xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 52fb57e7)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>	/* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135 
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146 
147 enum {
148 	RB_BUFFERS_ON_BIT	= 0,
149 	RB_BUFFERS_DISABLED_BIT	= 1,
150 };
151 
152 enum {
153 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
154 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156 
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158 
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF		(1 << 20)
161 
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163 
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174 
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT		4U
177 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
179 
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT	0
182 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT	1
185 # define RB_ARCH_ALIGNMENT		8U
186 #endif
187 
188 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
189 
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
192 
193 enum {
194 	RB_LEN_TIME_EXTEND = 8,
195 	RB_LEN_TIME_STAMP = 16,
196 };
197 
198 #define skip_time_extend(event) \
199 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200 
201 static inline int rb_null_event(struct ring_buffer_event *event)
202 {
203 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
204 }
205 
206 static void rb_event_set_padding(struct ring_buffer_event *event)
207 {
208 	/* padding has a NULL time_delta */
209 	event->type_len = RINGBUF_TYPE_PADDING;
210 	event->time_delta = 0;
211 }
212 
213 static unsigned
214 rb_event_data_length(struct ring_buffer_event *event)
215 {
216 	unsigned length;
217 
218 	if (event->type_len)
219 		length = event->type_len * RB_ALIGNMENT;
220 	else
221 		length = event->array[0];
222 	return length + RB_EVNT_HDR_SIZE;
223 }
224 
225 /*
226  * Return the length of the given event. Will return
227  * the length of the time extend if the event is a
228  * time extend.
229  */
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event *event)
232 {
233 	switch (event->type_len) {
234 	case RINGBUF_TYPE_PADDING:
235 		if (rb_null_event(event))
236 			/* undefined */
237 			return -1;
238 		return  event->array[0] + RB_EVNT_HDR_SIZE;
239 
240 	case RINGBUF_TYPE_TIME_EXTEND:
241 		return RB_LEN_TIME_EXTEND;
242 
243 	case RINGBUF_TYPE_TIME_STAMP:
244 		return RB_LEN_TIME_STAMP;
245 
246 	case RINGBUF_TYPE_DATA:
247 		return rb_event_data_length(event);
248 	default:
249 		BUG();
250 	}
251 	/* not hit */
252 	return 0;
253 }
254 
255 /*
256  * Return total length of time extend and data,
257  *   or just the event length for all other events.
258  */
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event *event)
261 {
262 	unsigned len = 0;
263 
264 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 		/* time extends include the data event after it */
266 		len = RB_LEN_TIME_EXTEND;
267 		event = skip_time_extend(event);
268 	}
269 	return len + rb_event_length(event);
270 }
271 
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  *
276  * Returns the size of the data load of a data event.
277  * If the event is something other than a data event, it
278  * returns the size of the event itself. With the exception
279  * of a TIME EXTEND, where it still returns the size of the
280  * data load of the data event after it.
281  */
282 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 {
284 	unsigned length;
285 
286 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 		event = skip_time_extend(event);
288 
289 	length = rb_event_length(event);
290 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
291 		return length;
292 	length -= RB_EVNT_HDR_SIZE;
293 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294                 length -= sizeof(event->array[0]);
295 	return length;
296 }
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
298 
299 /* inline for ring buffer fast paths */
300 static void *
301 rb_event_data(struct ring_buffer_event *event)
302 {
303 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 		event = skip_time_extend(event);
305 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
306 	/* If length is in len field, then array[0] has the data */
307 	if (event->type_len)
308 		return (void *)&event->array[0];
309 	/* Otherwise length is in array[0] and array[1] has the data */
310 	return (void *)&event->array[1];
311 }
312 
313 /**
314  * ring_buffer_event_data - return the data of the event
315  * @event: the event to get the data from
316  */
317 void *ring_buffer_event_data(struct ring_buffer_event *event)
318 {
319 	return rb_event_data(event);
320 }
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
322 
323 #define for_each_buffer_cpu(buffer, cpu)		\
324 	for_each_cpu(cpu, buffer->cpumask)
325 
326 #define TS_SHIFT	27
327 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST	(~TS_MASK)
329 
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS	(1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED	(1 << 30)
334 
335 struct buffer_data_page {
336 	u64		 time_stamp;	/* page time stamp */
337 	local_t		 commit;	/* write committed index */
338 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
339 };
340 
341 /*
342  * Note, the buffer_page list must be first. The buffer pages
343  * are allocated in cache lines, which means that each buffer
344  * page will be at the beginning of a cache line, and thus
345  * the least significant bits will be zero. We use this to
346  * add flags in the list struct pointers, to make the ring buffer
347  * lockless.
348  */
349 struct buffer_page {
350 	struct list_head list;		/* list of buffer pages */
351 	local_t		 write;		/* index for next write */
352 	unsigned	 read;		/* index for next read */
353 	local_t		 entries;	/* entries on this page */
354 	unsigned long	 real_end;	/* real end of data */
355 	struct buffer_data_page *page;	/* Actual data page */
356 };
357 
358 /*
359  * The buffer page counters, write and entries, must be reset
360  * atomically when crossing page boundaries. To synchronize this
361  * update, two counters are inserted into the number. One is
362  * the actual counter for the write position or count on the page.
363  *
364  * The other is a counter of updaters. Before an update happens
365  * the update partition of the counter is incremented. This will
366  * allow the updater to update the counter atomically.
367  *
368  * The counter is 20 bits, and the state data is 12.
369  */
370 #define RB_WRITE_MASK		0xfffff
371 #define RB_WRITE_INTCNT		(1 << 20)
372 
373 static void rb_init_page(struct buffer_data_page *bpage)
374 {
375 	local_set(&bpage->commit, 0);
376 }
377 
378 /**
379  * ring_buffer_page_len - the size of data on the page.
380  * @page: The page to read
381  *
382  * Returns the amount of data on the page, including buffer page header.
383  */
384 size_t ring_buffer_page_len(void *page)
385 {
386 	return local_read(&((struct buffer_data_page *)page)->commit)
387 		+ BUF_PAGE_HDR_SIZE;
388 }
389 
390 /*
391  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392  * this issue out.
393  */
394 static void free_buffer_page(struct buffer_page *bpage)
395 {
396 	free_page((unsigned long)bpage->page);
397 	kfree(bpage);
398 }
399 
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline int test_time_stamp(u64 delta)
404 {
405 	if (delta & TS_DELTA_TEST)
406 		return 1;
407 	return 0;
408 }
409 
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
411 
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414 
415 int ring_buffer_print_page_header(struct trace_seq *s)
416 {
417 	struct buffer_data_page field;
418 
419 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
420 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
421 			 (unsigned int)sizeof(field.time_stamp),
422 			 (unsigned int)is_signed_type(u64));
423 
424 	trace_seq_printf(s, "\tfield: local_t commit;\t"
425 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
426 			 (unsigned int)offsetof(typeof(field), commit),
427 			 (unsigned int)sizeof(field.commit),
428 			 (unsigned int)is_signed_type(long));
429 
430 	trace_seq_printf(s, "\tfield: int overwrite;\t"
431 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
432 			 (unsigned int)offsetof(typeof(field), commit),
433 			 1,
434 			 (unsigned int)is_signed_type(long));
435 
436 	trace_seq_printf(s, "\tfield: char data;\t"
437 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
438 			 (unsigned int)offsetof(typeof(field), data),
439 			 (unsigned int)BUF_PAGE_SIZE,
440 			 (unsigned int)is_signed_type(char));
441 
442 	return !trace_seq_has_overflowed(s);
443 }
444 
445 struct rb_irq_work {
446 	struct irq_work			work;
447 	wait_queue_head_t		waiters;
448 	wait_queue_head_t		full_waiters;
449 	bool				waiters_pending;
450 	bool				full_waiters_pending;
451 	bool				wakeup_full;
452 };
453 
454 /*
455  * head_page == tail_page && head == tail then buffer is empty.
456  */
457 struct ring_buffer_per_cpu {
458 	int				cpu;
459 	atomic_t			record_disabled;
460 	struct ring_buffer		*buffer;
461 	raw_spinlock_t			reader_lock;	/* serialize readers */
462 	arch_spinlock_t			lock;
463 	struct lock_class_key		lock_key;
464 	unsigned int			nr_pages;
465 	struct list_head		*pages;
466 	struct buffer_page		*head_page;	/* read from head */
467 	struct buffer_page		*tail_page;	/* write to tail */
468 	struct buffer_page		*commit_page;	/* committed pages */
469 	struct buffer_page		*reader_page;
470 	unsigned long			lost_events;
471 	unsigned long			last_overrun;
472 	local_t				entries_bytes;
473 	local_t				entries;
474 	local_t				overrun;
475 	local_t				commit_overrun;
476 	local_t				dropped_events;
477 	local_t				committing;
478 	local_t				commits;
479 	unsigned long			read;
480 	unsigned long			read_bytes;
481 	u64				write_stamp;
482 	u64				read_stamp;
483 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
484 	int				nr_pages_to_update;
485 	struct list_head		new_pages; /* new pages to add */
486 	struct work_struct		update_pages_work;
487 	struct completion		update_done;
488 
489 	struct rb_irq_work		irq_work;
490 };
491 
492 struct ring_buffer {
493 	unsigned			flags;
494 	int				cpus;
495 	atomic_t			record_disabled;
496 	atomic_t			resize_disabled;
497 	cpumask_var_t			cpumask;
498 
499 	struct lock_class_key		*reader_lock_key;
500 
501 	struct mutex			mutex;
502 
503 	struct ring_buffer_per_cpu	**buffers;
504 
505 #ifdef CONFIG_HOTPLUG_CPU
506 	struct notifier_block		cpu_notify;
507 #endif
508 	u64				(*clock)(void);
509 
510 	struct rb_irq_work		irq_work;
511 };
512 
513 struct ring_buffer_iter {
514 	struct ring_buffer_per_cpu	*cpu_buffer;
515 	unsigned long			head;
516 	struct buffer_page		*head_page;
517 	struct buffer_page		*cache_reader_page;
518 	unsigned long			cache_read;
519 	u64				read_stamp;
520 };
521 
522 /*
523  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
524  *
525  * Schedules a delayed work to wake up any task that is blocked on the
526  * ring buffer waiters queue.
527  */
528 static void rb_wake_up_waiters(struct irq_work *work)
529 {
530 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
531 
532 	wake_up_all(&rbwork->waiters);
533 	if (rbwork->wakeup_full) {
534 		rbwork->wakeup_full = false;
535 		wake_up_all(&rbwork->full_waiters);
536 	}
537 }
538 
539 /**
540  * ring_buffer_wait - wait for input to the ring buffer
541  * @buffer: buffer to wait on
542  * @cpu: the cpu buffer to wait on
543  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
544  *
545  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
546  * as data is added to any of the @buffer's cpu buffers. Otherwise
547  * it will wait for data to be added to a specific cpu buffer.
548  */
549 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
550 {
551 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
552 	DEFINE_WAIT(wait);
553 	struct rb_irq_work *work;
554 	int ret = 0;
555 
556 	/*
557 	 * Depending on what the caller is waiting for, either any
558 	 * data in any cpu buffer, or a specific buffer, put the
559 	 * caller on the appropriate wait queue.
560 	 */
561 	if (cpu == RING_BUFFER_ALL_CPUS) {
562 		work = &buffer->irq_work;
563 		/* Full only makes sense on per cpu reads */
564 		full = false;
565 	} else {
566 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
567 			return -ENODEV;
568 		cpu_buffer = buffer->buffers[cpu];
569 		work = &cpu_buffer->irq_work;
570 	}
571 
572 
573 	while (true) {
574 		if (full)
575 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
576 		else
577 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
578 
579 		/*
580 		 * The events can happen in critical sections where
581 		 * checking a work queue can cause deadlocks.
582 		 * After adding a task to the queue, this flag is set
583 		 * only to notify events to try to wake up the queue
584 		 * using irq_work.
585 		 *
586 		 * We don't clear it even if the buffer is no longer
587 		 * empty. The flag only causes the next event to run
588 		 * irq_work to do the work queue wake up. The worse
589 		 * that can happen if we race with !trace_empty() is that
590 		 * an event will cause an irq_work to try to wake up
591 		 * an empty queue.
592 		 *
593 		 * There's no reason to protect this flag either, as
594 		 * the work queue and irq_work logic will do the necessary
595 		 * synchronization for the wake ups. The only thing
596 		 * that is necessary is that the wake up happens after
597 		 * a task has been queued. It's OK for spurious wake ups.
598 		 */
599 		if (full)
600 			work->full_waiters_pending = true;
601 		else
602 			work->waiters_pending = true;
603 
604 		if (signal_pending(current)) {
605 			ret = -EINTR;
606 			break;
607 		}
608 
609 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
610 			break;
611 
612 		if (cpu != RING_BUFFER_ALL_CPUS &&
613 		    !ring_buffer_empty_cpu(buffer, cpu)) {
614 			unsigned long flags;
615 			bool pagebusy;
616 
617 			if (!full)
618 				break;
619 
620 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
621 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
622 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
623 
624 			if (!pagebusy)
625 				break;
626 		}
627 
628 		schedule();
629 	}
630 
631 	if (full)
632 		finish_wait(&work->full_waiters, &wait);
633 	else
634 		finish_wait(&work->waiters, &wait);
635 
636 	return ret;
637 }
638 
639 /**
640  * ring_buffer_poll_wait - poll on buffer input
641  * @buffer: buffer to wait on
642  * @cpu: the cpu buffer to wait on
643  * @filp: the file descriptor
644  * @poll_table: The poll descriptor
645  *
646  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
647  * as data is added to any of the @buffer's cpu buffers. Otherwise
648  * it will wait for data to be added to a specific cpu buffer.
649  *
650  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
651  * zero otherwise.
652  */
653 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
654 			  struct file *filp, poll_table *poll_table)
655 {
656 	struct ring_buffer_per_cpu *cpu_buffer;
657 	struct rb_irq_work *work;
658 
659 	if (cpu == RING_BUFFER_ALL_CPUS)
660 		work = &buffer->irq_work;
661 	else {
662 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
663 			return -EINVAL;
664 
665 		cpu_buffer = buffer->buffers[cpu];
666 		work = &cpu_buffer->irq_work;
667 	}
668 
669 	poll_wait(filp, &work->waiters, poll_table);
670 	work->waiters_pending = true;
671 	/*
672 	 * There's a tight race between setting the waiters_pending and
673 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
674 	 * is set, the next event will wake the task up, but we can get stuck
675 	 * if there's only a single event in.
676 	 *
677 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
678 	 * but adding a memory barrier to all events will cause too much of a
679 	 * performance hit in the fast path.  We only need a memory barrier when
680 	 * the buffer goes from empty to having content.  But as this race is
681 	 * extremely small, and it's not a problem if another event comes in, we
682 	 * will fix it later.
683 	 */
684 	smp_mb();
685 
686 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
687 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
688 		return POLLIN | POLLRDNORM;
689 	return 0;
690 }
691 
692 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
693 #define RB_WARN_ON(b, cond)						\
694 	({								\
695 		int _____ret = unlikely(cond);				\
696 		if (_____ret) {						\
697 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
698 				struct ring_buffer_per_cpu *__b =	\
699 					(void *)b;			\
700 				atomic_inc(&__b->buffer->record_disabled); \
701 			} else						\
702 				atomic_inc(&b->record_disabled);	\
703 			WARN_ON(1);					\
704 		}							\
705 		_____ret;						\
706 	})
707 
708 /* Up this if you want to test the TIME_EXTENTS and normalization */
709 #define DEBUG_SHIFT 0
710 
711 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
712 {
713 	/* shift to debug/test normalization and TIME_EXTENTS */
714 	return buffer->clock() << DEBUG_SHIFT;
715 }
716 
717 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
718 {
719 	u64 time;
720 
721 	preempt_disable_notrace();
722 	time = rb_time_stamp(buffer);
723 	preempt_enable_no_resched_notrace();
724 
725 	return time;
726 }
727 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
728 
729 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
730 				      int cpu, u64 *ts)
731 {
732 	/* Just stupid testing the normalize function and deltas */
733 	*ts >>= DEBUG_SHIFT;
734 }
735 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
736 
737 /*
738  * Making the ring buffer lockless makes things tricky.
739  * Although writes only happen on the CPU that they are on,
740  * and they only need to worry about interrupts. Reads can
741  * happen on any CPU.
742  *
743  * The reader page is always off the ring buffer, but when the
744  * reader finishes with a page, it needs to swap its page with
745  * a new one from the buffer. The reader needs to take from
746  * the head (writes go to the tail). But if a writer is in overwrite
747  * mode and wraps, it must push the head page forward.
748  *
749  * Here lies the problem.
750  *
751  * The reader must be careful to replace only the head page, and
752  * not another one. As described at the top of the file in the
753  * ASCII art, the reader sets its old page to point to the next
754  * page after head. It then sets the page after head to point to
755  * the old reader page. But if the writer moves the head page
756  * during this operation, the reader could end up with the tail.
757  *
758  * We use cmpxchg to help prevent this race. We also do something
759  * special with the page before head. We set the LSB to 1.
760  *
761  * When the writer must push the page forward, it will clear the
762  * bit that points to the head page, move the head, and then set
763  * the bit that points to the new head page.
764  *
765  * We also don't want an interrupt coming in and moving the head
766  * page on another writer. Thus we use the second LSB to catch
767  * that too. Thus:
768  *
769  * head->list->prev->next        bit 1          bit 0
770  *                              -------        -------
771  * Normal page                     0              0
772  * Points to head page             0              1
773  * New head page                   1              0
774  *
775  * Note we can not trust the prev pointer of the head page, because:
776  *
777  * +----+       +-----+        +-----+
778  * |    |------>|  T  |---X--->|  N  |
779  * |    |<------|     |        |     |
780  * +----+       +-----+        +-----+
781  *   ^                           ^ |
782  *   |          +-----+          | |
783  *   +----------|  R  |----------+ |
784  *              |     |<-----------+
785  *              +-----+
786  *
787  * Key:  ---X-->  HEAD flag set in pointer
788  *         T      Tail page
789  *         R      Reader page
790  *         N      Next page
791  *
792  * (see __rb_reserve_next() to see where this happens)
793  *
794  *  What the above shows is that the reader just swapped out
795  *  the reader page with a page in the buffer, but before it
796  *  could make the new header point back to the new page added
797  *  it was preempted by a writer. The writer moved forward onto
798  *  the new page added by the reader and is about to move forward
799  *  again.
800  *
801  *  You can see, it is legitimate for the previous pointer of
802  *  the head (or any page) not to point back to itself. But only
803  *  temporarially.
804  */
805 
806 #define RB_PAGE_NORMAL		0UL
807 #define RB_PAGE_HEAD		1UL
808 #define RB_PAGE_UPDATE		2UL
809 
810 
811 #define RB_FLAG_MASK		3UL
812 
813 /* PAGE_MOVED is not part of the mask */
814 #define RB_PAGE_MOVED		4UL
815 
816 /*
817  * rb_list_head - remove any bit
818  */
819 static struct list_head *rb_list_head(struct list_head *list)
820 {
821 	unsigned long val = (unsigned long)list;
822 
823 	return (struct list_head *)(val & ~RB_FLAG_MASK);
824 }
825 
826 /*
827  * rb_is_head_page - test if the given page is the head page
828  *
829  * Because the reader may move the head_page pointer, we can
830  * not trust what the head page is (it may be pointing to
831  * the reader page). But if the next page is a header page,
832  * its flags will be non zero.
833  */
834 static inline int
835 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
836 		struct buffer_page *page, struct list_head *list)
837 {
838 	unsigned long val;
839 
840 	val = (unsigned long)list->next;
841 
842 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
843 		return RB_PAGE_MOVED;
844 
845 	return val & RB_FLAG_MASK;
846 }
847 
848 /*
849  * rb_is_reader_page
850  *
851  * The unique thing about the reader page, is that, if the
852  * writer is ever on it, the previous pointer never points
853  * back to the reader page.
854  */
855 static int rb_is_reader_page(struct buffer_page *page)
856 {
857 	struct list_head *list = page->list.prev;
858 
859 	return rb_list_head(list->next) != &page->list;
860 }
861 
862 /*
863  * rb_set_list_to_head - set a list_head to be pointing to head.
864  */
865 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
866 				struct list_head *list)
867 {
868 	unsigned long *ptr;
869 
870 	ptr = (unsigned long *)&list->next;
871 	*ptr |= RB_PAGE_HEAD;
872 	*ptr &= ~RB_PAGE_UPDATE;
873 }
874 
875 /*
876  * rb_head_page_activate - sets up head page
877  */
878 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
879 {
880 	struct buffer_page *head;
881 
882 	head = cpu_buffer->head_page;
883 	if (!head)
884 		return;
885 
886 	/*
887 	 * Set the previous list pointer to have the HEAD flag.
888 	 */
889 	rb_set_list_to_head(cpu_buffer, head->list.prev);
890 }
891 
892 static void rb_list_head_clear(struct list_head *list)
893 {
894 	unsigned long *ptr = (unsigned long *)&list->next;
895 
896 	*ptr &= ~RB_FLAG_MASK;
897 }
898 
899 /*
900  * rb_head_page_dactivate - clears head page ptr (for free list)
901  */
902 static void
903 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
904 {
905 	struct list_head *hd;
906 
907 	/* Go through the whole list and clear any pointers found. */
908 	rb_list_head_clear(cpu_buffer->pages);
909 
910 	list_for_each(hd, cpu_buffer->pages)
911 		rb_list_head_clear(hd);
912 }
913 
914 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
915 			    struct buffer_page *head,
916 			    struct buffer_page *prev,
917 			    int old_flag, int new_flag)
918 {
919 	struct list_head *list;
920 	unsigned long val = (unsigned long)&head->list;
921 	unsigned long ret;
922 
923 	list = &prev->list;
924 
925 	val &= ~RB_FLAG_MASK;
926 
927 	ret = cmpxchg((unsigned long *)&list->next,
928 		      val | old_flag, val | new_flag);
929 
930 	/* check if the reader took the page */
931 	if ((ret & ~RB_FLAG_MASK) != val)
932 		return RB_PAGE_MOVED;
933 
934 	return ret & RB_FLAG_MASK;
935 }
936 
937 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
938 				   struct buffer_page *head,
939 				   struct buffer_page *prev,
940 				   int old_flag)
941 {
942 	return rb_head_page_set(cpu_buffer, head, prev,
943 				old_flag, RB_PAGE_UPDATE);
944 }
945 
946 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
947 				 struct buffer_page *head,
948 				 struct buffer_page *prev,
949 				 int old_flag)
950 {
951 	return rb_head_page_set(cpu_buffer, head, prev,
952 				old_flag, RB_PAGE_HEAD);
953 }
954 
955 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
956 				   struct buffer_page *head,
957 				   struct buffer_page *prev,
958 				   int old_flag)
959 {
960 	return rb_head_page_set(cpu_buffer, head, prev,
961 				old_flag, RB_PAGE_NORMAL);
962 }
963 
964 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
965 			       struct buffer_page **bpage)
966 {
967 	struct list_head *p = rb_list_head((*bpage)->list.next);
968 
969 	*bpage = list_entry(p, struct buffer_page, list);
970 }
971 
972 static struct buffer_page *
973 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
974 {
975 	struct buffer_page *head;
976 	struct buffer_page *page;
977 	struct list_head *list;
978 	int i;
979 
980 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
981 		return NULL;
982 
983 	/* sanity check */
984 	list = cpu_buffer->pages;
985 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
986 		return NULL;
987 
988 	page = head = cpu_buffer->head_page;
989 	/*
990 	 * It is possible that the writer moves the header behind
991 	 * where we started, and we miss in one loop.
992 	 * A second loop should grab the header, but we'll do
993 	 * three loops just because I'm paranoid.
994 	 */
995 	for (i = 0; i < 3; i++) {
996 		do {
997 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
998 				cpu_buffer->head_page = page;
999 				return page;
1000 			}
1001 			rb_inc_page(cpu_buffer, &page);
1002 		} while (page != head);
1003 	}
1004 
1005 	RB_WARN_ON(cpu_buffer, 1);
1006 
1007 	return NULL;
1008 }
1009 
1010 static int rb_head_page_replace(struct buffer_page *old,
1011 				struct buffer_page *new)
1012 {
1013 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1014 	unsigned long val;
1015 	unsigned long ret;
1016 
1017 	val = *ptr & ~RB_FLAG_MASK;
1018 	val |= RB_PAGE_HEAD;
1019 
1020 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1021 
1022 	return ret == val;
1023 }
1024 
1025 /*
1026  * rb_tail_page_update - move the tail page forward
1027  *
1028  * Returns 1 if moved tail page, 0 if someone else did.
1029  */
1030 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1031 			       struct buffer_page *tail_page,
1032 			       struct buffer_page *next_page)
1033 {
1034 	struct buffer_page *old_tail;
1035 	unsigned long old_entries;
1036 	unsigned long old_write;
1037 	int ret = 0;
1038 
1039 	/*
1040 	 * The tail page now needs to be moved forward.
1041 	 *
1042 	 * We need to reset the tail page, but without messing
1043 	 * with possible erasing of data brought in by interrupts
1044 	 * that have moved the tail page and are currently on it.
1045 	 *
1046 	 * We add a counter to the write field to denote this.
1047 	 */
1048 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1049 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1050 
1051 	/*
1052 	 * Just make sure we have seen our old_write and synchronize
1053 	 * with any interrupts that come in.
1054 	 */
1055 	barrier();
1056 
1057 	/*
1058 	 * If the tail page is still the same as what we think
1059 	 * it is, then it is up to us to update the tail
1060 	 * pointer.
1061 	 */
1062 	if (tail_page == cpu_buffer->tail_page) {
1063 		/* Zero the write counter */
1064 		unsigned long val = old_write & ~RB_WRITE_MASK;
1065 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1066 
1067 		/*
1068 		 * This will only succeed if an interrupt did
1069 		 * not come in and change it. In which case, we
1070 		 * do not want to modify it.
1071 		 *
1072 		 * We add (void) to let the compiler know that we do not care
1073 		 * about the return value of these functions. We use the
1074 		 * cmpxchg to only update if an interrupt did not already
1075 		 * do it for us. If the cmpxchg fails, we don't care.
1076 		 */
1077 		(void)local_cmpxchg(&next_page->write, old_write, val);
1078 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1079 
1080 		/*
1081 		 * No need to worry about races with clearing out the commit.
1082 		 * it only can increment when a commit takes place. But that
1083 		 * only happens in the outer most nested commit.
1084 		 */
1085 		local_set(&next_page->page->commit, 0);
1086 
1087 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1088 				   tail_page, next_page);
1089 
1090 		if (old_tail == tail_page)
1091 			ret = 1;
1092 	}
1093 
1094 	return ret;
1095 }
1096 
1097 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1098 			  struct buffer_page *bpage)
1099 {
1100 	unsigned long val = (unsigned long)bpage;
1101 
1102 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1103 		return 1;
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  * rb_check_list - make sure a pointer to a list has the last bits zero
1110  */
1111 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1112 			 struct list_head *list)
1113 {
1114 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1115 		return 1;
1116 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1117 		return 1;
1118 	return 0;
1119 }
1120 
1121 /**
1122  * rb_check_pages - integrity check of buffer pages
1123  * @cpu_buffer: CPU buffer with pages to test
1124  *
1125  * As a safety measure we check to make sure the data pages have not
1126  * been corrupted.
1127  */
1128 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1129 {
1130 	struct list_head *head = cpu_buffer->pages;
1131 	struct buffer_page *bpage, *tmp;
1132 
1133 	/* Reset the head page if it exists */
1134 	if (cpu_buffer->head_page)
1135 		rb_set_head_page(cpu_buffer);
1136 
1137 	rb_head_page_deactivate(cpu_buffer);
1138 
1139 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1140 		return -1;
1141 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1142 		return -1;
1143 
1144 	if (rb_check_list(cpu_buffer, head))
1145 		return -1;
1146 
1147 	list_for_each_entry_safe(bpage, tmp, head, list) {
1148 		if (RB_WARN_ON(cpu_buffer,
1149 			       bpage->list.next->prev != &bpage->list))
1150 			return -1;
1151 		if (RB_WARN_ON(cpu_buffer,
1152 			       bpage->list.prev->next != &bpage->list))
1153 			return -1;
1154 		if (rb_check_list(cpu_buffer, &bpage->list))
1155 			return -1;
1156 	}
1157 
1158 	rb_head_page_activate(cpu_buffer);
1159 
1160 	return 0;
1161 }
1162 
1163 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1164 {
1165 	int i;
1166 	struct buffer_page *bpage, *tmp;
1167 
1168 	for (i = 0; i < nr_pages; i++) {
1169 		struct page *page;
1170 		/*
1171 		 * __GFP_NORETRY flag makes sure that the allocation fails
1172 		 * gracefully without invoking oom-killer and the system is
1173 		 * not destabilized.
1174 		 */
1175 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1176 				    GFP_KERNEL | __GFP_NORETRY,
1177 				    cpu_to_node(cpu));
1178 		if (!bpage)
1179 			goto free_pages;
1180 
1181 		list_add(&bpage->list, pages);
1182 
1183 		page = alloc_pages_node(cpu_to_node(cpu),
1184 					GFP_KERNEL | __GFP_NORETRY, 0);
1185 		if (!page)
1186 			goto free_pages;
1187 		bpage->page = page_address(page);
1188 		rb_init_page(bpage->page);
1189 	}
1190 
1191 	return 0;
1192 
1193 free_pages:
1194 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1195 		list_del_init(&bpage->list);
1196 		free_buffer_page(bpage);
1197 	}
1198 
1199 	return -ENOMEM;
1200 }
1201 
1202 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1203 			     unsigned nr_pages)
1204 {
1205 	LIST_HEAD(pages);
1206 
1207 	WARN_ON(!nr_pages);
1208 
1209 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1210 		return -ENOMEM;
1211 
1212 	/*
1213 	 * The ring buffer page list is a circular list that does not
1214 	 * start and end with a list head. All page list items point to
1215 	 * other pages.
1216 	 */
1217 	cpu_buffer->pages = pages.next;
1218 	list_del(&pages);
1219 
1220 	cpu_buffer->nr_pages = nr_pages;
1221 
1222 	rb_check_pages(cpu_buffer);
1223 
1224 	return 0;
1225 }
1226 
1227 static struct ring_buffer_per_cpu *
1228 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1229 {
1230 	struct ring_buffer_per_cpu *cpu_buffer;
1231 	struct buffer_page *bpage;
1232 	struct page *page;
1233 	int ret;
1234 
1235 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1236 				  GFP_KERNEL, cpu_to_node(cpu));
1237 	if (!cpu_buffer)
1238 		return NULL;
1239 
1240 	cpu_buffer->cpu = cpu;
1241 	cpu_buffer->buffer = buffer;
1242 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1243 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1244 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1245 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1246 	init_completion(&cpu_buffer->update_done);
1247 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1248 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1249 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1250 
1251 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1252 			    GFP_KERNEL, cpu_to_node(cpu));
1253 	if (!bpage)
1254 		goto fail_free_buffer;
1255 
1256 	rb_check_bpage(cpu_buffer, bpage);
1257 
1258 	cpu_buffer->reader_page = bpage;
1259 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1260 	if (!page)
1261 		goto fail_free_reader;
1262 	bpage->page = page_address(page);
1263 	rb_init_page(bpage->page);
1264 
1265 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1266 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1267 
1268 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1269 	if (ret < 0)
1270 		goto fail_free_reader;
1271 
1272 	cpu_buffer->head_page
1273 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1274 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1275 
1276 	rb_head_page_activate(cpu_buffer);
1277 
1278 	return cpu_buffer;
1279 
1280  fail_free_reader:
1281 	free_buffer_page(cpu_buffer->reader_page);
1282 
1283  fail_free_buffer:
1284 	kfree(cpu_buffer);
1285 	return NULL;
1286 }
1287 
1288 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1289 {
1290 	struct list_head *head = cpu_buffer->pages;
1291 	struct buffer_page *bpage, *tmp;
1292 
1293 	free_buffer_page(cpu_buffer->reader_page);
1294 
1295 	rb_head_page_deactivate(cpu_buffer);
1296 
1297 	if (head) {
1298 		list_for_each_entry_safe(bpage, tmp, head, list) {
1299 			list_del_init(&bpage->list);
1300 			free_buffer_page(bpage);
1301 		}
1302 		bpage = list_entry(head, struct buffer_page, list);
1303 		free_buffer_page(bpage);
1304 	}
1305 
1306 	kfree(cpu_buffer);
1307 }
1308 
1309 #ifdef CONFIG_HOTPLUG_CPU
1310 static int rb_cpu_notify(struct notifier_block *self,
1311 			 unsigned long action, void *hcpu);
1312 #endif
1313 
1314 /**
1315  * __ring_buffer_alloc - allocate a new ring_buffer
1316  * @size: the size in bytes per cpu that is needed.
1317  * @flags: attributes to set for the ring buffer.
1318  *
1319  * Currently the only flag that is available is the RB_FL_OVERWRITE
1320  * flag. This flag means that the buffer will overwrite old data
1321  * when the buffer wraps. If this flag is not set, the buffer will
1322  * drop data when the tail hits the head.
1323  */
1324 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1325 					struct lock_class_key *key)
1326 {
1327 	struct ring_buffer *buffer;
1328 	int bsize;
1329 	int cpu, nr_pages;
1330 
1331 	/* keep it in its own cache line */
1332 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1333 			 GFP_KERNEL);
1334 	if (!buffer)
1335 		return NULL;
1336 
1337 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1338 		goto fail_free_buffer;
1339 
1340 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1341 	buffer->flags = flags;
1342 	buffer->clock = trace_clock_local;
1343 	buffer->reader_lock_key = key;
1344 
1345 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1346 	init_waitqueue_head(&buffer->irq_work.waiters);
1347 
1348 	/* need at least two pages */
1349 	if (nr_pages < 2)
1350 		nr_pages = 2;
1351 
1352 	/*
1353 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1354 	 * in early initcall, it will not be notified of secondary cpus.
1355 	 * In that off case, we need to allocate for all possible cpus.
1356 	 */
1357 #ifdef CONFIG_HOTPLUG_CPU
1358 	cpu_notifier_register_begin();
1359 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1360 #else
1361 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1362 #endif
1363 	buffer->cpus = nr_cpu_ids;
1364 
1365 	bsize = sizeof(void *) * nr_cpu_ids;
1366 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1367 				  GFP_KERNEL);
1368 	if (!buffer->buffers)
1369 		goto fail_free_cpumask;
1370 
1371 	for_each_buffer_cpu(buffer, cpu) {
1372 		buffer->buffers[cpu] =
1373 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1374 		if (!buffer->buffers[cpu])
1375 			goto fail_free_buffers;
1376 	}
1377 
1378 #ifdef CONFIG_HOTPLUG_CPU
1379 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1380 	buffer->cpu_notify.priority = 0;
1381 	__register_cpu_notifier(&buffer->cpu_notify);
1382 	cpu_notifier_register_done();
1383 #endif
1384 
1385 	mutex_init(&buffer->mutex);
1386 
1387 	return buffer;
1388 
1389  fail_free_buffers:
1390 	for_each_buffer_cpu(buffer, cpu) {
1391 		if (buffer->buffers[cpu])
1392 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1393 	}
1394 	kfree(buffer->buffers);
1395 
1396  fail_free_cpumask:
1397 	free_cpumask_var(buffer->cpumask);
1398 #ifdef CONFIG_HOTPLUG_CPU
1399 	cpu_notifier_register_done();
1400 #endif
1401 
1402  fail_free_buffer:
1403 	kfree(buffer);
1404 	return NULL;
1405 }
1406 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1407 
1408 /**
1409  * ring_buffer_free - free a ring buffer.
1410  * @buffer: the buffer to free.
1411  */
1412 void
1413 ring_buffer_free(struct ring_buffer *buffer)
1414 {
1415 	int cpu;
1416 
1417 #ifdef CONFIG_HOTPLUG_CPU
1418 	cpu_notifier_register_begin();
1419 	__unregister_cpu_notifier(&buffer->cpu_notify);
1420 #endif
1421 
1422 	for_each_buffer_cpu(buffer, cpu)
1423 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1424 
1425 #ifdef CONFIG_HOTPLUG_CPU
1426 	cpu_notifier_register_done();
1427 #endif
1428 
1429 	kfree(buffer->buffers);
1430 	free_cpumask_var(buffer->cpumask);
1431 
1432 	kfree(buffer);
1433 }
1434 EXPORT_SYMBOL_GPL(ring_buffer_free);
1435 
1436 void ring_buffer_set_clock(struct ring_buffer *buffer,
1437 			   u64 (*clock)(void))
1438 {
1439 	buffer->clock = clock;
1440 }
1441 
1442 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1443 
1444 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1445 {
1446 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1447 }
1448 
1449 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1450 {
1451 	return local_read(&bpage->write) & RB_WRITE_MASK;
1452 }
1453 
1454 static int
1455 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1456 {
1457 	struct list_head *tail_page, *to_remove, *next_page;
1458 	struct buffer_page *to_remove_page, *tmp_iter_page;
1459 	struct buffer_page *last_page, *first_page;
1460 	unsigned int nr_removed;
1461 	unsigned long head_bit;
1462 	int page_entries;
1463 
1464 	head_bit = 0;
1465 
1466 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1467 	atomic_inc(&cpu_buffer->record_disabled);
1468 	/*
1469 	 * We don't race with the readers since we have acquired the reader
1470 	 * lock. We also don't race with writers after disabling recording.
1471 	 * This makes it easy to figure out the first and the last page to be
1472 	 * removed from the list. We unlink all the pages in between including
1473 	 * the first and last pages. This is done in a busy loop so that we
1474 	 * lose the least number of traces.
1475 	 * The pages are freed after we restart recording and unlock readers.
1476 	 */
1477 	tail_page = &cpu_buffer->tail_page->list;
1478 
1479 	/*
1480 	 * tail page might be on reader page, we remove the next page
1481 	 * from the ring buffer
1482 	 */
1483 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1484 		tail_page = rb_list_head(tail_page->next);
1485 	to_remove = tail_page;
1486 
1487 	/* start of pages to remove */
1488 	first_page = list_entry(rb_list_head(to_remove->next),
1489 				struct buffer_page, list);
1490 
1491 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1492 		to_remove = rb_list_head(to_remove)->next;
1493 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1494 	}
1495 
1496 	next_page = rb_list_head(to_remove)->next;
1497 
1498 	/*
1499 	 * Now we remove all pages between tail_page and next_page.
1500 	 * Make sure that we have head_bit value preserved for the
1501 	 * next page
1502 	 */
1503 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1504 						head_bit);
1505 	next_page = rb_list_head(next_page);
1506 	next_page->prev = tail_page;
1507 
1508 	/* make sure pages points to a valid page in the ring buffer */
1509 	cpu_buffer->pages = next_page;
1510 
1511 	/* update head page */
1512 	if (head_bit)
1513 		cpu_buffer->head_page = list_entry(next_page,
1514 						struct buffer_page, list);
1515 
1516 	/*
1517 	 * change read pointer to make sure any read iterators reset
1518 	 * themselves
1519 	 */
1520 	cpu_buffer->read = 0;
1521 
1522 	/* pages are removed, resume tracing and then free the pages */
1523 	atomic_dec(&cpu_buffer->record_disabled);
1524 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1525 
1526 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1527 
1528 	/* last buffer page to remove */
1529 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1530 				list);
1531 	tmp_iter_page = first_page;
1532 
1533 	do {
1534 		to_remove_page = tmp_iter_page;
1535 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1536 
1537 		/* update the counters */
1538 		page_entries = rb_page_entries(to_remove_page);
1539 		if (page_entries) {
1540 			/*
1541 			 * If something was added to this page, it was full
1542 			 * since it is not the tail page. So we deduct the
1543 			 * bytes consumed in ring buffer from here.
1544 			 * Increment overrun to account for the lost events.
1545 			 */
1546 			local_add(page_entries, &cpu_buffer->overrun);
1547 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1548 		}
1549 
1550 		/*
1551 		 * We have already removed references to this list item, just
1552 		 * free up the buffer_page and its page
1553 		 */
1554 		free_buffer_page(to_remove_page);
1555 		nr_removed--;
1556 
1557 	} while (to_remove_page != last_page);
1558 
1559 	RB_WARN_ON(cpu_buffer, nr_removed);
1560 
1561 	return nr_removed == 0;
1562 }
1563 
1564 static int
1565 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1566 {
1567 	struct list_head *pages = &cpu_buffer->new_pages;
1568 	int retries, success;
1569 
1570 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1571 	/*
1572 	 * We are holding the reader lock, so the reader page won't be swapped
1573 	 * in the ring buffer. Now we are racing with the writer trying to
1574 	 * move head page and the tail page.
1575 	 * We are going to adapt the reader page update process where:
1576 	 * 1. We first splice the start and end of list of new pages between
1577 	 *    the head page and its previous page.
1578 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1579 	 *    start of new pages list.
1580 	 * 3. Finally, we update the head->prev to the end of new list.
1581 	 *
1582 	 * We will try this process 10 times, to make sure that we don't keep
1583 	 * spinning.
1584 	 */
1585 	retries = 10;
1586 	success = 0;
1587 	while (retries--) {
1588 		struct list_head *head_page, *prev_page, *r;
1589 		struct list_head *last_page, *first_page;
1590 		struct list_head *head_page_with_bit;
1591 
1592 		head_page = &rb_set_head_page(cpu_buffer)->list;
1593 		if (!head_page)
1594 			break;
1595 		prev_page = head_page->prev;
1596 
1597 		first_page = pages->next;
1598 		last_page  = pages->prev;
1599 
1600 		head_page_with_bit = (struct list_head *)
1601 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1602 
1603 		last_page->next = head_page_with_bit;
1604 		first_page->prev = prev_page;
1605 
1606 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1607 
1608 		if (r == head_page_with_bit) {
1609 			/*
1610 			 * yay, we replaced the page pointer to our new list,
1611 			 * now, we just have to update to head page's prev
1612 			 * pointer to point to end of list
1613 			 */
1614 			head_page->prev = last_page;
1615 			success = 1;
1616 			break;
1617 		}
1618 	}
1619 
1620 	if (success)
1621 		INIT_LIST_HEAD(pages);
1622 	/*
1623 	 * If we weren't successful in adding in new pages, warn and stop
1624 	 * tracing
1625 	 */
1626 	RB_WARN_ON(cpu_buffer, !success);
1627 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1628 
1629 	/* free pages if they weren't inserted */
1630 	if (!success) {
1631 		struct buffer_page *bpage, *tmp;
1632 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1633 					 list) {
1634 			list_del_init(&bpage->list);
1635 			free_buffer_page(bpage);
1636 		}
1637 	}
1638 	return success;
1639 }
1640 
1641 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1642 {
1643 	int success;
1644 
1645 	if (cpu_buffer->nr_pages_to_update > 0)
1646 		success = rb_insert_pages(cpu_buffer);
1647 	else
1648 		success = rb_remove_pages(cpu_buffer,
1649 					-cpu_buffer->nr_pages_to_update);
1650 
1651 	if (success)
1652 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1653 }
1654 
1655 static void update_pages_handler(struct work_struct *work)
1656 {
1657 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1658 			struct ring_buffer_per_cpu, update_pages_work);
1659 	rb_update_pages(cpu_buffer);
1660 	complete(&cpu_buffer->update_done);
1661 }
1662 
1663 /**
1664  * ring_buffer_resize - resize the ring buffer
1665  * @buffer: the buffer to resize.
1666  * @size: the new size.
1667  * @cpu_id: the cpu buffer to resize
1668  *
1669  * Minimum size is 2 * BUF_PAGE_SIZE.
1670  *
1671  * Returns 0 on success and < 0 on failure.
1672  */
1673 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1674 			int cpu_id)
1675 {
1676 	struct ring_buffer_per_cpu *cpu_buffer;
1677 	unsigned nr_pages;
1678 	int cpu, err = 0;
1679 
1680 	/*
1681 	 * Always succeed at resizing a non-existent buffer:
1682 	 */
1683 	if (!buffer)
1684 		return size;
1685 
1686 	/* Make sure the requested buffer exists */
1687 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1688 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1689 		return size;
1690 
1691 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1692 	size *= BUF_PAGE_SIZE;
1693 
1694 	/* we need a minimum of two pages */
1695 	if (size < BUF_PAGE_SIZE * 2)
1696 		size = BUF_PAGE_SIZE * 2;
1697 
1698 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1699 
1700 	/*
1701 	 * Don't succeed if resizing is disabled, as a reader might be
1702 	 * manipulating the ring buffer and is expecting a sane state while
1703 	 * this is true.
1704 	 */
1705 	if (atomic_read(&buffer->resize_disabled))
1706 		return -EBUSY;
1707 
1708 	/* prevent another thread from changing buffer sizes */
1709 	mutex_lock(&buffer->mutex);
1710 
1711 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1712 		/* calculate the pages to update */
1713 		for_each_buffer_cpu(buffer, cpu) {
1714 			cpu_buffer = buffer->buffers[cpu];
1715 
1716 			cpu_buffer->nr_pages_to_update = nr_pages -
1717 							cpu_buffer->nr_pages;
1718 			/*
1719 			 * nothing more to do for removing pages or no update
1720 			 */
1721 			if (cpu_buffer->nr_pages_to_update <= 0)
1722 				continue;
1723 			/*
1724 			 * to add pages, make sure all new pages can be
1725 			 * allocated without receiving ENOMEM
1726 			 */
1727 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1729 						&cpu_buffer->new_pages, cpu)) {
1730 				/* not enough memory for new pages */
1731 				err = -ENOMEM;
1732 				goto out_err;
1733 			}
1734 		}
1735 
1736 		get_online_cpus();
1737 		/*
1738 		 * Fire off all the required work handlers
1739 		 * We can't schedule on offline CPUs, but it's not necessary
1740 		 * since we can change their buffer sizes without any race.
1741 		 */
1742 		for_each_buffer_cpu(buffer, cpu) {
1743 			cpu_buffer = buffer->buffers[cpu];
1744 			if (!cpu_buffer->nr_pages_to_update)
1745 				continue;
1746 
1747 			/* Can't run something on an offline CPU. */
1748 			if (!cpu_online(cpu)) {
1749 				rb_update_pages(cpu_buffer);
1750 				cpu_buffer->nr_pages_to_update = 0;
1751 			} else {
1752 				schedule_work_on(cpu,
1753 						&cpu_buffer->update_pages_work);
1754 			}
1755 		}
1756 
1757 		/* wait for all the updates to complete */
1758 		for_each_buffer_cpu(buffer, cpu) {
1759 			cpu_buffer = buffer->buffers[cpu];
1760 			if (!cpu_buffer->nr_pages_to_update)
1761 				continue;
1762 
1763 			if (cpu_online(cpu))
1764 				wait_for_completion(&cpu_buffer->update_done);
1765 			cpu_buffer->nr_pages_to_update = 0;
1766 		}
1767 
1768 		put_online_cpus();
1769 	} else {
1770 		/* Make sure this CPU has been intitialized */
1771 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1772 			goto out;
1773 
1774 		cpu_buffer = buffer->buffers[cpu_id];
1775 
1776 		if (nr_pages == cpu_buffer->nr_pages)
1777 			goto out;
1778 
1779 		cpu_buffer->nr_pages_to_update = nr_pages -
1780 						cpu_buffer->nr_pages;
1781 
1782 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1783 		if (cpu_buffer->nr_pages_to_update > 0 &&
1784 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1785 					    &cpu_buffer->new_pages, cpu_id)) {
1786 			err = -ENOMEM;
1787 			goto out_err;
1788 		}
1789 
1790 		get_online_cpus();
1791 
1792 		/* Can't run something on an offline CPU. */
1793 		if (!cpu_online(cpu_id))
1794 			rb_update_pages(cpu_buffer);
1795 		else {
1796 			schedule_work_on(cpu_id,
1797 					 &cpu_buffer->update_pages_work);
1798 			wait_for_completion(&cpu_buffer->update_done);
1799 		}
1800 
1801 		cpu_buffer->nr_pages_to_update = 0;
1802 		put_online_cpus();
1803 	}
1804 
1805  out:
1806 	/*
1807 	 * The ring buffer resize can happen with the ring buffer
1808 	 * enabled, so that the update disturbs the tracing as little
1809 	 * as possible. But if the buffer is disabled, we do not need
1810 	 * to worry about that, and we can take the time to verify
1811 	 * that the buffer is not corrupt.
1812 	 */
1813 	if (atomic_read(&buffer->record_disabled)) {
1814 		atomic_inc(&buffer->record_disabled);
1815 		/*
1816 		 * Even though the buffer was disabled, we must make sure
1817 		 * that it is truly disabled before calling rb_check_pages.
1818 		 * There could have been a race between checking
1819 		 * record_disable and incrementing it.
1820 		 */
1821 		synchronize_sched();
1822 		for_each_buffer_cpu(buffer, cpu) {
1823 			cpu_buffer = buffer->buffers[cpu];
1824 			rb_check_pages(cpu_buffer);
1825 		}
1826 		atomic_dec(&buffer->record_disabled);
1827 	}
1828 
1829 	mutex_unlock(&buffer->mutex);
1830 	return size;
1831 
1832  out_err:
1833 	for_each_buffer_cpu(buffer, cpu) {
1834 		struct buffer_page *bpage, *tmp;
1835 
1836 		cpu_buffer = buffer->buffers[cpu];
1837 		cpu_buffer->nr_pages_to_update = 0;
1838 
1839 		if (list_empty(&cpu_buffer->new_pages))
1840 			continue;
1841 
1842 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1843 					list) {
1844 			list_del_init(&bpage->list);
1845 			free_buffer_page(bpage);
1846 		}
1847 	}
1848 	mutex_unlock(&buffer->mutex);
1849 	return err;
1850 }
1851 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1852 
1853 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1854 {
1855 	mutex_lock(&buffer->mutex);
1856 	if (val)
1857 		buffer->flags |= RB_FL_OVERWRITE;
1858 	else
1859 		buffer->flags &= ~RB_FL_OVERWRITE;
1860 	mutex_unlock(&buffer->mutex);
1861 }
1862 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1863 
1864 static inline void *
1865 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1866 {
1867 	return bpage->data + index;
1868 }
1869 
1870 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1871 {
1872 	return bpage->page->data + index;
1873 }
1874 
1875 static inline struct ring_buffer_event *
1876 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1877 {
1878 	return __rb_page_index(cpu_buffer->reader_page,
1879 			       cpu_buffer->reader_page->read);
1880 }
1881 
1882 static inline struct ring_buffer_event *
1883 rb_iter_head_event(struct ring_buffer_iter *iter)
1884 {
1885 	return __rb_page_index(iter->head_page, iter->head);
1886 }
1887 
1888 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1889 {
1890 	return local_read(&bpage->page->commit);
1891 }
1892 
1893 /* Size is determined by what has been committed */
1894 static inline unsigned rb_page_size(struct buffer_page *bpage)
1895 {
1896 	return rb_page_commit(bpage);
1897 }
1898 
1899 static inline unsigned
1900 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1901 {
1902 	return rb_page_commit(cpu_buffer->commit_page);
1903 }
1904 
1905 static inline unsigned
1906 rb_event_index(struct ring_buffer_event *event)
1907 {
1908 	unsigned long addr = (unsigned long)event;
1909 
1910 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1911 }
1912 
1913 static inline int
1914 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1915 		   struct ring_buffer_event *event)
1916 {
1917 	unsigned long addr = (unsigned long)event;
1918 	unsigned long index;
1919 
1920 	index = rb_event_index(event);
1921 	addr &= PAGE_MASK;
1922 
1923 	return cpu_buffer->commit_page->page == (void *)addr &&
1924 		rb_commit_index(cpu_buffer) == index;
1925 }
1926 
1927 static void
1928 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1929 {
1930 	unsigned long max_count;
1931 
1932 	/*
1933 	 * We only race with interrupts and NMIs on this CPU.
1934 	 * If we own the commit event, then we can commit
1935 	 * all others that interrupted us, since the interruptions
1936 	 * are in stack format (they finish before they come
1937 	 * back to us). This allows us to do a simple loop to
1938 	 * assign the commit to the tail.
1939 	 */
1940  again:
1941 	max_count = cpu_buffer->nr_pages * 100;
1942 
1943 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1944 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1945 			return;
1946 		if (RB_WARN_ON(cpu_buffer,
1947 			       rb_is_reader_page(cpu_buffer->tail_page)))
1948 			return;
1949 		local_set(&cpu_buffer->commit_page->page->commit,
1950 			  rb_page_write(cpu_buffer->commit_page));
1951 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1952 		cpu_buffer->write_stamp =
1953 			cpu_buffer->commit_page->page->time_stamp;
1954 		/* add barrier to keep gcc from optimizing too much */
1955 		barrier();
1956 	}
1957 	while (rb_commit_index(cpu_buffer) !=
1958 	       rb_page_write(cpu_buffer->commit_page)) {
1959 
1960 		local_set(&cpu_buffer->commit_page->page->commit,
1961 			  rb_page_write(cpu_buffer->commit_page));
1962 		RB_WARN_ON(cpu_buffer,
1963 			   local_read(&cpu_buffer->commit_page->page->commit) &
1964 			   ~RB_WRITE_MASK);
1965 		barrier();
1966 	}
1967 
1968 	/* again, keep gcc from optimizing */
1969 	barrier();
1970 
1971 	/*
1972 	 * If an interrupt came in just after the first while loop
1973 	 * and pushed the tail page forward, we will be left with
1974 	 * a dangling commit that will never go forward.
1975 	 */
1976 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1977 		goto again;
1978 }
1979 
1980 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1981 {
1982 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1983 	cpu_buffer->reader_page->read = 0;
1984 }
1985 
1986 static void rb_inc_iter(struct ring_buffer_iter *iter)
1987 {
1988 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1989 
1990 	/*
1991 	 * The iterator could be on the reader page (it starts there).
1992 	 * But the head could have moved, since the reader was
1993 	 * found. Check for this case and assign the iterator
1994 	 * to the head page instead of next.
1995 	 */
1996 	if (iter->head_page == cpu_buffer->reader_page)
1997 		iter->head_page = rb_set_head_page(cpu_buffer);
1998 	else
1999 		rb_inc_page(cpu_buffer, &iter->head_page);
2000 
2001 	iter->read_stamp = iter->head_page->page->time_stamp;
2002 	iter->head = 0;
2003 }
2004 
2005 /* Slow path, do not inline */
2006 static noinline struct ring_buffer_event *
2007 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2008 {
2009 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2010 
2011 	/* Not the first event on the page? */
2012 	if (rb_event_index(event)) {
2013 		event->time_delta = delta & TS_MASK;
2014 		event->array[0] = delta >> TS_SHIFT;
2015 	} else {
2016 		/* nope, just zero it */
2017 		event->time_delta = 0;
2018 		event->array[0] = 0;
2019 	}
2020 
2021 	return skip_time_extend(event);
2022 }
2023 
2024 /**
2025  * rb_update_event - update event type and data
2026  * @event: the event to update
2027  * @type: the type of event
2028  * @length: the size of the event field in the ring buffer
2029  *
2030  * Update the type and data fields of the event. The length
2031  * is the actual size that is written to the ring buffer,
2032  * and with this, we can determine what to place into the
2033  * data field.
2034  */
2035 static void
2036 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2037 		struct ring_buffer_event *event, unsigned length,
2038 		int add_timestamp, u64 delta)
2039 {
2040 	/* Only a commit updates the timestamp */
2041 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2042 		delta = 0;
2043 
2044 	/*
2045 	 * If we need to add a timestamp, then we
2046 	 * add it to the start of the resevered space.
2047 	 */
2048 	if (unlikely(add_timestamp)) {
2049 		event = rb_add_time_stamp(event, delta);
2050 		length -= RB_LEN_TIME_EXTEND;
2051 		delta = 0;
2052 	}
2053 
2054 	event->time_delta = delta;
2055 	length -= RB_EVNT_HDR_SIZE;
2056 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2057 		event->type_len = 0;
2058 		event->array[0] = length;
2059 	} else
2060 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2061 }
2062 
2063 /*
2064  * rb_handle_head_page - writer hit the head page
2065  *
2066  * Returns: +1 to retry page
2067  *           0 to continue
2068  *          -1 on error
2069  */
2070 static int
2071 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2072 		    struct buffer_page *tail_page,
2073 		    struct buffer_page *next_page)
2074 {
2075 	struct buffer_page *new_head;
2076 	int entries;
2077 	int type;
2078 	int ret;
2079 
2080 	entries = rb_page_entries(next_page);
2081 
2082 	/*
2083 	 * The hard part is here. We need to move the head
2084 	 * forward, and protect against both readers on
2085 	 * other CPUs and writers coming in via interrupts.
2086 	 */
2087 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2088 				       RB_PAGE_HEAD);
2089 
2090 	/*
2091 	 * type can be one of four:
2092 	 *  NORMAL - an interrupt already moved it for us
2093 	 *  HEAD   - we are the first to get here.
2094 	 *  UPDATE - we are the interrupt interrupting
2095 	 *           a current move.
2096 	 *  MOVED  - a reader on another CPU moved the next
2097 	 *           pointer to its reader page. Give up
2098 	 *           and try again.
2099 	 */
2100 
2101 	switch (type) {
2102 	case RB_PAGE_HEAD:
2103 		/*
2104 		 * We changed the head to UPDATE, thus
2105 		 * it is our responsibility to update
2106 		 * the counters.
2107 		 */
2108 		local_add(entries, &cpu_buffer->overrun);
2109 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2110 
2111 		/*
2112 		 * The entries will be zeroed out when we move the
2113 		 * tail page.
2114 		 */
2115 
2116 		/* still more to do */
2117 		break;
2118 
2119 	case RB_PAGE_UPDATE:
2120 		/*
2121 		 * This is an interrupt that interrupt the
2122 		 * previous update. Still more to do.
2123 		 */
2124 		break;
2125 	case RB_PAGE_NORMAL:
2126 		/*
2127 		 * An interrupt came in before the update
2128 		 * and processed this for us.
2129 		 * Nothing left to do.
2130 		 */
2131 		return 1;
2132 	case RB_PAGE_MOVED:
2133 		/*
2134 		 * The reader is on another CPU and just did
2135 		 * a swap with our next_page.
2136 		 * Try again.
2137 		 */
2138 		return 1;
2139 	default:
2140 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2141 		return -1;
2142 	}
2143 
2144 	/*
2145 	 * Now that we are here, the old head pointer is
2146 	 * set to UPDATE. This will keep the reader from
2147 	 * swapping the head page with the reader page.
2148 	 * The reader (on another CPU) will spin till
2149 	 * we are finished.
2150 	 *
2151 	 * We just need to protect against interrupts
2152 	 * doing the job. We will set the next pointer
2153 	 * to HEAD. After that, we set the old pointer
2154 	 * to NORMAL, but only if it was HEAD before.
2155 	 * otherwise we are an interrupt, and only
2156 	 * want the outer most commit to reset it.
2157 	 */
2158 	new_head = next_page;
2159 	rb_inc_page(cpu_buffer, &new_head);
2160 
2161 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2162 				    RB_PAGE_NORMAL);
2163 
2164 	/*
2165 	 * Valid returns are:
2166 	 *  HEAD   - an interrupt came in and already set it.
2167 	 *  NORMAL - One of two things:
2168 	 *            1) We really set it.
2169 	 *            2) A bunch of interrupts came in and moved
2170 	 *               the page forward again.
2171 	 */
2172 	switch (ret) {
2173 	case RB_PAGE_HEAD:
2174 	case RB_PAGE_NORMAL:
2175 		/* OK */
2176 		break;
2177 	default:
2178 		RB_WARN_ON(cpu_buffer, 1);
2179 		return -1;
2180 	}
2181 
2182 	/*
2183 	 * It is possible that an interrupt came in,
2184 	 * set the head up, then more interrupts came in
2185 	 * and moved it again. When we get back here,
2186 	 * the page would have been set to NORMAL but we
2187 	 * just set it back to HEAD.
2188 	 *
2189 	 * How do you detect this? Well, if that happened
2190 	 * the tail page would have moved.
2191 	 */
2192 	if (ret == RB_PAGE_NORMAL) {
2193 		/*
2194 		 * If the tail had moved passed next, then we need
2195 		 * to reset the pointer.
2196 		 */
2197 		if (cpu_buffer->tail_page != tail_page &&
2198 		    cpu_buffer->tail_page != next_page)
2199 			rb_head_page_set_normal(cpu_buffer, new_head,
2200 						next_page,
2201 						RB_PAGE_HEAD);
2202 	}
2203 
2204 	/*
2205 	 * If this was the outer most commit (the one that
2206 	 * changed the original pointer from HEAD to UPDATE),
2207 	 * then it is up to us to reset it to NORMAL.
2208 	 */
2209 	if (type == RB_PAGE_HEAD) {
2210 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2211 					      tail_page,
2212 					      RB_PAGE_UPDATE);
2213 		if (RB_WARN_ON(cpu_buffer,
2214 			       ret != RB_PAGE_UPDATE))
2215 			return -1;
2216 	}
2217 
2218 	return 0;
2219 }
2220 
2221 static unsigned rb_calculate_event_length(unsigned length)
2222 {
2223 	struct ring_buffer_event event; /* Used only for sizeof array */
2224 
2225 	/* zero length can cause confusions */
2226 	if (!length)
2227 		length = 1;
2228 
2229 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2230 		length += sizeof(event.array[0]);
2231 
2232 	length += RB_EVNT_HDR_SIZE;
2233 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2234 
2235 	return length;
2236 }
2237 
2238 static inline void
2239 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2240 	      struct buffer_page *tail_page,
2241 	      unsigned long tail, unsigned long length)
2242 {
2243 	struct ring_buffer_event *event;
2244 
2245 	/*
2246 	 * Only the event that crossed the page boundary
2247 	 * must fill the old tail_page with padding.
2248 	 */
2249 	if (tail >= BUF_PAGE_SIZE) {
2250 		/*
2251 		 * If the page was filled, then we still need
2252 		 * to update the real_end. Reset it to zero
2253 		 * and the reader will ignore it.
2254 		 */
2255 		if (tail == BUF_PAGE_SIZE)
2256 			tail_page->real_end = 0;
2257 
2258 		local_sub(length, &tail_page->write);
2259 		return;
2260 	}
2261 
2262 	event = __rb_page_index(tail_page, tail);
2263 	kmemcheck_annotate_bitfield(event, bitfield);
2264 
2265 	/* account for padding bytes */
2266 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2267 
2268 	/*
2269 	 * Save the original length to the meta data.
2270 	 * This will be used by the reader to add lost event
2271 	 * counter.
2272 	 */
2273 	tail_page->real_end = tail;
2274 
2275 	/*
2276 	 * If this event is bigger than the minimum size, then
2277 	 * we need to be careful that we don't subtract the
2278 	 * write counter enough to allow another writer to slip
2279 	 * in on this page.
2280 	 * We put in a discarded commit instead, to make sure
2281 	 * that this space is not used again.
2282 	 *
2283 	 * If we are less than the minimum size, we don't need to
2284 	 * worry about it.
2285 	 */
2286 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2287 		/* No room for any events */
2288 
2289 		/* Mark the rest of the page with padding */
2290 		rb_event_set_padding(event);
2291 
2292 		/* Set the write back to the previous setting */
2293 		local_sub(length, &tail_page->write);
2294 		return;
2295 	}
2296 
2297 	/* Put in a discarded event */
2298 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2299 	event->type_len = RINGBUF_TYPE_PADDING;
2300 	/* time delta must be non zero */
2301 	event->time_delta = 1;
2302 
2303 	/* Set write to end of buffer */
2304 	length = (tail + length) - BUF_PAGE_SIZE;
2305 	local_sub(length, &tail_page->write);
2306 }
2307 
2308 /*
2309  * This is the slow path, force gcc not to inline it.
2310  */
2311 static noinline struct ring_buffer_event *
2312 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2313 	     unsigned long length, unsigned long tail,
2314 	     struct buffer_page *tail_page, u64 ts)
2315 {
2316 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2317 	struct ring_buffer *buffer = cpu_buffer->buffer;
2318 	struct buffer_page *next_page;
2319 	int ret;
2320 
2321 	next_page = tail_page;
2322 
2323 	rb_inc_page(cpu_buffer, &next_page);
2324 
2325 	/*
2326 	 * If for some reason, we had an interrupt storm that made
2327 	 * it all the way around the buffer, bail, and warn
2328 	 * about it.
2329 	 */
2330 	if (unlikely(next_page == commit_page)) {
2331 		local_inc(&cpu_buffer->commit_overrun);
2332 		goto out_reset;
2333 	}
2334 
2335 	/*
2336 	 * This is where the fun begins!
2337 	 *
2338 	 * We are fighting against races between a reader that
2339 	 * could be on another CPU trying to swap its reader
2340 	 * page with the buffer head.
2341 	 *
2342 	 * We are also fighting against interrupts coming in and
2343 	 * moving the head or tail on us as well.
2344 	 *
2345 	 * If the next page is the head page then we have filled
2346 	 * the buffer, unless the commit page is still on the
2347 	 * reader page.
2348 	 */
2349 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2350 
2351 		/*
2352 		 * If the commit is not on the reader page, then
2353 		 * move the header page.
2354 		 */
2355 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2356 			/*
2357 			 * If we are not in overwrite mode,
2358 			 * this is easy, just stop here.
2359 			 */
2360 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2361 				local_inc(&cpu_buffer->dropped_events);
2362 				goto out_reset;
2363 			}
2364 
2365 			ret = rb_handle_head_page(cpu_buffer,
2366 						  tail_page,
2367 						  next_page);
2368 			if (ret < 0)
2369 				goto out_reset;
2370 			if (ret)
2371 				goto out_again;
2372 		} else {
2373 			/*
2374 			 * We need to be careful here too. The
2375 			 * commit page could still be on the reader
2376 			 * page. We could have a small buffer, and
2377 			 * have filled up the buffer with events
2378 			 * from interrupts and such, and wrapped.
2379 			 *
2380 			 * Note, if the tail page is also the on the
2381 			 * reader_page, we let it move out.
2382 			 */
2383 			if (unlikely((cpu_buffer->commit_page !=
2384 				      cpu_buffer->tail_page) &&
2385 				     (cpu_buffer->commit_page ==
2386 				      cpu_buffer->reader_page))) {
2387 				local_inc(&cpu_buffer->commit_overrun);
2388 				goto out_reset;
2389 			}
2390 		}
2391 	}
2392 
2393 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2394 	if (ret) {
2395 		/*
2396 		 * Nested commits always have zero deltas, so
2397 		 * just reread the time stamp
2398 		 */
2399 		ts = rb_time_stamp(buffer);
2400 		next_page->page->time_stamp = ts;
2401 	}
2402 
2403  out_again:
2404 
2405 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2406 
2407 	/* fail and let the caller try again */
2408 	return ERR_PTR(-EAGAIN);
2409 
2410  out_reset:
2411 	/* reset write */
2412 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2413 
2414 	return NULL;
2415 }
2416 
2417 static struct ring_buffer_event *
2418 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2419 		  unsigned long length, u64 ts,
2420 		  u64 delta, int add_timestamp)
2421 {
2422 	struct buffer_page *tail_page;
2423 	struct ring_buffer_event *event;
2424 	unsigned long tail, write;
2425 
2426 	/*
2427 	 * If the time delta since the last event is too big to
2428 	 * hold in the time field of the event, then we append a
2429 	 * TIME EXTEND event ahead of the data event.
2430 	 */
2431 	if (unlikely(add_timestamp))
2432 		length += RB_LEN_TIME_EXTEND;
2433 
2434 	tail_page = cpu_buffer->tail_page;
2435 	write = local_add_return(length, &tail_page->write);
2436 
2437 	/* set write to only the index of the write */
2438 	write &= RB_WRITE_MASK;
2439 	tail = write - length;
2440 
2441 	/*
2442 	 * If this is the first commit on the page, then it has the same
2443 	 * timestamp as the page itself.
2444 	 */
2445 	if (!tail)
2446 		delta = 0;
2447 
2448 	/* See if we shot pass the end of this buffer page */
2449 	if (unlikely(write > BUF_PAGE_SIZE))
2450 		return rb_move_tail(cpu_buffer, length, tail,
2451 				    tail_page, ts);
2452 
2453 	/* We reserved something on the buffer */
2454 
2455 	event = __rb_page_index(tail_page, tail);
2456 	kmemcheck_annotate_bitfield(event, bitfield);
2457 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2458 
2459 	local_inc(&tail_page->entries);
2460 
2461 	/*
2462 	 * If this is the first commit on the page, then update
2463 	 * its timestamp.
2464 	 */
2465 	if (!tail)
2466 		tail_page->page->time_stamp = ts;
2467 
2468 	/* account for these added bytes */
2469 	local_add(length, &cpu_buffer->entries_bytes);
2470 
2471 	return event;
2472 }
2473 
2474 static inline int
2475 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2476 		  struct ring_buffer_event *event)
2477 {
2478 	unsigned long new_index, old_index;
2479 	struct buffer_page *bpage;
2480 	unsigned long index;
2481 	unsigned long addr;
2482 
2483 	new_index = rb_event_index(event);
2484 	old_index = new_index + rb_event_ts_length(event);
2485 	addr = (unsigned long)event;
2486 	addr &= PAGE_MASK;
2487 
2488 	bpage = cpu_buffer->tail_page;
2489 
2490 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2491 		unsigned long write_mask =
2492 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2493 		unsigned long event_length = rb_event_length(event);
2494 		/*
2495 		 * This is on the tail page. It is possible that
2496 		 * a write could come in and move the tail page
2497 		 * and write to the next page. That is fine
2498 		 * because we just shorten what is on this page.
2499 		 */
2500 		old_index += write_mask;
2501 		new_index += write_mask;
2502 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2503 		if (index == old_index) {
2504 			/* update counters */
2505 			local_sub(event_length, &cpu_buffer->entries_bytes);
2506 			return 1;
2507 		}
2508 	}
2509 
2510 	/* could not discard */
2511 	return 0;
2512 }
2513 
2514 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515 {
2516 	local_inc(&cpu_buffer->committing);
2517 	local_inc(&cpu_buffer->commits);
2518 }
2519 
2520 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2521 {
2522 	unsigned long commits;
2523 
2524 	if (RB_WARN_ON(cpu_buffer,
2525 		       !local_read(&cpu_buffer->committing)))
2526 		return;
2527 
2528  again:
2529 	commits = local_read(&cpu_buffer->commits);
2530 	/* synchronize with interrupts */
2531 	barrier();
2532 	if (local_read(&cpu_buffer->committing) == 1)
2533 		rb_set_commit_to_write(cpu_buffer);
2534 
2535 	local_dec(&cpu_buffer->committing);
2536 
2537 	/* synchronize with interrupts */
2538 	barrier();
2539 
2540 	/*
2541 	 * Need to account for interrupts coming in between the
2542 	 * updating of the commit page and the clearing of the
2543 	 * committing counter.
2544 	 */
2545 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2546 	    !local_read(&cpu_buffer->committing)) {
2547 		local_inc(&cpu_buffer->committing);
2548 		goto again;
2549 	}
2550 }
2551 
2552 static struct ring_buffer_event *
2553 rb_reserve_next_event(struct ring_buffer *buffer,
2554 		      struct ring_buffer_per_cpu *cpu_buffer,
2555 		      unsigned long length)
2556 {
2557 	struct ring_buffer_event *event;
2558 	u64 ts, delta;
2559 	int nr_loops = 0;
2560 	int add_timestamp;
2561 	u64 diff;
2562 
2563 	rb_start_commit(cpu_buffer);
2564 
2565 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2566 	/*
2567 	 * Due to the ability to swap a cpu buffer from a buffer
2568 	 * it is possible it was swapped before we committed.
2569 	 * (committing stops a swap). We check for it here and
2570 	 * if it happened, we have to fail the write.
2571 	 */
2572 	barrier();
2573 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2574 		local_dec(&cpu_buffer->committing);
2575 		local_dec(&cpu_buffer->commits);
2576 		return NULL;
2577 	}
2578 #endif
2579 
2580 	length = rb_calculate_event_length(length);
2581  again:
2582 	add_timestamp = 0;
2583 	delta = 0;
2584 
2585 	/*
2586 	 * We allow for interrupts to reenter here and do a trace.
2587 	 * If one does, it will cause this original code to loop
2588 	 * back here. Even with heavy interrupts happening, this
2589 	 * should only happen a few times in a row. If this happens
2590 	 * 1000 times in a row, there must be either an interrupt
2591 	 * storm or we have something buggy.
2592 	 * Bail!
2593 	 */
2594 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2595 		goto out_fail;
2596 
2597 	ts = rb_time_stamp(cpu_buffer->buffer);
2598 	diff = ts - cpu_buffer->write_stamp;
2599 
2600 	/* make sure this diff is calculated here */
2601 	barrier();
2602 
2603 	/* Did the write stamp get updated already? */
2604 	if (likely(ts >= cpu_buffer->write_stamp)) {
2605 		delta = diff;
2606 		if (unlikely(test_time_stamp(delta))) {
2607 			int local_clock_stable = 1;
2608 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2609 			local_clock_stable = sched_clock_stable();
2610 #endif
2611 			WARN_ONCE(delta > (1ULL << 59),
2612 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2613 				  (unsigned long long)delta,
2614 				  (unsigned long long)ts,
2615 				  (unsigned long long)cpu_buffer->write_stamp,
2616 				  local_clock_stable ? "" :
2617 				  "If you just came from a suspend/resume,\n"
2618 				  "please switch to the trace global clock:\n"
2619 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2620 			add_timestamp = 1;
2621 		}
2622 	}
2623 
2624 	event = __rb_reserve_next(cpu_buffer, length, ts,
2625 				  delta, add_timestamp);
2626 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2627 		goto again;
2628 
2629 	if (!event)
2630 		goto out_fail;
2631 
2632 	return event;
2633 
2634  out_fail:
2635 	rb_end_commit(cpu_buffer);
2636 	return NULL;
2637 }
2638 
2639 #ifdef CONFIG_TRACING
2640 
2641 /*
2642  * The lock and unlock are done within a preempt disable section.
2643  * The current_context per_cpu variable can only be modified
2644  * by the current task between lock and unlock. But it can
2645  * be modified more than once via an interrupt. To pass this
2646  * information from the lock to the unlock without having to
2647  * access the 'in_interrupt()' functions again (which do show
2648  * a bit of overhead in something as critical as function tracing,
2649  * we use a bitmask trick.
2650  *
2651  *  bit 0 =  NMI context
2652  *  bit 1 =  IRQ context
2653  *  bit 2 =  SoftIRQ context
2654  *  bit 3 =  normal context.
2655  *
2656  * This works because this is the order of contexts that can
2657  * preempt other contexts. A SoftIRQ never preempts an IRQ
2658  * context.
2659  *
2660  * When the context is determined, the corresponding bit is
2661  * checked and set (if it was set, then a recursion of that context
2662  * happened).
2663  *
2664  * On unlock, we need to clear this bit. To do so, just subtract
2665  * 1 from the current_context and AND it to itself.
2666  *
2667  * (binary)
2668  *  101 - 1 = 100
2669  *  101 & 100 = 100 (clearing bit zero)
2670  *
2671  *  1010 - 1 = 1001
2672  *  1010 & 1001 = 1000 (clearing bit 1)
2673  *
2674  * The least significant bit can be cleared this way, and it
2675  * just so happens that it is the same bit corresponding to
2676  * the current context.
2677  */
2678 static DEFINE_PER_CPU(unsigned int, current_context);
2679 
2680 static __always_inline int trace_recursive_lock(void)
2681 {
2682 	unsigned int val = __this_cpu_read(current_context);
2683 	int bit;
2684 
2685 	if (in_interrupt()) {
2686 		if (in_nmi())
2687 			bit = 0;
2688 		else if (in_irq())
2689 			bit = 1;
2690 		else
2691 			bit = 2;
2692 	} else
2693 		bit = 3;
2694 
2695 	if (unlikely(val & (1 << bit)))
2696 		return 1;
2697 
2698 	val |= (1 << bit);
2699 	__this_cpu_write(current_context, val);
2700 
2701 	return 0;
2702 }
2703 
2704 static __always_inline void trace_recursive_unlock(void)
2705 {
2706 	__this_cpu_and(current_context, __this_cpu_read(current_context) - 1);
2707 }
2708 
2709 #else
2710 
2711 #define trace_recursive_lock()		(0)
2712 #define trace_recursive_unlock()	do { } while (0)
2713 
2714 #endif
2715 
2716 /**
2717  * ring_buffer_lock_reserve - reserve a part of the buffer
2718  * @buffer: the ring buffer to reserve from
2719  * @length: the length of the data to reserve (excluding event header)
2720  *
2721  * Returns a reseverd event on the ring buffer to copy directly to.
2722  * The user of this interface will need to get the body to write into
2723  * and can use the ring_buffer_event_data() interface.
2724  *
2725  * The length is the length of the data needed, not the event length
2726  * which also includes the event header.
2727  *
2728  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2729  * If NULL is returned, then nothing has been allocated or locked.
2730  */
2731 struct ring_buffer_event *
2732 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2733 {
2734 	struct ring_buffer_per_cpu *cpu_buffer;
2735 	struct ring_buffer_event *event;
2736 	int cpu;
2737 
2738 	if (ring_buffer_flags != RB_BUFFERS_ON)
2739 		return NULL;
2740 
2741 	/* If we are tracing schedule, we don't want to recurse */
2742 	preempt_disable_notrace();
2743 
2744 	if (atomic_read(&buffer->record_disabled))
2745 		goto out_nocheck;
2746 
2747 	if (trace_recursive_lock())
2748 		goto out_nocheck;
2749 
2750 	cpu = raw_smp_processor_id();
2751 
2752 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2753 		goto out;
2754 
2755 	cpu_buffer = buffer->buffers[cpu];
2756 
2757 	if (atomic_read(&cpu_buffer->record_disabled))
2758 		goto out;
2759 
2760 	if (length > BUF_MAX_DATA_SIZE)
2761 		goto out;
2762 
2763 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2764 	if (!event)
2765 		goto out;
2766 
2767 	return event;
2768 
2769  out:
2770 	trace_recursive_unlock();
2771 
2772  out_nocheck:
2773 	preempt_enable_notrace();
2774 	return NULL;
2775 }
2776 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2777 
2778 static void
2779 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2780 		      struct ring_buffer_event *event)
2781 {
2782 	u64 delta;
2783 
2784 	/*
2785 	 * The event first in the commit queue updates the
2786 	 * time stamp.
2787 	 */
2788 	if (rb_event_is_commit(cpu_buffer, event)) {
2789 		/*
2790 		 * A commit event that is first on a page
2791 		 * updates the write timestamp with the page stamp
2792 		 */
2793 		if (!rb_event_index(event))
2794 			cpu_buffer->write_stamp =
2795 				cpu_buffer->commit_page->page->time_stamp;
2796 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2797 			delta = event->array[0];
2798 			delta <<= TS_SHIFT;
2799 			delta += event->time_delta;
2800 			cpu_buffer->write_stamp += delta;
2801 		} else
2802 			cpu_buffer->write_stamp += event->time_delta;
2803 	}
2804 }
2805 
2806 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2807 		      struct ring_buffer_event *event)
2808 {
2809 	local_inc(&cpu_buffer->entries);
2810 	rb_update_write_stamp(cpu_buffer, event);
2811 	rb_end_commit(cpu_buffer);
2812 }
2813 
2814 static __always_inline void
2815 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2816 {
2817 	bool pagebusy;
2818 
2819 	if (buffer->irq_work.waiters_pending) {
2820 		buffer->irq_work.waiters_pending = false;
2821 		/* irq_work_queue() supplies it's own memory barriers */
2822 		irq_work_queue(&buffer->irq_work.work);
2823 	}
2824 
2825 	if (cpu_buffer->irq_work.waiters_pending) {
2826 		cpu_buffer->irq_work.waiters_pending = false;
2827 		/* irq_work_queue() supplies it's own memory barriers */
2828 		irq_work_queue(&cpu_buffer->irq_work.work);
2829 	}
2830 
2831 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2832 
2833 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2834 		cpu_buffer->irq_work.wakeup_full = true;
2835 		cpu_buffer->irq_work.full_waiters_pending = false;
2836 		/* irq_work_queue() supplies it's own memory barriers */
2837 		irq_work_queue(&cpu_buffer->irq_work.work);
2838 	}
2839 }
2840 
2841 /**
2842  * ring_buffer_unlock_commit - commit a reserved
2843  * @buffer: The buffer to commit to
2844  * @event: The event pointer to commit.
2845  *
2846  * This commits the data to the ring buffer, and releases any locks held.
2847  *
2848  * Must be paired with ring_buffer_lock_reserve.
2849  */
2850 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2851 			      struct ring_buffer_event *event)
2852 {
2853 	struct ring_buffer_per_cpu *cpu_buffer;
2854 	int cpu = raw_smp_processor_id();
2855 
2856 	cpu_buffer = buffer->buffers[cpu];
2857 
2858 	rb_commit(cpu_buffer, event);
2859 
2860 	rb_wakeups(buffer, cpu_buffer);
2861 
2862 	trace_recursive_unlock();
2863 
2864 	preempt_enable_notrace();
2865 
2866 	return 0;
2867 }
2868 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2869 
2870 static inline void rb_event_discard(struct ring_buffer_event *event)
2871 {
2872 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2873 		event = skip_time_extend(event);
2874 
2875 	/* array[0] holds the actual length for the discarded event */
2876 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2877 	event->type_len = RINGBUF_TYPE_PADDING;
2878 	/* time delta must be non zero */
2879 	if (!event->time_delta)
2880 		event->time_delta = 1;
2881 }
2882 
2883 /*
2884  * Decrement the entries to the page that an event is on.
2885  * The event does not even need to exist, only the pointer
2886  * to the page it is on. This may only be called before the commit
2887  * takes place.
2888  */
2889 static inline void
2890 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2891 		   struct ring_buffer_event *event)
2892 {
2893 	unsigned long addr = (unsigned long)event;
2894 	struct buffer_page *bpage = cpu_buffer->commit_page;
2895 	struct buffer_page *start;
2896 
2897 	addr &= PAGE_MASK;
2898 
2899 	/* Do the likely case first */
2900 	if (likely(bpage->page == (void *)addr)) {
2901 		local_dec(&bpage->entries);
2902 		return;
2903 	}
2904 
2905 	/*
2906 	 * Because the commit page may be on the reader page we
2907 	 * start with the next page and check the end loop there.
2908 	 */
2909 	rb_inc_page(cpu_buffer, &bpage);
2910 	start = bpage;
2911 	do {
2912 		if (bpage->page == (void *)addr) {
2913 			local_dec(&bpage->entries);
2914 			return;
2915 		}
2916 		rb_inc_page(cpu_buffer, &bpage);
2917 	} while (bpage != start);
2918 
2919 	/* commit not part of this buffer?? */
2920 	RB_WARN_ON(cpu_buffer, 1);
2921 }
2922 
2923 /**
2924  * ring_buffer_commit_discard - discard an event that has not been committed
2925  * @buffer: the ring buffer
2926  * @event: non committed event to discard
2927  *
2928  * Sometimes an event that is in the ring buffer needs to be ignored.
2929  * This function lets the user discard an event in the ring buffer
2930  * and then that event will not be read later.
2931  *
2932  * This function only works if it is called before the the item has been
2933  * committed. It will try to free the event from the ring buffer
2934  * if another event has not been added behind it.
2935  *
2936  * If another event has been added behind it, it will set the event
2937  * up as discarded, and perform the commit.
2938  *
2939  * If this function is called, do not call ring_buffer_unlock_commit on
2940  * the event.
2941  */
2942 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2943 				struct ring_buffer_event *event)
2944 {
2945 	struct ring_buffer_per_cpu *cpu_buffer;
2946 	int cpu;
2947 
2948 	/* The event is discarded regardless */
2949 	rb_event_discard(event);
2950 
2951 	cpu = smp_processor_id();
2952 	cpu_buffer = buffer->buffers[cpu];
2953 
2954 	/*
2955 	 * This must only be called if the event has not been
2956 	 * committed yet. Thus we can assume that preemption
2957 	 * is still disabled.
2958 	 */
2959 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2960 
2961 	rb_decrement_entry(cpu_buffer, event);
2962 	if (rb_try_to_discard(cpu_buffer, event))
2963 		goto out;
2964 
2965 	/*
2966 	 * The commit is still visible by the reader, so we
2967 	 * must still update the timestamp.
2968 	 */
2969 	rb_update_write_stamp(cpu_buffer, event);
2970  out:
2971 	rb_end_commit(cpu_buffer);
2972 
2973 	trace_recursive_unlock();
2974 
2975 	preempt_enable_notrace();
2976 
2977 }
2978 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2979 
2980 /**
2981  * ring_buffer_write - write data to the buffer without reserving
2982  * @buffer: The ring buffer to write to.
2983  * @length: The length of the data being written (excluding the event header)
2984  * @data: The data to write to the buffer.
2985  *
2986  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2987  * one function. If you already have the data to write to the buffer, it
2988  * may be easier to simply call this function.
2989  *
2990  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2991  * and not the length of the event which would hold the header.
2992  */
2993 int ring_buffer_write(struct ring_buffer *buffer,
2994 		      unsigned long length,
2995 		      void *data)
2996 {
2997 	struct ring_buffer_per_cpu *cpu_buffer;
2998 	struct ring_buffer_event *event;
2999 	void *body;
3000 	int ret = -EBUSY;
3001 	int cpu;
3002 
3003 	if (ring_buffer_flags != RB_BUFFERS_ON)
3004 		return -EBUSY;
3005 
3006 	preempt_disable_notrace();
3007 
3008 	if (atomic_read(&buffer->record_disabled))
3009 		goto out;
3010 
3011 	cpu = raw_smp_processor_id();
3012 
3013 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3014 		goto out;
3015 
3016 	cpu_buffer = buffer->buffers[cpu];
3017 
3018 	if (atomic_read(&cpu_buffer->record_disabled))
3019 		goto out;
3020 
3021 	if (length > BUF_MAX_DATA_SIZE)
3022 		goto out;
3023 
3024 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3025 	if (!event)
3026 		goto out;
3027 
3028 	body = rb_event_data(event);
3029 
3030 	memcpy(body, data, length);
3031 
3032 	rb_commit(cpu_buffer, event);
3033 
3034 	rb_wakeups(buffer, cpu_buffer);
3035 
3036 	ret = 0;
3037  out:
3038 	preempt_enable_notrace();
3039 
3040 	return ret;
3041 }
3042 EXPORT_SYMBOL_GPL(ring_buffer_write);
3043 
3044 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3045 {
3046 	struct buffer_page *reader = cpu_buffer->reader_page;
3047 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3048 	struct buffer_page *commit = cpu_buffer->commit_page;
3049 
3050 	/* In case of error, head will be NULL */
3051 	if (unlikely(!head))
3052 		return 1;
3053 
3054 	return reader->read == rb_page_commit(reader) &&
3055 		(commit == reader ||
3056 		 (commit == head &&
3057 		  head->read == rb_page_commit(commit)));
3058 }
3059 
3060 /**
3061  * ring_buffer_record_disable - stop all writes into the buffer
3062  * @buffer: The ring buffer to stop writes to.
3063  *
3064  * This prevents all writes to the buffer. Any attempt to write
3065  * to the buffer after this will fail and return NULL.
3066  *
3067  * The caller should call synchronize_sched() after this.
3068  */
3069 void ring_buffer_record_disable(struct ring_buffer *buffer)
3070 {
3071 	atomic_inc(&buffer->record_disabled);
3072 }
3073 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3074 
3075 /**
3076  * ring_buffer_record_enable - enable writes to the buffer
3077  * @buffer: The ring buffer to enable writes
3078  *
3079  * Note, multiple disables will need the same number of enables
3080  * to truly enable the writing (much like preempt_disable).
3081  */
3082 void ring_buffer_record_enable(struct ring_buffer *buffer)
3083 {
3084 	atomic_dec(&buffer->record_disabled);
3085 }
3086 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3087 
3088 /**
3089  * ring_buffer_record_off - stop all writes into the buffer
3090  * @buffer: The ring buffer to stop writes to.
3091  *
3092  * This prevents all writes to the buffer. Any attempt to write
3093  * to the buffer after this will fail and return NULL.
3094  *
3095  * This is different than ring_buffer_record_disable() as
3096  * it works like an on/off switch, where as the disable() version
3097  * must be paired with a enable().
3098  */
3099 void ring_buffer_record_off(struct ring_buffer *buffer)
3100 {
3101 	unsigned int rd;
3102 	unsigned int new_rd;
3103 
3104 	do {
3105 		rd = atomic_read(&buffer->record_disabled);
3106 		new_rd = rd | RB_BUFFER_OFF;
3107 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3108 }
3109 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3110 
3111 /**
3112  * ring_buffer_record_on - restart writes into the buffer
3113  * @buffer: The ring buffer to start writes to.
3114  *
3115  * This enables all writes to the buffer that was disabled by
3116  * ring_buffer_record_off().
3117  *
3118  * This is different than ring_buffer_record_enable() as
3119  * it works like an on/off switch, where as the enable() version
3120  * must be paired with a disable().
3121  */
3122 void ring_buffer_record_on(struct ring_buffer *buffer)
3123 {
3124 	unsigned int rd;
3125 	unsigned int new_rd;
3126 
3127 	do {
3128 		rd = atomic_read(&buffer->record_disabled);
3129 		new_rd = rd & ~RB_BUFFER_OFF;
3130 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3131 }
3132 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3133 
3134 /**
3135  * ring_buffer_record_is_on - return true if the ring buffer can write
3136  * @buffer: The ring buffer to see if write is enabled
3137  *
3138  * Returns true if the ring buffer is in a state that it accepts writes.
3139  */
3140 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3141 {
3142 	return !atomic_read(&buffer->record_disabled);
3143 }
3144 
3145 /**
3146  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3147  * @buffer: The ring buffer to stop writes to.
3148  * @cpu: The CPU buffer to stop
3149  *
3150  * This prevents all writes to the buffer. Any attempt to write
3151  * to the buffer after this will fail and return NULL.
3152  *
3153  * The caller should call synchronize_sched() after this.
3154  */
3155 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3156 {
3157 	struct ring_buffer_per_cpu *cpu_buffer;
3158 
3159 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3160 		return;
3161 
3162 	cpu_buffer = buffer->buffers[cpu];
3163 	atomic_inc(&cpu_buffer->record_disabled);
3164 }
3165 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3166 
3167 /**
3168  * ring_buffer_record_enable_cpu - enable writes to the buffer
3169  * @buffer: The ring buffer to enable writes
3170  * @cpu: The CPU to enable.
3171  *
3172  * Note, multiple disables will need the same number of enables
3173  * to truly enable the writing (much like preempt_disable).
3174  */
3175 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3176 {
3177 	struct ring_buffer_per_cpu *cpu_buffer;
3178 
3179 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3180 		return;
3181 
3182 	cpu_buffer = buffer->buffers[cpu];
3183 	atomic_dec(&cpu_buffer->record_disabled);
3184 }
3185 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3186 
3187 /*
3188  * The total entries in the ring buffer is the running counter
3189  * of entries entered into the ring buffer, minus the sum of
3190  * the entries read from the ring buffer and the number of
3191  * entries that were overwritten.
3192  */
3193 static inline unsigned long
3194 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3195 {
3196 	return local_read(&cpu_buffer->entries) -
3197 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3198 }
3199 
3200 /**
3201  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3202  * @buffer: The ring buffer
3203  * @cpu: The per CPU buffer to read from.
3204  */
3205 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3206 {
3207 	unsigned long flags;
3208 	struct ring_buffer_per_cpu *cpu_buffer;
3209 	struct buffer_page *bpage;
3210 	u64 ret = 0;
3211 
3212 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3213 		return 0;
3214 
3215 	cpu_buffer = buffer->buffers[cpu];
3216 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3217 	/*
3218 	 * if the tail is on reader_page, oldest time stamp is on the reader
3219 	 * page
3220 	 */
3221 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3222 		bpage = cpu_buffer->reader_page;
3223 	else
3224 		bpage = rb_set_head_page(cpu_buffer);
3225 	if (bpage)
3226 		ret = bpage->page->time_stamp;
3227 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3228 
3229 	return ret;
3230 }
3231 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3232 
3233 /**
3234  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3235  * @buffer: The ring buffer
3236  * @cpu: The per CPU buffer to read from.
3237  */
3238 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3239 {
3240 	struct ring_buffer_per_cpu *cpu_buffer;
3241 	unsigned long ret;
3242 
3243 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244 		return 0;
3245 
3246 	cpu_buffer = buffer->buffers[cpu];
3247 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3248 
3249 	return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3252 
3253 /**
3254  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3255  * @buffer: The ring buffer
3256  * @cpu: The per CPU buffer to get the entries from.
3257  */
3258 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3259 {
3260 	struct ring_buffer_per_cpu *cpu_buffer;
3261 
3262 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3263 		return 0;
3264 
3265 	cpu_buffer = buffer->buffers[cpu];
3266 
3267 	return rb_num_of_entries(cpu_buffer);
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3270 
3271 /**
3272  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3273  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3274  * @buffer: The ring buffer
3275  * @cpu: The per CPU buffer to get the number of overruns from
3276  */
3277 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3278 {
3279 	struct ring_buffer_per_cpu *cpu_buffer;
3280 	unsigned long ret;
3281 
3282 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283 		return 0;
3284 
3285 	cpu_buffer = buffer->buffers[cpu];
3286 	ret = local_read(&cpu_buffer->overrun);
3287 
3288 	return ret;
3289 }
3290 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3291 
3292 /**
3293  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3294  * commits failing due to the buffer wrapping around while there are uncommitted
3295  * events, such as during an interrupt storm.
3296  * @buffer: The ring buffer
3297  * @cpu: The per CPU buffer to get the number of overruns from
3298  */
3299 unsigned long
3300 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3301 {
3302 	struct ring_buffer_per_cpu *cpu_buffer;
3303 	unsigned long ret;
3304 
3305 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3306 		return 0;
3307 
3308 	cpu_buffer = buffer->buffers[cpu];
3309 	ret = local_read(&cpu_buffer->commit_overrun);
3310 
3311 	return ret;
3312 }
3313 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3314 
3315 /**
3316  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3317  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3318  * @buffer: The ring buffer
3319  * @cpu: The per CPU buffer to get the number of overruns from
3320  */
3321 unsigned long
3322 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3323 {
3324 	struct ring_buffer_per_cpu *cpu_buffer;
3325 	unsigned long ret;
3326 
3327 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3328 		return 0;
3329 
3330 	cpu_buffer = buffer->buffers[cpu];
3331 	ret = local_read(&cpu_buffer->dropped_events);
3332 
3333 	return ret;
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3336 
3337 /**
3338  * ring_buffer_read_events_cpu - get the number of events successfully read
3339  * @buffer: The ring buffer
3340  * @cpu: The per CPU buffer to get the number of events read
3341  */
3342 unsigned long
3343 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3344 {
3345 	struct ring_buffer_per_cpu *cpu_buffer;
3346 
3347 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3348 		return 0;
3349 
3350 	cpu_buffer = buffer->buffers[cpu];
3351 	return cpu_buffer->read;
3352 }
3353 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3354 
3355 /**
3356  * ring_buffer_entries - get the number of entries in a buffer
3357  * @buffer: The ring buffer
3358  *
3359  * Returns the total number of entries in the ring buffer
3360  * (all CPU entries)
3361  */
3362 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3363 {
3364 	struct ring_buffer_per_cpu *cpu_buffer;
3365 	unsigned long entries = 0;
3366 	int cpu;
3367 
3368 	/* if you care about this being correct, lock the buffer */
3369 	for_each_buffer_cpu(buffer, cpu) {
3370 		cpu_buffer = buffer->buffers[cpu];
3371 		entries += rb_num_of_entries(cpu_buffer);
3372 	}
3373 
3374 	return entries;
3375 }
3376 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3377 
3378 /**
3379  * ring_buffer_overruns - get the number of overruns in buffer
3380  * @buffer: The ring buffer
3381  *
3382  * Returns the total number of overruns in the ring buffer
3383  * (all CPU entries)
3384  */
3385 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3386 {
3387 	struct ring_buffer_per_cpu *cpu_buffer;
3388 	unsigned long overruns = 0;
3389 	int cpu;
3390 
3391 	/* if you care about this being correct, lock the buffer */
3392 	for_each_buffer_cpu(buffer, cpu) {
3393 		cpu_buffer = buffer->buffers[cpu];
3394 		overruns += local_read(&cpu_buffer->overrun);
3395 	}
3396 
3397 	return overruns;
3398 }
3399 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3400 
3401 static void rb_iter_reset(struct ring_buffer_iter *iter)
3402 {
3403 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3404 
3405 	/* Iterator usage is expected to have record disabled */
3406 	iter->head_page = cpu_buffer->reader_page;
3407 	iter->head = cpu_buffer->reader_page->read;
3408 
3409 	iter->cache_reader_page = iter->head_page;
3410 	iter->cache_read = cpu_buffer->read;
3411 
3412 	if (iter->head)
3413 		iter->read_stamp = cpu_buffer->read_stamp;
3414 	else
3415 		iter->read_stamp = iter->head_page->page->time_stamp;
3416 }
3417 
3418 /**
3419  * ring_buffer_iter_reset - reset an iterator
3420  * @iter: The iterator to reset
3421  *
3422  * Resets the iterator, so that it will start from the beginning
3423  * again.
3424  */
3425 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3426 {
3427 	struct ring_buffer_per_cpu *cpu_buffer;
3428 	unsigned long flags;
3429 
3430 	if (!iter)
3431 		return;
3432 
3433 	cpu_buffer = iter->cpu_buffer;
3434 
3435 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3436 	rb_iter_reset(iter);
3437 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3438 }
3439 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3440 
3441 /**
3442  * ring_buffer_iter_empty - check if an iterator has no more to read
3443  * @iter: The iterator to check
3444  */
3445 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3446 {
3447 	struct ring_buffer_per_cpu *cpu_buffer;
3448 
3449 	cpu_buffer = iter->cpu_buffer;
3450 
3451 	return iter->head_page == cpu_buffer->commit_page &&
3452 		iter->head == rb_commit_index(cpu_buffer);
3453 }
3454 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3455 
3456 static void
3457 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3458 		     struct ring_buffer_event *event)
3459 {
3460 	u64 delta;
3461 
3462 	switch (event->type_len) {
3463 	case RINGBUF_TYPE_PADDING:
3464 		return;
3465 
3466 	case RINGBUF_TYPE_TIME_EXTEND:
3467 		delta = event->array[0];
3468 		delta <<= TS_SHIFT;
3469 		delta += event->time_delta;
3470 		cpu_buffer->read_stamp += delta;
3471 		return;
3472 
3473 	case RINGBUF_TYPE_TIME_STAMP:
3474 		/* FIXME: not implemented */
3475 		return;
3476 
3477 	case RINGBUF_TYPE_DATA:
3478 		cpu_buffer->read_stamp += event->time_delta;
3479 		return;
3480 
3481 	default:
3482 		BUG();
3483 	}
3484 	return;
3485 }
3486 
3487 static void
3488 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3489 			  struct ring_buffer_event *event)
3490 {
3491 	u64 delta;
3492 
3493 	switch (event->type_len) {
3494 	case RINGBUF_TYPE_PADDING:
3495 		return;
3496 
3497 	case RINGBUF_TYPE_TIME_EXTEND:
3498 		delta = event->array[0];
3499 		delta <<= TS_SHIFT;
3500 		delta += event->time_delta;
3501 		iter->read_stamp += delta;
3502 		return;
3503 
3504 	case RINGBUF_TYPE_TIME_STAMP:
3505 		/* FIXME: not implemented */
3506 		return;
3507 
3508 	case RINGBUF_TYPE_DATA:
3509 		iter->read_stamp += event->time_delta;
3510 		return;
3511 
3512 	default:
3513 		BUG();
3514 	}
3515 	return;
3516 }
3517 
3518 static struct buffer_page *
3519 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3520 {
3521 	struct buffer_page *reader = NULL;
3522 	unsigned long overwrite;
3523 	unsigned long flags;
3524 	int nr_loops = 0;
3525 	int ret;
3526 
3527 	local_irq_save(flags);
3528 	arch_spin_lock(&cpu_buffer->lock);
3529 
3530  again:
3531 	/*
3532 	 * This should normally only loop twice. But because the
3533 	 * start of the reader inserts an empty page, it causes
3534 	 * a case where we will loop three times. There should be no
3535 	 * reason to loop four times (that I know of).
3536 	 */
3537 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3538 		reader = NULL;
3539 		goto out;
3540 	}
3541 
3542 	reader = cpu_buffer->reader_page;
3543 
3544 	/* If there's more to read, return this page */
3545 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3546 		goto out;
3547 
3548 	/* Never should we have an index greater than the size */
3549 	if (RB_WARN_ON(cpu_buffer,
3550 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3551 		goto out;
3552 
3553 	/* check if we caught up to the tail */
3554 	reader = NULL;
3555 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3556 		goto out;
3557 
3558 	/* Don't bother swapping if the ring buffer is empty */
3559 	if (rb_num_of_entries(cpu_buffer) == 0)
3560 		goto out;
3561 
3562 	/*
3563 	 * Reset the reader page to size zero.
3564 	 */
3565 	local_set(&cpu_buffer->reader_page->write, 0);
3566 	local_set(&cpu_buffer->reader_page->entries, 0);
3567 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3568 	cpu_buffer->reader_page->real_end = 0;
3569 
3570  spin:
3571 	/*
3572 	 * Splice the empty reader page into the list around the head.
3573 	 */
3574 	reader = rb_set_head_page(cpu_buffer);
3575 	if (!reader)
3576 		goto out;
3577 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3578 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3579 
3580 	/*
3581 	 * cpu_buffer->pages just needs to point to the buffer, it
3582 	 *  has no specific buffer page to point to. Lets move it out
3583 	 *  of our way so we don't accidentally swap it.
3584 	 */
3585 	cpu_buffer->pages = reader->list.prev;
3586 
3587 	/* The reader page will be pointing to the new head */
3588 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3589 
3590 	/*
3591 	 * We want to make sure we read the overruns after we set up our
3592 	 * pointers to the next object. The writer side does a
3593 	 * cmpxchg to cross pages which acts as the mb on the writer
3594 	 * side. Note, the reader will constantly fail the swap
3595 	 * while the writer is updating the pointers, so this
3596 	 * guarantees that the overwrite recorded here is the one we
3597 	 * want to compare with the last_overrun.
3598 	 */
3599 	smp_mb();
3600 	overwrite = local_read(&(cpu_buffer->overrun));
3601 
3602 	/*
3603 	 * Here's the tricky part.
3604 	 *
3605 	 * We need to move the pointer past the header page.
3606 	 * But we can only do that if a writer is not currently
3607 	 * moving it. The page before the header page has the
3608 	 * flag bit '1' set if it is pointing to the page we want.
3609 	 * but if the writer is in the process of moving it
3610 	 * than it will be '2' or already moved '0'.
3611 	 */
3612 
3613 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3614 
3615 	/*
3616 	 * If we did not convert it, then we must try again.
3617 	 */
3618 	if (!ret)
3619 		goto spin;
3620 
3621 	/*
3622 	 * Yeah! We succeeded in replacing the page.
3623 	 *
3624 	 * Now make the new head point back to the reader page.
3625 	 */
3626 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3627 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3628 
3629 	/* Finally update the reader page to the new head */
3630 	cpu_buffer->reader_page = reader;
3631 	rb_reset_reader_page(cpu_buffer);
3632 
3633 	if (overwrite != cpu_buffer->last_overrun) {
3634 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3635 		cpu_buffer->last_overrun = overwrite;
3636 	}
3637 
3638 	goto again;
3639 
3640  out:
3641 	arch_spin_unlock(&cpu_buffer->lock);
3642 	local_irq_restore(flags);
3643 
3644 	return reader;
3645 }
3646 
3647 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3648 {
3649 	struct ring_buffer_event *event;
3650 	struct buffer_page *reader;
3651 	unsigned length;
3652 
3653 	reader = rb_get_reader_page(cpu_buffer);
3654 
3655 	/* This function should not be called when buffer is empty */
3656 	if (RB_WARN_ON(cpu_buffer, !reader))
3657 		return;
3658 
3659 	event = rb_reader_event(cpu_buffer);
3660 
3661 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3662 		cpu_buffer->read++;
3663 
3664 	rb_update_read_stamp(cpu_buffer, event);
3665 
3666 	length = rb_event_length(event);
3667 	cpu_buffer->reader_page->read += length;
3668 }
3669 
3670 static void rb_advance_iter(struct ring_buffer_iter *iter)
3671 {
3672 	struct ring_buffer_per_cpu *cpu_buffer;
3673 	struct ring_buffer_event *event;
3674 	unsigned length;
3675 
3676 	cpu_buffer = iter->cpu_buffer;
3677 
3678 	/*
3679 	 * Check if we are at the end of the buffer.
3680 	 */
3681 	if (iter->head >= rb_page_size(iter->head_page)) {
3682 		/* discarded commits can make the page empty */
3683 		if (iter->head_page == cpu_buffer->commit_page)
3684 			return;
3685 		rb_inc_iter(iter);
3686 		return;
3687 	}
3688 
3689 	event = rb_iter_head_event(iter);
3690 
3691 	length = rb_event_length(event);
3692 
3693 	/*
3694 	 * This should not be called to advance the header if we are
3695 	 * at the tail of the buffer.
3696 	 */
3697 	if (RB_WARN_ON(cpu_buffer,
3698 		       (iter->head_page == cpu_buffer->commit_page) &&
3699 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3700 		return;
3701 
3702 	rb_update_iter_read_stamp(iter, event);
3703 
3704 	iter->head += length;
3705 
3706 	/* check for end of page padding */
3707 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3708 	    (iter->head_page != cpu_buffer->commit_page))
3709 		rb_inc_iter(iter);
3710 }
3711 
3712 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3713 {
3714 	return cpu_buffer->lost_events;
3715 }
3716 
3717 static struct ring_buffer_event *
3718 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3719 	       unsigned long *lost_events)
3720 {
3721 	struct ring_buffer_event *event;
3722 	struct buffer_page *reader;
3723 	int nr_loops = 0;
3724 
3725  again:
3726 	/*
3727 	 * We repeat when a time extend is encountered.
3728 	 * Since the time extend is always attached to a data event,
3729 	 * we should never loop more than once.
3730 	 * (We never hit the following condition more than twice).
3731 	 */
3732 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3733 		return NULL;
3734 
3735 	reader = rb_get_reader_page(cpu_buffer);
3736 	if (!reader)
3737 		return NULL;
3738 
3739 	event = rb_reader_event(cpu_buffer);
3740 
3741 	switch (event->type_len) {
3742 	case RINGBUF_TYPE_PADDING:
3743 		if (rb_null_event(event))
3744 			RB_WARN_ON(cpu_buffer, 1);
3745 		/*
3746 		 * Because the writer could be discarding every
3747 		 * event it creates (which would probably be bad)
3748 		 * if we were to go back to "again" then we may never
3749 		 * catch up, and will trigger the warn on, or lock
3750 		 * the box. Return the padding, and we will release
3751 		 * the current locks, and try again.
3752 		 */
3753 		return event;
3754 
3755 	case RINGBUF_TYPE_TIME_EXTEND:
3756 		/* Internal data, OK to advance */
3757 		rb_advance_reader(cpu_buffer);
3758 		goto again;
3759 
3760 	case RINGBUF_TYPE_TIME_STAMP:
3761 		/* FIXME: not implemented */
3762 		rb_advance_reader(cpu_buffer);
3763 		goto again;
3764 
3765 	case RINGBUF_TYPE_DATA:
3766 		if (ts) {
3767 			*ts = cpu_buffer->read_stamp + event->time_delta;
3768 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3769 							 cpu_buffer->cpu, ts);
3770 		}
3771 		if (lost_events)
3772 			*lost_events = rb_lost_events(cpu_buffer);
3773 		return event;
3774 
3775 	default:
3776 		BUG();
3777 	}
3778 
3779 	return NULL;
3780 }
3781 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3782 
3783 static struct ring_buffer_event *
3784 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3785 {
3786 	struct ring_buffer *buffer;
3787 	struct ring_buffer_per_cpu *cpu_buffer;
3788 	struct ring_buffer_event *event;
3789 	int nr_loops = 0;
3790 
3791 	cpu_buffer = iter->cpu_buffer;
3792 	buffer = cpu_buffer->buffer;
3793 
3794 	/*
3795 	 * Check if someone performed a consuming read to
3796 	 * the buffer. A consuming read invalidates the iterator
3797 	 * and we need to reset the iterator in this case.
3798 	 */
3799 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3800 		     iter->cache_reader_page != cpu_buffer->reader_page))
3801 		rb_iter_reset(iter);
3802 
3803  again:
3804 	if (ring_buffer_iter_empty(iter))
3805 		return NULL;
3806 
3807 	/*
3808 	 * We repeat when a time extend is encountered or we hit
3809 	 * the end of the page. Since the time extend is always attached
3810 	 * to a data event, we should never loop more than three times.
3811 	 * Once for going to next page, once on time extend, and
3812 	 * finally once to get the event.
3813 	 * (We never hit the following condition more than thrice).
3814 	 */
3815 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3816 		return NULL;
3817 
3818 	if (rb_per_cpu_empty(cpu_buffer))
3819 		return NULL;
3820 
3821 	if (iter->head >= rb_page_size(iter->head_page)) {
3822 		rb_inc_iter(iter);
3823 		goto again;
3824 	}
3825 
3826 	event = rb_iter_head_event(iter);
3827 
3828 	switch (event->type_len) {
3829 	case RINGBUF_TYPE_PADDING:
3830 		if (rb_null_event(event)) {
3831 			rb_inc_iter(iter);
3832 			goto again;
3833 		}
3834 		rb_advance_iter(iter);
3835 		return event;
3836 
3837 	case RINGBUF_TYPE_TIME_EXTEND:
3838 		/* Internal data, OK to advance */
3839 		rb_advance_iter(iter);
3840 		goto again;
3841 
3842 	case RINGBUF_TYPE_TIME_STAMP:
3843 		/* FIXME: not implemented */
3844 		rb_advance_iter(iter);
3845 		goto again;
3846 
3847 	case RINGBUF_TYPE_DATA:
3848 		if (ts) {
3849 			*ts = iter->read_stamp + event->time_delta;
3850 			ring_buffer_normalize_time_stamp(buffer,
3851 							 cpu_buffer->cpu, ts);
3852 		}
3853 		return event;
3854 
3855 	default:
3856 		BUG();
3857 	}
3858 
3859 	return NULL;
3860 }
3861 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3862 
3863 static inline int rb_ok_to_lock(void)
3864 {
3865 	/*
3866 	 * If an NMI die dumps out the content of the ring buffer
3867 	 * do not grab locks. We also permanently disable the ring
3868 	 * buffer too. A one time deal is all you get from reading
3869 	 * the ring buffer from an NMI.
3870 	 */
3871 	if (likely(!in_nmi()))
3872 		return 1;
3873 
3874 	tracing_off_permanent();
3875 	return 0;
3876 }
3877 
3878 /**
3879  * ring_buffer_peek - peek at the next event to be read
3880  * @buffer: The ring buffer to read
3881  * @cpu: The cpu to peak at
3882  * @ts: The timestamp counter of this event.
3883  * @lost_events: a variable to store if events were lost (may be NULL)
3884  *
3885  * This will return the event that will be read next, but does
3886  * not consume the data.
3887  */
3888 struct ring_buffer_event *
3889 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3890 		 unsigned long *lost_events)
3891 {
3892 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3893 	struct ring_buffer_event *event;
3894 	unsigned long flags;
3895 	int dolock;
3896 
3897 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3898 		return NULL;
3899 
3900 	dolock = rb_ok_to_lock();
3901  again:
3902 	local_irq_save(flags);
3903 	if (dolock)
3904 		raw_spin_lock(&cpu_buffer->reader_lock);
3905 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3906 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3907 		rb_advance_reader(cpu_buffer);
3908 	if (dolock)
3909 		raw_spin_unlock(&cpu_buffer->reader_lock);
3910 	local_irq_restore(flags);
3911 
3912 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3913 		goto again;
3914 
3915 	return event;
3916 }
3917 
3918 /**
3919  * ring_buffer_iter_peek - peek at the next event to be read
3920  * @iter: The ring buffer iterator
3921  * @ts: The timestamp counter of this event.
3922  *
3923  * This will return the event that will be read next, but does
3924  * not increment the iterator.
3925  */
3926 struct ring_buffer_event *
3927 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3928 {
3929 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3930 	struct ring_buffer_event *event;
3931 	unsigned long flags;
3932 
3933  again:
3934 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3935 	event = rb_iter_peek(iter, ts);
3936 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3937 
3938 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3939 		goto again;
3940 
3941 	return event;
3942 }
3943 
3944 /**
3945  * ring_buffer_consume - return an event and consume it
3946  * @buffer: The ring buffer to get the next event from
3947  * @cpu: the cpu to read the buffer from
3948  * @ts: a variable to store the timestamp (may be NULL)
3949  * @lost_events: a variable to store if events were lost (may be NULL)
3950  *
3951  * Returns the next event in the ring buffer, and that event is consumed.
3952  * Meaning, that sequential reads will keep returning a different event,
3953  * and eventually empty the ring buffer if the producer is slower.
3954  */
3955 struct ring_buffer_event *
3956 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3957 		    unsigned long *lost_events)
3958 {
3959 	struct ring_buffer_per_cpu *cpu_buffer;
3960 	struct ring_buffer_event *event = NULL;
3961 	unsigned long flags;
3962 	int dolock;
3963 
3964 	dolock = rb_ok_to_lock();
3965 
3966  again:
3967 	/* might be called in atomic */
3968 	preempt_disable();
3969 
3970 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3971 		goto out;
3972 
3973 	cpu_buffer = buffer->buffers[cpu];
3974 	local_irq_save(flags);
3975 	if (dolock)
3976 		raw_spin_lock(&cpu_buffer->reader_lock);
3977 
3978 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3979 	if (event) {
3980 		cpu_buffer->lost_events = 0;
3981 		rb_advance_reader(cpu_buffer);
3982 	}
3983 
3984 	if (dolock)
3985 		raw_spin_unlock(&cpu_buffer->reader_lock);
3986 	local_irq_restore(flags);
3987 
3988  out:
3989 	preempt_enable();
3990 
3991 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3992 		goto again;
3993 
3994 	return event;
3995 }
3996 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3997 
3998 /**
3999  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4000  * @buffer: The ring buffer to read from
4001  * @cpu: The cpu buffer to iterate over
4002  *
4003  * This performs the initial preparations necessary to iterate
4004  * through the buffer.  Memory is allocated, buffer recording
4005  * is disabled, and the iterator pointer is returned to the caller.
4006  *
4007  * Disabling buffer recordng prevents the reading from being
4008  * corrupted. This is not a consuming read, so a producer is not
4009  * expected.
4010  *
4011  * After a sequence of ring_buffer_read_prepare calls, the user is
4012  * expected to make at least one call to ring_buffer_read_prepare_sync.
4013  * Afterwards, ring_buffer_read_start is invoked to get things going
4014  * for real.
4015  *
4016  * This overall must be paired with ring_buffer_read_finish.
4017  */
4018 struct ring_buffer_iter *
4019 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4020 {
4021 	struct ring_buffer_per_cpu *cpu_buffer;
4022 	struct ring_buffer_iter *iter;
4023 
4024 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4025 		return NULL;
4026 
4027 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4028 	if (!iter)
4029 		return NULL;
4030 
4031 	cpu_buffer = buffer->buffers[cpu];
4032 
4033 	iter->cpu_buffer = cpu_buffer;
4034 
4035 	atomic_inc(&buffer->resize_disabled);
4036 	atomic_inc(&cpu_buffer->record_disabled);
4037 
4038 	return iter;
4039 }
4040 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4041 
4042 /**
4043  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4044  *
4045  * All previously invoked ring_buffer_read_prepare calls to prepare
4046  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4047  * calls on those iterators are allowed.
4048  */
4049 void
4050 ring_buffer_read_prepare_sync(void)
4051 {
4052 	synchronize_sched();
4053 }
4054 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4055 
4056 /**
4057  * ring_buffer_read_start - start a non consuming read of the buffer
4058  * @iter: The iterator returned by ring_buffer_read_prepare
4059  *
4060  * This finalizes the startup of an iteration through the buffer.
4061  * The iterator comes from a call to ring_buffer_read_prepare and
4062  * an intervening ring_buffer_read_prepare_sync must have been
4063  * performed.
4064  *
4065  * Must be paired with ring_buffer_read_finish.
4066  */
4067 void
4068 ring_buffer_read_start(struct ring_buffer_iter *iter)
4069 {
4070 	struct ring_buffer_per_cpu *cpu_buffer;
4071 	unsigned long flags;
4072 
4073 	if (!iter)
4074 		return;
4075 
4076 	cpu_buffer = iter->cpu_buffer;
4077 
4078 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4079 	arch_spin_lock(&cpu_buffer->lock);
4080 	rb_iter_reset(iter);
4081 	arch_spin_unlock(&cpu_buffer->lock);
4082 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4083 }
4084 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4085 
4086 /**
4087  * ring_buffer_read_finish - finish reading the iterator of the buffer
4088  * @iter: The iterator retrieved by ring_buffer_start
4089  *
4090  * This re-enables the recording to the buffer, and frees the
4091  * iterator.
4092  */
4093 void
4094 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4095 {
4096 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4097 	unsigned long flags;
4098 
4099 	/*
4100 	 * Ring buffer is disabled from recording, here's a good place
4101 	 * to check the integrity of the ring buffer.
4102 	 * Must prevent readers from trying to read, as the check
4103 	 * clears the HEAD page and readers require it.
4104 	 */
4105 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106 	rb_check_pages(cpu_buffer);
4107 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4108 
4109 	atomic_dec(&cpu_buffer->record_disabled);
4110 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4111 	kfree(iter);
4112 }
4113 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4114 
4115 /**
4116  * ring_buffer_read - read the next item in the ring buffer by the iterator
4117  * @iter: The ring buffer iterator
4118  * @ts: The time stamp of the event read.
4119  *
4120  * This reads the next event in the ring buffer and increments the iterator.
4121  */
4122 struct ring_buffer_event *
4123 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4124 {
4125 	struct ring_buffer_event *event;
4126 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4127 	unsigned long flags;
4128 
4129 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4130  again:
4131 	event = rb_iter_peek(iter, ts);
4132 	if (!event)
4133 		goto out;
4134 
4135 	if (event->type_len == RINGBUF_TYPE_PADDING)
4136 		goto again;
4137 
4138 	rb_advance_iter(iter);
4139  out:
4140 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4141 
4142 	return event;
4143 }
4144 EXPORT_SYMBOL_GPL(ring_buffer_read);
4145 
4146 /**
4147  * ring_buffer_size - return the size of the ring buffer (in bytes)
4148  * @buffer: The ring buffer.
4149  */
4150 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4151 {
4152 	/*
4153 	 * Earlier, this method returned
4154 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4155 	 * Since the nr_pages field is now removed, we have converted this to
4156 	 * return the per cpu buffer value.
4157 	 */
4158 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4159 		return 0;
4160 
4161 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4162 }
4163 EXPORT_SYMBOL_GPL(ring_buffer_size);
4164 
4165 static void
4166 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4167 {
4168 	rb_head_page_deactivate(cpu_buffer);
4169 
4170 	cpu_buffer->head_page
4171 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4172 	local_set(&cpu_buffer->head_page->write, 0);
4173 	local_set(&cpu_buffer->head_page->entries, 0);
4174 	local_set(&cpu_buffer->head_page->page->commit, 0);
4175 
4176 	cpu_buffer->head_page->read = 0;
4177 
4178 	cpu_buffer->tail_page = cpu_buffer->head_page;
4179 	cpu_buffer->commit_page = cpu_buffer->head_page;
4180 
4181 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4182 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4183 	local_set(&cpu_buffer->reader_page->write, 0);
4184 	local_set(&cpu_buffer->reader_page->entries, 0);
4185 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4186 	cpu_buffer->reader_page->read = 0;
4187 
4188 	local_set(&cpu_buffer->entries_bytes, 0);
4189 	local_set(&cpu_buffer->overrun, 0);
4190 	local_set(&cpu_buffer->commit_overrun, 0);
4191 	local_set(&cpu_buffer->dropped_events, 0);
4192 	local_set(&cpu_buffer->entries, 0);
4193 	local_set(&cpu_buffer->committing, 0);
4194 	local_set(&cpu_buffer->commits, 0);
4195 	cpu_buffer->read = 0;
4196 	cpu_buffer->read_bytes = 0;
4197 
4198 	cpu_buffer->write_stamp = 0;
4199 	cpu_buffer->read_stamp = 0;
4200 
4201 	cpu_buffer->lost_events = 0;
4202 	cpu_buffer->last_overrun = 0;
4203 
4204 	rb_head_page_activate(cpu_buffer);
4205 }
4206 
4207 /**
4208  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4209  * @buffer: The ring buffer to reset a per cpu buffer of
4210  * @cpu: The CPU buffer to be reset
4211  */
4212 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4213 {
4214 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4215 	unsigned long flags;
4216 
4217 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4218 		return;
4219 
4220 	atomic_inc(&buffer->resize_disabled);
4221 	atomic_inc(&cpu_buffer->record_disabled);
4222 
4223 	/* Make sure all commits have finished */
4224 	synchronize_sched();
4225 
4226 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4227 
4228 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4229 		goto out;
4230 
4231 	arch_spin_lock(&cpu_buffer->lock);
4232 
4233 	rb_reset_cpu(cpu_buffer);
4234 
4235 	arch_spin_unlock(&cpu_buffer->lock);
4236 
4237  out:
4238 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4239 
4240 	atomic_dec(&cpu_buffer->record_disabled);
4241 	atomic_dec(&buffer->resize_disabled);
4242 }
4243 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4244 
4245 /**
4246  * ring_buffer_reset - reset a ring buffer
4247  * @buffer: The ring buffer to reset all cpu buffers
4248  */
4249 void ring_buffer_reset(struct ring_buffer *buffer)
4250 {
4251 	int cpu;
4252 
4253 	for_each_buffer_cpu(buffer, cpu)
4254 		ring_buffer_reset_cpu(buffer, cpu);
4255 }
4256 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4257 
4258 /**
4259  * rind_buffer_empty - is the ring buffer empty?
4260  * @buffer: The ring buffer to test
4261  */
4262 int ring_buffer_empty(struct ring_buffer *buffer)
4263 {
4264 	struct ring_buffer_per_cpu *cpu_buffer;
4265 	unsigned long flags;
4266 	int dolock;
4267 	int cpu;
4268 	int ret;
4269 
4270 	dolock = rb_ok_to_lock();
4271 
4272 	/* yes this is racy, but if you don't like the race, lock the buffer */
4273 	for_each_buffer_cpu(buffer, cpu) {
4274 		cpu_buffer = buffer->buffers[cpu];
4275 		local_irq_save(flags);
4276 		if (dolock)
4277 			raw_spin_lock(&cpu_buffer->reader_lock);
4278 		ret = rb_per_cpu_empty(cpu_buffer);
4279 		if (dolock)
4280 			raw_spin_unlock(&cpu_buffer->reader_lock);
4281 		local_irq_restore(flags);
4282 
4283 		if (!ret)
4284 			return 0;
4285 	}
4286 
4287 	return 1;
4288 }
4289 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4290 
4291 /**
4292  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293  * @buffer: The ring buffer
4294  * @cpu: The CPU buffer to test
4295  */
4296 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4297 {
4298 	struct ring_buffer_per_cpu *cpu_buffer;
4299 	unsigned long flags;
4300 	int dolock;
4301 	int ret;
4302 
4303 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4304 		return 1;
4305 
4306 	dolock = rb_ok_to_lock();
4307 
4308 	cpu_buffer = buffer->buffers[cpu];
4309 	local_irq_save(flags);
4310 	if (dolock)
4311 		raw_spin_lock(&cpu_buffer->reader_lock);
4312 	ret = rb_per_cpu_empty(cpu_buffer);
4313 	if (dolock)
4314 		raw_spin_unlock(&cpu_buffer->reader_lock);
4315 	local_irq_restore(flags);
4316 
4317 	return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4320 
4321 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4322 /**
4323  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4324  * @buffer_a: One buffer to swap with
4325  * @buffer_b: The other buffer to swap with
4326  *
4327  * This function is useful for tracers that want to take a "snapshot"
4328  * of a CPU buffer and has another back up buffer lying around.
4329  * it is expected that the tracer handles the cpu buffer not being
4330  * used at the moment.
4331  */
4332 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4333 			 struct ring_buffer *buffer_b, int cpu)
4334 {
4335 	struct ring_buffer_per_cpu *cpu_buffer_a;
4336 	struct ring_buffer_per_cpu *cpu_buffer_b;
4337 	int ret = -EINVAL;
4338 
4339 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4340 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4341 		goto out;
4342 
4343 	cpu_buffer_a = buffer_a->buffers[cpu];
4344 	cpu_buffer_b = buffer_b->buffers[cpu];
4345 
4346 	/* At least make sure the two buffers are somewhat the same */
4347 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4348 		goto out;
4349 
4350 	ret = -EAGAIN;
4351 
4352 	if (ring_buffer_flags != RB_BUFFERS_ON)
4353 		goto out;
4354 
4355 	if (atomic_read(&buffer_a->record_disabled))
4356 		goto out;
4357 
4358 	if (atomic_read(&buffer_b->record_disabled))
4359 		goto out;
4360 
4361 	if (atomic_read(&cpu_buffer_a->record_disabled))
4362 		goto out;
4363 
4364 	if (atomic_read(&cpu_buffer_b->record_disabled))
4365 		goto out;
4366 
4367 	/*
4368 	 * We can't do a synchronize_sched here because this
4369 	 * function can be called in atomic context.
4370 	 * Normally this will be called from the same CPU as cpu.
4371 	 * If not it's up to the caller to protect this.
4372 	 */
4373 	atomic_inc(&cpu_buffer_a->record_disabled);
4374 	atomic_inc(&cpu_buffer_b->record_disabled);
4375 
4376 	ret = -EBUSY;
4377 	if (local_read(&cpu_buffer_a->committing))
4378 		goto out_dec;
4379 	if (local_read(&cpu_buffer_b->committing))
4380 		goto out_dec;
4381 
4382 	buffer_a->buffers[cpu] = cpu_buffer_b;
4383 	buffer_b->buffers[cpu] = cpu_buffer_a;
4384 
4385 	cpu_buffer_b->buffer = buffer_a;
4386 	cpu_buffer_a->buffer = buffer_b;
4387 
4388 	ret = 0;
4389 
4390 out_dec:
4391 	atomic_dec(&cpu_buffer_a->record_disabled);
4392 	atomic_dec(&cpu_buffer_b->record_disabled);
4393 out:
4394 	return ret;
4395 }
4396 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4397 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4398 
4399 /**
4400  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4401  * @buffer: the buffer to allocate for.
4402  * @cpu: the cpu buffer to allocate.
4403  *
4404  * This function is used in conjunction with ring_buffer_read_page.
4405  * When reading a full page from the ring buffer, these functions
4406  * can be used to speed up the process. The calling function should
4407  * allocate a few pages first with this function. Then when it
4408  * needs to get pages from the ring buffer, it passes the result
4409  * of this function into ring_buffer_read_page, which will swap
4410  * the page that was allocated, with the read page of the buffer.
4411  *
4412  * Returns:
4413  *  The page allocated, or NULL on error.
4414  */
4415 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4416 {
4417 	struct buffer_data_page *bpage;
4418 	struct page *page;
4419 
4420 	page = alloc_pages_node(cpu_to_node(cpu),
4421 				GFP_KERNEL | __GFP_NORETRY, 0);
4422 	if (!page)
4423 		return NULL;
4424 
4425 	bpage = page_address(page);
4426 
4427 	rb_init_page(bpage);
4428 
4429 	return bpage;
4430 }
4431 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4432 
4433 /**
4434  * ring_buffer_free_read_page - free an allocated read page
4435  * @buffer: the buffer the page was allocate for
4436  * @data: the page to free
4437  *
4438  * Free a page allocated from ring_buffer_alloc_read_page.
4439  */
4440 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4441 {
4442 	free_page((unsigned long)data);
4443 }
4444 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4445 
4446 /**
4447  * ring_buffer_read_page - extract a page from the ring buffer
4448  * @buffer: buffer to extract from
4449  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4450  * @len: amount to extract
4451  * @cpu: the cpu of the buffer to extract
4452  * @full: should the extraction only happen when the page is full.
4453  *
4454  * This function will pull out a page from the ring buffer and consume it.
4455  * @data_page must be the address of the variable that was returned
4456  * from ring_buffer_alloc_read_page. This is because the page might be used
4457  * to swap with a page in the ring buffer.
4458  *
4459  * for example:
4460  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4461  *	if (!rpage)
4462  *		return error;
4463  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4464  *	if (ret >= 0)
4465  *		process_page(rpage, ret);
4466  *
4467  * When @full is set, the function will not return true unless
4468  * the writer is off the reader page.
4469  *
4470  * Note: it is up to the calling functions to handle sleeps and wakeups.
4471  *  The ring buffer can be used anywhere in the kernel and can not
4472  *  blindly call wake_up. The layer that uses the ring buffer must be
4473  *  responsible for that.
4474  *
4475  * Returns:
4476  *  >=0 if data has been transferred, returns the offset of consumed data.
4477  *  <0 if no data has been transferred.
4478  */
4479 int ring_buffer_read_page(struct ring_buffer *buffer,
4480 			  void **data_page, size_t len, int cpu, int full)
4481 {
4482 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4483 	struct ring_buffer_event *event;
4484 	struct buffer_data_page *bpage;
4485 	struct buffer_page *reader;
4486 	unsigned long missed_events;
4487 	unsigned long flags;
4488 	unsigned int commit;
4489 	unsigned int read;
4490 	u64 save_timestamp;
4491 	int ret = -1;
4492 
4493 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4494 		goto out;
4495 
4496 	/*
4497 	 * If len is not big enough to hold the page header, then
4498 	 * we can not copy anything.
4499 	 */
4500 	if (len <= BUF_PAGE_HDR_SIZE)
4501 		goto out;
4502 
4503 	len -= BUF_PAGE_HDR_SIZE;
4504 
4505 	if (!data_page)
4506 		goto out;
4507 
4508 	bpage = *data_page;
4509 	if (!bpage)
4510 		goto out;
4511 
4512 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4513 
4514 	reader = rb_get_reader_page(cpu_buffer);
4515 	if (!reader)
4516 		goto out_unlock;
4517 
4518 	event = rb_reader_event(cpu_buffer);
4519 
4520 	read = reader->read;
4521 	commit = rb_page_commit(reader);
4522 
4523 	/* Check if any events were dropped */
4524 	missed_events = cpu_buffer->lost_events;
4525 
4526 	/*
4527 	 * If this page has been partially read or
4528 	 * if len is not big enough to read the rest of the page or
4529 	 * a writer is still on the page, then
4530 	 * we must copy the data from the page to the buffer.
4531 	 * Otherwise, we can simply swap the page with the one passed in.
4532 	 */
4533 	if (read || (len < (commit - read)) ||
4534 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4535 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4536 		unsigned int rpos = read;
4537 		unsigned int pos = 0;
4538 		unsigned int size;
4539 
4540 		if (full)
4541 			goto out_unlock;
4542 
4543 		if (len > (commit - read))
4544 			len = (commit - read);
4545 
4546 		/* Always keep the time extend and data together */
4547 		size = rb_event_ts_length(event);
4548 
4549 		if (len < size)
4550 			goto out_unlock;
4551 
4552 		/* save the current timestamp, since the user will need it */
4553 		save_timestamp = cpu_buffer->read_stamp;
4554 
4555 		/* Need to copy one event at a time */
4556 		do {
4557 			/* We need the size of one event, because
4558 			 * rb_advance_reader only advances by one event,
4559 			 * whereas rb_event_ts_length may include the size of
4560 			 * one or two events.
4561 			 * We have already ensured there's enough space if this
4562 			 * is a time extend. */
4563 			size = rb_event_length(event);
4564 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4565 
4566 			len -= size;
4567 
4568 			rb_advance_reader(cpu_buffer);
4569 			rpos = reader->read;
4570 			pos += size;
4571 
4572 			if (rpos >= commit)
4573 				break;
4574 
4575 			event = rb_reader_event(cpu_buffer);
4576 			/* Always keep the time extend and data together */
4577 			size = rb_event_ts_length(event);
4578 		} while (len >= size);
4579 
4580 		/* update bpage */
4581 		local_set(&bpage->commit, pos);
4582 		bpage->time_stamp = save_timestamp;
4583 
4584 		/* we copied everything to the beginning */
4585 		read = 0;
4586 	} else {
4587 		/* update the entry counter */
4588 		cpu_buffer->read += rb_page_entries(reader);
4589 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4590 
4591 		/* swap the pages */
4592 		rb_init_page(bpage);
4593 		bpage = reader->page;
4594 		reader->page = *data_page;
4595 		local_set(&reader->write, 0);
4596 		local_set(&reader->entries, 0);
4597 		reader->read = 0;
4598 		*data_page = bpage;
4599 
4600 		/*
4601 		 * Use the real_end for the data size,
4602 		 * This gives us a chance to store the lost events
4603 		 * on the page.
4604 		 */
4605 		if (reader->real_end)
4606 			local_set(&bpage->commit, reader->real_end);
4607 	}
4608 	ret = read;
4609 
4610 	cpu_buffer->lost_events = 0;
4611 
4612 	commit = local_read(&bpage->commit);
4613 	/*
4614 	 * Set a flag in the commit field if we lost events
4615 	 */
4616 	if (missed_events) {
4617 		/* If there is room at the end of the page to save the
4618 		 * missed events, then record it there.
4619 		 */
4620 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4621 			memcpy(&bpage->data[commit], &missed_events,
4622 			       sizeof(missed_events));
4623 			local_add(RB_MISSED_STORED, &bpage->commit);
4624 			commit += sizeof(missed_events);
4625 		}
4626 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4627 	}
4628 
4629 	/*
4630 	 * This page may be off to user land. Zero it out here.
4631 	 */
4632 	if (commit < BUF_PAGE_SIZE)
4633 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4634 
4635  out_unlock:
4636 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4637 
4638  out:
4639 	return ret;
4640 }
4641 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4642 
4643 #ifdef CONFIG_HOTPLUG_CPU
4644 static int rb_cpu_notify(struct notifier_block *self,
4645 			 unsigned long action, void *hcpu)
4646 {
4647 	struct ring_buffer *buffer =
4648 		container_of(self, struct ring_buffer, cpu_notify);
4649 	long cpu = (long)hcpu;
4650 	int cpu_i, nr_pages_same;
4651 	unsigned int nr_pages;
4652 
4653 	switch (action) {
4654 	case CPU_UP_PREPARE:
4655 	case CPU_UP_PREPARE_FROZEN:
4656 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4657 			return NOTIFY_OK;
4658 
4659 		nr_pages = 0;
4660 		nr_pages_same = 1;
4661 		/* check if all cpu sizes are same */
4662 		for_each_buffer_cpu(buffer, cpu_i) {
4663 			/* fill in the size from first enabled cpu */
4664 			if (nr_pages == 0)
4665 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4666 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4667 				nr_pages_same = 0;
4668 				break;
4669 			}
4670 		}
4671 		/* allocate minimum pages, user can later expand it */
4672 		if (!nr_pages_same)
4673 			nr_pages = 2;
4674 		buffer->buffers[cpu] =
4675 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4676 		if (!buffer->buffers[cpu]) {
4677 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4678 			     cpu);
4679 			return NOTIFY_OK;
4680 		}
4681 		smp_wmb();
4682 		cpumask_set_cpu(cpu, buffer->cpumask);
4683 		break;
4684 	case CPU_DOWN_PREPARE:
4685 	case CPU_DOWN_PREPARE_FROZEN:
4686 		/*
4687 		 * Do nothing.
4688 		 *  If we were to free the buffer, then the user would
4689 		 *  lose any trace that was in the buffer.
4690 		 */
4691 		break;
4692 	default:
4693 		break;
4694 	}
4695 	return NOTIFY_OK;
4696 }
4697 #endif
4698 
4699 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4700 /*
4701  * This is a basic integrity check of the ring buffer.
4702  * Late in the boot cycle this test will run when configured in.
4703  * It will kick off a thread per CPU that will go into a loop
4704  * writing to the per cpu ring buffer various sizes of data.
4705  * Some of the data will be large items, some small.
4706  *
4707  * Another thread is created that goes into a spin, sending out
4708  * IPIs to the other CPUs to also write into the ring buffer.
4709  * this is to test the nesting ability of the buffer.
4710  *
4711  * Basic stats are recorded and reported. If something in the
4712  * ring buffer should happen that's not expected, a big warning
4713  * is displayed and all ring buffers are disabled.
4714  */
4715 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4716 
4717 struct rb_test_data {
4718 	struct ring_buffer	*buffer;
4719 	unsigned long		events;
4720 	unsigned long		bytes_written;
4721 	unsigned long		bytes_alloc;
4722 	unsigned long		bytes_dropped;
4723 	unsigned long		events_nested;
4724 	unsigned long		bytes_written_nested;
4725 	unsigned long		bytes_alloc_nested;
4726 	unsigned long		bytes_dropped_nested;
4727 	int			min_size_nested;
4728 	int			max_size_nested;
4729 	int			max_size;
4730 	int			min_size;
4731 	int			cpu;
4732 	int			cnt;
4733 };
4734 
4735 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4736 
4737 /* 1 meg per cpu */
4738 #define RB_TEST_BUFFER_SIZE	1048576
4739 
4740 static char rb_string[] __initdata =
4741 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4742 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4743 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4744 
4745 static bool rb_test_started __initdata;
4746 
4747 struct rb_item {
4748 	int size;
4749 	char str[];
4750 };
4751 
4752 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4753 {
4754 	struct ring_buffer_event *event;
4755 	struct rb_item *item;
4756 	bool started;
4757 	int event_len;
4758 	int size;
4759 	int len;
4760 	int cnt;
4761 
4762 	/* Have nested writes different that what is written */
4763 	cnt = data->cnt + (nested ? 27 : 0);
4764 
4765 	/* Multiply cnt by ~e, to make some unique increment */
4766 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4767 
4768 	len = size + sizeof(struct rb_item);
4769 
4770 	started = rb_test_started;
4771 	/* read rb_test_started before checking buffer enabled */
4772 	smp_rmb();
4773 
4774 	event = ring_buffer_lock_reserve(data->buffer, len);
4775 	if (!event) {
4776 		/* Ignore dropped events before test starts. */
4777 		if (started) {
4778 			if (nested)
4779 				data->bytes_dropped += len;
4780 			else
4781 				data->bytes_dropped_nested += len;
4782 		}
4783 		return len;
4784 	}
4785 
4786 	event_len = ring_buffer_event_length(event);
4787 
4788 	if (RB_WARN_ON(data->buffer, event_len < len))
4789 		goto out;
4790 
4791 	item = ring_buffer_event_data(event);
4792 	item->size = size;
4793 	memcpy(item->str, rb_string, size);
4794 
4795 	if (nested) {
4796 		data->bytes_alloc_nested += event_len;
4797 		data->bytes_written_nested += len;
4798 		data->events_nested++;
4799 		if (!data->min_size_nested || len < data->min_size_nested)
4800 			data->min_size_nested = len;
4801 		if (len > data->max_size_nested)
4802 			data->max_size_nested = len;
4803 	} else {
4804 		data->bytes_alloc += event_len;
4805 		data->bytes_written += len;
4806 		data->events++;
4807 		if (!data->min_size || len < data->min_size)
4808 			data->max_size = len;
4809 		if (len > data->max_size)
4810 			data->max_size = len;
4811 	}
4812 
4813  out:
4814 	ring_buffer_unlock_commit(data->buffer, event);
4815 
4816 	return 0;
4817 }
4818 
4819 static __init int rb_test(void *arg)
4820 {
4821 	struct rb_test_data *data = arg;
4822 
4823 	while (!kthread_should_stop()) {
4824 		rb_write_something(data, false);
4825 		data->cnt++;
4826 
4827 		set_current_state(TASK_INTERRUPTIBLE);
4828 		/* Now sleep between a min of 100-300us and a max of 1ms */
4829 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4830 	}
4831 
4832 	return 0;
4833 }
4834 
4835 static __init void rb_ipi(void *ignore)
4836 {
4837 	struct rb_test_data *data;
4838 	int cpu = smp_processor_id();
4839 
4840 	data = &rb_data[cpu];
4841 	rb_write_something(data, true);
4842 }
4843 
4844 static __init int rb_hammer_test(void *arg)
4845 {
4846 	while (!kthread_should_stop()) {
4847 
4848 		/* Send an IPI to all cpus to write data! */
4849 		smp_call_function(rb_ipi, NULL, 1);
4850 		/* No sleep, but for non preempt, let others run */
4851 		schedule();
4852 	}
4853 
4854 	return 0;
4855 }
4856 
4857 static __init int test_ringbuffer(void)
4858 {
4859 	struct task_struct *rb_hammer;
4860 	struct ring_buffer *buffer;
4861 	int cpu;
4862 	int ret = 0;
4863 
4864 	pr_info("Running ring buffer tests...\n");
4865 
4866 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4867 	if (WARN_ON(!buffer))
4868 		return 0;
4869 
4870 	/* Disable buffer so that threads can't write to it yet */
4871 	ring_buffer_record_off(buffer);
4872 
4873 	for_each_online_cpu(cpu) {
4874 		rb_data[cpu].buffer = buffer;
4875 		rb_data[cpu].cpu = cpu;
4876 		rb_data[cpu].cnt = cpu;
4877 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4878 						 "rbtester/%d", cpu);
4879 		if (WARN_ON(!rb_threads[cpu])) {
4880 			pr_cont("FAILED\n");
4881 			ret = -1;
4882 			goto out_free;
4883 		}
4884 
4885 		kthread_bind(rb_threads[cpu], cpu);
4886  		wake_up_process(rb_threads[cpu]);
4887 	}
4888 
4889 	/* Now create the rb hammer! */
4890 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4891 	if (WARN_ON(!rb_hammer)) {
4892 		pr_cont("FAILED\n");
4893 		ret = -1;
4894 		goto out_free;
4895 	}
4896 
4897 	ring_buffer_record_on(buffer);
4898 	/*
4899 	 * Show buffer is enabled before setting rb_test_started.
4900 	 * Yes there's a small race window where events could be
4901 	 * dropped and the thread wont catch it. But when a ring
4902 	 * buffer gets enabled, there will always be some kind of
4903 	 * delay before other CPUs see it. Thus, we don't care about
4904 	 * those dropped events. We care about events dropped after
4905 	 * the threads see that the buffer is active.
4906 	 */
4907 	smp_wmb();
4908 	rb_test_started = true;
4909 
4910 	set_current_state(TASK_INTERRUPTIBLE);
4911 	/* Just run for 10 seconds */;
4912 	schedule_timeout(10 * HZ);
4913 
4914 	kthread_stop(rb_hammer);
4915 
4916  out_free:
4917 	for_each_online_cpu(cpu) {
4918 		if (!rb_threads[cpu])
4919 			break;
4920 		kthread_stop(rb_threads[cpu]);
4921 	}
4922 	if (ret) {
4923 		ring_buffer_free(buffer);
4924 		return ret;
4925 	}
4926 
4927 	/* Report! */
4928 	pr_info("finished\n");
4929 	for_each_online_cpu(cpu) {
4930 		struct ring_buffer_event *event;
4931 		struct rb_test_data *data = &rb_data[cpu];
4932 		struct rb_item *item;
4933 		unsigned long total_events;
4934 		unsigned long total_dropped;
4935 		unsigned long total_written;
4936 		unsigned long total_alloc;
4937 		unsigned long total_read = 0;
4938 		unsigned long total_size = 0;
4939 		unsigned long total_len = 0;
4940 		unsigned long total_lost = 0;
4941 		unsigned long lost;
4942 		int big_event_size;
4943 		int small_event_size;
4944 
4945 		ret = -1;
4946 
4947 		total_events = data->events + data->events_nested;
4948 		total_written = data->bytes_written + data->bytes_written_nested;
4949 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4950 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4951 
4952 		big_event_size = data->max_size + data->max_size_nested;
4953 		small_event_size = data->min_size + data->min_size_nested;
4954 
4955 		pr_info("CPU %d:\n", cpu);
4956 		pr_info("              events:    %ld\n", total_events);
4957 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4958 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4959 		pr_info("       written bytes:    %ld\n", total_written);
4960 		pr_info("       biggest event:    %d\n", big_event_size);
4961 		pr_info("      smallest event:    %d\n", small_event_size);
4962 
4963 		if (RB_WARN_ON(buffer, total_dropped))
4964 			break;
4965 
4966 		ret = 0;
4967 
4968 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4969 			total_lost += lost;
4970 			item = ring_buffer_event_data(event);
4971 			total_len += ring_buffer_event_length(event);
4972 			total_size += item->size + sizeof(struct rb_item);
4973 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4974 				pr_info("FAILED!\n");
4975 				pr_info("buffer had: %.*s\n", item->size, item->str);
4976 				pr_info("expected:   %.*s\n", item->size, rb_string);
4977 				RB_WARN_ON(buffer, 1);
4978 				ret = -1;
4979 				break;
4980 			}
4981 			total_read++;
4982 		}
4983 		if (ret)
4984 			break;
4985 
4986 		ret = -1;
4987 
4988 		pr_info("         read events:   %ld\n", total_read);
4989 		pr_info("         lost events:   %ld\n", total_lost);
4990 		pr_info("        total events:   %ld\n", total_lost + total_read);
4991 		pr_info("  recorded len bytes:   %ld\n", total_len);
4992 		pr_info(" recorded size bytes:   %ld\n", total_size);
4993 		if (total_lost)
4994 			pr_info(" With dropped events, record len and size may not match\n"
4995 				" alloced and written from above\n");
4996 		if (!total_lost) {
4997 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4998 				       total_size != total_written))
4999 				break;
5000 		}
5001 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5002 			break;
5003 
5004 		ret = 0;
5005 	}
5006 	if (!ret)
5007 		pr_info("Ring buffer PASSED!\n");
5008 
5009 	ring_buffer_free(buffer);
5010 	return 0;
5011 }
5012 
5013 late_initcall(test_ringbuffer);
5014 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5015