xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 68198dca)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 struct buffer_data_page {
284 	u64		 time_stamp;	/* page time stamp */
285 	local_t		 commit;	/* write committed index */
286 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
287 };
288 
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298 	struct list_head list;		/* list of buffer pages */
299 	local_t		 write;		/* index for next write */
300 	unsigned	 read;		/* index for next read */
301 	local_t		 entries;	/* entries on this page */
302 	unsigned long	 real_end;	/* real end of data */
303 	struct buffer_data_page *page;	/* Actual data page */
304 };
305 
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK		0xfffff
319 #define RB_WRITE_INTCNT		(1 << 20)
320 
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 	local_set(&bpage->commit, 0);
324 }
325 
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334 	return local_read(&((struct buffer_data_page *)page)->commit)
335 		+ BUF_PAGE_HDR_SIZE;
336 }
337 
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 	free_page((unsigned long)bpage->page);
345 	kfree(bpage);
346 }
347 
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353 	if (delta & TS_DELTA_TEST)
354 		return 1;
355 	return 0;
356 }
357 
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359 
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362 
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 	struct buffer_data_page field;
366 
367 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 			 (unsigned int)sizeof(field.time_stamp),
370 			 (unsigned int)is_signed_type(u64));
371 
372 	trace_seq_printf(s, "\tfield: local_t commit;\t"
373 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 			 (unsigned int)offsetof(typeof(field), commit),
375 			 (unsigned int)sizeof(field.commit),
376 			 (unsigned int)is_signed_type(long));
377 
378 	trace_seq_printf(s, "\tfield: int overwrite;\t"
379 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)offsetof(typeof(field), commit),
381 			 1,
382 			 (unsigned int)is_signed_type(long));
383 
384 	trace_seq_printf(s, "\tfield: char data;\t"
385 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 			 (unsigned int)offsetof(typeof(field), data),
387 			 (unsigned int)BUF_PAGE_SIZE,
388 			 (unsigned int)is_signed_type(char));
389 
390 	return !trace_seq_has_overflowed(s);
391 }
392 
393 struct rb_irq_work {
394 	struct irq_work			work;
395 	wait_queue_head_t		waiters;
396 	wait_queue_head_t		full_waiters;
397 	bool				waiters_pending;
398 	bool				full_waiters_pending;
399 	bool				wakeup_full;
400 };
401 
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406 	u64			ts;
407 	u64			delta;
408 	unsigned long		length;
409 	struct buffer_page	*tail_page;
410 	int			add_timestamp;
411 };
412 
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423 	RB_CTX_NMI,
424 	RB_CTX_IRQ,
425 	RB_CTX_SOFTIRQ,
426 	RB_CTX_NORMAL,
427 	RB_CTX_MAX
428 };
429 
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434 	int				cpu;
435 	atomic_t			record_disabled;
436 	struct ring_buffer		*buffer;
437 	raw_spinlock_t			reader_lock;	/* serialize readers */
438 	arch_spinlock_t			lock;
439 	struct lock_class_key		lock_key;
440 	struct buffer_data_page		*free_page;
441 	unsigned long			nr_pages;
442 	unsigned int			current_context;
443 	struct list_head		*pages;
444 	struct buffer_page		*head_page;	/* read from head */
445 	struct buffer_page		*tail_page;	/* write to tail */
446 	struct buffer_page		*commit_page;	/* committed pages */
447 	struct buffer_page		*reader_page;
448 	unsigned long			lost_events;
449 	unsigned long			last_overrun;
450 	local_t				entries_bytes;
451 	local_t				entries;
452 	local_t				overrun;
453 	local_t				commit_overrun;
454 	local_t				dropped_events;
455 	local_t				committing;
456 	local_t				commits;
457 	unsigned long			read;
458 	unsigned long			read_bytes;
459 	u64				write_stamp;
460 	u64				read_stamp;
461 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
462 	long				nr_pages_to_update;
463 	struct list_head		new_pages; /* new pages to add */
464 	struct work_struct		update_pages_work;
465 	struct completion		update_done;
466 
467 	struct rb_irq_work		irq_work;
468 };
469 
470 struct ring_buffer {
471 	unsigned			flags;
472 	int				cpus;
473 	atomic_t			record_disabled;
474 	atomic_t			resize_disabled;
475 	cpumask_var_t			cpumask;
476 
477 	struct lock_class_key		*reader_lock_key;
478 
479 	struct mutex			mutex;
480 
481 	struct ring_buffer_per_cpu	**buffers;
482 
483 	struct hlist_node		node;
484 	u64				(*clock)(void);
485 
486 	struct rb_irq_work		irq_work;
487 };
488 
489 struct ring_buffer_iter {
490 	struct ring_buffer_per_cpu	*cpu_buffer;
491 	unsigned long			head;
492 	struct buffer_page		*head_page;
493 	struct buffer_page		*cache_reader_page;
494 	unsigned long			cache_read;
495 	u64				read_stamp;
496 };
497 
498 /*
499  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
500  *
501  * Schedules a delayed work to wake up any task that is blocked on the
502  * ring buffer waiters queue.
503  */
504 static void rb_wake_up_waiters(struct irq_work *work)
505 {
506 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
507 
508 	wake_up_all(&rbwork->waiters);
509 	if (rbwork->wakeup_full) {
510 		rbwork->wakeup_full = false;
511 		wake_up_all(&rbwork->full_waiters);
512 	}
513 }
514 
515 /**
516  * ring_buffer_wait - wait for input to the ring buffer
517  * @buffer: buffer to wait on
518  * @cpu: the cpu buffer to wait on
519  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
520  *
521  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
522  * as data is added to any of the @buffer's cpu buffers. Otherwise
523  * it will wait for data to be added to a specific cpu buffer.
524  */
525 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
526 {
527 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
528 	DEFINE_WAIT(wait);
529 	struct rb_irq_work *work;
530 	int ret = 0;
531 
532 	/*
533 	 * Depending on what the caller is waiting for, either any
534 	 * data in any cpu buffer, or a specific buffer, put the
535 	 * caller on the appropriate wait queue.
536 	 */
537 	if (cpu == RING_BUFFER_ALL_CPUS) {
538 		work = &buffer->irq_work;
539 		/* Full only makes sense on per cpu reads */
540 		full = false;
541 	} else {
542 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
543 			return -ENODEV;
544 		cpu_buffer = buffer->buffers[cpu];
545 		work = &cpu_buffer->irq_work;
546 	}
547 
548 
549 	while (true) {
550 		if (full)
551 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
552 		else
553 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
554 
555 		/*
556 		 * The events can happen in critical sections where
557 		 * checking a work queue can cause deadlocks.
558 		 * After adding a task to the queue, this flag is set
559 		 * only to notify events to try to wake up the queue
560 		 * using irq_work.
561 		 *
562 		 * We don't clear it even if the buffer is no longer
563 		 * empty. The flag only causes the next event to run
564 		 * irq_work to do the work queue wake up. The worse
565 		 * that can happen if we race with !trace_empty() is that
566 		 * an event will cause an irq_work to try to wake up
567 		 * an empty queue.
568 		 *
569 		 * There's no reason to protect this flag either, as
570 		 * the work queue and irq_work logic will do the necessary
571 		 * synchronization for the wake ups. The only thing
572 		 * that is necessary is that the wake up happens after
573 		 * a task has been queued. It's OK for spurious wake ups.
574 		 */
575 		if (full)
576 			work->full_waiters_pending = true;
577 		else
578 			work->waiters_pending = true;
579 
580 		if (signal_pending(current)) {
581 			ret = -EINTR;
582 			break;
583 		}
584 
585 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
586 			break;
587 
588 		if (cpu != RING_BUFFER_ALL_CPUS &&
589 		    !ring_buffer_empty_cpu(buffer, cpu)) {
590 			unsigned long flags;
591 			bool pagebusy;
592 
593 			if (!full)
594 				break;
595 
596 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
597 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
598 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
599 
600 			if (!pagebusy)
601 				break;
602 		}
603 
604 		schedule();
605 	}
606 
607 	if (full)
608 		finish_wait(&work->full_waiters, &wait);
609 	else
610 		finish_wait(&work->waiters, &wait);
611 
612 	return ret;
613 }
614 
615 /**
616  * ring_buffer_poll_wait - poll on buffer input
617  * @buffer: buffer to wait on
618  * @cpu: the cpu buffer to wait on
619  * @filp: the file descriptor
620  * @poll_table: The poll descriptor
621  *
622  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
623  * as data is added to any of the @buffer's cpu buffers. Otherwise
624  * it will wait for data to be added to a specific cpu buffer.
625  *
626  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
627  * zero otherwise.
628  */
629 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
630 			  struct file *filp, poll_table *poll_table)
631 {
632 	struct ring_buffer_per_cpu *cpu_buffer;
633 	struct rb_irq_work *work;
634 
635 	if (cpu == RING_BUFFER_ALL_CPUS)
636 		work = &buffer->irq_work;
637 	else {
638 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
639 			return -EINVAL;
640 
641 		cpu_buffer = buffer->buffers[cpu];
642 		work = &cpu_buffer->irq_work;
643 	}
644 
645 	poll_wait(filp, &work->waiters, poll_table);
646 	work->waiters_pending = true;
647 	/*
648 	 * There's a tight race between setting the waiters_pending and
649 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
650 	 * is set, the next event will wake the task up, but we can get stuck
651 	 * if there's only a single event in.
652 	 *
653 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
654 	 * but adding a memory barrier to all events will cause too much of a
655 	 * performance hit in the fast path.  We only need a memory barrier when
656 	 * the buffer goes from empty to having content.  But as this race is
657 	 * extremely small, and it's not a problem if another event comes in, we
658 	 * will fix it later.
659 	 */
660 	smp_mb();
661 
662 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
663 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
664 		return POLLIN | POLLRDNORM;
665 	return 0;
666 }
667 
668 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
669 #define RB_WARN_ON(b, cond)						\
670 	({								\
671 		int _____ret = unlikely(cond);				\
672 		if (_____ret) {						\
673 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
674 				struct ring_buffer_per_cpu *__b =	\
675 					(void *)b;			\
676 				atomic_inc(&__b->buffer->record_disabled); \
677 			} else						\
678 				atomic_inc(&b->record_disabled);	\
679 			WARN_ON(1);					\
680 		}							\
681 		_____ret;						\
682 	})
683 
684 /* Up this if you want to test the TIME_EXTENTS and normalization */
685 #define DEBUG_SHIFT 0
686 
687 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
688 {
689 	/* shift to debug/test normalization and TIME_EXTENTS */
690 	return buffer->clock() << DEBUG_SHIFT;
691 }
692 
693 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
694 {
695 	u64 time;
696 
697 	preempt_disable_notrace();
698 	time = rb_time_stamp(buffer);
699 	preempt_enable_no_resched_notrace();
700 
701 	return time;
702 }
703 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
704 
705 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
706 				      int cpu, u64 *ts)
707 {
708 	/* Just stupid testing the normalize function and deltas */
709 	*ts >>= DEBUG_SHIFT;
710 }
711 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
712 
713 /*
714  * Making the ring buffer lockless makes things tricky.
715  * Although writes only happen on the CPU that they are on,
716  * and they only need to worry about interrupts. Reads can
717  * happen on any CPU.
718  *
719  * The reader page is always off the ring buffer, but when the
720  * reader finishes with a page, it needs to swap its page with
721  * a new one from the buffer. The reader needs to take from
722  * the head (writes go to the tail). But if a writer is in overwrite
723  * mode and wraps, it must push the head page forward.
724  *
725  * Here lies the problem.
726  *
727  * The reader must be careful to replace only the head page, and
728  * not another one. As described at the top of the file in the
729  * ASCII art, the reader sets its old page to point to the next
730  * page after head. It then sets the page after head to point to
731  * the old reader page. But if the writer moves the head page
732  * during this operation, the reader could end up with the tail.
733  *
734  * We use cmpxchg to help prevent this race. We also do something
735  * special with the page before head. We set the LSB to 1.
736  *
737  * When the writer must push the page forward, it will clear the
738  * bit that points to the head page, move the head, and then set
739  * the bit that points to the new head page.
740  *
741  * We also don't want an interrupt coming in and moving the head
742  * page on another writer. Thus we use the second LSB to catch
743  * that too. Thus:
744  *
745  * head->list->prev->next        bit 1          bit 0
746  *                              -------        -------
747  * Normal page                     0              0
748  * Points to head page             0              1
749  * New head page                   1              0
750  *
751  * Note we can not trust the prev pointer of the head page, because:
752  *
753  * +----+       +-----+        +-----+
754  * |    |------>|  T  |---X--->|  N  |
755  * |    |<------|     |        |     |
756  * +----+       +-----+        +-----+
757  *   ^                           ^ |
758  *   |          +-----+          | |
759  *   +----------|  R  |----------+ |
760  *              |     |<-----------+
761  *              +-----+
762  *
763  * Key:  ---X-->  HEAD flag set in pointer
764  *         T      Tail page
765  *         R      Reader page
766  *         N      Next page
767  *
768  * (see __rb_reserve_next() to see where this happens)
769  *
770  *  What the above shows is that the reader just swapped out
771  *  the reader page with a page in the buffer, but before it
772  *  could make the new header point back to the new page added
773  *  it was preempted by a writer. The writer moved forward onto
774  *  the new page added by the reader and is about to move forward
775  *  again.
776  *
777  *  You can see, it is legitimate for the previous pointer of
778  *  the head (or any page) not to point back to itself. But only
779  *  temporarially.
780  */
781 
782 #define RB_PAGE_NORMAL		0UL
783 #define RB_PAGE_HEAD		1UL
784 #define RB_PAGE_UPDATE		2UL
785 
786 
787 #define RB_FLAG_MASK		3UL
788 
789 /* PAGE_MOVED is not part of the mask */
790 #define RB_PAGE_MOVED		4UL
791 
792 /*
793  * rb_list_head - remove any bit
794  */
795 static struct list_head *rb_list_head(struct list_head *list)
796 {
797 	unsigned long val = (unsigned long)list;
798 
799 	return (struct list_head *)(val & ~RB_FLAG_MASK);
800 }
801 
802 /*
803  * rb_is_head_page - test if the given page is the head page
804  *
805  * Because the reader may move the head_page pointer, we can
806  * not trust what the head page is (it may be pointing to
807  * the reader page). But if the next page is a header page,
808  * its flags will be non zero.
809  */
810 static inline int
811 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
812 		struct buffer_page *page, struct list_head *list)
813 {
814 	unsigned long val;
815 
816 	val = (unsigned long)list->next;
817 
818 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
819 		return RB_PAGE_MOVED;
820 
821 	return val & RB_FLAG_MASK;
822 }
823 
824 /*
825  * rb_is_reader_page
826  *
827  * The unique thing about the reader page, is that, if the
828  * writer is ever on it, the previous pointer never points
829  * back to the reader page.
830  */
831 static bool rb_is_reader_page(struct buffer_page *page)
832 {
833 	struct list_head *list = page->list.prev;
834 
835 	return rb_list_head(list->next) != &page->list;
836 }
837 
838 /*
839  * rb_set_list_to_head - set a list_head to be pointing to head.
840  */
841 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
842 				struct list_head *list)
843 {
844 	unsigned long *ptr;
845 
846 	ptr = (unsigned long *)&list->next;
847 	*ptr |= RB_PAGE_HEAD;
848 	*ptr &= ~RB_PAGE_UPDATE;
849 }
850 
851 /*
852  * rb_head_page_activate - sets up head page
853  */
854 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
855 {
856 	struct buffer_page *head;
857 
858 	head = cpu_buffer->head_page;
859 	if (!head)
860 		return;
861 
862 	/*
863 	 * Set the previous list pointer to have the HEAD flag.
864 	 */
865 	rb_set_list_to_head(cpu_buffer, head->list.prev);
866 }
867 
868 static void rb_list_head_clear(struct list_head *list)
869 {
870 	unsigned long *ptr = (unsigned long *)&list->next;
871 
872 	*ptr &= ~RB_FLAG_MASK;
873 }
874 
875 /*
876  * rb_head_page_dactivate - clears head page ptr (for free list)
877  */
878 static void
879 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
880 {
881 	struct list_head *hd;
882 
883 	/* Go through the whole list and clear any pointers found. */
884 	rb_list_head_clear(cpu_buffer->pages);
885 
886 	list_for_each(hd, cpu_buffer->pages)
887 		rb_list_head_clear(hd);
888 }
889 
890 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
891 			    struct buffer_page *head,
892 			    struct buffer_page *prev,
893 			    int old_flag, int new_flag)
894 {
895 	struct list_head *list;
896 	unsigned long val = (unsigned long)&head->list;
897 	unsigned long ret;
898 
899 	list = &prev->list;
900 
901 	val &= ~RB_FLAG_MASK;
902 
903 	ret = cmpxchg((unsigned long *)&list->next,
904 		      val | old_flag, val | new_flag);
905 
906 	/* check if the reader took the page */
907 	if ((ret & ~RB_FLAG_MASK) != val)
908 		return RB_PAGE_MOVED;
909 
910 	return ret & RB_FLAG_MASK;
911 }
912 
913 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
914 				   struct buffer_page *head,
915 				   struct buffer_page *prev,
916 				   int old_flag)
917 {
918 	return rb_head_page_set(cpu_buffer, head, prev,
919 				old_flag, RB_PAGE_UPDATE);
920 }
921 
922 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
923 				 struct buffer_page *head,
924 				 struct buffer_page *prev,
925 				 int old_flag)
926 {
927 	return rb_head_page_set(cpu_buffer, head, prev,
928 				old_flag, RB_PAGE_HEAD);
929 }
930 
931 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
932 				   struct buffer_page *head,
933 				   struct buffer_page *prev,
934 				   int old_flag)
935 {
936 	return rb_head_page_set(cpu_buffer, head, prev,
937 				old_flag, RB_PAGE_NORMAL);
938 }
939 
940 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
941 			       struct buffer_page **bpage)
942 {
943 	struct list_head *p = rb_list_head((*bpage)->list.next);
944 
945 	*bpage = list_entry(p, struct buffer_page, list);
946 }
947 
948 static struct buffer_page *
949 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
950 {
951 	struct buffer_page *head;
952 	struct buffer_page *page;
953 	struct list_head *list;
954 	int i;
955 
956 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
957 		return NULL;
958 
959 	/* sanity check */
960 	list = cpu_buffer->pages;
961 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
962 		return NULL;
963 
964 	page = head = cpu_buffer->head_page;
965 	/*
966 	 * It is possible that the writer moves the header behind
967 	 * where we started, and we miss in one loop.
968 	 * A second loop should grab the header, but we'll do
969 	 * three loops just because I'm paranoid.
970 	 */
971 	for (i = 0; i < 3; i++) {
972 		do {
973 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
974 				cpu_buffer->head_page = page;
975 				return page;
976 			}
977 			rb_inc_page(cpu_buffer, &page);
978 		} while (page != head);
979 	}
980 
981 	RB_WARN_ON(cpu_buffer, 1);
982 
983 	return NULL;
984 }
985 
986 static int rb_head_page_replace(struct buffer_page *old,
987 				struct buffer_page *new)
988 {
989 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
990 	unsigned long val;
991 	unsigned long ret;
992 
993 	val = *ptr & ~RB_FLAG_MASK;
994 	val |= RB_PAGE_HEAD;
995 
996 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
997 
998 	return ret == val;
999 }
1000 
1001 /*
1002  * rb_tail_page_update - move the tail page forward
1003  */
1004 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1005 			       struct buffer_page *tail_page,
1006 			       struct buffer_page *next_page)
1007 {
1008 	unsigned long old_entries;
1009 	unsigned long old_write;
1010 
1011 	/*
1012 	 * The tail page now needs to be moved forward.
1013 	 *
1014 	 * We need to reset the tail page, but without messing
1015 	 * with possible erasing of data brought in by interrupts
1016 	 * that have moved the tail page and are currently on it.
1017 	 *
1018 	 * We add a counter to the write field to denote this.
1019 	 */
1020 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1021 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1022 
1023 	/*
1024 	 * Just make sure we have seen our old_write and synchronize
1025 	 * with any interrupts that come in.
1026 	 */
1027 	barrier();
1028 
1029 	/*
1030 	 * If the tail page is still the same as what we think
1031 	 * it is, then it is up to us to update the tail
1032 	 * pointer.
1033 	 */
1034 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1035 		/* Zero the write counter */
1036 		unsigned long val = old_write & ~RB_WRITE_MASK;
1037 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1038 
1039 		/*
1040 		 * This will only succeed if an interrupt did
1041 		 * not come in and change it. In which case, we
1042 		 * do not want to modify it.
1043 		 *
1044 		 * We add (void) to let the compiler know that we do not care
1045 		 * about the return value of these functions. We use the
1046 		 * cmpxchg to only update if an interrupt did not already
1047 		 * do it for us. If the cmpxchg fails, we don't care.
1048 		 */
1049 		(void)local_cmpxchg(&next_page->write, old_write, val);
1050 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1051 
1052 		/*
1053 		 * No need to worry about races with clearing out the commit.
1054 		 * it only can increment when a commit takes place. But that
1055 		 * only happens in the outer most nested commit.
1056 		 */
1057 		local_set(&next_page->page->commit, 0);
1058 
1059 		/* Again, either we update tail_page or an interrupt does */
1060 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1061 	}
1062 }
1063 
1064 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1065 			  struct buffer_page *bpage)
1066 {
1067 	unsigned long val = (unsigned long)bpage;
1068 
1069 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1070 		return 1;
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * rb_check_list - make sure a pointer to a list has the last bits zero
1077  */
1078 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1079 			 struct list_head *list)
1080 {
1081 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1082 		return 1;
1083 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1084 		return 1;
1085 	return 0;
1086 }
1087 
1088 /**
1089  * rb_check_pages - integrity check of buffer pages
1090  * @cpu_buffer: CPU buffer with pages to test
1091  *
1092  * As a safety measure we check to make sure the data pages have not
1093  * been corrupted.
1094  */
1095 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1096 {
1097 	struct list_head *head = cpu_buffer->pages;
1098 	struct buffer_page *bpage, *tmp;
1099 
1100 	/* Reset the head page if it exists */
1101 	if (cpu_buffer->head_page)
1102 		rb_set_head_page(cpu_buffer);
1103 
1104 	rb_head_page_deactivate(cpu_buffer);
1105 
1106 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1107 		return -1;
1108 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1109 		return -1;
1110 
1111 	if (rb_check_list(cpu_buffer, head))
1112 		return -1;
1113 
1114 	list_for_each_entry_safe(bpage, tmp, head, list) {
1115 		if (RB_WARN_ON(cpu_buffer,
1116 			       bpage->list.next->prev != &bpage->list))
1117 			return -1;
1118 		if (RB_WARN_ON(cpu_buffer,
1119 			       bpage->list.prev->next != &bpage->list))
1120 			return -1;
1121 		if (rb_check_list(cpu_buffer, &bpage->list))
1122 			return -1;
1123 	}
1124 
1125 	rb_head_page_activate(cpu_buffer);
1126 
1127 	return 0;
1128 }
1129 
1130 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1131 {
1132 	struct buffer_page *bpage, *tmp;
1133 	long i;
1134 
1135 	for (i = 0; i < nr_pages; i++) {
1136 		struct page *page;
1137 		/*
1138 		 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1139 		 * gracefully without invoking oom-killer and the system is not
1140 		 * destabilized.
1141 		 */
1142 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1143 				    GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1144 				    cpu_to_node(cpu));
1145 		if (!bpage)
1146 			goto free_pages;
1147 
1148 		list_add(&bpage->list, pages);
1149 
1150 		page = alloc_pages_node(cpu_to_node(cpu),
1151 					GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1152 		if (!page)
1153 			goto free_pages;
1154 		bpage->page = page_address(page);
1155 		rb_init_page(bpage->page);
1156 	}
1157 
1158 	return 0;
1159 
1160 free_pages:
1161 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1162 		list_del_init(&bpage->list);
1163 		free_buffer_page(bpage);
1164 	}
1165 
1166 	return -ENOMEM;
1167 }
1168 
1169 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1170 			     unsigned long nr_pages)
1171 {
1172 	LIST_HEAD(pages);
1173 
1174 	WARN_ON(!nr_pages);
1175 
1176 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1177 		return -ENOMEM;
1178 
1179 	/*
1180 	 * The ring buffer page list is a circular list that does not
1181 	 * start and end with a list head. All page list items point to
1182 	 * other pages.
1183 	 */
1184 	cpu_buffer->pages = pages.next;
1185 	list_del(&pages);
1186 
1187 	cpu_buffer->nr_pages = nr_pages;
1188 
1189 	rb_check_pages(cpu_buffer);
1190 
1191 	return 0;
1192 }
1193 
1194 static struct ring_buffer_per_cpu *
1195 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1196 {
1197 	struct ring_buffer_per_cpu *cpu_buffer;
1198 	struct buffer_page *bpage;
1199 	struct page *page;
1200 	int ret;
1201 
1202 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1203 				  GFP_KERNEL, cpu_to_node(cpu));
1204 	if (!cpu_buffer)
1205 		return NULL;
1206 
1207 	cpu_buffer->cpu = cpu;
1208 	cpu_buffer->buffer = buffer;
1209 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1210 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1211 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1212 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1213 	init_completion(&cpu_buffer->update_done);
1214 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1215 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1216 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1217 
1218 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1219 			    GFP_KERNEL, cpu_to_node(cpu));
1220 	if (!bpage)
1221 		goto fail_free_buffer;
1222 
1223 	rb_check_bpage(cpu_buffer, bpage);
1224 
1225 	cpu_buffer->reader_page = bpage;
1226 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1227 	if (!page)
1228 		goto fail_free_reader;
1229 	bpage->page = page_address(page);
1230 	rb_init_page(bpage->page);
1231 
1232 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1233 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1234 
1235 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1236 	if (ret < 0)
1237 		goto fail_free_reader;
1238 
1239 	cpu_buffer->head_page
1240 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1241 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1242 
1243 	rb_head_page_activate(cpu_buffer);
1244 
1245 	return cpu_buffer;
1246 
1247  fail_free_reader:
1248 	free_buffer_page(cpu_buffer->reader_page);
1249 
1250  fail_free_buffer:
1251 	kfree(cpu_buffer);
1252 	return NULL;
1253 }
1254 
1255 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1256 {
1257 	struct list_head *head = cpu_buffer->pages;
1258 	struct buffer_page *bpage, *tmp;
1259 
1260 	free_buffer_page(cpu_buffer->reader_page);
1261 
1262 	rb_head_page_deactivate(cpu_buffer);
1263 
1264 	if (head) {
1265 		list_for_each_entry_safe(bpage, tmp, head, list) {
1266 			list_del_init(&bpage->list);
1267 			free_buffer_page(bpage);
1268 		}
1269 		bpage = list_entry(head, struct buffer_page, list);
1270 		free_buffer_page(bpage);
1271 	}
1272 
1273 	kfree(cpu_buffer);
1274 }
1275 
1276 /**
1277  * __ring_buffer_alloc - allocate a new ring_buffer
1278  * @size: the size in bytes per cpu that is needed.
1279  * @flags: attributes to set for the ring buffer.
1280  *
1281  * Currently the only flag that is available is the RB_FL_OVERWRITE
1282  * flag. This flag means that the buffer will overwrite old data
1283  * when the buffer wraps. If this flag is not set, the buffer will
1284  * drop data when the tail hits the head.
1285  */
1286 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1287 					struct lock_class_key *key)
1288 {
1289 	struct ring_buffer *buffer;
1290 	long nr_pages;
1291 	int bsize;
1292 	int cpu;
1293 	int ret;
1294 
1295 	/* keep it in its own cache line */
1296 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1297 			 GFP_KERNEL);
1298 	if (!buffer)
1299 		return NULL;
1300 
1301 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1302 		goto fail_free_buffer;
1303 
1304 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1305 	buffer->flags = flags;
1306 	buffer->clock = trace_clock_local;
1307 	buffer->reader_lock_key = key;
1308 
1309 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1310 	init_waitqueue_head(&buffer->irq_work.waiters);
1311 
1312 	/* need at least two pages */
1313 	if (nr_pages < 2)
1314 		nr_pages = 2;
1315 
1316 	buffer->cpus = nr_cpu_ids;
1317 
1318 	bsize = sizeof(void *) * nr_cpu_ids;
1319 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1320 				  GFP_KERNEL);
1321 	if (!buffer->buffers)
1322 		goto fail_free_cpumask;
1323 
1324 	cpu = raw_smp_processor_id();
1325 	cpumask_set_cpu(cpu, buffer->cpumask);
1326 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1327 	if (!buffer->buffers[cpu])
1328 		goto fail_free_buffers;
1329 
1330 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1331 	if (ret < 0)
1332 		goto fail_free_buffers;
1333 
1334 	mutex_init(&buffer->mutex);
1335 
1336 	return buffer;
1337 
1338  fail_free_buffers:
1339 	for_each_buffer_cpu(buffer, cpu) {
1340 		if (buffer->buffers[cpu])
1341 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1342 	}
1343 	kfree(buffer->buffers);
1344 
1345  fail_free_cpumask:
1346 	free_cpumask_var(buffer->cpumask);
1347 
1348  fail_free_buffer:
1349 	kfree(buffer);
1350 	return NULL;
1351 }
1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1353 
1354 /**
1355  * ring_buffer_free - free a ring buffer.
1356  * @buffer: the buffer to free.
1357  */
1358 void
1359 ring_buffer_free(struct ring_buffer *buffer)
1360 {
1361 	int cpu;
1362 
1363 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1364 
1365 	for_each_buffer_cpu(buffer, cpu)
1366 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1367 
1368 	kfree(buffer->buffers);
1369 	free_cpumask_var(buffer->cpumask);
1370 
1371 	kfree(buffer);
1372 }
1373 EXPORT_SYMBOL_GPL(ring_buffer_free);
1374 
1375 void ring_buffer_set_clock(struct ring_buffer *buffer,
1376 			   u64 (*clock)(void))
1377 {
1378 	buffer->clock = clock;
1379 }
1380 
1381 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1382 
1383 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1384 {
1385 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1386 }
1387 
1388 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1389 {
1390 	return local_read(&bpage->write) & RB_WRITE_MASK;
1391 }
1392 
1393 static int
1394 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1395 {
1396 	struct list_head *tail_page, *to_remove, *next_page;
1397 	struct buffer_page *to_remove_page, *tmp_iter_page;
1398 	struct buffer_page *last_page, *first_page;
1399 	unsigned long nr_removed;
1400 	unsigned long head_bit;
1401 	int page_entries;
1402 
1403 	head_bit = 0;
1404 
1405 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1406 	atomic_inc(&cpu_buffer->record_disabled);
1407 	/*
1408 	 * We don't race with the readers since we have acquired the reader
1409 	 * lock. We also don't race with writers after disabling recording.
1410 	 * This makes it easy to figure out the first and the last page to be
1411 	 * removed from the list. We unlink all the pages in between including
1412 	 * the first and last pages. This is done in a busy loop so that we
1413 	 * lose the least number of traces.
1414 	 * The pages are freed after we restart recording and unlock readers.
1415 	 */
1416 	tail_page = &cpu_buffer->tail_page->list;
1417 
1418 	/*
1419 	 * tail page might be on reader page, we remove the next page
1420 	 * from the ring buffer
1421 	 */
1422 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1423 		tail_page = rb_list_head(tail_page->next);
1424 	to_remove = tail_page;
1425 
1426 	/* start of pages to remove */
1427 	first_page = list_entry(rb_list_head(to_remove->next),
1428 				struct buffer_page, list);
1429 
1430 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1431 		to_remove = rb_list_head(to_remove)->next;
1432 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1433 	}
1434 
1435 	next_page = rb_list_head(to_remove)->next;
1436 
1437 	/*
1438 	 * Now we remove all pages between tail_page and next_page.
1439 	 * Make sure that we have head_bit value preserved for the
1440 	 * next page
1441 	 */
1442 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1443 						head_bit);
1444 	next_page = rb_list_head(next_page);
1445 	next_page->prev = tail_page;
1446 
1447 	/* make sure pages points to a valid page in the ring buffer */
1448 	cpu_buffer->pages = next_page;
1449 
1450 	/* update head page */
1451 	if (head_bit)
1452 		cpu_buffer->head_page = list_entry(next_page,
1453 						struct buffer_page, list);
1454 
1455 	/*
1456 	 * change read pointer to make sure any read iterators reset
1457 	 * themselves
1458 	 */
1459 	cpu_buffer->read = 0;
1460 
1461 	/* pages are removed, resume tracing and then free the pages */
1462 	atomic_dec(&cpu_buffer->record_disabled);
1463 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1464 
1465 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1466 
1467 	/* last buffer page to remove */
1468 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1469 				list);
1470 	tmp_iter_page = first_page;
1471 
1472 	do {
1473 		to_remove_page = tmp_iter_page;
1474 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1475 
1476 		/* update the counters */
1477 		page_entries = rb_page_entries(to_remove_page);
1478 		if (page_entries) {
1479 			/*
1480 			 * If something was added to this page, it was full
1481 			 * since it is not the tail page. So we deduct the
1482 			 * bytes consumed in ring buffer from here.
1483 			 * Increment overrun to account for the lost events.
1484 			 */
1485 			local_add(page_entries, &cpu_buffer->overrun);
1486 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1487 		}
1488 
1489 		/*
1490 		 * We have already removed references to this list item, just
1491 		 * free up the buffer_page and its page
1492 		 */
1493 		free_buffer_page(to_remove_page);
1494 		nr_removed--;
1495 
1496 	} while (to_remove_page != last_page);
1497 
1498 	RB_WARN_ON(cpu_buffer, nr_removed);
1499 
1500 	return nr_removed == 0;
1501 }
1502 
1503 static int
1504 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1505 {
1506 	struct list_head *pages = &cpu_buffer->new_pages;
1507 	int retries, success;
1508 
1509 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1510 	/*
1511 	 * We are holding the reader lock, so the reader page won't be swapped
1512 	 * in the ring buffer. Now we are racing with the writer trying to
1513 	 * move head page and the tail page.
1514 	 * We are going to adapt the reader page update process where:
1515 	 * 1. We first splice the start and end of list of new pages between
1516 	 *    the head page and its previous page.
1517 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1518 	 *    start of new pages list.
1519 	 * 3. Finally, we update the head->prev to the end of new list.
1520 	 *
1521 	 * We will try this process 10 times, to make sure that we don't keep
1522 	 * spinning.
1523 	 */
1524 	retries = 10;
1525 	success = 0;
1526 	while (retries--) {
1527 		struct list_head *head_page, *prev_page, *r;
1528 		struct list_head *last_page, *first_page;
1529 		struct list_head *head_page_with_bit;
1530 
1531 		head_page = &rb_set_head_page(cpu_buffer)->list;
1532 		if (!head_page)
1533 			break;
1534 		prev_page = head_page->prev;
1535 
1536 		first_page = pages->next;
1537 		last_page  = pages->prev;
1538 
1539 		head_page_with_bit = (struct list_head *)
1540 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1541 
1542 		last_page->next = head_page_with_bit;
1543 		first_page->prev = prev_page;
1544 
1545 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1546 
1547 		if (r == head_page_with_bit) {
1548 			/*
1549 			 * yay, we replaced the page pointer to our new list,
1550 			 * now, we just have to update to head page's prev
1551 			 * pointer to point to end of list
1552 			 */
1553 			head_page->prev = last_page;
1554 			success = 1;
1555 			break;
1556 		}
1557 	}
1558 
1559 	if (success)
1560 		INIT_LIST_HEAD(pages);
1561 	/*
1562 	 * If we weren't successful in adding in new pages, warn and stop
1563 	 * tracing
1564 	 */
1565 	RB_WARN_ON(cpu_buffer, !success);
1566 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1567 
1568 	/* free pages if they weren't inserted */
1569 	if (!success) {
1570 		struct buffer_page *bpage, *tmp;
1571 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1572 					 list) {
1573 			list_del_init(&bpage->list);
1574 			free_buffer_page(bpage);
1575 		}
1576 	}
1577 	return success;
1578 }
1579 
1580 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1581 {
1582 	int success;
1583 
1584 	if (cpu_buffer->nr_pages_to_update > 0)
1585 		success = rb_insert_pages(cpu_buffer);
1586 	else
1587 		success = rb_remove_pages(cpu_buffer,
1588 					-cpu_buffer->nr_pages_to_update);
1589 
1590 	if (success)
1591 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1592 }
1593 
1594 static void update_pages_handler(struct work_struct *work)
1595 {
1596 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1597 			struct ring_buffer_per_cpu, update_pages_work);
1598 	rb_update_pages(cpu_buffer);
1599 	complete(&cpu_buffer->update_done);
1600 }
1601 
1602 /**
1603  * ring_buffer_resize - resize the ring buffer
1604  * @buffer: the buffer to resize.
1605  * @size: the new size.
1606  * @cpu_id: the cpu buffer to resize
1607  *
1608  * Minimum size is 2 * BUF_PAGE_SIZE.
1609  *
1610  * Returns 0 on success and < 0 on failure.
1611  */
1612 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1613 			int cpu_id)
1614 {
1615 	struct ring_buffer_per_cpu *cpu_buffer;
1616 	unsigned long nr_pages;
1617 	int cpu, err = 0;
1618 
1619 	/*
1620 	 * Always succeed at resizing a non-existent buffer:
1621 	 */
1622 	if (!buffer)
1623 		return size;
1624 
1625 	/* Make sure the requested buffer exists */
1626 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1627 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1628 		return size;
1629 
1630 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631 
1632 	/* we need a minimum of two pages */
1633 	if (nr_pages < 2)
1634 		nr_pages = 2;
1635 
1636 	size = nr_pages * BUF_PAGE_SIZE;
1637 
1638 	/*
1639 	 * Don't succeed if resizing is disabled, as a reader might be
1640 	 * manipulating the ring buffer and is expecting a sane state while
1641 	 * this is true.
1642 	 */
1643 	if (atomic_read(&buffer->resize_disabled))
1644 		return -EBUSY;
1645 
1646 	/* prevent another thread from changing buffer sizes */
1647 	mutex_lock(&buffer->mutex);
1648 
1649 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1650 		/* calculate the pages to update */
1651 		for_each_buffer_cpu(buffer, cpu) {
1652 			cpu_buffer = buffer->buffers[cpu];
1653 
1654 			cpu_buffer->nr_pages_to_update = nr_pages -
1655 							cpu_buffer->nr_pages;
1656 			/*
1657 			 * nothing more to do for removing pages or no update
1658 			 */
1659 			if (cpu_buffer->nr_pages_to_update <= 0)
1660 				continue;
1661 			/*
1662 			 * to add pages, make sure all new pages can be
1663 			 * allocated without receiving ENOMEM
1664 			 */
1665 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1666 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1667 						&cpu_buffer->new_pages, cpu)) {
1668 				/* not enough memory for new pages */
1669 				err = -ENOMEM;
1670 				goto out_err;
1671 			}
1672 		}
1673 
1674 		get_online_cpus();
1675 		/*
1676 		 * Fire off all the required work handlers
1677 		 * We can't schedule on offline CPUs, but it's not necessary
1678 		 * since we can change their buffer sizes without any race.
1679 		 */
1680 		for_each_buffer_cpu(buffer, cpu) {
1681 			cpu_buffer = buffer->buffers[cpu];
1682 			if (!cpu_buffer->nr_pages_to_update)
1683 				continue;
1684 
1685 			/* Can't run something on an offline CPU. */
1686 			if (!cpu_online(cpu)) {
1687 				rb_update_pages(cpu_buffer);
1688 				cpu_buffer->nr_pages_to_update = 0;
1689 			} else {
1690 				schedule_work_on(cpu,
1691 						&cpu_buffer->update_pages_work);
1692 			}
1693 		}
1694 
1695 		/* wait for all the updates to complete */
1696 		for_each_buffer_cpu(buffer, cpu) {
1697 			cpu_buffer = buffer->buffers[cpu];
1698 			if (!cpu_buffer->nr_pages_to_update)
1699 				continue;
1700 
1701 			if (cpu_online(cpu))
1702 				wait_for_completion(&cpu_buffer->update_done);
1703 			cpu_buffer->nr_pages_to_update = 0;
1704 		}
1705 
1706 		put_online_cpus();
1707 	} else {
1708 		/* Make sure this CPU has been intitialized */
1709 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1710 			goto out;
1711 
1712 		cpu_buffer = buffer->buffers[cpu_id];
1713 
1714 		if (nr_pages == cpu_buffer->nr_pages)
1715 			goto out;
1716 
1717 		cpu_buffer->nr_pages_to_update = nr_pages -
1718 						cpu_buffer->nr_pages;
1719 
1720 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1721 		if (cpu_buffer->nr_pages_to_update > 0 &&
1722 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1723 					    &cpu_buffer->new_pages, cpu_id)) {
1724 			err = -ENOMEM;
1725 			goto out_err;
1726 		}
1727 
1728 		get_online_cpus();
1729 
1730 		/* Can't run something on an offline CPU. */
1731 		if (!cpu_online(cpu_id))
1732 			rb_update_pages(cpu_buffer);
1733 		else {
1734 			schedule_work_on(cpu_id,
1735 					 &cpu_buffer->update_pages_work);
1736 			wait_for_completion(&cpu_buffer->update_done);
1737 		}
1738 
1739 		cpu_buffer->nr_pages_to_update = 0;
1740 		put_online_cpus();
1741 	}
1742 
1743  out:
1744 	/*
1745 	 * The ring buffer resize can happen with the ring buffer
1746 	 * enabled, so that the update disturbs the tracing as little
1747 	 * as possible. But if the buffer is disabled, we do not need
1748 	 * to worry about that, and we can take the time to verify
1749 	 * that the buffer is not corrupt.
1750 	 */
1751 	if (atomic_read(&buffer->record_disabled)) {
1752 		atomic_inc(&buffer->record_disabled);
1753 		/*
1754 		 * Even though the buffer was disabled, we must make sure
1755 		 * that it is truly disabled before calling rb_check_pages.
1756 		 * There could have been a race between checking
1757 		 * record_disable and incrementing it.
1758 		 */
1759 		synchronize_sched();
1760 		for_each_buffer_cpu(buffer, cpu) {
1761 			cpu_buffer = buffer->buffers[cpu];
1762 			rb_check_pages(cpu_buffer);
1763 		}
1764 		atomic_dec(&buffer->record_disabled);
1765 	}
1766 
1767 	mutex_unlock(&buffer->mutex);
1768 	return size;
1769 
1770  out_err:
1771 	for_each_buffer_cpu(buffer, cpu) {
1772 		struct buffer_page *bpage, *tmp;
1773 
1774 		cpu_buffer = buffer->buffers[cpu];
1775 		cpu_buffer->nr_pages_to_update = 0;
1776 
1777 		if (list_empty(&cpu_buffer->new_pages))
1778 			continue;
1779 
1780 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1781 					list) {
1782 			list_del_init(&bpage->list);
1783 			free_buffer_page(bpage);
1784 		}
1785 	}
1786 	mutex_unlock(&buffer->mutex);
1787 	return err;
1788 }
1789 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1790 
1791 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1792 {
1793 	mutex_lock(&buffer->mutex);
1794 	if (val)
1795 		buffer->flags |= RB_FL_OVERWRITE;
1796 	else
1797 		buffer->flags &= ~RB_FL_OVERWRITE;
1798 	mutex_unlock(&buffer->mutex);
1799 }
1800 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1801 
1802 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1803 {
1804 	return bpage->page->data + index;
1805 }
1806 
1807 static __always_inline struct ring_buffer_event *
1808 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1809 {
1810 	return __rb_page_index(cpu_buffer->reader_page,
1811 			       cpu_buffer->reader_page->read);
1812 }
1813 
1814 static __always_inline struct ring_buffer_event *
1815 rb_iter_head_event(struct ring_buffer_iter *iter)
1816 {
1817 	return __rb_page_index(iter->head_page, iter->head);
1818 }
1819 
1820 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1821 {
1822 	return local_read(&bpage->page->commit);
1823 }
1824 
1825 /* Size is determined by what has been committed */
1826 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1827 {
1828 	return rb_page_commit(bpage);
1829 }
1830 
1831 static __always_inline unsigned
1832 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1833 {
1834 	return rb_page_commit(cpu_buffer->commit_page);
1835 }
1836 
1837 static __always_inline unsigned
1838 rb_event_index(struct ring_buffer_event *event)
1839 {
1840 	unsigned long addr = (unsigned long)event;
1841 
1842 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1843 }
1844 
1845 static void rb_inc_iter(struct ring_buffer_iter *iter)
1846 {
1847 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1848 
1849 	/*
1850 	 * The iterator could be on the reader page (it starts there).
1851 	 * But the head could have moved, since the reader was
1852 	 * found. Check for this case and assign the iterator
1853 	 * to the head page instead of next.
1854 	 */
1855 	if (iter->head_page == cpu_buffer->reader_page)
1856 		iter->head_page = rb_set_head_page(cpu_buffer);
1857 	else
1858 		rb_inc_page(cpu_buffer, &iter->head_page);
1859 
1860 	iter->read_stamp = iter->head_page->page->time_stamp;
1861 	iter->head = 0;
1862 }
1863 
1864 /*
1865  * rb_handle_head_page - writer hit the head page
1866  *
1867  * Returns: +1 to retry page
1868  *           0 to continue
1869  *          -1 on error
1870  */
1871 static int
1872 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1873 		    struct buffer_page *tail_page,
1874 		    struct buffer_page *next_page)
1875 {
1876 	struct buffer_page *new_head;
1877 	int entries;
1878 	int type;
1879 	int ret;
1880 
1881 	entries = rb_page_entries(next_page);
1882 
1883 	/*
1884 	 * The hard part is here. We need to move the head
1885 	 * forward, and protect against both readers on
1886 	 * other CPUs and writers coming in via interrupts.
1887 	 */
1888 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1889 				       RB_PAGE_HEAD);
1890 
1891 	/*
1892 	 * type can be one of four:
1893 	 *  NORMAL - an interrupt already moved it for us
1894 	 *  HEAD   - we are the first to get here.
1895 	 *  UPDATE - we are the interrupt interrupting
1896 	 *           a current move.
1897 	 *  MOVED  - a reader on another CPU moved the next
1898 	 *           pointer to its reader page. Give up
1899 	 *           and try again.
1900 	 */
1901 
1902 	switch (type) {
1903 	case RB_PAGE_HEAD:
1904 		/*
1905 		 * We changed the head to UPDATE, thus
1906 		 * it is our responsibility to update
1907 		 * the counters.
1908 		 */
1909 		local_add(entries, &cpu_buffer->overrun);
1910 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1911 
1912 		/*
1913 		 * The entries will be zeroed out when we move the
1914 		 * tail page.
1915 		 */
1916 
1917 		/* still more to do */
1918 		break;
1919 
1920 	case RB_PAGE_UPDATE:
1921 		/*
1922 		 * This is an interrupt that interrupt the
1923 		 * previous update. Still more to do.
1924 		 */
1925 		break;
1926 	case RB_PAGE_NORMAL:
1927 		/*
1928 		 * An interrupt came in before the update
1929 		 * and processed this for us.
1930 		 * Nothing left to do.
1931 		 */
1932 		return 1;
1933 	case RB_PAGE_MOVED:
1934 		/*
1935 		 * The reader is on another CPU and just did
1936 		 * a swap with our next_page.
1937 		 * Try again.
1938 		 */
1939 		return 1;
1940 	default:
1941 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1942 		return -1;
1943 	}
1944 
1945 	/*
1946 	 * Now that we are here, the old head pointer is
1947 	 * set to UPDATE. This will keep the reader from
1948 	 * swapping the head page with the reader page.
1949 	 * The reader (on another CPU) will spin till
1950 	 * we are finished.
1951 	 *
1952 	 * We just need to protect against interrupts
1953 	 * doing the job. We will set the next pointer
1954 	 * to HEAD. After that, we set the old pointer
1955 	 * to NORMAL, but only if it was HEAD before.
1956 	 * otherwise we are an interrupt, and only
1957 	 * want the outer most commit to reset it.
1958 	 */
1959 	new_head = next_page;
1960 	rb_inc_page(cpu_buffer, &new_head);
1961 
1962 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1963 				    RB_PAGE_NORMAL);
1964 
1965 	/*
1966 	 * Valid returns are:
1967 	 *  HEAD   - an interrupt came in and already set it.
1968 	 *  NORMAL - One of two things:
1969 	 *            1) We really set it.
1970 	 *            2) A bunch of interrupts came in and moved
1971 	 *               the page forward again.
1972 	 */
1973 	switch (ret) {
1974 	case RB_PAGE_HEAD:
1975 	case RB_PAGE_NORMAL:
1976 		/* OK */
1977 		break;
1978 	default:
1979 		RB_WARN_ON(cpu_buffer, 1);
1980 		return -1;
1981 	}
1982 
1983 	/*
1984 	 * It is possible that an interrupt came in,
1985 	 * set the head up, then more interrupts came in
1986 	 * and moved it again. When we get back here,
1987 	 * the page would have been set to NORMAL but we
1988 	 * just set it back to HEAD.
1989 	 *
1990 	 * How do you detect this? Well, if that happened
1991 	 * the tail page would have moved.
1992 	 */
1993 	if (ret == RB_PAGE_NORMAL) {
1994 		struct buffer_page *buffer_tail_page;
1995 
1996 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
1997 		/*
1998 		 * If the tail had moved passed next, then we need
1999 		 * to reset the pointer.
2000 		 */
2001 		if (buffer_tail_page != tail_page &&
2002 		    buffer_tail_page != next_page)
2003 			rb_head_page_set_normal(cpu_buffer, new_head,
2004 						next_page,
2005 						RB_PAGE_HEAD);
2006 	}
2007 
2008 	/*
2009 	 * If this was the outer most commit (the one that
2010 	 * changed the original pointer from HEAD to UPDATE),
2011 	 * then it is up to us to reset it to NORMAL.
2012 	 */
2013 	if (type == RB_PAGE_HEAD) {
2014 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2015 					      tail_page,
2016 					      RB_PAGE_UPDATE);
2017 		if (RB_WARN_ON(cpu_buffer,
2018 			       ret != RB_PAGE_UPDATE))
2019 			return -1;
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 static inline void
2026 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2027 	      unsigned long tail, struct rb_event_info *info)
2028 {
2029 	struct buffer_page *tail_page = info->tail_page;
2030 	struct ring_buffer_event *event;
2031 	unsigned long length = info->length;
2032 
2033 	/*
2034 	 * Only the event that crossed the page boundary
2035 	 * must fill the old tail_page with padding.
2036 	 */
2037 	if (tail >= BUF_PAGE_SIZE) {
2038 		/*
2039 		 * If the page was filled, then we still need
2040 		 * to update the real_end. Reset it to zero
2041 		 * and the reader will ignore it.
2042 		 */
2043 		if (tail == BUF_PAGE_SIZE)
2044 			tail_page->real_end = 0;
2045 
2046 		local_sub(length, &tail_page->write);
2047 		return;
2048 	}
2049 
2050 	event = __rb_page_index(tail_page, tail);
2051 
2052 	/* account for padding bytes */
2053 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2054 
2055 	/*
2056 	 * Save the original length to the meta data.
2057 	 * This will be used by the reader to add lost event
2058 	 * counter.
2059 	 */
2060 	tail_page->real_end = tail;
2061 
2062 	/*
2063 	 * If this event is bigger than the minimum size, then
2064 	 * we need to be careful that we don't subtract the
2065 	 * write counter enough to allow another writer to slip
2066 	 * in on this page.
2067 	 * We put in a discarded commit instead, to make sure
2068 	 * that this space is not used again.
2069 	 *
2070 	 * If we are less than the minimum size, we don't need to
2071 	 * worry about it.
2072 	 */
2073 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2074 		/* No room for any events */
2075 
2076 		/* Mark the rest of the page with padding */
2077 		rb_event_set_padding(event);
2078 
2079 		/* Set the write back to the previous setting */
2080 		local_sub(length, &tail_page->write);
2081 		return;
2082 	}
2083 
2084 	/* Put in a discarded event */
2085 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2086 	event->type_len = RINGBUF_TYPE_PADDING;
2087 	/* time delta must be non zero */
2088 	event->time_delta = 1;
2089 
2090 	/* Set write to end of buffer */
2091 	length = (tail + length) - BUF_PAGE_SIZE;
2092 	local_sub(length, &tail_page->write);
2093 }
2094 
2095 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2096 
2097 /*
2098  * This is the slow path, force gcc not to inline it.
2099  */
2100 static noinline struct ring_buffer_event *
2101 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2102 	     unsigned long tail, struct rb_event_info *info)
2103 {
2104 	struct buffer_page *tail_page = info->tail_page;
2105 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2106 	struct ring_buffer *buffer = cpu_buffer->buffer;
2107 	struct buffer_page *next_page;
2108 	int ret;
2109 
2110 	next_page = tail_page;
2111 
2112 	rb_inc_page(cpu_buffer, &next_page);
2113 
2114 	/*
2115 	 * If for some reason, we had an interrupt storm that made
2116 	 * it all the way around the buffer, bail, and warn
2117 	 * about it.
2118 	 */
2119 	if (unlikely(next_page == commit_page)) {
2120 		local_inc(&cpu_buffer->commit_overrun);
2121 		goto out_reset;
2122 	}
2123 
2124 	/*
2125 	 * This is where the fun begins!
2126 	 *
2127 	 * We are fighting against races between a reader that
2128 	 * could be on another CPU trying to swap its reader
2129 	 * page with the buffer head.
2130 	 *
2131 	 * We are also fighting against interrupts coming in and
2132 	 * moving the head or tail on us as well.
2133 	 *
2134 	 * If the next page is the head page then we have filled
2135 	 * the buffer, unless the commit page is still on the
2136 	 * reader page.
2137 	 */
2138 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2139 
2140 		/*
2141 		 * If the commit is not on the reader page, then
2142 		 * move the header page.
2143 		 */
2144 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2145 			/*
2146 			 * If we are not in overwrite mode,
2147 			 * this is easy, just stop here.
2148 			 */
2149 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2150 				local_inc(&cpu_buffer->dropped_events);
2151 				goto out_reset;
2152 			}
2153 
2154 			ret = rb_handle_head_page(cpu_buffer,
2155 						  tail_page,
2156 						  next_page);
2157 			if (ret < 0)
2158 				goto out_reset;
2159 			if (ret)
2160 				goto out_again;
2161 		} else {
2162 			/*
2163 			 * We need to be careful here too. The
2164 			 * commit page could still be on the reader
2165 			 * page. We could have a small buffer, and
2166 			 * have filled up the buffer with events
2167 			 * from interrupts and such, and wrapped.
2168 			 *
2169 			 * Note, if the tail page is also the on the
2170 			 * reader_page, we let it move out.
2171 			 */
2172 			if (unlikely((cpu_buffer->commit_page !=
2173 				      cpu_buffer->tail_page) &&
2174 				     (cpu_buffer->commit_page ==
2175 				      cpu_buffer->reader_page))) {
2176 				local_inc(&cpu_buffer->commit_overrun);
2177 				goto out_reset;
2178 			}
2179 		}
2180 	}
2181 
2182 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2183 
2184  out_again:
2185 
2186 	rb_reset_tail(cpu_buffer, tail, info);
2187 
2188 	/* Commit what we have for now. */
2189 	rb_end_commit(cpu_buffer);
2190 	/* rb_end_commit() decs committing */
2191 	local_inc(&cpu_buffer->committing);
2192 
2193 	/* fail and let the caller try again */
2194 	return ERR_PTR(-EAGAIN);
2195 
2196  out_reset:
2197 	/* reset write */
2198 	rb_reset_tail(cpu_buffer, tail, info);
2199 
2200 	return NULL;
2201 }
2202 
2203 /* Slow path, do not inline */
2204 static noinline struct ring_buffer_event *
2205 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2206 {
2207 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2208 
2209 	/* Not the first event on the page? */
2210 	if (rb_event_index(event)) {
2211 		event->time_delta = delta & TS_MASK;
2212 		event->array[0] = delta >> TS_SHIFT;
2213 	} else {
2214 		/* nope, just zero it */
2215 		event->time_delta = 0;
2216 		event->array[0] = 0;
2217 	}
2218 
2219 	return skip_time_extend(event);
2220 }
2221 
2222 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2223 				     struct ring_buffer_event *event);
2224 
2225 /**
2226  * rb_update_event - update event type and data
2227  * @event: the event to update
2228  * @type: the type of event
2229  * @length: the size of the event field in the ring buffer
2230  *
2231  * Update the type and data fields of the event. The length
2232  * is the actual size that is written to the ring buffer,
2233  * and with this, we can determine what to place into the
2234  * data field.
2235  */
2236 static void
2237 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2238 		struct ring_buffer_event *event,
2239 		struct rb_event_info *info)
2240 {
2241 	unsigned length = info->length;
2242 	u64 delta = info->delta;
2243 
2244 	/* Only a commit updates the timestamp */
2245 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2246 		delta = 0;
2247 
2248 	/*
2249 	 * If we need to add a timestamp, then we
2250 	 * add it to the start of the resevered space.
2251 	 */
2252 	if (unlikely(info->add_timestamp)) {
2253 		event = rb_add_time_stamp(event, delta);
2254 		length -= RB_LEN_TIME_EXTEND;
2255 		delta = 0;
2256 	}
2257 
2258 	event->time_delta = delta;
2259 	length -= RB_EVNT_HDR_SIZE;
2260 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2261 		event->type_len = 0;
2262 		event->array[0] = length;
2263 	} else
2264 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2265 }
2266 
2267 static unsigned rb_calculate_event_length(unsigned length)
2268 {
2269 	struct ring_buffer_event event; /* Used only for sizeof array */
2270 
2271 	/* zero length can cause confusions */
2272 	if (!length)
2273 		length++;
2274 
2275 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2276 		length += sizeof(event.array[0]);
2277 
2278 	length += RB_EVNT_HDR_SIZE;
2279 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2280 
2281 	/*
2282 	 * In case the time delta is larger than the 27 bits for it
2283 	 * in the header, we need to add a timestamp. If another
2284 	 * event comes in when trying to discard this one to increase
2285 	 * the length, then the timestamp will be added in the allocated
2286 	 * space of this event. If length is bigger than the size needed
2287 	 * for the TIME_EXTEND, then padding has to be used. The events
2288 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2289 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2290 	 * As length is a multiple of 4, we only need to worry if it
2291 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2292 	 */
2293 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2294 		length += RB_ALIGNMENT;
2295 
2296 	return length;
2297 }
2298 
2299 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2300 static inline bool sched_clock_stable(void)
2301 {
2302 	return true;
2303 }
2304 #endif
2305 
2306 static inline int
2307 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2308 		  struct ring_buffer_event *event)
2309 {
2310 	unsigned long new_index, old_index;
2311 	struct buffer_page *bpage;
2312 	unsigned long index;
2313 	unsigned long addr;
2314 
2315 	new_index = rb_event_index(event);
2316 	old_index = new_index + rb_event_ts_length(event);
2317 	addr = (unsigned long)event;
2318 	addr &= PAGE_MASK;
2319 
2320 	bpage = READ_ONCE(cpu_buffer->tail_page);
2321 
2322 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2323 		unsigned long write_mask =
2324 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2325 		unsigned long event_length = rb_event_length(event);
2326 		/*
2327 		 * This is on the tail page. It is possible that
2328 		 * a write could come in and move the tail page
2329 		 * and write to the next page. That is fine
2330 		 * because we just shorten what is on this page.
2331 		 */
2332 		old_index += write_mask;
2333 		new_index += write_mask;
2334 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2335 		if (index == old_index) {
2336 			/* update counters */
2337 			local_sub(event_length, &cpu_buffer->entries_bytes);
2338 			return 1;
2339 		}
2340 	}
2341 
2342 	/* could not discard */
2343 	return 0;
2344 }
2345 
2346 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2347 {
2348 	local_inc(&cpu_buffer->committing);
2349 	local_inc(&cpu_buffer->commits);
2350 }
2351 
2352 static __always_inline void
2353 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2354 {
2355 	unsigned long max_count;
2356 
2357 	/*
2358 	 * We only race with interrupts and NMIs on this CPU.
2359 	 * If we own the commit event, then we can commit
2360 	 * all others that interrupted us, since the interruptions
2361 	 * are in stack format (they finish before they come
2362 	 * back to us). This allows us to do a simple loop to
2363 	 * assign the commit to the tail.
2364 	 */
2365  again:
2366 	max_count = cpu_buffer->nr_pages * 100;
2367 
2368 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2369 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2370 			return;
2371 		if (RB_WARN_ON(cpu_buffer,
2372 			       rb_is_reader_page(cpu_buffer->tail_page)))
2373 			return;
2374 		local_set(&cpu_buffer->commit_page->page->commit,
2375 			  rb_page_write(cpu_buffer->commit_page));
2376 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2377 		/* Only update the write stamp if the page has an event */
2378 		if (rb_page_write(cpu_buffer->commit_page))
2379 			cpu_buffer->write_stamp =
2380 				cpu_buffer->commit_page->page->time_stamp;
2381 		/* add barrier to keep gcc from optimizing too much */
2382 		barrier();
2383 	}
2384 	while (rb_commit_index(cpu_buffer) !=
2385 	       rb_page_write(cpu_buffer->commit_page)) {
2386 
2387 		local_set(&cpu_buffer->commit_page->page->commit,
2388 			  rb_page_write(cpu_buffer->commit_page));
2389 		RB_WARN_ON(cpu_buffer,
2390 			   local_read(&cpu_buffer->commit_page->page->commit) &
2391 			   ~RB_WRITE_MASK);
2392 		barrier();
2393 	}
2394 
2395 	/* again, keep gcc from optimizing */
2396 	barrier();
2397 
2398 	/*
2399 	 * If an interrupt came in just after the first while loop
2400 	 * and pushed the tail page forward, we will be left with
2401 	 * a dangling commit that will never go forward.
2402 	 */
2403 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2404 		goto again;
2405 }
2406 
2407 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2408 {
2409 	unsigned long commits;
2410 
2411 	if (RB_WARN_ON(cpu_buffer,
2412 		       !local_read(&cpu_buffer->committing)))
2413 		return;
2414 
2415  again:
2416 	commits = local_read(&cpu_buffer->commits);
2417 	/* synchronize with interrupts */
2418 	barrier();
2419 	if (local_read(&cpu_buffer->committing) == 1)
2420 		rb_set_commit_to_write(cpu_buffer);
2421 
2422 	local_dec(&cpu_buffer->committing);
2423 
2424 	/* synchronize with interrupts */
2425 	barrier();
2426 
2427 	/*
2428 	 * Need to account for interrupts coming in between the
2429 	 * updating of the commit page and the clearing of the
2430 	 * committing counter.
2431 	 */
2432 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2433 	    !local_read(&cpu_buffer->committing)) {
2434 		local_inc(&cpu_buffer->committing);
2435 		goto again;
2436 	}
2437 }
2438 
2439 static inline void rb_event_discard(struct ring_buffer_event *event)
2440 {
2441 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2442 		event = skip_time_extend(event);
2443 
2444 	/* array[0] holds the actual length for the discarded event */
2445 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2446 	event->type_len = RINGBUF_TYPE_PADDING;
2447 	/* time delta must be non zero */
2448 	if (!event->time_delta)
2449 		event->time_delta = 1;
2450 }
2451 
2452 static __always_inline bool
2453 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2454 		   struct ring_buffer_event *event)
2455 {
2456 	unsigned long addr = (unsigned long)event;
2457 	unsigned long index;
2458 
2459 	index = rb_event_index(event);
2460 	addr &= PAGE_MASK;
2461 
2462 	return cpu_buffer->commit_page->page == (void *)addr &&
2463 		rb_commit_index(cpu_buffer) == index;
2464 }
2465 
2466 static __always_inline void
2467 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2468 		      struct ring_buffer_event *event)
2469 {
2470 	u64 delta;
2471 
2472 	/*
2473 	 * The event first in the commit queue updates the
2474 	 * time stamp.
2475 	 */
2476 	if (rb_event_is_commit(cpu_buffer, event)) {
2477 		/*
2478 		 * A commit event that is first on a page
2479 		 * updates the write timestamp with the page stamp
2480 		 */
2481 		if (!rb_event_index(event))
2482 			cpu_buffer->write_stamp =
2483 				cpu_buffer->commit_page->page->time_stamp;
2484 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2485 			delta = event->array[0];
2486 			delta <<= TS_SHIFT;
2487 			delta += event->time_delta;
2488 			cpu_buffer->write_stamp += delta;
2489 		} else
2490 			cpu_buffer->write_stamp += event->time_delta;
2491 	}
2492 }
2493 
2494 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2495 		      struct ring_buffer_event *event)
2496 {
2497 	local_inc(&cpu_buffer->entries);
2498 	rb_update_write_stamp(cpu_buffer, event);
2499 	rb_end_commit(cpu_buffer);
2500 }
2501 
2502 static __always_inline void
2503 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2504 {
2505 	bool pagebusy;
2506 
2507 	if (buffer->irq_work.waiters_pending) {
2508 		buffer->irq_work.waiters_pending = false;
2509 		/* irq_work_queue() supplies it's own memory barriers */
2510 		irq_work_queue(&buffer->irq_work.work);
2511 	}
2512 
2513 	if (cpu_buffer->irq_work.waiters_pending) {
2514 		cpu_buffer->irq_work.waiters_pending = false;
2515 		/* irq_work_queue() supplies it's own memory barriers */
2516 		irq_work_queue(&cpu_buffer->irq_work.work);
2517 	}
2518 
2519 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2520 
2521 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2522 		cpu_buffer->irq_work.wakeup_full = true;
2523 		cpu_buffer->irq_work.full_waiters_pending = false;
2524 		/* irq_work_queue() supplies it's own memory barriers */
2525 		irq_work_queue(&cpu_buffer->irq_work.work);
2526 	}
2527 }
2528 
2529 /*
2530  * The lock and unlock are done within a preempt disable section.
2531  * The current_context per_cpu variable can only be modified
2532  * by the current task between lock and unlock. But it can
2533  * be modified more than once via an interrupt. There are four
2534  * different contexts that we need to consider.
2535  *
2536  *  Normal context.
2537  *  SoftIRQ context
2538  *  IRQ context
2539  *  NMI context
2540  *
2541  * If for some reason the ring buffer starts to recurse, we
2542  * only allow that to happen at most 4 times (one for each
2543  * context). If it happens 5 times, then we consider this a
2544  * recusive loop and do not let it go further.
2545  */
2546 
2547 static __always_inline int
2548 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2549 {
2550 	if (cpu_buffer->current_context >= 4)
2551 		return 1;
2552 
2553 	cpu_buffer->current_context++;
2554 	/* Interrupts must see this update */
2555 	barrier();
2556 
2557 	return 0;
2558 }
2559 
2560 static __always_inline void
2561 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2562 {
2563 	/* Don't let the dec leak out */
2564 	barrier();
2565 	cpu_buffer->current_context--;
2566 }
2567 
2568 /**
2569  * ring_buffer_unlock_commit - commit a reserved
2570  * @buffer: The buffer to commit to
2571  * @event: The event pointer to commit.
2572  *
2573  * This commits the data to the ring buffer, and releases any locks held.
2574  *
2575  * Must be paired with ring_buffer_lock_reserve.
2576  */
2577 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2578 			      struct ring_buffer_event *event)
2579 {
2580 	struct ring_buffer_per_cpu *cpu_buffer;
2581 	int cpu = raw_smp_processor_id();
2582 
2583 	cpu_buffer = buffer->buffers[cpu];
2584 
2585 	rb_commit(cpu_buffer, event);
2586 
2587 	rb_wakeups(buffer, cpu_buffer);
2588 
2589 	trace_recursive_unlock(cpu_buffer);
2590 
2591 	preempt_enable_notrace();
2592 
2593 	return 0;
2594 }
2595 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2596 
2597 static noinline void
2598 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2599 		    struct rb_event_info *info)
2600 {
2601 	WARN_ONCE(info->delta > (1ULL << 59),
2602 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2603 		  (unsigned long long)info->delta,
2604 		  (unsigned long long)info->ts,
2605 		  (unsigned long long)cpu_buffer->write_stamp,
2606 		  sched_clock_stable() ? "" :
2607 		  "If you just came from a suspend/resume,\n"
2608 		  "please switch to the trace global clock:\n"
2609 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2610 	info->add_timestamp = 1;
2611 }
2612 
2613 static struct ring_buffer_event *
2614 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2615 		  struct rb_event_info *info)
2616 {
2617 	struct ring_buffer_event *event;
2618 	struct buffer_page *tail_page;
2619 	unsigned long tail, write;
2620 
2621 	/*
2622 	 * If the time delta since the last event is too big to
2623 	 * hold in the time field of the event, then we append a
2624 	 * TIME EXTEND event ahead of the data event.
2625 	 */
2626 	if (unlikely(info->add_timestamp))
2627 		info->length += RB_LEN_TIME_EXTEND;
2628 
2629 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2630 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2631 	write = local_add_return(info->length, &tail_page->write);
2632 
2633 	/* set write to only the index of the write */
2634 	write &= RB_WRITE_MASK;
2635 	tail = write - info->length;
2636 
2637 	/*
2638 	 * If this is the first commit on the page, then it has the same
2639 	 * timestamp as the page itself.
2640 	 */
2641 	if (!tail)
2642 		info->delta = 0;
2643 
2644 	/* See if we shot pass the end of this buffer page */
2645 	if (unlikely(write > BUF_PAGE_SIZE))
2646 		return rb_move_tail(cpu_buffer, tail, info);
2647 
2648 	/* We reserved something on the buffer */
2649 
2650 	event = __rb_page_index(tail_page, tail);
2651 	rb_update_event(cpu_buffer, event, info);
2652 
2653 	local_inc(&tail_page->entries);
2654 
2655 	/*
2656 	 * If this is the first commit on the page, then update
2657 	 * its timestamp.
2658 	 */
2659 	if (!tail)
2660 		tail_page->page->time_stamp = info->ts;
2661 
2662 	/* account for these added bytes */
2663 	local_add(info->length, &cpu_buffer->entries_bytes);
2664 
2665 	return event;
2666 }
2667 
2668 static __always_inline struct ring_buffer_event *
2669 rb_reserve_next_event(struct ring_buffer *buffer,
2670 		      struct ring_buffer_per_cpu *cpu_buffer,
2671 		      unsigned long length)
2672 {
2673 	struct ring_buffer_event *event;
2674 	struct rb_event_info info;
2675 	int nr_loops = 0;
2676 	u64 diff;
2677 
2678 	rb_start_commit(cpu_buffer);
2679 
2680 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2681 	/*
2682 	 * Due to the ability to swap a cpu buffer from a buffer
2683 	 * it is possible it was swapped before we committed.
2684 	 * (committing stops a swap). We check for it here and
2685 	 * if it happened, we have to fail the write.
2686 	 */
2687 	barrier();
2688 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2689 		local_dec(&cpu_buffer->committing);
2690 		local_dec(&cpu_buffer->commits);
2691 		return NULL;
2692 	}
2693 #endif
2694 
2695 	info.length = rb_calculate_event_length(length);
2696  again:
2697 	info.add_timestamp = 0;
2698 	info.delta = 0;
2699 
2700 	/*
2701 	 * We allow for interrupts to reenter here and do a trace.
2702 	 * If one does, it will cause this original code to loop
2703 	 * back here. Even with heavy interrupts happening, this
2704 	 * should only happen a few times in a row. If this happens
2705 	 * 1000 times in a row, there must be either an interrupt
2706 	 * storm or we have something buggy.
2707 	 * Bail!
2708 	 */
2709 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2710 		goto out_fail;
2711 
2712 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2713 	diff = info.ts - cpu_buffer->write_stamp;
2714 
2715 	/* make sure this diff is calculated here */
2716 	barrier();
2717 
2718 	/* Did the write stamp get updated already? */
2719 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2720 		info.delta = diff;
2721 		if (unlikely(test_time_stamp(info.delta)))
2722 			rb_handle_timestamp(cpu_buffer, &info);
2723 	}
2724 
2725 	event = __rb_reserve_next(cpu_buffer, &info);
2726 
2727 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2728 		if (info.add_timestamp)
2729 			info.length -= RB_LEN_TIME_EXTEND;
2730 		goto again;
2731 	}
2732 
2733 	if (!event)
2734 		goto out_fail;
2735 
2736 	return event;
2737 
2738  out_fail:
2739 	rb_end_commit(cpu_buffer);
2740 	return NULL;
2741 }
2742 
2743 /**
2744  * ring_buffer_lock_reserve - reserve a part of the buffer
2745  * @buffer: the ring buffer to reserve from
2746  * @length: the length of the data to reserve (excluding event header)
2747  *
2748  * Returns a reseverd event on the ring buffer to copy directly to.
2749  * The user of this interface will need to get the body to write into
2750  * and can use the ring_buffer_event_data() interface.
2751  *
2752  * The length is the length of the data needed, not the event length
2753  * which also includes the event header.
2754  *
2755  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2756  * If NULL is returned, then nothing has been allocated or locked.
2757  */
2758 struct ring_buffer_event *
2759 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2760 {
2761 	struct ring_buffer_per_cpu *cpu_buffer;
2762 	struct ring_buffer_event *event;
2763 	int cpu;
2764 
2765 	/* If we are tracing schedule, we don't want to recurse */
2766 	preempt_disable_notrace();
2767 
2768 	if (unlikely(atomic_read(&buffer->record_disabled)))
2769 		goto out;
2770 
2771 	cpu = raw_smp_processor_id();
2772 
2773 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2774 		goto out;
2775 
2776 	cpu_buffer = buffer->buffers[cpu];
2777 
2778 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2779 		goto out;
2780 
2781 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2782 		goto out;
2783 
2784 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2785 		goto out;
2786 
2787 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2788 	if (!event)
2789 		goto out_unlock;
2790 
2791 	return event;
2792 
2793  out_unlock:
2794 	trace_recursive_unlock(cpu_buffer);
2795  out:
2796 	preempt_enable_notrace();
2797 	return NULL;
2798 }
2799 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2800 
2801 /*
2802  * Decrement the entries to the page that an event is on.
2803  * The event does not even need to exist, only the pointer
2804  * to the page it is on. This may only be called before the commit
2805  * takes place.
2806  */
2807 static inline void
2808 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2809 		   struct ring_buffer_event *event)
2810 {
2811 	unsigned long addr = (unsigned long)event;
2812 	struct buffer_page *bpage = cpu_buffer->commit_page;
2813 	struct buffer_page *start;
2814 
2815 	addr &= PAGE_MASK;
2816 
2817 	/* Do the likely case first */
2818 	if (likely(bpage->page == (void *)addr)) {
2819 		local_dec(&bpage->entries);
2820 		return;
2821 	}
2822 
2823 	/*
2824 	 * Because the commit page may be on the reader page we
2825 	 * start with the next page and check the end loop there.
2826 	 */
2827 	rb_inc_page(cpu_buffer, &bpage);
2828 	start = bpage;
2829 	do {
2830 		if (bpage->page == (void *)addr) {
2831 			local_dec(&bpage->entries);
2832 			return;
2833 		}
2834 		rb_inc_page(cpu_buffer, &bpage);
2835 	} while (bpage != start);
2836 
2837 	/* commit not part of this buffer?? */
2838 	RB_WARN_ON(cpu_buffer, 1);
2839 }
2840 
2841 /**
2842  * ring_buffer_commit_discard - discard an event that has not been committed
2843  * @buffer: the ring buffer
2844  * @event: non committed event to discard
2845  *
2846  * Sometimes an event that is in the ring buffer needs to be ignored.
2847  * This function lets the user discard an event in the ring buffer
2848  * and then that event will not be read later.
2849  *
2850  * This function only works if it is called before the the item has been
2851  * committed. It will try to free the event from the ring buffer
2852  * if another event has not been added behind it.
2853  *
2854  * If another event has been added behind it, it will set the event
2855  * up as discarded, and perform the commit.
2856  *
2857  * If this function is called, do not call ring_buffer_unlock_commit on
2858  * the event.
2859  */
2860 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2861 				struct ring_buffer_event *event)
2862 {
2863 	struct ring_buffer_per_cpu *cpu_buffer;
2864 	int cpu;
2865 
2866 	/* The event is discarded regardless */
2867 	rb_event_discard(event);
2868 
2869 	cpu = smp_processor_id();
2870 	cpu_buffer = buffer->buffers[cpu];
2871 
2872 	/*
2873 	 * This must only be called if the event has not been
2874 	 * committed yet. Thus we can assume that preemption
2875 	 * is still disabled.
2876 	 */
2877 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2878 
2879 	rb_decrement_entry(cpu_buffer, event);
2880 	if (rb_try_to_discard(cpu_buffer, event))
2881 		goto out;
2882 
2883 	/*
2884 	 * The commit is still visible by the reader, so we
2885 	 * must still update the timestamp.
2886 	 */
2887 	rb_update_write_stamp(cpu_buffer, event);
2888  out:
2889 	rb_end_commit(cpu_buffer);
2890 
2891 	trace_recursive_unlock(cpu_buffer);
2892 
2893 	preempt_enable_notrace();
2894 
2895 }
2896 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2897 
2898 /**
2899  * ring_buffer_write - write data to the buffer without reserving
2900  * @buffer: The ring buffer to write to.
2901  * @length: The length of the data being written (excluding the event header)
2902  * @data: The data to write to the buffer.
2903  *
2904  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2905  * one function. If you already have the data to write to the buffer, it
2906  * may be easier to simply call this function.
2907  *
2908  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2909  * and not the length of the event which would hold the header.
2910  */
2911 int ring_buffer_write(struct ring_buffer *buffer,
2912 		      unsigned long length,
2913 		      void *data)
2914 {
2915 	struct ring_buffer_per_cpu *cpu_buffer;
2916 	struct ring_buffer_event *event;
2917 	void *body;
2918 	int ret = -EBUSY;
2919 	int cpu;
2920 
2921 	preempt_disable_notrace();
2922 
2923 	if (atomic_read(&buffer->record_disabled))
2924 		goto out;
2925 
2926 	cpu = raw_smp_processor_id();
2927 
2928 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2929 		goto out;
2930 
2931 	cpu_buffer = buffer->buffers[cpu];
2932 
2933 	if (atomic_read(&cpu_buffer->record_disabled))
2934 		goto out;
2935 
2936 	if (length > BUF_MAX_DATA_SIZE)
2937 		goto out;
2938 
2939 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2940 		goto out;
2941 
2942 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2943 	if (!event)
2944 		goto out_unlock;
2945 
2946 	body = rb_event_data(event);
2947 
2948 	memcpy(body, data, length);
2949 
2950 	rb_commit(cpu_buffer, event);
2951 
2952 	rb_wakeups(buffer, cpu_buffer);
2953 
2954 	ret = 0;
2955 
2956  out_unlock:
2957 	trace_recursive_unlock(cpu_buffer);
2958 
2959  out:
2960 	preempt_enable_notrace();
2961 
2962 	return ret;
2963 }
2964 EXPORT_SYMBOL_GPL(ring_buffer_write);
2965 
2966 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2967 {
2968 	struct buffer_page *reader = cpu_buffer->reader_page;
2969 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2970 	struct buffer_page *commit = cpu_buffer->commit_page;
2971 
2972 	/* In case of error, head will be NULL */
2973 	if (unlikely(!head))
2974 		return true;
2975 
2976 	return reader->read == rb_page_commit(reader) &&
2977 		(commit == reader ||
2978 		 (commit == head &&
2979 		  head->read == rb_page_commit(commit)));
2980 }
2981 
2982 /**
2983  * ring_buffer_record_disable - stop all writes into the buffer
2984  * @buffer: The ring buffer to stop writes to.
2985  *
2986  * This prevents all writes to the buffer. Any attempt to write
2987  * to the buffer after this will fail and return NULL.
2988  *
2989  * The caller should call synchronize_sched() after this.
2990  */
2991 void ring_buffer_record_disable(struct ring_buffer *buffer)
2992 {
2993 	atomic_inc(&buffer->record_disabled);
2994 }
2995 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2996 
2997 /**
2998  * ring_buffer_record_enable - enable writes to the buffer
2999  * @buffer: The ring buffer to enable writes
3000  *
3001  * Note, multiple disables will need the same number of enables
3002  * to truly enable the writing (much like preempt_disable).
3003  */
3004 void ring_buffer_record_enable(struct ring_buffer *buffer)
3005 {
3006 	atomic_dec(&buffer->record_disabled);
3007 }
3008 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3009 
3010 /**
3011  * ring_buffer_record_off - stop all writes into the buffer
3012  * @buffer: The ring buffer to stop writes to.
3013  *
3014  * This prevents all writes to the buffer. Any attempt to write
3015  * to the buffer after this will fail and return NULL.
3016  *
3017  * This is different than ring_buffer_record_disable() as
3018  * it works like an on/off switch, where as the disable() version
3019  * must be paired with a enable().
3020  */
3021 void ring_buffer_record_off(struct ring_buffer *buffer)
3022 {
3023 	unsigned int rd;
3024 	unsigned int new_rd;
3025 
3026 	do {
3027 		rd = atomic_read(&buffer->record_disabled);
3028 		new_rd = rd | RB_BUFFER_OFF;
3029 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3030 }
3031 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3032 
3033 /**
3034  * ring_buffer_record_on - restart writes into the buffer
3035  * @buffer: The ring buffer to start writes to.
3036  *
3037  * This enables all writes to the buffer that was disabled by
3038  * ring_buffer_record_off().
3039  *
3040  * This is different than ring_buffer_record_enable() as
3041  * it works like an on/off switch, where as the enable() version
3042  * must be paired with a disable().
3043  */
3044 void ring_buffer_record_on(struct ring_buffer *buffer)
3045 {
3046 	unsigned int rd;
3047 	unsigned int new_rd;
3048 
3049 	do {
3050 		rd = atomic_read(&buffer->record_disabled);
3051 		new_rd = rd & ~RB_BUFFER_OFF;
3052 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3053 }
3054 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3055 
3056 /**
3057  * ring_buffer_record_is_on - return true if the ring buffer can write
3058  * @buffer: The ring buffer to see if write is enabled
3059  *
3060  * Returns true if the ring buffer is in a state that it accepts writes.
3061  */
3062 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3063 {
3064 	return !atomic_read(&buffer->record_disabled);
3065 }
3066 
3067 /**
3068  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3069  * @buffer: The ring buffer to stop writes to.
3070  * @cpu: The CPU buffer to stop
3071  *
3072  * This prevents all writes to the buffer. Any attempt to write
3073  * to the buffer after this will fail and return NULL.
3074  *
3075  * The caller should call synchronize_sched() after this.
3076  */
3077 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3078 {
3079 	struct ring_buffer_per_cpu *cpu_buffer;
3080 
3081 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3082 		return;
3083 
3084 	cpu_buffer = buffer->buffers[cpu];
3085 	atomic_inc(&cpu_buffer->record_disabled);
3086 }
3087 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3088 
3089 /**
3090  * ring_buffer_record_enable_cpu - enable writes to the buffer
3091  * @buffer: The ring buffer to enable writes
3092  * @cpu: The CPU to enable.
3093  *
3094  * Note, multiple disables will need the same number of enables
3095  * to truly enable the writing (much like preempt_disable).
3096  */
3097 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3098 {
3099 	struct ring_buffer_per_cpu *cpu_buffer;
3100 
3101 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3102 		return;
3103 
3104 	cpu_buffer = buffer->buffers[cpu];
3105 	atomic_dec(&cpu_buffer->record_disabled);
3106 }
3107 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3108 
3109 /*
3110  * The total entries in the ring buffer is the running counter
3111  * of entries entered into the ring buffer, minus the sum of
3112  * the entries read from the ring buffer and the number of
3113  * entries that were overwritten.
3114  */
3115 static inline unsigned long
3116 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3117 {
3118 	return local_read(&cpu_buffer->entries) -
3119 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3120 }
3121 
3122 /**
3123  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3124  * @buffer: The ring buffer
3125  * @cpu: The per CPU buffer to read from.
3126  */
3127 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3128 {
3129 	unsigned long flags;
3130 	struct ring_buffer_per_cpu *cpu_buffer;
3131 	struct buffer_page *bpage;
3132 	u64 ret = 0;
3133 
3134 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3135 		return 0;
3136 
3137 	cpu_buffer = buffer->buffers[cpu];
3138 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3139 	/*
3140 	 * if the tail is on reader_page, oldest time stamp is on the reader
3141 	 * page
3142 	 */
3143 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3144 		bpage = cpu_buffer->reader_page;
3145 	else
3146 		bpage = rb_set_head_page(cpu_buffer);
3147 	if (bpage)
3148 		ret = bpage->page->time_stamp;
3149 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3150 
3151 	return ret;
3152 }
3153 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3154 
3155 /**
3156  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3157  * @buffer: The ring buffer
3158  * @cpu: The per CPU buffer to read from.
3159  */
3160 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3161 {
3162 	struct ring_buffer_per_cpu *cpu_buffer;
3163 	unsigned long ret;
3164 
3165 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3166 		return 0;
3167 
3168 	cpu_buffer = buffer->buffers[cpu];
3169 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3170 
3171 	return ret;
3172 }
3173 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3174 
3175 /**
3176  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3177  * @buffer: The ring buffer
3178  * @cpu: The per CPU buffer to get the entries from.
3179  */
3180 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3181 {
3182 	struct ring_buffer_per_cpu *cpu_buffer;
3183 
3184 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3185 		return 0;
3186 
3187 	cpu_buffer = buffer->buffers[cpu];
3188 
3189 	return rb_num_of_entries(cpu_buffer);
3190 }
3191 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3192 
3193 /**
3194  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3195  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3196  * @buffer: The ring buffer
3197  * @cpu: The per CPU buffer to get the number of overruns from
3198  */
3199 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3200 {
3201 	struct ring_buffer_per_cpu *cpu_buffer;
3202 	unsigned long ret;
3203 
3204 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3205 		return 0;
3206 
3207 	cpu_buffer = buffer->buffers[cpu];
3208 	ret = local_read(&cpu_buffer->overrun);
3209 
3210 	return ret;
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3213 
3214 /**
3215  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3216  * commits failing due to the buffer wrapping around while there are uncommitted
3217  * events, such as during an interrupt storm.
3218  * @buffer: The ring buffer
3219  * @cpu: The per CPU buffer to get the number of overruns from
3220  */
3221 unsigned long
3222 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3223 {
3224 	struct ring_buffer_per_cpu *cpu_buffer;
3225 	unsigned long ret;
3226 
3227 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228 		return 0;
3229 
3230 	cpu_buffer = buffer->buffers[cpu];
3231 	ret = local_read(&cpu_buffer->commit_overrun);
3232 
3233 	return ret;
3234 }
3235 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3236 
3237 /**
3238  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3239  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3240  * @buffer: The ring buffer
3241  * @cpu: The per CPU buffer to get the number of overruns from
3242  */
3243 unsigned long
3244 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3245 {
3246 	struct ring_buffer_per_cpu *cpu_buffer;
3247 	unsigned long ret;
3248 
3249 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3250 		return 0;
3251 
3252 	cpu_buffer = buffer->buffers[cpu];
3253 	ret = local_read(&cpu_buffer->dropped_events);
3254 
3255 	return ret;
3256 }
3257 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3258 
3259 /**
3260  * ring_buffer_read_events_cpu - get the number of events successfully read
3261  * @buffer: The ring buffer
3262  * @cpu: The per CPU buffer to get the number of events read
3263  */
3264 unsigned long
3265 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3266 {
3267 	struct ring_buffer_per_cpu *cpu_buffer;
3268 
3269 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3270 		return 0;
3271 
3272 	cpu_buffer = buffer->buffers[cpu];
3273 	return cpu_buffer->read;
3274 }
3275 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3276 
3277 /**
3278  * ring_buffer_entries - get the number of entries in a buffer
3279  * @buffer: The ring buffer
3280  *
3281  * Returns the total number of entries in the ring buffer
3282  * (all CPU entries)
3283  */
3284 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3285 {
3286 	struct ring_buffer_per_cpu *cpu_buffer;
3287 	unsigned long entries = 0;
3288 	int cpu;
3289 
3290 	/* if you care about this being correct, lock the buffer */
3291 	for_each_buffer_cpu(buffer, cpu) {
3292 		cpu_buffer = buffer->buffers[cpu];
3293 		entries += rb_num_of_entries(cpu_buffer);
3294 	}
3295 
3296 	return entries;
3297 }
3298 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3299 
3300 /**
3301  * ring_buffer_overruns - get the number of overruns in buffer
3302  * @buffer: The ring buffer
3303  *
3304  * Returns the total number of overruns in the ring buffer
3305  * (all CPU entries)
3306  */
3307 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3308 {
3309 	struct ring_buffer_per_cpu *cpu_buffer;
3310 	unsigned long overruns = 0;
3311 	int cpu;
3312 
3313 	/* if you care about this being correct, lock the buffer */
3314 	for_each_buffer_cpu(buffer, cpu) {
3315 		cpu_buffer = buffer->buffers[cpu];
3316 		overruns += local_read(&cpu_buffer->overrun);
3317 	}
3318 
3319 	return overruns;
3320 }
3321 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3322 
3323 static void rb_iter_reset(struct ring_buffer_iter *iter)
3324 {
3325 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3326 
3327 	/* Iterator usage is expected to have record disabled */
3328 	iter->head_page = cpu_buffer->reader_page;
3329 	iter->head = cpu_buffer->reader_page->read;
3330 
3331 	iter->cache_reader_page = iter->head_page;
3332 	iter->cache_read = cpu_buffer->read;
3333 
3334 	if (iter->head)
3335 		iter->read_stamp = cpu_buffer->read_stamp;
3336 	else
3337 		iter->read_stamp = iter->head_page->page->time_stamp;
3338 }
3339 
3340 /**
3341  * ring_buffer_iter_reset - reset an iterator
3342  * @iter: The iterator to reset
3343  *
3344  * Resets the iterator, so that it will start from the beginning
3345  * again.
3346  */
3347 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3348 {
3349 	struct ring_buffer_per_cpu *cpu_buffer;
3350 	unsigned long flags;
3351 
3352 	if (!iter)
3353 		return;
3354 
3355 	cpu_buffer = iter->cpu_buffer;
3356 
3357 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3358 	rb_iter_reset(iter);
3359 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3360 }
3361 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3362 
3363 /**
3364  * ring_buffer_iter_empty - check if an iterator has no more to read
3365  * @iter: The iterator to check
3366  */
3367 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3368 {
3369 	struct ring_buffer_per_cpu *cpu_buffer;
3370 	struct buffer_page *reader;
3371 	struct buffer_page *head_page;
3372 	struct buffer_page *commit_page;
3373 	unsigned commit;
3374 
3375 	cpu_buffer = iter->cpu_buffer;
3376 
3377 	/* Remember, trace recording is off when iterator is in use */
3378 	reader = cpu_buffer->reader_page;
3379 	head_page = cpu_buffer->head_page;
3380 	commit_page = cpu_buffer->commit_page;
3381 	commit = rb_page_commit(commit_page);
3382 
3383 	return ((iter->head_page == commit_page && iter->head == commit) ||
3384 		(iter->head_page == reader && commit_page == head_page &&
3385 		 head_page->read == commit &&
3386 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3387 }
3388 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3389 
3390 static void
3391 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3392 		     struct ring_buffer_event *event)
3393 {
3394 	u64 delta;
3395 
3396 	switch (event->type_len) {
3397 	case RINGBUF_TYPE_PADDING:
3398 		return;
3399 
3400 	case RINGBUF_TYPE_TIME_EXTEND:
3401 		delta = event->array[0];
3402 		delta <<= TS_SHIFT;
3403 		delta += event->time_delta;
3404 		cpu_buffer->read_stamp += delta;
3405 		return;
3406 
3407 	case RINGBUF_TYPE_TIME_STAMP:
3408 		/* FIXME: not implemented */
3409 		return;
3410 
3411 	case RINGBUF_TYPE_DATA:
3412 		cpu_buffer->read_stamp += event->time_delta;
3413 		return;
3414 
3415 	default:
3416 		BUG();
3417 	}
3418 	return;
3419 }
3420 
3421 static void
3422 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3423 			  struct ring_buffer_event *event)
3424 {
3425 	u64 delta;
3426 
3427 	switch (event->type_len) {
3428 	case RINGBUF_TYPE_PADDING:
3429 		return;
3430 
3431 	case RINGBUF_TYPE_TIME_EXTEND:
3432 		delta = event->array[0];
3433 		delta <<= TS_SHIFT;
3434 		delta += event->time_delta;
3435 		iter->read_stamp += delta;
3436 		return;
3437 
3438 	case RINGBUF_TYPE_TIME_STAMP:
3439 		/* FIXME: not implemented */
3440 		return;
3441 
3442 	case RINGBUF_TYPE_DATA:
3443 		iter->read_stamp += event->time_delta;
3444 		return;
3445 
3446 	default:
3447 		BUG();
3448 	}
3449 	return;
3450 }
3451 
3452 static struct buffer_page *
3453 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3454 {
3455 	struct buffer_page *reader = NULL;
3456 	unsigned long overwrite;
3457 	unsigned long flags;
3458 	int nr_loops = 0;
3459 	int ret;
3460 
3461 	local_irq_save(flags);
3462 	arch_spin_lock(&cpu_buffer->lock);
3463 
3464  again:
3465 	/*
3466 	 * This should normally only loop twice. But because the
3467 	 * start of the reader inserts an empty page, it causes
3468 	 * a case where we will loop three times. There should be no
3469 	 * reason to loop four times (that I know of).
3470 	 */
3471 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3472 		reader = NULL;
3473 		goto out;
3474 	}
3475 
3476 	reader = cpu_buffer->reader_page;
3477 
3478 	/* If there's more to read, return this page */
3479 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3480 		goto out;
3481 
3482 	/* Never should we have an index greater than the size */
3483 	if (RB_WARN_ON(cpu_buffer,
3484 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3485 		goto out;
3486 
3487 	/* check if we caught up to the tail */
3488 	reader = NULL;
3489 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3490 		goto out;
3491 
3492 	/* Don't bother swapping if the ring buffer is empty */
3493 	if (rb_num_of_entries(cpu_buffer) == 0)
3494 		goto out;
3495 
3496 	/*
3497 	 * Reset the reader page to size zero.
3498 	 */
3499 	local_set(&cpu_buffer->reader_page->write, 0);
3500 	local_set(&cpu_buffer->reader_page->entries, 0);
3501 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3502 	cpu_buffer->reader_page->real_end = 0;
3503 
3504  spin:
3505 	/*
3506 	 * Splice the empty reader page into the list around the head.
3507 	 */
3508 	reader = rb_set_head_page(cpu_buffer);
3509 	if (!reader)
3510 		goto out;
3511 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3512 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3513 
3514 	/*
3515 	 * cpu_buffer->pages just needs to point to the buffer, it
3516 	 *  has no specific buffer page to point to. Lets move it out
3517 	 *  of our way so we don't accidentally swap it.
3518 	 */
3519 	cpu_buffer->pages = reader->list.prev;
3520 
3521 	/* The reader page will be pointing to the new head */
3522 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3523 
3524 	/*
3525 	 * We want to make sure we read the overruns after we set up our
3526 	 * pointers to the next object. The writer side does a
3527 	 * cmpxchg to cross pages which acts as the mb on the writer
3528 	 * side. Note, the reader will constantly fail the swap
3529 	 * while the writer is updating the pointers, so this
3530 	 * guarantees that the overwrite recorded here is the one we
3531 	 * want to compare with the last_overrun.
3532 	 */
3533 	smp_mb();
3534 	overwrite = local_read(&(cpu_buffer->overrun));
3535 
3536 	/*
3537 	 * Here's the tricky part.
3538 	 *
3539 	 * We need to move the pointer past the header page.
3540 	 * But we can only do that if a writer is not currently
3541 	 * moving it. The page before the header page has the
3542 	 * flag bit '1' set if it is pointing to the page we want.
3543 	 * but if the writer is in the process of moving it
3544 	 * than it will be '2' or already moved '0'.
3545 	 */
3546 
3547 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3548 
3549 	/*
3550 	 * If we did not convert it, then we must try again.
3551 	 */
3552 	if (!ret)
3553 		goto spin;
3554 
3555 	/*
3556 	 * Yeah! We succeeded in replacing the page.
3557 	 *
3558 	 * Now make the new head point back to the reader page.
3559 	 */
3560 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3561 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3562 
3563 	/* Finally update the reader page to the new head */
3564 	cpu_buffer->reader_page = reader;
3565 	cpu_buffer->reader_page->read = 0;
3566 
3567 	if (overwrite != cpu_buffer->last_overrun) {
3568 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3569 		cpu_buffer->last_overrun = overwrite;
3570 	}
3571 
3572 	goto again;
3573 
3574  out:
3575 	/* Update the read_stamp on the first event */
3576 	if (reader && reader->read == 0)
3577 		cpu_buffer->read_stamp = reader->page->time_stamp;
3578 
3579 	arch_spin_unlock(&cpu_buffer->lock);
3580 	local_irq_restore(flags);
3581 
3582 	return reader;
3583 }
3584 
3585 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3586 {
3587 	struct ring_buffer_event *event;
3588 	struct buffer_page *reader;
3589 	unsigned length;
3590 
3591 	reader = rb_get_reader_page(cpu_buffer);
3592 
3593 	/* This function should not be called when buffer is empty */
3594 	if (RB_WARN_ON(cpu_buffer, !reader))
3595 		return;
3596 
3597 	event = rb_reader_event(cpu_buffer);
3598 
3599 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3600 		cpu_buffer->read++;
3601 
3602 	rb_update_read_stamp(cpu_buffer, event);
3603 
3604 	length = rb_event_length(event);
3605 	cpu_buffer->reader_page->read += length;
3606 }
3607 
3608 static void rb_advance_iter(struct ring_buffer_iter *iter)
3609 {
3610 	struct ring_buffer_per_cpu *cpu_buffer;
3611 	struct ring_buffer_event *event;
3612 	unsigned length;
3613 
3614 	cpu_buffer = iter->cpu_buffer;
3615 
3616 	/*
3617 	 * Check if we are at the end of the buffer.
3618 	 */
3619 	if (iter->head >= rb_page_size(iter->head_page)) {
3620 		/* discarded commits can make the page empty */
3621 		if (iter->head_page == cpu_buffer->commit_page)
3622 			return;
3623 		rb_inc_iter(iter);
3624 		return;
3625 	}
3626 
3627 	event = rb_iter_head_event(iter);
3628 
3629 	length = rb_event_length(event);
3630 
3631 	/*
3632 	 * This should not be called to advance the header if we are
3633 	 * at the tail of the buffer.
3634 	 */
3635 	if (RB_WARN_ON(cpu_buffer,
3636 		       (iter->head_page == cpu_buffer->commit_page) &&
3637 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3638 		return;
3639 
3640 	rb_update_iter_read_stamp(iter, event);
3641 
3642 	iter->head += length;
3643 
3644 	/* check for end of page padding */
3645 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3646 	    (iter->head_page != cpu_buffer->commit_page))
3647 		rb_inc_iter(iter);
3648 }
3649 
3650 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3651 {
3652 	return cpu_buffer->lost_events;
3653 }
3654 
3655 static struct ring_buffer_event *
3656 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3657 	       unsigned long *lost_events)
3658 {
3659 	struct ring_buffer_event *event;
3660 	struct buffer_page *reader;
3661 	int nr_loops = 0;
3662 
3663  again:
3664 	/*
3665 	 * We repeat when a time extend is encountered.
3666 	 * Since the time extend is always attached to a data event,
3667 	 * we should never loop more than once.
3668 	 * (We never hit the following condition more than twice).
3669 	 */
3670 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3671 		return NULL;
3672 
3673 	reader = rb_get_reader_page(cpu_buffer);
3674 	if (!reader)
3675 		return NULL;
3676 
3677 	event = rb_reader_event(cpu_buffer);
3678 
3679 	switch (event->type_len) {
3680 	case RINGBUF_TYPE_PADDING:
3681 		if (rb_null_event(event))
3682 			RB_WARN_ON(cpu_buffer, 1);
3683 		/*
3684 		 * Because the writer could be discarding every
3685 		 * event it creates (which would probably be bad)
3686 		 * if we were to go back to "again" then we may never
3687 		 * catch up, and will trigger the warn on, or lock
3688 		 * the box. Return the padding, and we will release
3689 		 * the current locks, and try again.
3690 		 */
3691 		return event;
3692 
3693 	case RINGBUF_TYPE_TIME_EXTEND:
3694 		/* Internal data, OK to advance */
3695 		rb_advance_reader(cpu_buffer);
3696 		goto again;
3697 
3698 	case RINGBUF_TYPE_TIME_STAMP:
3699 		/* FIXME: not implemented */
3700 		rb_advance_reader(cpu_buffer);
3701 		goto again;
3702 
3703 	case RINGBUF_TYPE_DATA:
3704 		if (ts) {
3705 			*ts = cpu_buffer->read_stamp + event->time_delta;
3706 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3707 							 cpu_buffer->cpu, ts);
3708 		}
3709 		if (lost_events)
3710 			*lost_events = rb_lost_events(cpu_buffer);
3711 		return event;
3712 
3713 	default:
3714 		BUG();
3715 	}
3716 
3717 	return NULL;
3718 }
3719 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3720 
3721 static struct ring_buffer_event *
3722 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3723 {
3724 	struct ring_buffer *buffer;
3725 	struct ring_buffer_per_cpu *cpu_buffer;
3726 	struct ring_buffer_event *event;
3727 	int nr_loops = 0;
3728 
3729 	cpu_buffer = iter->cpu_buffer;
3730 	buffer = cpu_buffer->buffer;
3731 
3732 	/*
3733 	 * Check if someone performed a consuming read to
3734 	 * the buffer. A consuming read invalidates the iterator
3735 	 * and we need to reset the iterator in this case.
3736 	 */
3737 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3738 		     iter->cache_reader_page != cpu_buffer->reader_page))
3739 		rb_iter_reset(iter);
3740 
3741  again:
3742 	if (ring_buffer_iter_empty(iter))
3743 		return NULL;
3744 
3745 	/*
3746 	 * We repeat when a time extend is encountered or we hit
3747 	 * the end of the page. Since the time extend is always attached
3748 	 * to a data event, we should never loop more than three times.
3749 	 * Once for going to next page, once on time extend, and
3750 	 * finally once to get the event.
3751 	 * (We never hit the following condition more than thrice).
3752 	 */
3753 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3754 		return NULL;
3755 
3756 	if (rb_per_cpu_empty(cpu_buffer))
3757 		return NULL;
3758 
3759 	if (iter->head >= rb_page_size(iter->head_page)) {
3760 		rb_inc_iter(iter);
3761 		goto again;
3762 	}
3763 
3764 	event = rb_iter_head_event(iter);
3765 
3766 	switch (event->type_len) {
3767 	case RINGBUF_TYPE_PADDING:
3768 		if (rb_null_event(event)) {
3769 			rb_inc_iter(iter);
3770 			goto again;
3771 		}
3772 		rb_advance_iter(iter);
3773 		return event;
3774 
3775 	case RINGBUF_TYPE_TIME_EXTEND:
3776 		/* Internal data, OK to advance */
3777 		rb_advance_iter(iter);
3778 		goto again;
3779 
3780 	case RINGBUF_TYPE_TIME_STAMP:
3781 		/* FIXME: not implemented */
3782 		rb_advance_iter(iter);
3783 		goto again;
3784 
3785 	case RINGBUF_TYPE_DATA:
3786 		if (ts) {
3787 			*ts = iter->read_stamp + event->time_delta;
3788 			ring_buffer_normalize_time_stamp(buffer,
3789 							 cpu_buffer->cpu, ts);
3790 		}
3791 		return event;
3792 
3793 	default:
3794 		BUG();
3795 	}
3796 
3797 	return NULL;
3798 }
3799 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3800 
3801 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3802 {
3803 	if (likely(!in_nmi())) {
3804 		raw_spin_lock(&cpu_buffer->reader_lock);
3805 		return true;
3806 	}
3807 
3808 	/*
3809 	 * If an NMI die dumps out the content of the ring buffer
3810 	 * trylock must be used to prevent a deadlock if the NMI
3811 	 * preempted a task that holds the ring buffer locks. If
3812 	 * we get the lock then all is fine, if not, then continue
3813 	 * to do the read, but this can corrupt the ring buffer,
3814 	 * so it must be permanently disabled from future writes.
3815 	 * Reading from NMI is a oneshot deal.
3816 	 */
3817 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3818 		return true;
3819 
3820 	/* Continue without locking, but disable the ring buffer */
3821 	atomic_inc(&cpu_buffer->record_disabled);
3822 	return false;
3823 }
3824 
3825 static inline void
3826 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3827 {
3828 	if (likely(locked))
3829 		raw_spin_unlock(&cpu_buffer->reader_lock);
3830 	return;
3831 }
3832 
3833 /**
3834  * ring_buffer_peek - peek at the next event to be read
3835  * @buffer: The ring buffer to read
3836  * @cpu: The cpu to peak at
3837  * @ts: The timestamp counter of this event.
3838  * @lost_events: a variable to store if events were lost (may be NULL)
3839  *
3840  * This will return the event that will be read next, but does
3841  * not consume the data.
3842  */
3843 struct ring_buffer_event *
3844 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3845 		 unsigned long *lost_events)
3846 {
3847 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3848 	struct ring_buffer_event *event;
3849 	unsigned long flags;
3850 	bool dolock;
3851 
3852 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3853 		return NULL;
3854 
3855  again:
3856 	local_irq_save(flags);
3857 	dolock = rb_reader_lock(cpu_buffer);
3858 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3859 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3860 		rb_advance_reader(cpu_buffer);
3861 	rb_reader_unlock(cpu_buffer, dolock);
3862 	local_irq_restore(flags);
3863 
3864 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3865 		goto again;
3866 
3867 	return event;
3868 }
3869 
3870 /**
3871  * ring_buffer_iter_peek - peek at the next event to be read
3872  * @iter: The ring buffer iterator
3873  * @ts: The timestamp counter of this event.
3874  *
3875  * This will return the event that will be read next, but does
3876  * not increment the iterator.
3877  */
3878 struct ring_buffer_event *
3879 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3880 {
3881 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3882 	struct ring_buffer_event *event;
3883 	unsigned long flags;
3884 
3885  again:
3886 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3887 	event = rb_iter_peek(iter, ts);
3888 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3889 
3890 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3891 		goto again;
3892 
3893 	return event;
3894 }
3895 
3896 /**
3897  * ring_buffer_consume - return an event and consume it
3898  * @buffer: The ring buffer to get the next event from
3899  * @cpu: the cpu to read the buffer from
3900  * @ts: a variable to store the timestamp (may be NULL)
3901  * @lost_events: a variable to store if events were lost (may be NULL)
3902  *
3903  * Returns the next event in the ring buffer, and that event is consumed.
3904  * Meaning, that sequential reads will keep returning a different event,
3905  * and eventually empty the ring buffer if the producer is slower.
3906  */
3907 struct ring_buffer_event *
3908 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3909 		    unsigned long *lost_events)
3910 {
3911 	struct ring_buffer_per_cpu *cpu_buffer;
3912 	struct ring_buffer_event *event = NULL;
3913 	unsigned long flags;
3914 	bool dolock;
3915 
3916  again:
3917 	/* might be called in atomic */
3918 	preempt_disable();
3919 
3920 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3921 		goto out;
3922 
3923 	cpu_buffer = buffer->buffers[cpu];
3924 	local_irq_save(flags);
3925 	dolock = rb_reader_lock(cpu_buffer);
3926 
3927 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3928 	if (event) {
3929 		cpu_buffer->lost_events = 0;
3930 		rb_advance_reader(cpu_buffer);
3931 	}
3932 
3933 	rb_reader_unlock(cpu_buffer, dolock);
3934 	local_irq_restore(flags);
3935 
3936  out:
3937 	preempt_enable();
3938 
3939 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3940 		goto again;
3941 
3942 	return event;
3943 }
3944 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3945 
3946 /**
3947  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3948  * @buffer: The ring buffer to read from
3949  * @cpu: The cpu buffer to iterate over
3950  *
3951  * This performs the initial preparations necessary to iterate
3952  * through the buffer.  Memory is allocated, buffer recording
3953  * is disabled, and the iterator pointer is returned to the caller.
3954  *
3955  * Disabling buffer recordng prevents the reading from being
3956  * corrupted. This is not a consuming read, so a producer is not
3957  * expected.
3958  *
3959  * After a sequence of ring_buffer_read_prepare calls, the user is
3960  * expected to make at least one call to ring_buffer_read_prepare_sync.
3961  * Afterwards, ring_buffer_read_start is invoked to get things going
3962  * for real.
3963  *
3964  * This overall must be paired with ring_buffer_read_finish.
3965  */
3966 struct ring_buffer_iter *
3967 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3968 {
3969 	struct ring_buffer_per_cpu *cpu_buffer;
3970 	struct ring_buffer_iter *iter;
3971 
3972 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3973 		return NULL;
3974 
3975 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3976 	if (!iter)
3977 		return NULL;
3978 
3979 	cpu_buffer = buffer->buffers[cpu];
3980 
3981 	iter->cpu_buffer = cpu_buffer;
3982 
3983 	atomic_inc(&buffer->resize_disabled);
3984 	atomic_inc(&cpu_buffer->record_disabled);
3985 
3986 	return iter;
3987 }
3988 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3989 
3990 /**
3991  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3992  *
3993  * All previously invoked ring_buffer_read_prepare calls to prepare
3994  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3995  * calls on those iterators are allowed.
3996  */
3997 void
3998 ring_buffer_read_prepare_sync(void)
3999 {
4000 	synchronize_sched();
4001 }
4002 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4003 
4004 /**
4005  * ring_buffer_read_start - start a non consuming read of the buffer
4006  * @iter: The iterator returned by ring_buffer_read_prepare
4007  *
4008  * This finalizes the startup of an iteration through the buffer.
4009  * The iterator comes from a call to ring_buffer_read_prepare and
4010  * an intervening ring_buffer_read_prepare_sync must have been
4011  * performed.
4012  *
4013  * Must be paired with ring_buffer_read_finish.
4014  */
4015 void
4016 ring_buffer_read_start(struct ring_buffer_iter *iter)
4017 {
4018 	struct ring_buffer_per_cpu *cpu_buffer;
4019 	unsigned long flags;
4020 
4021 	if (!iter)
4022 		return;
4023 
4024 	cpu_buffer = iter->cpu_buffer;
4025 
4026 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4027 	arch_spin_lock(&cpu_buffer->lock);
4028 	rb_iter_reset(iter);
4029 	arch_spin_unlock(&cpu_buffer->lock);
4030 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4031 }
4032 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4033 
4034 /**
4035  * ring_buffer_read_finish - finish reading the iterator of the buffer
4036  * @iter: The iterator retrieved by ring_buffer_start
4037  *
4038  * This re-enables the recording to the buffer, and frees the
4039  * iterator.
4040  */
4041 void
4042 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4043 {
4044 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4045 	unsigned long flags;
4046 
4047 	/*
4048 	 * Ring buffer is disabled from recording, here's a good place
4049 	 * to check the integrity of the ring buffer.
4050 	 * Must prevent readers from trying to read, as the check
4051 	 * clears the HEAD page and readers require it.
4052 	 */
4053 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4054 	rb_check_pages(cpu_buffer);
4055 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4056 
4057 	atomic_dec(&cpu_buffer->record_disabled);
4058 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4059 	kfree(iter);
4060 }
4061 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4062 
4063 /**
4064  * ring_buffer_read - read the next item in the ring buffer by the iterator
4065  * @iter: The ring buffer iterator
4066  * @ts: The time stamp of the event read.
4067  *
4068  * This reads the next event in the ring buffer and increments the iterator.
4069  */
4070 struct ring_buffer_event *
4071 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4072 {
4073 	struct ring_buffer_event *event;
4074 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4075 	unsigned long flags;
4076 
4077 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4078  again:
4079 	event = rb_iter_peek(iter, ts);
4080 	if (!event)
4081 		goto out;
4082 
4083 	if (event->type_len == RINGBUF_TYPE_PADDING)
4084 		goto again;
4085 
4086 	rb_advance_iter(iter);
4087  out:
4088 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4089 
4090 	return event;
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read);
4093 
4094 /**
4095  * ring_buffer_size - return the size of the ring buffer (in bytes)
4096  * @buffer: The ring buffer.
4097  */
4098 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4099 {
4100 	/*
4101 	 * Earlier, this method returned
4102 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4103 	 * Since the nr_pages field is now removed, we have converted this to
4104 	 * return the per cpu buffer value.
4105 	 */
4106 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4107 		return 0;
4108 
4109 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4110 }
4111 EXPORT_SYMBOL_GPL(ring_buffer_size);
4112 
4113 static void
4114 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4115 {
4116 	rb_head_page_deactivate(cpu_buffer);
4117 
4118 	cpu_buffer->head_page
4119 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4120 	local_set(&cpu_buffer->head_page->write, 0);
4121 	local_set(&cpu_buffer->head_page->entries, 0);
4122 	local_set(&cpu_buffer->head_page->page->commit, 0);
4123 
4124 	cpu_buffer->head_page->read = 0;
4125 
4126 	cpu_buffer->tail_page = cpu_buffer->head_page;
4127 	cpu_buffer->commit_page = cpu_buffer->head_page;
4128 
4129 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4130 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4131 	local_set(&cpu_buffer->reader_page->write, 0);
4132 	local_set(&cpu_buffer->reader_page->entries, 0);
4133 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4134 	cpu_buffer->reader_page->read = 0;
4135 
4136 	local_set(&cpu_buffer->entries_bytes, 0);
4137 	local_set(&cpu_buffer->overrun, 0);
4138 	local_set(&cpu_buffer->commit_overrun, 0);
4139 	local_set(&cpu_buffer->dropped_events, 0);
4140 	local_set(&cpu_buffer->entries, 0);
4141 	local_set(&cpu_buffer->committing, 0);
4142 	local_set(&cpu_buffer->commits, 0);
4143 	cpu_buffer->read = 0;
4144 	cpu_buffer->read_bytes = 0;
4145 
4146 	cpu_buffer->write_stamp = 0;
4147 	cpu_buffer->read_stamp = 0;
4148 
4149 	cpu_buffer->lost_events = 0;
4150 	cpu_buffer->last_overrun = 0;
4151 
4152 	rb_head_page_activate(cpu_buffer);
4153 }
4154 
4155 /**
4156  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4157  * @buffer: The ring buffer to reset a per cpu buffer of
4158  * @cpu: The CPU buffer to be reset
4159  */
4160 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4161 {
4162 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4163 	unsigned long flags;
4164 
4165 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166 		return;
4167 
4168 	atomic_inc(&buffer->resize_disabled);
4169 	atomic_inc(&cpu_buffer->record_disabled);
4170 
4171 	/* Make sure all commits have finished */
4172 	synchronize_sched();
4173 
4174 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4175 
4176 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4177 		goto out;
4178 
4179 	arch_spin_lock(&cpu_buffer->lock);
4180 
4181 	rb_reset_cpu(cpu_buffer);
4182 
4183 	arch_spin_unlock(&cpu_buffer->lock);
4184 
4185  out:
4186 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4187 
4188 	atomic_dec(&cpu_buffer->record_disabled);
4189 	atomic_dec(&buffer->resize_disabled);
4190 }
4191 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4192 
4193 /**
4194  * ring_buffer_reset - reset a ring buffer
4195  * @buffer: The ring buffer to reset all cpu buffers
4196  */
4197 void ring_buffer_reset(struct ring_buffer *buffer)
4198 {
4199 	int cpu;
4200 
4201 	for_each_buffer_cpu(buffer, cpu)
4202 		ring_buffer_reset_cpu(buffer, cpu);
4203 }
4204 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4205 
4206 /**
4207  * rind_buffer_empty - is the ring buffer empty?
4208  * @buffer: The ring buffer to test
4209  */
4210 bool ring_buffer_empty(struct ring_buffer *buffer)
4211 {
4212 	struct ring_buffer_per_cpu *cpu_buffer;
4213 	unsigned long flags;
4214 	bool dolock;
4215 	int cpu;
4216 	int ret;
4217 
4218 	/* yes this is racy, but if you don't like the race, lock the buffer */
4219 	for_each_buffer_cpu(buffer, cpu) {
4220 		cpu_buffer = buffer->buffers[cpu];
4221 		local_irq_save(flags);
4222 		dolock = rb_reader_lock(cpu_buffer);
4223 		ret = rb_per_cpu_empty(cpu_buffer);
4224 		rb_reader_unlock(cpu_buffer, dolock);
4225 		local_irq_restore(flags);
4226 
4227 		if (!ret)
4228 			return false;
4229 	}
4230 
4231 	return true;
4232 }
4233 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4234 
4235 /**
4236  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4237  * @buffer: The ring buffer
4238  * @cpu: The CPU buffer to test
4239  */
4240 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4241 {
4242 	struct ring_buffer_per_cpu *cpu_buffer;
4243 	unsigned long flags;
4244 	bool dolock;
4245 	int ret;
4246 
4247 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4248 		return true;
4249 
4250 	cpu_buffer = buffer->buffers[cpu];
4251 	local_irq_save(flags);
4252 	dolock = rb_reader_lock(cpu_buffer);
4253 	ret = rb_per_cpu_empty(cpu_buffer);
4254 	rb_reader_unlock(cpu_buffer, dolock);
4255 	local_irq_restore(flags);
4256 
4257 	return ret;
4258 }
4259 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4260 
4261 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4262 /**
4263  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4264  * @buffer_a: One buffer to swap with
4265  * @buffer_b: The other buffer to swap with
4266  *
4267  * This function is useful for tracers that want to take a "snapshot"
4268  * of a CPU buffer and has another back up buffer lying around.
4269  * it is expected that the tracer handles the cpu buffer not being
4270  * used at the moment.
4271  */
4272 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4273 			 struct ring_buffer *buffer_b, int cpu)
4274 {
4275 	struct ring_buffer_per_cpu *cpu_buffer_a;
4276 	struct ring_buffer_per_cpu *cpu_buffer_b;
4277 	int ret = -EINVAL;
4278 
4279 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4280 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4281 		goto out;
4282 
4283 	cpu_buffer_a = buffer_a->buffers[cpu];
4284 	cpu_buffer_b = buffer_b->buffers[cpu];
4285 
4286 	/* At least make sure the two buffers are somewhat the same */
4287 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4288 		goto out;
4289 
4290 	ret = -EAGAIN;
4291 
4292 	if (atomic_read(&buffer_a->record_disabled))
4293 		goto out;
4294 
4295 	if (atomic_read(&buffer_b->record_disabled))
4296 		goto out;
4297 
4298 	if (atomic_read(&cpu_buffer_a->record_disabled))
4299 		goto out;
4300 
4301 	if (atomic_read(&cpu_buffer_b->record_disabled))
4302 		goto out;
4303 
4304 	/*
4305 	 * We can't do a synchronize_sched here because this
4306 	 * function can be called in atomic context.
4307 	 * Normally this will be called from the same CPU as cpu.
4308 	 * If not it's up to the caller to protect this.
4309 	 */
4310 	atomic_inc(&cpu_buffer_a->record_disabled);
4311 	atomic_inc(&cpu_buffer_b->record_disabled);
4312 
4313 	ret = -EBUSY;
4314 	if (local_read(&cpu_buffer_a->committing))
4315 		goto out_dec;
4316 	if (local_read(&cpu_buffer_b->committing))
4317 		goto out_dec;
4318 
4319 	buffer_a->buffers[cpu] = cpu_buffer_b;
4320 	buffer_b->buffers[cpu] = cpu_buffer_a;
4321 
4322 	cpu_buffer_b->buffer = buffer_a;
4323 	cpu_buffer_a->buffer = buffer_b;
4324 
4325 	ret = 0;
4326 
4327 out_dec:
4328 	atomic_dec(&cpu_buffer_a->record_disabled);
4329 	atomic_dec(&cpu_buffer_b->record_disabled);
4330 out:
4331 	return ret;
4332 }
4333 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4334 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4335 
4336 /**
4337  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4338  * @buffer: the buffer to allocate for.
4339  * @cpu: the cpu buffer to allocate.
4340  *
4341  * This function is used in conjunction with ring_buffer_read_page.
4342  * When reading a full page from the ring buffer, these functions
4343  * can be used to speed up the process. The calling function should
4344  * allocate a few pages first with this function. Then when it
4345  * needs to get pages from the ring buffer, it passes the result
4346  * of this function into ring_buffer_read_page, which will swap
4347  * the page that was allocated, with the read page of the buffer.
4348  *
4349  * Returns:
4350  *  The page allocated, or ERR_PTR
4351  */
4352 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4353 {
4354 	struct ring_buffer_per_cpu *cpu_buffer;
4355 	struct buffer_data_page *bpage = NULL;
4356 	unsigned long flags;
4357 	struct page *page;
4358 
4359 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4360 		return ERR_PTR(-ENODEV);
4361 
4362 	cpu_buffer = buffer->buffers[cpu];
4363 	local_irq_save(flags);
4364 	arch_spin_lock(&cpu_buffer->lock);
4365 
4366 	if (cpu_buffer->free_page) {
4367 		bpage = cpu_buffer->free_page;
4368 		cpu_buffer->free_page = NULL;
4369 	}
4370 
4371 	arch_spin_unlock(&cpu_buffer->lock);
4372 	local_irq_restore(flags);
4373 
4374 	if (bpage)
4375 		goto out;
4376 
4377 	page = alloc_pages_node(cpu_to_node(cpu),
4378 				GFP_KERNEL | __GFP_NORETRY, 0);
4379 	if (!page)
4380 		return ERR_PTR(-ENOMEM);
4381 
4382 	bpage = page_address(page);
4383 
4384  out:
4385 	rb_init_page(bpage);
4386 
4387 	return bpage;
4388 }
4389 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4390 
4391 /**
4392  * ring_buffer_free_read_page - free an allocated read page
4393  * @buffer: the buffer the page was allocate for
4394  * @cpu: the cpu buffer the page came from
4395  * @data: the page to free
4396  *
4397  * Free a page allocated from ring_buffer_alloc_read_page.
4398  */
4399 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4400 {
4401 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4402 	struct buffer_data_page *bpage = data;
4403 	unsigned long flags;
4404 
4405 	local_irq_save(flags);
4406 	arch_spin_lock(&cpu_buffer->lock);
4407 
4408 	if (!cpu_buffer->free_page) {
4409 		cpu_buffer->free_page = bpage;
4410 		bpage = NULL;
4411 	}
4412 
4413 	arch_spin_unlock(&cpu_buffer->lock);
4414 	local_irq_restore(flags);
4415 
4416 	free_page((unsigned long)bpage);
4417 }
4418 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4419 
4420 /**
4421  * ring_buffer_read_page - extract a page from the ring buffer
4422  * @buffer: buffer to extract from
4423  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4424  * @len: amount to extract
4425  * @cpu: the cpu of the buffer to extract
4426  * @full: should the extraction only happen when the page is full.
4427  *
4428  * This function will pull out a page from the ring buffer and consume it.
4429  * @data_page must be the address of the variable that was returned
4430  * from ring_buffer_alloc_read_page. This is because the page might be used
4431  * to swap with a page in the ring buffer.
4432  *
4433  * for example:
4434  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4435  *	if (IS_ERR(rpage))
4436  *		return PTR_ERR(rpage);
4437  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4438  *	if (ret >= 0)
4439  *		process_page(rpage, ret);
4440  *
4441  * When @full is set, the function will not return true unless
4442  * the writer is off the reader page.
4443  *
4444  * Note: it is up to the calling functions to handle sleeps and wakeups.
4445  *  The ring buffer can be used anywhere in the kernel and can not
4446  *  blindly call wake_up. The layer that uses the ring buffer must be
4447  *  responsible for that.
4448  *
4449  * Returns:
4450  *  >=0 if data has been transferred, returns the offset of consumed data.
4451  *  <0 if no data has been transferred.
4452  */
4453 int ring_buffer_read_page(struct ring_buffer *buffer,
4454 			  void **data_page, size_t len, int cpu, int full)
4455 {
4456 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4457 	struct ring_buffer_event *event;
4458 	struct buffer_data_page *bpage;
4459 	struct buffer_page *reader;
4460 	unsigned long missed_events;
4461 	unsigned long flags;
4462 	unsigned int commit;
4463 	unsigned int read;
4464 	u64 save_timestamp;
4465 	int ret = -1;
4466 
4467 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4468 		goto out;
4469 
4470 	/*
4471 	 * If len is not big enough to hold the page header, then
4472 	 * we can not copy anything.
4473 	 */
4474 	if (len <= BUF_PAGE_HDR_SIZE)
4475 		goto out;
4476 
4477 	len -= BUF_PAGE_HDR_SIZE;
4478 
4479 	if (!data_page)
4480 		goto out;
4481 
4482 	bpage = *data_page;
4483 	if (!bpage)
4484 		goto out;
4485 
4486 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4487 
4488 	reader = rb_get_reader_page(cpu_buffer);
4489 	if (!reader)
4490 		goto out_unlock;
4491 
4492 	event = rb_reader_event(cpu_buffer);
4493 
4494 	read = reader->read;
4495 	commit = rb_page_commit(reader);
4496 
4497 	/* Check if any events were dropped */
4498 	missed_events = cpu_buffer->lost_events;
4499 
4500 	/*
4501 	 * If this page has been partially read or
4502 	 * if len is not big enough to read the rest of the page or
4503 	 * a writer is still on the page, then
4504 	 * we must copy the data from the page to the buffer.
4505 	 * Otherwise, we can simply swap the page with the one passed in.
4506 	 */
4507 	if (read || (len < (commit - read)) ||
4508 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4509 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4510 		unsigned int rpos = read;
4511 		unsigned int pos = 0;
4512 		unsigned int size;
4513 
4514 		if (full)
4515 			goto out_unlock;
4516 
4517 		if (len > (commit - read))
4518 			len = (commit - read);
4519 
4520 		/* Always keep the time extend and data together */
4521 		size = rb_event_ts_length(event);
4522 
4523 		if (len < size)
4524 			goto out_unlock;
4525 
4526 		/* save the current timestamp, since the user will need it */
4527 		save_timestamp = cpu_buffer->read_stamp;
4528 
4529 		/* Need to copy one event at a time */
4530 		do {
4531 			/* We need the size of one event, because
4532 			 * rb_advance_reader only advances by one event,
4533 			 * whereas rb_event_ts_length may include the size of
4534 			 * one or two events.
4535 			 * We have already ensured there's enough space if this
4536 			 * is a time extend. */
4537 			size = rb_event_length(event);
4538 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4539 
4540 			len -= size;
4541 
4542 			rb_advance_reader(cpu_buffer);
4543 			rpos = reader->read;
4544 			pos += size;
4545 
4546 			if (rpos >= commit)
4547 				break;
4548 
4549 			event = rb_reader_event(cpu_buffer);
4550 			/* Always keep the time extend and data together */
4551 			size = rb_event_ts_length(event);
4552 		} while (len >= size);
4553 
4554 		/* update bpage */
4555 		local_set(&bpage->commit, pos);
4556 		bpage->time_stamp = save_timestamp;
4557 
4558 		/* we copied everything to the beginning */
4559 		read = 0;
4560 	} else {
4561 		/* update the entry counter */
4562 		cpu_buffer->read += rb_page_entries(reader);
4563 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4564 
4565 		/* swap the pages */
4566 		rb_init_page(bpage);
4567 		bpage = reader->page;
4568 		reader->page = *data_page;
4569 		local_set(&reader->write, 0);
4570 		local_set(&reader->entries, 0);
4571 		reader->read = 0;
4572 		*data_page = bpage;
4573 
4574 		/*
4575 		 * Use the real_end for the data size,
4576 		 * This gives us a chance to store the lost events
4577 		 * on the page.
4578 		 */
4579 		if (reader->real_end)
4580 			local_set(&bpage->commit, reader->real_end);
4581 	}
4582 	ret = read;
4583 
4584 	cpu_buffer->lost_events = 0;
4585 
4586 	commit = local_read(&bpage->commit);
4587 	/*
4588 	 * Set a flag in the commit field if we lost events
4589 	 */
4590 	if (missed_events) {
4591 		/* If there is room at the end of the page to save the
4592 		 * missed events, then record it there.
4593 		 */
4594 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4595 			memcpy(&bpage->data[commit], &missed_events,
4596 			       sizeof(missed_events));
4597 			local_add(RB_MISSED_STORED, &bpage->commit);
4598 			commit += sizeof(missed_events);
4599 		}
4600 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4601 	}
4602 
4603 	/*
4604 	 * This page may be off to user land. Zero it out here.
4605 	 */
4606 	if (commit < BUF_PAGE_SIZE)
4607 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4608 
4609  out_unlock:
4610 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4611 
4612  out:
4613 	return ret;
4614 }
4615 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4616 
4617 /*
4618  * We only allocate new buffers, never free them if the CPU goes down.
4619  * If we were to free the buffer, then the user would lose any trace that was in
4620  * the buffer.
4621  */
4622 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4623 {
4624 	struct ring_buffer *buffer;
4625 	long nr_pages_same;
4626 	int cpu_i;
4627 	unsigned long nr_pages;
4628 
4629 	buffer = container_of(node, struct ring_buffer, node);
4630 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4631 		return 0;
4632 
4633 	nr_pages = 0;
4634 	nr_pages_same = 1;
4635 	/* check if all cpu sizes are same */
4636 	for_each_buffer_cpu(buffer, cpu_i) {
4637 		/* fill in the size from first enabled cpu */
4638 		if (nr_pages == 0)
4639 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4640 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4641 			nr_pages_same = 0;
4642 			break;
4643 		}
4644 	}
4645 	/* allocate minimum pages, user can later expand it */
4646 	if (!nr_pages_same)
4647 		nr_pages = 2;
4648 	buffer->buffers[cpu] =
4649 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4650 	if (!buffer->buffers[cpu]) {
4651 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4652 		     cpu);
4653 		return -ENOMEM;
4654 	}
4655 	smp_wmb();
4656 	cpumask_set_cpu(cpu, buffer->cpumask);
4657 	return 0;
4658 }
4659 
4660 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4661 /*
4662  * This is a basic integrity check of the ring buffer.
4663  * Late in the boot cycle this test will run when configured in.
4664  * It will kick off a thread per CPU that will go into a loop
4665  * writing to the per cpu ring buffer various sizes of data.
4666  * Some of the data will be large items, some small.
4667  *
4668  * Another thread is created that goes into a spin, sending out
4669  * IPIs to the other CPUs to also write into the ring buffer.
4670  * this is to test the nesting ability of the buffer.
4671  *
4672  * Basic stats are recorded and reported. If something in the
4673  * ring buffer should happen that's not expected, a big warning
4674  * is displayed and all ring buffers are disabled.
4675  */
4676 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4677 
4678 struct rb_test_data {
4679 	struct ring_buffer	*buffer;
4680 	unsigned long		events;
4681 	unsigned long		bytes_written;
4682 	unsigned long		bytes_alloc;
4683 	unsigned long		bytes_dropped;
4684 	unsigned long		events_nested;
4685 	unsigned long		bytes_written_nested;
4686 	unsigned long		bytes_alloc_nested;
4687 	unsigned long		bytes_dropped_nested;
4688 	int			min_size_nested;
4689 	int			max_size_nested;
4690 	int			max_size;
4691 	int			min_size;
4692 	int			cpu;
4693 	int			cnt;
4694 };
4695 
4696 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4697 
4698 /* 1 meg per cpu */
4699 #define RB_TEST_BUFFER_SIZE	1048576
4700 
4701 static char rb_string[] __initdata =
4702 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4703 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4704 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4705 
4706 static bool rb_test_started __initdata;
4707 
4708 struct rb_item {
4709 	int size;
4710 	char str[];
4711 };
4712 
4713 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4714 {
4715 	struct ring_buffer_event *event;
4716 	struct rb_item *item;
4717 	bool started;
4718 	int event_len;
4719 	int size;
4720 	int len;
4721 	int cnt;
4722 
4723 	/* Have nested writes different that what is written */
4724 	cnt = data->cnt + (nested ? 27 : 0);
4725 
4726 	/* Multiply cnt by ~e, to make some unique increment */
4727 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4728 
4729 	len = size + sizeof(struct rb_item);
4730 
4731 	started = rb_test_started;
4732 	/* read rb_test_started before checking buffer enabled */
4733 	smp_rmb();
4734 
4735 	event = ring_buffer_lock_reserve(data->buffer, len);
4736 	if (!event) {
4737 		/* Ignore dropped events before test starts. */
4738 		if (started) {
4739 			if (nested)
4740 				data->bytes_dropped += len;
4741 			else
4742 				data->bytes_dropped_nested += len;
4743 		}
4744 		return len;
4745 	}
4746 
4747 	event_len = ring_buffer_event_length(event);
4748 
4749 	if (RB_WARN_ON(data->buffer, event_len < len))
4750 		goto out;
4751 
4752 	item = ring_buffer_event_data(event);
4753 	item->size = size;
4754 	memcpy(item->str, rb_string, size);
4755 
4756 	if (nested) {
4757 		data->bytes_alloc_nested += event_len;
4758 		data->bytes_written_nested += len;
4759 		data->events_nested++;
4760 		if (!data->min_size_nested || len < data->min_size_nested)
4761 			data->min_size_nested = len;
4762 		if (len > data->max_size_nested)
4763 			data->max_size_nested = len;
4764 	} else {
4765 		data->bytes_alloc += event_len;
4766 		data->bytes_written += len;
4767 		data->events++;
4768 		if (!data->min_size || len < data->min_size)
4769 			data->max_size = len;
4770 		if (len > data->max_size)
4771 			data->max_size = len;
4772 	}
4773 
4774  out:
4775 	ring_buffer_unlock_commit(data->buffer, event);
4776 
4777 	return 0;
4778 }
4779 
4780 static __init int rb_test(void *arg)
4781 {
4782 	struct rb_test_data *data = arg;
4783 
4784 	while (!kthread_should_stop()) {
4785 		rb_write_something(data, false);
4786 		data->cnt++;
4787 
4788 		set_current_state(TASK_INTERRUPTIBLE);
4789 		/* Now sleep between a min of 100-300us and a max of 1ms */
4790 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4791 	}
4792 
4793 	return 0;
4794 }
4795 
4796 static __init void rb_ipi(void *ignore)
4797 {
4798 	struct rb_test_data *data;
4799 	int cpu = smp_processor_id();
4800 
4801 	data = &rb_data[cpu];
4802 	rb_write_something(data, true);
4803 }
4804 
4805 static __init int rb_hammer_test(void *arg)
4806 {
4807 	while (!kthread_should_stop()) {
4808 
4809 		/* Send an IPI to all cpus to write data! */
4810 		smp_call_function(rb_ipi, NULL, 1);
4811 		/* No sleep, but for non preempt, let others run */
4812 		schedule();
4813 	}
4814 
4815 	return 0;
4816 }
4817 
4818 static __init int test_ringbuffer(void)
4819 {
4820 	struct task_struct *rb_hammer;
4821 	struct ring_buffer *buffer;
4822 	int cpu;
4823 	int ret = 0;
4824 
4825 	pr_info("Running ring buffer tests...\n");
4826 
4827 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4828 	if (WARN_ON(!buffer))
4829 		return 0;
4830 
4831 	/* Disable buffer so that threads can't write to it yet */
4832 	ring_buffer_record_off(buffer);
4833 
4834 	for_each_online_cpu(cpu) {
4835 		rb_data[cpu].buffer = buffer;
4836 		rb_data[cpu].cpu = cpu;
4837 		rb_data[cpu].cnt = cpu;
4838 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4839 						 "rbtester/%d", cpu);
4840 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4841 			pr_cont("FAILED\n");
4842 			ret = PTR_ERR(rb_threads[cpu]);
4843 			goto out_free;
4844 		}
4845 
4846 		kthread_bind(rb_threads[cpu], cpu);
4847  		wake_up_process(rb_threads[cpu]);
4848 	}
4849 
4850 	/* Now create the rb hammer! */
4851 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4852 	if (WARN_ON(IS_ERR(rb_hammer))) {
4853 		pr_cont("FAILED\n");
4854 		ret = PTR_ERR(rb_hammer);
4855 		goto out_free;
4856 	}
4857 
4858 	ring_buffer_record_on(buffer);
4859 	/*
4860 	 * Show buffer is enabled before setting rb_test_started.
4861 	 * Yes there's a small race window where events could be
4862 	 * dropped and the thread wont catch it. But when a ring
4863 	 * buffer gets enabled, there will always be some kind of
4864 	 * delay before other CPUs see it. Thus, we don't care about
4865 	 * those dropped events. We care about events dropped after
4866 	 * the threads see that the buffer is active.
4867 	 */
4868 	smp_wmb();
4869 	rb_test_started = true;
4870 
4871 	set_current_state(TASK_INTERRUPTIBLE);
4872 	/* Just run for 10 seconds */;
4873 	schedule_timeout(10 * HZ);
4874 
4875 	kthread_stop(rb_hammer);
4876 
4877  out_free:
4878 	for_each_online_cpu(cpu) {
4879 		if (!rb_threads[cpu])
4880 			break;
4881 		kthread_stop(rb_threads[cpu]);
4882 	}
4883 	if (ret) {
4884 		ring_buffer_free(buffer);
4885 		return ret;
4886 	}
4887 
4888 	/* Report! */
4889 	pr_info("finished\n");
4890 	for_each_online_cpu(cpu) {
4891 		struct ring_buffer_event *event;
4892 		struct rb_test_data *data = &rb_data[cpu];
4893 		struct rb_item *item;
4894 		unsigned long total_events;
4895 		unsigned long total_dropped;
4896 		unsigned long total_written;
4897 		unsigned long total_alloc;
4898 		unsigned long total_read = 0;
4899 		unsigned long total_size = 0;
4900 		unsigned long total_len = 0;
4901 		unsigned long total_lost = 0;
4902 		unsigned long lost;
4903 		int big_event_size;
4904 		int small_event_size;
4905 
4906 		ret = -1;
4907 
4908 		total_events = data->events + data->events_nested;
4909 		total_written = data->bytes_written + data->bytes_written_nested;
4910 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4911 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4912 
4913 		big_event_size = data->max_size + data->max_size_nested;
4914 		small_event_size = data->min_size + data->min_size_nested;
4915 
4916 		pr_info("CPU %d:\n", cpu);
4917 		pr_info("              events:    %ld\n", total_events);
4918 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4919 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4920 		pr_info("       written bytes:    %ld\n", total_written);
4921 		pr_info("       biggest event:    %d\n", big_event_size);
4922 		pr_info("      smallest event:    %d\n", small_event_size);
4923 
4924 		if (RB_WARN_ON(buffer, total_dropped))
4925 			break;
4926 
4927 		ret = 0;
4928 
4929 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4930 			total_lost += lost;
4931 			item = ring_buffer_event_data(event);
4932 			total_len += ring_buffer_event_length(event);
4933 			total_size += item->size + sizeof(struct rb_item);
4934 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4935 				pr_info("FAILED!\n");
4936 				pr_info("buffer had: %.*s\n", item->size, item->str);
4937 				pr_info("expected:   %.*s\n", item->size, rb_string);
4938 				RB_WARN_ON(buffer, 1);
4939 				ret = -1;
4940 				break;
4941 			}
4942 			total_read++;
4943 		}
4944 		if (ret)
4945 			break;
4946 
4947 		ret = -1;
4948 
4949 		pr_info("         read events:   %ld\n", total_read);
4950 		pr_info("         lost events:   %ld\n", total_lost);
4951 		pr_info("        total events:   %ld\n", total_lost + total_read);
4952 		pr_info("  recorded len bytes:   %ld\n", total_len);
4953 		pr_info(" recorded size bytes:   %ld\n", total_size);
4954 		if (total_lost)
4955 			pr_info(" With dropped events, record len and size may not match\n"
4956 				" alloced and written from above\n");
4957 		if (!total_lost) {
4958 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4959 				       total_size != total_written))
4960 				break;
4961 		}
4962 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4963 			break;
4964 
4965 		ret = 0;
4966 	}
4967 	if (!ret)
4968 		pr_info("Ring buffer PASSED!\n");
4969 
4970 	ring_buffer_free(buffer);
4971 	return 0;
4972 }
4973 
4974 late_initcall(test_ringbuffer);
4975 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4976