1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/uaccess.h> 13 #include <linux/hardirq.h> 14 #include <linux/kthread.h> /* for self test */ 15 #include <linux/kmemcheck.h> 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* 119 * A fast way to enable or disable all ring buffers is to 120 * call tracing_on or tracing_off. Turning off the ring buffers 121 * prevents all ring buffers from being recorded to. 122 * Turning this switch on, makes it OK to write to the 123 * ring buffer, if the ring buffer is enabled itself. 124 * 125 * There's three layers that must be on in order to write 126 * to the ring buffer. 127 * 128 * 1) This global flag must be set. 129 * 2) The ring buffer must be enabled for recording. 130 * 3) The per cpu buffer must be enabled for recording. 131 * 132 * In case of an anomaly, this global flag has a bit set that 133 * will permantly disable all ring buffers. 134 */ 135 136 /* 137 * Global flag to disable all recording to ring buffers 138 * This has two bits: ON, DISABLED 139 * 140 * ON DISABLED 141 * ---- ---------- 142 * 0 0 : ring buffers are off 143 * 1 0 : ring buffers are on 144 * X 1 : ring buffers are permanently disabled 145 */ 146 147 enum { 148 RB_BUFFERS_ON_BIT = 0, 149 RB_BUFFERS_DISABLED_BIT = 1, 150 }; 151 152 enum { 153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 155 }; 156 157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 158 159 /* Used for individual buffers (after the counter) */ 160 #define RB_BUFFER_OFF (1 << 20) 161 162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 163 164 /** 165 * tracing_off_permanent - permanently disable ring buffers 166 * 167 * This function, once called, will disable all ring buffers 168 * permanently. 169 */ 170 void tracing_off_permanent(void) 171 { 172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 173 } 174 175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 176 #define RB_ALIGNMENT 4U 177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 179 180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 181 # define RB_FORCE_8BYTE_ALIGNMENT 0 182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 183 #else 184 # define RB_FORCE_8BYTE_ALIGNMENT 1 185 # define RB_ARCH_ALIGNMENT 8U 186 #endif 187 188 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 189 190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 192 193 enum { 194 RB_LEN_TIME_EXTEND = 8, 195 RB_LEN_TIME_STAMP = 16, 196 }; 197 198 #define skip_time_extend(event) \ 199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 200 201 static inline int rb_null_event(struct ring_buffer_event *event) 202 { 203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 204 } 205 206 static void rb_event_set_padding(struct ring_buffer_event *event) 207 { 208 /* padding has a NULL time_delta */ 209 event->type_len = RINGBUF_TYPE_PADDING; 210 event->time_delta = 0; 211 } 212 213 static unsigned 214 rb_event_data_length(struct ring_buffer_event *event) 215 { 216 unsigned length; 217 218 if (event->type_len) 219 length = event->type_len * RB_ALIGNMENT; 220 else 221 length = event->array[0]; 222 return length + RB_EVNT_HDR_SIZE; 223 } 224 225 /* 226 * Return the length of the given event. Will return 227 * the length of the time extend if the event is a 228 * time extend. 229 */ 230 static inline unsigned 231 rb_event_length(struct ring_buffer_event *event) 232 { 233 switch (event->type_len) { 234 case RINGBUF_TYPE_PADDING: 235 if (rb_null_event(event)) 236 /* undefined */ 237 return -1; 238 return event->array[0] + RB_EVNT_HDR_SIZE; 239 240 case RINGBUF_TYPE_TIME_EXTEND: 241 return RB_LEN_TIME_EXTEND; 242 243 case RINGBUF_TYPE_TIME_STAMP: 244 return RB_LEN_TIME_STAMP; 245 246 case RINGBUF_TYPE_DATA: 247 return rb_event_data_length(event); 248 default: 249 BUG(); 250 } 251 /* not hit */ 252 return 0; 253 } 254 255 /* 256 * Return total length of time extend and data, 257 * or just the event length for all other events. 258 */ 259 static inline unsigned 260 rb_event_ts_length(struct ring_buffer_event *event) 261 { 262 unsigned len = 0; 263 264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 265 /* time extends include the data event after it */ 266 len = RB_LEN_TIME_EXTEND; 267 event = skip_time_extend(event); 268 } 269 return len + rb_event_length(event); 270 } 271 272 /** 273 * ring_buffer_event_length - return the length of the event 274 * @event: the event to get the length of 275 * 276 * Returns the size of the data load of a data event. 277 * If the event is something other than a data event, it 278 * returns the size of the event itself. With the exception 279 * of a TIME EXTEND, where it still returns the size of the 280 * data load of the data event after it. 281 */ 282 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 283 { 284 unsigned length; 285 286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 287 event = skip_time_extend(event); 288 289 length = rb_event_length(event); 290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 291 return length; 292 length -= RB_EVNT_HDR_SIZE; 293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 294 length -= sizeof(event->array[0]); 295 return length; 296 } 297 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 298 299 /* inline for ring buffer fast paths */ 300 static void * 301 rb_event_data(struct ring_buffer_event *event) 302 { 303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 304 event = skip_time_extend(event); 305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 306 /* If length is in len field, then array[0] has the data */ 307 if (event->type_len) 308 return (void *)&event->array[0]; 309 /* Otherwise length is in array[0] and array[1] has the data */ 310 return (void *)&event->array[1]; 311 } 312 313 /** 314 * ring_buffer_event_data - return the data of the event 315 * @event: the event to get the data from 316 */ 317 void *ring_buffer_event_data(struct ring_buffer_event *event) 318 { 319 return rb_event_data(event); 320 } 321 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 322 323 #define for_each_buffer_cpu(buffer, cpu) \ 324 for_each_cpu(cpu, buffer->cpumask) 325 326 #define TS_SHIFT 27 327 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 328 #define TS_DELTA_TEST (~TS_MASK) 329 330 /* Flag when events were overwritten */ 331 #define RB_MISSED_EVENTS (1 << 31) 332 /* Missed count stored at end */ 333 #define RB_MISSED_STORED (1 << 30) 334 335 struct buffer_data_page { 336 u64 time_stamp; /* page time stamp */ 337 local_t commit; /* write committed index */ 338 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 339 }; 340 341 /* 342 * Note, the buffer_page list must be first. The buffer pages 343 * are allocated in cache lines, which means that each buffer 344 * page will be at the beginning of a cache line, and thus 345 * the least significant bits will be zero. We use this to 346 * add flags in the list struct pointers, to make the ring buffer 347 * lockless. 348 */ 349 struct buffer_page { 350 struct list_head list; /* list of buffer pages */ 351 local_t write; /* index for next write */ 352 unsigned read; /* index for next read */ 353 local_t entries; /* entries on this page */ 354 unsigned long real_end; /* real end of data */ 355 struct buffer_data_page *page; /* Actual data page */ 356 }; 357 358 /* 359 * The buffer page counters, write and entries, must be reset 360 * atomically when crossing page boundaries. To synchronize this 361 * update, two counters are inserted into the number. One is 362 * the actual counter for the write position or count on the page. 363 * 364 * The other is a counter of updaters. Before an update happens 365 * the update partition of the counter is incremented. This will 366 * allow the updater to update the counter atomically. 367 * 368 * The counter is 20 bits, and the state data is 12. 369 */ 370 #define RB_WRITE_MASK 0xfffff 371 #define RB_WRITE_INTCNT (1 << 20) 372 373 static void rb_init_page(struct buffer_data_page *bpage) 374 { 375 local_set(&bpage->commit, 0); 376 } 377 378 /** 379 * ring_buffer_page_len - the size of data on the page. 380 * @page: The page to read 381 * 382 * Returns the amount of data on the page, including buffer page header. 383 */ 384 size_t ring_buffer_page_len(void *page) 385 { 386 return local_read(&((struct buffer_data_page *)page)->commit) 387 + BUF_PAGE_HDR_SIZE; 388 } 389 390 /* 391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 392 * this issue out. 393 */ 394 static void free_buffer_page(struct buffer_page *bpage) 395 { 396 free_page((unsigned long)bpage->page); 397 kfree(bpage); 398 } 399 400 /* 401 * We need to fit the time_stamp delta into 27 bits. 402 */ 403 static inline int test_time_stamp(u64 delta) 404 { 405 if (delta & TS_DELTA_TEST) 406 return 1; 407 return 0; 408 } 409 410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 411 412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 414 415 int ring_buffer_print_page_header(struct trace_seq *s) 416 { 417 struct buffer_data_page field; 418 419 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 420 "offset:0;\tsize:%u;\tsigned:%u;\n", 421 (unsigned int)sizeof(field.time_stamp), 422 (unsigned int)is_signed_type(u64)); 423 424 trace_seq_printf(s, "\tfield: local_t commit;\t" 425 "offset:%u;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)offsetof(typeof(field), commit), 427 (unsigned int)sizeof(field.commit), 428 (unsigned int)is_signed_type(long)); 429 430 trace_seq_printf(s, "\tfield: int overwrite;\t" 431 "offset:%u;\tsize:%u;\tsigned:%u;\n", 432 (unsigned int)offsetof(typeof(field), commit), 433 1, 434 (unsigned int)is_signed_type(long)); 435 436 trace_seq_printf(s, "\tfield: char data;\t" 437 "offset:%u;\tsize:%u;\tsigned:%u;\n", 438 (unsigned int)offsetof(typeof(field), data), 439 (unsigned int)BUF_PAGE_SIZE, 440 (unsigned int)is_signed_type(char)); 441 442 return !trace_seq_has_overflowed(s); 443 } 444 445 struct rb_irq_work { 446 struct irq_work work; 447 wait_queue_head_t waiters; 448 wait_queue_head_t full_waiters; 449 bool waiters_pending; 450 bool full_waiters_pending; 451 bool wakeup_full; 452 }; 453 454 /* 455 * head_page == tail_page && head == tail then buffer is empty. 456 */ 457 struct ring_buffer_per_cpu { 458 int cpu; 459 atomic_t record_disabled; 460 struct ring_buffer *buffer; 461 raw_spinlock_t reader_lock; /* serialize readers */ 462 arch_spinlock_t lock; 463 struct lock_class_key lock_key; 464 unsigned int nr_pages; 465 struct list_head *pages; 466 struct buffer_page *head_page; /* read from head */ 467 struct buffer_page *tail_page; /* write to tail */ 468 struct buffer_page *commit_page; /* committed pages */ 469 struct buffer_page *reader_page; 470 unsigned long lost_events; 471 unsigned long last_overrun; 472 local_t entries_bytes; 473 local_t entries; 474 local_t overrun; 475 local_t commit_overrun; 476 local_t dropped_events; 477 local_t committing; 478 local_t commits; 479 unsigned long read; 480 unsigned long read_bytes; 481 u64 write_stamp; 482 u64 read_stamp; 483 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 484 int nr_pages_to_update; 485 struct list_head new_pages; /* new pages to add */ 486 struct work_struct update_pages_work; 487 struct completion update_done; 488 489 struct rb_irq_work irq_work; 490 }; 491 492 struct ring_buffer { 493 unsigned flags; 494 int cpus; 495 atomic_t record_disabled; 496 atomic_t resize_disabled; 497 cpumask_var_t cpumask; 498 499 struct lock_class_key *reader_lock_key; 500 501 struct mutex mutex; 502 503 struct ring_buffer_per_cpu **buffers; 504 505 #ifdef CONFIG_HOTPLUG_CPU 506 struct notifier_block cpu_notify; 507 #endif 508 u64 (*clock)(void); 509 510 struct rb_irq_work irq_work; 511 }; 512 513 struct ring_buffer_iter { 514 struct ring_buffer_per_cpu *cpu_buffer; 515 unsigned long head; 516 struct buffer_page *head_page; 517 struct buffer_page *cache_reader_page; 518 unsigned long cache_read; 519 u64 read_stamp; 520 }; 521 522 /* 523 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 524 * 525 * Schedules a delayed work to wake up any task that is blocked on the 526 * ring buffer waiters queue. 527 */ 528 static void rb_wake_up_waiters(struct irq_work *work) 529 { 530 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 531 532 wake_up_all(&rbwork->waiters); 533 if (rbwork->wakeup_full) { 534 rbwork->wakeup_full = false; 535 wake_up_all(&rbwork->full_waiters); 536 } 537 } 538 539 /** 540 * ring_buffer_wait - wait for input to the ring buffer 541 * @buffer: buffer to wait on 542 * @cpu: the cpu buffer to wait on 543 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 544 * 545 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 546 * as data is added to any of the @buffer's cpu buffers. Otherwise 547 * it will wait for data to be added to a specific cpu buffer. 548 */ 549 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 550 { 551 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 552 DEFINE_WAIT(wait); 553 struct rb_irq_work *work; 554 int ret = 0; 555 556 /* 557 * Depending on what the caller is waiting for, either any 558 * data in any cpu buffer, or a specific buffer, put the 559 * caller on the appropriate wait queue. 560 */ 561 if (cpu == RING_BUFFER_ALL_CPUS) { 562 work = &buffer->irq_work; 563 /* Full only makes sense on per cpu reads */ 564 full = false; 565 } else { 566 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 567 return -ENODEV; 568 cpu_buffer = buffer->buffers[cpu]; 569 work = &cpu_buffer->irq_work; 570 } 571 572 573 while (true) { 574 if (full) 575 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 576 else 577 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 578 579 /* 580 * The events can happen in critical sections where 581 * checking a work queue can cause deadlocks. 582 * After adding a task to the queue, this flag is set 583 * only to notify events to try to wake up the queue 584 * using irq_work. 585 * 586 * We don't clear it even if the buffer is no longer 587 * empty. The flag only causes the next event to run 588 * irq_work to do the work queue wake up. The worse 589 * that can happen if we race with !trace_empty() is that 590 * an event will cause an irq_work to try to wake up 591 * an empty queue. 592 * 593 * There's no reason to protect this flag either, as 594 * the work queue and irq_work logic will do the necessary 595 * synchronization for the wake ups. The only thing 596 * that is necessary is that the wake up happens after 597 * a task has been queued. It's OK for spurious wake ups. 598 */ 599 if (full) 600 work->full_waiters_pending = true; 601 else 602 work->waiters_pending = true; 603 604 if (signal_pending(current)) { 605 ret = -EINTR; 606 break; 607 } 608 609 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 610 break; 611 612 if (cpu != RING_BUFFER_ALL_CPUS && 613 !ring_buffer_empty_cpu(buffer, cpu)) { 614 unsigned long flags; 615 bool pagebusy; 616 617 if (!full) 618 break; 619 620 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 621 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 622 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 623 624 if (!pagebusy) 625 break; 626 } 627 628 schedule(); 629 } 630 631 if (full) 632 finish_wait(&work->full_waiters, &wait); 633 else 634 finish_wait(&work->waiters, &wait); 635 636 return ret; 637 } 638 639 /** 640 * ring_buffer_poll_wait - poll on buffer input 641 * @buffer: buffer to wait on 642 * @cpu: the cpu buffer to wait on 643 * @filp: the file descriptor 644 * @poll_table: The poll descriptor 645 * 646 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 647 * as data is added to any of the @buffer's cpu buffers. Otherwise 648 * it will wait for data to be added to a specific cpu buffer. 649 * 650 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 651 * zero otherwise. 652 */ 653 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 654 struct file *filp, poll_table *poll_table) 655 { 656 struct ring_buffer_per_cpu *cpu_buffer; 657 struct rb_irq_work *work; 658 659 if (cpu == RING_BUFFER_ALL_CPUS) 660 work = &buffer->irq_work; 661 else { 662 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 663 return -EINVAL; 664 665 cpu_buffer = buffer->buffers[cpu]; 666 work = &cpu_buffer->irq_work; 667 } 668 669 poll_wait(filp, &work->waiters, poll_table); 670 work->waiters_pending = true; 671 /* 672 * There's a tight race between setting the waiters_pending and 673 * checking if the ring buffer is empty. Once the waiters_pending bit 674 * is set, the next event will wake the task up, but we can get stuck 675 * if there's only a single event in. 676 * 677 * FIXME: Ideally, we need a memory barrier on the writer side as well, 678 * but adding a memory barrier to all events will cause too much of a 679 * performance hit in the fast path. We only need a memory barrier when 680 * the buffer goes from empty to having content. But as this race is 681 * extremely small, and it's not a problem if another event comes in, we 682 * will fix it later. 683 */ 684 smp_mb(); 685 686 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 687 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 688 return POLLIN | POLLRDNORM; 689 return 0; 690 } 691 692 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 693 #define RB_WARN_ON(b, cond) \ 694 ({ \ 695 int _____ret = unlikely(cond); \ 696 if (_____ret) { \ 697 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 698 struct ring_buffer_per_cpu *__b = \ 699 (void *)b; \ 700 atomic_inc(&__b->buffer->record_disabled); \ 701 } else \ 702 atomic_inc(&b->record_disabled); \ 703 WARN_ON(1); \ 704 } \ 705 _____ret; \ 706 }) 707 708 /* Up this if you want to test the TIME_EXTENTS and normalization */ 709 #define DEBUG_SHIFT 0 710 711 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 712 { 713 /* shift to debug/test normalization and TIME_EXTENTS */ 714 return buffer->clock() << DEBUG_SHIFT; 715 } 716 717 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 718 { 719 u64 time; 720 721 preempt_disable_notrace(); 722 time = rb_time_stamp(buffer); 723 preempt_enable_no_resched_notrace(); 724 725 return time; 726 } 727 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 728 729 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 730 int cpu, u64 *ts) 731 { 732 /* Just stupid testing the normalize function and deltas */ 733 *ts >>= DEBUG_SHIFT; 734 } 735 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 736 737 /* 738 * Making the ring buffer lockless makes things tricky. 739 * Although writes only happen on the CPU that they are on, 740 * and they only need to worry about interrupts. Reads can 741 * happen on any CPU. 742 * 743 * The reader page is always off the ring buffer, but when the 744 * reader finishes with a page, it needs to swap its page with 745 * a new one from the buffer. The reader needs to take from 746 * the head (writes go to the tail). But if a writer is in overwrite 747 * mode and wraps, it must push the head page forward. 748 * 749 * Here lies the problem. 750 * 751 * The reader must be careful to replace only the head page, and 752 * not another one. As described at the top of the file in the 753 * ASCII art, the reader sets its old page to point to the next 754 * page after head. It then sets the page after head to point to 755 * the old reader page. But if the writer moves the head page 756 * during this operation, the reader could end up with the tail. 757 * 758 * We use cmpxchg to help prevent this race. We also do something 759 * special with the page before head. We set the LSB to 1. 760 * 761 * When the writer must push the page forward, it will clear the 762 * bit that points to the head page, move the head, and then set 763 * the bit that points to the new head page. 764 * 765 * We also don't want an interrupt coming in and moving the head 766 * page on another writer. Thus we use the second LSB to catch 767 * that too. Thus: 768 * 769 * head->list->prev->next bit 1 bit 0 770 * ------- ------- 771 * Normal page 0 0 772 * Points to head page 0 1 773 * New head page 1 0 774 * 775 * Note we can not trust the prev pointer of the head page, because: 776 * 777 * +----+ +-----+ +-----+ 778 * | |------>| T |---X--->| N | 779 * | |<------| | | | 780 * +----+ +-----+ +-----+ 781 * ^ ^ | 782 * | +-----+ | | 783 * +----------| R |----------+ | 784 * | |<-----------+ 785 * +-----+ 786 * 787 * Key: ---X--> HEAD flag set in pointer 788 * T Tail page 789 * R Reader page 790 * N Next page 791 * 792 * (see __rb_reserve_next() to see where this happens) 793 * 794 * What the above shows is that the reader just swapped out 795 * the reader page with a page in the buffer, but before it 796 * could make the new header point back to the new page added 797 * it was preempted by a writer. The writer moved forward onto 798 * the new page added by the reader and is about to move forward 799 * again. 800 * 801 * You can see, it is legitimate for the previous pointer of 802 * the head (or any page) not to point back to itself. But only 803 * temporarially. 804 */ 805 806 #define RB_PAGE_NORMAL 0UL 807 #define RB_PAGE_HEAD 1UL 808 #define RB_PAGE_UPDATE 2UL 809 810 811 #define RB_FLAG_MASK 3UL 812 813 /* PAGE_MOVED is not part of the mask */ 814 #define RB_PAGE_MOVED 4UL 815 816 /* 817 * rb_list_head - remove any bit 818 */ 819 static struct list_head *rb_list_head(struct list_head *list) 820 { 821 unsigned long val = (unsigned long)list; 822 823 return (struct list_head *)(val & ~RB_FLAG_MASK); 824 } 825 826 /* 827 * rb_is_head_page - test if the given page is the head page 828 * 829 * Because the reader may move the head_page pointer, we can 830 * not trust what the head page is (it may be pointing to 831 * the reader page). But if the next page is a header page, 832 * its flags will be non zero. 833 */ 834 static inline int 835 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 836 struct buffer_page *page, struct list_head *list) 837 { 838 unsigned long val; 839 840 val = (unsigned long)list->next; 841 842 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 843 return RB_PAGE_MOVED; 844 845 return val & RB_FLAG_MASK; 846 } 847 848 /* 849 * rb_is_reader_page 850 * 851 * The unique thing about the reader page, is that, if the 852 * writer is ever on it, the previous pointer never points 853 * back to the reader page. 854 */ 855 static int rb_is_reader_page(struct buffer_page *page) 856 { 857 struct list_head *list = page->list.prev; 858 859 return rb_list_head(list->next) != &page->list; 860 } 861 862 /* 863 * rb_set_list_to_head - set a list_head to be pointing to head. 864 */ 865 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 866 struct list_head *list) 867 { 868 unsigned long *ptr; 869 870 ptr = (unsigned long *)&list->next; 871 *ptr |= RB_PAGE_HEAD; 872 *ptr &= ~RB_PAGE_UPDATE; 873 } 874 875 /* 876 * rb_head_page_activate - sets up head page 877 */ 878 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 879 { 880 struct buffer_page *head; 881 882 head = cpu_buffer->head_page; 883 if (!head) 884 return; 885 886 /* 887 * Set the previous list pointer to have the HEAD flag. 888 */ 889 rb_set_list_to_head(cpu_buffer, head->list.prev); 890 } 891 892 static void rb_list_head_clear(struct list_head *list) 893 { 894 unsigned long *ptr = (unsigned long *)&list->next; 895 896 *ptr &= ~RB_FLAG_MASK; 897 } 898 899 /* 900 * rb_head_page_dactivate - clears head page ptr (for free list) 901 */ 902 static void 903 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 904 { 905 struct list_head *hd; 906 907 /* Go through the whole list and clear any pointers found. */ 908 rb_list_head_clear(cpu_buffer->pages); 909 910 list_for_each(hd, cpu_buffer->pages) 911 rb_list_head_clear(hd); 912 } 913 914 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 915 struct buffer_page *head, 916 struct buffer_page *prev, 917 int old_flag, int new_flag) 918 { 919 struct list_head *list; 920 unsigned long val = (unsigned long)&head->list; 921 unsigned long ret; 922 923 list = &prev->list; 924 925 val &= ~RB_FLAG_MASK; 926 927 ret = cmpxchg((unsigned long *)&list->next, 928 val | old_flag, val | new_flag); 929 930 /* check if the reader took the page */ 931 if ((ret & ~RB_FLAG_MASK) != val) 932 return RB_PAGE_MOVED; 933 934 return ret & RB_FLAG_MASK; 935 } 936 937 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 938 struct buffer_page *head, 939 struct buffer_page *prev, 940 int old_flag) 941 { 942 return rb_head_page_set(cpu_buffer, head, prev, 943 old_flag, RB_PAGE_UPDATE); 944 } 945 946 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 947 struct buffer_page *head, 948 struct buffer_page *prev, 949 int old_flag) 950 { 951 return rb_head_page_set(cpu_buffer, head, prev, 952 old_flag, RB_PAGE_HEAD); 953 } 954 955 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 956 struct buffer_page *head, 957 struct buffer_page *prev, 958 int old_flag) 959 { 960 return rb_head_page_set(cpu_buffer, head, prev, 961 old_flag, RB_PAGE_NORMAL); 962 } 963 964 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 965 struct buffer_page **bpage) 966 { 967 struct list_head *p = rb_list_head((*bpage)->list.next); 968 969 *bpage = list_entry(p, struct buffer_page, list); 970 } 971 972 static struct buffer_page * 973 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 974 { 975 struct buffer_page *head; 976 struct buffer_page *page; 977 struct list_head *list; 978 int i; 979 980 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 981 return NULL; 982 983 /* sanity check */ 984 list = cpu_buffer->pages; 985 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 986 return NULL; 987 988 page = head = cpu_buffer->head_page; 989 /* 990 * It is possible that the writer moves the header behind 991 * where we started, and we miss in one loop. 992 * A second loop should grab the header, but we'll do 993 * three loops just because I'm paranoid. 994 */ 995 for (i = 0; i < 3; i++) { 996 do { 997 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 998 cpu_buffer->head_page = page; 999 return page; 1000 } 1001 rb_inc_page(cpu_buffer, &page); 1002 } while (page != head); 1003 } 1004 1005 RB_WARN_ON(cpu_buffer, 1); 1006 1007 return NULL; 1008 } 1009 1010 static int rb_head_page_replace(struct buffer_page *old, 1011 struct buffer_page *new) 1012 { 1013 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1014 unsigned long val; 1015 unsigned long ret; 1016 1017 val = *ptr & ~RB_FLAG_MASK; 1018 val |= RB_PAGE_HEAD; 1019 1020 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1021 1022 return ret == val; 1023 } 1024 1025 /* 1026 * rb_tail_page_update - move the tail page forward 1027 * 1028 * Returns 1 if moved tail page, 0 if someone else did. 1029 */ 1030 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1031 struct buffer_page *tail_page, 1032 struct buffer_page *next_page) 1033 { 1034 struct buffer_page *old_tail; 1035 unsigned long old_entries; 1036 unsigned long old_write; 1037 int ret = 0; 1038 1039 /* 1040 * The tail page now needs to be moved forward. 1041 * 1042 * We need to reset the tail page, but without messing 1043 * with possible erasing of data brought in by interrupts 1044 * that have moved the tail page and are currently on it. 1045 * 1046 * We add a counter to the write field to denote this. 1047 */ 1048 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1049 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1050 1051 /* 1052 * Just make sure we have seen our old_write and synchronize 1053 * with any interrupts that come in. 1054 */ 1055 barrier(); 1056 1057 /* 1058 * If the tail page is still the same as what we think 1059 * it is, then it is up to us to update the tail 1060 * pointer. 1061 */ 1062 if (tail_page == cpu_buffer->tail_page) { 1063 /* Zero the write counter */ 1064 unsigned long val = old_write & ~RB_WRITE_MASK; 1065 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1066 1067 /* 1068 * This will only succeed if an interrupt did 1069 * not come in and change it. In which case, we 1070 * do not want to modify it. 1071 * 1072 * We add (void) to let the compiler know that we do not care 1073 * about the return value of these functions. We use the 1074 * cmpxchg to only update if an interrupt did not already 1075 * do it for us. If the cmpxchg fails, we don't care. 1076 */ 1077 (void)local_cmpxchg(&next_page->write, old_write, val); 1078 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1079 1080 /* 1081 * No need to worry about races with clearing out the commit. 1082 * it only can increment when a commit takes place. But that 1083 * only happens in the outer most nested commit. 1084 */ 1085 local_set(&next_page->page->commit, 0); 1086 1087 old_tail = cmpxchg(&cpu_buffer->tail_page, 1088 tail_page, next_page); 1089 1090 if (old_tail == tail_page) 1091 ret = 1; 1092 } 1093 1094 return ret; 1095 } 1096 1097 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1098 struct buffer_page *bpage) 1099 { 1100 unsigned long val = (unsigned long)bpage; 1101 1102 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1103 return 1; 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * rb_check_list - make sure a pointer to a list has the last bits zero 1110 */ 1111 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1112 struct list_head *list) 1113 { 1114 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1115 return 1; 1116 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1117 return 1; 1118 return 0; 1119 } 1120 1121 /** 1122 * rb_check_pages - integrity check of buffer pages 1123 * @cpu_buffer: CPU buffer with pages to test 1124 * 1125 * As a safety measure we check to make sure the data pages have not 1126 * been corrupted. 1127 */ 1128 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1129 { 1130 struct list_head *head = cpu_buffer->pages; 1131 struct buffer_page *bpage, *tmp; 1132 1133 /* Reset the head page if it exists */ 1134 if (cpu_buffer->head_page) 1135 rb_set_head_page(cpu_buffer); 1136 1137 rb_head_page_deactivate(cpu_buffer); 1138 1139 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1140 return -1; 1141 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1142 return -1; 1143 1144 if (rb_check_list(cpu_buffer, head)) 1145 return -1; 1146 1147 list_for_each_entry_safe(bpage, tmp, head, list) { 1148 if (RB_WARN_ON(cpu_buffer, 1149 bpage->list.next->prev != &bpage->list)) 1150 return -1; 1151 if (RB_WARN_ON(cpu_buffer, 1152 bpage->list.prev->next != &bpage->list)) 1153 return -1; 1154 if (rb_check_list(cpu_buffer, &bpage->list)) 1155 return -1; 1156 } 1157 1158 rb_head_page_activate(cpu_buffer); 1159 1160 return 0; 1161 } 1162 1163 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1164 { 1165 int i; 1166 struct buffer_page *bpage, *tmp; 1167 1168 for (i = 0; i < nr_pages; i++) { 1169 struct page *page; 1170 /* 1171 * __GFP_NORETRY flag makes sure that the allocation fails 1172 * gracefully without invoking oom-killer and the system is 1173 * not destabilized. 1174 */ 1175 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1176 GFP_KERNEL | __GFP_NORETRY, 1177 cpu_to_node(cpu)); 1178 if (!bpage) 1179 goto free_pages; 1180 1181 list_add(&bpage->list, pages); 1182 1183 page = alloc_pages_node(cpu_to_node(cpu), 1184 GFP_KERNEL | __GFP_NORETRY, 0); 1185 if (!page) 1186 goto free_pages; 1187 bpage->page = page_address(page); 1188 rb_init_page(bpage->page); 1189 } 1190 1191 return 0; 1192 1193 free_pages: 1194 list_for_each_entry_safe(bpage, tmp, pages, list) { 1195 list_del_init(&bpage->list); 1196 free_buffer_page(bpage); 1197 } 1198 1199 return -ENOMEM; 1200 } 1201 1202 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1203 unsigned nr_pages) 1204 { 1205 LIST_HEAD(pages); 1206 1207 WARN_ON(!nr_pages); 1208 1209 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1210 return -ENOMEM; 1211 1212 /* 1213 * The ring buffer page list is a circular list that does not 1214 * start and end with a list head. All page list items point to 1215 * other pages. 1216 */ 1217 cpu_buffer->pages = pages.next; 1218 list_del(&pages); 1219 1220 cpu_buffer->nr_pages = nr_pages; 1221 1222 rb_check_pages(cpu_buffer); 1223 1224 return 0; 1225 } 1226 1227 static struct ring_buffer_per_cpu * 1228 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1229 { 1230 struct ring_buffer_per_cpu *cpu_buffer; 1231 struct buffer_page *bpage; 1232 struct page *page; 1233 int ret; 1234 1235 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1236 GFP_KERNEL, cpu_to_node(cpu)); 1237 if (!cpu_buffer) 1238 return NULL; 1239 1240 cpu_buffer->cpu = cpu; 1241 cpu_buffer->buffer = buffer; 1242 raw_spin_lock_init(&cpu_buffer->reader_lock); 1243 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1244 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1245 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1246 init_completion(&cpu_buffer->update_done); 1247 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1248 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1249 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1250 1251 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1252 GFP_KERNEL, cpu_to_node(cpu)); 1253 if (!bpage) 1254 goto fail_free_buffer; 1255 1256 rb_check_bpage(cpu_buffer, bpage); 1257 1258 cpu_buffer->reader_page = bpage; 1259 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1260 if (!page) 1261 goto fail_free_reader; 1262 bpage->page = page_address(page); 1263 rb_init_page(bpage->page); 1264 1265 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1266 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1267 1268 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1269 if (ret < 0) 1270 goto fail_free_reader; 1271 1272 cpu_buffer->head_page 1273 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1274 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1275 1276 rb_head_page_activate(cpu_buffer); 1277 1278 return cpu_buffer; 1279 1280 fail_free_reader: 1281 free_buffer_page(cpu_buffer->reader_page); 1282 1283 fail_free_buffer: 1284 kfree(cpu_buffer); 1285 return NULL; 1286 } 1287 1288 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1289 { 1290 struct list_head *head = cpu_buffer->pages; 1291 struct buffer_page *bpage, *tmp; 1292 1293 free_buffer_page(cpu_buffer->reader_page); 1294 1295 rb_head_page_deactivate(cpu_buffer); 1296 1297 if (head) { 1298 list_for_each_entry_safe(bpage, tmp, head, list) { 1299 list_del_init(&bpage->list); 1300 free_buffer_page(bpage); 1301 } 1302 bpage = list_entry(head, struct buffer_page, list); 1303 free_buffer_page(bpage); 1304 } 1305 1306 kfree(cpu_buffer); 1307 } 1308 1309 #ifdef CONFIG_HOTPLUG_CPU 1310 static int rb_cpu_notify(struct notifier_block *self, 1311 unsigned long action, void *hcpu); 1312 #endif 1313 1314 /** 1315 * __ring_buffer_alloc - allocate a new ring_buffer 1316 * @size: the size in bytes per cpu that is needed. 1317 * @flags: attributes to set for the ring buffer. 1318 * 1319 * Currently the only flag that is available is the RB_FL_OVERWRITE 1320 * flag. This flag means that the buffer will overwrite old data 1321 * when the buffer wraps. If this flag is not set, the buffer will 1322 * drop data when the tail hits the head. 1323 */ 1324 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1325 struct lock_class_key *key) 1326 { 1327 struct ring_buffer *buffer; 1328 int bsize; 1329 int cpu, nr_pages; 1330 1331 /* keep it in its own cache line */ 1332 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1333 GFP_KERNEL); 1334 if (!buffer) 1335 return NULL; 1336 1337 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1338 goto fail_free_buffer; 1339 1340 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1341 buffer->flags = flags; 1342 buffer->clock = trace_clock_local; 1343 buffer->reader_lock_key = key; 1344 1345 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1346 init_waitqueue_head(&buffer->irq_work.waiters); 1347 1348 /* need at least two pages */ 1349 if (nr_pages < 2) 1350 nr_pages = 2; 1351 1352 /* 1353 * In case of non-hotplug cpu, if the ring-buffer is allocated 1354 * in early initcall, it will not be notified of secondary cpus. 1355 * In that off case, we need to allocate for all possible cpus. 1356 */ 1357 #ifdef CONFIG_HOTPLUG_CPU 1358 cpu_notifier_register_begin(); 1359 cpumask_copy(buffer->cpumask, cpu_online_mask); 1360 #else 1361 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1362 #endif 1363 buffer->cpus = nr_cpu_ids; 1364 1365 bsize = sizeof(void *) * nr_cpu_ids; 1366 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1367 GFP_KERNEL); 1368 if (!buffer->buffers) 1369 goto fail_free_cpumask; 1370 1371 for_each_buffer_cpu(buffer, cpu) { 1372 buffer->buffers[cpu] = 1373 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1374 if (!buffer->buffers[cpu]) 1375 goto fail_free_buffers; 1376 } 1377 1378 #ifdef CONFIG_HOTPLUG_CPU 1379 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1380 buffer->cpu_notify.priority = 0; 1381 __register_cpu_notifier(&buffer->cpu_notify); 1382 cpu_notifier_register_done(); 1383 #endif 1384 1385 mutex_init(&buffer->mutex); 1386 1387 return buffer; 1388 1389 fail_free_buffers: 1390 for_each_buffer_cpu(buffer, cpu) { 1391 if (buffer->buffers[cpu]) 1392 rb_free_cpu_buffer(buffer->buffers[cpu]); 1393 } 1394 kfree(buffer->buffers); 1395 1396 fail_free_cpumask: 1397 free_cpumask_var(buffer->cpumask); 1398 #ifdef CONFIG_HOTPLUG_CPU 1399 cpu_notifier_register_done(); 1400 #endif 1401 1402 fail_free_buffer: 1403 kfree(buffer); 1404 return NULL; 1405 } 1406 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1407 1408 /** 1409 * ring_buffer_free - free a ring buffer. 1410 * @buffer: the buffer to free. 1411 */ 1412 void 1413 ring_buffer_free(struct ring_buffer *buffer) 1414 { 1415 int cpu; 1416 1417 #ifdef CONFIG_HOTPLUG_CPU 1418 cpu_notifier_register_begin(); 1419 __unregister_cpu_notifier(&buffer->cpu_notify); 1420 #endif 1421 1422 for_each_buffer_cpu(buffer, cpu) 1423 rb_free_cpu_buffer(buffer->buffers[cpu]); 1424 1425 #ifdef CONFIG_HOTPLUG_CPU 1426 cpu_notifier_register_done(); 1427 #endif 1428 1429 kfree(buffer->buffers); 1430 free_cpumask_var(buffer->cpumask); 1431 1432 kfree(buffer); 1433 } 1434 EXPORT_SYMBOL_GPL(ring_buffer_free); 1435 1436 void ring_buffer_set_clock(struct ring_buffer *buffer, 1437 u64 (*clock)(void)) 1438 { 1439 buffer->clock = clock; 1440 } 1441 1442 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1443 1444 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1445 { 1446 return local_read(&bpage->entries) & RB_WRITE_MASK; 1447 } 1448 1449 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1450 { 1451 return local_read(&bpage->write) & RB_WRITE_MASK; 1452 } 1453 1454 static int 1455 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1456 { 1457 struct list_head *tail_page, *to_remove, *next_page; 1458 struct buffer_page *to_remove_page, *tmp_iter_page; 1459 struct buffer_page *last_page, *first_page; 1460 unsigned int nr_removed; 1461 unsigned long head_bit; 1462 int page_entries; 1463 1464 head_bit = 0; 1465 1466 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1467 atomic_inc(&cpu_buffer->record_disabled); 1468 /* 1469 * We don't race with the readers since we have acquired the reader 1470 * lock. We also don't race with writers after disabling recording. 1471 * This makes it easy to figure out the first and the last page to be 1472 * removed from the list. We unlink all the pages in between including 1473 * the first and last pages. This is done in a busy loop so that we 1474 * lose the least number of traces. 1475 * The pages are freed after we restart recording and unlock readers. 1476 */ 1477 tail_page = &cpu_buffer->tail_page->list; 1478 1479 /* 1480 * tail page might be on reader page, we remove the next page 1481 * from the ring buffer 1482 */ 1483 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1484 tail_page = rb_list_head(tail_page->next); 1485 to_remove = tail_page; 1486 1487 /* start of pages to remove */ 1488 first_page = list_entry(rb_list_head(to_remove->next), 1489 struct buffer_page, list); 1490 1491 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1492 to_remove = rb_list_head(to_remove)->next; 1493 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1494 } 1495 1496 next_page = rb_list_head(to_remove)->next; 1497 1498 /* 1499 * Now we remove all pages between tail_page and next_page. 1500 * Make sure that we have head_bit value preserved for the 1501 * next page 1502 */ 1503 tail_page->next = (struct list_head *)((unsigned long)next_page | 1504 head_bit); 1505 next_page = rb_list_head(next_page); 1506 next_page->prev = tail_page; 1507 1508 /* make sure pages points to a valid page in the ring buffer */ 1509 cpu_buffer->pages = next_page; 1510 1511 /* update head page */ 1512 if (head_bit) 1513 cpu_buffer->head_page = list_entry(next_page, 1514 struct buffer_page, list); 1515 1516 /* 1517 * change read pointer to make sure any read iterators reset 1518 * themselves 1519 */ 1520 cpu_buffer->read = 0; 1521 1522 /* pages are removed, resume tracing and then free the pages */ 1523 atomic_dec(&cpu_buffer->record_disabled); 1524 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1525 1526 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1527 1528 /* last buffer page to remove */ 1529 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1530 list); 1531 tmp_iter_page = first_page; 1532 1533 do { 1534 to_remove_page = tmp_iter_page; 1535 rb_inc_page(cpu_buffer, &tmp_iter_page); 1536 1537 /* update the counters */ 1538 page_entries = rb_page_entries(to_remove_page); 1539 if (page_entries) { 1540 /* 1541 * If something was added to this page, it was full 1542 * since it is not the tail page. So we deduct the 1543 * bytes consumed in ring buffer from here. 1544 * Increment overrun to account for the lost events. 1545 */ 1546 local_add(page_entries, &cpu_buffer->overrun); 1547 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1548 } 1549 1550 /* 1551 * We have already removed references to this list item, just 1552 * free up the buffer_page and its page 1553 */ 1554 free_buffer_page(to_remove_page); 1555 nr_removed--; 1556 1557 } while (to_remove_page != last_page); 1558 1559 RB_WARN_ON(cpu_buffer, nr_removed); 1560 1561 return nr_removed == 0; 1562 } 1563 1564 static int 1565 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1566 { 1567 struct list_head *pages = &cpu_buffer->new_pages; 1568 int retries, success; 1569 1570 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1571 /* 1572 * We are holding the reader lock, so the reader page won't be swapped 1573 * in the ring buffer. Now we are racing with the writer trying to 1574 * move head page and the tail page. 1575 * We are going to adapt the reader page update process where: 1576 * 1. We first splice the start and end of list of new pages between 1577 * the head page and its previous page. 1578 * 2. We cmpxchg the prev_page->next to point from head page to the 1579 * start of new pages list. 1580 * 3. Finally, we update the head->prev to the end of new list. 1581 * 1582 * We will try this process 10 times, to make sure that we don't keep 1583 * spinning. 1584 */ 1585 retries = 10; 1586 success = 0; 1587 while (retries--) { 1588 struct list_head *head_page, *prev_page, *r; 1589 struct list_head *last_page, *first_page; 1590 struct list_head *head_page_with_bit; 1591 1592 head_page = &rb_set_head_page(cpu_buffer)->list; 1593 if (!head_page) 1594 break; 1595 prev_page = head_page->prev; 1596 1597 first_page = pages->next; 1598 last_page = pages->prev; 1599 1600 head_page_with_bit = (struct list_head *) 1601 ((unsigned long)head_page | RB_PAGE_HEAD); 1602 1603 last_page->next = head_page_with_bit; 1604 first_page->prev = prev_page; 1605 1606 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1607 1608 if (r == head_page_with_bit) { 1609 /* 1610 * yay, we replaced the page pointer to our new list, 1611 * now, we just have to update to head page's prev 1612 * pointer to point to end of list 1613 */ 1614 head_page->prev = last_page; 1615 success = 1; 1616 break; 1617 } 1618 } 1619 1620 if (success) 1621 INIT_LIST_HEAD(pages); 1622 /* 1623 * If we weren't successful in adding in new pages, warn and stop 1624 * tracing 1625 */ 1626 RB_WARN_ON(cpu_buffer, !success); 1627 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1628 1629 /* free pages if they weren't inserted */ 1630 if (!success) { 1631 struct buffer_page *bpage, *tmp; 1632 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1633 list) { 1634 list_del_init(&bpage->list); 1635 free_buffer_page(bpage); 1636 } 1637 } 1638 return success; 1639 } 1640 1641 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1642 { 1643 int success; 1644 1645 if (cpu_buffer->nr_pages_to_update > 0) 1646 success = rb_insert_pages(cpu_buffer); 1647 else 1648 success = rb_remove_pages(cpu_buffer, 1649 -cpu_buffer->nr_pages_to_update); 1650 1651 if (success) 1652 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1653 } 1654 1655 static void update_pages_handler(struct work_struct *work) 1656 { 1657 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1658 struct ring_buffer_per_cpu, update_pages_work); 1659 rb_update_pages(cpu_buffer); 1660 complete(&cpu_buffer->update_done); 1661 } 1662 1663 /** 1664 * ring_buffer_resize - resize the ring buffer 1665 * @buffer: the buffer to resize. 1666 * @size: the new size. 1667 * @cpu_id: the cpu buffer to resize 1668 * 1669 * Minimum size is 2 * BUF_PAGE_SIZE. 1670 * 1671 * Returns 0 on success and < 0 on failure. 1672 */ 1673 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1674 int cpu_id) 1675 { 1676 struct ring_buffer_per_cpu *cpu_buffer; 1677 unsigned nr_pages; 1678 int cpu, err = 0; 1679 1680 /* 1681 * Always succeed at resizing a non-existent buffer: 1682 */ 1683 if (!buffer) 1684 return size; 1685 1686 /* Make sure the requested buffer exists */ 1687 if (cpu_id != RING_BUFFER_ALL_CPUS && 1688 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1689 return size; 1690 1691 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1692 size *= BUF_PAGE_SIZE; 1693 1694 /* we need a minimum of two pages */ 1695 if (size < BUF_PAGE_SIZE * 2) 1696 size = BUF_PAGE_SIZE * 2; 1697 1698 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1699 1700 /* 1701 * Don't succeed if resizing is disabled, as a reader might be 1702 * manipulating the ring buffer and is expecting a sane state while 1703 * this is true. 1704 */ 1705 if (atomic_read(&buffer->resize_disabled)) 1706 return -EBUSY; 1707 1708 /* prevent another thread from changing buffer sizes */ 1709 mutex_lock(&buffer->mutex); 1710 1711 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1712 /* calculate the pages to update */ 1713 for_each_buffer_cpu(buffer, cpu) { 1714 cpu_buffer = buffer->buffers[cpu]; 1715 1716 cpu_buffer->nr_pages_to_update = nr_pages - 1717 cpu_buffer->nr_pages; 1718 /* 1719 * nothing more to do for removing pages or no update 1720 */ 1721 if (cpu_buffer->nr_pages_to_update <= 0) 1722 continue; 1723 /* 1724 * to add pages, make sure all new pages can be 1725 * allocated without receiving ENOMEM 1726 */ 1727 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1728 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1729 &cpu_buffer->new_pages, cpu)) { 1730 /* not enough memory for new pages */ 1731 err = -ENOMEM; 1732 goto out_err; 1733 } 1734 } 1735 1736 get_online_cpus(); 1737 /* 1738 * Fire off all the required work handlers 1739 * We can't schedule on offline CPUs, but it's not necessary 1740 * since we can change their buffer sizes without any race. 1741 */ 1742 for_each_buffer_cpu(buffer, cpu) { 1743 cpu_buffer = buffer->buffers[cpu]; 1744 if (!cpu_buffer->nr_pages_to_update) 1745 continue; 1746 1747 /* Can't run something on an offline CPU. */ 1748 if (!cpu_online(cpu)) { 1749 rb_update_pages(cpu_buffer); 1750 cpu_buffer->nr_pages_to_update = 0; 1751 } else { 1752 schedule_work_on(cpu, 1753 &cpu_buffer->update_pages_work); 1754 } 1755 } 1756 1757 /* wait for all the updates to complete */ 1758 for_each_buffer_cpu(buffer, cpu) { 1759 cpu_buffer = buffer->buffers[cpu]; 1760 if (!cpu_buffer->nr_pages_to_update) 1761 continue; 1762 1763 if (cpu_online(cpu)) 1764 wait_for_completion(&cpu_buffer->update_done); 1765 cpu_buffer->nr_pages_to_update = 0; 1766 } 1767 1768 put_online_cpus(); 1769 } else { 1770 /* Make sure this CPU has been intitialized */ 1771 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1772 goto out; 1773 1774 cpu_buffer = buffer->buffers[cpu_id]; 1775 1776 if (nr_pages == cpu_buffer->nr_pages) 1777 goto out; 1778 1779 cpu_buffer->nr_pages_to_update = nr_pages - 1780 cpu_buffer->nr_pages; 1781 1782 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1783 if (cpu_buffer->nr_pages_to_update > 0 && 1784 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1785 &cpu_buffer->new_pages, cpu_id)) { 1786 err = -ENOMEM; 1787 goto out_err; 1788 } 1789 1790 get_online_cpus(); 1791 1792 /* Can't run something on an offline CPU. */ 1793 if (!cpu_online(cpu_id)) 1794 rb_update_pages(cpu_buffer); 1795 else { 1796 schedule_work_on(cpu_id, 1797 &cpu_buffer->update_pages_work); 1798 wait_for_completion(&cpu_buffer->update_done); 1799 } 1800 1801 cpu_buffer->nr_pages_to_update = 0; 1802 put_online_cpus(); 1803 } 1804 1805 out: 1806 /* 1807 * The ring buffer resize can happen with the ring buffer 1808 * enabled, so that the update disturbs the tracing as little 1809 * as possible. But if the buffer is disabled, we do not need 1810 * to worry about that, and we can take the time to verify 1811 * that the buffer is not corrupt. 1812 */ 1813 if (atomic_read(&buffer->record_disabled)) { 1814 atomic_inc(&buffer->record_disabled); 1815 /* 1816 * Even though the buffer was disabled, we must make sure 1817 * that it is truly disabled before calling rb_check_pages. 1818 * There could have been a race between checking 1819 * record_disable and incrementing it. 1820 */ 1821 synchronize_sched(); 1822 for_each_buffer_cpu(buffer, cpu) { 1823 cpu_buffer = buffer->buffers[cpu]; 1824 rb_check_pages(cpu_buffer); 1825 } 1826 atomic_dec(&buffer->record_disabled); 1827 } 1828 1829 mutex_unlock(&buffer->mutex); 1830 return size; 1831 1832 out_err: 1833 for_each_buffer_cpu(buffer, cpu) { 1834 struct buffer_page *bpage, *tmp; 1835 1836 cpu_buffer = buffer->buffers[cpu]; 1837 cpu_buffer->nr_pages_to_update = 0; 1838 1839 if (list_empty(&cpu_buffer->new_pages)) 1840 continue; 1841 1842 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1843 list) { 1844 list_del_init(&bpage->list); 1845 free_buffer_page(bpage); 1846 } 1847 } 1848 mutex_unlock(&buffer->mutex); 1849 return err; 1850 } 1851 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1852 1853 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1854 { 1855 mutex_lock(&buffer->mutex); 1856 if (val) 1857 buffer->flags |= RB_FL_OVERWRITE; 1858 else 1859 buffer->flags &= ~RB_FL_OVERWRITE; 1860 mutex_unlock(&buffer->mutex); 1861 } 1862 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1863 1864 static inline void * 1865 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1866 { 1867 return bpage->data + index; 1868 } 1869 1870 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1871 { 1872 return bpage->page->data + index; 1873 } 1874 1875 static inline struct ring_buffer_event * 1876 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1877 { 1878 return __rb_page_index(cpu_buffer->reader_page, 1879 cpu_buffer->reader_page->read); 1880 } 1881 1882 static inline struct ring_buffer_event * 1883 rb_iter_head_event(struct ring_buffer_iter *iter) 1884 { 1885 return __rb_page_index(iter->head_page, iter->head); 1886 } 1887 1888 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1889 { 1890 return local_read(&bpage->page->commit); 1891 } 1892 1893 /* Size is determined by what has been committed */ 1894 static inline unsigned rb_page_size(struct buffer_page *bpage) 1895 { 1896 return rb_page_commit(bpage); 1897 } 1898 1899 static inline unsigned 1900 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1901 { 1902 return rb_page_commit(cpu_buffer->commit_page); 1903 } 1904 1905 static inline unsigned 1906 rb_event_index(struct ring_buffer_event *event) 1907 { 1908 unsigned long addr = (unsigned long)event; 1909 1910 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1911 } 1912 1913 static inline int 1914 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1915 struct ring_buffer_event *event) 1916 { 1917 unsigned long addr = (unsigned long)event; 1918 unsigned long index; 1919 1920 index = rb_event_index(event); 1921 addr &= PAGE_MASK; 1922 1923 return cpu_buffer->commit_page->page == (void *)addr && 1924 rb_commit_index(cpu_buffer) == index; 1925 } 1926 1927 static void 1928 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1929 { 1930 unsigned long max_count; 1931 1932 /* 1933 * We only race with interrupts and NMIs on this CPU. 1934 * If we own the commit event, then we can commit 1935 * all others that interrupted us, since the interruptions 1936 * are in stack format (they finish before they come 1937 * back to us). This allows us to do a simple loop to 1938 * assign the commit to the tail. 1939 */ 1940 again: 1941 max_count = cpu_buffer->nr_pages * 100; 1942 1943 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1944 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1945 return; 1946 if (RB_WARN_ON(cpu_buffer, 1947 rb_is_reader_page(cpu_buffer->tail_page))) 1948 return; 1949 local_set(&cpu_buffer->commit_page->page->commit, 1950 rb_page_write(cpu_buffer->commit_page)); 1951 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1952 cpu_buffer->write_stamp = 1953 cpu_buffer->commit_page->page->time_stamp; 1954 /* add barrier to keep gcc from optimizing too much */ 1955 barrier(); 1956 } 1957 while (rb_commit_index(cpu_buffer) != 1958 rb_page_write(cpu_buffer->commit_page)) { 1959 1960 local_set(&cpu_buffer->commit_page->page->commit, 1961 rb_page_write(cpu_buffer->commit_page)); 1962 RB_WARN_ON(cpu_buffer, 1963 local_read(&cpu_buffer->commit_page->page->commit) & 1964 ~RB_WRITE_MASK); 1965 barrier(); 1966 } 1967 1968 /* again, keep gcc from optimizing */ 1969 barrier(); 1970 1971 /* 1972 * If an interrupt came in just after the first while loop 1973 * and pushed the tail page forward, we will be left with 1974 * a dangling commit that will never go forward. 1975 */ 1976 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1977 goto again; 1978 } 1979 1980 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1981 { 1982 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1983 cpu_buffer->reader_page->read = 0; 1984 } 1985 1986 static void rb_inc_iter(struct ring_buffer_iter *iter) 1987 { 1988 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1989 1990 /* 1991 * The iterator could be on the reader page (it starts there). 1992 * But the head could have moved, since the reader was 1993 * found. Check for this case and assign the iterator 1994 * to the head page instead of next. 1995 */ 1996 if (iter->head_page == cpu_buffer->reader_page) 1997 iter->head_page = rb_set_head_page(cpu_buffer); 1998 else 1999 rb_inc_page(cpu_buffer, &iter->head_page); 2000 2001 iter->read_stamp = iter->head_page->page->time_stamp; 2002 iter->head = 0; 2003 } 2004 2005 /* Slow path, do not inline */ 2006 static noinline struct ring_buffer_event * 2007 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2008 { 2009 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2010 2011 /* Not the first event on the page? */ 2012 if (rb_event_index(event)) { 2013 event->time_delta = delta & TS_MASK; 2014 event->array[0] = delta >> TS_SHIFT; 2015 } else { 2016 /* nope, just zero it */ 2017 event->time_delta = 0; 2018 event->array[0] = 0; 2019 } 2020 2021 return skip_time_extend(event); 2022 } 2023 2024 /** 2025 * rb_update_event - update event type and data 2026 * @event: the event to update 2027 * @type: the type of event 2028 * @length: the size of the event field in the ring buffer 2029 * 2030 * Update the type and data fields of the event. The length 2031 * is the actual size that is written to the ring buffer, 2032 * and with this, we can determine what to place into the 2033 * data field. 2034 */ 2035 static void 2036 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2037 struct ring_buffer_event *event, unsigned length, 2038 int add_timestamp, u64 delta) 2039 { 2040 /* Only a commit updates the timestamp */ 2041 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2042 delta = 0; 2043 2044 /* 2045 * If we need to add a timestamp, then we 2046 * add it to the start of the resevered space. 2047 */ 2048 if (unlikely(add_timestamp)) { 2049 event = rb_add_time_stamp(event, delta); 2050 length -= RB_LEN_TIME_EXTEND; 2051 delta = 0; 2052 } 2053 2054 event->time_delta = delta; 2055 length -= RB_EVNT_HDR_SIZE; 2056 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2057 event->type_len = 0; 2058 event->array[0] = length; 2059 } else 2060 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2061 } 2062 2063 /* 2064 * rb_handle_head_page - writer hit the head page 2065 * 2066 * Returns: +1 to retry page 2067 * 0 to continue 2068 * -1 on error 2069 */ 2070 static int 2071 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2072 struct buffer_page *tail_page, 2073 struct buffer_page *next_page) 2074 { 2075 struct buffer_page *new_head; 2076 int entries; 2077 int type; 2078 int ret; 2079 2080 entries = rb_page_entries(next_page); 2081 2082 /* 2083 * The hard part is here. We need to move the head 2084 * forward, and protect against both readers on 2085 * other CPUs and writers coming in via interrupts. 2086 */ 2087 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2088 RB_PAGE_HEAD); 2089 2090 /* 2091 * type can be one of four: 2092 * NORMAL - an interrupt already moved it for us 2093 * HEAD - we are the first to get here. 2094 * UPDATE - we are the interrupt interrupting 2095 * a current move. 2096 * MOVED - a reader on another CPU moved the next 2097 * pointer to its reader page. Give up 2098 * and try again. 2099 */ 2100 2101 switch (type) { 2102 case RB_PAGE_HEAD: 2103 /* 2104 * We changed the head to UPDATE, thus 2105 * it is our responsibility to update 2106 * the counters. 2107 */ 2108 local_add(entries, &cpu_buffer->overrun); 2109 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2110 2111 /* 2112 * The entries will be zeroed out when we move the 2113 * tail page. 2114 */ 2115 2116 /* still more to do */ 2117 break; 2118 2119 case RB_PAGE_UPDATE: 2120 /* 2121 * This is an interrupt that interrupt the 2122 * previous update. Still more to do. 2123 */ 2124 break; 2125 case RB_PAGE_NORMAL: 2126 /* 2127 * An interrupt came in before the update 2128 * and processed this for us. 2129 * Nothing left to do. 2130 */ 2131 return 1; 2132 case RB_PAGE_MOVED: 2133 /* 2134 * The reader is on another CPU and just did 2135 * a swap with our next_page. 2136 * Try again. 2137 */ 2138 return 1; 2139 default: 2140 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2141 return -1; 2142 } 2143 2144 /* 2145 * Now that we are here, the old head pointer is 2146 * set to UPDATE. This will keep the reader from 2147 * swapping the head page with the reader page. 2148 * The reader (on another CPU) will spin till 2149 * we are finished. 2150 * 2151 * We just need to protect against interrupts 2152 * doing the job. We will set the next pointer 2153 * to HEAD. After that, we set the old pointer 2154 * to NORMAL, but only if it was HEAD before. 2155 * otherwise we are an interrupt, and only 2156 * want the outer most commit to reset it. 2157 */ 2158 new_head = next_page; 2159 rb_inc_page(cpu_buffer, &new_head); 2160 2161 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2162 RB_PAGE_NORMAL); 2163 2164 /* 2165 * Valid returns are: 2166 * HEAD - an interrupt came in and already set it. 2167 * NORMAL - One of two things: 2168 * 1) We really set it. 2169 * 2) A bunch of interrupts came in and moved 2170 * the page forward again. 2171 */ 2172 switch (ret) { 2173 case RB_PAGE_HEAD: 2174 case RB_PAGE_NORMAL: 2175 /* OK */ 2176 break; 2177 default: 2178 RB_WARN_ON(cpu_buffer, 1); 2179 return -1; 2180 } 2181 2182 /* 2183 * It is possible that an interrupt came in, 2184 * set the head up, then more interrupts came in 2185 * and moved it again. When we get back here, 2186 * the page would have been set to NORMAL but we 2187 * just set it back to HEAD. 2188 * 2189 * How do you detect this? Well, if that happened 2190 * the tail page would have moved. 2191 */ 2192 if (ret == RB_PAGE_NORMAL) { 2193 /* 2194 * If the tail had moved passed next, then we need 2195 * to reset the pointer. 2196 */ 2197 if (cpu_buffer->tail_page != tail_page && 2198 cpu_buffer->tail_page != next_page) 2199 rb_head_page_set_normal(cpu_buffer, new_head, 2200 next_page, 2201 RB_PAGE_HEAD); 2202 } 2203 2204 /* 2205 * If this was the outer most commit (the one that 2206 * changed the original pointer from HEAD to UPDATE), 2207 * then it is up to us to reset it to NORMAL. 2208 */ 2209 if (type == RB_PAGE_HEAD) { 2210 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2211 tail_page, 2212 RB_PAGE_UPDATE); 2213 if (RB_WARN_ON(cpu_buffer, 2214 ret != RB_PAGE_UPDATE)) 2215 return -1; 2216 } 2217 2218 return 0; 2219 } 2220 2221 static unsigned rb_calculate_event_length(unsigned length) 2222 { 2223 struct ring_buffer_event event; /* Used only for sizeof array */ 2224 2225 /* zero length can cause confusions */ 2226 if (!length) 2227 length = 1; 2228 2229 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2230 length += sizeof(event.array[0]); 2231 2232 length += RB_EVNT_HDR_SIZE; 2233 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2234 2235 return length; 2236 } 2237 2238 static inline void 2239 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2240 struct buffer_page *tail_page, 2241 unsigned long tail, unsigned long length) 2242 { 2243 struct ring_buffer_event *event; 2244 2245 /* 2246 * Only the event that crossed the page boundary 2247 * must fill the old tail_page with padding. 2248 */ 2249 if (tail >= BUF_PAGE_SIZE) { 2250 /* 2251 * If the page was filled, then we still need 2252 * to update the real_end. Reset it to zero 2253 * and the reader will ignore it. 2254 */ 2255 if (tail == BUF_PAGE_SIZE) 2256 tail_page->real_end = 0; 2257 2258 local_sub(length, &tail_page->write); 2259 return; 2260 } 2261 2262 event = __rb_page_index(tail_page, tail); 2263 kmemcheck_annotate_bitfield(event, bitfield); 2264 2265 /* account for padding bytes */ 2266 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2267 2268 /* 2269 * Save the original length to the meta data. 2270 * This will be used by the reader to add lost event 2271 * counter. 2272 */ 2273 tail_page->real_end = tail; 2274 2275 /* 2276 * If this event is bigger than the minimum size, then 2277 * we need to be careful that we don't subtract the 2278 * write counter enough to allow another writer to slip 2279 * in on this page. 2280 * We put in a discarded commit instead, to make sure 2281 * that this space is not used again. 2282 * 2283 * If we are less than the minimum size, we don't need to 2284 * worry about it. 2285 */ 2286 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2287 /* No room for any events */ 2288 2289 /* Mark the rest of the page with padding */ 2290 rb_event_set_padding(event); 2291 2292 /* Set the write back to the previous setting */ 2293 local_sub(length, &tail_page->write); 2294 return; 2295 } 2296 2297 /* Put in a discarded event */ 2298 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2299 event->type_len = RINGBUF_TYPE_PADDING; 2300 /* time delta must be non zero */ 2301 event->time_delta = 1; 2302 2303 /* Set write to end of buffer */ 2304 length = (tail + length) - BUF_PAGE_SIZE; 2305 local_sub(length, &tail_page->write); 2306 } 2307 2308 /* 2309 * This is the slow path, force gcc not to inline it. 2310 */ 2311 static noinline struct ring_buffer_event * 2312 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2313 unsigned long length, unsigned long tail, 2314 struct buffer_page *tail_page, u64 ts) 2315 { 2316 struct buffer_page *commit_page = cpu_buffer->commit_page; 2317 struct ring_buffer *buffer = cpu_buffer->buffer; 2318 struct buffer_page *next_page; 2319 int ret; 2320 2321 next_page = tail_page; 2322 2323 rb_inc_page(cpu_buffer, &next_page); 2324 2325 /* 2326 * If for some reason, we had an interrupt storm that made 2327 * it all the way around the buffer, bail, and warn 2328 * about it. 2329 */ 2330 if (unlikely(next_page == commit_page)) { 2331 local_inc(&cpu_buffer->commit_overrun); 2332 goto out_reset; 2333 } 2334 2335 /* 2336 * This is where the fun begins! 2337 * 2338 * We are fighting against races between a reader that 2339 * could be on another CPU trying to swap its reader 2340 * page with the buffer head. 2341 * 2342 * We are also fighting against interrupts coming in and 2343 * moving the head or tail on us as well. 2344 * 2345 * If the next page is the head page then we have filled 2346 * the buffer, unless the commit page is still on the 2347 * reader page. 2348 */ 2349 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2350 2351 /* 2352 * If the commit is not on the reader page, then 2353 * move the header page. 2354 */ 2355 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2356 /* 2357 * If we are not in overwrite mode, 2358 * this is easy, just stop here. 2359 */ 2360 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2361 local_inc(&cpu_buffer->dropped_events); 2362 goto out_reset; 2363 } 2364 2365 ret = rb_handle_head_page(cpu_buffer, 2366 tail_page, 2367 next_page); 2368 if (ret < 0) 2369 goto out_reset; 2370 if (ret) 2371 goto out_again; 2372 } else { 2373 /* 2374 * We need to be careful here too. The 2375 * commit page could still be on the reader 2376 * page. We could have a small buffer, and 2377 * have filled up the buffer with events 2378 * from interrupts and such, and wrapped. 2379 * 2380 * Note, if the tail page is also the on the 2381 * reader_page, we let it move out. 2382 */ 2383 if (unlikely((cpu_buffer->commit_page != 2384 cpu_buffer->tail_page) && 2385 (cpu_buffer->commit_page == 2386 cpu_buffer->reader_page))) { 2387 local_inc(&cpu_buffer->commit_overrun); 2388 goto out_reset; 2389 } 2390 } 2391 } 2392 2393 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2394 if (ret) { 2395 /* 2396 * Nested commits always have zero deltas, so 2397 * just reread the time stamp 2398 */ 2399 ts = rb_time_stamp(buffer); 2400 next_page->page->time_stamp = ts; 2401 } 2402 2403 out_again: 2404 2405 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2406 2407 /* fail and let the caller try again */ 2408 return ERR_PTR(-EAGAIN); 2409 2410 out_reset: 2411 /* reset write */ 2412 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2413 2414 return NULL; 2415 } 2416 2417 static struct ring_buffer_event * 2418 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2419 unsigned long length, u64 ts, 2420 u64 delta, int add_timestamp) 2421 { 2422 struct buffer_page *tail_page; 2423 struct ring_buffer_event *event; 2424 unsigned long tail, write; 2425 2426 /* 2427 * If the time delta since the last event is too big to 2428 * hold in the time field of the event, then we append a 2429 * TIME EXTEND event ahead of the data event. 2430 */ 2431 if (unlikely(add_timestamp)) 2432 length += RB_LEN_TIME_EXTEND; 2433 2434 tail_page = cpu_buffer->tail_page; 2435 write = local_add_return(length, &tail_page->write); 2436 2437 /* set write to only the index of the write */ 2438 write &= RB_WRITE_MASK; 2439 tail = write - length; 2440 2441 /* 2442 * If this is the first commit on the page, then it has the same 2443 * timestamp as the page itself. 2444 */ 2445 if (!tail) 2446 delta = 0; 2447 2448 /* See if we shot pass the end of this buffer page */ 2449 if (unlikely(write > BUF_PAGE_SIZE)) 2450 return rb_move_tail(cpu_buffer, length, tail, 2451 tail_page, ts); 2452 2453 /* We reserved something on the buffer */ 2454 2455 event = __rb_page_index(tail_page, tail); 2456 kmemcheck_annotate_bitfield(event, bitfield); 2457 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2458 2459 local_inc(&tail_page->entries); 2460 2461 /* 2462 * If this is the first commit on the page, then update 2463 * its timestamp. 2464 */ 2465 if (!tail) 2466 tail_page->page->time_stamp = ts; 2467 2468 /* account for these added bytes */ 2469 local_add(length, &cpu_buffer->entries_bytes); 2470 2471 return event; 2472 } 2473 2474 static inline int 2475 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2476 struct ring_buffer_event *event) 2477 { 2478 unsigned long new_index, old_index; 2479 struct buffer_page *bpage; 2480 unsigned long index; 2481 unsigned long addr; 2482 2483 new_index = rb_event_index(event); 2484 old_index = new_index + rb_event_ts_length(event); 2485 addr = (unsigned long)event; 2486 addr &= PAGE_MASK; 2487 2488 bpage = cpu_buffer->tail_page; 2489 2490 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2491 unsigned long write_mask = 2492 local_read(&bpage->write) & ~RB_WRITE_MASK; 2493 unsigned long event_length = rb_event_length(event); 2494 /* 2495 * This is on the tail page. It is possible that 2496 * a write could come in and move the tail page 2497 * and write to the next page. That is fine 2498 * because we just shorten what is on this page. 2499 */ 2500 old_index += write_mask; 2501 new_index += write_mask; 2502 index = local_cmpxchg(&bpage->write, old_index, new_index); 2503 if (index == old_index) { 2504 /* update counters */ 2505 local_sub(event_length, &cpu_buffer->entries_bytes); 2506 return 1; 2507 } 2508 } 2509 2510 /* could not discard */ 2511 return 0; 2512 } 2513 2514 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2515 { 2516 local_inc(&cpu_buffer->committing); 2517 local_inc(&cpu_buffer->commits); 2518 } 2519 2520 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2521 { 2522 unsigned long commits; 2523 2524 if (RB_WARN_ON(cpu_buffer, 2525 !local_read(&cpu_buffer->committing))) 2526 return; 2527 2528 again: 2529 commits = local_read(&cpu_buffer->commits); 2530 /* synchronize with interrupts */ 2531 barrier(); 2532 if (local_read(&cpu_buffer->committing) == 1) 2533 rb_set_commit_to_write(cpu_buffer); 2534 2535 local_dec(&cpu_buffer->committing); 2536 2537 /* synchronize with interrupts */ 2538 barrier(); 2539 2540 /* 2541 * Need to account for interrupts coming in between the 2542 * updating of the commit page and the clearing of the 2543 * committing counter. 2544 */ 2545 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2546 !local_read(&cpu_buffer->committing)) { 2547 local_inc(&cpu_buffer->committing); 2548 goto again; 2549 } 2550 } 2551 2552 static struct ring_buffer_event * 2553 rb_reserve_next_event(struct ring_buffer *buffer, 2554 struct ring_buffer_per_cpu *cpu_buffer, 2555 unsigned long length) 2556 { 2557 struct ring_buffer_event *event; 2558 u64 ts, delta; 2559 int nr_loops = 0; 2560 int add_timestamp; 2561 u64 diff; 2562 2563 rb_start_commit(cpu_buffer); 2564 2565 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2566 /* 2567 * Due to the ability to swap a cpu buffer from a buffer 2568 * it is possible it was swapped before we committed. 2569 * (committing stops a swap). We check for it here and 2570 * if it happened, we have to fail the write. 2571 */ 2572 barrier(); 2573 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2574 local_dec(&cpu_buffer->committing); 2575 local_dec(&cpu_buffer->commits); 2576 return NULL; 2577 } 2578 #endif 2579 2580 length = rb_calculate_event_length(length); 2581 again: 2582 add_timestamp = 0; 2583 delta = 0; 2584 2585 /* 2586 * We allow for interrupts to reenter here and do a trace. 2587 * If one does, it will cause this original code to loop 2588 * back here. Even with heavy interrupts happening, this 2589 * should only happen a few times in a row. If this happens 2590 * 1000 times in a row, there must be either an interrupt 2591 * storm or we have something buggy. 2592 * Bail! 2593 */ 2594 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2595 goto out_fail; 2596 2597 ts = rb_time_stamp(cpu_buffer->buffer); 2598 diff = ts - cpu_buffer->write_stamp; 2599 2600 /* make sure this diff is calculated here */ 2601 barrier(); 2602 2603 /* Did the write stamp get updated already? */ 2604 if (likely(ts >= cpu_buffer->write_stamp)) { 2605 delta = diff; 2606 if (unlikely(test_time_stamp(delta))) { 2607 int local_clock_stable = 1; 2608 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2609 local_clock_stable = sched_clock_stable(); 2610 #endif 2611 WARN_ONCE(delta > (1ULL << 59), 2612 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2613 (unsigned long long)delta, 2614 (unsigned long long)ts, 2615 (unsigned long long)cpu_buffer->write_stamp, 2616 local_clock_stable ? "" : 2617 "If you just came from a suspend/resume,\n" 2618 "please switch to the trace global clock:\n" 2619 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2620 add_timestamp = 1; 2621 } 2622 } 2623 2624 event = __rb_reserve_next(cpu_buffer, length, ts, 2625 delta, add_timestamp); 2626 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2627 goto again; 2628 2629 if (!event) 2630 goto out_fail; 2631 2632 return event; 2633 2634 out_fail: 2635 rb_end_commit(cpu_buffer); 2636 return NULL; 2637 } 2638 2639 #ifdef CONFIG_TRACING 2640 2641 /* 2642 * The lock and unlock are done within a preempt disable section. 2643 * The current_context per_cpu variable can only be modified 2644 * by the current task between lock and unlock. But it can 2645 * be modified more than once via an interrupt. To pass this 2646 * information from the lock to the unlock without having to 2647 * access the 'in_interrupt()' functions again (which do show 2648 * a bit of overhead in something as critical as function tracing, 2649 * we use a bitmask trick. 2650 * 2651 * bit 0 = NMI context 2652 * bit 1 = IRQ context 2653 * bit 2 = SoftIRQ context 2654 * bit 3 = normal context. 2655 * 2656 * This works because this is the order of contexts that can 2657 * preempt other contexts. A SoftIRQ never preempts an IRQ 2658 * context. 2659 * 2660 * When the context is determined, the corresponding bit is 2661 * checked and set (if it was set, then a recursion of that context 2662 * happened). 2663 * 2664 * On unlock, we need to clear this bit. To do so, just subtract 2665 * 1 from the current_context and AND it to itself. 2666 * 2667 * (binary) 2668 * 101 - 1 = 100 2669 * 101 & 100 = 100 (clearing bit zero) 2670 * 2671 * 1010 - 1 = 1001 2672 * 1010 & 1001 = 1000 (clearing bit 1) 2673 * 2674 * The least significant bit can be cleared this way, and it 2675 * just so happens that it is the same bit corresponding to 2676 * the current context. 2677 */ 2678 static DEFINE_PER_CPU(unsigned int, current_context); 2679 2680 static __always_inline int trace_recursive_lock(void) 2681 { 2682 unsigned int val = __this_cpu_read(current_context); 2683 int bit; 2684 2685 if (in_interrupt()) { 2686 if (in_nmi()) 2687 bit = 0; 2688 else if (in_irq()) 2689 bit = 1; 2690 else 2691 bit = 2; 2692 } else 2693 bit = 3; 2694 2695 if (unlikely(val & (1 << bit))) 2696 return 1; 2697 2698 val |= (1 << bit); 2699 __this_cpu_write(current_context, val); 2700 2701 return 0; 2702 } 2703 2704 static __always_inline void trace_recursive_unlock(void) 2705 { 2706 __this_cpu_and(current_context, __this_cpu_read(current_context) - 1); 2707 } 2708 2709 #else 2710 2711 #define trace_recursive_lock() (0) 2712 #define trace_recursive_unlock() do { } while (0) 2713 2714 #endif 2715 2716 /** 2717 * ring_buffer_lock_reserve - reserve a part of the buffer 2718 * @buffer: the ring buffer to reserve from 2719 * @length: the length of the data to reserve (excluding event header) 2720 * 2721 * Returns a reseverd event on the ring buffer to copy directly to. 2722 * The user of this interface will need to get the body to write into 2723 * and can use the ring_buffer_event_data() interface. 2724 * 2725 * The length is the length of the data needed, not the event length 2726 * which also includes the event header. 2727 * 2728 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2729 * If NULL is returned, then nothing has been allocated or locked. 2730 */ 2731 struct ring_buffer_event * 2732 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2733 { 2734 struct ring_buffer_per_cpu *cpu_buffer; 2735 struct ring_buffer_event *event; 2736 int cpu; 2737 2738 if (ring_buffer_flags != RB_BUFFERS_ON) 2739 return NULL; 2740 2741 /* If we are tracing schedule, we don't want to recurse */ 2742 preempt_disable_notrace(); 2743 2744 if (atomic_read(&buffer->record_disabled)) 2745 goto out_nocheck; 2746 2747 if (trace_recursive_lock()) 2748 goto out_nocheck; 2749 2750 cpu = raw_smp_processor_id(); 2751 2752 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2753 goto out; 2754 2755 cpu_buffer = buffer->buffers[cpu]; 2756 2757 if (atomic_read(&cpu_buffer->record_disabled)) 2758 goto out; 2759 2760 if (length > BUF_MAX_DATA_SIZE) 2761 goto out; 2762 2763 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2764 if (!event) 2765 goto out; 2766 2767 return event; 2768 2769 out: 2770 trace_recursive_unlock(); 2771 2772 out_nocheck: 2773 preempt_enable_notrace(); 2774 return NULL; 2775 } 2776 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2777 2778 static void 2779 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2780 struct ring_buffer_event *event) 2781 { 2782 u64 delta; 2783 2784 /* 2785 * The event first in the commit queue updates the 2786 * time stamp. 2787 */ 2788 if (rb_event_is_commit(cpu_buffer, event)) { 2789 /* 2790 * A commit event that is first on a page 2791 * updates the write timestamp with the page stamp 2792 */ 2793 if (!rb_event_index(event)) 2794 cpu_buffer->write_stamp = 2795 cpu_buffer->commit_page->page->time_stamp; 2796 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2797 delta = event->array[0]; 2798 delta <<= TS_SHIFT; 2799 delta += event->time_delta; 2800 cpu_buffer->write_stamp += delta; 2801 } else 2802 cpu_buffer->write_stamp += event->time_delta; 2803 } 2804 } 2805 2806 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2807 struct ring_buffer_event *event) 2808 { 2809 local_inc(&cpu_buffer->entries); 2810 rb_update_write_stamp(cpu_buffer, event); 2811 rb_end_commit(cpu_buffer); 2812 } 2813 2814 static __always_inline void 2815 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2816 { 2817 bool pagebusy; 2818 2819 if (buffer->irq_work.waiters_pending) { 2820 buffer->irq_work.waiters_pending = false; 2821 /* irq_work_queue() supplies it's own memory barriers */ 2822 irq_work_queue(&buffer->irq_work.work); 2823 } 2824 2825 if (cpu_buffer->irq_work.waiters_pending) { 2826 cpu_buffer->irq_work.waiters_pending = false; 2827 /* irq_work_queue() supplies it's own memory barriers */ 2828 irq_work_queue(&cpu_buffer->irq_work.work); 2829 } 2830 2831 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2832 2833 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2834 cpu_buffer->irq_work.wakeup_full = true; 2835 cpu_buffer->irq_work.full_waiters_pending = false; 2836 /* irq_work_queue() supplies it's own memory barriers */ 2837 irq_work_queue(&cpu_buffer->irq_work.work); 2838 } 2839 } 2840 2841 /** 2842 * ring_buffer_unlock_commit - commit a reserved 2843 * @buffer: The buffer to commit to 2844 * @event: The event pointer to commit. 2845 * 2846 * This commits the data to the ring buffer, and releases any locks held. 2847 * 2848 * Must be paired with ring_buffer_lock_reserve. 2849 */ 2850 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2851 struct ring_buffer_event *event) 2852 { 2853 struct ring_buffer_per_cpu *cpu_buffer; 2854 int cpu = raw_smp_processor_id(); 2855 2856 cpu_buffer = buffer->buffers[cpu]; 2857 2858 rb_commit(cpu_buffer, event); 2859 2860 rb_wakeups(buffer, cpu_buffer); 2861 2862 trace_recursive_unlock(); 2863 2864 preempt_enable_notrace(); 2865 2866 return 0; 2867 } 2868 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2869 2870 static inline void rb_event_discard(struct ring_buffer_event *event) 2871 { 2872 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2873 event = skip_time_extend(event); 2874 2875 /* array[0] holds the actual length for the discarded event */ 2876 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2877 event->type_len = RINGBUF_TYPE_PADDING; 2878 /* time delta must be non zero */ 2879 if (!event->time_delta) 2880 event->time_delta = 1; 2881 } 2882 2883 /* 2884 * Decrement the entries to the page that an event is on. 2885 * The event does not even need to exist, only the pointer 2886 * to the page it is on. This may only be called before the commit 2887 * takes place. 2888 */ 2889 static inline void 2890 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2891 struct ring_buffer_event *event) 2892 { 2893 unsigned long addr = (unsigned long)event; 2894 struct buffer_page *bpage = cpu_buffer->commit_page; 2895 struct buffer_page *start; 2896 2897 addr &= PAGE_MASK; 2898 2899 /* Do the likely case first */ 2900 if (likely(bpage->page == (void *)addr)) { 2901 local_dec(&bpage->entries); 2902 return; 2903 } 2904 2905 /* 2906 * Because the commit page may be on the reader page we 2907 * start with the next page and check the end loop there. 2908 */ 2909 rb_inc_page(cpu_buffer, &bpage); 2910 start = bpage; 2911 do { 2912 if (bpage->page == (void *)addr) { 2913 local_dec(&bpage->entries); 2914 return; 2915 } 2916 rb_inc_page(cpu_buffer, &bpage); 2917 } while (bpage != start); 2918 2919 /* commit not part of this buffer?? */ 2920 RB_WARN_ON(cpu_buffer, 1); 2921 } 2922 2923 /** 2924 * ring_buffer_commit_discard - discard an event that has not been committed 2925 * @buffer: the ring buffer 2926 * @event: non committed event to discard 2927 * 2928 * Sometimes an event that is in the ring buffer needs to be ignored. 2929 * This function lets the user discard an event in the ring buffer 2930 * and then that event will not be read later. 2931 * 2932 * This function only works if it is called before the the item has been 2933 * committed. It will try to free the event from the ring buffer 2934 * if another event has not been added behind it. 2935 * 2936 * If another event has been added behind it, it will set the event 2937 * up as discarded, and perform the commit. 2938 * 2939 * If this function is called, do not call ring_buffer_unlock_commit on 2940 * the event. 2941 */ 2942 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2943 struct ring_buffer_event *event) 2944 { 2945 struct ring_buffer_per_cpu *cpu_buffer; 2946 int cpu; 2947 2948 /* The event is discarded regardless */ 2949 rb_event_discard(event); 2950 2951 cpu = smp_processor_id(); 2952 cpu_buffer = buffer->buffers[cpu]; 2953 2954 /* 2955 * This must only be called if the event has not been 2956 * committed yet. Thus we can assume that preemption 2957 * is still disabled. 2958 */ 2959 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2960 2961 rb_decrement_entry(cpu_buffer, event); 2962 if (rb_try_to_discard(cpu_buffer, event)) 2963 goto out; 2964 2965 /* 2966 * The commit is still visible by the reader, so we 2967 * must still update the timestamp. 2968 */ 2969 rb_update_write_stamp(cpu_buffer, event); 2970 out: 2971 rb_end_commit(cpu_buffer); 2972 2973 trace_recursive_unlock(); 2974 2975 preempt_enable_notrace(); 2976 2977 } 2978 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2979 2980 /** 2981 * ring_buffer_write - write data to the buffer without reserving 2982 * @buffer: The ring buffer to write to. 2983 * @length: The length of the data being written (excluding the event header) 2984 * @data: The data to write to the buffer. 2985 * 2986 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2987 * one function. If you already have the data to write to the buffer, it 2988 * may be easier to simply call this function. 2989 * 2990 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2991 * and not the length of the event which would hold the header. 2992 */ 2993 int ring_buffer_write(struct ring_buffer *buffer, 2994 unsigned long length, 2995 void *data) 2996 { 2997 struct ring_buffer_per_cpu *cpu_buffer; 2998 struct ring_buffer_event *event; 2999 void *body; 3000 int ret = -EBUSY; 3001 int cpu; 3002 3003 if (ring_buffer_flags != RB_BUFFERS_ON) 3004 return -EBUSY; 3005 3006 preempt_disable_notrace(); 3007 3008 if (atomic_read(&buffer->record_disabled)) 3009 goto out; 3010 3011 cpu = raw_smp_processor_id(); 3012 3013 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3014 goto out; 3015 3016 cpu_buffer = buffer->buffers[cpu]; 3017 3018 if (atomic_read(&cpu_buffer->record_disabled)) 3019 goto out; 3020 3021 if (length > BUF_MAX_DATA_SIZE) 3022 goto out; 3023 3024 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3025 if (!event) 3026 goto out; 3027 3028 body = rb_event_data(event); 3029 3030 memcpy(body, data, length); 3031 3032 rb_commit(cpu_buffer, event); 3033 3034 rb_wakeups(buffer, cpu_buffer); 3035 3036 ret = 0; 3037 out: 3038 preempt_enable_notrace(); 3039 3040 return ret; 3041 } 3042 EXPORT_SYMBOL_GPL(ring_buffer_write); 3043 3044 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3045 { 3046 struct buffer_page *reader = cpu_buffer->reader_page; 3047 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3048 struct buffer_page *commit = cpu_buffer->commit_page; 3049 3050 /* In case of error, head will be NULL */ 3051 if (unlikely(!head)) 3052 return 1; 3053 3054 return reader->read == rb_page_commit(reader) && 3055 (commit == reader || 3056 (commit == head && 3057 head->read == rb_page_commit(commit))); 3058 } 3059 3060 /** 3061 * ring_buffer_record_disable - stop all writes into the buffer 3062 * @buffer: The ring buffer to stop writes to. 3063 * 3064 * This prevents all writes to the buffer. Any attempt to write 3065 * to the buffer after this will fail and return NULL. 3066 * 3067 * The caller should call synchronize_sched() after this. 3068 */ 3069 void ring_buffer_record_disable(struct ring_buffer *buffer) 3070 { 3071 atomic_inc(&buffer->record_disabled); 3072 } 3073 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3074 3075 /** 3076 * ring_buffer_record_enable - enable writes to the buffer 3077 * @buffer: The ring buffer to enable writes 3078 * 3079 * Note, multiple disables will need the same number of enables 3080 * to truly enable the writing (much like preempt_disable). 3081 */ 3082 void ring_buffer_record_enable(struct ring_buffer *buffer) 3083 { 3084 atomic_dec(&buffer->record_disabled); 3085 } 3086 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3087 3088 /** 3089 * ring_buffer_record_off - stop all writes into the buffer 3090 * @buffer: The ring buffer to stop writes to. 3091 * 3092 * This prevents all writes to the buffer. Any attempt to write 3093 * to the buffer after this will fail and return NULL. 3094 * 3095 * This is different than ring_buffer_record_disable() as 3096 * it works like an on/off switch, where as the disable() version 3097 * must be paired with a enable(). 3098 */ 3099 void ring_buffer_record_off(struct ring_buffer *buffer) 3100 { 3101 unsigned int rd; 3102 unsigned int new_rd; 3103 3104 do { 3105 rd = atomic_read(&buffer->record_disabled); 3106 new_rd = rd | RB_BUFFER_OFF; 3107 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3108 } 3109 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3110 3111 /** 3112 * ring_buffer_record_on - restart writes into the buffer 3113 * @buffer: The ring buffer to start writes to. 3114 * 3115 * This enables all writes to the buffer that was disabled by 3116 * ring_buffer_record_off(). 3117 * 3118 * This is different than ring_buffer_record_enable() as 3119 * it works like an on/off switch, where as the enable() version 3120 * must be paired with a disable(). 3121 */ 3122 void ring_buffer_record_on(struct ring_buffer *buffer) 3123 { 3124 unsigned int rd; 3125 unsigned int new_rd; 3126 3127 do { 3128 rd = atomic_read(&buffer->record_disabled); 3129 new_rd = rd & ~RB_BUFFER_OFF; 3130 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3131 } 3132 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3133 3134 /** 3135 * ring_buffer_record_is_on - return true if the ring buffer can write 3136 * @buffer: The ring buffer to see if write is enabled 3137 * 3138 * Returns true if the ring buffer is in a state that it accepts writes. 3139 */ 3140 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3141 { 3142 return !atomic_read(&buffer->record_disabled); 3143 } 3144 3145 /** 3146 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3147 * @buffer: The ring buffer to stop writes to. 3148 * @cpu: The CPU buffer to stop 3149 * 3150 * This prevents all writes to the buffer. Any attempt to write 3151 * to the buffer after this will fail and return NULL. 3152 * 3153 * The caller should call synchronize_sched() after this. 3154 */ 3155 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3156 { 3157 struct ring_buffer_per_cpu *cpu_buffer; 3158 3159 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3160 return; 3161 3162 cpu_buffer = buffer->buffers[cpu]; 3163 atomic_inc(&cpu_buffer->record_disabled); 3164 } 3165 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3166 3167 /** 3168 * ring_buffer_record_enable_cpu - enable writes to the buffer 3169 * @buffer: The ring buffer to enable writes 3170 * @cpu: The CPU to enable. 3171 * 3172 * Note, multiple disables will need the same number of enables 3173 * to truly enable the writing (much like preempt_disable). 3174 */ 3175 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3176 { 3177 struct ring_buffer_per_cpu *cpu_buffer; 3178 3179 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3180 return; 3181 3182 cpu_buffer = buffer->buffers[cpu]; 3183 atomic_dec(&cpu_buffer->record_disabled); 3184 } 3185 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3186 3187 /* 3188 * The total entries in the ring buffer is the running counter 3189 * of entries entered into the ring buffer, minus the sum of 3190 * the entries read from the ring buffer and the number of 3191 * entries that were overwritten. 3192 */ 3193 static inline unsigned long 3194 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3195 { 3196 return local_read(&cpu_buffer->entries) - 3197 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3198 } 3199 3200 /** 3201 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3202 * @buffer: The ring buffer 3203 * @cpu: The per CPU buffer to read from. 3204 */ 3205 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3206 { 3207 unsigned long flags; 3208 struct ring_buffer_per_cpu *cpu_buffer; 3209 struct buffer_page *bpage; 3210 u64 ret = 0; 3211 3212 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3213 return 0; 3214 3215 cpu_buffer = buffer->buffers[cpu]; 3216 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3217 /* 3218 * if the tail is on reader_page, oldest time stamp is on the reader 3219 * page 3220 */ 3221 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3222 bpage = cpu_buffer->reader_page; 3223 else 3224 bpage = rb_set_head_page(cpu_buffer); 3225 if (bpage) 3226 ret = bpage->page->time_stamp; 3227 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3228 3229 return ret; 3230 } 3231 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3232 3233 /** 3234 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3235 * @buffer: The ring buffer 3236 * @cpu: The per CPU buffer to read from. 3237 */ 3238 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3239 { 3240 struct ring_buffer_per_cpu *cpu_buffer; 3241 unsigned long ret; 3242 3243 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3244 return 0; 3245 3246 cpu_buffer = buffer->buffers[cpu]; 3247 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3248 3249 return ret; 3250 } 3251 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3252 3253 /** 3254 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3255 * @buffer: The ring buffer 3256 * @cpu: The per CPU buffer to get the entries from. 3257 */ 3258 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3259 { 3260 struct ring_buffer_per_cpu *cpu_buffer; 3261 3262 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3263 return 0; 3264 3265 cpu_buffer = buffer->buffers[cpu]; 3266 3267 return rb_num_of_entries(cpu_buffer); 3268 } 3269 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3270 3271 /** 3272 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3273 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3274 * @buffer: The ring buffer 3275 * @cpu: The per CPU buffer to get the number of overruns from 3276 */ 3277 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3278 { 3279 struct ring_buffer_per_cpu *cpu_buffer; 3280 unsigned long ret; 3281 3282 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3283 return 0; 3284 3285 cpu_buffer = buffer->buffers[cpu]; 3286 ret = local_read(&cpu_buffer->overrun); 3287 3288 return ret; 3289 } 3290 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3291 3292 /** 3293 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3294 * commits failing due to the buffer wrapping around while there are uncommitted 3295 * events, such as during an interrupt storm. 3296 * @buffer: The ring buffer 3297 * @cpu: The per CPU buffer to get the number of overruns from 3298 */ 3299 unsigned long 3300 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3301 { 3302 struct ring_buffer_per_cpu *cpu_buffer; 3303 unsigned long ret; 3304 3305 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3306 return 0; 3307 3308 cpu_buffer = buffer->buffers[cpu]; 3309 ret = local_read(&cpu_buffer->commit_overrun); 3310 3311 return ret; 3312 } 3313 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3314 3315 /** 3316 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3317 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3318 * @buffer: The ring buffer 3319 * @cpu: The per CPU buffer to get the number of overruns from 3320 */ 3321 unsigned long 3322 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3323 { 3324 struct ring_buffer_per_cpu *cpu_buffer; 3325 unsigned long ret; 3326 3327 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3328 return 0; 3329 3330 cpu_buffer = buffer->buffers[cpu]; 3331 ret = local_read(&cpu_buffer->dropped_events); 3332 3333 return ret; 3334 } 3335 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3336 3337 /** 3338 * ring_buffer_read_events_cpu - get the number of events successfully read 3339 * @buffer: The ring buffer 3340 * @cpu: The per CPU buffer to get the number of events read 3341 */ 3342 unsigned long 3343 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3344 { 3345 struct ring_buffer_per_cpu *cpu_buffer; 3346 3347 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3348 return 0; 3349 3350 cpu_buffer = buffer->buffers[cpu]; 3351 return cpu_buffer->read; 3352 } 3353 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3354 3355 /** 3356 * ring_buffer_entries - get the number of entries in a buffer 3357 * @buffer: The ring buffer 3358 * 3359 * Returns the total number of entries in the ring buffer 3360 * (all CPU entries) 3361 */ 3362 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3363 { 3364 struct ring_buffer_per_cpu *cpu_buffer; 3365 unsigned long entries = 0; 3366 int cpu; 3367 3368 /* if you care about this being correct, lock the buffer */ 3369 for_each_buffer_cpu(buffer, cpu) { 3370 cpu_buffer = buffer->buffers[cpu]; 3371 entries += rb_num_of_entries(cpu_buffer); 3372 } 3373 3374 return entries; 3375 } 3376 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3377 3378 /** 3379 * ring_buffer_overruns - get the number of overruns in buffer 3380 * @buffer: The ring buffer 3381 * 3382 * Returns the total number of overruns in the ring buffer 3383 * (all CPU entries) 3384 */ 3385 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3386 { 3387 struct ring_buffer_per_cpu *cpu_buffer; 3388 unsigned long overruns = 0; 3389 int cpu; 3390 3391 /* if you care about this being correct, lock the buffer */ 3392 for_each_buffer_cpu(buffer, cpu) { 3393 cpu_buffer = buffer->buffers[cpu]; 3394 overruns += local_read(&cpu_buffer->overrun); 3395 } 3396 3397 return overruns; 3398 } 3399 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3400 3401 static void rb_iter_reset(struct ring_buffer_iter *iter) 3402 { 3403 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3404 3405 /* Iterator usage is expected to have record disabled */ 3406 iter->head_page = cpu_buffer->reader_page; 3407 iter->head = cpu_buffer->reader_page->read; 3408 3409 iter->cache_reader_page = iter->head_page; 3410 iter->cache_read = cpu_buffer->read; 3411 3412 if (iter->head) 3413 iter->read_stamp = cpu_buffer->read_stamp; 3414 else 3415 iter->read_stamp = iter->head_page->page->time_stamp; 3416 } 3417 3418 /** 3419 * ring_buffer_iter_reset - reset an iterator 3420 * @iter: The iterator to reset 3421 * 3422 * Resets the iterator, so that it will start from the beginning 3423 * again. 3424 */ 3425 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3426 { 3427 struct ring_buffer_per_cpu *cpu_buffer; 3428 unsigned long flags; 3429 3430 if (!iter) 3431 return; 3432 3433 cpu_buffer = iter->cpu_buffer; 3434 3435 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3436 rb_iter_reset(iter); 3437 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3438 } 3439 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3440 3441 /** 3442 * ring_buffer_iter_empty - check if an iterator has no more to read 3443 * @iter: The iterator to check 3444 */ 3445 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3446 { 3447 struct ring_buffer_per_cpu *cpu_buffer; 3448 3449 cpu_buffer = iter->cpu_buffer; 3450 3451 return iter->head_page == cpu_buffer->commit_page && 3452 iter->head == rb_commit_index(cpu_buffer); 3453 } 3454 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3455 3456 static void 3457 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3458 struct ring_buffer_event *event) 3459 { 3460 u64 delta; 3461 3462 switch (event->type_len) { 3463 case RINGBUF_TYPE_PADDING: 3464 return; 3465 3466 case RINGBUF_TYPE_TIME_EXTEND: 3467 delta = event->array[0]; 3468 delta <<= TS_SHIFT; 3469 delta += event->time_delta; 3470 cpu_buffer->read_stamp += delta; 3471 return; 3472 3473 case RINGBUF_TYPE_TIME_STAMP: 3474 /* FIXME: not implemented */ 3475 return; 3476 3477 case RINGBUF_TYPE_DATA: 3478 cpu_buffer->read_stamp += event->time_delta; 3479 return; 3480 3481 default: 3482 BUG(); 3483 } 3484 return; 3485 } 3486 3487 static void 3488 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3489 struct ring_buffer_event *event) 3490 { 3491 u64 delta; 3492 3493 switch (event->type_len) { 3494 case RINGBUF_TYPE_PADDING: 3495 return; 3496 3497 case RINGBUF_TYPE_TIME_EXTEND: 3498 delta = event->array[0]; 3499 delta <<= TS_SHIFT; 3500 delta += event->time_delta; 3501 iter->read_stamp += delta; 3502 return; 3503 3504 case RINGBUF_TYPE_TIME_STAMP: 3505 /* FIXME: not implemented */ 3506 return; 3507 3508 case RINGBUF_TYPE_DATA: 3509 iter->read_stamp += event->time_delta; 3510 return; 3511 3512 default: 3513 BUG(); 3514 } 3515 return; 3516 } 3517 3518 static struct buffer_page * 3519 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3520 { 3521 struct buffer_page *reader = NULL; 3522 unsigned long overwrite; 3523 unsigned long flags; 3524 int nr_loops = 0; 3525 int ret; 3526 3527 local_irq_save(flags); 3528 arch_spin_lock(&cpu_buffer->lock); 3529 3530 again: 3531 /* 3532 * This should normally only loop twice. But because the 3533 * start of the reader inserts an empty page, it causes 3534 * a case where we will loop three times. There should be no 3535 * reason to loop four times (that I know of). 3536 */ 3537 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3538 reader = NULL; 3539 goto out; 3540 } 3541 3542 reader = cpu_buffer->reader_page; 3543 3544 /* If there's more to read, return this page */ 3545 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3546 goto out; 3547 3548 /* Never should we have an index greater than the size */ 3549 if (RB_WARN_ON(cpu_buffer, 3550 cpu_buffer->reader_page->read > rb_page_size(reader))) 3551 goto out; 3552 3553 /* check if we caught up to the tail */ 3554 reader = NULL; 3555 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3556 goto out; 3557 3558 /* Don't bother swapping if the ring buffer is empty */ 3559 if (rb_num_of_entries(cpu_buffer) == 0) 3560 goto out; 3561 3562 /* 3563 * Reset the reader page to size zero. 3564 */ 3565 local_set(&cpu_buffer->reader_page->write, 0); 3566 local_set(&cpu_buffer->reader_page->entries, 0); 3567 local_set(&cpu_buffer->reader_page->page->commit, 0); 3568 cpu_buffer->reader_page->real_end = 0; 3569 3570 spin: 3571 /* 3572 * Splice the empty reader page into the list around the head. 3573 */ 3574 reader = rb_set_head_page(cpu_buffer); 3575 if (!reader) 3576 goto out; 3577 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3578 cpu_buffer->reader_page->list.prev = reader->list.prev; 3579 3580 /* 3581 * cpu_buffer->pages just needs to point to the buffer, it 3582 * has no specific buffer page to point to. Lets move it out 3583 * of our way so we don't accidentally swap it. 3584 */ 3585 cpu_buffer->pages = reader->list.prev; 3586 3587 /* The reader page will be pointing to the new head */ 3588 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3589 3590 /* 3591 * We want to make sure we read the overruns after we set up our 3592 * pointers to the next object. The writer side does a 3593 * cmpxchg to cross pages which acts as the mb on the writer 3594 * side. Note, the reader will constantly fail the swap 3595 * while the writer is updating the pointers, so this 3596 * guarantees that the overwrite recorded here is the one we 3597 * want to compare with the last_overrun. 3598 */ 3599 smp_mb(); 3600 overwrite = local_read(&(cpu_buffer->overrun)); 3601 3602 /* 3603 * Here's the tricky part. 3604 * 3605 * We need to move the pointer past the header page. 3606 * But we can only do that if a writer is not currently 3607 * moving it. The page before the header page has the 3608 * flag bit '1' set if it is pointing to the page we want. 3609 * but if the writer is in the process of moving it 3610 * than it will be '2' or already moved '0'. 3611 */ 3612 3613 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3614 3615 /* 3616 * If we did not convert it, then we must try again. 3617 */ 3618 if (!ret) 3619 goto spin; 3620 3621 /* 3622 * Yeah! We succeeded in replacing the page. 3623 * 3624 * Now make the new head point back to the reader page. 3625 */ 3626 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3627 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3628 3629 /* Finally update the reader page to the new head */ 3630 cpu_buffer->reader_page = reader; 3631 rb_reset_reader_page(cpu_buffer); 3632 3633 if (overwrite != cpu_buffer->last_overrun) { 3634 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3635 cpu_buffer->last_overrun = overwrite; 3636 } 3637 3638 goto again; 3639 3640 out: 3641 arch_spin_unlock(&cpu_buffer->lock); 3642 local_irq_restore(flags); 3643 3644 return reader; 3645 } 3646 3647 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3648 { 3649 struct ring_buffer_event *event; 3650 struct buffer_page *reader; 3651 unsigned length; 3652 3653 reader = rb_get_reader_page(cpu_buffer); 3654 3655 /* This function should not be called when buffer is empty */ 3656 if (RB_WARN_ON(cpu_buffer, !reader)) 3657 return; 3658 3659 event = rb_reader_event(cpu_buffer); 3660 3661 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3662 cpu_buffer->read++; 3663 3664 rb_update_read_stamp(cpu_buffer, event); 3665 3666 length = rb_event_length(event); 3667 cpu_buffer->reader_page->read += length; 3668 } 3669 3670 static void rb_advance_iter(struct ring_buffer_iter *iter) 3671 { 3672 struct ring_buffer_per_cpu *cpu_buffer; 3673 struct ring_buffer_event *event; 3674 unsigned length; 3675 3676 cpu_buffer = iter->cpu_buffer; 3677 3678 /* 3679 * Check if we are at the end of the buffer. 3680 */ 3681 if (iter->head >= rb_page_size(iter->head_page)) { 3682 /* discarded commits can make the page empty */ 3683 if (iter->head_page == cpu_buffer->commit_page) 3684 return; 3685 rb_inc_iter(iter); 3686 return; 3687 } 3688 3689 event = rb_iter_head_event(iter); 3690 3691 length = rb_event_length(event); 3692 3693 /* 3694 * This should not be called to advance the header if we are 3695 * at the tail of the buffer. 3696 */ 3697 if (RB_WARN_ON(cpu_buffer, 3698 (iter->head_page == cpu_buffer->commit_page) && 3699 (iter->head + length > rb_commit_index(cpu_buffer)))) 3700 return; 3701 3702 rb_update_iter_read_stamp(iter, event); 3703 3704 iter->head += length; 3705 3706 /* check for end of page padding */ 3707 if ((iter->head >= rb_page_size(iter->head_page)) && 3708 (iter->head_page != cpu_buffer->commit_page)) 3709 rb_inc_iter(iter); 3710 } 3711 3712 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3713 { 3714 return cpu_buffer->lost_events; 3715 } 3716 3717 static struct ring_buffer_event * 3718 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3719 unsigned long *lost_events) 3720 { 3721 struct ring_buffer_event *event; 3722 struct buffer_page *reader; 3723 int nr_loops = 0; 3724 3725 again: 3726 /* 3727 * We repeat when a time extend is encountered. 3728 * Since the time extend is always attached to a data event, 3729 * we should never loop more than once. 3730 * (We never hit the following condition more than twice). 3731 */ 3732 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3733 return NULL; 3734 3735 reader = rb_get_reader_page(cpu_buffer); 3736 if (!reader) 3737 return NULL; 3738 3739 event = rb_reader_event(cpu_buffer); 3740 3741 switch (event->type_len) { 3742 case RINGBUF_TYPE_PADDING: 3743 if (rb_null_event(event)) 3744 RB_WARN_ON(cpu_buffer, 1); 3745 /* 3746 * Because the writer could be discarding every 3747 * event it creates (which would probably be bad) 3748 * if we were to go back to "again" then we may never 3749 * catch up, and will trigger the warn on, or lock 3750 * the box. Return the padding, and we will release 3751 * the current locks, and try again. 3752 */ 3753 return event; 3754 3755 case RINGBUF_TYPE_TIME_EXTEND: 3756 /* Internal data, OK to advance */ 3757 rb_advance_reader(cpu_buffer); 3758 goto again; 3759 3760 case RINGBUF_TYPE_TIME_STAMP: 3761 /* FIXME: not implemented */ 3762 rb_advance_reader(cpu_buffer); 3763 goto again; 3764 3765 case RINGBUF_TYPE_DATA: 3766 if (ts) { 3767 *ts = cpu_buffer->read_stamp + event->time_delta; 3768 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3769 cpu_buffer->cpu, ts); 3770 } 3771 if (lost_events) 3772 *lost_events = rb_lost_events(cpu_buffer); 3773 return event; 3774 3775 default: 3776 BUG(); 3777 } 3778 3779 return NULL; 3780 } 3781 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3782 3783 static struct ring_buffer_event * 3784 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3785 { 3786 struct ring_buffer *buffer; 3787 struct ring_buffer_per_cpu *cpu_buffer; 3788 struct ring_buffer_event *event; 3789 int nr_loops = 0; 3790 3791 cpu_buffer = iter->cpu_buffer; 3792 buffer = cpu_buffer->buffer; 3793 3794 /* 3795 * Check if someone performed a consuming read to 3796 * the buffer. A consuming read invalidates the iterator 3797 * and we need to reset the iterator in this case. 3798 */ 3799 if (unlikely(iter->cache_read != cpu_buffer->read || 3800 iter->cache_reader_page != cpu_buffer->reader_page)) 3801 rb_iter_reset(iter); 3802 3803 again: 3804 if (ring_buffer_iter_empty(iter)) 3805 return NULL; 3806 3807 /* 3808 * We repeat when a time extend is encountered or we hit 3809 * the end of the page. Since the time extend is always attached 3810 * to a data event, we should never loop more than three times. 3811 * Once for going to next page, once on time extend, and 3812 * finally once to get the event. 3813 * (We never hit the following condition more than thrice). 3814 */ 3815 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3816 return NULL; 3817 3818 if (rb_per_cpu_empty(cpu_buffer)) 3819 return NULL; 3820 3821 if (iter->head >= rb_page_size(iter->head_page)) { 3822 rb_inc_iter(iter); 3823 goto again; 3824 } 3825 3826 event = rb_iter_head_event(iter); 3827 3828 switch (event->type_len) { 3829 case RINGBUF_TYPE_PADDING: 3830 if (rb_null_event(event)) { 3831 rb_inc_iter(iter); 3832 goto again; 3833 } 3834 rb_advance_iter(iter); 3835 return event; 3836 3837 case RINGBUF_TYPE_TIME_EXTEND: 3838 /* Internal data, OK to advance */ 3839 rb_advance_iter(iter); 3840 goto again; 3841 3842 case RINGBUF_TYPE_TIME_STAMP: 3843 /* FIXME: not implemented */ 3844 rb_advance_iter(iter); 3845 goto again; 3846 3847 case RINGBUF_TYPE_DATA: 3848 if (ts) { 3849 *ts = iter->read_stamp + event->time_delta; 3850 ring_buffer_normalize_time_stamp(buffer, 3851 cpu_buffer->cpu, ts); 3852 } 3853 return event; 3854 3855 default: 3856 BUG(); 3857 } 3858 3859 return NULL; 3860 } 3861 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3862 3863 static inline int rb_ok_to_lock(void) 3864 { 3865 /* 3866 * If an NMI die dumps out the content of the ring buffer 3867 * do not grab locks. We also permanently disable the ring 3868 * buffer too. A one time deal is all you get from reading 3869 * the ring buffer from an NMI. 3870 */ 3871 if (likely(!in_nmi())) 3872 return 1; 3873 3874 tracing_off_permanent(); 3875 return 0; 3876 } 3877 3878 /** 3879 * ring_buffer_peek - peek at the next event to be read 3880 * @buffer: The ring buffer to read 3881 * @cpu: The cpu to peak at 3882 * @ts: The timestamp counter of this event. 3883 * @lost_events: a variable to store if events were lost (may be NULL) 3884 * 3885 * This will return the event that will be read next, but does 3886 * not consume the data. 3887 */ 3888 struct ring_buffer_event * 3889 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3890 unsigned long *lost_events) 3891 { 3892 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3893 struct ring_buffer_event *event; 3894 unsigned long flags; 3895 int dolock; 3896 3897 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3898 return NULL; 3899 3900 dolock = rb_ok_to_lock(); 3901 again: 3902 local_irq_save(flags); 3903 if (dolock) 3904 raw_spin_lock(&cpu_buffer->reader_lock); 3905 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3906 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3907 rb_advance_reader(cpu_buffer); 3908 if (dolock) 3909 raw_spin_unlock(&cpu_buffer->reader_lock); 3910 local_irq_restore(flags); 3911 3912 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3913 goto again; 3914 3915 return event; 3916 } 3917 3918 /** 3919 * ring_buffer_iter_peek - peek at the next event to be read 3920 * @iter: The ring buffer iterator 3921 * @ts: The timestamp counter of this event. 3922 * 3923 * This will return the event that will be read next, but does 3924 * not increment the iterator. 3925 */ 3926 struct ring_buffer_event * 3927 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3928 { 3929 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3930 struct ring_buffer_event *event; 3931 unsigned long flags; 3932 3933 again: 3934 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3935 event = rb_iter_peek(iter, ts); 3936 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3937 3938 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3939 goto again; 3940 3941 return event; 3942 } 3943 3944 /** 3945 * ring_buffer_consume - return an event and consume it 3946 * @buffer: The ring buffer to get the next event from 3947 * @cpu: the cpu to read the buffer from 3948 * @ts: a variable to store the timestamp (may be NULL) 3949 * @lost_events: a variable to store if events were lost (may be NULL) 3950 * 3951 * Returns the next event in the ring buffer, and that event is consumed. 3952 * Meaning, that sequential reads will keep returning a different event, 3953 * and eventually empty the ring buffer if the producer is slower. 3954 */ 3955 struct ring_buffer_event * 3956 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3957 unsigned long *lost_events) 3958 { 3959 struct ring_buffer_per_cpu *cpu_buffer; 3960 struct ring_buffer_event *event = NULL; 3961 unsigned long flags; 3962 int dolock; 3963 3964 dolock = rb_ok_to_lock(); 3965 3966 again: 3967 /* might be called in atomic */ 3968 preempt_disable(); 3969 3970 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3971 goto out; 3972 3973 cpu_buffer = buffer->buffers[cpu]; 3974 local_irq_save(flags); 3975 if (dolock) 3976 raw_spin_lock(&cpu_buffer->reader_lock); 3977 3978 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3979 if (event) { 3980 cpu_buffer->lost_events = 0; 3981 rb_advance_reader(cpu_buffer); 3982 } 3983 3984 if (dolock) 3985 raw_spin_unlock(&cpu_buffer->reader_lock); 3986 local_irq_restore(flags); 3987 3988 out: 3989 preempt_enable(); 3990 3991 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3992 goto again; 3993 3994 return event; 3995 } 3996 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3997 3998 /** 3999 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4000 * @buffer: The ring buffer to read from 4001 * @cpu: The cpu buffer to iterate over 4002 * 4003 * This performs the initial preparations necessary to iterate 4004 * through the buffer. Memory is allocated, buffer recording 4005 * is disabled, and the iterator pointer is returned to the caller. 4006 * 4007 * Disabling buffer recordng prevents the reading from being 4008 * corrupted. This is not a consuming read, so a producer is not 4009 * expected. 4010 * 4011 * After a sequence of ring_buffer_read_prepare calls, the user is 4012 * expected to make at least one call to ring_buffer_read_prepare_sync. 4013 * Afterwards, ring_buffer_read_start is invoked to get things going 4014 * for real. 4015 * 4016 * This overall must be paired with ring_buffer_read_finish. 4017 */ 4018 struct ring_buffer_iter * 4019 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4020 { 4021 struct ring_buffer_per_cpu *cpu_buffer; 4022 struct ring_buffer_iter *iter; 4023 4024 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4025 return NULL; 4026 4027 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4028 if (!iter) 4029 return NULL; 4030 4031 cpu_buffer = buffer->buffers[cpu]; 4032 4033 iter->cpu_buffer = cpu_buffer; 4034 4035 atomic_inc(&buffer->resize_disabled); 4036 atomic_inc(&cpu_buffer->record_disabled); 4037 4038 return iter; 4039 } 4040 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4041 4042 /** 4043 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4044 * 4045 * All previously invoked ring_buffer_read_prepare calls to prepare 4046 * iterators will be synchronized. Afterwards, read_buffer_read_start 4047 * calls on those iterators are allowed. 4048 */ 4049 void 4050 ring_buffer_read_prepare_sync(void) 4051 { 4052 synchronize_sched(); 4053 } 4054 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4055 4056 /** 4057 * ring_buffer_read_start - start a non consuming read of the buffer 4058 * @iter: The iterator returned by ring_buffer_read_prepare 4059 * 4060 * This finalizes the startup of an iteration through the buffer. 4061 * The iterator comes from a call to ring_buffer_read_prepare and 4062 * an intervening ring_buffer_read_prepare_sync must have been 4063 * performed. 4064 * 4065 * Must be paired with ring_buffer_read_finish. 4066 */ 4067 void 4068 ring_buffer_read_start(struct ring_buffer_iter *iter) 4069 { 4070 struct ring_buffer_per_cpu *cpu_buffer; 4071 unsigned long flags; 4072 4073 if (!iter) 4074 return; 4075 4076 cpu_buffer = iter->cpu_buffer; 4077 4078 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4079 arch_spin_lock(&cpu_buffer->lock); 4080 rb_iter_reset(iter); 4081 arch_spin_unlock(&cpu_buffer->lock); 4082 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4083 } 4084 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4085 4086 /** 4087 * ring_buffer_read_finish - finish reading the iterator of the buffer 4088 * @iter: The iterator retrieved by ring_buffer_start 4089 * 4090 * This re-enables the recording to the buffer, and frees the 4091 * iterator. 4092 */ 4093 void 4094 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4095 { 4096 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4097 unsigned long flags; 4098 4099 /* 4100 * Ring buffer is disabled from recording, here's a good place 4101 * to check the integrity of the ring buffer. 4102 * Must prevent readers from trying to read, as the check 4103 * clears the HEAD page and readers require it. 4104 */ 4105 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4106 rb_check_pages(cpu_buffer); 4107 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4108 4109 atomic_dec(&cpu_buffer->record_disabled); 4110 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4111 kfree(iter); 4112 } 4113 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4114 4115 /** 4116 * ring_buffer_read - read the next item in the ring buffer by the iterator 4117 * @iter: The ring buffer iterator 4118 * @ts: The time stamp of the event read. 4119 * 4120 * This reads the next event in the ring buffer and increments the iterator. 4121 */ 4122 struct ring_buffer_event * 4123 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4124 { 4125 struct ring_buffer_event *event; 4126 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4127 unsigned long flags; 4128 4129 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4130 again: 4131 event = rb_iter_peek(iter, ts); 4132 if (!event) 4133 goto out; 4134 4135 if (event->type_len == RINGBUF_TYPE_PADDING) 4136 goto again; 4137 4138 rb_advance_iter(iter); 4139 out: 4140 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4141 4142 return event; 4143 } 4144 EXPORT_SYMBOL_GPL(ring_buffer_read); 4145 4146 /** 4147 * ring_buffer_size - return the size of the ring buffer (in bytes) 4148 * @buffer: The ring buffer. 4149 */ 4150 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4151 { 4152 /* 4153 * Earlier, this method returned 4154 * BUF_PAGE_SIZE * buffer->nr_pages 4155 * Since the nr_pages field is now removed, we have converted this to 4156 * return the per cpu buffer value. 4157 */ 4158 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4159 return 0; 4160 4161 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4162 } 4163 EXPORT_SYMBOL_GPL(ring_buffer_size); 4164 4165 static void 4166 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4167 { 4168 rb_head_page_deactivate(cpu_buffer); 4169 4170 cpu_buffer->head_page 4171 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4172 local_set(&cpu_buffer->head_page->write, 0); 4173 local_set(&cpu_buffer->head_page->entries, 0); 4174 local_set(&cpu_buffer->head_page->page->commit, 0); 4175 4176 cpu_buffer->head_page->read = 0; 4177 4178 cpu_buffer->tail_page = cpu_buffer->head_page; 4179 cpu_buffer->commit_page = cpu_buffer->head_page; 4180 4181 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4182 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4183 local_set(&cpu_buffer->reader_page->write, 0); 4184 local_set(&cpu_buffer->reader_page->entries, 0); 4185 local_set(&cpu_buffer->reader_page->page->commit, 0); 4186 cpu_buffer->reader_page->read = 0; 4187 4188 local_set(&cpu_buffer->entries_bytes, 0); 4189 local_set(&cpu_buffer->overrun, 0); 4190 local_set(&cpu_buffer->commit_overrun, 0); 4191 local_set(&cpu_buffer->dropped_events, 0); 4192 local_set(&cpu_buffer->entries, 0); 4193 local_set(&cpu_buffer->committing, 0); 4194 local_set(&cpu_buffer->commits, 0); 4195 cpu_buffer->read = 0; 4196 cpu_buffer->read_bytes = 0; 4197 4198 cpu_buffer->write_stamp = 0; 4199 cpu_buffer->read_stamp = 0; 4200 4201 cpu_buffer->lost_events = 0; 4202 cpu_buffer->last_overrun = 0; 4203 4204 rb_head_page_activate(cpu_buffer); 4205 } 4206 4207 /** 4208 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4209 * @buffer: The ring buffer to reset a per cpu buffer of 4210 * @cpu: The CPU buffer to be reset 4211 */ 4212 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4213 { 4214 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4215 unsigned long flags; 4216 4217 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4218 return; 4219 4220 atomic_inc(&buffer->resize_disabled); 4221 atomic_inc(&cpu_buffer->record_disabled); 4222 4223 /* Make sure all commits have finished */ 4224 synchronize_sched(); 4225 4226 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4227 4228 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4229 goto out; 4230 4231 arch_spin_lock(&cpu_buffer->lock); 4232 4233 rb_reset_cpu(cpu_buffer); 4234 4235 arch_spin_unlock(&cpu_buffer->lock); 4236 4237 out: 4238 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4239 4240 atomic_dec(&cpu_buffer->record_disabled); 4241 atomic_dec(&buffer->resize_disabled); 4242 } 4243 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4244 4245 /** 4246 * ring_buffer_reset - reset a ring buffer 4247 * @buffer: The ring buffer to reset all cpu buffers 4248 */ 4249 void ring_buffer_reset(struct ring_buffer *buffer) 4250 { 4251 int cpu; 4252 4253 for_each_buffer_cpu(buffer, cpu) 4254 ring_buffer_reset_cpu(buffer, cpu); 4255 } 4256 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4257 4258 /** 4259 * rind_buffer_empty - is the ring buffer empty? 4260 * @buffer: The ring buffer to test 4261 */ 4262 int ring_buffer_empty(struct ring_buffer *buffer) 4263 { 4264 struct ring_buffer_per_cpu *cpu_buffer; 4265 unsigned long flags; 4266 int dolock; 4267 int cpu; 4268 int ret; 4269 4270 dolock = rb_ok_to_lock(); 4271 4272 /* yes this is racy, but if you don't like the race, lock the buffer */ 4273 for_each_buffer_cpu(buffer, cpu) { 4274 cpu_buffer = buffer->buffers[cpu]; 4275 local_irq_save(flags); 4276 if (dolock) 4277 raw_spin_lock(&cpu_buffer->reader_lock); 4278 ret = rb_per_cpu_empty(cpu_buffer); 4279 if (dolock) 4280 raw_spin_unlock(&cpu_buffer->reader_lock); 4281 local_irq_restore(flags); 4282 4283 if (!ret) 4284 return 0; 4285 } 4286 4287 return 1; 4288 } 4289 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4290 4291 /** 4292 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4293 * @buffer: The ring buffer 4294 * @cpu: The CPU buffer to test 4295 */ 4296 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4297 { 4298 struct ring_buffer_per_cpu *cpu_buffer; 4299 unsigned long flags; 4300 int dolock; 4301 int ret; 4302 4303 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4304 return 1; 4305 4306 dolock = rb_ok_to_lock(); 4307 4308 cpu_buffer = buffer->buffers[cpu]; 4309 local_irq_save(flags); 4310 if (dolock) 4311 raw_spin_lock(&cpu_buffer->reader_lock); 4312 ret = rb_per_cpu_empty(cpu_buffer); 4313 if (dolock) 4314 raw_spin_unlock(&cpu_buffer->reader_lock); 4315 local_irq_restore(flags); 4316 4317 return ret; 4318 } 4319 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4320 4321 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4322 /** 4323 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4324 * @buffer_a: One buffer to swap with 4325 * @buffer_b: The other buffer to swap with 4326 * 4327 * This function is useful for tracers that want to take a "snapshot" 4328 * of a CPU buffer and has another back up buffer lying around. 4329 * it is expected that the tracer handles the cpu buffer not being 4330 * used at the moment. 4331 */ 4332 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4333 struct ring_buffer *buffer_b, int cpu) 4334 { 4335 struct ring_buffer_per_cpu *cpu_buffer_a; 4336 struct ring_buffer_per_cpu *cpu_buffer_b; 4337 int ret = -EINVAL; 4338 4339 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4340 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4341 goto out; 4342 4343 cpu_buffer_a = buffer_a->buffers[cpu]; 4344 cpu_buffer_b = buffer_b->buffers[cpu]; 4345 4346 /* At least make sure the two buffers are somewhat the same */ 4347 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4348 goto out; 4349 4350 ret = -EAGAIN; 4351 4352 if (ring_buffer_flags != RB_BUFFERS_ON) 4353 goto out; 4354 4355 if (atomic_read(&buffer_a->record_disabled)) 4356 goto out; 4357 4358 if (atomic_read(&buffer_b->record_disabled)) 4359 goto out; 4360 4361 if (atomic_read(&cpu_buffer_a->record_disabled)) 4362 goto out; 4363 4364 if (atomic_read(&cpu_buffer_b->record_disabled)) 4365 goto out; 4366 4367 /* 4368 * We can't do a synchronize_sched here because this 4369 * function can be called in atomic context. 4370 * Normally this will be called from the same CPU as cpu. 4371 * If not it's up to the caller to protect this. 4372 */ 4373 atomic_inc(&cpu_buffer_a->record_disabled); 4374 atomic_inc(&cpu_buffer_b->record_disabled); 4375 4376 ret = -EBUSY; 4377 if (local_read(&cpu_buffer_a->committing)) 4378 goto out_dec; 4379 if (local_read(&cpu_buffer_b->committing)) 4380 goto out_dec; 4381 4382 buffer_a->buffers[cpu] = cpu_buffer_b; 4383 buffer_b->buffers[cpu] = cpu_buffer_a; 4384 4385 cpu_buffer_b->buffer = buffer_a; 4386 cpu_buffer_a->buffer = buffer_b; 4387 4388 ret = 0; 4389 4390 out_dec: 4391 atomic_dec(&cpu_buffer_a->record_disabled); 4392 atomic_dec(&cpu_buffer_b->record_disabled); 4393 out: 4394 return ret; 4395 } 4396 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4397 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4398 4399 /** 4400 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4401 * @buffer: the buffer to allocate for. 4402 * @cpu: the cpu buffer to allocate. 4403 * 4404 * This function is used in conjunction with ring_buffer_read_page. 4405 * When reading a full page from the ring buffer, these functions 4406 * can be used to speed up the process. The calling function should 4407 * allocate a few pages first with this function. Then when it 4408 * needs to get pages from the ring buffer, it passes the result 4409 * of this function into ring_buffer_read_page, which will swap 4410 * the page that was allocated, with the read page of the buffer. 4411 * 4412 * Returns: 4413 * The page allocated, or NULL on error. 4414 */ 4415 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4416 { 4417 struct buffer_data_page *bpage; 4418 struct page *page; 4419 4420 page = alloc_pages_node(cpu_to_node(cpu), 4421 GFP_KERNEL | __GFP_NORETRY, 0); 4422 if (!page) 4423 return NULL; 4424 4425 bpage = page_address(page); 4426 4427 rb_init_page(bpage); 4428 4429 return bpage; 4430 } 4431 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4432 4433 /** 4434 * ring_buffer_free_read_page - free an allocated read page 4435 * @buffer: the buffer the page was allocate for 4436 * @data: the page to free 4437 * 4438 * Free a page allocated from ring_buffer_alloc_read_page. 4439 */ 4440 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4441 { 4442 free_page((unsigned long)data); 4443 } 4444 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4445 4446 /** 4447 * ring_buffer_read_page - extract a page from the ring buffer 4448 * @buffer: buffer to extract from 4449 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4450 * @len: amount to extract 4451 * @cpu: the cpu of the buffer to extract 4452 * @full: should the extraction only happen when the page is full. 4453 * 4454 * This function will pull out a page from the ring buffer and consume it. 4455 * @data_page must be the address of the variable that was returned 4456 * from ring_buffer_alloc_read_page. This is because the page might be used 4457 * to swap with a page in the ring buffer. 4458 * 4459 * for example: 4460 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4461 * if (!rpage) 4462 * return error; 4463 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4464 * if (ret >= 0) 4465 * process_page(rpage, ret); 4466 * 4467 * When @full is set, the function will not return true unless 4468 * the writer is off the reader page. 4469 * 4470 * Note: it is up to the calling functions to handle sleeps and wakeups. 4471 * The ring buffer can be used anywhere in the kernel and can not 4472 * blindly call wake_up. The layer that uses the ring buffer must be 4473 * responsible for that. 4474 * 4475 * Returns: 4476 * >=0 if data has been transferred, returns the offset of consumed data. 4477 * <0 if no data has been transferred. 4478 */ 4479 int ring_buffer_read_page(struct ring_buffer *buffer, 4480 void **data_page, size_t len, int cpu, int full) 4481 { 4482 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4483 struct ring_buffer_event *event; 4484 struct buffer_data_page *bpage; 4485 struct buffer_page *reader; 4486 unsigned long missed_events; 4487 unsigned long flags; 4488 unsigned int commit; 4489 unsigned int read; 4490 u64 save_timestamp; 4491 int ret = -1; 4492 4493 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4494 goto out; 4495 4496 /* 4497 * If len is not big enough to hold the page header, then 4498 * we can not copy anything. 4499 */ 4500 if (len <= BUF_PAGE_HDR_SIZE) 4501 goto out; 4502 4503 len -= BUF_PAGE_HDR_SIZE; 4504 4505 if (!data_page) 4506 goto out; 4507 4508 bpage = *data_page; 4509 if (!bpage) 4510 goto out; 4511 4512 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4513 4514 reader = rb_get_reader_page(cpu_buffer); 4515 if (!reader) 4516 goto out_unlock; 4517 4518 event = rb_reader_event(cpu_buffer); 4519 4520 read = reader->read; 4521 commit = rb_page_commit(reader); 4522 4523 /* Check if any events were dropped */ 4524 missed_events = cpu_buffer->lost_events; 4525 4526 /* 4527 * If this page has been partially read or 4528 * if len is not big enough to read the rest of the page or 4529 * a writer is still on the page, then 4530 * we must copy the data from the page to the buffer. 4531 * Otherwise, we can simply swap the page with the one passed in. 4532 */ 4533 if (read || (len < (commit - read)) || 4534 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4535 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4536 unsigned int rpos = read; 4537 unsigned int pos = 0; 4538 unsigned int size; 4539 4540 if (full) 4541 goto out_unlock; 4542 4543 if (len > (commit - read)) 4544 len = (commit - read); 4545 4546 /* Always keep the time extend and data together */ 4547 size = rb_event_ts_length(event); 4548 4549 if (len < size) 4550 goto out_unlock; 4551 4552 /* save the current timestamp, since the user will need it */ 4553 save_timestamp = cpu_buffer->read_stamp; 4554 4555 /* Need to copy one event at a time */ 4556 do { 4557 /* We need the size of one event, because 4558 * rb_advance_reader only advances by one event, 4559 * whereas rb_event_ts_length may include the size of 4560 * one or two events. 4561 * We have already ensured there's enough space if this 4562 * is a time extend. */ 4563 size = rb_event_length(event); 4564 memcpy(bpage->data + pos, rpage->data + rpos, size); 4565 4566 len -= size; 4567 4568 rb_advance_reader(cpu_buffer); 4569 rpos = reader->read; 4570 pos += size; 4571 4572 if (rpos >= commit) 4573 break; 4574 4575 event = rb_reader_event(cpu_buffer); 4576 /* Always keep the time extend and data together */ 4577 size = rb_event_ts_length(event); 4578 } while (len >= size); 4579 4580 /* update bpage */ 4581 local_set(&bpage->commit, pos); 4582 bpage->time_stamp = save_timestamp; 4583 4584 /* we copied everything to the beginning */ 4585 read = 0; 4586 } else { 4587 /* update the entry counter */ 4588 cpu_buffer->read += rb_page_entries(reader); 4589 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4590 4591 /* swap the pages */ 4592 rb_init_page(bpage); 4593 bpage = reader->page; 4594 reader->page = *data_page; 4595 local_set(&reader->write, 0); 4596 local_set(&reader->entries, 0); 4597 reader->read = 0; 4598 *data_page = bpage; 4599 4600 /* 4601 * Use the real_end for the data size, 4602 * This gives us a chance to store the lost events 4603 * on the page. 4604 */ 4605 if (reader->real_end) 4606 local_set(&bpage->commit, reader->real_end); 4607 } 4608 ret = read; 4609 4610 cpu_buffer->lost_events = 0; 4611 4612 commit = local_read(&bpage->commit); 4613 /* 4614 * Set a flag in the commit field if we lost events 4615 */ 4616 if (missed_events) { 4617 /* If there is room at the end of the page to save the 4618 * missed events, then record it there. 4619 */ 4620 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4621 memcpy(&bpage->data[commit], &missed_events, 4622 sizeof(missed_events)); 4623 local_add(RB_MISSED_STORED, &bpage->commit); 4624 commit += sizeof(missed_events); 4625 } 4626 local_add(RB_MISSED_EVENTS, &bpage->commit); 4627 } 4628 4629 /* 4630 * This page may be off to user land. Zero it out here. 4631 */ 4632 if (commit < BUF_PAGE_SIZE) 4633 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4634 4635 out_unlock: 4636 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4637 4638 out: 4639 return ret; 4640 } 4641 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4642 4643 #ifdef CONFIG_HOTPLUG_CPU 4644 static int rb_cpu_notify(struct notifier_block *self, 4645 unsigned long action, void *hcpu) 4646 { 4647 struct ring_buffer *buffer = 4648 container_of(self, struct ring_buffer, cpu_notify); 4649 long cpu = (long)hcpu; 4650 int cpu_i, nr_pages_same; 4651 unsigned int nr_pages; 4652 4653 switch (action) { 4654 case CPU_UP_PREPARE: 4655 case CPU_UP_PREPARE_FROZEN: 4656 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4657 return NOTIFY_OK; 4658 4659 nr_pages = 0; 4660 nr_pages_same = 1; 4661 /* check if all cpu sizes are same */ 4662 for_each_buffer_cpu(buffer, cpu_i) { 4663 /* fill in the size from first enabled cpu */ 4664 if (nr_pages == 0) 4665 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4666 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4667 nr_pages_same = 0; 4668 break; 4669 } 4670 } 4671 /* allocate minimum pages, user can later expand it */ 4672 if (!nr_pages_same) 4673 nr_pages = 2; 4674 buffer->buffers[cpu] = 4675 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4676 if (!buffer->buffers[cpu]) { 4677 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4678 cpu); 4679 return NOTIFY_OK; 4680 } 4681 smp_wmb(); 4682 cpumask_set_cpu(cpu, buffer->cpumask); 4683 break; 4684 case CPU_DOWN_PREPARE: 4685 case CPU_DOWN_PREPARE_FROZEN: 4686 /* 4687 * Do nothing. 4688 * If we were to free the buffer, then the user would 4689 * lose any trace that was in the buffer. 4690 */ 4691 break; 4692 default: 4693 break; 4694 } 4695 return NOTIFY_OK; 4696 } 4697 #endif 4698 4699 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4700 /* 4701 * This is a basic integrity check of the ring buffer. 4702 * Late in the boot cycle this test will run when configured in. 4703 * It will kick off a thread per CPU that will go into a loop 4704 * writing to the per cpu ring buffer various sizes of data. 4705 * Some of the data will be large items, some small. 4706 * 4707 * Another thread is created that goes into a spin, sending out 4708 * IPIs to the other CPUs to also write into the ring buffer. 4709 * this is to test the nesting ability of the buffer. 4710 * 4711 * Basic stats are recorded and reported. If something in the 4712 * ring buffer should happen that's not expected, a big warning 4713 * is displayed and all ring buffers are disabled. 4714 */ 4715 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4716 4717 struct rb_test_data { 4718 struct ring_buffer *buffer; 4719 unsigned long events; 4720 unsigned long bytes_written; 4721 unsigned long bytes_alloc; 4722 unsigned long bytes_dropped; 4723 unsigned long events_nested; 4724 unsigned long bytes_written_nested; 4725 unsigned long bytes_alloc_nested; 4726 unsigned long bytes_dropped_nested; 4727 int min_size_nested; 4728 int max_size_nested; 4729 int max_size; 4730 int min_size; 4731 int cpu; 4732 int cnt; 4733 }; 4734 4735 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4736 4737 /* 1 meg per cpu */ 4738 #define RB_TEST_BUFFER_SIZE 1048576 4739 4740 static char rb_string[] __initdata = 4741 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4742 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4743 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4744 4745 static bool rb_test_started __initdata; 4746 4747 struct rb_item { 4748 int size; 4749 char str[]; 4750 }; 4751 4752 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4753 { 4754 struct ring_buffer_event *event; 4755 struct rb_item *item; 4756 bool started; 4757 int event_len; 4758 int size; 4759 int len; 4760 int cnt; 4761 4762 /* Have nested writes different that what is written */ 4763 cnt = data->cnt + (nested ? 27 : 0); 4764 4765 /* Multiply cnt by ~e, to make some unique increment */ 4766 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4767 4768 len = size + sizeof(struct rb_item); 4769 4770 started = rb_test_started; 4771 /* read rb_test_started before checking buffer enabled */ 4772 smp_rmb(); 4773 4774 event = ring_buffer_lock_reserve(data->buffer, len); 4775 if (!event) { 4776 /* Ignore dropped events before test starts. */ 4777 if (started) { 4778 if (nested) 4779 data->bytes_dropped += len; 4780 else 4781 data->bytes_dropped_nested += len; 4782 } 4783 return len; 4784 } 4785 4786 event_len = ring_buffer_event_length(event); 4787 4788 if (RB_WARN_ON(data->buffer, event_len < len)) 4789 goto out; 4790 4791 item = ring_buffer_event_data(event); 4792 item->size = size; 4793 memcpy(item->str, rb_string, size); 4794 4795 if (nested) { 4796 data->bytes_alloc_nested += event_len; 4797 data->bytes_written_nested += len; 4798 data->events_nested++; 4799 if (!data->min_size_nested || len < data->min_size_nested) 4800 data->min_size_nested = len; 4801 if (len > data->max_size_nested) 4802 data->max_size_nested = len; 4803 } else { 4804 data->bytes_alloc += event_len; 4805 data->bytes_written += len; 4806 data->events++; 4807 if (!data->min_size || len < data->min_size) 4808 data->max_size = len; 4809 if (len > data->max_size) 4810 data->max_size = len; 4811 } 4812 4813 out: 4814 ring_buffer_unlock_commit(data->buffer, event); 4815 4816 return 0; 4817 } 4818 4819 static __init int rb_test(void *arg) 4820 { 4821 struct rb_test_data *data = arg; 4822 4823 while (!kthread_should_stop()) { 4824 rb_write_something(data, false); 4825 data->cnt++; 4826 4827 set_current_state(TASK_INTERRUPTIBLE); 4828 /* Now sleep between a min of 100-300us and a max of 1ms */ 4829 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4830 } 4831 4832 return 0; 4833 } 4834 4835 static __init void rb_ipi(void *ignore) 4836 { 4837 struct rb_test_data *data; 4838 int cpu = smp_processor_id(); 4839 4840 data = &rb_data[cpu]; 4841 rb_write_something(data, true); 4842 } 4843 4844 static __init int rb_hammer_test(void *arg) 4845 { 4846 while (!kthread_should_stop()) { 4847 4848 /* Send an IPI to all cpus to write data! */ 4849 smp_call_function(rb_ipi, NULL, 1); 4850 /* No sleep, but for non preempt, let others run */ 4851 schedule(); 4852 } 4853 4854 return 0; 4855 } 4856 4857 static __init int test_ringbuffer(void) 4858 { 4859 struct task_struct *rb_hammer; 4860 struct ring_buffer *buffer; 4861 int cpu; 4862 int ret = 0; 4863 4864 pr_info("Running ring buffer tests...\n"); 4865 4866 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4867 if (WARN_ON(!buffer)) 4868 return 0; 4869 4870 /* Disable buffer so that threads can't write to it yet */ 4871 ring_buffer_record_off(buffer); 4872 4873 for_each_online_cpu(cpu) { 4874 rb_data[cpu].buffer = buffer; 4875 rb_data[cpu].cpu = cpu; 4876 rb_data[cpu].cnt = cpu; 4877 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4878 "rbtester/%d", cpu); 4879 if (WARN_ON(!rb_threads[cpu])) { 4880 pr_cont("FAILED\n"); 4881 ret = -1; 4882 goto out_free; 4883 } 4884 4885 kthread_bind(rb_threads[cpu], cpu); 4886 wake_up_process(rb_threads[cpu]); 4887 } 4888 4889 /* Now create the rb hammer! */ 4890 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4891 if (WARN_ON(!rb_hammer)) { 4892 pr_cont("FAILED\n"); 4893 ret = -1; 4894 goto out_free; 4895 } 4896 4897 ring_buffer_record_on(buffer); 4898 /* 4899 * Show buffer is enabled before setting rb_test_started. 4900 * Yes there's a small race window where events could be 4901 * dropped and the thread wont catch it. But when a ring 4902 * buffer gets enabled, there will always be some kind of 4903 * delay before other CPUs see it. Thus, we don't care about 4904 * those dropped events. We care about events dropped after 4905 * the threads see that the buffer is active. 4906 */ 4907 smp_wmb(); 4908 rb_test_started = true; 4909 4910 set_current_state(TASK_INTERRUPTIBLE); 4911 /* Just run for 10 seconds */; 4912 schedule_timeout(10 * HZ); 4913 4914 kthread_stop(rb_hammer); 4915 4916 out_free: 4917 for_each_online_cpu(cpu) { 4918 if (!rb_threads[cpu]) 4919 break; 4920 kthread_stop(rb_threads[cpu]); 4921 } 4922 if (ret) { 4923 ring_buffer_free(buffer); 4924 return ret; 4925 } 4926 4927 /* Report! */ 4928 pr_info("finished\n"); 4929 for_each_online_cpu(cpu) { 4930 struct ring_buffer_event *event; 4931 struct rb_test_data *data = &rb_data[cpu]; 4932 struct rb_item *item; 4933 unsigned long total_events; 4934 unsigned long total_dropped; 4935 unsigned long total_written; 4936 unsigned long total_alloc; 4937 unsigned long total_read = 0; 4938 unsigned long total_size = 0; 4939 unsigned long total_len = 0; 4940 unsigned long total_lost = 0; 4941 unsigned long lost; 4942 int big_event_size; 4943 int small_event_size; 4944 4945 ret = -1; 4946 4947 total_events = data->events + data->events_nested; 4948 total_written = data->bytes_written + data->bytes_written_nested; 4949 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4950 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4951 4952 big_event_size = data->max_size + data->max_size_nested; 4953 small_event_size = data->min_size + data->min_size_nested; 4954 4955 pr_info("CPU %d:\n", cpu); 4956 pr_info(" events: %ld\n", total_events); 4957 pr_info(" dropped bytes: %ld\n", total_dropped); 4958 pr_info(" alloced bytes: %ld\n", total_alloc); 4959 pr_info(" written bytes: %ld\n", total_written); 4960 pr_info(" biggest event: %d\n", big_event_size); 4961 pr_info(" smallest event: %d\n", small_event_size); 4962 4963 if (RB_WARN_ON(buffer, total_dropped)) 4964 break; 4965 4966 ret = 0; 4967 4968 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4969 total_lost += lost; 4970 item = ring_buffer_event_data(event); 4971 total_len += ring_buffer_event_length(event); 4972 total_size += item->size + sizeof(struct rb_item); 4973 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4974 pr_info("FAILED!\n"); 4975 pr_info("buffer had: %.*s\n", item->size, item->str); 4976 pr_info("expected: %.*s\n", item->size, rb_string); 4977 RB_WARN_ON(buffer, 1); 4978 ret = -1; 4979 break; 4980 } 4981 total_read++; 4982 } 4983 if (ret) 4984 break; 4985 4986 ret = -1; 4987 4988 pr_info(" read events: %ld\n", total_read); 4989 pr_info(" lost events: %ld\n", total_lost); 4990 pr_info(" total events: %ld\n", total_lost + total_read); 4991 pr_info(" recorded len bytes: %ld\n", total_len); 4992 pr_info(" recorded size bytes: %ld\n", total_size); 4993 if (total_lost) 4994 pr_info(" With dropped events, record len and size may not match\n" 4995 " alloced and written from above\n"); 4996 if (!total_lost) { 4997 if (RB_WARN_ON(buffer, total_len != total_alloc || 4998 total_size != total_written)) 4999 break; 5000 } 5001 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5002 break; 5003 5004 ret = 0; 5005 } 5006 if (!ret) 5007 pr_info("Ring buffer PASSED!\n"); 5008 5009 ring_buffer_free(buffer); 5010 return 0; 5011 } 5012 5013 late_initcall(test_ringbuffer); 5014 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5015