xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 39b6f3aa)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	int ret;
38 
39 	ret = trace_seq_printf(s, "# compressed entry header\n");
40 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
41 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
42 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
43 	ret = trace_seq_printf(s, "\n");
44 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			       RINGBUF_TYPE_PADDING);
46 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			       RINGBUF_TYPE_TIME_EXTEND);
48 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return ret;
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139 
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150 
151 enum {
152 	RB_BUFFERS_ON_BIT	= 0,
153 	RB_BUFFERS_DISABLED_BIT	= 1,
154 };
155 
156 enum {
157 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
158 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160 
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162 
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF		(1 << 20)
165 
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167 
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178 
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT		4U
181 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
183 
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT	0
186 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT	1
189 # define RB_ARCH_ALIGNMENT		8U
190 #endif
191 
192 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
193 
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196 
197 enum {
198 	RB_LEN_TIME_EXTEND = 8,
199 	RB_LEN_TIME_STAMP = 16,
200 };
201 
202 #define skip_time_extend(event) \
203 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204 
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209 
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 	/* padding has a NULL time_delta */
213 	event->type_len = RINGBUF_TYPE_PADDING;
214 	event->time_delta = 0;
215 }
216 
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 	unsigned length;
221 
222 	if (event->type_len)
223 		length = event->type_len * RB_ALIGNMENT;
224 	else
225 		length = event->array[0];
226 	return length + RB_EVNT_HDR_SIZE;
227 }
228 
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 	switch (event->type_len) {
238 	case RINGBUF_TYPE_PADDING:
239 		if (rb_null_event(event))
240 			/* undefined */
241 			return -1;
242 		return  event->array[0] + RB_EVNT_HDR_SIZE;
243 
244 	case RINGBUF_TYPE_TIME_EXTEND:
245 		return RB_LEN_TIME_EXTEND;
246 
247 	case RINGBUF_TYPE_TIME_STAMP:
248 		return RB_LEN_TIME_STAMP;
249 
250 	case RINGBUF_TYPE_DATA:
251 		return rb_event_data_length(event);
252 	default:
253 		BUG();
254 	}
255 	/* not hit */
256 	return 0;
257 }
258 
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 	unsigned len = 0;
267 
268 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 		/* time extends include the data event after it */
270 		len = RB_LEN_TIME_EXTEND;
271 		event = skip_time_extend(event);
272 	}
273 	return len + rb_event_length(event);
274 }
275 
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 	unsigned length;
289 
290 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 		event = skip_time_extend(event);
292 
293 	length = rb_event_length(event);
294 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 		return length;
296 	length -= RB_EVNT_HDR_SIZE;
297 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299 	return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302 
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 		event = skip_time_extend(event);
309 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 	/* If length is in len field, then array[0] has the data */
311 	if (event->type_len)
312 		return (void *)&event->array[0];
313 	/* Otherwise length is in array[0] and array[1] has the data */
314 	return (void *)&event->array[1];
315 }
316 
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 	return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326 
327 #define for_each_buffer_cpu(buffer, cpu)		\
328 	for_each_cpu(cpu, buffer->cpumask)
329 
330 #define TS_SHIFT	27
331 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST	(~TS_MASK)
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 struct buffer_data_page {
340 	u64		 time_stamp;	/* page time stamp */
341 	local_t		 commit;	/* write committed index */
342 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
343 };
344 
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354 	struct list_head list;		/* list of buffer pages */
355 	local_t		 write;		/* index for next write */
356 	unsigned	 read;		/* index for next read */
357 	local_t		 entries;	/* entries on this page */
358 	unsigned long	 real_end;	/* real end of data */
359 	struct buffer_data_page *page;	/* Actual data page */
360 };
361 
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK		0xfffff
375 #define RB_WRITE_INTCNT		(1 << 20)
376 
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 	local_set(&bpage->commit, 0);
380 }
381 
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390 	return local_read(&((struct buffer_data_page *)page)->commit)
391 		+ BUF_PAGE_HDR_SIZE;
392 }
393 
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 	free_page((unsigned long)bpage->page);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409 	if (delta & TS_DELTA_TEST)
410 		return 1;
411 	return 0;
412 }
413 
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415 
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418 
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 	struct buffer_data_page field;
422 	int ret;
423 
424 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
426 			       (unsigned int)sizeof(field.time_stamp),
427 			       (unsigned int)is_signed_type(u64));
428 
429 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       (unsigned int)sizeof(field.commit),
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), commit),
438 			       1,
439 			       (unsigned int)is_signed_type(long));
440 
441 	ret = trace_seq_printf(s, "\tfield: char data;\t"
442 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 			       (unsigned int)offsetof(typeof(field), data),
444 			       (unsigned int)BUF_PAGE_SIZE,
445 			       (unsigned int)is_signed_type(char));
446 
447 	return ret;
448 }
449 
450 struct rb_irq_work {
451 	struct irq_work			work;
452 	wait_queue_head_t		waiters;
453 	bool				waiters_pending;
454 };
455 
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460 	int				cpu;
461 	atomic_t			record_disabled;
462 	struct ring_buffer		*buffer;
463 	raw_spinlock_t			reader_lock;	/* serialize readers */
464 	arch_spinlock_t			lock;
465 	struct lock_class_key		lock_key;
466 	unsigned int			nr_pages;
467 	struct list_head		*pages;
468 	struct buffer_page		*head_page;	/* read from head */
469 	struct buffer_page		*tail_page;	/* write to tail */
470 	struct buffer_page		*commit_page;	/* committed pages */
471 	struct buffer_page		*reader_page;
472 	unsigned long			lost_events;
473 	unsigned long			last_overrun;
474 	local_t				entries_bytes;
475 	local_t				entries;
476 	local_t				overrun;
477 	local_t				commit_overrun;
478 	local_t				dropped_events;
479 	local_t				committing;
480 	local_t				commits;
481 	unsigned long			read;
482 	unsigned long			read_bytes;
483 	u64				write_stamp;
484 	u64				read_stamp;
485 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
486 	int				nr_pages_to_update;
487 	struct list_head		new_pages; /* new pages to add */
488 	struct work_struct		update_pages_work;
489 	struct completion		update_done;
490 
491 	struct rb_irq_work		irq_work;
492 };
493 
494 struct ring_buffer {
495 	unsigned			flags;
496 	int				cpus;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	cpumask_var_t			cpumask;
500 
501 	struct lock_class_key		*reader_lock_key;
502 
503 	struct mutex			mutex;
504 
505 	struct ring_buffer_per_cpu	**buffers;
506 
507 #ifdef CONFIG_HOTPLUG_CPU
508 	struct notifier_block		cpu_notify;
509 #endif
510 	u64				(*clock)(void);
511 
512 	struct rb_irq_work		irq_work;
513 };
514 
515 struct ring_buffer_iter {
516 	struct ring_buffer_per_cpu	*cpu_buffer;
517 	unsigned long			head;
518 	struct buffer_page		*head_page;
519 	struct buffer_page		*cache_reader_page;
520 	unsigned long			cache_read;
521 	u64				read_stamp;
522 };
523 
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533 
534 	wake_up_all(&rbwork->waiters);
535 }
536 
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 	struct ring_buffer_per_cpu *cpu_buffer;
549 	DEFINE_WAIT(wait);
550 	struct rb_irq_work *work;
551 
552 	/*
553 	 * Depending on what the caller is waiting for, either any
554 	 * data in any cpu buffer, or a specific buffer, put the
555 	 * caller on the appropriate wait queue.
556 	 */
557 	if (cpu == RING_BUFFER_ALL_CPUS)
558 		work = &buffer->irq_work;
559 	else {
560 		cpu_buffer = buffer->buffers[cpu];
561 		work = &cpu_buffer->irq_work;
562 	}
563 
564 
565 	prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566 
567 	/*
568 	 * The events can happen in critical sections where
569 	 * checking a work queue can cause deadlocks.
570 	 * After adding a task to the queue, this flag is set
571 	 * only to notify events to try to wake up the queue
572 	 * using irq_work.
573 	 *
574 	 * We don't clear it even if the buffer is no longer
575 	 * empty. The flag only causes the next event to run
576 	 * irq_work to do the work queue wake up. The worse
577 	 * that can happen if we race with !trace_empty() is that
578 	 * an event will cause an irq_work to try to wake up
579 	 * an empty queue.
580 	 *
581 	 * There's no reason to protect this flag either, as
582 	 * the work queue and irq_work logic will do the necessary
583 	 * synchronization for the wake ups. The only thing
584 	 * that is necessary is that the wake up happens after
585 	 * a task has been queued. It's OK for spurious wake ups.
586 	 */
587 	work->waiters_pending = true;
588 
589 	if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 	    (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 		schedule();
592 
593 	finish_wait(&work->waiters, &wait);
594 }
595 
596 /**
597  * ring_buffer_poll_wait - poll on buffer input
598  * @buffer: buffer to wait on
599  * @cpu: the cpu buffer to wait on
600  * @filp: the file descriptor
601  * @poll_table: The poll descriptor
602  *
603  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604  * as data is added to any of the @buffer's cpu buffers. Otherwise
605  * it will wait for data to be added to a specific cpu buffer.
606  *
607  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608  * zero otherwise.
609  */
610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 			  struct file *filp, poll_table *poll_table)
612 {
613 	struct ring_buffer_per_cpu *cpu_buffer;
614 	struct rb_irq_work *work;
615 
616 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 		return POLLIN | POLLRDNORM;
619 
620 	if (cpu == RING_BUFFER_ALL_CPUS)
621 		work = &buffer->irq_work;
622 	else {
623 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 			return -EINVAL;
625 
626 		cpu_buffer = buffer->buffers[cpu];
627 		work = &cpu_buffer->irq_work;
628 	}
629 
630 	work->waiters_pending = true;
631 	poll_wait(filp, &work->waiters, poll_table);
632 
633 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 		return POLLIN | POLLRDNORM;
636 	return 0;
637 }
638 
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond)						\
641 	({								\
642 		int _____ret = unlikely(cond);				\
643 		if (_____ret) {						\
644 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 				struct ring_buffer_per_cpu *__b =	\
646 					(void *)b;			\
647 				atomic_inc(&__b->buffer->record_disabled); \
648 			} else						\
649 				atomic_inc(&b->record_disabled);	\
650 			WARN_ON(1);					\
651 		}							\
652 		_____ret;						\
653 	})
654 
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
657 
658 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659 {
660 	/* shift to debug/test normalization and TIME_EXTENTS */
661 	return buffer->clock() << DEBUG_SHIFT;
662 }
663 
664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665 {
666 	u64 time;
667 
668 	preempt_disable_notrace();
669 	time = rb_time_stamp(buffer);
670 	preempt_enable_no_resched_notrace();
671 
672 	return time;
673 }
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675 
676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 				      int cpu, u64 *ts)
678 {
679 	/* Just stupid testing the normalize function and deltas */
680 	*ts >>= DEBUG_SHIFT;
681 }
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683 
684 /*
685  * Making the ring buffer lockless makes things tricky.
686  * Although writes only happen on the CPU that they are on,
687  * and they only need to worry about interrupts. Reads can
688  * happen on any CPU.
689  *
690  * The reader page is always off the ring buffer, but when the
691  * reader finishes with a page, it needs to swap its page with
692  * a new one from the buffer. The reader needs to take from
693  * the head (writes go to the tail). But if a writer is in overwrite
694  * mode and wraps, it must push the head page forward.
695  *
696  * Here lies the problem.
697  *
698  * The reader must be careful to replace only the head page, and
699  * not another one. As described at the top of the file in the
700  * ASCII art, the reader sets its old page to point to the next
701  * page after head. It then sets the page after head to point to
702  * the old reader page. But if the writer moves the head page
703  * during this operation, the reader could end up with the tail.
704  *
705  * We use cmpxchg to help prevent this race. We also do something
706  * special with the page before head. We set the LSB to 1.
707  *
708  * When the writer must push the page forward, it will clear the
709  * bit that points to the head page, move the head, and then set
710  * the bit that points to the new head page.
711  *
712  * We also don't want an interrupt coming in and moving the head
713  * page on another writer. Thus we use the second LSB to catch
714  * that too. Thus:
715  *
716  * head->list->prev->next        bit 1          bit 0
717  *                              -------        -------
718  * Normal page                     0              0
719  * Points to head page             0              1
720  * New head page                   1              0
721  *
722  * Note we can not trust the prev pointer of the head page, because:
723  *
724  * +----+       +-----+        +-----+
725  * |    |------>|  T  |---X--->|  N  |
726  * |    |<------|     |        |     |
727  * +----+       +-----+        +-----+
728  *   ^                           ^ |
729  *   |          +-----+          | |
730  *   +----------|  R  |----------+ |
731  *              |     |<-----------+
732  *              +-----+
733  *
734  * Key:  ---X-->  HEAD flag set in pointer
735  *         T      Tail page
736  *         R      Reader page
737  *         N      Next page
738  *
739  * (see __rb_reserve_next() to see where this happens)
740  *
741  *  What the above shows is that the reader just swapped out
742  *  the reader page with a page in the buffer, but before it
743  *  could make the new header point back to the new page added
744  *  it was preempted by a writer. The writer moved forward onto
745  *  the new page added by the reader and is about to move forward
746  *  again.
747  *
748  *  You can see, it is legitimate for the previous pointer of
749  *  the head (or any page) not to point back to itself. But only
750  *  temporarially.
751  */
752 
753 #define RB_PAGE_NORMAL		0UL
754 #define RB_PAGE_HEAD		1UL
755 #define RB_PAGE_UPDATE		2UL
756 
757 
758 #define RB_FLAG_MASK		3UL
759 
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED		4UL
762 
763 /*
764  * rb_list_head - remove any bit
765  */
766 static struct list_head *rb_list_head(struct list_head *list)
767 {
768 	unsigned long val = (unsigned long)list;
769 
770 	return (struct list_head *)(val & ~RB_FLAG_MASK);
771 }
772 
773 /*
774  * rb_is_head_page - test if the given page is the head page
775  *
776  * Because the reader may move the head_page pointer, we can
777  * not trust what the head page is (it may be pointing to
778  * the reader page). But if the next page is a header page,
779  * its flags will be non zero.
780  */
781 static inline int
782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 		struct buffer_page *page, struct list_head *list)
784 {
785 	unsigned long val;
786 
787 	val = (unsigned long)list->next;
788 
789 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 		return RB_PAGE_MOVED;
791 
792 	return val & RB_FLAG_MASK;
793 }
794 
795 /*
796  * rb_is_reader_page
797  *
798  * The unique thing about the reader page, is that, if the
799  * writer is ever on it, the previous pointer never points
800  * back to the reader page.
801  */
802 static int rb_is_reader_page(struct buffer_page *page)
803 {
804 	struct list_head *list = page->list.prev;
805 
806 	return rb_list_head(list->next) != &page->list;
807 }
808 
809 /*
810  * rb_set_list_to_head - set a list_head to be pointing to head.
811  */
812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 				struct list_head *list)
814 {
815 	unsigned long *ptr;
816 
817 	ptr = (unsigned long *)&list->next;
818 	*ptr |= RB_PAGE_HEAD;
819 	*ptr &= ~RB_PAGE_UPDATE;
820 }
821 
822 /*
823  * rb_head_page_activate - sets up head page
824  */
825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826 {
827 	struct buffer_page *head;
828 
829 	head = cpu_buffer->head_page;
830 	if (!head)
831 		return;
832 
833 	/*
834 	 * Set the previous list pointer to have the HEAD flag.
835 	 */
836 	rb_set_list_to_head(cpu_buffer, head->list.prev);
837 }
838 
839 static void rb_list_head_clear(struct list_head *list)
840 {
841 	unsigned long *ptr = (unsigned long *)&list->next;
842 
843 	*ptr &= ~RB_FLAG_MASK;
844 }
845 
846 /*
847  * rb_head_page_dactivate - clears head page ptr (for free list)
848  */
849 static void
850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851 {
852 	struct list_head *hd;
853 
854 	/* Go through the whole list and clear any pointers found. */
855 	rb_list_head_clear(cpu_buffer->pages);
856 
857 	list_for_each(hd, cpu_buffer->pages)
858 		rb_list_head_clear(hd);
859 }
860 
861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 			    struct buffer_page *head,
863 			    struct buffer_page *prev,
864 			    int old_flag, int new_flag)
865 {
866 	struct list_head *list;
867 	unsigned long val = (unsigned long)&head->list;
868 	unsigned long ret;
869 
870 	list = &prev->list;
871 
872 	val &= ~RB_FLAG_MASK;
873 
874 	ret = cmpxchg((unsigned long *)&list->next,
875 		      val | old_flag, val | new_flag);
876 
877 	/* check if the reader took the page */
878 	if ((ret & ~RB_FLAG_MASK) != val)
879 		return RB_PAGE_MOVED;
880 
881 	return ret & RB_FLAG_MASK;
882 }
883 
884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 				   struct buffer_page *head,
886 				   struct buffer_page *prev,
887 				   int old_flag)
888 {
889 	return rb_head_page_set(cpu_buffer, head, prev,
890 				old_flag, RB_PAGE_UPDATE);
891 }
892 
893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 				 struct buffer_page *head,
895 				 struct buffer_page *prev,
896 				 int old_flag)
897 {
898 	return rb_head_page_set(cpu_buffer, head, prev,
899 				old_flag, RB_PAGE_HEAD);
900 }
901 
902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 				   struct buffer_page *head,
904 				   struct buffer_page *prev,
905 				   int old_flag)
906 {
907 	return rb_head_page_set(cpu_buffer, head, prev,
908 				old_flag, RB_PAGE_NORMAL);
909 }
910 
911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 			       struct buffer_page **bpage)
913 {
914 	struct list_head *p = rb_list_head((*bpage)->list.next);
915 
916 	*bpage = list_entry(p, struct buffer_page, list);
917 }
918 
919 static struct buffer_page *
920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921 {
922 	struct buffer_page *head;
923 	struct buffer_page *page;
924 	struct list_head *list;
925 	int i;
926 
927 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 		return NULL;
929 
930 	/* sanity check */
931 	list = cpu_buffer->pages;
932 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 		return NULL;
934 
935 	page = head = cpu_buffer->head_page;
936 	/*
937 	 * It is possible that the writer moves the header behind
938 	 * where we started, and we miss in one loop.
939 	 * A second loop should grab the header, but we'll do
940 	 * three loops just because I'm paranoid.
941 	 */
942 	for (i = 0; i < 3; i++) {
943 		do {
944 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 				cpu_buffer->head_page = page;
946 				return page;
947 			}
948 			rb_inc_page(cpu_buffer, &page);
949 		} while (page != head);
950 	}
951 
952 	RB_WARN_ON(cpu_buffer, 1);
953 
954 	return NULL;
955 }
956 
957 static int rb_head_page_replace(struct buffer_page *old,
958 				struct buffer_page *new)
959 {
960 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 	unsigned long val;
962 	unsigned long ret;
963 
964 	val = *ptr & ~RB_FLAG_MASK;
965 	val |= RB_PAGE_HEAD;
966 
967 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968 
969 	return ret == val;
970 }
971 
972 /*
973  * rb_tail_page_update - move the tail page forward
974  *
975  * Returns 1 if moved tail page, 0 if someone else did.
976  */
977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 			       struct buffer_page *tail_page,
979 			       struct buffer_page *next_page)
980 {
981 	struct buffer_page *old_tail;
982 	unsigned long old_entries;
983 	unsigned long old_write;
984 	int ret = 0;
985 
986 	/*
987 	 * The tail page now needs to be moved forward.
988 	 *
989 	 * We need to reset the tail page, but without messing
990 	 * with possible erasing of data brought in by interrupts
991 	 * that have moved the tail page and are currently on it.
992 	 *
993 	 * We add a counter to the write field to denote this.
994 	 */
995 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997 
998 	/*
999 	 * Just make sure we have seen our old_write and synchronize
1000 	 * with any interrupts that come in.
1001 	 */
1002 	barrier();
1003 
1004 	/*
1005 	 * If the tail page is still the same as what we think
1006 	 * it is, then it is up to us to update the tail
1007 	 * pointer.
1008 	 */
1009 	if (tail_page == cpu_buffer->tail_page) {
1010 		/* Zero the write counter */
1011 		unsigned long val = old_write & ~RB_WRITE_MASK;
1012 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013 
1014 		/*
1015 		 * This will only succeed if an interrupt did
1016 		 * not come in and change it. In which case, we
1017 		 * do not want to modify it.
1018 		 *
1019 		 * We add (void) to let the compiler know that we do not care
1020 		 * about the return value of these functions. We use the
1021 		 * cmpxchg to only update if an interrupt did not already
1022 		 * do it for us. If the cmpxchg fails, we don't care.
1023 		 */
1024 		(void)local_cmpxchg(&next_page->write, old_write, val);
1025 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026 
1027 		/*
1028 		 * No need to worry about races with clearing out the commit.
1029 		 * it only can increment when a commit takes place. But that
1030 		 * only happens in the outer most nested commit.
1031 		 */
1032 		local_set(&next_page->page->commit, 0);
1033 
1034 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 				   tail_page, next_page);
1036 
1037 		if (old_tail == tail_page)
1038 			ret = 1;
1039 	}
1040 
1041 	return ret;
1042 }
1043 
1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 			  struct buffer_page *bpage)
1046 {
1047 	unsigned long val = (unsigned long)bpage;
1048 
1049 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 		return 1;
1051 
1052 	return 0;
1053 }
1054 
1055 /**
1056  * rb_check_list - make sure a pointer to a list has the last bits zero
1057  */
1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 			 struct list_head *list)
1060 {
1061 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 		return 1;
1063 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 		return 1;
1065 	return 0;
1066 }
1067 
1068 /**
1069  * check_pages - integrity check of buffer pages
1070  * @cpu_buffer: CPU buffer with pages to test
1071  *
1072  * As a safety measure we check to make sure the data pages have not
1073  * been corrupted.
1074  */
1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077 	struct list_head *head = cpu_buffer->pages;
1078 	struct buffer_page *bpage, *tmp;
1079 
1080 	/* Reset the head page if it exists */
1081 	if (cpu_buffer->head_page)
1082 		rb_set_head_page(cpu_buffer);
1083 
1084 	rb_head_page_deactivate(cpu_buffer);
1085 
1086 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 		return -1;
1088 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 		return -1;
1090 
1091 	if (rb_check_list(cpu_buffer, head))
1092 		return -1;
1093 
1094 	list_for_each_entry_safe(bpage, tmp, head, list) {
1095 		if (RB_WARN_ON(cpu_buffer,
1096 			       bpage->list.next->prev != &bpage->list))
1097 			return -1;
1098 		if (RB_WARN_ON(cpu_buffer,
1099 			       bpage->list.prev->next != &bpage->list))
1100 			return -1;
1101 		if (rb_check_list(cpu_buffer, &bpage->list))
1102 			return -1;
1103 	}
1104 
1105 	rb_head_page_activate(cpu_buffer);
1106 
1107 	return 0;
1108 }
1109 
1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111 {
1112 	int i;
1113 	struct buffer_page *bpage, *tmp;
1114 
1115 	for (i = 0; i < nr_pages; i++) {
1116 		struct page *page;
1117 		/*
1118 		 * __GFP_NORETRY flag makes sure that the allocation fails
1119 		 * gracefully without invoking oom-killer and the system is
1120 		 * not destabilized.
1121 		 */
1122 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123 				    GFP_KERNEL | __GFP_NORETRY,
1124 				    cpu_to_node(cpu));
1125 		if (!bpage)
1126 			goto free_pages;
1127 
1128 		list_add(&bpage->list, pages);
1129 
1130 		page = alloc_pages_node(cpu_to_node(cpu),
1131 					GFP_KERNEL | __GFP_NORETRY, 0);
1132 		if (!page)
1133 			goto free_pages;
1134 		bpage->page = page_address(page);
1135 		rb_init_page(bpage->page);
1136 	}
1137 
1138 	return 0;
1139 
1140 free_pages:
1141 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 		list_del_init(&bpage->list);
1143 		free_buffer_page(bpage);
1144 	}
1145 
1146 	return -ENOMEM;
1147 }
1148 
1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 			     unsigned nr_pages)
1151 {
1152 	LIST_HEAD(pages);
1153 
1154 	WARN_ON(!nr_pages);
1155 
1156 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 		return -ENOMEM;
1158 
1159 	/*
1160 	 * The ring buffer page list is a circular list that does not
1161 	 * start and end with a list head. All page list items point to
1162 	 * other pages.
1163 	 */
1164 	cpu_buffer->pages = pages.next;
1165 	list_del(&pages);
1166 
1167 	cpu_buffer->nr_pages = nr_pages;
1168 
1169 	rb_check_pages(cpu_buffer);
1170 
1171 	return 0;
1172 }
1173 
1174 static struct ring_buffer_per_cpu *
1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176 {
1177 	struct ring_buffer_per_cpu *cpu_buffer;
1178 	struct buffer_page *bpage;
1179 	struct page *page;
1180 	int ret;
1181 
1182 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 				  GFP_KERNEL, cpu_to_node(cpu));
1184 	if (!cpu_buffer)
1185 		return NULL;
1186 
1187 	cpu_buffer->cpu = cpu;
1188 	cpu_buffer->buffer = buffer;
1189 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1190 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193 	init_completion(&cpu_buffer->update_done);
1194 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196 
1197 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198 			    GFP_KERNEL, cpu_to_node(cpu));
1199 	if (!bpage)
1200 		goto fail_free_buffer;
1201 
1202 	rb_check_bpage(cpu_buffer, bpage);
1203 
1204 	cpu_buffer->reader_page = bpage;
1205 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 	if (!page)
1207 		goto fail_free_reader;
1208 	bpage->page = page_address(page);
1209 	rb_init_page(bpage->page);
1210 
1211 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213 
1214 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215 	if (ret < 0)
1216 		goto fail_free_reader;
1217 
1218 	cpu_buffer->head_page
1219 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1220 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221 
1222 	rb_head_page_activate(cpu_buffer);
1223 
1224 	return cpu_buffer;
1225 
1226  fail_free_reader:
1227 	free_buffer_page(cpu_buffer->reader_page);
1228 
1229  fail_free_buffer:
1230 	kfree(cpu_buffer);
1231 	return NULL;
1232 }
1233 
1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235 {
1236 	struct list_head *head = cpu_buffer->pages;
1237 	struct buffer_page *bpage, *tmp;
1238 
1239 	free_buffer_page(cpu_buffer->reader_page);
1240 
1241 	rb_head_page_deactivate(cpu_buffer);
1242 
1243 	if (head) {
1244 		list_for_each_entry_safe(bpage, tmp, head, list) {
1245 			list_del_init(&bpage->list);
1246 			free_buffer_page(bpage);
1247 		}
1248 		bpage = list_entry(head, struct buffer_page, list);
1249 		free_buffer_page(bpage);
1250 	}
1251 
1252 	kfree(cpu_buffer);
1253 }
1254 
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block *self,
1257 			 unsigned long action, void *hcpu);
1258 #endif
1259 
1260 /**
1261  * ring_buffer_alloc - allocate a new ring_buffer
1262  * @size: the size in bytes per cpu that is needed.
1263  * @flags: attributes to set for the ring buffer.
1264  *
1265  * Currently the only flag that is available is the RB_FL_OVERWRITE
1266  * flag. This flag means that the buffer will overwrite old data
1267  * when the buffer wraps. If this flag is not set, the buffer will
1268  * drop data when the tail hits the head.
1269  */
1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 					struct lock_class_key *key)
1272 {
1273 	struct ring_buffer *buffer;
1274 	int bsize;
1275 	int cpu, nr_pages;
1276 
1277 	/* keep it in its own cache line */
1278 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 			 GFP_KERNEL);
1280 	if (!buffer)
1281 		return NULL;
1282 
1283 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 		goto fail_free_buffer;
1285 
1286 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287 	buffer->flags = flags;
1288 	buffer->clock = trace_clock_local;
1289 	buffer->reader_lock_key = key;
1290 
1291 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292 	init_waitqueue_head(&buffer->irq_work.waiters);
1293 
1294 	/* need at least two pages */
1295 	if (nr_pages < 2)
1296 		nr_pages = 2;
1297 
1298 	/*
1299 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 	 * in early initcall, it will not be notified of secondary cpus.
1301 	 * In that off case, we need to allocate for all possible cpus.
1302 	 */
1303 #ifdef CONFIG_HOTPLUG_CPU
1304 	get_online_cpus();
1305 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1306 #else
1307 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308 #endif
1309 	buffer->cpus = nr_cpu_ids;
1310 
1311 	bsize = sizeof(void *) * nr_cpu_ids;
1312 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 				  GFP_KERNEL);
1314 	if (!buffer->buffers)
1315 		goto fail_free_cpumask;
1316 
1317 	for_each_buffer_cpu(buffer, cpu) {
1318 		buffer->buffers[cpu] =
1319 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320 		if (!buffer->buffers[cpu])
1321 			goto fail_free_buffers;
1322 	}
1323 
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 	buffer->cpu_notify.priority = 0;
1327 	register_cpu_notifier(&buffer->cpu_notify);
1328 #endif
1329 
1330 	put_online_cpus();
1331 	mutex_init(&buffer->mutex);
1332 
1333 	return buffer;
1334 
1335  fail_free_buffers:
1336 	for_each_buffer_cpu(buffer, cpu) {
1337 		if (buffer->buffers[cpu])
1338 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 	}
1340 	kfree(buffer->buffers);
1341 
1342  fail_free_cpumask:
1343 	free_cpumask_var(buffer->cpumask);
1344 	put_online_cpus();
1345 
1346  fail_free_buffer:
1347 	kfree(buffer);
1348 	return NULL;
1349 }
1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1351 
1352 /**
1353  * ring_buffer_free - free a ring buffer.
1354  * @buffer: the buffer to free.
1355  */
1356 void
1357 ring_buffer_free(struct ring_buffer *buffer)
1358 {
1359 	int cpu;
1360 
1361 	get_online_cpus();
1362 
1363 #ifdef CONFIG_HOTPLUG_CPU
1364 	unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366 
1367 	for_each_buffer_cpu(buffer, cpu)
1368 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1369 
1370 	put_online_cpus();
1371 
1372 	kfree(buffer->buffers);
1373 	free_cpumask_var(buffer->cpumask);
1374 
1375 	kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378 
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 			   u64 (*clock)(void))
1381 {
1382 	buffer->clock = clock;
1383 }
1384 
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386 
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391 
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394 	return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396 
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399 {
1400 	struct list_head *tail_page, *to_remove, *next_page;
1401 	struct buffer_page *to_remove_page, *tmp_iter_page;
1402 	struct buffer_page *last_page, *first_page;
1403 	unsigned int nr_removed;
1404 	unsigned long head_bit;
1405 	int page_entries;
1406 
1407 	head_bit = 0;
1408 
1409 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410 	atomic_inc(&cpu_buffer->record_disabled);
1411 	/*
1412 	 * We don't race with the readers since we have acquired the reader
1413 	 * lock. We also don't race with writers after disabling recording.
1414 	 * This makes it easy to figure out the first and the last page to be
1415 	 * removed from the list. We unlink all the pages in between including
1416 	 * the first and last pages. This is done in a busy loop so that we
1417 	 * lose the least number of traces.
1418 	 * The pages are freed after we restart recording and unlock readers.
1419 	 */
1420 	tail_page = &cpu_buffer->tail_page->list;
1421 
1422 	/*
1423 	 * tail page might be on reader page, we remove the next page
1424 	 * from the ring buffer
1425 	 */
1426 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 		tail_page = rb_list_head(tail_page->next);
1428 	to_remove = tail_page;
1429 
1430 	/* start of pages to remove */
1431 	first_page = list_entry(rb_list_head(to_remove->next),
1432 				struct buffer_page, list);
1433 
1434 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 		to_remove = rb_list_head(to_remove)->next;
1436 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437 	}
1438 
1439 	next_page = rb_list_head(to_remove)->next;
1440 
1441 	/*
1442 	 * Now we remove all pages between tail_page and next_page.
1443 	 * Make sure that we have head_bit value preserved for the
1444 	 * next page
1445 	 */
1446 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 						head_bit);
1448 	next_page = rb_list_head(next_page);
1449 	next_page->prev = tail_page;
1450 
1451 	/* make sure pages points to a valid page in the ring buffer */
1452 	cpu_buffer->pages = next_page;
1453 
1454 	/* update head page */
1455 	if (head_bit)
1456 		cpu_buffer->head_page = list_entry(next_page,
1457 						struct buffer_page, list);
1458 
1459 	/*
1460 	 * change read pointer to make sure any read iterators reset
1461 	 * themselves
1462 	 */
1463 	cpu_buffer->read = 0;
1464 
1465 	/* pages are removed, resume tracing and then free the pages */
1466 	atomic_dec(&cpu_buffer->record_disabled);
1467 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468 
1469 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470 
1471 	/* last buffer page to remove */
1472 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 				list);
1474 	tmp_iter_page = first_page;
1475 
1476 	do {
1477 		to_remove_page = tmp_iter_page;
1478 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1479 
1480 		/* update the counters */
1481 		page_entries = rb_page_entries(to_remove_page);
1482 		if (page_entries) {
1483 			/*
1484 			 * If something was added to this page, it was full
1485 			 * since it is not the tail page. So we deduct the
1486 			 * bytes consumed in ring buffer from here.
1487 			 * Increment overrun to account for the lost events.
1488 			 */
1489 			local_add(page_entries, &cpu_buffer->overrun);
1490 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 		}
1492 
1493 		/*
1494 		 * We have already removed references to this list item, just
1495 		 * free up the buffer_page and its page
1496 		 */
1497 		free_buffer_page(to_remove_page);
1498 		nr_removed--;
1499 
1500 	} while (to_remove_page != last_page);
1501 
1502 	RB_WARN_ON(cpu_buffer, nr_removed);
1503 
1504 	return nr_removed == 0;
1505 }
1506 
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 	struct list_head *pages = &cpu_buffer->new_pages;
1511 	int retries, success;
1512 
1513 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514 	/*
1515 	 * We are holding the reader lock, so the reader page won't be swapped
1516 	 * in the ring buffer. Now we are racing with the writer trying to
1517 	 * move head page and the tail page.
1518 	 * We are going to adapt the reader page update process where:
1519 	 * 1. We first splice the start and end of list of new pages between
1520 	 *    the head page and its previous page.
1521 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 	 *    start of new pages list.
1523 	 * 3. Finally, we update the head->prev to the end of new list.
1524 	 *
1525 	 * We will try this process 10 times, to make sure that we don't keep
1526 	 * spinning.
1527 	 */
1528 	retries = 10;
1529 	success = 0;
1530 	while (retries--) {
1531 		struct list_head *head_page, *prev_page, *r;
1532 		struct list_head *last_page, *first_page;
1533 		struct list_head *head_page_with_bit;
1534 
1535 		head_page = &rb_set_head_page(cpu_buffer)->list;
1536 		if (!head_page)
1537 			break;
1538 		prev_page = head_page->prev;
1539 
1540 		first_page = pages->next;
1541 		last_page  = pages->prev;
1542 
1543 		head_page_with_bit = (struct list_head *)
1544 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1545 
1546 		last_page->next = head_page_with_bit;
1547 		first_page->prev = prev_page;
1548 
1549 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550 
1551 		if (r == head_page_with_bit) {
1552 			/*
1553 			 * yay, we replaced the page pointer to our new list,
1554 			 * now, we just have to update to head page's prev
1555 			 * pointer to point to end of list
1556 			 */
1557 			head_page->prev = last_page;
1558 			success = 1;
1559 			break;
1560 		}
1561 	}
1562 
1563 	if (success)
1564 		INIT_LIST_HEAD(pages);
1565 	/*
1566 	 * If we weren't successful in adding in new pages, warn and stop
1567 	 * tracing
1568 	 */
1569 	RB_WARN_ON(cpu_buffer, !success);
1570 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571 
1572 	/* free pages if they weren't inserted */
1573 	if (!success) {
1574 		struct buffer_page *bpage, *tmp;
1575 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 					 list) {
1577 			list_del_init(&bpage->list);
1578 			free_buffer_page(bpage);
1579 		}
1580 	}
1581 	return success;
1582 }
1583 
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586 	int success;
1587 
1588 	if (cpu_buffer->nr_pages_to_update > 0)
1589 		success = rb_insert_pages(cpu_buffer);
1590 	else
1591 		success = rb_remove_pages(cpu_buffer,
1592 					-cpu_buffer->nr_pages_to_update);
1593 
1594 	if (success)
1595 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597 
1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 			struct ring_buffer_per_cpu, update_pages_work);
1602 	rb_update_pages(cpu_buffer);
1603 	complete(&cpu_buffer->update_done);
1604 }
1605 
1606 /**
1607  * ring_buffer_resize - resize the ring buffer
1608  * @buffer: the buffer to resize.
1609  * @size: the new size.
1610  *
1611  * Minimum size is 2 * BUF_PAGE_SIZE.
1612  *
1613  * Returns 0 on success and < 0 on failure.
1614  */
1615 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1616 			int cpu_id)
1617 {
1618 	struct ring_buffer_per_cpu *cpu_buffer;
1619 	unsigned nr_pages;
1620 	int cpu, err = 0;
1621 
1622 	/*
1623 	 * Always succeed at resizing a non-existent buffer:
1624 	 */
1625 	if (!buffer)
1626 		return size;
1627 
1628 	/* Make sure the requested buffer exists */
1629 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1630 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1631 		return size;
1632 
1633 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1634 	size *= BUF_PAGE_SIZE;
1635 
1636 	/* we need a minimum of two pages */
1637 	if (size < BUF_PAGE_SIZE * 2)
1638 		size = BUF_PAGE_SIZE * 2;
1639 
1640 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1641 
1642 	/*
1643 	 * Don't succeed if resizing is disabled, as a reader might be
1644 	 * manipulating the ring buffer and is expecting a sane state while
1645 	 * this is true.
1646 	 */
1647 	if (atomic_read(&buffer->resize_disabled))
1648 		return -EBUSY;
1649 
1650 	/* prevent another thread from changing buffer sizes */
1651 	mutex_lock(&buffer->mutex);
1652 
1653 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654 		/* calculate the pages to update */
1655 		for_each_buffer_cpu(buffer, cpu) {
1656 			cpu_buffer = buffer->buffers[cpu];
1657 
1658 			cpu_buffer->nr_pages_to_update = nr_pages -
1659 							cpu_buffer->nr_pages;
1660 			/*
1661 			 * nothing more to do for removing pages or no update
1662 			 */
1663 			if (cpu_buffer->nr_pages_to_update <= 0)
1664 				continue;
1665 			/*
1666 			 * to add pages, make sure all new pages can be
1667 			 * allocated without receiving ENOMEM
1668 			 */
1669 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1671 						&cpu_buffer->new_pages, cpu)) {
1672 				/* not enough memory for new pages */
1673 				err = -ENOMEM;
1674 				goto out_err;
1675 			}
1676 		}
1677 
1678 		get_online_cpus();
1679 		/*
1680 		 * Fire off all the required work handlers
1681 		 * We can't schedule on offline CPUs, but it's not necessary
1682 		 * since we can change their buffer sizes without any race.
1683 		 */
1684 		for_each_buffer_cpu(buffer, cpu) {
1685 			cpu_buffer = buffer->buffers[cpu];
1686 			if (!cpu_buffer->nr_pages_to_update)
1687 				continue;
1688 
1689 			/* The update must run on the CPU that is being updated. */
1690 			preempt_disable();
1691 			if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1692 				rb_update_pages(cpu_buffer);
1693 				cpu_buffer->nr_pages_to_update = 0;
1694 			} else {
1695 				/*
1696 				 * Can not disable preemption for schedule_work_on()
1697 				 * on PREEMPT_RT.
1698 				 */
1699 				preempt_enable();
1700 				schedule_work_on(cpu,
1701 						&cpu_buffer->update_pages_work);
1702 				preempt_disable();
1703 			}
1704 			preempt_enable();
1705 		}
1706 
1707 		/* wait for all the updates to complete */
1708 		for_each_buffer_cpu(buffer, cpu) {
1709 			cpu_buffer = buffer->buffers[cpu];
1710 			if (!cpu_buffer->nr_pages_to_update)
1711 				continue;
1712 
1713 			if (cpu_online(cpu))
1714 				wait_for_completion(&cpu_buffer->update_done);
1715 			cpu_buffer->nr_pages_to_update = 0;
1716 		}
1717 
1718 		put_online_cpus();
1719 	} else {
1720 		/* Make sure this CPU has been intitialized */
1721 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1722 			goto out;
1723 
1724 		cpu_buffer = buffer->buffers[cpu_id];
1725 
1726 		if (nr_pages == cpu_buffer->nr_pages)
1727 			goto out;
1728 
1729 		cpu_buffer->nr_pages_to_update = nr_pages -
1730 						cpu_buffer->nr_pages;
1731 
1732 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1733 		if (cpu_buffer->nr_pages_to_update > 0 &&
1734 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1735 					    &cpu_buffer->new_pages, cpu_id)) {
1736 			err = -ENOMEM;
1737 			goto out_err;
1738 		}
1739 
1740 		get_online_cpus();
1741 
1742 		preempt_disable();
1743 		/* The update must run on the CPU that is being updated. */
1744 		if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1745 			rb_update_pages(cpu_buffer);
1746 		else {
1747 			/*
1748 			 * Can not disable preemption for schedule_work_on()
1749 			 * on PREEMPT_RT.
1750 			 */
1751 			preempt_enable();
1752 			schedule_work_on(cpu_id,
1753 					 &cpu_buffer->update_pages_work);
1754 			wait_for_completion(&cpu_buffer->update_done);
1755 			preempt_disable();
1756 		}
1757 		preempt_enable();
1758 
1759 		cpu_buffer->nr_pages_to_update = 0;
1760 		put_online_cpus();
1761 	}
1762 
1763  out:
1764 	/*
1765 	 * The ring buffer resize can happen with the ring buffer
1766 	 * enabled, so that the update disturbs the tracing as little
1767 	 * as possible. But if the buffer is disabled, we do not need
1768 	 * to worry about that, and we can take the time to verify
1769 	 * that the buffer is not corrupt.
1770 	 */
1771 	if (atomic_read(&buffer->record_disabled)) {
1772 		atomic_inc(&buffer->record_disabled);
1773 		/*
1774 		 * Even though the buffer was disabled, we must make sure
1775 		 * that it is truly disabled before calling rb_check_pages.
1776 		 * There could have been a race between checking
1777 		 * record_disable and incrementing it.
1778 		 */
1779 		synchronize_sched();
1780 		for_each_buffer_cpu(buffer, cpu) {
1781 			cpu_buffer = buffer->buffers[cpu];
1782 			rb_check_pages(cpu_buffer);
1783 		}
1784 		atomic_dec(&buffer->record_disabled);
1785 	}
1786 
1787 	mutex_unlock(&buffer->mutex);
1788 	return size;
1789 
1790  out_err:
1791 	for_each_buffer_cpu(buffer, cpu) {
1792 		struct buffer_page *bpage, *tmp;
1793 
1794 		cpu_buffer = buffer->buffers[cpu];
1795 		cpu_buffer->nr_pages_to_update = 0;
1796 
1797 		if (list_empty(&cpu_buffer->new_pages))
1798 			continue;
1799 
1800 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1801 					list) {
1802 			list_del_init(&bpage->list);
1803 			free_buffer_page(bpage);
1804 		}
1805 	}
1806 	mutex_unlock(&buffer->mutex);
1807 	return err;
1808 }
1809 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1810 
1811 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1812 {
1813 	mutex_lock(&buffer->mutex);
1814 	if (val)
1815 		buffer->flags |= RB_FL_OVERWRITE;
1816 	else
1817 		buffer->flags &= ~RB_FL_OVERWRITE;
1818 	mutex_unlock(&buffer->mutex);
1819 }
1820 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1821 
1822 static inline void *
1823 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1824 {
1825 	return bpage->data + index;
1826 }
1827 
1828 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1829 {
1830 	return bpage->page->data + index;
1831 }
1832 
1833 static inline struct ring_buffer_event *
1834 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1835 {
1836 	return __rb_page_index(cpu_buffer->reader_page,
1837 			       cpu_buffer->reader_page->read);
1838 }
1839 
1840 static inline struct ring_buffer_event *
1841 rb_iter_head_event(struct ring_buffer_iter *iter)
1842 {
1843 	return __rb_page_index(iter->head_page, iter->head);
1844 }
1845 
1846 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1847 {
1848 	return local_read(&bpage->page->commit);
1849 }
1850 
1851 /* Size is determined by what has been committed */
1852 static inline unsigned rb_page_size(struct buffer_page *bpage)
1853 {
1854 	return rb_page_commit(bpage);
1855 }
1856 
1857 static inline unsigned
1858 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1859 {
1860 	return rb_page_commit(cpu_buffer->commit_page);
1861 }
1862 
1863 static inline unsigned
1864 rb_event_index(struct ring_buffer_event *event)
1865 {
1866 	unsigned long addr = (unsigned long)event;
1867 
1868 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1869 }
1870 
1871 static inline int
1872 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1873 		   struct ring_buffer_event *event)
1874 {
1875 	unsigned long addr = (unsigned long)event;
1876 	unsigned long index;
1877 
1878 	index = rb_event_index(event);
1879 	addr &= PAGE_MASK;
1880 
1881 	return cpu_buffer->commit_page->page == (void *)addr &&
1882 		rb_commit_index(cpu_buffer) == index;
1883 }
1884 
1885 static void
1886 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1887 {
1888 	unsigned long max_count;
1889 
1890 	/*
1891 	 * We only race with interrupts and NMIs on this CPU.
1892 	 * If we own the commit event, then we can commit
1893 	 * all others that interrupted us, since the interruptions
1894 	 * are in stack format (they finish before they come
1895 	 * back to us). This allows us to do a simple loop to
1896 	 * assign the commit to the tail.
1897 	 */
1898  again:
1899 	max_count = cpu_buffer->nr_pages * 100;
1900 
1901 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1902 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1903 			return;
1904 		if (RB_WARN_ON(cpu_buffer,
1905 			       rb_is_reader_page(cpu_buffer->tail_page)))
1906 			return;
1907 		local_set(&cpu_buffer->commit_page->page->commit,
1908 			  rb_page_write(cpu_buffer->commit_page));
1909 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1910 		cpu_buffer->write_stamp =
1911 			cpu_buffer->commit_page->page->time_stamp;
1912 		/* add barrier to keep gcc from optimizing too much */
1913 		barrier();
1914 	}
1915 	while (rb_commit_index(cpu_buffer) !=
1916 	       rb_page_write(cpu_buffer->commit_page)) {
1917 
1918 		local_set(&cpu_buffer->commit_page->page->commit,
1919 			  rb_page_write(cpu_buffer->commit_page));
1920 		RB_WARN_ON(cpu_buffer,
1921 			   local_read(&cpu_buffer->commit_page->page->commit) &
1922 			   ~RB_WRITE_MASK);
1923 		barrier();
1924 	}
1925 
1926 	/* again, keep gcc from optimizing */
1927 	barrier();
1928 
1929 	/*
1930 	 * If an interrupt came in just after the first while loop
1931 	 * and pushed the tail page forward, we will be left with
1932 	 * a dangling commit that will never go forward.
1933 	 */
1934 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1935 		goto again;
1936 }
1937 
1938 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1939 {
1940 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1941 	cpu_buffer->reader_page->read = 0;
1942 }
1943 
1944 static void rb_inc_iter(struct ring_buffer_iter *iter)
1945 {
1946 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1947 
1948 	/*
1949 	 * The iterator could be on the reader page (it starts there).
1950 	 * But the head could have moved, since the reader was
1951 	 * found. Check for this case and assign the iterator
1952 	 * to the head page instead of next.
1953 	 */
1954 	if (iter->head_page == cpu_buffer->reader_page)
1955 		iter->head_page = rb_set_head_page(cpu_buffer);
1956 	else
1957 		rb_inc_page(cpu_buffer, &iter->head_page);
1958 
1959 	iter->read_stamp = iter->head_page->page->time_stamp;
1960 	iter->head = 0;
1961 }
1962 
1963 /* Slow path, do not inline */
1964 static noinline struct ring_buffer_event *
1965 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1966 {
1967 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1968 
1969 	/* Not the first event on the page? */
1970 	if (rb_event_index(event)) {
1971 		event->time_delta = delta & TS_MASK;
1972 		event->array[0] = delta >> TS_SHIFT;
1973 	} else {
1974 		/* nope, just zero it */
1975 		event->time_delta = 0;
1976 		event->array[0] = 0;
1977 	}
1978 
1979 	return skip_time_extend(event);
1980 }
1981 
1982 /**
1983  * rb_update_event - update event type and data
1984  * @event: the even to update
1985  * @type: the type of event
1986  * @length: the size of the event field in the ring buffer
1987  *
1988  * Update the type and data fields of the event. The length
1989  * is the actual size that is written to the ring buffer,
1990  * and with this, we can determine what to place into the
1991  * data field.
1992  */
1993 static void
1994 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1995 		struct ring_buffer_event *event, unsigned length,
1996 		int add_timestamp, u64 delta)
1997 {
1998 	/* Only a commit updates the timestamp */
1999 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2000 		delta = 0;
2001 
2002 	/*
2003 	 * If we need to add a timestamp, then we
2004 	 * add it to the start of the resevered space.
2005 	 */
2006 	if (unlikely(add_timestamp)) {
2007 		event = rb_add_time_stamp(event, delta);
2008 		length -= RB_LEN_TIME_EXTEND;
2009 		delta = 0;
2010 	}
2011 
2012 	event->time_delta = delta;
2013 	length -= RB_EVNT_HDR_SIZE;
2014 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2015 		event->type_len = 0;
2016 		event->array[0] = length;
2017 	} else
2018 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2019 }
2020 
2021 /*
2022  * rb_handle_head_page - writer hit the head page
2023  *
2024  * Returns: +1 to retry page
2025  *           0 to continue
2026  *          -1 on error
2027  */
2028 static int
2029 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2030 		    struct buffer_page *tail_page,
2031 		    struct buffer_page *next_page)
2032 {
2033 	struct buffer_page *new_head;
2034 	int entries;
2035 	int type;
2036 	int ret;
2037 
2038 	entries = rb_page_entries(next_page);
2039 
2040 	/*
2041 	 * The hard part is here. We need to move the head
2042 	 * forward, and protect against both readers on
2043 	 * other CPUs and writers coming in via interrupts.
2044 	 */
2045 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2046 				       RB_PAGE_HEAD);
2047 
2048 	/*
2049 	 * type can be one of four:
2050 	 *  NORMAL - an interrupt already moved it for us
2051 	 *  HEAD   - we are the first to get here.
2052 	 *  UPDATE - we are the interrupt interrupting
2053 	 *           a current move.
2054 	 *  MOVED  - a reader on another CPU moved the next
2055 	 *           pointer to its reader page. Give up
2056 	 *           and try again.
2057 	 */
2058 
2059 	switch (type) {
2060 	case RB_PAGE_HEAD:
2061 		/*
2062 		 * We changed the head to UPDATE, thus
2063 		 * it is our responsibility to update
2064 		 * the counters.
2065 		 */
2066 		local_add(entries, &cpu_buffer->overrun);
2067 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2068 
2069 		/*
2070 		 * The entries will be zeroed out when we move the
2071 		 * tail page.
2072 		 */
2073 
2074 		/* still more to do */
2075 		break;
2076 
2077 	case RB_PAGE_UPDATE:
2078 		/*
2079 		 * This is an interrupt that interrupt the
2080 		 * previous update. Still more to do.
2081 		 */
2082 		break;
2083 	case RB_PAGE_NORMAL:
2084 		/*
2085 		 * An interrupt came in before the update
2086 		 * and processed this for us.
2087 		 * Nothing left to do.
2088 		 */
2089 		return 1;
2090 	case RB_PAGE_MOVED:
2091 		/*
2092 		 * The reader is on another CPU and just did
2093 		 * a swap with our next_page.
2094 		 * Try again.
2095 		 */
2096 		return 1;
2097 	default:
2098 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2099 		return -1;
2100 	}
2101 
2102 	/*
2103 	 * Now that we are here, the old head pointer is
2104 	 * set to UPDATE. This will keep the reader from
2105 	 * swapping the head page with the reader page.
2106 	 * The reader (on another CPU) will spin till
2107 	 * we are finished.
2108 	 *
2109 	 * We just need to protect against interrupts
2110 	 * doing the job. We will set the next pointer
2111 	 * to HEAD. After that, we set the old pointer
2112 	 * to NORMAL, but only if it was HEAD before.
2113 	 * otherwise we are an interrupt, and only
2114 	 * want the outer most commit to reset it.
2115 	 */
2116 	new_head = next_page;
2117 	rb_inc_page(cpu_buffer, &new_head);
2118 
2119 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2120 				    RB_PAGE_NORMAL);
2121 
2122 	/*
2123 	 * Valid returns are:
2124 	 *  HEAD   - an interrupt came in and already set it.
2125 	 *  NORMAL - One of two things:
2126 	 *            1) We really set it.
2127 	 *            2) A bunch of interrupts came in and moved
2128 	 *               the page forward again.
2129 	 */
2130 	switch (ret) {
2131 	case RB_PAGE_HEAD:
2132 	case RB_PAGE_NORMAL:
2133 		/* OK */
2134 		break;
2135 	default:
2136 		RB_WARN_ON(cpu_buffer, 1);
2137 		return -1;
2138 	}
2139 
2140 	/*
2141 	 * It is possible that an interrupt came in,
2142 	 * set the head up, then more interrupts came in
2143 	 * and moved it again. When we get back here,
2144 	 * the page would have been set to NORMAL but we
2145 	 * just set it back to HEAD.
2146 	 *
2147 	 * How do you detect this? Well, if that happened
2148 	 * the tail page would have moved.
2149 	 */
2150 	if (ret == RB_PAGE_NORMAL) {
2151 		/*
2152 		 * If the tail had moved passed next, then we need
2153 		 * to reset the pointer.
2154 		 */
2155 		if (cpu_buffer->tail_page != tail_page &&
2156 		    cpu_buffer->tail_page != next_page)
2157 			rb_head_page_set_normal(cpu_buffer, new_head,
2158 						next_page,
2159 						RB_PAGE_HEAD);
2160 	}
2161 
2162 	/*
2163 	 * If this was the outer most commit (the one that
2164 	 * changed the original pointer from HEAD to UPDATE),
2165 	 * then it is up to us to reset it to NORMAL.
2166 	 */
2167 	if (type == RB_PAGE_HEAD) {
2168 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2169 					      tail_page,
2170 					      RB_PAGE_UPDATE);
2171 		if (RB_WARN_ON(cpu_buffer,
2172 			       ret != RB_PAGE_UPDATE))
2173 			return -1;
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 static unsigned rb_calculate_event_length(unsigned length)
2180 {
2181 	struct ring_buffer_event event; /* Used only for sizeof array */
2182 
2183 	/* zero length can cause confusions */
2184 	if (!length)
2185 		length = 1;
2186 
2187 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2188 		length += sizeof(event.array[0]);
2189 
2190 	length += RB_EVNT_HDR_SIZE;
2191 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2192 
2193 	return length;
2194 }
2195 
2196 static inline void
2197 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2198 	      struct buffer_page *tail_page,
2199 	      unsigned long tail, unsigned long length)
2200 {
2201 	struct ring_buffer_event *event;
2202 
2203 	/*
2204 	 * Only the event that crossed the page boundary
2205 	 * must fill the old tail_page with padding.
2206 	 */
2207 	if (tail >= BUF_PAGE_SIZE) {
2208 		/*
2209 		 * If the page was filled, then we still need
2210 		 * to update the real_end. Reset it to zero
2211 		 * and the reader will ignore it.
2212 		 */
2213 		if (tail == BUF_PAGE_SIZE)
2214 			tail_page->real_end = 0;
2215 
2216 		local_sub(length, &tail_page->write);
2217 		return;
2218 	}
2219 
2220 	event = __rb_page_index(tail_page, tail);
2221 	kmemcheck_annotate_bitfield(event, bitfield);
2222 
2223 	/* account for padding bytes */
2224 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2225 
2226 	/*
2227 	 * Save the original length to the meta data.
2228 	 * This will be used by the reader to add lost event
2229 	 * counter.
2230 	 */
2231 	tail_page->real_end = tail;
2232 
2233 	/*
2234 	 * If this event is bigger than the minimum size, then
2235 	 * we need to be careful that we don't subtract the
2236 	 * write counter enough to allow another writer to slip
2237 	 * in on this page.
2238 	 * We put in a discarded commit instead, to make sure
2239 	 * that this space is not used again.
2240 	 *
2241 	 * If we are less than the minimum size, we don't need to
2242 	 * worry about it.
2243 	 */
2244 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2245 		/* No room for any events */
2246 
2247 		/* Mark the rest of the page with padding */
2248 		rb_event_set_padding(event);
2249 
2250 		/* Set the write back to the previous setting */
2251 		local_sub(length, &tail_page->write);
2252 		return;
2253 	}
2254 
2255 	/* Put in a discarded event */
2256 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2257 	event->type_len = RINGBUF_TYPE_PADDING;
2258 	/* time delta must be non zero */
2259 	event->time_delta = 1;
2260 
2261 	/* Set write to end of buffer */
2262 	length = (tail + length) - BUF_PAGE_SIZE;
2263 	local_sub(length, &tail_page->write);
2264 }
2265 
2266 /*
2267  * This is the slow path, force gcc not to inline it.
2268  */
2269 static noinline struct ring_buffer_event *
2270 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2271 	     unsigned long length, unsigned long tail,
2272 	     struct buffer_page *tail_page, u64 ts)
2273 {
2274 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2275 	struct ring_buffer *buffer = cpu_buffer->buffer;
2276 	struct buffer_page *next_page;
2277 	int ret;
2278 
2279 	next_page = tail_page;
2280 
2281 	rb_inc_page(cpu_buffer, &next_page);
2282 
2283 	/*
2284 	 * If for some reason, we had an interrupt storm that made
2285 	 * it all the way around the buffer, bail, and warn
2286 	 * about it.
2287 	 */
2288 	if (unlikely(next_page == commit_page)) {
2289 		local_inc(&cpu_buffer->commit_overrun);
2290 		goto out_reset;
2291 	}
2292 
2293 	/*
2294 	 * This is where the fun begins!
2295 	 *
2296 	 * We are fighting against races between a reader that
2297 	 * could be on another CPU trying to swap its reader
2298 	 * page with the buffer head.
2299 	 *
2300 	 * We are also fighting against interrupts coming in and
2301 	 * moving the head or tail on us as well.
2302 	 *
2303 	 * If the next page is the head page then we have filled
2304 	 * the buffer, unless the commit page is still on the
2305 	 * reader page.
2306 	 */
2307 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2308 
2309 		/*
2310 		 * If the commit is not on the reader page, then
2311 		 * move the header page.
2312 		 */
2313 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2314 			/*
2315 			 * If we are not in overwrite mode,
2316 			 * this is easy, just stop here.
2317 			 */
2318 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2319 				local_inc(&cpu_buffer->dropped_events);
2320 				goto out_reset;
2321 			}
2322 
2323 			ret = rb_handle_head_page(cpu_buffer,
2324 						  tail_page,
2325 						  next_page);
2326 			if (ret < 0)
2327 				goto out_reset;
2328 			if (ret)
2329 				goto out_again;
2330 		} else {
2331 			/*
2332 			 * We need to be careful here too. The
2333 			 * commit page could still be on the reader
2334 			 * page. We could have a small buffer, and
2335 			 * have filled up the buffer with events
2336 			 * from interrupts and such, and wrapped.
2337 			 *
2338 			 * Note, if the tail page is also the on the
2339 			 * reader_page, we let it move out.
2340 			 */
2341 			if (unlikely((cpu_buffer->commit_page !=
2342 				      cpu_buffer->tail_page) &&
2343 				     (cpu_buffer->commit_page ==
2344 				      cpu_buffer->reader_page))) {
2345 				local_inc(&cpu_buffer->commit_overrun);
2346 				goto out_reset;
2347 			}
2348 		}
2349 	}
2350 
2351 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2352 	if (ret) {
2353 		/*
2354 		 * Nested commits always have zero deltas, so
2355 		 * just reread the time stamp
2356 		 */
2357 		ts = rb_time_stamp(buffer);
2358 		next_page->page->time_stamp = ts;
2359 	}
2360 
2361  out_again:
2362 
2363 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2364 
2365 	/* fail and let the caller try again */
2366 	return ERR_PTR(-EAGAIN);
2367 
2368  out_reset:
2369 	/* reset write */
2370 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2371 
2372 	return NULL;
2373 }
2374 
2375 static struct ring_buffer_event *
2376 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2377 		  unsigned long length, u64 ts,
2378 		  u64 delta, int add_timestamp)
2379 {
2380 	struct buffer_page *tail_page;
2381 	struct ring_buffer_event *event;
2382 	unsigned long tail, write;
2383 
2384 	/*
2385 	 * If the time delta since the last event is too big to
2386 	 * hold in the time field of the event, then we append a
2387 	 * TIME EXTEND event ahead of the data event.
2388 	 */
2389 	if (unlikely(add_timestamp))
2390 		length += RB_LEN_TIME_EXTEND;
2391 
2392 	tail_page = cpu_buffer->tail_page;
2393 	write = local_add_return(length, &tail_page->write);
2394 
2395 	/* set write to only the index of the write */
2396 	write &= RB_WRITE_MASK;
2397 	tail = write - length;
2398 
2399 	/* See if we shot pass the end of this buffer page */
2400 	if (unlikely(write > BUF_PAGE_SIZE))
2401 		return rb_move_tail(cpu_buffer, length, tail,
2402 				    tail_page, ts);
2403 
2404 	/* We reserved something on the buffer */
2405 
2406 	event = __rb_page_index(tail_page, tail);
2407 	kmemcheck_annotate_bitfield(event, bitfield);
2408 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2409 
2410 	local_inc(&tail_page->entries);
2411 
2412 	/*
2413 	 * If this is the first commit on the page, then update
2414 	 * its timestamp.
2415 	 */
2416 	if (!tail)
2417 		tail_page->page->time_stamp = ts;
2418 
2419 	/* account for these added bytes */
2420 	local_add(length, &cpu_buffer->entries_bytes);
2421 
2422 	return event;
2423 }
2424 
2425 static inline int
2426 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2427 		  struct ring_buffer_event *event)
2428 {
2429 	unsigned long new_index, old_index;
2430 	struct buffer_page *bpage;
2431 	unsigned long index;
2432 	unsigned long addr;
2433 
2434 	new_index = rb_event_index(event);
2435 	old_index = new_index + rb_event_ts_length(event);
2436 	addr = (unsigned long)event;
2437 	addr &= PAGE_MASK;
2438 
2439 	bpage = cpu_buffer->tail_page;
2440 
2441 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2442 		unsigned long write_mask =
2443 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2444 		unsigned long event_length = rb_event_length(event);
2445 		/*
2446 		 * This is on the tail page. It is possible that
2447 		 * a write could come in and move the tail page
2448 		 * and write to the next page. That is fine
2449 		 * because we just shorten what is on this page.
2450 		 */
2451 		old_index += write_mask;
2452 		new_index += write_mask;
2453 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2454 		if (index == old_index) {
2455 			/* update counters */
2456 			local_sub(event_length, &cpu_buffer->entries_bytes);
2457 			return 1;
2458 		}
2459 	}
2460 
2461 	/* could not discard */
2462 	return 0;
2463 }
2464 
2465 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2466 {
2467 	local_inc(&cpu_buffer->committing);
2468 	local_inc(&cpu_buffer->commits);
2469 }
2470 
2471 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2472 {
2473 	unsigned long commits;
2474 
2475 	if (RB_WARN_ON(cpu_buffer,
2476 		       !local_read(&cpu_buffer->committing)))
2477 		return;
2478 
2479  again:
2480 	commits = local_read(&cpu_buffer->commits);
2481 	/* synchronize with interrupts */
2482 	barrier();
2483 	if (local_read(&cpu_buffer->committing) == 1)
2484 		rb_set_commit_to_write(cpu_buffer);
2485 
2486 	local_dec(&cpu_buffer->committing);
2487 
2488 	/* synchronize with interrupts */
2489 	barrier();
2490 
2491 	/*
2492 	 * Need to account for interrupts coming in between the
2493 	 * updating of the commit page and the clearing of the
2494 	 * committing counter.
2495 	 */
2496 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2497 	    !local_read(&cpu_buffer->committing)) {
2498 		local_inc(&cpu_buffer->committing);
2499 		goto again;
2500 	}
2501 }
2502 
2503 static struct ring_buffer_event *
2504 rb_reserve_next_event(struct ring_buffer *buffer,
2505 		      struct ring_buffer_per_cpu *cpu_buffer,
2506 		      unsigned long length)
2507 {
2508 	struct ring_buffer_event *event;
2509 	u64 ts, delta;
2510 	int nr_loops = 0;
2511 	int add_timestamp;
2512 	u64 diff;
2513 
2514 	rb_start_commit(cpu_buffer);
2515 
2516 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2517 	/*
2518 	 * Due to the ability to swap a cpu buffer from a buffer
2519 	 * it is possible it was swapped before we committed.
2520 	 * (committing stops a swap). We check for it here and
2521 	 * if it happened, we have to fail the write.
2522 	 */
2523 	barrier();
2524 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2525 		local_dec(&cpu_buffer->committing);
2526 		local_dec(&cpu_buffer->commits);
2527 		return NULL;
2528 	}
2529 #endif
2530 
2531 	length = rb_calculate_event_length(length);
2532  again:
2533 	add_timestamp = 0;
2534 	delta = 0;
2535 
2536 	/*
2537 	 * We allow for interrupts to reenter here and do a trace.
2538 	 * If one does, it will cause this original code to loop
2539 	 * back here. Even with heavy interrupts happening, this
2540 	 * should only happen a few times in a row. If this happens
2541 	 * 1000 times in a row, there must be either an interrupt
2542 	 * storm or we have something buggy.
2543 	 * Bail!
2544 	 */
2545 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2546 		goto out_fail;
2547 
2548 	ts = rb_time_stamp(cpu_buffer->buffer);
2549 	diff = ts - cpu_buffer->write_stamp;
2550 
2551 	/* make sure this diff is calculated here */
2552 	barrier();
2553 
2554 	/* Did the write stamp get updated already? */
2555 	if (likely(ts >= cpu_buffer->write_stamp)) {
2556 		delta = diff;
2557 		if (unlikely(test_time_stamp(delta))) {
2558 			int local_clock_stable = 1;
2559 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2560 			local_clock_stable = sched_clock_stable;
2561 #endif
2562 			WARN_ONCE(delta > (1ULL << 59),
2563 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2564 				  (unsigned long long)delta,
2565 				  (unsigned long long)ts,
2566 				  (unsigned long long)cpu_buffer->write_stamp,
2567 				  local_clock_stable ? "" :
2568 				  "If you just came from a suspend/resume,\n"
2569 				  "please switch to the trace global clock:\n"
2570 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2571 			add_timestamp = 1;
2572 		}
2573 	}
2574 
2575 	event = __rb_reserve_next(cpu_buffer, length, ts,
2576 				  delta, add_timestamp);
2577 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2578 		goto again;
2579 
2580 	if (!event)
2581 		goto out_fail;
2582 
2583 	return event;
2584 
2585  out_fail:
2586 	rb_end_commit(cpu_buffer);
2587 	return NULL;
2588 }
2589 
2590 #ifdef CONFIG_TRACING
2591 
2592 /*
2593  * The lock and unlock are done within a preempt disable section.
2594  * The current_context per_cpu variable can only be modified
2595  * by the current task between lock and unlock. But it can
2596  * be modified more than once via an interrupt. To pass this
2597  * information from the lock to the unlock without having to
2598  * access the 'in_interrupt()' functions again (which do show
2599  * a bit of overhead in something as critical as function tracing,
2600  * we use a bitmask trick.
2601  *
2602  *  bit 0 =  NMI context
2603  *  bit 1 =  IRQ context
2604  *  bit 2 =  SoftIRQ context
2605  *  bit 3 =  normal context.
2606  *
2607  * This works because this is the order of contexts that can
2608  * preempt other contexts. A SoftIRQ never preempts an IRQ
2609  * context.
2610  *
2611  * When the context is determined, the corresponding bit is
2612  * checked and set (if it was set, then a recursion of that context
2613  * happened).
2614  *
2615  * On unlock, we need to clear this bit. To do so, just subtract
2616  * 1 from the current_context and AND it to itself.
2617  *
2618  * (binary)
2619  *  101 - 1 = 100
2620  *  101 & 100 = 100 (clearing bit zero)
2621  *
2622  *  1010 - 1 = 1001
2623  *  1010 & 1001 = 1000 (clearing bit 1)
2624  *
2625  * The least significant bit can be cleared this way, and it
2626  * just so happens that it is the same bit corresponding to
2627  * the current context.
2628  */
2629 static DEFINE_PER_CPU(unsigned int, current_context);
2630 
2631 static __always_inline int trace_recursive_lock(void)
2632 {
2633 	unsigned int val = this_cpu_read(current_context);
2634 	int bit;
2635 
2636 	if (in_interrupt()) {
2637 		if (in_nmi())
2638 			bit = 0;
2639 		else if (in_irq())
2640 			bit = 1;
2641 		else
2642 			bit = 2;
2643 	} else
2644 		bit = 3;
2645 
2646 	if (unlikely(val & (1 << bit)))
2647 		return 1;
2648 
2649 	val |= (1 << bit);
2650 	this_cpu_write(current_context, val);
2651 
2652 	return 0;
2653 }
2654 
2655 static __always_inline void trace_recursive_unlock(void)
2656 {
2657 	unsigned int val = this_cpu_read(current_context);
2658 
2659 	val--;
2660 	val &= this_cpu_read(current_context);
2661 	this_cpu_write(current_context, val);
2662 }
2663 
2664 #else
2665 
2666 #define trace_recursive_lock()		(0)
2667 #define trace_recursive_unlock()	do { } while (0)
2668 
2669 #endif
2670 
2671 /**
2672  * ring_buffer_lock_reserve - reserve a part of the buffer
2673  * @buffer: the ring buffer to reserve from
2674  * @length: the length of the data to reserve (excluding event header)
2675  *
2676  * Returns a reseverd event on the ring buffer to copy directly to.
2677  * The user of this interface will need to get the body to write into
2678  * and can use the ring_buffer_event_data() interface.
2679  *
2680  * The length is the length of the data needed, not the event length
2681  * which also includes the event header.
2682  *
2683  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2684  * If NULL is returned, then nothing has been allocated or locked.
2685  */
2686 struct ring_buffer_event *
2687 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2688 {
2689 	struct ring_buffer_per_cpu *cpu_buffer;
2690 	struct ring_buffer_event *event;
2691 	int cpu;
2692 
2693 	if (ring_buffer_flags != RB_BUFFERS_ON)
2694 		return NULL;
2695 
2696 	/* If we are tracing schedule, we don't want to recurse */
2697 	preempt_disable_notrace();
2698 
2699 	if (atomic_read(&buffer->record_disabled))
2700 		goto out_nocheck;
2701 
2702 	if (trace_recursive_lock())
2703 		goto out_nocheck;
2704 
2705 	cpu = raw_smp_processor_id();
2706 
2707 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2708 		goto out;
2709 
2710 	cpu_buffer = buffer->buffers[cpu];
2711 
2712 	if (atomic_read(&cpu_buffer->record_disabled))
2713 		goto out;
2714 
2715 	if (length > BUF_MAX_DATA_SIZE)
2716 		goto out;
2717 
2718 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2719 	if (!event)
2720 		goto out;
2721 
2722 	return event;
2723 
2724  out:
2725 	trace_recursive_unlock();
2726 
2727  out_nocheck:
2728 	preempt_enable_notrace();
2729 	return NULL;
2730 }
2731 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2732 
2733 static void
2734 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2735 		      struct ring_buffer_event *event)
2736 {
2737 	u64 delta;
2738 
2739 	/*
2740 	 * The event first in the commit queue updates the
2741 	 * time stamp.
2742 	 */
2743 	if (rb_event_is_commit(cpu_buffer, event)) {
2744 		/*
2745 		 * A commit event that is first on a page
2746 		 * updates the write timestamp with the page stamp
2747 		 */
2748 		if (!rb_event_index(event))
2749 			cpu_buffer->write_stamp =
2750 				cpu_buffer->commit_page->page->time_stamp;
2751 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2752 			delta = event->array[0];
2753 			delta <<= TS_SHIFT;
2754 			delta += event->time_delta;
2755 			cpu_buffer->write_stamp += delta;
2756 		} else
2757 			cpu_buffer->write_stamp += event->time_delta;
2758 	}
2759 }
2760 
2761 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2762 		      struct ring_buffer_event *event)
2763 {
2764 	local_inc(&cpu_buffer->entries);
2765 	rb_update_write_stamp(cpu_buffer, event);
2766 	rb_end_commit(cpu_buffer);
2767 }
2768 
2769 static __always_inline void
2770 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2771 {
2772 	if (buffer->irq_work.waiters_pending) {
2773 		buffer->irq_work.waiters_pending = false;
2774 		/* irq_work_queue() supplies it's own memory barriers */
2775 		irq_work_queue(&buffer->irq_work.work);
2776 	}
2777 
2778 	if (cpu_buffer->irq_work.waiters_pending) {
2779 		cpu_buffer->irq_work.waiters_pending = false;
2780 		/* irq_work_queue() supplies it's own memory barriers */
2781 		irq_work_queue(&cpu_buffer->irq_work.work);
2782 	}
2783 }
2784 
2785 /**
2786  * ring_buffer_unlock_commit - commit a reserved
2787  * @buffer: The buffer to commit to
2788  * @event: The event pointer to commit.
2789  *
2790  * This commits the data to the ring buffer, and releases any locks held.
2791  *
2792  * Must be paired with ring_buffer_lock_reserve.
2793  */
2794 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2795 			      struct ring_buffer_event *event)
2796 {
2797 	struct ring_buffer_per_cpu *cpu_buffer;
2798 	int cpu = raw_smp_processor_id();
2799 
2800 	cpu_buffer = buffer->buffers[cpu];
2801 
2802 	rb_commit(cpu_buffer, event);
2803 
2804 	rb_wakeups(buffer, cpu_buffer);
2805 
2806 	trace_recursive_unlock();
2807 
2808 	preempt_enable_notrace();
2809 
2810 	return 0;
2811 }
2812 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2813 
2814 static inline void rb_event_discard(struct ring_buffer_event *event)
2815 {
2816 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2817 		event = skip_time_extend(event);
2818 
2819 	/* array[0] holds the actual length for the discarded event */
2820 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2821 	event->type_len = RINGBUF_TYPE_PADDING;
2822 	/* time delta must be non zero */
2823 	if (!event->time_delta)
2824 		event->time_delta = 1;
2825 }
2826 
2827 /*
2828  * Decrement the entries to the page that an event is on.
2829  * The event does not even need to exist, only the pointer
2830  * to the page it is on. This may only be called before the commit
2831  * takes place.
2832  */
2833 static inline void
2834 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2835 		   struct ring_buffer_event *event)
2836 {
2837 	unsigned long addr = (unsigned long)event;
2838 	struct buffer_page *bpage = cpu_buffer->commit_page;
2839 	struct buffer_page *start;
2840 
2841 	addr &= PAGE_MASK;
2842 
2843 	/* Do the likely case first */
2844 	if (likely(bpage->page == (void *)addr)) {
2845 		local_dec(&bpage->entries);
2846 		return;
2847 	}
2848 
2849 	/*
2850 	 * Because the commit page may be on the reader page we
2851 	 * start with the next page and check the end loop there.
2852 	 */
2853 	rb_inc_page(cpu_buffer, &bpage);
2854 	start = bpage;
2855 	do {
2856 		if (bpage->page == (void *)addr) {
2857 			local_dec(&bpage->entries);
2858 			return;
2859 		}
2860 		rb_inc_page(cpu_buffer, &bpage);
2861 	} while (bpage != start);
2862 
2863 	/* commit not part of this buffer?? */
2864 	RB_WARN_ON(cpu_buffer, 1);
2865 }
2866 
2867 /**
2868  * ring_buffer_commit_discard - discard an event that has not been committed
2869  * @buffer: the ring buffer
2870  * @event: non committed event to discard
2871  *
2872  * Sometimes an event that is in the ring buffer needs to be ignored.
2873  * This function lets the user discard an event in the ring buffer
2874  * and then that event will not be read later.
2875  *
2876  * This function only works if it is called before the the item has been
2877  * committed. It will try to free the event from the ring buffer
2878  * if another event has not been added behind it.
2879  *
2880  * If another event has been added behind it, it will set the event
2881  * up as discarded, and perform the commit.
2882  *
2883  * If this function is called, do not call ring_buffer_unlock_commit on
2884  * the event.
2885  */
2886 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2887 				struct ring_buffer_event *event)
2888 {
2889 	struct ring_buffer_per_cpu *cpu_buffer;
2890 	int cpu;
2891 
2892 	/* The event is discarded regardless */
2893 	rb_event_discard(event);
2894 
2895 	cpu = smp_processor_id();
2896 	cpu_buffer = buffer->buffers[cpu];
2897 
2898 	/*
2899 	 * This must only be called if the event has not been
2900 	 * committed yet. Thus we can assume that preemption
2901 	 * is still disabled.
2902 	 */
2903 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2904 
2905 	rb_decrement_entry(cpu_buffer, event);
2906 	if (rb_try_to_discard(cpu_buffer, event))
2907 		goto out;
2908 
2909 	/*
2910 	 * The commit is still visible by the reader, so we
2911 	 * must still update the timestamp.
2912 	 */
2913 	rb_update_write_stamp(cpu_buffer, event);
2914  out:
2915 	rb_end_commit(cpu_buffer);
2916 
2917 	trace_recursive_unlock();
2918 
2919 	preempt_enable_notrace();
2920 
2921 }
2922 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2923 
2924 /**
2925  * ring_buffer_write - write data to the buffer without reserving
2926  * @buffer: The ring buffer to write to.
2927  * @length: The length of the data being written (excluding the event header)
2928  * @data: The data to write to the buffer.
2929  *
2930  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2931  * one function. If you already have the data to write to the buffer, it
2932  * may be easier to simply call this function.
2933  *
2934  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2935  * and not the length of the event which would hold the header.
2936  */
2937 int ring_buffer_write(struct ring_buffer *buffer,
2938 		      unsigned long length,
2939 		      void *data)
2940 {
2941 	struct ring_buffer_per_cpu *cpu_buffer;
2942 	struct ring_buffer_event *event;
2943 	void *body;
2944 	int ret = -EBUSY;
2945 	int cpu;
2946 
2947 	if (ring_buffer_flags != RB_BUFFERS_ON)
2948 		return -EBUSY;
2949 
2950 	preempt_disable_notrace();
2951 
2952 	if (atomic_read(&buffer->record_disabled))
2953 		goto out;
2954 
2955 	cpu = raw_smp_processor_id();
2956 
2957 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2958 		goto out;
2959 
2960 	cpu_buffer = buffer->buffers[cpu];
2961 
2962 	if (atomic_read(&cpu_buffer->record_disabled))
2963 		goto out;
2964 
2965 	if (length > BUF_MAX_DATA_SIZE)
2966 		goto out;
2967 
2968 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2969 	if (!event)
2970 		goto out;
2971 
2972 	body = rb_event_data(event);
2973 
2974 	memcpy(body, data, length);
2975 
2976 	rb_commit(cpu_buffer, event);
2977 
2978 	rb_wakeups(buffer, cpu_buffer);
2979 
2980 	ret = 0;
2981  out:
2982 	preempt_enable_notrace();
2983 
2984 	return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(ring_buffer_write);
2987 
2988 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2989 {
2990 	struct buffer_page *reader = cpu_buffer->reader_page;
2991 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2992 	struct buffer_page *commit = cpu_buffer->commit_page;
2993 
2994 	/* In case of error, head will be NULL */
2995 	if (unlikely(!head))
2996 		return 1;
2997 
2998 	return reader->read == rb_page_commit(reader) &&
2999 		(commit == reader ||
3000 		 (commit == head &&
3001 		  head->read == rb_page_commit(commit)));
3002 }
3003 
3004 /**
3005  * ring_buffer_record_disable - stop all writes into the buffer
3006  * @buffer: The ring buffer to stop writes to.
3007  *
3008  * This prevents all writes to the buffer. Any attempt to write
3009  * to the buffer after this will fail and return NULL.
3010  *
3011  * The caller should call synchronize_sched() after this.
3012  */
3013 void ring_buffer_record_disable(struct ring_buffer *buffer)
3014 {
3015 	atomic_inc(&buffer->record_disabled);
3016 }
3017 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3018 
3019 /**
3020  * ring_buffer_record_enable - enable writes to the buffer
3021  * @buffer: The ring buffer to enable writes
3022  *
3023  * Note, multiple disables will need the same number of enables
3024  * to truly enable the writing (much like preempt_disable).
3025  */
3026 void ring_buffer_record_enable(struct ring_buffer *buffer)
3027 {
3028 	atomic_dec(&buffer->record_disabled);
3029 }
3030 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3031 
3032 /**
3033  * ring_buffer_record_off - stop all writes into the buffer
3034  * @buffer: The ring buffer to stop writes to.
3035  *
3036  * This prevents all writes to the buffer. Any attempt to write
3037  * to the buffer after this will fail and return NULL.
3038  *
3039  * This is different than ring_buffer_record_disable() as
3040  * it works like an on/off switch, where as the disable() version
3041  * must be paired with a enable().
3042  */
3043 void ring_buffer_record_off(struct ring_buffer *buffer)
3044 {
3045 	unsigned int rd;
3046 	unsigned int new_rd;
3047 
3048 	do {
3049 		rd = atomic_read(&buffer->record_disabled);
3050 		new_rd = rd | RB_BUFFER_OFF;
3051 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3052 }
3053 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3054 
3055 /**
3056  * ring_buffer_record_on - restart writes into the buffer
3057  * @buffer: The ring buffer to start writes to.
3058  *
3059  * This enables all writes to the buffer that was disabled by
3060  * ring_buffer_record_off().
3061  *
3062  * This is different than ring_buffer_record_enable() as
3063  * it works like an on/off switch, where as the enable() version
3064  * must be paired with a disable().
3065  */
3066 void ring_buffer_record_on(struct ring_buffer *buffer)
3067 {
3068 	unsigned int rd;
3069 	unsigned int new_rd;
3070 
3071 	do {
3072 		rd = atomic_read(&buffer->record_disabled);
3073 		new_rd = rd & ~RB_BUFFER_OFF;
3074 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3075 }
3076 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3077 
3078 /**
3079  * ring_buffer_record_is_on - return true if the ring buffer can write
3080  * @buffer: The ring buffer to see if write is enabled
3081  *
3082  * Returns true if the ring buffer is in a state that it accepts writes.
3083  */
3084 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3085 {
3086 	return !atomic_read(&buffer->record_disabled);
3087 }
3088 
3089 /**
3090  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3091  * @buffer: The ring buffer to stop writes to.
3092  * @cpu: The CPU buffer to stop
3093  *
3094  * This prevents all writes to the buffer. Any attempt to write
3095  * to the buffer after this will fail and return NULL.
3096  *
3097  * The caller should call synchronize_sched() after this.
3098  */
3099 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3100 {
3101 	struct ring_buffer_per_cpu *cpu_buffer;
3102 
3103 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3104 		return;
3105 
3106 	cpu_buffer = buffer->buffers[cpu];
3107 	atomic_inc(&cpu_buffer->record_disabled);
3108 }
3109 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3110 
3111 /**
3112  * ring_buffer_record_enable_cpu - enable writes to the buffer
3113  * @buffer: The ring buffer to enable writes
3114  * @cpu: The CPU to enable.
3115  *
3116  * Note, multiple disables will need the same number of enables
3117  * to truly enable the writing (much like preempt_disable).
3118  */
3119 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3120 {
3121 	struct ring_buffer_per_cpu *cpu_buffer;
3122 
3123 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3124 		return;
3125 
3126 	cpu_buffer = buffer->buffers[cpu];
3127 	atomic_dec(&cpu_buffer->record_disabled);
3128 }
3129 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3130 
3131 /*
3132  * The total entries in the ring buffer is the running counter
3133  * of entries entered into the ring buffer, minus the sum of
3134  * the entries read from the ring buffer and the number of
3135  * entries that were overwritten.
3136  */
3137 static inline unsigned long
3138 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3139 {
3140 	return local_read(&cpu_buffer->entries) -
3141 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3142 }
3143 
3144 /**
3145  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3146  * @buffer: The ring buffer
3147  * @cpu: The per CPU buffer to read from.
3148  */
3149 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3150 {
3151 	unsigned long flags;
3152 	struct ring_buffer_per_cpu *cpu_buffer;
3153 	struct buffer_page *bpage;
3154 	u64 ret = 0;
3155 
3156 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3157 		return 0;
3158 
3159 	cpu_buffer = buffer->buffers[cpu];
3160 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3161 	/*
3162 	 * if the tail is on reader_page, oldest time stamp is on the reader
3163 	 * page
3164 	 */
3165 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3166 		bpage = cpu_buffer->reader_page;
3167 	else
3168 		bpage = rb_set_head_page(cpu_buffer);
3169 	if (bpage)
3170 		ret = bpage->page->time_stamp;
3171 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3172 
3173 	return ret;
3174 }
3175 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3176 
3177 /**
3178  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3179  * @buffer: The ring buffer
3180  * @cpu: The per CPU buffer to read from.
3181  */
3182 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3183 {
3184 	struct ring_buffer_per_cpu *cpu_buffer;
3185 	unsigned long ret;
3186 
3187 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3188 		return 0;
3189 
3190 	cpu_buffer = buffer->buffers[cpu];
3191 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3192 
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3196 
3197 /**
3198  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3199  * @buffer: The ring buffer
3200  * @cpu: The per CPU buffer to get the entries from.
3201  */
3202 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3203 {
3204 	struct ring_buffer_per_cpu *cpu_buffer;
3205 
3206 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3207 		return 0;
3208 
3209 	cpu_buffer = buffer->buffers[cpu];
3210 
3211 	return rb_num_of_entries(cpu_buffer);
3212 }
3213 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3214 
3215 /**
3216  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3217  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3218  * @buffer: The ring buffer
3219  * @cpu: The per CPU buffer to get the number of overruns from
3220  */
3221 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3222 {
3223 	struct ring_buffer_per_cpu *cpu_buffer;
3224 	unsigned long ret;
3225 
3226 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3227 		return 0;
3228 
3229 	cpu_buffer = buffer->buffers[cpu];
3230 	ret = local_read(&cpu_buffer->overrun);
3231 
3232 	return ret;
3233 }
3234 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3235 
3236 /**
3237  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3238  * commits failing due to the buffer wrapping around while there are uncommitted
3239  * events, such as during an interrupt storm.
3240  * @buffer: The ring buffer
3241  * @cpu: The per CPU buffer to get the number of overruns from
3242  */
3243 unsigned long
3244 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3245 {
3246 	struct ring_buffer_per_cpu *cpu_buffer;
3247 	unsigned long ret;
3248 
3249 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3250 		return 0;
3251 
3252 	cpu_buffer = buffer->buffers[cpu];
3253 	ret = local_read(&cpu_buffer->commit_overrun);
3254 
3255 	return ret;
3256 }
3257 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3258 
3259 /**
3260  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3261  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3262  * @buffer: The ring buffer
3263  * @cpu: The per CPU buffer to get the number of overruns from
3264  */
3265 unsigned long
3266 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3267 {
3268 	struct ring_buffer_per_cpu *cpu_buffer;
3269 	unsigned long ret;
3270 
3271 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3272 		return 0;
3273 
3274 	cpu_buffer = buffer->buffers[cpu];
3275 	ret = local_read(&cpu_buffer->dropped_events);
3276 
3277 	return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3280 
3281 /**
3282  * ring_buffer_read_events_cpu - get the number of events successfully read
3283  * @buffer: The ring buffer
3284  * @cpu: The per CPU buffer to get the number of events read
3285  */
3286 unsigned long
3287 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3288 {
3289 	struct ring_buffer_per_cpu *cpu_buffer;
3290 
3291 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3292 		return 0;
3293 
3294 	cpu_buffer = buffer->buffers[cpu];
3295 	return cpu_buffer->read;
3296 }
3297 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3298 
3299 /**
3300  * ring_buffer_entries - get the number of entries in a buffer
3301  * @buffer: The ring buffer
3302  *
3303  * Returns the total number of entries in the ring buffer
3304  * (all CPU entries)
3305  */
3306 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3307 {
3308 	struct ring_buffer_per_cpu *cpu_buffer;
3309 	unsigned long entries = 0;
3310 	int cpu;
3311 
3312 	/* if you care about this being correct, lock the buffer */
3313 	for_each_buffer_cpu(buffer, cpu) {
3314 		cpu_buffer = buffer->buffers[cpu];
3315 		entries += rb_num_of_entries(cpu_buffer);
3316 	}
3317 
3318 	return entries;
3319 }
3320 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3321 
3322 /**
3323  * ring_buffer_overruns - get the number of overruns in buffer
3324  * @buffer: The ring buffer
3325  *
3326  * Returns the total number of overruns in the ring buffer
3327  * (all CPU entries)
3328  */
3329 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3330 {
3331 	struct ring_buffer_per_cpu *cpu_buffer;
3332 	unsigned long overruns = 0;
3333 	int cpu;
3334 
3335 	/* if you care about this being correct, lock the buffer */
3336 	for_each_buffer_cpu(buffer, cpu) {
3337 		cpu_buffer = buffer->buffers[cpu];
3338 		overruns += local_read(&cpu_buffer->overrun);
3339 	}
3340 
3341 	return overruns;
3342 }
3343 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3344 
3345 static void rb_iter_reset(struct ring_buffer_iter *iter)
3346 {
3347 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3348 
3349 	/* Iterator usage is expected to have record disabled */
3350 	if (list_empty(&cpu_buffer->reader_page->list)) {
3351 		iter->head_page = rb_set_head_page(cpu_buffer);
3352 		if (unlikely(!iter->head_page))
3353 			return;
3354 		iter->head = iter->head_page->read;
3355 	} else {
3356 		iter->head_page = cpu_buffer->reader_page;
3357 		iter->head = cpu_buffer->reader_page->read;
3358 	}
3359 	if (iter->head)
3360 		iter->read_stamp = cpu_buffer->read_stamp;
3361 	else
3362 		iter->read_stamp = iter->head_page->page->time_stamp;
3363 	iter->cache_reader_page = cpu_buffer->reader_page;
3364 	iter->cache_read = cpu_buffer->read;
3365 }
3366 
3367 /**
3368  * ring_buffer_iter_reset - reset an iterator
3369  * @iter: The iterator to reset
3370  *
3371  * Resets the iterator, so that it will start from the beginning
3372  * again.
3373  */
3374 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3375 {
3376 	struct ring_buffer_per_cpu *cpu_buffer;
3377 	unsigned long flags;
3378 
3379 	if (!iter)
3380 		return;
3381 
3382 	cpu_buffer = iter->cpu_buffer;
3383 
3384 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3385 	rb_iter_reset(iter);
3386 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3387 }
3388 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3389 
3390 /**
3391  * ring_buffer_iter_empty - check if an iterator has no more to read
3392  * @iter: The iterator to check
3393  */
3394 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3395 {
3396 	struct ring_buffer_per_cpu *cpu_buffer;
3397 
3398 	cpu_buffer = iter->cpu_buffer;
3399 
3400 	return iter->head_page == cpu_buffer->commit_page &&
3401 		iter->head == rb_commit_index(cpu_buffer);
3402 }
3403 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3404 
3405 static void
3406 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3407 		     struct ring_buffer_event *event)
3408 {
3409 	u64 delta;
3410 
3411 	switch (event->type_len) {
3412 	case RINGBUF_TYPE_PADDING:
3413 		return;
3414 
3415 	case RINGBUF_TYPE_TIME_EXTEND:
3416 		delta = event->array[0];
3417 		delta <<= TS_SHIFT;
3418 		delta += event->time_delta;
3419 		cpu_buffer->read_stamp += delta;
3420 		return;
3421 
3422 	case RINGBUF_TYPE_TIME_STAMP:
3423 		/* FIXME: not implemented */
3424 		return;
3425 
3426 	case RINGBUF_TYPE_DATA:
3427 		cpu_buffer->read_stamp += event->time_delta;
3428 		return;
3429 
3430 	default:
3431 		BUG();
3432 	}
3433 	return;
3434 }
3435 
3436 static void
3437 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3438 			  struct ring_buffer_event *event)
3439 {
3440 	u64 delta;
3441 
3442 	switch (event->type_len) {
3443 	case RINGBUF_TYPE_PADDING:
3444 		return;
3445 
3446 	case RINGBUF_TYPE_TIME_EXTEND:
3447 		delta = event->array[0];
3448 		delta <<= TS_SHIFT;
3449 		delta += event->time_delta;
3450 		iter->read_stamp += delta;
3451 		return;
3452 
3453 	case RINGBUF_TYPE_TIME_STAMP:
3454 		/* FIXME: not implemented */
3455 		return;
3456 
3457 	case RINGBUF_TYPE_DATA:
3458 		iter->read_stamp += event->time_delta;
3459 		return;
3460 
3461 	default:
3462 		BUG();
3463 	}
3464 	return;
3465 }
3466 
3467 static struct buffer_page *
3468 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3469 {
3470 	struct buffer_page *reader = NULL;
3471 	unsigned long overwrite;
3472 	unsigned long flags;
3473 	int nr_loops = 0;
3474 	int ret;
3475 
3476 	local_irq_save(flags);
3477 	arch_spin_lock(&cpu_buffer->lock);
3478 
3479  again:
3480 	/*
3481 	 * This should normally only loop twice. But because the
3482 	 * start of the reader inserts an empty page, it causes
3483 	 * a case where we will loop three times. There should be no
3484 	 * reason to loop four times (that I know of).
3485 	 */
3486 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3487 		reader = NULL;
3488 		goto out;
3489 	}
3490 
3491 	reader = cpu_buffer->reader_page;
3492 
3493 	/* If there's more to read, return this page */
3494 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3495 		goto out;
3496 
3497 	/* Never should we have an index greater than the size */
3498 	if (RB_WARN_ON(cpu_buffer,
3499 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3500 		goto out;
3501 
3502 	/* check if we caught up to the tail */
3503 	reader = NULL;
3504 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3505 		goto out;
3506 
3507 	/* Don't bother swapping if the ring buffer is empty */
3508 	if (rb_num_of_entries(cpu_buffer) == 0)
3509 		goto out;
3510 
3511 	/*
3512 	 * Reset the reader page to size zero.
3513 	 */
3514 	local_set(&cpu_buffer->reader_page->write, 0);
3515 	local_set(&cpu_buffer->reader_page->entries, 0);
3516 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3517 	cpu_buffer->reader_page->real_end = 0;
3518 
3519  spin:
3520 	/*
3521 	 * Splice the empty reader page into the list around the head.
3522 	 */
3523 	reader = rb_set_head_page(cpu_buffer);
3524 	if (!reader)
3525 		goto out;
3526 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3527 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3528 
3529 	/*
3530 	 * cpu_buffer->pages just needs to point to the buffer, it
3531 	 *  has no specific buffer page to point to. Lets move it out
3532 	 *  of our way so we don't accidentally swap it.
3533 	 */
3534 	cpu_buffer->pages = reader->list.prev;
3535 
3536 	/* The reader page will be pointing to the new head */
3537 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3538 
3539 	/*
3540 	 * We want to make sure we read the overruns after we set up our
3541 	 * pointers to the next object. The writer side does a
3542 	 * cmpxchg to cross pages which acts as the mb on the writer
3543 	 * side. Note, the reader will constantly fail the swap
3544 	 * while the writer is updating the pointers, so this
3545 	 * guarantees that the overwrite recorded here is the one we
3546 	 * want to compare with the last_overrun.
3547 	 */
3548 	smp_mb();
3549 	overwrite = local_read(&(cpu_buffer->overrun));
3550 
3551 	/*
3552 	 * Here's the tricky part.
3553 	 *
3554 	 * We need to move the pointer past the header page.
3555 	 * But we can only do that if a writer is not currently
3556 	 * moving it. The page before the header page has the
3557 	 * flag bit '1' set if it is pointing to the page we want.
3558 	 * but if the writer is in the process of moving it
3559 	 * than it will be '2' or already moved '0'.
3560 	 */
3561 
3562 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3563 
3564 	/*
3565 	 * If we did not convert it, then we must try again.
3566 	 */
3567 	if (!ret)
3568 		goto spin;
3569 
3570 	/*
3571 	 * Yeah! We succeeded in replacing the page.
3572 	 *
3573 	 * Now make the new head point back to the reader page.
3574 	 */
3575 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3576 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3577 
3578 	/* Finally update the reader page to the new head */
3579 	cpu_buffer->reader_page = reader;
3580 	rb_reset_reader_page(cpu_buffer);
3581 
3582 	if (overwrite != cpu_buffer->last_overrun) {
3583 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3584 		cpu_buffer->last_overrun = overwrite;
3585 	}
3586 
3587 	goto again;
3588 
3589  out:
3590 	arch_spin_unlock(&cpu_buffer->lock);
3591 	local_irq_restore(flags);
3592 
3593 	return reader;
3594 }
3595 
3596 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3597 {
3598 	struct ring_buffer_event *event;
3599 	struct buffer_page *reader;
3600 	unsigned length;
3601 
3602 	reader = rb_get_reader_page(cpu_buffer);
3603 
3604 	/* This function should not be called when buffer is empty */
3605 	if (RB_WARN_ON(cpu_buffer, !reader))
3606 		return;
3607 
3608 	event = rb_reader_event(cpu_buffer);
3609 
3610 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3611 		cpu_buffer->read++;
3612 
3613 	rb_update_read_stamp(cpu_buffer, event);
3614 
3615 	length = rb_event_length(event);
3616 	cpu_buffer->reader_page->read += length;
3617 }
3618 
3619 static void rb_advance_iter(struct ring_buffer_iter *iter)
3620 {
3621 	struct ring_buffer_per_cpu *cpu_buffer;
3622 	struct ring_buffer_event *event;
3623 	unsigned length;
3624 
3625 	cpu_buffer = iter->cpu_buffer;
3626 
3627 	/*
3628 	 * Check if we are at the end of the buffer.
3629 	 */
3630 	if (iter->head >= rb_page_size(iter->head_page)) {
3631 		/* discarded commits can make the page empty */
3632 		if (iter->head_page == cpu_buffer->commit_page)
3633 			return;
3634 		rb_inc_iter(iter);
3635 		return;
3636 	}
3637 
3638 	event = rb_iter_head_event(iter);
3639 
3640 	length = rb_event_length(event);
3641 
3642 	/*
3643 	 * This should not be called to advance the header if we are
3644 	 * at the tail of the buffer.
3645 	 */
3646 	if (RB_WARN_ON(cpu_buffer,
3647 		       (iter->head_page == cpu_buffer->commit_page) &&
3648 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3649 		return;
3650 
3651 	rb_update_iter_read_stamp(iter, event);
3652 
3653 	iter->head += length;
3654 
3655 	/* check for end of page padding */
3656 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3657 	    (iter->head_page != cpu_buffer->commit_page))
3658 		rb_inc_iter(iter);
3659 }
3660 
3661 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3662 {
3663 	return cpu_buffer->lost_events;
3664 }
3665 
3666 static struct ring_buffer_event *
3667 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3668 	       unsigned long *lost_events)
3669 {
3670 	struct ring_buffer_event *event;
3671 	struct buffer_page *reader;
3672 	int nr_loops = 0;
3673 
3674  again:
3675 	/*
3676 	 * We repeat when a time extend is encountered.
3677 	 * Since the time extend is always attached to a data event,
3678 	 * we should never loop more than once.
3679 	 * (We never hit the following condition more than twice).
3680 	 */
3681 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3682 		return NULL;
3683 
3684 	reader = rb_get_reader_page(cpu_buffer);
3685 	if (!reader)
3686 		return NULL;
3687 
3688 	event = rb_reader_event(cpu_buffer);
3689 
3690 	switch (event->type_len) {
3691 	case RINGBUF_TYPE_PADDING:
3692 		if (rb_null_event(event))
3693 			RB_WARN_ON(cpu_buffer, 1);
3694 		/*
3695 		 * Because the writer could be discarding every
3696 		 * event it creates (which would probably be bad)
3697 		 * if we were to go back to "again" then we may never
3698 		 * catch up, and will trigger the warn on, or lock
3699 		 * the box. Return the padding, and we will release
3700 		 * the current locks, and try again.
3701 		 */
3702 		return event;
3703 
3704 	case RINGBUF_TYPE_TIME_EXTEND:
3705 		/* Internal data, OK to advance */
3706 		rb_advance_reader(cpu_buffer);
3707 		goto again;
3708 
3709 	case RINGBUF_TYPE_TIME_STAMP:
3710 		/* FIXME: not implemented */
3711 		rb_advance_reader(cpu_buffer);
3712 		goto again;
3713 
3714 	case RINGBUF_TYPE_DATA:
3715 		if (ts) {
3716 			*ts = cpu_buffer->read_stamp + event->time_delta;
3717 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3718 							 cpu_buffer->cpu, ts);
3719 		}
3720 		if (lost_events)
3721 			*lost_events = rb_lost_events(cpu_buffer);
3722 		return event;
3723 
3724 	default:
3725 		BUG();
3726 	}
3727 
3728 	return NULL;
3729 }
3730 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3731 
3732 static struct ring_buffer_event *
3733 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3734 {
3735 	struct ring_buffer *buffer;
3736 	struct ring_buffer_per_cpu *cpu_buffer;
3737 	struct ring_buffer_event *event;
3738 	int nr_loops = 0;
3739 
3740 	cpu_buffer = iter->cpu_buffer;
3741 	buffer = cpu_buffer->buffer;
3742 
3743 	/*
3744 	 * Check if someone performed a consuming read to
3745 	 * the buffer. A consuming read invalidates the iterator
3746 	 * and we need to reset the iterator in this case.
3747 	 */
3748 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3749 		     iter->cache_reader_page != cpu_buffer->reader_page))
3750 		rb_iter_reset(iter);
3751 
3752  again:
3753 	if (ring_buffer_iter_empty(iter))
3754 		return NULL;
3755 
3756 	/*
3757 	 * We repeat when a time extend is encountered.
3758 	 * Since the time extend is always attached to a data event,
3759 	 * we should never loop more than once.
3760 	 * (We never hit the following condition more than twice).
3761 	 */
3762 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3763 		return NULL;
3764 
3765 	if (rb_per_cpu_empty(cpu_buffer))
3766 		return NULL;
3767 
3768 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3769 		rb_inc_iter(iter);
3770 		goto again;
3771 	}
3772 
3773 	event = rb_iter_head_event(iter);
3774 
3775 	switch (event->type_len) {
3776 	case RINGBUF_TYPE_PADDING:
3777 		if (rb_null_event(event)) {
3778 			rb_inc_iter(iter);
3779 			goto again;
3780 		}
3781 		rb_advance_iter(iter);
3782 		return event;
3783 
3784 	case RINGBUF_TYPE_TIME_EXTEND:
3785 		/* Internal data, OK to advance */
3786 		rb_advance_iter(iter);
3787 		goto again;
3788 
3789 	case RINGBUF_TYPE_TIME_STAMP:
3790 		/* FIXME: not implemented */
3791 		rb_advance_iter(iter);
3792 		goto again;
3793 
3794 	case RINGBUF_TYPE_DATA:
3795 		if (ts) {
3796 			*ts = iter->read_stamp + event->time_delta;
3797 			ring_buffer_normalize_time_stamp(buffer,
3798 							 cpu_buffer->cpu, ts);
3799 		}
3800 		return event;
3801 
3802 	default:
3803 		BUG();
3804 	}
3805 
3806 	return NULL;
3807 }
3808 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3809 
3810 static inline int rb_ok_to_lock(void)
3811 {
3812 	/*
3813 	 * If an NMI die dumps out the content of the ring buffer
3814 	 * do not grab locks. We also permanently disable the ring
3815 	 * buffer too. A one time deal is all you get from reading
3816 	 * the ring buffer from an NMI.
3817 	 */
3818 	if (likely(!in_nmi()))
3819 		return 1;
3820 
3821 	tracing_off_permanent();
3822 	return 0;
3823 }
3824 
3825 /**
3826  * ring_buffer_peek - peek at the next event to be read
3827  * @buffer: The ring buffer to read
3828  * @cpu: The cpu to peak at
3829  * @ts: The timestamp counter of this event.
3830  * @lost_events: a variable to store if events were lost (may be NULL)
3831  *
3832  * This will return the event that will be read next, but does
3833  * not consume the data.
3834  */
3835 struct ring_buffer_event *
3836 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3837 		 unsigned long *lost_events)
3838 {
3839 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3840 	struct ring_buffer_event *event;
3841 	unsigned long flags;
3842 	int dolock;
3843 
3844 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3845 		return NULL;
3846 
3847 	dolock = rb_ok_to_lock();
3848  again:
3849 	local_irq_save(flags);
3850 	if (dolock)
3851 		raw_spin_lock(&cpu_buffer->reader_lock);
3852 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3853 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3854 		rb_advance_reader(cpu_buffer);
3855 	if (dolock)
3856 		raw_spin_unlock(&cpu_buffer->reader_lock);
3857 	local_irq_restore(flags);
3858 
3859 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3860 		goto again;
3861 
3862 	return event;
3863 }
3864 
3865 /**
3866  * ring_buffer_iter_peek - peek at the next event to be read
3867  * @iter: The ring buffer iterator
3868  * @ts: The timestamp counter of this event.
3869  *
3870  * This will return the event that will be read next, but does
3871  * not increment the iterator.
3872  */
3873 struct ring_buffer_event *
3874 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3875 {
3876 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3877 	struct ring_buffer_event *event;
3878 	unsigned long flags;
3879 
3880  again:
3881 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3882 	event = rb_iter_peek(iter, ts);
3883 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3884 
3885 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3886 		goto again;
3887 
3888 	return event;
3889 }
3890 
3891 /**
3892  * ring_buffer_consume - return an event and consume it
3893  * @buffer: The ring buffer to get the next event from
3894  * @cpu: the cpu to read the buffer from
3895  * @ts: a variable to store the timestamp (may be NULL)
3896  * @lost_events: a variable to store if events were lost (may be NULL)
3897  *
3898  * Returns the next event in the ring buffer, and that event is consumed.
3899  * Meaning, that sequential reads will keep returning a different event,
3900  * and eventually empty the ring buffer if the producer is slower.
3901  */
3902 struct ring_buffer_event *
3903 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3904 		    unsigned long *lost_events)
3905 {
3906 	struct ring_buffer_per_cpu *cpu_buffer;
3907 	struct ring_buffer_event *event = NULL;
3908 	unsigned long flags;
3909 	int dolock;
3910 
3911 	dolock = rb_ok_to_lock();
3912 
3913  again:
3914 	/* might be called in atomic */
3915 	preempt_disable();
3916 
3917 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3918 		goto out;
3919 
3920 	cpu_buffer = buffer->buffers[cpu];
3921 	local_irq_save(flags);
3922 	if (dolock)
3923 		raw_spin_lock(&cpu_buffer->reader_lock);
3924 
3925 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3926 	if (event) {
3927 		cpu_buffer->lost_events = 0;
3928 		rb_advance_reader(cpu_buffer);
3929 	}
3930 
3931 	if (dolock)
3932 		raw_spin_unlock(&cpu_buffer->reader_lock);
3933 	local_irq_restore(flags);
3934 
3935  out:
3936 	preempt_enable();
3937 
3938 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3939 		goto again;
3940 
3941 	return event;
3942 }
3943 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3944 
3945 /**
3946  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3947  * @buffer: The ring buffer to read from
3948  * @cpu: The cpu buffer to iterate over
3949  *
3950  * This performs the initial preparations necessary to iterate
3951  * through the buffer.  Memory is allocated, buffer recording
3952  * is disabled, and the iterator pointer is returned to the caller.
3953  *
3954  * Disabling buffer recordng prevents the reading from being
3955  * corrupted. This is not a consuming read, so a producer is not
3956  * expected.
3957  *
3958  * After a sequence of ring_buffer_read_prepare calls, the user is
3959  * expected to make at least one call to ring_buffer_prepare_sync.
3960  * Afterwards, ring_buffer_read_start is invoked to get things going
3961  * for real.
3962  *
3963  * This overall must be paired with ring_buffer_finish.
3964  */
3965 struct ring_buffer_iter *
3966 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3967 {
3968 	struct ring_buffer_per_cpu *cpu_buffer;
3969 	struct ring_buffer_iter *iter;
3970 
3971 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3972 		return NULL;
3973 
3974 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3975 	if (!iter)
3976 		return NULL;
3977 
3978 	cpu_buffer = buffer->buffers[cpu];
3979 
3980 	iter->cpu_buffer = cpu_buffer;
3981 
3982 	atomic_inc(&buffer->resize_disabled);
3983 	atomic_inc(&cpu_buffer->record_disabled);
3984 
3985 	return iter;
3986 }
3987 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3988 
3989 /**
3990  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3991  *
3992  * All previously invoked ring_buffer_read_prepare calls to prepare
3993  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3994  * calls on those iterators are allowed.
3995  */
3996 void
3997 ring_buffer_read_prepare_sync(void)
3998 {
3999 	synchronize_sched();
4000 }
4001 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4002 
4003 /**
4004  * ring_buffer_read_start - start a non consuming read of the buffer
4005  * @iter: The iterator returned by ring_buffer_read_prepare
4006  *
4007  * This finalizes the startup of an iteration through the buffer.
4008  * The iterator comes from a call to ring_buffer_read_prepare and
4009  * an intervening ring_buffer_read_prepare_sync must have been
4010  * performed.
4011  *
4012  * Must be paired with ring_buffer_finish.
4013  */
4014 void
4015 ring_buffer_read_start(struct ring_buffer_iter *iter)
4016 {
4017 	struct ring_buffer_per_cpu *cpu_buffer;
4018 	unsigned long flags;
4019 
4020 	if (!iter)
4021 		return;
4022 
4023 	cpu_buffer = iter->cpu_buffer;
4024 
4025 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4026 	arch_spin_lock(&cpu_buffer->lock);
4027 	rb_iter_reset(iter);
4028 	arch_spin_unlock(&cpu_buffer->lock);
4029 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4030 }
4031 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4032 
4033 /**
4034  * ring_buffer_finish - finish reading the iterator of the buffer
4035  * @iter: The iterator retrieved by ring_buffer_start
4036  *
4037  * This re-enables the recording to the buffer, and frees the
4038  * iterator.
4039  */
4040 void
4041 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4042 {
4043 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4044 	unsigned long flags;
4045 
4046 	/*
4047 	 * Ring buffer is disabled from recording, here's a good place
4048 	 * to check the integrity of the ring buffer.
4049 	 * Must prevent readers from trying to read, as the check
4050 	 * clears the HEAD page and readers require it.
4051 	 */
4052 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4053 	rb_check_pages(cpu_buffer);
4054 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4055 
4056 	atomic_dec(&cpu_buffer->record_disabled);
4057 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4058 	kfree(iter);
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4061 
4062 /**
4063  * ring_buffer_read - read the next item in the ring buffer by the iterator
4064  * @iter: The ring buffer iterator
4065  * @ts: The time stamp of the event read.
4066  *
4067  * This reads the next event in the ring buffer and increments the iterator.
4068  */
4069 struct ring_buffer_event *
4070 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4071 {
4072 	struct ring_buffer_event *event;
4073 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4074 	unsigned long flags;
4075 
4076 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4077  again:
4078 	event = rb_iter_peek(iter, ts);
4079 	if (!event)
4080 		goto out;
4081 
4082 	if (event->type_len == RINGBUF_TYPE_PADDING)
4083 		goto again;
4084 
4085 	rb_advance_iter(iter);
4086  out:
4087 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4088 
4089 	return event;
4090 }
4091 EXPORT_SYMBOL_GPL(ring_buffer_read);
4092 
4093 /**
4094  * ring_buffer_size - return the size of the ring buffer (in bytes)
4095  * @buffer: The ring buffer.
4096  */
4097 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4098 {
4099 	/*
4100 	 * Earlier, this method returned
4101 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4102 	 * Since the nr_pages field is now removed, we have converted this to
4103 	 * return the per cpu buffer value.
4104 	 */
4105 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4106 		return 0;
4107 
4108 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4109 }
4110 EXPORT_SYMBOL_GPL(ring_buffer_size);
4111 
4112 static void
4113 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4114 {
4115 	rb_head_page_deactivate(cpu_buffer);
4116 
4117 	cpu_buffer->head_page
4118 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4119 	local_set(&cpu_buffer->head_page->write, 0);
4120 	local_set(&cpu_buffer->head_page->entries, 0);
4121 	local_set(&cpu_buffer->head_page->page->commit, 0);
4122 
4123 	cpu_buffer->head_page->read = 0;
4124 
4125 	cpu_buffer->tail_page = cpu_buffer->head_page;
4126 	cpu_buffer->commit_page = cpu_buffer->head_page;
4127 
4128 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4129 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4130 	local_set(&cpu_buffer->reader_page->write, 0);
4131 	local_set(&cpu_buffer->reader_page->entries, 0);
4132 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4133 	cpu_buffer->reader_page->read = 0;
4134 
4135 	local_set(&cpu_buffer->entries_bytes, 0);
4136 	local_set(&cpu_buffer->overrun, 0);
4137 	local_set(&cpu_buffer->commit_overrun, 0);
4138 	local_set(&cpu_buffer->dropped_events, 0);
4139 	local_set(&cpu_buffer->entries, 0);
4140 	local_set(&cpu_buffer->committing, 0);
4141 	local_set(&cpu_buffer->commits, 0);
4142 	cpu_buffer->read = 0;
4143 	cpu_buffer->read_bytes = 0;
4144 
4145 	cpu_buffer->write_stamp = 0;
4146 	cpu_buffer->read_stamp = 0;
4147 
4148 	cpu_buffer->lost_events = 0;
4149 	cpu_buffer->last_overrun = 0;
4150 
4151 	rb_head_page_activate(cpu_buffer);
4152 }
4153 
4154 /**
4155  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4156  * @buffer: The ring buffer to reset a per cpu buffer of
4157  * @cpu: The CPU buffer to be reset
4158  */
4159 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4160 {
4161 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4162 	unsigned long flags;
4163 
4164 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4165 		return;
4166 
4167 	atomic_inc(&buffer->resize_disabled);
4168 	atomic_inc(&cpu_buffer->record_disabled);
4169 
4170 	/* Make sure all commits have finished */
4171 	synchronize_sched();
4172 
4173 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4174 
4175 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4176 		goto out;
4177 
4178 	arch_spin_lock(&cpu_buffer->lock);
4179 
4180 	rb_reset_cpu(cpu_buffer);
4181 
4182 	arch_spin_unlock(&cpu_buffer->lock);
4183 
4184  out:
4185 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4186 
4187 	atomic_dec(&cpu_buffer->record_disabled);
4188 	atomic_dec(&buffer->resize_disabled);
4189 }
4190 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4191 
4192 /**
4193  * ring_buffer_reset - reset a ring buffer
4194  * @buffer: The ring buffer to reset all cpu buffers
4195  */
4196 void ring_buffer_reset(struct ring_buffer *buffer)
4197 {
4198 	int cpu;
4199 
4200 	for_each_buffer_cpu(buffer, cpu)
4201 		ring_buffer_reset_cpu(buffer, cpu);
4202 }
4203 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4204 
4205 /**
4206  * rind_buffer_empty - is the ring buffer empty?
4207  * @buffer: The ring buffer to test
4208  */
4209 int ring_buffer_empty(struct ring_buffer *buffer)
4210 {
4211 	struct ring_buffer_per_cpu *cpu_buffer;
4212 	unsigned long flags;
4213 	int dolock;
4214 	int cpu;
4215 	int ret;
4216 
4217 	dolock = rb_ok_to_lock();
4218 
4219 	/* yes this is racy, but if you don't like the race, lock the buffer */
4220 	for_each_buffer_cpu(buffer, cpu) {
4221 		cpu_buffer = buffer->buffers[cpu];
4222 		local_irq_save(flags);
4223 		if (dolock)
4224 			raw_spin_lock(&cpu_buffer->reader_lock);
4225 		ret = rb_per_cpu_empty(cpu_buffer);
4226 		if (dolock)
4227 			raw_spin_unlock(&cpu_buffer->reader_lock);
4228 		local_irq_restore(flags);
4229 
4230 		if (!ret)
4231 			return 0;
4232 	}
4233 
4234 	return 1;
4235 }
4236 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4237 
4238 /**
4239  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4240  * @buffer: The ring buffer
4241  * @cpu: The CPU buffer to test
4242  */
4243 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4244 {
4245 	struct ring_buffer_per_cpu *cpu_buffer;
4246 	unsigned long flags;
4247 	int dolock;
4248 	int ret;
4249 
4250 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4251 		return 1;
4252 
4253 	dolock = rb_ok_to_lock();
4254 
4255 	cpu_buffer = buffer->buffers[cpu];
4256 	local_irq_save(flags);
4257 	if (dolock)
4258 		raw_spin_lock(&cpu_buffer->reader_lock);
4259 	ret = rb_per_cpu_empty(cpu_buffer);
4260 	if (dolock)
4261 		raw_spin_unlock(&cpu_buffer->reader_lock);
4262 	local_irq_restore(flags);
4263 
4264 	return ret;
4265 }
4266 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4267 
4268 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4269 /**
4270  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4271  * @buffer_a: One buffer to swap with
4272  * @buffer_b: The other buffer to swap with
4273  *
4274  * This function is useful for tracers that want to take a "snapshot"
4275  * of a CPU buffer and has another back up buffer lying around.
4276  * it is expected that the tracer handles the cpu buffer not being
4277  * used at the moment.
4278  */
4279 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4280 			 struct ring_buffer *buffer_b, int cpu)
4281 {
4282 	struct ring_buffer_per_cpu *cpu_buffer_a;
4283 	struct ring_buffer_per_cpu *cpu_buffer_b;
4284 	int ret = -EINVAL;
4285 
4286 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4287 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4288 		goto out;
4289 
4290 	cpu_buffer_a = buffer_a->buffers[cpu];
4291 	cpu_buffer_b = buffer_b->buffers[cpu];
4292 
4293 	/* At least make sure the two buffers are somewhat the same */
4294 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4295 		goto out;
4296 
4297 	ret = -EAGAIN;
4298 
4299 	if (ring_buffer_flags != RB_BUFFERS_ON)
4300 		goto out;
4301 
4302 	if (atomic_read(&buffer_a->record_disabled))
4303 		goto out;
4304 
4305 	if (atomic_read(&buffer_b->record_disabled))
4306 		goto out;
4307 
4308 	if (atomic_read(&cpu_buffer_a->record_disabled))
4309 		goto out;
4310 
4311 	if (atomic_read(&cpu_buffer_b->record_disabled))
4312 		goto out;
4313 
4314 	/*
4315 	 * We can't do a synchronize_sched here because this
4316 	 * function can be called in atomic context.
4317 	 * Normally this will be called from the same CPU as cpu.
4318 	 * If not it's up to the caller to protect this.
4319 	 */
4320 	atomic_inc(&cpu_buffer_a->record_disabled);
4321 	atomic_inc(&cpu_buffer_b->record_disabled);
4322 
4323 	ret = -EBUSY;
4324 	if (local_read(&cpu_buffer_a->committing))
4325 		goto out_dec;
4326 	if (local_read(&cpu_buffer_b->committing))
4327 		goto out_dec;
4328 
4329 	buffer_a->buffers[cpu] = cpu_buffer_b;
4330 	buffer_b->buffers[cpu] = cpu_buffer_a;
4331 
4332 	cpu_buffer_b->buffer = buffer_a;
4333 	cpu_buffer_a->buffer = buffer_b;
4334 
4335 	ret = 0;
4336 
4337 out_dec:
4338 	atomic_dec(&cpu_buffer_a->record_disabled);
4339 	atomic_dec(&cpu_buffer_b->record_disabled);
4340 out:
4341 	return ret;
4342 }
4343 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4344 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4345 
4346 /**
4347  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4348  * @buffer: the buffer to allocate for.
4349  *
4350  * This function is used in conjunction with ring_buffer_read_page.
4351  * When reading a full page from the ring buffer, these functions
4352  * can be used to speed up the process. The calling function should
4353  * allocate a few pages first with this function. Then when it
4354  * needs to get pages from the ring buffer, it passes the result
4355  * of this function into ring_buffer_read_page, which will swap
4356  * the page that was allocated, with the read page of the buffer.
4357  *
4358  * Returns:
4359  *  The page allocated, or NULL on error.
4360  */
4361 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4362 {
4363 	struct buffer_data_page *bpage;
4364 	struct page *page;
4365 
4366 	page = alloc_pages_node(cpu_to_node(cpu),
4367 				GFP_KERNEL | __GFP_NORETRY, 0);
4368 	if (!page)
4369 		return NULL;
4370 
4371 	bpage = page_address(page);
4372 
4373 	rb_init_page(bpage);
4374 
4375 	return bpage;
4376 }
4377 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4378 
4379 /**
4380  * ring_buffer_free_read_page - free an allocated read page
4381  * @buffer: the buffer the page was allocate for
4382  * @data: the page to free
4383  *
4384  * Free a page allocated from ring_buffer_alloc_read_page.
4385  */
4386 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4387 {
4388 	free_page((unsigned long)data);
4389 }
4390 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4391 
4392 /**
4393  * ring_buffer_read_page - extract a page from the ring buffer
4394  * @buffer: buffer to extract from
4395  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4396  * @len: amount to extract
4397  * @cpu: the cpu of the buffer to extract
4398  * @full: should the extraction only happen when the page is full.
4399  *
4400  * This function will pull out a page from the ring buffer and consume it.
4401  * @data_page must be the address of the variable that was returned
4402  * from ring_buffer_alloc_read_page. This is because the page might be used
4403  * to swap with a page in the ring buffer.
4404  *
4405  * for example:
4406  *	rpage = ring_buffer_alloc_read_page(buffer);
4407  *	if (!rpage)
4408  *		return error;
4409  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4410  *	if (ret >= 0)
4411  *		process_page(rpage, ret);
4412  *
4413  * When @full is set, the function will not return true unless
4414  * the writer is off the reader page.
4415  *
4416  * Note: it is up to the calling functions to handle sleeps and wakeups.
4417  *  The ring buffer can be used anywhere in the kernel and can not
4418  *  blindly call wake_up. The layer that uses the ring buffer must be
4419  *  responsible for that.
4420  *
4421  * Returns:
4422  *  >=0 if data has been transferred, returns the offset of consumed data.
4423  *  <0 if no data has been transferred.
4424  */
4425 int ring_buffer_read_page(struct ring_buffer *buffer,
4426 			  void **data_page, size_t len, int cpu, int full)
4427 {
4428 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4429 	struct ring_buffer_event *event;
4430 	struct buffer_data_page *bpage;
4431 	struct buffer_page *reader;
4432 	unsigned long missed_events;
4433 	unsigned long flags;
4434 	unsigned int commit;
4435 	unsigned int read;
4436 	u64 save_timestamp;
4437 	int ret = -1;
4438 
4439 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4440 		goto out;
4441 
4442 	/*
4443 	 * If len is not big enough to hold the page header, then
4444 	 * we can not copy anything.
4445 	 */
4446 	if (len <= BUF_PAGE_HDR_SIZE)
4447 		goto out;
4448 
4449 	len -= BUF_PAGE_HDR_SIZE;
4450 
4451 	if (!data_page)
4452 		goto out;
4453 
4454 	bpage = *data_page;
4455 	if (!bpage)
4456 		goto out;
4457 
4458 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4459 
4460 	reader = rb_get_reader_page(cpu_buffer);
4461 	if (!reader)
4462 		goto out_unlock;
4463 
4464 	event = rb_reader_event(cpu_buffer);
4465 
4466 	read = reader->read;
4467 	commit = rb_page_commit(reader);
4468 
4469 	/* Check if any events were dropped */
4470 	missed_events = cpu_buffer->lost_events;
4471 
4472 	/*
4473 	 * If this page has been partially read or
4474 	 * if len is not big enough to read the rest of the page or
4475 	 * a writer is still on the page, then
4476 	 * we must copy the data from the page to the buffer.
4477 	 * Otherwise, we can simply swap the page with the one passed in.
4478 	 */
4479 	if (read || (len < (commit - read)) ||
4480 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4481 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4482 		unsigned int rpos = read;
4483 		unsigned int pos = 0;
4484 		unsigned int size;
4485 
4486 		if (full)
4487 			goto out_unlock;
4488 
4489 		if (len > (commit - read))
4490 			len = (commit - read);
4491 
4492 		/* Always keep the time extend and data together */
4493 		size = rb_event_ts_length(event);
4494 
4495 		if (len < size)
4496 			goto out_unlock;
4497 
4498 		/* save the current timestamp, since the user will need it */
4499 		save_timestamp = cpu_buffer->read_stamp;
4500 
4501 		/* Need to copy one event at a time */
4502 		do {
4503 			/* We need the size of one event, because
4504 			 * rb_advance_reader only advances by one event,
4505 			 * whereas rb_event_ts_length may include the size of
4506 			 * one or two events.
4507 			 * We have already ensured there's enough space if this
4508 			 * is a time extend. */
4509 			size = rb_event_length(event);
4510 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4511 
4512 			len -= size;
4513 
4514 			rb_advance_reader(cpu_buffer);
4515 			rpos = reader->read;
4516 			pos += size;
4517 
4518 			if (rpos >= commit)
4519 				break;
4520 
4521 			event = rb_reader_event(cpu_buffer);
4522 			/* Always keep the time extend and data together */
4523 			size = rb_event_ts_length(event);
4524 		} while (len >= size);
4525 
4526 		/* update bpage */
4527 		local_set(&bpage->commit, pos);
4528 		bpage->time_stamp = save_timestamp;
4529 
4530 		/* we copied everything to the beginning */
4531 		read = 0;
4532 	} else {
4533 		/* update the entry counter */
4534 		cpu_buffer->read += rb_page_entries(reader);
4535 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4536 
4537 		/* swap the pages */
4538 		rb_init_page(bpage);
4539 		bpage = reader->page;
4540 		reader->page = *data_page;
4541 		local_set(&reader->write, 0);
4542 		local_set(&reader->entries, 0);
4543 		reader->read = 0;
4544 		*data_page = bpage;
4545 
4546 		/*
4547 		 * Use the real_end for the data size,
4548 		 * This gives us a chance to store the lost events
4549 		 * on the page.
4550 		 */
4551 		if (reader->real_end)
4552 			local_set(&bpage->commit, reader->real_end);
4553 	}
4554 	ret = read;
4555 
4556 	cpu_buffer->lost_events = 0;
4557 
4558 	commit = local_read(&bpage->commit);
4559 	/*
4560 	 * Set a flag in the commit field if we lost events
4561 	 */
4562 	if (missed_events) {
4563 		/* If there is room at the end of the page to save the
4564 		 * missed events, then record it there.
4565 		 */
4566 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4567 			memcpy(&bpage->data[commit], &missed_events,
4568 			       sizeof(missed_events));
4569 			local_add(RB_MISSED_STORED, &bpage->commit);
4570 			commit += sizeof(missed_events);
4571 		}
4572 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4573 	}
4574 
4575 	/*
4576 	 * This page may be off to user land. Zero it out here.
4577 	 */
4578 	if (commit < BUF_PAGE_SIZE)
4579 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4580 
4581  out_unlock:
4582 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4583 
4584  out:
4585 	return ret;
4586 }
4587 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4588 
4589 #ifdef CONFIG_HOTPLUG_CPU
4590 static int rb_cpu_notify(struct notifier_block *self,
4591 			 unsigned long action, void *hcpu)
4592 {
4593 	struct ring_buffer *buffer =
4594 		container_of(self, struct ring_buffer, cpu_notify);
4595 	long cpu = (long)hcpu;
4596 	int cpu_i, nr_pages_same;
4597 	unsigned int nr_pages;
4598 
4599 	switch (action) {
4600 	case CPU_UP_PREPARE:
4601 	case CPU_UP_PREPARE_FROZEN:
4602 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4603 			return NOTIFY_OK;
4604 
4605 		nr_pages = 0;
4606 		nr_pages_same = 1;
4607 		/* check if all cpu sizes are same */
4608 		for_each_buffer_cpu(buffer, cpu_i) {
4609 			/* fill in the size from first enabled cpu */
4610 			if (nr_pages == 0)
4611 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4612 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4613 				nr_pages_same = 0;
4614 				break;
4615 			}
4616 		}
4617 		/* allocate minimum pages, user can later expand it */
4618 		if (!nr_pages_same)
4619 			nr_pages = 2;
4620 		buffer->buffers[cpu] =
4621 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4622 		if (!buffer->buffers[cpu]) {
4623 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4624 			     cpu);
4625 			return NOTIFY_OK;
4626 		}
4627 		smp_wmb();
4628 		cpumask_set_cpu(cpu, buffer->cpumask);
4629 		break;
4630 	case CPU_DOWN_PREPARE:
4631 	case CPU_DOWN_PREPARE_FROZEN:
4632 		/*
4633 		 * Do nothing.
4634 		 *  If we were to free the buffer, then the user would
4635 		 *  lose any trace that was in the buffer.
4636 		 */
4637 		break;
4638 	default:
4639 		break;
4640 	}
4641 	return NOTIFY_OK;
4642 }
4643 #endif
4644 
4645 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4646 /*
4647  * This is a basic integrity check of the ring buffer.
4648  * Late in the boot cycle this test will run when configured in.
4649  * It will kick off a thread per CPU that will go into a loop
4650  * writing to the per cpu ring buffer various sizes of data.
4651  * Some of the data will be large items, some small.
4652  *
4653  * Another thread is created that goes into a spin, sending out
4654  * IPIs to the other CPUs to also write into the ring buffer.
4655  * this is to test the nesting ability of the buffer.
4656  *
4657  * Basic stats are recorded and reported. If something in the
4658  * ring buffer should happen that's not expected, a big warning
4659  * is displayed and all ring buffers are disabled.
4660  */
4661 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4662 
4663 struct rb_test_data {
4664 	struct ring_buffer	*buffer;
4665 	unsigned long		events;
4666 	unsigned long		bytes_written;
4667 	unsigned long		bytes_alloc;
4668 	unsigned long		bytes_dropped;
4669 	unsigned long		events_nested;
4670 	unsigned long		bytes_written_nested;
4671 	unsigned long		bytes_alloc_nested;
4672 	unsigned long		bytes_dropped_nested;
4673 	int			min_size_nested;
4674 	int			max_size_nested;
4675 	int			max_size;
4676 	int			min_size;
4677 	int			cpu;
4678 	int			cnt;
4679 };
4680 
4681 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4682 
4683 /* 1 meg per cpu */
4684 #define RB_TEST_BUFFER_SIZE	1048576
4685 
4686 static char rb_string[] __initdata =
4687 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4688 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4689 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4690 
4691 static bool rb_test_started __initdata;
4692 
4693 struct rb_item {
4694 	int size;
4695 	char str[];
4696 };
4697 
4698 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4699 {
4700 	struct ring_buffer_event *event;
4701 	struct rb_item *item;
4702 	bool started;
4703 	int event_len;
4704 	int size;
4705 	int len;
4706 	int cnt;
4707 
4708 	/* Have nested writes different that what is written */
4709 	cnt = data->cnt + (nested ? 27 : 0);
4710 
4711 	/* Multiply cnt by ~e, to make some unique increment */
4712 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4713 
4714 	len = size + sizeof(struct rb_item);
4715 
4716 	started = rb_test_started;
4717 	/* read rb_test_started before checking buffer enabled */
4718 	smp_rmb();
4719 
4720 	event = ring_buffer_lock_reserve(data->buffer, len);
4721 	if (!event) {
4722 		/* Ignore dropped events before test starts. */
4723 		if (started) {
4724 			if (nested)
4725 				data->bytes_dropped += len;
4726 			else
4727 				data->bytes_dropped_nested += len;
4728 		}
4729 		return len;
4730 	}
4731 
4732 	event_len = ring_buffer_event_length(event);
4733 
4734 	if (RB_WARN_ON(data->buffer, event_len < len))
4735 		goto out;
4736 
4737 	item = ring_buffer_event_data(event);
4738 	item->size = size;
4739 	memcpy(item->str, rb_string, size);
4740 
4741 	if (nested) {
4742 		data->bytes_alloc_nested += event_len;
4743 		data->bytes_written_nested += len;
4744 		data->events_nested++;
4745 		if (!data->min_size_nested || len < data->min_size_nested)
4746 			data->min_size_nested = len;
4747 		if (len > data->max_size_nested)
4748 			data->max_size_nested = len;
4749 	} else {
4750 		data->bytes_alloc += event_len;
4751 		data->bytes_written += len;
4752 		data->events++;
4753 		if (!data->min_size || len < data->min_size)
4754 			data->max_size = len;
4755 		if (len > data->max_size)
4756 			data->max_size = len;
4757 	}
4758 
4759  out:
4760 	ring_buffer_unlock_commit(data->buffer, event);
4761 
4762 	return 0;
4763 }
4764 
4765 static __init int rb_test(void *arg)
4766 {
4767 	struct rb_test_data *data = arg;
4768 
4769 	while (!kthread_should_stop()) {
4770 		rb_write_something(data, false);
4771 		data->cnt++;
4772 
4773 		set_current_state(TASK_INTERRUPTIBLE);
4774 		/* Now sleep between a min of 100-300us and a max of 1ms */
4775 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4776 	}
4777 
4778 	return 0;
4779 }
4780 
4781 static __init void rb_ipi(void *ignore)
4782 {
4783 	struct rb_test_data *data;
4784 	int cpu = smp_processor_id();
4785 
4786 	data = &rb_data[cpu];
4787 	rb_write_something(data, true);
4788 }
4789 
4790 static __init int rb_hammer_test(void *arg)
4791 {
4792 	while (!kthread_should_stop()) {
4793 
4794 		/* Send an IPI to all cpus to write data! */
4795 		smp_call_function(rb_ipi, NULL, 1);
4796 		/* No sleep, but for non preempt, let others run */
4797 		schedule();
4798 	}
4799 
4800 	return 0;
4801 }
4802 
4803 static __init int test_ringbuffer(void)
4804 {
4805 	struct task_struct *rb_hammer;
4806 	struct ring_buffer *buffer;
4807 	int cpu;
4808 	int ret = 0;
4809 
4810 	pr_info("Running ring buffer tests...\n");
4811 
4812 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4813 	if (WARN_ON(!buffer))
4814 		return 0;
4815 
4816 	/* Disable buffer so that threads can't write to it yet */
4817 	ring_buffer_record_off(buffer);
4818 
4819 	for_each_online_cpu(cpu) {
4820 		rb_data[cpu].buffer = buffer;
4821 		rb_data[cpu].cpu = cpu;
4822 		rb_data[cpu].cnt = cpu;
4823 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4824 						 "rbtester/%d", cpu);
4825 		if (WARN_ON(!rb_threads[cpu])) {
4826 			pr_cont("FAILED\n");
4827 			ret = -1;
4828 			goto out_free;
4829 		}
4830 
4831 		kthread_bind(rb_threads[cpu], cpu);
4832  		wake_up_process(rb_threads[cpu]);
4833 	}
4834 
4835 	/* Now create the rb hammer! */
4836 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4837 	if (WARN_ON(!rb_hammer)) {
4838 		pr_cont("FAILED\n");
4839 		ret = -1;
4840 		goto out_free;
4841 	}
4842 
4843 	ring_buffer_record_on(buffer);
4844 	/*
4845 	 * Show buffer is enabled before setting rb_test_started.
4846 	 * Yes there's a small race window where events could be
4847 	 * dropped and the thread wont catch it. But when a ring
4848 	 * buffer gets enabled, there will always be some kind of
4849 	 * delay before other CPUs see it. Thus, we don't care about
4850 	 * those dropped events. We care about events dropped after
4851 	 * the threads see that the buffer is active.
4852 	 */
4853 	smp_wmb();
4854 	rb_test_started = true;
4855 
4856 	set_current_state(TASK_INTERRUPTIBLE);
4857 	/* Just run for 10 seconds */;
4858 	schedule_timeout(10 * HZ);
4859 
4860 	kthread_stop(rb_hammer);
4861 
4862  out_free:
4863 	for_each_online_cpu(cpu) {
4864 		if (!rb_threads[cpu])
4865 			break;
4866 		kthread_stop(rb_threads[cpu]);
4867 	}
4868 	if (ret) {
4869 		ring_buffer_free(buffer);
4870 		return ret;
4871 	}
4872 
4873 	/* Report! */
4874 	pr_info("finished\n");
4875 	for_each_online_cpu(cpu) {
4876 		struct ring_buffer_event *event;
4877 		struct rb_test_data *data = &rb_data[cpu];
4878 		struct rb_item *item;
4879 		unsigned long total_events;
4880 		unsigned long total_dropped;
4881 		unsigned long total_written;
4882 		unsigned long total_alloc;
4883 		unsigned long total_read = 0;
4884 		unsigned long total_size = 0;
4885 		unsigned long total_len = 0;
4886 		unsigned long total_lost = 0;
4887 		unsigned long lost;
4888 		int big_event_size;
4889 		int small_event_size;
4890 
4891 		ret = -1;
4892 
4893 		total_events = data->events + data->events_nested;
4894 		total_written = data->bytes_written + data->bytes_written_nested;
4895 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4896 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4897 
4898 		big_event_size = data->max_size + data->max_size_nested;
4899 		small_event_size = data->min_size + data->min_size_nested;
4900 
4901 		pr_info("CPU %d:\n", cpu);
4902 		pr_info("              events:    %ld\n", total_events);
4903 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4904 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4905 		pr_info("       written bytes:    %ld\n", total_written);
4906 		pr_info("       biggest event:    %d\n", big_event_size);
4907 		pr_info("      smallest event:    %d\n", small_event_size);
4908 
4909 		if (RB_WARN_ON(buffer, total_dropped))
4910 			break;
4911 
4912 		ret = 0;
4913 
4914 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4915 			total_lost += lost;
4916 			item = ring_buffer_event_data(event);
4917 			total_len += ring_buffer_event_length(event);
4918 			total_size += item->size + sizeof(struct rb_item);
4919 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4920 				pr_info("FAILED!\n");
4921 				pr_info("buffer had: %.*s\n", item->size, item->str);
4922 				pr_info("expected:   %.*s\n", item->size, rb_string);
4923 				RB_WARN_ON(buffer, 1);
4924 				ret = -1;
4925 				break;
4926 			}
4927 			total_read++;
4928 		}
4929 		if (ret)
4930 			break;
4931 
4932 		ret = -1;
4933 
4934 		pr_info("         read events:   %ld\n", total_read);
4935 		pr_info("         lost events:   %ld\n", total_lost);
4936 		pr_info("        total events:   %ld\n", total_lost + total_read);
4937 		pr_info("  recorded len bytes:   %ld\n", total_len);
4938 		pr_info(" recorded size bytes:   %ld\n", total_size);
4939 		if (total_lost)
4940 			pr_info(" With dropped events, record len and size may not match\n"
4941 				" alloced and written from above\n");
4942 		if (!total_lost) {
4943 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4944 				       total_size != total_written))
4945 				break;
4946 		}
4947 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4948 			break;
4949 
4950 		ret = 0;
4951 	}
4952 	if (!ret)
4953 		pr_info("Ring buffer PASSED!\n");
4954 
4955 	ring_buffer_free(buffer);
4956 	return 0;
4957 }
4958 
4959 late_initcall(test_ringbuffer);
4960 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4961