xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 5d4a2e29)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23 
24 #include <asm/local.h>
25 #include "trace.h"
26 
27 /*
28  * The ring buffer header is special. We must manually up keep it.
29  */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32 	int ret;
33 
34 	ret = trace_seq_printf(s, "# compressed entry header\n");
35 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
36 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
37 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
38 	ret = trace_seq_printf(s, "\n");
39 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
40 			       RINGBUF_TYPE_PADDING);
41 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 			       RINGBUF_TYPE_TIME_EXTEND);
43 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
44 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45 
46 	return ret;
47 }
48 
49 /*
50  * The ring buffer is made up of a list of pages. A separate list of pages is
51  * allocated for each CPU. A writer may only write to a buffer that is
52  * associated with the CPU it is currently executing on.  A reader may read
53  * from any per cpu buffer.
54  *
55  * The reader is special. For each per cpu buffer, the reader has its own
56  * reader page. When a reader has read the entire reader page, this reader
57  * page is swapped with another page in the ring buffer.
58  *
59  * Now, as long as the writer is off the reader page, the reader can do what
60  * ever it wants with that page. The writer will never write to that page
61  * again (as long as it is out of the ring buffer).
62  *
63  * Here's some silly ASCII art.
64  *
65  *   +------+
66  *   |reader|          RING BUFFER
67  *   |page  |
68  *   +------+        +---+   +---+   +---+
69  *                   |   |-->|   |-->|   |
70  *                   +---+   +---+   +---+
71  *                     ^               |
72  *                     |               |
73  *                     +---------------+
74  *
75  *
76  *   +------+
77  *   |reader|          RING BUFFER
78  *   |page  |------------------v
79  *   +------+        +---+   +---+   +---+
80  *                   |   |-->|   |-->|   |
81  *                   +---+   +---+   +---+
82  *                     ^               |
83  *                     |               |
84  *                     +---------------+
85  *
86  *
87  *   +------+
88  *   |reader|          RING BUFFER
89  *   |page  |------------------v
90  *   +------+        +---+   +---+   +---+
91  *      ^            |   |-->|   |-->|   |
92  *      |            +---+   +---+   +---+
93  *      |                              |
94  *      |                              |
95  *      +------------------------------+
96  *
97  *
98  *   +------+
99  *   |buffer|          RING BUFFER
100  *   |page  |------------------v
101  *   +------+        +---+   +---+   +---+
102  *      ^            |   |   |   |-->|   |
103  *      |   New      +---+   +---+   +---+
104  *      |  Reader------^               |
105  *      |   page                       |
106  *      +------------------------------+
107  *
108  *
109  * After we make this swap, the reader can hand this page off to the splice
110  * code and be done with it. It can even allocate a new page if it needs to
111  * and swap that into the ring buffer.
112  *
113  * We will be using cmpxchg soon to make all this lockless.
114  *
115  */
116 
117 /*
118  * A fast way to enable or disable all ring buffers is to
119  * call tracing_on or tracing_off. Turning off the ring buffers
120  * prevents all ring buffers from being recorded to.
121  * Turning this switch on, makes it OK to write to the
122  * ring buffer, if the ring buffer is enabled itself.
123  *
124  * There's three layers that must be on in order to write
125  * to the ring buffer.
126  *
127  * 1) This global flag must be set.
128  * 2) The ring buffer must be enabled for recording.
129  * 3) The per cpu buffer must be enabled for recording.
130  *
131  * In case of an anomaly, this global flag has a bit set that
132  * will permantly disable all ring buffers.
133  */
134 
135 /*
136  * Global flag to disable all recording to ring buffers
137  *  This has two bits: ON, DISABLED
138  *
139  *  ON   DISABLED
140  * ---- ----------
141  *   0      0        : ring buffers are off
142  *   1      0        : ring buffers are on
143  *   X      1        : ring buffers are permanently disabled
144  */
145 
146 enum {
147 	RB_BUFFERS_ON_BIT	= 0,
148 	RB_BUFFERS_DISABLED_BIT	= 1,
149 };
150 
151 enum {
152 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
153 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155 
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157 
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 
160 /**
161  * tracing_on - enable all tracing buffers
162  *
163  * This function enables all tracing buffers that may have been
164  * disabled with tracing_off.
165  */
166 void tracing_on(void)
167 {
168 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171 
172 /**
173  * tracing_off - turn off all tracing buffers
174  *
175  * This function stops all tracing buffers from recording data.
176  * It does not disable any overhead the tracers themselves may
177  * be causing. This function simply causes all recording to
178  * the ring buffers to fail.
179  */
180 void tracing_off(void)
181 {
182 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185 
186 /**
187  * tracing_off_permanent - permanently disable ring buffers
188  *
189  * This function, once called, will disable all ring buffers
190  * permanently.
191  */
192 void tracing_off_permanent(void)
193 {
194 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196 
197 /**
198  * tracing_is_on - show state of ring buffers enabled
199  */
200 int tracing_is_on(void)
201 {
202 	return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205 
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT		4U
208 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
210 
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT	0
213 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT	1
216 # define RB_ARCH_ALIGNMENT		8U
217 #endif
218 
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221 
222 enum {
223 	RB_LEN_TIME_EXTEND = 8,
224 	RB_LEN_TIME_STAMP = 16,
225 };
226 
227 static inline int rb_null_event(struct ring_buffer_event *event)
228 {
229 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
230 }
231 
232 static void rb_event_set_padding(struct ring_buffer_event *event)
233 {
234 	/* padding has a NULL time_delta */
235 	event->type_len = RINGBUF_TYPE_PADDING;
236 	event->time_delta = 0;
237 }
238 
239 static unsigned
240 rb_event_data_length(struct ring_buffer_event *event)
241 {
242 	unsigned length;
243 
244 	if (event->type_len)
245 		length = event->type_len * RB_ALIGNMENT;
246 	else
247 		length = event->array[0];
248 	return length + RB_EVNT_HDR_SIZE;
249 }
250 
251 /* inline for ring buffer fast paths */
252 static unsigned
253 rb_event_length(struct ring_buffer_event *event)
254 {
255 	switch (event->type_len) {
256 	case RINGBUF_TYPE_PADDING:
257 		if (rb_null_event(event))
258 			/* undefined */
259 			return -1;
260 		return  event->array[0] + RB_EVNT_HDR_SIZE;
261 
262 	case RINGBUF_TYPE_TIME_EXTEND:
263 		return RB_LEN_TIME_EXTEND;
264 
265 	case RINGBUF_TYPE_TIME_STAMP:
266 		return RB_LEN_TIME_STAMP;
267 
268 	case RINGBUF_TYPE_DATA:
269 		return rb_event_data_length(event);
270 	default:
271 		BUG();
272 	}
273 	/* not hit */
274 	return 0;
275 }
276 
277 /**
278  * ring_buffer_event_length - return the length of the event
279  * @event: the event to get the length of
280  */
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 {
283 	unsigned length = rb_event_length(event);
284 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285 		return length;
286 	length -= RB_EVNT_HDR_SIZE;
287 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288                 length -= sizeof(event->array[0]);
289 	return length;
290 }
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
292 
293 /* inline for ring buffer fast paths */
294 static void *
295 rb_event_data(struct ring_buffer_event *event)
296 {
297 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298 	/* If length is in len field, then array[0] has the data */
299 	if (event->type_len)
300 		return (void *)&event->array[0];
301 	/* Otherwise length is in array[0] and array[1] has the data */
302 	return (void *)&event->array[1];
303 }
304 
305 /**
306  * ring_buffer_event_data - return the data of the event
307  * @event: the event to get the data from
308  */
309 void *ring_buffer_event_data(struct ring_buffer_event *event)
310 {
311 	return rb_event_data(event);
312 }
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
314 
315 #define for_each_buffer_cpu(buffer, cpu)		\
316 	for_each_cpu(cpu, buffer->cpumask)
317 
318 #define TS_SHIFT	27
319 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST	(~TS_MASK)
321 
322 /* Flag when events were overwritten */
323 #define RB_MISSED_EVENTS	(1 << 31)
324 /* Missed count stored at end */
325 #define RB_MISSED_STORED	(1 << 30)
326 
327 struct buffer_data_page {
328 	u64		 time_stamp;	/* page time stamp */
329 	local_t		 commit;	/* write committed index */
330 	unsigned char	 data[];	/* data of buffer page */
331 };
332 
333 /*
334  * Note, the buffer_page list must be first. The buffer pages
335  * are allocated in cache lines, which means that each buffer
336  * page will be at the beginning of a cache line, and thus
337  * the least significant bits will be zero. We use this to
338  * add flags in the list struct pointers, to make the ring buffer
339  * lockless.
340  */
341 struct buffer_page {
342 	struct list_head list;		/* list of buffer pages */
343 	local_t		 write;		/* index for next write */
344 	unsigned	 read;		/* index for next read */
345 	local_t		 entries;	/* entries on this page */
346 	unsigned long	 real_end;	/* real end of data */
347 	struct buffer_data_page *page;	/* Actual data page */
348 };
349 
350 /*
351  * The buffer page counters, write and entries, must be reset
352  * atomically when crossing page boundaries. To synchronize this
353  * update, two counters are inserted into the number. One is
354  * the actual counter for the write position or count on the page.
355  *
356  * The other is a counter of updaters. Before an update happens
357  * the update partition of the counter is incremented. This will
358  * allow the updater to update the counter atomically.
359  *
360  * The counter is 20 bits, and the state data is 12.
361  */
362 #define RB_WRITE_MASK		0xfffff
363 #define RB_WRITE_INTCNT		(1 << 20)
364 
365 static void rb_init_page(struct buffer_data_page *bpage)
366 {
367 	local_set(&bpage->commit, 0);
368 }
369 
370 /**
371  * ring_buffer_page_len - the size of data on the page.
372  * @page: The page to read
373  *
374  * Returns the amount of data on the page, including buffer page header.
375  */
376 size_t ring_buffer_page_len(void *page)
377 {
378 	return local_read(&((struct buffer_data_page *)page)->commit)
379 		+ BUF_PAGE_HDR_SIZE;
380 }
381 
382 /*
383  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
384  * this issue out.
385  */
386 static void free_buffer_page(struct buffer_page *bpage)
387 {
388 	free_page((unsigned long)bpage->page);
389 	kfree(bpage);
390 }
391 
392 /*
393  * We need to fit the time_stamp delta into 27 bits.
394  */
395 static inline int test_time_stamp(u64 delta)
396 {
397 	if (delta & TS_DELTA_TEST)
398 		return 1;
399 	return 0;
400 }
401 
402 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
403 
404 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
405 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
406 
407 /* Max number of timestamps that can fit on a page */
408 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
409 
410 int ring_buffer_print_page_header(struct trace_seq *s)
411 {
412 	struct buffer_data_page field;
413 	int ret;
414 
415 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
416 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
417 			       (unsigned int)sizeof(field.time_stamp),
418 			       (unsigned int)is_signed_type(u64));
419 
420 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
421 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
422 			       (unsigned int)offsetof(typeof(field), commit),
423 			       (unsigned int)sizeof(field.commit),
424 			       (unsigned int)is_signed_type(long));
425 
426 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
427 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
428 			       (unsigned int)offsetof(typeof(field), commit),
429 			       1,
430 			       (unsigned int)is_signed_type(long));
431 
432 	ret = trace_seq_printf(s, "\tfield: char data;\t"
433 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
434 			       (unsigned int)offsetof(typeof(field), data),
435 			       (unsigned int)BUF_PAGE_SIZE,
436 			       (unsigned int)is_signed_type(char));
437 
438 	return ret;
439 }
440 
441 /*
442  * head_page == tail_page && head == tail then buffer is empty.
443  */
444 struct ring_buffer_per_cpu {
445 	int				cpu;
446 	struct ring_buffer		*buffer;
447 	spinlock_t			reader_lock;	/* serialize readers */
448 	arch_spinlock_t			lock;
449 	struct lock_class_key		lock_key;
450 	struct list_head		*pages;
451 	struct buffer_page		*head_page;	/* read from head */
452 	struct buffer_page		*tail_page;	/* write to tail */
453 	struct buffer_page		*commit_page;	/* committed pages */
454 	struct buffer_page		*reader_page;
455 	unsigned long			lost_events;
456 	unsigned long			last_overrun;
457 	local_t				commit_overrun;
458 	local_t				overrun;
459 	local_t				entries;
460 	local_t				committing;
461 	local_t				commits;
462 	unsigned long			read;
463 	u64				write_stamp;
464 	u64				read_stamp;
465 	atomic_t			record_disabled;
466 };
467 
468 struct ring_buffer {
469 	unsigned			pages;
470 	unsigned			flags;
471 	int				cpus;
472 	atomic_t			record_disabled;
473 	cpumask_var_t			cpumask;
474 
475 	struct lock_class_key		*reader_lock_key;
476 
477 	struct mutex			mutex;
478 
479 	struct ring_buffer_per_cpu	**buffers;
480 
481 #ifdef CONFIG_HOTPLUG_CPU
482 	struct notifier_block		cpu_notify;
483 #endif
484 	u64				(*clock)(void);
485 };
486 
487 struct ring_buffer_iter {
488 	struct ring_buffer_per_cpu	*cpu_buffer;
489 	unsigned long			head;
490 	struct buffer_page		*head_page;
491 	struct buffer_page		*cache_reader_page;
492 	unsigned long			cache_read;
493 	u64				read_stamp;
494 };
495 
496 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
497 #define RB_WARN_ON(b, cond)						\
498 	({								\
499 		int _____ret = unlikely(cond);				\
500 		if (_____ret) {						\
501 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
502 				struct ring_buffer_per_cpu *__b =	\
503 					(void *)b;			\
504 				atomic_inc(&__b->buffer->record_disabled); \
505 			} else						\
506 				atomic_inc(&b->record_disabled);	\
507 			WARN_ON(1);					\
508 		}							\
509 		_____ret;						\
510 	})
511 
512 /* Up this if you want to test the TIME_EXTENTS and normalization */
513 #define DEBUG_SHIFT 0
514 
515 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
516 {
517 	/* shift to debug/test normalization and TIME_EXTENTS */
518 	return buffer->clock() << DEBUG_SHIFT;
519 }
520 
521 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
522 {
523 	u64 time;
524 
525 	preempt_disable_notrace();
526 	time = rb_time_stamp(buffer);
527 	preempt_enable_no_resched_notrace();
528 
529 	return time;
530 }
531 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
532 
533 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
534 				      int cpu, u64 *ts)
535 {
536 	/* Just stupid testing the normalize function and deltas */
537 	*ts >>= DEBUG_SHIFT;
538 }
539 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
540 
541 /*
542  * Making the ring buffer lockless makes things tricky.
543  * Although writes only happen on the CPU that they are on,
544  * and they only need to worry about interrupts. Reads can
545  * happen on any CPU.
546  *
547  * The reader page is always off the ring buffer, but when the
548  * reader finishes with a page, it needs to swap its page with
549  * a new one from the buffer. The reader needs to take from
550  * the head (writes go to the tail). But if a writer is in overwrite
551  * mode and wraps, it must push the head page forward.
552  *
553  * Here lies the problem.
554  *
555  * The reader must be careful to replace only the head page, and
556  * not another one. As described at the top of the file in the
557  * ASCII art, the reader sets its old page to point to the next
558  * page after head. It then sets the page after head to point to
559  * the old reader page. But if the writer moves the head page
560  * during this operation, the reader could end up with the tail.
561  *
562  * We use cmpxchg to help prevent this race. We also do something
563  * special with the page before head. We set the LSB to 1.
564  *
565  * When the writer must push the page forward, it will clear the
566  * bit that points to the head page, move the head, and then set
567  * the bit that points to the new head page.
568  *
569  * We also don't want an interrupt coming in and moving the head
570  * page on another writer. Thus we use the second LSB to catch
571  * that too. Thus:
572  *
573  * head->list->prev->next        bit 1          bit 0
574  *                              -------        -------
575  * Normal page                     0              0
576  * Points to head page             0              1
577  * New head page                   1              0
578  *
579  * Note we can not trust the prev pointer of the head page, because:
580  *
581  * +----+       +-----+        +-----+
582  * |    |------>|  T  |---X--->|  N  |
583  * |    |<------|     |        |     |
584  * +----+       +-----+        +-----+
585  *   ^                           ^ |
586  *   |          +-----+          | |
587  *   +----------|  R  |----------+ |
588  *              |     |<-----------+
589  *              +-----+
590  *
591  * Key:  ---X-->  HEAD flag set in pointer
592  *         T      Tail page
593  *         R      Reader page
594  *         N      Next page
595  *
596  * (see __rb_reserve_next() to see where this happens)
597  *
598  *  What the above shows is that the reader just swapped out
599  *  the reader page with a page in the buffer, but before it
600  *  could make the new header point back to the new page added
601  *  it was preempted by a writer. The writer moved forward onto
602  *  the new page added by the reader and is about to move forward
603  *  again.
604  *
605  *  You can see, it is legitimate for the previous pointer of
606  *  the head (or any page) not to point back to itself. But only
607  *  temporarially.
608  */
609 
610 #define RB_PAGE_NORMAL		0UL
611 #define RB_PAGE_HEAD		1UL
612 #define RB_PAGE_UPDATE		2UL
613 
614 
615 #define RB_FLAG_MASK		3UL
616 
617 /* PAGE_MOVED is not part of the mask */
618 #define RB_PAGE_MOVED		4UL
619 
620 /*
621  * rb_list_head - remove any bit
622  */
623 static struct list_head *rb_list_head(struct list_head *list)
624 {
625 	unsigned long val = (unsigned long)list;
626 
627 	return (struct list_head *)(val & ~RB_FLAG_MASK);
628 }
629 
630 /*
631  * rb_is_head_page - test if the given page is the head page
632  *
633  * Because the reader may move the head_page pointer, we can
634  * not trust what the head page is (it may be pointing to
635  * the reader page). But if the next page is a header page,
636  * its flags will be non zero.
637  */
638 static int inline
639 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
640 		struct buffer_page *page, struct list_head *list)
641 {
642 	unsigned long val;
643 
644 	val = (unsigned long)list->next;
645 
646 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
647 		return RB_PAGE_MOVED;
648 
649 	return val & RB_FLAG_MASK;
650 }
651 
652 /*
653  * rb_is_reader_page
654  *
655  * The unique thing about the reader page, is that, if the
656  * writer is ever on it, the previous pointer never points
657  * back to the reader page.
658  */
659 static int rb_is_reader_page(struct buffer_page *page)
660 {
661 	struct list_head *list = page->list.prev;
662 
663 	return rb_list_head(list->next) != &page->list;
664 }
665 
666 /*
667  * rb_set_list_to_head - set a list_head to be pointing to head.
668  */
669 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
670 				struct list_head *list)
671 {
672 	unsigned long *ptr;
673 
674 	ptr = (unsigned long *)&list->next;
675 	*ptr |= RB_PAGE_HEAD;
676 	*ptr &= ~RB_PAGE_UPDATE;
677 }
678 
679 /*
680  * rb_head_page_activate - sets up head page
681  */
682 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
683 {
684 	struct buffer_page *head;
685 
686 	head = cpu_buffer->head_page;
687 	if (!head)
688 		return;
689 
690 	/*
691 	 * Set the previous list pointer to have the HEAD flag.
692 	 */
693 	rb_set_list_to_head(cpu_buffer, head->list.prev);
694 }
695 
696 static void rb_list_head_clear(struct list_head *list)
697 {
698 	unsigned long *ptr = (unsigned long *)&list->next;
699 
700 	*ptr &= ~RB_FLAG_MASK;
701 }
702 
703 /*
704  * rb_head_page_dactivate - clears head page ptr (for free list)
705  */
706 static void
707 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
708 {
709 	struct list_head *hd;
710 
711 	/* Go through the whole list and clear any pointers found. */
712 	rb_list_head_clear(cpu_buffer->pages);
713 
714 	list_for_each(hd, cpu_buffer->pages)
715 		rb_list_head_clear(hd);
716 }
717 
718 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
719 			    struct buffer_page *head,
720 			    struct buffer_page *prev,
721 			    int old_flag, int new_flag)
722 {
723 	struct list_head *list;
724 	unsigned long val = (unsigned long)&head->list;
725 	unsigned long ret;
726 
727 	list = &prev->list;
728 
729 	val &= ~RB_FLAG_MASK;
730 
731 	ret = cmpxchg((unsigned long *)&list->next,
732 		      val | old_flag, val | new_flag);
733 
734 	/* check if the reader took the page */
735 	if ((ret & ~RB_FLAG_MASK) != val)
736 		return RB_PAGE_MOVED;
737 
738 	return ret & RB_FLAG_MASK;
739 }
740 
741 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
742 				   struct buffer_page *head,
743 				   struct buffer_page *prev,
744 				   int old_flag)
745 {
746 	return rb_head_page_set(cpu_buffer, head, prev,
747 				old_flag, RB_PAGE_UPDATE);
748 }
749 
750 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
751 				 struct buffer_page *head,
752 				 struct buffer_page *prev,
753 				 int old_flag)
754 {
755 	return rb_head_page_set(cpu_buffer, head, prev,
756 				old_flag, RB_PAGE_HEAD);
757 }
758 
759 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
760 				   struct buffer_page *head,
761 				   struct buffer_page *prev,
762 				   int old_flag)
763 {
764 	return rb_head_page_set(cpu_buffer, head, prev,
765 				old_flag, RB_PAGE_NORMAL);
766 }
767 
768 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
769 			       struct buffer_page **bpage)
770 {
771 	struct list_head *p = rb_list_head((*bpage)->list.next);
772 
773 	*bpage = list_entry(p, struct buffer_page, list);
774 }
775 
776 static struct buffer_page *
777 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
778 {
779 	struct buffer_page *head;
780 	struct buffer_page *page;
781 	struct list_head *list;
782 	int i;
783 
784 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
785 		return NULL;
786 
787 	/* sanity check */
788 	list = cpu_buffer->pages;
789 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
790 		return NULL;
791 
792 	page = head = cpu_buffer->head_page;
793 	/*
794 	 * It is possible that the writer moves the header behind
795 	 * where we started, and we miss in one loop.
796 	 * A second loop should grab the header, but we'll do
797 	 * three loops just because I'm paranoid.
798 	 */
799 	for (i = 0; i < 3; i++) {
800 		do {
801 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
802 				cpu_buffer->head_page = page;
803 				return page;
804 			}
805 			rb_inc_page(cpu_buffer, &page);
806 		} while (page != head);
807 	}
808 
809 	RB_WARN_ON(cpu_buffer, 1);
810 
811 	return NULL;
812 }
813 
814 static int rb_head_page_replace(struct buffer_page *old,
815 				struct buffer_page *new)
816 {
817 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
818 	unsigned long val;
819 	unsigned long ret;
820 
821 	val = *ptr & ~RB_FLAG_MASK;
822 	val |= RB_PAGE_HEAD;
823 
824 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
825 
826 	return ret == val;
827 }
828 
829 /*
830  * rb_tail_page_update - move the tail page forward
831  *
832  * Returns 1 if moved tail page, 0 if someone else did.
833  */
834 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
835 			       struct buffer_page *tail_page,
836 			       struct buffer_page *next_page)
837 {
838 	struct buffer_page *old_tail;
839 	unsigned long old_entries;
840 	unsigned long old_write;
841 	int ret = 0;
842 
843 	/*
844 	 * The tail page now needs to be moved forward.
845 	 *
846 	 * We need to reset the tail page, but without messing
847 	 * with possible erasing of data brought in by interrupts
848 	 * that have moved the tail page and are currently on it.
849 	 *
850 	 * We add a counter to the write field to denote this.
851 	 */
852 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
853 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
854 
855 	/*
856 	 * Just make sure we have seen our old_write and synchronize
857 	 * with any interrupts that come in.
858 	 */
859 	barrier();
860 
861 	/*
862 	 * If the tail page is still the same as what we think
863 	 * it is, then it is up to us to update the tail
864 	 * pointer.
865 	 */
866 	if (tail_page == cpu_buffer->tail_page) {
867 		/* Zero the write counter */
868 		unsigned long val = old_write & ~RB_WRITE_MASK;
869 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
870 
871 		/*
872 		 * This will only succeed if an interrupt did
873 		 * not come in and change it. In which case, we
874 		 * do not want to modify it.
875 		 *
876 		 * We add (void) to let the compiler know that we do not care
877 		 * about the return value of these functions. We use the
878 		 * cmpxchg to only update if an interrupt did not already
879 		 * do it for us. If the cmpxchg fails, we don't care.
880 		 */
881 		(void)local_cmpxchg(&next_page->write, old_write, val);
882 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
883 
884 		/*
885 		 * No need to worry about races with clearing out the commit.
886 		 * it only can increment when a commit takes place. But that
887 		 * only happens in the outer most nested commit.
888 		 */
889 		local_set(&next_page->page->commit, 0);
890 
891 		old_tail = cmpxchg(&cpu_buffer->tail_page,
892 				   tail_page, next_page);
893 
894 		if (old_tail == tail_page)
895 			ret = 1;
896 	}
897 
898 	return ret;
899 }
900 
901 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
902 			  struct buffer_page *bpage)
903 {
904 	unsigned long val = (unsigned long)bpage;
905 
906 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
907 		return 1;
908 
909 	return 0;
910 }
911 
912 /**
913  * rb_check_list - make sure a pointer to a list has the last bits zero
914  */
915 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
916 			 struct list_head *list)
917 {
918 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
919 		return 1;
920 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
921 		return 1;
922 	return 0;
923 }
924 
925 /**
926  * check_pages - integrity check of buffer pages
927  * @cpu_buffer: CPU buffer with pages to test
928  *
929  * As a safety measure we check to make sure the data pages have not
930  * been corrupted.
931  */
932 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
933 {
934 	struct list_head *head = cpu_buffer->pages;
935 	struct buffer_page *bpage, *tmp;
936 
937 	rb_head_page_deactivate(cpu_buffer);
938 
939 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
940 		return -1;
941 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
942 		return -1;
943 
944 	if (rb_check_list(cpu_buffer, head))
945 		return -1;
946 
947 	list_for_each_entry_safe(bpage, tmp, head, list) {
948 		if (RB_WARN_ON(cpu_buffer,
949 			       bpage->list.next->prev != &bpage->list))
950 			return -1;
951 		if (RB_WARN_ON(cpu_buffer,
952 			       bpage->list.prev->next != &bpage->list))
953 			return -1;
954 		if (rb_check_list(cpu_buffer, &bpage->list))
955 			return -1;
956 	}
957 
958 	rb_head_page_activate(cpu_buffer);
959 
960 	return 0;
961 }
962 
963 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
964 			     unsigned nr_pages)
965 {
966 	struct buffer_page *bpage, *tmp;
967 	unsigned long addr;
968 	LIST_HEAD(pages);
969 	unsigned i;
970 
971 	WARN_ON(!nr_pages);
972 
973 	for (i = 0; i < nr_pages; i++) {
974 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
975 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
976 		if (!bpage)
977 			goto free_pages;
978 
979 		rb_check_bpage(cpu_buffer, bpage);
980 
981 		list_add(&bpage->list, &pages);
982 
983 		addr = __get_free_page(GFP_KERNEL);
984 		if (!addr)
985 			goto free_pages;
986 		bpage->page = (void *)addr;
987 		rb_init_page(bpage->page);
988 	}
989 
990 	/*
991 	 * The ring buffer page list is a circular list that does not
992 	 * start and end with a list head. All page list items point to
993 	 * other pages.
994 	 */
995 	cpu_buffer->pages = pages.next;
996 	list_del(&pages);
997 
998 	rb_check_pages(cpu_buffer);
999 
1000 	return 0;
1001 
1002  free_pages:
1003 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1004 		list_del_init(&bpage->list);
1005 		free_buffer_page(bpage);
1006 	}
1007 	return -ENOMEM;
1008 }
1009 
1010 static struct ring_buffer_per_cpu *
1011 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1012 {
1013 	struct ring_buffer_per_cpu *cpu_buffer;
1014 	struct buffer_page *bpage;
1015 	unsigned long addr;
1016 	int ret;
1017 
1018 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1019 				  GFP_KERNEL, cpu_to_node(cpu));
1020 	if (!cpu_buffer)
1021 		return NULL;
1022 
1023 	cpu_buffer->cpu = cpu;
1024 	cpu_buffer->buffer = buffer;
1025 	spin_lock_init(&cpu_buffer->reader_lock);
1026 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1027 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1028 
1029 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1030 			    GFP_KERNEL, cpu_to_node(cpu));
1031 	if (!bpage)
1032 		goto fail_free_buffer;
1033 
1034 	rb_check_bpage(cpu_buffer, bpage);
1035 
1036 	cpu_buffer->reader_page = bpage;
1037 	addr = __get_free_page(GFP_KERNEL);
1038 	if (!addr)
1039 		goto fail_free_reader;
1040 	bpage->page = (void *)addr;
1041 	rb_init_page(bpage->page);
1042 
1043 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1044 
1045 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1046 	if (ret < 0)
1047 		goto fail_free_reader;
1048 
1049 	cpu_buffer->head_page
1050 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1051 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1052 
1053 	rb_head_page_activate(cpu_buffer);
1054 
1055 	return cpu_buffer;
1056 
1057  fail_free_reader:
1058 	free_buffer_page(cpu_buffer->reader_page);
1059 
1060  fail_free_buffer:
1061 	kfree(cpu_buffer);
1062 	return NULL;
1063 }
1064 
1065 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1066 {
1067 	struct list_head *head = cpu_buffer->pages;
1068 	struct buffer_page *bpage, *tmp;
1069 
1070 	free_buffer_page(cpu_buffer->reader_page);
1071 
1072 	rb_head_page_deactivate(cpu_buffer);
1073 
1074 	if (head) {
1075 		list_for_each_entry_safe(bpage, tmp, head, list) {
1076 			list_del_init(&bpage->list);
1077 			free_buffer_page(bpage);
1078 		}
1079 		bpage = list_entry(head, struct buffer_page, list);
1080 		free_buffer_page(bpage);
1081 	}
1082 
1083 	kfree(cpu_buffer);
1084 }
1085 
1086 #ifdef CONFIG_HOTPLUG_CPU
1087 static int rb_cpu_notify(struct notifier_block *self,
1088 			 unsigned long action, void *hcpu);
1089 #endif
1090 
1091 /**
1092  * ring_buffer_alloc - allocate a new ring_buffer
1093  * @size: the size in bytes per cpu that is needed.
1094  * @flags: attributes to set for the ring buffer.
1095  *
1096  * Currently the only flag that is available is the RB_FL_OVERWRITE
1097  * flag. This flag means that the buffer will overwrite old data
1098  * when the buffer wraps. If this flag is not set, the buffer will
1099  * drop data when the tail hits the head.
1100  */
1101 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1102 					struct lock_class_key *key)
1103 {
1104 	struct ring_buffer *buffer;
1105 	int bsize;
1106 	int cpu;
1107 
1108 	/* keep it in its own cache line */
1109 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1110 			 GFP_KERNEL);
1111 	if (!buffer)
1112 		return NULL;
1113 
1114 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1115 		goto fail_free_buffer;
1116 
1117 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1118 	buffer->flags = flags;
1119 	buffer->clock = trace_clock_local;
1120 	buffer->reader_lock_key = key;
1121 
1122 	/* need at least two pages */
1123 	if (buffer->pages < 2)
1124 		buffer->pages = 2;
1125 
1126 	/*
1127 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1128 	 * in early initcall, it will not be notified of secondary cpus.
1129 	 * In that off case, we need to allocate for all possible cpus.
1130 	 */
1131 #ifdef CONFIG_HOTPLUG_CPU
1132 	get_online_cpus();
1133 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1134 #else
1135 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1136 #endif
1137 	buffer->cpus = nr_cpu_ids;
1138 
1139 	bsize = sizeof(void *) * nr_cpu_ids;
1140 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1141 				  GFP_KERNEL);
1142 	if (!buffer->buffers)
1143 		goto fail_free_cpumask;
1144 
1145 	for_each_buffer_cpu(buffer, cpu) {
1146 		buffer->buffers[cpu] =
1147 			rb_allocate_cpu_buffer(buffer, cpu);
1148 		if (!buffer->buffers[cpu])
1149 			goto fail_free_buffers;
1150 	}
1151 
1152 #ifdef CONFIG_HOTPLUG_CPU
1153 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1154 	buffer->cpu_notify.priority = 0;
1155 	register_cpu_notifier(&buffer->cpu_notify);
1156 #endif
1157 
1158 	put_online_cpus();
1159 	mutex_init(&buffer->mutex);
1160 
1161 	return buffer;
1162 
1163  fail_free_buffers:
1164 	for_each_buffer_cpu(buffer, cpu) {
1165 		if (buffer->buffers[cpu])
1166 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1167 	}
1168 	kfree(buffer->buffers);
1169 
1170  fail_free_cpumask:
1171 	free_cpumask_var(buffer->cpumask);
1172 	put_online_cpus();
1173 
1174  fail_free_buffer:
1175 	kfree(buffer);
1176 	return NULL;
1177 }
1178 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1179 
1180 /**
1181  * ring_buffer_free - free a ring buffer.
1182  * @buffer: the buffer to free.
1183  */
1184 void
1185 ring_buffer_free(struct ring_buffer *buffer)
1186 {
1187 	int cpu;
1188 
1189 	get_online_cpus();
1190 
1191 #ifdef CONFIG_HOTPLUG_CPU
1192 	unregister_cpu_notifier(&buffer->cpu_notify);
1193 #endif
1194 
1195 	for_each_buffer_cpu(buffer, cpu)
1196 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1197 
1198 	put_online_cpus();
1199 
1200 	kfree(buffer->buffers);
1201 	free_cpumask_var(buffer->cpumask);
1202 
1203 	kfree(buffer);
1204 }
1205 EXPORT_SYMBOL_GPL(ring_buffer_free);
1206 
1207 void ring_buffer_set_clock(struct ring_buffer *buffer,
1208 			   u64 (*clock)(void))
1209 {
1210 	buffer->clock = clock;
1211 }
1212 
1213 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1214 
1215 static void
1216 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1217 {
1218 	struct buffer_page *bpage;
1219 	struct list_head *p;
1220 	unsigned i;
1221 
1222 	spin_lock_irq(&cpu_buffer->reader_lock);
1223 	rb_head_page_deactivate(cpu_buffer);
1224 
1225 	for (i = 0; i < nr_pages; i++) {
1226 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1227 			goto out;
1228 		p = cpu_buffer->pages->next;
1229 		bpage = list_entry(p, struct buffer_page, list);
1230 		list_del_init(&bpage->list);
1231 		free_buffer_page(bpage);
1232 	}
1233 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1234 		goto out;
1235 
1236 	rb_reset_cpu(cpu_buffer);
1237 	rb_check_pages(cpu_buffer);
1238 
1239 out:
1240 	spin_unlock_irq(&cpu_buffer->reader_lock);
1241 }
1242 
1243 static void
1244 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1245 		struct list_head *pages, unsigned nr_pages)
1246 {
1247 	struct buffer_page *bpage;
1248 	struct list_head *p;
1249 	unsigned i;
1250 
1251 	spin_lock_irq(&cpu_buffer->reader_lock);
1252 	rb_head_page_deactivate(cpu_buffer);
1253 
1254 	for (i = 0; i < nr_pages; i++) {
1255 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1256 			goto out;
1257 		p = pages->next;
1258 		bpage = list_entry(p, struct buffer_page, list);
1259 		list_del_init(&bpage->list);
1260 		list_add_tail(&bpage->list, cpu_buffer->pages);
1261 	}
1262 	rb_reset_cpu(cpu_buffer);
1263 	rb_check_pages(cpu_buffer);
1264 
1265 out:
1266 	spin_unlock_irq(&cpu_buffer->reader_lock);
1267 }
1268 
1269 /**
1270  * ring_buffer_resize - resize the ring buffer
1271  * @buffer: the buffer to resize.
1272  * @size: the new size.
1273  *
1274  * Minimum size is 2 * BUF_PAGE_SIZE.
1275  *
1276  * Returns -1 on failure.
1277  */
1278 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1279 {
1280 	struct ring_buffer_per_cpu *cpu_buffer;
1281 	unsigned nr_pages, rm_pages, new_pages;
1282 	struct buffer_page *bpage, *tmp;
1283 	unsigned long buffer_size;
1284 	unsigned long addr;
1285 	LIST_HEAD(pages);
1286 	int i, cpu;
1287 
1288 	/*
1289 	 * Always succeed at resizing a non-existent buffer:
1290 	 */
1291 	if (!buffer)
1292 		return size;
1293 
1294 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1295 	size *= BUF_PAGE_SIZE;
1296 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1297 
1298 	/* we need a minimum of two pages */
1299 	if (size < BUF_PAGE_SIZE * 2)
1300 		size = BUF_PAGE_SIZE * 2;
1301 
1302 	if (size == buffer_size)
1303 		return size;
1304 
1305 	atomic_inc(&buffer->record_disabled);
1306 
1307 	/* Make sure all writers are done with this buffer. */
1308 	synchronize_sched();
1309 
1310 	mutex_lock(&buffer->mutex);
1311 	get_online_cpus();
1312 
1313 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314 
1315 	if (size < buffer_size) {
1316 
1317 		/* easy case, just free pages */
1318 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1319 			goto out_fail;
1320 
1321 		rm_pages = buffer->pages - nr_pages;
1322 
1323 		for_each_buffer_cpu(buffer, cpu) {
1324 			cpu_buffer = buffer->buffers[cpu];
1325 			rb_remove_pages(cpu_buffer, rm_pages);
1326 		}
1327 		goto out;
1328 	}
1329 
1330 	/*
1331 	 * This is a bit more difficult. We only want to add pages
1332 	 * when we can allocate enough for all CPUs. We do this
1333 	 * by allocating all the pages and storing them on a local
1334 	 * link list. If we succeed in our allocation, then we
1335 	 * add these pages to the cpu_buffers. Otherwise we just free
1336 	 * them all and return -ENOMEM;
1337 	 */
1338 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1339 		goto out_fail;
1340 
1341 	new_pages = nr_pages - buffer->pages;
1342 
1343 	for_each_buffer_cpu(buffer, cpu) {
1344 		for (i = 0; i < new_pages; i++) {
1345 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1346 						  cache_line_size()),
1347 					    GFP_KERNEL, cpu_to_node(cpu));
1348 			if (!bpage)
1349 				goto free_pages;
1350 			list_add(&bpage->list, &pages);
1351 			addr = __get_free_page(GFP_KERNEL);
1352 			if (!addr)
1353 				goto free_pages;
1354 			bpage->page = (void *)addr;
1355 			rb_init_page(bpage->page);
1356 		}
1357 	}
1358 
1359 	for_each_buffer_cpu(buffer, cpu) {
1360 		cpu_buffer = buffer->buffers[cpu];
1361 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1362 	}
1363 
1364 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1365 		goto out_fail;
1366 
1367  out:
1368 	buffer->pages = nr_pages;
1369 	put_online_cpus();
1370 	mutex_unlock(&buffer->mutex);
1371 
1372 	atomic_dec(&buffer->record_disabled);
1373 
1374 	return size;
1375 
1376  free_pages:
1377 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1378 		list_del_init(&bpage->list);
1379 		free_buffer_page(bpage);
1380 	}
1381 	put_online_cpus();
1382 	mutex_unlock(&buffer->mutex);
1383 	atomic_dec(&buffer->record_disabled);
1384 	return -ENOMEM;
1385 
1386 	/*
1387 	 * Something went totally wrong, and we are too paranoid
1388 	 * to even clean up the mess.
1389 	 */
1390  out_fail:
1391 	put_online_cpus();
1392 	mutex_unlock(&buffer->mutex);
1393 	atomic_dec(&buffer->record_disabled);
1394 	return -1;
1395 }
1396 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1397 
1398 static inline void *
1399 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1400 {
1401 	return bpage->data + index;
1402 }
1403 
1404 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1405 {
1406 	return bpage->page->data + index;
1407 }
1408 
1409 static inline struct ring_buffer_event *
1410 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1411 {
1412 	return __rb_page_index(cpu_buffer->reader_page,
1413 			       cpu_buffer->reader_page->read);
1414 }
1415 
1416 static inline struct ring_buffer_event *
1417 rb_iter_head_event(struct ring_buffer_iter *iter)
1418 {
1419 	return __rb_page_index(iter->head_page, iter->head);
1420 }
1421 
1422 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1423 {
1424 	return local_read(&bpage->write) & RB_WRITE_MASK;
1425 }
1426 
1427 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1428 {
1429 	return local_read(&bpage->page->commit);
1430 }
1431 
1432 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1433 {
1434 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1435 }
1436 
1437 /* Size is determined by what has been commited */
1438 static inline unsigned rb_page_size(struct buffer_page *bpage)
1439 {
1440 	return rb_page_commit(bpage);
1441 }
1442 
1443 static inline unsigned
1444 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1445 {
1446 	return rb_page_commit(cpu_buffer->commit_page);
1447 }
1448 
1449 static inline unsigned
1450 rb_event_index(struct ring_buffer_event *event)
1451 {
1452 	unsigned long addr = (unsigned long)event;
1453 
1454 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1455 }
1456 
1457 static inline int
1458 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1459 		   struct ring_buffer_event *event)
1460 {
1461 	unsigned long addr = (unsigned long)event;
1462 	unsigned long index;
1463 
1464 	index = rb_event_index(event);
1465 	addr &= PAGE_MASK;
1466 
1467 	return cpu_buffer->commit_page->page == (void *)addr &&
1468 		rb_commit_index(cpu_buffer) == index;
1469 }
1470 
1471 static void
1472 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1473 {
1474 	unsigned long max_count;
1475 
1476 	/*
1477 	 * We only race with interrupts and NMIs on this CPU.
1478 	 * If we own the commit event, then we can commit
1479 	 * all others that interrupted us, since the interruptions
1480 	 * are in stack format (they finish before they come
1481 	 * back to us). This allows us to do a simple loop to
1482 	 * assign the commit to the tail.
1483 	 */
1484  again:
1485 	max_count = cpu_buffer->buffer->pages * 100;
1486 
1487 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1488 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1489 			return;
1490 		if (RB_WARN_ON(cpu_buffer,
1491 			       rb_is_reader_page(cpu_buffer->tail_page)))
1492 			return;
1493 		local_set(&cpu_buffer->commit_page->page->commit,
1494 			  rb_page_write(cpu_buffer->commit_page));
1495 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1496 		cpu_buffer->write_stamp =
1497 			cpu_buffer->commit_page->page->time_stamp;
1498 		/* add barrier to keep gcc from optimizing too much */
1499 		barrier();
1500 	}
1501 	while (rb_commit_index(cpu_buffer) !=
1502 	       rb_page_write(cpu_buffer->commit_page)) {
1503 
1504 		local_set(&cpu_buffer->commit_page->page->commit,
1505 			  rb_page_write(cpu_buffer->commit_page));
1506 		RB_WARN_ON(cpu_buffer,
1507 			   local_read(&cpu_buffer->commit_page->page->commit) &
1508 			   ~RB_WRITE_MASK);
1509 		barrier();
1510 	}
1511 
1512 	/* again, keep gcc from optimizing */
1513 	barrier();
1514 
1515 	/*
1516 	 * If an interrupt came in just after the first while loop
1517 	 * and pushed the tail page forward, we will be left with
1518 	 * a dangling commit that will never go forward.
1519 	 */
1520 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1521 		goto again;
1522 }
1523 
1524 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1525 {
1526 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1527 	cpu_buffer->reader_page->read = 0;
1528 }
1529 
1530 static void rb_inc_iter(struct ring_buffer_iter *iter)
1531 {
1532 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1533 
1534 	/*
1535 	 * The iterator could be on the reader page (it starts there).
1536 	 * But the head could have moved, since the reader was
1537 	 * found. Check for this case and assign the iterator
1538 	 * to the head page instead of next.
1539 	 */
1540 	if (iter->head_page == cpu_buffer->reader_page)
1541 		iter->head_page = rb_set_head_page(cpu_buffer);
1542 	else
1543 		rb_inc_page(cpu_buffer, &iter->head_page);
1544 
1545 	iter->read_stamp = iter->head_page->page->time_stamp;
1546 	iter->head = 0;
1547 }
1548 
1549 /**
1550  * ring_buffer_update_event - update event type and data
1551  * @event: the even to update
1552  * @type: the type of event
1553  * @length: the size of the event field in the ring buffer
1554  *
1555  * Update the type and data fields of the event. The length
1556  * is the actual size that is written to the ring buffer,
1557  * and with this, we can determine what to place into the
1558  * data field.
1559  */
1560 static void
1561 rb_update_event(struct ring_buffer_event *event,
1562 			 unsigned type, unsigned length)
1563 {
1564 	event->type_len = type;
1565 
1566 	switch (type) {
1567 
1568 	case RINGBUF_TYPE_PADDING:
1569 	case RINGBUF_TYPE_TIME_EXTEND:
1570 	case RINGBUF_TYPE_TIME_STAMP:
1571 		break;
1572 
1573 	case 0:
1574 		length -= RB_EVNT_HDR_SIZE;
1575 		if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1576 			event->array[0] = length;
1577 		else
1578 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1579 		break;
1580 	default:
1581 		BUG();
1582 	}
1583 }
1584 
1585 /*
1586  * rb_handle_head_page - writer hit the head page
1587  *
1588  * Returns: +1 to retry page
1589  *           0 to continue
1590  *          -1 on error
1591  */
1592 static int
1593 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1594 		    struct buffer_page *tail_page,
1595 		    struct buffer_page *next_page)
1596 {
1597 	struct buffer_page *new_head;
1598 	int entries;
1599 	int type;
1600 	int ret;
1601 
1602 	entries = rb_page_entries(next_page);
1603 
1604 	/*
1605 	 * The hard part is here. We need to move the head
1606 	 * forward, and protect against both readers on
1607 	 * other CPUs and writers coming in via interrupts.
1608 	 */
1609 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1610 				       RB_PAGE_HEAD);
1611 
1612 	/*
1613 	 * type can be one of four:
1614 	 *  NORMAL - an interrupt already moved it for us
1615 	 *  HEAD   - we are the first to get here.
1616 	 *  UPDATE - we are the interrupt interrupting
1617 	 *           a current move.
1618 	 *  MOVED  - a reader on another CPU moved the next
1619 	 *           pointer to its reader page. Give up
1620 	 *           and try again.
1621 	 */
1622 
1623 	switch (type) {
1624 	case RB_PAGE_HEAD:
1625 		/*
1626 		 * We changed the head to UPDATE, thus
1627 		 * it is our responsibility to update
1628 		 * the counters.
1629 		 */
1630 		local_add(entries, &cpu_buffer->overrun);
1631 
1632 		/*
1633 		 * The entries will be zeroed out when we move the
1634 		 * tail page.
1635 		 */
1636 
1637 		/* still more to do */
1638 		break;
1639 
1640 	case RB_PAGE_UPDATE:
1641 		/*
1642 		 * This is an interrupt that interrupt the
1643 		 * previous update. Still more to do.
1644 		 */
1645 		break;
1646 	case RB_PAGE_NORMAL:
1647 		/*
1648 		 * An interrupt came in before the update
1649 		 * and processed this for us.
1650 		 * Nothing left to do.
1651 		 */
1652 		return 1;
1653 	case RB_PAGE_MOVED:
1654 		/*
1655 		 * The reader is on another CPU and just did
1656 		 * a swap with our next_page.
1657 		 * Try again.
1658 		 */
1659 		return 1;
1660 	default:
1661 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1662 		return -1;
1663 	}
1664 
1665 	/*
1666 	 * Now that we are here, the old head pointer is
1667 	 * set to UPDATE. This will keep the reader from
1668 	 * swapping the head page with the reader page.
1669 	 * The reader (on another CPU) will spin till
1670 	 * we are finished.
1671 	 *
1672 	 * We just need to protect against interrupts
1673 	 * doing the job. We will set the next pointer
1674 	 * to HEAD. After that, we set the old pointer
1675 	 * to NORMAL, but only if it was HEAD before.
1676 	 * otherwise we are an interrupt, and only
1677 	 * want the outer most commit to reset it.
1678 	 */
1679 	new_head = next_page;
1680 	rb_inc_page(cpu_buffer, &new_head);
1681 
1682 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1683 				    RB_PAGE_NORMAL);
1684 
1685 	/*
1686 	 * Valid returns are:
1687 	 *  HEAD   - an interrupt came in and already set it.
1688 	 *  NORMAL - One of two things:
1689 	 *            1) We really set it.
1690 	 *            2) A bunch of interrupts came in and moved
1691 	 *               the page forward again.
1692 	 */
1693 	switch (ret) {
1694 	case RB_PAGE_HEAD:
1695 	case RB_PAGE_NORMAL:
1696 		/* OK */
1697 		break;
1698 	default:
1699 		RB_WARN_ON(cpu_buffer, 1);
1700 		return -1;
1701 	}
1702 
1703 	/*
1704 	 * It is possible that an interrupt came in,
1705 	 * set the head up, then more interrupts came in
1706 	 * and moved it again. When we get back here,
1707 	 * the page would have been set to NORMAL but we
1708 	 * just set it back to HEAD.
1709 	 *
1710 	 * How do you detect this? Well, if that happened
1711 	 * the tail page would have moved.
1712 	 */
1713 	if (ret == RB_PAGE_NORMAL) {
1714 		/*
1715 		 * If the tail had moved passed next, then we need
1716 		 * to reset the pointer.
1717 		 */
1718 		if (cpu_buffer->tail_page != tail_page &&
1719 		    cpu_buffer->tail_page != next_page)
1720 			rb_head_page_set_normal(cpu_buffer, new_head,
1721 						next_page,
1722 						RB_PAGE_HEAD);
1723 	}
1724 
1725 	/*
1726 	 * If this was the outer most commit (the one that
1727 	 * changed the original pointer from HEAD to UPDATE),
1728 	 * then it is up to us to reset it to NORMAL.
1729 	 */
1730 	if (type == RB_PAGE_HEAD) {
1731 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1732 					      tail_page,
1733 					      RB_PAGE_UPDATE);
1734 		if (RB_WARN_ON(cpu_buffer,
1735 			       ret != RB_PAGE_UPDATE))
1736 			return -1;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static unsigned rb_calculate_event_length(unsigned length)
1743 {
1744 	struct ring_buffer_event event; /* Used only for sizeof array */
1745 
1746 	/* zero length can cause confusions */
1747 	if (!length)
1748 		length = 1;
1749 
1750 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1751 		length += sizeof(event.array[0]);
1752 
1753 	length += RB_EVNT_HDR_SIZE;
1754 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1755 
1756 	return length;
1757 }
1758 
1759 static inline void
1760 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1761 	      struct buffer_page *tail_page,
1762 	      unsigned long tail, unsigned long length)
1763 {
1764 	struct ring_buffer_event *event;
1765 
1766 	/*
1767 	 * Only the event that crossed the page boundary
1768 	 * must fill the old tail_page with padding.
1769 	 */
1770 	if (tail >= BUF_PAGE_SIZE) {
1771 		/*
1772 		 * If the page was filled, then we still need
1773 		 * to update the real_end. Reset it to zero
1774 		 * and the reader will ignore it.
1775 		 */
1776 		if (tail == BUF_PAGE_SIZE)
1777 			tail_page->real_end = 0;
1778 
1779 		local_sub(length, &tail_page->write);
1780 		return;
1781 	}
1782 
1783 	event = __rb_page_index(tail_page, tail);
1784 	kmemcheck_annotate_bitfield(event, bitfield);
1785 
1786 	/*
1787 	 * Save the original length to the meta data.
1788 	 * This will be used by the reader to add lost event
1789 	 * counter.
1790 	 */
1791 	tail_page->real_end = tail;
1792 
1793 	/*
1794 	 * If this event is bigger than the minimum size, then
1795 	 * we need to be careful that we don't subtract the
1796 	 * write counter enough to allow another writer to slip
1797 	 * in on this page.
1798 	 * We put in a discarded commit instead, to make sure
1799 	 * that this space is not used again.
1800 	 *
1801 	 * If we are less than the minimum size, we don't need to
1802 	 * worry about it.
1803 	 */
1804 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1805 		/* No room for any events */
1806 
1807 		/* Mark the rest of the page with padding */
1808 		rb_event_set_padding(event);
1809 
1810 		/* Set the write back to the previous setting */
1811 		local_sub(length, &tail_page->write);
1812 		return;
1813 	}
1814 
1815 	/* Put in a discarded event */
1816 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1817 	event->type_len = RINGBUF_TYPE_PADDING;
1818 	/* time delta must be non zero */
1819 	event->time_delta = 1;
1820 
1821 	/* Set write to end of buffer */
1822 	length = (tail + length) - BUF_PAGE_SIZE;
1823 	local_sub(length, &tail_page->write);
1824 }
1825 
1826 static struct ring_buffer_event *
1827 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1828 	     unsigned long length, unsigned long tail,
1829 	     struct buffer_page *tail_page, u64 *ts)
1830 {
1831 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1832 	struct ring_buffer *buffer = cpu_buffer->buffer;
1833 	struct buffer_page *next_page;
1834 	int ret;
1835 
1836 	next_page = tail_page;
1837 
1838 	rb_inc_page(cpu_buffer, &next_page);
1839 
1840 	/*
1841 	 * If for some reason, we had an interrupt storm that made
1842 	 * it all the way around the buffer, bail, and warn
1843 	 * about it.
1844 	 */
1845 	if (unlikely(next_page == commit_page)) {
1846 		local_inc(&cpu_buffer->commit_overrun);
1847 		goto out_reset;
1848 	}
1849 
1850 	/*
1851 	 * This is where the fun begins!
1852 	 *
1853 	 * We are fighting against races between a reader that
1854 	 * could be on another CPU trying to swap its reader
1855 	 * page with the buffer head.
1856 	 *
1857 	 * We are also fighting against interrupts coming in and
1858 	 * moving the head or tail on us as well.
1859 	 *
1860 	 * If the next page is the head page then we have filled
1861 	 * the buffer, unless the commit page is still on the
1862 	 * reader page.
1863 	 */
1864 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1865 
1866 		/*
1867 		 * If the commit is not on the reader page, then
1868 		 * move the header page.
1869 		 */
1870 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1871 			/*
1872 			 * If we are not in overwrite mode,
1873 			 * this is easy, just stop here.
1874 			 */
1875 			if (!(buffer->flags & RB_FL_OVERWRITE))
1876 				goto out_reset;
1877 
1878 			ret = rb_handle_head_page(cpu_buffer,
1879 						  tail_page,
1880 						  next_page);
1881 			if (ret < 0)
1882 				goto out_reset;
1883 			if (ret)
1884 				goto out_again;
1885 		} else {
1886 			/*
1887 			 * We need to be careful here too. The
1888 			 * commit page could still be on the reader
1889 			 * page. We could have a small buffer, and
1890 			 * have filled up the buffer with events
1891 			 * from interrupts and such, and wrapped.
1892 			 *
1893 			 * Note, if the tail page is also the on the
1894 			 * reader_page, we let it move out.
1895 			 */
1896 			if (unlikely((cpu_buffer->commit_page !=
1897 				      cpu_buffer->tail_page) &&
1898 				     (cpu_buffer->commit_page ==
1899 				      cpu_buffer->reader_page))) {
1900 				local_inc(&cpu_buffer->commit_overrun);
1901 				goto out_reset;
1902 			}
1903 		}
1904 	}
1905 
1906 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1907 	if (ret) {
1908 		/*
1909 		 * Nested commits always have zero deltas, so
1910 		 * just reread the time stamp
1911 		 */
1912 		*ts = rb_time_stamp(buffer);
1913 		next_page->page->time_stamp = *ts;
1914 	}
1915 
1916  out_again:
1917 
1918 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1919 
1920 	/* fail and let the caller try again */
1921 	return ERR_PTR(-EAGAIN);
1922 
1923  out_reset:
1924 	/* reset write */
1925 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1926 
1927 	return NULL;
1928 }
1929 
1930 static struct ring_buffer_event *
1931 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1932 		  unsigned type, unsigned long length, u64 *ts)
1933 {
1934 	struct buffer_page *tail_page;
1935 	struct ring_buffer_event *event;
1936 	unsigned long tail, write;
1937 
1938 	tail_page = cpu_buffer->tail_page;
1939 	write = local_add_return(length, &tail_page->write);
1940 
1941 	/* set write to only the index of the write */
1942 	write &= RB_WRITE_MASK;
1943 	tail = write - length;
1944 
1945 	/* See if we shot pass the end of this buffer page */
1946 	if (write > BUF_PAGE_SIZE)
1947 		return rb_move_tail(cpu_buffer, length, tail,
1948 				    tail_page, ts);
1949 
1950 	/* We reserved something on the buffer */
1951 
1952 	event = __rb_page_index(tail_page, tail);
1953 	kmemcheck_annotate_bitfield(event, bitfield);
1954 	rb_update_event(event, type, length);
1955 
1956 	/* The passed in type is zero for DATA */
1957 	if (likely(!type))
1958 		local_inc(&tail_page->entries);
1959 
1960 	/*
1961 	 * If this is the first commit on the page, then update
1962 	 * its timestamp.
1963 	 */
1964 	if (!tail)
1965 		tail_page->page->time_stamp = *ts;
1966 
1967 	return event;
1968 }
1969 
1970 static inline int
1971 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1972 		  struct ring_buffer_event *event)
1973 {
1974 	unsigned long new_index, old_index;
1975 	struct buffer_page *bpage;
1976 	unsigned long index;
1977 	unsigned long addr;
1978 
1979 	new_index = rb_event_index(event);
1980 	old_index = new_index + rb_event_length(event);
1981 	addr = (unsigned long)event;
1982 	addr &= PAGE_MASK;
1983 
1984 	bpage = cpu_buffer->tail_page;
1985 
1986 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1987 		unsigned long write_mask =
1988 			local_read(&bpage->write) & ~RB_WRITE_MASK;
1989 		/*
1990 		 * This is on the tail page. It is possible that
1991 		 * a write could come in and move the tail page
1992 		 * and write to the next page. That is fine
1993 		 * because we just shorten what is on this page.
1994 		 */
1995 		old_index += write_mask;
1996 		new_index += write_mask;
1997 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1998 		if (index == old_index)
1999 			return 1;
2000 	}
2001 
2002 	/* could not discard */
2003 	return 0;
2004 }
2005 
2006 static int
2007 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2008 		  u64 *ts, u64 *delta)
2009 {
2010 	struct ring_buffer_event *event;
2011 	int ret;
2012 
2013 	WARN_ONCE(*delta > (1ULL << 59),
2014 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2015 		  (unsigned long long)*delta,
2016 		  (unsigned long long)*ts,
2017 		  (unsigned long long)cpu_buffer->write_stamp);
2018 
2019 	/*
2020 	 * The delta is too big, we to add a
2021 	 * new timestamp.
2022 	 */
2023 	event = __rb_reserve_next(cpu_buffer,
2024 				  RINGBUF_TYPE_TIME_EXTEND,
2025 				  RB_LEN_TIME_EXTEND,
2026 				  ts);
2027 	if (!event)
2028 		return -EBUSY;
2029 
2030 	if (PTR_ERR(event) == -EAGAIN)
2031 		return -EAGAIN;
2032 
2033 	/* Only a commited time event can update the write stamp */
2034 	if (rb_event_is_commit(cpu_buffer, event)) {
2035 		/*
2036 		 * If this is the first on the page, then it was
2037 		 * updated with the page itself. Try to discard it
2038 		 * and if we can't just make it zero.
2039 		 */
2040 		if (rb_event_index(event)) {
2041 			event->time_delta = *delta & TS_MASK;
2042 			event->array[0] = *delta >> TS_SHIFT;
2043 		} else {
2044 			/* try to discard, since we do not need this */
2045 			if (!rb_try_to_discard(cpu_buffer, event)) {
2046 				/* nope, just zero it */
2047 				event->time_delta = 0;
2048 				event->array[0] = 0;
2049 			}
2050 		}
2051 		cpu_buffer->write_stamp = *ts;
2052 		/* let the caller know this was the commit */
2053 		ret = 1;
2054 	} else {
2055 		/* Try to discard the event */
2056 		if (!rb_try_to_discard(cpu_buffer, event)) {
2057 			/* Darn, this is just wasted space */
2058 			event->time_delta = 0;
2059 			event->array[0] = 0;
2060 		}
2061 		ret = 0;
2062 	}
2063 
2064 	*delta = 0;
2065 
2066 	return ret;
2067 }
2068 
2069 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2070 {
2071 	local_inc(&cpu_buffer->committing);
2072 	local_inc(&cpu_buffer->commits);
2073 }
2074 
2075 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2076 {
2077 	unsigned long commits;
2078 
2079 	if (RB_WARN_ON(cpu_buffer,
2080 		       !local_read(&cpu_buffer->committing)))
2081 		return;
2082 
2083  again:
2084 	commits = local_read(&cpu_buffer->commits);
2085 	/* synchronize with interrupts */
2086 	barrier();
2087 	if (local_read(&cpu_buffer->committing) == 1)
2088 		rb_set_commit_to_write(cpu_buffer);
2089 
2090 	local_dec(&cpu_buffer->committing);
2091 
2092 	/* synchronize with interrupts */
2093 	barrier();
2094 
2095 	/*
2096 	 * Need to account for interrupts coming in between the
2097 	 * updating of the commit page and the clearing of the
2098 	 * committing counter.
2099 	 */
2100 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2101 	    !local_read(&cpu_buffer->committing)) {
2102 		local_inc(&cpu_buffer->committing);
2103 		goto again;
2104 	}
2105 }
2106 
2107 static struct ring_buffer_event *
2108 rb_reserve_next_event(struct ring_buffer *buffer,
2109 		      struct ring_buffer_per_cpu *cpu_buffer,
2110 		      unsigned long length)
2111 {
2112 	struct ring_buffer_event *event;
2113 	u64 ts, delta = 0;
2114 	int commit = 0;
2115 	int nr_loops = 0;
2116 
2117 	rb_start_commit(cpu_buffer);
2118 
2119 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2120 	/*
2121 	 * Due to the ability to swap a cpu buffer from a buffer
2122 	 * it is possible it was swapped before we committed.
2123 	 * (committing stops a swap). We check for it here and
2124 	 * if it happened, we have to fail the write.
2125 	 */
2126 	barrier();
2127 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2128 		local_dec(&cpu_buffer->committing);
2129 		local_dec(&cpu_buffer->commits);
2130 		return NULL;
2131 	}
2132 #endif
2133 
2134 	length = rb_calculate_event_length(length);
2135  again:
2136 	/*
2137 	 * We allow for interrupts to reenter here and do a trace.
2138 	 * If one does, it will cause this original code to loop
2139 	 * back here. Even with heavy interrupts happening, this
2140 	 * should only happen a few times in a row. If this happens
2141 	 * 1000 times in a row, there must be either an interrupt
2142 	 * storm or we have something buggy.
2143 	 * Bail!
2144 	 */
2145 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2146 		goto out_fail;
2147 
2148 	ts = rb_time_stamp(cpu_buffer->buffer);
2149 
2150 	/*
2151 	 * Only the first commit can update the timestamp.
2152 	 * Yes there is a race here. If an interrupt comes in
2153 	 * just after the conditional and it traces too, then it
2154 	 * will also check the deltas. More than one timestamp may
2155 	 * also be made. But only the entry that did the actual
2156 	 * commit will be something other than zero.
2157 	 */
2158 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2159 		   rb_page_write(cpu_buffer->tail_page) ==
2160 		   rb_commit_index(cpu_buffer))) {
2161 		u64 diff;
2162 
2163 		diff = ts - cpu_buffer->write_stamp;
2164 
2165 		/* make sure this diff is calculated here */
2166 		barrier();
2167 
2168 		/* Did the write stamp get updated already? */
2169 		if (unlikely(ts < cpu_buffer->write_stamp))
2170 			goto get_event;
2171 
2172 		delta = diff;
2173 		if (unlikely(test_time_stamp(delta))) {
2174 
2175 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2176 			if (commit == -EBUSY)
2177 				goto out_fail;
2178 
2179 			if (commit == -EAGAIN)
2180 				goto again;
2181 
2182 			RB_WARN_ON(cpu_buffer, commit < 0);
2183 		}
2184 	}
2185 
2186  get_event:
2187 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2188 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2189 		goto again;
2190 
2191 	if (!event)
2192 		goto out_fail;
2193 
2194 	if (!rb_event_is_commit(cpu_buffer, event))
2195 		delta = 0;
2196 
2197 	event->time_delta = delta;
2198 
2199 	return event;
2200 
2201  out_fail:
2202 	rb_end_commit(cpu_buffer);
2203 	return NULL;
2204 }
2205 
2206 #ifdef CONFIG_TRACING
2207 
2208 #define TRACE_RECURSIVE_DEPTH 16
2209 
2210 static int trace_recursive_lock(void)
2211 {
2212 	current->trace_recursion++;
2213 
2214 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2215 		return 0;
2216 
2217 	/* Disable all tracing before we do anything else */
2218 	tracing_off_permanent();
2219 
2220 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2221 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2222 		    current->trace_recursion,
2223 		    hardirq_count() >> HARDIRQ_SHIFT,
2224 		    softirq_count() >> SOFTIRQ_SHIFT,
2225 		    in_nmi());
2226 
2227 	WARN_ON_ONCE(1);
2228 	return -1;
2229 }
2230 
2231 static void trace_recursive_unlock(void)
2232 {
2233 	WARN_ON_ONCE(!current->trace_recursion);
2234 
2235 	current->trace_recursion--;
2236 }
2237 
2238 #else
2239 
2240 #define trace_recursive_lock()		(0)
2241 #define trace_recursive_unlock()	do { } while (0)
2242 
2243 #endif
2244 
2245 static DEFINE_PER_CPU(int, rb_need_resched);
2246 
2247 /**
2248  * ring_buffer_lock_reserve - reserve a part of the buffer
2249  * @buffer: the ring buffer to reserve from
2250  * @length: the length of the data to reserve (excluding event header)
2251  *
2252  * Returns a reseverd event on the ring buffer to copy directly to.
2253  * The user of this interface will need to get the body to write into
2254  * and can use the ring_buffer_event_data() interface.
2255  *
2256  * The length is the length of the data needed, not the event length
2257  * which also includes the event header.
2258  *
2259  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2260  * If NULL is returned, then nothing has been allocated or locked.
2261  */
2262 struct ring_buffer_event *
2263 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2264 {
2265 	struct ring_buffer_per_cpu *cpu_buffer;
2266 	struct ring_buffer_event *event;
2267 	int cpu, resched;
2268 
2269 	if (ring_buffer_flags != RB_BUFFERS_ON)
2270 		return NULL;
2271 
2272 	/* If we are tracing schedule, we don't want to recurse */
2273 	resched = ftrace_preempt_disable();
2274 
2275 	if (atomic_read(&buffer->record_disabled))
2276 		goto out_nocheck;
2277 
2278 	if (trace_recursive_lock())
2279 		goto out_nocheck;
2280 
2281 	cpu = raw_smp_processor_id();
2282 
2283 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2284 		goto out;
2285 
2286 	cpu_buffer = buffer->buffers[cpu];
2287 
2288 	if (atomic_read(&cpu_buffer->record_disabled))
2289 		goto out;
2290 
2291 	if (length > BUF_MAX_DATA_SIZE)
2292 		goto out;
2293 
2294 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2295 	if (!event)
2296 		goto out;
2297 
2298 	/*
2299 	 * Need to store resched state on this cpu.
2300 	 * Only the first needs to.
2301 	 */
2302 
2303 	if (preempt_count() == 1)
2304 		per_cpu(rb_need_resched, cpu) = resched;
2305 
2306 	return event;
2307 
2308  out:
2309 	trace_recursive_unlock();
2310 
2311  out_nocheck:
2312 	ftrace_preempt_enable(resched);
2313 	return NULL;
2314 }
2315 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2316 
2317 static void
2318 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2319 		      struct ring_buffer_event *event)
2320 {
2321 	/*
2322 	 * The event first in the commit queue updates the
2323 	 * time stamp.
2324 	 */
2325 	if (rb_event_is_commit(cpu_buffer, event))
2326 		cpu_buffer->write_stamp += event->time_delta;
2327 }
2328 
2329 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2330 		      struct ring_buffer_event *event)
2331 {
2332 	local_inc(&cpu_buffer->entries);
2333 	rb_update_write_stamp(cpu_buffer, event);
2334 	rb_end_commit(cpu_buffer);
2335 }
2336 
2337 /**
2338  * ring_buffer_unlock_commit - commit a reserved
2339  * @buffer: The buffer to commit to
2340  * @event: The event pointer to commit.
2341  *
2342  * This commits the data to the ring buffer, and releases any locks held.
2343  *
2344  * Must be paired with ring_buffer_lock_reserve.
2345  */
2346 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2347 			      struct ring_buffer_event *event)
2348 {
2349 	struct ring_buffer_per_cpu *cpu_buffer;
2350 	int cpu = raw_smp_processor_id();
2351 
2352 	cpu_buffer = buffer->buffers[cpu];
2353 
2354 	rb_commit(cpu_buffer, event);
2355 
2356 	trace_recursive_unlock();
2357 
2358 	/*
2359 	 * Only the last preempt count needs to restore preemption.
2360 	 */
2361 	if (preempt_count() == 1)
2362 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2363 	else
2364 		preempt_enable_no_resched_notrace();
2365 
2366 	return 0;
2367 }
2368 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2369 
2370 static inline void rb_event_discard(struct ring_buffer_event *event)
2371 {
2372 	/* array[0] holds the actual length for the discarded event */
2373 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2374 	event->type_len = RINGBUF_TYPE_PADDING;
2375 	/* time delta must be non zero */
2376 	if (!event->time_delta)
2377 		event->time_delta = 1;
2378 }
2379 
2380 /*
2381  * Decrement the entries to the page that an event is on.
2382  * The event does not even need to exist, only the pointer
2383  * to the page it is on. This may only be called before the commit
2384  * takes place.
2385  */
2386 static inline void
2387 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2388 		   struct ring_buffer_event *event)
2389 {
2390 	unsigned long addr = (unsigned long)event;
2391 	struct buffer_page *bpage = cpu_buffer->commit_page;
2392 	struct buffer_page *start;
2393 
2394 	addr &= PAGE_MASK;
2395 
2396 	/* Do the likely case first */
2397 	if (likely(bpage->page == (void *)addr)) {
2398 		local_dec(&bpage->entries);
2399 		return;
2400 	}
2401 
2402 	/*
2403 	 * Because the commit page may be on the reader page we
2404 	 * start with the next page and check the end loop there.
2405 	 */
2406 	rb_inc_page(cpu_buffer, &bpage);
2407 	start = bpage;
2408 	do {
2409 		if (bpage->page == (void *)addr) {
2410 			local_dec(&bpage->entries);
2411 			return;
2412 		}
2413 		rb_inc_page(cpu_buffer, &bpage);
2414 	} while (bpage != start);
2415 
2416 	/* commit not part of this buffer?? */
2417 	RB_WARN_ON(cpu_buffer, 1);
2418 }
2419 
2420 /**
2421  * ring_buffer_commit_discard - discard an event that has not been committed
2422  * @buffer: the ring buffer
2423  * @event: non committed event to discard
2424  *
2425  * Sometimes an event that is in the ring buffer needs to be ignored.
2426  * This function lets the user discard an event in the ring buffer
2427  * and then that event will not be read later.
2428  *
2429  * This function only works if it is called before the the item has been
2430  * committed. It will try to free the event from the ring buffer
2431  * if another event has not been added behind it.
2432  *
2433  * If another event has been added behind it, it will set the event
2434  * up as discarded, and perform the commit.
2435  *
2436  * If this function is called, do not call ring_buffer_unlock_commit on
2437  * the event.
2438  */
2439 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2440 				struct ring_buffer_event *event)
2441 {
2442 	struct ring_buffer_per_cpu *cpu_buffer;
2443 	int cpu;
2444 
2445 	/* The event is discarded regardless */
2446 	rb_event_discard(event);
2447 
2448 	cpu = smp_processor_id();
2449 	cpu_buffer = buffer->buffers[cpu];
2450 
2451 	/*
2452 	 * This must only be called if the event has not been
2453 	 * committed yet. Thus we can assume that preemption
2454 	 * is still disabled.
2455 	 */
2456 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2457 
2458 	rb_decrement_entry(cpu_buffer, event);
2459 	if (rb_try_to_discard(cpu_buffer, event))
2460 		goto out;
2461 
2462 	/*
2463 	 * The commit is still visible by the reader, so we
2464 	 * must still update the timestamp.
2465 	 */
2466 	rb_update_write_stamp(cpu_buffer, event);
2467  out:
2468 	rb_end_commit(cpu_buffer);
2469 
2470 	trace_recursive_unlock();
2471 
2472 	/*
2473 	 * Only the last preempt count needs to restore preemption.
2474 	 */
2475 	if (preempt_count() == 1)
2476 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2477 	else
2478 		preempt_enable_no_resched_notrace();
2479 
2480 }
2481 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2482 
2483 /**
2484  * ring_buffer_write - write data to the buffer without reserving
2485  * @buffer: The ring buffer to write to.
2486  * @length: The length of the data being written (excluding the event header)
2487  * @data: The data to write to the buffer.
2488  *
2489  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2490  * one function. If you already have the data to write to the buffer, it
2491  * may be easier to simply call this function.
2492  *
2493  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2494  * and not the length of the event which would hold the header.
2495  */
2496 int ring_buffer_write(struct ring_buffer *buffer,
2497 			unsigned long length,
2498 			void *data)
2499 {
2500 	struct ring_buffer_per_cpu *cpu_buffer;
2501 	struct ring_buffer_event *event;
2502 	void *body;
2503 	int ret = -EBUSY;
2504 	int cpu, resched;
2505 
2506 	if (ring_buffer_flags != RB_BUFFERS_ON)
2507 		return -EBUSY;
2508 
2509 	resched = ftrace_preempt_disable();
2510 
2511 	if (atomic_read(&buffer->record_disabled))
2512 		goto out;
2513 
2514 	cpu = raw_smp_processor_id();
2515 
2516 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2517 		goto out;
2518 
2519 	cpu_buffer = buffer->buffers[cpu];
2520 
2521 	if (atomic_read(&cpu_buffer->record_disabled))
2522 		goto out;
2523 
2524 	if (length > BUF_MAX_DATA_SIZE)
2525 		goto out;
2526 
2527 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2528 	if (!event)
2529 		goto out;
2530 
2531 	body = rb_event_data(event);
2532 
2533 	memcpy(body, data, length);
2534 
2535 	rb_commit(cpu_buffer, event);
2536 
2537 	ret = 0;
2538  out:
2539 	ftrace_preempt_enable(resched);
2540 
2541 	return ret;
2542 }
2543 EXPORT_SYMBOL_GPL(ring_buffer_write);
2544 
2545 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2546 {
2547 	struct buffer_page *reader = cpu_buffer->reader_page;
2548 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2549 	struct buffer_page *commit = cpu_buffer->commit_page;
2550 
2551 	/* In case of error, head will be NULL */
2552 	if (unlikely(!head))
2553 		return 1;
2554 
2555 	return reader->read == rb_page_commit(reader) &&
2556 		(commit == reader ||
2557 		 (commit == head &&
2558 		  head->read == rb_page_commit(commit)));
2559 }
2560 
2561 /**
2562  * ring_buffer_record_disable - stop all writes into the buffer
2563  * @buffer: The ring buffer to stop writes to.
2564  *
2565  * This prevents all writes to the buffer. Any attempt to write
2566  * to the buffer after this will fail and return NULL.
2567  *
2568  * The caller should call synchronize_sched() after this.
2569  */
2570 void ring_buffer_record_disable(struct ring_buffer *buffer)
2571 {
2572 	atomic_inc(&buffer->record_disabled);
2573 }
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2575 
2576 /**
2577  * ring_buffer_record_enable - enable writes to the buffer
2578  * @buffer: The ring buffer to enable writes
2579  *
2580  * Note, multiple disables will need the same number of enables
2581  * to truly enable the writing (much like preempt_disable).
2582  */
2583 void ring_buffer_record_enable(struct ring_buffer *buffer)
2584 {
2585 	atomic_dec(&buffer->record_disabled);
2586 }
2587 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2588 
2589 /**
2590  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2591  * @buffer: The ring buffer to stop writes to.
2592  * @cpu: The CPU buffer to stop
2593  *
2594  * This prevents all writes to the buffer. Any attempt to write
2595  * to the buffer after this will fail and return NULL.
2596  *
2597  * The caller should call synchronize_sched() after this.
2598  */
2599 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2600 {
2601 	struct ring_buffer_per_cpu *cpu_buffer;
2602 
2603 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2604 		return;
2605 
2606 	cpu_buffer = buffer->buffers[cpu];
2607 	atomic_inc(&cpu_buffer->record_disabled);
2608 }
2609 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2610 
2611 /**
2612  * ring_buffer_record_enable_cpu - enable writes to the buffer
2613  * @buffer: The ring buffer to enable writes
2614  * @cpu: The CPU to enable.
2615  *
2616  * Note, multiple disables will need the same number of enables
2617  * to truly enable the writing (much like preempt_disable).
2618  */
2619 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2620 {
2621 	struct ring_buffer_per_cpu *cpu_buffer;
2622 
2623 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2624 		return;
2625 
2626 	cpu_buffer = buffer->buffers[cpu];
2627 	atomic_dec(&cpu_buffer->record_disabled);
2628 }
2629 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2630 
2631 /**
2632  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2633  * @buffer: The ring buffer
2634  * @cpu: The per CPU buffer to get the entries from.
2635  */
2636 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2637 {
2638 	struct ring_buffer_per_cpu *cpu_buffer;
2639 	unsigned long ret;
2640 
2641 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2642 		return 0;
2643 
2644 	cpu_buffer = buffer->buffers[cpu];
2645 	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2646 		- cpu_buffer->read;
2647 
2648 	return ret;
2649 }
2650 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2651 
2652 /**
2653  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2654  * @buffer: The ring buffer
2655  * @cpu: The per CPU buffer to get the number of overruns from
2656  */
2657 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2658 {
2659 	struct ring_buffer_per_cpu *cpu_buffer;
2660 	unsigned long ret;
2661 
2662 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2663 		return 0;
2664 
2665 	cpu_buffer = buffer->buffers[cpu];
2666 	ret = local_read(&cpu_buffer->overrun);
2667 
2668 	return ret;
2669 }
2670 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2671 
2672 /**
2673  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2674  * @buffer: The ring buffer
2675  * @cpu: The per CPU buffer to get the number of overruns from
2676  */
2677 unsigned long
2678 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2679 {
2680 	struct ring_buffer_per_cpu *cpu_buffer;
2681 	unsigned long ret;
2682 
2683 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2684 		return 0;
2685 
2686 	cpu_buffer = buffer->buffers[cpu];
2687 	ret = local_read(&cpu_buffer->commit_overrun);
2688 
2689 	return ret;
2690 }
2691 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2692 
2693 /**
2694  * ring_buffer_entries - get the number of entries in a buffer
2695  * @buffer: The ring buffer
2696  *
2697  * Returns the total number of entries in the ring buffer
2698  * (all CPU entries)
2699  */
2700 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2701 {
2702 	struct ring_buffer_per_cpu *cpu_buffer;
2703 	unsigned long entries = 0;
2704 	int cpu;
2705 
2706 	/* if you care about this being correct, lock the buffer */
2707 	for_each_buffer_cpu(buffer, cpu) {
2708 		cpu_buffer = buffer->buffers[cpu];
2709 		entries += (local_read(&cpu_buffer->entries) -
2710 			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2711 	}
2712 
2713 	return entries;
2714 }
2715 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2716 
2717 /**
2718  * ring_buffer_overruns - get the number of overruns in buffer
2719  * @buffer: The ring buffer
2720  *
2721  * Returns the total number of overruns in the ring buffer
2722  * (all CPU entries)
2723  */
2724 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2725 {
2726 	struct ring_buffer_per_cpu *cpu_buffer;
2727 	unsigned long overruns = 0;
2728 	int cpu;
2729 
2730 	/* if you care about this being correct, lock the buffer */
2731 	for_each_buffer_cpu(buffer, cpu) {
2732 		cpu_buffer = buffer->buffers[cpu];
2733 		overruns += local_read(&cpu_buffer->overrun);
2734 	}
2735 
2736 	return overruns;
2737 }
2738 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2739 
2740 static void rb_iter_reset(struct ring_buffer_iter *iter)
2741 {
2742 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2743 
2744 	/* Iterator usage is expected to have record disabled */
2745 	if (list_empty(&cpu_buffer->reader_page->list)) {
2746 		iter->head_page = rb_set_head_page(cpu_buffer);
2747 		if (unlikely(!iter->head_page))
2748 			return;
2749 		iter->head = iter->head_page->read;
2750 	} else {
2751 		iter->head_page = cpu_buffer->reader_page;
2752 		iter->head = cpu_buffer->reader_page->read;
2753 	}
2754 	if (iter->head)
2755 		iter->read_stamp = cpu_buffer->read_stamp;
2756 	else
2757 		iter->read_stamp = iter->head_page->page->time_stamp;
2758 	iter->cache_reader_page = cpu_buffer->reader_page;
2759 	iter->cache_read = cpu_buffer->read;
2760 }
2761 
2762 /**
2763  * ring_buffer_iter_reset - reset an iterator
2764  * @iter: The iterator to reset
2765  *
2766  * Resets the iterator, so that it will start from the beginning
2767  * again.
2768  */
2769 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2770 {
2771 	struct ring_buffer_per_cpu *cpu_buffer;
2772 	unsigned long flags;
2773 
2774 	if (!iter)
2775 		return;
2776 
2777 	cpu_buffer = iter->cpu_buffer;
2778 
2779 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2780 	rb_iter_reset(iter);
2781 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2782 }
2783 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2784 
2785 /**
2786  * ring_buffer_iter_empty - check if an iterator has no more to read
2787  * @iter: The iterator to check
2788  */
2789 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2790 {
2791 	struct ring_buffer_per_cpu *cpu_buffer;
2792 
2793 	cpu_buffer = iter->cpu_buffer;
2794 
2795 	return iter->head_page == cpu_buffer->commit_page &&
2796 		iter->head == rb_commit_index(cpu_buffer);
2797 }
2798 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2799 
2800 static void
2801 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2802 		     struct ring_buffer_event *event)
2803 {
2804 	u64 delta;
2805 
2806 	switch (event->type_len) {
2807 	case RINGBUF_TYPE_PADDING:
2808 		return;
2809 
2810 	case RINGBUF_TYPE_TIME_EXTEND:
2811 		delta = event->array[0];
2812 		delta <<= TS_SHIFT;
2813 		delta += event->time_delta;
2814 		cpu_buffer->read_stamp += delta;
2815 		return;
2816 
2817 	case RINGBUF_TYPE_TIME_STAMP:
2818 		/* FIXME: not implemented */
2819 		return;
2820 
2821 	case RINGBUF_TYPE_DATA:
2822 		cpu_buffer->read_stamp += event->time_delta;
2823 		return;
2824 
2825 	default:
2826 		BUG();
2827 	}
2828 	return;
2829 }
2830 
2831 static void
2832 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2833 			  struct ring_buffer_event *event)
2834 {
2835 	u64 delta;
2836 
2837 	switch (event->type_len) {
2838 	case RINGBUF_TYPE_PADDING:
2839 		return;
2840 
2841 	case RINGBUF_TYPE_TIME_EXTEND:
2842 		delta = event->array[0];
2843 		delta <<= TS_SHIFT;
2844 		delta += event->time_delta;
2845 		iter->read_stamp += delta;
2846 		return;
2847 
2848 	case RINGBUF_TYPE_TIME_STAMP:
2849 		/* FIXME: not implemented */
2850 		return;
2851 
2852 	case RINGBUF_TYPE_DATA:
2853 		iter->read_stamp += event->time_delta;
2854 		return;
2855 
2856 	default:
2857 		BUG();
2858 	}
2859 	return;
2860 }
2861 
2862 static struct buffer_page *
2863 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2864 {
2865 	struct buffer_page *reader = NULL;
2866 	unsigned long overwrite;
2867 	unsigned long flags;
2868 	int nr_loops = 0;
2869 	int ret;
2870 
2871 	local_irq_save(flags);
2872 	arch_spin_lock(&cpu_buffer->lock);
2873 
2874  again:
2875 	/*
2876 	 * This should normally only loop twice. But because the
2877 	 * start of the reader inserts an empty page, it causes
2878 	 * a case where we will loop three times. There should be no
2879 	 * reason to loop four times (that I know of).
2880 	 */
2881 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2882 		reader = NULL;
2883 		goto out;
2884 	}
2885 
2886 	reader = cpu_buffer->reader_page;
2887 
2888 	/* If there's more to read, return this page */
2889 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2890 		goto out;
2891 
2892 	/* Never should we have an index greater than the size */
2893 	if (RB_WARN_ON(cpu_buffer,
2894 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2895 		goto out;
2896 
2897 	/* check if we caught up to the tail */
2898 	reader = NULL;
2899 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2900 		goto out;
2901 
2902 	/*
2903 	 * Reset the reader page to size zero.
2904 	 */
2905 	local_set(&cpu_buffer->reader_page->write, 0);
2906 	local_set(&cpu_buffer->reader_page->entries, 0);
2907 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2908 	cpu_buffer->reader_page->real_end = 0;
2909 
2910  spin:
2911 	/*
2912 	 * Splice the empty reader page into the list around the head.
2913 	 */
2914 	reader = rb_set_head_page(cpu_buffer);
2915 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2916 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2917 
2918 	/*
2919 	 * cpu_buffer->pages just needs to point to the buffer, it
2920 	 *  has no specific buffer page to point to. Lets move it out
2921 	 *  of our way so we don't accidently swap it.
2922 	 */
2923 	cpu_buffer->pages = reader->list.prev;
2924 
2925 	/* The reader page will be pointing to the new head */
2926 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2927 
2928 	/*
2929 	 * We want to make sure we read the overruns after we set up our
2930 	 * pointers to the next object. The writer side does a
2931 	 * cmpxchg to cross pages which acts as the mb on the writer
2932 	 * side. Note, the reader will constantly fail the swap
2933 	 * while the writer is updating the pointers, so this
2934 	 * guarantees that the overwrite recorded here is the one we
2935 	 * want to compare with the last_overrun.
2936 	 */
2937 	smp_mb();
2938 	overwrite = local_read(&(cpu_buffer->overrun));
2939 
2940 	/*
2941 	 * Here's the tricky part.
2942 	 *
2943 	 * We need to move the pointer past the header page.
2944 	 * But we can only do that if a writer is not currently
2945 	 * moving it. The page before the header page has the
2946 	 * flag bit '1' set if it is pointing to the page we want.
2947 	 * but if the writer is in the process of moving it
2948 	 * than it will be '2' or already moved '0'.
2949 	 */
2950 
2951 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2952 
2953 	/*
2954 	 * If we did not convert it, then we must try again.
2955 	 */
2956 	if (!ret)
2957 		goto spin;
2958 
2959 	/*
2960 	 * Yeah! We succeeded in replacing the page.
2961 	 *
2962 	 * Now make the new head point back to the reader page.
2963 	 */
2964 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2965 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2966 
2967 	/* Finally update the reader page to the new head */
2968 	cpu_buffer->reader_page = reader;
2969 	rb_reset_reader_page(cpu_buffer);
2970 
2971 	if (overwrite != cpu_buffer->last_overrun) {
2972 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2973 		cpu_buffer->last_overrun = overwrite;
2974 	}
2975 
2976 	goto again;
2977 
2978  out:
2979 	arch_spin_unlock(&cpu_buffer->lock);
2980 	local_irq_restore(flags);
2981 
2982 	return reader;
2983 }
2984 
2985 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2986 {
2987 	struct ring_buffer_event *event;
2988 	struct buffer_page *reader;
2989 	unsigned length;
2990 
2991 	reader = rb_get_reader_page(cpu_buffer);
2992 
2993 	/* This function should not be called when buffer is empty */
2994 	if (RB_WARN_ON(cpu_buffer, !reader))
2995 		return;
2996 
2997 	event = rb_reader_event(cpu_buffer);
2998 
2999 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3000 		cpu_buffer->read++;
3001 
3002 	rb_update_read_stamp(cpu_buffer, event);
3003 
3004 	length = rb_event_length(event);
3005 	cpu_buffer->reader_page->read += length;
3006 }
3007 
3008 static void rb_advance_iter(struct ring_buffer_iter *iter)
3009 {
3010 	struct ring_buffer *buffer;
3011 	struct ring_buffer_per_cpu *cpu_buffer;
3012 	struct ring_buffer_event *event;
3013 	unsigned length;
3014 
3015 	cpu_buffer = iter->cpu_buffer;
3016 	buffer = cpu_buffer->buffer;
3017 
3018 	/*
3019 	 * Check if we are at the end of the buffer.
3020 	 */
3021 	if (iter->head >= rb_page_size(iter->head_page)) {
3022 		/* discarded commits can make the page empty */
3023 		if (iter->head_page == cpu_buffer->commit_page)
3024 			return;
3025 		rb_inc_iter(iter);
3026 		return;
3027 	}
3028 
3029 	event = rb_iter_head_event(iter);
3030 
3031 	length = rb_event_length(event);
3032 
3033 	/*
3034 	 * This should not be called to advance the header if we are
3035 	 * at the tail of the buffer.
3036 	 */
3037 	if (RB_WARN_ON(cpu_buffer,
3038 		       (iter->head_page == cpu_buffer->commit_page) &&
3039 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3040 		return;
3041 
3042 	rb_update_iter_read_stamp(iter, event);
3043 
3044 	iter->head += length;
3045 
3046 	/* check for end of page padding */
3047 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3048 	    (iter->head_page != cpu_buffer->commit_page))
3049 		rb_advance_iter(iter);
3050 }
3051 
3052 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3053 {
3054 	return cpu_buffer->lost_events;
3055 }
3056 
3057 static struct ring_buffer_event *
3058 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3059 	       unsigned long *lost_events)
3060 {
3061 	struct ring_buffer_event *event;
3062 	struct buffer_page *reader;
3063 	int nr_loops = 0;
3064 
3065  again:
3066 	/*
3067 	 * We repeat when a timestamp is encountered. It is possible
3068 	 * to get multiple timestamps from an interrupt entering just
3069 	 * as one timestamp is about to be written, or from discarded
3070 	 * commits. The most that we can have is the number on a single page.
3071 	 */
3072 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3073 		return NULL;
3074 
3075 	reader = rb_get_reader_page(cpu_buffer);
3076 	if (!reader)
3077 		return NULL;
3078 
3079 	event = rb_reader_event(cpu_buffer);
3080 
3081 	switch (event->type_len) {
3082 	case RINGBUF_TYPE_PADDING:
3083 		if (rb_null_event(event))
3084 			RB_WARN_ON(cpu_buffer, 1);
3085 		/*
3086 		 * Because the writer could be discarding every
3087 		 * event it creates (which would probably be bad)
3088 		 * if we were to go back to "again" then we may never
3089 		 * catch up, and will trigger the warn on, or lock
3090 		 * the box. Return the padding, and we will release
3091 		 * the current locks, and try again.
3092 		 */
3093 		return event;
3094 
3095 	case RINGBUF_TYPE_TIME_EXTEND:
3096 		/* Internal data, OK to advance */
3097 		rb_advance_reader(cpu_buffer);
3098 		goto again;
3099 
3100 	case RINGBUF_TYPE_TIME_STAMP:
3101 		/* FIXME: not implemented */
3102 		rb_advance_reader(cpu_buffer);
3103 		goto again;
3104 
3105 	case RINGBUF_TYPE_DATA:
3106 		if (ts) {
3107 			*ts = cpu_buffer->read_stamp + event->time_delta;
3108 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3109 							 cpu_buffer->cpu, ts);
3110 		}
3111 		if (lost_events)
3112 			*lost_events = rb_lost_events(cpu_buffer);
3113 		return event;
3114 
3115 	default:
3116 		BUG();
3117 	}
3118 
3119 	return NULL;
3120 }
3121 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3122 
3123 static struct ring_buffer_event *
3124 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3125 {
3126 	struct ring_buffer *buffer;
3127 	struct ring_buffer_per_cpu *cpu_buffer;
3128 	struct ring_buffer_event *event;
3129 	int nr_loops = 0;
3130 
3131 	cpu_buffer = iter->cpu_buffer;
3132 	buffer = cpu_buffer->buffer;
3133 
3134 	/*
3135 	 * Check if someone performed a consuming read to
3136 	 * the buffer. A consuming read invalidates the iterator
3137 	 * and we need to reset the iterator in this case.
3138 	 */
3139 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3140 		     iter->cache_reader_page != cpu_buffer->reader_page))
3141 		rb_iter_reset(iter);
3142 
3143  again:
3144 	if (ring_buffer_iter_empty(iter))
3145 		return NULL;
3146 
3147 	/*
3148 	 * We repeat when a timestamp is encountered.
3149 	 * We can get multiple timestamps by nested interrupts or also
3150 	 * if filtering is on (discarding commits). Since discarding
3151 	 * commits can be frequent we can get a lot of timestamps.
3152 	 * But we limit them by not adding timestamps if they begin
3153 	 * at the start of a page.
3154 	 */
3155 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3156 		return NULL;
3157 
3158 	if (rb_per_cpu_empty(cpu_buffer))
3159 		return NULL;
3160 
3161 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3162 		rb_inc_iter(iter);
3163 		goto again;
3164 	}
3165 
3166 	event = rb_iter_head_event(iter);
3167 
3168 	switch (event->type_len) {
3169 	case RINGBUF_TYPE_PADDING:
3170 		if (rb_null_event(event)) {
3171 			rb_inc_iter(iter);
3172 			goto again;
3173 		}
3174 		rb_advance_iter(iter);
3175 		return event;
3176 
3177 	case RINGBUF_TYPE_TIME_EXTEND:
3178 		/* Internal data, OK to advance */
3179 		rb_advance_iter(iter);
3180 		goto again;
3181 
3182 	case RINGBUF_TYPE_TIME_STAMP:
3183 		/* FIXME: not implemented */
3184 		rb_advance_iter(iter);
3185 		goto again;
3186 
3187 	case RINGBUF_TYPE_DATA:
3188 		if (ts) {
3189 			*ts = iter->read_stamp + event->time_delta;
3190 			ring_buffer_normalize_time_stamp(buffer,
3191 							 cpu_buffer->cpu, ts);
3192 		}
3193 		return event;
3194 
3195 	default:
3196 		BUG();
3197 	}
3198 
3199 	return NULL;
3200 }
3201 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3202 
3203 static inline int rb_ok_to_lock(void)
3204 {
3205 	/*
3206 	 * If an NMI die dumps out the content of the ring buffer
3207 	 * do not grab locks. We also permanently disable the ring
3208 	 * buffer too. A one time deal is all you get from reading
3209 	 * the ring buffer from an NMI.
3210 	 */
3211 	if (likely(!in_nmi()))
3212 		return 1;
3213 
3214 	tracing_off_permanent();
3215 	return 0;
3216 }
3217 
3218 /**
3219  * ring_buffer_peek - peek at the next event to be read
3220  * @buffer: The ring buffer to read
3221  * @cpu: The cpu to peak at
3222  * @ts: The timestamp counter of this event.
3223  * @lost_events: a variable to store if events were lost (may be NULL)
3224  *
3225  * This will return the event that will be read next, but does
3226  * not consume the data.
3227  */
3228 struct ring_buffer_event *
3229 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3230 		 unsigned long *lost_events)
3231 {
3232 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3233 	struct ring_buffer_event *event;
3234 	unsigned long flags;
3235 	int dolock;
3236 
3237 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3238 		return NULL;
3239 
3240 	dolock = rb_ok_to_lock();
3241  again:
3242 	local_irq_save(flags);
3243 	if (dolock)
3244 		spin_lock(&cpu_buffer->reader_lock);
3245 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3246 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3247 		rb_advance_reader(cpu_buffer);
3248 	if (dolock)
3249 		spin_unlock(&cpu_buffer->reader_lock);
3250 	local_irq_restore(flags);
3251 
3252 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3253 		goto again;
3254 
3255 	return event;
3256 }
3257 
3258 /**
3259  * ring_buffer_iter_peek - peek at the next event to be read
3260  * @iter: The ring buffer iterator
3261  * @ts: The timestamp counter of this event.
3262  *
3263  * This will return the event that will be read next, but does
3264  * not increment the iterator.
3265  */
3266 struct ring_buffer_event *
3267 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3268 {
3269 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3270 	struct ring_buffer_event *event;
3271 	unsigned long flags;
3272 
3273  again:
3274 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3275 	event = rb_iter_peek(iter, ts);
3276 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3277 
3278 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3279 		goto again;
3280 
3281 	return event;
3282 }
3283 
3284 /**
3285  * ring_buffer_consume - return an event and consume it
3286  * @buffer: The ring buffer to get the next event from
3287  * @cpu: the cpu to read the buffer from
3288  * @ts: a variable to store the timestamp (may be NULL)
3289  * @lost_events: a variable to store if events were lost (may be NULL)
3290  *
3291  * Returns the next event in the ring buffer, and that event is consumed.
3292  * Meaning, that sequential reads will keep returning a different event,
3293  * and eventually empty the ring buffer if the producer is slower.
3294  */
3295 struct ring_buffer_event *
3296 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3297 		    unsigned long *lost_events)
3298 {
3299 	struct ring_buffer_per_cpu *cpu_buffer;
3300 	struct ring_buffer_event *event = NULL;
3301 	unsigned long flags;
3302 	int dolock;
3303 
3304 	dolock = rb_ok_to_lock();
3305 
3306  again:
3307 	/* might be called in atomic */
3308 	preempt_disable();
3309 
3310 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3311 		goto out;
3312 
3313 	cpu_buffer = buffer->buffers[cpu];
3314 	local_irq_save(flags);
3315 	if (dolock)
3316 		spin_lock(&cpu_buffer->reader_lock);
3317 
3318 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3319 	if (event) {
3320 		cpu_buffer->lost_events = 0;
3321 		rb_advance_reader(cpu_buffer);
3322 	}
3323 
3324 	if (dolock)
3325 		spin_unlock(&cpu_buffer->reader_lock);
3326 	local_irq_restore(flags);
3327 
3328  out:
3329 	preempt_enable();
3330 
3331 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3332 		goto again;
3333 
3334 	return event;
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3337 
3338 /**
3339  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3340  * @buffer: The ring buffer to read from
3341  * @cpu: The cpu buffer to iterate over
3342  *
3343  * This performs the initial preparations necessary to iterate
3344  * through the buffer.  Memory is allocated, buffer recording
3345  * is disabled, and the iterator pointer is returned to the caller.
3346  *
3347  * Disabling buffer recordng prevents the reading from being
3348  * corrupted. This is not a consuming read, so a producer is not
3349  * expected.
3350  *
3351  * After a sequence of ring_buffer_read_prepare calls, the user is
3352  * expected to make at least one call to ring_buffer_prepare_sync.
3353  * Afterwards, ring_buffer_read_start is invoked to get things going
3354  * for real.
3355  *
3356  * This overall must be paired with ring_buffer_finish.
3357  */
3358 struct ring_buffer_iter *
3359 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3360 {
3361 	struct ring_buffer_per_cpu *cpu_buffer;
3362 	struct ring_buffer_iter *iter;
3363 
3364 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3365 		return NULL;
3366 
3367 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3368 	if (!iter)
3369 		return NULL;
3370 
3371 	cpu_buffer = buffer->buffers[cpu];
3372 
3373 	iter->cpu_buffer = cpu_buffer;
3374 
3375 	atomic_inc(&cpu_buffer->record_disabled);
3376 
3377 	return iter;
3378 }
3379 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3380 
3381 /**
3382  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3383  *
3384  * All previously invoked ring_buffer_read_prepare calls to prepare
3385  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3386  * calls on those iterators are allowed.
3387  */
3388 void
3389 ring_buffer_read_prepare_sync(void)
3390 {
3391 	synchronize_sched();
3392 }
3393 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3394 
3395 /**
3396  * ring_buffer_read_start - start a non consuming read of the buffer
3397  * @iter: The iterator returned by ring_buffer_read_prepare
3398  *
3399  * This finalizes the startup of an iteration through the buffer.
3400  * The iterator comes from a call to ring_buffer_read_prepare and
3401  * an intervening ring_buffer_read_prepare_sync must have been
3402  * performed.
3403  *
3404  * Must be paired with ring_buffer_finish.
3405  */
3406 void
3407 ring_buffer_read_start(struct ring_buffer_iter *iter)
3408 {
3409 	struct ring_buffer_per_cpu *cpu_buffer;
3410 	unsigned long flags;
3411 
3412 	if (!iter)
3413 		return;
3414 
3415 	cpu_buffer = iter->cpu_buffer;
3416 
3417 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3418 	arch_spin_lock(&cpu_buffer->lock);
3419 	rb_iter_reset(iter);
3420 	arch_spin_unlock(&cpu_buffer->lock);
3421 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3422 }
3423 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3424 
3425 /**
3426  * ring_buffer_finish - finish reading the iterator of the buffer
3427  * @iter: The iterator retrieved by ring_buffer_start
3428  *
3429  * This re-enables the recording to the buffer, and frees the
3430  * iterator.
3431  */
3432 void
3433 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3434 {
3435 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3436 
3437 	atomic_dec(&cpu_buffer->record_disabled);
3438 	kfree(iter);
3439 }
3440 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3441 
3442 /**
3443  * ring_buffer_read - read the next item in the ring buffer by the iterator
3444  * @iter: The ring buffer iterator
3445  * @ts: The time stamp of the event read.
3446  *
3447  * This reads the next event in the ring buffer and increments the iterator.
3448  */
3449 struct ring_buffer_event *
3450 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3451 {
3452 	struct ring_buffer_event *event;
3453 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3454 	unsigned long flags;
3455 
3456 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3457  again:
3458 	event = rb_iter_peek(iter, ts);
3459 	if (!event)
3460 		goto out;
3461 
3462 	if (event->type_len == RINGBUF_TYPE_PADDING)
3463 		goto again;
3464 
3465 	rb_advance_iter(iter);
3466  out:
3467 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3468 
3469 	return event;
3470 }
3471 EXPORT_SYMBOL_GPL(ring_buffer_read);
3472 
3473 /**
3474  * ring_buffer_size - return the size of the ring buffer (in bytes)
3475  * @buffer: The ring buffer.
3476  */
3477 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3478 {
3479 	return BUF_PAGE_SIZE * buffer->pages;
3480 }
3481 EXPORT_SYMBOL_GPL(ring_buffer_size);
3482 
3483 static void
3484 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3485 {
3486 	rb_head_page_deactivate(cpu_buffer);
3487 
3488 	cpu_buffer->head_page
3489 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3490 	local_set(&cpu_buffer->head_page->write, 0);
3491 	local_set(&cpu_buffer->head_page->entries, 0);
3492 	local_set(&cpu_buffer->head_page->page->commit, 0);
3493 
3494 	cpu_buffer->head_page->read = 0;
3495 
3496 	cpu_buffer->tail_page = cpu_buffer->head_page;
3497 	cpu_buffer->commit_page = cpu_buffer->head_page;
3498 
3499 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3500 	local_set(&cpu_buffer->reader_page->write, 0);
3501 	local_set(&cpu_buffer->reader_page->entries, 0);
3502 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3503 	cpu_buffer->reader_page->read = 0;
3504 
3505 	local_set(&cpu_buffer->commit_overrun, 0);
3506 	local_set(&cpu_buffer->overrun, 0);
3507 	local_set(&cpu_buffer->entries, 0);
3508 	local_set(&cpu_buffer->committing, 0);
3509 	local_set(&cpu_buffer->commits, 0);
3510 	cpu_buffer->read = 0;
3511 
3512 	cpu_buffer->write_stamp = 0;
3513 	cpu_buffer->read_stamp = 0;
3514 
3515 	cpu_buffer->lost_events = 0;
3516 	cpu_buffer->last_overrun = 0;
3517 
3518 	rb_head_page_activate(cpu_buffer);
3519 }
3520 
3521 /**
3522  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3523  * @buffer: The ring buffer to reset a per cpu buffer of
3524  * @cpu: The CPU buffer to be reset
3525  */
3526 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3527 {
3528 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3529 	unsigned long flags;
3530 
3531 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3532 		return;
3533 
3534 	atomic_inc(&cpu_buffer->record_disabled);
3535 
3536 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3537 
3538 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3539 		goto out;
3540 
3541 	arch_spin_lock(&cpu_buffer->lock);
3542 
3543 	rb_reset_cpu(cpu_buffer);
3544 
3545 	arch_spin_unlock(&cpu_buffer->lock);
3546 
3547  out:
3548 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3549 
3550 	atomic_dec(&cpu_buffer->record_disabled);
3551 }
3552 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3553 
3554 /**
3555  * ring_buffer_reset - reset a ring buffer
3556  * @buffer: The ring buffer to reset all cpu buffers
3557  */
3558 void ring_buffer_reset(struct ring_buffer *buffer)
3559 {
3560 	int cpu;
3561 
3562 	for_each_buffer_cpu(buffer, cpu)
3563 		ring_buffer_reset_cpu(buffer, cpu);
3564 }
3565 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3566 
3567 /**
3568  * rind_buffer_empty - is the ring buffer empty?
3569  * @buffer: The ring buffer to test
3570  */
3571 int ring_buffer_empty(struct ring_buffer *buffer)
3572 {
3573 	struct ring_buffer_per_cpu *cpu_buffer;
3574 	unsigned long flags;
3575 	int dolock;
3576 	int cpu;
3577 	int ret;
3578 
3579 	dolock = rb_ok_to_lock();
3580 
3581 	/* yes this is racy, but if you don't like the race, lock the buffer */
3582 	for_each_buffer_cpu(buffer, cpu) {
3583 		cpu_buffer = buffer->buffers[cpu];
3584 		local_irq_save(flags);
3585 		if (dolock)
3586 			spin_lock(&cpu_buffer->reader_lock);
3587 		ret = rb_per_cpu_empty(cpu_buffer);
3588 		if (dolock)
3589 			spin_unlock(&cpu_buffer->reader_lock);
3590 		local_irq_restore(flags);
3591 
3592 		if (!ret)
3593 			return 0;
3594 	}
3595 
3596 	return 1;
3597 }
3598 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3599 
3600 /**
3601  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3602  * @buffer: The ring buffer
3603  * @cpu: The CPU buffer to test
3604  */
3605 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3606 {
3607 	struct ring_buffer_per_cpu *cpu_buffer;
3608 	unsigned long flags;
3609 	int dolock;
3610 	int ret;
3611 
3612 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3613 		return 1;
3614 
3615 	dolock = rb_ok_to_lock();
3616 
3617 	cpu_buffer = buffer->buffers[cpu];
3618 	local_irq_save(flags);
3619 	if (dolock)
3620 		spin_lock(&cpu_buffer->reader_lock);
3621 	ret = rb_per_cpu_empty(cpu_buffer);
3622 	if (dolock)
3623 		spin_unlock(&cpu_buffer->reader_lock);
3624 	local_irq_restore(flags);
3625 
3626 	return ret;
3627 }
3628 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3629 
3630 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3631 /**
3632  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3633  * @buffer_a: One buffer to swap with
3634  * @buffer_b: The other buffer to swap with
3635  *
3636  * This function is useful for tracers that want to take a "snapshot"
3637  * of a CPU buffer and has another back up buffer lying around.
3638  * it is expected that the tracer handles the cpu buffer not being
3639  * used at the moment.
3640  */
3641 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3642 			 struct ring_buffer *buffer_b, int cpu)
3643 {
3644 	struct ring_buffer_per_cpu *cpu_buffer_a;
3645 	struct ring_buffer_per_cpu *cpu_buffer_b;
3646 	int ret = -EINVAL;
3647 
3648 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3649 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3650 		goto out;
3651 
3652 	/* At least make sure the two buffers are somewhat the same */
3653 	if (buffer_a->pages != buffer_b->pages)
3654 		goto out;
3655 
3656 	ret = -EAGAIN;
3657 
3658 	if (ring_buffer_flags != RB_BUFFERS_ON)
3659 		goto out;
3660 
3661 	if (atomic_read(&buffer_a->record_disabled))
3662 		goto out;
3663 
3664 	if (atomic_read(&buffer_b->record_disabled))
3665 		goto out;
3666 
3667 	cpu_buffer_a = buffer_a->buffers[cpu];
3668 	cpu_buffer_b = buffer_b->buffers[cpu];
3669 
3670 	if (atomic_read(&cpu_buffer_a->record_disabled))
3671 		goto out;
3672 
3673 	if (atomic_read(&cpu_buffer_b->record_disabled))
3674 		goto out;
3675 
3676 	/*
3677 	 * We can't do a synchronize_sched here because this
3678 	 * function can be called in atomic context.
3679 	 * Normally this will be called from the same CPU as cpu.
3680 	 * If not it's up to the caller to protect this.
3681 	 */
3682 	atomic_inc(&cpu_buffer_a->record_disabled);
3683 	atomic_inc(&cpu_buffer_b->record_disabled);
3684 
3685 	ret = -EBUSY;
3686 	if (local_read(&cpu_buffer_a->committing))
3687 		goto out_dec;
3688 	if (local_read(&cpu_buffer_b->committing))
3689 		goto out_dec;
3690 
3691 	buffer_a->buffers[cpu] = cpu_buffer_b;
3692 	buffer_b->buffers[cpu] = cpu_buffer_a;
3693 
3694 	cpu_buffer_b->buffer = buffer_a;
3695 	cpu_buffer_a->buffer = buffer_b;
3696 
3697 	ret = 0;
3698 
3699 out_dec:
3700 	atomic_dec(&cpu_buffer_a->record_disabled);
3701 	atomic_dec(&cpu_buffer_b->record_disabled);
3702 out:
3703 	return ret;
3704 }
3705 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3706 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3707 
3708 /**
3709  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3710  * @buffer: the buffer to allocate for.
3711  *
3712  * This function is used in conjunction with ring_buffer_read_page.
3713  * When reading a full page from the ring buffer, these functions
3714  * can be used to speed up the process. The calling function should
3715  * allocate a few pages first with this function. Then when it
3716  * needs to get pages from the ring buffer, it passes the result
3717  * of this function into ring_buffer_read_page, which will swap
3718  * the page that was allocated, with the read page of the buffer.
3719  *
3720  * Returns:
3721  *  The page allocated, or NULL on error.
3722  */
3723 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3724 {
3725 	struct buffer_data_page *bpage;
3726 	unsigned long addr;
3727 
3728 	addr = __get_free_page(GFP_KERNEL);
3729 	if (!addr)
3730 		return NULL;
3731 
3732 	bpage = (void *)addr;
3733 
3734 	rb_init_page(bpage);
3735 
3736 	return bpage;
3737 }
3738 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3739 
3740 /**
3741  * ring_buffer_free_read_page - free an allocated read page
3742  * @buffer: the buffer the page was allocate for
3743  * @data: the page to free
3744  *
3745  * Free a page allocated from ring_buffer_alloc_read_page.
3746  */
3747 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3748 {
3749 	free_page((unsigned long)data);
3750 }
3751 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3752 
3753 /**
3754  * ring_buffer_read_page - extract a page from the ring buffer
3755  * @buffer: buffer to extract from
3756  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3757  * @len: amount to extract
3758  * @cpu: the cpu of the buffer to extract
3759  * @full: should the extraction only happen when the page is full.
3760  *
3761  * This function will pull out a page from the ring buffer and consume it.
3762  * @data_page must be the address of the variable that was returned
3763  * from ring_buffer_alloc_read_page. This is because the page might be used
3764  * to swap with a page in the ring buffer.
3765  *
3766  * for example:
3767  *	rpage = ring_buffer_alloc_read_page(buffer);
3768  *	if (!rpage)
3769  *		return error;
3770  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3771  *	if (ret >= 0)
3772  *		process_page(rpage, ret);
3773  *
3774  * When @full is set, the function will not return true unless
3775  * the writer is off the reader page.
3776  *
3777  * Note: it is up to the calling functions to handle sleeps and wakeups.
3778  *  The ring buffer can be used anywhere in the kernel and can not
3779  *  blindly call wake_up. The layer that uses the ring buffer must be
3780  *  responsible for that.
3781  *
3782  * Returns:
3783  *  >=0 if data has been transferred, returns the offset of consumed data.
3784  *  <0 if no data has been transferred.
3785  */
3786 int ring_buffer_read_page(struct ring_buffer *buffer,
3787 			  void **data_page, size_t len, int cpu, int full)
3788 {
3789 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3790 	struct ring_buffer_event *event;
3791 	struct buffer_data_page *bpage;
3792 	struct buffer_page *reader;
3793 	unsigned long missed_events;
3794 	unsigned long flags;
3795 	unsigned int commit;
3796 	unsigned int read;
3797 	u64 save_timestamp;
3798 	int ret = -1;
3799 
3800 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3801 		goto out;
3802 
3803 	/*
3804 	 * If len is not big enough to hold the page header, then
3805 	 * we can not copy anything.
3806 	 */
3807 	if (len <= BUF_PAGE_HDR_SIZE)
3808 		goto out;
3809 
3810 	len -= BUF_PAGE_HDR_SIZE;
3811 
3812 	if (!data_page)
3813 		goto out;
3814 
3815 	bpage = *data_page;
3816 	if (!bpage)
3817 		goto out;
3818 
3819 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3820 
3821 	reader = rb_get_reader_page(cpu_buffer);
3822 	if (!reader)
3823 		goto out_unlock;
3824 
3825 	event = rb_reader_event(cpu_buffer);
3826 
3827 	read = reader->read;
3828 	commit = rb_page_commit(reader);
3829 
3830 	/* Check if any events were dropped */
3831 	missed_events = cpu_buffer->lost_events;
3832 
3833 	/*
3834 	 * If this page has been partially read or
3835 	 * if len is not big enough to read the rest of the page or
3836 	 * a writer is still on the page, then
3837 	 * we must copy the data from the page to the buffer.
3838 	 * Otherwise, we can simply swap the page with the one passed in.
3839 	 */
3840 	if (read || (len < (commit - read)) ||
3841 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3842 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3843 		unsigned int rpos = read;
3844 		unsigned int pos = 0;
3845 		unsigned int size;
3846 
3847 		if (full)
3848 			goto out_unlock;
3849 
3850 		if (len > (commit - read))
3851 			len = (commit - read);
3852 
3853 		size = rb_event_length(event);
3854 
3855 		if (len < size)
3856 			goto out_unlock;
3857 
3858 		/* save the current timestamp, since the user will need it */
3859 		save_timestamp = cpu_buffer->read_stamp;
3860 
3861 		/* Need to copy one event at a time */
3862 		do {
3863 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3864 
3865 			len -= size;
3866 
3867 			rb_advance_reader(cpu_buffer);
3868 			rpos = reader->read;
3869 			pos += size;
3870 
3871 			event = rb_reader_event(cpu_buffer);
3872 			size = rb_event_length(event);
3873 		} while (len > size);
3874 
3875 		/* update bpage */
3876 		local_set(&bpage->commit, pos);
3877 		bpage->time_stamp = save_timestamp;
3878 
3879 		/* we copied everything to the beginning */
3880 		read = 0;
3881 	} else {
3882 		/* update the entry counter */
3883 		cpu_buffer->read += rb_page_entries(reader);
3884 
3885 		/* swap the pages */
3886 		rb_init_page(bpage);
3887 		bpage = reader->page;
3888 		reader->page = *data_page;
3889 		local_set(&reader->write, 0);
3890 		local_set(&reader->entries, 0);
3891 		reader->read = 0;
3892 		*data_page = bpage;
3893 
3894 		/*
3895 		 * Use the real_end for the data size,
3896 		 * This gives us a chance to store the lost events
3897 		 * on the page.
3898 		 */
3899 		if (reader->real_end)
3900 			local_set(&bpage->commit, reader->real_end);
3901 	}
3902 	ret = read;
3903 
3904 	cpu_buffer->lost_events = 0;
3905 
3906 	commit = local_read(&bpage->commit);
3907 	/*
3908 	 * Set a flag in the commit field if we lost events
3909 	 */
3910 	if (missed_events) {
3911 		/* If there is room at the end of the page to save the
3912 		 * missed events, then record it there.
3913 		 */
3914 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3915 			memcpy(&bpage->data[commit], &missed_events,
3916 			       sizeof(missed_events));
3917 			local_add(RB_MISSED_STORED, &bpage->commit);
3918 			commit += sizeof(missed_events);
3919 		}
3920 		local_add(RB_MISSED_EVENTS, &bpage->commit);
3921 	}
3922 
3923 	/*
3924 	 * This page may be off to user land. Zero it out here.
3925 	 */
3926 	if (commit < BUF_PAGE_SIZE)
3927 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3928 
3929  out_unlock:
3930 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3931 
3932  out:
3933 	return ret;
3934 }
3935 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3936 
3937 #ifdef CONFIG_TRACING
3938 static ssize_t
3939 rb_simple_read(struct file *filp, char __user *ubuf,
3940 	       size_t cnt, loff_t *ppos)
3941 {
3942 	unsigned long *p = filp->private_data;
3943 	char buf[64];
3944 	int r;
3945 
3946 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3947 		r = sprintf(buf, "permanently disabled\n");
3948 	else
3949 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3950 
3951 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3952 }
3953 
3954 static ssize_t
3955 rb_simple_write(struct file *filp, const char __user *ubuf,
3956 		size_t cnt, loff_t *ppos)
3957 {
3958 	unsigned long *p = filp->private_data;
3959 	char buf[64];
3960 	unsigned long val;
3961 	int ret;
3962 
3963 	if (cnt >= sizeof(buf))
3964 		return -EINVAL;
3965 
3966 	if (copy_from_user(&buf, ubuf, cnt))
3967 		return -EFAULT;
3968 
3969 	buf[cnt] = 0;
3970 
3971 	ret = strict_strtoul(buf, 10, &val);
3972 	if (ret < 0)
3973 		return ret;
3974 
3975 	if (val)
3976 		set_bit(RB_BUFFERS_ON_BIT, p);
3977 	else
3978 		clear_bit(RB_BUFFERS_ON_BIT, p);
3979 
3980 	(*ppos)++;
3981 
3982 	return cnt;
3983 }
3984 
3985 static const struct file_operations rb_simple_fops = {
3986 	.open		= tracing_open_generic,
3987 	.read		= rb_simple_read,
3988 	.write		= rb_simple_write,
3989 };
3990 
3991 
3992 static __init int rb_init_debugfs(void)
3993 {
3994 	struct dentry *d_tracer;
3995 
3996 	d_tracer = tracing_init_dentry();
3997 
3998 	trace_create_file("tracing_on", 0644, d_tracer,
3999 			    &ring_buffer_flags, &rb_simple_fops);
4000 
4001 	return 0;
4002 }
4003 
4004 fs_initcall(rb_init_debugfs);
4005 #endif
4006 
4007 #ifdef CONFIG_HOTPLUG_CPU
4008 static int rb_cpu_notify(struct notifier_block *self,
4009 			 unsigned long action, void *hcpu)
4010 {
4011 	struct ring_buffer *buffer =
4012 		container_of(self, struct ring_buffer, cpu_notify);
4013 	long cpu = (long)hcpu;
4014 
4015 	switch (action) {
4016 	case CPU_UP_PREPARE:
4017 	case CPU_UP_PREPARE_FROZEN:
4018 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4019 			return NOTIFY_OK;
4020 
4021 		buffer->buffers[cpu] =
4022 			rb_allocate_cpu_buffer(buffer, cpu);
4023 		if (!buffer->buffers[cpu]) {
4024 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4025 			     cpu);
4026 			return NOTIFY_OK;
4027 		}
4028 		smp_wmb();
4029 		cpumask_set_cpu(cpu, buffer->cpumask);
4030 		break;
4031 	case CPU_DOWN_PREPARE:
4032 	case CPU_DOWN_PREPARE_FROZEN:
4033 		/*
4034 		 * Do nothing.
4035 		 *  If we were to free the buffer, then the user would
4036 		 *  lose any trace that was in the buffer.
4037 		 */
4038 		break;
4039 	default:
4040 		break;
4041 	}
4042 	return NOTIFY_OK;
4043 }
4044 #endif
4045