1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 /* 33 * The "absolute" timestamp in the buffer is only 59 bits. 34 * If a clock has the 5 MSBs set, it needs to be saved and 35 * reinserted. 36 */ 37 #define TS_MSB (0xf8ULL << 56) 38 #define ABS_TS_MASK (~TS_MSB) 39 40 static void update_pages_handler(struct work_struct *work); 41 42 /* 43 * The ring buffer header is special. We must manually up keep it. 44 */ 45 int ring_buffer_print_entry_header(struct trace_seq *s) 46 { 47 trace_seq_puts(s, "# compressed entry header\n"); 48 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 49 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 50 trace_seq_puts(s, "\tarray : 32 bits\n"); 51 trace_seq_putc(s, '\n'); 52 trace_seq_printf(s, "\tpadding : type == %d\n", 53 RINGBUF_TYPE_PADDING); 54 trace_seq_printf(s, "\ttime_extend : type == %d\n", 55 RINGBUF_TYPE_TIME_EXTEND); 56 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 57 RINGBUF_TYPE_TIME_STAMP); 58 trace_seq_printf(s, "\tdata max type_len == %d\n", 59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 60 61 return !trace_seq_has_overflowed(s); 62 } 63 64 /* 65 * The ring buffer is made up of a list of pages. A separate list of pages is 66 * allocated for each CPU. A writer may only write to a buffer that is 67 * associated with the CPU it is currently executing on. A reader may read 68 * from any per cpu buffer. 69 * 70 * The reader is special. For each per cpu buffer, the reader has its own 71 * reader page. When a reader has read the entire reader page, this reader 72 * page is swapped with another page in the ring buffer. 73 * 74 * Now, as long as the writer is off the reader page, the reader can do what 75 * ever it wants with that page. The writer will never write to that page 76 * again (as long as it is out of the ring buffer). 77 * 78 * Here's some silly ASCII art. 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page | 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * | |-->| |-->| | 96 * +---+ +---+ +---+ 97 * ^ | 98 * | | 99 * +---------------+ 100 * 101 * 102 * +------+ 103 * |reader| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | |-->| |-->| | 107 * | +---+ +---+ +---+ 108 * | | 109 * | | 110 * +------------------------------+ 111 * 112 * 113 * +------+ 114 * |buffer| RING BUFFER 115 * |page |------------------v 116 * +------+ +---+ +---+ +---+ 117 * ^ | | | |-->| | 118 * | New +---+ +---+ +---+ 119 * | Reader------^ | 120 * | page | 121 * +------------------------------+ 122 * 123 * 124 * After we make this swap, the reader can hand this page off to the splice 125 * code and be done with it. It can even allocate a new page if it needs to 126 * and swap that into the ring buffer. 127 * 128 * We will be using cmpxchg soon to make all this lockless. 129 * 130 */ 131 132 /* Used for individual buffers (after the counter) */ 133 #define RB_BUFFER_OFF (1 << 20) 134 135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 136 137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 138 #define RB_ALIGNMENT 4U 139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 141 142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 143 # define RB_FORCE_8BYTE_ALIGNMENT 0 144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 145 #else 146 # define RB_FORCE_8BYTE_ALIGNMENT 1 147 # define RB_ARCH_ALIGNMENT 8U 148 #endif 149 150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 151 152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 154 155 enum { 156 RB_LEN_TIME_EXTEND = 8, 157 RB_LEN_TIME_STAMP = 8, 158 }; 159 160 #define skip_time_extend(event) \ 161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 162 163 #define extended_time(event) \ 164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 165 166 static inline int rb_null_event(struct ring_buffer_event *event) 167 { 168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 169 } 170 171 static void rb_event_set_padding(struct ring_buffer_event *event) 172 { 173 /* padding has a NULL time_delta */ 174 event->type_len = RINGBUF_TYPE_PADDING; 175 event->time_delta = 0; 176 } 177 178 static unsigned 179 rb_event_data_length(struct ring_buffer_event *event) 180 { 181 unsigned length; 182 183 if (event->type_len) 184 length = event->type_len * RB_ALIGNMENT; 185 else 186 length = event->array[0]; 187 return length + RB_EVNT_HDR_SIZE; 188 } 189 190 /* 191 * Return the length of the given event. Will return 192 * the length of the time extend if the event is a 193 * time extend. 194 */ 195 static inline unsigned 196 rb_event_length(struct ring_buffer_event *event) 197 { 198 switch (event->type_len) { 199 case RINGBUF_TYPE_PADDING: 200 if (rb_null_event(event)) 201 /* undefined */ 202 return -1; 203 return event->array[0] + RB_EVNT_HDR_SIZE; 204 205 case RINGBUF_TYPE_TIME_EXTEND: 206 return RB_LEN_TIME_EXTEND; 207 208 case RINGBUF_TYPE_TIME_STAMP: 209 return RB_LEN_TIME_STAMP; 210 211 case RINGBUF_TYPE_DATA: 212 return rb_event_data_length(event); 213 default: 214 WARN_ON_ONCE(1); 215 } 216 /* not hit */ 217 return 0; 218 } 219 220 /* 221 * Return total length of time extend and data, 222 * or just the event length for all other events. 223 */ 224 static inline unsigned 225 rb_event_ts_length(struct ring_buffer_event *event) 226 { 227 unsigned len = 0; 228 229 if (extended_time(event)) { 230 /* time extends include the data event after it */ 231 len = RB_LEN_TIME_EXTEND; 232 event = skip_time_extend(event); 233 } 234 return len + rb_event_length(event); 235 } 236 237 /** 238 * ring_buffer_event_length - return the length of the event 239 * @event: the event to get the length of 240 * 241 * Returns the size of the data load of a data event. 242 * If the event is something other than a data event, it 243 * returns the size of the event itself. With the exception 244 * of a TIME EXTEND, where it still returns the size of the 245 * data load of the data event after it. 246 */ 247 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 248 { 249 unsigned length; 250 251 if (extended_time(event)) 252 event = skip_time_extend(event); 253 254 length = rb_event_length(event); 255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 256 return length; 257 length -= RB_EVNT_HDR_SIZE; 258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 259 length -= sizeof(event->array[0]); 260 return length; 261 } 262 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 263 264 /* inline for ring buffer fast paths */ 265 static __always_inline void * 266 rb_event_data(struct ring_buffer_event *event) 267 { 268 if (extended_time(event)) 269 event = skip_time_extend(event); 270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 271 /* If length is in len field, then array[0] has the data */ 272 if (event->type_len) 273 return (void *)&event->array[0]; 274 /* Otherwise length is in array[0] and array[1] has the data */ 275 return (void *)&event->array[1]; 276 } 277 278 /** 279 * ring_buffer_event_data - return the data of the event 280 * @event: the event to get the data from 281 */ 282 void *ring_buffer_event_data(struct ring_buffer_event *event) 283 { 284 return rb_event_data(event); 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 287 288 #define for_each_buffer_cpu(buffer, cpu) \ 289 for_each_cpu(cpu, buffer->cpumask) 290 291 #define for_each_online_buffer_cpu(buffer, cpu) \ 292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 293 294 #define TS_SHIFT 27 295 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 296 #define TS_DELTA_TEST (~TS_MASK) 297 298 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 299 { 300 u64 ts; 301 302 ts = event->array[0]; 303 ts <<= TS_SHIFT; 304 ts += event->time_delta; 305 306 return ts; 307 } 308 309 /* Flag when events were overwritten */ 310 #define RB_MISSED_EVENTS (1 << 31) 311 /* Missed count stored at end */ 312 #define RB_MISSED_STORED (1 << 30) 313 314 struct buffer_data_page { 315 u64 time_stamp; /* page time stamp */ 316 local_t commit; /* write committed index */ 317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 318 }; 319 320 /* 321 * Note, the buffer_page list must be first. The buffer pages 322 * are allocated in cache lines, which means that each buffer 323 * page will be at the beginning of a cache line, and thus 324 * the least significant bits will be zero. We use this to 325 * add flags in the list struct pointers, to make the ring buffer 326 * lockless. 327 */ 328 struct buffer_page { 329 struct list_head list; /* list of buffer pages */ 330 local_t write; /* index for next write */ 331 unsigned read; /* index for next read */ 332 local_t entries; /* entries on this page */ 333 unsigned long real_end; /* real end of data */ 334 struct buffer_data_page *page; /* Actual data page */ 335 }; 336 337 /* 338 * The buffer page counters, write and entries, must be reset 339 * atomically when crossing page boundaries. To synchronize this 340 * update, two counters are inserted into the number. One is 341 * the actual counter for the write position or count on the page. 342 * 343 * The other is a counter of updaters. Before an update happens 344 * the update partition of the counter is incremented. This will 345 * allow the updater to update the counter atomically. 346 * 347 * The counter is 20 bits, and the state data is 12. 348 */ 349 #define RB_WRITE_MASK 0xfffff 350 #define RB_WRITE_INTCNT (1 << 20) 351 352 static void rb_init_page(struct buffer_data_page *bpage) 353 { 354 local_set(&bpage->commit, 0); 355 } 356 357 /* 358 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 359 * this issue out. 360 */ 361 static void free_buffer_page(struct buffer_page *bpage) 362 { 363 free_page((unsigned long)bpage->page); 364 kfree(bpage); 365 } 366 367 /* 368 * We need to fit the time_stamp delta into 27 bits. 369 */ 370 static inline int test_time_stamp(u64 delta) 371 { 372 if (delta & TS_DELTA_TEST) 373 return 1; 374 return 0; 375 } 376 377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 378 379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 381 382 int ring_buffer_print_page_header(struct trace_seq *s) 383 { 384 struct buffer_data_page field; 385 386 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 387 "offset:0;\tsize:%u;\tsigned:%u;\n", 388 (unsigned int)sizeof(field.time_stamp), 389 (unsigned int)is_signed_type(u64)); 390 391 trace_seq_printf(s, "\tfield: local_t commit;\t" 392 "offset:%u;\tsize:%u;\tsigned:%u;\n", 393 (unsigned int)offsetof(typeof(field), commit), 394 (unsigned int)sizeof(field.commit), 395 (unsigned int)is_signed_type(long)); 396 397 trace_seq_printf(s, "\tfield: int overwrite;\t" 398 "offset:%u;\tsize:%u;\tsigned:%u;\n", 399 (unsigned int)offsetof(typeof(field), commit), 400 1, 401 (unsigned int)is_signed_type(long)); 402 403 trace_seq_printf(s, "\tfield: char data;\t" 404 "offset:%u;\tsize:%u;\tsigned:%u;\n", 405 (unsigned int)offsetof(typeof(field), data), 406 (unsigned int)BUF_PAGE_SIZE, 407 (unsigned int)is_signed_type(char)); 408 409 return !trace_seq_has_overflowed(s); 410 } 411 412 struct rb_irq_work { 413 struct irq_work work; 414 wait_queue_head_t waiters; 415 wait_queue_head_t full_waiters; 416 long wait_index; 417 bool waiters_pending; 418 bool full_waiters_pending; 419 bool wakeup_full; 420 }; 421 422 /* 423 * Structure to hold event state and handle nested events. 424 */ 425 struct rb_event_info { 426 u64 ts; 427 u64 delta; 428 u64 before; 429 u64 after; 430 unsigned long length; 431 struct buffer_page *tail_page; 432 int add_timestamp; 433 }; 434 435 /* 436 * Used for the add_timestamp 437 * NONE 438 * EXTEND - wants a time extend 439 * ABSOLUTE - the buffer requests all events to have absolute time stamps 440 * FORCE - force a full time stamp. 441 */ 442 enum { 443 RB_ADD_STAMP_NONE = 0, 444 RB_ADD_STAMP_EXTEND = BIT(1), 445 RB_ADD_STAMP_ABSOLUTE = BIT(2), 446 RB_ADD_STAMP_FORCE = BIT(3) 447 }; 448 /* 449 * Used for which event context the event is in. 450 * TRANSITION = 0 451 * NMI = 1 452 * IRQ = 2 453 * SOFTIRQ = 3 454 * NORMAL = 4 455 * 456 * See trace_recursive_lock() comment below for more details. 457 */ 458 enum { 459 RB_CTX_TRANSITION, 460 RB_CTX_NMI, 461 RB_CTX_IRQ, 462 RB_CTX_SOFTIRQ, 463 RB_CTX_NORMAL, 464 RB_CTX_MAX 465 }; 466 467 #if BITS_PER_LONG == 32 468 #define RB_TIME_32 469 #endif 470 471 /* To test on 64 bit machines */ 472 //#define RB_TIME_32 473 474 #ifdef RB_TIME_32 475 476 struct rb_time_struct { 477 local_t cnt; 478 local_t top; 479 local_t bottom; 480 local_t msb; 481 }; 482 #else 483 #include <asm/local64.h> 484 struct rb_time_struct { 485 local64_t time; 486 }; 487 #endif 488 typedef struct rb_time_struct rb_time_t; 489 490 #define MAX_NEST 5 491 492 /* 493 * head_page == tail_page && head == tail then buffer is empty. 494 */ 495 struct ring_buffer_per_cpu { 496 int cpu; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 struct trace_buffer *buffer; 500 raw_spinlock_t reader_lock; /* serialize readers */ 501 arch_spinlock_t lock; 502 struct lock_class_key lock_key; 503 struct buffer_data_page *free_page; 504 unsigned long nr_pages; 505 unsigned int current_context; 506 struct list_head *pages; 507 struct buffer_page *head_page; /* read from head */ 508 struct buffer_page *tail_page; /* write to tail */ 509 struct buffer_page *commit_page; /* committed pages */ 510 struct buffer_page *reader_page; 511 unsigned long lost_events; 512 unsigned long last_overrun; 513 unsigned long nest; 514 local_t entries_bytes; 515 local_t entries; 516 local_t overrun; 517 local_t commit_overrun; 518 local_t dropped_events; 519 local_t committing; 520 local_t commits; 521 local_t pages_touched; 522 local_t pages_lost; 523 local_t pages_read; 524 long last_pages_touch; 525 size_t shortest_full; 526 unsigned long read; 527 unsigned long read_bytes; 528 rb_time_t write_stamp; 529 rb_time_t before_stamp; 530 u64 event_stamp[MAX_NEST]; 531 u64 read_stamp; 532 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 533 long nr_pages_to_update; 534 struct list_head new_pages; /* new pages to add */ 535 struct work_struct update_pages_work; 536 struct completion update_done; 537 538 struct rb_irq_work irq_work; 539 }; 540 541 struct trace_buffer { 542 unsigned flags; 543 int cpus; 544 atomic_t record_disabled; 545 cpumask_var_t cpumask; 546 547 struct lock_class_key *reader_lock_key; 548 549 struct mutex mutex; 550 551 struct ring_buffer_per_cpu **buffers; 552 553 struct hlist_node node; 554 u64 (*clock)(void); 555 556 struct rb_irq_work irq_work; 557 bool time_stamp_abs; 558 }; 559 560 struct ring_buffer_iter { 561 struct ring_buffer_per_cpu *cpu_buffer; 562 unsigned long head; 563 unsigned long next_event; 564 struct buffer_page *head_page; 565 struct buffer_page *cache_reader_page; 566 unsigned long cache_read; 567 u64 read_stamp; 568 u64 page_stamp; 569 struct ring_buffer_event *event; 570 int missed_events; 571 }; 572 573 #ifdef RB_TIME_32 574 575 /* 576 * On 32 bit machines, local64_t is very expensive. As the ring 577 * buffer doesn't need all the features of a true 64 bit atomic, 578 * on 32 bit, it uses these functions (64 still uses local64_t). 579 * 580 * For the ring buffer, 64 bit required operations for the time is 581 * the following: 582 * 583 * - Reads may fail if it interrupted a modification of the time stamp. 584 * It will succeed if it did not interrupt another write even if 585 * the read itself is interrupted by a write. 586 * It returns whether it was successful or not. 587 * 588 * - Writes always succeed and will overwrite other writes and writes 589 * that were done by events interrupting the current write. 590 * 591 * - A write followed by a read of the same time stamp will always succeed, 592 * but may not contain the same value. 593 * 594 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 595 * Other than that, it acts like a normal cmpxchg. 596 * 597 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 598 * (bottom being the least significant 30 bits of the 60 bit time stamp). 599 * 600 * The two most significant bits of each half holds a 2 bit counter (0-3). 601 * Each update will increment this counter by one. 602 * When reading the top and bottom, if the two counter bits match then the 603 * top and bottom together make a valid 60 bit number. 604 */ 605 #define RB_TIME_SHIFT 30 606 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 607 #define RB_TIME_MSB_SHIFT 60 608 609 static inline int rb_time_cnt(unsigned long val) 610 { 611 return (val >> RB_TIME_SHIFT) & 3; 612 } 613 614 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 615 { 616 u64 val; 617 618 val = top & RB_TIME_VAL_MASK; 619 val <<= RB_TIME_SHIFT; 620 val |= bottom & RB_TIME_VAL_MASK; 621 622 return val; 623 } 624 625 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 626 { 627 unsigned long top, bottom, msb; 628 unsigned long c; 629 630 /* 631 * If the read is interrupted by a write, then the cnt will 632 * be different. Loop until both top and bottom have been read 633 * without interruption. 634 */ 635 do { 636 c = local_read(&t->cnt); 637 top = local_read(&t->top); 638 bottom = local_read(&t->bottom); 639 msb = local_read(&t->msb); 640 } while (c != local_read(&t->cnt)); 641 642 *cnt = rb_time_cnt(top); 643 644 /* If top and bottom counts don't match, this interrupted a write */ 645 if (*cnt != rb_time_cnt(bottom)) 646 return false; 647 648 /* The shift to msb will lose its cnt bits */ 649 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT); 650 return true; 651 } 652 653 static bool rb_time_read(rb_time_t *t, u64 *ret) 654 { 655 unsigned long cnt; 656 657 return __rb_time_read(t, ret, &cnt); 658 } 659 660 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 661 { 662 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 663 } 664 665 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom, 666 unsigned long *msb) 667 { 668 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 669 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 670 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT); 671 } 672 673 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 674 { 675 val = rb_time_val_cnt(val, cnt); 676 local_set(t, val); 677 } 678 679 static void rb_time_set(rb_time_t *t, u64 val) 680 { 681 unsigned long cnt, top, bottom, msb; 682 683 rb_time_split(val, &top, &bottom, &msb); 684 685 /* Writes always succeed with a valid number even if it gets interrupted. */ 686 do { 687 cnt = local_inc_return(&t->cnt); 688 rb_time_val_set(&t->top, top, cnt); 689 rb_time_val_set(&t->bottom, bottom, cnt); 690 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt); 691 } while (cnt != local_read(&t->cnt)); 692 } 693 694 static inline bool 695 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 696 { 697 unsigned long ret; 698 699 ret = local_cmpxchg(l, expect, set); 700 return ret == expect; 701 } 702 703 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 704 { 705 unsigned long cnt, top, bottom, msb; 706 unsigned long cnt2, top2, bottom2, msb2; 707 u64 val; 708 709 /* The cmpxchg always fails if it interrupted an update */ 710 if (!__rb_time_read(t, &val, &cnt2)) 711 return false; 712 713 if (val != expect) 714 return false; 715 716 cnt = local_read(&t->cnt); 717 if ((cnt & 3) != cnt2) 718 return false; 719 720 cnt2 = cnt + 1; 721 722 rb_time_split(val, &top, &bottom, &msb); 723 top = rb_time_val_cnt(top, cnt); 724 bottom = rb_time_val_cnt(bottom, cnt); 725 726 rb_time_split(set, &top2, &bottom2, &msb2); 727 top2 = rb_time_val_cnt(top2, cnt2); 728 bottom2 = rb_time_val_cnt(bottom2, cnt2); 729 730 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 731 return false; 732 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2)) 733 return false; 734 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 735 return false; 736 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 737 return false; 738 return true; 739 } 740 741 #else /* 64 bits */ 742 743 /* local64_t always succeeds */ 744 745 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 746 { 747 *ret = local64_read(&t->time); 748 return true; 749 } 750 static void rb_time_set(rb_time_t *t, u64 val) 751 { 752 local64_set(&t->time, val); 753 } 754 755 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 756 { 757 u64 val; 758 val = local64_cmpxchg(&t->time, expect, set); 759 return val == expect; 760 } 761 #endif 762 763 /* 764 * Enable this to make sure that the event passed to 765 * ring_buffer_event_time_stamp() is not committed and also 766 * is on the buffer that it passed in. 767 */ 768 //#define RB_VERIFY_EVENT 769 #ifdef RB_VERIFY_EVENT 770 static struct list_head *rb_list_head(struct list_head *list); 771 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 772 void *event) 773 { 774 struct buffer_page *page = cpu_buffer->commit_page; 775 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 776 struct list_head *next; 777 long commit, write; 778 unsigned long addr = (unsigned long)event; 779 bool done = false; 780 int stop = 0; 781 782 /* Make sure the event exists and is not committed yet */ 783 do { 784 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 785 done = true; 786 commit = local_read(&page->page->commit); 787 write = local_read(&page->write); 788 if (addr >= (unsigned long)&page->page->data[commit] && 789 addr < (unsigned long)&page->page->data[write]) 790 return; 791 792 next = rb_list_head(page->list.next); 793 page = list_entry(next, struct buffer_page, list); 794 } while (!done); 795 WARN_ON_ONCE(1); 796 } 797 #else 798 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 799 void *event) 800 { 801 } 802 #endif 803 804 /* 805 * The absolute time stamp drops the 5 MSBs and some clocks may 806 * require them. The rb_fix_abs_ts() will take a previous full 807 * time stamp, and add the 5 MSB of that time stamp on to the 808 * saved absolute time stamp. Then they are compared in case of 809 * the unlikely event that the latest time stamp incremented 810 * the 5 MSB. 811 */ 812 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 813 { 814 if (save_ts & TS_MSB) { 815 abs |= save_ts & TS_MSB; 816 /* Check for overflow */ 817 if (unlikely(abs < save_ts)) 818 abs += 1ULL << 59; 819 } 820 return abs; 821 } 822 823 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 824 825 /** 826 * ring_buffer_event_time_stamp - return the event's current time stamp 827 * @buffer: The buffer that the event is on 828 * @event: the event to get the time stamp of 829 * 830 * Note, this must be called after @event is reserved, and before it is 831 * committed to the ring buffer. And must be called from the same 832 * context where the event was reserved (normal, softirq, irq, etc). 833 * 834 * Returns the time stamp associated with the current event. 835 * If the event has an extended time stamp, then that is used as 836 * the time stamp to return. 837 * In the highly unlikely case that the event was nested more than 838 * the max nesting, then the write_stamp of the buffer is returned, 839 * otherwise current time is returned, but that really neither of 840 * the last two cases should ever happen. 841 */ 842 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 843 struct ring_buffer_event *event) 844 { 845 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 846 unsigned int nest; 847 u64 ts; 848 849 /* If the event includes an absolute time, then just use that */ 850 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 851 ts = rb_event_time_stamp(event); 852 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 853 } 854 855 nest = local_read(&cpu_buffer->committing); 856 verify_event(cpu_buffer, event); 857 if (WARN_ON_ONCE(!nest)) 858 goto fail; 859 860 /* Read the current saved nesting level time stamp */ 861 if (likely(--nest < MAX_NEST)) 862 return cpu_buffer->event_stamp[nest]; 863 864 /* Shouldn't happen, warn if it does */ 865 WARN_ONCE(1, "nest (%d) greater than max", nest); 866 867 fail: 868 /* Can only fail on 32 bit */ 869 if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) 870 /* Screw it, just read the current time */ 871 ts = rb_time_stamp(cpu_buffer->buffer); 872 873 return ts; 874 } 875 876 /** 877 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 878 * @buffer: The ring_buffer to get the number of pages from 879 * @cpu: The cpu of the ring_buffer to get the number of pages from 880 * 881 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 882 */ 883 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 884 { 885 return buffer->buffers[cpu]->nr_pages; 886 } 887 888 /** 889 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 890 * @buffer: The ring_buffer to get the number of pages from 891 * @cpu: The cpu of the ring_buffer to get the number of pages from 892 * 893 * Returns the number of pages that have content in the ring buffer. 894 */ 895 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 896 { 897 size_t read; 898 size_t lost; 899 size_t cnt; 900 901 read = local_read(&buffer->buffers[cpu]->pages_read); 902 lost = local_read(&buffer->buffers[cpu]->pages_lost); 903 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 904 905 if (WARN_ON_ONCE(cnt < lost)) 906 return 0; 907 908 cnt -= lost; 909 910 /* The reader can read an empty page, but not more than that */ 911 if (cnt < read) { 912 WARN_ON_ONCE(read > cnt + 1); 913 return 0; 914 } 915 916 return cnt - read; 917 } 918 919 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 920 { 921 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 922 size_t nr_pages; 923 size_t dirty; 924 925 nr_pages = cpu_buffer->nr_pages; 926 if (!nr_pages || !full) 927 return true; 928 929 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 930 931 return (dirty * 100) > (full * nr_pages); 932 } 933 934 /* 935 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 936 * 937 * Schedules a delayed work to wake up any task that is blocked on the 938 * ring buffer waiters queue. 939 */ 940 static void rb_wake_up_waiters(struct irq_work *work) 941 { 942 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 943 944 wake_up_all(&rbwork->waiters); 945 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 946 rbwork->wakeup_full = false; 947 rbwork->full_waiters_pending = false; 948 wake_up_all(&rbwork->full_waiters); 949 } 950 } 951 952 /** 953 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 954 * @buffer: The ring buffer to wake waiters on 955 * 956 * In the case of a file that represents a ring buffer is closing, 957 * it is prudent to wake up any waiters that are on this. 958 */ 959 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 960 { 961 struct ring_buffer_per_cpu *cpu_buffer; 962 struct rb_irq_work *rbwork; 963 964 if (!buffer) 965 return; 966 967 if (cpu == RING_BUFFER_ALL_CPUS) { 968 969 /* Wake up individual ones too. One level recursion */ 970 for_each_buffer_cpu(buffer, cpu) 971 ring_buffer_wake_waiters(buffer, cpu); 972 973 rbwork = &buffer->irq_work; 974 } else { 975 if (WARN_ON_ONCE(!buffer->buffers)) 976 return; 977 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 978 return; 979 980 cpu_buffer = buffer->buffers[cpu]; 981 /* The CPU buffer may not have been initialized yet */ 982 if (!cpu_buffer) 983 return; 984 rbwork = &cpu_buffer->irq_work; 985 } 986 987 rbwork->wait_index++; 988 /* make sure the waiters see the new index */ 989 smp_wmb(); 990 991 rb_wake_up_waiters(&rbwork->work); 992 } 993 994 /** 995 * ring_buffer_wait - wait for input to the ring buffer 996 * @buffer: buffer to wait on 997 * @cpu: the cpu buffer to wait on 998 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 999 * 1000 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1001 * as data is added to any of the @buffer's cpu buffers. Otherwise 1002 * it will wait for data to be added to a specific cpu buffer. 1003 */ 1004 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 1005 { 1006 struct ring_buffer_per_cpu *cpu_buffer; 1007 DEFINE_WAIT(wait); 1008 struct rb_irq_work *work; 1009 long wait_index; 1010 int ret = 0; 1011 1012 /* 1013 * Depending on what the caller is waiting for, either any 1014 * data in any cpu buffer, or a specific buffer, put the 1015 * caller on the appropriate wait queue. 1016 */ 1017 if (cpu == RING_BUFFER_ALL_CPUS) { 1018 work = &buffer->irq_work; 1019 /* Full only makes sense on per cpu reads */ 1020 full = 0; 1021 } else { 1022 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1023 return -ENODEV; 1024 cpu_buffer = buffer->buffers[cpu]; 1025 work = &cpu_buffer->irq_work; 1026 } 1027 1028 wait_index = READ_ONCE(work->wait_index); 1029 1030 while (true) { 1031 if (full) 1032 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 1033 else 1034 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 1035 1036 /* 1037 * The events can happen in critical sections where 1038 * checking a work queue can cause deadlocks. 1039 * After adding a task to the queue, this flag is set 1040 * only to notify events to try to wake up the queue 1041 * using irq_work. 1042 * 1043 * We don't clear it even if the buffer is no longer 1044 * empty. The flag only causes the next event to run 1045 * irq_work to do the work queue wake up. The worse 1046 * that can happen if we race with !trace_empty() is that 1047 * an event will cause an irq_work to try to wake up 1048 * an empty queue. 1049 * 1050 * There's no reason to protect this flag either, as 1051 * the work queue and irq_work logic will do the necessary 1052 * synchronization for the wake ups. The only thing 1053 * that is necessary is that the wake up happens after 1054 * a task has been queued. It's OK for spurious wake ups. 1055 */ 1056 if (full) 1057 work->full_waiters_pending = true; 1058 else 1059 work->waiters_pending = true; 1060 1061 if (signal_pending(current)) { 1062 ret = -EINTR; 1063 break; 1064 } 1065 1066 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 1067 break; 1068 1069 if (cpu != RING_BUFFER_ALL_CPUS && 1070 !ring_buffer_empty_cpu(buffer, cpu)) { 1071 unsigned long flags; 1072 bool pagebusy; 1073 bool done; 1074 1075 if (!full) 1076 break; 1077 1078 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1079 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 1080 done = !pagebusy && full_hit(buffer, cpu, full); 1081 1082 if (!cpu_buffer->shortest_full || 1083 cpu_buffer->shortest_full > full) 1084 cpu_buffer->shortest_full = full; 1085 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1086 if (done) 1087 break; 1088 } 1089 1090 schedule(); 1091 1092 /* Make sure to see the new wait index */ 1093 smp_rmb(); 1094 if (wait_index != work->wait_index) 1095 break; 1096 } 1097 1098 if (full) 1099 finish_wait(&work->full_waiters, &wait); 1100 else 1101 finish_wait(&work->waiters, &wait); 1102 1103 return ret; 1104 } 1105 1106 /** 1107 * ring_buffer_poll_wait - poll on buffer input 1108 * @buffer: buffer to wait on 1109 * @cpu: the cpu buffer to wait on 1110 * @filp: the file descriptor 1111 * @poll_table: The poll descriptor 1112 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1113 * 1114 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1115 * as data is added to any of the @buffer's cpu buffers. Otherwise 1116 * it will wait for data to be added to a specific cpu buffer. 1117 * 1118 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1119 * zero otherwise. 1120 */ 1121 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1122 struct file *filp, poll_table *poll_table, int full) 1123 { 1124 struct ring_buffer_per_cpu *cpu_buffer; 1125 struct rb_irq_work *work; 1126 1127 if (cpu == RING_BUFFER_ALL_CPUS) { 1128 work = &buffer->irq_work; 1129 full = 0; 1130 } else { 1131 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1132 return -EINVAL; 1133 1134 cpu_buffer = buffer->buffers[cpu]; 1135 work = &cpu_buffer->irq_work; 1136 } 1137 1138 if (full) { 1139 poll_wait(filp, &work->full_waiters, poll_table); 1140 work->full_waiters_pending = true; 1141 } else { 1142 poll_wait(filp, &work->waiters, poll_table); 1143 work->waiters_pending = true; 1144 } 1145 1146 /* 1147 * There's a tight race between setting the waiters_pending and 1148 * checking if the ring buffer is empty. Once the waiters_pending bit 1149 * is set, the next event will wake the task up, but we can get stuck 1150 * if there's only a single event in. 1151 * 1152 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1153 * but adding a memory barrier to all events will cause too much of a 1154 * performance hit in the fast path. We only need a memory barrier when 1155 * the buffer goes from empty to having content. But as this race is 1156 * extremely small, and it's not a problem if another event comes in, we 1157 * will fix it later. 1158 */ 1159 smp_mb(); 1160 1161 if (full) 1162 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0; 1163 1164 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1165 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1166 return EPOLLIN | EPOLLRDNORM; 1167 return 0; 1168 } 1169 1170 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1171 #define RB_WARN_ON(b, cond) \ 1172 ({ \ 1173 int _____ret = unlikely(cond); \ 1174 if (_____ret) { \ 1175 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1176 struct ring_buffer_per_cpu *__b = \ 1177 (void *)b; \ 1178 atomic_inc(&__b->buffer->record_disabled); \ 1179 } else \ 1180 atomic_inc(&b->record_disabled); \ 1181 WARN_ON(1); \ 1182 } \ 1183 _____ret; \ 1184 }) 1185 1186 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1187 #define DEBUG_SHIFT 0 1188 1189 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1190 { 1191 u64 ts; 1192 1193 /* Skip retpolines :-( */ 1194 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1195 ts = trace_clock_local(); 1196 else 1197 ts = buffer->clock(); 1198 1199 /* shift to debug/test normalization and TIME_EXTENTS */ 1200 return ts << DEBUG_SHIFT; 1201 } 1202 1203 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1204 { 1205 u64 time; 1206 1207 preempt_disable_notrace(); 1208 time = rb_time_stamp(buffer); 1209 preempt_enable_notrace(); 1210 1211 return time; 1212 } 1213 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1214 1215 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1216 int cpu, u64 *ts) 1217 { 1218 /* Just stupid testing the normalize function and deltas */ 1219 *ts >>= DEBUG_SHIFT; 1220 } 1221 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1222 1223 /* 1224 * Making the ring buffer lockless makes things tricky. 1225 * Although writes only happen on the CPU that they are on, 1226 * and they only need to worry about interrupts. Reads can 1227 * happen on any CPU. 1228 * 1229 * The reader page is always off the ring buffer, but when the 1230 * reader finishes with a page, it needs to swap its page with 1231 * a new one from the buffer. The reader needs to take from 1232 * the head (writes go to the tail). But if a writer is in overwrite 1233 * mode and wraps, it must push the head page forward. 1234 * 1235 * Here lies the problem. 1236 * 1237 * The reader must be careful to replace only the head page, and 1238 * not another one. As described at the top of the file in the 1239 * ASCII art, the reader sets its old page to point to the next 1240 * page after head. It then sets the page after head to point to 1241 * the old reader page. But if the writer moves the head page 1242 * during this operation, the reader could end up with the tail. 1243 * 1244 * We use cmpxchg to help prevent this race. We also do something 1245 * special with the page before head. We set the LSB to 1. 1246 * 1247 * When the writer must push the page forward, it will clear the 1248 * bit that points to the head page, move the head, and then set 1249 * the bit that points to the new head page. 1250 * 1251 * We also don't want an interrupt coming in and moving the head 1252 * page on another writer. Thus we use the second LSB to catch 1253 * that too. Thus: 1254 * 1255 * head->list->prev->next bit 1 bit 0 1256 * ------- ------- 1257 * Normal page 0 0 1258 * Points to head page 0 1 1259 * New head page 1 0 1260 * 1261 * Note we can not trust the prev pointer of the head page, because: 1262 * 1263 * +----+ +-----+ +-----+ 1264 * | |------>| T |---X--->| N | 1265 * | |<------| | | | 1266 * +----+ +-----+ +-----+ 1267 * ^ ^ | 1268 * | +-----+ | | 1269 * +----------| R |----------+ | 1270 * | |<-----------+ 1271 * +-----+ 1272 * 1273 * Key: ---X--> HEAD flag set in pointer 1274 * T Tail page 1275 * R Reader page 1276 * N Next page 1277 * 1278 * (see __rb_reserve_next() to see where this happens) 1279 * 1280 * What the above shows is that the reader just swapped out 1281 * the reader page with a page in the buffer, but before it 1282 * could make the new header point back to the new page added 1283 * it was preempted by a writer. The writer moved forward onto 1284 * the new page added by the reader and is about to move forward 1285 * again. 1286 * 1287 * You can see, it is legitimate for the previous pointer of 1288 * the head (or any page) not to point back to itself. But only 1289 * temporarily. 1290 */ 1291 1292 #define RB_PAGE_NORMAL 0UL 1293 #define RB_PAGE_HEAD 1UL 1294 #define RB_PAGE_UPDATE 2UL 1295 1296 1297 #define RB_FLAG_MASK 3UL 1298 1299 /* PAGE_MOVED is not part of the mask */ 1300 #define RB_PAGE_MOVED 4UL 1301 1302 /* 1303 * rb_list_head - remove any bit 1304 */ 1305 static struct list_head *rb_list_head(struct list_head *list) 1306 { 1307 unsigned long val = (unsigned long)list; 1308 1309 return (struct list_head *)(val & ~RB_FLAG_MASK); 1310 } 1311 1312 /* 1313 * rb_is_head_page - test if the given page is the head page 1314 * 1315 * Because the reader may move the head_page pointer, we can 1316 * not trust what the head page is (it may be pointing to 1317 * the reader page). But if the next page is a header page, 1318 * its flags will be non zero. 1319 */ 1320 static inline int 1321 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1322 { 1323 unsigned long val; 1324 1325 val = (unsigned long)list->next; 1326 1327 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1328 return RB_PAGE_MOVED; 1329 1330 return val & RB_FLAG_MASK; 1331 } 1332 1333 /* 1334 * rb_is_reader_page 1335 * 1336 * The unique thing about the reader page, is that, if the 1337 * writer is ever on it, the previous pointer never points 1338 * back to the reader page. 1339 */ 1340 static bool rb_is_reader_page(struct buffer_page *page) 1341 { 1342 struct list_head *list = page->list.prev; 1343 1344 return rb_list_head(list->next) != &page->list; 1345 } 1346 1347 /* 1348 * rb_set_list_to_head - set a list_head to be pointing to head. 1349 */ 1350 static void rb_set_list_to_head(struct list_head *list) 1351 { 1352 unsigned long *ptr; 1353 1354 ptr = (unsigned long *)&list->next; 1355 *ptr |= RB_PAGE_HEAD; 1356 *ptr &= ~RB_PAGE_UPDATE; 1357 } 1358 1359 /* 1360 * rb_head_page_activate - sets up head page 1361 */ 1362 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1363 { 1364 struct buffer_page *head; 1365 1366 head = cpu_buffer->head_page; 1367 if (!head) 1368 return; 1369 1370 /* 1371 * Set the previous list pointer to have the HEAD flag. 1372 */ 1373 rb_set_list_to_head(head->list.prev); 1374 } 1375 1376 static void rb_list_head_clear(struct list_head *list) 1377 { 1378 unsigned long *ptr = (unsigned long *)&list->next; 1379 1380 *ptr &= ~RB_FLAG_MASK; 1381 } 1382 1383 /* 1384 * rb_head_page_deactivate - clears head page ptr (for free list) 1385 */ 1386 static void 1387 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1388 { 1389 struct list_head *hd; 1390 1391 /* Go through the whole list and clear any pointers found. */ 1392 rb_list_head_clear(cpu_buffer->pages); 1393 1394 list_for_each(hd, cpu_buffer->pages) 1395 rb_list_head_clear(hd); 1396 } 1397 1398 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1399 struct buffer_page *head, 1400 struct buffer_page *prev, 1401 int old_flag, int new_flag) 1402 { 1403 struct list_head *list; 1404 unsigned long val = (unsigned long)&head->list; 1405 unsigned long ret; 1406 1407 list = &prev->list; 1408 1409 val &= ~RB_FLAG_MASK; 1410 1411 ret = cmpxchg((unsigned long *)&list->next, 1412 val | old_flag, val | new_flag); 1413 1414 /* check if the reader took the page */ 1415 if ((ret & ~RB_FLAG_MASK) != val) 1416 return RB_PAGE_MOVED; 1417 1418 return ret & RB_FLAG_MASK; 1419 } 1420 1421 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1422 struct buffer_page *head, 1423 struct buffer_page *prev, 1424 int old_flag) 1425 { 1426 return rb_head_page_set(cpu_buffer, head, prev, 1427 old_flag, RB_PAGE_UPDATE); 1428 } 1429 1430 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1431 struct buffer_page *head, 1432 struct buffer_page *prev, 1433 int old_flag) 1434 { 1435 return rb_head_page_set(cpu_buffer, head, prev, 1436 old_flag, RB_PAGE_HEAD); 1437 } 1438 1439 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1440 struct buffer_page *head, 1441 struct buffer_page *prev, 1442 int old_flag) 1443 { 1444 return rb_head_page_set(cpu_buffer, head, prev, 1445 old_flag, RB_PAGE_NORMAL); 1446 } 1447 1448 static inline void rb_inc_page(struct buffer_page **bpage) 1449 { 1450 struct list_head *p = rb_list_head((*bpage)->list.next); 1451 1452 *bpage = list_entry(p, struct buffer_page, list); 1453 } 1454 1455 static struct buffer_page * 1456 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1457 { 1458 struct buffer_page *head; 1459 struct buffer_page *page; 1460 struct list_head *list; 1461 int i; 1462 1463 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1464 return NULL; 1465 1466 /* sanity check */ 1467 list = cpu_buffer->pages; 1468 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1469 return NULL; 1470 1471 page = head = cpu_buffer->head_page; 1472 /* 1473 * It is possible that the writer moves the header behind 1474 * where we started, and we miss in one loop. 1475 * A second loop should grab the header, but we'll do 1476 * three loops just because I'm paranoid. 1477 */ 1478 for (i = 0; i < 3; i++) { 1479 do { 1480 if (rb_is_head_page(page, page->list.prev)) { 1481 cpu_buffer->head_page = page; 1482 return page; 1483 } 1484 rb_inc_page(&page); 1485 } while (page != head); 1486 } 1487 1488 RB_WARN_ON(cpu_buffer, 1); 1489 1490 return NULL; 1491 } 1492 1493 static int rb_head_page_replace(struct buffer_page *old, 1494 struct buffer_page *new) 1495 { 1496 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1497 unsigned long val; 1498 unsigned long ret; 1499 1500 val = *ptr & ~RB_FLAG_MASK; 1501 val |= RB_PAGE_HEAD; 1502 1503 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1504 1505 return ret == val; 1506 } 1507 1508 /* 1509 * rb_tail_page_update - move the tail page forward 1510 */ 1511 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1512 struct buffer_page *tail_page, 1513 struct buffer_page *next_page) 1514 { 1515 unsigned long old_entries; 1516 unsigned long old_write; 1517 1518 /* 1519 * The tail page now needs to be moved forward. 1520 * 1521 * We need to reset the tail page, but without messing 1522 * with possible erasing of data brought in by interrupts 1523 * that have moved the tail page and are currently on it. 1524 * 1525 * We add a counter to the write field to denote this. 1526 */ 1527 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1528 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1529 1530 local_inc(&cpu_buffer->pages_touched); 1531 /* 1532 * Just make sure we have seen our old_write and synchronize 1533 * with any interrupts that come in. 1534 */ 1535 barrier(); 1536 1537 /* 1538 * If the tail page is still the same as what we think 1539 * it is, then it is up to us to update the tail 1540 * pointer. 1541 */ 1542 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1543 /* Zero the write counter */ 1544 unsigned long val = old_write & ~RB_WRITE_MASK; 1545 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1546 1547 /* 1548 * This will only succeed if an interrupt did 1549 * not come in and change it. In which case, we 1550 * do not want to modify it. 1551 * 1552 * We add (void) to let the compiler know that we do not care 1553 * about the return value of these functions. We use the 1554 * cmpxchg to only update if an interrupt did not already 1555 * do it for us. If the cmpxchg fails, we don't care. 1556 */ 1557 (void)local_cmpxchg(&next_page->write, old_write, val); 1558 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1559 1560 /* 1561 * No need to worry about races with clearing out the commit. 1562 * it only can increment when a commit takes place. But that 1563 * only happens in the outer most nested commit. 1564 */ 1565 local_set(&next_page->page->commit, 0); 1566 1567 /* Again, either we update tail_page or an interrupt does */ 1568 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1569 } 1570 } 1571 1572 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1573 struct buffer_page *bpage) 1574 { 1575 unsigned long val = (unsigned long)bpage; 1576 1577 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1578 return 1; 1579 1580 return 0; 1581 } 1582 1583 /** 1584 * rb_check_list - make sure a pointer to a list has the last bits zero 1585 */ 1586 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1587 struct list_head *list) 1588 { 1589 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1590 return 1; 1591 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1592 return 1; 1593 return 0; 1594 } 1595 1596 /** 1597 * rb_check_pages - integrity check of buffer pages 1598 * @cpu_buffer: CPU buffer with pages to test 1599 * 1600 * As a safety measure we check to make sure the data pages have not 1601 * been corrupted. 1602 */ 1603 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1604 { 1605 struct list_head *head = cpu_buffer->pages; 1606 struct buffer_page *bpage, *tmp; 1607 1608 /* Reset the head page if it exists */ 1609 if (cpu_buffer->head_page) 1610 rb_set_head_page(cpu_buffer); 1611 1612 rb_head_page_deactivate(cpu_buffer); 1613 1614 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1615 return -1; 1616 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1617 return -1; 1618 1619 if (rb_check_list(cpu_buffer, head)) 1620 return -1; 1621 1622 list_for_each_entry_safe(bpage, tmp, head, list) { 1623 if (RB_WARN_ON(cpu_buffer, 1624 bpage->list.next->prev != &bpage->list)) 1625 return -1; 1626 if (RB_WARN_ON(cpu_buffer, 1627 bpage->list.prev->next != &bpage->list)) 1628 return -1; 1629 if (rb_check_list(cpu_buffer, &bpage->list)) 1630 return -1; 1631 } 1632 1633 rb_head_page_activate(cpu_buffer); 1634 1635 return 0; 1636 } 1637 1638 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1639 long nr_pages, struct list_head *pages) 1640 { 1641 struct buffer_page *bpage, *tmp; 1642 bool user_thread = current->mm != NULL; 1643 gfp_t mflags; 1644 long i; 1645 1646 /* 1647 * Check if the available memory is there first. 1648 * Note, si_mem_available() only gives us a rough estimate of available 1649 * memory. It may not be accurate. But we don't care, we just want 1650 * to prevent doing any allocation when it is obvious that it is 1651 * not going to succeed. 1652 */ 1653 i = si_mem_available(); 1654 if (i < nr_pages) 1655 return -ENOMEM; 1656 1657 /* 1658 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1659 * gracefully without invoking oom-killer and the system is not 1660 * destabilized. 1661 */ 1662 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1663 1664 /* 1665 * If a user thread allocates too much, and si_mem_available() 1666 * reports there's enough memory, even though there is not. 1667 * Make sure the OOM killer kills this thread. This can happen 1668 * even with RETRY_MAYFAIL because another task may be doing 1669 * an allocation after this task has taken all memory. 1670 * This is the task the OOM killer needs to take out during this 1671 * loop, even if it was triggered by an allocation somewhere else. 1672 */ 1673 if (user_thread) 1674 set_current_oom_origin(); 1675 for (i = 0; i < nr_pages; i++) { 1676 struct page *page; 1677 1678 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1679 mflags, cpu_to_node(cpu_buffer->cpu)); 1680 if (!bpage) 1681 goto free_pages; 1682 1683 rb_check_bpage(cpu_buffer, bpage); 1684 1685 list_add(&bpage->list, pages); 1686 1687 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1688 if (!page) 1689 goto free_pages; 1690 bpage->page = page_address(page); 1691 rb_init_page(bpage->page); 1692 1693 if (user_thread && fatal_signal_pending(current)) 1694 goto free_pages; 1695 } 1696 if (user_thread) 1697 clear_current_oom_origin(); 1698 1699 return 0; 1700 1701 free_pages: 1702 list_for_each_entry_safe(bpage, tmp, pages, list) { 1703 list_del_init(&bpage->list); 1704 free_buffer_page(bpage); 1705 } 1706 if (user_thread) 1707 clear_current_oom_origin(); 1708 1709 return -ENOMEM; 1710 } 1711 1712 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1713 unsigned long nr_pages) 1714 { 1715 LIST_HEAD(pages); 1716 1717 WARN_ON(!nr_pages); 1718 1719 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1720 return -ENOMEM; 1721 1722 /* 1723 * The ring buffer page list is a circular list that does not 1724 * start and end with a list head. All page list items point to 1725 * other pages. 1726 */ 1727 cpu_buffer->pages = pages.next; 1728 list_del(&pages); 1729 1730 cpu_buffer->nr_pages = nr_pages; 1731 1732 rb_check_pages(cpu_buffer); 1733 1734 return 0; 1735 } 1736 1737 static struct ring_buffer_per_cpu * 1738 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1739 { 1740 struct ring_buffer_per_cpu *cpu_buffer; 1741 struct buffer_page *bpage; 1742 struct page *page; 1743 int ret; 1744 1745 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1746 GFP_KERNEL, cpu_to_node(cpu)); 1747 if (!cpu_buffer) 1748 return NULL; 1749 1750 cpu_buffer->cpu = cpu; 1751 cpu_buffer->buffer = buffer; 1752 raw_spin_lock_init(&cpu_buffer->reader_lock); 1753 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1754 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1755 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1756 init_completion(&cpu_buffer->update_done); 1757 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1758 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1759 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1760 1761 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1762 GFP_KERNEL, cpu_to_node(cpu)); 1763 if (!bpage) 1764 goto fail_free_buffer; 1765 1766 rb_check_bpage(cpu_buffer, bpage); 1767 1768 cpu_buffer->reader_page = bpage; 1769 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1770 if (!page) 1771 goto fail_free_reader; 1772 bpage->page = page_address(page); 1773 rb_init_page(bpage->page); 1774 1775 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1776 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1777 1778 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1779 if (ret < 0) 1780 goto fail_free_reader; 1781 1782 cpu_buffer->head_page 1783 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1784 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1785 1786 rb_head_page_activate(cpu_buffer); 1787 1788 return cpu_buffer; 1789 1790 fail_free_reader: 1791 free_buffer_page(cpu_buffer->reader_page); 1792 1793 fail_free_buffer: 1794 kfree(cpu_buffer); 1795 return NULL; 1796 } 1797 1798 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1799 { 1800 struct list_head *head = cpu_buffer->pages; 1801 struct buffer_page *bpage, *tmp; 1802 1803 free_buffer_page(cpu_buffer->reader_page); 1804 1805 if (head) { 1806 rb_head_page_deactivate(cpu_buffer); 1807 1808 list_for_each_entry_safe(bpage, tmp, head, list) { 1809 list_del_init(&bpage->list); 1810 free_buffer_page(bpage); 1811 } 1812 bpage = list_entry(head, struct buffer_page, list); 1813 free_buffer_page(bpage); 1814 } 1815 1816 kfree(cpu_buffer); 1817 } 1818 1819 /** 1820 * __ring_buffer_alloc - allocate a new ring_buffer 1821 * @size: the size in bytes per cpu that is needed. 1822 * @flags: attributes to set for the ring buffer. 1823 * @key: ring buffer reader_lock_key. 1824 * 1825 * Currently the only flag that is available is the RB_FL_OVERWRITE 1826 * flag. This flag means that the buffer will overwrite old data 1827 * when the buffer wraps. If this flag is not set, the buffer will 1828 * drop data when the tail hits the head. 1829 */ 1830 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1831 struct lock_class_key *key) 1832 { 1833 struct trace_buffer *buffer; 1834 long nr_pages; 1835 int bsize; 1836 int cpu; 1837 int ret; 1838 1839 /* keep it in its own cache line */ 1840 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1841 GFP_KERNEL); 1842 if (!buffer) 1843 return NULL; 1844 1845 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1846 goto fail_free_buffer; 1847 1848 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1849 buffer->flags = flags; 1850 buffer->clock = trace_clock_local; 1851 buffer->reader_lock_key = key; 1852 1853 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1854 init_waitqueue_head(&buffer->irq_work.waiters); 1855 1856 /* need at least two pages */ 1857 if (nr_pages < 2) 1858 nr_pages = 2; 1859 1860 buffer->cpus = nr_cpu_ids; 1861 1862 bsize = sizeof(void *) * nr_cpu_ids; 1863 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1864 GFP_KERNEL); 1865 if (!buffer->buffers) 1866 goto fail_free_cpumask; 1867 1868 cpu = raw_smp_processor_id(); 1869 cpumask_set_cpu(cpu, buffer->cpumask); 1870 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1871 if (!buffer->buffers[cpu]) 1872 goto fail_free_buffers; 1873 1874 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1875 if (ret < 0) 1876 goto fail_free_buffers; 1877 1878 mutex_init(&buffer->mutex); 1879 1880 return buffer; 1881 1882 fail_free_buffers: 1883 for_each_buffer_cpu(buffer, cpu) { 1884 if (buffer->buffers[cpu]) 1885 rb_free_cpu_buffer(buffer->buffers[cpu]); 1886 } 1887 kfree(buffer->buffers); 1888 1889 fail_free_cpumask: 1890 free_cpumask_var(buffer->cpumask); 1891 1892 fail_free_buffer: 1893 kfree(buffer); 1894 return NULL; 1895 } 1896 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1897 1898 /** 1899 * ring_buffer_free - free a ring buffer. 1900 * @buffer: the buffer to free. 1901 */ 1902 void 1903 ring_buffer_free(struct trace_buffer *buffer) 1904 { 1905 int cpu; 1906 1907 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1908 1909 for_each_buffer_cpu(buffer, cpu) 1910 rb_free_cpu_buffer(buffer->buffers[cpu]); 1911 1912 kfree(buffer->buffers); 1913 free_cpumask_var(buffer->cpumask); 1914 1915 kfree(buffer); 1916 } 1917 EXPORT_SYMBOL_GPL(ring_buffer_free); 1918 1919 void ring_buffer_set_clock(struct trace_buffer *buffer, 1920 u64 (*clock)(void)) 1921 { 1922 buffer->clock = clock; 1923 } 1924 1925 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1926 { 1927 buffer->time_stamp_abs = abs; 1928 } 1929 1930 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1931 { 1932 return buffer->time_stamp_abs; 1933 } 1934 1935 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1936 1937 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1938 { 1939 return local_read(&bpage->entries) & RB_WRITE_MASK; 1940 } 1941 1942 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1943 { 1944 return local_read(&bpage->write) & RB_WRITE_MASK; 1945 } 1946 1947 static int 1948 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1949 { 1950 struct list_head *tail_page, *to_remove, *next_page; 1951 struct buffer_page *to_remove_page, *tmp_iter_page; 1952 struct buffer_page *last_page, *first_page; 1953 unsigned long nr_removed; 1954 unsigned long head_bit; 1955 int page_entries; 1956 1957 head_bit = 0; 1958 1959 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1960 atomic_inc(&cpu_buffer->record_disabled); 1961 /* 1962 * We don't race with the readers since we have acquired the reader 1963 * lock. We also don't race with writers after disabling recording. 1964 * This makes it easy to figure out the first and the last page to be 1965 * removed from the list. We unlink all the pages in between including 1966 * the first and last pages. This is done in a busy loop so that we 1967 * lose the least number of traces. 1968 * The pages are freed after we restart recording and unlock readers. 1969 */ 1970 tail_page = &cpu_buffer->tail_page->list; 1971 1972 /* 1973 * tail page might be on reader page, we remove the next page 1974 * from the ring buffer 1975 */ 1976 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1977 tail_page = rb_list_head(tail_page->next); 1978 to_remove = tail_page; 1979 1980 /* start of pages to remove */ 1981 first_page = list_entry(rb_list_head(to_remove->next), 1982 struct buffer_page, list); 1983 1984 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1985 to_remove = rb_list_head(to_remove)->next; 1986 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1987 } 1988 1989 next_page = rb_list_head(to_remove)->next; 1990 1991 /* 1992 * Now we remove all pages between tail_page and next_page. 1993 * Make sure that we have head_bit value preserved for the 1994 * next page 1995 */ 1996 tail_page->next = (struct list_head *)((unsigned long)next_page | 1997 head_bit); 1998 next_page = rb_list_head(next_page); 1999 next_page->prev = tail_page; 2000 2001 /* make sure pages points to a valid page in the ring buffer */ 2002 cpu_buffer->pages = next_page; 2003 2004 /* update head page */ 2005 if (head_bit) 2006 cpu_buffer->head_page = list_entry(next_page, 2007 struct buffer_page, list); 2008 2009 /* 2010 * change read pointer to make sure any read iterators reset 2011 * themselves 2012 */ 2013 cpu_buffer->read = 0; 2014 2015 /* pages are removed, resume tracing and then free the pages */ 2016 atomic_dec(&cpu_buffer->record_disabled); 2017 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2018 2019 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2020 2021 /* last buffer page to remove */ 2022 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2023 list); 2024 tmp_iter_page = first_page; 2025 2026 do { 2027 cond_resched(); 2028 2029 to_remove_page = tmp_iter_page; 2030 rb_inc_page(&tmp_iter_page); 2031 2032 /* update the counters */ 2033 page_entries = rb_page_entries(to_remove_page); 2034 if (page_entries) { 2035 /* 2036 * If something was added to this page, it was full 2037 * since it is not the tail page. So we deduct the 2038 * bytes consumed in ring buffer from here. 2039 * Increment overrun to account for the lost events. 2040 */ 2041 local_add(page_entries, &cpu_buffer->overrun); 2042 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2043 local_inc(&cpu_buffer->pages_lost); 2044 } 2045 2046 /* 2047 * We have already removed references to this list item, just 2048 * free up the buffer_page and its page 2049 */ 2050 free_buffer_page(to_remove_page); 2051 nr_removed--; 2052 2053 } while (to_remove_page != last_page); 2054 2055 RB_WARN_ON(cpu_buffer, nr_removed); 2056 2057 return nr_removed == 0; 2058 } 2059 2060 static int 2061 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2062 { 2063 struct list_head *pages = &cpu_buffer->new_pages; 2064 int retries, success; 2065 2066 raw_spin_lock_irq(&cpu_buffer->reader_lock); 2067 /* 2068 * We are holding the reader lock, so the reader page won't be swapped 2069 * in the ring buffer. Now we are racing with the writer trying to 2070 * move head page and the tail page. 2071 * We are going to adapt the reader page update process where: 2072 * 1. We first splice the start and end of list of new pages between 2073 * the head page and its previous page. 2074 * 2. We cmpxchg the prev_page->next to point from head page to the 2075 * start of new pages list. 2076 * 3. Finally, we update the head->prev to the end of new list. 2077 * 2078 * We will try this process 10 times, to make sure that we don't keep 2079 * spinning. 2080 */ 2081 retries = 10; 2082 success = 0; 2083 while (retries--) { 2084 struct list_head *head_page, *prev_page, *r; 2085 struct list_head *last_page, *first_page; 2086 struct list_head *head_page_with_bit; 2087 2088 head_page = &rb_set_head_page(cpu_buffer)->list; 2089 if (!head_page) 2090 break; 2091 prev_page = head_page->prev; 2092 2093 first_page = pages->next; 2094 last_page = pages->prev; 2095 2096 head_page_with_bit = (struct list_head *) 2097 ((unsigned long)head_page | RB_PAGE_HEAD); 2098 2099 last_page->next = head_page_with_bit; 2100 first_page->prev = prev_page; 2101 2102 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 2103 2104 if (r == head_page_with_bit) { 2105 /* 2106 * yay, we replaced the page pointer to our new list, 2107 * now, we just have to update to head page's prev 2108 * pointer to point to end of list 2109 */ 2110 head_page->prev = last_page; 2111 success = 1; 2112 break; 2113 } 2114 } 2115 2116 if (success) 2117 INIT_LIST_HEAD(pages); 2118 /* 2119 * If we weren't successful in adding in new pages, warn and stop 2120 * tracing 2121 */ 2122 RB_WARN_ON(cpu_buffer, !success); 2123 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2124 2125 /* free pages if they weren't inserted */ 2126 if (!success) { 2127 struct buffer_page *bpage, *tmp; 2128 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2129 list) { 2130 list_del_init(&bpage->list); 2131 free_buffer_page(bpage); 2132 } 2133 } 2134 return success; 2135 } 2136 2137 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2138 { 2139 int success; 2140 2141 if (cpu_buffer->nr_pages_to_update > 0) 2142 success = rb_insert_pages(cpu_buffer); 2143 else 2144 success = rb_remove_pages(cpu_buffer, 2145 -cpu_buffer->nr_pages_to_update); 2146 2147 if (success) 2148 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2149 } 2150 2151 static void update_pages_handler(struct work_struct *work) 2152 { 2153 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2154 struct ring_buffer_per_cpu, update_pages_work); 2155 rb_update_pages(cpu_buffer); 2156 complete(&cpu_buffer->update_done); 2157 } 2158 2159 /** 2160 * ring_buffer_resize - resize the ring buffer 2161 * @buffer: the buffer to resize. 2162 * @size: the new size. 2163 * @cpu_id: the cpu buffer to resize 2164 * 2165 * Minimum size is 2 * BUF_PAGE_SIZE. 2166 * 2167 * Returns 0 on success and < 0 on failure. 2168 */ 2169 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2170 int cpu_id) 2171 { 2172 struct ring_buffer_per_cpu *cpu_buffer; 2173 unsigned long nr_pages; 2174 int cpu, err; 2175 2176 /* 2177 * Always succeed at resizing a non-existent buffer: 2178 */ 2179 if (!buffer) 2180 return 0; 2181 2182 /* Make sure the requested buffer exists */ 2183 if (cpu_id != RING_BUFFER_ALL_CPUS && 2184 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2185 return 0; 2186 2187 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 2188 2189 /* we need a minimum of two pages */ 2190 if (nr_pages < 2) 2191 nr_pages = 2; 2192 2193 /* prevent another thread from changing buffer sizes */ 2194 mutex_lock(&buffer->mutex); 2195 2196 2197 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2198 /* 2199 * Don't succeed if resizing is disabled, as a reader might be 2200 * manipulating the ring buffer and is expecting a sane state while 2201 * this is true. 2202 */ 2203 for_each_buffer_cpu(buffer, cpu) { 2204 cpu_buffer = buffer->buffers[cpu]; 2205 if (atomic_read(&cpu_buffer->resize_disabled)) { 2206 err = -EBUSY; 2207 goto out_err_unlock; 2208 } 2209 } 2210 2211 /* calculate the pages to update */ 2212 for_each_buffer_cpu(buffer, cpu) { 2213 cpu_buffer = buffer->buffers[cpu]; 2214 2215 cpu_buffer->nr_pages_to_update = nr_pages - 2216 cpu_buffer->nr_pages; 2217 /* 2218 * nothing more to do for removing pages or no update 2219 */ 2220 if (cpu_buffer->nr_pages_to_update <= 0) 2221 continue; 2222 /* 2223 * to add pages, make sure all new pages can be 2224 * allocated without receiving ENOMEM 2225 */ 2226 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2227 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2228 &cpu_buffer->new_pages)) { 2229 /* not enough memory for new pages */ 2230 err = -ENOMEM; 2231 goto out_err; 2232 } 2233 } 2234 2235 cpus_read_lock(); 2236 /* 2237 * Fire off all the required work handlers 2238 * We can't schedule on offline CPUs, but it's not necessary 2239 * since we can change their buffer sizes without any race. 2240 */ 2241 for_each_buffer_cpu(buffer, cpu) { 2242 cpu_buffer = buffer->buffers[cpu]; 2243 if (!cpu_buffer->nr_pages_to_update) 2244 continue; 2245 2246 /* Can't run something on an offline CPU. */ 2247 if (!cpu_online(cpu)) { 2248 rb_update_pages(cpu_buffer); 2249 cpu_buffer->nr_pages_to_update = 0; 2250 } else { 2251 schedule_work_on(cpu, 2252 &cpu_buffer->update_pages_work); 2253 } 2254 } 2255 2256 /* wait for all the updates to complete */ 2257 for_each_buffer_cpu(buffer, cpu) { 2258 cpu_buffer = buffer->buffers[cpu]; 2259 if (!cpu_buffer->nr_pages_to_update) 2260 continue; 2261 2262 if (cpu_online(cpu)) 2263 wait_for_completion(&cpu_buffer->update_done); 2264 cpu_buffer->nr_pages_to_update = 0; 2265 } 2266 2267 cpus_read_unlock(); 2268 } else { 2269 cpu_buffer = buffer->buffers[cpu_id]; 2270 2271 if (nr_pages == cpu_buffer->nr_pages) 2272 goto out; 2273 2274 /* 2275 * Don't succeed if resizing is disabled, as a reader might be 2276 * manipulating the ring buffer and is expecting a sane state while 2277 * this is true. 2278 */ 2279 if (atomic_read(&cpu_buffer->resize_disabled)) { 2280 err = -EBUSY; 2281 goto out_err_unlock; 2282 } 2283 2284 cpu_buffer->nr_pages_to_update = nr_pages - 2285 cpu_buffer->nr_pages; 2286 2287 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2288 if (cpu_buffer->nr_pages_to_update > 0 && 2289 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2290 &cpu_buffer->new_pages)) { 2291 err = -ENOMEM; 2292 goto out_err; 2293 } 2294 2295 cpus_read_lock(); 2296 2297 /* Can't run something on an offline CPU. */ 2298 if (!cpu_online(cpu_id)) 2299 rb_update_pages(cpu_buffer); 2300 else { 2301 schedule_work_on(cpu_id, 2302 &cpu_buffer->update_pages_work); 2303 wait_for_completion(&cpu_buffer->update_done); 2304 } 2305 2306 cpu_buffer->nr_pages_to_update = 0; 2307 cpus_read_unlock(); 2308 } 2309 2310 out: 2311 /* 2312 * The ring buffer resize can happen with the ring buffer 2313 * enabled, so that the update disturbs the tracing as little 2314 * as possible. But if the buffer is disabled, we do not need 2315 * to worry about that, and we can take the time to verify 2316 * that the buffer is not corrupt. 2317 */ 2318 if (atomic_read(&buffer->record_disabled)) { 2319 atomic_inc(&buffer->record_disabled); 2320 /* 2321 * Even though the buffer was disabled, we must make sure 2322 * that it is truly disabled before calling rb_check_pages. 2323 * There could have been a race between checking 2324 * record_disable and incrementing it. 2325 */ 2326 synchronize_rcu(); 2327 for_each_buffer_cpu(buffer, cpu) { 2328 cpu_buffer = buffer->buffers[cpu]; 2329 rb_check_pages(cpu_buffer); 2330 } 2331 atomic_dec(&buffer->record_disabled); 2332 } 2333 2334 mutex_unlock(&buffer->mutex); 2335 return 0; 2336 2337 out_err: 2338 for_each_buffer_cpu(buffer, cpu) { 2339 struct buffer_page *bpage, *tmp; 2340 2341 cpu_buffer = buffer->buffers[cpu]; 2342 cpu_buffer->nr_pages_to_update = 0; 2343 2344 if (list_empty(&cpu_buffer->new_pages)) 2345 continue; 2346 2347 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2348 list) { 2349 list_del_init(&bpage->list); 2350 free_buffer_page(bpage); 2351 } 2352 } 2353 out_err_unlock: 2354 mutex_unlock(&buffer->mutex); 2355 return err; 2356 } 2357 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2358 2359 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2360 { 2361 mutex_lock(&buffer->mutex); 2362 if (val) 2363 buffer->flags |= RB_FL_OVERWRITE; 2364 else 2365 buffer->flags &= ~RB_FL_OVERWRITE; 2366 mutex_unlock(&buffer->mutex); 2367 } 2368 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2369 2370 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2371 { 2372 return bpage->page->data + index; 2373 } 2374 2375 static __always_inline struct ring_buffer_event * 2376 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2377 { 2378 return __rb_page_index(cpu_buffer->reader_page, 2379 cpu_buffer->reader_page->read); 2380 } 2381 2382 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2383 { 2384 return local_read(&bpage->page->commit); 2385 } 2386 2387 static struct ring_buffer_event * 2388 rb_iter_head_event(struct ring_buffer_iter *iter) 2389 { 2390 struct ring_buffer_event *event; 2391 struct buffer_page *iter_head_page = iter->head_page; 2392 unsigned long commit; 2393 unsigned length; 2394 2395 if (iter->head != iter->next_event) 2396 return iter->event; 2397 2398 /* 2399 * When the writer goes across pages, it issues a cmpxchg which 2400 * is a mb(), which will synchronize with the rmb here. 2401 * (see rb_tail_page_update() and __rb_reserve_next()) 2402 */ 2403 commit = rb_page_commit(iter_head_page); 2404 smp_rmb(); 2405 event = __rb_page_index(iter_head_page, iter->head); 2406 length = rb_event_length(event); 2407 2408 /* 2409 * READ_ONCE() doesn't work on functions and we don't want the 2410 * compiler doing any crazy optimizations with length. 2411 */ 2412 barrier(); 2413 2414 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2415 /* Writer corrupted the read? */ 2416 goto reset; 2417 2418 memcpy(iter->event, event, length); 2419 /* 2420 * If the page stamp is still the same after this rmb() then the 2421 * event was safely copied without the writer entering the page. 2422 */ 2423 smp_rmb(); 2424 2425 /* Make sure the page didn't change since we read this */ 2426 if (iter->page_stamp != iter_head_page->page->time_stamp || 2427 commit > rb_page_commit(iter_head_page)) 2428 goto reset; 2429 2430 iter->next_event = iter->head + length; 2431 return iter->event; 2432 reset: 2433 /* Reset to the beginning */ 2434 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2435 iter->head = 0; 2436 iter->next_event = 0; 2437 iter->missed_events = 1; 2438 return NULL; 2439 } 2440 2441 /* Size is determined by what has been committed */ 2442 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2443 { 2444 return rb_page_commit(bpage); 2445 } 2446 2447 static __always_inline unsigned 2448 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2449 { 2450 return rb_page_commit(cpu_buffer->commit_page); 2451 } 2452 2453 static __always_inline unsigned 2454 rb_event_index(struct ring_buffer_event *event) 2455 { 2456 unsigned long addr = (unsigned long)event; 2457 2458 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2459 } 2460 2461 static void rb_inc_iter(struct ring_buffer_iter *iter) 2462 { 2463 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2464 2465 /* 2466 * The iterator could be on the reader page (it starts there). 2467 * But the head could have moved, since the reader was 2468 * found. Check for this case and assign the iterator 2469 * to the head page instead of next. 2470 */ 2471 if (iter->head_page == cpu_buffer->reader_page) 2472 iter->head_page = rb_set_head_page(cpu_buffer); 2473 else 2474 rb_inc_page(&iter->head_page); 2475 2476 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2477 iter->head = 0; 2478 iter->next_event = 0; 2479 } 2480 2481 /* 2482 * rb_handle_head_page - writer hit the head page 2483 * 2484 * Returns: +1 to retry page 2485 * 0 to continue 2486 * -1 on error 2487 */ 2488 static int 2489 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2490 struct buffer_page *tail_page, 2491 struct buffer_page *next_page) 2492 { 2493 struct buffer_page *new_head; 2494 int entries; 2495 int type; 2496 int ret; 2497 2498 entries = rb_page_entries(next_page); 2499 2500 /* 2501 * The hard part is here. We need to move the head 2502 * forward, and protect against both readers on 2503 * other CPUs and writers coming in via interrupts. 2504 */ 2505 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2506 RB_PAGE_HEAD); 2507 2508 /* 2509 * type can be one of four: 2510 * NORMAL - an interrupt already moved it for us 2511 * HEAD - we are the first to get here. 2512 * UPDATE - we are the interrupt interrupting 2513 * a current move. 2514 * MOVED - a reader on another CPU moved the next 2515 * pointer to its reader page. Give up 2516 * and try again. 2517 */ 2518 2519 switch (type) { 2520 case RB_PAGE_HEAD: 2521 /* 2522 * We changed the head to UPDATE, thus 2523 * it is our responsibility to update 2524 * the counters. 2525 */ 2526 local_add(entries, &cpu_buffer->overrun); 2527 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2528 local_inc(&cpu_buffer->pages_lost); 2529 2530 /* 2531 * The entries will be zeroed out when we move the 2532 * tail page. 2533 */ 2534 2535 /* still more to do */ 2536 break; 2537 2538 case RB_PAGE_UPDATE: 2539 /* 2540 * This is an interrupt that interrupt the 2541 * previous update. Still more to do. 2542 */ 2543 break; 2544 case RB_PAGE_NORMAL: 2545 /* 2546 * An interrupt came in before the update 2547 * and processed this for us. 2548 * Nothing left to do. 2549 */ 2550 return 1; 2551 case RB_PAGE_MOVED: 2552 /* 2553 * The reader is on another CPU and just did 2554 * a swap with our next_page. 2555 * Try again. 2556 */ 2557 return 1; 2558 default: 2559 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2560 return -1; 2561 } 2562 2563 /* 2564 * Now that we are here, the old head pointer is 2565 * set to UPDATE. This will keep the reader from 2566 * swapping the head page with the reader page. 2567 * The reader (on another CPU) will spin till 2568 * we are finished. 2569 * 2570 * We just need to protect against interrupts 2571 * doing the job. We will set the next pointer 2572 * to HEAD. After that, we set the old pointer 2573 * to NORMAL, but only if it was HEAD before. 2574 * otherwise we are an interrupt, and only 2575 * want the outer most commit to reset it. 2576 */ 2577 new_head = next_page; 2578 rb_inc_page(&new_head); 2579 2580 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2581 RB_PAGE_NORMAL); 2582 2583 /* 2584 * Valid returns are: 2585 * HEAD - an interrupt came in and already set it. 2586 * NORMAL - One of two things: 2587 * 1) We really set it. 2588 * 2) A bunch of interrupts came in and moved 2589 * the page forward again. 2590 */ 2591 switch (ret) { 2592 case RB_PAGE_HEAD: 2593 case RB_PAGE_NORMAL: 2594 /* OK */ 2595 break; 2596 default: 2597 RB_WARN_ON(cpu_buffer, 1); 2598 return -1; 2599 } 2600 2601 /* 2602 * It is possible that an interrupt came in, 2603 * set the head up, then more interrupts came in 2604 * and moved it again. When we get back here, 2605 * the page would have been set to NORMAL but we 2606 * just set it back to HEAD. 2607 * 2608 * How do you detect this? Well, if that happened 2609 * the tail page would have moved. 2610 */ 2611 if (ret == RB_PAGE_NORMAL) { 2612 struct buffer_page *buffer_tail_page; 2613 2614 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2615 /* 2616 * If the tail had moved passed next, then we need 2617 * to reset the pointer. 2618 */ 2619 if (buffer_tail_page != tail_page && 2620 buffer_tail_page != next_page) 2621 rb_head_page_set_normal(cpu_buffer, new_head, 2622 next_page, 2623 RB_PAGE_HEAD); 2624 } 2625 2626 /* 2627 * If this was the outer most commit (the one that 2628 * changed the original pointer from HEAD to UPDATE), 2629 * then it is up to us to reset it to NORMAL. 2630 */ 2631 if (type == RB_PAGE_HEAD) { 2632 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2633 tail_page, 2634 RB_PAGE_UPDATE); 2635 if (RB_WARN_ON(cpu_buffer, 2636 ret != RB_PAGE_UPDATE)) 2637 return -1; 2638 } 2639 2640 return 0; 2641 } 2642 2643 static inline void 2644 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2645 unsigned long tail, struct rb_event_info *info) 2646 { 2647 struct buffer_page *tail_page = info->tail_page; 2648 struct ring_buffer_event *event; 2649 unsigned long length = info->length; 2650 2651 /* 2652 * Only the event that crossed the page boundary 2653 * must fill the old tail_page with padding. 2654 */ 2655 if (tail >= BUF_PAGE_SIZE) { 2656 /* 2657 * If the page was filled, then we still need 2658 * to update the real_end. Reset it to zero 2659 * and the reader will ignore it. 2660 */ 2661 if (tail == BUF_PAGE_SIZE) 2662 tail_page->real_end = 0; 2663 2664 local_sub(length, &tail_page->write); 2665 return; 2666 } 2667 2668 event = __rb_page_index(tail_page, tail); 2669 2670 /* account for padding bytes */ 2671 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2672 2673 /* 2674 * Save the original length to the meta data. 2675 * This will be used by the reader to add lost event 2676 * counter. 2677 */ 2678 tail_page->real_end = tail; 2679 2680 /* 2681 * If this event is bigger than the minimum size, then 2682 * we need to be careful that we don't subtract the 2683 * write counter enough to allow another writer to slip 2684 * in on this page. 2685 * We put in a discarded commit instead, to make sure 2686 * that this space is not used again. 2687 * 2688 * If we are less than the minimum size, we don't need to 2689 * worry about it. 2690 */ 2691 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2692 /* No room for any events */ 2693 2694 /* Mark the rest of the page with padding */ 2695 rb_event_set_padding(event); 2696 2697 /* Make sure the padding is visible before the write update */ 2698 smp_wmb(); 2699 2700 /* Set the write back to the previous setting */ 2701 local_sub(length, &tail_page->write); 2702 return; 2703 } 2704 2705 /* Put in a discarded event */ 2706 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2707 event->type_len = RINGBUF_TYPE_PADDING; 2708 /* time delta must be non zero */ 2709 event->time_delta = 1; 2710 2711 /* Make sure the padding is visible before the tail_page->write update */ 2712 smp_wmb(); 2713 2714 /* Set write to end of buffer */ 2715 length = (tail + length) - BUF_PAGE_SIZE; 2716 local_sub(length, &tail_page->write); 2717 } 2718 2719 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2720 2721 /* 2722 * This is the slow path, force gcc not to inline it. 2723 */ 2724 static noinline struct ring_buffer_event * 2725 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2726 unsigned long tail, struct rb_event_info *info) 2727 { 2728 struct buffer_page *tail_page = info->tail_page; 2729 struct buffer_page *commit_page = cpu_buffer->commit_page; 2730 struct trace_buffer *buffer = cpu_buffer->buffer; 2731 struct buffer_page *next_page; 2732 int ret; 2733 2734 next_page = tail_page; 2735 2736 rb_inc_page(&next_page); 2737 2738 /* 2739 * If for some reason, we had an interrupt storm that made 2740 * it all the way around the buffer, bail, and warn 2741 * about it. 2742 */ 2743 if (unlikely(next_page == commit_page)) { 2744 local_inc(&cpu_buffer->commit_overrun); 2745 goto out_reset; 2746 } 2747 2748 /* 2749 * This is where the fun begins! 2750 * 2751 * We are fighting against races between a reader that 2752 * could be on another CPU trying to swap its reader 2753 * page with the buffer head. 2754 * 2755 * We are also fighting against interrupts coming in and 2756 * moving the head or tail on us as well. 2757 * 2758 * If the next page is the head page then we have filled 2759 * the buffer, unless the commit page is still on the 2760 * reader page. 2761 */ 2762 if (rb_is_head_page(next_page, &tail_page->list)) { 2763 2764 /* 2765 * If the commit is not on the reader page, then 2766 * move the header page. 2767 */ 2768 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2769 /* 2770 * If we are not in overwrite mode, 2771 * this is easy, just stop here. 2772 */ 2773 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2774 local_inc(&cpu_buffer->dropped_events); 2775 goto out_reset; 2776 } 2777 2778 ret = rb_handle_head_page(cpu_buffer, 2779 tail_page, 2780 next_page); 2781 if (ret < 0) 2782 goto out_reset; 2783 if (ret) 2784 goto out_again; 2785 } else { 2786 /* 2787 * We need to be careful here too. The 2788 * commit page could still be on the reader 2789 * page. We could have a small buffer, and 2790 * have filled up the buffer with events 2791 * from interrupts and such, and wrapped. 2792 * 2793 * Note, if the tail page is also on the 2794 * reader_page, we let it move out. 2795 */ 2796 if (unlikely((cpu_buffer->commit_page != 2797 cpu_buffer->tail_page) && 2798 (cpu_buffer->commit_page == 2799 cpu_buffer->reader_page))) { 2800 local_inc(&cpu_buffer->commit_overrun); 2801 goto out_reset; 2802 } 2803 } 2804 } 2805 2806 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2807 2808 out_again: 2809 2810 rb_reset_tail(cpu_buffer, tail, info); 2811 2812 /* Commit what we have for now. */ 2813 rb_end_commit(cpu_buffer); 2814 /* rb_end_commit() decs committing */ 2815 local_inc(&cpu_buffer->committing); 2816 2817 /* fail and let the caller try again */ 2818 return ERR_PTR(-EAGAIN); 2819 2820 out_reset: 2821 /* reset write */ 2822 rb_reset_tail(cpu_buffer, tail, info); 2823 2824 return NULL; 2825 } 2826 2827 /* Slow path */ 2828 static struct ring_buffer_event * 2829 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2830 { 2831 if (abs) 2832 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2833 else 2834 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2835 2836 /* Not the first event on the page, or not delta? */ 2837 if (abs || rb_event_index(event)) { 2838 event->time_delta = delta & TS_MASK; 2839 event->array[0] = delta >> TS_SHIFT; 2840 } else { 2841 /* nope, just zero it */ 2842 event->time_delta = 0; 2843 event->array[0] = 0; 2844 } 2845 2846 return skip_time_extend(event); 2847 } 2848 2849 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2850 static inline bool sched_clock_stable(void) 2851 { 2852 return true; 2853 } 2854 #endif 2855 2856 static void 2857 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2858 struct rb_event_info *info) 2859 { 2860 u64 write_stamp; 2861 2862 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2863 (unsigned long long)info->delta, 2864 (unsigned long long)info->ts, 2865 (unsigned long long)info->before, 2866 (unsigned long long)info->after, 2867 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2868 sched_clock_stable() ? "" : 2869 "If you just came from a suspend/resume,\n" 2870 "please switch to the trace global clock:\n" 2871 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2872 "or add trace_clock=global to the kernel command line\n"); 2873 } 2874 2875 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2876 struct ring_buffer_event **event, 2877 struct rb_event_info *info, 2878 u64 *delta, 2879 unsigned int *length) 2880 { 2881 bool abs = info->add_timestamp & 2882 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2883 2884 if (unlikely(info->delta > (1ULL << 59))) { 2885 /* 2886 * Some timers can use more than 59 bits, and when a timestamp 2887 * is added to the buffer, it will lose those bits. 2888 */ 2889 if (abs && (info->ts & TS_MSB)) { 2890 info->delta &= ABS_TS_MASK; 2891 2892 /* did the clock go backwards */ 2893 } else if (info->before == info->after && info->before > info->ts) { 2894 /* not interrupted */ 2895 static int once; 2896 2897 /* 2898 * This is possible with a recalibrating of the TSC. 2899 * Do not produce a call stack, but just report it. 2900 */ 2901 if (!once) { 2902 once++; 2903 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2904 info->before, info->ts); 2905 } 2906 } else 2907 rb_check_timestamp(cpu_buffer, info); 2908 if (!abs) 2909 info->delta = 0; 2910 } 2911 *event = rb_add_time_stamp(*event, info->delta, abs); 2912 *length -= RB_LEN_TIME_EXTEND; 2913 *delta = 0; 2914 } 2915 2916 /** 2917 * rb_update_event - update event type and data 2918 * @cpu_buffer: The per cpu buffer of the @event 2919 * @event: the event to update 2920 * @info: The info to update the @event with (contains length and delta) 2921 * 2922 * Update the type and data fields of the @event. The length 2923 * is the actual size that is written to the ring buffer, 2924 * and with this, we can determine what to place into the 2925 * data field. 2926 */ 2927 static void 2928 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2929 struct ring_buffer_event *event, 2930 struct rb_event_info *info) 2931 { 2932 unsigned length = info->length; 2933 u64 delta = info->delta; 2934 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2935 2936 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2937 cpu_buffer->event_stamp[nest] = info->ts; 2938 2939 /* 2940 * If we need to add a timestamp, then we 2941 * add it to the start of the reserved space. 2942 */ 2943 if (unlikely(info->add_timestamp)) 2944 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2945 2946 event->time_delta = delta; 2947 length -= RB_EVNT_HDR_SIZE; 2948 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2949 event->type_len = 0; 2950 event->array[0] = length; 2951 } else 2952 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2953 } 2954 2955 static unsigned rb_calculate_event_length(unsigned length) 2956 { 2957 struct ring_buffer_event event; /* Used only for sizeof array */ 2958 2959 /* zero length can cause confusions */ 2960 if (!length) 2961 length++; 2962 2963 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2964 length += sizeof(event.array[0]); 2965 2966 length += RB_EVNT_HDR_SIZE; 2967 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2968 2969 /* 2970 * In case the time delta is larger than the 27 bits for it 2971 * in the header, we need to add a timestamp. If another 2972 * event comes in when trying to discard this one to increase 2973 * the length, then the timestamp will be added in the allocated 2974 * space of this event. If length is bigger than the size needed 2975 * for the TIME_EXTEND, then padding has to be used. The events 2976 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2977 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2978 * As length is a multiple of 4, we only need to worry if it 2979 * is 12 (RB_LEN_TIME_EXTEND + 4). 2980 */ 2981 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2982 length += RB_ALIGNMENT; 2983 2984 return length; 2985 } 2986 2987 static u64 rb_time_delta(struct ring_buffer_event *event) 2988 { 2989 switch (event->type_len) { 2990 case RINGBUF_TYPE_PADDING: 2991 return 0; 2992 2993 case RINGBUF_TYPE_TIME_EXTEND: 2994 return rb_event_time_stamp(event); 2995 2996 case RINGBUF_TYPE_TIME_STAMP: 2997 return 0; 2998 2999 case RINGBUF_TYPE_DATA: 3000 return event->time_delta; 3001 default: 3002 return 0; 3003 } 3004 } 3005 3006 static inline int 3007 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3008 struct ring_buffer_event *event) 3009 { 3010 unsigned long new_index, old_index; 3011 struct buffer_page *bpage; 3012 unsigned long index; 3013 unsigned long addr; 3014 u64 write_stamp; 3015 u64 delta; 3016 3017 new_index = rb_event_index(event); 3018 old_index = new_index + rb_event_ts_length(event); 3019 addr = (unsigned long)event; 3020 addr &= PAGE_MASK; 3021 3022 bpage = READ_ONCE(cpu_buffer->tail_page); 3023 3024 delta = rb_time_delta(event); 3025 3026 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 3027 return 0; 3028 3029 /* Make sure the write stamp is read before testing the location */ 3030 barrier(); 3031 3032 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3033 unsigned long write_mask = 3034 local_read(&bpage->write) & ~RB_WRITE_MASK; 3035 unsigned long event_length = rb_event_length(event); 3036 3037 /* Something came in, can't discard */ 3038 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 3039 write_stamp, write_stamp - delta)) 3040 return 0; 3041 3042 /* 3043 * It's possible that the event time delta is zero 3044 * (has the same time stamp as the previous event) 3045 * in which case write_stamp and before_stamp could 3046 * be the same. In such a case, force before_stamp 3047 * to be different than write_stamp. It doesn't 3048 * matter what it is, as long as its different. 3049 */ 3050 if (!delta) 3051 rb_time_set(&cpu_buffer->before_stamp, 0); 3052 3053 /* 3054 * If an event were to come in now, it would see that the 3055 * write_stamp and the before_stamp are different, and assume 3056 * that this event just added itself before updating 3057 * the write stamp. The interrupting event will fix the 3058 * write stamp for us, and use the before stamp as its delta. 3059 */ 3060 3061 /* 3062 * This is on the tail page. It is possible that 3063 * a write could come in and move the tail page 3064 * and write to the next page. That is fine 3065 * because we just shorten what is on this page. 3066 */ 3067 old_index += write_mask; 3068 new_index += write_mask; 3069 index = local_cmpxchg(&bpage->write, old_index, new_index); 3070 if (index == old_index) { 3071 /* update counters */ 3072 local_sub(event_length, &cpu_buffer->entries_bytes); 3073 return 1; 3074 } 3075 } 3076 3077 /* could not discard */ 3078 return 0; 3079 } 3080 3081 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3082 { 3083 local_inc(&cpu_buffer->committing); 3084 local_inc(&cpu_buffer->commits); 3085 } 3086 3087 static __always_inline void 3088 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3089 { 3090 unsigned long max_count; 3091 3092 /* 3093 * We only race with interrupts and NMIs on this CPU. 3094 * If we own the commit event, then we can commit 3095 * all others that interrupted us, since the interruptions 3096 * are in stack format (they finish before they come 3097 * back to us). This allows us to do a simple loop to 3098 * assign the commit to the tail. 3099 */ 3100 again: 3101 max_count = cpu_buffer->nr_pages * 100; 3102 3103 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3104 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3105 return; 3106 if (RB_WARN_ON(cpu_buffer, 3107 rb_is_reader_page(cpu_buffer->tail_page))) 3108 return; 3109 local_set(&cpu_buffer->commit_page->page->commit, 3110 rb_page_write(cpu_buffer->commit_page)); 3111 rb_inc_page(&cpu_buffer->commit_page); 3112 /* add barrier to keep gcc from optimizing too much */ 3113 barrier(); 3114 } 3115 while (rb_commit_index(cpu_buffer) != 3116 rb_page_write(cpu_buffer->commit_page)) { 3117 3118 local_set(&cpu_buffer->commit_page->page->commit, 3119 rb_page_write(cpu_buffer->commit_page)); 3120 RB_WARN_ON(cpu_buffer, 3121 local_read(&cpu_buffer->commit_page->page->commit) & 3122 ~RB_WRITE_MASK); 3123 barrier(); 3124 } 3125 3126 /* again, keep gcc from optimizing */ 3127 barrier(); 3128 3129 /* 3130 * If an interrupt came in just after the first while loop 3131 * and pushed the tail page forward, we will be left with 3132 * a dangling commit that will never go forward. 3133 */ 3134 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3135 goto again; 3136 } 3137 3138 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3139 { 3140 unsigned long commits; 3141 3142 if (RB_WARN_ON(cpu_buffer, 3143 !local_read(&cpu_buffer->committing))) 3144 return; 3145 3146 again: 3147 commits = local_read(&cpu_buffer->commits); 3148 /* synchronize with interrupts */ 3149 barrier(); 3150 if (local_read(&cpu_buffer->committing) == 1) 3151 rb_set_commit_to_write(cpu_buffer); 3152 3153 local_dec(&cpu_buffer->committing); 3154 3155 /* synchronize with interrupts */ 3156 barrier(); 3157 3158 /* 3159 * Need to account for interrupts coming in between the 3160 * updating of the commit page and the clearing of the 3161 * committing counter. 3162 */ 3163 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3164 !local_read(&cpu_buffer->committing)) { 3165 local_inc(&cpu_buffer->committing); 3166 goto again; 3167 } 3168 } 3169 3170 static inline void rb_event_discard(struct ring_buffer_event *event) 3171 { 3172 if (extended_time(event)) 3173 event = skip_time_extend(event); 3174 3175 /* array[0] holds the actual length for the discarded event */ 3176 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3177 event->type_len = RINGBUF_TYPE_PADDING; 3178 /* time delta must be non zero */ 3179 if (!event->time_delta) 3180 event->time_delta = 1; 3181 } 3182 3183 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 3184 struct ring_buffer_event *event) 3185 { 3186 local_inc(&cpu_buffer->entries); 3187 rb_end_commit(cpu_buffer); 3188 } 3189 3190 static __always_inline void 3191 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3192 { 3193 if (buffer->irq_work.waiters_pending) { 3194 buffer->irq_work.waiters_pending = false; 3195 /* irq_work_queue() supplies it's own memory barriers */ 3196 irq_work_queue(&buffer->irq_work.work); 3197 } 3198 3199 if (cpu_buffer->irq_work.waiters_pending) { 3200 cpu_buffer->irq_work.waiters_pending = false; 3201 /* irq_work_queue() supplies it's own memory barriers */ 3202 irq_work_queue(&cpu_buffer->irq_work.work); 3203 } 3204 3205 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3206 return; 3207 3208 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3209 return; 3210 3211 if (!cpu_buffer->irq_work.full_waiters_pending) 3212 return; 3213 3214 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3215 3216 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3217 return; 3218 3219 cpu_buffer->irq_work.wakeup_full = true; 3220 cpu_buffer->irq_work.full_waiters_pending = false; 3221 /* irq_work_queue() supplies it's own memory barriers */ 3222 irq_work_queue(&cpu_buffer->irq_work.work); 3223 } 3224 3225 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3226 # define do_ring_buffer_record_recursion() \ 3227 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3228 #else 3229 # define do_ring_buffer_record_recursion() do { } while (0) 3230 #endif 3231 3232 /* 3233 * The lock and unlock are done within a preempt disable section. 3234 * The current_context per_cpu variable can only be modified 3235 * by the current task between lock and unlock. But it can 3236 * be modified more than once via an interrupt. To pass this 3237 * information from the lock to the unlock without having to 3238 * access the 'in_interrupt()' functions again (which do show 3239 * a bit of overhead in something as critical as function tracing, 3240 * we use a bitmask trick. 3241 * 3242 * bit 1 = NMI context 3243 * bit 2 = IRQ context 3244 * bit 3 = SoftIRQ context 3245 * bit 4 = normal context. 3246 * 3247 * This works because this is the order of contexts that can 3248 * preempt other contexts. A SoftIRQ never preempts an IRQ 3249 * context. 3250 * 3251 * When the context is determined, the corresponding bit is 3252 * checked and set (if it was set, then a recursion of that context 3253 * happened). 3254 * 3255 * On unlock, we need to clear this bit. To do so, just subtract 3256 * 1 from the current_context and AND it to itself. 3257 * 3258 * (binary) 3259 * 101 - 1 = 100 3260 * 101 & 100 = 100 (clearing bit zero) 3261 * 3262 * 1010 - 1 = 1001 3263 * 1010 & 1001 = 1000 (clearing bit 1) 3264 * 3265 * The least significant bit can be cleared this way, and it 3266 * just so happens that it is the same bit corresponding to 3267 * the current context. 3268 * 3269 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3270 * is set when a recursion is detected at the current context, and if 3271 * the TRANSITION bit is already set, it will fail the recursion. 3272 * This is needed because there's a lag between the changing of 3273 * interrupt context and updating the preempt count. In this case, 3274 * a false positive will be found. To handle this, one extra recursion 3275 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3276 * bit is already set, then it is considered a recursion and the function 3277 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3278 * 3279 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3280 * to be cleared. Even if it wasn't the context that set it. That is, 3281 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3282 * is called before preempt_count() is updated, since the check will 3283 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3284 * NMI then comes in, it will set the NMI bit, but when the NMI code 3285 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3286 * and leave the NMI bit set. But this is fine, because the interrupt 3287 * code that set the TRANSITION bit will then clear the NMI bit when it 3288 * calls trace_recursive_unlock(). If another NMI comes in, it will 3289 * set the TRANSITION bit and continue. 3290 * 3291 * Note: The TRANSITION bit only handles a single transition between context. 3292 */ 3293 3294 static __always_inline int 3295 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3296 { 3297 unsigned int val = cpu_buffer->current_context; 3298 int bit = interrupt_context_level(); 3299 3300 bit = RB_CTX_NORMAL - bit; 3301 3302 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3303 /* 3304 * It is possible that this was called by transitioning 3305 * between interrupt context, and preempt_count() has not 3306 * been updated yet. In this case, use the TRANSITION bit. 3307 */ 3308 bit = RB_CTX_TRANSITION; 3309 if (val & (1 << (bit + cpu_buffer->nest))) { 3310 do_ring_buffer_record_recursion(); 3311 return 1; 3312 } 3313 } 3314 3315 val |= (1 << (bit + cpu_buffer->nest)); 3316 cpu_buffer->current_context = val; 3317 3318 return 0; 3319 } 3320 3321 static __always_inline void 3322 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3323 { 3324 cpu_buffer->current_context &= 3325 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3326 } 3327 3328 /* The recursive locking above uses 5 bits */ 3329 #define NESTED_BITS 5 3330 3331 /** 3332 * ring_buffer_nest_start - Allow to trace while nested 3333 * @buffer: The ring buffer to modify 3334 * 3335 * The ring buffer has a safety mechanism to prevent recursion. 3336 * But there may be a case where a trace needs to be done while 3337 * tracing something else. In this case, calling this function 3338 * will allow this function to nest within a currently active 3339 * ring_buffer_lock_reserve(). 3340 * 3341 * Call this function before calling another ring_buffer_lock_reserve() and 3342 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3343 */ 3344 void ring_buffer_nest_start(struct trace_buffer *buffer) 3345 { 3346 struct ring_buffer_per_cpu *cpu_buffer; 3347 int cpu; 3348 3349 /* Enabled by ring_buffer_nest_end() */ 3350 preempt_disable_notrace(); 3351 cpu = raw_smp_processor_id(); 3352 cpu_buffer = buffer->buffers[cpu]; 3353 /* This is the shift value for the above recursive locking */ 3354 cpu_buffer->nest += NESTED_BITS; 3355 } 3356 3357 /** 3358 * ring_buffer_nest_end - Allow to trace while nested 3359 * @buffer: The ring buffer to modify 3360 * 3361 * Must be called after ring_buffer_nest_start() and after the 3362 * ring_buffer_unlock_commit(). 3363 */ 3364 void ring_buffer_nest_end(struct trace_buffer *buffer) 3365 { 3366 struct ring_buffer_per_cpu *cpu_buffer; 3367 int cpu; 3368 3369 /* disabled by ring_buffer_nest_start() */ 3370 cpu = raw_smp_processor_id(); 3371 cpu_buffer = buffer->buffers[cpu]; 3372 /* This is the shift value for the above recursive locking */ 3373 cpu_buffer->nest -= NESTED_BITS; 3374 preempt_enable_notrace(); 3375 } 3376 3377 /** 3378 * ring_buffer_unlock_commit - commit a reserved 3379 * @buffer: The buffer to commit to 3380 * @event: The event pointer to commit. 3381 * 3382 * This commits the data to the ring buffer, and releases any locks held. 3383 * 3384 * Must be paired with ring_buffer_lock_reserve. 3385 */ 3386 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 3387 struct ring_buffer_event *event) 3388 { 3389 struct ring_buffer_per_cpu *cpu_buffer; 3390 int cpu = raw_smp_processor_id(); 3391 3392 cpu_buffer = buffer->buffers[cpu]; 3393 3394 rb_commit(cpu_buffer, event); 3395 3396 rb_wakeups(buffer, cpu_buffer); 3397 3398 trace_recursive_unlock(cpu_buffer); 3399 3400 preempt_enable_notrace(); 3401 3402 return 0; 3403 } 3404 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3405 3406 /* Special value to validate all deltas on a page. */ 3407 #define CHECK_FULL_PAGE 1L 3408 3409 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3410 static void dump_buffer_page(struct buffer_data_page *bpage, 3411 struct rb_event_info *info, 3412 unsigned long tail) 3413 { 3414 struct ring_buffer_event *event; 3415 u64 ts, delta; 3416 int e; 3417 3418 ts = bpage->time_stamp; 3419 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3420 3421 for (e = 0; e < tail; e += rb_event_length(event)) { 3422 3423 event = (struct ring_buffer_event *)(bpage->data + e); 3424 3425 switch (event->type_len) { 3426 3427 case RINGBUF_TYPE_TIME_EXTEND: 3428 delta = rb_event_time_stamp(event); 3429 ts += delta; 3430 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3431 break; 3432 3433 case RINGBUF_TYPE_TIME_STAMP: 3434 delta = rb_event_time_stamp(event); 3435 ts = rb_fix_abs_ts(delta, ts); 3436 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3437 break; 3438 3439 case RINGBUF_TYPE_PADDING: 3440 ts += event->time_delta; 3441 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3442 break; 3443 3444 case RINGBUF_TYPE_DATA: 3445 ts += event->time_delta; 3446 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3447 break; 3448 3449 default: 3450 break; 3451 } 3452 } 3453 } 3454 3455 static DEFINE_PER_CPU(atomic_t, checking); 3456 static atomic_t ts_dump; 3457 3458 /* 3459 * Check if the current event time stamp matches the deltas on 3460 * the buffer page. 3461 */ 3462 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3463 struct rb_event_info *info, 3464 unsigned long tail) 3465 { 3466 struct ring_buffer_event *event; 3467 struct buffer_data_page *bpage; 3468 u64 ts, delta; 3469 bool full = false; 3470 int e; 3471 3472 bpage = info->tail_page->page; 3473 3474 if (tail == CHECK_FULL_PAGE) { 3475 full = true; 3476 tail = local_read(&bpage->commit); 3477 } else if (info->add_timestamp & 3478 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3479 /* Ignore events with absolute time stamps */ 3480 return; 3481 } 3482 3483 /* 3484 * Do not check the first event (skip possible extends too). 3485 * Also do not check if previous events have not been committed. 3486 */ 3487 if (tail <= 8 || tail > local_read(&bpage->commit)) 3488 return; 3489 3490 /* 3491 * If this interrupted another event, 3492 */ 3493 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3494 goto out; 3495 3496 ts = bpage->time_stamp; 3497 3498 for (e = 0; e < tail; e += rb_event_length(event)) { 3499 3500 event = (struct ring_buffer_event *)(bpage->data + e); 3501 3502 switch (event->type_len) { 3503 3504 case RINGBUF_TYPE_TIME_EXTEND: 3505 delta = rb_event_time_stamp(event); 3506 ts += delta; 3507 break; 3508 3509 case RINGBUF_TYPE_TIME_STAMP: 3510 delta = rb_event_time_stamp(event); 3511 ts = rb_fix_abs_ts(delta, ts); 3512 break; 3513 3514 case RINGBUF_TYPE_PADDING: 3515 if (event->time_delta == 1) 3516 break; 3517 fallthrough; 3518 case RINGBUF_TYPE_DATA: 3519 ts += event->time_delta; 3520 break; 3521 3522 default: 3523 RB_WARN_ON(cpu_buffer, 1); 3524 } 3525 } 3526 if ((full && ts > info->ts) || 3527 (!full && ts + info->delta != info->ts)) { 3528 /* If another report is happening, ignore this one */ 3529 if (atomic_inc_return(&ts_dump) != 1) { 3530 atomic_dec(&ts_dump); 3531 goto out; 3532 } 3533 atomic_inc(&cpu_buffer->record_disabled); 3534 /* There's some cases in boot up that this can happen */ 3535 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3536 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3537 cpu_buffer->cpu, 3538 ts + info->delta, info->ts, info->delta, 3539 info->before, info->after, 3540 full ? " (full)" : ""); 3541 dump_buffer_page(bpage, info, tail); 3542 atomic_dec(&ts_dump); 3543 /* Do not re-enable checking */ 3544 return; 3545 } 3546 out: 3547 atomic_dec(this_cpu_ptr(&checking)); 3548 } 3549 #else 3550 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3551 struct rb_event_info *info, 3552 unsigned long tail) 3553 { 3554 } 3555 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3556 3557 static struct ring_buffer_event * 3558 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3559 struct rb_event_info *info) 3560 { 3561 struct ring_buffer_event *event; 3562 struct buffer_page *tail_page; 3563 unsigned long tail, write, w; 3564 bool a_ok; 3565 bool b_ok; 3566 3567 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3568 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3569 3570 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3571 barrier(); 3572 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3573 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3574 barrier(); 3575 info->ts = rb_time_stamp(cpu_buffer->buffer); 3576 3577 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3578 info->delta = info->ts; 3579 } else { 3580 /* 3581 * If interrupting an event time update, we may need an 3582 * absolute timestamp. 3583 * Don't bother if this is the start of a new page (w == 0). 3584 */ 3585 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3586 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3587 info->length += RB_LEN_TIME_EXTEND; 3588 } else { 3589 info->delta = info->ts - info->after; 3590 if (unlikely(test_time_stamp(info->delta))) { 3591 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3592 info->length += RB_LEN_TIME_EXTEND; 3593 } 3594 } 3595 } 3596 3597 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3598 3599 /*C*/ write = local_add_return(info->length, &tail_page->write); 3600 3601 /* set write to only the index of the write */ 3602 write &= RB_WRITE_MASK; 3603 3604 tail = write - info->length; 3605 3606 /* See if we shot pass the end of this buffer page */ 3607 if (unlikely(write > BUF_PAGE_SIZE)) { 3608 /* before and after may now different, fix it up*/ 3609 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3610 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3611 if (a_ok && b_ok && info->before != info->after) 3612 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3613 info->before, info->after); 3614 if (a_ok && b_ok) 3615 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3616 return rb_move_tail(cpu_buffer, tail, info); 3617 } 3618 3619 if (likely(tail == w)) { 3620 u64 save_before; 3621 bool s_ok; 3622 3623 /* Nothing interrupted us between A and C */ 3624 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3625 barrier(); 3626 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3627 RB_WARN_ON(cpu_buffer, !s_ok); 3628 if (likely(!(info->add_timestamp & 3629 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3630 /* This did not interrupt any time update */ 3631 info->delta = info->ts - info->after; 3632 else 3633 /* Just use full timestamp for interrupting event */ 3634 info->delta = info->ts; 3635 barrier(); 3636 check_buffer(cpu_buffer, info, tail); 3637 if (unlikely(info->ts != save_before)) { 3638 /* SLOW PATH - Interrupted between C and E */ 3639 3640 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3641 RB_WARN_ON(cpu_buffer, !a_ok); 3642 3643 /* Write stamp must only go forward */ 3644 if (save_before > info->after) { 3645 /* 3646 * We do not care about the result, only that 3647 * it gets updated atomically. 3648 */ 3649 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3650 info->after, save_before); 3651 } 3652 } 3653 } else { 3654 u64 ts; 3655 /* SLOW PATH - Interrupted between A and C */ 3656 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3657 /* Was interrupted before here, write_stamp must be valid */ 3658 RB_WARN_ON(cpu_buffer, !a_ok); 3659 ts = rb_time_stamp(cpu_buffer->buffer); 3660 barrier(); 3661 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3662 info->after < ts && 3663 rb_time_cmpxchg(&cpu_buffer->write_stamp, 3664 info->after, ts)) { 3665 /* Nothing came after this event between C and E */ 3666 info->delta = ts - info->after; 3667 } else { 3668 /* 3669 * Interrupted between C and E: 3670 * Lost the previous events time stamp. Just set the 3671 * delta to zero, and this will be the same time as 3672 * the event this event interrupted. And the events that 3673 * came after this will still be correct (as they would 3674 * have built their delta on the previous event. 3675 */ 3676 info->delta = 0; 3677 } 3678 info->ts = ts; 3679 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3680 } 3681 3682 /* 3683 * If this is the first commit on the page, then it has the same 3684 * timestamp as the page itself. 3685 */ 3686 if (unlikely(!tail && !(info->add_timestamp & 3687 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3688 info->delta = 0; 3689 3690 /* We reserved something on the buffer */ 3691 3692 event = __rb_page_index(tail_page, tail); 3693 rb_update_event(cpu_buffer, event, info); 3694 3695 local_inc(&tail_page->entries); 3696 3697 /* 3698 * If this is the first commit on the page, then update 3699 * its timestamp. 3700 */ 3701 if (unlikely(!tail)) 3702 tail_page->page->time_stamp = info->ts; 3703 3704 /* account for these added bytes */ 3705 local_add(info->length, &cpu_buffer->entries_bytes); 3706 3707 return event; 3708 } 3709 3710 static __always_inline struct ring_buffer_event * 3711 rb_reserve_next_event(struct trace_buffer *buffer, 3712 struct ring_buffer_per_cpu *cpu_buffer, 3713 unsigned long length) 3714 { 3715 struct ring_buffer_event *event; 3716 struct rb_event_info info; 3717 int nr_loops = 0; 3718 int add_ts_default; 3719 3720 rb_start_commit(cpu_buffer); 3721 /* The commit page can not change after this */ 3722 3723 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3724 /* 3725 * Due to the ability to swap a cpu buffer from a buffer 3726 * it is possible it was swapped before we committed. 3727 * (committing stops a swap). We check for it here and 3728 * if it happened, we have to fail the write. 3729 */ 3730 barrier(); 3731 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3732 local_dec(&cpu_buffer->committing); 3733 local_dec(&cpu_buffer->commits); 3734 return NULL; 3735 } 3736 #endif 3737 3738 info.length = rb_calculate_event_length(length); 3739 3740 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3741 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3742 info.length += RB_LEN_TIME_EXTEND; 3743 } else { 3744 add_ts_default = RB_ADD_STAMP_NONE; 3745 } 3746 3747 again: 3748 info.add_timestamp = add_ts_default; 3749 info.delta = 0; 3750 3751 /* 3752 * We allow for interrupts to reenter here and do a trace. 3753 * If one does, it will cause this original code to loop 3754 * back here. Even with heavy interrupts happening, this 3755 * should only happen a few times in a row. If this happens 3756 * 1000 times in a row, there must be either an interrupt 3757 * storm or we have something buggy. 3758 * Bail! 3759 */ 3760 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3761 goto out_fail; 3762 3763 event = __rb_reserve_next(cpu_buffer, &info); 3764 3765 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3766 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3767 info.length -= RB_LEN_TIME_EXTEND; 3768 goto again; 3769 } 3770 3771 if (likely(event)) 3772 return event; 3773 out_fail: 3774 rb_end_commit(cpu_buffer); 3775 return NULL; 3776 } 3777 3778 /** 3779 * ring_buffer_lock_reserve - reserve a part of the buffer 3780 * @buffer: the ring buffer to reserve from 3781 * @length: the length of the data to reserve (excluding event header) 3782 * 3783 * Returns a reserved event on the ring buffer to copy directly to. 3784 * The user of this interface will need to get the body to write into 3785 * and can use the ring_buffer_event_data() interface. 3786 * 3787 * The length is the length of the data needed, not the event length 3788 * which also includes the event header. 3789 * 3790 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3791 * If NULL is returned, then nothing has been allocated or locked. 3792 */ 3793 struct ring_buffer_event * 3794 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3795 { 3796 struct ring_buffer_per_cpu *cpu_buffer; 3797 struct ring_buffer_event *event; 3798 int cpu; 3799 3800 /* If we are tracing schedule, we don't want to recurse */ 3801 preempt_disable_notrace(); 3802 3803 if (unlikely(atomic_read(&buffer->record_disabled))) 3804 goto out; 3805 3806 cpu = raw_smp_processor_id(); 3807 3808 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3809 goto out; 3810 3811 cpu_buffer = buffer->buffers[cpu]; 3812 3813 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3814 goto out; 3815 3816 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3817 goto out; 3818 3819 if (unlikely(trace_recursive_lock(cpu_buffer))) 3820 goto out; 3821 3822 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3823 if (!event) 3824 goto out_unlock; 3825 3826 return event; 3827 3828 out_unlock: 3829 trace_recursive_unlock(cpu_buffer); 3830 out: 3831 preempt_enable_notrace(); 3832 return NULL; 3833 } 3834 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3835 3836 /* 3837 * Decrement the entries to the page that an event is on. 3838 * The event does not even need to exist, only the pointer 3839 * to the page it is on. This may only be called before the commit 3840 * takes place. 3841 */ 3842 static inline void 3843 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3844 struct ring_buffer_event *event) 3845 { 3846 unsigned long addr = (unsigned long)event; 3847 struct buffer_page *bpage = cpu_buffer->commit_page; 3848 struct buffer_page *start; 3849 3850 addr &= PAGE_MASK; 3851 3852 /* Do the likely case first */ 3853 if (likely(bpage->page == (void *)addr)) { 3854 local_dec(&bpage->entries); 3855 return; 3856 } 3857 3858 /* 3859 * Because the commit page may be on the reader page we 3860 * start with the next page and check the end loop there. 3861 */ 3862 rb_inc_page(&bpage); 3863 start = bpage; 3864 do { 3865 if (bpage->page == (void *)addr) { 3866 local_dec(&bpage->entries); 3867 return; 3868 } 3869 rb_inc_page(&bpage); 3870 } while (bpage != start); 3871 3872 /* commit not part of this buffer?? */ 3873 RB_WARN_ON(cpu_buffer, 1); 3874 } 3875 3876 /** 3877 * ring_buffer_discard_commit - discard an event that has not been committed 3878 * @buffer: the ring buffer 3879 * @event: non committed event to discard 3880 * 3881 * Sometimes an event that is in the ring buffer needs to be ignored. 3882 * This function lets the user discard an event in the ring buffer 3883 * and then that event will not be read later. 3884 * 3885 * This function only works if it is called before the item has been 3886 * committed. It will try to free the event from the ring buffer 3887 * if another event has not been added behind it. 3888 * 3889 * If another event has been added behind it, it will set the event 3890 * up as discarded, and perform the commit. 3891 * 3892 * If this function is called, do not call ring_buffer_unlock_commit on 3893 * the event. 3894 */ 3895 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3896 struct ring_buffer_event *event) 3897 { 3898 struct ring_buffer_per_cpu *cpu_buffer; 3899 int cpu; 3900 3901 /* The event is discarded regardless */ 3902 rb_event_discard(event); 3903 3904 cpu = smp_processor_id(); 3905 cpu_buffer = buffer->buffers[cpu]; 3906 3907 /* 3908 * This must only be called if the event has not been 3909 * committed yet. Thus we can assume that preemption 3910 * is still disabled. 3911 */ 3912 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3913 3914 rb_decrement_entry(cpu_buffer, event); 3915 if (rb_try_to_discard(cpu_buffer, event)) 3916 goto out; 3917 3918 out: 3919 rb_end_commit(cpu_buffer); 3920 3921 trace_recursive_unlock(cpu_buffer); 3922 3923 preempt_enable_notrace(); 3924 3925 } 3926 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3927 3928 /** 3929 * ring_buffer_write - write data to the buffer without reserving 3930 * @buffer: The ring buffer to write to. 3931 * @length: The length of the data being written (excluding the event header) 3932 * @data: The data to write to the buffer. 3933 * 3934 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3935 * one function. If you already have the data to write to the buffer, it 3936 * may be easier to simply call this function. 3937 * 3938 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3939 * and not the length of the event which would hold the header. 3940 */ 3941 int ring_buffer_write(struct trace_buffer *buffer, 3942 unsigned long length, 3943 void *data) 3944 { 3945 struct ring_buffer_per_cpu *cpu_buffer; 3946 struct ring_buffer_event *event; 3947 void *body; 3948 int ret = -EBUSY; 3949 int cpu; 3950 3951 preempt_disable_notrace(); 3952 3953 if (atomic_read(&buffer->record_disabled)) 3954 goto out; 3955 3956 cpu = raw_smp_processor_id(); 3957 3958 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3959 goto out; 3960 3961 cpu_buffer = buffer->buffers[cpu]; 3962 3963 if (atomic_read(&cpu_buffer->record_disabled)) 3964 goto out; 3965 3966 if (length > BUF_MAX_DATA_SIZE) 3967 goto out; 3968 3969 if (unlikely(trace_recursive_lock(cpu_buffer))) 3970 goto out; 3971 3972 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3973 if (!event) 3974 goto out_unlock; 3975 3976 body = rb_event_data(event); 3977 3978 memcpy(body, data, length); 3979 3980 rb_commit(cpu_buffer, event); 3981 3982 rb_wakeups(buffer, cpu_buffer); 3983 3984 ret = 0; 3985 3986 out_unlock: 3987 trace_recursive_unlock(cpu_buffer); 3988 3989 out: 3990 preempt_enable_notrace(); 3991 3992 return ret; 3993 } 3994 EXPORT_SYMBOL_GPL(ring_buffer_write); 3995 3996 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3997 { 3998 struct buffer_page *reader = cpu_buffer->reader_page; 3999 struct buffer_page *head = rb_set_head_page(cpu_buffer); 4000 struct buffer_page *commit = cpu_buffer->commit_page; 4001 4002 /* In case of error, head will be NULL */ 4003 if (unlikely(!head)) 4004 return true; 4005 4006 /* Reader should exhaust content in reader page */ 4007 if (reader->read != rb_page_commit(reader)) 4008 return false; 4009 4010 /* 4011 * If writers are committing on the reader page, knowing all 4012 * committed content has been read, the ring buffer is empty. 4013 */ 4014 if (commit == reader) 4015 return true; 4016 4017 /* 4018 * If writers are committing on a page other than reader page 4019 * and head page, there should always be content to read. 4020 */ 4021 if (commit != head) 4022 return false; 4023 4024 /* 4025 * Writers are committing on the head page, we just need 4026 * to care about there're committed data, and the reader will 4027 * swap reader page with head page when it is to read data. 4028 */ 4029 return rb_page_commit(commit) == 0; 4030 } 4031 4032 /** 4033 * ring_buffer_record_disable - stop all writes into the buffer 4034 * @buffer: The ring buffer to stop writes to. 4035 * 4036 * This prevents all writes to the buffer. Any attempt to write 4037 * to the buffer after this will fail and return NULL. 4038 * 4039 * The caller should call synchronize_rcu() after this. 4040 */ 4041 void ring_buffer_record_disable(struct trace_buffer *buffer) 4042 { 4043 atomic_inc(&buffer->record_disabled); 4044 } 4045 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4046 4047 /** 4048 * ring_buffer_record_enable - enable writes to the buffer 4049 * @buffer: The ring buffer to enable writes 4050 * 4051 * Note, multiple disables will need the same number of enables 4052 * to truly enable the writing (much like preempt_disable). 4053 */ 4054 void ring_buffer_record_enable(struct trace_buffer *buffer) 4055 { 4056 atomic_dec(&buffer->record_disabled); 4057 } 4058 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4059 4060 /** 4061 * ring_buffer_record_off - stop all writes into the buffer 4062 * @buffer: The ring buffer to stop writes to. 4063 * 4064 * This prevents all writes to the buffer. Any attempt to write 4065 * to the buffer after this will fail and return NULL. 4066 * 4067 * This is different than ring_buffer_record_disable() as 4068 * it works like an on/off switch, where as the disable() version 4069 * must be paired with a enable(). 4070 */ 4071 void ring_buffer_record_off(struct trace_buffer *buffer) 4072 { 4073 unsigned int rd; 4074 unsigned int new_rd; 4075 4076 do { 4077 rd = atomic_read(&buffer->record_disabled); 4078 new_rd = rd | RB_BUFFER_OFF; 4079 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 4080 } 4081 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4082 4083 /** 4084 * ring_buffer_record_on - restart writes into the buffer 4085 * @buffer: The ring buffer to start writes to. 4086 * 4087 * This enables all writes to the buffer that was disabled by 4088 * ring_buffer_record_off(). 4089 * 4090 * This is different than ring_buffer_record_enable() as 4091 * it works like an on/off switch, where as the enable() version 4092 * must be paired with a disable(). 4093 */ 4094 void ring_buffer_record_on(struct trace_buffer *buffer) 4095 { 4096 unsigned int rd; 4097 unsigned int new_rd; 4098 4099 do { 4100 rd = atomic_read(&buffer->record_disabled); 4101 new_rd = rd & ~RB_BUFFER_OFF; 4102 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 4103 } 4104 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4105 4106 /** 4107 * ring_buffer_record_is_on - return true if the ring buffer can write 4108 * @buffer: The ring buffer to see if write is enabled 4109 * 4110 * Returns true if the ring buffer is in a state that it accepts writes. 4111 */ 4112 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4113 { 4114 return !atomic_read(&buffer->record_disabled); 4115 } 4116 4117 /** 4118 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4119 * @buffer: The ring buffer to see if write is set enabled 4120 * 4121 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4122 * Note that this does NOT mean it is in a writable state. 4123 * 4124 * It may return true when the ring buffer has been disabled by 4125 * ring_buffer_record_disable(), as that is a temporary disabling of 4126 * the ring buffer. 4127 */ 4128 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4129 { 4130 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4131 } 4132 4133 /** 4134 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4135 * @buffer: The ring buffer to stop writes to. 4136 * @cpu: The CPU buffer to stop 4137 * 4138 * This prevents all writes to the buffer. Any attempt to write 4139 * to the buffer after this will fail and return NULL. 4140 * 4141 * The caller should call synchronize_rcu() after this. 4142 */ 4143 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4144 { 4145 struct ring_buffer_per_cpu *cpu_buffer; 4146 4147 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4148 return; 4149 4150 cpu_buffer = buffer->buffers[cpu]; 4151 atomic_inc(&cpu_buffer->record_disabled); 4152 } 4153 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4154 4155 /** 4156 * ring_buffer_record_enable_cpu - enable writes to the buffer 4157 * @buffer: The ring buffer to enable writes 4158 * @cpu: The CPU to enable. 4159 * 4160 * Note, multiple disables will need the same number of enables 4161 * to truly enable the writing (much like preempt_disable). 4162 */ 4163 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4164 { 4165 struct ring_buffer_per_cpu *cpu_buffer; 4166 4167 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4168 return; 4169 4170 cpu_buffer = buffer->buffers[cpu]; 4171 atomic_dec(&cpu_buffer->record_disabled); 4172 } 4173 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4174 4175 /* 4176 * The total entries in the ring buffer is the running counter 4177 * of entries entered into the ring buffer, minus the sum of 4178 * the entries read from the ring buffer and the number of 4179 * entries that were overwritten. 4180 */ 4181 static inline unsigned long 4182 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4183 { 4184 return local_read(&cpu_buffer->entries) - 4185 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4186 } 4187 4188 /** 4189 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4190 * @buffer: The ring buffer 4191 * @cpu: The per CPU buffer to read from. 4192 */ 4193 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4194 { 4195 unsigned long flags; 4196 struct ring_buffer_per_cpu *cpu_buffer; 4197 struct buffer_page *bpage; 4198 u64 ret = 0; 4199 4200 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4201 return 0; 4202 4203 cpu_buffer = buffer->buffers[cpu]; 4204 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4205 /* 4206 * if the tail is on reader_page, oldest time stamp is on the reader 4207 * page 4208 */ 4209 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4210 bpage = cpu_buffer->reader_page; 4211 else 4212 bpage = rb_set_head_page(cpu_buffer); 4213 if (bpage) 4214 ret = bpage->page->time_stamp; 4215 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4216 4217 return ret; 4218 } 4219 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4220 4221 /** 4222 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 4223 * @buffer: The ring buffer 4224 * @cpu: The per CPU buffer to read from. 4225 */ 4226 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4227 { 4228 struct ring_buffer_per_cpu *cpu_buffer; 4229 unsigned long ret; 4230 4231 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4232 return 0; 4233 4234 cpu_buffer = buffer->buffers[cpu]; 4235 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4236 4237 return ret; 4238 } 4239 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4240 4241 /** 4242 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4243 * @buffer: The ring buffer 4244 * @cpu: The per CPU buffer to get the entries from. 4245 */ 4246 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4247 { 4248 struct ring_buffer_per_cpu *cpu_buffer; 4249 4250 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4251 return 0; 4252 4253 cpu_buffer = buffer->buffers[cpu]; 4254 4255 return rb_num_of_entries(cpu_buffer); 4256 } 4257 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4258 4259 /** 4260 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4261 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4262 * @buffer: The ring buffer 4263 * @cpu: The per CPU buffer to get the number of overruns from 4264 */ 4265 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4266 { 4267 struct ring_buffer_per_cpu *cpu_buffer; 4268 unsigned long ret; 4269 4270 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4271 return 0; 4272 4273 cpu_buffer = buffer->buffers[cpu]; 4274 ret = local_read(&cpu_buffer->overrun); 4275 4276 return ret; 4277 } 4278 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4279 4280 /** 4281 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4282 * commits failing due to the buffer wrapping around while there are uncommitted 4283 * events, such as during an interrupt storm. 4284 * @buffer: The ring buffer 4285 * @cpu: The per CPU buffer to get the number of overruns from 4286 */ 4287 unsigned long 4288 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4289 { 4290 struct ring_buffer_per_cpu *cpu_buffer; 4291 unsigned long ret; 4292 4293 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4294 return 0; 4295 4296 cpu_buffer = buffer->buffers[cpu]; 4297 ret = local_read(&cpu_buffer->commit_overrun); 4298 4299 return ret; 4300 } 4301 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4302 4303 /** 4304 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4305 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4306 * @buffer: The ring buffer 4307 * @cpu: The per CPU buffer to get the number of overruns from 4308 */ 4309 unsigned long 4310 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4311 { 4312 struct ring_buffer_per_cpu *cpu_buffer; 4313 unsigned long ret; 4314 4315 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4316 return 0; 4317 4318 cpu_buffer = buffer->buffers[cpu]; 4319 ret = local_read(&cpu_buffer->dropped_events); 4320 4321 return ret; 4322 } 4323 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4324 4325 /** 4326 * ring_buffer_read_events_cpu - get the number of events successfully read 4327 * @buffer: The ring buffer 4328 * @cpu: The per CPU buffer to get the number of events read 4329 */ 4330 unsigned long 4331 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4332 { 4333 struct ring_buffer_per_cpu *cpu_buffer; 4334 4335 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4336 return 0; 4337 4338 cpu_buffer = buffer->buffers[cpu]; 4339 return cpu_buffer->read; 4340 } 4341 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4342 4343 /** 4344 * ring_buffer_entries - get the number of entries in a buffer 4345 * @buffer: The ring buffer 4346 * 4347 * Returns the total number of entries in the ring buffer 4348 * (all CPU entries) 4349 */ 4350 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4351 { 4352 struct ring_buffer_per_cpu *cpu_buffer; 4353 unsigned long entries = 0; 4354 int cpu; 4355 4356 /* if you care about this being correct, lock the buffer */ 4357 for_each_buffer_cpu(buffer, cpu) { 4358 cpu_buffer = buffer->buffers[cpu]; 4359 entries += rb_num_of_entries(cpu_buffer); 4360 } 4361 4362 return entries; 4363 } 4364 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4365 4366 /** 4367 * ring_buffer_overruns - get the number of overruns in buffer 4368 * @buffer: The ring buffer 4369 * 4370 * Returns the total number of overruns in the ring buffer 4371 * (all CPU entries) 4372 */ 4373 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4374 { 4375 struct ring_buffer_per_cpu *cpu_buffer; 4376 unsigned long overruns = 0; 4377 int cpu; 4378 4379 /* if you care about this being correct, lock the buffer */ 4380 for_each_buffer_cpu(buffer, cpu) { 4381 cpu_buffer = buffer->buffers[cpu]; 4382 overruns += local_read(&cpu_buffer->overrun); 4383 } 4384 4385 return overruns; 4386 } 4387 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4388 4389 static void rb_iter_reset(struct ring_buffer_iter *iter) 4390 { 4391 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4392 4393 /* Iterator usage is expected to have record disabled */ 4394 iter->head_page = cpu_buffer->reader_page; 4395 iter->head = cpu_buffer->reader_page->read; 4396 iter->next_event = iter->head; 4397 4398 iter->cache_reader_page = iter->head_page; 4399 iter->cache_read = cpu_buffer->read; 4400 4401 if (iter->head) { 4402 iter->read_stamp = cpu_buffer->read_stamp; 4403 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4404 } else { 4405 iter->read_stamp = iter->head_page->page->time_stamp; 4406 iter->page_stamp = iter->read_stamp; 4407 } 4408 } 4409 4410 /** 4411 * ring_buffer_iter_reset - reset an iterator 4412 * @iter: The iterator to reset 4413 * 4414 * Resets the iterator, so that it will start from the beginning 4415 * again. 4416 */ 4417 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4418 { 4419 struct ring_buffer_per_cpu *cpu_buffer; 4420 unsigned long flags; 4421 4422 if (!iter) 4423 return; 4424 4425 cpu_buffer = iter->cpu_buffer; 4426 4427 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4428 rb_iter_reset(iter); 4429 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4430 } 4431 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4432 4433 /** 4434 * ring_buffer_iter_empty - check if an iterator has no more to read 4435 * @iter: The iterator to check 4436 */ 4437 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4438 { 4439 struct ring_buffer_per_cpu *cpu_buffer; 4440 struct buffer_page *reader; 4441 struct buffer_page *head_page; 4442 struct buffer_page *commit_page; 4443 struct buffer_page *curr_commit_page; 4444 unsigned commit; 4445 u64 curr_commit_ts; 4446 u64 commit_ts; 4447 4448 cpu_buffer = iter->cpu_buffer; 4449 reader = cpu_buffer->reader_page; 4450 head_page = cpu_buffer->head_page; 4451 commit_page = cpu_buffer->commit_page; 4452 commit_ts = commit_page->page->time_stamp; 4453 4454 /* 4455 * When the writer goes across pages, it issues a cmpxchg which 4456 * is a mb(), which will synchronize with the rmb here. 4457 * (see rb_tail_page_update()) 4458 */ 4459 smp_rmb(); 4460 commit = rb_page_commit(commit_page); 4461 /* We want to make sure that the commit page doesn't change */ 4462 smp_rmb(); 4463 4464 /* Make sure commit page didn't change */ 4465 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4466 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4467 4468 /* If the commit page changed, then there's more data */ 4469 if (curr_commit_page != commit_page || 4470 curr_commit_ts != commit_ts) 4471 return 0; 4472 4473 /* Still racy, as it may return a false positive, but that's OK */ 4474 return ((iter->head_page == commit_page && iter->head >= commit) || 4475 (iter->head_page == reader && commit_page == head_page && 4476 head_page->read == commit && 4477 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4478 } 4479 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4480 4481 static void 4482 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4483 struct ring_buffer_event *event) 4484 { 4485 u64 delta; 4486 4487 switch (event->type_len) { 4488 case RINGBUF_TYPE_PADDING: 4489 return; 4490 4491 case RINGBUF_TYPE_TIME_EXTEND: 4492 delta = rb_event_time_stamp(event); 4493 cpu_buffer->read_stamp += delta; 4494 return; 4495 4496 case RINGBUF_TYPE_TIME_STAMP: 4497 delta = rb_event_time_stamp(event); 4498 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4499 cpu_buffer->read_stamp = delta; 4500 return; 4501 4502 case RINGBUF_TYPE_DATA: 4503 cpu_buffer->read_stamp += event->time_delta; 4504 return; 4505 4506 default: 4507 RB_WARN_ON(cpu_buffer, 1); 4508 } 4509 return; 4510 } 4511 4512 static void 4513 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4514 struct ring_buffer_event *event) 4515 { 4516 u64 delta; 4517 4518 switch (event->type_len) { 4519 case RINGBUF_TYPE_PADDING: 4520 return; 4521 4522 case RINGBUF_TYPE_TIME_EXTEND: 4523 delta = rb_event_time_stamp(event); 4524 iter->read_stamp += delta; 4525 return; 4526 4527 case RINGBUF_TYPE_TIME_STAMP: 4528 delta = rb_event_time_stamp(event); 4529 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4530 iter->read_stamp = delta; 4531 return; 4532 4533 case RINGBUF_TYPE_DATA: 4534 iter->read_stamp += event->time_delta; 4535 return; 4536 4537 default: 4538 RB_WARN_ON(iter->cpu_buffer, 1); 4539 } 4540 return; 4541 } 4542 4543 static struct buffer_page * 4544 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4545 { 4546 struct buffer_page *reader = NULL; 4547 unsigned long overwrite; 4548 unsigned long flags; 4549 int nr_loops = 0; 4550 int ret; 4551 4552 local_irq_save(flags); 4553 arch_spin_lock(&cpu_buffer->lock); 4554 4555 again: 4556 /* 4557 * This should normally only loop twice. But because the 4558 * start of the reader inserts an empty page, it causes 4559 * a case where we will loop three times. There should be no 4560 * reason to loop four times (that I know of). 4561 */ 4562 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4563 reader = NULL; 4564 goto out; 4565 } 4566 4567 reader = cpu_buffer->reader_page; 4568 4569 /* If there's more to read, return this page */ 4570 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4571 goto out; 4572 4573 /* Never should we have an index greater than the size */ 4574 if (RB_WARN_ON(cpu_buffer, 4575 cpu_buffer->reader_page->read > rb_page_size(reader))) 4576 goto out; 4577 4578 /* check if we caught up to the tail */ 4579 reader = NULL; 4580 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4581 goto out; 4582 4583 /* Don't bother swapping if the ring buffer is empty */ 4584 if (rb_num_of_entries(cpu_buffer) == 0) 4585 goto out; 4586 4587 /* 4588 * Reset the reader page to size zero. 4589 */ 4590 local_set(&cpu_buffer->reader_page->write, 0); 4591 local_set(&cpu_buffer->reader_page->entries, 0); 4592 local_set(&cpu_buffer->reader_page->page->commit, 0); 4593 cpu_buffer->reader_page->real_end = 0; 4594 4595 spin: 4596 /* 4597 * Splice the empty reader page into the list around the head. 4598 */ 4599 reader = rb_set_head_page(cpu_buffer); 4600 if (!reader) 4601 goto out; 4602 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4603 cpu_buffer->reader_page->list.prev = reader->list.prev; 4604 4605 /* 4606 * cpu_buffer->pages just needs to point to the buffer, it 4607 * has no specific buffer page to point to. Lets move it out 4608 * of our way so we don't accidentally swap it. 4609 */ 4610 cpu_buffer->pages = reader->list.prev; 4611 4612 /* The reader page will be pointing to the new head */ 4613 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4614 4615 /* 4616 * We want to make sure we read the overruns after we set up our 4617 * pointers to the next object. The writer side does a 4618 * cmpxchg to cross pages which acts as the mb on the writer 4619 * side. Note, the reader will constantly fail the swap 4620 * while the writer is updating the pointers, so this 4621 * guarantees that the overwrite recorded here is the one we 4622 * want to compare with the last_overrun. 4623 */ 4624 smp_mb(); 4625 overwrite = local_read(&(cpu_buffer->overrun)); 4626 4627 /* 4628 * Here's the tricky part. 4629 * 4630 * We need to move the pointer past the header page. 4631 * But we can only do that if a writer is not currently 4632 * moving it. The page before the header page has the 4633 * flag bit '1' set if it is pointing to the page we want. 4634 * but if the writer is in the process of moving it 4635 * than it will be '2' or already moved '0'. 4636 */ 4637 4638 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4639 4640 /* 4641 * If we did not convert it, then we must try again. 4642 */ 4643 if (!ret) 4644 goto spin; 4645 4646 /* 4647 * Yay! We succeeded in replacing the page. 4648 * 4649 * Now make the new head point back to the reader page. 4650 */ 4651 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4652 rb_inc_page(&cpu_buffer->head_page); 4653 4654 local_inc(&cpu_buffer->pages_read); 4655 4656 /* Finally update the reader page to the new head */ 4657 cpu_buffer->reader_page = reader; 4658 cpu_buffer->reader_page->read = 0; 4659 4660 if (overwrite != cpu_buffer->last_overrun) { 4661 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4662 cpu_buffer->last_overrun = overwrite; 4663 } 4664 4665 goto again; 4666 4667 out: 4668 /* Update the read_stamp on the first event */ 4669 if (reader && reader->read == 0) 4670 cpu_buffer->read_stamp = reader->page->time_stamp; 4671 4672 arch_spin_unlock(&cpu_buffer->lock); 4673 local_irq_restore(flags); 4674 4675 /* 4676 * The writer has preempt disable, wait for it. But not forever 4677 * Although, 1 second is pretty much "forever" 4678 */ 4679 #define USECS_WAIT 1000000 4680 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4681 /* If the write is past the end of page, a writer is still updating it */ 4682 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE)) 4683 break; 4684 4685 udelay(1); 4686 4687 /* Get the latest version of the reader write value */ 4688 smp_rmb(); 4689 } 4690 4691 /* The writer is not moving forward? Something is wrong */ 4692 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4693 reader = NULL; 4694 4695 /* 4696 * Make sure we see any padding after the write update 4697 * (see rb_reset_tail()) 4698 */ 4699 smp_rmb(); 4700 4701 4702 return reader; 4703 } 4704 4705 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4706 { 4707 struct ring_buffer_event *event; 4708 struct buffer_page *reader; 4709 unsigned length; 4710 4711 reader = rb_get_reader_page(cpu_buffer); 4712 4713 /* This function should not be called when buffer is empty */ 4714 if (RB_WARN_ON(cpu_buffer, !reader)) 4715 return; 4716 4717 event = rb_reader_event(cpu_buffer); 4718 4719 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4720 cpu_buffer->read++; 4721 4722 rb_update_read_stamp(cpu_buffer, event); 4723 4724 length = rb_event_length(event); 4725 cpu_buffer->reader_page->read += length; 4726 } 4727 4728 static void rb_advance_iter(struct ring_buffer_iter *iter) 4729 { 4730 struct ring_buffer_per_cpu *cpu_buffer; 4731 4732 cpu_buffer = iter->cpu_buffer; 4733 4734 /* If head == next_event then we need to jump to the next event */ 4735 if (iter->head == iter->next_event) { 4736 /* If the event gets overwritten again, there's nothing to do */ 4737 if (rb_iter_head_event(iter) == NULL) 4738 return; 4739 } 4740 4741 iter->head = iter->next_event; 4742 4743 /* 4744 * Check if we are at the end of the buffer. 4745 */ 4746 if (iter->next_event >= rb_page_size(iter->head_page)) { 4747 /* discarded commits can make the page empty */ 4748 if (iter->head_page == cpu_buffer->commit_page) 4749 return; 4750 rb_inc_iter(iter); 4751 return; 4752 } 4753 4754 rb_update_iter_read_stamp(iter, iter->event); 4755 } 4756 4757 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4758 { 4759 return cpu_buffer->lost_events; 4760 } 4761 4762 static struct ring_buffer_event * 4763 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4764 unsigned long *lost_events) 4765 { 4766 struct ring_buffer_event *event; 4767 struct buffer_page *reader; 4768 int nr_loops = 0; 4769 4770 if (ts) 4771 *ts = 0; 4772 again: 4773 /* 4774 * We repeat when a time extend is encountered. 4775 * Since the time extend is always attached to a data event, 4776 * we should never loop more than once. 4777 * (We never hit the following condition more than twice). 4778 */ 4779 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4780 return NULL; 4781 4782 reader = rb_get_reader_page(cpu_buffer); 4783 if (!reader) 4784 return NULL; 4785 4786 event = rb_reader_event(cpu_buffer); 4787 4788 switch (event->type_len) { 4789 case RINGBUF_TYPE_PADDING: 4790 if (rb_null_event(event)) 4791 RB_WARN_ON(cpu_buffer, 1); 4792 /* 4793 * Because the writer could be discarding every 4794 * event it creates (which would probably be bad) 4795 * if we were to go back to "again" then we may never 4796 * catch up, and will trigger the warn on, or lock 4797 * the box. Return the padding, and we will release 4798 * the current locks, and try again. 4799 */ 4800 return event; 4801 4802 case RINGBUF_TYPE_TIME_EXTEND: 4803 /* Internal data, OK to advance */ 4804 rb_advance_reader(cpu_buffer); 4805 goto again; 4806 4807 case RINGBUF_TYPE_TIME_STAMP: 4808 if (ts) { 4809 *ts = rb_event_time_stamp(event); 4810 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4811 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4812 cpu_buffer->cpu, ts); 4813 } 4814 /* Internal data, OK to advance */ 4815 rb_advance_reader(cpu_buffer); 4816 goto again; 4817 4818 case RINGBUF_TYPE_DATA: 4819 if (ts && !(*ts)) { 4820 *ts = cpu_buffer->read_stamp + event->time_delta; 4821 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4822 cpu_buffer->cpu, ts); 4823 } 4824 if (lost_events) 4825 *lost_events = rb_lost_events(cpu_buffer); 4826 return event; 4827 4828 default: 4829 RB_WARN_ON(cpu_buffer, 1); 4830 } 4831 4832 return NULL; 4833 } 4834 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4835 4836 static struct ring_buffer_event * 4837 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4838 { 4839 struct trace_buffer *buffer; 4840 struct ring_buffer_per_cpu *cpu_buffer; 4841 struct ring_buffer_event *event; 4842 int nr_loops = 0; 4843 4844 if (ts) 4845 *ts = 0; 4846 4847 cpu_buffer = iter->cpu_buffer; 4848 buffer = cpu_buffer->buffer; 4849 4850 /* 4851 * Check if someone performed a consuming read to 4852 * the buffer. A consuming read invalidates the iterator 4853 * and we need to reset the iterator in this case. 4854 */ 4855 if (unlikely(iter->cache_read != cpu_buffer->read || 4856 iter->cache_reader_page != cpu_buffer->reader_page)) 4857 rb_iter_reset(iter); 4858 4859 again: 4860 if (ring_buffer_iter_empty(iter)) 4861 return NULL; 4862 4863 /* 4864 * As the writer can mess with what the iterator is trying 4865 * to read, just give up if we fail to get an event after 4866 * three tries. The iterator is not as reliable when reading 4867 * the ring buffer with an active write as the consumer is. 4868 * Do not warn if the three failures is reached. 4869 */ 4870 if (++nr_loops > 3) 4871 return NULL; 4872 4873 if (rb_per_cpu_empty(cpu_buffer)) 4874 return NULL; 4875 4876 if (iter->head >= rb_page_size(iter->head_page)) { 4877 rb_inc_iter(iter); 4878 goto again; 4879 } 4880 4881 event = rb_iter_head_event(iter); 4882 if (!event) 4883 goto again; 4884 4885 switch (event->type_len) { 4886 case RINGBUF_TYPE_PADDING: 4887 if (rb_null_event(event)) { 4888 rb_inc_iter(iter); 4889 goto again; 4890 } 4891 rb_advance_iter(iter); 4892 return event; 4893 4894 case RINGBUF_TYPE_TIME_EXTEND: 4895 /* Internal data, OK to advance */ 4896 rb_advance_iter(iter); 4897 goto again; 4898 4899 case RINGBUF_TYPE_TIME_STAMP: 4900 if (ts) { 4901 *ts = rb_event_time_stamp(event); 4902 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4903 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4904 cpu_buffer->cpu, ts); 4905 } 4906 /* Internal data, OK to advance */ 4907 rb_advance_iter(iter); 4908 goto again; 4909 4910 case RINGBUF_TYPE_DATA: 4911 if (ts && !(*ts)) { 4912 *ts = iter->read_stamp + event->time_delta; 4913 ring_buffer_normalize_time_stamp(buffer, 4914 cpu_buffer->cpu, ts); 4915 } 4916 return event; 4917 4918 default: 4919 RB_WARN_ON(cpu_buffer, 1); 4920 } 4921 4922 return NULL; 4923 } 4924 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4925 4926 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4927 { 4928 if (likely(!in_nmi())) { 4929 raw_spin_lock(&cpu_buffer->reader_lock); 4930 return true; 4931 } 4932 4933 /* 4934 * If an NMI die dumps out the content of the ring buffer 4935 * trylock must be used to prevent a deadlock if the NMI 4936 * preempted a task that holds the ring buffer locks. If 4937 * we get the lock then all is fine, if not, then continue 4938 * to do the read, but this can corrupt the ring buffer, 4939 * so it must be permanently disabled from future writes. 4940 * Reading from NMI is a oneshot deal. 4941 */ 4942 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4943 return true; 4944 4945 /* Continue without locking, but disable the ring buffer */ 4946 atomic_inc(&cpu_buffer->record_disabled); 4947 return false; 4948 } 4949 4950 static inline void 4951 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4952 { 4953 if (likely(locked)) 4954 raw_spin_unlock(&cpu_buffer->reader_lock); 4955 return; 4956 } 4957 4958 /** 4959 * ring_buffer_peek - peek at the next event to be read 4960 * @buffer: The ring buffer to read 4961 * @cpu: The cpu to peak at 4962 * @ts: The timestamp counter of this event. 4963 * @lost_events: a variable to store if events were lost (may be NULL) 4964 * 4965 * This will return the event that will be read next, but does 4966 * not consume the data. 4967 */ 4968 struct ring_buffer_event * 4969 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4970 unsigned long *lost_events) 4971 { 4972 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4973 struct ring_buffer_event *event; 4974 unsigned long flags; 4975 bool dolock; 4976 4977 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4978 return NULL; 4979 4980 again: 4981 local_irq_save(flags); 4982 dolock = rb_reader_lock(cpu_buffer); 4983 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4984 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4985 rb_advance_reader(cpu_buffer); 4986 rb_reader_unlock(cpu_buffer, dolock); 4987 local_irq_restore(flags); 4988 4989 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4990 goto again; 4991 4992 return event; 4993 } 4994 4995 /** ring_buffer_iter_dropped - report if there are dropped events 4996 * @iter: The ring buffer iterator 4997 * 4998 * Returns true if there was dropped events since the last peek. 4999 */ 5000 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5001 { 5002 bool ret = iter->missed_events != 0; 5003 5004 iter->missed_events = 0; 5005 return ret; 5006 } 5007 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5008 5009 /** 5010 * ring_buffer_iter_peek - peek at the next event to be read 5011 * @iter: The ring buffer iterator 5012 * @ts: The timestamp counter of this event. 5013 * 5014 * This will return the event that will be read next, but does 5015 * not increment the iterator. 5016 */ 5017 struct ring_buffer_event * 5018 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5019 { 5020 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5021 struct ring_buffer_event *event; 5022 unsigned long flags; 5023 5024 again: 5025 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5026 event = rb_iter_peek(iter, ts); 5027 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5028 5029 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5030 goto again; 5031 5032 return event; 5033 } 5034 5035 /** 5036 * ring_buffer_consume - return an event and consume it 5037 * @buffer: The ring buffer to get the next event from 5038 * @cpu: the cpu to read the buffer from 5039 * @ts: a variable to store the timestamp (may be NULL) 5040 * @lost_events: a variable to store if events were lost (may be NULL) 5041 * 5042 * Returns the next event in the ring buffer, and that event is consumed. 5043 * Meaning, that sequential reads will keep returning a different event, 5044 * and eventually empty the ring buffer if the producer is slower. 5045 */ 5046 struct ring_buffer_event * 5047 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5048 unsigned long *lost_events) 5049 { 5050 struct ring_buffer_per_cpu *cpu_buffer; 5051 struct ring_buffer_event *event = NULL; 5052 unsigned long flags; 5053 bool dolock; 5054 5055 again: 5056 /* might be called in atomic */ 5057 preempt_disable(); 5058 5059 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5060 goto out; 5061 5062 cpu_buffer = buffer->buffers[cpu]; 5063 local_irq_save(flags); 5064 dolock = rb_reader_lock(cpu_buffer); 5065 5066 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5067 if (event) { 5068 cpu_buffer->lost_events = 0; 5069 rb_advance_reader(cpu_buffer); 5070 } 5071 5072 rb_reader_unlock(cpu_buffer, dolock); 5073 local_irq_restore(flags); 5074 5075 out: 5076 preempt_enable(); 5077 5078 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5079 goto again; 5080 5081 return event; 5082 } 5083 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5084 5085 /** 5086 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5087 * @buffer: The ring buffer to read from 5088 * @cpu: The cpu buffer to iterate over 5089 * @flags: gfp flags to use for memory allocation 5090 * 5091 * This performs the initial preparations necessary to iterate 5092 * through the buffer. Memory is allocated, buffer recording 5093 * is disabled, and the iterator pointer is returned to the caller. 5094 * 5095 * Disabling buffer recording prevents the reading from being 5096 * corrupted. This is not a consuming read, so a producer is not 5097 * expected. 5098 * 5099 * After a sequence of ring_buffer_read_prepare calls, the user is 5100 * expected to make at least one call to ring_buffer_read_prepare_sync. 5101 * Afterwards, ring_buffer_read_start is invoked to get things going 5102 * for real. 5103 * 5104 * This overall must be paired with ring_buffer_read_finish. 5105 */ 5106 struct ring_buffer_iter * 5107 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5108 { 5109 struct ring_buffer_per_cpu *cpu_buffer; 5110 struct ring_buffer_iter *iter; 5111 5112 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5113 return NULL; 5114 5115 iter = kzalloc(sizeof(*iter), flags); 5116 if (!iter) 5117 return NULL; 5118 5119 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 5120 if (!iter->event) { 5121 kfree(iter); 5122 return NULL; 5123 } 5124 5125 cpu_buffer = buffer->buffers[cpu]; 5126 5127 iter->cpu_buffer = cpu_buffer; 5128 5129 atomic_inc(&cpu_buffer->resize_disabled); 5130 5131 return iter; 5132 } 5133 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5134 5135 /** 5136 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5137 * 5138 * All previously invoked ring_buffer_read_prepare calls to prepare 5139 * iterators will be synchronized. Afterwards, read_buffer_read_start 5140 * calls on those iterators are allowed. 5141 */ 5142 void 5143 ring_buffer_read_prepare_sync(void) 5144 { 5145 synchronize_rcu(); 5146 } 5147 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5148 5149 /** 5150 * ring_buffer_read_start - start a non consuming read of the buffer 5151 * @iter: The iterator returned by ring_buffer_read_prepare 5152 * 5153 * This finalizes the startup of an iteration through the buffer. 5154 * The iterator comes from a call to ring_buffer_read_prepare and 5155 * an intervening ring_buffer_read_prepare_sync must have been 5156 * performed. 5157 * 5158 * Must be paired with ring_buffer_read_finish. 5159 */ 5160 void 5161 ring_buffer_read_start(struct ring_buffer_iter *iter) 5162 { 5163 struct ring_buffer_per_cpu *cpu_buffer; 5164 unsigned long flags; 5165 5166 if (!iter) 5167 return; 5168 5169 cpu_buffer = iter->cpu_buffer; 5170 5171 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5172 arch_spin_lock(&cpu_buffer->lock); 5173 rb_iter_reset(iter); 5174 arch_spin_unlock(&cpu_buffer->lock); 5175 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5176 } 5177 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5178 5179 /** 5180 * ring_buffer_read_finish - finish reading the iterator of the buffer 5181 * @iter: The iterator retrieved by ring_buffer_start 5182 * 5183 * This re-enables the recording to the buffer, and frees the 5184 * iterator. 5185 */ 5186 void 5187 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5188 { 5189 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5190 unsigned long flags; 5191 5192 /* 5193 * Ring buffer is disabled from recording, here's a good place 5194 * to check the integrity of the ring buffer. 5195 * Must prevent readers from trying to read, as the check 5196 * clears the HEAD page and readers require it. 5197 */ 5198 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5199 rb_check_pages(cpu_buffer); 5200 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5201 5202 atomic_dec(&cpu_buffer->resize_disabled); 5203 kfree(iter->event); 5204 kfree(iter); 5205 } 5206 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5207 5208 /** 5209 * ring_buffer_iter_advance - advance the iterator to the next location 5210 * @iter: The ring buffer iterator 5211 * 5212 * Move the location of the iterator such that the next read will 5213 * be the next location of the iterator. 5214 */ 5215 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5216 { 5217 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5218 unsigned long flags; 5219 5220 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5221 5222 rb_advance_iter(iter); 5223 5224 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5225 } 5226 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5227 5228 /** 5229 * ring_buffer_size - return the size of the ring buffer (in bytes) 5230 * @buffer: The ring buffer. 5231 * @cpu: The CPU to get ring buffer size from. 5232 */ 5233 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5234 { 5235 /* 5236 * Earlier, this method returned 5237 * BUF_PAGE_SIZE * buffer->nr_pages 5238 * Since the nr_pages field is now removed, we have converted this to 5239 * return the per cpu buffer value. 5240 */ 5241 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5242 return 0; 5243 5244 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 5245 } 5246 EXPORT_SYMBOL_GPL(ring_buffer_size); 5247 5248 static void 5249 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5250 { 5251 rb_head_page_deactivate(cpu_buffer); 5252 5253 cpu_buffer->head_page 5254 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5255 local_set(&cpu_buffer->head_page->write, 0); 5256 local_set(&cpu_buffer->head_page->entries, 0); 5257 local_set(&cpu_buffer->head_page->page->commit, 0); 5258 5259 cpu_buffer->head_page->read = 0; 5260 5261 cpu_buffer->tail_page = cpu_buffer->head_page; 5262 cpu_buffer->commit_page = cpu_buffer->head_page; 5263 5264 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5265 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5266 local_set(&cpu_buffer->reader_page->write, 0); 5267 local_set(&cpu_buffer->reader_page->entries, 0); 5268 local_set(&cpu_buffer->reader_page->page->commit, 0); 5269 cpu_buffer->reader_page->read = 0; 5270 5271 local_set(&cpu_buffer->entries_bytes, 0); 5272 local_set(&cpu_buffer->overrun, 0); 5273 local_set(&cpu_buffer->commit_overrun, 0); 5274 local_set(&cpu_buffer->dropped_events, 0); 5275 local_set(&cpu_buffer->entries, 0); 5276 local_set(&cpu_buffer->committing, 0); 5277 local_set(&cpu_buffer->commits, 0); 5278 local_set(&cpu_buffer->pages_touched, 0); 5279 local_set(&cpu_buffer->pages_lost, 0); 5280 local_set(&cpu_buffer->pages_read, 0); 5281 cpu_buffer->last_pages_touch = 0; 5282 cpu_buffer->shortest_full = 0; 5283 cpu_buffer->read = 0; 5284 cpu_buffer->read_bytes = 0; 5285 5286 rb_time_set(&cpu_buffer->write_stamp, 0); 5287 rb_time_set(&cpu_buffer->before_stamp, 0); 5288 5289 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5290 5291 cpu_buffer->lost_events = 0; 5292 cpu_buffer->last_overrun = 0; 5293 5294 rb_head_page_activate(cpu_buffer); 5295 } 5296 5297 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5298 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5299 { 5300 unsigned long flags; 5301 5302 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5303 5304 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5305 goto out; 5306 5307 arch_spin_lock(&cpu_buffer->lock); 5308 5309 rb_reset_cpu(cpu_buffer); 5310 5311 arch_spin_unlock(&cpu_buffer->lock); 5312 5313 out: 5314 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5315 } 5316 5317 /** 5318 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5319 * @buffer: The ring buffer to reset a per cpu buffer of 5320 * @cpu: The CPU buffer to be reset 5321 */ 5322 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5323 { 5324 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5325 5326 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5327 return; 5328 5329 /* prevent another thread from changing buffer sizes */ 5330 mutex_lock(&buffer->mutex); 5331 5332 atomic_inc(&cpu_buffer->resize_disabled); 5333 atomic_inc(&cpu_buffer->record_disabled); 5334 5335 /* Make sure all commits have finished */ 5336 synchronize_rcu(); 5337 5338 reset_disabled_cpu_buffer(cpu_buffer); 5339 5340 atomic_dec(&cpu_buffer->record_disabled); 5341 atomic_dec(&cpu_buffer->resize_disabled); 5342 5343 mutex_unlock(&buffer->mutex); 5344 } 5345 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5346 5347 /** 5348 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5349 * @buffer: The ring buffer to reset a per cpu buffer of 5350 * @cpu: The CPU buffer to be reset 5351 */ 5352 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5353 { 5354 struct ring_buffer_per_cpu *cpu_buffer; 5355 int cpu; 5356 5357 /* prevent another thread from changing buffer sizes */ 5358 mutex_lock(&buffer->mutex); 5359 5360 for_each_online_buffer_cpu(buffer, cpu) { 5361 cpu_buffer = buffer->buffers[cpu]; 5362 5363 atomic_inc(&cpu_buffer->resize_disabled); 5364 atomic_inc(&cpu_buffer->record_disabled); 5365 } 5366 5367 /* Make sure all commits have finished */ 5368 synchronize_rcu(); 5369 5370 for_each_online_buffer_cpu(buffer, cpu) { 5371 cpu_buffer = buffer->buffers[cpu]; 5372 5373 reset_disabled_cpu_buffer(cpu_buffer); 5374 5375 atomic_dec(&cpu_buffer->record_disabled); 5376 atomic_dec(&cpu_buffer->resize_disabled); 5377 } 5378 5379 mutex_unlock(&buffer->mutex); 5380 } 5381 5382 /** 5383 * ring_buffer_reset - reset a ring buffer 5384 * @buffer: The ring buffer to reset all cpu buffers 5385 */ 5386 void ring_buffer_reset(struct trace_buffer *buffer) 5387 { 5388 struct ring_buffer_per_cpu *cpu_buffer; 5389 int cpu; 5390 5391 /* prevent another thread from changing buffer sizes */ 5392 mutex_lock(&buffer->mutex); 5393 5394 for_each_buffer_cpu(buffer, cpu) { 5395 cpu_buffer = buffer->buffers[cpu]; 5396 5397 atomic_inc(&cpu_buffer->resize_disabled); 5398 atomic_inc(&cpu_buffer->record_disabled); 5399 } 5400 5401 /* Make sure all commits have finished */ 5402 synchronize_rcu(); 5403 5404 for_each_buffer_cpu(buffer, cpu) { 5405 cpu_buffer = buffer->buffers[cpu]; 5406 5407 reset_disabled_cpu_buffer(cpu_buffer); 5408 5409 atomic_dec(&cpu_buffer->record_disabled); 5410 atomic_dec(&cpu_buffer->resize_disabled); 5411 } 5412 5413 mutex_unlock(&buffer->mutex); 5414 } 5415 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5416 5417 /** 5418 * ring_buffer_empty - is the ring buffer empty? 5419 * @buffer: The ring buffer to test 5420 */ 5421 bool ring_buffer_empty(struct trace_buffer *buffer) 5422 { 5423 struct ring_buffer_per_cpu *cpu_buffer; 5424 unsigned long flags; 5425 bool dolock; 5426 int cpu; 5427 int ret; 5428 5429 /* yes this is racy, but if you don't like the race, lock the buffer */ 5430 for_each_buffer_cpu(buffer, cpu) { 5431 cpu_buffer = buffer->buffers[cpu]; 5432 local_irq_save(flags); 5433 dolock = rb_reader_lock(cpu_buffer); 5434 ret = rb_per_cpu_empty(cpu_buffer); 5435 rb_reader_unlock(cpu_buffer, dolock); 5436 local_irq_restore(flags); 5437 5438 if (!ret) 5439 return false; 5440 } 5441 5442 return true; 5443 } 5444 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5445 5446 /** 5447 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5448 * @buffer: The ring buffer 5449 * @cpu: The CPU buffer to test 5450 */ 5451 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5452 { 5453 struct ring_buffer_per_cpu *cpu_buffer; 5454 unsigned long flags; 5455 bool dolock; 5456 int ret; 5457 5458 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5459 return true; 5460 5461 cpu_buffer = buffer->buffers[cpu]; 5462 local_irq_save(flags); 5463 dolock = rb_reader_lock(cpu_buffer); 5464 ret = rb_per_cpu_empty(cpu_buffer); 5465 rb_reader_unlock(cpu_buffer, dolock); 5466 local_irq_restore(flags); 5467 5468 return ret; 5469 } 5470 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5471 5472 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5473 /** 5474 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5475 * @buffer_a: One buffer to swap with 5476 * @buffer_b: The other buffer to swap with 5477 * @cpu: the CPU of the buffers to swap 5478 * 5479 * This function is useful for tracers that want to take a "snapshot" 5480 * of a CPU buffer and has another back up buffer lying around. 5481 * it is expected that the tracer handles the cpu buffer not being 5482 * used at the moment. 5483 */ 5484 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5485 struct trace_buffer *buffer_b, int cpu) 5486 { 5487 struct ring_buffer_per_cpu *cpu_buffer_a; 5488 struct ring_buffer_per_cpu *cpu_buffer_b; 5489 int ret = -EINVAL; 5490 5491 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5492 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5493 goto out; 5494 5495 cpu_buffer_a = buffer_a->buffers[cpu]; 5496 cpu_buffer_b = buffer_b->buffers[cpu]; 5497 5498 /* At least make sure the two buffers are somewhat the same */ 5499 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5500 goto out; 5501 5502 ret = -EAGAIN; 5503 5504 if (atomic_read(&buffer_a->record_disabled)) 5505 goto out; 5506 5507 if (atomic_read(&buffer_b->record_disabled)) 5508 goto out; 5509 5510 if (atomic_read(&cpu_buffer_a->record_disabled)) 5511 goto out; 5512 5513 if (atomic_read(&cpu_buffer_b->record_disabled)) 5514 goto out; 5515 5516 /* 5517 * We can't do a synchronize_rcu here because this 5518 * function can be called in atomic context. 5519 * Normally this will be called from the same CPU as cpu. 5520 * If not it's up to the caller to protect this. 5521 */ 5522 atomic_inc(&cpu_buffer_a->record_disabled); 5523 atomic_inc(&cpu_buffer_b->record_disabled); 5524 5525 ret = -EBUSY; 5526 if (local_read(&cpu_buffer_a->committing)) 5527 goto out_dec; 5528 if (local_read(&cpu_buffer_b->committing)) 5529 goto out_dec; 5530 5531 buffer_a->buffers[cpu] = cpu_buffer_b; 5532 buffer_b->buffers[cpu] = cpu_buffer_a; 5533 5534 cpu_buffer_b->buffer = buffer_a; 5535 cpu_buffer_a->buffer = buffer_b; 5536 5537 ret = 0; 5538 5539 out_dec: 5540 atomic_dec(&cpu_buffer_a->record_disabled); 5541 atomic_dec(&cpu_buffer_b->record_disabled); 5542 out: 5543 return ret; 5544 } 5545 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5546 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5547 5548 /** 5549 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5550 * @buffer: the buffer to allocate for. 5551 * @cpu: the cpu buffer to allocate. 5552 * 5553 * This function is used in conjunction with ring_buffer_read_page. 5554 * When reading a full page from the ring buffer, these functions 5555 * can be used to speed up the process. The calling function should 5556 * allocate a few pages first with this function. Then when it 5557 * needs to get pages from the ring buffer, it passes the result 5558 * of this function into ring_buffer_read_page, which will swap 5559 * the page that was allocated, with the read page of the buffer. 5560 * 5561 * Returns: 5562 * The page allocated, or ERR_PTR 5563 */ 5564 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5565 { 5566 struct ring_buffer_per_cpu *cpu_buffer; 5567 struct buffer_data_page *bpage = NULL; 5568 unsigned long flags; 5569 struct page *page; 5570 5571 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5572 return ERR_PTR(-ENODEV); 5573 5574 cpu_buffer = buffer->buffers[cpu]; 5575 local_irq_save(flags); 5576 arch_spin_lock(&cpu_buffer->lock); 5577 5578 if (cpu_buffer->free_page) { 5579 bpage = cpu_buffer->free_page; 5580 cpu_buffer->free_page = NULL; 5581 } 5582 5583 arch_spin_unlock(&cpu_buffer->lock); 5584 local_irq_restore(flags); 5585 5586 if (bpage) 5587 goto out; 5588 5589 page = alloc_pages_node(cpu_to_node(cpu), 5590 GFP_KERNEL | __GFP_NORETRY, 0); 5591 if (!page) 5592 return ERR_PTR(-ENOMEM); 5593 5594 bpage = page_address(page); 5595 5596 out: 5597 rb_init_page(bpage); 5598 5599 return bpage; 5600 } 5601 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5602 5603 /** 5604 * ring_buffer_free_read_page - free an allocated read page 5605 * @buffer: the buffer the page was allocate for 5606 * @cpu: the cpu buffer the page came from 5607 * @data: the page to free 5608 * 5609 * Free a page allocated from ring_buffer_alloc_read_page. 5610 */ 5611 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5612 { 5613 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5614 struct buffer_data_page *bpage = data; 5615 struct page *page = virt_to_page(bpage); 5616 unsigned long flags; 5617 5618 /* If the page is still in use someplace else, we can't reuse it */ 5619 if (page_ref_count(page) > 1) 5620 goto out; 5621 5622 local_irq_save(flags); 5623 arch_spin_lock(&cpu_buffer->lock); 5624 5625 if (!cpu_buffer->free_page) { 5626 cpu_buffer->free_page = bpage; 5627 bpage = NULL; 5628 } 5629 5630 arch_spin_unlock(&cpu_buffer->lock); 5631 local_irq_restore(flags); 5632 5633 out: 5634 free_page((unsigned long)bpage); 5635 } 5636 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5637 5638 /** 5639 * ring_buffer_read_page - extract a page from the ring buffer 5640 * @buffer: buffer to extract from 5641 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5642 * @len: amount to extract 5643 * @cpu: the cpu of the buffer to extract 5644 * @full: should the extraction only happen when the page is full. 5645 * 5646 * This function will pull out a page from the ring buffer and consume it. 5647 * @data_page must be the address of the variable that was returned 5648 * from ring_buffer_alloc_read_page. This is because the page might be used 5649 * to swap with a page in the ring buffer. 5650 * 5651 * for example: 5652 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5653 * if (IS_ERR(rpage)) 5654 * return PTR_ERR(rpage); 5655 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5656 * if (ret >= 0) 5657 * process_page(rpage, ret); 5658 * 5659 * When @full is set, the function will not return true unless 5660 * the writer is off the reader page. 5661 * 5662 * Note: it is up to the calling functions to handle sleeps and wakeups. 5663 * The ring buffer can be used anywhere in the kernel and can not 5664 * blindly call wake_up. The layer that uses the ring buffer must be 5665 * responsible for that. 5666 * 5667 * Returns: 5668 * >=0 if data has been transferred, returns the offset of consumed data. 5669 * <0 if no data has been transferred. 5670 */ 5671 int ring_buffer_read_page(struct trace_buffer *buffer, 5672 void **data_page, size_t len, int cpu, int full) 5673 { 5674 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5675 struct ring_buffer_event *event; 5676 struct buffer_data_page *bpage; 5677 struct buffer_page *reader; 5678 unsigned long missed_events; 5679 unsigned long flags; 5680 unsigned int commit; 5681 unsigned int read; 5682 u64 save_timestamp; 5683 int ret = -1; 5684 5685 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5686 goto out; 5687 5688 /* 5689 * If len is not big enough to hold the page header, then 5690 * we can not copy anything. 5691 */ 5692 if (len <= BUF_PAGE_HDR_SIZE) 5693 goto out; 5694 5695 len -= BUF_PAGE_HDR_SIZE; 5696 5697 if (!data_page) 5698 goto out; 5699 5700 bpage = *data_page; 5701 if (!bpage) 5702 goto out; 5703 5704 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5705 5706 reader = rb_get_reader_page(cpu_buffer); 5707 if (!reader) 5708 goto out_unlock; 5709 5710 event = rb_reader_event(cpu_buffer); 5711 5712 read = reader->read; 5713 commit = rb_page_commit(reader); 5714 5715 /* Check if any events were dropped */ 5716 missed_events = cpu_buffer->lost_events; 5717 5718 /* 5719 * If this page has been partially read or 5720 * if len is not big enough to read the rest of the page or 5721 * a writer is still on the page, then 5722 * we must copy the data from the page to the buffer. 5723 * Otherwise, we can simply swap the page with the one passed in. 5724 */ 5725 if (read || (len < (commit - read)) || 5726 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5727 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5728 unsigned int rpos = read; 5729 unsigned int pos = 0; 5730 unsigned int size; 5731 5732 /* 5733 * If a full page is expected, this can still be returned 5734 * if there's been a previous partial read and the 5735 * rest of the page can be read and the commit page is off 5736 * the reader page. 5737 */ 5738 if (full && 5739 (!read || (len < (commit - read)) || 5740 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5741 goto out_unlock; 5742 5743 if (len > (commit - read)) 5744 len = (commit - read); 5745 5746 /* Always keep the time extend and data together */ 5747 size = rb_event_ts_length(event); 5748 5749 if (len < size) 5750 goto out_unlock; 5751 5752 /* save the current timestamp, since the user will need it */ 5753 save_timestamp = cpu_buffer->read_stamp; 5754 5755 /* Need to copy one event at a time */ 5756 do { 5757 /* We need the size of one event, because 5758 * rb_advance_reader only advances by one event, 5759 * whereas rb_event_ts_length may include the size of 5760 * one or two events. 5761 * We have already ensured there's enough space if this 5762 * is a time extend. */ 5763 size = rb_event_length(event); 5764 memcpy(bpage->data + pos, rpage->data + rpos, size); 5765 5766 len -= size; 5767 5768 rb_advance_reader(cpu_buffer); 5769 rpos = reader->read; 5770 pos += size; 5771 5772 if (rpos >= commit) 5773 break; 5774 5775 event = rb_reader_event(cpu_buffer); 5776 /* Always keep the time extend and data together */ 5777 size = rb_event_ts_length(event); 5778 } while (len >= size); 5779 5780 /* update bpage */ 5781 local_set(&bpage->commit, pos); 5782 bpage->time_stamp = save_timestamp; 5783 5784 /* we copied everything to the beginning */ 5785 read = 0; 5786 } else { 5787 /* update the entry counter */ 5788 cpu_buffer->read += rb_page_entries(reader); 5789 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5790 5791 /* swap the pages */ 5792 rb_init_page(bpage); 5793 bpage = reader->page; 5794 reader->page = *data_page; 5795 local_set(&reader->write, 0); 5796 local_set(&reader->entries, 0); 5797 reader->read = 0; 5798 *data_page = bpage; 5799 5800 /* 5801 * Use the real_end for the data size, 5802 * This gives us a chance to store the lost events 5803 * on the page. 5804 */ 5805 if (reader->real_end) 5806 local_set(&bpage->commit, reader->real_end); 5807 } 5808 ret = read; 5809 5810 cpu_buffer->lost_events = 0; 5811 5812 commit = local_read(&bpage->commit); 5813 /* 5814 * Set a flag in the commit field if we lost events 5815 */ 5816 if (missed_events) { 5817 /* If there is room at the end of the page to save the 5818 * missed events, then record it there. 5819 */ 5820 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5821 memcpy(&bpage->data[commit], &missed_events, 5822 sizeof(missed_events)); 5823 local_add(RB_MISSED_STORED, &bpage->commit); 5824 commit += sizeof(missed_events); 5825 } 5826 local_add(RB_MISSED_EVENTS, &bpage->commit); 5827 } 5828 5829 /* 5830 * This page may be off to user land. Zero it out here. 5831 */ 5832 if (commit < BUF_PAGE_SIZE) 5833 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5834 5835 out_unlock: 5836 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5837 5838 out: 5839 return ret; 5840 } 5841 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5842 5843 /* 5844 * We only allocate new buffers, never free them if the CPU goes down. 5845 * If we were to free the buffer, then the user would lose any trace that was in 5846 * the buffer. 5847 */ 5848 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5849 { 5850 struct trace_buffer *buffer; 5851 long nr_pages_same; 5852 int cpu_i; 5853 unsigned long nr_pages; 5854 5855 buffer = container_of(node, struct trace_buffer, node); 5856 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5857 return 0; 5858 5859 nr_pages = 0; 5860 nr_pages_same = 1; 5861 /* check if all cpu sizes are same */ 5862 for_each_buffer_cpu(buffer, cpu_i) { 5863 /* fill in the size from first enabled cpu */ 5864 if (nr_pages == 0) 5865 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5866 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5867 nr_pages_same = 0; 5868 break; 5869 } 5870 } 5871 /* allocate minimum pages, user can later expand it */ 5872 if (!nr_pages_same) 5873 nr_pages = 2; 5874 buffer->buffers[cpu] = 5875 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5876 if (!buffer->buffers[cpu]) { 5877 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5878 cpu); 5879 return -ENOMEM; 5880 } 5881 smp_wmb(); 5882 cpumask_set_cpu(cpu, buffer->cpumask); 5883 return 0; 5884 } 5885 5886 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5887 /* 5888 * This is a basic integrity check of the ring buffer. 5889 * Late in the boot cycle this test will run when configured in. 5890 * It will kick off a thread per CPU that will go into a loop 5891 * writing to the per cpu ring buffer various sizes of data. 5892 * Some of the data will be large items, some small. 5893 * 5894 * Another thread is created that goes into a spin, sending out 5895 * IPIs to the other CPUs to also write into the ring buffer. 5896 * this is to test the nesting ability of the buffer. 5897 * 5898 * Basic stats are recorded and reported. If something in the 5899 * ring buffer should happen that's not expected, a big warning 5900 * is displayed and all ring buffers are disabled. 5901 */ 5902 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5903 5904 struct rb_test_data { 5905 struct trace_buffer *buffer; 5906 unsigned long events; 5907 unsigned long bytes_written; 5908 unsigned long bytes_alloc; 5909 unsigned long bytes_dropped; 5910 unsigned long events_nested; 5911 unsigned long bytes_written_nested; 5912 unsigned long bytes_alloc_nested; 5913 unsigned long bytes_dropped_nested; 5914 int min_size_nested; 5915 int max_size_nested; 5916 int max_size; 5917 int min_size; 5918 int cpu; 5919 int cnt; 5920 }; 5921 5922 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5923 5924 /* 1 meg per cpu */ 5925 #define RB_TEST_BUFFER_SIZE 1048576 5926 5927 static char rb_string[] __initdata = 5928 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5929 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5930 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5931 5932 static bool rb_test_started __initdata; 5933 5934 struct rb_item { 5935 int size; 5936 char str[]; 5937 }; 5938 5939 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5940 { 5941 struct ring_buffer_event *event; 5942 struct rb_item *item; 5943 bool started; 5944 int event_len; 5945 int size; 5946 int len; 5947 int cnt; 5948 5949 /* Have nested writes different that what is written */ 5950 cnt = data->cnt + (nested ? 27 : 0); 5951 5952 /* Multiply cnt by ~e, to make some unique increment */ 5953 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5954 5955 len = size + sizeof(struct rb_item); 5956 5957 started = rb_test_started; 5958 /* read rb_test_started before checking buffer enabled */ 5959 smp_rmb(); 5960 5961 event = ring_buffer_lock_reserve(data->buffer, len); 5962 if (!event) { 5963 /* Ignore dropped events before test starts. */ 5964 if (started) { 5965 if (nested) 5966 data->bytes_dropped += len; 5967 else 5968 data->bytes_dropped_nested += len; 5969 } 5970 return len; 5971 } 5972 5973 event_len = ring_buffer_event_length(event); 5974 5975 if (RB_WARN_ON(data->buffer, event_len < len)) 5976 goto out; 5977 5978 item = ring_buffer_event_data(event); 5979 item->size = size; 5980 memcpy(item->str, rb_string, size); 5981 5982 if (nested) { 5983 data->bytes_alloc_nested += event_len; 5984 data->bytes_written_nested += len; 5985 data->events_nested++; 5986 if (!data->min_size_nested || len < data->min_size_nested) 5987 data->min_size_nested = len; 5988 if (len > data->max_size_nested) 5989 data->max_size_nested = len; 5990 } else { 5991 data->bytes_alloc += event_len; 5992 data->bytes_written += len; 5993 data->events++; 5994 if (!data->min_size || len < data->min_size) 5995 data->max_size = len; 5996 if (len > data->max_size) 5997 data->max_size = len; 5998 } 5999 6000 out: 6001 ring_buffer_unlock_commit(data->buffer, event); 6002 6003 return 0; 6004 } 6005 6006 static __init int rb_test(void *arg) 6007 { 6008 struct rb_test_data *data = arg; 6009 6010 while (!kthread_should_stop()) { 6011 rb_write_something(data, false); 6012 data->cnt++; 6013 6014 set_current_state(TASK_INTERRUPTIBLE); 6015 /* Now sleep between a min of 100-300us and a max of 1ms */ 6016 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6017 } 6018 6019 return 0; 6020 } 6021 6022 static __init void rb_ipi(void *ignore) 6023 { 6024 struct rb_test_data *data; 6025 int cpu = smp_processor_id(); 6026 6027 data = &rb_data[cpu]; 6028 rb_write_something(data, true); 6029 } 6030 6031 static __init int rb_hammer_test(void *arg) 6032 { 6033 while (!kthread_should_stop()) { 6034 6035 /* Send an IPI to all cpus to write data! */ 6036 smp_call_function(rb_ipi, NULL, 1); 6037 /* No sleep, but for non preempt, let others run */ 6038 schedule(); 6039 } 6040 6041 return 0; 6042 } 6043 6044 static __init int test_ringbuffer(void) 6045 { 6046 struct task_struct *rb_hammer; 6047 struct trace_buffer *buffer; 6048 int cpu; 6049 int ret = 0; 6050 6051 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6052 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6053 return 0; 6054 } 6055 6056 pr_info("Running ring buffer tests...\n"); 6057 6058 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6059 if (WARN_ON(!buffer)) 6060 return 0; 6061 6062 /* Disable buffer so that threads can't write to it yet */ 6063 ring_buffer_record_off(buffer); 6064 6065 for_each_online_cpu(cpu) { 6066 rb_data[cpu].buffer = buffer; 6067 rb_data[cpu].cpu = cpu; 6068 rb_data[cpu].cnt = cpu; 6069 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6070 cpu, "rbtester/%u"); 6071 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6072 pr_cont("FAILED\n"); 6073 ret = PTR_ERR(rb_threads[cpu]); 6074 goto out_free; 6075 } 6076 } 6077 6078 /* Now create the rb hammer! */ 6079 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6080 if (WARN_ON(IS_ERR(rb_hammer))) { 6081 pr_cont("FAILED\n"); 6082 ret = PTR_ERR(rb_hammer); 6083 goto out_free; 6084 } 6085 6086 ring_buffer_record_on(buffer); 6087 /* 6088 * Show buffer is enabled before setting rb_test_started. 6089 * Yes there's a small race window where events could be 6090 * dropped and the thread wont catch it. But when a ring 6091 * buffer gets enabled, there will always be some kind of 6092 * delay before other CPUs see it. Thus, we don't care about 6093 * those dropped events. We care about events dropped after 6094 * the threads see that the buffer is active. 6095 */ 6096 smp_wmb(); 6097 rb_test_started = true; 6098 6099 set_current_state(TASK_INTERRUPTIBLE); 6100 /* Just run for 10 seconds */; 6101 schedule_timeout(10 * HZ); 6102 6103 kthread_stop(rb_hammer); 6104 6105 out_free: 6106 for_each_online_cpu(cpu) { 6107 if (!rb_threads[cpu]) 6108 break; 6109 kthread_stop(rb_threads[cpu]); 6110 } 6111 if (ret) { 6112 ring_buffer_free(buffer); 6113 return ret; 6114 } 6115 6116 /* Report! */ 6117 pr_info("finished\n"); 6118 for_each_online_cpu(cpu) { 6119 struct ring_buffer_event *event; 6120 struct rb_test_data *data = &rb_data[cpu]; 6121 struct rb_item *item; 6122 unsigned long total_events; 6123 unsigned long total_dropped; 6124 unsigned long total_written; 6125 unsigned long total_alloc; 6126 unsigned long total_read = 0; 6127 unsigned long total_size = 0; 6128 unsigned long total_len = 0; 6129 unsigned long total_lost = 0; 6130 unsigned long lost; 6131 int big_event_size; 6132 int small_event_size; 6133 6134 ret = -1; 6135 6136 total_events = data->events + data->events_nested; 6137 total_written = data->bytes_written + data->bytes_written_nested; 6138 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6139 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6140 6141 big_event_size = data->max_size + data->max_size_nested; 6142 small_event_size = data->min_size + data->min_size_nested; 6143 6144 pr_info("CPU %d:\n", cpu); 6145 pr_info(" events: %ld\n", total_events); 6146 pr_info(" dropped bytes: %ld\n", total_dropped); 6147 pr_info(" alloced bytes: %ld\n", total_alloc); 6148 pr_info(" written bytes: %ld\n", total_written); 6149 pr_info(" biggest event: %d\n", big_event_size); 6150 pr_info(" smallest event: %d\n", small_event_size); 6151 6152 if (RB_WARN_ON(buffer, total_dropped)) 6153 break; 6154 6155 ret = 0; 6156 6157 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6158 total_lost += lost; 6159 item = ring_buffer_event_data(event); 6160 total_len += ring_buffer_event_length(event); 6161 total_size += item->size + sizeof(struct rb_item); 6162 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6163 pr_info("FAILED!\n"); 6164 pr_info("buffer had: %.*s\n", item->size, item->str); 6165 pr_info("expected: %.*s\n", item->size, rb_string); 6166 RB_WARN_ON(buffer, 1); 6167 ret = -1; 6168 break; 6169 } 6170 total_read++; 6171 } 6172 if (ret) 6173 break; 6174 6175 ret = -1; 6176 6177 pr_info(" read events: %ld\n", total_read); 6178 pr_info(" lost events: %ld\n", total_lost); 6179 pr_info(" total events: %ld\n", total_lost + total_read); 6180 pr_info(" recorded len bytes: %ld\n", total_len); 6181 pr_info(" recorded size bytes: %ld\n", total_size); 6182 if (total_lost) { 6183 pr_info(" With dropped events, record len and size may not match\n" 6184 " alloced and written from above\n"); 6185 } else { 6186 if (RB_WARN_ON(buffer, total_len != total_alloc || 6187 total_size != total_written)) 6188 break; 6189 } 6190 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6191 break; 6192 6193 ret = 0; 6194 } 6195 if (!ret) 6196 pr_info("Ring buffer PASSED!\n"); 6197 6198 ring_buffer_free(buffer); 6199 return 0; 6200 } 6201 6202 late_initcall(test_ringbuffer); 6203 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6204