xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 5a86bf34)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	int ret;
38 
39 	ret = trace_seq_puts(s, "# compressed entry header\n");
40 	ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	ret = trace_seq_putc(s, '\n');
44 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			       RINGBUF_TYPE_PADDING);
46 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			       RINGBUF_TYPE_TIME_EXTEND);
48 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return ret;
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139 
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150 
151 enum {
152 	RB_BUFFERS_ON_BIT	= 0,
153 	RB_BUFFERS_DISABLED_BIT	= 1,
154 };
155 
156 enum {
157 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
158 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160 
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162 
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF		(1 << 20)
165 
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167 
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178 
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT		4U
181 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
183 
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT	0
186 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT	1
189 # define RB_ARCH_ALIGNMENT		8U
190 #endif
191 
192 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
193 
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196 
197 enum {
198 	RB_LEN_TIME_EXTEND = 8,
199 	RB_LEN_TIME_STAMP = 16,
200 };
201 
202 #define skip_time_extend(event) \
203 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204 
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209 
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 	/* padding has a NULL time_delta */
213 	event->type_len = RINGBUF_TYPE_PADDING;
214 	event->time_delta = 0;
215 }
216 
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 	unsigned length;
221 
222 	if (event->type_len)
223 		length = event->type_len * RB_ALIGNMENT;
224 	else
225 		length = event->array[0];
226 	return length + RB_EVNT_HDR_SIZE;
227 }
228 
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 	switch (event->type_len) {
238 	case RINGBUF_TYPE_PADDING:
239 		if (rb_null_event(event))
240 			/* undefined */
241 			return -1;
242 		return  event->array[0] + RB_EVNT_HDR_SIZE;
243 
244 	case RINGBUF_TYPE_TIME_EXTEND:
245 		return RB_LEN_TIME_EXTEND;
246 
247 	case RINGBUF_TYPE_TIME_STAMP:
248 		return RB_LEN_TIME_STAMP;
249 
250 	case RINGBUF_TYPE_DATA:
251 		return rb_event_data_length(event);
252 	default:
253 		BUG();
254 	}
255 	/* not hit */
256 	return 0;
257 }
258 
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 	unsigned len = 0;
267 
268 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 		/* time extends include the data event after it */
270 		len = RB_LEN_TIME_EXTEND;
271 		event = skip_time_extend(event);
272 	}
273 	return len + rb_event_length(event);
274 }
275 
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 	unsigned length;
289 
290 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 		event = skip_time_extend(event);
292 
293 	length = rb_event_length(event);
294 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 		return length;
296 	length -= RB_EVNT_HDR_SIZE;
297 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299 	return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302 
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 		event = skip_time_extend(event);
309 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 	/* If length is in len field, then array[0] has the data */
311 	if (event->type_len)
312 		return (void *)&event->array[0];
313 	/* Otherwise length is in array[0] and array[1] has the data */
314 	return (void *)&event->array[1];
315 }
316 
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 	return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326 
327 #define for_each_buffer_cpu(buffer, cpu)		\
328 	for_each_cpu(cpu, buffer->cpumask)
329 
330 #define TS_SHIFT	27
331 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST	(~TS_MASK)
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 struct buffer_data_page {
340 	u64		 time_stamp;	/* page time stamp */
341 	local_t		 commit;	/* write committed index */
342 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
343 };
344 
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354 	struct list_head list;		/* list of buffer pages */
355 	local_t		 write;		/* index for next write */
356 	unsigned	 read;		/* index for next read */
357 	local_t		 entries;	/* entries on this page */
358 	unsigned long	 real_end;	/* real end of data */
359 	struct buffer_data_page *page;	/* Actual data page */
360 };
361 
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK		0xfffff
375 #define RB_WRITE_INTCNT		(1 << 20)
376 
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 	local_set(&bpage->commit, 0);
380 }
381 
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390 	return local_read(&((struct buffer_data_page *)page)->commit)
391 		+ BUF_PAGE_HDR_SIZE;
392 }
393 
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 	free_page((unsigned long)bpage->page);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409 	if (delta & TS_DELTA_TEST)
410 		return 1;
411 	return 0;
412 }
413 
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415 
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418 
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 	struct buffer_data_page field;
422 	int ret;
423 
424 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
426 			       (unsigned int)sizeof(field.time_stamp),
427 			       (unsigned int)is_signed_type(u64));
428 
429 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       (unsigned int)sizeof(field.commit),
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), commit),
438 			       1,
439 			       (unsigned int)is_signed_type(long));
440 
441 	ret = trace_seq_printf(s, "\tfield: char data;\t"
442 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 			       (unsigned int)offsetof(typeof(field), data),
444 			       (unsigned int)BUF_PAGE_SIZE,
445 			       (unsigned int)is_signed_type(char));
446 
447 	return ret;
448 }
449 
450 struct rb_irq_work {
451 	struct irq_work			work;
452 	wait_queue_head_t		waiters;
453 	bool				waiters_pending;
454 };
455 
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460 	int				cpu;
461 	atomic_t			record_disabled;
462 	struct ring_buffer		*buffer;
463 	raw_spinlock_t			reader_lock;	/* serialize readers */
464 	arch_spinlock_t			lock;
465 	struct lock_class_key		lock_key;
466 	unsigned int			nr_pages;
467 	struct list_head		*pages;
468 	struct buffer_page		*head_page;	/* read from head */
469 	struct buffer_page		*tail_page;	/* write to tail */
470 	struct buffer_page		*commit_page;	/* committed pages */
471 	struct buffer_page		*reader_page;
472 	unsigned long			lost_events;
473 	unsigned long			last_overrun;
474 	local_t				entries_bytes;
475 	local_t				entries;
476 	local_t				overrun;
477 	local_t				commit_overrun;
478 	local_t				dropped_events;
479 	local_t				committing;
480 	local_t				commits;
481 	unsigned long			read;
482 	unsigned long			read_bytes;
483 	u64				write_stamp;
484 	u64				read_stamp;
485 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
486 	int				nr_pages_to_update;
487 	struct list_head		new_pages; /* new pages to add */
488 	struct work_struct		update_pages_work;
489 	struct completion		update_done;
490 
491 	struct rb_irq_work		irq_work;
492 };
493 
494 struct ring_buffer {
495 	unsigned			flags;
496 	int				cpus;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	cpumask_var_t			cpumask;
500 
501 	struct lock_class_key		*reader_lock_key;
502 
503 	struct mutex			mutex;
504 
505 	struct ring_buffer_per_cpu	**buffers;
506 
507 #ifdef CONFIG_HOTPLUG_CPU
508 	struct notifier_block		cpu_notify;
509 #endif
510 	u64				(*clock)(void);
511 
512 	struct rb_irq_work		irq_work;
513 };
514 
515 struct ring_buffer_iter {
516 	struct ring_buffer_per_cpu	*cpu_buffer;
517 	unsigned long			head;
518 	struct buffer_page		*head_page;
519 	struct buffer_page		*cache_reader_page;
520 	unsigned long			cache_read;
521 	u64				read_stamp;
522 };
523 
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533 
534 	wake_up_all(&rbwork->waiters);
535 }
536 
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 	struct ring_buffer_per_cpu *cpu_buffer;
549 	DEFINE_WAIT(wait);
550 	struct rb_irq_work *work;
551 
552 	/*
553 	 * Depending on what the caller is waiting for, either any
554 	 * data in any cpu buffer, or a specific buffer, put the
555 	 * caller on the appropriate wait queue.
556 	 */
557 	if (cpu == RING_BUFFER_ALL_CPUS)
558 		work = &buffer->irq_work;
559 	else {
560 		cpu_buffer = buffer->buffers[cpu];
561 		work = &cpu_buffer->irq_work;
562 	}
563 
564 
565 	prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566 
567 	/*
568 	 * The events can happen in critical sections where
569 	 * checking a work queue can cause deadlocks.
570 	 * After adding a task to the queue, this flag is set
571 	 * only to notify events to try to wake up the queue
572 	 * using irq_work.
573 	 *
574 	 * We don't clear it even if the buffer is no longer
575 	 * empty. The flag only causes the next event to run
576 	 * irq_work to do the work queue wake up. The worse
577 	 * that can happen if we race with !trace_empty() is that
578 	 * an event will cause an irq_work to try to wake up
579 	 * an empty queue.
580 	 *
581 	 * There's no reason to protect this flag either, as
582 	 * the work queue and irq_work logic will do the necessary
583 	 * synchronization for the wake ups. The only thing
584 	 * that is necessary is that the wake up happens after
585 	 * a task has been queued. It's OK for spurious wake ups.
586 	 */
587 	work->waiters_pending = true;
588 
589 	if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 	    (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 		schedule();
592 
593 	finish_wait(&work->waiters, &wait);
594 }
595 
596 /**
597  * ring_buffer_poll_wait - poll on buffer input
598  * @buffer: buffer to wait on
599  * @cpu: the cpu buffer to wait on
600  * @filp: the file descriptor
601  * @poll_table: The poll descriptor
602  *
603  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604  * as data is added to any of the @buffer's cpu buffers. Otherwise
605  * it will wait for data to be added to a specific cpu buffer.
606  *
607  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608  * zero otherwise.
609  */
610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 			  struct file *filp, poll_table *poll_table)
612 {
613 	struct ring_buffer_per_cpu *cpu_buffer;
614 	struct rb_irq_work *work;
615 
616 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 		return POLLIN | POLLRDNORM;
619 
620 	if (cpu == RING_BUFFER_ALL_CPUS)
621 		work = &buffer->irq_work;
622 	else {
623 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 			return -EINVAL;
625 
626 		cpu_buffer = buffer->buffers[cpu];
627 		work = &cpu_buffer->irq_work;
628 	}
629 
630 	work->waiters_pending = true;
631 	poll_wait(filp, &work->waiters, poll_table);
632 
633 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 		return POLLIN | POLLRDNORM;
636 	return 0;
637 }
638 
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond)						\
641 	({								\
642 		int _____ret = unlikely(cond);				\
643 		if (_____ret) {						\
644 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 				struct ring_buffer_per_cpu *__b =	\
646 					(void *)b;			\
647 				atomic_inc(&__b->buffer->record_disabled); \
648 			} else						\
649 				atomic_inc(&b->record_disabled);	\
650 			WARN_ON(1);					\
651 		}							\
652 		_____ret;						\
653 	})
654 
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
657 
658 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659 {
660 	/* shift to debug/test normalization and TIME_EXTENTS */
661 	return buffer->clock() << DEBUG_SHIFT;
662 }
663 
664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665 {
666 	u64 time;
667 
668 	preempt_disable_notrace();
669 	time = rb_time_stamp(buffer);
670 	preempt_enable_no_resched_notrace();
671 
672 	return time;
673 }
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675 
676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 				      int cpu, u64 *ts)
678 {
679 	/* Just stupid testing the normalize function and deltas */
680 	*ts >>= DEBUG_SHIFT;
681 }
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683 
684 /*
685  * Making the ring buffer lockless makes things tricky.
686  * Although writes only happen on the CPU that they are on,
687  * and they only need to worry about interrupts. Reads can
688  * happen on any CPU.
689  *
690  * The reader page is always off the ring buffer, but when the
691  * reader finishes with a page, it needs to swap its page with
692  * a new one from the buffer. The reader needs to take from
693  * the head (writes go to the tail). But if a writer is in overwrite
694  * mode and wraps, it must push the head page forward.
695  *
696  * Here lies the problem.
697  *
698  * The reader must be careful to replace only the head page, and
699  * not another one. As described at the top of the file in the
700  * ASCII art, the reader sets its old page to point to the next
701  * page after head. It then sets the page after head to point to
702  * the old reader page. But if the writer moves the head page
703  * during this operation, the reader could end up with the tail.
704  *
705  * We use cmpxchg to help prevent this race. We also do something
706  * special with the page before head. We set the LSB to 1.
707  *
708  * When the writer must push the page forward, it will clear the
709  * bit that points to the head page, move the head, and then set
710  * the bit that points to the new head page.
711  *
712  * We also don't want an interrupt coming in and moving the head
713  * page on another writer. Thus we use the second LSB to catch
714  * that too. Thus:
715  *
716  * head->list->prev->next        bit 1          bit 0
717  *                              -------        -------
718  * Normal page                     0              0
719  * Points to head page             0              1
720  * New head page                   1              0
721  *
722  * Note we can not trust the prev pointer of the head page, because:
723  *
724  * +----+       +-----+        +-----+
725  * |    |------>|  T  |---X--->|  N  |
726  * |    |<------|     |        |     |
727  * +----+       +-----+        +-----+
728  *   ^                           ^ |
729  *   |          +-----+          | |
730  *   +----------|  R  |----------+ |
731  *              |     |<-----------+
732  *              +-----+
733  *
734  * Key:  ---X-->  HEAD flag set in pointer
735  *         T      Tail page
736  *         R      Reader page
737  *         N      Next page
738  *
739  * (see __rb_reserve_next() to see where this happens)
740  *
741  *  What the above shows is that the reader just swapped out
742  *  the reader page with a page in the buffer, but before it
743  *  could make the new header point back to the new page added
744  *  it was preempted by a writer. The writer moved forward onto
745  *  the new page added by the reader and is about to move forward
746  *  again.
747  *
748  *  You can see, it is legitimate for the previous pointer of
749  *  the head (or any page) not to point back to itself. But only
750  *  temporarially.
751  */
752 
753 #define RB_PAGE_NORMAL		0UL
754 #define RB_PAGE_HEAD		1UL
755 #define RB_PAGE_UPDATE		2UL
756 
757 
758 #define RB_FLAG_MASK		3UL
759 
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED		4UL
762 
763 /*
764  * rb_list_head - remove any bit
765  */
766 static struct list_head *rb_list_head(struct list_head *list)
767 {
768 	unsigned long val = (unsigned long)list;
769 
770 	return (struct list_head *)(val & ~RB_FLAG_MASK);
771 }
772 
773 /*
774  * rb_is_head_page - test if the given page is the head page
775  *
776  * Because the reader may move the head_page pointer, we can
777  * not trust what the head page is (it may be pointing to
778  * the reader page). But if the next page is a header page,
779  * its flags will be non zero.
780  */
781 static inline int
782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 		struct buffer_page *page, struct list_head *list)
784 {
785 	unsigned long val;
786 
787 	val = (unsigned long)list->next;
788 
789 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 		return RB_PAGE_MOVED;
791 
792 	return val & RB_FLAG_MASK;
793 }
794 
795 /*
796  * rb_is_reader_page
797  *
798  * The unique thing about the reader page, is that, if the
799  * writer is ever on it, the previous pointer never points
800  * back to the reader page.
801  */
802 static int rb_is_reader_page(struct buffer_page *page)
803 {
804 	struct list_head *list = page->list.prev;
805 
806 	return rb_list_head(list->next) != &page->list;
807 }
808 
809 /*
810  * rb_set_list_to_head - set a list_head to be pointing to head.
811  */
812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 				struct list_head *list)
814 {
815 	unsigned long *ptr;
816 
817 	ptr = (unsigned long *)&list->next;
818 	*ptr |= RB_PAGE_HEAD;
819 	*ptr &= ~RB_PAGE_UPDATE;
820 }
821 
822 /*
823  * rb_head_page_activate - sets up head page
824  */
825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826 {
827 	struct buffer_page *head;
828 
829 	head = cpu_buffer->head_page;
830 	if (!head)
831 		return;
832 
833 	/*
834 	 * Set the previous list pointer to have the HEAD flag.
835 	 */
836 	rb_set_list_to_head(cpu_buffer, head->list.prev);
837 }
838 
839 static void rb_list_head_clear(struct list_head *list)
840 {
841 	unsigned long *ptr = (unsigned long *)&list->next;
842 
843 	*ptr &= ~RB_FLAG_MASK;
844 }
845 
846 /*
847  * rb_head_page_dactivate - clears head page ptr (for free list)
848  */
849 static void
850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851 {
852 	struct list_head *hd;
853 
854 	/* Go through the whole list and clear any pointers found. */
855 	rb_list_head_clear(cpu_buffer->pages);
856 
857 	list_for_each(hd, cpu_buffer->pages)
858 		rb_list_head_clear(hd);
859 }
860 
861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 			    struct buffer_page *head,
863 			    struct buffer_page *prev,
864 			    int old_flag, int new_flag)
865 {
866 	struct list_head *list;
867 	unsigned long val = (unsigned long)&head->list;
868 	unsigned long ret;
869 
870 	list = &prev->list;
871 
872 	val &= ~RB_FLAG_MASK;
873 
874 	ret = cmpxchg((unsigned long *)&list->next,
875 		      val | old_flag, val | new_flag);
876 
877 	/* check if the reader took the page */
878 	if ((ret & ~RB_FLAG_MASK) != val)
879 		return RB_PAGE_MOVED;
880 
881 	return ret & RB_FLAG_MASK;
882 }
883 
884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 				   struct buffer_page *head,
886 				   struct buffer_page *prev,
887 				   int old_flag)
888 {
889 	return rb_head_page_set(cpu_buffer, head, prev,
890 				old_flag, RB_PAGE_UPDATE);
891 }
892 
893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 				 struct buffer_page *head,
895 				 struct buffer_page *prev,
896 				 int old_flag)
897 {
898 	return rb_head_page_set(cpu_buffer, head, prev,
899 				old_flag, RB_PAGE_HEAD);
900 }
901 
902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 				   struct buffer_page *head,
904 				   struct buffer_page *prev,
905 				   int old_flag)
906 {
907 	return rb_head_page_set(cpu_buffer, head, prev,
908 				old_flag, RB_PAGE_NORMAL);
909 }
910 
911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 			       struct buffer_page **bpage)
913 {
914 	struct list_head *p = rb_list_head((*bpage)->list.next);
915 
916 	*bpage = list_entry(p, struct buffer_page, list);
917 }
918 
919 static struct buffer_page *
920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921 {
922 	struct buffer_page *head;
923 	struct buffer_page *page;
924 	struct list_head *list;
925 	int i;
926 
927 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 		return NULL;
929 
930 	/* sanity check */
931 	list = cpu_buffer->pages;
932 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 		return NULL;
934 
935 	page = head = cpu_buffer->head_page;
936 	/*
937 	 * It is possible that the writer moves the header behind
938 	 * where we started, and we miss in one loop.
939 	 * A second loop should grab the header, but we'll do
940 	 * three loops just because I'm paranoid.
941 	 */
942 	for (i = 0; i < 3; i++) {
943 		do {
944 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 				cpu_buffer->head_page = page;
946 				return page;
947 			}
948 			rb_inc_page(cpu_buffer, &page);
949 		} while (page != head);
950 	}
951 
952 	RB_WARN_ON(cpu_buffer, 1);
953 
954 	return NULL;
955 }
956 
957 static int rb_head_page_replace(struct buffer_page *old,
958 				struct buffer_page *new)
959 {
960 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 	unsigned long val;
962 	unsigned long ret;
963 
964 	val = *ptr & ~RB_FLAG_MASK;
965 	val |= RB_PAGE_HEAD;
966 
967 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968 
969 	return ret == val;
970 }
971 
972 /*
973  * rb_tail_page_update - move the tail page forward
974  *
975  * Returns 1 if moved tail page, 0 if someone else did.
976  */
977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 			       struct buffer_page *tail_page,
979 			       struct buffer_page *next_page)
980 {
981 	struct buffer_page *old_tail;
982 	unsigned long old_entries;
983 	unsigned long old_write;
984 	int ret = 0;
985 
986 	/*
987 	 * The tail page now needs to be moved forward.
988 	 *
989 	 * We need to reset the tail page, but without messing
990 	 * with possible erasing of data brought in by interrupts
991 	 * that have moved the tail page and are currently on it.
992 	 *
993 	 * We add a counter to the write field to denote this.
994 	 */
995 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997 
998 	/*
999 	 * Just make sure we have seen our old_write and synchronize
1000 	 * with any interrupts that come in.
1001 	 */
1002 	barrier();
1003 
1004 	/*
1005 	 * If the tail page is still the same as what we think
1006 	 * it is, then it is up to us to update the tail
1007 	 * pointer.
1008 	 */
1009 	if (tail_page == cpu_buffer->tail_page) {
1010 		/* Zero the write counter */
1011 		unsigned long val = old_write & ~RB_WRITE_MASK;
1012 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013 
1014 		/*
1015 		 * This will only succeed if an interrupt did
1016 		 * not come in and change it. In which case, we
1017 		 * do not want to modify it.
1018 		 *
1019 		 * We add (void) to let the compiler know that we do not care
1020 		 * about the return value of these functions. We use the
1021 		 * cmpxchg to only update if an interrupt did not already
1022 		 * do it for us. If the cmpxchg fails, we don't care.
1023 		 */
1024 		(void)local_cmpxchg(&next_page->write, old_write, val);
1025 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026 
1027 		/*
1028 		 * No need to worry about races with clearing out the commit.
1029 		 * it only can increment when a commit takes place. But that
1030 		 * only happens in the outer most nested commit.
1031 		 */
1032 		local_set(&next_page->page->commit, 0);
1033 
1034 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 				   tail_page, next_page);
1036 
1037 		if (old_tail == tail_page)
1038 			ret = 1;
1039 	}
1040 
1041 	return ret;
1042 }
1043 
1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 			  struct buffer_page *bpage)
1046 {
1047 	unsigned long val = (unsigned long)bpage;
1048 
1049 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 		return 1;
1051 
1052 	return 0;
1053 }
1054 
1055 /**
1056  * rb_check_list - make sure a pointer to a list has the last bits zero
1057  */
1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 			 struct list_head *list)
1060 {
1061 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 		return 1;
1063 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 		return 1;
1065 	return 0;
1066 }
1067 
1068 /**
1069  * rb_check_pages - integrity check of buffer pages
1070  * @cpu_buffer: CPU buffer with pages to test
1071  *
1072  * As a safety measure we check to make sure the data pages have not
1073  * been corrupted.
1074  */
1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077 	struct list_head *head = cpu_buffer->pages;
1078 	struct buffer_page *bpage, *tmp;
1079 
1080 	/* Reset the head page if it exists */
1081 	if (cpu_buffer->head_page)
1082 		rb_set_head_page(cpu_buffer);
1083 
1084 	rb_head_page_deactivate(cpu_buffer);
1085 
1086 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 		return -1;
1088 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 		return -1;
1090 
1091 	if (rb_check_list(cpu_buffer, head))
1092 		return -1;
1093 
1094 	list_for_each_entry_safe(bpage, tmp, head, list) {
1095 		if (RB_WARN_ON(cpu_buffer,
1096 			       bpage->list.next->prev != &bpage->list))
1097 			return -1;
1098 		if (RB_WARN_ON(cpu_buffer,
1099 			       bpage->list.prev->next != &bpage->list))
1100 			return -1;
1101 		if (rb_check_list(cpu_buffer, &bpage->list))
1102 			return -1;
1103 	}
1104 
1105 	rb_head_page_activate(cpu_buffer);
1106 
1107 	return 0;
1108 }
1109 
1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111 {
1112 	int i;
1113 	struct buffer_page *bpage, *tmp;
1114 
1115 	for (i = 0; i < nr_pages; i++) {
1116 		struct page *page;
1117 		/*
1118 		 * __GFP_NORETRY flag makes sure that the allocation fails
1119 		 * gracefully without invoking oom-killer and the system is
1120 		 * not destabilized.
1121 		 */
1122 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123 				    GFP_KERNEL | __GFP_NORETRY,
1124 				    cpu_to_node(cpu));
1125 		if (!bpage)
1126 			goto free_pages;
1127 
1128 		list_add(&bpage->list, pages);
1129 
1130 		page = alloc_pages_node(cpu_to_node(cpu),
1131 					GFP_KERNEL | __GFP_NORETRY, 0);
1132 		if (!page)
1133 			goto free_pages;
1134 		bpage->page = page_address(page);
1135 		rb_init_page(bpage->page);
1136 	}
1137 
1138 	return 0;
1139 
1140 free_pages:
1141 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 		list_del_init(&bpage->list);
1143 		free_buffer_page(bpage);
1144 	}
1145 
1146 	return -ENOMEM;
1147 }
1148 
1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 			     unsigned nr_pages)
1151 {
1152 	LIST_HEAD(pages);
1153 
1154 	WARN_ON(!nr_pages);
1155 
1156 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 		return -ENOMEM;
1158 
1159 	/*
1160 	 * The ring buffer page list is a circular list that does not
1161 	 * start and end with a list head. All page list items point to
1162 	 * other pages.
1163 	 */
1164 	cpu_buffer->pages = pages.next;
1165 	list_del(&pages);
1166 
1167 	cpu_buffer->nr_pages = nr_pages;
1168 
1169 	rb_check_pages(cpu_buffer);
1170 
1171 	return 0;
1172 }
1173 
1174 static struct ring_buffer_per_cpu *
1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176 {
1177 	struct ring_buffer_per_cpu *cpu_buffer;
1178 	struct buffer_page *bpage;
1179 	struct page *page;
1180 	int ret;
1181 
1182 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 				  GFP_KERNEL, cpu_to_node(cpu));
1184 	if (!cpu_buffer)
1185 		return NULL;
1186 
1187 	cpu_buffer->cpu = cpu;
1188 	cpu_buffer->buffer = buffer;
1189 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1190 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193 	init_completion(&cpu_buffer->update_done);
1194 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196 
1197 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198 			    GFP_KERNEL, cpu_to_node(cpu));
1199 	if (!bpage)
1200 		goto fail_free_buffer;
1201 
1202 	rb_check_bpage(cpu_buffer, bpage);
1203 
1204 	cpu_buffer->reader_page = bpage;
1205 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 	if (!page)
1207 		goto fail_free_reader;
1208 	bpage->page = page_address(page);
1209 	rb_init_page(bpage->page);
1210 
1211 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213 
1214 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215 	if (ret < 0)
1216 		goto fail_free_reader;
1217 
1218 	cpu_buffer->head_page
1219 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1220 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221 
1222 	rb_head_page_activate(cpu_buffer);
1223 
1224 	return cpu_buffer;
1225 
1226  fail_free_reader:
1227 	free_buffer_page(cpu_buffer->reader_page);
1228 
1229  fail_free_buffer:
1230 	kfree(cpu_buffer);
1231 	return NULL;
1232 }
1233 
1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235 {
1236 	struct list_head *head = cpu_buffer->pages;
1237 	struct buffer_page *bpage, *tmp;
1238 
1239 	free_buffer_page(cpu_buffer->reader_page);
1240 
1241 	rb_head_page_deactivate(cpu_buffer);
1242 
1243 	if (head) {
1244 		list_for_each_entry_safe(bpage, tmp, head, list) {
1245 			list_del_init(&bpage->list);
1246 			free_buffer_page(bpage);
1247 		}
1248 		bpage = list_entry(head, struct buffer_page, list);
1249 		free_buffer_page(bpage);
1250 	}
1251 
1252 	kfree(cpu_buffer);
1253 }
1254 
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block *self,
1257 			 unsigned long action, void *hcpu);
1258 #endif
1259 
1260 /**
1261  * __ring_buffer_alloc - allocate a new ring_buffer
1262  * @size: the size in bytes per cpu that is needed.
1263  * @flags: attributes to set for the ring buffer.
1264  *
1265  * Currently the only flag that is available is the RB_FL_OVERWRITE
1266  * flag. This flag means that the buffer will overwrite old data
1267  * when the buffer wraps. If this flag is not set, the buffer will
1268  * drop data when the tail hits the head.
1269  */
1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 					struct lock_class_key *key)
1272 {
1273 	struct ring_buffer *buffer;
1274 	int bsize;
1275 	int cpu, nr_pages;
1276 
1277 	/* keep it in its own cache line */
1278 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 			 GFP_KERNEL);
1280 	if (!buffer)
1281 		return NULL;
1282 
1283 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 		goto fail_free_buffer;
1285 
1286 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287 	buffer->flags = flags;
1288 	buffer->clock = trace_clock_local;
1289 	buffer->reader_lock_key = key;
1290 
1291 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292 	init_waitqueue_head(&buffer->irq_work.waiters);
1293 
1294 	/* need at least two pages */
1295 	if (nr_pages < 2)
1296 		nr_pages = 2;
1297 
1298 	/*
1299 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 	 * in early initcall, it will not be notified of secondary cpus.
1301 	 * In that off case, we need to allocate for all possible cpus.
1302 	 */
1303 #ifdef CONFIG_HOTPLUG_CPU
1304 	get_online_cpus();
1305 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1306 #else
1307 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308 #endif
1309 	buffer->cpus = nr_cpu_ids;
1310 
1311 	bsize = sizeof(void *) * nr_cpu_ids;
1312 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 				  GFP_KERNEL);
1314 	if (!buffer->buffers)
1315 		goto fail_free_cpumask;
1316 
1317 	for_each_buffer_cpu(buffer, cpu) {
1318 		buffer->buffers[cpu] =
1319 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320 		if (!buffer->buffers[cpu])
1321 			goto fail_free_buffers;
1322 	}
1323 
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 	buffer->cpu_notify.priority = 0;
1327 	register_cpu_notifier(&buffer->cpu_notify);
1328 #endif
1329 
1330 	put_online_cpus();
1331 	mutex_init(&buffer->mutex);
1332 
1333 	return buffer;
1334 
1335  fail_free_buffers:
1336 	for_each_buffer_cpu(buffer, cpu) {
1337 		if (buffer->buffers[cpu])
1338 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 	}
1340 	kfree(buffer->buffers);
1341 
1342  fail_free_cpumask:
1343 	free_cpumask_var(buffer->cpumask);
1344 	put_online_cpus();
1345 
1346  fail_free_buffer:
1347 	kfree(buffer);
1348 	return NULL;
1349 }
1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1351 
1352 /**
1353  * ring_buffer_free - free a ring buffer.
1354  * @buffer: the buffer to free.
1355  */
1356 void
1357 ring_buffer_free(struct ring_buffer *buffer)
1358 {
1359 	int cpu;
1360 
1361 	get_online_cpus();
1362 
1363 #ifdef CONFIG_HOTPLUG_CPU
1364 	unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366 
1367 	for_each_buffer_cpu(buffer, cpu)
1368 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1369 
1370 	put_online_cpus();
1371 
1372 	kfree(buffer->buffers);
1373 	free_cpumask_var(buffer->cpumask);
1374 
1375 	kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378 
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 			   u64 (*clock)(void))
1381 {
1382 	buffer->clock = clock;
1383 }
1384 
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386 
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391 
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394 	return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396 
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399 {
1400 	struct list_head *tail_page, *to_remove, *next_page;
1401 	struct buffer_page *to_remove_page, *tmp_iter_page;
1402 	struct buffer_page *last_page, *first_page;
1403 	unsigned int nr_removed;
1404 	unsigned long head_bit;
1405 	int page_entries;
1406 
1407 	head_bit = 0;
1408 
1409 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410 	atomic_inc(&cpu_buffer->record_disabled);
1411 	/*
1412 	 * We don't race with the readers since we have acquired the reader
1413 	 * lock. We also don't race with writers after disabling recording.
1414 	 * This makes it easy to figure out the first and the last page to be
1415 	 * removed from the list. We unlink all the pages in between including
1416 	 * the first and last pages. This is done in a busy loop so that we
1417 	 * lose the least number of traces.
1418 	 * The pages are freed after we restart recording and unlock readers.
1419 	 */
1420 	tail_page = &cpu_buffer->tail_page->list;
1421 
1422 	/*
1423 	 * tail page might be on reader page, we remove the next page
1424 	 * from the ring buffer
1425 	 */
1426 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 		tail_page = rb_list_head(tail_page->next);
1428 	to_remove = tail_page;
1429 
1430 	/* start of pages to remove */
1431 	first_page = list_entry(rb_list_head(to_remove->next),
1432 				struct buffer_page, list);
1433 
1434 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 		to_remove = rb_list_head(to_remove)->next;
1436 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437 	}
1438 
1439 	next_page = rb_list_head(to_remove)->next;
1440 
1441 	/*
1442 	 * Now we remove all pages between tail_page and next_page.
1443 	 * Make sure that we have head_bit value preserved for the
1444 	 * next page
1445 	 */
1446 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 						head_bit);
1448 	next_page = rb_list_head(next_page);
1449 	next_page->prev = tail_page;
1450 
1451 	/* make sure pages points to a valid page in the ring buffer */
1452 	cpu_buffer->pages = next_page;
1453 
1454 	/* update head page */
1455 	if (head_bit)
1456 		cpu_buffer->head_page = list_entry(next_page,
1457 						struct buffer_page, list);
1458 
1459 	/*
1460 	 * change read pointer to make sure any read iterators reset
1461 	 * themselves
1462 	 */
1463 	cpu_buffer->read = 0;
1464 
1465 	/* pages are removed, resume tracing and then free the pages */
1466 	atomic_dec(&cpu_buffer->record_disabled);
1467 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468 
1469 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470 
1471 	/* last buffer page to remove */
1472 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 				list);
1474 	tmp_iter_page = first_page;
1475 
1476 	do {
1477 		to_remove_page = tmp_iter_page;
1478 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1479 
1480 		/* update the counters */
1481 		page_entries = rb_page_entries(to_remove_page);
1482 		if (page_entries) {
1483 			/*
1484 			 * If something was added to this page, it was full
1485 			 * since it is not the tail page. So we deduct the
1486 			 * bytes consumed in ring buffer from here.
1487 			 * Increment overrun to account for the lost events.
1488 			 */
1489 			local_add(page_entries, &cpu_buffer->overrun);
1490 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 		}
1492 
1493 		/*
1494 		 * We have already removed references to this list item, just
1495 		 * free up the buffer_page and its page
1496 		 */
1497 		free_buffer_page(to_remove_page);
1498 		nr_removed--;
1499 
1500 	} while (to_remove_page != last_page);
1501 
1502 	RB_WARN_ON(cpu_buffer, nr_removed);
1503 
1504 	return nr_removed == 0;
1505 }
1506 
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 	struct list_head *pages = &cpu_buffer->new_pages;
1511 	int retries, success;
1512 
1513 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514 	/*
1515 	 * We are holding the reader lock, so the reader page won't be swapped
1516 	 * in the ring buffer. Now we are racing with the writer trying to
1517 	 * move head page and the tail page.
1518 	 * We are going to adapt the reader page update process where:
1519 	 * 1. We first splice the start and end of list of new pages between
1520 	 *    the head page and its previous page.
1521 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 	 *    start of new pages list.
1523 	 * 3. Finally, we update the head->prev to the end of new list.
1524 	 *
1525 	 * We will try this process 10 times, to make sure that we don't keep
1526 	 * spinning.
1527 	 */
1528 	retries = 10;
1529 	success = 0;
1530 	while (retries--) {
1531 		struct list_head *head_page, *prev_page, *r;
1532 		struct list_head *last_page, *first_page;
1533 		struct list_head *head_page_with_bit;
1534 
1535 		head_page = &rb_set_head_page(cpu_buffer)->list;
1536 		if (!head_page)
1537 			break;
1538 		prev_page = head_page->prev;
1539 
1540 		first_page = pages->next;
1541 		last_page  = pages->prev;
1542 
1543 		head_page_with_bit = (struct list_head *)
1544 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1545 
1546 		last_page->next = head_page_with_bit;
1547 		first_page->prev = prev_page;
1548 
1549 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550 
1551 		if (r == head_page_with_bit) {
1552 			/*
1553 			 * yay, we replaced the page pointer to our new list,
1554 			 * now, we just have to update to head page's prev
1555 			 * pointer to point to end of list
1556 			 */
1557 			head_page->prev = last_page;
1558 			success = 1;
1559 			break;
1560 		}
1561 	}
1562 
1563 	if (success)
1564 		INIT_LIST_HEAD(pages);
1565 	/*
1566 	 * If we weren't successful in adding in new pages, warn and stop
1567 	 * tracing
1568 	 */
1569 	RB_WARN_ON(cpu_buffer, !success);
1570 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571 
1572 	/* free pages if they weren't inserted */
1573 	if (!success) {
1574 		struct buffer_page *bpage, *tmp;
1575 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 					 list) {
1577 			list_del_init(&bpage->list);
1578 			free_buffer_page(bpage);
1579 		}
1580 	}
1581 	return success;
1582 }
1583 
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586 	int success;
1587 
1588 	if (cpu_buffer->nr_pages_to_update > 0)
1589 		success = rb_insert_pages(cpu_buffer);
1590 	else
1591 		success = rb_remove_pages(cpu_buffer,
1592 					-cpu_buffer->nr_pages_to_update);
1593 
1594 	if (success)
1595 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597 
1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 			struct ring_buffer_per_cpu, update_pages_work);
1602 	rb_update_pages(cpu_buffer);
1603 	complete(&cpu_buffer->update_done);
1604 }
1605 
1606 /**
1607  * ring_buffer_resize - resize the ring buffer
1608  * @buffer: the buffer to resize.
1609  * @size: the new size.
1610  * @cpu_id: the cpu buffer to resize
1611  *
1612  * Minimum size is 2 * BUF_PAGE_SIZE.
1613  *
1614  * Returns 0 on success and < 0 on failure.
1615  */
1616 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617 			int cpu_id)
1618 {
1619 	struct ring_buffer_per_cpu *cpu_buffer;
1620 	unsigned nr_pages;
1621 	int cpu, err = 0;
1622 
1623 	/*
1624 	 * Always succeed at resizing a non-existent buffer:
1625 	 */
1626 	if (!buffer)
1627 		return size;
1628 
1629 	/* Make sure the requested buffer exists */
1630 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632 		return size;
1633 
1634 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1635 	size *= BUF_PAGE_SIZE;
1636 
1637 	/* we need a minimum of two pages */
1638 	if (size < BUF_PAGE_SIZE * 2)
1639 		size = BUF_PAGE_SIZE * 2;
1640 
1641 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1642 
1643 	/*
1644 	 * Don't succeed if resizing is disabled, as a reader might be
1645 	 * manipulating the ring buffer and is expecting a sane state while
1646 	 * this is true.
1647 	 */
1648 	if (atomic_read(&buffer->resize_disabled))
1649 		return -EBUSY;
1650 
1651 	/* prevent another thread from changing buffer sizes */
1652 	mutex_lock(&buffer->mutex);
1653 
1654 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1655 		/* calculate the pages to update */
1656 		for_each_buffer_cpu(buffer, cpu) {
1657 			cpu_buffer = buffer->buffers[cpu];
1658 
1659 			cpu_buffer->nr_pages_to_update = nr_pages -
1660 							cpu_buffer->nr_pages;
1661 			/*
1662 			 * nothing more to do for removing pages or no update
1663 			 */
1664 			if (cpu_buffer->nr_pages_to_update <= 0)
1665 				continue;
1666 			/*
1667 			 * to add pages, make sure all new pages can be
1668 			 * allocated without receiving ENOMEM
1669 			 */
1670 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1671 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1672 						&cpu_buffer->new_pages, cpu)) {
1673 				/* not enough memory for new pages */
1674 				err = -ENOMEM;
1675 				goto out_err;
1676 			}
1677 		}
1678 
1679 		get_online_cpus();
1680 		/*
1681 		 * Fire off all the required work handlers
1682 		 * We can't schedule on offline CPUs, but it's not necessary
1683 		 * since we can change their buffer sizes without any race.
1684 		 */
1685 		for_each_buffer_cpu(buffer, cpu) {
1686 			cpu_buffer = buffer->buffers[cpu];
1687 			if (!cpu_buffer->nr_pages_to_update)
1688 				continue;
1689 
1690 			/* The update must run on the CPU that is being updated. */
1691 			preempt_disable();
1692 			if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1693 				rb_update_pages(cpu_buffer);
1694 				cpu_buffer->nr_pages_to_update = 0;
1695 			} else {
1696 				/*
1697 				 * Can not disable preemption for schedule_work_on()
1698 				 * on PREEMPT_RT.
1699 				 */
1700 				preempt_enable();
1701 				schedule_work_on(cpu,
1702 						&cpu_buffer->update_pages_work);
1703 				preempt_disable();
1704 			}
1705 			preempt_enable();
1706 		}
1707 
1708 		/* wait for all the updates to complete */
1709 		for_each_buffer_cpu(buffer, cpu) {
1710 			cpu_buffer = buffer->buffers[cpu];
1711 			if (!cpu_buffer->nr_pages_to_update)
1712 				continue;
1713 
1714 			if (cpu_online(cpu))
1715 				wait_for_completion(&cpu_buffer->update_done);
1716 			cpu_buffer->nr_pages_to_update = 0;
1717 		}
1718 
1719 		put_online_cpus();
1720 	} else {
1721 		/* Make sure this CPU has been intitialized */
1722 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1723 			goto out;
1724 
1725 		cpu_buffer = buffer->buffers[cpu_id];
1726 
1727 		if (nr_pages == cpu_buffer->nr_pages)
1728 			goto out;
1729 
1730 		cpu_buffer->nr_pages_to_update = nr_pages -
1731 						cpu_buffer->nr_pages;
1732 
1733 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1734 		if (cpu_buffer->nr_pages_to_update > 0 &&
1735 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1736 					    &cpu_buffer->new_pages, cpu_id)) {
1737 			err = -ENOMEM;
1738 			goto out_err;
1739 		}
1740 
1741 		get_online_cpus();
1742 
1743 		preempt_disable();
1744 		/* The update must run on the CPU that is being updated. */
1745 		if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1746 			rb_update_pages(cpu_buffer);
1747 		else {
1748 			/*
1749 			 * Can not disable preemption for schedule_work_on()
1750 			 * on PREEMPT_RT.
1751 			 */
1752 			preempt_enable();
1753 			schedule_work_on(cpu_id,
1754 					 &cpu_buffer->update_pages_work);
1755 			wait_for_completion(&cpu_buffer->update_done);
1756 			preempt_disable();
1757 		}
1758 		preempt_enable();
1759 
1760 		cpu_buffer->nr_pages_to_update = 0;
1761 		put_online_cpus();
1762 	}
1763 
1764  out:
1765 	/*
1766 	 * The ring buffer resize can happen with the ring buffer
1767 	 * enabled, so that the update disturbs the tracing as little
1768 	 * as possible. But if the buffer is disabled, we do not need
1769 	 * to worry about that, and we can take the time to verify
1770 	 * that the buffer is not corrupt.
1771 	 */
1772 	if (atomic_read(&buffer->record_disabled)) {
1773 		atomic_inc(&buffer->record_disabled);
1774 		/*
1775 		 * Even though the buffer was disabled, we must make sure
1776 		 * that it is truly disabled before calling rb_check_pages.
1777 		 * There could have been a race between checking
1778 		 * record_disable and incrementing it.
1779 		 */
1780 		synchronize_sched();
1781 		for_each_buffer_cpu(buffer, cpu) {
1782 			cpu_buffer = buffer->buffers[cpu];
1783 			rb_check_pages(cpu_buffer);
1784 		}
1785 		atomic_dec(&buffer->record_disabled);
1786 	}
1787 
1788 	mutex_unlock(&buffer->mutex);
1789 	return size;
1790 
1791  out_err:
1792 	for_each_buffer_cpu(buffer, cpu) {
1793 		struct buffer_page *bpage, *tmp;
1794 
1795 		cpu_buffer = buffer->buffers[cpu];
1796 		cpu_buffer->nr_pages_to_update = 0;
1797 
1798 		if (list_empty(&cpu_buffer->new_pages))
1799 			continue;
1800 
1801 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1802 					list) {
1803 			list_del_init(&bpage->list);
1804 			free_buffer_page(bpage);
1805 		}
1806 	}
1807 	mutex_unlock(&buffer->mutex);
1808 	return err;
1809 }
1810 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1811 
1812 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1813 {
1814 	mutex_lock(&buffer->mutex);
1815 	if (val)
1816 		buffer->flags |= RB_FL_OVERWRITE;
1817 	else
1818 		buffer->flags &= ~RB_FL_OVERWRITE;
1819 	mutex_unlock(&buffer->mutex);
1820 }
1821 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1822 
1823 static inline void *
1824 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1825 {
1826 	return bpage->data + index;
1827 }
1828 
1829 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1830 {
1831 	return bpage->page->data + index;
1832 }
1833 
1834 static inline struct ring_buffer_event *
1835 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1836 {
1837 	return __rb_page_index(cpu_buffer->reader_page,
1838 			       cpu_buffer->reader_page->read);
1839 }
1840 
1841 static inline struct ring_buffer_event *
1842 rb_iter_head_event(struct ring_buffer_iter *iter)
1843 {
1844 	return __rb_page_index(iter->head_page, iter->head);
1845 }
1846 
1847 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1848 {
1849 	return local_read(&bpage->page->commit);
1850 }
1851 
1852 /* Size is determined by what has been committed */
1853 static inline unsigned rb_page_size(struct buffer_page *bpage)
1854 {
1855 	return rb_page_commit(bpage);
1856 }
1857 
1858 static inline unsigned
1859 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1860 {
1861 	return rb_page_commit(cpu_buffer->commit_page);
1862 }
1863 
1864 static inline unsigned
1865 rb_event_index(struct ring_buffer_event *event)
1866 {
1867 	unsigned long addr = (unsigned long)event;
1868 
1869 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1870 }
1871 
1872 static inline int
1873 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1874 		   struct ring_buffer_event *event)
1875 {
1876 	unsigned long addr = (unsigned long)event;
1877 	unsigned long index;
1878 
1879 	index = rb_event_index(event);
1880 	addr &= PAGE_MASK;
1881 
1882 	return cpu_buffer->commit_page->page == (void *)addr &&
1883 		rb_commit_index(cpu_buffer) == index;
1884 }
1885 
1886 static void
1887 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1888 {
1889 	unsigned long max_count;
1890 
1891 	/*
1892 	 * We only race with interrupts and NMIs on this CPU.
1893 	 * If we own the commit event, then we can commit
1894 	 * all others that interrupted us, since the interruptions
1895 	 * are in stack format (they finish before they come
1896 	 * back to us). This allows us to do a simple loop to
1897 	 * assign the commit to the tail.
1898 	 */
1899  again:
1900 	max_count = cpu_buffer->nr_pages * 100;
1901 
1902 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1903 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1904 			return;
1905 		if (RB_WARN_ON(cpu_buffer,
1906 			       rb_is_reader_page(cpu_buffer->tail_page)))
1907 			return;
1908 		local_set(&cpu_buffer->commit_page->page->commit,
1909 			  rb_page_write(cpu_buffer->commit_page));
1910 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1911 		cpu_buffer->write_stamp =
1912 			cpu_buffer->commit_page->page->time_stamp;
1913 		/* add barrier to keep gcc from optimizing too much */
1914 		barrier();
1915 	}
1916 	while (rb_commit_index(cpu_buffer) !=
1917 	       rb_page_write(cpu_buffer->commit_page)) {
1918 
1919 		local_set(&cpu_buffer->commit_page->page->commit,
1920 			  rb_page_write(cpu_buffer->commit_page));
1921 		RB_WARN_ON(cpu_buffer,
1922 			   local_read(&cpu_buffer->commit_page->page->commit) &
1923 			   ~RB_WRITE_MASK);
1924 		barrier();
1925 	}
1926 
1927 	/* again, keep gcc from optimizing */
1928 	barrier();
1929 
1930 	/*
1931 	 * If an interrupt came in just after the first while loop
1932 	 * and pushed the tail page forward, we will be left with
1933 	 * a dangling commit that will never go forward.
1934 	 */
1935 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1936 		goto again;
1937 }
1938 
1939 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1940 {
1941 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1942 	cpu_buffer->reader_page->read = 0;
1943 }
1944 
1945 static void rb_inc_iter(struct ring_buffer_iter *iter)
1946 {
1947 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1948 
1949 	/*
1950 	 * The iterator could be on the reader page (it starts there).
1951 	 * But the head could have moved, since the reader was
1952 	 * found. Check for this case and assign the iterator
1953 	 * to the head page instead of next.
1954 	 */
1955 	if (iter->head_page == cpu_buffer->reader_page)
1956 		iter->head_page = rb_set_head_page(cpu_buffer);
1957 	else
1958 		rb_inc_page(cpu_buffer, &iter->head_page);
1959 
1960 	iter->read_stamp = iter->head_page->page->time_stamp;
1961 	iter->head = 0;
1962 }
1963 
1964 /* Slow path, do not inline */
1965 static noinline struct ring_buffer_event *
1966 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1967 {
1968 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1969 
1970 	/* Not the first event on the page? */
1971 	if (rb_event_index(event)) {
1972 		event->time_delta = delta & TS_MASK;
1973 		event->array[0] = delta >> TS_SHIFT;
1974 	} else {
1975 		/* nope, just zero it */
1976 		event->time_delta = 0;
1977 		event->array[0] = 0;
1978 	}
1979 
1980 	return skip_time_extend(event);
1981 }
1982 
1983 /**
1984  * rb_update_event - update event type and data
1985  * @event: the even to update
1986  * @type: the type of event
1987  * @length: the size of the event field in the ring buffer
1988  *
1989  * Update the type and data fields of the event. The length
1990  * is the actual size that is written to the ring buffer,
1991  * and with this, we can determine what to place into the
1992  * data field.
1993  */
1994 static void
1995 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1996 		struct ring_buffer_event *event, unsigned length,
1997 		int add_timestamp, u64 delta)
1998 {
1999 	/* Only a commit updates the timestamp */
2000 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2001 		delta = 0;
2002 
2003 	/*
2004 	 * If we need to add a timestamp, then we
2005 	 * add it to the start of the resevered space.
2006 	 */
2007 	if (unlikely(add_timestamp)) {
2008 		event = rb_add_time_stamp(event, delta);
2009 		length -= RB_LEN_TIME_EXTEND;
2010 		delta = 0;
2011 	}
2012 
2013 	event->time_delta = delta;
2014 	length -= RB_EVNT_HDR_SIZE;
2015 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2016 		event->type_len = 0;
2017 		event->array[0] = length;
2018 	} else
2019 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2020 }
2021 
2022 /*
2023  * rb_handle_head_page - writer hit the head page
2024  *
2025  * Returns: +1 to retry page
2026  *           0 to continue
2027  *          -1 on error
2028  */
2029 static int
2030 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2031 		    struct buffer_page *tail_page,
2032 		    struct buffer_page *next_page)
2033 {
2034 	struct buffer_page *new_head;
2035 	int entries;
2036 	int type;
2037 	int ret;
2038 
2039 	entries = rb_page_entries(next_page);
2040 
2041 	/*
2042 	 * The hard part is here. We need to move the head
2043 	 * forward, and protect against both readers on
2044 	 * other CPUs and writers coming in via interrupts.
2045 	 */
2046 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2047 				       RB_PAGE_HEAD);
2048 
2049 	/*
2050 	 * type can be one of four:
2051 	 *  NORMAL - an interrupt already moved it for us
2052 	 *  HEAD   - we are the first to get here.
2053 	 *  UPDATE - we are the interrupt interrupting
2054 	 *           a current move.
2055 	 *  MOVED  - a reader on another CPU moved the next
2056 	 *           pointer to its reader page. Give up
2057 	 *           and try again.
2058 	 */
2059 
2060 	switch (type) {
2061 	case RB_PAGE_HEAD:
2062 		/*
2063 		 * We changed the head to UPDATE, thus
2064 		 * it is our responsibility to update
2065 		 * the counters.
2066 		 */
2067 		local_add(entries, &cpu_buffer->overrun);
2068 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2069 
2070 		/*
2071 		 * The entries will be zeroed out when we move the
2072 		 * tail page.
2073 		 */
2074 
2075 		/* still more to do */
2076 		break;
2077 
2078 	case RB_PAGE_UPDATE:
2079 		/*
2080 		 * This is an interrupt that interrupt the
2081 		 * previous update. Still more to do.
2082 		 */
2083 		break;
2084 	case RB_PAGE_NORMAL:
2085 		/*
2086 		 * An interrupt came in before the update
2087 		 * and processed this for us.
2088 		 * Nothing left to do.
2089 		 */
2090 		return 1;
2091 	case RB_PAGE_MOVED:
2092 		/*
2093 		 * The reader is on another CPU and just did
2094 		 * a swap with our next_page.
2095 		 * Try again.
2096 		 */
2097 		return 1;
2098 	default:
2099 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2100 		return -1;
2101 	}
2102 
2103 	/*
2104 	 * Now that we are here, the old head pointer is
2105 	 * set to UPDATE. This will keep the reader from
2106 	 * swapping the head page with the reader page.
2107 	 * The reader (on another CPU) will spin till
2108 	 * we are finished.
2109 	 *
2110 	 * We just need to protect against interrupts
2111 	 * doing the job. We will set the next pointer
2112 	 * to HEAD. After that, we set the old pointer
2113 	 * to NORMAL, but only if it was HEAD before.
2114 	 * otherwise we are an interrupt, and only
2115 	 * want the outer most commit to reset it.
2116 	 */
2117 	new_head = next_page;
2118 	rb_inc_page(cpu_buffer, &new_head);
2119 
2120 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2121 				    RB_PAGE_NORMAL);
2122 
2123 	/*
2124 	 * Valid returns are:
2125 	 *  HEAD   - an interrupt came in and already set it.
2126 	 *  NORMAL - One of two things:
2127 	 *            1) We really set it.
2128 	 *            2) A bunch of interrupts came in and moved
2129 	 *               the page forward again.
2130 	 */
2131 	switch (ret) {
2132 	case RB_PAGE_HEAD:
2133 	case RB_PAGE_NORMAL:
2134 		/* OK */
2135 		break;
2136 	default:
2137 		RB_WARN_ON(cpu_buffer, 1);
2138 		return -1;
2139 	}
2140 
2141 	/*
2142 	 * It is possible that an interrupt came in,
2143 	 * set the head up, then more interrupts came in
2144 	 * and moved it again. When we get back here,
2145 	 * the page would have been set to NORMAL but we
2146 	 * just set it back to HEAD.
2147 	 *
2148 	 * How do you detect this? Well, if that happened
2149 	 * the tail page would have moved.
2150 	 */
2151 	if (ret == RB_PAGE_NORMAL) {
2152 		/*
2153 		 * If the tail had moved passed next, then we need
2154 		 * to reset the pointer.
2155 		 */
2156 		if (cpu_buffer->tail_page != tail_page &&
2157 		    cpu_buffer->tail_page != next_page)
2158 			rb_head_page_set_normal(cpu_buffer, new_head,
2159 						next_page,
2160 						RB_PAGE_HEAD);
2161 	}
2162 
2163 	/*
2164 	 * If this was the outer most commit (the one that
2165 	 * changed the original pointer from HEAD to UPDATE),
2166 	 * then it is up to us to reset it to NORMAL.
2167 	 */
2168 	if (type == RB_PAGE_HEAD) {
2169 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2170 					      tail_page,
2171 					      RB_PAGE_UPDATE);
2172 		if (RB_WARN_ON(cpu_buffer,
2173 			       ret != RB_PAGE_UPDATE))
2174 			return -1;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static unsigned rb_calculate_event_length(unsigned length)
2181 {
2182 	struct ring_buffer_event event; /* Used only for sizeof array */
2183 
2184 	/* zero length can cause confusions */
2185 	if (!length)
2186 		length = 1;
2187 
2188 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2189 		length += sizeof(event.array[0]);
2190 
2191 	length += RB_EVNT_HDR_SIZE;
2192 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2193 
2194 	return length;
2195 }
2196 
2197 static inline void
2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199 	      struct buffer_page *tail_page,
2200 	      unsigned long tail, unsigned long length)
2201 {
2202 	struct ring_buffer_event *event;
2203 
2204 	/*
2205 	 * Only the event that crossed the page boundary
2206 	 * must fill the old tail_page with padding.
2207 	 */
2208 	if (tail >= BUF_PAGE_SIZE) {
2209 		/*
2210 		 * If the page was filled, then we still need
2211 		 * to update the real_end. Reset it to zero
2212 		 * and the reader will ignore it.
2213 		 */
2214 		if (tail == BUF_PAGE_SIZE)
2215 			tail_page->real_end = 0;
2216 
2217 		local_sub(length, &tail_page->write);
2218 		return;
2219 	}
2220 
2221 	event = __rb_page_index(tail_page, tail);
2222 	kmemcheck_annotate_bitfield(event, bitfield);
2223 
2224 	/* account for padding bytes */
2225 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226 
2227 	/*
2228 	 * Save the original length to the meta data.
2229 	 * This will be used by the reader to add lost event
2230 	 * counter.
2231 	 */
2232 	tail_page->real_end = tail;
2233 
2234 	/*
2235 	 * If this event is bigger than the minimum size, then
2236 	 * we need to be careful that we don't subtract the
2237 	 * write counter enough to allow another writer to slip
2238 	 * in on this page.
2239 	 * We put in a discarded commit instead, to make sure
2240 	 * that this space is not used again.
2241 	 *
2242 	 * If we are less than the minimum size, we don't need to
2243 	 * worry about it.
2244 	 */
2245 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246 		/* No room for any events */
2247 
2248 		/* Mark the rest of the page with padding */
2249 		rb_event_set_padding(event);
2250 
2251 		/* Set the write back to the previous setting */
2252 		local_sub(length, &tail_page->write);
2253 		return;
2254 	}
2255 
2256 	/* Put in a discarded event */
2257 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258 	event->type_len = RINGBUF_TYPE_PADDING;
2259 	/* time delta must be non zero */
2260 	event->time_delta = 1;
2261 
2262 	/* Set write to end of buffer */
2263 	length = (tail + length) - BUF_PAGE_SIZE;
2264 	local_sub(length, &tail_page->write);
2265 }
2266 
2267 /*
2268  * This is the slow path, force gcc not to inline it.
2269  */
2270 static noinline struct ring_buffer_event *
2271 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2272 	     unsigned long length, unsigned long tail,
2273 	     struct buffer_page *tail_page, u64 ts)
2274 {
2275 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2276 	struct ring_buffer *buffer = cpu_buffer->buffer;
2277 	struct buffer_page *next_page;
2278 	int ret;
2279 
2280 	next_page = tail_page;
2281 
2282 	rb_inc_page(cpu_buffer, &next_page);
2283 
2284 	/*
2285 	 * If for some reason, we had an interrupt storm that made
2286 	 * it all the way around the buffer, bail, and warn
2287 	 * about it.
2288 	 */
2289 	if (unlikely(next_page == commit_page)) {
2290 		local_inc(&cpu_buffer->commit_overrun);
2291 		goto out_reset;
2292 	}
2293 
2294 	/*
2295 	 * This is where the fun begins!
2296 	 *
2297 	 * We are fighting against races between a reader that
2298 	 * could be on another CPU trying to swap its reader
2299 	 * page with the buffer head.
2300 	 *
2301 	 * We are also fighting against interrupts coming in and
2302 	 * moving the head or tail on us as well.
2303 	 *
2304 	 * If the next page is the head page then we have filled
2305 	 * the buffer, unless the commit page is still on the
2306 	 * reader page.
2307 	 */
2308 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2309 
2310 		/*
2311 		 * If the commit is not on the reader page, then
2312 		 * move the header page.
2313 		 */
2314 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2315 			/*
2316 			 * If we are not in overwrite mode,
2317 			 * this is easy, just stop here.
2318 			 */
2319 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2320 				local_inc(&cpu_buffer->dropped_events);
2321 				goto out_reset;
2322 			}
2323 
2324 			ret = rb_handle_head_page(cpu_buffer,
2325 						  tail_page,
2326 						  next_page);
2327 			if (ret < 0)
2328 				goto out_reset;
2329 			if (ret)
2330 				goto out_again;
2331 		} else {
2332 			/*
2333 			 * We need to be careful here too. The
2334 			 * commit page could still be on the reader
2335 			 * page. We could have a small buffer, and
2336 			 * have filled up the buffer with events
2337 			 * from interrupts and such, and wrapped.
2338 			 *
2339 			 * Note, if the tail page is also the on the
2340 			 * reader_page, we let it move out.
2341 			 */
2342 			if (unlikely((cpu_buffer->commit_page !=
2343 				      cpu_buffer->tail_page) &&
2344 				     (cpu_buffer->commit_page ==
2345 				      cpu_buffer->reader_page))) {
2346 				local_inc(&cpu_buffer->commit_overrun);
2347 				goto out_reset;
2348 			}
2349 		}
2350 	}
2351 
2352 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2353 	if (ret) {
2354 		/*
2355 		 * Nested commits always have zero deltas, so
2356 		 * just reread the time stamp
2357 		 */
2358 		ts = rb_time_stamp(buffer);
2359 		next_page->page->time_stamp = ts;
2360 	}
2361 
2362  out_again:
2363 
2364 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2365 
2366 	/* fail and let the caller try again */
2367 	return ERR_PTR(-EAGAIN);
2368 
2369  out_reset:
2370 	/* reset write */
2371 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2372 
2373 	return NULL;
2374 }
2375 
2376 static struct ring_buffer_event *
2377 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2378 		  unsigned long length, u64 ts,
2379 		  u64 delta, int add_timestamp)
2380 {
2381 	struct buffer_page *tail_page;
2382 	struct ring_buffer_event *event;
2383 	unsigned long tail, write;
2384 
2385 	/*
2386 	 * If the time delta since the last event is too big to
2387 	 * hold in the time field of the event, then we append a
2388 	 * TIME EXTEND event ahead of the data event.
2389 	 */
2390 	if (unlikely(add_timestamp))
2391 		length += RB_LEN_TIME_EXTEND;
2392 
2393 	tail_page = cpu_buffer->tail_page;
2394 	write = local_add_return(length, &tail_page->write);
2395 
2396 	/* set write to only the index of the write */
2397 	write &= RB_WRITE_MASK;
2398 	tail = write - length;
2399 
2400 	/* See if we shot pass the end of this buffer page */
2401 	if (unlikely(write > BUF_PAGE_SIZE))
2402 		return rb_move_tail(cpu_buffer, length, tail,
2403 				    tail_page, ts);
2404 
2405 	/* We reserved something on the buffer */
2406 
2407 	event = __rb_page_index(tail_page, tail);
2408 	kmemcheck_annotate_bitfield(event, bitfield);
2409 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2410 
2411 	local_inc(&tail_page->entries);
2412 
2413 	/*
2414 	 * If this is the first commit on the page, then update
2415 	 * its timestamp.
2416 	 */
2417 	if (!tail)
2418 		tail_page->page->time_stamp = ts;
2419 
2420 	/* account for these added bytes */
2421 	local_add(length, &cpu_buffer->entries_bytes);
2422 
2423 	return event;
2424 }
2425 
2426 static inline int
2427 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2428 		  struct ring_buffer_event *event)
2429 {
2430 	unsigned long new_index, old_index;
2431 	struct buffer_page *bpage;
2432 	unsigned long index;
2433 	unsigned long addr;
2434 
2435 	new_index = rb_event_index(event);
2436 	old_index = new_index + rb_event_ts_length(event);
2437 	addr = (unsigned long)event;
2438 	addr &= PAGE_MASK;
2439 
2440 	bpage = cpu_buffer->tail_page;
2441 
2442 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2443 		unsigned long write_mask =
2444 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2445 		unsigned long event_length = rb_event_length(event);
2446 		/*
2447 		 * This is on the tail page. It is possible that
2448 		 * a write could come in and move the tail page
2449 		 * and write to the next page. That is fine
2450 		 * because we just shorten what is on this page.
2451 		 */
2452 		old_index += write_mask;
2453 		new_index += write_mask;
2454 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2455 		if (index == old_index) {
2456 			/* update counters */
2457 			local_sub(event_length, &cpu_buffer->entries_bytes);
2458 			return 1;
2459 		}
2460 	}
2461 
2462 	/* could not discard */
2463 	return 0;
2464 }
2465 
2466 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2467 {
2468 	local_inc(&cpu_buffer->committing);
2469 	local_inc(&cpu_buffer->commits);
2470 }
2471 
2472 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2473 {
2474 	unsigned long commits;
2475 
2476 	if (RB_WARN_ON(cpu_buffer,
2477 		       !local_read(&cpu_buffer->committing)))
2478 		return;
2479 
2480  again:
2481 	commits = local_read(&cpu_buffer->commits);
2482 	/* synchronize with interrupts */
2483 	barrier();
2484 	if (local_read(&cpu_buffer->committing) == 1)
2485 		rb_set_commit_to_write(cpu_buffer);
2486 
2487 	local_dec(&cpu_buffer->committing);
2488 
2489 	/* synchronize with interrupts */
2490 	barrier();
2491 
2492 	/*
2493 	 * Need to account for interrupts coming in between the
2494 	 * updating of the commit page and the clearing of the
2495 	 * committing counter.
2496 	 */
2497 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2498 	    !local_read(&cpu_buffer->committing)) {
2499 		local_inc(&cpu_buffer->committing);
2500 		goto again;
2501 	}
2502 }
2503 
2504 static struct ring_buffer_event *
2505 rb_reserve_next_event(struct ring_buffer *buffer,
2506 		      struct ring_buffer_per_cpu *cpu_buffer,
2507 		      unsigned long length)
2508 {
2509 	struct ring_buffer_event *event;
2510 	u64 ts, delta;
2511 	int nr_loops = 0;
2512 	int add_timestamp;
2513 	u64 diff;
2514 
2515 	rb_start_commit(cpu_buffer);
2516 
2517 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2518 	/*
2519 	 * Due to the ability to swap a cpu buffer from a buffer
2520 	 * it is possible it was swapped before we committed.
2521 	 * (committing stops a swap). We check for it here and
2522 	 * if it happened, we have to fail the write.
2523 	 */
2524 	barrier();
2525 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2526 		local_dec(&cpu_buffer->committing);
2527 		local_dec(&cpu_buffer->commits);
2528 		return NULL;
2529 	}
2530 #endif
2531 
2532 	length = rb_calculate_event_length(length);
2533  again:
2534 	add_timestamp = 0;
2535 	delta = 0;
2536 
2537 	/*
2538 	 * We allow for interrupts to reenter here and do a trace.
2539 	 * If one does, it will cause this original code to loop
2540 	 * back here. Even with heavy interrupts happening, this
2541 	 * should only happen a few times in a row. If this happens
2542 	 * 1000 times in a row, there must be either an interrupt
2543 	 * storm or we have something buggy.
2544 	 * Bail!
2545 	 */
2546 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2547 		goto out_fail;
2548 
2549 	ts = rb_time_stamp(cpu_buffer->buffer);
2550 	diff = ts - cpu_buffer->write_stamp;
2551 
2552 	/* make sure this diff is calculated here */
2553 	barrier();
2554 
2555 	/* Did the write stamp get updated already? */
2556 	if (likely(ts >= cpu_buffer->write_stamp)) {
2557 		delta = diff;
2558 		if (unlikely(test_time_stamp(delta))) {
2559 			int local_clock_stable = 1;
2560 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2561 			local_clock_stable = sched_clock_stable();
2562 #endif
2563 			WARN_ONCE(delta > (1ULL << 59),
2564 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2565 				  (unsigned long long)delta,
2566 				  (unsigned long long)ts,
2567 				  (unsigned long long)cpu_buffer->write_stamp,
2568 				  local_clock_stable ? "" :
2569 				  "If you just came from a suspend/resume,\n"
2570 				  "please switch to the trace global clock:\n"
2571 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2572 			add_timestamp = 1;
2573 		}
2574 	}
2575 
2576 	event = __rb_reserve_next(cpu_buffer, length, ts,
2577 				  delta, add_timestamp);
2578 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2579 		goto again;
2580 
2581 	if (!event)
2582 		goto out_fail;
2583 
2584 	return event;
2585 
2586  out_fail:
2587 	rb_end_commit(cpu_buffer);
2588 	return NULL;
2589 }
2590 
2591 #ifdef CONFIG_TRACING
2592 
2593 /*
2594  * The lock and unlock are done within a preempt disable section.
2595  * The current_context per_cpu variable can only be modified
2596  * by the current task between lock and unlock. But it can
2597  * be modified more than once via an interrupt. To pass this
2598  * information from the lock to the unlock without having to
2599  * access the 'in_interrupt()' functions again (which do show
2600  * a bit of overhead in something as critical as function tracing,
2601  * we use a bitmask trick.
2602  *
2603  *  bit 0 =  NMI context
2604  *  bit 1 =  IRQ context
2605  *  bit 2 =  SoftIRQ context
2606  *  bit 3 =  normal context.
2607  *
2608  * This works because this is the order of contexts that can
2609  * preempt other contexts. A SoftIRQ never preempts an IRQ
2610  * context.
2611  *
2612  * When the context is determined, the corresponding bit is
2613  * checked and set (if it was set, then a recursion of that context
2614  * happened).
2615  *
2616  * On unlock, we need to clear this bit. To do so, just subtract
2617  * 1 from the current_context and AND it to itself.
2618  *
2619  * (binary)
2620  *  101 - 1 = 100
2621  *  101 & 100 = 100 (clearing bit zero)
2622  *
2623  *  1010 - 1 = 1001
2624  *  1010 & 1001 = 1000 (clearing bit 1)
2625  *
2626  * The least significant bit can be cleared this way, and it
2627  * just so happens that it is the same bit corresponding to
2628  * the current context.
2629  */
2630 static DEFINE_PER_CPU(unsigned int, current_context);
2631 
2632 static __always_inline int trace_recursive_lock(void)
2633 {
2634 	unsigned int val = this_cpu_read(current_context);
2635 	int bit;
2636 
2637 	if (in_interrupt()) {
2638 		if (in_nmi())
2639 			bit = 0;
2640 		else if (in_irq())
2641 			bit = 1;
2642 		else
2643 			bit = 2;
2644 	} else
2645 		bit = 3;
2646 
2647 	if (unlikely(val & (1 << bit)))
2648 		return 1;
2649 
2650 	val |= (1 << bit);
2651 	this_cpu_write(current_context, val);
2652 
2653 	return 0;
2654 }
2655 
2656 static __always_inline void trace_recursive_unlock(void)
2657 {
2658 	unsigned int val = this_cpu_read(current_context);
2659 
2660 	val--;
2661 	val &= this_cpu_read(current_context);
2662 	this_cpu_write(current_context, val);
2663 }
2664 
2665 #else
2666 
2667 #define trace_recursive_lock()		(0)
2668 #define trace_recursive_unlock()	do { } while (0)
2669 
2670 #endif
2671 
2672 /**
2673  * ring_buffer_lock_reserve - reserve a part of the buffer
2674  * @buffer: the ring buffer to reserve from
2675  * @length: the length of the data to reserve (excluding event header)
2676  *
2677  * Returns a reseverd event on the ring buffer to copy directly to.
2678  * The user of this interface will need to get the body to write into
2679  * and can use the ring_buffer_event_data() interface.
2680  *
2681  * The length is the length of the data needed, not the event length
2682  * which also includes the event header.
2683  *
2684  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2685  * If NULL is returned, then nothing has been allocated or locked.
2686  */
2687 struct ring_buffer_event *
2688 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2689 {
2690 	struct ring_buffer_per_cpu *cpu_buffer;
2691 	struct ring_buffer_event *event;
2692 	int cpu;
2693 
2694 	if (ring_buffer_flags != RB_BUFFERS_ON)
2695 		return NULL;
2696 
2697 	/* If we are tracing schedule, we don't want to recurse */
2698 	preempt_disable_notrace();
2699 
2700 	if (atomic_read(&buffer->record_disabled))
2701 		goto out_nocheck;
2702 
2703 	if (trace_recursive_lock())
2704 		goto out_nocheck;
2705 
2706 	cpu = raw_smp_processor_id();
2707 
2708 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2709 		goto out;
2710 
2711 	cpu_buffer = buffer->buffers[cpu];
2712 
2713 	if (atomic_read(&cpu_buffer->record_disabled))
2714 		goto out;
2715 
2716 	if (length > BUF_MAX_DATA_SIZE)
2717 		goto out;
2718 
2719 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2720 	if (!event)
2721 		goto out;
2722 
2723 	return event;
2724 
2725  out:
2726 	trace_recursive_unlock();
2727 
2728  out_nocheck:
2729 	preempt_enable_notrace();
2730 	return NULL;
2731 }
2732 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2733 
2734 static void
2735 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2736 		      struct ring_buffer_event *event)
2737 {
2738 	u64 delta;
2739 
2740 	/*
2741 	 * The event first in the commit queue updates the
2742 	 * time stamp.
2743 	 */
2744 	if (rb_event_is_commit(cpu_buffer, event)) {
2745 		/*
2746 		 * A commit event that is first on a page
2747 		 * updates the write timestamp with the page stamp
2748 		 */
2749 		if (!rb_event_index(event))
2750 			cpu_buffer->write_stamp =
2751 				cpu_buffer->commit_page->page->time_stamp;
2752 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2753 			delta = event->array[0];
2754 			delta <<= TS_SHIFT;
2755 			delta += event->time_delta;
2756 			cpu_buffer->write_stamp += delta;
2757 		} else
2758 			cpu_buffer->write_stamp += event->time_delta;
2759 	}
2760 }
2761 
2762 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2763 		      struct ring_buffer_event *event)
2764 {
2765 	local_inc(&cpu_buffer->entries);
2766 	rb_update_write_stamp(cpu_buffer, event);
2767 	rb_end_commit(cpu_buffer);
2768 }
2769 
2770 static __always_inline void
2771 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2772 {
2773 	if (buffer->irq_work.waiters_pending) {
2774 		buffer->irq_work.waiters_pending = false;
2775 		/* irq_work_queue() supplies it's own memory barriers */
2776 		irq_work_queue(&buffer->irq_work.work);
2777 	}
2778 
2779 	if (cpu_buffer->irq_work.waiters_pending) {
2780 		cpu_buffer->irq_work.waiters_pending = false;
2781 		/* irq_work_queue() supplies it's own memory barriers */
2782 		irq_work_queue(&cpu_buffer->irq_work.work);
2783 	}
2784 }
2785 
2786 /**
2787  * ring_buffer_unlock_commit - commit a reserved
2788  * @buffer: The buffer to commit to
2789  * @event: The event pointer to commit.
2790  *
2791  * This commits the data to the ring buffer, and releases any locks held.
2792  *
2793  * Must be paired with ring_buffer_lock_reserve.
2794  */
2795 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2796 			      struct ring_buffer_event *event)
2797 {
2798 	struct ring_buffer_per_cpu *cpu_buffer;
2799 	int cpu = raw_smp_processor_id();
2800 
2801 	cpu_buffer = buffer->buffers[cpu];
2802 
2803 	rb_commit(cpu_buffer, event);
2804 
2805 	rb_wakeups(buffer, cpu_buffer);
2806 
2807 	trace_recursive_unlock();
2808 
2809 	preempt_enable_notrace();
2810 
2811 	return 0;
2812 }
2813 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2814 
2815 static inline void rb_event_discard(struct ring_buffer_event *event)
2816 {
2817 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2818 		event = skip_time_extend(event);
2819 
2820 	/* array[0] holds the actual length for the discarded event */
2821 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2822 	event->type_len = RINGBUF_TYPE_PADDING;
2823 	/* time delta must be non zero */
2824 	if (!event->time_delta)
2825 		event->time_delta = 1;
2826 }
2827 
2828 /*
2829  * Decrement the entries to the page that an event is on.
2830  * The event does not even need to exist, only the pointer
2831  * to the page it is on. This may only be called before the commit
2832  * takes place.
2833  */
2834 static inline void
2835 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2836 		   struct ring_buffer_event *event)
2837 {
2838 	unsigned long addr = (unsigned long)event;
2839 	struct buffer_page *bpage = cpu_buffer->commit_page;
2840 	struct buffer_page *start;
2841 
2842 	addr &= PAGE_MASK;
2843 
2844 	/* Do the likely case first */
2845 	if (likely(bpage->page == (void *)addr)) {
2846 		local_dec(&bpage->entries);
2847 		return;
2848 	}
2849 
2850 	/*
2851 	 * Because the commit page may be on the reader page we
2852 	 * start with the next page and check the end loop there.
2853 	 */
2854 	rb_inc_page(cpu_buffer, &bpage);
2855 	start = bpage;
2856 	do {
2857 		if (bpage->page == (void *)addr) {
2858 			local_dec(&bpage->entries);
2859 			return;
2860 		}
2861 		rb_inc_page(cpu_buffer, &bpage);
2862 	} while (bpage != start);
2863 
2864 	/* commit not part of this buffer?? */
2865 	RB_WARN_ON(cpu_buffer, 1);
2866 }
2867 
2868 /**
2869  * ring_buffer_commit_discard - discard an event that has not been committed
2870  * @buffer: the ring buffer
2871  * @event: non committed event to discard
2872  *
2873  * Sometimes an event that is in the ring buffer needs to be ignored.
2874  * This function lets the user discard an event in the ring buffer
2875  * and then that event will not be read later.
2876  *
2877  * This function only works if it is called before the the item has been
2878  * committed. It will try to free the event from the ring buffer
2879  * if another event has not been added behind it.
2880  *
2881  * If another event has been added behind it, it will set the event
2882  * up as discarded, and perform the commit.
2883  *
2884  * If this function is called, do not call ring_buffer_unlock_commit on
2885  * the event.
2886  */
2887 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2888 				struct ring_buffer_event *event)
2889 {
2890 	struct ring_buffer_per_cpu *cpu_buffer;
2891 	int cpu;
2892 
2893 	/* The event is discarded regardless */
2894 	rb_event_discard(event);
2895 
2896 	cpu = smp_processor_id();
2897 	cpu_buffer = buffer->buffers[cpu];
2898 
2899 	/*
2900 	 * This must only be called if the event has not been
2901 	 * committed yet. Thus we can assume that preemption
2902 	 * is still disabled.
2903 	 */
2904 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2905 
2906 	rb_decrement_entry(cpu_buffer, event);
2907 	if (rb_try_to_discard(cpu_buffer, event))
2908 		goto out;
2909 
2910 	/*
2911 	 * The commit is still visible by the reader, so we
2912 	 * must still update the timestamp.
2913 	 */
2914 	rb_update_write_stamp(cpu_buffer, event);
2915  out:
2916 	rb_end_commit(cpu_buffer);
2917 
2918 	trace_recursive_unlock();
2919 
2920 	preempt_enable_notrace();
2921 
2922 }
2923 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2924 
2925 /**
2926  * ring_buffer_write - write data to the buffer without reserving
2927  * @buffer: The ring buffer to write to.
2928  * @length: The length of the data being written (excluding the event header)
2929  * @data: The data to write to the buffer.
2930  *
2931  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2932  * one function. If you already have the data to write to the buffer, it
2933  * may be easier to simply call this function.
2934  *
2935  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2936  * and not the length of the event which would hold the header.
2937  */
2938 int ring_buffer_write(struct ring_buffer *buffer,
2939 		      unsigned long length,
2940 		      void *data)
2941 {
2942 	struct ring_buffer_per_cpu *cpu_buffer;
2943 	struct ring_buffer_event *event;
2944 	void *body;
2945 	int ret = -EBUSY;
2946 	int cpu;
2947 
2948 	if (ring_buffer_flags != RB_BUFFERS_ON)
2949 		return -EBUSY;
2950 
2951 	preempt_disable_notrace();
2952 
2953 	if (atomic_read(&buffer->record_disabled))
2954 		goto out;
2955 
2956 	cpu = raw_smp_processor_id();
2957 
2958 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2959 		goto out;
2960 
2961 	cpu_buffer = buffer->buffers[cpu];
2962 
2963 	if (atomic_read(&cpu_buffer->record_disabled))
2964 		goto out;
2965 
2966 	if (length > BUF_MAX_DATA_SIZE)
2967 		goto out;
2968 
2969 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2970 	if (!event)
2971 		goto out;
2972 
2973 	body = rb_event_data(event);
2974 
2975 	memcpy(body, data, length);
2976 
2977 	rb_commit(cpu_buffer, event);
2978 
2979 	rb_wakeups(buffer, cpu_buffer);
2980 
2981 	ret = 0;
2982  out:
2983 	preempt_enable_notrace();
2984 
2985 	return ret;
2986 }
2987 EXPORT_SYMBOL_GPL(ring_buffer_write);
2988 
2989 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2990 {
2991 	struct buffer_page *reader = cpu_buffer->reader_page;
2992 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2993 	struct buffer_page *commit = cpu_buffer->commit_page;
2994 
2995 	/* In case of error, head will be NULL */
2996 	if (unlikely(!head))
2997 		return 1;
2998 
2999 	return reader->read == rb_page_commit(reader) &&
3000 		(commit == reader ||
3001 		 (commit == head &&
3002 		  head->read == rb_page_commit(commit)));
3003 }
3004 
3005 /**
3006  * ring_buffer_record_disable - stop all writes into the buffer
3007  * @buffer: The ring buffer to stop writes to.
3008  *
3009  * This prevents all writes to the buffer. Any attempt to write
3010  * to the buffer after this will fail and return NULL.
3011  *
3012  * The caller should call synchronize_sched() after this.
3013  */
3014 void ring_buffer_record_disable(struct ring_buffer *buffer)
3015 {
3016 	atomic_inc(&buffer->record_disabled);
3017 }
3018 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3019 
3020 /**
3021  * ring_buffer_record_enable - enable writes to the buffer
3022  * @buffer: The ring buffer to enable writes
3023  *
3024  * Note, multiple disables will need the same number of enables
3025  * to truly enable the writing (much like preempt_disable).
3026  */
3027 void ring_buffer_record_enable(struct ring_buffer *buffer)
3028 {
3029 	atomic_dec(&buffer->record_disabled);
3030 }
3031 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3032 
3033 /**
3034  * ring_buffer_record_off - stop all writes into the buffer
3035  * @buffer: The ring buffer to stop writes to.
3036  *
3037  * This prevents all writes to the buffer. Any attempt to write
3038  * to the buffer after this will fail and return NULL.
3039  *
3040  * This is different than ring_buffer_record_disable() as
3041  * it works like an on/off switch, where as the disable() version
3042  * must be paired with a enable().
3043  */
3044 void ring_buffer_record_off(struct ring_buffer *buffer)
3045 {
3046 	unsigned int rd;
3047 	unsigned int new_rd;
3048 
3049 	do {
3050 		rd = atomic_read(&buffer->record_disabled);
3051 		new_rd = rd | RB_BUFFER_OFF;
3052 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3053 }
3054 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3055 
3056 /**
3057  * ring_buffer_record_on - restart writes into the buffer
3058  * @buffer: The ring buffer to start writes to.
3059  *
3060  * This enables all writes to the buffer that was disabled by
3061  * ring_buffer_record_off().
3062  *
3063  * This is different than ring_buffer_record_enable() as
3064  * it works like an on/off switch, where as the enable() version
3065  * must be paired with a disable().
3066  */
3067 void ring_buffer_record_on(struct ring_buffer *buffer)
3068 {
3069 	unsigned int rd;
3070 	unsigned int new_rd;
3071 
3072 	do {
3073 		rd = atomic_read(&buffer->record_disabled);
3074 		new_rd = rd & ~RB_BUFFER_OFF;
3075 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3076 }
3077 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3078 
3079 /**
3080  * ring_buffer_record_is_on - return true if the ring buffer can write
3081  * @buffer: The ring buffer to see if write is enabled
3082  *
3083  * Returns true if the ring buffer is in a state that it accepts writes.
3084  */
3085 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3086 {
3087 	return !atomic_read(&buffer->record_disabled);
3088 }
3089 
3090 /**
3091  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3092  * @buffer: The ring buffer to stop writes to.
3093  * @cpu: The CPU buffer to stop
3094  *
3095  * This prevents all writes to the buffer. Any attempt to write
3096  * to the buffer after this will fail and return NULL.
3097  *
3098  * The caller should call synchronize_sched() after this.
3099  */
3100 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3101 {
3102 	struct ring_buffer_per_cpu *cpu_buffer;
3103 
3104 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3105 		return;
3106 
3107 	cpu_buffer = buffer->buffers[cpu];
3108 	atomic_inc(&cpu_buffer->record_disabled);
3109 }
3110 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3111 
3112 /**
3113  * ring_buffer_record_enable_cpu - enable writes to the buffer
3114  * @buffer: The ring buffer to enable writes
3115  * @cpu: The CPU to enable.
3116  *
3117  * Note, multiple disables will need the same number of enables
3118  * to truly enable the writing (much like preempt_disable).
3119  */
3120 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3121 {
3122 	struct ring_buffer_per_cpu *cpu_buffer;
3123 
3124 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3125 		return;
3126 
3127 	cpu_buffer = buffer->buffers[cpu];
3128 	atomic_dec(&cpu_buffer->record_disabled);
3129 }
3130 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3131 
3132 /*
3133  * The total entries in the ring buffer is the running counter
3134  * of entries entered into the ring buffer, minus the sum of
3135  * the entries read from the ring buffer and the number of
3136  * entries that were overwritten.
3137  */
3138 static inline unsigned long
3139 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3140 {
3141 	return local_read(&cpu_buffer->entries) -
3142 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3143 }
3144 
3145 /**
3146  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3147  * @buffer: The ring buffer
3148  * @cpu: The per CPU buffer to read from.
3149  */
3150 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3151 {
3152 	unsigned long flags;
3153 	struct ring_buffer_per_cpu *cpu_buffer;
3154 	struct buffer_page *bpage;
3155 	u64 ret = 0;
3156 
3157 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3158 		return 0;
3159 
3160 	cpu_buffer = buffer->buffers[cpu];
3161 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3162 	/*
3163 	 * if the tail is on reader_page, oldest time stamp is on the reader
3164 	 * page
3165 	 */
3166 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3167 		bpage = cpu_buffer->reader_page;
3168 	else
3169 		bpage = rb_set_head_page(cpu_buffer);
3170 	if (bpage)
3171 		ret = bpage->page->time_stamp;
3172 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3173 
3174 	return ret;
3175 }
3176 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3177 
3178 /**
3179  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3180  * @buffer: The ring buffer
3181  * @cpu: The per CPU buffer to read from.
3182  */
3183 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3184 {
3185 	struct ring_buffer_per_cpu *cpu_buffer;
3186 	unsigned long ret;
3187 
3188 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3189 		return 0;
3190 
3191 	cpu_buffer = buffer->buffers[cpu];
3192 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3193 
3194 	return ret;
3195 }
3196 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3197 
3198 /**
3199  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3200  * @buffer: The ring buffer
3201  * @cpu: The per CPU buffer to get the entries from.
3202  */
3203 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3204 {
3205 	struct ring_buffer_per_cpu *cpu_buffer;
3206 
3207 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3208 		return 0;
3209 
3210 	cpu_buffer = buffer->buffers[cpu];
3211 
3212 	return rb_num_of_entries(cpu_buffer);
3213 }
3214 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3215 
3216 /**
3217  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3218  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3219  * @buffer: The ring buffer
3220  * @cpu: The per CPU buffer to get the number of overruns from
3221  */
3222 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3223 {
3224 	struct ring_buffer_per_cpu *cpu_buffer;
3225 	unsigned long ret;
3226 
3227 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228 		return 0;
3229 
3230 	cpu_buffer = buffer->buffers[cpu];
3231 	ret = local_read(&cpu_buffer->overrun);
3232 
3233 	return ret;
3234 }
3235 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3236 
3237 /**
3238  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3239  * commits failing due to the buffer wrapping around while there are uncommitted
3240  * events, such as during an interrupt storm.
3241  * @buffer: The ring buffer
3242  * @cpu: The per CPU buffer to get the number of overruns from
3243  */
3244 unsigned long
3245 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3246 {
3247 	struct ring_buffer_per_cpu *cpu_buffer;
3248 	unsigned long ret;
3249 
3250 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3251 		return 0;
3252 
3253 	cpu_buffer = buffer->buffers[cpu];
3254 	ret = local_read(&cpu_buffer->commit_overrun);
3255 
3256 	return ret;
3257 }
3258 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3259 
3260 /**
3261  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3262  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3263  * @buffer: The ring buffer
3264  * @cpu: The per CPU buffer to get the number of overruns from
3265  */
3266 unsigned long
3267 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3268 {
3269 	struct ring_buffer_per_cpu *cpu_buffer;
3270 	unsigned long ret;
3271 
3272 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273 		return 0;
3274 
3275 	cpu_buffer = buffer->buffers[cpu];
3276 	ret = local_read(&cpu_buffer->dropped_events);
3277 
3278 	return ret;
3279 }
3280 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3281 
3282 /**
3283  * ring_buffer_read_events_cpu - get the number of events successfully read
3284  * @buffer: The ring buffer
3285  * @cpu: The per CPU buffer to get the number of events read
3286  */
3287 unsigned long
3288 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3289 {
3290 	struct ring_buffer_per_cpu *cpu_buffer;
3291 
3292 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3293 		return 0;
3294 
3295 	cpu_buffer = buffer->buffers[cpu];
3296 	return cpu_buffer->read;
3297 }
3298 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3299 
3300 /**
3301  * ring_buffer_entries - get the number of entries in a buffer
3302  * @buffer: The ring buffer
3303  *
3304  * Returns the total number of entries in the ring buffer
3305  * (all CPU entries)
3306  */
3307 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3308 {
3309 	struct ring_buffer_per_cpu *cpu_buffer;
3310 	unsigned long entries = 0;
3311 	int cpu;
3312 
3313 	/* if you care about this being correct, lock the buffer */
3314 	for_each_buffer_cpu(buffer, cpu) {
3315 		cpu_buffer = buffer->buffers[cpu];
3316 		entries += rb_num_of_entries(cpu_buffer);
3317 	}
3318 
3319 	return entries;
3320 }
3321 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3322 
3323 /**
3324  * ring_buffer_overruns - get the number of overruns in buffer
3325  * @buffer: The ring buffer
3326  *
3327  * Returns the total number of overruns in the ring buffer
3328  * (all CPU entries)
3329  */
3330 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3331 {
3332 	struct ring_buffer_per_cpu *cpu_buffer;
3333 	unsigned long overruns = 0;
3334 	int cpu;
3335 
3336 	/* if you care about this being correct, lock the buffer */
3337 	for_each_buffer_cpu(buffer, cpu) {
3338 		cpu_buffer = buffer->buffers[cpu];
3339 		overruns += local_read(&cpu_buffer->overrun);
3340 	}
3341 
3342 	return overruns;
3343 }
3344 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3345 
3346 static void rb_iter_reset(struct ring_buffer_iter *iter)
3347 {
3348 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3349 
3350 	/* Iterator usage is expected to have record disabled */
3351 	if (list_empty(&cpu_buffer->reader_page->list)) {
3352 		iter->head_page = rb_set_head_page(cpu_buffer);
3353 		if (unlikely(!iter->head_page))
3354 			return;
3355 		iter->head = iter->head_page->read;
3356 	} else {
3357 		iter->head_page = cpu_buffer->reader_page;
3358 		iter->head = cpu_buffer->reader_page->read;
3359 	}
3360 	if (iter->head)
3361 		iter->read_stamp = cpu_buffer->read_stamp;
3362 	else
3363 		iter->read_stamp = iter->head_page->page->time_stamp;
3364 	iter->cache_reader_page = cpu_buffer->reader_page;
3365 	iter->cache_read = cpu_buffer->read;
3366 }
3367 
3368 /**
3369  * ring_buffer_iter_reset - reset an iterator
3370  * @iter: The iterator to reset
3371  *
3372  * Resets the iterator, so that it will start from the beginning
3373  * again.
3374  */
3375 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3376 {
3377 	struct ring_buffer_per_cpu *cpu_buffer;
3378 	unsigned long flags;
3379 
3380 	if (!iter)
3381 		return;
3382 
3383 	cpu_buffer = iter->cpu_buffer;
3384 
3385 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3386 	rb_iter_reset(iter);
3387 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3388 }
3389 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3390 
3391 /**
3392  * ring_buffer_iter_empty - check if an iterator has no more to read
3393  * @iter: The iterator to check
3394  */
3395 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3396 {
3397 	struct ring_buffer_per_cpu *cpu_buffer;
3398 
3399 	cpu_buffer = iter->cpu_buffer;
3400 
3401 	return iter->head_page == cpu_buffer->commit_page &&
3402 		iter->head == rb_commit_index(cpu_buffer);
3403 }
3404 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3405 
3406 static void
3407 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3408 		     struct ring_buffer_event *event)
3409 {
3410 	u64 delta;
3411 
3412 	switch (event->type_len) {
3413 	case RINGBUF_TYPE_PADDING:
3414 		return;
3415 
3416 	case RINGBUF_TYPE_TIME_EXTEND:
3417 		delta = event->array[0];
3418 		delta <<= TS_SHIFT;
3419 		delta += event->time_delta;
3420 		cpu_buffer->read_stamp += delta;
3421 		return;
3422 
3423 	case RINGBUF_TYPE_TIME_STAMP:
3424 		/* FIXME: not implemented */
3425 		return;
3426 
3427 	case RINGBUF_TYPE_DATA:
3428 		cpu_buffer->read_stamp += event->time_delta;
3429 		return;
3430 
3431 	default:
3432 		BUG();
3433 	}
3434 	return;
3435 }
3436 
3437 static void
3438 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3439 			  struct ring_buffer_event *event)
3440 {
3441 	u64 delta;
3442 
3443 	switch (event->type_len) {
3444 	case RINGBUF_TYPE_PADDING:
3445 		return;
3446 
3447 	case RINGBUF_TYPE_TIME_EXTEND:
3448 		delta = event->array[0];
3449 		delta <<= TS_SHIFT;
3450 		delta += event->time_delta;
3451 		iter->read_stamp += delta;
3452 		return;
3453 
3454 	case RINGBUF_TYPE_TIME_STAMP:
3455 		/* FIXME: not implemented */
3456 		return;
3457 
3458 	case RINGBUF_TYPE_DATA:
3459 		iter->read_stamp += event->time_delta;
3460 		return;
3461 
3462 	default:
3463 		BUG();
3464 	}
3465 	return;
3466 }
3467 
3468 static struct buffer_page *
3469 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3470 {
3471 	struct buffer_page *reader = NULL;
3472 	unsigned long overwrite;
3473 	unsigned long flags;
3474 	int nr_loops = 0;
3475 	int ret;
3476 
3477 	local_irq_save(flags);
3478 	arch_spin_lock(&cpu_buffer->lock);
3479 
3480  again:
3481 	/*
3482 	 * This should normally only loop twice. But because the
3483 	 * start of the reader inserts an empty page, it causes
3484 	 * a case where we will loop three times. There should be no
3485 	 * reason to loop four times (that I know of).
3486 	 */
3487 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3488 		reader = NULL;
3489 		goto out;
3490 	}
3491 
3492 	reader = cpu_buffer->reader_page;
3493 
3494 	/* If there's more to read, return this page */
3495 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3496 		goto out;
3497 
3498 	/* Never should we have an index greater than the size */
3499 	if (RB_WARN_ON(cpu_buffer,
3500 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3501 		goto out;
3502 
3503 	/* check if we caught up to the tail */
3504 	reader = NULL;
3505 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3506 		goto out;
3507 
3508 	/* Don't bother swapping if the ring buffer is empty */
3509 	if (rb_num_of_entries(cpu_buffer) == 0)
3510 		goto out;
3511 
3512 	/*
3513 	 * Reset the reader page to size zero.
3514 	 */
3515 	local_set(&cpu_buffer->reader_page->write, 0);
3516 	local_set(&cpu_buffer->reader_page->entries, 0);
3517 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3518 	cpu_buffer->reader_page->real_end = 0;
3519 
3520  spin:
3521 	/*
3522 	 * Splice the empty reader page into the list around the head.
3523 	 */
3524 	reader = rb_set_head_page(cpu_buffer);
3525 	if (!reader)
3526 		goto out;
3527 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3528 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3529 
3530 	/*
3531 	 * cpu_buffer->pages just needs to point to the buffer, it
3532 	 *  has no specific buffer page to point to. Lets move it out
3533 	 *  of our way so we don't accidentally swap it.
3534 	 */
3535 	cpu_buffer->pages = reader->list.prev;
3536 
3537 	/* The reader page will be pointing to the new head */
3538 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3539 
3540 	/*
3541 	 * We want to make sure we read the overruns after we set up our
3542 	 * pointers to the next object. The writer side does a
3543 	 * cmpxchg to cross pages which acts as the mb on the writer
3544 	 * side. Note, the reader will constantly fail the swap
3545 	 * while the writer is updating the pointers, so this
3546 	 * guarantees that the overwrite recorded here is the one we
3547 	 * want to compare with the last_overrun.
3548 	 */
3549 	smp_mb();
3550 	overwrite = local_read(&(cpu_buffer->overrun));
3551 
3552 	/*
3553 	 * Here's the tricky part.
3554 	 *
3555 	 * We need to move the pointer past the header page.
3556 	 * But we can only do that if a writer is not currently
3557 	 * moving it. The page before the header page has the
3558 	 * flag bit '1' set if it is pointing to the page we want.
3559 	 * but if the writer is in the process of moving it
3560 	 * than it will be '2' or already moved '0'.
3561 	 */
3562 
3563 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3564 
3565 	/*
3566 	 * If we did not convert it, then we must try again.
3567 	 */
3568 	if (!ret)
3569 		goto spin;
3570 
3571 	/*
3572 	 * Yeah! We succeeded in replacing the page.
3573 	 *
3574 	 * Now make the new head point back to the reader page.
3575 	 */
3576 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3577 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3578 
3579 	/* Finally update the reader page to the new head */
3580 	cpu_buffer->reader_page = reader;
3581 	rb_reset_reader_page(cpu_buffer);
3582 
3583 	if (overwrite != cpu_buffer->last_overrun) {
3584 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3585 		cpu_buffer->last_overrun = overwrite;
3586 	}
3587 
3588 	goto again;
3589 
3590  out:
3591 	arch_spin_unlock(&cpu_buffer->lock);
3592 	local_irq_restore(flags);
3593 
3594 	return reader;
3595 }
3596 
3597 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3598 {
3599 	struct ring_buffer_event *event;
3600 	struct buffer_page *reader;
3601 	unsigned length;
3602 
3603 	reader = rb_get_reader_page(cpu_buffer);
3604 
3605 	/* This function should not be called when buffer is empty */
3606 	if (RB_WARN_ON(cpu_buffer, !reader))
3607 		return;
3608 
3609 	event = rb_reader_event(cpu_buffer);
3610 
3611 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3612 		cpu_buffer->read++;
3613 
3614 	rb_update_read_stamp(cpu_buffer, event);
3615 
3616 	length = rb_event_length(event);
3617 	cpu_buffer->reader_page->read += length;
3618 }
3619 
3620 static void rb_advance_iter(struct ring_buffer_iter *iter)
3621 {
3622 	struct ring_buffer_per_cpu *cpu_buffer;
3623 	struct ring_buffer_event *event;
3624 	unsigned length;
3625 
3626 	cpu_buffer = iter->cpu_buffer;
3627 
3628 	/*
3629 	 * Check if we are at the end of the buffer.
3630 	 */
3631 	if (iter->head >= rb_page_size(iter->head_page)) {
3632 		/* discarded commits can make the page empty */
3633 		if (iter->head_page == cpu_buffer->commit_page)
3634 			return;
3635 		rb_inc_iter(iter);
3636 		return;
3637 	}
3638 
3639 	event = rb_iter_head_event(iter);
3640 
3641 	length = rb_event_length(event);
3642 
3643 	/*
3644 	 * This should not be called to advance the header if we are
3645 	 * at the tail of the buffer.
3646 	 */
3647 	if (RB_WARN_ON(cpu_buffer,
3648 		       (iter->head_page == cpu_buffer->commit_page) &&
3649 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3650 		return;
3651 
3652 	rb_update_iter_read_stamp(iter, event);
3653 
3654 	iter->head += length;
3655 
3656 	/* check for end of page padding */
3657 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3658 	    (iter->head_page != cpu_buffer->commit_page))
3659 		rb_inc_iter(iter);
3660 }
3661 
3662 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3663 {
3664 	return cpu_buffer->lost_events;
3665 }
3666 
3667 static struct ring_buffer_event *
3668 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3669 	       unsigned long *lost_events)
3670 {
3671 	struct ring_buffer_event *event;
3672 	struct buffer_page *reader;
3673 	int nr_loops = 0;
3674 
3675  again:
3676 	/*
3677 	 * We repeat when a time extend is encountered.
3678 	 * Since the time extend is always attached to a data event,
3679 	 * we should never loop more than once.
3680 	 * (We never hit the following condition more than twice).
3681 	 */
3682 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3683 		return NULL;
3684 
3685 	reader = rb_get_reader_page(cpu_buffer);
3686 	if (!reader)
3687 		return NULL;
3688 
3689 	event = rb_reader_event(cpu_buffer);
3690 
3691 	switch (event->type_len) {
3692 	case RINGBUF_TYPE_PADDING:
3693 		if (rb_null_event(event))
3694 			RB_WARN_ON(cpu_buffer, 1);
3695 		/*
3696 		 * Because the writer could be discarding every
3697 		 * event it creates (which would probably be bad)
3698 		 * if we were to go back to "again" then we may never
3699 		 * catch up, and will trigger the warn on, or lock
3700 		 * the box. Return the padding, and we will release
3701 		 * the current locks, and try again.
3702 		 */
3703 		return event;
3704 
3705 	case RINGBUF_TYPE_TIME_EXTEND:
3706 		/* Internal data, OK to advance */
3707 		rb_advance_reader(cpu_buffer);
3708 		goto again;
3709 
3710 	case RINGBUF_TYPE_TIME_STAMP:
3711 		/* FIXME: not implemented */
3712 		rb_advance_reader(cpu_buffer);
3713 		goto again;
3714 
3715 	case RINGBUF_TYPE_DATA:
3716 		if (ts) {
3717 			*ts = cpu_buffer->read_stamp + event->time_delta;
3718 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3719 							 cpu_buffer->cpu, ts);
3720 		}
3721 		if (lost_events)
3722 			*lost_events = rb_lost_events(cpu_buffer);
3723 		return event;
3724 
3725 	default:
3726 		BUG();
3727 	}
3728 
3729 	return NULL;
3730 }
3731 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3732 
3733 static struct ring_buffer_event *
3734 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3735 {
3736 	struct ring_buffer *buffer;
3737 	struct ring_buffer_per_cpu *cpu_buffer;
3738 	struct ring_buffer_event *event;
3739 	int nr_loops = 0;
3740 
3741 	cpu_buffer = iter->cpu_buffer;
3742 	buffer = cpu_buffer->buffer;
3743 
3744 	/*
3745 	 * Check if someone performed a consuming read to
3746 	 * the buffer. A consuming read invalidates the iterator
3747 	 * and we need to reset the iterator in this case.
3748 	 */
3749 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3750 		     iter->cache_reader_page != cpu_buffer->reader_page))
3751 		rb_iter_reset(iter);
3752 
3753  again:
3754 	if (ring_buffer_iter_empty(iter))
3755 		return NULL;
3756 
3757 	/*
3758 	 * We repeat when a time extend is encountered.
3759 	 * Since the time extend is always attached to a data event,
3760 	 * we should never loop more than once.
3761 	 * (We never hit the following condition more than twice).
3762 	 */
3763 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3764 		return NULL;
3765 
3766 	if (rb_per_cpu_empty(cpu_buffer))
3767 		return NULL;
3768 
3769 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3770 		rb_inc_iter(iter);
3771 		goto again;
3772 	}
3773 
3774 	event = rb_iter_head_event(iter);
3775 
3776 	switch (event->type_len) {
3777 	case RINGBUF_TYPE_PADDING:
3778 		if (rb_null_event(event)) {
3779 			rb_inc_iter(iter);
3780 			goto again;
3781 		}
3782 		rb_advance_iter(iter);
3783 		return event;
3784 
3785 	case RINGBUF_TYPE_TIME_EXTEND:
3786 		/* Internal data, OK to advance */
3787 		rb_advance_iter(iter);
3788 		goto again;
3789 
3790 	case RINGBUF_TYPE_TIME_STAMP:
3791 		/* FIXME: not implemented */
3792 		rb_advance_iter(iter);
3793 		goto again;
3794 
3795 	case RINGBUF_TYPE_DATA:
3796 		if (ts) {
3797 			*ts = iter->read_stamp + event->time_delta;
3798 			ring_buffer_normalize_time_stamp(buffer,
3799 							 cpu_buffer->cpu, ts);
3800 		}
3801 		return event;
3802 
3803 	default:
3804 		BUG();
3805 	}
3806 
3807 	return NULL;
3808 }
3809 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3810 
3811 static inline int rb_ok_to_lock(void)
3812 {
3813 	/*
3814 	 * If an NMI die dumps out the content of the ring buffer
3815 	 * do not grab locks. We also permanently disable the ring
3816 	 * buffer too. A one time deal is all you get from reading
3817 	 * the ring buffer from an NMI.
3818 	 */
3819 	if (likely(!in_nmi()))
3820 		return 1;
3821 
3822 	tracing_off_permanent();
3823 	return 0;
3824 }
3825 
3826 /**
3827  * ring_buffer_peek - peek at the next event to be read
3828  * @buffer: The ring buffer to read
3829  * @cpu: The cpu to peak at
3830  * @ts: The timestamp counter of this event.
3831  * @lost_events: a variable to store if events were lost (may be NULL)
3832  *
3833  * This will return the event that will be read next, but does
3834  * not consume the data.
3835  */
3836 struct ring_buffer_event *
3837 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3838 		 unsigned long *lost_events)
3839 {
3840 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3841 	struct ring_buffer_event *event;
3842 	unsigned long flags;
3843 	int dolock;
3844 
3845 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3846 		return NULL;
3847 
3848 	dolock = rb_ok_to_lock();
3849  again:
3850 	local_irq_save(flags);
3851 	if (dolock)
3852 		raw_spin_lock(&cpu_buffer->reader_lock);
3853 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3854 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3855 		rb_advance_reader(cpu_buffer);
3856 	if (dolock)
3857 		raw_spin_unlock(&cpu_buffer->reader_lock);
3858 	local_irq_restore(flags);
3859 
3860 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3861 		goto again;
3862 
3863 	return event;
3864 }
3865 
3866 /**
3867  * ring_buffer_iter_peek - peek at the next event to be read
3868  * @iter: The ring buffer iterator
3869  * @ts: The timestamp counter of this event.
3870  *
3871  * This will return the event that will be read next, but does
3872  * not increment the iterator.
3873  */
3874 struct ring_buffer_event *
3875 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3876 {
3877 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3878 	struct ring_buffer_event *event;
3879 	unsigned long flags;
3880 
3881  again:
3882 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3883 	event = rb_iter_peek(iter, ts);
3884 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3885 
3886 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3887 		goto again;
3888 
3889 	return event;
3890 }
3891 
3892 /**
3893  * ring_buffer_consume - return an event and consume it
3894  * @buffer: The ring buffer to get the next event from
3895  * @cpu: the cpu to read the buffer from
3896  * @ts: a variable to store the timestamp (may be NULL)
3897  * @lost_events: a variable to store if events were lost (may be NULL)
3898  *
3899  * Returns the next event in the ring buffer, and that event is consumed.
3900  * Meaning, that sequential reads will keep returning a different event,
3901  * and eventually empty the ring buffer if the producer is slower.
3902  */
3903 struct ring_buffer_event *
3904 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3905 		    unsigned long *lost_events)
3906 {
3907 	struct ring_buffer_per_cpu *cpu_buffer;
3908 	struct ring_buffer_event *event = NULL;
3909 	unsigned long flags;
3910 	int dolock;
3911 
3912 	dolock = rb_ok_to_lock();
3913 
3914  again:
3915 	/* might be called in atomic */
3916 	preempt_disable();
3917 
3918 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3919 		goto out;
3920 
3921 	cpu_buffer = buffer->buffers[cpu];
3922 	local_irq_save(flags);
3923 	if (dolock)
3924 		raw_spin_lock(&cpu_buffer->reader_lock);
3925 
3926 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3927 	if (event) {
3928 		cpu_buffer->lost_events = 0;
3929 		rb_advance_reader(cpu_buffer);
3930 	}
3931 
3932 	if (dolock)
3933 		raw_spin_unlock(&cpu_buffer->reader_lock);
3934 	local_irq_restore(flags);
3935 
3936  out:
3937 	preempt_enable();
3938 
3939 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3940 		goto again;
3941 
3942 	return event;
3943 }
3944 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3945 
3946 /**
3947  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3948  * @buffer: The ring buffer to read from
3949  * @cpu: The cpu buffer to iterate over
3950  *
3951  * This performs the initial preparations necessary to iterate
3952  * through the buffer.  Memory is allocated, buffer recording
3953  * is disabled, and the iterator pointer is returned to the caller.
3954  *
3955  * Disabling buffer recordng prevents the reading from being
3956  * corrupted. This is not a consuming read, so a producer is not
3957  * expected.
3958  *
3959  * After a sequence of ring_buffer_read_prepare calls, the user is
3960  * expected to make at least one call to ring_buffer_read_prepare_sync.
3961  * Afterwards, ring_buffer_read_start is invoked to get things going
3962  * for real.
3963  *
3964  * This overall must be paired with ring_buffer_read_finish.
3965  */
3966 struct ring_buffer_iter *
3967 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3968 {
3969 	struct ring_buffer_per_cpu *cpu_buffer;
3970 	struct ring_buffer_iter *iter;
3971 
3972 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3973 		return NULL;
3974 
3975 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3976 	if (!iter)
3977 		return NULL;
3978 
3979 	cpu_buffer = buffer->buffers[cpu];
3980 
3981 	iter->cpu_buffer = cpu_buffer;
3982 
3983 	atomic_inc(&buffer->resize_disabled);
3984 	atomic_inc(&cpu_buffer->record_disabled);
3985 
3986 	return iter;
3987 }
3988 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3989 
3990 /**
3991  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3992  *
3993  * All previously invoked ring_buffer_read_prepare calls to prepare
3994  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3995  * calls on those iterators are allowed.
3996  */
3997 void
3998 ring_buffer_read_prepare_sync(void)
3999 {
4000 	synchronize_sched();
4001 }
4002 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4003 
4004 /**
4005  * ring_buffer_read_start - start a non consuming read of the buffer
4006  * @iter: The iterator returned by ring_buffer_read_prepare
4007  *
4008  * This finalizes the startup of an iteration through the buffer.
4009  * The iterator comes from a call to ring_buffer_read_prepare and
4010  * an intervening ring_buffer_read_prepare_sync must have been
4011  * performed.
4012  *
4013  * Must be paired with ring_buffer_read_finish.
4014  */
4015 void
4016 ring_buffer_read_start(struct ring_buffer_iter *iter)
4017 {
4018 	struct ring_buffer_per_cpu *cpu_buffer;
4019 	unsigned long flags;
4020 
4021 	if (!iter)
4022 		return;
4023 
4024 	cpu_buffer = iter->cpu_buffer;
4025 
4026 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4027 	arch_spin_lock(&cpu_buffer->lock);
4028 	rb_iter_reset(iter);
4029 	arch_spin_unlock(&cpu_buffer->lock);
4030 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4031 }
4032 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4033 
4034 /**
4035  * ring_buffer_read_finish - finish reading the iterator of the buffer
4036  * @iter: The iterator retrieved by ring_buffer_start
4037  *
4038  * This re-enables the recording to the buffer, and frees the
4039  * iterator.
4040  */
4041 void
4042 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4043 {
4044 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4045 	unsigned long flags;
4046 
4047 	/*
4048 	 * Ring buffer is disabled from recording, here's a good place
4049 	 * to check the integrity of the ring buffer.
4050 	 * Must prevent readers from trying to read, as the check
4051 	 * clears the HEAD page and readers require it.
4052 	 */
4053 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4054 	rb_check_pages(cpu_buffer);
4055 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4056 
4057 	atomic_dec(&cpu_buffer->record_disabled);
4058 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4059 	kfree(iter);
4060 }
4061 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4062 
4063 /**
4064  * ring_buffer_read - read the next item in the ring buffer by the iterator
4065  * @iter: The ring buffer iterator
4066  * @ts: The time stamp of the event read.
4067  *
4068  * This reads the next event in the ring buffer and increments the iterator.
4069  */
4070 struct ring_buffer_event *
4071 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4072 {
4073 	struct ring_buffer_event *event;
4074 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4075 	unsigned long flags;
4076 
4077 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4078  again:
4079 	event = rb_iter_peek(iter, ts);
4080 	if (!event)
4081 		goto out;
4082 
4083 	if (event->type_len == RINGBUF_TYPE_PADDING)
4084 		goto again;
4085 
4086 	rb_advance_iter(iter);
4087  out:
4088 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4089 
4090 	return event;
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read);
4093 
4094 /**
4095  * ring_buffer_size - return the size of the ring buffer (in bytes)
4096  * @buffer: The ring buffer.
4097  */
4098 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4099 {
4100 	/*
4101 	 * Earlier, this method returned
4102 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4103 	 * Since the nr_pages field is now removed, we have converted this to
4104 	 * return the per cpu buffer value.
4105 	 */
4106 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4107 		return 0;
4108 
4109 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4110 }
4111 EXPORT_SYMBOL_GPL(ring_buffer_size);
4112 
4113 static void
4114 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4115 {
4116 	rb_head_page_deactivate(cpu_buffer);
4117 
4118 	cpu_buffer->head_page
4119 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4120 	local_set(&cpu_buffer->head_page->write, 0);
4121 	local_set(&cpu_buffer->head_page->entries, 0);
4122 	local_set(&cpu_buffer->head_page->page->commit, 0);
4123 
4124 	cpu_buffer->head_page->read = 0;
4125 
4126 	cpu_buffer->tail_page = cpu_buffer->head_page;
4127 	cpu_buffer->commit_page = cpu_buffer->head_page;
4128 
4129 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4130 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4131 	local_set(&cpu_buffer->reader_page->write, 0);
4132 	local_set(&cpu_buffer->reader_page->entries, 0);
4133 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4134 	cpu_buffer->reader_page->read = 0;
4135 
4136 	local_set(&cpu_buffer->entries_bytes, 0);
4137 	local_set(&cpu_buffer->overrun, 0);
4138 	local_set(&cpu_buffer->commit_overrun, 0);
4139 	local_set(&cpu_buffer->dropped_events, 0);
4140 	local_set(&cpu_buffer->entries, 0);
4141 	local_set(&cpu_buffer->committing, 0);
4142 	local_set(&cpu_buffer->commits, 0);
4143 	cpu_buffer->read = 0;
4144 	cpu_buffer->read_bytes = 0;
4145 
4146 	cpu_buffer->write_stamp = 0;
4147 	cpu_buffer->read_stamp = 0;
4148 
4149 	cpu_buffer->lost_events = 0;
4150 	cpu_buffer->last_overrun = 0;
4151 
4152 	rb_head_page_activate(cpu_buffer);
4153 }
4154 
4155 /**
4156  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4157  * @buffer: The ring buffer to reset a per cpu buffer of
4158  * @cpu: The CPU buffer to be reset
4159  */
4160 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4161 {
4162 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4163 	unsigned long flags;
4164 
4165 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166 		return;
4167 
4168 	atomic_inc(&buffer->resize_disabled);
4169 	atomic_inc(&cpu_buffer->record_disabled);
4170 
4171 	/* Make sure all commits have finished */
4172 	synchronize_sched();
4173 
4174 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4175 
4176 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4177 		goto out;
4178 
4179 	arch_spin_lock(&cpu_buffer->lock);
4180 
4181 	rb_reset_cpu(cpu_buffer);
4182 
4183 	arch_spin_unlock(&cpu_buffer->lock);
4184 
4185  out:
4186 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4187 
4188 	atomic_dec(&cpu_buffer->record_disabled);
4189 	atomic_dec(&buffer->resize_disabled);
4190 }
4191 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4192 
4193 /**
4194  * ring_buffer_reset - reset a ring buffer
4195  * @buffer: The ring buffer to reset all cpu buffers
4196  */
4197 void ring_buffer_reset(struct ring_buffer *buffer)
4198 {
4199 	int cpu;
4200 
4201 	for_each_buffer_cpu(buffer, cpu)
4202 		ring_buffer_reset_cpu(buffer, cpu);
4203 }
4204 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4205 
4206 /**
4207  * rind_buffer_empty - is the ring buffer empty?
4208  * @buffer: The ring buffer to test
4209  */
4210 int ring_buffer_empty(struct ring_buffer *buffer)
4211 {
4212 	struct ring_buffer_per_cpu *cpu_buffer;
4213 	unsigned long flags;
4214 	int dolock;
4215 	int cpu;
4216 	int ret;
4217 
4218 	dolock = rb_ok_to_lock();
4219 
4220 	/* yes this is racy, but if you don't like the race, lock the buffer */
4221 	for_each_buffer_cpu(buffer, cpu) {
4222 		cpu_buffer = buffer->buffers[cpu];
4223 		local_irq_save(flags);
4224 		if (dolock)
4225 			raw_spin_lock(&cpu_buffer->reader_lock);
4226 		ret = rb_per_cpu_empty(cpu_buffer);
4227 		if (dolock)
4228 			raw_spin_unlock(&cpu_buffer->reader_lock);
4229 		local_irq_restore(flags);
4230 
4231 		if (!ret)
4232 			return 0;
4233 	}
4234 
4235 	return 1;
4236 }
4237 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4238 
4239 /**
4240  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4241  * @buffer: The ring buffer
4242  * @cpu: The CPU buffer to test
4243  */
4244 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4245 {
4246 	struct ring_buffer_per_cpu *cpu_buffer;
4247 	unsigned long flags;
4248 	int dolock;
4249 	int ret;
4250 
4251 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4252 		return 1;
4253 
4254 	dolock = rb_ok_to_lock();
4255 
4256 	cpu_buffer = buffer->buffers[cpu];
4257 	local_irq_save(flags);
4258 	if (dolock)
4259 		raw_spin_lock(&cpu_buffer->reader_lock);
4260 	ret = rb_per_cpu_empty(cpu_buffer);
4261 	if (dolock)
4262 		raw_spin_unlock(&cpu_buffer->reader_lock);
4263 	local_irq_restore(flags);
4264 
4265 	return ret;
4266 }
4267 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4268 
4269 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4270 /**
4271  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4272  * @buffer_a: One buffer to swap with
4273  * @buffer_b: The other buffer to swap with
4274  *
4275  * This function is useful for tracers that want to take a "snapshot"
4276  * of a CPU buffer and has another back up buffer lying around.
4277  * it is expected that the tracer handles the cpu buffer not being
4278  * used at the moment.
4279  */
4280 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4281 			 struct ring_buffer *buffer_b, int cpu)
4282 {
4283 	struct ring_buffer_per_cpu *cpu_buffer_a;
4284 	struct ring_buffer_per_cpu *cpu_buffer_b;
4285 	int ret = -EINVAL;
4286 
4287 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4288 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4289 		goto out;
4290 
4291 	cpu_buffer_a = buffer_a->buffers[cpu];
4292 	cpu_buffer_b = buffer_b->buffers[cpu];
4293 
4294 	/* At least make sure the two buffers are somewhat the same */
4295 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4296 		goto out;
4297 
4298 	ret = -EAGAIN;
4299 
4300 	if (ring_buffer_flags != RB_BUFFERS_ON)
4301 		goto out;
4302 
4303 	if (atomic_read(&buffer_a->record_disabled))
4304 		goto out;
4305 
4306 	if (atomic_read(&buffer_b->record_disabled))
4307 		goto out;
4308 
4309 	if (atomic_read(&cpu_buffer_a->record_disabled))
4310 		goto out;
4311 
4312 	if (atomic_read(&cpu_buffer_b->record_disabled))
4313 		goto out;
4314 
4315 	/*
4316 	 * We can't do a synchronize_sched here because this
4317 	 * function can be called in atomic context.
4318 	 * Normally this will be called from the same CPU as cpu.
4319 	 * If not it's up to the caller to protect this.
4320 	 */
4321 	atomic_inc(&cpu_buffer_a->record_disabled);
4322 	atomic_inc(&cpu_buffer_b->record_disabled);
4323 
4324 	ret = -EBUSY;
4325 	if (local_read(&cpu_buffer_a->committing))
4326 		goto out_dec;
4327 	if (local_read(&cpu_buffer_b->committing))
4328 		goto out_dec;
4329 
4330 	buffer_a->buffers[cpu] = cpu_buffer_b;
4331 	buffer_b->buffers[cpu] = cpu_buffer_a;
4332 
4333 	cpu_buffer_b->buffer = buffer_a;
4334 	cpu_buffer_a->buffer = buffer_b;
4335 
4336 	ret = 0;
4337 
4338 out_dec:
4339 	atomic_dec(&cpu_buffer_a->record_disabled);
4340 	atomic_dec(&cpu_buffer_b->record_disabled);
4341 out:
4342 	return ret;
4343 }
4344 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4345 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4346 
4347 /**
4348  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4349  * @buffer: the buffer to allocate for.
4350  * @cpu: the cpu buffer to allocate.
4351  *
4352  * This function is used in conjunction with ring_buffer_read_page.
4353  * When reading a full page from the ring buffer, these functions
4354  * can be used to speed up the process. The calling function should
4355  * allocate a few pages first with this function. Then when it
4356  * needs to get pages from the ring buffer, it passes the result
4357  * of this function into ring_buffer_read_page, which will swap
4358  * the page that was allocated, with the read page of the buffer.
4359  *
4360  * Returns:
4361  *  The page allocated, or NULL on error.
4362  */
4363 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4364 {
4365 	struct buffer_data_page *bpage;
4366 	struct page *page;
4367 
4368 	page = alloc_pages_node(cpu_to_node(cpu),
4369 				GFP_KERNEL | __GFP_NORETRY, 0);
4370 	if (!page)
4371 		return NULL;
4372 
4373 	bpage = page_address(page);
4374 
4375 	rb_init_page(bpage);
4376 
4377 	return bpage;
4378 }
4379 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4380 
4381 /**
4382  * ring_buffer_free_read_page - free an allocated read page
4383  * @buffer: the buffer the page was allocate for
4384  * @data: the page to free
4385  *
4386  * Free a page allocated from ring_buffer_alloc_read_page.
4387  */
4388 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4389 {
4390 	free_page((unsigned long)data);
4391 }
4392 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4393 
4394 /**
4395  * ring_buffer_read_page - extract a page from the ring buffer
4396  * @buffer: buffer to extract from
4397  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4398  * @len: amount to extract
4399  * @cpu: the cpu of the buffer to extract
4400  * @full: should the extraction only happen when the page is full.
4401  *
4402  * This function will pull out a page from the ring buffer and consume it.
4403  * @data_page must be the address of the variable that was returned
4404  * from ring_buffer_alloc_read_page. This is because the page might be used
4405  * to swap with a page in the ring buffer.
4406  *
4407  * for example:
4408  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4409  *	if (!rpage)
4410  *		return error;
4411  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4412  *	if (ret >= 0)
4413  *		process_page(rpage, ret);
4414  *
4415  * When @full is set, the function will not return true unless
4416  * the writer is off the reader page.
4417  *
4418  * Note: it is up to the calling functions to handle sleeps and wakeups.
4419  *  The ring buffer can be used anywhere in the kernel and can not
4420  *  blindly call wake_up. The layer that uses the ring buffer must be
4421  *  responsible for that.
4422  *
4423  * Returns:
4424  *  >=0 if data has been transferred, returns the offset of consumed data.
4425  *  <0 if no data has been transferred.
4426  */
4427 int ring_buffer_read_page(struct ring_buffer *buffer,
4428 			  void **data_page, size_t len, int cpu, int full)
4429 {
4430 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4431 	struct ring_buffer_event *event;
4432 	struct buffer_data_page *bpage;
4433 	struct buffer_page *reader;
4434 	unsigned long missed_events;
4435 	unsigned long flags;
4436 	unsigned int commit;
4437 	unsigned int read;
4438 	u64 save_timestamp;
4439 	int ret = -1;
4440 
4441 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4442 		goto out;
4443 
4444 	/*
4445 	 * If len is not big enough to hold the page header, then
4446 	 * we can not copy anything.
4447 	 */
4448 	if (len <= BUF_PAGE_HDR_SIZE)
4449 		goto out;
4450 
4451 	len -= BUF_PAGE_HDR_SIZE;
4452 
4453 	if (!data_page)
4454 		goto out;
4455 
4456 	bpage = *data_page;
4457 	if (!bpage)
4458 		goto out;
4459 
4460 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4461 
4462 	reader = rb_get_reader_page(cpu_buffer);
4463 	if (!reader)
4464 		goto out_unlock;
4465 
4466 	event = rb_reader_event(cpu_buffer);
4467 
4468 	read = reader->read;
4469 	commit = rb_page_commit(reader);
4470 
4471 	/* Check if any events were dropped */
4472 	missed_events = cpu_buffer->lost_events;
4473 
4474 	/*
4475 	 * If this page has been partially read or
4476 	 * if len is not big enough to read the rest of the page or
4477 	 * a writer is still on the page, then
4478 	 * we must copy the data from the page to the buffer.
4479 	 * Otherwise, we can simply swap the page with the one passed in.
4480 	 */
4481 	if (read || (len < (commit - read)) ||
4482 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4483 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4484 		unsigned int rpos = read;
4485 		unsigned int pos = 0;
4486 		unsigned int size;
4487 
4488 		if (full)
4489 			goto out_unlock;
4490 
4491 		if (len > (commit - read))
4492 			len = (commit - read);
4493 
4494 		/* Always keep the time extend and data together */
4495 		size = rb_event_ts_length(event);
4496 
4497 		if (len < size)
4498 			goto out_unlock;
4499 
4500 		/* save the current timestamp, since the user will need it */
4501 		save_timestamp = cpu_buffer->read_stamp;
4502 
4503 		/* Need to copy one event at a time */
4504 		do {
4505 			/* We need the size of one event, because
4506 			 * rb_advance_reader only advances by one event,
4507 			 * whereas rb_event_ts_length may include the size of
4508 			 * one or two events.
4509 			 * We have already ensured there's enough space if this
4510 			 * is a time extend. */
4511 			size = rb_event_length(event);
4512 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4513 
4514 			len -= size;
4515 
4516 			rb_advance_reader(cpu_buffer);
4517 			rpos = reader->read;
4518 			pos += size;
4519 
4520 			if (rpos >= commit)
4521 				break;
4522 
4523 			event = rb_reader_event(cpu_buffer);
4524 			/* Always keep the time extend and data together */
4525 			size = rb_event_ts_length(event);
4526 		} while (len >= size);
4527 
4528 		/* update bpage */
4529 		local_set(&bpage->commit, pos);
4530 		bpage->time_stamp = save_timestamp;
4531 
4532 		/* we copied everything to the beginning */
4533 		read = 0;
4534 	} else {
4535 		/* update the entry counter */
4536 		cpu_buffer->read += rb_page_entries(reader);
4537 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4538 
4539 		/* swap the pages */
4540 		rb_init_page(bpage);
4541 		bpage = reader->page;
4542 		reader->page = *data_page;
4543 		local_set(&reader->write, 0);
4544 		local_set(&reader->entries, 0);
4545 		reader->read = 0;
4546 		*data_page = bpage;
4547 
4548 		/*
4549 		 * Use the real_end for the data size,
4550 		 * This gives us a chance to store the lost events
4551 		 * on the page.
4552 		 */
4553 		if (reader->real_end)
4554 			local_set(&bpage->commit, reader->real_end);
4555 	}
4556 	ret = read;
4557 
4558 	cpu_buffer->lost_events = 0;
4559 
4560 	commit = local_read(&bpage->commit);
4561 	/*
4562 	 * Set a flag in the commit field if we lost events
4563 	 */
4564 	if (missed_events) {
4565 		/* If there is room at the end of the page to save the
4566 		 * missed events, then record it there.
4567 		 */
4568 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4569 			memcpy(&bpage->data[commit], &missed_events,
4570 			       sizeof(missed_events));
4571 			local_add(RB_MISSED_STORED, &bpage->commit);
4572 			commit += sizeof(missed_events);
4573 		}
4574 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4575 	}
4576 
4577 	/*
4578 	 * This page may be off to user land. Zero it out here.
4579 	 */
4580 	if (commit < BUF_PAGE_SIZE)
4581 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4582 
4583  out_unlock:
4584 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4585 
4586  out:
4587 	return ret;
4588 }
4589 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4590 
4591 #ifdef CONFIG_HOTPLUG_CPU
4592 static int rb_cpu_notify(struct notifier_block *self,
4593 			 unsigned long action, void *hcpu)
4594 {
4595 	struct ring_buffer *buffer =
4596 		container_of(self, struct ring_buffer, cpu_notify);
4597 	long cpu = (long)hcpu;
4598 	int cpu_i, nr_pages_same;
4599 	unsigned int nr_pages;
4600 
4601 	switch (action) {
4602 	case CPU_UP_PREPARE:
4603 	case CPU_UP_PREPARE_FROZEN:
4604 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4605 			return NOTIFY_OK;
4606 
4607 		nr_pages = 0;
4608 		nr_pages_same = 1;
4609 		/* check if all cpu sizes are same */
4610 		for_each_buffer_cpu(buffer, cpu_i) {
4611 			/* fill in the size from first enabled cpu */
4612 			if (nr_pages == 0)
4613 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4614 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4615 				nr_pages_same = 0;
4616 				break;
4617 			}
4618 		}
4619 		/* allocate minimum pages, user can later expand it */
4620 		if (!nr_pages_same)
4621 			nr_pages = 2;
4622 		buffer->buffers[cpu] =
4623 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4624 		if (!buffer->buffers[cpu]) {
4625 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4626 			     cpu);
4627 			return NOTIFY_OK;
4628 		}
4629 		smp_wmb();
4630 		cpumask_set_cpu(cpu, buffer->cpumask);
4631 		break;
4632 	case CPU_DOWN_PREPARE:
4633 	case CPU_DOWN_PREPARE_FROZEN:
4634 		/*
4635 		 * Do nothing.
4636 		 *  If we were to free the buffer, then the user would
4637 		 *  lose any trace that was in the buffer.
4638 		 */
4639 		break;
4640 	default:
4641 		break;
4642 	}
4643 	return NOTIFY_OK;
4644 }
4645 #endif
4646 
4647 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4648 /*
4649  * This is a basic integrity check of the ring buffer.
4650  * Late in the boot cycle this test will run when configured in.
4651  * It will kick off a thread per CPU that will go into a loop
4652  * writing to the per cpu ring buffer various sizes of data.
4653  * Some of the data will be large items, some small.
4654  *
4655  * Another thread is created that goes into a spin, sending out
4656  * IPIs to the other CPUs to also write into the ring buffer.
4657  * this is to test the nesting ability of the buffer.
4658  *
4659  * Basic stats are recorded and reported. If something in the
4660  * ring buffer should happen that's not expected, a big warning
4661  * is displayed and all ring buffers are disabled.
4662  */
4663 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4664 
4665 struct rb_test_data {
4666 	struct ring_buffer	*buffer;
4667 	unsigned long		events;
4668 	unsigned long		bytes_written;
4669 	unsigned long		bytes_alloc;
4670 	unsigned long		bytes_dropped;
4671 	unsigned long		events_nested;
4672 	unsigned long		bytes_written_nested;
4673 	unsigned long		bytes_alloc_nested;
4674 	unsigned long		bytes_dropped_nested;
4675 	int			min_size_nested;
4676 	int			max_size_nested;
4677 	int			max_size;
4678 	int			min_size;
4679 	int			cpu;
4680 	int			cnt;
4681 };
4682 
4683 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4684 
4685 /* 1 meg per cpu */
4686 #define RB_TEST_BUFFER_SIZE	1048576
4687 
4688 static char rb_string[] __initdata =
4689 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4690 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4691 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4692 
4693 static bool rb_test_started __initdata;
4694 
4695 struct rb_item {
4696 	int size;
4697 	char str[];
4698 };
4699 
4700 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4701 {
4702 	struct ring_buffer_event *event;
4703 	struct rb_item *item;
4704 	bool started;
4705 	int event_len;
4706 	int size;
4707 	int len;
4708 	int cnt;
4709 
4710 	/* Have nested writes different that what is written */
4711 	cnt = data->cnt + (nested ? 27 : 0);
4712 
4713 	/* Multiply cnt by ~e, to make some unique increment */
4714 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4715 
4716 	len = size + sizeof(struct rb_item);
4717 
4718 	started = rb_test_started;
4719 	/* read rb_test_started before checking buffer enabled */
4720 	smp_rmb();
4721 
4722 	event = ring_buffer_lock_reserve(data->buffer, len);
4723 	if (!event) {
4724 		/* Ignore dropped events before test starts. */
4725 		if (started) {
4726 			if (nested)
4727 				data->bytes_dropped += len;
4728 			else
4729 				data->bytes_dropped_nested += len;
4730 		}
4731 		return len;
4732 	}
4733 
4734 	event_len = ring_buffer_event_length(event);
4735 
4736 	if (RB_WARN_ON(data->buffer, event_len < len))
4737 		goto out;
4738 
4739 	item = ring_buffer_event_data(event);
4740 	item->size = size;
4741 	memcpy(item->str, rb_string, size);
4742 
4743 	if (nested) {
4744 		data->bytes_alloc_nested += event_len;
4745 		data->bytes_written_nested += len;
4746 		data->events_nested++;
4747 		if (!data->min_size_nested || len < data->min_size_nested)
4748 			data->min_size_nested = len;
4749 		if (len > data->max_size_nested)
4750 			data->max_size_nested = len;
4751 	} else {
4752 		data->bytes_alloc += event_len;
4753 		data->bytes_written += len;
4754 		data->events++;
4755 		if (!data->min_size || len < data->min_size)
4756 			data->max_size = len;
4757 		if (len > data->max_size)
4758 			data->max_size = len;
4759 	}
4760 
4761  out:
4762 	ring_buffer_unlock_commit(data->buffer, event);
4763 
4764 	return 0;
4765 }
4766 
4767 static __init int rb_test(void *arg)
4768 {
4769 	struct rb_test_data *data = arg;
4770 
4771 	while (!kthread_should_stop()) {
4772 		rb_write_something(data, false);
4773 		data->cnt++;
4774 
4775 		set_current_state(TASK_INTERRUPTIBLE);
4776 		/* Now sleep between a min of 100-300us and a max of 1ms */
4777 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4778 	}
4779 
4780 	return 0;
4781 }
4782 
4783 static __init void rb_ipi(void *ignore)
4784 {
4785 	struct rb_test_data *data;
4786 	int cpu = smp_processor_id();
4787 
4788 	data = &rb_data[cpu];
4789 	rb_write_something(data, true);
4790 }
4791 
4792 static __init int rb_hammer_test(void *arg)
4793 {
4794 	while (!kthread_should_stop()) {
4795 
4796 		/* Send an IPI to all cpus to write data! */
4797 		smp_call_function(rb_ipi, NULL, 1);
4798 		/* No sleep, but for non preempt, let others run */
4799 		schedule();
4800 	}
4801 
4802 	return 0;
4803 }
4804 
4805 static __init int test_ringbuffer(void)
4806 {
4807 	struct task_struct *rb_hammer;
4808 	struct ring_buffer *buffer;
4809 	int cpu;
4810 	int ret = 0;
4811 
4812 	pr_info("Running ring buffer tests...\n");
4813 
4814 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4815 	if (WARN_ON(!buffer))
4816 		return 0;
4817 
4818 	/* Disable buffer so that threads can't write to it yet */
4819 	ring_buffer_record_off(buffer);
4820 
4821 	for_each_online_cpu(cpu) {
4822 		rb_data[cpu].buffer = buffer;
4823 		rb_data[cpu].cpu = cpu;
4824 		rb_data[cpu].cnt = cpu;
4825 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4826 						 "rbtester/%d", cpu);
4827 		if (WARN_ON(!rb_threads[cpu])) {
4828 			pr_cont("FAILED\n");
4829 			ret = -1;
4830 			goto out_free;
4831 		}
4832 
4833 		kthread_bind(rb_threads[cpu], cpu);
4834  		wake_up_process(rb_threads[cpu]);
4835 	}
4836 
4837 	/* Now create the rb hammer! */
4838 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4839 	if (WARN_ON(!rb_hammer)) {
4840 		pr_cont("FAILED\n");
4841 		ret = -1;
4842 		goto out_free;
4843 	}
4844 
4845 	ring_buffer_record_on(buffer);
4846 	/*
4847 	 * Show buffer is enabled before setting rb_test_started.
4848 	 * Yes there's a small race window where events could be
4849 	 * dropped and the thread wont catch it. But when a ring
4850 	 * buffer gets enabled, there will always be some kind of
4851 	 * delay before other CPUs see it. Thus, we don't care about
4852 	 * those dropped events. We care about events dropped after
4853 	 * the threads see that the buffer is active.
4854 	 */
4855 	smp_wmb();
4856 	rb_test_started = true;
4857 
4858 	set_current_state(TASK_INTERRUPTIBLE);
4859 	/* Just run for 10 seconds */;
4860 	schedule_timeout(10 * HZ);
4861 
4862 	kthread_stop(rb_hammer);
4863 
4864  out_free:
4865 	for_each_online_cpu(cpu) {
4866 		if (!rb_threads[cpu])
4867 			break;
4868 		kthread_stop(rb_threads[cpu]);
4869 	}
4870 	if (ret) {
4871 		ring_buffer_free(buffer);
4872 		return ret;
4873 	}
4874 
4875 	/* Report! */
4876 	pr_info("finished\n");
4877 	for_each_online_cpu(cpu) {
4878 		struct ring_buffer_event *event;
4879 		struct rb_test_data *data = &rb_data[cpu];
4880 		struct rb_item *item;
4881 		unsigned long total_events;
4882 		unsigned long total_dropped;
4883 		unsigned long total_written;
4884 		unsigned long total_alloc;
4885 		unsigned long total_read = 0;
4886 		unsigned long total_size = 0;
4887 		unsigned long total_len = 0;
4888 		unsigned long total_lost = 0;
4889 		unsigned long lost;
4890 		int big_event_size;
4891 		int small_event_size;
4892 
4893 		ret = -1;
4894 
4895 		total_events = data->events + data->events_nested;
4896 		total_written = data->bytes_written + data->bytes_written_nested;
4897 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4898 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4899 
4900 		big_event_size = data->max_size + data->max_size_nested;
4901 		small_event_size = data->min_size + data->min_size_nested;
4902 
4903 		pr_info("CPU %d:\n", cpu);
4904 		pr_info("              events:    %ld\n", total_events);
4905 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4906 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4907 		pr_info("       written bytes:    %ld\n", total_written);
4908 		pr_info("       biggest event:    %d\n", big_event_size);
4909 		pr_info("      smallest event:    %d\n", small_event_size);
4910 
4911 		if (RB_WARN_ON(buffer, total_dropped))
4912 			break;
4913 
4914 		ret = 0;
4915 
4916 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4917 			total_lost += lost;
4918 			item = ring_buffer_event_data(event);
4919 			total_len += ring_buffer_event_length(event);
4920 			total_size += item->size + sizeof(struct rb_item);
4921 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4922 				pr_info("FAILED!\n");
4923 				pr_info("buffer had: %.*s\n", item->size, item->str);
4924 				pr_info("expected:   %.*s\n", item->size, rb_string);
4925 				RB_WARN_ON(buffer, 1);
4926 				ret = -1;
4927 				break;
4928 			}
4929 			total_read++;
4930 		}
4931 		if (ret)
4932 			break;
4933 
4934 		ret = -1;
4935 
4936 		pr_info("         read events:   %ld\n", total_read);
4937 		pr_info("         lost events:   %ld\n", total_lost);
4938 		pr_info("        total events:   %ld\n", total_lost + total_read);
4939 		pr_info("  recorded len bytes:   %ld\n", total_len);
4940 		pr_info(" recorded size bytes:   %ld\n", total_size);
4941 		if (total_lost)
4942 			pr_info(" With dropped events, record len and size may not match\n"
4943 				" alloced and written from above\n");
4944 		if (!total_lost) {
4945 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4946 				       total_size != total_written))
4947 				break;
4948 		}
4949 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4950 			break;
4951 
4952 		ret = 0;
4953 	}
4954 	if (!ret)
4955 		pr_info("Ring buffer PASSED!\n");
4956 
4957 	ring_buffer_free(buffer);
4958 	return 0;
4959 }
4960 
4961 late_initcall(test_ringbuffer);
4962 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4963