1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 static void update_pages_handler(struct work_struct *work); 33 34 /* 35 * The ring buffer header is special. We must manually up keep it. 36 */ 37 int ring_buffer_print_entry_header(struct trace_seq *s) 38 { 39 trace_seq_puts(s, "# compressed entry header\n"); 40 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 41 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 42 trace_seq_puts(s, "\tarray : 32 bits\n"); 43 trace_seq_putc(s, '\n'); 44 trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 49 RINGBUF_TYPE_TIME_STAMP); 50 trace_seq_printf(s, "\tdata max type_len == %d\n", 51 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 52 53 return !trace_seq_has_overflowed(s); 54 } 55 56 /* 57 * The ring buffer is made up of a list of pages. A separate list of pages is 58 * allocated for each CPU. A writer may only write to a buffer that is 59 * associated with the CPU it is currently executing on. A reader may read 60 * from any per cpu buffer. 61 * 62 * The reader is special. For each per cpu buffer, the reader has its own 63 * reader page. When a reader has read the entire reader page, this reader 64 * page is swapped with another page in the ring buffer. 65 * 66 * Now, as long as the writer is off the reader page, the reader can do what 67 * ever it wants with that page. The writer will never write to that page 68 * again (as long as it is out of the ring buffer). 69 * 70 * Here's some silly ASCII art. 71 * 72 * +------+ 73 * |reader| RING BUFFER 74 * |page | 75 * +------+ +---+ +---+ +---+ 76 * | |-->| |-->| | 77 * +---+ +---+ +---+ 78 * ^ | 79 * | | 80 * +---------------+ 81 * 82 * 83 * +------+ 84 * |reader| RING BUFFER 85 * |page |------------------v 86 * +------+ +---+ +---+ +---+ 87 * | |-->| |-->| | 88 * +---+ +---+ +---+ 89 * ^ | 90 * | | 91 * +---------------+ 92 * 93 * 94 * +------+ 95 * |reader| RING BUFFER 96 * |page |------------------v 97 * +------+ +---+ +---+ +---+ 98 * ^ | |-->| |-->| | 99 * | +---+ +---+ +---+ 100 * | | 101 * | | 102 * +------------------------------+ 103 * 104 * 105 * +------+ 106 * |buffer| RING BUFFER 107 * |page |------------------v 108 * +------+ +---+ +---+ +---+ 109 * ^ | | | |-->| | 110 * | New +---+ +---+ +---+ 111 * | Reader------^ | 112 * | page | 113 * +------------------------------+ 114 * 115 * 116 * After we make this swap, the reader can hand this page off to the splice 117 * code and be done with it. It can even allocate a new page if it needs to 118 * and swap that into the ring buffer. 119 * 120 * We will be using cmpxchg soon to make all this lockless. 121 * 122 */ 123 124 /* Used for individual buffers (after the counter) */ 125 #define RB_BUFFER_OFF (1 << 20) 126 127 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 128 129 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 130 #define RB_ALIGNMENT 4U 131 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 132 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 133 134 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 135 # define RB_FORCE_8BYTE_ALIGNMENT 0 136 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 137 #else 138 # define RB_FORCE_8BYTE_ALIGNMENT 1 139 # define RB_ARCH_ALIGNMENT 8U 140 #endif 141 142 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 143 144 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 145 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 146 147 enum { 148 RB_LEN_TIME_EXTEND = 8, 149 RB_LEN_TIME_STAMP = 8, 150 }; 151 152 #define skip_time_extend(event) \ 153 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 154 155 #define extended_time(event) \ 156 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 157 158 static inline int rb_null_event(struct ring_buffer_event *event) 159 { 160 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 161 } 162 163 static void rb_event_set_padding(struct ring_buffer_event *event) 164 { 165 /* padding has a NULL time_delta */ 166 event->type_len = RINGBUF_TYPE_PADDING; 167 event->time_delta = 0; 168 } 169 170 static unsigned 171 rb_event_data_length(struct ring_buffer_event *event) 172 { 173 unsigned length; 174 175 if (event->type_len) 176 length = event->type_len * RB_ALIGNMENT; 177 else 178 length = event->array[0]; 179 return length + RB_EVNT_HDR_SIZE; 180 } 181 182 /* 183 * Return the length of the given event. Will return 184 * the length of the time extend if the event is a 185 * time extend. 186 */ 187 static inline unsigned 188 rb_event_length(struct ring_buffer_event *event) 189 { 190 switch (event->type_len) { 191 case RINGBUF_TYPE_PADDING: 192 if (rb_null_event(event)) 193 /* undefined */ 194 return -1; 195 return event->array[0] + RB_EVNT_HDR_SIZE; 196 197 case RINGBUF_TYPE_TIME_EXTEND: 198 return RB_LEN_TIME_EXTEND; 199 200 case RINGBUF_TYPE_TIME_STAMP: 201 return RB_LEN_TIME_STAMP; 202 203 case RINGBUF_TYPE_DATA: 204 return rb_event_data_length(event); 205 default: 206 WARN_ON_ONCE(1); 207 } 208 /* not hit */ 209 return 0; 210 } 211 212 /* 213 * Return total length of time extend and data, 214 * or just the event length for all other events. 215 */ 216 static inline unsigned 217 rb_event_ts_length(struct ring_buffer_event *event) 218 { 219 unsigned len = 0; 220 221 if (extended_time(event)) { 222 /* time extends include the data event after it */ 223 len = RB_LEN_TIME_EXTEND; 224 event = skip_time_extend(event); 225 } 226 return len + rb_event_length(event); 227 } 228 229 /** 230 * ring_buffer_event_length - return the length of the event 231 * @event: the event to get the length of 232 * 233 * Returns the size of the data load of a data event. 234 * If the event is something other than a data event, it 235 * returns the size of the event itself. With the exception 236 * of a TIME EXTEND, where it still returns the size of the 237 * data load of the data event after it. 238 */ 239 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 240 { 241 unsigned length; 242 243 if (extended_time(event)) 244 event = skip_time_extend(event); 245 246 length = rb_event_length(event); 247 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 248 return length; 249 length -= RB_EVNT_HDR_SIZE; 250 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 251 length -= sizeof(event->array[0]); 252 return length; 253 } 254 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 255 256 /* inline for ring buffer fast paths */ 257 static __always_inline void * 258 rb_event_data(struct ring_buffer_event *event) 259 { 260 if (extended_time(event)) 261 event = skip_time_extend(event); 262 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 263 /* If length is in len field, then array[0] has the data */ 264 if (event->type_len) 265 return (void *)&event->array[0]; 266 /* Otherwise length is in array[0] and array[1] has the data */ 267 return (void *)&event->array[1]; 268 } 269 270 /** 271 * ring_buffer_event_data - return the data of the event 272 * @event: the event to get the data from 273 */ 274 void *ring_buffer_event_data(struct ring_buffer_event *event) 275 { 276 return rb_event_data(event); 277 } 278 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 279 280 #define for_each_buffer_cpu(buffer, cpu) \ 281 for_each_cpu(cpu, buffer->cpumask) 282 283 #define for_each_online_buffer_cpu(buffer, cpu) \ 284 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 285 286 #define TS_SHIFT 27 287 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 288 #define TS_DELTA_TEST (~TS_MASK) 289 290 /** 291 * ring_buffer_event_time_stamp - return the event's extended timestamp 292 * @event: the event to get the timestamp of 293 * 294 * Returns the extended timestamp associated with a data event. 295 * An extended time_stamp is a 64-bit timestamp represented 296 * internally in a special way that makes the best use of space 297 * contained within a ring buffer event. This function decodes 298 * it and maps it to a straight u64 value. 299 */ 300 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 301 { 302 u64 ts; 303 304 ts = event->array[0]; 305 ts <<= TS_SHIFT; 306 ts += event->time_delta; 307 308 return ts; 309 } 310 311 /* Flag when events were overwritten */ 312 #define RB_MISSED_EVENTS (1 << 31) 313 /* Missed count stored at end */ 314 #define RB_MISSED_STORED (1 << 30) 315 316 struct buffer_data_page { 317 u64 time_stamp; /* page time stamp */ 318 local_t commit; /* write committed index */ 319 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 320 }; 321 322 /* 323 * Note, the buffer_page list must be first. The buffer pages 324 * are allocated in cache lines, which means that each buffer 325 * page will be at the beginning of a cache line, and thus 326 * the least significant bits will be zero. We use this to 327 * add flags in the list struct pointers, to make the ring buffer 328 * lockless. 329 */ 330 struct buffer_page { 331 struct list_head list; /* list of buffer pages */ 332 local_t write; /* index for next write */ 333 unsigned read; /* index for next read */ 334 local_t entries; /* entries on this page */ 335 unsigned long real_end; /* real end of data */ 336 struct buffer_data_page *page; /* Actual data page */ 337 }; 338 339 /* 340 * The buffer page counters, write and entries, must be reset 341 * atomically when crossing page boundaries. To synchronize this 342 * update, two counters are inserted into the number. One is 343 * the actual counter for the write position or count on the page. 344 * 345 * The other is a counter of updaters. Before an update happens 346 * the update partition of the counter is incremented. This will 347 * allow the updater to update the counter atomically. 348 * 349 * The counter is 20 bits, and the state data is 12. 350 */ 351 #define RB_WRITE_MASK 0xfffff 352 #define RB_WRITE_INTCNT (1 << 20) 353 354 static void rb_init_page(struct buffer_data_page *bpage) 355 { 356 local_set(&bpage->commit, 0); 357 } 358 359 /* 360 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 361 * this issue out. 362 */ 363 static void free_buffer_page(struct buffer_page *bpage) 364 { 365 free_page((unsigned long)bpage->page); 366 kfree(bpage); 367 } 368 369 /* 370 * We need to fit the time_stamp delta into 27 bits. 371 */ 372 static inline int test_time_stamp(u64 delta) 373 { 374 if (delta & TS_DELTA_TEST) 375 return 1; 376 return 0; 377 } 378 379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 380 381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 383 384 int ring_buffer_print_page_header(struct trace_seq *s) 385 { 386 struct buffer_data_page field; 387 388 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 389 "offset:0;\tsize:%u;\tsigned:%u;\n", 390 (unsigned int)sizeof(field.time_stamp), 391 (unsigned int)is_signed_type(u64)); 392 393 trace_seq_printf(s, "\tfield: local_t commit;\t" 394 "offset:%u;\tsize:%u;\tsigned:%u;\n", 395 (unsigned int)offsetof(typeof(field), commit), 396 (unsigned int)sizeof(field.commit), 397 (unsigned int)is_signed_type(long)); 398 399 trace_seq_printf(s, "\tfield: int overwrite;\t" 400 "offset:%u;\tsize:%u;\tsigned:%u;\n", 401 (unsigned int)offsetof(typeof(field), commit), 402 1, 403 (unsigned int)is_signed_type(long)); 404 405 trace_seq_printf(s, "\tfield: char data;\t" 406 "offset:%u;\tsize:%u;\tsigned:%u;\n", 407 (unsigned int)offsetof(typeof(field), data), 408 (unsigned int)BUF_PAGE_SIZE, 409 (unsigned int)is_signed_type(char)); 410 411 return !trace_seq_has_overflowed(s); 412 } 413 414 struct rb_irq_work { 415 struct irq_work work; 416 wait_queue_head_t waiters; 417 wait_queue_head_t full_waiters; 418 bool waiters_pending; 419 bool full_waiters_pending; 420 bool wakeup_full; 421 }; 422 423 /* 424 * Structure to hold event state and handle nested events. 425 */ 426 struct rb_event_info { 427 u64 ts; 428 u64 delta; 429 u64 before; 430 u64 after; 431 unsigned long length; 432 struct buffer_page *tail_page; 433 int add_timestamp; 434 }; 435 436 /* 437 * Used for the add_timestamp 438 * NONE 439 * EXTEND - wants a time extend 440 * ABSOLUTE - the buffer requests all events to have absolute time stamps 441 * FORCE - force a full time stamp. 442 */ 443 enum { 444 RB_ADD_STAMP_NONE = 0, 445 RB_ADD_STAMP_EXTEND = BIT(1), 446 RB_ADD_STAMP_ABSOLUTE = BIT(2), 447 RB_ADD_STAMP_FORCE = BIT(3) 448 }; 449 /* 450 * Used for which event context the event is in. 451 * TRANSITION = 0 452 * NMI = 1 453 * IRQ = 2 454 * SOFTIRQ = 3 455 * NORMAL = 4 456 * 457 * See trace_recursive_lock() comment below for more details. 458 */ 459 enum { 460 RB_CTX_TRANSITION, 461 RB_CTX_NMI, 462 RB_CTX_IRQ, 463 RB_CTX_SOFTIRQ, 464 RB_CTX_NORMAL, 465 RB_CTX_MAX 466 }; 467 468 #if BITS_PER_LONG == 32 469 #define RB_TIME_32 470 #endif 471 472 /* To test on 64 bit machines */ 473 //#define RB_TIME_32 474 475 #ifdef RB_TIME_32 476 477 struct rb_time_struct { 478 local_t cnt; 479 local_t top; 480 local_t bottom; 481 }; 482 #else 483 #include <asm/local64.h> 484 struct rb_time_struct { 485 local64_t time; 486 }; 487 #endif 488 typedef struct rb_time_struct rb_time_t; 489 490 /* 491 * head_page == tail_page && head == tail then buffer is empty. 492 */ 493 struct ring_buffer_per_cpu { 494 int cpu; 495 atomic_t record_disabled; 496 atomic_t resize_disabled; 497 struct trace_buffer *buffer; 498 raw_spinlock_t reader_lock; /* serialize readers */ 499 arch_spinlock_t lock; 500 struct lock_class_key lock_key; 501 struct buffer_data_page *free_page; 502 unsigned long nr_pages; 503 unsigned int current_context; 504 struct list_head *pages; 505 struct buffer_page *head_page; /* read from head */ 506 struct buffer_page *tail_page; /* write to tail */ 507 struct buffer_page *commit_page; /* committed pages */ 508 struct buffer_page *reader_page; 509 unsigned long lost_events; 510 unsigned long last_overrun; 511 unsigned long nest; 512 local_t entries_bytes; 513 local_t entries; 514 local_t overrun; 515 local_t commit_overrun; 516 local_t dropped_events; 517 local_t committing; 518 local_t commits; 519 local_t pages_touched; 520 local_t pages_read; 521 long last_pages_touch; 522 size_t shortest_full; 523 unsigned long read; 524 unsigned long read_bytes; 525 rb_time_t write_stamp; 526 rb_time_t before_stamp; 527 u64 read_stamp; 528 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 529 long nr_pages_to_update; 530 struct list_head new_pages; /* new pages to add */ 531 struct work_struct update_pages_work; 532 struct completion update_done; 533 534 struct rb_irq_work irq_work; 535 }; 536 537 struct trace_buffer { 538 unsigned flags; 539 int cpus; 540 atomic_t record_disabled; 541 cpumask_var_t cpumask; 542 543 struct lock_class_key *reader_lock_key; 544 545 struct mutex mutex; 546 547 struct ring_buffer_per_cpu **buffers; 548 549 struct hlist_node node; 550 u64 (*clock)(void); 551 552 struct rb_irq_work irq_work; 553 bool time_stamp_abs; 554 }; 555 556 struct ring_buffer_iter { 557 struct ring_buffer_per_cpu *cpu_buffer; 558 unsigned long head; 559 unsigned long next_event; 560 struct buffer_page *head_page; 561 struct buffer_page *cache_reader_page; 562 unsigned long cache_read; 563 u64 read_stamp; 564 u64 page_stamp; 565 struct ring_buffer_event *event; 566 int missed_events; 567 }; 568 569 #ifdef RB_TIME_32 570 571 /* 572 * On 32 bit machines, local64_t is very expensive. As the ring 573 * buffer doesn't need all the features of a true 64 bit atomic, 574 * on 32 bit, it uses these functions (64 still uses local64_t). 575 * 576 * For the ring buffer, 64 bit required operations for the time is 577 * the following: 578 * 579 * - Only need 59 bits (uses 60 to make it even). 580 * - Reads may fail if it interrupted a modification of the time stamp. 581 * It will succeed if it did not interrupt another write even if 582 * the read itself is interrupted by a write. 583 * It returns whether it was successful or not. 584 * 585 * - Writes always succeed and will overwrite other writes and writes 586 * that were done by events interrupting the current write. 587 * 588 * - A write followed by a read of the same time stamp will always succeed, 589 * but may not contain the same value. 590 * 591 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 592 * Other than that, it acts like a normal cmpxchg. 593 * 594 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 595 * (bottom being the least significant 30 bits of the 60 bit time stamp). 596 * 597 * The two most significant bits of each half holds a 2 bit counter (0-3). 598 * Each update will increment this counter by one. 599 * When reading the top and bottom, if the two counter bits match then the 600 * top and bottom together make a valid 60 bit number. 601 */ 602 #define RB_TIME_SHIFT 30 603 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 604 605 static inline int rb_time_cnt(unsigned long val) 606 { 607 return (val >> RB_TIME_SHIFT) & 3; 608 } 609 610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 611 { 612 u64 val; 613 614 val = top & RB_TIME_VAL_MASK; 615 val <<= RB_TIME_SHIFT; 616 val |= bottom & RB_TIME_VAL_MASK; 617 618 return val; 619 } 620 621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 622 { 623 unsigned long top, bottom; 624 unsigned long c; 625 626 /* 627 * If the read is interrupted by a write, then the cnt will 628 * be different. Loop until both top and bottom have been read 629 * without interruption. 630 */ 631 do { 632 c = local_read(&t->cnt); 633 top = local_read(&t->top); 634 bottom = local_read(&t->bottom); 635 } while (c != local_read(&t->cnt)); 636 637 *cnt = rb_time_cnt(top); 638 639 /* If top and bottom counts don't match, this interrupted a write */ 640 if (*cnt != rb_time_cnt(bottom)) 641 return false; 642 643 *ret = rb_time_val(top, bottom); 644 return true; 645 } 646 647 static bool rb_time_read(rb_time_t *t, u64 *ret) 648 { 649 unsigned long cnt; 650 651 return __rb_time_read(t, ret, &cnt); 652 } 653 654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 655 { 656 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 657 } 658 659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom) 660 { 661 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 662 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 663 } 664 665 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 666 { 667 val = rb_time_val_cnt(val, cnt); 668 local_set(t, val); 669 } 670 671 static void rb_time_set(rb_time_t *t, u64 val) 672 { 673 unsigned long cnt, top, bottom; 674 675 rb_time_split(val, &top, &bottom); 676 677 /* Writes always succeed with a valid number even if it gets interrupted. */ 678 do { 679 cnt = local_inc_return(&t->cnt); 680 rb_time_val_set(&t->top, top, cnt); 681 rb_time_val_set(&t->bottom, bottom, cnt); 682 } while (cnt != local_read(&t->cnt)); 683 } 684 685 static inline bool 686 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 687 { 688 unsigned long ret; 689 690 ret = local_cmpxchg(l, expect, set); 691 return ret == expect; 692 } 693 694 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 695 { 696 unsigned long cnt, top, bottom; 697 unsigned long cnt2, top2, bottom2; 698 u64 val; 699 700 /* The cmpxchg always fails if it interrupted an update */ 701 if (!__rb_time_read(t, &val, &cnt2)) 702 return false; 703 704 if (val != expect) 705 return false; 706 707 cnt = local_read(&t->cnt); 708 if ((cnt & 3) != cnt2) 709 return false; 710 711 cnt2 = cnt + 1; 712 713 rb_time_split(val, &top, &bottom); 714 top = rb_time_val_cnt(top, cnt); 715 bottom = rb_time_val_cnt(bottom, cnt); 716 717 rb_time_split(set, &top2, &bottom2); 718 top2 = rb_time_val_cnt(top2, cnt2); 719 bottom2 = rb_time_val_cnt(bottom2, cnt2); 720 721 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 722 return false; 723 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 724 return false; 725 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 726 return false; 727 return true; 728 } 729 730 #else /* 64 bits */ 731 732 /* local64_t always succeeds */ 733 734 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 735 { 736 *ret = local64_read(&t->time); 737 return true; 738 } 739 static void rb_time_set(rb_time_t *t, u64 val) 740 { 741 local64_set(&t->time, val); 742 } 743 744 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 745 { 746 u64 val; 747 val = local64_cmpxchg(&t->time, expect, set); 748 return val == expect; 749 } 750 #endif 751 752 /** 753 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 754 * @buffer: The ring_buffer to get the number of pages from 755 * @cpu: The cpu of the ring_buffer to get the number of pages from 756 * 757 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 758 */ 759 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 760 { 761 return buffer->buffers[cpu]->nr_pages; 762 } 763 764 /** 765 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 766 * @buffer: The ring_buffer to get the number of pages from 767 * @cpu: The cpu of the ring_buffer to get the number of pages from 768 * 769 * Returns the number of pages that have content in the ring buffer. 770 */ 771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 772 { 773 size_t read; 774 size_t cnt; 775 776 read = local_read(&buffer->buffers[cpu]->pages_read); 777 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 778 /* The reader can read an empty page, but not more than that */ 779 if (cnt < read) { 780 WARN_ON_ONCE(read > cnt + 1); 781 return 0; 782 } 783 784 return cnt - read; 785 } 786 787 /* 788 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 789 * 790 * Schedules a delayed work to wake up any task that is blocked on the 791 * ring buffer waiters queue. 792 */ 793 static void rb_wake_up_waiters(struct irq_work *work) 794 { 795 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 796 797 wake_up_all(&rbwork->waiters); 798 if (rbwork->wakeup_full) { 799 rbwork->wakeup_full = false; 800 wake_up_all(&rbwork->full_waiters); 801 } 802 } 803 804 /** 805 * ring_buffer_wait - wait for input to the ring buffer 806 * @buffer: buffer to wait on 807 * @cpu: the cpu buffer to wait on 808 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 809 * 810 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 811 * as data is added to any of the @buffer's cpu buffers. Otherwise 812 * it will wait for data to be added to a specific cpu buffer. 813 */ 814 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 815 { 816 struct ring_buffer_per_cpu *cpu_buffer; 817 DEFINE_WAIT(wait); 818 struct rb_irq_work *work; 819 int ret = 0; 820 821 /* 822 * Depending on what the caller is waiting for, either any 823 * data in any cpu buffer, or a specific buffer, put the 824 * caller on the appropriate wait queue. 825 */ 826 if (cpu == RING_BUFFER_ALL_CPUS) { 827 work = &buffer->irq_work; 828 /* Full only makes sense on per cpu reads */ 829 full = 0; 830 } else { 831 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 832 return -ENODEV; 833 cpu_buffer = buffer->buffers[cpu]; 834 work = &cpu_buffer->irq_work; 835 } 836 837 838 while (true) { 839 if (full) 840 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 841 else 842 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 843 844 /* 845 * The events can happen in critical sections where 846 * checking a work queue can cause deadlocks. 847 * After adding a task to the queue, this flag is set 848 * only to notify events to try to wake up the queue 849 * using irq_work. 850 * 851 * We don't clear it even if the buffer is no longer 852 * empty. The flag only causes the next event to run 853 * irq_work to do the work queue wake up. The worse 854 * that can happen if we race with !trace_empty() is that 855 * an event will cause an irq_work to try to wake up 856 * an empty queue. 857 * 858 * There's no reason to protect this flag either, as 859 * the work queue and irq_work logic will do the necessary 860 * synchronization for the wake ups. The only thing 861 * that is necessary is that the wake up happens after 862 * a task has been queued. It's OK for spurious wake ups. 863 */ 864 if (full) 865 work->full_waiters_pending = true; 866 else 867 work->waiters_pending = true; 868 869 if (signal_pending(current)) { 870 ret = -EINTR; 871 break; 872 } 873 874 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 875 break; 876 877 if (cpu != RING_BUFFER_ALL_CPUS && 878 !ring_buffer_empty_cpu(buffer, cpu)) { 879 unsigned long flags; 880 bool pagebusy; 881 size_t nr_pages; 882 size_t dirty; 883 884 if (!full) 885 break; 886 887 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 888 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 889 nr_pages = cpu_buffer->nr_pages; 890 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 891 if (!cpu_buffer->shortest_full || 892 cpu_buffer->shortest_full < full) 893 cpu_buffer->shortest_full = full; 894 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 895 if (!pagebusy && 896 (!nr_pages || (dirty * 100) > full * nr_pages)) 897 break; 898 } 899 900 schedule(); 901 } 902 903 if (full) 904 finish_wait(&work->full_waiters, &wait); 905 else 906 finish_wait(&work->waiters, &wait); 907 908 return ret; 909 } 910 911 /** 912 * ring_buffer_poll_wait - poll on buffer input 913 * @buffer: buffer to wait on 914 * @cpu: the cpu buffer to wait on 915 * @filp: the file descriptor 916 * @poll_table: The poll descriptor 917 * 918 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 919 * as data is added to any of the @buffer's cpu buffers. Otherwise 920 * it will wait for data to be added to a specific cpu buffer. 921 * 922 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 923 * zero otherwise. 924 */ 925 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 926 struct file *filp, poll_table *poll_table) 927 { 928 struct ring_buffer_per_cpu *cpu_buffer; 929 struct rb_irq_work *work; 930 931 if (cpu == RING_BUFFER_ALL_CPUS) 932 work = &buffer->irq_work; 933 else { 934 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 935 return -EINVAL; 936 937 cpu_buffer = buffer->buffers[cpu]; 938 work = &cpu_buffer->irq_work; 939 } 940 941 poll_wait(filp, &work->waiters, poll_table); 942 work->waiters_pending = true; 943 /* 944 * There's a tight race between setting the waiters_pending and 945 * checking if the ring buffer is empty. Once the waiters_pending bit 946 * is set, the next event will wake the task up, but we can get stuck 947 * if there's only a single event in. 948 * 949 * FIXME: Ideally, we need a memory barrier on the writer side as well, 950 * but adding a memory barrier to all events will cause too much of a 951 * performance hit in the fast path. We only need a memory barrier when 952 * the buffer goes from empty to having content. But as this race is 953 * extremely small, and it's not a problem if another event comes in, we 954 * will fix it later. 955 */ 956 smp_mb(); 957 958 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 959 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 960 return EPOLLIN | EPOLLRDNORM; 961 return 0; 962 } 963 964 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 965 #define RB_WARN_ON(b, cond) \ 966 ({ \ 967 int _____ret = unlikely(cond); \ 968 if (_____ret) { \ 969 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 970 struct ring_buffer_per_cpu *__b = \ 971 (void *)b; \ 972 atomic_inc(&__b->buffer->record_disabled); \ 973 } else \ 974 atomic_inc(&b->record_disabled); \ 975 WARN_ON(1); \ 976 } \ 977 _____ret; \ 978 }) 979 980 /* Up this if you want to test the TIME_EXTENTS and normalization */ 981 #define DEBUG_SHIFT 0 982 983 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 984 { 985 u64 ts; 986 987 /* Skip retpolines :-( */ 988 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 989 ts = trace_clock_local(); 990 else 991 ts = buffer->clock(); 992 993 /* shift to debug/test normalization and TIME_EXTENTS */ 994 return ts << DEBUG_SHIFT; 995 } 996 997 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu) 998 { 999 u64 time; 1000 1001 preempt_disable_notrace(); 1002 time = rb_time_stamp(buffer); 1003 preempt_enable_notrace(); 1004 1005 return time; 1006 } 1007 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1008 1009 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1010 int cpu, u64 *ts) 1011 { 1012 /* Just stupid testing the normalize function and deltas */ 1013 *ts >>= DEBUG_SHIFT; 1014 } 1015 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1016 1017 /* 1018 * Making the ring buffer lockless makes things tricky. 1019 * Although writes only happen on the CPU that they are on, 1020 * and they only need to worry about interrupts. Reads can 1021 * happen on any CPU. 1022 * 1023 * The reader page is always off the ring buffer, but when the 1024 * reader finishes with a page, it needs to swap its page with 1025 * a new one from the buffer. The reader needs to take from 1026 * the head (writes go to the tail). But if a writer is in overwrite 1027 * mode and wraps, it must push the head page forward. 1028 * 1029 * Here lies the problem. 1030 * 1031 * The reader must be careful to replace only the head page, and 1032 * not another one. As described at the top of the file in the 1033 * ASCII art, the reader sets its old page to point to the next 1034 * page after head. It then sets the page after head to point to 1035 * the old reader page. But if the writer moves the head page 1036 * during this operation, the reader could end up with the tail. 1037 * 1038 * We use cmpxchg to help prevent this race. We also do something 1039 * special with the page before head. We set the LSB to 1. 1040 * 1041 * When the writer must push the page forward, it will clear the 1042 * bit that points to the head page, move the head, and then set 1043 * the bit that points to the new head page. 1044 * 1045 * We also don't want an interrupt coming in and moving the head 1046 * page on another writer. Thus we use the second LSB to catch 1047 * that too. Thus: 1048 * 1049 * head->list->prev->next bit 1 bit 0 1050 * ------- ------- 1051 * Normal page 0 0 1052 * Points to head page 0 1 1053 * New head page 1 0 1054 * 1055 * Note we can not trust the prev pointer of the head page, because: 1056 * 1057 * +----+ +-----+ +-----+ 1058 * | |------>| T |---X--->| N | 1059 * | |<------| | | | 1060 * +----+ +-----+ +-----+ 1061 * ^ ^ | 1062 * | +-----+ | | 1063 * +----------| R |----------+ | 1064 * | |<-----------+ 1065 * +-----+ 1066 * 1067 * Key: ---X--> HEAD flag set in pointer 1068 * T Tail page 1069 * R Reader page 1070 * N Next page 1071 * 1072 * (see __rb_reserve_next() to see where this happens) 1073 * 1074 * What the above shows is that the reader just swapped out 1075 * the reader page with a page in the buffer, but before it 1076 * could make the new header point back to the new page added 1077 * it was preempted by a writer. The writer moved forward onto 1078 * the new page added by the reader and is about to move forward 1079 * again. 1080 * 1081 * You can see, it is legitimate for the previous pointer of 1082 * the head (or any page) not to point back to itself. But only 1083 * temporarily. 1084 */ 1085 1086 #define RB_PAGE_NORMAL 0UL 1087 #define RB_PAGE_HEAD 1UL 1088 #define RB_PAGE_UPDATE 2UL 1089 1090 1091 #define RB_FLAG_MASK 3UL 1092 1093 /* PAGE_MOVED is not part of the mask */ 1094 #define RB_PAGE_MOVED 4UL 1095 1096 /* 1097 * rb_list_head - remove any bit 1098 */ 1099 static struct list_head *rb_list_head(struct list_head *list) 1100 { 1101 unsigned long val = (unsigned long)list; 1102 1103 return (struct list_head *)(val & ~RB_FLAG_MASK); 1104 } 1105 1106 /* 1107 * rb_is_head_page - test if the given page is the head page 1108 * 1109 * Because the reader may move the head_page pointer, we can 1110 * not trust what the head page is (it may be pointing to 1111 * the reader page). But if the next page is a header page, 1112 * its flags will be non zero. 1113 */ 1114 static inline int 1115 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1116 { 1117 unsigned long val; 1118 1119 val = (unsigned long)list->next; 1120 1121 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1122 return RB_PAGE_MOVED; 1123 1124 return val & RB_FLAG_MASK; 1125 } 1126 1127 /* 1128 * rb_is_reader_page 1129 * 1130 * The unique thing about the reader page, is that, if the 1131 * writer is ever on it, the previous pointer never points 1132 * back to the reader page. 1133 */ 1134 static bool rb_is_reader_page(struct buffer_page *page) 1135 { 1136 struct list_head *list = page->list.prev; 1137 1138 return rb_list_head(list->next) != &page->list; 1139 } 1140 1141 /* 1142 * rb_set_list_to_head - set a list_head to be pointing to head. 1143 */ 1144 static void rb_set_list_to_head(struct list_head *list) 1145 { 1146 unsigned long *ptr; 1147 1148 ptr = (unsigned long *)&list->next; 1149 *ptr |= RB_PAGE_HEAD; 1150 *ptr &= ~RB_PAGE_UPDATE; 1151 } 1152 1153 /* 1154 * rb_head_page_activate - sets up head page 1155 */ 1156 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1157 { 1158 struct buffer_page *head; 1159 1160 head = cpu_buffer->head_page; 1161 if (!head) 1162 return; 1163 1164 /* 1165 * Set the previous list pointer to have the HEAD flag. 1166 */ 1167 rb_set_list_to_head(head->list.prev); 1168 } 1169 1170 static void rb_list_head_clear(struct list_head *list) 1171 { 1172 unsigned long *ptr = (unsigned long *)&list->next; 1173 1174 *ptr &= ~RB_FLAG_MASK; 1175 } 1176 1177 /* 1178 * rb_head_page_deactivate - clears head page ptr (for free list) 1179 */ 1180 static void 1181 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1182 { 1183 struct list_head *hd; 1184 1185 /* Go through the whole list and clear any pointers found. */ 1186 rb_list_head_clear(cpu_buffer->pages); 1187 1188 list_for_each(hd, cpu_buffer->pages) 1189 rb_list_head_clear(hd); 1190 } 1191 1192 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1193 struct buffer_page *head, 1194 struct buffer_page *prev, 1195 int old_flag, int new_flag) 1196 { 1197 struct list_head *list; 1198 unsigned long val = (unsigned long)&head->list; 1199 unsigned long ret; 1200 1201 list = &prev->list; 1202 1203 val &= ~RB_FLAG_MASK; 1204 1205 ret = cmpxchg((unsigned long *)&list->next, 1206 val | old_flag, val | new_flag); 1207 1208 /* check if the reader took the page */ 1209 if ((ret & ~RB_FLAG_MASK) != val) 1210 return RB_PAGE_MOVED; 1211 1212 return ret & RB_FLAG_MASK; 1213 } 1214 1215 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1216 struct buffer_page *head, 1217 struct buffer_page *prev, 1218 int old_flag) 1219 { 1220 return rb_head_page_set(cpu_buffer, head, prev, 1221 old_flag, RB_PAGE_UPDATE); 1222 } 1223 1224 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1225 struct buffer_page *head, 1226 struct buffer_page *prev, 1227 int old_flag) 1228 { 1229 return rb_head_page_set(cpu_buffer, head, prev, 1230 old_flag, RB_PAGE_HEAD); 1231 } 1232 1233 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1234 struct buffer_page *head, 1235 struct buffer_page *prev, 1236 int old_flag) 1237 { 1238 return rb_head_page_set(cpu_buffer, head, prev, 1239 old_flag, RB_PAGE_NORMAL); 1240 } 1241 1242 static inline void rb_inc_page(struct buffer_page **bpage) 1243 { 1244 struct list_head *p = rb_list_head((*bpage)->list.next); 1245 1246 *bpage = list_entry(p, struct buffer_page, list); 1247 } 1248 1249 static struct buffer_page * 1250 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1251 { 1252 struct buffer_page *head; 1253 struct buffer_page *page; 1254 struct list_head *list; 1255 int i; 1256 1257 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1258 return NULL; 1259 1260 /* sanity check */ 1261 list = cpu_buffer->pages; 1262 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1263 return NULL; 1264 1265 page = head = cpu_buffer->head_page; 1266 /* 1267 * It is possible that the writer moves the header behind 1268 * where we started, and we miss in one loop. 1269 * A second loop should grab the header, but we'll do 1270 * three loops just because I'm paranoid. 1271 */ 1272 for (i = 0; i < 3; i++) { 1273 do { 1274 if (rb_is_head_page(page, page->list.prev)) { 1275 cpu_buffer->head_page = page; 1276 return page; 1277 } 1278 rb_inc_page(&page); 1279 } while (page != head); 1280 } 1281 1282 RB_WARN_ON(cpu_buffer, 1); 1283 1284 return NULL; 1285 } 1286 1287 static int rb_head_page_replace(struct buffer_page *old, 1288 struct buffer_page *new) 1289 { 1290 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1291 unsigned long val; 1292 unsigned long ret; 1293 1294 val = *ptr & ~RB_FLAG_MASK; 1295 val |= RB_PAGE_HEAD; 1296 1297 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1298 1299 return ret == val; 1300 } 1301 1302 /* 1303 * rb_tail_page_update - move the tail page forward 1304 */ 1305 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1306 struct buffer_page *tail_page, 1307 struct buffer_page *next_page) 1308 { 1309 unsigned long old_entries; 1310 unsigned long old_write; 1311 1312 /* 1313 * The tail page now needs to be moved forward. 1314 * 1315 * We need to reset the tail page, but without messing 1316 * with possible erasing of data brought in by interrupts 1317 * that have moved the tail page and are currently on it. 1318 * 1319 * We add a counter to the write field to denote this. 1320 */ 1321 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1322 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1323 1324 local_inc(&cpu_buffer->pages_touched); 1325 /* 1326 * Just make sure we have seen our old_write and synchronize 1327 * with any interrupts that come in. 1328 */ 1329 barrier(); 1330 1331 /* 1332 * If the tail page is still the same as what we think 1333 * it is, then it is up to us to update the tail 1334 * pointer. 1335 */ 1336 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1337 /* Zero the write counter */ 1338 unsigned long val = old_write & ~RB_WRITE_MASK; 1339 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1340 1341 /* 1342 * This will only succeed if an interrupt did 1343 * not come in and change it. In which case, we 1344 * do not want to modify it. 1345 * 1346 * We add (void) to let the compiler know that we do not care 1347 * about the return value of these functions. We use the 1348 * cmpxchg to only update if an interrupt did not already 1349 * do it for us. If the cmpxchg fails, we don't care. 1350 */ 1351 (void)local_cmpxchg(&next_page->write, old_write, val); 1352 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1353 1354 /* 1355 * No need to worry about races with clearing out the commit. 1356 * it only can increment when a commit takes place. But that 1357 * only happens in the outer most nested commit. 1358 */ 1359 local_set(&next_page->page->commit, 0); 1360 1361 /* Again, either we update tail_page or an interrupt does */ 1362 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1363 } 1364 } 1365 1366 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1367 struct buffer_page *bpage) 1368 { 1369 unsigned long val = (unsigned long)bpage; 1370 1371 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1372 return 1; 1373 1374 return 0; 1375 } 1376 1377 /** 1378 * rb_check_list - make sure a pointer to a list has the last bits zero 1379 */ 1380 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1381 struct list_head *list) 1382 { 1383 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1384 return 1; 1385 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1386 return 1; 1387 return 0; 1388 } 1389 1390 /** 1391 * rb_check_pages - integrity check of buffer pages 1392 * @cpu_buffer: CPU buffer with pages to test 1393 * 1394 * As a safety measure we check to make sure the data pages have not 1395 * been corrupted. 1396 */ 1397 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1398 { 1399 struct list_head *head = cpu_buffer->pages; 1400 struct buffer_page *bpage, *tmp; 1401 1402 /* Reset the head page if it exists */ 1403 if (cpu_buffer->head_page) 1404 rb_set_head_page(cpu_buffer); 1405 1406 rb_head_page_deactivate(cpu_buffer); 1407 1408 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1409 return -1; 1410 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1411 return -1; 1412 1413 if (rb_check_list(cpu_buffer, head)) 1414 return -1; 1415 1416 list_for_each_entry_safe(bpage, tmp, head, list) { 1417 if (RB_WARN_ON(cpu_buffer, 1418 bpage->list.next->prev != &bpage->list)) 1419 return -1; 1420 if (RB_WARN_ON(cpu_buffer, 1421 bpage->list.prev->next != &bpage->list)) 1422 return -1; 1423 if (rb_check_list(cpu_buffer, &bpage->list)) 1424 return -1; 1425 } 1426 1427 rb_head_page_activate(cpu_buffer); 1428 1429 return 0; 1430 } 1431 1432 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1433 long nr_pages, struct list_head *pages) 1434 { 1435 struct buffer_page *bpage, *tmp; 1436 bool user_thread = current->mm != NULL; 1437 gfp_t mflags; 1438 long i; 1439 1440 /* 1441 * Check if the available memory is there first. 1442 * Note, si_mem_available() only gives us a rough estimate of available 1443 * memory. It may not be accurate. But we don't care, we just want 1444 * to prevent doing any allocation when it is obvious that it is 1445 * not going to succeed. 1446 */ 1447 i = si_mem_available(); 1448 if (i < nr_pages) 1449 return -ENOMEM; 1450 1451 /* 1452 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1453 * gracefully without invoking oom-killer and the system is not 1454 * destabilized. 1455 */ 1456 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1457 1458 /* 1459 * If a user thread allocates too much, and si_mem_available() 1460 * reports there's enough memory, even though there is not. 1461 * Make sure the OOM killer kills this thread. This can happen 1462 * even with RETRY_MAYFAIL because another task may be doing 1463 * an allocation after this task has taken all memory. 1464 * This is the task the OOM killer needs to take out during this 1465 * loop, even if it was triggered by an allocation somewhere else. 1466 */ 1467 if (user_thread) 1468 set_current_oom_origin(); 1469 for (i = 0; i < nr_pages; i++) { 1470 struct page *page; 1471 1472 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1473 mflags, cpu_to_node(cpu_buffer->cpu)); 1474 if (!bpage) 1475 goto free_pages; 1476 1477 rb_check_bpage(cpu_buffer, bpage); 1478 1479 list_add(&bpage->list, pages); 1480 1481 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1482 if (!page) 1483 goto free_pages; 1484 bpage->page = page_address(page); 1485 rb_init_page(bpage->page); 1486 1487 if (user_thread && fatal_signal_pending(current)) 1488 goto free_pages; 1489 } 1490 if (user_thread) 1491 clear_current_oom_origin(); 1492 1493 return 0; 1494 1495 free_pages: 1496 list_for_each_entry_safe(bpage, tmp, pages, list) { 1497 list_del_init(&bpage->list); 1498 free_buffer_page(bpage); 1499 } 1500 if (user_thread) 1501 clear_current_oom_origin(); 1502 1503 return -ENOMEM; 1504 } 1505 1506 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1507 unsigned long nr_pages) 1508 { 1509 LIST_HEAD(pages); 1510 1511 WARN_ON(!nr_pages); 1512 1513 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1514 return -ENOMEM; 1515 1516 /* 1517 * The ring buffer page list is a circular list that does not 1518 * start and end with a list head. All page list items point to 1519 * other pages. 1520 */ 1521 cpu_buffer->pages = pages.next; 1522 list_del(&pages); 1523 1524 cpu_buffer->nr_pages = nr_pages; 1525 1526 rb_check_pages(cpu_buffer); 1527 1528 return 0; 1529 } 1530 1531 static struct ring_buffer_per_cpu * 1532 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1533 { 1534 struct ring_buffer_per_cpu *cpu_buffer; 1535 struct buffer_page *bpage; 1536 struct page *page; 1537 int ret; 1538 1539 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1540 GFP_KERNEL, cpu_to_node(cpu)); 1541 if (!cpu_buffer) 1542 return NULL; 1543 1544 cpu_buffer->cpu = cpu; 1545 cpu_buffer->buffer = buffer; 1546 raw_spin_lock_init(&cpu_buffer->reader_lock); 1547 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1548 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1549 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1550 init_completion(&cpu_buffer->update_done); 1551 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1552 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1553 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1554 1555 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1556 GFP_KERNEL, cpu_to_node(cpu)); 1557 if (!bpage) 1558 goto fail_free_buffer; 1559 1560 rb_check_bpage(cpu_buffer, bpage); 1561 1562 cpu_buffer->reader_page = bpage; 1563 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1564 if (!page) 1565 goto fail_free_reader; 1566 bpage->page = page_address(page); 1567 rb_init_page(bpage->page); 1568 1569 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1570 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1571 1572 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1573 if (ret < 0) 1574 goto fail_free_reader; 1575 1576 cpu_buffer->head_page 1577 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1578 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1579 1580 rb_head_page_activate(cpu_buffer); 1581 1582 return cpu_buffer; 1583 1584 fail_free_reader: 1585 free_buffer_page(cpu_buffer->reader_page); 1586 1587 fail_free_buffer: 1588 kfree(cpu_buffer); 1589 return NULL; 1590 } 1591 1592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1593 { 1594 struct list_head *head = cpu_buffer->pages; 1595 struct buffer_page *bpage, *tmp; 1596 1597 free_buffer_page(cpu_buffer->reader_page); 1598 1599 rb_head_page_deactivate(cpu_buffer); 1600 1601 if (head) { 1602 list_for_each_entry_safe(bpage, tmp, head, list) { 1603 list_del_init(&bpage->list); 1604 free_buffer_page(bpage); 1605 } 1606 bpage = list_entry(head, struct buffer_page, list); 1607 free_buffer_page(bpage); 1608 } 1609 1610 kfree(cpu_buffer); 1611 } 1612 1613 /** 1614 * __ring_buffer_alloc - allocate a new ring_buffer 1615 * @size: the size in bytes per cpu that is needed. 1616 * @flags: attributes to set for the ring buffer. 1617 * @key: ring buffer reader_lock_key. 1618 * 1619 * Currently the only flag that is available is the RB_FL_OVERWRITE 1620 * flag. This flag means that the buffer will overwrite old data 1621 * when the buffer wraps. If this flag is not set, the buffer will 1622 * drop data when the tail hits the head. 1623 */ 1624 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1625 struct lock_class_key *key) 1626 { 1627 struct trace_buffer *buffer; 1628 long nr_pages; 1629 int bsize; 1630 int cpu; 1631 int ret; 1632 1633 /* keep it in its own cache line */ 1634 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1635 GFP_KERNEL); 1636 if (!buffer) 1637 return NULL; 1638 1639 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1640 goto fail_free_buffer; 1641 1642 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1643 buffer->flags = flags; 1644 buffer->clock = trace_clock_local; 1645 buffer->reader_lock_key = key; 1646 1647 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1648 init_waitqueue_head(&buffer->irq_work.waiters); 1649 1650 /* need at least two pages */ 1651 if (nr_pages < 2) 1652 nr_pages = 2; 1653 1654 buffer->cpus = nr_cpu_ids; 1655 1656 bsize = sizeof(void *) * nr_cpu_ids; 1657 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1658 GFP_KERNEL); 1659 if (!buffer->buffers) 1660 goto fail_free_cpumask; 1661 1662 cpu = raw_smp_processor_id(); 1663 cpumask_set_cpu(cpu, buffer->cpumask); 1664 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1665 if (!buffer->buffers[cpu]) 1666 goto fail_free_buffers; 1667 1668 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1669 if (ret < 0) 1670 goto fail_free_buffers; 1671 1672 mutex_init(&buffer->mutex); 1673 1674 return buffer; 1675 1676 fail_free_buffers: 1677 for_each_buffer_cpu(buffer, cpu) { 1678 if (buffer->buffers[cpu]) 1679 rb_free_cpu_buffer(buffer->buffers[cpu]); 1680 } 1681 kfree(buffer->buffers); 1682 1683 fail_free_cpumask: 1684 free_cpumask_var(buffer->cpumask); 1685 1686 fail_free_buffer: 1687 kfree(buffer); 1688 return NULL; 1689 } 1690 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1691 1692 /** 1693 * ring_buffer_free - free a ring buffer. 1694 * @buffer: the buffer to free. 1695 */ 1696 void 1697 ring_buffer_free(struct trace_buffer *buffer) 1698 { 1699 int cpu; 1700 1701 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1702 1703 for_each_buffer_cpu(buffer, cpu) 1704 rb_free_cpu_buffer(buffer->buffers[cpu]); 1705 1706 kfree(buffer->buffers); 1707 free_cpumask_var(buffer->cpumask); 1708 1709 kfree(buffer); 1710 } 1711 EXPORT_SYMBOL_GPL(ring_buffer_free); 1712 1713 void ring_buffer_set_clock(struct trace_buffer *buffer, 1714 u64 (*clock)(void)) 1715 { 1716 buffer->clock = clock; 1717 } 1718 1719 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1720 { 1721 buffer->time_stamp_abs = abs; 1722 } 1723 1724 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1725 { 1726 return buffer->time_stamp_abs; 1727 } 1728 1729 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1730 1731 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1732 { 1733 return local_read(&bpage->entries) & RB_WRITE_MASK; 1734 } 1735 1736 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1737 { 1738 return local_read(&bpage->write) & RB_WRITE_MASK; 1739 } 1740 1741 static int 1742 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1743 { 1744 struct list_head *tail_page, *to_remove, *next_page; 1745 struct buffer_page *to_remove_page, *tmp_iter_page; 1746 struct buffer_page *last_page, *first_page; 1747 unsigned long nr_removed; 1748 unsigned long head_bit; 1749 int page_entries; 1750 1751 head_bit = 0; 1752 1753 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1754 atomic_inc(&cpu_buffer->record_disabled); 1755 /* 1756 * We don't race with the readers since we have acquired the reader 1757 * lock. We also don't race with writers after disabling recording. 1758 * This makes it easy to figure out the first and the last page to be 1759 * removed from the list. We unlink all the pages in between including 1760 * the first and last pages. This is done in a busy loop so that we 1761 * lose the least number of traces. 1762 * The pages are freed after we restart recording and unlock readers. 1763 */ 1764 tail_page = &cpu_buffer->tail_page->list; 1765 1766 /* 1767 * tail page might be on reader page, we remove the next page 1768 * from the ring buffer 1769 */ 1770 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1771 tail_page = rb_list_head(tail_page->next); 1772 to_remove = tail_page; 1773 1774 /* start of pages to remove */ 1775 first_page = list_entry(rb_list_head(to_remove->next), 1776 struct buffer_page, list); 1777 1778 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1779 to_remove = rb_list_head(to_remove)->next; 1780 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1781 } 1782 1783 next_page = rb_list_head(to_remove)->next; 1784 1785 /* 1786 * Now we remove all pages between tail_page and next_page. 1787 * Make sure that we have head_bit value preserved for the 1788 * next page 1789 */ 1790 tail_page->next = (struct list_head *)((unsigned long)next_page | 1791 head_bit); 1792 next_page = rb_list_head(next_page); 1793 next_page->prev = tail_page; 1794 1795 /* make sure pages points to a valid page in the ring buffer */ 1796 cpu_buffer->pages = next_page; 1797 1798 /* update head page */ 1799 if (head_bit) 1800 cpu_buffer->head_page = list_entry(next_page, 1801 struct buffer_page, list); 1802 1803 /* 1804 * change read pointer to make sure any read iterators reset 1805 * themselves 1806 */ 1807 cpu_buffer->read = 0; 1808 1809 /* pages are removed, resume tracing and then free the pages */ 1810 atomic_dec(&cpu_buffer->record_disabled); 1811 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1812 1813 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1814 1815 /* last buffer page to remove */ 1816 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1817 list); 1818 tmp_iter_page = first_page; 1819 1820 do { 1821 cond_resched(); 1822 1823 to_remove_page = tmp_iter_page; 1824 rb_inc_page(&tmp_iter_page); 1825 1826 /* update the counters */ 1827 page_entries = rb_page_entries(to_remove_page); 1828 if (page_entries) { 1829 /* 1830 * If something was added to this page, it was full 1831 * since it is not the tail page. So we deduct the 1832 * bytes consumed in ring buffer from here. 1833 * Increment overrun to account for the lost events. 1834 */ 1835 local_add(page_entries, &cpu_buffer->overrun); 1836 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1837 } 1838 1839 /* 1840 * We have already removed references to this list item, just 1841 * free up the buffer_page and its page 1842 */ 1843 free_buffer_page(to_remove_page); 1844 nr_removed--; 1845 1846 } while (to_remove_page != last_page); 1847 1848 RB_WARN_ON(cpu_buffer, nr_removed); 1849 1850 return nr_removed == 0; 1851 } 1852 1853 static int 1854 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1855 { 1856 struct list_head *pages = &cpu_buffer->new_pages; 1857 int retries, success; 1858 1859 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1860 /* 1861 * We are holding the reader lock, so the reader page won't be swapped 1862 * in the ring buffer. Now we are racing with the writer trying to 1863 * move head page and the tail page. 1864 * We are going to adapt the reader page update process where: 1865 * 1. We first splice the start and end of list of new pages between 1866 * the head page and its previous page. 1867 * 2. We cmpxchg the prev_page->next to point from head page to the 1868 * start of new pages list. 1869 * 3. Finally, we update the head->prev to the end of new list. 1870 * 1871 * We will try this process 10 times, to make sure that we don't keep 1872 * spinning. 1873 */ 1874 retries = 10; 1875 success = 0; 1876 while (retries--) { 1877 struct list_head *head_page, *prev_page, *r; 1878 struct list_head *last_page, *first_page; 1879 struct list_head *head_page_with_bit; 1880 1881 head_page = &rb_set_head_page(cpu_buffer)->list; 1882 if (!head_page) 1883 break; 1884 prev_page = head_page->prev; 1885 1886 first_page = pages->next; 1887 last_page = pages->prev; 1888 1889 head_page_with_bit = (struct list_head *) 1890 ((unsigned long)head_page | RB_PAGE_HEAD); 1891 1892 last_page->next = head_page_with_bit; 1893 first_page->prev = prev_page; 1894 1895 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1896 1897 if (r == head_page_with_bit) { 1898 /* 1899 * yay, we replaced the page pointer to our new list, 1900 * now, we just have to update to head page's prev 1901 * pointer to point to end of list 1902 */ 1903 head_page->prev = last_page; 1904 success = 1; 1905 break; 1906 } 1907 } 1908 1909 if (success) 1910 INIT_LIST_HEAD(pages); 1911 /* 1912 * If we weren't successful in adding in new pages, warn and stop 1913 * tracing 1914 */ 1915 RB_WARN_ON(cpu_buffer, !success); 1916 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1917 1918 /* free pages if they weren't inserted */ 1919 if (!success) { 1920 struct buffer_page *bpage, *tmp; 1921 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1922 list) { 1923 list_del_init(&bpage->list); 1924 free_buffer_page(bpage); 1925 } 1926 } 1927 return success; 1928 } 1929 1930 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1931 { 1932 int success; 1933 1934 if (cpu_buffer->nr_pages_to_update > 0) 1935 success = rb_insert_pages(cpu_buffer); 1936 else 1937 success = rb_remove_pages(cpu_buffer, 1938 -cpu_buffer->nr_pages_to_update); 1939 1940 if (success) 1941 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1942 } 1943 1944 static void update_pages_handler(struct work_struct *work) 1945 { 1946 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1947 struct ring_buffer_per_cpu, update_pages_work); 1948 rb_update_pages(cpu_buffer); 1949 complete(&cpu_buffer->update_done); 1950 } 1951 1952 /** 1953 * ring_buffer_resize - resize the ring buffer 1954 * @buffer: the buffer to resize. 1955 * @size: the new size. 1956 * @cpu_id: the cpu buffer to resize 1957 * 1958 * Minimum size is 2 * BUF_PAGE_SIZE. 1959 * 1960 * Returns 0 on success and < 0 on failure. 1961 */ 1962 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 1963 int cpu_id) 1964 { 1965 struct ring_buffer_per_cpu *cpu_buffer; 1966 unsigned long nr_pages; 1967 int cpu, err; 1968 1969 /* 1970 * Always succeed at resizing a non-existent buffer: 1971 */ 1972 if (!buffer) 1973 return 0; 1974 1975 /* Make sure the requested buffer exists */ 1976 if (cpu_id != RING_BUFFER_ALL_CPUS && 1977 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1978 return 0; 1979 1980 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1981 1982 /* we need a minimum of two pages */ 1983 if (nr_pages < 2) 1984 nr_pages = 2; 1985 1986 /* prevent another thread from changing buffer sizes */ 1987 mutex_lock(&buffer->mutex); 1988 1989 1990 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1991 /* 1992 * Don't succeed if resizing is disabled, as a reader might be 1993 * manipulating the ring buffer and is expecting a sane state while 1994 * this is true. 1995 */ 1996 for_each_buffer_cpu(buffer, cpu) { 1997 cpu_buffer = buffer->buffers[cpu]; 1998 if (atomic_read(&cpu_buffer->resize_disabled)) { 1999 err = -EBUSY; 2000 goto out_err_unlock; 2001 } 2002 } 2003 2004 /* calculate the pages to update */ 2005 for_each_buffer_cpu(buffer, cpu) { 2006 cpu_buffer = buffer->buffers[cpu]; 2007 2008 cpu_buffer->nr_pages_to_update = nr_pages - 2009 cpu_buffer->nr_pages; 2010 /* 2011 * nothing more to do for removing pages or no update 2012 */ 2013 if (cpu_buffer->nr_pages_to_update <= 0) 2014 continue; 2015 /* 2016 * to add pages, make sure all new pages can be 2017 * allocated without receiving ENOMEM 2018 */ 2019 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2020 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2021 &cpu_buffer->new_pages)) { 2022 /* not enough memory for new pages */ 2023 err = -ENOMEM; 2024 goto out_err; 2025 } 2026 } 2027 2028 get_online_cpus(); 2029 /* 2030 * Fire off all the required work handlers 2031 * We can't schedule on offline CPUs, but it's not necessary 2032 * since we can change their buffer sizes without any race. 2033 */ 2034 for_each_buffer_cpu(buffer, cpu) { 2035 cpu_buffer = buffer->buffers[cpu]; 2036 if (!cpu_buffer->nr_pages_to_update) 2037 continue; 2038 2039 /* Can't run something on an offline CPU. */ 2040 if (!cpu_online(cpu)) { 2041 rb_update_pages(cpu_buffer); 2042 cpu_buffer->nr_pages_to_update = 0; 2043 } else { 2044 schedule_work_on(cpu, 2045 &cpu_buffer->update_pages_work); 2046 } 2047 } 2048 2049 /* wait for all the updates to complete */ 2050 for_each_buffer_cpu(buffer, cpu) { 2051 cpu_buffer = buffer->buffers[cpu]; 2052 if (!cpu_buffer->nr_pages_to_update) 2053 continue; 2054 2055 if (cpu_online(cpu)) 2056 wait_for_completion(&cpu_buffer->update_done); 2057 cpu_buffer->nr_pages_to_update = 0; 2058 } 2059 2060 put_online_cpus(); 2061 } else { 2062 cpu_buffer = buffer->buffers[cpu_id]; 2063 2064 if (nr_pages == cpu_buffer->nr_pages) 2065 goto out; 2066 2067 /* 2068 * Don't succeed if resizing is disabled, as a reader might be 2069 * manipulating the ring buffer and is expecting a sane state while 2070 * this is true. 2071 */ 2072 if (atomic_read(&cpu_buffer->resize_disabled)) { 2073 err = -EBUSY; 2074 goto out_err_unlock; 2075 } 2076 2077 cpu_buffer->nr_pages_to_update = nr_pages - 2078 cpu_buffer->nr_pages; 2079 2080 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2081 if (cpu_buffer->nr_pages_to_update > 0 && 2082 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2083 &cpu_buffer->new_pages)) { 2084 err = -ENOMEM; 2085 goto out_err; 2086 } 2087 2088 get_online_cpus(); 2089 2090 /* Can't run something on an offline CPU. */ 2091 if (!cpu_online(cpu_id)) 2092 rb_update_pages(cpu_buffer); 2093 else { 2094 schedule_work_on(cpu_id, 2095 &cpu_buffer->update_pages_work); 2096 wait_for_completion(&cpu_buffer->update_done); 2097 } 2098 2099 cpu_buffer->nr_pages_to_update = 0; 2100 put_online_cpus(); 2101 } 2102 2103 out: 2104 /* 2105 * The ring buffer resize can happen with the ring buffer 2106 * enabled, so that the update disturbs the tracing as little 2107 * as possible. But if the buffer is disabled, we do not need 2108 * to worry about that, and we can take the time to verify 2109 * that the buffer is not corrupt. 2110 */ 2111 if (atomic_read(&buffer->record_disabled)) { 2112 atomic_inc(&buffer->record_disabled); 2113 /* 2114 * Even though the buffer was disabled, we must make sure 2115 * that it is truly disabled before calling rb_check_pages. 2116 * There could have been a race between checking 2117 * record_disable and incrementing it. 2118 */ 2119 synchronize_rcu(); 2120 for_each_buffer_cpu(buffer, cpu) { 2121 cpu_buffer = buffer->buffers[cpu]; 2122 rb_check_pages(cpu_buffer); 2123 } 2124 atomic_dec(&buffer->record_disabled); 2125 } 2126 2127 mutex_unlock(&buffer->mutex); 2128 return 0; 2129 2130 out_err: 2131 for_each_buffer_cpu(buffer, cpu) { 2132 struct buffer_page *bpage, *tmp; 2133 2134 cpu_buffer = buffer->buffers[cpu]; 2135 cpu_buffer->nr_pages_to_update = 0; 2136 2137 if (list_empty(&cpu_buffer->new_pages)) 2138 continue; 2139 2140 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2141 list) { 2142 list_del_init(&bpage->list); 2143 free_buffer_page(bpage); 2144 } 2145 } 2146 out_err_unlock: 2147 mutex_unlock(&buffer->mutex); 2148 return err; 2149 } 2150 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2151 2152 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2153 { 2154 mutex_lock(&buffer->mutex); 2155 if (val) 2156 buffer->flags |= RB_FL_OVERWRITE; 2157 else 2158 buffer->flags &= ~RB_FL_OVERWRITE; 2159 mutex_unlock(&buffer->mutex); 2160 } 2161 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2162 2163 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2164 { 2165 return bpage->page->data + index; 2166 } 2167 2168 static __always_inline struct ring_buffer_event * 2169 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2170 { 2171 return __rb_page_index(cpu_buffer->reader_page, 2172 cpu_buffer->reader_page->read); 2173 } 2174 2175 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2176 { 2177 return local_read(&bpage->page->commit); 2178 } 2179 2180 static struct ring_buffer_event * 2181 rb_iter_head_event(struct ring_buffer_iter *iter) 2182 { 2183 struct ring_buffer_event *event; 2184 struct buffer_page *iter_head_page = iter->head_page; 2185 unsigned long commit; 2186 unsigned length; 2187 2188 if (iter->head != iter->next_event) 2189 return iter->event; 2190 2191 /* 2192 * When the writer goes across pages, it issues a cmpxchg which 2193 * is a mb(), which will synchronize with the rmb here. 2194 * (see rb_tail_page_update() and __rb_reserve_next()) 2195 */ 2196 commit = rb_page_commit(iter_head_page); 2197 smp_rmb(); 2198 event = __rb_page_index(iter_head_page, iter->head); 2199 length = rb_event_length(event); 2200 2201 /* 2202 * READ_ONCE() doesn't work on functions and we don't want the 2203 * compiler doing any crazy optimizations with length. 2204 */ 2205 barrier(); 2206 2207 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2208 /* Writer corrupted the read? */ 2209 goto reset; 2210 2211 memcpy(iter->event, event, length); 2212 /* 2213 * If the page stamp is still the same after this rmb() then the 2214 * event was safely copied without the writer entering the page. 2215 */ 2216 smp_rmb(); 2217 2218 /* Make sure the page didn't change since we read this */ 2219 if (iter->page_stamp != iter_head_page->page->time_stamp || 2220 commit > rb_page_commit(iter_head_page)) 2221 goto reset; 2222 2223 iter->next_event = iter->head + length; 2224 return iter->event; 2225 reset: 2226 /* Reset to the beginning */ 2227 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2228 iter->head = 0; 2229 iter->next_event = 0; 2230 iter->missed_events = 1; 2231 return NULL; 2232 } 2233 2234 /* Size is determined by what has been committed */ 2235 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2236 { 2237 return rb_page_commit(bpage); 2238 } 2239 2240 static __always_inline unsigned 2241 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2242 { 2243 return rb_page_commit(cpu_buffer->commit_page); 2244 } 2245 2246 static __always_inline unsigned 2247 rb_event_index(struct ring_buffer_event *event) 2248 { 2249 unsigned long addr = (unsigned long)event; 2250 2251 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2252 } 2253 2254 static void rb_inc_iter(struct ring_buffer_iter *iter) 2255 { 2256 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2257 2258 /* 2259 * The iterator could be on the reader page (it starts there). 2260 * But the head could have moved, since the reader was 2261 * found. Check for this case and assign the iterator 2262 * to the head page instead of next. 2263 */ 2264 if (iter->head_page == cpu_buffer->reader_page) 2265 iter->head_page = rb_set_head_page(cpu_buffer); 2266 else 2267 rb_inc_page(&iter->head_page); 2268 2269 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2270 iter->head = 0; 2271 iter->next_event = 0; 2272 } 2273 2274 /* 2275 * rb_handle_head_page - writer hit the head page 2276 * 2277 * Returns: +1 to retry page 2278 * 0 to continue 2279 * -1 on error 2280 */ 2281 static int 2282 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2283 struct buffer_page *tail_page, 2284 struct buffer_page *next_page) 2285 { 2286 struct buffer_page *new_head; 2287 int entries; 2288 int type; 2289 int ret; 2290 2291 entries = rb_page_entries(next_page); 2292 2293 /* 2294 * The hard part is here. We need to move the head 2295 * forward, and protect against both readers on 2296 * other CPUs and writers coming in via interrupts. 2297 */ 2298 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2299 RB_PAGE_HEAD); 2300 2301 /* 2302 * type can be one of four: 2303 * NORMAL - an interrupt already moved it for us 2304 * HEAD - we are the first to get here. 2305 * UPDATE - we are the interrupt interrupting 2306 * a current move. 2307 * MOVED - a reader on another CPU moved the next 2308 * pointer to its reader page. Give up 2309 * and try again. 2310 */ 2311 2312 switch (type) { 2313 case RB_PAGE_HEAD: 2314 /* 2315 * We changed the head to UPDATE, thus 2316 * it is our responsibility to update 2317 * the counters. 2318 */ 2319 local_add(entries, &cpu_buffer->overrun); 2320 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2321 2322 /* 2323 * The entries will be zeroed out when we move the 2324 * tail page. 2325 */ 2326 2327 /* still more to do */ 2328 break; 2329 2330 case RB_PAGE_UPDATE: 2331 /* 2332 * This is an interrupt that interrupt the 2333 * previous update. Still more to do. 2334 */ 2335 break; 2336 case RB_PAGE_NORMAL: 2337 /* 2338 * An interrupt came in before the update 2339 * and processed this for us. 2340 * Nothing left to do. 2341 */ 2342 return 1; 2343 case RB_PAGE_MOVED: 2344 /* 2345 * The reader is on another CPU and just did 2346 * a swap with our next_page. 2347 * Try again. 2348 */ 2349 return 1; 2350 default: 2351 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2352 return -1; 2353 } 2354 2355 /* 2356 * Now that we are here, the old head pointer is 2357 * set to UPDATE. This will keep the reader from 2358 * swapping the head page with the reader page. 2359 * The reader (on another CPU) will spin till 2360 * we are finished. 2361 * 2362 * We just need to protect against interrupts 2363 * doing the job. We will set the next pointer 2364 * to HEAD. After that, we set the old pointer 2365 * to NORMAL, but only if it was HEAD before. 2366 * otherwise we are an interrupt, and only 2367 * want the outer most commit to reset it. 2368 */ 2369 new_head = next_page; 2370 rb_inc_page(&new_head); 2371 2372 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2373 RB_PAGE_NORMAL); 2374 2375 /* 2376 * Valid returns are: 2377 * HEAD - an interrupt came in and already set it. 2378 * NORMAL - One of two things: 2379 * 1) We really set it. 2380 * 2) A bunch of interrupts came in and moved 2381 * the page forward again. 2382 */ 2383 switch (ret) { 2384 case RB_PAGE_HEAD: 2385 case RB_PAGE_NORMAL: 2386 /* OK */ 2387 break; 2388 default: 2389 RB_WARN_ON(cpu_buffer, 1); 2390 return -1; 2391 } 2392 2393 /* 2394 * It is possible that an interrupt came in, 2395 * set the head up, then more interrupts came in 2396 * and moved it again. When we get back here, 2397 * the page would have been set to NORMAL but we 2398 * just set it back to HEAD. 2399 * 2400 * How do you detect this? Well, if that happened 2401 * the tail page would have moved. 2402 */ 2403 if (ret == RB_PAGE_NORMAL) { 2404 struct buffer_page *buffer_tail_page; 2405 2406 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2407 /* 2408 * If the tail had moved passed next, then we need 2409 * to reset the pointer. 2410 */ 2411 if (buffer_tail_page != tail_page && 2412 buffer_tail_page != next_page) 2413 rb_head_page_set_normal(cpu_buffer, new_head, 2414 next_page, 2415 RB_PAGE_HEAD); 2416 } 2417 2418 /* 2419 * If this was the outer most commit (the one that 2420 * changed the original pointer from HEAD to UPDATE), 2421 * then it is up to us to reset it to NORMAL. 2422 */ 2423 if (type == RB_PAGE_HEAD) { 2424 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2425 tail_page, 2426 RB_PAGE_UPDATE); 2427 if (RB_WARN_ON(cpu_buffer, 2428 ret != RB_PAGE_UPDATE)) 2429 return -1; 2430 } 2431 2432 return 0; 2433 } 2434 2435 static inline void 2436 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2437 unsigned long tail, struct rb_event_info *info) 2438 { 2439 struct buffer_page *tail_page = info->tail_page; 2440 struct ring_buffer_event *event; 2441 unsigned long length = info->length; 2442 2443 /* 2444 * Only the event that crossed the page boundary 2445 * must fill the old tail_page with padding. 2446 */ 2447 if (tail >= BUF_PAGE_SIZE) { 2448 /* 2449 * If the page was filled, then we still need 2450 * to update the real_end. Reset it to zero 2451 * and the reader will ignore it. 2452 */ 2453 if (tail == BUF_PAGE_SIZE) 2454 tail_page->real_end = 0; 2455 2456 local_sub(length, &tail_page->write); 2457 return; 2458 } 2459 2460 event = __rb_page_index(tail_page, tail); 2461 2462 /* account for padding bytes */ 2463 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2464 2465 /* 2466 * Save the original length to the meta data. 2467 * This will be used by the reader to add lost event 2468 * counter. 2469 */ 2470 tail_page->real_end = tail; 2471 2472 /* 2473 * If this event is bigger than the minimum size, then 2474 * we need to be careful that we don't subtract the 2475 * write counter enough to allow another writer to slip 2476 * in on this page. 2477 * We put in a discarded commit instead, to make sure 2478 * that this space is not used again. 2479 * 2480 * If we are less than the minimum size, we don't need to 2481 * worry about it. 2482 */ 2483 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2484 /* No room for any events */ 2485 2486 /* Mark the rest of the page with padding */ 2487 rb_event_set_padding(event); 2488 2489 /* Set the write back to the previous setting */ 2490 local_sub(length, &tail_page->write); 2491 return; 2492 } 2493 2494 /* Put in a discarded event */ 2495 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2496 event->type_len = RINGBUF_TYPE_PADDING; 2497 /* time delta must be non zero */ 2498 event->time_delta = 1; 2499 2500 /* Set write to end of buffer */ 2501 length = (tail + length) - BUF_PAGE_SIZE; 2502 local_sub(length, &tail_page->write); 2503 } 2504 2505 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2506 2507 /* 2508 * This is the slow path, force gcc not to inline it. 2509 */ 2510 static noinline struct ring_buffer_event * 2511 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2512 unsigned long tail, struct rb_event_info *info) 2513 { 2514 struct buffer_page *tail_page = info->tail_page; 2515 struct buffer_page *commit_page = cpu_buffer->commit_page; 2516 struct trace_buffer *buffer = cpu_buffer->buffer; 2517 struct buffer_page *next_page; 2518 int ret; 2519 2520 next_page = tail_page; 2521 2522 rb_inc_page(&next_page); 2523 2524 /* 2525 * If for some reason, we had an interrupt storm that made 2526 * it all the way around the buffer, bail, and warn 2527 * about it. 2528 */ 2529 if (unlikely(next_page == commit_page)) { 2530 local_inc(&cpu_buffer->commit_overrun); 2531 goto out_reset; 2532 } 2533 2534 /* 2535 * This is where the fun begins! 2536 * 2537 * We are fighting against races between a reader that 2538 * could be on another CPU trying to swap its reader 2539 * page with the buffer head. 2540 * 2541 * We are also fighting against interrupts coming in and 2542 * moving the head or tail on us as well. 2543 * 2544 * If the next page is the head page then we have filled 2545 * the buffer, unless the commit page is still on the 2546 * reader page. 2547 */ 2548 if (rb_is_head_page(next_page, &tail_page->list)) { 2549 2550 /* 2551 * If the commit is not on the reader page, then 2552 * move the header page. 2553 */ 2554 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2555 /* 2556 * If we are not in overwrite mode, 2557 * this is easy, just stop here. 2558 */ 2559 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2560 local_inc(&cpu_buffer->dropped_events); 2561 goto out_reset; 2562 } 2563 2564 ret = rb_handle_head_page(cpu_buffer, 2565 tail_page, 2566 next_page); 2567 if (ret < 0) 2568 goto out_reset; 2569 if (ret) 2570 goto out_again; 2571 } else { 2572 /* 2573 * We need to be careful here too. The 2574 * commit page could still be on the reader 2575 * page. We could have a small buffer, and 2576 * have filled up the buffer with events 2577 * from interrupts and such, and wrapped. 2578 * 2579 * Note, if the tail page is also on the 2580 * reader_page, we let it move out. 2581 */ 2582 if (unlikely((cpu_buffer->commit_page != 2583 cpu_buffer->tail_page) && 2584 (cpu_buffer->commit_page == 2585 cpu_buffer->reader_page))) { 2586 local_inc(&cpu_buffer->commit_overrun); 2587 goto out_reset; 2588 } 2589 } 2590 } 2591 2592 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2593 2594 out_again: 2595 2596 rb_reset_tail(cpu_buffer, tail, info); 2597 2598 /* Commit what we have for now. */ 2599 rb_end_commit(cpu_buffer); 2600 /* rb_end_commit() decs committing */ 2601 local_inc(&cpu_buffer->committing); 2602 2603 /* fail and let the caller try again */ 2604 return ERR_PTR(-EAGAIN); 2605 2606 out_reset: 2607 /* reset write */ 2608 rb_reset_tail(cpu_buffer, tail, info); 2609 2610 return NULL; 2611 } 2612 2613 /* Slow path */ 2614 static struct ring_buffer_event * 2615 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2616 { 2617 if (abs) 2618 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2619 else 2620 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2621 2622 /* Not the first event on the page, or not delta? */ 2623 if (abs || rb_event_index(event)) { 2624 event->time_delta = delta & TS_MASK; 2625 event->array[0] = delta >> TS_SHIFT; 2626 } else { 2627 /* nope, just zero it */ 2628 event->time_delta = 0; 2629 event->array[0] = 0; 2630 } 2631 2632 return skip_time_extend(event); 2633 } 2634 2635 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2636 static inline bool sched_clock_stable(void) 2637 { 2638 return true; 2639 } 2640 #endif 2641 2642 static void 2643 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2644 struct rb_event_info *info) 2645 { 2646 u64 write_stamp; 2647 2648 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2649 (unsigned long long)info->delta, 2650 (unsigned long long)info->ts, 2651 (unsigned long long)info->before, 2652 (unsigned long long)info->after, 2653 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2654 sched_clock_stable() ? "" : 2655 "If you just came from a suspend/resume,\n" 2656 "please switch to the trace global clock:\n" 2657 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2658 "or add trace_clock=global to the kernel command line\n"); 2659 } 2660 2661 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2662 struct ring_buffer_event **event, 2663 struct rb_event_info *info, 2664 u64 *delta, 2665 unsigned int *length) 2666 { 2667 bool abs = info->add_timestamp & 2668 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2669 2670 if (unlikely(info->delta > (1ULL << 59))) { 2671 /* did the clock go backwards */ 2672 if (info->before == info->after && info->before > info->ts) { 2673 /* not interrupted */ 2674 static int once; 2675 2676 /* 2677 * This is possible with a recalibrating of the TSC. 2678 * Do not produce a call stack, but just report it. 2679 */ 2680 if (!once) { 2681 once++; 2682 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2683 info->before, info->ts); 2684 } 2685 } else 2686 rb_check_timestamp(cpu_buffer, info); 2687 if (!abs) 2688 info->delta = 0; 2689 } 2690 *event = rb_add_time_stamp(*event, info->delta, abs); 2691 *length -= RB_LEN_TIME_EXTEND; 2692 *delta = 0; 2693 } 2694 2695 /** 2696 * rb_update_event - update event type and data 2697 * @cpu_buffer: The per cpu buffer of the @event 2698 * @event: the event to update 2699 * @info: The info to update the @event with (contains length and delta) 2700 * 2701 * Update the type and data fields of the @event. The length 2702 * is the actual size that is written to the ring buffer, 2703 * and with this, we can determine what to place into the 2704 * data field. 2705 */ 2706 static void 2707 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2708 struct ring_buffer_event *event, 2709 struct rb_event_info *info) 2710 { 2711 unsigned length = info->length; 2712 u64 delta = info->delta; 2713 2714 /* 2715 * If we need to add a timestamp, then we 2716 * add it to the start of the reserved space. 2717 */ 2718 if (unlikely(info->add_timestamp)) 2719 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2720 2721 event->time_delta = delta; 2722 length -= RB_EVNT_HDR_SIZE; 2723 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2724 event->type_len = 0; 2725 event->array[0] = length; 2726 } else 2727 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2728 } 2729 2730 static unsigned rb_calculate_event_length(unsigned length) 2731 { 2732 struct ring_buffer_event event; /* Used only for sizeof array */ 2733 2734 /* zero length can cause confusions */ 2735 if (!length) 2736 length++; 2737 2738 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2739 length += sizeof(event.array[0]); 2740 2741 length += RB_EVNT_HDR_SIZE; 2742 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2743 2744 /* 2745 * In case the time delta is larger than the 27 bits for it 2746 * in the header, we need to add a timestamp. If another 2747 * event comes in when trying to discard this one to increase 2748 * the length, then the timestamp will be added in the allocated 2749 * space of this event. If length is bigger than the size needed 2750 * for the TIME_EXTEND, then padding has to be used. The events 2751 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2752 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2753 * As length is a multiple of 4, we only need to worry if it 2754 * is 12 (RB_LEN_TIME_EXTEND + 4). 2755 */ 2756 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2757 length += RB_ALIGNMENT; 2758 2759 return length; 2760 } 2761 2762 static u64 rb_time_delta(struct ring_buffer_event *event) 2763 { 2764 switch (event->type_len) { 2765 case RINGBUF_TYPE_PADDING: 2766 return 0; 2767 2768 case RINGBUF_TYPE_TIME_EXTEND: 2769 return ring_buffer_event_time_stamp(event); 2770 2771 case RINGBUF_TYPE_TIME_STAMP: 2772 return 0; 2773 2774 case RINGBUF_TYPE_DATA: 2775 return event->time_delta; 2776 default: 2777 return 0; 2778 } 2779 } 2780 2781 static inline int 2782 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2783 struct ring_buffer_event *event) 2784 { 2785 unsigned long new_index, old_index; 2786 struct buffer_page *bpage; 2787 unsigned long index; 2788 unsigned long addr; 2789 u64 write_stamp; 2790 u64 delta; 2791 2792 new_index = rb_event_index(event); 2793 old_index = new_index + rb_event_ts_length(event); 2794 addr = (unsigned long)event; 2795 addr &= PAGE_MASK; 2796 2797 bpage = READ_ONCE(cpu_buffer->tail_page); 2798 2799 delta = rb_time_delta(event); 2800 2801 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 2802 return 0; 2803 2804 /* Make sure the write stamp is read before testing the location */ 2805 barrier(); 2806 2807 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2808 unsigned long write_mask = 2809 local_read(&bpage->write) & ~RB_WRITE_MASK; 2810 unsigned long event_length = rb_event_length(event); 2811 2812 /* Something came in, can't discard */ 2813 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 2814 write_stamp, write_stamp - delta)) 2815 return 0; 2816 2817 /* 2818 * It's possible that the event time delta is zero 2819 * (has the same time stamp as the previous event) 2820 * in which case write_stamp and before_stamp could 2821 * be the same. In such a case, force before_stamp 2822 * to be different than write_stamp. It doesn't 2823 * matter what it is, as long as its different. 2824 */ 2825 if (!delta) 2826 rb_time_set(&cpu_buffer->before_stamp, 0); 2827 2828 /* 2829 * If an event were to come in now, it would see that the 2830 * write_stamp and the before_stamp are different, and assume 2831 * that this event just added itself before updating 2832 * the write stamp. The interrupting event will fix the 2833 * write stamp for us, and use the before stamp as its delta. 2834 */ 2835 2836 /* 2837 * This is on the tail page. It is possible that 2838 * a write could come in and move the tail page 2839 * and write to the next page. That is fine 2840 * because we just shorten what is on this page. 2841 */ 2842 old_index += write_mask; 2843 new_index += write_mask; 2844 index = local_cmpxchg(&bpage->write, old_index, new_index); 2845 if (index == old_index) { 2846 /* update counters */ 2847 local_sub(event_length, &cpu_buffer->entries_bytes); 2848 return 1; 2849 } 2850 } 2851 2852 /* could not discard */ 2853 return 0; 2854 } 2855 2856 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2857 { 2858 local_inc(&cpu_buffer->committing); 2859 local_inc(&cpu_buffer->commits); 2860 } 2861 2862 static __always_inline void 2863 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2864 { 2865 unsigned long max_count; 2866 2867 /* 2868 * We only race with interrupts and NMIs on this CPU. 2869 * If we own the commit event, then we can commit 2870 * all others that interrupted us, since the interruptions 2871 * are in stack format (they finish before they come 2872 * back to us). This allows us to do a simple loop to 2873 * assign the commit to the tail. 2874 */ 2875 again: 2876 max_count = cpu_buffer->nr_pages * 100; 2877 2878 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2879 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2880 return; 2881 if (RB_WARN_ON(cpu_buffer, 2882 rb_is_reader_page(cpu_buffer->tail_page))) 2883 return; 2884 local_set(&cpu_buffer->commit_page->page->commit, 2885 rb_page_write(cpu_buffer->commit_page)); 2886 rb_inc_page(&cpu_buffer->commit_page); 2887 /* add barrier to keep gcc from optimizing too much */ 2888 barrier(); 2889 } 2890 while (rb_commit_index(cpu_buffer) != 2891 rb_page_write(cpu_buffer->commit_page)) { 2892 2893 local_set(&cpu_buffer->commit_page->page->commit, 2894 rb_page_write(cpu_buffer->commit_page)); 2895 RB_WARN_ON(cpu_buffer, 2896 local_read(&cpu_buffer->commit_page->page->commit) & 2897 ~RB_WRITE_MASK); 2898 barrier(); 2899 } 2900 2901 /* again, keep gcc from optimizing */ 2902 barrier(); 2903 2904 /* 2905 * If an interrupt came in just after the first while loop 2906 * and pushed the tail page forward, we will be left with 2907 * a dangling commit that will never go forward. 2908 */ 2909 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2910 goto again; 2911 } 2912 2913 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2914 { 2915 unsigned long commits; 2916 2917 if (RB_WARN_ON(cpu_buffer, 2918 !local_read(&cpu_buffer->committing))) 2919 return; 2920 2921 again: 2922 commits = local_read(&cpu_buffer->commits); 2923 /* synchronize with interrupts */ 2924 barrier(); 2925 if (local_read(&cpu_buffer->committing) == 1) 2926 rb_set_commit_to_write(cpu_buffer); 2927 2928 local_dec(&cpu_buffer->committing); 2929 2930 /* synchronize with interrupts */ 2931 barrier(); 2932 2933 /* 2934 * Need to account for interrupts coming in between the 2935 * updating of the commit page and the clearing of the 2936 * committing counter. 2937 */ 2938 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2939 !local_read(&cpu_buffer->committing)) { 2940 local_inc(&cpu_buffer->committing); 2941 goto again; 2942 } 2943 } 2944 2945 static inline void rb_event_discard(struct ring_buffer_event *event) 2946 { 2947 if (extended_time(event)) 2948 event = skip_time_extend(event); 2949 2950 /* array[0] holds the actual length for the discarded event */ 2951 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2952 event->type_len = RINGBUF_TYPE_PADDING; 2953 /* time delta must be non zero */ 2954 if (!event->time_delta) 2955 event->time_delta = 1; 2956 } 2957 2958 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2959 struct ring_buffer_event *event) 2960 { 2961 local_inc(&cpu_buffer->entries); 2962 rb_end_commit(cpu_buffer); 2963 } 2964 2965 static __always_inline void 2966 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2967 { 2968 size_t nr_pages; 2969 size_t dirty; 2970 size_t full; 2971 2972 if (buffer->irq_work.waiters_pending) { 2973 buffer->irq_work.waiters_pending = false; 2974 /* irq_work_queue() supplies it's own memory barriers */ 2975 irq_work_queue(&buffer->irq_work.work); 2976 } 2977 2978 if (cpu_buffer->irq_work.waiters_pending) { 2979 cpu_buffer->irq_work.waiters_pending = false; 2980 /* irq_work_queue() supplies it's own memory barriers */ 2981 irq_work_queue(&cpu_buffer->irq_work.work); 2982 } 2983 2984 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2985 return; 2986 2987 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2988 return; 2989 2990 if (!cpu_buffer->irq_work.full_waiters_pending) 2991 return; 2992 2993 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2994 2995 full = cpu_buffer->shortest_full; 2996 nr_pages = cpu_buffer->nr_pages; 2997 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2998 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2999 return; 3000 3001 cpu_buffer->irq_work.wakeup_full = true; 3002 cpu_buffer->irq_work.full_waiters_pending = false; 3003 /* irq_work_queue() supplies it's own memory barriers */ 3004 irq_work_queue(&cpu_buffer->irq_work.work); 3005 } 3006 3007 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3008 # define do_ring_buffer_record_recursion() \ 3009 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3010 #else 3011 # define do_ring_buffer_record_recursion() do { } while (0) 3012 #endif 3013 3014 /* 3015 * The lock and unlock are done within a preempt disable section. 3016 * The current_context per_cpu variable can only be modified 3017 * by the current task between lock and unlock. But it can 3018 * be modified more than once via an interrupt. To pass this 3019 * information from the lock to the unlock without having to 3020 * access the 'in_interrupt()' functions again (which do show 3021 * a bit of overhead in something as critical as function tracing, 3022 * we use a bitmask trick. 3023 * 3024 * bit 1 = NMI context 3025 * bit 2 = IRQ context 3026 * bit 3 = SoftIRQ context 3027 * bit 4 = normal context. 3028 * 3029 * This works because this is the order of contexts that can 3030 * preempt other contexts. A SoftIRQ never preempts an IRQ 3031 * context. 3032 * 3033 * When the context is determined, the corresponding bit is 3034 * checked and set (if it was set, then a recursion of that context 3035 * happened). 3036 * 3037 * On unlock, we need to clear this bit. To do so, just subtract 3038 * 1 from the current_context and AND it to itself. 3039 * 3040 * (binary) 3041 * 101 - 1 = 100 3042 * 101 & 100 = 100 (clearing bit zero) 3043 * 3044 * 1010 - 1 = 1001 3045 * 1010 & 1001 = 1000 (clearing bit 1) 3046 * 3047 * The least significant bit can be cleared this way, and it 3048 * just so happens that it is the same bit corresponding to 3049 * the current context. 3050 * 3051 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3052 * is set when a recursion is detected at the current context, and if 3053 * the TRANSITION bit is already set, it will fail the recursion. 3054 * This is needed because there's a lag between the changing of 3055 * interrupt context and updating the preempt count. In this case, 3056 * a false positive will be found. To handle this, one extra recursion 3057 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3058 * bit is already set, then it is considered a recursion and the function 3059 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3060 * 3061 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3062 * to be cleared. Even if it wasn't the context that set it. That is, 3063 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3064 * is called before preempt_count() is updated, since the check will 3065 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3066 * NMI then comes in, it will set the NMI bit, but when the NMI code 3067 * does the trace_recursive_unlock() it will clear the TRANSTION bit 3068 * and leave the NMI bit set. But this is fine, because the interrupt 3069 * code that set the TRANSITION bit will then clear the NMI bit when it 3070 * calls trace_recursive_unlock(). If another NMI comes in, it will 3071 * set the TRANSITION bit and continue. 3072 * 3073 * Note: The TRANSITION bit only handles a single transition between context. 3074 */ 3075 3076 static __always_inline int 3077 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3078 { 3079 unsigned int val = cpu_buffer->current_context; 3080 unsigned long pc = preempt_count(); 3081 int bit; 3082 3083 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 3084 bit = RB_CTX_NORMAL; 3085 else 3086 bit = pc & NMI_MASK ? RB_CTX_NMI : 3087 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 3088 3089 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3090 /* 3091 * It is possible that this was called by transitioning 3092 * between interrupt context, and preempt_count() has not 3093 * been updated yet. In this case, use the TRANSITION bit. 3094 */ 3095 bit = RB_CTX_TRANSITION; 3096 if (val & (1 << (bit + cpu_buffer->nest))) { 3097 do_ring_buffer_record_recursion(); 3098 return 1; 3099 } 3100 } 3101 3102 val |= (1 << (bit + cpu_buffer->nest)); 3103 cpu_buffer->current_context = val; 3104 3105 return 0; 3106 } 3107 3108 static __always_inline void 3109 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3110 { 3111 cpu_buffer->current_context &= 3112 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3113 } 3114 3115 /* The recursive locking above uses 5 bits */ 3116 #define NESTED_BITS 5 3117 3118 /** 3119 * ring_buffer_nest_start - Allow to trace while nested 3120 * @buffer: The ring buffer to modify 3121 * 3122 * The ring buffer has a safety mechanism to prevent recursion. 3123 * But there may be a case where a trace needs to be done while 3124 * tracing something else. In this case, calling this function 3125 * will allow this function to nest within a currently active 3126 * ring_buffer_lock_reserve(). 3127 * 3128 * Call this function before calling another ring_buffer_lock_reserve() and 3129 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3130 */ 3131 void ring_buffer_nest_start(struct trace_buffer *buffer) 3132 { 3133 struct ring_buffer_per_cpu *cpu_buffer; 3134 int cpu; 3135 3136 /* Enabled by ring_buffer_nest_end() */ 3137 preempt_disable_notrace(); 3138 cpu = raw_smp_processor_id(); 3139 cpu_buffer = buffer->buffers[cpu]; 3140 /* This is the shift value for the above recursive locking */ 3141 cpu_buffer->nest += NESTED_BITS; 3142 } 3143 3144 /** 3145 * ring_buffer_nest_end - Allow to trace while nested 3146 * @buffer: The ring buffer to modify 3147 * 3148 * Must be called after ring_buffer_nest_start() and after the 3149 * ring_buffer_unlock_commit(). 3150 */ 3151 void ring_buffer_nest_end(struct trace_buffer *buffer) 3152 { 3153 struct ring_buffer_per_cpu *cpu_buffer; 3154 int cpu; 3155 3156 /* disabled by ring_buffer_nest_start() */ 3157 cpu = raw_smp_processor_id(); 3158 cpu_buffer = buffer->buffers[cpu]; 3159 /* This is the shift value for the above recursive locking */ 3160 cpu_buffer->nest -= NESTED_BITS; 3161 preempt_enable_notrace(); 3162 } 3163 3164 /** 3165 * ring_buffer_unlock_commit - commit a reserved 3166 * @buffer: The buffer to commit to 3167 * @event: The event pointer to commit. 3168 * 3169 * This commits the data to the ring buffer, and releases any locks held. 3170 * 3171 * Must be paired with ring_buffer_lock_reserve. 3172 */ 3173 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 3174 struct ring_buffer_event *event) 3175 { 3176 struct ring_buffer_per_cpu *cpu_buffer; 3177 int cpu = raw_smp_processor_id(); 3178 3179 cpu_buffer = buffer->buffers[cpu]; 3180 3181 rb_commit(cpu_buffer, event); 3182 3183 rb_wakeups(buffer, cpu_buffer); 3184 3185 trace_recursive_unlock(cpu_buffer); 3186 3187 preempt_enable_notrace(); 3188 3189 return 0; 3190 } 3191 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3192 3193 /* Special value to validate all deltas on a page. */ 3194 #define CHECK_FULL_PAGE 1L 3195 3196 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3197 static void dump_buffer_page(struct buffer_data_page *bpage, 3198 struct rb_event_info *info, 3199 unsigned long tail) 3200 { 3201 struct ring_buffer_event *event; 3202 u64 ts, delta; 3203 int e; 3204 3205 ts = bpage->time_stamp; 3206 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3207 3208 for (e = 0; e < tail; e += rb_event_length(event)) { 3209 3210 event = (struct ring_buffer_event *)(bpage->data + e); 3211 3212 switch (event->type_len) { 3213 3214 case RINGBUF_TYPE_TIME_EXTEND: 3215 delta = ring_buffer_event_time_stamp(event); 3216 ts += delta; 3217 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3218 break; 3219 3220 case RINGBUF_TYPE_TIME_STAMP: 3221 delta = ring_buffer_event_time_stamp(event); 3222 ts = delta; 3223 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3224 break; 3225 3226 case RINGBUF_TYPE_PADDING: 3227 ts += event->time_delta; 3228 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3229 break; 3230 3231 case RINGBUF_TYPE_DATA: 3232 ts += event->time_delta; 3233 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3234 break; 3235 3236 default: 3237 break; 3238 } 3239 } 3240 } 3241 3242 static DEFINE_PER_CPU(atomic_t, checking); 3243 static atomic_t ts_dump; 3244 3245 /* 3246 * Check if the current event time stamp matches the deltas on 3247 * the buffer page. 3248 */ 3249 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3250 struct rb_event_info *info, 3251 unsigned long tail) 3252 { 3253 struct ring_buffer_event *event; 3254 struct buffer_data_page *bpage; 3255 u64 ts, delta; 3256 bool full = false; 3257 int e; 3258 3259 bpage = info->tail_page->page; 3260 3261 if (tail == CHECK_FULL_PAGE) { 3262 full = true; 3263 tail = local_read(&bpage->commit); 3264 } else if (info->add_timestamp & 3265 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3266 /* Ignore events with absolute time stamps */ 3267 return; 3268 } 3269 3270 /* 3271 * Do not check the first event (skip possible extends too). 3272 * Also do not check if previous events have not been committed. 3273 */ 3274 if (tail <= 8 || tail > local_read(&bpage->commit)) 3275 return; 3276 3277 /* 3278 * If this interrupted another event, 3279 */ 3280 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3281 goto out; 3282 3283 ts = bpage->time_stamp; 3284 3285 for (e = 0; e < tail; e += rb_event_length(event)) { 3286 3287 event = (struct ring_buffer_event *)(bpage->data + e); 3288 3289 switch (event->type_len) { 3290 3291 case RINGBUF_TYPE_TIME_EXTEND: 3292 delta = ring_buffer_event_time_stamp(event); 3293 ts += delta; 3294 break; 3295 3296 case RINGBUF_TYPE_TIME_STAMP: 3297 delta = ring_buffer_event_time_stamp(event); 3298 ts = delta; 3299 break; 3300 3301 case RINGBUF_TYPE_PADDING: 3302 if (event->time_delta == 1) 3303 break; 3304 /* fall through */ 3305 case RINGBUF_TYPE_DATA: 3306 ts += event->time_delta; 3307 break; 3308 3309 default: 3310 RB_WARN_ON(cpu_buffer, 1); 3311 } 3312 } 3313 if ((full && ts > info->ts) || 3314 (!full && ts + info->delta != info->ts)) { 3315 /* If another report is happening, ignore this one */ 3316 if (atomic_inc_return(&ts_dump) != 1) { 3317 atomic_dec(&ts_dump); 3318 goto out; 3319 } 3320 atomic_inc(&cpu_buffer->record_disabled); 3321 /* There's some cases in boot up that this can happen */ 3322 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3323 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3324 cpu_buffer->cpu, 3325 ts + info->delta, info->ts, info->delta, 3326 info->before, info->after, 3327 full ? " (full)" : ""); 3328 dump_buffer_page(bpage, info, tail); 3329 atomic_dec(&ts_dump); 3330 /* Do not re-enable checking */ 3331 return; 3332 } 3333 out: 3334 atomic_dec(this_cpu_ptr(&checking)); 3335 } 3336 #else 3337 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3338 struct rb_event_info *info, 3339 unsigned long tail) 3340 { 3341 } 3342 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3343 3344 static struct ring_buffer_event * 3345 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3346 struct rb_event_info *info) 3347 { 3348 struct ring_buffer_event *event; 3349 struct buffer_page *tail_page; 3350 unsigned long tail, write, w; 3351 bool a_ok; 3352 bool b_ok; 3353 3354 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3355 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3356 3357 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3358 barrier(); 3359 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3360 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3361 barrier(); 3362 info->ts = rb_time_stamp(cpu_buffer->buffer); 3363 3364 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3365 info->delta = info->ts; 3366 } else { 3367 /* 3368 * If interrupting an event time update, we may need an 3369 * absolute timestamp. 3370 * Don't bother if this is the start of a new page (w == 0). 3371 */ 3372 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3373 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3374 info->length += RB_LEN_TIME_EXTEND; 3375 } else { 3376 info->delta = info->ts - info->after; 3377 if (unlikely(test_time_stamp(info->delta))) { 3378 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3379 info->length += RB_LEN_TIME_EXTEND; 3380 } 3381 } 3382 } 3383 3384 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3385 3386 /*C*/ write = local_add_return(info->length, &tail_page->write); 3387 3388 /* set write to only the index of the write */ 3389 write &= RB_WRITE_MASK; 3390 3391 tail = write - info->length; 3392 3393 /* See if we shot pass the end of this buffer page */ 3394 if (unlikely(write > BUF_PAGE_SIZE)) { 3395 /* before and after may now different, fix it up*/ 3396 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3397 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3398 if (a_ok && b_ok && info->before != info->after) 3399 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3400 info->before, info->after); 3401 if (a_ok && b_ok) 3402 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3403 return rb_move_tail(cpu_buffer, tail, info); 3404 } 3405 3406 if (likely(tail == w)) { 3407 u64 save_before; 3408 bool s_ok; 3409 3410 /* Nothing interrupted us between A and C */ 3411 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3412 barrier(); 3413 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3414 RB_WARN_ON(cpu_buffer, !s_ok); 3415 if (likely(!(info->add_timestamp & 3416 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3417 /* This did not interrupt any time update */ 3418 info->delta = info->ts - info->after; 3419 else 3420 /* Just use full timestamp for interrupting event */ 3421 info->delta = info->ts; 3422 barrier(); 3423 check_buffer(cpu_buffer, info, tail); 3424 if (unlikely(info->ts != save_before)) { 3425 /* SLOW PATH - Interrupted between C and E */ 3426 3427 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3428 RB_WARN_ON(cpu_buffer, !a_ok); 3429 3430 /* Write stamp must only go forward */ 3431 if (save_before > info->after) { 3432 /* 3433 * We do not care about the result, only that 3434 * it gets updated atomically. 3435 */ 3436 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3437 info->after, save_before); 3438 } 3439 } 3440 } else { 3441 u64 ts; 3442 /* SLOW PATH - Interrupted between A and C */ 3443 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3444 /* Was interrupted before here, write_stamp must be valid */ 3445 RB_WARN_ON(cpu_buffer, !a_ok); 3446 ts = rb_time_stamp(cpu_buffer->buffer); 3447 barrier(); 3448 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3449 info->after < ts && 3450 rb_time_cmpxchg(&cpu_buffer->write_stamp, 3451 info->after, ts)) { 3452 /* Nothing came after this event between C and E */ 3453 info->delta = ts - info->after; 3454 info->ts = ts; 3455 } else { 3456 /* 3457 * Interrupted between C and E: 3458 * Lost the previous events time stamp. Just set the 3459 * delta to zero, and this will be the same time as 3460 * the event this event interrupted. And the events that 3461 * came after this will still be correct (as they would 3462 * have built their delta on the previous event. 3463 */ 3464 info->delta = 0; 3465 } 3466 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3467 } 3468 3469 /* 3470 * If this is the first commit on the page, then it has the same 3471 * timestamp as the page itself. 3472 */ 3473 if (unlikely(!tail && !(info->add_timestamp & 3474 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3475 info->delta = 0; 3476 3477 /* We reserved something on the buffer */ 3478 3479 event = __rb_page_index(tail_page, tail); 3480 rb_update_event(cpu_buffer, event, info); 3481 3482 local_inc(&tail_page->entries); 3483 3484 /* 3485 * If this is the first commit on the page, then update 3486 * its timestamp. 3487 */ 3488 if (unlikely(!tail)) 3489 tail_page->page->time_stamp = info->ts; 3490 3491 /* account for these added bytes */ 3492 local_add(info->length, &cpu_buffer->entries_bytes); 3493 3494 return event; 3495 } 3496 3497 static __always_inline struct ring_buffer_event * 3498 rb_reserve_next_event(struct trace_buffer *buffer, 3499 struct ring_buffer_per_cpu *cpu_buffer, 3500 unsigned long length) 3501 { 3502 struct ring_buffer_event *event; 3503 struct rb_event_info info; 3504 int nr_loops = 0; 3505 int add_ts_default; 3506 3507 rb_start_commit(cpu_buffer); 3508 /* The commit page can not change after this */ 3509 3510 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3511 /* 3512 * Due to the ability to swap a cpu buffer from a buffer 3513 * it is possible it was swapped before we committed. 3514 * (committing stops a swap). We check for it here and 3515 * if it happened, we have to fail the write. 3516 */ 3517 barrier(); 3518 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3519 local_dec(&cpu_buffer->committing); 3520 local_dec(&cpu_buffer->commits); 3521 return NULL; 3522 } 3523 #endif 3524 3525 info.length = rb_calculate_event_length(length); 3526 3527 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3528 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3529 info.length += RB_LEN_TIME_EXTEND; 3530 } else { 3531 add_ts_default = RB_ADD_STAMP_NONE; 3532 } 3533 3534 again: 3535 info.add_timestamp = add_ts_default; 3536 info.delta = 0; 3537 3538 /* 3539 * We allow for interrupts to reenter here and do a trace. 3540 * If one does, it will cause this original code to loop 3541 * back here. Even with heavy interrupts happening, this 3542 * should only happen a few times in a row. If this happens 3543 * 1000 times in a row, there must be either an interrupt 3544 * storm or we have something buggy. 3545 * Bail! 3546 */ 3547 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3548 goto out_fail; 3549 3550 event = __rb_reserve_next(cpu_buffer, &info); 3551 3552 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3553 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3554 info.length -= RB_LEN_TIME_EXTEND; 3555 goto again; 3556 } 3557 3558 if (likely(event)) 3559 return event; 3560 out_fail: 3561 rb_end_commit(cpu_buffer); 3562 return NULL; 3563 } 3564 3565 /** 3566 * ring_buffer_lock_reserve - reserve a part of the buffer 3567 * @buffer: the ring buffer to reserve from 3568 * @length: the length of the data to reserve (excluding event header) 3569 * 3570 * Returns a reserved event on the ring buffer to copy directly to. 3571 * The user of this interface will need to get the body to write into 3572 * and can use the ring_buffer_event_data() interface. 3573 * 3574 * The length is the length of the data needed, not the event length 3575 * which also includes the event header. 3576 * 3577 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3578 * If NULL is returned, then nothing has been allocated or locked. 3579 */ 3580 struct ring_buffer_event * 3581 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3582 { 3583 struct ring_buffer_per_cpu *cpu_buffer; 3584 struct ring_buffer_event *event; 3585 int cpu; 3586 3587 /* If we are tracing schedule, we don't want to recurse */ 3588 preempt_disable_notrace(); 3589 3590 if (unlikely(atomic_read(&buffer->record_disabled))) 3591 goto out; 3592 3593 cpu = raw_smp_processor_id(); 3594 3595 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3596 goto out; 3597 3598 cpu_buffer = buffer->buffers[cpu]; 3599 3600 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3601 goto out; 3602 3603 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3604 goto out; 3605 3606 if (unlikely(trace_recursive_lock(cpu_buffer))) 3607 goto out; 3608 3609 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3610 if (!event) 3611 goto out_unlock; 3612 3613 return event; 3614 3615 out_unlock: 3616 trace_recursive_unlock(cpu_buffer); 3617 out: 3618 preempt_enable_notrace(); 3619 return NULL; 3620 } 3621 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3622 3623 /* 3624 * Decrement the entries to the page that an event is on. 3625 * The event does not even need to exist, only the pointer 3626 * to the page it is on. This may only be called before the commit 3627 * takes place. 3628 */ 3629 static inline void 3630 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3631 struct ring_buffer_event *event) 3632 { 3633 unsigned long addr = (unsigned long)event; 3634 struct buffer_page *bpage = cpu_buffer->commit_page; 3635 struct buffer_page *start; 3636 3637 addr &= PAGE_MASK; 3638 3639 /* Do the likely case first */ 3640 if (likely(bpage->page == (void *)addr)) { 3641 local_dec(&bpage->entries); 3642 return; 3643 } 3644 3645 /* 3646 * Because the commit page may be on the reader page we 3647 * start with the next page and check the end loop there. 3648 */ 3649 rb_inc_page(&bpage); 3650 start = bpage; 3651 do { 3652 if (bpage->page == (void *)addr) { 3653 local_dec(&bpage->entries); 3654 return; 3655 } 3656 rb_inc_page(&bpage); 3657 } while (bpage != start); 3658 3659 /* commit not part of this buffer?? */ 3660 RB_WARN_ON(cpu_buffer, 1); 3661 } 3662 3663 /** 3664 * ring_buffer_discard_commit - discard an event that has not been committed 3665 * @buffer: the ring buffer 3666 * @event: non committed event to discard 3667 * 3668 * Sometimes an event that is in the ring buffer needs to be ignored. 3669 * This function lets the user discard an event in the ring buffer 3670 * and then that event will not be read later. 3671 * 3672 * This function only works if it is called before the item has been 3673 * committed. It will try to free the event from the ring buffer 3674 * if another event has not been added behind it. 3675 * 3676 * If another event has been added behind it, it will set the event 3677 * up as discarded, and perform the commit. 3678 * 3679 * If this function is called, do not call ring_buffer_unlock_commit on 3680 * the event. 3681 */ 3682 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3683 struct ring_buffer_event *event) 3684 { 3685 struct ring_buffer_per_cpu *cpu_buffer; 3686 int cpu; 3687 3688 /* The event is discarded regardless */ 3689 rb_event_discard(event); 3690 3691 cpu = smp_processor_id(); 3692 cpu_buffer = buffer->buffers[cpu]; 3693 3694 /* 3695 * This must only be called if the event has not been 3696 * committed yet. Thus we can assume that preemption 3697 * is still disabled. 3698 */ 3699 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3700 3701 rb_decrement_entry(cpu_buffer, event); 3702 if (rb_try_to_discard(cpu_buffer, event)) 3703 goto out; 3704 3705 out: 3706 rb_end_commit(cpu_buffer); 3707 3708 trace_recursive_unlock(cpu_buffer); 3709 3710 preempt_enable_notrace(); 3711 3712 } 3713 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3714 3715 /** 3716 * ring_buffer_write - write data to the buffer without reserving 3717 * @buffer: The ring buffer to write to. 3718 * @length: The length of the data being written (excluding the event header) 3719 * @data: The data to write to the buffer. 3720 * 3721 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3722 * one function. If you already have the data to write to the buffer, it 3723 * may be easier to simply call this function. 3724 * 3725 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3726 * and not the length of the event which would hold the header. 3727 */ 3728 int ring_buffer_write(struct trace_buffer *buffer, 3729 unsigned long length, 3730 void *data) 3731 { 3732 struct ring_buffer_per_cpu *cpu_buffer; 3733 struct ring_buffer_event *event; 3734 void *body; 3735 int ret = -EBUSY; 3736 int cpu; 3737 3738 preempt_disable_notrace(); 3739 3740 if (atomic_read(&buffer->record_disabled)) 3741 goto out; 3742 3743 cpu = raw_smp_processor_id(); 3744 3745 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3746 goto out; 3747 3748 cpu_buffer = buffer->buffers[cpu]; 3749 3750 if (atomic_read(&cpu_buffer->record_disabled)) 3751 goto out; 3752 3753 if (length > BUF_MAX_DATA_SIZE) 3754 goto out; 3755 3756 if (unlikely(trace_recursive_lock(cpu_buffer))) 3757 goto out; 3758 3759 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3760 if (!event) 3761 goto out_unlock; 3762 3763 body = rb_event_data(event); 3764 3765 memcpy(body, data, length); 3766 3767 rb_commit(cpu_buffer, event); 3768 3769 rb_wakeups(buffer, cpu_buffer); 3770 3771 ret = 0; 3772 3773 out_unlock: 3774 trace_recursive_unlock(cpu_buffer); 3775 3776 out: 3777 preempt_enable_notrace(); 3778 3779 return ret; 3780 } 3781 EXPORT_SYMBOL_GPL(ring_buffer_write); 3782 3783 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3784 { 3785 struct buffer_page *reader = cpu_buffer->reader_page; 3786 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3787 struct buffer_page *commit = cpu_buffer->commit_page; 3788 3789 /* In case of error, head will be NULL */ 3790 if (unlikely(!head)) 3791 return true; 3792 3793 return reader->read == rb_page_commit(reader) && 3794 (commit == reader || 3795 (commit == head && 3796 head->read == rb_page_commit(commit))); 3797 } 3798 3799 /** 3800 * ring_buffer_record_disable - stop all writes into the buffer 3801 * @buffer: The ring buffer to stop writes to. 3802 * 3803 * This prevents all writes to the buffer. Any attempt to write 3804 * to the buffer after this will fail and return NULL. 3805 * 3806 * The caller should call synchronize_rcu() after this. 3807 */ 3808 void ring_buffer_record_disable(struct trace_buffer *buffer) 3809 { 3810 atomic_inc(&buffer->record_disabled); 3811 } 3812 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3813 3814 /** 3815 * ring_buffer_record_enable - enable writes to the buffer 3816 * @buffer: The ring buffer to enable writes 3817 * 3818 * Note, multiple disables will need the same number of enables 3819 * to truly enable the writing (much like preempt_disable). 3820 */ 3821 void ring_buffer_record_enable(struct trace_buffer *buffer) 3822 { 3823 atomic_dec(&buffer->record_disabled); 3824 } 3825 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3826 3827 /** 3828 * ring_buffer_record_off - stop all writes into the buffer 3829 * @buffer: The ring buffer to stop writes to. 3830 * 3831 * This prevents all writes to the buffer. Any attempt to write 3832 * to the buffer after this will fail and return NULL. 3833 * 3834 * This is different than ring_buffer_record_disable() as 3835 * it works like an on/off switch, where as the disable() version 3836 * must be paired with a enable(). 3837 */ 3838 void ring_buffer_record_off(struct trace_buffer *buffer) 3839 { 3840 unsigned int rd; 3841 unsigned int new_rd; 3842 3843 do { 3844 rd = atomic_read(&buffer->record_disabled); 3845 new_rd = rd | RB_BUFFER_OFF; 3846 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3847 } 3848 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3849 3850 /** 3851 * ring_buffer_record_on - restart writes into the buffer 3852 * @buffer: The ring buffer to start writes to. 3853 * 3854 * This enables all writes to the buffer that was disabled by 3855 * ring_buffer_record_off(). 3856 * 3857 * This is different than ring_buffer_record_enable() as 3858 * it works like an on/off switch, where as the enable() version 3859 * must be paired with a disable(). 3860 */ 3861 void ring_buffer_record_on(struct trace_buffer *buffer) 3862 { 3863 unsigned int rd; 3864 unsigned int new_rd; 3865 3866 do { 3867 rd = atomic_read(&buffer->record_disabled); 3868 new_rd = rd & ~RB_BUFFER_OFF; 3869 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3870 } 3871 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3872 3873 /** 3874 * ring_buffer_record_is_on - return true if the ring buffer can write 3875 * @buffer: The ring buffer to see if write is enabled 3876 * 3877 * Returns true if the ring buffer is in a state that it accepts writes. 3878 */ 3879 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 3880 { 3881 return !atomic_read(&buffer->record_disabled); 3882 } 3883 3884 /** 3885 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3886 * @buffer: The ring buffer to see if write is set enabled 3887 * 3888 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3889 * Note that this does NOT mean it is in a writable state. 3890 * 3891 * It may return true when the ring buffer has been disabled by 3892 * ring_buffer_record_disable(), as that is a temporary disabling of 3893 * the ring buffer. 3894 */ 3895 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 3896 { 3897 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3898 } 3899 3900 /** 3901 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3902 * @buffer: The ring buffer to stop writes to. 3903 * @cpu: The CPU buffer to stop 3904 * 3905 * This prevents all writes to the buffer. Any attempt to write 3906 * to the buffer after this will fail and return NULL. 3907 * 3908 * The caller should call synchronize_rcu() after this. 3909 */ 3910 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 3911 { 3912 struct ring_buffer_per_cpu *cpu_buffer; 3913 3914 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3915 return; 3916 3917 cpu_buffer = buffer->buffers[cpu]; 3918 atomic_inc(&cpu_buffer->record_disabled); 3919 } 3920 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3921 3922 /** 3923 * ring_buffer_record_enable_cpu - enable writes to the buffer 3924 * @buffer: The ring buffer to enable writes 3925 * @cpu: The CPU to enable. 3926 * 3927 * Note, multiple disables will need the same number of enables 3928 * to truly enable the writing (much like preempt_disable). 3929 */ 3930 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 3931 { 3932 struct ring_buffer_per_cpu *cpu_buffer; 3933 3934 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3935 return; 3936 3937 cpu_buffer = buffer->buffers[cpu]; 3938 atomic_dec(&cpu_buffer->record_disabled); 3939 } 3940 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3941 3942 /* 3943 * The total entries in the ring buffer is the running counter 3944 * of entries entered into the ring buffer, minus the sum of 3945 * the entries read from the ring buffer and the number of 3946 * entries that were overwritten. 3947 */ 3948 static inline unsigned long 3949 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3950 { 3951 return local_read(&cpu_buffer->entries) - 3952 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3953 } 3954 3955 /** 3956 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3957 * @buffer: The ring buffer 3958 * @cpu: The per CPU buffer to read from. 3959 */ 3960 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 3961 { 3962 unsigned long flags; 3963 struct ring_buffer_per_cpu *cpu_buffer; 3964 struct buffer_page *bpage; 3965 u64 ret = 0; 3966 3967 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3968 return 0; 3969 3970 cpu_buffer = buffer->buffers[cpu]; 3971 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3972 /* 3973 * if the tail is on reader_page, oldest time stamp is on the reader 3974 * page 3975 */ 3976 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3977 bpage = cpu_buffer->reader_page; 3978 else 3979 bpage = rb_set_head_page(cpu_buffer); 3980 if (bpage) 3981 ret = bpage->page->time_stamp; 3982 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3983 3984 return ret; 3985 } 3986 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3987 3988 /** 3989 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3990 * @buffer: The ring buffer 3991 * @cpu: The per CPU buffer to read from. 3992 */ 3993 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 3994 { 3995 struct ring_buffer_per_cpu *cpu_buffer; 3996 unsigned long ret; 3997 3998 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3999 return 0; 4000 4001 cpu_buffer = buffer->buffers[cpu]; 4002 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4003 4004 return ret; 4005 } 4006 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4007 4008 /** 4009 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4010 * @buffer: The ring buffer 4011 * @cpu: The per CPU buffer to get the entries from. 4012 */ 4013 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4014 { 4015 struct ring_buffer_per_cpu *cpu_buffer; 4016 4017 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4018 return 0; 4019 4020 cpu_buffer = buffer->buffers[cpu]; 4021 4022 return rb_num_of_entries(cpu_buffer); 4023 } 4024 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4025 4026 /** 4027 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4028 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4029 * @buffer: The ring buffer 4030 * @cpu: The per CPU buffer to get the number of overruns from 4031 */ 4032 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4033 { 4034 struct ring_buffer_per_cpu *cpu_buffer; 4035 unsigned long ret; 4036 4037 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4038 return 0; 4039 4040 cpu_buffer = buffer->buffers[cpu]; 4041 ret = local_read(&cpu_buffer->overrun); 4042 4043 return ret; 4044 } 4045 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4046 4047 /** 4048 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4049 * commits failing due to the buffer wrapping around while there are uncommitted 4050 * events, such as during an interrupt storm. 4051 * @buffer: The ring buffer 4052 * @cpu: The per CPU buffer to get the number of overruns from 4053 */ 4054 unsigned long 4055 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4056 { 4057 struct ring_buffer_per_cpu *cpu_buffer; 4058 unsigned long ret; 4059 4060 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4061 return 0; 4062 4063 cpu_buffer = buffer->buffers[cpu]; 4064 ret = local_read(&cpu_buffer->commit_overrun); 4065 4066 return ret; 4067 } 4068 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4069 4070 /** 4071 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4072 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4073 * @buffer: The ring buffer 4074 * @cpu: The per CPU buffer to get the number of overruns from 4075 */ 4076 unsigned long 4077 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4078 { 4079 struct ring_buffer_per_cpu *cpu_buffer; 4080 unsigned long ret; 4081 4082 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4083 return 0; 4084 4085 cpu_buffer = buffer->buffers[cpu]; 4086 ret = local_read(&cpu_buffer->dropped_events); 4087 4088 return ret; 4089 } 4090 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4091 4092 /** 4093 * ring_buffer_read_events_cpu - get the number of events successfully read 4094 * @buffer: The ring buffer 4095 * @cpu: The per CPU buffer to get the number of events read 4096 */ 4097 unsigned long 4098 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4099 { 4100 struct ring_buffer_per_cpu *cpu_buffer; 4101 4102 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4103 return 0; 4104 4105 cpu_buffer = buffer->buffers[cpu]; 4106 return cpu_buffer->read; 4107 } 4108 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4109 4110 /** 4111 * ring_buffer_entries - get the number of entries in a buffer 4112 * @buffer: The ring buffer 4113 * 4114 * Returns the total number of entries in the ring buffer 4115 * (all CPU entries) 4116 */ 4117 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4118 { 4119 struct ring_buffer_per_cpu *cpu_buffer; 4120 unsigned long entries = 0; 4121 int cpu; 4122 4123 /* if you care about this being correct, lock the buffer */ 4124 for_each_buffer_cpu(buffer, cpu) { 4125 cpu_buffer = buffer->buffers[cpu]; 4126 entries += rb_num_of_entries(cpu_buffer); 4127 } 4128 4129 return entries; 4130 } 4131 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4132 4133 /** 4134 * ring_buffer_overruns - get the number of overruns in buffer 4135 * @buffer: The ring buffer 4136 * 4137 * Returns the total number of overruns in the ring buffer 4138 * (all CPU entries) 4139 */ 4140 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4141 { 4142 struct ring_buffer_per_cpu *cpu_buffer; 4143 unsigned long overruns = 0; 4144 int cpu; 4145 4146 /* if you care about this being correct, lock the buffer */ 4147 for_each_buffer_cpu(buffer, cpu) { 4148 cpu_buffer = buffer->buffers[cpu]; 4149 overruns += local_read(&cpu_buffer->overrun); 4150 } 4151 4152 return overruns; 4153 } 4154 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4155 4156 static void rb_iter_reset(struct ring_buffer_iter *iter) 4157 { 4158 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4159 4160 /* Iterator usage is expected to have record disabled */ 4161 iter->head_page = cpu_buffer->reader_page; 4162 iter->head = cpu_buffer->reader_page->read; 4163 iter->next_event = iter->head; 4164 4165 iter->cache_reader_page = iter->head_page; 4166 iter->cache_read = cpu_buffer->read; 4167 4168 if (iter->head) { 4169 iter->read_stamp = cpu_buffer->read_stamp; 4170 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4171 } else { 4172 iter->read_stamp = iter->head_page->page->time_stamp; 4173 iter->page_stamp = iter->read_stamp; 4174 } 4175 } 4176 4177 /** 4178 * ring_buffer_iter_reset - reset an iterator 4179 * @iter: The iterator to reset 4180 * 4181 * Resets the iterator, so that it will start from the beginning 4182 * again. 4183 */ 4184 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4185 { 4186 struct ring_buffer_per_cpu *cpu_buffer; 4187 unsigned long flags; 4188 4189 if (!iter) 4190 return; 4191 4192 cpu_buffer = iter->cpu_buffer; 4193 4194 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4195 rb_iter_reset(iter); 4196 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4197 } 4198 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4199 4200 /** 4201 * ring_buffer_iter_empty - check if an iterator has no more to read 4202 * @iter: The iterator to check 4203 */ 4204 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4205 { 4206 struct ring_buffer_per_cpu *cpu_buffer; 4207 struct buffer_page *reader; 4208 struct buffer_page *head_page; 4209 struct buffer_page *commit_page; 4210 struct buffer_page *curr_commit_page; 4211 unsigned commit; 4212 u64 curr_commit_ts; 4213 u64 commit_ts; 4214 4215 cpu_buffer = iter->cpu_buffer; 4216 reader = cpu_buffer->reader_page; 4217 head_page = cpu_buffer->head_page; 4218 commit_page = cpu_buffer->commit_page; 4219 commit_ts = commit_page->page->time_stamp; 4220 4221 /* 4222 * When the writer goes across pages, it issues a cmpxchg which 4223 * is a mb(), which will synchronize with the rmb here. 4224 * (see rb_tail_page_update()) 4225 */ 4226 smp_rmb(); 4227 commit = rb_page_commit(commit_page); 4228 /* We want to make sure that the commit page doesn't change */ 4229 smp_rmb(); 4230 4231 /* Make sure commit page didn't change */ 4232 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4233 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4234 4235 /* If the commit page changed, then there's more data */ 4236 if (curr_commit_page != commit_page || 4237 curr_commit_ts != commit_ts) 4238 return 0; 4239 4240 /* Still racy, as it may return a false positive, but that's OK */ 4241 return ((iter->head_page == commit_page && iter->head >= commit) || 4242 (iter->head_page == reader && commit_page == head_page && 4243 head_page->read == commit && 4244 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4245 } 4246 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4247 4248 static void 4249 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4250 struct ring_buffer_event *event) 4251 { 4252 u64 delta; 4253 4254 switch (event->type_len) { 4255 case RINGBUF_TYPE_PADDING: 4256 return; 4257 4258 case RINGBUF_TYPE_TIME_EXTEND: 4259 delta = ring_buffer_event_time_stamp(event); 4260 cpu_buffer->read_stamp += delta; 4261 return; 4262 4263 case RINGBUF_TYPE_TIME_STAMP: 4264 delta = ring_buffer_event_time_stamp(event); 4265 cpu_buffer->read_stamp = delta; 4266 return; 4267 4268 case RINGBUF_TYPE_DATA: 4269 cpu_buffer->read_stamp += event->time_delta; 4270 return; 4271 4272 default: 4273 RB_WARN_ON(cpu_buffer, 1); 4274 } 4275 return; 4276 } 4277 4278 static void 4279 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4280 struct ring_buffer_event *event) 4281 { 4282 u64 delta; 4283 4284 switch (event->type_len) { 4285 case RINGBUF_TYPE_PADDING: 4286 return; 4287 4288 case RINGBUF_TYPE_TIME_EXTEND: 4289 delta = ring_buffer_event_time_stamp(event); 4290 iter->read_stamp += delta; 4291 return; 4292 4293 case RINGBUF_TYPE_TIME_STAMP: 4294 delta = ring_buffer_event_time_stamp(event); 4295 iter->read_stamp = delta; 4296 return; 4297 4298 case RINGBUF_TYPE_DATA: 4299 iter->read_stamp += event->time_delta; 4300 return; 4301 4302 default: 4303 RB_WARN_ON(iter->cpu_buffer, 1); 4304 } 4305 return; 4306 } 4307 4308 static struct buffer_page * 4309 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4310 { 4311 struct buffer_page *reader = NULL; 4312 unsigned long overwrite; 4313 unsigned long flags; 4314 int nr_loops = 0; 4315 int ret; 4316 4317 local_irq_save(flags); 4318 arch_spin_lock(&cpu_buffer->lock); 4319 4320 again: 4321 /* 4322 * This should normally only loop twice. But because the 4323 * start of the reader inserts an empty page, it causes 4324 * a case where we will loop three times. There should be no 4325 * reason to loop four times (that I know of). 4326 */ 4327 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4328 reader = NULL; 4329 goto out; 4330 } 4331 4332 reader = cpu_buffer->reader_page; 4333 4334 /* If there's more to read, return this page */ 4335 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4336 goto out; 4337 4338 /* Never should we have an index greater than the size */ 4339 if (RB_WARN_ON(cpu_buffer, 4340 cpu_buffer->reader_page->read > rb_page_size(reader))) 4341 goto out; 4342 4343 /* check if we caught up to the tail */ 4344 reader = NULL; 4345 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4346 goto out; 4347 4348 /* Don't bother swapping if the ring buffer is empty */ 4349 if (rb_num_of_entries(cpu_buffer) == 0) 4350 goto out; 4351 4352 /* 4353 * Reset the reader page to size zero. 4354 */ 4355 local_set(&cpu_buffer->reader_page->write, 0); 4356 local_set(&cpu_buffer->reader_page->entries, 0); 4357 local_set(&cpu_buffer->reader_page->page->commit, 0); 4358 cpu_buffer->reader_page->real_end = 0; 4359 4360 spin: 4361 /* 4362 * Splice the empty reader page into the list around the head. 4363 */ 4364 reader = rb_set_head_page(cpu_buffer); 4365 if (!reader) 4366 goto out; 4367 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4368 cpu_buffer->reader_page->list.prev = reader->list.prev; 4369 4370 /* 4371 * cpu_buffer->pages just needs to point to the buffer, it 4372 * has no specific buffer page to point to. Lets move it out 4373 * of our way so we don't accidentally swap it. 4374 */ 4375 cpu_buffer->pages = reader->list.prev; 4376 4377 /* The reader page will be pointing to the new head */ 4378 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4379 4380 /* 4381 * We want to make sure we read the overruns after we set up our 4382 * pointers to the next object. The writer side does a 4383 * cmpxchg to cross pages which acts as the mb on the writer 4384 * side. Note, the reader will constantly fail the swap 4385 * while the writer is updating the pointers, so this 4386 * guarantees that the overwrite recorded here is the one we 4387 * want to compare with the last_overrun. 4388 */ 4389 smp_mb(); 4390 overwrite = local_read(&(cpu_buffer->overrun)); 4391 4392 /* 4393 * Here's the tricky part. 4394 * 4395 * We need to move the pointer past the header page. 4396 * But we can only do that if a writer is not currently 4397 * moving it. The page before the header page has the 4398 * flag bit '1' set if it is pointing to the page we want. 4399 * but if the writer is in the process of moving it 4400 * than it will be '2' or already moved '0'. 4401 */ 4402 4403 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4404 4405 /* 4406 * If we did not convert it, then we must try again. 4407 */ 4408 if (!ret) 4409 goto spin; 4410 4411 /* 4412 * Yay! We succeeded in replacing the page. 4413 * 4414 * Now make the new head point back to the reader page. 4415 */ 4416 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4417 rb_inc_page(&cpu_buffer->head_page); 4418 4419 local_inc(&cpu_buffer->pages_read); 4420 4421 /* Finally update the reader page to the new head */ 4422 cpu_buffer->reader_page = reader; 4423 cpu_buffer->reader_page->read = 0; 4424 4425 if (overwrite != cpu_buffer->last_overrun) { 4426 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4427 cpu_buffer->last_overrun = overwrite; 4428 } 4429 4430 goto again; 4431 4432 out: 4433 /* Update the read_stamp on the first event */ 4434 if (reader && reader->read == 0) 4435 cpu_buffer->read_stamp = reader->page->time_stamp; 4436 4437 arch_spin_unlock(&cpu_buffer->lock); 4438 local_irq_restore(flags); 4439 4440 return reader; 4441 } 4442 4443 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4444 { 4445 struct ring_buffer_event *event; 4446 struct buffer_page *reader; 4447 unsigned length; 4448 4449 reader = rb_get_reader_page(cpu_buffer); 4450 4451 /* This function should not be called when buffer is empty */ 4452 if (RB_WARN_ON(cpu_buffer, !reader)) 4453 return; 4454 4455 event = rb_reader_event(cpu_buffer); 4456 4457 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4458 cpu_buffer->read++; 4459 4460 rb_update_read_stamp(cpu_buffer, event); 4461 4462 length = rb_event_length(event); 4463 cpu_buffer->reader_page->read += length; 4464 } 4465 4466 static void rb_advance_iter(struct ring_buffer_iter *iter) 4467 { 4468 struct ring_buffer_per_cpu *cpu_buffer; 4469 4470 cpu_buffer = iter->cpu_buffer; 4471 4472 /* If head == next_event then we need to jump to the next event */ 4473 if (iter->head == iter->next_event) { 4474 /* If the event gets overwritten again, there's nothing to do */ 4475 if (rb_iter_head_event(iter) == NULL) 4476 return; 4477 } 4478 4479 iter->head = iter->next_event; 4480 4481 /* 4482 * Check if we are at the end of the buffer. 4483 */ 4484 if (iter->next_event >= rb_page_size(iter->head_page)) { 4485 /* discarded commits can make the page empty */ 4486 if (iter->head_page == cpu_buffer->commit_page) 4487 return; 4488 rb_inc_iter(iter); 4489 return; 4490 } 4491 4492 rb_update_iter_read_stamp(iter, iter->event); 4493 } 4494 4495 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4496 { 4497 return cpu_buffer->lost_events; 4498 } 4499 4500 static struct ring_buffer_event * 4501 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4502 unsigned long *lost_events) 4503 { 4504 struct ring_buffer_event *event; 4505 struct buffer_page *reader; 4506 int nr_loops = 0; 4507 4508 if (ts) 4509 *ts = 0; 4510 again: 4511 /* 4512 * We repeat when a time extend is encountered. 4513 * Since the time extend is always attached to a data event, 4514 * we should never loop more than once. 4515 * (We never hit the following condition more than twice). 4516 */ 4517 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4518 return NULL; 4519 4520 reader = rb_get_reader_page(cpu_buffer); 4521 if (!reader) 4522 return NULL; 4523 4524 event = rb_reader_event(cpu_buffer); 4525 4526 switch (event->type_len) { 4527 case RINGBUF_TYPE_PADDING: 4528 if (rb_null_event(event)) 4529 RB_WARN_ON(cpu_buffer, 1); 4530 /* 4531 * Because the writer could be discarding every 4532 * event it creates (which would probably be bad) 4533 * if we were to go back to "again" then we may never 4534 * catch up, and will trigger the warn on, or lock 4535 * the box. Return the padding, and we will release 4536 * the current locks, and try again. 4537 */ 4538 return event; 4539 4540 case RINGBUF_TYPE_TIME_EXTEND: 4541 /* Internal data, OK to advance */ 4542 rb_advance_reader(cpu_buffer); 4543 goto again; 4544 4545 case RINGBUF_TYPE_TIME_STAMP: 4546 if (ts) { 4547 *ts = ring_buffer_event_time_stamp(event); 4548 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4549 cpu_buffer->cpu, ts); 4550 } 4551 /* Internal data, OK to advance */ 4552 rb_advance_reader(cpu_buffer); 4553 goto again; 4554 4555 case RINGBUF_TYPE_DATA: 4556 if (ts && !(*ts)) { 4557 *ts = cpu_buffer->read_stamp + event->time_delta; 4558 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4559 cpu_buffer->cpu, ts); 4560 } 4561 if (lost_events) 4562 *lost_events = rb_lost_events(cpu_buffer); 4563 return event; 4564 4565 default: 4566 RB_WARN_ON(cpu_buffer, 1); 4567 } 4568 4569 return NULL; 4570 } 4571 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4572 4573 static struct ring_buffer_event * 4574 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4575 { 4576 struct trace_buffer *buffer; 4577 struct ring_buffer_per_cpu *cpu_buffer; 4578 struct ring_buffer_event *event; 4579 int nr_loops = 0; 4580 4581 if (ts) 4582 *ts = 0; 4583 4584 cpu_buffer = iter->cpu_buffer; 4585 buffer = cpu_buffer->buffer; 4586 4587 /* 4588 * Check if someone performed a consuming read to 4589 * the buffer. A consuming read invalidates the iterator 4590 * and we need to reset the iterator in this case. 4591 */ 4592 if (unlikely(iter->cache_read != cpu_buffer->read || 4593 iter->cache_reader_page != cpu_buffer->reader_page)) 4594 rb_iter_reset(iter); 4595 4596 again: 4597 if (ring_buffer_iter_empty(iter)) 4598 return NULL; 4599 4600 /* 4601 * As the writer can mess with what the iterator is trying 4602 * to read, just give up if we fail to get an event after 4603 * three tries. The iterator is not as reliable when reading 4604 * the ring buffer with an active write as the consumer is. 4605 * Do not warn if the three failures is reached. 4606 */ 4607 if (++nr_loops > 3) 4608 return NULL; 4609 4610 if (rb_per_cpu_empty(cpu_buffer)) 4611 return NULL; 4612 4613 if (iter->head >= rb_page_size(iter->head_page)) { 4614 rb_inc_iter(iter); 4615 goto again; 4616 } 4617 4618 event = rb_iter_head_event(iter); 4619 if (!event) 4620 goto again; 4621 4622 switch (event->type_len) { 4623 case RINGBUF_TYPE_PADDING: 4624 if (rb_null_event(event)) { 4625 rb_inc_iter(iter); 4626 goto again; 4627 } 4628 rb_advance_iter(iter); 4629 return event; 4630 4631 case RINGBUF_TYPE_TIME_EXTEND: 4632 /* Internal data, OK to advance */ 4633 rb_advance_iter(iter); 4634 goto again; 4635 4636 case RINGBUF_TYPE_TIME_STAMP: 4637 if (ts) { 4638 *ts = ring_buffer_event_time_stamp(event); 4639 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4640 cpu_buffer->cpu, ts); 4641 } 4642 /* Internal data, OK to advance */ 4643 rb_advance_iter(iter); 4644 goto again; 4645 4646 case RINGBUF_TYPE_DATA: 4647 if (ts && !(*ts)) { 4648 *ts = iter->read_stamp + event->time_delta; 4649 ring_buffer_normalize_time_stamp(buffer, 4650 cpu_buffer->cpu, ts); 4651 } 4652 return event; 4653 4654 default: 4655 RB_WARN_ON(cpu_buffer, 1); 4656 } 4657 4658 return NULL; 4659 } 4660 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4661 4662 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4663 { 4664 if (likely(!in_nmi())) { 4665 raw_spin_lock(&cpu_buffer->reader_lock); 4666 return true; 4667 } 4668 4669 /* 4670 * If an NMI die dumps out the content of the ring buffer 4671 * trylock must be used to prevent a deadlock if the NMI 4672 * preempted a task that holds the ring buffer locks. If 4673 * we get the lock then all is fine, if not, then continue 4674 * to do the read, but this can corrupt the ring buffer, 4675 * so it must be permanently disabled from future writes. 4676 * Reading from NMI is a oneshot deal. 4677 */ 4678 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4679 return true; 4680 4681 /* Continue without locking, but disable the ring buffer */ 4682 atomic_inc(&cpu_buffer->record_disabled); 4683 return false; 4684 } 4685 4686 static inline void 4687 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4688 { 4689 if (likely(locked)) 4690 raw_spin_unlock(&cpu_buffer->reader_lock); 4691 return; 4692 } 4693 4694 /** 4695 * ring_buffer_peek - peek at the next event to be read 4696 * @buffer: The ring buffer to read 4697 * @cpu: The cpu to peak at 4698 * @ts: The timestamp counter of this event. 4699 * @lost_events: a variable to store if events were lost (may be NULL) 4700 * 4701 * This will return the event that will be read next, but does 4702 * not consume the data. 4703 */ 4704 struct ring_buffer_event * 4705 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4706 unsigned long *lost_events) 4707 { 4708 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4709 struct ring_buffer_event *event; 4710 unsigned long flags; 4711 bool dolock; 4712 4713 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4714 return NULL; 4715 4716 again: 4717 local_irq_save(flags); 4718 dolock = rb_reader_lock(cpu_buffer); 4719 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4720 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4721 rb_advance_reader(cpu_buffer); 4722 rb_reader_unlock(cpu_buffer, dolock); 4723 local_irq_restore(flags); 4724 4725 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4726 goto again; 4727 4728 return event; 4729 } 4730 4731 /** ring_buffer_iter_dropped - report if there are dropped events 4732 * @iter: The ring buffer iterator 4733 * 4734 * Returns true if there was dropped events since the last peek. 4735 */ 4736 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4737 { 4738 bool ret = iter->missed_events != 0; 4739 4740 iter->missed_events = 0; 4741 return ret; 4742 } 4743 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4744 4745 /** 4746 * ring_buffer_iter_peek - peek at the next event to be read 4747 * @iter: The ring buffer iterator 4748 * @ts: The timestamp counter of this event. 4749 * 4750 * This will return the event that will be read next, but does 4751 * not increment the iterator. 4752 */ 4753 struct ring_buffer_event * 4754 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4755 { 4756 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4757 struct ring_buffer_event *event; 4758 unsigned long flags; 4759 4760 again: 4761 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4762 event = rb_iter_peek(iter, ts); 4763 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4764 4765 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4766 goto again; 4767 4768 return event; 4769 } 4770 4771 /** 4772 * ring_buffer_consume - return an event and consume it 4773 * @buffer: The ring buffer to get the next event from 4774 * @cpu: the cpu to read the buffer from 4775 * @ts: a variable to store the timestamp (may be NULL) 4776 * @lost_events: a variable to store if events were lost (may be NULL) 4777 * 4778 * Returns the next event in the ring buffer, and that event is consumed. 4779 * Meaning, that sequential reads will keep returning a different event, 4780 * and eventually empty the ring buffer if the producer is slower. 4781 */ 4782 struct ring_buffer_event * 4783 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4784 unsigned long *lost_events) 4785 { 4786 struct ring_buffer_per_cpu *cpu_buffer; 4787 struct ring_buffer_event *event = NULL; 4788 unsigned long flags; 4789 bool dolock; 4790 4791 again: 4792 /* might be called in atomic */ 4793 preempt_disable(); 4794 4795 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4796 goto out; 4797 4798 cpu_buffer = buffer->buffers[cpu]; 4799 local_irq_save(flags); 4800 dolock = rb_reader_lock(cpu_buffer); 4801 4802 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4803 if (event) { 4804 cpu_buffer->lost_events = 0; 4805 rb_advance_reader(cpu_buffer); 4806 } 4807 4808 rb_reader_unlock(cpu_buffer, dolock); 4809 local_irq_restore(flags); 4810 4811 out: 4812 preempt_enable(); 4813 4814 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4815 goto again; 4816 4817 return event; 4818 } 4819 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4820 4821 /** 4822 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4823 * @buffer: The ring buffer to read from 4824 * @cpu: The cpu buffer to iterate over 4825 * @flags: gfp flags to use for memory allocation 4826 * 4827 * This performs the initial preparations necessary to iterate 4828 * through the buffer. Memory is allocated, buffer recording 4829 * is disabled, and the iterator pointer is returned to the caller. 4830 * 4831 * Disabling buffer recording prevents the reading from being 4832 * corrupted. This is not a consuming read, so a producer is not 4833 * expected. 4834 * 4835 * After a sequence of ring_buffer_read_prepare calls, the user is 4836 * expected to make at least one call to ring_buffer_read_prepare_sync. 4837 * Afterwards, ring_buffer_read_start is invoked to get things going 4838 * for real. 4839 * 4840 * This overall must be paired with ring_buffer_read_finish. 4841 */ 4842 struct ring_buffer_iter * 4843 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 4844 { 4845 struct ring_buffer_per_cpu *cpu_buffer; 4846 struct ring_buffer_iter *iter; 4847 4848 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4849 return NULL; 4850 4851 iter = kzalloc(sizeof(*iter), flags); 4852 if (!iter) 4853 return NULL; 4854 4855 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 4856 if (!iter->event) { 4857 kfree(iter); 4858 return NULL; 4859 } 4860 4861 cpu_buffer = buffer->buffers[cpu]; 4862 4863 iter->cpu_buffer = cpu_buffer; 4864 4865 atomic_inc(&cpu_buffer->resize_disabled); 4866 4867 return iter; 4868 } 4869 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4870 4871 /** 4872 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4873 * 4874 * All previously invoked ring_buffer_read_prepare calls to prepare 4875 * iterators will be synchronized. Afterwards, read_buffer_read_start 4876 * calls on those iterators are allowed. 4877 */ 4878 void 4879 ring_buffer_read_prepare_sync(void) 4880 { 4881 synchronize_rcu(); 4882 } 4883 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4884 4885 /** 4886 * ring_buffer_read_start - start a non consuming read of the buffer 4887 * @iter: The iterator returned by ring_buffer_read_prepare 4888 * 4889 * This finalizes the startup of an iteration through the buffer. 4890 * The iterator comes from a call to ring_buffer_read_prepare and 4891 * an intervening ring_buffer_read_prepare_sync must have been 4892 * performed. 4893 * 4894 * Must be paired with ring_buffer_read_finish. 4895 */ 4896 void 4897 ring_buffer_read_start(struct ring_buffer_iter *iter) 4898 { 4899 struct ring_buffer_per_cpu *cpu_buffer; 4900 unsigned long flags; 4901 4902 if (!iter) 4903 return; 4904 4905 cpu_buffer = iter->cpu_buffer; 4906 4907 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4908 arch_spin_lock(&cpu_buffer->lock); 4909 rb_iter_reset(iter); 4910 arch_spin_unlock(&cpu_buffer->lock); 4911 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4912 } 4913 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4914 4915 /** 4916 * ring_buffer_read_finish - finish reading the iterator of the buffer 4917 * @iter: The iterator retrieved by ring_buffer_start 4918 * 4919 * This re-enables the recording to the buffer, and frees the 4920 * iterator. 4921 */ 4922 void 4923 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4924 { 4925 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4926 unsigned long flags; 4927 4928 /* 4929 * Ring buffer is disabled from recording, here's a good place 4930 * to check the integrity of the ring buffer. 4931 * Must prevent readers from trying to read, as the check 4932 * clears the HEAD page and readers require it. 4933 */ 4934 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4935 rb_check_pages(cpu_buffer); 4936 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4937 4938 atomic_dec(&cpu_buffer->resize_disabled); 4939 kfree(iter->event); 4940 kfree(iter); 4941 } 4942 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4943 4944 /** 4945 * ring_buffer_iter_advance - advance the iterator to the next location 4946 * @iter: The ring buffer iterator 4947 * 4948 * Move the location of the iterator such that the next read will 4949 * be the next location of the iterator. 4950 */ 4951 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 4952 { 4953 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4954 unsigned long flags; 4955 4956 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4957 4958 rb_advance_iter(iter); 4959 4960 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4961 } 4962 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 4963 4964 /** 4965 * ring_buffer_size - return the size of the ring buffer (in bytes) 4966 * @buffer: The ring buffer. 4967 * @cpu: The CPU to get ring buffer size from. 4968 */ 4969 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 4970 { 4971 /* 4972 * Earlier, this method returned 4973 * BUF_PAGE_SIZE * buffer->nr_pages 4974 * Since the nr_pages field is now removed, we have converted this to 4975 * return the per cpu buffer value. 4976 */ 4977 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4978 return 0; 4979 4980 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4981 } 4982 EXPORT_SYMBOL_GPL(ring_buffer_size); 4983 4984 static void 4985 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4986 { 4987 rb_head_page_deactivate(cpu_buffer); 4988 4989 cpu_buffer->head_page 4990 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4991 local_set(&cpu_buffer->head_page->write, 0); 4992 local_set(&cpu_buffer->head_page->entries, 0); 4993 local_set(&cpu_buffer->head_page->page->commit, 0); 4994 4995 cpu_buffer->head_page->read = 0; 4996 4997 cpu_buffer->tail_page = cpu_buffer->head_page; 4998 cpu_buffer->commit_page = cpu_buffer->head_page; 4999 5000 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5001 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5002 local_set(&cpu_buffer->reader_page->write, 0); 5003 local_set(&cpu_buffer->reader_page->entries, 0); 5004 local_set(&cpu_buffer->reader_page->page->commit, 0); 5005 cpu_buffer->reader_page->read = 0; 5006 5007 local_set(&cpu_buffer->entries_bytes, 0); 5008 local_set(&cpu_buffer->overrun, 0); 5009 local_set(&cpu_buffer->commit_overrun, 0); 5010 local_set(&cpu_buffer->dropped_events, 0); 5011 local_set(&cpu_buffer->entries, 0); 5012 local_set(&cpu_buffer->committing, 0); 5013 local_set(&cpu_buffer->commits, 0); 5014 local_set(&cpu_buffer->pages_touched, 0); 5015 local_set(&cpu_buffer->pages_read, 0); 5016 cpu_buffer->last_pages_touch = 0; 5017 cpu_buffer->shortest_full = 0; 5018 cpu_buffer->read = 0; 5019 cpu_buffer->read_bytes = 0; 5020 5021 rb_time_set(&cpu_buffer->write_stamp, 0); 5022 rb_time_set(&cpu_buffer->before_stamp, 0); 5023 5024 cpu_buffer->lost_events = 0; 5025 cpu_buffer->last_overrun = 0; 5026 5027 rb_head_page_activate(cpu_buffer); 5028 } 5029 5030 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5031 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5032 { 5033 unsigned long flags; 5034 5035 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5036 5037 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5038 goto out; 5039 5040 arch_spin_lock(&cpu_buffer->lock); 5041 5042 rb_reset_cpu(cpu_buffer); 5043 5044 arch_spin_unlock(&cpu_buffer->lock); 5045 5046 out: 5047 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5048 } 5049 5050 /** 5051 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5052 * @buffer: The ring buffer to reset a per cpu buffer of 5053 * @cpu: The CPU buffer to be reset 5054 */ 5055 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5056 { 5057 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5058 5059 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5060 return; 5061 5062 /* prevent another thread from changing buffer sizes */ 5063 mutex_lock(&buffer->mutex); 5064 5065 atomic_inc(&cpu_buffer->resize_disabled); 5066 atomic_inc(&cpu_buffer->record_disabled); 5067 5068 /* Make sure all commits have finished */ 5069 synchronize_rcu(); 5070 5071 reset_disabled_cpu_buffer(cpu_buffer); 5072 5073 atomic_dec(&cpu_buffer->record_disabled); 5074 atomic_dec(&cpu_buffer->resize_disabled); 5075 5076 mutex_unlock(&buffer->mutex); 5077 } 5078 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5079 5080 /** 5081 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5082 * @buffer: The ring buffer to reset a per cpu buffer of 5083 * @cpu: The CPU buffer to be reset 5084 */ 5085 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5086 { 5087 struct ring_buffer_per_cpu *cpu_buffer; 5088 int cpu; 5089 5090 /* prevent another thread from changing buffer sizes */ 5091 mutex_lock(&buffer->mutex); 5092 5093 for_each_online_buffer_cpu(buffer, cpu) { 5094 cpu_buffer = buffer->buffers[cpu]; 5095 5096 atomic_inc(&cpu_buffer->resize_disabled); 5097 atomic_inc(&cpu_buffer->record_disabled); 5098 } 5099 5100 /* Make sure all commits have finished */ 5101 synchronize_rcu(); 5102 5103 for_each_online_buffer_cpu(buffer, cpu) { 5104 cpu_buffer = buffer->buffers[cpu]; 5105 5106 reset_disabled_cpu_buffer(cpu_buffer); 5107 5108 atomic_dec(&cpu_buffer->record_disabled); 5109 atomic_dec(&cpu_buffer->resize_disabled); 5110 } 5111 5112 mutex_unlock(&buffer->mutex); 5113 } 5114 5115 /** 5116 * ring_buffer_reset - reset a ring buffer 5117 * @buffer: The ring buffer to reset all cpu buffers 5118 */ 5119 void ring_buffer_reset(struct trace_buffer *buffer) 5120 { 5121 struct ring_buffer_per_cpu *cpu_buffer; 5122 int cpu; 5123 5124 for_each_buffer_cpu(buffer, cpu) { 5125 cpu_buffer = buffer->buffers[cpu]; 5126 5127 atomic_inc(&cpu_buffer->resize_disabled); 5128 atomic_inc(&cpu_buffer->record_disabled); 5129 } 5130 5131 /* Make sure all commits have finished */ 5132 synchronize_rcu(); 5133 5134 for_each_buffer_cpu(buffer, cpu) { 5135 cpu_buffer = buffer->buffers[cpu]; 5136 5137 reset_disabled_cpu_buffer(cpu_buffer); 5138 5139 atomic_dec(&cpu_buffer->record_disabled); 5140 atomic_dec(&cpu_buffer->resize_disabled); 5141 } 5142 } 5143 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5144 5145 /** 5146 * rind_buffer_empty - is the ring buffer empty? 5147 * @buffer: The ring buffer to test 5148 */ 5149 bool ring_buffer_empty(struct trace_buffer *buffer) 5150 { 5151 struct ring_buffer_per_cpu *cpu_buffer; 5152 unsigned long flags; 5153 bool dolock; 5154 int cpu; 5155 int ret; 5156 5157 /* yes this is racy, but if you don't like the race, lock the buffer */ 5158 for_each_buffer_cpu(buffer, cpu) { 5159 cpu_buffer = buffer->buffers[cpu]; 5160 local_irq_save(flags); 5161 dolock = rb_reader_lock(cpu_buffer); 5162 ret = rb_per_cpu_empty(cpu_buffer); 5163 rb_reader_unlock(cpu_buffer, dolock); 5164 local_irq_restore(flags); 5165 5166 if (!ret) 5167 return false; 5168 } 5169 5170 return true; 5171 } 5172 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5173 5174 /** 5175 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5176 * @buffer: The ring buffer 5177 * @cpu: The CPU buffer to test 5178 */ 5179 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5180 { 5181 struct ring_buffer_per_cpu *cpu_buffer; 5182 unsigned long flags; 5183 bool dolock; 5184 int ret; 5185 5186 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5187 return true; 5188 5189 cpu_buffer = buffer->buffers[cpu]; 5190 local_irq_save(flags); 5191 dolock = rb_reader_lock(cpu_buffer); 5192 ret = rb_per_cpu_empty(cpu_buffer); 5193 rb_reader_unlock(cpu_buffer, dolock); 5194 local_irq_restore(flags); 5195 5196 return ret; 5197 } 5198 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5199 5200 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5201 /** 5202 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5203 * @buffer_a: One buffer to swap with 5204 * @buffer_b: The other buffer to swap with 5205 * @cpu: the CPU of the buffers to swap 5206 * 5207 * This function is useful for tracers that want to take a "snapshot" 5208 * of a CPU buffer and has another back up buffer lying around. 5209 * it is expected that the tracer handles the cpu buffer not being 5210 * used at the moment. 5211 */ 5212 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5213 struct trace_buffer *buffer_b, int cpu) 5214 { 5215 struct ring_buffer_per_cpu *cpu_buffer_a; 5216 struct ring_buffer_per_cpu *cpu_buffer_b; 5217 int ret = -EINVAL; 5218 5219 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5220 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5221 goto out; 5222 5223 cpu_buffer_a = buffer_a->buffers[cpu]; 5224 cpu_buffer_b = buffer_b->buffers[cpu]; 5225 5226 /* At least make sure the two buffers are somewhat the same */ 5227 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5228 goto out; 5229 5230 ret = -EAGAIN; 5231 5232 if (atomic_read(&buffer_a->record_disabled)) 5233 goto out; 5234 5235 if (atomic_read(&buffer_b->record_disabled)) 5236 goto out; 5237 5238 if (atomic_read(&cpu_buffer_a->record_disabled)) 5239 goto out; 5240 5241 if (atomic_read(&cpu_buffer_b->record_disabled)) 5242 goto out; 5243 5244 /* 5245 * We can't do a synchronize_rcu here because this 5246 * function can be called in atomic context. 5247 * Normally this will be called from the same CPU as cpu. 5248 * If not it's up to the caller to protect this. 5249 */ 5250 atomic_inc(&cpu_buffer_a->record_disabled); 5251 atomic_inc(&cpu_buffer_b->record_disabled); 5252 5253 ret = -EBUSY; 5254 if (local_read(&cpu_buffer_a->committing)) 5255 goto out_dec; 5256 if (local_read(&cpu_buffer_b->committing)) 5257 goto out_dec; 5258 5259 buffer_a->buffers[cpu] = cpu_buffer_b; 5260 buffer_b->buffers[cpu] = cpu_buffer_a; 5261 5262 cpu_buffer_b->buffer = buffer_a; 5263 cpu_buffer_a->buffer = buffer_b; 5264 5265 ret = 0; 5266 5267 out_dec: 5268 atomic_dec(&cpu_buffer_a->record_disabled); 5269 atomic_dec(&cpu_buffer_b->record_disabled); 5270 out: 5271 return ret; 5272 } 5273 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5274 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5275 5276 /** 5277 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5278 * @buffer: the buffer to allocate for. 5279 * @cpu: the cpu buffer to allocate. 5280 * 5281 * This function is used in conjunction with ring_buffer_read_page. 5282 * When reading a full page from the ring buffer, these functions 5283 * can be used to speed up the process. The calling function should 5284 * allocate a few pages first with this function. Then when it 5285 * needs to get pages from the ring buffer, it passes the result 5286 * of this function into ring_buffer_read_page, which will swap 5287 * the page that was allocated, with the read page of the buffer. 5288 * 5289 * Returns: 5290 * The page allocated, or ERR_PTR 5291 */ 5292 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5293 { 5294 struct ring_buffer_per_cpu *cpu_buffer; 5295 struct buffer_data_page *bpage = NULL; 5296 unsigned long flags; 5297 struct page *page; 5298 5299 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5300 return ERR_PTR(-ENODEV); 5301 5302 cpu_buffer = buffer->buffers[cpu]; 5303 local_irq_save(flags); 5304 arch_spin_lock(&cpu_buffer->lock); 5305 5306 if (cpu_buffer->free_page) { 5307 bpage = cpu_buffer->free_page; 5308 cpu_buffer->free_page = NULL; 5309 } 5310 5311 arch_spin_unlock(&cpu_buffer->lock); 5312 local_irq_restore(flags); 5313 5314 if (bpage) 5315 goto out; 5316 5317 page = alloc_pages_node(cpu_to_node(cpu), 5318 GFP_KERNEL | __GFP_NORETRY, 0); 5319 if (!page) 5320 return ERR_PTR(-ENOMEM); 5321 5322 bpage = page_address(page); 5323 5324 out: 5325 rb_init_page(bpage); 5326 5327 return bpage; 5328 } 5329 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5330 5331 /** 5332 * ring_buffer_free_read_page - free an allocated read page 5333 * @buffer: the buffer the page was allocate for 5334 * @cpu: the cpu buffer the page came from 5335 * @data: the page to free 5336 * 5337 * Free a page allocated from ring_buffer_alloc_read_page. 5338 */ 5339 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5340 { 5341 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5342 struct buffer_data_page *bpage = data; 5343 struct page *page = virt_to_page(bpage); 5344 unsigned long flags; 5345 5346 /* If the page is still in use someplace else, we can't reuse it */ 5347 if (page_ref_count(page) > 1) 5348 goto out; 5349 5350 local_irq_save(flags); 5351 arch_spin_lock(&cpu_buffer->lock); 5352 5353 if (!cpu_buffer->free_page) { 5354 cpu_buffer->free_page = bpage; 5355 bpage = NULL; 5356 } 5357 5358 arch_spin_unlock(&cpu_buffer->lock); 5359 local_irq_restore(flags); 5360 5361 out: 5362 free_page((unsigned long)bpage); 5363 } 5364 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5365 5366 /** 5367 * ring_buffer_read_page - extract a page from the ring buffer 5368 * @buffer: buffer to extract from 5369 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5370 * @len: amount to extract 5371 * @cpu: the cpu of the buffer to extract 5372 * @full: should the extraction only happen when the page is full. 5373 * 5374 * This function will pull out a page from the ring buffer and consume it. 5375 * @data_page must be the address of the variable that was returned 5376 * from ring_buffer_alloc_read_page. This is because the page might be used 5377 * to swap with a page in the ring buffer. 5378 * 5379 * for example: 5380 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5381 * if (IS_ERR(rpage)) 5382 * return PTR_ERR(rpage); 5383 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5384 * if (ret >= 0) 5385 * process_page(rpage, ret); 5386 * 5387 * When @full is set, the function will not return true unless 5388 * the writer is off the reader page. 5389 * 5390 * Note: it is up to the calling functions to handle sleeps and wakeups. 5391 * The ring buffer can be used anywhere in the kernel and can not 5392 * blindly call wake_up. The layer that uses the ring buffer must be 5393 * responsible for that. 5394 * 5395 * Returns: 5396 * >=0 if data has been transferred, returns the offset of consumed data. 5397 * <0 if no data has been transferred. 5398 */ 5399 int ring_buffer_read_page(struct trace_buffer *buffer, 5400 void **data_page, size_t len, int cpu, int full) 5401 { 5402 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5403 struct ring_buffer_event *event; 5404 struct buffer_data_page *bpage; 5405 struct buffer_page *reader; 5406 unsigned long missed_events; 5407 unsigned long flags; 5408 unsigned int commit; 5409 unsigned int read; 5410 u64 save_timestamp; 5411 int ret = -1; 5412 5413 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5414 goto out; 5415 5416 /* 5417 * If len is not big enough to hold the page header, then 5418 * we can not copy anything. 5419 */ 5420 if (len <= BUF_PAGE_HDR_SIZE) 5421 goto out; 5422 5423 len -= BUF_PAGE_HDR_SIZE; 5424 5425 if (!data_page) 5426 goto out; 5427 5428 bpage = *data_page; 5429 if (!bpage) 5430 goto out; 5431 5432 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5433 5434 reader = rb_get_reader_page(cpu_buffer); 5435 if (!reader) 5436 goto out_unlock; 5437 5438 event = rb_reader_event(cpu_buffer); 5439 5440 read = reader->read; 5441 commit = rb_page_commit(reader); 5442 5443 /* Check if any events were dropped */ 5444 missed_events = cpu_buffer->lost_events; 5445 5446 /* 5447 * If this page has been partially read or 5448 * if len is not big enough to read the rest of the page or 5449 * a writer is still on the page, then 5450 * we must copy the data from the page to the buffer. 5451 * Otherwise, we can simply swap the page with the one passed in. 5452 */ 5453 if (read || (len < (commit - read)) || 5454 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5455 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5456 unsigned int rpos = read; 5457 unsigned int pos = 0; 5458 unsigned int size; 5459 5460 if (full) 5461 goto out_unlock; 5462 5463 if (len > (commit - read)) 5464 len = (commit - read); 5465 5466 /* Always keep the time extend and data together */ 5467 size = rb_event_ts_length(event); 5468 5469 if (len < size) 5470 goto out_unlock; 5471 5472 /* save the current timestamp, since the user will need it */ 5473 save_timestamp = cpu_buffer->read_stamp; 5474 5475 /* Need to copy one event at a time */ 5476 do { 5477 /* We need the size of one event, because 5478 * rb_advance_reader only advances by one event, 5479 * whereas rb_event_ts_length may include the size of 5480 * one or two events. 5481 * We have already ensured there's enough space if this 5482 * is a time extend. */ 5483 size = rb_event_length(event); 5484 memcpy(bpage->data + pos, rpage->data + rpos, size); 5485 5486 len -= size; 5487 5488 rb_advance_reader(cpu_buffer); 5489 rpos = reader->read; 5490 pos += size; 5491 5492 if (rpos >= commit) 5493 break; 5494 5495 event = rb_reader_event(cpu_buffer); 5496 /* Always keep the time extend and data together */ 5497 size = rb_event_ts_length(event); 5498 } while (len >= size); 5499 5500 /* update bpage */ 5501 local_set(&bpage->commit, pos); 5502 bpage->time_stamp = save_timestamp; 5503 5504 /* we copied everything to the beginning */ 5505 read = 0; 5506 } else { 5507 /* update the entry counter */ 5508 cpu_buffer->read += rb_page_entries(reader); 5509 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5510 5511 /* swap the pages */ 5512 rb_init_page(bpage); 5513 bpage = reader->page; 5514 reader->page = *data_page; 5515 local_set(&reader->write, 0); 5516 local_set(&reader->entries, 0); 5517 reader->read = 0; 5518 *data_page = bpage; 5519 5520 /* 5521 * Use the real_end for the data size, 5522 * This gives us a chance to store the lost events 5523 * on the page. 5524 */ 5525 if (reader->real_end) 5526 local_set(&bpage->commit, reader->real_end); 5527 } 5528 ret = read; 5529 5530 cpu_buffer->lost_events = 0; 5531 5532 commit = local_read(&bpage->commit); 5533 /* 5534 * Set a flag in the commit field if we lost events 5535 */ 5536 if (missed_events) { 5537 /* If there is room at the end of the page to save the 5538 * missed events, then record it there. 5539 */ 5540 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5541 memcpy(&bpage->data[commit], &missed_events, 5542 sizeof(missed_events)); 5543 local_add(RB_MISSED_STORED, &bpage->commit); 5544 commit += sizeof(missed_events); 5545 } 5546 local_add(RB_MISSED_EVENTS, &bpage->commit); 5547 } 5548 5549 /* 5550 * This page may be off to user land. Zero it out here. 5551 */ 5552 if (commit < BUF_PAGE_SIZE) 5553 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5554 5555 out_unlock: 5556 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5557 5558 out: 5559 return ret; 5560 } 5561 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5562 5563 /* 5564 * We only allocate new buffers, never free them if the CPU goes down. 5565 * If we were to free the buffer, then the user would lose any trace that was in 5566 * the buffer. 5567 */ 5568 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5569 { 5570 struct trace_buffer *buffer; 5571 long nr_pages_same; 5572 int cpu_i; 5573 unsigned long nr_pages; 5574 5575 buffer = container_of(node, struct trace_buffer, node); 5576 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5577 return 0; 5578 5579 nr_pages = 0; 5580 nr_pages_same = 1; 5581 /* check if all cpu sizes are same */ 5582 for_each_buffer_cpu(buffer, cpu_i) { 5583 /* fill in the size from first enabled cpu */ 5584 if (nr_pages == 0) 5585 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5586 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5587 nr_pages_same = 0; 5588 break; 5589 } 5590 } 5591 /* allocate minimum pages, user can later expand it */ 5592 if (!nr_pages_same) 5593 nr_pages = 2; 5594 buffer->buffers[cpu] = 5595 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5596 if (!buffer->buffers[cpu]) { 5597 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5598 cpu); 5599 return -ENOMEM; 5600 } 5601 smp_wmb(); 5602 cpumask_set_cpu(cpu, buffer->cpumask); 5603 return 0; 5604 } 5605 5606 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5607 /* 5608 * This is a basic integrity check of the ring buffer. 5609 * Late in the boot cycle this test will run when configured in. 5610 * It will kick off a thread per CPU that will go into a loop 5611 * writing to the per cpu ring buffer various sizes of data. 5612 * Some of the data will be large items, some small. 5613 * 5614 * Another thread is created that goes into a spin, sending out 5615 * IPIs to the other CPUs to also write into the ring buffer. 5616 * this is to test the nesting ability of the buffer. 5617 * 5618 * Basic stats are recorded and reported. If something in the 5619 * ring buffer should happen that's not expected, a big warning 5620 * is displayed and all ring buffers are disabled. 5621 */ 5622 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5623 5624 struct rb_test_data { 5625 struct trace_buffer *buffer; 5626 unsigned long events; 5627 unsigned long bytes_written; 5628 unsigned long bytes_alloc; 5629 unsigned long bytes_dropped; 5630 unsigned long events_nested; 5631 unsigned long bytes_written_nested; 5632 unsigned long bytes_alloc_nested; 5633 unsigned long bytes_dropped_nested; 5634 int min_size_nested; 5635 int max_size_nested; 5636 int max_size; 5637 int min_size; 5638 int cpu; 5639 int cnt; 5640 }; 5641 5642 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5643 5644 /* 1 meg per cpu */ 5645 #define RB_TEST_BUFFER_SIZE 1048576 5646 5647 static char rb_string[] __initdata = 5648 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5649 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5650 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5651 5652 static bool rb_test_started __initdata; 5653 5654 struct rb_item { 5655 int size; 5656 char str[]; 5657 }; 5658 5659 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5660 { 5661 struct ring_buffer_event *event; 5662 struct rb_item *item; 5663 bool started; 5664 int event_len; 5665 int size; 5666 int len; 5667 int cnt; 5668 5669 /* Have nested writes different that what is written */ 5670 cnt = data->cnt + (nested ? 27 : 0); 5671 5672 /* Multiply cnt by ~e, to make some unique increment */ 5673 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5674 5675 len = size + sizeof(struct rb_item); 5676 5677 started = rb_test_started; 5678 /* read rb_test_started before checking buffer enabled */ 5679 smp_rmb(); 5680 5681 event = ring_buffer_lock_reserve(data->buffer, len); 5682 if (!event) { 5683 /* Ignore dropped events before test starts. */ 5684 if (started) { 5685 if (nested) 5686 data->bytes_dropped += len; 5687 else 5688 data->bytes_dropped_nested += len; 5689 } 5690 return len; 5691 } 5692 5693 event_len = ring_buffer_event_length(event); 5694 5695 if (RB_WARN_ON(data->buffer, event_len < len)) 5696 goto out; 5697 5698 item = ring_buffer_event_data(event); 5699 item->size = size; 5700 memcpy(item->str, rb_string, size); 5701 5702 if (nested) { 5703 data->bytes_alloc_nested += event_len; 5704 data->bytes_written_nested += len; 5705 data->events_nested++; 5706 if (!data->min_size_nested || len < data->min_size_nested) 5707 data->min_size_nested = len; 5708 if (len > data->max_size_nested) 5709 data->max_size_nested = len; 5710 } else { 5711 data->bytes_alloc += event_len; 5712 data->bytes_written += len; 5713 data->events++; 5714 if (!data->min_size || len < data->min_size) 5715 data->max_size = len; 5716 if (len > data->max_size) 5717 data->max_size = len; 5718 } 5719 5720 out: 5721 ring_buffer_unlock_commit(data->buffer, event); 5722 5723 return 0; 5724 } 5725 5726 static __init int rb_test(void *arg) 5727 { 5728 struct rb_test_data *data = arg; 5729 5730 while (!kthread_should_stop()) { 5731 rb_write_something(data, false); 5732 data->cnt++; 5733 5734 set_current_state(TASK_INTERRUPTIBLE); 5735 /* Now sleep between a min of 100-300us and a max of 1ms */ 5736 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5737 } 5738 5739 return 0; 5740 } 5741 5742 static __init void rb_ipi(void *ignore) 5743 { 5744 struct rb_test_data *data; 5745 int cpu = smp_processor_id(); 5746 5747 data = &rb_data[cpu]; 5748 rb_write_something(data, true); 5749 } 5750 5751 static __init int rb_hammer_test(void *arg) 5752 { 5753 while (!kthread_should_stop()) { 5754 5755 /* Send an IPI to all cpus to write data! */ 5756 smp_call_function(rb_ipi, NULL, 1); 5757 /* No sleep, but for non preempt, let others run */ 5758 schedule(); 5759 } 5760 5761 return 0; 5762 } 5763 5764 static __init int test_ringbuffer(void) 5765 { 5766 struct task_struct *rb_hammer; 5767 struct trace_buffer *buffer; 5768 int cpu; 5769 int ret = 0; 5770 5771 if (security_locked_down(LOCKDOWN_TRACEFS)) { 5772 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 5773 return 0; 5774 } 5775 5776 pr_info("Running ring buffer tests...\n"); 5777 5778 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5779 if (WARN_ON(!buffer)) 5780 return 0; 5781 5782 /* Disable buffer so that threads can't write to it yet */ 5783 ring_buffer_record_off(buffer); 5784 5785 for_each_online_cpu(cpu) { 5786 rb_data[cpu].buffer = buffer; 5787 rb_data[cpu].cpu = cpu; 5788 rb_data[cpu].cnt = cpu; 5789 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5790 "rbtester/%d", cpu); 5791 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5792 pr_cont("FAILED\n"); 5793 ret = PTR_ERR(rb_threads[cpu]); 5794 goto out_free; 5795 } 5796 5797 kthread_bind(rb_threads[cpu], cpu); 5798 wake_up_process(rb_threads[cpu]); 5799 } 5800 5801 /* Now create the rb hammer! */ 5802 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5803 if (WARN_ON(IS_ERR(rb_hammer))) { 5804 pr_cont("FAILED\n"); 5805 ret = PTR_ERR(rb_hammer); 5806 goto out_free; 5807 } 5808 5809 ring_buffer_record_on(buffer); 5810 /* 5811 * Show buffer is enabled before setting rb_test_started. 5812 * Yes there's a small race window where events could be 5813 * dropped and the thread wont catch it. But when a ring 5814 * buffer gets enabled, there will always be some kind of 5815 * delay before other CPUs see it. Thus, we don't care about 5816 * those dropped events. We care about events dropped after 5817 * the threads see that the buffer is active. 5818 */ 5819 smp_wmb(); 5820 rb_test_started = true; 5821 5822 set_current_state(TASK_INTERRUPTIBLE); 5823 /* Just run for 10 seconds */; 5824 schedule_timeout(10 * HZ); 5825 5826 kthread_stop(rb_hammer); 5827 5828 out_free: 5829 for_each_online_cpu(cpu) { 5830 if (!rb_threads[cpu]) 5831 break; 5832 kthread_stop(rb_threads[cpu]); 5833 } 5834 if (ret) { 5835 ring_buffer_free(buffer); 5836 return ret; 5837 } 5838 5839 /* Report! */ 5840 pr_info("finished\n"); 5841 for_each_online_cpu(cpu) { 5842 struct ring_buffer_event *event; 5843 struct rb_test_data *data = &rb_data[cpu]; 5844 struct rb_item *item; 5845 unsigned long total_events; 5846 unsigned long total_dropped; 5847 unsigned long total_written; 5848 unsigned long total_alloc; 5849 unsigned long total_read = 0; 5850 unsigned long total_size = 0; 5851 unsigned long total_len = 0; 5852 unsigned long total_lost = 0; 5853 unsigned long lost; 5854 int big_event_size; 5855 int small_event_size; 5856 5857 ret = -1; 5858 5859 total_events = data->events + data->events_nested; 5860 total_written = data->bytes_written + data->bytes_written_nested; 5861 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5862 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5863 5864 big_event_size = data->max_size + data->max_size_nested; 5865 small_event_size = data->min_size + data->min_size_nested; 5866 5867 pr_info("CPU %d:\n", cpu); 5868 pr_info(" events: %ld\n", total_events); 5869 pr_info(" dropped bytes: %ld\n", total_dropped); 5870 pr_info(" alloced bytes: %ld\n", total_alloc); 5871 pr_info(" written bytes: %ld\n", total_written); 5872 pr_info(" biggest event: %d\n", big_event_size); 5873 pr_info(" smallest event: %d\n", small_event_size); 5874 5875 if (RB_WARN_ON(buffer, total_dropped)) 5876 break; 5877 5878 ret = 0; 5879 5880 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5881 total_lost += lost; 5882 item = ring_buffer_event_data(event); 5883 total_len += ring_buffer_event_length(event); 5884 total_size += item->size + sizeof(struct rb_item); 5885 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5886 pr_info("FAILED!\n"); 5887 pr_info("buffer had: %.*s\n", item->size, item->str); 5888 pr_info("expected: %.*s\n", item->size, rb_string); 5889 RB_WARN_ON(buffer, 1); 5890 ret = -1; 5891 break; 5892 } 5893 total_read++; 5894 } 5895 if (ret) 5896 break; 5897 5898 ret = -1; 5899 5900 pr_info(" read events: %ld\n", total_read); 5901 pr_info(" lost events: %ld\n", total_lost); 5902 pr_info(" total events: %ld\n", total_lost + total_read); 5903 pr_info(" recorded len bytes: %ld\n", total_len); 5904 pr_info(" recorded size bytes: %ld\n", total_size); 5905 if (total_lost) 5906 pr_info(" With dropped events, record len and size may not match\n" 5907 " alloced and written from above\n"); 5908 if (!total_lost) { 5909 if (RB_WARN_ON(buffer, total_len != total_alloc || 5910 total_size != total_written)) 5911 break; 5912 } 5913 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5914 break; 5915 5916 ret = 0; 5917 } 5918 if (!ret) 5919 pr_info("Ring buffer PASSED!\n"); 5920 5921 ring_buffer_free(buffer); 5922 return 0; 5923 } 5924 5925 late_initcall(test_ringbuffer); 5926 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5927