xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 54300bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 static void update_pages_handler(struct work_struct *work);
33 
34 /*
35  * The ring buffer header is special. We must manually up keep it.
36  */
37 int ring_buffer_print_entry_header(struct trace_seq *s)
38 {
39 	trace_seq_puts(s, "# compressed entry header\n");
40 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	trace_seq_putc(s, '\n');
44 	trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			 RINGBUF_TYPE_PADDING);
46 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			 RINGBUF_TYPE_TIME_EXTEND);
48 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
49 			 RINGBUF_TYPE_TIME_STAMP);
50 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
51 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
52 
53 	return !trace_seq_has_overflowed(s);
54 }
55 
56 /*
57  * The ring buffer is made up of a list of pages. A separate list of pages is
58  * allocated for each CPU. A writer may only write to a buffer that is
59  * associated with the CPU it is currently executing on.  A reader may read
60  * from any per cpu buffer.
61  *
62  * The reader is special. For each per cpu buffer, the reader has its own
63  * reader page. When a reader has read the entire reader page, this reader
64  * page is swapped with another page in the ring buffer.
65  *
66  * Now, as long as the writer is off the reader page, the reader can do what
67  * ever it wants with that page. The writer will never write to that page
68  * again (as long as it is out of the ring buffer).
69  *
70  * Here's some silly ASCII art.
71  *
72  *   +------+
73  *   |reader|          RING BUFFER
74  *   |page  |
75  *   +------+        +---+   +---+   +---+
76  *                   |   |-->|   |-->|   |
77  *                   +---+   +---+   +---+
78  *                     ^               |
79  *                     |               |
80  *                     +---------------+
81  *
82  *
83  *   +------+
84  *   |reader|          RING BUFFER
85  *   |page  |------------------v
86  *   +------+        +---+   +---+   +---+
87  *                   |   |-->|   |-->|   |
88  *                   +---+   +---+   +---+
89  *                     ^               |
90  *                     |               |
91  *                     +---------------+
92  *
93  *
94  *   +------+
95  *   |reader|          RING BUFFER
96  *   |page  |------------------v
97  *   +------+        +---+   +---+   +---+
98  *      ^            |   |-->|   |-->|   |
99  *      |            +---+   +---+   +---+
100  *      |                              |
101  *      |                              |
102  *      +------------------------------+
103  *
104  *
105  *   +------+
106  *   |buffer|          RING BUFFER
107  *   |page  |------------------v
108  *   +------+        +---+   +---+   +---+
109  *      ^            |   |   |   |-->|   |
110  *      |   New      +---+   +---+   +---+
111  *      |  Reader------^               |
112  *      |   page                       |
113  *      +------------------------------+
114  *
115  *
116  * After we make this swap, the reader can hand this page off to the splice
117  * code and be done with it. It can even allocate a new page if it needs to
118  * and swap that into the ring buffer.
119  *
120  * We will be using cmpxchg soon to make all this lockless.
121  *
122  */
123 
124 /* Used for individual buffers (after the counter) */
125 #define RB_BUFFER_OFF		(1 << 20)
126 
127 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
128 
129 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
130 #define RB_ALIGNMENT		4U
131 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
132 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
133 
134 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
135 # define RB_FORCE_8BYTE_ALIGNMENT	0
136 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
137 #else
138 # define RB_FORCE_8BYTE_ALIGNMENT	1
139 # define RB_ARCH_ALIGNMENT		8U
140 #endif
141 
142 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
143 
144 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
145 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
146 
147 enum {
148 	RB_LEN_TIME_EXTEND = 8,
149 	RB_LEN_TIME_STAMP =  8,
150 };
151 
152 #define skip_time_extend(event) \
153 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
154 
155 #define extended_time(event) \
156 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
157 
158 static inline int rb_null_event(struct ring_buffer_event *event)
159 {
160 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
161 }
162 
163 static void rb_event_set_padding(struct ring_buffer_event *event)
164 {
165 	/* padding has a NULL time_delta */
166 	event->type_len = RINGBUF_TYPE_PADDING;
167 	event->time_delta = 0;
168 }
169 
170 static unsigned
171 rb_event_data_length(struct ring_buffer_event *event)
172 {
173 	unsigned length;
174 
175 	if (event->type_len)
176 		length = event->type_len * RB_ALIGNMENT;
177 	else
178 		length = event->array[0];
179 	return length + RB_EVNT_HDR_SIZE;
180 }
181 
182 /*
183  * Return the length of the given event. Will return
184  * the length of the time extend if the event is a
185  * time extend.
186  */
187 static inline unsigned
188 rb_event_length(struct ring_buffer_event *event)
189 {
190 	switch (event->type_len) {
191 	case RINGBUF_TYPE_PADDING:
192 		if (rb_null_event(event))
193 			/* undefined */
194 			return -1;
195 		return  event->array[0] + RB_EVNT_HDR_SIZE;
196 
197 	case RINGBUF_TYPE_TIME_EXTEND:
198 		return RB_LEN_TIME_EXTEND;
199 
200 	case RINGBUF_TYPE_TIME_STAMP:
201 		return RB_LEN_TIME_STAMP;
202 
203 	case RINGBUF_TYPE_DATA:
204 		return rb_event_data_length(event);
205 	default:
206 		WARN_ON_ONCE(1);
207 	}
208 	/* not hit */
209 	return 0;
210 }
211 
212 /*
213  * Return total length of time extend and data,
214  *   or just the event length for all other events.
215  */
216 static inline unsigned
217 rb_event_ts_length(struct ring_buffer_event *event)
218 {
219 	unsigned len = 0;
220 
221 	if (extended_time(event)) {
222 		/* time extends include the data event after it */
223 		len = RB_LEN_TIME_EXTEND;
224 		event = skip_time_extend(event);
225 	}
226 	return len + rb_event_length(event);
227 }
228 
229 /**
230  * ring_buffer_event_length - return the length of the event
231  * @event: the event to get the length of
232  *
233  * Returns the size of the data load of a data event.
234  * If the event is something other than a data event, it
235  * returns the size of the event itself. With the exception
236  * of a TIME EXTEND, where it still returns the size of the
237  * data load of the data event after it.
238  */
239 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
240 {
241 	unsigned length;
242 
243 	if (extended_time(event))
244 		event = skip_time_extend(event);
245 
246 	length = rb_event_length(event);
247 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
248 		return length;
249 	length -= RB_EVNT_HDR_SIZE;
250 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
251                 length -= sizeof(event->array[0]);
252 	return length;
253 }
254 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
255 
256 /* inline for ring buffer fast paths */
257 static __always_inline void *
258 rb_event_data(struct ring_buffer_event *event)
259 {
260 	if (extended_time(event))
261 		event = skip_time_extend(event);
262 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
263 	/* If length is in len field, then array[0] has the data */
264 	if (event->type_len)
265 		return (void *)&event->array[0];
266 	/* Otherwise length is in array[0] and array[1] has the data */
267 	return (void *)&event->array[1];
268 }
269 
270 /**
271  * ring_buffer_event_data - return the data of the event
272  * @event: the event to get the data from
273  */
274 void *ring_buffer_event_data(struct ring_buffer_event *event)
275 {
276 	return rb_event_data(event);
277 }
278 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
279 
280 #define for_each_buffer_cpu(buffer, cpu)		\
281 	for_each_cpu(cpu, buffer->cpumask)
282 
283 #define for_each_online_buffer_cpu(buffer, cpu)		\
284 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
285 
286 #define TS_SHIFT	27
287 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
288 #define TS_DELTA_TEST	(~TS_MASK)
289 
290 /**
291  * ring_buffer_event_time_stamp - return the event's extended timestamp
292  * @event: the event to get the timestamp of
293  *
294  * Returns the extended timestamp associated with a data event.
295  * An extended time_stamp is a 64-bit timestamp represented
296  * internally in a special way that makes the best use of space
297  * contained within a ring buffer event.  This function decodes
298  * it and maps it to a straight u64 value.
299  */
300 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
301 {
302 	u64 ts;
303 
304 	ts = event->array[0];
305 	ts <<= TS_SHIFT;
306 	ts += event->time_delta;
307 
308 	return ts;
309 }
310 
311 /* Flag when events were overwritten */
312 #define RB_MISSED_EVENTS	(1 << 31)
313 /* Missed count stored at end */
314 #define RB_MISSED_STORED	(1 << 30)
315 
316 struct buffer_data_page {
317 	u64		 time_stamp;	/* page time stamp */
318 	local_t		 commit;	/* write committed index */
319 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
320 };
321 
322 /*
323  * Note, the buffer_page list must be first. The buffer pages
324  * are allocated in cache lines, which means that each buffer
325  * page will be at the beginning of a cache line, and thus
326  * the least significant bits will be zero. We use this to
327  * add flags in the list struct pointers, to make the ring buffer
328  * lockless.
329  */
330 struct buffer_page {
331 	struct list_head list;		/* list of buffer pages */
332 	local_t		 write;		/* index for next write */
333 	unsigned	 read;		/* index for next read */
334 	local_t		 entries;	/* entries on this page */
335 	unsigned long	 real_end;	/* real end of data */
336 	struct buffer_data_page *page;	/* Actual data page */
337 };
338 
339 /*
340  * The buffer page counters, write and entries, must be reset
341  * atomically when crossing page boundaries. To synchronize this
342  * update, two counters are inserted into the number. One is
343  * the actual counter for the write position or count on the page.
344  *
345  * The other is a counter of updaters. Before an update happens
346  * the update partition of the counter is incremented. This will
347  * allow the updater to update the counter atomically.
348  *
349  * The counter is 20 bits, and the state data is 12.
350  */
351 #define RB_WRITE_MASK		0xfffff
352 #define RB_WRITE_INTCNT		(1 << 20)
353 
354 static void rb_init_page(struct buffer_data_page *bpage)
355 {
356 	local_set(&bpage->commit, 0);
357 }
358 
359 /*
360  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
361  * this issue out.
362  */
363 static void free_buffer_page(struct buffer_page *bpage)
364 {
365 	free_page((unsigned long)bpage->page);
366 	kfree(bpage);
367 }
368 
369 /*
370  * We need to fit the time_stamp delta into 27 bits.
371  */
372 static inline int test_time_stamp(u64 delta)
373 {
374 	if (delta & TS_DELTA_TEST)
375 		return 1;
376 	return 0;
377 }
378 
379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
380 
381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
383 
384 int ring_buffer_print_page_header(struct trace_seq *s)
385 {
386 	struct buffer_data_page field;
387 
388 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
389 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
390 			 (unsigned int)sizeof(field.time_stamp),
391 			 (unsigned int)is_signed_type(u64));
392 
393 	trace_seq_printf(s, "\tfield: local_t commit;\t"
394 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
395 			 (unsigned int)offsetof(typeof(field), commit),
396 			 (unsigned int)sizeof(field.commit),
397 			 (unsigned int)is_signed_type(long));
398 
399 	trace_seq_printf(s, "\tfield: int overwrite;\t"
400 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
401 			 (unsigned int)offsetof(typeof(field), commit),
402 			 1,
403 			 (unsigned int)is_signed_type(long));
404 
405 	trace_seq_printf(s, "\tfield: char data;\t"
406 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
407 			 (unsigned int)offsetof(typeof(field), data),
408 			 (unsigned int)BUF_PAGE_SIZE,
409 			 (unsigned int)is_signed_type(char));
410 
411 	return !trace_seq_has_overflowed(s);
412 }
413 
414 struct rb_irq_work {
415 	struct irq_work			work;
416 	wait_queue_head_t		waiters;
417 	wait_queue_head_t		full_waiters;
418 	bool				waiters_pending;
419 	bool				full_waiters_pending;
420 	bool				wakeup_full;
421 };
422 
423 /*
424  * Structure to hold event state and handle nested events.
425  */
426 struct rb_event_info {
427 	u64			ts;
428 	u64			delta;
429 	u64			before;
430 	u64			after;
431 	unsigned long		length;
432 	struct buffer_page	*tail_page;
433 	int			add_timestamp;
434 };
435 
436 /*
437  * Used for the add_timestamp
438  *  NONE
439  *  EXTEND - wants a time extend
440  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
441  *  FORCE - force a full time stamp.
442  */
443 enum {
444 	RB_ADD_STAMP_NONE		= 0,
445 	RB_ADD_STAMP_EXTEND		= BIT(1),
446 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
447 	RB_ADD_STAMP_FORCE		= BIT(3)
448 };
449 /*
450  * Used for which event context the event is in.
451  *  TRANSITION = 0
452  *  NMI     = 1
453  *  IRQ     = 2
454  *  SOFTIRQ = 3
455  *  NORMAL  = 4
456  *
457  * See trace_recursive_lock() comment below for more details.
458  */
459 enum {
460 	RB_CTX_TRANSITION,
461 	RB_CTX_NMI,
462 	RB_CTX_IRQ,
463 	RB_CTX_SOFTIRQ,
464 	RB_CTX_NORMAL,
465 	RB_CTX_MAX
466 };
467 
468 #if BITS_PER_LONG == 32
469 #define RB_TIME_32
470 #endif
471 
472 /* To test on 64 bit machines */
473 //#define RB_TIME_32
474 
475 #ifdef RB_TIME_32
476 
477 struct rb_time_struct {
478 	local_t		cnt;
479 	local_t		top;
480 	local_t		bottom;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485 	local64_t	time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489 
490 /*
491  * head_page == tail_page && head == tail then buffer is empty.
492  */
493 struct ring_buffer_per_cpu {
494 	int				cpu;
495 	atomic_t			record_disabled;
496 	atomic_t			resize_disabled;
497 	struct trace_buffer	*buffer;
498 	raw_spinlock_t			reader_lock;	/* serialize readers */
499 	arch_spinlock_t			lock;
500 	struct lock_class_key		lock_key;
501 	struct buffer_data_page		*free_page;
502 	unsigned long			nr_pages;
503 	unsigned int			current_context;
504 	struct list_head		*pages;
505 	struct buffer_page		*head_page;	/* read from head */
506 	struct buffer_page		*tail_page;	/* write to tail */
507 	struct buffer_page		*commit_page;	/* committed pages */
508 	struct buffer_page		*reader_page;
509 	unsigned long			lost_events;
510 	unsigned long			last_overrun;
511 	unsigned long			nest;
512 	local_t				entries_bytes;
513 	local_t				entries;
514 	local_t				overrun;
515 	local_t				commit_overrun;
516 	local_t				dropped_events;
517 	local_t				committing;
518 	local_t				commits;
519 	local_t				pages_touched;
520 	local_t				pages_read;
521 	long				last_pages_touch;
522 	size_t				shortest_full;
523 	unsigned long			read;
524 	unsigned long			read_bytes;
525 	rb_time_t			write_stamp;
526 	rb_time_t			before_stamp;
527 	u64				read_stamp;
528 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
529 	long				nr_pages_to_update;
530 	struct list_head		new_pages; /* new pages to add */
531 	struct work_struct		update_pages_work;
532 	struct completion		update_done;
533 
534 	struct rb_irq_work		irq_work;
535 };
536 
537 struct trace_buffer {
538 	unsigned			flags;
539 	int				cpus;
540 	atomic_t			record_disabled;
541 	cpumask_var_t			cpumask;
542 
543 	struct lock_class_key		*reader_lock_key;
544 
545 	struct mutex			mutex;
546 
547 	struct ring_buffer_per_cpu	**buffers;
548 
549 	struct hlist_node		node;
550 	u64				(*clock)(void);
551 
552 	struct rb_irq_work		irq_work;
553 	bool				time_stamp_abs;
554 };
555 
556 struct ring_buffer_iter {
557 	struct ring_buffer_per_cpu	*cpu_buffer;
558 	unsigned long			head;
559 	unsigned long			next_event;
560 	struct buffer_page		*head_page;
561 	struct buffer_page		*cache_reader_page;
562 	unsigned long			cache_read;
563 	u64				read_stamp;
564 	u64				page_stamp;
565 	struct ring_buffer_event	*event;
566 	int				missed_events;
567 };
568 
569 #ifdef RB_TIME_32
570 
571 /*
572  * On 32 bit machines, local64_t is very expensive. As the ring
573  * buffer doesn't need all the features of a true 64 bit atomic,
574  * on 32 bit, it uses these functions (64 still uses local64_t).
575  *
576  * For the ring buffer, 64 bit required operations for the time is
577  * the following:
578  *
579  *  - Only need 59 bits (uses 60 to make it even).
580  *  - Reads may fail if it interrupted a modification of the time stamp.
581  *      It will succeed if it did not interrupt another write even if
582  *      the read itself is interrupted by a write.
583  *      It returns whether it was successful or not.
584  *
585  *  - Writes always succeed and will overwrite other writes and writes
586  *      that were done by events interrupting the current write.
587  *
588  *  - A write followed by a read of the same time stamp will always succeed,
589  *      but may not contain the same value.
590  *
591  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
592  *      Other than that, it acts like a normal cmpxchg.
593  *
594  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
595  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
596  *
597  * The two most significant bits of each half holds a 2 bit counter (0-3).
598  * Each update will increment this counter by one.
599  * When reading the top and bottom, if the two counter bits match then the
600  *  top and bottom together make a valid 60 bit number.
601  */
602 #define RB_TIME_SHIFT	30
603 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
604 
605 static inline int rb_time_cnt(unsigned long val)
606 {
607 	return (val >> RB_TIME_SHIFT) & 3;
608 }
609 
610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
611 {
612 	u64 val;
613 
614 	val = top & RB_TIME_VAL_MASK;
615 	val <<= RB_TIME_SHIFT;
616 	val |= bottom & RB_TIME_VAL_MASK;
617 
618 	return val;
619 }
620 
621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
622 {
623 	unsigned long top, bottom;
624 	unsigned long c;
625 
626 	/*
627 	 * If the read is interrupted by a write, then the cnt will
628 	 * be different. Loop until both top and bottom have been read
629 	 * without interruption.
630 	 */
631 	do {
632 		c = local_read(&t->cnt);
633 		top = local_read(&t->top);
634 		bottom = local_read(&t->bottom);
635 	} while (c != local_read(&t->cnt));
636 
637 	*cnt = rb_time_cnt(top);
638 
639 	/* If top and bottom counts don't match, this interrupted a write */
640 	if (*cnt != rb_time_cnt(bottom))
641 		return false;
642 
643 	*ret = rb_time_val(top, bottom);
644 	return true;
645 }
646 
647 static bool rb_time_read(rb_time_t *t, u64 *ret)
648 {
649 	unsigned long cnt;
650 
651 	return __rb_time_read(t, ret, &cnt);
652 }
653 
654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
655 {
656 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
657 }
658 
659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
660 {
661 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
662 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
663 }
664 
665 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
666 {
667 	val = rb_time_val_cnt(val, cnt);
668 	local_set(t, val);
669 }
670 
671 static void rb_time_set(rb_time_t *t, u64 val)
672 {
673 	unsigned long cnt, top, bottom;
674 
675 	rb_time_split(val, &top, &bottom);
676 
677 	/* Writes always succeed with a valid number even if it gets interrupted. */
678 	do {
679 		cnt = local_inc_return(&t->cnt);
680 		rb_time_val_set(&t->top, top, cnt);
681 		rb_time_val_set(&t->bottom, bottom, cnt);
682 	} while (cnt != local_read(&t->cnt));
683 }
684 
685 static inline bool
686 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
687 {
688 	unsigned long ret;
689 
690 	ret = local_cmpxchg(l, expect, set);
691 	return ret == expect;
692 }
693 
694 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
695 {
696 	unsigned long cnt, top, bottom;
697 	unsigned long cnt2, top2, bottom2;
698 	u64 val;
699 
700 	/* The cmpxchg always fails if it interrupted an update */
701 	 if (!__rb_time_read(t, &val, &cnt2))
702 		 return false;
703 
704 	 if (val != expect)
705 		 return false;
706 
707 	 cnt = local_read(&t->cnt);
708 	 if ((cnt & 3) != cnt2)
709 		 return false;
710 
711 	 cnt2 = cnt + 1;
712 
713 	 rb_time_split(val, &top, &bottom);
714 	 top = rb_time_val_cnt(top, cnt);
715 	 bottom = rb_time_val_cnt(bottom, cnt);
716 
717 	 rb_time_split(set, &top2, &bottom2);
718 	 top2 = rb_time_val_cnt(top2, cnt2);
719 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
720 
721 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
722 		return false;
723 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
724 		return false;
725 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
726 		return false;
727 	return true;
728 }
729 
730 #else /* 64 bits */
731 
732 /* local64_t always succeeds */
733 
734 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
735 {
736 	*ret = local64_read(&t->time);
737 	return true;
738 }
739 static void rb_time_set(rb_time_t *t, u64 val)
740 {
741 	local64_set(&t->time, val);
742 }
743 
744 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
745 {
746 	u64 val;
747 	val = local64_cmpxchg(&t->time, expect, set);
748 	return val == expect;
749 }
750 #endif
751 
752 /**
753  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
754  * @buffer: The ring_buffer to get the number of pages from
755  * @cpu: The cpu of the ring_buffer to get the number of pages from
756  *
757  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
758  */
759 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
760 {
761 	return buffer->buffers[cpu]->nr_pages;
762 }
763 
764 /**
765  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
766  * @buffer: The ring_buffer to get the number of pages from
767  * @cpu: The cpu of the ring_buffer to get the number of pages from
768  *
769  * Returns the number of pages that have content in the ring buffer.
770  */
771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
772 {
773 	size_t read;
774 	size_t cnt;
775 
776 	read = local_read(&buffer->buffers[cpu]->pages_read);
777 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
778 	/* The reader can read an empty page, but not more than that */
779 	if (cnt < read) {
780 		WARN_ON_ONCE(read > cnt + 1);
781 		return 0;
782 	}
783 
784 	return cnt - read;
785 }
786 
787 /*
788  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
789  *
790  * Schedules a delayed work to wake up any task that is blocked on the
791  * ring buffer waiters queue.
792  */
793 static void rb_wake_up_waiters(struct irq_work *work)
794 {
795 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
796 
797 	wake_up_all(&rbwork->waiters);
798 	if (rbwork->wakeup_full) {
799 		rbwork->wakeup_full = false;
800 		wake_up_all(&rbwork->full_waiters);
801 	}
802 }
803 
804 /**
805  * ring_buffer_wait - wait for input to the ring buffer
806  * @buffer: buffer to wait on
807  * @cpu: the cpu buffer to wait on
808  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
809  *
810  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
811  * as data is added to any of the @buffer's cpu buffers. Otherwise
812  * it will wait for data to be added to a specific cpu buffer.
813  */
814 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
815 {
816 	struct ring_buffer_per_cpu *cpu_buffer;
817 	DEFINE_WAIT(wait);
818 	struct rb_irq_work *work;
819 	int ret = 0;
820 
821 	/*
822 	 * Depending on what the caller is waiting for, either any
823 	 * data in any cpu buffer, or a specific buffer, put the
824 	 * caller on the appropriate wait queue.
825 	 */
826 	if (cpu == RING_BUFFER_ALL_CPUS) {
827 		work = &buffer->irq_work;
828 		/* Full only makes sense on per cpu reads */
829 		full = 0;
830 	} else {
831 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
832 			return -ENODEV;
833 		cpu_buffer = buffer->buffers[cpu];
834 		work = &cpu_buffer->irq_work;
835 	}
836 
837 
838 	while (true) {
839 		if (full)
840 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
841 		else
842 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
843 
844 		/*
845 		 * The events can happen in critical sections where
846 		 * checking a work queue can cause deadlocks.
847 		 * After adding a task to the queue, this flag is set
848 		 * only to notify events to try to wake up the queue
849 		 * using irq_work.
850 		 *
851 		 * We don't clear it even if the buffer is no longer
852 		 * empty. The flag only causes the next event to run
853 		 * irq_work to do the work queue wake up. The worse
854 		 * that can happen if we race with !trace_empty() is that
855 		 * an event will cause an irq_work to try to wake up
856 		 * an empty queue.
857 		 *
858 		 * There's no reason to protect this flag either, as
859 		 * the work queue and irq_work logic will do the necessary
860 		 * synchronization for the wake ups. The only thing
861 		 * that is necessary is that the wake up happens after
862 		 * a task has been queued. It's OK for spurious wake ups.
863 		 */
864 		if (full)
865 			work->full_waiters_pending = true;
866 		else
867 			work->waiters_pending = true;
868 
869 		if (signal_pending(current)) {
870 			ret = -EINTR;
871 			break;
872 		}
873 
874 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
875 			break;
876 
877 		if (cpu != RING_BUFFER_ALL_CPUS &&
878 		    !ring_buffer_empty_cpu(buffer, cpu)) {
879 			unsigned long flags;
880 			bool pagebusy;
881 			size_t nr_pages;
882 			size_t dirty;
883 
884 			if (!full)
885 				break;
886 
887 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
888 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
889 			nr_pages = cpu_buffer->nr_pages;
890 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
891 			if (!cpu_buffer->shortest_full ||
892 			    cpu_buffer->shortest_full < full)
893 				cpu_buffer->shortest_full = full;
894 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
895 			if (!pagebusy &&
896 			    (!nr_pages || (dirty * 100) > full * nr_pages))
897 				break;
898 		}
899 
900 		schedule();
901 	}
902 
903 	if (full)
904 		finish_wait(&work->full_waiters, &wait);
905 	else
906 		finish_wait(&work->waiters, &wait);
907 
908 	return ret;
909 }
910 
911 /**
912  * ring_buffer_poll_wait - poll on buffer input
913  * @buffer: buffer to wait on
914  * @cpu: the cpu buffer to wait on
915  * @filp: the file descriptor
916  * @poll_table: The poll descriptor
917  *
918  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
919  * as data is added to any of the @buffer's cpu buffers. Otherwise
920  * it will wait for data to be added to a specific cpu buffer.
921  *
922  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
923  * zero otherwise.
924  */
925 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
926 			  struct file *filp, poll_table *poll_table)
927 {
928 	struct ring_buffer_per_cpu *cpu_buffer;
929 	struct rb_irq_work *work;
930 
931 	if (cpu == RING_BUFFER_ALL_CPUS)
932 		work = &buffer->irq_work;
933 	else {
934 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
935 			return -EINVAL;
936 
937 		cpu_buffer = buffer->buffers[cpu];
938 		work = &cpu_buffer->irq_work;
939 	}
940 
941 	poll_wait(filp, &work->waiters, poll_table);
942 	work->waiters_pending = true;
943 	/*
944 	 * There's a tight race between setting the waiters_pending and
945 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
946 	 * is set, the next event will wake the task up, but we can get stuck
947 	 * if there's only a single event in.
948 	 *
949 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
950 	 * but adding a memory barrier to all events will cause too much of a
951 	 * performance hit in the fast path.  We only need a memory barrier when
952 	 * the buffer goes from empty to having content.  But as this race is
953 	 * extremely small, and it's not a problem if another event comes in, we
954 	 * will fix it later.
955 	 */
956 	smp_mb();
957 
958 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
959 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
960 		return EPOLLIN | EPOLLRDNORM;
961 	return 0;
962 }
963 
964 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
965 #define RB_WARN_ON(b, cond)						\
966 	({								\
967 		int _____ret = unlikely(cond);				\
968 		if (_____ret) {						\
969 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
970 				struct ring_buffer_per_cpu *__b =	\
971 					(void *)b;			\
972 				atomic_inc(&__b->buffer->record_disabled); \
973 			} else						\
974 				atomic_inc(&b->record_disabled);	\
975 			WARN_ON(1);					\
976 		}							\
977 		_____ret;						\
978 	})
979 
980 /* Up this if you want to test the TIME_EXTENTS and normalization */
981 #define DEBUG_SHIFT 0
982 
983 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
984 {
985 	u64 ts;
986 
987 	/* Skip retpolines :-( */
988 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
989 		ts = trace_clock_local();
990 	else
991 		ts = buffer->clock();
992 
993 	/* shift to debug/test normalization and TIME_EXTENTS */
994 	return ts << DEBUG_SHIFT;
995 }
996 
997 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
998 {
999 	u64 time;
1000 
1001 	preempt_disable_notrace();
1002 	time = rb_time_stamp(buffer);
1003 	preempt_enable_notrace();
1004 
1005 	return time;
1006 }
1007 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1008 
1009 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1010 				      int cpu, u64 *ts)
1011 {
1012 	/* Just stupid testing the normalize function and deltas */
1013 	*ts >>= DEBUG_SHIFT;
1014 }
1015 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1016 
1017 /*
1018  * Making the ring buffer lockless makes things tricky.
1019  * Although writes only happen on the CPU that they are on,
1020  * and they only need to worry about interrupts. Reads can
1021  * happen on any CPU.
1022  *
1023  * The reader page is always off the ring buffer, but when the
1024  * reader finishes with a page, it needs to swap its page with
1025  * a new one from the buffer. The reader needs to take from
1026  * the head (writes go to the tail). But if a writer is in overwrite
1027  * mode and wraps, it must push the head page forward.
1028  *
1029  * Here lies the problem.
1030  *
1031  * The reader must be careful to replace only the head page, and
1032  * not another one. As described at the top of the file in the
1033  * ASCII art, the reader sets its old page to point to the next
1034  * page after head. It then sets the page after head to point to
1035  * the old reader page. But if the writer moves the head page
1036  * during this operation, the reader could end up with the tail.
1037  *
1038  * We use cmpxchg to help prevent this race. We also do something
1039  * special with the page before head. We set the LSB to 1.
1040  *
1041  * When the writer must push the page forward, it will clear the
1042  * bit that points to the head page, move the head, and then set
1043  * the bit that points to the new head page.
1044  *
1045  * We also don't want an interrupt coming in and moving the head
1046  * page on another writer. Thus we use the second LSB to catch
1047  * that too. Thus:
1048  *
1049  * head->list->prev->next        bit 1          bit 0
1050  *                              -------        -------
1051  * Normal page                     0              0
1052  * Points to head page             0              1
1053  * New head page                   1              0
1054  *
1055  * Note we can not trust the prev pointer of the head page, because:
1056  *
1057  * +----+       +-----+        +-----+
1058  * |    |------>|  T  |---X--->|  N  |
1059  * |    |<------|     |        |     |
1060  * +----+       +-----+        +-----+
1061  *   ^                           ^ |
1062  *   |          +-----+          | |
1063  *   +----------|  R  |----------+ |
1064  *              |     |<-----------+
1065  *              +-----+
1066  *
1067  * Key:  ---X-->  HEAD flag set in pointer
1068  *         T      Tail page
1069  *         R      Reader page
1070  *         N      Next page
1071  *
1072  * (see __rb_reserve_next() to see where this happens)
1073  *
1074  *  What the above shows is that the reader just swapped out
1075  *  the reader page with a page in the buffer, but before it
1076  *  could make the new header point back to the new page added
1077  *  it was preempted by a writer. The writer moved forward onto
1078  *  the new page added by the reader and is about to move forward
1079  *  again.
1080  *
1081  *  You can see, it is legitimate for the previous pointer of
1082  *  the head (or any page) not to point back to itself. But only
1083  *  temporarily.
1084  */
1085 
1086 #define RB_PAGE_NORMAL		0UL
1087 #define RB_PAGE_HEAD		1UL
1088 #define RB_PAGE_UPDATE		2UL
1089 
1090 
1091 #define RB_FLAG_MASK		3UL
1092 
1093 /* PAGE_MOVED is not part of the mask */
1094 #define RB_PAGE_MOVED		4UL
1095 
1096 /*
1097  * rb_list_head - remove any bit
1098  */
1099 static struct list_head *rb_list_head(struct list_head *list)
1100 {
1101 	unsigned long val = (unsigned long)list;
1102 
1103 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1104 }
1105 
1106 /*
1107  * rb_is_head_page - test if the given page is the head page
1108  *
1109  * Because the reader may move the head_page pointer, we can
1110  * not trust what the head page is (it may be pointing to
1111  * the reader page). But if the next page is a header page,
1112  * its flags will be non zero.
1113  */
1114 static inline int
1115 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1116 {
1117 	unsigned long val;
1118 
1119 	val = (unsigned long)list->next;
1120 
1121 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1122 		return RB_PAGE_MOVED;
1123 
1124 	return val & RB_FLAG_MASK;
1125 }
1126 
1127 /*
1128  * rb_is_reader_page
1129  *
1130  * The unique thing about the reader page, is that, if the
1131  * writer is ever on it, the previous pointer never points
1132  * back to the reader page.
1133  */
1134 static bool rb_is_reader_page(struct buffer_page *page)
1135 {
1136 	struct list_head *list = page->list.prev;
1137 
1138 	return rb_list_head(list->next) != &page->list;
1139 }
1140 
1141 /*
1142  * rb_set_list_to_head - set a list_head to be pointing to head.
1143  */
1144 static void rb_set_list_to_head(struct list_head *list)
1145 {
1146 	unsigned long *ptr;
1147 
1148 	ptr = (unsigned long *)&list->next;
1149 	*ptr |= RB_PAGE_HEAD;
1150 	*ptr &= ~RB_PAGE_UPDATE;
1151 }
1152 
1153 /*
1154  * rb_head_page_activate - sets up head page
1155  */
1156 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1157 {
1158 	struct buffer_page *head;
1159 
1160 	head = cpu_buffer->head_page;
1161 	if (!head)
1162 		return;
1163 
1164 	/*
1165 	 * Set the previous list pointer to have the HEAD flag.
1166 	 */
1167 	rb_set_list_to_head(head->list.prev);
1168 }
1169 
1170 static void rb_list_head_clear(struct list_head *list)
1171 {
1172 	unsigned long *ptr = (unsigned long *)&list->next;
1173 
1174 	*ptr &= ~RB_FLAG_MASK;
1175 }
1176 
1177 /*
1178  * rb_head_page_deactivate - clears head page ptr (for free list)
1179  */
1180 static void
1181 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1182 {
1183 	struct list_head *hd;
1184 
1185 	/* Go through the whole list and clear any pointers found. */
1186 	rb_list_head_clear(cpu_buffer->pages);
1187 
1188 	list_for_each(hd, cpu_buffer->pages)
1189 		rb_list_head_clear(hd);
1190 }
1191 
1192 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1193 			    struct buffer_page *head,
1194 			    struct buffer_page *prev,
1195 			    int old_flag, int new_flag)
1196 {
1197 	struct list_head *list;
1198 	unsigned long val = (unsigned long)&head->list;
1199 	unsigned long ret;
1200 
1201 	list = &prev->list;
1202 
1203 	val &= ~RB_FLAG_MASK;
1204 
1205 	ret = cmpxchg((unsigned long *)&list->next,
1206 		      val | old_flag, val | new_flag);
1207 
1208 	/* check if the reader took the page */
1209 	if ((ret & ~RB_FLAG_MASK) != val)
1210 		return RB_PAGE_MOVED;
1211 
1212 	return ret & RB_FLAG_MASK;
1213 }
1214 
1215 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1216 				   struct buffer_page *head,
1217 				   struct buffer_page *prev,
1218 				   int old_flag)
1219 {
1220 	return rb_head_page_set(cpu_buffer, head, prev,
1221 				old_flag, RB_PAGE_UPDATE);
1222 }
1223 
1224 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1225 				 struct buffer_page *head,
1226 				 struct buffer_page *prev,
1227 				 int old_flag)
1228 {
1229 	return rb_head_page_set(cpu_buffer, head, prev,
1230 				old_flag, RB_PAGE_HEAD);
1231 }
1232 
1233 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1234 				   struct buffer_page *head,
1235 				   struct buffer_page *prev,
1236 				   int old_flag)
1237 {
1238 	return rb_head_page_set(cpu_buffer, head, prev,
1239 				old_flag, RB_PAGE_NORMAL);
1240 }
1241 
1242 static inline void rb_inc_page(struct buffer_page **bpage)
1243 {
1244 	struct list_head *p = rb_list_head((*bpage)->list.next);
1245 
1246 	*bpage = list_entry(p, struct buffer_page, list);
1247 }
1248 
1249 static struct buffer_page *
1250 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1251 {
1252 	struct buffer_page *head;
1253 	struct buffer_page *page;
1254 	struct list_head *list;
1255 	int i;
1256 
1257 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1258 		return NULL;
1259 
1260 	/* sanity check */
1261 	list = cpu_buffer->pages;
1262 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1263 		return NULL;
1264 
1265 	page = head = cpu_buffer->head_page;
1266 	/*
1267 	 * It is possible that the writer moves the header behind
1268 	 * where we started, and we miss in one loop.
1269 	 * A second loop should grab the header, but we'll do
1270 	 * three loops just because I'm paranoid.
1271 	 */
1272 	for (i = 0; i < 3; i++) {
1273 		do {
1274 			if (rb_is_head_page(page, page->list.prev)) {
1275 				cpu_buffer->head_page = page;
1276 				return page;
1277 			}
1278 			rb_inc_page(&page);
1279 		} while (page != head);
1280 	}
1281 
1282 	RB_WARN_ON(cpu_buffer, 1);
1283 
1284 	return NULL;
1285 }
1286 
1287 static int rb_head_page_replace(struct buffer_page *old,
1288 				struct buffer_page *new)
1289 {
1290 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1291 	unsigned long val;
1292 	unsigned long ret;
1293 
1294 	val = *ptr & ~RB_FLAG_MASK;
1295 	val |= RB_PAGE_HEAD;
1296 
1297 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1298 
1299 	return ret == val;
1300 }
1301 
1302 /*
1303  * rb_tail_page_update - move the tail page forward
1304  */
1305 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1306 			       struct buffer_page *tail_page,
1307 			       struct buffer_page *next_page)
1308 {
1309 	unsigned long old_entries;
1310 	unsigned long old_write;
1311 
1312 	/*
1313 	 * The tail page now needs to be moved forward.
1314 	 *
1315 	 * We need to reset the tail page, but without messing
1316 	 * with possible erasing of data brought in by interrupts
1317 	 * that have moved the tail page and are currently on it.
1318 	 *
1319 	 * We add a counter to the write field to denote this.
1320 	 */
1321 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1322 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1323 
1324 	local_inc(&cpu_buffer->pages_touched);
1325 	/*
1326 	 * Just make sure we have seen our old_write and synchronize
1327 	 * with any interrupts that come in.
1328 	 */
1329 	barrier();
1330 
1331 	/*
1332 	 * If the tail page is still the same as what we think
1333 	 * it is, then it is up to us to update the tail
1334 	 * pointer.
1335 	 */
1336 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1337 		/* Zero the write counter */
1338 		unsigned long val = old_write & ~RB_WRITE_MASK;
1339 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1340 
1341 		/*
1342 		 * This will only succeed if an interrupt did
1343 		 * not come in and change it. In which case, we
1344 		 * do not want to modify it.
1345 		 *
1346 		 * We add (void) to let the compiler know that we do not care
1347 		 * about the return value of these functions. We use the
1348 		 * cmpxchg to only update if an interrupt did not already
1349 		 * do it for us. If the cmpxchg fails, we don't care.
1350 		 */
1351 		(void)local_cmpxchg(&next_page->write, old_write, val);
1352 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1353 
1354 		/*
1355 		 * No need to worry about races with clearing out the commit.
1356 		 * it only can increment when a commit takes place. But that
1357 		 * only happens in the outer most nested commit.
1358 		 */
1359 		local_set(&next_page->page->commit, 0);
1360 
1361 		/* Again, either we update tail_page or an interrupt does */
1362 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1363 	}
1364 }
1365 
1366 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1367 			  struct buffer_page *bpage)
1368 {
1369 	unsigned long val = (unsigned long)bpage;
1370 
1371 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1372 		return 1;
1373 
1374 	return 0;
1375 }
1376 
1377 /**
1378  * rb_check_list - make sure a pointer to a list has the last bits zero
1379  */
1380 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1381 			 struct list_head *list)
1382 {
1383 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1384 		return 1;
1385 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1386 		return 1;
1387 	return 0;
1388 }
1389 
1390 /**
1391  * rb_check_pages - integrity check of buffer pages
1392  * @cpu_buffer: CPU buffer with pages to test
1393  *
1394  * As a safety measure we check to make sure the data pages have not
1395  * been corrupted.
1396  */
1397 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1398 {
1399 	struct list_head *head = cpu_buffer->pages;
1400 	struct buffer_page *bpage, *tmp;
1401 
1402 	/* Reset the head page if it exists */
1403 	if (cpu_buffer->head_page)
1404 		rb_set_head_page(cpu_buffer);
1405 
1406 	rb_head_page_deactivate(cpu_buffer);
1407 
1408 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1409 		return -1;
1410 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1411 		return -1;
1412 
1413 	if (rb_check_list(cpu_buffer, head))
1414 		return -1;
1415 
1416 	list_for_each_entry_safe(bpage, tmp, head, list) {
1417 		if (RB_WARN_ON(cpu_buffer,
1418 			       bpage->list.next->prev != &bpage->list))
1419 			return -1;
1420 		if (RB_WARN_ON(cpu_buffer,
1421 			       bpage->list.prev->next != &bpage->list))
1422 			return -1;
1423 		if (rb_check_list(cpu_buffer, &bpage->list))
1424 			return -1;
1425 	}
1426 
1427 	rb_head_page_activate(cpu_buffer);
1428 
1429 	return 0;
1430 }
1431 
1432 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1433 		long nr_pages, struct list_head *pages)
1434 {
1435 	struct buffer_page *bpage, *tmp;
1436 	bool user_thread = current->mm != NULL;
1437 	gfp_t mflags;
1438 	long i;
1439 
1440 	/*
1441 	 * Check if the available memory is there first.
1442 	 * Note, si_mem_available() only gives us a rough estimate of available
1443 	 * memory. It may not be accurate. But we don't care, we just want
1444 	 * to prevent doing any allocation when it is obvious that it is
1445 	 * not going to succeed.
1446 	 */
1447 	i = si_mem_available();
1448 	if (i < nr_pages)
1449 		return -ENOMEM;
1450 
1451 	/*
1452 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1453 	 * gracefully without invoking oom-killer and the system is not
1454 	 * destabilized.
1455 	 */
1456 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1457 
1458 	/*
1459 	 * If a user thread allocates too much, and si_mem_available()
1460 	 * reports there's enough memory, even though there is not.
1461 	 * Make sure the OOM killer kills this thread. This can happen
1462 	 * even with RETRY_MAYFAIL because another task may be doing
1463 	 * an allocation after this task has taken all memory.
1464 	 * This is the task the OOM killer needs to take out during this
1465 	 * loop, even if it was triggered by an allocation somewhere else.
1466 	 */
1467 	if (user_thread)
1468 		set_current_oom_origin();
1469 	for (i = 0; i < nr_pages; i++) {
1470 		struct page *page;
1471 
1472 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1473 				    mflags, cpu_to_node(cpu_buffer->cpu));
1474 		if (!bpage)
1475 			goto free_pages;
1476 
1477 		rb_check_bpage(cpu_buffer, bpage);
1478 
1479 		list_add(&bpage->list, pages);
1480 
1481 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1482 		if (!page)
1483 			goto free_pages;
1484 		bpage->page = page_address(page);
1485 		rb_init_page(bpage->page);
1486 
1487 		if (user_thread && fatal_signal_pending(current))
1488 			goto free_pages;
1489 	}
1490 	if (user_thread)
1491 		clear_current_oom_origin();
1492 
1493 	return 0;
1494 
1495 free_pages:
1496 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1497 		list_del_init(&bpage->list);
1498 		free_buffer_page(bpage);
1499 	}
1500 	if (user_thread)
1501 		clear_current_oom_origin();
1502 
1503 	return -ENOMEM;
1504 }
1505 
1506 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1507 			     unsigned long nr_pages)
1508 {
1509 	LIST_HEAD(pages);
1510 
1511 	WARN_ON(!nr_pages);
1512 
1513 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1514 		return -ENOMEM;
1515 
1516 	/*
1517 	 * The ring buffer page list is a circular list that does not
1518 	 * start and end with a list head. All page list items point to
1519 	 * other pages.
1520 	 */
1521 	cpu_buffer->pages = pages.next;
1522 	list_del(&pages);
1523 
1524 	cpu_buffer->nr_pages = nr_pages;
1525 
1526 	rb_check_pages(cpu_buffer);
1527 
1528 	return 0;
1529 }
1530 
1531 static struct ring_buffer_per_cpu *
1532 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1533 {
1534 	struct ring_buffer_per_cpu *cpu_buffer;
1535 	struct buffer_page *bpage;
1536 	struct page *page;
1537 	int ret;
1538 
1539 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1540 				  GFP_KERNEL, cpu_to_node(cpu));
1541 	if (!cpu_buffer)
1542 		return NULL;
1543 
1544 	cpu_buffer->cpu = cpu;
1545 	cpu_buffer->buffer = buffer;
1546 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1547 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1548 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1549 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1550 	init_completion(&cpu_buffer->update_done);
1551 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1552 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1553 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1554 
1555 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1556 			    GFP_KERNEL, cpu_to_node(cpu));
1557 	if (!bpage)
1558 		goto fail_free_buffer;
1559 
1560 	rb_check_bpage(cpu_buffer, bpage);
1561 
1562 	cpu_buffer->reader_page = bpage;
1563 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1564 	if (!page)
1565 		goto fail_free_reader;
1566 	bpage->page = page_address(page);
1567 	rb_init_page(bpage->page);
1568 
1569 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1570 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1571 
1572 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1573 	if (ret < 0)
1574 		goto fail_free_reader;
1575 
1576 	cpu_buffer->head_page
1577 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1578 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1579 
1580 	rb_head_page_activate(cpu_buffer);
1581 
1582 	return cpu_buffer;
1583 
1584  fail_free_reader:
1585 	free_buffer_page(cpu_buffer->reader_page);
1586 
1587  fail_free_buffer:
1588 	kfree(cpu_buffer);
1589 	return NULL;
1590 }
1591 
1592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1593 {
1594 	struct list_head *head = cpu_buffer->pages;
1595 	struct buffer_page *bpage, *tmp;
1596 
1597 	free_buffer_page(cpu_buffer->reader_page);
1598 
1599 	rb_head_page_deactivate(cpu_buffer);
1600 
1601 	if (head) {
1602 		list_for_each_entry_safe(bpage, tmp, head, list) {
1603 			list_del_init(&bpage->list);
1604 			free_buffer_page(bpage);
1605 		}
1606 		bpage = list_entry(head, struct buffer_page, list);
1607 		free_buffer_page(bpage);
1608 	}
1609 
1610 	kfree(cpu_buffer);
1611 }
1612 
1613 /**
1614  * __ring_buffer_alloc - allocate a new ring_buffer
1615  * @size: the size in bytes per cpu that is needed.
1616  * @flags: attributes to set for the ring buffer.
1617  * @key: ring buffer reader_lock_key.
1618  *
1619  * Currently the only flag that is available is the RB_FL_OVERWRITE
1620  * flag. This flag means that the buffer will overwrite old data
1621  * when the buffer wraps. If this flag is not set, the buffer will
1622  * drop data when the tail hits the head.
1623  */
1624 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1625 					struct lock_class_key *key)
1626 {
1627 	struct trace_buffer *buffer;
1628 	long nr_pages;
1629 	int bsize;
1630 	int cpu;
1631 	int ret;
1632 
1633 	/* keep it in its own cache line */
1634 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1635 			 GFP_KERNEL);
1636 	if (!buffer)
1637 		return NULL;
1638 
1639 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1640 		goto fail_free_buffer;
1641 
1642 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1643 	buffer->flags = flags;
1644 	buffer->clock = trace_clock_local;
1645 	buffer->reader_lock_key = key;
1646 
1647 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1648 	init_waitqueue_head(&buffer->irq_work.waiters);
1649 
1650 	/* need at least two pages */
1651 	if (nr_pages < 2)
1652 		nr_pages = 2;
1653 
1654 	buffer->cpus = nr_cpu_ids;
1655 
1656 	bsize = sizeof(void *) * nr_cpu_ids;
1657 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1658 				  GFP_KERNEL);
1659 	if (!buffer->buffers)
1660 		goto fail_free_cpumask;
1661 
1662 	cpu = raw_smp_processor_id();
1663 	cpumask_set_cpu(cpu, buffer->cpumask);
1664 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1665 	if (!buffer->buffers[cpu])
1666 		goto fail_free_buffers;
1667 
1668 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1669 	if (ret < 0)
1670 		goto fail_free_buffers;
1671 
1672 	mutex_init(&buffer->mutex);
1673 
1674 	return buffer;
1675 
1676  fail_free_buffers:
1677 	for_each_buffer_cpu(buffer, cpu) {
1678 		if (buffer->buffers[cpu])
1679 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1680 	}
1681 	kfree(buffer->buffers);
1682 
1683  fail_free_cpumask:
1684 	free_cpumask_var(buffer->cpumask);
1685 
1686  fail_free_buffer:
1687 	kfree(buffer);
1688 	return NULL;
1689 }
1690 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1691 
1692 /**
1693  * ring_buffer_free - free a ring buffer.
1694  * @buffer: the buffer to free.
1695  */
1696 void
1697 ring_buffer_free(struct trace_buffer *buffer)
1698 {
1699 	int cpu;
1700 
1701 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1702 
1703 	for_each_buffer_cpu(buffer, cpu)
1704 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1705 
1706 	kfree(buffer->buffers);
1707 	free_cpumask_var(buffer->cpumask);
1708 
1709 	kfree(buffer);
1710 }
1711 EXPORT_SYMBOL_GPL(ring_buffer_free);
1712 
1713 void ring_buffer_set_clock(struct trace_buffer *buffer,
1714 			   u64 (*clock)(void))
1715 {
1716 	buffer->clock = clock;
1717 }
1718 
1719 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1720 {
1721 	buffer->time_stamp_abs = abs;
1722 }
1723 
1724 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1725 {
1726 	return buffer->time_stamp_abs;
1727 }
1728 
1729 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1730 
1731 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1732 {
1733 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1734 }
1735 
1736 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1737 {
1738 	return local_read(&bpage->write) & RB_WRITE_MASK;
1739 }
1740 
1741 static int
1742 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1743 {
1744 	struct list_head *tail_page, *to_remove, *next_page;
1745 	struct buffer_page *to_remove_page, *tmp_iter_page;
1746 	struct buffer_page *last_page, *first_page;
1747 	unsigned long nr_removed;
1748 	unsigned long head_bit;
1749 	int page_entries;
1750 
1751 	head_bit = 0;
1752 
1753 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1754 	atomic_inc(&cpu_buffer->record_disabled);
1755 	/*
1756 	 * We don't race with the readers since we have acquired the reader
1757 	 * lock. We also don't race with writers after disabling recording.
1758 	 * This makes it easy to figure out the first and the last page to be
1759 	 * removed from the list. We unlink all the pages in between including
1760 	 * the first and last pages. This is done in a busy loop so that we
1761 	 * lose the least number of traces.
1762 	 * The pages are freed after we restart recording and unlock readers.
1763 	 */
1764 	tail_page = &cpu_buffer->tail_page->list;
1765 
1766 	/*
1767 	 * tail page might be on reader page, we remove the next page
1768 	 * from the ring buffer
1769 	 */
1770 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1771 		tail_page = rb_list_head(tail_page->next);
1772 	to_remove = tail_page;
1773 
1774 	/* start of pages to remove */
1775 	first_page = list_entry(rb_list_head(to_remove->next),
1776 				struct buffer_page, list);
1777 
1778 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1779 		to_remove = rb_list_head(to_remove)->next;
1780 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1781 	}
1782 
1783 	next_page = rb_list_head(to_remove)->next;
1784 
1785 	/*
1786 	 * Now we remove all pages between tail_page and next_page.
1787 	 * Make sure that we have head_bit value preserved for the
1788 	 * next page
1789 	 */
1790 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1791 						head_bit);
1792 	next_page = rb_list_head(next_page);
1793 	next_page->prev = tail_page;
1794 
1795 	/* make sure pages points to a valid page in the ring buffer */
1796 	cpu_buffer->pages = next_page;
1797 
1798 	/* update head page */
1799 	if (head_bit)
1800 		cpu_buffer->head_page = list_entry(next_page,
1801 						struct buffer_page, list);
1802 
1803 	/*
1804 	 * change read pointer to make sure any read iterators reset
1805 	 * themselves
1806 	 */
1807 	cpu_buffer->read = 0;
1808 
1809 	/* pages are removed, resume tracing and then free the pages */
1810 	atomic_dec(&cpu_buffer->record_disabled);
1811 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1812 
1813 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1814 
1815 	/* last buffer page to remove */
1816 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1817 				list);
1818 	tmp_iter_page = first_page;
1819 
1820 	do {
1821 		cond_resched();
1822 
1823 		to_remove_page = tmp_iter_page;
1824 		rb_inc_page(&tmp_iter_page);
1825 
1826 		/* update the counters */
1827 		page_entries = rb_page_entries(to_remove_page);
1828 		if (page_entries) {
1829 			/*
1830 			 * If something was added to this page, it was full
1831 			 * since it is not the tail page. So we deduct the
1832 			 * bytes consumed in ring buffer from here.
1833 			 * Increment overrun to account for the lost events.
1834 			 */
1835 			local_add(page_entries, &cpu_buffer->overrun);
1836 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1837 		}
1838 
1839 		/*
1840 		 * We have already removed references to this list item, just
1841 		 * free up the buffer_page and its page
1842 		 */
1843 		free_buffer_page(to_remove_page);
1844 		nr_removed--;
1845 
1846 	} while (to_remove_page != last_page);
1847 
1848 	RB_WARN_ON(cpu_buffer, nr_removed);
1849 
1850 	return nr_removed == 0;
1851 }
1852 
1853 static int
1854 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1855 {
1856 	struct list_head *pages = &cpu_buffer->new_pages;
1857 	int retries, success;
1858 
1859 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1860 	/*
1861 	 * We are holding the reader lock, so the reader page won't be swapped
1862 	 * in the ring buffer. Now we are racing with the writer trying to
1863 	 * move head page and the tail page.
1864 	 * We are going to adapt the reader page update process where:
1865 	 * 1. We first splice the start and end of list of new pages between
1866 	 *    the head page and its previous page.
1867 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1868 	 *    start of new pages list.
1869 	 * 3. Finally, we update the head->prev to the end of new list.
1870 	 *
1871 	 * We will try this process 10 times, to make sure that we don't keep
1872 	 * spinning.
1873 	 */
1874 	retries = 10;
1875 	success = 0;
1876 	while (retries--) {
1877 		struct list_head *head_page, *prev_page, *r;
1878 		struct list_head *last_page, *first_page;
1879 		struct list_head *head_page_with_bit;
1880 
1881 		head_page = &rb_set_head_page(cpu_buffer)->list;
1882 		if (!head_page)
1883 			break;
1884 		prev_page = head_page->prev;
1885 
1886 		first_page = pages->next;
1887 		last_page  = pages->prev;
1888 
1889 		head_page_with_bit = (struct list_head *)
1890 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1891 
1892 		last_page->next = head_page_with_bit;
1893 		first_page->prev = prev_page;
1894 
1895 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1896 
1897 		if (r == head_page_with_bit) {
1898 			/*
1899 			 * yay, we replaced the page pointer to our new list,
1900 			 * now, we just have to update to head page's prev
1901 			 * pointer to point to end of list
1902 			 */
1903 			head_page->prev = last_page;
1904 			success = 1;
1905 			break;
1906 		}
1907 	}
1908 
1909 	if (success)
1910 		INIT_LIST_HEAD(pages);
1911 	/*
1912 	 * If we weren't successful in adding in new pages, warn and stop
1913 	 * tracing
1914 	 */
1915 	RB_WARN_ON(cpu_buffer, !success);
1916 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1917 
1918 	/* free pages if they weren't inserted */
1919 	if (!success) {
1920 		struct buffer_page *bpage, *tmp;
1921 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1922 					 list) {
1923 			list_del_init(&bpage->list);
1924 			free_buffer_page(bpage);
1925 		}
1926 	}
1927 	return success;
1928 }
1929 
1930 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1931 {
1932 	int success;
1933 
1934 	if (cpu_buffer->nr_pages_to_update > 0)
1935 		success = rb_insert_pages(cpu_buffer);
1936 	else
1937 		success = rb_remove_pages(cpu_buffer,
1938 					-cpu_buffer->nr_pages_to_update);
1939 
1940 	if (success)
1941 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1942 }
1943 
1944 static void update_pages_handler(struct work_struct *work)
1945 {
1946 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1947 			struct ring_buffer_per_cpu, update_pages_work);
1948 	rb_update_pages(cpu_buffer);
1949 	complete(&cpu_buffer->update_done);
1950 }
1951 
1952 /**
1953  * ring_buffer_resize - resize the ring buffer
1954  * @buffer: the buffer to resize.
1955  * @size: the new size.
1956  * @cpu_id: the cpu buffer to resize
1957  *
1958  * Minimum size is 2 * BUF_PAGE_SIZE.
1959  *
1960  * Returns 0 on success and < 0 on failure.
1961  */
1962 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1963 			int cpu_id)
1964 {
1965 	struct ring_buffer_per_cpu *cpu_buffer;
1966 	unsigned long nr_pages;
1967 	int cpu, err;
1968 
1969 	/*
1970 	 * Always succeed at resizing a non-existent buffer:
1971 	 */
1972 	if (!buffer)
1973 		return 0;
1974 
1975 	/* Make sure the requested buffer exists */
1976 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1977 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1978 		return 0;
1979 
1980 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1981 
1982 	/* we need a minimum of two pages */
1983 	if (nr_pages < 2)
1984 		nr_pages = 2;
1985 
1986 	/* prevent another thread from changing buffer sizes */
1987 	mutex_lock(&buffer->mutex);
1988 
1989 
1990 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1991 		/*
1992 		 * Don't succeed if resizing is disabled, as a reader might be
1993 		 * manipulating the ring buffer and is expecting a sane state while
1994 		 * this is true.
1995 		 */
1996 		for_each_buffer_cpu(buffer, cpu) {
1997 			cpu_buffer = buffer->buffers[cpu];
1998 			if (atomic_read(&cpu_buffer->resize_disabled)) {
1999 				err = -EBUSY;
2000 				goto out_err_unlock;
2001 			}
2002 		}
2003 
2004 		/* calculate the pages to update */
2005 		for_each_buffer_cpu(buffer, cpu) {
2006 			cpu_buffer = buffer->buffers[cpu];
2007 
2008 			cpu_buffer->nr_pages_to_update = nr_pages -
2009 							cpu_buffer->nr_pages;
2010 			/*
2011 			 * nothing more to do for removing pages or no update
2012 			 */
2013 			if (cpu_buffer->nr_pages_to_update <= 0)
2014 				continue;
2015 			/*
2016 			 * to add pages, make sure all new pages can be
2017 			 * allocated without receiving ENOMEM
2018 			 */
2019 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2020 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2021 						&cpu_buffer->new_pages)) {
2022 				/* not enough memory for new pages */
2023 				err = -ENOMEM;
2024 				goto out_err;
2025 			}
2026 		}
2027 
2028 		get_online_cpus();
2029 		/*
2030 		 * Fire off all the required work handlers
2031 		 * We can't schedule on offline CPUs, but it's not necessary
2032 		 * since we can change their buffer sizes without any race.
2033 		 */
2034 		for_each_buffer_cpu(buffer, cpu) {
2035 			cpu_buffer = buffer->buffers[cpu];
2036 			if (!cpu_buffer->nr_pages_to_update)
2037 				continue;
2038 
2039 			/* Can't run something on an offline CPU. */
2040 			if (!cpu_online(cpu)) {
2041 				rb_update_pages(cpu_buffer);
2042 				cpu_buffer->nr_pages_to_update = 0;
2043 			} else {
2044 				schedule_work_on(cpu,
2045 						&cpu_buffer->update_pages_work);
2046 			}
2047 		}
2048 
2049 		/* wait for all the updates to complete */
2050 		for_each_buffer_cpu(buffer, cpu) {
2051 			cpu_buffer = buffer->buffers[cpu];
2052 			if (!cpu_buffer->nr_pages_to_update)
2053 				continue;
2054 
2055 			if (cpu_online(cpu))
2056 				wait_for_completion(&cpu_buffer->update_done);
2057 			cpu_buffer->nr_pages_to_update = 0;
2058 		}
2059 
2060 		put_online_cpus();
2061 	} else {
2062 		cpu_buffer = buffer->buffers[cpu_id];
2063 
2064 		if (nr_pages == cpu_buffer->nr_pages)
2065 			goto out;
2066 
2067 		/*
2068 		 * Don't succeed if resizing is disabled, as a reader might be
2069 		 * manipulating the ring buffer and is expecting a sane state while
2070 		 * this is true.
2071 		 */
2072 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2073 			err = -EBUSY;
2074 			goto out_err_unlock;
2075 		}
2076 
2077 		cpu_buffer->nr_pages_to_update = nr_pages -
2078 						cpu_buffer->nr_pages;
2079 
2080 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2081 		if (cpu_buffer->nr_pages_to_update > 0 &&
2082 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2083 					    &cpu_buffer->new_pages)) {
2084 			err = -ENOMEM;
2085 			goto out_err;
2086 		}
2087 
2088 		get_online_cpus();
2089 
2090 		/* Can't run something on an offline CPU. */
2091 		if (!cpu_online(cpu_id))
2092 			rb_update_pages(cpu_buffer);
2093 		else {
2094 			schedule_work_on(cpu_id,
2095 					 &cpu_buffer->update_pages_work);
2096 			wait_for_completion(&cpu_buffer->update_done);
2097 		}
2098 
2099 		cpu_buffer->nr_pages_to_update = 0;
2100 		put_online_cpus();
2101 	}
2102 
2103  out:
2104 	/*
2105 	 * The ring buffer resize can happen with the ring buffer
2106 	 * enabled, so that the update disturbs the tracing as little
2107 	 * as possible. But if the buffer is disabled, we do not need
2108 	 * to worry about that, and we can take the time to verify
2109 	 * that the buffer is not corrupt.
2110 	 */
2111 	if (atomic_read(&buffer->record_disabled)) {
2112 		atomic_inc(&buffer->record_disabled);
2113 		/*
2114 		 * Even though the buffer was disabled, we must make sure
2115 		 * that it is truly disabled before calling rb_check_pages.
2116 		 * There could have been a race between checking
2117 		 * record_disable and incrementing it.
2118 		 */
2119 		synchronize_rcu();
2120 		for_each_buffer_cpu(buffer, cpu) {
2121 			cpu_buffer = buffer->buffers[cpu];
2122 			rb_check_pages(cpu_buffer);
2123 		}
2124 		atomic_dec(&buffer->record_disabled);
2125 	}
2126 
2127 	mutex_unlock(&buffer->mutex);
2128 	return 0;
2129 
2130  out_err:
2131 	for_each_buffer_cpu(buffer, cpu) {
2132 		struct buffer_page *bpage, *tmp;
2133 
2134 		cpu_buffer = buffer->buffers[cpu];
2135 		cpu_buffer->nr_pages_to_update = 0;
2136 
2137 		if (list_empty(&cpu_buffer->new_pages))
2138 			continue;
2139 
2140 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2141 					list) {
2142 			list_del_init(&bpage->list);
2143 			free_buffer_page(bpage);
2144 		}
2145 	}
2146  out_err_unlock:
2147 	mutex_unlock(&buffer->mutex);
2148 	return err;
2149 }
2150 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2151 
2152 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2153 {
2154 	mutex_lock(&buffer->mutex);
2155 	if (val)
2156 		buffer->flags |= RB_FL_OVERWRITE;
2157 	else
2158 		buffer->flags &= ~RB_FL_OVERWRITE;
2159 	mutex_unlock(&buffer->mutex);
2160 }
2161 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2162 
2163 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2164 {
2165 	return bpage->page->data + index;
2166 }
2167 
2168 static __always_inline struct ring_buffer_event *
2169 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2170 {
2171 	return __rb_page_index(cpu_buffer->reader_page,
2172 			       cpu_buffer->reader_page->read);
2173 }
2174 
2175 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2176 {
2177 	return local_read(&bpage->page->commit);
2178 }
2179 
2180 static struct ring_buffer_event *
2181 rb_iter_head_event(struct ring_buffer_iter *iter)
2182 {
2183 	struct ring_buffer_event *event;
2184 	struct buffer_page *iter_head_page = iter->head_page;
2185 	unsigned long commit;
2186 	unsigned length;
2187 
2188 	if (iter->head != iter->next_event)
2189 		return iter->event;
2190 
2191 	/*
2192 	 * When the writer goes across pages, it issues a cmpxchg which
2193 	 * is a mb(), which will synchronize with the rmb here.
2194 	 * (see rb_tail_page_update() and __rb_reserve_next())
2195 	 */
2196 	commit = rb_page_commit(iter_head_page);
2197 	smp_rmb();
2198 	event = __rb_page_index(iter_head_page, iter->head);
2199 	length = rb_event_length(event);
2200 
2201 	/*
2202 	 * READ_ONCE() doesn't work on functions and we don't want the
2203 	 * compiler doing any crazy optimizations with length.
2204 	 */
2205 	barrier();
2206 
2207 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2208 		/* Writer corrupted the read? */
2209 		goto reset;
2210 
2211 	memcpy(iter->event, event, length);
2212 	/*
2213 	 * If the page stamp is still the same after this rmb() then the
2214 	 * event was safely copied without the writer entering the page.
2215 	 */
2216 	smp_rmb();
2217 
2218 	/* Make sure the page didn't change since we read this */
2219 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2220 	    commit > rb_page_commit(iter_head_page))
2221 		goto reset;
2222 
2223 	iter->next_event = iter->head + length;
2224 	return iter->event;
2225  reset:
2226 	/* Reset to the beginning */
2227 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2228 	iter->head = 0;
2229 	iter->next_event = 0;
2230 	iter->missed_events = 1;
2231 	return NULL;
2232 }
2233 
2234 /* Size is determined by what has been committed */
2235 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2236 {
2237 	return rb_page_commit(bpage);
2238 }
2239 
2240 static __always_inline unsigned
2241 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2242 {
2243 	return rb_page_commit(cpu_buffer->commit_page);
2244 }
2245 
2246 static __always_inline unsigned
2247 rb_event_index(struct ring_buffer_event *event)
2248 {
2249 	unsigned long addr = (unsigned long)event;
2250 
2251 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2252 }
2253 
2254 static void rb_inc_iter(struct ring_buffer_iter *iter)
2255 {
2256 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2257 
2258 	/*
2259 	 * The iterator could be on the reader page (it starts there).
2260 	 * But the head could have moved, since the reader was
2261 	 * found. Check for this case and assign the iterator
2262 	 * to the head page instead of next.
2263 	 */
2264 	if (iter->head_page == cpu_buffer->reader_page)
2265 		iter->head_page = rb_set_head_page(cpu_buffer);
2266 	else
2267 		rb_inc_page(&iter->head_page);
2268 
2269 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2270 	iter->head = 0;
2271 	iter->next_event = 0;
2272 }
2273 
2274 /*
2275  * rb_handle_head_page - writer hit the head page
2276  *
2277  * Returns: +1 to retry page
2278  *           0 to continue
2279  *          -1 on error
2280  */
2281 static int
2282 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2283 		    struct buffer_page *tail_page,
2284 		    struct buffer_page *next_page)
2285 {
2286 	struct buffer_page *new_head;
2287 	int entries;
2288 	int type;
2289 	int ret;
2290 
2291 	entries = rb_page_entries(next_page);
2292 
2293 	/*
2294 	 * The hard part is here. We need to move the head
2295 	 * forward, and protect against both readers on
2296 	 * other CPUs and writers coming in via interrupts.
2297 	 */
2298 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2299 				       RB_PAGE_HEAD);
2300 
2301 	/*
2302 	 * type can be one of four:
2303 	 *  NORMAL - an interrupt already moved it for us
2304 	 *  HEAD   - we are the first to get here.
2305 	 *  UPDATE - we are the interrupt interrupting
2306 	 *           a current move.
2307 	 *  MOVED  - a reader on another CPU moved the next
2308 	 *           pointer to its reader page. Give up
2309 	 *           and try again.
2310 	 */
2311 
2312 	switch (type) {
2313 	case RB_PAGE_HEAD:
2314 		/*
2315 		 * We changed the head to UPDATE, thus
2316 		 * it is our responsibility to update
2317 		 * the counters.
2318 		 */
2319 		local_add(entries, &cpu_buffer->overrun);
2320 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2321 
2322 		/*
2323 		 * The entries will be zeroed out when we move the
2324 		 * tail page.
2325 		 */
2326 
2327 		/* still more to do */
2328 		break;
2329 
2330 	case RB_PAGE_UPDATE:
2331 		/*
2332 		 * This is an interrupt that interrupt the
2333 		 * previous update. Still more to do.
2334 		 */
2335 		break;
2336 	case RB_PAGE_NORMAL:
2337 		/*
2338 		 * An interrupt came in before the update
2339 		 * and processed this for us.
2340 		 * Nothing left to do.
2341 		 */
2342 		return 1;
2343 	case RB_PAGE_MOVED:
2344 		/*
2345 		 * The reader is on another CPU and just did
2346 		 * a swap with our next_page.
2347 		 * Try again.
2348 		 */
2349 		return 1;
2350 	default:
2351 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2352 		return -1;
2353 	}
2354 
2355 	/*
2356 	 * Now that we are here, the old head pointer is
2357 	 * set to UPDATE. This will keep the reader from
2358 	 * swapping the head page with the reader page.
2359 	 * The reader (on another CPU) will spin till
2360 	 * we are finished.
2361 	 *
2362 	 * We just need to protect against interrupts
2363 	 * doing the job. We will set the next pointer
2364 	 * to HEAD. After that, we set the old pointer
2365 	 * to NORMAL, but only if it was HEAD before.
2366 	 * otherwise we are an interrupt, and only
2367 	 * want the outer most commit to reset it.
2368 	 */
2369 	new_head = next_page;
2370 	rb_inc_page(&new_head);
2371 
2372 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2373 				    RB_PAGE_NORMAL);
2374 
2375 	/*
2376 	 * Valid returns are:
2377 	 *  HEAD   - an interrupt came in and already set it.
2378 	 *  NORMAL - One of two things:
2379 	 *            1) We really set it.
2380 	 *            2) A bunch of interrupts came in and moved
2381 	 *               the page forward again.
2382 	 */
2383 	switch (ret) {
2384 	case RB_PAGE_HEAD:
2385 	case RB_PAGE_NORMAL:
2386 		/* OK */
2387 		break;
2388 	default:
2389 		RB_WARN_ON(cpu_buffer, 1);
2390 		return -1;
2391 	}
2392 
2393 	/*
2394 	 * It is possible that an interrupt came in,
2395 	 * set the head up, then more interrupts came in
2396 	 * and moved it again. When we get back here,
2397 	 * the page would have been set to NORMAL but we
2398 	 * just set it back to HEAD.
2399 	 *
2400 	 * How do you detect this? Well, if that happened
2401 	 * the tail page would have moved.
2402 	 */
2403 	if (ret == RB_PAGE_NORMAL) {
2404 		struct buffer_page *buffer_tail_page;
2405 
2406 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2407 		/*
2408 		 * If the tail had moved passed next, then we need
2409 		 * to reset the pointer.
2410 		 */
2411 		if (buffer_tail_page != tail_page &&
2412 		    buffer_tail_page != next_page)
2413 			rb_head_page_set_normal(cpu_buffer, new_head,
2414 						next_page,
2415 						RB_PAGE_HEAD);
2416 	}
2417 
2418 	/*
2419 	 * If this was the outer most commit (the one that
2420 	 * changed the original pointer from HEAD to UPDATE),
2421 	 * then it is up to us to reset it to NORMAL.
2422 	 */
2423 	if (type == RB_PAGE_HEAD) {
2424 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2425 					      tail_page,
2426 					      RB_PAGE_UPDATE);
2427 		if (RB_WARN_ON(cpu_buffer,
2428 			       ret != RB_PAGE_UPDATE))
2429 			return -1;
2430 	}
2431 
2432 	return 0;
2433 }
2434 
2435 static inline void
2436 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2437 	      unsigned long tail, struct rb_event_info *info)
2438 {
2439 	struct buffer_page *tail_page = info->tail_page;
2440 	struct ring_buffer_event *event;
2441 	unsigned long length = info->length;
2442 
2443 	/*
2444 	 * Only the event that crossed the page boundary
2445 	 * must fill the old tail_page with padding.
2446 	 */
2447 	if (tail >= BUF_PAGE_SIZE) {
2448 		/*
2449 		 * If the page was filled, then we still need
2450 		 * to update the real_end. Reset it to zero
2451 		 * and the reader will ignore it.
2452 		 */
2453 		if (tail == BUF_PAGE_SIZE)
2454 			tail_page->real_end = 0;
2455 
2456 		local_sub(length, &tail_page->write);
2457 		return;
2458 	}
2459 
2460 	event = __rb_page_index(tail_page, tail);
2461 
2462 	/* account for padding bytes */
2463 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2464 
2465 	/*
2466 	 * Save the original length to the meta data.
2467 	 * This will be used by the reader to add lost event
2468 	 * counter.
2469 	 */
2470 	tail_page->real_end = tail;
2471 
2472 	/*
2473 	 * If this event is bigger than the minimum size, then
2474 	 * we need to be careful that we don't subtract the
2475 	 * write counter enough to allow another writer to slip
2476 	 * in on this page.
2477 	 * We put in a discarded commit instead, to make sure
2478 	 * that this space is not used again.
2479 	 *
2480 	 * If we are less than the minimum size, we don't need to
2481 	 * worry about it.
2482 	 */
2483 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2484 		/* No room for any events */
2485 
2486 		/* Mark the rest of the page with padding */
2487 		rb_event_set_padding(event);
2488 
2489 		/* Set the write back to the previous setting */
2490 		local_sub(length, &tail_page->write);
2491 		return;
2492 	}
2493 
2494 	/* Put in a discarded event */
2495 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2496 	event->type_len = RINGBUF_TYPE_PADDING;
2497 	/* time delta must be non zero */
2498 	event->time_delta = 1;
2499 
2500 	/* Set write to end of buffer */
2501 	length = (tail + length) - BUF_PAGE_SIZE;
2502 	local_sub(length, &tail_page->write);
2503 }
2504 
2505 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2506 
2507 /*
2508  * This is the slow path, force gcc not to inline it.
2509  */
2510 static noinline struct ring_buffer_event *
2511 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2512 	     unsigned long tail, struct rb_event_info *info)
2513 {
2514 	struct buffer_page *tail_page = info->tail_page;
2515 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2516 	struct trace_buffer *buffer = cpu_buffer->buffer;
2517 	struct buffer_page *next_page;
2518 	int ret;
2519 
2520 	next_page = tail_page;
2521 
2522 	rb_inc_page(&next_page);
2523 
2524 	/*
2525 	 * If for some reason, we had an interrupt storm that made
2526 	 * it all the way around the buffer, bail, and warn
2527 	 * about it.
2528 	 */
2529 	if (unlikely(next_page == commit_page)) {
2530 		local_inc(&cpu_buffer->commit_overrun);
2531 		goto out_reset;
2532 	}
2533 
2534 	/*
2535 	 * This is where the fun begins!
2536 	 *
2537 	 * We are fighting against races between a reader that
2538 	 * could be on another CPU trying to swap its reader
2539 	 * page with the buffer head.
2540 	 *
2541 	 * We are also fighting against interrupts coming in and
2542 	 * moving the head or tail on us as well.
2543 	 *
2544 	 * If the next page is the head page then we have filled
2545 	 * the buffer, unless the commit page is still on the
2546 	 * reader page.
2547 	 */
2548 	if (rb_is_head_page(next_page, &tail_page->list)) {
2549 
2550 		/*
2551 		 * If the commit is not on the reader page, then
2552 		 * move the header page.
2553 		 */
2554 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2555 			/*
2556 			 * If we are not in overwrite mode,
2557 			 * this is easy, just stop here.
2558 			 */
2559 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2560 				local_inc(&cpu_buffer->dropped_events);
2561 				goto out_reset;
2562 			}
2563 
2564 			ret = rb_handle_head_page(cpu_buffer,
2565 						  tail_page,
2566 						  next_page);
2567 			if (ret < 0)
2568 				goto out_reset;
2569 			if (ret)
2570 				goto out_again;
2571 		} else {
2572 			/*
2573 			 * We need to be careful here too. The
2574 			 * commit page could still be on the reader
2575 			 * page. We could have a small buffer, and
2576 			 * have filled up the buffer with events
2577 			 * from interrupts and such, and wrapped.
2578 			 *
2579 			 * Note, if the tail page is also on the
2580 			 * reader_page, we let it move out.
2581 			 */
2582 			if (unlikely((cpu_buffer->commit_page !=
2583 				      cpu_buffer->tail_page) &&
2584 				     (cpu_buffer->commit_page ==
2585 				      cpu_buffer->reader_page))) {
2586 				local_inc(&cpu_buffer->commit_overrun);
2587 				goto out_reset;
2588 			}
2589 		}
2590 	}
2591 
2592 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2593 
2594  out_again:
2595 
2596 	rb_reset_tail(cpu_buffer, tail, info);
2597 
2598 	/* Commit what we have for now. */
2599 	rb_end_commit(cpu_buffer);
2600 	/* rb_end_commit() decs committing */
2601 	local_inc(&cpu_buffer->committing);
2602 
2603 	/* fail and let the caller try again */
2604 	return ERR_PTR(-EAGAIN);
2605 
2606  out_reset:
2607 	/* reset write */
2608 	rb_reset_tail(cpu_buffer, tail, info);
2609 
2610 	return NULL;
2611 }
2612 
2613 /* Slow path */
2614 static struct ring_buffer_event *
2615 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2616 {
2617 	if (abs)
2618 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2619 	else
2620 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2621 
2622 	/* Not the first event on the page, or not delta? */
2623 	if (abs || rb_event_index(event)) {
2624 		event->time_delta = delta & TS_MASK;
2625 		event->array[0] = delta >> TS_SHIFT;
2626 	} else {
2627 		/* nope, just zero it */
2628 		event->time_delta = 0;
2629 		event->array[0] = 0;
2630 	}
2631 
2632 	return skip_time_extend(event);
2633 }
2634 
2635 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2636 static inline bool sched_clock_stable(void)
2637 {
2638 	return true;
2639 }
2640 #endif
2641 
2642 static void
2643 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2644 		   struct rb_event_info *info)
2645 {
2646 	u64 write_stamp;
2647 
2648 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2649 		  (unsigned long long)info->delta,
2650 		  (unsigned long long)info->ts,
2651 		  (unsigned long long)info->before,
2652 		  (unsigned long long)info->after,
2653 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2654 		  sched_clock_stable() ? "" :
2655 		  "If you just came from a suspend/resume,\n"
2656 		  "please switch to the trace global clock:\n"
2657 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2658 		  "or add trace_clock=global to the kernel command line\n");
2659 }
2660 
2661 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2662 				      struct ring_buffer_event **event,
2663 				      struct rb_event_info *info,
2664 				      u64 *delta,
2665 				      unsigned int *length)
2666 {
2667 	bool abs = info->add_timestamp &
2668 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2669 
2670 	if (unlikely(info->delta > (1ULL << 59))) {
2671 		/* did the clock go backwards */
2672 		if (info->before == info->after && info->before > info->ts) {
2673 			/* not interrupted */
2674 			static int once;
2675 
2676 			/*
2677 			 * This is possible with a recalibrating of the TSC.
2678 			 * Do not produce a call stack, but just report it.
2679 			 */
2680 			if (!once) {
2681 				once++;
2682 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2683 					info->before, info->ts);
2684 			}
2685 		} else
2686 			rb_check_timestamp(cpu_buffer, info);
2687 		if (!abs)
2688 			info->delta = 0;
2689 	}
2690 	*event = rb_add_time_stamp(*event, info->delta, abs);
2691 	*length -= RB_LEN_TIME_EXTEND;
2692 	*delta = 0;
2693 }
2694 
2695 /**
2696  * rb_update_event - update event type and data
2697  * @cpu_buffer: The per cpu buffer of the @event
2698  * @event: the event to update
2699  * @info: The info to update the @event with (contains length and delta)
2700  *
2701  * Update the type and data fields of the @event. The length
2702  * is the actual size that is written to the ring buffer,
2703  * and with this, we can determine what to place into the
2704  * data field.
2705  */
2706 static void
2707 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2708 		struct ring_buffer_event *event,
2709 		struct rb_event_info *info)
2710 {
2711 	unsigned length = info->length;
2712 	u64 delta = info->delta;
2713 
2714 	/*
2715 	 * If we need to add a timestamp, then we
2716 	 * add it to the start of the reserved space.
2717 	 */
2718 	if (unlikely(info->add_timestamp))
2719 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2720 
2721 	event->time_delta = delta;
2722 	length -= RB_EVNT_HDR_SIZE;
2723 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2724 		event->type_len = 0;
2725 		event->array[0] = length;
2726 	} else
2727 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2728 }
2729 
2730 static unsigned rb_calculate_event_length(unsigned length)
2731 {
2732 	struct ring_buffer_event event; /* Used only for sizeof array */
2733 
2734 	/* zero length can cause confusions */
2735 	if (!length)
2736 		length++;
2737 
2738 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2739 		length += sizeof(event.array[0]);
2740 
2741 	length += RB_EVNT_HDR_SIZE;
2742 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2743 
2744 	/*
2745 	 * In case the time delta is larger than the 27 bits for it
2746 	 * in the header, we need to add a timestamp. If another
2747 	 * event comes in when trying to discard this one to increase
2748 	 * the length, then the timestamp will be added in the allocated
2749 	 * space of this event. If length is bigger than the size needed
2750 	 * for the TIME_EXTEND, then padding has to be used. The events
2751 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2752 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2753 	 * As length is a multiple of 4, we only need to worry if it
2754 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2755 	 */
2756 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2757 		length += RB_ALIGNMENT;
2758 
2759 	return length;
2760 }
2761 
2762 static u64 rb_time_delta(struct ring_buffer_event *event)
2763 {
2764 	switch (event->type_len) {
2765 	case RINGBUF_TYPE_PADDING:
2766 		return 0;
2767 
2768 	case RINGBUF_TYPE_TIME_EXTEND:
2769 		return ring_buffer_event_time_stamp(event);
2770 
2771 	case RINGBUF_TYPE_TIME_STAMP:
2772 		return 0;
2773 
2774 	case RINGBUF_TYPE_DATA:
2775 		return event->time_delta;
2776 	default:
2777 		return 0;
2778 	}
2779 }
2780 
2781 static inline int
2782 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2783 		  struct ring_buffer_event *event)
2784 {
2785 	unsigned long new_index, old_index;
2786 	struct buffer_page *bpage;
2787 	unsigned long index;
2788 	unsigned long addr;
2789 	u64 write_stamp;
2790 	u64 delta;
2791 
2792 	new_index = rb_event_index(event);
2793 	old_index = new_index + rb_event_ts_length(event);
2794 	addr = (unsigned long)event;
2795 	addr &= PAGE_MASK;
2796 
2797 	bpage = READ_ONCE(cpu_buffer->tail_page);
2798 
2799 	delta = rb_time_delta(event);
2800 
2801 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2802 		return 0;
2803 
2804 	/* Make sure the write stamp is read before testing the location */
2805 	barrier();
2806 
2807 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2808 		unsigned long write_mask =
2809 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2810 		unsigned long event_length = rb_event_length(event);
2811 
2812 		/* Something came in, can't discard */
2813 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2814 				       write_stamp, write_stamp - delta))
2815 			return 0;
2816 
2817 		/*
2818 		 * If an event were to come in now, it would see that the
2819 		 * write_stamp and the before_stamp are different, and assume
2820 		 * that this event just added itself before updating
2821 		 * the write stamp. The interrupting event will fix the
2822 		 * write stamp for us, and use the before stamp as its delta.
2823 		 */
2824 
2825 		/*
2826 		 * This is on the tail page. It is possible that
2827 		 * a write could come in and move the tail page
2828 		 * and write to the next page. That is fine
2829 		 * because we just shorten what is on this page.
2830 		 */
2831 		old_index += write_mask;
2832 		new_index += write_mask;
2833 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2834 		if (index == old_index) {
2835 			/* update counters */
2836 			local_sub(event_length, &cpu_buffer->entries_bytes);
2837 			return 1;
2838 		}
2839 	}
2840 
2841 	/* could not discard */
2842 	return 0;
2843 }
2844 
2845 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2846 {
2847 	local_inc(&cpu_buffer->committing);
2848 	local_inc(&cpu_buffer->commits);
2849 }
2850 
2851 static __always_inline void
2852 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2853 {
2854 	unsigned long max_count;
2855 
2856 	/*
2857 	 * We only race with interrupts and NMIs on this CPU.
2858 	 * If we own the commit event, then we can commit
2859 	 * all others that interrupted us, since the interruptions
2860 	 * are in stack format (they finish before they come
2861 	 * back to us). This allows us to do a simple loop to
2862 	 * assign the commit to the tail.
2863 	 */
2864  again:
2865 	max_count = cpu_buffer->nr_pages * 100;
2866 
2867 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2868 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2869 			return;
2870 		if (RB_WARN_ON(cpu_buffer,
2871 			       rb_is_reader_page(cpu_buffer->tail_page)))
2872 			return;
2873 		local_set(&cpu_buffer->commit_page->page->commit,
2874 			  rb_page_write(cpu_buffer->commit_page));
2875 		rb_inc_page(&cpu_buffer->commit_page);
2876 		/* add barrier to keep gcc from optimizing too much */
2877 		barrier();
2878 	}
2879 	while (rb_commit_index(cpu_buffer) !=
2880 	       rb_page_write(cpu_buffer->commit_page)) {
2881 
2882 		local_set(&cpu_buffer->commit_page->page->commit,
2883 			  rb_page_write(cpu_buffer->commit_page));
2884 		RB_WARN_ON(cpu_buffer,
2885 			   local_read(&cpu_buffer->commit_page->page->commit) &
2886 			   ~RB_WRITE_MASK);
2887 		barrier();
2888 	}
2889 
2890 	/* again, keep gcc from optimizing */
2891 	barrier();
2892 
2893 	/*
2894 	 * If an interrupt came in just after the first while loop
2895 	 * and pushed the tail page forward, we will be left with
2896 	 * a dangling commit that will never go forward.
2897 	 */
2898 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2899 		goto again;
2900 }
2901 
2902 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2903 {
2904 	unsigned long commits;
2905 
2906 	if (RB_WARN_ON(cpu_buffer,
2907 		       !local_read(&cpu_buffer->committing)))
2908 		return;
2909 
2910  again:
2911 	commits = local_read(&cpu_buffer->commits);
2912 	/* synchronize with interrupts */
2913 	barrier();
2914 	if (local_read(&cpu_buffer->committing) == 1)
2915 		rb_set_commit_to_write(cpu_buffer);
2916 
2917 	local_dec(&cpu_buffer->committing);
2918 
2919 	/* synchronize with interrupts */
2920 	barrier();
2921 
2922 	/*
2923 	 * Need to account for interrupts coming in between the
2924 	 * updating of the commit page and the clearing of the
2925 	 * committing counter.
2926 	 */
2927 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2928 	    !local_read(&cpu_buffer->committing)) {
2929 		local_inc(&cpu_buffer->committing);
2930 		goto again;
2931 	}
2932 }
2933 
2934 static inline void rb_event_discard(struct ring_buffer_event *event)
2935 {
2936 	if (extended_time(event))
2937 		event = skip_time_extend(event);
2938 
2939 	/* array[0] holds the actual length for the discarded event */
2940 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2941 	event->type_len = RINGBUF_TYPE_PADDING;
2942 	/* time delta must be non zero */
2943 	if (!event->time_delta)
2944 		event->time_delta = 1;
2945 }
2946 
2947 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2948 		      struct ring_buffer_event *event)
2949 {
2950 	local_inc(&cpu_buffer->entries);
2951 	rb_end_commit(cpu_buffer);
2952 }
2953 
2954 static __always_inline void
2955 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2956 {
2957 	size_t nr_pages;
2958 	size_t dirty;
2959 	size_t full;
2960 
2961 	if (buffer->irq_work.waiters_pending) {
2962 		buffer->irq_work.waiters_pending = false;
2963 		/* irq_work_queue() supplies it's own memory barriers */
2964 		irq_work_queue(&buffer->irq_work.work);
2965 	}
2966 
2967 	if (cpu_buffer->irq_work.waiters_pending) {
2968 		cpu_buffer->irq_work.waiters_pending = false;
2969 		/* irq_work_queue() supplies it's own memory barriers */
2970 		irq_work_queue(&cpu_buffer->irq_work.work);
2971 	}
2972 
2973 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2974 		return;
2975 
2976 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2977 		return;
2978 
2979 	if (!cpu_buffer->irq_work.full_waiters_pending)
2980 		return;
2981 
2982 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2983 
2984 	full = cpu_buffer->shortest_full;
2985 	nr_pages = cpu_buffer->nr_pages;
2986 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2987 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2988 		return;
2989 
2990 	cpu_buffer->irq_work.wakeup_full = true;
2991 	cpu_buffer->irq_work.full_waiters_pending = false;
2992 	/* irq_work_queue() supplies it's own memory barriers */
2993 	irq_work_queue(&cpu_buffer->irq_work.work);
2994 }
2995 
2996 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
2997 # define do_ring_buffer_record_recursion()	\
2998 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
2999 #else
3000 # define do_ring_buffer_record_recursion() do { } while (0)
3001 #endif
3002 
3003 /*
3004  * The lock and unlock are done within a preempt disable section.
3005  * The current_context per_cpu variable can only be modified
3006  * by the current task between lock and unlock. But it can
3007  * be modified more than once via an interrupt. To pass this
3008  * information from the lock to the unlock without having to
3009  * access the 'in_interrupt()' functions again (which do show
3010  * a bit of overhead in something as critical as function tracing,
3011  * we use a bitmask trick.
3012  *
3013  *  bit 1 =  NMI context
3014  *  bit 2 =  IRQ context
3015  *  bit 3 =  SoftIRQ context
3016  *  bit 4 =  normal context.
3017  *
3018  * This works because this is the order of contexts that can
3019  * preempt other contexts. A SoftIRQ never preempts an IRQ
3020  * context.
3021  *
3022  * When the context is determined, the corresponding bit is
3023  * checked and set (if it was set, then a recursion of that context
3024  * happened).
3025  *
3026  * On unlock, we need to clear this bit. To do so, just subtract
3027  * 1 from the current_context and AND it to itself.
3028  *
3029  * (binary)
3030  *  101 - 1 = 100
3031  *  101 & 100 = 100 (clearing bit zero)
3032  *
3033  *  1010 - 1 = 1001
3034  *  1010 & 1001 = 1000 (clearing bit 1)
3035  *
3036  * The least significant bit can be cleared this way, and it
3037  * just so happens that it is the same bit corresponding to
3038  * the current context.
3039  *
3040  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3041  * is set when a recursion is detected at the current context, and if
3042  * the TRANSITION bit is already set, it will fail the recursion.
3043  * This is needed because there's a lag between the changing of
3044  * interrupt context and updating the preempt count. In this case,
3045  * a false positive will be found. To handle this, one extra recursion
3046  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3047  * bit is already set, then it is considered a recursion and the function
3048  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3049  *
3050  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3051  * to be cleared. Even if it wasn't the context that set it. That is,
3052  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3053  * is called before preempt_count() is updated, since the check will
3054  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3055  * NMI then comes in, it will set the NMI bit, but when the NMI code
3056  * does the trace_recursive_unlock() it will clear the TRANSTION bit
3057  * and leave the NMI bit set. But this is fine, because the interrupt
3058  * code that set the TRANSITION bit will then clear the NMI bit when it
3059  * calls trace_recursive_unlock(). If another NMI comes in, it will
3060  * set the TRANSITION bit and continue.
3061  *
3062  * Note: The TRANSITION bit only handles a single transition between context.
3063  */
3064 
3065 static __always_inline int
3066 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3067 {
3068 	unsigned int val = cpu_buffer->current_context;
3069 	unsigned long pc = preempt_count();
3070 	int bit;
3071 
3072 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3073 		bit = RB_CTX_NORMAL;
3074 	else
3075 		bit = pc & NMI_MASK ? RB_CTX_NMI :
3076 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3077 
3078 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3079 		/*
3080 		 * It is possible that this was called by transitioning
3081 		 * between interrupt context, and preempt_count() has not
3082 		 * been updated yet. In this case, use the TRANSITION bit.
3083 		 */
3084 		bit = RB_CTX_TRANSITION;
3085 		if (val & (1 << (bit + cpu_buffer->nest))) {
3086 			do_ring_buffer_record_recursion();
3087 			return 1;
3088 		}
3089 	}
3090 
3091 	val |= (1 << (bit + cpu_buffer->nest));
3092 	cpu_buffer->current_context = val;
3093 
3094 	return 0;
3095 }
3096 
3097 static __always_inline void
3098 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3099 {
3100 	cpu_buffer->current_context &=
3101 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3102 }
3103 
3104 /* The recursive locking above uses 5 bits */
3105 #define NESTED_BITS 5
3106 
3107 /**
3108  * ring_buffer_nest_start - Allow to trace while nested
3109  * @buffer: The ring buffer to modify
3110  *
3111  * The ring buffer has a safety mechanism to prevent recursion.
3112  * But there may be a case where a trace needs to be done while
3113  * tracing something else. In this case, calling this function
3114  * will allow this function to nest within a currently active
3115  * ring_buffer_lock_reserve().
3116  *
3117  * Call this function before calling another ring_buffer_lock_reserve() and
3118  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3119  */
3120 void ring_buffer_nest_start(struct trace_buffer *buffer)
3121 {
3122 	struct ring_buffer_per_cpu *cpu_buffer;
3123 	int cpu;
3124 
3125 	/* Enabled by ring_buffer_nest_end() */
3126 	preempt_disable_notrace();
3127 	cpu = raw_smp_processor_id();
3128 	cpu_buffer = buffer->buffers[cpu];
3129 	/* This is the shift value for the above recursive locking */
3130 	cpu_buffer->nest += NESTED_BITS;
3131 }
3132 
3133 /**
3134  * ring_buffer_nest_end - Allow to trace while nested
3135  * @buffer: The ring buffer to modify
3136  *
3137  * Must be called after ring_buffer_nest_start() and after the
3138  * ring_buffer_unlock_commit().
3139  */
3140 void ring_buffer_nest_end(struct trace_buffer *buffer)
3141 {
3142 	struct ring_buffer_per_cpu *cpu_buffer;
3143 	int cpu;
3144 
3145 	/* disabled by ring_buffer_nest_start() */
3146 	cpu = raw_smp_processor_id();
3147 	cpu_buffer = buffer->buffers[cpu];
3148 	/* This is the shift value for the above recursive locking */
3149 	cpu_buffer->nest -= NESTED_BITS;
3150 	preempt_enable_notrace();
3151 }
3152 
3153 /**
3154  * ring_buffer_unlock_commit - commit a reserved
3155  * @buffer: The buffer to commit to
3156  * @event: The event pointer to commit.
3157  *
3158  * This commits the data to the ring buffer, and releases any locks held.
3159  *
3160  * Must be paired with ring_buffer_lock_reserve.
3161  */
3162 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3163 			      struct ring_buffer_event *event)
3164 {
3165 	struct ring_buffer_per_cpu *cpu_buffer;
3166 	int cpu = raw_smp_processor_id();
3167 
3168 	cpu_buffer = buffer->buffers[cpu];
3169 
3170 	rb_commit(cpu_buffer, event);
3171 
3172 	rb_wakeups(buffer, cpu_buffer);
3173 
3174 	trace_recursive_unlock(cpu_buffer);
3175 
3176 	preempt_enable_notrace();
3177 
3178 	return 0;
3179 }
3180 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3181 
3182 /* Special value to validate all deltas on a page. */
3183 #define CHECK_FULL_PAGE		1L
3184 
3185 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3186 static void dump_buffer_page(struct buffer_data_page *bpage,
3187 			     struct rb_event_info *info,
3188 			     unsigned long tail)
3189 {
3190 	struct ring_buffer_event *event;
3191 	u64 ts, delta;
3192 	int e;
3193 
3194 	ts = bpage->time_stamp;
3195 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3196 
3197 	for (e = 0; e < tail; e += rb_event_length(event)) {
3198 
3199 		event = (struct ring_buffer_event *)(bpage->data + e);
3200 
3201 		switch (event->type_len) {
3202 
3203 		case RINGBUF_TYPE_TIME_EXTEND:
3204 			delta = ring_buffer_event_time_stamp(event);
3205 			ts += delta;
3206 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3207 			break;
3208 
3209 		case RINGBUF_TYPE_TIME_STAMP:
3210 			delta = ring_buffer_event_time_stamp(event);
3211 			ts = delta;
3212 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3213 			break;
3214 
3215 		case RINGBUF_TYPE_PADDING:
3216 			ts += event->time_delta;
3217 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3218 			break;
3219 
3220 		case RINGBUF_TYPE_DATA:
3221 			ts += event->time_delta;
3222 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3223 			break;
3224 
3225 		default:
3226 			break;
3227 		}
3228 	}
3229 }
3230 
3231 static DEFINE_PER_CPU(atomic_t, checking);
3232 static atomic_t ts_dump;
3233 
3234 /*
3235  * Check if the current event time stamp matches the deltas on
3236  * the buffer page.
3237  */
3238 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3239 			 struct rb_event_info *info,
3240 			 unsigned long tail)
3241 {
3242 	struct ring_buffer_event *event;
3243 	struct buffer_data_page *bpage;
3244 	u64 ts, delta;
3245 	bool full = false;
3246 	int e;
3247 
3248 	bpage = info->tail_page->page;
3249 
3250 	if (tail == CHECK_FULL_PAGE) {
3251 		full = true;
3252 		tail = local_read(&bpage->commit);
3253 	} else if (info->add_timestamp &
3254 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3255 		/* Ignore events with absolute time stamps */
3256 		return;
3257 	}
3258 
3259 	/*
3260 	 * Do not check the first event (skip possible extends too).
3261 	 * Also do not check if previous events have not been committed.
3262 	 */
3263 	if (tail <= 8 || tail > local_read(&bpage->commit))
3264 		return;
3265 
3266 	/*
3267 	 * If this interrupted another event,
3268 	 */
3269 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3270 		goto out;
3271 
3272 	ts = bpage->time_stamp;
3273 
3274 	for (e = 0; e < tail; e += rb_event_length(event)) {
3275 
3276 		event = (struct ring_buffer_event *)(bpage->data + e);
3277 
3278 		switch (event->type_len) {
3279 
3280 		case RINGBUF_TYPE_TIME_EXTEND:
3281 			delta = ring_buffer_event_time_stamp(event);
3282 			ts += delta;
3283 			break;
3284 
3285 		case RINGBUF_TYPE_TIME_STAMP:
3286 			delta = ring_buffer_event_time_stamp(event);
3287 			ts = delta;
3288 			break;
3289 
3290 		case RINGBUF_TYPE_PADDING:
3291 			if (event->time_delta == 1)
3292 				break;
3293 			/* fall through */
3294 		case RINGBUF_TYPE_DATA:
3295 			ts += event->time_delta;
3296 			break;
3297 
3298 		default:
3299 			RB_WARN_ON(cpu_buffer, 1);
3300 		}
3301 	}
3302 	if ((full && ts > info->ts) ||
3303 	    (!full && ts + info->delta != info->ts)) {
3304 		/* If another report is happening, ignore this one */
3305 		if (atomic_inc_return(&ts_dump) != 1) {
3306 			atomic_dec(&ts_dump);
3307 			goto out;
3308 		}
3309 		atomic_inc(&cpu_buffer->record_disabled);
3310 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld after:%lld\n",
3311 		       cpu_buffer->cpu,
3312 		       ts + info->delta, info->ts, info->delta, info->after);
3313 		dump_buffer_page(bpage, info, tail);
3314 		atomic_dec(&ts_dump);
3315 		/* Do not re-enable checking */
3316 		return;
3317 	}
3318 out:
3319 	atomic_dec(this_cpu_ptr(&checking));
3320 }
3321 #else
3322 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3323 			 struct rb_event_info *info,
3324 			 unsigned long tail)
3325 {
3326 }
3327 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3328 
3329 static struct ring_buffer_event *
3330 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3331 		  struct rb_event_info *info)
3332 {
3333 	struct ring_buffer_event *event;
3334 	struct buffer_page *tail_page;
3335 	unsigned long tail, write, w;
3336 	bool a_ok;
3337 	bool b_ok;
3338 
3339 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3340 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3341 
3342  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3343 	barrier();
3344 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3345 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3346 	barrier();
3347 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3348 
3349 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3350 		info->delta = info->ts;
3351 	} else {
3352 		/*
3353 		 * If interrupting an event time update, we may need an
3354 		 * absolute timestamp.
3355 		 * Don't bother if this is the start of a new page (w == 0).
3356 		 */
3357 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3358 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3359 			info->length += RB_LEN_TIME_EXTEND;
3360 		} else {
3361 			info->delta = info->ts - info->after;
3362 			if (unlikely(test_time_stamp(info->delta))) {
3363 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3364 				info->length += RB_LEN_TIME_EXTEND;
3365 			}
3366 		}
3367 	}
3368 
3369  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3370 
3371  /*C*/	write = local_add_return(info->length, &tail_page->write);
3372 
3373 	/* set write to only the index of the write */
3374 	write &= RB_WRITE_MASK;
3375 
3376 	tail = write - info->length;
3377 
3378 	/* See if we shot pass the end of this buffer page */
3379 	if (unlikely(write > BUF_PAGE_SIZE)) {
3380 		/* before and after may now different, fix it up*/
3381 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3382 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3383 		if (a_ok && b_ok && info->before != info->after)
3384 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3385 					      info->before, info->after);
3386 		if (a_ok && b_ok)
3387 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3388 		return rb_move_tail(cpu_buffer, tail, info);
3389 	}
3390 
3391 	if (likely(tail == w)) {
3392 		u64 save_before;
3393 		bool s_ok;
3394 
3395 		/* Nothing interrupted us between A and C */
3396  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3397 		barrier();
3398  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3399 		RB_WARN_ON(cpu_buffer, !s_ok);
3400 		if (likely(!(info->add_timestamp &
3401 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3402 			/* This did not interrupt any time update */
3403 			info->delta = info->ts - info->after;
3404 		else
3405 			/* Just use full timestamp for interrupting event */
3406 			info->delta = info->ts;
3407 		barrier();
3408 		check_buffer(cpu_buffer, info, tail);
3409 		if (unlikely(info->ts != save_before)) {
3410 			/* SLOW PATH - Interrupted between C and E */
3411 
3412 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3413 			RB_WARN_ON(cpu_buffer, !a_ok);
3414 
3415 			/* Write stamp must only go forward */
3416 			if (save_before > info->after) {
3417 				/*
3418 				 * We do not care about the result, only that
3419 				 * it gets updated atomically.
3420 				 */
3421 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3422 						      info->after, save_before);
3423 			}
3424 		}
3425 	} else {
3426 		u64 ts;
3427 		/* SLOW PATH - Interrupted between A and C */
3428 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3429 		/* Was interrupted before here, write_stamp must be valid */
3430 		RB_WARN_ON(cpu_buffer, !a_ok);
3431 		ts = rb_time_stamp(cpu_buffer->buffer);
3432 		barrier();
3433  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3434 		    info->after < ts &&
3435 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3436 				    info->after, ts)) {
3437 			/* Nothing came after this event between C and E */
3438 			info->delta = ts - info->after;
3439 			info->ts = ts;
3440 		} else {
3441 			/*
3442 			 * Interrupted between C and E:
3443 			 * Lost the previous events time stamp. Just set the
3444 			 * delta to zero, and this will be the same time as
3445 			 * the event this event interrupted. And the events that
3446 			 * came after this will still be correct (as they would
3447 			 * have built their delta on the previous event.
3448 			 */
3449 			info->delta = 0;
3450 		}
3451 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3452 	}
3453 
3454 	/*
3455 	 * If this is the first commit on the page, then it has the same
3456 	 * timestamp as the page itself.
3457 	 */
3458 	if (unlikely(!tail && !(info->add_timestamp &
3459 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3460 		info->delta = 0;
3461 
3462 	/* We reserved something on the buffer */
3463 
3464 	event = __rb_page_index(tail_page, tail);
3465 	rb_update_event(cpu_buffer, event, info);
3466 
3467 	local_inc(&tail_page->entries);
3468 
3469 	/*
3470 	 * If this is the first commit on the page, then update
3471 	 * its timestamp.
3472 	 */
3473 	if (unlikely(!tail))
3474 		tail_page->page->time_stamp = info->ts;
3475 
3476 	/* account for these added bytes */
3477 	local_add(info->length, &cpu_buffer->entries_bytes);
3478 
3479 	return event;
3480 }
3481 
3482 static __always_inline struct ring_buffer_event *
3483 rb_reserve_next_event(struct trace_buffer *buffer,
3484 		      struct ring_buffer_per_cpu *cpu_buffer,
3485 		      unsigned long length)
3486 {
3487 	struct ring_buffer_event *event;
3488 	struct rb_event_info info;
3489 	int nr_loops = 0;
3490 	int add_ts_default;
3491 
3492 	rb_start_commit(cpu_buffer);
3493 	/* The commit page can not change after this */
3494 
3495 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3496 	/*
3497 	 * Due to the ability to swap a cpu buffer from a buffer
3498 	 * it is possible it was swapped before we committed.
3499 	 * (committing stops a swap). We check for it here and
3500 	 * if it happened, we have to fail the write.
3501 	 */
3502 	barrier();
3503 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3504 		local_dec(&cpu_buffer->committing);
3505 		local_dec(&cpu_buffer->commits);
3506 		return NULL;
3507 	}
3508 #endif
3509 
3510 	info.length = rb_calculate_event_length(length);
3511 
3512 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3513 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3514 		info.length += RB_LEN_TIME_EXTEND;
3515 	} else {
3516 		add_ts_default = RB_ADD_STAMP_NONE;
3517 	}
3518 
3519  again:
3520 	info.add_timestamp = add_ts_default;
3521 	info.delta = 0;
3522 
3523 	/*
3524 	 * We allow for interrupts to reenter here and do a trace.
3525 	 * If one does, it will cause this original code to loop
3526 	 * back here. Even with heavy interrupts happening, this
3527 	 * should only happen a few times in a row. If this happens
3528 	 * 1000 times in a row, there must be either an interrupt
3529 	 * storm or we have something buggy.
3530 	 * Bail!
3531 	 */
3532 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3533 		goto out_fail;
3534 
3535 	event = __rb_reserve_next(cpu_buffer, &info);
3536 
3537 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3538 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3539 			info.length -= RB_LEN_TIME_EXTEND;
3540 		goto again;
3541 	}
3542 
3543 	if (likely(event))
3544 		return event;
3545  out_fail:
3546 	rb_end_commit(cpu_buffer);
3547 	return NULL;
3548 }
3549 
3550 /**
3551  * ring_buffer_lock_reserve - reserve a part of the buffer
3552  * @buffer: the ring buffer to reserve from
3553  * @length: the length of the data to reserve (excluding event header)
3554  *
3555  * Returns a reserved event on the ring buffer to copy directly to.
3556  * The user of this interface will need to get the body to write into
3557  * and can use the ring_buffer_event_data() interface.
3558  *
3559  * The length is the length of the data needed, not the event length
3560  * which also includes the event header.
3561  *
3562  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3563  * If NULL is returned, then nothing has been allocated or locked.
3564  */
3565 struct ring_buffer_event *
3566 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3567 {
3568 	struct ring_buffer_per_cpu *cpu_buffer;
3569 	struct ring_buffer_event *event;
3570 	int cpu;
3571 
3572 	/* If we are tracing schedule, we don't want to recurse */
3573 	preempt_disable_notrace();
3574 
3575 	if (unlikely(atomic_read(&buffer->record_disabled)))
3576 		goto out;
3577 
3578 	cpu = raw_smp_processor_id();
3579 
3580 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3581 		goto out;
3582 
3583 	cpu_buffer = buffer->buffers[cpu];
3584 
3585 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3586 		goto out;
3587 
3588 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3589 		goto out;
3590 
3591 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3592 		goto out;
3593 
3594 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3595 	if (!event)
3596 		goto out_unlock;
3597 
3598 	return event;
3599 
3600  out_unlock:
3601 	trace_recursive_unlock(cpu_buffer);
3602  out:
3603 	preempt_enable_notrace();
3604 	return NULL;
3605 }
3606 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3607 
3608 /*
3609  * Decrement the entries to the page that an event is on.
3610  * The event does not even need to exist, only the pointer
3611  * to the page it is on. This may only be called before the commit
3612  * takes place.
3613  */
3614 static inline void
3615 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3616 		   struct ring_buffer_event *event)
3617 {
3618 	unsigned long addr = (unsigned long)event;
3619 	struct buffer_page *bpage = cpu_buffer->commit_page;
3620 	struct buffer_page *start;
3621 
3622 	addr &= PAGE_MASK;
3623 
3624 	/* Do the likely case first */
3625 	if (likely(bpage->page == (void *)addr)) {
3626 		local_dec(&bpage->entries);
3627 		return;
3628 	}
3629 
3630 	/*
3631 	 * Because the commit page may be on the reader page we
3632 	 * start with the next page and check the end loop there.
3633 	 */
3634 	rb_inc_page(&bpage);
3635 	start = bpage;
3636 	do {
3637 		if (bpage->page == (void *)addr) {
3638 			local_dec(&bpage->entries);
3639 			return;
3640 		}
3641 		rb_inc_page(&bpage);
3642 	} while (bpage != start);
3643 
3644 	/* commit not part of this buffer?? */
3645 	RB_WARN_ON(cpu_buffer, 1);
3646 }
3647 
3648 /**
3649  * ring_buffer_discard_commit - discard an event that has not been committed
3650  * @buffer: the ring buffer
3651  * @event: non committed event to discard
3652  *
3653  * Sometimes an event that is in the ring buffer needs to be ignored.
3654  * This function lets the user discard an event in the ring buffer
3655  * and then that event will not be read later.
3656  *
3657  * This function only works if it is called before the item has been
3658  * committed. It will try to free the event from the ring buffer
3659  * if another event has not been added behind it.
3660  *
3661  * If another event has been added behind it, it will set the event
3662  * up as discarded, and perform the commit.
3663  *
3664  * If this function is called, do not call ring_buffer_unlock_commit on
3665  * the event.
3666  */
3667 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3668 				struct ring_buffer_event *event)
3669 {
3670 	struct ring_buffer_per_cpu *cpu_buffer;
3671 	int cpu;
3672 
3673 	/* The event is discarded regardless */
3674 	rb_event_discard(event);
3675 
3676 	cpu = smp_processor_id();
3677 	cpu_buffer = buffer->buffers[cpu];
3678 
3679 	/*
3680 	 * This must only be called if the event has not been
3681 	 * committed yet. Thus we can assume that preemption
3682 	 * is still disabled.
3683 	 */
3684 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3685 
3686 	rb_decrement_entry(cpu_buffer, event);
3687 	if (rb_try_to_discard(cpu_buffer, event))
3688 		goto out;
3689 
3690  out:
3691 	rb_end_commit(cpu_buffer);
3692 
3693 	trace_recursive_unlock(cpu_buffer);
3694 
3695 	preempt_enable_notrace();
3696 
3697 }
3698 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3699 
3700 /**
3701  * ring_buffer_write - write data to the buffer without reserving
3702  * @buffer: The ring buffer to write to.
3703  * @length: The length of the data being written (excluding the event header)
3704  * @data: The data to write to the buffer.
3705  *
3706  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3707  * one function. If you already have the data to write to the buffer, it
3708  * may be easier to simply call this function.
3709  *
3710  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3711  * and not the length of the event which would hold the header.
3712  */
3713 int ring_buffer_write(struct trace_buffer *buffer,
3714 		      unsigned long length,
3715 		      void *data)
3716 {
3717 	struct ring_buffer_per_cpu *cpu_buffer;
3718 	struct ring_buffer_event *event;
3719 	void *body;
3720 	int ret = -EBUSY;
3721 	int cpu;
3722 
3723 	preempt_disable_notrace();
3724 
3725 	if (atomic_read(&buffer->record_disabled))
3726 		goto out;
3727 
3728 	cpu = raw_smp_processor_id();
3729 
3730 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3731 		goto out;
3732 
3733 	cpu_buffer = buffer->buffers[cpu];
3734 
3735 	if (atomic_read(&cpu_buffer->record_disabled))
3736 		goto out;
3737 
3738 	if (length > BUF_MAX_DATA_SIZE)
3739 		goto out;
3740 
3741 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3742 		goto out;
3743 
3744 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3745 	if (!event)
3746 		goto out_unlock;
3747 
3748 	body = rb_event_data(event);
3749 
3750 	memcpy(body, data, length);
3751 
3752 	rb_commit(cpu_buffer, event);
3753 
3754 	rb_wakeups(buffer, cpu_buffer);
3755 
3756 	ret = 0;
3757 
3758  out_unlock:
3759 	trace_recursive_unlock(cpu_buffer);
3760 
3761  out:
3762 	preempt_enable_notrace();
3763 
3764 	return ret;
3765 }
3766 EXPORT_SYMBOL_GPL(ring_buffer_write);
3767 
3768 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3769 {
3770 	struct buffer_page *reader = cpu_buffer->reader_page;
3771 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3772 	struct buffer_page *commit = cpu_buffer->commit_page;
3773 
3774 	/* In case of error, head will be NULL */
3775 	if (unlikely(!head))
3776 		return true;
3777 
3778 	return reader->read == rb_page_commit(reader) &&
3779 		(commit == reader ||
3780 		 (commit == head &&
3781 		  head->read == rb_page_commit(commit)));
3782 }
3783 
3784 /**
3785  * ring_buffer_record_disable - stop all writes into the buffer
3786  * @buffer: The ring buffer to stop writes to.
3787  *
3788  * This prevents all writes to the buffer. Any attempt to write
3789  * to the buffer after this will fail and return NULL.
3790  *
3791  * The caller should call synchronize_rcu() after this.
3792  */
3793 void ring_buffer_record_disable(struct trace_buffer *buffer)
3794 {
3795 	atomic_inc(&buffer->record_disabled);
3796 }
3797 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3798 
3799 /**
3800  * ring_buffer_record_enable - enable writes to the buffer
3801  * @buffer: The ring buffer to enable writes
3802  *
3803  * Note, multiple disables will need the same number of enables
3804  * to truly enable the writing (much like preempt_disable).
3805  */
3806 void ring_buffer_record_enable(struct trace_buffer *buffer)
3807 {
3808 	atomic_dec(&buffer->record_disabled);
3809 }
3810 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3811 
3812 /**
3813  * ring_buffer_record_off - stop all writes into the buffer
3814  * @buffer: The ring buffer to stop writes to.
3815  *
3816  * This prevents all writes to the buffer. Any attempt to write
3817  * to the buffer after this will fail and return NULL.
3818  *
3819  * This is different than ring_buffer_record_disable() as
3820  * it works like an on/off switch, where as the disable() version
3821  * must be paired with a enable().
3822  */
3823 void ring_buffer_record_off(struct trace_buffer *buffer)
3824 {
3825 	unsigned int rd;
3826 	unsigned int new_rd;
3827 
3828 	do {
3829 		rd = atomic_read(&buffer->record_disabled);
3830 		new_rd = rd | RB_BUFFER_OFF;
3831 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3832 }
3833 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3834 
3835 /**
3836  * ring_buffer_record_on - restart writes into the buffer
3837  * @buffer: The ring buffer to start writes to.
3838  *
3839  * This enables all writes to the buffer that was disabled by
3840  * ring_buffer_record_off().
3841  *
3842  * This is different than ring_buffer_record_enable() as
3843  * it works like an on/off switch, where as the enable() version
3844  * must be paired with a disable().
3845  */
3846 void ring_buffer_record_on(struct trace_buffer *buffer)
3847 {
3848 	unsigned int rd;
3849 	unsigned int new_rd;
3850 
3851 	do {
3852 		rd = atomic_read(&buffer->record_disabled);
3853 		new_rd = rd & ~RB_BUFFER_OFF;
3854 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3855 }
3856 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3857 
3858 /**
3859  * ring_buffer_record_is_on - return true if the ring buffer can write
3860  * @buffer: The ring buffer to see if write is enabled
3861  *
3862  * Returns true if the ring buffer is in a state that it accepts writes.
3863  */
3864 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3865 {
3866 	return !atomic_read(&buffer->record_disabled);
3867 }
3868 
3869 /**
3870  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3871  * @buffer: The ring buffer to see if write is set enabled
3872  *
3873  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3874  * Note that this does NOT mean it is in a writable state.
3875  *
3876  * It may return true when the ring buffer has been disabled by
3877  * ring_buffer_record_disable(), as that is a temporary disabling of
3878  * the ring buffer.
3879  */
3880 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3881 {
3882 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3883 }
3884 
3885 /**
3886  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3887  * @buffer: The ring buffer to stop writes to.
3888  * @cpu: The CPU buffer to stop
3889  *
3890  * This prevents all writes to the buffer. Any attempt to write
3891  * to the buffer after this will fail and return NULL.
3892  *
3893  * The caller should call synchronize_rcu() after this.
3894  */
3895 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3896 {
3897 	struct ring_buffer_per_cpu *cpu_buffer;
3898 
3899 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3900 		return;
3901 
3902 	cpu_buffer = buffer->buffers[cpu];
3903 	atomic_inc(&cpu_buffer->record_disabled);
3904 }
3905 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3906 
3907 /**
3908  * ring_buffer_record_enable_cpu - enable writes to the buffer
3909  * @buffer: The ring buffer to enable writes
3910  * @cpu: The CPU to enable.
3911  *
3912  * Note, multiple disables will need the same number of enables
3913  * to truly enable the writing (much like preempt_disable).
3914  */
3915 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3916 {
3917 	struct ring_buffer_per_cpu *cpu_buffer;
3918 
3919 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3920 		return;
3921 
3922 	cpu_buffer = buffer->buffers[cpu];
3923 	atomic_dec(&cpu_buffer->record_disabled);
3924 }
3925 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3926 
3927 /*
3928  * The total entries in the ring buffer is the running counter
3929  * of entries entered into the ring buffer, minus the sum of
3930  * the entries read from the ring buffer and the number of
3931  * entries that were overwritten.
3932  */
3933 static inline unsigned long
3934 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3935 {
3936 	return local_read(&cpu_buffer->entries) -
3937 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3938 }
3939 
3940 /**
3941  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3942  * @buffer: The ring buffer
3943  * @cpu: The per CPU buffer to read from.
3944  */
3945 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3946 {
3947 	unsigned long flags;
3948 	struct ring_buffer_per_cpu *cpu_buffer;
3949 	struct buffer_page *bpage;
3950 	u64 ret = 0;
3951 
3952 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3953 		return 0;
3954 
3955 	cpu_buffer = buffer->buffers[cpu];
3956 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3957 	/*
3958 	 * if the tail is on reader_page, oldest time stamp is on the reader
3959 	 * page
3960 	 */
3961 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3962 		bpage = cpu_buffer->reader_page;
3963 	else
3964 		bpage = rb_set_head_page(cpu_buffer);
3965 	if (bpage)
3966 		ret = bpage->page->time_stamp;
3967 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3968 
3969 	return ret;
3970 }
3971 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3972 
3973 /**
3974  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3975  * @buffer: The ring buffer
3976  * @cpu: The per CPU buffer to read from.
3977  */
3978 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3979 {
3980 	struct ring_buffer_per_cpu *cpu_buffer;
3981 	unsigned long ret;
3982 
3983 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3984 		return 0;
3985 
3986 	cpu_buffer = buffer->buffers[cpu];
3987 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3988 
3989 	return ret;
3990 }
3991 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3992 
3993 /**
3994  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3995  * @buffer: The ring buffer
3996  * @cpu: The per CPU buffer to get the entries from.
3997  */
3998 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3999 {
4000 	struct ring_buffer_per_cpu *cpu_buffer;
4001 
4002 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4003 		return 0;
4004 
4005 	cpu_buffer = buffer->buffers[cpu];
4006 
4007 	return rb_num_of_entries(cpu_buffer);
4008 }
4009 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4010 
4011 /**
4012  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4013  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4014  * @buffer: The ring buffer
4015  * @cpu: The per CPU buffer to get the number of overruns from
4016  */
4017 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4018 {
4019 	struct ring_buffer_per_cpu *cpu_buffer;
4020 	unsigned long ret;
4021 
4022 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4023 		return 0;
4024 
4025 	cpu_buffer = buffer->buffers[cpu];
4026 	ret = local_read(&cpu_buffer->overrun);
4027 
4028 	return ret;
4029 }
4030 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4031 
4032 /**
4033  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4034  * commits failing due to the buffer wrapping around while there are uncommitted
4035  * events, such as during an interrupt storm.
4036  * @buffer: The ring buffer
4037  * @cpu: The per CPU buffer to get the number of overruns from
4038  */
4039 unsigned long
4040 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4041 {
4042 	struct ring_buffer_per_cpu *cpu_buffer;
4043 	unsigned long ret;
4044 
4045 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4046 		return 0;
4047 
4048 	cpu_buffer = buffer->buffers[cpu];
4049 	ret = local_read(&cpu_buffer->commit_overrun);
4050 
4051 	return ret;
4052 }
4053 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4054 
4055 /**
4056  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4057  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4058  * @buffer: The ring buffer
4059  * @cpu: The per CPU buffer to get the number of overruns from
4060  */
4061 unsigned long
4062 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4063 {
4064 	struct ring_buffer_per_cpu *cpu_buffer;
4065 	unsigned long ret;
4066 
4067 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4068 		return 0;
4069 
4070 	cpu_buffer = buffer->buffers[cpu];
4071 	ret = local_read(&cpu_buffer->dropped_events);
4072 
4073 	return ret;
4074 }
4075 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4076 
4077 /**
4078  * ring_buffer_read_events_cpu - get the number of events successfully read
4079  * @buffer: The ring buffer
4080  * @cpu: The per CPU buffer to get the number of events read
4081  */
4082 unsigned long
4083 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4084 {
4085 	struct ring_buffer_per_cpu *cpu_buffer;
4086 
4087 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4088 		return 0;
4089 
4090 	cpu_buffer = buffer->buffers[cpu];
4091 	return cpu_buffer->read;
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4094 
4095 /**
4096  * ring_buffer_entries - get the number of entries in a buffer
4097  * @buffer: The ring buffer
4098  *
4099  * Returns the total number of entries in the ring buffer
4100  * (all CPU entries)
4101  */
4102 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4103 {
4104 	struct ring_buffer_per_cpu *cpu_buffer;
4105 	unsigned long entries = 0;
4106 	int cpu;
4107 
4108 	/* if you care about this being correct, lock the buffer */
4109 	for_each_buffer_cpu(buffer, cpu) {
4110 		cpu_buffer = buffer->buffers[cpu];
4111 		entries += rb_num_of_entries(cpu_buffer);
4112 	}
4113 
4114 	return entries;
4115 }
4116 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4117 
4118 /**
4119  * ring_buffer_overruns - get the number of overruns in buffer
4120  * @buffer: The ring buffer
4121  *
4122  * Returns the total number of overruns in the ring buffer
4123  * (all CPU entries)
4124  */
4125 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4126 {
4127 	struct ring_buffer_per_cpu *cpu_buffer;
4128 	unsigned long overruns = 0;
4129 	int cpu;
4130 
4131 	/* if you care about this being correct, lock the buffer */
4132 	for_each_buffer_cpu(buffer, cpu) {
4133 		cpu_buffer = buffer->buffers[cpu];
4134 		overruns += local_read(&cpu_buffer->overrun);
4135 	}
4136 
4137 	return overruns;
4138 }
4139 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4140 
4141 static void rb_iter_reset(struct ring_buffer_iter *iter)
4142 {
4143 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4144 
4145 	/* Iterator usage is expected to have record disabled */
4146 	iter->head_page = cpu_buffer->reader_page;
4147 	iter->head = cpu_buffer->reader_page->read;
4148 	iter->next_event = iter->head;
4149 
4150 	iter->cache_reader_page = iter->head_page;
4151 	iter->cache_read = cpu_buffer->read;
4152 
4153 	if (iter->head) {
4154 		iter->read_stamp = cpu_buffer->read_stamp;
4155 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4156 	} else {
4157 		iter->read_stamp = iter->head_page->page->time_stamp;
4158 		iter->page_stamp = iter->read_stamp;
4159 	}
4160 }
4161 
4162 /**
4163  * ring_buffer_iter_reset - reset an iterator
4164  * @iter: The iterator to reset
4165  *
4166  * Resets the iterator, so that it will start from the beginning
4167  * again.
4168  */
4169 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4170 {
4171 	struct ring_buffer_per_cpu *cpu_buffer;
4172 	unsigned long flags;
4173 
4174 	if (!iter)
4175 		return;
4176 
4177 	cpu_buffer = iter->cpu_buffer;
4178 
4179 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4180 	rb_iter_reset(iter);
4181 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4182 }
4183 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4184 
4185 /**
4186  * ring_buffer_iter_empty - check if an iterator has no more to read
4187  * @iter: The iterator to check
4188  */
4189 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4190 {
4191 	struct ring_buffer_per_cpu *cpu_buffer;
4192 	struct buffer_page *reader;
4193 	struct buffer_page *head_page;
4194 	struct buffer_page *commit_page;
4195 	struct buffer_page *curr_commit_page;
4196 	unsigned commit;
4197 	u64 curr_commit_ts;
4198 	u64 commit_ts;
4199 
4200 	cpu_buffer = iter->cpu_buffer;
4201 	reader = cpu_buffer->reader_page;
4202 	head_page = cpu_buffer->head_page;
4203 	commit_page = cpu_buffer->commit_page;
4204 	commit_ts = commit_page->page->time_stamp;
4205 
4206 	/*
4207 	 * When the writer goes across pages, it issues a cmpxchg which
4208 	 * is a mb(), which will synchronize with the rmb here.
4209 	 * (see rb_tail_page_update())
4210 	 */
4211 	smp_rmb();
4212 	commit = rb_page_commit(commit_page);
4213 	/* We want to make sure that the commit page doesn't change */
4214 	smp_rmb();
4215 
4216 	/* Make sure commit page didn't change */
4217 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4218 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4219 
4220 	/* If the commit page changed, then there's more data */
4221 	if (curr_commit_page != commit_page ||
4222 	    curr_commit_ts != commit_ts)
4223 		return 0;
4224 
4225 	/* Still racy, as it may return a false positive, but that's OK */
4226 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4227 		(iter->head_page == reader && commit_page == head_page &&
4228 		 head_page->read == commit &&
4229 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4230 }
4231 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4232 
4233 static void
4234 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4235 		     struct ring_buffer_event *event)
4236 {
4237 	u64 delta;
4238 
4239 	switch (event->type_len) {
4240 	case RINGBUF_TYPE_PADDING:
4241 		return;
4242 
4243 	case RINGBUF_TYPE_TIME_EXTEND:
4244 		delta = ring_buffer_event_time_stamp(event);
4245 		cpu_buffer->read_stamp += delta;
4246 		return;
4247 
4248 	case RINGBUF_TYPE_TIME_STAMP:
4249 		delta = ring_buffer_event_time_stamp(event);
4250 		cpu_buffer->read_stamp = delta;
4251 		return;
4252 
4253 	case RINGBUF_TYPE_DATA:
4254 		cpu_buffer->read_stamp += event->time_delta;
4255 		return;
4256 
4257 	default:
4258 		RB_WARN_ON(cpu_buffer, 1);
4259 	}
4260 	return;
4261 }
4262 
4263 static void
4264 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4265 			  struct ring_buffer_event *event)
4266 {
4267 	u64 delta;
4268 
4269 	switch (event->type_len) {
4270 	case RINGBUF_TYPE_PADDING:
4271 		return;
4272 
4273 	case RINGBUF_TYPE_TIME_EXTEND:
4274 		delta = ring_buffer_event_time_stamp(event);
4275 		iter->read_stamp += delta;
4276 		return;
4277 
4278 	case RINGBUF_TYPE_TIME_STAMP:
4279 		delta = ring_buffer_event_time_stamp(event);
4280 		iter->read_stamp = delta;
4281 		return;
4282 
4283 	case RINGBUF_TYPE_DATA:
4284 		iter->read_stamp += event->time_delta;
4285 		return;
4286 
4287 	default:
4288 		RB_WARN_ON(iter->cpu_buffer, 1);
4289 	}
4290 	return;
4291 }
4292 
4293 static struct buffer_page *
4294 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4295 {
4296 	struct buffer_page *reader = NULL;
4297 	unsigned long overwrite;
4298 	unsigned long flags;
4299 	int nr_loops = 0;
4300 	int ret;
4301 
4302 	local_irq_save(flags);
4303 	arch_spin_lock(&cpu_buffer->lock);
4304 
4305  again:
4306 	/*
4307 	 * This should normally only loop twice. But because the
4308 	 * start of the reader inserts an empty page, it causes
4309 	 * a case where we will loop three times. There should be no
4310 	 * reason to loop four times (that I know of).
4311 	 */
4312 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4313 		reader = NULL;
4314 		goto out;
4315 	}
4316 
4317 	reader = cpu_buffer->reader_page;
4318 
4319 	/* If there's more to read, return this page */
4320 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4321 		goto out;
4322 
4323 	/* Never should we have an index greater than the size */
4324 	if (RB_WARN_ON(cpu_buffer,
4325 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4326 		goto out;
4327 
4328 	/* check if we caught up to the tail */
4329 	reader = NULL;
4330 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4331 		goto out;
4332 
4333 	/* Don't bother swapping if the ring buffer is empty */
4334 	if (rb_num_of_entries(cpu_buffer) == 0)
4335 		goto out;
4336 
4337 	/*
4338 	 * Reset the reader page to size zero.
4339 	 */
4340 	local_set(&cpu_buffer->reader_page->write, 0);
4341 	local_set(&cpu_buffer->reader_page->entries, 0);
4342 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4343 	cpu_buffer->reader_page->real_end = 0;
4344 
4345  spin:
4346 	/*
4347 	 * Splice the empty reader page into the list around the head.
4348 	 */
4349 	reader = rb_set_head_page(cpu_buffer);
4350 	if (!reader)
4351 		goto out;
4352 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4353 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4354 
4355 	/*
4356 	 * cpu_buffer->pages just needs to point to the buffer, it
4357 	 *  has no specific buffer page to point to. Lets move it out
4358 	 *  of our way so we don't accidentally swap it.
4359 	 */
4360 	cpu_buffer->pages = reader->list.prev;
4361 
4362 	/* The reader page will be pointing to the new head */
4363 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4364 
4365 	/*
4366 	 * We want to make sure we read the overruns after we set up our
4367 	 * pointers to the next object. The writer side does a
4368 	 * cmpxchg to cross pages which acts as the mb on the writer
4369 	 * side. Note, the reader will constantly fail the swap
4370 	 * while the writer is updating the pointers, so this
4371 	 * guarantees that the overwrite recorded here is the one we
4372 	 * want to compare with the last_overrun.
4373 	 */
4374 	smp_mb();
4375 	overwrite = local_read(&(cpu_buffer->overrun));
4376 
4377 	/*
4378 	 * Here's the tricky part.
4379 	 *
4380 	 * We need to move the pointer past the header page.
4381 	 * But we can only do that if a writer is not currently
4382 	 * moving it. The page before the header page has the
4383 	 * flag bit '1' set if it is pointing to the page we want.
4384 	 * but if the writer is in the process of moving it
4385 	 * than it will be '2' or already moved '0'.
4386 	 */
4387 
4388 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4389 
4390 	/*
4391 	 * If we did not convert it, then we must try again.
4392 	 */
4393 	if (!ret)
4394 		goto spin;
4395 
4396 	/*
4397 	 * Yay! We succeeded in replacing the page.
4398 	 *
4399 	 * Now make the new head point back to the reader page.
4400 	 */
4401 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4402 	rb_inc_page(&cpu_buffer->head_page);
4403 
4404 	local_inc(&cpu_buffer->pages_read);
4405 
4406 	/* Finally update the reader page to the new head */
4407 	cpu_buffer->reader_page = reader;
4408 	cpu_buffer->reader_page->read = 0;
4409 
4410 	if (overwrite != cpu_buffer->last_overrun) {
4411 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4412 		cpu_buffer->last_overrun = overwrite;
4413 	}
4414 
4415 	goto again;
4416 
4417  out:
4418 	/* Update the read_stamp on the first event */
4419 	if (reader && reader->read == 0)
4420 		cpu_buffer->read_stamp = reader->page->time_stamp;
4421 
4422 	arch_spin_unlock(&cpu_buffer->lock);
4423 	local_irq_restore(flags);
4424 
4425 	return reader;
4426 }
4427 
4428 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4429 {
4430 	struct ring_buffer_event *event;
4431 	struct buffer_page *reader;
4432 	unsigned length;
4433 
4434 	reader = rb_get_reader_page(cpu_buffer);
4435 
4436 	/* This function should not be called when buffer is empty */
4437 	if (RB_WARN_ON(cpu_buffer, !reader))
4438 		return;
4439 
4440 	event = rb_reader_event(cpu_buffer);
4441 
4442 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4443 		cpu_buffer->read++;
4444 
4445 	rb_update_read_stamp(cpu_buffer, event);
4446 
4447 	length = rb_event_length(event);
4448 	cpu_buffer->reader_page->read += length;
4449 }
4450 
4451 static void rb_advance_iter(struct ring_buffer_iter *iter)
4452 {
4453 	struct ring_buffer_per_cpu *cpu_buffer;
4454 
4455 	cpu_buffer = iter->cpu_buffer;
4456 
4457 	/* If head == next_event then we need to jump to the next event */
4458 	if (iter->head == iter->next_event) {
4459 		/* If the event gets overwritten again, there's nothing to do */
4460 		if (rb_iter_head_event(iter) == NULL)
4461 			return;
4462 	}
4463 
4464 	iter->head = iter->next_event;
4465 
4466 	/*
4467 	 * Check if we are at the end of the buffer.
4468 	 */
4469 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4470 		/* discarded commits can make the page empty */
4471 		if (iter->head_page == cpu_buffer->commit_page)
4472 			return;
4473 		rb_inc_iter(iter);
4474 		return;
4475 	}
4476 
4477 	rb_update_iter_read_stamp(iter, iter->event);
4478 }
4479 
4480 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4481 {
4482 	return cpu_buffer->lost_events;
4483 }
4484 
4485 static struct ring_buffer_event *
4486 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4487 	       unsigned long *lost_events)
4488 {
4489 	struct ring_buffer_event *event;
4490 	struct buffer_page *reader;
4491 	int nr_loops = 0;
4492 
4493 	if (ts)
4494 		*ts = 0;
4495  again:
4496 	/*
4497 	 * We repeat when a time extend is encountered.
4498 	 * Since the time extend is always attached to a data event,
4499 	 * we should never loop more than once.
4500 	 * (We never hit the following condition more than twice).
4501 	 */
4502 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4503 		return NULL;
4504 
4505 	reader = rb_get_reader_page(cpu_buffer);
4506 	if (!reader)
4507 		return NULL;
4508 
4509 	event = rb_reader_event(cpu_buffer);
4510 
4511 	switch (event->type_len) {
4512 	case RINGBUF_TYPE_PADDING:
4513 		if (rb_null_event(event))
4514 			RB_WARN_ON(cpu_buffer, 1);
4515 		/*
4516 		 * Because the writer could be discarding every
4517 		 * event it creates (which would probably be bad)
4518 		 * if we were to go back to "again" then we may never
4519 		 * catch up, and will trigger the warn on, or lock
4520 		 * the box. Return the padding, and we will release
4521 		 * the current locks, and try again.
4522 		 */
4523 		return event;
4524 
4525 	case RINGBUF_TYPE_TIME_EXTEND:
4526 		/* Internal data, OK to advance */
4527 		rb_advance_reader(cpu_buffer);
4528 		goto again;
4529 
4530 	case RINGBUF_TYPE_TIME_STAMP:
4531 		if (ts) {
4532 			*ts = ring_buffer_event_time_stamp(event);
4533 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4534 							 cpu_buffer->cpu, ts);
4535 		}
4536 		/* Internal data, OK to advance */
4537 		rb_advance_reader(cpu_buffer);
4538 		goto again;
4539 
4540 	case RINGBUF_TYPE_DATA:
4541 		if (ts && !(*ts)) {
4542 			*ts = cpu_buffer->read_stamp + event->time_delta;
4543 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4544 							 cpu_buffer->cpu, ts);
4545 		}
4546 		if (lost_events)
4547 			*lost_events = rb_lost_events(cpu_buffer);
4548 		return event;
4549 
4550 	default:
4551 		RB_WARN_ON(cpu_buffer, 1);
4552 	}
4553 
4554 	return NULL;
4555 }
4556 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4557 
4558 static struct ring_buffer_event *
4559 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4560 {
4561 	struct trace_buffer *buffer;
4562 	struct ring_buffer_per_cpu *cpu_buffer;
4563 	struct ring_buffer_event *event;
4564 	int nr_loops = 0;
4565 
4566 	if (ts)
4567 		*ts = 0;
4568 
4569 	cpu_buffer = iter->cpu_buffer;
4570 	buffer = cpu_buffer->buffer;
4571 
4572 	/*
4573 	 * Check if someone performed a consuming read to
4574 	 * the buffer. A consuming read invalidates the iterator
4575 	 * and we need to reset the iterator in this case.
4576 	 */
4577 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4578 		     iter->cache_reader_page != cpu_buffer->reader_page))
4579 		rb_iter_reset(iter);
4580 
4581  again:
4582 	if (ring_buffer_iter_empty(iter))
4583 		return NULL;
4584 
4585 	/*
4586 	 * As the writer can mess with what the iterator is trying
4587 	 * to read, just give up if we fail to get an event after
4588 	 * three tries. The iterator is not as reliable when reading
4589 	 * the ring buffer with an active write as the consumer is.
4590 	 * Do not warn if the three failures is reached.
4591 	 */
4592 	if (++nr_loops > 3)
4593 		return NULL;
4594 
4595 	if (rb_per_cpu_empty(cpu_buffer))
4596 		return NULL;
4597 
4598 	if (iter->head >= rb_page_size(iter->head_page)) {
4599 		rb_inc_iter(iter);
4600 		goto again;
4601 	}
4602 
4603 	event = rb_iter_head_event(iter);
4604 	if (!event)
4605 		goto again;
4606 
4607 	switch (event->type_len) {
4608 	case RINGBUF_TYPE_PADDING:
4609 		if (rb_null_event(event)) {
4610 			rb_inc_iter(iter);
4611 			goto again;
4612 		}
4613 		rb_advance_iter(iter);
4614 		return event;
4615 
4616 	case RINGBUF_TYPE_TIME_EXTEND:
4617 		/* Internal data, OK to advance */
4618 		rb_advance_iter(iter);
4619 		goto again;
4620 
4621 	case RINGBUF_TYPE_TIME_STAMP:
4622 		if (ts) {
4623 			*ts = ring_buffer_event_time_stamp(event);
4624 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4625 							 cpu_buffer->cpu, ts);
4626 		}
4627 		/* Internal data, OK to advance */
4628 		rb_advance_iter(iter);
4629 		goto again;
4630 
4631 	case RINGBUF_TYPE_DATA:
4632 		if (ts && !(*ts)) {
4633 			*ts = iter->read_stamp + event->time_delta;
4634 			ring_buffer_normalize_time_stamp(buffer,
4635 							 cpu_buffer->cpu, ts);
4636 		}
4637 		return event;
4638 
4639 	default:
4640 		RB_WARN_ON(cpu_buffer, 1);
4641 	}
4642 
4643 	return NULL;
4644 }
4645 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4646 
4647 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4648 {
4649 	if (likely(!in_nmi())) {
4650 		raw_spin_lock(&cpu_buffer->reader_lock);
4651 		return true;
4652 	}
4653 
4654 	/*
4655 	 * If an NMI die dumps out the content of the ring buffer
4656 	 * trylock must be used to prevent a deadlock if the NMI
4657 	 * preempted a task that holds the ring buffer locks. If
4658 	 * we get the lock then all is fine, if not, then continue
4659 	 * to do the read, but this can corrupt the ring buffer,
4660 	 * so it must be permanently disabled from future writes.
4661 	 * Reading from NMI is a oneshot deal.
4662 	 */
4663 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4664 		return true;
4665 
4666 	/* Continue without locking, but disable the ring buffer */
4667 	atomic_inc(&cpu_buffer->record_disabled);
4668 	return false;
4669 }
4670 
4671 static inline void
4672 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4673 {
4674 	if (likely(locked))
4675 		raw_spin_unlock(&cpu_buffer->reader_lock);
4676 	return;
4677 }
4678 
4679 /**
4680  * ring_buffer_peek - peek at the next event to be read
4681  * @buffer: The ring buffer to read
4682  * @cpu: The cpu to peak at
4683  * @ts: The timestamp counter of this event.
4684  * @lost_events: a variable to store if events were lost (may be NULL)
4685  *
4686  * This will return the event that will be read next, but does
4687  * not consume the data.
4688  */
4689 struct ring_buffer_event *
4690 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4691 		 unsigned long *lost_events)
4692 {
4693 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4694 	struct ring_buffer_event *event;
4695 	unsigned long flags;
4696 	bool dolock;
4697 
4698 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4699 		return NULL;
4700 
4701  again:
4702 	local_irq_save(flags);
4703 	dolock = rb_reader_lock(cpu_buffer);
4704 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4705 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4706 		rb_advance_reader(cpu_buffer);
4707 	rb_reader_unlock(cpu_buffer, dolock);
4708 	local_irq_restore(flags);
4709 
4710 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4711 		goto again;
4712 
4713 	return event;
4714 }
4715 
4716 /** ring_buffer_iter_dropped - report if there are dropped events
4717  * @iter: The ring buffer iterator
4718  *
4719  * Returns true if there was dropped events since the last peek.
4720  */
4721 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4722 {
4723 	bool ret = iter->missed_events != 0;
4724 
4725 	iter->missed_events = 0;
4726 	return ret;
4727 }
4728 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4729 
4730 /**
4731  * ring_buffer_iter_peek - peek at the next event to be read
4732  * @iter: The ring buffer iterator
4733  * @ts: The timestamp counter of this event.
4734  *
4735  * This will return the event that will be read next, but does
4736  * not increment the iterator.
4737  */
4738 struct ring_buffer_event *
4739 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4740 {
4741 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4742 	struct ring_buffer_event *event;
4743 	unsigned long flags;
4744 
4745  again:
4746 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4747 	event = rb_iter_peek(iter, ts);
4748 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4749 
4750 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4751 		goto again;
4752 
4753 	return event;
4754 }
4755 
4756 /**
4757  * ring_buffer_consume - return an event and consume it
4758  * @buffer: The ring buffer to get the next event from
4759  * @cpu: the cpu to read the buffer from
4760  * @ts: a variable to store the timestamp (may be NULL)
4761  * @lost_events: a variable to store if events were lost (may be NULL)
4762  *
4763  * Returns the next event in the ring buffer, and that event is consumed.
4764  * Meaning, that sequential reads will keep returning a different event,
4765  * and eventually empty the ring buffer if the producer is slower.
4766  */
4767 struct ring_buffer_event *
4768 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4769 		    unsigned long *lost_events)
4770 {
4771 	struct ring_buffer_per_cpu *cpu_buffer;
4772 	struct ring_buffer_event *event = NULL;
4773 	unsigned long flags;
4774 	bool dolock;
4775 
4776  again:
4777 	/* might be called in atomic */
4778 	preempt_disable();
4779 
4780 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4781 		goto out;
4782 
4783 	cpu_buffer = buffer->buffers[cpu];
4784 	local_irq_save(flags);
4785 	dolock = rb_reader_lock(cpu_buffer);
4786 
4787 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4788 	if (event) {
4789 		cpu_buffer->lost_events = 0;
4790 		rb_advance_reader(cpu_buffer);
4791 	}
4792 
4793 	rb_reader_unlock(cpu_buffer, dolock);
4794 	local_irq_restore(flags);
4795 
4796  out:
4797 	preempt_enable();
4798 
4799 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4800 		goto again;
4801 
4802 	return event;
4803 }
4804 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4805 
4806 /**
4807  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4808  * @buffer: The ring buffer to read from
4809  * @cpu: The cpu buffer to iterate over
4810  * @flags: gfp flags to use for memory allocation
4811  *
4812  * This performs the initial preparations necessary to iterate
4813  * through the buffer.  Memory is allocated, buffer recording
4814  * is disabled, and the iterator pointer is returned to the caller.
4815  *
4816  * Disabling buffer recording prevents the reading from being
4817  * corrupted. This is not a consuming read, so a producer is not
4818  * expected.
4819  *
4820  * After a sequence of ring_buffer_read_prepare calls, the user is
4821  * expected to make at least one call to ring_buffer_read_prepare_sync.
4822  * Afterwards, ring_buffer_read_start is invoked to get things going
4823  * for real.
4824  *
4825  * This overall must be paired with ring_buffer_read_finish.
4826  */
4827 struct ring_buffer_iter *
4828 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4829 {
4830 	struct ring_buffer_per_cpu *cpu_buffer;
4831 	struct ring_buffer_iter *iter;
4832 
4833 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4834 		return NULL;
4835 
4836 	iter = kzalloc(sizeof(*iter), flags);
4837 	if (!iter)
4838 		return NULL;
4839 
4840 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4841 	if (!iter->event) {
4842 		kfree(iter);
4843 		return NULL;
4844 	}
4845 
4846 	cpu_buffer = buffer->buffers[cpu];
4847 
4848 	iter->cpu_buffer = cpu_buffer;
4849 
4850 	atomic_inc(&cpu_buffer->resize_disabled);
4851 
4852 	return iter;
4853 }
4854 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4855 
4856 /**
4857  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4858  *
4859  * All previously invoked ring_buffer_read_prepare calls to prepare
4860  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4861  * calls on those iterators are allowed.
4862  */
4863 void
4864 ring_buffer_read_prepare_sync(void)
4865 {
4866 	synchronize_rcu();
4867 }
4868 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4869 
4870 /**
4871  * ring_buffer_read_start - start a non consuming read of the buffer
4872  * @iter: The iterator returned by ring_buffer_read_prepare
4873  *
4874  * This finalizes the startup of an iteration through the buffer.
4875  * The iterator comes from a call to ring_buffer_read_prepare and
4876  * an intervening ring_buffer_read_prepare_sync must have been
4877  * performed.
4878  *
4879  * Must be paired with ring_buffer_read_finish.
4880  */
4881 void
4882 ring_buffer_read_start(struct ring_buffer_iter *iter)
4883 {
4884 	struct ring_buffer_per_cpu *cpu_buffer;
4885 	unsigned long flags;
4886 
4887 	if (!iter)
4888 		return;
4889 
4890 	cpu_buffer = iter->cpu_buffer;
4891 
4892 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4893 	arch_spin_lock(&cpu_buffer->lock);
4894 	rb_iter_reset(iter);
4895 	arch_spin_unlock(&cpu_buffer->lock);
4896 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4897 }
4898 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4899 
4900 /**
4901  * ring_buffer_read_finish - finish reading the iterator of the buffer
4902  * @iter: The iterator retrieved by ring_buffer_start
4903  *
4904  * This re-enables the recording to the buffer, and frees the
4905  * iterator.
4906  */
4907 void
4908 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4909 {
4910 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4911 	unsigned long flags;
4912 
4913 	/*
4914 	 * Ring buffer is disabled from recording, here's a good place
4915 	 * to check the integrity of the ring buffer.
4916 	 * Must prevent readers from trying to read, as the check
4917 	 * clears the HEAD page and readers require it.
4918 	 */
4919 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4920 	rb_check_pages(cpu_buffer);
4921 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4922 
4923 	atomic_dec(&cpu_buffer->resize_disabled);
4924 	kfree(iter->event);
4925 	kfree(iter);
4926 }
4927 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4928 
4929 /**
4930  * ring_buffer_iter_advance - advance the iterator to the next location
4931  * @iter: The ring buffer iterator
4932  *
4933  * Move the location of the iterator such that the next read will
4934  * be the next location of the iterator.
4935  */
4936 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4937 {
4938 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4939 	unsigned long flags;
4940 
4941 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4942 
4943 	rb_advance_iter(iter);
4944 
4945 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4946 }
4947 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4948 
4949 /**
4950  * ring_buffer_size - return the size of the ring buffer (in bytes)
4951  * @buffer: The ring buffer.
4952  * @cpu: The CPU to get ring buffer size from.
4953  */
4954 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4955 {
4956 	/*
4957 	 * Earlier, this method returned
4958 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4959 	 * Since the nr_pages field is now removed, we have converted this to
4960 	 * return the per cpu buffer value.
4961 	 */
4962 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4963 		return 0;
4964 
4965 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4966 }
4967 EXPORT_SYMBOL_GPL(ring_buffer_size);
4968 
4969 static void
4970 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4971 {
4972 	rb_head_page_deactivate(cpu_buffer);
4973 
4974 	cpu_buffer->head_page
4975 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4976 	local_set(&cpu_buffer->head_page->write, 0);
4977 	local_set(&cpu_buffer->head_page->entries, 0);
4978 	local_set(&cpu_buffer->head_page->page->commit, 0);
4979 
4980 	cpu_buffer->head_page->read = 0;
4981 
4982 	cpu_buffer->tail_page = cpu_buffer->head_page;
4983 	cpu_buffer->commit_page = cpu_buffer->head_page;
4984 
4985 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4986 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4987 	local_set(&cpu_buffer->reader_page->write, 0);
4988 	local_set(&cpu_buffer->reader_page->entries, 0);
4989 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4990 	cpu_buffer->reader_page->read = 0;
4991 
4992 	local_set(&cpu_buffer->entries_bytes, 0);
4993 	local_set(&cpu_buffer->overrun, 0);
4994 	local_set(&cpu_buffer->commit_overrun, 0);
4995 	local_set(&cpu_buffer->dropped_events, 0);
4996 	local_set(&cpu_buffer->entries, 0);
4997 	local_set(&cpu_buffer->committing, 0);
4998 	local_set(&cpu_buffer->commits, 0);
4999 	local_set(&cpu_buffer->pages_touched, 0);
5000 	local_set(&cpu_buffer->pages_read, 0);
5001 	cpu_buffer->last_pages_touch = 0;
5002 	cpu_buffer->shortest_full = 0;
5003 	cpu_buffer->read = 0;
5004 	cpu_buffer->read_bytes = 0;
5005 
5006 	rb_time_set(&cpu_buffer->write_stamp, 0);
5007 	rb_time_set(&cpu_buffer->before_stamp, 0);
5008 
5009 	cpu_buffer->lost_events = 0;
5010 	cpu_buffer->last_overrun = 0;
5011 
5012 	rb_head_page_activate(cpu_buffer);
5013 }
5014 
5015 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5016 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5017 {
5018 	unsigned long flags;
5019 
5020 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5021 
5022 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5023 		goto out;
5024 
5025 	arch_spin_lock(&cpu_buffer->lock);
5026 
5027 	rb_reset_cpu(cpu_buffer);
5028 
5029 	arch_spin_unlock(&cpu_buffer->lock);
5030 
5031  out:
5032 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5033 }
5034 
5035 /**
5036  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5037  * @buffer: The ring buffer to reset a per cpu buffer of
5038  * @cpu: The CPU buffer to be reset
5039  */
5040 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5041 {
5042 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5043 
5044 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5045 		return;
5046 
5047 	/* prevent another thread from changing buffer sizes */
5048 	mutex_lock(&buffer->mutex);
5049 
5050 	atomic_inc(&cpu_buffer->resize_disabled);
5051 	atomic_inc(&cpu_buffer->record_disabled);
5052 
5053 	/* Make sure all commits have finished */
5054 	synchronize_rcu();
5055 
5056 	reset_disabled_cpu_buffer(cpu_buffer);
5057 
5058 	atomic_dec(&cpu_buffer->record_disabled);
5059 	atomic_dec(&cpu_buffer->resize_disabled);
5060 
5061 	mutex_unlock(&buffer->mutex);
5062 }
5063 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5064 
5065 /**
5066  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5067  * @buffer: The ring buffer to reset a per cpu buffer of
5068  * @cpu: The CPU buffer to be reset
5069  */
5070 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5071 {
5072 	struct ring_buffer_per_cpu *cpu_buffer;
5073 	int cpu;
5074 
5075 	/* prevent another thread from changing buffer sizes */
5076 	mutex_lock(&buffer->mutex);
5077 
5078 	for_each_online_buffer_cpu(buffer, cpu) {
5079 		cpu_buffer = buffer->buffers[cpu];
5080 
5081 		atomic_inc(&cpu_buffer->resize_disabled);
5082 		atomic_inc(&cpu_buffer->record_disabled);
5083 	}
5084 
5085 	/* Make sure all commits have finished */
5086 	synchronize_rcu();
5087 
5088 	for_each_online_buffer_cpu(buffer, cpu) {
5089 		cpu_buffer = buffer->buffers[cpu];
5090 
5091 		reset_disabled_cpu_buffer(cpu_buffer);
5092 
5093 		atomic_dec(&cpu_buffer->record_disabled);
5094 		atomic_dec(&cpu_buffer->resize_disabled);
5095 	}
5096 
5097 	mutex_unlock(&buffer->mutex);
5098 }
5099 
5100 /**
5101  * ring_buffer_reset - reset a ring buffer
5102  * @buffer: The ring buffer to reset all cpu buffers
5103  */
5104 void ring_buffer_reset(struct trace_buffer *buffer)
5105 {
5106 	struct ring_buffer_per_cpu *cpu_buffer;
5107 	int cpu;
5108 
5109 	for_each_buffer_cpu(buffer, cpu) {
5110 		cpu_buffer = buffer->buffers[cpu];
5111 
5112 		atomic_inc(&cpu_buffer->resize_disabled);
5113 		atomic_inc(&cpu_buffer->record_disabled);
5114 	}
5115 
5116 	/* Make sure all commits have finished */
5117 	synchronize_rcu();
5118 
5119 	for_each_buffer_cpu(buffer, cpu) {
5120 		cpu_buffer = buffer->buffers[cpu];
5121 
5122 		reset_disabled_cpu_buffer(cpu_buffer);
5123 
5124 		atomic_dec(&cpu_buffer->record_disabled);
5125 		atomic_dec(&cpu_buffer->resize_disabled);
5126 	}
5127 }
5128 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5129 
5130 /**
5131  * rind_buffer_empty - is the ring buffer empty?
5132  * @buffer: The ring buffer to test
5133  */
5134 bool ring_buffer_empty(struct trace_buffer *buffer)
5135 {
5136 	struct ring_buffer_per_cpu *cpu_buffer;
5137 	unsigned long flags;
5138 	bool dolock;
5139 	int cpu;
5140 	int ret;
5141 
5142 	/* yes this is racy, but if you don't like the race, lock the buffer */
5143 	for_each_buffer_cpu(buffer, cpu) {
5144 		cpu_buffer = buffer->buffers[cpu];
5145 		local_irq_save(flags);
5146 		dolock = rb_reader_lock(cpu_buffer);
5147 		ret = rb_per_cpu_empty(cpu_buffer);
5148 		rb_reader_unlock(cpu_buffer, dolock);
5149 		local_irq_restore(flags);
5150 
5151 		if (!ret)
5152 			return false;
5153 	}
5154 
5155 	return true;
5156 }
5157 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5158 
5159 /**
5160  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5161  * @buffer: The ring buffer
5162  * @cpu: The CPU buffer to test
5163  */
5164 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5165 {
5166 	struct ring_buffer_per_cpu *cpu_buffer;
5167 	unsigned long flags;
5168 	bool dolock;
5169 	int ret;
5170 
5171 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5172 		return true;
5173 
5174 	cpu_buffer = buffer->buffers[cpu];
5175 	local_irq_save(flags);
5176 	dolock = rb_reader_lock(cpu_buffer);
5177 	ret = rb_per_cpu_empty(cpu_buffer);
5178 	rb_reader_unlock(cpu_buffer, dolock);
5179 	local_irq_restore(flags);
5180 
5181 	return ret;
5182 }
5183 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5184 
5185 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5186 /**
5187  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5188  * @buffer_a: One buffer to swap with
5189  * @buffer_b: The other buffer to swap with
5190  * @cpu: the CPU of the buffers to swap
5191  *
5192  * This function is useful for tracers that want to take a "snapshot"
5193  * of a CPU buffer and has another back up buffer lying around.
5194  * it is expected that the tracer handles the cpu buffer not being
5195  * used at the moment.
5196  */
5197 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5198 			 struct trace_buffer *buffer_b, int cpu)
5199 {
5200 	struct ring_buffer_per_cpu *cpu_buffer_a;
5201 	struct ring_buffer_per_cpu *cpu_buffer_b;
5202 	int ret = -EINVAL;
5203 
5204 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5205 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5206 		goto out;
5207 
5208 	cpu_buffer_a = buffer_a->buffers[cpu];
5209 	cpu_buffer_b = buffer_b->buffers[cpu];
5210 
5211 	/* At least make sure the two buffers are somewhat the same */
5212 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5213 		goto out;
5214 
5215 	ret = -EAGAIN;
5216 
5217 	if (atomic_read(&buffer_a->record_disabled))
5218 		goto out;
5219 
5220 	if (atomic_read(&buffer_b->record_disabled))
5221 		goto out;
5222 
5223 	if (atomic_read(&cpu_buffer_a->record_disabled))
5224 		goto out;
5225 
5226 	if (atomic_read(&cpu_buffer_b->record_disabled))
5227 		goto out;
5228 
5229 	/*
5230 	 * We can't do a synchronize_rcu here because this
5231 	 * function can be called in atomic context.
5232 	 * Normally this will be called from the same CPU as cpu.
5233 	 * If not it's up to the caller to protect this.
5234 	 */
5235 	atomic_inc(&cpu_buffer_a->record_disabled);
5236 	atomic_inc(&cpu_buffer_b->record_disabled);
5237 
5238 	ret = -EBUSY;
5239 	if (local_read(&cpu_buffer_a->committing))
5240 		goto out_dec;
5241 	if (local_read(&cpu_buffer_b->committing))
5242 		goto out_dec;
5243 
5244 	buffer_a->buffers[cpu] = cpu_buffer_b;
5245 	buffer_b->buffers[cpu] = cpu_buffer_a;
5246 
5247 	cpu_buffer_b->buffer = buffer_a;
5248 	cpu_buffer_a->buffer = buffer_b;
5249 
5250 	ret = 0;
5251 
5252 out_dec:
5253 	atomic_dec(&cpu_buffer_a->record_disabled);
5254 	atomic_dec(&cpu_buffer_b->record_disabled);
5255 out:
5256 	return ret;
5257 }
5258 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5259 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5260 
5261 /**
5262  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5263  * @buffer: the buffer to allocate for.
5264  * @cpu: the cpu buffer to allocate.
5265  *
5266  * This function is used in conjunction with ring_buffer_read_page.
5267  * When reading a full page from the ring buffer, these functions
5268  * can be used to speed up the process. The calling function should
5269  * allocate a few pages first with this function. Then when it
5270  * needs to get pages from the ring buffer, it passes the result
5271  * of this function into ring_buffer_read_page, which will swap
5272  * the page that was allocated, with the read page of the buffer.
5273  *
5274  * Returns:
5275  *  The page allocated, or ERR_PTR
5276  */
5277 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5278 {
5279 	struct ring_buffer_per_cpu *cpu_buffer;
5280 	struct buffer_data_page *bpage = NULL;
5281 	unsigned long flags;
5282 	struct page *page;
5283 
5284 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5285 		return ERR_PTR(-ENODEV);
5286 
5287 	cpu_buffer = buffer->buffers[cpu];
5288 	local_irq_save(flags);
5289 	arch_spin_lock(&cpu_buffer->lock);
5290 
5291 	if (cpu_buffer->free_page) {
5292 		bpage = cpu_buffer->free_page;
5293 		cpu_buffer->free_page = NULL;
5294 	}
5295 
5296 	arch_spin_unlock(&cpu_buffer->lock);
5297 	local_irq_restore(flags);
5298 
5299 	if (bpage)
5300 		goto out;
5301 
5302 	page = alloc_pages_node(cpu_to_node(cpu),
5303 				GFP_KERNEL | __GFP_NORETRY, 0);
5304 	if (!page)
5305 		return ERR_PTR(-ENOMEM);
5306 
5307 	bpage = page_address(page);
5308 
5309  out:
5310 	rb_init_page(bpage);
5311 
5312 	return bpage;
5313 }
5314 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5315 
5316 /**
5317  * ring_buffer_free_read_page - free an allocated read page
5318  * @buffer: the buffer the page was allocate for
5319  * @cpu: the cpu buffer the page came from
5320  * @data: the page to free
5321  *
5322  * Free a page allocated from ring_buffer_alloc_read_page.
5323  */
5324 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5325 {
5326 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5327 	struct buffer_data_page *bpage = data;
5328 	struct page *page = virt_to_page(bpage);
5329 	unsigned long flags;
5330 
5331 	/* If the page is still in use someplace else, we can't reuse it */
5332 	if (page_ref_count(page) > 1)
5333 		goto out;
5334 
5335 	local_irq_save(flags);
5336 	arch_spin_lock(&cpu_buffer->lock);
5337 
5338 	if (!cpu_buffer->free_page) {
5339 		cpu_buffer->free_page = bpage;
5340 		bpage = NULL;
5341 	}
5342 
5343 	arch_spin_unlock(&cpu_buffer->lock);
5344 	local_irq_restore(flags);
5345 
5346  out:
5347 	free_page((unsigned long)bpage);
5348 }
5349 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5350 
5351 /**
5352  * ring_buffer_read_page - extract a page from the ring buffer
5353  * @buffer: buffer to extract from
5354  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5355  * @len: amount to extract
5356  * @cpu: the cpu of the buffer to extract
5357  * @full: should the extraction only happen when the page is full.
5358  *
5359  * This function will pull out a page from the ring buffer and consume it.
5360  * @data_page must be the address of the variable that was returned
5361  * from ring_buffer_alloc_read_page. This is because the page might be used
5362  * to swap with a page in the ring buffer.
5363  *
5364  * for example:
5365  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5366  *	if (IS_ERR(rpage))
5367  *		return PTR_ERR(rpage);
5368  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5369  *	if (ret >= 0)
5370  *		process_page(rpage, ret);
5371  *
5372  * When @full is set, the function will not return true unless
5373  * the writer is off the reader page.
5374  *
5375  * Note: it is up to the calling functions to handle sleeps and wakeups.
5376  *  The ring buffer can be used anywhere in the kernel and can not
5377  *  blindly call wake_up. The layer that uses the ring buffer must be
5378  *  responsible for that.
5379  *
5380  * Returns:
5381  *  >=0 if data has been transferred, returns the offset of consumed data.
5382  *  <0 if no data has been transferred.
5383  */
5384 int ring_buffer_read_page(struct trace_buffer *buffer,
5385 			  void **data_page, size_t len, int cpu, int full)
5386 {
5387 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5388 	struct ring_buffer_event *event;
5389 	struct buffer_data_page *bpage;
5390 	struct buffer_page *reader;
5391 	unsigned long missed_events;
5392 	unsigned long flags;
5393 	unsigned int commit;
5394 	unsigned int read;
5395 	u64 save_timestamp;
5396 	int ret = -1;
5397 
5398 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5399 		goto out;
5400 
5401 	/*
5402 	 * If len is not big enough to hold the page header, then
5403 	 * we can not copy anything.
5404 	 */
5405 	if (len <= BUF_PAGE_HDR_SIZE)
5406 		goto out;
5407 
5408 	len -= BUF_PAGE_HDR_SIZE;
5409 
5410 	if (!data_page)
5411 		goto out;
5412 
5413 	bpage = *data_page;
5414 	if (!bpage)
5415 		goto out;
5416 
5417 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5418 
5419 	reader = rb_get_reader_page(cpu_buffer);
5420 	if (!reader)
5421 		goto out_unlock;
5422 
5423 	event = rb_reader_event(cpu_buffer);
5424 
5425 	read = reader->read;
5426 	commit = rb_page_commit(reader);
5427 
5428 	/* Check if any events were dropped */
5429 	missed_events = cpu_buffer->lost_events;
5430 
5431 	/*
5432 	 * If this page has been partially read or
5433 	 * if len is not big enough to read the rest of the page or
5434 	 * a writer is still on the page, then
5435 	 * we must copy the data from the page to the buffer.
5436 	 * Otherwise, we can simply swap the page with the one passed in.
5437 	 */
5438 	if (read || (len < (commit - read)) ||
5439 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5440 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5441 		unsigned int rpos = read;
5442 		unsigned int pos = 0;
5443 		unsigned int size;
5444 
5445 		if (full)
5446 			goto out_unlock;
5447 
5448 		if (len > (commit - read))
5449 			len = (commit - read);
5450 
5451 		/* Always keep the time extend and data together */
5452 		size = rb_event_ts_length(event);
5453 
5454 		if (len < size)
5455 			goto out_unlock;
5456 
5457 		/* save the current timestamp, since the user will need it */
5458 		save_timestamp = cpu_buffer->read_stamp;
5459 
5460 		/* Need to copy one event at a time */
5461 		do {
5462 			/* We need the size of one event, because
5463 			 * rb_advance_reader only advances by one event,
5464 			 * whereas rb_event_ts_length may include the size of
5465 			 * one or two events.
5466 			 * We have already ensured there's enough space if this
5467 			 * is a time extend. */
5468 			size = rb_event_length(event);
5469 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5470 
5471 			len -= size;
5472 
5473 			rb_advance_reader(cpu_buffer);
5474 			rpos = reader->read;
5475 			pos += size;
5476 
5477 			if (rpos >= commit)
5478 				break;
5479 
5480 			event = rb_reader_event(cpu_buffer);
5481 			/* Always keep the time extend and data together */
5482 			size = rb_event_ts_length(event);
5483 		} while (len >= size);
5484 
5485 		/* update bpage */
5486 		local_set(&bpage->commit, pos);
5487 		bpage->time_stamp = save_timestamp;
5488 
5489 		/* we copied everything to the beginning */
5490 		read = 0;
5491 	} else {
5492 		/* update the entry counter */
5493 		cpu_buffer->read += rb_page_entries(reader);
5494 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5495 
5496 		/* swap the pages */
5497 		rb_init_page(bpage);
5498 		bpage = reader->page;
5499 		reader->page = *data_page;
5500 		local_set(&reader->write, 0);
5501 		local_set(&reader->entries, 0);
5502 		reader->read = 0;
5503 		*data_page = bpage;
5504 
5505 		/*
5506 		 * Use the real_end for the data size,
5507 		 * This gives us a chance to store the lost events
5508 		 * on the page.
5509 		 */
5510 		if (reader->real_end)
5511 			local_set(&bpage->commit, reader->real_end);
5512 	}
5513 	ret = read;
5514 
5515 	cpu_buffer->lost_events = 0;
5516 
5517 	commit = local_read(&bpage->commit);
5518 	/*
5519 	 * Set a flag in the commit field if we lost events
5520 	 */
5521 	if (missed_events) {
5522 		/* If there is room at the end of the page to save the
5523 		 * missed events, then record it there.
5524 		 */
5525 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5526 			memcpy(&bpage->data[commit], &missed_events,
5527 			       sizeof(missed_events));
5528 			local_add(RB_MISSED_STORED, &bpage->commit);
5529 			commit += sizeof(missed_events);
5530 		}
5531 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5532 	}
5533 
5534 	/*
5535 	 * This page may be off to user land. Zero it out here.
5536 	 */
5537 	if (commit < BUF_PAGE_SIZE)
5538 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5539 
5540  out_unlock:
5541 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5542 
5543  out:
5544 	return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5547 
5548 /*
5549  * We only allocate new buffers, never free them if the CPU goes down.
5550  * If we were to free the buffer, then the user would lose any trace that was in
5551  * the buffer.
5552  */
5553 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5554 {
5555 	struct trace_buffer *buffer;
5556 	long nr_pages_same;
5557 	int cpu_i;
5558 	unsigned long nr_pages;
5559 
5560 	buffer = container_of(node, struct trace_buffer, node);
5561 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5562 		return 0;
5563 
5564 	nr_pages = 0;
5565 	nr_pages_same = 1;
5566 	/* check if all cpu sizes are same */
5567 	for_each_buffer_cpu(buffer, cpu_i) {
5568 		/* fill in the size from first enabled cpu */
5569 		if (nr_pages == 0)
5570 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5571 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5572 			nr_pages_same = 0;
5573 			break;
5574 		}
5575 	}
5576 	/* allocate minimum pages, user can later expand it */
5577 	if (!nr_pages_same)
5578 		nr_pages = 2;
5579 	buffer->buffers[cpu] =
5580 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5581 	if (!buffer->buffers[cpu]) {
5582 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5583 		     cpu);
5584 		return -ENOMEM;
5585 	}
5586 	smp_wmb();
5587 	cpumask_set_cpu(cpu, buffer->cpumask);
5588 	return 0;
5589 }
5590 
5591 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5592 /*
5593  * This is a basic integrity check of the ring buffer.
5594  * Late in the boot cycle this test will run when configured in.
5595  * It will kick off a thread per CPU that will go into a loop
5596  * writing to the per cpu ring buffer various sizes of data.
5597  * Some of the data will be large items, some small.
5598  *
5599  * Another thread is created that goes into a spin, sending out
5600  * IPIs to the other CPUs to also write into the ring buffer.
5601  * this is to test the nesting ability of the buffer.
5602  *
5603  * Basic stats are recorded and reported. If something in the
5604  * ring buffer should happen that's not expected, a big warning
5605  * is displayed and all ring buffers are disabled.
5606  */
5607 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5608 
5609 struct rb_test_data {
5610 	struct trace_buffer *buffer;
5611 	unsigned long		events;
5612 	unsigned long		bytes_written;
5613 	unsigned long		bytes_alloc;
5614 	unsigned long		bytes_dropped;
5615 	unsigned long		events_nested;
5616 	unsigned long		bytes_written_nested;
5617 	unsigned long		bytes_alloc_nested;
5618 	unsigned long		bytes_dropped_nested;
5619 	int			min_size_nested;
5620 	int			max_size_nested;
5621 	int			max_size;
5622 	int			min_size;
5623 	int			cpu;
5624 	int			cnt;
5625 };
5626 
5627 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5628 
5629 /* 1 meg per cpu */
5630 #define RB_TEST_BUFFER_SIZE	1048576
5631 
5632 static char rb_string[] __initdata =
5633 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5634 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5635 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5636 
5637 static bool rb_test_started __initdata;
5638 
5639 struct rb_item {
5640 	int size;
5641 	char str[];
5642 };
5643 
5644 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5645 {
5646 	struct ring_buffer_event *event;
5647 	struct rb_item *item;
5648 	bool started;
5649 	int event_len;
5650 	int size;
5651 	int len;
5652 	int cnt;
5653 
5654 	/* Have nested writes different that what is written */
5655 	cnt = data->cnt + (nested ? 27 : 0);
5656 
5657 	/* Multiply cnt by ~e, to make some unique increment */
5658 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5659 
5660 	len = size + sizeof(struct rb_item);
5661 
5662 	started = rb_test_started;
5663 	/* read rb_test_started before checking buffer enabled */
5664 	smp_rmb();
5665 
5666 	event = ring_buffer_lock_reserve(data->buffer, len);
5667 	if (!event) {
5668 		/* Ignore dropped events before test starts. */
5669 		if (started) {
5670 			if (nested)
5671 				data->bytes_dropped += len;
5672 			else
5673 				data->bytes_dropped_nested += len;
5674 		}
5675 		return len;
5676 	}
5677 
5678 	event_len = ring_buffer_event_length(event);
5679 
5680 	if (RB_WARN_ON(data->buffer, event_len < len))
5681 		goto out;
5682 
5683 	item = ring_buffer_event_data(event);
5684 	item->size = size;
5685 	memcpy(item->str, rb_string, size);
5686 
5687 	if (nested) {
5688 		data->bytes_alloc_nested += event_len;
5689 		data->bytes_written_nested += len;
5690 		data->events_nested++;
5691 		if (!data->min_size_nested || len < data->min_size_nested)
5692 			data->min_size_nested = len;
5693 		if (len > data->max_size_nested)
5694 			data->max_size_nested = len;
5695 	} else {
5696 		data->bytes_alloc += event_len;
5697 		data->bytes_written += len;
5698 		data->events++;
5699 		if (!data->min_size || len < data->min_size)
5700 			data->max_size = len;
5701 		if (len > data->max_size)
5702 			data->max_size = len;
5703 	}
5704 
5705  out:
5706 	ring_buffer_unlock_commit(data->buffer, event);
5707 
5708 	return 0;
5709 }
5710 
5711 static __init int rb_test(void *arg)
5712 {
5713 	struct rb_test_data *data = arg;
5714 
5715 	while (!kthread_should_stop()) {
5716 		rb_write_something(data, false);
5717 		data->cnt++;
5718 
5719 		set_current_state(TASK_INTERRUPTIBLE);
5720 		/* Now sleep between a min of 100-300us and a max of 1ms */
5721 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5722 	}
5723 
5724 	return 0;
5725 }
5726 
5727 static __init void rb_ipi(void *ignore)
5728 {
5729 	struct rb_test_data *data;
5730 	int cpu = smp_processor_id();
5731 
5732 	data = &rb_data[cpu];
5733 	rb_write_something(data, true);
5734 }
5735 
5736 static __init int rb_hammer_test(void *arg)
5737 {
5738 	while (!kthread_should_stop()) {
5739 
5740 		/* Send an IPI to all cpus to write data! */
5741 		smp_call_function(rb_ipi, NULL, 1);
5742 		/* No sleep, but for non preempt, let others run */
5743 		schedule();
5744 	}
5745 
5746 	return 0;
5747 }
5748 
5749 static __init int test_ringbuffer(void)
5750 {
5751 	struct task_struct *rb_hammer;
5752 	struct trace_buffer *buffer;
5753 	int cpu;
5754 	int ret = 0;
5755 
5756 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5757 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5758 		return 0;
5759 	}
5760 
5761 	pr_info("Running ring buffer tests...\n");
5762 
5763 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5764 	if (WARN_ON(!buffer))
5765 		return 0;
5766 
5767 	/* Disable buffer so that threads can't write to it yet */
5768 	ring_buffer_record_off(buffer);
5769 
5770 	for_each_online_cpu(cpu) {
5771 		rb_data[cpu].buffer = buffer;
5772 		rb_data[cpu].cpu = cpu;
5773 		rb_data[cpu].cnt = cpu;
5774 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5775 						 "rbtester/%d", cpu);
5776 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5777 			pr_cont("FAILED\n");
5778 			ret = PTR_ERR(rb_threads[cpu]);
5779 			goto out_free;
5780 		}
5781 
5782 		kthread_bind(rb_threads[cpu], cpu);
5783  		wake_up_process(rb_threads[cpu]);
5784 	}
5785 
5786 	/* Now create the rb hammer! */
5787 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5788 	if (WARN_ON(IS_ERR(rb_hammer))) {
5789 		pr_cont("FAILED\n");
5790 		ret = PTR_ERR(rb_hammer);
5791 		goto out_free;
5792 	}
5793 
5794 	ring_buffer_record_on(buffer);
5795 	/*
5796 	 * Show buffer is enabled before setting rb_test_started.
5797 	 * Yes there's a small race window where events could be
5798 	 * dropped and the thread wont catch it. But when a ring
5799 	 * buffer gets enabled, there will always be some kind of
5800 	 * delay before other CPUs see it. Thus, we don't care about
5801 	 * those dropped events. We care about events dropped after
5802 	 * the threads see that the buffer is active.
5803 	 */
5804 	smp_wmb();
5805 	rb_test_started = true;
5806 
5807 	set_current_state(TASK_INTERRUPTIBLE);
5808 	/* Just run for 10 seconds */;
5809 	schedule_timeout(10 * HZ);
5810 
5811 	kthread_stop(rb_hammer);
5812 
5813  out_free:
5814 	for_each_online_cpu(cpu) {
5815 		if (!rb_threads[cpu])
5816 			break;
5817 		kthread_stop(rb_threads[cpu]);
5818 	}
5819 	if (ret) {
5820 		ring_buffer_free(buffer);
5821 		return ret;
5822 	}
5823 
5824 	/* Report! */
5825 	pr_info("finished\n");
5826 	for_each_online_cpu(cpu) {
5827 		struct ring_buffer_event *event;
5828 		struct rb_test_data *data = &rb_data[cpu];
5829 		struct rb_item *item;
5830 		unsigned long total_events;
5831 		unsigned long total_dropped;
5832 		unsigned long total_written;
5833 		unsigned long total_alloc;
5834 		unsigned long total_read = 0;
5835 		unsigned long total_size = 0;
5836 		unsigned long total_len = 0;
5837 		unsigned long total_lost = 0;
5838 		unsigned long lost;
5839 		int big_event_size;
5840 		int small_event_size;
5841 
5842 		ret = -1;
5843 
5844 		total_events = data->events + data->events_nested;
5845 		total_written = data->bytes_written + data->bytes_written_nested;
5846 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5847 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5848 
5849 		big_event_size = data->max_size + data->max_size_nested;
5850 		small_event_size = data->min_size + data->min_size_nested;
5851 
5852 		pr_info("CPU %d:\n", cpu);
5853 		pr_info("              events:    %ld\n", total_events);
5854 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5855 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5856 		pr_info("       written bytes:    %ld\n", total_written);
5857 		pr_info("       biggest event:    %d\n", big_event_size);
5858 		pr_info("      smallest event:    %d\n", small_event_size);
5859 
5860 		if (RB_WARN_ON(buffer, total_dropped))
5861 			break;
5862 
5863 		ret = 0;
5864 
5865 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5866 			total_lost += lost;
5867 			item = ring_buffer_event_data(event);
5868 			total_len += ring_buffer_event_length(event);
5869 			total_size += item->size + sizeof(struct rb_item);
5870 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5871 				pr_info("FAILED!\n");
5872 				pr_info("buffer had: %.*s\n", item->size, item->str);
5873 				pr_info("expected:   %.*s\n", item->size, rb_string);
5874 				RB_WARN_ON(buffer, 1);
5875 				ret = -1;
5876 				break;
5877 			}
5878 			total_read++;
5879 		}
5880 		if (ret)
5881 			break;
5882 
5883 		ret = -1;
5884 
5885 		pr_info("         read events:   %ld\n", total_read);
5886 		pr_info("         lost events:   %ld\n", total_lost);
5887 		pr_info("        total events:   %ld\n", total_lost + total_read);
5888 		pr_info("  recorded len bytes:   %ld\n", total_len);
5889 		pr_info(" recorded size bytes:   %ld\n", total_size);
5890 		if (total_lost)
5891 			pr_info(" With dropped events, record len and size may not match\n"
5892 				" alloced and written from above\n");
5893 		if (!total_lost) {
5894 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5895 				       total_size != total_written))
5896 				break;
5897 		}
5898 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5899 			break;
5900 
5901 		ret = 0;
5902 	}
5903 	if (!ret)
5904 		pr_info("Ring buffer PASSED!\n");
5905 
5906 	ring_buffer_free(buffer);
5907 	return 0;
5908 }
5909 
5910 late_initcall(test_ringbuffer);
5911 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5912