1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/debugfs.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/kmemcheck.h> 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/fs.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 int ret; 38 39 ret = trace_seq_puts(s, "# compressed entry header\n"); 40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n"); 41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 42 ret = trace_seq_puts(s, "\tarray : 32 bits\n"); 43 ret = trace_seq_putc(s, '\n'); 44 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return ret; 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* 123 * A fast way to enable or disable all ring buffers is to 124 * call tracing_on or tracing_off. Turning off the ring buffers 125 * prevents all ring buffers from being recorded to. 126 * Turning this switch on, makes it OK to write to the 127 * ring buffer, if the ring buffer is enabled itself. 128 * 129 * There's three layers that must be on in order to write 130 * to the ring buffer. 131 * 132 * 1) This global flag must be set. 133 * 2) The ring buffer must be enabled for recording. 134 * 3) The per cpu buffer must be enabled for recording. 135 * 136 * In case of an anomaly, this global flag has a bit set that 137 * will permantly disable all ring buffers. 138 */ 139 140 /* 141 * Global flag to disable all recording to ring buffers 142 * This has two bits: ON, DISABLED 143 * 144 * ON DISABLED 145 * ---- ---------- 146 * 0 0 : ring buffers are off 147 * 1 0 : ring buffers are on 148 * X 1 : ring buffers are permanently disabled 149 */ 150 151 enum { 152 RB_BUFFERS_ON_BIT = 0, 153 RB_BUFFERS_DISABLED_BIT = 1, 154 }; 155 156 enum { 157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 159 }; 160 161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 162 163 /* Used for individual buffers (after the counter) */ 164 #define RB_BUFFER_OFF (1 << 20) 165 166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 167 168 /** 169 * tracing_off_permanent - permanently disable ring buffers 170 * 171 * This function, once called, will disable all ring buffers 172 * permanently. 173 */ 174 void tracing_off_permanent(void) 175 { 176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 177 } 178 179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 180 #define RB_ALIGNMENT 4U 181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 183 184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 185 # define RB_FORCE_8BYTE_ALIGNMENT 0 186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 187 #else 188 # define RB_FORCE_8BYTE_ALIGNMENT 1 189 # define RB_ARCH_ALIGNMENT 8U 190 #endif 191 192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 193 194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 196 197 enum { 198 RB_LEN_TIME_EXTEND = 8, 199 RB_LEN_TIME_STAMP = 16, 200 }; 201 202 #define skip_time_extend(event) \ 203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 204 205 static inline int rb_null_event(struct ring_buffer_event *event) 206 { 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 208 } 209 210 static void rb_event_set_padding(struct ring_buffer_event *event) 211 { 212 /* padding has a NULL time_delta */ 213 event->type_len = RINGBUF_TYPE_PADDING; 214 event->time_delta = 0; 215 } 216 217 static unsigned 218 rb_event_data_length(struct ring_buffer_event *event) 219 { 220 unsigned length; 221 222 if (event->type_len) 223 length = event->type_len * RB_ALIGNMENT; 224 else 225 length = event->array[0]; 226 return length + RB_EVNT_HDR_SIZE; 227 } 228 229 /* 230 * Return the length of the given event. Will return 231 * the length of the time extend if the event is a 232 * time extend. 233 */ 234 static inline unsigned 235 rb_event_length(struct ring_buffer_event *event) 236 { 237 switch (event->type_len) { 238 case RINGBUF_TYPE_PADDING: 239 if (rb_null_event(event)) 240 /* undefined */ 241 return -1; 242 return event->array[0] + RB_EVNT_HDR_SIZE; 243 244 case RINGBUF_TYPE_TIME_EXTEND: 245 return RB_LEN_TIME_EXTEND; 246 247 case RINGBUF_TYPE_TIME_STAMP: 248 return RB_LEN_TIME_STAMP; 249 250 case RINGBUF_TYPE_DATA: 251 return rb_event_data_length(event); 252 default: 253 BUG(); 254 } 255 /* not hit */ 256 return 0; 257 } 258 259 /* 260 * Return total length of time extend and data, 261 * or just the event length for all other events. 262 */ 263 static inline unsigned 264 rb_event_ts_length(struct ring_buffer_event *event) 265 { 266 unsigned len = 0; 267 268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 269 /* time extends include the data event after it */ 270 len = RB_LEN_TIME_EXTEND; 271 event = skip_time_extend(event); 272 } 273 return len + rb_event_length(event); 274 } 275 276 /** 277 * ring_buffer_event_length - return the length of the event 278 * @event: the event to get the length of 279 * 280 * Returns the size of the data load of a data event. 281 * If the event is something other than a data event, it 282 * returns the size of the event itself. With the exception 283 * of a TIME EXTEND, where it still returns the size of the 284 * data load of the data event after it. 285 */ 286 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 287 { 288 unsigned length; 289 290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 291 event = skip_time_extend(event); 292 293 length = rb_event_length(event); 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 295 return length; 296 length -= RB_EVNT_HDR_SIZE; 297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 298 length -= sizeof(event->array[0]); 299 return length; 300 } 301 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 302 303 /* inline for ring buffer fast paths */ 304 static void * 305 rb_event_data(struct ring_buffer_event *event) 306 { 307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 308 event = skip_time_extend(event); 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 310 /* If length is in len field, then array[0] has the data */ 311 if (event->type_len) 312 return (void *)&event->array[0]; 313 /* Otherwise length is in array[0] and array[1] has the data */ 314 return (void *)&event->array[1]; 315 } 316 317 /** 318 * ring_buffer_event_data - return the data of the event 319 * @event: the event to get the data from 320 */ 321 void *ring_buffer_event_data(struct ring_buffer_event *event) 322 { 323 return rb_event_data(event); 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 326 327 #define for_each_buffer_cpu(buffer, cpu) \ 328 for_each_cpu(cpu, buffer->cpumask) 329 330 #define TS_SHIFT 27 331 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 332 #define TS_DELTA_TEST (~TS_MASK) 333 334 /* Flag when events were overwritten */ 335 #define RB_MISSED_EVENTS (1 << 31) 336 /* Missed count stored at end */ 337 #define RB_MISSED_STORED (1 << 30) 338 339 struct buffer_data_page { 340 u64 time_stamp; /* page time stamp */ 341 local_t commit; /* write committed index */ 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 343 }; 344 345 /* 346 * Note, the buffer_page list must be first. The buffer pages 347 * are allocated in cache lines, which means that each buffer 348 * page will be at the beginning of a cache line, and thus 349 * the least significant bits will be zero. We use this to 350 * add flags in the list struct pointers, to make the ring buffer 351 * lockless. 352 */ 353 struct buffer_page { 354 struct list_head list; /* list of buffer pages */ 355 local_t write; /* index for next write */ 356 unsigned read; /* index for next read */ 357 local_t entries; /* entries on this page */ 358 unsigned long real_end; /* real end of data */ 359 struct buffer_data_page *page; /* Actual data page */ 360 }; 361 362 /* 363 * The buffer page counters, write and entries, must be reset 364 * atomically when crossing page boundaries. To synchronize this 365 * update, two counters are inserted into the number. One is 366 * the actual counter for the write position or count on the page. 367 * 368 * The other is a counter of updaters. Before an update happens 369 * the update partition of the counter is incremented. This will 370 * allow the updater to update the counter atomically. 371 * 372 * The counter is 20 bits, and the state data is 12. 373 */ 374 #define RB_WRITE_MASK 0xfffff 375 #define RB_WRITE_INTCNT (1 << 20) 376 377 static void rb_init_page(struct buffer_data_page *bpage) 378 { 379 local_set(&bpage->commit, 0); 380 } 381 382 /** 383 * ring_buffer_page_len - the size of data on the page. 384 * @page: The page to read 385 * 386 * Returns the amount of data on the page, including buffer page header. 387 */ 388 size_t ring_buffer_page_len(void *page) 389 { 390 return local_read(&((struct buffer_data_page *)page)->commit) 391 + BUF_PAGE_HDR_SIZE; 392 } 393 394 /* 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 396 * this issue out. 397 */ 398 static void free_buffer_page(struct buffer_page *bpage) 399 { 400 free_page((unsigned long)bpage->page); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline int test_time_stamp(u64 delta) 408 { 409 if (delta & TS_DELTA_TEST) 410 return 1; 411 return 0; 412 } 413 414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 415 416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 418 419 int ring_buffer_print_page_header(struct trace_seq *s) 420 { 421 struct buffer_data_page field; 422 int ret; 423 424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 425 "offset:0;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)sizeof(field.time_stamp), 427 (unsigned int)is_signed_type(u64)); 428 429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 (unsigned int)sizeof(field.commit), 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), commit), 438 1, 439 (unsigned int)is_signed_type(long)); 440 441 ret = trace_seq_printf(s, "\tfield: char data;\t" 442 "offset:%u;\tsize:%u;\tsigned:%u;\n", 443 (unsigned int)offsetof(typeof(field), data), 444 (unsigned int)BUF_PAGE_SIZE, 445 (unsigned int)is_signed_type(char)); 446 447 return ret; 448 } 449 450 struct rb_irq_work { 451 struct irq_work work; 452 wait_queue_head_t waiters; 453 bool waiters_pending; 454 }; 455 456 /* 457 * head_page == tail_page && head == tail then buffer is empty. 458 */ 459 struct ring_buffer_per_cpu { 460 int cpu; 461 atomic_t record_disabled; 462 struct ring_buffer *buffer; 463 raw_spinlock_t reader_lock; /* serialize readers */ 464 arch_spinlock_t lock; 465 struct lock_class_key lock_key; 466 unsigned int nr_pages; 467 struct list_head *pages; 468 struct buffer_page *head_page; /* read from head */ 469 struct buffer_page *tail_page; /* write to tail */ 470 struct buffer_page *commit_page; /* committed pages */ 471 struct buffer_page *reader_page; 472 unsigned long lost_events; 473 unsigned long last_overrun; 474 local_t entries_bytes; 475 local_t entries; 476 local_t overrun; 477 local_t commit_overrun; 478 local_t dropped_events; 479 local_t committing; 480 local_t commits; 481 unsigned long read; 482 unsigned long read_bytes; 483 u64 write_stamp; 484 u64 read_stamp; 485 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 486 int nr_pages_to_update; 487 struct list_head new_pages; /* new pages to add */ 488 struct work_struct update_pages_work; 489 struct completion update_done; 490 491 struct rb_irq_work irq_work; 492 }; 493 494 struct ring_buffer { 495 unsigned flags; 496 int cpus; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 cpumask_var_t cpumask; 500 501 struct lock_class_key *reader_lock_key; 502 503 struct mutex mutex; 504 505 struct ring_buffer_per_cpu **buffers; 506 507 #ifdef CONFIG_HOTPLUG_CPU 508 struct notifier_block cpu_notify; 509 #endif 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 }; 514 515 struct ring_buffer_iter { 516 struct ring_buffer_per_cpu *cpu_buffer; 517 unsigned long head; 518 struct buffer_page *head_page; 519 struct buffer_page *cache_reader_page; 520 unsigned long cache_read; 521 u64 read_stamp; 522 }; 523 524 /* 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 526 * 527 * Schedules a delayed work to wake up any task that is blocked on the 528 * ring buffer waiters queue. 529 */ 530 static void rb_wake_up_waiters(struct irq_work *work) 531 { 532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 533 534 wake_up_all(&rbwork->waiters); 535 } 536 537 /** 538 * ring_buffer_wait - wait for input to the ring buffer 539 * @buffer: buffer to wait on 540 * @cpu: the cpu buffer to wait on 541 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 542 * 543 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 544 * as data is added to any of the @buffer's cpu buffers. Otherwise 545 * it will wait for data to be added to a specific cpu buffer. 546 */ 547 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 548 { 549 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 550 DEFINE_WAIT(wait); 551 struct rb_irq_work *work; 552 int ret = 0; 553 554 /* 555 * Depending on what the caller is waiting for, either any 556 * data in any cpu buffer, or a specific buffer, put the 557 * caller on the appropriate wait queue. 558 */ 559 if (cpu == RING_BUFFER_ALL_CPUS) 560 work = &buffer->irq_work; 561 else { 562 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 563 return -ENODEV; 564 cpu_buffer = buffer->buffers[cpu]; 565 work = &cpu_buffer->irq_work; 566 } 567 568 569 while (true) { 570 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 571 572 /* 573 * The events can happen in critical sections where 574 * checking a work queue can cause deadlocks. 575 * After adding a task to the queue, this flag is set 576 * only to notify events to try to wake up the queue 577 * using irq_work. 578 * 579 * We don't clear it even if the buffer is no longer 580 * empty. The flag only causes the next event to run 581 * irq_work to do the work queue wake up. The worse 582 * that can happen if we race with !trace_empty() is that 583 * an event will cause an irq_work to try to wake up 584 * an empty queue. 585 * 586 * There's no reason to protect this flag either, as 587 * the work queue and irq_work logic will do the necessary 588 * synchronization for the wake ups. The only thing 589 * that is necessary is that the wake up happens after 590 * a task has been queued. It's OK for spurious wake ups. 591 */ 592 work->waiters_pending = true; 593 594 if (signal_pending(current)) { 595 ret = -EINTR; 596 break; 597 } 598 599 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 600 break; 601 602 if (cpu != RING_BUFFER_ALL_CPUS && 603 !ring_buffer_empty_cpu(buffer, cpu)) { 604 unsigned long flags; 605 bool pagebusy; 606 607 if (!full) 608 break; 609 610 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 611 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 612 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 613 614 if (!pagebusy) 615 break; 616 } 617 618 schedule(); 619 } 620 621 finish_wait(&work->waiters, &wait); 622 623 return ret; 624 } 625 626 /** 627 * ring_buffer_poll_wait - poll on buffer input 628 * @buffer: buffer to wait on 629 * @cpu: the cpu buffer to wait on 630 * @filp: the file descriptor 631 * @poll_table: The poll descriptor 632 * 633 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 634 * as data is added to any of the @buffer's cpu buffers. Otherwise 635 * it will wait for data to be added to a specific cpu buffer. 636 * 637 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 638 * zero otherwise. 639 */ 640 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 641 struct file *filp, poll_table *poll_table) 642 { 643 struct ring_buffer_per_cpu *cpu_buffer; 644 struct rb_irq_work *work; 645 646 if (cpu == RING_BUFFER_ALL_CPUS) 647 work = &buffer->irq_work; 648 else { 649 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 650 return -EINVAL; 651 652 cpu_buffer = buffer->buffers[cpu]; 653 work = &cpu_buffer->irq_work; 654 } 655 656 poll_wait(filp, &work->waiters, poll_table); 657 work->waiters_pending = true; 658 /* 659 * There's a tight race between setting the waiters_pending and 660 * checking if the ring buffer is empty. Once the waiters_pending bit 661 * is set, the next event will wake the task up, but we can get stuck 662 * if there's only a single event in. 663 * 664 * FIXME: Ideally, we need a memory barrier on the writer side as well, 665 * but adding a memory barrier to all events will cause too much of a 666 * performance hit in the fast path. We only need a memory barrier when 667 * the buffer goes from empty to having content. But as this race is 668 * extremely small, and it's not a problem if another event comes in, we 669 * will fix it later. 670 */ 671 smp_mb(); 672 673 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 674 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 675 return POLLIN | POLLRDNORM; 676 return 0; 677 } 678 679 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 680 #define RB_WARN_ON(b, cond) \ 681 ({ \ 682 int _____ret = unlikely(cond); \ 683 if (_____ret) { \ 684 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 685 struct ring_buffer_per_cpu *__b = \ 686 (void *)b; \ 687 atomic_inc(&__b->buffer->record_disabled); \ 688 } else \ 689 atomic_inc(&b->record_disabled); \ 690 WARN_ON(1); \ 691 } \ 692 _____ret; \ 693 }) 694 695 /* Up this if you want to test the TIME_EXTENTS and normalization */ 696 #define DEBUG_SHIFT 0 697 698 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 699 { 700 /* shift to debug/test normalization and TIME_EXTENTS */ 701 return buffer->clock() << DEBUG_SHIFT; 702 } 703 704 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 705 { 706 u64 time; 707 708 preempt_disable_notrace(); 709 time = rb_time_stamp(buffer); 710 preempt_enable_no_resched_notrace(); 711 712 return time; 713 } 714 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 715 716 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 717 int cpu, u64 *ts) 718 { 719 /* Just stupid testing the normalize function and deltas */ 720 *ts >>= DEBUG_SHIFT; 721 } 722 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 723 724 /* 725 * Making the ring buffer lockless makes things tricky. 726 * Although writes only happen on the CPU that they are on, 727 * and they only need to worry about interrupts. Reads can 728 * happen on any CPU. 729 * 730 * The reader page is always off the ring buffer, but when the 731 * reader finishes with a page, it needs to swap its page with 732 * a new one from the buffer. The reader needs to take from 733 * the head (writes go to the tail). But if a writer is in overwrite 734 * mode and wraps, it must push the head page forward. 735 * 736 * Here lies the problem. 737 * 738 * The reader must be careful to replace only the head page, and 739 * not another one. As described at the top of the file in the 740 * ASCII art, the reader sets its old page to point to the next 741 * page after head. It then sets the page after head to point to 742 * the old reader page. But if the writer moves the head page 743 * during this operation, the reader could end up with the tail. 744 * 745 * We use cmpxchg to help prevent this race. We also do something 746 * special with the page before head. We set the LSB to 1. 747 * 748 * When the writer must push the page forward, it will clear the 749 * bit that points to the head page, move the head, and then set 750 * the bit that points to the new head page. 751 * 752 * We also don't want an interrupt coming in and moving the head 753 * page on another writer. Thus we use the second LSB to catch 754 * that too. Thus: 755 * 756 * head->list->prev->next bit 1 bit 0 757 * ------- ------- 758 * Normal page 0 0 759 * Points to head page 0 1 760 * New head page 1 0 761 * 762 * Note we can not trust the prev pointer of the head page, because: 763 * 764 * +----+ +-----+ +-----+ 765 * | |------>| T |---X--->| N | 766 * | |<------| | | | 767 * +----+ +-----+ +-----+ 768 * ^ ^ | 769 * | +-----+ | | 770 * +----------| R |----------+ | 771 * | |<-----------+ 772 * +-----+ 773 * 774 * Key: ---X--> HEAD flag set in pointer 775 * T Tail page 776 * R Reader page 777 * N Next page 778 * 779 * (see __rb_reserve_next() to see where this happens) 780 * 781 * What the above shows is that the reader just swapped out 782 * the reader page with a page in the buffer, but before it 783 * could make the new header point back to the new page added 784 * it was preempted by a writer. The writer moved forward onto 785 * the new page added by the reader and is about to move forward 786 * again. 787 * 788 * You can see, it is legitimate for the previous pointer of 789 * the head (or any page) not to point back to itself. But only 790 * temporarially. 791 */ 792 793 #define RB_PAGE_NORMAL 0UL 794 #define RB_PAGE_HEAD 1UL 795 #define RB_PAGE_UPDATE 2UL 796 797 798 #define RB_FLAG_MASK 3UL 799 800 /* PAGE_MOVED is not part of the mask */ 801 #define RB_PAGE_MOVED 4UL 802 803 /* 804 * rb_list_head - remove any bit 805 */ 806 static struct list_head *rb_list_head(struct list_head *list) 807 { 808 unsigned long val = (unsigned long)list; 809 810 return (struct list_head *)(val & ~RB_FLAG_MASK); 811 } 812 813 /* 814 * rb_is_head_page - test if the given page is the head page 815 * 816 * Because the reader may move the head_page pointer, we can 817 * not trust what the head page is (it may be pointing to 818 * the reader page). But if the next page is a header page, 819 * its flags will be non zero. 820 */ 821 static inline int 822 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 823 struct buffer_page *page, struct list_head *list) 824 { 825 unsigned long val; 826 827 val = (unsigned long)list->next; 828 829 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 830 return RB_PAGE_MOVED; 831 832 return val & RB_FLAG_MASK; 833 } 834 835 /* 836 * rb_is_reader_page 837 * 838 * The unique thing about the reader page, is that, if the 839 * writer is ever on it, the previous pointer never points 840 * back to the reader page. 841 */ 842 static int rb_is_reader_page(struct buffer_page *page) 843 { 844 struct list_head *list = page->list.prev; 845 846 return rb_list_head(list->next) != &page->list; 847 } 848 849 /* 850 * rb_set_list_to_head - set a list_head to be pointing to head. 851 */ 852 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 853 struct list_head *list) 854 { 855 unsigned long *ptr; 856 857 ptr = (unsigned long *)&list->next; 858 *ptr |= RB_PAGE_HEAD; 859 *ptr &= ~RB_PAGE_UPDATE; 860 } 861 862 /* 863 * rb_head_page_activate - sets up head page 864 */ 865 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 866 { 867 struct buffer_page *head; 868 869 head = cpu_buffer->head_page; 870 if (!head) 871 return; 872 873 /* 874 * Set the previous list pointer to have the HEAD flag. 875 */ 876 rb_set_list_to_head(cpu_buffer, head->list.prev); 877 } 878 879 static void rb_list_head_clear(struct list_head *list) 880 { 881 unsigned long *ptr = (unsigned long *)&list->next; 882 883 *ptr &= ~RB_FLAG_MASK; 884 } 885 886 /* 887 * rb_head_page_dactivate - clears head page ptr (for free list) 888 */ 889 static void 890 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 891 { 892 struct list_head *hd; 893 894 /* Go through the whole list and clear any pointers found. */ 895 rb_list_head_clear(cpu_buffer->pages); 896 897 list_for_each(hd, cpu_buffer->pages) 898 rb_list_head_clear(hd); 899 } 900 901 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 902 struct buffer_page *head, 903 struct buffer_page *prev, 904 int old_flag, int new_flag) 905 { 906 struct list_head *list; 907 unsigned long val = (unsigned long)&head->list; 908 unsigned long ret; 909 910 list = &prev->list; 911 912 val &= ~RB_FLAG_MASK; 913 914 ret = cmpxchg((unsigned long *)&list->next, 915 val | old_flag, val | new_flag); 916 917 /* check if the reader took the page */ 918 if ((ret & ~RB_FLAG_MASK) != val) 919 return RB_PAGE_MOVED; 920 921 return ret & RB_FLAG_MASK; 922 } 923 924 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 925 struct buffer_page *head, 926 struct buffer_page *prev, 927 int old_flag) 928 { 929 return rb_head_page_set(cpu_buffer, head, prev, 930 old_flag, RB_PAGE_UPDATE); 931 } 932 933 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 934 struct buffer_page *head, 935 struct buffer_page *prev, 936 int old_flag) 937 { 938 return rb_head_page_set(cpu_buffer, head, prev, 939 old_flag, RB_PAGE_HEAD); 940 } 941 942 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 943 struct buffer_page *head, 944 struct buffer_page *prev, 945 int old_flag) 946 { 947 return rb_head_page_set(cpu_buffer, head, prev, 948 old_flag, RB_PAGE_NORMAL); 949 } 950 951 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 952 struct buffer_page **bpage) 953 { 954 struct list_head *p = rb_list_head((*bpage)->list.next); 955 956 *bpage = list_entry(p, struct buffer_page, list); 957 } 958 959 static struct buffer_page * 960 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 961 { 962 struct buffer_page *head; 963 struct buffer_page *page; 964 struct list_head *list; 965 int i; 966 967 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 968 return NULL; 969 970 /* sanity check */ 971 list = cpu_buffer->pages; 972 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 973 return NULL; 974 975 page = head = cpu_buffer->head_page; 976 /* 977 * It is possible that the writer moves the header behind 978 * where we started, and we miss in one loop. 979 * A second loop should grab the header, but we'll do 980 * three loops just because I'm paranoid. 981 */ 982 for (i = 0; i < 3; i++) { 983 do { 984 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 985 cpu_buffer->head_page = page; 986 return page; 987 } 988 rb_inc_page(cpu_buffer, &page); 989 } while (page != head); 990 } 991 992 RB_WARN_ON(cpu_buffer, 1); 993 994 return NULL; 995 } 996 997 static int rb_head_page_replace(struct buffer_page *old, 998 struct buffer_page *new) 999 { 1000 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1001 unsigned long val; 1002 unsigned long ret; 1003 1004 val = *ptr & ~RB_FLAG_MASK; 1005 val |= RB_PAGE_HEAD; 1006 1007 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1008 1009 return ret == val; 1010 } 1011 1012 /* 1013 * rb_tail_page_update - move the tail page forward 1014 * 1015 * Returns 1 if moved tail page, 0 if someone else did. 1016 */ 1017 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1018 struct buffer_page *tail_page, 1019 struct buffer_page *next_page) 1020 { 1021 struct buffer_page *old_tail; 1022 unsigned long old_entries; 1023 unsigned long old_write; 1024 int ret = 0; 1025 1026 /* 1027 * The tail page now needs to be moved forward. 1028 * 1029 * We need to reset the tail page, but without messing 1030 * with possible erasing of data brought in by interrupts 1031 * that have moved the tail page and are currently on it. 1032 * 1033 * We add a counter to the write field to denote this. 1034 */ 1035 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1036 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1037 1038 /* 1039 * Just make sure we have seen our old_write and synchronize 1040 * with any interrupts that come in. 1041 */ 1042 barrier(); 1043 1044 /* 1045 * If the tail page is still the same as what we think 1046 * it is, then it is up to us to update the tail 1047 * pointer. 1048 */ 1049 if (tail_page == cpu_buffer->tail_page) { 1050 /* Zero the write counter */ 1051 unsigned long val = old_write & ~RB_WRITE_MASK; 1052 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1053 1054 /* 1055 * This will only succeed if an interrupt did 1056 * not come in and change it. In which case, we 1057 * do not want to modify it. 1058 * 1059 * We add (void) to let the compiler know that we do not care 1060 * about the return value of these functions. We use the 1061 * cmpxchg to only update if an interrupt did not already 1062 * do it for us. If the cmpxchg fails, we don't care. 1063 */ 1064 (void)local_cmpxchg(&next_page->write, old_write, val); 1065 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1066 1067 /* 1068 * No need to worry about races with clearing out the commit. 1069 * it only can increment when a commit takes place. But that 1070 * only happens in the outer most nested commit. 1071 */ 1072 local_set(&next_page->page->commit, 0); 1073 1074 old_tail = cmpxchg(&cpu_buffer->tail_page, 1075 tail_page, next_page); 1076 1077 if (old_tail == tail_page) 1078 ret = 1; 1079 } 1080 1081 return ret; 1082 } 1083 1084 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1085 struct buffer_page *bpage) 1086 { 1087 unsigned long val = (unsigned long)bpage; 1088 1089 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1090 return 1; 1091 1092 return 0; 1093 } 1094 1095 /** 1096 * rb_check_list - make sure a pointer to a list has the last bits zero 1097 */ 1098 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1099 struct list_head *list) 1100 { 1101 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1102 return 1; 1103 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1104 return 1; 1105 return 0; 1106 } 1107 1108 /** 1109 * rb_check_pages - integrity check of buffer pages 1110 * @cpu_buffer: CPU buffer with pages to test 1111 * 1112 * As a safety measure we check to make sure the data pages have not 1113 * been corrupted. 1114 */ 1115 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1116 { 1117 struct list_head *head = cpu_buffer->pages; 1118 struct buffer_page *bpage, *tmp; 1119 1120 /* Reset the head page if it exists */ 1121 if (cpu_buffer->head_page) 1122 rb_set_head_page(cpu_buffer); 1123 1124 rb_head_page_deactivate(cpu_buffer); 1125 1126 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1127 return -1; 1128 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1129 return -1; 1130 1131 if (rb_check_list(cpu_buffer, head)) 1132 return -1; 1133 1134 list_for_each_entry_safe(bpage, tmp, head, list) { 1135 if (RB_WARN_ON(cpu_buffer, 1136 bpage->list.next->prev != &bpage->list)) 1137 return -1; 1138 if (RB_WARN_ON(cpu_buffer, 1139 bpage->list.prev->next != &bpage->list)) 1140 return -1; 1141 if (rb_check_list(cpu_buffer, &bpage->list)) 1142 return -1; 1143 } 1144 1145 rb_head_page_activate(cpu_buffer); 1146 1147 return 0; 1148 } 1149 1150 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1151 { 1152 int i; 1153 struct buffer_page *bpage, *tmp; 1154 1155 for (i = 0; i < nr_pages; i++) { 1156 struct page *page; 1157 /* 1158 * __GFP_NORETRY flag makes sure that the allocation fails 1159 * gracefully without invoking oom-killer and the system is 1160 * not destabilized. 1161 */ 1162 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1163 GFP_KERNEL | __GFP_NORETRY, 1164 cpu_to_node(cpu)); 1165 if (!bpage) 1166 goto free_pages; 1167 1168 list_add(&bpage->list, pages); 1169 1170 page = alloc_pages_node(cpu_to_node(cpu), 1171 GFP_KERNEL | __GFP_NORETRY, 0); 1172 if (!page) 1173 goto free_pages; 1174 bpage->page = page_address(page); 1175 rb_init_page(bpage->page); 1176 } 1177 1178 return 0; 1179 1180 free_pages: 1181 list_for_each_entry_safe(bpage, tmp, pages, list) { 1182 list_del_init(&bpage->list); 1183 free_buffer_page(bpage); 1184 } 1185 1186 return -ENOMEM; 1187 } 1188 1189 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1190 unsigned nr_pages) 1191 { 1192 LIST_HEAD(pages); 1193 1194 WARN_ON(!nr_pages); 1195 1196 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1197 return -ENOMEM; 1198 1199 /* 1200 * The ring buffer page list is a circular list that does not 1201 * start and end with a list head. All page list items point to 1202 * other pages. 1203 */ 1204 cpu_buffer->pages = pages.next; 1205 list_del(&pages); 1206 1207 cpu_buffer->nr_pages = nr_pages; 1208 1209 rb_check_pages(cpu_buffer); 1210 1211 return 0; 1212 } 1213 1214 static struct ring_buffer_per_cpu * 1215 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1216 { 1217 struct ring_buffer_per_cpu *cpu_buffer; 1218 struct buffer_page *bpage; 1219 struct page *page; 1220 int ret; 1221 1222 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1223 GFP_KERNEL, cpu_to_node(cpu)); 1224 if (!cpu_buffer) 1225 return NULL; 1226 1227 cpu_buffer->cpu = cpu; 1228 cpu_buffer->buffer = buffer; 1229 raw_spin_lock_init(&cpu_buffer->reader_lock); 1230 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1231 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1232 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1233 init_completion(&cpu_buffer->update_done); 1234 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1235 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1236 1237 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1238 GFP_KERNEL, cpu_to_node(cpu)); 1239 if (!bpage) 1240 goto fail_free_buffer; 1241 1242 rb_check_bpage(cpu_buffer, bpage); 1243 1244 cpu_buffer->reader_page = bpage; 1245 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1246 if (!page) 1247 goto fail_free_reader; 1248 bpage->page = page_address(page); 1249 rb_init_page(bpage->page); 1250 1251 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1252 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1253 1254 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1255 if (ret < 0) 1256 goto fail_free_reader; 1257 1258 cpu_buffer->head_page 1259 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1260 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1261 1262 rb_head_page_activate(cpu_buffer); 1263 1264 return cpu_buffer; 1265 1266 fail_free_reader: 1267 free_buffer_page(cpu_buffer->reader_page); 1268 1269 fail_free_buffer: 1270 kfree(cpu_buffer); 1271 return NULL; 1272 } 1273 1274 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1275 { 1276 struct list_head *head = cpu_buffer->pages; 1277 struct buffer_page *bpage, *tmp; 1278 1279 free_buffer_page(cpu_buffer->reader_page); 1280 1281 rb_head_page_deactivate(cpu_buffer); 1282 1283 if (head) { 1284 list_for_each_entry_safe(bpage, tmp, head, list) { 1285 list_del_init(&bpage->list); 1286 free_buffer_page(bpage); 1287 } 1288 bpage = list_entry(head, struct buffer_page, list); 1289 free_buffer_page(bpage); 1290 } 1291 1292 kfree(cpu_buffer); 1293 } 1294 1295 #ifdef CONFIG_HOTPLUG_CPU 1296 static int rb_cpu_notify(struct notifier_block *self, 1297 unsigned long action, void *hcpu); 1298 #endif 1299 1300 /** 1301 * __ring_buffer_alloc - allocate a new ring_buffer 1302 * @size: the size in bytes per cpu that is needed. 1303 * @flags: attributes to set for the ring buffer. 1304 * 1305 * Currently the only flag that is available is the RB_FL_OVERWRITE 1306 * flag. This flag means that the buffer will overwrite old data 1307 * when the buffer wraps. If this flag is not set, the buffer will 1308 * drop data when the tail hits the head. 1309 */ 1310 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1311 struct lock_class_key *key) 1312 { 1313 struct ring_buffer *buffer; 1314 int bsize; 1315 int cpu, nr_pages; 1316 1317 /* keep it in its own cache line */ 1318 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1319 GFP_KERNEL); 1320 if (!buffer) 1321 return NULL; 1322 1323 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1324 goto fail_free_buffer; 1325 1326 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1327 buffer->flags = flags; 1328 buffer->clock = trace_clock_local; 1329 buffer->reader_lock_key = key; 1330 1331 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1332 init_waitqueue_head(&buffer->irq_work.waiters); 1333 1334 /* need at least two pages */ 1335 if (nr_pages < 2) 1336 nr_pages = 2; 1337 1338 /* 1339 * In case of non-hotplug cpu, if the ring-buffer is allocated 1340 * in early initcall, it will not be notified of secondary cpus. 1341 * In that off case, we need to allocate for all possible cpus. 1342 */ 1343 #ifdef CONFIG_HOTPLUG_CPU 1344 cpu_notifier_register_begin(); 1345 cpumask_copy(buffer->cpumask, cpu_online_mask); 1346 #else 1347 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1348 #endif 1349 buffer->cpus = nr_cpu_ids; 1350 1351 bsize = sizeof(void *) * nr_cpu_ids; 1352 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1353 GFP_KERNEL); 1354 if (!buffer->buffers) 1355 goto fail_free_cpumask; 1356 1357 for_each_buffer_cpu(buffer, cpu) { 1358 buffer->buffers[cpu] = 1359 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1360 if (!buffer->buffers[cpu]) 1361 goto fail_free_buffers; 1362 } 1363 1364 #ifdef CONFIG_HOTPLUG_CPU 1365 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1366 buffer->cpu_notify.priority = 0; 1367 __register_cpu_notifier(&buffer->cpu_notify); 1368 cpu_notifier_register_done(); 1369 #endif 1370 1371 mutex_init(&buffer->mutex); 1372 1373 return buffer; 1374 1375 fail_free_buffers: 1376 for_each_buffer_cpu(buffer, cpu) { 1377 if (buffer->buffers[cpu]) 1378 rb_free_cpu_buffer(buffer->buffers[cpu]); 1379 } 1380 kfree(buffer->buffers); 1381 1382 fail_free_cpumask: 1383 free_cpumask_var(buffer->cpumask); 1384 #ifdef CONFIG_HOTPLUG_CPU 1385 cpu_notifier_register_done(); 1386 #endif 1387 1388 fail_free_buffer: 1389 kfree(buffer); 1390 return NULL; 1391 } 1392 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1393 1394 /** 1395 * ring_buffer_free - free a ring buffer. 1396 * @buffer: the buffer to free. 1397 */ 1398 void 1399 ring_buffer_free(struct ring_buffer *buffer) 1400 { 1401 int cpu; 1402 1403 #ifdef CONFIG_HOTPLUG_CPU 1404 cpu_notifier_register_begin(); 1405 __unregister_cpu_notifier(&buffer->cpu_notify); 1406 #endif 1407 1408 for_each_buffer_cpu(buffer, cpu) 1409 rb_free_cpu_buffer(buffer->buffers[cpu]); 1410 1411 #ifdef CONFIG_HOTPLUG_CPU 1412 cpu_notifier_register_done(); 1413 #endif 1414 1415 kfree(buffer->buffers); 1416 free_cpumask_var(buffer->cpumask); 1417 1418 kfree(buffer); 1419 } 1420 EXPORT_SYMBOL_GPL(ring_buffer_free); 1421 1422 void ring_buffer_set_clock(struct ring_buffer *buffer, 1423 u64 (*clock)(void)) 1424 { 1425 buffer->clock = clock; 1426 } 1427 1428 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1429 1430 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1431 { 1432 return local_read(&bpage->entries) & RB_WRITE_MASK; 1433 } 1434 1435 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1436 { 1437 return local_read(&bpage->write) & RB_WRITE_MASK; 1438 } 1439 1440 static int 1441 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1442 { 1443 struct list_head *tail_page, *to_remove, *next_page; 1444 struct buffer_page *to_remove_page, *tmp_iter_page; 1445 struct buffer_page *last_page, *first_page; 1446 unsigned int nr_removed; 1447 unsigned long head_bit; 1448 int page_entries; 1449 1450 head_bit = 0; 1451 1452 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1453 atomic_inc(&cpu_buffer->record_disabled); 1454 /* 1455 * We don't race with the readers since we have acquired the reader 1456 * lock. We also don't race with writers after disabling recording. 1457 * This makes it easy to figure out the first and the last page to be 1458 * removed from the list. We unlink all the pages in between including 1459 * the first and last pages. This is done in a busy loop so that we 1460 * lose the least number of traces. 1461 * The pages are freed after we restart recording and unlock readers. 1462 */ 1463 tail_page = &cpu_buffer->tail_page->list; 1464 1465 /* 1466 * tail page might be on reader page, we remove the next page 1467 * from the ring buffer 1468 */ 1469 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1470 tail_page = rb_list_head(tail_page->next); 1471 to_remove = tail_page; 1472 1473 /* start of pages to remove */ 1474 first_page = list_entry(rb_list_head(to_remove->next), 1475 struct buffer_page, list); 1476 1477 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1478 to_remove = rb_list_head(to_remove)->next; 1479 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1480 } 1481 1482 next_page = rb_list_head(to_remove)->next; 1483 1484 /* 1485 * Now we remove all pages between tail_page and next_page. 1486 * Make sure that we have head_bit value preserved for the 1487 * next page 1488 */ 1489 tail_page->next = (struct list_head *)((unsigned long)next_page | 1490 head_bit); 1491 next_page = rb_list_head(next_page); 1492 next_page->prev = tail_page; 1493 1494 /* make sure pages points to a valid page in the ring buffer */ 1495 cpu_buffer->pages = next_page; 1496 1497 /* update head page */ 1498 if (head_bit) 1499 cpu_buffer->head_page = list_entry(next_page, 1500 struct buffer_page, list); 1501 1502 /* 1503 * change read pointer to make sure any read iterators reset 1504 * themselves 1505 */ 1506 cpu_buffer->read = 0; 1507 1508 /* pages are removed, resume tracing and then free the pages */ 1509 atomic_dec(&cpu_buffer->record_disabled); 1510 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1511 1512 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1513 1514 /* last buffer page to remove */ 1515 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1516 list); 1517 tmp_iter_page = first_page; 1518 1519 do { 1520 to_remove_page = tmp_iter_page; 1521 rb_inc_page(cpu_buffer, &tmp_iter_page); 1522 1523 /* update the counters */ 1524 page_entries = rb_page_entries(to_remove_page); 1525 if (page_entries) { 1526 /* 1527 * If something was added to this page, it was full 1528 * since it is not the tail page. So we deduct the 1529 * bytes consumed in ring buffer from here. 1530 * Increment overrun to account for the lost events. 1531 */ 1532 local_add(page_entries, &cpu_buffer->overrun); 1533 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1534 } 1535 1536 /* 1537 * We have already removed references to this list item, just 1538 * free up the buffer_page and its page 1539 */ 1540 free_buffer_page(to_remove_page); 1541 nr_removed--; 1542 1543 } while (to_remove_page != last_page); 1544 1545 RB_WARN_ON(cpu_buffer, nr_removed); 1546 1547 return nr_removed == 0; 1548 } 1549 1550 static int 1551 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1552 { 1553 struct list_head *pages = &cpu_buffer->new_pages; 1554 int retries, success; 1555 1556 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1557 /* 1558 * We are holding the reader lock, so the reader page won't be swapped 1559 * in the ring buffer. Now we are racing with the writer trying to 1560 * move head page and the tail page. 1561 * We are going to adapt the reader page update process where: 1562 * 1. We first splice the start and end of list of new pages between 1563 * the head page and its previous page. 1564 * 2. We cmpxchg the prev_page->next to point from head page to the 1565 * start of new pages list. 1566 * 3. Finally, we update the head->prev to the end of new list. 1567 * 1568 * We will try this process 10 times, to make sure that we don't keep 1569 * spinning. 1570 */ 1571 retries = 10; 1572 success = 0; 1573 while (retries--) { 1574 struct list_head *head_page, *prev_page, *r; 1575 struct list_head *last_page, *first_page; 1576 struct list_head *head_page_with_bit; 1577 1578 head_page = &rb_set_head_page(cpu_buffer)->list; 1579 if (!head_page) 1580 break; 1581 prev_page = head_page->prev; 1582 1583 first_page = pages->next; 1584 last_page = pages->prev; 1585 1586 head_page_with_bit = (struct list_head *) 1587 ((unsigned long)head_page | RB_PAGE_HEAD); 1588 1589 last_page->next = head_page_with_bit; 1590 first_page->prev = prev_page; 1591 1592 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1593 1594 if (r == head_page_with_bit) { 1595 /* 1596 * yay, we replaced the page pointer to our new list, 1597 * now, we just have to update to head page's prev 1598 * pointer to point to end of list 1599 */ 1600 head_page->prev = last_page; 1601 success = 1; 1602 break; 1603 } 1604 } 1605 1606 if (success) 1607 INIT_LIST_HEAD(pages); 1608 /* 1609 * If we weren't successful in adding in new pages, warn and stop 1610 * tracing 1611 */ 1612 RB_WARN_ON(cpu_buffer, !success); 1613 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1614 1615 /* free pages if they weren't inserted */ 1616 if (!success) { 1617 struct buffer_page *bpage, *tmp; 1618 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1619 list) { 1620 list_del_init(&bpage->list); 1621 free_buffer_page(bpage); 1622 } 1623 } 1624 return success; 1625 } 1626 1627 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1628 { 1629 int success; 1630 1631 if (cpu_buffer->nr_pages_to_update > 0) 1632 success = rb_insert_pages(cpu_buffer); 1633 else 1634 success = rb_remove_pages(cpu_buffer, 1635 -cpu_buffer->nr_pages_to_update); 1636 1637 if (success) 1638 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1639 } 1640 1641 static void update_pages_handler(struct work_struct *work) 1642 { 1643 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1644 struct ring_buffer_per_cpu, update_pages_work); 1645 rb_update_pages(cpu_buffer); 1646 complete(&cpu_buffer->update_done); 1647 } 1648 1649 /** 1650 * ring_buffer_resize - resize the ring buffer 1651 * @buffer: the buffer to resize. 1652 * @size: the new size. 1653 * @cpu_id: the cpu buffer to resize 1654 * 1655 * Minimum size is 2 * BUF_PAGE_SIZE. 1656 * 1657 * Returns 0 on success and < 0 on failure. 1658 */ 1659 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1660 int cpu_id) 1661 { 1662 struct ring_buffer_per_cpu *cpu_buffer; 1663 unsigned nr_pages; 1664 int cpu, err = 0; 1665 1666 /* 1667 * Always succeed at resizing a non-existent buffer: 1668 */ 1669 if (!buffer) 1670 return size; 1671 1672 /* Make sure the requested buffer exists */ 1673 if (cpu_id != RING_BUFFER_ALL_CPUS && 1674 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1675 return size; 1676 1677 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1678 size *= BUF_PAGE_SIZE; 1679 1680 /* we need a minimum of two pages */ 1681 if (size < BUF_PAGE_SIZE * 2) 1682 size = BUF_PAGE_SIZE * 2; 1683 1684 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1685 1686 /* 1687 * Don't succeed if resizing is disabled, as a reader might be 1688 * manipulating the ring buffer and is expecting a sane state while 1689 * this is true. 1690 */ 1691 if (atomic_read(&buffer->resize_disabled)) 1692 return -EBUSY; 1693 1694 /* prevent another thread from changing buffer sizes */ 1695 mutex_lock(&buffer->mutex); 1696 1697 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1698 /* calculate the pages to update */ 1699 for_each_buffer_cpu(buffer, cpu) { 1700 cpu_buffer = buffer->buffers[cpu]; 1701 1702 cpu_buffer->nr_pages_to_update = nr_pages - 1703 cpu_buffer->nr_pages; 1704 /* 1705 * nothing more to do for removing pages or no update 1706 */ 1707 if (cpu_buffer->nr_pages_to_update <= 0) 1708 continue; 1709 /* 1710 * to add pages, make sure all new pages can be 1711 * allocated without receiving ENOMEM 1712 */ 1713 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1714 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1715 &cpu_buffer->new_pages, cpu)) { 1716 /* not enough memory for new pages */ 1717 err = -ENOMEM; 1718 goto out_err; 1719 } 1720 } 1721 1722 get_online_cpus(); 1723 /* 1724 * Fire off all the required work handlers 1725 * We can't schedule on offline CPUs, but it's not necessary 1726 * since we can change their buffer sizes without any race. 1727 */ 1728 for_each_buffer_cpu(buffer, cpu) { 1729 cpu_buffer = buffer->buffers[cpu]; 1730 if (!cpu_buffer->nr_pages_to_update) 1731 continue; 1732 1733 /* Can't run something on an offline CPU. */ 1734 if (!cpu_online(cpu)) { 1735 rb_update_pages(cpu_buffer); 1736 cpu_buffer->nr_pages_to_update = 0; 1737 } else { 1738 schedule_work_on(cpu, 1739 &cpu_buffer->update_pages_work); 1740 } 1741 } 1742 1743 /* wait for all the updates to complete */ 1744 for_each_buffer_cpu(buffer, cpu) { 1745 cpu_buffer = buffer->buffers[cpu]; 1746 if (!cpu_buffer->nr_pages_to_update) 1747 continue; 1748 1749 if (cpu_online(cpu)) 1750 wait_for_completion(&cpu_buffer->update_done); 1751 cpu_buffer->nr_pages_to_update = 0; 1752 } 1753 1754 put_online_cpus(); 1755 } else { 1756 /* Make sure this CPU has been intitialized */ 1757 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1758 goto out; 1759 1760 cpu_buffer = buffer->buffers[cpu_id]; 1761 1762 if (nr_pages == cpu_buffer->nr_pages) 1763 goto out; 1764 1765 cpu_buffer->nr_pages_to_update = nr_pages - 1766 cpu_buffer->nr_pages; 1767 1768 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1769 if (cpu_buffer->nr_pages_to_update > 0 && 1770 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1771 &cpu_buffer->new_pages, cpu_id)) { 1772 err = -ENOMEM; 1773 goto out_err; 1774 } 1775 1776 get_online_cpus(); 1777 1778 /* Can't run something on an offline CPU. */ 1779 if (!cpu_online(cpu_id)) 1780 rb_update_pages(cpu_buffer); 1781 else { 1782 schedule_work_on(cpu_id, 1783 &cpu_buffer->update_pages_work); 1784 wait_for_completion(&cpu_buffer->update_done); 1785 } 1786 1787 cpu_buffer->nr_pages_to_update = 0; 1788 put_online_cpus(); 1789 } 1790 1791 out: 1792 /* 1793 * The ring buffer resize can happen with the ring buffer 1794 * enabled, so that the update disturbs the tracing as little 1795 * as possible. But if the buffer is disabled, we do not need 1796 * to worry about that, and we can take the time to verify 1797 * that the buffer is not corrupt. 1798 */ 1799 if (atomic_read(&buffer->record_disabled)) { 1800 atomic_inc(&buffer->record_disabled); 1801 /* 1802 * Even though the buffer was disabled, we must make sure 1803 * that it is truly disabled before calling rb_check_pages. 1804 * There could have been a race between checking 1805 * record_disable and incrementing it. 1806 */ 1807 synchronize_sched(); 1808 for_each_buffer_cpu(buffer, cpu) { 1809 cpu_buffer = buffer->buffers[cpu]; 1810 rb_check_pages(cpu_buffer); 1811 } 1812 atomic_dec(&buffer->record_disabled); 1813 } 1814 1815 mutex_unlock(&buffer->mutex); 1816 return size; 1817 1818 out_err: 1819 for_each_buffer_cpu(buffer, cpu) { 1820 struct buffer_page *bpage, *tmp; 1821 1822 cpu_buffer = buffer->buffers[cpu]; 1823 cpu_buffer->nr_pages_to_update = 0; 1824 1825 if (list_empty(&cpu_buffer->new_pages)) 1826 continue; 1827 1828 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1829 list) { 1830 list_del_init(&bpage->list); 1831 free_buffer_page(bpage); 1832 } 1833 } 1834 mutex_unlock(&buffer->mutex); 1835 return err; 1836 } 1837 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1838 1839 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1840 { 1841 mutex_lock(&buffer->mutex); 1842 if (val) 1843 buffer->flags |= RB_FL_OVERWRITE; 1844 else 1845 buffer->flags &= ~RB_FL_OVERWRITE; 1846 mutex_unlock(&buffer->mutex); 1847 } 1848 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1849 1850 static inline void * 1851 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1852 { 1853 return bpage->data + index; 1854 } 1855 1856 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1857 { 1858 return bpage->page->data + index; 1859 } 1860 1861 static inline struct ring_buffer_event * 1862 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1863 { 1864 return __rb_page_index(cpu_buffer->reader_page, 1865 cpu_buffer->reader_page->read); 1866 } 1867 1868 static inline struct ring_buffer_event * 1869 rb_iter_head_event(struct ring_buffer_iter *iter) 1870 { 1871 return __rb_page_index(iter->head_page, iter->head); 1872 } 1873 1874 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1875 { 1876 return local_read(&bpage->page->commit); 1877 } 1878 1879 /* Size is determined by what has been committed */ 1880 static inline unsigned rb_page_size(struct buffer_page *bpage) 1881 { 1882 return rb_page_commit(bpage); 1883 } 1884 1885 static inline unsigned 1886 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1887 { 1888 return rb_page_commit(cpu_buffer->commit_page); 1889 } 1890 1891 static inline unsigned 1892 rb_event_index(struct ring_buffer_event *event) 1893 { 1894 unsigned long addr = (unsigned long)event; 1895 1896 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1897 } 1898 1899 static inline int 1900 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1901 struct ring_buffer_event *event) 1902 { 1903 unsigned long addr = (unsigned long)event; 1904 unsigned long index; 1905 1906 index = rb_event_index(event); 1907 addr &= PAGE_MASK; 1908 1909 return cpu_buffer->commit_page->page == (void *)addr && 1910 rb_commit_index(cpu_buffer) == index; 1911 } 1912 1913 static void 1914 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1915 { 1916 unsigned long max_count; 1917 1918 /* 1919 * We only race with interrupts and NMIs on this CPU. 1920 * If we own the commit event, then we can commit 1921 * all others that interrupted us, since the interruptions 1922 * are in stack format (they finish before they come 1923 * back to us). This allows us to do a simple loop to 1924 * assign the commit to the tail. 1925 */ 1926 again: 1927 max_count = cpu_buffer->nr_pages * 100; 1928 1929 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1930 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1931 return; 1932 if (RB_WARN_ON(cpu_buffer, 1933 rb_is_reader_page(cpu_buffer->tail_page))) 1934 return; 1935 local_set(&cpu_buffer->commit_page->page->commit, 1936 rb_page_write(cpu_buffer->commit_page)); 1937 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1938 cpu_buffer->write_stamp = 1939 cpu_buffer->commit_page->page->time_stamp; 1940 /* add barrier to keep gcc from optimizing too much */ 1941 barrier(); 1942 } 1943 while (rb_commit_index(cpu_buffer) != 1944 rb_page_write(cpu_buffer->commit_page)) { 1945 1946 local_set(&cpu_buffer->commit_page->page->commit, 1947 rb_page_write(cpu_buffer->commit_page)); 1948 RB_WARN_ON(cpu_buffer, 1949 local_read(&cpu_buffer->commit_page->page->commit) & 1950 ~RB_WRITE_MASK); 1951 barrier(); 1952 } 1953 1954 /* again, keep gcc from optimizing */ 1955 barrier(); 1956 1957 /* 1958 * If an interrupt came in just after the first while loop 1959 * and pushed the tail page forward, we will be left with 1960 * a dangling commit that will never go forward. 1961 */ 1962 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1963 goto again; 1964 } 1965 1966 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1967 { 1968 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1969 cpu_buffer->reader_page->read = 0; 1970 } 1971 1972 static void rb_inc_iter(struct ring_buffer_iter *iter) 1973 { 1974 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1975 1976 /* 1977 * The iterator could be on the reader page (it starts there). 1978 * But the head could have moved, since the reader was 1979 * found. Check for this case and assign the iterator 1980 * to the head page instead of next. 1981 */ 1982 if (iter->head_page == cpu_buffer->reader_page) 1983 iter->head_page = rb_set_head_page(cpu_buffer); 1984 else 1985 rb_inc_page(cpu_buffer, &iter->head_page); 1986 1987 iter->read_stamp = iter->head_page->page->time_stamp; 1988 iter->head = 0; 1989 } 1990 1991 /* Slow path, do not inline */ 1992 static noinline struct ring_buffer_event * 1993 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1994 { 1995 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1996 1997 /* Not the first event on the page? */ 1998 if (rb_event_index(event)) { 1999 event->time_delta = delta & TS_MASK; 2000 event->array[0] = delta >> TS_SHIFT; 2001 } else { 2002 /* nope, just zero it */ 2003 event->time_delta = 0; 2004 event->array[0] = 0; 2005 } 2006 2007 return skip_time_extend(event); 2008 } 2009 2010 /** 2011 * rb_update_event - update event type and data 2012 * @event: the event to update 2013 * @type: the type of event 2014 * @length: the size of the event field in the ring buffer 2015 * 2016 * Update the type and data fields of the event. The length 2017 * is the actual size that is written to the ring buffer, 2018 * and with this, we can determine what to place into the 2019 * data field. 2020 */ 2021 static void 2022 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2023 struct ring_buffer_event *event, unsigned length, 2024 int add_timestamp, u64 delta) 2025 { 2026 /* Only a commit updates the timestamp */ 2027 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2028 delta = 0; 2029 2030 /* 2031 * If we need to add a timestamp, then we 2032 * add it to the start of the resevered space. 2033 */ 2034 if (unlikely(add_timestamp)) { 2035 event = rb_add_time_stamp(event, delta); 2036 length -= RB_LEN_TIME_EXTEND; 2037 delta = 0; 2038 } 2039 2040 event->time_delta = delta; 2041 length -= RB_EVNT_HDR_SIZE; 2042 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2043 event->type_len = 0; 2044 event->array[0] = length; 2045 } else 2046 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2047 } 2048 2049 /* 2050 * rb_handle_head_page - writer hit the head page 2051 * 2052 * Returns: +1 to retry page 2053 * 0 to continue 2054 * -1 on error 2055 */ 2056 static int 2057 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2058 struct buffer_page *tail_page, 2059 struct buffer_page *next_page) 2060 { 2061 struct buffer_page *new_head; 2062 int entries; 2063 int type; 2064 int ret; 2065 2066 entries = rb_page_entries(next_page); 2067 2068 /* 2069 * The hard part is here. We need to move the head 2070 * forward, and protect against both readers on 2071 * other CPUs and writers coming in via interrupts. 2072 */ 2073 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2074 RB_PAGE_HEAD); 2075 2076 /* 2077 * type can be one of four: 2078 * NORMAL - an interrupt already moved it for us 2079 * HEAD - we are the first to get here. 2080 * UPDATE - we are the interrupt interrupting 2081 * a current move. 2082 * MOVED - a reader on another CPU moved the next 2083 * pointer to its reader page. Give up 2084 * and try again. 2085 */ 2086 2087 switch (type) { 2088 case RB_PAGE_HEAD: 2089 /* 2090 * We changed the head to UPDATE, thus 2091 * it is our responsibility to update 2092 * the counters. 2093 */ 2094 local_add(entries, &cpu_buffer->overrun); 2095 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2096 2097 /* 2098 * The entries will be zeroed out when we move the 2099 * tail page. 2100 */ 2101 2102 /* still more to do */ 2103 break; 2104 2105 case RB_PAGE_UPDATE: 2106 /* 2107 * This is an interrupt that interrupt the 2108 * previous update. Still more to do. 2109 */ 2110 break; 2111 case RB_PAGE_NORMAL: 2112 /* 2113 * An interrupt came in before the update 2114 * and processed this for us. 2115 * Nothing left to do. 2116 */ 2117 return 1; 2118 case RB_PAGE_MOVED: 2119 /* 2120 * The reader is on another CPU and just did 2121 * a swap with our next_page. 2122 * Try again. 2123 */ 2124 return 1; 2125 default: 2126 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2127 return -1; 2128 } 2129 2130 /* 2131 * Now that we are here, the old head pointer is 2132 * set to UPDATE. This will keep the reader from 2133 * swapping the head page with the reader page. 2134 * The reader (on another CPU) will spin till 2135 * we are finished. 2136 * 2137 * We just need to protect against interrupts 2138 * doing the job. We will set the next pointer 2139 * to HEAD. After that, we set the old pointer 2140 * to NORMAL, but only if it was HEAD before. 2141 * otherwise we are an interrupt, and only 2142 * want the outer most commit to reset it. 2143 */ 2144 new_head = next_page; 2145 rb_inc_page(cpu_buffer, &new_head); 2146 2147 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2148 RB_PAGE_NORMAL); 2149 2150 /* 2151 * Valid returns are: 2152 * HEAD - an interrupt came in and already set it. 2153 * NORMAL - One of two things: 2154 * 1) We really set it. 2155 * 2) A bunch of interrupts came in and moved 2156 * the page forward again. 2157 */ 2158 switch (ret) { 2159 case RB_PAGE_HEAD: 2160 case RB_PAGE_NORMAL: 2161 /* OK */ 2162 break; 2163 default: 2164 RB_WARN_ON(cpu_buffer, 1); 2165 return -1; 2166 } 2167 2168 /* 2169 * It is possible that an interrupt came in, 2170 * set the head up, then more interrupts came in 2171 * and moved it again. When we get back here, 2172 * the page would have been set to NORMAL but we 2173 * just set it back to HEAD. 2174 * 2175 * How do you detect this? Well, if that happened 2176 * the tail page would have moved. 2177 */ 2178 if (ret == RB_PAGE_NORMAL) { 2179 /* 2180 * If the tail had moved passed next, then we need 2181 * to reset the pointer. 2182 */ 2183 if (cpu_buffer->tail_page != tail_page && 2184 cpu_buffer->tail_page != next_page) 2185 rb_head_page_set_normal(cpu_buffer, new_head, 2186 next_page, 2187 RB_PAGE_HEAD); 2188 } 2189 2190 /* 2191 * If this was the outer most commit (the one that 2192 * changed the original pointer from HEAD to UPDATE), 2193 * then it is up to us to reset it to NORMAL. 2194 */ 2195 if (type == RB_PAGE_HEAD) { 2196 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2197 tail_page, 2198 RB_PAGE_UPDATE); 2199 if (RB_WARN_ON(cpu_buffer, 2200 ret != RB_PAGE_UPDATE)) 2201 return -1; 2202 } 2203 2204 return 0; 2205 } 2206 2207 static unsigned rb_calculate_event_length(unsigned length) 2208 { 2209 struct ring_buffer_event event; /* Used only for sizeof array */ 2210 2211 /* zero length can cause confusions */ 2212 if (!length) 2213 length = 1; 2214 2215 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2216 length += sizeof(event.array[0]); 2217 2218 length += RB_EVNT_HDR_SIZE; 2219 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2220 2221 return length; 2222 } 2223 2224 static inline void 2225 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2226 struct buffer_page *tail_page, 2227 unsigned long tail, unsigned long length) 2228 { 2229 struct ring_buffer_event *event; 2230 2231 /* 2232 * Only the event that crossed the page boundary 2233 * must fill the old tail_page with padding. 2234 */ 2235 if (tail >= BUF_PAGE_SIZE) { 2236 /* 2237 * If the page was filled, then we still need 2238 * to update the real_end. Reset it to zero 2239 * and the reader will ignore it. 2240 */ 2241 if (tail == BUF_PAGE_SIZE) 2242 tail_page->real_end = 0; 2243 2244 local_sub(length, &tail_page->write); 2245 return; 2246 } 2247 2248 event = __rb_page_index(tail_page, tail); 2249 kmemcheck_annotate_bitfield(event, bitfield); 2250 2251 /* account for padding bytes */ 2252 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2253 2254 /* 2255 * Save the original length to the meta data. 2256 * This will be used by the reader to add lost event 2257 * counter. 2258 */ 2259 tail_page->real_end = tail; 2260 2261 /* 2262 * If this event is bigger than the minimum size, then 2263 * we need to be careful that we don't subtract the 2264 * write counter enough to allow another writer to slip 2265 * in on this page. 2266 * We put in a discarded commit instead, to make sure 2267 * that this space is not used again. 2268 * 2269 * If we are less than the minimum size, we don't need to 2270 * worry about it. 2271 */ 2272 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2273 /* No room for any events */ 2274 2275 /* Mark the rest of the page with padding */ 2276 rb_event_set_padding(event); 2277 2278 /* Set the write back to the previous setting */ 2279 local_sub(length, &tail_page->write); 2280 return; 2281 } 2282 2283 /* Put in a discarded event */ 2284 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2285 event->type_len = RINGBUF_TYPE_PADDING; 2286 /* time delta must be non zero */ 2287 event->time_delta = 1; 2288 2289 /* Set write to end of buffer */ 2290 length = (tail + length) - BUF_PAGE_SIZE; 2291 local_sub(length, &tail_page->write); 2292 } 2293 2294 /* 2295 * This is the slow path, force gcc not to inline it. 2296 */ 2297 static noinline struct ring_buffer_event * 2298 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2299 unsigned long length, unsigned long tail, 2300 struct buffer_page *tail_page, u64 ts) 2301 { 2302 struct buffer_page *commit_page = cpu_buffer->commit_page; 2303 struct ring_buffer *buffer = cpu_buffer->buffer; 2304 struct buffer_page *next_page; 2305 int ret; 2306 2307 next_page = tail_page; 2308 2309 rb_inc_page(cpu_buffer, &next_page); 2310 2311 /* 2312 * If for some reason, we had an interrupt storm that made 2313 * it all the way around the buffer, bail, and warn 2314 * about it. 2315 */ 2316 if (unlikely(next_page == commit_page)) { 2317 local_inc(&cpu_buffer->commit_overrun); 2318 goto out_reset; 2319 } 2320 2321 /* 2322 * This is where the fun begins! 2323 * 2324 * We are fighting against races between a reader that 2325 * could be on another CPU trying to swap its reader 2326 * page with the buffer head. 2327 * 2328 * We are also fighting against interrupts coming in and 2329 * moving the head or tail on us as well. 2330 * 2331 * If the next page is the head page then we have filled 2332 * the buffer, unless the commit page is still on the 2333 * reader page. 2334 */ 2335 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2336 2337 /* 2338 * If the commit is not on the reader page, then 2339 * move the header page. 2340 */ 2341 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2342 /* 2343 * If we are not in overwrite mode, 2344 * this is easy, just stop here. 2345 */ 2346 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2347 local_inc(&cpu_buffer->dropped_events); 2348 goto out_reset; 2349 } 2350 2351 ret = rb_handle_head_page(cpu_buffer, 2352 tail_page, 2353 next_page); 2354 if (ret < 0) 2355 goto out_reset; 2356 if (ret) 2357 goto out_again; 2358 } else { 2359 /* 2360 * We need to be careful here too. The 2361 * commit page could still be on the reader 2362 * page. We could have a small buffer, and 2363 * have filled up the buffer with events 2364 * from interrupts and such, and wrapped. 2365 * 2366 * Note, if the tail page is also the on the 2367 * reader_page, we let it move out. 2368 */ 2369 if (unlikely((cpu_buffer->commit_page != 2370 cpu_buffer->tail_page) && 2371 (cpu_buffer->commit_page == 2372 cpu_buffer->reader_page))) { 2373 local_inc(&cpu_buffer->commit_overrun); 2374 goto out_reset; 2375 } 2376 } 2377 } 2378 2379 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2380 if (ret) { 2381 /* 2382 * Nested commits always have zero deltas, so 2383 * just reread the time stamp 2384 */ 2385 ts = rb_time_stamp(buffer); 2386 next_page->page->time_stamp = ts; 2387 } 2388 2389 out_again: 2390 2391 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2392 2393 /* fail and let the caller try again */ 2394 return ERR_PTR(-EAGAIN); 2395 2396 out_reset: 2397 /* reset write */ 2398 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2399 2400 return NULL; 2401 } 2402 2403 static struct ring_buffer_event * 2404 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2405 unsigned long length, u64 ts, 2406 u64 delta, int add_timestamp) 2407 { 2408 struct buffer_page *tail_page; 2409 struct ring_buffer_event *event; 2410 unsigned long tail, write; 2411 2412 /* 2413 * If the time delta since the last event is too big to 2414 * hold in the time field of the event, then we append a 2415 * TIME EXTEND event ahead of the data event. 2416 */ 2417 if (unlikely(add_timestamp)) 2418 length += RB_LEN_TIME_EXTEND; 2419 2420 tail_page = cpu_buffer->tail_page; 2421 write = local_add_return(length, &tail_page->write); 2422 2423 /* set write to only the index of the write */ 2424 write &= RB_WRITE_MASK; 2425 tail = write - length; 2426 2427 /* 2428 * If this is the first commit on the page, then it has the same 2429 * timestamp as the page itself. 2430 */ 2431 if (!tail) 2432 delta = 0; 2433 2434 /* See if we shot pass the end of this buffer page */ 2435 if (unlikely(write > BUF_PAGE_SIZE)) 2436 return rb_move_tail(cpu_buffer, length, tail, 2437 tail_page, ts); 2438 2439 /* We reserved something on the buffer */ 2440 2441 event = __rb_page_index(tail_page, tail); 2442 kmemcheck_annotate_bitfield(event, bitfield); 2443 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2444 2445 local_inc(&tail_page->entries); 2446 2447 /* 2448 * If this is the first commit on the page, then update 2449 * its timestamp. 2450 */ 2451 if (!tail) 2452 tail_page->page->time_stamp = ts; 2453 2454 /* account for these added bytes */ 2455 local_add(length, &cpu_buffer->entries_bytes); 2456 2457 return event; 2458 } 2459 2460 static inline int 2461 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2462 struct ring_buffer_event *event) 2463 { 2464 unsigned long new_index, old_index; 2465 struct buffer_page *bpage; 2466 unsigned long index; 2467 unsigned long addr; 2468 2469 new_index = rb_event_index(event); 2470 old_index = new_index + rb_event_ts_length(event); 2471 addr = (unsigned long)event; 2472 addr &= PAGE_MASK; 2473 2474 bpage = cpu_buffer->tail_page; 2475 2476 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2477 unsigned long write_mask = 2478 local_read(&bpage->write) & ~RB_WRITE_MASK; 2479 unsigned long event_length = rb_event_length(event); 2480 /* 2481 * This is on the tail page. It is possible that 2482 * a write could come in and move the tail page 2483 * and write to the next page. That is fine 2484 * because we just shorten what is on this page. 2485 */ 2486 old_index += write_mask; 2487 new_index += write_mask; 2488 index = local_cmpxchg(&bpage->write, old_index, new_index); 2489 if (index == old_index) { 2490 /* update counters */ 2491 local_sub(event_length, &cpu_buffer->entries_bytes); 2492 return 1; 2493 } 2494 } 2495 2496 /* could not discard */ 2497 return 0; 2498 } 2499 2500 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2501 { 2502 local_inc(&cpu_buffer->committing); 2503 local_inc(&cpu_buffer->commits); 2504 } 2505 2506 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2507 { 2508 unsigned long commits; 2509 2510 if (RB_WARN_ON(cpu_buffer, 2511 !local_read(&cpu_buffer->committing))) 2512 return; 2513 2514 again: 2515 commits = local_read(&cpu_buffer->commits); 2516 /* synchronize with interrupts */ 2517 barrier(); 2518 if (local_read(&cpu_buffer->committing) == 1) 2519 rb_set_commit_to_write(cpu_buffer); 2520 2521 local_dec(&cpu_buffer->committing); 2522 2523 /* synchronize with interrupts */ 2524 barrier(); 2525 2526 /* 2527 * Need to account for interrupts coming in between the 2528 * updating of the commit page and the clearing of the 2529 * committing counter. 2530 */ 2531 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2532 !local_read(&cpu_buffer->committing)) { 2533 local_inc(&cpu_buffer->committing); 2534 goto again; 2535 } 2536 } 2537 2538 static struct ring_buffer_event * 2539 rb_reserve_next_event(struct ring_buffer *buffer, 2540 struct ring_buffer_per_cpu *cpu_buffer, 2541 unsigned long length) 2542 { 2543 struct ring_buffer_event *event; 2544 u64 ts, delta; 2545 int nr_loops = 0; 2546 int add_timestamp; 2547 u64 diff; 2548 2549 rb_start_commit(cpu_buffer); 2550 2551 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2552 /* 2553 * Due to the ability to swap a cpu buffer from a buffer 2554 * it is possible it was swapped before we committed. 2555 * (committing stops a swap). We check for it here and 2556 * if it happened, we have to fail the write. 2557 */ 2558 barrier(); 2559 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2560 local_dec(&cpu_buffer->committing); 2561 local_dec(&cpu_buffer->commits); 2562 return NULL; 2563 } 2564 #endif 2565 2566 length = rb_calculate_event_length(length); 2567 again: 2568 add_timestamp = 0; 2569 delta = 0; 2570 2571 /* 2572 * We allow for interrupts to reenter here and do a trace. 2573 * If one does, it will cause this original code to loop 2574 * back here. Even with heavy interrupts happening, this 2575 * should only happen a few times in a row. If this happens 2576 * 1000 times in a row, there must be either an interrupt 2577 * storm or we have something buggy. 2578 * Bail! 2579 */ 2580 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2581 goto out_fail; 2582 2583 ts = rb_time_stamp(cpu_buffer->buffer); 2584 diff = ts - cpu_buffer->write_stamp; 2585 2586 /* make sure this diff is calculated here */ 2587 barrier(); 2588 2589 /* Did the write stamp get updated already? */ 2590 if (likely(ts >= cpu_buffer->write_stamp)) { 2591 delta = diff; 2592 if (unlikely(test_time_stamp(delta))) { 2593 int local_clock_stable = 1; 2594 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2595 local_clock_stable = sched_clock_stable(); 2596 #endif 2597 WARN_ONCE(delta > (1ULL << 59), 2598 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2599 (unsigned long long)delta, 2600 (unsigned long long)ts, 2601 (unsigned long long)cpu_buffer->write_stamp, 2602 local_clock_stable ? "" : 2603 "If you just came from a suspend/resume,\n" 2604 "please switch to the trace global clock:\n" 2605 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2606 add_timestamp = 1; 2607 } 2608 } 2609 2610 event = __rb_reserve_next(cpu_buffer, length, ts, 2611 delta, add_timestamp); 2612 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2613 goto again; 2614 2615 if (!event) 2616 goto out_fail; 2617 2618 return event; 2619 2620 out_fail: 2621 rb_end_commit(cpu_buffer); 2622 return NULL; 2623 } 2624 2625 #ifdef CONFIG_TRACING 2626 2627 /* 2628 * The lock and unlock are done within a preempt disable section. 2629 * The current_context per_cpu variable can only be modified 2630 * by the current task between lock and unlock. But it can 2631 * be modified more than once via an interrupt. To pass this 2632 * information from the lock to the unlock without having to 2633 * access the 'in_interrupt()' functions again (which do show 2634 * a bit of overhead in something as critical as function tracing, 2635 * we use a bitmask trick. 2636 * 2637 * bit 0 = NMI context 2638 * bit 1 = IRQ context 2639 * bit 2 = SoftIRQ context 2640 * bit 3 = normal context. 2641 * 2642 * This works because this is the order of contexts that can 2643 * preempt other contexts. A SoftIRQ never preempts an IRQ 2644 * context. 2645 * 2646 * When the context is determined, the corresponding bit is 2647 * checked and set (if it was set, then a recursion of that context 2648 * happened). 2649 * 2650 * On unlock, we need to clear this bit. To do so, just subtract 2651 * 1 from the current_context and AND it to itself. 2652 * 2653 * (binary) 2654 * 101 - 1 = 100 2655 * 101 & 100 = 100 (clearing bit zero) 2656 * 2657 * 1010 - 1 = 1001 2658 * 1010 & 1001 = 1000 (clearing bit 1) 2659 * 2660 * The least significant bit can be cleared this way, and it 2661 * just so happens that it is the same bit corresponding to 2662 * the current context. 2663 */ 2664 static DEFINE_PER_CPU(unsigned int, current_context); 2665 2666 static __always_inline int trace_recursive_lock(void) 2667 { 2668 unsigned int val = this_cpu_read(current_context); 2669 int bit; 2670 2671 if (in_interrupt()) { 2672 if (in_nmi()) 2673 bit = 0; 2674 else if (in_irq()) 2675 bit = 1; 2676 else 2677 bit = 2; 2678 } else 2679 bit = 3; 2680 2681 if (unlikely(val & (1 << bit))) 2682 return 1; 2683 2684 val |= (1 << bit); 2685 this_cpu_write(current_context, val); 2686 2687 return 0; 2688 } 2689 2690 static __always_inline void trace_recursive_unlock(void) 2691 { 2692 unsigned int val = this_cpu_read(current_context); 2693 2694 val--; 2695 val &= this_cpu_read(current_context); 2696 this_cpu_write(current_context, val); 2697 } 2698 2699 #else 2700 2701 #define trace_recursive_lock() (0) 2702 #define trace_recursive_unlock() do { } while (0) 2703 2704 #endif 2705 2706 /** 2707 * ring_buffer_lock_reserve - reserve a part of the buffer 2708 * @buffer: the ring buffer to reserve from 2709 * @length: the length of the data to reserve (excluding event header) 2710 * 2711 * Returns a reseverd event on the ring buffer to copy directly to. 2712 * The user of this interface will need to get the body to write into 2713 * and can use the ring_buffer_event_data() interface. 2714 * 2715 * The length is the length of the data needed, not the event length 2716 * which also includes the event header. 2717 * 2718 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2719 * If NULL is returned, then nothing has been allocated or locked. 2720 */ 2721 struct ring_buffer_event * 2722 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2723 { 2724 struct ring_buffer_per_cpu *cpu_buffer; 2725 struct ring_buffer_event *event; 2726 int cpu; 2727 2728 if (ring_buffer_flags != RB_BUFFERS_ON) 2729 return NULL; 2730 2731 /* If we are tracing schedule, we don't want to recurse */ 2732 preempt_disable_notrace(); 2733 2734 if (atomic_read(&buffer->record_disabled)) 2735 goto out_nocheck; 2736 2737 if (trace_recursive_lock()) 2738 goto out_nocheck; 2739 2740 cpu = raw_smp_processor_id(); 2741 2742 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2743 goto out; 2744 2745 cpu_buffer = buffer->buffers[cpu]; 2746 2747 if (atomic_read(&cpu_buffer->record_disabled)) 2748 goto out; 2749 2750 if (length > BUF_MAX_DATA_SIZE) 2751 goto out; 2752 2753 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2754 if (!event) 2755 goto out; 2756 2757 return event; 2758 2759 out: 2760 trace_recursive_unlock(); 2761 2762 out_nocheck: 2763 preempt_enable_notrace(); 2764 return NULL; 2765 } 2766 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2767 2768 static void 2769 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2770 struct ring_buffer_event *event) 2771 { 2772 u64 delta; 2773 2774 /* 2775 * The event first in the commit queue updates the 2776 * time stamp. 2777 */ 2778 if (rb_event_is_commit(cpu_buffer, event)) { 2779 /* 2780 * A commit event that is first on a page 2781 * updates the write timestamp with the page stamp 2782 */ 2783 if (!rb_event_index(event)) 2784 cpu_buffer->write_stamp = 2785 cpu_buffer->commit_page->page->time_stamp; 2786 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2787 delta = event->array[0]; 2788 delta <<= TS_SHIFT; 2789 delta += event->time_delta; 2790 cpu_buffer->write_stamp += delta; 2791 } else 2792 cpu_buffer->write_stamp += event->time_delta; 2793 } 2794 } 2795 2796 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2797 struct ring_buffer_event *event) 2798 { 2799 local_inc(&cpu_buffer->entries); 2800 rb_update_write_stamp(cpu_buffer, event); 2801 rb_end_commit(cpu_buffer); 2802 } 2803 2804 static __always_inline void 2805 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2806 { 2807 if (buffer->irq_work.waiters_pending) { 2808 buffer->irq_work.waiters_pending = false; 2809 /* irq_work_queue() supplies it's own memory barriers */ 2810 irq_work_queue(&buffer->irq_work.work); 2811 } 2812 2813 if (cpu_buffer->irq_work.waiters_pending) { 2814 cpu_buffer->irq_work.waiters_pending = false; 2815 /* irq_work_queue() supplies it's own memory barriers */ 2816 irq_work_queue(&cpu_buffer->irq_work.work); 2817 } 2818 } 2819 2820 /** 2821 * ring_buffer_unlock_commit - commit a reserved 2822 * @buffer: The buffer to commit to 2823 * @event: The event pointer to commit. 2824 * 2825 * This commits the data to the ring buffer, and releases any locks held. 2826 * 2827 * Must be paired with ring_buffer_lock_reserve. 2828 */ 2829 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2830 struct ring_buffer_event *event) 2831 { 2832 struct ring_buffer_per_cpu *cpu_buffer; 2833 int cpu = raw_smp_processor_id(); 2834 2835 cpu_buffer = buffer->buffers[cpu]; 2836 2837 rb_commit(cpu_buffer, event); 2838 2839 rb_wakeups(buffer, cpu_buffer); 2840 2841 trace_recursive_unlock(); 2842 2843 preempt_enable_notrace(); 2844 2845 return 0; 2846 } 2847 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2848 2849 static inline void rb_event_discard(struct ring_buffer_event *event) 2850 { 2851 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2852 event = skip_time_extend(event); 2853 2854 /* array[0] holds the actual length for the discarded event */ 2855 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2856 event->type_len = RINGBUF_TYPE_PADDING; 2857 /* time delta must be non zero */ 2858 if (!event->time_delta) 2859 event->time_delta = 1; 2860 } 2861 2862 /* 2863 * Decrement the entries to the page that an event is on. 2864 * The event does not even need to exist, only the pointer 2865 * to the page it is on. This may only be called before the commit 2866 * takes place. 2867 */ 2868 static inline void 2869 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2870 struct ring_buffer_event *event) 2871 { 2872 unsigned long addr = (unsigned long)event; 2873 struct buffer_page *bpage = cpu_buffer->commit_page; 2874 struct buffer_page *start; 2875 2876 addr &= PAGE_MASK; 2877 2878 /* Do the likely case first */ 2879 if (likely(bpage->page == (void *)addr)) { 2880 local_dec(&bpage->entries); 2881 return; 2882 } 2883 2884 /* 2885 * Because the commit page may be on the reader page we 2886 * start with the next page and check the end loop there. 2887 */ 2888 rb_inc_page(cpu_buffer, &bpage); 2889 start = bpage; 2890 do { 2891 if (bpage->page == (void *)addr) { 2892 local_dec(&bpage->entries); 2893 return; 2894 } 2895 rb_inc_page(cpu_buffer, &bpage); 2896 } while (bpage != start); 2897 2898 /* commit not part of this buffer?? */ 2899 RB_WARN_ON(cpu_buffer, 1); 2900 } 2901 2902 /** 2903 * ring_buffer_commit_discard - discard an event that has not been committed 2904 * @buffer: the ring buffer 2905 * @event: non committed event to discard 2906 * 2907 * Sometimes an event that is in the ring buffer needs to be ignored. 2908 * This function lets the user discard an event in the ring buffer 2909 * and then that event will not be read later. 2910 * 2911 * This function only works if it is called before the the item has been 2912 * committed. It will try to free the event from the ring buffer 2913 * if another event has not been added behind it. 2914 * 2915 * If another event has been added behind it, it will set the event 2916 * up as discarded, and perform the commit. 2917 * 2918 * If this function is called, do not call ring_buffer_unlock_commit on 2919 * the event. 2920 */ 2921 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2922 struct ring_buffer_event *event) 2923 { 2924 struct ring_buffer_per_cpu *cpu_buffer; 2925 int cpu; 2926 2927 /* The event is discarded regardless */ 2928 rb_event_discard(event); 2929 2930 cpu = smp_processor_id(); 2931 cpu_buffer = buffer->buffers[cpu]; 2932 2933 /* 2934 * This must only be called if the event has not been 2935 * committed yet. Thus we can assume that preemption 2936 * is still disabled. 2937 */ 2938 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2939 2940 rb_decrement_entry(cpu_buffer, event); 2941 if (rb_try_to_discard(cpu_buffer, event)) 2942 goto out; 2943 2944 /* 2945 * The commit is still visible by the reader, so we 2946 * must still update the timestamp. 2947 */ 2948 rb_update_write_stamp(cpu_buffer, event); 2949 out: 2950 rb_end_commit(cpu_buffer); 2951 2952 trace_recursive_unlock(); 2953 2954 preempt_enable_notrace(); 2955 2956 } 2957 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2958 2959 /** 2960 * ring_buffer_write - write data to the buffer without reserving 2961 * @buffer: The ring buffer to write to. 2962 * @length: The length of the data being written (excluding the event header) 2963 * @data: The data to write to the buffer. 2964 * 2965 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2966 * one function. If you already have the data to write to the buffer, it 2967 * may be easier to simply call this function. 2968 * 2969 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2970 * and not the length of the event which would hold the header. 2971 */ 2972 int ring_buffer_write(struct ring_buffer *buffer, 2973 unsigned long length, 2974 void *data) 2975 { 2976 struct ring_buffer_per_cpu *cpu_buffer; 2977 struct ring_buffer_event *event; 2978 void *body; 2979 int ret = -EBUSY; 2980 int cpu; 2981 2982 if (ring_buffer_flags != RB_BUFFERS_ON) 2983 return -EBUSY; 2984 2985 preempt_disable_notrace(); 2986 2987 if (atomic_read(&buffer->record_disabled)) 2988 goto out; 2989 2990 cpu = raw_smp_processor_id(); 2991 2992 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2993 goto out; 2994 2995 cpu_buffer = buffer->buffers[cpu]; 2996 2997 if (atomic_read(&cpu_buffer->record_disabled)) 2998 goto out; 2999 3000 if (length > BUF_MAX_DATA_SIZE) 3001 goto out; 3002 3003 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3004 if (!event) 3005 goto out; 3006 3007 body = rb_event_data(event); 3008 3009 memcpy(body, data, length); 3010 3011 rb_commit(cpu_buffer, event); 3012 3013 rb_wakeups(buffer, cpu_buffer); 3014 3015 ret = 0; 3016 out: 3017 preempt_enable_notrace(); 3018 3019 return ret; 3020 } 3021 EXPORT_SYMBOL_GPL(ring_buffer_write); 3022 3023 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3024 { 3025 struct buffer_page *reader = cpu_buffer->reader_page; 3026 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3027 struct buffer_page *commit = cpu_buffer->commit_page; 3028 3029 /* In case of error, head will be NULL */ 3030 if (unlikely(!head)) 3031 return 1; 3032 3033 return reader->read == rb_page_commit(reader) && 3034 (commit == reader || 3035 (commit == head && 3036 head->read == rb_page_commit(commit))); 3037 } 3038 3039 /** 3040 * ring_buffer_record_disable - stop all writes into the buffer 3041 * @buffer: The ring buffer to stop writes to. 3042 * 3043 * This prevents all writes to the buffer. Any attempt to write 3044 * to the buffer after this will fail and return NULL. 3045 * 3046 * The caller should call synchronize_sched() after this. 3047 */ 3048 void ring_buffer_record_disable(struct ring_buffer *buffer) 3049 { 3050 atomic_inc(&buffer->record_disabled); 3051 } 3052 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3053 3054 /** 3055 * ring_buffer_record_enable - enable writes to the buffer 3056 * @buffer: The ring buffer to enable writes 3057 * 3058 * Note, multiple disables will need the same number of enables 3059 * to truly enable the writing (much like preempt_disable). 3060 */ 3061 void ring_buffer_record_enable(struct ring_buffer *buffer) 3062 { 3063 atomic_dec(&buffer->record_disabled); 3064 } 3065 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3066 3067 /** 3068 * ring_buffer_record_off - stop all writes into the buffer 3069 * @buffer: The ring buffer to stop writes to. 3070 * 3071 * This prevents all writes to the buffer. Any attempt to write 3072 * to the buffer after this will fail and return NULL. 3073 * 3074 * This is different than ring_buffer_record_disable() as 3075 * it works like an on/off switch, where as the disable() version 3076 * must be paired with a enable(). 3077 */ 3078 void ring_buffer_record_off(struct ring_buffer *buffer) 3079 { 3080 unsigned int rd; 3081 unsigned int new_rd; 3082 3083 do { 3084 rd = atomic_read(&buffer->record_disabled); 3085 new_rd = rd | RB_BUFFER_OFF; 3086 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3087 } 3088 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3089 3090 /** 3091 * ring_buffer_record_on - restart writes into the buffer 3092 * @buffer: The ring buffer to start writes to. 3093 * 3094 * This enables all writes to the buffer that was disabled by 3095 * ring_buffer_record_off(). 3096 * 3097 * This is different than ring_buffer_record_enable() as 3098 * it works like an on/off switch, where as the enable() version 3099 * must be paired with a disable(). 3100 */ 3101 void ring_buffer_record_on(struct ring_buffer *buffer) 3102 { 3103 unsigned int rd; 3104 unsigned int new_rd; 3105 3106 do { 3107 rd = atomic_read(&buffer->record_disabled); 3108 new_rd = rd & ~RB_BUFFER_OFF; 3109 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3110 } 3111 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3112 3113 /** 3114 * ring_buffer_record_is_on - return true if the ring buffer can write 3115 * @buffer: The ring buffer to see if write is enabled 3116 * 3117 * Returns true if the ring buffer is in a state that it accepts writes. 3118 */ 3119 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3120 { 3121 return !atomic_read(&buffer->record_disabled); 3122 } 3123 3124 /** 3125 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3126 * @buffer: The ring buffer to stop writes to. 3127 * @cpu: The CPU buffer to stop 3128 * 3129 * This prevents all writes to the buffer. Any attempt to write 3130 * to the buffer after this will fail and return NULL. 3131 * 3132 * The caller should call synchronize_sched() after this. 3133 */ 3134 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3135 { 3136 struct ring_buffer_per_cpu *cpu_buffer; 3137 3138 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3139 return; 3140 3141 cpu_buffer = buffer->buffers[cpu]; 3142 atomic_inc(&cpu_buffer->record_disabled); 3143 } 3144 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3145 3146 /** 3147 * ring_buffer_record_enable_cpu - enable writes to the buffer 3148 * @buffer: The ring buffer to enable writes 3149 * @cpu: The CPU to enable. 3150 * 3151 * Note, multiple disables will need the same number of enables 3152 * to truly enable the writing (much like preempt_disable). 3153 */ 3154 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3155 { 3156 struct ring_buffer_per_cpu *cpu_buffer; 3157 3158 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3159 return; 3160 3161 cpu_buffer = buffer->buffers[cpu]; 3162 atomic_dec(&cpu_buffer->record_disabled); 3163 } 3164 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3165 3166 /* 3167 * The total entries in the ring buffer is the running counter 3168 * of entries entered into the ring buffer, minus the sum of 3169 * the entries read from the ring buffer and the number of 3170 * entries that were overwritten. 3171 */ 3172 static inline unsigned long 3173 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3174 { 3175 return local_read(&cpu_buffer->entries) - 3176 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3177 } 3178 3179 /** 3180 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3181 * @buffer: The ring buffer 3182 * @cpu: The per CPU buffer to read from. 3183 */ 3184 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3185 { 3186 unsigned long flags; 3187 struct ring_buffer_per_cpu *cpu_buffer; 3188 struct buffer_page *bpage; 3189 u64 ret = 0; 3190 3191 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3192 return 0; 3193 3194 cpu_buffer = buffer->buffers[cpu]; 3195 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3196 /* 3197 * if the tail is on reader_page, oldest time stamp is on the reader 3198 * page 3199 */ 3200 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3201 bpage = cpu_buffer->reader_page; 3202 else 3203 bpage = rb_set_head_page(cpu_buffer); 3204 if (bpage) 3205 ret = bpage->page->time_stamp; 3206 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3207 3208 return ret; 3209 } 3210 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3211 3212 /** 3213 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3214 * @buffer: The ring buffer 3215 * @cpu: The per CPU buffer to read from. 3216 */ 3217 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3218 { 3219 struct ring_buffer_per_cpu *cpu_buffer; 3220 unsigned long ret; 3221 3222 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3223 return 0; 3224 3225 cpu_buffer = buffer->buffers[cpu]; 3226 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3227 3228 return ret; 3229 } 3230 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3231 3232 /** 3233 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3234 * @buffer: The ring buffer 3235 * @cpu: The per CPU buffer to get the entries from. 3236 */ 3237 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3238 { 3239 struct ring_buffer_per_cpu *cpu_buffer; 3240 3241 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3242 return 0; 3243 3244 cpu_buffer = buffer->buffers[cpu]; 3245 3246 return rb_num_of_entries(cpu_buffer); 3247 } 3248 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3249 3250 /** 3251 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3252 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3253 * @buffer: The ring buffer 3254 * @cpu: The per CPU buffer to get the number of overruns from 3255 */ 3256 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3257 { 3258 struct ring_buffer_per_cpu *cpu_buffer; 3259 unsigned long ret; 3260 3261 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3262 return 0; 3263 3264 cpu_buffer = buffer->buffers[cpu]; 3265 ret = local_read(&cpu_buffer->overrun); 3266 3267 return ret; 3268 } 3269 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3270 3271 /** 3272 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3273 * commits failing due to the buffer wrapping around while there are uncommitted 3274 * events, such as during an interrupt storm. 3275 * @buffer: The ring buffer 3276 * @cpu: The per CPU buffer to get the number of overruns from 3277 */ 3278 unsigned long 3279 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3280 { 3281 struct ring_buffer_per_cpu *cpu_buffer; 3282 unsigned long ret; 3283 3284 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3285 return 0; 3286 3287 cpu_buffer = buffer->buffers[cpu]; 3288 ret = local_read(&cpu_buffer->commit_overrun); 3289 3290 return ret; 3291 } 3292 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3293 3294 /** 3295 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3296 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3297 * @buffer: The ring buffer 3298 * @cpu: The per CPU buffer to get the number of overruns from 3299 */ 3300 unsigned long 3301 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3302 { 3303 struct ring_buffer_per_cpu *cpu_buffer; 3304 unsigned long ret; 3305 3306 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3307 return 0; 3308 3309 cpu_buffer = buffer->buffers[cpu]; 3310 ret = local_read(&cpu_buffer->dropped_events); 3311 3312 return ret; 3313 } 3314 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3315 3316 /** 3317 * ring_buffer_read_events_cpu - get the number of events successfully read 3318 * @buffer: The ring buffer 3319 * @cpu: The per CPU buffer to get the number of events read 3320 */ 3321 unsigned long 3322 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3323 { 3324 struct ring_buffer_per_cpu *cpu_buffer; 3325 3326 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3327 return 0; 3328 3329 cpu_buffer = buffer->buffers[cpu]; 3330 return cpu_buffer->read; 3331 } 3332 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3333 3334 /** 3335 * ring_buffer_entries - get the number of entries in a buffer 3336 * @buffer: The ring buffer 3337 * 3338 * Returns the total number of entries in the ring buffer 3339 * (all CPU entries) 3340 */ 3341 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3342 { 3343 struct ring_buffer_per_cpu *cpu_buffer; 3344 unsigned long entries = 0; 3345 int cpu; 3346 3347 /* if you care about this being correct, lock the buffer */ 3348 for_each_buffer_cpu(buffer, cpu) { 3349 cpu_buffer = buffer->buffers[cpu]; 3350 entries += rb_num_of_entries(cpu_buffer); 3351 } 3352 3353 return entries; 3354 } 3355 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3356 3357 /** 3358 * ring_buffer_overruns - get the number of overruns in buffer 3359 * @buffer: The ring buffer 3360 * 3361 * Returns the total number of overruns in the ring buffer 3362 * (all CPU entries) 3363 */ 3364 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3365 { 3366 struct ring_buffer_per_cpu *cpu_buffer; 3367 unsigned long overruns = 0; 3368 int cpu; 3369 3370 /* if you care about this being correct, lock the buffer */ 3371 for_each_buffer_cpu(buffer, cpu) { 3372 cpu_buffer = buffer->buffers[cpu]; 3373 overruns += local_read(&cpu_buffer->overrun); 3374 } 3375 3376 return overruns; 3377 } 3378 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3379 3380 static void rb_iter_reset(struct ring_buffer_iter *iter) 3381 { 3382 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3383 3384 /* Iterator usage is expected to have record disabled */ 3385 iter->head_page = cpu_buffer->reader_page; 3386 iter->head = cpu_buffer->reader_page->read; 3387 3388 iter->cache_reader_page = iter->head_page; 3389 iter->cache_read = cpu_buffer->read; 3390 3391 if (iter->head) 3392 iter->read_stamp = cpu_buffer->read_stamp; 3393 else 3394 iter->read_stamp = iter->head_page->page->time_stamp; 3395 } 3396 3397 /** 3398 * ring_buffer_iter_reset - reset an iterator 3399 * @iter: The iterator to reset 3400 * 3401 * Resets the iterator, so that it will start from the beginning 3402 * again. 3403 */ 3404 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3405 { 3406 struct ring_buffer_per_cpu *cpu_buffer; 3407 unsigned long flags; 3408 3409 if (!iter) 3410 return; 3411 3412 cpu_buffer = iter->cpu_buffer; 3413 3414 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3415 rb_iter_reset(iter); 3416 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3417 } 3418 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3419 3420 /** 3421 * ring_buffer_iter_empty - check if an iterator has no more to read 3422 * @iter: The iterator to check 3423 */ 3424 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3425 { 3426 struct ring_buffer_per_cpu *cpu_buffer; 3427 3428 cpu_buffer = iter->cpu_buffer; 3429 3430 return iter->head_page == cpu_buffer->commit_page && 3431 iter->head == rb_commit_index(cpu_buffer); 3432 } 3433 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3434 3435 static void 3436 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3437 struct ring_buffer_event *event) 3438 { 3439 u64 delta; 3440 3441 switch (event->type_len) { 3442 case RINGBUF_TYPE_PADDING: 3443 return; 3444 3445 case RINGBUF_TYPE_TIME_EXTEND: 3446 delta = event->array[0]; 3447 delta <<= TS_SHIFT; 3448 delta += event->time_delta; 3449 cpu_buffer->read_stamp += delta; 3450 return; 3451 3452 case RINGBUF_TYPE_TIME_STAMP: 3453 /* FIXME: not implemented */ 3454 return; 3455 3456 case RINGBUF_TYPE_DATA: 3457 cpu_buffer->read_stamp += event->time_delta; 3458 return; 3459 3460 default: 3461 BUG(); 3462 } 3463 return; 3464 } 3465 3466 static void 3467 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3468 struct ring_buffer_event *event) 3469 { 3470 u64 delta; 3471 3472 switch (event->type_len) { 3473 case RINGBUF_TYPE_PADDING: 3474 return; 3475 3476 case RINGBUF_TYPE_TIME_EXTEND: 3477 delta = event->array[0]; 3478 delta <<= TS_SHIFT; 3479 delta += event->time_delta; 3480 iter->read_stamp += delta; 3481 return; 3482 3483 case RINGBUF_TYPE_TIME_STAMP: 3484 /* FIXME: not implemented */ 3485 return; 3486 3487 case RINGBUF_TYPE_DATA: 3488 iter->read_stamp += event->time_delta; 3489 return; 3490 3491 default: 3492 BUG(); 3493 } 3494 return; 3495 } 3496 3497 static struct buffer_page * 3498 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3499 { 3500 struct buffer_page *reader = NULL; 3501 unsigned long overwrite; 3502 unsigned long flags; 3503 int nr_loops = 0; 3504 int ret; 3505 3506 local_irq_save(flags); 3507 arch_spin_lock(&cpu_buffer->lock); 3508 3509 again: 3510 /* 3511 * This should normally only loop twice. But because the 3512 * start of the reader inserts an empty page, it causes 3513 * a case where we will loop three times. There should be no 3514 * reason to loop four times (that I know of). 3515 */ 3516 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3517 reader = NULL; 3518 goto out; 3519 } 3520 3521 reader = cpu_buffer->reader_page; 3522 3523 /* If there's more to read, return this page */ 3524 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3525 goto out; 3526 3527 /* Never should we have an index greater than the size */ 3528 if (RB_WARN_ON(cpu_buffer, 3529 cpu_buffer->reader_page->read > rb_page_size(reader))) 3530 goto out; 3531 3532 /* check if we caught up to the tail */ 3533 reader = NULL; 3534 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3535 goto out; 3536 3537 /* Don't bother swapping if the ring buffer is empty */ 3538 if (rb_num_of_entries(cpu_buffer) == 0) 3539 goto out; 3540 3541 /* 3542 * Reset the reader page to size zero. 3543 */ 3544 local_set(&cpu_buffer->reader_page->write, 0); 3545 local_set(&cpu_buffer->reader_page->entries, 0); 3546 local_set(&cpu_buffer->reader_page->page->commit, 0); 3547 cpu_buffer->reader_page->real_end = 0; 3548 3549 spin: 3550 /* 3551 * Splice the empty reader page into the list around the head. 3552 */ 3553 reader = rb_set_head_page(cpu_buffer); 3554 if (!reader) 3555 goto out; 3556 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3557 cpu_buffer->reader_page->list.prev = reader->list.prev; 3558 3559 /* 3560 * cpu_buffer->pages just needs to point to the buffer, it 3561 * has no specific buffer page to point to. Lets move it out 3562 * of our way so we don't accidentally swap it. 3563 */ 3564 cpu_buffer->pages = reader->list.prev; 3565 3566 /* The reader page will be pointing to the new head */ 3567 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3568 3569 /* 3570 * We want to make sure we read the overruns after we set up our 3571 * pointers to the next object. The writer side does a 3572 * cmpxchg to cross pages which acts as the mb on the writer 3573 * side. Note, the reader will constantly fail the swap 3574 * while the writer is updating the pointers, so this 3575 * guarantees that the overwrite recorded here is the one we 3576 * want to compare with the last_overrun. 3577 */ 3578 smp_mb(); 3579 overwrite = local_read(&(cpu_buffer->overrun)); 3580 3581 /* 3582 * Here's the tricky part. 3583 * 3584 * We need to move the pointer past the header page. 3585 * But we can only do that if a writer is not currently 3586 * moving it. The page before the header page has the 3587 * flag bit '1' set if it is pointing to the page we want. 3588 * but if the writer is in the process of moving it 3589 * than it will be '2' or already moved '0'. 3590 */ 3591 3592 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3593 3594 /* 3595 * If we did not convert it, then we must try again. 3596 */ 3597 if (!ret) 3598 goto spin; 3599 3600 /* 3601 * Yeah! We succeeded in replacing the page. 3602 * 3603 * Now make the new head point back to the reader page. 3604 */ 3605 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3606 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3607 3608 /* Finally update the reader page to the new head */ 3609 cpu_buffer->reader_page = reader; 3610 rb_reset_reader_page(cpu_buffer); 3611 3612 if (overwrite != cpu_buffer->last_overrun) { 3613 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3614 cpu_buffer->last_overrun = overwrite; 3615 } 3616 3617 goto again; 3618 3619 out: 3620 arch_spin_unlock(&cpu_buffer->lock); 3621 local_irq_restore(flags); 3622 3623 return reader; 3624 } 3625 3626 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3627 { 3628 struct ring_buffer_event *event; 3629 struct buffer_page *reader; 3630 unsigned length; 3631 3632 reader = rb_get_reader_page(cpu_buffer); 3633 3634 /* This function should not be called when buffer is empty */ 3635 if (RB_WARN_ON(cpu_buffer, !reader)) 3636 return; 3637 3638 event = rb_reader_event(cpu_buffer); 3639 3640 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3641 cpu_buffer->read++; 3642 3643 rb_update_read_stamp(cpu_buffer, event); 3644 3645 length = rb_event_length(event); 3646 cpu_buffer->reader_page->read += length; 3647 } 3648 3649 static void rb_advance_iter(struct ring_buffer_iter *iter) 3650 { 3651 struct ring_buffer_per_cpu *cpu_buffer; 3652 struct ring_buffer_event *event; 3653 unsigned length; 3654 3655 cpu_buffer = iter->cpu_buffer; 3656 3657 /* 3658 * Check if we are at the end of the buffer. 3659 */ 3660 if (iter->head >= rb_page_size(iter->head_page)) { 3661 /* discarded commits can make the page empty */ 3662 if (iter->head_page == cpu_buffer->commit_page) 3663 return; 3664 rb_inc_iter(iter); 3665 return; 3666 } 3667 3668 event = rb_iter_head_event(iter); 3669 3670 length = rb_event_length(event); 3671 3672 /* 3673 * This should not be called to advance the header if we are 3674 * at the tail of the buffer. 3675 */ 3676 if (RB_WARN_ON(cpu_buffer, 3677 (iter->head_page == cpu_buffer->commit_page) && 3678 (iter->head + length > rb_commit_index(cpu_buffer)))) 3679 return; 3680 3681 rb_update_iter_read_stamp(iter, event); 3682 3683 iter->head += length; 3684 3685 /* check for end of page padding */ 3686 if ((iter->head >= rb_page_size(iter->head_page)) && 3687 (iter->head_page != cpu_buffer->commit_page)) 3688 rb_inc_iter(iter); 3689 } 3690 3691 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3692 { 3693 return cpu_buffer->lost_events; 3694 } 3695 3696 static struct ring_buffer_event * 3697 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3698 unsigned long *lost_events) 3699 { 3700 struct ring_buffer_event *event; 3701 struct buffer_page *reader; 3702 int nr_loops = 0; 3703 3704 again: 3705 /* 3706 * We repeat when a time extend is encountered. 3707 * Since the time extend is always attached to a data event, 3708 * we should never loop more than once. 3709 * (We never hit the following condition more than twice). 3710 */ 3711 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3712 return NULL; 3713 3714 reader = rb_get_reader_page(cpu_buffer); 3715 if (!reader) 3716 return NULL; 3717 3718 event = rb_reader_event(cpu_buffer); 3719 3720 switch (event->type_len) { 3721 case RINGBUF_TYPE_PADDING: 3722 if (rb_null_event(event)) 3723 RB_WARN_ON(cpu_buffer, 1); 3724 /* 3725 * Because the writer could be discarding every 3726 * event it creates (which would probably be bad) 3727 * if we were to go back to "again" then we may never 3728 * catch up, and will trigger the warn on, or lock 3729 * the box. Return the padding, and we will release 3730 * the current locks, and try again. 3731 */ 3732 return event; 3733 3734 case RINGBUF_TYPE_TIME_EXTEND: 3735 /* Internal data, OK to advance */ 3736 rb_advance_reader(cpu_buffer); 3737 goto again; 3738 3739 case RINGBUF_TYPE_TIME_STAMP: 3740 /* FIXME: not implemented */ 3741 rb_advance_reader(cpu_buffer); 3742 goto again; 3743 3744 case RINGBUF_TYPE_DATA: 3745 if (ts) { 3746 *ts = cpu_buffer->read_stamp + event->time_delta; 3747 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3748 cpu_buffer->cpu, ts); 3749 } 3750 if (lost_events) 3751 *lost_events = rb_lost_events(cpu_buffer); 3752 return event; 3753 3754 default: 3755 BUG(); 3756 } 3757 3758 return NULL; 3759 } 3760 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3761 3762 static struct ring_buffer_event * 3763 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3764 { 3765 struct ring_buffer *buffer; 3766 struct ring_buffer_per_cpu *cpu_buffer; 3767 struct ring_buffer_event *event; 3768 int nr_loops = 0; 3769 3770 cpu_buffer = iter->cpu_buffer; 3771 buffer = cpu_buffer->buffer; 3772 3773 /* 3774 * Check if someone performed a consuming read to 3775 * the buffer. A consuming read invalidates the iterator 3776 * and we need to reset the iterator in this case. 3777 */ 3778 if (unlikely(iter->cache_read != cpu_buffer->read || 3779 iter->cache_reader_page != cpu_buffer->reader_page)) 3780 rb_iter_reset(iter); 3781 3782 again: 3783 if (ring_buffer_iter_empty(iter)) 3784 return NULL; 3785 3786 /* 3787 * We repeat when a time extend is encountered or we hit 3788 * the end of the page. Since the time extend is always attached 3789 * to a data event, we should never loop more than three times. 3790 * Once for going to next page, once on time extend, and 3791 * finally once to get the event. 3792 * (We never hit the following condition more than thrice). 3793 */ 3794 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3795 return NULL; 3796 3797 if (rb_per_cpu_empty(cpu_buffer)) 3798 return NULL; 3799 3800 if (iter->head >= rb_page_size(iter->head_page)) { 3801 rb_inc_iter(iter); 3802 goto again; 3803 } 3804 3805 event = rb_iter_head_event(iter); 3806 3807 switch (event->type_len) { 3808 case RINGBUF_TYPE_PADDING: 3809 if (rb_null_event(event)) { 3810 rb_inc_iter(iter); 3811 goto again; 3812 } 3813 rb_advance_iter(iter); 3814 return event; 3815 3816 case RINGBUF_TYPE_TIME_EXTEND: 3817 /* Internal data, OK to advance */ 3818 rb_advance_iter(iter); 3819 goto again; 3820 3821 case RINGBUF_TYPE_TIME_STAMP: 3822 /* FIXME: not implemented */ 3823 rb_advance_iter(iter); 3824 goto again; 3825 3826 case RINGBUF_TYPE_DATA: 3827 if (ts) { 3828 *ts = iter->read_stamp + event->time_delta; 3829 ring_buffer_normalize_time_stamp(buffer, 3830 cpu_buffer->cpu, ts); 3831 } 3832 return event; 3833 3834 default: 3835 BUG(); 3836 } 3837 3838 return NULL; 3839 } 3840 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3841 3842 static inline int rb_ok_to_lock(void) 3843 { 3844 /* 3845 * If an NMI die dumps out the content of the ring buffer 3846 * do not grab locks. We also permanently disable the ring 3847 * buffer too. A one time deal is all you get from reading 3848 * the ring buffer from an NMI. 3849 */ 3850 if (likely(!in_nmi())) 3851 return 1; 3852 3853 tracing_off_permanent(); 3854 return 0; 3855 } 3856 3857 /** 3858 * ring_buffer_peek - peek at the next event to be read 3859 * @buffer: The ring buffer to read 3860 * @cpu: The cpu to peak at 3861 * @ts: The timestamp counter of this event. 3862 * @lost_events: a variable to store if events were lost (may be NULL) 3863 * 3864 * This will return the event that will be read next, but does 3865 * not consume the data. 3866 */ 3867 struct ring_buffer_event * 3868 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3869 unsigned long *lost_events) 3870 { 3871 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3872 struct ring_buffer_event *event; 3873 unsigned long flags; 3874 int dolock; 3875 3876 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3877 return NULL; 3878 3879 dolock = rb_ok_to_lock(); 3880 again: 3881 local_irq_save(flags); 3882 if (dolock) 3883 raw_spin_lock(&cpu_buffer->reader_lock); 3884 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3885 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3886 rb_advance_reader(cpu_buffer); 3887 if (dolock) 3888 raw_spin_unlock(&cpu_buffer->reader_lock); 3889 local_irq_restore(flags); 3890 3891 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3892 goto again; 3893 3894 return event; 3895 } 3896 3897 /** 3898 * ring_buffer_iter_peek - peek at the next event to be read 3899 * @iter: The ring buffer iterator 3900 * @ts: The timestamp counter of this event. 3901 * 3902 * This will return the event that will be read next, but does 3903 * not increment the iterator. 3904 */ 3905 struct ring_buffer_event * 3906 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3907 { 3908 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3909 struct ring_buffer_event *event; 3910 unsigned long flags; 3911 3912 again: 3913 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3914 event = rb_iter_peek(iter, ts); 3915 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3916 3917 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3918 goto again; 3919 3920 return event; 3921 } 3922 3923 /** 3924 * ring_buffer_consume - return an event and consume it 3925 * @buffer: The ring buffer to get the next event from 3926 * @cpu: the cpu to read the buffer from 3927 * @ts: a variable to store the timestamp (may be NULL) 3928 * @lost_events: a variable to store if events were lost (may be NULL) 3929 * 3930 * Returns the next event in the ring buffer, and that event is consumed. 3931 * Meaning, that sequential reads will keep returning a different event, 3932 * and eventually empty the ring buffer if the producer is slower. 3933 */ 3934 struct ring_buffer_event * 3935 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3936 unsigned long *lost_events) 3937 { 3938 struct ring_buffer_per_cpu *cpu_buffer; 3939 struct ring_buffer_event *event = NULL; 3940 unsigned long flags; 3941 int dolock; 3942 3943 dolock = rb_ok_to_lock(); 3944 3945 again: 3946 /* might be called in atomic */ 3947 preempt_disable(); 3948 3949 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3950 goto out; 3951 3952 cpu_buffer = buffer->buffers[cpu]; 3953 local_irq_save(flags); 3954 if (dolock) 3955 raw_spin_lock(&cpu_buffer->reader_lock); 3956 3957 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3958 if (event) { 3959 cpu_buffer->lost_events = 0; 3960 rb_advance_reader(cpu_buffer); 3961 } 3962 3963 if (dolock) 3964 raw_spin_unlock(&cpu_buffer->reader_lock); 3965 local_irq_restore(flags); 3966 3967 out: 3968 preempt_enable(); 3969 3970 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3971 goto again; 3972 3973 return event; 3974 } 3975 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3976 3977 /** 3978 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3979 * @buffer: The ring buffer to read from 3980 * @cpu: The cpu buffer to iterate over 3981 * 3982 * This performs the initial preparations necessary to iterate 3983 * through the buffer. Memory is allocated, buffer recording 3984 * is disabled, and the iterator pointer is returned to the caller. 3985 * 3986 * Disabling buffer recordng prevents the reading from being 3987 * corrupted. This is not a consuming read, so a producer is not 3988 * expected. 3989 * 3990 * After a sequence of ring_buffer_read_prepare calls, the user is 3991 * expected to make at least one call to ring_buffer_read_prepare_sync. 3992 * Afterwards, ring_buffer_read_start is invoked to get things going 3993 * for real. 3994 * 3995 * This overall must be paired with ring_buffer_read_finish. 3996 */ 3997 struct ring_buffer_iter * 3998 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3999 { 4000 struct ring_buffer_per_cpu *cpu_buffer; 4001 struct ring_buffer_iter *iter; 4002 4003 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4004 return NULL; 4005 4006 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4007 if (!iter) 4008 return NULL; 4009 4010 cpu_buffer = buffer->buffers[cpu]; 4011 4012 iter->cpu_buffer = cpu_buffer; 4013 4014 atomic_inc(&buffer->resize_disabled); 4015 atomic_inc(&cpu_buffer->record_disabled); 4016 4017 return iter; 4018 } 4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4020 4021 /** 4022 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4023 * 4024 * All previously invoked ring_buffer_read_prepare calls to prepare 4025 * iterators will be synchronized. Afterwards, read_buffer_read_start 4026 * calls on those iterators are allowed. 4027 */ 4028 void 4029 ring_buffer_read_prepare_sync(void) 4030 { 4031 synchronize_sched(); 4032 } 4033 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4034 4035 /** 4036 * ring_buffer_read_start - start a non consuming read of the buffer 4037 * @iter: The iterator returned by ring_buffer_read_prepare 4038 * 4039 * This finalizes the startup of an iteration through the buffer. 4040 * The iterator comes from a call to ring_buffer_read_prepare and 4041 * an intervening ring_buffer_read_prepare_sync must have been 4042 * performed. 4043 * 4044 * Must be paired with ring_buffer_read_finish. 4045 */ 4046 void 4047 ring_buffer_read_start(struct ring_buffer_iter *iter) 4048 { 4049 struct ring_buffer_per_cpu *cpu_buffer; 4050 unsigned long flags; 4051 4052 if (!iter) 4053 return; 4054 4055 cpu_buffer = iter->cpu_buffer; 4056 4057 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4058 arch_spin_lock(&cpu_buffer->lock); 4059 rb_iter_reset(iter); 4060 arch_spin_unlock(&cpu_buffer->lock); 4061 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4062 } 4063 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4064 4065 /** 4066 * ring_buffer_read_finish - finish reading the iterator of the buffer 4067 * @iter: The iterator retrieved by ring_buffer_start 4068 * 4069 * This re-enables the recording to the buffer, and frees the 4070 * iterator. 4071 */ 4072 void 4073 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4074 { 4075 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4076 unsigned long flags; 4077 4078 /* 4079 * Ring buffer is disabled from recording, here's a good place 4080 * to check the integrity of the ring buffer. 4081 * Must prevent readers from trying to read, as the check 4082 * clears the HEAD page and readers require it. 4083 */ 4084 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4085 rb_check_pages(cpu_buffer); 4086 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4087 4088 atomic_dec(&cpu_buffer->record_disabled); 4089 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4090 kfree(iter); 4091 } 4092 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4093 4094 /** 4095 * ring_buffer_read - read the next item in the ring buffer by the iterator 4096 * @iter: The ring buffer iterator 4097 * @ts: The time stamp of the event read. 4098 * 4099 * This reads the next event in the ring buffer and increments the iterator. 4100 */ 4101 struct ring_buffer_event * 4102 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4103 { 4104 struct ring_buffer_event *event; 4105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4106 unsigned long flags; 4107 4108 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4109 again: 4110 event = rb_iter_peek(iter, ts); 4111 if (!event) 4112 goto out; 4113 4114 if (event->type_len == RINGBUF_TYPE_PADDING) 4115 goto again; 4116 4117 rb_advance_iter(iter); 4118 out: 4119 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4120 4121 return event; 4122 } 4123 EXPORT_SYMBOL_GPL(ring_buffer_read); 4124 4125 /** 4126 * ring_buffer_size - return the size of the ring buffer (in bytes) 4127 * @buffer: The ring buffer. 4128 */ 4129 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4130 { 4131 /* 4132 * Earlier, this method returned 4133 * BUF_PAGE_SIZE * buffer->nr_pages 4134 * Since the nr_pages field is now removed, we have converted this to 4135 * return the per cpu buffer value. 4136 */ 4137 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4138 return 0; 4139 4140 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4141 } 4142 EXPORT_SYMBOL_GPL(ring_buffer_size); 4143 4144 static void 4145 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4146 { 4147 rb_head_page_deactivate(cpu_buffer); 4148 4149 cpu_buffer->head_page 4150 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4151 local_set(&cpu_buffer->head_page->write, 0); 4152 local_set(&cpu_buffer->head_page->entries, 0); 4153 local_set(&cpu_buffer->head_page->page->commit, 0); 4154 4155 cpu_buffer->head_page->read = 0; 4156 4157 cpu_buffer->tail_page = cpu_buffer->head_page; 4158 cpu_buffer->commit_page = cpu_buffer->head_page; 4159 4160 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4161 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4162 local_set(&cpu_buffer->reader_page->write, 0); 4163 local_set(&cpu_buffer->reader_page->entries, 0); 4164 local_set(&cpu_buffer->reader_page->page->commit, 0); 4165 cpu_buffer->reader_page->read = 0; 4166 4167 local_set(&cpu_buffer->entries_bytes, 0); 4168 local_set(&cpu_buffer->overrun, 0); 4169 local_set(&cpu_buffer->commit_overrun, 0); 4170 local_set(&cpu_buffer->dropped_events, 0); 4171 local_set(&cpu_buffer->entries, 0); 4172 local_set(&cpu_buffer->committing, 0); 4173 local_set(&cpu_buffer->commits, 0); 4174 cpu_buffer->read = 0; 4175 cpu_buffer->read_bytes = 0; 4176 4177 cpu_buffer->write_stamp = 0; 4178 cpu_buffer->read_stamp = 0; 4179 4180 cpu_buffer->lost_events = 0; 4181 cpu_buffer->last_overrun = 0; 4182 4183 rb_head_page_activate(cpu_buffer); 4184 } 4185 4186 /** 4187 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4188 * @buffer: The ring buffer to reset a per cpu buffer of 4189 * @cpu: The CPU buffer to be reset 4190 */ 4191 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4192 { 4193 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4194 unsigned long flags; 4195 4196 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4197 return; 4198 4199 atomic_inc(&buffer->resize_disabled); 4200 atomic_inc(&cpu_buffer->record_disabled); 4201 4202 /* Make sure all commits have finished */ 4203 synchronize_sched(); 4204 4205 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4206 4207 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4208 goto out; 4209 4210 arch_spin_lock(&cpu_buffer->lock); 4211 4212 rb_reset_cpu(cpu_buffer); 4213 4214 arch_spin_unlock(&cpu_buffer->lock); 4215 4216 out: 4217 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4218 4219 atomic_dec(&cpu_buffer->record_disabled); 4220 atomic_dec(&buffer->resize_disabled); 4221 } 4222 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4223 4224 /** 4225 * ring_buffer_reset - reset a ring buffer 4226 * @buffer: The ring buffer to reset all cpu buffers 4227 */ 4228 void ring_buffer_reset(struct ring_buffer *buffer) 4229 { 4230 int cpu; 4231 4232 for_each_buffer_cpu(buffer, cpu) 4233 ring_buffer_reset_cpu(buffer, cpu); 4234 } 4235 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4236 4237 /** 4238 * rind_buffer_empty - is the ring buffer empty? 4239 * @buffer: The ring buffer to test 4240 */ 4241 int ring_buffer_empty(struct ring_buffer *buffer) 4242 { 4243 struct ring_buffer_per_cpu *cpu_buffer; 4244 unsigned long flags; 4245 int dolock; 4246 int cpu; 4247 int ret; 4248 4249 dolock = rb_ok_to_lock(); 4250 4251 /* yes this is racy, but if you don't like the race, lock the buffer */ 4252 for_each_buffer_cpu(buffer, cpu) { 4253 cpu_buffer = buffer->buffers[cpu]; 4254 local_irq_save(flags); 4255 if (dolock) 4256 raw_spin_lock(&cpu_buffer->reader_lock); 4257 ret = rb_per_cpu_empty(cpu_buffer); 4258 if (dolock) 4259 raw_spin_unlock(&cpu_buffer->reader_lock); 4260 local_irq_restore(flags); 4261 4262 if (!ret) 4263 return 0; 4264 } 4265 4266 return 1; 4267 } 4268 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4269 4270 /** 4271 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4272 * @buffer: The ring buffer 4273 * @cpu: The CPU buffer to test 4274 */ 4275 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4276 { 4277 struct ring_buffer_per_cpu *cpu_buffer; 4278 unsigned long flags; 4279 int dolock; 4280 int ret; 4281 4282 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4283 return 1; 4284 4285 dolock = rb_ok_to_lock(); 4286 4287 cpu_buffer = buffer->buffers[cpu]; 4288 local_irq_save(flags); 4289 if (dolock) 4290 raw_spin_lock(&cpu_buffer->reader_lock); 4291 ret = rb_per_cpu_empty(cpu_buffer); 4292 if (dolock) 4293 raw_spin_unlock(&cpu_buffer->reader_lock); 4294 local_irq_restore(flags); 4295 4296 return ret; 4297 } 4298 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4299 4300 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4301 /** 4302 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4303 * @buffer_a: One buffer to swap with 4304 * @buffer_b: The other buffer to swap with 4305 * 4306 * This function is useful for tracers that want to take a "snapshot" 4307 * of a CPU buffer and has another back up buffer lying around. 4308 * it is expected that the tracer handles the cpu buffer not being 4309 * used at the moment. 4310 */ 4311 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4312 struct ring_buffer *buffer_b, int cpu) 4313 { 4314 struct ring_buffer_per_cpu *cpu_buffer_a; 4315 struct ring_buffer_per_cpu *cpu_buffer_b; 4316 int ret = -EINVAL; 4317 4318 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4319 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4320 goto out; 4321 4322 cpu_buffer_a = buffer_a->buffers[cpu]; 4323 cpu_buffer_b = buffer_b->buffers[cpu]; 4324 4325 /* At least make sure the two buffers are somewhat the same */ 4326 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4327 goto out; 4328 4329 ret = -EAGAIN; 4330 4331 if (ring_buffer_flags != RB_BUFFERS_ON) 4332 goto out; 4333 4334 if (atomic_read(&buffer_a->record_disabled)) 4335 goto out; 4336 4337 if (atomic_read(&buffer_b->record_disabled)) 4338 goto out; 4339 4340 if (atomic_read(&cpu_buffer_a->record_disabled)) 4341 goto out; 4342 4343 if (atomic_read(&cpu_buffer_b->record_disabled)) 4344 goto out; 4345 4346 /* 4347 * We can't do a synchronize_sched here because this 4348 * function can be called in atomic context. 4349 * Normally this will be called from the same CPU as cpu. 4350 * If not it's up to the caller to protect this. 4351 */ 4352 atomic_inc(&cpu_buffer_a->record_disabled); 4353 atomic_inc(&cpu_buffer_b->record_disabled); 4354 4355 ret = -EBUSY; 4356 if (local_read(&cpu_buffer_a->committing)) 4357 goto out_dec; 4358 if (local_read(&cpu_buffer_b->committing)) 4359 goto out_dec; 4360 4361 buffer_a->buffers[cpu] = cpu_buffer_b; 4362 buffer_b->buffers[cpu] = cpu_buffer_a; 4363 4364 cpu_buffer_b->buffer = buffer_a; 4365 cpu_buffer_a->buffer = buffer_b; 4366 4367 ret = 0; 4368 4369 out_dec: 4370 atomic_dec(&cpu_buffer_a->record_disabled); 4371 atomic_dec(&cpu_buffer_b->record_disabled); 4372 out: 4373 return ret; 4374 } 4375 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4376 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4377 4378 /** 4379 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4380 * @buffer: the buffer to allocate for. 4381 * @cpu: the cpu buffer to allocate. 4382 * 4383 * This function is used in conjunction with ring_buffer_read_page. 4384 * When reading a full page from the ring buffer, these functions 4385 * can be used to speed up the process. The calling function should 4386 * allocate a few pages first with this function. Then when it 4387 * needs to get pages from the ring buffer, it passes the result 4388 * of this function into ring_buffer_read_page, which will swap 4389 * the page that was allocated, with the read page of the buffer. 4390 * 4391 * Returns: 4392 * The page allocated, or NULL on error. 4393 */ 4394 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4395 { 4396 struct buffer_data_page *bpage; 4397 struct page *page; 4398 4399 page = alloc_pages_node(cpu_to_node(cpu), 4400 GFP_KERNEL | __GFP_NORETRY, 0); 4401 if (!page) 4402 return NULL; 4403 4404 bpage = page_address(page); 4405 4406 rb_init_page(bpage); 4407 4408 return bpage; 4409 } 4410 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4411 4412 /** 4413 * ring_buffer_free_read_page - free an allocated read page 4414 * @buffer: the buffer the page was allocate for 4415 * @data: the page to free 4416 * 4417 * Free a page allocated from ring_buffer_alloc_read_page. 4418 */ 4419 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4420 { 4421 free_page((unsigned long)data); 4422 } 4423 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4424 4425 /** 4426 * ring_buffer_read_page - extract a page from the ring buffer 4427 * @buffer: buffer to extract from 4428 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4429 * @len: amount to extract 4430 * @cpu: the cpu of the buffer to extract 4431 * @full: should the extraction only happen when the page is full. 4432 * 4433 * This function will pull out a page from the ring buffer and consume it. 4434 * @data_page must be the address of the variable that was returned 4435 * from ring_buffer_alloc_read_page. This is because the page might be used 4436 * to swap with a page in the ring buffer. 4437 * 4438 * for example: 4439 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4440 * if (!rpage) 4441 * return error; 4442 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4443 * if (ret >= 0) 4444 * process_page(rpage, ret); 4445 * 4446 * When @full is set, the function will not return true unless 4447 * the writer is off the reader page. 4448 * 4449 * Note: it is up to the calling functions to handle sleeps and wakeups. 4450 * The ring buffer can be used anywhere in the kernel and can not 4451 * blindly call wake_up. The layer that uses the ring buffer must be 4452 * responsible for that. 4453 * 4454 * Returns: 4455 * >=0 if data has been transferred, returns the offset of consumed data. 4456 * <0 if no data has been transferred. 4457 */ 4458 int ring_buffer_read_page(struct ring_buffer *buffer, 4459 void **data_page, size_t len, int cpu, int full) 4460 { 4461 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4462 struct ring_buffer_event *event; 4463 struct buffer_data_page *bpage; 4464 struct buffer_page *reader; 4465 unsigned long missed_events; 4466 unsigned long flags; 4467 unsigned int commit; 4468 unsigned int read; 4469 u64 save_timestamp; 4470 int ret = -1; 4471 4472 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4473 goto out; 4474 4475 /* 4476 * If len is not big enough to hold the page header, then 4477 * we can not copy anything. 4478 */ 4479 if (len <= BUF_PAGE_HDR_SIZE) 4480 goto out; 4481 4482 len -= BUF_PAGE_HDR_SIZE; 4483 4484 if (!data_page) 4485 goto out; 4486 4487 bpage = *data_page; 4488 if (!bpage) 4489 goto out; 4490 4491 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4492 4493 reader = rb_get_reader_page(cpu_buffer); 4494 if (!reader) 4495 goto out_unlock; 4496 4497 event = rb_reader_event(cpu_buffer); 4498 4499 read = reader->read; 4500 commit = rb_page_commit(reader); 4501 4502 /* Check if any events were dropped */ 4503 missed_events = cpu_buffer->lost_events; 4504 4505 /* 4506 * If this page has been partially read or 4507 * if len is not big enough to read the rest of the page or 4508 * a writer is still on the page, then 4509 * we must copy the data from the page to the buffer. 4510 * Otherwise, we can simply swap the page with the one passed in. 4511 */ 4512 if (read || (len < (commit - read)) || 4513 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4514 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4515 unsigned int rpos = read; 4516 unsigned int pos = 0; 4517 unsigned int size; 4518 4519 if (full) 4520 goto out_unlock; 4521 4522 if (len > (commit - read)) 4523 len = (commit - read); 4524 4525 /* Always keep the time extend and data together */ 4526 size = rb_event_ts_length(event); 4527 4528 if (len < size) 4529 goto out_unlock; 4530 4531 /* save the current timestamp, since the user will need it */ 4532 save_timestamp = cpu_buffer->read_stamp; 4533 4534 /* Need to copy one event at a time */ 4535 do { 4536 /* We need the size of one event, because 4537 * rb_advance_reader only advances by one event, 4538 * whereas rb_event_ts_length may include the size of 4539 * one or two events. 4540 * We have already ensured there's enough space if this 4541 * is a time extend. */ 4542 size = rb_event_length(event); 4543 memcpy(bpage->data + pos, rpage->data + rpos, size); 4544 4545 len -= size; 4546 4547 rb_advance_reader(cpu_buffer); 4548 rpos = reader->read; 4549 pos += size; 4550 4551 if (rpos >= commit) 4552 break; 4553 4554 event = rb_reader_event(cpu_buffer); 4555 /* Always keep the time extend and data together */ 4556 size = rb_event_ts_length(event); 4557 } while (len >= size); 4558 4559 /* update bpage */ 4560 local_set(&bpage->commit, pos); 4561 bpage->time_stamp = save_timestamp; 4562 4563 /* we copied everything to the beginning */ 4564 read = 0; 4565 } else { 4566 /* update the entry counter */ 4567 cpu_buffer->read += rb_page_entries(reader); 4568 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4569 4570 /* swap the pages */ 4571 rb_init_page(bpage); 4572 bpage = reader->page; 4573 reader->page = *data_page; 4574 local_set(&reader->write, 0); 4575 local_set(&reader->entries, 0); 4576 reader->read = 0; 4577 *data_page = bpage; 4578 4579 /* 4580 * Use the real_end for the data size, 4581 * This gives us a chance to store the lost events 4582 * on the page. 4583 */ 4584 if (reader->real_end) 4585 local_set(&bpage->commit, reader->real_end); 4586 } 4587 ret = read; 4588 4589 cpu_buffer->lost_events = 0; 4590 4591 commit = local_read(&bpage->commit); 4592 /* 4593 * Set a flag in the commit field if we lost events 4594 */ 4595 if (missed_events) { 4596 /* If there is room at the end of the page to save the 4597 * missed events, then record it there. 4598 */ 4599 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4600 memcpy(&bpage->data[commit], &missed_events, 4601 sizeof(missed_events)); 4602 local_add(RB_MISSED_STORED, &bpage->commit); 4603 commit += sizeof(missed_events); 4604 } 4605 local_add(RB_MISSED_EVENTS, &bpage->commit); 4606 } 4607 4608 /* 4609 * This page may be off to user land. Zero it out here. 4610 */ 4611 if (commit < BUF_PAGE_SIZE) 4612 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4613 4614 out_unlock: 4615 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4616 4617 out: 4618 return ret; 4619 } 4620 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4621 4622 #ifdef CONFIG_HOTPLUG_CPU 4623 static int rb_cpu_notify(struct notifier_block *self, 4624 unsigned long action, void *hcpu) 4625 { 4626 struct ring_buffer *buffer = 4627 container_of(self, struct ring_buffer, cpu_notify); 4628 long cpu = (long)hcpu; 4629 int cpu_i, nr_pages_same; 4630 unsigned int nr_pages; 4631 4632 switch (action) { 4633 case CPU_UP_PREPARE: 4634 case CPU_UP_PREPARE_FROZEN: 4635 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4636 return NOTIFY_OK; 4637 4638 nr_pages = 0; 4639 nr_pages_same = 1; 4640 /* check if all cpu sizes are same */ 4641 for_each_buffer_cpu(buffer, cpu_i) { 4642 /* fill in the size from first enabled cpu */ 4643 if (nr_pages == 0) 4644 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4645 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4646 nr_pages_same = 0; 4647 break; 4648 } 4649 } 4650 /* allocate minimum pages, user can later expand it */ 4651 if (!nr_pages_same) 4652 nr_pages = 2; 4653 buffer->buffers[cpu] = 4654 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4655 if (!buffer->buffers[cpu]) { 4656 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4657 cpu); 4658 return NOTIFY_OK; 4659 } 4660 smp_wmb(); 4661 cpumask_set_cpu(cpu, buffer->cpumask); 4662 break; 4663 case CPU_DOWN_PREPARE: 4664 case CPU_DOWN_PREPARE_FROZEN: 4665 /* 4666 * Do nothing. 4667 * If we were to free the buffer, then the user would 4668 * lose any trace that was in the buffer. 4669 */ 4670 break; 4671 default: 4672 break; 4673 } 4674 return NOTIFY_OK; 4675 } 4676 #endif 4677 4678 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4679 /* 4680 * This is a basic integrity check of the ring buffer. 4681 * Late in the boot cycle this test will run when configured in. 4682 * It will kick off a thread per CPU that will go into a loop 4683 * writing to the per cpu ring buffer various sizes of data. 4684 * Some of the data will be large items, some small. 4685 * 4686 * Another thread is created that goes into a spin, sending out 4687 * IPIs to the other CPUs to also write into the ring buffer. 4688 * this is to test the nesting ability of the buffer. 4689 * 4690 * Basic stats are recorded and reported. If something in the 4691 * ring buffer should happen that's not expected, a big warning 4692 * is displayed and all ring buffers are disabled. 4693 */ 4694 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4695 4696 struct rb_test_data { 4697 struct ring_buffer *buffer; 4698 unsigned long events; 4699 unsigned long bytes_written; 4700 unsigned long bytes_alloc; 4701 unsigned long bytes_dropped; 4702 unsigned long events_nested; 4703 unsigned long bytes_written_nested; 4704 unsigned long bytes_alloc_nested; 4705 unsigned long bytes_dropped_nested; 4706 int min_size_nested; 4707 int max_size_nested; 4708 int max_size; 4709 int min_size; 4710 int cpu; 4711 int cnt; 4712 }; 4713 4714 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4715 4716 /* 1 meg per cpu */ 4717 #define RB_TEST_BUFFER_SIZE 1048576 4718 4719 static char rb_string[] __initdata = 4720 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4721 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4722 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4723 4724 static bool rb_test_started __initdata; 4725 4726 struct rb_item { 4727 int size; 4728 char str[]; 4729 }; 4730 4731 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4732 { 4733 struct ring_buffer_event *event; 4734 struct rb_item *item; 4735 bool started; 4736 int event_len; 4737 int size; 4738 int len; 4739 int cnt; 4740 4741 /* Have nested writes different that what is written */ 4742 cnt = data->cnt + (nested ? 27 : 0); 4743 4744 /* Multiply cnt by ~e, to make some unique increment */ 4745 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4746 4747 len = size + sizeof(struct rb_item); 4748 4749 started = rb_test_started; 4750 /* read rb_test_started before checking buffer enabled */ 4751 smp_rmb(); 4752 4753 event = ring_buffer_lock_reserve(data->buffer, len); 4754 if (!event) { 4755 /* Ignore dropped events before test starts. */ 4756 if (started) { 4757 if (nested) 4758 data->bytes_dropped += len; 4759 else 4760 data->bytes_dropped_nested += len; 4761 } 4762 return len; 4763 } 4764 4765 event_len = ring_buffer_event_length(event); 4766 4767 if (RB_WARN_ON(data->buffer, event_len < len)) 4768 goto out; 4769 4770 item = ring_buffer_event_data(event); 4771 item->size = size; 4772 memcpy(item->str, rb_string, size); 4773 4774 if (nested) { 4775 data->bytes_alloc_nested += event_len; 4776 data->bytes_written_nested += len; 4777 data->events_nested++; 4778 if (!data->min_size_nested || len < data->min_size_nested) 4779 data->min_size_nested = len; 4780 if (len > data->max_size_nested) 4781 data->max_size_nested = len; 4782 } else { 4783 data->bytes_alloc += event_len; 4784 data->bytes_written += len; 4785 data->events++; 4786 if (!data->min_size || len < data->min_size) 4787 data->max_size = len; 4788 if (len > data->max_size) 4789 data->max_size = len; 4790 } 4791 4792 out: 4793 ring_buffer_unlock_commit(data->buffer, event); 4794 4795 return 0; 4796 } 4797 4798 static __init int rb_test(void *arg) 4799 { 4800 struct rb_test_data *data = arg; 4801 4802 while (!kthread_should_stop()) { 4803 rb_write_something(data, false); 4804 data->cnt++; 4805 4806 set_current_state(TASK_INTERRUPTIBLE); 4807 /* Now sleep between a min of 100-300us and a max of 1ms */ 4808 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4809 } 4810 4811 return 0; 4812 } 4813 4814 static __init void rb_ipi(void *ignore) 4815 { 4816 struct rb_test_data *data; 4817 int cpu = smp_processor_id(); 4818 4819 data = &rb_data[cpu]; 4820 rb_write_something(data, true); 4821 } 4822 4823 static __init int rb_hammer_test(void *arg) 4824 { 4825 while (!kthread_should_stop()) { 4826 4827 /* Send an IPI to all cpus to write data! */ 4828 smp_call_function(rb_ipi, NULL, 1); 4829 /* No sleep, but for non preempt, let others run */ 4830 schedule(); 4831 } 4832 4833 return 0; 4834 } 4835 4836 static __init int test_ringbuffer(void) 4837 { 4838 struct task_struct *rb_hammer; 4839 struct ring_buffer *buffer; 4840 int cpu; 4841 int ret = 0; 4842 4843 pr_info("Running ring buffer tests...\n"); 4844 4845 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4846 if (WARN_ON(!buffer)) 4847 return 0; 4848 4849 /* Disable buffer so that threads can't write to it yet */ 4850 ring_buffer_record_off(buffer); 4851 4852 for_each_online_cpu(cpu) { 4853 rb_data[cpu].buffer = buffer; 4854 rb_data[cpu].cpu = cpu; 4855 rb_data[cpu].cnt = cpu; 4856 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4857 "rbtester/%d", cpu); 4858 if (WARN_ON(!rb_threads[cpu])) { 4859 pr_cont("FAILED\n"); 4860 ret = -1; 4861 goto out_free; 4862 } 4863 4864 kthread_bind(rb_threads[cpu], cpu); 4865 wake_up_process(rb_threads[cpu]); 4866 } 4867 4868 /* Now create the rb hammer! */ 4869 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4870 if (WARN_ON(!rb_hammer)) { 4871 pr_cont("FAILED\n"); 4872 ret = -1; 4873 goto out_free; 4874 } 4875 4876 ring_buffer_record_on(buffer); 4877 /* 4878 * Show buffer is enabled before setting rb_test_started. 4879 * Yes there's a small race window where events could be 4880 * dropped and the thread wont catch it. But when a ring 4881 * buffer gets enabled, there will always be some kind of 4882 * delay before other CPUs see it. Thus, we don't care about 4883 * those dropped events. We care about events dropped after 4884 * the threads see that the buffer is active. 4885 */ 4886 smp_wmb(); 4887 rb_test_started = true; 4888 4889 set_current_state(TASK_INTERRUPTIBLE); 4890 /* Just run for 10 seconds */; 4891 schedule_timeout(10 * HZ); 4892 4893 kthread_stop(rb_hammer); 4894 4895 out_free: 4896 for_each_online_cpu(cpu) { 4897 if (!rb_threads[cpu]) 4898 break; 4899 kthread_stop(rb_threads[cpu]); 4900 } 4901 if (ret) { 4902 ring_buffer_free(buffer); 4903 return ret; 4904 } 4905 4906 /* Report! */ 4907 pr_info("finished\n"); 4908 for_each_online_cpu(cpu) { 4909 struct ring_buffer_event *event; 4910 struct rb_test_data *data = &rb_data[cpu]; 4911 struct rb_item *item; 4912 unsigned long total_events; 4913 unsigned long total_dropped; 4914 unsigned long total_written; 4915 unsigned long total_alloc; 4916 unsigned long total_read = 0; 4917 unsigned long total_size = 0; 4918 unsigned long total_len = 0; 4919 unsigned long total_lost = 0; 4920 unsigned long lost; 4921 int big_event_size; 4922 int small_event_size; 4923 4924 ret = -1; 4925 4926 total_events = data->events + data->events_nested; 4927 total_written = data->bytes_written + data->bytes_written_nested; 4928 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4929 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4930 4931 big_event_size = data->max_size + data->max_size_nested; 4932 small_event_size = data->min_size + data->min_size_nested; 4933 4934 pr_info("CPU %d:\n", cpu); 4935 pr_info(" events: %ld\n", total_events); 4936 pr_info(" dropped bytes: %ld\n", total_dropped); 4937 pr_info(" alloced bytes: %ld\n", total_alloc); 4938 pr_info(" written bytes: %ld\n", total_written); 4939 pr_info(" biggest event: %d\n", big_event_size); 4940 pr_info(" smallest event: %d\n", small_event_size); 4941 4942 if (RB_WARN_ON(buffer, total_dropped)) 4943 break; 4944 4945 ret = 0; 4946 4947 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4948 total_lost += lost; 4949 item = ring_buffer_event_data(event); 4950 total_len += ring_buffer_event_length(event); 4951 total_size += item->size + sizeof(struct rb_item); 4952 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4953 pr_info("FAILED!\n"); 4954 pr_info("buffer had: %.*s\n", item->size, item->str); 4955 pr_info("expected: %.*s\n", item->size, rb_string); 4956 RB_WARN_ON(buffer, 1); 4957 ret = -1; 4958 break; 4959 } 4960 total_read++; 4961 } 4962 if (ret) 4963 break; 4964 4965 ret = -1; 4966 4967 pr_info(" read events: %ld\n", total_read); 4968 pr_info(" lost events: %ld\n", total_lost); 4969 pr_info(" total events: %ld\n", total_lost + total_read); 4970 pr_info(" recorded len bytes: %ld\n", total_len); 4971 pr_info(" recorded size bytes: %ld\n", total_size); 4972 if (total_lost) 4973 pr_info(" With dropped events, record len and size may not match\n" 4974 " alloced and written from above\n"); 4975 if (!total_lost) { 4976 if (RB_WARN_ON(buffer, total_len != total_alloc || 4977 total_size != total_written)) 4978 break; 4979 } 4980 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4981 break; 4982 4983 ret = 0; 4984 } 4985 if (!ret) 4986 pr_info("Ring buffer PASSED!\n"); 4987 4988 ring_buffer_free(buffer); 4989 return 0; 4990 } 4991 4992 late_initcall(test_ringbuffer); 4993 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4994