empty?
5390  * @buffer: The ring buffer to test
5391  */
5392 bool ring_buffer_empty(struct trace_buffer *buffer)
5393 {
5394 	struct ring_buffer_per_cpu *cpu_buffer;
5395 	unsigned long flags;
5396 	bool dolock;
5397 	int cpu;
5398 	int ret;
5399 
5400 	/* yes this is racy, but if you don't like the race, lock the buffer */
5401 	for_each_buffer_cpu(buffer, cpu) {
5402 		cpu_buffer = buffer->buffers[cpu];
5403 		local_irq_save(flags);
5404 		dolock = rb_reader_lock(cpu_buffer);
5405 		ret = rb_per_cpu_empty(cpu_buffer);
5406 		rb_reader_unlock(cpu_buffer, dolock);
5407 		local_irq_restore(flags);
5408 
5409 		if (!ret)
5410 			return false;
5411 	}
5412 
5413 	return true;
5414 }
5415 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5416 
5417 /**
5418  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5419  * @buffer: The ring buffer
5420  * @cpu: The CPU buffer to test
5421  */
5422 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5423 {
5424 	struct ring_buffer_per_cpu *cpu_buffer;
5425 	unsigned long flags;
5426 	bool dolock;
5427 	int ret;
5428 
5429 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5430 		return true;
5431 
5432 	cpu_buffer = buffer->buffers[cpu];
5433 	local_irq_save(flags);
5434 	dolock = rb_reader_lock(cpu_buffer);
5435 	ret = rb_per_cpu_empty(cpu_buffer);
5436 	rb_reader_unlock(cpu_buffer, dolock);
5437 	local_irq_restore(flags);
5438 
5439 	return ret;
5440 }
5441 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5442 
5443 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5444 /**
5445  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5446  * @buffer_a: One buffer to swap with
5447  * @buffer_b: The other buffer to swap with
5448  * @cpu: the CPU of the buffers to swap
5449  *
5450  * This function is useful for tracers that want to take a "snapshot"
5451  * of a CPU buffer and has another back up buffer lying around.
5452  * it is expected that the tracer handles the cpu buffer not being
5453  * used at the moment.
5454  */
5455 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5456 			 struct trace_buffer *buffer_b, int cpu)
5457 {
5458 	struct ring_buffer_per_cpu *cpu_buffer_a;
5459 	struct ring_buffer_per_cpu *cpu_buffer_b;
5460 	int ret = -EINVAL;
5461 
5462 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5463 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5464 		goto out;
5465 
5466 	cpu_buffer_a = buffer_a->buffers[cpu];
5467 	cpu_buffer_b = buffer_b->buffers[cpu];
5468 
5469 	/* At least make sure the two buffers are somewhat the same */
5470 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5471 		goto out;
5472 
5473 	ret = -EAGAIN;
5474 
5475 	if (atomic_read(&buffer_a->record_disabled))
5476 		goto out;
5477 
5478 	if (atomic_read(&buffer_b->record_disabled))
5479 		goto out;
5480 
5481 	if (atomic_read(&cpu_buffer_a->record_disabled))
5482 		goto out;
5483 
5484 	if (atomic_read(&cpu_buffer_b->record_disabled))
5485 		goto out;
5486 
5487 	/*
5488 	 * We can't do a synchronize_rcu here because this
5489 	 * function can be called in atomic context.
5490 	 * Normally this will be called from the same CPU as cpu.
5491 	 * If not it's up to the caller to protect this.
5492 	 */
5493 	atomic_inc(&cpu_buffer_a->record_disabled);
5494 	atomic_inc(&cpu_buffer_b->record_disabled);
5495 
5496 	ret = -EBUSY;
5497 	if (local_read(&cpu_buffer_a->committing))
5498 		goto out_dec;
5499 	if (local_read(&cpu_buffer_b->committing))
5500 		goto out_dec;
5501 
5502 	buffer_a->buffers[cpu] = cpu_buffer_b;
5503 	buffer_b->buffers[cpu] = cpu_buffer_a;
5504 
5505 	cpu_buffer_b->buffer = buffer_a;
5506 	cpu_buffer_a->buffer = buffer_b;
5507 
5508 	ret = 0;
5509 
5510 out_dec:
5511 	atomic_dec(&cpu_buffer_a->record_disabled);
5512 	atomic_dec(&cpu_buffer_b->record_disabled);
5513 out:
5514 	return ret;
5515 }
5516 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5517 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5518 
5519 /**
5520  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5521  * @buffer: the buffer to allocate for.
5522  * @cpu: the cpu buffer to allocate.
5523  *
5524  * This function is used in conjunction with ring_buffer_read_page.
5525  * When reading a full page from the ring buffer, these functions
5526  * can be used to speed up the process. The calling function should
5527  * allocate a few pages first with this function. Then when it
5528  * needs to get pages from the ring buffer, it passes the result
5529  * of this function into ring_buffer_read_page, which will swap
5530  * the page that was allocated, with the read page of the buffer.
5531  *
5532  * Returns:
5533  *  The page allocated, or ERR_PTR
5534  */
5535 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5536 {
5537 	struct ring_buffer_per_cpu *cpu_buffer;
5538 	struct buffer_data_page *bpage = NULL;
5539 	unsigned long flags;
5540 	struct page *page;
5541 
5542 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5543 		return ERR_PTR(-ENODEV);
5544 
5545 	cpu_buffer = buffer->buffers[cpu];
5546 	local_irq_save(flags);
5547 	arch_spin_lock(&cpu_buffer->lock);
5548 
5549 	if (cpu_buffer->free_page) {
5550 		bpage = cpu_buffer->free_page;
5551 		cpu_buffer->free_page = NULL;
5552 	}
5553 
5554 	arch_spin_unlock(&cpu_buffer->lock);
5555 	local_irq_restore(flags);
5556 
5557 	if (bpage)
5558 		goto out;
5559 
5560 	page = alloc_pages_node(cpu_to_node(cpu),
5561 				GFP_KERNEL | __GFP_NORETRY, 0);
5562 	if (!page)
5563 		return ERR_PTR(-ENOMEM);
5564 
5565 	bpage = page_address(page);
5566 
5567  out:
5568 	rb_init_page(bpage);
5569 
5570 	return bpage;
5571 }
5572 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5573 
5574 /**
5575  * ring_buffer_free_read_page - free an allocated read page
5576  * @buffer: the buffer the page was allocate for
5577  * @cpu: the cpu buffer the page came from
5578  * @data: the page to free
5579  *
5580  * Free a page allocated from ring_buffer_alloc_read_page.
5581  */
5582 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5583 {
5584 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5585 	struct buffer_data_page *bpage = data;
5586 	struct page *page = virt_to_page(bpage);
5587 	unsigned long flags;
5588 
5589 	/* If the page is still in use someplace else, we can't reuse it */
5590 	if (page_ref_count(page) > 1)
5591 		goto out;
5592 
5593 	local_irq_save(flags);
5594 	arch_spin_lock(&cpu_buffer->lock);
5595 
5596 	if (!cpu_buffer->free_page) {
5597 		cpu_buffer->free_page = bpage;
5598 		bpage = NULL;
5599 	}
5600 
5601 	arch_spin_unlock(&cpu_buffer->lock);
5602 	local_irq_restore(flags);
5603 
5604  out:
5605 	free_page((unsigned long)bpage);
5606 }
5607 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5608 
5609 /**
5610  * ring_buffer_read_page - extract a page from the ring buffer
5611  * @buffer: buffer to extract from
5612  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5613  * @len: amount to extract
5614  * @cpu: the cpu of the buffer to extract
5615  * @full: should the extraction only happen when the page is full.
5616  *
5617  * This function will pull out a page from the ring buffer and consume it.
5618  * @data_page must be the address of the variable that was returned
5619  * from ring_buffer_alloc_read_page. This is because the page might be used
5620  * to swap with a page in the ring buffer.
5621  *
5622  * for example:
5623  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5624  *	if (IS_ERR(rpage))
5625  *		return PTR_ERR(rpage);
5626  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5627  *	if (ret >= 0)
5628  *		process_page(rpage, ret);
5629  *
5630  * When @full is set, the function will not return true unless
5631  * the writer is off the reader page.
5632  *
5633  * Note: it is up to the calling functions to handle sleeps and wakeups.
5634  *  The ring buffer can be used anywhere in the kernel and can not
5635  *  blindly call wake_up. The layer that uses the ring buffer must be
5636  *  responsible for that.
5637  *
5638  * Returns:
5639  *  >=0 if data has been transferred, returns the offset of consumed data.
5640  *  <0 if no data has been transferred.
5641  */
5642 int ring_buffer_read_page(struct trace_buffer *buffer,
5643 			  void **data_page, size_t len, int cpu, int full)
5644 {
5645 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5646 	struct ring_buffer_event *event;
5647 	struct buffer_data_page *bpage;
5648 	struct buffer_page *reader;
5649 	unsigned long missed_events;
5650 	unsigned long flags;
5651 	unsigned int commit;
5652 	unsigned int read;
5653 	u64 save_timestamp;
5654 	int ret = -1;
5655 
5656 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5657 		goto out;
5658 
5659 	/*
5660 	 * If len is not big enough to hold the page header, then
5661 	 * we can not copy anything.
5662 	 */
5663 	if (len <= BUF_PAGE_HDR_SIZE)
5664 		goto out;
5665 
5666 	len -= BUF_PAGE_HDR_SIZE;
5667 
5668 	if (!data_page)
5669 		goto out;
5670 
5671 	bpage = *data_page;
5672 	if (!bpage)
5673 		goto out;
5674 
5675 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5676 
5677 	reader = rb_get_reader_page(cpu_buffer);
5678 	if (!reader)
5679 		goto out_unlock;
5680 
5681 	event = rb_reader_event(cpu_buffer);
5682 
5683 	read = reader->read;
5684 	commit = rb_page_commit(reader);
5685 
5686 	/* Check if any events were dropped */
5687 	missed_events = cpu_buffer->lost_events;
5688 
5689 	/*
5690 	 * If this page has been partially read or
5691 	 * if len is not big enough to read the rest of the page or
5692 	 * a writer is still on the page, then
5693 	 * we must copy the data from the page to the buffer.
5694 	 * Otherwise, we can simply swap the page with the one passed in.
5695 	 */
5696 	if (read || (len < (commit - read)) ||
5697 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5698 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5699 		unsigned int rpos = read;
5700 		unsigned int pos = 0;
5701 		unsigned int size;
5702 
5703 		/*
5704 		 * If a full page is expected, this can still be returned
5705 		 * if there's been a previous partial read and the
5706 		 * rest of the page can be read and the commit page is off
5707 		 * the reader page.
5708 		 */
5709 		if (full &&
5710 		    (!read || (len < (commit - read)) ||
5711 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5712 			goto out_unlock;
5713 
5714 		if (len > (commit - read))
5715 			len = (commit - read);
5716 
5717 		/* Always keep the time extend and data together */
5718 		size = rb_event_ts_length(event);
5719 
5720 		if (len < size)
5721 			goto out_unlock;
5722 
5723 		/* save the current timestamp, since the user will need it */
5724 		save_timestamp = cpu_buffer->read_stamp;
5725 
5726 		/* Need to copy one event at a time */
5727 		do {
5728 			/* We need the size of one event, because
5729 			 * rb_advance_reader only advances by one event,
5730 			 * whereas rb_event_ts_length may include the size of
5731 			 * one or two events.
5732 			 * We have already ensured there's enough space if this
5733 			 * is a time extend. */
5734 			size = rb_event_length(event);
5735 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5736 
5737 			len -= size;
5738 
5739 			rb_advance_reader(cpu_buffer);
5740 			rpos = reader->read;
5741 			pos += size;
5742 
5743 			if (rpos >= commit)
5744 				break;
5745 
5746 			event = rb_reader_event(cpu_buffer);
5747 			/* Always keep the time extend and data together */
5748 			size = rb_event_ts_length(event);
5749 		} while (len >= size);
5750 
5751 		/* update bpage */
5752 		local_set(&bpage->commit, pos);
5753 		bpage->time_stamp = save_timestamp;
5754 
5755 		/* we copied everything to the beginning */
5756 		read = 0;
5757 	} else {
5758 		/* update the entry counter */
5759 		cpu_buffer->read += rb_page_entries(reader);
5760 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5761 
5762 		/* swap the pages */
5763 		rb_init_page(bpage);
5764 		bpage = reader->page;
5765 		reader->page = *data_page;
5766 		local_set(&reader->write, 0);
5767 		local_set(&reader->entries, 0);
5768 		reader->read = 0;
5769 		*data_page = bpage;
5770 
5771 		/*
5772 		 * Use the real_end for the data size,
5773 		 * This gives us a chance to store the lost events
5774 		 * on the page.
5775 		 */
5776 		if (reader->real_end)
5777 			local_set(&bpage->commit, reader->real_end);
5778 	}
5779 	ret = read;
5780 
5781 	cpu_buffer->lost_events = 0;
5782 
5783 	commit = local_read(&bpage->commit);
5784 	/*
5785 	 * Set a flag in the commit field if we lost events
5786 	 */
5787 	if (missed_events) {
5788 		/* If there is room at the end of the page to save the
5789 		 * missed events, then record it there.
5790 		 */
5791 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5792 			memcpy(&bpage->data[commit], &missed_events,
5793 			       sizeof(missed_events));
5794 			local_add(RB_MISSED_STORED, &bpage->commit);
5795 			commit += sizeof(missed_events);
5796 		}
5797 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5798 	}
5799 
5800 	/*
5801 	 * This page may be off to user land. Zero it out here.
5802 	 */
5803 	if (commit < BUF_PAGE_SIZE)
5804 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5805 
5806  out_unlock:
5807 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5808 
5809  out:
5810 	return ret;
5811 }
5812 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5813 
5814 /*
5815  * We only allocate new buffers, never free them if the CPU goes down.
5816  * If we were to free the buffer, then the user would lose any trace that was in
5817  * the buffer.
5818  */
5819 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5820 {
5821 	struct trace_buffer *buffer;
5822 	long nr_pages_same;
5823 	int cpu_i;
5824 	unsigned long nr_pages;
5825 
5826 	buffer = container_of(node, struct trace_buffer, node);
5827 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5828 		return 0;
5829 
5830 	nr_pages = 0;
5831 	nr_pages_same = 1;
5832 	/* check if all cpu sizes are same */
5833 	for_each_buffer_cpu(buffer, cpu_i) {
5834 		/* fill in the size from first enabled cpu */
5835 		if (nr_pages == 0)
5836 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5837 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5838 			nr_pages_same = 0;
5839 			break;
5840 		}
5841 	}
5842 	/* allocate minimum pages, user can later expand it */
5843 	if (!nr_pages_same)
5844 		nr_pages = 2;
5845 	buffer->buffers[cpu] =
5846 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5847 	if (!buffer->buffers[cpu]) {
5848 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5849 		     cpu);
5850 		return -ENOMEM;
5851 	}
5852 	smp_wmb();
5853 	cpumask_set_cpu(cpu, buffer->cpumask);
5854 	return 0;
5855 }
5856 
5857 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5858 /*
5859  * This is a basic integrity check of the ring buffer.
5860  * Late in the boot cycle this test will run when configured in.
5861  * It will kick off a thread per CPU that will go into a loop
5862  * writing to the per cpu ring buffer various sizes of data.
5863  * Some of the data will be large items, some small.
5864  *
5865  * Another thread is created that goes into a spin, sending out
5866  * IPIs to the other CPUs to also write into the ring buffer.
5867  * this is to test the nesting ability of the buffer.
5868  *
5869  * Basic stats are recorded and reported. If something in the
5870  * ring buffer should happen that's not expected, a big warning
5871  * is displayed and all ring buffers are disabled.
5872  */
5873 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5874 
5875 struct rb_test_data {
5876 	struct trace_buffer *buffer;
5877 	unsigned long		events;
5878 	unsigned long		bytes_written;
5879 	unsigned long		bytes_alloc;
5880 	unsigned long		bytes_dropped;
5881 	unsigned long		events_nested;
5882 	unsigned long		bytes_written_nested;
5883 	unsigned long		bytes_alloc_nested;
5884 	unsigned long		bytes_dropped_nested;
5885 	int			min_size_nested;
5886 	int			max_size_nested;
5887 	int			max_size;
5888 	int			min_size;
5889 	int			cpu;
5890 	int			cnt;
5891 };
5892 
5893 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5894 
5895 /* 1 meg per cpu */
5896 #define RB_TEST_BUFFER_SIZE	1048576
5897 
5898 static char rb_string[] __initdata =
5899 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5900 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5901 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5902 
5903 static bool rb_test_started __initdata;
5904 
5905 struct rb_item {
5906 	int size;
5907 	char str[];
5908 };
5909 
5910 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5911 {
5912 	struct ring_buffer_event *event;
5913 	struct rb_item *item;
5914 	bool started;
5915 	int event_len;
5916 	int size;
5917 	int len;
5918 	int cnt;
5919 
5920 	/* Have nested writes different that what is written */
5921 	cnt = data->cnt + (nested ? 27 : 0);
5922 
5923 	/* Multiply cnt by ~e, to make some unique increment */
5924 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5925 
5926 	len = size + sizeof(struct rb_item);
5927 
5928 	started = rb_test_started;
5929 	/* read rb_test_started before checking buffer enabled */
5930 	smp_rmb();
5931 
5932 	event = ring_buffer_lock_reserve(data->buffer, len);
5933 	if (!event) {
5934 		/* Ignore dropped events before test starts. */
5935 		if (started) {
5936 			if (nested)
5937 				data->bytes_dropped += len;
5938 			else
5939 				data->bytes_dropped_nested += len;
5940 		}
5941 		return len;
5942 	}
5943 
5944 	event_len = ring_buffer_event_length(event);
5945 
5946 	if (RB_WARN_ON(data->buffer, event_len < len))
5947 		goto out;
5948 
5949 	item = ring_buffer_event_data(event);
5950 	item->size = size;
5951 	memcpy(item->str, rb_string, size);
5952 
5953 	if (nested) {
5954 		data->bytes_alloc_nested += event_len;
5955 		data->bytes_written_nested += len;
5956 		data->events_nested++;
5957 		if (!data->min_size_nested || len < data->min_size_nested)
5958 			data->min_size_nested = len;
5959 		if (len > data->max_size_nested)
5960 			data->max_size_nested = len;
5961 	} else {
5962 		data->bytes_alloc += event_len;
5963 		data->bytes_written += len;
5964 		data->events++;
5965 		if (!data->min_size || len < data->min_size)
5966 			data->max_size = len;
5967 		if (len > data->max_size)
5968 			data->max_size = len;
5969 	}
5970 
5971  out:
5972 	ring_buffer_unlock_commit(data->buffer, event);
5973 
5974 	return 0;
5975 }
5976 
5977 static __init int rb_test(void *arg)
5978 {
5979 	struct rb_test_data *data = arg;
5980 
5981 	while (!kthread_should_stop()) {
5982 		rb_write_something(data, false);
5983 		data->cnt++;
5984 
5985 		set_current_state(TASK_INTERRUPTIBLE);
5986 		/* Now sleep between a min of 100-300us and a max of 1ms */
5987 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5988 	}
5989 
5990 	return 0;
5991 }
5992 
5993 static __init void rb_ipi(void *ignore)
5994 {
5995 	struct rb_test_data *data;
5996 	int cpu = smp_processor_id();
5997 
5998 	data = &rb_data[cpu];
5999 	rb_write_something(data, true);
6000 }
6001 
6002 static __init int rb_hammer_test(void *arg)
6003 {
6004 	while (!kthread_should_stop()) {
6005 
6006 		/* Send an IPI to all cpus to write data! */
6007 		smp_call_function(rb_ipi, NULL, 1);
6008 		/* No sleep, but for non preempt, let others run */
6009 		schedule();
6010 	}
6011 
6012 	return 0;
6013 }
6014 
6015 static __init int test_ringbuffer(void)
6016 {
6017 	struct task_struct *rb_hammer;
6018 	struct trace_buffer *buffer;
6019 	int cpu;
6020 	int ret = 0;
6021 
6022 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6023 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6024 		return 0;
6025 	}
6026 
6027 	pr_info("Running ring buffer tests...\n");
6028 
6029 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6030 	if (WARN_ON(!buffer))
6031 		return 0;
6032 
6033 	/* Disable buffer so that threads can't write to it yet */
6034 	ring_buffer_record_off(buffer);
6035 
6036 	for_each_online_cpu(cpu) {
6037 		rb_data[cpu].buffer = buffer;
6038 		rb_data[cpu].cpu = cpu;
6039 		rb_data[cpu].cnt = cpu;
6040 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6041 						     cpu, "rbtester/%u");
6042 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6043 			pr_cont("FAILED\n");
6044 			ret = PTR_ERR(rb_threads[cpu]);
6045 			goto out_free;
6046 		}
6047 	}
6048 
6049 	/* Now create the rb hammer! */
6050 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6051 	if (WARN_ON(IS_ERR(rb_hammer))) {
6052 		pr_cont("FAILED\n");
6053 		ret = PTR_ERR(rb_hammer);
6054 		goto out_free;
6055 	}
6056 
6057 	ring_buffer_record_on(buffer);
6058 	/*
6059 	 * Show buffer is enabled before setting rb_test_started.
6060 	 * Yes there's a small race window where events could be
6061 	 * dropped and the thread wont catch it. But when a ring
6062 	 * buffer gets enabled, there will always be some kind of
6063 	 * delay before other CPUs see it. Thus, we don't care about
6064 	 * those dropped events. We care about events dropped after
6065 	 * the threads see that the buffer is active.
6066 	 */
6067 	smp_wmb();
6068 	rb_test_started = true;
6069 
6070 	set_current_state(TASK_INTERRUPTIBLE);
6071 	/* Just run for 10 seconds */;
6072 	schedule_timeout(10 * HZ);
6073 
6074 	kthread_stop(rb_hammer);
6075 
6076  out_free:
6077 	for_each_online_cpu(cpu) {
6078 		if (!rb_threads[cpu])
6079 			break;
6080 		kthread_stop(rb_threads[cpu]);
6081 	}
6082 	if (ret) {
6083 		ring_buffer_free(buffer);
6084 		return ret;
6085 	}
6086 
6087 	/* Report! */
6088 	pr_info("finished\n");
6089 	for_each_online_cpu(cpu) {
6090 		struct ring_buffer_event *event;
6091 		struct rb_test_data *data = &rb_data[cpu];
6092 		struct rb_item *item;
6093 		unsigned long total_events;
6094 		unsigned long total_dropped;
6095 		unsigned long total_written;
6096 		unsigned long total_alloc;
6097 		unsigned long total_read = 0;
6098 		unsigned long total_size = 0;
6099 		unsigned long total_len = 0;
6100 		unsigned long total_lost = 0;
6101 		unsigned long lost;
6102 		int big_event_size;
6103 		int small_event_size;
6104 
6105 		ret = -1;
6106 
6107 		total_events = data->events + data->events_nested;
6108 		total_written = data->bytes_written + data->bytes_written_nested;
6109 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6110 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6111 
6112 		big_event_size = data->max_size + data->max_size_nested;
6113 		small_event_size = data->min_size + data->min_size_nested;
6114 
6115 		pr_info("CPU %d:\n", cpu);
6116 		pr_info("              events:    %ld\n", total_events);
6117 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6118 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6119 		pr_info("       written bytes:    %ld\n", total_written);
6120 		pr_info("       biggest event:    %d\n", big_event_size);
6121 		pr_info("      smallest event:    %d\n", small_event_size);
6122 
6123 		if (RB_WARN_ON(buffer, total_dropped))
6124 			break;
6125 
6126 		ret = 0;
6127 
6128 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6129 			total_lost += lost;
6130 			item = ring_buffer_event_data(event);
6131 			total_len += ring_buffer_event_length(event);
6132 			total_size += item->size + sizeof(struct rb_item);
6133 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6134 				pr_info("FAILED!\n");
6135 				pr_info("buffer had: %.*s\n", item->size, item->str);
6136 				pr_info("expected:   %.*s\n", item->size, rb_string);
6137 				RB_WARN_ON(buffer, 1);
6138 				ret = -1;
6139 				break;
6140 			}
6141 			total_read++;
6142 		}
6143 		if (ret)
6144 			break;
6145 
6146 		ret = -1;
6147 
6148 		pr_info("         read events:   %ld\n", total_read);
6149 		pr_info("         lost events:   %ld\n", total_lost);
6150 		pr_info("        total events:   %ld\n", total_lost + total_read);
6151 		pr_info("  recorded len bytes:   %ld\n", total_len);
6152 		pr_info(" recorded size bytes:   %ld\n", total_size);
6153 		if (total_lost) {
6154 			pr_info(" With dropped events, record len and size may not match\n"
6155 				" alloced and written from above\n");
6156 		} else {
6157 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6158 				       total_size != total_written))
6159 				break;
6160 		}
6161 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6162 			break;
6163 
6164 		ret = 0;
6165 	}
6166 	if (!ret)
6167 		pr_info("Ring buffer PASSED!\n");
6168 
6169 	ring_buffer_free(buffer);
6170 	return 0;
6171 }
6172 
6173 late_initcall(test_ringbuffer);
6174 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6175