xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 600a711c)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include <asm/local.h>
24 #include "trace.h"
25 
26 static void update_pages_handler(struct work_struct *work);
27 
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33 	int ret;
34 
35 	ret = trace_seq_printf(s, "# compressed entry header\n");
36 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39 	ret = trace_seq_printf(s, "\n");
40 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			       RINGBUF_TYPE_PADDING);
42 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			       RINGBUF_TYPE_TIME_EXTEND);
44 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return ret;
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135 
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146 
147 enum {
148 	RB_BUFFERS_ON_BIT	= 0,
149 	RB_BUFFERS_DISABLED_BIT	= 1,
150 };
151 
152 enum {
153 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
154 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156 
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158 
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF		(1 << 20)
161 
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163 
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174 
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT		4U
177 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
179 
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT	0
182 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT	1
185 # define RB_ARCH_ALIGNMENT		8U
186 #endif
187 
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190 
191 enum {
192 	RB_LEN_TIME_EXTEND = 8,
193 	RB_LEN_TIME_STAMP = 16,
194 };
195 
196 #define skip_time_extend(event) \
197 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198 
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203 
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206 	/* padding has a NULL time_delta */
207 	event->type_len = RINGBUF_TYPE_PADDING;
208 	event->time_delta = 0;
209 }
210 
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214 	unsigned length;
215 
216 	if (event->type_len)
217 		length = event->type_len * RB_ALIGNMENT;
218 	else
219 		length = event->array[0];
220 	return length + RB_EVNT_HDR_SIZE;
221 }
222 
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231 	switch (event->type_len) {
232 	case RINGBUF_TYPE_PADDING:
233 		if (rb_null_event(event))
234 			/* undefined */
235 			return -1;
236 		return  event->array[0] + RB_EVNT_HDR_SIZE;
237 
238 	case RINGBUF_TYPE_TIME_EXTEND:
239 		return RB_LEN_TIME_EXTEND;
240 
241 	case RINGBUF_TYPE_TIME_STAMP:
242 		return RB_LEN_TIME_STAMP;
243 
244 	case RINGBUF_TYPE_DATA:
245 		return rb_event_data_length(event);
246 	default:
247 		BUG();
248 	}
249 	/* not hit */
250 	return 0;
251 }
252 
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260 	unsigned len = 0;
261 
262 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 		/* time extends include the data event after it */
264 		len = RB_LEN_TIME_EXTEND;
265 		event = skip_time_extend(event);
266 	}
267 	return len + rb_event_length(event);
268 }
269 
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282 	unsigned length;
283 
284 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 		event = skip_time_extend(event);
286 
287 	length = rb_event_length(event);
288 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289 		return length;
290 	length -= RB_EVNT_HDR_SIZE;
291 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293 	return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296 
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 		event = skip_time_extend(event);
303 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304 	/* If length is in len field, then array[0] has the data */
305 	if (event->type_len)
306 		return (void *)&event->array[0];
307 	/* Otherwise length is in array[0] and array[1] has the data */
308 	return (void *)&event->array[1];
309 }
310 
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317 	return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320 
321 #define for_each_buffer_cpu(buffer, cpu)		\
322 	for_each_cpu(cpu, buffer->cpumask)
323 
324 #define TS_SHIFT	27
325 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST	(~TS_MASK)
327 
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS	(1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED	(1 << 30)
332 
333 struct buffer_data_page {
334 	u64		 time_stamp;	/* page time stamp */
335 	local_t		 commit;	/* write committed index */
336 	unsigned char	 data[];	/* data of buffer page */
337 };
338 
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348 	struct list_head list;		/* list of buffer pages */
349 	local_t		 write;		/* index for next write */
350 	unsigned	 read;		/* index for next read */
351 	local_t		 entries;	/* entries on this page */
352 	unsigned long	 real_end;	/* real end of data */
353 	struct buffer_data_page *page;	/* Actual data page */
354 };
355 
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK		0xfffff
369 #define RB_WRITE_INTCNT		(1 << 20)
370 
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373 	local_set(&bpage->commit, 0);
374 }
375 
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384 	return local_read(&((struct buffer_data_page *)page)->commit)
385 		+ BUF_PAGE_HDR_SIZE;
386 }
387 
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 	free_page((unsigned long)bpage->page);
395 	kfree(bpage);
396 }
397 
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403 	if (delta & TS_DELTA_TEST)
404 		return 1;
405 	return 0;
406 }
407 
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409 
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412 
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415 	struct buffer_data_page field;
416 	int ret;
417 
418 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
420 			       (unsigned int)sizeof(field.time_stamp),
421 			       (unsigned int)is_signed_type(u64));
422 
423 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
425 			       (unsigned int)offsetof(typeof(field), commit),
426 			       (unsigned int)sizeof(field.commit),
427 			       (unsigned int)is_signed_type(long));
428 
429 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       1,
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: char data;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), data),
438 			       (unsigned int)BUF_PAGE_SIZE,
439 			       (unsigned int)is_signed_type(char));
440 
441 	return ret;
442 }
443 
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448 	int				cpu;
449 	atomic_t			record_disabled;
450 	struct ring_buffer		*buffer;
451 	raw_spinlock_t			reader_lock;	/* serialize readers */
452 	arch_spinlock_t			lock;
453 	struct lock_class_key		lock_key;
454 	unsigned int			nr_pages;
455 	struct list_head		*pages;
456 	struct buffer_page		*head_page;	/* read from head */
457 	struct buffer_page		*tail_page;	/* write to tail */
458 	struct buffer_page		*commit_page;	/* committed pages */
459 	struct buffer_page		*reader_page;
460 	unsigned long			lost_events;
461 	unsigned long			last_overrun;
462 	local_t				entries_bytes;
463 	local_t				commit_overrun;
464 	local_t				overrun;
465 	local_t				entries;
466 	local_t				committing;
467 	local_t				commits;
468 	unsigned long			read;
469 	unsigned long			read_bytes;
470 	u64				write_stamp;
471 	u64				read_stamp;
472 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
473 	int				nr_pages_to_update;
474 	struct list_head		new_pages; /* new pages to add */
475 	struct work_struct		update_pages_work;
476 	struct completion		update_done;
477 };
478 
479 struct ring_buffer {
480 	unsigned			flags;
481 	int				cpus;
482 	atomic_t			record_disabled;
483 	atomic_t			resize_disabled;
484 	cpumask_var_t			cpumask;
485 
486 	struct lock_class_key		*reader_lock_key;
487 
488 	struct mutex			mutex;
489 
490 	struct ring_buffer_per_cpu	**buffers;
491 
492 #ifdef CONFIG_HOTPLUG_CPU
493 	struct notifier_block		cpu_notify;
494 #endif
495 	u64				(*clock)(void);
496 };
497 
498 struct ring_buffer_iter {
499 	struct ring_buffer_per_cpu	*cpu_buffer;
500 	unsigned long			head;
501 	struct buffer_page		*head_page;
502 	struct buffer_page		*cache_reader_page;
503 	unsigned long			cache_read;
504 	u64				read_stamp;
505 };
506 
507 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
508 #define RB_WARN_ON(b, cond)						\
509 	({								\
510 		int _____ret = unlikely(cond);				\
511 		if (_____ret) {						\
512 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 				struct ring_buffer_per_cpu *__b =	\
514 					(void *)b;			\
515 				atomic_inc(&__b->buffer->record_disabled); \
516 			} else						\
517 				atomic_inc(&b->record_disabled);	\
518 			WARN_ON(1);					\
519 		}							\
520 		_____ret;						\
521 	})
522 
523 /* Up this if you want to test the TIME_EXTENTS and normalization */
524 #define DEBUG_SHIFT 0
525 
526 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
527 {
528 	/* shift to debug/test normalization and TIME_EXTENTS */
529 	return buffer->clock() << DEBUG_SHIFT;
530 }
531 
532 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533 {
534 	u64 time;
535 
536 	preempt_disable_notrace();
537 	time = rb_time_stamp(buffer);
538 	preempt_enable_no_resched_notrace();
539 
540 	return time;
541 }
542 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543 
544 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 				      int cpu, u64 *ts)
546 {
547 	/* Just stupid testing the normalize function and deltas */
548 	*ts >>= DEBUG_SHIFT;
549 }
550 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551 
552 /*
553  * Making the ring buffer lockless makes things tricky.
554  * Although writes only happen on the CPU that they are on,
555  * and they only need to worry about interrupts. Reads can
556  * happen on any CPU.
557  *
558  * The reader page is always off the ring buffer, but when the
559  * reader finishes with a page, it needs to swap its page with
560  * a new one from the buffer. The reader needs to take from
561  * the head (writes go to the tail). But if a writer is in overwrite
562  * mode and wraps, it must push the head page forward.
563  *
564  * Here lies the problem.
565  *
566  * The reader must be careful to replace only the head page, and
567  * not another one. As described at the top of the file in the
568  * ASCII art, the reader sets its old page to point to the next
569  * page after head. It then sets the page after head to point to
570  * the old reader page. But if the writer moves the head page
571  * during this operation, the reader could end up with the tail.
572  *
573  * We use cmpxchg to help prevent this race. We also do something
574  * special with the page before head. We set the LSB to 1.
575  *
576  * When the writer must push the page forward, it will clear the
577  * bit that points to the head page, move the head, and then set
578  * the bit that points to the new head page.
579  *
580  * We also don't want an interrupt coming in and moving the head
581  * page on another writer. Thus we use the second LSB to catch
582  * that too. Thus:
583  *
584  * head->list->prev->next        bit 1          bit 0
585  *                              -------        -------
586  * Normal page                     0              0
587  * Points to head page             0              1
588  * New head page                   1              0
589  *
590  * Note we can not trust the prev pointer of the head page, because:
591  *
592  * +----+       +-----+        +-----+
593  * |    |------>|  T  |---X--->|  N  |
594  * |    |<------|     |        |     |
595  * +----+       +-----+        +-----+
596  *   ^                           ^ |
597  *   |          +-----+          | |
598  *   +----------|  R  |----------+ |
599  *              |     |<-----------+
600  *              +-----+
601  *
602  * Key:  ---X-->  HEAD flag set in pointer
603  *         T      Tail page
604  *         R      Reader page
605  *         N      Next page
606  *
607  * (see __rb_reserve_next() to see where this happens)
608  *
609  *  What the above shows is that the reader just swapped out
610  *  the reader page with a page in the buffer, but before it
611  *  could make the new header point back to the new page added
612  *  it was preempted by a writer. The writer moved forward onto
613  *  the new page added by the reader and is about to move forward
614  *  again.
615  *
616  *  You can see, it is legitimate for the previous pointer of
617  *  the head (or any page) not to point back to itself. But only
618  *  temporarially.
619  */
620 
621 #define RB_PAGE_NORMAL		0UL
622 #define RB_PAGE_HEAD		1UL
623 #define RB_PAGE_UPDATE		2UL
624 
625 
626 #define RB_FLAG_MASK		3UL
627 
628 /* PAGE_MOVED is not part of the mask */
629 #define RB_PAGE_MOVED		4UL
630 
631 /*
632  * rb_list_head - remove any bit
633  */
634 static struct list_head *rb_list_head(struct list_head *list)
635 {
636 	unsigned long val = (unsigned long)list;
637 
638 	return (struct list_head *)(val & ~RB_FLAG_MASK);
639 }
640 
641 /*
642  * rb_is_head_page - test if the given page is the head page
643  *
644  * Because the reader may move the head_page pointer, we can
645  * not trust what the head page is (it may be pointing to
646  * the reader page). But if the next page is a header page,
647  * its flags will be non zero.
648  */
649 static inline int
650 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 		struct buffer_page *page, struct list_head *list)
652 {
653 	unsigned long val;
654 
655 	val = (unsigned long)list->next;
656 
657 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 		return RB_PAGE_MOVED;
659 
660 	return val & RB_FLAG_MASK;
661 }
662 
663 /*
664  * rb_is_reader_page
665  *
666  * The unique thing about the reader page, is that, if the
667  * writer is ever on it, the previous pointer never points
668  * back to the reader page.
669  */
670 static int rb_is_reader_page(struct buffer_page *page)
671 {
672 	struct list_head *list = page->list.prev;
673 
674 	return rb_list_head(list->next) != &page->list;
675 }
676 
677 /*
678  * rb_set_list_to_head - set a list_head to be pointing to head.
679  */
680 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 				struct list_head *list)
682 {
683 	unsigned long *ptr;
684 
685 	ptr = (unsigned long *)&list->next;
686 	*ptr |= RB_PAGE_HEAD;
687 	*ptr &= ~RB_PAGE_UPDATE;
688 }
689 
690 /*
691  * rb_head_page_activate - sets up head page
692  */
693 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695 	struct buffer_page *head;
696 
697 	head = cpu_buffer->head_page;
698 	if (!head)
699 		return;
700 
701 	/*
702 	 * Set the previous list pointer to have the HEAD flag.
703 	 */
704 	rb_set_list_to_head(cpu_buffer, head->list.prev);
705 }
706 
707 static void rb_list_head_clear(struct list_head *list)
708 {
709 	unsigned long *ptr = (unsigned long *)&list->next;
710 
711 	*ptr &= ~RB_FLAG_MASK;
712 }
713 
714 /*
715  * rb_head_page_dactivate - clears head page ptr (for free list)
716  */
717 static void
718 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719 {
720 	struct list_head *hd;
721 
722 	/* Go through the whole list and clear any pointers found. */
723 	rb_list_head_clear(cpu_buffer->pages);
724 
725 	list_for_each(hd, cpu_buffer->pages)
726 		rb_list_head_clear(hd);
727 }
728 
729 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 			    struct buffer_page *head,
731 			    struct buffer_page *prev,
732 			    int old_flag, int new_flag)
733 {
734 	struct list_head *list;
735 	unsigned long val = (unsigned long)&head->list;
736 	unsigned long ret;
737 
738 	list = &prev->list;
739 
740 	val &= ~RB_FLAG_MASK;
741 
742 	ret = cmpxchg((unsigned long *)&list->next,
743 		      val | old_flag, val | new_flag);
744 
745 	/* check if the reader took the page */
746 	if ((ret & ~RB_FLAG_MASK) != val)
747 		return RB_PAGE_MOVED;
748 
749 	return ret & RB_FLAG_MASK;
750 }
751 
752 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 				   struct buffer_page *head,
754 				   struct buffer_page *prev,
755 				   int old_flag)
756 {
757 	return rb_head_page_set(cpu_buffer, head, prev,
758 				old_flag, RB_PAGE_UPDATE);
759 }
760 
761 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 				 struct buffer_page *head,
763 				 struct buffer_page *prev,
764 				 int old_flag)
765 {
766 	return rb_head_page_set(cpu_buffer, head, prev,
767 				old_flag, RB_PAGE_HEAD);
768 }
769 
770 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 				   struct buffer_page *head,
772 				   struct buffer_page *prev,
773 				   int old_flag)
774 {
775 	return rb_head_page_set(cpu_buffer, head, prev,
776 				old_flag, RB_PAGE_NORMAL);
777 }
778 
779 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 			       struct buffer_page **bpage)
781 {
782 	struct list_head *p = rb_list_head((*bpage)->list.next);
783 
784 	*bpage = list_entry(p, struct buffer_page, list);
785 }
786 
787 static struct buffer_page *
788 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790 	struct buffer_page *head;
791 	struct buffer_page *page;
792 	struct list_head *list;
793 	int i;
794 
795 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 		return NULL;
797 
798 	/* sanity check */
799 	list = cpu_buffer->pages;
800 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 		return NULL;
802 
803 	page = head = cpu_buffer->head_page;
804 	/*
805 	 * It is possible that the writer moves the header behind
806 	 * where we started, and we miss in one loop.
807 	 * A second loop should grab the header, but we'll do
808 	 * three loops just because I'm paranoid.
809 	 */
810 	for (i = 0; i < 3; i++) {
811 		do {
812 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 				cpu_buffer->head_page = page;
814 				return page;
815 			}
816 			rb_inc_page(cpu_buffer, &page);
817 		} while (page != head);
818 	}
819 
820 	RB_WARN_ON(cpu_buffer, 1);
821 
822 	return NULL;
823 }
824 
825 static int rb_head_page_replace(struct buffer_page *old,
826 				struct buffer_page *new)
827 {
828 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 	unsigned long val;
830 	unsigned long ret;
831 
832 	val = *ptr & ~RB_FLAG_MASK;
833 	val |= RB_PAGE_HEAD;
834 
835 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
836 
837 	return ret == val;
838 }
839 
840 /*
841  * rb_tail_page_update - move the tail page forward
842  *
843  * Returns 1 if moved tail page, 0 if someone else did.
844  */
845 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 			       struct buffer_page *tail_page,
847 			       struct buffer_page *next_page)
848 {
849 	struct buffer_page *old_tail;
850 	unsigned long old_entries;
851 	unsigned long old_write;
852 	int ret = 0;
853 
854 	/*
855 	 * The tail page now needs to be moved forward.
856 	 *
857 	 * We need to reset the tail page, but without messing
858 	 * with possible erasing of data brought in by interrupts
859 	 * that have moved the tail page and are currently on it.
860 	 *
861 	 * We add a counter to the write field to denote this.
862 	 */
863 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865 
866 	/*
867 	 * Just make sure we have seen our old_write and synchronize
868 	 * with any interrupts that come in.
869 	 */
870 	barrier();
871 
872 	/*
873 	 * If the tail page is still the same as what we think
874 	 * it is, then it is up to us to update the tail
875 	 * pointer.
876 	 */
877 	if (tail_page == cpu_buffer->tail_page) {
878 		/* Zero the write counter */
879 		unsigned long val = old_write & ~RB_WRITE_MASK;
880 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
881 
882 		/*
883 		 * This will only succeed if an interrupt did
884 		 * not come in and change it. In which case, we
885 		 * do not want to modify it.
886 		 *
887 		 * We add (void) to let the compiler know that we do not care
888 		 * about the return value of these functions. We use the
889 		 * cmpxchg to only update if an interrupt did not already
890 		 * do it for us. If the cmpxchg fails, we don't care.
891 		 */
892 		(void)local_cmpxchg(&next_page->write, old_write, val);
893 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
894 
895 		/*
896 		 * No need to worry about races with clearing out the commit.
897 		 * it only can increment when a commit takes place. But that
898 		 * only happens in the outer most nested commit.
899 		 */
900 		local_set(&next_page->page->commit, 0);
901 
902 		old_tail = cmpxchg(&cpu_buffer->tail_page,
903 				   tail_page, next_page);
904 
905 		if (old_tail == tail_page)
906 			ret = 1;
907 	}
908 
909 	return ret;
910 }
911 
912 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 			  struct buffer_page *bpage)
914 {
915 	unsigned long val = (unsigned long)bpage;
916 
917 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 		return 1;
919 
920 	return 0;
921 }
922 
923 /**
924  * rb_check_list - make sure a pointer to a list has the last bits zero
925  */
926 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 			 struct list_head *list)
928 {
929 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 		return 1;
931 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 		return 1;
933 	return 0;
934 }
935 
936 /**
937  * check_pages - integrity check of buffer pages
938  * @cpu_buffer: CPU buffer with pages to test
939  *
940  * As a safety measure we check to make sure the data pages have not
941  * been corrupted.
942  */
943 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944 {
945 	struct list_head *head = cpu_buffer->pages;
946 	struct buffer_page *bpage, *tmp;
947 
948 	/* Reset the head page if it exists */
949 	if (cpu_buffer->head_page)
950 		rb_set_head_page(cpu_buffer);
951 
952 	rb_head_page_deactivate(cpu_buffer);
953 
954 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955 		return -1;
956 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957 		return -1;
958 
959 	if (rb_check_list(cpu_buffer, head))
960 		return -1;
961 
962 	list_for_each_entry_safe(bpage, tmp, head, list) {
963 		if (RB_WARN_ON(cpu_buffer,
964 			       bpage->list.next->prev != &bpage->list))
965 			return -1;
966 		if (RB_WARN_ON(cpu_buffer,
967 			       bpage->list.prev->next != &bpage->list))
968 			return -1;
969 		if (rb_check_list(cpu_buffer, &bpage->list))
970 			return -1;
971 	}
972 
973 	rb_head_page_activate(cpu_buffer);
974 
975 	return 0;
976 }
977 
978 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
979 {
980 	int i;
981 	struct buffer_page *bpage, *tmp;
982 
983 	for (i = 0; i < nr_pages; i++) {
984 		struct page *page;
985 		/*
986 		 * __GFP_NORETRY flag makes sure that the allocation fails
987 		 * gracefully without invoking oom-killer and the system is
988 		 * not destabilized.
989 		 */
990 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
991 				    GFP_KERNEL | __GFP_NORETRY,
992 				    cpu_to_node(cpu));
993 		if (!bpage)
994 			goto free_pages;
995 
996 		list_add(&bpage->list, pages);
997 
998 		page = alloc_pages_node(cpu_to_node(cpu),
999 					GFP_KERNEL | __GFP_NORETRY, 0);
1000 		if (!page)
1001 			goto free_pages;
1002 		bpage->page = page_address(page);
1003 		rb_init_page(bpage->page);
1004 	}
1005 
1006 	return 0;
1007 
1008 free_pages:
1009 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1010 		list_del_init(&bpage->list);
1011 		free_buffer_page(bpage);
1012 	}
1013 
1014 	return -ENOMEM;
1015 }
1016 
1017 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018 			     unsigned nr_pages)
1019 {
1020 	LIST_HEAD(pages);
1021 
1022 	WARN_ON(!nr_pages);
1023 
1024 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025 		return -ENOMEM;
1026 
1027 	/*
1028 	 * The ring buffer page list is a circular list that does not
1029 	 * start and end with a list head. All page list items point to
1030 	 * other pages.
1031 	 */
1032 	cpu_buffer->pages = pages.next;
1033 	list_del(&pages);
1034 
1035 	cpu_buffer->nr_pages = nr_pages;
1036 
1037 	rb_check_pages(cpu_buffer);
1038 
1039 	return 0;
1040 }
1041 
1042 static struct ring_buffer_per_cpu *
1043 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044 {
1045 	struct ring_buffer_per_cpu *cpu_buffer;
1046 	struct buffer_page *bpage;
1047 	struct page *page;
1048 	int ret;
1049 
1050 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051 				  GFP_KERNEL, cpu_to_node(cpu));
1052 	if (!cpu_buffer)
1053 		return NULL;
1054 
1055 	cpu_buffer->cpu = cpu;
1056 	cpu_buffer->buffer = buffer;
1057 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1058 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061 	init_completion(&cpu_buffer->update_done);
1062 
1063 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064 			    GFP_KERNEL, cpu_to_node(cpu));
1065 	if (!bpage)
1066 		goto fail_free_buffer;
1067 
1068 	rb_check_bpage(cpu_buffer, bpage);
1069 
1070 	cpu_buffer->reader_page = bpage;
1071 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072 	if (!page)
1073 		goto fail_free_reader;
1074 	bpage->page = page_address(page);
1075 	rb_init_page(bpage->page);
1076 
1077 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1079 
1080 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1081 	if (ret < 0)
1082 		goto fail_free_reader;
1083 
1084 	cpu_buffer->head_page
1085 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1086 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087 
1088 	rb_head_page_activate(cpu_buffer);
1089 
1090 	return cpu_buffer;
1091 
1092  fail_free_reader:
1093 	free_buffer_page(cpu_buffer->reader_page);
1094 
1095  fail_free_buffer:
1096 	kfree(cpu_buffer);
1097 	return NULL;
1098 }
1099 
1100 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101 {
1102 	struct list_head *head = cpu_buffer->pages;
1103 	struct buffer_page *bpage, *tmp;
1104 
1105 	free_buffer_page(cpu_buffer->reader_page);
1106 
1107 	rb_head_page_deactivate(cpu_buffer);
1108 
1109 	if (head) {
1110 		list_for_each_entry_safe(bpage, tmp, head, list) {
1111 			list_del_init(&bpage->list);
1112 			free_buffer_page(bpage);
1113 		}
1114 		bpage = list_entry(head, struct buffer_page, list);
1115 		free_buffer_page(bpage);
1116 	}
1117 
1118 	kfree(cpu_buffer);
1119 }
1120 
1121 #ifdef CONFIG_HOTPLUG_CPU
1122 static int rb_cpu_notify(struct notifier_block *self,
1123 			 unsigned long action, void *hcpu);
1124 #endif
1125 
1126 /**
1127  * ring_buffer_alloc - allocate a new ring_buffer
1128  * @size: the size in bytes per cpu that is needed.
1129  * @flags: attributes to set for the ring buffer.
1130  *
1131  * Currently the only flag that is available is the RB_FL_OVERWRITE
1132  * flag. This flag means that the buffer will overwrite old data
1133  * when the buffer wraps. If this flag is not set, the buffer will
1134  * drop data when the tail hits the head.
1135  */
1136 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137 					struct lock_class_key *key)
1138 {
1139 	struct ring_buffer *buffer;
1140 	int bsize;
1141 	int cpu, nr_pages;
1142 
1143 	/* keep it in its own cache line */
1144 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145 			 GFP_KERNEL);
1146 	if (!buffer)
1147 		return NULL;
1148 
1149 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150 		goto fail_free_buffer;
1151 
1152 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153 	buffer->flags = flags;
1154 	buffer->clock = trace_clock_local;
1155 	buffer->reader_lock_key = key;
1156 
1157 	/* need at least two pages */
1158 	if (nr_pages < 2)
1159 		nr_pages = 2;
1160 
1161 	/*
1162 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163 	 * in early initcall, it will not be notified of secondary cpus.
1164 	 * In that off case, we need to allocate for all possible cpus.
1165 	 */
1166 #ifdef CONFIG_HOTPLUG_CPU
1167 	get_online_cpus();
1168 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1169 #else
1170 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171 #endif
1172 	buffer->cpus = nr_cpu_ids;
1173 
1174 	bsize = sizeof(void *) * nr_cpu_ids;
1175 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176 				  GFP_KERNEL);
1177 	if (!buffer->buffers)
1178 		goto fail_free_cpumask;
1179 
1180 	for_each_buffer_cpu(buffer, cpu) {
1181 		buffer->buffers[cpu] =
1182 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1183 		if (!buffer->buffers[cpu])
1184 			goto fail_free_buffers;
1185 	}
1186 
1187 #ifdef CONFIG_HOTPLUG_CPU
1188 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189 	buffer->cpu_notify.priority = 0;
1190 	register_cpu_notifier(&buffer->cpu_notify);
1191 #endif
1192 
1193 	put_online_cpus();
1194 	mutex_init(&buffer->mutex);
1195 
1196 	return buffer;
1197 
1198  fail_free_buffers:
1199 	for_each_buffer_cpu(buffer, cpu) {
1200 		if (buffer->buffers[cpu])
1201 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1202 	}
1203 	kfree(buffer->buffers);
1204 
1205  fail_free_cpumask:
1206 	free_cpumask_var(buffer->cpumask);
1207 	put_online_cpus();
1208 
1209  fail_free_buffer:
1210 	kfree(buffer);
1211 	return NULL;
1212 }
1213 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1214 
1215 /**
1216  * ring_buffer_free - free a ring buffer.
1217  * @buffer: the buffer to free.
1218  */
1219 void
1220 ring_buffer_free(struct ring_buffer *buffer)
1221 {
1222 	int cpu;
1223 
1224 	get_online_cpus();
1225 
1226 #ifdef CONFIG_HOTPLUG_CPU
1227 	unregister_cpu_notifier(&buffer->cpu_notify);
1228 #endif
1229 
1230 	for_each_buffer_cpu(buffer, cpu)
1231 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1232 
1233 	put_online_cpus();
1234 
1235 	kfree(buffer->buffers);
1236 	free_cpumask_var(buffer->cpumask);
1237 
1238 	kfree(buffer);
1239 }
1240 EXPORT_SYMBOL_GPL(ring_buffer_free);
1241 
1242 void ring_buffer_set_clock(struct ring_buffer *buffer,
1243 			   u64 (*clock)(void))
1244 {
1245 	buffer->clock = clock;
1246 }
1247 
1248 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249 
1250 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1251 {
1252 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1253 }
1254 
1255 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256 {
1257 	return local_read(&bpage->write) & RB_WRITE_MASK;
1258 }
1259 
1260 static int
1261 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1262 {
1263 	struct list_head *tail_page, *to_remove, *next_page;
1264 	struct buffer_page *to_remove_page, *tmp_iter_page;
1265 	struct buffer_page *last_page, *first_page;
1266 	unsigned int nr_removed;
1267 	unsigned long head_bit;
1268 	int page_entries;
1269 
1270 	head_bit = 0;
1271 
1272 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1273 	atomic_inc(&cpu_buffer->record_disabled);
1274 	/*
1275 	 * We don't race with the readers since we have acquired the reader
1276 	 * lock. We also don't race with writers after disabling recording.
1277 	 * This makes it easy to figure out the first and the last page to be
1278 	 * removed from the list. We unlink all the pages in between including
1279 	 * the first and last pages. This is done in a busy loop so that we
1280 	 * lose the least number of traces.
1281 	 * The pages are freed after we restart recording and unlock readers.
1282 	 */
1283 	tail_page = &cpu_buffer->tail_page->list;
1284 
1285 	/*
1286 	 * tail page might be on reader page, we remove the next page
1287 	 * from the ring buffer
1288 	 */
1289 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290 		tail_page = rb_list_head(tail_page->next);
1291 	to_remove = tail_page;
1292 
1293 	/* start of pages to remove */
1294 	first_page = list_entry(rb_list_head(to_remove->next),
1295 				struct buffer_page, list);
1296 
1297 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298 		to_remove = rb_list_head(to_remove)->next;
1299 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1300 	}
1301 
1302 	next_page = rb_list_head(to_remove)->next;
1303 
1304 	/*
1305 	 * Now we remove all pages between tail_page and next_page.
1306 	 * Make sure that we have head_bit value preserved for the
1307 	 * next page
1308 	 */
1309 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1310 						head_bit);
1311 	next_page = rb_list_head(next_page);
1312 	next_page->prev = tail_page;
1313 
1314 	/* make sure pages points to a valid page in the ring buffer */
1315 	cpu_buffer->pages = next_page;
1316 
1317 	/* update head page */
1318 	if (head_bit)
1319 		cpu_buffer->head_page = list_entry(next_page,
1320 						struct buffer_page, list);
1321 
1322 	/*
1323 	 * change read pointer to make sure any read iterators reset
1324 	 * themselves
1325 	 */
1326 	cpu_buffer->read = 0;
1327 
1328 	/* pages are removed, resume tracing and then free the pages */
1329 	atomic_dec(&cpu_buffer->record_disabled);
1330 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1331 
1332 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333 
1334 	/* last buffer page to remove */
1335 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336 				list);
1337 	tmp_iter_page = first_page;
1338 
1339 	do {
1340 		to_remove_page = tmp_iter_page;
1341 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1342 
1343 		/* update the counters */
1344 		page_entries = rb_page_entries(to_remove_page);
1345 		if (page_entries) {
1346 			/*
1347 			 * If something was added to this page, it was full
1348 			 * since it is not the tail page. So we deduct the
1349 			 * bytes consumed in ring buffer from here.
1350 			 * Increment overrun to account for the lost events.
1351 			 */
1352 			local_add(page_entries, &cpu_buffer->overrun);
1353 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354 		}
1355 
1356 		/*
1357 		 * We have already removed references to this list item, just
1358 		 * free up the buffer_page and its page
1359 		 */
1360 		free_buffer_page(to_remove_page);
1361 		nr_removed--;
1362 
1363 	} while (to_remove_page != last_page);
1364 
1365 	RB_WARN_ON(cpu_buffer, nr_removed);
1366 
1367 	return nr_removed == 0;
1368 }
1369 
1370 static int
1371 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1372 {
1373 	struct list_head *pages = &cpu_buffer->new_pages;
1374 	int retries, success;
1375 
1376 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1377 	/*
1378 	 * We are holding the reader lock, so the reader page won't be swapped
1379 	 * in the ring buffer. Now we are racing with the writer trying to
1380 	 * move head page and the tail page.
1381 	 * We are going to adapt the reader page update process where:
1382 	 * 1. We first splice the start and end of list of new pages between
1383 	 *    the head page and its previous page.
1384 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1385 	 *    start of new pages list.
1386 	 * 3. Finally, we update the head->prev to the end of new list.
1387 	 *
1388 	 * We will try this process 10 times, to make sure that we don't keep
1389 	 * spinning.
1390 	 */
1391 	retries = 10;
1392 	success = 0;
1393 	while (retries--) {
1394 		struct list_head *head_page, *prev_page, *r;
1395 		struct list_head *last_page, *first_page;
1396 		struct list_head *head_page_with_bit;
1397 
1398 		head_page = &rb_set_head_page(cpu_buffer)->list;
1399 		prev_page = head_page->prev;
1400 
1401 		first_page = pages->next;
1402 		last_page  = pages->prev;
1403 
1404 		head_page_with_bit = (struct list_head *)
1405 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1406 
1407 		last_page->next = head_page_with_bit;
1408 		first_page->prev = prev_page;
1409 
1410 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411 
1412 		if (r == head_page_with_bit) {
1413 			/*
1414 			 * yay, we replaced the page pointer to our new list,
1415 			 * now, we just have to update to head page's prev
1416 			 * pointer to point to end of list
1417 			 */
1418 			head_page->prev = last_page;
1419 			success = 1;
1420 			break;
1421 		}
1422 	}
1423 
1424 	if (success)
1425 		INIT_LIST_HEAD(pages);
1426 	/*
1427 	 * If we weren't successful in adding in new pages, warn and stop
1428 	 * tracing
1429 	 */
1430 	RB_WARN_ON(cpu_buffer, !success);
1431 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432 
1433 	/* free pages if they weren't inserted */
1434 	if (!success) {
1435 		struct buffer_page *bpage, *tmp;
1436 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437 					 list) {
1438 			list_del_init(&bpage->list);
1439 			free_buffer_page(bpage);
1440 		}
1441 	}
1442 	return success;
1443 }
1444 
1445 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446 {
1447 	int success;
1448 
1449 	if (cpu_buffer->nr_pages_to_update > 0)
1450 		success = rb_insert_pages(cpu_buffer);
1451 	else
1452 		success = rb_remove_pages(cpu_buffer,
1453 					-cpu_buffer->nr_pages_to_update);
1454 
1455 	if (success)
1456 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457 }
1458 
1459 static void update_pages_handler(struct work_struct *work)
1460 {
1461 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462 			struct ring_buffer_per_cpu, update_pages_work);
1463 	rb_update_pages(cpu_buffer);
1464 	complete(&cpu_buffer->update_done);
1465 }
1466 
1467 /**
1468  * ring_buffer_resize - resize the ring buffer
1469  * @buffer: the buffer to resize.
1470  * @size: the new size.
1471  *
1472  * Minimum size is 2 * BUF_PAGE_SIZE.
1473  *
1474  * Returns 0 on success and < 0 on failure.
1475  */
1476 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477 			int cpu_id)
1478 {
1479 	struct ring_buffer_per_cpu *cpu_buffer;
1480 	unsigned nr_pages;
1481 	int cpu, err = 0;
1482 
1483 	/*
1484 	 * Always succeed at resizing a non-existent buffer:
1485 	 */
1486 	if (!buffer)
1487 		return size;
1488 
1489 	/* Make sure the requested buffer exists */
1490 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1491 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1492 		return size;
1493 
1494 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1495 	size *= BUF_PAGE_SIZE;
1496 
1497 	/* we need a minimum of two pages */
1498 	if (size < BUF_PAGE_SIZE * 2)
1499 		size = BUF_PAGE_SIZE * 2;
1500 
1501 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1502 
1503 	/*
1504 	 * Don't succeed if resizing is disabled, as a reader might be
1505 	 * manipulating the ring buffer and is expecting a sane state while
1506 	 * this is true.
1507 	 */
1508 	if (atomic_read(&buffer->resize_disabled))
1509 		return -EBUSY;
1510 
1511 	/* prevent another thread from changing buffer sizes */
1512 	mutex_lock(&buffer->mutex);
1513 
1514 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1515 		/* calculate the pages to update */
1516 		for_each_buffer_cpu(buffer, cpu) {
1517 			cpu_buffer = buffer->buffers[cpu];
1518 
1519 			cpu_buffer->nr_pages_to_update = nr_pages -
1520 							cpu_buffer->nr_pages;
1521 			/*
1522 			 * nothing more to do for removing pages or no update
1523 			 */
1524 			if (cpu_buffer->nr_pages_to_update <= 0)
1525 				continue;
1526 			/*
1527 			 * to add pages, make sure all new pages can be
1528 			 * allocated without receiving ENOMEM
1529 			 */
1530 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1531 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1532 						&cpu_buffer->new_pages, cpu)) {
1533 				/* not enough memory for new pages */
1534 				err = -ENOMEM;
1535 				goto out_err;
1536 			}
1537 		}
1538 
1539 		get_online_cpus();
1540 		/*
1541 		 * Fire off all the required work handlers
1542 		 * We can't schedule on offline CPUs, but it's not necessary
1543 		 * since we can change their buffer sizes without any race.
1544 		 */
1545 		for_each_buffer_cpu(buffer, cpu) {
1546 			cpu_buffer = buffer->buffers[cpu];
1547 			if (!cpu_buffer->nr_pages_to_update)
1548 				continue;
1549 
1550 			if (cpu_online(cpu))
1551 				schedule_work_on(cpu,
1552 						&cpu_buffer->update_pages_work);
1553 			else
1554 				rb_update_pages(cpu_buffer);
1555 		}
1556 
1557 		/* wait for all the updates to complete */
1558 		for_each_buffer_cpu(buffer, cpu) {
1559 			cpu_buffer = buffer->buffers[cpu];
1560 			if (!cpu_buffer->nr_pages_to_update)
1561 				continue;
1562 
1563 			if (cpu_online(cpu))
1564 				wait_for_completion(&cpu_buffer->update_done);
1565 			cpu_buffer->nr_pages_to_update = 0;
1566 		}
1567 
1568 		put_online_cpus();
1569 	} else {
1570 		cpu_buffer = buffer->buffers[cpu_id];
1571 
1572 		if (nr_pages == cpu_buffer->nr_pages)
1573 			goto out;
1574 
1575 		cpu_buffer->nr_pages_to_update = nr_pages -
1576 						cpu_buffer->nr_pages;
1577 
1578 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1579 		if (cpu_buffer->nr_pages_to_update > 0 &&
1580 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1581 					    &cpu_buffer->new_pages, cpu_id)) {
1582 			err = -ENOMEM;
1583 			goto out_err;
1584 		}
1585 
1586 		get_online_cpus();
1587 
1588 		if (cpu_online(cpu_id)) {
1589 			schedule_work_on(cpu_id,
1590 					 &cpu_buffer->update_pages_work);
1591 			wait_for_completion(&cpu_buffer->update_done);
1592 		} else
1593 			rb_update_pages(cpu_buffer);
1594 
1595 		cpu_buffer->nr_pages_to_update = 0;
1596 		put_online_cpus();
1597 	}
1598 
1599  out:
1600 	/*
1601 	 * The ring buffer resize can happen with the ring buffer
1602 	 * enabled, so that the update disturbs the tracing as little
1603 	 * as possible. But if the buffer is disabled, we do not need
1604 	 * to worry about that, and we can take the time to verify
1605 	 * that the buffer is not corrupt.
1606 	 */
1607 	if (atomic_read(&buffer->record_disabled)) {
1608 		atomic_inc(&buffer->record_disabled);
1609 		/*
1610 		 * Even though the buffer was disabled, we must make sure
1611 		 * that it is truly disabled before calling rb_check_pages.
1612 		 * There could have been a race between checking
1613 		 * record_disable and incrementing it.
1614 		 */
1615 		synchronize_sched();
1616 		for_each_buffer_cpu(buffer, cpu) {
1617 			cpu_buffer = buffer->buffers[cpu];
1618 			rb_check_pages(cpu_buffer);
1619 		}
1620 		atomic_dec(&buffer->record_disabled);
1621 	}
1622 
1623 	mutex_unlock(&buffer->mutex);
1624 	return size;
1625 
1626  out_err:
1627 	for_each_buffer_cpu(buffer, cpu) {
1628 		struct buffer_page *bpage, *tmp;
1629 
1630 		cpu_buffer = buffer->buffers[cpu];
1631 		cpu_buffer->nr_pages_to_update = 0;
1632 
1633 		if (list_empty(&cpu_buffer->new_pages))
1634 			continue;
1635 
1636 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1637 					list) {
1638 			list_del_init(&bpage->list);
1639 			free_buffer_page(bpage);
1640 		}
1641 	}
1642 	mutex_unlock(&buffer->mutex);
1643 	return err;
1644 }
1645 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1646 
1647 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1648 {
1649 	mutex_lock(&buffer->mutex);
1650 	if (val)
1651 		buffer->flags |= RB_FL_OVERWRITE;
1652 	else
1653 		buffer->flags &= ~RB_FL_OVERWRITE;
1654 	mutex_unlock(&buffer->mutex);
1655 }
1656 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1657 
1658 static inline void *
1659 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1660 {
1661 	return bpage->data + index;
1662 }
1663 
1664 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1665 {
1666 	return bpage->page->data + index;
1667 }
1668 
1669 static inline struct ring_buffer_event *
1670 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1671 {
1672 	return __rb_page_index(cpu_buffer->reader_page,
1673 			       cpu_buffer->reader_page->read);
1674 }
1675 
1676 static inline struct ring_buffer_event *
1677 rb_iter_head_event(struct ring_buffer_iter *iter)
1678 {
1679 	return __rb_page_index(iter->head_page, iter->head);
1680 }
1681 
1682 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1683 {
1684 	return local_read(&bpage->page->commit);
1685 }
1686 
1687 /* Size is determined by what has been committed */
1688 static inline unsigned rb_page_size(struct buffer_page *bpage)
1689 {
1690 	return rb_page_commit(bpage);
1691 }
1692 
1693 static inline unsigned
1694 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1695 {
1696 	return rb_page_commit(cpu_buffer->commit_page);
1697 }
1698 
1699 static inline unsigned
1700 rb_event_index(struct ring_buffer_event *event)
1701 {
1702 	unsigned long addr = (unsigned long)event;
1703 
1704 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1705 }
1706 
1707 static inline int
1708 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1709 		   struct ring_buffer_event *event)
1710 {
1711 	unsigned long addr = (unsigned long)event;
1712 	unsigned long index;
1713 
1714 	index = rb_event_index(event);
1715 	addr &= PAGE_MASK;
1716 
1717 	return cpu_buffer->commit_page->page == (void *)addr &&
1718 		rb_commit_index(cpu_buffer) == index;
1719 }
1720 
1721 static void
1722 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1723 {
1724 	unsigned long max_count;
1725 
1726 	/*
1727 	 * We only race with interrupts and NMIs on this CPU.
1728 	 * If we own the commit event, then we can commit
1729 	 * all others that interrupted us, since the interruptions
1730 	 * are in stack format (they finish before they come
1731 	 * back to us). This allows us to do a simple loop to
1732 	 * assign the commit to the tail.
1733 	 */
1734  again:
1735 	max_count = cpu_buffer->nr_pages * 100;
1736 
1737 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1738 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1739 			return;
1740 		if (RB_WARN_ON(cpu_buffer,
1741 			       rb_is_reader_page(cpu_buffer->tail_page)))
1742 			return;
1743 		local_set(&cpu_buffer->commit_page->page->commit,
1744 			  rb_page_write(cpu_buffer->commit_page));
1745 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1746 		cpu_buffer->write_stamp =
1747 			cpu_buffer->commit_page->page->time_stamp;
1748 		/* add barrier to keep gcc from optimizing too much */
1749 		barrier();
1750 	}
1751 	while (rb_commit_index(cpu_buffer) !=
1752 	       rb_page_write(cpu_buffer->commit_page)) {
1753 
1754 		local_set(&cpu_buffer->commit_page->page->commit,
1755 			  rb_page_write(cpu_buffer->commit_page));
1756 		RB_WARN_ON(cpu_buffer,
1757 			   local_read(&cpu_buffer->commit_page->page->commit) &
1758 			   ~RB_WRITE_MASK);
1759 		barrier();
1760 	}
1761 
1762 	/* again, keep gcc from optimizing */
1763 	barrier();
1764 
1765 	/*
1766 	 * If an interrupt came in just after the first while loop
1767 	 * and pushed the tail page forward, we will be left with
1768 	 * a dangling commit that will never go forward.
1769 	 */
1770 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1771 		goto again;
1772 }
1773 
1774 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1775 {
1776 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1777 	cpu_buffer->reader_page->read = 0;
1778 }
1779 
1780 static void rb_inc_iter(struct ring_buffer_iter *iter)
1781 {
1782 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1783 
1784 	/*
1785 	 * The iterator could be on the reader page (it starts there).
1786 	 * But the head could have moved, since the reader was
1787 	 * found. Check for this case and assign the iterator
1788 	 * to the head page instead of next.
1789 	 */
1790 	if (iter->head_page == cpu_buffer->reader_page)
1791 		iter->head_page = rb_set_head_page(cpu_buffer);
1792 	else
1793 		rb_inc_page(cpu_buffer, &iter->head_page);
1794 
1795 	iter->read_stamp = iter->head_page->page->time_stamp;
1796 	iter->head = 0;
1797 }
1798 
1799 /* Slow path, do not inline */
1800 static noinline struct ring_buffer_event *
1801 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1802 {
1803 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1804 
1805 	/* Not the first event on the page? */
1806 	if (rb_event_index(event)) {
1807 		event->time_delta = delta & TS_MASK;
1808 		event->array[0] = delta >> TS_SHIFT;
1809 	} else {
1810 		/* nope, just zero it */
1811 		event->time_delta = 0;
1812 		event->array[0] = 0;
1813 	}
1814 
1815 	return skip_time_extend(event);
1816 }
1817 
1818 /**
1819  * ring_buffer_update_event - update event type and data
1820  * @event: the even to update
1821  * @type: the type of event
1822  * @length: the size of the event field in the ring buffer
1823  *
1824  * Update the type and data fields of the event. The length
1825  * is the actual size that is written to the ring buffer,
1826  * and with this, we can determine what to place into the
1827  * data field.
1828  */
1829 static void
1830 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1831 		struct ring_buffer_event *event, unsigned length,
1832 		int add_timestamp, u64 delta)
1833 {
1834 	/* Only a commit updates the timestamp */
1835 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1836 		delta = 0;
1837 
1838 	/*
1839 	 * If we need to add a timestamp, then we
1840 	 * add it to the start of the resevered space.
1841 	 */
1842 	if (unlikely(add_timestamp)) {
1843 		event = rb_add_time_stamp(event, delta);
1844 		length -= RB_LEN_TIME_EXTEND;
1845 		delta = 0;
1846 	}
1847 
1848 	event->time_delta = delta;
1849 	length -= RB_EVNT_HDR_SIZE;
1850 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1851 		event->type_len = 0;
1852 		event->array[0] = length;
1853 	} else
1854 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1855 }
1856 
1857 /*
1858  * rb_handle_head_page - writer hit the head page
1859  *
1860  * Returns: +1 to retry page
1861  *           0 to continue
1862  *          -1 on error
1863  */
1864 static int
1865 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1866 		    struct buffer_page *tail_page,
1867 		    struct buffer_page *next_page)
1868 {
1869 	struct buffer_page *new_head;
1870 	int entries;
1871 	int type;
1872 	int ret;
1873 
1874 	entries = rb_page_entries(next_page);
1875 
1876 	/*
1877 	 * The hard part is here. We need to move the head
1878 	 * forward, and protect against both readers on
1879 	 * other CPUs and writers coming in via interrupts.
1880 	 */
1881 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1882 				       RB_PAGE_HEAD);
1883 
1884 	/*
1885 	 * type can be one of four:
1886 	 *  NORMAL - an interrupt already moved it for us
1887 	 *  HEAD   - we are the first to get here.
1888 	 *  UPDATE - we are the interrupt interrupting
1889 	 *           a current move.
1890 	 *  MOVED  - a reader on another CPU moved the next
1891 	 *           pointer to its reader page. Give up
1892 	 *           and try again.
1893 	 */
1894 
1895 	switch (type) {
1896 	case RB_PAGE_HEAD:
1897 		/*
1898 		 * We changed the head to UPDATE, thus
1899 		 * it is our responsibility to update
1900 		 * the counters.
1901 		 */
1902 		local_add(entries, &cpu_buffer->overrun);
1903 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1904 
1905 		/*
1906 		 * The entries will be zeroed out when we move the
1907 		 * tail page.
1908 		 */
1909 
1910 		/* still more to do */
1911 		break;
1912 
1913 	case RB_PAGE_UPDATE:
1914 		/*
1915 		 * This is an interrupt that interrupt the
1916 		 * previous update. Still more to do.
1917 		 */
1918 		break;
1919 	case RB_PAGE_NORMAL:
1920 		/*
1921 		 * An interrupt came in before the update
1922 		 * and processed this for us.
1923 		 * Nothing left to do.
1924 		 */
1925 		return 1;
1926 	case RB_PAGE_MOVED:
1927 		/*
1928 		 * The reader is on another CPU and just did
1929 		 * a swap with our next_page.
1930 		 * Try again.
1931 		 */
1932 		return 1;
1933 	default:
1934 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1935 		return -1;
1936 	}
1937 
1938 	/*
1939 	 * Now that we are here, the old head pointer is
1940 	 * set to UPDATE. This will keep the reader from
1941 	 * swapping the head page with the reader page.
1942 	 * The reader (on another CPU) will spin till
1943 	 * we are finished.
1944 	 *
1945 	 * We just need to protect against interrupts
1946 	 * doing the job. We will set the next pointer
1947 	 * to HEAD. After that, we set the old pointer
1948 	 * to NORMAL, but only if it was HEAD before.
1949 	 * otherwise we are an interrupt, and only
1950 	 * want the outer most commit to reset it.
1951 	 */
1952 	new_head = next_page;
1953 	rb_inc_page(cpu_buffer, &new_head);
1954 
1955 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1956 				    RB_PAGE_NORMAL);
1957 
1958 	/*
1959 	 * Valid returns are:
1960 	 *  HEAD   - an interrupt came in and already set it.
1961 	 *  NORMAL - One of two things:
1962 	 *            1) We really set it.
1963 	 *            2) A bunch of interrupts came in and moved
1964 	 *               the page forward again.
1965 	 */
1966 	switch (ret) {
1967 	case RB_PAGE_HEAD:
1968 	case RB_PAGE_NORMAL:
1969 		/* OK */
1970 		break;
1971 	default:
1972 		RB_WARN_ON(cpu_buffer, 1);
1973 		return -1;
1974 	}
1975 
1976 	/*
1977 	 * It is possible that an interrupt came in,
1978 	 * set the head up, then more interrupts came in
1979 	 * and moved it again. When we get back here,
1980 	 * the page would have been set to NORMAL but we
1981 	 * just set it back to HEAD.
1982 	 *
1983 	 * How do you detect this? Well, if that happened
1984 	 * the tail page would have moved.
1985 	 */
1986 	if (ret == RB_PAGE_NORMAL) {
1987 		/*
1988 		 * If the tail had moved passed next, then we need
1989 		 * to reset the pointer.
1990 		 */
1991 		if (cpu_buffer->tail_page != tail_page &&
1992 		    cpu_buffer->tail_page != next_page)
1993 			rb_head_page_set_normal(cpu_buffer, new_head,
1994 						next_page,
1995 						RB_PAGE_HEAD);
1996 	}
1997 
1998 	/*
1999 	 * If this was the outer most commit (the one that
2000 	 * changed the original pointer from HEAD to UPDATE),
2001 	 * then it is up to us to reset it to NORMAL.
2002 	 */
2003 	if (type == RB_PAGE_HEAD) {
2004 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2005 					      tail_page,
2006 					      RB_PAGE_UPDATE);
2007 		if (RB_WARN_ON(cpu_buffer,
2008 			       ret != RB_PAGE_UPDATE))
2009 			return -1;
2010 	}
2011 
2012 	return 0;
2013 }
2014 
2015 static unsigned rb_calculate_event_length(unsigned length)
2016 {
2017 	struct ring_buffer_event event; /* Used only for sizeof array */
2018 
2019 	/* zero length can cause confusions */
2020 	if (!length)
2021 		length = 1;
2022 
2023 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2024 		length += sizeof(event.array[0]);
2025 
2026 	length += RB_EVNT_HDR_SIZE;
2027 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2028 
2029 	return length;
2030 }
2031 
2032 static inline void
2033 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034 	      struct buffer_page *tail_page,
2035 	      unsigned long tail, unsigned long length)
2036 {
2037 	struct ring_buffer_event *event;
2038 
2039 	/*
2040 	 * Only the event that crossed the page boundary
2041 	 * must fill the old tail_page with padding.
2042 	 */
2043 	if (tail >= BUF_PAGE_SIZE) {
2044 		/*
2045 		 * If the page was filled, then we still need
2046 		 * to update the real_end. Reset it to zero
2047 		 * and the reader will ignore it.
2048 		 */
2049 		if (tail == BUF_PAGE_SIZE)
2050 			tail_page->real_end = 0;
2051 
2052 		local_sub(length, &tail_page->write);
2053 		return;
2054 	}
2055 
2056 	event = __rb_page_index(tail_page, tail);
2057 	kmemcheck_annotate_bitfield(event, bitfield);
2058 
2059 	/* account for padding bytes */
2060 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061 
2062 	/*
2063 	 * Save the original length to the meta data.
2064 	 * This will be used by the reader to add lost event
2065 	 * counter.
2066 	 */
2067 	tail_page->real_end = tail;
2068 
2069 	/*
2070 	 * If this event is bigger than the minimum size, then
2071 	 * we need to be careful that we don't subtract the
2072 	 * write counter enough to allow another writer to slip
2073 	 * in on this page.
2074 	 * We put in a discarded commit instead, to make sure
2075 	 * that this space is not used again.
2076 	 *
2077 	 * If we are less than the minimum size, we don't need to
2078 	 * worry about it.
2079 	 */
2080 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081 		/* No room for any events */
2082 
2083 		/* Mark the rest of the page with padding */
2084 		rb_event_set_padding(event);
2085 
2086 		/* Set the write back to the previous setting */
2087 		local_sub(length, &tail_page->write);
2088 		return;
2089 	}
2090 
2091 	/* Put in a discarded event */
2092 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093 	event->type_len = RINGBUF_TYPE_PADDING;
2094 	/* time delta must be non zero */
2095 	event->time_delta = 1;
2096 
2097 	/* Set write to end of buffer */
2098 	length = (tail + length) - BUF_PAGE_SIZE;
2099 	local_sub(length, &tail_page->write);
2100 }
2101 
2102 /*
2103  * This is the slow path, force gcc not to inline it.
2104  */
2105 static noinline struct ring_buffer_event *
2106 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107 	     unsigned long length, unsigned long tail,
2108 	     struct buffer_page *tail_page, u64 ts)
2109 {
2110 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2111 	struct ring_buffer *buffer = cpu_buffer->buffer;
2112 	struct buffer_page *next_page;
2113 	int ret;
2114 
2115 	next_page = tail_page;
2116 
2117 	rb_inc_page(cpu_buffer, &next_page);
2118 
2119 	/*
2120 	 * If for some reason, we had an interrupt storm that made
2121 	 * it all the way around the buffer, bail, and warn
2122 	 * about it.
2123 	 */
2124 	if (unlikely(next_page == commit_page)) {
2125 		local_inc(&cpu_buffer->commit_overrun);
2126 		goto out_reset;
2127 	}
2128 
2129 	/*
2130 	 * This is where the fun begins!
2131 	 *
2132 	 * We are fighting against races between a reader that
2133 	 * could be on another CPU trying to swap its reader
2134 	 * page with the buffer head.
2135 	 *
2136 	 * We are also fighting against interrupts coming in and
2137 	 * moving the head or tail on us as well.
2138 	 *
2139 	 * If the next page is the head page then we have filled
2140 	 * the buffer, unless the commit page is still on the
2141 	 * reader page.
2142 	 */
2143 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2144 
2145 		/*
2146 		 * If the commit is not on the reader page, then
2147 		 * move the header page.
2148 		 */
2149 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2150 			/*
2151 			 * If we are not in overwrite mode,
2152 			 * this is easy, just stop here.
2153 			 */
2154 			if (!(buffer->flags & RB_FL_OVERWRITE))
2155 				goto out_reset;
2156 
2157 			ret = rb_handle_head_page(cpu_buffer,
2158 						  tail_page,
2159 						  next_page);
2160 			if (ret < 0)
2161 				goto out_reset;
2162 			if (ret)
2163 				goto out_again;
2164 		} else {
2165 			/*
2166 			 * We need to be careful here too. The
2167 			 * commit page could still be on the reader
2168 			 * page. We could have a small buffer, and
2169 			 * have filled up the buffer with events
2170 			 * from interrupts and such, and wrapped.
2171 			 *
2172 			 * Note, if the tail page is also the on the
2173 			 * reader_page, we let it move out.
2174 			 */
2175 			if (unlikely((cpu_buffer->commit_page !=
2176 				      cpu_buffer->tail_page) &&
2177 				     (cpu_buffer->commit_page ==
2178 				      cpu_buffer->reader_page))) {
2179 				local_inc(&cpu_buffer->commit_overrun);
2180 				goto out_reset;
2181 			}
2182 		}
2183 	}
2184 
2185 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2186 	if (ret) {
2187 		/*
2188 		 * Nested commits always have zero deltas, so
2189 		 * just reread the time stamp
2190 		 */
2191 		ts = rb_time_stamp(buffer);
2192 		next_page->page->time_stamp = ts;
2193 	}
2194 
2195  out_again:
2196 
2197 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2198 
2199 	/* fail and let the caller try again */
2200 	return ERR_PTR(-EAGAIN);
2201 
2202  out_reset:
2203 	/* reset write */
2204 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2205 
2206 	return NULL;
2207 }
2208 
2209 static struct ring_buffer_event *
2210 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2211 		  unsigned long length, u64 ts,
2212 		  u64 delta, int add_timestamp)
2213 {
2214 	struct buffer_page *tail_page;
2215 	struct ring_buffer_event *event;
2216 	unsigned long tail, write;
2217 
2218 	/*
2219 	 * If the time delta since the last event is too big to
2220 	 * hold in the time field of the event, then we append a
2221 	 * TIME EXTEND event ahead of the data event.
2222 	 */
2223 	if (unlikely(add_timestamp))
2224 		length += RB_LEN_TIME_EXTEND;
2225 
2226 	tail_page = cpu_buffer->tail_page;
2227 	write = local_add_return(length, &tail_page->write);
2228 
2229 	/* set write to only the index of the write */
2230 	write &= RB_WRITE_MASK;
2231 	tail = write - length;
2232 
2233 	/* See if we shot pass the end of this buffer page */
2234 	if (unlikely(write > BUF_PAGE_SIZE))
2235 		return rb_move_tail(cpu_buffer, length, tail,
2236 				    tail_page, ts);
2237 
2238 	/* We reserved something on the buffer */
2239 
2240 	event = __rb_page_index(tail_page, tail);
2241 	kmemcheck_annotate_bitfield(event, bitfield);
2242 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2243 
2244 	local_inc(&tail_page->entries);
2245 
2246 	/*
2247 	 * If this is the first commit on the page, then update
2248 	 * its timestamp.
2249 	 */
2250 	if (!tail)
2251 		tail_page->page->time_stamp = ts;
2252 
2253 	/* account for these added bytes */
2254 	local_add(length, &cpu_buffer->entries_bytes);
2255 
2256 	return event;
2257 }
2258 
2259 static inline int
2260 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2261 		  struct ring_buffer_event *event)
2262 {
2263 	unsigned long new_index, old_index;
2264 	struct buffer_page *bpage;
2265 	unsigned long index;
2266 	unsigned long addr;
2267 
2268 	new_index = rb_event_index(event);
2269 	old_index = new_index + rb_event_ts_length(event);
2270 	addr = (unsigned long)event;
2271 	addr &= PAGE_MASK;
2272 
2273 	bpage = cpu_buffer->tail_page;
2274 
2275 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2276 		unsigned long write_mask =
2277 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2278 		unsigned long event_length = rb_event_length(event);
2279 		/*
2280 		 * This is on the tail page. It is possible that
2281 		 * a write could come in and move the tail page
2282 		 * and write to the next page. That is fine
2283 		 * because we just shorten what is on this page.
2284 		 */
2285 		old_index += write_mask;
2286 		new_index += write_mask;
2287 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2288 		if (index == old_index) {
2289 			/* update counters */
2290 			local_sub(event_length, &cpu_buffer->entries_bytes);
2291 			return 1;
2292 		}
2293 	}
2294 
2295 	/* could not discard */
2296 	return 0;
2297 }
2298 
2299 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2300 {
2301 	local_inc(&cpu_buffer->committing);
2302 	local_inc(&cpu_buffer->commits);
2303 }
2304 
2305 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2306 {
2307 	unsigned long commits;
2308 
2309 	if (RB_WARN_ON(cpu_buffer,
2310 		       !local_read(&cpu_buffer->committing)))
2311 		return;
2312 
2313  again:
2314 	commits = local_read(&cpu_buffer->commits);
2315 	/* synchronize with interrupts */
2316 	barrier();
2317 	if (local_read(&cpu_buffer->committing) == 1)
2318 		rb_set_commit_to_write(cpu_buffer);
2319 
2320 	local_dec(&cpu_buffer->committing);
2321 
2322 	/* synchronize with interrupts */
2323 	barrier();
2324 
2325 	/*
2326 	 * Need to account for interrupts coming in between the
2327 	 * updating of the commit page and the clearing of the
2328 	 * committing counter.
2329 	 */
2330 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2331 	    !local_read(&cpu_buffer->committing)) {
2332 		local_inc(&cpu_buffer->committing);
2333 		goto again;
2334 	}
2335 }
2336 
2337 static struct ring_buffer_event *
2338 rb_reserve_next_event(struct ring_buffer *buffer,
2339 		      struct ring_buffer_per_cpu *cpu_buffer,
2340 		      unsigned long length)
2341 {
2342 	struct ring_buffer_event *event;
2343 	u64 ts, delta;
2344 	int nr_loops = 0;
2345 	int add_timestamp;
2346 	u64 diff;
2347 
2348 	rb_start_commit(cpu_buffer);
2349 
2350 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2351 	/*
2352 	 * Due to the ability to swap a cpu buffer from a buffer
2353 	 * it is possible it was swapped before we committed.
2354 	 * (committing stops a swap). We check for it here and
2355 	 * if it happened, we have to fail the write.
2356 	 */
2357 	barrier();
2358 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2359 		local_dec(&cpu_buffer->committing);
2360 		local_dec(&cpu_buffer->commits);
2361 		return NULL;
2362 	}
2363 #endif
2364 
2365 	length = rb_calculate_event_length(length);
2366  again:
2367 	add_timestamp = 0;
2368 	delta = 0;
2369 
2370 	/*
2371 	 * We allow for interrupts to reenter here and do a trace.
2372 	 * If one does, it will cause this original code to loop
2373 	 * back here. Even with heavy interrupts happening, this
2374 	 * should only happen a few times in a row. If this happens
2375 	 * 1000 times in a row, there must be either an interrupt
2376 	 * storm or we have something buggy.
2377 	 * Bail!
2378 	 */
2379 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2380 		goto out_fail;
2381 
2382 	ts = rb_time_stamp(cpu_buffer->buffer);
2383 	diff = ts - cpu_buffer->write_stamp;
2384 
2385 	/* make sure this diff is calculated here */
2386 	barrier();
2387 
2388 	/* Did the write stamp get updated already? */
2389 	if (likely(ts >= cpu_buffer->write_stamp)) {
2390 		delta = diff;
2391 		if (unlikely(test_time_stamp(delta))) {
2392 			int local_clock_stable = 1;
2393 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2394 			local_clock_stable = sched_clock_stable;
2395 #endif
2396 			WARN_ONCE(delta > (1ULL << 59),
2397 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2398 				  (unsigned long long)delta,
2399 				  (unsigned long long)ts,
2400 				  (unsigned long long)cpu_buffer->write_stamp,
2401 				  local_clock_stable ? "" :
2402 				  "If you just came from a suspend/resume,\n"
2403 				  "please switch to the trace global clock:\n"
2404 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2405 			add_timestamp = 1;
2406 		}
2407 	}
2408 
2409 	event = __rb_reserve_next(cpu_buffer, length, ts,
2410 				  delta, add_timestamp);
2411 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2412 		goto again;
2413 
2414 	if (!event)
2415 		goto out_fail;
2416 
2417 	return event;
2418 
2419  out_fail:
2420 	rb_end_commit(cpu_buffer);
2421 	return NULL;
2422 }
2423 
2424 #ifdef CONFIG_TRACING
2425 
2426 #define TRACE_RECURSIVE_DEPTH 16
2427 
2428 /* Keep this code out of the fast path cache */
2429 static noinline void trace_recursive_fail(void)
2430 {
2431 	/* Disable all tracing before we do anything else */
2432 	tracing_off_permanent();
2433 
2434 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2435 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2436 		    trace_recursion_buffer(),
2437 		    hardirq_count() >> HARDIRQ_SHIFT,
2438 		    softirq_count() >> SOFTIRQ_SHIFT,
2439 		    in_nmi());
2440 
2441 	WARN_ON_ONCE(1);
2442 }
2443 
2444 static inline int trace_recursive_lock(void)
2445 {
2446 	trace_recursion_inc();
2447 
2448 	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2449 		return 0;
2450 
2451 	trace_recursive_fail();
2452 
2453 	return -1;
2454 }
2455 
2456 static inline void trace_recursive_unlock(void)
2457 {
2458 	WARN_ON_ONCE(!trace_recursion_buffer());
2459 
2460 	trace_recursion_dec();
2461 }
2462 
2463 #else
2464 
2465 #define trace_recursive_lock()		(0)
2466 #define trace_recursive_unlock()	do { } while (0)
2467 
2468 #endif
2469 
2470 /**
2471  * ring_buffer_lock_reserve - reserve a part of the buffer
2472  * @buffer: the ring buffer to reserve from
2473  * @length: the length of the data to reserve (excluding event header)
2474  *
2475  * Returns a reseverd event on the ring buffer to copy directly to.
2476  * The user of this interface will need to get the body to write into
2477  * and can use the ring_buffer_event_data() interface.
2478  *
2479  * The length is the length of the data needed, not the event length
2480  * which also includes the event header.
2481  *
2482  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2483  * If NULL is returned, then nothing has been allocated or locked.
2484  */
2485 struct ring_buffer_event *
2486 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2487 {
2488 	struct ring_buffer_per_cpu *cpu_buffer;
2489 	struct ring_buffer_event *event;
2490 	int cpu;
2491 
2492 	if (ring_buffer_flags != RB_BUFFERS_ON)
2493 		return NULL;
2494 
2495 	/* If we are tracing schedule, we don't want to recurse */
2496 	preempt_disable_notrace();
2497 
2498 	if (atomic_read(&buffer->record_disabled))
2499 		goto out_nocheck;
2500 
2501 	if (trace_recursive_lock())
2502 		goto out_nocheck;
2503 
2504 	cpu = raw_smp_processor_id();
2505 
2506 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2507 		goto out;
2508 
2509 	cpu_buffer = buffer->buffers[cpu];
2510 
2511 	if (atomic_read(&cpu_buffer->record_disabled))
2512 		goto out;
2513 
2514 	if (length > BUF_MAX_DATA_SIZE)
2515 		goto out;
2516 
2517 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2518 	if (!event)
2519 		goto out;
2520 
2521 	return event;
2522 
2523  out:
2524 	trace_recursive_unlock();
2525 
2526  out_nocheck:
2527 	preempt_enable_notrace();
2528 	return NULL;
2529 }
2530 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2531 
2532 static void
2533 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2534 		      struct ring_buffer_event *event)
2535 {
2536 	u64 delta;
2537 
2538 	/*
2539 	 * The event first in the commit queue updates the
2540 	 * time stamp.
2541 	 */
2542 	if (rb_event_is_commit(cpu_buffer, event)) {
2543 		/*
2544 		 * A commit event that is first on a page
2545 		 * updates the write timestamp with the page stamp
2546 		 */
2547 		if (!rb_event_index(event))
2548 			cpu_buffer->write_stamp =
2549 				cpu_buffer->commit_page->page->time_stamp;
2550 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2551 			delta = event->array[0];
2552 			delta <<= TS_SHIFT;
2553 			delta += event->time_delta;
2554 			cpu_buffer->write_stamp += delta;
2555 		} else
2556 			cpu_buffer->write_stamp += event->time_delta;
2557 	}
2558 }
2559 
2560 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561 		      struct ring_buffer_event *event)
2562 {
2563 	local_inc(&cpu_buffer->entries);
2564 	rb_update_write_stamp(cpu_buffer, event);
2565 	rb_end_commit(cpu_buffer);
2566 }
2567 
2568 /**
2569  * ring_buffer_unlock_commit - commit a reserved
2570  * @buffer: The buffer to commit to
2571  * @event: The event pointer to commit.
2572  *
2573  * This commits the data to the ring buffer, and releases any locks held.
2574  *
2575  * Must be paired with ring_buffer_lock_reserve.
2576  */
2577 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2578 			      struct ring_buffer_event *event)
2579 {
2580 	struct ring_buffer_per_cpu *cpu_buffer;
2581 	int cpu = raw_smp_processor_id();
2582 
2583 	cpu_buffer = buffer->buffers[cpu];
2584 
2585 	rb_commit(cpu_buffer, event);
2586 
2587 	trace_recursive_unlock();
2588 
2589 	preempt_enable_notrace();
2590 
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2594 
2595 static inline void rb_event_discard(struct ring_buffer_event *event)
2596 {
2597 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2598 		event = skip_time_extend(event);
2599 
2600 	/* array[0] holds the actual length for the discarded event */
2601 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2602 	event->type_len = RINGBUF_TYPE_PADDING;
2603 	/* time delta must be non zero */
2604 	if (!event->time_delta)
2605 		event->time_delta = 1;
2606 }
2607 
2608 /*
2609  * Decrement the entries to the page that an event is on.
2610  * The event does not even need to exist, only the pointer
2611  * to the page it is on. This may only be called before the commit
2612  * takes place.
2613  */
2614 static inline void
2615 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2616 		   struct ring_buffer_event *event)
2617 {
2618 	unsigned long addr = (unsigned long)event;
2619 	struct buffer_page *bpage = cpu_buffer->commit_page;
2620 	struct buffer_page *start;
2621 
2622 	addr &= PAGE_MASK;
2623 
2624 	/* Do the likely case first */
2625 	if (likely(bpage->page == (void *)addr)) {
2626 		local_dec(&bpage->entries);
2627 		return;
2628 	}
2629 
2630 	/*
2631 	 * Because the commit page may be on the reader page we
2632 	 * start with the next page and check the end loop there.
2633 	 */
2634 	rb_inc_page(cpu_buffer, &bpage);
2635 	start = bpage;
2636 	do {
2637 		if (bpage->page == (void *)addr) {
2638 			local_dec(&bpage->entries);
2639 			return;
2640 		}
2641 		rb_inc_page(cpu_buffer, &bpage);
2642 	} while (bpage != start);
2643 
2644 	/* commit not part of this buffer?? */
2645 	RB_WARN_ON(cpu_buffer, 1);
2646 }
2647 
2648 /**
2649  * ring_buffer_commit_discard - discard an event that has not been committed
2650  * @buffer: the ring buffer
2651  * @event: non committed event to discard
2652  *
2653  * Sometimes an event that is in the ring buffer needs to be ignored.
2654  * This function lets the user discard an event in the ring buffer
2655  * and then that event will not be read later.
2656  *
2657  * This function only works if it is called before the the item has been
2658  * committed. It will try to free the event from the ring buffer
2659  * if another event has not been added behind it.
2660  *
2661  * If another event has been added behind it, it will set the event
2662  * up as discarded, and perform the commit.
2663  *
2664  * If this function is called, do not call ring_buffer_unlock_commit on
2665  * the event.
2666  */
2667 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2668 				struct ring_buffer_event *event)
2669 {
2670 	struct ring_buffer_per_cpu *cpu_buffer;
2671 	int cpu;
2672 
2673 	/* The event is discarded regardless */
2674 	rb_event_discard(event);
2675 
2676 	cpu = smp_processor_id();
2677 	cpu_buffer = buffer->buffers[cpu];
2678 
2679 	/*
2680 	 * This must only be called if the event has not been
2681 	 * committed yet. Thus we can assume that preemption
2682 	 * is still disabled.
2683 	 */
2684 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2685 
2686 	rb_decrement_entry(cpu_buffer, event);
2687 	if (rb_try_to_discard(cpu_buffer, event))
2688 		goto out;
2689 
2690 	/*
2691 	 * The commit is still visible by the reader, so we
2692 	 * must still update the timestamp.
2693 	 */
2694 	rb_update_write_stamp(cpu_buffer, event);
2695  out:
2696 	rb_end_commit(cpu_buffer);
2697 
2698 	trace_recursive_unlock();
2699 
2700 	preempt_enable_notrace();
2701 
2702 }
2703 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2704 
2705 /**
2706  * ring_buffer_write - write data to the buffer without reserving
2707  * @buffer: The ring buffer to write to.
2708  * @length: The length of the data being written (excluding the event header)
2709  * @data: The data to write to the buffer.
2710  *
2711  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2712  * one function. If you already have the data to write to the buffer, it
2713  * may be easier to simply call this function.
2714  *
2715  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2716  * and not the length of the event which would hold the header.
2717  */
2718 int ring_buffer_write(struct ring_buffer *buffer,
2719 			unsigned long length,
2720 			void *data)
2721 {
2722 	struct ring_buffer_per_cpu *cpu_buffer;
2723 	struct ring_buffer_event *event;
2724 	void *body;
2725 	int ret = -EBUSY;
2726 	int cpu;
2727 
2728 	if (ring_buffer_flags != RB_BUFFERS_ON)
2729 		return -EBUSY;
2730 
2731 	preempt_disable_notrace();
2732 
2733 	if (atomic_read(&buffer->record_disabled))
2734 		goto out;
2735 
2736 	cpu = raw_smp_processor_id();
2737 
2738 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2739 		goto out;
2740 
2741 	cpu_buffer = buffer->buffers[cpu];
2742 
2743 	if (atomic_read(&cpu_buffer->record_disabled))
2744 		goto out;
2745 
2746 	if (length > BUF_MAX_DATA_SIZE)
2747 		goto out;
2748 
2749 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2750 	if (!event)
2751 		goto out;
2752 
2753 	body = rb_event_data(event);
2754 
2755 	memcpy(body, data, length);
2756 
2757 	rb_commit(cpu_buffer, event);
2758 
2759 	ret = 0;
2760  out:
2761 	preempt_enable_notrace();
2762 
2763 	return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(ring_buffer_write);
2766 
2767 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2768 {
2769 	struct buffer_page *reader = cpu_buffer->reader_page;
2770 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2771 	struct buffer_page *commit = cpu_buffer->commit_page;
2772 
2773 	/* In case of error, head will be NULL */
2774 	if (unlikely(!head))
2775 		return 1;
2776 
2777 	return reader->read == rb_page_commit(reader) &&
2778 		(commit == reader ||
2779 		 (commit == head &&
2780 		  head->read == rb_page_commit(commit)));
2781 }
2782 
2783 /**
2784  * ring_buffer_record_disable - stop all writes into the buffer
2785  * @buffer: The ring buffer to stop writes to.
2786  *
2787  * This prevents all writes to the buffer. Any attempt to write
2788  * to the buffer after this will fail and return NULL.
2789  *
2790  * The caller should call synchronize_sched() after this.
2791  */
2792 void ring_buffer_record_disable(struct ring_buffer *buffer)
2793 {
2794 	atomic_inc(&buffer->record_disabled);
2795 }
2796 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2797 
2798 /**
2799  * ring_buffer_record_enable - enable writes to the buffer
2800  * @buffer: The ring buffer to enable writes
2801  *
2802  * Note, multiple disables will need the same number of enables
2803  * to truly enable the writing (much like preempt_disable).
2804  */
2805 void ring_buffer_record_enable(struct ring_buffer *buffer)
2806 {
2807 	atomic_dec(&buffer->record_disabled);
2808 }
2809 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2810 
2811 /**
2812  * ring_buffer_record_off - stop all writes into the buffer
2813  * @buffer: The ring buffer to stop writes to.
2814  *
2815  * This prevents all writes to the buffer. Any attempt to write
2816  * to the buffer after this will fail and return NULL.
2817  *
2818  * This is different than ring_buffer_record_disable() as
2819  * it works like an on/off switch, where as the disable() version
2820  * must be paired with a enable().
2821  */
2822 void ring_buffer_record_off(struct ring_buffer *buffer)
2823 {
2824 	unsigned int rd;
2825 	unsigned int new_rd;
2826 
2827 	do {
2828 		rd = atomic_read(&buffer->record_disabled);
2829 		new_rd = rd | RB_BUFFER_OFF;
2830 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2831 }
2832 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2833 
2834 /**
2835  * ring_buffer_record_on - restart writes into the buffer
2836  * @buffer: The ring buffer to start writes to.
2837  *
2838  * This enables all writes to the buffer that was disabled by
2839  * ring_buffer_record_off().
2840  *
2841  * This is different than ring_buffer_record_enable() as
2842  * it works like an on/off switch, where as the enable() version
2843  * must be paired with a disable().
2844  */
2845 void ring_buffer_record_on(struct ring_buffer *buffer)
2846 {
2847 	unsigned int rd;
2848 	unsigned int new_rd;
2849 
2850 	do {
2851 		rd = atomic_read(&buffer->record_disabled);
2852 		new_rd = rd & ~RB_BUFFER_OFF;
2853 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2854 }
2855 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2856 
2857 /**
2858  * ring_buffer_record_is_on - return true if the ring buffer can write
2859  * @buffer: The ring buffer to see if write is enabled
2860  *
2861  * Returns true if the ring buffer is in a state that it accepts writes.
2862  */
2863 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2864 {
2865 	return !atomic_read(&buffer->record_disabled);
2866 }
2867 
2868 /**
2869  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2870  * @buffer: The ring buffer to stop writes to.
2871  * @cpu: The CPU buffer to stop
2872  *
2873  * This prevents all writes to the buffer. Any attempt to write
2874  * to the buffer after this will fail and return NULL.
2875  *
2876  * The caller should call synchronize_sched() after this.
2877  */
2878 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2879 {
2880 	struct ring_buffer_per_cpu *cpu_buffer;
2881 
2882 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2883 		return;
2884 
2885 	cpu_buffer = buffer->buffers[cpu];
2886 	atomic_inc(&cpu_buffer->record_disabled);
2887 }
2888 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2889 
2890 /**
2891  * ring_buffer_record_enable_cpu - enable writes to the buffer
2892  * @buffer: The ring buffer to enable writes
2893  * @cpu: The CPU to enable.
2894  *
2895  * Note, multiple disables will need the same number of enables
2896  * to truly enable the writing (much like preempt_disable).
2897  */
2898 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2899 {
2900 	struct ring_buffer_per_cpu *cpu_buffer;
2901 
2902 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2903 		return;
2904 
2905 	cpu_buffer = buffer->buffers[cpu];
2906 	atomic_dec(&cpu_buffer->record_disabled);
2907 }
2908 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2909 
2910 /*
2911  * The total entries in the ring buffer is the running counter
2912  * of entries entered into the ring buffer, minus the sum of
2913  * the entries read from the ring buffer and the number of
2914  * entries that were overwritten.
2915  */
2916 static inline unsigned long
2917 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2918 {
2919 	return local_read(&cpu_buffer->entries) -
2920 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2921 }
2922 
2923 /**
2924  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2925  * @buffer: The ring buffer
2926  * @cpu: The per CPU buffer to read from.
2927  */
2928 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2929 {
2930 	unsigned long flags;
2931 	struct ring_buffer_per_cpu *cpu_buffer;
2932 	struct buffer_page *bpage;
2933 	unsigned long ret;
2934 
2935 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2936 		return 0;
2937 
2938 	cpu_buffer = buffer->buffers[cpu];
2939 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2940 	/*
2941 	 * if the tail is on reader_page, oldest time stamp is on the reader
2942 	 * page
2943 	 */
2944 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2945 		bpage = cpu_buffer->reader_page;
2946 	else
2947 		bpage = rb_set_head_page(cpu_buffer);
2948 	ret = bpage->page->time_stamp;
2949 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2950 
2951 	return ret;
2952 }
2953 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2954 
2955 /**
2956  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2957  * @buffer: The ring buffer
2958  * @cpu: The per CPU buffer to read from.
2959  */
2960 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2961 {
2962 	struct ring_buffer_per_cpu *cpu_buffer;
2963 	unsigned long ret;
2964 
2965 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966 		return 0;
2967 
2968 	cpu_buffer = buffer->buffers[cpu];
2969 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2970 
2971 	return ret;
2972 }
2973 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2974 
2975 /**
2976  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2977  * @buffer: The ring buffer
2978  * @cpu: The per CPU buffer to get the entries from.
2979  */
2980 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2981 {
2982 	struct ring_buffer_per_cpu *cpu_buffer;
2983 
2984 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2985 		return 0;
2986 
2987 	cpu_buffer = buffer->buffers[cpu];
2988 
2989 	return rb_num_of_entries(cpu_buffer);
2990 }
2991 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2992 
2993 /**
2994  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2995  * @buffer: The ring buffer
2996  * @cpu: The per CPU buffer to get the number of overruns from
2997  */
2998 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2999 {
3000 	struct ring_buffer_per_cpu *cpu_buffer;
3001 	unsigned long ret;
3002 
3003 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3004 		return 0;
3005 
3006 	cpu_buffer = buffer->buffers[cpu];
3007 	ret = local_read(&cpu_buffer->overrun);
3008 
3009 	return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3012 
3013 /**
3014  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3015  * @buffer: The ring buffer
3016  * @cpu: The per CPU buffer to get the number of overruns from
3017  */
3018 unsigned long
3019 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3020 {
3021 	struct ring_buffer_per_cpu *cpu_buffer;
3022 	unsigned long ret;
3023 
3024 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3025 		return 0;
3026 
3027 	cpu_buffer = buffer->buffers[cpu];
3028 	ret = local_read(&cpu_buffer->commit_overrun);
3029 
3030 	return ret;
3031 }
3032 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3033 
3034 /**
3035  * ring_buffer_entries - get the number of entries in a buffer
3036  * @buffer: The ring buffer
3037  *
3038  * Returns the total number of entries in the ring buffer
3039  * (all CPU entries)
3040  */
3041 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3042 {
3043 	struct ring_buffer_per_cpu *cpu_buffer;
3044 	unsigned long entries = 0;
3045 	int cpu;
3046 
3047 	/* if you care about this being correct, lock the buffer */
3048 	for_each_buffer_cpu(buffer, cpu) {
3049 		cpu_buffer = buffer->buffers[cpu];
3050 		entries += rb_num_of_entries(cpu_buffer);
3051 	}
3052 
3053 	return entries;
3054 }
3055 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3056 
3057 /**
3058  * ring_buffer_overruns - get the number of overruns in buffer
3059  * @buffer: The ring buffer
3060  *
3061  * Returns the total number of overruns in the ring buffer
3062  * (all CPU entries)
3063  */
3064 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3065 {
3066 	struct ring_buffer_per_cpu *cpu_buffer;
3067 	unsigned long overruns = 0;
3068 	int cpu;
3069 
3070 	/* if you care about this being correct, lock the buffer */
3071 	for_each_buffer_cpu(buffer, cpu) {
3072 		cpu_buffer = buffer->buffers[cpu];
3073 		overruns += local_read(&cpu_buffer->overrun);
3074 	}
3075 
3076 	return overruns;
3077 }
3078 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3079 
3080 static void rb_iter_reset(struct ring_buffer_iter *iter)
3081 {
3082 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3083 
3084 	/* Iterator usage is expected to have record disabled */
3085 	if (list_empty(&cpu_buffer->reader_page->list)) {
3086 		iter->head_page = rb_set_head_page(cpu_buffer);
3087 		if (unlikely(!iter->head_page))
3088 			return;
3089 		iter->head = iter->head_page->read;
3090 	} else {
3091 		iter->head_page = cpu_buffer->reader_page;
3092 		iter->head = cpu_buffer->reader_page->read;
3093 	}
3094 	if (iter->head)
3095 		iter->read_stamp = cpu_buffer->read_stamp;
3096 	else
3097 		iter->read_stamp = iter->head_page->page->time_stamp;
3098 	iter->cache_reader_page = cpu_buffer->reader_page;
3099 	iter->cache_read = cpu_buffer->read;
3100 }
3101 
3102 /**
3103  * ring_buffer_iter_reset - reset an iterator
3104  * @iter: The iterator to reset
3105  *
3106  * Resets the iterator, so that it will start from the beginning
3107  * again.
3108  */
3109 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3110 {
3111 	struct ring_buffer_per_cpu *cpu_buffer;
3112 	unsigned long flags;
3113 
3114 	if (!iter)
3115 		return;
3116 
3117 	cpu_buffer = iter->cpu_buffer;
3118 
3119 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3120 	rb_iter_reset(iter);
3121 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3124 
3125 /**
3126  * ring_buffer_iter_empty - check if an iterator has no more to read
3127  * @iter: The iterator to check
3128  */
3129 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3130 {
3131 	struct ring_buffer_per_cpu *cpu_buffer;
3132 
3133 	cpu_buffer = iter->cpu_buffer;
3134 
3135 	return iter->head_page == cpu_buffer->commit_page &&
3136 		iter->head == rb_commit_index(cpu_buffer);
3137 }
3138 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3139 
3140 static void
3141 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3142 		     struct ring_buffer_event *event)
3143 {
3144 	u64 delta;
3145 
3146 	switch (event->type_len) {
3147 	case RINGBUF_TYPE_PADDING:
3148 		return;
3149 
3150 	case RINGBUF_TYPE_TIME_EXTEND:
3151 		delta = event->array[0];
3152 		delta <<= TS_SHIFT;
3153 		delta += event->time_delta;
3154 		cpu_buffer->read_stamp += delta;
3155 		return;
3156 
3157 	case RINGBUF_TYPE_TIME_STAMP:
3158 		/* FIXME: not implemented */
3159 		return;
3160 
3161 	case RINGBUF_TYPE_DATA:
3162 		cpu_buffer->read_stamp += event->time_delta;
3163 		return;
3164 
3165 	default:
3166 		BUG();
3167 	}
3168 	return;
3169 }
3170 
3171 static void
3172 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3173 			  struct ring_buffer_event *event)
3174 {
3175 	u64 delta;
3176 
3177 	switch (event->type_len) {
3178 	case RINGBUF_TYPE_PADDING:
3179 		return;
3180 
3181 	case RINGBUF_TYPE_TIME_EXTEND:
3182 		delta = event->array[0];
3183 		delta <<= TS_SHIFT;
3184 		delta += event->time_delta;
3185 		iter->read_stamp += delta;
3186 		return;
3187 
3188 	case RINGBUF_TYPE_TIME_STAMP:
3189 		/* FIXME: not implemented */
3190 		return;
3191 
3192 	case RINGBUF_TYPE_DATA:
3193 		iter->read_stamp += event->time_delta;
3194 		return;
3195 
3196 	default:
3197 		BUG();
3198 	}
3199 	return;
3200 }
3201 
3202 static struct buffer_page *
3203 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3204 {
3205 	struct buffer_page *reader = NULL;
3206 	unsigned long overwrite;
3207 	unsigned long flags;
3208 	int nr_loops = 0;
3209 	int ret;
3210 
3211 	local_irq_save(flags);
3212 	arch_spin_lock(&cpu_buffer->lock);
3213 
3214  again:
3215 	/*
3216 	 * This should normally only loop twice. But because the
3217 	 * start of the reader inserts an empty page, it causes
3218 	 * a case where we will loop three times. There should be no
3219 	 * reason to loop four times (that I know of).
3220 	 */
3221 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3222 		reader = NULL;
3223 		goto out;
3224 	}
3225 
3226 	reader = cpu_buffer->reader_page;
3227 
3228 	/* If there's more to read, return this page */
3229 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3230 		goto out;
3231 
3232 	/* Never should we have an index greater than the size */
3233 	if (RB_WARN_ON(cpu_buffer,
3234 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3235 		goto out;
3236 
3237 	/* check if we caught up to the tail */
3238 	reader = NULL;
3239 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3240 		goto out;
3241 
3242 	/* Don't bother swapping if the ring buffer is empty */
3243 	if (rb_num_of_entries(cpu_buffer) == 0)
3244 		goto out;
3245 
3246 	/*
3247 	 * Reset the reader page to size zero.
3248 	 */
3249 	local_set(&cpu_buffer->reader_page->write, 0);
3250 	local_set(&cpu_buffer->reader_page->entries, 0);
3251 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3252 	cpu_buffer->reader_page->real_end = 0;
3253 
3254  spin:
3255 	/*
3256 	 * Splice the empty reader page into the list around the head.
3257 	 */
3258 	reader = rb_set_head_page(cpu_buffer);
3259 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3260 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3261 
3262 	/*
3263 	 * cpu_buffer->pages just needs to point to the buffer, it
3264 	 *  has no specific buffer page to point to. Lets move it out
3265 	 *  of our way so we don't accidentally swap it.
3266 	 */
3267 	cpu_buffer->pages = reader->list.prev;
3268 
3269 	/* The reader page will be pointing to the new head */
3270 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3271 
3272 	/*
3273 	 * We want to make sure we read the overruns after we set up our
3274 	 * pointers to the next object. The writer side does a
3275 	 * cmpxchg to cross pages which acts as the mb on the writer
3276 	 * side. Note, the reader will constantly fail the swap
3277 	 * while the writer is updating the pointers, so this
3278 	 * guarantees that the overwrite recorded here is the one we
3279 	 * want to compare with the last_overrun.
3280 	 */
3281 	smp_mb();
3282 	overwrite = local_read(&(cpu_buffer->overrun));
3283 
3284 	/*
3285 	 * Here's the tricky part.
3286 	 *
3287 	 * We need to move the pointer past the header page.
3288 	 * But we can only do that if a writer is not currently
3289 	 * moving it. The page before the header page has the
3290 	 * flag bit '1' set if it is pointing to the page we want.
3291 	 * but if the writer is in the process of moving it
3292 	 * than it will be '2' or already moved '0'.
3293 	 */
3294 
3295 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3296 
3297 	/*
3298 	 * If we did not convert it, then we must try again.
3299 	 */
3300 	if (!ret)
3301 		goto spin;
3302 
3303 	/*
3304 	 * Yeah! We succeeded in replacing the page.
3305 	 *
3306 	 * Now make the new head point back to the reader page.
3307 	 */
3308 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3309 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3310 
3311 	/* Finally update the reader page to the new head */
3312 	cpu_buffer->reader_page = reader;
3313 	rb_reset_reader_page(cpu_buffer);
3314 
3315 	if (overwrite != cpu_buffer->last_overrun) {
3316 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3317 		cpu_buffer->last_overrun = overwrite;
3318 	}
3319 
3320 	goto again;
3321 
3322  out:
3323 	arch_spin_unlock(&cpu_buffer->lock);
3324 	local_irq_restore(flags);
3325 
3326 	return reader;
3327 }
3328 
3329 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3330 {
3331 	struct ring_buffer_event *event;
3332 	struct buffer_page *reader;
3333 	unsigned length;
3334 
3335 	reader = rb_get_reader_page(cpu_buffer);
3336 
3337 	/* This function should not be called when buffer is empty */
3338 	if (RB_WARN_ON(cpu_buffer, !reader))
3339 		return;
3340 
3341 	event = rb_reader_event(cpu_buffer);
3342 
3343 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3344 		cpu_buffer->read++;
3345 
3346 	rb_update_read_stamp(cpu_buffer, event);
3347 
3348 	length = rb_event_length(event);
3349 	cpu_buffer->reader_page->read += length;
3350 }
3351 
3352 static void rb_advance_iter(struct ring_buffer_iter *iter)
3353 {
3354 	struct ring_buffer_per_cpu *cpu_buffer;
3355 	struct ring_buffer_event *event;
3356 	unsigned length;
3357 
3358 	cpu_buffer = iter->cpu_buffer;
3359 
3360 	/*
3361 	 * Check if we are at the end of the buffer.
3362 	 */
3363 	if (iter->head >= rb_page_size(iter->head_page)) {
3364 		/* discarded commits can make the page empty */
3365 		if (iter->head_page == cpu_buffer->commit_page)
3366 			return;
3367 		rb_inc_iter(iter);
3368 		return;
3369 	}
3370 
3371 	event = rb_iter_head_event(iter);
3372 
3373 	length = rb_event_length(event);
3374 
3375 	/*
3376 	 * This should not be called to advance the header if we are
3377 	 * at the tail of the buffer.
3378 	 */
3379 	if (RB_WARN_ON(cpu_buffer,
3380 		       (iter->head_page == cpu_buffer->commit_page) &&
3381 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3382 		return;
3383 
3384 	rb_update_iter_read_stamp(iter, event);
3385 
3386 	iter->head += length;
3387 
3388 	/* check for end of page padding */
3389 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3390 	    (iter->head_page != cpu_buffer->commit_page))
3391 		rb_advance_iter(iter);
3392 }
3393 
3394 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3395 {
3396 	return cpu_buffer->lost_events;
3397 }
3398 
3399 static struct ring_buffer_event *
3400 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3401 	       unsigned long *lost_events)
3402 {
3403 	struct ring_buffer_event *event;
3404 	struct buffer_page *reader;
3405 	int nr_loops = 0;
3406 
3407  again:
3408 	/*
3409 	 * We repeat when a time extend is encountered.
3410 	 * Since the time extend is always attached to a data event,
3411 	 * we should never loop more than once.
3412 	 * (We never hit the following condition more than twice).
3413 	 */
3414 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3415 		return NULL;
3416 
3417 	reader = rb_get_reader_page(cpu_buffer);
3418 	if (!reader)
3419 		return NULL;
3420 
3421 	event = rb_reader_event(cpu_buffer);
3422 
3423 	switch (event->type_len) {
3424 	case RINGBUF_TYPE_PADDING:
3425 		if (rb_null_event(event))
3426 			RB_WARN_ON(cpu_buffer, 1);
3427 		/*
3428 		 * Because the writer could be discarding every
3429 		 * event it creates (which would probably be bad)
3430 		 * if we were to go back to "again" then we may never
3431 		 * catch up, and will trigger the warn on, or lock
3432 		 * the box. Return the padding, and we will release
3433 		 * the current locks, and try again.
3434 		 */
3435 		return event;
3436 
3437 	case RINGBUF_TYPE_TIME_EXTEND:
3438 		/* Internal data, OK to advance */
3439 		rb_advance_reader(cpu_buffer);
3440 		goto again;
3441 
3442 	case RINGBUF_TYPE_TIME_STAMP:
3443 		/* FIXME: not implemented */
3444 		rb_advance_reader(cpu_buffer);
3445 		goto again;
3446 
3447 	case RINGBUF_TYPE_DATA:
3448 		if (ts) {
3449 			*ts = cpu_buffer->read_stamp + event->time_delta;
3450 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3451 							 cpu_buffer->cpu, ts);
3452 		}
3453 		if (lost_events)
3454 			*lost_events = rb_lost_events(cpu_buffer);
3455 		return event;
3456 
3457 	default:
3458 		BUG();
3459 	}
3460 
3461 	return NULL;
3462 }
3463 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3464 
3465 static struct ring_buffer_event *
3466 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3467 {
3468 	struct ring_buffer *buffer;
3469 	struct ring_buffer_per_cpu *cpu_buffer;
3470 	struct ring_buffer_event *event;
3471 	int nr_loops = 0;
3472 
3473 	cpu_buffer = iter->cpu_buffer;
3474 	buffer = cpu_buffer->buffer;
3475 
3476 	/*
3477 	 * Check if someone performed a consuming read to
3478 	 * the buffer. A consuming read invalidates the iterator
3479 	 * and we need to reset the iterator in this case.
3480 	 */
3481 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3482 		     iter->cache_reader_page != cpu_buffer->reader_page))
3483 		rb_iter_reset(iter);
3484 
3485  again:
3486 	if (ring_buffer_iter_empty(iter))
3487 		return NULL;
3488 
3489 	/*
3490 	 * We repeat when a time extend is encountered.
3491 	 * Since the time extend is always attached to a data event,
3492 	 * we should never loop more than once.
3493 	 * (We never hit the following condition more than twice).
3494 	 */
3495 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3496 		return NULL;
3497 
3498 	if (rb_per_cpu_empty(cpu_buffer))
3499 		return NULL;
3500 
3501 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3502 		rb_inc_iter(iter);
3503 		goto again;
3504 	}
3505 
3506 	event = rb_iter_head_event(iter);
3507 
3508 	switch (event->type_len) {
3509 	case RINGBUF_TYPE_PADDING:
3510 		if (rb_null_event(event)) {
3511 			rb_inc_iter(iter);
3512 			goto again;
3513 		}
3514 		rb_advance_iter(iter);
3515 		return event;
3516 
3517 	case RINGBUF_TYPE_TIME_EXTEND:
3518 		/* Internal data, OK to advance */
3519 		rb_advance_iter(iter);
3520 		goto again;
3521 
3522 	case RINGBUF_TYPE_TIME_STAMP:
3523 		/* FIXME: not implemented */
3524 		rb_advance_iter(iter);
3525 		goto again;
3526 
3527 	case RINGBUF_TYPE_DATA:
3528 		if (ts) {
3529 			*ts = iter->read_stamp + event->time_delta;
3530 			ring_buffer_normalize_time_stamp(buffer,
3531 							 cpu_buffer->cpu, ts);
3532 		}
3533 		return event;
3534 
3535 	default:
3536 		BUG();
3537 	}
3538 
3539 	return NULL;
3540 }
3541 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3542 
3543 static inline int rb_ok_to_lock(void)
3544 {
3545 	/*
3546 	 * If an NMI die dumps out the content of the ring buffer
3547 	 * do not grab locks. We also permanently disable the ring
3548 	 * buffer too. A one time deal is all you get from reading
3549 	 * the ring buffer from an NMI.
3550 	 */
3551 	if (likely(!in_nmi()))
3552 		return 1;
3553 
3554 	tracing_off_permanent();
3555 	return 0;
3556 }
3557 
3558 /**
3559  * ring_buffer_peek - peek at the next event to be read
3560  * @buffer: The ring buffer to read
3561  * @cpu: The cpu to peak at
3562  * @ts: The timestamp counter of this event.
3563  * @lost_events: a variable to store if events were lost (may be NULL)
3564  *
3565  * This will return the event that will be read next, but does
3566  * not consume the data.
3567  */
3568 struct ring_buffer_event *
3569 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3570 		 unsigned long *lost_events)
3571 {
3572 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3573 	struct ring_buffer_event *event;
3574 	unsigned long flags;
3575 	int dolock;
3576 
3577 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3578 		return NULL;
3579 
3580 	dolock = rb_ok_to_lock();
3581  again:
3582 	local_irq_save(flags);
3583 	if (dolock)
3584 		raw_spin_lock(&cpu_buffer->reader_lock);
3585 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3586 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3587 		rb_advance_reader(cpu_buffer);
3588 	if (dolock)
3589 		raw_spin_unlock(&cpu_buffer->reader_lock);
3590 	local_irq_restore(flags);
3591 
3592 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3593 		goto again;
3594 
3595 	return event;
3596 }
3597 
3598 /**
3599  * ring_buffer_iter_peek - peek at the next event to be read
3600  * @iter: The ring buffer iterator
3601  * @ts: The timestamp counter of this event.
3602  *
3603  * This will return the event that will be read next, but does
3604  * not increment the iterator.
3605  */
3606 struct ring_buffer_event *
3607 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3608 {
3609 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3610 	struct ring_buffer_event *event;
3611 	unsigned long flags;
3612 
3613  again:
3614 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3615 	event = rb_iter_peek(iter, ts);
3616 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3617 
3618 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3619 		goto again;
3620 
3621 	return event;
3622 }
3623 
3624 /**
3625  * ring_buffer_consume - return an event and consume it
3626  * @buffer: The ring buffer to get the next event from
3627  * @cpu: the cpu to read the buffer from
3628  * @ts: a variable to store the timestamp (may be NULL)
3629  * @lost_events: a variable to store if events were lost (may be NULL)
3630  *
3631  * Returns the next event in the ring buffer, and that event is consumed.
3632  * Meaning, that sequential reads will keep returning a different event,
3633  * and eventually empty the ring buffer if the producer is slower.
3634  */
3635 struct ring_buffer_event *
3636 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3637 		    unsigned long *lost_events)
3638 {
3639 	struct ring_buffer_per_cpu *cpu_buffer;
3640 	struct ring_buffer_event *event = NULL;
3641 	unsigned long flags;
3642 	int dolock;
3643 
3644 	dolock = rb_ok_to_lock();
3645 
3646  again:
3647 	/* might be called in atomic */
3648 	preempt_disable();
3649 
3650 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3651 		goto out;
3652 
3653 	cpu_buffer = buffer->buffers[cpu];
3654 	local_irq_save(flags);
3655 	if (dolock)
3656 		raw_spin_lock(&cpu_buffer->reader_lock);
3657 
3658 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3659 	if (event) {
3660 		cpu_buffer->lost_events = 0;
3661 		rb_advance_reader(cpu_buffer);
3662 	}
3663 
3664 	if (dolock)
3665 		raw_spin_unlock(&cpu_buffer->reader_lock);
3666 	local_irq_restore(flags);
3667 
3668  out:
3669 	preempt_enable();
3670 
3671 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3672 		goto again;
3673 
3674 	return event;
3675 }
3676 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3677 
3678 /**
3679  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3680  * @buffer: The ring buffer to read from
3681  * @cpu: The cpu buffer to iterate over
3682  *
3683  * This performs the initial preparations necessary to iterate
3684  * through the buffer.  Memory is allocated, buffer recording
3685  * is disabled, and the iterator pointer is returned to the caller.
3686  *
3687  * Disabling buffer recordng prevents the reading from being
3688  * corrupted. This is not a consuming read, so a producer is not
3689  * expected.
3690  *
3691  * After a sequence of ring_buffer_read_prepare calls, the user is
3692  * expected to make at least one call to ring_buffer_prepare_sync.
3693  * Afterwards, ring_buffer_read_start is invoked to get things going
3694  * for real.
3695  *
3696  * This overall must be paired with ring_buffer_finish.
3697  */
3698 struct ring_buffer_iter *
3699 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3700 {
3701 	struct ring_buffer_per_cpu *cpu_buffer;
3702 	struct ring_buffer_iter *iter;
3703 
3704 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3705 		return NULL;
3706 
3707 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3708 	if (!iter)
3709 		return NULL;
3710 
3711 	cpu_buffer = buffer->buffers[cpu];
3712 
3713 	iter->cpu_buffer = cpu_buffer;
3714 
3715 	atomic_inc(&buffer->resize_disabled);
3716 	atomic_inc(&cpu_buffer->record_disabled);
3717 
3718 	return iter;
3719 }
3720 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3721 
3722 /**
3723  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3724  *
3725  * All previously invoked ring_buffer_read_prepare calls to prepare
3726  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3727  * calls on those iterators are allowed.
3728  */
3729 void
3730 ring_buffer_read_prepare_sync(void)
3731 {
3732 	synchronize_sched();
3733 }
3734 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3735 
3736 /**
3737  * ring_buffer_read_start - start a non consuming read of the buffer
3738  * @iter: The iterator returned by ring_buffer_read_prepare
3739  *
3740  * This finalizes the startup of an iteration through the buffer.
3741  * The iterator comes from a call to ring_buffer_read_prepare and
3742  * an intervening ring_buffer_read_prepare_sync must have been
3743  * performed.
3744  *
3745  * Must be paired with ring_buffer_finish.
3746  */
3747 void
3748 ring_buffer_read_start(struct ring_buffer_iter *iter)
3749 {
3750 	struct ring_buffer_per_cpu *cpu_buffer;
3751 	unsigned long flags;
3752 
3753 	if (!iter)
3754 		return;
3755 
3756 	cpu_buffer = iter->cpu_buffer;
3757 
3758 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3759 	arch_spin_lock(&cpu_buffer->lock);
3760 	rb_iter_reset(iter);
3761 	arch_spin_unlock(&cpu_buffer->lock);
3762 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3763 }
3764 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3765 
3766 /**
3767  * ring_buffer_finish - finish reading the iterator of the buffer
3768  * @iter: The iterator retrieved by ring_buffer_start
3769  *
3770  * This re-enables the recording to the buffer, and frees the
3771  * iterator.
3772  */
3773 void
3774 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3775 {
3776 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3777 
3778 	/*
3779 	 * Ring buffer is disabled from recording, here's a good place
3780 	 * to check the integrity of the ring buffer.
3781 	 */
3782 	rb_check_pages(cpu_buffer);
3783 
3784 	atomic_dec(&cpu_buffer->record_disabled);
3785 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3786 	kfree(iter);
3787 }
3788 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3789 
3790 /**
3791  * ring_buffer_read - read the next item in the ring buffer by the iterator
3792  * @iter: The ring buffer iterator
3793  * @ts: The time stamp of the event read.
3794  *
3795  * This reads the next event in the ring buffer and increments the iterator.
3796  */
3797 struct ring_buffer_event *
3798 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3799 {
3800 	struct ring_buffer_event *event;
3801 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3802 	unsigned long flags;
3803 
3804 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3805  again:
3806 	event = rb_iter_peek(iter, ts);
3807 	if (!event)
3808 		goto out;
3809 
3810 	if (event->type_len == RINGBUF_TYPE_PADDING)
3811 		goto again;
3812 
3813 	rb_advance_iter(iter);
3814  out:
3815 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3816 
3817 	return event;
3818 }
3819 EXPORT_SYMBOL_GPL(ring_buffer_read);
3820 
3821 /**
3822  * ring_buffer_size - return the size of the ring buffer (in bytes)
3823  * @buffer: The ring buffer.
3824  */
3825 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3826 {
3827 	/*
3828 	 * Earlier, this method returned
3829 	 *	BUF_PAGE_SIZE * buffer->nr_pages
3830 	 * Since the nr_pages field is now removed, we have converted this to
3831 	 * return the per cpu buffer value.
3832 	 */
3833 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3834 		return 0;
3835 
3836 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3837 }
3838 EXPORT_SYMBOL_GPL(ring_buffer_size);
3839 
3840 static void
3841 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3842 {
3843 	rb_head_page_deactivate(cpu_buffer);
3844 
3845 	cpu_buffer->head_page
3846 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3847 	local_set(&cpu_buffer->head_page->write, 0);
3848 	local_set(&cpu_buffer->head_page->entries, 0);
3849 	local_set(&cpu_buffer->head_page->page->commit, 0);
3850 
3851 	cpu_buffer->head_page->read = 0;
3852 
3853 	cpu_buffer->tail_page = cpu_buffer->head_page;
3854 	cpu_buffer->commit_page = cpu_buffer->head_page;
3855 
3856 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3857 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3858 	local_set(&cpu_buffer->reader_page->write, 0);
3859 	local_set(&cpu_buffer->reader_page->entries, 0);
3860 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3861 	cpu_buffer->reader_page->read = 0;
3862 
3863 	local_set(&cpu_buffer->commit_overrun, 0);
3864 	local_set(&cpu_buffer->entries_bytes, 0);
3865 	local_set(&cpu_buffer->overrun, 0);
3866 	local_set(&cpu_buffer->entries, 0);
3867 	local_set(&cpu_buffer->committing, 0);
3868 	local_set(&cpu_buffer->commits, 0);
3869 	cpu_buffer->read = 0;
3870 	cpu_buffer->read_bytes = 0;
3871 
3872 	cpu_buffer->write_stamp = 0;
3873 	cpu_buffer->read_stamp = 0;
3874 
3875 	cpu_buffer->lost_events = 0;
3876 	cpu_buffer->last_overrun = 0;
3877 
3878 	rb_head_page_activate(cpu_buffer);
3879 }
3880 
3881 /**
3882  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3883  * @buffer: The ring buffer to reset a per cpu buffer of
3884  * @cpu: The CPU buffer to be reset
3885  */
3886 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3887 {
3888 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3889 	unsigned long flags;
3890 
3891 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3892 		return;
3893 
3894 	atomic_inc(&buffer->resize_disabled);
3895 	atomic_inc(&cpu_buffer->record_disabled);
3896 
3897 	/* Make sure all commits have finished */
3898 	synchronize_sched();
3899 
3900 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3901 
3902 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3903 		goto out;
3904 
3905 	arch_spin_lock(&cpu_buffer->lock);
3906 
3907 	rb_reset_cpu(cpu_buffer);
3908 
3909 	arch_spin_unlock(&cpu_buffer->lock);
3910 
3911  out:
3912 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3913 
3914 	atomic_dec(&cpu_buffer->record_disabled);
3915 	atomic_dec(&buffer->resize_disabled);
3916 }
3917 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3918 
3919 /**
3920  * ring_buffer_reset - reset a ring buffer
3921  * @buffer: The ring buffer to reset all cpu buffers
3922  */
3923 void ring_buffer_reset(struct ring_buffer *buffer)
3924 {
3925 	int cpu;
3926 
3927 	for_each_buffer_cpu(buffer, cpu)
3928 		ring_buffer_reset_cpu(buffer, cpu);
3929 }
3930 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3931 
3932 /**
3933  * rind_buffer_empty - is the ring buffer empty?
3934  * @buffer: The ring buffer to test
3935  */
3936 int ring_buffer_empty(struct ring_buffer *buffer)
3937 {
3938 	struct ring_buffer_per_cpu *cpu_buffer;
3939 	unsigned long flags;
3940 	int dolock;
3941 	int cpu;
3942 	int ret;
3943 
3944 	dolock = rb_ok_to_lock();
3945 
3946 	/* yes this is racy, but if you don't like the race, lock the buffer */
3947 	for_each_buffer_cpu(buffer, cpu) {
3948 		cpu_buffer = buffer->buffers[cpu];
3949 		local_irq_save(flags);
3950 		if (dolock)
3951 			raw_spin_lock(&cpu_buffer->reader_lock);
3952 		ret = rb_per_cpu_empty(cpu_buffer);
3953 		if (dolock)
3954 			raw_spin_unlock(&cpu_buffer->reader_lock);
3955 		local_irq_restore(flags);
3956 
3957 		if (!ret)
3958 			return 0;
3959 	}
3960 
3961 	return 1;
3962 }
3963 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3964 
3965 /**
3966  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3967  * @buffer: The ring buffer
3968  * @cpu: The CPU buffer to test
3969  */
3970 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3971 {
3972 	struct ring_buffer_per_cpu *cpu_buffer;
3973 	unsigned long flags;
3974 	int dolock;
3975 	int ret;
3976 
3977 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3978 		return 1;
3979 
3980 	dolock = rb_ok_to_lock();
3981 
3982 	cpu_buffer = buffer->buffers[cpu];
3983 	local_irq_save(flags);
3984 	if (dolock)
3985 		raw_spin_lock(&cpu_buffer->reader_lock);
3986 	ret = rb_per_cpu_empty(cpu_buffer);
3987 	if (dolock)
3988 		raw_spin_unlock(&cpu_buffer->reader_lock);
3989 	local_irq_restore(flags);
3990 
3991 	return ret;
3992 }
3993 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3994 
3995 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3996 /**
3997  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3998  * @buffer_a: One buffer to swap with
3999  * @buffer_b: The other buffer to swap with
4000  *
4001  * This function is useful for tracers that want to take a "snapshot"
4002  * of a CPU buffer and has another back up buffer lying around.
4003  * it is expected that the tracer handles the cpu buffer not being
4004  * used at the moment.
4005  */
4006 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4007 			 struct ring_buffer *buffer_b, int cpu)
4008 {
4009 	struct ring_buffer_per_cpu *cpu_buffer_a;
4010 	struct ring_buffer_per_cpu *cpu_buffer_b;
4011 	int ret = -EINVAL;
4012 
4013 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4014 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4015 		goto out;
4016 
4017 	cpu_buffer_a = buffer_a->buffers[cpu];
4018 	cpu_buffer_b = buffer_b->buffers[cpu];
4019 
4020 	/* At least make sure the two buffers are somewhat the same */
4021 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4022 		goto out;
4023 
4024 	ret = -EAGAIN;
4025 
4026 	if (ring_buffer_flags != RB_BUFFERS_ON)
4027 		goto out;
4028 
4029 	if (atomic_read(&buffer_a->record_disabled))
4030 		goto out;
4031 
4032 	if (atomic_read(&buffer_b->record_disabled))
4033 		goto out;
4034 
4035 	if (atomic_read(&cpu_buffer_a->record_disabled))
4036 		goto out;
4037 
4038 	if (atomic_read(&cpu_buffer_b->record_disabled))
4039 		goto out;
4040 
4041 	/*
4042 	 * We can't do a synchronize_sched here because this
4043 	 * function can be called in atomic context.
4044 	 * Normally this will be called from the same CPU as cpu.
4045 	 * If not it's up to the caller to protect this.
4046 	 */
4047 	atomic_inc(&cpu_buffer_a->record_disabled);
4048 	atomic_inc(&cpu_buffer_b->record_disabled);
4049 
4050 	ret = -EBUSY;
4051 	if (local_read(&cpu_buffer_a->committing))
4052 		goto out_dec;
4053 	if (local_read(&cpu_buffer_b->committing))
4054 		goto out_dec;
4055 
4056 	buffer_a->buffers[cpu] = cpu_buffer_b;
4057 	buffer_b->buffers[cpu] = cpu_buffer_a;
4058 
4059 	cpu_buffer_b->buffer = buffer_a;
4060 	cpu_buffer_a->buffer = buffer_b;
4061 
4062 	ret = 0;
4063 
4064 out_dec:
4065 	atomic_dec(&cpu_buffer_a->record_disabled);
4066 	atomic_dec(&cpu_buffer_b->record_disabled);
4067 out:
4068 	return ret;
4069 }
4070 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4071 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4072 
4073 /**
4074  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4075  * @buffer: the buffer to allocate for.
4076  *
4077  * This function is used in conjunction with ring_buffer_read_page.
4078  * When reading a full page from the ring buffer, these functions
4079  * can be used to speed up the process. The calling function should
4080  * allocate a few pages first with this function. Then when it
4081  * needs to get pages from the ring buffer, it passes the result
4082  * of this function into ring_buffer_read_page, which will swap
4083  * the page that was allocated, with the read page of the buffer.
4084  *
4085  * Returns:
4086  *  The page allocated, or NULL on error.
4087  */
4088 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4089 {
4090 	struct buffer_data_page *bpage;
4091 	struct page *page;
4092 
4093 	page = alloc_pages_node(cpu_to_node(cpu),
4094 				GFP_KERNEL | __GFP_NORETRY, 0);
4095 	if (!page)
4096 		return NULL;
4097 
4098 	bpage = page_address(page);
4099 
4100 	rb_init_page(bpage);
4101 
4102 	return bpage;
4103 }
4104 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4105 
4106 /**
4107  * ring_buffer_free_read_page - free an allocated read page
4108  * @buffer: the buffer the page was allocate for
4109  * @data: the page to free
4110  *
4111  * Free a page allocated from ring_buffer_alloc_read_page.
4112  */
4113 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4114 {
4115 	free_page((unsigned long)data);
4116 }
4117 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4118 
4119 /**
4120  * ring_buffer_read_page - extract a page from the ring buffer
4121  * @buffer: buffer to extract from
4122  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4123  * @len: amount to extract
4124  * @cpu: the cpu of the buffer to extract
4125  * @full: should the extraction only happen when the page is full.
4126  *
4127  * This function will pull out a page from the ring buffer and consume it.
4128  * @data_page must be the address of the variable that was returned
4129  * from ring_buffer_alloc_read_page. This is because the page might be used
4130  * to swap with a page in the ring buffer.
4131  *
4132  * for example:
4133  *	rpage = ring_buffer_alloc_read_page(buffer);
4134  *	if (!rpage)
4135  *		return error;
4136  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4137  *	if (ret >= 0)
4138  *		process_page(rpage, ret);
4139  *
4140  * When @full is set, the function will not return true unless
4141  * the writer is off the reader page.
4142  *
4143  * Note: it is up to the calling functions to handle sleeps and wakeups.
4144  *  The ring buffer can be used anywhere in the kernel and can not
4145  *  blindly call wake_up. The layer that uses the ring buffer must be
4146  *  responsible for that.
4147  *
4148  * Returns:
4149  *  >=0 if data has been transferred, returns the offset of consumed data.
4150  *  <0 if no data has been transferred.
4151  */
4152 int ring_buffer_read_page(struct ring_buffer *buffer,
4153 			  void **data_page, size_t len, int cpu, int full)
4154 {
4155 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4156 	struct ring_buffer_event *event;
4157 	struct buffer_data_page *bpage;
4158 	struct buffer_page *reader;
4159 	unsigned long missed_events;
4160 	unsigned long flags;
4161 	unsigned int commit;
4162 	unsigned int read;
4163 	u64 save_timestamp;
4164 	int ret = -1;
4165 
4166 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4167 		goto out;
4168 
4169 	/*
4170 	 * If len is not big enough to hold the page header, then
4171 	 * we can not copy anything.
4172 	 */
4173 	if (len <= BUF_PAGE_HDR_SIZE)
4174 		goto out;
4175 
4176 	len -= BUF_PAGE_HDR_SIZE;
4177 
4178 	if (!data_page)
4179 		goto out;
4180 
4181 	bpage = *data_page;
4182 	if (!bpage)
4183 		goto out;
4184 
4185 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4186 
4187 	reader = rb_get_reader_page(cpu_buffer);
4188 	if (!reader)
4189 		goto out_unlock;
4190 
4191 	event = rb_reader_event(cpu_buffer);
4192 
4193 	read = reader->read;
4194 	commit = rb_page_commit(reader);
4195 
4196 	/* Check if any events were dropped */
4197 	missed_events = cpu_buffer->lost_events;
4198 
4199 	/*
4200 	 * If this page has been partially read or
4201 	 * if len is not big enough to read the rest of the page or
4202 	 * a writer is still on the page, then
4203 	 * we must copy the data from the page to the buffer.
4204 	 * Otherwise, we can simply swap the page with the one passed in.
4205 	 */
4206 	if (read || (len < (commit - read)) ||
4207 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4208 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4209 		unsigned int rpos = read;
4210 		unsigned int pos = 0;
4211 		unsigned int size;
4212 
4213 		if (full)
4214 			goto out_unlock;
4215 
4216 		if (len > (commit - read))
4217 			len = (commit - read);
4218 
4219 		/* Always keep the time extend and data together */
4220 		size = rb_event_ts_length(event);
4221 
4222 		if (len < size)
4223 			goto out_unlock;
4224 
4225 		/* save the current timestamp, since the user will need it */
4226 		save_timestamp = cpu_buffer->read_stamp;
4227 
4228 		/* Need to copy one event at a time */
4229 		do {
4230 			/* We need the size of one event, because
4231 			 * rb_advance_reader only advances by one event,
4232 			 * whereas rb_event_ts_length may include the size of
4233 			 * one or two events.
4234 			 * We have already ensured there's enough space if this
4235 			 * is a time extend. */
4236 			size = rb_event_length(event);
4237 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4238 
4239 			len -= size;
4240 
4241 			rb_advance_reader(cpu_buffer);
4242 			rpos = reader->read;
4243 			pos += size;
4244 
4245 			if (rpos >= commit)
4246 				break;
4247 
4248 			event = rb_reader_event(cpu_buffer);
4249 			/* Always keep the time extend and data together */
4250 			size = rb_event_ts_length(event);
4251 		} while (len >= size);
4252 
4253 		/* update bpage */
4254 		local_set(&bpage->commit, pos);
4255 		bpage->time_stamp = save_timestamp;
4256 
4257 		/* we copied everything to the beginning */
4258 		read = 0;
4259 	} else {
4260 		/* update the entry counter */
4261 		cpu_buffer->read += rb_page_entries(reader);
4262 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4263 
4264 		/* swap the pages */
4265 		rb_init_page(bpage);
4266 		bpage = reader->page;
4267 		reader->page = *data_page;
4268 		local_set(&reader->write, 0);
4269 		local_set(&reader->entries, 0);
4270 		reader->read = 0;
4271 		*data_page = bpage;
4272 
4273 		/*
4274 		 * Use the real_end for the data size,
4275 		 * This gives us a chance to store the lost events
4276 		 * on the page.
4277 		 */
4278 		if (reader->real_end)
4279 			local_set(&bpage->commit, reader->real_end);
4280 	}
4281 	ret = read;
4282 
4283 	cpu_buffer->lost_events = 0;
4284 
4285 	commit = local_read(&bpage->commit);
4286 	/*
4287 	 * Set a flag in the commit field if we lost events
4288 	 */
4289 	if (missed_events) {
4290 		/* If there is room at the end of the page to save the
4291 		 * missed events, then record it there.
4292 		 */
4293 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4294 			memcpy(&bpage->data[commit], &missed_events,
4295 			       sizeof(missed_events));
4296 			local_add(RB_MISSED_STORED, &bpage->commit);
4297 			commit += sizeof(missed_events);
4298 		}
4299 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4300 	}
4301 
4302 	/*
4303 	 * This page may be off to user land. Zero it out here.
4304 	 */
4305 	if (commit < BUF_PAGE_SIZE)
4306 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4307 
4308  out_unlock:
4309 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4310 
4311  out:
4312 	return ret;
4313 }
4314 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4315 
4316 #ifdef CONFIG_HOTPLUG_CPU
4317 static int rb_cpu_notify(struct notifier_block *self,
4318 			 unsigned long action, void *hcpu)
4319 {
4320 	struct ring_buffer *buffer =
4321 		container_of(self, struct ring_buffer, cpu_notify);
4322 	long cpu = (long)hcpu;
4323 	int cpu_i, nr_pages_same;
4324 	unsigned int nr_pages;
4325 
4326 	switch (action) {
4327 	case CPU_UP_PREPARE:
4328 	case CPU_UP_PREPARE_FROZEN:
4329 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4330 			return NOTIFY_OK;
4331 
4332 		nr_pages = 0;
4333 		nr_pages_same = 1;
4334 		/* check if all cpu sizes are same */
4335 		for_each_buffer_cpu(buffer, cpu_i) {
4336 			/* fill in the size from first enabled cpu */
4337 			if (nr_pages == 0)
4338 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4339 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4340 				nr_pages_same = 0;
4341 				break;
4342 			}
4343 		}
4344 		/* allocate minimum pages, user can later expand it */
4345 		if (!nr_pages_same)
4346 			nr_pages = 2;
4347 		buffer->buffers[cpu] =
4348 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4349 		if (!buffer->buffers[cpu]) {
4350 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4351 			     cpu);
4352 			return NOTIFY_OK;
4353 		}
4354 		smp_wmb();
4355 		cpumask_set_cpu(cpu, buffer->cpumask);
4356 		break;
4357 	case CPU_DOWN_PREPARE:
4358 	case CPU_DOWN_PREPARE_FROZEN:
4359 		/*
4360 		 * Do nothing.
4361 		 *  If we were to free the buffer, then the user would
4362 		 *  lose any trace that was in the buffer.
4363 		 */
4364 		break;
4365 	default:
4366 		break;
4367 	}
4368 	return NOTIFY_OK;
4369 }
4370 #endif
4371