1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/sched/clock.h> 10 #include <linux/trace_seq.h> 11 #include <linux/spinlock.h> 12 #include <linux/irq_work.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* Used for individual buffers (after the counter) */ 119 #define RB_BUFFER_OFF (1 << 20) 120 121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 122 123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 124 #define RB_ALIGNMENT 4U 125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 127 128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 129 # define RB_FORCE_8BYTE_ALIGNMENT 0 130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 131 #else 132 # define RB_FORCE_8BYTE_ALIGNMENT 1 133 # define RB_ARCH_ALIGNMENT 8U 134 #endif 135 136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 137 138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 140 141 enum { 142 RB_LEN_TIME_EXTEND = 8, 143 RB_LEN_TIME_STAMP = 16, 144 }; 145 146 #define skip_time_extend(event) \ 147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 148 149 static inline int rb_null_event(struct ring_buffer_event *event) 150 { 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 152 } 153 154 static void rb_event_set_padding(struct ring_buffer_event *event) 155 { 156 /* padding has a NULL time_delta */ 157 event->type_len = RINGBUF_TYPE_PADDING; 158 event->time_delta = 0; 159 } 160 161 static unsigned 162 rb_event_data_length(struct ring_buffer_event *event) 163 { 164 unsigned length; 165 166 if (event->type_len) 167 length = event->type_len * RB_ALIGNMENT; 168 else 169 length = event->array[0]; 170 return length + RB_EVNT_HDR_SIZE; 171 } 172 173 /* 174 * Return the length of the given event. Will return 175 * the length of the time extend if the event is a 176 * time extend. 177 */ 178 static inline unsigned 179 rb_event_length(struct ring_buffer_event *event) 180 { 181 switch (event->type_len) { 182 case RINGBUF_TYPE_PADDING: 183 if (rb_null_event(event)) 184 /* undefined */ 185 return -1; 186 return event->array[0] + RB_EVNT_HDR_SIZE; 187 188 case RINGBUF_TYPE_TIME_EXTEND: 189 return RB_LEN_TIME_EXTEND; 190 191 case RINGBUF_TYPE_TIME_STAMP: 192 return RB_LEN_TIME_STAMP; 193 194 case RINGBUF_TYPE_DATA: 195 return rb_event_data_length(event); 196 default: 197 BUG(); 198 } 199 /* not hit */ 200 return 0; 201 } 202 203 /* 204 * Return total length of time extend and data, 205 * or just the event length for all other events. 206 */ 207 static inline unsigned 208 rb_event_ts_length(struct ring_buffer_event *event) 209 { 210 unsigned len = 0; 211 212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 213 /* time extends include the data event after it */ 214 len = RB_LEN_TIME_EXTEND; 215 event = skip_time_extend(event); 216 } 217 return len + rb_event_length(event); 218 } 219 220 /** 221 * ring_buffer_event_length - return the length of the event 222 * @event: the event to get the length of 223 * 224 * Returns the size of the data load of a data event. 225 * If the event is something other than a data event, it 226 * returns the size of the event itself. With the exception 227 * of a TIME EXTEND, where it still returns the size of the 228 * data load of the data event after it. 229 */ 230 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 235 event = skip_time_extend(event); 236 237 length = rb_event_length(event); 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 239 return length; 240 length -= RB_EVNT_HDR_SIZE; 241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 242 length -= sizeof(event->array[0]); 243 return length; 244 } 245 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 246 247 /* inline for ring buffer fast paths */ 248 static __always_inline void * 249 rb_event_data(struct ring_buffer_event *event) 250 { 251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 252 event = skip_time_extend(event); 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 254 /* If length is in len field, then array[0] has the data */ 255 if (event->type_len) 256 return (void *)&event->array[0]; 257 /* Otherwise length is in array[0] and array[1] has the data */ 258 return (void *)&event->array[1]; 259 } 260 261 /** 262 * ring_buffer_event_data - return the data of the event 263 * @event: the event to get the data from 264 */ 265 void *ring_buffer_event_data(struct ring_buffer_event *event) 266 { 267 return rb_event_data(event); 268 } 269 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 270 271 #define for_each_buffer_cpu(buffer, cpu) \ 272 for_each_cpu(cpu, buffer->cpumask) 273 274 #define TS_SHIFT 27 275 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 276 #define TS_DELTA_TEST (~TS_MASK) 277 278 /* Flag when events were overwritten */ 279 #define RB_MISSED_EVENTS (1 << 31) 280 /* Missed count stored at end */ 281 #define RB_MISSED_STORED (1 << 30) 282 283 struct buffer_data_page { 284 u64 time_stamp; /* page time stamp */ 285 local_t commit; /* write committed index */ 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 287 }; 288 289 /* 290 * Note, the buffer_page list must be first. The buffer pages 291 * are allocated in cache lines, which means that each buffer 292 * page will be at the beginning of a cache line, and thus 293 * the least significant bits will be zero. We use this to 294 * add flags in the list struct pointers, to make the ring buffer 295 * lockless. 296 */ 297 struct buffer_page { 298 struct list_head list; /* list of buffer pages */ 299 local_t write; /* index for next write */ 300 unsigned read; /* index for next read */ 301 local_t entries; /* entries on this page */ 302 unsigned long real_end; /* real end of data */ 303 struct buffer_data_page *page; /* Actual data page */ 304 }; 305 306 /* 307 * The buffer page counters, write and entries, must be reset 308 * atomically when crossing page boundaries. To synchronize this 309 * update, two counters are inserted into the number. One is 310 * the actual counter for the write position or count on the page. 311 * 312 * The other is a counter of updaters. Before an update happens 313 * the update partition of the counter is incremented. This will 314 * allow the updater to update the counter atomically. 315 * 316 * The counter is 20 bits, and the state data is 12. 317 */ 318 #define RB_WRITE_MASK 0xfffff 319 #define RB_WRITE_INTCNT (1 << 20) 320 321 static void rb_init_page(struct buffer_data_page *bpage) 322 { 323 local_set(&bpage->commit, 0); 324 } 325 326 /** 327 * ring_buffer_page_len - the size of data on the page. 328 * @page: The page to read 329 * 330 * Returns the amount of data on the page, including buffer page header. 331 */ 332 size_t ring_buffer_page_len(void *page) 333 { 334 return local_read(&((struct buffer_data_page *)page)->commit) 335 + BUF_PAGE_HDR_SIZE; 336 } 337 338 /* 339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 340 * this issue out. 341 */ 342 static void free_buffer_page(struct buffer_page *bpage) 343 { 344 free_page((unsigned long)bpage->page); 345 kfree(bpage); 346 } 347 348 /* 349 * We need to fit the time_stamp delta into 27 bits. 350 */ 351 static inline int test_time_stamp(u64 delta) 352 { 353 if (delta & TS_DELTA_TEST) 354 return 1; 355 return 0; 356 } 357 358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 359 360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 362 363 int ring_buffer_print_page_header(struct trace_seq *s) 364 { 365 struct buffer_data_page field; 366 367 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 368 "offset:0;\tsize:%u;\tsigned:%u;\n", 369 (unsigned int)sizeof(field.time_stamp), 370 (unsigned int)is_signed_type(u64)); 371 372 trace_seq_printf(s, "\tfield: local_t commit;\t" 373 "offset:%u;\tsize:%u;\tsigned:%u;\n", 374 (unsigned int)offsetof(typeof(field), commit), 375 (unsigned int)sizeof(field.commit), 376 (unsigned int)is_signed_type(long)); 377 378 trace_seq_printf(s, "\tfield: int overwrite;\t" 379 "offset:%u;\tsize:%u;\tsigned:%u;\n", 380 (unsigned int)offsetof(typeof(field), commit), 381 1, 382 (unsigned int)is_signed_type(long)); 383 384 trace_seq_printf(s, "\tfield: char data;\t" 385 "offset:%u;\tsize:%u;\tsigned:%u;\n", 386 (unsigned int)offsetof(typeof(field), data), 387 (unsigned int)BUF_PAGE_SIZE, 388 (unsigned int)is_signed_type(char)); 389 390 return !trace_seq_has_overflowed(s); 391 } 392 393 struct rb_irq_work { 394 struct irq_work work; 395 wait_queue_head_t waiters; 396 wait_queue_head_t full_waiters; 397 bool waiters_pending; 398 bool full_waiters_pending; 399 bool wakeup_full; 400 }; 401 402 /* 403 * Structure to hold event state and handle nested events. 404 */ 405 struct rb_event_info { 406 u64 ts; 407 u64 delta; 408 unsigned long length; 409 struct buffer_page *tail_page; 410 int add_timestamp; 411 }; 412 413 /* 414 * Used for which event context the event is in. 415 * NMI = 0 416 * IRQ = 1 417 * SOFTIRQ = 2 418 * NORMAL = 3 419 * 420 * See trace_recursive_lock() comment below for more details. 421 */ 422 enum { 423 RB_CTX_NMI, 424 RB_CTX_IRQ, 425 RB_CTX_SOFTIRQ, 426 RB_CTX_NORMAL, 427 RB_CTX_MAX 428 }; 429 430 /* 431 * head_page == tail_page && head == tail then buffer is empty. 432 */ 433 struct ring_buffer_per_cpu { 434 int cpu; 435 atomic_t record_disabled; 436 struct ring_buffer *buffer; 437 raw_spinlock_t reader_lock; /* serialize readers */ 438 arch_spinlock_t lock; 439 struct lock_class_key lock_key; 440 struct buffer_data_page *free_page; 441 unsigned long nr_pages; 442 unsigned int current_context; 443 struct list_head *pages; 444 struct buffer_page *head_page; /* read from head */ 445 struct buffer_page *tail_page; /* write to tail */ 446 struct buffer_page *commit_page; /* committed pages */ 447 struct buffer_page *reader_page; 448 unsigned long lost_events; 449 unsigned long last_overrun; 450 local_t entries_bytes; 451 local_t entries; 452 local_t overrun; 453 local_t commit_overrun; 454 local_t dropped_events; 455 local_t committing; 456 local_t commits; 457 unsigned long read; 458 unsigned long read_bytes; 459 u64 write_stamp; 460 u64 read_stamp; 461 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 462 long nr_pages_to_update; 463 struct list_head new_pages; /* new pages to add */ 464 struct work_struct update_pages_work; 465 struct completion update_done; 466 467 struct rb_irq_work irq_work; 468 }; 469 470 struct ring_buffer { 471 unsigned flags; 472 int cpus; 473 atomic_t record_disabled; 474 atomic_t resize_disabled; 475 cpumask_var_t cpumask; 476 477 struct lock_class_key *reader_lock_key; 478 479 struct mutex mutex; 480 481 struct ring_buffer_per_cpu **buffers; 482 483 struct hlist_node node; 484 u64 (*clock)(void); 485 486 struct rb_irq_work irq_work; 487 }; 488 489 struct ring_buffer_iter { 490 struct ring_buffer_per_cpu *cpu_buffer; 491 unsigned long head; 492 struct buffer_page *head_page; 493 struct buffer_page *cache_reader_page; 494 unsigned long cache_read; 495 u64 read_stamp; 496 }; 497 498 /* 499 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 500 * 501 * Schedules a delayed work to wake up any task that is blocked on the 502 * ring buffer waiters queue. 503 */ 504 static void rb_wake_up_waiters(struct irq_work *work) 505 { 506 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 507 508 wake_up_all(&rbwork->waiters); 509 if (rbwork->wakeup_full) { 510 rbwork->wakeup_full = false; 511 wake_up_all(&rbwork->full_waiters); 512 } 513 } 514 515 /** 516 * ring_buffer_wait - wait for input to the ring buffer 517 * @buffer: buffer to wait on 518 * @cpu: the cpu buffer to wait on 519 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 520 * 521 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 522 * as data is added to any of the @buffer's cpu buffers. Otherwise 523 * it will wait for data to be added to a specific cpu buffer. 524 */ 525 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 526 { 527 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 528 DEFINE_WAIT(wait); 529 struct rb_irq_work *work; 530 int ret = 0; 531 532 /* 533 * Depending on what the caller is waiting for, either any 534 * data in any cpu buffer, or a specific buffer, put the 535 * caller on the appropriate wait queue. 536 */ 537 if (cpu == RING_BUFFER_ALL_CPUS) { 538 work = &buffer->irq_work; 539 /* Full only makes sense on per cpu reads */ 540 full = false; 541 } else { 542 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 543 return -ENODEV; 544 cpu_buffer = buffer->buffers[cpu]; 545 work = &cpu_buffer->irq_work; 546 } 547 548 549 while (true) { 550 if (full) 551 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 552 else 553 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 554 555 /* 556 * The events can happen in critical sections where 557 * checking a work queue can cause deadlocks. 558 * After adding a task to the queue, this flag is set 559 * only to notify events to try to wake up the queue 560 * using irq_work. 561 * 562 * We don't clear it even if the buffer is no longer 563 * empty. The flag only causes the next event to run 564 * irq_work to do the work queue wake up. The worse 565 * that can happen if we race with !trace_empty() is that 566 * an event will cause an irq_work to try to wake up 567 * an empty queue. 568 * 569 * There's no reason to protect this flag either, as 570 * the work queue and irq_work logic will do the necessary 571 * synchronization for the wake ups. The only thing 572 * that is necessary is that the wake up happens after 573 * a task has been queued. It's OK for spurious wake ups. 574 */ 575 if (full) 576 work->full_waiters_pending = true; 577 else 578 work->waiters_pending = true; 579 580 if (signal_pending(current)) { 581 ret = -EINTR; 582 break; 583 } 584 585 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 586 break; 587 588 if (cpu != RING_BUFFER_ALL_CPUS && 589 !ring_buffer_empty_cpu(buffer, cpu)) { 590 unsigned long flags; 591 bool pagebusy; 592 593 if (!full) 594 break; 595 596 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 597 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 598 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 599 600 if (!pagebusy) 601 break; 602 } 603 604 schedule(); 605 } 606 607 if (full) 608 finish_wait(&work->full_waiters, &wait); 609 else 610 finish_wait(&work->waiters, &wait); 611 612 return ret; 613 } 614 615 /** 616 * ring_buffer_poll_wait - poll on buffer input 617 * @buffer: buffer to wait on 618 * @cpu: the cpu buffer to wait on 619 * @filp: the file descriptor 620 * @poll_table: The poll descriptor 621 * 622 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 623 * as data is added to any of the @buffer's cpu buffers. Otherwise 624 * it will wait for data to be added to a specific cpu buffer. 625 * 626 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 627 * zero otherwise. 628 */ 629 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 630 struct file *filp, poll_table *poll_table) 631 { 632 struct ring_buffer_per_cpu *cpu_buffer; 633 struct rb_irq_work *work; 634 635 if (cpu == RING_BUFFER_ALL_CPUS) 636 work = &buffer->irq_work; 637 else { 638 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 639 return -EINVAL; 640 641 cpu_buffer = buffer->buffers[cpu]; 642 work = &cpu_buffer->irq_work; 643 } 644 645 poll_wait(filp, &work->waiters, poll_table); 646 work->waiters_pending = true; 647 /* 648 * There's a tight race between setting the waiters_pending and 649 * checking if the ring buffer is empty. Once the waiters_pending bit 650 * is set, the next event will wake the task up, but we can get stuck 651 * if there's only a single event in. 652 * 653 * FIXME: Ideally, we need a memory barrier on the writer side as well, 654 * but adding a memory barrier to all events will cause too much of a 655 * performance hit in the fast path. We only need a memory barrier when 656 * the buffer goes from empty to having content. But as this race is 657 * extremely small, and it's not a problem if another event comes in, we 658 * will fix it later. 659 */ 660 smp_mb(); 661 662 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 663 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 664 return POLLIN | POLLRDNORM; 665 return 0; 666 } 667 668 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 669 #define RB_WARN_ON(b, cond) \ 670 ({ \ 671 int _____ret = unlikely(cond); \ 672 if (_____ret) { \ 673 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 674 struct ring_buffer_per_cpu *__b = \ 675 (void *)b; \ 676 atomic_inc(&__b->buffer->record_disabled); \ 677 } else \ 678 atomic_inc(&b->record_disabled); \ 679 WARN_ON(1); \ 680 } \ 681 _____ret; \ 682 }) 683 684 /* Up this if you want to test the TIME_EXTENTS and normalization */ 685 #define DEBUG_SHIFT 0 686 687 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 688 { 689 /* shift to debug/test normalization and TIME_EXTENTS */ 690 return buffer->clock() << DEBUG_SHIFT; 691 } 692 693 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 694 { 695 u64 time; 696 697 preempt_disable_notrace(); 698 time = rb_time_stamp(buffer); 699 preempt_enable_no_resched_notrace(); 700 701 return time; 702 } 703 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 704 705 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 706 int cpu, u64 *ts) 707 { 708 /* Just stupid testing the normalize function and deltas */ 709 *ts >>= DEBUG_SHIFT; 710 } 711 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 712 713 /* 714 * Making the ring buffer lockless makes things tricky. 715 * Although writes only happen on the CPU that they are on, 716 * and they only need to worry about interrupts. Reads can 717 * happen on any CPU. 718 * 719 * The reader page is always off the ring buffer, but when the 720 * reader finishes with a page, it needs to swap its page with 721 * a new one from the buffer. The reader needs to take from 722 * the head (writes go to the tail). But if a writer is in overwrite 723 * mode and wraps, it must push the head page forward. 724 * 725 * Here lies the problem. 726 * 727 * The reader must be careful to replace only the head page, and 728 * not another one. As described at the top of the file in the 729 * ASCII art, the reader sets its old page to point to the next 730 * page after head. It then sets the page after head to point to 731 * the old reader page. But if the writer moves the head page 732 * during this operation, the reader could end up with the tail. 733 * 734 * We use cmpxchg to help prevent this race. We also do something 735 * special with the page before head. We set the LSB to 1. 736 * 737 * When the writer must push the page forward, it will clear the 738 * bit that points to the head page, move the head, and then set 739 * the bit that points to the new head page. 740 * 741 * We also don't want an interrupt coming in and moving the head 742 * page on another writer. Thus we use the second LSB to catch 743 * that too. Thus: 744 * 745 * head->list->prev->next bit 1 bit 0 746 * ------- ------- 747 * Normal page 0 0 748 * Points to head page 0 1 749 * New head page 1 0 750 * 751 * Note we can not trust the prev pointer of the head page, because: 752 * 753 * +----+ +-----+ +-----+ 754 * | |------>| T |---X--->| N | 755 * | |<------| | | | 756 * +----+ +-----+ +-----+ 757 * ^ ^ | 758 * | +-----+ | | 759 * +----------| R |----------+ | 760 * | |<-----------+ 761 * +-----+ 762 * 763 * Key: ---X--> HEAD flag set in pointer 764 * T Tail page 765 * R Reader page 766 * N Next page 767 * 768 * (see __rb_reserve_next() to see where this happens) 769 * 770 * What the above shows is that the reader just swapped out 771 * the reader page with a page in the buffer, but before it 772 * could make the new header point back to the new page added 773 * it was preempted by a writer. The writer moved forward onto 774 * the new page added by the reader and is about to move forward 775 * again. 776 * 777 * You can see, it is legitimate for the previous pointer of 778 * the head (or any page) not to point back to itself. But only 779 * temporarially. 780 */ 781 782 #define RB_PAGE_NORMAL 0UL 783 #define RB_PAGE_HEAD 1UL 784 #define RB_PAGE_UPDATE 2UL 785 786 787 #define RB_FLAG_MASK 3UL 788 789 /* PAGE_MOVED is not part of the mask */ 790 #define RB_PAGE_MOVED 4UL 791 792 /* 793 * rb_list_head - remove any bit 794 */ 795 static struct list_head *rb_list_head(struct list_head *list) 796 { 797 unsigned long val = (unsigned long)list; 798 799 return (struct list_head *)(val & ~RB_FLAG_MASK); 800 } 801 802 /* 803 * rb_is_head_page - test if the given page is the head page 804 * 805 * Because the reader may move the head_page pointer, we can 806 * not trust what the head page is (it may be pointing to 807 * the reader page). But if the next page is a header page, 808 * its flags will be non zero. 809 */ 810 static inline int 811 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 812 struct buffer_page *page, struct list_head *list) 813 { 814 unsigned long val; 815 816 val = (unsigned long)list->next; 817 818 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 819 return RB_PAGE_MOVED; 820 821 return val & RB_FLAG_MASK; 822 } 823 824 /* 825 * rb_is_reader_page 826 * 827 * The unique thing about the reader page, is that, if the 828 * writer is ever on it, the previous pointer never points 829 * back to the reader page. 830 */ 831 static bool rb_is_reader_page(struct buffer_page *page) 832 { 833 struct list_head *list = page->list.prev; 834 835 return rb_list_head(list->next) != &page->list; 836 } 837 838 /* 839 * rb_set_list_to_head - set a list_head to be pointing to head. 840 */ 841 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 842 struct list_head *list) 843 { 844 unsigned long *ptr; 845 846 ptr = (unsigned long *)&list->next; 847 *ptr |= RB_PAGE_HEAD; 848 *ptr &= ~RB_PAGE_UPDATE; 849 } 850 851 /* 852 * rb_head_page_activate - sets up head page 853 */ 854 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 855 { 856 struct buffer_page *head; 857 858 head = cpu_buffer->head_page; 859 if (!head) 860 return; 861 862 /* 863 * Set the previous list pointer to have the HEAD flag. 864 */ 865 rb_set_list_to_head(cpu_buffer, head->list.prev); 866 } 867 868 static void rb_list_head_clear(struct list_head *list) 869 { 870 unsigned long *ptr = (unsigned long *)&list->next; 871 872 *ptr &= ~RB_FLAG_MASK; 873 } 874 875 /* 876 * rb_head_page_dactivate - clears head page ptr (for free list) 877 */ 878 static void 879 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 880 { 881 struct list_head *hd; 882 883 /* Go through the whole list and clear any pointers found. */ 884 rb_list_head_clear(cpu_buffer->pages); 885 886 list_for_each(hd, cpu_buffer->pages) 887 rb_list_head_clear(hd); 888 } 889 890 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 891 struct buffer_page *head, 892 struct buffer_page *prev, 893 int old_flag, int new_flag) 894 { 895 struct list_head *list; 896 unsigned long val = (unsigned long)&head->list; 897 unsigned long ret; 898 899 list = &prev->list; 900 901 val &= ~RB_FLAG_MASK; 902 903 ret = cmpxchg((unsigned long *)&list->next, 904 val | old_flag, val | new_flag); 905 906 /* check if the reader took the page */ 907 if ((ret & ~RB_FLAG_MASK) != val) 908 return RB_PAGE_MOVED; 909 910 return ret & RB_FLAG_MASK; 911 } 912 913 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 914 struct buffer_page *head, 915 struct buffer_page *prev, 916 int old_flag) 917 { 918 return rb_head_page_set(cpu_buffer, head, prev, 919 old_flag, RB_PAGE_UPDATE); 920 } 921 922 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 923 struct buffer_page *head, 924 struct buffer_page *prev, 925 int old_flag) 926 { 927 return rb_head_page_set(cpu_buffer, head, prev, 928 old_flag, RB_PAGE_HEAD); 929 } 930 931 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 932 struct buffer_page *head, 933 struct buffer_page *prev, 934 int old_flag) 935 { 936 return rb_head_page_set(cpu_buffer, head, prev, 937 old_flag, RB_PAGE_NORMAL); 938 } 939 940 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 941 struct buffer_page **bpage) 942 { 943 struct list_head *p = rb_list_head((*bpage)->list.next); 944 945 *bpage = list_entry(p, struct buffer_page, list); 946 } 947 948 static struct buffer_page * 949 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 950 { 951 struct buffer_page *head; 952 struct buffer_page *page; 953 struct list_head *list; 954 int i; 955 956 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 957 return NULL; 958 959 /* sanity check */ 960 list = cpu_buffer->pages; 961 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 962 return NULL; 963 964 page = head = cpu_buffer->head_page; 965 /* 966 * It is possible that the writer moves the header behind 967 * where we started, and we miss in one loop. 968 * A second loop should grab the header, but we'll do 969 * three loops just because I'm paranoid. 970 */ 971 for (i = 0; i < 3; i++) { 972 do { 973 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 974 cpu_buffer->head_page = page; 975 return page; 976 } 977 rb_inc_page(cpu_buffer, &page); 978 } while (page != head); 979 } 980 981 RB_WARN_ON(cpu_buffer, 1); 982 983 return NULL; 984 } 985 986 static int rb_head_page_replace(struct buffer_page *old, 987 struct buffer_page *new) 988 { 989 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 990 unsigned long val; 991 unsigned long ret; 992 993 val = *ptr & ~RB_FLAG_MASK; 994 val |= RB_PAGE_HEAD; 995 996 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 997 998 return ret == val; 999 } 1000 1001 /* 1002 * rb_tail_page_update - move the tail page forward 1003 */ 1004 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1005 struct buffer_page *tail_page, 1006 struct buffer_page *next_page) 1007 { 1008 unsigned long old_entries; 1009 unsigned long old_write; 1010 1011 /* 1012 * The tail page now needs to be moved forward. 1013 * 1014 * We need to reset the tail page, but without messing 1015 * with possible erasing of data brought in by interrupts 1016 * that have moved the tail page and are currently on it. 1017 * 1018 * We add a counter to the write field to denote this. 1019 */ 1020 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1021 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1022 1023 /* 1024 * Just make sure we have seen our old_write and synchronize 1025 * with any interrupts that come in. 1026 */ 1027 barrier(); 1028 1029 /* 1030 * If the tail page is still the same as what we think 1031 * it is, then it is up to us to update the tail 1032 * pointer. 1033 */ 1034 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1035 /* Zero the write counter */ 1036 unsigned long val = old_write & ~RB_WRITE_MASK; 1037 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1038 1039 /* 1040 * This will only succeed if an interrupt did 1041 * not come in and change it. In which case, we 1042 * do not want to modify it. 1043 * 1044 * We add (void) to let the compiler know that we do not care 1045 * about the return value of these functions. We use the 1046 * cmpxchg to only update if an interrupt did not already 1047 * do it for us. If the cmpxchg fails, we don't care. 1048 */ 1049 (void)local_cmpxchg(&next_page->write, old_write, val); 1050 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1051 1052 /* 1053 * No need to worry about races with clearing out the commit. 1054 * it only can increment when a commit takes place. But that 1055 * only happens in the outer most nested commit. 1056 */ 1057 local_set(&next_page->page->commit, 0); 1058 1059 /* Again, either we update tail_page or an interrupt does */ 1060 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1061 } 1062 } 1063 1064 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1065 struct buffer_page *bpage) 1066 { 1067 unsigned long val = (unsigned long)bpage; 1068 1069 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1070 return 1; 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * rb_check_list - make sure a pointer to a list has the last bits zero 1077 */ 1078 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1079 struct list_head *list) 1080 { 1081 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1082 return 1; 1083 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1084 return 1; 1085 return 0; 1086 } 1087 1088 /** 1089 * rb_check_pages - integrity check of buffer pages 1090 * @cpu_buffer: CPU buffer with pages to test 1091 * 1092 * As a safety measure we check to make sure the data pages have not 1093 * been corrupted. 1094 */ 1095 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1096 { 1097 struct list_head *head = cpu_buffer->pages; 1098 struct buffer_page *bpage, *tmp; 1099 1100 /* Reset the head page if it exists */ 1101 if (cpu_buffer->head_page) 1102 rb_set_head_page(cpu_buffer); 1103 1104 rb_head_page_deactivate(cpu_buffer); 1105 1106 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1107 return -1; 1108 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1109 return -1; 1110 1111 if (rb_check_list(cpu_buffer, head)) 1112 return -1; 1113 1114 list_for_each_entry_safe(bpage, tmp, head, list) { 1115 if (RB_WARN_ON(cpu_buffer, 1116 bpage->list.next->prev != &bpage->list)) 1117 return -1; 1118 if (RB_WARN_ON(cpu_buffer, 1119 bpage->list.prev->next != &bpage->list)) 1120 return -1; 1121 if (rb_check_list(cpu_buffer, &bpage->list)) 1122 return -1; 1123 } 1124 1125 rb_head_page_activate(cpu_buffer); 1126 1127 return 0; 1128 } 1129 1130 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1131 { 1132 struct buffer_page *bpage, *tmp; 1133 long i; 1134 1135 for (i = 0; i < nr_pages; i++) { 1136 struct page *page; 1137 /* 1138 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1139 * gracefully without invoking oom-killer and the system is not 1140 * destabilized. 1141 */ 1142 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1143 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 1144 cpu_to_node(cpu)); 1145 if (!bpage) 1146 goto free_pages; 1147 1148 list_add(&bpage->list, pages); 1149 1150 page = alloc_pages_node(cpu_to_node(cpu), 1151 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0); 1152 if (!page) 1153 goto free_pages; 1154 bpage->page = page_address(page); 1155 rb_init_page(bpage->page); 1156 } 1157 1158 return 0; 1159 1160 free_pages: 1161 list_for_each_entry_safe(bpage, tmp, pages, list) { 1162 list_del_init(&bpage->list); 1163 free_buffer_page(bpage); 1164 } 1165 1166 return -ENOMEM; 1167 } 1168 1169 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1170 unsigned long nr_pages) 1171 { 1172 LIST_HEAD(pages); 1173 1174 WARN_ON(!nr_pages); 1175 1176 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1177 return -ENOMEM; 1178 1179 /* 1180 * The ring buffer page list is a circular list that does not 1181 * start and end with a list head. All page list items point to 1182 * other pages. 1183 */ 1184 cpu_buffer->pages = pages.next; 1185 list_del(&pages); 1186 1187 cpu_buffer->nr_pages = nr_pages; 1188 1189 rb_check_pages(cpu_buffer); 1190 1191 return 0; 1192 } 1193 1194 static struct ring_buffer_per_cpu * 1195 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1196 { 1197 struct ring_buffer_per_cpu *cpu_buffer; 1198 struct buffer_page *bpage; 1199 struct page *page; 1200 int ret; 1201 1202 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1203 GFP_KERNEL, cpu_to_node(cpu)); 1204 if (!cpu_buffer) 1205 return NULL; 1206 1207 cpu_buffer->cpu = cpu; 1208 cpu_buffer->buffer = buffer; 1209 raw_spin_lock_init(&cpu_buffer->reader_lock); 1210 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1211 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1212 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1213 init_completion(&cpu_buffer->update_done); 1214 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1215 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1216 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1217 1218 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1219 GFP_KERNEL, cpu_to_node(cpu)); 1220 if (!bpage) 1221 goto fail_free_buffer; 1222 1223 rb_check_bpage(cpu_buffer, bpage); 1224 1225 cpu_buffer->reader_page = bpage; 1226 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1227 if (!page) 1228 goto fail_free_reader; 1229 bpage->page = page_address(page); 1230 rb_init_page(bpage->page); 1231 1232 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1233 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1234 1235 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1236 if (ret < 0) 1237 goto fail_free_reader; 1238 1239 cpu_buffer->head_page 1240 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1241 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1242 1243 rb_head_page_activate(cpu_buffer); 1244 1245 return cpu_buffer; 1246 1247 fail_free_reader: 1248 free_buffer_page(cpu_buffer->reader_page); 1249 1250 fail_free_buffer: 1251 kfree(cpu_buffer); 1252 return NULL; 1253 } 1254 1255 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1256 { 1257 struct list_head *head = cpu_buffer->pages; 1258 struct buffer_page *bpage, *tmp; 1259 1260 free_buffer_page(cpu_buffer->reader_page); 1261 1262 rb_head_page_deactivate(cpu_buffer); 1263 1264 if (head) { 1265 list_for_each_entry_safe(bpage, tmp, head, list) { 1266 list_del_init(&bpage->list); 1267 free_buffer_page(bpage); 1268 } 1269 bpage = list_entry(head, struct buffer_page, list); 1270 free_buffer_page(bpage); 1271 } 1272 1273 kfree(cpu_buffer); 1274 } 1275 1276 /** 1277 * __ring_buffer_alloc - allocate a new ring_buffer 1278 * @size: the size in bytes per cpu that is needed. 1279 * @flags: attributes to set for the ring buffer. 1280 * 1281 * Currently the only flag that is available is the RB_FL_OVERWRITE 1282 * flag. This flag means that the buffer will overwrite old data 1283 * when the buffer wraps. If this flag is not set, the buffer will 1284 * drop data when the tail hits the head. 1285 */ 1286 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1287 struct lock_class_key *key) 1288 { 1289 struct ring_buffer *buffer; 1290 long nr_pages; 1291 int bsize; 1292 int cpu; 1293 int ret; 1294 1295 /* keep it in its own cache line */ 1296 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1297 GFP_KERNEL); 1298 if (!buffer) 1299 return NULL; 1300 1301 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1302 goto fail_free_buffer; 1303 1304 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1305 buffer->flags = flags; 1306 buffer->clock = trace_clock_local; 1307 buffer->reader_lock_key = key; 1308 1309 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1310 init_waitqueue_head(&buffer->irq_work.waiters); 1311 1312 /* need at least two pages */ 1313 if (nr_pages < 2) 1314 nr_pages = 2; 1315 1316 buffer->cpus = nr_cpu_ids; 1317 1318 bsize = sizeof(void *) * nr_cpu_ids; 1319 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1320 GFP_KERNEL); 1321 if (!buffer->buffers) 1322 goto fail_free_cpumask; 1323 1324 cpu = raw_smp_processor_id(); 1325 cpumask_set_cpu(cpu, buffer->cpumask); 1326 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1327 if (!buffer->buffers[cpu]) 1328 goto fail_free_buffers; 1329 1330 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1331 if (ret < 0) 1332 goto fail_free_buffers; 1333 1334 mutex_init(&buffer->mutex); 1335 1336 return buffer; 1337 1338 fail_free_buffers: 1339 for_each_buffer_cpu(buffer, cpu) { 1340 if (buffer->buffers[cpu]) 1341 rb_free_cpu_buffer(buffer->buffers[cpu]); 1342 } 1343 kfree(buffer->buffers); 1344 1345 fail_free_cpumask: 1346 free_cpumask_var(buffer->cpumask); 1347 1348 fail_free_buffer: 1349 kfree(buffer); 1350 return NULL; 1351 } 1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1353 1354 /** 1355 * ring_buffer_free - free a ring buffer. 1356 * @buffer: the buffer to free. 1357 */ 1358 void 1359 ring_buffer_free(struct ring_buffer *buffer) 1360 { 1361 int cpu; 1362 1363 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1364 1365 for_each_buffer_cpu(buffer, cpu) 1366 rb_free_cpu_buffer(buffer->buffers[cpu]); 1367 1368 kfree(buffer->buffers); 1369 free_cpumask_var(buffer->cpumask); 1370 1371 kfree(buffer); 1372 } 1373 EXPORT_SYMBOL_GPL(ring_buffer_free); 1374 1375 void ring_buffer_set_clock(struct ring_buffer *buffer, 1376 u64 (*clock)(void)) 1377 { 1378 buffer->clock = clock; 1379 } 1380 1381 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1382 1383 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1384 { 1385 return local_read(&bpage->entries) & RB_WRITE_MASK; 1386 } 1387 1388 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1389 { 1390 return local_read(&bpage->write) & RB_WRITE_MASK; 1391 } 1392 1393 static int 1394 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1395 { 1396 struct list_head *tail_page, *to_remove, *next_page; 1397 struct buffer_page *to_remove_page, *tmp_iter_page; 1398 struct buffer_page *last_page, *first_page; 1399 unsigned long nr_removed; 1400 unsigned long head_bit; 1401 int page_entries; 1402 1403 head_bit = 0; 1404 1405 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1406 atomic_inc(&cpu_buffer->record_disabled); 1407 /* 1408 * We don't race with the readers since we have acquired the reader 1409 * lock. We also don't race with writers after disabling recording. 1410 * This makes it easy to figure out the first and the last page to be 1411 * removed from the list. We unlink all the pages in between including 1412 * the first and last pages. This is done in a busy loop so that we 1413 * lose the least number of traces. 1414 * The pages are freed after we restart recording and unlock readers. 1415 */ 1416 tail_page = &cpu_buffer->tail_page->list; 1417 1418 /* 1419 * tail page might be on reader page, we remove the next page 1420 * from the ring buffer 1421 */ 1422 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1423 tail_page = rb_list_head(tail_page->next); 1424 to_remove = tail_page; 1425 1426 /* start of pages to remove */ 1427 first_page = list_entry(rb_list_head(to_remove->next), 1428 struct buffer_page, list); 1429 1430 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1431 to_remove = rb_list_head(to_remove)->next; 1432 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1433 } 1434 1435 next_page = rb_list_head(to_remove)->next; 1436 1437 /* 1438 * Now we remove all pages between tail_page and next_page. 1439 * Make sure that we have head_bit value preserved for the 1440 * next page 1441 */ 1442 tail_page->next = (struct list_head *)((unsigned long)next_page | 1443 head_bit); 1444 next_page = rb_list_head(next_page); 1445 next_page->prev = tail_page; 1446 1447 /* make sure pages points to a valid page in the ring buffer */ 1448 cpu_buffer->pages = next_page; 1449 1450 /* update head page */ 1451 if (head_bit) 1452 cpu_buffer->head_page = list_entry(next_page, 1453 struct buffer_page, list); 1454 1455 /* 1456 * change read pointer to make sure any read iterators reset 1457 * themselves 1458 */ 1459 cpu_buffer->read = 0; 1460 1461 /* pages are removed, resume tracing and then free the pages */ 1462 atomic_dec(&cpu_buffer->record_disabled); 1463 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1464 1465 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1466 1467 /* last buffer page to remove */ 1468 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1469 list); 1470 tmp_iter_page = first_page; 1471 1472 do { 1473 to_remove_page = tmp_iter_page; 1474 rb_inc_page(cpu_buffer, &tmp_iter_page); 1475 1476 /* update the counters */ 1477 page_entries = rb_page_entries(to_remove_page); 1478 if (page_entries) { 1479 /* 1480 * If something was added to this page, it was full 1481 * since it is not the tail page. So we deduct the 1482 * bytes consumed in ring buffer from here. 1483 * Increment overrun to account for the lost events. 1484 */ 1485 local_add(page_entries, &cpu_buffer->overrun); 1486 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1487 } 1488 1489 /* 1490 * We have already removed references to this list item, just 1491 * free up the buffer_page and its page 1492 */ 1493 free_buffer_page(to_remove_page); 1494 nr_removed--; 1495 1496 } while (to_remove_page != last_page); 1497 1498 RB_WARN_ON(cpu_buffer, nr_removed); 1499 1500 return nr_removed == 0; 1501 } 1502 1503 static int 1504 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1505 { 1506 struct list_head *pages = &cpu_buffer->new_pages; 1507 int retries, success; 1508 1509 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1510 /* 1511 * We are holding the reader lock, so the reader page won't be swapped 1512 * in the ring buffer. Now we are racing with the writer trying to 1513 * move head page and the tail page. 1514 * We are going to adapt the reader page update process where: 1515 * 1. We first splice the start and end of list of new pages between 1516 * the head page and its previous page. 1517 * 2. We cmpxchg the prev_page->next to point from head page to the 1518 * start of new pages list. 1519 * 3. Finally, we update the head->prev to the end of new list. 1520 * 1521 * We will try this process 10 times, to make sure that we don't keep 1522 * spinning. 1523 */ 1524 retries = 10; 1525 success = 0; 1526 while (retries--) { 1527 struct list_head *head_page, *prev_page, *r; 1528 struct list_head *last_page, *first_page; 1529 struct list_head *head_page_with_bit; 1530 1531 head_page = &rb_set_head_page(cpu_buffer)->list; 1532 if (!head_page) 1533 break; 1534 prev_page = head_page->prev; 1535 1536 first_page = pages->next; 1537 last_page = pages->prev; 1538 1539 head_page_with_bit = (struct list_head *) 1540 ((unsigned long)head_page | RB_PAGE_HEAD); 1541 1542 last_page->next = head_page_with_bit; 1543 first_page->prev = prev_page; 1544 1545 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1546 1547 if (r == head_page_with_bit) { 1548 /* 1549 * yay, we replaced the page pointer to our new list, 1550 * now, we just have to update to head page's prev 1551 * pointer to point to end of list 1552 */ 1553 head_page->prev = last_page; 1554 success = 1; 1555 break; 1556 } 1557 } 1558 1559 if (success) 1560 INIT_LIST_HEAD(pages); 1561 /* 1562 * If we weren't successful in adding in new pages, warn and stop 1563 * tracing 1564 */ 1565 RB_WARN_ON(cpu_buffer, !success); 1566 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1567 1568 /* free pages if they weren't inserted */ 1569 if (!success) { 1570 struct buffer_page *bpage, *tmp; 1571 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1572 list) { 1573 list_del_init(&bpage->list); 1574 free_buffer_page(bpage); 1575 } 1576 } 1577 return success; 1578 } 1579 1580 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1581 { 1582 int success; 1583 1584 if (cpu_buffer->nr_pages_to_update > 0) 1585 success = rb_insert_pages(cpu_buffer); 1586 else 1587 success = rb_remove_pages(cpu_buffer, 1588 -cpu_buffer->nr_pages_to_update); 1589 1590 if (success) 1591 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1592 } 1593 1594 static void update_pages_handler(struct work_struct *work) 1595 { 1596 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1597 struct ring_buffer_per_cpu, update_pages_work); 1598 rb_update_pages(cpu_buffer); 1599 complete(&cpu_buffer->update_done); 1600 } 1601 1602 /** 1603 * ring_buffer_resize - resize the ring buffer 1604 * @buffer: the buffer to resize. 1605 * @size: the new size. 1606 * @cpu_id: the cpu buffer to resize 1607 * 1608 * Minimum size is 2 * BUF_PAGE_SIZE. 1609 * 1610 * Returns 0 on success and < 0 on failure. 1611 */ 1612 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1613 int cpu_id) 1614 { 1615 struct ring_buffer_per_cpu *cpu_buffer; 1616 unsigned long nr_pages; 1617 int cpu, err = 0; 1618 1619 /* 1620 * Always succeed at resizing a non-existent buffer: 1621 */ 1622 if (!buffer) 1623 return size; 1624 1625 /* Make sure the requested buffer exists */ 1626 if (cpu_id != RING_BUFFER_ALL_CPUS && 1627 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1628 return size; 1629 1630 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1631 1632 /* we need a minimum of two pages */ 1633 if (nr_pages < 2) 1634 nr_pages = 2; 1635 1636 size = nr_pages * BUF_PAGE_SIZE; 1637 1638 /* 1639 * Don't succeed if resizing is disabled, as a reader might be 1640 * manipulating the ring buffer and is expecting a sane state while 1641 * this is true. 1642 */ 1643 if (atomic_read(&buffer->resize_disabled)) 1644 return -EBUSY; 1645 1646 /* prevent another thread from changing buffer sizes */ 1647 mutex_lock(&buffer->mutex); 1648 1649 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1650 /* calculate the pages to update */ 1651 for_each_buffer_cpu(buffer, cpu) { 1652 cpu_buffer = buffer->buffers[cpu]; 1653 1654 cpu_buffer->nr_pages_to_update = nr_pages - 1655 cpu_buffer->nr_pages; 1656 /* 1657 * nothing more to do for removing pages or no update 1658 */ 1659 if (cpu_buffer->nr_pages_to_update <= 0) 1660 continue; 1661 /* 1662 * to add pages, make sure all new pages can be 1663 * allocated without receiving ENOMEM 1664 */ 1665 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1666 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1667 &cpu_buffer->new_pages, cpu)) { 1668 /* not enough memory for new pages */ 1669 err = -ENOMEM; 1670 goto out_err; 1671 } 1672 } 1673 1674 get_online_cpus(); 1675 /* 1676 * Fire off all the required work handlers 1677 * We can't schedule on offline CPUs, but it's not necessary 1678 * since we can change their buffer sizes without any race. 1679 */ 1680 for_each_buffer_cpu(buffer, cpu) { 1681 cpu_buffer = buffer->buffers[cpu]; 1682 if (!cpu_buffer->nr_pages_to_update) 1683 continue; 1684 1685 /* Can't run something on an offline CPU. */ 1686 if (!cpu_online(cpu)) { 1687 rb_update_pages(cpu_buffer); 1688 cpu_buffer->nr_pages_to_update = 0; 1689 } else { 1690 schedule_work_on(cpu, 1691 &cpu_buffer->update_pages_work); 1692 } 1693 } 1694 1695 /* wait for all the updates to complete */ 1696 for_each_buffer_cpu(buffer, cpu) { 1697 cpu_buffer = buffer->buffers[cpu]; 1698 if (!cpu_buffer->nr_pages_to_update) 1699 continue; 1700 1701 if (cpu_online(cpu)) 1702 wait_for_completion(&cpu_buffer->update_done); 1703 cpu_buffer->nr_pages_to_update = 0; 1704 } 1705 1706 put_online_cpus(); 1707 } else { 1708 /* Make sure this CPU has been intitialized */ 1709 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1710 goto out; 1711 1712 cpu_buffer = buffer->buffers[cpu_id]; 1713 1714 if (nr_pages == cpu_buffer->nr_pages) 1715 goto out; 1716 1717 cpu_buffer->nr_pages_to_update = nr_pages - 1718 cpu_buffer->nr_pages; 1719 1720 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1721 if (cpu_buffer->nr_pages_to_update > 0 && 1722 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1723 &cpu_buffer->new_pages, cpu_id)) { 1724 err = -ENOMEM; 1725 goto out_err; 1726 } 1727 1728 get_online_cpus(); 1729 1730 /* Can't run something on an offline CPU. */ 1731 if (!cpu_online(cpu_id)) 1732 rb_update_pages(cpu_buffer); 1733 else { 1734 schedule_work_on(cpu_id, 1735 &cpu_buffer->update_pages_work); 1736 wait_for_completion(&cpu_buffer->update_done); 1737 } 1738 1739 cpu_buffer->nr_pages_to_update = 0; 1740 put_online_cpus(); 1741 } 1742 1743 out: 1744 /* 1745 * The ring buffer resize can happen with the ring buffer 1746 * enabled, so that the update disturbs the tracing as little 1747 * as possible. But if the buffer is disabled, we do not need 1748 * to worry about that, and we can take the time to verify 1749 * that the buffer is not corrupt. 1750 */ 1751 if (atomic_read(&buffer->record_disabled)) { 1752 atomic_inc(&buffer->record_disabled); 1753 /* 1754 * Even though the buffer was disabled, we must make sure 1755 * that it is truly disabled before calling rb_check_pages. 1756 * There could have been a race between checking 1757 * record_disable and incrementing it. 1758 */ 1759 synchronize_sched(); 1760 for_each_buffer_cpu(buffer, cpu) { 1761 cpu_buffer = buffer->buffers[cpu]; 1762 rb_check_pages(cpu_buffer); 1763 } 1764 atomic_dec(&buffer->record_disabled); 1765 } 1766 1767 mutex_unlock(&buffer->mutex); 1768 return size; 1769 1770 out_err: 1771 for_each_buffer_cpu(buffer, cpu) { 1772 struct buffer_page *bpage, *tmp; 1773 1774 cpu_buffer = buffer->buffers[cpu]; 1775 cpu_buffer->nr_pages_to_update = 0; 1776 1777 if (list_empty(&cpu_buffer->new_pages)) 1778 continue; 1779 1780 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1781 list) { 1782 list_del_init(&bpage->list); 1783 free_buffer_page(bpage); 1784 } 1785 } 1786 mutex_unlock(&buffer->mutex); 1787 return err; 1788 } 1789 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1790 1791 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1792 { 1793 mutex_lock(&buffer->mutex); 1794 if (val) 1795 buffer->flags |= RB_FL_OVERWRITE; 1796 else 1797 buffer->flags &= ~RB_FL_OVERWRITE; 1798 mutex_unlock(&buffer->mutex); 1799 } 1800 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1801 1802 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1803 { 1804 return bpage->page->data + index; 1805 } 1806 1807 static __always_inline struct ring_buffer_event * 1808 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1809 { 1810 return __rb_page_index(cpu_buffer->reader_page, 1811 cpu_buffer->reader_page->read); 1812 } 1813 1814 static __always_inline struct ring_buffer_event * 1815 rb_iter_head_event(struct ring_buffer_iter *iter) 1816 { 1817 return __rb_page_index(iter->head_page, iter->head); 1818 } 1819 1820 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1821 { 1822 return local_read(&bpage->page->commit); 1823 } 1824 1825 /* Size is determined by what has been committed */ 1826 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1827 { 1828 return rb_page_commit(bpage); 1829 } 1830 1831 static __always_inline unsigned 1832 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1833 { 1834 return rb_page_commit(cpu_buffer->commit_page); 1835 } 1836 1837 static __always_inline unsigned 1838 rb_event_index(struct ring_buffer_event *event) 1839 { 1840 unsigned long addr = (unsigned long)event; 1841 1842 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1843 } 1844 1845 static void rb_inc_iter(struct ring_buffer_iter *iter) 1846 { 1847 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1848 1849 /* 1850 * The iterator could be on the reader page (it starts there). 1851 * But the head could have moved, since the reader was 1852 * found. Check for this case and assign the iterator 1853 * to the head page instead of next. 1854 */ 1855 if (iter->head_page == cpu_buffer->reader_page) 1856 iter->head_page = rb_set_head_page(cpu_buffer); 1857 else 1858 rb_inc_page(cpu_buffer, &iter->head_page); 1859 1860 iter->read_stamp = iter->head_page->page->time_stamp; 1861 iter->head = 0; 1862 } 1863 1864 /* 1865 * rb_handle_head_page - writer hit the head page 1866 * 1867 * Returns: +1 to retry page 1868 * 0 to continue 1869 * -1 on error 1870 */ 1871 static int 1872 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1873 struct buffer_page *tail_page, 1874 struct buffer_page *next_page) 1875 { 1876 struct buffer_page *new_head; 1877 int entries; 1878 int type; 1879 int ret; 1880 1881 entries = rb_page_entries(next_page); 1882 1883 /* 1884 * The hard part is here. We need to move the head 1885 * forward, and protect against both readers on 1886 * other CPUs and writers coming in via interrupts. 1887 */ 1888 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1889 RB_PAGE_HEAD); 1890 1891 /* 1892 * type can be one of four: 1893 * NORMAL - an interrupt already moved it for us 1894 * HEAD - we are the first to get here. 1895 * UPDATE - we are the interrupt interrupting 1896 * a current move. 1897 * MOVED - a reader on another CPU moved the next 1898 * pointer to its reader page. Give up 1899 * and try again. 1900 */ 1901 1902 switch (type) { 1903 case RB_PAGE_HEAD: 1904 /* 1905 * We changed the head to UPDATE, thus 1906 * it is our responsibility to update 1907 * the counters. 1908 */ 1909 local_add(entries, &cpu_buffer->overrun); 1910 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1911 1912 /* 1913 * The entries will be zeroed out when we move the 1914 * tail page. 1915 */ 1916 1917 /* still more to do */ 1918 break; 1919 1920 case RB_PAGE_UPDATE: 1921 /* 1922 * This is an interrupt that interrupt the 1923 * previous update. Still more to do. 1924 */ 1925 break; 1926 case RB_PAGE_NORMAL: 1927 /* 1928 * An interrupt came in before the update 1929 * and processed this for us. 1930 * Nothing left to do. 1931 */ 1932 return 1; 1933 case RB_PAGE_MOVED: 1934 /* 1935 * The reader is on another CPU and just did 1936 * a swap with our next_page. 1937 * Try again. 1938 */ 1939 return 1; 1940 default: 1941 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1942 return -1; 1943 } 1944 1945 /* 1946 * Now that we are here, the old head pointer is 1947 * set to UPDATE. This will keep the reader from 1948 * swapping the head page with the reader page. 1949 * The reader (on another CPU) will spin till 1950 * we are finished. 1951 * 1952 * We just need to protect against interrupts 1953 * doing the job. We will set the next pointer 1954 * to HEAD. After that, we set the old pointer 1955 * to NORMAL, but only if it was HEAD before. 1956 * otherwise we are an interrupt, and only 1957 * want the outer most commit to reset it. 1958 */ 1959 new_head = next_page; 1960 rb_inc_page(cpu_buffer, &new_head); 1961 1962 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1963 RB_PAGE_NORMAL); 1964 1965 /* 1966 * Valid returns are: 1967 * HEAD - an interrupt came in and already set it. 1968 * NORMAL - One of two things: 1969 * 1) We really set it. 1970 * 2) A bunch of interrupts came in and moved 1971 * the page forward again. 1972 */ 1973 switch (ret) { 1974 case RB_PAGE_HEAD: 1975 case RB_PAGE_NORMAL: 1976 /* OK */ 1977 break; 1978 default: 1979 RB_WARN_ON(cpu_buffer, 1); 1980 return -1; 1981 } 1982 1983 /* 1984 * It is possible that an interrupt came in, 1985 * set the head up, then more interrupts came in 1986 * and moved it again. When we get back here, 1987 * the page would have been set to NORMAL but we 1988 * just set it back to HEAD. 1989 * 1990 * How do you detect this? Well, if that happened 1991 * the tail page would have moved. 1992 */ 1993 if (ret == RB_PAGE_NORMAL) { 1994 struct buffer_page *buffer_tail_page; 1995 1996 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 1997 /* 1998 * If the tail had moved passed next, then we need 1999 * to reset the pointer. 2000 */ 2001 if (buffer_tail_page != tail_page && 2002 buffer_tail_page != next_page) 2003 rb_head_page_set_normal(cpu_buffer, new_head, 2004 next_page, 2005 RB_PAGE_HEAD); 2006 } 2007 2008 /* 2009 * If this was the outer most commit (the one that 2010 * changed the original pointer from HEAD to UPDATE), 2011 * then it is up to us to reset it to NORMAL. 2012 */ 2013 if (type == RB_PAGE_HEAD) { 2014 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2015 tail_page, 2016 RB_PAGE_UPDATE); 2017 if (RB_WARN_ON(cpu_buffer, 2018 ret != RB_PAGE_UPDATE)) 2019 return -1; 2020 } 2021 2022 return 0; 2023 } 2024 2025 static inline void 2026 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2027 unsigned long tail, struct rb_event_info *info) 2028 { 2029 struct buffer_page *tail_page = info->tail_page; 2030 struct ring_buffer_event *event; 2031 unsigned long length = info->length; 2032 2033 /* 2034 * Only the event that crossed the page boundary 2035 * must fill the old tail_page with padding. 2036 */ 2037 if (tail >= BUF_PAGE_SIZE) { 2038 /* 2039 * If the page was filled, then we still need 2040 * to update the real_end. Reset it to zero 2041 * and the reader will ignore it. 2042 */ 2043 if (tail == BUF_PAGE_SIZE) 2044 tail_page->real_end = 0; 2045 2046 local_sub(length, &tail_page->write); 2047 return; 2048 } 2049 2050 event = __rb_page_index(tail_page, tail); 2051 2052 /* account for padding bytes */ 2053 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2054 2055 /* 2056 * Save the original length to the meta data. 2057 * This will be used by the reader to add lost event 2058 * counter. 2059 */ 2060 tail_page->real_end = tail; 2061 2062 /* 2063 * If this event is bigger than the minimum size, then 2064 * we need to be careful that we don't subtract the 2065 * write counter enough to allow another writer to slip 2066 * in on this page. 2067 * We put in a discarded commit instead, to make sure 2068 * that this space is not used again. 2069 * 2070 * If we are less than the minimum size, we don't need to 2071 * worry about it. 2072 */ 2073 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2074 /* No room for any events */ 2075 2076 /* Mark the rest of the page with padding */ 2077 rb_event_set_padding(event); 2078 2079 /* Set the write back to the previous setting */ 2080 local_sub(length, &tail_page->write); 2081 return; 2082 } 2083 2084 /* Put in a discarded event */ 2085 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2086 event->type_len = RINGBUF_TYPE_PADDING; 2087 /* time delta must be non zero */ 2088 event->time_delta = 1; 2089 2090 /* Set write to end of buffer */ 2091 length = (tail + length) - BUF_PAGE_SIZE; 2092 local_sub(length, &tail_page->write); 2093 } 2094 2095 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2096 2097 /* 2098 * This is the slow path, force gcc not to inline it. 2099 */ 2100 static noinline struct ring_buffer_event * 2101 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2102 unsigned long tail, struct rb_event_info *info) 2103 { 2104 struct buffer_page *tail_page = info->tail_page; 2105 struct buffer_page *commit_page = cpu_buffer->commit_page; 2106 struct ring_buffer *buffer = cpu_buffer->buffer; 2107 struct buffer_page *next_page; 2108 int ret; 2109 2110 next_page = tail_page; 2111 2112 rb_inc_page(cpu_buffer, &next_page); 2113 2114 /* 2115 * If for some reason, we had an interrupt storm that made 2116 * it all the way around the buffer, bail, and warn 2117 * about it. 2118 */ 2119 if (unlikely(next_page == commit_page)) { 2120 local_inc(&cpu_buffer->commit_overrun); 2121 goto out_reset; 2122 } 2123 2124 /* 2125 * This is where the fun begins! 2126 * 2127 * We are fighting against races between a reader that 2128 * could be on another CPU trying to swap its reader 2129 * page with the buffer head. 2130 * 2131 * We are also fighting against interrupts coming in and 2132 * moving the head or tail on us as well. 2133 * 2134 * If the next page is the head page then we have filled 2135 * the buffer, unless the commit page is still on the 2136 * reader page. 2137 */ 2138 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2139 2140 /* 2141 * If the commit is not on the reader page, then 2142 * move the header page. 2143 */ 2144 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2145 /* 2146 * If we are not in overwrite mode, 2147 * this is easy, just stop here. 2148 */ 2149 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2150 local_inc(&cpu_buffer->dropped_events); 2151 goto out_reset; 2152 } 2153 2154 ret = rb_handle_head_page(cpu_buffer, 2155 tail_page, 2156 next_page); 2157 if (ret < 0) 2158 goto out_reset; 2159 if (ret) 2160 goto out_again; 2161 } else { 2162 /* 2163 * We need to be careful here too. The 2164 * commit page could still be on the reader 2165 * page. We could have a small buffer, and 2166 * have filled up the buffer with events 2167 * from interrupts and such, and wrapped. 2168 * 2169 * Note, if the tail page is also the on the 2170 * reader_page, we let it move out. 2171 */ 2172 if (unlikely((cpu_buffer->commit_page != 2173 cpu_buffer->tail_page) && 2174 (cpu_buffer->commit_page == 2175 cpu_buffer->reader_page))) { 2176 local_inc(&cpu_buffer->commit_overrun); 2177 goto out_reset; 2178 } 2179 } 2180 } 2181 2182 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2183 2184 out_again: 2185 2186 rb_reset_tail(cpu_buffer, tail, info); 2187 2188 /* Commit what we have for now. */ 2189 rb_end_commit(cpu_buffer); 2190 /* rb_end_commit() decs committing */ 2191 local_inc(&cpu_buffer->committing); 2192 2193 /* fail and let the caller try again */ 2194 return ERR_PTR(-EAGAIN); 2195 2196 out_reset: 2197 /* reset write */ 2198 rb_reset_tail(cpu_buffer, tail, info); 2199 2200 return NULL; 2201 } 2202 2203 /* Slow path, do not inline */ 2204 static noinline struct ring_buffer_event * 2205 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2206 { 2207 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2208 2209 /* Not the first event on the page? */ 2210 if (rb_event_index(event)) { 2211 event->time_delta = delta & TS_MASK; 2212 event->array[0] = delta >> TS_SHIFT; 2213 } else { 2214 /* nope, just zero it */ 2215 event->time_delta = 0; 2216 event->array[0] = 0; 2217 } 2218 2219 return skip_time_extend(event); 2220 } 2221 2222 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2223 struct ring_buffer_event *event); 2224 2225 /** 2226 * rb_update_event - update event type and data 2227 * @event: the event to update 2228 * @type: the type of event 2229 * @length: the size of the event field in the ring buffer 2230 * 2231 * Update the type and data fields of the event. The length 2232 * is the actual size that is written to the ring buffer, 2233 * and with this, we can determine what to place into the 2234 * data field. 2235 */ 2236 static void 2237 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2238 struct ring_buffer_event *event, 2239 struct rb_event_info *info) 2240 { 2241 unsigned length = info->length; 2242 u64 delta = info->delta; 2243 2244 /* Only a commit updates the timestamp */ 2245 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2246 delta = 0; 2247 2248 /* 2249 * If we need to add a timestamp, then we 2250 * add it to the start of the resevered space. 2251 */ 2252 if (unlikely(info->add_timestamp)) { 2253 event = rb_add_time_stamp(event, delta); 2254 length -= RB_LEN_TIME_EXTEND; 2255 delta = 0; 2256 } 2257 2258 event->time_delta = delta; 2259 length -= RB_EVNT_HDR_SIZE; 2260 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2261 event->type_len = 0; 2262 event->array[0] = length; 2263 } else 2264 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2265 } 2266 2267 static unsigned rb_calculate_event_length(unsigned length) 2268 { 2269 struct ring_buffer_event event; /* Used only for sizeof array */ 2270 2271 /* zero length can cause confusions */ 2272 if (!length) 2273 length++; 2274 2275 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2276 length += sizeof(event.array[0]); 2277 2278 length += RB_EVNT_HDR_SIZE; 2279 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2280 2281 /* 2282 * In case the time delta is larger than the 27 bits for it 2283 * in the header, we need to add a timestamp. If another 2284 * event comes in when trying to discard this one to increase 2285 * the length, then the timestamp will be added in the allocated 2286 * space of this event. If length is bigger than the size needed 2287 * for the TIME_EXTEND, then padding has to be used. The events 2288 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2289 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2290 * As length is a multiple of 4, we only need to worry if it 2291 * is 12 (RB_LEN_TIME_EXTEND + 4). 2292 */ 2293 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2294 length += RB_ALIGNMENT; 2295 2296 return length; 2297 } 2298 2299 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2300 static inline bool sched_clock_stable(void) 2301 { 2302 return true; 2303 } 2304 #endif 2305 2306 static inline int 2307 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2308 struct ring_buffer_event *event) 2309 { 2310 unsigned long new_index, old_index; 2311 struct buffer_page *bpage; 2312 unsigned long index; 2313 unsigned long addr; 2314 2315 new_index = rb_event_index(event); 2316 old_index = new_index + rb_event_ts_length(event); 2317 addr = (unsigned long)event; 2318 addr &= PAGE_MASK; 2319 2320 bpage = READ_ONCE(cpu_buffer->tail_page); 2321 2322 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2323 unsigned long write_mask = 2324 local_read(&bpage->write) & ~RB_WRITE_MASK; 2325 unsigned long event_length = rb_event_length(event); 2326 /* 2327 * This is on the tail page. It is possible that 2328 * a write could come in and move the tail page 2329 * and write to the next page. That is fine 2330 * because we just shorten what is on this page. 2331 */ 2332 old_index += write_mask; 2333 new_index += write_mask; 2334 index = local_cmpxchg(&bpage->write, old_index, new_index); 2335 if (index == old_index) { 2336 /* update counters */ 2337 local_sub(event_length, &cpu_buffer->entries_bytes); 2338 return 1; 2339 } 2340 } 2341 2342 /* could not discard */ 2343 return 0; 2344 } 2345 2346 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2347 { 2348 local_inc(&cpu_buffer->committing); 2349 local_inc(&cpu_buffer->commits); 2350 } 2351 2352 static __always_inline void 2353 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2354 { 2355 unsigned long max_count; 2356 2357 /* 2358 * We only race with interrupts and NMIs on this CPU. 2359 * If we own the commit event, then we can commit 2360 * all others that interrupted us, since the interruptions 2361 * are in stack format (they finish before they come 2362 * back to us). This allows us to do a simple loop to 2363 * assign the commit to the tail. 2364 */ 2365 again: 2366 max_count = cpu_buffer->nr_pages * 100; 2367 2368 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2369 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2370 return; 2371 if (RB_WARN_ON(cpu_buffer, 2372 rb_is_reader_page(cpu_buffer->tail_page))) 2373 return; 2374 local_set(&cpu_buffer->commit_page->page->commit, 2375 rb_page_write(cpu_buffer->commit_page)); 2376 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2377 /* Only update the write stamp if the page has an event */ 2378 if (rb_page_write(cpu_buffer->commit_page)) 2379 cpu_buffer->write_stamp = 2380 cpu_buffer->commit_page->page->time_stamp; 2381 /* add barrier to keep gcc from optimizing too much */ 2382 barrier(); 2383 } 2384 while (rb_commit_index(cpu_buffer) != 2385 rb_page_write(cpu_buffer->commit_page)) { 2386 2387 local_set(&cpu_buffer->commit_page->page->commit, 2388 rb_page_write(cpu_buffer->commit_page)); 2389 RB_WARN_ON(cpu_buffer, 2390 local_read(&cpu_buffer->commit_page->page->commit) & 2391 ~RB_WRITE_MASK); 2392 barrier(); 2393 } 2394 2395 /* again, keep gcc from optimizing */ 2396 barrier(); 2397 2398 /* 2399 * If an interrupt came in just after the first while loop 2400 * and pushed the tail page forward, we will be left with 2401 * a dangling commit that will never go forward. 2402 */ 2403 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2404 goto again; 2405 } 2406 2407 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2408 { 2409 unsigned long commits; 2410 2411 if (RB_WARN_ON(cpu_buffer, 2412 !local_read(&cpu_buffer->committing))) 2413 return; 2414 2415 again: 2416 commits = local_read(&cpu_buffer->commits); 2417 /* synchronize with interrupts */ 2418 barrier(); 2419 if (local_read(&cpu_buffer->committing) == 1) 2420 rb_set_commit_to_write(cpu_buffer); 2421 2422 local_dec(&cpu_buffer->committing); 2423 2424 /* synchronize with interrupts */ 2425 barrier(); 2426 2427 /* 2428 * Need to account for interrupts coming in between the 2429 * updating of the commit page and the clearing of the 2430 * committing counter. 2431 */ 2432 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2433 !local_read(&cpu_buffer->committing)) { 2434 local_inc(&cpu_buffer->committing); 2435 goto again; 2436 } 2437 } 2438 2439 static inline void rb_event_discard(struct ring_buffer_event *event) 2440 { 2441 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2442 event = skip_time_extend(event); 2443 2444 /* array[0] holds the actual length for the discarded event */ 2445 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2446 event->type_len = RINGBUF_TYPE_PADDING; 2447 /* time delta must be non zero */ 2448 if (!event->time_delta) 2449 event->time_delta = 1; 2450 } 2451 2452 static __always_inline bool 2453 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2454 struct ring_buffer_event *event) 2455 { 2456 unsigned long addr = (unsigned long)event; 2457 unsigned long index; 2458 2459 index = rb_event_index(event); 2460 addr &= PAGE_MASK; 2461 2462 return cpu_buffer->commit_page->page == (void *)addr && 2463 rb_commit_index(cpu_buffer) == index; 2464 } 2465 2466 static __always_inline void 2467 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2468 struct ring_buffer_event *event) 2469 { 2470 u64 delta; 2471 2472 /* 2473 * The event first in the commit queue updates the 2474 * time stamp. 2475 */ 2476 if (rb_event_is_commit(cpu_buffer, event)) { 2477 /* 2478 * A commit event that is first on a page 2479 * updates the write timestamp with the page stamp 2480 */ 2481 if (!rb_event_index(event)) 2482 cpu_buffer->write_stamp = 2483 cpu_buffer->commit_page->page->time_stamp; 2484 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2485 delta = event->array[0]; 2486 delta <<= TS_SHIFT; 2487 delta += event->time_delta; 2488 cpu_buffer->write_stamp += delta; 2489 } else 2490 cpu_buffer->write_stamp += event->time_delta; 2491 } 2492 } 2493 2494 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2495 struct ring_buffer_event *event) 2496 { 2497 local_inc(&cpu_buffer->entries); 2498 rb_update_write_stamp(cpu_buffer, event); 2499 rb_end_commit(cpu_buffer); 2500 } 2501 2502 static __always_inline void 2503 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2504 { 2505 bool pagebusy; 2506 2507 if (buffer->irq_work.waiters_pending) { 2508 buffer->irq_work.waiters_pending = false; 2509 /* irq_work_queue() supplies it's own memory barriers */ 2510 irq_work_queue(&buffer->irq_work.work); 2511 } 2512 2513 if (cpu_buffer->irq_work.waiters_pending) { 2514 cpu_buffer->irq_work.waiters_pending = false; 2515 /* irq_work_queue() supplies it's own memory barriers */ 2516 irq_work_queue(&cpu_buffer->irq_work.work); 2517 } 2518 2519 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2520 2521 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2522 cpu_buffer->irq_work.wakeup_full = true; 2523 cpu_buffer->irq_work.full_waiters_pending = false; 2524 /* irq_work_queue() supplies it's own memory barriers */ 2525 irq_work_queue(&cpu_buffer->irq_work.work); 2526 } 2527 } 2528 2529 /* 2530 * The lock and unlock are done within a preempt disable section. 2531 * The current_context per_cpu variable can only be modified 2532 * by the current task between lock and unlock. But it can 2533 * be modified more than once via an interrupt. There are four 2534 * different contexts that we need to consider. 2535 * 2536 * Normal context. 2537 * SoftIRQ context 2538 * IRQ context 2539 * NMI context 2540 * 2541 * If for some reason the ring buffer starts to recurse, we 2542 * only allow that to happen at most 4 times (one for each 2543 * context). If it happens 5 times, then we consider this a 2544 * recusive loop and do not let it go further. 2545 */ 2546 2547 static __always_inline int 2548 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2549 { 2550 if (cpu_buffer->current_context >= 4) 2551 return 1; 2552 2553 cpu_buffer->current_context++; 2554 /* Interrupts must see this update */ 2555 barrier(); 2556 2557 return 0; 2558 } 2559 2560 static __always_inline void 2561 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2562 { 2563 /* Don't let the dec leak out */ 2564 barrier(); 2565 cpu_buffer->current_context--; 2566 } 2567 2568 /** 2569 * ring_buffer_unlock_commit - commit a reserved 2570 * @buffer: The buffer to commit to 2571 * @event: The event pointer to commit. 2572 * 2573 * This commits the data to the ring buffer, and releases any locks held. 2574 * 2575 * Must be paired with ring_buffer_lock_reserve. 2576 */ 2577 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2578 struct ring_buffer_event *event) 2579 { 2580 struct ring_buffer_per_cpu *cpu_buffer; 2581 int cpu = raw_smp_processor_id(); 2582 2583 cpu_buffer = buffer->buffers[cpu]; 2584 2585 rb_commit(cpu_buffer, event); 2586 2587 rb_wakeups(buffer, cpu_buffer); 2588 2589 trace_recursive_unlock(cpu_buffer); 2590 2591 preempt_enable_notrace(); 2592 2593 return 0; 2594 } 2595 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2596 2597 static noinline void 2598 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2599 struct rb_event_info *info) 2600 { 2601 WARN_ONCE(info->delta > (1ULL << 59), 2602 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2603 (unsigned long long)info->delta, 2604 (unsigned long long)info->ts, 2605 (unsigned long long)cpu_buffer->write_stamp, 2606 sched_clock_stable() ? "" : 2607 "If you just came from a suspend/resume,\n" 2608 "please switch to the trace global clock:\n" 2609 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2610 info->add_timestamp = 1; 2611 } 2612 2613 static struct ring_buffer_event * 2614 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2615 struct rb_event_info *info) 2616 { 2617 struct ring_buffer_event *event; 2618 struct buffer_page *tail_page; 2619 unsigned long tail, write; 2620 2621 /* 2622 * If the time delta since the last event is too big to 2623 * hold in the time field of the event, then we append a 2624 * TIME EXTEND event ahead of the data event. 2625 */ 2626 if (unlikely(info->add_timestamp)) 2627 info->length += RB_LEN_TIME_EXTEND; 2628 2629 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2630 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2631 write = local_add_return(info->length, &tail_page->write); 2632 2633 /* set write to only the index of the write */ 2634 write &= RB_WRITE_MASK; 2635 tail = write - info->length; 2636 2637 /* 2638 * If this is the first commit on the page, then it has the same 2639 * timestamp as the page itself. 2640 */ 2641 if (!tail) 2642 info->delta = 0; 2643 2644 /* See if we shot pass the end of this buffer page */ 2645 if (unlikely(write > BUF_PAGE_SIZE)) 2646 return rb_move_tail(cpu_buffer, tail, info); 2647 2648 /* We reserved something on the buffer */ 2649 2650 event = __rb_page_index(tail_page, tail); 2651 rb_update_event(cpu_buffer, event, info); 2652 2653 local_inc(&tail_page->entries); 2654 2655 /* 2656 * If this is the first commit on the page, then update 2657 * its timestamp. 2658 */ 2659 if (!tail) 2660 tail_page->page->time_stamp = info->ts; 2661 2662 /* account for these added bytes */ 2663 local_add(info->length, &cpu_buffer->entries_bytes); 2664 2665 return event; 2666 } 2667 2668 static __always_inline struct ring_buffer_event * 2669 rb_reserve_next_event(struct ring_buffer *buffer, 2670 struct ring_buffer_per_cpu *cpu_buffer, 2671 unsigned long length) 2672 { 2673 struct ring_buffer_event *event; 2674 struct rb_event_info info; 2675 int nr_loops = 0; 2676 u64 diff; 2677 2678 rb_start_commit(cpu_buffer); 2679 2680 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2681 /* 2682 * Due to the ability to swap a cpu buffer from a buffer 2683 * it is possible it was swapped before we committed. 2684 * (committing stops a swap). We check for it here and 2685 * if it happened, we have to fail the write. 2686 */ 2687 barrier(); 2688 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2689 local_dec(&cpu_buffer->committing); 2690 local_dec(&cpu_buffer->commits); 2691 return NULL; 2692 } 2693 #endif 2694 2695 info.length = rb_calculate_event_length(length); 2696 again: 2697 info.add_timestamp = 0; 2698 info.delta = 0; 2699 2700 /* 2701 * We allow for interrupts to reenter here and do a trace. 2702 * If one does, it will cause this original code to loop 2703 * back here. Even with heavy interrupts happening, this 2704 * should only happen a few times in a row. If this happens 2705 * 1000 times in a row, there must be either an interrupt 2706 * storm or we have something buggy. 2707 * Bail! 2708 */ 2709 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2710 goto out_fail; 2711 2712 info.ts = rb_time_stamp(cpu_buffer->buffer); 2713 diff = info.ts - cpu_buffer->write_stamp; 2714 2715 /* make sure this diff is calculated here */ 2716 barrier(); 2717 2718 /* Did the write stamp get updated already? */ 2719 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2720 info.delta = diff; 2721 if (unlikely(test_time_stamp(info.delta))) 2722 rb_handle_timestamp(cpu_buffer, &info); 2723 } 2724 2725 event = __rb_reserve_next(cpu_buffer, &info); 2726 2727 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2728 if (info.add_timestamp) 2729 info.length -= RB_LEN_TIME_EXTEND; 2730 goto again; 2731 } 2732 2733 if (!event) 2734 goto out_fail; 2735 2736 return event; 2737 2738 out_fail: 2739 rb_end_commit(cpu_buffer); 2740 return NULL; 2741 } 2742 2743 /** 2744 * ring_buffer_lock_reserve - reserve a part of the buffer 2745 * @buffer: the ring buffer to reserve from 2746 * @length: the length of the data to reserve (excluding event header) 2747 * 2748 * Returns a reseverd event on the ring buffer to copy directly to. 2749 * The user of this interface will need to get the body to write into 2750 * and can use the ring_buffer_event_data() interface. 2751 * 2752 * The length is the length of the data needed, not the event length 2753 * which also includes the event header. 2754 * 2755 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2756 * If NULL is returned, then nothing has been allocated or locked. 2757 */ 2758 struct ring_buffer_event * 2759 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2760 { 2761 struct ring_buffer_per_cpu *cpu_buffer; 2762 struct ring_buffer_event *event; 2763 int cpu; 2764 2765 /* If we are tracing schedule, we don't want to recurse */ 2766 preempt_disable_notrace(); 2767 2768 if (unlikely(atomic_read(&buffer->record_disabled))) 2769 goto out; 2770 2771 cpu = raw_smp_processor_id(); 2772 2773 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2774 goto out; 2775 2776 cpu_buffer = buffer->buffers[cpu]; 2777 2778 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2779 goto out; 2780 2781 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2782 goto out; 2783 2784 if (unlikely(trace_recursive_lock(cpu_buffer))) 2785 goto out; 2786 2787 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2788 if (!event) 2789 goto out_unlock; 2790 2791 return event; 2792 2793 out_unlock: 2794 trace_recursive_unlock(cpu_buffer); 2795 out: 2796 preempt_enable_notrace(); 2797 return NULL; 2798 } 2799 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2800 2801 /* 2802 * Decrement the entries to the page that an event is on. 2803 * The event does not even need to exist, only the pointer 2804 * to the page it is on. This may only be called before the commit 2805 * takes place. 2806 */ 2807 static inline void 2808 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2809 struct ring_buffer_event *event) 2810 { 2811 unsigned long addr = (unsigned long)event; 2812 struct buffer_page *bpage = cpu_buffer->commit_page; 2813 struct buffer_page *start; 2814 2815 addr &= PAGE_MASK; 2816 2817 /* Do the likely case first */ 2818 if (likely(bpage->page == (void *)addr)) { 2819 local_dec(&bpage->entries); 2820 return; 2821 } 2822 2823 /* 2824 * Because the commit page may be on the reader page we 2825 * start with the next page and check the end loop there. 2826 */ 2827 rb_inc_page(cpu_buffer, &bpage); 2828 start = bpage; 2829 do { 2830 if (bpage->page == (void *)addr) { 2831 local_dec(&bpage->entries); 2832 return; 2833 } 2834 rb_inc_page(cpu_buffer, &bpage); 2835 } while (bpage != start); 2836 2837 /* commit not part of this buffer?? */ 2838 RB_WARN_ON(cpu_buffer, 1); 2839 } 2840 2841 /** 2842 * ring_buffer_commit_discard - discard an event that has not been committed 2843 * @buffer: the ring buffer 2844 * @event: non committed event to discard 2845 * 2846 * Sometimes an event that is in the ring buffer needs to be ignored. 2847 * This function lets the user discard an event in the ring buffer 2848 * and then that event will not be read later. 2849 * 2850 * This function only works if it is called before the the item has been 2851 * committed. It will try to free the event from the ring buffer 2852 * if another event has not been added behind it. 2853 * 2854 * If another event has been added behind it, it will set the event 2855 * up as discarded, and perform the commit. 2856 * 2857 * If this function is called, do not call ring_buffer_unlock_commit on 2858 * the event. 2859 */ 2860 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2861 struct ring_buffer_event *event) 2862 { 2863 struct ring_buffer_per_cpu *cpu_buffer; 2864 int cpu; 2865 2866 /* The event is discarded regardless */ 2867 rb_event_discard(event); 2868 2869 cpu = smp_processor_id(); 2870 cpu_buffer = buffer->buffers[cpu]; 2871 2872 /* 2873 * This must only be called if the event has not been 2874 * committed yet. Thus we can assume that preemption 2875 * is still disabled. 2876 */ 2877 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2878 2879 rb_decrement_entry(cpu_buffer, event); 2880 if (rb_try_to_discard(cpu_buffer, event)) 2881 goto out; 2882 2883 /* 2884 * The commit is still visible by the reader, so we 2885 * must still update the timestamp. 2886 */ 2887 rb_update_write_stamp(cpu_buffer, event); 2888 out: 2889 rb_end_commit(cpu_buffer); 2890 2891 trace_recursive_unlock(cpu_buffer); 2892 2893 preempt_enable_notrace(); 2894 2895 } 2896 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2897 2898 /** 2899 * ring_buffer_write - write data to the buffer without reserving 2900 * @buffer: The ring buffer to write to. 2901 * @length: The length of the data being written (excluding the event header) 2902 * @data: The data to write to the buffer. 2903 * 2904 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2905 * one function. If you already have the data to write to the buffer, it 2906 * may be easier to simply call this function. 2907 * 2908 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2909 * and not the length of the event which would hold the header. 2910 */ 2911 int ring_buffer_write(struct ring_buffer *buffer, 2912 unsigned long length, 2913 void *data) 2914 { 2915 struct ring_buffer_per_cpu *cpu_buffer; 2916 struct ring_buffer_event *event; 2917 void *body; 2918 int ret = -EBUSY; 2919 int cpu; 2920 2921 preempt_disable_notrace(); 2922 2923 if (atomic_read(&buffer->record_disabled)) 2924 goto out; 2925 2926 cpu = raw_smp_processor_id(); 2927 2928 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2929 goto out; 2930 2931 cpu_buffer = buffer->buffers[cpu]; 2932 2933 if (atomic_read(&cpu_buffer->record_disabled)) 2934 goto out; 2935 2936 if (length > BUF_MAX_DATA_SIZE) 2937 goto out; 2938 2939 if (unlikely(trace_recursive_lock(cpu_buffer))) 2940 goto out; 2941 2942 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2943 if (!event) 2944 goto out_unlock; 2945 2946 body = rb_event_data(event); 2947 2948 memcpy(body, data, length); 2949 2950 rb_commit(cpu_buffer, event); 2951 2952 rb_wakeups(buffer, cpu_buffer); 2953 2954 ret = 0; 2955 2956 out_unlock: 2957 trace_recursive_unlock(cpu_buffer); 2958 2959 out: 2960 preempt_enable_notrace(); 2961 2962 return ret; 2963 } 2964 EXPORT_SYMBOL_GPL(ring_buffer_write); 2965 2966 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2967 { 2968 struct buffer_page *reader = cpu_buffer->reader_page; 2969 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2970 struct buffer_page *commit = cpu_buffer->commit_page; 2971 2972 /* In case of error, head will be NULL */ 2973 if (unlikely(!head)) 2974 return true; 2975 2976 return reader->read == rb_page_commit(reader) && 2977 (commit == reader || 2978 (commit == head && 2979 head->read == rb_page_commit(commit))); 2980 } 2981 2982 /** 2983 * ring_buffer_record_disable - stop all writes into the buffer 2984 * @buffer: The ring buffer to stop writes to. 2985 * 2986 * This prevents all writes to the buffer. Any attempt to write 2987 * to the buffer after this will fail and return NULL. 2988 * 2989 * The caller should call synchronize_sched() after this. 2990 */ 2991 void ring_buffer_record_disable(struct ring_buffer *buffer) 2992 { 2993 atomic_inc(&buffer->record_disabled); 2994 } 2995 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2996 2997 /** 2998 * ring_buffer_record_enable - enable writes to the buffer 2999 * @buffer: The ring buffer to enable writes 3000 * 3001 * Note, multiple disables will need the same number of enables 3002 * to truly enable the writing (much like preempt_disable). 3003 */ 3004 void ring_buffer_record_enable(struct ring_buffer *buffer) 3005 { 3006 atomic_dec(&buffer->record_disabled); 3007 } 3008 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3009 3010 /** 3011 * ring_buffer_record_off - stop all writes into the buffer 3012 * @buffer: The ring buffer to stop writes to. 3013 * 3014 * This prevents all writes to the buffer. Any attempt to write 3015 * to the buffer after this will fail and return NULL. 3016 * 3017 * This is different than ring_buffer_record_disable() as 3018 * it works like an on/off switch, where as the disable() version 3019 * must be paired with a enable(). 3020 */ 3021 void ring_buffer_record_off(struct ring_buffer *buffer) 3022 { 3023 unsigned int rd; 3024 unsigned int new_rd; 3025 3026 do { 3027 rd = atomic_read(&buffer->record_disabled); 3028 new_rd = rd | RB_BUFFER_OFF; 3029 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3030 } 3031 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3032 3033 /** 3034 * ring_buffer_record_on - restart writes into the buffer 3035 * @buffer: The ring buffer to start writes to. 3036 * 3037 * This enables all writes to the buffer that was disabled by 3038 * ring_buffer_record_off(). 3039 * 3040 * This is different than ring_buffer_record_enable() as 3041 * it works like an on/off switch, where as the enable() version 3042 * must be paired with a disable(). 3043 */ 3044 void ring_buffer_record_on(struct ring_buffer *buffer) 3045 { 3046 unsigned int rd; 3047 unsigned int new_rd; 3048 3049 do { 3050 rd = atomic_read(&buffer->record_disabled); 3051 new_rd = rd & ~RB_BUFFER_OFF; 3052 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3053 } 3054 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3055 3056 /** 3057 * ring_buffer_record_is_on - return true if the ring buffer can write 3058 * @buffer: The ring buffer to see if write is enabled 3059 * 3060 * Returns true if the ring buffer is in a state that it accepts writes. 3061 */ 3062 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3063 { 3064 return !atomic_read(&buffer->record_disabled); 3065 } 3066 3067 /** 3068 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3069 * @buffer: The ring buffer to stop writes to. 3070 * @cpu: The CPU buffer to stop 3071 * 3072 * This prevents all writes to the buffer. Any attempt to write 3073 * to the buffer after this will fail and return NULL. 3074 * 3075 * The caller should call synchronize_sched() after this. 3076 */ 3077 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3078 { 3079 struct ring_buffer_per_cpu *cpu_buffer; 3080 3081 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3082 return; 3083 3084 cpu_buffer = buffer->buffers[cpu]; 3085 atomic_inc(&cpu_buffer->record_disabled); 3086 } 3087 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3088 3089 /** 3090 * ring_buffer_record_enable_cpu - enable writes to the buffer 3091 * @buffer: The ring buffer to enable writes 3092 * @cpu: The CPU to enable. 3093 * 3094 * Note, multiple disables will need the same number of enables 3095 * to truly enable the writing (much like preempt_disable). 3096 */ 3097 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3098 { 3099 struct ring_buffer_per_cpu *cpu_buffer; 3100 3101 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3102 return; 3103 3104 cpu_buffer = buffer->buffers[cpu]; 3105 atomic_dec(&cpu_buffer->record_disabled); 3106 } 3107 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3108 3109 /* 3110 * The total entries in the ring buffer is the running counter 3111 * of entries entered into the ring buffer, minus the sum of 3112 * the entries read from the ring buffer and the number of 3113 * entries that were overwritten. 3114 */ 3115 static inline unsigned long 3116 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3117 { 3118 return local_read(&cpu_buffer->entries) - 3119 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3120 } 3121 3122 /** 3123 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3124 * @buffer: The ring buffer 3125 * @cpu: The per CPU buffer to read from. 3126 */ 3127 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3128 { 3129 unsigned long flags; 3130 struct ring_buffer_per_cpu *cpu_buffer; 3131 struct buffer_page *bpage; 3132 u64 ret = 0; 3133 3134 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3135 return 0; 3136 3137 cpu_buffer = buffer->buffers[cpu]; 3138 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3139 /* 3140 * if the tail is on reader_page, oldest time stamp is on the reader 3141 * page 3142 */ 3143 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3144 bpage = cpu_buffer->reader_page; 3145 else 3146 bpage = rb_set_head_page(cpu_buffer); 3147 if (bpage) 3148 ret = bpage->page->time_stamp; 3149 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3150 3151 return ret; 3152 } 3153 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3154 3155 /** 3156 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3157 * @buffer: The ring buffer 3158 * @cpu: The per CPU buffer to read from. 3159 */ 3160 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3161 { 3162 struct ring_buffer_per_cpu *cpu_buffer; 3163 unsigned long ret; 3164 3165 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3166 return 0; 3167 3168 cpu_buffer = buffer->buffers[cpu]; 3169 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3170 3171 return ret; 3172 } 3173 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3174 3175 /** 3176 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3177 * @buffer: The ring buffer 3178 * @cpu: The per CPU buffer to get the entries from. 3179 */ 3180 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3181 { 3182 struct ring_buffer_per_cpu *cpu_buffer; 3183 3184 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3185 return 0; 3186 3187 cpu_buffer = buffer->buffers[cpu]; 3188 3189 return rb_num_of_entries(cpu_buffer); 3190 } 3191 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3192 3193 /** 3194 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3195 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3196 * @buffer: The ring buffer 3197 * @cpu: The per CPU buffer to get the number of overruns from 3198 */ 3199 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3200 { 3201 struct ring_buffer_per_cpu *cpu_buffer; 3202 unsigned long ret; 3203 3204 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3205 return 0; 3206 3207 cpu_buffer = buffer->buffers[cpu]; 3208 ret = local_read(&cpu_buffer->overrun); 3209 3210 return ret; 3211 } 3212 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3213 3214 /** 3215 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3216 * commits failing due to the buffer wrapping around while there are uncommitted 3217 * events, such as during an interrupt storm. 3218 * @buffer: The ring buffer 3219 * @cpu: The per CPU buffer to get the number of overruns from 3220 */ 3221 unsigned long 3222 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3223 { 3224 struct ring_buffer_per_cpu *cpu_buffer; 3225 unsigned long ret; 3226 3227 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3228 return 0; 3229 3230 cpu_buffer = buffer->buffers[cpu]; 3231 ret = local_read(&cpu_buffer->commit_overrun); 3232 3233 return ret; 3234 } 3235 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3236 3237 /** 3238 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3239 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3240 * @buffer: The ring buffer 3241 * @cpu: The per CPU buffer to get the number of overruns from 3242 */ 3243 unsigned long 3244 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3245 { 3246 struct ring_buffer_per_cpu *cpu_buffer; 3247 unsigned long ret; 3248 3249 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3250 return 0; 3251 3252 cpu_buffer = buffer->buffers[cpu]; 3253 ret = local_read(&cpu_buffer->dropped_events); 3254 3255 return ret; 3256 } 3257 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3258 3259 /** 3260 * ring_buffer_read_events_cpu - get the number of events successfully read 3261 * @buffer: The ring buffer 3262 * @cpu: The per CPU buffer to get the number of events read 3263 */ 3264 unsigned long 3265 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3266 { 3267 struct ring_buffer_per_cpu *cpu_buffer; 3268 3269 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3270 return 0; 3271 3272 cpu_buffer = buffer->buffers[cpu]; 3273 return cpu_buffer->read; 3274 } 3275 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3276 3277 /** 3278 * ring_buffer_entries - get the number of entries in a buffer 3279 * @buffer: The ring buffer 3280 * 3281 * Returns the total number of entries in the ring buffer 3282 * (all CPU entries) 3283 */ 3284 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3285 { 3286 struct ring_buffer_per_cpu *cpu_buffer; 3287 unsigned long entries = 0; 3288 int cpu; 3289 3290 /* if you care about this being correct, lock the buffer */ 3291 for_each_buffer_cpu(buffer, cpu) { 3292 cpu_buffer = buffer->buffers[cpu]; 3293 entries += rb_num_of_entries(cpu_buffer); 3294 } 3295 3296 return entries; 3297 } 3298 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3299 3300 /** 3301 * ring_buffer_overruns - get the number of overruns in buffer 3302 * @buffer: The ring buffer 3303 * 3304 * Returns the total number of overruns in the ring buffer 3305 * (all CPU entries) 3306 */ 3307 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3308 { 3309 struct ring_buffer_per_cpu *cpu_buffer; 3310 unsigned long overruns = 0; 3311 int cpu; 3312 3313 /* if you care about this being correct, lock the buffer */ 3314 for_each_buffer_cpu(buffer, cpu) { 3315 cpu_buffer = buffer->buffers[cpu]; 3316 overruns += local_read(&cpu_buffer->overrun); 3317 } 3318 3319 return overruns; 3320 } 3321 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3322 3323 static void rb_iter_reset(struct ring_buffer_iter *iter) 3324 { 3325 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3326 3327 /* Iterator usage is expected to have record disabled */ 3328 iter->head_page = cpu_buffer->reader_page; 3329 iter->head = cpu_buffer->reader_page->read; 3330 3331 iter->cache_reader_page = iter->head_page; 3332 iter->cache_read = cpu_buffer->read; 3333 3334 if (iter->head) 3335 iter->read_stamp = cpu_buffer->read_stamp; 3336 else 3337 iter->read_stamp = iter->head_page->page->time_stamp; 3338 } 3339 3340 /** 3341 * ring_buffer_iter_reset - reset an iterator 3342 * @iter: The iterator to reset 3343 * 3344 * Resets the iterator, so that it will start from the beginning 3345 * again. 3346 */ 3347 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3348 { 3349 struct ring_buffer_per_cpu *cpu_buffer; 3350 unsigned long flags; 3351 3352 if (!iter) 3353 return; 3354 3355 cpu_buffer = iter->cpu_buffer; 3356 3357 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3358 rb_iter_reset(iter); 3359 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3360 } 3361 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3362 3363 /** 3364 * ring_buffer_iter_empty - check if an iterator has no more to read 3365 * @iter: The iterator to check 3366 */ 3367 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3368 { 3369 struct ring_buffer_per_cpu *cpu_buffer; 3370 struct buffer_page *reader; 3371 struct buffer_page *head_page; 3372 struct buffer_page *commit_page; 3373 unsigned commit; 3374 3375 cpu_buffer = iter->cpu_buffer; 3376 3377 /* Remember, trace recording is off when iterator is in use */ 3378 reader = cpu_buffer->reader_page; 3379 head_page = cpu_buffer->head_page; 3380 commit_page = cpu_buffer->commit_page; 3381 commit = rb_page_commit(commit_page); 3382 3383 return ((iter->head_page == commit_page && iter->head == commit) || 3384 (iter->head_page == reader && commit_page == head_page && 3385 head_page->read == commit && 3386 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3387 } 3388 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3389 3390 static void 3391 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3392 struct ring_buffer_event *event) 3393 { 3394 u64 delta; 3395 3396 switch (event->type_len) { 3397 case RINGBUF_TYPE_PADDING: 3398 return; 3399 3400 case RINGBUF_TYPE_TIME_EXTEND: 3401 delta = event->array[0]; 3402 delta <<= TS_SHIFT; 3403 delta += event->time_delta; 3404 cpu_buffer->read_stamp += delta; 3405 return; 3406 3407 case RINGBUF_TYPE_TIME_STAMP: 3408 /* FIXME: not implemented */ 3409 return; 3410 3411 case RINGBUF_TYPE_DATA: 3412 cpu_buffer->read_stamp += event->time_delta; 3413 return; 3414 3415 default: 3416 BUG(); 3417 } 3418 return; 3419 } 3420 3421 static void 3422 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3423 struct ring_buffer_event *event) 3424 { 3425 u64 delta; 3426 3427 switch (event->type_len) { 3428 case RINGBUF_TYPE_PADDING: 3429 return; 3430 3431 case RINGBUF_TYPE_TIME_EXTEND: 3432 delta = event->array[0]; 3433 delta <<= TS_SHIFT; 3434 delta += event->time_delta; 3435 iter->read_stamp += delta; 3436 return; 3437 3438 case RINGBUF_TYPE_TIME_STAMP: 3439 /* FIXME: not implemented */ 3440 return; 3441 3442 case RINGBUF_TYPE_DATA: 3443 iter->read_stamp += event->time_delta; 3444 return; 3445 3446 default: 3447 BUG(); 3448 } 3449 return; 3450 } 3451 3452 static struct buffer_page * 3453 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3454 { 3455 struct buffer_page *reader = NULL; 3456 unsigned long overwrite; 3457 unsigned long flags; 3458 int nr_loops = 0; 3459 int ret; 3460 3461 local_irq_save(flags); 3462 arch_spin_lock(&cpu_buffer->lock); 3463 3464 again: 3465 /* 3466 * This should normally only loop twice. But because the 3467 * start of the reader inserts an empty page, it causes 3468 * a case where we will loop three times. There should be no 3469 * reason to loop four times (that I know of). 3470 */ 3471 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3472 reader = NULL; 3473 goto out; 3474 } 3475 3476 reader = cpu_buffer->reader_page; 3477 3478 /* If there's more to read, return this page */ 3479 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3480 goto out; 3481 3482 /* Never should we have an index greater than the size */ 3483 if (RB_WARN_ON(cpu_buffer, 3484 cpu_buffer->reader_page->read > rb_page_size(reader))) 3485 goto out; 3486 3487 /* check if we caught up to the tail */ 3488 reader = NULL; 3489 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3490 goto out; 3491 3492 /* Don't bother swapping if the ring buffer is empty */ 3493 if (rb_num_of_entries(cpu_buffer) == 0) 3494 goto out; 3495 3496 /* 3497 * Reset the reader page to size zero. 3498 */ 3499 local_set(&cpu_buffer->reader_page->write, 0); 3500 local_set(&cpu_buffer->reader_page->entries, 0); 3501 local_set(&cpu_buffer->reader_page->page->commit, 0); 3502 cpu_buffer->reader_page->real_end = 0; 3503 3504 spin: 3505 /* 3506 * Splice the empty reader page into the list around the head. 3507 */ 3508 reader = rb_set_head_page(cpu_buffer); 3509 if (!reader) 3510 goto out; 3511 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3512 cpu_buffer->reader_page->list.prev = reader->list.prev; 3513 3514 /* 3515 * cpu_buffer->pages just needs to point to the buffer, it 3516 * has no specific buffer page to point to. Lets move it out 3517 * of our way so we don't accidentally swap it. 3518 */ 3519 cpu_buffer->pages = reader->list.prev; 3520 3521 /* The reader page will be pointing to the new head */ 3522 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3523 3524 /* 3525 * We want to make sure we read the overruns after we set up our 3526 * pointers to the next object. The writer side does a 3527 * cmpxchg to cross pages which acts as the mb on the writer 3528 * side. Note, the reader will constantly fail the swap 3529 * while the writer is updating the pointers, so this 3530 * guarantees that the overwrite recorded here is the one we 3531 * want to compare with the last_overrun. 3532 */ 3533 smp_mb(); 3534 overwrite = local_read(&(cpu_buffer->overrun)); 3535 3536 /* 3537 * Here's the tricky part. 3538 * 3539 * We need to move the pointer past the header page. 3540 * But we can only do that if a writer is not currently 3541 * moving it. The page before the header page has the 3542 * flag bit '1' set if it is pointing to the page we want. 3543 * but if the writer is in the process of moving it 3544 * than it will be '2' or already moved '0'. 3545 */ 3546 3547 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3548 3549 /* 3550 * If we did not convert it, then we must try again. 3551 */ 3552 if (!ret) 3553 goto spin; 3554 3555 /* 3556 * Yeah! We succeeded in replacing the page. 3557 * 3558 * Now make the new head point back to the reader page. 3559 */ 3560 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3561 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3562 3563 /* Finally update the reader page to the new head */ 3564 cpu_buffer->reader_page = reader; 3565 cpu_buffer->reader_page->read = 0; 3566 3567 if (overwrite != cpu_buffer->last_overrun) { 3568 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3569 cpu_buffer->last_overrun = overwrite; 3570 } 3571 3572 goto again; 3573 3574 out: 3575 /* Update the read_stamp on the first event */ 3576 if (reader && reader->read == 0) 3577 cpu_buffer->read_stamp = reader->page->time_stamp; 3578 3579 arch_spin_unlock(&cpu_buffer->lock); 3580 local_irq_restore(flags); 3581 3582 return reader; 3583 } 3584 3585 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3586 { 3587 struct ring_buffer_event *event; 3588 struct buffer_page *reader; 3589 unsigned length; 3590 3591 reader = rb_get_reader_page(cpu_buffer); 3592 3593 /* This function should not be called when buffer is empty */ 3594 if (RB_WARN_ON(cpu_buffer, !reader)) 3595 return; 3596 3597 event = rb_reader_event(cpu_buffer); 3598 3599 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3600 cpu_buffer->read++; 3601 3602 rb_update_read_stamp(cpu_buffer, event); 3603 3604 length = rb_event_length(event); 3605 cpu_buffer->reader_page->read += length; 3606 } 3607 3608 static void rb_advance_iter(struct ring_buffer_iter *iter) 3609 { 3610 struct ring_buffer_per_cpu *cpu_buffer; 3611 struct ring_buffer_event *event; 3612 unsigned length; 3613 3614 cpu_buffer = iter->cpu_buffer; 3615 3616 /* 3617 * Check if we are at the end of the buffer. 3618 */ 3619 if (iter->head >= rb_page_size(iter->head_page)) { 3620 /* discarded commits can make the page empty */ 3621 if (iter->head_page == cpu_buffer->commit_page) 3622 return; 3623 rb_inc_iter(iter); 3624 return; 3625 } 3626 3627 event = rb_iter_head_event(iter); 3628 3629 length = rb_event_length(event); 3630 3631 /* 3632 * This should not be called to advance the header if we are 3633 * at the tail of the buffer. 3634 */ 3635 if (RB_WARN_ON(cpu_buffer, 3636 (iter->head_page == cpu_buffer->commit_page) && 3637 (iter->head + length > rb_commit_index(cpu_buffer)))) 3638 return; 3639 3640 rb_update_iter_read_stamp(iter, event); 3641 3642 iter->head += length; 3643 3644 /* check for end of page padding */ 3645 if ((iter->head >= rb_page_size(iter->head_page)) && 3646 (iter->head_page != cpu_buffer->commit_page)) 3647 rb_inc_iter(iter); 3648 } 3649 3650 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3651 { 3652 return cpu_buffer->lost_events; 3653 } 3654 3655 static struct ring_buffer_event * 3656 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3657 unsigned long *lost_events) 3658 { 3659 struct ring_buffer_event *event; 3660 struct buffer_page *reader; 3661 int nr_loops = 0; 3662 3663 again: 3664 /* 3665 * We repeat when a time extend is encountered. 3666 * Since the time extend is always attached to a data event, 3667 * we should never loop more than once. 3668 * (We never hit the following condition more than twice). 3669 */ 3670 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3671 return NULL; 3672 3673 reader = rb_get_reader_page(cpu_buffer); 3674 if (!reader) 3675 return NULL; 3676 3677 event = rb_reader_event(cpu_buffer); 3678 3679 switch (event->type_len) { 3680 case RINGBUF_TYPE_PADDING: 3681 if (rb_null_event(event)) 3682 RB_WARN_ON(cpu_buffer, 1); 3683 /* 3684 * Because the writer could be discarding every 3685 * event it creates (which would probably be bad) 3686 * if we were to go back to "again" then we may never 3687 * catch up, and will trigger the warn on, or lock 3688 * the box. Return the padding, and we will release 3689 * the current locks, and try again. 3690 */ 3691 return event; 3692 3693 case RINGBUF_TYPE_TIME_EXTEND: 3694 /* Internal data, OK to advance */ 3695 rb_advance_reader(cpu_buffer); 3696 goto again; 3697 3698 case RINGBUF_TYPE_TIME_STAMP: 3699 /* FIXME: not implemented */ 3700 rb_advance_reader(cpu_buffer); 3701 goto again; 3702 3703 case RINGBUF_TYPE_DATA: 3704 if (ts) { 3705 *ts = cpu_buffer->read_stamp + event->time_delta; 3706 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3707 cpu_buffer->cpu, ts); 3708 } 3709 if (lost_events) 3710 *lost_events = rb_lost_events(cpu_buffer); 3711 return event; 3712 3713 default: 3714 BUG(); 3715 } 3716 3717 return NULL; 3718 } 3719 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3720 3721 static struct ring_buffer_event * 3722 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3723 { 3724 struct ring_buffer *buffer; 3725 struct ring_buffer_per_cpu *cpu_buffer; 3726 struct ring_buffer_event *event; 3727 int nr_loops = 0; 3728 3729 cpu_buffer = iter->cpu_buffer; 3730 buffer = cpu_buffer->buffer; 3731 3732 /* 3733 * Check if someone performed a consuming read to 3734 * the buffer. A consuming read invalidates the iterator 3735 * and we need to reset the iterator in this case. 3736 */ 3737 if (unlikely(iter->cache_read != cpu_buffer->read || 3738 iter->cache_reader_page != cpu_buffer->reader_page)) 3739 rb_iter_reset(iter); 3740 3741 again: 3742 if (ring_buffer_iter_empty(iter)) 3743 return NULL; 3744 3745 /* 3746 * We repeat when a time extend is encountered or we hit 3747 * the end of the page. Since the time extend is always attached 3748 * to a data event, we should never loop more than three times. 3749 * Once for going to next page, once on time extend, and 3750 * finally once to get the event. 3751 * (We never hit the following condition more than thrice). 3752 */ 3753 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3754 return NULL; 3755 3756 if (rb_per_cpu_empty(cpu_buffer)) 3757 return NULL; 3758 3759 if (iter->head >= rb_page_size(iter->head_page)) { 3760 rb_inc_iter(iter); 3761 goto again; 3762 } 3763 3764 event = rb_iter_head_event(iter); 3765 3766 switch (event->type_len) { 3767 case RINGBUF_TYPE_PADDING: 3768 if (rb_null_event(event)) { 3769 rb_inc_iter(iter); 3770 goto again; 3771 } 3772 rb_advance_iter(iter); 3773 return event; 3774 3775 case RINGBUF_TYPE_TIME_EXTEND: 3776 /* Internal data, OK to advance */ 3777 rb_advance_iter(iter); 3778 goto again; 3779 3780 case RINGBUF_TYPE_TIME_STAMP: 3781 /* FIXME: not implemented */ 3782 rb_advance_iter(iter); 3783 goto again; 3784 3785 case RINGBUF_TYPE_DATA: 3786 if (ts) { 3787 *ts = iter->read_stamp + event->time_delta; 3788 ring_buffer_normalize_time_stamp(buffer, 3789 cpu_buffer->cpu, ts); 3790 } 3791 return event; 3792 3793 default: 3794 BUG(); 3795 } 3796 3797 return NULL; 3798 } 3799 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3800 3801 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3802 { 3803 if (likely(!in_nmi())) { 3804 raw_spin_lock(&cpu_buffer->reader_lock); 3805 return true; 3806 } 3807 3808 /* 3809 * If an NMI die dumps out the content of the ring buffer 3810 * trylock must be used to prevent a deadlock if the NMI 3811 * preempted a task that holds the ring buffer locks. If 3812 * we get the lock then all is fine, if not, then continue 3813 * to do the read, but this can corrupt the ring buffer, 3814 * so it must be permanently disabled from future writes. 3815 * Reading from NMI is a oneshot deal. 3816 */ 3817 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3818 return true; 3819 3820 /* Continue without locking, but disable the ring buffer */ 3821 atomic_inc(&cpu_buffer->record_disabled); 3822 return false; 3823 } 3824 3825 static inline void 3826 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 3827 { 3828 if (likely(locked)) 3829 raw_spin_unlock(&cpu_buffer->reader_lock); 3830 return; 3831 } 3832 3833 /** 3834 * ring_buffer_peek - peek at the next event to be read 3835 * @buffer: The ring buffer to read 3836 * @cpu: The cpu to peak at 3837 * @ts: The timestamp counter of this event. 3838 * @lost_events: a variable to store if events were lost (may be NULL) 3839 * 3840 * This will return the event that will be read next, but does 3841 * not consume the data. 3842 */ 3843 struct ring_buffer_event * 3844 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3845 unsigned long *lost_events) 3846 { 3847 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3848 struct ring_buffer_event *event; 3849 unsigned long flags; 3850 bool dolock; 3851 3852 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3853 return NULL; 3854 3855 again: 3856 local_irq_save(flags); 3857 dolock = rb_reader_lock(cpu_buffer); 3858 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3859 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3860 rb_advance_reader(cpu_buffer); 3861 rb_reader_unlock(cpu_buffer, dolock); 3862 local_irq_restore(flags); 3863 3864 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3865 goto again; 3866 3867 return event; 3868 } 3869 3870 /** 3871 * ring_buffer_iter_peek - peek at the next event to be read 3872 * @iter: The ring buffer iterator 3873 * @ts: The timestamp counter of this event. 3874 * 3875 * This will return the event that will be read next, but does 3876 * not increment the iterator. 3877 */ 3878 struct ring_buffer_event * 3879 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3880 { 3881 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3882 struct ring_buffer_event *event; 3883 unsigned long flags; 3884 3885 again: 3886 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3887 event = rb_iter_peek(iter, ts); 3888 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3889 3890 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3891 goto again; 3892 3893 return event; 3894 } 3895 3896 /** 3897 * ring_buffer_consume - return an event and consume it 3898 * @buffer: The ring buffer to get the next event from 3899 * @cpu: the cpu to read the buffer from 3900 * @ts: a variable to store the timestamp (may be NULL) 3901 * @lost_events: a variable to store if events were lost (may be NULL) 3902 * 3903 * Returns the next event in the ring buffer, and that event is consumed. 3904 * Meaning, that sequential reads will keep returning a different event, 3905 * and eventually empty the ring buffer if the producer is slower. 3906 */ 3907 struct ring_buffer_event * 3908 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3909 unsigned long *lost_events) 3910 { 3911 struct ring_buffer_per_cpu *cpu_buffer; 3912 struct ring_buffer_event *event = NULL; 3913 unsigned long flags; 3914 bool dolock; 3915 3916 again: 3917 /* might be called in atomic */ 3918 preempt_disable(); 3919 3920 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3921 goto out; 3922 3923 cpu_buffer = buffer->buffers[cpu]; 3924 local_irq_save(flags); 3925 dolock = rb_reader_lock(cpu_buffer); 3926 3927 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3928 if (event) { 3929 cpu_buffer->lost_events = 0; 3930 rb_advance_reader(cpu_buffer); 3931 } 3932 3933 rb_reader_unlock(cpu_buffer, dolock); 3934 local_irq_restore(flags); 3935 3936 out: 3937 preempt_enable(); 3938 3939 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3940 goto again; 3941 3942 return event; 3943 } 3944 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3945 3946 /** 3947 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3948 * @buffer: The ring buffer to read from 3949 * @cpu: The cpu buffer to iterate over 3950 * 3951 * This performs the initial preparations necessary to iterate 3952 * through the buffer. Memory is allocated, buffer recording 3953 * is disabled, and the iterator pointer is returned to the caller. 3954 * 3955 * Disabling buffer recordng prevents the reading from being 3956 * corrupted. This is not a consuming read, so a producer is not 3957 * expected. 3958 * 3959 * After a sequence of ring_buffer_read_prepare calls, the user is 3960 * expected to make at least one call to ring_buffer_read_prepare_sync. 3961 * Afterwards, ring_buffer_read_start is invoked to get things going 3962 * for real. 3963 * 3964 * This overall must be paired with ring_buffer_read_finish. 3965 */ 3966 struct ring_buffer_iter * 3967 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3968 { 3969 struct ring_buffer_per_cpu *cpu_buffer; 3970 struct ring_buffer_iter *iter; 3971 3972 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3973 return NULL; 3974 3975 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3976 if (!iter) 3977 return NULL; 3978 3979 cpu_buffer = buffer->buffers[cpu]; 3980 3981 iter->cpu_buffer = cpu_buffer; 3982 3983 atomic_inc(&buffer->resize_disabled); 3984 atomic_inc(&cpu_buffer->record_disabled); 3985 3986 return iter; 3987 } 3988 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3989 3990 /** 3991 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3992 * 3993 * All previously invoked ring_buffer_read_prepare calls to prepare 3994 * iterators will be synchronized. Afterwards, read_buffer_read_start 3995 * calls on those iterators are allowed. 3996 */ 3997 void 3998 ring_buffer_read_prepare_sync(void) 3999 { 4000 synchronize_sched(); 4001 } 4002 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4003 4004 /** 4005 * ring_buffer_read_start - start a non consuming read of the buffer 4006 * @iter: The iterator returned by ring_buffer_read_prepare 4007 * 4008 * This finalizes the startup of an iteration through the buffer. 4009 * The iterator comes from a call to ring_buffer_read_prepare and 4010 * an intervening ring_buffer_read_prepare_sync must have been 4011 * performed. 4012 * 4013 * Must be paired with ring_buffer_read_finish. 4014 */ 4015 void 4016 ring_buffer_read_start(struct ring_buffer_iter *iter) 4017 { 4018 struct ring_buffer_per_cpu *cpu_buffer; 4019 unsigned long flags; 4020 4021 if (!iter) 4022 return; 4023 4024 cpu_buffer = iter->cpu_buffer; 4025 4026 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4027 arch_spin_lock(&cpu_buffer->lock); 4028 rb_iter_reset(iter); 4029 arch_spin_unlock(&cpu_buffer->lock); 4030 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4031 } 4032 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4033 4034 /** 4035 * ring_buffer_read_finish - finish reading the iterator of the buffer 4036 * @iter: The iterator retrieved by ring_buffer_start 4037 * 4038 * This re-enables the recording to the buffer, and frees the 4039 * iterator. 4040 */ 4041 void 4042 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4043 { 4044 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4045 unsigned long flags; 4046 4047 /* 4048 * Ring buffer is disabled from recording, here's a good place 4049 * to check the integrity of the ring buffer. 4050 * Must prevent readers from trying to read, as the check 4051 * clears the HEAD page and readers require it. 4052 */ 4053 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4054 rb_check_pages(cpu_buffer); 4055 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4056 4057 atomic_dec(&cpu_buffer->record_disabled); 4058 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4059 kfree(iter); 4060 } 4061 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4062 4063 /** 4064 * ring_buffer_read - read the next item in the ring buffer by the iterator 4065 * @iter: The ring buffer iterator 4066 * @ts: The time stamp of the event read. 4067 * 4068 * This reads the next event in the ring buffer and increments the iterator. 4069 */ 4070 struct ring_buffer_event * 4071 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4072 { 4073 struct ring_buffer_event *event; 4074 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4075 unsigned long flags; 4076 4077 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4078 again: 4079 event = rb_iter_peek(iter, ts); 4080 if (!event) 4081 goto out; 4082 4083 if (event->type_len == RINGBUF_TYPE_PADDING) 4084 goto again; 4085 4086 rb_advance_iter(iter); 4087 out: 4088 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4089 4090 return event; 4091 } 4092 EXPORT_SYMBOL_GPL(ring_buffer_read); 4093 4094 /** 4095 * ring_buffer_size - return the size of the ring buffer (in bytes) 4096 * @buffer: The ring buffer. 4097 */ 4098 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4099 { 4100 /* 4101 * Earlier, this method returned 4102 * BUF_PAGE_SIZE * buffer->nr_pages 4103 * Since the nr_pages field is now removed, we have converted this to 4104 * return the per cpu buffer value. 4105 */ 4106 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4107 return 0; 4108 4109 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4110 } 4111 EXPORT_SYMBOL_GPL(ring_buffer_size); 4112 4113 static void 4114 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4115 { 4116 rb_head_page_deactivate(cpu_buffer); 4117 4118 cpu_buffer->head_page 4119 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4120 local_set(&cpu_buffer->head_page->write, 0); 4121 local_set(&cpu_buffer->head_page->entries, 0); 4122 local_set(&cpu_buffer->head_page->page->commit, 0); 4123 4124 cpu_buffer->head_page->read = 0; 4125 4126 cpu_buffer->tail_page = cpu_buffer->head_page; 4127 cpu_buffer->commit_page = cpu_buffer->head_page; 4128 4129 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4130 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4131 local_set(&cpu_buffer->reader_page->write, 0); 4132 local_set(&cpu_buffer->reader_page->entries, 0); 4133 local_set(&cpu_buffer->reader_page->page->commit, 0); 4134 cpu_buffer->reader_page->read = 0; 4135 4136 local_set(&cpu_buffer->entries_bytes, 0); 4137 local_set(&cpu_buffer->overrun, 0); 4138 local_set(&cpu_buffer->commit_overrun, 0); 4139 local_set(&cpu_buffer->dropped_events, 0); 4140 local_set(&cpu_buffer->entries, 0); 4141 local_set(&cpu_buffer->committing, 0); 4142 local_set(&cpu_buffer->commits, 0); 4143 cpu_buffer->read = 0; 4144 cpu_buffer->read_bytes = 0; 4145 4146 cpu_buffer->write_stamp = 0; 4147 cpu_buffer->read_stamp = 0; 4148 4149 cpu_buffer->lost_events = 0; 4150 cpu_buffer->last_overrun = 0; 4151 4152 rb_head_page_activate(cpu_buffer); 4153 } 4154 4155 /** 4156 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4157 * @buffer: The ring buffer to reset a per cpu buffer of 4158 * @cpu: The CPU buffer to be reset 4159 */ 4160 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4161 { 4162 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4163 unsigned long flags; 4164 4165 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4166 return; 4167 4168 atomic_inc(&buffer->resize_disabled); 4169 atomic_inc(&cpu_buffer->record_disabled); 4170 4171 /* Make sure all commits have finished */ 4172 synchronize_sched(); 4173 4174 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4175 4176 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4177 goto out; 4178 4179 arch_spin_lock(&cpu_buffer->lock); 4180 4181 rb_reset_cpu(cpu_buffer); 4182 4183 arch_spin_unlock(&cpu_buffer->lock); 4184 4185 out: 4186 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4187 4188 atomic_dec(&cpu_buffer->record_disabled); 4189 atomic_dec(&buffer->resize_disabled); 4190 } 4191 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4192 4193 /** 4194 * ring_buffer_reset - reset a ring buffer 4195 * @buffer: The ring buffer to reset all cpu buffers 4196 */ 4197 void ring_buffer_reset(struct ring_buffer *buffer) 4198 { 4199 int cpu; 4200 4201 for_each_buffer_cpu(buffer, cpu) 4202 ring_buffer_reset_cpu(buffer, cpu); 4203 } 4204 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4205 4206 /** 4207 * rind_buffer_empty - is the ring buffer empty? 4208 * @buffer: The ring buffer to test 4209 */ 4210 bool ring_buffer_empty(struct ring_buffer *buffer) 4211 { 4212 struct ring_buffer_per_cpu *cpu_buffer; 4213 unsigned long flags; 4214 bool dolock; 4215 int cpu; 4216 int ret; 4217 4218 /* yes this is racy, but if you don't like the race, lock the buffer */ 4219 for_each_buffer_cpu(buffer, cpu) { 4220 cpu_buffer = buffer->buffers[cpu]; 4221 local_irq_save(flags); 4222 dolock = rb_reader_lock(cpu_buffer); 4223 ret = rb_per_cpu_empty(cpu_buffer); 4224 rb_reader_unlock(cpu_buffer, dolock); 4225 local_irq_restore(flags); 4226 4227 if (!ret) 4228 return false; 4229 } 4230 4231 return true; 4232 } 4233 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4234 4235 /** 4236 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4237 * @buffer: The ring buffer 4238 * @cpu: The CPU buffer to test 4239 */ 4240 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4241 { 4242 struct ring_buffer_per_cpu *cpu_buffer; 4243 unsigned long flags; 4244 bool dolock; 4245 int ret; 4246 4247 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4248 return true; 4249 4250 cpu_buffer = buffer->buffers[cpu]; 4251 local_irq_save(flags); 4252 dolock = rb_reader_lock(cpu_buffer); 4253 ret = rb_per_cpu_empty(cpu_buffer); 4254 rb_reader_unlock(cpu_buffer, dolock); 4255 local_irq_restore(flags); 4256 4257 return ret; 4258 } 4259 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4260 4261 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4262 /** 4263 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4264 * @buffer_a: One buffer to swap with 4265 * @buffer_b: The other buffer to swap with 4266 * 4267 * This function is useful for tracers that want to take a "snapshot" 4268 * of a CPU buffer and has another back up buffer lying around. 4269 * it is expected that the tracer handles the cpu buffer not being 4270 * used at the moment. 4271 */ 4272 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4273 struct ring_buffer *buffer_b, int cpu) 4274 { 4275 struct ring_buffer_per_cpu *cpu_buffer_a; 4276 struct ring_buffer_per_cpu *cpu_buffer_b; 4277 int ret = -EINVAL; 4278 4279 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4280 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4281 goto out; 4282 4283 cpu_buffer_a = buffer_a->buffers[cpu]; 4284 cpu_buffer_b = buffer_b->buffers[cpu]; 4285 4286 /* At least make sure the two buffers are somewhat the same */ 4287 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4288 goto out; 4289 4290 ret = -EAGAIN; 4291 4292 if (atomic_read(&buffer_a->record_disabled)) 4293 goto out; 4294 4295 if (atomic_read(&buffer_b->record_disabled)) 4296 goto out; 4297 4298 if (atomic_read(&cpu_buffer_a->record_disabled)) 4299 goto out; 4300 4301 if (atomic_read(&cpu_buffer_b->record_disabled)) 4302 goto out; 4303 4304 /* 4305 * We can't do a synchronize_sched here because this 4306 * function can be called in atomic context. 4307 * Normally this will be called from the same CPU as cpu. 4308 * If not it's up to the caller to protect this. 4309 */ 4310 atomic_inc(&cpu_buffer_a->record_disabled); 4311 atomic_inc(&cpu_buffer_b->record_disabled); 4312 4313 ret = -EBUSY; 4314 if (local_read(&cpu_buffer_a->committing)) 4315 goto out_dec; 4316 if (local_read(&cpu_buffer_b->committing)) 4317 goto out_dec; 4318 4319 buffer_a->buffers[cpu] = cpu_buffer_b; 4320 buffer_b->buffers[cpu] = cpu_buffer_a; 4321 4322 cpu_buffer_b->buffer = buffer_a; 4323 cpu_buffer_a->buffer = buffer_b; 4324 4325 ret = 0; 4326 4327 out_dec: 4328 atomic_dec(&cpu_buffer_a->record_disabled); 4329 atomic_dec(&cpu_buffer_b->record_disabled); 4330 out: 4331 return ret; 4332 } 4333 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4334 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4335 4336 /** 4337 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4338 * @buffer: the buffer to allocate for. 4339 * @cpu: the cpu buffer to allocate. 4340 * 4341 * This function is used in conjunction with ring_buffer_read_page. 4342 * When reading a full page from the ring buffer, these functions 4343 * can be used to speed up the process. The calling function should 4344 * allocate a few pages first with this function. Then when it 4345 * needs to get pages from the ring buffer, it passes the result 4346 * of this function into ring_buffer_read_page, which will swap 4347 * the page that was allocated, with the read page of the buffer. 4348 * 4349 * Returns: 4350 * The page allocated, or ERR_PTR 4351 */ 4352 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4353 { 4354 struct ring_buffer_per_cpu *cpu_buffer; 4355 struct buffer_data_page *bpage = NULL; 4356 unsigned long flags; 4357 struct page *page; 4358 4359 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4360 return ERR_PTR(-ENODEV); 4361 4362 cpu_buffer = buffer->buffers[cpu]; 4363 local_irq_save(flags); 4364 arch_spin_lock(&cpu_buffer->lock); 4365 4366 if (cpu_buffer->free_page) { 4367 bpage = cpu_buffer->free_page; 4368 cpu_buffer->free_page = NULL; 4369 } 4370 4371 arch_spin_unlock(&cpu_buffer->lock); 4372 local_irq_restore(flags); 4373 4374 if (bpage) 4375 goto out; 4376 4377 page = alloc_pages_node(cpu_to_node(cpu), 4378 GFP_KERNEL | __GFP_NORETRY, 0); 4379 if (!page) 4380 return ERR_PTR(-ENOMEM); 4381 4382 bpage = page_address(page); 4383 4384 out: 4385 rb_init_page(bpage); 4386 4387 return bpage; 4388 } 4389 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4390 4391 /** 4392 * ring_buffer_free_read_page - free an allocated read page 4393 * @buffer: the buffer the page was allocate for 4394 * @cpu: the cpu buffer the page came from 4395 * @data: the page to free 4396 * 4397 * Free a page allocated from ring_buffer_alloc_read_page. 4398 */ 4399 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data) 4400 { 4401 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4402 struct buffer_data_page *bpage = data; 4403 unsigned long flags; 4404 4405 local_irq_save(flags); 4406 arch_spin_lock(&cpu_buffer->lock); 4407 4408 if (!cpu_buffer->free_page) { 4409 cpu_buffer->free_page = bpage; 4410 bpage = NULL; 4411 } 4412 4413 arch_spin_unlock(&cpu_buffer->lock); 4414 local_irq_restore(flags); 4415 4416 free_page((unsigned long)bpage); 4417 } 4418 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4419 4420 /** 4421 * ring_buffer_read_page - extract a page from the ring buffer 4422 * @buffer: buffer to extract from 4423 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4424 * @len: amount to extract 4425 * @cpu: the cpu of the buffer to extract 4426 * @full: should the extraction only happen when the page is full. 4427 * 4428 * This function will pull out a page from the ring buffer and consume it. 4429 * @data_page must be the address of the variable that was returned 4430 * from ring_buffer_alloc_read_page. This is because the page might be used 4431 * to swap with a page in the ring buffer. 4432 * 4433 * for example: 4434 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4435 * if (IS_ERR(rpage)) 4436 * return PTR_ERR(rpage); 4437 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4438 * if (ret >= 0) 4439 * process_page(rpage, ret); 4440 * 4441 * When @full is set, the function will not return true unless 4442 * the writer is off the reader page. 4443 * 4444 * Note: it is up to the calling functions to handle sleeps and wakeups. 4445 * The ring buffer can be used anywhere in the kernel and can not 4446 * blindly call wake_up. The layer that uses the ring buffer must be 4447 * responsible for that. 4448 * 4449 * Returns: 4450 * >=0 if data has been transferred, returns the offset of consumed data. 4451 * <0 if no data has been transferred. 4452 */ 4453 int ring_buffer_read_page(struct ring_buffer *buffer, 4454 void **data_page, size_t len, int cpu, int full) 4455 { 4456 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4457 struct ring_buffer_event *event; 4458 struct buffer_data_page *bpage; 4459 struct buffer_page *reader; 4460 unsigned long missed_events; 4461 unsigned long flags; 4462 unsigned int commit; 4463 unsigned int read; 4464 u64 save_timestamp; 4465 int ret = -1; 4466 4467 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4468 goto out; 4469 4470 /* 4471 * If len is not big enough to hold the page header, then 4472 * we can not copy anything. 4473 */ 4474 if (len <= BUF_PAGE_HDR_SIZE) 4475 goto out; 4476 4477 len -= BUF_PAGE_HDR_SIZE; 4478 4479 if (!data_page) 4480 goto out; 4481 4482 bpage = *data_page; 4483 if (!bpage) 4484 goto out; 4485 4486 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4487 4488 reader = rb_get_reader_page(cpu_buffer); 4489 if (!reader) 4490 goto out_unlock; 4491 4492 event = rb_reader_event(cpu_buffer); 4493 4494 read = reader->read; 4495 commit = rb_page_commit(reader); 4496 4497 /* Check if any events were dropped */ 4498 missed_events = cpu_buffer->lost_events; 4499 4500 /* 4501 * If this page has been partially read or 4502 * if len is not big enough to read the rest of the page or 4503 * a writer is still on the page, then 4504 * we must copy the data from the page to the buffer. 4505 * Otherwise, we can simply swap the page with the one passed in. 4506 */ 4507 if (read || (len < (commit - read)) || 4508 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4509 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4510 unsigned int rpos = read; 4511 unsigned int pos = 0; 4512 unsigned int size; 4513 4514 if (full) 4515 goto out_unlock; 4516 4517 if (len > (commit - read)) 4518 len = (commit - read); 4519 4520 /* Always keep the time extend and data together */ 4521 size = rb_event_ts_length(event); 4522 4523 if (len < size) 4524 goto out_unlock; 4525 4526 /* save the current timestamp, since the user will need it */ 4527 save_timestamp = cpu_buffer->read_stamp; 4528 4529 /* Need to copy one event at a time */ 4530 do { 4531 /* We need the size of one event, because 4532 * rb_advance_reader only advances by one event, 4533 * whereas rb_event_ts_length may include the size of 4534 * one or two events. 4535 * We have already ensured there's enough space if this 4536 * is a time extend. */ 4537 size = rb_event_length(event); 4538 memcpy(bpage->data + pos, rpage->data + rpos, size); 4539 4540 len -= size; 4541 4542 rb_advance_reader(cpu_buffer); 4543 rpos = reader->read; 4544 pos += size; 4545 4546 if (rpos >= commit) 4547 break; 4548 4549 event = rb_reader_event(cpu_buffer); 4550 /* Always keep the time extend and data together */ 4551 size = rb_event_ts_length(event); 4552 } while (len >= size); 4553 4554 /* update bpage */ 4555 local_set(&bpage->commit, pos); 4556 bpage->time_stamp = save_timestamp; 4557 4558 /* we copied everything to the beginning */ 4559 read = 0; 4560 } else { 4561 /* update the entry counter */ 4562 cpu_buffer->read += rb_page_entries(reader); 4563 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4564 4565 /* swap the pages */ 4566 rb_init_page(bpage); 4567 bpage = reader->page; 4568 reader->page = *data_page; 4569 local_set(&reader->write, 0); 4570 local_set(&reader->entries, 0); 4571 reader->read = 0; 4572 *data_page = bpage; 4573 4574 /* 4575 * Use the real_end for the data size, 4576 * This gives us a chance to store the lost events 4577 * on the page. 4578 */ 4579 if (reader->real_end) 4580 local_set(&bpage->commit, reader->real_end); 4581 } 4582 ret = read; 4583 4584 cpu_buffer->lost_events = 0; 4585 4586 commit = local_read(&bpage->commit); 4587 /* 4588 * Set a flag in the commit field if we lost events 4589 */ 4590 if (missed_events) { 4591 /* If there is room at the end of the page to save the 4592 * missed events, then record it there. 4593 */ 4594 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4595 memcpy(&bpage->data[commit], &missed_events, 4596 sizeof(missed_events)); 4597 local_add(RB_MISSED_STORED, &bpage->commit); 4598 commit += sizeof(missed_events); 4599 } 4600 local_add(RB_MISSED_EVENTS, &bpage->commit); 4601 } 4602 4603 /* 4604 * This page may be off to user land. Zero it out here. 4605 */ 4606 if (commit < BUF_PAGE_SIZE) 4607 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4608 4609 out_unlock: 4610 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4611 4612 out: 4613 return ret; 4614 } 4615 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4616 4617 /* 4618 * We only allocate new buffers, never free them if the CPU goes down. 4619 * If we were to free the buffer, then the user would lose any trace that was in 4620 * the buffer. 4621 */ 4622 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4623 { 4624 struct ring_buffer *buffer; 4625 long nr_pages_same; 4626 int cpu_i; 4627 unsigned long nr_pages; 4628 4629 buffer = container_of(node, struct ring_buffer, node); 4630 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4631 return 0; 4632 4633 nr_pages = 0; 4634 nr_pages_same = 1; 4635 /* check if all cpu sizes are same */ 4636 for_each_buffer_cpu(buffer, cpu_i) { 4637 /* fill in the size from first enabled cpu */ 4638 if (nr_pages == 0) 4639 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4640 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4641 nr_pages_same = 0; 4642 break; 4643 } 4644 } 4645 /* allocate minimum pages, user can later expand it */ 4646 if (!nr_pages_same) 4647 nr_pages = 2; 4648 buffer->buffers[cpu] = 4649 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4650 if (!buffer->buffers[cpu]) { 4651 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4652 cpu); 4653 return -ENOMEM; 4654 } 4655 smp_wmb(); 4656 cpumask_set_cpu(cpu, buffer->cpumask); 4657 return 0; 4658 } 4659 4660 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4661 /* 4662 * This is a basic integrity check of the ring buffer. 4663 * Late in the boot cycle this test will run when configured in. 4664 * It will kick off a thread per CPU that will go into a loop 4665 * writing to the per cpu ring buffer various sizes of data. 4666 * Some of the data will be large items, some small. 4667 * 4668 * Another thread is created that goes into a spin, sending out 4669 * IPIs to the other CPUs to also write into the ring buffer. 4670 * this is to test the nesting ability of the buffer. 4671 * 4672 * Basic stats are recorded and reported. If something in the 4673 * ring buffer should happen that's not expected, a big warning 4674 * is displayed and all ring buffers are disabled. 4675 */ 4676 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4677 4678 struct rb_test_data { 4679 struct ring_buffer *buffer; 4680 unsigned long events; 4681 unsigned long bytes_written; 4682 unsigned long bytes_alloc; 4683 unsigned long bytes_dropped; 4684 unsigned long events_nested; 4685 unsigned long bytes_written_nested; 4686 unsigned long bytes_alloc_nested; 4687 unsigned long bytes_dropped_nested; 4688 int min_size_nested; 4689 int max_size_nested; 4690 int max_size; 4691 int min_size; 4692 int cpu; 4693 int cnt; 4694 }; 4695 4696 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4697 4698 /* 1 meg per cpu */ 4699 #define RB_TEST_BUFFER_SIZE 1048576 4700 4701 static char rb_string[] __initdata = 4702 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4703 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4704 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4705 4706 static bool rb_test_started __initdata; 4707 4708 struct rb_item { 4709 int size; 4710 char str[]; 4711 }; 4712 4713 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4714 { 4715 struct ring_buffer_event *event; 4716 struct rb_item *item; 4717 bool started; 4718 int event_len; 4719 int size; 4720 int len; 4721 int cnt; 4722 4723 /* Have nested writes different that what is written */ 4724 cnt = data->cnt + (nested ? 27 : 0); 4725 4726 /* Multiply cnt by ~e, to make some unique increment */ 4727 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4728 4729 len = size + sizeof(struct rb_item); 4730 4731 started = rb_test_started; 4732 /* read rb_test_started before checking buffer enabled */ 4733 smp_rmb(); 4734 4735 event = ring_buffer_lock_reserve(data->buffer, len); 4736 if (!event) { 4737 /* Ignore dropped events before test starts. */ 4738 if (started) { 4739 if (nested) 4740 data->bytes_dropped += len; 4741 else 4742 data->bytes_dropped_nested += len; 4743 } 4744 return len; 4745 } 4746 4747 event_len = ring_buffer_event_length(event); 4748 4749 if (RB_WARN_ON(data->buffer, event_len < len)) 4750 goto out; 4751 4752 item = ring_buffer_event_data(event); 4753 item->size = size; 4754 memcpy(item->str, rb_string, size); 4755 4756 if (nested) { 4757 data->bytes_alloc_nested += event_len; 4758 data->bytes_written_nested += len; 4759 data->events_nested++; 4760 if (!data->min_size_nested || len < data->min_size_nested) 4761 data->min_size_nested = len; 4762 if (len > data->max_size_nested) 4763 data->max_size_nested = len; 4764 } else { 4765 data->bytes_alloc += event_len; 4766 data->bytes_written += len; 4767 data->events++; 4768 if (!data->min_size || len < data->min_size) 4769 data->max_size = len; 4770 if (len > data->max_size) 4771 data->max_size = len; 4772 } 4773 4774 out: 4775 ring_buffer_unlock_commit(data->buffer, event); 4776 4777 return 0; 4778 } 4779 4780 static __init int rb_test(void *arg) 4781 { 4782 struct rb_test_data *data = arg; 4783 4784 while (!kthread_should_stop()) { 4785 rb_write_something(data, false); 4786 data->cnt++; 4787 4788 set_current_state(TASK_INTERRUPTIBLE); 4789 /* Now sleep between a min of 100-300us and a max of 1ms */ 4790 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4791 } 4792 4793 return 0; 4794 } 4795 4796 static __init void rb_ipi(void *ignore) 4797 { 4798 struct rb_test_data *data; 4799 int cpu = smp_processor_id(); 4800 4801 data = &rb_data[cpu]; 4802 rb_write_something(data, true); 4803 } 4804 4805 static __init int rb_hammer_test(void *arg) 4806 { 4807 while (!kthread_should_stop()) { 4808 4809 /* Send an IPI to all cpus to write data! */ 4810 smp_call_function(rb_ipi, NULL, 1); 4811 /* No sleep, but for non preempt, let others run */ 4812 schedule(); 4813 } 4814 4815 return 0; 4816 } 4817 4818 static __init int test_ringbuffer(void) 4819 { 4820 struct task_struct *rb_hammer; 4821 struct ring_buffer *buffer; 4822 int cpu; 4823 int ret = 0; 4824 4825 pr_info("Running ring buffer tests...\n"); 4826 4827 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4828 if (WARN_ON(!buffer)) 4829 return 0; 4830 4831 /* Disable buffer so that threads can't write to it yet */ 4832 ring_buffer_record_off(buffer); 4833 4834 for_each_online_cpu(cpu) { 4835 rb_data[cpu].buffer = buffer; 4836 rb_data[cpu].cpu = cpu; 4837 rb_data[cpu].cnt = cpu; 4838 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4839 "rbtester/%d", cpu); 4840 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 4841 pr_cont("FAILED\n"); 4842 ret = PTR_ERR(rb_threads[cpu]); 4843 goto out_free; 4844 } 4845 4846 kthread_bind(rb_threads[cpu], cpu); 4847 wake_up_process(rb_threads[cpu]); 4848 } 4849 4850 /* Now create the rb hammer! */ 4851 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4852 if (WARN_ON(IS_ERR(rb_hammer))) { 4853 pr_cont("FAILED\n"); 4854 ret = PTR_ERR(rb_hammer); 4855 goto out_free; 4856 } 4857 4858 ring_buffer_record_on(buffer); 4859 /* 4860 * Show buffer is enabled before setting rb_test_started. 4861 * Yes there's a small race window where events could be 4862 * dropped and the thread wont catch it. But when a ring 4863 * buffer gets enabled, there will always be some kind of 4864 * delay before other CPUs see it. Thus, we don't care about 4865 * those dropped events. We care about events dropped after 4866 * the threads see that the buffer is active. 4867 */ 4868 smp_wmb(); 4869 rb_test_started = true; 4870 4871 set_current_state(TASK_INTERRUPTIBLE); 4872 /* Just run for 10 seconds */; 4873 schedule_timeout(10 * HZ); 4874 4875 kthread_stop(rb_hammer); 4876 4877 out_free: 4878 for_each_online_cpu(cpu) { 4879 if (!rb_threads[cpu]) 4880 break; 4881 kthread_stop(rb_threads[cpu]); 4882 } 4883 if (ret) { 4884 ring_buffer_free(buffer); 4885 return ret; 4886 } 4887 4888 /* Report! */ 4889 pr_info("finished\n"); 4890 for_each_online_cpu(cpu) { 4891 struct ring_buffer_event *event; 4892 struct rb_test_data *data = &rb_data[cpu]; 4893 struct rb_item *item; 4894 unsigned long total_events; 4895 unsigned long total_dropped; 4896 unsigned long total_written; 4897 unsigned long total_alloc; 4898 unsigned long total_read = 0; 4899 unsigned long total_size = 0; 4900 unsigned long total_len = 0; 4901 unsigned long total_lost = 0; 4902 unsigned long lost; 4903 int big_event_size; 4904 int small_event_size; 4905 4906 ret = -1; 4907 4908 total_events = data->events + data->events_nested; 4909 total_written = data->bytes_written + data->bytes_written_nested; 4910 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4911 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4912 4913 big_event_size = data->max_size + data->max_size_nested; 4914 small_event_size = data->min_size + data->min_size_nested; 4915 4916 pr_info("CPU %d:\n", cpu); 4917 pr_info(" events: %ld\n", total_events); 4918 pr_info(" dropped bytes: %ld\n", total_dropped); 4919 pr_info(" alloced bytes: %ld\n", total_alloc); 4920 pr_info(" written bytes: %ld\n", total_written); 4921 pr_info(" biggest event: %d\n", big_event_size); 4922 pr_info(" smallest event: %d\n", small_event_size); 4923 4924 if (RB_WARN_ON(buffer, total_dropped)) 4925 break; 4926 4927 ret = 0; 4928 4929 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4930 total_lost += lost; 4931 item = ring_buffer_event_data(event); 4932 total_len += ring_buffer_event_length(event); 4933 total_size += item->size + sizeof(struct rb_item); 4934 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4935 pr_info("FAILED!\n"); 4936 pr_info("buffer had: %.*s\n", item->size, item->str); 4937 pr_info("expected: %.*s\n", item->size, rb_string); 4938 RB_WARN_ON(buffer, 1); 4939 ret = -1; 4940 break; 4941 } 4942 total_read++; 4943 } 4944 if (ret) 4945 break; 4946 4947 ret = -1; 4948 4949 pr_info(" read events: %ld\n", total_read); 4950 pr_info(" lost events: %ld\n", total_lost); 4951 pr_info(" total events: %ld\n", total_lost + total_read); 4952 pr_info(" recorded len bytes: %ld\n", total_len); 4953 pr_info(" recorded size bytes: %ld\n", total_size); 4954 if (total_lost) 4955 pr_info(" With dropped events, record len and size may not match\n" 4956 " alloced and written from above\n"); 4957 if (!total_lost) { 4958 if (RB_WARN_ON(buffer, total_len != total_alloc || 4959 total_size != total_written)) 4960 break; 4961 } 4962 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4963 break; 4964 4965 ret = 0; 4966 } 4967 if (!ret) 4968 pr_info("Ring buffer PASSED!\n"); 4969 4970 ring_buffer_free(buffer); 4971 return 0; 4972 } 4973 4974 late_initcall(test_ringbuffer); 4975 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4976