xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 6774def6)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	int ret;
38 
39 	ret = trace_seq_puts(s, "# compressed entry header\n");
40 	ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	ret = trace_seq_putc(s, '\n');
44 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			       RINGBUF_TYPE_PADDING);
46 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			       RINGBUF_TYPE_TIME_EXTEND);
48 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return ret;
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139 
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150 
151 enum {
152 	RB_BUFFERS_ON_BIT	= 0,
153 	RB_BUFFERS_DISABLED_BIT	= 1,
154 };
155 
156 enum {
157 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
158 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160 
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162 
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF		(1 << 20)
165 
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167 
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178 
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT		4U
181 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
183 
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT	0
186 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT	1
189 # define RB_ARCH_ALIGNMENT		8U
190 #endif
191 
192 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
193 
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196 
197 enum {
198 	RB_LEN_TIME_EXTEND = 8,
199 	RB_LEN_TIME_STAMP = 16,
200 };
201 
202 #define skip_time_extend(event) \
203 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204 
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209 
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 	/* padding has a NULL time_delta */
213 	event->type_len = RINGBUF_TYPE_PADDING;
214 	event->time_delta = 0;
215 }
216 
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 	unsigned length;
221 
222 	if (event->type_len)
223 		length = event->type_len * RB_ALIGNMENT;
224 	else
225 		length = event->array[0];
226 	return length + RB_EVNT_HDR_SIZE;
227 }
228 
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 	switch (event->type_len) {
238 	case RINGBUF_TYPE_PADDING:
239 		if (rb_null_event(event))
240 			/* undefined */
241 			return -1;
242 		return  event->array[0] + RB_EVNT_HDR_SIZE;
243 
244 	case RINGBUF_TYPE_TIME_EXTEND:
245 		return RB_LEN_TIME_EXTEND;
246 
247 	case RINGBUF_TYPE_TIME_STAMP:
248 		return RB_LEN_TIME_STAMP;
249 
250 	case RINGBUF_TYPE_DATA:
251 		return rb_event_data_length(event);
252 	default:
253 		BUG();
254 	}
255 	/* not hit */
256 	return 0;
257 }
258 
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 	unsigned len = 0;
267 
268 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 		/* time extends include the data event after it */
270 		len = RB_LEN_TIME_EXTEND;
271 		event = skip_time_extend(event);
272 	}
273 	return len + rb_event_length(event);
274 }
275 
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 	unsigned length;
289 
290 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 		event = skip_time_extend(event);
292 
293 	length = rb_event_length(event);
294 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 		return length;
296 	length -= RB_EVNT_HDR_SIZE;
297 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299 	return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302 
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 		event = skip_time_extend(event);
309 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 	/* If length is in len field, then array[0] has the data */
311 	if (event->type_len)
312 		return (void *)&event->array[0];
313 	/* Otherwise length is in array[0] and array[1] has the data */
314 	return (void *)&event->array[1];
315 }
316 
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 	return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326 
327 #define for_each_buffer_cpu(buffer, cpu)		\
328 	for_each_cpu(cpu, buffer->cpumask)
329 
330 #define TS_SHIFT	27
331 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST	(~TS_MASK)
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 struct buffer_data_page {
340 	u64		 time_stamp;	/* page time stamp */
341 	local_t		 commit;	/* write committed index */
342 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
343 };
344 
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354 	struct list_head list;		/* list of buffer pages */
355 	local_t		 write;		/* index for next write */
356 	unsigned	 read;		/* index for next read */
357 	local_t		 entries;	/* entries on this page */
358 	unsigned long	 real_end;	/* real end of data */
359 	struct buffer_data_page *page;	/* Actual data page */
360 };
361 
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK		0xfffff
375 #define RB_WRITE_INTCNT		(1 << 20)
376 
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 	local_set(&bpage->commit, 0);
380 }
381 
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390 	return local_read(&((struct buffer_data_page *)page)->commit)
391 		+ BUF_PAGE_HDR_SIZE;
392 }
393 
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 	free_page((unsigned long)bpage->page);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409 	if (delta & TS_DELTA_TEST)
410 		return 1;
411 	return 0;
412 }
413 
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415 
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418 
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 	struct buffer_data_page field;
422 	int ret;
423 
424 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
426 			       (unsigned int)sizeof(field.time_stamp),
427 			       (unsigned int)is_signed_type(u64));
428 
429 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       (unsigned int)sizeof(field.commit),
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), commit),
438 			       1,
439 			       (unsigned int)is_signed_type(long));
440 
441 	ret = trace_seq_printf(s, "\tfield: char data;\t"
442 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 			       (unsigned int)offsetof(typeof(field), data),
444 			       (unsigned int)BUF_PAGE_SIZE,
445 			       (unsigned int)is_signed_type(char));
446 
447 	return ret;
448 }
449 
450 struct rb_irq_work {
451 	struct irq_work			work;
452 	wait_queue_head_t		waiters;
453 	bool				waiters_pending;
454 };
455 
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460 	int				cpu;
461 	atomic_t			record_disabled;
462 	struct ring_buffer		*buffer;
463 	raw_spinlock_t			reader_lock;	/* serialize readers */
464 	arch_spinlock_t			lock;
465 	struct lock_class_key		lock_key;
466 	unsigned int			nr_pages;
467 	struct list_head		*pages;
468 	struct buffer_page		*head_page;	/* read from head */
469 	struct buffer_page		*tail_page;	/* write to tail */
470 	struct buffer_page		*commit_page;	/* committed pages */
471 	struct buffer_page		*reader_page;
472 	unsigned long			lost_events;
473 	unsigned long			last_overrun;
474 	local_t				entries_bytes;
475 	local_t				entries;
476 	local_t				overrun;
477 	local_t				commit_overrun;
478 	local_t				dropped_events;
479 	local_t				committing;
480 	local_t				commits;
481 	unsigned long			read;
482 	unsigned long			read_bytes;
483 	u64				write_stamp;
484 	u64				read_stamp;
485 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
486 	int				nr_pages_to_update;
487 	struct list_head		new_pages; /* new pages to add */
488 	struct work_struct		update_pages_work;
489 	struct completion		update_done;
490 
491 	struct rb_irq_work		irq_work;
492 };
493 
494 struct ring_buffer {
495 	unsigned			flags;
496 	int				cpus;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	cpumask_var_t			cpumask;
500 
501 	struct lock_class_key		*reader_lock_key;
502 
503 	struct mutex			mutex;
504 
505 	struct ring_buffer_per_cpu	**buffers;
506 
507 #ifdef CONFIG_HOTPLUG_CPU
508 	struct notifier_block		cpu_notify;
509 #endif
510 	u64				(*clock)(void);
511 
512 	struct rb_irq_work		irq_work;
513 };
514 
515 struct ring_buffer_iter {
516 	struct ring_buffer_per_cpu	*cpu_buffer;
517 	unsigned long			head;
518 	struct buffer_page		*head_page;
519 	struct buffer_page		*cache_reader_page;
520 	unsigned long			cache_read;
521 	u64				read_stamp;
522 };
523 
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533 
534 	wake_up_all(&rbwork->waiters);
535 }
536 
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
542  *
543  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
544  * as data is added to any of the @buffer's cpu buffers. Otherwise
545  * it will wait for data to be added to a specific cpu buffer.
546  */
547 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
548 {
549 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
550 	DEFINE_WAIT(wait);
551 	struct rb_irq_work *work;
552 	int ret = 0;
553 
554 	/*
555 	 * Depending on what the caller is waiting for, either any
556 	 * data in any cpu buffer, or a specific buffer, put the
557 	 * caller on the appropriate wait queue.
558 	 */
559 	if (cpu == RING_BUFFER_ALL_CPUS)
560 		work = &buffer->irq_work;
561 	else {
562 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
563 			return -ENODEV;
564 		cpu_buffer = buffer->buffers[cpu];
565 		work = &cpu_buffer->irq_work;
566 	}
567 
568 
569 	while (true) {
570 		prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
571 
572 		/*
573 		 * The events can happen in critical sections where
574 		 * checking a work queue can cause deadlocks.
575 		 * After adding a task to the queue, this flag is set
576 		 * only to notify events to try to wake up the queue
577 		 * using irq_work.
578 		 *
579 		 * We don't clear it even if the buffer is no longer
580 		 * empty. The flag only causes the next event to run
581 		 * irq_work to do the work queue wake up. The worse
582 		 * that can happen if we race with !trace_empty() is that
583 		 * an event will cause an irq_work to try to wake up
584 		 * an empty queue.
585 		 *
586 		 * There's no reason to protect this flag either, as
587 		 * the work queue and irq_work logic will do the necessary
588 		 * synchronization for the wake ups. The only thing
589 		 * that is necessary is that the wake up happens after
590 		 * a task has been queued. It's OK for spurious wake ups.
591 		 */
592 		work->waiters_pending = true;
593 
594 		if (signal_pending(current)) {
595 			ret = -EINTR;
596 			break;
597 		}
598 
599 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
600 			break;
601 
602 		if (cpu != RING_BUFFER_ALL_CPUS &&
603 		    !ring_buffer_empty_cpu(buffer, cpu)) {
604 			unsigned long flags;
605 			bool pagebusy;
606 
607 			if (!full)
608 				break;
609 
610 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
611 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
612 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
613 
614 			if (!pagebusy)
615 				break;
616 		}
617 
618 		schedule();
619 	}
620 
621 	finish_wait(&work->waiters, &wait);
622 
623 	return ret;
624 }
625 
626 /**
627  * ring_buffer_poll_wait - poll on buffer input
628  * @buffer: buffer to wait on
629  * @cpu: the cpu buffer to wait on
630  * @filp: the file descriptor
631  * @poll_table: The poll descriptor
632  *
633  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
634  * as data is added to any of the @buffer's cpu buffers. Otherwise
635  * it will wait for data to be added to a specific cpu buffer.
636  *
637  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
638  * zero otherwise.
639  */
640 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
641 			  struct file *filp, poll_table *poll_table)
642 {
643 	struct ring_buffer_per_cpu *cpu_buffer;
644 	struct rb_irq_work *work;
645 
646 	if (cpu == RING_BUFFER_ALL_CPUS)
647 		work = &buffer->irq_work;
648 	else {
649 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
650 			return -EINVAL;
651 
652 		cpu_buffer = buffer->buffers[cpu];
653 		work = &cpu_buffer->irq_work;
654 	}
655 
656 	poll_wait(filp, &work->waiters, poll_table);
657 	work->waiters_pending = true;
658 	/*
659 	 * There's a tight race between setting the waiters_pending and
660 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
661 	 * is set, the next event will wake the task up, but we can get stuck
662 	 * if there's only a single event in.
663 	 *
664 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
665 	 * but adding a memory barrier to all events will cause too much of a
666 	 * performance hit in the fast path.  We only need a memory barrier when
667 	 * the buffer goes from empty to having content.  But as this race is
668 	 * extremely small, and it's not a problem if another event comes in, we
669 	 * will fix it later.
670 	 */
671 	smp_mb();
672 
673 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
674 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
675 		return POLLIN | POLLRDNORM;
676 	return 0;
677 }
678 
679 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
680 #define RB_WARN_ON(b, cond)						\
681 	({								\
682 		int _____ret = unlikely(cond);				\
683 		if (_____ret) {						\
684 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
685 				struct ring_buffer_per_cpu *__b =	\
686 					(void *)b;			\
687 				atomic_inc(&__b->buffer->record_disabled); \
688 			} else						\
689 				atomic_inc(&b->record_disabled);	\
690 			WARN_ON(1);					\
691 		}							\
692 		_____ret;						\
693 	})
694 
695 /* Up this if you want to test the TIME_EXTENTS and normalization */
696 #define DEBUG_SHIFT 0
697 
698 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
699 {
700 	/* shift to debug/test normalization and TIME_EXTENTS */
701 	return buffer->clock() << DEBUG_SHIFT;
702 }
703 
704 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
705 {
706 	u64 time;
707 
708 	preempt_disable_notrace();
709 	time = rb_time_stamp(buffer);
710 	preempt_enable_no_resched_notrace();
711 
712 	return time;
713 }
714 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
715 
716 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
717 				      int cpu, u64 *ts)
718 {
719 	/* Just stupid testing the normalize function and deltas */
720 	*ts >>= DEBUG_SHIFT;
721 }
722 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
723 
724 /*
725  * Making the ring buffer lockless makes things tricky.
726  * Although writes only happen on the CPU that they are on,
727  * and they only need to worry about interrupts. Reads can
728  * happen on any CPU.
729  *
730  * The reader page is always off the ring buffer, but when the
731  * reader finishes with a page, it needs to swap its page with
732  * a new one from the buffer. The reader needs to take from
733  * the head (writes go to the tail). But if a writer is in overwrite
734  * mode and wraps, it must push the head page forward.
735  *
736  * Here lies the problem.
737  *
738  * The reader must be careful to replace only the head page, and
739  * not another one. As described at the top of the file in the
740  * ASCII art, the reader sets its old page to point to the next
741  * page after head. It then sets the page after head to point to
742  * the old reader page. But if the writer moves the head page
743  * during this operation, the reader could end up with the tail.
744  *
745  * We use cmpxchg to help prevent this race. We also do something
746  * special with the page before head. We set the LSB to 1.
747  *
748  * When the writer must push the page forward, it will clear the
749  * bit that points to the head page, move the head, and then set
750  * the bit that points to the new head page.
751  *
752  * We also don't want an interrupt coming in and moving the head
753  * page on another writer. Thus we use the second LSB to catch
754  * that too. Thus:
755  *
756  * head->list->prev->next        bit 1          bit 0
757  *                              -------        -------
758  * Normal page                     0              0
759  * Points to head page             0              1
760  * New head page                   1              0
761  *
762  * Note we can not trust the prev pointer of the head page, because:
763  *
764  * +----+       +-----+        +-----+
765  * |    |------>|  T  |---X--->|  N  |
766  * |    |<------|     |        |     |
767  * +----+       +-----+        +-----+
768  *   ^                           ^ |
769  *   |          +-----+          | |
770  *   +----------|  R  |----------+ |
771  *              |     |<-----------+
772  *              +-----+
773  *
774  * Key:  ---X-->  HEAD flag set in pointer
775  *         T      Tail page
776  *         R      Reader page
777  *         N      Next page
778  *
779  * (see __rb_reserve_next() to see where this happens)
780  *
781  *  What the above shows is that the reader just swapped out
782  *  the reader page with a page in the buffer, but before it
783  *  could make the new header point back to the new page added
784  *  it was preempted by a writer. The writer moved forward onto
785  *  the new page added by the reader and is about to move forward
786  *  again.
787  *
788  *  You can see, it is legitimate for the previous pointer of
789  *  the head (or any page) not to point back to itself. But only
790  *  temporarially.
791  */
792 
793 #define RB_PAGE_NORMAL		0UL
794 #define RB_PAGE_HEAD		1UL
795 #define RB_PAGE_UPDATE		2UL
796 
797 
798 #define RB_FLAG_MASK		3UL
799 
800 /* PAGE_MOVED is not part of the mask */
801 #define RB_PAGE_MOVED		4UL
802 
803 /*
804  * rb_list_head - remove any bit
805  */
806 static struct list_head *rb_list_head(struct list_head *list)
807 {
808 	unsigned long val = (unsigned long)list;
809 
810 	return (struct list_head *)(val & ~RB_FLAG_MASK);
811 }
812 
813 /*
814  * rb_is_head_page - test if the given page is the head page
815  *
816  * Because the reader may move the head_page pointer, we can
817  * not trust what the head page is (it may be pointing to
818  * the reader page). But if the next page is a header page,
819  * its flags will be non zero.
820  */
821 static inline int
822 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
823 		struct buffer_page *page, struct list_head *list)
824 {
825 	unsigned long val;
826 
827 	val = (unsigned long)list->next;
828 
829 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
830 		return RB_PAGE_MOVED;
831 
832 	return val & RB_FLAG_MASK;
833 }
834 
835 /*
836  * rb_is_reader_page
837  *
838  * The unique thing about the reader page, is that, if the
839  * writer is ever on it, the previous pointer never points
840  * back to the reader page.
841  */
842 static int rb_is_reader_page(struct buffer_page *page)
843 {
844 	struct list_head *list = page->list.prev;
845 
846 	return rb_list_head(list->next) != &page->list;
847 }
848 
849 /*
850  * rb_set_list_to_head - set a list_head to be pointing to head.
851  */
852 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
853 				struct list_head *list)
854 {
855 	unsigned long *ptr;
856 
857 	ptr = (unsigned long *)&list->next;
858 	*ptr |= RB_PAGE_HEAD;
859 	*ptr &= ~RB_PAGE_UPDATE;
860 }
861 
862 /*
863  * rb_head_page_activate - sets up head page
864  */
865 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
866 {
867 	struct buffer_page *head;
868 
869 	head = cpu_buffer->head_page;
870 	if (!head)
871 		return;
872 
873 	/*
874 	 * Set the previous list pointer to have the HEAD flag.
875 	 */
876 	rb_set_list_to_head(cpu_buffer, head->list.prev);
877 }
878 
879 static void rb_list_head_clear(struct list_head *list)
880 {
881 	unsigned long *ptr = (unsigned long *)&list->next;
882 
883 	*ptr &= ~RB_FLAG_MASK;
884 }
885 
886 /*
887  * rb_head_page_dactivate - clears head page ptr (for free list)
888  */
889 static void
890 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
891 {
892 	struct list_head *hd;
893 
894 	/* Go through the whole list and clear any pointers found. */
895 	rb_list_head_clear(cpu_buffer->pages);
896 
897 	list_for_each(hd, cpu_buffer->pages)
898 		rb_list_head_clear(hd);
899 }
900 
901 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
902 			    struct buffer_page *head,
903 			    struct buffer_page *prev,
904 			    int old_flag, int new_flag)
905 {
906 	struct list_head *list;
907 	unsigned long val = (unsigned long)&head->list;
908 	unsigned long ret;
909 
910 	list = &prev->list;
911 
912 	val &= ~RB_FLAG_MASK;
913 
914 	ret = cmpxchg((unsigned long *)&list->next,
915 		      val | old_flag, val | new_flag);
916 
917 	/* check if the reader took the page */
918 	if ((ret & ~RB_FLAG_MASK) != val)
919 		return RB_PAGE_MOVED;
920 
921 	return ret & RB_FLAG_MASK;
922 }
923 
924 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
925 				   struct buffer_page *head,
926 				   struct buffer_page *prev,
927 				   int old_flag)
928 {
929 	return rb_head_page_set(cpu_buffer, head, prev,
930 				old_flag, RB_PAGE_UPDATE);
931 }
932 
933 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
934 				 struct buffer_page *head,
935 				 struct buffer_page *prev,
936 				 int old_flag)
937 {
938 	return rb_head_page_set(cpu_buffer, head, prev,
939 				old_flag, RB_PAGE_HEAD);
940 }
941 
942 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
943 				   struct buffer_page *head,
944 				   struct buffer_page *prev,
945 				   int old_flag)
946 {
947 	return rb_head_page_set(cpu_buffer, head, prev,
948 				old_flag, RB_PAGE_NORMAL);
949 }
950 
951 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
952 			       struct buffer_page **bpage)
953 {
954 	struct list_head *p = rb_list_head((*bpage)->list.next);
955 
956 	*bpage = list_entry(p, struct buffer_page, list);
957 }
958 
959 static struct buffer_page *
960 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
961 {
962 	struct buffer_page *head;
963 	struct buffer_page *page;
964 	struct list_head *list;
965 	int i;
966 
967 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
968 		return NULL;
969 
970 	/* sanity check */
971 	list = cpu_buffer->pages;
972 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
973 		return NULL;
974 
975 	page = head = cpu_buffer->head_page;
976 	/*
977 	 * It is possible that the writer moves the header behind
978 	 * where we started, and we miss in one loop.
979 	 * A second loop should grab the header, but we'll do
980 	 * three loops just because I'm paranoid.
981 	 */
982 	for (i = 0; i < 3; i++) {
983 		do {
984 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
985 				cpu_buffer->head_page = page;
986 				return page;
987 			}
988 			rb_inc_page(cpu_buffer, &page);
989 		} while (page != head);
990 	}
991 
992 	RB_WARN_ON(cpu_buffer, 1);
993 
994 	return NULL;
995 }
996 
997 static int rb_head_page_replace(struct buffer_page *old,
998 				struct buffer_page *new)
999 {
1000 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1001 	unsigned long val;
1002 	unsigned long ret;
1003 
1004 	val = *ptr & ~RB_FLAG_MASK;
1005 	val |= RB_PAGE_HEAD;
1006 
1007 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1008 
1009 	return ret == val;
1010 }
1011 
1012 /*
1013  * rb_tail_page_update - move the tail page forward
1014  *
1015  * Returns 1 if moved tail page, 0 if someone else did.
1016  */
1017 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1018 			       struct buffer_page *tail_page,
1019 			       struct buffer_page *next_page)
1020 {
1021 	struct buffer_page *old_tail;
1022 	unsigned long old_entries;
1023 	unsigned long old_write;
1024 	int ret = 0;
1025 
1026 	/*
1027 	 * The tail page now needs to be moved forward.
1028 	 *
1029 	 * We need to reset the tail page, but without messing
1030 	 * with possible erasing of data brought in by interrupts
1031 	 * that have moved the tail page and are currently on it.
1032 	 *
1033 	 * We add a counter to the write field to denote this.
1034 	 */
1035 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1036 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1037 
1038 	/*
1039 	 * Just make sure we have seen our old_write and synchronize
1040 	 * with any interrupts that come in.
1041 	 */
1042 	barrier();
1043 
1044 	/*
1045 	 * If the tail page is still the same as what we think
1046 	 * it is, then it is up to us to update the tail
1047 	 * pointer.
1048 	 */
1049 	if (tail_page == cpu_buffer->tail_page) {
1050 		/* Zero the write counter */
1051 		unsigned long val = old_write & ~RB_WRITE_MASK;
1052 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1053 
1054 		/*
1055 		 * This will only succeed if an interrupt did
1056 		 * not come in and change it. In which case, we
1057 		 * do not want to modify it.
1058 		 *
1059 		 * We add (void) to let the compiler know that we do not care
1060 		 * about the return value of these functions. We use the
1061 		 * cmpxchg to only update if an interrupt did not already
1062 		 * do it for us. If the cmpxchg fails, we don't care.
1063 		 */
1064 		(void)local_cmpxchg(&next_page->write, old_write, val);
1065 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1066 
1067 		/*
1068 		 * No need to worry about races with clearing out the commit.
1069 		 * it only can increment when a commit takes place. But that
1070 		 * only happens in the outer most nested commit.
1071 		 */
1072 		local_set(&next_page->page->commit, 0);
1073 
1074 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1075 				   tail_page, next_page);
1076 
1077 		if (old_tail == tail_page)
1078 			ret = 1;
1079 	}
1080 
1081 	return ret;
1082 }
1083 
1084 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1085 			  struct buffer_page *bpage)
1086 {
1087 	unsigned long val = (unsigned long)bpage;
1088 
1089 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1090 		return 1;
1091 
1092 	return 0;
1093 }
1094 
1095 /**
1096  * rb_check_list - make sure a pointer to a list has the last bits zero
1097  */
1098 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1099 			 struct list_head *list)
1100 {
1101 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1102 		return 1;
1103 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1104 		return 1;
1105 	return 0;
1106 }
1107 
1108 /**
1109  * rb_check_pages - integrity check of buffer pages
1110  * @cpu_buffer: CPU buffer with pages to test
1111  *
1112  * As a safety measure we check to make sure the data pages have not
1113  * been corrupted.
1114  */
1115 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1116 {
1117 	struct list_head *head = cpu_buffer->pages;
1118 	struct buffer_page *bpage, *tmp;
1119 
1120 	/* Reset the head page if it exists */
1121 	if (cpu_buffer->head_page)
1122 		rb_set_head_page(cpu_buffer);
1123 
1124 	rb_head_page_deactivate(cpu_buffer);
1125 
1126 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1127 		return -1;
1128 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1129 		return -1;
1130 
1131 	if (rb_check_list(cpu_buffer, head))
1132 		return -1;
1133 
1134 	list_for_each_entry_safe(bpage, tmp, head, list) {
1135 		if (RB_WARN_ON(cpu_buffer,
1136 			       bpage->list.next->prev != &bpage->list))
1137 			return -1;
1138 		if (RB_WARN_ON(cpu_buffer,
1139 			       bpage->list.prev->next != &bpage->list))
1140 			return -1;
1141 		if (rb_check_list(cpu_buffer, &bpage->list))
1142 			return -1;
1143 	}
1144 
1145 	rb_head_page_activate(cpu_buffer);
1146 
1147 	return 0;
1148 }
1149 
1150 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1151 {
1152 	int i;
1153 	struct buffer_page *bpage, *tmp;
1154 
1155 	for (i = 0; i < nr_pages; i++) {
1156 		struct page *page;
1157 		/*
1158 		 * __GFP_NORETRY flag makes sure that the allocation fails
1159 		 * gracefully without invoking oom-killer and the system is
1160 		 * not destabilized.
1161 		 */
1162 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1163 				    GFP_KERNEL | __GFP_NORETRY,
1164 				    cpu_to_node(cpu));
1165 		if (!bpage)
1166 			goto free_pages;
1167 
1168 		list_add(&bpage->list, pages);
1169 
1170 		page = alloc_pages_node(cpu_to_node(cpu),
1171 					GFP_KERNEL | __GFP_NORETRY, 0);
1172 		if (!page)
1173 			goto free_pages;
1174 		bpage->page = page_address(page);
1175 		rb_init_page(bpage->page);
1176 	}
1177 
1178 	return 0;
1179 
1180 free_pages:
1181 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1182 		list_del_init(&bpage->list);
1183 		free_buffer_page(bpage);
1184 	}
1185 
1186 	return -ENOMEM;
1187 }
1188 
1189 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1190 			     unsigned nr_pages)
1191 {
1192 	LIST_HEAD(pages);
1193 
1194 	WARN_ON(!nr_pages);
1195 
1196 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1197 		return -ENOMEM;
1198 
1199 	/*
1200 	 * The ring buffer page list is a circular list that does not
1201 	 * start and end with a list head. All page list items point to
1202 	 * other pages.
1203 	 */
1204 	cpu_buffer->pages = pages.next;
1205 	list_del(&pages);
1206 
1207 	cpu_buffer->nr_pages = nr_pages;
1208 
1209 	rb_check_pages(cpu_buffer);
1210 
1211 	return 0;
1212 }
1213 
1214 static struct ring_buffer_per_cpu *
1215 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1216 {
1217 	struct ring_buffer_per_cpu *cpu_buffer;
1218 	struct buffer_page *bpage;
1219 	struct page *page;
1220 	int ret;
1221 
1222 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1223 				  GFP_KERNEL, cpu_to_node(cpu));
1224 	if (!cpu_buffer)
1225 		return NULL;
1226 
1227 	cpu_buffer->cpu = cpu;
1228 	cpu_buffer->buffer = buffer;
1229 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1230 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1231 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1232 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1233 	init_completion(&cpu_buffer->update_done);
1234 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1235 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1236 
1237 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1238 			    GFP_KERNEL, cpu_to_node(cpu));
1239 	if (!bpage)
1240 		goto fail_free_buffer;
1241 
1242 	rb_check_bpage(cpu_buffer, bpage);
1243 
1244 	cpu_buffer->reader_page = bpage;
1245 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1246 	if (!page)
1247 		goto fail_free_reader;
1248 	bpage->page = page_address(page);
1249 	rb_init_page(bpage->page);
1250 
1251 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1252 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1253 
1254 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1255 	if (ret < 0)
1256 		goto fail_free_reader;
1257 
1258 	cpu_buffer->head_page
1259 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1260 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1261 
1262 	rb_head_page_activate(cpu_buffer);
1263 
1264 	return cpu_buffer;
1265 
1266  fail_free_reader:
1267 	free_buffer_page(cpu_buffer->reader_page);
1268 
1269  fail_free_buffer:
1270 	kfree(cpu_buffer);
1271 	return NULL;
1272 }
1273 
1274 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1275 {
1276 	struct list_head *head = cpu_buffer->pages;
1277 	struct buffer_page *bpage, *tmp;
1278 
1279 	free_buffer_page(cpu_buffer->reader_page);
1280 
1281 	rb_head_page_deactivate(cpu_buffer);
1282 
1283 	if (head) {
1284 		list_for_each_entry_safe(bpage, tmp, head, list) {
1285 			list_del_init(&bpage->list);
1286 			free_buffer_page(bpage);
1287 		}
1288 		bpage = list_entry(head, struct buffer_page, list);
1289 		free_buffer_page(bpage);
1290 	}
1291 
1292 	kfree(cpu_buffer);
1293 }
1294 
1295 #ifdef CONFIG_HOTPLUG_CPU
1296 static int rb_cpu_notify(struct notifier_block *self,
1297 			 unsigned long action, void *hcpu);
1298 #endif
1299 
1300 /**
1301  * __ring_buffer_alloc - allocate a new ring_buffer
1302  * @size: the size in bytes per cpu that is needed.
1303  * @flags: attributes to set for the ring buffer.
1304  *
1305  * Currently the only flag that is available is the RB_FL_OVERWRITE
1306  * flag. This flag means that the buffer will overwrite old data
1307  * when the buffer wraps. If this flag is not set, the buffer will
1308  * drop data when the tail hits the head.
1309  */
1310 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1311 					struct lock_class_key *key)
1312 {
1313 	struct ring_buffer *buffer;
1314 	int bsize;
1315 	int cpu, nr_pages;
1316 
1317 	/* keep it in its own cache line */
1318 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1319 			 GFP_KERNEL);
1320 	if (!buffer)
1321 		return NULL;
1322 
1323 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1324 		goto fail_free_buffer;
1325 
1326 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1327 	buffer->flags = flags;
1328 	buffer->clock = trace_clock_local;
1329 	buffer->reader_lock_key = key;
1330 
1331 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1332 	init_waitqueue_head(&buffer->irq_work.waiters);
1333 
1334 	/* need at least two pages */
1335 	if (nr_pages < 2)
1336 		nr_pages = 2;
1337 
1338 	/*
1339 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1340 	 * in early initcall, it will not be notified of secondary cpus.
1341 	 * In that off case, we need to allocate for all possible cpus.
1342 	 */
1343 #ifdef CONFIG_HOTPLUG_CPU
1344 	cpu_notifier_register_begin();
1345 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1346 #else
1347 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1348 #endif
1349 	buffer->cpus = nr_cpu_ids;
1350 
1351 	bsize = sizeof(void *) * nr_cpu_ids;
1352 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1353 				  GFP_KERNEL);
1354 	if (!buffer->buffers)
1355 		goto fail_free_cpumask;
1356 
1357 	for_each_buffer_cpu(buffer, cpu) {
1358 		buffer->buffers[cpu] =
1359 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1360 		if (!buffer->buffers[cpu])
1361 			goto fail_free_buffers;
1362 	}
1363 
1364 #ifdef CONFIG_HOTPLUG_CPU
1365 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1366 	buffer->cpu_notify.priority = 0;
1367 	__register_cpu_notifier(&buffer->cpu_notify);
1368 	cpu_notifier_register_done();
1369 #endif
1370 
1371 	mutex_init(&buffer->mutex);
1372 
1373 	return buffer;
1374 
1375  fail_free_buffers:
1376 	for_each_buffer_cpu(buffer, cpu) {
1377 		if (buffer->buffers[cpu])
1378 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1379 	}
1380 	kfree(buffer->buffers);
1381 
1382  fail_free_cpumask:
1383 	free_cpumask_var(buffer->cpumask);
1384 #ifdef CONFIG_HOTPLUG_CPU
1385 	cpu_notifier_register_done();
1386 #endif
1387 
1388  fail_free_buffer:
1389 	kfree(buffer);
1390 	return NULL;
1391 }
1392 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1393 
1394 /**
1395  * ring_buffer_free - free a ring buffer.
1396  * @buffer: the buffer to free.
1397  */
1398 void
1399 ring_buffer_free(struct ring_buffer *buffer)
1400 {
1401 	int cpu;
1402 
1403 #ifdef CONFIG_HOTPLUG_CPU
1404 	cpu_notifier_register_begin();
1405 	__unregister_cpu_notifier(&buffer->cpu_notify);
1406 #endif
1407 
1408 	for_each_buffer_cpu(buffer, cpu)
1409 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1410 
1411 #ifdef CONFIG_HOTPLUG_CPU
1412 	cpu_notifier_register_done();
1413 #endif
1414 
1415 	kfree(buffer->buffers);
1416 	free_cpumask_var(buffer->cpumask);
1417 
1418 	kfree(buffer);
1419 }
1420 EXPORT_SYMBOL_GPL(ring_buffer_free);
1421 
1422 void ring_buffer_set_clock(struct ring_buffer *buffer,
1423 			   u64 (*clock)(void))
1424 {
1425 	buffer->clock = clock;
1426 }
1427 
1428 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1429 
1430 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1431 {
1432 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1433 }
1434 
1435 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1436 {
1437 	return local_read(&bpage->write) & RB_WRITE_MASK;
1438 }
1439 
1440 static int
1441 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1442 {
1443 	struct list_head *tail_page, *to_remove, *next_page;
1444 	struct buffer_page *to_remove_page, *tmp_iter_page;
1445 	struct buffer_page *last_page, *first_page;
1446 	unsigned int nr_removed;
1447 	unsigned long head_bit;
1448 	int page_entries;
1449 
1450 	head_bit = 0;
1451 
1452 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1453 	atomic_inc(&cpu_buffer->record_disabled);
1454 	/*
1455 	 * We don't race with the readers since we have acquired the reader
1456 	 * lock. We also don't race with writers after disabling recording.
1457 	 * This makes it easy to figure out the first and the last page to be
1458 	 * removed from the list. We unlink all the pages in between including
1459 	 * the first and last pages. This is done in a busy loop so that we
1460 	 * lose the least number of traces.
1461 	 * The pages are freed after we restart recording and unlock readers.
1462 	 */
1463 	tail_page = &cpu_buffer->tail_page->list;
1464 
1465 	/*
1466 	 * tail page might be on reader page, we remove the next page
1467 	 * from the ring buffer
1468 	 */
1469 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1470 		tail_page = rb_list_head(tail_page->next);
1471 	to_remove = tail_page;
1472 
1473 	/* start of pages to remove */
1474 	first_page = list_entry(rb_list_head(to_remove->next),
1475 				struct buffer_page, list);
1476 
1477 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1478 		to_remove = rb_list_head(to_remove)->next;
1479 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1480 	}
1481 
1482 	next_page = rb_list_head(to_remove)->next;
1483 
1484 	/*
1485 	 * Now we remove all pages between tail_page and next_page.
1486 	 * Make sure that we have head_bit value preserved for the
1487 	 * next page
1488 	 */
1489 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1490 						head_bit);
1491 	next_page = rb_list_head(next_page);
1492 	next_page->prev = tail_page;
1493 
1494 	/* make sure pages points to a valid page in the ring buffer */
1495 	cpu_buffer->pages = next_page;
1496 
1497 	/* update head page */
1498 	if (head_bit)
1499 		cpu_buffer->head_page = list_entry(next_page,
1500 						struct buffer_page, list);
1501 
1502 	/*
1503 	 * change read pointer to make sure any read iterators reset
1504 	 * themselves
1505 	 */
1506 	cpu_buffer->read = 0;
1507 
1508 	/* pages are removed, resume tracing and then free the pages */
1509 	atomic_dec(&cpu_buffer->record_disabled);
1510 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1511 
1512 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1513 
1514 	/* last buffer page to remove */
1515 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1516 				list);
1517 	tmp_iter_page = first_page;
1518 
1519 	do {
1520 		to_remove_page = tmp_iter_page;
1521 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1522 
1523 		/* update the counters */
1524 		page_entries = rb_page_entries(to_remove_page);
1525 		if (page_entries) {
1526 			/*
1527 			 * If something was added to this page, it was full
1528 			 * since it is not the tail page. So we deduct the
1529 			 * bytes consumed in ring buffer from here.
1530 			 * Increment overrun to account for the lost events.
1531 			 */
1532 			local_add(page_entries, &cpu_buffer->overrun);
1533 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1534 		}
1535 
1536 		/*
1537 		 * We have already removed references to this list item, just
1538 		 * free up the buffer_page and its page
1539 		 */
1540 		free_buffer_page(to_remove_page);
1541 		nr_removed--;
1542 
1543 	} while (to_remove_page != last_page);
1544 
1545 	RB_WARN_ON(cpu_buffer, nr_removed);
1546 
1547 	return nr_removed == 0;
1548 }
1549 
1550 static int
1551 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1552 {
1553 	struct list_head *pages = &cpu_buffer->new_pages;
1554 	int retries, success;
1555 
1556 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1557 	/*
1558 	 * We are holding the reader lock, so the reader page won't be swapped
1559 	 * in the ring buffer. Now we are racing with the writer trying to
1560 	 * move head page and the tail page.
1561 	 * We are going to adapt the reader page update process where:
1562 	 * 1. We first splice the start and end of list of new pages between
1563 	 *    the head page and its previous page.
1564 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1565 	 *    start of new pages list.
1566 	 * 3. Finally, we update the head->prev to the end of new list.
1567 	 *
1568 	 * We will try this process 10 times, to make sure that we don't keep
1569 	 * spinning.
1570 	 */
1571 	retries = 10;
1572 	success = 0;
1573 	while (retries--) {
1574 		struct list_head *head_page, *prev_page, *r;
1575 		struct list_head *last_page, *first_page;
1576 		struct list_head *head_page_with_bit;
1577 
1578 		head_page = &rb_set_head_page(cpu_buffer)->list;
1579 		if (!head_page)
1580 			break;
1581 		prev_page = head_page->prev;
1582 
1583 		first_page = pages->next;
1584 		last_page  = pages->prev;
1585 
1586 		head_page_with_bit = (struct list_head *)
1587 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1588 
1589 		last_page->next = head_page_with_bit;
1590 		first_page->prev = prev_page;
1591 
1592 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1593 
1594 		if (r == head_page_with_bit) {
1595 			/*
1596 			 * yay, we replaced the page pointer to our new list,
1597 			 * now, we just have to update to head page's prev
1598 			 * pointer to point to end of list
1599 			 */
1600 			head_page->prev = last_page;
1601 			success = 1;
1602 			break;
1603 		}
1604 	}
1605 
1606 	if (success)
1607 		INIT_LIST_HEAD(pages);
1608 	/*
1609 	 * If we weren't successful in adding in new pages, warn and stop
1610 	 * tracing
1611 	 */
1612 	RB_WARN_ON(cpu_buffer, !success);
1613 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1614 
1615 	/* free pages if they weren't inserted */
1616 	if (!success) {
1617 		struct buffer_page *bpage, *tmp;
1618 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1619 					 list) {
1620 			list_del_init(&bpage->list);
1621 			free_buffer_page(bpage);
1622 		}
1623 	}
1624 	return success;
1625 }
1626 
1627 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1628 {
1629 	int success;
1630 
1631 	if (cpu_buffer->nr_pages_to_update > 0)
1632 		success = rb_insert_pages(cpu_buffer);
1633 	else
1634 		success = rb_remove_pages(cpu_buffer,
1635 					-cpu_buffer->nr_pages_to_update);
1636 
1637 	if (success)
1638 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1639 }
1640 
1641 static void update_pages_handler(struct work_struct *work)
1642 {
1643 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1644 			struct ring_buffer_per_cpu, update_pages_work);
1645 	rb_update_pages(cpu_buffer);
1646 	complete(&cpu_buffer->update_done);
1647 }
1648 
1649 /**
1650  * ring_buffer_resize - resize the ring buffer
1651  * @buffer: the buffer to resize.
1652  * @size: the new size.
1653  * @cpu_id: the cpu buffer to resize
1654  *
1655  * Minimum size is 2 * BUF_PAGE_SIZE.
1656  *
1657  * Returns 0 on success and < 0 on failure.
1658  */
1659 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1660 			int cpu_id)
1661 {
1662 	struct ring_buffer_per_cpu *cpu_buffer;
1663 	unsigned nr_pages;
1664 	int cpu, err = 0;
1665 
1666 	/*
1667 	 * Always succeed at resizing a non-existent buffer:
1668 	 */
1669 	if (!buffer)
1670 		return size;
1671 
1672 	/* Make sure the requested buffer exists */
1673 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1674 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1675 		return size;
1676 
1677 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1678 	size *= BUF_PAGE_SIZE;
1679 
1680 	/* we need a minimum of two pages */
1681 	if (size < BUF_PAGE_SIZE * 2)
1682 		size = BUF_PAGE_SIZE * 2;
1683 
1684 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1685 
1686 	/*
1687 	 * Don't succeed if resizing is disabled, as a reader might be
1688 	 * manipulating the ring buffer and is expecting a sane state while
1689 	 * this is true.
1690 	 */
1691 	if (atomic_read(&buffer->resize_disabled))
1692 		return -EBUSY;
1693 
1694 	/* prevent another thread from changing buffer sizes */
1695 	mutex_lock(&buffer->mutex);
1696 
1697 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1698 		/* calculate the pages to update */
1699 		for_each_buffer_cpu(buffer, cpu) {
1700 			cpu_buffer = buffer->buffers[cpu];
1701 
1702 			cpu_buffer->nr_pages_to_update = nr_pages -
1703 							cpu_buffer->nr_pages;
1704 			/*
1705 			 * nothing more to do for removing pages or no update
1706 			 */
1707 			if (cpu_buffer->nr_pages_to_update <= 0)
1708 				continue;
1709 			/*
1710 			 * to add pages, make sure all new pages can be
1711 			 * allocated without receiving ENOMEM
1712 			 */
1713 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1714 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1715 						&cpu_buffer->new_pages, cpu)) {
1716 				/* not enough memory for new pages */
1717 				err = -ENOMEM;
1718 				goto out_err;
1719 			}
1720 		}
1721 
1722 		get_online_cpus();
1723 		/*
1724 		 * Fire off all the required work handlers
1725 		 * We can't schedule on offline CPUs, but it's not necessary
1726 		 * since we can change their buffer sizes without any race.
1727 		 */
1728 		for_each_buffer_cpu(buffer, cpu) {
1729 			cpu_buffer = buffer->buffers[cpu];
1730 			if (!cpu_buffer->nr_pages_to_update)
1731 				continue;
1732 
1733 			/* Can't run something on an offline CPU. */
1734 			if (!cpu_online(cpu)) {
1735 				rb_update_pages(cpu_buffer);
1736 				cpu_buffer->nr_pages_to_update = 0;
1737 			} else {
1738 				schedule_work_on(cpu,
1739 						&cpu_buffer->update_pages_work);
1740 			}
1741 		}
1742 
1743 		/* wait for all the updates to complete */
1744 		for_each_buffer_cpu(buffer, cpu) {
1745 			cpu_buffer = buffer->buffers[cpu];
1746 			if (!cpu_buffer->nr_pages_to_update)
1747 				continue;
1748 
1749 			if (cpu_online(cpu))
1750 				wait_for_completion(&cpu_buffer->update_done);
1751 			cpu_buffer->nr_pages_to_update = 0;
1752 		}
1753 
1754 		put_online_cpus();
1755 	} else {
1756 		/* Make sure this CPU has been intitialized */
1757 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1758 			goto out;
1759 
1760 		cpu_buffer = buffer->buffers[cpu_id];
1761 
1762 		if (nr_pages == cpu_buffer->nr_pages)
1763 			goto out;
1764 
1765 		cpu_buffer->nr_pages_to_update = nr_pages -
1766 						cpu_buffer->nr_pages;
1767 
1768 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1769 		if (cpu_buffer->nr_pages_to_update > 0 &&
1770 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1771 					    &cpu_buffer->new_pages, cpu_id)) {
1772 			err = -ENOMEM;
1773 			goto out_err;
1774 		}
1775 
1776 		get_online_cpus();
1777 
1778 		/* Can't run something on an offline CPU. */
1779 		if (!cpu_online(cpu_id))
1780 			rb_update_pages(cpu_buffer);
1781 		else {
1782 			schedule_work_on(cpu_id,
1783 					 &cpu_buffer->update_pages_work);
1784 			wait_for_completion(&cpu_buffer->update_done);
1785 		}
1786 
1787 		cpu_buffer->nr_pages_to_update = 0;
1788 		put_online_cpus();
1789 	}
1790 
1791  out:
1792 	/*
1793 	 * The ring buffer resize can happen with the ring buffer
1794 	 * enabled, so that the update disturbs the tracing as little
1795 	 * as possible. But if the buffer is disabled, we do not need
1796 	 * to worry about that, and we can take the time to verify
1797 	 * that the buffer is not corrupt.
1798 	 */
1799 	if (atomic_read(&buffer->record_disabled)) {
1800 		atomic_inc(&buffer->record_disabled);
1801 		/*
1802 		 * Even though the buffer was disabled, we must make sure
1803 		 * that it is truly disabled before calling rb_check_pages.
1804 		 * There could have been a race between checking
1805 		 * record_disable and incrementing it.
1806 		 */
1807 		synchronize_sched();
1808 		for_each_buffer_cpu(buffer, cpu) {
1809 			cpu_buffer = buffer->buffers[cpu];
1810 			rb_check_pages(cpu_buffer);
1811 		}
1812 		atomic_dec(&buffer->record_disabled);
1813 	}
1814 
1815 	mutex_unlock(&buffer->mutex);
1816 	return size;
1817 
1818  out_err:
1819 	for_each_buffer_cpu(buffer, cpu) {
1820 		struct buffer_page *bpage, *tmp;
1821 
1822 		cpu_buffer = buffer->buffers[cpu];
1823 		cpu_buffer->nr_pages_to_update = 0;
1824 
1825 		if (list_empty(&cpu_buffer->new_pages))
1826 			continue;
1827 
1828 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1829 					list) {
1830 			list_del_init(&bpage->list);
1831 			free_buffer_page(bpage);
1832 		}
1833 	}
1834 	mutex_unlock(&buffer->mutex);
1835 	return err;
1836 }
1837 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1838 
1839 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1840 {
1841 	mutex_lock(&buffer->mutex);
1842 	if (val)
1843 		buffer->flags |= RB_FL_OVERWRITE;
1844 	else
1845 		buffer->flags &= ~RB_FL_OVERWRITE;
1846 	mutex_unlock(&buffer->mutex);
1847 }
1848 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1849 
1850 static inline void *
1851 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1852 {
1853 	return bpage->data + index;
1854 }
1855 
1856 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1857 {
1858 	return bpage->page->data + index;
1859 }
1860 
1861 static inline struct ring_buffer_event *
1862 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1863 {
1864 	return __rb_page_index(cpu_buffer->reader_page,
1865 			       cpu_buffer->reader_page->read);
1866 }
1867 
1868 static inline struct ring_buffer_event *
1869 rb_iter_head_event(struct ring_buffer_iter *iter)
1870 {
1871 	return __rb_page_index(iter->head_page, iter->head);
1872 }
1873 
1874 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1875 {
1876 	return local_read(&bpage->page->commit);
1877 }
1878 
1879 /* Size is determined by what has been committed */
1880 static inline unsigned rb_page_size(struct buffer_page *bpage)
1881 {
1882 	return rb_page_commit(bpage);
1883 }
1884 
1885 static inline unsigned
1886 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1887 {
1888 	return rb_page_commit(cpu_buffer->commit_page);
1889 }
1890 
1891 static inline unsigned
1892 rb_event_index(struct ring_buffer_event *event)
1893 {
1894 	unsigned long addr = (unsigned long)event;
1895 
1896 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1897 }
1898 
1899 static inline int
1900 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1901 		   struct ring_buffer_event *event)
1902 {
1903 	unsigned long addr = (unsigned long)event;
1904 	unsigned long index;
1905 
1906 	index = rb_event_index(event);
1907 	addr &= PAGE_MASK;
1908 
1909 	return cpu_buffer->commit_page->page == (void *)addr &&
1910 		rb_commit_index(cpu_buffer) == index;
1911 }
1912 
1913 static void
1914 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1915 {
1916 	unsigned long max_count;
1917 
1918 	/*
1919 	 * We only race with interrupts and NMIs on this CPU.
1920 	 * If we own the commit event, then we can commit
1921 	 * all others that interrupted us, since the interruptions
1922 	 * are in stack format (they finish before they come
1923 	 * back to us). This allows us to do a simple loop to
1924 	 * assign the commit to the tail.
1925 	 */
1926  again:
1927 	max_count = cpu_buffer->nr_pages * 100;
1928 
1929 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1930 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1931 			return;
1932 		if (RB_WARN_ON(cpu_buffer,
1933 			       rb_is_reader_page(cpu_buffer->tail_page)))
1934 			return;
1935 		local_set(&cpu_buffer->commit_page->page->commit,
1936 			  rb_page_write(cpu_buffer->commit_page));
1937 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1938 		cpu_buffer->write_stamp =
1939 			cpu_buffer->commit_page->page->time_stamp;
1940 		/* add barrier to keep gcc from optimizing too much */
1941 		barrier();
1942 	}
1943 	while (rb_commit_index(cpu_buffer) !=
1944 	       rb_page_write(cpu_buffer->commit_page)) {
1945 
1946 		local_set(&cpu_buffer->commit_page->page->commit,
1947 			  rb_page_write(cpu_buffer->commit_page));
1948 		RB_WARN_ON(cpu_buffer,
1949 			   local_read(&cpu_buffer->commit_page->page->commit) &
1950 			   ~RB_WRITE_MASK);
1951 		barrier();
1952 	}
1953 
1954 	/* again, keep gcc from optimizing */
1955 	barrier();
1956 
1957 	/*
1958 	 * If an interrupt came in just after the first while loop
1959 	 * and pushed the tail page forward, we will be left with
1960 	 * a dangling commit that will never go forward.
1961 	 */
1962 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1963 		goto again;
1964 }
1965 
1966 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1967 {
1968 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1969 	cpu_buffer->reader_page->read = 0;
1970 }
1971 
1972 static void rb_inc_iter(struct ring_buffer_iter *iter)
1973 {
1974 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1975 
1976 	/*
1977 	 * The iterator could be on the reader page (it starts there).
1978 	 * But the head could have moved, since the reader was
1979 	 * found. Check for this case and assign the iterator
1980 	 * to the head page instead of next.
1981 	 */
1982 	if (iter->head_page == cpu_buffer->reader_page)
1983 		iter->head_page = rb_set_head_page(cpu_buffer);
1984 	else
1985 		rb_inc_page(cpu_buffer, &iter->head_page);
1986 
1987 	iter->read_stamp = iter->head_page->page->time_stamp;
1988 	iter->head = 0;
1989 }
1990 
1991 /* Slow path, do not inline */
1992 static noinline struct ring_buffer_event *
1993 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1994 {
1995 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1996 
1997 	/* Not the first event on the page? */
1998 	if (rb_event_index(event)) {
1999 		event->time_delta = delta & TS_MASK;
2000 		event->array[0] = delta >> TS_SHIFT;
2001 	} else {
2002 		/* nope, just zero it */
2003 		event->time_delta = 0;
2004 		event->array[0] = 0;
2005 	}
2006 
2007 	return skip_time_extend(event);
2008 }
2009 
2010 /**
2011  * rb_update_event - update event type and data
2012  * @event: the event to update
2013  * @type: the type of event
2014  * @length: the size of the event field in the ring buffer
2015  *
2016  * Update the type and data fields of the event. The length
2017  * is the actual size that is written to the ring buffer,
2018  * and with this, we can determine what to place into the
2019  * data field.
2020  */
2021 static void
2022 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2023 		struct ring_buffer_event *event, unsigned length,
2024 		int add_timestamp, u64 delta)
2025 {
2026 	/* Only a commit updates the timestamp */
2027 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2028 		delta = 0;
2029 
2030 	/*
2031 	 * If we need to add a timestamp, then we
2032 	 * add it to the start of the resevered space.
2033 	 */
2034 	if (unlikely(add_timestamp)) {
2035 		event = rb_add_time_stamp(event, delta);
2036 		length -= RB_LEN_TIME_EXTEND;
2037 		delta = 0;
2038 	}
2039 
2040 	event->time_delta = delta;
2041 	length -= RB_EVNT_HDR_SIZE;
2042 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2043 		event->type_len = 0;
2044 		event->array[0] = length;
2045 	} else
2046 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2047 }
2048 
2049 /*
2050  * rb_handle_head_page - writer hit the head page
2051  *
2052  * Returns: +1 to retry page
2053  *           0 to continue
2054  *          -1 on error
2055  */
2056 static int
2057 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2058 		    struct buffer_page *tail_page,
2059 		    struct buffer_page *next_page)
2060 {
2061 	struct buffer_page *new_head;
2062 	int entries;
2063 	int type;
2064 	int ret;
2065 
2066 	entries = rb_page_entries(next_page);
2067 
2068 	/*
2069 	 * The hard part is here. We need to move the head
2070 	 * forward, and protect against both readers on
2071 	 * other CPUs and writers coming in via interrupts.
2072 	 */
2073 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2074 				       RB_PAGE_HEAD);
2075 
2076 	/*
2077 	 * type can be one of four:
2078 	 *  NORMAL - an interrupt already moved it for us
2079 	 *  HEAD   - we are the first to get here.
2080 	 *  UPDATE - we are the interrupt interrupting
2081 	 *           a current move.
2082 	 *  MOVED  - a reader on another CPU moved the next
2083 	 *           pointer to its reader page. Give up
2084 	 *           and try again.
2085 	 */
2086 
2087 	switch (type) {
2088 	case RB_PAGE_HEAD:
2089 		/*
2090 		 * We changed the head to UPDATE, thus
2091 		 * it is our responsibility to update
2092 		 * the counters.
2093 		 */
2094 		local_add(entries, &cpu_buffer->overrun);
2095 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2096 
2097 		/*
2098 		 * The entries will be zeroed out when we move the
2099 		 * tail page.
2100 		 */
2101 
2102 		/* still more to do */
2103 		break;
2104 
2105 	case RB_PAGE_UPDATE:
2106 		/*
2107 		 * This is an interrupt that interrupt the
2108 		 * previous update. Still more to do.
2109 		 */
2110 		break;
2111 	case RB_PAGE_NORMAL:
2112 		/*
2113 		 * An interrupt came in before the update
2114 		 * and processed this for us.
2115 		 * Nothing left to do.
2116 		 */
2117 		return 1;
2118 	case RB_PAGE_MOVED:
2119 		/*
2120 		 * The reader is on another CPU and just did
2121 		 * a swap with our next_page.
2122 		 * Try again.
2123 		 */
2124 		return 1;
2125 	default:
2126 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2127 		return -1;
2128 	}
2129 
2130 	/*
2131 	 * Now that we are here, the old head pointer is
2132 	 * set to UPDATE. This will keep the reader from
2133 	 * swapping the head page with the reader page.
2134 	 * The reader (on another CPU) will spin till
2135 	 * we are finished.
2136 	 *
2137 	 * We just need to protect against interrupts
2138 	 * doing the job. We will set the next pointer
2139 	 * to HEAD. After that, we set the old pointer
2140 	 * to NORMAL, but only if it was HEAD before.
2141 	 * otherwise we are an interrupt, and only
2142 	 * want the outer most commit to reset it.
2143 	 */
2144 	new_head = next_page;
2145 	rb_inc_page(cpu_buffer, &new_head);
2146 
2147 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2148 				    RB_PAGE_NORMAL);
2149 
2150 	/*
2151 	 * Valid returns are:
2152 	 *  HEAD   - an interrupt came in and already set it.
2153 	 *  NORMAL - One of two things:
2154 	 *            1) We really set it.
2155 	 *            2) A bunch of interrupts came in and moved
2156 	 *               the page forward again.
2157 	 */
2158 	switch (ret) {
2159 	case RB_PAGE_HEAD:
2160 	case RB_PAGE_NORMAL:
2161 		/* OK */
2162 		break;
2163 	default:
2164 		RB_WARN_ON(cpu_buffer, 1);
2165 		return -1;
2166 	}
2167 
2168 	/*
2169 	 * It is possible that an interrupt came in,
2170 	 * set the head up, then more interrupts came in
2171 	 * and moved it again. When we get back here,
2172 	 * the page would have been set to NORMAL but we
2173 	 * just set it back to HEAD.
2174 	 *
2175 	 * How do you detect this? Well, if that happened
2176 	 * the tail page would have moved.
2177 	 */
2178 	if (ret == RB_PAGE_NORMAL) {
2179 		/*
2180 		 * If the tail had moved passed next, then we need
2181 		 * to reset the pointer.
2182 		 */
2183 		if (cpu_buffer->tail_page != tail_page &&
2184 		    cpu_buffer->tail_page != next_page)
2185 			rb_head_page_set_normal(cpu_buffer, new_head,
2186 						next_page,
2187 						RB_PAGE_HEAD);
2188 	}
2189 
2190 	/*
2191 	 * If this was the outer most commit (the one that
2192 	 * changed the original pointer from HEAD to UPDATE),
2193 	 * then it is up to us to reset it to NORMAL.
2194 	 */
2195 	if (type == RB_PAGE_HEAD) {
2196 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2197 					      tail_page,
2198 					      RB_PAGE_UPDATE);
2199 		if (RB_WARN_ON(cpu_buffer,
2200 			       ret != RB_PAGE_UPDATE))
2201 			return -1;
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 static unsigned rb_calculate_event_length(unsigned length)
2208 {
2209 	struct ring_buffer_event event; /* Used only for sizeof array */
2210 
2211 	/* zero length can cause confusions */
2212 	if (!length)
2213 		length = 1;
2214 
2215 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2216 		length += sizeof(event.array[0]);
2217 
2218 	length += RB_EVNT_HDR_SIZE;
2219 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2220 
2221 	return length;
2222 }
2223 
2224 static inline void
2225 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2226 	      struct buffer_page *tail_page,
2227 	      unsigned long tail, unsigned long length)
2228 {
2229 	struct ring_buffer_event *event;
2230 
2231 	/*
2232 	 * Only the event that crossed the page boundary
2233 	 * must fill the old tail_page with padding.
2234 	 */
2235 	if (tail >= BUF_PAGE_SIZE) {
2236 		/*
2237 		 * If the page was filled, then we still need
2238 		 * to update the real_end. Reset it to zero
2239 		 * and the reader will ignore it.
2240 		 */
2241 		if (tail == BUF_PAGE_SIZE)
2242 			tail_page->real_end = 0;
2243 
2244 		local_sub(length, &tail_page->write);
2245 		return;
2246 	}
2247 
2248 	event = __rb_page_index(tail_page, tail);
2249 	kmemcheck_annotate_bitfield(event, bitfield);
2250 
2251 	/* account for padding bytes */
2252 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2253 
2254 	/*
2255 	 * Save the original length to the meta data.
2256 	 * This will be used by the reader to add lost event
2257 	 * counter.
2258 	 */
2259 	tail_page->real_end = tail;
2260 
2261 	/*
2262 	 * If this event is bigger than the minimum size, then
2263 	 * we need to be careful that we don't subtract the
2264 	 * write counter enough to allow another writer to slip
2265 	 * in on this page.
2266 	 * We put in a discarded commit instead, to make sure
2267 	 * that this space is not used again.
2268 	 *
2269 	 * If we are less than the minimum size, we don't need to
2270 	 * worry about it.
2271 	 */
2272 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2273 		/* No room for any events */
2274 
2275 		/* Mark the rest of the page with padding */
2276 		rb_event_set_padding(event);
2277 
2278 		/* Set the write back to the previous setting */
2279 		local_sub(length, &tail_page->write);
2280 		return;
2281 	}
2282 
2283 	/* Put in a discarded event */
2284 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2285 	event->type_len = RINGBUF_TYPE_PADDING;
2286 	/* time delta must be non zero */
2287 	event->time_delta = 1;
2288 
2289 	/* Set write to end of buffer */
2290 	length = (tail + length) - BUF_PAGE_SIZE;
2291 	local_sub(length, &tail_page->write);
2292 }
2293 
2294 /*
2295  * This is the slow path, force gcc not to inline it.
2296  */
2297 static noinline struct ring_buffer_event *
2298 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2299 	     unsigned long length, unsigned long tail,
2300 	     struct buffer_page *tail_page, u64 ts)
2301 {
2302 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2303 	struct ring_buffer *buffer = cpu_buffer->buffer;
2304 	struct buffer_page *next_page;
2305 	int ret;
2306 
2307 	next_page = tail_page;
2308 
2309 	rb_inc_page(cpu_buffer, &next_page);
2310 
2311 	/*
2312 	 * If for some reason, we had an interrupt storm that made
2313 	 * it all the way around the buffer, bail, and warn
2314 	 * about it.
2315 	 */
2316 	if (unlikely(next_page == commit_page)) {
2317 		local_inc(&cpu_buffer->commit_overrun);
2318 		goto out_reset;
2319 	}
2320 
2321 	/*
2322 	 * This is where the fun begins!
2323 	 *
2324 	 * We are fighting against races between a reader that
2325 	 * could be on another CPU trying to swap its reader
2326 	 * page with the buffer head.
2327 	 *
2328 	 * We are also fighting against interrupts coming in and
2329 	 * moving the head or tail on us as well.
2330 	 *
2331 	 * If the next page is the head page then we have filled
2332 	 * the buffer, unless the commit page is still on the
2333 	 * reader page.
2334 	 */
2335 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2336 
2337 		/*
2338 		 * If the commit is not on the reader page, then
2339 		 * move the header page.
2340 		 */
2341 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2342 			/*
2343 			 * If we are not in overwrite mode,
2344 			 * this is easy, just stop here.
2345 			 */
2346 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2347 				local_inc(&cpu_buffer->dropped_events);
2348 				goto out_reset;
2349 			}
2350 
2351 			ret = rb_handle_head_page(cpu_buffer,
2352 						  tail_page,
2353 						  next_page);
2354 			if (ret < 0)
2355 				goto out_reset;
2356 			if (ret)
2357 				goto out_again;
2358 		} else {
2359 			/*
2360 			 * We need to be careful here too. The
2361 			 * commit page could still be on the reader
2362 			 * page. We could have a small buffer, and
2363 			 * have filled up the buffer with events
2364 			 * from interrupts and such, and wrapped.
2365 			 *
2366 			 * Note, if the tail page is also the on the
2367 			 * reader_page, we let it move out.
2368 			 */
2369 			if (unlikely((cpu_buffer->commit_page !=
2370 				      cpu_buffer->tail_page) &&
2371 				     (cpu_buffer->commit_page ==
2372 				      cpu_buffer->reader_page))) {
2373 				local_inc(&cpu_buffer->commit_overrun);
2374 				goto out_reset;
2375 			}
2376 		}
2377 	}
2378 
2379 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2380 	if (ret) {
2381 		/*
2382 		 * Nested commits always have zero deltas, so
2383 		 * just reread the time stamp
2384 		 */
2385 		ts = rb_time_stamp(buffer);
2386 		next_page->page->time_stamp = ts;
2387 	}
2388 
2389  out_again:
2390 
2391 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2392 
2393 	/* fail and let the caller try again */
2394 	return ERR_PTR(-EAGAIN);
2395 
2396  out_reset:
2397 	/* reset write */
2398 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2399 
2400 	return NULL;
2401 }
2402 
2403 static struct ring_buffer_event *
2404 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2405 		  unsigned long length, u64 ts,
2406 		  u64 delta, int add_timestamp)
2407 {
2408 	struct buffer_page *tail_page;
2409 	struct ring_buffer_event *event;
2410 	unsigned long tail, write;
2411 
2412 	/*
2413 	 * If the time delta since the last event is too big to
2414 	 * hold in the time field of the event, then we append a
2415 	 * TIME EXTEND event ahead of the data event.
2416 	 */
2417 	if (unlikely(add_timestamp))
2418 		length += RB_LEN_TIME_EXTEND;
2419 
2420 	tail_page = cpu_buffer->tail_page;
2421 	write = local_add_return(length, &tail_page->write);
2422 
2423 	/* set write to only the index of the write */
2424 	write &= RB_WRITE_MASK;
2425 	tail = write - length;
2426 
2427 	/*
2428 	 * If this is the first commit on the page, then it has the same
2429 	 * timestamp as the page itself.
2430 	 */
2431 	if (!tail)
2432 		delta = 0;
2433 
2434 	/* See if we shot pass the end of this buffer page */
2435 	if (unlikely(write > BUF_PAGE_SIZE))
2436 		return rb_move_tail(cpu_buffer, length, tail,
2437 				    tail_page, ts);
2438 
2439 	/* We reserved something on the buffer */
2440 
2441 	event = __rb_page_index(tail_page, tail);
2442 	kmemcheck_annotate_bitfield(event, bitfield);
2443 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2444 
2445 	local_inc(&tail_page->entries);
2446 
2447 	/*
2448 	 * If this is the first commit on the page, then update
2449 	 * its timestamp.
2450 	 */
2451 	if (!tail)
2452 		tail_page->page->time_stamp = ts;
2453 
2454 	/* account for these added bytes */
2455 	local_add(length, &cpu_buffer->entries_bytes);
2456 
2457 	return event;
2458 }
2459 
2460 static inline int
2461 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2462 		  struct ring_buffer_event *event)
2463 {
2464 	unsigned long new_index, old_index;
2465 	struct buffer_page *bpage;
2466 	unsigned long index;
2467 	unsigned long addr;
2468 
2469 	new_index = rb_event_index(event);
2470 	old_index = new_index + rb_event_ts_length(event);
2471 	addr = (unsigned long)event;
2472 	addr &= PAGE_MASK;
2473 
2474 	bpage = cpu_buffer->tail_page;
2475 
2476 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2477 		unsigned long write_mask =
2478 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2479 		unsigned long event_length = rb_event_length(event);
2480 		/*
2481 		 * This is on the tail page. It is possible that
2482 		 * a write could come in and move the tail page
2483 		 * and write to the next page. That is fine
2484 		 * because we just shorten what is on this page.
2485 		 */
2486 		old_index += write_mask;
2487 		new_index += write_mask;
2488 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2489 		if (index == old_index) {
2490 			/* update counters */
2491 			local_sub(event_length, &cpu_buffer->entries_bytes);
2492 			return 1;
2493 		}
2494 	}
2495 
2496 	/* could not discard */
2497 	return 0;
2498 }
2499 
2500 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2501 {
2502 	local_inc(&cpu_buffer->committing);
2503 	local_inc(&cpu_buffer->commits);
2504 }
2505 
2506 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2507 {
2508 	unsigned long commits;
2509 
2510 	if (RB_WARN_ON(cpu_buffer,
2511 		       !local_read(&cpu_buffer->committing)))
2512 		return;
2513 
2514  again:
2515 	commits = local_read(&cpu_buffer->commits);
2516 	/* synchronize with interrupts */
2517 	barrier();
2518 	if (local_read(&cpu_buffer->committing) == 1)
2519 		rb_set_commit_to_write(cpu_buffer);
2520 
2521 	local_dec(&cpu_buffer->committing);
2522 
2523 	/* synchronize with interrupts */
2524 	barrier();
2525 
2526 	/*
2527 	 * Need to account for interrupts coming in between the
2528 	 * updating of the commit page and the clearing of the
2529 	 * committing counter.
2530 	 */
2531 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2532 	    !local_read(&cpu_buffer->committing)) {
2533 		local_inc(&cpu_buffer->committing);
2534 		goto again;
2535 	}
2536 }
2537 
2538 static struct ring_buffer_event *
2539 rb_reserve_next_event(struct ring_buffer *buffer,
2540 		      struct ring_buffer_per_cpu *cpu_buffer,
2541 		      unsigned long length)
2542 {
2543 	struct ring_buffer_event *event;
2544 	u64 ts, delta;
2545 	int nr_loops = 0;
2546 	int add_timestamp;
2547 	u64 diff;
2548 
2549 	rb_start_commit(cpu_buffer);
2550 
2551 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2552 	/*
2553 	 * Due to the ability to swap a cpu buffer from a buffer
2554 	 * it is possible it was swapped before we committed.
2555 	 * (committing stops a swap). We check for it here and
2556 	 * if it happened, we have to fail the write.
2557 	 */
2558 	barrier();
2559 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2560 		local_dec(&cpu_buffer->committing);
2561 		local_dec(&cpu_buffer->commits);
2562 		return NULL;
2563 	}
2564 #endif
2565 
2566 	length = rb_calculate_event_length(length);
2567  again:
2568 	add_timestamp = 0;
2569 	delta = 0;
2570 
2571 	/*
2572 	 * We allow for interrupts to reenter here and do a trace.
2573 	 * If one does, it will cause this original code to loop
2574 	 * back here. Even with heavy interrupts happening, this
2575 	 * should only happen a few times in a row. If this happens
2576 	 * 1000 times in a row, there must be either an interrupt
2577 	 * storm or we have something buggy.
2578 	 * Bail!
2579 	 */
2580 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2581 		goto out_fail;
2582 
2583 	ts = rb_time_stamp(cpu_buffer->buffer);
2584 	diff = ts - cpu_buffer->write_stamp;
2585 
2586 	/* make sure this diff is calculated here */
2587 	barrier();
2588 
2589 	/* Did the write stamp get updated already? */
2590 	if (likely(ts >= cpu_buffer->write_stamp)) {
2591 		delta = diff;
2592 		if (unlikely(test_time_stamp(delta))) {
2593 			int local_clock_stable = 1;
2594 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2595 			local_clock_stable = sched_clock_stable();
2596 #endif
2597 			WARN_ONCE(delta > (1ULL << 59),
2598 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2599 				  (unsigned long long)delta,
2600 				  (unsigned long long)ts,
2601 				  (unsigned long long)cpu_buffer->write_stamp,
2602 				  local_clock_stable ? "" :
2603 				  "If you just came from a suspend/resume,\n"
2604 				  "please switch to the trace global clock:\n"
2605 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2606 			add_timestamp = 1;
2607 		}
2608 	}
2609 
2610 	event = __rb_reserve_next(cpu_buffer, length, ts,
2611 				  delta, add_timestamp);
2612 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2613 		goto again;
2614 
2615 	if (!event)
2616 		goto out_fail;
2617 
2618 	return event;
2619 
2620  out_fail:
2621 	rb_end_commit(cpu_buffer);
2622 	return NULL;
2623 }
2624 
2625 #ifdef CONFIG_TRACING
2626 
2627 /*
2628  * The lock and unlock are done within a preempt disable section.
2629  * The current_context per_cpu variable can only be modified
2630  * by the current task between lock and unlock. But it can
2631  * be modified more than once via an interrupt. To pass this
2632  * information from the lock to the unlock without having to
2633  * access the 'in_interrupt()' functions again (which do show
2634  * a bit of overhead in something as critical as function tracing,
2635  * we use a bitmask trick.
2636  *
2637  *  bit 0 =  NMI context
2638  *  bit 1 =  IRQ context
2639  *  bit 2 =  SoftIRQ context
2640  *  bit 3 =  normal context.
2641  *
2642  * This works because this is the order of contexts that can
2643  * preempt other contexts. A SoftIRQ never preempts an IRQ
2644  * context.
2645  *
2646  * When the context is determined, the corresponding bit is
2647  * checked and set (if it was set, then a recursion of that context
2648  * happened).
2649  *
2650  * On unlock, we need to clear this bit. To do so, just subtract
2651  * 1 from the current_context and AND it to itself.
2652  *
2653  * (binary)
2654  *  101 - 1 = 100
2655  *  101 & 100 = 100 (clearing bit zero)
2656  *
2657  *  1010 - 1 = 1001
2658  *  1010 & 1001 = 1000 (clearing bit 1)
2659  *
2660  * The least significant bit can be cleared this way, and it
2661  * just so happens that it is the same bit corresponding to
2662  * the current context.
2663  */
2664 static DEFINE_PER_CPU(unsigned int, current_context);
2665 
2666 static __always_inline int trace_recursive_lock(void)
2667 {
2668 	unsigned int val = this_cpu_read(current_context);
2669 	int bit;
2670 
2671 	if (in_interrupt()) {
2672 		if (in_nmi())
2673 			bit = 0;
2674 		else if (in_irq())
2675 			bit = 1;
2676 		else
2677 			bit = 2;
2678 	} else
2679 		bit = 3;
2680 
2681 	if (unlikely(val & (1 << bit)))
2682 		return 1;
2683 
2684 	val |= (1 << bit);
2685 	this_cpu_write(current_context, val);
2686 
2687 	return 0;
2688 }
2689 
2690 static __always_inline void trace_recursive_unlock(void)
2691 {
2692 	unsigned int val = this_cpu_read(current_context);
2693 
2694 	val--;
2695 	val &= this_cpu_read(current_context);
2696 	this_cpu_write(current_context, val);
2697 }
2698 
2699 #else
2700 
2701 #define trace_recursive_lock()		(0)
2702 #define trace_recursive_unlock()	do { } while (0)
2703 
2704 #endif
2705 
2706 /**
2707  * ring_buffer_lock_reserve - reserve a part of the buffer
2708  * @buffer: the ring buffer to reserve from
2709  * @length: the length of the data to reserve (excluding event header)
2710  *
2711  * Returns a reseverd event on the ring buffer to copy directly to.
2712  * The user of this interface will need to get the body to write into
2713  * and can use the ring_buffer_event_data() interface.
2714  *
2715  * The length is the length of the data needed, not the event length
2716  * which also includes the event header.
2717  *
2718  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2719  * If NULL is returned, then nothing has been allocated or locked.
2720  */
2721 struct ring_buffer_event *
2722 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2723 {
2724 	struct ring_buffer_per_cpu *cpu_buffer;
2725 	struct ring_buffer_event *event;
2726 	int cpu;
2727 
2728 	if (ring_buffer_flags != RB_BUFFERS_ON)
2729 		return NULL;
2730 
2731 	/* If we are tracing schedule, we don't want to recurse */
2732 	preempt_disable_notrace();
2733 
2734 	if (atomic_read(&buffer->record_disabled))
2735 		goto out_nocheck;
2736 
2737 	if (trace_recursive_lock())
2738 		goto out_nocheck;
2739 
2740 	cpu = raw_smp_processor_id();
2741 
2742 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2743 		goto out;
2744 
2745 	cpu_buffer = buffer->buffers[cpu];
2746 
2747 	if (atomic_read(&cpu_buffer->record_disabled))
2748 		goto out;
2749 
2750 	if (length > BUF_MAX_DATA_SIZE)
2751 		goto out;
2752 
2753 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2754 	if (!event)
2755 		goto out;
2756 
2757 	return event;
2758 
2759  out:
2760 	trace_recursive_unlock();
2761 
2762  out_nocheck:
2763 	preempt_enable_notrace();
2764 	return NULL;
2765 }
2766 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2767 
2768 static void
2769 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2770 		      struct ring_buffer_event *event)
2771 {
2772 	u64 delta;
2773 
2774 	/*
2775 	 * The event first in the commit queue updates the
2776 	 * time stamp.
2777 	 */
2778 	if (rb_event_is_commit(cpu_buffer, event)) {
2779 		/*
2780 		 * A commit event that is first on a page
2781 		 * updates the write timestamp with the page stamp
2782 		 */
2783 		if (!rb_event_index(event))
2784 			cpu_buffer->write_stamp =
2785 				cpu_buffer->commit_page->page->time_stamp;
2786 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2787 			delta = event->array[0];
2788 			delta <<= TS_SHIFT;
2789 			delta += event->time_delta;
2790 			cpu_buffer->write_stamp += delta;
2791 		} else
2792 			cpu_buffer->write_stamp += event->time_delta;
2793 	}
2794 }
2795 
2796 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2797 		      struct ring_buffer_event *event)
2798 {
2799 	local_inc(&cpu_buffer->entries);
2800 	rb_update_write_stamp(cpu_buffer, event);
2801 	rb_end_commit(cpu_buffer);
2802 }
2803 
2804 static __always_inline void
2805 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2806 {
2807 	if (buffer->irq_work.waiters_pending) {
2808 		buffer->irq_work.waiters_pending = false;
2809 		/* irq_work_queue() supplies it's own memory barriers */
2810 		irq_work_queue(&buffer->irq_work.work);
2811 	}
2812 
2813 	if (cpu_buffer->irq_work.waiters_pending) {
2814 		cpu_buffer->irq_work.waiters_pending = false;
2815 		/* irq_work_queue() supplies it's own memory barriers */
2816 		irq_work_queue(&cpu_buffer->irq_work.work);
2817 	}
2818 }
2819 
2820 /**
2821  * ring_buffer_unlock_commit - commit a reserved
2822  * @buffer: The buffer to commit to
2823  * @event: The event pointer to commit.
2824  *
2825  * This commits the data to the ring buffer, and releases any locks held.
2826  *
2827  * Must be paired with ring_buffer_lock_reserve.
2828  */
2829 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2830 			      struct ring_buffer_event *event)
2831 {
2832 	struct ring_buffer_per_cpu *cpu_buffer;
2833 	int cpu = raw_smp_processor_id();
2834 
2835 	cpu_buffer = buffer->buffers[cpu];
2836 
2837 	rb_commit(cpu_buffer, event);
2838 
2839 	rb_wakeups(buffer, cpu_buffer);
2840 
2841 	trace_recursive_unlock();
2842 
2843 	preempt_enable_notrace();
2844 
2845 	return 0;
2846 }
2847 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2848 
2849 static inline void rb_event_discard(struct ring_buffer_event *event)
2850 {
2851 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2852 		event = skip_time_extend(event);
2853 
2854 	/* array[0] holds the actual length for the discarded event */
2855 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2856 	event->type_len = RINGBUF_TYPE_PADDING;
2857 	/* time delta must be non zero */
2858 	if (!event->time_delta)
2859 		event->time_delta = 1;
2860 }
2861 
2862 /*
2863  * Decrement the entries to the page that an event is on.
2864  * The event does not even need to exist, only the pointer
2865  * to the page it is on. This may only be called before the commit
2866  * takes place.
2867  */
2868 static inline void
2869 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2870 		   struct ring_buffer_event *event)
2871 {
2872 	unsigned long addr = (unsigned long)event;
2873 	struct buffer_page *bpage = cpu_buffer->commit_page;
2874 	struct buffer_page *start;
2875 
2876 	addr &= PAGE_MASK;
2877 
2878 	/* Do the likely case first */
2879 	if (likely(bpage->page == (void *)addr)) {
2880 		local_dec(&bpage->entries);
2881 		return;
2882 	}
2883 
2884 	/*
2885 	 * Because the commit page may be on the reader page we
2886 	 * start with the next page and check the end loop there.
2887 	 */
2888 	rb_inc_page(cpu_buffer, &bpage);
2889 	start = bpage;
2890 	do {
2891 		if (bpage->page == (void *)addr) {
2892 			local_dec(&bpage->entries);
2893 			return;
2894 		}
2895 		rb_inc_page(cpu_buffer, &bpage);
2896 	} while (bpage != start);
2897 
2898 	/* commit not part of this buffer?? */
2899 	RB_WARN_ON(cpu_buffer, 1);
2900 }
2901 
2902 /**
2903  * ring_buffer_commit_discard - discard an event that has not been committed
2904  * @buffer: the ring buffer
2905  * @event: non committed event to discard
2906  *
2907  * Sometimes an event that is in the ring buffer needs to be ignored.
2908  * This function lets the user discard an event in the ring buffer
2909  * and then that event will not be read later.
2910  *
2911  * This function only works if it is called before the the item has been
2912  * committed. It will try to free the event from the ring buffer
2913  * if another event has not been added behind it.
2914  *
2915  * If another event has been added behind it, it will set the event
2916  * up as discarded, and perform the commit.
2917  *
2918  * If this function is called, do not call ring_buffer_unlock_commit on
2919  * the event.
2920  */
2921 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2922 				struct ring_buffer_event *event)
2923 {
2924 	struct ring_buffer_per_cpu *cpu_buffer;
2925 	int cpu;
2926 
2927 	/* The event is discarded regardless */
2928 	rb_event_discard(event);
2929 
2930 	cpu = smp_processor_id();
2931 	cpu_buffer = buffer->buffers[cpu];
2932 
2933 	/*
2934 	 * This must only be called if the event has not been
2935 	 * committed yet. Thus we can assume that preemption
2936 	 * is still disabled.
2937 	 */
2938 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2939 
2940 	rb_decrement_entry(cpu_buffer, event);
2941 	if (rb_try_to_discard(cpu_buffer, event))
2942 		goto out;
2943 
2944 	/*
2945 	 * The commit is still visible by the reader, so we
2946 	 * must still update the timestamp.
2947 	 */
2948 	rb_update_write_stamp(cpu_buffer, event);
2949  out:
2950 	rb_end_commit(cpu_buffer);
2951 
2952 	trace_recursive_unlock();
2953 
2954 	preempt_enable_notrace();
2955 
2956 }
2957 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2958 
2959 /**
2960  * ring_buffer_write - write data to the buffer without reserving
2961  * @buffer: The ring buffer to write to.
2962  * @length: The length of the data being written (excluding the event header)
2963  * @data: The data to write to the buffer.
2964  *
2965  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2966  * one function. If you already have the data to write to the buffer, it
2967  * may be easier to simply call this function.
2968  *
2969  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2970  * and not the length of the event which would hold the header.
2971  */
2972 int ring_buffer_write(struct ring_buffer *buffer,
2973 		      unsigned long length,
2974 		      void *data)
2975 {
2976 	struct ring_buffer_per_cpu *cpu_buffer;
2977 	struct ring_buffer_event *event;
2978 	void *body;
2979 	int ret = -EBUSY;
2980 	int cpu;
2981 
2982 	if (ring_buffer_flags != RB_BUFFERS_ON)
2983 		return -EBUSY;
2984 
2985 	preempt_disable_notrace();
2986 
2987 	if (atomic_read(&buffer->record_disabled))
2988 		goto out;
2989 
2990 	cpu = raw_smp_processor_id();
2991 
2992 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2993 		goto out;
2994 
2995 	cpu_buffer = buffer->buffers[cpu];
2996 
2997 	if (atomic_read(&cpu_buffer->record_disabled))
2998 		goto out;
2999 
3000 	if (length > BUF_MAX_DATA_SIZE)
3001 		goto out;
3002 
3003 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3004 	if (!event)
3005 		goto out;
3006 
3007 	body = rb_event_data(event);
3008 
3009 	memcpy(body, data, length);
3010 
3011 	rb_commit(cpu_buffer, event);
3012 
3013 	rb_wakeups(buffer, cpu_buffer);
3014 
3015 	ret = 0;
3016  out:
3017 	preempt_enable_notrace();
3018 
3019 	return ret;
3020 }
3021 EXPORT_SYMBOL_GPL(ring_buffer_write);
3022 
3023 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3024 {
3025 	struct buffer_page *reader = cpu_buffer->reader_page;
3026 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3027 	struct buffer_page *commit = cpu_buffer->commit_page;
3028 
3029 	/* In case of error, head will be NULL */
3030 	if (unlikely(!head))
3031 		return 1;
3032 
3033 	return reader->read == rb_page_commit(reader) &&
3034 		(commit == reader ||
3035 		 (commit == head &&
3036 		  head->read == rb_page_commit(commit)));
3037 }
3038 
3039 /**
3040  * ring_buffer_record_disable - stop all writes into the buffer
3041  * @buffer: The ring buffer to stop writes to.
3042  *
3043  * This prevents all writes to the buffer. Any attempt to write
3044  * to the buffer after this will fail and return NULL.
3045  *
3046  * The caller should call synchronize_sched() after this.
3047  */
3048 void ring_buffer_record_disable(struct ring_buffer *buffer)
3049 {
3050 	atomic_inc(&buffer->record_disabled);
3051 }
3052 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3053 
3054 /**
3055  * ring_buffer_record_enable - enable writes to the buffer
3056  * @buffer: The ring buffer to enable writes
3057  *
3058  * Note, multiple disables will need the same number of enables
3059  * to truly enable the writing (much like preempt_disable).
3060  */
3061 void ring_buffer_record_enable(struct ring_buffer *buffer)
3062 {
3063 	atomic_dec(&buffer->record_disabled);
3064 }
3065 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3066 
3067 /**
3068  * ring_buffer_record_off - stop all writes into the buffer
3069  * @buffer: The ring buffer to stop writes to.
3070  *
3071  * This prevents all writes to the buffer. Any attempt to write
3072  * to the buffer after this will fail and return NULL.
3073  *
3074  * This is different than ring_buffer_record_disable() as
3075  * it works like an on/off switch, where as the disable() version
3076  * must be paired with a enable().
3077  */
3078 void ring_buffer_record_off(struct ring_buffer *buffer)
3079 {
3080 	unsigned int rd;
3081 	unsigned int new_rd;
3082 
3083 	do {
3084 		rd = atomic_read(&buffer->record_disabled);
3085 		new_rd = rd | RB_BUFFER_OFF;
3086 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3087 }
3088 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3089 
3090 /**
3091  * ring_buffer_record_on - restart writes into the buffer
3092  * @buffer: The ring buffer to start writes to.
3093  *
3094  * This enables all writes to the buffer that was disabled by
3095  * ring_buffer_record_off().
3096  *
3097  * This is different than ring_buffer_record_enable() as
3098  * it works like an on/off switch, where as the enable() version
3099  * must be paired with a disable().
3100  */
3101 void ring_buffer_record_on(struct ring_buffer *buffer)
3102 {
3103 	unsigned int rd;
3104 	unsigned int new_rd;
3105 
3106 	do {
3107 		rd = atomic_read(&buffer->record_disabled);
3108 		new_rd = rd & ~RB_BUFFER_OFF;
3109 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3110 }
3111 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3112 
3113 /**
3114  * ring_buffer_record_is_on - return true if the ring buffer can write
3115  * @buffer: The ring buffer to see if write is enabled
3116  *
3117  * Returns true if the ring buffer is in a state that it accepts writes.
3118  */
3119 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3120 {
3121 	return !atomic_read(&buffer->record_disabled);
3122 }
3123 
3124 /**
3125  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3126  * @buffer: The ring buffer to stop writes to.
3127  * @cpu: The CPU buffer to stop
3128  *
3129  * This prevents all writes to the buffer. Any attempt to write
3130  * to the buffer after this will fail and return NULL.
3131  *
3132  * The caller should call synchronize_sched() after this.
3133  */
3134 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3135 {
3136 	struct ring_buffer_per_cpu *cpu_buffer;
3137 
3138 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3139 		return;
3140 
3141 	cpu_buffer = buffer->buffers[cpu];
3142 	atomic_inc(&cpu_buffer->record_disabled);
3143 }
3144 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3145 
3146 /**
3147  * ring_buffer_record_enable_cpu - enable writes to the buffer
3148  * @buffer: The ring buffer to enable writes
3149  * @cpu: The CPU to enable.
3150  *
3151  * Note, multiple disables will need the same number of enables
3152  * to truly enable the writing (much like preempt_disable).
3153  */
3154 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3155 {
3156 	struct ring_buffer_per_cpu *cpu_buffer;
3157 
3158 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3159 		return;
3160 
3161 	cpu_buffer = buffer->buffers[cpu];
3162 	atomic_dec(&cpu_buffer->record_disabled);
3163 }
3164 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3165 
3166 /*
3167  * The total entries in the ring buffer is the running counter
3168  * of entries entered into the ring buffer, minus the sum of
3169  * the entries read from the ring buffer and the number of
3170  * entries that were overwritten.
3171  */
3172 static inline unsigned long
3173 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3174 {
3175 	return local_read(&cpu_buffer->entries) -
3176 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3177 }
3178 
3179 /**
3180  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3181  * @buffer: The ring buffer
3182  * @cpu: The per CPU buffer to read from.
3183  */
3184 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3185 {
3186 	unsigned long flags;
3187 	struct ring_buffer_per_cpu *cpu_buffer;
3188 	struct buffer_page *bpage;
3189 	u64 ret = 0;
3190 
3191 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3192 		return 0;
3193 
3194 	cpu_buffer = buffer->buffers[cpu];
3195 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3196 	/*
3197 	 * if the tail is on reader_page, oldest time stamp is on the reader
3198 	 * page
3199 	 */
3200 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3201 		bpage = cpu_buffer->reader_page;
3202 	else
3203 		bpage = rb_set_head_page(cpu_buffer);
3204 	if (bpage)
3205 		ret = bpage->page->time_stamp;
3206 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3207 
3208 	return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3211 
3212 /**
3213  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3214  * @buffer: The ring buffer
3215  * @cpu: The per CPU buffer to read from.
3216  */
3217 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3218 {
3219 	struct ring_buffer_per_cpu *cpu_buffer;
3220 	unsigned long ret;
3221 
3222 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3223 		return 0;
3224 
3225 	cpu_buffer = buffer->buffers[cpu];
3226 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3227 
3228 	return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3231 
3232 /**
3233  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3234  * @buffer: The ring buffer
3235  * @cpu: The per CPU buffer to get the entries from.
3236  */
3237 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3238 {
3239 	struct ring_buffer_per_cpu *cpu_buffer;
3240 
3241 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242 		return 0;
3243 
3244 	cpu_buffer = buffer->buffers[cpu];
3245 
3246 	return rb_num_of_entries(cpu_buffer);
3247 }
3248 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3249 
3250 /**
3251  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3252  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3253  * @buffer: The ring buffer
3254  * @cpu: The per CPU buffer to get the number of overruns from
3255  */
3256 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3257 {
3258 	struct ring_buffer_per_cpu *cpu_buffer;
3259 	unsigned long ret;
3260 
3261 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262 		return 0;
3263 
3264 	cpu_buffer = buffer->buffers[cpu];
3265 	ret = local_read(&cpu_buffer->overrun);
3266 
3267 	return ret;
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3270 
3271 /**
3272  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3273  * commits failing due to the buffer wrapping around while there are uncommitted
3274  * events, such as during an interrupt storm.
3275  * @buffer: The ring buffer
3276  * @cpu: The per CPU buffer to get the number of overruns from
3277  */
3278 unsigned long
3279 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3280 {
3281 	struct ring_buffer_per_cpu *cpu_buffer;
3282 	unsigned long ret;
3283 
3284 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3285 		return 0;
3286 
3287 	cpu_buffer = buffer->buffers[cpu];
3288 	ret = local_read(&cpu_buffer->commit_overrun);
3289 
3290 	return ret;
3291 }
3292 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3293 
3294 /**
3295  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3296  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3297  * @buffer: The ring buffer
3298  * @cpu: The per CPU buffer to get the number of overruns from
3299  */
3300 unsigned long
3301 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3302 {
3303 	struct ring_buffer_per_cpu *cpu_buffer;
3304 	unsigned long ret;
3305 
3306 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307 		return 0;
3308 
3309 	cpu_buffer = buffer->buffers[cpu];
3310 	ret = local_read(&cpu_buffer->dropped_events);
3311 
3312 	return ret;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3315 
3316 /**
3317  * ring_buffer_read_events_cpu - get the number of events successfully read
3318  * @buffer: The ring buffer
3319  * @cpu: The per CPU buffer to get the number of events read
3320  */
3321 unsigned long
3322 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3323 {
3324 	struct ring_buffer_per_cpu *cpu_buffer;
3325 
3326 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3327 		return 0;
3328 
3329 	cpu_buffer = buffer->buffers[cpu];
3330 	return cpu_buffer->read;
3331 }
3332 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3333 
3334 /**
3335  * ring_buffer_entries - get the number of entries in a buffer
3336  * @buffer: The ring buffer
3337  *
3338  * Returns the total number of entries in the ring buffer
3339  * (all CPU entries)
3340  */
3341 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3342 {
3343 	struct ring_buffer_per_cpu *cpu_buffer;
3344 	unsigned long entries = 0;
3345 	int cpu;
3346 
3347 	/* if you care about this being correct, lock the buffer */
3348 	for_each_buffer_cpu(buffer, cpu) {
3349 		cpu_buffer = buffer->buffers[cpu];
3350 		entries += rb_num_of_entries(cpu_buffer);
3351 	}
3352 
3353 	return entries;
3354 }
3355 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3356 
3357 /**
3358  * ring_buffer_overruns - get the number of overruns in buffer
3359  * @buffer: The ring buffer
3360  *
3361  * Returns the total number of overruns in the ring buffer
3362  * (all CPU entries)
3363  */
3364 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3365 {
3366 	struct ring_buffer_per_cpu *cpu_buffer;
3367 	unsigned long overruns = 0;
3368 	int cpu;
3369 
3370 	/* if you care about this being correct, lock the buffer */
3371 	for_each_buffer_cpu(buffer, cpu) {
3372 		cpu_buffer = buffer->buffers[cpu];
3373 		overruns += local_read(&cpu_buffer->overrun);
3374 	}
3375 
3376 	return overruns;
3377 }
3378 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3379 
3380 static void rb_iter_reset(struct ring_buffer_iter *iter)
3381 {
3382 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3383 
3384 	/* Iterator usage is expected to have record disabled */
3385 	iter->head_page = cpu_buffer->reader_page;
3386 	iter->head = cpu_buffer->reader_page->read;
3387 
3388 	iter->cache_reader_page = iter->head_page;
3389 	iter->cache_read = cpu_buffer->read;
3390 
3391 	if (iter->head)
3392 		iter->read_stamp = cpu_buffer->read_stamp;
3393 	else
3394 		iter->read_stamp = iter->head_page->page->time_stamp;
3395 }
3396 
3397 /**
3398  * ring_buffer_iter_reset - reset an iterator
3399  * @iter: The iterator to reset
3400  *
3401  * Resets the iterator, so that it will start from the beginning
3402  * again.
3403  */
3404 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3405 {
3406 	struct ring_buffer_per_cpu *cpu_buffer;
3407 	unsigned long flags;
3408 
3409 	if (!iter)
3410 		return;
3411 
3412 	cpu_buffer = iter->cpu_buffer;
3413 
3414 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3415 	rb_iter_reset(iter);
3416 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3417 }
3418 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3419 
3420 /**
3421  * ring_buffer_iter_empty - check if an iterator has no more to read
3422  * @iter: The iterator to check
3423  */
3424 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3425 {
3426 	struct ring_buffer_per_cpu *cpu_buffer;
3427 
3428 	cpu_buffer = iter->cpu_buffer;
3429 
3430 	return iter->head_page == cpu_buffer->commit_page &&
3431 		iter->head == rb_commit_index(cpu_buffer);
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3434 
3435 static void
3436 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3437 		     struct ring_buffer_event *event)
3438 {
3439 	u64 delta;
3440 
3441 	switch (event->type_len) {
3442 	case RINGBUF_TYPE_PADDING:
3443 		return;
3444 
3445 	case RINGBUF_TYPE_TIME_EXTEND:
3446 		delta = event->array[0];
3447 		delta <<= TS_SHIFT;
3448 		delta += event->time_delta;
3449 		cpu_buffer->read_stamp += delta;
3450 		return;
3451 
3452 	case RINGBUF_TYPE_TIME_STAMP:
3453 		/* FIXME: not implemented */
3454 		return;
3455 
3456 	case RINGBUF_TYPE_DATA:
3457 		cpu_buffer->read_stamp += event->time_delta;
3458 		return;
3459 
3460 	default:
3461 		BUG();
3462 	}
3463 	return;
3464 }
3465 
3466 static void
3467 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3468 			  struct ring_buffer_event *event)
3469 {
3470 	u64 delta;
3471 
3472 	switch (event->type_len) {
3473 	case RINGBUF_TYPE_PADDING:
3474 		return;
3475 
3476 	case RINGBUF_TYPE_TIME_EXTEND:
3477 		delta = event->array[0];
3478 		delta <<= TS_SHIFT;
3479 		delta += event->time_delta;
3480 		iter->read_stamp += delta;
3481 		return;
3482 
3483 	case RINGBUF_TYPE_TIME_STAMP:
3484 		/* FIXME: not implemented */
3485 		return;
3486 
3487 	case RINGBUF_TYPE_DATA:
3488 		iter->read_stamp += event->time_delta;
3489 		return;
3490 
3491 	default:
3492 		BUG();
3493 	}
3494 	return;
3495 }
3496 
3497 static struct buffer_page *
3498 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3499 {
3500 	struct buffer_page *reader = NULL;
3501 	unsigned long overwrite;
3502 	unsigned long flags;
3503 	int nr_loops = 0;
3504 	int ret;
3505 
3506 	local_irq_save(flags);
3507 	arch_spin_lock(&cpu_buffer->lock);
3508 
3509  again:
3510 	/*
3511 	 * This should normally only loop twice. But because the
3512 	 * start of the reader inserts an empty page, it causes
3513 	 * a case where we will loop three times. There should be no
3514 	 * reason to loop four times (that I know of).
3515 	 */
3516 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3517 		reader = NULL;
3518 		goto out;
3519 	}
3520 
3521 	reader = cpu_buffer->reader_page;
3522 
3523 	/* If there's more to read, return this page */
3524 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3525 		goto out;
3526 
3527 	/* Never should we have an index greater than the size */
3528 	if (RB_WARN_ON(cpu_buffer,
3529 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3530 		goto out;
3531 
3532 	/* check if we caught up to the tail */
3533 	reader = NULL;
3534 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3535 		goto out;
3536 
3537 	/* Don't bother swapping if the ring buffer is empty */
3538 	if (rb_num_of_entries(cpu_buffer) == 0)
3539 		goto out;
3540 
3541 	/*
3542 	 * Reset the reader page to size zero.
3543 	 */
3544 	local_set(&cpu_buffer->reader_page->write, 0);
3545 	local_set(&cpu_buffer->reader_page->entries, 0);
3546 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3547 	cpu_buffer->reader_page->real_end = 0;
3548 
3549  spin:
3550 	/*
3551 	 * Splice the empty reader page into the list around the head.
3552 	 */
3553 	reader = rb_set_head_page(cpu_buffer);
3554 	if (!reader)
3555 		goto out;
3556 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3557 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3558 
3559 	/*
3560 	 * cpu_buffer->pages just needs to point to the buffer, it
3561 	 *  has no specific buffer page to point to. Lets move it out
3562 	 *  of our way so we don't accidentally swap it.
3563 	 */
3564 	cpu_buffer->pages = reader->list.prev;
3565 
3566 	/* The reader page will be pointing to the new head */
3567 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3568 
3569 	/*
3570 	 * We want to make sure we read the overruns after we set up our
3571 	 * pointers to the next object. The writer side does a
3572 	 * cmpxchg to cross pages which acts as the mb on the writer
3573 	 * side. Note, the reader will constantly fail the swap
3574 	 * while the writer is updating the pointers, so this
3575 	 * guarantees that the overwrite recorded here is the one we
3576 	 * want to compare with the last_overrun.
3577 	 */
3578 	smp_mb();
3579 	overwrite = local_read(&(cpu_buffer->overrun));
3580 
3581 	/*
3582 	 * Here's the tricky part.
3583 	 *
3584 	 * We need to move the pointer past the header page.
3585 	 * But we can only do that if a writer is not currently
3586 	 * moving it. The page before the header page has the
3587 	 * flag bit '1' set if it is pointing to the page we want.
3588 	 * but if the writer is in the process of moving it
3589 	 * than it will be '2' or already moved '0'.
3590 	 */
3591 
3592 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3593 
3594 	/*
3595 	 * If we did not convert it, then we must try again.
3596 	 */
3597 	if (!ret)
3598 		goto spin;
3599 
3600 	/*
3601 	 * Yeah! We succeeded in replacing the page.
3602 	 *
3603 	 * Now make the new head point back to the reader page.
3604 	 */
3605 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3606 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3607 
3608 	/* Finally update the reader page to the new head */
3609 	cpu_buffer->reader_page = reader;
3610 	rb_reset_reader_page(cpu_buffer);
3611 
3612 	if (overwrite != cpu_buffer->last_overrun) {
3613 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3614 		cpu_buffer->last_overrun = overwrite;
3615 	}
3616 
3617 	goto again;
3618 
3619  out:
3620 	arch_spin_unlock(&cpu_buffer->lock);
3621 	local_irq_restore(flags);
3622 
3623 	return reader;
3624 }
3625 
3626 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3627 {
3628 	struct ring_buffer_event *event;
3629 	struct buffer_page *reader;
3630 	unsigned length;
3631 
3632 	reader = rb_get_reader_page(cpu_buffer);
3633 
3634 	/* This function should not be called when buffer is empty */
3635 	if (RB_WARN_ON(cpu_buffer, !reader))
3636 		return;
3637 
3638 	event = rb_reader_event(cpu_buffer);
3639 
3640 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3641 		cpu_buffer->read++;
3642 
3643 	rb_update_read_stamp(cpu_buffer, event);
3644 
3645 	length = rb_event_length(event);
3646 	cpu_buffer->reader_page->read += length;
3647 }
3648 
3649 static void rb_advance_iter(struct ring_buffer_iter *iter)
3650 {
3651 	struct ring_buffer_per_cpu *cpu_buffer;
3652 	struct ring_buffer_event *event;
3653 	unsigned length;
3654 
3655 	cpu_buffer = iter->cpu_buffer;
3656 
3657 	/*
3658 	 * Check if we are at the end of the buffer.
3659 	 */
3660 	if (iter->head >= rb_page_size(iter->head_page)) {
3661 		/* discarded commits can make the page empty */
3662 		if (iter->head_page == cpu_buffer->commit_page)
3663 			return;
3664 		rb_inc_iter(iter);
3665 		return;
3666 	}
3667 
3668 	event = rb_iter_head_event(iter);
3669 
3670 	length = rb_event_length(event);
3671 
3672 	/*
3673 	 * This should not be called to advance the header if we are
3674 	 * at the tail of the buffer.
3675 	 */
3676 	if (RB_WARN_ON(cpu_buffer,
3677 		       (iter->head_page == cpu_buffer->commit_page) &&
3678 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3679 		return;
3680 
3681 	rb_update_iter_read_stamp(iter, event);
3682 
3683 	iter->head += length;
3684 
3685 	/* check for end of page padding */
3686 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3687 	    (iter->head_page != cpu_buffer->commit_page))
3688 		rb_inc_iter(iter);
3689 }
3690 
3691 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3692 {
3693 	return cpu_buffer->lost_events;
3694 }
3695 
3696 static struct ring_buffer_event *
3697 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3698 	       unsigned long *lost_events)
3699 {
3700 	struct ring_buffer_event *event;
3701 	struct buffer_page *reader;
3702 	int nr_loops = 0;
3703 
3704  again:
3705 	/*
3706 	 * We repeat when a time extend is encountered.
3707 	 * Since the time extend is always attached to a data event,
3708 	 * we should never loop more than once.
3709 	 * (We never hit the following condition more than twice).
3710 	 */
3711 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3712 		return NULL;
3713 
3714 	reader = rb_get_reader_page(cpu_buffer);
3715 	if (!reader)
3716 		return NULL;
3717 
3718 	event = rb_reader_event(cpu_buffer);
3719 
3720 	switch (event->type_len) {
3721 	case RINGBUF_TYPE_PADDING:
3722 		if (rb_null_event(event))
3723 			RB_WARN_ON(cpu_buffer, 1);
3724 		/*
3725 		 * Because the writer could be discarding every
3726 		 * event it creates (which would probably be bad)
3727 		 * if we were to go back to "again" then we may never
3728 		 * catch up, and will trigger the warn on, or lock
3729 		 * the box. Return the padding, and we will release
3730 		 * the current locks, and try again.
3731 		 */
3732 		return event;
3733 
3734 	case RINGBUF_TYPE_TIME_EXTEND:
3735 		/* Internal data, OK to advance */
3736 		rb_advance_reader(cpu_buffer);
3737 		goto again;
3738 
3739 	case RINGBUF_TYPE_TIME_STAMP:
3740 		/* FIXME: not implemented */
3741 		rb_advance_reader(cpu_buffer);
3742 		goto again;
3743 
3744 	case RINGBUF_TYPE_DATA:
3745 		if (ts) {
3746 			*ts = cpu_buffer->read_stamp + event->time_delta;
3747 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3748 							 cpu_buffer->cpu, ts);
3749 		}
3750 		if (lost_events)
3751 			*lost_events = rb_lost_events(cpu_buffer);
3752 		return event;
3753 
3754 	default:
3755 		BUG();
3756 	}
3757 
3758 	return NULL;
3759 }
3760 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3761 
3762 static struct ring_buffer_event *
3763 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3764 {
3765 	struct ring_buffer *buffer;
3766 	struct ring_buffer_per_cpu *cpu_buffer;
3767 	struct ring_buffer_event *event;
3768 	int nr_loops = 0;
3769 
3770 	cpu_buffer = iter->cpu_buffer;
3771 	buffer = cpu_buffer->buffer;
3772 
3773 	/*
3774 	 * Check if someone performed a consuming read to
3775 	 * the buffer. A consuming read invalidates the iterator
3776 	 * and we need to reset the iterator in this case.
3777 	 */
3778 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3779 		     iter->cache_reader_page != cpu_buffer->reader_page))
3780 		rb_iter_reset(iter);
3781 
3782  again:
3783 	if (ring_buffer_iter_empty(iter))
3784 		return NULL;
3785 
3786 	/*
3787 	 * We repeat when a time extend is encountered or we hit
3788 	 * the end of the page. Since the time extend is always attached
3789 	 * to a data event, we should never loop more than three times.
3790 	 * Once for going to next page, once on time extend, and
3791 	 * finally once to get the event.
3792 	 * (We never hit the following condition more than thrice).
3793 	 */
3794 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3795 		return NULL;
3796 
3797 	if (rb_per_cpu_empty(cpu_buffer))
3798 		return NULL;
3799 
3800 	if (iter->head >= rb_page_size(iter->head_page)) {
3801 		rb_inc_iter(iter);
3802 		goto again;
3803 	}
3804 
3805 	event = rb_iter_head_event(iter);
3806 
3807 	switch (event->type_len) {
3808 	case RINGBUF_TYPE_PADDING:
3809 		if (rb_null_event(event)) {
3810 			rb_inc_iter(iter);
3811 			goto again;
3812 		}
3813 		rb_advance_iter(iter);
3814 		return event;
3815 
3816 	case RINGBUF_TYPE_TIME_EXTEND:
3817 		/* Internal data, OK to advance */
3818 		rb_advance_iter(iter);
3819 		goto again;
3820 
3821 	case RINGBUF_TYPE_TIME_STAMP:
3822 		/* FIXME: not implemented */
3823 		rb_advance_iter(iter);
3824 		goto again;
3825 
3826 	case RINGBUF_TYPE_DATA:
3827 		if (ts) {
3828 			*ts = iter->read_stamp + event->time_delta;
3829 			ring_buffer_normalize_time_stamp(buffer,
3830 							 cpu_buffer->cpu, ts);
3831 		}
3832 		return event;
3833 
3834 	default:
3835 		BUG();
3836 	}
3837 
3838 	return NULL;
3839 }
3840 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3841 
3842 static inline int rb_ok_to_lock(void)
3843 {
3844 	/*
3845 	 * If an NMI die dumps out the content of the ring buffer
3846 	 * do not grab locks. We also permanently disable the ring
3847 	 * buffer too. A one time deal is all you get from reading
3848 	 * the ring buffer from an NMI.
3849 	 */
3850 	if (likely(!in_nmi()))
3851 		return 1;
3852 
3853 	tracing_off_permanent();
3854 	return 0;
3855 }
3856 
3857 /**
3858  * ring_buffer_peek - peek at the next event to be read
3859  * @buffer: The ring buffer to read
3860  * @cpu: The cpu to peak at
3861  * @ts: The timestamp counter of this event.
3862  * @lost_events: a variable to store if events were lost (may be NULL)
3863  *
3864  * This will return the event that will be read next, but does
3865  * not consume the data.
3866  */
3867 struct ring_buffer_event *
3868 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3869 		 unsigned long *lost_events)
3870 {
3871 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3872 	struct ring_buffer_event *event;
3873 	unsigned long flags;
3874 	int dolock;
3875 
3876 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3877 		return NULL;
3878 
3879 	dolock = rb_ok_to_lock();
3880  again:
3881 	local_irq_save(flags);
3882 	if (dolock)
3883 		raw_spin_lock(&cpu_buffer->reader_lock);
3884 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3885 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3886 		rb_advance_reader(cpu_buffer);
3887 	if (dolock)
3888 		raw_spin_unlock(&cpu_buffer->reader_lock);
3889 	local_irq_restore(flags);
3890 
3891 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3892 		goto again;
3893 
3894 	return event;
3895 }
3896 
3897 /**
3898  * ring_buffer_iter_peek - peek at the next event to be read
3899  * @iter: The ring buffer iterator
3900  * @ts: The timestamp counter of this event.
3901  *
3902  * This will return the event that will be read next, but does
3903  * not increment the iterator.
3904  */
3905 struct ring_buffer_event *
3906 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3907 {
3908 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3909 	struct ring_buffer_event *event;
3910 	unsigned long flags;
3911 
3912  again:
3913 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3914 	event = rb_iter_peek(iter, ts);
3915 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3916 
3917 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3918 		goto again;
3919 
3920 	return event;
3921 }
3922 
3923 /**
3924  * ring_buffer_consume - return an event and consume it
3925  * @buffer: The ring buffer to get the next event from
3926  * @cpu: the cpu to read the buffer from
3927  * @ts: a variable to store the timestamp (may be NULL)
3928  * @lost_events: a variable to store if events were lost (may be NULL)
3929  *
3930  * Returns the next event in the ring buffer, and that event is consumed.
3931  * Meaning, that sequential reads will keep returning a different event,
3932  * and eventually empty the ring buffer if the producer is slower.
3933  */
3934 struct ring_buffer_event *
3935 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3936 		    unsigned long *lost_events)
3937 {
3938 	struct ring_buffer_per_cpu *cpu_buffer;
3939 	struct ring_buffer_event *event = NULL;
3940 	unsigned long flags;
3941 	int dolock;
3942 
3943 	dolock = rb_ok_to_lock();
3944 
3945  again:
3946 	/* might be called in atomic */
3947 	preempt_disable();
3948 
3949 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3950 		goto out;
3951 
3952 	cpu_buffer = buffer->buffers[cpu];
3953 	local_irq_save(flags);
3954 	if (dolock)
3955 		raw_spin_lock(&cpu_buffer->reader_lock);
3956 
3957 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3958 	if (event) {
3959 		cpu_buffer->lost_events = 0;
3960 		rb_advance_reader(cpu_buffer);
3961 	}
3962 
3963 	if (dolock)
3964 		raw_spin_unlock(&cpu_buffer->reader_lock);
3965 	local_irq_restore(flags);
3966 
3967  out:
3968 	preempt_enable();
3969 
3970 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3971 		goto again;
3972 
3973 	return event;
3974 }
3975 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3976 
3977 /**
3978  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3979  * @buffer: The ring buffer to read from
3980  * @cpu: The cpu buffer to iterate over
3981  *
3982  * This performs the initial preparations necessary to iterate
3983  * through the buffer.  Memory is allocated, buffer recording
3984  * is disabled, and the iterator pointer is returned to the caller.
3985  *
3986  * Disabling buffer recordng prevents the reading from being
3987  * corrupted. This is not a consuming read, so a producer is not
3988  * expected.
3989  *
3990  * After a sequence of ring_buffer_read_prepare calls, the user is
3991  * expected to make at least one call to ring_buffer_read_prepare_sync.
3992  * Afterwards, ring_buffer_read_start is invoked to get things going
3993  * for real.
3994  *
3995  * This overall must be paired with ring_buffer_read_finish.
3996  */
3997 struct ring_buffer_iter *
3998 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3999 {
4000 	struct ring_buffer_per_cpu *cpu_buffer;
4001 	struct ring_buffer_iter *iter;
4002 
4003 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4004 		return NULL;
4005 
4006 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4007 	if (!iter)
4008 		return NULL;
4009 
4010 	cpu_buffer = buffer->buffers[cpu];
4011 
4012 	iter->cpu_buffer = cpu_buffer;
4013 
4014 	atomic_inc(&buffer->resize_disabled);
4015 	atomic_inc(&cpu_buffer->record_disabled);
4016 
4017 	return iter;
4018 }
4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4020 
4021 /**
4022  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4023  *
4024  * All previously invoked ring_buffer_read_prepare calls to prepare
4025  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4026  * calls on those iterators are allowed.
4027  */
4028 void
4029 ring_buffer_read_prepare_sync(void)
4030 {
4031 	synchronize_sched();
4032 }
4033 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4034 
4035 /**
4036  * ring_buffer_read_start - start a non consuming read of the buffer
4037  * @iter: The iterator returned by ring_buffer_read_prepare
4038  *
4039  * This finalizes the startup of an iteration through the buffer.
4040  * The iterator comes from a call to ring_buffer_read_prepare and
4041  * an intervening ring_buffer_read_prepare_sync must have been
4042  * performed.
4043  *
4044  * Must be paired with ring_buffer_read_finish.
4045  */
4046 void
4047 ring_buffer_read_start(struct ring_buffer_iter *iter)
4048 {
4049 	struct ring_buffer_per_cpu *cpu_buffer;
4050 	unsigned long flags;
4051 
4052 	if (!iter)
4053 		return;
4054 
4055 	cpu_buffer = iter->cpu_buffer;
4056 
4057 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058 	arch_spin_lock(&cpu_buffer->lock);
4059 	rb_iter_reset(iter);
4060 	arch_spin_unlock(&cpu_buffer->lock);
4061 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4064 
4065 /**
4066  * ring_buffer_read_finish - finish reading the iterator of the buffer
4067  * @iter: The iterator retrieved by ring_buffer_start
4068  *
4069  * This re-enables the recording to the buffer, and frees the
4070  * iterator.
4071  */
4072 void
4073 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4074 {
4075 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076 	unsigned long flags;
4077 
4078 	/*
4079 	 * Ring buffer is disabled from recording, here's a good place
4080 	 * to check the integrity of the ring buffer.
4081 	 * Must prevent readers from trying to read, as the check
4082 	 * clears the HEAD page and readers require it.
4083 	 */
4084 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4085 	rb_check_pages(cpu_buffer);
4086 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087 
4088 	atomic_dec(&cpu_buffer->record_disabled);
4089 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4090 	kfree(iter);
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4093 
4094 /**
4095  * ring_buffer_read - read the next item in the ring buffer by the iterator
4096  * @iter: The ring buffer iterator
4097  * @ts: The time stamp of the event read.
4098  *
4099  * This reads the next event in the ring buffer and increments the iterator.
4100  */
4101 struct ring_buffer_event *
4102 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4103 {
4104 	struct ring_buffer_event *event;
4105 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106 	unsigned long flags;
4107 
4108 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4109  again:
4110 	event = rb_iter_peek(iter, ts);
4111 	if (!event)
4112 		goto out;
4113 
4114 	if (event->type_len == RINGBUF_TYPE_PADDING)
4115 		goto again;
4116 
4117 	rb_advance_iter(iter);
4118  out:
4119 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4120 
4121 	return event;
4122 }
4123 EXPORT_SYMBOL_GPL(ring_buffer_read);
4124 
4125 /**
4126  * ring_buffer_size - return the size of the ring buffer (in bytes)
4127  * @buffer: The ring buffer.
4128  */
4129 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4130 {
4131 	/*
4132 	 * Earlier, this method returned
4133 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4134 	 * Since the nr_pages field is now removed, we have converted this to
4135 	 * return the per cpu buffer value.
4136 	 */
4137 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4138 		return 0;
4139 
4140 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4141 }
4142 EXPORT_SYMBOL_GPL(ring_buffer_size);
4143 
4144 static void
4145 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4146 {
4147 	rb_head_page_deactivate(cpu_buffer);
4148 
4149 	cpu_buffer->head_page
4150 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4151 	local_set(&cpu_buffer->head_page->write, 0);
4152 	local_set(&cpu_buffer->head_page->entries, 0);
4153 	local_set(&cpu_buffer->head_page->page->commit, 0);
4154 
4155 	cpu_buffer->head_page->read = 0;
4156 
4157 	cpu_buffer->tail_page = cpu_buffer->head_page;
4158 	cpu_buffer->commit_page = cpu_buffer->head_page;
4159 
4160 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4161 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4162 	local_set(&cpu_buffer->reader_page->write, 0);
4163 	local_set(&cpu_buffer->reader_page->entries, 0);
4164 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4165 	cpu_buffer->reader_page->read = 0;
4166 
4167 	local_set(&cpu_buffer->entries_bytes, 0);
4168 	local_set(&cpu_buffer->overrun, 0);
4169 	local_set(&cpu_buffer->commit_overrun, 0);
4170 	local_set(&cpu_buffer->dropped_events, 0);
4171 	local_set(&cpu_buffer->entries, 0);
4172 	local_set(&cpu_buffer->committing, 0);
4173 	local_set(&cpu_buffer->commits, 0);
4174 	cpu_buffer->read = 0;
4175 	cpu_buffer->read_bytes = 0;
4176 
4177 	cpu_buffer->write_stamp = 0;
4178 	cpu_buffer->read_stamp = 0;
4179 
4180 	cpu_buffer->lost_events = 0;
4181 	cpu_buffer->last_overrun = 0;
4182 
4183 	rb_head_page_activate(cpu_buffer);
4184 }
4185 
4186 /**
4187  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4188  * @buffer: The ring buffer to reset a per cpu buffer of
4189  * @cpu: The CPU buffer to be reset
4190  */
4191 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4192 {
4193 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4194 	unsigned long flags;
4195 
4196 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197 		return;
4198 
4199 	atomic_inc(&buffer->resize_disabled);
4200 	atomic_inc(&cpu_buffer->record_disabled);
4201 
4202 	/* Make sure all commits have finished */
4203 	synchronize_sched();
4204 
4205 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4206 
4207 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4208 		goto out;
4209 
4210 	arch_spin_lock(&cpu_buffer->lock);
4211 
4212 	rb_reset_cpu(cpu_buffer);
4213 
4214 	arch_spin_unlock(&cpu_buffer->lock);
4215 
4216  out:
4217 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4218 
4219 	atomic_dec(&cpu_buffer->record_disabled);
4220 	atomic_dec(&buffer->resize_disabled);
4221 }
4222 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4223 
4224 /**
4225  * ring_buffer_reset - reset a ring buffer
4226  * @buffer: The ring buffer to reset all cpu buffers
4227  */
4228 void ring_buffer_reset(struct ring_buffer *buffer)
4229 {
4230 	int cpu;
4231 
4232 	for_each_buffer_cpu(buffer, cpu)
4233 		ring_buffer_reset_cpu(buffer, cpu);
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4236 
4237 /**
4238  * rind_buffer_empty - is the ring buffer empty?
4239  * @buffer: The ring buffer to test
4240  */
4241 int ring_buffer_empty(struct ring_buffer *buffer)
4242 {
4243 	struct ring_buffer_per_cpu *cpu_buffer;
4244 	unsigned long flags;
4245 	int dolock;
4246 	int cpu;
4247 	int ret;
4248 
4249 	dolock = rb_ok_to_lock();
4250 
4251 	/* yes this is racy, but if you don't like the race, lock the buffer */
4252 	for_each_buffer_cpu(buffer, cpu) {
4253 		cpu_buffer = buffer->buffers[cpu];
4254 		local_irq_save(flags);
4255 		if (dolock)
4256 			raw_spin_lock(&cpu_buffer->reader_lock);
4257 		ret = rb_per_cpu_empty(cpu_buffer);
4258 		if (dolock)
4259 			raw_spin_unlock(&cpu_buffer->reader_lock);
4260 		local_irq_restore(flags);
4261 
4262 		if (!ret)
4263 			return 0;
4264 	}
4265 
4266 	return 1;
4267 }
4268 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4269 
4270 /**
4271  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4272  * @buffer: The ring buffer
4273  * @cpu: The CPU buffer to test
4274  */
4275 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4276 {
4277 	struct ring_buffer_per_cpu *cpu_buffer;
4278 	unsigned long flags;
4279 	int dolock;
4280 	int ret;
4281 
4282 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4283 		return 1;
4284 
4285 	dolock = rb_ok_to_lock();
4286 
4287 	cpu_buffer = buffer->buffers[cpu];
4288 	local_irq_save(flags);
4289 	if (dolock)
4290 		raw_spin_lock(&cpu_buffer->reader_lock);
4291 	ret = rb_per_cpu_empty(cpu_buffer);
4292 	if (dolock)
4293 		raw_spin_unlock(&cpu_buffer->reader_lock);
4294 	local_irq_restore(flags);
4295 
4296 	return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4299 
4300 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4301 /**
4302  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4303  * @buffer_a: One buffer to swap with
4304  * @buffer_b: The other buffer to swap with
4305  *
4306  * This function is useful for tracers that want to take a "snapshot"
4307  * of a CPU buffer and has another back up buffer lying around.
4308  * it is expected that the tracer handles the cpu buffer not being
4309  * used at the moment.
4310  */
4311 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4312 			 struct ring_buffer *buffer_b, int cpu)
4313 {
4314 	struct ring_buffer_per_cpu *cpu_buffer_a;
4315 	struct ring_buffer_per_cpu *cpu_buffer_b;
4316 	int ret = -EINVAL;
4317 
4318 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4319 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4320 		goto out;
4321 
4322 	cpu_buffer_a = buffer_a->buffers[cpu];
4323 	cpu_buffer_b = buffer_b->buffers[cpu];
4324 
4325 	/* At least make sure the two buffers are somewhat the same */
4326 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4327 		goto out;
4328 
4329 	ret = -EAGAIN;
4330 
4331 	if (ring_buffer_flags != RB_BUFFERS_ON)
4332 		goto out;
4333 
4334 	if (atomic_read(&buffer_a->record_disabled))
4335 		goto out;
4336 
4337 	if (atomic_read(&buffer_b->record_disabled))
4338 		goto out;
4339 
4340 	if (atomic_read(&cpu_buffer_a->record_disabled))
4341 		goto out;
4342 
4343 	if (atomic_read(&cpu_buffer_b->record_disabled))
4344 		goto out;
4345 
4346 	/*
4347 	 * We can't do a synchronize_sched here because this
4348 	 * function can be called in atomic context.
4349 	 * Normally this will be called from the same CPU as cpu.
4350 	 * If not it's up to the caller to protect this.
4351 	 */
4352 	atomic_inc(&cpu_buffer_a->record_disabled);
4353 	atomic_inc(&cpu_buffer_b->record_disabled);
4354 
4355 	ret = -EBUSY;
4356 	if (local_read(&cpu_buffer_a->committing))
4357 		goto out_dec;
4358 	if (local_read(&cpu_buffer_b->committing))
4359 		goto out_dec;
4360 
4361 	buffer_a->buffers[cpu] = cpu_buffer_b;
4362 	buffer_b->buffers[cpu] = cpu_buffer_a;
4363 
4364 	cpu_buffer_b->buffer = buffer_a;
4365 	cpu_buffer_a->buffer = buffer_b;
4366 
4367 	ret = 0;
4368 
4369 out_dec:
4370 	atomic_dec(&cpu_buffer_a->record_disabled);
4371 	atomic_dec(&cpu_buffer_b->record_disabled);
4372 out:
4373 	return ret;
4374 }
4375 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4376 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4377 
4378 /**
4379  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4380  * @buffer: the buffer to allocate for.
4381  * @cpu: the cpu buffer to allocate.
4382  *
4383  * This function is used in conjunction with ring_buffer_read_page.
4384  * When reading a full page from the ring buffer, these functions
4385  * can be used to speed up the process. The calling function should
4386  * allocate a few pages first with this function. Then when it
4387  * needs to get pages from the ring buffer, it passes the result
4388  * of this function into ring_buffer_read_page, which will swap
4389  * the page that was allocated, with the read page of the buffer.
4390  *
4391  * Returns:
4392  *  The page allocated, or NULL on error.
4393  */
4394 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4395 {
4396 	struct buffer_data_page *bpage;
4397 	struct page *page;
4398 
4399 	page = alloc_pages_node(cpu_to_node(cpu),
4400 				GFP_KERNEL | __GFP_NORETRY, 0);
4401 	if (!page)
4402 		return NULL;
4403 
4404 	bpage = page_address(page);
4405 
4406 	rb_init_page(bpage);
4407 
4408 	return bpage;
4409 }
4410 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4411 
4412 /**
4413  * ring_buffer_free_read_page - free an allocated read page
4414  * @buffer: the buffer the page was allocate for
4415  * @data: the page to free
4416  *
4417  * Free a page allocated from ring_buffer_alloc_read_page.
4418  */
4419 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4420 {
4421 	free_page((unsigned long)data);
4422 }
4423 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4424 
4425 /**
4426  * ring_buffer_read_page - extract a page from the ring buffer
4427  * @buffer: buffer to extract from
4428  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4429  * @len: amount to extract
4430  * @cpu: the cpu of the buffer to extract
4431  * @full: should the extraction only happen when the page is full.
4432  *
4433  * This function will pull out a page from the ring buffer and consume it.
4434  * @data_page must be the address of the variable that was returned
4435  * from ring_buffer_alloc_read_page. This is because the page might be used
4436  * to swap with a page in the ring buffer.
4437  *
4438  * for example:
4439  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4440  *	if (!rpage)
4441  *		return error;
4442  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4443  *	if (ret >= 0)
4444  *		process_page(rpage, ret);
4445  *
4446  * When @full is set, the function will not return true unless
4447  * the writer is off the reader page.
4448  *
4449  * Note: it is up to the calling functions to handle sleeps and wakeups.
4450  *  The ring buffer can be used anywhere in the kernel and can not
4451  *  blindly call wake_up. The layer that uses the ring buffer must be
4452  *  responsible for that.
4453  *
4454  * Returns:
4455  *  >=0 if data has been transferred, returns the offset of consumed data.
4456  *  <0 if no data has been transferred.
4457  */
4458 int ring_buffer_read_page(struct ring_buffer *buffer,
4459 			  void **data_page, size_t len, int cpu, int full)
4460 {
4461 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4462 	struct ring_buffer_event *event;
4463 	struct buffer_data_page *bpage;
4464 	struct buffer_page *reader;
4465 	unsigned long missed_events;
4466 	unsigned long flags;
4467 	unsigned int commit;
4468 	unsigned int read;
4469 	u64 save_timestamp;
4470 	int ret = -1;
4471 
4472 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4473 		goto out;
4474 
4475 	/*
4476 	 * If len is not big enough to hold the page header, then
4477 	 * we can not copy anything.
4478 	 */
4479 	if (len <= BUF_PAGE_HDR_SIZE)
4480 		goto out;
4481 
4482 	len -= BUF_PAGE_HDR_SIZE;
4483 
4484 	if (!data_page)
4485 		goto out;
4486 
4487 	bpage = *data_page;
4488 	if (!bpage)
4489 		goto out;
4490 
4491 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4492 
4493 	reader = rb_get_reader_page(cpu_buffer);
4494 	if (!reader)
4495 		goto out_unlock;
4496 
4497 	event = rb_reader_event(cpu_buffer);
4498 
4499 	read = reader->read;
4500 	commit = rb_page_commit(reader);
4501 
4502 	/* Check if any events were dropped */
4503 	missed_events = cpu_buffer->lost_events;
4504 
4505 	/*
4506 	 * If this page has been partially read or
4507 	 * if len is not big enough to read the rest of the page or
4508 	 * a writer is still on the page, then
4509 	 * we must copy the data from the page to the buffer.
4510 	 * Otherwise, we can simply swap the page with the one passed in.
4511 	 */
4512 	if (read || (len < (commit - read)) ||
4513 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4514 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4515 		unsigned int rpos = read;
4516 		unsigned int pos = 0;
4517 		unsigned int size;
4518 
4519 		if (full)
4520 			goto out_unlock;
4521 
4522 		if (len > (commit - read))
4523 			len = (commit - read);
4524 
4525 		/* Always keep the time extend and data together */
4526 		size = rb_event_ts_length(event);
4527 
4528 		if (len < size)
4529 			goto out_unlock;
4530 
4531 		/* save the current timestamp, since the user will need it */
4532 		save_timestamp = cpu_buffer->read_stamp;
4533 
4534 		/* Need to copy one event at a time */
4535 		do {
4536 			/* We need the size of one event, because
4537 			 * rb_advance_reader only advances by one event,
4538 			 * whereas rb_event_ts_length may include the size of
4539 			 * one or two events.
4540 			 * We have already ensured there's enough space if this
4541 			 * is a time extend. */
4542 			size = rb_event_length(event);
4543 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4544 
4545 			len -= size;
4546 
4547 			rb_advance_reader(cpu_buffer);
4548 			rpos = reader->read;
4549 			pos += size;
4550 
4551 			if (rpos >= commit)
4552 				break;
4553 
4554 			event = rb_reader_event(cpu_buffer);
4555 			/* Always keep the time extend and data together */
4556 			size = rb_event_ts_length(event);
4557 		} while (len >= size);
4558 
4559 		/* update bpage */
4560 		local_set(&bpage->commit, pos);
4561 		bpage->time_stamp = save_timestamp;
4562 
4563 		/* we copied everything to the beginning */
4564 		read = 0;
4565 	} else {
4566 		/* update the entry counter */
4567 		cpu_buffer->read += rb_page_entries(reader);
4568 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4569 
4570 		/* swap the pages */
4571 		rb_init_page(bpage);
4572 		bpage = reader->page;
4573 		reader->page = *data_page;
4574 		local_set(&reader->write, 0);
4575 		local_set(&reader->entries, 0);
4576 		reader->read = 0;
4577 		*data_page = bpage;
4578 
4579 		/*
4580 		 * Use the real_end for the data size,
4581 		 * This gives us a chance to store the lost events
4582 		 * on the page.
4583 		 */
4584 		if (reader->real_end)
4585 			local_set(&bpage->commit, reader->real_end);
4586 	}
4587 	ret = read;
4588 
4589 	cpu_buffer->lost_events = 0;
4590 
4591 	commit = local_read(&bpage->commit);
4592 	/*
4593 	 * Set a flag in the commit field if we lost events
4594 	 */
4595 	if (missed_events) {
4596 		/* If there is room at the end of the page to save the
4597 		 * missed events, then record it there.
4598 		 */
4599 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4600 			memcpy(&bpage->data[commit], &missed_events,
4601 			       sizeof(missed_events));
4602 			local_add(RB_MISSED_STORED, &bpage->commit);
4603 			commit += sizeof(missed_events);
4604 		}
4605 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4606 	}
4607 
4608 	/*
4609 	 * This page may be off to user land. Zero it out here.
4610 	 */
4611 	if (commit < BUF_PAGE_SIZE)
4612 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4613 
4614  out_unlock:
4615 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4616 
4617  out:
4618 	return ret;
4619 }
4620 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4621 
4622 #ifdef CONFIG_HOTPLUG_CPU
4623 static int rb_cpu_notify(struct notifier_block *self,
4624 			 unsigned long action, void *hcpu)
4625 {
4626 	struct ring_buffer *buffer =
4627 		container_of(self, struct ring_buffer, cpu_notify);
4628 	long cpu = (long)hcpu;
4629 	int cpu_i, nr_pages_same;
4630 	unsigned int nr_pages;
4631 
4632 	switch (action) {
4633 	case CPU_UP_PREPARE:
4634 	case CPU_UP_PREPARE_FROZEN:
4635 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4636 			return NOTIFY_OK;
4637 
4638 		nr_pages = 0;
4639 		nr_pages_same = 1;
4640 		/* check if all cpu sizes are same */
4641 		for_each_buffer_cpu(buffer, cpu_i) {
4642 			/* fill in the size from first enabled cpu */
4643 			if (nr_pages == 0)
4644 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4645 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4646 				nr_pages_same = 0;
4647 				break;
4648 			}
4649 		}
4650 		/* allocate minimum pages, user can later expand it */
4651 		if (!nr_pages_same)
4652 			nr_pages = 2;
4653 		buffer->buffers[cpu] =
4654 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4655 		if (!buffer->buffers[cpu]) {
4656 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4657 			     cpu);
4658 			return NOTIFY_OK;
4659 		}
4660 		smp_wmb();
4661 		cpumask_set_cpu(cpu, buffer->cpumask);
4662 		break;
4663 	case CPU_DOWN_PREPARE:
4664 	case CPU_DOWN_PREPARE_FROZEN:
4665 		/*
4666 		 * Do nothing.
4667 		 *  If we were to free the buffer, then the user would
4668 		 *  lose any trace that was in the buffer.
4669 		 */
4670 		break;
4671 	default:
4672 		break;
4673 	}
4674 	return NOTIFY_OK;
4675 }
4676 #endif
4677 
4678 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4679 /*
4680  * This is a basic integrity check of the ring buffer.
4681  * Late in the boot cycle this test will run when configured in.
4682  * It will kick off a thread per CPU that will go into a loop
4683  * writing to the per cpu ring buffer various sizes of data.
4684  * Some of the data will be large items, some small.
4685  *
4686  * Another thread is created that goes into a spin, sending out
4687  * IPIs to the other CPUs to also write into the ring buffer.
4688  * this is to test the nesting ability of the buffer.
4689  *
4690  * Basic stats are recorded and reported. If something in the
4691  * ring buffer should happen that's not expected, a big warning
4692  * is displayed and all ring buffers are disabled.
4693  */
4694 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4695 
4696 struct rb_test_data {
4697 	struct ring_buffer	*buffer;
4698 	unsigned long		events;
4699 	unsigned long		bytes_written;
4700 	unsigned long		bytes_alloc;
4701 	unsigned long		bytes_dropped;
4702 	unsigned long		events_nested;
4703 	unsigned long		bytes_written_nested;
4704 	unsigned long		bytes_alloc_nested;
4705 	unsigned long		bytes_dropped_nested;
4706 	int			min_size_nested;
4707 	int			max_size_nested;
4708 	int			max_size;
4709 	int			min_size;
4710 	int			cpu;
4711 	int			cnt;
4712 };
4713 
4714 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4715 
4716 /* 1 meg per cpu */
4717 #define RB_TEST_BUFFER_SIZE	1048576
4718 
4719 static char rb_string[] __initdata =
4720 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4721 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4722 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4723 
4724 static bool rb_test_started __initdata;
4725 
4726 struct rb_item {
4727 	int size;
4728 	char str[];
4729 };
4730 
4731 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4732 {
4733 	struct ring_buffer_event *event;
4734 	struct rb_item *item;
4735 	bool started;
4736 	int event_len;
4737 	int size;
4738 	int len;
4739 	int cnt;
4740 
4741 	/* Have nested writes different that what is written */
4742 	cnt = data->cnt + (nested ? 27 : 0);
4743 
4744 	/* Multiply cnt by ~e, to make some unique increment */
4745 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4746 
4747 	len = size + sizeof(struct rb_item);
4748 
4749 	started = rb_test_started;
4750 	/* read rb_test_started before checking buffer enabled */
4751 	smp_rmb();
4752 
4753 	event = ring_buffer_lock_reserve(data->buffer, len);
4754 	if (!event) {
4755 		/* Ignore dropped events before test starts. */
4756 		if (started) {
4757 			if (nested)
4758 				data->bytes_dropped += len;
4759 			else
4760 				data->bytes_dropped_nested += len;
4761 		}
4762 		return len;
4763 	}
4764 
4765 	event_len = ring_buffer_event_length(event);
4766 
4767 	if (RB_WARN_ON(data->buffer, event_len < len))
4768 		goto out;
4769 
4770 	item = ring_buffer_event_data(event);
4771 	item->size = size;
4772 	memcpy(item->str, rb_string, size);
4773 
4774 	if (nested) {
4775 		data->bytes_alloc_nested += event_len;
4776 		data->bytes_written_nested += len;
4777 		data->events_nested++;
4778 		if (!data->min_size_nested || len < data->min_size_nested)
4779 			data->min_size_nested = len;
4780 		if (len > data->max_size_nested)
4781 			data->max_size_nested = len;
4782 	} else {
4783 		data->bytes_alloc += event_len;
4784 		data->bytes_written += len;
4785 		data->events++;
4786 		if (!data->min_size || len < data->min_size)
4787 			data->max_size = len;
4788 		if (len > data->max_size)
4789 			data->max_size = len;
4790 	}
4791 
4792  out:
4793 	ring_buffer_unlock_commit(data->buffer, event);
4794 
4795 	return 0;
4796 }
4797 
4798 static __init int rb_test(void *arg)
4799 {
4800 	struct rb_test_data *data = arg;
4801 
4802 	while (!kthread_should_stop()) {
4803 		rb_write_something(data, false);
4804 		data->cnt++;
4805 
4806 		set_current_state(TASK_INTERRUPTIBLE);
4807 		/* Now sleep between a min of 100-300us and a max of 1ms */
4808 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4809 	}
4810 
4811 	return 0;
4812 }
4813 
4814 static __init void rb_ipi(void *ignore)
4815 {
4816 	struct rb_test_data *data;
4817 	int cpu = smp_processor_id();
4818 
4819 	data = &rb_data[cpu];
4820 	rb_write_something(data, true);
4821 }
4822 
4823 static __init int rb_hammer_test(void *arg)
4824 {
4825 	while (!kthread_should_stop()) {
4826 
4827 		/* Send an IPI to all cpus to write data! */
4828 		smp_call_function(rb_ipi, NULL, 1);
4829 		/* No sleep, but for non preempt, let others run */
4830 		schedule();
4831 	}
4832 
4833 	return 0;
4834 }
4835 
4836 static __init int test_ringbuffer(void)
4837 {
4838 	struct task_struct *rb_hammer;
4839 	struct ring_buffer *buffer;
4840 	int cpu;
4841 	int ret = 0;
4842 
4843 	pr_info("Running ring buffer tests...\n");
4844 
4845 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4846 	if (WARN_ON(!buffer))
4847 		return 0;
4848 
4849 	/* Disable buffer so that threads can't write to it yet */
4850 	ring_buffer_record_off(buffer);
4851 
4852 	for_each_online_cpu(cpu) {
4853 		rb_data[cpu].buffer = buffer;
4854 		rb_data[cpu].cpu = cpu;
4855 		rb_data[cpu].cnt = cpu;
4856 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4857 						 "rbtester/%d", cpu);
4858 		if (WARN_ON(!rb_threads[cpu])) {
4859 			pr_cont("FAILED\n");
4860 			ret = -1;
4861 			goto out_free;
4862 		}
4863 
4864 		kthread_bind(rb_threads[cpu], cpu);
4865  		wake_up_process(rb_threads[cpu]);
4866 	}
4867 
4868 	/* Now create the rb hammer! */
4869 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4870 	if (WARN_ON(!rb_hammer)) {
4871 		pr_cont("FAILED\n");
4872 		ret = -1;
4873 		goto out_free;
4874 	}
4875 
4876 	ring_buffer_record_on(buffer);
4877 	/*
4878 	 * Show buffer is enabled before setting rb_test_started.
4879 	 * Yes there's a small race window where events could be
4880 	 * dropped and the thread wont catch it. But when a ring
4881 	 * buffer gets enabled, there will always be some kind of
4882 	 * delay before other CPUs see it. Thus, we don't care about
4883 	 * those dropped events. We care about events dropped after
4884 	 * the threads see that the buffer is active.
4885 	 */
4886 	smp_wmb();
4887 	rb_test_started = true;
4888 
4889 	set_current_state(TASK_INTERRUPTIBLE);
4890 	/* Just run for 10 seconds */;
4891 	schedule_timeout(10 * HZ);
4892 
4893 	kthread_stop(rb_hammer);
4894 
4895  out_free:
4896 	for_each_online_cpu(cpu) {
4897 		if (!rb_threads[cpu])
4898 			break;
4899 		kthread_stop(rb_threads[cpu]);
4900 	}
4901 	if (ret) {
4902 		ring_buffer_free(buffer);
4903 		return ret;
4904 	}
4905 
4906 	/* Report! */
4907 	pr_info("finished\n");
4908 	for_each_online_cpu(cpu) {
4909 		struct ring_buffer_event *event;
4910 		struct rb_test_data *data = &rb_data[cpu];
4911 		struct rb_item *item;
4912 		unsigned long total_events;
4913 		unsigned long total_dropped;
4914 		unsigned long total_written;
4915 		unsigned long total_alloc;
4916 		unsigned long total_read = 0;
4917 		unsigned long total_size = 0;
4918 		unsigned long total_len = 0;
4919 		unsigned long total_lost = 0;
4920 		unsigned long lost;
4921 		int big_event_size;
4922 		int small_event_size;
4923 
4924 		ret = -1;
4925 
4926 		total_events = data->events + data->events_nested;
4927 		total_written = data->bytes_written + data->bytes_written_nested;
4928 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4929 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4930 
4931 		big_event_size = data->max_size + data->max_size_nested;
4932 		small_event_size = data->min_size + data->min_size_nested;
4933 
4934 		pr_info("CPU %d:\n", cpu);
4935 		pr_info("              events:    %ld\n", total_events);
4936 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4937 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4938 		pr_info("       written bytes:    %ld\n", total_written);
4939 		pr_info("       biggest event:    %d\n", big_event_size);
4940 		pr_info("      smallest event:    %d\n", small_event_size);
4941 
4942 		if (RB_WARN_ON(buffer, total_dropped))
4943 			break;
4944 
4945 		ret = 0;
4946 
4947 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4948 			total_lost += lost;
4949 			item = ring_buffer_event_data(event);
4950 			total_len += ring_buffer_event_length(event);
4951 			total_size += item->size + sizeof(struct rb_item);
4952 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4953 				pr_info("FAILED!\n");
4954 				pr_info("buffer had: %.*s\n", item->size, item->str);
4955 				pr_info("expected:   %.*s\n", item->size, rb_string);
4956 				RB_WARN_ON(buffer, 1);
4957 				ret = -1;
4958 				break;
4959 			}
4960 			total_read++;
4961 		}
4962 		if (ret)
4963 			break;
4964 
4965 		ret = -1;
4966 
4967 		pr_info("         read events:   %ld\n", total_read);
4968 		pr_info("         lost events:   %ld\n", total_lost);
4969 		pr_info("        total events:   %ld\n", total_lost + total_read);
4970 		pr_info("  recorded len bytes:   %ld\n", total_len);
4971 		pr_info(" recorded size bytes:   %ld\n", total_size);
4972 		if (total_lost)
4973 			pr_info(" With dropped events, record len and size may not match\n"
4974 				" alloced and written from above\n");
4975 		if (!total_lost) {
4976 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4977 				       total_size != total_written))
4978 				break;
4979 		}
4980 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4981 			break;
4982 
4983 		ret = 0;
4984 	}
4985 	if (!ret)
4986 		pr_info("Ring buffer PASSED!\n");
4987 
4988 	ring_buffer_free(buffer);
4989 	return 0;
4990 }
4991 
4992 late_initcall(test_ringbuffer);
4993 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4994