1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 static void update_pages_handler(struct work_struct *work); 33 34 /* 35 * The ring buffer header is special. We must manually up keep it. 36 */ 37 int ring_buffer_print_entry_header(struct trace_seq *s) 38 { 39 trace_seq_puts(s, "# compressed entry header\n"); 40 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 41 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 42 trace_seq_puts(s, "\tarray : 32 bits\n"); 43 trace_seq_putc(s, '\n'); 44 trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 49 RINGBUF_TYPE_TIME_STAMP); 50 trace_seq_printf(s, "\tdata max type_len == %d\n", 51 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 52 53 return !trace_seq_has_overflowed(s); 54 } 55 56 /* 57 * The ring buffer is made up of a list of pages. A separate list of pages is 58 * allocated for each CPU. A writer may only write to a buffer that is 59 * associated with the CPU it is currently executing on. A reader may read 60 * from any per cpu buffer. 61 * 62 * The reader is special. For each per cpu buffer, the reader has its own 63 * reader page. When a reader has read the entire reader page, this reader 64 * page is swapped with another page in the ring buffer. 65 * 66 * Now, as long as the writer is off the reader page, the reader can do what 67 * ever it wants with that page. The writer will never write to that page 68 * again (as long as it is out of the ring buffer). 69 * 70 * Here's some silly ASCII art. 71 * 72 * +------+ 73 * |reader| RING BUFFER 74 * |page | 75 * +------+ +---+ +---+ +---+ 76 * | |-->| |-->| | 77 * +---+ +---+ +---+ 78 * ^ | 79 * | | 80 * +---------------+ 81 * 82 * 83 * +------+ 84 * |reader| RING BUFFER 85 * |page |------------------v 86 * +------+ +---+ +---+ +---+ 87 * | |-->| |-->| | 88 * +---+ +---+ +---+ 89 * ^ | 90 * | | 91 * +---------------+ 92 * 93 * 94 * +------+ 95 * |reader| RING BUFFER 96 * |page |------------------v 97 * +------+ +---+ +---+ +---+ 98 * ^ | |-->| |-->| | 99 * | +---+ +---+ +---+ 100 * | | 101 * | | 102 * +------------------------------+ 103 * 104 * 105 * +------+ 106 * |buffer| RING BUFFER 107 * |page |------------------v 108 * +------+ +---+ +---+ +---+ 109 * ^ | | | |-->| | 110 * | New +---+ +---+ +---+ 111 * | Reader------^ | 112 * | page | 113 * +------------------------------+ 114 * 115 * 116 * After we make this swap, the reader can hand this page off to the splice 117 * code and be done with it. It can even allocate a new page if it needs to 118 * and swap that into the ring buffer. 119 * 120 * We will be using cmpxchg soon to make all this lockless. 121 * 122 */ 123 124 /* Used for individual buffers (after the counter) */ 125 #define RB_BUFFER_OFF (1 << 20) 126 127 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 128 129 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 130 #define RB_ALIGNMENT 4U 131 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 132 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 133 134 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 135 # define RB_FORCE_8BYTE_ALIGNMENT 0 136 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 137 #else 138 # define RB_FORCE_8BYTE_ALIGNMENT 1 139 # define RB_ARCH_ALIGNMENT 8U 140 #endif 141 142 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 143 144 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 145 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 146 147 enum { 148 RB_LEN_TIME_EXTEND = 8, 149 RB_LEN_TIME_STAMP = 8, 150 }; 151 152 #define skip_time_extend(event) \ 153 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 154 155 #define extended_time(event) \ 156 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 157 158 static inline int rb_null_event(struct ring_buffer_event *event) 159 { 160 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 161 } 162 163 static void rb_event_set_padding(struct ring_buffer_event *event) 164 { 165 /* padding has a NULL time_delta */ 166 event->type_len = RINGBUF_TYPE_PADDING; 167 event->time_delta = 0; 168 } 169 170 static unsigned 171 rb_event_data_length(struct ring_buffer_event *event) 172 { 173 unsigned length; 174 175 if (event->type_len) 176 length = event->type_len * RB_ALIGNMENT; 177 else 178 length = event->array[0]; 179 return length + RB_EVNT_HDR_SIZE; 180 } 181 182 /* 183 * Return the length of the given event. Will return 184 * the length of the time extend if the event is a 185 * time extend. 186 */ 187 static inline unsigned 188 rb_event_length(struct ring_buffer_event *event) 189 { 190 switch (event->type_len) { 191 case RINGBUF_TYPE_PADDING: 192 if (rb_null_event(event)) 193 /* undefined */ 194 return -1; 195 return event->array[0] + RB_EVNT_HDR_SIZE; 196 197 case RINGBUF_TYPE_TIME_EXTEND: 198 return RB_LEN_TIME_EXTEND; 199 200 case RINGBUF_TYPE_TIME_STAMP: 201 return RB_LEN_TIME_STAMP; 202 203 case RINGBUF_TYPE_DATA: 204 return rb_event_data_length(event); 205 default: 206 WARN_ON_ONCE(1); 207 } 208 /* not hit */ 209 return 0; 210 } 211 212 /* 213 * Return total length of time extend and data, 214 * or just the event length for all other events. 215 */ 216 static inline unsigned 217 rb_event_ts_length(struct ring_buffer_event *event) 218 { 219 unsigned len = 0; 220 221 if (extended_time(event)) { 222 /* time extends include the data event after it */ 223 len = RB_LEN_TIME_EXTEND; 224 event = skip_time_extend(event); 225 } 226 return len + rb_event_length(event); 227 } 228 229 /** 230 * ring_buffer_event_length - return the length of the event 231 * @event: the event to get the length of 232 * 233 * Returns the size of the data load of a data event. 234 * If the event is something other than a data event, it 235 * returns the size of the event itself. With the exception 236 * of a TIME EXTEND, where it still returns the size of the 237 * data load of the data event after it. 238 */ 239 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 240 { 241 unsigned length; 242 243 if (extended_time(event)) 244 event = skip_time_extend(event); 245 246 length = rb_event_length(event); 247 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 248 return length; 249 length -= RB_EVNT_HDR_SIZE; 250 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 251 length -= sizeof(event->array[0]); 252 return length; 253 } 254 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 255 256 /* inline for ring buffer fast paths */ 257 static __always_inline void * 258 rb_event_data(struct ring_buffer_event *event) 259 { 260 if (extended_time(event)) 261 event = skip_time_extend(event); 262 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 263 /* If length is in len field, then array[0] has the data */ 264 if (event->type_len) 265 return (void *)&event->array[0]; 266 /* Otherwise length is in array[0] and array[1] has the data */ 267 return (void *)&event->array[1]; 268 } 269 270 /** 271 * ring_buffer_event_data - return the data of the event 272 * @event: the event to get the data from 273 */ 274 void *ring_buffer_event_data(struct ring_buffer_event *event) 275 { 276 return rb_event_data(event); 277 } 278 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 279 280 #define for_each_buffer_cpu(buffer, cpu) \ 281 for_each_cpu(cpu, buffer->cpumask) 282 283 #define for_each_online_buffer_cpu(buffer, cpu) \ 284 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 285 286 #define TS_SHIFT 27 287 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 288 #define TS_DELTA_TEST (~TS_MASK) 289 290 /** 291 * ring_buffer_event_time_stamp - return the event's extended timestamp 292 * @event: the event to get the timestamp of 293 * 294 * Returns the extended timestamp associated with a data event. 295 * An extended time_stamp is a 64-bit timestamp represented 296 * internally in a special way that makes the best use of space 297 * contained within a ring buffer event. This function decodes 298 * it and maps it to a straight u64 value. 299 */ 300 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 301 { 302 u64 ts; 303 304 ts = event->array[0]; 305 ts <<= TS_SHIFT; 306 ts += event->time_delta; 307 308 return ts; 309 } 310 311 /* Flag when events were overwritten */ 312 #define RB_MISSED_EVENTS (1 << 31) 313 /* Missed count stored at end */ 314 #define RB_MISSED_STORED (1 << 30) 315 316 struct buffer_data_page { 317 u64 time_stamp; /* page time stamp */ 318 local_t commit; /* write committed index */ 319 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 320 }; 321 322 /* 323 * Note, the buffer_page list must be first. The buffer pages 324 * are allocated in cache lines, which means that each buffer 325 * page will be at the beginning of a cache line, and thus 326 * the least significant bits will be zero. We use this to 327 * add flags in the list struct pointers, to make the ring buffer 328 * lockless. 329 */ 330 struct buffer_page { 331 struct list_head list; /* list of buffer pages */ 332 local_t write; /* index for next write */ 333 unsigned read; /* index for next read */ 334 local_t entries; /* entries on this page */ 335 unsigned long real_end; /* real end of data */ 336 struct buffer_data_page *page; /* Actual data page */ 337 }; 338 339 /* 340 * The buffer page counters, write and entries, must be reset 341 * atomically when crossing page boundaries. To synchronize this 342 * update, two counters are inserted into the number. One is 343 * the actual counter for the write position or count on the page. 344 * 345 * The other is a counter of updaters. Before an update happens 346 * the update partition of the counter is incremented. This will 347 * allow the updater to update the counter atomically. 348 * 349 * The counter is 20 bits, and the state data is 12. 350 */ 351 #define RB_WRITE_MASK 0xfffff 352 #define RB_WRITE_INTCNT (1 << 20) 353 354 static void rb_init_page(struct buffer_data_page *bpage) 355 { 356 local_set(&bpage->commit, 0); 357 } 358 359 /* 360 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 361 * this issue out. 362 */ 363 static void free_buffer_page(struct buffer_page *bpage) 364 { 365 free_page((unsigned long)bpage->page); 366 kfree(bpage); 367 } 368 369 /* 370 * We need to fit the time_stamp delta into 27 bits. 371 */ 372 static inline int test_time_stamp(u64 delta) 373 { 374 if (delta & TS_DELTA_TEST) 375 return 1; 376 return 0; 377 } 378 379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 380 381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 383 384 int ring_buffer_print_page_header(struct trace_seq *s) 385 { 386 struct buffer_data_page field; 387 388 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 389 "offset:0;\tsize:%u;\tsigned:%u;\n", 390 (unsigned int)sizeof(field.time_stamp), 391 (unsigned int)is_signed_type(u64)); 392 393 trace_seq_printf(s, "\tfield: local_t commit;\t" 394 "offset:%u;\tsize:%u;\tsigned:%u;\n", 395 (unsigned int)offsetof(typeof(field), commit), 396 (unsigned int)sizeof(field.commit), 397 (unsigned int)is_signed_type(long)); 398 399 trace_seq_printf(s, "\tfield: int overwrite;\t" 400 "offset:%u;\tsize:%u;\tsigned:%u;\n", 401 (unsigned int)offsetof(typeof(field), commit), 402 1, 403 (unsigned int)is_signed_type(long)); 404 405 trace_seq_printf(s, "\tfield: char data;\t" 406 "offset:%u;\tsize:%u;\tsigned:%u;\n", 407 (unsigned int)offsetof(typeof(field), data), 408 (unsigned int)BUF_PAGE_SIZE, 409 (unsigned int)is_signed_type(char)); 410 411 return !trace_seq_has_overflowed(s); 412 } 413 414 struct rb_irq_work { 415 struct irq_work work; 416 wait_queue_head_t waiters; 417 wait_queue_head_t full_waiters; 418 bool waiters_pending; 419 bool full_waiters_pending; 420 bool wakeup_full; 421 }; 422 423 /* 424 * Structure to hold event state and handle nested events. 425 */ 426 struct rb_event_info { 427 u64 ts; 428 u64 delta; 429 u64 before; 430 u64 after; 431 unsigned long length; 432 struct buffer_page *tail_page; 433 int add_timestamp; 434 }; 435 436 /* 437 * Used for the add_timestamp 438 * NONE 439 * EXTEND - wants a time extend 440 * ABSOLUTE - the buffer requests all events to have absolute time stamps 441 * FORCE - force a full time stamp. 442 */ 443 enum { 444 RB_ADD_STAMP_NONE = 0, 445 RB_ADD_STAMP_EXTEND = BIT(1), 446 RB_ADD_STAMP_ABSOLUTE = BIT(2), 447 RB_ADD_STAMP_FORCE = BIT(3) 448 }; 449 /* 450 * Used for which event context the event is in. 451 * TRANSITION = 0 452 * NMI = 1 453 * IRQ = 2 454 * SOFTIRQ = 3 455 * NORMAL = 4 456 * 457 * See trace_recursive_lock() comment below for more details. 458 */ 459 enum { 460 RB_CTX_TRANSITION, 461 RB_CTX_NMI, 462 RB_CTX_IRQ, 463 RB_CTX_SOFTIRQ, 464 RB_CTX_NORMAL, 465 RB_CTX_MAX 466 }; 467 468 #if BITS_PER_LONG == 32 469 #define RB_TIME_32 470 #endif 471 472 /* To test on 64 bit machines */ 473 //#define RB_TIME_32 474 475 #ifdef RB_TIME_32 476 477 struct rb_time_struct { 478 local_t cnt; 479 local_t top; 480 local_t bottom; 481 }; 482 #else 483 #include <asm/local64.h> 484 struct rb_time_struct { 485 local64_t time; 486 }; 487 #endif 488 typedef struct rb_time_struct rb_time_t; 489 490 /* 491 * head_page == tail_page && head == tail then buffer is empty. 492 */ 493 struct ring_buffer_per_cpu { 494 int cpu; 495 atomic_t record_disabled; 496 atomic_t resize_disabled; 497 struct trace_buffer *buffer; 498 raw_spinlock_t reader_lock; /* serialize readers */ 499 arch_spinlock_t lock; 500 struct lock_class_key lock_key; 501 struct buffer_data_page *free_page; 502 unsigned long nr_pages; 503 unsigned int current_context; 504 struct list_head *pages; 505 struct buffer_page *head_page; /* read from head */ 506 struct buffer_page *tail_page; /* write to tail */ 507 struct buffer_page *commit_page; /* committed pages */ 508 struct buffer_page *reader_page; 509 unsigned long lost_events; 510 unsigned long last_overrun; 511 unsigned long nest; 512 local_t entries_bytes; 513 local_t entries; 514 local_t overrun; 515 local_t commit_overrun; 516 local_t dropped_events; 517 local_t committing; 518 local_t commits; 519 local_t pages_touched; 520 local_t pages_read; 521 long last_pages_touch; 522 size_t shortest_full; 523 unsigned long read; 524 unsigned long read_bytes; 525 rb_time_t write_stamp; 526 rb_time_t before_stamp; 527 u64 read_stamp; 528 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 529 long nr_pages_to_update; 530 struct list_head new_pages; /* new pages to add */ 531 struct work_struct update_pages_work; 532 struct completion update_done; 533 534 struct rb_irq_work irq_work; 535 }; 536 537 struct trace_buffer { 538 unsigned flags; 539 int cpus; 540 atomic_t record_disabled; 541 cpumask_var_t cpumask; 542 543 struct lock_class_key *reader_lock_key; 544 545 struct mutex mutex; 546 547 struct ring_buffer_per_cpu **buffers; 548 549 struct hlist_node node; 550 u64 (*clock)(void); 551 552 struct rb_irq_work irq_work; 553 bool time_stamp_abs; 554 }; 555 556 struct ring_buffer_iter { 557 struct ring_buffer_per_cpu *cpu_buffer; 558 unsigned long head; 559 unsigned long next_event; 560 struct buffer_page *head_page; 561 struct buffer_page *cache_reader_page; 562 unsigned long cache_read; 563 u64 read_stamp; 564 u64 page_stamp; 565 struct ring_buffer_event *event; 566 int missed_events; 567 }; 568 569 #ifdef RB_TIME_32 570 571 /* 572 * On 32 bit machines, local64_t is very expensive. As the ring 573 * buffer doesn't need all the features of a true 64 bit atomic, 574 * on 32 bit, it uses these functions (64 still uses local64_t). 575 * 576 * For the ring buffer, 64 bit required operations for the time is 577 * the following: 578 * 579 * - Only need 59 bits (uses 60 to make it even). 580 * - Reads may fail if it interrupted a modification of the time stamp. 581 * It will succeed if it did not interrupt another write even if 582 * the read itself is interrupted by a write. 583 * It returns whether it was successful or not. 584 * 585 * - Writes always succeed and will overwrite other writes and writes 586 * that were done by events interrupting the current write. 587 * 588 * - A write followed by a read of the same time stamp will always succeed, 589 * but may not contain the same value. 590 * 591 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 592 * Other than that, it acts like a normal cmpxchg. 593 * 594 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 595 * (bottom being the least significant 30 bits of the 60 bit time stamp). 596 * 597 * The two most significant bits of each half holds a 2 bit counter (0-3). 598 * Each update will increment this counter by one. 599 * When reading the top and bottom, if the two counter bits match then the 600 * top and bottom together make a valid 60 bit number. 601 */ 602 #define RB_TIME_SHIFT 30 603 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 604 605 static inline int rb_time_cnt(unsigned long val) 606 { 607 return (val >> RB_TIME_SHIFT) & 3; 608 } 609 610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 611 { 612 u64 val; 613 614 val = top & RB_TIME_VAL_MASK; 615 val <<= RB_TIME_SHIFT; 616 val |= bottom & RB_TIME_VAL_MASK; 617 618 return val; 619 } 620 621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 622 { 623 unsigned long top, bottom; 624 unsigned long c; 625 626 /* 627 * If the read is interrupted by a write, then the cnt will 628 * be different. Loop until both top and bottom have been read 629 * without interruption. 630 */ 631 do { 632 c = local_read(&t->cnt); 633 top = local_read(&t->top); 634 bottom = local_read(&t->bottom); 635 } while (c != local_read(&t->cnt)); 636 637 *cnt = rb_time_cnt(top); 638 639 /* If top and bottom counts don't match, this interrupted a write */ 640 if (*cnt != rb_time_cnt(bottom)) 641 return false; 642 643 *ret = rb_time_val(top, bottom); 644 return true; 645 } 646 647 static bool rb_time_read(rb_time_t *t, u64 *ret) 648 { 649 unsigned long cnt; 650 651 return __rb_time_read(t, ret, &cnt); 652 } 653 654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 655 { 656 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 657 } 658 659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom) 660 { 661 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 662 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 663 } 664 665 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 666 { 667 val = rb_time_val_cnt(val, cnt); 668 local_set(t, val); 669 } 670 671 static void rb_time_set(rb_time_t *t, u64 val) 672 { 673 unsigned long cnt, top, bottom; 674 675 rb_time_split(val, &top, &bottom); 676 677 /* Writes always succeed with a valid number even if it gets interrupted. */ 678 do { 679 cnt = local_inc_return(&t->cnt); 680 rb_time_val_set(&t->top, top, cnt); 681 rb_time_val_set(&t->bottom, bottom, cnt); 682 } while (cnt != local_read(&t->cnt)); 683 } 684 685 static inline bool 686 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 687 { 688 unsigned long ret; 689 690 ret = local_cmpxchg(l, expect, set); 691 return ret == expect; 692 } 693 694 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 695 { 696 unsigned long cnt, top, bottom; 697 unsigned long cnt2, top2, bottom2; 698 u64 val; 699 700 /* The cmpxchg always fails if it interrupted an update */ 701 if (!__rb_time_read(t, &val, &cnt2)) 702 return false; 703 704 if (val != expect) 705 return false; 706 707 cnt = local_read(&t->cnt); 708 if ((cnt & 3) != cnt2) 709 return false; 710 711 cnt2 = cnt + 1; 712 713 rb_time_split(val, &top, &bottom); 714 top = rb_time_val_cnt(top, cnt); 715 bottom = rb_time_val_cnt(bottom, cnt); 716 717 rb_time_split(set, &top2, &bottom2); 718 top2 = rb_time_val_cnt(top2, cnt2); 719 bottom2 = rb_time_val_cnt(bottom2, cnt2); 720 721 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 722 return false; 723 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 724 return false; 725 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 726 return false; 727 return true; 728 } 729 730 #else /* 64 bits */ 731 732 /* local64_t always succeeds */ 733 734 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 735 { 736 *ret = local64_read(&t->time); 737 return true; 738 } 739 static void rb_time_set(rb_time_t *t, u64 val) 740 { 741 local64_set(&t->time, val); 742 } 743 744 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 745 { 746 u64 val; 747 val = local64_cmpxchg(&t->time, expect, set); 748 return val == expect; 749 } 750 #endif 751 752 /** 753 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 754 * @buffer: The ring_buffer to get the number of pages from 755 * @cpu: The cpu of the ring_buffer to get the number of pages from 756 * 757 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 758 */ 759 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 760 { 761 return buffer->buffers[cpu]->nr_pages; 762 } 763 764 /** 765 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 766 * @buffer: The ring_buffer to get the number of pages from 767 * @cpu: The cpu of the ring_buffer to get the number of pages from 768 * 769 * Returns the number of pages that have content in the ring buffer. 770 */ 771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 772 { 773 size_t read; 774 size_t cnt; 775 776 read = local_read(&buffer->buffers[cpu]->pages_read); 777 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 778 /* The reader can read an empty page, but not more than that */ 779 if (cnt < read) { 780 WARN_ON_ONCE(read > cnt + 1); 781 return 0; 782 } 783 784 return cnt - read; 785 } 786 787 /* 788 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 789 * 790 * Schedules a delayed work to wake up any task that is blocked on the 791 * ring buffer waiters queue. 792 */ 793 static void rb_wake_up_waiters(struct irq_work *work) 794 { 795 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 796 797 wake_up_all(&rbwork->waiters); 798 if (rbwork->wakeup_full) { 799 rbwork->wakeup_full = false; 800 wake_up_all(&rbwork->full_waiters); 801 } 802 } 803 804 /** 805 * ring_buffer_wait - wait for input to the ring buffer 806 * @buffer: buffer to wait on 807 * @cpu: the cpu buffer to wait on 808 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 809 * 810 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 811 * as data is added to any of the @buffer's cpu buffers. Otherwise 812 * it will wait for data to be added to a specific cpu buffer. 813 */ 814 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 815 { 816 struct ring_buffer_per_cpu *cpu_buffer; 817 DEFINE_WAIT(wait); 818 struct rb_irq_work *work; 819 int ret = 0; 820 821 /* 822 * Depending on what the caller is waiting for, either any 823 * data in any cpu buffer, or a specific buffer, put the 824 * caller on the appropriate wait queue. 825 */ 826 if (cpu == RING_BUFFER_ALL_CPUS) { 827 work = &buffer->irq_work; 828 /* Full only makes sense on per cpu reads */ 829 full = 0; 830 } else { 831 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 832 return -ENODEV; 833 cpu_buffer = buffer->buffers[cpu]; 834 work = &cpu_buffer->irq_work; 835 } 836 837 838 while (true) { 839 if (full) 840 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 841 else 842 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 843 844 /* 845 * The events can happen in critical sections where 846 * checking a work queue can cause deadlocks. 847 * After adding a task to the queue, this flag is set 848 * only to notify events to try to wake up the queue 849 * using irq_work. 850 * 851 * We don't clear it even if the buffer is no longer 852 * empty. The flag only causes the next event to run 853 * irq_work to do the work queue wake up. The worse 854 * that can happen if we race with !trace_empty() is that 855 * an event will cause an irq_work to try to wake up 856 * an empty queue. 857 * 858 * There's no reason to protect this flag either, as 859 * the work queue and irq_work logic will do the necessary 860 * synchronization for the wake ups. The only thing 861 * that is necessary is that the wake up happens after 862 * a task has been queued. It's OK for spurious wake ups. 863 */ 864 if (full) 865 work->full_waiters_pending = true; 866 else 867 work->waiters_pending = true; 868 869 if (signal_pending(current)) { 870 ret = -EINTR; 871 break; 872 } 873 874 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 875 break; 876 877 if (cpu != RING_BUFFER_ALL_CPUS && 878 !ring_buffer_empty_cpu(buffer, cpu)) { 879 unsigned long flags; 880 bool pagebusy; 881 size_t nr_pages; 882 size_t dirty; 883 884 if (!full) 885 break; 886 887 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 888 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 889 nr_pages = cpu_buffer->nr_pages; 890 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 891 if (!cpu_buffer->shortest_full || 892 cpu_buffer->shortest_full < full) 893 cpu_buffer->shortest_full = full; 894 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 895 if (!pagebusy && 896 (!nr_pages || (dirty * 100) > full * nr_pages)) 897 break; 898 } 899 900 schedule(); 901 } 902 903 if (full) 904 finish_wait(&work->full_waiters, &wait); 905 else 906 finish_wait(&work->waiters, &wait); 907 908 return ret; 909 } 910 911 /** 912 * ring_buffer_poll_wait - poll on buffer input 913 * @buffer: buffer to wait on 914 * @cpu: the cpu buffer to wait on 915 * @filp: the file descriptor 916 * @poll_table: The poll descriptor 917 * 918 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 919 * as data is added to any of the @buffer's cpu buffers. Otherwise 920 * it will wait for data to be added to a specific cpu buffer. 921 * 922 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 923 * zero otherwise. 924 */ 925 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 926 struct file *filp, poll_table *poll_table) 927 { 928 struct ring_buffer_per_cpu *cpu_buffer; 929 struct rb_irq_work *work; 930 931 if (cpu == RING_BUFFER_ALL_CPUS) 932 work = &buffer->irq_work; 933 else { 934 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 935 return -EINVAL; 936 937 cpu_buffer = buffer->buffers[cpu]; 938 work = &cpu_buffer->irq_work; 939 } 940 941 poll_wait(filp, &work->waiters, poll_table); 942 work->waiters_pending = true; 943 /* 944 * There's a tight race between setting the waiters_pending and 945 * checking if the ring buffer is empty. Once the waiters_pending bit 946 * is set, the next event will wake the task up, but we can get stuck 947 * if there's only a single event in. 948 * 949 * FIXME: Ideally, we need a memory barrier on the writer side as well, 950 * but adding a memory barrier to all events will cause too much of a 951 * performance hit in the fast path. We only need a memory barrier when 952 * the buffer goes from empty to having content. But as this race is 953 * extremely small, and it's not a problem if another event comes in, we 954 * will fix it later. 955 */ 956 smp_mb(); 957 958 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 959 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 960 return EPOLLIN | EPOLLRDNORM; 961 return 0; 962 } 963 964 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 965 #define RB_WARN_ON(b, cond) \ 966 ({ \ 967 int _____ret = unlikely(cond); \ 968 if (_____ret) { \ 969 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 970 struct ring_buffer_per_cpu *__b = \ 971 (void *)b; \ 972 atomic_inc(&__b->buffer->record_disabled); \ 973 } else \ 974 atomic_inc(&b->record_disabled); \ 975 WARN_ON(1); \ 976 } \ 977 _____ret; \ 978 }) 979 980 /* Up this if you want to test the TIME_EXTENTS and normalization */ 981 #define DEBUG_SHIFT 0 982 983 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 984 { 985 u64 ts; 986 987 /* Skip retpolines :-( */ 988 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 989 ts = trace_clock_local(); 990 else 991 ts = buffer->clock(); 992 993 /* shift to debug/test normalization and TIME_EXTENTS */ 994 return ts << DEBUG_SHIFT; 995 } 996 997 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu) 998 { 999 u64 time; 1000 1001 preempt_disable_notrace(); 1002 time = rb_time_stamp(buffer); 1003 preempt_enable_notrace(); 1004 1005 return time; 1006 } 1007 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1008 1009 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1010 int cpu, u64 *ts) 1011 { 1012 /* Just stupid testing the normalize function and deltas */ 1013 *ts >>= DEBUG_SHIFT; 1014 } 1015 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1016 1017 /* 1018 * Making the ring buffer lockless makes things tricky. 1019 * Although writes only happen on the CPU that they are on, 1020 * and they only need to worry about interrupts. Reads can 1021 * happen on any CPU. 1022 * 1023 * The reader page is always off the ring buffer, but when the 1024 * reader finishes with a page, it needs to swap its page with 1025 * a new one from the buffer. The reader needs to take from 1026 * the head (writes go to the tail). But if a writer is in overwrite 1027 * mode and wraps, it must push the head page forward. 1028 * 1029 * Here lies the problem. 1030 * 1031 * The reader must be careful to replace only the head page, and 1032 * not another one. As described at the top of the file in the 1033 * ASCII art, the reader sets its old page to point to the next 1034 * page after head. It then sets the page after head to point to 1035 * the old reader page. But if the writer moves the head page 1036 * during this operation, the reader could end up with the tail. 1037 * 1038 * We use cmpxchg to help prevent this race. We also do something 1039 * special with the page before head. We set the LSB to 1. 1040 * 1041 * When the writer must push the page forward, it will clear the 1042 * bit that points to the head page, move the head, and then set 1043 * the bit that points to the new head page. 1044 * 1045 * We also don't want an interrupt coming in and moving the head 1046 * page on another writer. Thus we use the second LSB to catch 1047 * that too. Thus: 1048 * 1049 * head->list->prev->next bit 1 bit 0 1050 * ------- ------- 1051 * Normal page 0 0 1052 * Points to head page 0 1 1053 * New head page 1 0 1054 * 1055 * Note we can not trust the prev pointer of the head page, because: 1056 * 1057 * +----+ +-----+ +-----+ 1058 * | |------>| T |---X--->| N | 1059 * | |<------| | | | 1060 * +----+ +-----+ +-----+ 1061 * ^ ^ | 1062 * | +-----+ | | 1063 * +----------| R |----------+ | 1064 * | |<-----------+ 1065 * +-----+ 1066 * 1067 * Key: ---X--> HEAD flag set in pointer 1068 * T Tail page 1069 * R Reader page 1070 * N Next page 1071 * 1072 * (see __rb_reserve_next() to see where this happens) 1073 * 1074 * What the above shows is that the reader just swapped out 1075 * the reader page with a page in the buffer, but before it 1076 * could make the new header point back to the new page added 1077 * it was preempted by a writer. The writer moved forward onto 1078 * the new page added by the reader and is about to move forward 1079 * again. 1080 * 1081 * You can see, it is legitimate for the previous pointer of 1082 * the head (or any page) not to point back to itself. But only 1083 * temporarily. 1084 */ 1085 1086 #define RB_PAGE_NORMAL 0UL 1087 #define RB_PAGE_HEAD 1UL 1088 #define RB_PAGE_UPDATE 2UL 1089 1090 1091 #define RB_FLAG_MASK 3UL 1092 1093 /* PAGE_MOVED is not part of the mask */ 1094 #define RB_PAGE_MOVED 4UL 1095 1096 /* 1097 * rb_list_head - remove any bit 1098 */ 1099 static struct list_head *rb_list_head(struct list_head *list) 1100 { 1101 unsigned long val = (unsigned long)list; 1102 1103 return (struct list_head *)(val & ~RB_FLAG_MASK); 1104 } 1105 1106 /* 1107 * rb_is_head_page - test if the given page is the head page 1108 * 1109 * Because the reader may move the head_page pointer, we can 1110 * not trust what the head page is (it may be pointing to 1111 * the reader page). But if the next page is a header page, 1112 * its flags will be non zero. 1113 */ 1114 static inline int 1115 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1116 { 1117 unsigned long val; 1118 1119 val = (unsigned long)list->next; 1120 1121 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1122 return RB_PAGE_MOVED; 1123 1124 return val & RB_FLAG_MASK; 1125 } 1126 1127 /* 1128 * rb_is_reader_page 1129 * 1130 * The unique thing about the reader page, is that, if the 1131 * writer is ever on it, the previous pointer never points 1132 * back to the reader page. 1133 */ 1134 static bool rb_is_reader_page(struct buffer_page *page) 1135 { 1136 struct list_head *list = page->list.prev; 1137 1138 return rb_list_head(list->next) != &page->list; 1139 } 1140 1141 /* 1142 * rb_set_list_to_head - set a list_head to be pointing to head. 1143 */ 1144 static void rb_set_list_to_head(struct list_head *list) 1145 { 1146 unsigned long *ptr; 1147 1148 ptr = (unsigned long *)&list->next; 1149 *ptr |= RB_PAGE_HEAD; 1150 *ptr &= ~RB_PAGE_UPDATE; 1151 } 1152 1153 /* 1154 * rb_head_page_activate - sets up head page 1155 */ 1156 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1157 { 1158 struct buffer_page *head; 1159 1160 head = cpu_buffer->head_page; 1161 if (!head) 1162 return; 1163 1164 /* 1165 * Set the previous list pointer to have the HEAD flag. 1166 */ 1167 rb_set_list_to_head(head->list.prev); 1168 } 1169 1170 static void rb_list_head_clear(struct list_head *list) 1171 { 1172 unsigned long *ptr = (unsigned long *)&list->next; 1173 1174 *ptr &= ~RB_FLAG_MASK; 1175 } 1176 1177 /* 1178 * rb_head_page_deactivate - clears head page ptr (for free list) 1179 */ 1180 static void 1181 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1182 { 1183 struct list_head *hd; 1184 1185 /* Go through the whole list and clear any pointers found. */ 1186 rb_list_head_clear(cpu_buffer->pages); 1187 1188 list_for_each(hd, cpu_buffer->pages) 1189 rb_list_head_clear(hd); 1190 } 1191 1192 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1193 struct buffer_page *head, 1194 struct buffer_page *prev, 1195 int old_flag, int new_flag) 1196 { 1197 struct list_head *list; 1198 unsigned long val = (unsigned long)&head->list; 1199 unsigned long ret; 1200 1201 list = &prev->list; 1202 1203 val &= ~RB_FLAG_MASK; 1204 1205 ret = cmpxchg((unsigned long *)&list->next, 1206 val | old_flag, val | new_flag); 1207 1208 /* check if the reader took the page */ 1209 if ((ret & ~RB_FLAG_MASK) != val) 1210 return RB_PAGE_MOVED; 1211 1212 return ret & RB_FLAG_MASK; 1213 } 1214 1215 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1216 struct buffer_page *head, 1217 struct buffer_page *prev, 1218 int old_flag) 1219 { 1220 return rb_head_page_set(cpu_buffer, head, prev, 1221 old_flag, RB_PAGE_UPDATE); 1222 } 1223 1224 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1225 struct buffer_page *head, 1226 struct buffer_page *prev, 1227 int old_flag) 1228 { 1229 return rb_head_page_set(cpu_buffer, head, prev, 1230 old_flag, RB_PAGE_HEAD); 1231 } 1232 1233 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1234 struct buffer_page *head, 1235 struct buffer_page *prev, 1236 int old_flag) 1237 { 1238 return rb_head_page_set(cpu_buffer, head, prev, 1239 old_flag, RB_PAGE_NORMAL); 1240 } 1241 1242 static inline void rb_inc_page(struct buffer_page **bpage) 1243 { 1244 struct list_head *p = rb_list_head((*bpage)->list.next); 1245 1246 *bpage = list_entry(p, struct buffer_page, list); 1247 } 1248 1249 static struct buffer_page * 1250 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1251 { 1252 struct buffer_page *head; 1253 struct buffer_page *page; 1254 struct list_head *list; 1255 int i; 1256 1257 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1258 return NULL; 1259 1260 /* sanity check */ 1261 list = cpu_buffer->pages; 1262 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1263 return NULL; 1264 1265 page = head = cpu_buffer->head_page; 1266 /* 1267 * It is possible that the writer moves the header behind 1268 * where we started, and we miss in one loop. 1269 * A second loop should grab the header, but we'll do 1270 * three loops just because I'm paranoid. 1271 */ 1272 for (i = 0; i < 3; i++) { 1273 do { 1274 if (rb_is_head_page(page, page->list.prev)) { 1275 cpu_buffer->head_page = page; 1276 return page; 1277 } 1278 rb_inc_page(&page); 1279 } while (page != head); 1280 } 1281 1282 RB_WARN_ON(cpu_buffer, 1); 1283 1284 return NULL; 1285 } 1286 1287 static int rb_head_page_replace(struct buffer_page *old, 1288 struct buffer_page *new) 1289 { 1290 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1291 unsigned long val; 1292 unsigned long ret; 1293 1294 val = *ptr & ~RB_FLAG_MASK; 1295 val |= RB_PAGE_HEAD; 1296 1297 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1298 1299 return ret == val; 1300 } 1301 1302 /* 1303 * rb_tail_page_update - move the tail page forward 1304 */ 1305 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1306 struct buffer_page *tail_page, 1307 struct buffer_page *next_page) 1308 { 1309 unsigned long old_entries; 1310 unsigned long old_write; 1311 1312 /* 1313 * The tail page now needs to be moved forward. 1314 * 1315 * We need to reset the tail page, but without messing 1316 * with possible erasing of data brought in by interrupts 1317 * that have moved the tail page and are currently on it. 1318 * 1319 * We add a counter to the write field to denote this. 1320 */ 1321 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1322 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1323 1324 local_inc(&cpu_buffer->pages_touched); 1325 /* 1326 * Just make sure we have seen our old_write and synchronize 1327 * with any interrupts that come in. 1328 */ 1329 barrier(); 1330 1331 /* 1332 * If the tail page is still the same as what we think 1333 * it is, then it is up to us to update the tail 1334 * pointer. 1335 */ 1336 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1337 /* Zero the write counter */ 1338 unsigned long val = old_write & ~RB_WRITE_MASK; 1339 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1340 1341 /* 1342 * This will only succeed if an interrupt did 1343 * not come in and change it. In which case, we 1344 * do not want to modify it. 1345 * 1346 * We add (void) to let the compiler know that we do not care 1347 * about the return value of these functions. We use the 1348 * cmpxchg to only update if an interrupt did not already 1349 * do it for us. If the cmpxchg fails, we don't care. 1350 */ 1351 (void)local_cmpxchg(&next_page->write, old_write, val); 1352 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1353 1354 /* 1355 * No need to worry about races with clearing out the commit. 1356 * it only can increment when a commit takes place. But that 1357 * only happens in the outer most nested commit. 1358 */ 1359 local_set(&next_page->page->commit, 0); 1360 1361 /* Again, either we update tail_page or an interrupt does */ 1362 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1363 } 1364 } 1365 1366 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1367 struct buffer_page *bpage) 1368 { 1369 unsigned long val = (unsigned long)bpage; 1370 1371 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1372 return 1; 1373 1374 return 0; 1375 } 1376 1377 /** 1378 * rb_check_list - make sure a pointer to a list has the last bits zero 1379 */ 1380 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1381 struct list_head *list) 1382 { 1383 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1384 return 1; 1385 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1386 return 1; 1387 return 0; 1388 } 1389 1390 /** 1391 * rb_check_pages - integrity check of buffer pages 1392 * @cpu_buffer: CPU buffer with pages to test 1393 * 1394 * As a safety measure we check to make sure the data pages have not 1395 * been corrupted. 1396 */ 1397 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1398 { 1399 struct list_head *head = cpu_buffer->pages; 1400 struct buffer_page *bpage, *tmp; 1401 1402 /* Reset the head page if it exists */ 1403 if (cpu_buffer->head_page) 1404 rb_set_head_page(cpu_buffer); 1405 1406 rb_head_page_deactivate(cpu_buffer); 1407 1408 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1409 return -1; 1410 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1411 return -1; 1412 1413 if (rb_check_list(cpu_buffer, head)) 1414 return -1; 1415 1416 list_for_each_entry_safe(bpage, tmp, head, list) { 1417 if (RB_WARN_ON(cpu_buffer, 1418 bpage->list.next->prev != &bpage->list)) 1419 return -1; 1420 if (RB_WARN_ON(cpu_buffer, 1421 bpage->list.prev->next != &bpage->list)) 1422 return -1; 1423 if (rb_check_list(cpu_buffer, &bpage->list)) 1424 return -1; 1425 } 1426 1427 rb_head_page_activate(cpu_buffer); 1428 1429 return 0; 1430 } 1431 1432 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1433 long nr_pages, struct list_head *pages) 1434 { 1435 struct buffer_page *bpage, *tmp; 1436 bool user_thread = current->mm != NULL; 1437 gfp_t mflags; 1438 long i; 1439 1440 /* 1441 * Check if the available memory is there first. 1442 * Note, si_mem_available() only gives us a rough estimate of available 1443 * memory. It may not be accurate. But we don't care, we just want 1444 * to prevent doing any allocation when it is obvious that it is 1445 * not going to succeed. 1446 */ 1447 i = si_mem_available(); 1448 if (i < nr_pages) 1449 return -ENOMEM; 1450 1451 /* 1452 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1453 * gracefully without invoking oom-killer and the system is not 1454 * destabilized. 1455 */ 1456 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1457 1458 /* 1459 * If a user thread allocates too much, and si_mem_available() 1460 * reports there's enough memory, even though there is not. 1461 * Make sure the OOM killer kills this thread. This can happen 1462 * even with RETRY_MAYFAIL because another task may be doing 1463 * an allocation after this task has taken all memory. 1464 * This is the task the OOM killer needs to take out during this 1465 * loop, even if it was triggered by an allocation somewhere else. 1466 */ 1467 if (user_thread) 1468 set_current_oom_origin(); 1469 for (i = 0; i < nr_pages; i++) { 1470 struct page *page; 1471 1472 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1473 mflags, cpu_to_node(cpu_buffer->cpu)); 1474 if (!bpage) 1475 goto free_pages; 1476 1477 rb_check_bpage(cpu_buffer, bpage); 1478 1479 list_add(&bpage->list, pages); 1480 1481 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1482 if (!page) 1483 goto free_pages; 1484 bpage->page = page_address(page); 1485 rb_init_page(bpage->page); 1486 1487 if (user_thread && fatal_signal_pending(current)) 1488 goto free_pages; 1489 } 1490 if (user_thread) 1491 clear_current_oom_origin(); 1492 1493 return 0; 1494 1495 free_pages: 1496 list_for_each_entry_safe(bpage, tmp, pages, list) { 1497 list_del_init(&bpage->list); 1498 free_buffer_page(bpage); 1499 } 1500 if (user_thread) 1501 clear_current_oom_origin(); 1502 1503 return -ENOMEM; 1504 } 1505 1506 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1507 unsigned long nr_pages) 1508 { 1509 LIST_HEAD(pages); 1510 1511 WARN_ON(!nr_pages); 1512 1513 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1514 return -ENOMEM; 1515 1516 /* 1517 * The ring buffer page list is a circular list that does not 1518 * start and end with a list head. All page list items point to 1519 * other pages. 1520 */ 1521 cpu_buffer->pages = pages.next; 1522 list_del(&pages); 1523 1524 cpu_buffer->nr_pages = nr_pages; 1525 1526 rb_check_pages(cpu_buffer); 1527 1528 return 0; 1529 } 1530 1531 static struct ring_buffer_per_cpu * 1532 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1533 { 1534 struct ring_buffer_per_cpu *cpu_buffer; 1535 struct buffer_page *bpage; 1536 struct page *page; 1537 int ret; 1538 1539 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1540 GFP_KERNEL, cpu_to_node(cpu)); 1541 if (!cpu_buffer) 1542 return NULL; 1543 1544 cpu_buffer->cpu = cpu; 1545 cpu_buffer->buffer = buffer; 1546 raw_spin_lock_init(&cpu_buffer->reader_lock); 1547 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1548 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1549 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1550 init_completion(&cpu_buffer->update_done); 1551 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1552 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1553 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1554 1555 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1556 GFP_KERNEL, cpu_to_node(cpu)); 1557 if (!bpage) 1558 goto fail_free_buffer; 1559 1560 rb_check_bpage(cpu_buffer, bpage); 1561 1562 cpu_buffer->reader_page = bpage; 1563 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1564 if (!page) 1565 goto fail_free_reader; 1566 bpage->page = page_address(page); 1567 rb_init_page(bpage->page); 1568 1569 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1570 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1571 1572 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1573 if (ret < 0) 1574 goto fail_free_reader; 1575 1576 cpu_buffer->head_page 1577 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1578 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1579 1580 rb_head_page_activate(cpu_buffer); 1581 1582 return cpu_buffer; 1583 1584 fail_free_reader: 1585 free_buffer_page(cpu_buffer->reader_page); 1586 1587 fail_free_buffer: 1588 kfree(cpu_buffer); 1589 return NULL; 1590 } 1591 1592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1593 { 1594 struct list_head *head = cpu_buffer->pages; 1595 struct buffer_page *bpage, *tmp; 1596 1597 free_buffer_page(cpu_buffer->reader_page); 1598 1599 rb_head_page_deactivate(cpu_buffer); 1600 1601 if (head) { 1602 list_for_each_entry_safe(bpage, tmp, head, list) { 1603 list_del_init(&bpage->list); 1604 free_buffer_page(bpage); 1605 } 1606 bpage = list_entry(head, struct buffer_page, list); 1607 free_buffer_page(bpage); 1608 } 1609 1610 kfree(cpu_buffer); 1611 } 1612 1613 /** 1614 * __ring_buffer_alloc - allocate a new ring_buffer 1615 * @size: the size in bytes per cpu that is needed. 1616 * @flags: attributes to set for the ring buffer. 1617 * @key: ring buffer reader_lock_key. 1618 * 1619 * Currently the only flag that is available is the RB_FL_OVERWRITE 1620 * flag. This flag means that the buffer will overwrite old data 1621 * when the buffer wraps. If this flag is not set, the buffer will 1622 * drop data when the tail hits the head. 1623 */ 1624 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1625 struct lock_class_key *key) 1626 { 1627 struct trace_buffer *buffer; 1628 long nr_pages; 1629 int bsize; 1630 int cpu; 1631 int ret; 1632 1633 /* keep it in its own cache line */ 1634 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1635 GFP_KERNEL); 1636 if (!buffer) 1637 return NULL; 1638 1639 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1640 goto fail_free_buffer; 1641 1642 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1643 buffer->flags = flags; 1644 buffer->clock = trace_clock_local; 1645 buffer->reader_lock_key = key; 1646 1647 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1648 init_waitqueue_head(&buffer->irq_work.waiters); 1649 1650 /* need at least two pages */ 1651 if (nr_pages < 2) 1652 nr_pages = 2; 1653 1654 buffer->cpus = nr_cpu_ids; 1655 1656 bsize = sizeof(void *) * nr_cpu_ids; 1657 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1658 GFP_KERNEL); 1659 if (!buffer->buffers) 1660 goto fail_free_cpumask; 1661 1662 cpu = raw_smp_processor_id(); 1663 cpumask_set_cpu(cpu, buffer->cpumask); 1664 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1665 if (!buffer->buffers[cpu]) 1666 goto fail_free_buffers; 1667 1668 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1669 if (ret < 0) 1670 goto fail_free_buffers; 1671 1672 mutex_init(&buffer->mutex); 1673 1674 return buffer; 1675 1676 fail_free_buffers: 1677 for_each_buffer_cpu(buffer, cpu) { 1678 if (buffer->buffers[cpu]) 1679 rb_free_cpu_buffer(buffer->buffers[cpu]); 1680 } 1681 kfree(buffer->buffers); 1682 1683 fail_free_cpumask: 1684 free_cpumask_var(buffer->cpumask); 1685 1686 fail_free_buffer: 1687 kfree(buffer); 1688 return NULL; 1689 } 1690 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1691 1692 /** 1693 * ring_buffer_free - free a ring buffer. 1694 * @buffer: the buffer to free. 1695 */ 1696 void 1697 ring_buffer_free(struct trace_buffer *buffer) 1698 { 1699 int cpu; 1700 1701 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1702 1703 for_each_buffer_cpu(buffer, cpu) 1704 rb_free_cpu_buffer(buffer->buffers[cpu]); 1705 1706 kfree(buffer->buffers); 1707 free_cpumask_var(buffer->cpumask); 1708 1709 kfree(buffer); 1710 } 1711 EXPORT_SYMBOL_GPL(ring_buffer_free); 1712 1713 void ring_buffer_set_clock(struct trace_buffer *buffer, 1714 u64 (*clock)(void)) 1715 { 1716 buffer->clock = clock; 1717 } 1718 1719 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1720 { 1721 buffer->time_stamp_abs = abs; 1722 } 1723 1724 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1725 { 1726 return buffer->time_stamp_abs; 1727 } 1728 1729 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1730 1731 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1732 { 1733 return local_read(&bpage->entries) & RB_WRITE_MASK; 1734 } 1735 1736 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1737 { 1738 return local_read(&bpage->write) & RB_WRITE_MASK; 1739 } 1740 1741 static int 1742 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1743 { 1744 struct list_head *tail_page, *to_remove, *next_page; 1745 struct buffer_page *to_remove_page, *tmp_iter_page; 1746 struct buffer_page *last_page, *first_page; 1747 unsigned long nr_removed; 1748 unsigned long head_bit; 1749 int page_entries; 1750 1751 head_bit = 0; 1752 1753 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1754 atomic_inc(&cpu_buffer->record_disabled); 1755 /* 1756 * We don't race with the readers since we have acquired the reader 1757 * lock. We also don't race with writers after disabling recording. 1758 * This makes it easy to figure out the first and the last page to be 1759 * removed from the list. We unlink all the pages in between including 1760 * the first and last pages. This is done in a busy loop so that we 1761 * lose the least number of traces. 1762 * The pages are freed after we restart recording and unlock readers. 1763 */ 1764 tail_page = &cpu_buffer->tail_page->list; 1765 1766 /* 1767 * tail page might be on reader page, we remove the next page 1768 * from the ring buffer 1769 */ 1770 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1771 tail_page = rb_list_head(tail_page->next); 1772 to_remove = tail_page; 1773 1774 /* start of pages to remove */ 1775 first_page = list_entry(rb_list_head(to_remove->next), 1776 struct buffer_page, list); 1777 1778 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1779 to_remove = rb_list_head(to_remove)->next; 1780 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1781 } 1782 1783 next_page = rb_list_head(to_remove)->next; 1784 1785 /* 1786 * Now we remove all pages between tail_page and next_page. 1787 * Make sure that we have head_bit value preserved for the 1788 * next page 1789 */ 1790 tail_page->next = (struct list_head *)((unsigned long)next_page | 1791 head_bit); 1792 next_page = rb_list_head(next_page); 1793 next_page->prev = tail_page; 1794 1795 /* make sure pages points to a valid page in the ring buffer */ 1796 cpu_buffer->pages = next_page; 1797 1798 /* update head page */ 1799 if (head_bit) 1800 cpu_buffer->head_page = list_entry(next_page, 1801 struct buffer_page, list); 1802 1803 /* 1804 * change read pointer to make sure any read iterators reset 1805 * themselves 1806 */ 1807 cpu_buffer->read = 0; 1808 1809 /* pages are removed, resume tracing and then free the pages */ 1810 atomic_dec(&cpu_buffer->record_disabled); 1811 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1812 1813 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1814 1815 /* last buffer page to remove */ 1816 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1817 list); 1818 tmp_iter_page = first_page; 1819 1820 do { 1821 cond_resched(); 1822 1823 to_remove_page = tmp_iter_page; 1824 rb_inc_page(&tmp_iter_page); 1825 1826 /* update the counters */ 1827 page_entries = rb_page_entries(to_remove_page); 1828 if (page_entries) { 1829 /* 1830 * If something was added to this page, it was full 1831 * since it is not the tail page. So we deduct the 1832 * bytes consumed in ring buffer from here. 1833 * Increment overrun to account for the lost events. 1834 */ 1835 local_add(page_entries, &cpu_buffer->overrun); 1836 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1837 } 1838 1839 /* 1840 * We have already removed references to this list item, just 1841 * free up the buffer_page and its page 1842 */ 1843 free_buffer_page(to_remove_page); 1844 nr_removed--; 1845 1846 } while (to_remove_page != last_page); 1847 1848 RB_WARN_ON(cpu_buffer, nr_removed); 1849 1850 return nr_removed == 0; 1851 } 1852 1853 static int 1854 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1855 { 1856 struct list_head *pages = &cpu_buffer->new_pages; 1857 int retries, success; 1858 1859 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1860 /* 1861 * We are holding the reader lock, so the reader page won't be swapped 1862 * in the ring buffer. Now we are racing with the writer trying to 1863 * move head page and the tail page. 1864 * We are going to adapt the reader page update process where: 1865 * 1. We first splice the start and end of list of new pages between 1866 * the head page and its previous page. 1867 * 2. We cmpxchg the prev_page->next to point from head page to the 1868 * start of new pages list. 1869 * 3. Finally, we update the head->prev to the end of new list. 1870 * 1871 * We will try this process 10 times, to make sure that we don't keep 1872 * spinning. 1873 */ 1874 retries = 10; 1875 success = 0; 1876 while (retries--) { 1877 struct list_head *head_page, *prev_page, *r; 1878 struct list_head *last_page, *first_page; 1879 struct list_head *head_page_with_bit; 1880 1881 head_page = &rb_set_head_page(cpu_buffer)->list; 1882 if (!head_page) 1883 break; 1884 prev_page = head_page->prev; 1885 1886 first_page = pages->next; 1887 last_page = pages->prev; 1888 1889 head_page_with_bit = (struct list_head *) 1890 ((unsigned long)head_page | RB_PAGE_HEAD); 1891 1892 last_page->next = head_page_with_bit; 1893 first_page->prev = prev_page; 1894 1895 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1896 1897 if (r == head_page_with_bit) { 1898 /* 1899 * yay, we replaced the page pointer to our new list, 1900 * now, we just have to update to head page's prev 1901 * pointer to point to end of list 1902 */ 1903 head_page->prev = last_page; 1904 success = 1; 1905 break; 1906 } 1907 } 1908 1909 if (success) 1910 INIT_LIST_HEAD(pages); 1911 /* 1912 * If we weren't successful in adding in new pages, warn and stop 1913 * tracing 1914 */ 1915 RB_WARN_ON(cpu_buffer, !success); 1916 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1917 1918 /* free pages if they weren't inserted */ 1919 if (!success) { 1920 struct buffer_page *bpage, *tmp; 1921 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1922 list) { 1923 list_del_init(&bpage->list); 1924 free_buffer_page(bpage); 1925 } 1926 } 1927 return success; 1928 } 1929 1930 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1931 { 1932 int success; 1933 1934 if (cpu_buffer->nr_pages_to_update > 0) 1935 success = rb_insert_pages(cpu_buffer); 1936 else 1937 success = rb_remove_pages(cpu_buffer, 1938 -cpu_buffer->nr_pages_to_update); 1939 1940 if (success) 1941 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1942 } 1943 1944 static void update_pages_handler(struct work_struct *work) 1945 { 1946 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1947 struct ring_buffer_per_cpu, update_pages_work); 1948 rb_update_pages(cpu_buffer); 1949 complete(&cpu_buffer->update_done); 1950 } 1951 1952 /** 1953 * ring_buffer_resize - resize the ring buffer 1954 * @buffer: the buffer to resize. 1955 * @size: the new size. 1956 * @cpu_id: the cpu buffer to resize 1957 * 1958 * Minimum size is 2 * BUF_PAGE_SIZE. 1959 * 1960 * Returns 0 on success and < 0 on failure. 1961 */ 1962 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 1963 int cpu_id) 1964 { 1965 struct ring_buffer_per_cpu *cpu_buffer; 1966 unsigned long nr_pages; 1967 int cpu, err; 1968 1969 /* 1970 * Always succeed at resizing a non-existent buffer: 1971 */ 1972 if (!buffer) 1973 return 0; 1974 1975 /* Make sure the requested buffer exists */ 1976 if (cpu_id != RING_BUFFER_ALL_CPUS && 1977 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1978 return 0; 1979 1980 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1981 1982 /* we need a minimum of two pages */ 1983 if (nr_pages < 2) 1984 nr_pages = 2; 1985 1986 /* prevent another thread from changing buffer sizes */ 1987 mutex_lock(&buffer->mutex); 1988 1989 1990 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1991 /* 1992 * Don't succeed if resizing is disabled, as a reader might be 1993 * manipulating the ring buffer and is expecting a sane state while 1994 * this is true. 1995 */ 1996 for_each_buffer_cpu(buffer, cpu) { 1997 cpu_buffer = buffer->buffers[cpu]; 1998 if (atomic_read(&cpu_buffer->resize_disabled)) { 1999 err = -EBUSY; 2000 goto out_err_unlock; 2001 } 2002 } 2003 2004 /* calculate the pages to update */ 2005 for_each_buffer_cpu(buffer, cpu) { 2006 cpu_buffer = buffer->buffers[cpu]; 2007 2008 cpu_buffer->nr_pages_to_update = nr_pages - 2009 cpu_buffer->nr_pages; 2010 /* 2011 * nothing more to do for removing pages or no update 2012 */ 2013 if (cpu_buffer->nr_pages_to_update <= 0) 2014 continue; 2015 /* 2016 * to add pages, make sure all new pages can be 2017 * allocated without receiving ENOMEM 2018 */ 2019 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2020 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2021 &cpu_buffer->new_pages)) { 2022 /* not enough memory for new pages */ 2023 err = -ENOMEM; 2024 goto out_err; 2025 } 2026 } 2027 2028 get_online_cpus(); 2029 /* 2030 * Fire off all the required work handlers 2031 * We can't schedule on offline CPUs, but it's not necessary 2032 * since we can change their buffer sizes without any race. 2033 */ 2034 for_each_buffer_cpu(buffer, cpu) { 2035 cpu_buffer = buffer->buffers[cpu]; 2036 if (!cpu_buffer->nr_pages_to_update) 2037 continue; 2038 2039 /* Can't run something on an offline CPU. */ 2040 if (!cpu_online(cpu)) { 2041 rb_update_pages(cpu_buffer); 2042 cpu_buffer->nr_pages_to_update = 0; 2043 } else { 2044 schedule_work_on(cpu, 2045 &cpu_buffer->update_pages_work); 2046 } 2047 } 2048 2049 /* wait for all the updates to complete */ 2050 for_each_buffer_cpu(buffer, cpu) { 2051 cpu_buffer = buffer->buffers[cpu]; 2052 if (!cpu_buffer->nr_pages_to_update) 2053 continue; 2054 2055 if (cpu_online(cpu)) 2056 wait_for_completion(&cpu_buffer->update_done); 2057 cpu_buffer->nr_pages_to_update = 0; 2058 } 2059 2060 put_online_cpus(); 2061 } else { 2062 cpu_buffer = buffer->buffers[cpu_id]; 2063 2064 if (nr_pages == cpu_buffer->nr_pages) 2065 goto out; 2066 2067 /* 2068 * Don't succeed if resizing is disabled, as a reader might be 2069 * manipulating the ring buffer and is expecting a sane state while 2070 * this is true. 2071 */ 2072 if (atomic_read(&cpu_buffer->resize_disabled)) { 2073 err = -EBUSY; 2074 goto out_err_unlock; 2075 } 2076 2077 cpu_buffer->nr_pages_to_update = nr_pages - 2078 cpu_buffer->nr_pages; 2079 2080 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2081 if (cpu_buffer->nr_pages_to_update > 0 && 2082 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2083 &cpu_buffer->new_pages)) { 2084 err = -ENOMEM; 2085 goto out_err; 2086 } 2087 2088 get_online_cpus(); 2089 2090 /* Can't run something on an offline CPU. */ 2091 if (!cpu_online(cpu_id)) 2092 rb_update_pages(cpu_buffer); 2093 else { 2094 schedule_work_on(cpu_id, 2095 &cpu_buffer->update_pages_work); 2096 wait_for_completion(&cpu_buffer->update_done); 2097 } 2098 2099 cpu_buffer->nr_pages_to_update = 0; 2100 put_online_cpus(); 2101 } 2102 2103 out: 2104 /* 2105 * The ring buffer resize can happen with the ring buffer 2106 * enabled, so that the update disturbs the tracing as little 2107 * as possible. But if the buffer is disabled, we do not need 2108 * to worry about that, and we can take the time to verify 2109 * that the buffer is not corrupt. 2110 */ 2111 if (atomic_read(&buffer->record_disabled)) { 2112 atomic_inc(&buffer->record_disabled); 2113 /* 2114 * Even though the buffer was disabled, we must make sure 2115 * that it is truly disabled before calling rb_check_pages. 2116 * There could have been a race between checking 2117 * record_disable and incrementing it. 2118 */ 2119 synchronize_rcu(); 2120 for_each_buffer_cpu(buffer, cpu) { 2121 cpu_buffer = buffer->buffers[cpu]; 2122 rb_check_pages(cpu_buffer); 2123 } 2124 atomic_dec(&buffer->record_disabled); 2125 } 2126 2127 mutex_unlock(&buffer->mutex); 2128 return 0; 2129 2130 out_err: 2131 for_each_buffer_cpu(buffer, cpu) { 2132 struct buffer_page *bpage, *tmp; 2133 2134 cpu_buffer = buffer->buffers[cpu]; 2135 cpu_buffer->nr_pages_to_update = 0; 2136 2137 if (list_empty(&cpu_buffer->new_pages)) 2138 continue; 2139 2140 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2141 list) { 2142 list_del_init(&bpage->list); 2143 free_buffer_page(bpage); 2144 } 2145 } 2146 out_err_unlock: 2147 mutex_unlock(&buffer->mutex); 2148 return err; 2149 } 2150 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2151 2152 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2153 { 2154 mutex_lock(&buffer->mutex); 2155 if (val) 2156 buffer->flags |= RB_FL_OVERWRITE; 2157 else 2158 buffer->flags &= ~RB_FL_OVERWRITE; 2159 mutex_unlock(&buffer->mutex); 2160 } 2161 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2162 2163 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2164 { 2165 return bpage->page->data + index; 2166 } 2167 2168 static __always_inline struct ring_buffer_event * 2169 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2170 { 2171 return __rb_page_index(cpu_buffer->reader_page, 2172 cpu_buffer->reader_page->read); 2173 } 2174 2175 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2176 { 2177 return local_read(&bpage->page->commit); 2178 } 2179 2180 static struct ring_buffer_event * 2181 rb_iter_head_event(struct ring_buffer_iter *iter) 2182 { 2183 struct ring_buffer_event *event; 2184 struct buffer_page *iter_head_page = iter->head_page; 2185 unsigned long commit; 2186 unsigned length; 2187 2188 if (iter->head != iter->next_event) 2189 return iter->event; 2190 2191 /* 2192 * When the writer goes across pages, it issues a cmpxchg which 2193 * is a mb(), which will synchronize with the rmb here. 2194 * (see rb_tail_page_update() and __rb_reserve_next()) 2195 */ 2196 commit = rb_page_commit(iter_head_page); 2197 smp_rmb(); 2198 event = __rb_page_index(iter_head_page, iter->head); 2199 length = rb_event_length(event); 2200 2201 /* 2202 * READ_ONCE() doesn't work on functions and we don't want the 2203 * compiler doing any crazy optimizations with length. 2204 */ 2205 barrier(); 2206 2207 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2208 /* Writer corrupted the read? */ 2209 goto reset; 2210 2211 memcpy(iter->event, event, length); 2212 /* 2213 * If the page stamp is still the same after this rmb() then the 2214 * event was safely copied without the writer entering the page. 2215 */ 2216 smp_rmb(); 2217 2218 /* Make sure the page didn't change since we read this */ 2219 if (iter->page_stamp != iter_head_page->page->time_stamp || 2220 commit > rb_page_commit(iter_head_page)) 2221 goto reset; 2222 2223 iter->next_event = iter->head + length; 2224 return iter->event; 2225 reset: 2226 /* Reset to the beginning */ 2227 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2228 iter->head = 0; 2229 iter->next_event = 0; 2230 iter->missed_events = 1; 2231 return NULL; 2232 } 2233 2234 /* Size is determined by what has been committed */ 2235 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2236 { 2237 return rb_page_commit(bpage); 2238 } 2239 2240 static __always_inline unsigned 2241 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2242 { 2243 return rb_page_commit(cpu_buffer->commit_page); 2244 } 2245 2246 static __always_inline unsigned 2247 rb_event_index(struct ring_buffer_event *event) 2248 { 2249 unsigned long addr = (unsigned long)event; 2250 2251 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2252 } 2253 2254 static void rb_inc_iter(struct ring_buffer_iter *iter) 2255 { 2256 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2257 2258 /* 2259 * The iterator could be on the reader page (it starts there). 2260 * But the head could have moved, since the reader was 2261 * found. Check for this case and assign the iterator 2262 * to the head page instead of next. 2263 */ 2264 if (iter->head_page == cpu_buffer->reader_page) 2265 iter->head_page = rb_set_head_page(cpu_buffer); 2266 else 2267 rb_inc_page(&iter->head_page); 2268 2269 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2270 iter->head = 0; 2271 iter->next_event = 0; 2272 } 2273 2274 /* 2275 * rb_handle_head_page - writer hit the head page 2276 * 2277 * Returns: +1 to retry page 2278 * 0 to continue 2279 * -1 on error 2280 */ 2281 static int 2282 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2283 struct buffer_page *tail_page, 2284 struct buffer_page *next_page) 2285 { 2286 struct buffer_page *new_head; 2287 int entries; 2288 int type; 2289 int ret; 2290 2291 entries = rb_page_entries(next_page); 2292 2293 /* 2294 * The hard part is here. We need to move the head 2295 * forward, and protect against both readers on 2296 * other CPUs and writers coming in via interrupts. 2297 */ 2298 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2299 RB_PAGE_HEAD); 2300 2301 /* 2302 * type can be one of four: 2303 * NORMAL - an interrupt already moved it for us 2304 * HEAD - we are the first to get here. 2305 * UPDATE - we are the interrupt interrupting 2306 * a current move. 2307 * MOVED - a reader on another CPU moved the next 2308 * pointer to its reader page. Give up 2309 * and try again. 2310 */ 2311 2312 switch (type) { 2313 case RB_PAGE_HEAD: 2314 /* 2315 * We changed the head to UPDATE, thus 2316 * it is our responsibility to update 2317 * the counters. 2318 */ 2319 local_add(entries, &cpu_buffer->overrun); 2320 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2321 2322 /* 2323 * The entries will be zeroed out when we move the 2324 * tail page. 2325 */ 2326 2327 /* still more to do */ 2328 break; 2329 2330 case RB_PAGE_UPDATE: 2331 /* 2332 * This is an interrupt that interrupt the 2333 * previous update. Still more to do. 2334 */ 2335 break; 2336 case RB_PAGE_NORMAL: 2337 /* 2338 * An interrupt came in before the update 2339 * and processed this for us. 2340 * Nothing left to do. 2341 */ 2342 return 1; 2343 case RB_PAGE_MOVED: 2344 /* 2345 * The reader is on another CPU and just did 2346 * a swap with our next_page. 2347 * Try again. 2348 */ 2349 return 1; 2350 default: 2351 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2352 return -1; 2353 } 2354 2355 /* 2356 * Now that we are here, the old head pointer is 2357 * set to UPDATE. This will keep the reader from 2358 * swapping the head page with the reader page. 2359 * The reader (on another CPU) will spin till 2360 * we are finished. 2361 * 2362 * We just need to protect against interrupts 2363 * doing the job. We will set the next pointer 2364 * to HEAD. After that, we set the old pointer 2365 * to NORMAL, but only if it was HEAD before. 2366 * otherwise we are an interrupt, and only 2367 * want the outer most commit to reset it. 2368 */ 2369 new_head = next_page; 2370 rb_inc_page(&new_head); 2371 2372 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2373 RB_PAGE_NORMAL); 2374 2375 /* 2376 * Valid returns are: 2377 * HEAD - an interrupt came in and already set it. 2378 * NORMAL - One of two things: 2379 * 1) We really set it. 2380 * 2) A bunch of interrupts came in and moved 2381 * the page forward again. 2382 */ 2383 switch (ret) { 2384 case RB_PAGE_HEAD: 2385 case RB_PAGE_NORMAL: 2386 /* OK */ 2387 break; 2388 default: 2389 RB_WARN_ON(cpu_buffer, 1); 2390 return -1; 2391 } 2392 2393 /* 2394 * It is possible that an interrupt came in, 2395 * set the head up, then more interrupts came in 2396 * and moved it again. When we get back here, 2397 * the page would have been set to NORMAL but we 2398 * just set it back to HEAD. 2399 * 2400 * How do you detect this? Well, if that happened 2401 * the tail page would have moved. 2402 */ 2403 if (ret == RB_PAGE_NORMAL) { 2404 struct buffer_page *buffer_tail_page; 2405 2406 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2407 /* 2408 * If the tail had moved passed next, then we need 2409 * to reset the pointer. 2410 */ 2411 if (buffer_tail_page != tail_page && 2412 buffer_tail_page != next_page) 2413 rb_head_page_set_normal(cpu_buffer, new_head, 2414 next_page, 2415 RB_PAGE_HEAD); 2416 } 2417 2418 /* 2419 * If this was the outer most commit (the one that 2420 * changed the original pointer from HEAD to UPDATE), 2421 * then it is up to us to reset it to NORMAL. 2422 */ 2423 if (type == RB_PAGE_HEAD) { 2424 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2425 tail_page, 2426 RB_PAGE_UPDATE); 2427 if (RB_WARN_ON(cpu_buffer, 2428 ret != RB_PAGE_UPDATE)) 2429 return -1; 2430 } 2431 2432 return 0; 2433 } 2434 2435 static inline void 2436 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2437 unsigned long tail, struct rb_event_info *info) 2438 { 2439 struct buffer_page *tail_page = info->tail_page; 2440 struct ring_buffer_event *event; 2441 unsigned long length = info->length; 2442 2443 /* 2444 * Only the event that crossed the page boundary 2445 * must fill the old tail_page with padding. 2446 */ 2447 if (tail >= BUF_PAGE_SIZE) { 2448 /* 2449 * If the page was filled, then we still need 2450 * to update the real_end. Reset it to zero 2451 * and the reader will ignore it. 2452 */ 2453 if (tail == BUF_PAGE_SIZE) 2454 tail_page->real_end = 0; 2455 2456 local_sub(length, &tail_page->write); 2457 return; 2458 } 2459 2460 event = __rb_page_index(tail_page, tail); 2461 2462 /* account for padding bytes */ 2463 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2464 2465 /* 2466 * Save the original length to the meta data. 2467 * This will be used by the reader to add lost event 2468 * counter. 2469 */ 2470 tail_page->real_end = tail; 2471 2472 /* 2473 * If this event is bigger than the minimum size, then 2474 * we need to be careful that we don't subtract the 2475 * write counter enough to allow another writer to slip 2476 * in on this page. 2477 * We put in a discarded commit instead, to make sure 2478 * that this space is not used again. 2479 * 2480 * If we are less than the minimum size, we don't need to 2481 * worry about it. 2482 */ 2483 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2484 /* No room for any events */ 2485 2486 /* Mark the rest of the page with padding */ 2487 rb_event_set_padding(event); 2488 2489 /* Set the write back to the previous setting */ 2490 local_sub(length, &tail_page->write); 2491 return; 2492 } 2493 2494 /* Put in a discarded event */ 2495 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2496 event->type_len = RINGBUF_TYPE_PADDING; 2497 /* time delta must be non zero */ 2498 event->time_delta = 1; 2499 2500 /* Set write to end of buffer */ 2501 length = (tail + length) - BUF_PAGE_SIZE; 2502 local_sub(length, &tail_page->write); 2503 } 2504 2505 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2506 2507 /* 2508 * This is the slow path, force gcc not to inline it. 2509 */ 2510 static noinline struct ring_buffer_event * 2511 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2512 unsigned long tail, struct rb_event_info *info) 2513 { 2514 struct buffer_page *tail_page = info->tail_page; 2515 struct buffer_page *commit_page = cpu_buffer->commit_page; 2516 struct trace_buffer *buffer = cpu_buffer->buffer; 2517 struct buffer_page *next_page; 2518 int ret; 2519 2520 next_page = tail_page; 2521 2522 rb_inc_page(&next_page); 2523 2524 /* 2525 * If for some reason, we had an interrupt storm that made 2526 * it all the way around the buffer, bail, and warn 2527 * about it. 2528 */ 2529 if (unlikely(next_page == commit_page)) { 2530 local_inc(&cpu_buffer->commit_overrun); 2531 goto out_reset; 2532 } 2533 2534 /* 2535 * This is where the fun begins! 2536 * 2537 * We are fighting against races between a reader that 2538 * could be on another CPU trying to swap its reader 2539 * page with the buffer head. 2540 * 2541 * We are also fighting against interrupts coming in and 2542 * moving the head or tail on us as well. 2543 * 2544 * If the next page is the head page then we have filled 2545 * the buffer, unless the commit page is still on the 2546 * reader page. 2547 */ 2548 if (rb_is_head_page(next_page, &tail_page->list)) { 2549 2550 /* 2551 * If the commit is not on the reader page, then 2552 * move the header page. 2553 */ 2554 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2555 /* 2556 * If we are not in overwrite mode, 2557 * this is easy, just stop here. 2558 */ 2559 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2560 local_inc(&cpu_buffer->dropped_events); 2561 goto out_reset; 2562 } 2563 2564 ret = rb_handle_head_page(cpu_buffer, 2565 tail_page, 2566 next_page); 2567 if (ret < 0) 2568 goto out_reset; 2569 if (ret) 2570 goto out_again; 2571 } else { 2572 /* 2573 * We need to be careful here too. The 2574 * commit page could still be on the reader 2575 * page. We could have a small buffer, and 2576 * have filled up the buffer with events 2577 * from interrupts and such, and wrapped. 2578 * 2579 * Note, if the tail page is also on the 2580 * reader_page, we let it move out. 2581 */ 2582 if (unlikely((cpu_buffer->commit_page != 2583 cpu_buffer->tail_page) && 2584 (cpu_buffer->commit_page == 2585 cpu_buffer->reader_page))) { 2586 local_inc(&cpu_buffer->commit_overrun); 2587 goto out_reset; 2588 } 2589 } 2590 } 2591 2592 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2593 2594 out_again: 2595 2596 rb_reset_tail(cpu_buffer, tail, info); 2597 2598 /* Commit what we have for now. */ 2599 rb_end_commit(cpu_buffer); 2600 /* rb_end_commit() decs committing */ 2601 local_inc(&cpu_buffer->committing); 2602 2603 /* fail and let the caller try again */ 2604 return ERR_PTR(-EAGAIN); 2605 2606 out_reset: 2607 /* reset write */ 2608 rb_reset_tail(cpu_buffer, tail, info); 2609 2610 return NULL; 2611 } 2612 2613 /* Slow path */ 2614 static struct ring_buffer_event * 2615 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2616 { 2617 if (abs) 2618 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2619 else 2620 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2621 2622 /* Not the first event on the page, or not delta? */ 2623 if (abs || rb_event_index(event)) { 2624 event->time_delta = delta & TS_MASK; 2625 event->array[0] = delta >> TS_SHIFT; 2626 } else { 2627 /* nope, just zero it */ 2628 event->time_delta = 0; 2629 event->array[0] = 0; 2630 } 2631 2632 return skip_time_extend(event); 2633 } 2634 2635 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2636 static inline bool sched_clock_stable(void) 2637 { 2638 return true; 2639 } 2640 #endif 2641 2642 static void 2643 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2644 struct rb_event_info *info) 2645 { 2646 u64 write_stamp; 2647 2648 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2649 (unsigned long long)info->delta, 2650 (unsigned long long)info->ts, 2651 (unsigned long long)info->before, 2652 (unsigned long long)info->after, 2653 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2654 sched_clock_stable() ? "" : 2655 "If you just came from a suspend/resume,\n" 2656 "please switch to the trace global clock:\n" 2657 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2658 "or add trace_clock=global to the kernel command line\n"); 2659 } 2660 2661 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2662 struct ring_buffer_event **event, 2663 struct rb_event_info *info, 2664 u64 *delta, 2665 unsigned int *length) 2666 { 2667 bool abs = info->add_timestamp & 2668 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2669 2670 if (unlikely(info->delta > (1ULL << 59))) { 2671 /* did the clock go backwards */ 2672 if (info->before == info->after && info->before > info->ts) { 2673 /* not interrupted */ 2674 static int once; 2675 2676 /* 2677 * This is possible with a recalibrating of the TSC. 2678 * Do not produce a call stack, but just report it. 2679 */ 2680 if (!once) { 2681 once++; 2682 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2683 info->before, info->ts); 2684 } 2685 } else 2686 rb_check_timestamp(cpu_buffer, info); 2687 if (!abs) 2688 info->delta = 0; 2689 } 2690 *event = rb_add_time_stamp(*event, info->delta, abs); 2691 *length -= RB_LEN_TIME_EXTEND; 2692 *delta = 0; 2693 } 2694 2695 /** 2696 * rb_update_event - update event type and data 2697 * @cpu_buffer: The per cpu buffer of the @event 2698 * @event: the event to update 2699 * @info: The info to update the @event with (contains length and delta) 2700 * 2701 * Update the type and data fields of the @event. The length 2702 * is the actual size that is written to the ring buffer, 2703 * and with this, we can determine what to place into the 2704 * data field. 2705 */ 2706 static void 2707 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2708 struct ring_buffer_event *event, 2709 struct rb_event_info *info) 2710 { 2711 unsigned length = info->length; 2712 u64 delta = info->delta; 2713 2714 /* 2715 * If we need to add a timestamp, then we 2716 * add it to the start of the reserved space. 2717 */ 2718 if (unlikely(info->add_timestamp)) 2719 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2720 2721 event->time_delta = delta; 2722 length -= RB_EVNT_HDR_SIZE; 2723 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2724 event->type_len = 0; 2725 event->array[0] = length; 2726 } else 2727 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2728 } 2729 2730 static unsigned rb_calculate_event_length(unsigned length) 2731 { 2732 struct ring_buffer_event event; /* Used only for sizeof array */ 2733 2734 /* zero length can cause confusions */ 2735 if (!length) 2736 length++; 2737 2738 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2739 length += sizeof(event.array[0]); 2740 2741 length += RB_EVNT_HDR_SIZE; 2742 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2743 2744 /* 2745 * In case the time delta is larger than the 27 bits for it 2746 * in the header, we need to add a timestamp. If another 2747 * event comes in when trying to discard this one to increase 2748 * the length, then the timestamp will be added in the allocated 2749 * space of this event. If length is bigger than the size needed 2750 * for the TIME_EXTEND, then padding has to be used. The events 2751 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2752 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2753 * As length is a multiple of 4, we only need to worry if it 2754 * is 12 (RB_LEN_TIME_EXTEND + 4). 2755 */ 2756 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2757 length += RB_ALIGNMENT; 2758 2759 return length; 2760 } 2761 2762 static u64 rb_time_delta(struct ring_buffer_event *event) 2763 { 2764 switch (event->type_len) { 2765 case RINGBUF_TYPE_PADDING: 2766 return 0; 2767 2768 case RINGBUF_TYPE_TIME_EXTEND: 2769 return ring_buffer_event_time_stamp(event); 2770 2771 case RINGBUF_TYPE_TIME_STAMP: 2772 return 0; 2773 2774 case RINGBUF_TYPE_DATA: 2775 return event->time_delta; 2776 default: 2777 return 0; 2778 } 2779 } 2780 2781 static inline int 2782 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2783 struct ring_buffer_event *event) 2784 { 2785 unsigned long new_index, old_index; 2786 struct buffer_page *bpage; 2787 unsigned long index; 2788 unsigned long addr; 2789 u64 write_stamp; 2790 u64 delta; 2791 2792 new_index = rb_event_index(event); 2793 old_index = new_index + rb_event_ts_length(event); 2794 addr = (unsigned long)event; 2795 addr &= PAGE_MASK; 2796 2797 bpage = READ_ONCE(cpu_buffer->tail_page); 2798 2799 delta = rb_time_delta(event); 2800 2801 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 2802 return 0; 2803 2804 /* Make sure the write stamp is read before testing the location */ 2805 barrier(); 2806 2807 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2808 unsigned long write_mask = 2809 local_read(&bpage->write) & ~RB_WRITE_MASK; 2810 unsigned long event_length = rb_event_length(event); 2811 2812 /* Something came in, can't discard */ 2813 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 2814 write_stamp, write_stamp - delta)) 2815 return 0; 2816 2817 /* 2818 * If an event were to come in now, it would see that the 2819 * write_stamp and the before_stamp are different, and assume 2820 * that this event just added itself before updating 2821 * the write stamp. The interrupting event will fix the 2822 * write stamp for us, and use the before stamp as its delta. 2823 */ 2824 2825 /* 2826 * This is on the tail page. It is possible that 2827 * a write could come in and move the tail page 2828 * and write to the next page. That is fine 2829 * because we just shorten what is on this page. 2830 */ 2831 old_index += write_mask; 2832 new_index += write_mask; 2833 index = local_cmpxchg(&bpage->write, old_index, new_index); 2834 if (index == old_index) { 2835 /* update counters */ 2836 local_sub(event_length, &cpu_buffer->entries_bytes); 2837 return 1; 2838 } 2839 } 2840 2841 /* could not discard */ 2842 return 0; 2843 } 2844 2845 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2846 { 2847 local_inc(&cpu_buffer->committing); 2848 local_inc(&cpu_buffer->commits); 2849 } 2850 2851 static __always_inline void 2852 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2853 { 2854 unsigned long max_count; 2855 2856 /* 2857 * We only race with interrupts and NMIs on this CPU. 2858 * If we own the commit event, then we can commit 2859 * all others that interrupted us, since the interruptions 2860 * are in stack format (they finish before they come 2861 * back to us). This allows us to do a simple loop to 2862 * assign the commit to the tail. 2863 */ 2864 again: 2865 max_count = cpu_buffer->nr_pages * 100; 2866 2867 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2868 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2869 return; 2870 if (RB_WARN_ON(cpu_buffer, 2871 rb_is_reader_page(cpu_buffer->tail_page))) 2872 return; 2873 local_set(&cpu_buffer->commit_page->page->commit, 2874 rb_page_write(cpu_buffer->commit_page)); 2875 rb_inc_page(&cpu_buffer->commit_page); 2876 /* add barrier to keep gcc from optimizing too much */ 2877 barrier(); 2878 } 2879 while (rb_commit_index(cpu_buffer) != 2880 rb_page_write(cpu_buffer->commit_page)) { 2881 2882 local_set(&cpu_buffer->commit_page->page->commit, 2883 rb_page_write(cpu_buffer->commit_page)); 2884 RB_WARN_ON(cpu_buffer, 2885 local_read(&cpu_buffer->commit_page->page->commit) & 2886 ~RB_WRITE_MASK); 2887 barrier(); 2888 } 2889 2890 /* again, keep gcc from optimizing */ 2891 barrier(); 2892 2893 /* 2894 * If an interrupt came in just after the first while loop 2895 * and pushed the tail page forward, we will be left with 2896 * a dangling commit that will never go forward. 2897 */ 2898 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2899 goto again; 2900 } 2901 2902 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2903 { 2904 unsigned long commits; 2905 2906 if (RB_WARN_ON(cpu_buffer, 2907 !local_read(&cpu_buffer->committing))) 2908 return; 2909 2910 again: 2911 commits = local_read(&cpu_buffer->commits); 2912 /* synchronize with interrupts */ 2913 barrier(); 2914 if (local_read(&cpu_buffer->committing) == 1) 2915 rb_set_commit_to_write(cpu_buffer); 2916 2917 local_dec(&cpu_buffer->committing); 2918 2919 /* synchronize with interrupts */ 2920 barrier(); 2921 2922 /* 2923 * Need to account for interrupts coming in between the 2924 * updating of the commit page and the clearing of the 2925 * committing counter. 2926 */ 2927 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2928 !local_read(&cpu_buffer->committing)) { 2929 local_inc(&cpu_buffer->committing); 2930 goto again; 2931 } 2932 } 2933 2934 static inline void rb_event_discard(struct ring_buffer_event *event) 2935 { 2936 if (extended_time(event)) 2937 event = skip_time_extend(event); 2938 2939 /* array[0] holds the actual length for the discarded event */ 2940 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2941 event->type_len = RINGBUF_TYPE_PADDING; 2942 /* time delta must be non zero */ 2943 if (!event->time_delta) 2944 event->time_delta = 1; 2945 } 2946 2947 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2948 struct ring_buffer_event *event) 2949 { 2950 local_inc(&cpu_buffer->entries); 2951 rb_end_commit(cpu_buffer); 2952 } 2953 2954 static __always_inline void 2955 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2956 { 2957 size_t nr_pages; 2958 size_t dirty; 2959 size_t full; 2960 2961 if (buffer->irq_work.waiters_pending) { 2962 buffer->irq_work.waiters_pending = false; 2963 /* irq_work_queue() supplies it's own memory barriers */ 2964 irq_work_queue(&buffer->irq_work.work); 2965 } 2966 2967 if (cpu_buffer->irq_work.waiters_pending) { 2968 cpu_buffer->irq_work.waiters_pending = false; 2969 /* irq_work_queue() supplies it's own memory barriers */ 2970 irq_work_queue(&cpu_buffer->irq_work.work); 2971 } 2972 2973 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2974 return; 2975 2976 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2977 return; 2978 2979 if (!cpu_buffer->irq_work.full_waiters_pending) 2980 return; 2981 2982 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2983 2984 full = cpu_buffer->shortest_full; 2985 nr_pages = cpu_buffer->nr_pages; 2986 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2987 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2988 return; 2989 2990 cpu_buffer->irq_work.wakeup_full = true; 2991 cpu_buffer->irq_work.full_waiters_pending = false; 2992 /* irq_work_queue() supplies it's own memory barriers */ 2993 irq_work_queue(&cpu_buffer->irq_work.work); 2994 } 2995 2996 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 2997 # define do_ring_buffer_record_recursion() \ 2998 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 2999 #else 3000 # define do_ring_buffer_record_recursion() do { } while (0) 3001 #endif 3002 3003 /* 3004 * The lock and unlock are done within a preempt disable section. 3005 * The current_context per_cpu variable can only be modified 3006 * by the current task between lock and unlock. But it can 3007 * be modified more than once via an interrupt. To pass this 3008 * information from the lock to the unlock without having to 3009 * access the 'in_interrupt()' functions again (which do show 3010 * a bit of overhead in something as critical as function tracing, 3011 * we use a bitmask trick. 3012 * 3013 * bit 1 = NMI context 3014 * bit 2 = IRQ context 3015 * bit 3 = SoftIRQ context 3016 * bit 4 = normal context. 3017 * 3018 * This works because this is the order of contexts that can 3019 * preempt other contexts. A SoftIRQ never preempts an IRQ 3020 * context. 3021 * 3022 * When the context is determined, the corresponding bit is 3023 * checked and set (if it was set, then a recursion of that context 3024 * happened). 3025 * 3026 * On unlock, we need to clear this bit. To do so, just subtract 3027 * 1 from the current_context and AND it to itself. 3028 * 3029 * (binary) 3030 * 101 - 1 = 100 3031 * 101 & 100 = 100 (clearing bit zero) 3032 * 3033 * 1010 - 1 = 1001 3034 * 1010 & 1001 = 1000 (clearing bit 1) 3035 * 3036 * The least significant bit can be cleared this way, and it 3037 * just so happens that it is the same bit corresponding to 3038 * the current context. 3039 * 3040 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3041 * is set when a recursion is detected at the current context, and if 3042 * the TRANSITION bit is already set, it will fail the recursion. 3043 * This is needed because there's a lag between the changing of 3044 * interrupt context and updating the preempt count. In this case, 3045 * a false positive will be found. To handle this, one extra recursion 3046 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3047 * bit is already set, then it is considered a recursion and the function 3048 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3049 * 3050 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3051 * to be cleared. Even if it wasn't the context that set it. That is, 3052 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3053 * is called before preempt_count() is updated, since the check will 3054 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3055 * NMI then comes in, it will set the NMI bit, but when the NMI code 3056 * does the trace_recursive_unlock() it will clear the TRANSTION bit 3057 * and leave the NMI bit set. But this is fine, because the interrupt 3058 * code that set the TRANSITION bit will then clear the NMI bit when it 3059 * calls trace_recursive_unlock(). If another NMI comes in, it will 3060 * set the TRANSITION bit and continue. 3061 * 3062 * Note: The TRANSITION bit only handles a single transition between context. 3063 */ 3064 3065 static __always_inline int 3066 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3067 { 3068 unsigned int val = cpu_buffer->current_context; 3069 unsigned long pc = preempt_count(); 3070 int bit; 3071 3072 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 3073 bit = RB_CTX_NORMAL; 3074 else 3075 bit = pc & NMI_MASK ? RB_CTX_NMI : 3076 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 3077 3078 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3079 /* 3080 * It is possible that this was called by transitioning 3081 * between interrupt context, and preempt_count() has not 3082 * been updated yet. In this case, use the TRANSITION bit. 3083 */ 3084 bit = RB_CTX_TRANSITION; 3085 if (val & (1 << (bit + cpu_buffer->nest))) { 3086 do_ring_buffer_record_recursion(); 3087 return 1; 3088 } 3089 } 3090 3091 val |= (1 << (bit + cpu_buffer->nest)); 3092 cpu_buffer->current_context = val; 3093 3094 return 0; 3095 } 3096 3097 static __always_inline void 3098 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3099 { 3100 cpu_buffer->current_context &= 3101 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3102 } 3103 3104 /* The recursive locking above uses 5 bits */ 3105 #define NESTED_BITS 5 3106 3107 /** 3108 * ring_buffer_nest_start - Allow to trace while nested 3109 * @buffer: The ring buffer to modify 3110 * 3111 * The ring buffer has a safety mechanism to prevent recursion. 3112 * But there may be a case where a trace needs to be done while 3113 * tracing something else. In this case, calling this function 3114 * will allow this function to nest within a currently active 3115 * ring_buffer_lock_reserve(). 3116 * 3117 * Call this function before calling another ring_buffer_lock_reserve() and 3118 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3119 */ 3120 void ring_buffer_nest_start(struct trace_buffer *buffer) 3121 { 3122 struct ring_buffer_per_cpu *cpu_buffer; 3123 int cpu; 3124 3125 /* Enabled by ring_buffer_nest_end() */ 3126 preempt_disable_notrace(); 3127 cpu = raw_smp_processor_id(); 3128 cpu_buffer = buffer->buffers[cpu]; 3129 /* This is the shift value for the above recursive locking */ 3130 cpu_buffer->nest += NESTED_BITS; 3131 } 3132 3133 /** 3134 * ring_buffer_nest_end - Allow to trace while nested 3135 * @buffer: The ring buffer to modify 3136 * 3137 * Must be called after ring_buffer_nest_start() and after the 3138 * ring_buffer_unlock_commit(). 3139 */ 3140 void ring_buffer_nest_end(struct trace_buffer *buffer) 3141 { 3142 struct ring_buffer_per_cpu *cpu_buffer; 3143 int cpu; 3144 3145 /* disabled by ring_buffer_nest_start() */ 3146 cpu = raw_smp_processor_id(); 3147 cpu_buffer = buffer->buffers[cpu]; 3148 /* This is the shift value for the above recursive locking */ 3149 cpu_buffer->nest -= NESTED_BITS; 3150 preempt_enable_notrace(); 3151 } 3152 3153 /** 3154 * ring_buffer_unlock_commit - commit a reserved 3155 * @buffer: The buffer to commit to 3156 * @event: The event pointer to commit. 3157 * 3158 * This commits the data to the ring buffer, and releases any locks held. 3159 * 3160 * Must be paired with ring_buffer_lock_reserve. 3161 */ 3162 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 3163 struct ring_buffer_event *event) 3164 { 3165 struct ring_buffer_per_cpu *cpu_buffer; 3166 int cpu = raw_smp_processor_id(); 3167 3168 cpu_buffer = buffer->buffers[cpu]; 3169 3170 rb_commit(cpu_buffer, event); 3171 3172 rb_wakeups(buffer, cpu_buffer); 3173 3174 trace_recursive_unlock(cpu_buffer); 3175 3176 preempt_enable_notrace(); 3177 3178 return 0; 3179 } 3180 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3181 3182 /* Special value to validate all deltas on a page. */ 3183 #define CHECK_FULL_PAGE 1L 3184 3185 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3186 static void dump_buffer_page(struct buffer_data_page *bpage, 3187 struct rb_event_info *info, 3188 unsigned long tail) 3189 { 3190 struct ring_buffer_event *event; 3191 u64 ts, delta; 3192 int e; 3193 3194 ts = bpage->time_stamp; 3195 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3196 3197 for (e = 0; e < tail; e += rb_event_length(event)) { 3198 3199 event = (struct ring_buffer_event *)(bpage->data + e); 3200 3201 switch (event->type_len) { 3202 3203 case RINGBUF_TYPE_TIME_EXTEND: 3204 delta = ring_buffer_event_time_stamp(event); 3205 ts += delta; 3206 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3207 break; 3208 3209 case RINGBUF_TYPE_TIME_STAMP: 3210 delta = ring_buffer_event_time_stamp(event); 3211 ts = delta; 3212 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3213 break; 3214 3215 case RINGBUF_TYPE_PADDING: 3216 ts += event->time_delta; 3217 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3218 break; 3219 3220 case RINGBUF_TYPE_DATA: 3221 ts += event->time_delta; 3222 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3223 break; 3224 3225 default: 3226 break; 3227 } 3228 } 3229 } 3230 3231 static DEFINE_PER_CPU(atomic_t, checking); 3232 static atomic_t ts_dump; 3233 3234 /* 3235 * Check if the current event time stamp matches the deltas on 3236 * the buffer page. 3237 */ 3238 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3239 struct rb_event_info *info, 3240 unsigned long tail) 3241 { 3242 struct ring_buffer_event *event; 3243 struct buffer_data_page *bpage; 3244 u64 ts, delta; 3245 bool full = false; 3246 int e; 3247 3248 bpage = info->tail_page->page; 3249 3250 if (tail == CHECK_FULL_PAGE) { 3251 full = true; 3252 tail = local_read(&bpage->commit); 3253 } else if (info->add_timestamp & 3254 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3255 /* Ignore events with absolute time stamps */ 3256 return; 3257 } 3258 3259 /* 3260 * Do not check the first event (skip possible extends too). 3261 * Also do not check if previous events have not been committed. 3262 */ 3263 if (tail <= 8 || tail > local_read(&bpage->commit)) 3264 return; 3265 3266 /* 3267 * If this interrupted another event, 3268 */ 3269 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3270 goto out; 3271 3272 ts = bpage->time_stamp; 3273 3274 for (e = 0; e < tail; e += rb_event_length(event)) { 3275 3276 event = (struct ring_buffer_event *)(bpage->data + e); 3277 3278 switch (event->type_len) { 3279 3280 case RINGBUF_TYPE_TIME_EXTEND: 3281 delta = ring_buffer_event_time_stamp(event); 3282 ts += delta; 3283 break; 3284 3285 case RINGBUF_TYPE_TIME_STAMP: 3286 delta = ring_buffer_event_time_stamp(event); 3287 ts = delta; 3288 break; 3289 3290 case RINGBUF_TYPE_PADDING: 3291 if (event->time_delta == 1) 3292 break; 3293 /* fall through */ 3294 case RINGBUF_TYPE_DATA: 3295 ts += event->time_delta; 3296 break; 3297 3298 default: 3299 RB_WARN_ON(cpu_buffer, 1); 3300 } 3301 } 3302 if ((full && ts > info->ts) || 3303 (!full && ts + info->delta != info->ts)) { 3304 /* If another report is happening, ignore this one */ 3305 if (atomic_inc_return(&ts_dump) != 1) { 3306 atomic_dec(&ts_dump); 3307 goto out; 3308 } 3309 atomic_inc(&cpu_buffer->record_disabled); 3310 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld after:%lld\n", 3311 cpu_buffer->cpu, 3312 ts + info->delta, info->ts, info->delta, info->after); 3313 dump_buffer_page(bpage, info, tail); 3314 atomic_dec(&ts_dump); 3315 /* Do not re-enable checking */ 3316 return; 3317 } 3318 out: 3319 atomic_dec(this_cpu_ptr(&checking)); 3320 } 3321 #else 3322 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3323 struct rb_event_info *info, 3324 unsigned long tail) 3325 { 3326 } 3327 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3328 3329 static struct ring_buffer_event * 3330 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3331 struct rb_event_info *info) 3332 { 3333 struct ring_buffer_event *event; 3334 struct buffer_page *tail_page; 3335 unsigned long tail, write, w; 3336 bool a_ok; 3337 bool b_ok; 3338 3339 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3340 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3341 3342 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3343 barrier(); 3344 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3345 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3346 barrier(); 3347 info->ts = rb_time_stamp(cpu_buffer->buffer); 3348 3349 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3350 info->delta = info->ts; 3351 } else { 3352 /* 3353 * If interrupting an event time update, we may need an 3354 * absolute timestamp. 3355 * Don't bother if this is the start of a new page (w == 0). 3356 */ 3357 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3358 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3359 info->length += RB_LEN_TIME_EXTEND; 3360 } else { 3361 info->delta = info->ts - info->after; 3362 if (unlikely(test_time_stamp(info->delta))) { 3363 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3364 info->length += RB_LEN_TIME_EXTEND; 3365 } 3366 } 3367 } 3368 3369 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3370 3371 /*C*/ write = local_add_return(info->length, &tail_page->write); 3372 3373 /* set write to only the index of the write */ 3374 write &= RB_WRITE_MASK; 3375 3376 tail = write - info->length; 3377 3378 /* See if we shot pass the end of this buffer page */ 3379 if (unlikely(write > BUF_PAGE_SIZE)) { 3380 /* before and after may now different, fix it up*/ 3381 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3382 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3383 if (a_ok && b_ok && info->before != info->after) 3384 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3385 info->before, info->after); 3386 if (a_ok && b_ok) 3387 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3388 return rb_move_tail(cpu_buffer, tail, info); 3389 } 3390 3391 if (likely(tail == w)) { 3392 u64 save_before; 3393 bool s_ok; 3394 3395 /* Nothing interrupted us between A and C */ 3396 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3397 barrier(); 3398 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3399 RB_WARN_ON(cpu_buffer, !s_ok); 3400 if (likely(!(info->add_timestamp & 3401 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3402 /* This did not interrupt any time update */ 3403 info->delta = info->ts - info->after; 3404 else 3405 /* Just use full timestamp for interrupting event */ 3406 info->delta = info->ts; 3407 barrier(); 3408 check_buffer(cpu_buffer, info, tail); 3409 if (unlikely(info->ts != save_before)) { 3410 /* SLOW PATH - Interrupted between C and E */ 3411 3412 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3413 RB_WARN_ON(cpu_buffer, !a_ok); 3414 3415 /* Write stamp must only go forward */ 3416 if (save_before > info->after) { 3417 /* 3418 * We do not care about the result, only that 3419 * it gets updated atomically. 3420 */ 3421 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3422 info->after, save_before); 3423 } 3424 } 3425 } else { 3426 u64 ts; 3427 /* SLOW PATH - Interrupted between A and C */ 3428 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3429 /* Was interrupted before here, write_stamp must be valid */ 3430 RB_WARN_ON(cpu_buffer, !a_ok); 3431 ts = rb_time_stamp(cpu_buffer->buffer); 3432 barrier(); 3433 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3434 info->after < ts && 3435 rb_time_cmpxchg(&cpu_buffer->write_stamp, 3436 info->after, ts)) { 3437 /* Nothing came after this event between C and E */ 3438 info->delta = ts - info->after; 3439 info->ts = ts; 3440 } else { 3441 /* 3442 * Interrupted between C and E: 3443 * Lost the previous events time stamp. Just set the 3444 * delta to zero, and this will be the same time as 3445 * the event this event interrupted. And the events that 3446 * came after this will still be correct (as they would 3447 * have built their delta on the previous event. 3448 */ 3449 info->delta = 0; 3450 } 3451 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3452 } 3453 3454 /* 3455 * If this is the first commit on the page, then it has the same 3456 * timestamp as the page itself. 3457 */ 3458 if (unlikely(!tail && !(info->add_timestamp & 3459 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3460 info->delta = 0; 3461 3462 /* We reserved something on the buffer */ 3463 3464 event = __rb_page_index(tail_page, tail); 3465 rb_update_event(cpu_buffer, event, info); 3466 3467 local_inc(&tail_page->entries); 3468 3469 /* 3470 * If this is the first commit on the page, then update 3471 * its timestamp. 3472 */ 3473 if (unlikely(!tail)) 3474 tail_page->page->time_stamp = info->ts; 3475 3476 /* account for these added bytes */ 3477 local_add(info->length, &cpu_buffer->entries_bytes); 3478 3479 return event; 3480 } 3481 3482 static __always_inline struct ring_buffer_event * 3483 rb_reserve_next_event(struct trace_buffer *buffer, 3484 struct ring_buffer_per_cpu *cpu_buffer, 3485 unsigned long length) 3486 { 3487 struct ring_buffer_event *event; 3488 struct rb_event_info info; 3489 int nr_loops = 0; 3490 int add_ts_default; 3491 3492 rb_start_commit(cpu_buffer); 3493 /* The commit page can not change after this */ 3494 3495 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3496 /* 3497 * Due to the ability to swap a cpu buffer from a buffer 3498 * it is possible it was swapped before we committed. 3499 * (committing stops a swap). We check for it here and 3500 * if it happened, we have to fail the write. 3501 */ 3502 barrier(); 3503 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3504 local_dec(&cpu_buffer->committing); 3505 local_dec(&cpu_buffer->commits); 3506 return NULL; 3507 } 3508 #endif 3509 3510 info.length = rb_calculate_event_length(length); 3511 3512 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3513 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3514 info.length += RB_LEN_TIME_EXTEND; 3515 } else { 3516 add_ts_default = RB_ADD_STAMP_NONE; 3517 } 3518 3519 again: 3520 info.add_timestamp = add_ts_default; 3521 info.delta = 0; 3522 3523 /* 3524 * We allow for interrupts to reenter here and do a trace. 3525 * If one does, it will cause this original code to loop 3526 * back here. Even with heavy interrupts happening, this 3527 * should only happen a few times in a row. If this happens 3528 * 1000 times in a row, there must be either an interrupt 3529 * storm or we have something buggy. 3530 * Bail! 3531 */ 3532 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3533 goto out_fail; 3534 3535 event = __rb_reserve_next(cpu_buffer, &info); 3536 3537 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3538 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3539 info.length -= RB_LEN_TIME_EXTEND; 3540 goto again; 3541 } 3542 3543 if (likely(event)) 3544 return event; 3545 out_fail: 3546 rb_end_commit(cpu_buffer); 3547 return NULL; 3548 } 3549 3550 /** 3551 * ring_buffer_lock_reserve - reserve a part of the buffer 3552 * @buffer: the ring buffer to reserve from 3553 * @length: the length of the data to reserve (excluding event header) 3554 * 3555 * Returns a reserved event on the ring buffer to copy directly to. 3556 * The user of this interface will need to get the body to write into 3557 * and can use the ring_buffer_event_data() interface. 3558 * 3559 * The length is the length of the data needed, not the event length 3560 * which also includes the event header. 3561 * 3562 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3563 * If NULL is returned, then nothing has been allocated or locked. 3564 */ 3565 struct ring_buffer_event * 3566 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3567 { 3568 struct ring_buffer_per_cpu *cpu_buffer; 3569 struct ring_buffer_event *event; 3570 int cpu; 3571 3572 /* If we are tracing schedule, we don't want to recurse */ 3573 preempt_disable_notrace(); 3574 3575 if (unlikely(atomic_read(&buffer->record_disabled))) 3576 goto out; 3577 3578 cpu = raw_smp_processor_id(); 3579 3580 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3581 goto out; 3582 3583 cpu_buffer = buffer->buffers[cpu]; 3584 3585 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3586 goto out; 3587 3588 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3589 goto out; 3590 3591 if (unlikely(trace_recursive_lock(cpu_buffer))) 3592 goto out; 3593 3594 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3595 if (!event) 3596 goto out_unlock; 3597 3598 return event; 3599 3600 out_unlock: 3601 trace_recursive_unlock(cpu_buffer); 3602 out: 3603 preempt_enable_notrace(); 3604 return NULL; 3605 } 3606 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3607 3608 /* 3609 * Decrement the entries to the page that an event is on. 3610 * The event does not even need to exist, only the pointer 3611 * to the page it is on. This may only be called before the commit 3612 * takes place. 3613 */ 3614 static inline void 3615 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3616 struct ring_buffer_event *event) 3617 { 3618 unsigned long addr = (unsigned long)event; 3619 struct buffer_page *bpage = cpu_buffer->commit_page; 3620 struct buffer_page *start; 3621 3622 addr &= PAGE_MASK; 3623 3624 /* Do the likely case first */ 3625 if (likely(bpage->page == (void *)addr)) { 3626 local_dec(&bpage->entries); 3627 return; 3628 } 3629 3630 /* 3631 * Because the commit page may be on the reader page we 3632 * start with the next page and check the end loop there. 3633 */ 3634 rb_inc_page(&bpage); 3635 start = bpage; 3636 do { 3637 if (bpage->page == (void *)addr) { 3638 local_dec(&bpage->entries); 3639 return; 3640 } 3641 rb_inc_page(&bpage); 3642 } while (bpage != start); 3643 3644 /* commit not part of this buffer?? */ 3645 RB_WARN_ON(cpu_buffer, 1); 3646 } 3647 3648 /** 3649 * ring_buffer_discard_commit - discard an event that has not been committed 3650 * @buffer: the ring buffer 3651 * @event: non committed event to discard 3652 * 3653 * Sometimes an event that is in the ring buffer needs to be ignored. 3654 * This function lets the user discard an event in the ring buffer 3655 * and then that event will not be read later. 3656 * 3657 * This function only works if it is called before the item has been 3658 * committed. It will try to free the event from the ring buffer 3659 * if another event has not been added behind it. 3660 * 3661 * If another event has been added behind it, it will set the event 3662 * up as discarded, and perform the commit. 3663 * 3664 * If this function is called, do not call ring_buffer_unlock_commit on 3665 * the event. 3666 */ 3667 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3668 struct ring_buffer_event *event) 3669 { 3670 struct ring_buffer_per_cpu *cpu_buffer; 3671 int cpu; 3672 3673 /* The event is discarded regardless */ 3674 rb_event_discard(event); 3675 3676 cpu = smp_processor_id(); 3677 cpu_buffer = buffer->buffers[cpu]; 3678 3679 /* 3680 * This must only be called if the event has not been 3681 * committed yet. Thus we can assume that preemption 3682 * is still disabled. 3683 */ 3684 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3685 3686 rb_decrement_entry(cpu_buffer, event); 3687 if (rb_try_to_discard(cpu_buffer, event)) 3688 goto out; 3689 3690 out: 3691 rb_end_commit(cpu_buffer); 3692 3693 trace_recursive_unlock(cpu_buffer); 3694 3695 preempt_enable_notrace(); 3696 3697 } 3698 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3699 3700 /** 3701 * ring_buffer_write - write data to the buffer without reserving 3702 * @buffer: The ring buffer to write to. 3703 * @length: The length of the data being written (excluding the event header) 3704 * @data: The data to write to the buffer. 3705 * 3706 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3707 * one function. If you already have the data to write to the buffer, it 3708 * may be easier to simply call this function. 3709 * 3710 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3711 * and not the length of the event which would hold the header. 3712 */ 3713 int ring_buffer_write(struct trace_buffer *buffer, 3714 unsigned long length, 3715 void *data) 3716 { 3717 struct ring_buffer_per_cpu *cpu_buffer; 3718 struct ring_buffer_event *event; 3719 void *body; 3720 int ret = -EBUSY; 3721 int cpu; 3722 3723 preempt_disable_notrace(); 3724 3725 if (atomic_read(&buffer->record_disabled)) 3726 goto out; 3727 3728 cpu = raw_smp_processor_id(); 3729 3730 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3731 goto out; 3732 3733 cpu_buffer = buffer->buffers[cpu]; 3734 3735 if (atomic_read(&cpu_buffer->record_disabled)) 3736 goto out; 3737 3738 if (length > BUF_MAX_DATA_SIZE) 3739 goto out; 3740 3741 if (unlikely(trace_recursive_lock(cpu_buffer))) 3742 goto out; 3743 3744 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3745 if (!event) 3746 goto out_unlock; 3747 3748 body = rb_event_data(event); 3749 3750 memcpy(body, data, length); 3751 3752 rb_commit(cpu_buffer, event); 3753 3754 rb_wakeups(buffer, cpu_buffer); 3755 3756 ret = 0; 3757 3758 out_unlock: 3759 trace_recursive_unlock(cpu_buffer); 3760 3761 out: 3762 preempt_enable_notrace(); 3763 3764 return ret; 3765 } 3766 EXPORT_SYMBOL_GPL(ring_buffer_write); 3767 3768 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3769 { 3770 struct buffer_page *reader = cpu_buffer->reader_page; 3771 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3772 struct buffer_page *commit = cpu_buffer->commit_page; 3773 3774 /* In case of error, head will be NULL */ 3775 if (unlikely(!head)) 3776 return true; 3777 3778 return reader->read == rb_page_commit(reader) && 3779 (commit == reader || 3780 (commit == head && 3781 head->read == rb_page_commit(commit))); 3782 } 3783 3784 /** 3785 * ring_buffer_record_disable - stop all writes into the buffer 3786 * @buffer: The ring buffer to stop writes to. 3787 * 3788 * This prevents all writes to the buffer. Any attempt to write 3789 * to the buffer after this will fail and return NULL. 3790 * 3791 * The caller should call synchronize_rcu() after this. 3792 */ 3793 void ring_buffer_record_disable(struct trace_buffer *buffer) 3794 { 3795 atomic_inc(&buffer->record_disabled); 3796 } 3797 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3798 3799 /** 3800 * ring_buffer_record_enable - enable writes to the buffer 3801 * @buffer: The ring buffer to enable writes 3802 * 3803 * Note, multiple disables will need the same number of enables 3804 * to truly enable the writing (much like preempt_disable). 3805 */ 3806 void ring_buffer_record_enable(struct trace_buffer *buffer) 3807 { 3808 atomic_dec(&buffer->record_disabled); 3809 } 3810 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3811 3812 /** 3813 * ring_buffer_record_off - stop all writes into the buffer 3814 * @buffer: The ring buffer to stop writes to. 3815 * 3816 * This prevents all writes to the buffer. Any attempt to write 3817 * to the buffer after this will fail and return NULL. 3818 * 3819 * This is different than ring_buffer_record_disable() as 3820 * it works like an on/off switch, where as the disable() version 3821 * must be paired with a enable(). 3822 */ 3823 void ring_buffer_record_off(struct trace_buffer *buffer) 3824 { 3825 unsigned int rd; 3826 unsigned int new_rd; 3827 3828 do { 3829 rd = atomic_read(&buffer->record_disabled); 3830 new_rd = rd | RB_BUFFER_OFF; 3831 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3832 } 3833 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3834 3835 /** 3836 * ring_buffer_record_on - restart writes into the buffer 3837 * @buffer: The ring buffer to start writes to. 3838 * 3839 * This enables all writes to the buffer that was disabled by 3840 * ring_buffer_record_off(). 3841 * 3842 * This is different than ring_buffer_record_enable() as 3843 * it works like an on/off switch, where as the enable() version 3844 * must be paired with a disable(). 3845 */ 3846 void ring_buffer_record_on(struct trace_buffer *buffer) 3847 { 3848 unsigned int rd; 3849 unsigned int new_rd; 3850 3851 do { 3852 rd = atomic_read(&buffer->record_disabled); 3853 new_rd = rd & ~RB_BUFFER_OFF; 3854 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3855 } 3856 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3857 3858 /** 3859 * ring_buffer_record_is_on - return true if the ring buffer can write 3860 * @buffer: The ring buffer to see if write is enabled 3861 * 3862 * Returns true if the ring buffer is in a state that it accepts writes. 3863 */ 3864 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 3865 { 3866 return !atomic_read(&buffer->record_disabled); 3867 } 3868 3869 /** 3870 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3871 * @buffer: The ring buffer to see if write is set enabled 3872 * 3873 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3874 * Note that this does NOT mean it is in a writable state. 3875 * 3876 * It may return true when the ring buffer has been disabled by 3877 * ring_buffer_record_disable(), as that is a temporary disabling of 3878 * the ring buffer. 3879 */ 3880 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 3881 { 3882 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3883 } 3884 3885 /** 3886 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3887 * @buffer: The ring buffer to stop writes to. 3888 * @cpu: The CPU buffer to stop 3889 * 3890 * This prevents all writes to the buffer. Any attempt to write 3891 * to the buffer after this will fail and return NULL. 3892 * 3893 * The caller should call synchronize_rcu() after this. 3894 */ 3895 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 3896 { 3897 struct ring_buffer_per_cpu *cpu_buffer; 3898 3899 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3900 return; 3901 3902 cpu_buffer = buffer->buffers[cpu]; 3903 atomic_inc(&cpu_buffer->record_disabled); 3904 } 3905 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3906 3907 /** 3908 * ring_buffer_record_enable_cpu - enable writes to the buffer 3909 * @buffer: The ring buffer to enable writes 3910 * @cpu: The CPU to enable. 3911 * 3912 * Note, multiple disables will need the same number of enables 3913 * to truly enable the writing (much like preempt_disable). 3914 */ 3915 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 3916 { 3917 struct ring_buffer_per_cpu *cpu_buffer; 3918 3919 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3920 return; 3921 3922 cpu_buffer = buffer->buffers[cpu]; 3923 atomic_dec(&cpu_buffer->record_disabled); 3924 } 3925 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3926 3927 /* 3928 * The total entries in the ring buffer is the running counter 3929 * of entries entered into the ring buffer, minus the sum of 3930 * the entries read from the ring buffer and the number of 3931 * entries that were overwritten. 3932 */ 3933 static inline unsigned long 3934 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3935 { 3936 return local_read(&cpu_buffer->entries) - 3937 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3938 } 3939 3940 /** 3941 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3942 * @buffer: The ring buffer 3943 * @cpu: The per CPU buffer to read from. 3944 */ 3945 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 3946 { 3947 unsigned long flags; 3948 struct ring_buffer_per_cpu *cpu_buffer; 3949 struct buffer_page *bpage; 3950 u64 ret = 0; 3951 3952 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3953 return 0; 3954 3955 cpu_buffer = buffer->buffers[cpu]; 3956 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3957 /* 3958 * if the tail is on reader_page, oldest time stamp is on the reader 3959 * page 3960 */ 3961 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3962 bpage = cpu_buffer->reader_page; 3963 else 3964 bpage = rb_set_head_page(cpu_buffer); 3965 if (bpage) 3966 ret = bpage->page->time_stamp; 3967 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3968 3969 return ret; 3970 } 3971 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3972 3973 /** 3974 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3975 * @buffer: The ring buffer 3976 * @cpu: The per CPU buffer to read from. 3977 */ 3978 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 3979 { 3980 struct ring_buffer_per_cpu *cpu_buffer; 3981 unsigned long ret; 3982 3983 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3984 return 0; 3985 3986 cpu_buffer = buffer->buffers[cpu]; 3987 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3988 3989 return ret; 3990 } 3991 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3992 3993 /** 3994 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3995 * @buffer: The ring buffer 3996 * @cpu: The per CPU buffer to get the entries from. 3997 */ 3998 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 3999 { 4000 struct ring_buffer_per_cpu *cpu_buffer; 4001 4002 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4003 return 0; 4004 4005 cpu_buffer = buffer->buffers[cpu]; 4006 4007 return rb_num_of_entries(cpu_buffer); 4008 } 4009 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4010 4011 /** 4012 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4013 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4014 * @buffer: The ring buffer 4015 * @cpu: The per CPU buffer to get the number of overruns from 4016 */ 4017 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4018 { 4019 struct ring_buffer_per_cpu *cpu_buffer; 4020 unsigned long ret; 4021 4022 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4023 return 0; 4024 4025 cpu_buffer = buffer->buffers[cpu]; 4026 ret = local_read(&cpu_buffer->overrun); 4027 4028 return ret; 4029 } 4030 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4031 4032 /** 4033 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4034 * commits failing due to the buffer wrapping around while there are uncommitted 4035 * events, such as during an interrupt storm. 4036 * @buffer: The ring buffer 4037 * @cpu: The per CPU buffer to get the number of overruns from 4038 */ 4039 unsigned long 4040 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4041 { 4042 struct ring_buffer_per_cpu *cpu_buffer; 4043 unsigned long ret; 4044 4045 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4046 return 0; 4047 4048 cpu_buffer = buffer->buffers[cpu]; 4049 ret = local_read(&cpu_buffer->commit_overrun); 4050 4051 return ret; 4052 } 4053 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4054 4055 /** 4056 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4057 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4058 * @buffer: The ring buffer 4059 * @cpu: The per CPU buffer to get the number of overruns from 4060 */ 4061 unsigned long 4062 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4063 { 4064 struct ring_buffer_per_cpu *cpu_buffer; 4065 unsigned long ret; 4066 4067 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4068 return 0; 4069 4070 cpu_buffer = buffer->buffers[cpu]; 4071 ret = local_read(&cpu_buffer->dropped_events); 4072 4073 return ret; 4074 } 4075 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4076 4077 /** 4078 * ring_buffer_read_events_cpu - get the number of events successfully read 4079 * @buffer: The ring buffer 4080 * @cpu: The per CPU buffer to get the number of events read 4081 */ 4082 unsigned long 4083 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4084 { 4085 struct ring_buffer_per_cpu *cpu_buffer; 4086 4087 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4088 return 0; 4089 4090 cpu_buffer = buffer->buffers[cpu]; 4091 return cpu_buffer->read; 4092 } 4093 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4094 4095 /** 4096 * ring_buffer_entries - get the number of entries in a buffer 4097 * @buffer: The ring buffer 4098 * 4099 * Returns the total number of entries in the ring buffer 4100 * (all CPU entries) 4101 */ 4102 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4103 { 4104 struct ring_buffer_per_cpu *cpu_buffer; 4105 unsigned long entries = 0; 4106 int cpu; 4107 4108 /* if you care about this being correct, lock the buffer */ 4109 for_each_buffer_cpu(buffer, cpu) { 4110 cpu_buffer = buffer->buffers[cpu]; 4111 entries += rb_num_of_entries(cpu_buffer); 4112 } 4113 4114 return entries; 4115 } 4116 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4117 4118 /** 4119 * ring_buffer_overruns - get the number of overruns in buffer 4120 * @buffer: The ring buffer 4121 * 4122 * Returns the total number of overruns in the ring buffer 4123 * (all CPU entries) 4124 */ 4125 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4126 { 4127 struct ring_buffer_per_cpu *cpu_buffer; 4128 unsigned long overruns = 0; 4129 int cpu; 4130 4131 /* if you care about this being correct, lock the buffer */ 4132 for_each_buffer_cpu(buffer, cpu) { 4133 cpu_buffer = buffer->buffers[cpu]; 4134 overruns += local_read(&cpu_buffer->overrun); 4135 } 4136 4137 return overruns; 4138 } 4139 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4140 4141 static void rb_iter_reset(struct ring_buffer_iter *iter) 4142 { 4143 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4144 4145 /* Iterator usage is expected to have record disabled */ 4146 iter->head_page = cpu_buffer->reader_page; 4147 iter->head = cpu_buffer->reader_page->read; 4148 iter->next_event = iter->head; 4149 4150 iter->cache_reader_page = iter->head_page; 4151 iter->cache_read = cpu_buffer->read; 4152 4153 if (iter->head) { 4154 iter->read_stamp = cpu_buffer->read_stamp; 4155 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4156 } else { 4157 iter->read_stamp = iter->head_page->page->time_stamp; 4158 iter->page_stamp = iter->read_stamp; 4159 } 4160 } 4161 4162 /** 4163 * ring_buffer_iter_reset - reset an iterator 4164 * @iter: The iterator to reset 4165 * 4166 * Resets the iterator, so that it will start from the beginning 4167 * again. 4168 */ 4169 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4170 { 4171 struct ring_buffer_per_cpu *cpu_buffer; 4172 unsigned long flags; 4173 4174 if (!iter) 4175 return; 4176 4177 cpu_buffer = iter->cpu_buffer; 4178 4179 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4180 rb_iter_reset(iter); 4181 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4182 } 4183 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4184 4185 /** 4186 * ring_buffer_iter_empty - check if an iterator has no more to read 4187 * @iter: The iterator to check 4188 */ 4189 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4190 { 4191 struct ring_buffer_per_cpu *cpu_buffer; 4192 struct buffer_page *reader; 4193 struct buffer_page *head_page; 4194 struct buffer_page *commit_page; 4195 struct buffer_page *curr_commit_page; 4196 unsigned commit; 4197 u64 curr_commit_ts; 4198 u64 commit_ts; 4199 4200 cpu_buffer = iter->cpu_buffer; 4201 reader = cpu_buffer->reader_page; 4202 head_page = cpu_buffer->head_page; 4203 commit_page = cpu_buffer->commit_page; 4204 commit_ts = commit_page->page->time_stamp; 4205 4206 /* 4207 * When the writer goes across pages, it issues a cmpxchg which 4208 * is a mb(), which will synchronize with the rmb here. 4209 * (see rb_tail_page_update()) 4210 */ 4211 smp_rmb(); 4212 commit = rb_page_commit(commit_page); 4213 /* We want to make sure that the commit page doesn't change */ 4214 smp_rmb(); 4215 4216 /* Make sure commit page didn't change */ 4217 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4218 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4219 4220 /* If the commit page changed, then there's more data */ 4221 if (curr_commit_page != commit_page || 4222 curr_commit_ts != commit_ts) 4223 return 0; 4224 4225 /* Still racy, as it may return a false positive, but that's OK */ 4226 return ((iter->head_page == commit_page && iter->head >= commit) || 4227 (iter->head_page == reader && commit_page == head_page && 4228 head_page->read == commit && 4229 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4230 } 4231 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4232 4233 static void 4234 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4235 struct ring_buffer_event *event) 4236 { 4237 u64 delta; 4238 4239 switch (event->type_len) { 4240 case RINGBUF_TYPE_PADDING: 4241 return; 4242 4243 case RINGBUF_TYPE_TIME_EXTEND: 4244 delta = ring_buffer_event_time_stamp(event); 4245 cpu_buffer->read_stamp += delta; 4246 return; 4247 4248 case RINGBUF_TYPE_TIME_STAMP: 4249 delta = ring_buffer_event_time_stamp(event); 4250 cpu_buffer->read_stamp = delta; 4251 return; 4252 4253 case RINGBUF_TYPE_DATA: 4254 cpu_buffer->read_stamp += event->time_delta; 4255 return; 4256 4257 default: 4258 RB_WARN_ON(cpu_buffer, 1); 4259 } 4260 return; 4261 } 4262 4263 static void 4264 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4265 struct ring_buffer_event *event) 4266 { 4267 u64 delta; 4268 4269 switch (event->type_len) { 4270 case RINGBUF_TYPE_PADDING: 4271 return; 4272 4273 case RINGBUF_TYPE_TIME_EXTEND: 4274 delta = ring_buffer_event_time_stamp(event); 4275 iter->read_stamp += delta; 4276 return; 4277 4278 case RINGBUF_TYPE_TIME_STAMP: 4279 delta = ring_buffer_event_time_stamp(event); 4280 iter->read_stamp = delta; 4281 return; 4282 4283 case RINGBUF_TYPE_DATA: 4284 iter->read_stamp += event->time_delta; 4285 return; 4286 4287 default: 4288 RB_WARN_ON(iter->cpu_buffer, 1); 4289 } 4290 return; 4291 } 4292 4293 static struct buffer_page * 4294 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4295 { 4296 struct buffer_page *reader = NULL; 4297 unsigned long overwrite; 4298 unsigned long flags; 4299 int nr_loops = 0; 4300 int ret; 4301 4302 local_irq_save(flags); 4303 arch_spin_lock(&cpu_buffer->lock); 4304 4305 again: 4306 /* 4307 * This should normally only loop twice. But because the 4308 * start of the reader inserts an empty page, it causes 4309 * a case where we will loop three times. There should be no 4310 * reason to loop four times (that I know of). 4311 */ 4312 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4313 reader = NULL; 4314 goto out; 4315 } 4316 4317 reader = cpu_buffer->reader_page; 4318 4319 /* If there's more to read, return this page */ 4320 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4321 goto out; 4322 4323 /* Never should we have an index greater than the size */ 4324 if (RB_WARN_ON(cpu_buffer, 4325 cpu_buffer->reader_page->read > rb_page_size(reader))) 4326 goto out; 4327 4328 /* check if we caught up to the tail */ 4329 reader = NULL; 4330 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4331 goto out; 4332 4333 /* Don't bother swapping if the ring buffer is empty */ 4334 if (rb_num_of_entries(cpu_buffer) == 0) 4335 goto out; 4336 4337 /* 4338 * Reset the reader page to size zero. 4339 */ 4340 local_set(&cpu_buffer->reader_page->write, 0); 4341 local_set(&cpu_buffer->reader_page->entries, 0); 4342 local_set(&cpu_buffer->reader_page->page->commit, 0); 4343 cpu_buffer->reader_page->real_end = 0; 4344 4345 spin: 4346 /* 4347 * Splice the empty reader page into the list around the head. 4348 */ 4349 reader = rb_set_head_page(cpu_buffer); 4350 if (!reader) 4351 goto out; 4352 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4353 cpu_buffer->reader_page->list.prev = reader->list.prev; 4354 4355 /* 4356 * cpu_buffer->pages just needs to point to the buffer, it 4357 * has no specific buffer page to point to. Lets move it out 4358 * of our way so we don't accidentally swap it. 4359 */ 4360 cpu_buffer->pages = reader->list.prev; 4361 4362 /* The reader page will be pointing to the new head */ 4363 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4364 4365 /* 4366 * We want to make sure we read the overruns after we set up our 4367 * pointers to the next object. The writer side does a 4368 * cmpxchg to cross pages which acts as the mb on the writer 4369 * side. Note, the reader will constantly fail the swap 4370 * while the writer is updating the pointers, so this 4371 * guarantees that the overwrite recorded here is the one we 4372 * want to compare with the last_overrun. 4373 */ 4374 smp_mb(); 4375 overwrite = local_read(&(cpu_buffer->overrun)); 4376 4377 /* 4378 * Here's the tricky part. 4379 * 4380 * We need to move the pointer past the header page. 4381 * But we can only do that if a writer is not currently 4382 * moving it. The page before the header page has the 4383 * flag bit '1' set if it is pointing to the page we want. 4384 * but if the writer is in the process of moving it 4385 * than it will be '2' or already moved '0'. 4386 */ 4387 4388 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4389 4390 /* 4391 * If we did not convert it, then we must try again. 4392 */ 4393 if (!ret) 4394 goto spin; 4395 4396 /* 4397 * Yay! We succeeded in replacing the page. 4398 * 4399 * Now make the new head point back to the reader page. 4400 */ 4401 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4402 rb_inc_page(&cpu_buffer->head_page); 4403 4404 local_inc(&cpu_buffer->pages_read); 4405 4406 /* Finally update the reader page to the new head */ 4407 cpu_buffer->reader_page = reader; 4408 cpu_buffer->reader_page->read = 0; 4409 4410 if (overwrite != cpu_buffer->last_overrun) { 4411 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4412 cpu_buffer->last_overrun = overwrite; 4413 } 4414 4415 goto again; 4416 4417 out: 4418 /* Update the read_stamp on the first event */ 4419 if (reader && reader->read == 0) 4420 cpu_buffer->read_stamp = reader->page->time_stamp; 4421 4422 arch_spin_unlock(&cpu_buffer->lock); 4423 local_irq_restore(flags); 4424 4425 return reader; 4426 } 4427 4428 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4429 { 4430 struct ring_buffer_event *event; 4431 struct buffer_page *reader; 4432 unsigned length; 4433 4434 reader = rb_get_reader_page(cpu_buffer); 4435 4436 /* This function should not be called when buffer is empty */ 4437 if (RB_WARN_ON(cpu_buffer, !reader)) 4438 return; 4439 4440 event = rb_reader_event(cpu_buffer); 4441 4442 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4443 cpu_buffer->read++; 4444 4445 rb_update_read_stamp(cpu_buffer, event); 4446 4447 length = rb_event_length(event); 4448 cpu_buffer->reader_page->read += length; 4449 } 4450 4451 static void rb_advance_iter(struct ring_buffer_iter *iter) 4452 { 4453 struct ring_buffer_per_cpu *cpu_buffer; 4454 4455 cpu_buffer = iter->cpu_buffer; 4456 4457 /* If head == next_event then we need to jump to the next event */ 4458 if (iter->head == iter->next_event) { 4459 /* If the event gets overwritten again, there's nothing to do */ 4460 if (rb_iter_head_event(iter) == NULL) 4461 return; 4462 } 4463 4464 iter->head = iter->next_event; 4465 4466 /* 4467 * Check if we are at the end of the buffer. 4468 */ 4469 if (iter->next_event >= rb_page_size(iter->head_page)) { 4470 /* discarded commits can make the page empty */ 4471 if (iter->head_page == cpu_buffer->commit_page) 4472 return; 4473 rb_inc_iter(iter); 4474 return; 4475 } 4476 4477 rb_update_iter_read_stamp(iter, iter->event); 4478 } 4479 4480 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4481 { 4482 return cpu_buffer->lost_events; 4483 } 4484 4485 static struct ring_buffer_event * 4486 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4487 unsigned long *lost_events) 4488 { 4489 struct ring_buffer_event *event; 4490 struct buffer_page *reader; 4491 int nr_loops = 0; 4492 4493 if (ts) 4494 *ts = 0; 4495 again: 4496 /* 4497 * We repeat when a time extend is encountered. 4498 * Since the time extend is always attached to a data event, 4499 * we should never loop more than once. 4500 * (We never hit the following condition more than twice). 4501 */ 4502 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4503 return NULL; 4504 4505 reader = rb_get_reader_page(cpu_buffer); 4506 if (!reader) 4507 return NULL; 4508 4509 event = rb_reader_event(cpu_buffer); 4510 4511 switch (event->type_len) { 4512 case RINGBUF_TYPE_PADDING: 4513 if (rb_null_event(event)) 4514 RB_WARN_ON(cpu_buffer, 1); 4515 /* 4516 * Because the writer could be discarding every 4517 * event it creates (which would probably be bad) 4518 * if we were to go back to "again" then we may never 4519 * catch up, and will trigger the warn on, or lock 4520 * the box. Return the padding, and we will release 4521 * the current locks, and try again. 4522 */ 4523 return event; 4524 4525 case RINGBUF_TYPE_TIME_EXTEND: 4526 /* Internal data, OK to advance */ 4527 rb_advance_reader(cpu_buffer); 4528 goto again; 4529 4530 case RINGBUF_TYPE_TIME_STAMP: 4531 if (ts) { 4532 *ts = ring_buffer_event_time_stamp(event); 4533 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4534 cpu_buffer->cpu, ts); 4535 } 4536 /* Internal data, OK to advance */ 4537 rb_advance_reader(cpu_buffer); 4538 goto again; 4539 4540 case RINGBUF_TYPE_DATA: 4541 if (ts && !(*ts)) { 4542 *ts = cpu_buffer->read_stamp + event->time_delta; 4543 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4544 cpu_buffer->cpu, ts); 4545 } 4546 if (lost_events) 4547 *lost_events = rb_lost_events(cpu_buffer); 4548 return event; 4549 4550 default: 4551 RB_WARN_ON(cpu_buffer, 1); 4552 } 4553 4554 return NULL; 4555 } 4556 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4557 4558 static struct ring_buffer_event * 4559 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4560 { 4561 struct trace_buffer *buffer; 4562 struct ring_buffer_per_cpu *cpu_buffer; 4563 struct ring_buffer_event *event; 4564 int nr_loops = 0; 4565 4566 if (ts) 4567 *ts = 0; 4568 4569 cpu_buffer = iter->cpu_buffer; 4570 buffer = cpu_buffer->buffer; 4571 4572 /* 4573 * Check if someone performed a consuming read to 4574 * the buffer. A consuming read invalidates the iterator 4575 * and we need to reset the iterator in this case. 4576 */ 4577 if (unlikely(iter->cache_read != cpu_buffer->read || 4578 iter->cache_reader_page != cpu_buffer->reader_page)) 4579 rb_iter_reset(iter); 4580 4581 again: 4582 if (ring_buffer_iter_empty(iter)) 4583 return NULL; 4584 4585 /* 4586 * As the writer can mess with what the iterator is trying 4587 * to read, just give up if we fail to get an event after 4588 * three tries. The iterator is not as reliable when reading 4589 * the ring buffer with an active write as the consumer is. 4590 * Do not warn if the three failures is reached. 4591 */ 4592 if (++nr_loops > 3) 4593 return NULL; 4594 4595 if (rb_per_cpu_empty(cpu_buffer)) 4596 return NULL; 4597 4598 if (iter->head >= rb_page_size(iter->head_page)) { 4599 rb_inc_iter(iter); 4600 goto again; 4601 } 4602 4603 event = rb_iter_head_event(iter); 4604 if (!event) 4605 goto again; 4606 4607 switch (event->type_len) { 4608 case RINGBUF_TYPE_PADDING: 4609 if (rb_null_event(event)) { 4610 rb_inc_iter(iter); 4611 goto again; 4612 } 4613 rb_advance_iter(iter); 4614 return event; 4615 4616 case RINGBUF_TYPE_TIME_EXTEND: 4617 /* Internal data, OK to advance */ 4618 rb_advance_iter(iter); 4619 goto again; 4620 4621 case RINGBUF_TYPE_TIME_STAMP: 4622 if (ts) { 4623 *ts = ring_buffer_event_time_stamp(event); 4624 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4625 cpu_buffer->cpu, ts); 4626 } 4627 /* Internal data, OK to advance */ 4628 rb_advance_iter(iter); 4629 goto again; 4630 4631 case RINGBUF_TYPE_DATA: 4632 if (ts && !(*ts)) { 4633 *ts = iter->read_stamp + event->time_delta; 4634 ring_buffer_normalize_time_stamp(buffer, 4635 cpu_buffer->cpu, ts); 4636 } 4637 return event; 4638 4639 default: 4640 RB_WARN_ON(cpu_buffer, 1); 4641 } 4642 4643 return NULL; 4644 } 4645 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4646 4647 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4648 { 4649 if (likely(!in_nmi())) { 4650 raw_spin_lock(&cpu_buffer->reader_lock); 4651 return true; 4652 } 4653 4654 /* 4655 * If an NMI die dumps out the content of the ring buffer 4656 * trylock must be used to prevent a deadlock if the NMI 4657 * preempted a task that holds the ring buffer locks. If 4658 * we get the lock then all is fine, if not, then continue 4659 * to do the read, but this can corrupt the ring buffer, 4660 * so it must be permanently disabled from future writes. 4661 * Reading from NMI is a oneshot deal. 4662 */ 4663 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4664 return true; 4665 4666 /* Continue without locking, but disable the ring buffer */ 4667 atomic_inc(&cpu_buffer->record_disabled); 4668 return false; 4669 } 4670 4671 static inline void 4672 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4673 { 4674 if (likely(locked)) 4675 raw_spin_unlock(&cpu_buffer->reader_lock); 4676 return; 4677 } 4678 4679 /** 4680 * ring_buffer_peek - peek at the next event to be read 4681 * @buffer: The ring buffer to read 4682 * @cpu: The cpu to peak at 4683 * @ts: The timestamp counter of this event. 4684 * @lost_events: a variable to store if events were lost (may be NULL) 4685 * 4686 * This will return the event that will be read next, but does 4687 * not consume the data. 4688 */ 4689 struct ring_buffer_event * 4690 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4691 unsigned long *lost_events) 4692 { 4693 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4694 struct ring_buffer_event *event; 4695 unsigned long flags; 4696 bool dolock; 4697 4698 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4699 return NULL; 4700 4701 again: 4702 local_irq_save(flags); 4703 dolock = rb_reader_lock(cpu_buffer); 4704 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4705 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4706 rb_advance_reader(cpu_buffer); 4707 rb_reader_unlock(cpu_buffer, dolock); 4708 local_irq_restore(flags); 4709 4710 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4711 goto again; 4712 4713 return event; 4714 } 4715 4716 /** ring_buffer_iter_dropped - report if there are dropped events 4717 * @iter: The ring buffer iterator 4718 * 4719 * Returns true if there was dropped events since the last peek. 4720 */ 4721 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4722 { 4723 bool ret = iter->missed_events != 0; 4724 4725 iter->missed_events = 0; 4726 return ret; 4727 } 4728 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4729 4730 /** 4731 * ring_buffer_iter_peek - peek at the next event to be read 4732 * @iter: The ring buffer iterator 4733 * @ts: The timestamp counter of this event. 4734 * 4735 * This will return the event that will be read next, but does 4736 * not increment the iterator. 4737 */ 4738 struct ring_buffer_event * 4739 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4740 { 4741 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4742 struct ring_buffer_event *event; 4743 unsigned long flags; 4744 4745 again: 4746 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4747 event = rb_iter_peek(iter, ts); 4748 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4749 4750 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4751 goto again; 4752 4753 return event; 4754 } 4755 4756 /** 4757 * ring_buffer_consume - return an event and consume it 4758 * @buffer: The ring buffer to get the next event from 4759 * @cpu: the cpu to read the buffer from 4760 * @ts: a variable to store the timestamp (may be NULL) 4761 * @lost_events: a variable to store if events were lost (may be NULL) 4762 * 4763 * Returns the next event in the ring buffer, and that event is consumed. 4764 * Meaning, that sequential reads will keep returning a different event, 4765 * and eventually empty the ring buffer if the producer is slower. 4766 */ 4767 struct ring_buffer_event * 4768 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4769 unsigned long *lost_events) 4770 { 4771 struct ring_buffer_per_cpu *cpu_buffer; 4772 struct ring_buffer_event *event = NULL; 4773 unsigned long flags; 4774 bool dolock; 4775 4776 again: 4777 /* might be called in atomic */ 4778 preempt_disable(); 4779 4780 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4781 goto out; 4782 4783 cpu_buffer = buffer->buffers[cpu]; 4784 local_irq_save(flags); 4785 dolock = rb_reader_lock(cpu_buffer); 4786 4787 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4788 if (event) { 4789 cpu_buffer->lost_events = 0; 4790 rb_advance_reader(cpu_buffer); 4791 } 4792 4793 rb_reader_unlock(cpu_buffer, dolock); 4794 local_irq_restore(flags); 4795 4796 out: 4797 preempt_enable(); 4798 4799 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4800 goto again; 4801 4802 return event; 4803 } 4804 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4805 4806 /** 4807 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4808 * @buffer: The ring buffer to read from 4809 * @cpu: The cpu buffer to iterate over 4810 * @flags: gfp flags to use for memory allocation 4811 * 4812 * This performs the initial preparations necessary to iterate 4813 * through the buffer. Memory is allocated, buffer recording 4814 * is disabled, and the iterator pointer is returned to the caller. 4815 * 4816 * Disabling buffer recording prevents the reading from being 4817 * corrupted. This is not a consuming read, so a producer is not 4818 * expected. 4819 * 4820 * After a sequence of ring_buffer_read_prepare calls, the user is 4821 * expected to make at least one call to ring_buffer_read_prepare_sync. 4822 * Afterwards, ring_buffer_read_start is invoked to get things going 4823 * for real. 4824 * 4825 * This overall must be paired with ring_buffer_read_finish. 4826 */ 4827 struct ring_buffer_iter * 4828 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 4829 { 4830 struct ring_buffer_per_cpu *cpu_buffer; 4831 struct ring_buffer_iter *iter; 4832 4833 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4834 return NULL; 4835 4836 iter = kzalloc(sizeof(*iter), flags); 4837 if (!iter) 4838 return NULL; 4839 4840 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 4841 if (!iter->event) { 4842 kfree(iter); 4843 return NULL; 4844 } 4845 4846 cpu_buffer = buffer->buffers[cpu]; 4847 4848 iter->cpu_buffer = cpu_buffer; 4849 4850 atomic_inc(&cpu_buffer->resize_disabled); 4851 4852 return iter; 4853 } 4854 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4855 4856 /** 4857 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4858 * 4859 * All previously invoked ring_buffer_read_prepare calls to prepare 4860 * iterators will be synchronized. Afterwards, read_buffer_read_start 4861 * calls on those iterators are allowed. 4862 */ 4863 void 4864 ring_buffer_read_prepare_sync(void) 4865 { 4866 synchronize_rcu(); 4867 } 4868 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4869 4870 /** 4871 * ring_buffer_read_start - start a non consuming read of the buffer 4872 * @iter: The iterator returned by ring_buffer_read_prepare 4873 * 4874 * This finalizes the startup of an iteration through the buffer. 4875 * The iterator comes from a call to ring_buffer_read_prepare and 4876 * an intervening ring_buffer_read_prepare_sync must have been 4877 * performed. 4878 * 4879 * Must be paired with ring_buffer_read_finish. 4880 */ 4881 void 4882 ring_buffer_read_start(struct ring_buffer_iter *iter) 4883 { 4884 struct ring_buffer_per_cpu *cpu_buffer; 4885 unsigned long flags; 4886 4887 if (!iter) 4888 return; 4889 4890 cpu_buffer = iter->cpu_buffer; 4891 4892 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4893 arch_spin_lock(&cpu_buffer->lock); 4894 rb_iter_reset(iter); 4895 arch_spin_unlock(&cpu_buffer->lock); 4896 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4897 } 4898 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4899 4900 /** 4901 * ring_buffer_read_finish - finish reading the iterator of the buffer 4902 * @iter: The iterator retrieved by ring_buffer_start 4903 * 4904 * This re-enables the recording to the buffer, and frees the 4905 * iterator. 4906 */ 4907 void 4908 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4909 { 4910 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4911 unsigned long flags; 4912 4913 /* 4914 * Ring buffer is disabled from recording, here's a good place 4915 * to check the integrity of the ring buffer. 4916 * Must prevent readers from trying to read, as the check 4917 * clears the HEAD page and readers require it. 4918 */ 4919 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4920 rb_check_pages(cpu_buffer); 4921 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4922 4923 atomic_dec(&cpu_buffer->resize_disabled); 4924 kfree(iter->event); 4925 kfree(iter); 4926 } 4927 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4928 4929 /** 4930 * ring_buffer_iter_advance - advance the iterator to the next location 4931 * @iter: The ring buffer iterator 4932 * 4933 * Move the location of the iterator such that the next read will 4934 * be the next location of the iterator. 4935 */ 4936 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 4937 { 4938 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4939 unsigned long flags; 4940 4941 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4942 4943 rb_advance_iter(iter); 4944 4945 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4946 } 4947 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 4948 4949 /** 4950 * ring_buffer_size - return the size of the ring buffer (in bytes) 4951 * @buffer: The ring buffer. 4952 * @cpu: The CPU to get ring buffer size from. 4953 */ 4954 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 4955 { 4956 /* 4957 * Earlier, this method returned 4958 * BUF_PAGE_SIZE * buffer->nr_pages 4959 * Since the nr_pages field is now removed, we have converted this to 4960 * return the per cpu buffer value. 4961 */ 4962 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4963 return 0; 4964 4965 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4966 } 4967 EXPORT_SYMBOL_GPL(ring_buffer_size); 4968 4969 static void 4970 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4971 { 4972 rb_head_page_deactivate(cpu_buffer); 4973 4974 cpu_buffer->head_page 4975 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4976 local_set(&cpu_buffer->head_page->write, 0); 4977 local_set(&cpu_buffer->head_page->entries, 0); 4978 local_set(&cpu_buffer->head_page->page->commit, 0); 4979 4980 cpu_buffer->head_page->read = 0; 4981 4982 cpu_buffer->tail_page = cpu_buffer->head_page; 4983 cpu_buffer->commit_page = cpu_buffer->head_page; 4984 4985 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4986 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4987 local_set(&cpu_buffer->reader_page->write, 0); 4988 local_set(&cpu_buffer->reader_page->entries, 0); 4989 local_set(&cpu_buffer->reader_page->page->commit, 0); 4990 cpu_buffer->reader_page->read = 0; 4991 4992 local_set(&cpu_buffer->entries_bytes, 0); 4993 local_set(&cpu_buffer->overrun, 0); 4994 local_set(&cpu_buffer->commit_overrun, 0); 4995 local_set(&cpu_buffer->dropped_events, 0); 4996 local_set(&cpu_buffer->entries, 0); 4997 local_set(&cpu_buffer->committing, 0); 4998 local_set(&cpu_buffer->commits, 0); 4999 local_set(&cpu_buffer->pages_touched, 0); 5000 local_set(&cpu_buffer->pages_read, 0); 5001 cpu_buffer->last_pages_touch = 0; 5002 cpu_buffer->shortest_full = 0; 5003 cpu_buffer->read = 0; 5004 cpu_buffer->read_bytes = 0; 5005 5006 rb_time_set(&cpu_buffer->write_stamp, 0); 5007 rb_time_set(&cpu_buffer->before_stamp, 0); 5008 5009 cpu_buffer->lost_events = 0; 5010 cpu_buffer->last_overrun = 0; 5011 5012 rb_head_page_activate(cpu_buffer); 5013 } 5014 5015 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5016 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5017 { 5018 unsigned long flags; 5019 5020 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5021 5022 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5023 goto out; 5024 5025 arch_spin_lock(&cpu_buffer->lock); 5026 5027 rb_reset_cpu(cpu_buffer); 5028 5029 arch_spin_unlock(&cpu_buffer->lock); 5030 5031 out: 5032 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5033 } 5034 5035 /** 5036 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5037 * @buffer: The ring buffer to reset a per cpu buffer of 5038 * @cpu: The CPU buffer to be reset 5039 */ 5040 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5041 { 5042 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5043 5044 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5045 return; 5046 5047 /* prevent another thread from changing buffer sizes */ 5048 mutex_lock(&buffer->mutex); 5049 5050 atomic_inc(&cpu_buffer->resize_disabled); 5051 atomic_inc(&cpu_buffer->record_disabled); 5052 5053 /* Make sure all commits have finished */ 5054 synchronize_rcu(); 5055 5056 reset_disabled_cpu_buffer(cpu_buffer); 5057 5058 atomic_dec(&cpu_buffer->record_disabled); 5059 atomic_dec(&cpu_buffer->resize_disabled); 5060 5061 mutex_unlock(&buffer->mutex); 5062 } 5063 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5064 5065 /** 5066 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5067 * @buffer: The ring buffer to reset a per cpu buffer of 5068 * @cpu: The CPU buffer to be reset 5069 */ 5070 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5071 { 5072 struct ring_buffer_per_cpu *cpu_buffer; 5073 int cpu; 5074 5075 /* prevent another thread from changing buffer sizes */ 5076 mutex_lock(&buffer->mutex); 5077 5078 for_each_online_buffer_cpu(buffer, cpu) { 5079 cpu_buffer = buffer->buffers[cpu]; 5080 5081 atomic_inc(&cpu_buffer->resize_disabled); 5082 atomic_inc(&cpu_buffer->record_disabled); 5083 } 5084 5085 /* Make sure all commits have finished */ 5086 synchronize_rcu(); 5087 5088 for_each_online_buffer_cpu(buffer, cpu) { 5089 cpu_buffer = buffer->buffers[cpu]; 5090 5091 reset_disabled_cpu_buffer(cpu_buffer); 5092 5093 atomic_dec(&cpu_buffer->record_disabled); 5094 atomic_dec(&cpu_buffer->resize_disabled); 5095 } 5096 5097 mutex_unlock(&buffer->mutex); 5098 } 5099 5100 /** 5101 * ring_buffer_reset - reset a ring buffer 5102 * @buffer: The ring buffer to reset all cpu buffers 5103 */ 5104 void ring_buffer_reset(struct trace_buffer *buffer) 5105 { 5106 struct ring_buffer_per_cpu *cpu_buffer; 5107 int cpu; 5108 5109 for_each_buffer_cpu(buffer, cpu) { 5110 cpu_buffer = buffer->buffers[cpu]; 5111 5112 atomic_inc(&cpu_buffer->resize_disabled); 5113 atomic_inc(&cpu_buffer->record_disabled); 5114 } 5115 5116 /* Make sure all commits have finished */ 5117 synchronize_rcu(); 5118 5119 for_each_buffer_cpu(buffer, cpu) { 5120 cpu_buffer = buffer->buffers[cpu]; 5121 5122 reset_disabled_cpu_buffer(cpu_buffer); 5123 5124 atomic_dec(&cpu_buffer->record_disabled); 5125 atomic_dec(&cpu_buffer->resize_disabled); 5126 } 5127 } 5128 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5129 5130 /** 5131 * rind_buffer_empty - is the ring buffer empty? 5132 * @buffer: The ring buffer to test 5133 */ 5134 bool ring_buffer_empty(struct trace_buffer *buffer) 5135 { 5136 struct ring_buffer_per_cpu *cpu_buffer; 5137 unsigned long flags; 5138 bool dolock; 5139 int cpu; 5140 int ret; 5141 5142 /* yes this is racy, but if you don't like the race, lock the buffer */ 5143 for_each_buffer_cpu(buffer, cpu) { 5144 cpu_buffer = buffer->buffers[cpu]; 5145 local_irq_save(flags); 5146 dolock = rb_reader_lock(cpu_buffer); 5147 ret = rb_per_cpu_empty(cpu_buffer); 5148 rb_reader_unlock(cpu_buffer, dolock); 5149 local_irq_restore(flags); 5150 5151 if (!ret) 5152 return false; 5153 } 5154 5155 return true; 5156 } 5157 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5158 5159 /** 5160 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5161 * @buffer: The ring buffer 5162 * @cpu: The CPU buffer to test 5163 */ 5164 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5165 { 5166 struct ring_buffer_per_cpu *cpu_buffer; 5167 unsigned long flags; 5168 bool dolock; 5169 int ret; 5170 5171 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5172 return true; 5173 5174 cpu_buffer = buffer->buffers[cpu]; 5175 local_irq_save(flags); 5176 dolock = rb_reader_lock(cpu_buffer); 5177 ret = rb_per_cpu_empty(cpu_buffer); 5178 rb_reader_unlock(cpu_buffer, dolock); 5179 local_irq_restore(flags); 5180 5181 return ret; 5182 } 5183 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5184 5185 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5186 /** 5187 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5188 * @buffer_a: One buffer to swap with 5189 * @buffer_b: The other buffer to swap with 5190 * @cpu: the CPU of the buffers to swap 5191 * 5192 * This function is useful for tracers that want to take a "snapshot" 5193 * of a CPU buffer and has another back up buffer lying around. 5194 * it is expected that the tracer handles the cpu buffer not being 5195 * used at the moment. 5196 */ 5197 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5198 struct trace_buffer *buffer_b, int cpu) 5199 { 5200 struct ring_buffer_per_cpu *cpu_buffer_a; 5201 struct ring_buffer_per_cpu *cpu_buffer_b; 5202 int ret = -EINVAL; 5203 5204 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5205 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5206 goto out; 5207 5208 cpu_buffer_a = buffer_a->buffers[cpu]; 5209 cpu_buffer_b = buffer_b->buffers[cpu]; 5210 5211 /* At least make sure the two buffers are somewhat the same */ 5212 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5213 goto out; 5214 5215 ret = -EAGAIN; 5216 5217 if (atomic_read(&buffer_a->record_disabled)) 5218 goto out; 5219 5220 if (atomic_read(&buffer_b->record_disabled)) 5221 goto out; 5222 5223 if (atomic_read(&cpu_buffer_a->record_disabled)) 5224 goto out; 5225 5226 if (atomic_read(&cpu_buffer_b->record_disabled)) 5227 goto out; 5228 5229 /* 5230 * We can't do a synchronize_rcu here because this 5231 * function can be called in atomic context. 5232 * Normally this will be called from the same CPU as cpu. 5233 * If not it's up to the caller to protect this. 5234 */ 5235 atomic_inc(&cpu_buffer_a->record_disabled); 5236 atomic_inc(&cpu_buffer_b->record_disabled); 5237 5238 ret = -EBUSY; 5239 if (local_read(&cpu_buffer_a->committing)) 5240 goto out_dec; 5241 if (local_read(&cpu_buffer_b->committing)) 5242 goto out_dec; 5243 5244 buffer_a->buffers[cpu] = cpu_buffer_b; 5245 buffer_b->buffers[cpu] = cpu_buffer_a; 5246 5247 cpu_buffer_b->buffer = buffer_a; 5248 cpu_buffer_a->buffer = buffer_b; 5249 5250 ret = 0; 5251 5252 out_dec: 5253 atomic_dec(&cpu_buffer_a->record_disabled); 5254 atomic_dec(&cpu_buffer_b->record_disabled); 5255 out: 5256 return ret; 5257 } 5258 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5259 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5260 5261 /** 5262 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5263 * @buffer: the buffer to allocate for. 5264 * @cpu: the cpu buffer to allocate. 5265 * 5266 * This function is used in conjunction with ring_buffer_read_page. 5267 * When reading a full page from the ring buffer, these functions 5268 * can be used to speed up the process. The calling function should 5269 * allocate a few pages first with this function. Then when it 5270 * needs to get pages from the ring buffer, it passes the result 5271 * of this function into ring_buffer_read_page, which will swap 5272 * the page that was allocated, with the read page of the buffer. 5273 * 5274 * Returns: 5275 * The page allocated, or ERR_PTR 5276 */ 5277 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5278 { 5279 struct ring_buffer_per_cpu *cpu_buffer; 5280 struct buffer_data_page *bpage = NULL; 5281 unsigned long flags; 5282 struct page *page; 5283 5284 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5285 return ERR_PTR(-ENODEV); 5286 5287 cpu_buffer = buffer->buffers[cpu]; 5288 local_irq_save(flags); 5289 arch_spin_lock(&cpu_buffer->lock); 5290 5291 if (cpu_buffer->free_page) { 5292 bpage = cpu_buffer->free_page; 5293 cpu_buffer->free_page = NULL; 5294 } 5295 5296 arch_spin_unlock(&cpu_buffer->lock); 5297 local_irq_restore(flags); 5298 5299 if (bpage) 5300 goto out; 5301 5302 page = alloc_pages_node(cpu_to_node(cpu), 5303 GFP_KERNEL | __GFP_NORETRY, 0); 5304 if (!page) 5305 return ERR_PTR(-ENOMEM); 5306 5307 bpage = page_address(page); 5308 5309 out: 5310 rb_init_page(bpage); 5311 5312 return bpage; 5313 } 5314 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5315 5316 /** 5317 * ring_buffer_free_read_page - free an allocated read page 5318 * @buffer: the buffer the page was allocate for 5319 * @cpu: the cpu buffer the page came from 5320 * @data: the page to free 5321 * 5322 * Free a page allocated from ring_buffer_alloc_read_page. 5323 */ 5324 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5325 { 5326 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5327 struct buffer_data_page *bpage = data; 5328 struct page *page = virt_to_page(bpage); 5329 unsigned long flags; 5330 5331 /* If the page is still in use someplace else, we can't reuse it */ 5332 if (page_ref_count(page) > 1) 5333 goto out; 5334 5335 local_irq_save(flags); 5336 arch_spin_lock(&cpu_buffer->lock); 5337 5338 if (!cpu_buffer->free_page) { 5339 cpu_buffer->free_page = bpage; 5340 bpage = NULL; 5341 } 5342 5343 arch_spin_unlock(&cpu_buffer->lock); 5344 local_irq_restore(flags); 5345 5346 out: 5347 free_page((unsigned long)bpage); 5348 } 5349 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5350 5351 /** 5352 * ring_buffer_read_page - extract a page from the ring buffer 5353 * @buffer: buffer to extract from 5354 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5355 * @len: amount to extract 5356 * @cpu: the cpu of the buffer to extract 5357 * @full: should the extraction only happen when the page is full. 5358 * 5359 * This function will pull out a page from the ring buffer and consume it. 5360 * @data_page must be the address of the variable that was returned 5361 * from ring_buffer_alloc_read_page. This is because the page might be used 5362 * to swap with a page in the ring buffer. 5363 * 5364 * for example: 5365 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5366 * if (IS_ERR(rpage)) 5367 * return PTR_ERR(rpage); 5368 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5369 * if (ret >= 0) 5370 * process_page(rpage, ret); 5371 * 5372 * When @full is set, the function will not return true unless 5373 * the writer is off the reader page. 5374 * 5375 * Note: it is up to the calling functions to handle sleeps and wakeups. 5376 * The ring buffer can be used anywhere in the kernel and can not 5377 * blindly call wake_up. The layer that uses the ring buffer must be 5378 * responsible for that. 5379 * 5380 * Returns: 5381 * >=0 if data has been transferred, returns the offset of consumed data. 5382 * <0 if no data has been transferred. 5383 */ 5384 int ring_buffer_read_page(struct trace_buffer *buffer, 5385 void **data_page, size_t len, int cpu, int full) 5386 { 5387 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5388 struct ring_buffer_event *event; 5389 struct buffer_data_page *bpage; 5390 struct buffer_page *reader; 5391 unsigned long missed_events; 5392 unsigned long flags; 5393 unsigned int commit; 5394 unsigned int read; 5395 u64 save_timestamp; 5396 int ret = -1; 5397 5398 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5399 goto out; 5400 5401 /* 5402 * If len is not big enough to hold the page header, then 5403 * we can not copy anything. 5404 */ 5405 if (len <= BUF_PAGE_HDR_SIZE) 5406 goto out; 5407 5408 len -= BUF_PAGE_HDR_SIZE; 5409 5410 if (!data_page) 5411 goto out; 5412 5413 bpage = *data_page; 5414 if (!bpage) 5415 goto out; 5416 5417 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5418 5419 reader = rb_get_reader_page(cpu_buffer); 5420 if (!reader) 5421 goto out_unlock; 5422 5423 event = rb_reader_event(cpu_buffer); 5424 5425 read = reader->read; 5426 commit = rb_page_commit(reader); 5427 5428 /* Check if any events were dropped */ 5429 missed_events = cpu_buffer->lost_events; 5430 5431 /* 5432 * If this page has been partially read or 5433 * if len is not big enough to read the rest of the page or 5434 * a writer is still on the page, then 5435 * we must copy the data from the page to the buffer. 5436 * Otherwise, we can simply swap the page with the one passed in. 5437 */ 5438 if (read || (len < (commit - read)) || 5439 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5440 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5441 unsigned int rpos = read; 5442 unsigned int pos = 0; 5443 unsigned int size; 5444 5445 if (full) 5446 goto out_unlock; 5447 5448 if (len > (commit - read)) 5449 len = (commit - read); 5450 5451 /* Always keep the time extend and data together */ 5452 size = rb_event_ts_length(event); 5453 5454 if (len < size) 5455 goto out_unlock; 5456 5457 /* save the current timestamp, since the user will need it */ 5458 save_timestamp = cpu_buffer->read_stamp; 5459 5460 /* Need to copy one event at a time */ 5461 do { 5462 /* We need the size of one event, because 5463 * rb_advance_reader only advances by one event, 5464 * whereas rb_event_ts_length may include the size of 5465 * one or two events. 5466 * We have already ensured there's enough space if this 5467 * is a time extend. */ 5468 size = rb_event_length(event); 5469 memcpy(bpage->data + pos, rpage->data + rpos, size); 5470 5471 len -= size; 5472 5473 rb_advance_reader(cpu_buffer); 5474 rpos = reader->read; 5475 pos += size; 5476 5477 if (rpos >= commit) 5478 break; 5479 5480 event = rb_reader_event(cpu_buffer); 5481 /* Always keep the time extend and data together */ 5482 size = rb_event_ts_length(event); 5483 } while (len >= size); 5484 5485 /* update bpage */ 5486 local_set(&bpage->commit, pos); 5487 bpage->time_stamp = save_timestamp; 5488 5489 /* we copied everything to the beginning */ 5490 read = 0; 5491 } else { 5492 /* update the entry counter */ 5493 cpu_buffer->read += rb_page_entries(reader); 5494 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5495 5496 /* swap the pages */ 5497 rb_init_page(bpage); 5498 bpage = reader->page; 5499 reader->page = *data_page; 5500 local_set(&reader->write, 0); 5501 local_set(&reader->entries, 0); 5502 reader->read = 0; 5503 *data_page = bpage; 5504 5505 /* 5506 * Use the real_end for the data size, 5507 * This gives us a chance to store the lost events 5508 * on the page. 5509 */ 5510 if (reader->real_end) 5511 local_set(&bpage->commit, reader->real_end); 5512 } 5513 ret = read; 5514 5515 cpu_buffer->lost_events = 0; 5516 5517 commit = local_read(&bpage->commit); 5518 /* 5519 * Set a flag in the commit field if we lost events 5520 */ 5521 if (missed_events) { 5522 /* If there is room at the end of the page to save the 5523 * missed events, then record it there. 5524 */ 5525 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5526 memcpy(&bpage->data[commit], &missed_events, 5527 sizeof(missed_events)); 5528 local_add(RB_MISSED_STORED, &bpage->commit); 5529 commit += sizeof(missed_events); 5530 } 5531 local_add(RB_MISSED_EVENTS, &bpage->commit); 5532 } 5533 5534 /* 5535 * This page may be off to user land. Zero it out here. 5536 */ 5537 if (commit < BUF_PAGE_SIZE) 5538 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5539 5540 out_unlock: 5541 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5542 5543 out: 5544 return ret; 5545 } 5546 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5547 5548 /* 5549 * We only allocate new buffers, never free them if the CPU goes down. 5550 * If we were to free the buffer, then the user would lose any trace that was in 5551 * the buffer. 5552 */ 5553 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5554 { 5555 struct trace_buffer *buffer; 5556 long nr_pages_same; 5557 int cpu_i; 5558 unsigned long nr_pages; 5559 5560 buffer = container_of(node, struct trace_buffer, node); 5561 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5562 return 0; 5563 5564 nr_pages = 0; 5565 nr_pages_same = 1; 5566 /* check if all cpu sizes are same */ 5567 for_each_buffer_cpu(buffer, cpu_i) { 5568 /* fill in the size from first enabled cpu */ 5569 if (nr_pages == 0) 5570 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5571 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5572 nr_pages_same = 0; 5573 break; 5574 } 5575 } 5576 /* allocate minimum pages, user can later expand it */ 5577 if (!nr_pages_same) 5578 nr_pages = 2; 5579 buffer->buffers[cpu] = 5580 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5581 if (!buffer->buffers[cpu]) { 5582 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5583 cpu); 5584 return -ENOMEM; 5585 } 5586 smp_wmb(); 5587 cpumask_set_cpu(cpu, buffer->cpumask); 5588 return 0; 5589 } 5590 5591 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5592 /* 5593 * This is a basic integrity check of the ring buffer. 5594 * Late in the boot cycle this test will run when configured in. 5595 * It will kick off a thread per CPU that will go into a loop 5596 * writing to the per cpu ring buffer various sizes of data. 5597 * Some of the data will be large items, some small. 5598 * 5599 * Another thread is created that goes into a spin, sending out 5600 * IPIs to the other CPUs to also write into the ring buffer. 5601 * this is to test the nesting ability of the buffer. 5602 * 5603 * Basic stats are recorded and reported. If something in the 5604 * ring buffer should happen that's not expected, a big warning 5605 * is displayed and all ring buffers are disabled. 5606 */ 5607 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5608 5609 struct rb_test_data { 5610 struct trace_buffer *buffer; 5611 unsigned long events; 5612 unsigned long bytes_written; 5613 unsigned long bytes_alloc; 5614 unsigned long bytes_dropped; 5615 unsigned long events_nested; 5616 unsigned long bytes_written_nested; 5617 unsigned long bytes_alloc_nested; 5618 unsigned long bytes_dropped_nested; 5619 int min_size_nested; 5620 int max_size_nested; 5621 int max_size; 5622 int min_size; 5623 int cpu; 5624 int cnt; 5625 }; 5626 5627 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5628 5629 /* 1 meg per cpu */ 5630 #define RB_TEST_BUFFER_SIZE 1048576 5631 5632 static char rb_string[] __initdata = 5633 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5634 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5635 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5636 5637 static bool rb_test_started __initdata; 5638 5639 struct rb_item { 5640 int size; 5641 char str[]; 5642 }; 5643 5644 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5645 { 5646 struct ring_buffer_event *event; 5647 struct rb_item *item; 5648 bool started; 5649 int event_len; 5650 int size; 5651 int len; 5652 int cnt; 5653 5654 /* Have nested writes different that what is written */ 5655 cnt = data->cnt + (nested ? 27 : 0); 5656 5657 /* Multiply cnt by ~e, to make some unique increment */ 5658 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5659 5660 len = size + sizeof(struct rb_item); 5661 5662 started = rb_test_started; 5663 /* read rb_test_started before checking buffer enabled */ 5664 smp_rmb(); 5665 5666 event = ring_buffer_lock_reserve(data->buffer, len); 5667 if (!event) { 5668 /* Ignore dropped events before test starts. */ 5669 if (started) { 5670 if (nested) 5671 data->bytes_dropped += len; 5672 else 5673 data->bytes_dropped_nested += len; 5674 } 5675 return len; 5676 } 5677 5678 event_len = ring_buffer_event_length(event); 5679 5680 if (RB_WARN_ON(data->buffer, event_len < len)) 5681 goto out; 5682 5683 item = ring_buffer_event_data(event); 5684 item->size = size; 5685 memcpy(item->str, rb_string, size); 5686 5687 if (nested) { 5688 data->bytes_alloc_nested += event_len; 5689 data->bytes_written_nested += len; 5690 data->events_nested++; 5691 if (!data->min_size_nested || len < data->min_size_nested) 5692 data->min_size_nested = len; 5693 if (len > data->max_size_nested) 5694 data->max_size_nested = len; 5695 } else { 5696 data->bytes_alloc += event_len; 5697 data->bytes_written += len; 5698 data->events++; 5699 if (!data->min_size || len < data->min_size) 5700 data->max_size = len; 5701 if (len > data->max_size) 5702 data->max_size = len; 5703 } 5704 5705 out: 5706 ring_buffer_unlock_commit(data->buffer, event); 5707 5708 return 0; 5709 } 5710 5711 static __init int rb_test(void *arg) 5712 { 5713 struct rb_test_data *data = arg; 5714 5715 while (!kthread_should_stop()) { 5716 rb_write_something(data, false); 5717 data->cnt++; 5718 5719 set_current_state(TASK_INTERRUPTIBLE); 5720 /* Now sleep between a min of 100-300us and a max of 1ms */ 5721 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5722 } 5723 5724 return 0; 5725 } 5726 5727 static __init void rb_ipi(void *ignore) 5728 { 5729 struct rb_test_data *data; 5730 int cpu = smp_processor_id(); 5731 5732 data = &rb_data[cpu]; 5733 rb_write_something(data, true); 5734 } 5735 5736 static __init int rb_hammer_test(void *arg) 5737 { 5738 while (!kthread_should_stop()) { 5739 5740 /* Send an IPI to all cpus to write data! */ 5741 smp_call_function(rb_ipi, NULL, 1); 5742 /* No sleep, but for non preempt, let others run */ 5743 schedule(); 5744 } 5745 5746 return 0; 5747 } 5748 5749 static __init int test_ringbuffer(void) 5750 { 5751 struct task_struct *rb_hammer; 5752 struct trace_buffer *buffer; 5753 int cpu; 5754 int ret = 0; 5755 5756 if (security_locked_down(LOCKDOWN_TRACEFS)) { 5757 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 5758 return 0; 5759 } 5760 5761 pr_info("Running ring buffer tests...\n"); 5762 5763 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5764 if (WARN_ON(!buffer)) 5765 return 0; 5766 5767 /* Disable buffer so that threads can't write to it yet */ 5768 ring_buffer_record_off(buffer); 5769 5770 for_each_online_cpu(cpu) { 5771 rb_data[cpu].buffer = buffer; 5772 rb_data[cpu].cpu = cpu; 5773 rb_data[cpu].cnt = cpu; 5774 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5775 "rbtester/%d", cpu); 5776 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5777 pr_cont("FAILED\n"); 5778 ret = PTR_ERR(rb_threads[cpu]); 5779 goto out_free; 5780 } 5781 5782 kthread_bind(rb_threads[cpu], cpu); 5783 wake_up_process(rb_threads[cpu]); 5784 } 5785 5786 /* Now create the rb hammer! */ 5787 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5788 if (WARN_ON(IS_ERR(rb_hammer))) { 5789 pr_cont("FAILED\n"); 5790 ret = PTR_ERR(rb_hammer); 5791 goto out_free; 5792 } 5793 5794 ring_buffer_record_on(buffer); 5795 /* 5796 * Show buffer is enabled before setting rb_test_started. 5797 * Yes there's a small race window where events could be 5798 * dropped and the thread wont catch it. But when a ring 5799 * buffer gets enabled, there will always be some kind of 5800 * delay before other CPUs see it. Thus, we don't care about 5801 * those dropped events. We care about events dropped after 5802 * the threads see that the buffer is active. 5803 */ 5804 smp_wmb(); 5805 rb_test_started = true; 5806 5807 set_current_state(TASK_INTERRUPTIBLE); 5808 /* Just run for 10 seconds */; 5809 schedule_timeout(10 * HZ); 5810 5811 kthread_stop(rb_hammer); 5812 5813 out_free: 5814 for_each_online_cpu(cpu) { 5815 if (!rb_threads[cpu]) 5816 break; 5817 kthread_stop(rb_threads[cpu]); 5818 } 5819 if (ret) { 5820 ring_buffer_free(buffer); 5821 return ret; 5822 } 5823 5824 /* Report! */ 5825 pr_info("finished\n"); 5826 for_each_online_cpu(cpu) { 5827 struct ring_buffer_event *event; 5828 struct rb_test_data *data = &rb_data[cpu]; 5829 struct rb_item *item; 5830 unsigned long total_events; 5831 unsigned long total_dropped; 5832 unsigned long total_written; 5833 unsigned long total_alloc; 5834 unsigned long total_read = 0; 5835 unsigned long total_size = 0; 5836 unsigned long total_len = 0; 5837 unsigned long total_lost = 0; 5838 unsigned long lost; 5839 int big_event_size; 5840 int small_event_size; 5841 5842 ret = -1; 5843 5844 total_events = data->events + data->events_nested; 5845 total_written = data->bytes_written + data->bytes_written_nested; 5846 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5847 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5848 5849 big_event_size = data->max_size + data->max_size_nested; 5850 small_event_size = data->min_size + data->min_size_nested; 5851 5852 pr_info("CPU %d:\n", cpu); 5853 pr_info(" events: %ld\n", total_events); 5854 pr_info(" dropped bytes: %ld\n", total_dropped); 5855 pr_info(" alloced bytes: %ld\n", total_alloc); 5856 pr_info(" written bytes: %ld\n", total_written); 5857 pr_info(" biggest event: %d\n", big_event_size); 5858 pr_info(" smallest event: %d\n", small_event_size); 5859 5860 if (RB_WARN_ON(buffer, total_dropped)) 5861 break; 5862 5863 ret = 0; 5864 5865 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5866 total_lost += lost; 5867 item = ring_buffer_event_data(event); 5868 total_len += ring_buffer_event_length(event); 5869 total_size += item->size + sizeof(struct rb_item); 5870 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5871 pr_info("FAILED!\n"); 5872 pr_info("buffer had: %.*s\n", item->size, item->str); 5873 pr_info("expected: %.*s\n", item->size, rb_string); 5874 RB_WARN_ON(buffer, 1); 5875 ret = -1; 5876 break; 5877 } 5878 total_read++; 5879 } 5880 if (ret) 5881 break; 5882 5883 ret = -1; 5884 5885 pr_info(" read events: %ld\n", total_read); 5886 pr_info(" lost events: %ld\n", total_lost); 5887 pr_info(" total events: %ld\n", total_lost + total_read); 5888 pr_info(" recorded len bytes: %ld\n", total_len); 5889 pr_info(" recorded size bytes: %ld\n", total_size); 5890 if (total_lost) 5891 pr_info(" With dropped events, record len and size may not match\n" 5892 " alloced and written from above\n"); 5893 if (!total_lost) { 5894 if (RB_WARN_ON(buffer, total_len != total_alloc || 5895 total_size != total_written)) 5896 break; 5897 } 5898 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5899 break; 5900 5901 ret = 0; 5902 } 5903 if (!ret) 5904 pr_info("Ring buffer PASSED!\n"); 5905 5906 ring_buffer_free(buffer); 5907 return 0; 5908 } 5909 5910 late_initcall(test_ringbuffer); 5911 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5912