1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/debugfs.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/kmemcheck.h> 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/fs.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 int ret; 38 39 ret = trace_seq_printf(s, "# compressed entry header\n"); 40 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 41 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 42 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 43 ret = trace_seq_printf(s, "\n"); 44 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return ret; 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* 123 * A fast way to enable or disable all ring buffers is to 124 * call tracing_on or tracing_off. Turning off the ring buffers 125 * prevents all ring buffers from being recorded to. 126 * Turning this switch on, makes it OK to write to the 127 * ring buffer, if the ring buffer is enabled itself. 128 * 129 * There's three layers that must be on in order to write 130 * to the ring buffer. 131 * 132 * 1) This global flag must be set. 133 * 2) The ring buffer must be enabled for recording. 134 * 3) The per cpu buffer must be enabled for recording. 135 * 136 * In case of an anomaly, this global flag has a bit set that 137 * will permantly disable all ring buffers. 138 */ 139 140 /* 141 * Global flag to disable all recording to ring buffers 142 * This has two bits: ON, DISABLED 143 * 144 * ON DISABLED 145 * ---- ---------- 146 * 0 0 : ring buffers are off 147 * 1 0 : ring buffers are on 148 * X 1 : ring buffers are permanently disabled 149 */ 150 151 enum { 152 RB_BUFFERS_ON_BIT = 0, 153 RB_BUFFERS_DISABLED_BIT = 1, 154 }; 155 156 enum { 157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 159 }; 160 161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 162 163 /* Used for individual buffers (after the counter) */ 164 #define RB_BUFFER_OFF (1 << 20) 165 166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 167 168 /** 169 * tracing_off_permanent - permanently disable ring buffers 170 * 171 * This function, once called, will disable all ring buffers 172 * permanently. 173 */ 174 void tracing_off_permanent(void) 175 { 176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 177 } 178 179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 180 #define RB_ALIGNMENT 4U 181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 183 184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 185 # define RB_FORCE_8BYTE_ALIGNMENT 0 186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 187 #else 188 # define RB_FORCE_8BYTE_ALIGNMENT 1 189 # define RB_ARCH_ALIGNMENT 8U 190 #endif 191 192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 193 194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 196 197 enum { 198 RB_LEN_TIME_EXTEND = 8, 199 RB_LEN_TIME_STAMP = 16, 200 }; 201 202 #define skip_time_extend(event) \ 203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 204 205 static inline int rb_null_event(struct ring_buffer_event *event) 206 { 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 208 } 209 210 static void rb_event_set_padding(struct ring_buffer_event *event) 211 { 212 /* padding has a NULL time_delta */ 213 event->type_len = RINGBUF_TYPE_PADDING; 214 event->time_delta = 0; 215 } 216 217 static unsigned 218 rb_event_data_length(struct ring_buffer_event *event) 219 { 220 unsigned length; 221 222 if (event->type_len) 223 length = event->type_len * RB_ALIGNMENT; 224 else 225 length = event->array[0]; 226 return length + RB_EVNT_HDR_SIZE; 227 } 228 229 /* 230 * Return the length of the given event. Will return 231 * the length of the time extend if the event is a 232 * time extend. 233 */ 234 static inline unsigned 235 rb_event_length(struct ring_buffer_event *event) 236 { 237 switch (event->type_len) { 238 case RINGBUF_TYPE_PADDING: 239 if (rb_null_event(event)) 240 /* undefined */ 241 return -1; 242 return event->array[0] + RB_EVNT_HDR_SIZE; 243 244 case RINGBUF_TYPE_TIME_EXTEND: 245 return RB_LEN_TIME_EXTEND; 246 247 case RINGBUF_TYPE_TIME_STAMP: 248 return RB_LEN_TIME_STAMP; 249 250 case RINGBUF_TYPE_DATA: 251 return rb_event_data_length(event); 252 default: 253 BUG(); 254 } 255 /* not hit */ 256 return 0; 257 } 258 259 /* 260 * Return total length of time extend and data, 261 * or just the event length for all other events. 262 */ 263 static inline unsigned 264 rb_event_ts_length(struct ring_buffer_event *event) 265 { 266 unsigned len = 0; 267 268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 269 /* time extends include the data event after it */ 270 len = RB_LEN_TIME_EXTEND; 271 event = skip_time_extend(event); 272 } 273 return len + rb_event_length(event); 274 } 275 276 /** 277 * ring_buffer_event_length - return the length of the event 278 * @event: the event to get the length of 279 * 280 * Returns the size of the data load of a data event. 281 * If the event is something other than a data event, it 282 * returns the size of the event itself. With the exception 283 * of a TIME EXTEND, where it still returns the size of the 284 * data load of the data event after it. 285 */ 286 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 287 { 288 unsigned length; 289 290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 291 event = skip_time_extend(event); 292 293 length = rb_event_length(event); 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 295 return length; 296 length -= RB_EVNT_HDR_SIZE; 297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 298 length -= sizeof(event->array[0]); 299 return length; 300 } 301 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 302 303 /* inline for ring buffer fast paths */ 304 static void * 305 rb_event_data(struct ring_buffer_event *event) 306 { 307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 308 event = skip_time_extend(event); 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 310 /* If length is in len field, then array[0] has the data */ 311 if (event->type_len) 312 return (void *)&event->array[0]; 313 /* Otherwise length is in array[0] and array[1] has the data */ 314 return (void *)&event->array[1]; 315 } 316 317 /** 318 * ring_buffer_event_data - return the data of the event 319 * @event: the event to get the data from 320 */ 321 void *ring_buffer_event_data(struct ring_buffer_event *event) 322 { 323 return rb_event_data(event); 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 326 327 #define for_each_buffer_cpu(buffer, cpu) \ 328 for_each_cpu(cpu, buffer->cpumask) 329 330 #define TS_SHIFT 27 331 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 332 #define TS_DELTA_TEST (~TS_MASK) 333 334 /* Flag when events were overwritten */ 335 #define RB_MISSED_EVENTS (1 << 31) 336 /* Missed count stored at end */ 337 #define RB_MISSED_STORED (1 << 30) 338 339 struct buffer_data_page { 340 u64 time_stamp; /* page time stamp */ 341 local_t commit; /* write committed index */ 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 343 }; 344 345 /* 346 * Note, the buffer_page list must be first. The buffer pages 347 * are allocated in cache lines, which means that each buffer 348 * page will be at the beginning of a cache line, and thus 349 * the least significant bits will be zero. We use this to 350 * add flags in the list struct pointers, to make the ring buffer 351 * lockless. 352 */ 353 struct buffer_page { 354 struct list_head list; /* list of buffer pages */ 355 local_t write; /* index for next write */ 356 unsigned read; /* index for next read */ 357 local_t entries; /* entries on this page */ 358 unsigned long real_end; /* real end of data */ 359 struct buffer_data_page *page; /* Actual data page */ 360 }; 361 362 /* 363 * The buffer page counters, write and entries, must be reset 364 * atomically when crossing page boundaries. To synchronize this 365 * update, two counters are inserted into the number. One is 366 * the actual counter for the write position or count on the page. 367 * 368 * The other is a counter of updaters. Before an update happens 369 * the update partition of the counter is incremented. This will 370 * allow the updater to update the counter atomically. 371 * 372 * The counter is 20 bits, and the state data is 12. 373 */ 374 #define RB_WRITE_MASK 0xfffff 375 #define RB_WRITE_INTCNT (1 << 20) 376 377 static void rb_init_page(struct buffer_data_page *bpage) 378 { 379 local_set(&bpage->commit, 0); 380 } 381 382 /** 383 * ring_buffer_page_len - the size of data on the page. 384 * @page: The page to read 385 * 386 * Returns the amount of data on the page, including buffer page header. 387 */ 388 size_t ring_buffer_page_len(void *page) 389 { 390 return local_read(&((struct buffer_data_page *)page)->commit) 391 + BUF_PAGE_HDR_SIZE; 392 } 393 394 /* 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 396 * this issue out. 397 */ 398 static void free_buffer_page(struct buffer_page *bpage) 399 { 400 free_page((unsigned long)bpage->page); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline int test_time_stamp(u64 delta) 408 { 409 if (delta & TS_DELTA_TEST) 410 return 1; 411 return 0; 412 } 413 414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 415 416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 418 419 int ring_buffer_print_page_header(struct trace_seq *s) 420 { 421 struct buffer_data_page field; 422 int ret; 423 424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 425 "offset:0;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)sizeof(field.time_stamp), 427 (unsigned int)is_signed_type(u64)); 428 429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 (unsigned int)sizeof(field.commit), 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), commit), 438 1, 439 (unsigned int)is_signed_type(long)); 440 441 ret = trace_seq_printf(s, "\tfield: char data;\t" 442 "offset:%u;\tsize:%u;\tsigned:%u;\n", 443 (unsigned int)offsetof(typeof(field), data), 444 (unsigned int)BUF_PAGE_SIZE, 445 (unsigned int)is_signed_type(char)); 446 447 return ret; 448 } 449 450 struct rb_irq_work { 451 struct irq_work work; 452 wait_queue_head_t waiters; 453 bool waiters_pending; 454 }; 455 456 /* 457 * head_page == tail_page && head == tail then buffer is empty. 458 */ 459 struct ring_buffer_per_cpu { 460 int cpu; 461 atomic_t record_disabled; 462 struct ring_buffer *buffer; 463 raw_spinlock_t reader_lock; /* serialize readers */ 464 arch_spinlock_t lock; 465 struct lock_class_key lock_key; 466 unsigned int nr_pages; 467 struct list_head *pages; 468 struct buffer_page *head_page; /* read from head */ 469 struct buffer_page *tail_page; /* write to tail */ 470 struct buffer_page *commit_page; /* committed pages */ 471 struct buffer_page *reader_page; 472 unsigned long lost_events; 473 unsigned long last_overrun; 474 local_t entries_bytes; 475 local_t entries; 476 local_t overrun; 477 local_t commit_overrun; 478 local_t dropped_events; 479 local_t committing; 480 local_t commits; 481 unsigned long read; 482 unsigned long read_bytes; 483 u64 write_stamp; 484 u64 read_stamp; 485 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 486 int nr_pages_to_update; 487 struct list_head new_pages; /* new pages to add */ 488 struct work_struct update_pages_work; 489 struct completion update_done; 490 491 struct rb_irq_work irq_work; 492 }; 493 494 struct ring_buffer { 495 unsigned flags; 496 int cpus; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 cpumask_var_t cpumask; 500 501 struct lock_class_key *reader_lock_key; 502 503 struct mutex mutex; 504 505 struct ring_buffer_per_cpu **buffers; 506 507 #ifdef CONFIG_HOTPLUG_CPU 508 struct notifier_block cpu_notify; 509 #endif 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 }; 514 515 struct ring_buffer_iter { 516 struct ring_buffer_per_cpu *cpu_buffer; 517 unsigned long head; 518 struct buffer_page *head_page; 519 struct buffer_page *cache_reader_page; 520 unsigned long cache_read; 521 u64 read_stamp; 522 }; 523 524 /* 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 526 * 527 * Schedules a delayed work to wake up any task that is blocked on the 528 * ring buffer waiters queue. 529 */ 530 static void rb_wake_up_waiters(struct irq_work *work) 531 { 532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 533 534 wake_up_all(&rbwork->waiters); 535 } 536 537 /** 538 * ring_buffer_wait - wait for input to the ring buffer 539 * @buffer: buffer to wait on 540 * @cpu: the cpu buffer to wait on 541 * 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 543 * as data is added to any of the @buffer's cpu buffers. Otherwise 544 * it will wait for data to be added to a specific cpu buffer. 545 */ 546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu) 547 { 548 struct ring_buffer_per_cpu *cpu_buffer; 549 DEFINE_WAIT(wait); 550 struct rb_irq_work *work; 551 552 /* 553 * Depending on what the caller is waiting for, either any 554 * data in any cpu buffer, or a specific buffer, put the 555 * caller on the appropriate wait queue. 556 */ 557 if (cpu == RING_BUFFER_ALL_CPUS) 558 work = &buffer->irq_work; 559 else { 560 cpu_buffer = buffer->buffers[cpu]; 561 work = &cpu_buffer->irq_work; 562 } 563 564 565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 566 567 /* 568 * The events can happen in critical sections where 569 * checking a work queue can cause deadlocks. 570 * After adding a task to the queue, this flag is set 571 * only to notify events to try to wake up the queue 572 * using irq_work. 573 * 574 * We don't clear it even if the buffer is no longer 575 * empty. The flag only causes the next event to run 576 * irq_work to do the work queue wake up. The worse 577 * that can happen if we race with !trace_empty() is that 578 * an event will cause an irq_work to try to wake up 579 * an empty queue. 580 * 581 * There's no reason to protect this flag either, as 582 * the work queue and irq_work logic will do the necessary 583 * synchronization for the wake ups. The only thing 584 * that is necessary is that the wake up happens after 585 * a task has been queued. It's OK for spurious wake ups. 586 */ 587 work->waiters_pending = true; 588 589 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) || 590 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu))) 591 schedule(); 592 593 finish_wait(&work->waiters, &wait); 594 } 595 596 /** 597 * ring_buffer_poll_wait - poll on buffer input 598 * @buffer: buffer to wait on 599 * @cpu: the cpu buffer to wait on 600 * @filp: the file descriptor 601 * @poll_table: The poll descriptor 602 * 603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 604 * as data is added to any of the @buffer's cpu buffers. Otherwise 605 * it will wait for data to be added to a specific cpu buffer. 606 * 607 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 608 * zero otherwise. 609 */ 610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 611 struct file *filp, poll_table *poll_table) 612 { 613 struct ring_buffer_per_cpu *cpu_buffer; 614 struct rb_irq_work *work; 615 616 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 617 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 618 return POLLIN | POLLRDNORM; 619 620 if (cpu == RING_BUFFER_ALL_CPUS) 621 work = &buffer->irq_work; 622 else { 623 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 624 return -EINVAL; 625 626 cpu_buffer = buffer->buffers[cpu]; 627 work = &cpu_buffer->irq_work; 628 } 629 630 work->waiters_pending = true; 631 poll_wait(filp, &work->waiters, poll_table); 632 633 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 634 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 635 return POLLIN | POLLRDNORM; 636 return 0; 637 } 638 639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 640 #define RB_WARN_ON(b, cond) \ 641 ({ \ 642 int _____ret = unlikely(cond); \ 643 if (_____ret) { \ 644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 645 struct ring_buffer_per_cpu *__b = \ 646 (void *)b; \ 647 atomic_inc(&__b->buffer->record_disabled); \ 648 } else \ 649 atomic_inc(&b->record_disabled); \ 650 WARN_ON(1); \ 651 } \ 652 _____ret; \ 653 }) 654 655 /* Up this if you want to test the TIME_EXTENTS and normalization */ 656 #define DEBUG_SHIFT 0 657 658 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 659 { 660 /* shift to debug/test normalization and TIME_EXTENTS */ 661 return buffer->clock() << DEBUG_SHIFT; 662 } 663 664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 665 { 666 u64 time; 667 668 preempt_disable_notrace(); 669 time = rb_time_stamp(buffer); 670 preempt_enable_no_resched_notrace(); 671 672 return time; 673 } 674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 675 676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 677 int cpu, u64 *ts) 678 { 679 /* Just stupid testing the normalize function and deltas */ 680 *ts >>= DEBUG_SHIFT; 681 } 682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 683 684 /* 685 * Making the ring buffer lockless makes things tricky. 686 * Although writes only happen on the CPU that they are on, 687 * and they only need to worry about interrupts. Reads can 688 * happen on any CPU. 689 * 690 * The reader page is always off the ring buffer, but when the 691 * reader finishes with a page, it needs to swap its page with 692 * a new one from the buffer. The reader needs to take from 693 * the head (writes go to the tail). But if a writer is in overwrite 694 * mode and wraps, it must push the head page forward. 695 * 696 * Here lies the problem. 697 * 698 * The reader must be careful to replace only the head page, and 699 * not another one. As described at the top of the file in the 700 * ASCII art, the reader sets its old page to point to the next 701 * page after head. It then sets the page after head to point to 702 * the old reader page. But if the writer moves the head page 703 * during this operation, the reader could end up with the tail. 704 * 705 * We use cmpxchg to help prevent this race. We also do something 706 * special with the page before head. We set the LSB to 1. 707 * 708 * When the writer must push the page forward, it will clear the 709 * bit that points to the head page, move the head, and then set 710 * the bit that points to the new head page. 711 * 712 * We also don't want an interrupt coming in and moving the head 713 * page on another writer. Thus we use the second LSB to catch 714 * that too. Thus: 715 * 716 * head->list->prev->next bit 1 bit 0 717 * ------- ------- 718 * Normal page 0 0 719 * Points to head page 0 1 720 * New head page 1 0 721 * 722 * Note we can not trust the prev pointer of the head page, because: 723 * 724 * +----+ +-----+ +-----+ 725 * | |------>| T |---X--->| N | 726 * | |<------| | | | 727 * +----+ +-----+ +-----+ 728 * ^ ^ | 729 * | +-----+ | | 730 * +----------| R |----------+ | 731 * | |<-----------+ 732 * +-----+ 733 * 734 * Key: ---X--> HEAD flag set in pointer 735 * T Tail page 736 * R Reader page 737 * N Next page 738 * 739 * (see __rb_reserve_next() to see where this happens) 740 * 741 * What the above shows is that the reader just swapped out 742 * the reader page with a page in the buffer, but before it 743 * could make the new header point back to the new page added 744 * it was preempted by a writer. The writer moved forward onto 745 * the new page added by the reader and is about to move forward 746 * again. 747 * 748 * You can see, it is legitimate for the previous pointer of 749 * the head (or any page) not to point back to itself. But only 750 * temporarially. 751 */ 752 753 #define RB_PAGE_NORMAL 0UL 754 #define RB_PAGE_HEAD 1UL 755 #define RB_PAGE_UPDATE 2UL 756 757 758 #define RB_FLAG_MASK 3UL 759 760 /* PAGE_MOVED is not part of the mask */ 761 #define RB_PAGE_MOVED 4UL 762 763 /* 764 * rb_list_head - remove any bit 765 */ 766 static struct list_head *rb_list_head(struct list_head *list) 767 { 768 unsigned long val = (unsigned long)list; 769 770 return (struct list_head *)(val & ~RB_FLAG_MASK); 771 } 772 773 /* 774 * rb_is_head_page - test if the given page is the head page 775 * 776 * Because the reader may move the head_page pointer, we can 777 * not trust what the head page is (it may be pointing to 778 * the reader page). But if the next page is a header page, 779 * its flags will be non zero. 780 */ 781 static inline int 782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 783 struct buffer_page *page, struct list_head *list) 784 { 785 unsigned long val; 786 787 val = (unsigned long)list->next; 788 789 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 790 return RB_PAGE_MOVED; 791 792 return val & RB_FLAG_MASK; 793 } 794 795 /* 796 * rb_is_reader_page 797 * 798 * The unique thing about the reader page, is that, if the 799 * writer is ever on it, the previous pointer never points 800 * back to the reader page. 801 */ 802 static int rb_is_reader_page(struct buffer_page *page) 803 { 804 struct list_head *list = page->list.prev; 805 806 return rb_list_head(list->next) != &page->list; 807 } 808 809 /* 810 * rb_set_list_to_head - set a list_head to be pointing to head. 811 */ 812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 813 struct list_head *list) 814 { 815 unsigned long *ptr; 816 817 ptr = (unsigned long *)&list->next; 818 *ptr |= RB_PAGE_HEAD; 819 *ptr &= ~RB_PAGE_UPDATE; 820 } 821 822 /* 823 * rb_head_page_activate - sets up head page 824 */ 825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 826 { 827 struct buffer_page *head; 828 829 head = cpu_buffer->head_page; 830 if (!head) 831 return; 832 833 /* 834 * Set the previous list pointer to have the HEAD flag. 835 */ 836 rb_set_list_to_head(cpu_buffer, head->list.prev); 837 } 838 839 static void rb_list_head_clear(struct list_head *list) 840 { 841 unsigned long *ptr = (unsigned long *)&list->next; 842 843 *ptr &= ~RB_FLAG_MASK; 844 } 845 846 /* 847 * rb_head_page_dactivate - clears head page ptr (for free list) 848 */ 849 static void 850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 851 { 852 struct list_head *hd; 853 854 /* Go through the whole list and clear any pointers found. */ 855 rb_list_head_clear(cpu_buffer->pages); 856 857 list_for_each(hd, cpu_buffer->pages) 858 rb_list_head_clear(hd); 859 } 860 861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 862 struct buffer_page *head, 863 struct buffer_page *prev, 864 int old_flag, int new_flag) 865 { 866 struct list_head *list; 867 unsigned long val = (unsigned long)&head->list; 868 unsigned long ret; 869 870 list = &prev->list; 871 872 val &= ~RB_FLAG_MASK; 873 874 ret = cmpxchg((unsigned long *)&list->next, 875 val | old_flag, val | new_flag); 876 877 /* check if the reader took the page */ 878 if ((ret & ~RB_FLAG_MASK) != val) 879 return RB_PAGE_MOVED; 880 881 return ret & RB_FLAG_MASK; 882 } 883 884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 885 struct buffer_page *head, 886 struct buffer_page *prev, 887 int old_flag) 888 { 889 return rb_head_page_set(cpu_buffer, head, prev, 890 old_flag, RB_PAGE_UPDATE); 891 } 892 893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 894 struct buffer_page *head, 895 struct buffer_page *prev, 896 int old_flag) 897 { 898 return rb_head_page_set(cpu_buffer, head, prev, 899 old_flag, RB_PAGE_HEAD); 900 } 901 902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 903 struct buffer_page *head, 904 struct buffer_page *prev, 905 int old_flag) 906 { 907 return rb_head_page_set(cpu_buffer, head, prev, 908 old_flag, RB_PAGE_NORMAL); 909 } 910 911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 912 struct buffer_page **bpage) 913 { 914 struct list_head *p = rb_list_head((*bpage)->list.next); 915 916 *bpage = list_entry(p, struct buffer_page, list); 917 } 918 919 static struct buffer_page * 920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 921 { 922 struct buffer_page *head; 923 struct buffer_page *page; 924 struct list_head *list; 925 int i; 926 927 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 928 return NULL; 929 930 /* sanity check */ 931 list = cpu_buffer->pages; 932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 933 return NULL; 934 935 page = head = cpu_buffer->head_page; 936 /* 937 * It is possible that the writer moves the header behind 938 * where we started, and we miss in one loop. 939 * A second loop should grab the header, but we'll do 940 * three loops just because I'm paranoid. 941 */ 942 for (i = 0; i < 3; i++) { 943 do { 944 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 945 cpu_buffer->head_page = page; 946 return page; 947 } 948 rb_inc_page(cpu_buffer, &page); 949 } while (page != head); 950 } 951 952 RB_WARN_ON(cpu_buffer, 1); 953 954 return NULL; 955 } 956 957 static int rb_head_page_replace(struct buffer_page *old, 958 struct buffer_page *new) 959 { 960 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 961 unsigned long val; 962 unsigned long ret; 963 964 val = *ptr & ~RB_FLAG_MASK; 965 val |= RB_PAGE_HEAD; 966 967 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 968 969 return ret == val; 970 } 971 972 /* 973 * rb_tail_page_update - move the tail page forward 974 * 975 * Returns 1 if moved tail page, 0 if someone else did. 976 */ 977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 978 struct buffer_page *tail_page, 979 struct buffer_page *next_page) 980 { 981 struct buffer_page *old_tail; 982 unsigned long old_entries; 983 unsigned long old_write; 984 int ret = 0; 985 986 /* 987 * The tail page now needs to be moved forward. 988 * 989 * We need to reset the tail page, but without messing 990 * with possible erasing of data brought in by interrupts 991 * that have moved the tail page and are currently on it. 992 * 993 * We add a counter to the write field to denote this. 994 */ 995 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 996 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 997 998 /* 999 * Just make sure we have seen our old_write and synchronize 1000 * with any interrupts that come in. 1001 */ 1002 barrier(); 1003 1004 /* 1005 * If the tail page is still the same as what we think 1006 * it is, then it is up to us to update the tail 1007 * pointer. 1008 */ 1009 if (tail_page == cpu_buffer->tail_page) { 1010 /* Zero the write counter */ 1011 unsigned long val = old_write & ~RB_WRITE_MASK; 1012 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1013 1014 /* 1015 * This will only succeed if an interrupt did 1016 * not come in and change it. In which case, we 1017 * do not want to modify it. 1018 * 1019 * We add (void) to let the compiler know that we do not care 1020 * about the return value of these functions. We use the 1021 * cmpxchg to only update if an interrupt did not already 1022 * do it for us. If the cmpxchg fails, we don't care. 1023 */ 1024 (void)local_cmpxchg(&next_page->write, old_write, val); 1025 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1026 1027 /* 1028 * No need to worry about races with clearing out the commit. 1029 * it only can increment when a commit takes place. But that 1030 * only happens in the outer most nested commit. 1031 */ 1032 local_set(&next_page->page->commit, 0); 1033 1034 old_tail = cmpxchg(&cpu_buffer->tail_page, 1035 tail_page, next_page); 1036 1037 if (old_tail == tail_page) 1038 ret = 1; 1039 } 1040 1041 return ret; 1042 } 1043 1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1045 struct buffer_page *bpage) 1046 { 1047 unsigned long val = (unsigned long)bpage; 1048 1049 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1050 return 1; 1051 1052 return 0; 1053 } 1054 1055 /** 1056 * rb_check_list - make sure a pointer to a list has the last bits zero 1057 */ 1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1059 struct list_head *list) 1060 { 1061 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1062 return 1; 1063 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1064 return 1; 1065 return 0; 1066 } 1067 1068 /** 1069 * check_pages - integrity check of buffer pages 1070 * @cpu_buffer: CPU buffer with pages to test 1071 * 1072 * As a safety measure we check to make sure the data pages have not 1073 * been corrupted. 1074 */ 1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1076 { 1077 struct list_head *head = cpu_buffer->pages; 1078 struct buffer_page *bpage, *tmp; 1079 1080 /* Reset the head page if it exists */ 1081 if (cpu_buffer->head_page) 1082 rb_set_head_page(cpu_buffer); 1083 1084 rb_head_page_deactivate(cpu_buffer); 1085 1086 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1087 return -1; 1088 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1089 return -1; 1090 1091 if (rb_check_list(cpu_buffer, head)) 1092 return -1; 1093 1094 list_for_each_entry_safe(bpage, tmp, head, list) { 1095 if (RB_WARN_ON(cpu_buffer, 1096 bpage->list.next->prev != &bpage->list)) 1097 return -1; 1098 if (RB_WARN_ON(cpu_buffer, 1099 bpage->list.prev->next != &bpage->list)) 1100 return -1; 1101 if (rb_check_list(cpu_buffer, &bpage->list)) 1102 return -1; 1103 } 1104 1105 rb_head_page_activate(cpu_buffer); 1106 1107 return 0; 1108 } 1109 1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1111 { 1112 int i; 1113 struct buffer_page *bpage, *tmp; 1114 1115 for (i = 0; i < nr_pages; i++) { 1116 struct page *page; 1117 /* 1118 * __GFP_NORETRY flag makes sure that the allocation fails 1119 * gracefully without invoking oom-killer and the system is 1120 * not destabilized. 1121 */ 1122 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1123 GFP_KERNEL | __GFP_NORETRY, 1124 cpu_to_node(cpu)); 1125 if (!bpage) 1126 goto free_pages; 1127 1128 list_add(&bpage->list, pages); 1129 1130 page = alloc_pages_node(cpu_to_node(cpu), 1131 GFP_KERNEL | __GFP_NORETRY, 0); 1132 if (!page) 1133 goto free_pages; 1134 bpage->page = page_address(page); 1135 rb_init_page(bpage->page); 1136 } 1137 1138 return 0; 1139 1140 free_pages: 1141 list_for_each_entry_safe(bpage, tmp, pages, list) { 1142 list_del_init(&bpage->list); 1143 free_buffer_page(bpage); 1144 } 1145 1146 return -ENOMEM; 1147 } 1148 1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1150 unsigned nr_pages) 1151 { 1152 LIST_HEAD(pages); 1153 1154 WARN_ON(!nr_pages); 1155 1156 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1157 return -ENOMEM; 1158 1159 /* 1160 * The ring buffer page list is a circular list that does not 1161 * start and end with a list head. All page list items point to 1162 * other pages. 1163 */ 1164 cpu_buffer->pages = pages.next; 1165 list_del(&pages); 1166 1167 cpu_buffer->nr_pages = nr_pages; 1168 1169 rb_check_pages(cpu_buffer); 1170 1171 return 0; 1172 } 1173 1174 static struct ring_buffer_per_cpu * 1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1176 { 1177 struct ring_buffer_per_cpu *cpu_buffer; 1178 struct buffer_page *bpage; 1179 struct page *page; 1180 int ret; 1181 1182 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1183 GFP_KERNEL, cpu_to_node(cpu)); 1184 if (!cpu_buffer) 1185 return NULL; 1186 1187 cpu_buffer->cpu = cpu; 1188 cpu_buffer->buffer = buffer; 1189 raw_spin_lock_init(&cpu_buffer->reader_lock); 1190 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1191 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1192 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1193 init_completion(&cpu_buffer->update_done); 1194 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1195 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1196 1197 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1198 GFP_KERNEL, cpu_to_node(cpu)); 1199 if (!bpage) 1200 goto fail_free_buffer; 1201 1202 rb_check_bpage(cpu_buffer, bpage); 1203 1204 cpu_buffer->reader_page = bpage; 1205 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1206 if (!page) 1207 goto fail_free_reader; 1208 bpage->page = page_address(page); 1209 rb_init_page(bpage->page); 1210 1211 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1212 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1213 1214 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1215 if (ret < 0) 1216 goto fail_free_reader; 1217 1218 cpu_buffer->head_page 1219 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1220 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1221 1222 rb_head_page_activate(cpu_buffer); 1223 1224 return cpu_buffer; 1225 1226 fail_free_reader: 1227 free_buffer_page(cpu_buffer->reader_page); 1228 1229 fail_free_buffer: 1230 kfree(cpu_buffer); 1231 return NULL; 1232 } 1233 1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1235 { 1236 struct list_head *head = cpu_buffer->pages; 1237 struct buffer_page *bpage, *tmp; 1238 1239 free_buffer_page(cpu_buffer->reader_page); 1240 1241 rb_head_page_deactivate(cpu_buffer); 1242 1243 if (head) { 1244 list_for_each_entry_safe(bpage, tmp, head, list) { 1245 list_del_init(&bpage->list); 1246 free_buffer_page(bpage); 1247 } 1248 bpage = list_entry(head, struct buffer_page, list); 1249 free_buffer_page(bpage); 1250 } 1251 1252 kfree(cpu_buffer); 1253 } 1254 1255 #ifdef CONFIG_HOTPLUG_CPU 1256 static int rb_cpu_notify(struct notifier_block *self, 1257 unsigned long action, void *hcpu); 1258 #endif 1259 1260 /** 1261 * ring_buffer_alloc - allocate a new ring_buffer 1262 * @size: the size in bytes per cpu that is needed. 1263 * @flags: attributes to set for the ring buffer. 1264 * 1265 * Currently the only flag that is available is the RB_FL_OVERWRITE 1266 * flag. This flag means that the buffer will overwrite old data 1267 * when the buffer wraps. If this flag is not set, the buffer will 1268 * drop data when the tail hits the head. 1269 */ 1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1271 struct lock_class_key *key) 1272 { 1273 struct ring_buffer *buffer; 1274 int bsize; 1275 int cpu, nr_pages; 1276 1277 /* keep it in its own cache line */ 1278 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1279 GFP_KERNEL); 1280 if (!buffer) 1281 return NULL; 1282 1283 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1284 goto fail_free_buffer; 1285 1286 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1287 buffer->flags = flags; 1288 buffer->clock = trace_clock_local; 1289 buffer->reader_lock_key = key; 1290 1291 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1292 init_waitqueue_head(&buffer->irq_work.waiters); 1293 1294 /* need at least two pages */ 1295 if (nr_pages < 2) 1296 nr_pages = 2; 1297 1298 /* 1299 * In case of non-hotplug cpu, if the ring-buffer is allocated 1300 * in early initcall, it will not be notified of secondary cpus. 1301 * In that off case, we need to allocate for all possible cpus. 1302 */ 1303 #ifdef CONFIG_HOTPLUG_CPU 1304 get_online_cpus(); 1305 cpumask_copy(buffer->cpumask, cpu_online_mask); 1306 #else 1307 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1308 #endif 1309 buffer->cpus = nr_cpu_ids; 1310 1311 bsize = sizeof(void *) * nr_cpu_ids; 1312 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1313 GFP_KERNEL); 1314 if (!buffer->buffers) 1315 goto fail_free_cpumask; 1316 1317 for_each_buffer_cpu(buffer, cpu) { 1318 buffer->buffers[cpu] = 1319 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1320 if (!buffer->buffers[cpu]) 1321 goto fail_free_buffers; 1322 } 1323 1324 #ifdef CONFIG_HOTPLUG_CPU 1325 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1326 buffer->cpu_notify.priority = 0; 1327 register_cpu_notifier(&buffer->cpu_notify); 1328 #endif 1329 1330 put_online_cpus(); 1331 mutex_init(&buffer->mutex); 1332 1333 return buffer; 1334 1335 fail_free_buffers: 1336 for_each_buffer_cpu(buffer, cpu) { 1337 if (buffer->buffers[cpu]) 1338 rb_free_cpu_buffer(buffer->buffers[cpu]); 1339 } 1340 kfree(buffer->buffers); 1341 1342 fail_free_cpumask: 1343 free_cpumask_var(buffer->cpumask); 1344 put_online_cpus(); 1345 1346 fail_free_buffer: 1347 kfree(buffer); 1348 return NULL; 1349 } 1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1351 1352 /** 1353 * ring_buffer_free - free a ring buffer. 1354 * @buffer: the buffer to free. 1355 */ 1356 void 1357 ring_buffer_free(struct ring_buffer *buffer) 1358 { 1359 int cpu; 1360 1361 get_online_cpus(); 1362 1363 #ifdef CONFIG_HOTPLUG_CPU 1364 unregister_cpu_notifier(&buffer->cpu_notify); 1365 #endif 1366 1367 for_each_buffer_cpu(buffer, cpu) 1368 rb_free_cpu_buffer(buffer->buffers[cpu]); 1369 1370 put_online_cpus(); 1371 1372 kfree(buffer->buffers); 1373 free_cpumask_var(buffer->cpumask); 1374 1375 kfree(buffer); 1376 } 1377 EXPORT_SYMBOL_GPL(ring_buffer_free); 1378 1379 void ring_buffer_set_clock(struct ring_buffer *buffer, 1380 u64 (*clock)(void)) 1381 { 1382 buffer->clock = clock; 1383 } 1384 1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1386 1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1388 { 1389 return local_read(&bpage->entries) & RB_WRITE_MASK; 1390 } 1391 1392 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1393 { 1394 return local_read(&bpage->write) & RB_WRITE_MASK; 1395 } 1396 1397 static int 1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1399 { 1400 struct list_head *tail_page, *to_remove, *next_page; 1401 struct buffer_page *to_remove_page, *tmp_iter_page; 1402 struct buffer_page *last_page, *first_page; 1403 unsigned int nr_removed; 1404 unsigned long head_bit; 1405 int page_entries; 1406 1407 head_bit = 0; 1408 1409 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1410 atomic_inc(&cpu_buffer->record_disabled); 1411 /* 1412 * We don't race with the readers since we have acquired the reader 1413 * lock. We also don't race with writers after disabling recording. 1414 * This makes it easy to figure out the first and the last page to be 1415 * removed from the list. We unlink all the pages in between including 1416 * the first and last pages. This is done in a busy loop so that we 1417 * lose the least number of traces. 1418 * The pages are freed after we restart recording and unlock readers. 1419 */ 1420 tail_page = &cpu_buffer->tail_page->list; 1421 1422 /* 1423 * tail page might be on reader page, we remove the next page 1424 * from the ring buffer 1425 */ 1426 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1427 tail_page = rb_list_head(tail_page->next); 1428 to_remove = tail_page; 1429 1430 /* start of pages to remove */ 1431 first_page = list_entry(rb_list_head(to_remove->next), 1432 struct buffer_page, list); 1433 1434 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1435 to_remove = rb_list_head(to_remove)->next; 1436 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1437 } 1438 1439 next_page = rb_list_head(to_remove)->next; 1440 1441 /* 1442 * Now we remove all pages between tail_page and next_page. 1443 * Make sure that we have head_bit value preserved for the 1444 * next page 1445 */ 1446 tail_page->next = (struct list_head *)((unsigned long)next_page | 1447 head_bit); 1448 next_page = rb_list_head(next_page); 1449 next_page->prev = tail_page; 1450 1451 /* make sure pages points to a valid page in the ring buffer */ 1452 cpu_buffer->pages = next_page; 1453 1454 /* update head page */ 1455 if (head_bit) 1456 cpu_buffer->head_page = list_entry(next_page, 1457 struct buffer_page, list); 1458 1459 /* 1460 * change read pointer to make sure any read iterators reset 1461 * themselves 1462 */ 1463 cpu_buffer->read = 0; 1464 1465 /* pages are removed, resume tracing and then free the pages */ 1466 atomic_dec(&cpu_buffer->record_disabled); 1467 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1468 1469 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1470 1471 /* last buffer page to remove */ 1472 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1473 list); 1474 tmp_iter_page = first_page; 1475 1476 do { 1477 to_remove_page = tmp_iter_page; 1478 rb_inc_page(cpu_buffer, &tmp_iter_page); 1479 1480 /* update the counters */ 1481 page_entries = rb_page_entries(to_remove_page); 1482 if (page_entries) { 1483 /* 1484 * If something was added to this page, it was full 1485 * since it is not the tail page. So we deduct the 1486 * bytes consumed in ring buffer from here. 1487 * Increment overrun to account for the lost events. 1488 */ 1489 local_add(page_entries, &cpu_buffer->overrun); 1490 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1491 } 1492 1493 /* 1494 * We have already removed references to this list item, just 1495 * free up the buffer_page and its page 1496 */ 1497 free_buffer_page(to_remove_page); 1498 nr_removed--; 1499 1500 } while (to_remove_page != last_page); 1501 1502 RB_WARN_ON(cpu_buffer, nr_removed); 1503 1504 return nr_removed == 0; 1505 } 1506 1507 static int 1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1509 { 1510 struct list_head *pages = &cpu_buffer->new_pages; 1511 int retries, success; 1512 1513 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1514 /* 1515 * We are holding the reader lock, so the reader page won't be swapped 1516 * in the ring buffer. Now we are racing with the writer trying to 1517 * move head page and the tail page. 1518 * We are going to adapt the reader page update process where: 1519 * 1. We first splice the start and end of list of new pages between 1520 * the head page and its previous page. 1521 * 2. We cmpxchg the prev_page->next to point from head page to the 1522 * start of new pages list. 1523 * 3. Finally, we update the head->prev to the end of new list. 1524 * 1525 * We will try this process 10 times, to make sure that we don't keep 1526 * spinning. 1527 */ 1528 retries = 10; 1529 success = 0; 1530 while (retries--) { 1531 struct list_head *head_page, *prev_page, *r; 1532 struct list_head *last_page, *first_page; 1533 struct list_head *head_page_with_bit; 1534 1535 head_page = &rb_set_head_page(cpu_buffer)->list; 1536 if (!head_page) 1537 break; 1538 prev_page = head_page->prev; 1539 1540 first_page = pages->next; 1541 last_page = pages->prev; 1542 1543 head_page_with_bit = (struct list_head *) 1544 ((unsigned long)head_page | RB_PAGE_HEAD); 1545 1546 last_page->next = head_page_with_bit; 1547 first_page->prev = prev_page; 1548 1549 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1550 1551 if (r == head_page_with_bit) { 1552 /* 1553 * yay, we replaced the page pointer to our new list, 1554 * now, we just have to update to head page's prev 1555 * pointer to point to end of list 1556 */ 1557 head_page->prev = last_page; 1558 success = 1; 1559 break; 1560 } 1561 } 1562 1563 if (success) 1564 INIT_LIST_HEAD(pages); 1565 /* 1566 * If we weren't successful in adding in new pages, warn and stop 1567 * tracing 1568 */ 1569 RB_WARN_ON(cpu_buffer, !success); 1570 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1571 1572 /* free pages if they weren't inserted */ 1573 if (!success) { 1574 struct buffer_page *bpage, *tmp; 1575 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1576 list) { 1577 list_del_init(&bpage->list); 1578 free_buffer_page(bpage); 1579 } 1580 } 1581 return success; 1582 } 1583 1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1585 { 1586 int success; 1587 1588 if (cpu_buffer->nr_pages_to_update > 0) 1589 success = rb_insert_pages(cpu_buffer); 1590 else 1591 success = rb_remove_pages(cpu_buffer, 1592 -cpu_buffer->nr_pages_to_update); 1593 1594 if (success) 1595 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1596 } 1597 1598 static void update_pages_handler(struct work_struct *work) 1599 { 1600 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1601 struct ring_buffer_per_cpu, update_pages_work); 1602 rb_update_pages(cpu_buffer); 1603 complete(&cpu_buffer->update_done); 1604 } 1605 1606 /** 1607 * ring_buffer_resize - resize the ring buffer 1608 * @buffer: the buffer to resize. 1609 * @size: the new size. 1610 * 1611 * Minimum size is 2 * BUF_PAGE_SIZE. 1612 * 1613 * Returns 0 on success and < 0 on failure. 1614 */ 1615 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1616 int cpu_id) 1617 { 1618 struct ring_buffer_per_cpu *cpu_buffer; 1619 unsigned nr_pages; 1620 int cpu, err = 0; 1621 1622 /* 1623 * Always succeed at resizing a non-existent buffer: 1624 */ 1625 if (!buffer) 1626 return size; 1627 1628 /* Make sure the requested buffer exists */ 1629 if (cpu_id != RING_BUFFER_ALL_CPUS && 1630 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1631 return size; 1632 1633 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1634 size *= BUF_PAGE_SIZE; 1635 1636 /* we need a minimum of two pages */ 1637 if (size < BUF_PAGE_SIZE * 2) 1638 size = BUF_PAGE_SIZE * 2; 1639 1640 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1641 1642 /* 1643 * Don't succeed if resizing is disabled, as a reader might be 1644 * manipulating the ring buffer and is expecting a sane state while 1645 * this is true. 1646 */ 1647 if (atomic_read(&buffer->resize_disabled)) 1648 return -EBUSY; 1649 1650 /* prevent another thread from changing buffer sizes */ 1651 mutex_lock(&buffer->mutex); 1652 1653 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1654 /* calculate the pages to update */ 1655 for_each_buffer_cpu(buffer, cpu) { 1656 cpu_buffer = buffer->buffers[cpu]; 1657 1658 cpu_buffer->nr_pages_to_update = nr_pages - 1659 cpu_buffer->nr_pages; 1660 /* 1661 * nothing more to do for removing pages or no update 1662 */ 1663 if (cpu_buffer->nr_pages_to_update <= 0) 1664 continue; 1665 /* 1666 * to add pages, make sure all new pages can be 1667 * allocated without receiving ENOMEM 1668 */ 1669 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1670 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1671 &cpu_buffer->new_pages, cpu)) { 1672 /* not enough memory for new pages */ 1673 err = -ENOMEM; 1674 goto out_err; 1675 } 1676 } 1677 1678 get_online_cpus(); 1679 /* 1680 * Fire off all the required work handlers 1681 * We can't schedule on offline CPUs, but it's not necessary 1682 * since we can change their buffer sizes without any race. 1683 */ 1684 for_each_buffer_cpu(buffer, cpu) { 1685 cpu_buffer = buffer->buffers[cpu]; 1686 if (!cpu_buffer->nr_pages_to_update) 1687 continue; 1688 1689 /* The update must run on the CPU that is being updated. */ 1690 preempt_disable(); 1691 if (cpu == smp_processor_id() || !cpu_online(cpu)) { 1692 rb_update_pages(cpu_buffer); 1693 cpu_buffer->nr_pages_to_update = 0; 1694 } else { 1695 /* 1696 * Can not disable preemption for schedule_work_on() 1697 * on PREEMPT_RT. 1698 */ 1699 preempt_enable(); 1700 schedule_work_on(cpu, 1701 &cpu_buffer->update_pages_work); 1702 preempt_disable(); 1703 } 1704 preempt_enable(); 1705 } 1706 1707 /* wait for all the updates to complete */ 1708 for_each_buffer_cpu(buffer, cpu) { 1709 cpu_buffer = buffer->buffers[cpu]; 1710 if (!cpu_buffer->nr_pages_to_update) 1711 continue; 1712 1713 if (cpu_online(cpu)) 1714 wait_for_completion(&cpu_buffer->update_done); 1715 cpu_buffer->nr_pages_to_update = 0; 1716 } 1717 1718 put_online_cpus(); 1719 } else { 1720 /* Make sure this CPU has been intitialized */ 1721 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1722 goto out; 1723 1724 cpu_buffer = buffer->buffers[cpu_id]; 1725 1726 if (nr_pages == cpu_buffer->nr_pages) 1727 goto out; 1728 1729 cpu_buffer->nr_pages_to_update = nr_pages - 1730 cpu_buffer->nr_pages; 1731 1732 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1733 if (cpu_buffer->nr_pages_to_update > 0 && 1734 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1735 &cpu_buffer->new_pages, cpu_id)) { 1736 err = -ENOMEM; 1737 goto out_err; 1738 } 1739 1740 get_online_cpus(); 1741 1742 preempt_disable(); 1743 /* The update must run on the CPU that is being updated. */ 1744 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id)) 1745 rb_update_pages(cpu_buffer); 1746 else { 1747 /* 1748 * Can not disable preemption for schedule_work_on() 1749 * on PREEMPT_RT. 1750 */ 1751 preempt_enable(); 1752 schedule_work_on(cpu_id, 1753 &cpu_buffer->update_pages_work); 1754 wait_for_completion(&cpu_buffer->update_done); 1755 preempt_disable(); 1756 } 1757 preempt_enable(); 1758 1759 cpu_buffer->nr_pages_to_update = 0; 1760 put_online_cpus(); 1761 } 1762 1763 out: 1764 /* 1765 * The ring buffer resize can happen with the ring buffer 1766 * enabled, so that the update disturbs the tracing as little 1767 * as possible. But if the buffer is disabled, we do not need 1768 * to worry about that, and we can take the time to verify 1769 * that the buffer is not corrupt. 1770 */ 1771 if (atomic_read(&buffer->record_disabled)) { 1772 atomic_inc(&buffer->record_disabled); 1773 /* 1774 * Even though the buffer was disabled, we must make sure 1775 * that it is truly disabled before calling rb_check_pages. 1776 * There could have been a race between checking 1777 * record_disable and incrementing it. 1778 */ 1779 synchronize_sched(); 1780 for_each_buffer_cpu(buffer, cpu) { 1781 cpu_buffer = buffer->buffers[cpu]; 1782 rb_check_pages(cpu_buffer); 1783 } 1784 atomic_dec(&buffer->record_disabled); 1785 } 1786 1787 mutex_unlock(&buffer->mutex); 1788 return size; 1789 1790 out_err: 1791 for_each_buffer_cpu(buffer, cpu) { 1792 struct buffer_page *bpage, *tmp; 1793 1794 cpu_buffer = buffer->buffers[cpu]; 1795 cpu_buffer->nr_pages_to_update = 0; 1796 1797 if (list_empty(&cpu_buffer->new_pages)) 1798 continue; 1799 1800 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1801 list) { 1802 list_del_init(&bpage->list); 1803 free_buffer_page(bpage); 1804 } 1805 } 1806 mutex_unlock(&buffer->mutex); 1807 return err; 1808 } 1809 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1810 1811 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1812 { 1813 mutex_lock(&buffer->mutex); 1814 if (val) 1815 buffer->flags |= RB_FL_OVERWRITE; 1816 else 1817 buffer->flags &= ~RB_FL_OVERWRITE; 1818 mutex_unlock(&buffer->mutex); 1819 } 1820 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1821 1822 static inline void * 1823 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1824 { 1825 return bpage->data + index; 1826 } 1827 1828 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1829 { 1830 return bpage->page->data + index; 1831 } 1832 1833 static inline struct ring_buffer_event * 1834 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1835 { 1836 return __rb_page_index(cpu_buffer->reader_page, 1837 cpu_buffer->reader_page->read); 1838 } 1839 1840 static inline struct ring_buffer_event * 1841 rb_iter_head_event(struct ring_buffer_iter *iter) 1842 { 1843 return __rb_page_index(iter->head_page, iter->head); 1844 } 1845 1846 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1847 { 1848 return local_read(&bpage->page->commit); 1849 } 1850 1851 /* Size is determined by what has been committed */ 1852 static inline unsigned rb_page_size(struct buffer_page *bpage) 1853 { 1854 return rb_page_commit(bpage); 1855 } 1856 1857 static inline unsigned 1858 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1859 { 1860 return rb_page_commit(cpu_buffer->commit_page); 1861 } 1862 1863 static inline unsigned 1864 rb_event_index(struct ring_buffer_event *event) 1865 { 1866 unsigned long addr = (unsigned long)event; 1867 1868 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1869 } 1870 1871 static inline int 1872 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1873 struct ring_buffer_event *event) 1874 { 1875 unsigned long addr = (unsigned long)event; 1876 unsigned long index; 1877 1878 index = rb_event_index(event); 1879 addr &= PAGE_MASK; 1880 1881 return cpu_buffer->commit_page->page == (void *)addr && 1882 rb_commit_index(cpu_buffer) == index; 1883 } 1884 1885 static void 1886 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1887 { 1888 unsigned long max_count; 1889 1890 /* 1891 * We only race with interrupts and NMIs on this CPU. 1892 * If we own the commit event, then we can commit 1893 * all others that interrupted us, since the interruptions 1894 * are in stack format (they finish before they come 1895 * back to us). This allows us to do a simple loop to 1896 * assign the commit to the tail. 1897 */ 1898 again: 1899 max_count = cpu_buffer->nr_pages * 100; 1900 1901 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1902 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1903 return; 1904 if (RB_WARN_ON(cpu_buffer, 1905 rb_is_reader_page(cpu_buffer->tail_page))) 1906 return; 1907 local_set(&cpu_buffer->commit_page->page->commit, 1908 rb_page_write(cpu_buffer->commit_page)); 1909 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1910 cpu_buffer->write_stamp = 1911 cpu_buffer->commit_page->page->time_stamp; 1912 /* add barrier to keep gcc from optimizing too much */ 1913 barrier(); 1914 } 1915 while (rb_commit_index(cpu_buffer) != 1916 rb_page_write(cpu_buffer->commit_page)) { 1917 1918 local_set(&cpu_buffer->commit_page->page->commit, 1919 rb_page_write(cpu_buffer->commit_page)); 1920 RB_WARN_ON(cpu_buffer, 1921 local_read(&cpu_buffer->commit_page->page->commit) & 1922 ~RB_WRITE_MASK); 1923 barrier(); 1924 } 1925 1926 /* again, keep gcc from optimizing */ 1927 barrier(); 1928 1929 /* 1930 * If an interrupt came in just after the first while loop 1931 * and pushed the tail page forward, we will be left with 1932 * a dangling commit that will never go forward. 1933 */ 1934 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1935 goto again; 1936 } 1937 1938 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1939 { 1940 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1941 cpu_buffer->reader_page->read = 0; 1942 } 1943 1944 static void rb_inc_iter(struct ring_buffer_iter *iter) 1945 { 1946 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1947 1948 /* 1949 * The iterator could be on the reader page (it starts there). 1950 * But the head could have moved, since the reader was 1951 * found. Check for this case and assign the iterator 1952 * to the head page instead of next. 1953 */ 1954 if (iter->head_page == cpu_buffer->reader_page) 1955 iter->head_page = rb_set_head_page(cpu_buffer); 1956 else 1957 rb_inc_page(cpu_buffer, &iter->head_page); 1958 1959 iter->read_stamp = iter->head_page->page->time_stamp; 1960 iter->head = 0; 1961 } 1962 1963 /* Slow path, do not inline */ 1964 static noinline struct ring_buffer_event * 1965 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1966 { 1967 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1968 1969 /* Not the first event on the page? */ 1970 if (rb_event_index(event)) { 1971 event->time_delta = delta & TS_MASK; 1972 event->array[0] = delta >> TS_SHIFT; 1973 } else { 1974 /* nope, just zero it */ 1975 event->time_delta = 0; 1976 event->array[0] = 0; 1977 } 1978 1979 return skip_time_extend(event); 1980 } 1981 1982 /** 1983 * rb_update_event - update event type and data 1984 * @event: the even to update 1985 * @type: the type of event 1986 * @length: the size of the event field in the ring buffer 1987 * 1988 * Update the type and data fields of the event. The length 1989 * is the actual size that is written to the ring buffer, 1990 * and with this, we can determine what to place into the 1991 * data field. 1992 */ 1993 static void 1994 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1995 struct ring_buffer_event *event, unsigned length, 1996 int add_timestamp, u64 delta) 1997 { 1998 /* Only a commit updates the timestamp */ 1999 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2000 delta = 0; 2001 2002 /* 2003 * If we need to add a timestamp, then we 2004 * add it to the start of the resevered space. 2005 */ 2006 if (unlikely(add_timestamp)) { 2007 event = rb_add_time_stamp(event, delta); 2008 length -= RB_LEN_TIME_EXTEND; 2009 delta = 0; 2010 } 2011 2012 event->time_delta = delta; 2013 length -= RB_EVNT_HDR_SIZE; 2014 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2015 event->type_len = 0; 2016 event->array[0] = length; 2017 } else 2018 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2019 } 2020 2021 /* 2022 * rb_handle_head_page - writer hit the head page 2023 * 2024 * Returns: +1 to retry page 2025 * 0 to continue 2026 * -1 on error 2027 */ 2028 static int 2029 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2030 struct buffer_page *tail_page, 2031 struct buffer_page *next_page) 2032 { 2033 struct buffer_page *new_head; 2034 int entries; 2035 int type; 2036 int ret; 2037 2038 entries = rb_page_entries(next_page); 2039 2040 /* 2041 * The hard part is here. We need to move the head 2042 * forward, and protect against both readers on 2043 * other CPUs and writers coming in via interrupts. 2044 */ 2045 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2046 RB_PAGE_HEAD); 2047 2048 /* 2049 * type can be one of four: 2050 * NORMAL - an interrupt already moved it for us 2051 * HEAD - we are the first to get here. 2052 * UPDATE - we are the interrupt interrupting 2053 * a current move. 2054 * MOVED - a reader on another CPU moved the next 2055 * pointer to its reader page. Give up 2056 * and try again. 2057 */ 2058 2059 switch (type) { 2060 case RB_PAGE_HEAD: 2061 /* 2062 * We changed the head to UPDATE, thus 2063 * it is our responsibility to update 2064 * the counters. 2065 */ 2066 local_add(entries, &cpu_buffer->overrun); 2067 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2068 2069 /* 2070 * The entries will be zeroed out when we move the 2071 * tail page. 2072 */ 2073 2074 /* still more to do */ 2075 break; 2076 2077 case RB_PAGE_UPDATE: 2078 /* 2079 * This is an interrupt that interrupt the 2080 * previous update. Still more to do. 2081 */ 2082 break; 2083 case RB_PAGE_NORMAL: 2084 /* 2085 * An interrupt came in before the update 2086 * and processed this for us. 2087 * Nothing left to do. 2088 */ 2089 return 1; 2090 case RB_PAGE_MOVED: 2091 /* 2092 * The reader is on another CPU and just did 2093 * a swap with our next_page. 2094 * Try again. 2095 */ 2096 return 1; 2097 default: 2098 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2099 return -1; 2100 } 2101 2102 /* 2103 * Now that we are here, the old head pointer is 2104 * set to UPDATE. This will keep the reader from 2105 * swapping the head page with the reader page. 2106 * The reader (on another CPU) will spin till 2107 * we are finished. 2108 * 2109 * We just need to protect against interrupts 2110 * doing the job. We will set the next pointer 2111 * to HEAD. After that, we set the old pointer 2112 * to NORMAL, but only if it was HEAD before. 2113 * otherwise we are an interrupt, and only 2114 * want the outer most commit to reset it. 2115 */ 2116 new_head = next_page; 2117 rb_inc_page(cpu_buffer, &new_head); 2118 2119 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2120 RB_PAGE_NORMAL); 2121 2122 /* 2123 * Valid returns are: 2124 * HEAD - an interrupt came in and already set it. 2125 * NORMAL - One of two things: 2126 * 1) We really set it. 2127 * 2) A bunch of interrupts came in and moved 2128 * the page forward again. 2129 */ 2130 switch (ret) { 2131 case RB_PAGE_HEAD: 2132 case RB_PAGE_NORMAL: 2133 /* OK */ 2134 break; 2135 default: 2136 RB_WARN_ON(cpu_buffer, 1); 2137 return -1; 2138 } 2139 2140 /* 2141 * It is possible that an interrupt came in, 2142 * set the head up, then more interrupts came in 2143 * and moved it again. When we get back here, 2144 * the page would have been set to NORMAL but we 2145 * just set it back to HEAD. 2146 * 2147 * How do you detect this? Well, if that happened 2148 * the tail page would have moved. 2149 */ 2150 if (ret == RB_PAGE_NORMAL) { 2151 /* 2152 * If the tail had moved passed next, then we need 2153 * to reset the pointer. 2154 */ 2155 if (cpu_buffer->tail_page != tail_page && 2156 cpu_buffer->tail_page != next_page) 2157 rb_head_page_set_normal(cpu_buffer, new_head, 2158 next_page, 2159 RB_PAGE_HEAD); 2160 } 2161 2162 /* 2163 * If this was the outer most commit (the one that 2164 * changed the original pointer from HEAD to UPDATE), 2165 * then it is up to us to reset it to NORMAL. 2166 */ 2167 if (type == RB_PAGE_HEAD) { 2168 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2169 tail_page, 2170 RB_PAGE_UPDATE); 2171 if (RB_WARN_ON(cpu_buffer, 2172 ret != RB_PAGE_UPDATE)) 2173 return -1; 2174 } 2175 2176 return 0; 2177 } 2178 2179 static unsigned rb_calculate_event_length(unsigned length) 2180 { 2181 struct ring_buffer_event event; /* Used only for sizeof array */ 2182 2183 /* zero length can cause confusions */ 2184 if (!length) 2185 length = 1; 2186 2187 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2188 length += sizeof(event.array[0]); 2189 2190 length += RB_EVNT_HDR_SIZE; 2191 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2192 2193 return length; 2194 } 2195 2196 static inline void 2197 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2198 struct buffer_page *tail_page, 2199 unsigned long tail, unsigned long length) 2200 { 2201 struct ring_buffer_event *event; 2202 2203 /* 2204 * Only the event that crossed the page boundary 2205 * must fill the old tail_page with padding. 2206 */ 2207 if (tail >= BUF_PAGE_SIZE) { 2208 /* 2209 * If the page was filled, then we still need 2210 * to update the real_end. Reset it to zero 2211 * and the reader will ignore it. 2212 */ 2213 if (tail == BUF_PAGE_SIZE) 2214 tail_page->real_end = 0; 2215 2216 local_sub(length, &tail_page->write); 2217 return; 2218 } 2219 2220 event = __rb_page_index(tail_page, tail); 2221 kmemcheck_annotate_bitfield(event, bitfield); 2222 2223 /* account for padding bytes */ 2224 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2225 2226 /* 2227 * Save the original length to the meta data. 2228 * This will be used by the reader to add lost event 2229 * counter. 2230 */ 2231 tail_page->real_end = tail; 2232 2233 /* 2234 * If this event is bigger than the minimum size, then 2235 * we need to be careful that we don't subtract the 2236 * write counter enough to allow another writer to slip 2237 * in on this page. 2238 * We put in a discarded commit instead, to make sure 2239 * that this space is not used again. 2240 * 2241 * If we are less than the minimum size, we don't need to 2242 * worry about it. 2243 */ 2244 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2245 /* No room for any events */ 2246 2247 /* Mark the rest of the page with padding */ 2248 rb_event_set_padding(event); 2249 2250 /* Set the write back to the previous setting */ 2251 local_sub(length, &tail_page->write); 2252 return; 2253 } 2254 2255 /* Put in a discarded event */ 2256 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2257 event->type_len = RINGBUF_TYPE_PADDING; 2258 /* time delta must be non zero */ 2259 event->time_delta = 1; 2260 2261 /* Set write to end of buffer */ 2262 length = (tail + length) - BUF_PAGE_SIZE; 2263 local_sub(length, &tail_page->write); 2264 } 2265 2266 /* 2267 * This is the slow path, force gcc not to inline it. 2268 */ 2269 static noinline struct ring_buffer_event * 2270 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2271 unsigned long length, unsigned long tail, 2272 struct buffer_page *tail_page, u64 ts) 2273 { 2274 struct buffer_page *commit_page = cpu_buffer->commit_page; 2275 struct ring_buffer *buffer = cpu_buffer->buffer; 2276 struct buffer_page *next_page; 2277 int ret; 2278 2279 next_page = tail_page; 2280 2281 rb_inc_page(cpu_buffer, &next_page); 2282 2283 /* 2284 * If for some reason, we had an interrupt storm that made 2285 * it all the way around the buffer, bail, and warn 2286 * about it. 2287 */ 2288 if (unlikely(next_page == commit_page)) { 2289 local_inc(&cpu_buffer->commit_overrun); 2290 goto out_reset; 2291 } 2292 2293 /* 2294 * This is where the fun begins! 2295 * 2296 * We are fighting against races between a reader that 2297 * could be on another CPU trying to swap its reader 2298 * page with the buffer head. 2299 * 2300 * We are also fighting against interrupts coming in and 2301 * moving the head or tail on us as well. 2302 * 2303 * If the next page is the head page then we have filled 2304 * the buffer, unless the commit page is still on the 2305 * reader page. 2306 */ 2307 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2308 2309 /* 2310 * If the commit is not on the reader page, then 2311 * move the header page. 2312 */ 2313 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2314 /* 2315 * If we are not in overwrite mode, 2316 * this is easy, just stop here. 2317 */ 2318 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2319 local_inc(&cpu_buffer->dropped_events); 2320 goto out_reset; 2321 } 2322 2323 ret = rb_handle_head_page(cpu_buffer, 2324 tail_page, 2325 next_page); 2326 if (ret < 0) 2327 goto out_reset; 2328 if (ret) 2329 goto out_again; 2330 } else { 2331 /* 2332 * We need to be careful here too. The 2333 * commit page could still be on the reader 2334 * page. We could have a small buffer, and 2335 * have filled up the buffer with events 2336 * from interrupts and such, and wrapped. 2337 * 2338 * Note, if the tail page is also the on the 2339 * reader_page, we let it move out. 2340 */ 2341 if (unlikely((cpu_buffer->commit_page != 2342 cpu_buffer->tail_page) && 2343 (cpu_buffer->commit_page == 2344 cpu_buffer->reader_page))) { 2345 local_inc(&cpu_buffer->commit_overrun); 2346 goto out_reset; 2347 } 2348 } 2349 } 2350 2351 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2352 if (ret) { 2353 /* 2354 * Nested commits always have zero deltas, so 2355 * just reread the time stamp 2356 */ 2357 ts = rb_time_stamp(buffer); 2358 next_page->page->time_stamp = ts; 2359 } 2360 2361 out_again: 2362 2363 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2364 2365 /* fail and let the caller try again */ 2366 return ERR_PTR(-EAGAIN); 2367 2368 out_reset: 2369 /* reset write */ 2370 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2371 2372 return NULL; 2373 } 2374 2375 static struct ring_buffer_event * 2376 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2377 unsigned long length, u64 ts, 2378 u64 delta, int add_timestamp) 2379 { 2380 struct buffer_page *tail_page; 2381 struct ring_buffer_event *event; 2382 unsigned long tail, write; 2383 2384 /* 2385 * If the time delta since the last event is too big to 2386 * hold in the time field of the event, then we append a 2387 * TIME EXTEND event ahead of the data event. 2388 */ 2389 if (unlikely(add_timestamp)) 2390 length += RB_LEN_TIME_EXTEND; 2391 2392 tail_page = cpu_buffer->tail_page; 2393 write = local_add_return(length, &tail_page->write); 2394 2395 /* set write to only the index of the write */ 2396 write &= RB_WRITE_MASK; 2397 tail = write - length; 2398 2399 /* See if we shot pass the end of this buffer page */ 2400 if (unlikely(write > BUF_PAGE_SIZE)) 2401 return rb_move_tail(cpu_buffer, length, tail, 2402 tail_page, ts); 2403 2404 /* We reserved something on the buffer */ 2405 2406 event = __rb_page_index(tail_page, tail); 2407 kmemcheck_annotate_bitfield(event, bitfield); 2408 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2409 2410 local_inc(&tail_page->entries); 2411 2412 /* 2413 * If this is the first commit on the page, then update 2414 * its timestamp. 2415 */ 2416 if (!tail) 2417 tail_page->page->time_stamp = ts; 2418 2419 /* account for these added bytes */ 2420 local_add(length, &cpu_buffer->entries_bytes); 2421 2422 return event; 2423 } 2424 2425 static inline int 2426 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2427 struct ring_buffer_event *event) 2428 { 2429 unsigned long new_index, old_index; 2430 struct buffer_page *bpage; 2431 unsigned long index; 2432 unsigned long addr; 2433 2434 new_index = rb_event_index(event); 2435 old_index = new_index + rb_event_ts_length(event); 2436 addr = (unsigned long)event; 2437 addr &= PAGE_MASK; 2438 2439 bpage = cpu_buffer->tail_page; 2440 2441 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2442 unsigned long write_mask = 2443 local_read(&bpage->write) & ~RB_WRITE_MASK; 2444 unsigned long event_length = rb_event_length(event); 2445 /* 2446 * This is on the tail page. It is possible that 2447 * a write could come in and move the tail page 2448 * and write to the next page. That is fine 2449 * because we just shorten what is on this page. 2450 */ 2451 old_index += write_mask; 2452 new_index += write_mask; 2453 index = local_cmpxchg(&bpage->write, old_index, new_index); 2454 if (index == old_index) { 2455 /* update counters */ 2456 local_sub(event_length, &cpu_buffer->entries_bytes); 2457 return 1; 2458 } 2459 } 2460 2461 /* could not discard */ 2462 return 0; 2463 } 2464 2465 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2466 { 2467 local_inc(&cpu_buffer->committing); 2468 local_inc(&cpu_buffer->commits); 2469 } 2470 2471 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2472 { 2473 unsigned long commits; 2474 2475 if (RB_WARN_ON(cpu_buffer, 2476 !local_read(&cpu_buffer->committing))) 2477 return; 2478 2479 again: 2480 commits = local_read(&cpu_buffer->commits); 2481 /* synchronize with interrupts */ 2482 barrier(); 2483 if (local_read(&cpu_buffer->committing) == 1) 2484 rb_set_commit_to_write(cpu_buffer); 2485 2486 local_dec(&cpu_buffer->committing); 2487 2488 /* synchronize with interrupts */ 2489 barrier(); 2490 2491 /* 2492 * Need to account for interrupts coming in between the 2493 * updating of the commit page and the clearing of the 2494 * committing counter. 2495 */ 2496 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2497 !local_read(&cpu_buffer->committing)) { 2498 local_inc(&cpu_buffer->committing); 2499 goto again; 2500 } 2501 } 2502 2503 static struct ring_buffer_event * 2504 rb_reserve_next_event(struct ring_buffer *buffer, 2505 struct ring_buffer_per_cpu *cpu_buffer, 2506 unsigned long length) 2507 { 2508 struct ring_buffer_event *event; 2509 u64 ts, delta; 2510 int nr_loops = 0; 2511 int add_timestamp; 2512 u64 diff; 2513 2514 rb_start_commit(cpu_buffer); 2515 2516 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2517 /* 2518 * Due to the ability to swap a cpu buffer from a buffer 2519 * it is possible it was swapped before we committed. 2520 * (committing stops a swap). We check for it here and 2521 * if it happened, we have to fail the write. 2522 */ 2523 barrier(); 2524 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2525 local_dec(&cpu_buffer->committing); 2526 local_dec(&cpu_buffer->commits); 2527 return NULL; 2528 } 2529 #endif 2530 2531 length = rb_calculate_event_length(length); 2532 again: 2533 add_timestamp = 0; 2534 delta = 0; 2535 2536 /* 2537 * We allow for interrupts to reenter here and do a trace. 2538 * If one does, it will cause this original code to loop 2539 * back here. Even with heavy interrupts happening, this 2540 * should only happen a few times in a row. If this happens 2541 * 1000 times in a row, there must be either an interrupt 2542 * storm or we have something buggy. 2543 * Bail! 2544 */ 2545 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2546 goto out_fail; 2547 2548 ts = rb_time_stamp(cpu_buffer->buffer); 2549 diff = ts - cpu_buffer->write_stamp; 2550 2551 /* make sure this diff is calculated here */ 2552 barrier(); 2553 2554 /* Did the write stamp get updated already? */ 2555 if (likely(ts >= cpu_buffer->write_stamp)) { 2556 delta = diff; 2557 if (unlikely(test_time_stamp(delta))) { 2558 int local_clock_stable = 1; 2559 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2560 local_clock_stable = sched_clock_stable; 2561 #endif 2562 WARN_ONCE(delta > (1ULL << 59), 2563 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2564 (unsigned long long)delta, 2565 (unsigned long long)ts, 2566 (unsigned long long)cpu_buffer->write_stamp, 2567 local_clock_stable ? "" : 2568 "If you just came from a suspend/resume,\n" 2569 "please switch to the trace global clock:\n" 2570 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2571 add_timestamp = 1; 2572 } 2573 } 2574 2575 event = __rb_reserve_next(cpu_buffer, length, ts, 2576 delta, add_timestamp); 2577 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2578 goto again; 2579 2580 if (!event) 2581 goto out_fail; 2582 2583 return event; 2584 2585 out_fail: 2586 rb_end_commit(cpu_buffer); 2587 return NULL; 2588 } 2589 2590 #ifdef CONFIG_TRACING 2591 2592 /* 2593 * The lock and unlock are done within a preempt disable section. 2594 * The current_context per_cpu variable can only be modified 2595 * by the current task between lock and unlock. But it can 2596 * be modified more than once via an interrupt. To pass this 2597 * information from the lock to the unlock without having to 2598 * access the 'in_interrupt()' functions again (which do show 2599 * a bit of overhead in something as critical as function tracing, 2600 * we use a bitmask trick. 2601 * 2602 * bit 0 = NMI context 2603 * bit 1 = IRQ context 2604 * bit 2 = SoftIRQ context 2605 * bit 3 = normal context. 2606 * 2607 * This works because this is the order of contexts that can 2608 * preempt other contexts. A SoftIRQ never preempts an IRQ 2609 * context. 2610 * 2611 * When the context is determined, the corresponding bit is 2612 * checked and set (if it was set, then a recursion of that context 2613 * happened). 2614 * 2615 * On unlock, we need to clear this bit. To do so, just subtract 2616 * 1 from the current_context and AND it to itself. 2617 * 2618 * (binary) 2619 * 101 - 1 = 100 2620 * 101 & 100 = 100 (clearing bit zero) 2621 * 2622 * 1010 - 1 = 1001 2623 * 1010 & 1001 = 1000 (clearing bit 1) 2624 * 2625 * The least significant bit can be cleared this way, and it 2626 * just so happens that it is the same bit corresponding to 2627 * the current context. 2628 */ 2629 static DEFINE_PER_CPU(unsigned int, current_context); 2630 2631 static __always_inline int trace_recursive_lock(void) 2632 { 2633 unsigned int val = this_cpu_read(current_context); 2634 int bit; 2635 2636 if (in_interrupt()) { 2637 if (in_nmi()) 2638 bit = 0; 2639 else if (in_irq()) 2640 bit = 1; 2641 else 2642 bit = 2; 2643 } else 2644 bit = 3; 2645 2646 if (unlikely(val & (1 << bit))) 2647 return 1; 2648 2649 val |= (1 << bit); 2650 this_cpu_write(current_context, val); 2651 2652 return 0; 2653 } 2654 2655 static __always_inline void trace_recursive_unlock(void) 2656 { 2657 unsigned int val = this_cpu_read(current_context); 2658 2659 val--; 2660 val &= this_cpu_read(current_context); 2661 this_cpu_write(current_context, val); 2662 } 2663 2664 #else 2665 2666 #define trace_recursive_lock() (0) 2667 #define trace_recursive_unlock() do { } while (0) 2668 2669 #endif 2670 2671 /** 2672 * ring_buffer_lock_reserve - reserve a part of the buffer 2673 * @buffer: the ring buffer to reserve from 2674 * @length: the length of the data to reserve (excluding event header) 2675 * 2676 * Returns a reseverd event on the ring buffer to copy directly to. 2677 * The user of this interface will need to get the body to write into 2678 * and can use the ring_buffer_event_data() interface. 2679 * 2680 * The length is the length of the data needed, not the event length 2681 * which also includes the event header. 2682 * 2683 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2684 * If NULL is returned, then nothing has been allocated or locked. 2685 */ 2686 struct ring_buffer_event * 2687 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2688 { 2689 struct ring_buffer_per_cpu *cpu_buffer; 2690 struct ring_buffer_event *event; 2691 int cpu; 2692 2693 if (ring_buffer_flags != RB_BUFFERS_ON) 2694 return NULL; 2695 2696 /* If we are tracing schedule, we don't want to recurse */ 2697 preempt_disable_notrace(); 2698 2699 if (atomic_read(&buffer->record_disabled)) 2700 goto out_nocheck; 2701 2702 if (trace_recursive_lock()) 2703 goto out_nocheck; 2704 2705 cpu = raw_smp_processor_id(); 2706 2707 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2708 goto out; 2709 2710 cpu_buffer = buffer->buffers[cpu]; 2711 2712 if (atomic_read(&cpu_buffer->record_disabled)) 2713 goto out; 2714 2715 if (length > BUF_MAX_DATA_SIZE) 2716 goto out; 2717 2718 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2719 if (!event) 2720 goto out; 2721 2722 return event; 2723 2724 out: 2725 trace_recursive_unlock(); 2726 2727 out_nocheck: 2728 preempt_enable_notrace(); 2729 return NULL; 2730 } 2731 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2732 2733 static void 2734 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2735 struct ring_buffer_event *event) 2736 { 2737 u64 delta; 2738 2739 /* 2740 * The event first in the commit queue updates the 2741 * time stamp. 2742 */ 2743 if (rb_event_is_commit(cpu_buffer, event)) { 2744 /* 2745 * A commit event that is first on a page 2746 * updates the write timestamp with the page stamp 2747 */ 2748 if (!rb_event_index(event)) 2749 cpu_buffer->write_stamp = 2750 cpu_buffer->commit_page->page->time_stamp; 2751 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2752 delta = event->array[0]; 2753 delta <<= TS_SHIFT; 2754 delta += event->time_delta; 2755 cpu_buffer->write_stamp += delta; 2756 } else 2757 cpu_buffer->write_stamp += event->time_delta; 2758 } 2759 } 2760 2761 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2762 struct ring_buffer_event *event) 2763 { 2764 local_inc(&cpu_buffer->entries); 2765 rb_update_write_stamp(cpu_buffer, event); 2766 rb_end_commit(cpu_buffer); 2767 } 2768 2769 static __always_inline void 2770 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2771 { 2772 if (buffer->irq_work.waiters_pending) { 2773 buffer->irq_work.waiters_pending = false; 2774 /* irq_work_queue() supplies it's own memory barriers */ 2775 irq_work_queue(&buffer->irq_work.work); 2776 } 2777 2778 if (cpu_buffer->irq_work.waiters_pending) { 2779 cpu_buffer->irq_work.waiters_pending = false; 2780 /* irq_work_queue() supplies it's own memory barriers */ 2781 irq_work_queue(&cpu_buffer->irq_work.work); 2782 } 2783 } 2784 2785 /** 2786 * ring_buffer_unlock_commit - commit a reserved 2787 * @buffer: The buffer to commit to 2788 * @event: The event pointer to commit. 2789 * 2790 * This commits the data to the ring buffer, and releases any locks held. 2791 * 2792 * Must be paired with ring_buffer_lock_reserve. 2793 */ 2794 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2795 struct ring_buffer_event *event) 2796 { 2797 struct ring_buffer_per_cpu *cpu_buffer; 2798 int cpu = raw_smp_processor_id(); 2799 2800 cpu_buffer = buffer->buffers[cpu]; 2801 2802 rb_commit(cpu_buffer, event); 2803 2804 rb_wakeups(buffer, cpu_buffer); 2805 2806 trace_recursive_unlock(); 2807 2808 preempt_enable_notrace(); 2809 2810 return 0; 2811 } 2812 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2813 2814 static inline void rb_event_discard(struct ring_buffer_event *event) 2815 { 2816 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2817 event = skip_time_extend(event); 2818 2819 /* array[0] holds the actual length for the discarded event */ 2820 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2821 event->type_len = RINGBUF_TYPE_PADDING; 2822 /* time delta must be non zero */ 2823 if (!event->time_delta) 2824 event->time_delta = 1; 2825 } 2826 2827 /* 2828 * Decrement the entries to the page that an event is on. 2829 * The event does not even need to exist, only the pointer 2830 * to the page it is on. This may only be called before the commit 2831 * takes place. 2832 */ 2833 static inline void 2834 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2835 struct ring_buffer_event *event) 2836 { 2837 unsigned long addr = (unsigned long)event; 2838 struct buffer_page *bpage = cpu_buffer->commit_page; 2839 struct buffer_page *start; 2840 2841 addr &= PAGE_MASK; 2842 2843 /* Do the likely case first */ 2844 if (likely(bpage->page == (void *)addr)) { 2845 local_dec(&bpage->entries); 2846 return; 2847 } 2848 2849 /* 2850 * Because the commit page may be on the reader page we 2851 * start with the next page and check the end loop there. 2852 */ 2853 rb_inc_page(cpu_buffer, &bpage); 2854 start = bpage; 2855 do { 2856 if (bpage->page == (void *)addr) { 2857 local_dec(&bpage->entries); 2858 return; 2859 } 2860 rb_inc_page(cpu_buffer, &bpage); 2861 } while (bpage != start); 2862 2863 /* commit not part of this buffer?? */ 2864 RB_WARN_ON(cpu_buffer, 1); 2865 } 2866 2867 /** 2868 * ring_buffer_commit_discard - discard an event that has not been committed 2869 * @buffer: the ring buffer 2870 * @event: non committed event to discard 2871 * 2872 * Sometimes an event that is in the ring buffer needs to be ignored. 2873 * This function lets the user discard an event in the ring buffer 2874 * and then that event will not be read later. 2875 * 2876 * This function only works if it is called before the the item has been 2877 * committed. It will try to free the event from the ring buffer 2878 * if another event has not been added behind it. 2879 * 2880 * If another event has been added behind it, it will set the event 2881 * up as discarded, and perform the commit. 2882 * 2883 * If this function is called, do not call ring_buffer_unlock_commit on 2884 * the event. 2885 */ 2886 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2887 struct ring_buffer_event *event) 2888 { 2889 struct ring_buffer_per_cpu *cpu_buffer; 2890 int cpu; 2891 2892 /* The event is discarded regardless */ 2893 rb_event_discard(event); 2894 2895 cpu = smp_processor_id(); 2896 cpu_buffer = buffer->buffers[cpu]; 2897 2898 /* 2899 * This must only be called if the event has not been 2900 * committed yet. Thus we can assume that preemption 2901 * is still disabled. 2902 */ 2903 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2904 2905 rb_decrement_entry(cpu_buffer, event); 2906 if (rb_try_to_discard(cpu_buffer, event)) 2907 goto out; 2908 2909 /* 2910 * The commit is still visible by the reader, so we 2911 * must still update the timestamp. 2912 */ 2913 rb_update_write_stamp(cpu_buffer, event); 2914 out: 2915 rb_end_commit(cpu_buffer); 2916 2917 trace_recursive_unlock(); 2918 2919 preempt_enable_notrace(); 2920 2921 } 2922 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2923 2924 /** 2925 * ring_buffer_write - write data to the buffer without reserving 2926 * @buffer: The ring buffer to write to. 2927 * @length: The length of the data being written (excluding the event header) 2928 * @data: The data to write to the buffer. 2929 * 2930 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2931 * one function. If you already have the data to write to the buffer, it 2932 * may be easier to simply call this function. 2933 * 2934 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2935 * and not the length of the event which would hold the header. 2936 */ 2937 int ring_buffer_write(struct ring_buffer *buffer, 2938 unsigned long length, 2939 void *data) 2940 { 2941 struct ring_buffer_per_cpu *cpu_buffer; 2942 struct ring_buffer_event *event; 2943 void *body; 2944 int ret = -EBUSY; 2945 int cpu; 2946 2947 if (ring_buffer_flags != RB_BUFFERS_ON) 2948 return -EBUSY; 2949 2950 preempt_disable_notrace(); 2951 2952 if (atomic_read(&buffer->record_disabled)) 2953 goto out; 2954 2955 cpu = raw_smp_processor_id(); 2956 2957 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2958 goto out; 2959 2960 cpu_buffer = buffer->buffers[cpu]; 2961 2962 if (atomic_read(&cpu_buffer->record_disabled)) 2963 goto out; 2964 2965 if (length > BUF_MAX_DATA_SIZE) 2966 goto out; 2967 2968 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2969 if (!event) 2970 goto out; 2971 2972 body = rb_event_data(event); 2973 2974 memcpy(body, data, length); 2975 2976 rb_commit(cpu_buffer, event); 2977 2978 rb_wakeups(buffer, cpu_buffer); 2979 2980 ret = 0; 2981 out: 2982 preempt_enable_notrace(); 2983 2984 return ret; 2985 } 2986 EXPORT_SYMBOL_GPL(ring_buffer_write); 2987 2988 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2989 { 2990 struct buffer_page *reader = cpu_buffer->reader_page; 2991 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2992 struct buffer_page *commit = cpu_buffer->commit_page; 2993 2994 /* In case of error, head will be NULL */ 2995 if (unlikely(!head)) 2996 return 1; 2997 2998 return reader->read == rb_page_commit(reader) && 2999 (commit == reader || 3000 (commit == head && 3001 head->read == rb_page_commit(commit))); 3002 } 3003 3004 /** 3005 * ring_buffer_record_disable - stop all writes into the buffer 3006 * @buffer: The ring buffer to stop writes to. 3007 * 3008 * This prevents all writes to the buffer. Any attempt to write 3009 * to the buffer after this will fail and return NULL. 3010 * 3011 * The caller should call synchronize_sched() after this. 3012 */ 3013 void ring_buffer_record_disable(struct ring_buffer *buffer) 3014 { 3015 atomic_inc(&buffer->record_disabled); 3016 } 3017 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3018 3019 /** 3020 * ring_buffer_record_enable - enable writes to the buffer 3021 * @buffer: The ring buffer to enable writes 3022 * 3023 * Note, multiple disables will need the same number of enables 3024 * to truly enable the writing (much like preempt_disable). 3025 */ 3026 void ring_buffer_record_enable(struct ring_buffer *buffer) 3027 { 3028 atomic_dec(&buffer->record_disabled); 3029 } 3030 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3031 3032 /** 3033 * ring_buffer_record_off - stop all writes into the buffer 3034 * @buffer: The ring buffer to stop writes to. 3035 * 3036 * This prevents all writes to the buffer. Any attempt to write 3037 * to the buffer after this will fail and return NULL. 3038 * 3039 * This is different than ring_buffer_record_disable() as 3040 * it works like an on/off switch, where as the disable() version 3041 * must be paired with a enable(). 3042 */ 3043 void ring_buffer_record_off(struct ring_buffer *buffer) 3044 { 3045 unsigned int rd; 3046 unsigned int new_rd; 3047 3048 do { 3049 rd = atomic_read(&buffer->record_disabled); 3050 new_rd = rd | RB_BUFFER_OFF; 3051 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3052 } 3053 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3054 3055 /** 3056 * ring_buffer_record_on - restart writes into the buffer 3057 * @buffer: The ring buffer to start writes to. 3058 * 3059 * This enables all writes to the buffer that was disabled by 3060 * ring_buffer_record_off(). 3061 * 3062 * This is different than ring_buffer_record_enable() as 3063 * it works like an on/off switch, where as the enable() version 3064 * must be paired with a disable(). 3065 */ 3066 void ring_buffer_record_on(struct ring_buffer *buffer) 3067 { 3068 unsigned int rd; 3069 unsigned int new_rd; 3070 3071 do { 3072 rd = atomic_read(&buffer->record_disabled); 3073 new_rd = rd & ~RB_BUFFER_OFF; 3074 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3075 } 3076 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3077 3078 /** 3079 * ring_buffer_record_is_on - return true if the ring buffer can write 3080 * @buffer: The ring buffer to see if write is enabled 3081 * 3082 * Returns true if the ring buffer is in a state that it accepts writes. 3083 */ 3084 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3085 { 3086 return !atomic_read(&buffer->record_disabled); 3087 } 3088 3089 /** 3090 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3091 * @buffer: The ring buffer to stop writes to. 3092 * @cpu: The CPU buffer to stop 3093 * 3094 * This prevents all writes to the buffer. Any attempt to write 3095 * to the buffer after this will fail and return NULL. 3096 * 3097 * The caller should call synchronize_sched() after this. 3098 */ 3099 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3100 { 3101 struct ring_buffer_per_cpu *cpu_buffer; 3102 3103 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3104 return; 3105 3106 cpu_buffer = buffer->buffers[cpu]; 3107 atomic_inc(&cpu_buffer->record_disabled); 3108 } 3109 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3110 3111 /** 3112 * ring_buffer_record_enable_cpu - enable writes to the buffer 3113 * @buffer: The ring buffer to enable writes 3114 * @cpu: The CPU to enable. 3115 * 3116 * Note, multiple disables will need the same number of enables 3117 * to truly enable the writing (much like preempt_disable). 3118 */ 3119 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3120 { 3121 struct ring_buffer_per_cpu *cpu_buffer; 3122 3123 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3124 return; 3125 3126 cpu_buffer = buffer->buffers[cpu]; 3127 atomic_dec(&cpu_buffer->record_disabled); 3128 } 3129 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3130 3131 /* 3132 * The total entries in the ring buffer is the running counter 3133 * of entries entered into the ring buffer, minus the sum of 3134 * the entries read from the ring buffer and the number of 3135 * entries that were overwritten. 3136 */ 3137 static inline unsigned long 3138 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3139 { 3140 return local_read(&cpu_buffer->entries) - 3141 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3142 } 3143 3144 /** 3145 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3146 * @buffer: The ring buffer 3147 * @cpu: The per CPU buffer to read from. 3148 */ 3149 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3150 { 3151 unsigned long flags; 3152 struct ring_buffer_per_cpu *cpu_buffer; 3153 struct buffer_page *bpage; 3154 u64 ret = 0; 3155 3156 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3157 return 0; 3158 3159 cpu_buffer = buffer->buffers[cpu]; 3160 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3161 /* 3162 * if the tail is on reader_page, oldest time stamp is on the reader 3163 * page 3164 */ 3165 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3166 bpage = cpu_buffer->reader_page; 3167 else 3168 bpage = rb_set_head_page(cpu_buffer); 3169 if (bpage) 3170 ret = bpage->page->time_stamp; 3171 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3172 3173 return ret; 3174 } 3175 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3176 3177 /** 3178 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3179 * @buffer: The ring buffer 3180 * @cpu: The per CPU buffer to read from. 3181 */ 3182 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3183 { 3184 struct ring_buffer_per_cpu *cpu_buffer; 3185 unsigned long ret; 3186 3187 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3188 return 0; 3189 3190 cpu_buffer = buffer->buffers[cpu]; 3191 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3192 3193 return ret; 3194 } 3195 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3196 3197 /** 3198 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3199 * @buffer: The ring buffer 3200 * @cpu: The per CPU buffer to get the entries from. 3201 */ 3202 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3203 { 3204 struct ring_buffer_per_cpu *cpu_buffer; 3205 3206 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3207 return 0; 3208 3209 cpu_buffer = buffer->buffers[cpu]; 3210 3211 return rb_num_of_entries(cpu_buffer); 3212 } 3213 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3214 3215 /** 3216 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3217 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3218 * @buffer: The ring buffer 3219 * @cpu: The per CPU buffer to get the number of overruns from 3220 */ 3221 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3222 { 3223 struct ring_buffer_per_cpu *cpu_buffer; 3224 unsigned long ret; 3225 3226 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3227 return 0; 3228 3229 cpu_buffer = buffer->buffers[cpu]; 3230 ret = local_read(&cpu_buffer->overrun); 3231 3232 return ret; 3233 } 3234 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3235 3236 /** 3237 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3238 * commits failing due to the buffer wrapping around while there are uncommitted 3239 * events, such as during an interrupt storm. 3240 * @buffer: The ring buffer 3241 * @cpu: The per CPU buffer to get the number of overruns from 3242 */ 3243 unsigned long 3244 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3245 { 3246 struct ring_buffer_per_cpu *cpu_buffer; 3247 unsigned long ret; 3248 3249 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3250 return 0; 3251 3252 cpu_buffer = buffer->buffers[cpu]; 3253 ret = local_read(&cpu_buffer->commit_overrun); 3254 3255 return ret; 3256 } 3257 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3258 3259 /** 3260 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3261 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3262 * @buffer: The ring buffer 3263 * @cpu: The per CPU buffer to get the number of overruns from 3264 */ 3265 unsigned long 3266 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3267 { 3268 struct ring_buffer_per_cpu *cpu_buffer; 3269 unsigned long ret; 3270 3271 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3272 return 0; 3273 3274 cpu_buffer = buffer->buffers[cpu]; 3275 ret = local_read(&cpu_buffer->dropped_events); 3276 3277 return ret; 3278 } 3279 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3280 3281 /** 3282 * ring_buffer_read_events_cpu - get the number of events successfully read 3283 * @buffer: The ring buffer 3284 * @cpu: The per CPU buffer to get the number of events read 3285 */ 3286 unsigned long 3287 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3288 { 3289 struct ring_buffer_per_cpu *cpu_buffer; 3290 3291 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3292 return 0; 3293 3294 cpu_buffer = buffer->buffers[cpu]; 3295 return cpu_buffer->read; 3296 } 3297 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3298 3299 /** 3300 * ring_buffer_entries - get the number of entries in a buffer 3301 * @buffer: The ring buffer 3302 * 3303 * Returns the total number of entries in the ring buffer 3304 * (all CPU entries) 3305 */ 3306 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3307 { 3308 struct ring_buffer_per_cpu *cpu_buffer; 3309 unsigned long entries = 0; 3310 int cpu; 3311 3312 /* if you care about this being correct, lock the buffer */ 3313 for_each_buffer_cpu(buffer, cpu) { 3314 cpu_buffer = buffer->buffers[cpu]; 3315 entries += rb_num_of_entries(cpu_buffer); 3316 } 3317 3318 return entries; 3319 } 3320 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3321 3322 /** 3323 * ring_buffer_overruns - get the number of overruns in buffer 3324 * @buffer: The ring buffer 3325 * 3326 * Returns the total number of overruns in the ring buffer 3327 * (all CPU entries) 3328 */ 3329 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3330 { 3331 struct ring_buffer_per_cpu *cpu_buffer; 3332 unsigned long overruns = 0; 3333 int cpu; 3334 3335 /* if you care about this being correct, lock the buffer */ 3336 for_each_buffer_cpu(buffer, cpu) { 3337 cpu_buffer = buffer->buffers[cpu]; 3338 overruns += local_read(&cpu_buffer->overrun); 3339 } 3340 3341 return overruns; 3342 } 3343 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3344 3345 static void rb_iter_reset(struct ring_buffer_iter *iter) 3346 { 3347 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3348 3349 /* Iterator usage is expected to have record disabled */ 3350 if (list_empty(&cpu_buffer->reader_page->list)) { 3351 iter->head_page = rb_set_head_page(cpu_buffer); 3352 if (unlikely(!iter->head_page)) 3353 return; 3354 iter->head = iter->head_page->read; 3355 } else { 3356 iter->head_page = cpu_buffer->reader_page; 3357 iter->head = cpu_buffer->reader_page->read; 3358 } 3359 if (iter->head) 3360 iter->read_stamp = cpu_buffer->read_stamp; 3361 else 3362 iter->read_stamp = iter->head_page->page->time_stamp; 3363 iter->cache_reader_page = cpu_buffer->reader_page; 3364 iter->cache_read = cpu_buffer->read; 3365 } 3366 3367 /** 3368 * ring_buffer_iter_reset - reset an iterator 3369 * @iter: The iterator to reset 3370 * 3371 * Resets the iterator, so that it will start from the beginning 3372 * again. 3373 */ 3374 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3375 { 3376 struct ring_buffer_per_cpu *cpu_buffer; 3377 unsigned long flags; 3378 3379 if (!iter) 3380 return; 3381 3382 cpu_buffer = iter->cpu_buffer; 3383 3384 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3385 rb_iter_reset(iter); 3386 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3387 } 3388 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3389 3390 /** 3391 * ring_buffer_iter_empty - check if an iterator has no more to read 3392 * @iter: The iterator to check 3393 */ 3394 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3395 { 3396 struct ring_buffer_per_cpu *cpu_buffer; 3397 3398 cpu_buffer = iter->cpu_buffer; 3399 3400 return iter->head_page == cpu_buffer->commit_page && 3401 iter->head == rb_commit_index(cpu_buffer); 3402 } 3403 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3404 3405 static void 3406 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3407 struct ring_buffer_event *event) 3408 { 3409 u64 delta; 3410 3411 switch (event->type_len) { 3412 case RINGBUF_TYPE_PADDING: 3413 return; 3414 3415 case RINGBUF_TYPE_TIME_EXTEND: 3416 delta = event->array[0]; 3417 delta <<= TS_SHIFT; 3418 delta += event->time_delta; 3419 cpu_buffer->read_stamp += delta; 3420 return; 3421 3422 case RINGBUF_TYPE_TIME_STAMP: 3423 /* FIXME: not implemented */ 3424 return; 3425 3426 case RINGBUF_TYPE_DATA: 3427 cpu_buffer->read_stamp += event->time_delta; 3428 return; 3429 3430 default: 3431 BUG(); 3432 } 3433 return; 3434 } 3435 3436 static void 3437 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3438 struct ring_buffer_event *event) 3439 { 3440 u64 delta; 3441 3442 switch (event->type_len) { 3443 case RINGBUF_TYPE_PADDING: 3444 return; 3445 3446 case RINGBUF_TYPE_TIME_EXTEND: 3447 delta = event->array[0]; 3448 delta <<= TS_SHIFT; 3449 delta += event->time_delta; 3450 iter->read_stamp += delta; 3451 return; 3452 3453 case RINGBUF_TYPE_TIME_STAMP: 3454 /* FIXME: not implemented */ 3455 return; 3456 3457 case RINGBUF_TYPE_DATA: 3458 iter->read_stamp += event->time_delta; 3459 return; 3460 3461 default: 3462 BUG(); 3463 } 3464 return; 3465 } 3466 3467 static struct buffer_page * 3468 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3469 { 3470 struct buffer_page *reader = NULL; 3471 unsigned long overwrite; 3472 unsigned long flags; 3473 int nr_loops = 0; 3474 int ret; 3475 3476 local_irq_save(flags); 3477 arch_spin_lock(&cpu_buffer->lock); 3478 3479 again: 3480 /* 3481 * This should normally only loop twice. But because the 3482 * start of the reader inserts an empty page, it causes 3483 * a case where we will loop three times. There should be no 3484 * reason to loop four times (that I know of). 3485 */ 3486 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3487 reader = NULL; 3488 goto out; 3489 } 3490 3491 reader = cpu_buffer->reader_page; 3492 3493 /* If there's more to read, return this page */ 3494 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3495 goto out; 3496 3497 /* Never should we have an index greater than the size */ 3498 if (RB_WARN_ON(cpu_buffer, 3499 cpu_buffer->reader_page->read > rb_page_size(reader))) 3500 goto out; 3501 3502 /* check if we caught up to the tail */ 3503 reader = NULL; 3504 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3505 goto out; 3506 3507 /* Don't bother swapping if the ring buffer is empty */ 3508 if (rb_num_of_entries(cpu_buffer) == 0) 3509 goto out; 3510 3511 /* 3512 * Reset the reader page to size zero. 3513 */ 3514 local_set(&cpu_buffer->reader_page->write, 0); 3515 local_set(&cpu_buffer->reader_page->entries, 0); 3516 local_set(&cpu_buffer->reader_page->page->commit, 0); 3517 cpu_buffer->reader_page->real_end = 0; 3518 3519 spin: 3520 /* 3521 * Splice the empty reader page into the list around the head. 3522 */ 3523 reader = rb_set_head_page(cpu_buffer); 3524 if (!reader) 3525 goto out; 3526 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3527 cpu_buffer->reader_page->list.prev = reader->list.prev; 3528 3529 /* 3530 * cpu_buffer->pages just needs to point to the buffer, it 3531 * has no specific buffer page to point to. Lets move it out 3532 * of our way so we don't accidentally swap it. 3533 */ 3534 cpu_buffer->pages = reader->list.prev; 3535 3536 /* The reader page will be pointing to the new head */ 3537 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3538 3539 /* 3540 * We want to make sure we read the overruns after we set up our 3541 * pointers to the next object. The writer side does a 3542 * cmpxchg to cross pages which acts as the mb on the writer 3543 * side. Note, the reader will constantly fail the swap 3544 * while the writer is updating the pointers, so this 3545 * guarantees that the overwrite recorded here is the one we 3546 * want to compare with the last_overrun. 3547 */ 3548 smp_mb(); 3549 overwrite = local_read(&(cpu_buffer->overrun)); 3550 3551 /* 3552 * Here's the tricky part. 3553 * 3554 * We need to move the pointer past the header page. 3555 * But we can only do that if a writer is not currently 3556 * moving it. The page before the header page has the 3557 * flag bit '1' set if it is pointing to the page we want. 3558 * but if the writer is in the process of moving it 3559 * than it will be '2' or already moved '0'. 3560 */ 3561 3562 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3563 3564 /* 3565 * If we did not convert it, then we must try again. 3566 */ 3567 if (!ret) 3568 goto spin; 3569 3570 /* 3571 * Yeah! We succeeded in replacing the page. 3572 * 3573 * Now make the new head point back to the reader page. 3574 */ 3575 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3576 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3577 3578 /* Finally update the reader page to the new head */ 3579 cpu_buffer->reader_page = reader; 3580 rb_reset_reader_page(cpu_buffer); 3581 3582 if (overwrite != cpu_buffer->last_overrun) { 3583 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3584 cpu_buffer->last_overrun = overwrite; 3585 } 3586 3587 goto again; 3588 3589 out: 3590 arch_spin_unlock(&cpu_buffer->lock); 3591 local_irq_restore(flags); 3592 3593 return reader; 3594 } 3595 3596 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3597 { 3598 struct ring_buffer_event *event; 3599 struct buffer_page *reader; 3600 unsigned length; 3601 3602 reader = rb_get_reader_page(cpu_buffer); 3603 3604 /* This function should not be called when buffer is empty */ 3605 if (RB_WARN_ON(cpu_buffer, !reader)) 3606 return; 3607 3608 event = rb_reader_event(cpu_buffer); 3609 3610 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3611 cpu_buffer->read++; 3612 3613 rb_update_read_stamp(cpu_buffer, event); 3614 3615 length = rb_event_length(event); 3616 cpu_buffer->reader_page->read += length; 3617 } 3618 3619 static void rb_advance_iter(struct ring_buffer_iter *iter) 3620 { 3621 struct ring_buffer_per_cpu *cpu_buffer; 3622 struct ring_buffer_event *event; 3623 unsigned length; 3624 3625 cpu_buffer = iter->cpu_buffer; 3626 3627 /* 3628 * Check if we are at the end of the buffer. 3629 */ 3630 if (iter->head >= rb_page_size(iter->head_page)) { 3631 /* discarded commits can make the page empty */ 3632 if (iter->head_page == cpu_buffer->commit_page) 3633 return; 3634 rb_inc_iter(iter); 3635 return; 3636 } 3637 3638 event = rb_iter_head_event(iter); 3639 3640 length = rb_event_length(event); 3641 3642 /* 3643 * This should not be called to advance the header if we are 3644 * at the tail of the buffer. 3645 */ 3646 if (RB_WARN_ON(cpu_buffer, 3647 (iter->head_page == cpu_buffer->commit_page) && 3648 (iter->head + length > rb_commit_index(cpu_buffer)))) 3649 return; 3650 3651 rb_update_iter_read_stamp(iter, event); 3652 3653 iter->head += length; 3654 3655 /* check for end of page padding */ 3656 if ((iter->head >= rb_page_size(iter->head_page)) && 3657 (iter->head_page != cpu_buffer->commit_page)) 3658 rb_inc_iter(iter); 3659 } 3660 3661 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3662 { 3663 return cpu_buffer->lost_events; 3664 } 3665 3666 static struct ring_buffer_event * 3667 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3668 unsigned long *lost_events) 3669 { 3670 struct ring_buffer_event *event; 3671 struct buffer_page *reader; 3672 int nr_loops = 0; 3673 3674 again: 3675 /* 3676 * We repeat when a time extend is encountered. 3677 * Since the time extend is always attached to a data event, 3678 * we should never loop more than once. 3679 * (We never hit the following condition more than twice). 3680 */ 3681 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3682 return NULL; 3683 3684 reader = rb_get_reader_page(cpu_buffer); 3685 if (!reader) 3686 return NULL; 3687 3688 event = rb_reader_event(cpu_buffer); 3689 3690 switch (event->type_len) { 3691 case RINGBUF_TYPE_PADDING: 3692 if (rb_null_event(event)) 3693 RB_WARN_ON(cpu_buffer, 1); 3694 /* 3695 * Because the writer could be discarding every 3696 * event it creates (which would probably be bad) 3697 * if we were to go back to "again" then we may never 3698 * catch up, and will trigger the warn on, or lock 3699 * the box. Return the padding, and we will release 3700 * the current locks, and try again. 3701 */ 3702 return event; 3703 3704 case RINGBUF_TYPE_TIME_EXTEND: 3705 /* Internal data, OK to advance */ 3706 rb_advance_reader(cpu_buffer); 3707 goto again; 3708 3709 case RINGBUF_TYPE_TIME_STAMP: 3710 /* FIXME: not implemented */ 3711 rb_advance_reader(cpu_buffer); 3712 goto again; 3713 3714 case RINGBUF_TYPE_DATA: 3715 if (ts) { 3716 *ts = cpu_buffer->read_stamp + event->time_delta; 3717 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3718 cpu_buffer->cpu, ts); 3719 } 3720 if (lost_events) 3721 *lost_events = rb_lost_events(cpu_buffer); 3722 return event; 3723 3724 default: 3725 BUG(); 3726 } 3727 3728 return NULL; 3729 } 3730 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3731 3732 static struct ring_buffer_event * 3733 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3734 { 3735 struct ring_buffer *buffer; 3736 struct ring_buffer_per_cpu *cpu_buffer; 3737 struct ring_buffer_event *event; 3738 int nr_loops = 0; 3739 3740 cpu_buffer = iter->cpu_buffer; 3741 buffer = cpu_buffer->buffer; 3742 3743 /* 3744 * Check if someone performed a consuming read to 3745 * the buffer. A consuming read invalidates the iterator 3746 * and we need to reset the iterator in this case. 3747 */ 3748 if (unlikely(iter->cache_read != cpu_buffer->read || 3749 iter->cache_reader_page != cpu_buffer->reader_page)) 3750 rb_iter_reset(iter); 3751 3752 again: 3753 if (ring_buffer_iter_empty(iter)) 3754 return NULL; 3755 3756 /* 3757 * We repeat when a time extend is encountered. 3758 * Since the time extend is always attached to a data event, 3759 * we should never loop more than once. 3760 * (We never hit the following condition more than twice). 3761 */ 3762 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3763 return NULL; 3764 3765 if (rb_per_cpu_empty(cpu_buffer)) 3766 return NULL; 3767 3768 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3769 rb_inc_iter(iter); 3770 goto again; 3771 } 3772 3773 event = rb_iter_head_event(iter); 3774 3775 switch (event->type_len) { 3776 case RINGBUF_TYPE_PADDING: 3777 if (rb_null_event(event)) { 3778 rb_inc_iter(iter); 3779 goto again; 3780 } 3781 rb_advance_iter(iter); 3782 return event; 3783 3784 case RINGBUF_TYPE_TIME_EXTEND: 3785 /* Internal data, OK to advance */ 3786 rb_advance_iter(iter); 3787 goto again; 3788 3789 case RINGBUF_TYPE_TIME_STAMP: 3790 /* FIXME: not implemented */ 3791 rb_advance_iter(iter); 3792 goto again; 3793 3794 case RINGBUF_TYPE_DATA: 3795 if (ts) { 3796 *ts = iter->read_stamp + event->time_delta; 3797 ring_buffer_normalize_time_stamp(buffer, 3798 cpu_buffer->cpu, ts); 3799 } 3800 return event; 3801 3802 default: 3803 BUG(); 3804 } 3805 3806 return NULL; 3807 } 3808 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3809 3810 static inline int rb_ok_to_lock(void) 3811 { 3812 /* 3813 * If an NMI die dumps out the content of the ring buffer 3814 * do not grab locks. We also permanently disable the ring 3815 * buffer too. A one time deal is all you get from reading 3816 * the ring buffer from an NMI. 3817 */ 3818 if (likely(!in_nmi())) 3819 return 1; 3820 3821 tracing_off_permanent(); 3822 return 0; 3823 } 3824 3825 /** 3826 * ring_buffer_peek - peek at the next event to be read 3827 * @buffer: The ring buffer to read 3828 * @cpu: The cpu to peak at 3829 * @ts: The timestamp counter of this event. 3830 * @lost_events: a variable to store if events were lost (may be NULL) 3831 * 3832 * This will return the event that will be read next, but does 3833 * not consume the data. 3834 */ 3835 struct ring_buffer_event * 3836 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3837 unsigned long *lost_events) 3838 { 3839 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3840 struct ring_buffer_event *event; 3841 unsigned long flags; 3842 int dolock; 3843 3844 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3845 return NULL; 3846 3847 dolock = rb_ok_to_lock(); 3848 again: 3849 local_irq_save(flags); 3850 if (dolock) 3851 raw_spin_lock(&cpu_buffer->reader_lock); 3852 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3853 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3854 rb_advance_reader(cpu_buffer); 3855 if (dolock) 3856 raw_spin_unlock(&cpu_buffer->reader_lock); 3857 local_irq_restore(flags); 3858 3859 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3860 goto again; 3861 3862 return event; 3863 } 3864 3865 /** 3866 * ring_buffer_iter_peek - peek at the next event to be read 3867 * @iter: The ring buffer iterator 3868 * @ts: The timestamp counter of this event. 3869 * 3870 * This will return the event that will be read next, but does 3871 * not increment the iterator. 3872 */ 3873 struct ring_buffer_event * 3874 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3875 { 3876 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3877 struct ring_buffer_event *event; 3878 unsigned long flags; 3879 3880 again: 3881 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3882 event = rb_iter_peek(iter, ts); 3883 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3884 3885 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3886 goto again; 3887 3888 return event; 3889 } 3890 3891 /** 3892 * ring_buffer_consume - return an event and consume it 3893 * @buffer: The ring buffer to get the next event from 3894 * @cpu: the cpu to read the buffer from 3895 * @ts: a variable to store the timestamp (may be NULL) 3896 * @lost_events: a variable to store if events were lost (may be NULL) 3897 * 3898 * Returns the next event in the ring buffer, and that event is consumed. 3899 * Meaning, that sequential reads will keep returning a different event, 3900 * and eventually empty the ring buffer if the producer is slower. 3901 */ 3902 struct ring_buffer_event * 3903 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3904 unsigned long *lost_events) 3905 { 3906 struct ring_buffer_per_cpu *cpu_buffer; 3907 struct ring_buffer_event *event = NULL; 3908 unsigned long flags; 3909 int dolock; 3910 3911 dolock = rb_ok_to_lock(); 3912 3913 again: 3914 /* might be called in atomic */ 3915 preempt_disable(); 3916 3917 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3918 goto out; 3919 3920 cpu_buffer = buffer->buffers[cpu]; 3921 local_irq_save(flags); 3922 if (dolock) 3923 raw_spin_lock(&cpu_buffer->reader_lock); 3924 3925 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3926 if (event) { 3927 cpu_buffer->lost_events = 0; 3928 rb_advance_reader(cpu_buffer); 3929 } 3930 3931 if (dolock) 3932 raw_spin_unlock(&cpu_buffer->reader_lock); 3933 local_irq_restore(flags); 3934 3935 out: 3936 preempt_enable(); 3937 3938 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3939 goto again; 3940 3941 return event; 3942 } 3943 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3944 3945 /** 3946 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3947 * @buffer: The ring buffer to read from 3948 * @cpu: The cpu buffer to iterate over 3949 * 3950 * This performs the initial preparations necessary to iterate 3951 * through the buffer. Memory is allocated, buffer recording 3952 * is disabled, and the iterator pointer is returned to the caller. 3953 * 3954 * Disabling buffer recordng prevents the reading from being 3955 * corrupted. This is not a consuming read, so a producer is not 3956 * expected. 3957 * 3958 * After a sequence of ring_buffer_read_prepare calls, the user is 3959 * expected to make at least one call to ring_buffer_prepare_sync. 3960 * Afterwards, ring_buffer_read_start is invoked to get things going 3961 * for real. 3962 * 3963 * This overall must be paired with ring_buffer_finish. 3964 */ 3965 struct ring_buffer_iter * 3966 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3967 { 3968 struct ring_buffer_per_cpu *cpu_buffer; 3969 struct ring_buffer_iter *iter; 3970 3971 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3972 return NULL; 3973 3974 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3975 if (!iter) 3976 return NULL; 3977 3978 cpu_buffer = buffer->buffers[cpu]; 3979 3980 iter->cpu_buffer = cpu_buffer; 3981 3982 atomic_inc(&buffer->resize_disabled); 3983 atomic_inc(&cpu_buffer->record_disabled); 3984 3985 return iter; 3986 } 3987 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3988 3989 /** 3990 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3991 * 3992 * All previously invoked ring_buffer_read_prepare calls to prepare 3993 * iterators will be synchronized. Afterwards, read_buffer_read_start 3994 * calls on those iterators are allowed. 3995 */ 3996 void 3997 ring_buffer_read_prepare_sync(void) 3998 { 3999 synchronize_sched(); 4000 } 4001 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4002 4003 /** 4004 * ring_buffer_read_start - start a non consuming read of the buffer 4005 * @iter: The iterator returned by ring_buffer_read_prepare 4006 * 4007 * This finalizes the startup of an iteration through the buffer. 4008 * The iterator comes from a call to ring_buffer_read_prepare and 4009 * an intervening ring_buffer_read_prepare_sync must have been 4010 * performed. 4011 * 4012 * Must be paired with ring_buffer_finish. 4013 */ 4014 void 4015 ring_buffer_read_start(struct ring_buffer_iter *iter) 4016 { 4017 struct ring_buffer_per_cpu *cpu_buffer; 4018 unsigned long flags; 4019 4020 if (!iter) 4021 return; 4022 4023 cpu_buffer = iter->cpu_buffer; 4024 4025 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4026 arch_spin_lock(&cpu_buffer->lock); 4027 rb_iter_reset(iter); 4028 arch_spin_unlock(&cpu_buffer->lock); 4029 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4030 } 4031 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4032 4033 /** 4034 * ring_buffer_finish - finish reading the iterator of the buffer 4035 * @iter: The iterator retrieved by ring_buffer_start 4036 * 4037 * This re-enables the recording to the buffer, and frees the 4038 * iterator. 4039 */ 4040 void 4041 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4042 { 4043 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4044 unsigned long flags; 4045 4046 /* 4047 * Ring buffer is disabled from recording, here's a good place 4048 * to check the integrity of the ring buffer. 4049 * Must prevent readers from trying to read, as the check 4050 * clears the HEAD page and readers require it. 4051 */ 4052 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4053 rb_check_pages(cpu_buffer); 4054 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4055 4056 atomic_dec(&cpu_buffer->record_disabled); 4057 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4058 kfree(iter); 4059 } 4060 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4061 4062 /** 4063 * ring_buffer_read - read the next item in the ring buffer by the iterator 4064 * @iter: The ring buffer iterator 4065 * @ts: The time stamp of the event read. 4066 * 4067 * This reads the next event in the ring buffer and increments the iterator. 4068 */ 4069 struct ring_buffer_event * 4070 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4071 { 4072 struct ring_buffer_event *event; 4073 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4074 unsigned long flags; 4075 4076 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4077 again: 4078 event = rb_iter_peek(iter, ts); 4079 if (!event) 4080 goto out; 4081 4082 if (event->type_len == RINGBUF_TYPE_PADDING) 4083 goto again; 4084 4085 rb_advance_iter(iter); 4086 out: 4087 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4088 4089 return event; 4090 } 4091 EXPORT_SYMBOL_GPL(ring_buffer_read); 4092 4093 /** 4094 * ring_buffer_size - return the size of the ring buffer (in bytes) 4095 * @buffer: The ring buffer. 4096 */ 4097 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4098 { 4099 /* 4100 * Earlier, this method returned 4101 * BUF_PAGE_SIZE * buffer->nr_pages 4102 * Since the nr_pages field is now removed, we have converted this to 4103 * return the per cpu buffer value. 4104 */ 4105 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4106 return 0; 4107 4108 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4109 } 4110 EXPORT_SYMBOL_GPL(ring_buffer_size); 4111 4112 static void 4113 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4114 { 4115 rb_head_page_deactivate(cpu_buffer); 4116 4117 cpu_buffer->head_page 4118 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4119 local_set(&cpu_buffer->head_page->write, 0); 4120 local_set(&cpu_buffer->head_page->entries, 0); 4121 local_set(&cpu_buffer->head_page->page->commit, 0); 4122 4123 cpu_buffer->head_page->read = 0; 4124 4125 cpu_buffer->tail_page = cpu_buffer->head_page; 4126 cpu_buffer->commit_page = cpu_buffer->head_page; 4127 4128 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4129 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4130 local_set(&cpu_buffer->reader_page->write, 0); 4131 local_set(&cpu_buffer->reader_page->entries, 0); 4132 local_set(&cpu_buffer->reader_page->page->commit, 0); 4133 cpu_buffer->reader_page->read = 0; 4134 4135 local_set(&cpu_buffer->entries_bytes, 0); 4136 local_set(&cpu_buffer->overrun, 0); 4137 local_set(&cpu_buffer->commit_overrun, 0); 4138 local_set(&cpu_buffer->dropped_events, 0); 4139 local_set(&cpu_buffer->entries, 0); 4140 local_set(&cpu_buffer->committing, 0); 4141 local_set(&cpu_buffer->commits, 0); 4142 cpu_buffer->read = 0; 4143 cpu_buffer->read_bytes = 0; 4144 4145 cpu_buffer->write_stamp = 0; 4146 cpu_buffer->read_stamp = 0; 4147 4148 cpu_buffer->lost_events = 0; 4149 cpu_buffer->last_overrun = 0; 4150 4151 rb_head_page_activate(cpu_buffer); 4152 } 4153 4154 /** 4155 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4156 * @buffer: The ring buffer to reset a per cpu buffer of 4157 * @cpu: The CPU buffer to be reset 4158 */ 4159 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4160 { 4161 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4162 unsigned long flags; 4163 4164 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4165 return; 4166 4167 atomic_inc(&buffer->resize_disabled); 4168 atomic_inc(&cpu_buffer->record_disabled); 4169 4170 /* Make sure all commits have finished */ 4171 synchronize_sched(); 4172 4173 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4174 4175 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4176 goto out; 4177 4178 arch_spin_lock(&cpu_buffer->lock); 4179 4180 rb_reset_cpu(cpu_buffer); 4181 4182 arch_spin_unlock(&cpu_buffer->lock); 4183 4184 out: 4185 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4186 4187 atomic_dec(&cpu_buffer->record_disabled); 4188 atomic_dec(&buffer->resize_disabled); 4189 } 4190 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4191 4192 /** 4193 * ring_buffer_reset - reset a ring buffer 4194 * @buffer: The ring buffer to reset all cpu buffers 4195 */ 4196 void ring_buffer_reset(struct ring_buffer *buffer) 4197 { 4198 int cpu; 4199 4200 for_each_buffer_cpu(buffer, cpu) 4201 ring_buffer_reset_cpu(buffer, cpu); 4202 } 4203 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4204 4205 /** 4206 * rind_buffer_empty - is the ring buffer empty? 4207 * @buffer: The ring buffer to test 4208 */ 4209 int ring_buffer_empty(struct ring_buffer *buffer) 4210 { 4211 struct ring_buffer_per_cpu *cpu_buffer; 4212 unsigned long flags; 4213 int dolock; 4214 int cpu; 4215 int ret; 4216 4217 dolock = rb_ok_to_lock(); 4218 4219 /* yes this is racy, but if you don't like the race, lock the buffer */ 4220 for_each_buffer_cpu(buffer, cpu) { 4221 cpu_buffer = buffer->buffers[cpu]; 4222 local_irq_save(flags); 4223 if (dolock) 4224 raw_spin_lock(&cpu_buffer->reader_lock); 4225 ret = rb_per_cpu_empty(cpu_buffer); 4226 if (dolock) 4227 raw_spin_unlock(&cpu_buffer->reader_lock); 4228 local_irq_restore(flags); 4229 4230 if (!ret) 4231 return 0; 4232 } 4233 4234 return 1; 4235 } 4236 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4237 4238 /** 4239 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4240 * @buffer: The ring buffer 4241 * @cpu: The CPU buffer to test 4242 */ 4243 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4244 { 4245 struct ring_buffer_per_cpu *cpu_buffer; 4246 unsigned long flags; 4247 int dolock; 4248 int ret; 4249 4250 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4251 return 1; 4252 4253 dolock = rb_ok_to_lock(); 4254 4255 cpu_buffer = buffer->buffers[cpu]; 4256 local_irq_save(flags); 4257 if (dolock) 4258 raw_spin_lock(&cpu_buffer->reader_lock); 4259 ret = rb_per_cpu_empty(cpu_buffer); 4260 if (dolock) 4261 raw_spin_unlock(&cpu_buffer->reader_lock); 4262 local_irq_restore(flags); 4263 4264 return ret; 4265 } 4266 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4267 4268 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4269 /** 4270 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4271 * @buffer_a: One buffer to swap with 4272 * @buffer_b: The other buffer to swap with 4273 * 4274 * This function is useful for tracers that want to take a "snapshot" 4275 * of a CPU buffer and has another back up buffer lying around. 4276 * it is expected that the tracer handles the cpu buffer not being 4277 * used at the moment. 4278 */ 4279 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4280 struct ring_buffer *buffer_b, int cpu) 4281 { 4282 struct ring_buffer_per_cpu *cpu_buffer_a; 4283 struct ring_buffer_per_cpu *cpu_buffer_b; 4284 int ret = -EINVAL; 4285 4286 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4287 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4288 goto out; 4289 4290 cpu_buffer_a = buffer_a->buffers[cpu]; 4291 cpu_buffer_b = buffer_b->buffers[cpu]; 4292 4293 /* At least make sure the two buffers are somewhat the same */ 4294 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4295 goto out; 4296 4297 ret = -EAGAIN; 4298 4299 if (ring_buffer_flags != RB_BUFFERS_ON) 4300 goto out; 4301 4302 if (atomic_read(&buffer_a->record_disabled)) 4303 goto out; 4304 4305 if (atomic_read(&buffer_b->record_disabled)) 4306 goto out; 4307 4308 if (atomic_read(&cpu_buffer_a->record_disabled)) 4309 goto out; 4310 4311 if (atomic_read(&cpu_buffer_b->record_disabled)) 4312 goto out; 4313 4314 /* 4315 * We can't do a synchronize_sched here because this 4316 * function can be called in atomic context. 4317 * Normally this will be called from the same CPU as cpu. 4318 * If not it's up to the caller to protect this. 4319 */ 4320 atomic_inc(&cpu_buffer_a->record_disabled); 4321 atomic_inc(&cpu_buffer_b->record_disabled); 4322 4323 ret = -EBUSY; 4324 if (local_read(&cpu_buffer_a->committing)) 4325 goto out_dec; 4326 if (local_read(&cpu_buffer_b->committing)) 4327 goto out_dec; 4328 4329 buffer_a->buffers[cpu] = cpu_buffer_b; 4330 buffer_b->buffers[cpu] = cpu_buffer_a; 4331 4332 cpu_buffer_b->buffer = buffer_a; 4333 cpu_buffer_a->buffer = buffer_b; 4334 4335 ret = 0; 4336 4337 out_dec: 4338 atomic_dec(&cpu_buffer_a->record_disabled); 4339 atomic_dec(&cpu_buffer_b->record_disabled); 4340 out: 4341 return ret; 4342 } 4343 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4344 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4345 4346 /** 4347 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4348 * @buffer: the buffer to allocate for. 4349 * 4350 * This function is used in conjunction with ring_buffer_read_page. 4351 * When reading a full page from the ring buffer, these functions 4352 * can be used to speed up the process. The calling function should 4353 * allocate a few pages first with this function. Then when it 4354 * needs to get pages from the ring buffer, it passes the result 4355 * of this function into ring_buffer_read_page, which will swap 4356 * the page that was allocated, with the read page of the buffer. 4357 * 4358 * Returns: 4359 * The page allocated, or NULL on error. 4360 */ 4361 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4362 { 4363 struct buffer_data_page *bpage; 4364 struct page *page; 4365 4366 page = alloc_pages_node(cpu_to_node(cpu), 4367 GFP_KERNEL | __GFP_NORETRY, 0); 4368 if (!page) 4369 return NULL; 4370 4371 bpage = page_address(page); 4372 4373 rb_init_page(bpage); 4374 4375 return bpage; 4376 } 4377 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4378 4379 /** 4380 * ring_buffer_free_read_page - free an allocated read page 4381 * @buffer: the buffer the page was allocate for 4382 * @data: the page to free 4383 * 4384 * Free a page allocated from ring_buffer_alloc_read_page. 4385 */ 4386 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4387 { 4388 free_page((unsigned long)data); 4389 } 4390 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4391 4392 /** 4393 * ring_buffer_read_page - extract a page from the ring buffer 4394 * @buffer: buffer to extract from 4395 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4396 * @len: amount to extract 4397 * @cpu: the cpu of the buffer to extract 4398 * @full: should the extraction only happen when the page is full. 4399 * 4400 * This function will pull out a page from the ring buffer and consume it. 4401 * @data_page must be the address of the variable that was returned 4402 * from ring_buffer_alloc_read_page. This is because the page might be used 4403 * to swap with a page in the ring buffer. 4404 * 4405 * for example: 4406 * rpage = ring_buffer_alloc_read_page(buffer); 4407 * if (!rpage) 4408 * return error; 4409 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4410 * if (ret >= 0) 4411 * process_page(rpage, ret); 4412 * 4413 * When @full is set, the function will not return true unless 4414 * the writer is off the reader page. 4415 * 4416 * Note: it is up to the calling functions to handle sleeps and wakeups. 4417 * The ring buffer can be used anywhere in the kernel and can not 4418 * blindly call wake_up. The layer that uses the ring buffer must be 4419 * responsible for that. 4420 * 4421 * Returns: 4422 * >=0 if data has been transferred, returns the offset of consumed data. 4423 * <0 if no data has been transferred. 4424 */ 4425 int ring_buffer_read_page(struct ring_buffer *buffer, 4426 void **data_page, size_t len, int cpu, int full) 4427 { 4428 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4429 struct ring_buffer_event *event; 4430 struct buffer_data_page *bpage; 4431 struct buffer_page *reader; 4432 unsigned long missed_events; 4433 unsigned long flags; 4434 unsigned int commit; 4435 unsigned int read; 4436 u64 save_timestamp; 4437 int ret = -1; 4438 4439 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4440 goto out; 4441 4442 /* 4443 * If len is not big enough to hold the page header, then 4444 * we can not copy anything. 4445 */ 4446 if (len <= BUF_PAGE_HDR_SIZE) 4447 goto out; 4448 4449 len -= BUF_PAGE_HDR_SIZE; 4450 4451 if (!data_page) 4452 goto out; 4453 4454 bpage = *data_page; 4455 if (!bpage) 4456 goto out; 4457 4458 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4459 4460 reader = rb_get_reader_page(cpu_buffer); 4461 if (!reader) 4462 goto out_unlock; 4463 4464 event = rb_reader_event(cpu_buffer); 4465 4466 read = reader->read; 4467 commit = rb_page_commit(reader); 4468 4469 /* Check if any events were dropped */ 4470 missed_events = cpu_buffer->lost_events; 4471 4472 /* 4473 * If this page has been partially read or 4474 * if len is not big enough to read the rest of the page or 4475 * a writer is still on the page, then 4476 * we must copy the data from the page to the buffer. 4477 * Otherwise, we can simply swap the page with the one passed in. 4478 */ 4479 if (read || (len < (commit - read)) || 4480 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4481 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4482 unsigned int rpos = read; 4483 unsigned int pos = 0; 4484 unsigned int size; 4485 4486 if (full) 4487 goto out_unlock; 4488 4489 if (len > (commit - read)) 4490 len = (commit - read); 4491 4492 /* Always keep the time extend and data together */ 4493 size = rb_event_ts_length(event); 4494 4495 if (len < size) 4496 goto out_unlock; 4497 4498 /* save the current timestamp, since the user will need it */ 4499 save_timestamp = cpu_buffer->read_stamp; 4500 4501 /* Need to copy one event at a time */ 4502 do { 4503 /* We need the size of one event, because 4504 * rb_advance_reader only advances by one event, 4505 * whereas rb_event_ts_length may include the size of 4506 * one or two events. 4507 * We have already ensured there's enough space if this 4508 * is a time extend. */ 4509 size = rb_event_length(event); 4510 memcpy(bpage->data + pos, rpage->data + rpos, size); 4511 4512 len -= size; 4513 4514 rb_advance_reader(cpu_buffer); 4515 rpos = reader->read; 4516 pos += size; 4517 4518 if (rpos >= commit) 4519 break; 4520 4521 event = rb_reader_event(cpu_buffer); 4522 /* Always keep the time extend and data together */ 4523 size = rb_event_ts_length(event); 4524 } while (len >= size); 4525 4526 /* update bpage */ 4527 local_set(&bpage->commit, pos); 4528 bpage->time_stamp = save_timestamp; 4529 4530 /* we copied everything to the beginning */ 4531 read = 0; 4532 } else { 4533 /* update the entry counter */ 4534 cpu_buffer->read += rb_page_entries(reader); 4535 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4536 4537 /* swap the pages */ 4538 rb_init_page(bpage); 4539 bpage = reader->page; 4540 reader->page = *data_page; 4541 local_set(&reader->write, 0); 4542 local_set(&reader->entries, 0); 4543 reader->read = 0; 4544 *data_page = bpage; 4545 4546 /* 4547 * Use the real_end for the data size, 4548 * This gives us a chance to store the lost events 4549 * on the page. 4550 */ 4551 if (reader->real_end) 4552 local_set(&bpage->commit, reader->real_end); 4553 } 4554 ret = read; 4555 4556 cpu_buffer->lost_events = 0; 4557 4558 commit = local_read(&bpage->commit); 4559 /* 4560 * Set a flag in the commit field if we lost events 4561 */ 4562 if (missed_events) { 4563 /* If there is room at the end of the page to save the 4564 * missed events, then record it there. 4565 */ 4566 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4567 memcpy(&bpage->data[commit], &missed_events, 4568 sizeof(missed_events)); 4569 local_add(RB_MISSED_STORED, &bpage->commit); 4570 commit += sizeof(missed_events); 4571 } 4572 local_add(RB_MISSED_EVENTS, &bpage->commit); 4573 } 4574 4575 /* 4576 * This page may be off to user land. Zero it out here. 4577 */ 4578 if (commit < BUF_PAGE_SIZE) 4579 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4580 4581 out_unlock: 4582 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4583 4584 out: 4585 return ret; 4586 } 4587 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4588 4589 #ifdef CONFIG_HOTPLUG_CPU 4590 static int rb_cpu_notify(struct notifier_block *self, 4591 unsigned long action, void *hcpu) 4592 { 4593 struct ring_buffer *buffer = 4594 container_of(self, struct ring_buffer, cpu_notify); 4595 long cpu = (long)hcpu; 4596 int cpu_i, nr_pages_same; 4597 unsigned int nr_pages; 4598 4599 switch (action) { 4600 case CPU_UP_PREPARE: 4601 case CPU_UP_PREPARE_FROZEN: 4602 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4603 return NOTIFY_OK; 4604 4605 nr_pages = 0; 4606 nr_pages_same = 1; 4607 /* check if all cpu sizes are same */ 4608 for_each_buffer_cpu(buffer, cpu_i) { 4609 /* fill in the size from first enabled cpu */ 4610 if (nr_pages == 0) 4611 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4612 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4613 nr_pages_same = 0; 4614 break; 4615 } 4616 } 4617 /* allocate minimum pages, user can later expand it */ 4618 if (!nr_pages_same) 4619 nr_pages = 2; 4620 buffer->buffers[cpu] = 4621 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4622 if (!buffer->buffers[cpu]) { 4623 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4624 cpu); 4625 return NOTIFY_OK; 4626 } 4627 smp_wmb(); 4628 cpumask_set_cpu(cpu, buffer->cpumask); 4629 break; 4630 case CPU_DOWN_PREPARE: 4631 case CPU_DOWN_PREPARE_FROZEN: 4632 /* 4633 * Do nothing. 4634 * If we were to free the buffer, then the user would 4635 * lose any trace that was in the buffer. 4636 */ 4637 break; 4638 default: 4639 break; 4640 } 4641 return NOTIFY_OK; 4642 } 4643 #endif 4644 4645 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4646 /* 4647 * This is a basic integrity check of the ring buffer. 4648 * Late in the boot cycle this test will run when configured in. 4649 * It will kick off a thread per CPU that will go into a loop 4650 * writing to the per cpu ring buffer various sizes of data. 4651 * Some of the data will be large items, some small. 4652 * 4653 * Another thread is created that goes into a spin, sending out 4654 * IPIs to the other CPUs to also write into the ring buffer. 4655 * this is to test the nesting ability of the buffer. 4656 * 4657 * Basic stats are recorded and reported. If something in the 4658 * ring buffer should happen that's not expected, a big warning 4659 * is displayed and all ring buffers are disabled. 4660 */ 4661 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4662 4663 struct rb_test_data { 4664 struct ring_buffer *buffer; 4665 unsigned long events; 4666 unsigned long bytes_written; 4667 unsigned long bytes_alloc; 4668 unsigned long bytes_dropped; 4669 unsigned long events_nested; 4670 unsigned long bytes_written_nested; 4671 unsigned long bytes_alloc_nested; 4672 unsigned long bytes_dropped_nested; 4673 int min_size_nested; 4674 int max_size_nested; 4675 int max_size; 4676 int min_size; 4677 int cpu; 4678 int cnt; 4679 }; 4680 4681 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4682 4683 /* 1 meg per cpu */ 4684 #define RB_TEST_BUFFER_SIZE 1048576 4685 4686 static char rb_string[] __initdata = 4687 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4688 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4689 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4690 4691 static bool rb_test_started __initdata; 4692 4693 struct rb_item { 4694 int size; 4695 char str[]; 4696 }; 4697 4698 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4699 { 4700 struct ring_buffer_event *event; 4701 struct rb_item *item; 4702 bool started; 4703 int event_len; 4704 int size; 4705 int len; 4706 int cnt; 4707 4708 /* Have nested writes different that what is written */ 4709 cnt = data->cnt + (nested ? 27 : 0); 4710 4711 /* Multiply cnt by ~e, to make some unique increment */ 4712 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4713 4714 len = size + sizeof(struct rb_item); 4715 4716 started = rb_test_started; 4717 /* read rb_test_started before checking buffer enabled */ 4718 smp_rmb(); 4719 4720 event = ring_buffer_lock_reserve(data->buffer, len); 4721 if (!event) { 4722 /* Ignore dropped events before test starts. */ 4723 if (started) { 4724 if (nested) 4725 data->bytes_dropped += len; 4726 else 4727 data->bytes_dropped_nested += len; 4728 } 4729 return len; 4730 } 4731 4732 event_len = ring_buffer_event_length(event); 4733 4734 if (RB_WARN_ON(data->buffer, event_len < len)) 4735 goto out; 4736 4737 item = ring_buffer_event_data(event); 4738 item->size = size; 4739 memcpy(item->str, rb_string, size); 4740 4741 if (nested) { 4742 data->bytes_alloc_nested += event_len; 4743 data->bytes_written_nested += len; 4744 data->events_nested++; 4745 if (!data->min_size_nested || len < data->min_size_nested) 4746 data->min_size_nested = len; 4747 if (len > data->max_size_nested) 4748 data->max_size_nested = len; 4749 } else { 4750 data->bytes_alloc += event_len; 4751 data->bytes_written += len; 4752 data->events++; 4753 if (!data->min_size || len < data->min_size) 4754 data->max_size = len; 4755 if (len > data->max_size) 4756 data->max_size = len; 4757 } 4758 4759 out: 4760 ring_buffer_unlock_commit(data->buffer, event); 4761 4762 return 0; 4763 } 4764 4765 static __init int rb_test(void *arg) 4766 { 4767 struct rb_test_data *data = arg; 4768 4769 while (!kthread_should_stop()) { 4770 rb_write_something(data, false); 4771 data->cnt++; 4772 4773 set_current_state(TASK_INTERRUPTIBLE); 4774 /* Now sleep between a min of 100-300us and a max of 1ms */ 4775 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4776 } 4777 4778 return 0; 4779 } 4780 4781 static __init void rb_ipi(void *ignore) 4782 { 4783 struct rb_test_data *data; 4784 int cpu = smp_processor_id(); 4785 4786 data = &rb_data[cpu]; 4787 rb_write_something(data, true); 4788 } 4789 4790 static __init int rb_hammer_test(void *arg) 4791 { 4792 while (!kthread_should_stop()) { 4793 4794 /* Send an IPI to all cpus to write data! */ 4795 smp_call_function(rb_ipi, NULL, 1); 4796 /* No sleep, but for non preempt, let others run */ 4797 schedule(); 4798 } 4799 4800 return 0; 4801 } 4802 4803 static __init int test_ringbuffer(void) 4804 { 4805 struct task_struct *rb_hammer; 4806 struct ring_buffer *buffer; 4807 int cpu; 4808 int ret = 0; 4809 4810 pr_info("Running ring buffer tests...\n"); 4811 4812 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4813 if (WARN_ON(!buffer)) 4814 return 0; 4815 4816 /* Disable buffer so that threads can't write to it yet */ 4817 ring_buffer_record_off(buffer); 4818 4819 for_each_online_cpu(cpu) { 4820 rb_data[cpu].buffer = buffer; 4821 rb_data[cpu].cpu = cpu; 4822 rb_data[cpu].cnt = cpu; 4823 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4824 "rbtester/%d", cpu); 4825 if (WARN_ON(!rb_threads[cpu])) { 4826 pr_cont("FAILED\n"); 4827 ret = -1; 4828 goto out_free; 4829 } 4830 4831 kthread_bind(rb_threads[cpu], cpu); 4832 wake_up_process(rb_threads[cpu]); 4833 } 4834 4835 /* Now create the rb hammer! */ 4836 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4837 if (WARN_ON(!rb_hammer)) { 4838 pr_cont("FAILED\n"); 4839 ret = -1; 4840 goto out_free; 4841 } 4842 4843 ring_buffer_record_on(buffer); 4844 /* 4845 * Show buffer is enabled before setting rb_test_started. 4846 * Yes there's a small race window where events could be 4847 * dropped and the thread wont catch it. But when a ring 4848 * buffer gets enabled, there will always be some kind of 4849 * delay before other CPUs see it. Thus, we don't care about 4850 * those dropped events. We care about events dropped after 4851 * the threads see that the buffer is active. 4852 */ 4853 smp_wmb(); 4854 rb_test_started = true; 4855 4856 set_current_state(TASK_INTERRUPTIBLE); 4857 /* Just run for 10 seconds */; 4858 schedule_timeout(10 * HZ); 4859 4860 kthread_stop(rb_hammer); 4861 4862 out_free: 4863 for_each_online_cpu(cpu) { 4864 if (!rb_threads[cpu]) 4865 break; 4866 kthread_stop(rb_threads[cpu]); 4867 } 4868 if (ret) { 4869 ring_buffer_free(buffer); 4870 return ret; 4871 } 4872 4873 /* Report! */ 4874 pr_info("finished\n"); 4875 for_each_online_cpu(cpu) { 4876 struct ring_buffer_event *event; 4877 struct rb_test_data *data = &rb_data[cpu]; 4878 struct rb_item *item; 4879 unsigned long total_events; 4880 unsigned long total_dropped; 4881 unsigned long total_written; 4882 unsigned long total_alloc; 4883 unsigned long total_read = 0; 4884 unsigned long total_size = 0; 4885 unsigned long total_len = 0; 4886 unsigned long total_lost = 0; 4887 unsigned long lost; 4888 int big_event_size; 4889 int small_event_size; 4890 4891 ret = -1; 4892 4893 total_events = data->events + data->events_nested; 4894 total_written = data->bytes_written + data->bytes_written_nested; 4895 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4896 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4897 4898 big_event_size = data->max_size + data->max_size_nested; 4899 small_event_size = data->min_size + data->min_size_nested; 4900 4901 pr_info("CPU %d:\n", cpu); 4902 pr_info(" events: %ld\n", total_events); 4903 pr_info(" dropped bytes: %ld\n", total_dropped); 4904 pr_info(" alloced bytes: %ld\n", total_alloc); 4905 pr_info(" written bytes: %ld\n", total_written); 4906 pr_info(" biggest event: %d\n", big_event_size); 4907 pr_info(" smallest event: %d\n", small_event_size); 4908 4909 if (RB_WARN_ON(buffer, total_dropped)) 4910 break; 4911 4912 ret = 0; 4913 4914 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4915 total_lost += lost; 4916 item = ring_buffer_event_data(event); 4917 total_len += ring_buffer_event_length(event); 4918 total_size += item->size + sizeof(struct rb_item); 4919 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4920 pr_info("FAILED!\n"); 4921 pr_info("buffer had: %.*s\n", item->size, item->str); 4922 pr_info("expected: %.*s\n", item->size, rb_string); 4923 RB_WARN_ON(buffer, 1); 4924 ret = -1; 4925 break; 4926 } 4927 total_read++; 4928 } 4929 if (ret) 4930 break; 4931 4932 ret = -1; 4933 4934 pr_info(" read events: %ld\n", total_read); 4935 pr_info(" lost events: %ld\n", total_lost); 4936 pr_info(" total events: %ld\n", total_lost + total_read); 4937 pr_info(" recorded len bytes: %ld\n", total_len); 4938 pr_info(" recorded size bytes: %ld\n", total_size); 4939 if (total_lost) 4940 pr_info(" With dropped events, record len and size may not match\n" 4941 " alloced and written from above\n"); 4942 if (!total_lost) { 4943 if (RB_WARN_ON(buffer, total_len != total_alloc || 4944 total_size != total_written)) 4945 break; 4946 } 4947 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4948 break; 4949 4950 ret = 0; 4951 } 4952 if (!ret) 4953 pr_info("Ring buffer PASSED!\n"); 4954 4955 ring_buffer_free(buffer); 4956 return 0; 4957 } 4958 4959 late_initcall(test_ringbuffer); 4960 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4961