xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 565485b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h>	/* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	trace_seq_puts(s, "# compressed entry header\n");
38 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40 	trace_seq_puts(s, "\tarray       :   32 bits\n");
41 	trace_seq_putc(s, '\n');
42 	trace_seq_printf(s, "\tpadding     : type == %d\n",
43 			 RINGBUF_TYPE_PADDING);
44 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 			 RINGBUF_TYPE_TIME_EXTEND);
46 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47 			 RINGBUF_TYPE_TIME_STAMP);
48 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return !trace_seq_has_overflowed(s);
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF		(1 << 20)
124 
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126 
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT		4U
129 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
131 
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT	0
134 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
135 #else
136 # define RB_FORCE_8BYTE_ALIGNMENT	1
137 # define RB_ARCH_ALIGNMENT		8U
138 #endif
139 
140 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
141 
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
144 
145 enum {
146 	RB_LEN_TIME_EXTEND = 8,
147 	RB_LEN_TIME_STAMP =  8,
148 };
149 
150 #define skip_time_extend(event) \
151 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152 
153 #define extended_time(event) \
154 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155 
156 static inline int rb_null_event(struct ring_buffer_event *event)
157 {
158 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
159 }
160 
161 static void rb_event_set_padding(struct ring_buffer_event *event)
162 {
163 	/* padding has a NULL time_delta */
164 	event->type_len = RINGBUF_TYPE_PADDING;
165 	event->time_delta = 0;
166 }
167 
168 static unsigned
169 rb_event_data_length(struct ring_buffer_event *event)
170 {
171 	unsigned length;
172 
173 	if (event->type_len)
174 		length = event->type_len * RB_ALIGNMENT;
175 	else
176 		length = event->array[0];
177 	return length + RB_EVNT_HDR_SIZE;
178 }
179 
180 /*
181  * Return the length of the given event. Will return
182  * the length of the time extend if the event is a
183  * time extend.
184  */
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event *event)
187 {
188 	switch (event->type_len) {
189 	case RINGBUF_TYPE_PADDING:
190 		if (rb_null_event(event))
191 			/* undefined */
192 			return -1;
193 		return  event->array[0] + RB_EVNT_HDR_SIZE;
194 
195 	case RINGBUF_TYPE_TIME_EXTEND:
196 		return RB_LEN_TIME_EXTEND;
197 
198 	case RINGBUF_TYPE_TIME_STAMP:
199 		return RB_LEN_TIME_STAMP;
200 
201 	case RINGBUF_TYPE_DATA:
202 		return rb_event_data_length(event);
203 	default:
204 		BUG();
205 	}
206 	/* not hit */
207 	return 0;
208 }
209 
210 /*
211  * Return total length of time extend and data,
212  *   or just the event length for all other events.
213  */
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event *event)
216 {
217 	unsigned len = 0;
218 
219 	if (extended_time(event)) {
220 		/* time extends include the data event after it */
221 		len = RB_LEN_TIME_EXTEND;
222 		event = skip_time_extend(event);
223 	}
224 	return len + rb_event_length(event);
225 }
226 
227 /**
228  * ring_buffer_event_length - return the length of the event
229  * @event: the event to get the length of
230  *
231  * Returns the size of the data load of a data event.
232  * If the event is something other than a data event, it
233  * returns the size of the event itself. With the exception
234  * of a TIME EXTEND, where it still returns the size of the
235  * data load of the data event after it.
236  */
237 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
238 {
239 	unsigned length;
240 
241 	if (extended_time(event))
242 		event = skip_time_extend(event);
243 
244 	length = rb_event_length(event);
245 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
246 		return length;
247 	length -= RB_EVNT_HDR_SIZE;
248 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249                 length -= sizeof(event->array[0]);
250 	return length;
251 }
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
253 
254 /* inline for ring buffer fast paths */
255 static __always_inline void *
256 rb_event_data(struct ring_buffer_event *event)
257 {
258 	if (extended_time(event))
259 		event = skip_time_extend(event);
260 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
261 	/* If length is in len field, then array[0] has the data */
262 	if (event->type_len)
263 		return (void *)&event->array[0];
264 	/* Otherwise length is in array[0] and array[1] has the data */
265 	return (void *)&event->array[1];
266 }
267 
268 /**
269  * ring_buffer_event_data - return the data of the event
270  * @event: the event to get the data from
271  */
272 void *ring_buffer_event_data(struct ring_buffer_event *event)
273 {
274 	return rb_event_data(event);
275 }
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
277 
278 #define for_each_buffer_cpu(buffer, cpu)		\
279 	for_each_cpu(cpu, buffer->cpumask)
280 
281 #define TS_SHIFT	27
282 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST	(~TS_MASK)
284 
285 /**
286  * ring_buffer_event_time_stamp - return the event's extended timestamp
287  * @event: the event to get the timestamp of
288  *
289  * Returns the extended timestamp associated with a data event.
290  * An extended time_stamp is a 64-bit timestamp represented
291  * internally in a special way that makes the best use of space
292  * contained within a ring buffer event.  This function decodes
293  * it and maps it to a straight u64 value.
294  */
295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
296 {
297 	u64 ts;
298 
299 	ts = event->array[0];
300 	ts <<= TS_SHIFT;
301 	ts += event->time_delta;
302 
303 	return ts;
304 }
305 
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS	(1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED	(1 << 30)
310 
311 #define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
312 
313 struct buffer_data_page {
314 	u64		 time_stamp;	/* page time stamp */
315 	local_t		 commit;	/* write committed index */
316 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
317 };
318 
319 /*
320  * Note, the buffer_page list must be first. The buffer pages
321  * are allocated in cache lines, which means that each buffer
322  * page will be at the beginning of a cache line, and thus
323  * the least significant bits will be zero. We use this to
324  * add flags in the list struct pointers, to make the ring buffer
325  * lockless.
326  */
327 struct buffer_page {
328 	struct list_head list;		/* list of buffer pages */
329 	local_t		 write;		/* index for next write */
330 	unsigned	 read;		/* index for next read */
331 	local_t		 entries;	/* entries on this page */
332 	unsigned long	 real_end;	/* real end of data */
333 	struct buffer_data_page *page;	/* Actual data page */
334 };
335 
336 /*
337  * The buffer page counters, write and entries, must be reset
338  * atomically when crossing page boundaries. To synchronize this
339  * update, two counters are inserted into the number. One is
340  * the actual counter for the write position or count on the page.
341  *
342  * The other is a counter of updaters. Before an update happens
343  * the update partition of the counter is incremented. This will
344  * allow the updater to update the counter atomically.
345  *
346  * The counter is 20 bits, and the state data is 12.
347  */
348 #define RB_WRITE_MASK		0xfffff
349 #define RB_WRITE_INTCNT		(1 << 20)
350 
351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353 	local_set(&bpage->commit, 0);
354 }
355 
356 /**
357  * ring_buffer_page_len - the size of data on the page.
358  * @page: The page to read
359  *
360  * Returns the amount of data on the page, including buffer page header.
361  */
362 size_t ring_buffer_page_len(void *page)
363 {
364 	struct buffer_data_page *bpage = page;
365 
366 	return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
367 		+ BUF_PAGE_HDR_SIZE;
368 }
369 
370 /*
371  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
372  * this issue out.
373  */
374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376 	free_page((unsigned long)bpage->page);
377 	kfree(bpage);
378 }
379 
380 /*
381  * We need to fit the time_stamp delta into 27 bits.
382  */
383 static inline int test_time_stamp(u64 delta)
384 {
385 	if (delta & TS_DELTA_TEST)
386 		return 1;
387 	return 0;
388 }
389 
390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
391 
392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
394 
395 int ring_buffer_print_page_header(struct trace_seq *s)
396 {
397 	struct buffer_data_page field;
398 
399 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 			 (unsigned int)sizeof(field.time_stamp),
402 			 (unsigned int)is_signed_type(u64));
403 
404 	trace_seq_printf(s, "\tfield: local_t commit;\t"
405 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 			 (unsigned int)offsetof(typeof(field), commit),
407 			 (unsigned int)sizeof(field.commit),
408 			 (unsigned int)is_signed_type(long));
409 
410 	trace_seq_printf(s, "\tfield: int overwrite;\t"
411 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 			 (unsigned int)offsetof(typeof(field), commit),
413 			 1,
414 			 (unsigned int)is_signed_type(long));
415 
416 	trace_seq_printf(s, "\tfield: char data;\t"
417 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
418 			 (unsigned int)offsetof(typeof(field), data),
419 			 (unsigned int)BUF_PAGE_SIZE,
420 			 (unsigned int)is_signed_type(char));
421 
422 	return !trace_seq_has_overflowed(s);
423 }
424 
425 struct rb_irq_work {
426 	struct irq_work			work;
427 	wait_queue_head_t		waiters;
428 	wait_queue_head_t		full_waiters;
429 	bool				waiters_pending;
430 	bool				full_waiters_pending;
431 	bool				wakeup_full;
432 };
433 
434 /*
435  * Structure to hold event state and handle nested events.
436  */
437 struct rb_event_info {
438 	u64			ts;
439 	u64			delta;
440 	unsigned long		length;
441 	struct buffer_page	*tail_page;
442 	int			add_timestamp;
443 };
444 
445 /*
446  * Used for which event context the event is in.
447  *  NMI     = 0
448  *  IRQ     = 1
449  *  SOFTIRQ = 2
450  *  NORMAL  = 3
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455 	RB_CTX_NMI,
456 	RB_CTX_IRQ,
457 	RB_CTX_SOFTIRQ,
458 	RB_CTX_NORMAL,
459 	RB_CTX_MAX
460 };
461 
462 /*
463  * head_page == tail_page && head == tail then buffer is empty.
464  */
465 struct ring_buffer_per_cpu {
466 	int				cpu;
467 	atomic_t			record_disabled;
468 	struct ring_buffer		*buffer;
469 	raw_spinlock_t			reader_lock;	/* serialize readers */
470 	arch_spinlock_t			lock;
471 	struct lock_class_key		lock_key;
472 	struct buffer_data_page		*free_page;
473 	unsigned long			nr_pages;
474 	unsigned int			current_context;
475 	struct list_head		*pages;
476 	struct buffer_page		*head_page;	/* read from head */
477 	struct buffer_page		*tail_page;	/* write to tail */
478 	struct buffer_page		*commit_page;	/* committed pages */
479 	struct buffer_page		*reader_page;
480 	unsigned long			lost_events;
481 	unsigned long			last_overrun;
482 	unsigned long			nest;
483 	local_t				entries_bytes;
484 	local_t				entries;
485 	local_t				overrun;
486 	local_t				commit_overrun;
487 	local_t				dropped_events;
488 	local_t				committing;
489 	local_t				commits;
490 	local_t				pages_touched;
491 	local_t				pages_read;
492 	long				last_pages_touch;
493 	size_t				shortest_full;
494 	unsigned long			read;
495 	unsigned long			read_bytes;
496 	u64				write_stamp;
497 	u64				read_stamp;
498 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
499 	long				nr_pages_to_update;
500 	struct list_head		new_pages; /* new pages to add */
501 	struct work_struct		update_pages_work;
502 	struct completion		update_done;
503 
504 	struct rb_irq_work		irq_work;
505 };
506 
507 struct ring_buffer {
508 	unsigned			flags;
509 	int				cpus;
510 	atomic_t			record_disabled;
511 	atomic_t			resize_disabled;
512 	cpumask_var_t			cpumask;
513 
514 	struct lock_class_key		*reader_lock_key;
515 
516 	struct mutex			mutex;
517 
518 	struct ring_buffer_per_cpu	**buffers;
519 
520 	struct hlist_node		node;
521 	u64				(*clock)(void);
522 
523 	struct rb_irq_work		irq_work;
524 	bool				time_stamp_abs;
525 };
526 
527 struct ring_buffer_iter {
528 	struct ring_buffer_per_cpu	*cpu_buffer;
529 	unsigned long			head;
530 	struct buffer_page		*head_page;
531 	struct buffer_page		*cache_reader_page;
532 	unsigned long			cache_read;
533 	u64				read_stamp;
534 };
535 
536 /**
537  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
538  * @buffer: The ring_buffer to get the number of pages from
539  * @cpu: The cpu of the ring_buffer to get the number of pages from
540  *
541  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
542  */
543 size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
544 {
545 	return buffer->buffers[cpu]->nr_pages;
546 }
547 
548 /**
549  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
550  * @buffer: The ring_buffer to get the number of pages from
551  * @cpu: The cpu of the ring_buffer to get the number of pages from
552  *
553  * Returns the number of pages that have content in the ring buffer.
554  */
555 size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
556 {
557 	size_t read;
558 	size_t cnt;
559 
560 	read = local_read(&buffer->buffers[cpu]->pages_read);
561 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
562 	/* The reader can read an empty page, but not more than that */
563 	if (cnt < read) {
564 		WARN_ON_ONCE(read > cnt + 1);
565 		return 0;
566 	}
567 
568 	return cnt - read;
569 }
570 
571 /*
572  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
573  *
574  * Schedules a delayed work to wake up any task that is blocked on the
575  * ring buffer waiters queue.
576  */
577 static void rb_wake_up_waiters(struct irq_work *work)
578 {
579 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
580 
581 	wake_up_all(&rbwork->waiters);
582 	if (rbwork->wakeup_full) {
583 		rbwork->wakeup_full = false;
584 		wake_up_all(&rbwork->full_waiters);
585 	}
586 }
587 
588 /**
589  * ring_buffer_wait - wait for input to the ring buffer
590  * @buffer: buffer to wait on
591  * @cpu: the cpu buffer to wait on
592  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
593  *
594  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
595  * as data is added to any of the @buffer's cpu buffers. Otherwise
596  * it will wait for data to be added to a specific cpu buffer.
597  */
598 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
599 {
600 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
601 	DEFINE_WAIT(wait);
602 	struct rb_irq_work *work;
603 	int ret = 0;
604 
605 	/*
606 	 * Depending on what the caller is waiting for, either any
607 	 * data in any cpu buffer, or a specific buffer, put the
608 	 * caller on the appropriate wait queue.
609 	 */
610 	if (cpu == RING_BUFFER_ALL_CPUS) {
611 		work = &buffer->irq_work;
612 		/* Full only makes sense on per cpu reads */
613 		full = 0;
614 	} else {
615 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
616 			return -ENODEV;
617 		cpu_buffer = buffer->buffers[cpu];
618 		work = &cpu_buffer->irq_work;
619 	}
620 
621 
622 	while (true) {
623 		if (full)
624 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
625 		else
626 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
627 
628 		/*
629 		 * The events can happen in critical sections where
630 		 * checking a work queue can cause deadlocks.
631 		 * After adding a task to the queue, this flag is set
632 		 * only to notify events to try to wake up the queue
633 		 * using irq_work.
634 		 *
635 		 * We don't clear it even if the buffer is no longer
636 		 * empty. The flag only causes the next event to run
637 		 * irq_work to do the work queue wake up. The worse
638 		 * that can happen if we race with !trace_empty() is that
639 		 * an event will cause an irq_work to try to wake up
640 		 * an empty queue.
641 		 *
642 		 * There's no reason to protect this flag either, as
643 		 * the work queue and irq_work logic will do the necessary
644 		 * synchronization for the wake ups. The only thing
645 		 * that is necessary is that the wake up happens after
646 		 * a task has been queued. It's OK for spurious wake ups.
647 		 */
648 		if (full)
649 			work->full_waiters_pending = true;
650 		else
651 			work->waiters_pending = true;
652 
653 		if (signal_pending(current)) {
654 			ret = -EINTR;
655 			break;
656 		}
657 
658 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
659 			break;
660 
661 		if (cpu != RING_BUFFER_ALL_CPUS &&
662 		    !ring_buffer_empty_cpu(buffer, cpu)) {
663 			unsigned long flags;
664 			bool pagebusy;
665 			size_t nr_pages;
666 			size_t dirty;
667 
668 			if (!full)
669 				break;
670 
671 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
672 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
673 			nr_pages = cpu_buffer->nr_pages;
674 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
675 			if (!cpu_buffer->shortest_full ||
676 			    cpu_buffer->shortest_full < full)
677 				cpu_buffer->shortest_full = full;
678 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
679 			if (!pagebusy &&
680 			    (!nr_pages || (dirty * 100) > full * nr_pages))
681 				break;
682 		}
683 
684 		schedule();
685 	}
686 
687 	if (full)
688 		finish_wait(&work->full_waiters, &wait);
689 	else
690 		finish_wait(&work->waiters, &wait);
691 
692 	return ret;
693 }
694 
695 /**
696  * ring_buffer_poll_wait - poll on buffer input
697  * @buffer: buffer to wait on
698  * @cpu: the cpu buffer to wait on
699  * @filp: the file descriptor
700  * @poll_table: The poll descriptor
701  *
702  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
703  * as data is added to any of the @buffer's cpu buffers. Otherwise
704  * it will wait for data to be added to a specific cpu buffer.
705  *
706  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
707  * zero otherwise.
708  */
709 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
710 			  struct file *filp, poll_table *poll_table)
711 {
712 	struct ring_buffer_per_cpu *cpu_buffer;
713 	struct rb_irq_work *work;
714 
715 	if (cpu == RING_BUFFER_ALL_CPUS)
716 		work = &buffer->irq_work;
717 	else {
718 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
719 			return -EINVAL;
720 
721 		cpu_buffer = buffer->buffers[cpu];
722 		work = &cpu_buffer->irq_work;
723 	}
724 
725 	poll_wait(filp, &work->waiters, poll_table);
726 	work->waiters_pending = true;
727 	/*
728 	 * There's a tight race between setting the waiters_pending and
729 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
730 	 * is set, the next event will wake the task up, but we can get stuck
731 	 * if there's only a single event in.
732 	 *
733 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
734 	 * but adding a memory barrier to all events will cause too much of a
735 	 * performance hit in the fast path.  We only need a memory barrier when
736 	 * the buffer goes from empty to having content.  But as this race is
737 	 * extremely small, and it's not a problem if another event comes in, we
738 	 * will fix it later.
739 	 */
740 	smp_mb();
741 
742 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
743 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
744 		return EPOLLIN | EPOLLRDNORM;
745 	return 0;
746 }
747 
748 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
749 #define RB_WARN_ON(b, cond)						\
750 	({								\
751 		int _____ret = unlikely(cond);				\
752 		if (_____ret) {						\
753 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
754 				struct ring_buffer_per_cpu *__b =	\
755 					(void *)b;			\
756 				atomic_inc(&__b->buffer->record_disabled); \
757 			} else						\
758 				atomic_inc(&b->record_disabled);	\
759 			WARN_ON(1);					\
760 		}							\
761 		_____ret;						\
762 	})
763 
764 /* Up this if you want to test the TIME_EXTENTS and normalization */
765 #define DEBUG_SHIFT 0
766 
767 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
768 {
769 	/* shift to debug/test normalization and TIME_EXTENTS */
770 	return buffer->clock() << DEBUG_SHIFT;
771 }
772 
773 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
774 {
775 	u64 time;
776 
777 	preempt_disable_notrace();
778 	time = rb_time_stamp(buffer);
779 	preempt_enable_no_resched_notrace();
780 
781 	return time;
782 }
783 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
784 
785 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
786 				      int cpu, u64 *ts)
787 {
788 	/* Just stupid testing the normalize function and deltas */
789 	*ts >>= DEBUG_SHIFT;
790 }
791 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
792 
793 /*
794  * Making the ring buffer lockless makes things tricky.
795  * Although writes only happen on the CPU that they are on,
796  * and they only need to worry about interrupts. Reads can
797  * happen on any CPU.
798  *
799  * The reader page is always off the ring buffer, but when the
800  * reader finishes with a page, it needs to swap its page with
801  * a new one from the buffer. The reader needs to take from
802  * the head (writes go to the tail). But if a writer is in overwrite
803  * mode and wraps, it must push the head page forward.
804  *
805  * Here lies the problem.
806  *
807  * The reader must be careful to replace only the head page, and
808  * not another one. As described at the top of the file in the
809  * ASCII art, the reader sets its old page to point to the next
810  * page after head. It then sets the page after head to point to
811  * the old reader page. But if the writer moves the head page
812  * during this operation, the reader could end up with the tail.
813  *
814  * We use cmpxchg to help prevent this race. We also do something
815  * special with the page before head. We set the LSB to 1.
816  *
817  * When the writer must push the page forward, it will clear the
818  * bit that points to the head page, move the head, and then set
819  * the bit that points to the new head page.
820  *
821  * We also don't want an interrupt coming in and moving the head
822  * page on another writer. Thus we use the second LSB to catch
823  * that too. Thus:
824  *
825  * head->list->prev->next        bit 1          bit 0
826  *                              -------        -------
827  * Normal page                     0              0
828  * Points to head page             0              1
829  * New head page                   1              0
830  *
831  * Note we can not trust the prev pointer of the head page, because:
832  *
833  * +----+       +-----+        +-----+
834  * |    |------>|  T  |---X--->|  N  |
835  * |    |<------|     |        |     |
836  * +----+       +-----+        +-----+
837  *   ^                           ^ |
838  *   |          +-----+          | |
839  *   +----------|  R  |----------+ |
840  *              |     |<-----------+
841  *              +-----+
842  *
843  * Key:  ---X-->  HEAD flag set in pointer
844  *         T      Tail page
845  *         R      Reader page
846  *         N      Next page
847  *
848  * (see __rb_reserve_next() to see where this happens)
849  *
850  *  What the above shows is that the reader just swapped out
851  *  the reader page with a page in the buffer, but before it
852  *  could make the new header point back to the new page added
853  *  it was preempted by a writer. The writer moved forward onto
854  *  the new page added by the reader and is about to move forward
855  *  again.
856  *
857  *  You can see, it is legitimate for the previous pointer of
858  *  the head (or any page) not to point back to itself. But only
859  *  temporarily.
860  */
861 
862 #define RB_PAGE_NORMAL		0UL
863 #define RB_PAGE_HEAD		1UL
864 #define RB_PAGE_UPDATE		2UL
865 
866 
867 #define RB_FLAG_MASK		3UL
868 
869 /* PAGE_MOVED is not part of the mask */
870 #define RB_PAGE_MOVED		4UL
871 
872 /*
873  * rb_list_head - remove any bit
874  */
875 static struct list_head *rb_list_head(struct list_head *list)
876 {
877 	unsigned long val = (unsigned long)list;
878 
879 	return (struct list_head *)(val & ~RB_FLAG_MASK);
880 }
881 
882 /*
883  * rb_is_head_page - test if the given page is the head page
884  *
885  * Because the reader may move the head_page pointer, we can
886  * not trust what the head page is (it may be pointing to
887  * the reader page). But if the next page is a header page,
888  * its flags will be non zero.
889  */
890 static inline int
891 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
892 		struct buffer_page *page, struct list_head *list)
893 {
894 	unsigned long val;
895 
896 	val = (unsigned long)list->next;
897 
898 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
899 		return RB_PAGE_MOVED;
900 
901 	return val & RB_FLAG_MASK;
902 }
903 
904 /*
905  * rb_is_reader_page
906  *
907  * The unique thing about the reader page, is that, if the
908  * writer is ever on it, the previous pointer never points
909  * back to the reader page.
910  */
911 static bool rb_is_reader_page(struct buffer_page *page)
912 {
913 	struct list_head *list = page->list.prev;
914 
915 	return rb_list_head(list->next) != &page->list;
916 }
917 
918 /*
919  * rb_set_list_to_head - set a list_head to be pointing to head.
920  */
921 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
922 				struct list_head *list)
923 {
924 	unsigned long *ptr;
925 
926 	ptr = (unsigned long *)&list->next;
927 	*ptr |= RB_PAGE_HEAD;
928 	*ptr &= ~RB_PAGE_UPDATE;
929 }
930 
931 /*
932  * rb_head_page_activate - sets up head page
933  */
934 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
935 {
936 	struct buffer_page *head;
937 
938 	head = cpu_buffer->head_page;
939 	if (!head)
940 		return;
941 
942 	/*
943 	 * Set the previous list pointer to have the HEAD flag.
944 	 */
945 	rb_set_list_to_head(cpu_buffer, head->list.prev);
946 }
947 
948 static void rb_list_head_clear(struct list_head *list)
949 {
950 	unsigned long *ptr = (unsigned long *)&list->next;
951 
952 	*ptr &= ~RB_FLAG_MASK;
953 }
954 
955 /*
956  * rb_head_page_deactivate - clears head page ptr (for free list)
957  */
958 static void
959 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
960 {
961 	struct list_head *hd;
962 
963 	/* Go through the whole list and clear any pointers found. */
964 	rb_list_head_clear(cpu_buffer->pages);
965 
966 	list_for_each(hd, cpu_buffer->pages)
967 		rb_list_head_clear(hd);
968 }
969 
970 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
971 			    struct buffer_page *head,
972 			    struct buffer_page *prev,
973 			    int old_flag, int new_flag)
974 {
975 	struct list_head *list;
976 	unsigned long val = (unsigned long)&head->list;
977 	unsigned long ret;
978 
979 	list = &prev->list;
980 
981 	val &= ~RB_FLAG_MASK;
982 
983 	ret = cmpxchg((unsigned long *)&list->next,
984 		      val | old_flag, val | new_flag);
985 
986 	/* check if the reader took the page */
987 	if ((ret & ~RB_FLAG_MASK) != val)
988 		return RB_PAGE_MOVED;
989 
990 	return ret & RB_FLAG_MASK;
991 }
992 
993 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
994 				   struct buffer_page *head,
995 				   struct buffer_page *prev,
996 				   int old_flag)
997 {
998 	return rb_head_page_set(cpu_buffer, head, prev,
999 				old_flag, RB_PAGE_UPDATE);
1000 }
1001 
1002 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1003 				 struct buffer_page *head,
1004 				 struct buffer_page *prev,
1005 				 int old_flag)
1006 {
1007 	return rb_head_page_set(cpu_buffer, head, prev,
1008 				old_flag, RB_PAGE_HEAD);
1009 }
1010 
1011 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1012 				   struct buffer_page *head,
1013 				   struct buffer_page *prev,
1014 				   int old_flag)
1015 {
1016 	return rb_head_page_set(cpu_buffer, head, prev,
1017 				old_flag, RB_PAGE_NORMAL);
1018 }
1019 
1020 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1021 			       struct buffer_page **bpage)
1022 {
1023 	struct list_head *p = rb_list_head((*bpage)->list.next);
1024 
1025 	*bpage = list_entry(p, struct buffer_page, list);
1026 }
1027 
1028 static struct buffer_page *
1029 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1030 {
1031 	struct buffer_page *head;
1032 	struct buffer_page *page;
1033 	struct list_head *list;
1034 	int i;
1035 
1036 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1037 		return NULL;
1038 
1039 	/* sanity check */
1040 	list = cpu_buffer->pages;
1041 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1042 		return NULL;
1043 
1044 	page = head = cpu_buffer->head_page;
1045 	/*
1046 	 * It is possible that the writer moves the header behind
1047 	 * where we started, and we miss in one loop.
1048 	 * A second loop should grab the header, but we'll do
1049 	 * three loops just because I'm paranoid.
1050 	 */
1051 	for (i = 0; i < 3; i++) {
1052 		do {
1053 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1054 				cpu_buffer->head_page = page;
1055 				return page;
1056 			}
1057 			rb_inc_page(cpu_buffer, &page);
1058 		} while (page != head);
1059 	}
1060 
1061 	RB_WARN_ON(cpu_buffer, 1);
1062 
1063 	return NULL;
1064 }
1065 
1066 static int rb_head_page_replace(struct buffer_page *old,
1067 				struct buffer_page *new)
1068 {
1069 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1070 	unsigned long val;
1071 	unsigned long ret;
1072 
1073 	val = *ptr & ~RB_FLAG_MASK;
1074 	val |= RB_PAGE_HEAD;
1075 
1076 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1077 
1078 	return ret == val;
1079 }
1080 
1081 /*
1082  * rb_tail_page_update - move the tail page forward
1083  */
1084 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1085 			       struct buffer_page *tail_page,
1086 			       struct buffer_page *next_page)
1087 {
1088 	unsigned long old_entries;
1089 	unsigned long old_write;
1090 
1091 	/*
1092 	 * The tail page now needs to be moved forward.
1093 	 *
1094 	 * We need to reset the tail page, but without messing
1095 	 * with possible erasing of data brought in by interrupts
1096 	 * that have moved the tail page and are currently on it.
1097 	 *
1098 	 * We add a counter to the write field to denote this.
1099 	 */
1100 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1101 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1102 
1103 	local_inc(&cpu_buffer->pages_touched);
1104 	/*
1105 	 * Just make sure we have seen our old_write and synchronize
1106 	 * with any interrupts that come in.
1107 	 */
1108 	barrier();
1109 
1110 	/*
1111 	 * If the tail page is still the same as what we think
1112 	 * it is, then it is up to us to update the tail
1113 	 * pointer.
1114 	 */
1115 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1116 		/* Zero the write counter */
1117 		unsigned long val = old_write & ~RB_WRITE_MASK;
1118 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1119 
1120 		/*
1121 		 * This will only succeed if an interrupt did
1122 		 * not come in and change it. In which case, we
1123 		 * do not want to modify it.
1124 		 *
1125 		 * We add (void) to let the compiler know that we do not care
1126 		 * about the return value of these functions. We use the
1127 		 * cmpxchg to only update if an interrupt did not already
1128 		 * do it for us. If the cmpxchg fails, we don't care.
1129 		 */
1130 		(void)local_cmpxchg(&next_page->write, old_write, val);
1131 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1132 
1133 		/*
1134 		 * No need to worry about races with clearing out the commit.
1135 		 * it only can increment when a commit takes place. But that
1136 		 * only happens in the outer most nested commit.
1137 		 */
1138 		local_set(&next_page->page->commit, 0);
1139 
1140 		/* Again, either we update tail_page or an interrupt does */
1141 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1142 	}
1143 }
1144 
1145 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1146 			  struct buffer_page *bpage)
1147 {
1148 	unsigned long val = (unsigned long)bpage;
1149 
1150 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1151 		return 1;
1152 
1153 	return 0;
1154 }
1155 
1156 /**
1157  * rb_check_list - make sure a pointer to a list has the last bits zero
1158  */
1159 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1160 			 struct list_head *list)
1161 {
1162 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1163 		return 1;
1164 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1165 		return 1;
1166 	return 0;
1167 }
1168 
1169 /**
1170  * rb_check_pages - integrity check of buffer pages
1171  * @cpu_buffer: CPU buffer with pages to test
1172  *
1173  * As a safety measure we check to make sure the data pages have not
1174  * been corrupted.
1175  */
1176 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1177 {
1178 	struct list_head *head = cpu_buffer->pages;
1179 	struct buffer_page *bpage, *tmp;
1180 
1181 	/* Reset the head page if it exists */
1182 	if (cpu_buffer->head_page)
1183 		rb_set_head_page(cpu_buffer);
1184 
1185 	rb_head_page_deactivate(cpu_buffer);
1186 
1187 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1188 		return -1;
1189 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1190 		return -1;
1191 
1192 	if (rb_check_list(cpu_buffer, head))
1193 		return -1;
1194 
1195 	list_for_each_entry_safe(bpage, tmp, head, list) {
1196 		if (RB_WARN_ON(cpu_buffer,
1197 			       bpage->list.next->prev != &bpage->list))
1198 			return -1;
1199 		if (RB_WARN_ON(cpu_buffer,
1200 			       bpage->list.prev->next != &bpage->list))
1201 			return -1;
1202 		if (rb_check_list(cpu_buffer, &bpage->list))
1203 			return -1;
1204 	}
1205 
1206 	rb_head_page_activate(cpu_buffer);
1207 
1208 	return 0;
1209 }
1210 
1211 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1212 {
1213 	struct buffer_page *bpage, *tmp;
1214 	bool user_thread = current->mm != NULL;
1215 	gfp_t mflags;
1216 	long i;
1217 
1218 	/*
1219 	 * Check if the available memory is there first.
1220 	 * Note, si_mem_available() only gives us a rough estimate of available
1221 	 * memory. It may not be accurate. But we don't care, we just want
1222 	 * to prevent doing any allocation when it is obvious that it is
1223 	 * not going to succeed.
1224 	 */
1225 	i = si_mem_available();
1226 	if (i < nr_pages)
1227 		return -ENOMEM;
1228 
1229 	/*
1230 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1231 	 * gracefully without invoking oom-killer and the system is not
1232 	 * destabilized.
1233 	 */
1234 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1235 
1236 	/*
1237 	 * If a user thread allocates too much, and si_mem_available()
1238 	 * reports there's enough memory, even though there is not.
1239 	 * Make sure the OOM killer kills this thread. This can happen
1240 	 * even with RETRY_MAYFAIL because another task may be doing
1241 	 * an allocation after this task has taken all memory.
1242 	 * This is the task the OOM killer needs to take out during this
1243 	 * loop, even if it was triggered by an allocation somewhere else.
1244 	 */
1245 	if (user_thread)
1246 		set_current_oom_origin();
1247 	for (i = 0; i < nr_pages; i++) {
1248 		struct page *page;
1249 
1250 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1251 				    mflags, cpu_to_node(cpu));
1252 		if (!bpage)
1253 			goto free_pages;
1254 
1255 		list_add(&bpage->list, pages);
1256 
1257 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1258 		if (!page)
1259 			goto free_pages;
1260 		bpage->page = page_address(page);
1261 		rb_init_page(bpage->page);
1262 
1263 		if (user_thread && fatal_signal_pending(current))
1264 			goto free_pages;
1265 	}
1266 	if (user_thread)
1267 		clear_current_oom_origin();
1268 
1269 	return 0;
1270 
1271 free_pages:
1272 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1273 		list_del_init(&bpage->list);
1274 		free_buffer_page(bpage);
1275 	}
1276 	if (user_thread)
1277 		clear_current_oom_origin();
1278 
1279 	return -ENOMEM;
1280 }
1281 
1282 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1283 			     unsigned long nr_pages)
1284 {
1285 	LIST_HEAD(pages);
1286 
1287 	WARN_ON(!nr_pages);
1288 
1289 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1290 		return -ENOMEM;
1291 
1292 	/*
1293 	 * The ring buffer page list is a circular list that does not
1294 	 * start and end with a list head. All page list items point to
1295 	 * other pages.
1296 	 */
1297 	cpu_buffer->pages = pages.next;
1298 	list_del(&pages);
1299 
1300 	cpu_buffer->nr_pages = nr_pages;
1301 
1302 	rb_check_pages(cpu_buffer);
1303 
1304 	return 0;
1305 }
1306 
1307 static struct ring_buffer_per_cpu *
1308 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1309 {
1310 	struct ring_buffer_per_cpu *cpu_buffer;
1311 	struct buffer_page *bpage;
1312 	struct page *page;
1313 	int ret;
1314 
1315 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1316 				  GFP_KERNEL, cpu_to_node(cpu));
1317 	if (!cpu_buffer)
1318 		return NULL;
1319 
1320 	cpu_buffer->cpu = cpu;
1321 	cpu_buffer->buffer = buffer;
1322 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1323 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1324 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1325 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1326 	init_completion(&cpu_buffer->update_done);
1327 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1328 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1329 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1330 
1331 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1332 			    GFP_KERNEL, cpu_to_node(cpu));
1333 	if (!bpage)
1334 		goto fail_free_buffer;
1335 
1336 	rb_check_bpage(cpu_buffer, bpage);
1337 
1338 	cpu_buffer->reader_page = bpage;
1339 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1340 	if (!page)
1341 		goto fail_free_reader;
1342 	bpage->page = page_address(page);
1343 	rb_init_page(bpage->page);
1344 
1345 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1346 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1347 
1348 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1349 	if (ret < 0)
1350 		goto fail_free_reader;
1351 
1352 	cpu_buffer->head_page
1353 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1354 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1355 
1356 	rb_head_page_activate(cpu_buffer);
1357 
1358 	return cpu_buffer;
1359 
1360  fail_free_reader:
1361 	free_buffer_page(cpu_buffer->reader_page);
1362 
1363  fail_free_buffer:
1364 	kfree(cpu_buffer);
1365 	return NULL;
1366 }
1367 
1368 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1369 {
1370 	struct list_head *head = cpu_buffer->pages;
1371 	struct buffer_page *bpage, *tmp;
1372 
1373 	free_buffer_page(cpu_buffer->reader_page);
1374 
1375 	rb_head_page_deactivate(cpu_buffer);
1376 
1377 	if (head) {
1378 		list_for_each_entry_safe(bpage, tmp, head, list) {
1379 			list_del_init(&bpage->list);
1380 			free_buffer_page(bpage);
1381 		}
1382 		bpage = list_entry(head, struct buffer_page, list);
1383 		free_buffer_page(bpage);
1384 	}
1385 
1386 	kfree(cpu_buffer);
1387 }
1388 
1389 /**
1390  * __ring_buffer_alloc - allocate a new ring_buffer
1391  * @size: the size in bytes per cpu that is needed.
1392  * @flags: attributes to set for the ring buffer.
1393  *
1394  * Currently the only flag that is available is the RB_FL_OVERWRITE
1395  * flag. This flag means that the buffer will overwrite old data
1396  * when the buffer wraps. If this flag is not set, the buffer will
1397  * drop data when the tail hits the head.
1398  */
1399 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1400 					struct lock_class_key *key)
1401 {
1402 	struct ring_buffer *buffer;
1403 	long nr_pages;
1404 	int bsize;
1405 	int cpu;
1406 	int ret;
1407 
1408 	/* keep it in its own cache line */
1409 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1410 			 GFP_KERNEL);
1411 	if (!buffer)
1412 		return NULL;
1413 
1414 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1415 		goto fail_free_buffer;
1416 
1417 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1418 	buffer->flags = flags;
1419 	buffer->clock = trace_clock_local;
1420 	buffer->reader_lock_key = key;
1421 
1422 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1423 	init_waitqueue_head(&buffer->irq_work.waiters);
1424 
1425 	/* need at least two pages */
1426 	if (nr_pages < 2)
1427 		nr_pages = 2;
1428 
1429 	buffer->cpus = nr_cpu_ids;
1430 
1431 	bsize = sizeof(void *) * nr_cpu_ids;
1432 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1433 				  GFP_KERNEL);
1434 	if (!buffer->buffers)
1435 		goto fail_free_cpumask;
1436 
1437 	cpu = raw_smp_processor_id();
1438 	cpumask_set_cpu(cpu, buffer->cpumask);
1439 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1440 	if (!buffer->buffers[cpu])
1441 		goto fail_free_buffers;
1442 
1443 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1444 	if (ret < 0)
1445 		goto fail_free_buffers;
1446 
1447 	mutex_init(&buffer->mutex);
1448 
1449 	return buffer;
1450 
1451  fail_free_buffers:
1452 	for_each_buffer_cpu(buffer, cpu) {
1453 		if (buffer->buffers[cpu])
1454 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1455 	}
1456 	kfree(buffer->buffers);
1457 
1458  fail_free_cpumask:
1459 	free_cpumask_var(buffer->cpumask);
1460 
1461  fail_free_buffer:
1462 	kfree(buffer);
1463 	return NULL;
1464 }
1465 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1466 
1467 /**
1468  * ring_buffer_free - free a ring buffer.
1469  * @buffer: the buffer to free.
1470  */
1471 void
1472 ring_buffer_free(struct ring_buffer *buffer)
1473 {
1474 	int cpu;
1475 
1476 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1477 
1478 	for_each_buffer_cpu(buffer, cpu)
1479 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1480 
1481 	kfree(buffer->buffers);
1482 	free_cpumask_var(buffer->cpumask);
1483 
1484 	kfree(buffer);
1485 }
1486 EXPORT_SYMBOL_GPL(ring_buffer_free);
1487 
1488 void ring_buffer_set_clock(struct ring_buffer *buffer,
1489 			   u64 (*clock)(void))
1490 {
1491 	buffer->clock = clock;
1492 }
1493 
1494 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1495 {
1496 	buffer->time_stamp_abs = abs;
1497 }
1498 
1499 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1500 {
1501 	return buffer->time_stamp_abs;
1502 }
1503 
1504 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1505 
1506 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1507 {
1508 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1509 }
1510 
1511 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1512 {
1513 	return local_read(&bpage->write) & RB_WRITE_MASK;
1514 }
1515 
1516 static int
1517 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1518 {
1519 	struct list_head *tail_page, *to_remove, *next_page;
1520 	struct buffer_page *to_remove_page, *tmp_iter_page;
1521 	struct buffer_page *last_page, *first_page;
1522 	unsigned long nr_removed;
1523 	unsigned long head_bit;
1524 	int page_entries;
1525 
1526 	head_bit = 0;
1527 
1528 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1529 	atomic_inc(&cpu_buffer->record_disabled);
1530 	/*
1531 	 * We don't race with the readers since we have acquired the reader
1532 	 * lock. We also don't race with writers after disabling recording.
1533 	 * This makes it easy to figure out the first and the last page to be
1534 	 * removed from the list. We unlink all the pages in between including
1535 	 * the first and last pages. This is done in a busy loop so that we
1536 	 * lose the least number of traces.
1537 	 * The pages are freed after we restart recording and unlock readers.
1538 	 */
1539 	tail_page = &cpu_buffer->tail_page->list;
1540 
1541 	/*
1542 	 * tail page might be on reader page, we remove the next page
1543 	 * from the ring buffer
1544 	 */
1545 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1546 		tail_page = rb_list_head(tail_page->next);
1547 	to_remove = tail_page;
1548 
1549 	/* start of pages to remove */
1550 	first_page = list_entry(rb_list_head(to_remove->next),
1551 				struct buffer_page, list);
1552 
1553 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1554 		to_remove = rb_list_head(to_remove)->next;
1555 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1556 	}
1557 
1558 	next_page = rb_list_head(to_remove)->next;
1559 
1560 	/*
1561 	 * Now we remove all pages between tail_page and next_page.
1562 	 * Make sure that we have head_bit value preserved for the
1563 	 * next page
1564 	 */
1565 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1566 						head_bit);
1567 	next_page = rb_list_head(next_page);
1568 	next_page->prev = tail_page;
1569 
1570 	/* make sure pages points to a valid page in the ring buffer */
1571 	cpu_buffer->pages = next_page;
1572 
1573 	/* update head page */
1574 	if (head_bit)
1575 		cpu_buffer->head_page = list_entry(next_page,
1576 						struct buffer_page, list);
1577 
1578 	/*
1579 	 * change read pointer to make sure any read iterators reset
1580 	 * themselves
1581 	 */
1582 	cpu_buffer->read = 0;
1583 
1584 	/* pages are removed, resume tracing and then free the pages */
1585 	atomic_dec(&cpu_buffer->record_disabled);
1586 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1587 
1588 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1589 
1590 	/* last buffer page to remove */
1591 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1592 				list);
1593 	tmp_iter_page = first_page;
1594 
1595 	do {
1596 		cond_resched();
1597 
1598 		to_remove_page = tmp_iter_page;
1599 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1600 
1601 		/* update the counters */
1602 		page_entries = rb_page_entries(to_remove_page);
1603 		if (page_entries) {
1604 			/*
1605 			 * If something was added to this page, it was full
1606 			 * since it is not the tail page. So we deduct the
1607 			 * bytes consumed in ring buffer from here.
1608 			 * Increment overrun to account for the lost events.
1609 			 */
1610 			local_add(page_entries, &cpu_buffer->overrun);
1611 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1612 		}
1613 
1614 		/*
1615 		 * We have already removed references to this list item, just
1616 		 * free up the buffer_page and its page
1617 		 */
1618 		free_buffer_page(to_remove_page);
1619 		nr_removed--;
1620 
1621 	} while (to_remove_page != last_page);
1622 
1623 	RB_WARN_ON(cpu_buffer, nr_removed);
1624 
1625 	return nr_removed == 0;
1626 }
1627 
1628 static int
1629 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1630 {
1631 	struct list_head *pages = &cpu_buffer->new_pages;
1632 	int retries, success;
1633 
1634 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1635 	/*
1636 	 * We are holding the reader lock, so the reader page won't be swapped
1637 	 * in the ring buffer. Now we are racing with the writer trying to
1638 	 * move head page and the tail page.
1639 	 * We are going to adapt the reader page update process where:
1640 	 * 1. We first splice the start and end of list of new pages between
1641 	 *    the head page and its previous page.
1642 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1643 	 *    start of new pages list.
1644 	 * 3. Finally, we update the head->prev to the end of new list.
1645 	 *
1646 	 * We will try this process 10 times, to make sure that we don't keep
1647 	 * spinning.
1648 	 */
1649 	retries = 10;
1650 	success = 0;
1651 	while (retries--) {
1652 		struct list_head *head_page, *prev_page, *r;
1653 		struct list_head *last_page, *first_page;
1654 		struct list_head *head_page_with_bit;
1655 
1656 		head_page = &rb_set_head_page(cpu_buffer)->list;
1657 		if (!head_page)
1658 			break;
1659 		prev_page = head_page->prev;
1660 
1661 		first_page = pages->next;
1662 		last_page  = pages->prev;
1663 
1664 		head_page_with_bit = (struct list_head *)
1665 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1666 
1667 		last_page->next = head_page_with_bit;
1668 		first_page->prev = prev_page;
1669 
1670 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1671 
1672 		if (r == head_page_with_bit) {
1673 			/*
1674 			 * yay, we replaced the page pointer to our new list,
1675 			 * now, we just have to update to head page's prev
1676 			 * pointer to point to end of list
1677 			 */
1678 			head_page->prev = last_page;
1679 			success = 1;
1680 			break;
1681 		}
1682 	}
1683 
1684 	if (success)
1685 		INIT_LIST_HEAD(pages);
1686 	/*
1687 	 * If we weren't successful in adding in new pages, warn and stop
1688 	 * tracing
1689 	 */
1690 	RB_WARN_ON(cpu_buffer, !success);
1691 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1692 
1693 	/* free pages if they weren't inserted */
1694 	if (!success) {
1695 		struct buffer_page *bpage, *tmp;
1696 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1697 					 list) {
1698 			list_del_init(&bpage->list);
1699 			free_buffer_page(bpage);
1700 		}
1701 	}
1702 	return success;
1703 }
1704 
1705 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1706 {
1707 	int success;
1708 
1709 	if (cpu_buffer->nr_pages_to_update > 0)
1710 		success = rb_insert_pages(cpu_buffer);
1711 	else
1712 		success = rb_remove_pages(cpu_buffer,
1713 					-cpu_buffer->nr_pages_to_update);
1714 
1715 	if (success)
1716 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1717 }
1718 
1719 static void update_pages_handler(struct work_struct *work)
1720 {
1721 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1722 			struct ring_buffer_per_cpu, update_pages_work);
1723 	rb_update_pages(cpu_buffer);
1724 	complete(&cpu_buffer->update_done);
1725 }
1726 
1727 /**
1728  * ring_buffer_resize - resize the ring buffer
1729  * @buffer: the buffer to resize.
1730  * @size: the new size.
1731  * @cpu_id: the cpu buffer to resize
1732  *
1733  * Minimum size is 2 * BUF_PAGE_SIZE.
1734  *
1735  * Returns 0 on success and < 0 on failure.
1736  */
1737 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1738 			int cpu_id)
1739 {
1740 	struct ring_buffer_per_cpu *cpu_buffer;
1741 	unsigned long nr_pages;
1742 	int cpu, err = 0;
1743 
1744 	/*
1745 	 * Always succeed at resizing a non-existent buffer:
1746 	 */
1747 	if (!buffer)
1748 		return size;
1749 
1750 	/* Make sure the requested buffer exists */
1751 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1752 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1753 		return size;
1754 
1755 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1756 
1757 	/* we need a minimum of two pages */
1758 	if (nr_pages < 2)
1759 		nr_pages = 2;
1760 
1761 	size = nr_pages * BUF_PAGE_SIZE;
1762 
1763 	/*
1764 	 * Don't succeed if resizing is disabled, as a reader might be
1765 	 * manipulating the ring buffer and is expecting a sane state while
1766 	 * this is true.
1767 	 */
1768 	if (atomic_read(&buffer->resize_disabled))
1769 		return -EBUSY;
1770 
1771 	/* prevent another thread from changing buffer sizes */
1772 	mutex_lock(&buffer->mutex);
1773 
1774 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1775 		/* calculate the pages to update */
1776 		for_each_buffer_cpu(buffer, cpu) {
1777 			cpu_buffer = buffer->buffers[cpu];
1778 
1779 			cpu_buffer->nr_pages_to_update = nr_pages -
1780 							cpu_buffer->nr_pages;
1781 			/*
1782 			 * nothing more to do for removing pages or no update
1783 			 */
1784 			if (cpu_buffer->nr_pages_to_update <= 0)
1785 				continue;
1786 			/*
1787 			 * to add pages, make sure all new pages can be
1788 			 * allocated without receiving ENOMEM
1789 			 */
1790 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1791 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1792 						&cpu_buffer->new_pages, cpu)) {
1793 				/* not enough memory for new pages */
1794 				err = -ENOMEM;
1795 				goto out_err;
1796 			}
1797 		}
1798 
1799 		get_online_cpus();
1800 		/*
1801 		 * Fire off all the required work handlers
1802 		 * We can't schedule on offline CPUs, but it's not necessary
1803 		 * since we can change their buffer sizes without any race.
1804 		 */
1805 		for_each_buffer_cpu(buffer, cpu) {
1806 			cpu_buffer = buffer->buffers[cpu];
1807 			if (!cpu_buffer->nr_pages_to_update)
1808 				continue;
1809 
1810 			/* Can't run something on an offline CPU. */
1811 			if (!cpu_online(cpu)) {
1812 				rb_update_pages(cpu_buffer);
1813 				cpu_buffer->nr_pages_to_update = 0;
1814 			} else {
1815 				schedule_work_on(cpu,
1816 						&cpu_buffer->update_pages_work);
1817 			}
1818 		}
1819 
1820 		/* wait for all the updates to complete */
1821 		for_each_buffer_cpu(buffer, cpu) {
1822 			cpu_buffer = buffer->buffers[cpu];
1823 			if (!cpu_buffer->nr_pages_to_update)
1824 				continue;
1825 
1826 			if (cpu_online(cpu))
1827 				wait_for_completion(&cpu_buffer->update_done);
1828 			cpu_buffer->nr_pages_to_update = 0;
1829 		}
1830 
1831 		put_online_cpus();
1832 	} else {
1833 		/* Make sure this CPU has been initialized */
1834 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1835 			goto out;
1836 
1837 		cpu_buffer = buffer->buffers[cpu_id];
1838 
1839 		if (nr_pages == cpu_buffer->nr_pages)
1840 			goto out;
1841 
1842 		cpu_buffer->nr_pages_to_update = nr_pages -
1843 						cpu_buffer->nr_pages;
1844 
1845 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1846 		if (cpu_buffer->nr_pages_to_update > 0 &&
1847 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1848 					    &cpu_buffer->new_pages, cpu_id)) {
1849 			err = -ENOMEM;
1850 			goto out_err;
1851 		}
1852 
1853 		get_online_cpus();
1854 
1855 		/* Can't run something on an offline CPU. */
1856 		if (!cpu_online(cpu_id))
1857 			rb_update_pages(cpu_buffer);
1858 		else {
1859 			schedule_work_on(cpu_id,
1860 					 &cpu_buffer->update_pages_work);
1861 			wait_for_completion(&cpu_buffer->update_done);
1862 		}
1863 
1864 		cpu_buffer->nr_pages_to_update = 0;
1865 		put_online_cpus();
1866 	}
1867 
1868  out:
1869 	/*
1870 	 * The ring buffer resize can happen with the ring buffer
1871 	 * enabled, so that the update disturbs the tracing as little
1872 	 * as possible. But if the buffer is disabled, we do not need
1873 	 * to worry about that, and we can take the time to verify
1874 	 * that the buffer is not corrupt.
1875 	 */
1876 	if (atomic_read(&buffer->record_disabled)) {
1877 		atomic_inc(&buffer->record_disabled);
1878 		/*
1879 		 * Even though the buffer was disabled, we must make sure
1880 		 * that it is truly disabled before calling rb_check_pages.
1881 		 * There could have been a race between checking
1882 		 * record_disable and incrementing it.
1883 		 */
1884 		synchronize_rcu();
1885 		for_each_buffer_cpu(buffer, cpu) {
1886 			cpu_buffer = buffer->buffers[cpu];
1887 			rb_check_pages(cpu_buffer);
1888 		}
1889 		atomic_dec(&buffer->record_disabled);
1890 	}
1891 
1892 	mutex_unlock(&buffer->mutex);
1893 	return size;
1894 
1895  out_err:
1896 	for_each_buffer_cpu(buffer, cpu) {
1897 		struct buffer_page *bpage, *tmp;
1898 
1899 		cpu_buffer = buffer->buffers[cpu];
1900 		cpu_buffer->nr_pages_to_update = 0;
1901 
1902 		if (list_empty(&cpu_buffer->new_pages))
1903 			continue;
1904 
1905 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1906 					list) {
1907 			list_del_init(&bpage->list);
1908 			free_buffer_page(bpage);
1909 		}
1910 	}
1911 	mutex_unlock(&buffer->mutex);
1912 	return err;
1913 }
1914 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1915 
1916 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1917 {
1918 	mutex_lock(&buffer->mutex);
1919 	if (val)
1920 		buffer->flags |= RB_FL_OVERWRITE;
1921 	else
1922 		buffer->flags &= ~RB_FL_OVERWRITE;
1923 	mutex_unlock(&buffer->mutex);
1924 }
1925 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1926 
1927 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1928 {
1929 	return bpage->page->data + index;
1930 }
1931 
1932 static __always_inline struct ring_buffer_event *
1933 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1934 {
1935 	return __rb_page_index(cpu_buffer->reader_page,
1936 			       cpu_buffer->reader_page->read);
1937 }
1938 
1939 static __always_inline struct ring_buffer_event *
1940 rb_iter_head_event(struct ring_buffer_iter *iter)
1941 {
1942 	return __rb_page_index(iter->head_page, iter->head);
1943 }
1944 
1945 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1946 {
1947 	return local_read(&bpage->page->commit);
1948 }
1949 
1950 /* Size is determined by what has been committed */
1951 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1952 {
1953 	return rb_page_commit(bpage);
1954 }
1955 
1956 static __always_inline unsigned
1957 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1958 {
1959 	return rb_page_commit(cpu_buffer->commit_page);
1960 }
1961 
1962 static __always_inline unsigned
1963 rb_event_index(struct ring_buffer_event *event)
1964 {
1965 	unsigned long addr = (unsigned long)event;
1966 
1967 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1968 }
1969 
1970 static void rb_inc_iter(struct ring_buffer_iter *iter)
1971 {
1972 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1973 
1974 	/*
1975 	 * The iterator could be on the reader page (it starts there).
1976 	 * But the head could have moved, since the reader was
1977 	 * found. Check for this case and assign the iterator
1978 	 * to the head page instead of next.
1979 	 */
1980 	if (iter->head_page == cpu_buffer->reader_page)
1981 		iter->head_page = rb_set_head_page(cpu_buffer);
1982 	else
1983 		rb_inc_page(cpu_buffer, &iter->head_page);
1984 
1985 	iter->read_stamp = iter->head_page->page->time_stamp;
1986 	iter->head = 0;
1987 }
1988 
1989 /*
1990  * rb_handle_head_page - writer hit the head page
1991  *
1992  * Returns: +1 to retry page
1993  *           0 to continue
1994  *          -1 on error
1995  */
1996 static int
1997 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1998 		    struct buffer_page *tail_page,
1999 		    struct buffer_page *next_page)
2000 {
2001 	struct buffer_page *new_head;
2002 	int entries;
2003 	int type;
2004 	int ret;
2005 
2006 	entries = rb_page_entries(next_page);
2007 
2008 	/*
2009 	 * The hard part is here. We need to move the head
2010 	 * forward, and protect against both readers on
2011 	 * other CPUs and writers coming in via interrupts.
2012 	 */
2013 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2014 				       RB_PAGE_HEAD);
2015 
2016 	/*
2017 	 * type can be one of four:
2018 	 *  NORMAL - an interrupt already moved it for us
2019 	 *  HEAD   - we are the first to get here.
2020 	 *  UPDATE - we are the interrupt interrupting
2021 	 *           a current move.
2022 	 *  MOVED  - a reader on another CPU moved the next
2023 	 *           pointer to its reader page. Give up
2024 	 *           and try again.
2025 	 */
2026 
2027 	switch (type) {
2028 	case RB_PAGE_HEAD:
2029 		/*
2030 		 * We changed the head to UPDATE, thus
2031 		 * it is our responsibility to update
2032 		 * the counters.
2033 		 */
2034 		local_add(entries, &cpu_buffer->overrun);
2035 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2036 
2037 		/*
2038 		 * The entries will be zeroed out when we move the
2039 		 * tail page.
2040 		 */
2041 
2042 		/* still more to do */
2043 		break;
2044 
2045 	case RB_PAGE_UPDATE:
2046 		/*
2047 		 * This is an interrupt that interrupt the
2048 		 * previous update. Still more to do.
2049 		 */
2050 		break;
2051 	case RB_PAGE_NORMAL:
2052 		/*
2053 		 * An interrupt came in before the update
2054 		 * and processed this for us.
2055 		 * Nothing left to do.
2056 		 */
2057 		return 1;
2058 	case RB_PAGE_MOVED:
2059 		/*
2060 		 * The reader is on another CPU and just did
2061 		 * a swap with our next_page.
2062 		 * Try again.
2063 		 */
2064 		return 1;
2065 	default:
2066 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2067 		return -1;
2068 	}
2069 
2070 	/*
2071 	 * Now that we are here, the old head pointer is
2072 	 * set to UPDATE. This will keep the reader from
2073 	 * swapping the head page with the reader page.
2074 	 * The reader (on another CPU) will spin till
2075 	 * we are finished.
2076 	 *
2077 	 * We just need to protect against interrupts
2078 	 * doing the job. We will set the next pointer
2079 	 * to HEAD. After that, we set the old pointer
2080 	 * to NORMAL, but only if it was HEAD before.
2081 	 * otherwise we are an interrupt, and only
2082 	 * want the outer most commit to reset it.
2083 	 */
2084 	new_head = next_page;
2085 	rb_inc_page(cpu_buffer, &new_head);
2086 
2087 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2088 				    RB_PAGE_NORMAL);
2089 
2090 	/*
2091 	 * Valid returns are:
2092 	 *  HEAD   - an interrupt came in and already set it.
2093 	 *  NORMAL - One of two things:
2094 	 *            1) We really set it.
2095 	 *            2) A bunch of interrupts came in and moved
2096 	 *               the page forward again.
2097 	 */
2098 	switch (ret) {
2099 	case RB_PAGE_HEAD:
2100 	case RB_PAGE_NORMAL:
2101 		/* OK */
2102 		break;
2103 	default:
2104 		RB_WARN_ON(cpu_buffer, 1);
2105 		return -1;
2106 	}
2107 
2108 	/*
2109 	 * It is possible that an interrupt came in,
2110 	 * set the head up, then more interrupts came in
2111 	 * and moved it again. When we get back here,
2112 	 * the page would have been set to NORMAL but we
2113 	 * just set it back to HEAD.
2114 	 *
2115 	 * How do you detect this? Well, if that happened
2116 	 * the tail page would have moved.
2117 	 */
2118 	if (ret == RB_PAGE_NORMAL) {
2119 		struct buffer_page *buffer_tail_page;
2120 
2121 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2122 		/*
2123 		 * If the tail had moved passed next, then we need
2124 		 * to reset the pointer.
2125 		 */
2126 		if (buffer_tail_page != tail_page &&
2127 		    buffer_tail_page != next_page)
2128 			rb_head_page_set_normal(cpu_buffer, new_head,
2129 						next_page,
2130 						RB_PAGE_HEAD);
2131 	}
2132 
2133 	/*
2134 	 * If this was the outer most commit (the one that
2135 	 * changed the original pointer from HEAD to UPDATE),
2136 	 * then it is up to us to reset it to NORMAL.
2137 	 */
2138 	if (type == RB_PAGE_HEAD) {
2139 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2140 					      tail_page,
2141 					      RB_PAGE_UPDATE);
2142 		if (RB_WARN_ON(cpu_buffer,
2143 			       ret != RB_PAGE_UPDATE))
2144 			return -1;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 static inline void
2151 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2152 	      unsigned long tail, struct rb_event_info *info)
2153 {
2154 	struct buffer_page *tail_page = info->tail_page;
2155 	struct ring_buffer_event *event;
2156 	unsigned long length = info->length;
2157 
2158 	/*
2159 	 * Only the event that crossed the page boundary
2160 	 * must fill the old tail_page with padding.
2161 	 */
2162 	if (tail >= BUF_PAGE_SIZE) {
2163 		/*
2164 		 * If the page was filled, then we still need
2165 		 * to update the real_end. Reset it to zero
2166 		 * and the reader will ignore it.
2167 		 */
2168 		if (tail == BUF_PAGE_SIZE)
2169 			tail_page->real_end = 0;
2170 
2171 		local_sub(length, &tail_page->write);
2172 		return;
2173 	}
2174 
2175 	event = __rb_page_index(tail_page, tail);
2176 
2177 	/* account for padding bytes */
2178 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2179 
2180 	/*
2181 	 * Save the original length to the meta data.
2182 	 * This will be used by the reader to add lost event
2183 	 * counter.
2184 	 */
2185 	tail_page->real_end = tail;
2186 
2187 	/*
2188 	 * If this event is bigger than the minimum size, then
2189 	 * we need to be careful that we don't subtract the
2190 	 * write counter enough to allow another writer to slip
2191 	 * in on this page.
2192 	 * We put in a discarded commit instead, to make sure
2193 	 * that this space is not used again.
2194 	 *
2195 	 * If we are less than the minimum size, we don't need to
2196 	 * worry about it.
2197 	 */
2198 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2199 		/* No room for any events */
2200 
2201 		/* Mark the rest of the page with padding */
2202 		rb_event_set_padding(event);
2203 
2204 		/* Set the write back to the previous setting */
2205 		local_sub(length, &tail_page->write);
2206 		return;
2207 	}
2208 
2209 	/* Put in a discarded event */
2210 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2211 	event->type_len = RINGBUF_TYPE_PADDING;
2212 	/* time delta must be non zero */
2213 	event->time_delta = 1;
2214 
2215 	/* Set write to end of buffer */
2216 	length = (tail + length) - BUF_PAGE_SIZE;
2217 	local_sub(length, &tail_page->write);
2218 }
2219 
2220 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2221 
2222 /*
2223  * This is the slow path, force gcc not to inline it.
2224  */
2225 static noinline struct ring_buffer_event *
2226 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2227 	     unsigned long tail, struct rb_event_info *info)
2228 {
2229 	struct buffer_page *tail_page = info->tail_page;
2230 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2231 	struct ring_buffer *buffer = cpu_buffer->buffer;
2232 	struct buffer_page *next_page;
2233 	int ret;
2234 
2235 	next_page = tail_page;
2236 
2237 	rb_inc_page(cpu_buffer, &next_page);
2238 
2239 	/*
2240 	 * If for some reason, we had an interrupt storm that made
2241 	 * it all the way around the buffer, bail, and warn
2242 	 * about it.
2243 	 */
2244 	if (unlikely(next_page == commit_page)) {
2245 		local_inc(&cpu_buffer->commit_overrun);
2246 		goto out_reset;
2247 	}
2248 
2249 	/*
2250 	 * This is where the fun begins!
2251 	 *
2252 	 * We are fighting against races between a reader that
2253 	 * could be on another CPU trying to swap its reader
2254 	 * page with the buffer head.
2255 	 *
2256 	 * We are also fighting against interrupts coming in and
2257 	 * moving the head or tail on us as well.
2258 	 *
2259 	 * If the next page is the head page then we have filled
2260 	 * the buffer, unless the commit page is still on the
2261 	 * reader page.
2262 	 */
2263 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2264 
2265 		/*
2266 		 * If the commit is not on the reader page, then
2267 		 * move the header page.
2268 		 */
2269 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2270 			/*
2271 			 * If we are not in overwrite mode,
2272 			 * this is easy, just stop here.
2273 			 */
2274 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2275 				local_inc(&cpu_buffer->dropped_events);
2276 				goto out_reset;
2277 			}
2278 
2279 			ret = rb_handle_head_page(cpu_buffer,
2280 						  tail_page,
2281 						  next_page);
2282 			if (ret < 0)
2283 				goto out_reset;
2284 			if (ret)
2285 				goto out_again;
2286 		} else {
2287 			/*
2288 			 * We need to be careful here too. The
2289 			 * commit page could still be on the reader
2290 			 * page. We could have a small buffer, and
2291 			 * have filled up the buffer with events
2292 			 * from interrupts and such, and wrapped.
2293 			 *
2294 			 * Note, if the tail page is also the on the
2295 			 * reader_page, we let it move out.
2296 			 */
2297 			if (unlikely((cpu_buffer->commit_page !=
2298 				      cpu_buffer->tail_page) &&
2299 				     (cpu_buffer->commit_page ==
2300 				      cpu_buffer->reader_page))) {
2301 				local_inc(&cpu_buffer->commit_overrun);
2302 				goto out_reset;
2303 			}
2304 		}
2305 	}
2306 
2307 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2308 
2309  out_again:
2310 
2311 	rb_reset_tail(cpu_buffer, tail, info);
2312 
2313 	/* Commit what we have for now. */
2314 	rb_end_commit(cpu_buffer);
2315 	/* rb_end_commit() decs committing */
2316 	local_inc(&cpu_buffer->committing);
2317 
2318 	/* fail and let the caller try again */
2319 	return ERR_PTR(-EAGAIN);
2320 
2321  out_reset:
2322 	/* reset write */
2323 	rb_reset_tail(cpu_buffer, tail, info);
2324 
2325 	return NULL;
2326 }
2327 
2328 /* Slow path, do not inline */
2329 static noinline struct ring_buffer_event *
2330 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2331 {
2332 	if (abs)
2333 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2334 	else
2335 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2336 
2337 	/* Not the first event on the page, or not delta? */
2338 	if (abs || rb_event_index(event)) {
2339 		event->time_delta = delta & TS_MASK;
2340 		event->array[0] = delta >> TS_SHIFT;
2341 	} else {
2342 		/* nope, just zero it */
2343 		event->time_delta = 0;
2344 		event->array[0] = 0;
2345 	}
2346 
2347 	return skip_time_extend(event);
2348 }
2349 
2350 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2351 				     struct ring_buffer_event *event);
2352 
2353 /**
2354  * rb_update_event - update event type and data
2355  * @event: the event to update
2356  * @type: the type of event
2357  * @length: the size of the event field in the ring buffer
2358  *
2359  * Update the type and data fields of the event. The length
2360  * is the actual size that is written to the ring buffer,
2361  * and with this, we can determine what to place into the
2362  * data field.
2363  */
2364 static void
2365 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2366 		struct ring_buffer_event *event,
2367 		struct rb_event_info *info)
2368 {
2369 	unsigned length = info->length;
2370 	u64 delta = info->delta;
2371 
2372 	/* Only a commit updates the timestamp */
2373 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2374 		delta = 0;
2375 
2376 	/*
2377 	 * If we need to add a timestamp, then we
2378 	 * add it to the start of the reserved space.
2379 	 */
2380 	if (unlikely(info->add_timestamp)) {
2381 		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2382 
2383 		event = rb_add_time_stamp(event, info->delta, abs);
2384 		length -= RB_LEN_TIME_EXTEND;
2385 		delta = 0;
2386 	}
2387 
2388 	event->time_delta = delta;
2389 	length -= RB_EVNT_HDR_SIZE;
2390 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2391 		event->type_len = 0;
2392 		event->array[0] = length;
2393 	} else
2394 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2395 }
2396 
2397 static unsigned rb_calculate_event_length(unsigned length)
2398 {
2399 	struct ring_buffer_event event; /* Used only for sizeof array */
2400 
2401 	/* zero length can cause confusions */
2402 	if (!length)
2403 		length++;
2404 
2405 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2406 		length += sizeof(event.array[0]);
2407 
2408 	length += RB_EVNT_HDR_SIZE;
2409 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2410 
2411 	/*
2412 	 * In case the time delta is larger than the 27 bits for it
2413 	 * in the header, we need to add a timestamp. If another
2414 	 * event comes in when trying to discard this one to increase
2415 	 * the length, then the timestamp will be added in the allocated
2416 	 * space of this event. If length is bigger than the size needed
2417 	 * for the TIME_EXTEND, then padding has to be used. The events
2418 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2419 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2420 	 * As length is a multiple of 4, we only need to worry if it
2421 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2422 	 */
2423 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2424 		length += RB_ALIGNMENT;
2425 
2426 	return length;
2427 }
2428 
2429 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2430 static inline bool sched_clock_stable(void)
2431 {
2432 	return true;
2433 }
2434 #endif
2435 
2436 static inline int
2437 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2438 		  struct ring_buffer_event *event)
2439 {
2440 	unsigned long new_index, old_index;
2441 	struct buffer_page *bpage;
2442 	unsigned long index;
2443 	unsigned long addr;
2444 
2445 	new_index = rb_event_index(event);
2446 	old_index = new_index + rb_event_ts_length(event);
2447 	addr = (unsigned long)event;
2448 	addr &= PAGE_MASK;
2449 
2450 	bpage = READ_ONCE(cpu_buffer->tail_page);
2451 
2452 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2453 		unsigned long write_mask =
2454 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2455 		unsigned long event_length = rb_event_length(event);
2456 		/*
2457 		 * This is on the tail page. It is possible that
2458 		 * a write could come in and move the tail page
2459 		 * and write to the next page. That is fine
2460 		 * because we just shorten what is on this page.
2461 		 */
2462 		old_index += write_mask;
2463 		new_index += write_mask;
2464 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2465 		if (index == old_index) {
2466 			/* update counters */
2467 			local_sub(event_length, &cpu_buffer->entries_bytes);
2468 			return 1;
2469 		}
2470 	}
2471 
2472 	/* could not discard */
2473 	return 0;
2474 }
2475 
2476 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2477 {
2478 	local_inc(&cpu_buffer->committing);
2479 	local_inc(&cpu_buffer->commits);
2480 }
2481 
2482 static __always_inline void
2483 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2484 {
2485 	unsigned long max_count;
2486 
2487 	/*
2488 	 * We only race with interrupts and NMIs on this CPU.
2489 	 * If we own the commit event, then we can commit
2490 	 * all others that interrupted us, since the interruptions
2491 	 * are in stack format (they finish before they come
2492 	 * back to us). This allows us to do a simple loop to
2493 	 * assign the commit to the tail.
2494 	 */
2495  again:
2496 	max_count = cpu_buffer->nr_pages * 100;
2497 
2498 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2499 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2500 			return;
2501 		if (RB_WARN_ON(cpu_buffer,
2502 			       rb_is_reader_page(cpu_buffer->tail_page)))
2503 			return;
2504 		local_set(&cpu_buffer->commit_page->page->commit,
2505 			  rb_page_write(cpu_buffer->commit_page));
2506 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2507 		/* Only update the write stamp if the page has an event */
2508 		if (rb_page_write(cpu_buffer->commit_page))
2509 			cpu_buffer->write_stamp =
2510 				cpu_buffer->commit_page->page->time_stamp;
2511 		/* add barrier to keep gcc from optimizing too much */
2512 		barrier();
2513 	}
2514 	while (rb_commit_index(cpu_buffer) !=
2515 	       rb_page_write(cpu_buffer->commit_page)) {
2516 
2517 		local_set(&cpu_buffer->commit_page->page->commit,
2518 			  rb_page_write(cpu_buffer->commit_page));
2519 		RB_WARN_ON(cpu_buffer,
2520 			   local_read(&cpu_buffer->commit_page->page->commit) &
2521 			   ~RB_WRITE_MASK);
2522 		barrier();
2523 	}
2524 
2525 	/* again, keep gcc from optimizing */
2526 	barrier();
2527 
2528 	/*
2529 	 * If an interrupt came in just after the first while loop
2530 	 * and pushed the tail page forward, we will be left with
2531 	 * a dangling commit that will never go forward.
2532 	 */
2533 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2534 		goto again;
2535 }
2536 
2537 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2538 {
2539 	unsigned long commits;
2540 
2541 	if (RB_WARN_ON(cpu_buffer,
2542 		       !local_read(&cpu_buffer->committing)))
2543 		return;
2544 
2545  again:
2546 	commits = local_read(&cpu_buffer->commits);
2547 	/* synchronize with interrupts */
2548 	barrier();
2549 	if (local_read(&cpu_buffer->committing) == 1)
2550 		rb_set_commit_to_write(cpu_buffer);
2551 
2552 	local_dec(&cpu_buffer->committing);
2553 
2554 	/* synchronize with interrupts */
2555 	barrier();
2556 
2557 	/*
2558 	 * Need to account for interrupts coming in between the
2559 	 * updating of the commit page and the clearing of the
2560 	 * committing counter.
2561 	 */
2562 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2563 	    !local_read(&cpu_buffer->committing)) {
2564 		local_inc(&cpu_buffer->committing);
2565 		goto again;
2566 	}
2567 }
2568 
2569 static inline void rb_event_discard(struct ring_buffer_event *event)
2570 {
2571 	if (extended_time(event))
2572 		event = skip_time_extend(event);
2573 
2574 	/* array[0] holds the actual length for the discarded event */
2575 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2576 	event->type_len = RINGBUF_TYPE_PADDING;
2577 	/* time delta must be non zero */
2578 	if (!event->time_delta)
2579 		event->time_delta = 1;
2580 }
2581 
2582 static __always_inline bool
2583 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2584 		   struct ring_buffer_event *event)
2585 {
2586 	unsigned long addr = (unsigned long)event;
2587 	unsigned long index;
2588 
2589 	index = rb_event_index(event);
2590 	addr &= PAGE_MASK;
2591 
2592 	return cpu_buffer->commit_page->page == (void *)addr &&
2593 		rb_commit_index(cpu_buffer) == index;
2594 }
2595 
2596 static __always_inline void
2597 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2598 		      struct ring_buffer_event *event)
2599 {
2600 	u64 delta;
2601 
2602 	/*
2603 	 * The event first in the commit queue updates the
2604 	 * time stamp.
2605 	 */
2606 	if (rb_event_is_commit(cpu_buffer, event)) {
2607 		/*
2608 		 * A commit event that is first on a page
2609 		 * updates the write timestamp with the page stamp
2610 		 */
2611 		if (!rb_event_index(event))
2612 			cpu_buffer->write_stamp =
2613 				cpu_buffer->commit_page->page->time_stamp;
2614 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2615 			delta = ring_buffer_event_time_stamp(event);
2616 			cpu_buffer->write_stamp += delta;
2617 		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2618 			delta = ring_buffer_event_time_stamp(event);
2619 			cpu_buffer->write_stamp = delta;
2620 		} else
2621 			cpu_buffer->write_stamp += event->time_delta;
2622 	}
2623 }
2624 
2625 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2626 		      struct ring_buffer_event *event)
2627 {
2628 	local_inc(&cpu_buffer->entries);
2629 	rb_update_write_stamp(cpu_buffer, event);
2630 	rb_end_commit(cpu_buffer);
2631 }
2632 
2633 static __always_inline void
2634 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2635 {
2636 	size_t nr_pages;
2637 	size_t dirty;
2638 	size_t full;
2639 
2640 	if (buffer->irq_work.waiters_pending) {
2641 		buffer->irq_work.waiters_pending = false;
2642 		/* irq_work_queue() supplies it's own memory barriers */
2643 		irq_work_queue(&buffer->irq_work.work);
2644 	}
2645 
2646 	if (cpu_buffer->irq_work.waiters_pending) {
2647 		cpu_buffer->irq_work.waiters_pending = false;
2648 		/* irq_work_queue() supplies it's own memory barriers */
2649 		irq_work_queue(&cpu_buffer->irq_work.work);
2650 	}
2651 
2652 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2653 		return;
2654 
2655 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2656 		return;
2657 
2658 	if (!cpu_buffer->irq_work.full_waiters_pending)
2659 		return;
2660 
2661 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2662 
2663 	full = cpu_buffer->shortest_full;
2664 	nr_pages = cpu_buffer->nr_pages;
2665 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2666 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2667 		return;
2668 
2669 	cpu_buffer->irq_work.wakeup_full = true;
2670 	cpu_buffer->irq_work.full_waiters_pending = false;
2671 	/* irq_work_queue() supplies it's own memory barriers */
2672 	irq_work_queue(&cpu_buffer->irq_work.work);
2673 }
2674 
2675 /*
2676  * The lock and unlock are done within a preempt disable section.
2677  * The current_context per_cpu variable can only be modified
2678  * by the current task between lock and unlock. But it can
2679  * be modified more than once via an interrupt. To pass this
2680  * information from the lock to the unlock without having to
2681  * access the 'in_interrupt()' functions again (which do show
2682  * a bit of overhead in something as critical as function tracing,
2683  * we use a bitmask trick.
2684  *
2685  *  bit 0 =  NMI context
2686  *  bit 1 =  IRQ context
2687  *  bit 2 =  SoftIRQ context
2688  *  bit 3 =  normal context.
2689  *
2690  * This works because this is the order of contexts that can
2691  * preempt other contexts. A SoftIRQ never preempts an IRQ
2692  * context.
2693  *
2694  * When the context is determined, the corresponding bit is
2695  * checked and set (if it was set, then a recursion of that context
2696  * happened).
2697  *
2698  * On unlock, we need to clear this bit. To do so, just subtract
2699  * 1 from the current_context and AND it to itself.
2700  *
2701  * (binary)
2702  *  101 - 1 = 100
2703  *  101 & 100 = 100 (clearing bit zero)
2704  *
2705  *  1010 - 1 = 1001
2706  *  1010 & 1001 = 1000 (clearing bit 1)
2707  *
2708  * The least significant bit can be cleared this way, and it
2709  * just so happens that it is the same bit corresponding to
2710  * the current context.
2711  */
2712 
2713 static __always_inline int
2714 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2715 {
2716 	unsigned int val = cpu_buffer->current_context;
2717 	unsigned long pc = preempt_count();
2718 	int bit;
2719 
2720 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2721 		bit = RB_CTX_NORMAL;
2722 	else
2723 		bit = pc & NMI_MASK ? RB_CTX_NMI :
2724 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2725 
2726 	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2727 		return 1;
2728 
2729 	val |= (1 << (bit + cpu_buffer->nest));
2730 	cpu_buffer->current_context = val;
2731 
2732 	return 0;
2733 }
2734 
2735 static __always_inline void
2736 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2737 {
2738 	cpu_buffer->current_context &=
2739 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2740 }
2741 
2742 /* The recursive locking above uses 4 bits */
2743 #define NESTED_BITS 4
2744 
2745 /**
2746  * ring_buffer_nest_start - Allow to trace while nested
2747  * @buffer: The ring buffer to modify
2748  *
2749  * The ring buffer has a safety mechanism to prevent recursion.
2750  * But there may be a case where a trace needs to be done while
2751  * tracing something else. In this case, calling this function
2752  * will allow this function to nest within a currently active
2753  * ring_buffer_lock_reserve().
2754  *
2755  * Call this function before calling another ring_buffer_lock_reserve() and
2756  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2757  */
2758 void ring_buffer_nest_start(struct ring_buffer *buffer)
2759 {
2760 	struct ring_buffer_per_cpu *cpu_buffer;
2761 	int cpu;
2762 
2763 	/* Enabled by ring_buffer_nest_end() */
2764 	preempt_disable_notrace();
2765 	cpu = raw_smp_processor_id();
2766 	cpu_buffer = buffer->buffers[cpu];
2767 	/* This is the shift value for the above recursive locking */
2768 	cpu_buffer->nest += NESTED_BITS;
2769 }
2770 
2771 /**
2772  * ring_buffer_nest_end - Allow to trace while nested
2773  * @buffer: The ring buffer to modify
2774  *
2775  * Must be called after ring_buffer_nest_start() and after the
2776  * ring_buffer_unlock_commit().
2777  */
2778 void ring_buffer_nest_end(struct ring_buffer *buffer)
2779 {
2780 	struct ring_buffer_per_cpu *cpu_buffer;
2781 	int cpu;
2782 
2783 	/* disabled by ring_buffer_nest_start() */
2784 	cpu = raw_smp_processor_id();
2785 	cpu_buffer = buffer->buffers[cpu];
2786 	/* This is the shift value for the above recursive locking */
2787 	cpu_buffer->nest -= NESTED_BITS;
2788 	preempt_enable_notrace();
2789 }
2790 
2791 /**
2792  * ring_buffer_unlock_commit - commit a reserved
2793  * @buffer: The buffer to commit to
2794  * @event: The event pointer to commit.
2795  *
2796  * This commits the data to the ring buffer, and releases any locks held.
2797  *
2798  * Must be paired with ring_buffer_lock_reserve.
2799  */
2800 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2801 			      struct ring_buffer_event *event)
2802 {
2803 	struct ring_buffer_per_cpu *cpu_buffer;
2804 	int cpu = raw_smp_processor_id();
2805 
2806 	cpu_buffer = buffer->buffers[cpu];
2807 
2808 	rb_commit(cpu_buffer, event);
2809 
2810 	rb_wakeups(buffer, cpu_buffer);
2811 
2812 	trace_recursive_unlock(cpu_buffer);
2813 
2814 	preempt_enable_notrace();
2815 
2816 	return 0;
2817 }
2818 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2819 
2820 static noinline void
2821 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2822 		    struct rb_event_info *info)
2823 {
2824 	WARN_ONCE(info->delta > (1ULL << 59),
2825 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2826 		  (unsigned long long)info->delta,
2827 		  (unsigned long long)info->ts,
2828 		  (unsigned long long)cpu_buffer->write_stamp,
2829 		  sched_clock_stable() ? "" :
2830 		  "If you just came from a suspend/resume,\n"
2831 		  "please switch to the trace global clock:\n"
2832 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2833 		  "or add trace_clock=global to the kernel command line\n");
2834 	info->add_timestamp = 1;
2835 }
2836 
2837 static struct ring_buffer_event *
2838 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2839 		  struct rb_event_info *info)
2840 {
2841 	struct ring_buffer_event *event;
2842 	struct buffer_page *tail_page;
2843 	unsigned long tail, write;
2844 
2845 	/*
2846 	 * If the time delta since the last event is too big to
2847 	 * hold in the time field of the event, then we append a
2848 	 * TIME EXTEND event ahead of the data event.
2849 	 */
2850 	if (unlikely(info->add_timestamp))
2851 		info->length += RB_LEN_TIME_EXTEND;
2852 
2853 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2854 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2855 	write = local_add_return(info->length, &tail_page->write);
2856 
2857 	/* set write to only the index of the write */
2858 	write &= RB_WRITE_MASK;
2859 	tail = write - info->length;
2860 
2861 	/*
2862 	 * If this is the first commit on the page, then it has the same
2863 	 * timestamp as the page itself.
2864 	 */
2865 	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2866 		info->delta = 0;
2867 
2868 	/* See if we shot pass the end of this buffer page */
2869 	if (unlikely(write > BUF_PAGE_SIZE))
2870 		return rb_move_tail(cpu_buffer, tail, info);
2871 
2872 	/* We reserved something on the buffer */
2873 
2874 	event = __rb_page_index(tail_page, tail);
2875 	rb_update_event(cpu_buffer, event, info);
2876 
2877 	local_inc(&tail_page->entries);
2878 
2879 	/*
2880 	 * If this is the first commit on the page, then update
2881 	 * its timestamp.
2882 	 */
2883 	if (!tail)
2884 		tail_page->page->time_stamp = info->ts;
2885 
2886 	/* account for these added bytes */
2887 	local_add(info->length, &cpu_buffer->entries_bytes);
2888 
2889 	return event;
2890 }
2891 
2892 static __always_inline struct ring_buffer_event *
2893 rb_reserve_next_event(struct ring_buffer *buffer,
2894 		      struct ring_buffer_per_cpu *cpu_buffer,
2895 		      unsigned long length)
2896 {
2897 	struct ring_buffer_event *event;
2898 	struct rb_event_info info;
2899 	int nr_loops = 0;
2900 	u64 diff;
2901 
2902 	rb_start_commit(cpu_buffer);
2903 
2904 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2905 	/*
2906 	 * Due to the ability to swap a cpu buffer from a buffer
2907 	 * it is possible it was swapped before we committed.
2908 	 * (committing stops a swap). We check for it here and
2909 	 * if it happened, we have to fail the write.
2910 	 */
2911 	barrier();
2912 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2913 		local_dec(&cpu_buffer->committing);
2914 		local_dec(&cpu_buffer->commits);
2915 		return NULL;
2916 	}
2917 #endif
2918 
2919 	info.length = rb_calculate_event_length(length);
2920  again:
2921 	info.add_timestamp = 0;
2922 	info.delta = 0;
2923 
2924 	/*
2925 	 * We allow for interrupts to reenter here and do a trace.
2926 	 * If one does, it will cause this original code to loop
2927 	 * back here. Even with heavy interrupts happening, this
2928 	 * should only happen a few times in a row. If this happens
2929 	 * 1000 times in a row, there must be either an interrupt
2930 	 * storm or we have something buggy.
2931 	 * Bail!
2932 	 */
2933 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2934 		goto out_fail;
2935 
2936 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2937 	diff = info.ts - cpu_buffer->write_stamp;
2938 
2939 	/* make sure this diff is calculated here */
2940 	barrier();
2941 
2942 	if (ring_buffer_time_stamp_abs(buffer)) {
2943 		info.delta = info.ts;
2944 		rb_handle_timestamp(cpu_buffer, &info);
2945 	} else /* Did the write stamp get updated already? */
2946 		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2947 		info.delta = diff;
2948 		if (unlikely(test_time_stamp(info.delta)))
2949 			rb_handle_timestamp(cpu_buffer, &info);
2950 	}
2951 
2952 	event = __rb_reserve_next(cpu_buffer, &info);
2953 
2954 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2955 		if (info.add_timestamp)
2956 			info.length -= RB_LEN_TIME_EXTEND;
2957 		goto again;
2958 	}
2959 
2960 	if (!event)
2961 		goto out_fail;
2962 
2963 	return event;
2964 
2965  out_fail:
2966 	rb_end_commit(cpu_buffer);
2967 	return NULL;
2968 }
2969 
2970 /**
2971  * ring_buffer_lock_reserve - reserve a part of the buffer
2972  * @buffer: the ring buffer to reserve from
2973  * @length: the length of the data to reserve (excluding event header)
2974  *
2975  * Returns a reserved event on the ring buffer to copy directly to.
2976  * The user of this interface will need to get the body to write into
2977  * and can use the ring_buffer_event_data() interface.
2978  *
2979  * The length is the length of the data needed, not the event length
2980  * which also includes the event header.
2981  *
2982  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2983  * If NULL is returned, then nothing has been allocated or locked.
2984  */
2985 struct ring_buffer_event *
2986 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2987 {
2988 	struct ring_buffer_per_cpu *cpu_buffer;
2989 	struct ring_buffer_event *event;
2990 	int cpu;
2991 
2992 	/* If we are tracing schedule, we don't want to recurse */
2993 	preempt_disable_notrace();
2994 
2995 	if (unlikely(atomic_read(&buffer->record_disabled)))
2996 		goto out;
2997 
2998 	cpu = raw_smp_processor_id();
2999 
3000 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3001 		goto out;
3002 
3003 	cpu_buffer = buffer->buffers[cpu];
3004 
3005 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3006 		goto out;
3007 
3008 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3009 		goto out;
3010 
3011 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3012 		goto out;
3013 
3014 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3015 	if (!event)
3016 		goto out_unlock;
3017 
3018 	return event;
3019 
3020  out_unlock:
3021 	trace_recursive_unlock(cpu_buffer);
3022  out:
3023 	preempt_enable_notrace();
3024 	return NULL;
3025 }
3026 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3027 
3028 /*
3029  * Decrement the entries to the page that an event is on.
3030  * The event does not even need to exist, only the pointer
3031  * to the page it is on. This may only be called before the commit
3032  * takes place.
3033  */
3034 static inline void
3035 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3036 		   struct ring_buffer_event *event)
3037 {
3038 	unsigned long addr = (unsigned long)event;
3039 	struct buffer_page *bpage = cpu_buffer->commit_page;
3040 	struct buffer_page *start;
3041 
3042 	addr &= PAGE_MASK;
3043 
3044 	/* Do the likely case first */
3045 	if (likely(bpage->page == (void *)addr)) {
3046 		local_dec(&bpage->entries);
3047 		return;
3048 	}
3049 
3050 	/*
3051 	 * Because the commit page may be on the reader page we
3052 	 * start with the next page and check the end loop there.
3053 	 */
3054 	rb_inc_page(cpu_buffer, &bpage);
3055 	start = bpage;
3056 	do {
3057 		if (bpage->page == (void *)addr) {
3058 			local_dec(&bpage->entries);
3059 			return;
3060 		}
3061 		rb_inc_page(cpu_buffer, &bpage);
3062 	} while (bpage != start);
3063 
3064 	/* commit not part of this buffer?? */
3065 	RB_WARN_ON(cpu_buffer, 1);
3066 }
3067 
3068 /**
3069  * ring_buffer_commit_discard - discard an event that has not been committed
3070  * @buffer: the ring buffer
3071  * @event: non committed event to discard
3072  *
3073  * Sometimes an event that is in the ring buffer needs to be ignored.
3074  * This function lets the user discard an event in the ring buffer
3075  * and then that event will not be read later.
3076  *
3077  * This function only works if it is called before the item has been
3078  * committed. It will try to free the event from the ring buffer
3079  * if another event has not been added behind it.
3080  *
3081  * If another event has been added behind it, it will set the event
3082  * up as discarded, and perform the commit.
3083  *
3084  * If this function is called, do not call ring_buffer_unlock_commit on
3085  * the event.
3086  */
3087 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3088 				struct ring_buffer_event *event)
3089 {
3090 	struct ring_buffer_per_cpu *cpu_buffer;
3091 	int cpu;
3092 
3093 	/* The event is discarded regardless */
3094 	rb_event_discard(event);
3095 
3096 	cpu = smp_processor_id();
3097 	cpu_buffer = buffer->buffers[cpu];
3098 
3099 	/*
3100 	 * This must only be called if the event has not been
3101 	 * committed yet. Thus we can assume that preemption
3102 	 * is still disabled.
3103 	 */
3104 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3105 
3106 	rb_decrement_entry(cpu_buffer, event);
3107 	if (rb_try_to_discard(cpu_buffer, event))
3108 		goto out;
3109 
3110 	/*
3111 	 * The commit is still visible by the reader, so we
3112 	 * must still update the timestamp.
3113 	 */
3114 	rb_update_write_stamp(cpu_buffer, event);
3115  out:
3116 	rb_end_commit(cpu_buffer);
3117 
3118 	trace_recursive_unlock(cpu_buffer);
3119 
3120 	preempt_enable_notrace();
3121 
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3124 
3125 /**
3126  * ring_buffer_write - write data to the buffer without reserving
3127  * @buffer: The ring buffer to write to.
3128  * @length: The length of the data being written (excluding the event header)
3129  * @data: The data to write to the buffer.
3130  *
3131  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3132  * one function. If you already have the data to write to the buffer, it
3133  * may be easier to simply call this function.
3134  *
3135  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3136  * and not the length of the event which would hold the header.
3137  */
3138 int ring_buffer_write(struct ring_buffer *buffer,
3139 		      unsigned long length,
3140 		      void *data)
3141 {
3142 	struct ring_buffer_per_cpu *cpu_buffer;
3143 	struct ring_buffer_event *event;
3144 	void *body;
3145 	int ret = -EBUSY;
3146 	int cpu;
3147 
3148 	preempt_disable_notrace();
3149 
3150 	if (atomic_read(&buffer->record_disabled))
3151 		goto out;
3152 
3153 	cpu = raw_smp_processor_id();
3154 
3155 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3156 		goto out;
3157 
3158 	cpu_buffer = buffer->buffers[cpu];
3159 
3160 	if (atomic_read(&cpu_buffer->record_disabled))
3161 		goto out;
3162 
3163 	if (length > BUF_MAX_DATA_SIZE)
3164 		goto out;
3165 
3166 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3167 		goto out;
3168 
3169 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3170 	if (!event)
3171 		goto out_unlock;
3172 
3173 	body = rb_event_data(event);
3174 
3175 	memcpy(body, data, length);
3176 
3177 	rb_commit(cpu_buffer, event);
3178 
3179 	rb_wakeups(buffer, cpu_buffer);
3180 
3181 	ret = 0;
3182 
3183  out_unlock:
3184 	trace_recursive_unlock(cpu_buffer);
3185 
3186  out:
3187 	preempt_enable_notrace();
3188 
3189 	return ret;
3190 }
3191 EXPORT_SYMBOL_GPL(ring_buffer_write);
3192 
3193 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3194 {
3195 	struct buffer_page *reader = cpu_buffer->reader_page;
3196 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3197 	struct buffer_page *commit = cpu_buffer->commit_page;
3198 
3199 	/* In case of error, head will be NULL */
3200 	if (unlikely(!head))
3201 		return true;
3202 
3203 	return reader->read == rb_page_commit(reader) &&
3204 		(commit == reader ||
3205 		 (commit == head &&
3206 		  head->read == rb_page_commit(commit)));
3207 }
3208 
3209 /**
3210  * ring_buffer_record_disable - stop all writes into the buffer
3211  * @buffer: The ring buffer to stop writes to.
3212  *
3213  * This prevents all writes to the buffer. Any attempt to write
3214  * to the buffer after this will fail and return NULL.
3215  *
3216  * The caller should call synchronize_rcu() after this.
3217  */
3218 void ring_buffer_record_disable(struct ring_buffer *buffer)
3219 {
3220 	atomic_inc(&buffer->record_disabled);
3221 }
3222 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3223 
3224 /**
3225  * ring_buffer_record_enable - enable writes to the buffer
3226  * @buffer: The ring buffer to enable writes
3227  *
3228  * Note, multiple disables will need the same number of enables
3229  * to truly enable the writing (much like preempt_disable).
3230  */
3231 void ring_buffer_record_enable(struct ring_buffer *buffer)
3232 {
3233 	atomic_dec(&buffer->record_disabled);
3234 }
3235 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3236 
3237 /**
3238  * ring_buffer_record_off - stop all writes into the buffer
3239  * @buffer: The ring buffer to stop writes to.
3240  *
3241  * This prevents all writes to the buffer. Any attempt to write
3242  * to the buffer after this will fail and return NULL.
3243  *
3244  * This is different than ring_buffer_record_disable() as
3245  * it works like an on/off switch, where as the disable() version
3246  * must be paired with a enable().
3247  */
3248 void ring_buffer_record_off(struct ring_buffer *buffer)
3249 {
3250 	unsigned int rd;
3251 	unsigned int new_rd;
3252 
3253 	do {
3254 		rd = atomic_read(&buffer->record_disabled);
3255 		new_rd = rd | RB_BUFFER_OFF;
3256 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3257 }
3258 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3259 
3260 /**
3261  * ring_buffer_record_on - restart writes into the buffer
3262  * @buffer: The ring buffer to start writes to.
3263  *
3264  * This enables all writes to the buffer that was disabled by
3265  * ring_buffer_record_off().
3266  *
3267  * This is different than ring_buffer_record_enable() as
3268  * it works like an on/off switch, where as the enable() version
3269  * must be paired with a disable().
3270  */
3271 void ring_buffer_record_on(struct ring_buffer *buffer)
3272 {
3273 	unsigned int rd;
3274 	unsigned int new_rd;
3275 
3276 	do {
3277 		rd = atomic_read(&buffer->record_disabled);
3278 		new_rd = rd & ~RB_BUFFER_OFF;
3279 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3280 }
3281 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3282 
3283 /**
3284  * ring_buffer_record_is_on - return true if the ring buffer can write
3285  * @buffer: The ring buffer to see if write is enabled
3286  *
3287  * Returns true if the ring buffer is in a state that it accepts writes.
3288  */
3289 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3290 {
3291 	return !atomic_read(&buffer->record_disabled);
3292 }
3293 
3294 /**
3295  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3296  * @buffer: The ring buffer to see if write is set enabled
3297  *
3298  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3299  * Note that this does NOT mean it is in a writable state.
3300  *
3301  * It may return true when the ring buffer has been disabled by
3302  * ring_buffer_record_disable(), as that is a temporary disabling of
3303  * the ring buffer.
3304  */
3305 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3306 {
3307 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3308 }
3309 
3310 /**
3311  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3312  * @buffer: The ring buffer to stop writes to.
3313  * @cpu: The CPU buffer to stop
3314  *
3315  * This prevents all writes to the buffer. Any attempt to write
3316  * to the buffer after this will fail and return NULL.
3317  *
3318  * The caller should call synchronize_rcu() after this.
3319  */
3320 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3321 {
3322 	struct ring_buffer_per_cpu *cpu_buffer;
3323 
3324 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3325 		return;
3326 
3327 	cpu_buffer = buffer->buffers[cpu];
3328 	atomic_inc(&cpu_buffer->record_disabled);
3329 }
3330 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3331 
3332 /**
3333  * ring_buffer_record_enable_cpu - enable writes to the buffer
3334  * @buffer: The ring buffer to enable writes
3335  * @cpu: The CPU to enable.
3336  *
3337  * Note, multiple disables will need the same number of enables
3338  * to truly enable the writing (much like preempt_disable).
3339  */
3340 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3341 {
3342 	struct ring_buffer_per_cpu *cpu_buffer;
3343 
3344 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3345 		return;
3346 
3347 	cpu_buffer = buffer->buffers[cpu];
3348 	atomic_dec(&cpu_buffer->record_disabled);
3349 }
3350 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3351 
3352 /*
3353  * The total entries in the ring buffer is the running counter
3354  * of entries entered into the ring buffer, minus the sum of
3355  * the entries read from the ring buffer and the number of
3356  * entries that were overwritten.
3357  */
3358 static inline unsigned long
3359 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3360 {
3361 	return local_read(&cpu_buffer->entries) -
3362 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3363 }
3364 
3365 /**
3366  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3367  * @buffer: The ring buffer
3368  * @cpu: The per CPU buffer to read from.
3369  */
3370 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3371 {
3372 	unsigned long flags;
3373 	struct ring_buffer_per_cpu *cpu_buffer;
3374 	struct buffer_page *bpage;
3375 	u64 ret = 0;
3376 
3377 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3378 		return 0;
3379 
3380 	cpu_buffer = buffer->buffers[cpu];
3381 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3382 	/*
3383 	 * if the tail is on reader_page, oldest time stamp is on the reader
3384 	 * page
3385 	 */
3386 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3387 		bpage = cpu_buffer->reader_page;
3388 	else
3389 		bpage = rb_set_head_page(cpu_buffer);
3390 	if (bpage)
3391 		ret = bpage->page->time_stamp;
3392 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3393 
3394 	return ret;
3395 }
3396 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3397 
3398 /**
3399  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3400  * @buffer: The ring buffer
3401  * @cpu: The per CPU buffer to read from.
3402  */
3403 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3404 {
3405 	struct ring_buffer_per_cpu *cpu_buffer;
3406 	unsigned long ret;
3407 
3408 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3409 		return 0;
3410 
3411 	cpu_buffer = buffer->buffers[cpu];
3412 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3413 
3414 	return ret;
3415 }
3416 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3417 
3418 /**
3419  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3420  * @buffer: The ring buffer
3421  * @cpu: The per CPU buffer to get the entries from.
3422  */
3423 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3424 {
3425 	struct ring_buffer_per_cpu *cpu_buffer;
3426 
3427 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3428 		return 0;
3429 
3430 	cpu_buffer = buffer->buffers[cpu];
3431 
3432 	return rb_num_of_entries(cpu_buffer);
3433 }
3434 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3435 
3436 /**
3437  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3438  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3439  * @buffer: The ring buffer
3440  * @cpu: The per CPU buffer to get the number of overruns from
3441  */
3442 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3443 {
3444 	struct ring_buffer_per_cpu *cpu_buffer;
3445 	unsigned long ret;
3446 
3447 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448 		return 0;
3449 
3450 	cpu_buffer = buffer->buffers[cpu];
3451 	ret = local_read(&cpu_buffer->overrun);
3452 
3453 	return ret;
3454 }
3455 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3456 
3457 /**
3458  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3459  * commits failing due to the buffer wrapping around while there are uncommitted
3460  * events, such as during an interrupt storm.
3461  * @buffer: The ring buffer
3462  * @cpu: The per CPU buffer to get the number of overruns from
3463  */
3464 unsigned long
3465 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3466 {
3467 	struct ring_buffer_per_cpu *cpu_buffer;
3468 	unsigned long ret;
3469 
3470 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3471 		return 0;
3472 
3473 	cpu_buffer = buffer->buffers[cpu];
3474 	ret = local_read(&cpu_buffer->commit_overrun);
3475 
3476 	return ret;
3477 }
3478 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3479 
3480 /**
3481  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3482  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3483  * @buffer: The ring buffer
3484  * @cpu: The per CPU buffer to get the number of overruns from
3485  */
3486 unsigned long
3487 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3488 {
3489 	struct ring_buffer_per_cpu *cpu_buffer;
3490 	unsigned long ret;
3491 
3492 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3493 		return 0;
3494 
3495 	cpu_buffer = buffer->buffers[cpu];
3496 	ret = local_read(&cpu_buffer->dropped_events);
3497 
3498 	return ret;
3499 }
3500 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3501 
3502 /**
3503  * ring_buffer_read_events_cpu - get the number of events successfully read
3504  * @buffer: The ring buffer
3505  * @cpu: The per CPU buffer to get the number of events read
3506  */
3507 unsigned long
3508 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3509 {
3510 	struct ring_buffer_per_cpu *cpu_buffer;
3511 
3512 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3513 		return 0;
3514 
3515 	cpu_buffer = buffer->buffers[cpu];
3516 	return cpu_buffer->read;
3517 }
3518 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3519 
3520 /**
3521  * ring_buffer_entries - get the number of entries in a buffer
3522  * @buffer: The ring buffer
3523  *
3524  * Returns the total number of entries in the ring buffer
3525  * (all CPU entries)
3526  */
3527 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3528 {
3529 	struct ring_buffer_per_cpu *cpu_buffer;
3530 	unsigned long entries = 0;
3531 	int cpu;
3532 
3533 	/* if you care about this being correct, lock the buffer */
3534 	for_each_buffer_cpu(buffer, cpu) {
3535 		cpu_buffer = buffer->buffers[cpu];
3536 		entries += rb_num_of_entries(cpu_buffer);
3537 	}
3538 
3539 	return entries;
3540 }
3541 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3542 
3543 /**
3544  * ring_buffer_overruns - get the number of overruns in buffer
3545  * @buffer: The ring buffer
3546  *
3547  * Returns the total number of overruns in the ring buffer
3548  * (all CPU entries)
3549  */
3550 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3551 {
3552 	struct ring_buffer_per_cpu *cpu_buffer;
3553 	unsigned long overruns = 0;
3554 	int cpu;
3555 
3556 	/* if you care about this being correct, lock the buffer */
3557 	for_each_buffer_cpu(buffer, cpu) {
3558 		cpu_buffer = buffer->buffers[cpu];
3559 		overruns += local_read(&cpu_buffer->overrun);
3560 	}
3561 
3562 	return overruns;
3563 }
3564 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3565 
3566 static void rb_iter_reset(struct ring_buffer_iter *iter)
3567 {
3568 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3569 
3570 	/* Iterator usage is expected to have record disabled */
3571 	iter->head_page = cpu_buffer->reader_page;
3572 	iter->head = cpu_buffer->reader_page->read;
3573 
3574 	iter->cache_reader_page = iter->head_page;
3575 	iter->cache_read = cpu_buffer->read;
3576 
3577 	if (iter->head)
3578 		iter->read_stamp = cpu_buffer->read_stamp;
3579 	else
3580 		iter->read_stamp = iter->head_page->page->time_stamp;
3581 }
3582 
3583 /**
3584  * ring_buffer_iter_reset - reset an iterator
3585  * @iter: The iterator to reset
3586  *
3587  * Resets the iterator, so that it will start from the beginning
3588  * again.
3589  */
3590 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3591 {
3592 	struct ring_buffer_per_cpu *cpu_buffer;
3593 	unsigned long flags;
3594 
3595 	if (!iter)
3596 		return;
3597 
3598 	cpu_buffer = iter->cpu_buffer;
3599 
3600 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3601 	rb_iter_reset(iter);
3602 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3603 }
3604 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3605 
3606 /**
3607  * ring_buffer_iter_empty - check if an iterator has no more to read
3608  * @iter: The iterator to check
3609  */
3610 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3611 {
3612 	struct ring_buffer_per_cpu *cpu_buffer;
3613 	struct buffer_page *reader;
3614 	struct buffer_page *head_page;
3615 	struct buffer_page *commit_page;
3616 	unsigned commit;
3617 
3618 	cpu_buffer = iter->cpu_buffer;
3619 
3620 	/* Remember, trace recording is off when iterator is in use */
3621 	reader = cpu_buffer->reader_page;
3622 	head_page = cpu_buffer->head_page;
3623 	commit_page = cpu_buffer->commit_page;
3624 	commit = rb_page_commit(commit_page);
3625 
3626 	return ((iter->head_page == commit_page && iter->head == commit) ||
3627 		(iter->head_page == reader && commit_page == head_page &&
3628 		 head_page->read == commit &&
3629 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3630 }
3631 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3632 
3633 static void
3634 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3635 		     struct ring_buffer_event *event)
3636 {
3637 	u64 delta;
3638 
3639 	switch (event->type_len) {
3640 	case RINGBUF_TYPE_PADDING:
3641 		return;
3642 
3643 	case RINGBUF_TYPE_TIME_EXTEND:
3644 		delta = ring_buffer_event_time_stamp(event);
3645 		cpu_buffer->read_stamp += delta;
3646 		return;
3647 
3648 	case RINGBUF_TYPE_TIME_STAMP:
3649 		delta = ring_buffer_event_time_stamp(event);
3650 		cpu_buffer->read_stamp = delta;
3651 		return;
3652 
3653 	case RINGBUF_TYPE_DATA:
3654 		cpu_buffer->read_stamp += event->time_delta;
3655 		return;
3656 
3657 	default:
3658 		BUG();
3659 	}
3660 	return;
3661 }
3662 
3663 static void
3664 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3665 			  struct ring_buffer_event *event)
3666 {
3667 	u64 delta;
3668 
3669 	switch (event->type_len) {
3670 	case RINGBUF_TYPE_PADDING:
3671 		return;
3672 
3673 	case RINGBUF_TYPE_TIME_EXTEND:
3674 		delta = ring_buffer_event_time_stamp(event);
3675 		iter->read_stamp += delta;
3676 		return;
3677 
3678 	case RINGBUF_TYPE_TIME_STAMP:
3679 		delta = ring_buffer_event_time_stamp(event);
3680 		iter->read_stamp = delta;
3681 		return;
3682 
3683 	case RINGBUF_TYPE_DATA:
3684 		iter->read_stamp += event->time_delta;
3685 		return;
3686 
3687 	default:
3688 		BUG();
3689 	}
3690 	return;
3691 }
3692 
3693 static struct buffer_page *
3694 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3695 {
3696 	struct buffer_page *reader = NULL;
3697 	unsigned long overwrite;
3698 	unsigned long flags;
3699 	int nr_loops = 0;
3700 	int ret;
3701 
3702 	local_irq_save(flags);
3703 	arch_spin_lock(&cpu_buffer->lock);
3704 
3705  again:
3706 	/*
3707 	 * This should normally only loop twice. But because the
3708 	 * start of the reader inserts an empty page, it causes
3709 	 * a case where we will loop three times. There should be no
3710 	 * reason to loop four times (that I know of).
3711 	 */
3712 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3713 		reader = NULL;
3714 		goto out;
3715 	}
3716 
3717 	reader = cpu_buffer->reader_page;
3718 
3719 	/* If there's more to read, return this page */
3720 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3721 		goto out;
3722 
3723 	/* Never should we have an index greater than the size */
3724 	if (RB_WARN_ON(cpu_buffer,
3725 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3726 		goto out;
3727 
3728 	/* check if we caught up to the tail */
3729 	reader = NULL;
3730 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3731 		goto out;
3732 
3733 	/* Don't bother swapping if the ring buffer is empty */
3734 	if (rb_num_of_entries(cpu_buffer) == 0)
3735 		goto out;
3736 
3737 	/*
3738 	 * Reset the reader page to size zero.
3739 	 */
3740 	local_set(&cpu_buffer->reader_page->write, 0);
3741 	local_set(&cpu_buffer->reader_page->entries, 0);
3742 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3743 	cpu_buffer->reader_page->real_end = 0;
3744 
3745  spin:
3746 	/*
3747 	 * Splice the empty reader page into the list around the head.
3748 	 */
3749 	reader = rb_set_head_page(cpu_buffer);
3750 	if (!reader)
3751 		goto out;
3752 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3753 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3754 
3755 	/*
3756 	 * cpu_buffer->pages just needs to point to the buffer, it
3757 	 *  has no specific buffer page to point to. Lets move it out
3758 	 *  of our way so we don't accidentally swap it.
3759 	 */
3760 	cpu_buffer->pages = reader->list.prev;
3761 
3762 	/* The reader page will be pointing to the new head */
3763 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3764 
3765 	/*
3766 	 * We want to make sure we read the overruns after we set up our
3767 	 * pointers to the next object. The writer side does a
3768 	 * cmpxchg to cross pages which acts as the mb on the writer
3769 	 * side. Note, the reader will constantly fail the swap
3770 	 * while the writer is updating the pointers, so this
3771 	 * guarantees that the overwrite recorded here is the one we
3772 	 * want to compare with the last_overrun.
3773 	 */
3774 	smp_mb();
3775 	overwrite = local_read(&(cpu_buffer->overrun));
3776 
3777 	/*
3778 	 * Here's the tricky part.
3779 	 *
3780 	 * We need to move the pointer past the header page.
3781 	 * But we can only do that if a writer is not currently
3782 	 * moving it. The page before the header page has the
3783 	 * flag bit '1' set if it is pointing to the page we want.
3784 	 * but if the writer is in the process of moving it
3785 	 * than it will be '2' or already moved '0'.
3786 	 */
3787 
3788 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3789 
3790 	/*
3791 	 * If we did not convert it, then we must try again.
3792 	 */
3793 	if (!ret)
3794 		goto spin;
3795 
3796 	/*
3797 	 * Yay! We succeeded in replacing the page.
3798 	 *
3799 	 * Now make the new head point back to the reader page.
3800 	 */
3801 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3802 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3803 
3804 	local_inc(&cpu_buffer->pages_read);
3805 
3806 	/* Finally update the reader page to the new head */
3807 	cpu_buffer->reader_page = reader;
3808 	cpu_buffer->reader_page->read = 0;
3809 
3810 	if (overwrite != cpu_buffer->last_overrun) {
3811 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3812 		cpu_buffer->last_overrun = overwrite;
3813 	}
3814 
3815 	goto again;
3816 
3817  out:
3818 	/* Update the read_stamp on the first event */
3819 	if (reader && reader->read == 0)
3820 		cpu_buffer->read_stamp = reader->page->time_stamp;
3821 
3822 	arch_spin_unlock(&cpu_buffer->lock);
3823 	local_irq_restore(flags);
3824 
3825 	return reader;
3826 }
3827 
3828 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3829 {
3830 	struct ring_buffer_event *event;
3831 	struct buffer_page *reader;
3832 	unsigned length;
3833 
3834 	reader = rb_get_reader_page(cpu_buffer);
3835 
3836 	/* This function should not be called when buffer is empty */
3837 	if (RB_WARN_ON(cpu_buffer, !reader))
3838 		return;
3839 
3840 	event = rb_reader_event(cpu_buffer);
3841 
3842 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3843 		cpu_buffer->read++;
3844 
3845 	rb_update_read_stamp(cpu_buffer, event);
3846 
3847 	length = rb_event_length(event);
3848 	cpu_buffer->reader_page->read += length;
3849 }
3850 
3851 static void rb_advance_iter(struct ring_buffer_iter *iter)
3852 {
3853 	struct ring_buffer_per_cpu *cpu_buffer;
3854 	struct ring_buffer_event *event;
3855 	unsigned length;
3856 
3857 	cpu_buffer = iter->cpu_buffer;
3858 
3859 	/*
3860 	 * Check if we are at the end of the buffer.
3861 	 */
3862 	if (iter->head >= rb_page_size(iter->head_page)) {
3863 		/* discarded commits can make the page empty */
3864 		if (iter->head_page == cpu_buffer->commit_page)
3865 			return;
3866 		rb_inc_iter(iter);
3867 		return;
3868 	}
3869 
3870 	event = rb_iter_head_event(iter);
3871 
3872 	length = rb_event_length(event);
3873 
3874 	/*
3875 	 * This should not be called to advance the header if we are
3876 	 * at the tail of the buffer.
3877 	 */
3878 	if (RB_WARN_ON(cpu_buffer,
3879 		       (iter->head_page == cpu_buffer->commit_page) &&
3880 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3881 		return;
3882 
3883 	rb_update_iter_read_stamp(iter, event);
3884 
3885 	iter->head += length;
3886 
3887 	/* check for end of page padding */
3888 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3889 	    (iter->head_page != cpu_buffer->commit_page))
3890 		rb_inc_iter(iter);
3891 }
3892 
3893 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3894 {
3895 	return cpu_buffer->lost_events;
3896 }
3897 
3898 static struct ring_buffer_event *
3899 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3900 	       unsigned long *lost_events)
3901 {
3902 	struct ring_buffer_event *event;
3903 	struct buffer_page *reader;
3904 	int nr_loops = 0;
3905 
3906 	if (ts)
3907 		*ts = 0;
3908  again:
3909 	/*
3910 	 * We repeat when a time extend is encountered.
3911 	 * Since the time extend is always attached to a data event,
3912 	 * we should never loop more than once.
3913 	 * (We never hit the following condition more than twice).
3914 	 */
3915 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3916 		return NULL;
3917 
3918 	reader = rb_get_reader_page(cpu_buffer);
3919 	if (!reader)
3920 		return NULL;
3921 
3922 	event = rb_reader_event(cpu_buffer);
3923 
3924 	switch (event->type_len) {
3925 	case RINGBUF_TYPE_PADDING:
3926 		if (rb_null_event(event))
3927 			RB_WARN_ON(cpu_buffer, 1);
3928 		/*
3929 		 * Because the writer could be discarding every
3930 		 * event it creates (which would probably be bad)
3931 		 * if we were to go back to "again" then we may never
3932 		 * catch up, and will trigger the warn on, or lock
3933 		 * the box. Return the padding, and we will release
3934 		 * the current locks, and try again.
3935 		 */
3936 		return event;
3937 
3938 	case RINGBUF_TYPE_TIME_EXTEND:
3939 		/* Internal data, OK to advance */
3940 		rb_advance_reader(cpu_buffer);
3941 		goto again;
3942 
3943 	case RINGBUF_TYPE_TIME_STAMP:
3944 		if (ts) {
3945 			*ts = ring_buffer_event_time_stamp(event);
3946 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3947 							 cpu_buffer->cpu, ts);
3948 		}
3949 		/* Internal data, OK to advance */
3950 		rb_advance_reader(cpu_buffer);
3951 		goto again;
3952 
3953 	case RINGBUF_TYPE_DATA:
3954 		if (ts && !(*ts)) {
3955 			*ts = cpu_buffer->read_stamp + event->time_delta;
3956 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3957 							 cpu_buffer->cpu, ts);
3958 		}
3959 		if (lost_events)
3960 			*lost_events = rb_lost_events(cpu_buffer);
3961 		return event;
3962 
3963 	default:
3964 		BUG();
3965 	}
3966 
3967 	return NULL;
3968 }
3969 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3970 
3971 static struct ring_buffer_event *
3972 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3973 {
3974 	struct ring_buffer *buffer;
3975 	struct ring_buffer_per_cpu *cpu_buffer;
3976 	struct ring_buffer_event *event;
3977 	int nr_loops = 0;
3978 
3979 	if (ts)
3980 		*ts = 0;
3981 
3982 	cpu_buffer = iter->cpu_buffer;
3983 	buffer = cpu_buffer->buffer;
3984 
3985 	/*
3986 	 * Check if someone performed a consuming read to
3987 	 * the buffer. A consuming read invalidates the iterator
3988 	 * and we need to reset the iterator in this case.
3989 	 */
3990 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3991 		     iter->cache_reader_page != cpu_buffer->reader_page))
3992 		rb_iter_reset(iter);
3993 
3994  again:
3995 	if (ring_buffer_iter_empty(iter))
3996 		return NULL;
3997 
3998 	/*
3999 	 * We repeat when a time extend is encountered or we hit
4000 	 * the end of the page. Since the time extend is always attached
4001 	 * to a data event, we should never loop more than three times.
4002 	 * Once for going to next page, once on time extend, and
4003 	 * finally once to get the event.
4004 	 * (We never hit the following condition more than thrice).
4005 	 */
4006 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
4007 		return NULL;
4008 
4009 	if (rb_per_cpu_empty(cpu_buffer))
4010 		return NULL;
4011 
4012 	if (iter->head >= rb_page_size(iter->head_page)) {
4013 		rb_inc_iter(iter);
4014 		goto again;
4015 	}
4016 
4017 	event = rb_iter_head_event(iter);
4018 
4019 	switch (event->type_len) {
4020 	case RINGBUF_TYPE_PADDING:
4021 		if (rb_null_event(event)) {
4022 			rb_inc_iter(iter);
4023 			goto again;
4024 		}
4025 		rb_advance_iter(iter);
4026 		return event;
4027 
4028 	case RINGBUF_TYPE_TIME_EXTEND:
4029 		/* Internal data, OK to advance */
4030 		rb_advance_iter(iter);
4031 		goto again;
4032 
4033 	case RINGBUF_TYPE_TIME_STAMP:
4034 		if (ts) {
4035 			*ts = ring_buffer_event_time_stamp(event);
4036 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4037 							 cpu_buffer->cpu, ts);
4038 		}
4039 		/* Internal data, OK to advance */
4040 		rb_advance_iter(iter);
4041 		goto again;
4042 
4043 	case RINGBUF_TYPE_DATA:
4044 		if (ts && !(*ts)) {
4045 			*ts = iter->read_stamp + event->time_delta;
4046 			ring_buffer_normalize_time_stamp(buffer,
4047 							 cpu_buffer->cpu, ts);
4048 		}
4049 		return event;
4050 
4051 	default:
4052 		BUG();
4053 	}
4054 
4055 	return NULL;
4056 }
4057 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4058 
4059 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4060 {
4061 	if (likely(!in_nmi())) {
4062 		raw_spin_lock(&cpu_buffer->reader_lock);
4063 		return true;
4064 	}
4065 
4066 	/*
4067 	 * If an NMI die dumps out the content of the ring buffer
4068 	 * trylock must be used to prevent a deadlock if the NMI
4069 	 * preempted a task that holds the ring buffer locks. If
4070 	 * we get the lock then all is fine, if not, then continue
4071 	 * to do the read, but this can corrupt the ring buffer,
4072 	 * so it must be permanently disabled from future writes.
4073 	 * Reading from NMI is a oneshot deal.
4074 	 */
4075 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4076 		return true;
4077 
4078 	/* Continue without locking, but disable the ring buffer */
4079 	atomic_inc(&cpu_buffer->record_disabled);
4080 	return false;
4081 }
4082 
4083 static inline void
4084 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4085 {
4086 	if (likely(locked))
4087 		raw_spin_unlock(&cpu_buffer->reader_lock);
4088 	return;
4089 }
4090 
4091 /**
4092  * ring_buffer_peek - peek at the next event to be read
4093  * @buffer: The ring buffer to read
4094  * @cpu: The cpu to peak at
4095  * @ts: The timestamp counter of this event.
4096  * @lost_events: a variable to store if events were lost (may be NULL)
4097  *
4098  * This will return the event that will be read next, but does
4099  * not consume the data.
4100  */
4101 struct ring_buffer_event *
4102 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4103 		 unsigned long *lost_events)
4104 {
4105 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4106 	struct ring_buffer_event *event;
4107 	unsigned long flags;
4108 	bool dolock;
4109 
4110 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4111 		return NULL;
4112 
4113  again:
4114 	local_irq_save(flags);
4115 	dolock = rb_reader_lock(cpu_buffer);
4116 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4117 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4118 		rb_advance_reader(cpu_buffer);
4119 	rb_reader_unlock(cpu_buffer, dolock);
4120 	local_irq_restore(flags);
4121 
4122 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4123 		goto again;
4124 
4125 	return event;
4126 }
4127 
4128 /**
4129  * ring_buffer_iter_peek - peek at the next event to be read
4130  * @iter: The ring buffer iterator
4131  * @ts: The timestamp counter of this event.
4132  *
4133  * This will return the event that will be read next, but does
4134  * not increment the iterator.
4135  */
4136 struct ring_buffer_event *
4137 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4138 {
4139 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4140 	struct ring_buffer_event *event;
4141 	unsigned long flags;
4142 
4143  again:
4144 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4145 	event = rb_iter_peek(iter, ts);
4146 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4147 
4148 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4149 		goto again;
4150 
4151 	return event;
4152 }
4153 
4154 /**
4155  * ring_buffer_consume - return an event and consume it
4156  * @buffer: The ring buffer to get the next event from
4157  * @cpu: the cpu to read the buffer from
4158  * @ts: a variable to store the timestamp (may be NULL)
4159  * @lost_events: a variable to store if events were lost (may be NULL)
4160  *
4161  * Returns the next event in the ring buffer, and that event is consumed.
4162  * Meaning, that sequential reads will keep returning a different event,
4163  * and eventually empty the ring buffer if the producer is slower.
4164  */
4165 struct ring_buffer_event *
4166 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4167 		    unsigned long *lost_events)
4168 {
4169 	struct ring_buffer_per_cpu *cpu_buffer;
4170 	struct ring_buffer_event *event = NULL;
4171 	unsigned long flags;
4172 	bool dolock;
4173 
4174  again:
4175 	/* might be called in atomic */
4176 	preempt_disable();
4177 
4178 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4179 		goto out;
4180 
4181 	cpu_buffer = buffer->buffers[cpu];
4182 	local_irq_save(flags);
4183 	dolock = rb_reader_lock(cpu_buffer);
4184 
4185 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4186 	if (event) {
4187 		cpu_buffer->lost_events = 0;
4188 		rb_advance_reader(cpu_buffer);
4189 	}
4190 
4191 	rb_reader_unlock(cpu_buffer, dolock);
4192 	local_irq_restore(flags);
4193 
4194  out:
4195 	preempt_enable();
4196 
4197 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4198 		goto again;
4199 
4200 	return event;
4201 }
4202 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4203 
4204 /**
4205  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4206  * @buffer: The ring buffer to read from
4207  * @cpu: The cpu buffer to iterate over
4208  *
4209  * This performs the initial preparations necessary to iterate
4210  * through the buffer.  Memory is allocated, buffer recording
4211  * is disabled, and the iterator pointer is returned to the caller.
4212  *
4213  * Disabling buffer recording prevents the reading from being
4214  * corrupted. This is not a consuming read, so a producer is not
4215  * expected.
4216  *
4217  * After a sequence of ring_buffer_read_prepare calls, the user is
4218  * expected to make at least one call to ring_buffer_read_prepare_sync.
4219  * Afterwards, ring_buffer_read_start is invoked to get things going
4220  * for real.
4221  *
4222  * This overall must be paired with ring_buffer_read_finish.
4223  */
4224 struct ring_buffer_iter *
4225 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4226 {
4227 	struct ring_buffer_per_cpu *cpu_buffer;
4228 	struct ring_buffer_iter *iter;
4229 
4230 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4231 		return NULL;
4232 
4233 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4234 	if (!iter)
4235 		return NULL;
4236 
4237 	cpu_buffer = buffer->buffers[cpu];
4238 
4239 	iter->cpu_buffer = cpu_buffer;
4240 
4241 	atomic_inc(&buffer->resize_disabled);
4242 	atomic_inc(&cpu_buffer->record_disabled);
4243 
4244 	return iter;
4245 }
4246 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4247 
4248 /**
4249  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4250  *
4251  * All previously invoked ring_buffer_read_prepare calls to prepare
4252  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4253  * calls on those iterators are allowed.
4254  */
4255 void
4256 ring_buffer_read_prepare_sync(void)
4257 {
4258 	synchronize_rcu();
4259 }
4260 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4261 
4262 /**
4263  * ring_buffer_read_start - start a non consuming read of the buffer
4264  * @iter: The iterator returned by ring_buffer_read_prepare
4265  *
4266  * This finalizes the startup of an iteration through the buffer.
4267  * The iterator comes from a call to ring_buffer_read_prepare and
4268  * an intervening ring_buffer_read_prepare_sync must have been
4269  * performed.
4270  *
4271  * Must be paired with ring_buffer_read_finish.
4272  */
4273 void
4274 ring_buffer_read_start(struct ring_buffer_iter *iter)
4275 {
4276 	struct ring_buffer_per_cpu *cpu_buffer;
4277 	unsigned long flags;
4278 
4279 	if (!iter)
4280 		return;
4281 
4282 	cpu_buffer = iter->cpu_buffer;
4283 
4284 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4285 	arch_spin_lock(&cpu_buffer->lock);
4286 	rb_iter_reset(iter);
4287 	arch_spin_unlock(&cpu_buffer->lock);
4288 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4289 }
4290 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4291 
4292 /**
4293  * ring_buffer_read_finish - finish reading the iterator of the buffer
4294  * @iter: The iterator retrieved by ring_buffer_start
4295  *
4296  * This re-enables the recording to the buffer, and frees the
4297  * iterator.
4298  */
4299 void
4300 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4301 {
4302 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4303 	unsigned long flags;
4304 
4305 	/*
4306 	 * Ring buffer is disabled from recording, here's a good place
4307 	 * to check the integrity of the ring buffer.
4308 	 * Must prevent readers from trying to read, as the check
4309 	 * clears the HEAD page and readers require it.
4310 	 */
4311 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4312 	rb_check_pages(cpu_buffer);
4313 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4314 
4315 	atomic_dec(&cpu_buffer->record_disabled);
4316 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4317 	kfree(iter);
4318 }
4319 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4320 
4321 /**
4322  * ring_buffer_read - read the next item in the ring buffer by the iterator
4323  * @iter: The ring buffer iterator
4324  * @ts: The time stamp of the event read.
4325  *
4326  * This reads the next event in the ring buffer and increments the iterator.
4327  */
4328 struct ring_buffer_event *
4329 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4330 {
4331 	struct ring_buffer_event *event;
4332 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4333 	unsigned long flags;
4334 
4335 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4336  again:
4337 	event = rb_iter_peek(iter, ts);
4338 	if (!event)
4339 		goto out;
4340 
4341 	if (event->type_len == RINGBUF_TYPE_PADDING)
4342 		goto again;
4343 
4344 	rb_advance_iter(iter);
4345  out:
4346 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4347 
4348 	return event;
4349 }
4350 EXPORT_SYMBOL_GPL(ring_buffer_read);
4351 
4352 /**
4353  * ring_buffer_size - return the size of the ring buffer (in bytes)
4354  * @buffer: The ring buffer.
4355  */
4356 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4357 {
4358 	/*
4359 	 * Earlier, this method returned
4360 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4361 	 * Since the nr_pages field is now removed, we have converted this to
4362 	 * return the per cpu buffer value.
4363 	 */
4364 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4365 		return 0;
4366 
4367 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4368 }
4369 EXPORT_SYMBOL_GPL(ring_buffer_size);
4370 
4371 static void
4372 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4373 {
4374 	rb_head_page_deactivate(cpu_buffer);
4375 
4376 	cpu_buffer->head_page
4377 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4378 	local_set(&cpu_buffer->head_page->write, 0);
4379 	local_set(&cpu_buffer->head_page->entries, 0);
4380 	local_set(&cpu_buffer->head_page->page->commit, 0);
4381 
4382 	cpu_buffer->head_page->read = 0;
4383 
4384 	cpu_buffer->tail_page = cpu_buffer->head_page;
4385 	cpu_buffer->commit_page = cpu_buffer->head_page;
4386 
4387 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4388 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4389 	local_set(&cpu_buffer->reader_page->write, 0);
4390 	local_set(&cpu_buffer->reader_page->entries, 0);
4391 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4392 	cpu_buffer->reader_page->read = 0;
4393 
4394 	local_set(&cpu_buffer->entries_bytes, 0);
4395 	local_set(&cpu_buffer->overrun, 0);
4396 	local_set(&cpu_buffer->commit_overrun, 0);
4397 	local_set(&cpu_buffer->dropped_events, 0);
4398 	local_set(&cpu_buffer->entries, 0);
4399 	local_set(&cpu_buffer->committing, 0);
4400 	local_set(&cpu_buffer->commits, 0);
4401 	local_set(&cpu_buffer->pages_touched, 0);
4402 	local_set(&cpu_buffer->pages_read, 0);
4403 	cpu_buffer->last_pages_touch = 0;
4404 	cpu_buffer->shortest_full = 0;
4405 	cpu_buffer->read = 0;
4406 	cpu_buffer->read_bytes = 0;
4407 
4408 	cpu_buffer->write_stamp = 0;
4409 	cpu_buffer->read_stamp = 0;
4410 
4411 	cpu_buffer->lost_events = 0;
4412 	cpu_buffer->last_overrun = 0;
4413 
4414 	rb_head_page_activate(cpu_buffer);
4415 }
4416 
4417 /**
4418  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4419  * @buffer: The ring buffer to reset a per cpu buffer of
4420  * @cpu: The CPU buffer to be reset
4421  */
4422 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4423 {
4424 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4425 	unsigned long flags;
4426 
4427 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4428 		return;
4429 
4430 	atomic_inc(&buffer->resize_disabled);
4431 	atomic_inc(&cpu_buffer->record_disabled);
4432 
4433 	/* Make sure all commits have finished */
4434 	synchronize_rcu();
4435 
4436 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4437 
4438 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4439 		goto out;
4440 
4441 	arch_spin_lock(&cpu_buffer->lock);
4442 
4443 	rb_reset_cpu(cpu_buffer);
4444 
4445 	arch_spin_unlock(&cpu_buffer->lock);
4446 
4447  out:
4448 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4449 
4450 	atomic_dec(&cpu_buffer->record_disabled);
4451 	atomic_dec(&buffer->resize_disabled);
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4454 
4455 /**
4456  * ring_buffer_reset - reset a ring buffer
4457  * @buffer: The ring buffer to reset all cpu buffers
4458  */
4459 void ring_buffer_reset(struct ring_buffer *buffer)
4460 {
4461 	int cpu;
4462 
4463 	for_each_buffer_cpu(buffer, cpu)
4464 		ring_buffer_reset_cpu(buffer, cpu);
4465 }
4466 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4467 
4468 /**
4469  * rind_buffer_empty - is the ring buffer empty?
4470  * @buffer: The ring buffer to test
4471  */
4472 bool ring_buffer_empty(struct ring_buffer *buffer)
4473 {
4474 	struct ring_buffer_per_cpu *cpu_buffer;
4475 	unsigned long flags;
4476 	bool dolock;
4477 	int cpu;
4478 	int ret;
4479 
4480 	/* yes this is racy, but if you don't like the race, lock the buffer */
4481 	for_each_buffer_cpu(buffer, cpu) {
4482 		cpu_buffer = buffer->buffers[cpu];
4483 		local_irq_save(flags);
4484 		dolock = rb_reader_lock(cpu_buffer);
4485 		ret = rb_per_cpu_empty(cpu_buffer);
4486 		rb_reader_unlock(cpu_buffer, dolock);
4487 		local_irq_restore(flags);
4488 
4489 		if (!ret)
4490 			return false;
4491 	}
4492 
4493 	return true;
4494 }
4495 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4496 
4497 /**
4498  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4499  * @buffer: The ring buffer
4500  * @cpu: The CPU buffer to test
4501  */
4502 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4503 {
4504 	struct ring_buffer_per_cpu *cpu_buffer;
4505 	unsigned long flags;
4506 	bool dolock;
4507 	int ret;
4508 
4509 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4510 		return true;
4511 
4512 	cpu_buffer = buffer->buffers[cpu];
4513 	local_irq_save(flags);
4514 	dolock = rb_reader_lock(cpu_buffer);
4515 	ret = rb_per_cpu_empty(cpu_buffer);
4516 	rb_reader_unlock(cpu_buffer, dolock);
4517 	local_irq_restore(flags);
4518 
4519 	return ret;
4520 }
4521 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4522 
4523 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4524 /**
4525  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4526  * @buffer_a: One buffer to swap with
4527  * @buffer_b: The other buffer to swap with
4528  *
4529  * This function is useful for tracers that want to take a "snapshot"
4530  * of a CPU buffer and has another back up buffer lying around.
4531  * it is expected that the tracer handles the cpu buffer not being
4532  * used at the moment.
4533  */
4534 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4535 			 struct ring_buffer *buffer_b, int cpu)
4536 {
4537 	struct ring_buffer_per_cpu *cpu_buffer_a;
4538 	struct ring_buffer_per_cpu *cpu_buffer_b;
4539 	int ret = -EINVAL;
4540 
4541 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4542 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4543 		goto out;
4544 
4545 	cpu_buffer_a = buffer_a->buffers[cpu];
4546 	cpu_buffer_b = buffer_b->buffers[cpu];
4547 
4548 	/* At least make sure the two buffers are somewhat the same */
4549 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4550 		goto out;
4551 
4552 	ret = -EAGAIN;
4553 
4554 	if (atomic_read(&buffer_a->record_disabled))
4555 		goto out;
4556 
4557 	if (atomic_read(&buffer_b->record_disabled))
4558 		goto out;
4559 
4560 	if (atomic_read(&cpu_buffer_a->record_disabled))
4561 		goto out;
4562 
4563 	if (atomic_read(&cpu_buffer_b->record_disabled))
4564 		goto out;
4565 
4566 	/*
4567 	 * We can't do a synchronize_rcu here because this
4568 	 * function can be called in atomic context.
4569 	 * Normally this will be called from the same CPU as cpu.
4570 	 * If not it's up to the caller to protect this.
4571 	 */
4572 	atomic_inc(&cpu_buffer_a->record_disabled);
4573 	atomic_inc(&cpu_buffer_b->record_disabled);
4574 
4575 	ret = -EBUSY;
4576 	if (local_read(&cpu_buffer_a->committing))
4577 		goto out_dec;
4578 	if (local_read(&cpu_buffer_b->committing))
4579 		goto out_dec;
4580 
4581 	buffer_a->buffers[cpu] = cpu_buffer_b;
4582 	buffer_b->buffers[cpu] = cpu_buffer_a;
4583 
4584 	cpu_buffer_b->buffer = buffer_a;
4585 	cpu_buffer_a->buffer = buffer_b;
4586 
4587 	ret = 0;
4588 
4589 out_dec:
4590 	atomic_dec(&cpu_buffer_a->record_disabled);
4591 	atomic_dec(&cpu_buffer_b->record_disabled);
4592 out:
4593 	return ret;
4594 }
4595 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4596 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4597 
4598 /**
4599  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4600  * @buffer: the buffer to allocate for.
4601  * @cpu: the cpu buffer to allocate.
4602  *
4603  * This function is used in conjunction with ring_buffer_read_page.
4604  * When reading a full page from the ring buffer, these functions
4605  * can be used to speed up the process. The calling function should
4606  * allocate a few pages first with this function. Then when it
4607  * needs to get pages from the ring buffer, it passes the result
4608  * of this function into ring_buffer_read_page, which will swap
4609  * the page that was allocated, with the read page of the buffer.
4610  *
4611  * Returns:
4612  *  The page allocated, or ERR_PTR
4613  */
4614 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4615 {
4616 	struct ring_buffer_per_cpu *cpu_buffer;
4617 	struct buffer_data_page *bpage = NULL;
4618 	unsigned long flags;
4619 	struct page *page;
4620 
4621 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4622 		return ERR_PTR(-ENODEV);
4623 
4624 	cpu_buffer = buffer->buffers[cpu];
4625 	local_irq_save(flags);
4626 	arch_spin_lock(&cpu_buffer->lock);
4627 
4628 	if (cpu_buffer->free_page) {
4629 		bpage = cpu_buffer->free_page;
4630 		cpu_buffer->free_page = NULL;
4631 	}
4632 
4633 	arch_spin_unlock(&cpu_buffer->lock);
4634 	local_irq_restore(flags);
4635 
4636 	if (bpage)
4637 		goto out;
4638 
4639 	page = alloc_pages_node(cpu_to_node(cpu),
4640 				GFP_KERNEL | __GFP_NORETRY, 0);
4641 	if (!page)
4642 		return ERR_PTR(-ENOMEM);
4643 
4644 	bpage = page_address(page);
4645 
4646  out:
4647 	rb_init_page(bpage);
4648 
4649 	return bpage;
4650 }
4651 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4652 
4653 /**
4654  * ring_buffer_free_read_page - free an allocated read page
4655  * @buffer: the buffer the page was allocate for
4656  * @cpu: the cpu buffer the page came from
4657  * @data: the page to free
4658  *
4659  * Free a page allocated from ring_buffer_alloc_read_page.
4660  */
4661 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4662 {
4663 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4664 	struct buffer_data_page *bpage = data;
4665 	struct page *page = virt_to_page(bpage);
4666 	unsigned long flags;
4667 
4668 	/* If the page is still in use someplace else, we can't reuse it */
4669 	if (page_ref_count(page) > 1)
4670 		goto out;
4671 
4672 	local_irq_save(flags);
4673 	arch_spin_lock(&cpu_buffer->lock);
4674 
4675 	if (!cpu_buffer->free_page) {
4676 		cpu_buffer->free_page = bpage;
4677 		bpage = NULL;
4678 	}
4679 
4680 	arch_spin_unlock(&cpu_buffer->lock);
4681 	local_irq_restore(flags);
4682 
4683  out:
4684 	free_page((unsigned long)bpage);
4685 }
4686 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4687 
4688 /**
4689  * ring_buffer_read_page - extract a page from the ring buffer
4690  * @buffer: buffer to extract from
4691  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4692  * @len: amount to extract
4693  * @cpu: the cpu of the buffer to extract
4694  * @full: should the extraction only happen when the page is full.
4695  *
4696  * This function will pull out a page from the ring buffer and consume it.
4697  * @data_page must be the address of the variable that was returned
4698  * from ring_buffer_alloc_read_page. This is because the page might be used
4699  * to swap with a page in the ring buffer.
4700  *
4701  * for example:
4702  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4703  *	if (IS_ERR(rpage))
4704  *		return PTR_ERR(rpage);
4705  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4706  *	if (ret >= 0)
4707  *		process_page(rpage, ret);
4708  *
4709  * When @full is set, the function will not return true unless
4710  * the writer is off the reader page.
4711  *
4712  * Note: it is up to the calling functions to handle sleeps and wakeups.
4713  *  The ring buffer can be used anywhere in the kernel and can not
4714  *  blindly call wake_up. The layer that uses the ring buffer must be
4715  *  responsible for that.
4716  *
4717  * Returns:
4718  *  >=0 if data has been transferred, returns the offset of consumed data.
4719  *  <0 if no data has been transferred.
4720  */
4721 int ring_buffer_read_page(struct ring_buffer *buffer,
4722 			  void **data_page, size_t len, int cpu, int full)
4723 {
4724 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4725 	struct ring_buffer_event *event;
4726 	struct buffer_data_page *bpage;
4727 	struct buffer_page *reader;
4728 	unsigned long missed_events;
4729 	unsigned long flags;
4730 	unsigned int commit;
4731 	unsigned int read;
4732 	u64 save_timestamp;
4733 	int ret = -1;
4734 
4735 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4736 		goto out;
4737 
4738 	/*
4739 	 * If len is not big enough to hold the page header, then
4740 	 * we can not copy anything.
4741 	 */
4742 	if (len <= BUF_PAGE_HDR_SIZE)
4743 		goto out;
4744 
4745 	len -= BUF_PAGE_HDR_SIZE;
4746 
4747 	if (!data_page)
4748 		goto out;
4749 
4750 	bpage = *data_page;
4751 	if (!bpage)
4752 		goto out;
4753 
4754 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4755 
4756 	reader = rb_get_reader_page(cpu_buffer);
4757 	if (!reader)
4758 		goto out_unlock;
4759 
4760 	event = rb_reader_event(cpu_buffer);
4761 
4762 	read = reader->read;
4763 	commit = rb_page_commit(reader);
4764 
4765 	/* Check if any events were dropped */
4766 	missed_events = cpu_buffer->lost_events;
4767 
4768 	/*
4769 	 * If this page has been partially read or
4770 	 * if len is not big enough to read the rest of the page or
4771 	 * a writer is still on the page, then
4772 	 * we must copy the data from the page to the buffer.
4773 	 * Otherwise, we can simply swap the page with the one passed in.
4774 	 */
4775 	if (read || (len < (commit - read)) ||
4776 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4777 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4778 		unsigned int rpos = read;
4779 		unsigned int pos = 0;
4780 		unsigned int size;
4781 
4782 		if (full)
4783 			goto out_unlock;
4784 
4785 		if (len > (commit - read))
4786 			len = (commit - read);
4787 
4788 		/* Always keep the time extend and data together */
4789 		size = rb_event_ts_length(event);
4790 
4791 		if (len < size)
4792 			goto out_unlock;
4793 
4794 		/* save the current timestamp, since the user will need it */
4795 		save_timestamp = cpu_buffer->read_stamp;
4796 
4797 		/* Need to copy one event at a time */
4798 		do {
4799 			/* We need the size of one event, because
4800 			 * rb_advance_reader only advances by one event,
4801 			 * whereas rb_event_ts_length may include the size of
4802 			 * one or two events.
4803 			 * We have already ensured there's enough space if this
4804 			 * is a time extend. */
4805 			size = rb_event_length(event);
4806 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4807 
4808 			len -= size;
4809 
4810 			rb_advance_reader(cpu_buffer);
4811 			rpos = reader->read;
4812 			pos += size;
4813 
4814 			if (rpos >= commit)
4815 				break;
4816 
4817 			event = rb_reader_event(cpu_buffer);
4818 			/* Always keep the time extend and data together */
4819 			size = rb_event_ts_length(event);
4820 		} while (len >= size);
4821 
4822 		/* update bpage */
4823 		local_set(&bpage->commit, pos);
4824 		bpage->time_stamp = save_timestamp;
4825 
4826 		/* we copied everything to the beginning */
4827 		read = 0;
4828 	} else {
4829 		/* update the entry counter */
4830 		cpu_buffer->read += rb_page_entries(reader);
4831 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4832 
4833 		/* swap the pages */
4834 		rb_init_page(bpage);
4835 		bpage = reader->page;
4836 		reader->page = *data_page;
4837 		local_set(&reader->write, 0);
4838 		local_set(&reader->entries, 0);
4839 		reader->read = 0;
4840 		*data_page = bpage;
4841 
4842 		/*
4843 		 * Use the real_end for the data size,
4844 		 * This gives us a chance to store the lost events
4845 		 * on the page.
4846 		 */
4847 		if (reader->real_end)
4848 			local_set(&bpage->commit, reader->real_end);
4849 	}
4850 	ret = read;
4851 
4852 	cpu_buffer->lost_events = 0;
4853 
4854 	commit = local_read(&bpage->commit);
4855 	/*
4856 	 * Set a flag in the commit field if we lost events
4857 	 */
4858 	if (missed_events) {
4859 		/* If there is room at the end of the page to save the
4860 		 * missed events, then record it there.
4861 		 */
4862 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4863 			memcpy(&bpage->data[commit], &missed_events,
4864 			       sizeof(missed_events));
4865 			local_add(RB_MISSED_STORED, &bpage->commit);
4866 			commit += sizeof(missed_events);
4867 		}
4868 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4869 	}
4870 
4871 	/*
4872 	 * This page may be off to user land. Zero it out here.
4873 	 */
4874 	if (commit < BUF_PAGE_SIZE)
4875 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4876 
4877  out_unlock:
4878 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4879 
4880  out:
4881 	return ret;
4882 }
4883 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4884 
4885 /*
4886  * We only allocate new buffers, never free them if the CPU goes down.
4887  * If we were to free the buffer, then the user would lose any trace that was in
4888  * the buffer.
4889  */
4890 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4891 {
4892 	struct ring_buffer *buffer;
4893 	long nr_pages_same;
4894 	int cpu_i;
4895 	unsigned long nr_pages;
4896 
4897 	buffer = container_of(node, struct ring_buffer, node);
4898 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4899 		return 0;
4900 
4901 	nr_pages = 0;
4902 	nr_pages_same = 1;
4903 	/* check if all cpu sizes are same */
4904 	for_each_buffer_cpu(buffer, cpu_i) {
4905 		/* fill in the size from first enabled cpu */
4906 		if (nr_pages == 0)
4907 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4908 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4909 			nr_pages_same = 0;
4910 			break;
4911 		}
4912 	}
4913 	/* allocate minimum pages, user can later expand it */
4914 	if (!nr_pages_same)
4915 		nr_pages = 2;
4916 	buffer->buffers[cpu] =
4917 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4918 	if (!buffer->buffers[cpu]) {
4919 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4920 		     cpu);
4921 		return -ENOMEM;
4922 	}
4923 	smp_wmb();
4924 	cpumask_set_cpu(cpu, buffer->cpumask);
4925 	return 0;
4926 }
4927 
4928 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4929 /*
4930  * This is a basic integrity check of the ring buffer.
4931  * Late in the boot cycle this test will run when configured in.
4932  * It will kick off a thread per CPU that will go into a loop
4933  * writing to the per cpu ring buffer various sizes of data.
4934  * Some of the data will be large items, some small.
4935  *
4936  * Another thread is created that goes into a spin, sending out
4937  * IPIs to the other CPUs to also write into the ring buffer.
4938  * this is to test the nesting ability of the buffer.
4939  *
4940  * Basic stats are recorded and reported. If something in the
4941  * ring buffer should happen that's not expected, a big warning
4942  * is displayed and all ring buffers are disabled.
4943  */
4944 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4945 
4946 struct rb_test_data {
4947 	struct ring_buffer	*buffer;
4948 	unsigned long		events;
4949 	unsigned long		bytes_written;
4950 	unsigned long		bytes_alloc;
4951 	unsigned long		bytes_dropped;
4952 	unsigned long		events_nested;
4953 	unsigned long		bytes_written_nested;
4954 	unsigned long		bytes_alloc_nested;
4955 	unsigned long		bytes_dropped_nested;
4956 	int			min_size_nested;
4957 	int			max_size_nested;
4958 	int			max_size;
4959 	int			min_size;
4960 	int			cpu;
4961 	int			cnt;
4962 };
4963 
4964 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4965 
4966 /* 1 meg per cpu */
4967 #define RB_TEST_BUFFER_SIZE	1048576
4968 
4969 static char rb_string[] __initdata =
4970 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4971 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4972 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4973 
4974 static bool rb_test_started __initdata;
4975 
4976 struct rb_item {
4977 	int size;
4978 	char str[];
4979 };
4980 
4981 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4982 {
4983 	struct ring_buffer_event *event;
4984 	struct rb_item *item;
4985 	bool started;
4986 	int event_len;
4987 	int size;
4988 	int len;
4989 	int cnt;
4990 
4991 	/* Have nested writes different that what is written */
4992 	cnt = data->cnt + (nested ? 27 : 0);
4993 
4994 	/* Multiply cnt by ~e, to make some unique increment */
4995 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4996 
4997 	len = size + sizeof(struct rb_item);
4998 
4999 	started = rb_test_started;
5000 	/* read rb_test_started before checking buffer enabled */
5001 	smp_rmb();
5002 
5003 	event = ring_buffer_lock_reserve(data->buffer, len);
5004 	if (!event) {
5005 		/* Ignore dropped events before test starts. */
5006 		if (started) {
5007 			if (nested)
5008 				data->bytes_dropped += len;
5009 			else
5010 				data->bytes_dropped_nested += len;
5011 		}
5012 		return len;
5013 	}
5014 
5015 	event_len = ring_buffer_event_length(event);
5016 
5017 	if (RB_WARN_ON(data->buffer, event_len < len))
5018 		goto out;
5019 
5020 	item = ring_buffer_event_data(event);
5021 	item->size = size;
5022 	memcpy(item->str, rb_string, size);
5023 
5024 	if (nested) {
5025 		data->bytes_alloc_nested += event_len;
5026 		data->bytes_written_nested += len;
5027 		data->events_nested++;
5028 		if (!data->min_size_nested || len < data->min_size_nested)
5029 			data->min_size_nested = len;
5030 		if (len > data->max_size_nested)
5031 			data->max_size_nested = len;
5032 	} else {
5033 		data->bytes_alloc += event_len;
5034 		data->bytes_written += len;
5035 		data->events++;
5036 		if (!data->min_size || len < data->min_size)
5037 			data->max_size = len;
5038 		if (len > data->max_size)
5039 			data->max_size = len;
5040 	}
5041 
5042  out:
5043 	ring_buffer_unlock_commit(data->buffer, event);
5044 
5045 	return 0;
5046 }
5047 
5048 static __init int rb_test(void *arg)
5049 {
5050 	struct rb_test_data *data = arg;
5051 
5052 	while (!kthread_should_stop()) {
5053 		rb_write_something(data, false);
5054 		data->cnt++;
5055 
5056 		set_current_state(TASK_INTERRUPTIBLE);
5057 		/* Now sleep between a min of 100-300us and a max of 1ms */
5058 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5059 	}
5060 
5061 	return 0;
5062 }
5063 
5064 static __init void rb_ipi(void *ignore)
5065 {
5066 	struct rb_test_data *data;
5067 	int cpu = smp_processor_id();
5068 
5069 	data = &rb_data[cpu];
5070 	rb_write_something(data, true);
5071 }
5072 
5073 static __init int rb_hammer_test(void *arg)
5074 {
5075 	while (!kthread_should_stop()) {
5076 
5077 		/* Send an IPI to all cpus to write data! */
5078 		smp_call_function(rb_ipi, NULL, 1);
5079 		/* No sleep, but for non preempt, let others run */
5080 		schedule();
5081 	}
5082 
5083 	return 0;
5084 }
5085 
5086 static __init int test_ringbuffer(void)
5087 {
5088 	struct task_struct *rb_hammer;
5089 	struct ring_buffer *buffer;
5090 	int cpu;
5091 	int ret = 0;
5092 
5093 	pr_info("Running ring buffer tests...\n");
5094 
5095 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5096 	if (WARN_ON(!buffer))
5097 		return 0;
5098 
5099 	/* Disable buffer so that threads can't write to it yet */
5100 	ring_buffer_record_off(buffer);
5101 
5102 	for_each_online_cpu(cpu) {
5103 		rb_data[cpu].buffer = buffer;
5104 		rb_data[cpu].cpu = cpu;
5105 		rb_data[cpu].cnt = cpu;
5106 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5107 						 "rbtester/%d", cpu);
5108 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5109 			pr_cont("FAILED\n");
5110 			ret = PTR_ERR(rb_threads[cpu]);
5111 			goto out_free;
5112 		}
5113 
5114 		kthread_bind(rb_threads[cpu], cpu);
5115  		wake_up_process(rb_threads[cpu]);
5116 	}
5117 
5118 	/* Now create the rb hammer! */
5119 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5120 	if (WARN_ON(IS_ERR(rb_hammer))) {
5121 		pr_cont("FAILED\n");
5122 		ret = PTR_ERR(rb_hammer);
5123 		goto out_free;
5124 	}
5125 
5126 	ring_buffer_record_on(buffer);
5127 	/*
5128 	 * Show buffer is enabled before setting rb_test_started.
5129 	 * Yes there's a small race window where events could be
5130 	 * dropped and the thread wont catch it. But when a ring
5131 	 * buffer gets enabled, there will always be some kind of
5132 	 * delay before other CPUs see it. Thus, we don't care about
5133 	 * those dropped events. We care about events dropped after
5134 	 * the threads see that the buffer is active.
5135 	 */
5136 	smp_wmb();
5137 	rb_test_started = true;
5138 
5139 	set_current_state(TASK_INTERRUPTIBLE);
5140 	/* Just run for 10 seconds */;
5141 	schedule_timeout(10 * HZ);
5142 
5143 	kthread_stop(rb_hammer);
5144 
5145  out_free:
5146 	for_each_online_cpu(cpu) {
5147 		if (!rb_threads[cpu])
5148 			break;
5149 		kthread_stop(rb_threads[cpu]);
5150 	}
5151 	if (ret) {
5152 		ring_buffer_free(buffer);
5153 		return ret;
5154 	}
5155 
5156 	/* Report! */
5157 	pr_info("finished\n");
5158 	for_each_online_cpu(cpu) {
5159 		struct ring_buffer_event *event;
5160 		struct rb_test_data *data = &rb_data[cpu];
5161 		struct rb_item *item;
5162 		unsigned long total_events;
5163 		unsigned long total_dropped;
5164 		unsigned long total_written;
5165 		unsigned long total_alloc;
5166 		unsigned long total_read = 0;
5167 		unsigned long total_size = 0;
5168 		unsigned long total_len = 0;
5169 		unsigned long total_lost = 0;
5170 		unsigned long lost;
5171 		int big_event_size;
5172 		int small_event_size;
5173 
5174 		ret = -1;
5175 
5176 		total_events = data->events + data->events_nested;
5177 		total_written = data->bytes_written + data->bytes_written_nested;
5178 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5179 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5180 
5181 		big_event_size = data->max_size + data->max_size_nested;
5182 		small_event_size = data->min_size + data->min_size_nested;
5183 
5184 		pr_info("CPU %d:\n", cpu);
5185 		pr_info("              events:    %ld\n", total_events);
5186 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5187 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5188 		pr_info("       written bytes:    %ld\n", total_written);
5189 		pr_info("       biggest event:    %d\n", big_event_size);
5190 		pr_info("      smallest event:    %d\n", small_event_size);
5191 
5192 		if (RB_WARN_ON(buffer, total_dropped))
5193 			break;
5194 
5195 		ret = 0;
5196 
5197 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5198 			total_lost += lost;
5199 			item = ring_buffer_event_data(event);
5200 			total_len += ring_buffer_event_length(event);
5201 			total_size += item->size + sizeof(struct rb_item);
5202 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5203 				pr_info("FAILED!\n");
5204 				pr_info("buffer had: %.*s\n", item->size, item->str);
5205 				pr_info("expected:   %.*s\n", item->size, rb_string);
5206 				RB_WARN_ON(buffer, 1);
5207 				ret = -1;
5208 				break;
5209 			}
5210 			total_read++;
5211 		}
5212 		if (ret)
5213 			break;
5214 
5215 		ret = -1;
5216 
5217 		pr_info("         read events:   %ld\n", total_read);
5218 		pr_info("         lost events:   %ld\n", total_lost);
5219 		pr_info("        total events:   %ld\n", total_lost + total_read);
5220 		pr_info("  recorded len bytes:   %ld\n", total_len);
5221 		pr_info(" recorded size bytes:   %ld\n", total_size);
5222 		if (total_lost)
5223 			pr_info(" With dropped events, record len and size may not match\n"
5224 				" alloced and written from above\n");
5225 		if (!total_lost) {
5226 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5227 				       total_size != total_written))
5228 				break;
5229 		}
5230 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5231 			break;
5232 
5233 		ret = 0;
5234 	}
5235 	if (!ret)
5236 		pr_info("Ring buffer PASSED!\n");
5237 
5238 	ring_buffer_free(buffer);
5239 	return 0;
5240 }
5241 
5242 late_initcall(test_ringbuffer);
5243 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5244