1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 /* 33 * The "absolute" timestamp in the buffer is only 59 bits. 34 * If a clock has the 5 MSBs set, it needs to be saved and 35 * reinserted. 36 */ 37 #define TS_MSB (0xf8ULL << 56) 38 #define ABS_TS_MASK (~TS_MSB) 39 40 static void update_pages_handler(struct work_struct *work); 41 42 /* 43 * The ring buffer header is special. We must manually up keep it. 44 */ 45 int ring_buffer_print_entry_header(struct trace_seq *s) 46 { 47 trace_seq_puts(s, "# compressed entry header\n"); 48 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 49 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 50 trace_seq_puts(s, "\tarray : 32 bits\n"); 51 trace_seq_putc(s, '\n'); 52 trace_seq_printf(s, "\tpadding : type == %d\n", 53 RINGBUF_TYPE_PADDING); 54 trace_seq_printf(s, "\ttime_extend : type == %d\n", 55 RINGBUF_TYPE_TIME_EXTEND); 56 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 57 RINGBUF_TYPE_TIME_STAMP); 58 trace_seq_printf(s, "\tdata max type_len == %d\n", 59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 60 61 return !trace_seq_has_overflowed(s); 62 } 63 64 /* 65 * The ring buffer is made up of a list of pages. A separate list of pages is 66 * allocated for each CPU. A writer may only write to a buffer that is 67 * associated with the CPU it is currently executing on. A reader may read 68 * from any per cpu buffer. 69 * 70 * The reader is special. For each per cpu buffer, the reader has its own 71 * reader page. When a reader has read the entire reader page, this reader 72 * page is swapped with another page in the ring buffer. 73 * 74 * Now, as long as the writer is off the reader page, the reader can do what 75 * ever it wants with that page. The writer will never write to that page 76 * again (as long as it is out of the ring buffer). 77 * 78 * Here's some silly ASCII art. 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page | 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * | |-->| |-->| | 96 * +---+ +---+ +---+ 97 * ^ | 98 * | | 99 * +---------------+ 100 * 101 * 102 * +------+ 103 * |reader| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | |-->| |-->| | 107 * | +---+ +---+ +---+ 108 * | | 109 * | | 110 * +------------------------------+ 111 * 112 * 113 * +------+ 114 * |buffer| RING BUFFER 115 * |page |------------------v 116 * +------+ +---+ +---+ +---+ 117 * ^ | | | |-->| | 118 * | New +---+ +---+ +---+ 119 * | Reader------^ | 120 * | page | 121 * +------------------------------+ 122 * 123 * 124 * After we make this swap, the reader can hand this page off to the splice 125 * code and be done with it. It can even allocate a new page if it needs to 126 * and swap that into the ring buffer. 127 * 128 * We will be using cmpxchg soon to make all this lockless. 129 * 130 */ 131 132 /* Used for individual buffers (after the counter) */ 133 #define RB_BUFFER_OFF (1 << 20) 134 135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 136 137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 138 #define RB_ALIGNMENT 4U 139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 141 142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 143 # define RB_FORCE_8BYTE_ALIGNMENT 0 144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 145 #else 146 # define RB_FORCE_8BYTE_ALIGNMENT 1 147 # define RB_ARCH_ALIGNMENT 8U 148 #endif 149 150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 151 152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 154 155 enum { 156 RB_LEN_TIME_EXTEND = 8, 157 RB_LEN_TIME_STAMP = 8, 158 }; 159 160 #define skip_time_extend(event) \ 161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 162 163 #define extended_time(event) \ 164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 165 166 static inline bool rb_null_event(struct ring_buffer_event *event) 167 { 168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 169 } 170 171 static void rb_event_set_padding(struct ring_buffer_event *event) 172 { 173 /* padding has a NULL time_delta */ 174 event->type_len = RINGBUF_TYPE_PADDING; 175 event->time_delta = 0; 176 } 177 178 static unsigned 179 rb_event_data_length(struct ring_buffer_event *event) 180 { 181 unsigned length; 182 183 if (event->type_len) 184 length = event->type_len * RB_ALIGNMENT; 185 else 186 length = event->array[0]; 187 return length + RB_EVNT_HDR_SIZE; 188 } 189 190 /* 191 * Return the length of the given event. Will return 192 * the length of the time extend if the event is a 193 * time extend. 194 */ 195 static inline unsigned 196 rb_event_length(struct ring_buffer_event *event) 197 { 198 switch (event->type_len) { 199 case RINGBUF_TYPE_PADDING: 200 if (rb_null_event(event)) 201 /* undefined */ 202 return -1; 203 return event->array[0] + RB_EVNT_HDR_SIZE; 204 205 case RINGBUF_TYPE_TIME_EXTEND: 206 return RB_LEN_TIME_EXTEND; 207 208 case RINGBUF_TYPE_TIME_STAMP: 209 return RB_LEN_TIME_STAMP; 210 211 case RINGBUF_TYPE_DATA: 212 return rb_event_data_length(event); 213 default: 214 WARN_ON_ONCE(1); 215 } 216 /* not hit */ 217 return 0; 218 } 219 220 /* 221 * Return total length of time extend and data, 222 * or just the event length for all other events. 223 */ 224 static inline unsigned 225 rb_event_ts_length(struct ring_buffer_event *event) 226 { 227 unsigned len = 0; 228 229 if (extended_time(event)) { 230 /* time extends include the data event after it */ 231 len = RB_LEN_TIME_EXTEND; 232 event = skip_time_extend(event); 233 } 234 return len + rb_event_length(event); 235 } 236 237 /** 238 * ring_buffer_event_length - return the length of the event 239 * @event: the event to get the length of 240 * 241 * Returns the size of the data load of a data event. 242 * If the event is something other than a data event, it 243 * returns the size of the event itself. With the exception 244 * of a TIME EXTEND, where it still returns the size of the 245 * data load of the data event after it. 246 */ 247 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 248 { 249 unsigned length; 250 251 if (extended_time(event)) 252 event = skip_time_extend(event); 253 254 length = rb_event_length(event); 255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 256 return length; 257 length -= RB_EVNT_HDR_SIZE; 258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 259 length -= sizeof(event->array[0]); 260 return length; 261 } 262 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 263 264 /* inline for ring buffer fast paths */ 265 static __always_inline void * 266 rb_event_data(struct ring_buffer_event *event) 267 { 268 if (extended_time(event)) 269 event = skip_time_extend(event); 270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 271 /* If length is in len field, then array[0] has the data */ 272 if (event->type_len) 273 return (void *)&event->array[0]; 274 /* Otherwise length is in array[0] and array[1] has the data */ 275 return (void *)&event->array[1]; 276 } 277 278 /** 279 * ring_buffer_event_data - return the data of the event 280 * @event: the event to get the data from 281 */ 282 void *ring_buffer_event_data(struct ring_buffer_event *event) 283 { 284 return rb_event_data(event); 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 287 288 #define for_each_buffer_cpu(buffer, cpu) \ 289 for_each_cpu(cpu, buffer->cpumask) 290 291 #define for_each_online_buffer_cpu(buffer, cpu) \ 292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 293 294 #define TS_SHIFT 27 295 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 296 #define TS_DELTA_TEST (~TS_MASK) 297 298 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 299 { 300 u64 ts; 301 302 ts = event->array[0]; 303 ts <<= TS_SHIFT; 304 ts += event->time_delta; 305 306 return ts; 307 } 308 309 /* Flag when events were overwritten */ 310 #define RB_MISSED_EVENTS (1 << 31) 311 /* Missed count stored at end */ 312 #define RB_MISSED_STORED (1 << 30) 313 314 struct buffer_data_page { 315 u64 time_stamp; /* page time stamp */ 316 local_t commit; /* write committed index */ 317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 318 }; 319 320 /* 321 * Note, the buffer_page list must be first. The buffer pages 322 * are allocated in cache lines, which means that each buffer 323 * page will be at the beginning of a cache line, and thus 324 * the least significant bits will be zero. We use this to 325 * add flags in the list struct pointers, to make the ring buffer 326 * lockless. 327 */ 328 struct buffer_page { 329 struct list_head list; /* list of buffer pages */ 330 local_t write; /* index for next write */ 331 unsigned read; /* index for next read */ 332 local_t entries; /* entries on this page */ 333 unsigned long real_end; /* real end of data */ 334 struct buffer_data_page *page; /* Actual data page */ 335 }; 336 337 /* 338 * The buffer page counters, write and entries, must be reset 339 * atomically when crossing page boundaries. To synchronize this 340 * update, two counters are inserted into the number. One is 341 * the actual counter for the write position or count on the page. 342 * 343 * The other is a counter of updaters. Before an update happens 344 * the update partition of the counter is incremented. This will 345 * allow the updater to update the counter atomically. 346 * 347 * The counter is 20 bits, and the state data is 12. 348 */ 349 #define RB_WRITE_MASK 0xfffff 350 #define RB_WRITE_INTCNT (1 << 20) 351 352 static void rb_init_page(struct buffer_data_page *bpage) 353 { 354 local_set(&bpage->commit, 0); 355 } 356 357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 358 { 359 return local_read(&bpage->page->commit); 360 } 361 362 static void free_buffer_page(struct buffer_page *bpage) 363 { 364 free_page((unsigned long)bpage->page); 365 kfree(bpage); 366 } 367 368 /* 369 * We need to fit the time_stamp delta into 27 bits. 370 */ 371 static inline bool test_time_stamp(u64 delta) 372 { 373 return !!(delta & TS_DELTA_TEST); 374 } 375 376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 377 378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 380 381 int ring_buffer_print_page_header(struct trace_seq *s) 382 { 383 struct buffer_data_page field; 384 385 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 386 "offset:0;\tsize:%u;\tsigned:%u;\n", 387 (unsigned int)sizeof(field.time_stamp), 388 (unsigned int)is_signed_type(u64)); 389 390 trace_seq_printf(s, "\tfield: local_t commit;\t" 391 "offset:%u;\tsize:%u;\tsigned:%u;\n", 392 (unsigned int)offsetof(typeof(field), commit), 393 (unsigned int)sizeof(field.commit), 394 (unsigned int)is_signed_type(long)); 395 396 trace_seq_printf(s, "\tfield: int overwrite;\t" 397 "offset:%u;\tsize:%u;\tsigned:%u;\n", 398 (unsigned int)offsetof(typeof(field), commit), 399 1, 400 (unsigned int)is_signed_type(long)); 401 402 trace_seq_printf(s, "\tfield: char data;\t" 403 "offset:%u;\tsize:%u;\tsigned:%u;\n", 404 (unsigned int)offsetof(typeof(field), data), 405 (unsigned int)BUF_PAGE_SIZE, 406 (unsigned int)is_signed_type(char)); 407 408 return !trace_seq_has_overflowed(s); 409 } 410 411 struct rb_irq_work { 412 struct irq_work work; 413 wait_queue_head_t waiters; 414 wait_queue_head_t full_waiters; 415 bool waiters_pending; 416 bool full_waiters_pending; 417 bool wakeup_full; 418 }; 419 420 /* 421 * Structure to hold event state and handle nested events. 422 */ 423 struct rb_event_info { 424 u64 ts; 425 u64 delta; 426 u64 before; 427 u64 after; 428 unsigned long length; 429 struct buffer_page *tail_page; 430 int add_timestamp; 431 }; 432 433 /* 434 * Used for the add_timestamp 435 * NONE 436 * EXTEND - wants a time extend 437 * ABSOLUTE - the buffer requests all events to have absolute time stamps 438 * FORCE - force a full time stamp. 439 */ 440 enum { 441 RB_ADD_STAMP_NONE = 0, 442 RB_ADD_STAMP_EXTEND = BIT(1), 443 RB_ADD_STAMP_ABSOLUTE = BIT(2), 444 RB_ADD_STAMP_FORCE = BIT(3) 445 }; 446 /* 447 * Used for which event context the event is in. 448 * TRANSITION = 0 449 * NMI = 1 450 * IRQ = 2 451 * SOFTIRQ = 3 452 * NORMAL = 4 453 * 454 * See trace_recursive_lock() comment below for more details. 455 */ 456 enum { 457 RB_CTX_TRANSITION, 458 RB_CTX_NMI, 459 RB_CTX_IRQ, 460 RB_CTX_SOFTIRQ, 461 RB_CTX_NORMAL, 462 RB_CTX_MAX 463 }; 464 465 #if BITS_PER_LONG == 32 466 #define RB_TIME_32 467 #endif 468 469 /* To test on 64 bit machines */ 470 //#define RB_TIME_32 471 472 #ifdef RB_TIME_32 473 474 struct rb_time_struct { 475 local_t cnt; 476 local_t top; 477 local_t bottom; 478 local_t msb; 479 }; 480 #else 481 #include <asm/local64.h> 482 struct rb_time_struct { 483 local64_t time; 484 }; 485 #endif 486 typedef struct rb_time_struct rb_time_t; 487 488 #define MAX_NEST 5 489 490 /* 491 * head_page == tail_page && head == tail then buffer is empty. 492 */ 493 struct ring_buffer_per_cpu { 494 int cpu; 495 atomic_t record_disabled; 496 atomic_t resize_disabled; 497 struct trace_buffer *buffer; 498 raw_spinlock_t reader_lock; /* serialize readers */ 499 arch_spinlock_t lock; 500 struct lock_class_key lock_key; 501 struct buffer_data_page *free_page; 502 unsigned long nr_pages; 503 unsigned int current_context; 504 struct list_head *pages; 505 struct buffer_page *head_page; /* read from head */ 506 struct buffer_page *tail_page; /* write to tail */ 507 struct buffer_page *commit_page; /* committed pages */ 508 struct buffer_page *reader_page; 509 unsigned long lost_events; 510 unsigned long last_overrun; 511 unsigned long nest; 512 local_t entries_bytes; 513 local_t entries; 514 local_t overrun; 515 local_t commit_overrun; 516 local_t dropped_events; 517 local_t committing; 518 local_t commits; 519 local_t pages_touched; 520 local_t pages_lost; 521 local_t pages_read; 522 long last_pages_touch; 523 size_t shortest_full; 524 unsigned long read; 525 unsigned long read_bytes; 526 rb_time_t write_stamp; 527 rb_time_t before_stamp; 528 u64 event_stamp[MAX_NEST]; 529 u64 read_stamp; 530 /* pages removed since last reset */ 531 unsigned long pages_removed; 532 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 533 long nr_pages_to_update; 534 struct list_head new_pages; /* new pages to add */ 535 struct work_struct update_pages_work; 536 struct completion update_done; 537 538 struct rb_irq_work irq_work; 539 }; 540 541 struct trace_buffer { 542 unsigned flags; 543 int cpus; 544 atomic_t record_disabled; 545 atomic_t resizing; 546 cpumask_var_t cpumask; 547 548 struct lock_class_key *reader_lock_key; 549 550 struct mutex mutex; 551 552 struct ring_buffer_per_cpu **buffers; 553 554 struct hlist_node node; 555 u64 (*clock)(void); 556 557 struct rb_irq_work irq_work; 558 bool time_stamp_abs; 559 }; 560 561 struct ring_buffer_iter { 562 struct ring_buffer_per_cpu *cpu_buffer; 563 unsigned long head; 564 unsigned long next_event; 565 struct buffer_page *head_page; 566 struct buffer_page *cache_reader_page; 567 unsigned long cache_read; 568 unsigned long cache_pages_removed; 569 u64 read_stamp; 570 u64 page_stamp; 571 struct ring_buffer_event *event; 572 int missed_events; 573 }; 574 575 #ifdef RB_TIME_32 576 577 /* 578 * On 32 bit machines, local64_t is very expensive. As the ring 579 * buffer doesn't need all the features of a true 64 bit atomic, 580 * on 32 bit, it uses these functions (64 still uses local64_t). 581 * 582 * For the ring buffer, 64 bit required operations for the time is 583 * the following: 584 * 585 * - Reads may fail if it interrupted a modification of the time stamp. 586 * It will succeed if it did not interrupt another write even if 587 * the read itself is interrupted by a write. 588 * It returns whether it was successful or not. 589 * 590 * - Writes always succeed and will overwrite other writes and writes 591 * that were done by events interrupting the current write. 592 * 593 * - A write followed by a read of the same time stamp will always succeed, 594 * but may not contain the same value. 595 * 596 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 597 * Other than that, it acts like a normal cmpxchg. 598 * 599 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 600 * (bottom being the least significant 30 bits of the 60 bit time stamp). 601 * 602 * The two most significant bits of each half holds a 2 bit counter (0-3). 603 * Each update will increment this counter by one. 604 * When reading the top and bottom, if the two counter bits match then the 605 * top and bottom together make a valid 60 bit number. 606 */ 607 #define RB_TIME_SHIFT 30 608 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 609 #define RB_TIME_MSB_SHIFT 60 610 611 static inline int rb_time_cnt(unsigned long val) 612 { 613 return (val >> RB_TIME_SHIFT) & 3; 614 } 615 616 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 617 { 618 u64 val; 619 620 val = top & RB_TIME_VAL_MASK; 621 val <<= RB_TIME_SHIFT; 622 val |= bottom & RB_TIME_VAL_MASK; 623 624 return val; 625 } 626 627 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 628 { 629 unsigned long top, bottom, msb; 630 unsigned long c; 631 632 /* 633 * If the read is interrupted by a write, then the cnt will 634 * be different. Loop until both top and bottom have been read 635 * without interruption. 636 */ 637 do { 638 c = local_read(&t->cnt); 639 top = local_read(&t->top); 640 bottom = local_read(&t->bottom); 641 msb = local_read(&t->msb); 642 } while (c != local_read(&t->cnt)); 643 644 *cnt = rb_time_cnt(top); 645 646 /* If top, msb or bottom counts don't match, this interrupted a write */ 647 if (*cnt != rb_time_cnt(msb) || *cnt != rb_time_cnt(bottom)) 648 return false; 649 650 /* The shift to msb will lose its cnt bits */ 651 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT); 652 return true; 653 } 654 655 static bool rb_time_read(rb_time_t *t, u64 *ret) 656 { 657 unsigned long cnt; 658 659 return __rb_time_read(t, ret, &cnt); 660 } 661 662 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 663 { 664 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 665 } 666 667 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom, 668 unsigned long *msb) 669 { 670 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 671 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 672 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT); 673 } 674 675 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 676 { 677 val = rb_time_val_cnt(val, cnt); 678 local_set(t, val); 679 } 680 681 static void rb_time_set(rb_time_t *t, u64 val) 682 { 683 unsigned long cnt, top, bottom, msb; 684 685 rb_time_split(val, &top, &bottom, &msb); 686 687 /* Writes always succeed with a valid number even if it gets interrupted. */ 688 do { 689 cnt = local_inc_return(&t->cnt); 690 rb_time_val_set(&t->top, top, cnt); 691 rb_time_val_set(&t->bottom, bottom, cnt); 692 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt); 693 } while (cnt != local_read(&t->cnt)); 694 } 695 696 static inline bool 697 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 698 { 699 return local_try_cmpxchg(l, &expect, set); 700 } 701 702 #else /* 64 bits */ 703 704 /* local64_t always succeeds */ 705 706 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 707 { 708 *ret = local64_read(&t->time); 709 return true; 710 } 711 static void rb_time_set(rb_time_t *t, u64 val) 712 { 713 local64_set(&t->time, val); 714 } 715 #endif 716 717 /* 718 * Enable this to make sure that the event passed to 719 * ring_buffer_event_time_stamp() is not committed and also 720 * is on the buffer that it passed in. 721 */ 722 //#define RB_VERIFY_EVENT 723 #ifdef RB_VERIFY_EVENT 724 static struct list_head *rb_list_head(struct list_head *list); 725 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 726 void *event) 727 { 728 struct buffer_page *page = cpu_buffer->commit_page; 729 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 730 struct list_head *next; 731 long commit, write; 732 unsigned long addr = (unsigned long)event; 733 bool done = false; 734 int stop = 0; 735 736 /* Make sure the event exists and is not committed yet */ 737 do { 738 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 739 done = true; 740 commit = local_read(&page->page->commit); 741 write = local_read(&page->write); 742 if (addr >= (unsigned long)&page->page->data[commit] && 743 addr < (unsigned long)&page->page->data[write]) 744 return; 745 746 next = rb_list_head(page->list.next); 747 page = list_entry(next, struct buffer_page, list); 748 } while (!done); 749 WARN_ON_ONCE(1); 750 } 751 #else 752 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 753 void *event) 754 { 755 } 756 #endif 757 758 /* 759 * The absolute time stamp drops the 5 MSBs and some clocks may 760 * require them. The rb_fix_abs_ts() will take a previous full 761 * time stamp, and add the 5 MSB of that time stamp on to the 762 * saved absolute time stamp. Then they are compared in case of 763 * the unlikely event that the latest time stamp incremented 764 * the 5 MSB. 765 */ 766 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 767 { 768 if (save_ts & TS_MSB) { 769 abs |= save_ts & TS_MSB; 770 /* Check for overflow */ 771 if (unlikely(abs < save_ts)) 772 abs += 1ULL << 59; 773 } 774 return abs; 775 } 776 777 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 778 779 /** 780 * ring_buffer_event_time_stamp - return the event's current time stamp 781 * @buffer: The buffer that the event is on 782 * @event: the event to get the time stamp of 783 * 784 * Note, this must be called after @event is reserved, and before it is 785 * committed to the ring buffer. And must be called from the same 786 * context where the event was reserved (normal, softirq, irq, etc). 787 * 788 * Returns the time stamp associated with the current event. 789 * If the event has an extended time stamp, then that is used as 790 * the time stamp to return. 791 * In the highly unlikely case that the event was nested more than 792 * the max nesting, then the write_stamp of the buffer is returned, 793 * otherwise current time is returned, but that really neither of 794 * the last two cases should ever happen. 795 */ 796 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 797 struct ring_buffer_event *event) 798 { 799 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 800 unsigned int nest; 801 u64 ts; 802 803 /* If the event includes an absolute time, then just use that */ 804 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 805 ts = rb_event_time_stamp(event); 806 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 807 } 808 809 nest = local_read(&cpu_buffer->committing); 810 verify_event(cpu_buffer, event); 811 if (WARN_ON_ONCE(!nest)) 812 goto fail; 813 814 /* Read the current saved nesting level time stamp */ 815 if (likely(--nest < MAX_NEST)) 816 return cpu_buffer->event_stamp[nest]; 817 818 /* Shouldn't happen, warn if it does */ 819 WARN_ONCE(1, "nest (%d) greater than max", nest); 820 821 fail: 822 /* Can only fail on 32 bit */ 823 if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) 824 /* Screw it, just read the current time */ 825 ts = rb_time_stamp(cpu_buffer->buffer); 826 827 return ts; 828 } 829 830 /** 831 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 832 * @buffer: The ring_buffer to get the number of pages from 833 * @cpu: The cpu of the ring_buffer to get the number of pages from 834 * 835 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 836 */ 837 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 838 { 839 return buffer->buffers[cpu]->nr_pages; 840 } 841 842 /** 843 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 844 * @buffer: The ring_buffer to get the number of pages from 845 * @cpu: The cpu of the ring_buffer to get the number of pages from 846 * 847 * Returns the number of pages that have content in the ring buffer. 848 */ 849 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 850 { 851 size_t read; 852 size_t lost; 853 size_t cnt; 854 855 read = local_read(&buffer->buffers[cpu]->pages_read); 856 lost = local_read(&buffer->buffers[cpu]->pages_lost); 857 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 858 859 if (WARN_ON_ONCE(cnt < lost)) 860 return 0; 861 862 cnt -= lost; 863 864 /* The reader can read an empty page, but not more than that */ 865 if (cnt < read) { 866 WARN_ON_ONCE(read > cnt + 1); 867 return 0; 868 } 869 870 return cnt - read; 871 } 872 873 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 874 { 875 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 876 size_t nr_pages; 877 size_t dirty; 878 879 nr_pages = cpu_buffer->nr_pages; 880 if (!nr_pages || !full) 881 return true; 882 883 /* 884 * Add one as dirty will never equal nr_pages, as the sub-buffer 885 * that the writer is on is not counted as dirty. 886 * This is needed if "buffer_percent" is set to 100. 887 */ 888 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 889 890 return (dirty * 100) >= (full * nr_pages); 891 } 892 893 /* 894 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 895 * 896 * Schedules a delayed work to wake up any task that is blocked on the 897 * ring buffer waiters queue. 898 */ 899 static void rb_wake_up_waiters(struct irq_work *work) 900 { 901 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 902 903 wake_up_all(&rbwork->waiters); 904 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 905 /* Only cpu_buffer sets the above flags */ 906 struct ring_buffer_per_cpu *cpu_buffer = 907 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 908 909 /* Called from interrupt context */ 910 raw_spin_lock(&cpu_buffer->reader_lock); 911 rbwork->wakeup_full = false; 912 rbwork->full_waiters_pending = false; 913 914 /* Waking up all waiters, they will reset the shortest full */ 915 cpu_buffer->shortest_full = 0; 916 raw_spin_unlock(&cpu_buffer->reader_lock); 917 918 wake_up_all(&rbwork->full_waiters); 919 } 920 } 921 922 /** 923 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 924 * @buffer: The ring buffer to wake waiters on 925 * @cpu: The CPU buffer to wake waiters on 926 * 927 * In the case of a file that represents a ring buffer is closing, 928 * it is prudent to wake up any waiters that are on this. 929 */ 930 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 931 { 932 struct ring_buffer_per_cpu *cpu_buffer; 933 struct rb_irq_work *rbwork; 934 935 if (!buffer) 936 return; 937 938 if (cpu == RING_BUFFER_ALL_CPUS) { 939 940 /* Wake up individual ones too. One level recursion */ 941 for_each_buffer_cpu(buffer, cpu) 942 ring_buffer_wake_waiters(buffer, cpu); 943 944 rbwork = &buffer->irq_work; 945 } else { 946 if (WARN_ON_ONCE(!buffer->buffers)) 947 return; 948 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 949 return; 950 951 cpu_buffer = buffer->buffers[cpu]; 952 /* The CPU buffer may not have been initialized yet */ 953 if (!cpu_buffer) 954 return; 955 rbwork = &cpu_buffer->irq_work; 956 } 957 958 /* This can be called in any context */ 959 irq_work_queue(&rbwork->work); 960 } 961 962 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 963 { 964 struct ring_buffer_per_cpu *cpu_buffer; 965 bool ret = false; 966 967 /* Reads of all CPUs always waits for any data */ 968 if (cpu == RING_BUFFER_ALL_CPUS) 969 return !ring_buffer_empty(buffer); 970 971 cpu_buffer = buffer->buffers[cpu]; 972 973 if (!ring_buffer_empty_cpu(buffer, cpu)) { 974 unsigned long flags; 975 bool pagebusy; 976 977 if (!full) 978 return true; 979 980 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 981 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 982 ret = !pagebusy && full_hit(buffer, cpu, full); 983 984 if (!ret && (!cpu_buffer->shortest_full || 985 cpu_buffer->shortest_full > full)) { 986 cpu_buffer->shortest_full = full; 987 } 988 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 989 } 990 return ret; 991 } 992 993 static inline bool 994 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 995 int cpu, int full, ring_buffer_cond_fn cond, void *data) 996 { 997 if (rb_watermark_hit(buffer, cpu, full)) 998 return true; 999 1000 if (cond(data)) 1001 return true; 1002 1003 /* 1004 * The events can happen in critical sections where 1005 * checking a work queue can cause deadlocks. 1006 * After adding a task to the queue, this flag is set 1007 * only to notify events to try to wake up the queue 1008 * using irq_work. 1009 * 1010 * We don't clear it even if the buffer is no longer 1011 * empty. The flag only causes the next event to run 1012 * irq_work to do the work queue wake up. The worse 1013 * that can happen if we race with !trace_empty() is that 1014 * an event will cause an irq_work to try to wake up 1015 * an empty queue. 1016 * 1017 * There's no reason to protect this flag either, as 1018 * the work queue and irq_work logic will do the necessary 1019 * synchronization for the wake ups. The only thing 1020 * that is necessary is that the wake up happens after 1021 * a task has been queued. It's OK for spurious wake ups. 1022 */ 1023 if (full) 1024 rbwork->full_waiters_pending = true; 1025 else 1026 rbwork->waiters_pending = true; 1027 1028 return false; 1029 } 1030 1031 /* 1032 * The default wait condition for ring_buffer_wait() is to just to exit the 1033 * wait loop the first time it is woken up. 1034 */ 1035 static bool rb_wait_once(void *data) 1036 { 1037 long *once = data; 1038 1039 /* wait_event() actually calls this twice before scheduling*/ 1040 if (*once > 1) 1041 return true; 1042 1043 (*once)++; 1044 return false; 1045 } 1046 1047 /** 1048 * ring_buffer_wait - wait for input to the ring buffer 1049 * @buffer: buffer to wait on 1050 * @cpu: the cpu buffer to wait on 1051 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1052 * 1053 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1054 * as data is added to any of the @buffer's cpu buffers. Otherwise 1055 * it will wait for data to be added to a specific cpu buffer. 1056 */ 1057 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 1058 { 1059 struct ring_buffer_per_cpu *cpu_buffer; 1060 struct wait_queue_head *waitq; 1061 ring_buffer_cond_fn cond; 1062 struct rb_irq_work *rbwork; 1063 void *data; 1064 long once = 0; 1065 int ret = 0; 1066 1067 cond = rb_wait_once; 1068 data = &once; 1069 1070 /* 1071 * Depending on what the caller is waiting for, either any 1072 * data in any cpu buffer, or a specific buffer, put the 1073 * caller on the appropriate wait queue. 1074 */ 1075 if (cpu == RING_BUFFER_ALL_CPUS) { 1076 rbwork = &buffer->irq_work; 1077 /* Full only makes sense on per cpu reads */ 1078 full = 0; 1079 } else { 1080 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1081 return -ENODEV; 1082 cpu_buffer = buffer->buffers[cpu]; 1083 rbwork = &cpu_buffer->irq_work; 1084 } 1085 1086 if (full) 1087 waitq = &rbwork->full_waiters; 1088 else 1089 waitq = &rbwork->waiters; 1090 1091 ret = wait_event_interruptible((*waitq), 1092 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 1093 1094 return ret; 1095 } 1096 1097 /** 1098 * ring_buffer_poll_wait - poll on buffer input 1099 * @buffer: buffer to wait on 1100 * @cpu: the cpu buffer to wait on 1101 * @filp: the file descriptor 1102 * @poll_table: The poll descriptor 1103 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1104 * 1105 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1106 * as data is added to any of the @buffer's cpu buffers. Otherwise 1107 * it will wait for data to be added to a specific cpu buffer. 1108 * 1109 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1110 * zero otherwise. 1111 */ 1112 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1113 struct file *filp, poll_table *poll_table, int full) 1114 { 1115 struct ring_buffer_per_cpu *cpu_buffer; 1116 struct rb_irq_work *rbwork; 1117 1118 if (cpu == RING_BUFFER_ALL_CPUS) { 1119 rbwork = &buffer->irq_work; 1120 full = 0; 1121 } else { 1122 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1123 return EPOLLERR; 1124 1125 cpu_buffer = buffer->buffers[cpu]; 1126 rbwork = &cpu_buffer->irq_work; 1127 } 1128 1129 if (full) { 1130 unsigned long flags; 1131 1132 poll_wait(filp, &rbwork->full_waiters, poll_table); 1133 1134 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1135 if (!cpu_buffer->shortest_full || 1136 cpu_buffer->shortest_full > full) 1137 cpu_buffer->shortest_full = full; 1138 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1139 if (full_hit(buffer, cpu, full)) 1140 return EPOLLIN | EPOLLRDNORM; 1141 /* 1142 * Only allow full_waiters_pending update to be seen after 1143 * the shortest_full is set. If the writer sees the 1144 * full_waiters_pending flag set, it will compare the 1145 * amount in the ring buffer to shortest_full. If the amount 1146 * in the ring buffer is greater than the shortest_full 1147 * percent, it will call the irq_work handler to wake up 1148 * this list. The irq_handler will reset shortest_full 1149 * back to zero. That's done under the reader_lock, but 1150 * the below smp_mb() makes sure that the update to 1151 * full_waiters_pending doesn't leak up into the above. 1152 */ 1153 smp_mb(); 1154 rbwork->full_waiters_pending = true; 1155 return 0; 1156 } 1157 1158 poll_wait(filp, &rbwork->waiters, poll_table); 1159 rbwork->waiters_pending = true; 1160 1161 /* 1162 * There's a tight race between setting the waiters_pending and 1163 * checking if the ring buffer is empty. Once the waiters_pending bit 1164 * is set, the next event will wake the task up, but we can get stuck 1165 * if there's only a single event in. 1166 * 1167 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1168 * but adding a memory barrier to all events will cause too much of a 1169 * performance hit in the fast path. We only need a memory barrier when 1170 * the buffer goes from empty to having content. But as this race is 1171 * extremely small, and it's not a problem if another event comes in, we 1172 * will fix it later. 1173 */ 1174 smp_mb(); 1175 1176 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1177 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1178 return EPOLLIN | EPOLLRDNORM; 1179 return 0; 1180 } 1181 1182 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1183 #define RB_WARN_ON(b, cond) \ 1184 ({ \ 1185 int _____ret = unlikely(cond); \ 1186 if (_____ret) { \ 1187 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1188 struct ring_buffer_per_cpu *__b = \ 1189 (void *)b; \ 1190 atomic_inc(&__b->buffer->record_disabled); \ 1191 } else \ 1192 atomic_inc(&b->record_disabled); \ 1193 WARN_ON(1); \ 1194 } \ 1195 _____ret; \ 1196 }) 1197 1198 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1199 #define DEBUG_SHIFT 0 1200 1201 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1202 { 1203 u64 ts; 1204 1205 /* Skip retpolines :-( */ 1206 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1207 ts = trace_clock_local(); 1208 else 1209 ts = buffer->clock(); 1210 1211 /* shift to debug/test normalization and TIME_EXTENTS */ 1212 return ts << DEBUG_SHIFT; 1213 } 1214 1215 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1216 { 1217 u64 time; 1218 1219 preempt_disable_notrace(); 1220 time = rb_time_stamp(buffer); 1221 preempt_enable_notrace(); 1222 1223 return time; 1224 } 1225 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1226 1227 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1228 int cpu, u64 *ts) 1229 { 1230 /* Just stupid testing the normalize function and deltas */ 1231 *ts >>= DEBUG_SHIFT; 1232 } 1233 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1234 1235 /* 1236 * Making the ring buffer lockless makes things tricky. 1237 * Although writes only happen on the CPU that they are on, 1238 * and they only need to worry about interrupts. Reads can 1239 * happen on any CPU. 1240 * 1241 * The reader page is always off the ring buffer, but when the 1242 * reader finishes with a page, it needs to swap its page with 1243 * a new one from the buffer. The reader needs to take from 1244 * the head (writes go to the tail). But if a writer is in overwrite 1245 * mode and wraps, it must push the head page forward. 1246 * 1247 * Here lies the problem. 1248 * 1249 * The reader must be careful to replace only the head page, and 1250 * not another one. As described at the top of the file in the 1251 * ASCII art, the reader sets its old page to point to the next 1252 * page after head. It then sets the page after head to point to 1253 * the old reader page. But if the writer moves the head page 1254 * during this operation, the reader could end up with the tail. 1255 * 1256 * We use cmpxchg to help prevent this race. We also do something 1257 * special with the page before head. We set the LSB to 1. 1258 * 1259 * When the writer must push the page forward, it will clear the 1260 * bit that points to the head page, move the head, and then set 1261 * the bit that points to the new head page. 1262 * 1263 * We also don't want an interrupt coming in and moving the head 1264 * page on another writer. Thus we use the second LSB to catch 1265 * that too. Thus: 1266 * 1267 * head->list->prev->next bit 1 bit 0 1268 * ------- ------- 1269 * Normal page 0 0 1270 * Points to head page 0 1 1271 * New head page 1 0 1272 * 1273 * Note we can not trust the prev pointer of the head page, because: 1274 * 1275 * +----+ +-----+ +-----+ 1276 * | |------>| T |---X--->| N | 1277 * | |<------| | | | 1278 * +----+ +-----+ +-----+ 1279 * ^ ^ | 1280 * | +-----+ | | 1281 * +----------| R |----------+ | 1282 * | |<-----------+ 1283 * +-----+ 1284 * 1285 * Key: ---X--> HEAD flag set in pointer 1286 * T Tail page 1287 * R Reader page 1288 * N Next page 1289 * 1290 * (see __rb_reserve_next() to see where this happens) 1291 * 1292 * What the above shows is that the reader just swapped out 1293 * the reader page with a page in the buffer, but before it 1294 * could make the new header point back to the new page added 1295 * it was preempted by a writer. The writer moved forward onto 1296 * the new page added by the reader and is about to move forward 1297 * again. 1298 * 1299 * You can see, it is legitimate for the previous pointer of 1300 * the head (or any page) not to point back to itself. But only 1301 * temporarily. 1302 */ 1303 1304 #define RB_PAGE_NORMAL 0UL 1305 #define RB_PAGE_HEAD 1UL 1306 #define RB_PAGE_UPDATE 2UL 1307 1308 1309 #define RB_FLAG_MASK 3UL 1310 1311 /* PAGE_MOVED is not part of the mask */ 1312 #define RB_PAGE_MOVED 4UL 1313 1314 /* 1315 * rb_list_head - remove any bit 1316 */ 1317 static struct list_head *rb_list_head(struct list_head *list) 1318 { 1319 unsigned long val = (unsigned long)list; 1320 1321 return (struct list_head *)(val & ~RB_FLAG_MASK); 1322 } 1323 1324 /* 1325 * rb_is_head_page - test if the given page is the head page 1326 * 1327 * Because the reader may move the head_page pointer, we can 1328 * not trust what the head page is (it may be pointing to 1329 * the reader page). But if the next page is a header page, 1330 * its flags will be non zero. 1331 */ 1332 static inline int 1333 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1334 { 1335 unsigned long val; 1336 1337 val = (unsigned long)list->next; 1338 1339 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1340 return RB_PAGE_MOVED; 1341 1342 return val & RB_FLAG_MASK; 1343 } 1344 1345 /* 1346 * rb_is_reader_page 1347 * 1348 * The unique thing about the reader page, is that, if the 1349 * writer is ever on it, the previous pointer never points 1350 * back to the reader page. 1351 */ 1352 static bool rb_is_reader_page(struct buffer_page *page) 1353 { 1354 struct list_head *list = page->list.prev; 1355 1356 return rb_list_head(list->next) != &page->list; 1357 } 1358 1359 /* 1360 * rb_set_list_to_head - set a list_head to be pointing to head. 1361 */ 1362 static void rb_set_list_to_head(struct list_head *list) 1363 { 1364 unsigned long *ptr; 1365 1366 ptr = (unsigned long *)&list->next; 1367 *ptr |= RB_PAGE_HEAD; 1368 *ptr &= ~RB_PAGE_UPDATE; 1369 } 1370 1371 /* 1372 * rb_head_page_activate - sets up head page 1373 */ 1374 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1375 { 1376 struct buffer_page *head; 1377 1378 head = cpu_buffer->head_page; 1379 if (!head) 1380 return; 1381 1382 /* 1383 * Set the previous list pointer to have the HEAD flag. 1384 */ 1385 rb_set_list_to_head(head->list.prev); 1386 } 1387 1388 static void rb_list_head_clear(struct list_head *list) 1389 { 1390 unsigned long *ptr = (unsigned long *)&list->next; 1391 1392 *ptr &= ~RB_FLAG_MASK; 1393 } 1394 1395 /* 1396 * rb_head_page_deactivate - clears head page ptr (for free list) 1397 */ 1398 static void 1399 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1400 { 1401 struct list_head *hd; 1402 1403 /* Go through the whole list and clear any pointers found. */ 1404 rb_list_head_clear(cpu_buffer->pages); 1405 1406 list_for_each(hd, cpu_buffer->pages) 1407 rb_list_head_clear(hd); 1408 } 1409 1410 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1411 struct buffer_page *head, 1412 struct buffer_page *prev, 1413 int old_flag, int new_flag) 1414 { 1415 struct list_head *list; 1416 unsigned long val = (unsigned long)&head->list; 1417 unsigned long ret; 1418 1419 list = &prev->list; 1420 1421 val &= ~RB_FLAG_MASK; 1422 1423 ret = cmpxchg((unsigned long *)&list->next, 1424 val | old_flag, val | new_flag); 1425 1426 /* check if the reader took the page */ 1427 if ((ret & ~RB_FLAG_MASK) != val) 1428 return RB_PAGE_MOVED; 1429 1430 return ret & RB_FLAG_MASK; 1431 } 1432 1433 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1434 struct buffer_page *head, 1435 struct buffer_page *prev, 1436 int old_flag) 1437 { 1438 return rb_head_page_set(cpu_buffer, head, prev, 1439 old_flag, RB_PAGE_UPDATE); 1440 } 1441 1442 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1443 struct buffer_page *head, 1444 struct buffer_page *prev, 1445 int old_flag) 1446 { 1447 return rb_head_page_set(cpu_buffer, head, prev, 1448 old_flag, RB_PAGE_HEAD); 1449 } 1450 1451 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1452 struct buffer_page *head, 1453 struct buffer_page *prev, 1454 int old_flag) 1455 { 1456 return rb_head_page_set(cpu_buffer, head, prev, 1457 old_flag, RB_PAGE_NORMAL); 1458 } 1459 1460 static inline void rb_inc_page(struct buffer_page **bpage) 1461 { 1462 struct list_head *p = rb_list_head((*bpage)->list.next); 1463 1464 *bpage = list_entry(p, struct buffer_page, list); 1465 } 1466 1467 static struct buffer_page * 1468 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1469 { 1470 struct buffer_page *head; 1471 struct buffer_page *page; 1472 struct list_head *list; 1473 int i; 1474 1475 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1476 return NULL; 1477 1478 /* sanity check */ 1479 list = cpu_buffer->pages; 1480 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1481 return NULL; 1482 1483 page = head = cpu_buffer->head_page; 1484 /* 1485 * It is possible that the writer moves the header behind 1486 * where we started, and we miss in one loop. 1487 * A second loop should grab the header, but we'll do 1488 * three loops just because I'm paranoid. 1489 */ 1490 for (i = 0; i < 3; i++) { 1491 do { 1492 if (rb_is_head_page(page, page->list.prev)) { 1493 cpu_buffer->head_page = page; 1494 return page; 1495 } 1496 rb_inc_page(&page); 1497 } while (page != head); 1498 } 1499 1500 RB_WARN_ON(cpu_buffer, 1); 1501 1502 return NULL; 1503 } 1504 1505 static bool rb_head_page_replace(struct buffer_page *old, 1506 struct buffer_page *new) 1507 { 1508 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1509 unsigned long val; 1510 1511 val = *ptr & ~RB_FLAG_MASK; 1512 val |= RB_PAGE_HEAD; 1513 1514 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1515 } 1516 1517 /* 1518 * rb_tail_page_update - move the tail page forward 1519 */ 1520 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1521 struct buffer_page *tail_page, 1522 struct buffer_page *next_page) 1523 { 1524 unsigned long old_entries; 1525 unsigned long old_write; 1526 1527 /* 1528 * The tail page now needs to be moved forward. 1529 * 1530 * We need to reset the tail page, but without messing 1531 * with possible erasing of data brought in by interrupts 1532 * that have moved the tail page and are currently on it. 1533 * 1534 * We add a counter to the write field to denote this. 1535 */ 1536 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1537 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1538 1539 /* 1540 * Just make sure we have seen our old_write and synchronize 1541 * with any interrupts that come in. 1542 */ 1543 barrier(); 1544 1545 /* 1546 * If the tail page is still the same as what we think 1547 * it is, then it is up to us to update the tail 1548 * pointer. 1549 */ 1550 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1551 /* Zero the write counter */ 1552 unsigned long val = old_write & ~RB_WRITE_MASK; 1553 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1554 1555 /* 1556 * This will only succeed if an interrupt did 1557 * not come in and change it. In which case, we 1558 * do not want to modify it. 1559 * 1560 * We add (void) to let the compiler know that we do not care 1561 * about the return value of these functions. We use the 1562 * cmpxchg to only update if an interrupt did not already 1563 * do it for us. If the cmpxchg fails, we don't care. 1564 */ 1565 (void)local_cmpxchg(&next_page->write, old_write, val); 1566 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1567 1568 /* 1569 * No need to worry about races with clearing out the commit. 1570 * it only can increment when a commit takes place. But that 1571 * only happens in the outer most nested commit. 1572 */ 1573 local_set(&next_page->page->commit, 0); 1574 1575 /* Either we update tail_page or an interrupt does */ 1576 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1577 local_inc(&cpu_buffer->pages_touched); 1578 } 1579 } 1580 1581 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1582 struct buffer_page *bpage) 1583 { 1584 unsigned long val = (unsigned long)bpage; 1585 1586 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1587 } 1588 1589 /** 1590 * rb_check_pages - integrity check of buffer pages 1591 * @cpu_buffer: CPU buffer with pages to test 1592 * 1593 * As a safety measure we check to make sure the data pages have not 1594 * been corrupted. 1595 * 1596 * Callers of this function need to guarantee that the list of pages doesn't get 1597 * modified during the check. In particular, if it's possible that the function 1598 * is invoked with concurrent readers which can swap in a new reader page then 1599 * the caller should take cpu_buffer->reader_lock. 1600 */ 1601 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1602 { 1603 struct list_head *head = rb_list_head(cpu_buffer->pages); 1604 struct list_head *tmp; 1605 1606 if (RB_WARN_ON(cpu_buffer, 1607 rb_list_head(rb_list_head(head->next)->prev) != head)) 1608 return; 1609 1610 if (RB_WARN_ON(cpu_buffer, 1611 rb_list_head(rb_list_head(head->prev)->next) != head)) 1612 return; 1613 1614 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1615 if (RB_WARN_ON(cpu_buffer, 1616 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1617 return; 1618 1619 if (RB_WARN_ON(cpu_buffer, 1620 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1621 return; 1622 } 1623 } 1624 1625 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1626 long nr_pages, struct list_head *pages) 1627 { 1628 struct buffer_page *bpage, *tmp; 1629 bool user_thread = current->mm != NULL; 1630 gfp_t mflags; 1631 long i; 1632 1633 /* 1634 * Check if the available memory is there first. 1635 * Note, si_mem_available() only gives us a rough estimate of available 1636 * memory. It may not be accurate. But we don't care, we just want 1637 * to prevent doing any allocation when it is obvious that it is 1638 * not going to succeed. 1639 */ 1640 i = si_mem_available(); 1641 if (i < nr_pages) 1642 return -ENOMEM; 1643 1644 /* 1645 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1646 * gracefully without invoking oom-killer and the system is not 1647 * destabilized. 1648 */ 1649 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1650 1651 /* 1652 * If a user thread allocates too much, and si_mem_available() 1653 * reports there's enough memory, even though there is not. 1654 * Make sure the OOM killer kills this thread. This can happen 1655 * even with RETRY_MAYFAIL because another task may be doing 1656 * an allocation after this task has taken all memory. 1657 * This is the task the OOM killer needs to take out during this 1658 * loop, even if it was triggered by an allocation somewhere else. 1659 */ 1660 if (user_thread) 1661 set_current_oom_origin(); 1662 for (i = 0; i < nr_pages; i++) { 1663 struct page *page; 1664 1665 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1666 mflags, cpu_to_node(cpu_buffer->cpu)); 1667 if (!bpage) 1668 goto free_pages; 1669 1670 rb_check_bpage(cpu_buffer, bpage); 1671 1672 list_add(&bpage->list, pages); 1673 1674 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1675 if (!page) 1676 goto free_pages; 1677 bpage->page = page_address(page); 1678 rb_init_page(bpage->page); 1679 1680 if (user_thread && fatal_signal_pending(current)) 1681 goto free_pages; 1682 } 1683 if (user_thread) 1684 clear_current_oom_origin(); 1685 1686 return 0; 1687 1688 free_pages: 1689 list_for_each_entry_safe(bpage, tmp, pages, list) { 1690 list_del_init(&bpage->list); 1691 free_buffer_page(bpage); 1692 } 1693 if (user_thread) 1694 clear_current_oom_origin(); 1695 1696 return -ENOMEM; 1697 } 1698 1699 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1700 unsigned long nr_pages) 1701 { 1702 LIST_HEAD(pages); 1703 1704 WARN_ON(!nr_pages); 1705 1706 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1707 return -ENOMEM; 1708 1709 /* 1710 * The ring buffer page list is a circular list that does not 1711 * start and end with a list head. All page list items point to 1712 * other pages. 1713 */ 1714 cpu_buffer->pages = pages.next; 1715 list_del(&pages); 1716 1717 cpu_buffer->nr_pages = nr_pages; 1718 1719 rb_check_pages(cpu_buffer); 1720 1721 return 0; 1722 } 1723 1724 static struct ring_buffer_per_cpu * 1725 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1726 { 1727 struct ring_buffer_per_cpu *cpu_buffer; 1728 struct buffer_page *bpage; 1729 struct page *page; 1730 int ret; 1731 1732 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1733 GFP_KERNEL, cpu_to_node(cpu)); 1734 if (!cpu_buffer) 1735 return NULL; 1736 1737 cpu_buffer->cpu = cpu; 1738 cpu_buffer->buffer = buffer; 1739 raw_spin_lock_init(&cpu_buffer->reader_lock); 1740 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1741 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1742 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1743 init_completion(&cpu_buffer->update_done); 1744 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1745 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1746 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1747 1748 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1749 GFP_KERNEL, cpu_to_node(cpu)); 1750 if (!bpage) 1751 goto fail_free_buffer; 1752 1753 rb_check_bpage(cpu_buffer, bpage); 1754 1755 cpu_buffer->reader_page = bpage; 1756 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1757 if (!page) 1758 goto fail_free_reader; 1759 bpage->page = page_address(page); 1760 rb_init_page(bpage->page); 1761 1762 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1763 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1764 1765 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1766 if (ret < 0) 1767 goto fail_free_reader; 1768 1769 cpu_buffer->head_page 1770 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1771 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1772 1773 rb_head_page_activate(cpu_buffer); 1774 1775 return cpu_buffer; 1776 1777 fail_free_reader: 1778 free_buffer_page(cpu_buffer->reader_page); 1779 1780 fail_free_buffer: 1781 kfree(cpu_buffer); 1782 return NULL; 1783 } 1784 1785 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1786 { 1787 struct list_head *head = cpu_buffer->pages; 1788 struct buffer_page *bpage, *tmp; 1789 1790 irq_work_sync(&cpu_buffer->irq_work.work); 1791 1792 free_buffer_page(cpu_buffer->reader_page); 1793 1794 if (head) { 1795 rb_head_page_deactivate(cpu_buffer); 1796 1797 list_for_each_entry_safe(bpage, tmp, head, list) { 1798 list_del_init(&bpage->list); 1799 free_buffer_page(bpage); 1800 } 1801 bpage = list_entry(head, struct buffer_page, list); 1802 free_buffer_page(bpage); 1803 } 1804 1805 free_page((unsigned long)cpu_buffer->free_page); 1806 1807 kfree(cpu_buffer); 1808 } 1809 1810 /** 1811 * __ring_buffer_alloc - allocate a new ring_buffer 1812 * @size: the size in bytes per cpu that is needed. 1813 * @flags: attributes to set for the ring buffer. 1814 * @key: ring buffer reader_lock_key. 1815 * 1816 * Currently the only flag that is available is the RB_FL_OVERWRITE 1817 * flag. This flag means that the buffer will overwrite old data 1818 * when the buffer wraps. If this flag is not set, the buffer will 1819 * drop data when the tail hits the head. 1820 */ 1821 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1822 struct lock_class_key *key) 1823 { 1824 struct trace_buffer *buffer; 1825 long nr_pages; 1826 int bsize; 1827 int cpu; 1828 int ret; 1829 1830 /* keep it in its own cache line */ 1831 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1832 GFP_KERNEL); 1833 if (!buffer) 1834 return NULL; 1835 1836 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1837 goto fail_free_buffer; 1838 1839 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1840 buffer->flags = flags; 1841 buffer->clock = trace_clock_local; 1842 buffer->reader_lock_key = key; 1843 1844 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1845 init_waitqueue_head(&buffer->irq_work.waiters); 1846 1847 /* need at least two pages */ 1848 if (nr_pages < 2) 1849 nr_pages = 2; 1850 1851 buffer->cpus = nr_cpu_ids; 1852 1853 bsize = sizeof(void *) * nr_cpu_ids; 1854 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1855 GFP_KERNEL); 1856 if (!buffer->buffers) 1857 goto fail_free_cpumask; 1858 1859 cpu = raw_smp_processor_id(); 1860 cpumask_set_cpu(cpu, buffer->cpumask); 1861 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1862 if (!buffer->buffers[cpu]) 1863 goto fail_free_buffers; 1864 1865 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1866 if (ret < 0) 1867 goto fail_free_buffers; 1868 1869 mutex_init(&buffer->mutex); 1870 1871 return buffer; 1872 1873 fail_free_buffers: 1874 for_each_buffer_cpu(buffer, cpu) { 1875 if (buffer->buffers[cpu]) 1876 rb_free_cpu_buffer(buffer->buffers[cpu]); 1877 } 1878 kfree(buffer->buffers); 1879 1880 fail_free_cpumask: 1881 free_cpumask_var(buffer->cpumask); 1882 1883 fail_free_buffer: 1884 kfree(buffer); 1885 return NULL; 1886 } 1887 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1888 1889 /** 1890 * ring_buffer_free - free a ring buffer. 1891 * @buffer: the buffer to free. 1892 */ 1893 void 1894 ring_buffer_free(struct trace_buffer *buffer) 1895 { 1896 int cpu; 1897 1898 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1899 1900 irq_work_sync(&buffer->irq_work.work); 1901 1902 for_each_buffer_cpu(buffer, cpu) 1903 rb_free_cpu_buffer(buffer->buffers[cpu]); 1904 1905 kfree(buffer->buffers); 1906 free_cpumask_var(buffer->cpumask); 1907 1908 kfree(buffer); 1909 } 1910 EXPORT_SYMBOL_GPL(ring_buffer_free); 1911 1912 void ring_buffer_set_clock(struct trace_buffer *buffer, 1913 u64 (*clock)(void)) 1914 { 1915 buffer->clock = clock; 1916 } 1917 1918 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1919 { 1920 buffer->time_stamp_abs = abs; 1921 } 1922 1923 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1924 { 1925 return buffer->time_stamp_abs; 1926 } 1927 1928 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1929 1930 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1931 { 1932 return local_read(&bpage->entries) & RB_WRITE_MASK; 1933 } 1934 1935 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1936 { 1937 return local_read(&bpage->write) & RB_WRITE_MASK; 1938 } 1939 1940 static bool 1941 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1942 { 1943 struct list_head *tail_page, *to_remove, *next_page; 1944 struct buffer_page *to_remove_page, *tmp_iter_page; 1945 struct buffer_page *last_page, *first_page; 1946 unsigned long nr_removed; 1947 unsigned long head_bit; 1948 int page_entries; 1949 1950 head_bit = 0; 1951 1952 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1953 atomic_inc(&cpu_buffer->record_disabled); 1954 /* 1955 * We don't race with the readers since we have acquired the reader 1956 * lock. We also don't race with writers after disabling recording. 1957 * This makes it easy to figure out the first and the last page to be 1958 * removed from the list. We unlink all the pages in between including 1959 * the first and last pages. This is done in a busy loop so that we 1960 * lose the least number of traces. 1961 * The pages are freed after we restart recording and unlock readers. 1962 */ 1963 tail_page = &cpu_buffer->tail_page->list; 1964 1965 /* 1966 * tail page might be on reader page, we remove the next page 1967 * from the ring buffer 1968 */ 1969 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1970 tail_page = rb_list_head(tail_page->next); 1971 to_remove = tail_page; 1972 1973 /* start of pages to remove */ 1974 first_page = list_entry(rb_list_head(to_remove->next), 1975 struct buffer_page, list); 1976 1977 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1978 to_remove = rb_list_head(to_remove)->next; 1979 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1980 } 1981 /* Read iterators need to reset themselves when some pages removed */ 1982 cpu_buffer->pages_removed += nr_removed; 1983 1984 next_page = rb_list_head(to_remove)->next; 1985 1986 /* 1987 * Now we remove all pages between tail_page and next_page. 1988 * Make sure that we have head_bit value preserved for the 1989 * next page 1990 */ 1991 tail_page->next = (struct list_head *)((unsigned long)next_page | 1992 head_bit); 1993 next_page = rb_list_head(next_page); 1994 next_page->prev = tail_page; 1995 1996 /* make sure pages points to a valid page in the ring buffer */ 1997 cpu_buffer->pages = next_page; 1998 1999 /* update head page */ 2000 if (head_bit) 2001 cpu_buffer->head_page = list_entry(next_page, 2002 struct buffer_page, list); 2003 2004 /* pages are removed, resume tracing and then free the pages */ 2005 atomic_dec(&cpu_buffer->record_disabled); 2006 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2007 2008 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2009 2010 /* last buffer page to remove */ 2011 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2012 list); 2013 tmp_iter_page = first_page; 2014 2015 do { 2016 cond_resched(); 2017 2018 to_remove_page = tmp_iter_page; 2019 rb_inc_page(&tmp_iter_page); 2020 2021 /* update the counters */ 2022 page_entries = rb_page_entries(to_remove_page); 2023 if (page_entries) { 2024 /* 2025 * If something was added to this page, it was full 2026 * since it is not the tail page. So we deduct the 2027 * bytes consumed in ring buffer from here. 2028 * Increment overrun to account for the lost events. 2029 */ 2030 local_add(page_entries, &cpu_buffer->overrun); 2031 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2032 local_inc(&cpu_buffer->pages_lost); 2033 } 2034 2035 /* 2036 * We have already removed references to this list item, just 2037 * free up the buffer_page and its page 2038 */ 2039 free_buffer_page(to_remove_page); 2040 nr_removed--; 2041 2042 } while (to_remove_page != last_page); 2043 2044 RB_WARN_ON(cpu_buffer, nr_removed); 2045 2046 return nr_removed == 0; 2047 } 2048 2049 static bool 2050 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2051 { 2052 struct list_head *pages = &cpu_buffer->new_pages; 2053 unsigned long flags; 2054 bool success; 2055 int retries; 2056 2057 /* Can be called at early boot up, where interrupts must not been enabled */ 2058 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2059 /* 2060 * We are holding the reader lock, so the reader page won't be swapped 2061 * in the ring buffer. Now we are racing with the writer trying to 2062 * move head page and the tail page. 2063 * We are going to adapt the reader page update process where: 2064 * 1. We first splice the start and end of list of new pages between 2065 * the head page and its previous page. 2066 * 2. We cmpxchg the prev_page->next to point from head page to the 2067 * start of new pages list. 2068 * 3. Finally, we update the head->prev to the end of new list. 2069 * 2070 * We will try this process 10 times, to make sure that we don't keep 2071 * spinning. 2072 */ 2073 retries = 10; 2074 success = false; 2075 while (retries--) { 2076 struct list_head *head_page, *prev_page, *r; 2077 struct list_head *last_page, *first_page; 2078 struct list_head *head_page_with_bit; 2079 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2080 2081 if (!hpage) 2082 break; 2083 head_page = &hpage->list; 2084 prev_page = head_page->prev; 2085 2086 first_page = pages->next; 2087 last_page = pages->prev; 2088 2089 head_page_with_bit = (struct list_head *) 2090 ((unsigned long)head_page | RB_PAGE_HEAD); 2091 2092 last_page->next = head_page_with_bit; 2093 first_page->prev = prev_page; 2094 2095 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 2096 2097 if (r == head_page_with_bit) { 2098 /* 2099 * yay, we replaced the page pointer to our new list, 2100 * now, we just have to update to head page's prev 2101 * pointer to point to end of list 2102 */ 2103 head_page->prev = last_page; 2104 success = true; 2105 break; 2106 } 2107 } 2108 2109 if (success) 2110 INIT_LIST_HEAD(pages); 2111 /* 2112 * If we weren't successful in adding in new pages, warn and stop 2113 * tracing 2114 */ 2115 RB_WARN_ON(cpu_buffer, !success); 2116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2117 2118 /* free pages if they weren't inserted */ 2119 if (!success) { 2120 struct buffer_page *bpage, *tmp; 2121 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2122 list) { 2123 list_del_init(&bpage->list); 2124 free_buffer_page(bpage); 2125 } 2126 } 2127 return success; 2128 } 2129 2130 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2131 { 2132 bool success; 2133 2134 if (cpu_buffer->nr_pages_to_update > 0) 2135 success = rb_insert_pages(cpu_buffer); 2136 else 2137 success = rb_remove_pages(cpu_buffer, 2138 -cpu_buffer->nr_pages_to_update); 2139 2140 if (success) 2141 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2142 } 2143 2144 static void update_pages_handler(struct work_struct *work) 2145 { 2146 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2147 struct ring_buffer_per_cpu, update_pages_work); 2148 rb_update_pages(cpu_buffer); 2149 complete(&cpu_buffer->update_done); 2150 } 2151 2152 /** 2153 * ring_buffer_resize - resize the ring buffer 2154 * @buffer: the buffer to resize. 2155 * @size: the new size. 2156 * @cpu_id: the cpu buffer to resize 2157 * 2158 * Minimum size is 2 * BUF_PAGE_SIZE. 2159 * 2160 * Returns 0 on success and < 0 on failure. 2161 */ 2162 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2163 int cpu_id) 2164 { 2165 struct ring_buffer_per_cpu *cpu_buffer; 2166 unsigned long nr_pages; 2167 int cpu, err; 2168 2169 /* 2170 * Always succeed at resizing a non-existent buffer: 2171 */ 2172 if (!buffer) 2173 return 0; 2174 2175 /* Make sure the requested buffer exists */ 2176 if (cpu_id != RING_BUFFER_ALL_CPUS && 2177 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2178 return 0; 2179 2180 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 2181 2182 /* we need a minimum of two pages */ 2183 if (nr_pages < 2) 2184 nr_pages = 2; 2185 2186 /* prevent another thread from changing buffer sizes */ 2187 mutex_lock(&buffer->mutex); 2188 atomic_inc(&buffer->resizing); 2189 2190 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2191 /* 2192 * Don't succeed if resizing is disabled, as a reader might be 2193 * manipulating the ring buffer and is expecting a sane state while 2194 * this is true. 2195 */ 2196 for_each_buffer_cpu(buffer, cpu) { 2197 cpu_buffer = buffer->buffers[cpu]; 2198 if (atomic_read(&cpu_buffer->resize_disabled)) { 2199 err = -EBUSY; 2200 goto out_err_unlock; 2201 } 2202 } 2203 2204 /* calculate the pages to update */ 2205 for_each_buffer_cpu(buffer, cpu) { 2206 cpu_buffer = buffer->buffers[cpu]; 2207 2208 cpu_buffer->nr_pages_to_update = nr_pages - 2209 cpu_buffer->nr_pages; 2210 /* 2211 * nothing more to do for removing pages or no update 2212 */ 2213 if (cpu_buffer->nr_pages_to_update <= 0) 2214 continue; 2215 /* 2216 * to add pages, make sure all new pages can be 2217 * allocated without receiving ENOMEM 2218 */ 2219 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2220 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2221 &cpu_buffer->new_pages)) { 2222 /* not enough memory for new pages */ 2223 err = -ENOMEM; 2224 goto out_err; 2225 } 2226 2227 cond_resched(); 2228 } 2229 2230 cpus_read_lock(); 2231 /* 2232 * Fire off all the required work handlers 2233 * We can't schedule on offline CPUs, but it's not necessary 2234 * since we can change their buffer sizes without any race. 2235 */ 2236 for_each_buffer_cpu(buffer, cpu) { 2237 cpu_buffer = buffer->buffers[cpu]; 2238 if (!cpu_buffer->nr_pages_to_update) 2239 continue; 2240 2241 /* Can't run something on an offline CPU. */ 2242 if (!cpu_online(cpu)) { 2243 rb_update_pages(cpu_buffer); 2244 cpu_buffer->nr_pages_to_update = 0; 2245 } else { 2246 /* Run directly if possible. */ 2247 migrate_disable(); 2248 if (cpu != smp_processor_id()) { 2249 migrate_enable(); 2250 schedule_work_on(cpu, 2251 &cpu_buffer->update_pages_work); 2252 } else { 2253 update_pages_handler(&cpu_buffer->update_pages_work); 2254 migrate_enable(); 2255 } 2256 } 2257 } 2258 2259 /* wait for all the updates to complete */ 2260 for_each_buffer_cpu(buffer, cpu) { 2261 cpu_buffer = buffer->buffers[cpu]; 2262 if (!cpu_buffer->nr_pages_to_update) 2263 continue; 2264 2265 if (cpu_online(cpu)) 2266 wait_for_completion(&cpu_buffer->update_done); 2267 cpu_buffer->nr_pages_to_update = 0; 2268 } 2269 2270 cpus_read_unlock(); 2271 } else { 2272 cpu_buffer = buffer->buffers[cpu_id]; 2273 2274 if (nr_pages == cpu_buffer->nr_pages) 2275 goto out; 2276 2277 /* 2278 * Don't succeed if resizing is disabled, as a reader might be 2279 * manipulating the ring buffer and is expecting a sane state while 2280 * this is true. 2281 */ 2282 if (atomic_read(&cpu_buffer->resize_disabled)) { 2283 err = -EBUSY; 2284 goto out_err_unlock; 2285 } 2286 2287 cpu_buffer->nr_pages_to_update = nr_pages - 2288 cpu_buffer->nr_pages; 2289 2290 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2291 if (cpu_buffer->nr_pages_to_update > 0 && 2292 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2293 &cpu_buffer->new_pages)) { 2294 err = -ENOMEM; 2295 goto out_err; 2296 } 2297 2298 cpus_read_lock(); 2299 2300 /* Can't run something on an offline CPU. */ 2301 if (!cpu_online(cpu_id)) 2302 rb_update_pages(cpu_buffer); 2303 else { 2304 /* Run directly if possible. */ 2305 migrate_disable(); 2306 if (cpu_id == smp_processor_id()) { 2307 rb_update_pages(cpu_buffer); 2308 migrate_enable(); 2309 } else { 2310 migrate_enable(); 2311 schedule_work_on(cpu_id, 2312 &cpu_buffer->update_pages_work); 2313 wait_for_completion(&cpu_buffer->update_done); 2314 } 2315 } 2316 2317 cpu_buffer->nr_pages_to_update = 0; 2318 cpus_read_unlock(); 2319 } 2320 2321 out: 2322 /* 2323 * The ring buffer resize can happen with the ring buffer 2324 * enabled, so that the update disturbs the tracing as little 2325 * as possible. But if the buffer is disabled, we do not need 2326 * to worry about that, and we can take the time to verify 2327 * that the buffer is not corrupt. 2328 */ 2329 if (atomic_read(&buffer->record_disabled)) { 2330 atomic_inc(&buffer->record_disabled); 2331 /* 2332 * Even though the buffer was disabled, we must make sure 2333 * that it is truly disabled before calling rb_check_pages. 2334 * There could have been a race between checking 2335 * record_disable and incrementing it. 2336 */ 2337 synchronize_rcu(); 2338 for_each_buffer_cpu(buffer, cpu) { 2339 unsigned long flags; 2340 2341 cpu_buffer = buffer->buffers[cpu]; 2342 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2343 rb_check_pages(cpu_buffer); 2344 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2345 } 2346 atomic_dec(&buffer->record_disabled); 2347 } 2348 2349 atomic_dec(&buffer->resizing); 2350 mutex_unlock(&buffer->mutex); 2351 return 0; 2352 2353 out_err: 2354 for_each_buffer_cpu(buffer, cpu) { 2355 struct buffer_page *bpage, *tmp; 2356 2357 cpu_buffer = buffer->buffers[cpu]; 2358 cpu_buffer->nr_pages_to_update = 0; 2359 2360 if (list_empty(&cpu_buffer->new_pages)) 2361 continue; 2362 2363 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2364 list) { 2365 list_del_init(&bpage->list); 2366 free_buffer_page(bpage); 2367 } 2368 } 2369 out_err_unlock: 2370 atomic_dec(&buffer->resizing); 2371 mutex_unlock(&buffer->mutex); 2372 return err; 2373 } 2374 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2375 2376 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2377 { 2378 mutex_lock(&buffer->mutex); 2379 if (val) 2380 buffer->flags |= RB_FL_OVERWRITE; 2381 else 2382 buffer->flags &= ~RB_FL_OVERWRITE; 2383 mutex_unlock(&buffer->mutex); 2384 } 2385 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2386 2387 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2388 { 2389 return bpage->page->data + index; 2390 } 2391 2392 static __always_inline struct ring_buffer_event * 2393 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2394 { 2395 return __rb_page_index(cpu_buffer->reader_page, 2396 cpu_buffer->reader_page->read); 2397 } 2398 2399 static struct ring_buffer_event * 2400 rb_iter_head_event(struct ring_buffer_iter *iter) 2401 { 2402 struct ring_buffer_event *event; 2403 struct buffer_page *iter_head_page = iter->head_page; 2404 unsigned long commit; 2405 unsigned length; 2406 2407 if (iter->head != iter->next_event) 2408 return iter->event; 2409 2410 /* 2411 * When the writer goes across pages, it issues a cmpxchg which 2412 * is a mb(), which will synchronize with the rmb here. 2413 * (see rb_tail_page_update() and __rb_reserve_next()) 2414 */ 2415 commit = rb_page_commit(iter_head_page); 2416 smp_rmb(); 2417 2418 /* An event needs to be at least 8 bytes in size */ 2419 if (iter->head > commit - 8) 2420 goto reset; 2421 2422 event = __rb_page_index(iter_head_page, iter->head); 2423 length = rb_event_length(event); 2424 2425 /* 2426 * READ_ONCE() doesn't work on functions and we don't want the 2427 * compiler doing any crazy optimizations with length. 2428 */ 2429 barrier(); 2430 2431 if ((iter->head + length) > commit || length > BUF_PAGE_SIZE) 2432 /* Writer corrupted the read? */ 2433 goto reset; 2434 2435 memcpy(iter->event, event, length); 2436 /* 2437 * If the page stamp is still the same after this rmb() then the 2438 * event was safely copied without the writer entering the page. 2439 */ 2440 smp_rmb(); 2441 2442 /* Make sure the page didn't change since we read this */ 2443 if (iter->page_stamp != iter_head_page->page->time_stamp || 2444 commit > rb_page_commit(iter_head_page)) 2445 goto reset; 2446 2447 iter->next_event = iter->head + length; 2448 return iter->event; 2449 reset: 2450 /* Reset to the beginning */ 2451 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2452 iter->head = 0; 2453 iter->next_event = 0; 2454 iter->missed_events = 1; 2455 return NULL; 2456 } 2457 2458 /* Size is determined by what has been committed */ 2459 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2460 { 2461 return rb_page_commit(bpage); 2462 } 2463 2464 static __always_inline unsigned 2465 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2466 { 2467 return rb_page_commit(cpu_buffer->commit_page); 2468 } 2469 2470 static __always_inline unsigned 2471 rb_event_index(struct ring_buffer_event *event) 2472 { 2473 unsigned long addr = (unsigned long)event; 2474 2475 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2476 } 2477 2478 static void rb_inc_iter(struct ring_buffer_iter *iter) 2479 { 2480 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2481 2482 /* 2483 * The iterator could be on the reader page (it starts there). 2484 * But the head could have moved, since the reader was 2485 * found. Check for this case and assign the iterator 2486 * to the head page instead of next. 2487 */ 2488 if (iter->head_page == cpu_buffer->reader_page) 2489 iter->head_page = rb_set_head_page(cpu_buffer); 2490 else 2491 rb_inc_page(&iter->head_page); 2492 2493 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2494 iter->head = 0; 2495 iter->next_event = 0; 2496 } 2497 2498 /* 2499 * rb_handle_head_page - writer hit the head page 2500 * 2501 * Returns: +1 to retry page 2502 * 0 to continue 2503 * -1 on error 2504 */ 2505 static int 2506 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2507 struct buffer_page *tail_page, 2508 struct buffer_page *next_page) 2509 { 2510 struct buffer_page *new_head; 2511 int entries; 2512 int type; 2513 int ret; 2514 2515 entries = rb_page_entries(next_page); 2516 2517 /* 2518 * The hard part is here. We need to move the head 2519 * forward, and protect against both readers on 2520 * other CPUs and writers coming in via interrupts. 2521 */ 2522 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2523 RB_PAGE_HEAD); 2524 2525 /* 2526 * type can be one of four: 2527 * NORMAL - an interrupt already moved it for us 2528 * HEAD - we are the first to get here. 2529 * UPDATE - we are the interrupt interrupting 2530 * a current move. 2531 * MOVED - a reader on another CPU moved the next 2532 * pointer to its reader page. Give up 2533 * and try again. 2534 */ 2535 2536 switch (type) { 2537 case RB_PAGE_HEAD: 2538 /* 2539 * We changed the head to UPDATE, thus 2540 * it is our responsibility to update 2541 * the counters. 2542 */ 2543 local_add(entries, &cpu_buffer->overrun); 2544 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 2545 local_inc(&cpu_buffer->pages_lost); 2546 2547 /* 2548 * The entries will be zeroed out when we move the 2549 * tail page. 2550 */ 2551 2552 /* still more to do */ 2553 break; 2554 2555 case RB_PAGE_UPDATE: 2556 /* 2557 * This is an interrupt that interrupt the 2558 * previous update. Still more to do. 2559 */ 2560 break; 2561 case RB_PAGE_NORMAL: 2562 /* 2563 * An interrupt came in before the update 2564 * and processed this for us. 2565 * Nothing left to do. 2566 */ 2567 return 1; 2568 case RB_PAGE_MOVED: 2569 /* 2570 * The reader is on another CPU and just did 2571 * a swap with our next_page. 2572 * Try again. 2573 */ 2574 return 1; 2575 default: 2576 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2577 return -1; 2578 } 2579 2580 /* 2581 * Now that we are here, the old head pointer is 2582 * set to UPDATE. This will keep the reader from 2583 * swapping the head page with the reader page. 2584 * The reader (on another CPU) will spin till 2585 * we are finished. 2586 * 2587 * We just need to protect against interrupts 2588 * doing the job. We will set the next pointer 2589 * to HEAD. After that, we set the old pointer 2590 * to NORMAL, but only if it was HEAD before. 2591 * otherwise we are an interrupt, and only 2592 * want the outer most commit to reset it. 2593 */ 2594 new_head = next_page; 2595 rb_inc_page(&new_head); 2596 2597 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2598 RB_PAGE_NORMAL); 2599 2600 /* 2601 * Valid returns are: 2602 * HEAD - an interrupt came in and already set it. 2603 * NORMAL - One of two things: 2604 * 1) We really set it. 2605 * 2) A bunch of interrupts came in and moved 2606 * the page forward again. 2607 */ 2608 switch (ret) { 2609 case RB_PAGE_HEAD: 2610 case RB_PAGE_NORMAL: 2611 /* OK */ 2612 break; 2613 default: 2614 RB_WARN_ON(cpu_buffer, 1); 2615 return -1; 2616 } 2617 2618 /* 2619 * It is possible that an interrupt came in, 2620 * set the head up, then more interrupts came in 2621 * and moved it again. When we get back here, 2622 * the page would have been set to NORMAL but we 2623 * just set it back to HEAD. 2624 * 2625 * How do you detect this? Well, if that happened 2626 * the tail page would have moved. 2627 */ 2628 if (ret == RB_PAGE_NORMAL) { 2629 struct buffer_page *buffer_tail_page; 2630 2631 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2632 /* 2633 * If the tail had moved passed next, then we need 2634 * to reset the pointer. 2635 */ 2636 if (buffer_tail_page != tail_page && 2637 buffer_tail_page != next_page) 2638 rb_head_page_set_normal(cpu_buffer, new_head, 2639 next_page, 2640 RB_PAGE_HEAD); 2641 } 2642 2643 /* 2644 * If this was the outer most commit (the one that 2645 * changed the original pointer from HEAD to UPDATE), 2646 * then it is up to us to reset it to NORMAL. 2647 */ 2648 if (type == RB_PAGE_HEAD) { 2649 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2650 tail_page, 2651 RB_PAGE_UPDATE); 2652 if (RB_WARN_ON(cpu_buffer, 2653 ret != RB_PAGE_UPDATE)) 2654 return -1; 2655 } 2656 2657 return 0; 2658 } 2659 2660 static inline void 2661 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2662 unsigned long tail, struct rb_event_info *info) 2663 { 2664 struct buffer_page *tail_page = info->tail_page; 2665 struct ring_buffer_event *event; 2666 unsigned long length = info->length; 2667 2668 /* 2669 * Only the event that crossed the page boundary 2670 * must fill the old tail_page with padding. 2671 */ 2672 if (tail >= BUF_PAGE_SIZE) { 2673 /* 2674 * If the page was filled, then we still need 2675 * to update the real_end. Reset it to zero 2676 * and the reader will ignore it. 2677 */ 2678 if (tail == BUF_PAGE_SIZE) 2679 tail_page->real_end = 0; 2680 2681 local_sub(length, &tail_page->write); 2682 return; 2683 } 2684 2685 event = __rb_page_index(tail_page, tail); 2686 2687 /* 2688 * Save the original length to the meta data. 2689 * This will be used by the reader to add lost event 2690 * counter. 2691 */ 2692 tail_page->real_end = tail; 2693 2694 /* 2695 * If this event is bigger than the minimum size, then 2696 * we need to be careful that we don't subtract the 2697 * write counter enough to allow another writer to slip 2698 * in on this page. 2699 * We put in a discarded commit instead, to make sure 2700 * that this space is not used again, and this space will 2701 * not be accounted into 'entries_bytes'. 2702 * 2703 * If we are less than the minimum size, we don't need to 2704 * worry about it. 2705 */ 2706 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2707 /* No room for any events */ 2708 2709 /* Mark the rest of the page with padding */ 2710 rb_event_set_padding(event); 2711 2712 /* Make sure the padding is visible before the write update */ 2713 smp_wmb(); 2714 2715 /* Set the write back to the previous setting */ 2716 local_sub(length, &tail_page->write); 2717 return; 2718 } 2719 2720 /* Put in a discarded event */ 2721 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2722 event->type_len = RINGBUF_TYPE_PADDING; 2723 /* time delta must be non zero */ 2724 event->time_delta = 1; 2725 2726 /* account for padding bytes */ 2727 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2728 2729 /* Make sure the padding is visible before the tail_page->write update */ 2730 smp_wmb(); 2731 2732 /* Set write to end of buffer */ 2733 length = (tail + length) - BUF_PAGE_SIZE; 2734 local_sub(length, &tail_page->write); 2735 } 2736 2737 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2738 2739 /* 2740 * This is the slow path, force gcc not to inline it. 2741 */ 2742 static noinline struct ring_buffer_event * 2743 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2744 unsigned long tail, struct rb_event_info *info) 2745 { 2746 struct buffer_page *tail_page = info->tail_page; 2747 struct buffer_page *commit_page = cpu_buffer->commit_page; 2748 struct trace_buffer *buffer = cpu_buffer->buffer; 2749 struct buffer_page *next_page; 2750 int ret; 2751 2752 next_page = tail_page; 2753 2754 rb_inc_page(&next_page); 2755 2756 /* 2757 * If for some reason, we had an interrupt storm that made 2758 * it all the way around the buffer, bail, and warn 2759 * about it. 2760 */ 2761 if (unlikely(next_page == commit_page)) { 2762 local_inc(&cpu_buffer->commit_overrun); 2763 goto out_reset; 2764 } 2765 2766 /* 2767 * This is where the fun begins! 2768 * 2769 * We are fighting against races between a reader that 2770 * could be on another CPU trying to swap its reader 2771 * page with the buffer head. 2772 * 2773 * We are also fighting against interrupts coming in and 2774 * moving the head or tail on us as well. 2775 * 2776 * If the next page is the head page then we have filled 2777 * the buffer, unless the commit page is still on the 2778 * reader page. 2779 */ 2780 if (rb_is_head_page(next_page, &tail_page->list)) { 2781 2782 /* 2783 * If the commit is not on the reader page, then 2784 * move the header page. 2785 */ 2786 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2787 /* 2788 * If we are not in overwrite mode, 2789 * this is easy, just stop here. 2790 */ 2791 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2792 local_inc(&cpu_buffer->dropped_events); 2793 goto out_reset; 2794 } 2795 2796 ret = rb_handle_head_page(cpu_buffer, 2797 tail_page, 2798 next_page); 2799 if (ret < 0) 2800 goto out_reset; 2801 if (ret) 2802 goto out_again; 2803 } else { 2804 /* 2805 * We need to be careful here too. The 2806 * commit page could still be on the reader 2807 * page. We could have a small buffer, and 2808 * have filled up the buffer with events 2809 * from interrupts and such, and wrapped. 2810 * 2811 * Note, if the tail page is also on the 2812 * reader_page, we let it move out. 2813 */ 2814 if (unlikely((cpu_buffer->commit_page != 2815 cpu_buffer->tail_page) && 2816 (cpu_buffer->commit_page == 2817 cpu_buffer->reader_page))) { 2818 local_inc(&cpu_buffer->commit_overrun); 2819 goto out_reset; 2820 } 2821 } 2822 } 2823 2824 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2825 2826 out_again: 2827 2828 rb_reset_tail(cpu_buffer, tail, info); 2829 2830 /* Commit what we have for now. */ 2831 rb_end_commit(cpu_buffer); 2832 /* rb_end_commit() decs committing */ 2833 local_inc(&cpu_buffer->committing); 2834 2835 /* fail and let the caller try again */ 2836 return ERR_PTR(-EAGAIN); 2837 2838 out_reset: 2839 /* reset write */ 2840 rb_reset_tail(cpu_buffer, tail, info); 2841 2842 return NULL; 2843 } 2844 2845 /* Slow path */ 2846 static struct ring_buffer_event * 2847 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2848 { 2849 if (abs) 2850 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2851 else 2852 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2853 2854 /* Not the first event on the page, or not delta? */ 2855 if (abs || rb_event_index(event)) { 2856 event->time_delta = delta & TS_MASK; 2857 event->array[0] = delta >> TS_SHIFT; 2858 } else { 2859 /* nope, just zero it */ 2860 event->time_delta = 0; 2861 event->array[0] = 0; 2862 } 2863 2864 return skip_time_extend(event); 2865 } 2866 2867 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2868 static inline bool sched_clock_stable(void) 2869 { 2870 return true; 2871 } 2872 #endif 2873 2874 static void 2875 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2876 struct rb_event_info *info) 2877 { 2878 u64 write_stamp; 2879 2880 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2881 (unsigned long long)info->delta, 2882 (unsigned long long)info->ts, 2883 (unsigned long long)info->before, 2884 (unsigned long long)info->after, 2885 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2886 sched_clock_stable() ? "" : 2887 "If you just came from a suspend/resume,\n" 2888 "please switch to the trace global clock:\n" 2889 " echo global > /sys/kernel/tracing/trace_clock\n" 2890 "or add trace_clock=global to the kernel command line\n"); 2891 } 2892 2893 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2894 struct ring_buffer_event **event, 2895 struct rb_event_info *info, 2896 u64 *delta, 2897 unsigned int *length) 2898 { 2899 bool abs = info->add_timestamp & 2900 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2901 2902 if (unlikely(info->delta > (1ULL << 59))) { 2903 /* 2904 * Some timers can use more than 59 bits, and when a timestamp 2905 * is added to the buffer, it will lose those bits. 2906 */ 2907 if (abs && (info->ts & TS_MSB)) { 2908 info->delta &= ABS_TS_MASK; 2909 2910 /* did the clock go backwards */ 2911 } else if (info->before == info->after && info->before > info->ts) { 2912 /* not interrupted */ 2913 static int once; 2914 2915 /* 2916 * This is possible with a recalibrating of the TSC. 2917 * Do not produce a call stack, but just report it. 2918 */ 2919 if (!once) { 2920 once++; 2921 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2922 info->before, info->ts); 2923 } 2924 } else 2925 rb_check_timestamp(cpu_buffer, info); 2926 if (!abs) 2927 info->delta = 0; 2928 } 2929 *event = rb_add_time_stamp(*event, info->delta, abs); 2930 *length -= RB_LEN_TIME_EXTEND; 2931 *delta = 0; 2932 } 2933 2934 /** 2935 * rb_update_event - update event type and data 2936 * @cpu_buffer: The per cpu buffer of the @event 2937 * @event: the event to update 2938 * @info: The info to update the @event with (contains length and delta) 2939 * 2940 * Update the type and data fields of the @event. The length 2941 * is the actual size that is written to the ring buffer, 2942 * and with this, we can determine what to place into the 2943 * data field. 2944 */ 2945 static void 2946 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2947 struct ring_buffer_event *event, 2948 struct rb_event_info *info) 2949 { 2950 unsigned length = info->length; 2951 u64 delta = info->delta; 2952 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2953 2954 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2955 cpu_buffer->event_stamp[nest] = info->ts; 2956 2957 /* 2958 * If we need to add a timestamp, then we 2959 * add it to the start of the reserved space. 2960 */ 2961 if (unlikely(info->add_timestamp)) 2962 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2963 2964 event->time_delta = delta; 2965 length -= RB_EVNT_HDR_SIZE; 2966 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2967 event->type_len = 0; 2968 event->array[0] = length; 2969 } else 2970 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2971 } 2972 2973 static unsigned rb_calculate_event_length(unsigned length) 2974 { 2975 struct ring_buffer_event event; /* Used only for sizeof array */ 2976 2977 /* zero length can cause confusions */ 2978 if (!length) 2979 length++; 2980 2981 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2982 length += sizeof(event.array[0]); 2983 2984 length += RB_EVNT_HDR_SIZE; 2985 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2986 2987 /* 2988 * In case the time delta is larger than the 27 bits for it 2989 * in the header, we need to add a timestamp. If another 2990 * event comes in when trying to discard this one to increase 2991 * the length, then the timestamp will be added in the allocated 2992 * space of this event. If length is bigger than the size needed 2993 * for the TIME_EXTEND, then padding has to be used. The events 2994 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2995 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2996 * As length is a multiple of 4, we only need to worry if it 2997 * is 12 (RB_LEN_TIME_EXTEND + 4). 2998 */ 2999 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 3000 length += RB_ALIGNMENT; 3001 3002 return length; 3003 } 3004 3005 static inline bool 3006 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3007 struct ring_buffer_event *event) 3008 { 3009 unsigned long new_index, old_index; 3010 struct buffer_page *bpage; 3011 unsigned long addr; 3012 3013 new_index = rb_event_index(event); 3014 old_index = new_index + rb_event_ts_length(event); 3015 addr = (unsigned long)event; 3016 addr &= PAGE_MASK; 3017 3018 bpage = READ_ONCE(cpu_buffer->tail_page); 3019 3020 /* 3021 * Make sure the tail_page is still the same and 3022 * the next write location is the end of this event 3023 */ 3024 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3025 unsigned long write_mask = 3026 local_read(&bpage->write) & ~RB_WRITE_MASK; 3027 unsigned long event_length = rb_event_length(event); 3028 3029 /* 3030 * For the before_stamp to be different than the write_stamp 3031 * to make sure that the next event adds an absolute 3032 * value and does not rely on the saved write stamp, which 3033 * is now going to be bogus. 3034 * 3035 * By setting the before_stamp to zero, the next event 3036 * is not going to use the write_stamp and will instead 3037 * create an absolute timestamp. This means there's no 3038 * reason to update the wirte_stamp! 3039 */ 3040 rb_time_set(&cpu_buffer->before_stamp, 0); 3041 3042 /* 3043 * If an event were to come in now, it would see that the 3044 * write_stamp and the before_stamp are different, and assume 3045 * that this event just added itself before updating 3046 * the write stamp. The interrupting event will fix the 3047 * write stamp for us, and use an absolute timestamp. 3048 */ 3049 3050 /* 3051 * This is on the tail page. It is possible that 3052 * a write could come in and move the tail page 3053 * and write to the next page. That is fine 3054 * because we just shorten what is on this page. 3055 */ 3056 old_index += write_mask; 3057 new_index += write_mask; 3058 3059 /* caution: old_index gets updated on cmpxchg failure */ 3060 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3061 /* update counters */ 3062 local_sub(event_length, &cpu_buffer->entries_bytes); 3063 return true; 3064 } 3065 } 3066 3067 /* could not discard */ 3068 return false; 3069 } 3070 3071 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3072 { 3073 local_inc(&cpu_buffer->committing); 3074 local_inc(&cpu_buffer->commits); 3075 } 3076 3077 static __always_inline void 3078 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3079 { 3080 unsigned long max_count; 3081 3082 /* 3083 * We only race with interrupts and NMIs on this CPU. 3084 * If we own the commit event, then we can commit 3085 * all others that interrupted us, since the interruptions 3086 * are in stack format (they finish before they come 3087 * back to us). This allows us to do a simple loop to 3088 * assign the commit to the tail. 3089 */ 3090 again: 3091 max_count = cpu_buffer->nr_pages * 100; 3092 3093 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3094 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3095 return; 3096 if (RB_WARN_ON(cpu_buffer, 3097 rb_is_reader_page(cpu_buffer->tail_page))) 3098 return; 3099 /* 3100 * No need for a memory barrier here, as the update 3101 * of the tail_page did it for this page. 3102 */ 3103 local_set(&cpu_buffer->commit_page->page->commit, 3104 rb_page_write(cpu_buffer->commit_page)); 3105 rb_inc_page(&cpu_buffer->commit_page); 3106 /* add barrier to keep gcc from optimizing too much */ 3107 barrier(); 3108 } 3109 while (rb_commit_index(cpu_buffer) != 3110 rb_page_write(cpu_buffer->commit_page)) { 3111 3112 /* Make sure the readers see the content of what is committed. */ 3113 smp_wmb(); 3114 local_set(&cpu_buffer->commit_page->page->commit, 3115 rb_page_write(cpu_buffer->commit_page)); 3116 RB_WARN_ON(cpu_buffer, 3117 local_read(&cpu_buffer->commit_page->page->commit) & 3118 ~RB_WRITE_MASK); 3119 barrier(); 3120 } 3121 3122 /* again, keep gcc from optimizing */ 3123 barrier(); 3124 3125 /* 3126 * If an interrupt came in just after the first while loop 3127 * and pushed the tail page forward, we will be left with 3128 * a dangling commit that will never go forward. 3129 */ 3130 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3131 goto again; 3132 } 3133 3134 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3135 { 3136 unsigned long commits; 3137 3138 if (RB_WARN_ON(cpu_buffer, 3139 !local_read(&cpu_buffer->committing))) 3140 return; 3141 3142 again: 3143 commits = local_read(&cpu_buffer->commits); 3144 /* synchronize with interrupts */ 3145 barrier(); 3146 if (local_read(&cpu_buffer->committing) == 1) 3147 rb_set_commit_to_write(cpu_buffer); 3148 3149 local_dec(&cpu_buffer->committing); 3150 3151 /* synchronize with interrupts */ 3152 barrier(); 3153 3154 /* 3155 * Need to account for interrupts coming in between the 3156 * updating of the commit page and the clearing of the 3157 * committing counter. 3158 */ 3159 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3160 !local_read(&cpu_buffer->committing)) { 3161 local_inc(&cpu_buffer->committing); 3162 goto again; 3163 } 3164 } 3165 3166 static inline void rb_event_discard(struct ring_buffer_event *event) 3167 { 3168 if (extended_time(event)) 3169 event = skip_time_extend(event); 3170 3171 /* array[0] holds the actual length for the discarded event */ 3172 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3173 event->type_len = RINGBUF_TYPE_PADDING; 3174 /* time delta must be non zero */ 3175 if (!event->time_delta) 3176 event->time_delta = 1; 3177 } 3178 3179 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3180 { 3181 local_inc(&cpu_buffer->entries); 3182 rb_end_commit(cpu_buffer); 3183 } 3184 3185 static __always_inline void 3186 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3187 { 3188 if (buffer->irq_work.waiters_pending) { 3189 buffer->irq_work.waiters_pending = false; 3190 /* irq_work_queue() supplies it's own memory barriers */ 3191 irq_work_queue(&buffer->irq_work.work); 3192 } 3193 3194 if (cpu_buffer->irq_work.waiters_pending) { 3195 cpu_buffer->irq_work.waiters_pending = false; 3196 /* irq_work_queue() supplies it's own memory barriers */ 3197 irq_work_queue(&cpu_buffer->irq_work.work); 3198 } 3199 3200 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3201 return; 3202 3203 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3204 return; 3205 3206 if (!cpu_buffer->irq_work.full_waiters_pending) 3207 return; 3208 3209 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3210 3211 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3212 return; 3213 3214 cpu_buffer->irq_work.wakeup_full = true; 3215 cpu_buffer->irq_work.full_waiters_pending = false; 3216 /* irq_work_queue() supplies it's own memory barriers */ 3217 irq_work_queue(&cpu_buffer->irq_work.work); 3218 } 3219 3220 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3221 # define do_ring_buffer_record_recursion() \ 3222 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3223 #else 3224 # define do_ring_buffer_record_recursion() do { } while (0) 3225 #endif 3226 3227 /* 3228 * The lock and unlock are done within a preempt disable section. 3229 * The current_context per_cpu variable can only be modified 3230 * by the current task between lock and unlock. But it can 3231 * be modified more than once via an interrupt. To pass this 3232 * information from the lock to the unlock without having to 3233 * access the 'in_interrupt()' functions again (which do show 3234 * a bit of overhead in something as critical as function tracing, 3235 * we use a bitmask trick. 3236 * 3237 * bit 1 = NMI context 3238 * bit 2 = IRQ context 3239 * bit 3 = SoftIRQ context 3240 * bit 4 = normal context. 3241 * 3242 * This works because this is the order of contexts that can 3243 * preempt other contexts. A SoftIRQ never preempts an IRQ 3244 * context. 3245 * 3246 * When the context is determined, the corresponding bit is 3247 * checked and set (if it was set, then a recursion of that context 3248 * happened). 3249 * 3250 * On unlock, we need to clear this bit. To do so, just subtract 3251 * 1 from the current_context and AND it to itself. 3252 * 3253 * (binary) 3254 * 101 - 1 = 100 3255 * 101 & 100 = 100 (clearing bit zero) 3256 * 3257 * 1010 - 1 = 1001 3258 * 1010 & 1001 = 1000 (clearing bit 1) 3259 * 3260 * The least significant bit can be cleared this way, and it 3261 * just so happens that it is the same bit corresponding to 3262 * the current context. 3263 * 3264 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3265 * is set when a recursion is detected at the current context, and if 3266 * the TRANSITION bit is already set, it will fail the recursion. 3267 * This is needed because there's a lag between the changing of 3268 * interrupt context and updating the preempt count. In this case, 3269 * a false positive will be found. To handle this, one extra recursion 3270 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3271 * bit is already set, then it is considered a recursion and the function 3272 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3273 * 3274 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3275 * to be cleared. Even if it wasn't the context that set it. That is, 3276 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3277 * is called before preempt_count() is updated, since the check will 3278 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3279 * NMI then comes in, it will set the NMI bit, but when the NMI code 3280 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3281 * and leave the NMI bit set. But this is fine, because the interrupt 3282 * code that set the TRANSITION bit will then clear the NMI bit when it 3283 * calls trace_recursive_unlock(). If another NMI comes in, it will 3284 * set the TRANSITION bit and continue. 3285 * 3286 * Note: The TRANSITION bit only handles a single transition between context. 3287 */ 3288 3289 static __always_inline bool 3290 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3291 { 3292 unsigned int val = cpu_buffer->current_context; 3293 int bit = interrupt_context_level(); 3294 3295 bit = RB_CTX_NORMAL - bit; 3296 3297 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3298 /* 3299 * It is possible that this was called by transitioning 3300 * between interrupt context, and preempt_count() has not 3301 * been updated yet. In this case, use the TRANSITION bit. 3302 */ 3303 bit = RB_CTX_TRANSITION; 3304 if (val & (1 << (bit + cpu_buffer->nest))) { 3305 do_ring_buffer_record_recursion(); 3306 return true; 3307 } 3308 } 3309 3310 val |= (1 << (bit + cpu_buffer->nest)); 3311 cpu_buffer->current_context = val; 3312 3313 return false; 3314 } 3315 3316 static __always_inline void 3317 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3318 { 3319 cpu_buffer->current_context &= 3320 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3321 } 3322 3323 /* The recursive locking above uses 5 bits */ 3324 #define NESTED_BITS 5 3325 3326 /** 3327 * ring_buffer_nest_start - Allow to trace while nested 3328 * @buffer: The ring buffer to modify 3329 * 3330 * The ring buffer has a safety mechanism to prevent recursion. 3331 * But there may be a case where a trace needs to be done while 3332 * tracing something else. In this case, calling this function 3333 * will allow this function to nest within a currently active 3334 * ring_buffer_lock_reserve(). 3335 * 3336 * Call this function before calling another ring_buffer_lock_reserve() and 3337 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3338 */ 3339 void ring_buffer_nest_start(struct trace_buffer *buffer) 3340 { 3341 struct ring_buffer_per_cpu *cpu_buffer; 3342 int cpu; 3343 3344 /* Enabled by ring_buffer_nest_end() */ 3345 preempt_disable_notrace(); 3346 cpu = raw_smp_processor_id(); 3347 cpu_buffer = buffer->buffers[cpu]; 3348 /* This is the shift value for the above recursive locking */ 3349 cpu_buffer->nest += NESTED_BITS; 3350 } 3351 3352 /** 3353 * ring_buffer_nest_end - Allow to trace while nested 3354 * @buffer: The ring buffer to modify 3355 * 3356 * Must be called after ring_buffer_nest_start() and after the 3357 * ring_buffer_unlock_commit(). 3358 */ 3359 void ring_buffer_nest_end(struct trace_buffer *buffer) 3360 { 3361 struct ring_buffer_per_cpu *cpu_buffer; 3362 int cpu; 3363 3364 /* disabled by ring_buffer_nest_start() */ 3365 cpu = raw_smp_processor_id(); 3366 cpu_buffer = buffer->buffers[cpu]; 3367 /* This is the shift value for the above recursive locking */ 3368 cpu_buffer->nest -= NESTED_BITS; 3369 preempt_enable_notrace(); 3370 } 3371 3372 /** 3373 * ring_buffer_unlock_commit - commit a reserved 3374 * @buffer: The buffer to commit to 3375 * 3376 * This commits the data to the ring buffer, and releases any locks held. 3377 * 3378 * Must be paired with ring_buffer_lock_reserve. 3379 */ 3380 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3381 { 3382 struct ring_buffer_per_cpu *cpu_buffer; 3383 int cpu = raw_smp_processor_id(); 3384 3385 cpu_buffer = buffer->buffers[cpu]; 3386 3387 rb_commit(cpu_buffer); 3388 3389 rb_wakeups(buffer, cpu_buffer); 3390 3391 trace_recursive_unlock(cpu_buffer); 3392 3393 preempt_enable_notrace(); 3394 3395 return 0; 3396 } 3397 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3398 3399 /* Special value to validate all deltas on a page. */ 3400 #define CHECK_FULL_PAGE 1L 3401 3402 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3403 static void dump_buffer_page(struct buffer_data_page *bpage, 3404 struct rb_event_info *info, 3405 unsigned long tail) 3406 { 3407 struct ring_buffer_event *event; 3408 u64 ts, delta; 3409 int e; 3410 3411 ts = bpage->time_stamp; 3412 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3413 3414 for (e = 0; e < tail; e += rb_event_length(event)) { 3415 3416 event = (struct ring_buffer_event *)(bpage->data + e); 3417 3418 switch (event->type_len) { 3419 3420 case RINGBUF_TYPE_TIME_EXTEND: 3421 delta = rb_event_time_stamp(event); 3422 ts += delta; 3423 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3424 break; 3425 3426 case RINGBUF_TYPE_TIME_STAMP: 3427 delta = rb_event_time_stamp(event); 3428 ts = rb_fix_abs_ts(delta, ts); 3429 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3430 break; 3431 3432 case RINGBUF_TYPE_PADDING: 3433 ts += event->time_delta; 3434 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3435 break; 3436 3437 case RINGBUF_TYPE_DATA: 3438 ts += event->time_delta; 3439 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3440 break; 3441 3442 default: 3443 break; 3444 } 3445 } 3446 } 3447 3448 static DEFINE_PER_CPU(atomic_t, checking); 3449 static atomic_t ts_dump; 3450 3451 /* 3452 * Check if the current event time stamp matches the deltas on 3453 * the buffer page. 3454 */ 3455 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3456 struct rb_event_info *info, 3457 unsigned long tail) 3458 { 3459 struct ring_buffer_event *event; 3460 struct buffer_data_page *bpage; 3461 u64 ts, delta; 3462 bool full = false; 3463 int e; 3464 3465 bpage = info->tail_page->page; 3466 3467 if (tail == CHECK_FULL_PAGE) { 3468 full = true; 3469 tail = local_read(&bpage->commit); 3470 } else if (info->add_timestamp & 3471 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3472 /* Ignore events with absolute time stamps */ 3473 return; 3474 } 3475 3476 /* 3477 * Do not check the first event (skip possible extends too). 3478 * Also do not check if previous events have not been committed. 3479 */ 3480 if (tail <= 8 || tail > local_read(&bpage->commit)) 3481 return; 3482 3483 /* 3484 * If this interrupted another event, 3485 */ 3486 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3487 goto out; 3488 3489 ts = bpage->time_stamp; 3490 3491 for (e = 0; e < tail; e += rb_event_length(event)) { 3492 3493 event = (struct ring_buffer_event *)(bpage->data + e); 3494 3495 switch (event->type_len) { 3496 3497 case RINGBUF_TYPE_TIME_EXTEND: 3498 delta = rb_event_time_stamp(event); 3499 ts += delta; 3500 break; 3501 3502 case RINGBUF_TYPE_TIME_STAMP: 3503 delta = rb_event_time_stamp(event); 3504 ts = rb_fix_abs_ts(delta, ts); 3505 break; 3506 3507 case RINGBUF_TYPE_PADDING: 3508 if (event->time_delta == 1) 3509 break; 3510 fallthrough; 3511 case RINGBUF_TYPE_DATA: 3512 ts += event->time_delta; 3513 break; 3514 3515 default: 3516 RB_WARN_ON(cpu_buffer, 1); 3517 } 3518 } 3519 if ((full && ts > info->ts) || 3520 (!full && ts + info->delta != info->ts)) { 3521 /* If another report is happening, ignore this one */ 3522 if (atomic_inc_return(&ts_dump) != 1) { 3523 atomic_dec(&ts_dump); 3524 goto out; 3525 } 3526 atomic_inc(&cpu_buffer->record_disabled); 3527 /* There's some cases in boot up that this can happen */ 3528 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3529 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3530 cpu_buffer->cpu, 3531 ts + info->delta, info->ts, info->delta, 3532 info->before, info->after, 3533 full ? " (full)" : ""); 3534 dump_buffer_page(bpage, info, tail); 3535 atomic_dec(&ts_dump); 3536 /* Do not re-enable checking */ 3537 return; 3538 } 3539 out: 3540 atomic_dec(this_cpu_ptr(&checking)); 3541 } 3542 #else 3543 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3544 struct rb_event_info *info, 3545 unsigned long tail) 3546 { 3547 } 3548 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3549 3550 static struct ring_buffer_event * 3551 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3552 struct rb_event_info *info) 3553 { 3554 struct ring_buffer_event *event; 3555 struct buffer_page *tail_page; 3556 unsigned long tail, write, w; 3557 bool a_ok; 3558 bool b_ok; 3559 3560 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3561 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3562 3563 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3564 barrier(); 3565 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3566 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3567 barrier(); 3568 info->ts = rb_time_stamp(cpu_buffer->buffer); 3569 3570 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3571 info->delta = info->ts; 3572 } else { 3573 /* 3574 * If interrupting an event time update, we may need an 3575 * absolute timestamp. 3576 * Don't bother if this is the start of a new page (w == 0). 3577 */ 3578 if (!w) { 3579 /* Use the sub-buffer timestamp */ 3580 info->delta = 0; 3581 } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) { 3582 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3583 info->length += RB_LEN_TIME_EXTEND; 3584 } else { 3585 info->delta = info->ts - info->after; 3586 if (unlikely(test_time_stamp(info->delta))) { 3587 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3588 info->length += RB_LEN_TIME_EXTEND; 3589 } 3590 } 3591 } 3592 3593 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3594 3595 /*C*/ write = local_add_return(info->length, &tail_page->write); 3596 3597 /* set write to only the index of the write */ 3598 write &= RB_WRITE_MASK; 3599 3600 tail = write - info->length; 3601 3602 /* See if we shot pass the end of this buffer page */ 3603 if (unlikely(write > BUF_PAGE_SIZE)) { 3604 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3605 return rb_move_tail(cpu_buffer, tail, info); 3606 } 3607 3608 if (likely(tail == w)) { 3609 /* Nothing interrupted us between A and C */ 3610 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3611 /* 3612 * If something came in between C and D, the write stamp 3613 * may now not be in sync. But that's fine as the before_stamp 3614 * will be different and then next event will just be forced 3615 * to use an absolute timestamp. 3616 */ 3617 if (likely(!(info->add_timestamp & 3618 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3619 /* This did not interrupt any time update */ 3620 info->delta = info->ts - info->after; 3621 else 3622 /* Just use full timestamp for interrupting event */ 3623 info->delta = info->ts; 3624 check_buffer(cpu_buffer, info, tail); 3625 } else { 3626 u64 ts; 3627 /* SLOW PATH - Interrupted between A and C */ 3628 3629 /* Save the old before_stamp */ 3630 a_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3631 RB_WARN_ON(cpu_buffer, !a_ok); 3632 3633 /* 3634 * Read a new timestamp and update the before_stamp to make 3635 * the next event after this one force using an absolute 3636 * timestamp. This is in case an interrupt were to come in 3637 * between E and F. 3638 */ 3639 ts = rb_time_stamp(cpu_buffer->buffer); 3640 rb_time_set(&cpu_buffer->before_stamp, ts); 3641 3642 barrier(); 3643 /*E*/ a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3644 /* Was interrupted before here, write_stamp must be valid */ 3645 RB_WARN_ON(cpu_buffer, !a_ok); 3646 barrier(); 3647 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3648 info->after == info->before && info->after < ts) { 3649 /* 3650 * Nothing came after this event between C and F, it is 3651 * safe to use info->after for the delta as it 3652 * matched info->before and is still valid. 3653 */ 3654 info->delta = ts - info->after; 3655 } else { 3656 /* 3657 * Interrupted between C and F: 3658 * Lost the previous events time stamp. Just set the 3659 * delta to zero, and this will be the same time as 3660 * the event this event interrupted. And the events that 3661 * came after this will still be correct (as they would 3662 * have built their delta on the previous event. 3663 */ 3664 info->delta = 0; 3665 } 3666 info->ts = ts; 3667 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3668 } 3669 3670 /* 3671 * If this is the first commit on the page, then it has the same 3672 * timestamp as the page itself. 3673 */ 3674 if (unlikely(!tail && !(info->add_timestamp & 3675 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3676 info->delta = 0; 3677 3678 /* We reserved something on the buffer */ 3679 3680 event = __rb_page_index(tail_page, tail); 3681 rb_update_event(cpu_buffer, event, info); 3682 3683 local_inc(&tail_page->entries); 3684 3685 /* 3686 * If this is the first commit on the page, then update 3687 * its timestamp. 3688 */ 3689 if (unlikely(!tail)) 3690 tail_page->page->time_stamp = info->ts; 3691 3692 /* account for these added bytes */ 3693 local_add(info->length, &cpu_buffer->entries_bytes); 3694 3695 return event; 3696 } 3697 3698 static __always_inline struct ring_buffer_event * 3699 rb_reserve_next_event(struct trace_buffer *buffer, 3700 struct ring_buffer_per_cpu *cpu_buffer, 3701 unsigned long length) 3702 { 3703 struct ring_buffer_event *event; 3704 struct rb_event_info info; 3705 int nr_loops = 0; 3706 int add_ts_default; 3707 3708 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 3709 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 3710 (unlikely(in_nmi()))) { 3711 return NULL; 3712 } 3713 3714 rb_start_commit(cpu_buffer); 3715 /* The commit page can not change after this */ 3716 3717 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3718 /* 3719 * Due to the ability to swap a cpu buffer from a buffer 3720 * it is possible it was swapped before we committed. 3721 * (committing stops a swap). We check for it here and 3722 * if it happened, we have to fail the write. 3723 */ 3724 barrier(); 3725 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3726 local_dec(&cpu_buffer->committing); 3727 local_dec(&cpu_buffer->commits); 3728 return NULL; 3729 } 3730 #endif 3731 3732 info.length = rb_calculate_event_length(length); 3733 3734 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3735 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3736 info.length += RB_LEN_TIME_EXTEND; 3737 if (info.length > BUF_MAX_DATA_SIZE) 3738 goto out_fail; 3739 } else { 3740 add_ts_default = RB_ADD_STAMP_NONE; 3741 } 3742 3743 again: 3744 info.add_timestamp = add_ts_default; 3745 info.delta = 0; 3746 3747 /* 3748 * We allow for interrupts to reenter here and do a trace. 3749 * If one does, it will cause this original code to loop 3750 * back here. Even with heavy interrupts happening, this 3751 * should only happen a few times in a row. If this happens 3752 * 1000 times in a row, there must be either an interrupt 3753 * storm or we have something buggy. 3754 * Bail! 3755 */ 3756 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3757 goto out_fail; 3758 3759 event = __rb_reserve_next(cpu_buffer, &info); 3760 3761 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3762 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3763 info.length -= RB_LEN_TIME_EXTEND; 3764 goto again; 3765 } 3766 3767 if (likely(event)) 3768 return event; 3769 out_fail: 3770 rb_end_commit(cpu_buffer); 3771 return NULL; 3772 } 3773 3774 /** 3775 * ring_buffer_lock_reserve - reserve a part of the buffer 3776 * @buffer: the ring buffer to reserve from 3777 * @length: the length of the data to reserve (excluding event header) 3778 * 3779 * Returns a reserved event on the ring buffer to copy directly to. 3780 * The user of this interface will need to get the body to write into 3781 * and can use the ring_buffer_event_data() interface. 3782 * 3783 * The length is the length of the data needed, not the event length 3784 * which also includes the event header. 3785 * 3786 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3787 * If NULL is returned, then nothing has been allocated or locked. 3788 */ 3789 struct ring_buffer_event * 3790 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3791 { 3792 struct ring_buffer_per_cpu *cpu_buffer; 3793 struct ring_buffer_event *event; 3794 int cpu; 3795 3796 /* If we are tracing schedule, we don't want to recurse */ 3797 preempt_disable_notrace(); 3798 3799 if (unlikely(atomic_read(&buffer->record_disabled))) 3800 goto out; 3801 3802 cpu = raw_smp_processor_id(); 3803 3804 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3805 goto out; 3806 3807 cpu_buffer = buffer->buffers[cpu]; 3808 3809 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3810 goto out; 3811 3812 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3813 goto out; 3814 3815 if (unlikely(trace_recursive_lock(cpu_buffer))) 3816 goto out; 3817 3818 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3819 if (!event) 3820 goto out_unlock; 3821 3822 return event; 3823 3824 out_unlock: 3825 trace_recursive_unlock(cpu_buffer); 3826 out: 3827 preempt_enable_notrace(); 3828 return NULL; 3829 } 3830 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3831 3832 /* 3833 * Decrement the entries to the page that an event is on. 3834 * The event does not even need to exist, only the pointer 3835 * to the page it is on. This may only be called before the commit 3836 * takes place. 3837 */ 3838 static inline void 3839 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3840 struct ring_buffer_event *event) 3841 { 3842 unsigned long addr = (unsigned long)event; 3843 struct buffer_page *bpage = cpu_buffer->commit_page; 3844 struct buffer_page *start; 3845 3846 addr &= PAGE_MASK; 3847 3848 /* Do the likely case first */ 3849 if (likely(bpage->page == (void *)addr)) { 3850 local_dec(&bpage->entries); 3851 return; 3852 } 3853 3854 /* 3855 * Because the commit page may be on the reader page we 3856 * start with the next page and check the end loop there. 3857 */ 3858 rb_inc_page(&bpage); 3859 start = bpage; 3860 do { 3861 if (bpage->page == (void *)addr) { 3862 local_dec(&bpage->entries); 3863 return; 3864 } 3865 rb_inc_page(&bpage); 3866 } while (bpage != start); 3867 3868 /* commit not part of this buffer?? */ 3869 RB_WARN_ON(cpu_buffer, 1); 3870 } 3871 3872 /** 3873 * ring_buffer_discard_commit - discard an event that has not been committed 3874 * @buffer: the ring buffer 3875 * @event: non committed event to discard 3876 * 3877 * Sometimes an event that is in the ring buffer needs to be ignored. 3878 * This function lets the user discard an event in the ring buffer 3879 * and then that event will not be read later. 3880 * 3881 * This function only works if it is called before the item has been 3882 * committed. It will try to free the event from the ring buffer 3883 * if another event has not been added behind it. 3884 * 3885 * If another event has been added behind it, it will set the event 3886 * up as discarded, and perform the commit. 3887 * 3888 * If this function is called, do not call ring_buffer_unlock_commit on 3889 * the event. 3890 */ 3891 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3892 struct ring_buffer_event *event) 3893 { 3894 struct ring_buffer_per_cpu *cpu_buffer; 3895 int cpu; 3896 3897 /* The event is discarded regardless */ 3898 rb_event_discard(event); 3899 3900 cpu = smp_processor_id(); 3901 cpu_buffer = buffer->buffers[cpu]; 3902 3903 /* 3904 * This must only be called if the event has not been 3905 * committed yet. Thus we can assume that preemption 3906 * is still disabled. 3907 */ 3908 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3909 3910 rb_decrement_entry(cpu_buffer, event); 3911 if (rb_try_to_discard(cpu_buffer, event)) 3912 goto out; 3913 3914 out: 3915 rb_end_commit(cpu_buffer); 3916 3917 trace_recursive_unlock(cpu_buffer); 3918 3919 preempt_enable_notrace(); 3920 3921 } 3922 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3923 3924 /** 3925 * ring_buffer_write - write data to the buffer without reserving 3926 * @buffer: The ring buffer to write to. 3927 * @length: The length of the data being written (excluding the event header) 3928 * @data: The data to write to the buffer. 3929 * 3930 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3931 * one function. If you already have the data to write to the buffer, it 3932 * may be easier to simply call this function. 3933 * 3934 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3935 * and not the length of the event which would hold the header. 3936 */ 3937 int ring_buffer_write(struct trace_buffer *buffer, 3938 unsigned long length, 3939 void *data) 3940 { 3941 struct ring_buffer_per_cpu *cpu_buffer; 3942 struct ring_buffer_event *event; 3943 void *body; 3944 int ret = -EBUSY; 3945 int cpu; 3946 3947 preempt_disable_notrace(); 3948 3949 if (atomic_read(&buffer->record_disabled)) 3950 goto out; 3951 3952 cpu = raw_smp_processor_id(); 3953 3954 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3955 goto out; 3956 3957 cpu_buffer = buffer->buffers[cpu]; 3958 3959 if (atomic_read(&cpu_buffer->record_disabled)) 3960 goto out; 3961 3962 if (length > BUF_MAX_DATA_SIZE) 3963 goto out; 3964 3965 if (unlikely(trace_recursive_lock(cpu_buffer))) 3966 goto out; 3967 3968 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3969 if (!event) 3970 goto out_unlock; 3971 3972 body = rb_event_data(event); 3973 3974 memcpy(body, data, length); 3975 3976 rb_commit(cpu_buffer); 3977 3978 rb_wakeups(buffer, cpu_buffer); 3979 3980 ret = 0; 3981 3982 out_unlock: 3983 trace_recursive_unlock(cpu_buffer); 3984 3985 out: 3986 preempt_enable_notrace(); 3987 3988 return ret; 3989 } 3990 EXPORT_SYMBOL_GPL(ring_buffer_write); 3991 3992 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3993 { 3994 struct buffer_page *reader = cpu_buffer->reader_page; 3995 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3996 struct buffer_page *commit = cpu_buffer->commit_page; 3997 3998 /* In case of error, head will be NULL */ 3999 if (unlikely(!head)) 4000 return true; 4001 4002 /* Reader should exhaust content in reader page */ 4003 if (reader->read != rb_page_commit(reader)) 4004 return false; 4005 4006 /* 4007 * If writers are committing on the reader page, knowing all 4008 * committed content has been read, the ring buffer is empty. 4009 */ 4010 if (commit == reader) 4011 return true; 4012 4013 /* 4014 * If writers are committing on a page other than reader page 4015 * and head page, there should always be content to read. 4016 */ 4017 if (commit != head) 4018 return false; 4019 4020 /* 4021 * Writers are committing on the head page, we just need 4022 * to care about there're committed data, and the reader will 4023 * swap reader page with head page when it is to read data. 4024 */ 4025 return rb_page_commit(commit) == 0; 4026 } 4027 4028 /** 4029 * ring_buffer_record_disable - stop all writes into the buffer 4030 * @buffer: The ring buffer to stop writes to. 4031 * 4032 * This prevents all writes to the buffer. Any attempt to write 4033 * to the buffer after this will fail and return NULL. 4034 * 4035 * The caller should call synchronize_rcu() after this. 4036 */ 4037 void ring_buffer_record_disable(struct trace_buffer *buffer) 4038 { 4039 atomic_inc(&buffer->record_disabled); 4040 } 4041 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4042 4043 /** 4044 * ring_buffer_record_enable - enable writes to the buffer 4045 * @buffer: The ring buffer to enable writes 4046 * 4047 * Note, multiple disables will need the same number of enables 4048 * to truly enable the writing (much like preempt_disable). 4049 */ 4050 void ring_buffer_record_enable(struct trace_buffer *buffer) 4051 { 4052 atomic_dec(&buffer->record_disabled); 4053 } 4054 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4055 4056 /** 4057 * ring_buffer_record_off - stop all writes into the buffer 4058 * @buffer: The ring buffer to stop writes to. 4059 * 4060 * This prevents all writes to the buffer. Any attempt to write 4061 * to the buffer after this will fail and return NULL. 4062 * 4063 * This is different than ring_buffer_record_disable() as 4064 * it works like an on/off switch, where as the disable() version 4065 * must be paired with a enable(). 4066 */ 4067 void ring_buffer_record_off(struct trace_buffer *buffer) 4068 { 4069 unsigned int rd; 4070 unsigned int new_rd; 4071 4072 rd = atomic_read(&buffer->record_disabled); 4073 do { 4074 new_rd = rd | RB_BUFFER_OFF; 4075 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4076 } 4077 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4078 4079 /** 4080 * ring_buffer_record_on - restart writes into the buffer 4081 * @buffer: The ring buffer to start writes to. 4082 * 4083 * This enables all writes to the buffer that was disabled by 4084 * ring_buffer_record_off(). 4085 * 4086 * This is different than ring_buffer_record_enable() as 4087 * it works like an on/off switch, where as the enable() version 4088 * must be paired with a disable(). 4089 */ 4090 void ring_buffer_record_on(struct trace_buffer *buffer) 4091 { 4092 unsigned int rd; 4093 unsigned int new_rd; 4094 4095 rd = atomic_read(&buffer->record_disabled); 4096 do { 4097 new_rd = rd & ~RB_BUFFER_OFF; 4098 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4099 } 4100 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4101 4102 /** 4103 * ring_buffer_record_is_on - return true if the ring buffer can write 4104 * @buffer: The ring buffer to see if write is enabled 4105 * 4106 * Returns true if the ring buffer is in a state that it accepts writes. 4107 */ 4108 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4109 { 4110 return !atomic_read(&buffer->record_disabled); 4111 } 4112 4113 /** 4114 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4115 * @buffer: The ring buffer to see if write is set enabled 4116 * 4117 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4118 * Note that this does NOT mean it is in a writable state. 4119 * 4120 * It may return true when the ring buffer has been disabled by 4121 * ring_buffer_record_disable(), as that is a temporary disabling of 4122 * the ring buffer. 4123 */ 4124 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4125 { 4126 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4127 } 4128 4129 /** 4130 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4131 * @buffer: The ring buffer to stop writes to. 4132 * @cpu: The CPU buffer to stop 4133 * 4134 * This prevents all writes to the buffer. Any attempt to write 4135 * to the buffer after this will fail and return NULL. 4136 * 4137 * The caller should call synchronize_rcu() after this. 4138 */ 4139 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4140 { 4141 struct ring_buffer_per_cpu *cpu_buffer; 4142 4143 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4144 return; 4145 4146 cpu_buffer = buffer->buffers[cpu]; 4147 atomic_inc(&cpu_buffer->record_disabled); 4148 } 4149 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4150 4151 /** 4152 * ring_buffer_record_enable_cpu - enable writes to the buffer 4153 * @buffer: The ring buffer to enable writes 4154 * @cpu: The CPU to enable. 4155 * 4156 * Note, multiple disables will need the same number of enables 4157 * to truly enable the writing (much like preempt_disable). 4158 */ 4159 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4160 { 4161 struct ring_buffer_per_cpu *cpu_buffer; 4162 4163 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4164 return; 4165 4166 cpu_buffer = buffer->buffers[cpu]; 4167 atomic_dec(&cpu_buffer->record_disabled); 4168 } 4169 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4170 4171 /* 4172 * The total entries in the ring buffer is the running counter 4173 * of entries entered into the ring buffer, minus the sum of 4174 * the entries read from the ring buffer and the number of 4175 * entries that were overwritten. 4176 */ 4177 static inline unsigned long 4178 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4179 { 4180 return local_read(&cpu_buffer->entries) - 4181 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4182 } 4183 4184 /** 4185 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4186 * @buffer: The ring buffer 4187 * @cpu: The per CPU buffer to read from. 4188 */ 4189 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4190 { 4191 unsigned long flags; 4192 struct ring_buffer_per_cpu *cpu_buffer; 4193 struct buffer_page *bpage; 4194 u64 ret = 0; 4195 4196 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4197 return 0; 4198 4199 cpu_buffer = buffer->buffers[cpu]; 4200 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4201 /* 4202 * if the tail is on reader_page, oldest time stamp is on the reader 4203 * page 4204 */ 4205 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4206 bpage = cpu_buffer->reader_page; 4207 else 4208 bpage = rb_set_head_page(cpu_buffer); 4209 if (bpage) 4210 ret = bpage->page->time_stamp; 4211 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4212 4213 return ret; 4214 } 4215 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4216 4217 /** 4218 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4219 * @buffer: The ring buffer 4220 * @cpu: The per CPU buffer to read from. 4221 */ 4222 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4223 { 4224 struct ring_buffer_per_cpu *cpu_buffer; 4225 unsigned long ret; 4226 4227 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4228 return 0; 4229 4230 cpu_buffer = buffer->buffers[cpu]; 4231 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4232 4233 return ret; 4234 } 4235 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4236 4237 /** 4238 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4239 * @buffer: The ring buffer 4240 * @cpu: The per CPU buffer to get the entries from. 4241 */ 4242 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4243 { 4244 struct ring_buffer_per_cpu *cpu_buffer; 4245 4246 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4247 return 0; 4248 4249 cpu_buffer = buffer->buffers[cpu]; 4250 4251 return rb_num_of_entries(cpu_buffer); 4252 } 4253 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4254 4255 /** 4256 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4257 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4258 * @buffer: The ring buffer 4259 * @cpu: The per CPU buffer to get the number of overruns from 4260 */ 4261 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4262 { 4263 struct ring_buffer_per_cpu *cpu_buffer; 4264 unsigned long ret; 4265 4266 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4267 return 0; 4268 4269 cpu_buffer = buffer->buffers[cpu]; 4270 ret = local_read(&cpu_buffer->overrun); 4271 4272 return ret; 4273 } 4274 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4275 4276 /** 4277 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4278 * commits failing due to the buffer wrapping around while there are uncommitted 4279 * events, such as during an interrupt storm. 4280 * @buffer: The ring buffer 4281 * @cpu: The per CPU buffer to get the number of overruns from 4282 */ 4283 unsigned long 4284 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4285 { 4286 struct ring_buffer_per_cpu *cpu_buffer; 4287 unsigned long ret; 4288 4289 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4290 return 0; 4291 4292 cpu_buffer = buffer->buffers[cpu]; 4293 ret = local_read(&cpu_buffer->commit_overrun); 4294 4295 return ret; 4296 } 4297 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4298 4299 /** 4300 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4301 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4302 * @buffer: The ring buffer 4303 * @cpu: The per CPU buffer to get the number of overruns from 4304 */ 4305 unsigned long 4306 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4307 { 4308 struct ring_buffer_per_cpu *cpu_buffer; 4309 unsigned long ret; 4310 4311 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4312 return 0; 4313 4314 cpu_buffer = buffer->buffers[cpu]; 4315 ret = local_read(&cpu_buffer->dropped_events); 4316 4317 return ret; 4318 } 4319 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4320 4321 /** 4322 * ring_buffer_read_events_cpu - get the number of events successfully read 4323 * @buffer: The ring buffer 4324 * @cpu: The per CPU buffer to get the number of events read 4325 */ 4326 unsigned long 4327 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4328 { 4329 struct ring_buffer_per_cpu *cpu_buffer; 4330 4331 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4332 return 0; 4333 4334 cpu_buffer = buffer->buffers[cpu]; 4335 return cpu_buffer->read; 4336 } 4337 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4338 4339 /** 4340 * ring_buffer_entries - get the number of entries in a buffer 4341 * @buffer: The ring buffer 4342 * 4343 * Returns the total number of entries in the ring buffer 4344 * (all CPU entries) 4345 */ 4346 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4347 { 4348 struct ring_buffer_per_cpu *cpu_buffer; 4349 unsigned long entries = 0; 4350 int cpu; 4351 4352 /* if you care about this being correct, lock the buffer */ 4353 for_each_buffer_cpu(buffer, cpu) { 4354 cpu_buffer = buffer->buffers[cpu]; 4355 entries += rb_num_of_entries(cpu_buffer); 4356 } 4357 4358 return entries; 4359 } 4360 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4361 4362 /** 4363 * ring_buffer_overruns - get the number of overruns in buffer 4364 * @buffer: The ring buffer 4365 * 4366 * Returns the total number of overruns in the ring buffer 4367 * (all CPU entries) 4368 */ 4369 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4370 { 4371 struct ring_buffer_per_cpu *cpu_buffer; 4372 unsigned long overruns = 0; 4373 int cpu; 4374 4375 /* if you care about this being correct, lock the buffer */ 4376 for_each_buffer_cpu(buffer, cpu) { 4377 cpu_buffer = buffer->buffers[cpu]; 4378 overruns += local_read(&cpu_buffer->overrun); 4379 } 4380 4381 return overruns; 4382 } 4383 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4384 4385 static void rb_iter_reset(struct ring_buffer_iter *iter) 4386 { 4387 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4388 4389 /* Iterator usage is expected to have record disabled */ 4390 iter->head_page = cpu_buffer->reader_page; 4391 iter->head = cpu_buffer->reader_page->read; 4392 iter->next_event = iter->head; 4393 4394 iter->cache_reader_page = iter->head_page; 4395 iter->cache_read = cpu_buffer->read; 4396 iter->cache_pages_removed = cpu_buffer->pages_removed; 4397 4398 if (iter->head) { 4399 iter->read_stamp = cpu_buffer->read_stamp; 4400 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4401 } else { 4402 iter->read_stamp = iter->head_page->page->time_stamp; 4403 iter->page_stamp = iter->read_stamp; 4404 } 4405 } 4406 4407 /** 4408 * ring_buffer_iter_reset - reset an iterator 4409 * @iter: The iterator to reset 4410 * 4411 * Resets the iterator, so that it will start from the beginning 4412 * again. 4413 */ 4414 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4415 { 4416 struct ring_buffer_per_cpu *cpu_buffer; 4417 unsigned long flags; 4418 4419 if (!iter) 4420 return; 4421 4422 cpu_buffer = iter->cpu_buffer; 4423 4424 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4425 rb_iter_reset(iter); 4426 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4427 } 4428 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4429 4430 /** 4431 * ring_buffer_iter_empty - check if an iterator has no more to read 4432 * @iter: The iterator to check 4433 */ 4434 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4435 { 4436 struct ring_buffer_per_cpu *cpu_buffer; 4437 struct buffer_page *reader; 4438 struct buffer_page *head_page; 4439 struct buffer_page *commit_page; 4440 struct buffer_page *curr_commit_page; 4441 unsigned commit; 4442 u64 curr_commit_ts; 4443 u64 commit_ts; 4444 4445 cpu_buffer = iter->cpu_buffer; 4446 reader = cpu_buffer->reader_page; 4447 head_page = cpu_buffer->head_page; 4448 commit_page = READ_ONCE(cpu_buffer->commit_page); 4449 commit_ts = commit_page->page->time_stamp; 4450 4451 /* 4452 * When the writer goes across pages, it issues a cmpxchg which 4453 * is a mb(), which will synchronize with the rmb here. 4454 * (see rb_tail_page_update()) 4455 */ 4456 smp_rmb(); 4457 commit = rb_page_commit(commit_page); 4458 /* We want to make sure that the commit page doesn't change */ 4459 smp_rmb(); 4460 4461 /* Make sure commit page didn't change */ 4462 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4463 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4464 4465 /* If the commit page changed, then there's more data */ 4466 if (curr_commit_page != commit_page || 4467 curr_commit_ts != commit_ts) 4468 return 0; 4469 4470 /* Still racy, as it may return a false positive, but that's OK */ 4471 return ((iter->head_page == commit_page && iter->head >= commit) || 4472 (iter->head_page == reader && commit_page == head_page && 4473 head_page->read == commit && 4474 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4475 } 4476 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4477 4478 static void 4479 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4480 struct ring_buffer_event *event) 4481 { 4482 u64 delta; 4483 4484 switch (event->type_len) { 4485 case RINGBUF_TYPE_PADDING: 4486 return; 4487 4488 case RINGBUF_TYPE_TIME_EXTEND: 4489 delta = rb_event_time_stamp(event); 4490 cpu_buffer->read_stamp += delta; 4491 return; 4492 4493 case RINGBUF_TYPE_TIME_STAMP: 4494 delta = rb_event_time_stamp(event); 4495 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4496 cpu_buffer->read_stamp = delta; 4497 return; 4498 4499 case RINGBUF_TYPE_DATA: 4500 cpu_buffer->read_stamp += event->time_delta; 4501 return; 4502 4503 default: 4504 RB_WARN_ON(cpu_buffer, 1); 4505 } 4506 } 4507 4508 static void 4509 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4510 struct ring_buffer_event *event) 4511 { 4512 u64 delta; 4513 4514 switch (event->type_len) { 4515 case RINGBUF_TYPE_PADDING: 4516 return; 4517 4518 case RINGBUF_TYPE_TIME_EXTEND: 4519 delta = rb_event_time_stamp(event); 4520 iter->read_stamp += delta; 4521 return; 4522 4523 case RINGBUF_TYPE_TIME_STAMP: 4524 delta = rb_event_time_stamp(event); 4525 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4526 iter->read_stamp = delta; 4527 return; 4528 4529 case RINGBUF_TYPE_DATA: 4530 iter->read_stamp += event->time_delta; 4531 return; 4532 4533 default: 4534 RB_WARN_ON(iter->cpu_buffer, 1); 4535 } 4536 } 4537 4538 static struct buffer_page * 4539 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4540 { 4541 struct buffer_page *reader = NULL; 4542 unsigned long overwrite; 4543 unsigned long flags; 4544 int nr_loops = 0; 4545 bool ret; 4546 4547 local_irq_save(flags); 4548 arch_spin_lock(&cpu_buffer->lock); 4549 4550 again: 4551 /* 4552 * This should normally only loop twice. But because the 4553 * start of the reader inserts an empty page, it causes 4554 * a case where we will loop three times. There should be no 4555 * reason to loop four times (that I know of). 4556 */ 4557 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4558 reader = NULL; 4559 goto out; 4560 } 4561 4562 reader = cpu_buffer->reader_page; 4563 4564 /* If there's more to read, return this page */ 4565 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4566 goto out; 4567 4568 /* Never should we have an index greater than the size */ 4569 if (RB_WARN_ON(cpu_buffer, 4570 cpu_buffer->reader_page->read > rb_page_size(reader))) 4571 goto out; 4572 4573 /* check if we caught up to the tail */ 4574 reader = NULL; 4575 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4576 goto out; 4577 4578 /* Don't bother swapping if the ring buffer is empty */ 4579 if (rb_num_of_entries(cpu_buffer) == 0) 4580 goto out; 4581 4582 /* 4583 * Reset the reader page to size zero. 4584 */ 4585 local_set(&cpu_buffer->reader_page->write, 0); 4586 local_set(&cpu_buffer->reader_page->entries, 0); 4587 local_set(&cpu_buffer->reader_page->page->commit, 0); 4588 cpu_buffer->reader_page->real_end = 0; 4589 4590 spin: 4591 /* 4592 * Splice the empty reader page into the list around the head. 4593 */ 4594 reader = rb_set_head_page(cpu_buffer); 4595 if (!reader) 4596 goto out; 4597 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4598 cpu_buffer->reader_page->list.prev = reader->list.prev; 4599 4600 /* 4601 * cpu_buffer->pages just needs to point to the buffer, it 4602 * has no specific buffer page to point to. Lets move it out 4603 * of our way so we don't accidentally swap it. 4604 */ 4605 cpu_buffer->pages = reader->list.prev; 4606 4607 /* The reader page will be pointing to the new head */ 4608 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4609 4610 /* 4611 * We want to make sure we read the overruns after we set up our 4612 * pointers to the next object. The writer side does a 4613 * cmpxchg to cross pages which acts as the mb on the writer 4614 * side. Note, the reader will constantly fail the swap 4615 * while the writer is updating the pointers, so this 4616 * guarantees that the overwrite recorded here is the one we 4617 * want to compare with the last_overrun. 4618 */ 4619 smp_mb(); 4620 overwrite = local_read(&(cpu_buffer->overrun)); 4621 4622 /* 4623 * Here's the tricky part. 4624 * 4625 * We need to move the pointer past the header page. 4626 * But we can only do that if a writer is not currently 4627 * moving it. The page before the header page has the 4628 * flag bit '1' set if it is pointing to the page we want. 4629 * but if the writer is in the process of moving it 4630 * than it will be '2' or already moved '0'. 4631 */ 4632 4633 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4634 4635 /* 4636 * If we did not convert it, then we must try again. 4637 */ 4638 if (!ret) 4639 goto spin; 4640 4641 /* 4642 * Yay! We succeeded in replacing the page. 4643 * 4644 * Now make the new head point back to the reader page. 4645 */ 4646 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4647 rb_inc_page(&cpu_buffer->head_page); 4648 4649 local_inc(&cpu_buffer->pages_read); 4650 4651 /* Finally update the reader page to the new head */ 4652 cpu_buffer->reader_page = reader; 4653 cpu_buffer->reader_page->read = 0; 4654 4655 if (overwrite != cpu_buffer->last_overrun) { 4656 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4657 cpu_buffer->last_overrun = overwrite; 4658 } 4659 4660 goto again; 4661 4662 out: 4663 /* Update the read_stamp on the first event */ 4664 if (reader && reader->read == 0) 4665 cpu_buffer->read_stamp = reader->page->time_stamp; 4666 4667 arch_spin_unlock(&cpu_buffer->lock); 4668 local_irq_restore(flags); 4669 4670 /* 4671 * The writer has preempt disable, wait for it. But not forever 4672 * Although, 1 second is pretty much "forever" 4673 */ 4674 #define USECS_WAIT 1000000 4675 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4676 /* If the write is past the end of page, a writer is still updating it */ 4677 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE)) 4678 break; 4679 4680 udelay(1); 4681 4682 /* Get the latest version of the reader write value */ 4683 smp_rmb(); 4684 } 4685 4686 /* The writer is not moving forward? Something is wrong */ 4687 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4688 reader = NULL; 4689 4690 /* 4691 * Make sure we see any padding after the write update 4692 * (see rb_reset_tail()). 4693 * 4694 * In addition, a writer may be writing on the reader page 4695 * if the page has not been fully filled, so the read barrier 4696 * is also needed to make sure we see the content of what is 4697 * committed by the writer (see rb_set_commit_to_write()). 4698 */ 4699 smp_rmb(); 4700 4701 4702 return reader; 4703 } 4704 4705 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4706 { 4707 struct ring_buffer_event *event; 4708 struct buffer_page *reader; 4709 unsigned length; 4710 4711 reader = rb_get_reader_page(cpu_buffer); 4712 4713 /* This function should not be called when buffer is empty */ 4714 if (RB_WARN_ON(cpu_buffer, !reader)) 4715 return; 4716 4717 event = rb_reader_event(cpu_buffer); 4718 4719 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4720 cpu_buffer->read++; 4721 4722 rb_update_read_stamp(cpu_buffer, event); 4723 4724 length = rb_event_length(event); 4725 cpu_buffer->reader_page->read += length; 4726 cpu_buffer->read_bytes += length; 4727 } 4728 4729 static void rb_advance_iter(struct ring_buffer_iter *iter) 4730 { 4731 struct ring_buffer_per_cpu *cpu_buffer; 4732 4733 cpu_buffer = iter->cpu_buffer; 4734 4735 /* If head == next_event then we need to jump to the next event */ 4736 if (iter->head == iter->next_event) { 4737 /* If the event gets overwritten again, there's nothing to do */ 4738 if (rb_iter_head_event(iter) == NULL) 4739 return; 4740 } 4741 4742 iter->head = iter->next_event; 4743 4744 /* 4745 * Check if we are at the end of the buffer. 4746 */ 4747 if (iter->next_event >= rb_page_size(iter->head_page)) { 4748 /* discarded commits can make the page empty */ 4749 if (iter->head_page == cpu_buffer->commit_page) 4750 return; 4751 rb_inc_iter(iter); 4752 return; 4753 } 4754 4755 rb_update_iter_read_stamp(iter, iter->event); 4756 } 4757 4758 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4759 { 4760 return cpu_buffer->lost_events; 4761 } 4762 4763 static struct ring_buffer_event * 4764 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4765 unsigned long *lost_events) 4766 { 4767 struct ring_buffer_event *event; 4768 struct buffer_page *reader; 4769 int nr_loops = 0; 4770 4771 if (ts) 4772 *ts = 0; 4773 again: 4774 /* 4775 * We repeat when a time extend is encountered. 4776 * Since the time extend is always attached to a data event, 4777 * we should never loop more than once. 4778 * (We never hit the following condition more than twice). 4779 */ 4780 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4781 return NULL; 4782 4783 reader = rb_get_reader_page(cpu_buffer); 4784 if (!reader) 4785 return NULL; 4786 4787 event = rb_reader_event(cpu_buffer); 4788 4789 switch (event->type_len) { 4790 case RINGBUF_TYPE_PADDING: 4791 if (rb_null_event(event)) 4792 RB_WARN_ON(cpu_buffer, 1); 4793 /* 4794 * Because the writer could be discarding every 4795 * event it creates (which would probably be bad) 4796 * if we were to go back to "again" then we may never 4797 * catch up, and will trigger the warn on, or lock 4798 * the box. Return the padding, and we will release 4799 * the current locks, and try again. 4800 */ 4801 return event; 4802 4803 case RINGBUF_TYPE_TIME_EXTEND: 4804 /* Internal data, OK to advance */ 4805 rb_advance_reader(cpu_buffer); 4806 goto again; 4807 4808 case RINGBUF_TYPE_TIME_STAMP: 4809 if (ts) { 4810 *ts = rb_event_time_stamp(event); 4811 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4812 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4813 cpu_buffer->cpu, ts); 4814 } 4815 /* Internal data, OK to advance */ 4816 rb_advance_reader(cpu_buffer); 4817 goto again; 4818 4819 case RINGBUF_TYPE_DATA: 4820 if (ts && !(*ts)) { 4821 *ts = cpu_buffer->read_stamp + event->time_delta; 4822 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4823 cpu_buffer->cpu, ts); 4824 } 4825 if (lost_events) 4826 *lost_events = rb_lost_events(cpu_buffer); 4827 return event; 4828 4829 default: 4830 RB_WARN_ON(cpu_buffer, 1); 4831 } 4832 4833 return NULL; 4834 } 4835 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4836 4837 static struct ring_buffer_event * 4838 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4839 { 4840 struct trace_buffer *buffer; 4841 struct ring_buffer_per_cpu *cpu_buffer; 4842 struct ring_buffer_event *event; 4843 int nr_loops = 0; 4844 4845 if (ts) 4846 *ts = 0; 4847 4848 cpu_buffer = iter->cpu_buffer; 4849 buffer = cpu_buffer->buffer; 4850 4851 /* 4852 * Check if someone performed a consuming read to the buffer 4853 * or removed some pages from the buffer. In these cases, 4854 * iterator was invalidated and we need to reset it. 4855 */ 4856 if (unlikely(iter->cache_read != cpu_buffer->read || 4857 iter->cache_reader_page != cpu_buffer->reader_page || 4858 iter->cache_pages_removed != cpu_buffer->pages_removed)) 4859 rb_iter_reset(iter); 4860 4861 again: 4862 if (ring_buffer_iter_empty(iter)) 4863 return NULL; 4864 4865 /* 4866 * As the writer can mess with what the iterator is trying 4867 * to read, just give up if we fail to get an event after 4868 * three tries. The iterator is not as reliable when reading 4869 * the ring buffer with an active write as the consumer is. 4870 * Do not warn if the three failures is reached. 4871 */ 4872 if (++nr_loops > 3) 4873 return NULL; 4874 4875 if (rb_per_cpu_empty(cpu_buffer)) 4876 return NULL; 4877 4878 if (iter->head >= rb_page_size(iter->head_page)) { 4879 rb_inc_iter(iter); 4880 goto again; 4881 } 4882 4883 event = rb_iter_head_event(iter); 4884 if (!event) 4885 goto again; 4886 4887 switch (event->type_len) { 4888 case RINGBUF_TYPE_PADDING: 4889 if (rb_null_event(event)) { 4890 rb_inc_iter(iter); 4891 goto again; 4892 } 4893 rb_advance_iter(iter); 4894 return event; 4895 4896 case RINGBUF_TYPE_TIME_EXTEND: 4897 /* Internal data, OK to advance */ 4898 rb_advance_iter(iter); 4899 goto again; 4900 4901 case RINGBUF_TYPE_TIME_STAMP: 4902 if (ts) { 4903 *ts = rb_event_time_stamp(event); 4904 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4905 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4906 cpu_buffer->cpu, ts); 4907 } 4908 /* Internal data, OK to advance */ 4909 rb_advance_iter(iter); 4910 goto again; 4911 4912 case RINGBUF_TYPE_DATA: 4913 if (ts && !(*ts)) { 4914 *ts = iter->read_stamp + event->time_delta; 4915 ring_buffer_normalize_time_stamp(buffer, 4916 cpu_buffer->cpu, ts); 4917 } 4918 return event; 4919 4920 default: 4921 RB_WARN_ON(cpu_buffer, 1); 4922 } 4923 4924 return NULL; 4925 } 4926 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4927 4928 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4929 { 4930 if (likely(!in_nmi())) { 4931 raw_spin_lock(&cpu_buffer->reader_lock); 4932 return true; 4933 } 4934 4935 /* 4936 * If an NMI die dumps out the content of the ring buffer 4937 * trylock must be used to prevent a deadlock if the NMI 4938 * preempted a task that holds the ring buffer locks. If 4939 * we get the lock then all is fine, if not, then continue 4940 * to do the read, but this can corrupt the ring buffer, 4941 * so it must be permanently disabled from future writes. 4942 * Reading from NMI is a oneshot deal. 4943 */ 4944 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4945 return true; 4946 4947 /* Continue without locking, but disable the ring buffer */ 4948 atomic_inc(&cpu_buffer->record_disabled); 4949 return false; 4950 } 4951 4952 static inline void 4953 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4954 { 4955 if (likely(locked)) 4956 raw_spin_unlock(&cpu_buffer->reader_lock); 4957 } 4958 4959 /** 4960 * ring_buffer_peek - peek at the next event to be read 4961 * @buffer: The ring buffer to read 4962 * @cpu: The cpu to peak at 4963 * @ts: The timestamp counter of this event. 4964 * @lost_events: a variable to store if events were lost (may be NULL) 4965 * 4966 * This will return the event that will be read next, but does 4967 * not consume the data. 4968 */ 4969 struct ring_buffer_event * 4970 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4971 unsigned long *lost_events) 4972 { 4973 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4974 struct ring_buffer_event *event; 4975 unsigned long flags; 4976 bool dolock; 4977 4978 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4979 return NULL; 4980 4981 again: 4982 local_irq_save(flags); 4983 dolock = rb_reader_lock(cpu_buffer); 4984 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4985 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4986 rb_advance_reader(cpu_buffer); 4987 rb_reader_unlock(cpu_buffer, dolock); 4988 local_irq_restore(flags); 4989 4990 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4991 goto again; 4992 4993 return event; 4994 } 4995 4996 /** ring_buffer_iter_dropped - report if there are dropped events 4997 * @iter: The ring buffer iterator 4998 * 4999 * Returns true if there was dropped events since the last peek. 5000 */ 5001 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5002 { 5003 bool ret = iter->missed_events != 0; 5004 5005 iter->missed_events = 0; 5006 return ret; 5007 } 5008 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5009 5010 /** 5011 * ring_buffer_iter_peek - peek at the next event to be read 5012 * @iter: The ring buffer iterator 5013 * @ts: The timestamp counter of this event. 5014 * 5015 * This will return the event that will be read next, but does 5016 * not increment the iterator. 5017 */ 5018 struct ring_buffer_event * 5019 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5020 { 5021 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5022 struct ring_buffer_event *event; 5023 unsigned long flags; 5024 5025 again: 5026 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5027 event = rb_iter_peek(iter, ts); 5028 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5029 5030 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5031 goto again; 5032 5033 return event; 5034 } 5035 5036 /** 5037 * ring_buffer_consume - return an event and consume it 5038 * @buffer: The ring buffer to get the next event from 5039 * @cpu: the cpu to read the buffer from 5040 * @ts: a variable to store the timestamp (may be NULL) 5041 * @lost_events: a variable to store if events were lost (may be NULL) 5042 * 5043 * Returns the next event in the ring buffer, and that event is consumed. 5044 * Meaning, that sequential reads will keep returning a different event, 5045 * and eventually empty the ring buffer if the producer is slower. 5046 */ 5047 struct ring_buffer_event * 5048 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5049 unsigned long *lost_events) 5050 { 5051 struct ring_buffer_per_cpu *cpu_buffer; 5052 struct ring_buffer_event *event = NULL; 5053 unsigned long flags; 5054 bool dolock; 5055 5056 again: 5057 /* might be called in atomic */ 5058 preempt_disable(); 5059 5060 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5061 goto out; 5062 5063 cpu_buffer = buffer->buffers[cpu]; 5064 local_irq_save(flags); 5065 dolock = rb_reader_lock(cpu_buffer); 5066 5067 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5068 if (event) { 5069 cpu_buffer->lost_events = 0; 5070 rb_advance_reader(cpu_buffer); 5071 } 5072 5073 rb_reader_unlock(cpu_buffer, dolock); 5074 local_irq_restore(flags); 5075 5076 out: 5077 preempt_enable(); 5078 5079 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5080 goto again; 5081 5082 return event; 5083 } 5084 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5085 5086 /** 5087 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5088 * @buffer: The ring buffer to read from 5089 * @cpu: The cpu buffer to iterate over 5090 * @flags: gfp flags to use for memory allocation 5091 * 5092 * This performs the initial preparations necessary to iterate 5093 * through the buffer. Memory is allocated, buffer recording 5094 * is disabled, and the iterator pointer is returned to the caller. 5095 * 5096 * Disabling buffer recording prevents the reading from being 5097 * corrupted. This is not a consuming read, so a producer is not 5098 * expected. 5099 * 5100 * After a sequence of ring_buffer_read_prepare calls, the user is 5101 * expected to make at least one call to ring_buffer_read_prepare_sync. 5102 * Afterwards, ring_buffer_read_start is invoked to get things going 5103 * for real. 5104 * 5105 * This overall must be paired with ring_buffer_read_finish. 5106 */ 5107 struct ring_buffer_iter * 5108 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5109 { 5110 struct ring_buffer_per_cpu *cpu_buffer; 5111 struct ring_buffer_iter *iter; 5112 5113 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5114 return NULL; 5115 5116 iter = kzalloc(sizeof(*iter), flags); 5117 if (!iter) 5118 return NULL; 5119 5120 /* Holds the entire event: data and meta data */ 5121 iter->event = kmalloc(BUF_PAGE_SIZE, flags); 5122 if (!iter->event) { 5123 kfree(iter); 5124 return NULL; 5125 } 5126 5127 cpu_buffer = buffer->buffers[cpu]; 5128 5129 iter->cpu_buffer = cpu_buffer; 5130 5131 atomic_inc(&cpu_buffer->resize_disabled); 5132 5133 return iter; 5134 } 5135 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5136 5137 /** 5138 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5139 * 5140 * All previously invoked ring_buffer_read_prepare calls to prepare 5141 * iterators will be synchronized. Afterwards, read_buffer_read_start 5142 * calls on those iterators are allowed. 5143 */ 5144 void 5145 ring_buffer_read_prepare_sync(void) 5146 { 5147 synchronize_rcu(); 5148 } 5149 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5150 5151 /** 5152 * ring_buffer_read_start - start a non consuming read of the buffer 5153 * @iter: The iterator returned by ring_buffer_read_prepare 5154 * 5155 * This finalizes the startup of an iteration through the buffer. 5156 * The iterator comes from a call to ring_buffer_read_prepare and 5157 * an intervening ring_buffer_read_prepare_sync must have been 5158 * performed. 5159 * 5160 * Must be paired with ring_buffer_read_finish. 5161 */ 5162 void 5163 ring_buffer_read_start(struct ring_buffer_iter *iter) 5164 { 5165 struct ring_buffer_per_cpu *cpu_buffer; 5166 unsigned long flags; 5167 5168 if (!iter) 5169 return; 5170 5171 cpu_buffer = iter->cpu_buffer; 5172 5173 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5174 arch_spin_lock(&cpu_buffer->lock); 5175 rb_iter_reset(iter); 5176 arch_spin_unlock(&cpu_buffer->lock); 5177 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5178 } 5179 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5180 5181 /** 5182 * ring_buffer_read_finish - finish reading the iterator of the buffer 5183 * @iter: The iterator retrieved by ring_buffer_start 5184 * 5185 * This re-enables the recording to the buffer, and frees the 5186 * iterator. 5187 */ 5188 void 5189 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5190 { 5191 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5192 unsigned long flags; 5193 5194 /* 5195 * Ring buffer is disabled from recording, here's a good place 5196 * to check the integrity of the ring buffer. 5197 * Must prevent readers from trying to read, as the check 5198 * clears the HEAD page and readers require it. 5199 */ 5200 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5201 rb_check_pages(cpu_buffer); 5202 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5203 5204 atomic_dec(&cpu_buffer->resize_disabled); 5205 kfree(iter->event); 5206 kfree(iter); 5207 } 5208 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5209 5210 /** 5211 * ring_buffer_iter_advance - advance the iterator to the next location 5212 * @iter: The ring buffer iterator 5213 * 5214 * Move the location of the iterator such that the next read will 5215 * be the next location of the iterator. 5216 */ 5217 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5218 { 5219 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5220 unsigned long flags; 5221 5222 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5223 5224 rb_advance_iter(iter); 5225 5226 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5227 } 5228 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5229 5230 /** 5231 * ring_buffer_size - return the size of the ring buffer (in bytes) 5232 * @buffer: The ring buffer. 5233 * @cpu: The CPU to get ring buffer size from. 5234 */ 5235 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5236 { 5237 /* 5238 * Earlier, this method returned 5239 * BUF_PAGE_SIZE * buffer->nr_pages 5240 * Since the nr_pages field is now removed, we have converted this to 5241 * return the per cpu buffer value. 5242 */ 5243 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5244 return 0; 5245 5246 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 5247 } 5248 EXPORT_SYMBOL_GPL(ring_buffer_size); 5249 5250 static void rb_clear_buffer_page(struct buffer_page *page) 5251 { 5252 local_set(&page->write, 0); 5253 local_set(&page->entries, 0); 5254 rb_init_page(page->page); 5255 page->read = 0; 5256 } 5257 5258 static void 5259 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5260 { 5261 struct buffer_page *page; 5262 5263 rb_head_page_deactivate(cpu_buffer); 5264 5265 cpu_buffer->head_page 5266 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5267 rb_clear_buffer_page(cpu_buffer->head_page); 5268 list_for_each_entry(page, cpu_buffer->pages, list) { 5269 rb_clear_buffer_page(page); 5270 } 5271 5272 cpu_buffer->tail_page = cpu_buffer->head_page; 5273 cpu_buffer->commit_page = cpu_buffer->head_page; 5274 5275 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5276 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5277 rb_clear_buffer_page(cpu_buffer->reader_page); 5278 5279 local_set(&cpu_buffer->entries_bytes, 0); 5280 local_set(&cpu_buffer->overrun, 0); 5281 local_set(&cpu_buffer->commit_overrun, 0); 5282 local_set(&cpu_buffer->dropped_events, 0); 5283 local_set(&cpu_buffer->entries, 0); 5284 local_set(&cpu_buffer->committing, 0); 5285 local_set(&cpu_buffer->commits, 0); 5286 local_set(&cpu_buffer->pages_touched, 0); 5287 local_set(&cpu_buffer->pages_lost, 0); 5288 local_set(&cpu_buffer->pages_read, 0); 5289 cpu_buffer->last_pages_touch = 0; 5290 cpu_buffer->shortest_full = 0; 5291 cpu_buffer->read = 0; 5292 cpu_buffer->read_bytes = 0; 5293 5294 rb_time_set(&cpu_buffer->write_stamp, 0); 5295 rb_time_set(&cpu_buffer->before_stamp, 0); 5296 5297 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5298 5299 cpu_buffer->lost_events = 0; 5300 cpu_buffer->last_overrun = 0; 5301 5302 rb_head_page_activate(cpu_buffer); 5303 cpu_buffer->pages_removed = 0; 5304 } 5305 5306 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5307 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5308 { 5309 unsigned long flags; 5310 5311 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5312 5313 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5314 goto out; 5315 5316 arch_spin_lock(&cpu_buffer->lock); 5317 5318 rb_reset_cpu(cpu_buffer); 5319 5320 arch_spin_unlock(&cpu_buffer->lock); 5321 5322 out: 5323 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5324 } 5325 5326 /** 5327 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5328 * @buffer: The ring buffer to reset a per cpu buffer of 5329 * @cpu: The CPU buffer to be reset 5330 */ 5331 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5332 { 5333 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5334 5335 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5336 return; 5337 5338 /* prevent another thread from changing buffer sizes */ 5339 mutex_lock(&buffer->mutex); 5340 5341 atomic_inc(&cpu_buffer->resize_disabled); 5342 atomic_inc(&cpu_buffer->record_disabled); 5343 5344 /* Make sure all commits have finished */ 5345 synchronize_rcu(); 5346 5347 reset_disabled_cpu_buffer(cpu_buffer); 5348 5349 atomic_dec(&cpu_buffer->record_disabled); 5350 atomic_dec(&cpu_buffer->resize_disabled); 5351 5352 mutex_unlock(&buffer->mutex); 5353 } 5354 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5355 5356 /* Flag to ensure proper resetting of atomic variables */ 5357 #define RESET_BIT (1 << 30) 5358 5359 /** 5360 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5361 * @buffer: The ring buffer to reset a per cpu buffer of 5362 */ 5363 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5364 { 5365 struct ring_buffer_per_cpu *cpu_buffer; 5366 int cpu; 5367 5368 /* prevent another thread from changing buffer sizes */ 5369 mutex_lock(&buffer->mutex); 5370 5371 for_each_online_buffer_cpu(buffer, cpu) { 5372 cpu_buffer = buffer->buffers[cpu]; 5373 5374 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 5375 atomic_inc(&cpu_buffer->record_disabled); 5376 } 5377 5378 /* Make sure all commits have finished */ 5379 synchronize_rcu(); 5380 5381 for_each_buffer_cpu(buffer, cpu) { 5382 cpu_buffer = buffer->buffers[cpu]; 5383 5384 /* 5385 * If a CPU came online during the synchronize_rcu(), then 5386 * ignore it. 5387 */ 5388 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 5389 continue; 5390 5391 reset_disabled_cpu_buffer(cpu_buffer); 5392 5393 atomic_dec(&cpu_buffer->record_disabled); 5394 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 5395 } 5396 5397 mutex_unlock(&buffer->mutex); 5398 } 5399 5400 /** 5401 * ring_buffer_reset - reset a ring buffer 5402 * @buffer: The ring buffer to reset all cpu buffers 5403 */ 5404 void ring_buffer_reset(struct trace_buffer *buffer) 5405 { 5406 struct ring_buffer_per_cpu *cpu_buffer; 5407 int cpu; 5408 5409 /* prevent another thread from changing buffer sizes */ 5410 mutex_lock(&buffer->mutex); 5411 5412 for_each_buffer_cpu(buffer, cpu) { 5413 cpu_buffer = buffer->buffers[cpu]; 5414 5415 atomic_inc(&cpu_buffer->resize_disabled); 5416 atomic_inc(&cpu_buffer->record_disabled); 5417 } 5418 5419 /* Make sure all commits have finished */ 5420 synchronize_rcu(); 5421 5422 for_each_buffer_cpu(buffer, cpu) { 5423 cpu_buffer = buffer->buffers[cpu]; 5424 5425 reset_disabled_cpu_buffer(cpu_buffer); 5426 5427 atomic_dec(&cpu_buffer->record_disabled); 5428 atomic_dec(&cpu_buffer->resize_disabled); 5429 } 5430 5431 mutex_unlock(&buffer->mutex); 5432 } 5433 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5434 5435 /** 5436 * ring_buffer_empty - is the ring buffer empty? 5437 * @buffer: The ring buffer to test 5438 */ 5439 bool ring_buffer_empty(struct trace_buffer *buffer) 5440 { 5441 struct ring_buffer_per_cpu *cpu_buffer; 5442 unsigned long flags; 5443 bool dolock; 5444 bool ret; 5445 int cpu; 5446 5447 /* yes this is racy, but if you don't like the race, lock the buffer */ 5448 for_each_buffer_cpu(buffer, cpu) { 5449 cpu_buffer = buffer->buffers[cpu]; 5450 local_irq_save(flags); 5451 dolock = rb_reader_lock(cpu_buffer); 5452 ret = rb_per_cpu_empty(cpu_buffer); 5453 rb_reader_unlock(cpu_buffer, dolock); 5454 local_irq_restore(flags); 5455 5456 if (!ret) 5457 return false; 5458 } 5459 5460 return true; 5461 } 5462 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5463 5464 /** 5465 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5466 * @buffer: The ring buffer 5467 * @cpu: The CPU buffer to test 5468 */ 5469 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5470 { 5471 struct ring_buffer_per_cpu *cpu_buffer; 5472 unsigned long flags; 5473 bool dolock; 5474 bool ret; 5475 5476 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5477 return true; 5478 5479 cpu_buffer = buffer->buffers[cpu]; 5480 local_irq_save(flags); 5481 dolock = rb_reader_lock(cpu_buffer); 5482 ret = rb_per_cpu_empty(cpu_buffer); 5483 rb_reader_unlock(cpu_buffer, dolock); 5484 local_irq_restore(flags); 5485 5486 return ret; 5487 } 5488 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5489 5490 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5491 /** 5492 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5493 * @buffer_a: One buffer to swap with 5494 * @buffer_b: The other buffer to swap with 5495 * @cpu: the CPU of the buffers to swap 5496 * 5497 * This function is useful for tracers that want to take a "snapshot" 5498 * of a CPU buffer and has another back up buffer lying around. 5499 * it is expected that the tracer handles the cpu buffer not being 5500 * used at the moment. 5501 */ 5502 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5503 struct trace_buffer *buffer_b, int cpu) 5504 { 5505 struct ring_buffer_per_cpu *cpu_buffer_a; 5506 struct ring_buffer_per_cpu *cpu_buffer_b; 5507 int ret = -EINVAL; 5508 5509 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5510 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5511 goto out; 5512 5513 cpu_buffer_a = buffer_a->buffers[cpu]; 5514 cpu_buffer_b = buffer_b->buffers[cpu]; 5515 5516 /* At least make sure the two buffers are somewhat the same */ 5517 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5518 goto out; 5519 5520 ret = -EAGAIN; 5521 5522 if (atomic_read(&buffer_a->record_disabled)) 5523 goto out; 5524 5525 if (atomic_read(&buffer_b->record_disabled)) 5526 goto out; 5527 5528 if (atomic_read(&cpu_buffer_a->record_disabled)) 5529 goto out; 5530 5531 if (atomic_read(&cpu_buffer_b->record_disabled)) 5532 goto out; 5533 5534 /* 5535 * We can't do a synchronize_rcu here because this 5536 * function can be called in atomic context. 5537 * Normally this will be called from the same CPU as cpu. 5538 * If not it's up to the caller to protect this. 5539 */ 5540 atomic_inc(&cpu_buffer_a->record_disabled); 5541 atomic_inc(&cpu_buffer_b->record_disabled); 5542 5543 ret = -EBUSY; 5544 if (local_read(&cpu_buffer_a->committing)) 5545 goto out_dec; 5546 if (local_read(&cpu_buffer_b->committing)) 5547 goto out_dec; 5548 5549 /* 5550 * When resize is in progress, we cannot swap it because 5551 * it will mess the state of the cpu buffer. 5552 */ 5553 if (atomic_read(&buffer_a->resizing)) 5554 goto out_dec; 5555 if (atomic_read(&buffer_b->resizing)) 5556 goto out_dec; 5557 5558 buffer_a->buffers[cpu] = cpu_buffer_b; 5559 buffer_b->buffers[cpu] = cpu_buffer_a; 5560 5561 cpu_buffer_b->buffer = buffer_a; 5562 cpu_buffer_a->buffer = buffer_b; 5563 5564 ret = 0; 5565 5566 out_dec: 5567 atomic_dec(&cpu_buffer_a->record_disabled); 5568 atomic_dec(&cpu_buffer_b->record_disabled); 5569 out: 5570 return ret; 5571 } 5572 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5573 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5574 5575 /** 5576 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5577 * @buffer: the buffer to allocate for. 5578 * @cpu: the cpu buffer to allocate. 5579 * 5580 * This function is used in conjunction with ring_buffer_read_page. 5581 * When reading a full page from the ring buffer, these functions 5582 * can be used to speed up the process. The calling function should 5583 * allocate a few pages first with this function. Then when it 5584 * needs to get pages from the ring buffer, it passes the result 5585 * of this function into ring_buffer_read_page, which will swap 5586 * the page that was allocated, with the read page of the buffer. 5587 * 5588 * Returns: 5589 * The page allocated, or ERR_PTR 5590 */ 5591 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5592 { 5593 struct ring_buffer_per_cpu *cpu_buffer; 5594 struct buffer_data_page *bpage = NULL; 5595 unsigned long flags; 5596 struct page *page; 5597 5598 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5599 return ERR_PTR(-ENODEV); 5600 5601 cpu_buffer = buffer->buffers[cpu]; 5602 local_irq_save(flags); 5603 arch_spin_lock(&cpu_buffer->lock); 5604 5605 if (cpu_buffer->free_page) { 5606 bpage = cpu_buffer->free_page; 5607 cpu_buffer->free_page = NULL; 5608 } 5609 5610 arch_spin_unlock(&cpu_buffer->lock); 5611 local_irq_restore(flags); 5612 5613 if (bpage) 5614 goto out; 5615 5616 page = alloc_pages_node(cpu_to_node(cpu), 5617 GFP_KERNEL | __GFP_NORETRY, 0); 5618 if (!page) 5619 return ERR_PTR(-ENOMEM); 5620 5621 bpage = page_address(page); 5622 5623 out: 5624 rb_init_page(bpage); 5625 5626 return bpage; 5627 } 5628 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5629 5630 /** 5631 * ring_buffer_free_read_page - free an allocated read page 5632 * @buffer: the buffer the page was allocate for 5633 * @cpu: the cpu buffer the page came from 5634 * @data: the page to free 5635 * 5636 * Free a page allocated from ring_buffer_alloc_read_page. 5637 */ 5638 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5639 { 5640 struct ring_buffer_per_cpu *cpu_buffer; 5641 struct buffer_data_page *bpage = data; 5642 struct page *page = virt_to_page(bpage); 5643 unsigned long flags; 5644 5645 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5646 return; 5647 5648 cpu_buffer = buffer->buffers[cpu]; 5649 5650 /* If the page is still in use someplace else, we can't reuse it */ 5651 if (page_ref_count(page) > 1) 5652 goto out; 5653 5654 local_irq_save(flags); 5655 arch_spin_lock(&cpu_buffer->lock); 5656 5657 if (!cpu_buffer->free_page) { 5658 cpu_buffer->free_page = bpage; 5659 bpage = NULL; 5660 } 5661 5662 arch_spin_unlock(&cpu_buffer->lock); 5663 local_irq_restore(flags); 5664 5665 out: 5666 free_page((unsigned long)bpage); 5667 } 5668 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5669 5670 /** 5671 * ring_buffer_read_page - extract a page from the ring buffer 5672 * @buffer: buffer to extract from 5673 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5674 * @len: amount to extract 5675 * @cpu: the cpu of the buffer to extract 5676 * @full: should the extraction only happen when the page is full. 5677 * 5678 * This function will pull out a page from the ring buffer and consume it. 5679 * @data_page must be the address of the variable that was returned 5680 * from ring_buffer_alloc_read_page. This is because the page might be used 5681 * to swap with a page in the ring buffer. 5682 * 5683 * for example: 5684 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5685 * if (IS_ERR(rpage)) 5686 * return PTR_ERR(rpage); 5687 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5688 * if (ret >= 0) 5689 * process_page(rpage, ret); 5690 * 5691 * When @full is set, the function will not return true unless 5692 * the writer is off the reader page. 5693 * 5694 * Note: it is up to the calling functions to handle sleeps and wakeups. 5695 * The ring buffer can be used anywhere in the kernel and can not 5696 * blindly call wake_up. The layer that uses the ring buffer must be 5697 * responsible for that. 5698 * 5699 * Returns: 5700 * >=0 if data has been transferred, returns the offset of consumed data. 5701 * <0 if no data has been transferred. 5702 */ 5703 int ring_buffer_read_page(struct trace_buffer *buffer, 5704 void **data_page, size_t len, int cpu, int full) 5705 { 5706 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5707 struct ring_buffer_event *event; 5708 struct buffer_data_page *bpage; 5709 struct buffer_page *reader; 5710 unsigned long missed_events; 5711 unsigned long flags; 5712 unsigned int commit; 5713 unsigned int read; 5714 u64 save_timestamp; 5715 int ret = -1; 5716 5717 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5718 goto out; 5719 5720 /* 5721 * If len is not big enough to hold the page header, then 5722 * we can not copy anything. 5723 */ 5724 if (len <= BUF_PAGE_HDR_SIZE) 5725 goto out; 5726 5727 len -= BUF_PAGE_HDR_SIZE; 5728 5729 if (!data_page) 5730 goto out; 5731 5732 bpage = *data_page; 5733 if (!bpage) 5734 goto out; 5735 5736 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5737 5738 reader = rb_get_reader_page(cpu_buffer); 5739 if (!reader) 5740 goto out_unlock; 5741 5742 event = rb_reader_event(cpu_buffer); 5743 5744 read = reader->read; 5745 commit = rb_page_commit(reader); 5746 5747 /* Check if any events were dropped */ 5748 missed_events = cpu_buffer->lost_events; 5749 5750 /* 5751 * If this page has been partially read or 5752 * if len is not big enough to read the rest of the page or 5753 * a writer is still on the page, then 5754 * we must copy the data from the page to the buffer. 5755 * Otherwise, we can simply swap the page with the one passed in. 5756 */ 5757 if (read || (len < (commit - read)) || 5758 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5759 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5760 unsigned int rpos = read; 5761 unsigned int pos = 0; 5762 unsigned int size; 5763 5764 /* 5765 * If a full page is expected, this can still be returned 5766 * if there's been a previous partial read and the 5767 * rest of the page can be read and the commit page is off 5768 * the reader page. 5769 */ 5770 if (full && 5771 (!read || (len < (commit - read)) || 5772 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5773 goto out_unlock; 5774 5775 if (len > (commit - read)) 5776 len = (commit - read); 5777 5778 /* Always keep the time extend and data together */ 5779 size = rb_event_ts_length(event); 5780 5781 if (len < size) 5782 goto out_unlock; 5783 5784 /* save the current timestamp, since the user will need it */ 5785 save_timestamp = cpu_buffer->read_stamp; 5786 5787 /* Need to copy one event at a time */ 5788 do { 5789 /* We need the size of one event, because 5790 * rb_advance_reader only advances by one event, 5791 * whereas rb_event_ts_length may include the size of 5792 * one or two events. 5793 * We have already ensured there's enough space if this 5794 * is a time extend. */ 5795 size = rb_event_length(event); 5796 memcpy(bpage->data + pos, rpage->data + rpos, size); 5797 5798 len -= size; 5799 5800 rb_advance_reader(cpu_buffer); 5801 rpos = reader->read; 5802 pos += size; 5803 5804 if (rpos >= commit) 5805 break; 5806 5807 event = rb_reader_event(cpu_buffer); 5808 /* Always keep the time extend and data together */ 5809 size = rb_event_ts_length(event); 5810 } while (len >= size); 5811 5812 /* update bpage */ 5813 local_set(&bpage->commit, pos); 5814 bpage->time_stamp = save_timestamp; 5815 5816 /* we copied everything to the beginning */ 5817 read = 0; 5818 } else { 5819 /* update the entry counter */ 5820 cpu_buffer->read += rb_page_entries(reader); 5821 cpu_buffer->read_bytes += rb_page_commit(reader); 5822 5823 /* swap the pages */ 5824 rb_init_page(bpage); 5825 bpage = reader->page; 5826 reader->page = *data_page; 5827 local_set(&reader->write, 0); 5828 local_set(&reader->entries, 0); 5829 reader->read = 0; 5830 *data_page = bpage; 5831 5832 /* 5833 * Use the real_end for the data size, 5834 * This gives us a chance to store the lost events 5835 * on the page. 5836 */ 5837 if (reader->real_end) 5838 local_set(&bpage->commit, reader->real_end); 5839 } 5840 ret = read; 5841 5842 cpu_buffer->lost_events = 0; 5843 5844 commit = local_read(&bpage->commit); 5845 /* 5846 * Set a flag in the commit field if we lost events 5847 */ 5848 if (missed_events) { 5849 /* If there is room at the end of the page to save the 5850 * missed events, then record it there. 5851 */ 5852 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5853 memcpy(&bpage->data[commit], &missed_events, 5854 sizeof(missed_events)); 5855 local_add(RB_MISSED_STORED, &bpage->commit); 5856 commit += sizeof(missed_events); 5857 } 5858 local_add(RB_MISSED_EVENTS, &bpage->commit); 5859 } 5860 5861 /* 5862 * This page may be off to user land. Zero it out here. 5863 */ 5864 if (commit < BUF_PAGE_SIZE) 5865 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5866 5867 out_unlock: 5868 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5869 5870 out: 5871 return ret; 5872 } 5873 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5874 5875 /* 5876 * We only allocate new buffers, never free them if the CPU goes down. 5877 * If we were to free the buffer, then the user would lose any trace that was in 5878 * the buffer. 5879 */ 5880 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5881 { 5882 struct trace_buffer *buffer; 5883 long nr_pages_same; 5884 int cpu_i; 5885 unsigned long nr_pages; 5886 5887 buffer = container_of(node, struct trace_buffer, node); 5888 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5889 return 0; 5890 5891 nr_pages = 0; 5892 nr_pages_same = 1; 5893 /* check if all cpu sizes are same */ 5894 for_each_buffer_cpu(buffer, cpu_i) { 5895 /* fill in the size from first enabled cpu */ 5896 if (nr_pages == 0) 5897 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5898 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5899 nr_pages_same = 0; 5900 break; 5901 } 5902 } 5903 /* allocate minimum pages, user can later expand it */ 5904 if (!nr_pages_same) 5905 nr_pages = 2; 5906 buffer->buffers[cpu] = 5907 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5908 if (!buffer->buffers[cpu]) { 5909 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5910 cpu); 5911 return -ENOMEM; 5912 } 5913 smp_wmb(); 5914 cpumask_set_cpu(cpu, buffer->cpumask); 5915 return 0; 5916 } 5917 5918 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5919 /* 5920 * This is a basic integrity check of the ring buffer. 5921 * Late in the boot cycle this test will run when configured in. 5922 * It will kick off a thread per CPU that will go into a loop 5923 * writing to the per cpu ring buffer various sizes of data. 5924 * Some of the data will be large items, some small. 5925 * 5926 * Another thread is created that goes into a spin, sending out 5927 * IPIs to the other CPUs to also write into the ring buffer. 5928 * this is to test the nesting ability of the buffer. 5929 * 5930 * Basic stats are recorded and reported. If something in the 5931 * ring buffer should happen that's not expected, a big warning 5932 * is displayed and all ring buffers are disabled. 5933 */ 5934 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5935 5936 struct rb_test_data { 5937 struct trace_buffer *buffer; 5938 unsigned long events; 5939 unsigned long bytes_written; 5940 unsigned long bytes_alloc; 5941 unsigned long bytes_dropped; 5942 unsigned long events_nested; 5943 unsigned long bytes_written_nested; 5944 unsigned long bytes_alloc_nested; 5945 unsigned long bytes_dropped_nested; 5946 int min_size_nested; 5947 int max_size_nested; 5948 int max_size; 5949 int min_size; 5950 int cpu; 5951 int cnt; 5952 }; 5953 5954 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5955 5956 /* 1 meg per cpu */ 5957 #define RB_TEST_BUFFER_SIZE 1048576 5958 5959 static char rb_string[] __initdata = 5960 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5961 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5962 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5963 5964 static bool rb_test_started __initdata; 5965 5966 struct rb_item { 5967 int size; 5968 char str[]; 5969 }; 5970 5971 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5972 { 5973 struct ring_buffer_event *event; 5974 struct rb_item *item; 5975 bool started; 5976 int event_len; 5977 int size; 5978 int len; 5979 int cnt; 5980 5981 /* Have nested writes different that what is written */ 5982 cnt = data->cnt + (nested ? 27 : 0); 5983 5984 /* Multiply cnt by ~e, to make some unique increment */ 5985 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5986 5987 len = size + sizeof(struct rb_item); 5988 5989 started = rb_test_started; 5990 /* read rb_test_started before checking buffer enabled */ 5991 smp_rmb(); 5992 5993 event = ring_buffer_lock_reserve(data->buffer, len); 5994 if (!event) { 5995 /* Ignore dropped events before test starts. */ 5996 if (started) { 5997 if (nested) 5998 data->bytes_dropped += len; 5999 else 6000 data->bytes_dropped_nested += len; 6001 } 6002 return len; 6003 } 6004 6005 event_len = ring_buffer_event_length(event); 6006 6007 if (RB_WARN_ON(data->buffer, event_len < len)) 6008 goto out; 6009 6010 item = ring_buffer_event_data(event); 6011 item->size = size; 6012 memcpy(item->str, rb_string, size); 6013 6014 if (nested) { 6015 data->bytes_alloc_nested += event_len; 6016 data->bytes_written_nested += len; 6017 data->events_nested++; 6018 if (!data->min_size_nested || len < data->min_size_nested) 6019 data->min_size_nested = len; 6020 if (len > data->max_size_nested) 6021 data->max_size_nested = len; 6022 } else { 6023 data->bytes_alloc += event_len; 6024 data->bytes_written += len; 6025 data->events++; 6026 if (!data->min_size || len < data->min_size) 6027 data->max_size = len; 6028 if (len > data->max_size) 6029 data->max_size = len; 6030 } 6031 6032 out: 6033 ring_buffer_unlock_commit(data->buffer); 6034 6035 return 0; 6036 } 6037 6038 static __init int rb_test(void *arg) 6039 { 6040 struct rb_test_data *data = arg; 6041 6042 while (!kthread_should_stop()) { 6043 rb_write_something(data, false); 6044 data->cnt++; 6045 6046 set_current_state(TASK_INTERRUPTIBLE); 6047 /* Now sleep between a min of 100-300us and a max of 1ms */ 6048 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6049 } 6050 6051 return 0; 6052 } 6053 6054 static __init void rb_ipi(void *ignore) 6055 { 6056 struct rb_test_data *data; 6057 int cpu = smp_processor_id(); 6058 6059 data = &rb_data[cpu]; 6060 rb_write_something(data, true); 6061 } 6062 6063 static __init int rb_hammer_test(void *arg) 6064 { 6065 while (!kthread_should_stop()) { 6066 6067 /* Send an IPI to all cpus to write data! */ 6068 smp_call_function(rb_ipi, NULL, 1); 6069 /* No sleep, but for non preempt, let others run */ 6070 schedule(); 6071 } 6072 6073 return 0; 6074 } 6075 6076 static __init int test_ringbuffer(void) 6077 { 6078 struct task_struct *rb_hammer; 6079 struct trace_buffer *buffer; 6080 int cpu; 6081 int ret = 0; 6082 6083 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6084 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6085 return 0; 6086 } 6087 6088 pr_info("Running ring buffer tests...\n"); 6089 6090 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6091 if (WARN_ON(!buffer)) 6092 return 0; 6093 6094 /* Disable buffer so that threads can't write to it yet */ 6095 ring_buffer_record_off(buffer); 6096 6097 for_each_online_cpu(cpu) { 6098 rb_data[cpu].buffer = buffer; 6099 rb_data[cpu].cpu = cpu; 6100 rb_data[cpu].cnt = cpu; 6101 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6102 cpu, "rbtester/%u"); 6103 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6104 pr_cont("FAILED\n"); 6105 ret = PTR_ERR(rb_threads[cpu]); 6106 goto out_free; 6107 } 6108 } 6109 6110 /* Now create the rb hammer! */ 6111 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6112 if (WARN_ON(IS_ERR(rb_hammer))) { 6113 pr_cont("FAILED\n"); 6114 ret = PTR_ERR(rb_hammer); 6115 goto out_free; 6116 } 6117 6118 ring_buffer_record_on(buffer); 6119 /* 6120 * Show buffer is enabled before setting rb_test_started. 6121 * Yes there's a small race window where events could be 6122 * dropped and the thread wont catch it. But when a ring 6123 * buffer gets enabled, there will always be some kind of 6124 * delay before other CPUs see it. Thus, we don't care about 6125 * those dropped events. We care about events dropped after 6126 * the threads see that the buffer is active. 6127 */ 6128 smp_wmb(); 6129 rb_test_started = true; 6130 6131 set_current_state(TASK_INTERRUPTIBLE); 6132 /* Just run for 10 seconds */; 6133 schedule_timeout(10 * HZ); 6134 6135 kthread_stop(rb_hammer); 6136 6137 out_free: 6138 for_each_online_cpu(cpu) { 6139 if (!rb_threads[cpu]) 6140 break; 6141 kthread_stop(rb_threads[cpu]); 6142 } 6143 if (ret) { 6144 ring_buffer_free(buffer); 6145 return ret; 6146 } 6147 6148 /* Report! */ 6149 pr_info("finished\n"); 6150 for_each_online_cpu(cpu) { 6151 struct ring_buffer_event *event; 6152 struct rb_test_data *data = &rb_data[cpu]; 6153 struct rb_item *item; 6154 unsigned long total_events; 6155 unsigned long total_dropped; 6156 unsigned long total_written; 6157 unsigned long total_alloc; 6158 unsigned long total_read = 0; 6159 unsigned long total_size = 0; 6160 unsigned long total_len = 0; 6161 unsigned long total_lost = 0; 6162 unsigned long lost; 6163 int big_event_size; 6164 int small_event_size; 6165 6166 ret = -1; 6167 6168 total_events = data->events + data->events_nested; 6169 total_written = data->bytes_written + data->bytes_written_nested; 6170 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6171 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6172 6173 big_event_size = data->max_size + data->max_size_nested; 6174 small_event_size = data->min_size + data->min_size_nested; 6175 6176 pr_info("CPU %d:\n", cpu); 6177 pr_info(" events: %ld\n", total_events); 6178 pr_info(" dropped bytes: %ld\n", total_dropped); 6179 pr_info(" alloced bytes: %ld\n", total_alloc); 6180 pr_info(" written bytes: %ld\n", total_written); 6181 pr_info(" biggest event: %d\n", big_event_size); 6182 pr_info(" smallest event: %d\n", small_event_size); 6183 6184 if (RB_WARN_ON(buffer, total_dropped)) 6185 break; 6186 6187 ret = 0; 6188 6189 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6190 total_lost += lost; 6191 item = ring_buffer_event_data(event); 6192 total_len += ring_buffer_event_length(event); 6193 total_size += item->size + sizeof(struct rb_item); 6194 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6195 pr_info("FAILED!\n"); 6196 pr_info("buffer had: %.*s\n", item->size, item->str); 6197 pr_info("expected: %.*s\n", item->size, rb_string); 6198 RB_WARN_ON(buffer, 1); 6199 ret = -1; 6200 break; 6201 } 6202 total_read++; 6203 } 6204 if (ret) 6205 break; 6206 6207 ret = -1; 6208 6209 pr_info(" read events: %ld\n", total_read); 6210 pr_info(" lost events: %ld\n", total_lost); 6211 pr_info(" total events: %ld\n", total_lost + total_read); 6212 pr_info(" recorded len bytes: %ld\n", total_len); 6213 pr_info(" recorded size bytes: %ld\n", total_size); 6214 if (total_lost) { 6215 pr_info(" With dropped events, record len and size may not match\n" 6216 " alloced and written from above\n"); 6217 } else { 6218 if (RB_WARN_ON(buffer, total_len != total_alloc || 6219 total_size != total_written)) 6220 break; 6221 } 6222 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6223 break; 6224 6225 ret = 0; 6226 } 6227 if (!ret) 6228 pr_info("Ring buffer PASSED!\n"); 6229 6230 ring_buffer_free(buffer); 6231 return 0; 6232 } 6233 6234 late_initcall(test_ringbuffer); 6235 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6236